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Abstract

The analysis of the p- and hp-versions of the finite element methods has been
studied in much detail for the Hilbert spaces W12(). The following work extends
the previous approximation theory to that of general Sobolev spaces W14(Q),
g € [1, oo]. This extension is essential when considering the use of the p and hp
methods to the non-linear a-Laplacian problem.

Firstly, approximation theoretic results are obtained for approximation using
continuous piecewise polynomials of degree p on meshes of triangular and quadri-
lateral elements. Estimates for the rate of convergence in Sobolev spaces W19(Q)
are given. This analysis shows that the traditional view of avoiding the use of
high order polynomial finite element methods is incorrect, and that the rate of
convergence of the p—version is always at least that of the A—version (measured
in terms of number of degrees of freedom). It is also shown that. if the solution
has certain types of singularity, the rate of convergence of the p—version is twice
that of the A—version. Numerical results are given, confirming the results given

by the approximation theory.
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The p-version approximation theory is then used to obtain the hp approxi-
mation theory. The results obtained allow both non-uniform p refinements to be
used, and the A refinements only have to be locally quasiuniform. It is then shown
that even when the solution has singularities, exponential rates of convergence

can be achieved when using the hp-version, which would not be possible for the

h- and p-versions.
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Chapter 1

Introduction

1.1 Basic Notation

The following basic notation will be used. Throughout, C' will be used to denote
positive constants that are independent of other quantities appearing in the same
relation, and whose values need not be the same in any two places. The notation
a = b means that there exist positive constants C';, (5 such that C'ya < b < Csa.

Let R? be the usual Euclidean space with x = (x1,2;) € R*. Let  be a
polygonal domain in IR? with vertices A;, ¢t = 0,... M, Ao = Ap;. The boundary
I' = Zfil I'; where T'; are open straight lines with end points A;_;, A;. The
internal angle of I'; and I';;; is denoted by w;, i =1... M, 0 < w < 27. Let D and
N be two given sets of integers satisfying DNN = @ and DUN = {1,2,..., M}.
Let I? = Sicpliand TV =T = TP = 3,4 Ty, TP is called the Dirichlet

boundary and T’V the Neumann boundary. See Figure 1.1.
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Figure 1.1: An example of a domain 2

For ¢ € [1,00] the space LI() is defined to be the usual space of classes of

functions for which the norm

o lfl1dx)s, ¢ < oo
Il =4 (1.1)

€58 Super ’f{: q =00

is finite. For integer values of s, the Sobolev spaces W*4(§2) are equipped with

the norms

{Z|a|53 ||Daf||L¢I(Q)}l/q7 q < oo

I fllweay = (1.2)
maXja|<s | D% fllpeo(q), ¢ =00
where, for any index o = (a1, @), with |a| = a1 + a2
pr = 9 1.3)
T B o (15

It may also be convenient sometimes, to use the notation

flovez) — po g, (1.4)
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For non-integer values of s, the Sobolev spaces W*9(1) are defined using the
K-method of interpolation [19]. Thus, writing s = m + o where m is an integer
and o € (0,1), the space W*4(Q) is obtained by interpolating between the spaces

Wm™e(Q)) and W™*19(Q). This process is indicated using the notation
W1(Q) = [W™1(Q), W™t1(Q)], ., (1.5)

The subspaces W3*?(Q2) are defined in the usual manner [1].
Equally well, Sobolev spaces can be defined on an interval / = («,b) and on
curves 7.

Let S(p), p > 0, be the square

S(p) = {(z1,22) : 21| < p, [a2| < p}, (1.6)

and by Wrn(S(p)) € W*9(S(p)) we denote the space of all periodic functions
with period 2p.
A partition P of the domain {2 consists of a finite number of open sub-domains

(or elements), such that:
1. each element is either a triangle or a convex quadrilateral.

2. for any distinct pair of elements K and J, the intersection K N J is either

empty, a single common edge or a single common vertex,
3. diam K = hg, VK € P,

4. px = sup{diam(s) : s is a ball contained in K}, is such that px > Chy,
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5. for every K € P the set
Qx =int{UJ : J € Pand JNK # 0}, (1.7)
is such that for each J C Qg, diam(J) & hy.

Note that, the above properties of the refinement allow regions of the domain
to be more refined than others. This type of refinement will be called “locally
quasiuniform”.

Associated with each type of element is a reference domain given in the case

of quadrilateral elements by

S(1) ={(z,y): -1 <2< 1;-1 <y <1},
or, in the case of triangular elements, by

T(1)={(z,y): -1 <2 <1;—-1 <y <z}

Polynomial spaces of degree p € IN are defined on the quadrilateral and tri-

angular reference domains by
Q(p) = span {a’y* : 0 < j, b < p}
and
P(p) = span {a?y* 10 < j+k < p}

respectively.
There exists an invertible mapping Fx : K — K that is affine for triangular

elements and bilinear for quadrilateral elements, where K denotes the reference
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domain S(1) when K is a quadrilateral element and 7'(1) when A is a triangular
element. A polynomial space Pk is taken to be either @(ph) or P (pr) as appro-
priate, for each type of element. The space X}, is constructed using the partition

P in such a way that
X ={ve C(ﬁ) :v|g = 0o Fg! for some v € Py, for all A € P}, (1.8)

these spaces will be referred to as being a space of piecewise continuous polyno-

mials.

1.2 The Model Problem

The class of problems to be considered is given by:

Find u such that

~V A|Vul|**Vu} = f in9, (1.9)
u=g onIP, (1.10)
(IVul*?Vu)-n=h on IV, (1.11)

where a € (1,00), f, g and h are given data and n is the outward normal to the
boundary I'y. This equation is known as the a—Laplacian.

It is known that, even when the given data is smooth the solution u of (1.9)
may be singular. For example, suppose the domain Q has a corner of the form
shown in Figure 1.2, where w denotes the internal angle and (r,0), § € [0,w]

denote the polar coordinate system with origin at the vertex. Then it has been
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Q

Figure 1.2: Domain With Corner Singularity

shown, see Dobrowolski [25] and also Tolksdorf [36], that the true solution in the

neighbourhood of the corner has the form

u(x) = crA@(O) + 0(7}),

where ¢ € R is a smooth function with ©(0) = O(w) = 0,

4

s+4/s2+1/8, H0<w< 7
\/—7

A=14 s—/s?24+1/8, ifr<w<2r

(a—1)/a, ifw=27
with
f=(ofr 1) ~1
and
_(B-1a-28
28(a—=1)

(1.12)

(1.13)

(1.14)

(1.15)

To obtain an approximation to the solution of (1.9) using the finite element

method, it must firstly be stated as a variational problem: Find v € W1*(Q)
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such that u = g on I'p and
/ V"2V - Vodx = / fods+ [ ko ds, (1.16)
Q Q Cn

for all v € Wp*(Q), where WH*(Q) = {v : v € W'*(Q) : v = Oon I'p}.
For this problem to have any meaning it is required that f € W~1*(Q) and
h € W1/« () where ax = a/(a — 1), see [1]. Note that no assumption
has been made on g; this is because the natural assumption ¢ € W=1/*(Q) will
be seen to be insufficient when applying the p-version finite element method, see
chapter 2.

Note that the space of admissible functions for the solution of the variational
problem (1.16) is larger than the natural choice of space for the original problem
(1.9), which would typically be C?(Q) N Cr, (), where Cr,(Q) = {v : v €
C(Q),v = gon I'p}. This enlarged space is essential to the application of the
finite element method. If u is a solution of (1.9) then u is a solution of (1.16)
and conversely if the solution u of (1.16) is sufficiently smooth then it is also a
solution of (1.9). The solution of the original boundary value problem is known
as the classical solution.

From here on, it will be assumed that the solution of (1.9) can be written in

the form:

M
U= uptus Y uh (1.17)

=1

where

u € W (Q) := W™ (Q) N W5 (Q), m > 1, (1.18)
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uy € W (Q), uy=gonTp, k>1+1/a, (1.19)

and
uy = cii(ri)ri* gi(| log :])©:(6:) € W5 () (1.20)

where each g; is a smooth C'* function and each (; are smooth "™ functions such
that, for some p;, ; = 1 for 0 < r; < p;, ; = 0 for r; > 2p;, note that p; may
depend on the partition. The polar coordinates (r;, 8;) have origins at the vertices
A; of the polygonal domain §2. It can be seen that the functions wy and u, relate
to the homogeneous and non homogeneous boundary conditions respectively and

the u} relate to the singularities that arise from the corners of the domain 2.

1.3 The Finite Element Method

In this section X will be used to denote the space Xj,. For such a space X there
exists a finite basis {¢;})¥, and the finite element approximation urg, for a given
space X, has the form upg = ZfY__l a;¢; with upg = grg on I'p, where gpg is an
approximation to the boundary data g which will be looked at in more detail in
the following chapter.

For a given space X the discrete form for the variational problem (1.16) is

given by: Find upg € X such that upg = grg on I'p and
/ |Vurg|* *Vupg - Vodx = / fodx + hv ds, (1.21)
Q Q Tn

for all v € Xp, where Xp = {v : v € X,v = 0on I'p}. At this stage it will
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be assumed that the solutions of (1.16) and (1.21) exist and are unique. This
assumption will be shown to be true in chapter 5.
Since every function in X is a linear combination of the basis functions the

above problem may be written as : find the «;, 7 = 1,2,..., N such that

N N
[ 1 (@617 3 (v i) - Vaydx =
i=1 =1
/Q fojdx+ /FN he; ds, (1.22)

forall 7 =1,2,...,N.
Using the techniques shown in chapter 5, this problem is reduced to a linear

system of equations
Aa = b, (1.23)

where A is an N x N matrix and a and b are NV dimensional vectors. The solution
of this system gives the finite element approximation to the true solution of (1.16).

The general method of creating a discrete problem is known as the Galerkin
method. The finite element method is a special case of the Galerkin method
where the basis functions are defined over a given partition P. To make the final
matrix A as sparse as possible the basis functions are chosen so that their support
is small, typically over a patch of elements sharing a common vertex or even on

a single element, see Figure 1.3.
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-1 -1 -1 -1

Figure 1.3: Examples of Interior Basis Functions

1.4 Refinements

The finite element approximation UFE that was obtained using partition /' and
polynomial degree px on each K 6 V' may be improved by refining the partition
in different ways. In this section the three main types of refinement will be looked

at.

1.4.1 h—type refinement

This is the standard type of refinement used in the finite element method. The
basic idea, when requiring a more accurate approximation, is to reduce the size
of each element K and have the same fixed polynomial degree, which is usually
very low, one, two or three at most, on each element.

In a uniform sA—version the elements are such that Ax ~ hj for all K,J 6 V.
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7 8 9 7 15 8 14 9
16) M2 25 B3
4 5 6 4 n 5 9 6
v » 18 pit 2
1 2 3 1 0 2 13
Q Q

X denotes a degree of freedom.

Figure 1.4: Uniform h—Type Refinement

The maximum size of an element K € P is denoted by % and therefore this
method is known as the h—version finite element method. For an example of a
uniform refinement see Figure 1.4. The finite dimensional space for the A—version
will be denoted by X}, and the finite element solution by up.

If the true solution of the problem is not so smooth in certain areas of the
domain then uniform refinements may not be the most efficient type of refinement,
instead it may be better to refine more intensely around the areas where the

solution is not so smooth, giving a non-uniform mesh.

1.4.2 p—type refinement

In this method, the refinement is to increase the polynomial degree of the local
basis functions and leave the partition as it is. In a uniform method, i.e. pg

is the same for each element; we denote by p the polynomial degree used and
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7 8 9 7 15 8 14 9
16 X X 13
24 21 25
4 5 6 4 20 5 19 6
17 X X 12
22 18 23
1 2 3 1 10 2 11 3

Q Q

X denotes a degree of freedom.

Figure 1.5: Uniform p—Type Refinement

thus we call this the p—version finite element method. For an example of a
uniform p—version refinement see Figure 1.5. The finite dimensional space for

the p—version will be denoted by X, and the finite element solution by w,,.

1.4.3 hp—type refinements

The hp finite element method combines the p—version and the h—version so
that the best properties of both methods may be implemented, hopefully giving
exponential rates of convergence. The finite dimensional space for the hp—version
will be denoted by X, and the finite element solution by us,.

When using the hAp—version constrained nodes occur when either adjacent
elements have different polynomial degrees of approximation, or a vertex of an
element is located on the edge and not at the vertex of a neighbouring element,

or both. In Figure 1.6, it can be seen that two linear elements share a common
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7 8 9 7 20 8 20 9
4 5 6 4 14 5 13
BV 16l 17) 18 2
1 2 3 110 2 i3

Q

X denotes a degree of freedom.

Q

Figure 1.6: An hp—Type Refinement

boundary with one quadratic element. These constrained nodes are not trivially

dealt with, since a piecewise continuous polynomial is required over the domain

Q. For the constrained nodes given by Figure 1.6 continuity may only be obtained

if the approximation across the interelement boundaries is linear. Therefore, the

choice of basis functions to be used is very important and must include functions

which are supported on the interior of the elements, as in Figure 1.3.

1.5 A priori error estimates for linear elliptic

equations

In this section some results for the linear case of (1.9) i.e. a = 2. will be given.

In this case the problem is given by: find u € W2(§) such that v = g on I'p
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and
B(u,v) = F(v), for all v € W5*(Q), (1.24)
where
B(u,v) = / Vu-Vovdx  F(v)= / fodx + / hvds. (1.25)
Q Q Ty
The following properties hold:
1. B(-,-) is bilinear and symmetric,

2. B(-,-) and F(-) are continuous, i.e. there exist constants M, m > 0 such

that
|B(v,w)] < Mvllprzg) lwllwrag forall v, w e Wh2(Q), (1.26)
and

|[F@)] < mlvflyasg forallve Wh2(Q). (1.27)

3. B(-,-) is elliptic i.e. there exists a constant y > 0 such that

|B(v,0)| > 7 [0l for all v e WHQ). (1.28)

This is why the problem (1.24) is called linear elliptic. In chapter 5, the case
« # 2 will be considered and it will be shown that the general non-linear problem
satisfies a similar elliptic property to that of the linear case.

It is well known (Lax-Milgram lemma, [24] ) that under these circumstances,

although symmetry is not a necessity, (1.24) has a unique solution u € W%(Q),
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and the respective finite element problem (1.21) with @ = 2 has a unique solution,
UFE.
It is also known (Cea’s Lemma, [24] ) that there exists a constant C' indepen-

dent of the subspace X such that,

| — uFE”W1»2(Q) S C;g)f( [l — ‘U||w1»2(9) (1.29)

Using the above abstract error estimate, results for the different types of finite

element method can now be obtained.

1.5.1 A uniform h—version estimate

From [24] there exists a piecewise polynomial approximation 7,v € X}, of degree
no more than p in each element K € P such that for all v € W*9(Q), k > 1,
g € [1,00]
o = Tpvllyragg) < CER* [10llweaq) » (1.30)
where g = min(p, k — 1).
When the true solution of (1.24) is such that u € W*2(Q) i.e. uz = 0, choosing

q¢ =2 in (1.30) and combining with (1.29) gives,
flu— “h”WL?(Q) < C(p)h* lullyrzqy » (1.31)

where y = min(p, k — 1).
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1.5.2 A uniform p—version estimate

The h—version estimate suggests that there is no need to use high degree approx-
imation when k is small or p > k — 1, since the rate of convergence is restricted
by the smoothness and increasing p will not improve the estimate, however this
is not the case. It was shown, firstly by Babuska, Szabo and Katz in [14], that
when a uniform p—version is applied and v € W*2%(Q) then wu, is such that, for
any € >0

= upllyrz(qy < C(h, e)p™ ) lwllwreq) (1.32)

where y = k — 1. Later, Babuska and Suri in [12] removed the ¢ to give

[l — up”W1v2(Q) < C(h)p™ ||U“ka2(9) ) (1.33)

This improvement was quite significant, since the analysis for the first result
suggested that the term C'(h,€) — co as € — 0.

To compare these two methods the number of degrees of freedom N will be
used, since this is closely related to the work at each stage. When uniform h—

and p—type refinements are used, the following relationship holds for /V,
p’x N and h™% x N. (1.34)

Using this relationship and the above two estimates, it is clear that the p—version
will always converge as fast as the h—version. It can also be seen that, when the
true solution is quite smooth then the p—version will exploit this smoothness to

the full, while the h—version is restricted by the low polynomial degree it is using.
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Suppose now that the true solution of (1.24) is given by (1.17) and u} # 0 for
a given ¢; then, see [12, Theorem 5.1], when the corresponding corner A; is at a

vertex of an element in the partition, which is not an unreasonable assumption,
lu = upllyrzq) < Cp~2™. (1.35)

Now, for any € > 0, u € W**1=¢2(Q)) when such a singularity exists. There-
fore, the p—version convergence rate is twice the rate of the h—version for such

singularities.

1.5.3 The hp—version

It is not a simple matter to deduce estimates for a general hp—version. For the
one dimensional case, a thorough investigation was done by Babuska and Gui, see
[8, 9, 10]. In the two dimensional case the basic a priori estimates for quasiuniform
meshes were given by Babuska and Suri, see [11]. In chapter 4, error estimates
for the hp—version will be looked at in more detail, and results will be obtained

for locally quasiuniform meshes in general Sobolev spaces.



Chapter 2

The p-version Approximation

Theory for Smooth Functions

2.1 Introduction

In this chapter approximation theory for functions in Sobolev spaces W*4(Q),
k > 1, ¢ € [1,00], by functions in the spaces X, on a fixed partition P of the
domain 2, will be looked at. The results obtained will extend the results shown
in chapter 1 to the spaces W1?(2) for functions u = uy + uz, @ = q.

Much work has been done on spectral and high order polynomial approxima-
tion, for example the one dimensional results established by Quarteroni for the
spaces LY(—1,1), seen in [30], and the work of Bernardi and Maday, see for exam-
ple [20, 21] where results are obtained for polynomial approximation on weighted

Hilbert spaces. However the most relevant works are those of Babuska, Szabo

18
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and Katz [14], and Babuska and Suri [12] which considered the p-version approx-
imation theory for the case ¢ = 2 as seen in chapter 1. The work in this chapter
follows the methods given by Babuska and Suri, [12, section 3] which gave, for

u € W™2(§) a sequence of polynomials u, € X, such that

||u - “p||wl,2(9) < CP_(m_l) ”u”Wm’Z(Q) . (2.1)

The results in this section extend previous results to general Sobolev spaces
Wti(Q), ¢ € [1,00]. These results will be essential for the application of the
p-version finite element method to the a-Laplacian.

The first section deals with trigonometric polynomial approximation, which
will then be used in the following section to obtain the algebraic polynomial

approximation theory.

2.2 Approximation using trigonometric polyno-

mials

The Fourier series expansion of a sufficiently smooth function f € W*?(f) on

the square S(7) is given by

flz,22) = ) Z Ay ! (mertnes) (2.2)

m=—0o0 n=-—00

where A,,, are the Fourier coefficients given by

4 T T . .
Apn = — / Fls,t)e™ et dsdt. (2.3)
s -7 J—=7
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The partial sum of the Fourier series is denoted by

SN(f) — Z Z Amnei(mx1+nx2)‘

|m|<N |n|<N

For numbers N € N and r € Z' let

oo _A14hN
Ny = T2 N7 ’

20

(2.5)

The following results will be useful: from [29, Theorem 4.3.1] for any r € Z*

1 i b .
) g/_ﬂ » f(s,t)e™ =) dsdt =

|m|>N

1 T s
—/ Dy, (21 — ) f0O (s, 1)dsdt
T J—nd—r

where

Dn.(t) = > -—%cos(mt—%r).

Im|>N T

For any fixed s
/ " Dns(t—s)ds = Cn,+O(N™)

and if r > 1

L < CN'T.

r —

HDNlelLoo(—r,vr) S Z

im|>N T

Furthermore, from [37, equation 4.1]

51—— > /W /W ™27 f(5 t)dsdt

T lnl<N

L[ Lo

T

sin (N + %)tdsdt

2sin %t

(2.7)

(2.8)

(2.10)
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and finally from [29, Theorem 2.2.1]
Z / en@2=t) £ (5 t)dt
sin (N + 3

|n|<N
1 T
S _/ 1
T Jor 2sin 2t

S CONO | fllpee(s(my) - (2.11)

*(S(r))
ap Il L (s

The following Lemma looks at L™ estimates for such functions f.

Lemma 1 If f € WpR(S(n)) then for 0 < k <1

1 = sn(Pllwroo(siry < CA+ NN iy s, - (2.12)

Proof. Choose B;, B2 € Z" such that 3; + 8, < k then

_D(/Bly,62)(f _ SN(f))
= ( Z Z + Z Z + Z Z ) Amn(im)ﬁl(in)l326i(m$1+nac2)

[m|>N |n|>N  |m|>N |»|<N  |m|<N |n|>N
=14 11+ IIL (2.13)

Now fix n and consider the term

E Amn(im)ﬁ‘ (in)ﬁz ei(mr1+nx2)
|m|>N

Z 1 2/ / f(s,t)(zm) Gl(zn) —ilmstnt) gilmartnea) go gy (2.14)
T

[m|>N

since f € Wpga(S(r)),
Z 1 2/ f(S t)(zm)ﬁl(zn)ﬁz —i(ms+nt) gilmertnzz) go iy — (2.15)
™ -7 J—=

|m|>N
Z 7 2/ / f(ﬁl B2) (8 t) —t({ms+nt) z(ma:l-i—nrg)dsdt
™ -7

|m|>N

: /7r a3 / FPP (s, 8)e ™= ds. (2.16)

27r i |>N
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Using (2.6) for o € Z' gives

lm|>N
1

" iz~ 1 B (=3 1,02 r
—2—;/_”6 (@2 t);/_rDN,al(:cl ——s)f( 145 ’ﬁ~)(s,t)dsdt. (2.17)

Now summing (2.17) over n : |n| > N, for ay € Z" gives

Z Z Ao )131 )Bzei(mx1+na:2):

|m{>N |n|>N
b

1 = 1 , ‘
—/ DNy, (1 — 8)— Dy (g — 1) flertPrce+Bo) (s ydtds. (2.18)
T J-7 e

-7

Hence, for any o, ag €Z" 1 oy + ag + B1 + B2 =1, (2.8) gives

|I| < CCN,QICN,QQ f(a1+ﬂ1,a2+/32)

Le(S(m))

< CA+InNPENTER=RIFl o) (2.19)

Summing (2.17) over n : [n| < N, for r € Z' gives

m = —/ Dyplr = s)g 3 [ om0 flreis tyduds
27r| <N
< l‘/7r |DN (21 — 8) >, / e (=2 {2 (5 t)dt| ds (2.20)
xJox 2 In|<N
Hence, using (2.8)
w < b g s o
T |nl<n 7/t=0 Lo (S(m))

Using (2.10) and (2.11), for r + 1 + 32 = [ gives

1] < CCnoCi., ” flr+B182)

L>(S(r))

< C(l+n N)2N—(l—ﬂ1—ﬁ'z) ’flw"lv“*(S(w)) . (2.22)
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The third term III is dealt with similarly. Therefore, combining (2.19) and (2.22),

for s €ZY : s+ B + By = | gives

”D(ﬁl’ﬁ2)(f—"3N(f)) < C(l+ln1\) —(i=h = ﬁz)”!wloo(g (2 23)

“L"o(S(r)) =
Summing over £y, B2 : B+ B2 < k
If = sn(Pllwre sy < C(L+1InN) INTUER | f llwroo (s (2.24)
as required. ]
The following Lemma gives error estimates in the W™!({) spaces.
Lemma 2 If f € Wpgr(S(r)) then
1. for0 <k <l

1 = sn(Pllwra sy < C(1+InN)*N= N e sery » (2.25)

2. for0<k+1<l
||f - SN )HW"l <C(1+ 111N)N (=1=4) Hf“w!l(s {(m)? (2-26)
where v 1s a line contained in S(w) on which x5 is constant or 1 = ;.
3. for anyx € S(7) and for 0 < k+2 <

“f(x)"SN( (%)) ”Wkoo <CN (=+=2) “f”W“ (S(m)) - (2.27)
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Proof.

1. As before, choose £, 32 € Z' such that 8y + 32 < k then,

“D(ﬁuﬁz)(f —sn(f))

<
LA(S(m) —

z Z Amn(zm)ﬁl (in)ﬁQG'i(Mx1+nx2)

[m|>N |n|>N L1(S(r))

+ Z Z Amn(im)ﬁl(Z.n)-a?ei(mxl'{“nl‘g)
AN IEN L1(S(x))

* Z Z Amn(im)ﬁl(in)ﬁ?ei(mx1+nx2)

[m|<N n{>N L(S(r))
=14 1T+ IIL (2.28)
Use (2.6) to obtain for ay, ag €Z' : ay + oy + 1 + B2 = 1
T T 1 K
I = / / — DN o, (11 — 8)
r1=—7 Jro=—7 | T Js=-7
L Dy oy (22 — t) flOr¥Pre2482) (s ) dtds| dayda,
T Jt=—m
1 4= 1 g
< - |DN oy (21 — 8)|dz1— / IDN o (T2 — t)|dzs
T Jry=—7 T Jrog=—m
/ i / T flerkbresti (g 1) dids. (2.29)
t=—m Js=—m

Since Dy, and f are both periodic with period 27 and oy + a2+ 51+ 52 =1,

(2.8) gives

f(al-h@l ap+02)
L1(S(m))

I S CCN,al CN,ag

< CA+ImNPENERB) fl i s (2.30)
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‘Similarly, using (2.6) and (2.10) yields, for any r € Z' : g1 + o +r =1,

I = (2.31)

1 g~ 1 g~ N
L™ Dter — s)ds / sin (N + 3)t
T Jt

T Js=—m

<[ [ = e
T1=—T JTp=—T -7
m |sin (N + 1)t
If(‘r+ﬁlﬁz)(s’$2 + t)‘dS/ Sln( + 2)
t=—m

1
2sin 51

(r+081,82) s, T ¢
=7 ‘)sm1t f ( 2+ )

L1(S(r))

dtdl’ldlfg. (232)

Since Dy, and f are both periodic with period 27, using (2.8) and (2.11)

gives
. sin (N + 1)t
- (61+7,62) sin (V + 3)t dt
o < CCn, /tz_w “f LY(S(m) | 2sin 3t
S CCN,TCN’O Hf(’!"*‘ﬁl vﬁZ) It (S(n-))
< OO+ NPENTEAB Pl 6 (2.33)

The third term, III, is treated similarly. Consequently, for s € Z' : 3 +

Ba+s=1

”D(ﬁl B (f — sn(f))

LA(S(r C(l +1n ]V) N“U—ﬁl -B32) |-7L‘I'WI,1(S(71-))(2-34)

and summing £y, B2 : f1 + B2 < k gives (2.25).

2. Let ~ be the line contained in S(7) on which z; is constant and let 3 € Z :

B < k then

|DPO(f = sn(£))

: B _i(mzi+nzy)
T Do o

|m|>N |n|>N Li(y)

+ Z Z Amn zm mal+nx2)

|m|>N |n[<f\ Ll('y)
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Z Z Amn zm zmr1+'n.7:2)

|Im|<N |n|>N L1(v)
= [+ 1T+ 1IIL (2.35)
Using (2.6) gives for oy, ag €ZY 1oy + g+ B =1 and oy > 1,
I = tll i DN oy (21 — 8) /.1T Do, (09 — t) fleatBa2) (s t)dtds
T Js=—m t=—m ’ Li(v)
1 ,
< CC o _D [+ 2 - (@1 +5,a2) . 2.36
- Noea |0 2N, (22 =) Lo () ”f LY(S(m)) ( )
Recalling (2.9), gives for all g < k gives
1-o (c1+3,02)
[ s COna N2 | 12705 L1(S(r))
< CU+WmN)NTED  fl s, (2.37)
Equally well, (2.6) and (2.8) give, for any v € Z : v = [ — 3,
I = L Dnoy(z1—38) Z / eT2=t) fLO0) (4 ,t)dsdt
T Js=—m 27 Jt=—n
Inf<N L(v)
< CCN,,/ / e'n IQ_”' |f(l’0)(s,t)\dsdt
- -1 271'
In|<N
< NCyn.,
s CNCw L3 (S(m))
< CA+Im NN D flp i) - (2.38)
Using (2.6), (2.9) and (2.11) givesfor 0 € Z* : 0 = | — 3,
(N
1 = /’ /’ sin +—)‘DNp@g——Ufw”KsJﬁhdt
—rJt=—r  2sini 58 Li()

sin(V + 1)

2sin & 38

1
= “_IDMO@("E? —-)
T

1o,

[z
Lo(—m) Js=—m T (S(m))

< CNY™P-IC0yn, ” f82)

L1(5(r))

= CA+InN)N" D f i s - (2.39)
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Combining (2.37), (2.38) and (2.39) and summing over 8 < k gives (2.26)

for the case z4 1s constant.

Now let v be the line contained in S(7) given by z; = v, = 7 and let

B EZ : B3 <k. Then

IA

Z Z Apnli(m + n.)]’3e'i(m+n)7-

Li(v) |m|>N |n|>N L'(v)

u (2 =t

+ Z Z Amn[l‘(m_*_n)]ﬁei(m-i-n)T

|m|>N |n|<N - Li(y)
4 Z Z Amn m +,n)];3 i(m4+n)r
|m|<N |n|>N L (v)
)
=1 > > Amnz minPieitmtn)r
Im|>N |n{>N ]
L1(v)
P i omi ims
+ Z Z Amnz minP—7eim n)r
[m|>N |n|<N ] /
Li(v)
B 0, =1 il )
+ Z Z Amnz minP=iet m+n)T
|m|<N |n|>N j
Li(v)
— 14 II4IIL (2.40)

Since f is a periodic function, using (2.6), (2.7) and (2.37)

I > R >

=0 j |m|>N |n|>N
/ / f(j’ﬁ__j)(s, t)e—z'('/ns+nt)6i(m+n)rd3dt d’l’

< 2CL+Im NN | f (2.41)
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Using (2.6), (2.7) and (2.38) gives

II

[=s']| 2 s

i | MmN N

™ ™ . ? . . .
/ / f(” _])(5,t)e_’(ms+"t)e’(m+")r(15dt dr
t=—7T Js=—7

< PO+ NN |l s - (2.42)

Using (2.6), (2.7) and (2.39) gives
bd 1 B 6
I = /TH mx| Zy )
=0 J fm|<N |n|>N
/7r /W f(j’ﬁ-j)(s, t)e_i(ms+"t)ei(m+")rclsdt dr
t=—m Js=—7

< PO+ NN | F s (2.43)

Combining (2.41), (2.42) and (2.43) and summing over § < k gives the

result for 1 = x5, the result for £y = —z, follows immediately.

3. Choosing f1, B €Z" : 1 + B, < k, then for x = (z1,22) € S(7)

'D(ﬁhﬁ?)(f_SN(f))(l.l,x2)’ < A S Apn(sm)Pi(in)Peitmartne)

|m|>N |n|>N

+ Z Z Amn(zm)ﬁl(l’n )/32 ei(mxl"{'nl‘g)

* Z Z Am”(im)ﬁl(i?l,)ﬁzei(m$1+na:2)

|m|<N |n|>N

I+ 11+ IIL. (2.44)

Letting a1, ag €Z' : a1 > 1, a3 > 1 and a1 + a2 + 1 + B2 = [. Then using



CHAPTER 2. THE P-VERSION FOR SMOOTH FUNCTIONS 29

(2.6) and (2.9) gives

1 gm 1 =
= [ Duanler = shds— [ Dyaales = 01725, )
t=—m

T Js=—m e

< CNl—alNl—az f(011+/31,a2+/32)

LY(S(r))

< ONHOHR fl (5t - (2.45)

Letting v € Z' : v + 81 + B2 = [ and noting that v > [ — k > 2,

1 g
= |-/ Dy ds—— S [ e o, tyat
T Js=—m
l |KN
< CNNY-v¥ f(u+ﬁ1,ﬁz)
o L1(S(n))
-1

< CN?+btee llelvl(S('rr))? (2.46)

where (2.6) and (2.9) have been used.

The third term III is dealt with similarly. Gathering these estimates gives

| PP (f = sn() SONTER flyssiy  (247)

||L°°(S(r)) =

and taking the maximum over 8y, 32 : B1 + 52 < k gives the result claimed.

The results given in Lemmas 1 and 2 can now be used to obtain estimates in

the general Sobolev spaces W*9(Q).
Lemma 3 Let f € WhLp(S(r)), ¢ € [1,00]. Then
1. for0 <k <1

1f = sn(Dllwrasey < CNVO@+ 0 N f sy (248)
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2. for0§k<l+§

1 = sw(Dllygrapy <

2
1+l NG ge(1,2]
—(l-k-1 ( ’ )
CN~ q)“f”Wl.q(s(,r)) , (2.49)

(1+1n N)z(l-%), q € [2,00]

where v is a line contained in S(7) on which x, is constant or xy = +x4.

3. f0r0§k<l+§

If = sn(Dllwro sy <

2 1, q E [1,2]
—(l—-k—2
CNU 5 llwnacsimy .(2.50)

1+ N9, g€ [2,00]

Proof.

1. Using standard arguments, [14], gives

f - SN(f)“Wkr2(S(7r)) < CN~EH Hf“W’v?(S(vr)) (2.51)

Combining this individually with (2.12) and (2.25) and applying a standard

interpolation argument gives (2.48), for g € [2, 00] and ¢ € [1. 2] respectively.
2. From [14, equation 3.19], for m > 1
1 = s (Dllzaey < OV fllypmasny (2:52)
Since f is periodic, for any B, 3, € Z"

D(ﬁlyﬂ2)3N(f) = sy (D(ﬁlv/’?)f) . (2.53)
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sting (2.52) and (2.53), for m > % and By, 3o €ZY B+ B, < k

”D(ﬁl B(f — snf)

— I|D(ﬂ1,ﬁz)f — syDBv) £

L2(v) L2(v)

< ONTD | fllymemsssagsery - (2:54)

Choosing m + 81 + B; = [ and summing over all 3y, B2 : 81 + B2 < k gives
—(l—h-1

1F = sw(Dllwrny < ON D fllyungsy . (255)

Combining (2.55) with (2.12) and (2.26) and applying a standard interpo-

lation argument gives (2.49), for ¢ € [2,00] and ¢ € [1, 2] respectively.
3. From [14, equation 3.29], for m > 1 and (z1,z2) € S(x)
|(f = sv(M)(@r,22)] < CNTD | fllymz sry) - (2.56)
Using (2.53) and (2.56), for any £i, B2 € Z" and m > 1,
DEI(f — sy () 22)] < ON-TD | fllyymem sy - (257)
Choosing m + 41 + f2 = [ and summing over all 31, B2 : 51 + B2 < k gives

|DPA(f — sn(f))(@1,22)] S CNTEP2D | Fll i 2 sy - (2:58)

Combining (2.58) with (2.12) and (2.27) and applying a standard interpolation

argument gives (2.49), for ¢ € [2,00] and ¢ € [1, 2] respectively. ]
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2.3 Algebraic polynomial approximation on S(1)
and T(1)

The results from the previous section will be used to deduce the approxima-
tion properties for sequences {@,(u)} of algebraic polynomials to a function
u € W™I(S(1)) of the form u = w; in (1.17). The methods used to obtain
the following Lemmas are based on the ideas of Babuska, Katz and Szabo, see
[14], where the function u must be put in the right form, so that the change of
variables in the Fourier series will create an algebraic polynomial.

Algebraic polynomial approximation is firstly considered on the quadrilateral

reference element S(1).

Lemma 4 Let u € WH(S5(1)), q € [1,00] and let v be either a side or diagonal of
S(1). Then there exists a sequence of algebraic polynomials ¢p(u) € Q(p), p € IV,

which are independent of ¢, such that,

1. forany 0 <k <1, q€[l,00]
flu— ‘Zsp(u)llwk,q(s(l)) < CpH) ”U”Wl,q(s(l)) (1+ lnp)2|;—1|7 (2.59)
2. forl>k+ %

[ ¢p(u)}|wk,q(y) <
(2
Q+np) ™V, ¢e[1,2]
Cr ™ ullyragsi) 2 (2.60)
(1+1Inp)**=2, g€ [2,00]

where v is an edge or diagonal of S(1).
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3. forl>k+ qz

llu ~ ¢p(u)||wk,°°(5(1)) <

1, g €[1,2]
—(I—k=2 ,
Cp ( ¥ ||u”Wl,q(S(1)) (2.61)

(1+1np)*=9 g€ [2,00]

Proof. Let p > 1, therefore S(1) C S(p). Since S(1) is convex, from Stein [34,
Theorem 5] there exists an extension U of the function u onto the square S(2p)

such that
supp(U) C 5(32—”) (2.62)
and U € W™1(S5(2p)) with
WUl wmags@oy < C lullwmagsay - (2.63)
Let @ : S(5) — S(2p) be the mapping
X = B(R) = 2p(sin &1, sin &3). (2.64)
Clearly © is bijective. Furthermore, define V € W™¢(5(Z)) by
V(%) = (Uo®)(X) (2.65)

and observe that supp(V) C S(arcsin2). Hence, V may be smoothly extended
to S(x) so that it is symmetric across the lines 7; = +7. From (2.64) it is clear

that V € Wpghk(S(x)). Moreover,

||V}|Wm,q(5(7r)) <C fu“vvm.q(sm) (2.66)
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Let s, denote the p-th partial sum of the Fourier series expansion for the

function V on S(7). Each s, has the same symmetry properties as V. Therefore,

55(%) = (85(1) 0 B)(X) (2.67)
where ¢,(u) is now an algebraic polynomial of degree at most p.

1. By (2.48), for g € [1,2], 0 < k <[ one has,

[l — ¢p(u)uwk,q(s(1)) < Clv- 5p|lwk,q(s(7r))

IN

C’p"(l_k)(l + 11110)2(3_1) “VHVV”‘I(S(W))

IA

2 _ T
Cp =91 +1np)*@ U lwagsqy

IA

2_
Cp (1 +np)*@Y lullwragsqy (2:68)

where (2.66) has been used. The result for ¢ € [2,00] follows in a similar

manner.
2. Denote 4 = ®~!(y). Then by (2.49), for ¢ € [1,2] and 0 < k + 5 <1

llu— ¢p(u)|lwk,q(,y) < OV - Spllwk,q@

IA

Cp 'R+ p) STV Vs

IN

o 2_
Cp D1+ 1np) TN sy

(-1 2_ ,
< Cp (= ")(1 + lnp)(q Y ”u”Wl»q(S(l)) (2.69)
and the result for ¢ € [2, 00] follows similarly.
3. By (2.50), for g € [1,2] and 0 < k4 2 < I

e = @p(Wllwrsay S CHV = spllwreo (s
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—(l—-k=2
< Cp ( ")HV”WLq(S(n))

(k-2
< Cp =+ ")”U“wm(sm) (2.70)

and the result for ¢ € [2, 0] follows similarly. ]

Algebraic polynomial approximation will now be considered for the triangular

reference element 7'(1).

Lemma 5 Let u € WH(T(1)), q € [1,00] and let v be either a side or diagonal
of S(1). Then there exists a sequence of algebmk polynomials ¢,(u) € P(p).

p € IN, which are independent of g, such that,
1. forany 0 <k <1, g€ ll,o0]
e = $p(w)lraizay < €7 Iullwraray (1 +mp)"e ™, (2.71)
2. forl>k+ %

[l — ¢p(“)”wk,q(7) <

R (1+lnp)a™, g€ [1,2]
cp¢* q)”u”WLq(T(l)) (2.72)

(1+1np)?=9, ¢e[2,00)

where v is an edge or diagonal of T(1).
3. forl>k+ %

llu — ¢p(u)|lwk,«»(5(1,) <

. ge[l,2]
|U||Wz,q(5(1)) (2.73)

Cp 9| .
(1+ lnp)Z(l_E), q € [2, 0]
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Proof. Let u € W(T(1)) be given. By [34, Theorem 5] there exists an extension

U of the function u to the square S(1) satisfying

U Nlwrasay < C llullprazay (2.74)

By Lemma 4 there exists a sequence U, € Q(p) such that for any 0 < k < I
_ 21—2 :
U - Up”wk»q(s(l)) < Cp-(l k)(l +1+ hlp))ll g “U”Wl,q(su)) . (2.75)

Now Q(p) C P(2p) and therefore the required sequence is defined to be the

sequence ¢g,(u) = U, and @opq1(u) = ¢gp(u). Observing

HU — <]52;;+1”Wk,q(f_r(1)) = HU - ¢2p“Wk,q(T(1))

- “U - Up”Wk,q(T(U)

< “U - UpHWk,q(S(l))’ (2-76)
the result then follows from (2.74) and (2.75). The remaining cases are similar. m

Lemma 4 and Lemma 5 can now be generalised to the case when the norms on

each side are based on different L7 type spaces:

Theorem 6 Let u € W™ (S5(1)) where r € [1,00]. Then there exists a sequence
of algebraic polynomials ¢,(u) € Q(p), p € IN such that for 1 < g < r and

0<I<m+2/r—2/q
et 2_2 1.1
lu — ¢p(u)||wl,r(5(1)) <Cp (m=tts q)(l + lnp)zlr-l-q ! “ullwrrw(S(l)) . (2.77)

Moreover analogous results hold for approzimation on the triangle.
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Proof. Using (2.59), with ¢ = 1 gives
v — ‘f’p(“)nwu(su)) < Cp ™91 4 lnp) Hu“wm,l(sm) (2.78)
and using (2.61) with ¢ = 1 gives
llu = bp(W)llyprc0s1)) < Cp™ 2 el s sy (2.79)
Therefore, it follows by standard interpolation for any r € [1, co] that
llu = Sp(u)llwer sy < Cp "9 (1 + np)* el 51y, - (2.80)
It can be seen from (2.59), with ¢ = r, r € [1,2], that
lu — ¢p(u)llwir(sqy) < Cp~ ™ H(1 4 Inp)*-7Y l[eellyymr 51y (2.81)
and with ¢ = r, r € [2,00], that
llu = p(@llwrrsay < Cp " (1 + In p)*(=7) llullymr(sqay) (2.82)

Using (2.80), with (2.81), and interpolation gives (2.77) for the case r € [1, 2]

and the case r € [2, o] follows similarly. |

Remark. For the case 1 < r < g < oo the following bound can be seen immedi-

ately,

141
llu— ¢p(u)||wlyr(s(1)) < CP_(m_l) ”unwm,q(s(l)) (1+ 1HP)2'T+" 1|’ (2.83)

although this may not be the optimal bound for this case.
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2.4 Continuous piecewise polynomial approxi-

mation

The results of the previous section will now be used to obtain approximation
properties for the spaces X,. This is not a trivial matter, due to the fact that X,
is a space of continuous functions. To obtain continuity the individual element
approximations must be “glued” together. The technique used to glue the element
approximations together follows that of Babuska and Suri [12].

It will be assumed in this and the proceeding chapter, that the spaces X, are
such that px = p for all K € P, i.e. the uniform p-version will be looked at, this
restriction will be removed in chapter 4, when the hp-version is considered.

The first Theorem in this section deals with the case v € W™9(§}) where
m>1+ % and homogeneous Dirichlet boundary conditions are considered. The
restriction on ¢ will be dealt with to give a global estimate in Theorem 8 and
then is improved to a local estimate in chapter 4. The generalisation to non-

homogeneous boundary conditions will be dealt with in Theorem 10.

Theorem 7 Letu € W™1(Q), ¢ € [1,00], m > 1—{-% and assume I'P = §. Then
there exists a sequence u,, p € IN of continuous piecewise polynomials u, € X,

such that for all K € P, q € [1,00]

( —(m— 2121
o= u ey S P T flhmagy (1 +1apE7 (284)
JePKnT#0
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Moreover, the following global estimates are valid
flu — "p“Wl,q(Q) < cptmY ”u”W"W(Q) (1+ hlp)zlrll- (2.85)

Proof. Firstly assume that K in the partition P is a quadrilateral element;
a sequence {uK,p}pelN of polynomial approximations to u |k is constructed as
follows:

Since K is a quadrilateral, it is the image of the square reference element S(1)
under the mapping Fi; so define Ux = u |k oFx. Let {@k,} be a sequence of
approximations to Ux as in Lemma 4, and define wg , = Wx o F ;1

Transforming the estimates of Lemma 4 to the element K leads to analogous
estimates on the error ex, := u — wx, on K. In general, if elements K and J
share a common edge ¥ = K N J then the approximations wx., and wy, will be
discontinuous on the interface. It will now be shown how wg, and w;s, may be
adjusted so that continuity is obtained while still retaining the accuracy of the

approximation. To do this, the polynomial ¥, : [-1,1] — IR given by

Pp(s) = (1 ) 8>p (2.86)

will be required, and note that for any ¢ € [1, co]

L

1' “wP”Lq(_l’l) S Cp~q’
1

1_
2. "‘/’plwl,q(_hl) <Cpa,

3. gp(—1) =15 %,(1) = 0.
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Denote, with Fi as before, ek, = ek ,0 F. Now the function &k, is adjusted
on each edge to obtain a new polynomial v , that interpolates @ | at the vertices

of the reference element. For instance, the adjustment at the vertex
A =(~1,-1) (2.87)

is given by
&%l—’)p(ivl, CL'Q) = g}\",p(—lv —-1)¢7)(w1 )¢P($2) (288)

It is easily checked using the properties of 1, that

~(1) ~ . y
” |lW1 a(S(1 < C ||6I\',pHle(s(1)) “7/ 'p”Lq(_l,l) |¢’p’w1,q(_1,1)

v 1-2 A
< Cp e ||€K,P”L<>o(3(1))- (2.89)
Construct similar functions for each vertex and define

4 ~
Okp = GOy + A%, (2.90)

=1

It is clear that, the polynomial g, agrees with tx at the vertices. Moreover,
llu— GKyP”WLQ(S(])) < Ié\K,p|W1,q(5(1)) + Cpl*% ”gK,pHLoo(s(l)) . (2.91)
Therefore, defining v, = €k, 0 Fi;' and mapping back to the element K gives
et — v pllnagrey < leralwnagey + €77 lerall ey - (2.92)

Proceeding in a similar manner on the element J gives the functions vg , and vy,

which agree at the end points of the edge 7.
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Define the function € : ¥ — IR to be the restriction of vy, and vj, to the
edge v i.e.
¥)

el

= (’L)K,p - vj’p) |q, . (293)

This function is then extended onto the element A as follows. Suppose, without
loss of generality, v = Fx(7) and define € €™ on 75 by € &N = e o F. Evidently,

&M is a polynomial on the edge 5. Define B@ on S(1) by the rule
B = &) (2 )py(). (2.94)

Notice that B0 is an extension of e vanishing on the remaining edges of S(1).

Furthermore,

lﬁﬁ)lwl,qs(l)) < C llgh',PIILq(fy) |¢p|w1,q(_1,1) +C |g1\',plwl,q(:;) ||7/)p“Lq(._1,1)

< C (P lexallag + P77 ERplwiag)) (2.95)
Translating back to K gives ") = A o Fz' with
'ﬁmlleq(K) <C (Pl_la “eK,pHLq(W) + P*la |6K,p|W1,q(q‘)) (2.96)
and for 3y = 0,1
1€ say < Nemallwoay + leaplwase - (2.97)

It is unnecessary to extend €”) onto J. The process is repeated for every edge of

the element K and the function ug , is defined by

b= Vkp — Zﬂ"’ (2.98)
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It easily verified that uk, agrees with u;, on the edge y. Consequently, after
dealing with all inter-element edges, we may define a function u, € X, whose

restriction to any element K is ug,. Furthermore,

I = wscallwsagry < = vsollwnagy + O LB sy (2:99)

and hence using (2.92), (2.96), (2.97), (2.99) and all the properties of Lemma 4,
the result follows as claimed, for the case of quadrilateral elements.

The treatment of a triangular element K is similar, except that the corrections
at the vertices and edges are slightly different. Construct wg, as in the case
of quadrilaterals using instead Lemma 5. The correction at the vertex A; =
(—1,-1) is given by

. 1. /
Gip(a1,32) = geKa(— 1 =1)dhs(@1)s(22)(1 — 21) (2.100)

where s = [(p—1)/2] and the extension 3 associated with the edge 7 = {(z1,—1) :

~1<z;<1}is
A = —;-1/)1(3:2){(3:1 — 22)E"(21) + (1 — 22)& (21 — 22 — 1)} (2.101)

The remaining cases are similar. It is easily verified that the functions have

the required properties. m

Theorem 8 Let u € W™9(R), ¢ € [1,00], m > 1, and assume I'P = 0. Then
there exists a sequence u,, p € IN of continuous piecewise polynomials u, € X,

such that

lu = pllyragy < C™ V(1 +Inp)* 5 [lul|yyma g (2.102)
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Proof. Because of Theorem 7, only the case m € (1,1 +1/q] need be considered.
Firstly, from Bergh and Lofstrom [19, Theorem 6.4.5, equation (4) and Theorem

6.2.4, equation (9)] it can be seen for § = m — 1 that
W™i(Q) C B, () = (WH(Q), W>9(Q))g,00 (2.103)

where BT () is the Besov space defined in [19].
Therefore, using [19, page 49, Top] and [19, Theorem 3.5.2] u may be expressed

in the following form, for any ¢ > 0
where v; € Wh(Q2) and v; € W9(Q), such that

lillwre@ < Ct"Hullymagq (2.105)

loallwzaey < Ct" 2 {[ullymaqay (2.106)

where C' is independent of u. Then by Theorem 7 there exists a continuous

piecewise polynomial u, such that
[|v2 — up”wlyq(g) <Cp! l|v2“W2»‘1(Q) < CpimT? lullwmaq) - (2.107)
Choosing t = :—’ and using the triangle inequality gives

l|lu — Up”wl.q(g) < p_(m_l) ”u”W"‘r‘?(Q) . (2.108)
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2.4.1 Non-homogeneous Dirichlet boundary data

So far the functions u that have been looked at have had no Dirichlet boundary
conditions imposed, i.e. I'p = 0 or u = u; in (1.17). If the final approximation
results are going to be applicable to the problem (1.9), it is clear that the case
of non-homogeneous boundary conditions must be considered. Therefore, it will
now be assumed that the function u = u; + uy in (1.17). It is clear that, unless
the function ¢ in (1.17) is a polynomial of degree no more than p on each element
boundary, then it is necessary to approximate the boundary data.

The Dirichlet data g must be approximated by a polynomial g, such that
9plEnr, is @ polynomial of degree no more than p and is easily constructed on
a machine. It would be nice to use the approximations ¢,(u) given in the pre-
vious section, since these approximations will not produce any degradation in
the approximation. However, this would not be a practical method since the
polynomials ¢,(u) are not easily constructed on a machine.

Once the function g, has been constructed, the problem is then to estimate the
accuracy that may be obtained by approximating u with piecewise polynomials
u, € X,, such that u, = g, on the Dirichlet boundary.

Denote the Dirichlet boundary for an element K by v = I'p N K ; without loss
of generality, assume that 4 = (—1,1). The Dirichlet data for the element K is

constructed as follows.
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The p—th partial sum of the Chebyshev series is given by

op(g;t) = D ARTi(t) (2.109)
k=0

where T} is the k—th degree Chebyshev polynomial and the coefficients are given

by
dt
V1—12

Bounds for the rate of convergence of the partial sums of the Chebyshev series

av=2 [ gmie) (2.110)

are now considered.
Lemma 9 Let g € WH(—1,1) where ¢ € [1,00]. Then for 1 >0
llg — Up(g)”m(_1,1) < C(1+Inp)p™ ”g”W’ﬂI(—l,l} (2.111)
and for 1 >2—1/q
lg = o2(@)llwraryy < CA+ P oy (2.112)
Proof.
1. Following [33, Theorem 3.3] for m > 0 and ¢ € [1, o]
g — ap(Dllwma11) = 19 = ¢ + 05 — 5p(9)lyyma-1 1y
= lg = ¢p + 0p(¢p = Dllwma(—11)
<Ilg — pllwma11y + loo(@o = Dllwmao(crqy - (2-113)

Choosing m = 0 and ¢ = oo in (2.113), and using [33, equation 3.27, page

133] gives

1 /= |sin((2p+1)/2)0
“g - ¢pHLoo(_1'1) S ”g - ¢P“L°°(—l,1) (1 + ;,/0 Sln(0/2) da

< (1 + Cp,ﬂ) ”g - ¢p“L00(_1,1) ’ (2'114)
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where in the last inequality (2.11) has been used. For a ¢ € [1,00] there

exists a polynomial, ¢,, of degree no more than p such that

19 = eollwrag-11) < CP " llglliwnaorn (2.115)

for all 0 < k& < I. Choosing k = 0 and ¢ = oo in (2.115) and combining this

with (2.114) gives
llg — Up(g)“Loo(-l,l) < C(1+ IHP)P—I ”gnwlm(—l,l) : (2.116)

2. Let 6 = arccosz, z € (—1,1). Then

d 1 d
Eap(g;a:) = m%a,{)(g;cosa), (2.117)

Hence choosing m = 1, ¢ = oo in (2.113) and choosing £k = 1, ¢ = oo in

(2.115) only the following need be considered,

1 0

2 lontor = o) = |z e s~ 9)con)

1 /w sin ((2p + 1)/2)6

21 sin asin(6/2)
(6= 9)(e0s(0-+ )+ (6, — )cos (0 — )t (2.115)
Now
17,
D (g = by)(cos 0+ 00) + (9~ 4 )(co (0~ )] =

[(g — ¢p)(cos (0 + @) + (g — #p) (cos (6 — a))] sin v cos 6 +

[(g — ¢p)(cos (0 + ) — (9 — ¢p)'(cos (6 — «))]sinfcos . (2.119)
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Since g € W?>°(—1,1)

(g — ¢p)'(cos (0 + a)) — (g = ¢5)'(cos (0 — @))] <

2119 = #5) "l oo (1) Isin @] . (2.120)

Combining (2.113), (2.115), (2.119) and (2.120) with [ = 1 and 2 gives,

pu

lop(gy — 9)(@)] <

%_— “](9 - (bp)"”LOO(—l,U

™

Sl (R P {/0

sin ((2p + 1)/2)8
- : db
sin(6/2)
S Cp,()p«(m_Z) ”gHW/m,oo(_lyl) 5 (2121)
where (2.11) has been used in the last inequality.
3. Observe that
“ap(g)”[,l(_l,l) S “DP“LI(-L]) “g“Ll(—l,l) ) (2122)
where
sin(p+ 1/2)a
D = — 2.123
o(e) sin a/2 ( )
and thus, as in the L> case,
llg — Up(g)”Ll(_m) <01+ lnp)p“l ||9|lwl,1(_1,1)a (2.124)

4. Choosing m =1, ¢ =1 in (2.113) and choosing £ =1, ¢ = 1 in (2.115) the

following need only be considered

1 msin((2p +1)/2)0
é;./c; sin asin(0/2) .

1
low(¢ = lwsaan = [
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2 [(6 — )(cos (0 + ) + (6, — g)(cos (0 — a))}db] do

sin ((2p +1)/2)0
sin(0/2)

<[ %
™ 0
{/0 ( é—-a—( —g)(cos (0 + )| + |—( — g)(cos (6 — a))|)da} df(2.125)

Since 5%((,1),, — g)(cos (§ — ) and é%(gbp — ¢)(cos (0 + «)) are 27 periodic

and the kernel is 27 periodic

sin ((2p +1)/2)6
sin(6/2)

9365 = Dlwragrny < C= [

a

/|——(Op g)(cos (a))|da

< CC’,,O/ | — g)(cos (a))|da
< CCP,U ||¢p - g”wl,l(-l,l)
< CCP,OP-—”—]) HgHWU(—l,l) (2.126)

where (2.11) and (2.115) have been used.

The claimed results then follow by using interpolation on the four above results. m

Comparing the results of the previous section and the results for Chebyshev
approximation, it can be seen that the p—th partial Chebyshev expansion of
the boundary data g does not give optimal rates of convergence. The expected
rate would be O(p~~V) for approximation in the space W1>(—1,1) when the
function ¢ € W»®(—1,1). At this moment, there does not seem to be any
practical method of constructing a polynomial approximation which will give

optimal rates of convergence in both L? and W' norms for all values of ¢q. The
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treatment of non-homogeneous boundary conditions is a non-trivial matter even
in the case ¢ = 2, see Babuska and Suri [13].

The actual approximation g, to g on v is taken to be

9p(t) = {g(—1) — op(g; =) }¥p(t) + {9(1) = op(g; D}, (95 1) + a(g; 1) (2.127)

Constructing similar polynomials on each boundary yx = {x:x € KNI'p} gives
a continuous piecewise polynomial approximation to the Dirichlet boundary data.
From the above Lemma and Theorem 8 the following Theorem may be ob-

tained.

Theorem 10 Let u = uy + uy be given by (1.17) and assume g € I/Vm'*'l'%’q(I’D‘)
where ¢ € [1,00], m > 1 and g is the trace of u on I'p. Then there exists a
sequence u, € X, of continuous piecewise polynomials such that u, = g, on the

Dirichlet boundary I'p. Moreover, the following estimate holds

_2
lu = tpllypsag@y < Co™ (1 + 10 p)* =4 [ullyym,ogqy + gl mir-20 3

(2.128)

Proof. Let @, be a sequence of approximations to u as in Theorem 8. Let K be
any element having an edge on the Dirichlet boundary. Without loss of generality
we may assume that K is the reference element and the Dirichlet data is on the

boundary v = {(z1,—1): =1 < z; < 1}. Let v, be the polynomial

vp(T1, T2) = Up(21, T2) + (0,(g5 1) — Up(x1, —1))2p(22). (2.129)
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Following steps similar to those in the proof Theorem 8 and using Lemma 9 leads

to the estimate

flu— UP”WLQ(K) <Cllu— aP”Wl,Q(K)+C(1+lnp)p_(m—l) ||g|lwm+ - (2.130)

2
1—=,
2'(y)

The proof is completed by applying exactly the same procedure used in the proof

of Theorem 8 to adjust v, and obtain a continuous piecewise polynomial. [ |



Chapter 3

The p-version Approximation

Theory for Singular Functions

For the main part of this chapter the functions to be approximated using piecewise
continuous polynomials will be of the form u = u3, where us is given by (1.20). It
was shown in chapter 1, that when the linear elliptic problem was considered the
rate of convergence for the p-version, for functions given by us, was twice that of
the h-version, see (1.35). The main aim of this chapter is to generalise this result,
to the Sobolev spaces W19(Q), q € [2,00). The method of proof used will follow
closely the analysis given by Babuska, Szabo and Katz [14]. They obtained an

estimate for the error e of the form
el < Cle)p™** (3.1)

where € > 0 is arbitrary. As was the case for the result given in chapter 1, the

presence of C(¢) is of some concern, since the analysis suggests that it could blow

51
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up as € — 0. The ¢ was later removed in analysis by Babuska and Suri [11,
Chapter 5] involving the use of orthogonal polynomials, in the Hilbert spaces
W123(Q). Unfortunately, this method is of little use for the analysis in the spaces
Wli(Q), ¢ € [2,00) since, the orthogonality of the polynomials is lost. The
following work will extend the results given in the previously mentioned works,
to the spaces W14(Q), ¢ € [2,00). However, the final result will involve € since.
the method of proof will follow that of Babuska, Szabo and Katz [14].

The first section will deal with the regularisation of the true solution. In
the second section these regularised approximations will be approximated using
piecewise continuous polynomials. In the final section the general uniform p-
version estimate will be given for all functions described by (1.17).

Throughout the following two sections only one singular function of uz will
be considered, i.e. M =1 in (1.17). Therefore, the function to be approximated

will be given by,
u = e(r)rg(| log r1)©(9), (3.2)

where g and ( are given by (1.17) with the subscript ¢ dropped and © is a smooth
function satisfying ©(8) = 0 for § < 6y and for 0 > 7 — by, where 0y € (0, §). It

will also be assumed from here on that, ¢g(|logr|) satisfies
R 1
[ la(togri)ir= dr < Cg(|log RNR', (33)
0

for any p < 1 and R > 0.
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3.1 Regularised approximations to singular func-
tions

Following [14], firstly create a family of regularised approximations {u® : 0 < A <
1/2}, that approach the singular function v as A — 0. Then A will be chosen to
be a specific term dependent on p such that the rate at which u® approaches u
is sufficiently fast.

For p > 0, let S(p) be the square
S(p) = {(z1,22) : 0 < 1 < p;0 < x5 < p} (3.4)

and let x : [0,00) — IR be a smooth (C*°) cut off function satisfying
0, r<1/2

x(r) = - (3.5)
I, r>1

The family then consists of functions of the form
u®(x) = x(|x|/A)u(x) (3.6)
and has the following key properties
1. v € C*~(5(1)) and u?(A) = 0, where A is the position vector of the

corner.

2. for some k > 2

supp u® C R, N S(1/4), (3.7)

where

R. = {x:z1/k < z2 < K21} (3.8)
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A
supp u

Figure 3.1: The support of uA4

see Figure 3.1.

3. there exists a non-decreasing, non-negative function C(-) such that for all

x € 5(1)
| DauA(x)] < CdaD"dlog A|)max {min(xi,a;2), A}“(,a_A) (3.9
forall 0 < A < 1/2 and all x G5(1) where (a) = max(a,0).

Elements of the family {uA} approach the singular function u inthefollowing

Sensc:

Lemma 11 Suppose that u is given by (3.2). Then

u—uA <Cg(ogADAN1-2V)
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Proof.

q
=y = 10 =Xl ) ax
+ [ lgrad (1 = \(1x1/A)ju(x))]" dx
A pr/2
< ) - q YA T\
< C/O /0:0 (r. 8)|%(1 + C A=) drdd
A pr/2
v .
+C/0 /9:0 |grad u(r, 8)|%r drdf

A

< C/ {lg(|log r|)|7ra*(1 + CA™T) 4 A =De}p dr.
0

Therefore, (3.3) gives

Ju= gy < Clalllogarats-2,

taking the ¢—th root on both sides of the above inequality gives the required

estimate. u

3.2 Polynomial approximation to u*

In this section it will be shown how well piecewise continuous polynomials of
degree at most p in each element approximate the regularised function u®. To
do this the following lemmas will be required.

Let @ : (0, 2)x(0,%)—(0,1)x(0,1) be the bijective map given by
®(Z1,%,) = (sin® 2, sin’ 7). (3.11)

Define A = arcsin /A /2 and note that A < CA? . since A € (0, %) and

at g
0o J1—s?

-~

A = arcsin(A%):
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Lemma 12 Let v € W¥99(T), ¢ € [2,00) where T C R, N S(1/3) and define
b=vo®:T— R and T> =T N S(L). Then 5 € W9(T) with

”U”W?/q'q(T) ~ H@“W'z/q.q(j:) (312)
and

~Ll1—2y - :
“v“WLQ(T/TA) < CA 20 q) ”l'Hqu(f/f/A\) : (313)

Proof. Firstly consider (3.12); from [theorem 7.43][1] for ¢ € [2,00)

[o(x) ~ v(y) v
”UHW’zlq,q(T) ~ {Hv“%q(T) + ~/T/T ——(‘B(—_—W-dx dy (‘3.14)

Firstly consider bounding the norm ||v|| q(7; using Hélder’s inequality, with T+
1 . — -
= =1Lt=q+1, gives

1
S19dx = / q 1
/?I’vl X e e sm ey

(/ [Urﬂdx)T(/ |sinzzlsin252|-f’dx>’—'. (3.15)
T T

The second term need only be considered, for the case ¥; and Z; are small,

IN

!/

/T | sin 22, sin 23,|~" dx ~ /T ez dx. (3.16)

Since t' = 9—? < 2,

/ |sin 2, sin 23,|~" dx ~ C. (3.17)
T

Consequently

Ltorrag < ¢ ([ orrdx) " < C ol (3.15)
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57

Using the Sobolev Embedding Theorem, see [1, theorem 5.4,equation 6] gives

W299(T) — [aleth)

and so
||v||Lq(q+1)(T) <C HUHWNM(T) :
Hence,
1617 4% < Clolernsiay S Cloliyorancry
Furthermore from (3.15)
”17“”(:?) 2 ||U||Lq(T)-

Next consider

— NE

J LR e
/T |x— y|4

/ |o(%) — o(y |‘1 sin 27 sin 275 sin 2§ sin 2y

(sm z; —sin® §1)? + (sin? 7, — sin? §3)?)?

Thus it will suffice to show that

1 sin 27y sin 2T, sin 2y sin 2y

~ .
X —y[* " ((sin®Z; —sin® §1)2 + (sin’ 2, — sin’ §)?)?

Firstly note that, for all (24, Z;) € T

sin ./fl

~

sin T

To show that (3.25) is true, consider these two cases,

1. Let y — X # 0. Denote X = (Z1,%;) and ¥y = (T3 + 71,22 + 72).

(3.26) gives

|X — ¥|*sin 27 sin 234 sin 27 sin 29,

lim — — — = —
y-x ((sin® 2, — sin® ;)2 + (sin® 73 — sin? ,)2)2

dz dg.

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

Using
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o (i + 2
m—=0m2—0 (nF(1 + n1)% + n3(1 + 12)?)?

~ 1 (i +n})?

n1-+0,72—0 nf + r]g

~ C. (3.27)

2. Now let X, ¥y — 0. Using (3.26) gives

|X — ¥|* sin 23, sin 2.7, sin 27, sin 27,

xlyrio ((sin® 2y — sin® §1)? + (sin® &, — sin® g5)?)?
ol (F1 J1)2 + (T2 — §2)2)2%12291 2
xy—o (T -1+ (25— 93)?)°
(1 — 01)* + (22 — §2)Y) &0
xy-o (F1 -2+ (35— 73)?
~ lim (Z1 — 91)*T1%
%50 (21 — 11)%(Z1 + 71)?

$1y1

~ lim — 3.28)
Xy—o0 (Z1 +1)? (
Hence, the first result follows.
For any v € Wh9(T'), ¢ € [2,00)
/ 0|7 dx = /A _[6]9 sin 22, sin 27, d% (3.29)
T/TA T/TA
and for : = 1,2
v |* 0% | sin 22, sin 22, .
ax= [ SN B T2 g 3.30
/T/TA dz; o= T/TA a7, sin 27,7 ( )

Combining these results with (3.26) and the fact that A = A3 gives (3.13). =
Lemma 13 For any k >0, define 4® = u® o ®. Then u® € Wk« §'(7r/2) and

“aAI‘W’C,q(S) |10gA| —((k/2=-A)-1/q) (331)
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Proof. Let A € (0,1/2) be fixed. Set A = arcsin\/A/k. From [27, page 19.

section 0.43] for any index k = (ky, k2)

alkl ( ) k1 ka 1 dj+l A

= W’“ )W f_ cp %)), 3.32
where
Wrt) = > (-1~ sin?(™ =) t — sin ¢ (3.33)
et ] dt»
Then from [12, Lemma 4.3] for min (2, Z3) > p and property 3 of u®
ormlat L m =(ml=2))
FTaE < C(Im))g(|log Af) min (21, 22) (3.34)

and for X € S(A)

8|m|aA’\ q

~m1 Qoo
0z 07}

< C(my, ma EZ (|log A[)zd—m1)723=m2) A~aliti=A) (3 35)

A

The function @ is supported on the set

RN (8)(x/6) C G1 UG, UGs (3.36)
where
Gy = RN (S)(A). (3.37)
Gy ={(@1,82) 1 A< 3 < 7/6.5 < 3, < &1} (3.38)
and
Gs = {(£1,%2) : A< T < 71/6, < 7} (3.39)

The contributions from each subset will be considered individually. The fact that

A< CA? will be used.
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1. On subset G using (3.35) for any |m| < k gives

glmlga e
/ ~MMi ~m2y d-/ild.:l,‘\Q
G] x .?32
my mo ) 8
< C(my, m2)g(|log Al) ZZA q{j+i=2) / A<11(2J~m1)d,f1/0 2(21 ma) 7,
7=11=1
mp mz
< C(mq,ms) Z Zg(l log AI)A‘I<j+l—)\)+§(2j—m1)+%(21—-mg)+1
j=11=1
and
. 1 1, k
—U =N+ 52 =) + 521 =) 2 —(5 =) (3.40)
gives
”aA”W’c,q(G ) = (|10gA| % (2A=k)~+1/q (3.41)
2. On the subset Gy
|D™a8] < C(m)g(]log AJ)z5 1172 (3.42)
and so
pradl' < cmyg(logal) [ [T E0m dzyaz
[0}, < Clmlatlioga) [ [7 2507V az,az,
< CA-9liml=22)-2/q)
giving

[,y < ClRIAT G (3.43)

3. The treatment of G5 is essentially the same as GS.

Summing contributions from each of the subsets completes the proof. [ ]
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The following Lemma can now be stated

Lemma 14 Let u® be a regularised singular function given by (3.6) and suppose
k> 2X\+2q, g € [2,00), and that u® = 0 on the lines x1 = kx9/2 and x4 = Kx1/2.
Let K be an element with one vertex at A, and two of its sides lying on the lines
Ty = Kx2/2 and x3 = kz1/2 and satisfying K C R, N 5(1) Then there exists a
sequence of polynomials u of degree p, with u = 0 on the edges of the element

K and

[0 =2 ey S ORI+ Inp)?E=2/o)g(|log Ay A= A-1/9

Whe(K) =
[p—(k—-l)A—(lﬂ—l/q)_l_ —(k=2+2/q) A—(1- 2/q)+p (k- 2)] (3.44)
Proof. Firstly note that, by definition, supp u® C R,.. Let K, be an open
polygonal domain such that K C K, C S(1) and supp u® C K,

Extend the function 4® to the square square S(7) as an even periodic function
so that the extended function is symmetric on the lines z; = 0, £7 for ¢ =1, 2
Let s,(4%) be p—th partial sum of the Fourier series expansion of 4 4®. Then by

Lemma 3 and Lemma 13, for any 0 <m <k, k > 2\ + 2/¢

”aA - SP(‘A‘A)me,q(S(g))
< C(k)(1+ Inp)?0=2/0p=t=m) H'ﬁANWW»

< C(k)(1 + ln p)21=2/9)p=G=m) g(| Jog A|Y A~ (A1), (3.45)
By Lemma 3

a8 — s, (0 ) 2(1-2/q) ,—(k—2/9) ) —(5-x-1/q)
[ = 0@ 55y S CRIHInp 020702y [ log A A

(3.46)
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From Schmidt’s inequality, Markov’s inequality and using interpolation the fol-
lowing inverse estimate holds: let v be a polynomial of degree p and (2 be an open

domain with diam(§) = A, then for ¢ € [2,00] and k > m >0

”v”Wk,q(Q) S Ch_(k—m)p2(k‘m) ”vl

VV’"'q(Q) . (347)

Let UPA = s,(#®) o ®7! which, by symmetry is an algebraic polynomial, the

restriction of va to the element K also denoted by 'UPA satisfies

“uA o v;’l”ivlvq(l\’) < ”uA o UPAH(II/VLQ(KA) + HUA - vPA“ZVlvq(I{/I\"A) : (3.48)

Each term on the right hand side of (3.48) will be considered individually. Since,
u® = 0 on K2, using the inverse estimate (3.47) with h = A, Lemma 12 and

(3.45) gives
”uA N va“Wl,q(KA) = “UPAHWM(KA)

< sz(l“z/Q)A—(1—2/Q) HuA — -vﬁ

W2/a4(K)

= szu_z/q)A_(l_z/q) “’aA B SP(aA)HWZ/m‘I(S(“))
z

< C(k)p—(k—2+2/q)A—(1—2/q)(1+1np)2(1—2/q)

g(|log APA~(z=A=1/9), (3.49)
For the second term of (3.48), using Lemma 12 and (3.45) gives

[u = o] CATOR Ga — s @)

WLa(K/K2) wha(S(5))

< CV(k‘)p—(k—l)A—(l/Q—l/'I)(l +In Z))Z(I—Q/q)

g(|log AA=G=A=1/a), (3.50)
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Combining (3.48), (3.49) and (3.50) gives

[0t = 8y S CORIL+ I p 202/ [ log AP A-(E=-1/0)

[p..(k-l)A-(l/Z—l/q) + p—(k—2+2/q);\—(1“2/9)] (3.51)

Estimate (3.46) is preserved under the transformation. Therefore,

- —(k— —(E 2=
42 = 08 ey S CONL+Imp)0-2400y=5200 [ log AAE=-1/0). (3 59)

Assume that K is a quadrilateral element; the proof for triangular elements is

similar, as in the proof of Theorem 7 construct a bilinear bijective map Fx from

the reference element S(1) to the element K such that, for all © € W™(K)

““HW"W(K) ~ “’a”Wqu(S(])) (3.53)

and denote the coordinates in the reference element by (%;,%,) = Fg'(zy, )
and @ = Fz' ou. Now adjust va to give a new polynomial w;f which vanishes
at the vertices. A typical adjustment, say, at the vertex (—1,1) on the reference

element is given by,
131, 32) = vo (=1, 1)1 (d1)v1(22) (3.54)

where 1; is given in the proof of Theorem 7 and the fact that u® = 0 on the
boundary of K has been used. Denote by «;, 7 = 1,....4 the adjustments at the

vertices of K. Therefore, from (3.51) and (3.52)
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4
A A A A
”u Wy “wuqm < ”“’ % ”wm(m) + Z - “QiHWM(K)
1=

4
< ”uA — 'UA“ C HUA — 2
— P llwta(k,) + Zl P
1=

<C(1+ 1np)2(1—2/q)p—(k—‘2/q)g(‘ logAl)A—(g—A—l/q)

Leo(K)

< C(k)(1 + Inp)2=2Dg(|log A|)A™ G-V

[p—(k—l)A—(1/2~1/q) + p—(k—2+2/q)A—(1-2/q) + p—(k—2/q)] _ (’3.55)

To obtain the desired polynomial, adjustments on the edges of the element
must now be done. These adjustments are slightly different to those of Theorem

7. Consider the polynomial B; given by
BY(&1,d2) = W5 (=1, &2) 0 (E1). (3.56)

Transforming this polynomial to the element K and denoting ) = Fx o ~;, it is

clear that, on the boundary of K, 3} (z1, k1/2) = wPA(wl, kx1/2) on one side and

A

is zero on all other sides of the element K. Subtracting this polynomial from w;

gives a polynomial which is zero along the side 2x; = x2; and

“uA - (wp - 'B;)“WUI(K) = “uA - w ”WW(K) + “/3;”W1-f1(1\') ' (3.57)

Using the previous results the following estimate holds for 3},

[ I e) () [P
< Clodraon + 0 = 2
< opttY {UPA ”Wl/q.q(aK) + ”uA N U'I?HLOG(K)
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< Crp2(1—l/q) “uA A

A A
) —
- p ”W?lqvq(m) + ]lu v

P

L*>(K)

< C(k)(1 + Inp)?=9g(|log A|)A~G—A=1/0)

[p—(k-l)A—(l/Z—l/q) + p-k=2+2/D A-(1=2/9) | p~(k—2)] , (3.58)

where the fact that ¢ > 1 has been used.

Hence, denoting by /3;;, ¢t =1,...,4, the similar adjustments on the four sides
of K and letting uﬁ = w;‘ -y, ﬁ; gives a polynomial which is zero on all the

sides of the element K and combining the above results, satisfies the required

estimate (3.44). n

The main result of this section can now be stated:

Theorem 15 Let K be an element with a vertex at the origin and two of its sides
on the lines = 0y and § = ©/2 — Oy where 0 < §y < w/4. Suppose ¢ € [2,00)

and let u be given by (3.2), with A > 1 —2/q and

u(r,0o) = u(r.m/2 —86) =0

and
supp u® C K, (3.60)

where Ko, = (KU {(r,0) :00/2 < 8 < 7/2—6y/2}) N S(1/4).
Then there exists a sequence of polynomials u, of degree p that vanish on the

boundary of the element K and given ¢ > 0 there exists a ko > 0 such that for all
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k> k‘o
= wp gy < CORN(L+In p)2i=2/a0p=0=142/a=) (3.61)

Proof. From Lemma 11 and Lemma 14 there exists a sequence of polynomials

u? such for all k > 2)\ +2/q

p

] H o =2
U — U < fu-— u- — u,
" Pllwrer) — +

P

w?| |
WLe(K) Wha(K)

< Cg(l log A})A/\—1+2/q + C(k)(l +1n P)2(1—2/Q)g(1 1OgA|)A_(§_’\‘1/‘”

[p—(k—l)A~(1/2-1/f1) 4 p k=229 A-(1-2/0) | p—(’c—?)] . (3.62)

Now for given € > 0 there exists a kp such that

ko — 2

= —2>2 ¢ .
SRR A (369

Choosing A = p™* gives for any k > ko

“u_upllwl,q(K) < Cg(|10gp|)p‘2('\—1+2/q—€)+

C(k)(l +In p)z(l—z/q)g( | 10gp|)pk_2"2'\+€

—(k-1)

IN

[p p—z(l/q—l/z) + p~(k—2+2/q)p~2(2/q—1) + p~(k—2)}

< C(k)(1+ Inp)*t-?/a)p=2(-142/a=9) (3.64)
as required. =

Remark 16 When the element K is the union of two elements Ky and K, then
similar results to those of Lemma 14 and Theorem 15 hold. Although the final

polynomial is zero on the boundary of K and not necessarily on the interelement
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boundary K, N Ko. The reason for this is that no adjustments of the initial ap-
proximation va, given wn the proof of Lemma 14, are required on the interelement
boundary other than those given by the vertex adjustments, which do not effect

the result since u®(A) = 0 for every vertex A, of the elements Ky and K.

3.3 The convergence rate

The results of the previous two chapters are now joined together, to give the

general uniform p-version estimate for functions u given by (1.17).

Theorem 17 Let u be of the form described by (1.17), with sufficiently smooth

boundary data. If ¢ € [2,00) and A > 1 — 2/q where
A = min{A,..., ) (3.65)
then given € > 0 there exists a sequence {u,} € X, such that
= | ey < C)(1+1np)*=2g(|log p|)p~. (3.66)

where

o=min{m — L.2p —14+2/¢— &}. (3.67)

Proof. It suffices to consider the case when there is one singular element uz = w
say, and will be given by (3.2), with exponent A = X associated with the corner
A. Let, for any partition P, the patch of elements surrounding the corner A to

be given by Figure 3.2. Let the line joining A to B; have angular coordinate ;.
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Figure 3.2: patch of elements associated with corner A

The function ©(-) maybe partitioned into a sum of smooth functions OU! e

([0, 2x] and are supported on (6;-1,0;11). Therefore, w may be expressed as,
m—1 )

w o= Y wll (3.68)

i=1

where
wll = X(r)rig(|logr|)®m(9). (3.69)

Hence, approximation of the functions wl! must be considered. To do this, two
cases must be considered:
1. 0j+1 — Hj_l < T

In this case, a linear map F may be applied, so that the two elements

are mapped onto a region R,.. Therefore, from Theorem 15 and Remark
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16 there exists a continuous piecewise polynomial wy] that is zero on all
elements in the partition, except for the two elements K; and K;_;, and is

such that for any € > 0

it = w1,y < CL+ I p) =24y log plyp~4-142/- (3.70)

2. 0]‘+1 - gj—l > T

In this case, firstly apply the linear map G : K; — f(j which is such that
OB; is mapped onto itself and éj+1 — 0,1 < 7, see Figure 3.3 and Figure

3.4.

0.

17T

Bii1

Figure 3.3: Two elements, with 6,4, — 8,y > 7

The function wll|z , may be smoothly extended onto K ;. denote the exten-
-

sion by 9] to give a function that is supported on the interior of K, fo'j.
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Figure 3.4: Elements after the map G is Applied

The function w[j]|f_ + vl where vl = o) 0 =1, is approximated by a

polynomial w Wthh is given by Theorem 15. Therefore, from Remark 16

“wU] - w[]] HWl a(K,_1) < Cle)(l+ lnp)2(1—2/‘5’)

9(|log p|)p~2A-1*+2/a=) (3.71)

and

o9 — wi| CLOL 4 Inp-210

Whe(K;) —

g(|log p|)p~Ha-1+2/a=9)  (3.72)
g

Note that, the function ng;]p 1s a piecewise continuous polynomial on the

two elements.
The function wl! — vl on K; satisfies the conditions of Theorem 15, that
is that the function is zero on the boundary of the element. Hence, there

exists a polynomial ng;]p defined on K;, which is zero on the boundary and

[l — b)) — C(e)(1 + In p)20-210)

wWla(K -

g(|log p|)p~2A-1+2/4=9(3.73)
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Combining these two polynomials gives a piecewise continuous polynomial

wi[)j] satisfying

| ”wm—wy]“wm(m) S wha(K,) (3.74)
and
L I SR P
S8 CR ¢ BN CAe)

Therefore, using the above estimates gives a piecewise polynomial satisfying

the required result.

That completes the proof. ]



Chapter 4

The hp-version Approximation

Theory

The aim of this chapter is to obtain approximation results for the ip-version finite
element method. The results given will extend those of Babuska and Suri, [11],
to general Sobolev spaces and reduce the restrictions on the meshes, so that local
refinements in both 2 and p may be considered. An example of such refinement
is the strong refinement used around a corner singularity.

So far it has been assumed that a partition P is fixed and high order polyno-
mial approximation was used. This chapter will retain the notation from chapter
1 for the partition and obtain estimates involving both A and p.

In section 1 the approximation of smooth functions will be considered, as in
chapter 2. The results obtained not only introduce the element sizes hg, K € P.

but also remove the restriction of uniform p refinement allowing each element A’

72
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to have its individual degree px. A local estimate will also be provided for the
case m > 1 when u € W™4(Q), which improves, in terms of the p-version, the
estimate given in Theorem 8.

In section 2 hp results will be obtained for singular functions of the type

described earlier. Combining these results will give the main ip result.

4.1 Continuous Piecewise Polynomial Approxi-

mation of Smooth Functions

The following extra notation will be required. For each K € P. let mg > 1 be
such that v € W™x9( ). Now define mp to be the set of all such mg for K € P

and the space
WmPe(Q) = {u € WH(Q) : u|x € W™ 9(K)}. (4.1)
The corresponding boundary space is given by,
WmP(Ip) = {g € WHHI(TD) : glpep, € WHEHTH(K N Tp)).  (42)

The extra smoothness required on the boundary is due to Theorem 10.

For now, it will be assumed that the function u to be approximated is given
by (1.17) with ug = uz = 0.

Assume u € W™P9(Q), ¢ € [1,00] and my > 1 for all A € P. Define

On = Hi' (), where H is the affine map given by

Hi(31,82) = (hxh, hicda), for all (21,72) € Ok, (4.3)
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for each K € P. The following properties now hold:
o diam(J) = 1, for all J C Qg where J = F'(J),
o ps=~ 1, for all J C Q.
o for every u € W™?¢((Q), denote mg, = minjcq, my and
ux = wula, o H's
then 4y € W’”QK’"(QK),
e for every index a, o] < mg,

o
D UK

~

o 2/q—la|
D u”Lq(.}) < Chyg’ La(d)

and

e
”D UK

v lel=2/q a
Lq(j) S C'hI\' HD UHL‘I(J)'

For any m = s+ o0 € RY, s €Z" and o € [0,1) define
Im| = s.

Finally define PP(x) = {v : v is a polynomial of degree p on Qx }.

The following Lemma will be required:

Lemma 18 Let u € W59(Q), k > 0. Then

. ~ ~ " -2
inf @ = Ollype, < CORMRE lulwraay).
vEPP(QK)

where p = min(p + 1, k).

74

(4.4)

(4.5)

(4.6)
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Proof. Firstly assume that & is an integer. The case & = 0 follows immediately

from the properties of the linear map Hjy. Now

k
it fa— 0l < Anf G =Bl ST [y
vePr(fiy) 1= 2llwran EePP(ﬁzc){“ it 1:2;;-1| s

k
+ Z |6'W’Z,Q(§K)} (49)

l=p+1

and Ef:u.u |6|W’:‘1(§K) =0 for k > p+ 1. Using [24, Theorem 3.1.1] gives

k
inf =0 wror \ < Ul 2 4.10)
2€PP(Qx) ”( HW}W(QI\) g ] 'WI‘C’(QA’) (

Mapping back to the original domain §2x gives the result for integer k. The result

for general k follows, using standard interpolation. ]

The first local estimate can now be stated.

Lemma 19 Let u € W™1(Q), g € [1,00] and my > 1+ 1/q for all K € P be
such that supp u C Qg for a K € P. Then there exists a sequence up, € Xp,

which is independent of ¢ such that,

—(m \,—1) _
= oy, € CUPal ™51 + log pa, 212/ (4.11)
[mag] a1
-1 o|—
hi [ulwraay) + Z hi ”DQUHLQ(QI\»)
lev|>p
+hzﬂ1\'-l|UIVV"‘LQI(,(I(QI\’)] (412)

where 1 = min(pg, + 1, ma,), Pa, = Minjeq, ps and supp up, C Q.
Proof. First note that the finite dimensional space

V= {v € C(Q) :vlg =90 GF for some v € }A’(pQK) or @(Z)QK)

forall K C Qp and v =0 for all K C Q/Qx} (4.13)
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is a subspace of X},. Hence, there exists a up, € X}, such that

[l — uthWI,q(K) < ig‘f/ [l — v”le'?(K) : (4.14)

Therefore, it is sufficient to construct an approximation of uniform degree pq,..
which satisfies the Theorem. To construct such a piecewise continuous polynomial
the ideas in the proof of Theorem 7 are required. That is, construct individual
polynomials wg of degree no more than pg, on each element A € P. Since
u = 0 on every J C Q/Qp it follows that wy = 0 for every such J C Q/Qx.
Note that the wy, J C Q/Qxk, need never be adjusted. Denoting w € V to be
the final piecewise continuous polynomial constructed in this manner, it is clear

from (4.14) and Theorem 7 that there exists a u;, € X}, such that

<

I = whpllprag) le = wliywraqny

< Cpay ™ 7(1 +log pa, )22/

Z_ HUHW"’QK"’(J) . (4.15)
JeP:KnT#0
and supp up, C Qg.
Let v € PPox (). Then
llu— “hp”WLq(K) = |[(u—v)— (urp — U)HWL«:(K)
< 2/q (@ = B) = (iny — 0 W)

< CREpg, V(1 + log pa, )11

[(w — 6)”11/’”91\”"(51;)

< Chz/q 1 (mn}\ (1+103190;\')2l1—2/q|

Qx
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-~

I.mQKJ
o= UHWMI(GK) ! |z|>: }D u Le(Qy) + |alwmﬂ1‘”q(§1\') - (4.16)

al>p

From Lemma 18, with p = pq,. and k = g,
. ¥ =2 —
inf (@ = )llypma@ny < CON Nty (4.17)

Z’TEPPQ‘K (QI\')

Combining (4.16), (4.17) and mapping back to the original domain gives,

“u - uhp”WI,q(K') S C( )h2/q 1 TﬂQ}\ )(1 + log pQK)2|l—‘2/q|

I\
[ I.mﬂz\.]
WIW“"(QJ ) T Z 'D La(Qy) + ]u‘”ﬂnnl‘”q(gﬂ')
i la|>p
_ -1 D11 -
< Clwpa ™ V(1 + log pa, )14l

_ 1 [_mQ]\J a1

u ||y (Qx) + Z hic ||DQU|IL(1(QI\—)

loe|>u

m -

+h Q} |UII/VmQK’q(QK):| , (418)
as required. ]

The general result for functions v € W™?9(Q1) with the minimal smoothness

on u and the restriction on the support of u removed, can now be proved.

Theorem 20 Let u € W™P4(Q), ¢ € [1,00] and my > 1 for all K € P. Then
there exists a sequence Uy, € Xpp which are independent of q such that for K € P

and mq, € (1,1+1/¢]

(m : A —2/q
lu = whpllyrarey < Clipay ™ V(1 + log pa, )12/

h?\—l ”ullwmﬂx'q(nl\») ) (4.19)
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where p = mq,. and for mq,. € (1 +1/q,00)

_(m-\"l) . A — q <
lu = unpllrary < Clwlpa, = (1 + log pa, )=/ (4.20)
) LmQK_I a1
hi ulwma@ey + 320 Ryt (1D o0
[ee|>p
maq,.-—1 ;
+h1{91\ 1ulenK’q(QK)] (421)

where p = min(maq,., pa, + 1) and po, = minseq, ps.

Proof. The result will firstly be shown to hold for the case hx ~ 1.

Let e,, n =1,2,..., Np denote the vertices in the partition P. With each e,
associate a bounded open domain U, = int{UK : K Ne¢, # 0}. Note that U, C
Uk, where K is any element contained in U,, and {UU, :n=1.2,...,Np} = Q.

Now construct a partition of unity ¢,, n = 1,2,... Np, subordinate to the

covering U,. Write v € W™?4(}) in the following manner

u = Z dnu

n=1,2,...,.Np
= > U, ‘ (4.22)
n=1,2,...Np

with supp u, C U, and u, € WmE4(K), see figure. The aim is now to construct
polynomial approximations to each u,.

In the case mq, > 1+1/q for some I € P, Lemma 19 states that there exists
an approximation u, n, € Xpp to the function u,, where n is such that e, NK # 0,

such that

—(mQ]\»*l)

”u“uhpuwlyq(j{-) < C(wpay

(1 -+ log Pm;)zll;z/ql ”Un“W‘"lﬂK"’(n,‘—) (4.23)
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3Q

Figure 4.1: A general patch of elements, showing the support of a ¢,.

and supp Unp, C QK.
Now consider the case when mgq, € (1,14 1/¢| for some A € P. From the

characterisation

WmQK’q(QK) — (I/Vl’q(QK),H/Q’Q(Q]\’)> , (424)

0,9

where § = mq,. —1 and the proof of Theorem 8, it can be seen that for any tx > 0.
u, with n such that supp u, € U, may be decomposed as u, = v1,,(tx)+v2n(tr)

with vy, € WH(Q) and vy, € W29(Qy) satistying

maq,.-—1 ;
Hvl,n“WI,q(QK) S Ct}\'ﬂh NuﬂHw’mﬂI\"q(QK) (425)

me,-—2
lv2nllwzaia,) < Cti"™* ”“n”W"’ch"’(ﬂx) :
( I\)

Using Lemma 19 to construct approximations vy, 5, to the functions vy, with
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SUpp V2,n,hp C 2k and

)2|1—

lvz,n — v2,n,hp”wl,q(1() < CP&L(l + log pa 2/Q||U2,n|w?’ft(§z,\»)

< Cpgt™ (1 + log pa, )2 uwfyyme gy - (4:27)

Apply similar decompositions for every element \' € P in which mgq, <14 1/¢.

Choosing tg = 1/pq,. for every such A and using the triangle inequality gives

l|wn — un,hp“wl,q(]{) < vgn — v2,n,hp||wl‘q(}() + Hvl,n”WI-q(K)

_(m '—1) E y —2/q )
S CPQK QK (l _+_ ]-ngﬂl\')ZII 2/1! “unHVV'QK'q(TnQK)’ (4:.26)

where wuy, hp := Vg pp for all n such that, when R Ne, # 0, then mq,. <1+ 1/q.

. N. .
Defining up, = ¥, 21 tp hp gives

le = wrpllyragy =

J’\TP
Z{u - uh'p}
n=1 WLa(K)

S Z Huﬂ - un,hp”W/l,q(K) . (429)

nienNK #£0

Combining (4.23), (4.28), (4.29) and noting, for the case hx ~ 1, that

”un”W”‘QK'q(QK) <C “u”WmQ]\"q(QK)’ (4.30)

gives a up, € Xpp such that

——(mﬂI{_l)

lu—wnpllyray = Cpay *  (L+1ogpae )M lullypn oy - (4:31)

The general hp results are now obtained by using (4.31) as follows. Let v €

PPak () then from the above there exist a uy, € Xp, such that
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2/9-1 1/~ ~ ~ ~
l|u — uhP”WLq(K) < Chhlq (@ —©) — (@np — U)le.q(]?)

< Chl"pg, Y

(1 + log pQI\»)zll—z/ﬂ “a - 6HW7HQI\”[1(§A’) . (4.32)
Combining the above inequality with Lemma 19 gives the required result. ]

The following global estimate is an immediate consequence of the above Theorem.

Corollary 21 Let u € W™P4(QQ), g € [1,00] and my > 1 for all K € P. Then

there exists a sequence up, € Xp, which are independent of g such that,

lu = thpllypiagy < Cp~ V(1 +logp)™ -2/l (4.33)

C)R* ulwua@) + Y plel=1 D% ul| o

Jer|> g
where p = min(p + 1,m), h = maxjep by, p = mingep ps and m = mingep my

ie. u € Wm™i(Q).

Note that, for the case ¢ = 2 the above global estimate is the same as that

given by Babuska and Suri in [11].

4.2 Non-homogeneous Dirichlet boundary data

Now suppose that the function to be approximated is given by (1.17) with uy # 0
and us = 0. Following chapter 2, assume that ¢ given in (1.17) is approximated

using Chebyshev polynomials.
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Denote the approximate Dirichlet data for an element K having an edge v =
I'p N K by gi. The approximation to be used will be the px-th partial sum of
the Chebyshev series expansion of gy, where

~

gk = ¢glxko Tk, (4.34)

and Fx is used to define the restriction of the map Fx to the edge vx. The
approximation will be denoted by o, x(gr). The resulting global approximation

to the Dirichlet data is given by:

Ghp = Z Ghp,K © ,7:]:—1 (4.35)
KeP:Kn'p#0@

where
G () = {Gr(—1) — onpr (Gr5 —1) bbpq (1) +
{9k (1) = onp i (Grc; 1) Yo, (—1) + Onpic(Grcit). (4.36)
Lemma 22 Let ¢ € WY (yg), for some K € P where ¢ € [1,00]. Then for
[ >2/q
19 = Ohp 1 (9| pargey < C (L +log pa )pa, e 9l wraase) (4.37)

and for 1 >2—1/q

—(l-241 1— P
llg — Uhp,f\"(g)nww(m) < C(1 + log pay )PQL— * /q)hi{ ! ||9||1~/Vl~q(7,\—) (4.38)

where p = min(pa, + 1,1).

Proof. Mapping 7x onto (—1,1), then combining Lemma 9, the equivalent one
dimensional result of Lemma 18, and noting that the length of vx ~ hx gives

the required estimate. ]
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The main result of this section can now be stated:

Theorem 23 Let u € W™P(Q) be given by (1.17) with uz = 0 and assume
g € W™P4(T'p) where g € [1,00]. Then there exists a sequence of polynomials
Unp € Xpp such that up, = gn, on the Dirichlet boundary I'p and the following

local estimate holds

—(mgq . —1 —9/¢ -
lu = wrpllwroey < Clihpay ™™ (1 + log pa, )21/l

{”u“VVmQI\"q(QK) + ”gHu/m(l]\—‘*‘l“?-/(l-q(r\l{)} (439)

where p = min(pg,, + 1,mq, ), pa, = minjeq, ps and Mg = Qi NTp.

Proof. Note that the function is of the form u = w; + uy with w, satisfying the
boundary conditions and that u, € W™ 9(K), my > 1+ 1/q for all K € P. For
this proof it is sufficient to assume that v = u,.

Let wy, denote the sequence of polynomials constructed in Theorem 20. As-
sume, without loss of generality, that Fr(vx) = {(21,—1) : =1 < 27 < 1} and

let ¥pp ik be the polynomial

6117),1\" = @hp(ifla 502) + (O'hp,K(f/K; ) — @hp(xla —1))¢’p91\,(-l“2)- (4.40)

Due to the construction of wp, it is clear that. see proof of Theorem 7,
~ ~ _(mQ \’_j_l/q)
”u - whp”ijQ(_L]_) < Cpﬂ F

(1 + log pQI\» )2('1—2/’”) “u“w.mﬂl\,,q(@’) (4.41)

for j = 0,1, since mgq,. > 1+ 1/q.
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Hence, combining Lemma 22, using the triangle inequality and mapping back

to the original domain, Q, gives

llu — Uhp“Wl,q(A') < Cllu- thHWL‘?U\") +

911 - —(ma-1), u— 1 A
C(l + ]-ngQK)zll Z/QIPQ 23 h‘I\' 1 'lg'lwynﬂf\'+l_2/q'q(1‘1\') . (4.42)

K

For every element with a boundary on the Dirichlet boundary, a similar poly-

nomial is constructed. This gives a piecewise continuous polynomial satisfying

(4.39). n

4.3 Piecewise Polynomial Approximation of Cor-

ner Singularities

The aim of this section is to obtain an hp estimate for the rate of convergence of

sequences of polynomials approximating functions of the form
u(x) = er’|log r|7©(8). (4.43)

where (r,8) are polar coordinates with origin at A, a corner of the domain (2,
with © assumed to be a smooth (C*°(f1)) function which vanishes along the edges
corresponding to the boundary of the domain €. v integer and A > 1 — 2/q for
some ¢ € [2,00) .

The function (4.43) is not quite the same as a typical singular function of wus.

Firstly the function of |logr| is given and secondly the smooth cutoff function
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(¢ is not included. The latter is due to the fact that ( is mesh dependent. The

following notation will be required.

Denote, for any partition P, the patch of elements surrounding the corner A

by K1, K3, -+ K,,, see figure 3.2.

Let ¢ € C*(Q) be a function of r only and be such that

1, r < 1/4
C(r) = /

(4.44)
0, r>1/2

Partition the function O(+) into a sum of smooth functions 0,(-) € C*°([0, 2x])

supported on (w;_1,w;+1). From the properties (3) and (4) of P we have

min |AB;| = c1ha

1=0,1,---,m

where ha & hg, for t = 1,2,...m, also denote min;—; 5 .m px; := pa. Now write

u in the form

m—1

u(x) = Z ((r/e1ha)©i()r*|logr|” + ©(0)r*|log r|"(1 = ((r/ciha))

1=1

= wl(x) -+ ’LUQ(X) (445)

and note that
1. wy € W’\+2/"’q(Q)
2. wy € C'”(—Q)

3. supp w1 C B(A,c1ha/2)
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First look at approximating the function w;; to do this consider each term in the

sum individually. Denote
v; = ((r/c1ha)©;(0)r|log r|” (4.46)
giving supp v; C K41, where K; ;41 = int (Fi U Tfi.H)

Theorem 24 Let v; be given by (4.46): then given € > 0 there exists a sequence
of polynomials vp,; € Xpp with supp vpy; C K41 which are such that, for any

q €[2,00),7={1,2,....m} and A > 1—2/q

/\—1-{-2/(]0(

”Ui N Uhp,i”wl,q([{]) < C(ﬁ)hA —2(A—142/g—¢) (447)

hAvas 7)pA

where the constant is independent of both ha and pa, but dependent on the func-

tion v;, and

C(ha,pa,y) = max(|loghal”,|logpal”) (4.48)
Thus
m—1
Wiy = D Uhpi (4.49)
=1

is such that

lwr = wrnallwrege,y < Cha IChA pa PR T (4.50)

Proof. Following the proof of Theorem 17, it may be assumed that the elements
K; 41, can be enclosed inside a square $(coha) where §(p) = {(x1.22) : 0 < 2y <
p,0 < z; < p}, and appropriate rotations of global coordinates have been used

to obtain the coordinate system seen in the figure below.
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Supp v,

X

]

Figure 4.2: New coordinate system

Mapping K, ;41 onto Ei,i+17 where supp f@,,‘.i_l C §(1), under the map FI™',

where
Fi(X) := c2haX, VX € 3(1), (4.51)
gives
vi(x) = chi((cf/cl)llogr|7®(8)FA,
= i:C(l)hiC(cf/cl)?ﬂlogﬂ“’_lﬂoghAll,
120
= Y C()hj|log ha|'D!, (4.52)
1=0
where
P = (32 + 32)V2 (4.53)

~

The form of each %} is such that, given ¢ > 0 there exists a 9j,; € Q(pa), see

Theorem 17, such that

1 —2(A=142/g—¢) =l _
wie(K) < C(e)pa |log pal|”™, (4.54)

~l Al
”Uz‘ = Uppi
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and the constant C is independent of both ha and ps. Defining
v
Vip,i := Y C(D)ha|log ha ' (B}, 0 F), (4.55)
=0
and then combining (4.52) and (4.54) gives

\—172 s~
l|vi — vhpyi“WM(K) < C(ehy 1hA/qC(hA~PA»'Y) [|0: — vhi-niilwl,q(f{')

< CC(ha,pa,y)hy T ap 2O 2am (4.56)

and the constant is independent of both 24 and pa, but dependent on the function

v;. Estimate (4.50) follows using the triangle inequality. |

Now consider approximating the smooth part w,, this must be done since this
function is dependent on ha. Firstly note that w, € ("*°(2) and that when the
function is outside the patch surrounding the corner A, it has no ha dependence,
since the function ((r/caha) = 0. Therefore, only approximation on the patch of

elements surrounding the corner A need be considered.

Theorem 25 Let wy be of the form given in (4.45); then there exists a sequence
of polynomials wyp, € Xip such that for any i = 1,2,...,m, k € (1,00) and

q € [1,00]

“wQ——wzthHWl,q(Ki) S O(@,CY)C(hA’pA,ry)p;(k"l)

(1 + log pa) ¥ alp 20 (4.57)

where C(©, ) is a constant dependent on © restricted to Qg, and C(ha,pa,”)

is defined in the previous theorem.
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Proof. From Theorem 20 for any ¢ € [1, co] there exists a w4, € X}, indepen-

dent of ¢ such that for any k& € (1, 00)

w2 — th”WLQ(]\"i) < C(M)Px(k—l)(l + log I’A)2|l—2/q|
-1 L) lo]—1
his 1“"2|W“~"(Qx,ﬂ) + Z haa “D“'w'Z“Lq(QKi)
a>u

i |w2|W’“v‘I(QK‘,)] (4.58)

where p¢ = min(pa + 1, k) and C(x) independent of both A and pa, for : =
1,2,...,m.

Since ((r/c2ha) = 0 on the elements away from the corner, the above norms
of wy may be restricted to the elements K;, for j =+ —1,1,1 + 1. Also for any

index a = (a1, az) with |a] = a1 + a3 the following hold:

1. wy =0for r < crha/4,

|D%w,| < C(O, a)r* 1| log r|. (4.59)

Therefore, for any ¢ = 1,2,...,m

ID"wallfauey = [ 1Dl dx

ch

< C(@,a)/ bl log £+ N de
r=haci /4
< (0, a)hE 12 log ha|?. (4.60)

Combining (4.58) and (4.60) for any k € (1, 00),

w2 ~ whpllrar, < C(O,a)pa" (1 +logpa)* =

llog ha Ry T (4.61)
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which is the required result. ]

4.4 The Main Result

The main approximation result can now be stated. This result will be used in the
proceeding chapter, in the application of the finite element method to non-linear

elliptic problems.

Theorem 26 Let u be of the form described in (1.17) with each u to be given
by:

uj(x) = ;| log r; [ ©;(6;), (4.62)
where (r;,0;) are the polar coordinates of x relative to the point Aj, the ©; are

suffictently smooth functions and v; are non negative integers.

IfA\>1-2/q, where
A =min{\, -, Ay} (4.63)
and the Dirichlet data g is sufficiently smooth, then given € > 0 there exists a
sequence of piecewise continuous polynomials up, € Xy, such that
s = wpllgragy < Clulag, 10k, pag. B)
Pag hic(log pay + 1072/, (4.64)

where

min;{mgq, — 1,20\, =1 +2/g—¢)} QxNA; #0
o= _7{ Qg ( J /q )} K 2 # (465)

mQK_l ﬁ]—(—ﬂAJ’:@
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min;j{mg, — 1,pa,..\;j —1+2/¢} QxNA;#0
= (4.66)
min{mgq, — 1,pa, } O NA; =0

min;y; Qx NA; #0
3= T ’ (4.67)
0 Qr N A; = 0
Proof. By considering the approximation of each function given by (1.17) in-

dividually and using Theorem 23, Theorem 24 and Theorem 25, along with the

triangle inequality gives the required result. [ ]



Chapter 5

Application to Finite Element
Approximation of Non-linear

Elliptic Problems

5.1 A priori Estimates

The approximation results from the previous three chapters will now be used
in the application of the finite element method to the model problem, the a-
Laplacian, given by (1.9), which is recalled, in its weak form: Find v € Wh*()

such that v = g on I'p and

/IVU{““2Vzt~Vvdx = /fvdx-+— hv ds. (5.1)
Q Q N

for all v € W5*(Q), where WH*(Q) = {v:v € W'(Q) : v = 0on I'p}. In

chapter 1, it was assumed that this problem and the equivalent finite element

92
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problem were well posed. This assumption is now justified in the following Theo-
rem for the case 'y = () and g = 0, the extension to the general problem follows

immediately.

Theorem 27 The variational problems (1.16) and (1.21) both have unique so-
lutions. Furthermore the solutions u € W'*(Q) and ug, € X;, of (1.16) and

(1.21) respectively, are also the unique solutions of the minimisation problems:

find uw € V such that

J(u) < J(v), forallv eV, (5.2)
and
J(unp) < J(v),  forall ve Xy, (5.3)
respectively, where
1 3 3
J(v) = —/ |[Vo|*dx — / fodx. (5.4)
a Ja Ja
Finally,
max(1, f]|*)al—1, l<a<?2

Hullwl»a(ﬂ)’”uhPHWI,o:(Q) < C (5.5)

AL 2fa<o

where || - ||* is the dual norm of Wh*(Q).

Proof. When the h-version of the finite element method is considered, since )
is a polygonal domain, the result follows from [24, Theorem 5.3.1].
Following the proof of [24, Theorem 5.3.1] and using the results obtained in

chapter 2, in particular the use of Theorem 8 to make the last equation on [24.



CHAPTER 5. APPLICATION TO THE FINITE ELEMENT METHOD 94

page 316] hold, it is clear that the existence and uniqueness for the p- and hp-
versions holds. The other results follow immediately from [24] as in the case of
the h-version.

The final bound is given by Chow [23, equation (32)]. [

To use the results of the last three chapters an abstract error estimate of the
form given by Cea’s Lemma (1.29), will be required. The following result provides
such an estimate.

The finite element approximation u;,, to the true solution u. see Chow [23],

is such that

llu— “hp”wm(n) <

infuex,, [lu — vlliag . if @ € (1.2) ]
(5.6)
infveth(“u”Wl,a(Q) + “””Wl»a(n))(a_z)/a [l — UH%?,G(Q) ,ifa € [2,00)

This result is also given by Barrett and Liu [15]. Looking at this estimate it is

clear that the exponent on the right hand side reduces the rate of convergence.

For the h-version this has been looked at in much detail by Barrett and Liu.

see [15, 16, 17], and under certain extra regularity assumptions on u the rate of

convergence for the h-version, for linear elements. can be improved. However, in
what follows the above abstract estimate will be used.

To obtain estimates for the finite element approximation the piecewise con-

tinuous polynomial given by Theorem 26 will be used and will be denoted by vy,,.

For the case a € [2,00), it is clear that an upper bound for v,, independent of
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hgk and pg will be required. But from Theorem 26 and the triangle inequality:
“Uhpnwm(n) S C(”u”WL’l(Q) + C(h,p) ”u”vvk'a(n))’ (5.7)

where k = mingep mg and the constant C'(h, p) is monotonically decreasing with

respect to h and p. Hence, (5.6) reduces to:

af2 op
v = vhpllwraqy > if a € (1,2]
I — uhP”WLO(Q) < C @32}/ 2/ (5.8)
Cllullwraqe) e = vhpllwragy, ifa €[2,00)

Since the log and € terms of p are relatively small in comparison to the other

terms of p, from here on they will be ignored.

5.1.1 Uniform Refinements for Smooth Functions

In this section uniform refinements will be considered for approximation of w,
where u is given by (1.17) with uz = 0. Therefore, using (5.8) and Corollary 21

the following a priori estimates for the uniform k- and p-versions can be obtained:

Bl |31, if o € (1,2]
, (Q) " )
v — “hp”vvlya(n) < C(p) 2 , (5.9)
CR2I gy Nl ey - if @ € [2,00)
where p = min(p, k — 1) and
—oaf? af2 o ;
P ”““kaq Q- if a € (1,2]
Cp_%/a [|u “vgka(g [|u “wka(a if @ € [2,00)

where 0 = k — 1.
As in chapter 1, the number of degrees of freedom N will be used to compare

the uniform k- and p-versions. Therefore, as in the linear case. it is clear that
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the p-version is always as good as the h-version and when the solution is very

smooth, then exponential rates of convergence can be expected for the p-version.

5.1.2 Uniform Refinements for Singular Functions

Now assume that the true solution is given (4.43) and that o € [2,00). In this

case using (5.8) and Theorem 26 it can be seen that

l|u — uhP”W’ru(Q) < C(p.u)h®e, (5.11)
where y = A — 14+ 2/« and
“u - uhp”wl,oz(ﬂ) S C(hsu)p_ZG/a (512)

where ¢ = 2(A — 1 + 2/a). Therefore, a similar result holds for the non-linear
problem as in the linear case, that is when such singularities exist, the rate of

convergence for the p-version is twice the rate of the h-version.

5.1.3 hp-type Refinements

The approximation theory from the previous chapter can now give more insight
into how to refine the mesh for the Ap-version when the solution is given by (1.17),
with g;(|logri|) = |logr;|™ for alli=1....M and v; € Z . Let a € [2,00); from

(5.8) and Theorem 26 it can be seen that

lu = unpllspragy < Clulag)Clhi,pag. B)

paZ i (log pay +1)217%9, (5.13)
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Q Q

Figure 5.1: An example of geometric h-type refinements

where the 3, o and p are given in Theorem 26. It is clear that around corner
singularities the convergence rate is dramatically reduced and in general only
algebraic rates of convergence may be produced. To overcome this and to try to
obtain exponential rates of convergence some non-uniform refinements must be
implemented. The most common h-type refinement to overcome the degradation,
is to strongly refine around the corner. The type of strong refinement used for the
hp-version, see Babuska and Gui [8, 9, 10], leads to what is known as geometric
meshes, with mesh parameter v, see Figure 5.6. However, this geometric h-type
refinement will not, in general, lead to exponential rates of convergence. This is
due to the fact that any type of h-version method can not exploit the smoothness
of the true solution away from such singularities, due to the fact that the h-version
convergence is always being restricted by the polynomial degree of approximation
being used and thus, only algebraic rates of convergence can be obtained.

When the true solution is very smooth, for example C'* which could be the
case in the elements away from the corners, then the above estimate suggests

that p-type refinements will give exponential rates of convergence in elements
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that are not immediately adjacent to corner elements. It is also clear from the
above estimate that having large degree jumps between adjacent elements is not
a good thing, since the minimum degree of the two elements would be used in
the above estimate.

From these observations, it is quite natural to choose a mesh refinement strat-
egy around a corner that uses a geometric h-type refinement and increases the
polynomial element degree as the elements move away from the singularity. This
can be thought of as ignoring the singularity and getting the most out of the
smooth part of the function. These observations were made by Ainsworth and
Senior [6], who also give an adaptive hp algorithm and obtain exponential rates
of convergence.

Finally, the rate of increase in polynomial degree must be considered. In
Babuska and Gui [8, 9, 10], it was shown for the one dimensional case, that a linear
growth away from the corner combined with geometric h-type refinements, with
mesh parameter 0.15, leads to an overall optimal exponential rate of convergence.
This method of refinement will be adopted for the two dimensional case. For an
example of such refinement see Figure 5.2. This refinement strategy was also
considered by Babuska and Suri in [11]. It is clear that this type of refinement
fits with the observations made from the a priori estimate. In the next section
it will be shown that this method of refinement leads to exponential rates of

convergence.
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Figure 5.2: An example of hp-type refinement around a corner singularity

5.2 Numerical Results

Since the results shown are of asymptotic character, it is essential to show that
the results hold for realistic values of py and Ap i.e. values that are acceptable
for a machine. The numerical results will verify that the estimates given, in the
first chapter for the linear case and in the previous section for the non-linear case,
hold for realistic values.

For simplicity, it will be assumed that all Dirichlet boundary conditions are

homogeneous from here on.

5.2.1 Linearisation of the problem

When solving the problem numerically, a method is required to reduce the prob-
lem to a linear system or a set of linear systems. The first step towards achieving

this is to add in a pseudo time step to the initial problem (1.9) which leads to
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the problem: Find wu such that

% — V- (|Vu|*7*Vu) = f in Q, (5.14)

with the same boundary conditions imposed. The finite element method is then

given by: Find up, € X, such that

0 ;
/ iuhpv + | Vaupy|* 2V, - Vo| dx = / fodx + / guv ds, (5.15)
Q| Ot Q Ty

for all v € X. The aim is now to construct a sequence {u, } .y of approximations

to the solution us, of (5.15) using the following technique.

Let

Oup Uy = Up_g
o At (5-16)

where At € (0,T) for some T € R*. Now solve the linear problem: Find u, € X

such that
B(un-l;unva) - F(un-—l; UX)* (517)
for all vx € X, where
B(u;v,w) = At/ |Vul*2Vv - Vwdx +/ vw dx (5.18)
Q Q
and
F(u;v) = At [/ fvdx+/ gu ds} + / uv dx, (5.19)
' Q T'n Q

and ug is a given initial function. The non-linearity of the problem has been dealt
with by using the previous approximation ;.
This method as it stands at the moment is very unstable, i.e. convergence to

ux is not guaranteed. The instability gives rise to inefficiency in the method, since



CHAPTER 5. APPLICATION TO THE FINITE ELEMENT METHOD 101

when the problem is unstable At must be reduced and in doing so the convergence
rate of u, — up, is dramatically reduced. The stability and efficiency will now
be increased by implementing a fourth order Runge-Kutta method, see [22], as

follows: Let ug be a given initial solution, define u;, y =1,2,... as follows

1. Let %1 € X be such that
B(uji ky,v) = F(uj;v) forall v e X. (5.20)

Define

ky = (ky — uj) At (5.21)
2. Let %2 € X be such that
B(u; + k1 /2 kg, v) = F(u; + ki /2:v)  for all v € X, (5.22)

Define

~

3. Let k3 € X be such that
B(uj + k2 /2; ks, v) = F(u; 4+ ky/2;v) for all v € X. (5.24)

Define

ks = (ks — u;) AL (5.25)
4. Let k4 € X be such that

B(u; + ks; h,v) = F(uj + ks;v) forallve X. (5.26)
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Define

kg = (kg — uj)AL. (5.27)

Then define
Ujp1 = Uj + %(kl + 2ky + 2ks + k4) (5.28)
This method is much more stable and therefore T' is much larger, this causes
a faster convergence rate for v, — up, and on the Whole leads to a more efficient

method, even though we are required to do four assemble and solves for each

iteration of wu;.

5.2.2 Linear problems

Before looking at numerical results for the general a-Laplacian some linear elliptic

examples will be considered.

A smooth linear problem

Firstly look at the rates of convergence, for linear elliptic problems with smooth

a solution i.e. u € C*(2). Consider the problem: Find u such that
—Au={, (5.29)

with true solution u = exp (¢ + y) on the domain @ = (0,1) x (0.1).
This problem is now solved using both the h—version and p—version of the
finite element method. From the estimates seen in chapter 1. it is expected

that the h—version will converge at a rate O(N~P/?) where p is the maximum
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polynomial degree used in the subspace X}, while the p—version should produce
an exponential rate of convergence, since for all values k the p—version will be

faster than O(N~(*=1/2), The results shown in Figure 5.3 confirms this.

10 T v T T

(p=1): slope = -0.60

107
(p=2): slope = -1.09
(h=1/2)

Error
—t
=)

T

10 F
o——— o h-version

107k ¥—————% p-version

hd 1 i

10 10 10° 10 10
Degrees of freedom

10

Figure 5.3: Rate of convergence for a linear problem with smooth solution

A singular problem

Now consider the linear elliptic problem on the domain €} given by Figure 5.4. It
is known that the true solution of this problem, in polar coordinates with origin
at the corner, is given by u = r3sin (2/3)f. Therefore, u € W*/%2(Q).

The h—version and p—version are firstly implemented with uniform refine-
ments with an initial partition of three elements and linear basis functions. From

estimates (1.30) and (1.35), the expected convergence rate for the p—version
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u=

u=0

Figure 5.4: The singular problem

should be twice that of the h—version which should itself converge at a rate
O(N?3). From Figure 5.5 this is confirmed.

Now consider using geometric h—type refinements on the corner domain, these
refinements are given by Figure 5.6. On each of these h—type refinements a
uniform p—version is then applied.

From Figure 5.7 it can be seen that, by choosing suitable steps of refinement
at each level it is possible to create an exponential rate of convergence even
when degrees of freedom are wasted from using a uniform p refinement. These
refinements would be both h—type and p—type and thus the exponential rate
would be caused by implementing an hp—version of the finite element method.
This exponential rate can be seen in Figure 5.8. This observation suggests that
when the suggested hp refinements from the previous section are implemented

i.e. non uniform p, then even faster rates are to be expected.
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Figure 5.5: Convergence rates for uniform refinements
5.2.3 Non-linear Problems

Examples will now be shown for the general a-Laplacian.

A smooth problem

Consider the a-Laplacian problem with v = exp(z + y) € C"™(92) where Q is
the unit square and o = 3/2. The problem is solved using both uniform A- and
p-refinements. From (5.9) and (5.10) the h-version is expected to converge at a
rate of at least O(N~3/%) for linear elements and O(N~%/4) for quadratic elements,
although Figure 5.9 suggests that these estimates may not be optimal and that
h-version of the finite element method converges at optimal rates for linear and

quadratic elements. Since the true solution is infinitely smooth the p-version is
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Figure 5.6: Geometric h-type refinements used on the L-shaped domain
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10° T
h-refinement
p-refinement
102k .
p-refinement
10°k 5
5 h-refinement
w p-refinement
107k 1
10°} h-refinement E
-6 1 B I
10
10° 10' 10° 10

Degrees of freedom

-

(

Convergence rates for an simple hp-method for the singular problem



CHAPTER 5. APPLICATION TO THE FINITE ELEMENT METHOD 108

10 T T

(p=1): slope = -0.60
10 F

10°F
(p=2): slope = -1.09

10°F

Error

10 F

66— h-version (h=1/2)

10 F ¥ P-version

1 0' 'l L
10 10 10° 10° 10*
Degrees of freedom

Figure 5.9: Convergence rates for non-linear problem with smooth solution

expected to converge at an exponential rate. This can also be seen in Figure 5.9.

A one dimensional singular problem

Before looking at a two dimensional non-linear problem with a singularity, a one
dimensional example will be given. In this case = (0,1) and o = 2.7. The true
solution is given by u = £?7/17 € W199-¢27(( 1), where € > 0 is arbitrarily small
and z is the distance measured from the origin.

The estimate given for the p-version around a corner singularity in two di-
mensions, seems to also hold for the equivalent one dimensional problem, see

Figure 5.10, that is, the p-version is at least twice as effective as the h-version
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Figure 5.10: Convergence rates for non-linear one dimensional problem with sin-
gular solution

when a singularity occurs at a vertex of an element. Also, from Figure 5.10 it can
be seen that the rates of convergence obtained from (5.9) and (5.12) are again

suboptimal.

5.2.4 Two-dimensional singular problems

In the following two dimensional singular problems the true solution will be a

function of r only on the domain = (0,1) x (0, 1).

Example 1 Let a = 3 and the true solution v = 73/*. This function belongs
to the space W1'3/6-<3(Q}). Both uniform h and p refinements where used on

the domain. For the h-version the expected rate of convergence, using (5.9),
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Figure 5.11: Convergence rates for Example 1

is O(N-2#/3) where u = min(7/6 — ¢,p)/2. Therefore, when the fixed degree
p > 1 the rate of convergence is affected and the maximum rate expected would
be O(N-@/3)7/6)) while for a p-version the expected rate is twice this rate,
O(N-(/3)(/8)) always. The results shown in Figure 5.11 show that both meth-
ods converge one and a half times faster than expected; this suggests that the

abstract a priori bound (5.8), is suboptimal for these type of functions.

/3. The function belongs

Example 2 Let a = 4 and the true solution u = r
to the space W1/6=¢4(Q)). In this example both types of uniform refinement

are considered and a simple Ap-version is considered, using the ideas given in

the previous section. An example of a mesh obtained from using the suggested
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Figure 5.12: The third level of refinement for the Ap-version

hp-strategy can be seen in Figure 5.12.

Looking at the uniform convergence rates, see Figure 5.13, it is clear that the
a priori results (5.9) and (5.12) are confirmed although, as before, the rates seem
to be without the degradation caused by initial abstract error (5.8).

It can also be seen, quite clearly, that the adopted Ap method produces an
exponential rate of convergence. It can also be seen that the Ap method is giving
the best refinement at each level and when compared to the h-version is far

superior.
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Figure 5.13: A comparison of the uniform h, p and hp-versions for Example 2

5.3 Further Comments

Although the above results where obtained for the a—Laplacian, it is quite clear
that the results given hold for any functions whose derivatives behave in a similar

manner. Such allowable functions satisfy problems: Find u such that

-V A{K, + K|Vu|*"*Vu} = f in 9, (5.30)

for K;, K, > 0, along with boundary conditions.

It was also assumed throughout, that the elements were only allowed to be
polygonal. This is not the case, these results may be extended to curvilinear
triangles and quadrilaterals which are such that there exists a sufficiently smooth

one-to-one mapping from these elements to the reference elements.
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Finally, different types of singularities may arise from these a-Laplacian prob-
lems. In particular singularities which occur in the interior will cause degradation
in the finite element method. A look at the approximation theory for the hp-

version for such singularities is being considered and will be given in Ainsworth

and Kay [5].
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