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Abstract

Let K  be an infinite field of characteristic p ^  0 and let n, r be positive integers. 

Let 5 +(n, r) be the Borel Schur algebra over K, which is a subalgebra of the 

Schur algebra S(n, r). We aim to give a description of the Borel Schur algebra 

S+(n, r) by finding its quiver and relations. We give a complete description of 

the quiver and relations for S +(2 , r). We also construct a family of embeddings 

from S+(2 ,r) to S+(n ,r +  s) which induce embeddings of the corresponding 

quivers. This gives us some relations for S+(n,r) for n > 2.

We describe the quiver of S+(n, r) for both p =  0 and p > 0. We also describe 

some relations of special type for p > 0  and find all relations for p = 0 .
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Introduction

1. M otivation

One wide open problem in the area of representation theory is to understand 

the representation theory of general linear groups, or equivalently, that of sym­

metric groups. Here basic representation theoretical questions are still open. 

For example, it is unknown in general what the dimension of simple modules 

is, or what the decomposition matrices are. The Schur algebras describe the 

polynomial representations of general linear groups.

This thesis is concerned with Borel Schur algebras, which are certain subal­

gebras of Schur algebras. Borel Schur algebras can be used to study Schur 

algebras. Their representation theory is better understood and their combi­

natorics is possibly easier than that of Schur algebras.

A Borel Schur algebra is a basic algebra, so we can completely describe it 

by finding its quiver and relations. This data then allows to calculate (in a 

relatively easy way) lots of representation theoretical data of this algebra.

2. Descriptions of results

Let K  be an infinite field of characteristic p ^  0 and let n, r, s be positive 

integers. Let S +(n,r) be the Borel Schur algebra over a field K. Our aim is



to give a complete description of the Borel Schur algebra S +(n,r) by finding 

its quiver and relations.

Let T =  ( r 0 , r i )  be the quiver of S +(n,r) where r 0 and Ti are the sets of 

vertices and arrows respectively. Let A(n, r) be the set of compositions of r 

with at most n parts. Then the vertex set r 0 is equal to A(n, r) (Sections 1.3 

and 1.4).

In general, the quiver for S +(n, r ) is essentially known (see e.g. [13]). Using the 

results from [16], in Section 4.1 we give a shorter and more elementary proof 

to describe the arrow set Ti for 5 +(n, r).

We find all relations for 5 +(n, r) for the case n =  2 or p =  0 (Sections 2.3 

and 5.6). We construct a family of embeddings from S +(2 , r) to S +(n, r +  s) 

and prove that these embeddings induce embeddings of the corresponding 

quivers. In this way we find some relations for S +(n, r ) for n > 2. We prove a 

multiplication formula for S +(2,r) in Section 2.5 and use it to find all 1 x m  

and m  x 1 relations in T (Section 5.4).

We also describe some other special relations in T. Unfortunately, we have not 

found all relations for 5 +(n, r) for the case n > 2  and p > 0, which seems to 

be a difficult problem.

3. Structure of this thesis

In Chapter 1 we give the definitions and background needed to understand the 

main problem as well as the methods used in the other chapters. We define 

quivers and list some results about Borel Schur algebras. For more details, see 

[2 ], [1 0 ], [1 1 ] and [16].
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In Chapter 2  we describe the quiver and relations for S +(2 , r). We also obtain a 

multiplication formula for S +(2 , r) in Sections 2 .1  and 2.5 and get all relations 

for 5 +(2, r) (Theorem 2.3.1), which we call the p-adic relations.

In Chapter 3 we construct embeddings from S +(2,r) to S +(n,r +  s). We 

prove that these embeddings induce embeddings of the corresponding quivers 

(Section 3.3). In this way we get p-adic relations for 5 +(n, r) for n > 2. In 

Section 3.2 we calculate the Cartan invariant c\iQ which is the dimension of 

the vector space Hom>i(j4fa , A£\) where A = S+(n, r).

In Chapter 4 we give an elementary proof to describe the quiver of S+(n ,r) 

using some results in [16].

In Chapter 5 we describe all relations in the case of characteristic 0 (Section 

5.6) using the results from [6 ] and provide some relations in other cases. We 

consider some special subgraphs of the quiver of S +(n, r). We obtain a product 

formula in a rectangle in Section 5.3, to get all relations for the 1 x m  and 

r a x  1 rectangles in Section 5.4.
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Chapter 1 

General background

In this chapter we introduce some notations on the Schur algebras and the 

Borel Schur algebras, which will be used in the other chapters. We give another 

proof to find the radical of a Borel Schur algebra in Section 1.2 (first obtained in 

[1 1 ] (Sections 3 and 6 )) and show that the Borel Schur algebras are elementary 

(see Section 1.3) and so is basic. We also introduce the quiver of an algebra in 

Section 1.4 (for more detail see [2]) and apply this to the Borel Schur algebra 

S +(n, r ).

Throughout this paper: K  is an infinite field of characteristic p ^  0; n and r 

are positive integers.

1.1 The Schur algebra and the Borel Schur al­
gebra

In this section we introduce Schur algebras S(n,r)  and Borel Schur algebras 

S +(n,r) and describe their elementary properties. For more details see [10]. 

We also introduce a multiplication formula from [11] and will apply this to the 

Borel Schur algebra S +(n, r) in Chapters 2 and 5.



We denote n as the set {1, . . .  , n}. Let I (n, r) be the set of multi-indices i =  

(*i, . . .  , ir) with ip G n for all p G r .  The symmetric group Er acts on I(n, r )  

on the right by place permutations, i.e., in =  (z^i), . • • ,in(r)) for * € I(n, r )  

and 7r € Er . For example, if z =  (2,1,3,1) G 1(3,4) and n — (132)(4) G E4 , 

then 7T acts on z on the right: in =  (3,2,1,1).

If we view i as the function i : r —> n, j  ij, then in is just the composition 

of functions io n .

Let i , j  G I(n, r ) .  We define a relation ~  on I (n,r) by i ~  j  if i , j  are in the 

same Er-orbit, that is, j  =  in for some n G Er . For example: (2,1,3,1) ~

The group Er acts on I(n, r) x I(n, r) by place permutations. Let i , j  G I(n, r) 

and n G Er , we can write 7r acts on (z,j) on the right as follows:

Similarly, we write (i,j)  ~  (k , I) if there exists some n G Er such that (&, /) =  

{i , j ) n , that is, k = in and I = jn .  Note that this yields an equivalence relation 

on I(n, r) x I(n, r). Let Q(n, r) be a set of representatives of equivalence classes 

of I(n, r) x I(n, r) under the relation ~.

Definition 1 .1 .1 . The Schur algebra 5(n, r) is an algebra over A" with the 

basis {&J | (i,j)  G f2(n, r)}. The multiplication rule for 5(n, r) is given by

where Z{i,j ,k ,l ,p ,q )  =  |{s G I(n ,r) | {i,j) ~  (p, s) and ( /c,/) ~  (s,g)}|.

10
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(p,9)eO(n,r)

p~t,



We call {£ij | (i,j)  G Q(n, r)} the standard basis of S(n,r).

Note that =  £kjl if and only if (i , j ) ~  (k, I). £i,j£k,i = 0 unless j  ~  k.

By Definition 1 .1 .1 , we have the following lemma which will be used later.

Lemma 1.1.2. ([10]) The multiplication rule for S(n,r) given by Equa­

tion (1.1.1), can also be written as follows:

(iAk,i=  ^ 2  • 1 ]£pM, (1 .1 .2 )
(p\l)eCl(n,r)

p'~i

where Z ( i , j , k, l,p ', I) =  |{s' € I(n, r) | (z,j) ~  (p', s') and(k, I) ~  (s', /)}|. 

Similarly,

ZiAk,i= ^ 2  [Z (i,j ,k ,l,  i,q') • 1]$,,/, (1.1.3)
(t,g')efi(n,r)

g'~{

where Z ( i , j ,k , l , i ,q ') =  |{s' G I(n ,r)  | ( i , j )  ~  (i ,s ') and(k,l) ~  (s',g')}|.

Next we introduce a multiplication formula for the Schur algebra S(n, r) in 

[1 1 ] which will be used for the Borel Schur algebra S +(n, r) later.

Definition 1.1.3. For any j  G I(n, r), we define

Pj := {tt G Er | j n  = j} ,

the stabilizer of j.

Then Phj =  P& fl Pi is the stabilizer of the element (h, I) G I(n ,r) x I(n, r). 

Similarly Phjj = PhC\Pjf)Pi is the stabilizer of the element (h,j, I) G I(n, r) x 

I(n, r) x I(n, r), where the action n G Hr on h,j, I G I (n, r) is as follows:

{h,j,l)7T =  (hTTjTT,lTr).
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The Pj-obits on r are

Rati) = {P ^ 1 1  j p = a), a e  n.

These sets form a partition of r , and

Pj = Y [ P ( R a{j)) (internal direct product),

where P(Ra(j)) is the symmetric group on the set Ra{j)’ the same way, 

Phj has the following orbits on r  x r,

Ra,b{h, I) = {p € r  | hp — a, lp = b}, a, b € n.

Phti is the product of the subgroup P (R a>b(h, I)) for all a,b 6  n. Similarly

Ra,d,b{h> h  0 =  {p £ L I hp =  a, =  d, lp =  6}, a ,d ,b €  n.

T heorem  1.1.4. ([ll])For any i , j , l  € I(n, r) t/iere ho/ds

h

where the sum is over a transversal {h} of the Pjj-orbits in the set iPj. The 

index [Ph,i : Ph,j,i] appearing in (3.2.5) can be computed from the formula

Remark. 1 . We shall always assume that the transversal set contains i.

2. Each integer z = [Ph,i : Ph,j,i\ which appears in (1.1.4) must be interpreted 

as the element 2  • Ik of K. Thus if K  has finite characteristic p, these integers 

are to be taken mod p.

(1.1.4)

where, for all a ,d ,b€  n, rayb =  \Ra,b{h, 01 and ra,d,b -  IRa,d,b{h,j, 01-
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We introduce the following notations. We denote A(n, r) as the set of com­

positions of r with at most n parts, i.e. the set of A =  (Ai, A2 , . . .  , An) with 

S ”=i — r, where At’s are nonnegative integers for all i G n.

We use the notation

nx := ( lAl, 2 Aa, . . .  , nAn),

where tXt is the multi-index (t,t, . . .  ,t) with Xt many t ’s, for all t 6  n. If

i =  nA, we introduce the notation := & It is easy to check that an

idempotent in 5 (n, r), that is, =  £\-

D efinition 1.1.5. Let A and p  be in A(n, r). We define

£\,H  -=  £nA,n^ •

Lem m a 1 .1 .6 . ([G80], § 2.1) (1) d im S(n ,r) =

(2) {£\ | A € A(n, r)} is a set of orthogonal idempotents, moreover

£ =  &>
AgA (n,r)

where e is the identity element in S(n, r).

Let i , j  € I(n, r) and define i ^  j  if ip ^  j p, for all p =  1, . . .  , r. We write

i < j  to mean that i ^  j  and i ^  j . Let

ft+(n,r) := { ( i j )  e Q(n,r) | i ^  j} .

We now define the Borel Schur algebra.

D efinition 1.1.7. The Borel Schur algebra 5 +(n, r) is the subalgebra of the 

Schur algebra 5(n, r) with basis {£itj \ (i,j)  € Q+(n, r)}.

13



Using the multiplication rule for the Schur algebra 5(n, r), we can check that 

5 +(n, r) is indeed a subalgebra of 5(n, r).

E xam ple

/ 22 +  2 — 1\
The dimension of 5(2,2) is ( J = 10. 5(2,2) has the basis:

{ f t i  ,11) $11,12) $11,22) $12,11) $12,12) $12,21) $12,22) $22,11) $22,12) $ 2 2 ,2 2 }-

The Borel Schur algebra 5 +(2,r) has the basis

{£(&, a) | 0  ^  a ^  b ^  r},

where

£(6, fl) — £lb2r-b,l°2r“a) (1.1.5)

Thus
V + 2' 

2
dim 5 +(2, r) =  ^ ( 6  +  1 ) =  f 1 

6=0  '

/2  + 2\
Then, the dimension of 5 +(2,2) is I J =  6 . 5 +(2, 2 ) has the basis: 

{ $ 11,11) $ 11,12) $ 11,22) $ 12,12) $ 12,22) $ 22,22} )

that is,

{$(2,2), $(2,1), $(2,0), $(1,1), f (1,0), $(0,0)}.

We will describe the quiver and relations of 5 +(2,r) in Chapter 2 .

1.2 The radical o f a Borel Schur algebra

From now on, we consider the Borel Schur algebras in more detail. First we 

find the radical of the Borel Schur algebra 5 +(n,r). This was first described

14



in [1 1 ]. Here we give another proof in terms of the distances between two 

multi-indices in I(n, r). Related results can be found in [1 1 ] and [16].

Let A be a finite dimensional algebra. Recall that the radical of A, denoted by 

rad A, is the maximal nilpotent ideal of or equivalently, the smallest ideal 

with semi-simple quotient, also equivalently, a nilpotent ideal R  of A  such that 

A /R  is semi-simple.

Definition 1.2.1. Let i =  (ii, . . .  , ir) and j  — (ji, . . .  , j r) be in I(n, r). We 

define the distance from i to j:
r r r

dist{i,j) =  -  ip) = (%2jp) -  (^ 2  ip).
p - 1 p = \  p=  1

Let £iyj be in S+(n, r). Then i ^  j ,  that is, ip ^  j p for all p e r ,  so dist(z, j)  ^  0.

Lemma 1.2.2. L e t i , j ,k , l  be m l(n , r).

(i) If i ~  k and j  ~  /, then dist(z,j») =  dist(A;,/).

(ii) dist(z, k) =  dist (i,j)  -I- dist (j, k).

(Hi) The maximum distance in I(n, r) is

max dist(i,.7 ) = (n — 1 )r. (1 -2 .1 )
t je l(n ,r )

(iv) If  i < j ,  then dist(i,j)  ^  1 .

Proof The proof is trivial. I

Now we are ready to describe the radical of S +(n, r).

Proposition 1.2.3. ([11], Sections 3 and 6) The radical of S +(n,r) has basis 

{£ij I * < h  (i,j)  € fi+(n,r)}.
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Proof. Let T  be the vector space of S +(n,r) spanned by | i < j }  and let 

R  be the radical of S +(n, r). By the multiplication rule for S (n ,r), we know 

that T  is a two-sided ideal of 5 +(rc, r). We need to prove T  — R. Since R  is 

the smallest ideal of S +(n,r) with semi-simple quotient and S +(n,r) satisfies

S +(n ,r ) /T  =  0
AeA(n.r)

we have T  D R.

We claim T  is a nilpotent ideal. That implies T  C  R, so T  = R. We claim

fid)jOjfjWjw . . .  €i(L)j(L) =  0 , (1 .2 .2 )

where € T  for all t £ L and L =  (n — l) r  +  1 . So T  is nilpotent.

If jW no j(t+1) for some t with t £ L — 1, then the product is 0. Thus we can 

assume j ^  ~  i.e., = j ^  for some 7r € Dr . Then

0 )^(2) 7̂

Hence we can assume that j®  = for t £ { 1 , 2 , . . . ,  L —1}. Since &(2>j(2) G 

T, we have < j®. By Lemma 1 .2 .2  (iv), d is t(z ^ ,j^ )  ^  1 for all t £ L.

Since S +(n,r) is a subalgebra, we let

f t W j W  ’ ft(2>j(2> • • • f t W j W  =  f y - f y ,

i<7
)Jrv'j {L)

where Sjj € if. Suppose that the above product is not 0. Then there exists 

some nonzero sy ^  0 with i ~  and j  ~  By Lemma 1.2.2 (i), we have 

dist(i,j) =  dist(i^l\ j ^ ) .  By 1.2.2 (ii), we get
L

dist(i,j) = d i s t =  y ^ d i s t ^  L > ( n — 1 )r,
t=i

which contradicts to Lemma 1.2.2 (iii). Hence Equation (1.2.2) holds. There­

fore T  is a nilpotent ideal. I
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Definition 1.2.4. Let i be in I(n, r ) .  We denote the weightoii by wt(i), where 

wt(i) =  (ai, a2 , . . .  , an) is in A(n, r) and ap is the number of p G n appearing 

in z; more formally, if we view z as a function from r  to n, Ap =  |z_1 (p)|, that 

is,

ap = |{t | it =  p, t 6  r } | ,  V p € n.

Definition 1.2.5. Let a  =  (a i,a 2 , . . .  ,a n) and f3 =  (6 1 , 6 2 , . . .  , 6n) be in 

I(n, r ) .  We denote a  > [3 for the dominance ordering if

t t
O/g ^  63 , V t G n .

5=1 S=1

1.3 The algebra ^ ( n ,  r) is elem entary

In this section we prove that the Borel Schur algebras S +(n, r )  are elementary 

and so are basic.

Let A be a finite dimensional algebra with an identity over a field K. We start 

with several well-known general facts on ring theory.

Theorem 1.3.1. (a) Suppose that

A  =  Pi © . . .  © Pn,

where Pi’s are indecomposable A-modules. Let e* in Pi for i =  1, . . .  ,n  6e 

such that

1 =  ei +  . . .  +  en.

Then {ei, . . .  ,en} is a set of nonzero primitive orthogonal idempotents with 

the property Aei = Pi for i =  1 , . . .  , n.

17



(b) Suppose that {ei, . . .  ,en} is a set of nonzero primitive orthogonal idem-

potents such that

1 =  e\ +  . . .  +  en.

Then Aei is an indecomposable submodule of A for all i =  1 , . . .  , n and

A =  Ae\ © .. .  0  Aen.

Let e be an idempotent. We say e is primitive, if e can not be written as a 

sum of idempotents e\ and e2 with eie2 = 0 .

Lem m a 1.3.2. Let e be a nonzero idempotent of A. Then e is primitive if 

and only if Ae is indecomposable.

Lem m a 1.3.3. A nonzero A-module M  is indecomposable if and only if the 

ring End M  contains no idempotent except 0,1.

Lem m a 1.3.4. Let M  be a left A-module. Then Hom^A, M) has a left A- 

module structure. Moreover, as left A-modules, M  ~  Hom^A, M).

Proof. For all x E A and (f E Hom^(^4, M), we define

x • (f(a) := <p(ax),

for a € A. We claim that Hom^yl, M ) is a left A-module with respect to the 

above action. For all Xi,X2 E A, we show = X\{x2 V?). For all a E A,

we have
((xi x2)<p)(a) =  <p(a{x ix2)) = <p((axi)x2)

= (x2(f)(ax i) =  (xi(x2<p))(a).

We define a map as follows:

(p-. M  — ► Hom^A, M)

18



for all a G A and m  G M. In the following we show that p  is a left A-module 

isomorphism.

For all x, a G A and r a  G M, we have

(xp(m))(a) = ip(m)(ax) = (ax)m  =  a(xm) = p(xm)(a).

Then xp{m) =  ip(xm). Hence p  is a left A-module homomorphism. Suppose 

that <^(m)(a) =  0, for all a 6  A and some m  G M. That is am = 0 for 

all a G A and some m  G M. Let a =  1, then m — 0. This means that

ker ip =  0, and hence p  is injective. For any ip € Hom^A, M), let ^;(1) =

thus ip{a • 1) =  a^ (l)  =  am as ip is a homomorphism. Thus ip =  <^(^)> and

hence p  is surjective. I

Lem m a 1.3.5. Lei e , f  € A be idempotents. Then Hom^Ae, A f)  = e A f  and 

Horn^(eA,/A) =  /Ae. In particular, Hom^A, A) and A are isomorphic.

Proof. We only prove Hom^Ae, A /) =  eA/. We define a map p  as follows:

ip \ e A f  — ► HornA(A e,A f)
„„ t .__, (  V(eaf):

for all a, b G A. It is obvious that p  is a homomorphism. We show that p  is 

isomorphism.

Suppose that p{eaf) =  0 for some a G A. That is, p(eaf)(be) =  0, for 

all b G A. We let b — e, then we have 6eea/ =  eaf  =  0. Hence p  is 

injective. For any ip G Hom^Ae, A f) ,  then ip(e) = a f  there exists some 

a G A. Then ip{a’e) =  a'eip(e) = a'eaf = (a'e)(eaf) =  p(eaf)(a'e). Thus we 

have ip = p(eaf). That means that </? is surjective. I
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Next we describe primitive orthogonal idempotents of S +(n,r).

P roposition  1.3.6. ([16], (2.2) Proposition) The set {£\ | A G A(n,r)} is a 

complete set of primitive orthogonal idempotents of S +(n,r).

Proof By Lemma 1.1.6 (2), {£\ | A G A(n, r)} is a set of orthogonal idempo­

tents, moreover we have

e =  £
A€A(n,r)

where e is the identity element in S(n,r)  (so in 5+(n, r)). Let B — S +(n,r). 

By Lemma 1.3.2, is primitive if and only if B£\ is indecomposable. By 

Lemma 1.3.3, this is equivalent to proving that Endb{B£\) contains no idempo­

tent except 0 and £\. By Lemma 1.3.5, we have Endb{B£\) = £\B£\. It is ob­

vious that B£\ has a basis E  := {fjj | wt(z) =  w t(j) = A, (i , j ) G Cl+(n, r)}. 

Let G E. Since G B, then i ^  j', but wt(z) =  wt (j) = A, we have j  = in 

for some 7r G Er . Then i =  j ,  hence =  £\- Thus £\B£\ is one-dimensional 

spanned by £a and contains no idempotents except 0 and £\- Hence the idem- 

potent £\ is primitive. I

Next we introduce a class of algebras which plays a fundamental role in the 

theory of finite dimensional algebras.

D efinition 1.3.7. Let A be a finite dimensional algebra over a field K, and 

R  =  rad A. Then A is said to be basic if A /R  is isomorphic to a product of 

division algebras. Moreover if all these division algebras are isomorphic to K , 

A is called elementary.

Now we prove the main theorem of this section.
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Theorem 1.3.8. The Borel Schur algebra S +(n,r) is elementary.

Proof. In Proposition 1.2.3 we determined the radical R  of the Borel Schur 

algebra S+(n, r), which implies that S +(n ,r) /R  as a -vector space has the 

basis {£\ | A 6  A(n, r)}, i.e.

S+(n ,r)/f ls*  0  K -& .  (1.3.1)
AeA(n.r)

Hence by Definition 1.4.5, S +(n,r) is elementary. I

1.4 The quiver o f an algebra

In this section we introduce the quiver of an algebra (see III. 1 in [2 ]) and apply 

this to the Borel Schur algebra S +(n,r).

A quiver T = (r0, Ti) is a directed graph with a set r 0 of vertices and a set 

Ti of arrows. We define two functions s and e from the set of arrows to the 

set of vertices: If 7  : i —> j  is an arrow, we denote by s(7 ) the starting vertex 

i of the arrow 7  and by e(7 ) the terminating vertex j .  A path w in the quiver 

T is a word w =  7  ̂ . . .  7 2 7 1  with e(7 *) =  5 (71+1) for 1 < i < h — 1 and h e  N. 

We define the function I from the set of paths into the natural numbers by 

l(w) := h, which is just the length of the path w. For every vertex i we define 

a path of length zero, which we call e+ For a given quiver T we define the path 

algebra KT  as follows: KT  is the if-vector space whose basis consists of all 

paths in T. The algebra multiplication of AT is given by linear extension of 

the following multiplication of the basis elements:

(7 , . . .  7 M B ,  . . . & )  =  {  ° ’ if S[lh) *  e(A )’v ^ 7 1 . . .  . . .  /?fc, otherwise (path composition),
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and

e 7 = ( 7, i f e (7) =  i, =  /  -r. >fs(7)=J.
\  0 , otherwise, J ^ 0 , otherwise.

Definition 1.4.1. Let E be a ring and V  a E-bi-module. We write the n-fold 

tensor product V<g>s V  . . .  <g>s V as Vn. The tensor ring T(T.,V) is defined 

as

r ( s ,  V) =  E [ J  v  i j  V2 ] J  .. . I ]  v* I ] .. . ,

as an abelian group (Here this is direct product, not direct sum). Writing 

V° = E, multiplication is induced by the natural E-bilinear maps V1 x Vj —> 

V t+i for alH ^  0  and j  ^  0 .

The following definition gives the quiver of the tensor ring T(E, V).

Definition 1.4.2. Let K  be a field. For each positive integer n we denote by 

lln (^0  -^-algebra which as a ring is K  x . . .  x K, the product of K  with 

itself n times, and has the /('-algebra structure given by the ring morphism 

<p : K  —► r in (^ )  wbare ip(x) = (x, . . .  ,x)  for all x  in K. Let E =  Y\n(K) 

and let V  be a E-bi-module where K  acts centrally, that is av =  va for 

a G K  and v € V, and assume that V  is finite dimensional over K. Then 

the tensor ring T(E, V") is a /('-algebra, and we can associate with T(E, V) a 

quiver T = (r0, Ti) in the following way. The set of vertices T0 is {1 , . . .  , n}. 

Let Ci for i = 1, . . .  , n be the idempotent of E with the ith coordinate equal 

to 1 and the other coordinates zero. Then is a /('-subspace of V  and 

there will be dimK ^jV u )  arrows from i to j  in T. The quiver T = (T o ,^) 

constructed in this way is called the quiver o fT (E ,V).

We can label the arrows from i to j  by the elements of the basis for CjVci.
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Definition 1.4.3. A relation a on a quiver T over a field K  is a X-linear 

combination of paths a =  aipi +  . . .  +  anpn with a, G K  and e(pi) = . . .  = 

e(pn) and s(p\) =  . . .  =  s(p„). We here assume that the length l(pi) of each 

P i,  that is the number of arrows in each path, is at least 2. If p =  {crt}leT is 

a set of relations on T over K, the pair (r, p) is called a quiver with relations 

over K. Associated with {T,p) is the /^-algebra K(T,p) = KT/(p), where 

(p) denotes the ideal in KT  generated by the set of relations p. We have by 

assumption (p) C  J2, where J  is the ideal of KT  generated by all the arrows 

in T.

We have the following connection between tensor algebras and path algebras.

P roposition  1.4.4. ([2], Page 53, Proposition 1.3) Let K  be a field, and 

s  =  IL .W -  Let V be a H-bi-module where K  acts centrally and which is finite 

dimensional over K. I fT  is the quiver of the tensor algebra T(S, V), then there 

is a K-algebra isomorphism <f>: T (E, V) —* KT such that V*) = J 1-

We now introduce the quiver of an elementary algebra.

Definition 1.4.5. Let A be an elementary A-algebra, i.e.

A /R  ~  f°r some n,
n

where R  =  rad A. Then the quiver of the tensor algebra T(A/R , R /R 2) is 

called the quiver of A.

This definition is justified by the following important theorem.
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Theorem 1.4.6. Let A be a finite dimensional elementary K-algebra.

(a) Let {ei, . . .  , en} be a complete set of primitive orthogonal idempotents in A, 

and {ri, . . .  , rt} a set of elements in R  = rad A such that the images f \ ,  . . .  , f t 

in R /R 2 generate R /R 2 as a A /R-module. Then {e\, . . .  ,en,ri,  . . .  ,r t} gen­

erate A as a K-algebra.

(b) There is a surjective ring homomorphism f  : T (A /R , R /R 2) —► A with

] J  (R /R 2)3 C Ker( f )  C ] J  (R /R 2)3,
j> r l(A )  2

where rl{A) is the Loewy length of A.

(c) A ~  K(T,p)  with J 3 C< p >C J 2 for some s, where T is the quiver of A 

and p is a set of relations of T over K , and J  is the ideal of KT generated by 

all the arrows in T.

(d) I f  A ~  K(T,p) with J 1 C< p >C J 2 for some t, then T is the quiver of A.

Proposition 1.4.7. Let A be an elementary finite dimensional algebra over K  

and 1 = ei +  . . .  + en a decomposition of 1 into a sum of primitive orthogonal 

idempotents. Let Pi = Aet- and Si =  Pi/RPi for i =  1, . . .  ,n. Then for a 

given pair of numbers i , j  in { 1 , . . .  ,n} the following numbers are the same.

(a) dimK(ej(R /R2)ei).

(b) The multiplicity of the simple module Sj in RPi/R2Pi.

(c) dim*: Ext\{Si,S j).

In view of Proposition 1.4.7, the number of arrows from i to j  is equal to 

dim*: E xt\(S i> Sj), the quiver of A is sometimes called Ext-quiver of A.

Our aim is to describe the quiver and relations of the Borel Schur algebra 

S +(n,r). Since S +(n,r) is elementary (see Theorem 1.3.8), this is equivalent
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to describing T and p as in Theorem 1.4.6. Thus we use Definitions 1.4.2 and

1.4.5 to describe T, the quiver of 5 +(n, r). Let R =  rad S +(n,r). Since

S +( n , r ) / R 3  0  K - t x ,
AeA (n,r)

by Definition 1.4.2 the vertices of T are labeled by the primitive orthogonal 

idempotents £\, or simply by A. Then ^ ( R /  R2)^\ is a subspace of R /R 2, and 

by Definition 1.4.2 there will be dim ^ ( R / R 2)£\ arrows from A to p, in I \  We 

label the arrows by the basis elements of ^ ( R / R 2)£\.

The relations can be described as follows. By Theorem 1.4.6 (b), there is a 

surjective ring homomorphism /  : T (£, V) —► S +(n,r). By Proposition 1.4.4, 

the tensor algebra T(£, V) is isomorphic to the path algebra KT. Then the 

map /  can be regarded as the map from the path algebra KT  to the algebra 

S +(n,r). The relations are all the linear combinations of paths which are in 

ker / .
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Chapter 2

The quiver and relations of the 
Borel Schur algebra 5 +(2,r)

In this chapter we describe the quiver and relations for S +(2,r) of positive 

characteristic in Sections 2 .2  and 2.3 and for characteristic 0 case in Section 2.4. 

We consider the product of basis elements in S +(2,r) and obtain a formulae 

for S+(2 ,r)  in Sections 2 .1  and 2.5, which will be used in Section 5.4. As for 

the multiplication formula for 5 +(2,r) (first obtained in [16], Section 4), we 

provide an elementary proof and another proof using the formula in [1 1 ].

By the example at the end of Section 1 .1 , S +(2, r) has the basis

{£(6 , a) | 0  ^  a ^  b ^  r},

where



2.1 The m ultiplication formula for £ +(2,r)

Before we determine the quiver of S +(2,r), we rewrite the multiplication for­

mula for S+(2 ,r). Actually, we give a specific multiplication formula for the 

Borel Schur algebra S +(n,r), which will be used in Section 3.1. At the end of 

this section, we give a formula for the product of elements in 5 +(2,r), which 

will be used in Section 2.3. First, we introduce a notation, which will be used 

several times in this thesis.

D efinition 2 .1 .1 . Let A =  (Ai, . . .  , An) be in A(n, r). For a positive integer 

t E {1,2, . . .  ,n  — 1} and a nonnegative integer m  such that m  ^  At+i, we 

define A(t,m) E A(n, r) by

A(t, ra) =  (Ai, . . .  , At +  m, Am  -  m, . . .  An).

Recall that we denote €nx,n* by (see Definition 1.1.5).

We now have the following multiplication formula:

Lem m a 2.1.2. ([16]) LetX = (Ai, . . .  , An) E A(n,r). Lett E {1,2, . . .  ,n — 1} 

and let I and m be nonnegative integers such that I ^  A*+i. We have

Proof. Following the above notation, we denote the multi-indices as follows:

i = nA(*-m) =  l Al . . .  tXt+m(t +  l)At+1-m . . .  nAn,

j  =  nA(M) =  l Al . . .  tXt+l(t +  l )At+1_i . . .  nAn,

k = n x = l Al . . .  tXt{t +  l ) At+1 . . .  nAn.
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We need to calculate the product By Lemma 1.1.2,

& ■ ? ’ 3' ^
(t,g)€0(n,r)

g~fc

where Z = Z ( i , j , j ,k , i ,k )  = |{s € I(n ,r) | (i,j) ~  (2, 5 ) and (j,k) ~  (s,g)}|. 

We now claim that:

(1) £»,<7 =  £t,fc5 that is, there is only one summand £i)<7 in the above sum. Since 

{hj)  ~  (̂ >s) and * acts on (i , j ) simultaneously, thus we have

i < s. In fact, (i,s) = ( i , j )tt for some 7r G Er . Then for all 1 ^  u ^  r, 

we have

=  7̂r(u) ^  jlt{u) ~  &U'

Thus we get i ^  s. Similarly (j, k) ~  (s, q) and j  ^  k , then s ^  q. As 

i ^  5 and s ^  q, we have i < 7 . Since

z =  l Al . . .  tAt+m(t +  i )At+i-™ .. .  nAn 
^  9  ~  k = l Al . . .  tXt(t +  l )At+1 . . .  nXn.

We claim that the first Ai entries of q are l ’s, that is, <71 =  . . .  =  q\l =  1.

Otherwise, since q ~  k, there exists an integer I > Ai such that qi =  1. 

But the l-th. entry of i, ii > 1. Thus ii > 1 =  qi, which contradicts the 

assumption i ^  q. Similarly we get the entries of q as follows:

9Ai+1 • • • QA1+A2 2,

q\\ +... +At-2+l ■ ■ ’ QXi+ • •• +At_2+At—1  ̂ I*

Moreover, the entries of q from the (Ai +  . . .  +  Xt ~ 2  +  At_i +  l)-th

to the (Ai +  . . .  +  A* +  At+i)-th places will be t or t +  1. Otherwise

there exists a certain integral entry that is ^  t +  2. Since q ~  k and 

the respective entries of k are tXt(t H- l )At+1, there exists an integer v ^
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Ai 4- . . .  4- At _ 2  4- Xt+i 4- 1  su c h  t h a t  th e  u - th  e n try  o f  q is t o r  (t +  1 ).

W e k n o w  t h a t  iv ^  t  4 - 2 >  qv, w h ich  c o n tra d ic ts  th e  a s s u m p tio n  i ^  q.

H en ce  b y  th e  sam e  a rg u m e n t a s  ab o v e , we g e t th e  e n tr ie s  o f  q as follow s: 

Q\i+ ... +At+i + l • • • 9Ai+...+At+i+At+2 t  4" 2,

Q\\+ ... +An_i + 1 • • • QX\+ ... 4-An-l+An

F u r th e rm o re , since  i ^  q a n d  q ~  k, w e g e t t h a t  th e  e n tr ie s  o f  q fro m  

th e  (Ai +  . . .  +  Af_i 4- l ) - t h  to  th e  (Ai +  . . .  4- At 4- At+ i ) - th  p lace s  a re  

tXt(t 4 - l ) At+1. H ence  (i , q ) =  (i , k ).

(ii) Z  =  0)» w e nee(  ̂ c a lc u la te  th e  n u m b e r  o f  s G I (n, r )

sa tis fy in g  th e  co n d itio n s : ( i , j )  ~  (i , s ) a n d  (j, k) ~  (s , k).  S in ce  i ^  

j  ^  k, th e n  we h av e  i ^  s  ^  k a n d  s ~  j .  S in ce  th e  e n tr ie s  o f  i 

a n d  q a re  eq u a l, iu =  ku fo r a ll u =  1, . . .  , Ai 4- . . .  4 - At_ i ,  a n d  u =  

Ai 4 - . . .  4 - At+i 4 -1 , . . .  ,n.  T h u s  th e s e  e n tr ie s  o f  s , a r e  e q u a l to  th e  o n es  

o f i a n d  q. F u r th e rm o re , s in ce  i ^  s  ^  k,  w e g e t th e  re m a in in g  e n tr ie s  

o f s , w h ich  we d e n o te  as

® • SAi+...+At_i+1 • • • ®Ai+ ... +At+i 5

s a tis fy in g  th e  co n d itio n :

t Xt+m(t 4- <  s ' ^  t Xt{t 4- l ) At+1,

w h e re  s ' tXt+l(t +  l ) A t + 1  1 s in ce  S ^  j  • F ro m  th e  ab o v e  c o n d itio n  fo r 

th e  s ',  w e g e t th e  e n tr ie s  o f  s ':

S1 =  • • • =  s \t =  s \t+m+l =  • • • =  s At+At+i — t 4 -1 .

H ence th e  o n ly  u n k n o w n  e n tr ie s  o f th e  s ' a re  s'Xt+l . . .  s'At+m, w h ich  a re  

a  p e rm u ta t io n  o f th e  t l (t 4 - l ) m -/ s in ce  s  ~  j .  T h e re fo re  th e  n u m b e r  o f
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5 or the number of s' , is equal to the combination number

I

We will give a second proof for Lemma 2.1.2 at the end of Section 3.2, using 

the multiplication formula in Theorem 1.1.4.

Let n =  2 in Lemma 2.1.2. Then t = 1 and we obtain the following formula 

for 5 +(2, r):

C orollary  2.1.3. Let X = (b,r — b) G A(2,r) and l ,m  nonnegative integers 

such that I ^  m  ^  r  — b. We have

£{b + m,b + l))£(b + l,b) =  ( ^ j € { b  + m,b).

Finally, we calculate certain products of basis elements in S +(2, r), which will 

be used later.

P roposition  2.1.4. Let t be a positive integer. Let a, rao,77ii, . . .  ,m t-\ be 

nonnegative integers such that

a 4* 77io 4* 77ii +  . . .  4- rrit-i ^  r.

Then

£(a +  m 0 4- rn\ 4- . . .  4- m t- i ,a  4- m0 4- ttii 4- . . .  4- mt_2)
£(a +  77l0 +  TTli +  . . .  +  m t- 2 , a + 77l0 +  77li +  . . .  +  77l*_3)

. . .  {(a +  77i0 +  77ii,a +  77io)f(a +  77io,a)

n /TTlo +  TTli +  . . .  4- THi \  . \
( mj j « ( « + $ > , « ) .

t= 0  1 7  1= 0

In particular, for mo = mi = . . .  =  m t- \  =  I, we get

£(a + tl,a + (t — l)/)£(a 4- (t — 1)1, a 4- {t — 2)1) . . .  £(a 4- /, a)

= n ^ V + t u ) .
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Moreover, there are two special cases:

(i). I f  I =  1, we have

£(g  1, a 1 — l)£(tt 4- 1 — 1 , a -{• t — 2) . . .  £(q 1, a) =  t!£(ci 4- t , a ).

(ii). I f  I =  pd for some nonnegative integer d, we get

f  (a 4 - tpd, a 4- {t -  1 )pd)£{a 4 - {t -  1 )pd, a + ( t -  2 )pd) . . .  £(a 4- pd, a)

-  n ( % 1,pV + ‘>>'.*>-
z=0 x F  7

Furthermore, if t < p, we have

£ (a 4- tpd, a + ( t -  l)pd)f(a 4 - (t -  1 )pd, a 4- (t -  2  )pd) . . .  ((a  +  pd,a)
=  t \ ^ { a t p d, a) (modp);

if  t =  p, we have

£(a + tpd, a + ( t - l ) p d)€(a + ( t - l ) p d,a + ( t -2 )p d) . . .  f (a + p d, a) =  O(raodp). 

Proof By Corollary 2.1.3, we can calculate the product

t - 1 t—2 t—2 t—3
f(a +  X ! mi,a + )« «  +  E  a +  • • ■ £(a m°’

i=0 i=0 z=0 t=0

with the multiplication one by one from £(a 4- m0, a):

t-i t—2 i—2 i—3
£(a +  £  a +  23 mz)£(a +  I ]  mz>a +  ]C mt) • ••?(« +  m0, a)

i=0 z=0 z=0 t=0
/  , \  t-1 t - 2

= ( ° 'U f a + X !  m j,a 4- . . .  £(a 4- m0 4- m i,a)
V m i /  i=0 i=0

^ ^  2
/mo 4- raA  /mo 4- mi 4- ni2\ , r-> >.

= K (a +  > mf,a +  )  m j
V mi A  ™ 2 ;

. . .  {(a 4- m0 4- mx 4- m2, a)

n /m 0 4- mi 4- . . .  4- mA .
(  mi ){ (a +  £ " » < . a).

z=0 x 1 7 i=0

Hence we get the desired multiplication formulae.
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(i). This is trivial by straight calculations.

(ii). If I = pd, the product becomes:

£(a +  tpd, a+  (t — 1 )pd)£(a + (t -  1 )pd, a + (t -  2 )pd) . . .  £(a +  pd, a)

pu
1=0 x ^ '

If t < Pi we have

i +  l < t  — l +  l < p ,  for all i =  0 , 1 , — 1 .

By Lemma 2.2.2, we have

((i +p ]) p ) s C "10 s  *+ 1 (mod p)'

for any i =  0 , 1 , . . .  , t — 1 .

Hence we have

t- 1 //• . *-1
j-j- /"(» +  l)p  V ( a+ fp*j0) =  J J ( i  +  i)£(a + tp ,',a ) =  t!£(a+tpd,a) (mod p).
t=0 x ^ '  t=0

If t = p, by Lemma 2.2.2, we get

Hence we have

V vi= 0  x y
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2.2 The quiver of S+(2, r) w ith p > 0

By Proposition 1.3.6 S +(2,r) has primitive orthogonal idempotents £(a, a),
r

where a =  0 ,1 , . . .  , r; with e =  €(a>a)- By the argument in the end of
a = 0

Section 1.4, the set of vertices To of the quiver T of 5 +(2,r) is the set of 

primitive orthogonal idempotents, or bijectively the set of the compositions 

A(2,r), or simply the following set

r 0 := {a | ( K  a < r}.

The vertex set To is independent of the characteristic of K.

We now calculate the set of arrows for the quiver of 5 +(2,r) for positive 

characteristic p > 0, in terms of the radical and radical square. The quiver 

of S+(2 ,r) for the case p =  0 will be discussed in Section 2.4. We also list 

some examples for the quivers of S+(2,r) with p > 0. First we introduce the 

following notation.

Definition 2.2.1. Let a be a positive integer and p a prime number, then 

there is a unique p-adic decomposition of a as follows:

oo

a = ^ 2 aipt’ 
i=0

where 0 ^  a» ^  p — 1, for all i. We introduce the following notation

oo
la]p ~  )   ̂ai-

i=0

We will need the following useful lemma. Note that by convention 

a < b.
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Lem m a 2.2.2. ([5], P.271) Let n, k be two positive integers, p a prime num­

ber. We write n and k p-adically, that is
t t

n  =  k  =
t= 0  t= 0

where t > 0, and 0 ^  ki ^  p — 1 for all 0 ^  i < t. Then

n  ( I* )  {m°d p)'
t=0

Lem m a 2.2.3. Let n ^  2 be a positive integer, p a prime number. Then we 

have 0 (mod p) for some l ^ k ^ n — 1 if and only if  [n]p ^  2.

Proof, (i) Suppose that [n]p ^  2 . Let ntp1 be the leading term of the p-adic 

decomposition of n, for some nonnegative integer t. We let k =  pL Since 

[n]p ^  2, then n ^  p* =  k, thus n > k. Thus I ^  k ^  n — 1. By Lemma 2 .2 .2 ,

i=0
Such k satisfies the desired condition.

(ii) Conversely, suppose ^  0 (mod p) for some 1 ^  k ^  n — 1 . We need 

to prove that [n]p ^  2 . Otherwise [n]p =  1 since n is a positive integer that 

[n]p > 0. Then we have n =  pl for some t > 1 since n ^  2. Let ksps be the 

leading term of the p-adic decomposition of k for some nonnegative integer s. 

By our assumption for k, we have
t- i

k ^ n - l = p t -  1 =  -  l)p \
t= 0

Hence s < t. Since ns =  0 and k8 ^  0, we have ns < ks. By convention 
ns
, =  0. Thus by Lemma 2.2.2, we have
k<

n ' s U $ s $ N s 0  { m o d p ) ’

which is a contradiction to our assumption that ^  0  (mod p). I
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We are now ready to describe the radical square of 5 +(2,r):

Lemma 2.2.4. Let R be the radical of S +(2,r). Then R2 has a basis 

{£(6 , a) | [b -  a]p ^  2 , r  ^  b > a ^  0 }.

Hence R /R 2 has a basis

{£(6 , a) +  R2 | [b — a]p = 1 , r ^  b > a ^  0}.

Proof. Let /  be a subspace of 5 +(2, r) with a basis

{£(&, a) | [b — a]p ^  2 , r  ^  6 > a ^  0 }.

We need to prove R2 =  I. First we prove that I C R 2. Suppose that £(6 , a) 6  

/ , that is, 6 and a satisfy the condition: [b — a]p ^  2  for some a and 6 , where 

r ^  b > a ^  0. We need to prove that £(&, a) G R2.

Since [6 —a]p ^  2 , by Lemma 2.2.3, there exists an integer k with the condition 

1 ^ - k ^ .b  — a — I such that

We now calculate the product £(5, k +  a)£(k +  a, a). By Corollary 2.1.3, we 

have

(mod p). (2 .2 . 1)

Then by Equation (2.2.1), the combination number is nonzero in the

field K  of a prime characteristic p. Thus, 

Hence we have

has an inverse
b — a \  1
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By Proposition 1.2.3, the basis elements £(&, k +  a) and £(k +  a, a) are in ft. 

Hence we have £(6 , a) G R2. Therefore, we get I C R 2.

Next, we prove that R2 C  /. By Proposition 1.2.3, J? has a basis

{£(&, a) | r  ^  6 > a ^  0 }.

Let £(c, b)£(b\ a) G ft2, where r  ^  c > 6 ^  0 and r  ^  6' > a ^  0. We need to 

prove that £(c, &)£(&', a) G /. If 6 7  ̂ 6 ', then £(c, b)£(b\ a) =  0 G / , so we can 

assume b = b'. By Corollary 2.1.3 we have

f(c, &)£(&, a) =

If ^  =  0, then we are done. So we can assume ^  °^j ^  0 (mod p),

i.e., there exists an integer k = b — a such that ^  ® (mod p) with

the condition that c — a — 1 ^  k ^  1. By Lemma 2.2.3, this is equivalent 

to the condition that [c — a]p ^  2. Thus we have that £(c, a) G /. Thus 

f(c, &)£(&, a) G /. Hence we have f t 2 C  I. Therefore ft2 =  I.

Since ft has a basis

{£(&, a) | r  ^  b > a ^  0 }

and ft2 has a basis

{£(6 , a) | [6 — a]p ^  2 , r ^  b > a ^  0 }, 

we get that f t /f t2 has a basis

{£(6 , a) +  ft2 | [6 -  a]p =  1 , r ^  6 > a ^  0 }.
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We now have the following theorem for the quiver of S +(2, r) with p > 0:

Theorem 2.2.5. The quiver T of the Borel Schur algebra S +(2,r) over a field 

K  of a prime characteristic p is given as follows:

The set of vertices is To = {0,1, . . .  , r}; the number of arrows from vertex a 

to vertex b where 0 ^  a < b ^  r, is equal to 1 or 0; this number is equal to 1 

if  and only if  [6 — a]p =  1.

Proof We only need to calculate the arrows. As it is shown at the end of 

Section 1.4, the number of arrows from vertex a to vertex b for 0 ^  a < b ^  r, 

is the dimension of £(b,b)(R/R2)€(a,a). By Lemma 2.2.4, R /R 2 has a basis

{£(d, c) +  R2 | [d — c]p = 1, r  ^  d > c ^  0}.

Since S +(2,r) has the basis

{£(d,c) | r  ^  d ^  c ^  0},

by the multiplication rule for the Schur algebra, £(&, b)(R/R2)£(a, a) is 

spanned by the £(&, a) with the condition that [b — a]p = 1, otherwise 

£(b,b)(R/R2)£(a, a) =  0. In other words, the number of the arrows from a 

to b where r ^  b > a ^  0, or the dimension of £(&, b)(R/R2)£(a, a), is equal to 

1 or 0; this number is equal to 1 if and only if [b — a]p = 1. I

Note that by the definition of the quiver, we may label the arrows from i to j  

by the elements of the basis for C j V We will identify the arrow from vertex a 

to vertex b for [b—a]p =  1, with the basis element £(6, a) in £(6, b)(R/R2)£(a, a) 

for the algebra 5 +(2,r).
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E xam ple 2.2.6. We list some quivers by drawing their graphs (labeling the 

arrows by the elements in the algebras).

The quiver of S +(2,2) over the field K  of characteristic p ^  2:

€(i,o) €(2,i)
0 ----— — * 1 -----— — ► 2

The quiver of S +(2,2) for p =  2:

£(2 ,0)

The quiver of S +(2,3) /o rp  > 3:

£(i.Q) 3 1 £(2,i) 3 2 £(3,2)  ̂ ^

The quiver of S +(2,3) /o rp  =  3:

£(3,0)

The quiver of S +(2,3) /or p =  2:

£(2,0)

£(3,1)
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The quiver of 5 +(2, r) over K  of characteristic p for arbitrary r and p > 0:

I

i
r — 1 

j t f r .r - l )

r

C orollary  2.2.7. Let f p(r) be the number of arrows of the quiver of S +(2,r) 

over a field K  of characteristic p > 0. We have

f„(r) =  (r +  1 )(M  +  1) -  (pM+1 -  1 )/{p -  1),

where the nonnegative integer M  is determined by pM ^  r  < pM+1.

Proof W e c o m p u te  f p(r) u s in g  T h e o re m  2.2.5. So f p(r) is th e  n u m b e r  o f p a ir s  

(a i,a2) su ch  t h a t  (a i,a2) =  (ai,a i + p f) fo r so m e t > 0, a n d  0 ^  a\ ^  r — pl.
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Thus the number of pairs (a\, a\ +  pl) for some nonnegative integers a\ and t , 

is r -f 1 — pl. Let M  be the nonnegative integer such that pM ^  r  < pM+1. 

Hence the number of such pairs or the number of arrows, is

M

fp (r ) =  +  1 ~  =  (r +  +  X) ”  (PM+1 ~  1) / ( ^  ”  !)•
t=0

I

2.3 The relations for the quiver of <S+(2, r) w ith
p  >  0

In this section we describe the relations for the quiver T of S +(2, r) over a field 

K  of a prime characteristic p.

Recall that we identify the arrow from vertex a to vertex b for [b — a]p =  1 in 

the quiver T of S+(2,r), with the base element £(&, a) in £(b,b)(R/R2)£(a, a) 

for the algebra S +(2, r). We define the length of this arrow as b — a.

As shown at the end of Section 1.4, the relations in the quiver T of S +(2, r) can 

be described as follows. There is a surjective ring homomorphism /  : K T —> 

S +(2,r), where /  maps the “product” of the labels of arrows as the paths in 

the path algebra AT, to the product of labels of arrows in the Borel Schur 

algebra S +(2,r). The relations for the quiver T of 5 +(2,r), are all the linear 

combinations of paths, or the “products” of the labels of arrows which are in 

kerf.

Thus, we will write relations for the quiver T of S +(2, r) as linear combinations 

of the “products” of £(b, a )’s where [b — a]p =  1 in the path algebra KT. This 

shouldn’t be confused with products in S +(2,r).
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Let J  be the ideal of K Y  generated by all the arrows in Y.

The following theorem describes the relations of the quiver of S +(2,r).

T heorem  2.3.1. Let Y be the quiver of the Borel Schur algebra S +(2,r) over 

a field K  of a positive characteristic p. Let R\ and R 2 be the following sets of 

the products of arrows in the path algebra KY:

=  {£(* +  P °+1>* +  ( P ~  l ) p a )C(* +  ( P ~  l )pa, t + ( p - 2 ) p a) . . .  £(t  +  pa, t )
| 0 <  t  +  pa ^  r, t, a ^  0},

# 2  =  {£{ t  +  pa + p b, t  +  pa)£(t +  pa, t )  -  £{t  +  p a +  pb, t  +  pb)£(t +  pb, t )
| 0 <  t +  pa +  p b <  r, t, a ^  b ^  0}.

Let I  be the ideal of the path algebra K Y generated by Ri and R 2 . Then I  is 

the set of all relations for the quiver Y of S +(2, r). More precisely, I  C J 2 and

Proof There is a surjective ring homomorphism /  : KY  —► S +(2,r), where 

/  maps the product of the arrows in the path algebra KY, to the product of 

labels of arrows in S+(2,r). The relations for the quiver T, are the paths in 

ker / .  We need to show that /  =  ker f .

By Proposition 2.1.4 (ii), we have

kY / /  =  S +(2, r).

p - i

m + ~ * ) p v + (p - 1 -  *)pa) = (m° d p)'
i= 0

By Corollary 2.1.3, we have
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So

(( t  +  pa +  pb,t  +  pa)((t + pa,t) = £{t + pa + pb,t + pb)((t +  pb, t).

Hence R\, R2 Q ker/ ,  so I  C ker / .

Since I  C ker / ,  the map /  induces a surjection:

7  : K T /I  —> S+(2,r).

We need to show that ker /  =  0, i.e., that /  is an isomorphism. Since /  is 

surjective, it is enough to show that

dim K T / I  ^  d im 5+(2,r),

which implies that /  is injective.

First, fix any 0 ^  i ^  j  < r, let /  — i be the unique p-adic

decomposition of /  — i. Denote by Pjj the unique path from vertex i to vertex 

j  in the path algebra KT  such that the lengths of the arrows increase and 

there are exactly \ s arrows of length ps for all s.

Let P  be a path from i to j  in the path algebra i(T, written as a product of 

labels of arrows, where the lengths of arrows must be powers of p by Theo­

rem 2.2.5. Each arrow is labeled by £(b,a) where [b — a]p = 1. Thus we can 

write P  in the form

P = ((a t, at_ i)f (at_i, at- 2) .. • ( (a lf a0),

where at =  j  and a0 = i and [am — am-i]p =  1 with t ^  m  ^  1. Recall that I  is 

generated by R\ and R2. Using the relations in R2, we reorder the arrows by 

their lengths, such that the lengths of arrows £(am,am_i) increase. Next by
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the relations in R i , the number of arrows of the same length does not exceed 

p — 1, otherwise P +1  will be zero. Hence P  is the path, for which the lengths 

of arrows increase and there are exactly Xs arrows of length ps for all s, that 

is,

P  +  I  =  Pj,i +  I  •

Thus K T / /  is spanned by

{Pjti +  /  | r  ^  j  ^  i ^  0}.

Hence dim k T /I  does not exceed the number of pairs (j , i) with r ^  j  ^  i ^  0, 

which is the dimension of 5 +(2, r). I

We call the relations of I  in the path algebra KT  in Theorem 2.3.1, the p-adic 

relations.

2.4 S +(2, r) over a field K  of characteristic 0

Let If  be a field of characteristic 0. In this section, we give the quiver and 

relations for 5 +(2,r) over K. Let Tr+i(K) be the algebra of lower triangu­

lar matrices of degree r -1-1 over K. We are going to show that <S'+(2,r) is 

isomorphic to Tr+i(K).

The following lemma and theorem are proved in the same way as their coun­

terparts in positive characteristic (Lemma 2.2.4 and Theorem 2.2.5).

Lem m a 2.4.1. Let R be the radical of S + (2, r) over K  of characteristic 0, 

then R2 has K-basis

{£(6, a) | b — a ^  2, r ^  b > a ^  0}.
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Hence R /R 2 has K-basis

{£(a +  1, a) +  R 2 | r — 1 ^  a ^  0}.

T heorem  2.4.2. The quiver V of the Borel Schur algebra 5 +(2,r) over a field 

K  of characteristic 0 is given as follows:

The set of vertices is T0 =  {0,1, . . .  , r}; the number of arrows from vertex a 

to vertex b where r ^  b > a ^  0, is equal to 1 or 0; this number is equal to 1 

if and only ifb  — a =  1.

Note that the lengths of arrows in the above quiver T of S +(2, r) over K , are 

1. Hence we can give the quiver T of 5 +(2, r) over K  as follows:

0 ---------- ► l ---------- ► • • ---------►r -  1 -------- ►r

Recall that Tr+i(K) is the algebra of (r +1) x (r +1) lower triangular matrices 

over K. Note that the path algebra of this quiver T is isomorphic to Tr+i(K). 

We are going to prove that S +(2,r) ~  Tr+i(K). This implies that the quiver 

of S+(2,r) in zero characteristic doesn’t have any relation.

Let Eij be the (r +  1) x (r +  1) matrix, whose entry of (i , j ) position is 1 and 

the other ones are zero, with 0 ^  i , j  ^  r. We define a linear map /  from 

5 +(2,r) (over K) to Tr+\(K)  as follows:

f($(b,a)) = ((b-a.y.)-1Ebia,

where 0 ^  a ^  b ^  r. Here 0! is defined to be 1. Since /  maps a basis of 

S +(2, r) to a basis of Tr+i(K), f  is a bijection. Moreover, we have the following 

proposition.
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P roposition  2.4.3. The map f  is an algebra isomorphism, that is

S +(2,r) ~  Tr+i(K).

Proof. We only need to prove that /  preserves the multiplication. By Corol­

lary 2.1.3, for 0 ^  ai ^  6 ^  a2 ^  r, we have

/  (£(<*2 , &)£(&, ai))

On the other hand, we get

/(£(a2,& ))/(£(M i))

Hence,

6)^(6, Oi)) =  /($(«2,6))/(f(6.ai)), 

where 0 < a i ^ 5 ^ a 2 ^ r .  Therefore, /  is an algebra isomorphism. I

2.5 More about the m ultiplication formula for
S+(2,r)

Let K  be a field of characteristic p > 0. Let T be the quiver of S +(2, r) over /C 

Recall the surjective ring homomorphism /  : KT —► 5'+(2, r), where /  maps 

the product of the labels of arrows as the paths in the path algebra KT, to the 

product of labels of arrows in the Borel Schur algebra S +(2,r) (see Sections 

1.4 and 2.3).

In this section we will calculate the dimension of the vector space spanned 

by the paths from one vertex a to another vertex b in the path algebra KT
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where r ^  b > a ^  0. We also calculate the product of labels of arrows as the 

basis elements in 5 +(2,r), for a path from a to b. We get a formula for that 

product of labels, which will be used in Section 5.4 to get certain relations in 

the quiver of S +(n, r).

L em m a 2.5.1. Let T be the quiver of S +(2, r) over K. Let b and a be non­

negative integers such that r ^  b > a ^  0. Let b — a =  JIi=o rn{pl be the p-adic

decomposition of b — a. Then the dimension of the vector space T  spanned by
m0 +  m i+  . . .  +  m f

the paths from a to b in the path algebra KT, is \  m0,m i, . . .  , m t

Proof By Theorem 2.2.5, the lengths of the arrows in T are powers of p. So 

the lengths of arrows in the product of labels from a to b in K T , are of the 

form (p°)m° (p1)™1 . . .  (p*)mt. Hence the dimension of T  spanned by the paths 

from a to b in K T , is the number of permutations of

p V . .,p° p \ . . . ,p \  . . .  p*,.. .,p*,
mo mi mt

which is the combination number [ m° mi +  • • • +  j I
V m0,m i, . . .  ,m t J

Next we will calculate the product of labels of arrows as the basis elements in 

the Borel Schur algebra 5 +(2, r). By Proposition 2.1.4, this product of labels 

of the lengths of the powers of p from a to b where r ^  b > a ^  0, or the 

product of the basis elements in S +(2, r), will be a scalar of the basis element 

£(&, a), that is, M£(b,a). Our aim is to calculate the coefficient M. Before we 

calculate such M, we introduce the following definition.

Definition 2.5.2. Let m be a positive integer and let m = ^ =0 mip1 be the 

p-adic decomposition of m, where t is a nonnegative integer and 0 ^  rat- ^  p — 1 

for all i = 0,1 . . .  , t. We define m+ and m + as follows:
t

m + := jQ  (pl!)m*, m + := ra!/ra+.
i= 1
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The following proposition shows that the coefficient M  above is the number 

(b — a)+. In particular, m + is an integer and m + ^  0 (mod p) for any positive 

integer m.

T heorem  2.5.3. Let 0 ^  a < b ^  r and let m = b — a. Let m  =  E!=0 miP* 

be the p-adic decomposition of m. Let II be the following product of the basis 

elements in S +(2,r):

II =  £(a +  m, a + m — pl) . . .  £(a +  m — mtp1 +  p*, a +  m — mtp1)
. . .  f(a  +  rao,a +  rao -  1) . . .  f ( a + l ,a ) .

Then

II =  M£(a +  m, a).

where

M  _ t t  f P * \  ( m i P f m o  +  m i p 1 +  . . .  + m i p ' \

~  f=0 nPv V pV  ”  V ^  /  V miP{ ) '

Moreover,
t

M  = m +, and M  =  J J ra d  (modp).
i=o

In particular, m + ^  0 (mod p).

Proof. We denote the product of labels of the lengths p* in the product II as 

Ili, that is, we write IIj as follows:

IT := £(a +  mjpi +  m ^ ,  a +  rrijjp +  (ra* -  l)pl)
. . .  £(a + EJ=omjPj +P*>a +  EJ=omjPj )̂

where 0 ^  i ^  t. By Proposition 2.1.4, we get the product 11*:



where 0 ^  i ^  t and m; > 0. If m< =  0, let 11; =  1. Thus we have

n = noii;... nt

=  n ( * ) ( 2; )  ••• ( ™‘f +  + m ip \ a + ' ' ^ y ljpi).

By Proposition 2.1.4, we calculate the following product
t t - i  t - i

I p ( a + ^ 2  m 3 ^  + rriiP \ a + ^ 2  )
t=0 j = 0 j= 0

nl ( m $  +  rriip1 +  . . .  +  ra^N
_ {  m,p' j ? (a + m -a)'

Hence we have the formula

n = n (̂ ) (̂  )■■ ■ (™f )̂ a+S + m 'p t ' a+£
A / " p ^ f m o  +  m i p 1 +  . . .  +  m i p ' \  .■ n w u i - l f  J v  me

Therefore, we obtain the formula for M :

M = A  /V \  /2?A / m,p*\ /m0 + mip1 + ... + ra,p‘\
“ I  V PV  \  P* /  V P* /  V m iP* Ji=0

By Lemma 2.2.2,

^  ) = v (m°d p).

for any 1 ^  v < p — 1, and
i—1

for any 0 ^  i ^  t. Hence we have
t

M  =  rriil ^  0 (mod p).
i=0

We next prove that M  =  m+. By Proposition 2.1.4 (i), the product of labels 

of the lengths 1 can be written as follows:

£(a +  m, a +  m — 1) . . .  f(a  +  2, a +  l)£(a +  1, a) =  ra!£(a +  m, a).

48



By Proposition 2.1.4 (i), furthermore, we can calculate the above product, in

terms of the lengths of the product of the powers of p :

f  (a +  m, a +  m  -  1) . . .  £(a +  2, a +  l) f  (a +  1, a)
=  p*!£(a +  ra, a +  m — p*) . . .  p*!£(a +  m  — +  p*, a +  m — nritp1)

pt-1!£(a +  m — m tp*, a + m — m tp1 — pt_1) . . .
f  (a +  ra0, a +  m0 -  1) . . .  f  (a +  m0, a)

t i - i  t - i

= I I  (f (a +  X ] +  a +  ”  X)pt)
1=0 j= 0  j= 0

t—l i —1

. . .  i{a + ^ m j j p + p i,a + 'Y ^m j jP))
j = 0 j = 0

= n ^ ir n ,
i=0

= f l (P".)m'nn,
t=0 i=0= m+n.

Hence we obtain

II =  m \/m +£(a +  ra, a) =  ra+£(a -f ra, a).

Thus M  = m +.

Let 0 ^  a < b ^  r. We consider vector space T spanned by the paths from 

a to b in KY  modulo its relations in Theorem 2.3.1 where Y is the quiver of 

S+(2,r). By the proof in Theorem 2.3.1, T  is one-dimensional, and spanned 

by the path

P(b ,a) = £(a + m ,a + m — pL) . . .  £(a + m — mtp1 + p*^  + m — mtp1)
. . .  £(a-I-m0,a  +  ra0 — 1) . . .  £(a +  1,a).

where m = b — a and ra =  £i=o miP% P-adic decomposition of ra as in

Theorem 2.5.3, but the above multiplication is the multiplication for the path 

algebra KY. We also say the above path P(b, a) is the path from a to b.
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Chapter 3 

Embeddings from 5 +(2,r) to 
S + ( n ,  r  + s )

We obtained the quiver and relations for the Borel Schur algebra S +(2,r) in 

Chapter 2. In this chapter we consider a special type of embedding from the 

Borel Schur algebras S +(2,r) to 5 +(n, r  +  s) where n ^  2 and s ^  0. This 

embedding embeds the quiver of 5 +(2,r) into the quiver of S +(n, r +  s).

In Section 3.1 we construct this embedding from 5 +(2,r) to S +(n,r  +  s) 

where 1 ^  ^  n — 1 and a  £ A(n, s).

In Section 3.2 we calculate the dimension of the Horn Space H(A, a) := 

Hom^A^a, A£\) (or the Cartan invariant ca,q) where A =  5 +(n, r). For 

more detail see [15]. This will be used in Chapter 5 to find some relations 

for S +(n,r). We split Section 3.2 into four parts: in P a r t  I we introduce 

the row semi-standard(RSS) A-tableau and the number c\,oc\ in P a r t  II  we 

introduce the Cartan invariant c\)Q, which is the dimension of H (\,  a) and 

show that ca)Q = ca,q; in P a r t  I II  we calculate the dimension of the Borel 

Schur algebra S +(n, r) and consider a matrix multiplication for *9+(2,r); in
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P a r t  IV, we calculate the Cartan invariant c\>a for some special cases, which 

will be used in Chapter 5.

to S +(n,r + s) and prove that <pf embeds the quiver of S +(2, r) into the quiver

of 5 +(n, r).

3.1 Embeddings from 5'+(2, r) to  S+(n,r + s)

In this section we will define a map from 5 +(2, r) to S+(n, r +  s). We prove 

that this map is indeed an embedding from 5 +(2,r) to S +(n, r +  5 ) where 

n ^  2 and s ^  0. Recall that {£(&, a) \ r ^  b ^  a ^  0} is a basis of S +(2, r).

D efinition 3.1.1. Let t € {1,2, . . .  , n —1}. Let a  =  (ai, 0 2 ? • • • , &n) € A(n, s) 

be in A(n, r). We define a linear map

by a)) = ^  where the multi-indices i and j  are obtained as follows:

Rem ark: Let E t + 1 be the 1 x n vector in which the (t -1- l)-th  entry is 1 and 

the other entries are 0. Let aq, <2 2 , . . .  , a n_ 1 be the simple roots of type An-\.

In Section 3.3 we consider the properties of our embedding ipf from 5 +(2,r)

<pf : S +(2 ,r ) — >S+(n,r + s)

j  = i«i . . .  ( t -  1 )at~Hat+b(t +  1 )
i = i°» • • • (t -  1 +  iy

|Ot+i+r~^^ _|_ 2)at+2 
at +i +r— _j_ 2 j 0t+2

For example, for n = 3, we have the maps



Put A =  a  +  rE t+\. Recall our notation in Definition 2.1.1:

A(£, b) =  A 4- boct
= ( a i , . . . ,  a t- 1 , at 4- b, at+i 4- r — 6 , at+i, . . . ,  a n) ;

A(t, a) =  A 4- a a t
=  (ai, . . . ,  a t- ii  +  a, a*+i 4- r — a, c*t+i, . . . ,  a n)-

By Definition 2.1.1, we can write j  and i as follows:

j  =  nx+bat =  nA(t’b), t = nA+OQt =  nA(t>o).

Hence we can rewrite the map <pf as follows:

*Pt (£(^5a)) =  £\(i,6),A(t,a)> 

for all b and a with r  ^  b ^  a ^  0 .

By Definition 3.1.1, the map </?“ from S,+(2,r) to 5 +(n, r  4 - s) is injective. 

Actually, the map <p* is an embedding from S+(2,r) to S +(n,r  4- s).

P ro p o sitio n  3.1.2. The linear map is an algebra homomorphism from 

S+(2 ,r)  to S +(n,r  4- s). Hence is an embedding.

Proof. Since {£(&, a) | r  ^  b ^  a ^  0} is a basis for S +(2,r), by Defini­

tion 3.1.1, the map <pf is an injective linear map from 5 +(2, r) to S +(n, r  4- s). 

It remains to prove that the map preserves the multiplication, i.e., for 

0  ^  a\ < b < a2 ^  r,

<P?(f (a2, &)£(&, ai)) =  b))<pf(£(b, ai)). (3.1.1)

By the multiplication formula in Corollary 2.1.3, that is

v>?(£(“2 > &)€(&. <*i)) =

By Definition 3.1.1 and Remark, this is equivalent to

f  (A(*, a2), A(t, 6 ))f(A(t, 6 ), A(t, ai)) = ^ 2_  a2)> *(*> a i))>

where A =  a  4- rE t+\. The last equality holds by Lemma 2.1.2. I
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Remark: The algebra homomorphism ipf in Proposition 3.1.2 does not pre­

serve the identity element 1 . Actually,
r r

?(<*.«)) =  53fA(«,<0,A(t,a),
a = 0  a = 0

where A =  a + rE t+

3.2 The Horn space A^)
where A -  S+(n, r )

Let A =  A(n, r). Let H(X,a) be the Horn space Honu(A£Q, A£\) where A = 

S +(n , r) and {£\ | A G A} is a set of primitive orthogonal idempotents of A. In 

this section we review some results from [15] and [16] and do some calculations 

for the dimension of H(A, a), or the Cartan invariants, which will be used in 

Chapter 5.

We split this section into four parts (see above).

Part I: Row Semi-Standard A-tableau and Ca)Q

In this part we introduce row semi-standard A-tableau and the numbers C \jCt 

where A, a  G A.

Definition 3.2.1. Let A = (Ai, . . .  , An) be in A. The diagram of A is the set

[A] =  {(/i, i / ) e n x r \ l ^ i / ^  Am}.

Any map T x from [A] to r is called a A-tableau (with values in r). If T A(/x, v) = 

we write
tn t\2 . . .  t\x1



The A-tableau T x is said to be row semi-standard (RSS) if the entries in each 

row of T x are weakly increasing from left to right. The weight of T x is the 

element a  of A defined by

<*p =  |{(M,v) e  [A] | t ^  = p} |, V p e r .

D efinition 3.2.2. For each pair A, a  of elements in A, we define c\>a as the 

number of RSS A-tableau T x with weight a  such that the entries in row p 

of T x are not greater than p (p € n), i.e., C\,a is the number of RSS A-tableau 

of the form
1

1 2 . . .  2

1 . . .  1 2 . . . 2  3 . . .  3 . . .  /x . . .  /x

1 1 n . . .  n.

Note that, given A, a  G A, a RSS A-tableau T x of weight a  as described in the 

definition above is completely specified by the n x n matrix (a^ ), where for 

any p, v G n, a^u is the number of entries v in row p of T x. Hence C \i(X is the 

number of nonnegative integer lower triangular n x n matrices whose vector 

of row sums is (Ai, . . .  , An) and whose vector of column sums is (ai, . . .  , an).

E xam ple 3.2.3. A RSS X-tableau and its associated matrix are

1 1 1 1 1 1  
1 2

2 2 4
3 4 4 5

and

6 0 0 0 0 
1 1 0  0 0 
0 0 0 0 0 
0 2 0 1 0 
0 0 1 2  1

In this case A =  (6 ,2 ,0 ,3 ,4), and the weight o fT x is (7,3,1,3,1).

Recall the dominance ordering in A(n, r) in Definition 1.2.5.
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P ro p o sitio n  3.2.4. For A =  (Ai, . . .  , An), a  = (au . . .  , an) G A(n, r), A < a

if and only if

ol =  (A i+m i, A2 +  ra2 - r a i ,  A3 +  ra3 - m 2, • • • , An_i +  ran_ i- mn_2, An - mn_i) 

/o r some nonnegative integers m\, . . .

Proof (The if part): Let m tJL = (a i +  . . .  +  a M) — (Ai+ . . .  +  AM), for all /j, e n. 

Since a  > A, ^  0. Also

TR'fji+i wi^ =  Â -|_i,

i.e.,

Ot(A+1 =  Wlp+l Wl̂ ,

where /i =  0 , 1 , . . .  , n — 1 , and mo =  0 .

(The only if part): Since ^  0, we calculate

a i +  . . .  +  dp — X\ +  . . .  +  Â  +  m^ ^  Ai +  . . .  4- Am,

where ^  =  1, . . .  , n — 1 . Hence o > A. I

P roposition  3.2.5. Let X,a  G A. Then

(i) c\,a 7  ̂0 if and only if  A < a,

M  ca,a =  1.

Proof (i) Assume that cA,a 7  ̂ 0. Then there exists a nonnegative integer lower 

triangular n x n matrix (aM)I/)M)l,€n whose vector of row sums is (Ai, . . .  , An) and
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whose vector of column sums is (ai, . . .  , a n). For any t € n, since 

is lower triangular, a ^u =  0 if /x < v. Thus we have

(ai +  . . .  +  at) — (Ai +  . . .  +  At)
=  Ei/=i ]CM=i aw  ~  S/x=i Si/=i aw
=  S i/=1 S /x= l +  Ei/=1 S /z= t+1

— ]C/i=l S i/= 1  — E i/= t+ l
=  X3i/=1 S/x=t+l ~  Ylfj,=1 Eiy=t+1 
=  £ „ = i S/x=t+i
^  o,

i.e., A < a.

Assume that A < a. By Proposition 3.2.4,

ot =  (Ai +  mi, A2 +  ra2 - r a i ,  A3 + 77i3 - r a 2, .. • , An_ i+ m n_ i - m n_2, A „-m n_i)

for some nonnegative integers m i, . . .  , mn_i. Now we are going to construct 

a row semi-standard A-tableaux T x of the form as in Definition 3.2.2.

The first row of T x is Ai’s 1. If m\ > A2, the second row of T x is A2’s 2 ; If

mi ^  A2, the second row is m i’s 1 and (A2 — m i)’s 2 . For the third row, when

mi > A2 (the second row of T x is A2’s 2), if mi — A2 > A3, the third row

of T x is A3’s 1 ; if mi — A2 ^  A3, then consider A2 -I- m2 and A3 — (mi — A2).

If A2 +  m 2 ^  A3 — (mi — A2), then the third row of T x is (mi — A2 ^  A3)’s 

1, (A2 +  m2)’s 2, and (A3 — (mi — A2))’s 3. Otherwise the third row of T x

is (mi — A2 ^  A3) ’s 1 and (A3 — (mi — A2))’s 2. And so on, we have a row

semi-standard A-tableaux T x with the weight

(Ai +  mi, A2 + m2 -  mi, A3 +  m3 -  m2, . . .  , An_x + mn_i -  mn_2, An -  mn_i), 

that is a. Hence c\ta ^  0.
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(ii) Since A < A, we have c\tx ^  0, thus there exists a nonnegative integer lower 

triangular n x n matrix (dntv)n,ven whose vector of row sums is (Ai, . . .  , An) 

and whose vector of column sums is (Ai, . . .  , An). It is easy to check that

==: Am, =  0 )

where fi ^  v. So the number of such matrices is 1 , i.e., c\fx = 1 . I

Part II: The Cartan invariant c \>a

In this part we introduce the Cartan invariant c\)Q and give the connection with 

ca,q. First, we will introduce some results on Borel Schur algebras S +(n, r) in 

[16].

Let A be the set A(n, r). Let A € A. Recall that A = S +(n,r). Denote left 

,4-modules V\ and kx by

Vx = A£x and kx = V\/  rad Va-

In [16], {V\ | A € A} is a full set of pairwise non-isomorphic principal indecom­

posable ,4-modules, and A = ©aga^x- Also { k \  | A G A} is a full set of pairwise

non-isomorphic irreducible ,4-modules. Note that kx is one-dimensional, since 

A j  rad A =  © a g  A(n,r) K £x •

Definition 3.2.6. Let A =  (Ai, . . .  , An) be in A. Let T x be a A-tableau with 

values in r, i.e., any map from the diagram [A] to r.

If i € I(n, r), we denote by T x the A-tableau

H\\ Hi2 • • •
rpA %t21 ?t22 * • • lt2X2

i •

hn\ hn2 • • • hnxn - 
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Assume now that T A is standard, i.e., T x is bijective. Let /(A) = 

( lAl,2A2, . . .  ,n An). Then we define /(A) € I(n ,r) by the A-tableau

1 1 . . .  1

n n . . .  n.

T heorem  3.2.7. ([16],§2). The module V\ has a basis {&,/(a) | i £ I (n ,r ) , i  ^  

l(X),Tx a RSS X-tableau}.

D efinition 3.2.8. Let A, a  £ A. The Cartan invariant c\jQ, of the Borel Schur 

algebra S +(n,r) is the multiplicity of ka as a composition factor in V\. The 

Cartan matrix of S +(n,r) is C = {cx,a)\,aeA-

Thus (see [4],(54.16)), we get

cx,a = dimK Homs+(n>r)(Vra , V\) =  dim# £QUA.

Using Theorem 3.2.7 and the fact that or 0 according to whether

wt(i) = a o r  not, it is easy to see that £aVx has A-basis {£i,i(x) | i € I (n , r), i ^  

l(X),Tx a RSS A-tableau}. Thus dimfc£Ql/\ =  Cx,a, and we get the following.

T heorem  3.2.9. For each pair A, a  of elements of A, the Cartan invariant 

cxta satisfies

,a C\,a"

Notice that, since ca,q depends only on A and a , we have

Corollary 3.2.10. The Cartan invariants dx,a of S (B +) are independent of 

the field K; in particular, they do not depend on its characteristic.



P a r t  III: T he  dim ension of S +(n,r) and  th e  m atrix  m ultip lication  for

In this part we calculate the dimension of 5 +(n, r) in terms of nonnegative 

integer lower triangular matrices. We also consider the matrix multiplication

T heorem  3.2.11. The dimension of the Borel Schur algebra 5 +(n, r) is

Proof. By Definition 3.2.8,

cx,a =  dim;<-£aV\.

Recall that £aI/\ is spanned by the set

{6 j  I (h j)  e  wtW = wt(j) = A}.

By Theorem 3.2.9,

By Definition 3.2.2, c\y(X is the number of nonnegative integer lower triangular 

n x n matrices whose vector of row sums is A and whose vector of column sums 

is a. Thus the number of elements of the set

is the number of nonnegative integer lower triangular n x n matrices whose 

vector of row sums is A and whose vector of column sums is a. Hence the 

dimension of the Borel Schur algebra S +(n,r) is the number of nonnegative 

integer lower triangular n x n  matrices whose sum of entries is the sum of A, is

S +(2,r)

for S+(2 , r) and get a formula for a product of basis elements.

C\,a C\,a'
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equal to r. Actually, the number of such nonnegative integer lower triangular 

n x n matrices, is the number of nonnegative integer solutions of an equation 

with 1 +  2  +  . . . +  n =  indeterminates,

X\\ +  X21 +  x 22 +  • • • +  xn\ +  . . .  +  xnn — r,

V _j_ ('n+1) _  1 '
which is the combination number [ v 2 /

r

Let n =  2 . By Theorem 3.2.11, the dimension of 5 +(2, r) is the combination 

number ^  ^ , which has been seen in the example after Definition 1.1.7.

Next, we consider a matrix multiplication for the Borel Schur algebra 5 +(2, r).

Let M(r) denote the set of 2  x 2  matrices with nonnegative integer entries 

summing to r. Given i , j  G 1(2, r), we define muv to be the number of x  G 

{ 1 ,..., r*} such that ix =  u , j x = v for u, v = 1,2. We then define a function 

/  : 1 (2 , r) x 1 (2 , r) —>■ M (r) be sending (i,j)  to the matrix with entries m uv. 

Now = f ( ( k j ) )  if and only if (i,j)  ~  (k,l), and so we may index

our basis of S +(2,r) by M (r). In fact we let M(r) be a basis for 5 +(2,r) by 

identifying £itj with We are now going to obtain the multiplication

rule for 5 +(2, r) in terms of the matrices in M(r); we shall write this as A o B  

to avoid any confusion with ordinary matrix multiplication. In the following, 

A and B  denote matrices.

For A e  M (r), denote by ri(A), r2{A) the first and second row sums of A , and 

by Ci(A), c2(A) the first and second column sums of A. Now for A, B  G M(r), 

define N (A ,B )  to be the set of matrices C G M(r) with t’i(C) =  r\{A) and 

Ci(C) =  Ci(B). In addition, if ci(A) = ri(B), define R(A, B ) to be the set of
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2x2 matrices D with (possibly negative) integer entries such that ru(D) =  aui, 

cv(D) =  b\v for u, v =  1 ,2.

For any 2 x 2  matrices C, D with integer coefficients (nonnegative in C ), we 

now define

W = 3 ,  ( « £
Proposition 3.2.12. ([8], Proposition 2.1) The multiplication rule for the 

Schur algebra 5(2, r) is given in terms of the basis elements A E M(r) by

A o r  — )  0  ( * ( A )  *  r i ( B ) )

'52ceN(A,B)(52DeR(A,B) (d))^ ’ ̂  (Cl(̂ ) = rl(̂ ))

For the Borel Schur algebra 5 +(2,r), given r ^  b ^  a ^  0 and £(&, a), we 

have the matrix M  = (m uv) as above. Since £(&, a) =  £162*—<b,ia2r~a, we get 

M(b,a) := ^ ^  ̂  ̂ ^ ■ Let M +(r) be the subset of M (r) consisting of

those upper triangular matrices M(b,a). So M +(r) is a basis for 5 +(2,r) by 

identifying £(&, a) with M(b,a).

Proposition 3.2.13. The multiplication rule for the Borel Schur algebra 

5 +(2,r) is given in terms of the basis elements M(b,a) E M +(r) by

M(d, c) o M (6 , a) =  8bjĈ  ^  M(d, a).

Proof Since (ci(M(d,c)) =  c and ri(M(b,a))) =  6 , by Proposition 3.2.12, we 

have

M(d, c) o M (6 , a) =  <
f 0 M e

E ( E  ( n V C 6 = C
t  CeN+(M(d,c) ,M(b,a) )  D eR + (M(d,c),M(b,a)) \ u J

where N +(A, B) and R+(A , B) are the subsets of N(A, B) and R(A, B ) respec­

tively, consisting of those upper triangular matrices with nonnegative integer 

entries. So if b ^  c, we have M (d , c) o M(b, a) — 0.
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In the following, we let b = c. Suppose that C = \ y l i s a\ 0 r  — x — y j
matrix in N +(M(d , c), M(b, a)). We get, x +  y = d, x =  a. So we have C = 

(  0  ^ — d )  =  a). Let D := ^ ^  ^ be a matrix with nonnegative

integer entries in R +(M(d,c), M(b,a)). We have

xi +  x2 =  c, x/i +  s/2 =  0 , xi + yi = a.

Since y\ +  y2 =  0, so y\ = y2 =  0. We have X\ = a and X2 = c — a = b — a. We

get D =  ^ p b0 ~ a j .T h u s

Hence

M(d, 6) o A/(6, a) =  ( d “ )M(d, a).

Part IV: CA,a for some special cases

In this part we do some calculations for c \>a by computing the number of 

nonnegative integer lower triangular matrices, which will be used in Chapter 

5.

Let A = (Ai, . . .  , An) be in A(n, r). Recall that

\ ( v ,  m) =  (Ai, . . .  , A„ + ra, \ u+i -  ra, . . .  An), 

where v  G {1,2, . . .  , n — 1} and 0 ^ m  ^ A^+i.

Let q:i , 02, • • • , on_i be the simple roots of the root system An_i, i.e.,

a< =  (0, . . .  , 0 , 1 , -1 , 0 ,  . . . , 0 ) ,

where 1 ^ i ^ n — 1.
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Proposition 3.2.14. (i) cx,a = 1 for all A, a € A(2 ,r) with A < a.

(ii) Let A =  (ai, a2, a3), a  = (b\, b2, b3) € A(3 , r). Assume A < a. Then 

c A(Q = min{a2, b2} b i ~ a 1,a3 ~  63} +  1.

(Hi) Let u and v be two positive integers. Let A and a be in A(n, r) suc/i that

a — A =  liO j +  votj, 

where 1 ^  i , j  ^  n — 1 and \i — j\ ^ 2 .  Then

C \ , a  1*

(iv) Let A € A(n, r). For a positive integer v € {1,2, . . .  , n — 1 }; Jet a, 6 6e 

integers such that Â +i ^ b ^ a ^ 0 . Then

c X { u , a ) , X ( u , b )  =  1-

Proof. By Definition 3 .2 .2 , cA>a is the number of nonnegative integer lower 

triangular n x n  matrices whose vector of row sums is (Ai, . . .  , An) and whose 

vector of column sums is (<*1, . . .  , an). By Proposition 3 .2 .5 , cA)Q ^  0 if and 

only if A < a. It is easy to check that the compositions A and a  in the above 

(i)-(iv) satisfy the condition A < o, thus we have c AjQ > 0 . Hence, there exists 

at least one matrix satisfying the above conditions in (i)-(iv). Next, we will 

calculate the number of nonnegative integer lower triangular matrices for the 

cases (i)-(iv).

To prove (i), let
an 0 
a2i a22
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be a nonnegative integer lower triangular 2 x 2  matrix whose vector of row 

sums is (a, r — a) = A and whose vector of column sums is (b, r — b) =  a. Then 

we have: an =  a, 021 =  b — a, and 022 = r — 6. Hence cA)Q = 1 in this case.

To prove (ii), let
an 0 0
CL21 <*22 0

_ <*31 <*32 <*33

be a nonnegative integer lower triangular 3 x 3 matrix whose vector of row 

sums is (01,02,03) =  A and whose vector of column sums is {bi,b2 ,b3) =  <*• 

We have
<*21 — <*2 ~  <*22 ?
<*31 = O3 — 63 — 62 +  022 =  — Oi — 02 + 022)
<*32 =  ~  022-

So:

d  =: max{0, b2 +  63 -  <*3} ^ <*22 ^ min{a2, b2}.

Hence

0 ^ a22 -  d ^ min{a2, 62} -  d — min{a2, b2, b\ -  ai, a3 -  63}.

Thus the number of nonnegative integer lower triangular matrices is the num­

ber of 022 satisfying the above condition. Hence

cA,a = min{a2, b2, &i -  <*i, <*3 -  63} +  1.

To prove (iii). Since

a  — A = uoii +  va j ,

then we have A < a. Let (oM)l/)nxn be a nonnegative integer lower triangular 

n x n matrix whose vector of row sums is A = (A1} A2, .. • , An) and whose
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vector of column sums is a. Since 1 ^ i, j  ^ n — 1 and \j — i\ ^ 2 , we can

rewrite a  as (assume that i <  j):

a  =  A + uai +  voLj
(^1) • ■ • > 1 ? Ai ”h U, Ai+1 IX, Aĵ -2) • • • , Aj_i,

A j  v , Aj+i u, Aj -j-2 j • ■ • j An).

By the row sums and column sums of (a/i)1/)nxnj we can calculate that 

flu = Ai,
&21 =  0 , 022 =  A2,
• ’ ’ 5

1,1 ^  0 , . . .  , flj_i)j_2 =  0 , Oi—i^—i =  Ai_i,
a»,l =  0 ) • • • 5 Oi,i—2 ~  0 ) Q>i,i—1 = 0 ) 1̂,1 =  Aj,
Oj+1,1 =  0 ) • • • 7 Orj-l-l̂  =  XL, flî -l)j-|.l =  Ai+1 IX,
. . . ,

O'j—i(i ~  0 , • • • j Orj_i,j_2 =  0 , d j—1, j—1 =  Aj_i,
Oj, 1 =  0, . . . , Cljj—2 =  0 , Oj,j-l =  0 , d j j  =  A j,
Oj+1,1 = 0 , . . .  , Oj+ij =  5̂ Oj+i,j+i = ^j+i —
. . .  ,

On,l ~  0 ) • • • 5 0.n,n_i =  0 , fln,n = An.

Hence there is only one matrix (aMjl/)nxn satisfying the condition, that is, 

ca,q == !•

To prove (iv). Since

A(i/, b) — \ ( v ,  a) =  (b — a )a U)

we have A(z/, a) <  A(y,b). Thus CA(i/,a),A(t/,&) ^ 1- Let (aij)nxn be a nonnegative 

integer lower triangular n x n matrix, whose vector of row sums is

A(1/, a) =  (Ai, . . .  , \ v +  a, \ u+i — a, . . .  , An),

and whose vector of column sums is

A(i/,b) =  (Ai, . . .  , Aj, +  b, Â +i — 6 , . . .  , An).

Then we can calculate each row and the corresponding column of (ay)nxn: 

Row 1: an = An
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Column 1: cl\\ an\ =  Ai, so n2i =  . . .  =  ani — Oj

Row 2: a22 =  A2;

Column 2: a22 *+■ • • • +  CLn2 =  A2, so <232 = .. .  = an2 = 0;

Row w. aul/ =  \ u +  a;

Column 1/: <2̂  -f- . . .  -f- &ni/ ~  Â  “I- b, so

H- • • • “I" Q>n,u — b <25

Row v  +  1:

“t- ®i/+i,i/+i ~  Â +i flj

Column z/ +  1:

^j/+1,i/+1 “I" • • • “I” &n,i/+l =  K + l  b \

We then consider (3 .2 .1)+ (3 .2 .3 )-(3 .2 .2):

0 ,i /+ 2 ,u  “1“ • • • “!” U n ,  1/  & i / + 2 , i /+ l  " h  . . .  "I-  f ln , i / + 1 =  0*

Since all entries are nonnegative integers, this implies

&i/+2,t/ = • • • =  Q>n,v =  0 = Civ-|-2)j/-fl =  . . . =  Un,i/+1'

Now from equations (3 .2 .1), (3 .2 .2), and (3 .2 .3), we get

Q*u+\,v =  b <2, o>i/+i,v+i = Â +i 6.

Continuing the above process, we have: 

fli/+2,i/+2 = A„+2;
fli/+3,i/+2 = • • • ==: &n,i/+2 — 0,

<2n,l =  • • • =  CLn n — \  =  0 , CLn n  —  An.

Thus there is only one such a matrix (ai;)nxn> hence cx(u,a),\(^b) —
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P ro p o sitio n  3.2.15. Let A  =  5 +(3,r) and let a\ and a2 be simple roots of 

type A2. Let A =  (ai,a2,as) and a be in A(3,r) such that

a  =  A +  mai +  na2,

where m  and n are nonnegative integers. We assume that a2 ^  m. Let H be 

the vector space

H := H o ra^ (^ a , ^ A).

Let d =  min{m, n}. Then the dimension of H is (d + 1 ). H  ~  £QA£\ is 

spanned by

{Xt I =  £it 3A, it = l “i+m-*2«2+n-m1 t3 a3-nj t =  0, 1, . . .  ,d}. 

Moreover, X t — ^3a,qtf where qt = Iai3*2a23a3“* and 0 ^  t ^  d.

Proof. Note that a2 ^  m. By Proposition 3.2.14 (ii), the dimension of H  is 

the Cartan invariant CQoo )otnm •

dim H  =  min{m, a2, a2 — m  +  n, n} +  1 =  min{m, n} +  1 =  d +  1.

By Lemma 1.3.5, H  ~  as /("-vector spaces. If is an element of

Then z ^  j  and the weights of i and j  are

wt(i) — a, wt(j) =  A.

Let j  =  3A. Since i ^  j  and i ~  3a , so it is easy to check that the above set 

{X t | t = 0,1, . . . ,  d} form a basis of H.

Next we prove that £it£\ =  £3<*)9t. We need to prove the multi-indices (it , 3A) ~  

(3a ,qt), that is

^ai+m—tQai+n—m^tQas—n -̂<11202303  ̂ ^  ^ai+rr^c^+ra—m^a3— n
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We consider the number of the pair (1,3) on both sides. Then the numbers 

of (1,3) on both sides are both t. So the above relation for the multi-indices 

holds. I

We will use Proposition 3.2.15 in Sections 5.3, 5.4 and 5.5.

Finally, we give a second proof for Lemma 2 .1 .2 :

Let A =  (Ai, . . .  , An) € A(n, r). Let t G {1,2, . . .  , n — 1} and let I and m  be 

nonnegative integers such that I ^  m  ^  At+i. We have

Second Proof of Lemma 2.1.2: By Proposition 3.2.14 (iv), cx,x{t,m) == 1- So 

€x(t,m)S+{n,r)€x is one-dimensional and spanned by £\(t,m),A-

We let

i =  nK^m) _  1*1 tXi+m{t +  l )At+1_m .. . nA„

nXrj  =  =  i_Ai tXt+l(t +  l)At+1_i . . .

/ = n x = l Al . . .  tXt(t + l)Xt+1 . . .  nXn.

By Theorem 1.1.4,

= 1 '■ P i jM u -  (3 .2 .5)

where [Pij : Pi,j,i] can be computed from the formula

: = n bv
a,ben a X b ’ a’n 'b'

where, for all a, d, b G n , r a>b =  \ R a,b { i , 01 and = \ R a, d , b ( ^ L  01-

Now we calculate r a^  and r a ,d,b, where

r a ,b =  \ R a, b ( i J ) \  =  \ { P  €  L  \ i P =  a ,  lp =  6 } | .
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We have
â,o — Aa, CL ^  t } t 1,

r t , t  — A*, r t)t+ i =  m , rt+ 1)t+ i =  At+i — m ,
T’a.b =  0 , otherwise.

and

Ta , a , a  =  Aa ,  CL t , t  1,
rt,t,t = At, rt,t,t+i = I, rtft+i,t+i = m — I, rt+i,t+i,t+i = At+i — m, 
va,d,b =  0 , otherwise.

Hence

3.3 Properties o f Embeddings

In this section, by calculating the radical and radical square, we show that the 

embedding ip* : S +(2,r) —* S +(n,r + s) embeds the quiver of S +(2,r) into 

the quiver of S +(n, r  +  s).

Throughout this section, let A =  (p“(S+(2, r)) and B =  S+(n ,r +  s). Since 

i ff  is an embedding where t E re — 1 and a  E A(re, s), A is a subalgebra of 

B. First, let us discuss the relationship of radical and radical square with the 

algebras A and B.

Proposition 3.3.1.

rad A = A n  rad B.

Proof. Since rad A is the largest nilpotent ideal of A , and Afl rad B  is nilpotent 

in A, then A n  radB  C rad A. On the other hand, by Proposition 1.2.3, 

rad A C rad B. Thus rad A  C A  D rad B. I

Recall that S +(2 , r) has a basis {£(&, a) | 0 ^  a ^  b ^  r}.
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P ro p o sitio n  3.3.2. Let £ G S +(2, r ) .  Write £ as a linear combination of basis 

elements, £ =  ^ £ ( 6 ,  a ) ,  where kb,a G i f  / o r  all r ^  b ^  a ^  0. Then

we have </?“ (£) G ^4 fl ( r a d  B ) 2 2/  and only if  ¥?“(£(&, a ) )  G >1 fl ( r a d £ ) 2 / o r  all 

nonzero kb>a.

Proof (The if part): This is trivial.

(The only if part): By the multiplication rule for the Schur algebra,

£(6,6)££(a,a) =  kb̂ {b ,a).

If kb<a 7  ̂ 0 , then

£(6 , a) =

Since </?“ is an algebra homomorphism, we have

=  fc&,a“V ? (f (&>&))y>?(C)v>?(€ (a> a))-

Since <$*(£) G 4̂ fl (radB ) 2 and (rad B ) 2 is an ideal of £ , then ^f(£(6 ,a)) € 

(rad B )2, i.e. (£(&, a)) G A fl (rad £ ) 2. I

P roposition  3.3.3.

(radA ) 2 =  i4fl (radJ5)2.

Proof. By Proposition 3.3.1 rad A C  rad # , so (rad^4) 2 C  (radB)2, thus

(rad A)2 C  A D (rad B )2.

We need to prove that

A n  (radB )2 C  (radA)2.
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By Proposition 3.3.2 and Proposition 1.2.3, it is enough to prove that for any 

0 ^  a < b ^  r  and (£(&, a)) G A D (rad # )2, then

¥>?(£(M)) € (rad A)2.

Since </??(£(&,a)) G A fl (rad # )2, so <pf{€(b,a)) G (rad # )2. Let

<??(?(&, a)) =  ^2 kufuQu>
u

where / u and are in rad # , and /cu G A". Using the multiplication rule for 

Schur algebra, we can assume that f u =  and

Let a  =  (ai, . . .  , an) G A(n, s), then we can write y?“(£(a,a)) as:

V ti t fa a ) )  =  fai, 

where a 1 =  (ai, . . .  , at_i, at +  a, at+i +  r -  a, at+2, . . .  , an).

Similarly, we can write 6 )) as:

P?(£(M )) =£a*> 

where a 2 =  (ai, . . .  , at_i, at +  6 , at+i +  r -  6, at+2, . . .  , an).

Thus we can rewrite </?“ (£(&, a)) as follows:

<??(£(&>a)) =  <£?(£(&> &)£(&> a)CK a))
=  &<Pt(€(b>a))€ai
= ^a2 kufuQu^a1

f  u9ul

where
7 u =  € rad# ,
9u = 9u&  € rad # .

Fix any u with f ugu ^  0. We will show that f u,gu G rad A, so </?“ (£(&, a)) € 

(rad^4) 2 as required.
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Recall that f u = ^  and gu = for some Let the shape of j  be

0 = (b\, . . .  , bn) € A(n, r  +  s), we can rewrite f u and gu as follows:

fu  = f>a2̂ ufu^,0 ^
9u ~  £/39u£al ^ C/3-̂ â1,

By Definition 3.2.8, the Cartan invariant Cp>a2 is the dimension of £ Q2 B£p. Here 

f u 7  ̂ which implies that cpy(X2 ^  1 . By Theorem 3.2.9, we have Cp<a2 =  C0 )Q2 . 

By Proposition 3.2.5, Cp>a2 ^  1 if and only if 0 < a 2. Similarly by gu ^  0, we 

have 0 >  a 1. Hence

a 2 > 0 >  a 1.

By the definition of the dominance ordering in Definition 1.2.5, we have 

ai 4- . . .  -f- Ofc ^  b\ +  . . .  +  bk ^  ai +  . . .  +  flfc, for all k 6 {1, . . .  , t  — 1}. 

Thus bk =  a*;, for all k G {1, . . .  , t — 1}.

Similarly, we have bk — ajt, for all k G {t -j- 2, . . .  , n}. Hence for the £-th and 

(t +  l)-th  entries of a 1, a 2 and /?, we have the following condition:

Q-t +  b ^  bt — dt +  c ^  a* +  a, bt+i — &ti +  r — c,

then we have

b ^  c ^  a.

This means that ^  =  (p?(£(c, c)). Since / u and are in the radical of B, then 

/ u and gu are in the radical of B. Since idempotents are not contained in the 

radical, we have the condition:

b > c>  a.

Now gu and f u are just scalar multiples of <$*(£(c, a)) and <^*(£(6 , c)), respec­

tively. Thus / u and are in the radical of A. Hence a)) € (rad A)2.

1
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Let A G A(n, r). Recall that

A(i/, ra) =  (Ai, . . .  , A„ +  ra, A„+i -  ra, . . .  An).

T heorem  3.3.4. Lei K  be a field of characteristic p ^  0. Lei A 6 A(n,r). 

Lei m be a positive integer such that m  ^  A^+i /or some v G {1,2, . . .  , n — 1}. 

Consider the full sub-quiver T' of the quiver T of S +(n,r), generated by all 

vertices corresponding to the idempotents ?a>?a(i/,i)> • • • {u,m)- Then V  is the

quiver of S + (2, m).

Proof. Let e* =  (0, . . .  , 0,1,0, . . .  , 0) be a 1 x n vector of whose the z-th entry 

is 1 and the other ones are 0. We let a  =  X—me^+i, where v G {1,2, . . .  , n — 1}

and 1 ^  ra ^  A^+i. Thus we have a  G A(n, r —m ). We consider the embedding

: 5 +(2, ra) -> S+(n,r).

For the basis element £(b,a) where m ^  b ^  a ^  0, by Definition 3.1.1, we 

have

'Pv (?(&> a)) == £a(i/,b),a(i>,a))

where

o;(^, 6) =  (Ai, . . .  , Aj/ +  6, A^+i — m — b, . . .  , An),

ol(v, o) =  (Ai, . . .  , Â  ci, At/+i 77i o, . . .  , An),

and

£a(is,b),a(v,a) = £nQ(l/>6),na(1'’0) *

Let T" be the quiver of 5 +(2,771). Note that maps the basis element £(a, a) 

of 5 +(2,ra) where 0 ^  a ^  m, to the basis element ip“(£(a,a)) = €a(v,a)- This 

implies that </?“ maps the vertex a of T" to the vertex a{y, a) of T.
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Since (p% is an embedding from S +(2,m) to S +(n, r), 5 +(2,ra) is isomorphic 

to ip*(S+(2, ra)). Thus, the radicals of S +(2, ra) and <p“(S+(2, ra)) are isomor­

phic.

Let .fti =  rad 5 +(2,ra), R = rad<^“(5+(2,m)) and i?2 =  rad 5 +(n,r). Then 

Ri ~  R. By Definition 1.4.2, the number of arrows from a to b in r"  is

c(b,a) := dim£(&,6)(fli/fti)f(a,a),

where 0 ^  a < b ^  r, and the number of arrows from ?a(i/>a) to £a(v,b) is

c'(6,a) := dim$o(l/|6)(i22/-R2)fa(i/Ia)-

We need to prove that c(b, a) = c'(b, a) for all 0 ^  a < b ^  r.

Recall that p is the characteristic of K. By Theorems 2.2.5 and 2.4.2, c(6, a) = 

1 if and only if [b — a]p = 1 (if p = 0, we have \b — a]p = b — a), otherwise 

c(6, a) — 0.

Note that ^a(i ,̂b){^2 / — {^a(i/,b)^2̂ a(i/,a)) /  { ^ 2  Pi ̂ a(i/,6)■̂ 2 â(i/,o))• By 

Proposition 1.2.3, R 2 is spanned by I i < j, (i , j ) € fi+(n,r)}. 

Then £a(v,b)R2€a(v,a)i as a vector space, is isomorphic to the vector space 

spanned by | i ~  na^'b\  j  ^  na^ } >  which is also isomorphic 

to €a(v,b)S+('n, ^)^a(u,a)- Then by the definition of the Cartan invariant, 

dim €a(v,b) -^2^0 (1/,a) =  dim €a(v,b)S+(n ,r)£a(i/,a) == Oa(i/,a),a(i/,6)' By Proposi­

tion 3.2.14 (iv), ca^ ta),a(u,b) = 1 if b ^  a, otherwise it will be 0. And when 

Ca{v,a),a{v,b) — L the vector space ^a{u,b)R2 ,̂a{u,a) is spanned by the element 

£a(v,b),a(i/,a) • This means c'(b,a) =  0 or 1.

Therefore if c(b,a) =  0, i.e. £{b,a) G Rf, then £ a (v,b),a(v,a) € R\, that is, 

c'(6, a) =  0.
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The remaining case is that c(b,a) =  1 . We will show that c'(b, a) ^  c(5, a). 

Since c'(6 , a) ^  1, we have c'(b,a) =  1.

By Propositions 3.3.1 and 3.3.3, we have

R = ¥>“ (S+(2, m)) P |  R2, R 2 =  V“ (5+(2, m)) f |  R22.

Thus the induced map : £(b, b)(Ri/R\)Z(a, a) — RD ^ ,a )  is

well-defined. Actually, we note that

a!)  +  R \ )  =  (£(&', a ') )  +  R \  =  ^ a (u,b%a(^a')  +  R%,

where 0 ^  a' ^  b' ^  m. If the basis element £(&', a') € i?J, we have 

^ ( f ( ^ 5a')) =  t a W U W )  6  ^ 2- Since R 2  = y,?('s'+(2>m) ) n ^ 2  by Proposi­

tion 3.3.3, we get £a(i/16')>a(i/>a/) e  ^ 2 - Hence <p“ is well-defined.

Moreover, if 0  =  £a(is,b/),a(t',a/) d"R 2 £ l̂ot(v,b){KR 2 /R 2 )£,a(v,a)) that is, €

Since # 2 =  <pJ(S+(2,ra)) f | # 2  and ^a(u,b'),a(^') = V^(£(&'>a')) € 

<p“(S+(2 , m)), we have fa(i/,6/)>a(i/Ia/) € # 2. As we know that <p“ is an em­

bedding from 5 +(2,m) to S +(n,r), we have £(b',a') € R\. That means <p“

is an embedding from £(6 , b)(Ri/Rl)£(a, a) to ^a{u,b){R2 /R%)fLa{v,a)- Hence we 

have c'(6 , a) ^  c(6 , a). Therefore c(6 , a) =  c'(6 , a).

Hence the quiver T" of 5 +(2, m) is a full sub-quiver of the quiver T of S +(n, r). 

I

Recall that we call the relations in Theorem 2.3.1, the p-adic relations. Now 

by Theorem 3.3.4 these p-adic relations of 5 +(2,m) can be embedded in the 

relations of 5 +(n, r). We also call the relations of S +(n, r) which are embedded
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by the p-adic relations of 5 +(2,ra) in Theorem 2.3.1, the p-adic relations of 

S +(n, r).

Let 0 ^  a < b ^  r. By the end of Chapter 2, there is a path P(b, a) from a to 

b. By our embedding, then there will be a path

P(A(t,&),A(t,a)) =  t f (P (M ))

from A(t, a) to A(t, b) where A =  a + rEt+1- We call P{X(t, b), A(t, a)) the path 

from A(t,a) to A(£,&).
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Chapter 4

The quiver of the Borel Schur 
algebra S + (  n, r)

Let K  be a field of characteristic p ^  0, A  the Borel Schur algebra S +(n, r) 

over K , and T the quiver of A. We know that the vertex set of the quiver T is 

A(n, r) (see the end of Section 1.4). Using the results from [16], in Section 4.1 

we describe the arrow set of T. In Section 4.2 we list some quivers for S +(3, r).

4.1 The quiver of S+(n,r)

In this section we describe the quiver T of A.

Let A =  (Ai, . . .  , An) be in A(n, r). We know that is a primitive idempotent 

of S +(n,r) by Proposition 1.3.6. Let V\ be a left ideal

VA: = 5 +(n ,r)fA.

Recall the multi-index I = l(A) =  l Al . . .  nXn and recall that

\(i/, m) = (Ai, . . .  , A„ +  m, A„+i -  m, . . .  An).

Let l(v,m) = In [16], A. Santana proved the following theorem:
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Theorem 4.1.1. [(4-5)Theorem, [16]] The sets

(*) {&(!/,iy  | t' € {1,2, . . .  , n -  1}}, i f  charK =  0,
(w) {€i(v,pdv),i | € {1,2, . . .  , n -  1},1 < A^+i}, i f  charK = p,

are minimal sets of S +(n,r) -generators of radV\-

The following lemma shows that this minimal set of generators of v4-module 

A is bijective to a if-basis of (racM)/(rad A)2 where A =  S +(n,r).

Lem m a 4.1.2. Let B  be an elementary finite dimensional algebra over K , and 

R = rad B. Then any minimal set of generators of B-module R is bijective to 

a minimal set of generators of B/R-module R /R 2, or a K-basis of R /R 2. In 

particular, let B  = S +(n,r). Then the minimal set of generators of S +(n,r)~ 

module R  is bijective to a K-basis of R /R 2.

Proof By Theorem 1.4.6(a), a minimal set of generators of B-module R  is 

bijective to a minimal set of generators of B /R -module R /R 2. Since B /R  is 

semi-simple, R /R 2 is completely reducible, i.e., R /R 2 is a direct sum of simple 

B /R -modules. Since B  is elementary, i.e., B /R  is a product of copies of if, 

the minimal set of generators of B /R -module R /R 2 is a if-basis of R /R 2.

In particular, let B  =  S +(n,r). By Theorem 1.3.8, the Borel Schur algebra 

5 +(n,r) is elementary over if. Hence the the minimal set of generators of 

5 +(n, r)-module R  is bijective to a if-basis of R /R 2. I

We now are ready to describe the quiver T of the Borel Schur algebra S +(n, r). 

The following two theorems give the description for the quiver T of S +(n,r).
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Theorem 4.1.3. Let char K  — p > 0, and let A,/u € A(n,r) be two vertices 

of the quiver of S +(n, r) over K.  Then the number of arrows from A to n is at 

most one. Moreover, there is an arrow from A to n if and only if p =  A(i/, m), 

where the integers v andm satisfy the conditions: 1 ^  v ^  n — 1, 1 ^  m  ^  Av+i 

and m  =  pl for some nonnegative integer t.

Proof. Let R  be the radical of S+(n, r). By Definition 1.4.2, the number of 

arrows from A to p  in the quiver T of S +(n, r) is the dimension of ^ ( R /  R 2)^x. 

By Lemma 4.1.2 and Theorem 4.1.1, R /R 2 has a basis

A := | A 6  A (n,r), v € {1,2, . . .  , n -  1}, 1 ^  pdv ^  A„+i}.

We now need to calculate the dimension of

=  u  ®  K  ■ =: H{A, M).

We denote the above vector space as H(X,p). Let c(X,p) =  dim H(X, p). So 

we only need to prove that c(X,p) =  1 if and only ii p = \{v ,pd'/) for some 

nonnegative integers 1 ^  v  ^  n — 1 and du\ otherwise c(A,/i) =  0.

First we assume that p =  X(i/,pdu) for some nonnegative integers 1 ^  v ^  n — 1 

and du. We will prove that c(X,p) =  1 in this case. Let I =  /(A). Then 

£ A. Thus we have £M)A G H(X,p), so

K - ^ x Q H { \ p ) .

By Definition 3.2.8, the Cartan invariant cA)M is the dimension of ^ S +(n, r)£A. 

By Proposition 3.2.14 (iv), cA)/x =  cXyx(u,pd̂ ) =  1- Thus we have that 

£M5 +(n,r)£A is one-dimensional, spanned by fM)A, that is,

^ 5 +(n, r)fA = K  * ^ >A.
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By the definition of H (A,/z), we know that

H (A,/z) C £MS+(n, t - ) £ a .

Hence H (A,//) satisfies the following condition:

K  • fM|A c  //(A, /z) C ^ 5 +(n, r)£A =  if  . £MtA,

T h e re fo re , i i (A ,/z )  — K  • £M)A. T h u s  we h av e  c(A,)Lz) = d im i/(A ,/tz )  =  1.

Next, we suppose c(A,/z) ^  0. We want to show that c(A,/z) =  1. Let h be a 

non-zero element in ii(A,/z). Note that the set A spans the vector space H. 

We can write h as a linear combination of the elements in A:

h = Yl a&
£€A

where a  ̂ G K. Since h ^  0, there exists some ^  0 for some £ G A. Note 

that h =  £Mh£A since h G //(A, /z). We know that =  V or 0 for all 77 G A. 

Since £ occurs in the sum of h and £ G A, we have

C =

Let £ =  £a(i/,p«fc),a f°r some a: G A(n, r) and nonnegative integers 1 ^  v ^  n — 1 

and d„. Since £ = £ m £ £ a ,  by the multiplication rule for the Schur algebra 

S(n, r), we have

nx ~  nQ, n0^ )  ~  r f .

Thus a  =  A and p =  a(v,pd‘’). Hence p = A F o r  such A and ji, we 

have proved that //(A, /z) =  i f  • £M)a- Therefore c(A, /z) =  1. I

Similarly, by Theorem 4.1.1, we can get the quiver of S +(n,r) over a field if  

of characteristic 0.
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T heorem  4.1.4. Let char K  — 0, and let A, \x G A(n, r) fee two vertices of the 

quiver of S +(n, r) over K. Then the number of arrows from A to / j l  is at most 

one. Moreover, there is an arrow from A to /x if and only if (i = \{v, 1), where 

the integers v satisfy the condition: 1 < v ^  n — 1.

By Theorems 4.1.3 and 4.1.4, there is precisely one arrow from A to /x if 

and only if fi =  X(u, m), where the integers v and m  satisfy the conditions: 

l ^ i / ^ n —l , l ^ m ^  Au+i and m =  pt for some nonnegative integer t. 

(When the characteristic of K  is 0, we let m =  1). We label this arrow as £Mja, 

where sometimes denote an arrow in the quiver of S +(n,r) instead of an 

element of S +(n,r).

D efinition 4.1.5. Let A and n be two compositions of r  with at most n parts. 

Let A and fi satisfy the conditions in Theorems 4.1.3 or 4.1.4, i.e.,

fi — A =  pta l/1

for some 1 ^  v ^  n — 1 and t ^  0 (pl = 1 if p = 0). Then there is precisely 

one arrow from A to /i in the quiver of S +(n, r), labeled by We say that 

this arrow belongs to the simple root a„, and has length p*.

Hence all arrows in the quiver of S +(n,r) over K  of characteristic 0, have 

length 1.

By Definition 4.1.5, every arrow in the quiver T of S +(n,r) belongs to certain 

simple root of type An-\\ a\, <2 2 , . . .  , a n-i-

Furthermore, by Definition 3.1.1 and Definition 4.1.5, it is easy to check that 

the embedding (pf has the following property.
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P ro p o sitio n  4.1.6. Let s ^  r be a positive integer and £(&, a) a label for 

an arrow in the quiver of S + (2, s) over a field K  of characteristic p, that is, 

b — a = pu for some u ^  0. Let be an embedding as in Definition 3.1.1, 

from S +(2,s) to S +(n,r) over K , where 1 ^  t ^  n — 1 and a € A(n, r  — s). 

Then the arrow labeled by the element <Pt( (̂b, a)) belongs to the simple root a t 

and has the length pv .

4.2 The quiver o f S+(3,r)

In this section we list some quivers of 5 +(3, r) over a field K  of characteristic 

p. For simplicity, we denote a composition (a, b, c) by abc, for example 010 

denotes the composition (0,1,0).

The quiver of S +(3,1) for any p:



The quiver of 5 +(3,2) for p =  2:

020

Oil110

200 101 002 

The quiver of S +(3,3) for p — 2:

030

021120

012111210

300 201 102 003

The quiver of £ +(3,3) for p = 3:

030

021120

012111210

300 201 102 003
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Chapter 5 

Special types of relations for the 
quiver of 5 +( n, r)

In the previous chapter we described the quiver V of the Borel Schur algebra 

S +(n, r) over a field K  (Theorems 4.1.3 and 4.1.4). We now consider the 

relations of the quiver I \ Recall that there is a surjective homomorphism /: 

AT —*• S +(n , r) where /  maps the labels of the paths in the path algebra AT 

to the basis elements in the Borel Schur algebra S +(n,r) by Definition 4.1.5, 

and the relations of the quiver T is the kernel of / .

We describe all relations in the case of characteristic 0 (Section 5.6) and we 

provide some relations in the case of positive characteristic for some special 

subgraphs of the quiver T.

In Section 5.1 the subgraph in T is a rectangle, which we call a diamond. We 

obtain a relation in which the arrows belong to the simple roots a* and ctj 

with \i — j\ ^  2.

In Section 5.2 we describe the relations for 5 +(3, r) for the paths from (0,0, r) 

to (r, 0,0) in T.
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In Section 5.3 we consider the n x m  and m x n rectangles in T of S+(3,r). 

We obtain a formula for a special path in these rectangles in Theorems 5.3.5 

and 5.3.10.

In Section 5.4 we consider the 1 x ra and r a x  1 rectangles in T. Using the 

formula for the corresponding paths in Section 5.3, we describe the relations 

for these rectangles in Theorems 5.4.5 and 5.4.12. In this case, we obtain all 

relations (see Theorems 5.4.7 and 5.4.12).

In Section 5.5 we get the relations for the n x ra rectangle in T of S +{3, r) in 

zero characteristic, in terms of the words of R ’s and D ’s.

In Section 5.6 we use the results from [6], to describe all relations in T of 

S +(n,r) over a field of characteristic 0.

Our approach is as follows. We consider some special subgraphs in the quiver 

T of S +(n,r) over a field K. We obtained already some relations (which we 

call p-adic) for the quiver T in Theorems 3.3.4 and 2.3.1. We will study the 

relations modulo these known p-adic relations. Our method is to calculate 

the dimension of the vector space spanned by the paths from one vertex A to 

another vertex p in the subgraph in the path algebra K T , the dimension of 

the corresponding Horn space H om ^^f^, A£\) with A = S +(n, r) which is the 

Cartan invariant C\^ by Definition 3.2.8, and the dimension of the quotient of 

KT  modulo the known relations. We then consider the relationship between 

these dimensions to check whether we found all the relations.
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5.1 The diamond relation

Let n ^  4. Let D be the following subgraph of the quiver T of S +(n,r) over 

K , (we also call D a diamond),

where a, a 1, /3, and (3l are compositions in A(n, r); the integer p is the charac­

teristic of the field K\ a* and ctj are two simple roots of type An-\  such that

1 ^  h j  ^  n — 1 and \i — j\ ^  2; a, b are nonnegative integers, satisfying the

following conditions:
a 1 =  a  +p°ai,
!31 =  a  +  p ba j ,

P =  a  +  pac*i +  p6a,-,

where pa =  pb = 1 if p =  0.

P roposition  5.1.1. Let n ^  4. Le£ 71 6e £/ie above subgraph in the quiver T 

satisfying the above conditions. Then for the f-images of the paths

and £/?,/p£/P,a in the path algebra KT, we have

,a ,ai (5.1.1)

in the algebra S +(n,r). Hence we have a relation

£ , P , a . l f , a l  , a  ~  ^ / 3 , / J 1 £ /? *  , a  j

/or £/ie quiver T of S +(n, r).
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Proof. Let A =  S +(n, r). By Proposition 3.2.14 (iii), the Cartan invari­

ant ca,f3 =  1. By Definition 3.2.8, ca is the dimension of H (a,p)  := 

Hom^(^4^, A£a). Since is an element of H(a,P), we have H(oc,(3) = 

K£l3 ,a- By the multiplication for the Schur algebra in Definition 1.1.1, the 

LHS and RHS of Equation (5.1.1) are both scalar multiples of ^ )Q.

By the multiplication formula for Schur algebras in Definition 1.1.1

L H S — ,q “

where Z  is the number of multi-indices s of I(n, r) satisfying the condition:

(n/3,riQl) ~  (pP, s), (nQ\ n Q) ~  {s,na). (5.1.2)

Since \i — j\ ^  2, by the definition of the relation ~ , we can assume that i = 1 

and j  =  3. Let a = (ai, . . .  , an) be a composition of r with at most n parts. 

Then

a 1 =  a  +  paai =  ( a i  +  pa, a2 -  pa, a 3 , . . .  , a n ) ,

P = a  +  paa i +  pba 3 =  (ai +  pa, a2 -  pa, a3 +  a4 -  pb, a5, . . .  , an).

By the definition of the relation ~  in Section 1.1, and by the second relation

in Equation 5.1.2, the only difference between s and na is in the first (a\ +  a2)

places. By the first relation in Equation 5.1.2, the first {a\ -I- a2) places of pP

and s are the same. Thus s must be the multi-index nQl, so Z  =  1. Hence

LH S ,a

Similarly, we can calculate that

R H S  ,ot £(3,oc

Hence we have

I
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Remark. We can use Theorem 1.1.4 to calculate the coefficient Z  in LHS.

n
a,ben ra-1’b- Ta'n'b'

where i = vP, j  =  nQl and I =  na, for all a,d,b E n, ra>b = \Râ {i,l)\ and

Ta,d,b = | ̂ a,d,b{^ ji 0 1 •

Recall that

ra,& =  01 =  \{p e r I ip = a, lp = 6}|.

Let a  =  (a i ,. . . ,  an) be in A(n, r). We have

n,t = CLu t ^ i , i  + l , j , j  + l,
n,i = ri t i+ 1 =  pa, r i+i)i+i =  ai + 1 -  pa,
r j , j  =  O .J+1 =  / A  ~  a i+ l  — i
ra,b = 0, otherwise.

and
rt,t,t = at, + + 1 ,
f ' i y i j i  =  0 > t ,  ^ i , i , i + l  =  P > ^ i+ l , t+ l ,i+ l  =  &z+l P >

== a j  r j , j J + 1 =  i r j + l , j + l J + 1 =  a j + 1 —
â,d,6 =  0, otherwise.

Hence Z  =  1.

We call the relation in Proposition 5.1.1 a diamond relation.

By Proposition 5.1.1, if n ^  4, we have the diamond relations for the quiver T 

of 5 +(n, r) where the arrows belong to the simple roots ai and aj such that 

\i — j\ ^  2. We then consider the relations for the quiver T where the relative 

arrows belong to two simple roots ai and Qj+i for 1 ^  i ^  n — 2. This can 

be studied for the quiver of S +(3,r), where the simple roots are a i and 

Hence from now on, we mainly consider the relations for the quiver of S +(3, r) 

except for Section 5.6.
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5.2 Some relations for the quiver of S+(S,r)

In this section we consider the paths from (0,0, r) to (r, 0,0) in the path algebra 

KT  where T is the quiver of S +(3, r) of zero characteristic.

Let T  be the vector space spanned by the paths from (0,0, r) to (r, 0,0) in 

the path algebra KT. Let D(r) be the dimension of T. For r  =  1,2,3, we 

calculate the corresponding D(r) as follows (for the quiver T, see Section 4.2):

The quiver of 5 +(3 ,1) for p =  0:

010

100 001

£>(1) =  1.

The quiver of S +(3,2) for p =  0:

020

110 011

200 101 002

D{ 2) =  2.
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The quiver of S +(3,3) for p =  0:

030

120 021

210 111 012

300 201 102

D( 3) =  5.

We now introduce the following definition.

003

D efinition 5.2.1. ([17], Page 221) The n-th Catalan number Cn =
1 (2 Tb ,

is the number of Dyck paths from (0,0) to (2n, 0), i.e., latticen +  1 \  n
paths with steps (1,1) and (1 ,-1 ), never falling below the x-axis

P roposition  5.2.2. D(r) = Cr

Proof. By Definition 5.2.1, Cr is the number of the lattice paths from (0,0) to 

(2n, 0), with steps (1,1) and (1, —1), never falling below the x-axis, which is 

the D(r). I

P roposition  5.2.3. There are (Cr — 1) linearly independent relations in T.

Proof. By Proposition 5.2.2, the dimension of T  is D(r) =  Cr. Let A := 

(0,0, r) and a := (r, 0,0). By Proposition 3.2.14 (ii), the Cartan invariant 

c\,a =  1. By Definition 3.2.8, this implies the Horn space Hom^yl^a, A£\) is 

one-dimensional and generated by £Q)a where A — S +(3, r). So the paths from
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A to a  in the path algebra KT  is mapped by /  to a scalar multiple of £a,A in

S +(3,r). Hence the /-images of these Cr paths in T  are all multiples of 

In other words, we obtain (Cr — 1) linearly independent relations in T. I

5.3 The n x m and m x n rectangles

Let K  be a field of characteristic p ^  0. Let A be the Borel Schur algebra 

5 +(3,r) over K. Let T be the quiver of A . Let a\ and a 2 be simple roots of 

type A2.

In this section we consider the n x m  and m  x n rectangle in the quiver T 

where n and m  are positive integers. We calculate a special path in these two 

rectangles.

Let i be an integer with 0 ^  i ^  m. We first consider the following n x m  

rectangle:

a

n a  2

00

n a  2 nQ2

a nO or aicti ( m —i ) a i

We assume that a 00 =  (0 1 , 0 2 ,^ 3 ) with the conditions a2 ^  m  and 0,3 ^  n. 

Then we write a 00 as follows:

a 00 =  (u, m  +  v, n +  w),

where u , v, w are nonnegative integers. Thus, the compositions a°l and ani are 

as follows:
a 0* := a 00 -I- ia\ =  (u +  z, m — i +  v, n +  w), 
am := a°l +  na 2 =  (u +  i, m — i +  n +  v , w).
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We have

a 0m = (u + m, v, n + w), a n0 =  (u, ra +  n +  u, w), anm =  (m + u ,n  + v,w).

Recall that we consider all paths in the path algebra KT  modulo the p-adic 

relations (i.e. those given by S +(2,s) sub-quivers (see after Theorem 3.3.4)). 

In particular, this implies that there is only one path from aok to a 01 (or from 

ank to a nl) where 0 < k < I ^  m.

Denote by Pi the path in the path algebra KT  modulo the p-adic relations, 

from a 00 to a 0*, to a m and to a nm.

Recall the map f  from K T  to S +(n,r) (see Section 1.4).

Proposition 5.3.1.

f (P i) =  i+(m — )̂ + n+£Qnm)ani£QniiQ0t£Q0i)Q00. (5.3.1)

Proof. The path Pi can be written as follows:

Pi =  P{anm,a ni)P{an\oPi)P{a0i )a m),

where P(anm, am) is the unique path from ant to anm, P(ani, a 0*) is the unique 

path from a 0* to am and P (a 0i,a 00) is the unique path from a 00 to a 01. By 

Theorem 2.5.3, the / - images of the paths

f[P (a nm, a ni)) = ( m -  i)+( tt- ,a " ‘,
/ ( P ( a ni, a oi)) =  n+fQmiaoi,
7 (P(o0i,Q;00)) =  i+£a oi<aoo.

Hence we obtain Equation (5.3.1). I

By Proposition 3.2.15, we have the following proposition.
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P roposition  5.3.2. Let d := min{ra, n}. Let H be Hom^A^ anm ? M  Q°°). 

Then the dimension of H is (d+  1). Moreover, H  ~  £anm̂ 4£a00 is spanned by

{ X t I X t =  , it =  i u+m_i2"+”l t3u’,t  =  0,1, . . .  ,rf}.

Moreover, X t = £3«n"*jgt, where qt =  i u3t2m+u3n+u;-t and 0 ^  t ^  d.

Our aim is to calculate /(P»).

Lem m a 5.3.3.

£Qm)Q0*£Q0ia00 = £Qnt)aOO.

Proof. Let d' =  min{n, i). By Proposition 5.3.2, £a«<j4faoo has a basis 

{{.Utto° I *; =  i u+i- t2m~i+n+vl t3w,t  = 0,1, . . .  ,d!}.

By Lemma 1.1.2, we have

d'

£ani,a°* â0i,Q00 ^   ̂ .3a°0 ’
*=0

where Zt is the number of multi-indices s =  (si, . . .  , sr) in 1(3, r) satisfying 

the following conditions:

( r ni,3a0i) ~  « , S), ( r 0i, r 00) -  ( s , r 00).

That is,

i + n + v ^ w  ^u+i27Tl—i + v r ^ n + w j  ^  ^ u + i —tQ ^ m —i + n + v ^ t Q W  ^  ^  g  2)
^ u + i ^ f n —i + v r y i + w  ^u2m+'u3n ^  ^  2  3)

By (5.3.3), the last (n +  w) places of s are 3’s. By (5.3.2), the first (u + i — t) 

places and the t places from the last (w +  t)-th to the last (w +  l)-th  ones of 

s are l ’s.
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We claim that t = 0. Otherwise t ^  1. Then the t places from the last (w + t )- 

th to the last (w +  l)-th places of s are l ’s. This is a contradiction with that 

the last (n +  w) places of s are 3’s where n ^  1. Hence t =  0. By (5.3.2), the 

first (u +  z) places of s are l ’s. Since s ~  i^+i2 m- i+v3 n+w, s = i«+*2m- i+u3n+u;. 

Thus Zq = 1. Note that i '0 =  3Qm. Hence we obtain our formula. I

Lem m a 5.3.4. Let di := min{m  — i,n}. Then

c c _  A  /m  -  A  
Sanm,anisani,a00 ~  2_^ I I l’

t=0 ' % '

where 0 ^  i ^  m. In particular,

d

^Qnm^nO^QnO^OO — E  X t -
t=0

Proof. By Lemma 1 .1 .2  and Proposition 5.3.2, we have

d

£ a nm ,ani £ a n* ,a00 =  q t,
t=0

where qt = i u3t2rn+v3n+w~t and is the number of multi-indices s = 

(si, . . .  , sr) in 1(3, r) satisfying the condition:

^u+rr^n+ugu; ^+*2 ^ —i+n+ugu;  ̂ ^  ^ u+m2 n'*‘l’3 lt; 5 ) (5  3  4 )
^u+i2 m—t+n+v0 tu 2tt2 m"*’v3 n"*’u;) ~  (s ^ 3 2̂ Tn_*'u3 n"*’u;—*) (5  3  5 )

By (5.3.5), the first u places of s are l ’s. By (5.3.4), the last w places of s 

are 3 ’s. Since s ~  lu+iyn-i+n+vyw? ^  remains which places of s will be the i 

copies of l ’s.

By (5.3.4), the first (u + m) places of s must be l ’s or 2’s. Thus, these i copies 

of l ’s of s are in the m  places from the first (u +  l)-th to the first (u +  m)-th 

ones.
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By (5.3.5), the t places of s from the first (w + l)-th to the first (zz +  £)-th place 

are 2’s. Hence it remains to choose i places from (m — t) places from the first 

(u + t +  l)-th to the first (u +  t +  m)-th places of s, to put i copies of l ’s. So 

the number of such s is ^ . That is,

We claim t ^  m — i. Otherwise t > m — i. Then m — t < i. Note that we 

need to put i l ’s in the (m — t) places from the first (u + t +  l)-th to the first 

(u +  77i)-th places. This is impossible. Hence t ^ m  — i. By Proposition 5.3.2, 

t ^  dmin{m, n}. Let d{ := min{m  — z, n}, then 0 ^  t <: di. Hence

<U
c csanm,anisani,a00 — \ I t '

t=o '  1 '

Note that d0 = d. So we obtain the special formula when i =  0.

We now calculate f(Pi) where i = 0,1, . . .  , m.

T heorem  5.3.5. Let di := min{m — i ,n}. Then

di
f{Pi) = i+( m - i ) +n+j>2 i™ •

t=0

where 0 ^  i ^  m. In particular,

d
f(P 0) = m +n+ J 2  X t, f (P m) = m +n+X 0.

t=0

Proof. By Equation (5.3.1),

f(P i) — Z+(m — i) + n+^anmani^Qnt)a0i^a0t)aC 
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By Lemma 5.3.3, we have

£Qm )Q°t̂ Q0*|Qio — £ani,a00-

So, by Lemma 5.3.4,

f{Pi) = i+(m — i)+n+£Qnm)Qm£Qni)Qoo =  i+(m — i)+n+ ^  y . ) X t-
t=o '  1 '

Finally, we consider the related m  x n rectangle in the quiver T. This subgraph 

can also be obtained by interchanging the simple roots a i and ol̂  in the above 

n x m  rectangle:

poo iQ2 i p O i  (m t)Q2:> p O m

nQi n a  i n a  i

0
nO

102 ( m —i ) a 2
0 ’

where ft00 is the following composition

P°° =  (u, n +  v, m  +  w).

Thus, the compositions P01 and pni are as follows:

p ° i  . _  poo  _j_ 2q,2 =  v  _j_ n  +  ^  w  ^

/?nt := Z?0* +  noL\ =  (u +  n, v +  z, w +  m — i).

Denote by Qi the path in the path algebra KT  modulo the p-adic relations, 

from P00 to /?0i, to Pni and to Pnm.

We simply list the corresponding propositions and theorems.
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P roposition  5.3.6.

f{Q i) == i+(m — i^ri^^Qrimpni^pnipOi^pOiplO. (5.3.2)

P roposition  5.3.7. Let d := min{m,n}. Let H' be the Hoitu(j4£/3 nm ? M(3 oo ). 

Then the dimension of H' is (d+  1). Moreover, H  ~  €p™A£poo is spanned by

{X't I X't =  ^  3*00, i\ =  t =  0,1, . . .  , d}.

Moreover, X[ — €3 0™ ^, where q[ =  i u^t2n+v3m+w~t and 0 ^  t ^  d.

Lem m a 5.3.8.

£/3nm,/3ni£/3n<,/?0i =  €/3nm,l30i'

Lem m a 5.3.9. Let d\ min{2,n}. Then

d’i / m _ t\
^nm)/30i^0i|/300 =  ^  f j X[.

t= 0 '  ‘

where 0 ^ i  In particular,

d

£/?nm ,/?°m £/?°m , p ° ° = x [ .
t= 0

T heorem  5.3.10. Let d[ := min{z,n}. Then

f(Q i) =  i+(™ -  *)+n+ _  ! ) X«’
<=0 '  '

u//iere 0 ^  i ^  m. 7n particular,

d

f{Qo) = m +n+X 0 , f(Qm) =  m+n+ ^  X,'.
*=o
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5.4 The 1 x m  and m x l  relations

In this section we consider the special case n = 1 for the n x m  and m  x n 

rectangles in Section 5.3. In this special case we obtain the 1 x m  and m x l  

relations.

Let K  be a field of characteristic p ^  0. Let A be S +(3, r) over K. Let au and 

# 2  be simple roots of type A 2 .

First we consider the following 1 x m  subgraph:

a

OC2

00 Ql
a

Q2

01 ax Ql 0,m—1 Ql—>. „ , 0 m

a 10 ai

ar

02

a 11 a i

cr

02

Ql 1 ’ 1 Ql,1,771—1a a 1771

We assume that a 00 =  (ai, 0 2 , a3) with the conditions a\ ^  m  and a3 ^  1. We

write a 0* and a 11 (0 ^  i ^  m) as the following compositions in A(3, r):

a 0* := (ai +  i, 0,2 — i , a3) =  a 00 +  ia  1 ,
:= (ai +  i, a2 -  i +  1, a3 -  1) =  a 0* +  a 2.

Let T  be the vector space spanned by the paths from a 00 to a lm in the path 

algebra KT  (modulo the p-adic relations!). Next we consider the relations in 

T.

By the end of Chapter 3, we have the path P (a 0t, a 00) from a 00 to a 0t in T. 

Define by Pi the path in T  as in the proof of Proposition 5.3.1:

Pi =  P (a lm, a H)P (a li, a 0i)P (a0i, a 00)).

where 0 ^  i ^  m.
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P roposition  5.4.1. The set {Pi | 0 ^  i ^  m} is a basis o fT .  Hence the 

dimension of T  is (m +  1).

Proof. Since the simple roots in type A 2 are ot\ and 0 2 ? there is no path from 

a 00 to a lm which goes partly outside the rectangle in KT. Thus the paths 

from a 00 to a lm in T  are linear combinations of the products of the paths Pi 

for 0 ^  i ^  m. In other words, {Pt | 0 ^  i ^  m} spans T.

Next we prove that {Pi | 0 ^  i ^  m} is linearly independent in T. In the path 

algebra K T , we know that {Pi | 0 ^  i ^  m} is linearly independent. Since our 

p-adic relations at the end of Chapter 3, are for the paths which have their 

different parts only in the first row (related to the simple root c*i), or only in 

the second row (related to the simple root a 2). In other words, there is no 

p-adic relation for the paths whose different parts are of part in the first row 

and of part in the second row. Thus there is no p-adic relation for the set 

{Pi 10 ^  i ^  m}. Hence {Pi | 0 ^  i ^  m} are linearly independent in KT  

modulo our p-adic relations, that is, are linearly independent in T.

Therefore {Pi | 0 ^  i < m} is a basis of T. I

We list the corresponding results for n = 1 in the n x m  rectangle in Section 

5.3.

Proposition  5.4.2.

f(Pi) =  i^(m  — i)+£alm,au£au,a0i£a0i,a00' (5.4.1)

By Proposition 5.3.2, we have:
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Proposition 5.4.3. Let A  = S+(3,r) and H  = Honu(A£Qi™, A£aoo). Then 

the dimension of H  is 2. Moreover, H  ~  ^Qim ^ aoo is spanned by { Xq , Xi } ,  

where

X q . gaOO , X \ . £galm 2al 32a2 3a3 —̂ "

By Theorem 5.3.5, we have:

Proposition 5.4.4.

f(Pi) = i+( m - i ) + ( J f f j X o + ( m i 1) X l) ’

In particular,

f(P 0) =  m +(X  o +  X l), f(P m) = m + X 0.

We now describe relations in T  in terms of Pi s where i = 0,1 . . .  , m. 

Theorem 5.4.5.

i+{m -  i)+ ^  7(P0) -  m +/(P i) +  i+(m -  i f  ( “ J i )  /(^m ) =  ° ’

w/iere 1 < i ^  m — 1 . 77ia£ is, we have relations in the quiver T:

where 1 ^  i ^  m  — 1.

Proof. By Proposition 5.4.4, 

m +f(Pi) = i+(m — i)+ ^ m^ m +X0 +

(” r ‘) + (T :,‘) ) ” ^ +
= i+(m -  i)+ n  m . ^  (X0 +  X ,) +  (™ _  X0) ,

= i+(m -  i f  ( “1 j /(Po) + (“j/) /(a.)),
as required. I

100

^ P0 -  m +Pi +  i+(m — z)+ Pm,



Corollary 5.4.6. (a). Let a be a nonnegative integer, and let m  =  m'pa and 

i = i'pa in Theorem 5.4-5, with p ^  m' > i! ^  1. Let P “ be the path Pi>pa, then 

P f = Pi as above. Thus the relations in Theorem 5.4-5 can be written as

( m ' - i ^ P S - m 'P t  + i'P^,,

where 1 ^  i1 ^  m! — 1 . In particular, let m! = 2, then i! — \, and we have the 

relation

PS -  2P f +  P2°.

(b). Let K  be of characteristic 0, that is, p =  0. Then the relations in Theo­

rem 5.4-5 can be written as

(m -  i)P0 -  mPi +  iPm,

where 1 ^  i ^  m — 1 .

Proof, (a). By the formula in Theorem 2.5.3

(i'pa)+ =  i'l, (m'pa — i'pa)+ =  (m! — i')\ (mod p).

By Lemma 2.2.2, since i' — 1 ^ p  — 1,

m!pa — 1 \  ( {m! — 1 )pa +  (p — 1 )pa~1 +  . . .  +  {p — 1 ) \
i'pa J \  i'pa

and

'{m' -  1 )pa +  { p -  1 )pa~1 +  . . .  +  (p -  1 ) \  _  fm ' -  1 \  T-r f p  -  1 

i>pa )  ~  ^  i' y

Thus
m'pa — 1 \  ( m! — T. , . .

1 — 1 1 (mod p).
i'pa

101



Similarly, we have

mpa — 1 \  _  / ( m! — l)pa +  (p — 1 )pa 1 +  . . .  +  (p — 1 )' 
ipa — 1 )  \  (i' — 1 )pa +  (p — 1 )pa~l +  . . .  +  (p — 1 )

~  A  (mod P).
J  ~  1

Hence we get

— i' ) \ v ^  =  (mr — — 1 )!, — i' ) \ ^  ^  =  z ' ( r a '— 1 )!.

Thus the formula in Theorem 5.4.5 can be written as

(m' _  _  i)!/(p a ) _  +  ^(m' -  1 )! /(P “,) = 0,

where p ^  m! > i' ^  1 . Since m! ^  p, so (m' — 1 )! 0  (mod p), hence we

obtain the relations

( m '- V P g - m 'P g  + i'I* ,,

where 1 ^  i' ^  m' — 1 .

(b). Since m+ =  m! for K  of characteristic 0, the formula can be written as 

i\(m  — i)!  ̂ ^ / ( P 0) -  m!/(Pi) +  i!(m ^ / P m )  =  0.

So we have the relations

(m -  z)P o  ~ ^ iP i  +  «Pm,

where 1 ^  i ^  m — 1 . I

Theorem  5.4.7. £/ie relations in T  are generated by the relations in The­

orem 5-4-5:

i+(m -  i)+ ^  P0 -  m+Pi +  i+(m -  i)+ Pm,

where 1 ^  i ^  m — 1.
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Proof. By Propositions 5.4.1 and 5.4.3, we need to find (m — 1) linearly inde­

pendent relations in T. So it remains to prove that those (m — 1) relations in 

Theorem 5.4.5 are linearly independent.

, \ + ( m -  1\ , + f m - l '= i \im -  i y  ( , y{ = -  i y

Let

1 J \  * ~  1
We write the formula in Theorem 5.4.5 as follows:

D P  — O lx(m +l)>

where the matrix D is the following (m — 1) x (m +  1) matrix

/  xi - m + 0 . . .  0 yi \
x2 0 - m + ' • • : y2
: : ••• 0 :

D =

\  xm—i 0 . . .  0 —m + ym_i /

and P  is the following (m +  1) x 1 vector,

P = ( f ( P o ) J ( P l ) t - . - J ( Pm) y -

The matrix D has a sub-matrix

/  —m + 0
0 —m +

0 \  

0
\  0 . . .  0 — m + )

which is nonsingular since m + ^  0 (mod p) for any positive integer m  by

Theorem 2.5.3. Thus the matrix D has rank (m — 1). Hence these relations

are linearly independent. Therefore, we obtain all relations in T. I

We call the relations in Theorem 5.4.5, the 1 x m relations.

We can rewrite the relations in Theorem 5.4.5 as follows.
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Theorem 5.4.8.

f(P i) -  (m+) 1i+(m -  i)+ ( "" * ) f(P 0)+ (m  — 1

- ( m +) 1i+( m - i ) +\ ™ _ * \ f ( P m) = 0,

where 1 ^  i ^  m — 1 . That is, we have the following relations in the quiver T:

'm — 1'
i — 1

P™L mi

where 1 ^  i ^  m  — 1 . Hence these relations are in one-to-one correspondence 

with the paths Pi where 1 ^  i ^  m — 1 .

Proof By Theorem 2.5.3, m+ ^  0 (mod p) for any positive integer m. It

remains to multiply by — (m+) 1 the equations in Theorem 5.4.5.

Finally, we consider the related m x 1 subgraph in the quiver T. This subgraph 

can also be obtained by interchanging the simple roots d\ and cx.2 in the above 

1 x m  subgraph(or this is the special case n =  1 for the m  x n rectangle in 

Section 5.3):

£00 Q2 , ^01 Q2 3 _ a2

Ql ai a  i ai

p l O  Q2 j p l l  Q2 > . . . a 2 > p l , m — l  Q2 > £ lm

where /?00 = (&i, b2, b3) is in A(3, r) and for z = 0,1, . . .  , to,

£(h =  poo +  ia2 = ^  b<2 + z, 63 -  zpa),

Z?1* =  /J0* +  a i =  +  1 , b2 -  1 +  zpa, 63 -  zpa).

We simply list the corresponding propositions and theorems.
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Proposition 5.4.9. Let A =  S +(3,r). Then

H' := HoniA(M e  lm ,

is 2-dimensional and spanned by

Yq • ^3/Jlm 3/3OO , Vj . 3̂/3lm (ibi32l>2 3b3-1  •

Let T' be the vector space spanned by the paths from P00 to Plm modulo the 

p-adic relations in Theorem 3.3.4 in the path KT. Let Qi be the following 

path in T' from p00 to Z?0*, to Pu and to Plm. Then Qi can be written as

f(Qi)  = i+( m -  (5.4.2)

where i = 0 ,1 , . . .  , m.

Lem m a 5.4.10. We have

£plm ,/jOî Oî OO =  ^  ^>0 +  ^ ^

where 0 ^ i  In particular,

£/?2m,/?10£/?10,/310 =  ^ 0  +

£ p 2rn ,/3lrn£ p lTn ,p 10 — Y 0 .

Proposition  5.4.11. We have

f(Qt) =  i+(m -  i)+

In particular,

f(Qo) = m +Y0, f(Qm) = m +(Y0 +  Yi).

105



Theorem 5.4.12.

i+(m -  i )+(^n  i 1^/(Q o) ~ rn+f{Qi) + i+{m -  i)+ _  ^ jf{Q m )  =  0,

where 0 ^  i ^  m. Then we have all relations in T ':

i+(m -  i)+ ^  ^  Q0 -  m +Qi +  i+{m -  i)+ Qm,

where 0 ^  i ^  m.

C orollary  5.4.13. (a). Let a be a nonnegative integer, and let m — m'pa and 

i = i'pa in Theorem 5-4-12, with p ^  m' > i! ^  1. Let QJ be the path Qi'p«, 

then Qi = Qi- Thus the relations in Theorem 5-4-5 can be written as

(m' -  i’)Ql -  m'Q“, +  i'Qam,,

where 1 ^  i' ^  m’ — 1. In particular, let m' =  2, then i' = 1, and we have the 

relation

QI -  2QI +  Qa2.

(b). Let K  be of characteristic 0, that is, p =  0. Then the relations in Theo­

rem 5-4-12 can be written as

(rn i ) Q o  mQi “I- iQrm

where 1 ^  i ^  m — 1.

T heorem  5.4.14.

f(Q i) ~ (rn+y 1i+( m - i ) +^ m . ^ /(Q o )

- ( m +)~ V ( m  -  i ) + ^  J { Q m )  =  0,

where 1 ^  i ^  m — 1. That is, we have all relations in T':

where 1 ^  i ^  m  — 1. Hence these relations are in one-to-one correspondence 

to the paths Qi where 1 ^  i ^  m — 1.
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We call the relations in Theorem 5.4.12, the m  x 1 relations.

5.5 The n x m  rectangle for characteristic 0

Let A be the Borel Schur algebra S+(3,r) over K  of characteristic 0. Let T 

be the quiver T of A. By Theorem 4.1.4, the lengths of the arrows in T are 

1. Let m, n be positive integers. We consider the following n x m  rectangle in 

the quiver T:

a

a  2

a

a2

00

a 20

ai
a 01

a 21

ai - ^ a 0,m—l_ 2 U  a 0m

«2

r  \

a 2

r  >

a 2

10 a i  y. 11 Q1 _ . .. . Ql^  _1.m -1 Q1 ^  -1> a '  a  ' '  a

a  2 a  2 a 2

a 2 ,m -l a 2 m

Q,n—1,0 .^ 1> a n - 1,1 —>. . . . ---- ^  a n - l , m - l  Q n - l , m

a 2 a 2 a  2 a 2

„ nO a i ..•w - 77,1 _ a i Qi ~ ™ 1 » i -  .— .71771

where a 00 =  (ai, a2 , a3) and the compositions a (0 ^  i ^  m  and 0 ^  j  ^  n) 

are as follows:

aJt = a 00 +  icx.i +  j a 2 =  (ai +  i, a2 -  i +  j, a3 -  j) ,
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with the conditions that ^  m  and a3 ^  n.

By Proposition 3.2.15, we have the following lemma.

Lemma 5.5.1. Let d := min{m, n}. Let H  =  Hom^(A£anm, A£aoo). Then the 

dimension of H is equal to (d+  1).

Let T  be the vector space spanned by the paths from a 00 to anm in the n x m  

rectangle in the path algebra AT. Let \P(ra, n) be the set of all words consisting 

of m letters R  (right) and n letters D (down).

Lemma 5.5.2. The set \I/(m ,n ) can be regarded as a basis o fT . Hence the
rm • , (m  + ndimension o fT  is equal to I

Proof. Since there is only one path from ajl to otkl (or from to ajl) where 

0 ^  i ^  I ^  j  < k ^  ?7i, the paths from a 00 to a nm in the path algebra AT 

can be labeled by words from VP(771, 72). The set ^ ( 772, 72) is a basis of T. The
f  771 77 \  ( 7T7 “I" 77 \

number of such words is ( ). Hence the dimension of T  is ( 1 .1
V 772 J  V m  )

Hence we can rewrite the relations in Corollary 5.4.6 as follows:

Lemma 5.5.3. Let i and m' be integers with 1 ^ 2 ^  m! — 1 ^  m — 1. Then

(m' -  i)Wo(DRm')Wi -  m 'W o R ^ D R ™ '-^  +  iW0{Rm'D )W U

where Wo and W\ are words of R ’s and D ’s such that WoWi G ty(m—l ,n —m'). 

Similarly, we have

(m' -  i)V0(Dm'R)Vi -  mV0(DiRDm,- i)V1 +  iV0(RDm')Vu
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where Vq and V\ are words of R ’s and D ’s such that VoVi € ty(m — m ',n  — 1). 

In particular, let m' = 2, then i = I, we have

W ^D R ^W x -  2W0(RDR)W 1 +  W0(R2D)W1, (5.5.1)

Vb(Z)2/?)Vi -  2V0(DRD)V1 + V0(RD2)VU (5.5.2)

where Wq,W\, Vq and V\ are words of R ’s and D ’s such that WoW\ G V̂ (m — 

l ,n  — 2) and VoVi € ^ (m  — 2,n — 1). These relations are generated by the 

following relations:

D R2 -  2RDR  +  R2D , D2R -  2DRD  +  RD 2. (5.5.3)

D efinition 5.5.4. We call the relations in Equation (5.5.3), the 1 x 2  relation 

and 2 x 1  relation respectively.

Our aim is to prove that all relations in T  are generated by 1 x 2 relation or 

2 x 1  relation.

Define the lexicographic ordering on the words in ^(m , n) by setting D y  R. 

Exam ple 5.5.5. The 1 x 2  relation:

D RR — 2RDR  +  R R D , where D RR >- RD R y  RRD.

The 2 x 1  relation:

DDR — 2DRD  +  R D D , where DD R y  DRD y  RDD.

We can list all words of R ’s and D ’s in ^(m , n) by this lexicographic ordering.

Theorem  5.5.6. The relations from a 00 to a nm in T  are generated by the 

1 x 2 or 2 x 1 relations.
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(777 ~\~ 77 \
J . By Lemma 5.5.1, the Horn space 

H := Homi4 (y4 ^Qnm, A£aoo) is (d +  1) dimensional. Recall that the surjective 

map /  maps T  to the Horn space H. The relations in T  are the kernel of / .
f  777 -f- 77 \

So we only need to find ( J — d — 1 linearly independent relations in T

generated by the 1 x 2 or 2 x 1 relations in T.

(777 “h  77 \
J words of R  and D in \H777, 77). 

m J

The words in ^(m , 77), which don’t contain a sub-word DDR  or D R R , are of 

the following forms

Rn- i{DR)iDrn~\

where 0 ^  i ^  d. There are (d +  1) such words. Hence, the number of the
(777 -f- 7 7 \

words containing a sub-word D D R  or D RR  is equal to I ) — d — 1.V m J

We assume that P = W (D D R )V  is in ^(m , n) where W V  G ^ (777  — 2,77 — 1). 

Then the words W (D R D )V  and W (RD D )V  are in ^ ( 777, 77). Hence we have 

the relation

W (D D R)V  -  2W (D R D )V  +  W{RDD)V\
(W (D D R)V y  W (D RD )V y  W (RD D)V),

which is generated by the 2 x 1  relation. Similarly, if P — W '(D R R )V ' is in 

^ ( 777, 77) where W V '  G ^ (7 7 7  — 1, n  — 2). Then we have the relation

W (D RR)V  -  2W (R D R )V  +  W (RRD )V ,
(W (D R R)V  y  W (RD R)V  y  W (RRD )V),

which is generated by the 1 x 2  relation. Note that the word P  is the leading

term in the above relations in the lexicographic ordering. Thus these relations

(777 -J- 77 \
I — d — 1 linearly

m J
independent relations in T. I
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5.6 R elations for 5 +(n, r) in characteristic 0

In this section we use the results from [6] to describe all relations for S +(n,r) 

over a field of characteristic 0. Without loss of generality we can assume that 

the ground field is the field of rational numbers Q.

Recall that £1 , . . .  ,£n is the standard orthogonal basis of the euclidean space 

Rn. Let ( , ) denote the inner product on this space and define a< =  Si — £i+1. 

{ai, . . .  , o:n_i} is a base of simple roots of the root system of type An-\.

Doty and Qiaquinto in [6] found the following presentation of the Schur algebra 

by generators and relations.

T heorem  5.6.1. ([6]) The Q -algebra S(n ,r) is the associative algebra (with 

I) given by generators 1a (A £ A(n, r)), e*, fa (1 ^  i ^  n — 1) subject to the 

relations
^A/x IA > X^A€A(n,r) ^A ^

, =  f h + aiei i f  A +  OLi e A(n, r)
* A ' 0  otherwise

= . l x - a j i  i/A -  ^  € A(n, r) 
^  A ' 0  otherwise
1 , edx-ai i f X - a i Z  A{n,r)
A % 1 0 otherwise

1 f .  =  J  i f X  +  a i  e  A ( n ’ r )
A \  0 otherwise

Cifj ~ fj&i = $ij (A? — ^j+i)1a
A€A(n,r)

e f e j  -  2e i e j e i  +  e;et- = 0  (|i -  j | =  1)
e i 6 j  -  e j e i  =  0 (|i -  j | > 1)
f f f j - Zf af j f a + f j f ^ O  ( \ i ~ j  1 =  1) 
f a f j - f j f a  =  0 ( \ i - j \  > 1).

It follows from the results in [6] that the Borel Schur algebra S +(n,r) over Q 

has the following presentation by generators and relations.
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T heorem  5.6.2. ([6]) The Q -algebra S +(n,r) is the associative algebra A 

(with I) given by generators 1a (A G A(n,r)), e* (1 ^  i ^  n — 1) subject to the 

relations
(7^1) 1 a 1/z =  ^A/*1a > S A eA (n .r) ^A =  1

e l f lA+ai^i ifX  + QCi G A(n,r)
, 1 x 1 0 otherwise

l e  ==\e ilx -a i  ifX-OLi G A(n,r)
A 1 \  0 otherwise

{U3) efej -  2e^e* +  ê -e? =  0 (|z -  j |  =  1)
e i e j  -  e j e i  =  0 (|i -  j | > 1).

In the following, we let A be the associative algebra in Theorem 5.6.2.

Set E f = eA \ for 1 ^  i ^  n — 1 and A G A(n, r). Note that by the relations 

(7^2) in Theorem 5.6.2, E* =  0 unless A -I- a* G A(n, r).

Lem m a 5.6.3. Let v , \ , /z G A(ra, r). Then

I . ^ I a  =  5 ^ +ai5u,xE l

Moreover, E f Ej = 0 unless fi — aj = A, and

E i+ajE, =  e ^ U .

Proo/. By the definition of EJ' and the relations (P-i) in Theorem 5.6.2, we 

have

1 / z ^ i  =  1 / i ^ i l i /  =  l / i l i ' + a j ^ z  =  l iz + c t i^ i  ==

Thus

1/x^Ia = ^Ij/Ia = SUt xeAv =  $vt\E".

Moreover, by the above formula,

E?E} = (E?l„)(h+ajE>) = S ^ E f E } ,
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Note that if A +  aj is not in A(n,r), i.e. i?tA+aj =  0, the above equation still 

holds. I

Recall that rad A, the radical of A, is a nilpotent ideal R  of A such that A /R  

is semi-simple (see Section 1.2). Next we will calculate the radical of A.

By Lemma 5.6.3, E fE*  =  0 unless /i — aj = A, which gives the multiplication 

formula for E f ’s in A. Let A =  (Ai, . . .  , An) G A(n, r). Suppose that there 

exists some z with 1 < z ^  n — 1 such that A* ^  1, then A — G A (n,r). 

This means for the diagram of A we can move 1 box from the z-th line to the 

(z + l)-th line. For each A* with l ^ z ^ n  — 1, we can follow this procedure 

for the diagram of A, moving the boxes of line z to the bottom line n. We can 

always repeat this procedure, until the remaining diagram will have the only 

line on the bottom, i.e.(0, . . .  , 0, r). More precisely, we have

A — I^Li1 Ai(oti + . . .  +  otn-\)  — (0, . . .  , 0, r),

where A — A* (a* 4- . . .  +  a n_i) means moving the z-th line of the diagram of 

A to the 72-th line, this implies we need to move n — i times for each of the \  

boxes of line z. Thus the total number of moves for this procedure will be

ri\ := (72 — l)Ai +  (72 — 2)A2 +  . . .  +  An_i.

Note that for (0, . . .  ,0 ,r), we can not run this procedure, since for any z, 

(0, . . .  , 0,r) — ai is not in A(t2, r). Thus, the maximal number of moves we 

can make to to remain in A(n,r) is n\. Note that

max72a =  (72 — l)r, which is attained for A =  (r, 0, . . .  , 0).



Hence, for any A G A(n, r),

A — 'E U * ,  with the condition ^  (n — 1 )r +  1,
i i

then A — ]TV Loti will be not in A(n, r).

P roposition  5.6.4. Let R  = rad A. Then R is generated by all as an

algebra. Moreover, the vector space R /R 2 has a basis

{E f + R2 \ l ^ i ^ n  — 1, A G A(n, r), A +  oti G A (n, r)}.

Proof. Let E  be the subalgebra of A  generated by all E ^s. We need to prove

that E  =  R. Note that for any i with 1 ^  i ^  n — 1,

e{ = eil = e< ^ 2  ^  =  ^ 2  Ei-
X e A  ( n , r )  AeA (n,r)

Since E* G E , we have ei G E. By Lemma 5.6.3, E  is stable under multipli­

cations by Ia’s, so E  is an ideal of A. It is easy to see that

A / E  s  0  K l x ,
A€A ( n , r )

so A /E  is semi-simple.

Let N  =  (n — l)r  +1. Note that N  > m axn\. Consider E N+1. Let x G E N+1, 

then a; is a linear combination of the products Ef° E ^  . . .  E ^ , where M  ^  N.

Since E /E ^  = 0 unless p — otj =  A, the above product E /°E ^  . . .  E ^  = 0 

unless
M

e A(n,r).
k—l

However, this is impossible since M  ^  N  > maxn,\. Thus any product in the 

linear combination of x will be 0. Hence x = 0. That is E N+1 =  0, which 

implies that E  is nilpotent. Therefore E  is the radical of A, i.e. E = R.
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Now it is clear that R /R 2 is spanned by all nonzero E f  +  R2, where 1 ^  i ^  

n — 1, A G A(n, r). Next we prove that these nonzero E* +  R2 are linearly 

independent. Suppose that there exist rational numbers a^x, such that

+ fl2) = 0,
i,A

we need to prove that all a^x =  0 . Assume there exists a^x i 1 0, for some i 

and A. Since

Y  <nAE? + R 2) = Y  + R2 = o,
i,A i,A

we multiply lx+ai on the left hand side, and multiply 1a on the right hand side 

of the above equation, then by Lemma 5.6.3, only E f  in the sum survives, we 

get:

lA+Qt(^ 1  ) +  R2) 1a =  +  R 2 = 0 .
i, A

Thus aitxEi G R2. Since 7  ̂ 0, we have E f  G R2, which is a contradiction. 

Hence all E * +  R 2 will be linear independent and form a basis of R /R 2. I

Now we describe the quiver T of A.

T heorem  5.6.5. The quiver T of A over Q is given as follows. The set of 

vertices is To =  A(n,r); the number of arrows from vertex A to vertex fi for 

A,/i G A(n, r ) ; is equal to 1 or 0; this number is equal to 1 if  and only if 

fi — ai = \  for some 1 ^  i ^  n — 1 .

Proof. Let R = rad A  By Proposition 5.6.4,

A /R  = 0  K l\ .
XeA (n,r)

By Definition 1.4.5, A is elementary. Thus, by Definition 1.4.2, the vertex set 

r 0 is A(n, r).
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Next we consider the arrows. Note that the number of arrows from vertex 

A to vertex fj, for A,/u G A(n, r), is the dimension of l ^ R /  R 2)l\.  And by 

Proposition 5.6.4, R /R 2 has a basis

{E v{ + R 2 \ l ^ i ^ n  — 1, z/ G A(n, r), v  +  G A(n, r)}.

Hence we need to calculate the dimension of

U R / R 2)lx = 1M( ®  K  ■ E» +  R2)1x =: H(n, A).
u , i

By Lemma 5.6.3, A) ^  0, if and only if there exists 1 < i < n — 1 and 

v G A(n, r) such that A =  v and fi — OLi — v. Moreover, in this case H (fi, A) is 

one-dimensional and spanned by E /  +  R 2, where \  — v and fi — =  v. I

Note that in Theorem 5.6.5, there is precisely one arrow from A to /x =  A +  a< 

for some 1 ^  i ^  n — 1, corresponding to E f and labeled by E f.

Let QT be the path algebra of T over Q. Then by Theorem 1.4.6, there is 

a surjective ring homomorphism <p : QT — ► A , defined as follows: <p(l\) = 

1a and <p(E*) = E£ = eAx for all 1 ^  i ^  n — 1 and A G A(n, r). By 

Theorem 1.4.6, ker<  ̂contains exactly all relations of the quiver T.

Definition 5.6.6. We define the following relations for the path algebra Qr:

(R) E?+ai+ai E?+aiE} -  2E^+ai+aiE}+a‘E^
+E}+2a,E*+aiE?‘ (|i -  j | =  1) 

E -+aiE f  -  (|i -  j  | > 1),

where E% is treated as zero if either v £ A(n, r) or v +  ^ A(n, r) (i.e. there

is no such arrow E%).

Let T  be the ideal of QT generated by the above relations (71).
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Lemma 5.6.7. T  C ker</?.

Proof. We need to prove that p{TV) =  0. By the definition of (p and the 

relations (T^) in Theorem 5.6.2 (or see Lemma 5.6.3),

(p(Ei+ai+aj E i+aj E}) 
=  v(E?+ai+a>)<p(E?+a’)<p(E})

1 A+cci+Qtj 1 A+Qj 1a
=  e?lA+Qje jlA 
=  e?e,lA.

Similarly

<p(E}+2a‘E ^ aiE>) = ejefU.

By Theorem 5.6.2, A satisfies the relations (7^3), hence

= {efej -  2eiejei +  eje\)\x =  0, 

where \i — j\ = 1. And by Lemma 5.6.3,

<p(E*+aiE }  -  E j +0“E-') =  fee* -  eje i ) l x =  0 

where |i — j  \ > 1. Thus T  C ker ip. I

Let F  be the free associative algebra with unit and free generators ê , 1A, where 

1 ^  i < n — 1 and A G A(n, r). Let 0 and ifr be the canonical homomorphisms 

from F  to A and Q r, defined as follows: 0(1a) =  1a> $(ei) =  ed ^(Ia) =  1a5 

^ (d )  = X̂ AeA(n r) - Note 6 is surjective. The map xjj is also surjective, 

since

£* =  ( £  # ) ! *  = * (e iM U ) = t M ,
AgA (n,r)
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for all 1 ^  i ^  n — 1 and A € A(n, r). Thus we have the following diagram:

F

Q r

Note that

ipip( 1A) =  <̂ (1A) =  1A =  0(1a),

and

^ ( e < )  =  ^ (  =  e i l x  =  ^  • 1 =  e< =  0 ( e i ) ,
AeA ( n , r )  AeA (n,r)

for all 1 ^  z ^  n — 1 and A € A(n, r). Hence 0 =  ipip, i.e.the above diagram 

commutes.

Lem m a 5.6.8. For the above diagram, ker ip =  V>(ker0).

Proof. Let x  G ^(ker0). Then x  =  ip(y) for some y G ker0. Thus </?(:£) = 

tpip(y) =  0(?/) =  0, i.e. x  G ker</?. Thus V>(ker0) C ker<£.

Now let a G ker p>. Since ip is surjective, then there exists b G F  such that a =  

ip(b). Then 0(6) =  p>ip(b) = ip(a) — 0, i.e. 6 G ker0, thus a =  -0(6) G ip(ker0). 

Hence ker p = ip (ker 0). I

Theorem  5.6.9. The ideal T  of A contains exactly all relations of A, i.e.

ker ip = T.

Proof. By Lemma 5.6.7, we only need to prove that ker<p C T. By 

Lemma 5.6.8, we need to prove that ^>(ker0) C T. By Theorem 5.6.2, ker0 is
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generated by the relations T^i, 7̂ 2 and 7̂ 3 as an ideal. Thus it is enough to 

prove that maps each relation in T^i, and 7̂ 3 into T.

(T^i): Note that path algebra QT satisfies all relations in 7£i, so the image of 

all these relations in QT is zero.

(7^2): Assume A G A (n,r), and A +  a* € A(n,r). Then one has

'ipietlx -  1a+<*&) = 0.

Assume now A € A(n,r) and A +  a* £ A(n,r). Since ^(eilx) = E f, and 

A + cti £ A(n, r), E* =  0. Thus ip(eil\) =  0. And the other case in the 

relations 7̂ 2 is considered similarly. Thus ^ ( ^ 2) =  0-

xp(eilx) = E?,

and

^ ( l A + a . e i )  =  ^ ( l A + a i W e . )  =  l A + a * (  E i )  =  E i ^
(n,r)

thus

(7^3): Let 1 ^  i j  ^  n — 1. Since ^(e4) =  Eaga^t-) Eh  and Ei Ej = 0 unless

[i — OLj = A by Lemma 5.6.3,

'ipieiej) =  ^(e<)^(ej)
E i ) ( 5 2 \ e A ( n , r )  E j )-//iGA(n,r)

A,/xGA(n,r)

AGA(n,r)

Thus

AgA (n,r)

Similarly



and

Vfej-ef) =  ] T  Ej+2at E i+°“ E*.
AeA(n,r)

Hence

^(efej -  2eiejei +  e^e?) =  VKei ej) -  2xp(eieje2) +  ^ (e^ e i)
= £  (E i+ai+ai E -+ai E}

AeA (n,r)

- 2 E?+a,+aiE$+aiE? + E}+2o“Ei +aiE?) e  T, 

if \i — j\ = 1. Similarly we have

i>{eiei - e i ei) =  xj>{eiej ) - ^ { e j ei) =  £  (£ *+Q̂  -  E ^ °“E>) e T,
AeA(n,r)

if |i — j |  > 1. Thus 'ipi'JZs) C T. Therefore ^>(ker0) C T. Hence kenp = 

ip (ker 6) = T. I
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