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Abstract

Let K be an infinite field of characteristic p > 0 and let n, 7 be positive integers.
Let S*(n,r) be the Borel Schur algebra over K, which is a subalgebra of the
Schur algebra S(n,r). We aim to give a description of the Borel Schur algebra
S*(n,r) by finding its quiver and relations. We give a complete description of
the quiver and relations for S*(2,r). We also construct a family of embeddings
from S*(2,7) to S*(n,r + s) which induce embeddings of the corresponding

quivers. This gives us some relations for S*(n,r) for n > 2.

We describe the quiver of S*(n,r) for both p = 0 and p > 0. We also describe

some relations of special type for p > 0 and find all relations for p = 0.



Introduction

1. Motivation

One wide open problem in the area of representation theory is to understand
the representation theory of general linear groups, or equivalently, that of sym-
metric groups. Here basic representation theoretical questions are still open.
For example, it is unknown in general what the dimension of simple modules
is, or what the decomposition matrices are. The Schur algebras describe the

polynomial representations of general linear groups.

This thesis is concerned with Borel Schur algebras, which are certain subal-
gebras of Schur algebras. Borel Schur algebras can be used to study Schur
algebras. Their representation theory is better understood and their combi-

natorics is possibly easier than that of Schur algebras.

A Borel Schur algebra is a basic algebra, so we can completely describe it
by finding its quiver and relations. This data then allows to calculate (in a

relatively easy way) lots of representation theoretical data of this algebra.

2. Descriptions of results
Let K be an infinite field of characteristic p > 0 and let n,r, s be positive

integers. Let S*(n,r) be the Borel Schur algebra over a field K. Qur aim is
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to give a complete description of the Borel Schur algebra S*(n,r) by finding

its quiver and relations.

Let I' = (I, T'y) be the quiver of S*(n,r) where I'y and T, are the sets of
vertices and arrows respectively. Let A(n,r) be the set of compositions of r

with at most n parts. Then the vertex set I'g is equal to A(n,r) (Sections 1.3

and 1.4).

In general, the quiver for S*(n,r) is essentially known (see e.g.[13]). Using the
results from [16], in Section 4.1 we give a shorter and more elementary proof

to describe the arrow set I'y for S*(n, ).

We find all relations for S*(n,r) for the case n = 2 or p = 0 (Sections 2.3
and 5.6). We construct a family of embeddings from S*(2,r) to S*(n,r + s)
and prove that these embeddings induce embeddings of the corresponding
quivers. In this way we find some relations for S*(n,r) for n > 2. We prove a
multiplication formula for S*(2,7) in Section 2.5 and use it to find all 1 x m

and m x 1 relations in I" (Section 5.4).

We also describe some other special relations in I. Unfortunately, we have not
found all relations for S*(n,r) for the case n > 2 and p > 0, which seems to

be a difficult problem.

3. Structure of this thesis
In Chapter 1 we give the definitions and background needed to understand the
main problem as well as the methods used in the other chapters. We define

quivers and list some results about Borel Schur algebras. For more details, see

(2], [10], [11] and [16].



In Chapter 2 we describe the quiver and relations for S*(2,7). We also obtain a
multiplication formula for S*(2,7) in Sections 2.1 and 2.5 and get all relations

for S*(2,7) (Theorem 2.3.1), which we call the p-adic relations.

In Chapter 3 we construct embeddings from S*(2,7r) to S*(n,r + s). We
prove that these embeddings induce embeddings of the corresponding quivers
(Section 3.3). In this way we get p-adic relations for S*(n,r) forn > 2. In
Section 3.2 we calculate the Cartan invariant ¢, which is the dimension of

the vector space Hom4(A&,, AE,) where A = St(n,r).

In Chapter 4 we give an elementary proof to describe the quiver of S*(n,r)

using some results in [16].

In Chapter 5 we describe all relations in the case of characteristic 0 (Section
5.6) using the results from [6] and provide some relations in other cases. We
consider some special subgraphs of the quiver of S*(n,r). We obtain a product
formula in a rectangle in Section 5.3, to get all relations for the 1 x m and

m X 1 rectangles in Section 5.4.



Chapter 1

General background

In this chapter we introduce some notations on the Schur algebras and the
Borel Schur algebras, which will be used in the other chapters. We give another
proof to find the radical of a Borel Schur algebra in Section 1.2 (first obtained in
[11] (Sections 3 and 6)) and show that the Borel Schur algebras are elementary
(see Section 1.3) and so is basic. We also introduce the quiver of an algebra in
Section 1.4 (for more detail see [2]) and apply this to the Borel Schur algebra
S*t(n,r).

Throughout this paper: K is an infinite field of characteristic p > 0; n and r

are positive integers.

1.1 The Schur algebra and the Borel Schur al-
gebra

In this section we introduce Schur algebras S(n,r) and Borel Schur algebras
S*(n,r) and describe their elementary properties. For more details see [10].
We also introduce a multiplication formula from [11] and will apply this to the

Borel Schur algebra S*(n,r) in Chapters 2 and 5.
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We denote n as the set {1, ... ,n}. Let I(n,7) be the set of multi-indices ¢ =
(%41, ... i) with i, € n for all p € r. The symmetric group X, acts on I(n,r)
on the right by place permutations, i.e., it = (ixq), ... ,in(r)) for i € I(n,r)
and 7 € X,. For example, if i = (2,1,3,1) € I(3,4) and 7 = (132)(4) € Z,,

then 7 acts on ¢ on the right: iw = (3,2,1,1).

If we view i as the function ¢ : r — n, j + i;, then ix is just the composition

of functions ¢ o 7.

Let i,j € I(n,7). We define a relation ~ on I(n,7) by i ~ j if ¢, j are in the
same X.-orbit, that is, j = i¢n for some © € ¥,. For example: (2,1,3,1) ~

(3,2,1,1).

The group X, acts on I(n,7) x I(n, ) by place permutations. Let i,j € I(n,r)

and 7 € I, we can write 7 acts on (%, j) on the right as follows:

(ivj)ﬂ' = (i?T,j?l’).

Similarly, we write (4, ) ~ (k, 1) if there exists some 7 € X, such that (k,l) =
(i,j)m, that is, k = ¢w and | = jw. Note that this yields an equivalence relation
on I(n,r)xI(n,r). Let Q(n, ) be a set of representatives of equivalence classes

of I(n,r) x I(n,r) under the relation ~.

Definition 1.1.1. The Schur algebra S(n,r) is an algebra over K with the
basis {&; | (¢,5) € Q(n,r)}. The multiplication rule for S(n,r) is given by

Ei,jgk,l = Z [Z(Z’Ja k»lap, Q) ' l]gp,q, (111)

(r,9)€N(n,r)
p~i, g~

where Z(4,j,k,1,p,q) = |{s € I(n,7) | (4,5) ~ (p,s) and (k, 1) ~ (s,9)}|.
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We call {&;; | (¢,5) € Q(n,r)} the standard basis of S(n,T).
Note that §; ; = &, if and only if (¢, j) ~ (k,1). & ;€ = 0 unless j ~ k.
By Definition 1.1.1, we have the following lemma which will be used later.

Lemma 1.1.2. (/10]) The multiplication rule for S(n,r) given by Equa-

tion (1.1.1), can also be written as follows:

Ejbea= Y 2G5k 1Lp,0) Uy, (1.1.2)

(@' .DeQ(n,r)
p'~i

where Z(i, 5, k,1,p, 1) = |{s' € I(n,7) | (i,5) ~ (¢, &) and (K, 1) ~ (s',1)}].

Similarly,

&i,j&k,l = Z [Z(inj’k)lyi’q/) ) 1]€i.q’, (113)
(i-Q')§Ql(nﬂ‘)
q ~

where Z(i,7,k,1,i,¢') = |{s' € I(n,7) | (3,7) ~ (3,8) and (k,1) ~ (s, ¢')}|.

Next we introduce a multiplication formula for the Schur algebra S(n,r) in
[11] which will be used for the Borel Schur algebra S*(n,r) later.
Definition 1.1.3. For any j € I(n,r), we define

Pyi={r € %, | jm =i},
the stabilizer of j.
Then P,; = P, N P, is the stabilizer of the element (h,l) € I(n,r) x I(n,7).

Similarly P, j; = P,NP;N P, is the stabilizer of the element (A, j,1) € I(n,7) X

I(n,r) x I(n,r), where the action m € X, on h, j,l € I(n,r) is as follows:

(h, 5, )m = (hmr, jm, Um).
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The Pj-obits on r are

R.j)={p€rljp=a}, a€n
These sets form a partition of r, and
P = H P(R.(j)) (internal direct product),
aEn

where P(R,(j)) is the symmetric group on the set R,(j). In the same way,

P, has the following orbits on r x r,
Rop(h,l)={per|h,=a,l,=b}, aben.
Py is the product of the subgroup P(R,(h,!1)) for all a,b € n. Similarly
Roap(h, 5, ) ={p€r|h,=a,j,=d,1,=0b}, a,dbeEn
Theorem 1.1.4. ([11])For any i, 37,1 € I(n,r) there holds

€350 =Y _[Pus: Pajiléns, (1.1.4)

h
where the sum is over a transversal {h} of the P;;-orbits in the set iP;. The
indez [Py, : Pr ;| appearing in (8.2.5) can be computed from the formula
T ,b!
[Phul : Phy]al] = H = '7

Tars! - Tans!
aben a,l,b a,n,b

where, for all a,d,b € n, rap = |Rap(h,l)| and 14,45 = |Radp(h, j, 1))

Remark. 1. We shall always assume that the transversal set contains i.
2. Each integer 2z = [Py : Py j;] which appears in (1.1.4) must be interpreted
as the element 2z - 1x of K. Thus if K has finite characteristic p, these integers

are to be taken mod p.
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We introduce the following notations. We denote A(n,r) as the set of com-
positions of r with at most n parts, i.e. the set of A = (A;, Ay, ..., A,) with

2:;1 At = r, where A\;’s are nonnegative integers for all ¢ € n.

We use the notation

n = (1M, 2%, .. ),

where t* is the multi-index (¢,¢, ... ,t) with A\, many t’s, for all t € n. If

i = n*, we introduce the notation &) := &;;. It is easy to check that £, is an

idempotent in S(n, ), that is, £ = &,.

Definition 1.1.5. Let A and g be in A(n,r). We define

Exp = € pn-

Lemma 1.1.6. (/G80/, § 2.1) (1) dim S(n,r) = (n2 +Tr B 1).

(2) {&x | A € A(n,7)} is a set of orthogonal idempotents, moreover

where ¢ is the identity element in S(n,r).

Let i,j € I(n,r) and define ¢ < j if i, < jp, forall p=1,...,7. We write

i < j to mean that ¢ < j and 7 # j. Let
Q*(n,r) :={(i,5) € Un,7) | i < j}-
We now define the Borel Schur algebra.

Definition 1.1.7. The Borel Schur algebra S*(n,r) is the subalgebra of the
Schur algebra S(n,r) with basis {&;; | (¢,7) € Q1 (n,7)}.
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Using the multiplication rule for the Schur algebra S(n,r), we can check that

S*(n,r) is indeed a subalgebra of S(n, 7).

Example

2242-1

The dimension of 5$(2,2) is ( 5

) = 10. S(2,2) has the basis:

{&1,11, &11,12, €11,22, &a2,115 Ea2,125 E12,21, €122, E20.11, €22,12, E22,22)-

The Borel Schur algebra S*(2,7) has the basis
{¢(b,a) |[0<agbgr)
where
£(b,a) = &por-bjagr-a, VOKa<<bsr (1.1.5)

Thus
dim S+(2,r) = i(b+ 1) = (’" : 2).

b=0
2+2

Then, the dimension of S*(2,2) is ( 5

> = 6. S*(2,2) has the basis:

{&11.11, 11,12, E11,22, €12,12, €12,22, €22,22}

that is,
{£(2,2), £(2,1), £(2,0), &(1,1), &(1,0), £(0,0)}-

We will describe the quiver and relations of S*(2,7) in Chapter 2.

1.2 The radical of a Borel Schur algebra

From now on, we consider the Borel Schur algebras in more detail. First we

find the radical of the Borel Schur algebra S*(n,r). This was first described

14



in [11]. Here we give another proof in terms of the distances between two

multi-indices in I(n,r). Related results can be found in [11] and [16].

Let A be a finite dimensional algebra. Recall that the radical of A, denoted by
rad A, is the maximal nilpotent ideal of A, or equivalently, the smallest ideal
with semi-simple quotient, also equivalently, a nilpotent ideal R of A such that

A/R is semi-simple.

Definition 1.2.1. Let i = (¢1, ... ,i,) and j = (j1, ... ,jr) be in I(n,r). We

define the distance from i to j:
T T T
dist(4, j) = Z(jp —ip) = (Z]p) - (E ip)-
p=1 p=1 p=1

Let & ; bein S*(n,r). Then ¢ < j, that is, 5, < j, forall p € r, so dist(¢, ) > 0.

Lemma 1.2.2. Let i,7,k,l be in I(n,r).
(i) If i ~ k and j ~ I, then dist(¢, j) = dist(k,I).

(i) dist (s, k) = dist(¢, 7) + dist(j, k).
(iii) The mazimum distance in I(n,r) is

max dist(s,j) = (n — 1)r. (1.2.1)

i,j€l(n,r)

() If i < j, then dist(z,5) > 1.
Proof. The proof is trivial. |

Now we are ready to describe the radical of S*(n,r).

Proposition 1.2.3. ([11], Sections 3 and 6) The radical of S*(n,r) has basis
{&i,j | i< ja (Z,]) € Q+(n,r)}.

15



Proof. Let T be the vector space of S*(n,r) spanned by {&;; | ¢ < j} and let
R be the radical of S*(n,r). By the multiplication rule for S(n,r), we know
that T is a two-sided ideal of S*(n,r). We need to prove T = R. Since R is
the smallest ideal of S*(n,r) with semi-simple quotient and S*(n,r) satisfies

Stm,n)/T= P K- &,

AEA(n,r)
we have T' O R.

We claim T is a nilpotent ideal. That implies T C R, so T = R. We claim

& jn& jo ... ) ju =0, (1.2.2)

where &) ;) € T forallt € L and L = (n—1)r+ 1. So T is nilpotent.

If §® o t+1) for some ¢t with ¢ € L — 1, then the product is 0. Thus we can

assume j() ~ i@ ie., i@71 = jU) for some 7 € £,. Then

i j = &g jarr = & j@g

Hence we can assume that j® = i{**D for ¢ € {1,2, ..., L—1}. Since {;@ ;i €

T, we have i) < j®). By Lemma 1.2.2 (iv), dist(i®,j®) > 1 for all t € L.

Since S*(n,r) is a subalgebra, we let

&w o & o - G jiy = Z 8i5€ij»
iy
ini(1) (L)
where s;; € K. Suppose that the above product is not 0. Then there exists
some nonzero s;; # 0 with i ~ i) and j ~ j(*). By Lemma 1.2.2 (i), we have

dist(4, 7) = dist(s(?, §1)). By 1.2.2 (ii), we get

L
dist (i, ) = dist (i), ;&) = 3 " dist(i®, ;) = L > (n - D)r,
t=1

which contradicts to Lemma 1.2.2 (iii). Hence Equation (1.2.2) holds. There-

fore T is a nilpotent ideal. |
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Definition 1.2.4. Let i be in I(n, r). We denote the weight of i by wt(z), where
wt(i) = (a1,a2, ... ,an) is in A(n,r) and a, is the number of p € n appearing
in ; more formally, if we view 7 as a function from r to n, A, = |i~!(p)|, that
is,

a={t|is=pter}, Vopen
Definition 1.2.5. Let o = (ay,a2, ... ,a,) and 8 = (b, b2, ... ,b,) be in

I(n,r). We denote a & 3 for the dominance ordering if

t t

> a, 2> b, Vten
s=1

1.3 The algebra S*(n,r) is elementary

In this section we prove that the Borel Schur algebras S*(n,r) are elementary

and so are basic.

Let A be a finite dimensional algebra with an identity over a field K. We start

with several well-known general facts on ring theory.

Theorem 1.3.1. (a) Suppose that
A=P1€B @Pn,

where P,’s are indecomposable A-modules. Let e; in P; fori =1,...,n be
such that

l=e + ... +e,

Then {e), ... ,en} is a set of nonzero primitive orthogonal idempotents with

the property Ae; = P; fori=1,... ,n.
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(b) Suppose that {e1, ... ,e,} is a set of nonzero primitive orthogonal idem-
potents such that

1=61+ ... t€en.

Then Ae; is an indecomposable submodule of A for alli =1, ... ,n and

A= Ae, ® ... D Ae,.

Let e be an idempotent. We say e is primitive, if e can not be written as a

sum of idempotents e; and e; with eje; = 0.

Lemma 1.3.2. Let e be a nonzero idempotent of A. Then e is primitive if

and only if Ae is indecomposable.

Lemma 1.3.3. A nonzero A-module M is indecomposable if and only if the

ring End M contains no idempotent ezxcept 0, 1.

Lemma 1.3.4. Let M be a left A-module. Then Homu4(A, M) has a left A-

module structure. Moreover, as left A-modules, M ~ Hom4(A, M).

Proof. For all z € A and ¢ € Hom4(A, M), we define

z - p(a) := ¢(az),

for a € A. We claim that Hom,4 (A, M) is a left A-module with respect to the
above action. For all z;,z, € A, we show (z122)¢ = z1(Z2p). For all a € A,

we have
((z1z2)p)(a) = p(a(z122)) = ¢((az1)72)

(z20)(az1) = (z1(z200))(0).
We define a map as follows:
w: M — Homu(A, M)
)

m,_}((,o(m:A——ﬂM)
a —am

18



for all a € A and m € M. In the following we show that ¢ is a left A-module

isomorphism.

For all z,a € A and m € M, we have

(zp(m))(a) = p(m)(az) = (az)m = a(zm) = p(zm)(a).

Then zp(m) = p(zm). Hence ¢ is a left A-module homomorphism. Suppose
that ¢(m)(a) = 0, for all a € A and some m € M. That is am = 0 for
all a € A and some m € M. Let a = 1, then m = 0. This means that
ker ¢ = 0, and hence g is injective. For any ¥ € Hom4(A, M), let (1) = m,
thus ¥(a - 1) = ay(1) = am as ¢ is a homomorphism. Thus ¢ = ¢(m), and

hence ¢ is surjective. 1

Lemma 1.3.5. Lete, f € A be idempotents. Then Hom,(Ae, Af) = eAf and

Homy(eA, fA) = fAe. In particular, Hom4(A, A) and A are isomorphic.

Proof. We only prove Homy4(Ae, Af) = eAf. We define a map ¢ as follows:

p:eAf — Hompy(Ae, Af)

. pleaf): Ae — Af
eaf ( be r——»(be)(eaf))

for all a,b € A. It is obvious that ¢ is a homomorphism. We show that ¢ is

isomorphism.

Suppose that ¢(eaf) = 0 for some a € A. That is, p(eaf)(be) = 0, for
all b € A. We let b = e, then we have beeaf = eaf = 0. Hence ¢ is
injective. For any ¢ € Homy(Ae, Af), then ¥(e) = af there exists some
a € A. Then ¢(a’e) = a’ey(e) = d'eaf = (d'e)(eaf) = p(eaf)(a’e). Thus we

have ¥ = p(eaf). That means that ¢ is surjective. ]
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Next we describe primitive orthogonal idempotents of S*(n,r).

Proposition 1.3.6. ([16/, (2.2) Proposition) The set {€x | A € A(n,7)} is a

complete set of primitive orthogonal idempotents of S*(n,r).

Proof. By Lemma 1.1.6 (2), {&x | A € A(n,r)} is a set of orthogonal idempo-

tents, moreover we have

€= Z Ex

A€A(n,r)

where ¢ is the identity element in S(n,r) (so in S*(n,r)). Let B = S*(n,r).
By Lemma 1.3.2, &) is primitive if and only if B, is indecomposable. By
Lemma 1.3.3, this is equivalent to proving that Endg(B€,) contains no idempo-
tent except 0 and €,. By Lemma 1.3.5, we have Endg(B¢)) = £, B€). It is ob-
vious that £, B¢ has a basis E := {§; ; | wt(¢) = wt(j) = A, (,7) € Qt(n,7)}.
Let & ; € E. Since §;; € B, then i < j; but wt(z) = wt(j) = A, we have j = iw
for some m € X,. Then ¢ = j, hence §; ; = £,. Thus £, B§) is one-dimensional
spanned by &, and contains no idempotents except 0 and £,. Hence the idem-

potent &) is primitive. |

Next we introduce a class of algebras which plays a fundamental role in the

theory of finite dimensional algebras.

Definition 1.3.7. Let A be a finite dimensional algebra over a field K, and
R =rad A. Then A is said to be basic if A/R is isomorphic to a product of
division algebras. Moreover if all these division algebras are isomorphic to K,

A is called elementary.

Now we prove the main theorem of this section.
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Theorem 1.3.8. The Borel Schur algebra S*(n,r) is elementary.

Proof. In Proposition 1.2.3 we determined the radical R of the Borel Schur
algebra S*(n,r), which implies that S*(n,r)/R as a K-vector space has the
basis {£x | A € A(n,7)}, ie.

S*(n,r)/R= @ K-&. (1.3.1)
A€A(n,r)
Hence by Definition 1.4.5, S*(n,r) is elementary. |

1.4 The quiver of an algebra

In this section we introduce the quiver of an algebra (see IIL.1 in [2]) and apply

this to the Borel Schur algebra S*(n,r).

A quiver I' = (['y,I'y) is a directed graph with a set I'y of vertices and a set
I'; of arrows. We define two functions s and e from the set of arrows to the
set of vertices: If v : ¢ — j is an arrow, we denote by s(vy) the starting vertex
i of the arrow 7 and by e(7y) the terminating vertex j. A path w in the quiver
Iisaword w =1y, ... oy with e(;) =s(yi41) for 1<i<h—1land h e N.
We define the function ! from the set of paths into the natural numbers by
[(w) := h, which is just the length of the path w. For every vertex ¢ we define
a path of length zero, which we call e;. For a given quiver I" we define the path
algebra KT as follows: KT is the K-vector space whose basis consists of all
paths in I'. The algebra multiplication of KT is given by linear extension of

the following multiplication of the basis elements:

_fo if s(yn) # e(B1),
(o) (B - Be) = { Y oo YRB1 - By other::vise (paéh composition),
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and

_f o ife(y) =4, v ifs(y) =14,
ey _{ 0, otherwise, Ve = 0, otherwise.

Definition 1.4.1. Let ¥ be a ring and V a I-bi-module. We write the n-fold
tensor product V®z V Qs ... @V as V™. The tensor ring T(XZ, V) is defined

T, V)=[[V]IVI] .- - TIV'II -,

as an abelian group (Here this is direct product, not direct sum). Writing
V% = ¥, multiplication is induced by the natural £-bilinear maps Vi x VI —

Vitifor alli > 0and j > 0.

The following definition gives the quiver of the tensor ring T'(Z, V).

Definition 1.4.2. Let K be a field. For each positive integer n we denote by
[1,,(K) the K-algebra which as a ring is K x ... x K, the product of K with
itself n times, and has the K-algebra structure given by the ring morphism
¢ : K — [[,(K) where p(z) = (z, ... ,z) for all z in K. Let ¥ = [].(K)
and let V be a X-bi-module where K acts centrally, that is av = va for
a € K and v € V, and assume that V is finite dimensional over K. Then
the tensor ring T(X, V) is a K-algebra, and we can associate with T'(X,V) a
quiver I' = (Ty,I';) in the following way. The set of vertices I'g is {1, ... ,n}.
Let ¢; for i =1, ... ,n be the idempotent of ¥ with the ith coordinate equal
to 1 and the other coordinates zero. Then ¢;Ve; is a K-subspace of V' and
there will be dimg(¢;Ve;) arrows from ¢ to j in I. The quiver I' = (I, T'y)

constructed in this way is called the quiver of T(X, V).

We can label the arrows from ¢ to j by the elements of the basis for ¢;Ve;.
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Definition 1.4.3. A relation o on a quiver I" over a field K is a K-linear
combination of paths o = a1p1 + ... + anp, with a; € K and e(py) = ... =
e(pn) and s(p;) = ... = s(pn). We here assume that the length I(p;) of each
i, that is the number of arrows in each path, is at least 2. If p = {0 }4er is
a set of relations on I' over K, the pair (T, p) is called a quiver with relations
over K. Associated with (T, p) is the K-algebra K(T',p) = KT/(p), where
(p) denotes the ideal in KT generated by the set of relations p. We have by
assumption (p) C J?2, where J is the ideal of KT generated by all the arrows
in T

We have the following connection between tensor algebras and path algebras.

Proposition 1.4.4. ([2], Page 583, Proposition 1.8) Let K be a field, and
L =TI.(K). LetV be a X-bi-module where K acts centrally and which is finite
dimensional over K. IfT is the quiver of the tensor algebra T'(3, V), then there
is a K-algebra isomorphism ¢ : T(Z,V) — KT such that ¢([],5, V7) = J*.

We now introduce the quiver of an elementary algebra.

Definition 1.4.5. Let A be an elementary K-algebra, i.e.
A/R ~ H(K), for some n,

where R = rad A. Then the quiver of the tensor algebra T'(A/R, R/R?) is

called the quiver of A.

This definition is justified by the following important theorem.
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Theorem 1.4.6. Let A be a finite dimensional elementary K -algebra.
(a) Let {ey, ... ,en} be a complete set of primitive orthogonal idempotents in A,
and {ry, ... ,ri} a set of elements in R = rad A such that the images 7y, ... ,T;
in R/R? generate R/R? as a A/ R-module. Then {ej, ... ,en, 71, ... ,Tt} gen-
erate A as a K-algebra.
(b) There is a surjective ring homomorphism f : T(A/R, R/R?) — A with
[I ®RY cKe(f)c@®/RY,

j2rl(A) i>2
where rli(A) is the Loewy length of A.
(c) A ~ K(T,p) with J* C< p >C J? for some s, where T is the quiver of A
and p is a set of relations of I' over K, and J is the ideal of KT generated by
all the arrows in T

(d) If A ~ K (T, p) with J* C< p >C J? for some t, then T is the quiver of A.

Proposition 1.4.7. Let A be an elementary finite dimensional algebra over K
and 1 =€; + ... + €, a decomposition of 1 into a sum of primitive orthogonal
idempotents. Let P, = Ae¢; and S; = P,/RP, fori =1,...,n. Then for a

given pair of numbers i,j in {1, ... ,n} the following numbers are the same.

(a) dimg (e;( R/ R%)¢;).
(b) The multiplicity of the simple module S; in RP;/R*P,.
(c) dimg Ext} (S;, S;).

In view of Proposition 1.4.7, the number of arrows from i to j is equal to

dimg Ext}(S;, S;), the quiver of A is sometimes called Ext-quiver of A.

Our aim is to describe the quiver and relations of the Borel Schur algebra

S*(n,r). Since S*(n,r) is elementary (see Theorem 1.3.8), this is equivalent
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to describing I" and p as in Theorem 1.4.6. Thus we use Definitions 1.4.2 and
1.4.5 to describe T', the quiver of S*(n,r). Let R =rad S*(n,r). Since
S* /R @ K-&,
AEA(n,r)

by Definition 1.4.2 the vertices of I" are labeled by the primitive orthogonal
idempotents &), or simply by A. Then £,(R/R?)¢, is a subspace of R/R?, and
by Definition 1.4.2 there will be dim &,(R/R?)¢) arrows from A to p in I'. We
label the arrows by the basis elements of £,(R/R?)¢).

The relations can be described as follows. By Theorem 1.4.6 (b), there is a
surjective ring homomorphism f: T(%,V) — S*(n,r). By Proposition 1.4.4,
the tensor algebra T(X, V) is isomorphic to the path algebra KT'. Then the
map fcan be regarded as the map from the path algebra KT to the algebra

S*(n,r). The relations are all the linear combinations of paths which are in

ker f
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Chapter 2

The quiver and relations of the
Borel Schur algebra S*(2,r)

In this chapter we describe the quiver and relations for S*(2,7) of positive
characteristic in Sections 2.2 and 2.3 and for characteristic 0 case in Section 2.4.
We consider the product of basis elements in S*(2,r) and obtain a formulae
for S*(2,7) in Sections 2.1 and 2.5, which will be used in Section 5.4. As for
the multiplication formula for S*(2,r) (first obtained in [16], Section 4), we

provide an elementary proof and another proof using the formula in [11].
By the example at the end of Section 1.1, S*(2,7) has the basis
{£(ba)|0<agb<r),
where
£(b,a) = &ppgr-b jagr-a, VO a<<bsr (2.0.1)
Thus

dim S*(2,7) = i(b +1) = (r “; 2).

=0
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2.1 The multiplication formula for S*(2,r)

Before we determine the quiver of S*(2,r), we rewrite the multiplication for-
mula for S*(2,7). Actually, we give a specific multiplication formula for the
Borel Schur algebra S*(n,r), which will be used in Section 3.1. At the end of
this section, we give a formula for the product of elements in S*(2, ), which
will be used in Section 2.3. First, we introduce a notation, which will be used

several times in this thesis.

Definition 2.1.1. Let A = (A, ..., A;) be in A(n,7). For a positive integer
t € {1,2,...,n — 1} and a nonnegative integer m such that m < Ay4q, we

define A(t,m) € A(n,r) by

At,m)= (A1, ..o s A+ My A1 — My . Ap).

Recall that we denote &,» ,u by €5, (see Definition 1.1.5).
We now have the following multiplication formula:

Lemma 2.1.2. ([16]) Let A= (A1, ..., A\n) € A(n,r). Lett € {1,2, ... ,n—1}

and let | and m be nonnegative integers such that l < m < A\yy41. We have

m

Extm) A nérE DA = ( ; )f,\(t,m),,\«

Proof. Following the above notation, we denote the multi-indices as follows:

i = n)\(t,m) = 1M .. t’\'+m(t + l)l\Hl_m ces n’\",
jo=nth = 1h et opde
k =Q)‘= ™. t'\'(t-f-l)/\H'1 om,
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We need to calculate the product &; ;€;x. By Lemma 1.1.2,

Gibie= D [2(,5,5,k4,9) g,
(i,q)eﬂlgn,r)
q'\a

where Z = Z(i, 3,5, k,i,k) = |{s € I(n,7) | (3,7) ~ (%,) and (4, k) ~ (s,9)}|.

We now claim that:

(i) & q = &k, that is, there is only one summand &; 4 in the above sum. Since
(¢,7) ~ (4,8) and 7 < j, L, acts on (¢, ) simultaneously, thus we have
i < s. In fact, (,8) = (i,5)7 for some m € &,. Then for all 1 < u < r,
we have

ly = iw(u) < j7r(u) = Sy-
Thus we get ¢ < s. Similarly (j, k) ~ (s,q) and j < k, then s < ¢. As
¢t < s and s < ¢, we have 7 < ¢q. Since

i LM DM

= 1M,

Sqg~k=1% @+ 1M L nde

We claim that the first \; entries of g are 1’s, that is, ¢ = ... =¢q\, = 1.
Otherwise, since q ~ k, there exists an integer [ > \; such that ¢ = 1.
But the [-th entry of ¢, 4, > 1. Thus ¢, > 1 = ¢, which contradicts the

assumption ¢ < ¢. Similarly we get the entries of ¢ as follows:
D+l = -+ = Qy+a, = 2,

Dt oAzl = -0 = Dyt rematreor =8 — L
Moreover, the entries of ¢ from the (A; + ... + A—2 + Ap—1 + 1)-th
to the (A + ... + At + Aiy1)-th places will be ¢t or ¢t + 1. Otherwise
there exists a certain integral entry that is > t + 2. Since ¢ ~ k and

At41

the respective entries of k are t* (¢ + 1)™**', there exists an integer v >
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A1+ ... + M2 + A1 + 1 such that the v-th entry of q is ¢t or (¢ + 1).
We know that i, > t + 2 > ¢,, which contradicts the assumption ¢ < gq.

Hence by the same argument as above, we get the entries of ¢ as follows:
Dt Arg1+l = o0 = Oyt A tregr = T2,
R R B R’ L YT D WRED Wl (2

Furthermore, since ¢ < ¢ and ¢ ~ k, we get that the entries of ¢ from

the (A\; + ... + Ai=1 + 1)-th to the (A + ... + At + At41)-th places are

t* (¢t + 1)™**. Hence (i,q) = (, k).

l
satisfying the conditions: (¢,7) ~ (¢,s) and (j,k) ~ (s, k). Since i <

zZ = (m) By (i), we need to calculate the number of s € I(n,r)

j < k, then we have i < s € k and s ~ j. Since the entries of ¢
and q are equal, i, = k, forallu=1,... , A1+ ... + Ai—1, and u =
A+ ... +Aq1+1, ... ,n. Thus these entries of s, are equal to the ones
of 7 and ¢q. Furthermore, since ¢ < s < k, we get the remaining entries

of s, which we denote as

S’ )Y RS VTS BRI YRS WP R)
satisfying the condition:
t>"+m(t + 1)r\z+1—m < s < t’\‘ (t + 1)'\‘“,

where s’ ~ t** (¢t + 1)+ since s ~ j. From the above condition for

the s’, we get the entries of s':
! — o / — I —
Sl— .« —S)‘t—t, s/\g+m+l_ oo _SAt+At+l_t+1'

Hence the only unknown entries of the s’ are s ... 8 which are
A+l At+mo

a permutation of the t(t + 1)™* since s ~ j. Therefore the number of
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: C m
s or the number of ¢, is equal to the combination number ( I )

We will give a second proof for Lemma 2.1.2 at the end of Section 3.2, using

the multiplication formula in Theorem 1.1.4.

Let n = 2 in Lemma 2.1.2. Then ¢t = 1 and we obtain the following formula

for S*(2,7):

Corollary 2.1.3. Let A = (b,7 — b) € A(2,7) and I, m nonnegative integers

such that l < m <r—b. We have

E(b+m,b+0)EDb+1,b) = (T?)f(b +m,b).

Finally, we calculate certain products of basis elements in S*(2, ), which will

be used later.

Proposition 2.1.4. Let t be a positive integer. Let a, mo,my, ... ,my—1 be

nonnegative integers such that
a+mog+my+ ... + My <.

Then

Ela+mo+mi+ ... +my_j,a+mo+my+ ... +my_y)
Ela+mo+my+ ... +my_g,a+mo+my + ... +my_3)
f(a+mo+m1,a+mo)£(a+mo,a)

t—1 t—1
mo+my+ ... +my
- H( 0 lmi z)5(0,-1-Zm,»,a).

1=0 i=0

In particular, formg=m; = ... = my_ = [, we get

Ela+tha+ (t—1DEa+ (t—-Dla+({t—-2))...&(a+1,a)

ﬁ ((‘ y 1)l)£(a +t,a).

1=0
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Moreover, there are two special cases:

(i). If L = 1, we have
Ela+t,a+t—1)(a+t—1la+t—2)...&a+1,a) =tl€(a+t,a).

(ii). If I = p® for some nonnegative integer d, we get
Ea+tpda+(t—1pé(a+(t—1)p"a+ (t-2)p%) ... €(a+p%0)

_ ﬁ ((z’ ;;)p")f(aﬂpd,a)_

i=0

Furthermore, if t < p, we have

E(a+tpha+ (t - 1phé(a+ (t — Dpa+ (t—2)p%) ... E(a+p?a)
t!é(a+tp% a) (mod p);

if t = p, we have

Ela+tpd,a+(t—1DpHé(a+(t—1)p% a+(t—2)p%) ... £E(a+p? a) = 0 (mod p).

Proof. By Corollary 2.1.3, we can calculate the product

a+Zm,,a+Zm1)§(a+Zm,,a+§:m, ... &(a+mp,a)

=0 1=0 =0

with the multiplication one by one from &(a + my, a):

§(a+2m,,a+2m,)§(a+ Zm,,a+2ml) . &(a+ my,a)

1=0 z-O 1=0
mo+m
_ ( 0 1) a+zm,,a+2m, ... &(a+mg+my,a)
m 1=0 1=0 1 o
mg + ml) (mo +my + mg)
= a+ mi,a+ m;
(" mo ) Z wet2m

..f(a+m0+m1+m2,a)

t—1 t—1
m0+m1+... +m,-
= H< m )f(a+§ml,a)

1=0

Hence we get the desired multiplication formulae.
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(i). This is trivial by straight calculations.

(ii). If I = p?, the product becomes:

Ela+tpta+ (t — DpHé(a+ (t—pta+ (t—2)p?) ... E(a+p% a)

t-1 ,,.
+1)p?
— H((z d)p )E(a"“tpd,a)-
. p
i=0

If t < p, we have

i+1<t-1+1<p, foralli=0,1,...,t—1.
By Lemma 2.2.2, we have

)

forany i =0,1, ..., — 1.

(z_’{l) =i+1 (mod p),

Hence we have

ﬁ ((i ;«} )pd)s(a+tp“, a) = 1:[(i+1)£(a+tp"', a) = ti§(a+tp",a) (mod p).

i=0 i=0

If t = p, by Lemma 2.2.2, we get

(%)= (%)

Hence we have

(- o

t

-1
1=0
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2.2 The quiver of S*(2,r) with p > 0

By Proposition 1.3.6 S*(2,7) has primitive orthogonal idempotents £(a, a),
where a = 0,1, ... ,r; with ¢ = i €(a,a). By the argument in the end of
Section 1.4, the set of vertices I":)—(())f the quiver I' of S*(2,7) is the set of
primitive orthogonal idempotents, or bijectively the set of the compositions

A(2,7), or simply the following set
Fo:={a]0<ax<r}
The vertex set I'g is independent of the characteristic of K.

We now calculate the set of arrows for the quiver of S+(2,r) for positive
characteristic p > 0, in terms of the radical and radical square. The quiver
of S*(2,r) for the case p = 0 will be discussed in Section 2.4. We also list
some examples for the quivers of S*(2,r) with p > 0. First we introduce the

following notation.

Definition 2.2.1. Let a be a positive integer and p a prime number, then

there is a unique p-adic decomposition of a as follows:

o0
a= Z a'ipl)
i=0
where 0 < a; < p — 1, for all i. We introduce the following notation

[a], = Z a;.

1=0

We will need the following useful lemma. Note that by convention (Z) = 0 if

a<hb.
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Lemma 2.2.2. ([5], P.271) Let n, k be two positive integers, p a prime num-
ber. We write n and k p-adically, that is

t t
n=>Y np', k= Zkip",

i=0 =0
wheret >0, and 0 < ny,k; <Kp—1 forall0 <i<t. Then

() =11(%) e

Lemma 2.2.3. Let n > 2 be a positive integer, p a prime number. Then we

have (k) # 0 (mod p) for some 1 < k < n—1 if and only if [n], > 2

Proof. (i) Suppose that [n], > 2. Let n:p* be the leading term of the p-adic
decomposition of n, for some nonnegative integer t. We let £ = p'. Since

[n]p = 2, then n # p* =k, thus n > k. Thus 1 < k < n — 1. By Lemma 2.2.2,

WE Ho (2)=(3) =m0 @modn.

Such k satisfies the desired condition.

(ii) Conversely, suppose (n) # 0 (mod p) for some 1 < k < n— 1. We need
to prove that [n], > 2. Otherwise [n], = 1 since n is a positive integer that
[n]p > 0. Then we have n = p* for some t > 1 since n > 2. Let k,p°® be the
leading term of the p-adic decomposition of k for some nonnegative integer s.

By our assumption for k, we have
t—1

kgn-—1=pt—-1=Z(p—1)p".
i=0
Hence s < t. Since ny; = 0 and k; # 0, we have n, < k;. By convention

(n’> = 0. Thus by Lemma 2.2.2, we have

k,
@ _ IJO (:D _ (Z:)N =0 (mod p),

n
which is a contradiction to our assumption that ( k) Z0 (mod p). [
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We are now ready to describe the radical square of S*(2,7):

Lemma 2.2.4. Let R be the radical of S*(2,7). Then R? has a basis
{¢(b,a) | [b—a), =2 2,7 2 b>a >0}
Hence R/R? has a basis

{¢(b,a)+ R*|[b—al,=1,7r 2 b>a >0}

Proof. Let I be a subspace of S*(2,r) with a basis
{¢(ba) [[b—alp 22,7 2b>a >0}

We need to prove R? = I. First we prove that I C R?. Suppose that £(b,a) €
I, that is, b and a satisfy the condition: [b — a], > 2 for some a and b, where

r 2 b>a > 0. We need to prove that £(b,a) € R

Since [b—al, > 2, by Lemma 2.2.3, there exists an integer k with the condition

1< k<b—a-1such that

(b . “) £0 (mod p). (2.2.1)

We now calculate the product &(b, k + a)é(k + a,a). By Corollary 2.1.3, we
have
b—a
et b+ ek +a,0) = (1 7)ea)

k
. . b—a , b—a\ !
field K of a prime characteristic p. Thus, P has an inverse P .

Then by Equation (2.2.1), the combination number ( ) is nonzero in the

Hence we have
b—a\?
o) = (") €kt alelh+aa)
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By Proposition 1.2.3, the basis elements £(b, k + a) and £(k + a,a) are in R.

Hence we have £(b,a) € R2?. Therefore, we get I C R2.

Next, we prove that R? C I. By Proposition 1.2.3, R has a basis
{&(bya) | = b>a >0}

Let £(c,b)é(b,a) € R%, wherer > c>b>0andr > ¥ > a > 0. We need to
prove that £(c,b)é(V,a) € I. If b # V', then £(c,b)é(V,a) = 0 € I, so we can

assume b = b'. By Corollary 2.1.3 we have

a
a

£(c.00600,0) = (§ 2 Jelcra)

If (Z: Z) = 0, then we are done. So we can assume (g : Z) #Z 0 (mod p),
c—a

i.e., there exists an integer k = b — a such that ( k ) # 0 (mod p) with
the condition that c—a —1 > k > 1. By Lemma 2.2.3, this is equivalent
to the condition that [c — a], > 2. Thus we have that £{(c,a) € I. Thus

£(c,b)é(b,a) € I. Hence we have R? C I. Therefore R% = I.

Since R has a basis

{&(bya) |r =2 b>a >0}

and R? has a basis
{&ba) | [b—alp 22,7 2b>a >0},
we get that R/R? has a basis

{¢(ba)+ R*|[b-al,=1,r > b>a >0}
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We now have the following theorem for the quiver of S*(2,r) with p > 0:

Theorem 2.2.5. The quiver I' of the Borel Schur algebra S*(2,7) over a field
K of a prime characteristic p is given as follows:

The set of vertices is To = {0,1, ... ,r}; the number of arrows from verter a
to vertex b where 0 < a < b < r, is equal to 1 or 0; this number is equal to 1

if and only if [b—a), = 1.

Proof. We only need to calculate the arrows. As it is shown at the end of
Section 1.4, the number of arrows from vertex a to vertex bfor0 < a<b<r,

is the dimension of £(b, b)(R/R?)¢(a,a). By Lemma 2.2.4, R/R? has a basis
{¢(d,c)+ R*|[d—clp=1, r>d>c>0}.
Since S*(2,7) has the basis
{&(d,c)|r2d>c2>0}

by the multiplication rule for the Schur algebra, £(b,b)(R/R?)¢(a,a) is
spanned by the &(b,a) with the condition that [b — a], = 1, otherwise
£(b,b)(R/R*&(a,a) = 0. In other words, the number of the arrows from a
to b where r > b > a > 0, or the dimension of £(b, b)(R/R?)&(a, a), is equal to

1 or 0; this number is equal to 1 if and only if [b — a], = 1. |

Note that by the definition of the quiver, we may label the arrows from ¢ to j
by the elements of the basis for €;Ve¢;. We will identify the arrow from vertex a
to vertex b for [b—al, = 1, with the basis element £(b, a) in £(b, b)(R/R?)¢(a, a)
for the algebra S*(2,7).
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Example 2.2.6. We list some quivers by drawing their graphs (labeling the

arrows by the elements in the algebras).
The quiver of S*(2,2) over the field K of characteristic p # 2:

1,0 2,1
€(1,0) 1 £(2,1)

The quiver of S*(2,2) for p = 2:

£(2,0)
m
0 £(1,0) 1 £(2,1) 9

The quiver of S*(2,3) forp > 3:

1,0 2,1 3,2
U B ) B (G

The quiver of S*(2,3) for p = 3:

£(3,0)

€10 £2.1) €3,

1 2 >3

0

The quiver of S*(2,3) for p = 2:

£(2,0)




The quiver of S*(2,7) over K of characteristic p for arbitrary r and p > 0:

£(p+1,1)

£(»%,0)

£(P?+1,1)

€0*+1.67)|
pP+1

|
|

r—1
lf('r,r—l)
r

Corollary 2.2.7. Let f,(r) be the number of arrows of the quiver of S*(2,7)

over a field K of characteristic p > 0. We have

for) = (r+1)(M +1) = ("* = 1)/(p - 1),

where the nonnegative integer M is determined by p™ < r < pM+1,

Proof. We compute f,(r) using Theorem 2.2.5. So f,(r) is the number of pairs

(a1, az) such that (a1, as) = (a1,a; + p*) for some t > 0, and 0 < a; < 7 — pt.
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Thus the number of pairs (a;, a; + p*) for some nonnegative integers a; and ¢,
is 7 +1 — p'. Let M be the nonnegative integer such that p™ < r < pM+1.

Hence the number of such pairs or the number of arrows, is

M
for) =D (r+1=p") = (r+1)(M+1) - (pM* - 1)/(p— 1).

t=0

2.3 The relations for the quiver of S*(2,7) with
p>0

In this section we describe the relations for the quiver I of S*(2, ) over a field

K of a prime characteristic p.

Recall that we identify the arrow from vertex a to vertex b for [b —a], =1 in
the quiver T of S*(2,7), with the base element £(b,a) in £(b, b)(R/R?)£(a, a)
for the algebra S*(2,r). We define the length of this arrow as b — a.

As shown at the end of Section 1.4, the relations in the quiver I of S*(2,7) can
be described as follows. There is a surjective ring homomorphism f: KT —
S*(2,r), where fmaps the “product” of the labels of arrows as the paths in
the path algebra KT, to the product of labels of arrows in the Borel Schur
algebra S*(2,7). The relations for the quiver I' of S*(2,r), are all the linear
combinations of paths, or the “products” of the labels of arrows which are in

ker f~

Thus, we will write relations for the quiver I" of S*(2,r) as linear combinations
of the “products” of £(b, a)’s where [b— a], = 1 in the path algebra KT. This

shouldn’t be confused with products in S*(2,r).
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Let J be the ideal of KT generated by all the arrows in T.
The following theorem describes the relations of the quiver of S*(2,r).

Theorem 2.3.1. Let I' be the quiver of the Borel Schur algebra S*(2,r) over
a field K of a positive characteristic p. Let Ry and Ry be the following sets of

the products of arrows in the path algebra KT':

Ry ={&t+p"*t+(p—1)p*)E(t+ (p— 1)p*,t+ (p—2)p%) ... £(t +p% )
|O<t+pa<7‘, t)a>0}’
Ry = {&(t + p* + %, t + p*)E(t + 2, t) — E(t + p* + P, t + PP)E(t + PP, t)
|0<t+p*+p° <7 t,a#b>0}

Let I be the ideal of the path algebra KT' generated by R, and Ry;. Then I is

the set of all relations for the quiver I of S*(2,7). More precisely, I C J? and

kL/I = S*(2,7).

Proof. There is a surjective ring homomorphism f: KT — S*(2,r), where
f maps the product of the arrows in the path algebra KT, to the product of
labels of arrows in S*(2,7). The relations for the quiver I, are the paths in

ker f We need to show that I = ker f

By Proposition 2.1.4 (ii), we have

p—1

[16¢+@~-dp%t+(-1-ip*) =0, (modp).
1=0

By Corollary 2.1.3, we have

a b
E(t+p+pt+ Pt +p58) = (p;;p)s(twupb,t)
Et+p*+p°t+pV)EE+p%1t) = )
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So
E+p" +°t+pM)E(t+1°8) = €+ + 1"t +0°)E(E + 0, 0).
Hence R, R; C kerf, sol C kerf.
Since I C ker f~, the map finduces a surjection:
f:KT/I — S*(2,7).

We need to show that ker f = 0, i.e., that f is an isomorphism. Since f is

surjective, it is enough to show that
dim KT'/I < dim S*(2,7),
which implies that f is injective.

First, fix any 0 < ¢ < j < 7, let j —i = Y A;p° be the unique p-adic
decomposition of j —i. Denote by P;; the unique path from vertex ¢ to vertex
j in the path algebra KT such that the lengths of the arrows increase and

there are exactly A, arrows of length p*® for all s.

Let P be a path from i to j in the path algebra KT, written as a product of
labels of arrows, where the lengths of arrows must be powers of p by Theo-
rem 2.2.5. Each arrow is labeled by £(b, a) where [b— a], = 1. Thus we can

write P in the form

P = &(ay, as-1)€(as-1,a:-2) ... £(a1, ao),

where a, = j and ag = ¢ and [aym —am-1], = 1 with ¢ > m > 1. Recall that [ is
generated by R; and R,. Using the relations in R, we reorder the arrows by

their lengths, such that the lengths of arrows £(am, am-1) increase. Next by
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the relations in R;, the number of arrows of the same length does not exceed
p—1, otherwise P 4 I will be zero. Hence P is the path, for which the lengths
of arrows increase and there are exactly A\, arrows of length p* for all s, that
is,

P+I=P;+1I

Thus KT'/I is spanned by
{Pia+1|r>j>i>0}

Hence dim kI"/I does not exceed the number of pairs (j,7) with r > 5 > ¢ > 0,

which is the dimension of S*(2,r). ]

We call the relations of I in the path algebra KT in Theorem 2.3.1, the p-adic

relations.

2.4 S7%(2,r) over a field K of characteristic 0

Let K be a field of characteristic 0. In this section, we give the quiver and
relations for S*(2,7) over K. Let T,,,(K) be the algebra of lower triangu-
lar matrices of degree r + 1 over K. We are going to show that S*(2,r) is

isomorphic to T,4;(K).

The following lemma and theorem are proved in the same way as their coun-

terparts in positive characteristic (Lemma 2.2.4 and Theorem 2.2.5).

Lemma 2.4.1. Let R be the radical of S*(2,r) over K of characteristic 0,
then R? has K -basis

{¢(ba) | b—a>2, r>b>a>0}.
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Hence R/R? has K -basis
{¢(a+1,a)+ R?|r—1>a >0}

Theorem 2.4.2. The quiver I" of the Borel Schur algebra S*(2,r) over a field
K of characteristic 0 is given as follows:
The set of vertices is T'o = {0,1, ... ,r}; the number of arrows from vertez a

to vertex b wherer 2 b > a 2> 0, is equal to 1 or 0; this number is equal to 1

if and only ifb—a = 1.

Note that the lengths of arrows in the above quiver I' of S*(2,r) over K, are

1. Hence we can give the quiver I' of S*(2,7) over K as follows:

0 >1 > e r—1———r

Recall that T;4;(K) is the algebra of (r+1) x (r+1) lower triangular matrices
over K. Note that the path algebra of this quiver I is isomorphic to T;41(K).
We are going to prove that S*(2,7) ~ T,,1(K). This implies that the quiver

of S*(2,7) in zero characteristic doesn’t have any relation.

Let E; ; be the (r + 1) x (r + 1) matrix, whose entry of (¢, j) position is 1 and
the other ones are zero, with 0 < 4,7 < r. We define a linear map f from

S*(2,r) (over K) to Tr4+1(K) as follows:

f(€(®,a)) = ((b— a)) ' Epg,

where 0 € a < b < r. Here 0! is defined to be 1. Since f maps a basis of
St (2,7) to a basis of T,+1(K), f is a bijection. Moreover, we have the following

proposition.
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Proposition 2.4.3. The map f is an algebra isomorphism, that is

St(2,7) ~ Tr11(K).

Proof. We only need to prove that f preserves the multiplication. By Corol-

lary 2.1.3, for 0 € a; < b < ay <1, we have

a — a1
f(ﬁ(a% b)f(bv 0,1)) = b—ay f(f(az, al))
as — a1

= b—a, ((0'2 - al)!)_lEaz,al
= ((b - al)!)—l((a2 - b)!)—lEaz,al'

On the other hand, we get

f(€(az,0)f(E(B,a1)) = ((az = b)) Ea((b = a1)) ™ i,
= ((a2 = O))7T((b~ a))) ™ Eaya-

Hence,

f(&(az, 0)€(b, a1)) = f(£(az, b)) f(£(b, ar)),

where 0 < a; < b < az < r. Therefore, f is an algebra isomorphism. ]

2.5 More about the multiplication formula for
S*(2,7)

Let K be a field of characteristic p > 0. Let I" be the quiver of S*(2,7) over K.
Recall the surjective ring homomorphism f: KT — 8%(2,7), where fmaps
the product of the labels of arrows as the paths in the path algebra KT, to the
product of labels of arrows in the Borel Schur algebra S*(2,r) (see Sections

1.4 and 2.3).

In this section we will calculate the dimension of the vector space spanned

by the paths from one vertex a to another vertex b in the path algebra KT
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where r > b > a > 0. We also calculate the product of labels of arrows as the
basis elements in S*(2,r), for a path from a to b. We get a formula for that
product of labels, which will be used in Section 5.4 to get certain relations in

the quiver of S*(n,r).

Lemma 2.5.1. Let ' be the quiver of S*(2,7) over K. Let b and a be non-
negative integers such thatr 2 b>a > 0. Letb—a = E:=o m;p* be the p-adic
decomposition of b — a. Then the dimension of the vector space T spanned by

the paths from a to b in the path algebra KT, is (mo +mi+ ...+ mt)'
mo, My, ..., My

Proof. By Theorem 2.2.5, the lengths of the arrows in I'" are powers of p. So
the lengths of arrows in the product of labels from a to b in KT, are of the
form (p°)™(p")™ ... (p")™. Hence the dimension of T spanned by the paths

from a to b in KT, is the number of permutations of

0 0 1 1 t ¢
P""’p/ p"")pl e "")p’
T Vv
mo mi me
. . . . m0+m1+ e +mt
which is the combination number ( . 1
Mo, My, ..., My

Next we will calculate the product of labels of arrows as the basis elements in
the Borel Schur algebra S*(2,7). By Proposition 2.1.4, this product of labels
of the lengths of the powers of p from a to b where r > b > a > 0, or the
product of the basis elements in S*(2,r), will be a scalar of the basis element
£(b,a), that is, M&(b,a). Our aim is to calculate the coefficient M. Before we

calculate such M, we introduce the following definition.

Definition 2.5.2. Let m be a positive integer and let m = Z§=o m;p* be the

p-adic decomposition of m, where ¢ is a nonnegative integer and 0 < m; < p—1

foralli=0,1...,t. We define m, and m™* as follows:
t
my = H(pi!)m‘, m* :=m!/m,.
i=1
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The following proposition shows that the coefficient M above is the number
(b—a)*. In particular, m* is an integer and m* # 0 (mod p) for any positive

integer m.

Theorem 2.5.3. Let0<a<b<randletm=>b—a. Let m = Z:=0 mip*
be the p-adic decomposition of m. Let II be the following product of the basis

elements in ST(2,r):

I = éa+ma+m—pt) ... &a+m—mp' +pa+m—mp
E(a+mo,a+mog—1)...&(a+1,a).

Then
II = Mé&(a+ m,a).
where
= T1(7) () o () (e ),
o \pt/\ P P m;p*
Moreover,

t
M=m"*, and M= Hmi! (mod p).
i=0

In particular, m* # 0 (mod p).

Proof. We denote the product of labels of the lengths p* in the product II as

I1;, that is, we write II; as follows:

I = €(a+ Tisymyp! +miph,a+ Silomp + (mi—1p)
o Ela+ Yiemp’ +phat 2i=0MsP’),

where 0 < 7 < t. By Proposition 2.1.4, we get the product II;:
p.i 2p1 m,-pi -1 ' ' i—1 '
Hi:(i)( i) ( ; )E(a+ijp7+m,-p',a+ijp’),
p)\p p = pr
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where 0 < i< tand m; > 0. If m; =0, let II; = 1. Thus we have
I =10, ... II,

SHE)E) (e B Eo

1=0

By Proposition 2.1.4, we calculate the following product

H{(a+Zme’+m,p a+Zm,p’

1=0
_ H(mo—i—mm + ... +m,p)€(a+m 2)
poirs mipi b .

Hence we have the formula

(ﬁ:) (25) (m'p)ﬁ(a+2m,p7+m,p a+Zm,p7
0

Y (20 ; ;
V) () e
0 p p mip

Therefore, we obtain the formula for M:

w-TE)E)- (R )

By Lemma 2.2.2,

II

[
_z“

1

~ Il

1=

forany 1 <v<p-1, and

mo+mupt+ oo +ma)  (m) T (M) 2 mod )
m;p’ o\ 0 0/ ’

for any 0 < ¢ < t. Hence we have

¢
M= Hm,-! # 0 (mod p).

=0

We next prove that M = m*. By Proposition 2.1.4 (i), the product of labels

of the lengths 1 can be written as follows:
Ela+ma+m—1)...&(a+2,a+1)¢(a+1,a) = mlé(a+m,a).

48



By Proposition 2.1.4 (i), furthermore, we can calculate the above product, in

terms of the lengths of the product of the powers of p:

Ela+mya+m—1)...&(a+2,a+1)(a+1,a)

p(a+m,a+m—p') ... pt€(a +m — mypt + pt,a + m — mypt)

plE(a+m —mpta+m—mpt —pt?) L.
£(a+mo,a+mo—1) ... E&(a+mo,a)

t

i—-1 i-1
[ ™ €@+ ijpj +mp',a+ Y mip + (m; — 1)p)
=0 7=0

1=

It

o

i—1 i—1
€+ mip +pa+ ) mpp'))
j=0 j=0

(pi ! )mi II;

Il
-,
T z..
o

= (Pi!)miH II;

=0
LIL

il
5

Hence we obtain

I =m!/m,&(a+ m,a) = m*{(a+m,a).

Thus M = m*. [

Let 0 € a < b < r. We consider vector space T spanned by the paths from
a to b in KT modulo its relations in Theorem 2.3.1 where T is the quiver of
S*(2,r). By the proof in Theorem 2.3.1, T is one-dimensional, and spanned

by the path

P(ba) = &la+mya+m—pt)...E(a+m—mpt+pta+m—mpt)
&la+mo,a+mp—1) ... €(a+1,a).

where m = b—a and m = 2;0 m;p* is the p-adic decomposition of m as in
Theorem 2.5.3, but the above multiplication is the multiplication for the path
algebra KT'. We also say the above path P(b,a) is the path from a to b.
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Chapter 3

Embeddings from S*(2,7) to
ST(n,r+s)

We obtained the quiver and relations for the Borel Schur algebra S*(2,7) in
Chapter 2. In this chapter we consider a special type of embedding from the
Borel Schur algebras S*(2,7) to S*(n,r + s) where n > 2 and s > 0. This

embedding embeds the quiver of S*(2,7) into the quiver of S*(n,r + s).

In Section 3.1 we construct this embedding ¢ from S*(2,r) to S*(n,r + s)

where 1 <t <n-—1and a € A(n,s).

In Section 3.2 we calculate the dimension of the Hom Space H(\ o) :=
Hom 4 (A€, AE,) (or the Cartan invariant C,,) where A = S*(n,r). For
more detail see [15]. This will be used in Chapter 5 to find some relations
for St(n,r). We split Section 3.2 into four parts: in Part I we introduce
the row semi-standard(RSS) A-tableau and the number c, o; in Part II we
introduce the Cartan invariant €, ,, which is the dimension of H(\, a) and
show that C)o = cirq; in Part III we calculate the dimension of the Borel

Schur algebra S*(n,r) and consider a matrix multiplication for S*(2,r); in
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Part IV, we calculate the Cartan invariant ¢) , for some special cases, which

will be used in Chapter 5.

In Section 3.3 we consider the properties of our embedding ¢ from S*(2,7)
to S*(n,r+s) and prove that ¢ embeds the quiver of S*(2,r) into the quiver
of S*(n,r).

3.1 Embeddings from S*(2,7) to ST(n,r + s)

In this section we will define a map from S*(2,r) to S*(n,r + s). We prove
that this map is indeed an embedding from S*(2,7) to St(n,r + s) where

> 2 and s > 0. Recall that {£{(b,a) | r 2 b > a > 0} is a basis of S*(2,7).

Definition 3.1.1. Let t € {1,2, ... ,n—1}. Let & = (ay,az, ... ,an) € A(n, s)

be in A(n,r). We define a linear map
oF: ST(27) — SHn,r+5)

by ¢¢(£(b,a)) = ;,; where the multi-indices i and j are obtained as follows:

G=10 s (E = )Mot 4 1) 4 2)% e,
i=191 ... (t— D)™ igete(t 4 )M 4 2)%H2 | pon,

For example, for n = 3, we have the maps

cp(ls) : S*t(2,r) — ST (3,7 +9)
61"2"_",1“2"_“ — §1b2r—b3a’102r—033,
o). 8¥(2,r) — ST(3, 7 +8)

flbgr—b,lagr—a — flagbar—b,142a3r—a .

Remark: Let F;,; be the 1 x n vector in which the (¢ + 1)-th entry is 1 and

the other entries are 0. Let a1, as, ... ,an—1 be the simple roots of type A,_;.
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Put A = a + rE;;;. Recall our notation in Definition 2.1.1:
/\(t, b) =+ bat

= (a1, ...y Qg1+ b, 041 +7 — b4, - -

By Definition 2.1.1, we can write j and ¢ as follows:

P ﬂz\+bott

j pMEb)

i
Hence we can rewrite the map ¢ as follows:

e (€(b,a)) = Exeb)ata)s

forallband awithr>b>a > 0.

By Definition 3.1.1, the map ¢¢ from S*(2,r) to S*(n,r + s) is injective.

_ n)\+aa¢ = _z\(t,a).

Actually, the map ¢¢ is an embedding from S*(2,7) to S*(n,r + s).

Proposition 3.1.2. The linear map ¢ is an algebra homomorphism from

St(2,r) to S*(n,r + s). Hence ¢ is an embedding.

Proof. Since {£(b,a) | r =2 b > a > 0} is a basis for S*(2,r), by Defini-
tion 3.1.1, the map ¢ is an injective linear map from S*(2,7) to S*(n,r +s).

It remains to prove that the map ¢ preserves the multiplication, i.e., for

0<a<b<ay<r,

7 (€(az, )E(b, a1)) = @7 (€(az, b))} (£(b, a1))-

By the multiplication formula in Corollary 2.1.3, that is
ot elan De(ba0) = (

az — a3
b—a1

By Definition 3.1.1 and Remark, this is equivalent to

a; — @
b—-al

£(A(t, az), At B)EO(E, b), At 1)) = (

where A = o + rE; ;. The last equality holds by Lemma 2.1.2.
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Remark: The algebra homomorphism ¢ in Proposition 3.1.2 does not pre-

serve the identity element 1. Actually,

(p?(l) = SO?(Z §(ava')) = Zg)\(t,a),)\(t,a),

a=0 a=0

where A = a + rEy,.

3.2 The Hom space Homu(AEy, AE,)
where A = ST (n,r)

Let A = A(n,r). Let H(), ) be the Hom space Hom 4(A&,, A€)) where A =
S*(n,r) and {€\ | A € A} is a set of primitive orthogonal idempotents of A. In
this section we review some results from [15] and [16] and do some calculations

for the dimension of H(), «), or the Cartan invariants, which will be used in

Chapter 5.
We split this section into four parts (see above).
Part I: Row Semi-Standard A-tableau and c) 4

In this part we introduce row sermi-standard A-tableau and the numbers c) o

where A\, a € A.
Definition 3.2.1. Let A = (A1, ... ,A,) be in A. The diagram of X is the set
A ={(kv)enxr|l1<v <A}

Any map T from [)] to r is called a A-tableau (with values in r). If T*(p,v) =

tu, We write

tin tiz ... tiy
A _ to; tog ... tax,
thl tao ... tnAn-
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The M-tableau T is said to be row semi-standard (RSS) if the entries in each
row of T are weakly increasing from left to right. The weight of T is the

element o of A defined by

qp = l{(ﬂ',v) € [’\] | by :P}I, Vper.

Definition 3.2.2. For each pair A, a of elements in A, we define ¢, o as the
number of RSS A-tableau T with weight o such that the entries tu,y in row p
of T* are not greater than u (u € n), i.e., Cx,a is the number of RSS A-tableau

of the form

Note that, given )\, o € A, a RSS M-tableau T* of weight o as described in the
definition above is completely specified by the n x n matrix (a,,), where for
any p,V € n, ay is the number of entries v in row p of T*. Hence Cxa is the
number of nonnegative integer lower triangular n X n matrices whose vector

of row sums is (A, ..., A,) and whose vector of column sums is (o, ... ,an).

Example 3.2.3. A RSS \-tableau and its associated matriz are

111111 [ 60000 ]
12 11000

and | 00000
224 02010
3445 | 00121

In this case A = (6,2,0,3,4), and the weight of T* is (7,3,1,3,1).

Recall the dominance ordering in A(n,r) in Definition 1.2.5.
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Proposition 3.2.4. For A= (Ay, ..., \),a= (01, ... ,an) € A(n,7), Ada

if and only if

a= (A1+my, Ade+myg—my, Ag+mg—mg, ... , Auc1 +Mpo1—Mp_2, Ay —My_1)

for some nonnegative integers my, ..., Mp_1.

Proof. (The if part): Let m, = (an+ ... +au) — (M + ...

Since a > A, m, > 0. Also

Mput1 = My = Cpp1 — Auta,

ie.,
Opt1 = Apt1 + My — my,

where = 0,1,... ,n—1, and mg = 0.

(The only if part): Since m, > 0, we calculate

o1 + ...+au=A1+ +)\“+m“2A1+ ..

where u=1,...,n— 1. Hence a > A.

Proposition 3.2.5. Let \,a € A. Then
(i) crna # 0 if and only if A Qa,

(22) Cax = 1.

+A,), forall p € n.

e

Proof. (i) Assume that c) o # 0. Then there exists a nonnegative integer lower

triangular n xn matrix (a,,,),,ven Whose vector of row sums is (A1, ..., A,) and
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whose vector of column sums is (a1, ... ,an). For any t € n, since (auy)uven

is lower triangular, a,, = 0 if 4 < v. Thus we have

(a1+ +at)—()\1+ +)‘t)
Z:u:l Z;=1 Auypy — Zt o1 2y G
PIVIRD DY M D DD D Gy , t .
, . , _n2p=l 2p=1 Gpy — Zy:l 2 peti1 Quy
%{:l §#=t+l Auy — Z,,=1 2 vmth1 Guy
v=1 2op=t+1 v
0,

I

I

WVl

>

ie, Ada.

Assume that A < a. By Proposition 3.2.4,
a= (A1 +my, Ag+ma—my, A3+mz—ma, ..., Ag1+Mp 1 —Mp_g, Ay —Mip_1)

for some nonnegative integers my, ... ,m,_;. Now we are going to construct

a row semi-standard A-tableaux T of the form as in Definition 3.2.2.

The first row of T* is A;’s 1. If m; > )Xo, the second row of T is A;’s 2; If
my < Mg, the second row is m;’s 1 and (A — m;)’s 2. For the third row, when
m; > Ay (the second row of T? is Ay’s 2), if m; — Ay > A3, the third row
of T* is A3’s 1; if m; — A < A3, then consider Ay + mg and A3 — (m; — Ag).
If Ay + my < A3 — (mq — Ap), then the third row of 7% is (m; — Ay < A3)’s
1, (A2 + m2)’s 2, and (A3 — (m; — X2))’s 3. Otherwise the third row of T*
is (m; — A2 < A3)’s 1 and (A3 — (m; — A2))’s 2. And so on, we have a row

semi-standard A-tableaux T* with the weight
(M +my, Ao+ mg —ma, A +m3 —my, ..., A1 + M1 — M2, Ay — Ma—1),

that is a. Hence c) o # 0.
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(ii) Since A 9\, we have ¢, » # 0, thus there exists a nonnegative integer lower
triangular n X n matrix (a,)uven Whose vector of row sums is (A1, ..., An)

and whose vector of column sums is (A, ..., A,). It is easy to check that
Qup = Ay, Gup =0,

where i1 # v. So the number of such matrices is 1, i.e., cyx = 1. [

Part II: The Cartan invariant T, ,

In this part we introduce the Cartan invariant ¢ , and give the connection with
Cra- First, we will introduce some results on Borel Schur algebras S+(n,r) in

[16).

Let A be the set A(n,7). Let A € A. Recall that A = S*(n,r). Denote left
A-modules V), and k) by

Vi = A€, and ky = V;/rad Vi

In [16], {Vi | A € A} is a full set of pairwise non-isomorphic principal indecom-
posable A-modules, and A = ®xca V. Also {ky | A € A} is a full set of pairwise
non-isomorphic irreducible A-modules. Note that k), is one-dimensional, since

A/rad A = @reanr) K&

Definition 3.2.6. Let A = (A1, ..., A;) be in A. Let T* be a A-tableau with

values in r, i.e., any map from the diagram [A] to r.

If i € I(n,r), we denote by T} the A-tableau

Ui U oo Uy

T = U Ua -+ Uay,

i
Upy Upg - ’Ltm\n.
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Assume now that T? is standard, ie., T* is bijective. Let I(\) =

(1*,2%, ... ,n*). Then we define I()) € I(n,r) by the M-tableau

1 1...1

2 2 ...2
T;?A)z :

n n ... n

Theorem 3.2.7. ([16/,82). The module V3 has a basis {0 | i € I(n,7),i <
I(A), T} a RSS A-tableau}.

Definition 3.2.8. Let A\, € A. The Cartan invariant T 4, of the Borel Schur
algebra S*(n,r) is the multiplicity of k, as a composition factor in Vy. The

Cartan matriz of St(n,r) is C = (Cha)racA-

Thus (see [4],(54.16)), we get
Cra = dimg Homg+(nr)(Va, Va) = dimg & Vi

Using Theorem 3.2.7 and the fact that £, ; = & ; or 0 according to whether
wt(i) = a or not, it is easy to see that £,V has K-basis {£;n) | 4 € I(n,7),i <

[(\), T} a RSS A-tableau}. Thus dimg £,V5 = ¢y 4, and we get the following.

Theorem 3.2.9. For each pair A\, of elements of A, the Cartan invariant

Cha Satisfies

Cra = Cra-

Notice that, since c) o depends only on A and a, we have

Corollary 3.2.10. The Cartan invariants €, of S(B*) are independent of

the field K; in particular, they do not depend on its characteristic.
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Part III: The dimension of S*(n,r) and the matrix multiplication for

St(2,7)

In this part we calculate the dimension of S*(n,r) in terms of nonnegative
integer lower triangular matrices. We also consider the matrix multiplication

for S*(2,7) and get a formula for a product of basis elements.
Theorem 3.2.11. The dimension of the Borel Schur algebra S*(n,r) is
(") -1
. .
Proof. By Definition 3.2.8,
23\,\,01 = dimg £, V).

Recall that &,V) is spanned by the set

{Ei.j l (Z,j) € Q+(n1 T)a Wt("') = Q, Wt(j) = )‘}

By Theorem 3.2.9,
a\,a = Ca-
By Definition 3.2.2, ¢ , is the number of nonnegative integer lower triangular

n X n matrices whose vector of row sums is A and whose vector of column sums

is . Thus the number of elements of the set
{&; ]G 7) € Qt(n,r), wt(i) = a, wt(j) = A}

is the number of nonnegative integer lower triangular n x n matrices whose
vector of row sums is A and whose vector of column sums is . Hence the
dimension of the Borel Schur algebra S*(n,r) is the number of nonnegative

integer lower triangular n x n matrices whose sum of entries is the sum of A, is
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equal to r. Actually, the number of such nonnegative integer lower triangular
n X n matrices, is the number of nonnegative integer solutions of an equation

withl+2+...+n=<n2

1\ . .
indeterminates,

T +Ta+Te+...+Tn+...+Tpp =1,

n+1
. L -1
which is the combination number (r + ( 2 ) ) ]
r

Let n = 2. By Theorem 3.2.11, the dimension of S+(2,7) is the combination

2
number (T; ), which has been seen in the example after Definition 1.1.7.
Next, we consider a matrix multiplication for the Borel Schur algebra S+(2, 7).

Let M(r) denote the set of 2 x 2 matrices with nonnegative integer entries
summing to r. Given ¢,7 € I(2,7), we define m,, to be the number of z €
{1,...,7} such that i, = u, j, = v for u,v = 1,2. We then define a function
f: I(2,7) x I(2,7) — M(r) be sending (%, ) to the matrix with entries my,.
Now f((¢,7)) = f((k,1)) if and only if (¢,7) ~ (k,l), and so we may index
our basis of S*(2,7) by M(r). In fact we let M(r) be a basis for S*(2,r) by
identifying &; ; with f((¢,7)). We are now going to obtain the multiplication
rule for S*(2,r) in terms of the matrices in M(r); we shall write this as Ao B
to avoid any confusion with ordinary matrix multiplication. In the following,

A and B denote matrices.

For A € M(r), denote by r1(A), ro(A) the first and second row sums of A, and
by ¢1(A), co(A) the first and second column sums of A. Now for A, B € M(r),
define N(A, B) to be the set of matrices C € M(r) with r1(C) = r,(A) and
¢1(C) = ¢1(B). In addition, if ¢;(A) = r1(B), define R(A, B) to be the set of
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2x 2 matrices D with (possibly negative) integer entries such that r,(D) = a,;,

co(D) = by, for u, v=1,2.
For any 2 x 2 matrices C, D with integer coefficients (nonnegative in C), we

()= I (o)

u,v=1,2

now define

Proposition 3.2.12. (/8/, Proposition 2.1) The multiplication rule for the
Schur algebra S(2,r) is given in terms of the basis elements A € M(r) by

AoB = { 0 (cr(4) # r1(B))
ZCGN(A,B)(ZDGR(A,B) (g))lK € (c1(A) =ri(B))
For the Borel Schur algebra S*(2,r), given r > b > a > 0 and £(b,a), we
have the matrix M = (m,,) as above. Since {(b,a) = &bgr-b 1a9r-a, We get
M(b,a) := ( 3 i:g ) Let M*(r) be the subset of M(r) consisting of
those upper triangular matrices M (b,a). So M*(r) is a basis for S*(2,r) by
identifying £(b, a) with M (b, a).

Proposition 3.2.13. The multiplication rule for the Borel Schur algebra
St(2,r) is given in terms of the basis elements M(b,a) € M*(r) by

M(d, c) o M(b,a) = by (‘; B Z) M(d, a).

Proof. Since (¢;(M(d,c)) = c and r1(M(b,a))) = b, by Proposition 3.2.12, we
have

0 b+#c

C
( ))I-C’ b=c
CEN+(M(dc),M(b,a)) DeR+(M(dc),M(ba)) \D

M(d,c) o M(b,a) = {

where N*(A, B) and R*(A, B) are the subsets of N(A, B) and R(A, B) respec-
tively, consisting of those upper triangular matrices with nonnegative integer

entries. So if b # ¢, we have M(d,c) o M(b,a) = 0.
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In the following, we let b = c¢. Suppose that C = ( Ty ) is a
0 r—z-—y

matrix in N*(M(d,c), M(b,a)). We get, z+y = d, z = a. So we have C =
d—

( g - _g ) = M(d,a). Let D := ( :11 ;22 ) be a matrix with nonnegative

integer entries in R*(M(d,c), M(b,a)). We have

T1+z2=c Y1 +y2=0, 2, +y; =a.

Since y1 +y2 =0,s0y; =y =0. Wehavez, =aandzy=c—a=b—a. We

get D = (8 g—a) Thus

2) =)= (59-6)

M(d,b) o M(b, a) = (‘; B Z) M(d,a).

Hence

Part IV: c,, for some special cases

In this part we do some calculations for ¢y, by computing the number of
nonnegative integer lower triangular matrices, which will be used in Chapter

5.
Let A = (A1, ...,An) be in A(n,7). Recall that
AMy,m)= (A1, ..., A +m A —m, ... Ay,
where v € {1,2, ... ,n—1} and 0 < m < A 41.
Let ay, ag, ... ,a,_1 be the simple roots of the root system A,_,, i.e.,
a;i=(0,...,0,1,-1,0, ... ,0),

where 1 <i<n—1.
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Proposition 3.2.14. (i) caq =1 for all \,a € A(2,7) with A < a.
(i1) Let A = (a1, az,a3), a = (by, ba, b3) € A(3,7). Assume A <a. Then

Cra = min{ag, bz, b1 —a,as — b3} + 1.

(iii) Let u and v be two positive integers. Let A and a be in A(n,r) such that
o — A = uoy; + vay,
where 1 <4, <n—1and|i—j| > 2. Then

Cra = 1.

(iv) Let A € A(n,r). For a positive integer v € {1,2, ... ,n — 1}, let a,b be

integers such that A,y 1 2 b>a 2 0. Then

CAw,a) Awb) = 1.

Proof. By Definition 3.2.2, ¢y, is the number of nonnegative integer lower
triangular n X n matrices whose vector of row sums is (A, ..., A,) and whose
vector of column sums is (o, ... ,0n). By Proposition 3.2.5, ¢) o # 0 if and
only if A < a. It is easy to check that the compositions A and « in the above
(i)-(iv) satisfy the condition A < a, thus we have c) o > 0. Hence, there exists
at least one matrix satisfying the above conditions in (i)-(iv). Next, we will
calculate the number of nonnegative integer lower triangular matrices for the

cases (i)-(iv).
To prove (i), let
[ a1 0
az Q22
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be a nonnegative integer lower triangular 2 X 2 matrix whose vector of row
sums is (a,” —a) = A and whose vector of column sums is (b,7 —b) = . Then
we have: a;; = a, a1 = b— a, and ag, = — b. Hence ¢y, = 1 in this case.
To prove (ii), let

a 0 0

a1 az 0
a31 a3z as3

be a nonnegative integer lower triangular 3 x 3 matrix whose vector of row

sums is (a1, a2,a3) = A and whose vector of column sums is (by, by, b3) = a.

We have
az1 = G2 — 422,
az1 = az — by — by + age = by — a1 — az + ay,
azz = by — as.
So:
d=: max{O, by + bz — (13} < axp < min{ag, b2}
Hence

0 < age — d < min{ay, by} — d = min{ay, be, by — a1, a3 — bs}.

Thus the number of nonnegative integer lower triangular matrices is the num-

ber of ay satisfying the above condition. Hence

Cra = min{ag, bg, b1 —a,as — b3} + 1.

To prove (iii). Since
a— A = uo; + vay,
then we have A Ja. Let (a,,)nxn be a nonnegative integer lower triangular

n X n matrix whose vector of row sums is A = (A1, Ag, ..., A,) and whose
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vector of column sums is @. Since 1 < 4,j < n—1and |j —¢| > 2, we can
rewrite o as (assume that ¢ < j):

a= A+ uo;+va;
= ()\1, ,/\,-_1,)\,-+u, )\i+1—u,/\,~+2, ;>‘j—1;
)‘j + v, /\j+1 - v, >\j+2, e ,An).

By the row sums and column sums of (a,,)nxn, We can calculate that

an = A,
a2 =0, axp = /\2,

"

ai-11=0, ..., @152 =0, @151 = Ai_y,

ai1 =0, ..., aii—2=0, aj;-1=0, a;;, = A\;,

aiv1,1 =0, ..., Gig1i = U, Gigliel = Aip1 — U,
*

aj—11 =0, ..., @j_1;-2=0, aj_1-1=Aj1,

a1 = 0, ey Q-2 = 0, aji—1= 0, aj i = )\j,

ai+11 =0, ..., Gj+1; =, Gj41541 = Aj+1 — v,
)

an1 = 0, ..., ann-1= 0, ann = An.

Hence there is only one matrix (a,,)nxn satisfying the condition, that is,

Cra = 1.
To prove (iv). Since
My, b) — My, a) = (b—a)ay,

we have A(v,a) < A(v,b). Thus caxpa)aws) = 1. Let (ai)nxn be a nonnegative

integer lower triangular n x n matrix, whose vector of row sums is
AMv,a) = (A1, oo 3 A+ 8, 0401 — @y oo, An),

and whose vector of column sums is
A, b) = (A1, oo s A+ 0, 41— b, oo, An).

Then we can calculate each row and the corresponding column of (ai;)nxn:

Row 1: a1 = A\
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Column 1: aj3 + ... +a@py = A1, 50 A91 = ... =ap; = 0;
Row 2: Aoy = /\2;

Column 2: ag + ... +an2=)\2, SO0 Q32 = ... =G,n2=0;

Row v: a,, = A, + q;

Column v: ay, + ... +an, = A, + b, s0
A1y + ... +app =b—a;
Row v + 1:

Ay41,0 + Qyi1v+1 = )‘u+l —a;

Column v + 1:

Ay41,0+1 + ...+ v+l = )‘u+1 - b;

We then consider (3.2.1)+(3.2.3)-(3.2.2):

iyt oo Ty +Aui2pt1+ o0+ Anpp =0.

Since all entries a;; are nonnegative integers, this implies

uiop = -+ =Qny =0=0pi2p41 = ... = Qnuy1.

Now from equations (3.2.1), (3.2.2), and (3.2.3), we get

Quily = b— a, GQuylp+1 = A1/-1-1 —-b.

Continuing the above process, we have:

Qyi2,u+2 = /\u+2;
Qi3 p42 = o0 = A2 = 0;

an1 = ... =Qpn-1= 0, Ann = /\n-

Thus there is only one such a matrix (a;;)nxn, hence cxp,a)rwp) = 1.
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Proposition 3.2.15. Let A = S*(3,r) and let a; and ay be simple roots of
type Ay. Let A = (a1,a9,a3) and a be in A(3,r) such that

a = A+ ma; + nay,

where m and n are nonnegative integers. We assume that a; > m. Let H be
the vector space

H .= HomA(Afa, AE)\)

Let d = min{m,n}. Then the dimension of H is (d + 1). H =~ £,AE) is
spanned by

{Xi| Xy =&, 3, 4 = 10Fm=toeatn-mytgas=n 4 —0 7 d},
Moreover, X; = &3e q,, where g = 1913t2923%~ gnd 0 < t < d.
Proof. Note that as > m. By Proposition 3.2.14 (ii), the dimension of H is
the Cartan invariant Cho0 gnm:
dim H = min{m, az,a; — m +n,n} + 1 =min{m,n} +1=d+ 1.

By Lemma 1.3.5, H ~ £,A€) as K-vector spaces. If & ; is an element of £, A§).

Then ¢ < 7 and the weights of ¢ and j are
wt(i) = a, wt(j) = A

Let j = 3*. Since i < j and i ~ 3%, so it is easy to check that the above set

{X:|t=0,1, ..., d} form a basis of H.

Next we prove that &;, 3» = 3o ¢,. We need to prove the multi-indices (i, 3 ~

(.3.0) qt), that is
(1a1+m—t2a2+n-—m1t3a3—-n, 1a1 20.23(13) ~ (1a1+m2a2+n—-m3a3—n’ 1a1 3t2a23a3—t).
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We consider the number of the pair (1,3) on both sides. Then the numbers

of (1, 3) on both sides are both ¢t. So the above relation for the multi-indices

holds. [ ]

We will use Proposition 3.2.15 in Sections 5.3, 5.4 and 5.5.

Finally, we give a second proof for Lemma 2.1.2:
Let A= (A1, ...,An) € A(n,r). Lett € {1,2,... ,n— 1} and let [ and m be

nonnegative integers such that [ < m < A;41. We have

m
Extm) tDEAED A = ( / )&\(t,m),»

Second Proof of Lemma 2.1.2: By Proposition 3.2.14 (iv), caaem) = 1. So

x(t,m)ST (n, )&, is one-dimensional and spanned by &x(,m).-

We let
i o=pMem) = 1N pemg g e e
jo=nr) = h e et e
I =npr= 1M+ )M e

By Theorem 1.1.4,
&iiia = [Pig t Pigalig- (3.2.5)

where [P;; : P, j;] can be computed from the formula

Ta’b!
(Pu: Pyl =[] E

Ta1bl " Tanp!
aben a,1,b a,n,b

where, for all a,d,b € n, 74 = |Rap(3,1)| and 7445 = |Ra,ap(, 4, 1)|-
Now we calculate r, 5 and 74 45, Where

Tab = |Ra,b(iv l)l = |{p €r | tp, = a, lp = b}l

68



We have
Taa = A, @ Ft,t+1,

Tet = At, Ttt+l =M, Ti41t41 = At41 — M,
Tep = 0, otherwise.

and

Taaa = Aay @ F 1,1+ 1,
Tt = Aty Tegel = b Toerlerl = M =1 Tepieq1041 = A1 — M,
Tadp = 0, otherwise.

[Pyt Piga] = ﬁ N (T)

3.3 Properties of Embeddings

Hence

In this section, by calculating the radical and radical square, we show that the
embedding ¢? : S*(2,7r) — S*(n,r + s) embeds the quiver of S*(2,r) into
the quiver of S*(n,r + s).

Throughout this section, let A = ¢¥(S*(2,7)) and B = S*(n,r + s). Since
% is an embedding where t € n—1 and o € A(n,s), A is a subalgebra of
B. First, let us discuss the relationship of radical and radical square with the

algebras A and B.

Proposition 3.3.1.
rad A= ANradB.

Proof. Since rad A is the largest nilpotent ideal of A, and ANrad B is nilpotent
in A, then ANrad B C rad A. On the other hand, by Proposition 1.2.3,
rad A C rad B. Thusrad A C ANrad B. [ |

Recall that S*(2,7) has a basis {£(b,a) |0 < a<b< T}
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Proposition 3.3.2. Let £ € ST(2,7). Write £ as a linear combination of basis
elements, & = 3,5, kbaf(b,a), where kyo € K for allT > b>a > 0. Then
we have 3 (€) € AN (rad B)® if and only if p2(£(b,a)) € AN (rad B)? for all

nonzero ky,.

Proof. (The if part): This is trivial.
(The only if part): By the multiplication rule for the Schur algebra,
f(b, b){f(a, a’) = kb,a&(b’ a’)'

If kyo # 0, then
f(b, a’) = kb,a—lg(b’ b)ff(a, a)'

Since ¢ is an algebra homomorphism, we have

PF(E(b,a)) = ¢f(kpa E(b,0)éE(a,a))
= koo @F(E(5,0))p ()¢ (E(as a)).

Since ¢2(€) € AN (rad B)? and (rad B)® is an ideal of B, then ¢¥(£(b,a)) €
(rad B)?, i.e. 92(£(b,a)) € AN (rad B)>. "

Proposition 3.3.3.
(rad A)® = AN (rad B)®.
Proof. By Proposition 3.3.1 rad A C rad B, so (rad A)* C (rad B)?, thus

(rad A)? € AN (rad B).

We need to prove that

AN (rad B)? C (rad A)>.
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By Proposition 3.3.2 and Proposition 1.2.3, it is enough to prove that for any
0 < a<b<rand p¥(€(b,a)) € AN (rad B)?, then

@7 (£(b,a)) € (rad A)”.

Since p®(£(b,a)) € AN (rad B)?, so p2(£(b, a)) € (rad B)®. Let

‘P?(&(b’ a)) = Z kufugu,

where f, and g, are in rad B, and k, € K. Using the multiplication rule for

Schur algebra, we can assume that f, = & ; and g, = &;.

Let a = (ay, ... ,a,) € A(n, s), then we can write ¢3(€(a,a)) as:
¢¢(€(a,a)) = a1,

where a! = (a1, ... ,a1-1,8; + @, Q441 + 7 — @, Qpg2y -+ -, Q).

Similarly, we can write ¢3(£(b, b)) as:

7 (£(b, b)) = &z,

2

where o = (a1, ... ,a-1,a; + b, a1 + 7 — by agy2, ... , ).

Thus we can rewrite ¢ (£(b, a)) as follows:

v (£(b,a)) 7 (£(b, b)¢(b, a)é(a, a))
Ea""pta (f(b1 a’))fal

Eu éaz kufugu§a1

Zu fugu)

where

Tu = ué'a?fu € radB,
Ty = Guéar € rad B.

Fix any u with f,g, # 0. We will show that f,,g, € rad A4, so ¢¢(&(b,a)) €

(rad A)? as required.
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Recall that f, = & ; and g, = §;; for some 4,5,l. Let the shape of j be

B = (b1, ...,bs) € A(n,7 + s), we can rewrite f, and g, as follows:

fu = §a2kufu£B € éa’Bgﬂ;
Gy = £9ubar € EgBEar.

By Definition 3.2.8, the Cartan invariant Cg 42 is the dimension of £,2 B3. Here
f. # 0, which implies that Cpa2 = 1. By Theorem 3.2.9, we have Cg 42 = cg 42.
By Proposition 3.2.5, cg o2 > 1 if and only if 8 < o?. Similarly by g, # 0, we
have B> a!. Hence

a’> B> al.
By the definition of the dominance ordering in Definition 1.2.5, we have
a1+ ... +ag2b+ ... +bpy2a1+ ... +ax, forallke{l,...,t—1}.

Thus by = ax, forall k € {1, ... ,t —1}.

Similarly, we have by, = ay, for all kK € {t +2, ... ,n}. Hence for the ¢-th and

(t + 1)-th entries of a!, a? and 3, we have the following condition:
a+b2bh=a+cZa+a, bp=an+r-—g,
then we have
b>c>a.

This means that &g = ¢ (€(c, ¢)). Since f, and g, are in the radical of B, then
f. and g, are in the radical of B. Since idempotents are not contained in the

radical, we have the condition:
b>c>a.

Now g, and f, are just scalar multiples of ¢%(£(c,a)) and ¢$(&(b, c)), respec-
tively. Thus f, and g, are in the radical of A. Hence ©2(£(b,a)) € (rad A)°.
|
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Let A € A(n,r). Recall that
Ay,m)= (A1, ..., A +m A1 —m, ... Ap).

Theorem 3.3.4. Let K be a field of characteristicp > 0. Let A € A(n,r).
Let m be a positive integer such that m < A4 for somev € {1,2, ... ,n—1}.
Consider the full sub-quiver I of the quiver I of S*(n,r), generated by all
vertices corresponding to the idempotents £x,&xu,1), -+ - »Er@,m). Then IV is the

quiver of ST(2,m).

Proof. Let e; =(0,...,0,1,0,...,0) be a 1 xn vector of whose the i-th entry
is 1 and the other ones are 0. We let a = A—me,;1, wherev € {1,2, ... ,n—1}

and 1 < m < A,41. Thus we have a € A(n,r—m). We consider the embedding

0% : 8%7(2,m) —» S*(n,r).

For the basis element £(b,a) where m > b > a > 0, by Definition 3.1.1, we

have
7 (€(b,a)) = Ea(wb)a(va)
where
a,) = (A1, oo, A+ b A —m—=b, ..., \),
av,a) = (A1, -, A+ @, A1 —m—a, ..., ),
and

§a(u,b),a(u,a) = £ﬂa(l’»b),ﬂa(!«a)-

Let T be the quiver of S*(2,m). Note that ¢ maps the basis element £(a, a)
of ST(2,m) where 0 < a < m, to the basis element ¢%(£(a, a)) = €aq,q). This

implies that ¢ maps the vertex a of I'” to the vertex a(v,a) of I.
v
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Since ¢ is an embedding from S*(2,m) to S*(n,r), S*(2,m) is isomorphic
to p3(S*(2,m)). Thus, the radicals of S*(2,m) and ©(S*(2,m)) are isomor-

phic.

Let Ry = rad S*(2,m), R = rad p2(S*(2,m)) and Ry = rad S*(n,r). Then

R, ~ R. By Definition 1.4.2, the number of arrows from a to b in I'” is
c(b,a) := dim&(b, b)(R1/R3)E(a, a),
where 0 < a < b < r, and the number of arrows from £,(,,0) t0 €au,p) is

C'(b, a) = dim fa(,,,b)(Rz/Rg)ﬁa(y,a).
We need to prove that c(b,a) = ¢/(b,a) forall0<a < b<r.

Recall that p is the characteristic of K. By Theorems 2.2.5 and 2.4.2, ¢(b,a) =
1 if and only if [b—a], = 1 (if p = 0, we have [b — a], = b — a), otherwise
c(b,a) =0.

Note that Eup,p)(R2/R2)aa) = (Cawp)Rebawa))/ (B3N €awp)Reba(va))- By
Proposition 1.2.3, R, is spanned by {&; | ¢ < j, (¢,5) € Qf(n,r)}.
Then &u(5)R28a(v,a), s & vector space, is isomorphic to the vector space
spanned by {&; | i ~ n®, j ~ n*®9} which is also isomorphic
to &awp)ST(n,7)€a(v,e). Then by the definition of the Cartan invariant,
dim &aup) Roba(va) = dim&aqp)St(n,7)awa) = Caa)awp): By Proposi-
tion 3.2.14 (iv), caa)awp) = 1 if b > a, otherwise it will be 0. And when
Ca(v,a),a(vp) = 1, the vector space &) R2€a(,qa) is spanned by the element

€a(vb),a(ve)- This means c¢'(b,a) = 0 or 1.

Therefore if c(b,a) = 0, i.e. £(b,a) € R}, then & p)ara € R3, that is,
d(b,a) =0.
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The remaining case is that c¢(b,a) = 1. We will show that /(b,a) > c(b,a).

Since ¢/(b,a) < 1, we have c/(b,a) = 1.

By Propositions 3.3.1 and 3.3.3, we have
R=y2(S*(2,m))[ Ry R*=¢2(S*(2,m))[ R

Thus the induced map ¢% : £(b,b)(R1/R2)¢(a,a) — Eawp)(Re/R3)éa(,a) is

well-defined. Actually, we note that

@€Y, @) + RE) = p2(E(V, @) + RE = Eapp)atvay + B2,

where 0 < @ < ¥ < m. If the basis element £(V,a') € R%, we have

(plo/‘(é(b,’ a’)) = ga(u,b’),a(u,a’) < Rz- Since R2 = Sog(s_*-(z’m)) nR‘% by Proposi—

tion 3.3.3, we get {a(p)a(va’) € RZ. Hence ¢?2 is well-defined.

Moreover, if 0 = &a(,),a(va’) + B3 € Eaw)(R2/ B3)Ea(v0), that is, &aq,p),awa) €
R. Since R* = ¢3(ST(2,m))N R} and &appyawey = ¥0(EWY,a)) €
©2(S*(2,m)), we have & p)awae) € R:. As we know that @3 is an em-
bedding from S+(2,m) to S*(n,r), we have £(V/,a') € R:. That means ¢
is an embedding from £(b, b)(R1/R?)&(a, a) t0 &upp)(R2/R3)éa(va)- Hence we
have ¢/(b,a) = c(b,a). Therefore c(b, a) = c'(b, a).

Hence the quiver I'” of $*(2,m) is a full sub-quiver of the quiver I" of S*(n,r).

Recall that we call the relations in Theorem 2.3.1, the p-adic relations. Now
by Theorem 3.3.4 these p-adic relations of S*(2,m) can be embedded in the

relations of S*(n,r). We also call the relations of S*(n,r) which are embedded
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by the p-adic relations of St(2,m) in Theorem 2.3.1, the p-adic relations of
St(n,r).

Let 0 € a < b < r. By the end of Chapter 2, there is a path P(b,a) from a to

b. By our embedding, then there will be a path
P(’\(t’ b)’ ’\(ta a‘)) = QO?(P(b’ a))

from A(t,a) to A(t,b) where A = a+rEy,. We call P(\(t,b), A(t,a)) the path
from A(t,a) to A(t,b).
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Chapter 4

The quiver of the Borel Schur
algebra S (n,r)

Let K be a field of characteristic p > 0, A the Borel Schur algebra S*(n,r)
over K, and I' the quiver of A. We know that the vertex set of the quiver T is
A(n,r) (see the end of Section 1.4). Using the results from [16], in Section 4.1

we describe the arrow set of I'. In Section 4.2 we list some quivers for S*(3,r).

4.1 The quiver of S*(n,r)

In this section we describe the quiver I" of A.

Let A = (A1, ..., ) bein A(n, 7). We know that &, is a primitive idempotent
of S*(n,r) by Proposition 1.3.6. Let V) be a left ideal

Vi :i= 8% (n,r)é.
Recall the multi-index [ = I(A) = 1* ... n* and recall that
AMy,m) = (A1, o, A +Fmy A —my L Ap).
Let {(v,m) = l(A(v,m)). In [16], A. Santana proved the following theorem:
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Theorem 4.1.1. [(4.5)Theorem, [16]] The sets

(@) {&uyilve{l,2,...,n—1}}, if charK =0,
(’L'L) {gl(u,p"l/),l | Ve {1)2: Y (2 1}?1 < pdv < Au+1}’ Zf char K = p,

are minimal sets of S*(n,r)-generators of rad V.

The following lemma shows that this minimal set of generators of A-module

A is bijective to a K-basis of (rad A)/(rad A)? where A = S*(n,r).

Lemma 4.1.2. Let B be an elementary finite dimensional algebra over K, and
R =rad B. Then any minimal set of generators of B-module R is bijective to
a minimal set of generators of B/ R-module R/R?, or a K-basis of R/R%. In
particular, let B = S*(n,r). Then the minimal set of generators of S*(n,r)-

module R is bijective to a K -basis of R/R?.

Proof. By Theorem 1.4.6(a), a minimal set of generators of B-module R is
bijective to a minimal set of generators of B/R-module R/R?. Since B/R is
semi-simple, R/R? is completely reducible, i.e., R/R? is a direct sum of simple
B/R-modules. Since B is elementary, i.e., B/R is a product of copies of K,

the minimal set of generators of B/ R-module R/R? is a K-basis of R/R>.

In particular, let B = S*(n,r). By Theorem 1.3.8, the Borel Schur algebra
S*(n,r) is elementary over K. Hence the the minimal set of generators of

St(n,r)-module R is bijective to a K-basis of R/R2. ]

We now are ready to describe the quiver I" of the Borel Schur algebra S*(n,r).

The following two theorems give the description for the quiver I' of S*(n, 7).
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Theorem 4.1.3. Let char K =p > 0, and let A\, u € A(n,r) be two vertices
of the quiver of S*(n,r) over K. Then the number of arrows from X to u is at
most one. Moreover, there is an arrow from A to p if and only if u = A(v,m),
where the integers v and m satisfy the conditions: 1 <v<n—-1,1<m < A1

and m = p' for some nonnegative integer t.

Proof. Let R be the radical of S*(n,r). By Definition 1.4.2, the number of
arrows from A to u in the quiver T of S*(n,r) is the dimension of £,(R/R?)¢,.
By Lemma 4.1.2 and Theorem 4.1.1, R/R? has a basis

A= {&upmy | A€ AR, T), ve{L,2,...,n—1}1<p¥ < A}

We now need to calculate the dimension of
GRIRGZ6( D K- bppnn)ér = HO\p).
(v, pdv) 1 €O
We denote the above vector space as H(\, u). Let c(\, 1) = dim H(A, ). So
we only need to prove that c¢(),u) = 1 if and only if u = A(v,p%) for some

nonnegative integers 1 < ¥ < n — 1 and d,; otherwise ¢(\, u) = 0.

First we assume that p = A(v, p?) for some nonnegative integers 1 < v < n—1
and d,. We will prove that c(A,u) = 1 in this case. Let [ = I(\). Then
£ur = Eupivyy € A. Thus we have &, € H(), ), so

K- gu,A g H(/\,/.L)-

By Definition 3.2.8, the Cartan invariant c, , is the dimension of £,5%(n, r)&,.
By Proposition 3.2.14 (iv), cap = cyawpw) = 1. Thus we have that
€,S*(n, )€, is one-dimensional, spanned by §, 5, that is,

§MS+(n’ T)f,\ =K- fy,/\'
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By the definition of H(\, 1), we know that

H(A, p) € &S (n,m)éx.
Hence H (), u) satisfies the following condition:
K- CHMp) CEST(n,r)éa=K &,
Therefore, H(A, p) = K - €, . Thus we have c(\, u) = dim H(\, u) = 1.

Next, we suppose c(\, u) # 0. We want to show that ¢(\, u) = 1. Let h be a
non-zero element in H(\, u). Note that the set A spans the vector space H.
We can write h as a linear combination of the elements in A:
h=Yag,
gea
where a¢ € K. Since h # 0, there exists some a¢ # 0 for some { € A. Note
that h = €,h€), since h € H(A, ). We know that §,n€, =nor 0 for all n € A.

Since £ occurs in the sum of h and £ € A, we have

f = fwf&\-

Let £ = £4(ypiv),o for some a € A(n,r) and nonnegative integers 1 < v <n—1
and d,. Since £ = §,€€,, by the multiplication rule for the Schur algebra
S(n,r), we have

d
n* ~n® P~k

Thus a = A and p = a(v,p*). Hence u = A(v,p*). For such A and u, we
have proved that H(A, p) = K - £, ». Therefore c(\, u) = 1. |

Similarly, by Theorem 4.1.1, we can get the quiver of S*(n,r) over a field K

of characteristic 0.
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Theorem 4.1.4. Let char K =0, and let A\, u € A(n,r) be two vertices of the
quiver of ST(n,r) over K. Then the number of arrows from A to u is at most
one. Moreover, there is an arrow from XA to u if and only if u = A(v, 1), where

the integers v satisfy the condition: 1 <v<n-1.

By Theorems 4.1.3 and 4.1.4, there is precisely one arrow from A to u if
and only if 4 = A(v, m), where the integers v and m satisfy the conditions:
1<v<<n-—1,1<m< Ay and m = p' for some nonnegative integer t.
(When the characteristic of K is 0, we let m = 1). We label this arrow as £, »,
where £, » sometimes denote an arrow in the quiver of S*(n,r) instead of an

element of S*(n,r).

Definition 4.1.5. Let X and u be two compositions of 7 with at most n parts.

Let X\ and u satisfy the conditions in Theorems 4.1.3 or 4.1.4, i.e.,
w—= A= ptaln

forsome 1 < v<mn—1landt >0 (pt =1if p=0). Then there is precisely
one arrow from A to u in the quiver of S*(n,r), labeled by €, . We say that

this arrow belongs to the simple root o, and has length pt.

Hence all arrows in the quiver of S*(n,r) over K of characteristic 0, have

length 1.

By Definition 4.1.5, every arrow in the quiver I" of S*(n,r) belongs to certain

simple root of type A,_1: a1, a9, ... ,0p_1.

Furthermore, by Definition 3.1.1 and Definition 4.1.5, it is easy to check that

the embedding ¢f* has the following property.
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Proposition 4.1.6. Let s < r be a positive integer and £(b,a) a label for
an arrow in the quiver of S*(2,s) over a field K of characteristic p, that is,
b—a = p* for someu > 0. Let ¢ be an embedding as in Definition 3.1.1,
from St(2,s) to St(n,r) over K, where 1l <t < n—1 and o € A(n,r — 3).
Then the arrow labeled by the element ¢ (£(b, a)) belongs to the simple Toot oy

and has the length p*.

4.2 The quiver of S*(3,r)

In this section we list some quivers of S*(3,7) over a field K of characteristic
p. For simplicity, we denote a composition (a,b,c) by abc, for example 010

denotes the composition (0, 1,0).

The quiver of S*(3,1) for any p:

010
/ \
100 001
The quiver of S*(3,2) for p = 0:
020
/ \
110 011
200 101 002



The quiver of S*(3,2) for p = 2:

/020\
/110\ /011\
200 101 002
The quiver of S*(3,3) for p = 2:
/030\
/120 021\
/210\ /111\ /012\
300 201 102 003
The quiver of S*(3,3) for p = 3:
/030\
/120\ /021\
/210\ /111\ /012\
300 201 102 003

83



Chapter 5

Special types of relations for the
quiver of St (n,r)

In the previous chapter we described the quiver I' of the Borel Schur algebra
St(n,r) over a field K (Theorems 4.1.3 and 4.1.4). We now consider the
relations of the quiver I'. Recall that there is a surjective homomorphism j7
KT — S*(n,r) where fmaps the labels of the paths in the path algebra KT
to the basis elements in the Borel Schur algebra S*(n,r) by Definition 4.1.5,

and the relations of the quiver I' is the kernel of f

We describe all relations in the case of characteristic 0 (Section 5.6) and we
provide some relations in the case of positive characteristic for some special

subgraphs of the quiver I'.

In Section 5.1 the subgraph in T is a rectangle, which we call a diamond. We
obtain a relation in which the arrows belong to the simple roots o; and «;

with | — j| > 2.

In Section 5.2 we describe the relations for S*(3, ) for the paths from (0,0, 7)
to (,0,0) in T.
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In Section 5.3 we consider the n x m and m x n rectangles in I' of S*(3,r).
We obtain a formula for a special path in these rectangles in Theorems 5.3.5

and 5.3.10.

In Section 5.4 we consider the 1 x m and m x 1 rectangles in I'. Using the
formula for the corresponding paths in Section 5.3, we describe the relations
for these rectangles in Theorems 5.4.5 and 5.4.12. In this case, we obtain all

relations (see Theorems 5.4.7 and 5.4.12).

In Section 5.5 we get the relations for the n x m rectangle in I" of S*(3,7) in

zero characteristic, in terms of the words of R’s and D’s.

In Section 5.6 we use the results from [6], to describe all relations in T" of

S*(n,r) over a field of characteristic 0.

Our approach is as follows. We consider some special subgraphs in the quiver
I’ of S*(n,r) over a field K. We obtained already some relations (which we
call p-adic) for the quiver I" in Theorems 3.3.4 and 2.3.1. We will study the
relations modulo these known p-adic relations. Our method is to calculate
the dimension of the vector space spanned by the paths from one vertex A to
another vertex u in the subgraph in the path algebra KT, the dimension of
the corresponding Hom space Hom4(A¢,, A€)) with A = S*(n, ) which is the
Cartan invariant C , by Definition 3.2.8, and the dimension of the quotient of
KT modulo the known relations. We then consider the relationship between

these dimensions to check whether we found all the relations.
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5.1 The diamond relation

Let n > 4. Let D be the following subgraph of the quiver I" of S*(n,r) over

K, (we also call D a diamond),

/\
\/

where a, o!, 8, and 3! are compositions in A(n,r); the integer p is the charac-
teristic of the field K; o; and a; are two simple roots of type A,_; such that
1<4é,j<n-—1and|i—j| > 2; a,b are nonnegative integers, satisfying the

following conditions:

ol = a+pla;,

B = a+ by,
B=oa+pe +pbaj,
where p* =p® =1if p=0.

Proposition 5.1.1. Let n > 4. Let D be the above subgraph in the quiver I'
satisfying the above conditions. Then for the f -images of the paths €5 4161 o

and &g g €p o tn the path algebra KT, we have

€,018ar,a = §3,818p1 ) (5.1.1)
in the algebra S*(n,r). Hence we have a relation

€p,018a1,0 — £6,61€41 )
for the quiver T' of S*(n,r).
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Proof. Let A = S*(n,r). By Proposition 3.2.14 (iii), the Cartan invari-
ant co3 = 1. By Definition 3.2.8, c4p is the dimension of H(a,f) :=
Hom4(Aés, A&,). Since €5, is an element of H(a,3), we have H(a,f8) =
K& o. By the multiplication for the Schur algebra in Definition 1.1.1, the
LHS and RHS of Equation (5.1.1) are both scalar multiples of &g .

By the multiplication formula for Schur algebras in Definition 1.1.1

LHS = gﬁ,al'fal,a = Z&B,a,

where Z is the number of multi-indices s of I(n,) satisfying the condition:
(08, 2%) ~ (@,s), (n*',n%) ~ (s,n%). (5.1.2)

Since |i — j| = 2, by the definition of the relation ~, we can assume that i = 1

and j = 3. Let a = (ay, ... ,a,) be a composition of r with at most n parts.
Then
ol = a+p*ay = (a1 +p% a2 — 1% a3, ... ,an),

B =a+poy +pPas = (a1 + p*, a2 — p% a3 + p°, a4 — PP as, ... ,an).
By the definition of the relation ~ in Section 1.1, and by the second relation
in Equation 5.1.2, the only difference between s and n* is in the first (a; + a2)
places. By the first relation in Equation 5.1.2, the first (a; + a3) places of n®

and s are the same. Thus s must be the multi-index n®', so Z = 1. Hence

LHS = €g01éat 0 = Epa-

Similarly, we can calculate that

RHS = &g pi€p o = Epa-
Hence we have

€p.arbat,a = €5,818p1 a-
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Remark. We can use Theorem 1.1.4 to calculate the coefficient Z in LHS.

Z . T‘a’b!

= _—
Taid! " Tanp!
aben a,l,b a,n,b

where i = 1%, j = n® and | = n?, for all a,d,b € n, 7ap = |Rap(4,1)| and
Ta,dp = |Raap(i, 5, 1)|.
Recall that
Tap = |Rap(3,0)| ={p €| ip=a, [, =b}|.
Let a = (a;,...,a,) be in A(n,r). We have
e =0y, tF 4,1+ 1,7,7+1,
Tii = Qi, Tiig1 =DP% Tiglit1 = Qi1 — p%

— — b — b
Tjg =@y Tjj+1 =P  Titlj+1 = Gi41 — P,
Tqp = 0, otherwise.

and
Tegt = Qg tF 4,1+ 1,5,7+1,
Tiii = Gty Tiiit1 = P%  Titlitli+1 = Qi1 — D%
Tigg =@ Tigg+1 = D% Titljtli+l = @41 — P
Tadp = 0, otherwise.

Hence Z = 1.

We call the relation in Proposition 5.1.1 a diamond relation.

By Proposition 5.1.1, if n > 4, we have the diamond relations for the quiver T’
of S*(n,r) where the arrows belong to the simple roots o; and «; such that
|t — j| =2 2. We then consider the relations for the quiver I" where the relative
arrows belong to two simple roots o; and a;4; for 1 < 2 < n — 2. This can
be studied for the quiver of S*(3,7), where the simple roots are a; and as.
Hence from now on, we mainly consider the relations for the quiver of S*(3,7)

except for Section 5.6.
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5.2 Some relations for the quiver of S*(3,r)

In this section we consider the paths from (0,0, 7) to (r, 0, 0) in the path algebra

KT where I is the quiver of S+(3,r) of zero characteristic.

Let T be the vector space spanned by the paths from (0,0,7) to (r,0,0) in
the path algebra KT. Let D(r) be the dimension of T. For r = 1,2,3, we

calculate the corresponding D(r) as follows (for the quiver I', see Section 4.2):

The quiver of S*(3,1) for p = 0:

010
/ \
100 001
D(1)=1.
The quiver of S*(3,2) for p = 0:
020
/
110 011
200 101 002
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The quiver of S*(3, 3) for p = 0:

<
NN
AVANVAN

D(3) = 5.
We now introduce the following definition.

Definition 5.2.1. ([17], Page 221) The n-th Catalan number C, =

1 /2
Y 1(:) is the number of Dyck paths from (0,0) to (2n,0), i.e., lattice

paths with steps (1,1) and (1, —1), never falling below the z-axis.

Proposition 5.2.2. D(r) = C,.

Proof. By Definition 5.2.1, C, is the number of the lattice paths from (0, 0) to
(2n,0), with steps (1,1) and (1, —1), never falling below the z-axis, which is
the D(r). ]

Proposition 5.2.3. There are (C, — 1) linearly independent relations in T

Proof. By Proposition 5.2.2, the dimension of T is D(r) = C,. Let A :=
(0,0,7) and a := (r,0,0). By Proposition 3.2.14 (ii), the Cartan invariant
¢ra = 1. By Definition 3.2.8, this implies the Hom space Hom4(A&,, AE)) is

one-dimensional and generated by &, » where A = S*(3,7). So the paths from
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A to a in the path algebra KT is mapped by fto a scalar multiple of &, 5 in
S*(3,7). Hence the f-images of these C, paths in T are all multiples of £, ».

In other words, we obtain (C, — 1) linearly independent relations in 7. |

5.3 The n x m and m x n rectangles

Let K be a field of characteristic p > 0. Let A be the Borel Schur algebra
S*(3,7) over K. Let T be the quiver of A. Let a; and a; be simple roots of

type A,.

In this section we consider the n x m and m X n rectangle in the quiver T"
where n and m are positive integers. We calculate a special path in these two

rectangles.

Let ¢ be an integer with 0 < 7 < m. We first consider the following n x m

rectangle:
iay . (m=i)a
a0 a% afm
naz no naz
anO C‘!m’ nm

oy (m—i)ax
We assume that a® = (a,, as,a3) with the conditions a; > m and a3 > n.

Then we write a® as follows:
a® = (u,m+v,n+w),

where u, v, w are nonnegative integers. Thus, the compositions o® and o™ are

as follows:
a% :=a% +ia; = (u+i,m—i+v,n+w),

a™:=a% +na; = (u+i,m—i+n+v,w).
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We have

a® = (u+m,v,n+w), o™ =@wm+n+v,w), " =m+u,n+v,w).

Recall that we consider all paths in the path algebra KT' modulo the p-adic
relations (i.e. those given by S*(2,s) sub-quivers (see after Theorem 3.3.4)).
In particular, this implies that there is only one path from a% to o® (or from

a™ to a™) where 0 K k<I<m

Denote by P; the path in the path algebra KT' modulo the p-adic relations,

from a® to a%, to o™ and to a™™.

Recall the map f from KT to S*(n,r) (see Section 1.4).

Proposition 5.3.1.
f(P) = 2+ (m ) n £anm a"'&a’" aOt£a01 00+ (531)

Proof. The path P, can be written as follows:
Pi — P(anm, am‘)P(am‘,aOi)P(aOi, a00)7

where P(a™™, a™) is the unique path from a™ to ™™, P(a™, a%) is the unique
path from a% to o™ and P(a%,a®) is the unique path from a® to a®. By

Theorem 2.5.3, the f—images of the paths

F(P(am™, am)) = (m — i) gqmm an,
,Z;( ( )) =N fam %%,
f( ( )) = Z+§aolyaoo.

Hence we obtain Equation (5.3.1). ]

By Proposition 3.2.15, we have the following proposition.
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Proposition 5.3.2. Let d := nﬁin{m, n}. Let H be Homg(A&ynm, A€y0).

Then the dimension of H is (d + 1). Moreover, H ~ £ynm A€o0 is spanned by
{Xe | Xe =&, gao, 4 =1"""72"0113% ¢ = 0,1, ... ,d}.

Moreover, X; = £zarm ., where g, = 1¥3°2m+¥3" %=t gnd 0 < t < d.

Our aim is to calculate f(P).

Lemma 5.3.3.

fam',amfao;"aoo = §oni o00.
Proof. Let d' = min{n,i}. By Proposition 5.3.2, {,ni A0 has a basis
{é%énoo I z,t — 1u+i—t2m—i+n+v1t3w’t — 0, 1, . ,d,}.

By Lemma 1.1.2, we have

dl
fam',am'fam,aoo = Z ZtEi,“gaoo,
t=0
where Z; is the number of multi-indices s = (sy, ... ,s,) in I(3,r) satisfying

the following conditions:
(gani’gaoi) ~ (i’t’ s), (gam',gaoo) ~ (S,gaoo).

That is,

(1u+i2m—i+n+v3w’ 1u+i2m—i+v3n+w) ~ (1u+i—t2m—i+n+v]_t3w, 3), (5.3.2)
(1u+i2m—i+v3n+w, 1u2m+v3n+1ﬂ) ~ (5’ 1u2m+v3n+w)_ (5.3.3)

By (5.3.3), the last (n + w) places of s are 3’s. By (5.3.2), the first (u+¢—1t)
places and the ¢ places from the last (w + t)-th to the last (w + 1)-th ones of

s are 1’s.
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We claim that ¢ = 0. Otherwise t > 1. Then the t places from the last (w +t)-
th to the last (w + 1)-th places of s are 1’s. This is a contradiction with that
the last (n + w) places of s are 3’s where n > 1. Hence t = 0. By (5.3.2), the
first (u+1) places of s are 1’s. Since s ~ 1¥Hi2m-i+tv3ntw g — jutigm—itvgniw

Thus Zo = 1. Note that i = 3°™. Hence we obtain our formula. ]

Lemma 5.3.4. Let d; := min{m — i,n}. Then

d.
~[m—t
Eanm’aniéani'aoo = Z ( 'L )Xt

t=0

where 0 < ¢ < m. In particular,
d
Eanm qno€ano go0 = Z X;.
t=0

Proof. By Lemma 1.1.2 and Proposition 5.3.2, we have

d
ganm,anigani’ao() = Z Zt&_s_a“m )

t=0
where g, = 1%3!12m*+*3"*tvw=t and Z, is the number of multi-indices s =
(s1, -..,8r) in I(3,r) satisfying the condition:
(1u+m2n+v3w, 1u+i2m—i+n+v3w) ~ (1u+m2n+v3w’ S), (5_3_4)
(1utigm—itntoguw quomivgntw) (g Ju3igmtvgntw—i) (5.3.5)

By (5.3.5), the first u places of s are 1’s. By (5.3.4), the last w places of s
are 3’s. Since s ~ 1¥ti2m-i+n+v3w it remains which places of s will be the i

copies of 1’s.

By (5.3.4), the first (u+m) places of s must be 1’s or 2’s. Thus, these ¢ copies
of 1’s of s are in the m places from the first (u + 1)-th to the first (u + m)-th

ones.
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By (5.3.5), the t places of s from the first (u+ 1)-th to the first (u+t)-th place
are 2’s. Hence it remains to choose 7 places from (m — t) places from the first

(u+t + 1)-th to the first (u + t + m)-th places of s, to put i copies of 1’s. So
-1
m ) That is,

1
1

We claim t < m — . Otherwise t > m —i. Then m —t < i. Note that we

the number of such s is (

need to put ¢ 1’s in the (m — t) places from the first (u + ¢t + 1)-th to the first
(u 4+ m)-th places. This is impossible. Hence ¢ < m — ¢. By Proposition 5.3.2,

t < dmin{m,n}. Let d; := min{m — ¢,n}, then 0 < ¢ < d;. Hence

d.
~(m—1
Eanm,anigani’aoﬂ = Z ( i )Xt.

t=0

Note that do = d. So we obtain the special formula when 7 = 0. 1

~

We now calculate f(P;) where i =0,1, ... ,m.

Theorem 5.3.5. Let d; := min{m —i,n}. Then

d;
~ —1
fry=itm—iym S (") K
t=0 ¢
where 0 < 12 < m. In particular,

d
f(Po)=m*n*> "X, f(Pn)=m"n*X,.
t=0

Proof. By Equation (5.3.1),

f(R) = ’i+ (m —_ i)+n+£anm’anifani,aOifam,aOO.
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By Lemma 5.3.3, we have

Eani 00i€a0i 10 = Egni g00.

So, by Lemma 5.3.4,

Finally, we consider the related m x n rectangle in the quiver I'. This subgraph
can also be obtained by interchanging the simple roots o, and a3 in the above

n X m rectangle:

(m—i)a2

,300 L I 1301' ﬂOm
nag noy naj
n0 nt nm
'8 ia ﬂ (m—i)az '8

where % is the following composition
B = (u,n+v,m+w).

Thus, the compositions 8% and §™ are as follows:

B% := % +icg = (v, v +n+i,w+m— i),
B = B%+na; = (u+n,v+i,w+m—i).

Denote by Q; the path in the path algebra KT modulo the p-adic relations,

from % to 8%, to ™ and to /™™.

We simply list the corresponding propositions and theorems.
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Proposition 5.3.6.
f(Qz) = z+(m — ’i)+n+£ﬂnm’5m’Eﬁni,ﬁm‘gﬂo:"ﬂlo. (532)

Proposition 5.3.7. Let d := min{m,n}. Let H' be the Hom4(A&gnm, Agoo).

Then the dimension of H' is (d+1). Moreover, H >~ £gnm Agoo is spanned by
{X; | X; = €i; 36905 iy = 1WrnTigmAvigY + = 0,1, ... ,d}.
Moreover, X{ = Eprm ,, where g = 1¥312"*3™"*~t and 0 < t < d.

Lemma 5.3.8.

€ﬁnm'ﬂni€Bni,ﬂ0i == Eﬂnm,ﬁOi.

Lemma 5.3.9. Let d; := min{i,n}. Then
d
G gnbnsn =3 (2 - t) X!
where 0 < 1 < m. In particular,
d
Egrnm gomEgom go0 = ) X.
t=0

Theorem 5.3.10. Let d; := min{i,n}. Then

d;
flQ)=i*m =i+ 3 (mi)x

where 0 < ¢ < m. In particular,
d

f(Qo) =m*n*X), f(Qm)=mtnt) X,

t=0
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5.4 The 1 x m and m x 1 relations

In this section we consider the special case n = 1 for the n x m and m x n
rectangles in Section 5.3. In this special case we obtain the 1 x m and m x 1

relations.

Let K be a field of characteristic p > 0. Let A be S*(3,r) over K. Let a; and

as be simple roots of type A,.

First we consider the following 1 x m subgraph:

al 23} a1 _ al
aOO CYOI ven aO,m 1 _— 5 CYOm
a2 o2 a2 a2
(23] [o3] a1 _ a1
0110 all 0o al,m 1 5 alm

We assume that a® = (a;, as, a3) with the conditions a; > m and a3z > 1. We

write o” and o' (0 < i < m) as the following compositions in A(3,7):

a% = (a; +1,a2 — i,a3) = a® + ioy,
al:= (a; +i,a0 —i+1,a3 — 1) = a% + au.

Let T be the vector space spanned by the paths from a® to o!™ in the path

algebra KT (modulo the p-adic relations!). Next we consider the relations in

T.

By the end of Chapter 3, we have the path P(a®, a®) from a® to a% in T

Define by P; the path in T as in the proof of Proposition 5.3.1:
Pi — P(alm, ali)P(ali’aOi)P(aOi,QOO))'

where 0 <7 < m.
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Proposition 5.4.1. The set {P; | 0 < i < m} is a basis of T. Hence the

dimension of T is (m + 1).

Proof. Since the simple roots in type A, are o; and ag, there is no path from
a® to a'™ which goes partly outside the rectangle in KT. Thus the paths
from a® to o'™ in T are linear combinations of the products of the paths P,

for 0 < ¢ < m. In other words, {P; | 0 < ¢ < m} spans T.

Next we prove that {P; | 0 < ¢ < m} is linearly independent in 7. In the path
algebra KT, we know that {P; | 0 < ¢ < m} is linearly independent. Since our
p-adic relations at the end of Chapter 3, are for the paths which have their
different parts only in the first row (related to the simple root a;), or only in
the second row (related to the simple root as). In other words, there is no
p-adic relation for the paths whose different parts are of part in the first row
and of part in the second row. Thus there is no p-adic relation for the set
{P,| 0 < i< m}. Hence {P,|0 < i< m} are linearly independent in KT

modulo our p-adic relations, that is, are linearly independent in T'.

Therefore {P; | 0 < ¢ < m} is a basis of T.. [

We list the corresponding results for n = 1 in the n x m rectangle in Section

9.3.

Proposition 5.4.2.

-~

f(P) = it (m — i)+€alm’ali§ali’00i€a0i,a00. (5.4.1)

By Proposition 5.3.2, we have:
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Proposition 5.4.3. Let A = S*(3,r) and H = Homg(A&yim, Afqo0). Then
the dimension of H is 2. Moreover, H ~ £,m A€ 00 is spanned by {Xo, X1},
where

Xo 1= Eéal"‘,gaooa Xy = 5_3“1"‘,1“132“23“3—1‘

By Theorem 5.3.5, we have:

Proposition 5.4.4.
f(P)=it(m—-i)* ((?)Xﬁ (m z— 1>X1> :

~ ~

f(Po) =m*(Xo+ X1), [(Pm)=m*X.

In particular,

We now describe relations in T in terms of P;’s where ¢ =0,1... ,m.
Theorem 5.4.5.

stm—0)* (" V)7 = m TR+ 7= i (T2 ) Fepm) =0
where 1 < i < m — 1. That is, we have relations in the quiver I':

it(m— )" (m N 1) Py—m*P+it(m—i)* (T:f) N

where 1 <1< m - 1.
Proof. By Proposition 5.4.4,
mtf(P) =it(m—i)" Tzn) mtXo + (mz— 1) m+X1)
=it (m —i)* (mz— 1) + (T:;)) m* Xo + (mz— 1> m+X1>
=it (m—1)* mz,_ D) o+ x1) + (T:ll)Xo),
=it(m—i)* mz__ 1 f(Po)+ (T:;) f~(Pm)>v
as required. [ |
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Corollary 5.4.6. (a). Let a be a nonnegative integer, and let m = m'p* and
i = 4'p® in Theorem 5.4.5, withp > m' >4’ > 1. Let P} be the path Py, then

P? = P; as above. Thus the relations in Theorem 5.4.5 can be written as

(m' = i)P§ —m'P§ +4' Pz,

!

where 1 < ¢ <m' — 1. In particular, let m' = 2, then i’ = 1, and we have the

relation

P& — 2P® + P2.

(b). Let K be of characteristic 0, that is, p = 0. Then the relations in Theo-

rem 5.4.5 can be written as
(m — )Py — mP; + i Py,

wherel <i1<m-— 1.

Proof. (a). By the formula in Theorem 2.5.3
(i'p*)* =41,  (mp*—i'p*)" = (m' —')! (mod p).

By Lemma 2.2.2, since ¢/ <m'—1<p—1,

(m’p“ - 1) _ ((m’ —Dp*+ (- 1p* '+ ... +(p— 1))

)

i’pa z',pa
and

((m' -1t +(p—-1)p* 1+ ... +(p— 1))
i'p°

m/p* —1
Z'/pa

IH

("THICY)

(m'i,‘ 1) (mod p).

101

Thus



Similarly, we have

(mp“—l) _ (m’—l)p"+(p—1)p“‘1+---+(p—1))
ip® — 1 @ —-Dpr+(@-—Dp*1+ ... +(@-1)
m' —1
={y_ (mod p).

Hence we get

m -1
il

i'!(m’—z")!( ) = (m' —#)(m' = 1), i'!(m'—z")!("?' - 1) = i'(m' —1).

Thus the formula in Theorem 5.4.5 can be written as
(m' — &) (m' — ) f(PS) — m'l f(Pg) +i'(m' — 1)! f(P%) =

where p > m’ > ¢’ > 1. Since m’ < p, so (m' — 1)! # 0 (mod p), hence we
obtain the relations

(m' =i \P§ —m/PS +4 P2,

where 1 <4 <m' — 1.
(b). Since m* = m! for K of characteristic 0, the formula can be written as
. . m-—1 m—1\ ~
m = (™ ) FPo) —mif(P) +atm it () ) =0
So we have the relations
(m - Z)Po - mR + ’iPm,
where 1 <i<m-1. [ |

Theorem 5.4.7. All the relations in T are generated by the relations in The-
orem 5.4.5:

-1 —
i+(m—i)+(mi )Po—m+P,-+z'+(m—z')+<’;’_ 11)Pm,

where 1 <i<m-—1.
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Proof. By Propositions 5.4.1 and 5.4.3, we need to find (m — 1) linearly inde-
pendent relations in T". So it remains to prove that those (m — 1) relations in

Theorem 5.4.5 are linearly independent.

Let

x,-=z'+(m—z')+(m,'1), y,.=z'+(m—i)+(’f“1).

] i—1
We write the formula in Theorem 5.4.5 as follows:

DP = O1x (m+1),

where the matrix D is the following (m — 1) x (m + 1) matrix,

I —m* 0 B 0 "
D= T 0 —m"‘ .. Y2 ’
0
Tm—1 0 e 0 —-m" yna

and P is the following (m + 1) x 1 vector,

~

P=(f(Po), f(P), ..., J(Pm))

The matrix D has a sub-matrix

-mt 0 0
0 -mt
P 0
0 0 -—-m?*

which is nonsingular since m* # 0(mod p) for any positive integer m by
Theorem 2.5.3. Thus the matrix D has rank (m — 1). Hence these relations

are linearly independent. Therefore, we obtain all relations in 7. [ |

We call the relations in Theorem 5.4.5, the 1 x m relations.

We can rewrite the relations in Theorem 5.4.5 as follows.
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Theorem 5.4.8.
FRy = )it (™) P

~my it m = )* (2 ) 7P =0

where 1 < i < m—1. That is, we have the following relations in the quiver T':

— -1 _ —
P= ) it (m= i) (") Ao ()i () B
where 1 < ¢ < m — 1. Hence these relations are in one-to-one correspondence

with the paths P; where 1 <i<m—1.

Proof. By Theorem 2.5.3, m* # 0 (mod p) for any positive integer m. It

remains to multiply by —(m*)™" the equations in Theorem 5.4.5. ]

Finally, we consider the related m x 1 subgraph in the quiver I". This subgraph
can also be obtained by interchanging the simple roots a; and a5 in the above
1 x m subgraph(or this is the special case n = 1 for the m x n rectangle in

Section 5.3):

a2 o2 a2 _ a2
ﬁoo ﬂm IBO,m 1 N IBO‘m
al [+3] (23] (23
ﬁlO @2 ﬂn @ ... @2 ﬂl,m—l @2 ,Blm

where 3% = (b, by, b3) is in A(3,7) and fori = 0,1, ... ,m,
B% = % +iag = (b1, be + i, b3 — ip®),
BY =%+ g = (by + 1,by — 1 +1p?, bg — ip?).

We simply list the corresponding propositions and theorems.
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Proposition 5.4.9. Let A = S*(3,r). Then
H = HomA(Afﬁlm, Agﬁoo)
is 2-dimensional and spanned by

Yo 1= Eypim 3000, Y1 1= Eap1m 10y 300y 051

Let T" be the vector space spanned by the paths from 8% to '™ modulo the
p-adic relations in Theorem 3.3.4 in the path KT. Let Q; be the following

path in 7" from 8% to 8%, to A and to 8'™. Then Q; can be written as

F(Qi) = it (m — i) *Egim gre€ g gospor oo, (5.4.2)
where i = 0,1, ... ,m.
Lemma 5.4.10. We have

m m—1

€ﬂlm,ﬁ0i§ﬂm‘,ﬁ00 = (Z )Yo + ( ; )Yl,

where 0 < 1 < m. In particular,
Epem pro€gro gro = Yy + Y7,

§ﬂ2myﬁ1m§ﬂlm’ﬂ10 = 1/0

Proposition 5.4.11. We have
ry -1
Fy=itm-a* ((T)n+(720)n).

~ ~

f(Qo) =m™Y,,  f(Qm) =m*(Yo+ Y1)

In particular,
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Theorem 5.4.12.
tm—i* (") 7@ - m*F(@) + i*m— iy (T ) F@m) =0
where 0 < ¢ < m. Then we have all relations in T':
it (m — i)+ (m z— 1) Qo — m*Qi +it(m—i)* (7;1_—11> o
where 0 < i < m.
Corollary 5.4.13. (a). Let a be a nonnegative integer, and let m = m/p® and

i = i'p® in Theorem 5.4.12, with p 2 m' > ¢’ > 1. Let Q% be the path Qype,

then Q¥ = Q;. Thus the relations in Theorem 5.4.5 can be written as

(m' - Qs —m'Q% +iQ%,,

!

where 1 < i’ < m' — 1. In particular, let m' = 2, then ¢’ = 1, and we have the

relation

Q5 —2Q1 + Q3.

(b). Let K be of characteristic 0, that is, p = 0. Then the relations in Theo-

rem 5.4.12 can be written as
(m — )Qo — mQ; + i Qm,
where 1 <i<m—1.
Theorem 5.4.14.
Fi@) - oty m -t (" 1) Tl
~mt) it = (77 ) Flam) =0,
where 1 < i < m — 1. That is, we have all relations in T"':

_ -1 _ i m-—1
Qi — (m+) 1i+(m _ i)+ (mz )QO _ (m+) lz'+(m _ z)+ (Z . )Qm,
where 1 < i < m — 1. Hence these relations are in one-to-one correspondence

to the paths Q; where 1 <i<m—1.
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We call the relations in Theorem 5.4.12, the m x 1 relations.

5.5 The n x m rectangle for characteristic 0

Let A be the Borel Schur algebra S*(3,r) over K of characteristic 0. Let T
be the quiver I' of A. By Theorem 4.1.4, the lengths of the arrows in I' are

1. Let m,n be positive integers. We consider the following n x m rectangle in

the quiver I':

ay a1 ay _ a1
aOO aOl e aO,m 1 = 5 aOm
a2 az a2 ag
(o731 (=71 oy _ [e3]
alO all - al,m 1 5 alm
a2 a2 a2 Qa2
a20 a21 a2.m—1 a2m

[¢3] a1

10 L a1 on—Lm-1 Qg qn—Llm

a2 a2 a2 a2

al oy )

n0 bt an,m—l — g™

a anl

where a® = (a;, a3, a3) and the compositions o?* (0 < i < m and 0 < j < n)

are as follows:

aﬁ=a°°+ia1+ja2=(al+i,a2"i+j’a3_j)’
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with the conditions that a; > m and a3 > n.
By Proposition 3.2.15, we have the following lemma.

Lemma 5.5.1. Let d := min{m,n}. Let H = Homs(A&anm, Ay00). Then the

dimension of H 1is equal to (d + 1).

Let T be the vector space spanned by the paths from a® to o™ in the n x m
rectangle in the path algebra KT'. Let ¥(m, n) be the set of all words consisting

of m letters R (right) and n letters D (down).
Lemma 5.5.2. The set ¥(m,n) can be regarded as a basis of T. Hence the

dimension of T is equal to (mr_n'- n)

Proof. Since there is only one path from o#* to o** (or from o’ to a?') where
0 <i<!l<j<k<m, the paths from a® to ™™ in the path algebra KT
can be labeled by words from ¥(m,n). The set ¥(m,n) is a basis of T. The
number of such words is (m; n) Hence the dimension of T is (mr_n*_ n) [

Hence we can rewrite the relations in Corollary 5.4.6 as follows:
Lemma 5.5.3. Let ¢ and m’ be integers with 1 <i<m' — 1< m—1. Then
(m' = i)Wo(DR™ )Wy — m'WoR(DR™ ~)W; + iW,(R™ D)W,

where Wy and W, are words of R’s and D’s such that WoW; € ¥(m—1,n—m’).

Simalarly, we have

(m’ — i)Vo(D™ R)Vi — mVo(D'RD™ ")V, + iVp(RD™ VA,
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where Vy and Vi are words of R’s and D’s such that VoV; € ¥(m —m/,n —1).

In particular, let m' = 2, then i = 1, we have

Wo(DR*)W, — 2Wo(RDR)W; + Wo(R2D)Wx, (5.5.1)

Vo(D*R)V1 — 2Vo(DRD)V1 + Vo(RD*)W, (5.5.2)

where Wo,W1, Vo and Vi are words of R’s and D’s such that WoW, € ¥(m —
1,n —2) and VoV; € ¥(m — 2,n — 1). These relations are generated by the

following relations:

DR? - 2RDR+ R?D, D?R - 2DRD + RD?. (5.5.3)
Definition 5.5.4. We call the relations in Equation (5.5.3), the 1 x 2 relation
and 2 x 1 relation respectively.
Our aim is to prove that all relations in T are generated by 1 x 2 relation or
2 x 1 relation.
Define the lexicographic ordering on the words in ¥(m,n) by setting D > R.
Example 5.5.5. The 1 x 2 relation:

DRR —-2RDR+ RRD, where DRR >~ RDR >~ RRD.

The 2 x 1 relation:

DDR—-2DRD + RDD, where DDR >~ DRD > RDD.

We can list all words of R’s and D’s in ¥(m, n) by this lexicographic ordering.

Theorem 5.5.6. The relations from a® to a™™ in T are generated by the

1x2o0r2x1 relations.
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Proof. By Lemma 5.5.2, dim T = (mr-ni- n> By Lemma 5.5.1, the Hom space
H := Hom(A&unm, A€yo0) is (d + 1) dimensional. Recall that the surjective
map f maps T to the Hom space H. The relations in T are the kernel of f
So we only need to find (m +n

m
generated by the 1 X 2 or 2 x 1 relations in T'.

) — d — 1 linearly independent relations in T

There are (m; n) words of R and D in ¥(m,n).

The words in ¥(m, n), which don’t contain a sub-word DDR or DRR, are of
the following forms

Rn_i(DR)iDm—i,
where 0 < 4 < d. There are (d + 1) such words. Hence, the number of the

words containing a sub-word DDR or DRR is equal to (m;— n) —d-—1.

We assume that P = W(DDR)V is in ¥(m,n) where WV € ¥(m —2,n—1).
Then the words W(DRD)V and W(RDD)V are in ¥(m,n). Hence we have

the relation

W (DDR)V — 2W(DRD)V + W(RDD)V,
(W(DDR)V = W(DRD)V = W(RDD)V),

which is generated by the 2 x 1 relation. Similarly, if P = W/(DRR)V" is in

U(m,n) where W'V’ € ¥(m — 1,n — 2). Then we have the relation

W (DRR)V — 2W(RDR)V + W(RRD)V,
(W(DRR)V = W(RDR)V = W(RRD)V),

which is generated by the 1 x 2 relation. Note that the word P is the leading
term in the above relations in the lexicographic ordering. Thus these relations
in T' are linearly independent. Hence we found (m; n) — d — 1 linearly

independent relations in T'. |
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5.6 Relations for S*(n,r) in characteristic 0

In this section we use the results from [6] to describe all relations for S*(n,r)
over a field of characteristic 0. Without loss of generality we can assume that

the ground field is the field of rational numbers Q.

Recall that €1, ... , &, is the standard orthogonal basis of the euclidean space
R™. Let (, ) denote the inner product on this space and define o; = €; — €;41.

{a1, ... ,an_1} is a base of simple roots of the root system of type Ap_1.

Doty and Qiaquinto in [6] found the following presentation of the Schur algebra

by generators and relations.

Theorem 5.6.1. ([6]) The Q-algebra S(n,r) is the associative algebra (with
1) given by generators 15 (A € A(n,r)), €, fi (1 < i< n—1) subject to the

relations
1)\1# = 6/\111/\! Z,\GA(n,r) Lh=1
1a+a;€i ifA+a; € A(n, 7‘)

eily = 0 otherwise
Fily = Lo, fi ifA—ai € A(n,T)
2710 otherwise
Lie: = eila—a;, ifA—a; € A(n,r)
A 0 otherwise
]-/\f' — filz\+ai /"fA +a; € A(n’ T)
' 0 otherwise
eifj — fiei =0y Ae% )(/\j — A1) 1a
n,r

6?6]‘ — 26,'61'61' + €j€? =0 (lZ - ]I = 1)
€iej — €je; = 0 (|Z —]I > 1)
P2 = 2fiffi [y =0 (li-dl=1)
fifi—=fifi=0 (li—j[>1).
It follows from the results in [6] that the Borel Schur algebra S*(n,r) over Q

has the following presentation by generators and relations.
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Theorem 5.6.2. ([6/) The Q-algebra S*(n,r) is the associative algebra A
(with 1) given by generators 15 (A € A(n,7)), &; (1 < i< n—1) subject to the

relations
(Rl) ]-A]-u = 5Au1/\, Z/\EA(n,r) Li=1

Latos€i ifA+ 05 € A(n,T)

(Ra) ely = 0 otherwise
2 Le eily—a;, ifA—a; € Aln,r)
AT 0 otherwise

(Rs) ele; — 2eieje +ejef =0 (li—j|=1)
€iej — eje; = 0 (IZ —]I > 1)

In the following, we let A be the associative algebra in Theorem 5.6.2.

Set E} = e;1y for 1 < i< n—1and A € A(n,r). Note that by the relations
(R.) in Theorem 5.6.2, E} = 0 unless A + o; € A(n, 7).

Lemma 5.6.3. Let v, A\, u € A(n,r). Then
1,E/ 15 = dppra; O 0By .
Moreover, E{‘EjA =0 unless p — a; = A, and

Ata; oA
Ei Ej = e,-ejl,\.

Proof. By the definition of EY and the relations (R;) in Theorem 5.6.2, we
have
1,E! = 1,61, = 1,1040,6i = Oppta; Lutai€i = Oppias€ily.
Thus
1,EY1) = e;1,1) = 4,561, = O nEy.

Moreover, by the above formula,

EYE} = (B*1,) (Ivay B)) = Gupva; BB,

J
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and
Ao
E; a’E;‘ = e;lata €510 = €ie5ly.
Note that if A + o; is not in A(n,r), i.e. E,A *% = 0, the above equation still

holds. (]

Recall that rad A, the radical of A, is a nilpotent ideal R of A such that A/R

is semi-simple (see Section 1.2). Next we will calculate the radical of A.

By Lemma 5.6.3, E¥ EJ'\ = 0 unless p — o;; = A, which gives the multiplication
formula for E}s in A. Let A = (A, ..., ;) € A(n,7). Suppose that there
exists some ¢ with 1 < ¢ < n — 1 such that A\; > 1, then A — o; € A(n,r).
This means for the diagram of A we can move 1 box from the i-th line to the
(¢ + 1)-th line. For each \; with 1 < 7 < n — 1, we can follow this procedure
for the diagram of A\, moving the boxes of line i to the bottom line n. We can
always repeat this procedure, until the remaining diagram will have the only

line on the bottom, i.e.(0, ... ,0,7). More precisely, we have
A— 2?;11/\,,;(&5 + ...+ an_l) = (O, ce ,O,T'),

where A — \j(a; + ... + a,—1) means moving the i-th line of the diagram of
A to the n-th line, this implies we need to move n — ¢ times for each of the );

boxes of line . Thus the total number of moves for this procedure will be
ny:=(n—-1AM+m=2)A+ ... + A1

Note that for (0, ...,0,7), we can not run this procedure, since for any 1,
,...,0,7) — ¢4 is not in A(n,r). Thus, the maximal number of moves we

can make to to remain in A(n,r) is n). Note that
maxmny = (n — 1)r, which is attained for A = (r,0, ... ,0).
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Hence, for any A € A(n,r),
A— Ztiai, with the condition Zt,- > (n-1)r+1,
i i
then A — 3", t;a; will be not in A(n, ).

Proposition 5.6.4. Let R = rad A. Then R is generated by all E} as an

algebra. Moreover, the vector space R/R? has a basis

{B}+R*|1<i<n—1, AeA(n,r), A+ € A(n,7)}.

Proof. Let E be the subalgebra of A generated by all E}'s. We need to prove
that £ = R. Note that for any ¢ with 1 <i<n -1,
ei=e,-1=e,- Z 1)‘= Z Et)‘

AEA(n,r) A€A(n,r)
Since E} € E, we have ¢; € E. By Lemma 5.6.3, E is stable under multipli-
cations by 1,’s, so F is an ideal of A. It is easy to see that

A/E= P Ki,
AEA(n,r)

so A/FE is semi-simple.

Let N = (n—1)r+1. Note that N > max . Consider EN*!. Let z € EN*Y,

then z is a linear combination of the products EX’'E}" ... E)", where M > N.

Since Ef'E} = 0 unless 4 — o = ), the above product E) E} ... E}) =0
unless
M
N0 — Z o, € A(n,T).
k=1
However, this is impossible since M > N > max nj. Thus any product in the
linear combination of z will be 0. Hence z = 0. That is EN*! = 0, which

implies that E is nilpotent. Therefore E is the radical of A, i.e. E = R.
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Now it is clear that R/R? is spanned by all nonzero E} + R?, where 1 < i <
n —1,A € A(n,7). Next we prove that these nonzero E} + R? are linearly
independent. Suppose that there exist rational numbers q; 5, such that
Z%,A(E{\ + R?) =0,
i
we need to prove that all a;y = 0. Assume there exists a; » # 0, for some 3

and A. Since

S (B2 +R) =S an(B) + R =0,

1,A A
we multiply 1544, on the left hand side, and multiply 1, on the right hand side
of the above equation, then by Lemma 5.6.3, only E} in the sum survives, we

get:
1/\4’0;’(2 ai,,\(E{\) + R?)1), = ai,,\E,?‘ +R?=0.
i

Thus a; \E? € R?. Since a;» # 0, we have E} € R?, which is a contradiction.

Hence all E} + R? will be linear independent and form a basis of R/R%. 1

Now we describe the quiver I" of A.

Theorem 5.6.5. The quiver I' of A over Q is given as follows. The set of
vertices is I'g = A(n,r); the number of arrows from vertex A to vertex u for
M\up € A(n,r), is equal to 1 or 0; this number is equal to 1 if and only if

p—a; =X forsomel <i<n—1.

Proof. Let R =rad A. By Proposition 5.6.4,

A/R= P Kl
A€A(n,r)

By Definition 1.4.5, A is elementary. Thus, by Definition 1.4.2, the vertex set
[y is A(n,r).
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Next we consider the arrows. Note that the number of arrows from vertex
A to vertex p for A, u € A(n,r), is the dimension of 1,(R/R?*)1x. And by
Proposition 5.6.4, R/ R? has a basis

{E¥+R*|1<i<n—-1,veEA(n,r),v+a €An,7)}.
Hence we need to calculate the dimension of

L(R/ROL = 1,( K - EY + R)1, = H(u, N).

v,i

By Lemma 5.6.3, H(u,A) # 0, if and only if there exists 1 < ¢ < n— 1 and
v € A(n,r) such that A = v and u — o; = v. Moreover, in this case H(u, \) is

one-dimensional and spanned by EY + R%, where A = v and y — o; = v. |

Note that in Theorem 5.6.5, there is precisely one arrow from A to = A+ «;

for some 1 < i < n — 1, corresponding to E and labeled by E>.

Let QI' be the path algebra of I over Q. Then by Theorem 1.4.6, there is
a surjective ring homomorphism ¢ : QI' — A, defined as follows: ¢(1,) =
1y and 9(E}) = E» = ¢;1) forall 1 < i < n—1and A € A(n,r). By
Theorem 1.4.6, ker ¢ contains exactly all relations of the quiver T'.
Definition 5.6.6. We define the following relations for the path algebra QI
(R) E)Toted g pA _ g ptestes pated pa
BB B (i— 5] =1)
Ata; Mo A (i _ 4
E; JE}‘ — E;T™ME; (li =34l > 1),
where EY is treated as zero if either v ¢ A(n,r) or v+ ax ¢ A(n,r) (ie. there

is no such arrow EY).

Let T be the ideal of QI' generated by the above relations (R).
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Lemma 5.6.7. T' C ker ¢.

Proof. We need to prove that ¢(R) = 0. By the definition of ¢ and the

relations (R2) in Theorem 5.6.2 (or see Lemma 5.6.3),

A

Lo 7n ol4 21 Qg

o(E; ")e(E; J)‘P(E;'\)
ei]-)\+a.-+a,- €i 1/\+Otj €j 1/\

2

€;'1xnto €51

ele;1,.

f

Similarly

(p(Eiz\+a.-+aj E».\+a¢ E{\) — e,-eje,-l,\,
(,O(E;‘+2a" E{\+Oti E;\) — eje,?l,\.

By Theorem 5.6.2, A satisfies the relations (R3), hence

Maita; qAta;j Maita; i ; i
<P(E,' a;+a; Ei a; E;\ _ 2Ei Qi+ E;-\+a'E{\ + E;\+2a,E{\+a,Elg\)
= (e2e; — 2e;eje; + eje?)1, =0,

where |[¢ — j| = 1. And by Lemma 5.6.3,
O(B; T E} — B}Y™E}) = (eie; — ejei)1y = 0

where |i — j| > 1. Thus T C ker ¢. ]

Let F be the free associative algebra with unit and free generators e;, 15, where
1<i<n-—1and A € A(n,r). Let 6 and 9 be the canonical homomorphisms
from F to A and QI', defined as follows: 6(1,) = 1y, 0(e;) = e;; ¥(1)) = 15,
¥(ei) = Ysearnr) Ei- Note that 6 is surjective. The map 9 is also surjective,

since

E}=( ) EML=9(e)y(ly) =y(aly),

AEA(n,r)
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foralll1 <i<n-—1and A € A(n,r). Thus we have the following diagram:

Note that

eY(1x) = p(1x) = 15 = 6(1,),
and

pple)=9( Y EN= ) eli=e-l=e=0(e)

A€A(n,r) A€A(n,r)

foralll1 < i< n-—1and A € A(n,7). Hence § = ¢, i.e.the above diagram

commutes.

Lemma 5.6.8. For the above diagram, ker ¢ = 1(ker6).

Proof. Let x € ¥(kerf). Then z = 9(y) for some y € kerf. Thus p(z) =
eY(y) =0(y) =0, i.e. = € ker p. Thus (ker 8) C ker ¢.

Now let a € ker . Since 1 is surjective, then there exists b € F such that a =
¥ (b). Then 0(b) = pp(b) = p(a) =0, i.e. b € kerd, thus a = (b) € (ker9).
Hence ker ¢ = ¢(ker 8). ]

Theorem 5.6.9. The ideal T of A contains exactly all relations of A, i.e.

kerp =T.

Proof. By Lemma 5.6.7, we only need to prove that kerp C T. By
Lemma 5.6.8, we need to prove that i (ker §) C T. By Theorem 5.6.2, ker ¢ is
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generated by the relations R;, R, and R3 as an ideal. Thus it is enough to

prove that ¢ maps each relation in R;, R, and R3 into T'.

(R1): Note that path algebra QI satisfies all relations in R, so the image of

all these relations in QI is zero.
(R3): Assume A € A(n,r), and A+ a; € A(n,r). Then one has

Y(eily) =

and
V(Lrraei) = Y(Lara)¥(e) = e Y EY) = E} = ¢(eiln),
veA(n,r)

thus
Y(eilx — Latasei) = 0.

Assume now A € A(n,7) and A + o; ¢ A(n,r). Since ¥(e;1)) = E}, and
A+ a; ¢ A(n,r), E} = 0. Thus ¥(e;1y) = 0. And the other case in the
relations R, is considered similarly. Thus ¥(Rz2) = 0.

(Rs): Let 1 <4,5 <n—1. Since ¥(e;) = Yyearns B and Ef'E} = 0 unless
g — a; = A by Lemma 5.6.3,

Y(eie;) = Plei)y(es)
= (Z eA(nr)E )(Z/\GA(nr)E )

Au€A(n,r) E+
a
= ZAGA(n r) E ]E,\

Thus
1/)(6 6] Z Ez\+a¢,+czJ E,)\+01J E)\

A€A(n,r)
Similarly

V(eieje;) = Z E'\+a'+a’E’\+°‘E"
AEA(n,r)
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and
Y(ejel) = > EPHEME).
AeA(n,r)
Hence
P(ele; — 2eieje; + ejef) = P(ele;) — 2P (eiejes) + P(ejeqe;)
— Z (E~/\+ai+aj Ef\+aj EA
A€A(n,r) : : I
_2Ei/\+ai+aj EjA+a,~ Ez)‘ + E;\+2ai E:\+QIE{\) € T,

if |¢ — j| = 1. Similarly we have

Yleies = esei) = Blewes) = Ylese) = S (BB} B BN €T,
AeA(n,r)

if | — j| > 1. Thus ¥(R3) C T. Therefore ¥(kerf) C T. Hence keryp =

Y(ker0) =T.
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