

Design and evaluation of flexible time-

triggered task schedulers for dynamic

control applications

Submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Musharraf Ahmed Hanif

Department of Engineering

University of Leicester

Leicester, United Kingdom

July 2012

i

Design and evaluation of flexible time-triggered

task schedulers for dynamic control applications

by

Musharaf Ahmed Hanif

Abstract

A statically-scheduled time-triggered (TT) software architecture demonstrates very

predictable patterns of temporal behaviour and is – therefore – widely considered to be

an appropriate platform for many high integrity and safety-critical embedded

applications. However, there remains an important class of highly dynamic control

systems for which it is considered that TT architectures are not a good match and for

which the use of ―event triggered‖ (ET) designs is usually preferred. These applications

include the control systems for internal combustion engines, brushless DC motors and

synchronous AC motors. The aim of the research project presented in this thesis was to

explore ways in which a static TT architecture could be adapted in order to better meet

the requirements of such highly-dynamic control systems.

The project had three main outcomes.

The first project outcome was that a novel ―flexible TT architecture‖ was developed.

This architecture differs significantly from conventional TT designs in that – during the

system operation – only the timing of the next system interrupt is known in advance

(that is, the timing of subsequent interrupts is unknown). This allows for considerable

flexibility in the task scheduling while retaining most of the features that make static TT

approaches attractive.

The second project outcome was that two novel schedulers were designed and

implemented, in order to demonstrate (by means of an ―existence proof‖) that it was

possible to construct a practical implementation of the flexible TT architecture.

The third outcome from this project was that a comprehensive evaluation of the flexible

TT architecture and the associated scheduler implementations was carried by means of

two representative case studies. The case studies involved engine synchronisation and

control of a brushless DC motor (BLDCM). In the engine synchronisation case study,

the flexible TT architecture was shown to be a viable alternative to ET in conditions

where a static TT was unable to cope with the system demands. In the BLDCM case

study, while both static TT and flexible TT were viable alternatives, the flexible TT was

able to provide similar levels of performance to the static TT solution at a fraction of the

resource usage.

ii

I dedicate this thesis to my daughter Eesha,

my wife Sara Alvi

iii

Acknowledgements

The work presented in this thesis is supported by the UK Government (ORSAS Award)

and TTE Systems (studentship).

I would like to take this opportunity to express my heartfelt gratitude to my supervisor,

Prof. Michael J. Pont. I highly appreciate his guidance and encouragement throughout

the course of this research.

I would also like to thank Dr. Michael Short for his advice and guidance on scheduling

theory.

My thanks also go to the members of the Embedded Systems Laboratory for their

support and the manly lively discussions that we had.

I would also like to thank Mr. Paul Williams for his guidance and support with the

Rover engine test bed.

Finally, I would like to thank my wife and family for their support and trust in me.

iv

Table of Contents

ABSTRACT... I

ACKNOWLEDGEMENTS ... III

TABLE OF CONTENTS .. IV

LIST OF FIGURES ... IX

LIST OF FLOWCHARTS .. XII

LIST OF TABLES ... XIII

LIST OF RELATED PUBLICATIONS ... XIV

LIST OF ABBREVIATIONS .. XV

1 INTRODUCTION .. 1

1.1 EMBEDDED SYSTEMS ... 1

1.1.1 System architectures for embedded applications .. 2

1.1.2 Desired architecture for high reliability applications ... 4

1.2 RESEARCH QUESTION .. 4

1.3 SCOPE AND OBJECTIVES OF THE THESIS ... 5

1.4 LAYOUT OF THE THESIS .. 6

2 A REVIEW OF THE RELEVANT SCHEDULING THEORY ... 8

2.1 TASKS AND THEIR EXECUTION ENVIRONMENTS ... 8

2.1.1 Classification of tasks ... 8

2.1.2 Converting sporadic and aperiodic tasks to periodic ... 9

2.1.3 Temporal criteria for tasks ... 10

2.1.4 Jitter in real-time scheduling .. 11

2.2 WORST CASE EXECUTION TIMES AND SCHEDULING ... 12

2.2.1 Factors affecting Worst Case Execution Time .. 12

2.2.2 Worst Case Execution Time analysis techniques .. 13

v

2.2.3 Minimising execution time variations .. 14

2.3 OVERVIEW OF SCHEDULING TECHNIQUES .. 15

2.4 COMPARISON OF SCHEDULING ARCHITECTURES .. 17

2.4.1 Comparison Criteria ... 18

2.4.2 Summary of the comparison of various scheduler architectures 29

2.5 NOTABLE INCIDENTS WITH REAL-TIME SYSTEMS ... 30

2.6 CONCLUSIONS .. 32

3 STATIC SCHEDULING ARCHITECTURES .. 33

3.1 COMMONLY USED STATIC SCHEDULER ARCHITECTURES ... 33

3.2 A DETAILED REVIEW OF STATIC SCHEDULERS ... 34

3.2.1 Timeline scheduler ... 34

3.2.2 Time-triggered cooperative scheduler ... 35

3.2.3 Time-triggered hybrid scheduler .. 37

3.3 CONCLUSION ... 39

4 CHALLENGING REAL WORLD APPLICATIONS ... 40

4.1 INTRODUCTION .. 40

4.2 INTERNAL COMBUSTION ENGINE CONTROL .. 40

4.2.1 Inner workings of a spark ignited internal combustion engines .. 41

4.2.2 Requirements for smooth engine operation .. 42

4.2.3 Digital engine controllers in aviation ... 43

4.2.4 Challenges in developing time-triggered engine controller ... 45

4.3 BRUSHLESS DC MOTOR SPEED CONTROL .. 46

4.3.1 Motor structure .. 46

4.3.2 Commutation sequence generation ... 46

4.3.3 Challenges for time-triggered implementation .. 47

4.4 CONCLUSION ... 48

vi

5 MAKING THE TIME-TRIGGERED COOPERATIVE SCHEDULER “MORE DYNAMIC” 49

5.1 CLASSIFYING THE TIME-TRIGGERED COOPERATIVE ARCHITECTURE .. 49

5.1.1 Dynamic behaviour of the time-triggered cooperative scheduler 49

5.1.2 Can the time-triggered cooperative scheduler still be called static? 50

5.2 MULTIPLE OPERATING STATES AND MODES .. 52

5.3 DIFFERENT SEGMENTS IN THE MAJOR CYCLE .. 54

5.4 VARYING THE TICK PERIOD AND ITS EFFECTS .. 55

5.4.1 Is it still a static schedule? .. 57

5.4.2 Verification of a given task-set for a range of periods ... 58

5.5 CONCLUSION ... 60

6 THE TIME-TRIGGERED MULTI PHASE COOPERATIVE SCHEDULER .. 62

6.1 PHASES AS BUILDING BLOCKS.. 62

6.2 PHASE TRANSITIONS UNDER TRANSIENT OVERLOAD .. 65

6.2.1 Transient overload and automatic phase changes .. 65

6.2.2 Transient overloads and forced phase changes ... 66

6.3 KEY PARTS OF THE TIME-TRIGGERED MULTIPHASE COOPERATIVE SCHEDULER .. 67

6.4 FEATURES OF THE TIME-TRIGGERED MULTIPHASE COOPERATIVE SCHEDULER IMPLEMENTATION 69

6.5 LIMITATIONS OF THE DESIGN .. 70

6.6 POSSIBLE OPERATING CONFIGURATIONS OF THE TIME-TRIGGERED MULTIPHASE COOPERATIVE SCHEDULER 70

6.6.1 Predictability and determinability of configurations.. 71

6.7 CONCLUSION ... 74

7 ENGINE SYNCHRONISATION CASE STUDY ... 75

7.1 INTRODUCTION TO THE CASE STUDY SETUP ... 75

7.2 CRANK ANGLE SENSOR .. 78

7.2.1 Implementing the crank sensor interface .. 79

7.2.2 Start of cycle test condition .. 81

7.2.3 Worst case execution time analysis of the crank interface task .. 83

vii

7.3 IMPLEMENTATIONS OF ARCHITECTURES FOR PERFORMANCE COMPARISON .. 84

7.3.1 Event-triggered implementation .. 84

7.3.2 Static time-triggered implementation ... 85

7.3.3 Flexible time-triggered implementation .. 86

7.4 TEST SETUP FOR SYNCHRONISATION PERFORMANCE COMPARISON .. 90

7.5 TEST CASE 1: BASIC SYNCHRONISATION TEST ... 93

7.5.1 Performance comparison of event-triggered and flexible time-triggered implementations

 96

7.5.2 Implications on code size and CPU usage .. 98

7.6 EFFECTS OF INCREASE IN TIMING RESOLUTION ON FLEXIBLE TIME-TRIGGERED PERFORMANCE 100

7.7 TEST CASE 2: REALISTIC DRIVING CYCLE .. 104

7.7.1 Performance comparison of event-triggered and flexible time-triggered implementations

 107

7.8 CONCLUSION ... 111

8 ADDING FLEXIBLE PRE-EMPTION .. 112

8.1 CLASSIFYING THE TIME-TRIGGERED HYBRID ARCHITECTURE .. 112

8.2 ADDING FLEXIBLE LIMITED PRE-EMPTION.. 113

8.3 SINGLE SCHEDULER ARCHITECTURE WITH LIMITED PRE-EMPTION .. 114

8.3.1 Timing relationships between cooperative and pre-emptive tasks 114

8.3.2 Code complexity of the flexible time-triggered hybrid scheduler 115

8.3.3 Pros and cons of a single scheduler architecture ... 115

8.4 DUAL SCHEDULER ARCHITECTURE .. 116

8.4.1 The pre-emptive scheduler ... 117

8.4.2 Interactions between the cooperative and pre-emptive schedulers 118

8.4.3 Alternate configuration for the dual scheduler architecture ... 119

8.5 OPERATING CONFIGURATIONS OF THE DUAL SCHEDULER ARCHITECTURE ... 121

8.6 CONCLUSION ... 122

viii

9 BRUSHLESS DC MOTOR CASE STUDY .. 123

9.1 TARGET PLATFORM ... 123

9.2 COMPONENTS.. 123

9.2.1 Time-triggered scheduler setup ... 123

9.2.2 Speed measurement .. 124

9.2.3 Speed controller ... 124

9.2.4 Commutation and drive setup .. 124

9.2.5 Data to PC .. 125

9.3 COMMUTATION GENERATION TECHNIQUES ... 126

9.4 RESULTS ... 127

9.5 CONCLUSION ... 130

10 CONCLUSIONS AND FUTURE WORK .. 131

10.1 SUMMARY OF THESIS CONTRIBUTIONS ... 131

10.2 REVIEW OF THE CONTRIBUTIONS ... 132

10.2.1 Scheduling theory and architectures ... 132

10.2.2 Internal combustion engine synchronisation .. 136

10.2.3 Brushless DC motor control ... 137

10.3 ALTERNATE APPLICATION AREAS FOR FLEXIBLE TIME-TRIGGERED .. 138

10.3.1 Long term tracking of geographical features .. 138

10.3.2 Wireless sensor networks .. 140

10.4 FUTURE WORK .. 141

10.4.1 Scheduler architectures ... 141

10.4.2 Internal combustion engines ... 142

10.4.3 3 phase motor drives ... 142

10.5 FINAL CONCLUSION .. 143

REFERENCES .. 144

ix

List of Figures

FIGURE 2-1: TEMPORAL CRITERIA FOR TASKS .. 10

FIGURE 4-1: FIRST REVOLUTION OF A FOUR STROKE CYCLE WITH THE STARTING POSITION, INDUCTION STROKE AND

COMPRESSION STROKE. (ILLUSTRATIONS CREATED BY ERIC PIERCING AND RELEASED UNDER GNU FREE DOCUMENT

LICENSE) .. 42

FIGURE 4-2: SECOND REVOLUTION OF A FOUR STROKE CYCLE WITH THE IGNITION, POWER STROKE AND EXHAUST STROKE.

(ILLUSTRATIONS CREATED BY ERIC PIERCING AND RELEASED UNDER GNU FREE DOCUMENT LICENSE) 42

FIGURE 4-3: 3 PHASE BRUSHLESS DC MOTOR DRIVE WAVEFORMS IN RESPONSE TO HALL SENSOR OUTPUTS. (ADAPTED FROM

(BROWN 2001)). ... 47

FIGURE 5-1: IMPLIED FIXED PRIORITIES IN THE TTC ... 50

FIGURE 5-2: TASK EXECUTION WITH TTC SCHEDULER. ... 51

FIGURE 5-3: TASK EXECUTION WITH TABLE DRIVEN SCHEDULER .. 51

FIGURE 5-4: FINITE STATE MACHINE REPRESENTATION OF A SECURITY SYSTEM .. 53

FIGURE 5-5: HYPOTHETICAL PHASES IN A CONTROL NODE. .. 55

FIGURE 5-6: GRAPHICAL REPRESENTATION OF HOW THE MAJOR CYCLE PERIOD CAN BE VAIRED TO KEEP IT IN SYNC WITH AN

EXTERNAL CYCLE (REPRESENTED BY A RAMP SIGNAL) BY VARYING THE TICK PERIOD. ... 57

FIGURE 6-1: GRAPHICAL REPRESENTATION OF A PHASE. ... 63

FIGURE 6-2: PHASE REPRESENTATION OF THE EXAMPLE IN SECTION 5.3. ... 63

FIGURE 6-3: PHASE REPRESENTATION OF MULTI-STATE SYSTEM IN SECTION 5.2. ... 64

FIGURE 7-1: BLOCK REPRESENTATION OF THE CASE STUDY SETUP FOR EVALUATION OF VARIOUS ARCHITECTURES UNDER

IDENTICAL CONDITIONS. .. 76

FIGURE 7-2: THE ROVER M16 TEST BED. .. 77

FIGURE 7-3: PLOT OF THE ACTUAL CRANK SENSOR (ONE SIGNAL OF THE DIFFERENTIAL PAIR) AND AN EXTERNAL TDC SENSOR AT

1800 RPM. .. 78

FIGURE 7-4: CAPTURED CRANK WAVEFORM AFTER CHOPPER AND COMPARATOR CIRCUIT AT 1500 RPM. 79

FIGURE 7-5: CRANK INTERFACE DATA FLOW DIAGRAM ... 80

FIGURE 7-6: STATE MACHINE OF THE CRANK INTERFACE LOGIC. ... 81

FIGURE 7-7: FLOWCHARTS FOR THE EVENT TRIGGERED IMPLEMENTATION ... 85

x

FIGURE 7-8: FLOWCHART OF THE TIME-TRIGGERED IMPLEMENTATION OF THE CRANK INTERFACE.................................... 86

FIGURE 7-9: CRANK SIGNAL EVENTS AND ESTIMATION OF THE NEXT POINT IN TIME WHEN SYNCHRONISATION FEATURE WILL BE

DETECTED. ... 88

FIGURE 7-10: PHASE DIAGRAM FOR FLEXIBLE TT IMPLEMENTATION ... 90

FIGURE 7-11: SPEED VS. CYCLE NUMBER CRANK SIMULATION TEST PROFILE USED FOR COMPARING SYNCHRONISATION

PERFORMANCE. ... 94

FIGURE 7-12: SPEED VS. TIME CRANK SIMULATION TEST PROFILE USED FOR COMPARING SYNCHRONISATION PERFORMANCE.

 .. 94

FIGURE 7-13: SYNC PERFORMANCE OF STATIC TIME-TRIGGERED SYSTEM ... 95

FIGURE 7-14: SYNC PERFORMANCE OF FLEXIBLE TIME-TRIGGERED SYSTEM ... 95

FIGURE 7-15: SYNC PERFORMANCE OF EVENT-TRIGGERED SYSTEM ... 95

FIGURE 7-16: COMPARISON OF THE SYNCHRONISATION PERFORMANCE OF FLEXIBLE TIME-TRIGGERED, EVENT-TRIGGERED AND

IDEAL CASE. .. 97

FIGURE 7-17: CPU USAGE VS ENGINE SPEED FOR THE SYSTEMS UNDER TEST. ... 99

FIGURE 7-18: SYNCHRONISATION PERFORMANCE WITH A TIMER RESOLUTION OF 10 µS ... 102

FIGURE 7-19: SYNCHRONISATION PERFORMANCE WITH A TIMER RESOLUTION OF 1 µS ... 103

FIGURE 7-20: SECOND TEST PROFILE USED TO CHECK THE SYNCHRONISATION PERFORMANCE OF THE VARIOUS ARCHITECTURES.

 .. 104

FIGURE 7-21: THE SCALED STEP COMMANDS AND THE OUTPUT OF THE SMOOTHING PROCESS SHOW FROM TIME 375 TO 440

SECONDS OF THE TEST PROFILE. .. 105

FIGURE 7-22: SYNCHRONISATION PERFORMANCE OF STATIC TIME-TRIGGERED ARCHITECTURE ON THE REALISTIC DRIVE CYCLE.

 .. 106

FIGURE 7-23: SYNCHRONISATION PERFORMANCE OF FLEXIBLE TIME-TRIGGERED ARCHITECTURE ON THE REALISTIC DRIVE CYCLE.

 .. 106

FIGURE 7-24: SYNCHRONISATION PERFORMANCE OF EVENT-TRIGGERED ARCHITECTURE ON THE REALISTIC DRIVE CYCLE. ... 107

FIGURE 7-25: SIDE-BY-SIDE SYNCHRONISATION PERFORMANCE COMPARISON OF TT FLEXIBLE, EVENT-TRIGGERED AND IDEAL

CASE. .. 107

xi

FIGURE 7-26: CLOSE UP VIEW HIGHLIGHTING THE SIMILARITY OF THE CONTOURS OF THE IDEAL CASE EVENT-TRIGGERED (TOP

PLOT) AND THE FLEXIBLE TT (BOTTOM PLOT) ... 108

FIGURE 7-27: FIRST ORDER SPEED DIFFERENCE FOR THE REALISTIC DRIVE CYCLE (TOP) AND BASIC TEST PROFILE (BOTTOM). 110

FIGURE 7-28: SECOND ORDER SPEED DIFFERENCE FOR THE REALISTIC DRIVE CYCLE (TOP) AND BASIC TEST PROFILE (BOTTOM).

 .. 110

FIGURE 8-1: IMPLIED FIXED PRIORITIES IN THE TIME-TRIGGERED HYBRID (TTH) SCHEDULER.. 112

FIGURE 8-2: OVERVIEW OF THE TTXC + TTP ARCHITECTURE. .. 117

FIGURE 8-3: PRIORITY LEVELS IN THE DUAL SCHEDULER ARCHITECTURE. ... 119

FIGURE 8-4: OVERVIEW OF THE ALTERNATE CONFIGURATION OF THE TTXC + TTP ARCHITECTURE. 120

FIGURE 8-5: PRIORITY LEVELS IN THE ALTERNATE CONFIGURATION OF THE DUAL SCHEDULER ARCHITECTURE. 120

FIGURE 9-1: OPEN LOOP MAXIMUM SPEED PLOTS FOR DIFFERENT IMPLEMENTATIONS. ... 127

FIGURE 9-2: A COMPARISON OF THE EFFICIENCY OF THE TEST CASES. .. 129

xii

List of Flowcharts

FLOWCHART 3-1: FLOWCHART OF THE TTC SCHEDULER’S TIMER ISR. .. 35

FLOWCHART 3-2: FLOWCHART OF THE TTC SYSTEM’S MAIN STRUCTURE. .. 36

FLOWCHART 3-3: FLOWCHART OF THE TTH SCHEDULER’S TIMER ISR. .. 38

FLOWCHART 6-1: FLOWCHART OF THE TTMPC SCHEDULER’S TIMER ISR. ... 67

FLOWCHART 6-2: FLOWCHART OF THE TTMPC SYSTEM’S MAIN STRUCTURE. ... 68

FLOWCHART 8-1: TTP SCHEDULER’S UPDATE AND DISPATCH MECHANISM. .. 118

xiii

List of Tables

TABLE 2-1: QUALITATIVE COMPARISON OF DIFFERENT SCHEDULER ARCHITECTURES. .. 29

TABLE 5-1: HYPOTHETICAL TASK SET WITH PERIODS AND EXECUTION TIMES. ... 51

TABLE 5-2: POSSIBLE SCHEDULING OF TASK SET USING TTC WITH A 10 MS TICK PERIOD. .. 51

TABLE 5-3: POSSIBLE SCHEDULE FOR TABLE DRIVEN SCHEDULER. .. 52

TABLE 6-1: SUMMARY OF THE PREDICTABILITY AND DETERMINABILITY OF STATICALLY SCHEDULED COOPERATIVE SYSTEMS. .. 73

TABLE 7-1: PULSE DURATION RATIOS USED FOR CRANK SIGNAL SIMULATION. .. 91

TABLE 7-2: CODE SIZE COMPARISON. ... 98

TABLE 7-3: COMPARISON OF CPU USAGE PER CYCLE OF ET AND FLEXIBLE TT. .. 99

TABLE 7-4: EFFECTS OF PRE-SCALAR VALUE ON THE MINIMUM SPEED MEASURABLE AND THE QUANTISATION ERRORS AT 2000

RPM AND 6500 RPM. ... 101

TABLE 7-5: EFFECT OF DIFFERENT PERIOD CALCULATION METHODS ON CPU USAGE. .. 103

TABLE 8-1: CODE COMPLEXITY COMPARISON FOR TTMPC V1.0 AND TTMPVRH V1.0. ... 115

TABLE 9-1: L6234’S INPUT COMBINATIONS AND CORRESPONDING OUTPUT CONFIGURATIONS. 125

TABLE 9-2: HALL SENSOR INPUTS AND CORRESPONDING DRIVE CONFIGURATION FOR CLOCK WISE ROTATION OF BRUSHLESS DC

MOTOR. .. 125

TABLE 9-3: COMPARISON OF DIFFERENT IMPLEMENTATION METHODS. ... 128

xiv

List of Related Publications

(Some of the contents of this thesis have been adapted from a paper that was published)

Hanif, M.A., Pont, M.J. and Ayavoo, D. (2008) ―Implementing a simple but flexible

time triggered architecture for practical deeply embedded applications‖, In the

proceedings of the 4th UK Embedded Forum, September 2008, Southampton, UK.

xv

List of Abbreviations

AC Alternating current

BCET Best case execution time

BDC Bottom dead centre

BLDCM Brushless DC motor

CPU Central processing unit

DC Direct current

DM Deadline monotonic

DMA Direct memory access

DOHC Double overhead cam

ECU Engine control unit

EDF Earliest deadline first

ET Event-triggered

FSM Finite state machine

FTP Federal Test Procedure

ISR Interrupt service routine

LANF Los Angeles Non Freeway

LCM Least common multiple

LLF Lowest laxity first

LOC Lines of code

MCFTC Multi Cycle multiphase with Fixed Tick periods Cooperative

MCVTC Multi Cycle multiphase with Variable Tick period Cooperative

MLF Minimum laxity first

MUF Maximum urgency first

NYNF New York Non Freeway

PC Personal computer

PID Proportional integral derivative

RM Rate monotonic

SCFTC Single Cycle multiphase with Fixed Tick periods Cooperative

SCVTC Single Cycle multiphase with Variable Tick period Cooperative

SI Spark ignited

xvi

TDC Top dead centre

TT Time-triggered

TTC Time-triggered cooperative scheduler

TTH Time-triggered hybrid scheduler

TTMPC Time-triggered multi phase cooperative scheduler

TTMPVRH Time-triggered multi phase with variable rate hybrid scheduler

TTP Time-triggered pre-emptive scheduler

TTSA1 Time-triggered scheduling algorithm 1

TTSA2 Time-triggered scheduling algorithm 2

TTxC Any cooperative time-triggered scheduler

WCET Worst case execution time

1

1 Introduction

1.1 Embedded Systems

The term ―embedded system‖ is used to refer to a wide class of electronic systems that

work to help make our life more convenient and safe. A general definition for these

systems is given by Ganssle and Barr as:

“A combination of computer hardware and software, and perhaps additional

mechanical or other parts, designed to perform a dedicated function. In some

cases, embedded systems are part of a larger system or product, as in the case

of an antilock braking system in a car.” (Ganssle, Barr 2003)

Many embedded systems fall under the general category of ―real-time systems‖ which

are defined by Laplante as:

“A real-time system is one whose logical correctness is based on both the

correctness of the outputs and their timeliness.” (Laplante 1997)

Embedded systems serve in roles ranging from improving our quality of life (e.g.

automatic washing machines, digital set top boxes, mobile phones and music players,

power windows and central locking in a car, etc.) to safety-critical systems (e.g. anti-

lock brakes, airbags, medical life support systems, aircraft engine control units, etc.).

The failure of a real-time embedded system in a non-safety-critical role results in

annoyance and inconvenience. However, for real-time systems being used in safety-

critical applications, it is essential that they continue to operate reliably between

scheduled maintenance activities, as a failure to do so can have serious consequences,

including loss of life.

2

1.1.1 System architectures for embedded applications

Real-time systems are usually categorized on the basis of the mechanism used to run (or

―release‖ or ―trigger‖) tasks (Kopetz 1991):

1. Time-triggered (TT) or ―clock driven‖ architecture runs tasks based on their

temporal criteria (e.g. period, initial delay, etc.) (Kopetz 1991, Liu 2000). TT

systems tend to use a timer interrupt to manage the task executions (Liu 2000).

2. Event-triggered (ET) or ―event driven‖ architecture runs tasks in response to

internal and external events (Kopetz 1991, Liu 2000, Stewart 2001). An ET

system can be implemented directly using interrupt service routines (ISR) or by

using a sporadic task server (Stewart 2001).

System architectures can also be categorized by taking into account whether scheduling

decisions are made at ―design time‖ or at ―run time‖ (Xu, Parnas 2000, Locke 1992):

1. Static task scheduling systems: the tasks are executed in a pre-determined order

set at design time (Locke 1992, Fidge 2002). Typically, research referring to

such systems assumes the use of periodic tasks with launch times (for the whole

of the ―major cycle‖; i.e. the period after which the whole cycle repeats itself)

stored in a suitable lookup table (Baker, Shaw 1988). In these systems (under

normal operating conditions) both the task execution orders and the times at

which the tasks are released for execution will be fixed (Locke 1992). By

definition, only time-triggered systems can be statically scheduled.

2. Dynamic task scheduling systems: the release time of at least one of the tasks in

the system will be determined at run time (Fidge 2002). The dynamic release is

done either based on the temporal criteria (e.g. tasks are released periodically

based on their periods and initial offsets) or in response to the occurrence of a

3

software or hardware event (such as the pressing of a switch or the arrival of a

message on a communication bus at a time which is not precisely known in

advance) (Fidge 2002). The handling of such event may, in turn, have an

impact on the processing of other tasks in the system (including periodic tasks,

which may suffer from ―release jitter‖).

Scheduling algorithms can also be categorised on the basis of the task execution

environment (Pont 2001):

1. In the cooperative execution environment, all tasks are allowed to run to

completion without being interrupted by another task (Pont 2001).

2. In the pre-emptive execution environment, the execution of a task can be

interrupted by the scheduler to run another task (Pont 2001).

Dynamic scheduling is supported by a great majority of commercial real-time operating

systems (RTOSs), including but not limited to VxWorks, LynxOS, µC/OS-II, RT

Linux, CHIMERA II, etc. (Stewart, Khosla 1991, Barr 2003). It is seen by many as the

―standard‖ architecture for most embedded real-time systems, as indicated by the level

of research being done on dynamic real time systems (e.g. (Liu, Layland 1973,

Lehoczky, Sha et al. 1989, Jeffay, Stanat et al. 1991, Stewart, Khosla 1991, Locke 1992,

Audsley, Tindell et al. 1993, Spuri, Buttazzo 1996, Liu 2000, Sha, Abdelzaher et al.

2004, Buttazzo 2005a, Buttazzo 2005b, Short 2010)). Incidents like NASA's use of

priority driven asynchronous executive on the space shuttle (Martin 1994) and the fixed

priority dynamic scheduler in the International Space Station‘s Freedom module (Sha,

Abdelzaher et al. 2004) are also indicative of the present focus in this area.

4

1.1.2 Desired architecture for high reliability applications

While most of the real world systems tend to have a mixture of sporadic and periodic

tasks (Xu, Parnas 2000, Xu 2003), a complex system with only periodic tasks (i.e. a

time-triggered system) is easier to predict and analyse (Xu 2003).

In addition to this, it is generally argued that statically scheduled time-triggered systems

offer more predictable behaviour than equivalent event-triggered designs, but at a price

of reduced flexibility and increased design effort (Locke 1992, Fidge 2002). If all the

timing parameters of all tasks (periods, offsets, worst case execution times and

deadlines) are known at design time and do not change when the system is running, all

the tasks can then be scheduled statically (Xu, Parnas 2000). An added advantage of

statically scheduled systems is that most of the tasks can be run cooperatively, and the

number and costs of pre-emptions can be minimized (Xu, Parnas 2000, Xu 2003).

1.2 Research Question

As mentioned in the previous section, most of the people involved in real-time system

are of the opinion that the static table based cyclic schedules are very limiting and the

only other option is to go for the fully pre-emptive dynamic scheduling architectures.

Some of the most prominent books on real-time systems (e.g. ―Real-Time Systems‖ by

Jane Liu (2000) and ―Hard Real-Time Computing Systems: Predictable Scheduling

Algorithms and Applications‖ by Giorgio Buttazzo (2005)) introduce static cyclic

executives, list their limitations and present priority based pre-emptive dynamic

schedulers as the only way to overcome these limitations.

On the other hand, the level of predictability offered by static time-triggered schedulers

makes them the preferred architecture for safety critical applications. This position is

further improved by the time-triggered cooperative (TTC) and time-triggered hybrid

5

(TTH) schedulers, popularized by Pont (Pont 2001), answering some of the arguments

raised against static schedulers.

Regardless, there remain some application areas where the time-triggered

implementations are considered to be too rigid for the required performance and event-

triggered or dynamic scheduling are considered to be the only practical options. These

include applications where the software is supposed to keep in sync with and respond to

the fast changing dynamics of a system. Examples of such systems include internal

combustion engine controllers and synchronised three phase drives for motors.

This raises the question of the possiblity of finding some middle ground between the

current static and dynamic scheduling paradimes that would retain most of the

predictability of the static scheduling while allowing enough flexibility to permit its use

in applications considered being outside of the domain of purely time-triggered systems.

1.3 Scope and Objectives of the Thesis

The overall aim of the research presented in this thesis is to consider the implications of

applying a variation of a standard TT approach to a broader class of systems. In

particular, the goal is to explore whether it may be advantageous to apply a more

dynamic variation of the statically scheduled TT architecture – which will be referred to

here as a ―flexible TT architecture‖ – in environments which are considered by many to

be a more natural match to an ET solution.

The research presented in this thesis focuses on predictable real time task scheduling on

uni-processor architectures. The objectives of this research are as follows:

1. To identify the characteristics that make static time-triggered scheduling the

preferred choice for high reliability and safety critical systems.

6

2. To identify the means of increasing the overall flexibility of a static scheduler

while retaining the desired characteristics identified under the first objective.

3. To identify challenging application areas for purely time-triggered architectures

and use these as case studies.

4. To test the performance of event-triggered, static time-triggered and flexible

time-triggered architectures in a controlled environment by using the results of

the case studies.

1.4 Layout of the Thesis

The layout of the thesis is as follows:

Review of relevant literature: Chapter 2 reviews the scheduling theory for real-time

embedded systems and provides the justification as to why statically scheduled

architectures are preferred for safety critical applications. Chapter 3 presents some of

the static scheduling architectures and discusses their pros and cons. Chapter 4

introduces the two real world challenging applications that were studied in the course of

this research.

The flexible cooperative architecture and the engine synchronization case study:

Chapter 5 explores how the flexibility of the existing Time-Triggered Cooperative

(TTC) scheduler can be increased by using some novel techniques like variable tick and

cycle periods and multi segment cycles along with the existing idea of a system with

multiple operating cycles. Chapter 6 present the Time-Triggered Multi Phase

Cooperative (TTMPC) scheduler architecture that implements the desired features

highlighted in chapter 5. A discussion of the effects of the enhancements on the

predictability of the system is also presented. Chapter 7 presents the internal

combustion engine synchronisation case study. It compares the effectiveness with

7

which the flexible TT, the static TT and the ET implementations can synchronise with

an externally generated crank signal.

Limited flexible pre-emption and the brushless motor control case study: Chapter 8

show the limitation of a flexible scheduler based on the TTH and explores how limited

flexible pre-emption can be added to a predominantly cooperative execution

environment. It also discusses the factors that would affect the predictability of the

flexible TT architecture with limited pre-emption. Chapter 9 presents a case study of

the brushless motor control. This case study helps to highlight how the flexible TT

architecture makes it possible to achieve higher performance by sacrificing some of the

predictability of the static TT, while still retaining higher predictability than the ET

implementations.

Conclusions and proposals for further research: Chapter 10 presents a discussion on

the findings and contributions of the research reported in this thesis and introduces some

potential applications that could benefit from the proposed architectures. It then

presents a list of areas where future research might be undertaken in continuation of the

work presented in this thesis.

8

2 A Review of the Relevant Scheduling Theory

This chapter reviews previous work on the scheduling of tasks in real time embedded

systems. The work considered here forms a basis for discussions throughout the

remainder of the thesis.

2.1 Tasks and Their Execution Environments

At the heart of the type of embedded system considered in this thesis, there will be a

processor (or network of processors): the processor(s) will run well-defined blocks of

software known as ―tasks‖.

2.1.1 Classification of tasks

Tasks can be divided into two classes based on their temporal behaviour (Liu 2000,

Buttazzo 2005a):

 Periodic tasks: These tasks are specified with a fixed period and initial delay

(or ―offset‖) and are run based on these temporal criteria (Liu 2000, Xu, Parnas

2000, Buttazzo 2005a). A large number of tasks in embedded systems are

periodic in nature (Baker, Shaw 1988, Xu, Parnas 1993).

 Aperiodic and Sporadic tasks: These tasks do not have fixed periods and are

run in response to external and internal events (Liu 2000, Xu, Parnas 2000,

Buttazzo 2005a). A distinction is made among aperiodic tasks on the basis of

the presence of limits on how frequently a task could be released: if a minimum

interval between two consecutive requests is specified, it is called a sporadic

task (Liu 2000, Buttazzo 2005a).

9

2.1.2 Converting sporadic and aperiodic tasks to periodic

As only periodic tasks can be scheduled in a purely time-triggered environment (Sha,

Abdelzaher et al. 2004), sporadic and aperiodic tasks and not directly supported.

However, in some cases, it is possible to use periodic tasks to handle sporadic events

(Xu, Parnas 2000, Xu 2003).

For example, suppose a system is required to respond when a certain button is pressed.

In event-triggered systems, this event might be handled as follows:

1. An interrupt could be used to launch an interrupt service routine (ISR). The

functionality required to respond to the button presses would then be

incorporated in the body of the ISR (Stewart 2001).

2. An interrupt could be used to add an appropriate sporadic / aperiodic task to the

dynamic scheduler‘s task queue. The scheduler then controls when the task is

actually run. (Sha, Abdelzaher et al. 2004)

3. An interrupt could be used to add an appropriate sporadic task to a sporadic task

server‘s task queue. The relevant task will be run as soon as the system has

finished running the periodic tasks. (Spuri, Buttazzo 1996)

A purely time-triggered system will have to run a periodic task to check the state of the

button and generate an appropriate response. This period has to be short enough to

ensure that the system can respond in a reasonable time (Xu, Parnas 2000, Xu 2003).

The use of interrupts and events is a major cause of priority inversion and it is

recommended to change them to periodic polling tasks to avoid these conditions

(Stewart 2001).

10

2.1.3 Temporal criteria for tasks

The temporal criteria required by scheduling theory to find and verify a task schedule

consists of the following (Jeffay, Stanat et al. 1991, Buttazzo 2005a):

1. Period: This is the period after which a periodic task is released for execution

(Baker, Shaw 1988, Xu, Parnas 2000, Buttazzo 2005a). In the case of sporadic

tasks, this value is used to indicate the minimum period between two

consecutive events (Xu, Parnas 2000).

2. Deadline (relative): This is the time relative to the release of the task before

which it has to finish executing to satisfy the real-time specification (Baker,

Shaw 1988, Xu, Parnas 2000, Buttazzo 2005a).

3. Worst case execution time (WCET): This is the maximum amount of time that a

task could need to finish executing in the absence of pre-emptions (Baker, Shaw

1988, Xu, Parnas 2000, Buttazzo 2005a).

Figure 2-1: Temporal criteria for tasks

11

4. Initial delay (also referred to as ―offset‖, ―release time‖ or ―phase‖): The initial

delay is the time (relative to the start of the scheduler) after which the first

instance of the task is released for execution (Xu, Parnas 2000, Buttazzo 2005a).

Figure 2-1 provides a graphical representation of how some of these temporal criteria

come into play in a hypothetical system with two tasks A and B. In this example, the

initial delay and period of task A is less than those of task B. The deadlines for both the

tasks are less than their respective periods. In this figure, execution time variations are

not evident as all instances of a particular task are assumed to require the same time to

execute as its WCET.

2.1.4 Jitter in real-time scheduling

Generally, jitter can be defined as deviation from the timing of an event under ideal

conditions. Oxford English Dictionary defines jitter as:

“Slight irregular movement, variation, or unsteadiness, especially in an

electrical signal or electronic device” (Oxford English Dictionary 1989)

Task release jitter can be a major consideration for real-time systems especially in

control system applications where its presence can result in degradation of performance

(Proctor, Shackleford 2001, Buttazzo 2005b). The relative task release jitter is defined

by Buttazzo as ―the maximum deviation of the start time of two consecutive instances”

(Buttazzo 2005a). It can be expressed in the form of the following equation:

𝑹𝑹𝒋𝒊 = 𝒎𝒂𝒙𝒌 𝒔𝒊,𝒌 − 𝒓𝒊,𝒌 − 𝒔𝒊,𝒌−𝟏 − 𝒓𝒊,𝒌−𝟏 (2-1)

Where RRji is the relative release jitter for task i over multiple executions, si,k and ri,k are

the start time and release time for task i at the k cycle while si,k-1 and ri,k-1 are the

corresponding start and release times for the previous cycle.

12

In Figure 2-1, relative release jitter is evident in the executions of task A as its start of

execution is delayed in alternate ticks starting from its third iteration due to the

execution of task B. Assuming that the execution time for task A remains constant, the

relative release jitter for task B will be zero as all of its executions will be delayed by

the same amount of time.

2.2 Worst Case Execution Times and Scheduling

Both static and dynamic scheduling techniques require advanced knowledge of the

worst case execution times (WCET, i.e. the maximum amount of time that is required

by a task to complete) for all tasks in the system (Wilhelm, Engblom et al. 2008).

Without access to this information, the static task schedules cannot be assembled and

verified (Burns 1995, Gendy, Pont 2008), while schedulability analysis for dynamic

scheduling algorithms cannot be calculated (Liu, Layland 1973, Sha, Abdelzaher et al.

2004, Buttazzo 2005a).

2.2.1 Factors affecting Worst Case Execution Time

Depending on the structure of a task and the values of the control variables, different

execution paths are possible. Finding the longest path is challenging and might not be

possible for complex tasks (Deverge, Puaut 2005, Wilhelm, Engblom et al. 2008).

WCET analysis is further complicated by the effects of speed enhancement techniques

that are in use in modern processors and microcontrollers. These include instruction

memory caches, virtual memory, pipelines and branch predictions (Deverge, Puaut

2005, Wilhelm, Engblom et al. 2008, Mezzetti, Holsti et al. 2008).

13

2.2.2 Worst Case Execution Time analysis techniques

The main techniques that are used in WCET analysis are as follows:

1. Dynamic / measurement based analysis: This technique relies on timing

measurements made on the actual hardware or with accurate simulators. Test

data is generated in an attempt to make the execution take the longest path

through the task; however, it usually cannot be guaranteed that the observed

maximum execution time will not be exceeded at run time. (Wilhelm, Engblom

et al. 2008)

2. Static analysis of the code: In this technique, the code is analyzed to determine

the longest path and the conditions under which this path is chosen. With static

analysis, it is possible to determine an upper timing bound which cannot be

exceeded at run time. However, in order to cover the variations introduced due

to the processor architecture (e.g. branch prediction, caches, etc.), this value can

be pessimistic. (Engblom, Puschner, Burns 2002b, Ermedahl et al. 2003,

Deverge, Puaut 2005, Mezzetti, Holsti et al. 2008, Wilhelm, Engblom et al.

2008)

3. Mixed analysis techniques: Some of the analysis techniques break up the task

into smaller blocks of code with fixed execution times and find the overall

execution time based on the timing values for the blocks and knowledge of the

longest path through the task (Engblom, Ermedahl et al. 2003, Deverge, Puaut

2005, Wilhelm, Engblom et al. 2008).

It is not uncommon to add a safety margin for real-time systems to the WCET values

based on measurement techniques (Vallerio, Jha 2003, Gendy, Pont 2008, Gendy 2009).

14

2.2.3 Minimising execution time variations

An alternate approach to simplifying the WCET analysis is to try to minimize or

eliminate the variations:

2.2.3.1 Single path programming

Single path programming is a paradigm that limits the number of execution paths

through a task to one (Puschner, Burns 2002a, Puschner, Burns 2002b, Puschner 2003).

With the presence of low level support for conditional instruction execution, it is

possible to write code that takes the same path regardless of the data that cause

conditional execution of some instructions. The conditional instructions are supported

by most of the modern architectures like Freescale M-core, Alpha, Pentium P6,

ARM7TDMI and Cortex-M3 (Puschner, Burns 2002a, Motorola 2001, ARM 2004,

ARM 2010).

Single path programming relies on both the coding practices and tool / architecture

support for generation of code with a single flow path. When used properly, it can

result in the elimination of execution time variations.

2.2.3.2 Code balancing 1 technique

The code balancing 1 (CB1) technique, proposed by Gendy and Pont, uses a hardware

timer and sandwitch delays in an attempt to minimize the execution time variations

(Gendy, Pont 2007, Gendy 2009). To stabilize the variations in execution times of a

loop structure, a counter is used to measures the number of iterations, while a timer

measures the time required for these measurements. After the loop, the system is put

into low power mode for the estimated remainder of the time that the loop would have

taken had it run for the maximum number of iterations.

15

The CB1 is a generic technique that can be adapted for use on all architectures. It

reduces the amount of jitter in the WCET but might not eliminate it (Gendy, Pont 2007).

2.3 Overview of Scheduling Techniques

Over the years various techniques have been developed and used to schedule tasks (Liu,

Layland 1973, Baker, Shaw 1988, Xu, Parnas 1990, Stewart, Khosla 1991, Locke 1992,

Kalinsky 2001, Pont 2001, Sha, Abdelzaher et al. 2004). As previously mentioned in

section 1.1.1, these techniques can be categorized according to the means by which they

launch the tasks into the following groups:

1. Static (offline) Schedulers: The order of task execution is determined at design

time. These systems usually rely on a timer interrupt to keep track of the

passing of time and dispatch tasks according to the pre-programmed scheduling

sequence (Locke 1992, Fidge 2002). Examples of such systems include clock

driven cyclic executive schedulers like time line schedulers, time-triggered

cooperative (TTC) and time-triggered hybrid (TTH) (Baker, Shaw 1988, Pont

2001, Scheler, Schroder-Preikschat 2006, Pont, Kurian et al. 2007, Wang, Pont

2008).

2. Dynamic (online) Schedulers: The order of task execution is determined at run

time based on an online scheduling algorithm or on external and internal events.

The tasks are run on the basis of their priorities (Liu 2000). They can be further

sub divided according to their priority assignment technique:

i. Fixed task priority algorithms: The tasks are assigned priorities at design

time, and these do not change at run time (Liu 2000, Sha, Abdelzaher et al.

2004). At run time, the resources are allocated to the task with the highest

priority. Two commonly used algorithms for assigning priorities are Rate

16

Monotonic (RM – the priorities are assigned according to the tasks‘

periods) (Liu, Layland 1973) and Deadline Monotonic (DM – the priorities

are assigned according to the deadlines) (Liu 2000).

ii. Dynamic task priority algorithms: The priorities are calculated at run time

based on some criteria specified by the algorithm (Liu 2000, Sha,

Abdelzaher et al. 2004). Examples of these algorithms include Earliest

Deadline First (EDF – the task whose relative deadline is closest is

assigned the highest priority) (Liu, Layland 1973) and Minimum / Lowest

Laxity First (MLF / LLF – the task that has the least amount of slack - i.e.

the difference between time till its deadline and its remaining execution

time - gets the highest priority) (Liu 2000).

iii. Mixed task priority algorithms: The cumulative task priorities are

composed of a statically assigned part and a dynamically calculated part.

One example of a mixed priority algorithm is Maximum Urgency First

(MUF – static priorities are assigned to task groups. When multiple tasks

are waiting, the task from the highest group gets the priority. Dynamic

priorities are used to resolve conflicts if two or more waiting tasks are

from the same group) (Stewart, Khosla 1991).

It should be noted that the division between static and dynamic schedulers outlined

above is typical but the precise split may depend on the chosen implementation (Gendy

2009): for example, a rate-monotonic or EDF algorithm can be applied at design time in

a statically-scheduled system (Xu, Parnas 1990). Similarly, a statically scheduled

system could be modified to run non periodic or sporadic tasks in the slack time

between the scheduled tasks (Xu, Parnas 1993, Liu 2000).

17

No matter what combination of algorithm and implementation we choose, none of these

techniques offers a panacea to the problems involved in systems design (Scheler,

Schroder-Preikschat 2006): they all have their strong and weak points, and the type of

scheduler used in an application is a design decision (Scheler, Schroder-Preikschat

2006). It is usually assumed that, for systems with large task sets, dynamic schedulers

offer higher CPU loading and ease in developing application software (Kopetz 1991,

Fidge 2002, Scheler, Schroder-Preikschat 2006). On the other hand, a statically-

scheduled architecture runs tasks in a predetermined order and offers a greater

possibility of determining all possible paths in the software and, therefore, of obtaining

better reliability (Kopetz 1991, Fidge 2002, Scheler, Schroder-Preikschat 2006).

2.4 Comparison of Scheduling Architectures

In order to understand the strengths and weaknesses of various scheduling architectures,

an impartial comparison has to be made between them. Most of the research available

on the subject focuses on one particular architecture or on a comparison between two

such architectures. In this section, an impartial comparison is presented between the

some of the commonly used real-time architecture. This comparison focuses on the

following five architectures:

1. Static scheduler (Static): A clock driven table based cyclic executive

implementation is assumed.

2. Rate Monotonic (RM): A fully pre-emptive rate monotonic fixed priority

implementation is assumed.

3. Earliest Deadline First (EDF): A fully pre-emptive earliest deadline first

dynamic priority implementation is assumed.

18

4. Non pre-emptive Earliest Deadline First (npEDF): A fully cooperative earliest

deadline first dynamic priority implementation is assumed.

5. Maximum Urgency First (MUF): A fully pre-emptive maximum urgency first

mixed priority implementation is assumed.

2.4.1 Comparison Criteria

The criteria used for a comparison of the above mentioned five architectures is as

follows:

2.4.1.1 Scheduler overheads

Scheduler overheads are the load incurred on the processor while running the

scheduling algorithm. These scheduler overheads are usually not taken into account

when schedulablity analysis is made for a task set (Jeffay, Stanat et al. 1991).

Static scheduler based designs tend to have lower scheduler overheads as compared to

pre-emptive dynamic schedulers (Locke 1992, Fidge 2002, Xu 2007). The scheduling

decisions are made at design time (Liu 2000, Xu, Parnas 2000) and are stored in the

system in the form of a table. The scheduler is invoked at fixed points in time and uses

the table to find out which tasks need to be run.

In the case of dynamic schedulers, all tasks waiting to be run are sorted according to

their priorities. Each time a new task is added into the system, the queue has to be

reordered (Burns 1995). In addition to this, for dynamic priority scheduling algorithms,

priorities also have to be updated at run time (Liu 2000, Fidge 2002). Based on this, it

may be assumed that the dynamic priority algorithms have higher overheads as

compared to the fixed priority algorithms. However, in the case of RM and EDF

algorithms, Buttazzo argues that if the number of pre-emptions occurring in the system

19

are taken into consideration, EDF tends to have fewer overheads than RM (Buttazzo

2005b).

Cooperative systems (both static and dynamic) incur lower over heads as compared to

pre-emptive systems because there is no need for context switches or message queues to

transfer data between different tasks (Jeffay, Stanat et al. 1991, Short, Pont et al. 2008,

Short 2010).

Based on the foregoing, it may be seen that a static cooperative will have the lowest

scheduling overheads, followed by static pre-emptive. The RM should be moderate to

high, while the EDF should be high to moderate when Buttazzo‘s observations taken

into account. The npEDF should have low to moderate overheads. Finally, the

overheads for the MUF should be similar to or slightly higher than those for EDF

because of the need to calculate the laxity for the dynamic part of the algorithm.

2.4.1.2 Scheduler memory requirements

All scheduler architectures require some memory to keep the task executions on track.

As previously noted, memory is also required for context switches and message passing

mechanisms in a pre-emptive environment.

The table based static scheduler requires considerably more memory than other

approaches, as they have to store the scheduling table prepared at design time (Liu

2000). The size of this table is dependent on the least common multiple (LCM) of all

the task periods, and can be quite large even with a small number of tasks. For

example, for a system with two tasks A and B with periods of 3ms and 11ms, the table

will need to be large enough to store all the task activations in a 33ms interval.

20

For a dynamic scheduler, memory will be required for a queue for storing waiting tasks,

and for a table with tasks and their timing information including periods, offsets and/or

deadlines (Fidge 2002). The size of this task table is proportional to the number of tasks

and does not depend on their respective periods.

In general, pre-emptive schedulers need relatively more memory to maintain unified or

separate stacks for task execution as compared to cooperative schedulers (Buttazzo, Gai

2006, Short 2010).

From the above it can be inferred that the static schedulers will have the highest

memory requirements as compared to dynamic pre-emptive schedulers like RM, EDF

and MUF and finally, npEDF should have the lowest requirements because of the

absence of pre-emption.

2.4.1.3 Theoretical achievable CPU loading

It is usually considered that architectures which allow higher CPU loading, while

ensuring that all the task timing constraints are met, are better as more processing can

be done on the same hardware platform.

The debate of which scheduling architecture can offer higher processor loading is

ongoing and unresolved. Supporters of dynamic scheduling claim that these systems

are able to run more tasks because of higher processor loading (Liu, Layland 1973,

Locke 1992, Sha, Abdelzaher et al. 2004). It was shown that the worst case processor

loading for a fixed priority dynamic system is approximately 69% (Liu, Layland 1973).

This figure, however, is pessimistic and for average real time systems, this value is

usually closer to 88% (Lehoczky, Sha et al. 1989). Audsley et al. claim that their worst

case response time analysis (for tasks with offset constraints) helps to improve the

21

scheduliblity of task sets with fixed priority scheduling (Audsley, Tindell et al. 1993).

However, the actual achievable processor loading is dependent on the specific task set

being scheduled.

In the case of pre-empting system architectures with dynamic and mixed priority

scheduling, processor loading of 100% is possible (Liu, Layland 1973, Stewart, Khosla

1991, Liu 2000). However, if pre-emption is not allowed, these algorithms are no

longer optimal and 100% utilisation cannot be guaranteed (Liu 2000). While a CPU

utilization figure cannot be generalized for the cooperative EDF, it is possible to

calculate if a particular task set is schedulable (Short 2010).

The work done by Xu has gone a long way to show that static scheduling is still a viable

and attractive option for real-time systems (Xu, Parnas 2000, Xu 2003, Wang, Pont

2008). His scheduling algorithm uses the schedule produced by EDF as a starting point

and then tries to improve on it (Xu, Parnas 1990). Based on this, and taking pre-

emption overheads into consideration, it can be argued that, depending on the task set

and the proper scheduling algorithm, statically scheduled systems can have processor

utilisation similar to, or better than, dynamic systems. On the other hand, the extra

effort required to break up long tasks hinders actual utilisation achieved by static

systems.

Based on the above arguments, the achievable processor loading for static schedulers

should be moderate but high levels can also be achieved with task segmentation and

Xu‘s scheduling technique. The performance for RM is moderate while EDF and MUF

allow for high processor loading. The npEDF‘s performance should be moderate to

high depending on the particular task set. Finally the performance of the MUF

architecture should be very high.

22

2.4.1.4 Ease of system design and maintenance

The choice of system architecture has a large impact on the time and effort that is

required to develop and maintain the software.

Statically scheduled systems are usually difficult to construct (Locke 1992, Kalinsky

2001). The most obvious problem is that of the generation of the schedule table. The

work done by Burns provides an overview of the various techniques available for

schedule generation and compares two of the techniques in a detailed case study (Burns

1995). Also, the addition or removal of a single task, or change in timing parameters of

an existing task, can require a recompilation of the schedule table (Locke 1992, Burns

1995, Gendy, Pont 2008). In the statically scheduled systems, the time periods of all

tasks must be multiples of the base tick period and should be harmonically related. This

could result in the need to change the periods of some tasks and running them at a

higher rate. (Locke 1992)

Alternately, systems developed using dynamic scheduling algorithms offer apparent

ease in software design (Locke 1992, Fidge 2002). Various techniques have been

developed to check the feasibility of a given task set (Liu, Layland 1973, Audsley,

Tindell et al. 1993). A change in the task set only requires that the schedulability is

recalculated. Also, tasks are not required to have periods that are harmonically related

(Locke 1992).

The cooperative dynamic scheduler complicates the design process as long tasks might

need to be split in order to make a task set schedulable (Burns 1995). Such code is

difficult to write and maintain.

23

In light of the above arguments, the dynamic pre-empting schedulers including RM,

EDF and MUF are easy to use. The npEDF should require moderate effort, while static

schedulers require a lot of effort for design and maintanence.

2.4.1.5 Verification procedure

For hard real-time applications, it is essential to test and verify that the system works

reliably. Dijkstra‘s view on system testing highlights the main limitation of trying to

prove the correctness of a system through testing:

“Program testing can be used to show the presence of bugs, but never to show

their absence!” – (Dijkstra 1970)

A prime example of this limitation of testing is the delay in the first space shuttle launch

caused by a transient overload (with a 1 in 67 probability) putting the computers out of

synchronization during initialization (John 1988).

Run time behaviour of dynamically scheduled systems is more difficult to analyze and

predict as compared to pre-run-time scheduled systems (Xu, Parnas 2000, Xu 2003).

This is mainly because of the need to use complex run time mechanisms to achieve

process synchronisation and access to shared resources. Coincidently, the cooperative

dynamically scheduled systems are easier to test and analyse because locking and

synchronization mechanisms are not needed for shared resources (Jeffay, Stanat et al.

1991).

Existing safety certification guidelines (e.g. avionics standard DO-178B) require

exhaustive testing of all possible control-flow paths through a program. It is not clear

how this can be achieved in a dynamic scheduler that relies to some extent on external

events to determine the order of execution of tasks (Fidge 2002).

24

From the above, it is clear that the verification for the static time-triggered is the easiest

because of the set order of task execution. This is followed by the npEDF where the

lack of pre-emption eases the verification process. Finally, the pre-emptive dynamic are

the hardest to verify because of the potentially large number of execution paths through

the software.

2.4.1.6 Code complexity due to shared resources

This metric is an estimation of the additional code complexity due to the presence of

shared resources in the system.

One of the basic assumptions behind dynamic pre-emptive scheduling is that the tasks

are independent of each other (Liu, Layland 1973). Unfortunately, this assumption does

not hold in a lot of real-time systems, where different tasks have to share resources and

information with each other and can lead to priority inversion (Xu, Parnas 2000).

Priority inversion occurs when the execution of a higher priority task is delayed by the

execution of a lower priority task (Babaoglu, Marzullo et al. 1990, Liu 2000, Buttazzo

2005a). Over the years, various locking protocols and techniques have been developed

to ensure smooth operations (Sha, Abdelzaher et al. 2004, Scheler, Schroder-Preikschat

2006). These include defining non pre-emptive critical sections, priority ceiling and

priority inheritance. Such features can add to system (and design) complexity (Xu,

Parnas 2000, Yodaiken 2002).

In the case of statically scheduled systems, all the resource constraints can be handled at

design time, thereby, reducing the software‘s complexity and overheads (Xu, Parnas

1990, Xu, Parnas 2000).

25

Based on the above, the code complexity added to the user code is the lowest for the

statically scheduled, followed by the npEDF and should be the highest for dynamic pre-

emptive systems.

2.4.1.7 Temporal flexibility

Temporal flexibility is a measure of the possibility to change task timing parameters at

run time. This can be crucial for some applications, making certain scheduling

architectures inherently inefficient or unsuitable for them (two such applications are

presented in chapter 4).

Existing static scheduling architectures have no temporal flexibility. However, it has

been suggested by some that a system could have multiple schedule tables in order to

implement different operating modes and conditions (Baker, Shaw 1988, Kopetz,

Nossal et al. 1998, Xu, Parnas 2000). While these systems will have limited flexibility,

it will not be possible to implement a system in which timing can be varied smoothly

within a certain range.

In dynamic priority system analysis, a frequent assumption is that the deadline of any

task is less than or equal to its period (e.g. Liu and Layland make this assumption in

their seminal paper on rate monotonic and earliest deadline first dynamic schedulers

(Liu, Layland 1973)). If such a system is modified to allow task periods to be changed

at run time, it can be argued that most analysis techniques should hold if it can be

ensured that at any point in time, the static deadlines are less than or equal to the

variable periods.

Fixed priority systems should fall somewhere in the middle of the spectrum. In addition

to the conditions for dynamic priority systems, designs with variable periods will also

26

need to ensure that varying the periods of some of the tasks does not result in a priority

inversion situation in rate monotonic arrangements (i.e. new period of a lower priority

task being shorter than the period of a higher priority task). A deadline monotonic

system with fixed deadlines should not be adversely affected by this.

Based on the above discussion, it can be summarised that dynamic and mixed priority

pre-empting systems should have the highest level of flexibility. Fixed priority RM and

non-pre-emptive dynamic architectures like npEDF should fall in the middle of the

spectrum, while statically scheduled permit almost no flexibility.

2.4.1.8 Temporal stability

In real-time systems, the usefulness of some tasks is reduced by timing variation

between successive calls (task launch jitter). This is especially true in control systems,

where jitter in sampling a data source can reduce the value of collected data or the

effectiveness of the control algorithm (Locke 1992, Proctor, Shackleford 2001).

Statically scheduled architectures allow a great level of control on the execution order

of tasks. This can be used to minimize task launch jitter for specific tasks (Locke

1992).

In fixed priority architectures, while the high priority tasks tend to have low jitter, this

does not hold true for all the tasks in task set. In some cases, when jitter for all tasks is

taken into account, EDF was shown to be better than rate monotonic by Buttazzo

(Buttazzo 2005b).

Based on the above, it can be inferred that static schedulers offer the highest temporal

stability while dynamic pre-empting schedulers offer moderate stability and are

adversely affected by shared resources. Finally, the npEDF architecture‘s performance

27

is not substantiated by available research but should offer the lowest level of temporal

stability because of the cooperative nature of task executions and lack of precise control

over the sequence in which the tasks are executed.

2.4.1.9 System predictability

System predictability is a measure of the ease and accuracy with which the behaviour

and state of the system can be determined at an arbitrary point in the future.

Generally, statically scheduled systems are inherently predictable (Locke 1992, Xu,

Parnas 2000, Fidge 2002). The starting times of all tasks are known at design time and

do not vary while the system is operating. Certification authorities tend to support this

form of scheduler architecture (Fidge 2002).

In the case of dynamically scheduled systems, because of possible variations in the task

execution periods, the sequence of task executions cannot be determined in advance

(Kopetz 1991, Fidge 2002). They also do not support replica determinism (a setup

where, in the absence of faults and provision of the same initial state and inputs, similar

systems generate the same set of outputs at the correct times) by design and require

implementation of special techniques to achieve this (Scheler, Schroder-Preikschat

2006).

In the case of cooperative dynamic schedulers, the determinability problem is simplified

due to the absence of pre-emptions in the system (Short 2010). For particular task sets,

it might be possible to ensure the execution sequence of tasks provided that there is little

or no variation in the task execution times.

It can be seen from the above that the statically scheduled provide the highest level of

system predictability, followed by npEDF, and finally, the dynamic pre-emptive

schedulers offer the lowest level of predictability.

28

2.4.1.10 System robustness under overloads

As mentioned previously, scheduling theory relies on WCET estimates and

measurements for analysis and verification of task sets. Errors in these could invalidate

all reaults of analyse based on them.

Statically scheduled systems tend to be fragile as a single task overrunning its scheduled

period can cause catastrophic failure of the system (Locke 1992, Burns 1995, Fidge

2002).

Dynamically scheduled systems are better than their statically scheduled counterparts

under transient overload conditions (Locke 1992, Fidge 2002). It has been shown by

Buttazzo that in a RM setup, all tasks with a priority higher than the offending task (the

one causing the overload) will continue to run normally; but in an EDF setup, any task

can miss its deadline (Buttazzo 2005b). The performance of RM can lead to a false

sense of security as the over running task is not known at design time. Also, as tasks

usually interact with other tasks in the system, it is hard to predict the repercussions of

the failure of an arbitrary task on the overall performance.

Maximum urgency first (MUF) allows the task set to be sorted into categories. In the

case of a failure, the higher priority groups can continue to run while tasks from lower

priority groups suffer (Stewart, Khosla 1991). While there are no guaranties that a task

in the critical section will not fail, it might be easier to ensure that the tasks in the

critical subset of software have built in safeguards to prevent such an occurance.

No analysis is available for npEDF under transient overloads; however, it should not be

expected to perform better than EDF.

29

To summarise, the static scheduler have negligible system robustness under overload

conditions. The robustness of RM, EDF and npEDF are very low under such

conditions. Finally, MUF could guarantee a Low level of robustness.

2.4.2 Summary of the comparison of various scheduler architectures

The findings of the comparison in this section have been summarised in Table 2-1. For

safety critical applications, high level of predictability and ability to verify the correct

operation is essential. With reference to the above table, it can be seen that the static

scheduling satisfies both the essential requirements. Unfortunatly, this form of task

scheduling is limited by large memory requirements, lack of flexibility, and difficulty in

system design.

Table 2-1: Qualitative comparison of different scheduler architectures.

 Static RM EDF npEDF MUF

Scheduler overheads Low Moderate-

High

High-

Moderate

Moderate High

Scheduler memory

requirements

High Moderate Moderate Low Moderate

Theoretical achievable

CPU loading

Moderate

to high

Moderate High Moderate

to high

Very

high

Ease of system design and

maintenance

Hard Easy Easy Moderate Easy

Verification procedure Easy Hard Hard Moderate Hard

Code complexity due to

shared resources

Low High High Low High

Temporal flexibility None Low High Moderate High

Temporal stability High Moderate Moderate Low Moderate

System predictablity High Low Low Moderate Low

System robustness under

overloads

None Very low Very low Very low Low

30

2.5 Notable Incidents with Real-Time Systems

This section provides an insight into some incidents related to real-time systems in high

reliability and safety critical applications and highlights how those issues could have

been avoided with proper design, testing and verification processes.

Apollo 11 lunar landing

During the final stages of the Apollo 11 landing, frequent 1202 (computer overload

error) and 1201 (effectively an out of memory error) alarms were received from the

guidance computer (Martin 1994, Adler 1998, Eyles 2004, Jones 2011). The last

landing simulation before the mission (but with another crew) was aborted when a

similar alarm was received (Jones 2011).

Initially, the cause of the alarms was attributed to an error in the descent checklist. This

was not detected because the hardware simulator used to test the system and train the

crew did not have the relevant switch (rendezvous radar mode) hooked to the guidance

computer. It was thought the need to process the data from this radar in addition to all

the other operations involved in the landing caused an overload in the guidance

computer. (Martin 1994, Adler 1998, Eyles 2004)

It was much later discovered that the overloads were caused when two of the power

sources for the radar and guidance computer were synchronised out of phase. This

would result in the generation of an event in every cycle of the power input as it

appeared that the radar antenna was oscillating due to the phase difference. (Eyles 2004)

In either case, this is a strong example for the need for clearly defined (and verified)

task sets for different operating modes and the perils of event-triggered systems when

there is an underestimation of the rate at which an event might occur.

31

Therac-25

The Therac-25 was a radiation therapy machine produced by Atomic Energy of Canada

Limited. It was based on the earlier Therac-6 and Therac-20 machines that had been

operating safely for many years. Between 1985 and 1987, there were six accidents

involving the Therac-25s which resulted in massive overdoses in the administered

treatment, some of them resulting in the death of the patient being treated (Joinathan

1994, Leveson 1995).

The software for the Therac-25 was based on an earlier model but unlike the older

model, there were no hardware protection mechanisms and software was the only line

of defence (Joinathan 1994, Leveson 1995).

Some of the failures were caused by a race condition when an operating mode was set

and then changed within a very short period resulting in incorrect configuration of the

machine, while the others were caused by a logical bug that caused a state variable to

overflow and reset (Leveson 1995).

The race condition was occurring because of the inherent event-triggered nature of data

and operating mode specification. An implementation based on periodic polling and

specific operating modes with specific task sets might have avoided this situation but at

the cost of decreased flexibility and increased CPU utilisation for the same capability.

Alternatively, this problem might have been avoided by using resource locking

techniques to prevent corruption of the settings in a dynamic execution environment.

Regardless of the implementation techniques, a detailed analysis should have been

performed that might have highlighted the issue with shared resources.

32

The problem with the overflowing of a state variable only helps to emphasise the need

for software verification and testing in safety critical applications. Because of the

event-triggered nature of the implemented software, it would have been unlikely to be

able to test all possible execution paths through the software.

2.6 Conclusions

This chapter presentes a literature review of the uniprocessor real-time scheduling

theory. A detailed impartial comparison of some of the commonly reffered

architectures was carried out. Some of the comparison criteria were not covered in

sufficient detail in the literature and requied some assumptions for a thorough

comparion. The results of this comparison were then summarised in the form of a table

that highlighted the pros and cons of the architectures being compared. The literature

review presented in this chapter helped to justify the selection of the static time-

triggered architecture as the foundation for the predictable flexible TT architectures.

33

3 Static Scheduling Architectures

This chapter takes a detailed look at the characteristics of existing static scheduling

architectures. The work reviewed here forms the basis on which the flexible

architectures are based.

3.1 Commonly Used Static Scheduler Architectures

Most of the references to static schedulers imply or specify a table driven cyclic

executive scheduler (referred to as timeline schedulers in this thesis) (Baker, Shaw

1988, Xu, Parnas 1993, Xu 2003). In this architecture, a table is used to store the points

of time at which various tasks are due to run. A timer interrupt can then be used to

launch the tasks at their respective dispatch times. This approach provides a lot of

flexibility in controlling the task timings. Also, in such an architecture, jitter in the task

launch times can be eliminated as every task is dispatched in its own time slot.

However, the size of the table required to store all the scheduling information is

proportional to the least common multiple of all the task periods (the major cycle) and

can be very large in some cases (Liu 2000, Xu 2003).

An alternate to table based timeline scheduling architecture was presented by Pont in

the form of Time-Triggered Cooperative (TTC) and Time-Triggered Hybrid (TTH)

schedulers (also referred to as next run time schedulers) (Pont 2001). These schedulers

use data structures (referred to as task arrays) to keep track of the time units or ticks

remaining till the next execution of each task. The size of the task array is proportional

to the number of periodic tasks set to run in a system and not on the relationship of the

task periods of all the tasks. In addition to this, the TTC and TTH schedulers are also

able to survive transient overloads but at the cost of increased jitter for all affected

tasks.

34

3.2 A Detailed Review of Static Schedulers

This section reviews some of the static time-triggered scheduler implementations and

their pros and cons.

3.2.1 Timeline scheduler

While most of the research on static cyclic executives refers to time line schedulers, it is

difficult to find references to implementations in practical work. The version by Wang

is a very flexible pre-emptive implementation that uses a single timer interrupt to

control the execution of all tasks (Wang, Pont 2008).

Key points of Wang‘s architecture are:

 In the system, only the scheduler‘s timer interrupt is enabled. All other events

have to be polled for in a task.

 The tasks are run by the scheduler‘s dispatcher in a cooperative or pre-emptive

manner depending on the schedule.

 Special functions are used to save and restore the context of the pre-empted

tasks.

 The scheduler uses a timeline array to store the points in time at which the tasks

are to be run.

As all the task start times are fixed in a timeline scheduler, it is very difficult to modify

the system to be able to vary task periods at run time.

35

3.2.2 Time-triggered cooperative scheduler

The time-triggered cooperative (TTC) scheduler given by Pont in 2001 is a statically-

scheduled cooperative scheduler that uses a single timer interrupt to control the

execution of all tasks. Improved versions of this scheduler with reduced jitter have

been proposed (Maaita, Pont 2005, Phatrapornnant, Pont 2006).

The key points of this TTC architecture are:

 In the system, only the scheduler‘s timer interrupt is enabled. All other events

have to be polled for in cooperative tasks.

 The tasks are run by the scheduler‘s dispatcher in a cooperative manner.

 The scheduler uses a task array to keep track of the scheduled tasks, their

periods, and the time till their next call.

The key parts of the scheduler are:

1. TTC scheduler‘s timer ISR: The timer‘s ISR indicates the occurrence of a

―Tick‖ to the scheduler‘s dispatcher (see Flowchart 3-1).

Flowchart 3-1: Flowchart of the TTC scheduler’s Timer ISR.

2. TTC scheduler‘s dispatcher: The scheduler‘s dispatcher is responsible for

updating the task array after every tick, running tasks that are due to run in the

current tick, and updating the time till their next call. Once all the tasks have

Timer Interrupt

Reload timer for next tick

duration

End ISR

Tick_count = Tick_count + 1

36

been completed, the CPU is put into sleep till the next tick. Refer to Flowchart

3-2 for the general structure of the system using the TTC scheduler.

Flowchart 3-2: Flowchart of the TTC system’s main structure.

The TTC scheduler suffers from the following short coming:

 Like all cyclic executive algorithms, the response time is not good for a system

with long cooperative tasks (Allworth 1981, Locke 1992, Fidge 2002).

 The time periods of all tasks must be multiples of the base tick period.

 Task overruns (tasks which exceed their predicted ―worst case‖ execution time)

can have a significant impact on system performance. (Although ―task

guardians‖ can be employed, these add significant overheads (Hughes, Pont

2004, Hughes, Pont 2008)).

System start

Go to sleep

Initialize the tasks,

Tick_count = 0

Start scheduler timer

Update task array

Tick_count > 0

Run tasks scheduled to run in

current tick

No

Yes

Wake up on interrupt

Tick_count = Tick_count - 1

Scheduler’s Dispatcher

37

3.2.3 Time-triggered hybrid scheduler

Like the time-triggered cooperative, the time-triggered hybrid scheduler is also taken

from Pont‘s book Patterns for Time-Triggered Embedded Systems (Pont 2001). The

TTH scheduler was intended to overcome the problem with scheduling a high priority

task with a short time period and one or more cooperative tasks with durations more

than the period of the high priority task by allowing limited pre-emption in the system.

The key points of this TTH architecture are:

 In the system, only the scheduler‘s timer interrupt is enabled. All other events

have to be polled for in cooperative or pre-empting tasks.

 The pre-empting task is launched from the scheduler‘s timer ISR and can pre-

empt any currently running cooperative task. The context switch is handled by

the ISR and no special coding is needed.

 All pre-empting tasks run cooperatively (i.e. one pre-empting task cannot pre-

empt another pre-empting task).

 The cooperative tasks are run by the scheduler‘s dispatcher in a cooperative

manner.

 The scheduler uses a task array to keep track of the scheduled cooperative tasks,

their periods, and the time till their next call. The data of the pre-empting task is

stored in a separate data structure.

38

The key parts of the scheduler are:

1. TTH scheduler‘s timer ISR: The timer‘s ISR is used to run the pre-empting task,

and also indicates the occurrence of a ―Tick‖ to the scheduler‘s dispatcher after

the preset cooperative tick interval has passed (Flowchart 3-3).

Flowchart 3-3: Flowchart of the TTH scheduler’s timer ISR.

2. TTH scheduler‘s dispatcher: The TTH‘s dispatcher is virtually identical to the

TTC‘s dispatcher. Refer to section 3.2.2 and Flowchart 3-2 for details.

Although the TTH overcomes the problem of scheduling a task with a period shorter

than the execution time of some other cooperative tasks that a TTC cannot manage,

other problems remain:

 The time periods of all cooperative tasks must remain multiples of the pre-

empting task‘s time period.

 Implementing task guardians (to deal with overruns in co-operative or pre-

empting tasks) adds greatly to the scheduler complexity (Hughes, Pont 2008).

Timer Interrupt

Reload timer

End ISR

Tick_count = Tick_count + 1

Run the preemptive task

Time for next
cooperative tick?

Yes

No

39

3.3 Conclusion

In this chapter the implementation details of some of the available static time-triggered

architectures are reviewed. The time-triggered cooperative (TTC) and time-triggered

hybrid (TTH) architectures reviewed in this chapter reduce the memory requirements of

the table driven schedulers to a level that is comparable to dynamic schedulers. Also,

the TTH enhances the capabilities of the TTC architecture by allowing some of the

frequent tasks to pre-empt longer tasks so as to meet the requirements that could not be

satisfied with a purely cooperative scheduler. Despite these advantages, such

architectures are still quite rigid as they do not allow any temporal flexibility. These

two architectures form the basis for the flexible time-triggered architectures presented in

this thesis.

40

4 Challenging Real World Applications

This chapter provides background information on two applications that are challenging

for static time-triggered architectures. These studies will form the focus of the research

in the remainder of this thesis.

4.1 Introduction

In order to test the performance of proposed flexible time-triggered schedulers,

challenging case studies were required. It was desired that the applications chosen for

the case studies should have wide spread usage and should also provide significant

challenges for classical static scheduler based implementations. The two applications

that were selected were:

1. Internal combustion engine control: Internal combustion engines are primovers

of the modern lifestyle and are used to provide power for applications ranging

from small hand held power tools to ocean going ships and power plants.

2. Brushless DC motor control: Brushless motors offer improved speed, efficiency

and reliability as compared to brushed DC motors. Their application areas range

from servo control in robotics and automation to automotive industry.

The rest of the chapter provides more details about these applications and the challenges

that they present for static time-triggered implementations.

4.2 Internal Combustion Engine Control

The reciprocating internal combustion engines have been around for over a century.

Nicolaus A. Otto is credited for building the first four stroke internal combustion

engine in 1876 (Pulkrabek 1997, Bellis). In the 1880s, internal combustion engines

began to appear in automobiles. Since then, these engines have been used to provide

41

power for applications ranging from lawn mowers and hand tools to ships and electric

power plants. In order to understand the challenges presented by these engines, we will

be concentrating on four stroke spark ignition petrol engines.

4.2.1 Inner workings of a spark ignited internal combustion engines

The basic section of the engine is a cylinder. The combustion chamber with its

openings for mechanical intake and exhaust valves is on one end of the cylinder. The

intake valve(s) can be opened to allow induction of the fuel and air mixture into the

combustion chamber. A spark plug is used to ignite the compressed fuel air mixture.

The exhaust valve(s) can be opened to allow the burnt remains of the chemical

combustion to leave the combustion chamber. A piston, connected to a crankshaft, is

able to move up and down the cylinder with minimum leakage between the sliding

surfaces. In multi cylinder engines, cylinders are arranged in various orientations (I, V,

W and radial to name a few), with all the pistons connected to a single crank shaft.

(Pulkrabek 1997)

As the name suggests, each cycle of a four stroke engines is composed of four strokes:

1. Induction stroke: Fuel and air mixture enters the combustion chamber when the

intake vale is open and the piston is moving down.

2. Compression stroke: The fuel and air mixture is compressed when both valves

are closed and the piston moves up.

3. Power stroke: The piston is pushed down after the ignition of the fuel and air

mixture.

4. Exhaust stroke: The burnt gases exit the combustion chamber via the open

exhaust valve as the piston moves up.

42

Figure 4-1: First revolution of a four stroke cycle with the starting position, induction stroke and

compression stroke. (Illustrations created by Eric Piercing and released under GNU Free

Document License)

Figure 4-2: Second revolution of a four stroke cycle with the ignition, power stroke and exhaust

stroke. (Illustrations created by Eric Piercing and released under GNU Free Document License)

4.2.2 Requirements for smooth engine operation

In order to ensure smooth engine operation over wide range of conditions and varying

loads, various parameters have to be governed:

1. Fuel to air ratio: For an automobile engine in normal operation, the fuel to air

ratio has to be varied within a range around the stoichiometric mixture ratio (the

Exhaust valve Intake valve

C
o

m
b
u

st
io

n
 c

h
am

b
er

C

ra
n
k

 S
h

af
t

P
isto

n

43

stoichiometric ratio is the mixture ratio where after combustion, all of the

oxygen reacts with all of the hydro-carbon fuel resulting in mainly carbon

dioxide and water molecules) (Pulkrabek 1997). The early engines relied on

carburettors to control fuel and air mixture ratios. In modern automobile petrol

engines, this task is performed by computer controlled fuel injectors.

2. Ignition timing control: Depending on the speed of the engine, the moment the

spark is generated has to be shifted relative to the angle of the crank shaft

(Pulkrabek 1997). This is required because for maximum efficiency, the

combustion of the fuel air mixture should be completed soon after the end of the

compression stroke. This duration is dependent on the speed of the engine. On

the other hand, the speed with which the combustion wave progresses through

the fuel air mixture remains relatively constant regardless of the engine speed.

3. Valve timing: The opening and closing of the valves has to be closely

synchronised with the crank shaft position. Failure to do this results in a drop in

efficiency. In most of the existing engines, the valves are controlled through a

mechanical linkage (e.g. timing belt, timing chain, etc). This approach has its

limitations because the duration of the opening of valves cannot be modified

based on the engine speed. Research is ongoing to develop engines with

electronically controlled valves instead traditional mechanically controlled

valves (Austen 2003).

4.2.3 Digital engine controllers in aviation

While electronic engine controllers have been used in automobiles for a long time, the

aviation industry has been very slow in adopting these advances.

44

Bosch started the series production of Motronic engine management system (integrated

fuel injection and spark ignition) in 1979 (Denton 1995, Bosch 2004). Since then they

have become an integral part of every new automobile.

A lot the piston engines available for aircraft seem primitive compared to the engines

being used in automobiles. It is believed by some that the aviation engine technology is

lagging the automotive technology by 20 to 30 years (Dempsey 2011). The Pilot's

Handbook of Aeronautical Knowledge published by the Federal Aviation Authority

(FAA 2008) of the United States of America states:

“Most standard certificated aircraft incorporate a dual ignition system with

two individual magnetos, separate sets of wires, and spark plugs to increase

reliability of the ignition system.” (FAA 2008, page 6-14)

Some experimental aircraft have been using electronic fuel injection and electronic

ignition since the mid 1980s with notable examples including systems and aircraft by

Light Speed Engineering, and the Rutan Model 76 Voyager (first plane to circumvent

the globe without refuelling) (K Savier 1995, Smithsonian). It is interesting to note that

despite experimental engines being used early on, only a small number of aircraft piston

engines with Full Authority Digital Engine Control (FADEC) have been certified

mainly because of cost of development, certification and production (Smith 2007). The

earliest FADEC equipped engines by Teledyne Continental Motors (TCM) were

available by 2002 and by 2009 TCM had included a turbocharged model to their range

of FADEC equipped engines, bringing the total to three (Continental Motors , Little

2009). Despite the perceived advantages of the FADEC in TCM‘s engine, they seem to

have received a lukewarm response due to the high costs and availability in new

airframes only (Bertorelli 2010). It is also interesting to note that unlike the automotive

45

engine controllers that typically use a single processor to control the entire engine, the

TCM PowerLink FADEC utilises one processor per cylinder (TCM 2009). Arguably,

this could be to reduce the software complexity running in each node to allow for easier

software certification.

Another key player in FADEC equipped spark-ignited aviation engine arena is

Lycoming. Their FADEC is more advanced than TCM‘s product as it also incorporates

knock sensing for individual cylinders, making it easier to adapt for alternate fuels

(Bertorelli 2010). It is possible that the inherent software complexities of this advanced

design might be one of the reasons that are delaying the systems certification. In

Aircraft Maintenance Technology‘s October 2008 edition, it was said that the

Lycoming‘s iE2 should be FAA certified by the end of 2008 or early 2009 (Shearer

2008). A July 2010 press release by Lycoming states that the iE2 technology is still

pending certification with no new press releases till the end of July 2011 that give the

news of the successful certification from the FAA (Lycoming 2010).

4.2.4 Challenges in developing time-triggered engine controller

The engine control problem requires the controllers to synchronise operations like spark

ignition, fuel injection, etc. very closely with the mechanical position of the crank shaft.

Failure to do so can result in inefficiency and possibly even damage to the engine itself.

This level of synchronisation is difficult to achieve using a fixed period polling of the

crank position at low speed. High speed polling system, along with the number of tasks

that need to be synchronised, cannot be classed as truly time-triggered systems. This

point is demonstrated in the case study.

46

4.3 Brushless DC Motor Speed Control

To get a better understanding of the challenges involved in implementing any purely

time-triggered control scheme for a brushless DC motor (BLDCM), the motor itself had

to be studied first.

4.3.1 Motor structure

The permanent magnet brushless DC motor has the permanent magnets on the rotor and

electromagnets on the stator. From control point of view, the only difference between

the brushed DC motor and the BLDCM is that in addition to controlling the actuation

signal (power supplied to the motor), the controller also has to take into consideration

the sequence in which the coils of the BLDCM have to be energized to make the motor

turn in the right direction (Atmel 2006, Brown 2001, Grasblum 2001, Hanif 2004,

Yedamale 2003). In the case of the brushed motor, this excitation sequence for the

electromagnets is provided by a mechanical arrangement (commutator and brushes)

(Chapman 1985).

4.3.2 Commutation sequence generation

The commutation sequence generation presents unique challenges for time-triggered

systems (Hanif 2004). As mentioned before, the brushless motor requires the

electromagnets in the stator to be energized in a proper sequence to ensure that the

motor continues to turn. In sensor based control, three Hall sensors are used to

determine the position of the rotor relative to the stator (Brown 2001, Yedamale 2003).

The system has to respond to a change in the position of the rotor sufficiently fast by

updating the sequence in which the stator coils are energized. Failure to do this causes

discontinuous motion at high speed (Brown 2001, Yedamale 2003).

47

Figure 4-3 shows the block commutation drive signals for the clock wise rotation of a

typical three phase brushless DC motor. The hall sensor transitions are spaced 60

degrees of rotation apart, resulting in 6 transitions per revolution.

Figure 4-3: 3 phase brushless DC motor drive waveforms in response to hall sensor outputs.

(Adapted from (Brown 2001)).

4.3.3 Challenges for time-triggered implementation

The speed controller implementation is simplified because the commutation sequence

update and actuation signal generation can be treated as two disjoint control problems.

Because of the typically high speed of these motors (20,000 to 30,000 RPM), the

commutation update needs to be run pre-emptively at a very high rate.

48

4.4 Conclusion

This chapter presentes two challenging applications that are usually considered to be a

better match for event-triggered architectures. Both of these applications require quick

responses to events representing changes in the internal configuration of the plant that is

being controlled. Implementing the control system with standard TT approach of

polling is either inefficient or ineffective. The engine control problem needs the

software to run in sync with the actual state of the engine, while the brushless DC motor

problem needs a sufficiently high pre-emption rate for commutation update. Failure to

meet these requirements can lead to inefficiency and even damage to the plant.

49

5 Making the Time-Triggered Cooperative Scheduler

“More Dynamic”

This chapter examines the behaviour of the time-triggerd cooperative architecture and

presents some of the ways in which its flexibility can be increased.

5.1 Classifying the Time-Triggered Cooperative Architecture

It should be noted that while the time-triggered cooperative (TTC) is presented as static

cyclic executive scheduler, it can also be considered to be fully time-triggered fixed

priority cooperative scheduler, provided tasks in one tick do not run across into the next

tick frame.

5.1.1 Dynamic behaviour of the time-triggered cooperative scheduler

In the case of the TTC, a tick event is generated with each timer interrupt. The

dispatcher then parses through the task array checking which tasks need to be run in the

current tick. As the order of checking is fixed, the tasks in the task array have an

implicit priority, with the first task in the array having the highest priority and the last

task having the lowest priority. When tasks are added, the scheduler looks up the first

available space in the tasks array and adds the new task to that position. Because of

this, the task priorities depend on the order in which they are added to the scheduler.

Figure 5-1 shows the implied priorities for a system with n cooperative tasks.

Using this knowledge, tasks can be added to conform to rate monotonic, deadline

monotonic or arbitrary priority assignment to achieve the desired system behaviour.

50

Figure 5-1: Implied fixed priorities in the TTC

5.1.2 Can the time-triggered cooperative scheduler still be called

static?

If multiple tasks are set to be run in the same tick, the start time of the subsequent tasks

will be effected by the variations in the execution times of the previous tasks in the

same tick. Regardless of these variations, the task execution order remains the same.

This ensures that all the precedence constraints that were being met at design time will

still be met regardless of the level of jitter in the task timings.

 In the case of a static table driven scheduler, all tasks have their own unique release

times which, when configured properly, can be used to reduce jitter for all tasks. On the

other hand, it can be argued that the table driven scheduler will have more fragmented

slots of power-down mode if there is variation between the WCET of the tasks and their

average case execution times.

These arguments can be clarified with the help of a hypothetical system with three tasks

A, B and C. The temporal properties for scheduling these tasks are given in Table 5-1.

Table 5-2 and Figure 5-2 give one possible schedule for a TTC architecture (assuming a

Index 0

Index 1

Index 2

Index 3

....

Index n - 1

Cooperative task array

In
cr

ea
si

n
g
 P

ri
o
ri

ty

51

10 ms tick period) while Table 5-3 and Figure 5-3 give a similar solution for a table

driven scheduler.

Table 5-1: Hypothetical task set with periods and execution times.

Task Period BCET WCET

A 10 ms 2 ms 4 ms

B 20 ms 4 ms 4 ms

C 40 ms 3 ms 3 ms

Table 5-2: Possible scheduling of task set using TTC with a 10 ms tick period.

Task Period (in ticks) Initial offset (in

ticks)

Implicit priority

A 1 0 High

B 2 0 Medium

C 4 1 Low

Figure 5-2: Task execution with TTC scheduler.

The assignment of the task priorities for the TTC schedule is in accordance with the task

periods (i.e. rate monotonic).Variations in the execution time of A are reflected in the

start time jitter of the subsequent tasks (task B in first and third tick and task C in the

second tick). The offset is used for task C to avoid the total WCET of tasks in any tick

going beyond the tick period.

Figure 5-3: Task execution with table driven scheduler

A B C A A A B A C A B

A B C A A A B A C A B

52

Table 5-3: Possible schedule for table driven scheduler.

Start time Task name

1 0 ms A

2 4 ms B

3 10 ms A

4 14 ms C

5 20 ms A

6 24 ms B

7 30 ms A

For the table driven schedule, the start times for the tasks are chosen to allow for the

variation in the execution times of task A. While this removes start time jitter for all

tasks, the number of times the system goes to sleep in each cycle increases each time

task A‘s execution time is less than its worst case estimate.

5.2 Multiple Operating States and Modes

The idea of switching between different statically scheduled task sets to cope with

changes in operating modes of the system has been presented before (Xu, Parnas 2000,

Baker, Shaw 1988). Systems running finite state machines can benefit from such an

approach. For example, a building security system could have the following operating

modes or states (see Figure 5-4):

 Standby State: In this state, is waiting to either be reconfigured or armed.

 Configure State: The system‘s configuration (e.g. access codes, etc) can be

modified.

53

 Alarm Set State: The system is expected to scan various sensors to detect signs

of intrusion. In addition to scanning the sensors, the system also needs to check

for input to disarm.

 Alarm Triggered State: In this state, the system will be expected to sound an

alarm and, optionally, contact authorities about the problem. It might also be

desired that the system continue scanning the sensors to assess the level of the

intrusion.

 Fault State: It would be expected that the system try to resolve the issue causing

the problem or, alternatively, assist in the debugging of the problem by

providing a failure report.

Figure 5-4: Finite state machine representation of a security system

The functionality for multiple states can be added easily to a scheduler derived from the

TTC scheduler. A change of mode will effectively require the tick period to be updated

along with switching the task array for the corresponding mode. While this mechanism

Alarm

triggered

Alarm set

Fault

Standby

Command to arm

Command to disarm

Command to

disable

Intrusion

detected

Fault

Fault

Fault

Configure

Command to

reconfigure

End of

reconfiguration

54

was initially suggested with table driven schedulers in mind, the memory size

requirement to store these multiple tables puts this architecture at a disadvantage.

5.3 Different Segments in the Major Cycle

In embedded applications, it is possible to encounter different segments within the

major cycle. These segments will have their own timing requirements and run tasks that

are specific to it. In a hypothetical control problem, these segments and their timing

requirements might be:

 Sampling: might require multiple ticks with a short tick period for sampling and

smoothing some sensor readings.

 Control computation: might require one long tick for calculating the control

output value.

 Actuation: might require` one short tick to minimize the task launch jitter for the

actuation task.

 Housekeeping and communication with other nodes/systems: might have one or

more moderate to long ticks till the next time the control process has to be

updated.

Figure 5-5 shows one major cycle of such a control problem which first runs the

sampling task ten times with a period of 0.5 ms, calculates the control output in the

allocated 6 ms slot, has a single 1 ms slot allocated to the actuation task to allow jitter

free in its execution and has the remainder for the 20 ms major cycle devoted to various

housekeeping tasks

55

Figure 5-5: Hypothetical phases in a control node.

It is interesting to note that while this static schedule can easily be implemented with a

look-up table with 16 entries for the entire major cycle, the TTC implementation will

not be so straight forward. Because the tick period has to be the greatest common

divisor of all the periods, it will have to be set at 0.5 ms (due to the sampling). In the

real world where scheduling overheads cannot be ignored, this imposes significant

overheads in the control, actuation and housekeeping segments where the high tick rate

is not required or desired. To make the sampling task run in only the first ten ticks of

the major cycle, ten instances of this task have to be added to the scheduler with the

correct offsets (i.e. first instance with a 0 tick offset, second instance with a 1 tick

offset, third instance with a 2 tick offset, etc.). This results in the same number of

entries in the TTC‘s task array as the lookup table implementation.

The TTC can greatly benefit if there is a way to define segments with unique task sets

and tick periods.

5.4 Varying the Tick Period and its Effects

Some control problems (e.g. internal combustion engine controllers) require that the

execution of the sampling, control computation and actuation tasks remains in sync with

the plant being controlled. From the scheduling point of view, it means that the period

of the major cycle has to be varied in accordance with cycle period of the plant in

question.

Sampling
0.5 ms ticks

Control
6 ms ticks

Actuation
1 ms tick Housekeeping

2 ms ticks

56

In the case of standard look up table based static schedulers, this would require that the

entire lookup table is recalculated to ensure that the tasks are distributed evenly in the

new major cycle period. This is not just a simple scaling operation as additional checks

have to be included to ensure that the WCETs and deadlines of all tasks are met.

In the case of a TTC based architecture, the overall period of the major cycle can be

changed relatively easily by just changing the tick period. With the change in the tick

period, the release times of all the tasks will change proportionally. The minimum

bound on the tick period will be dependent on one or more critical points in the major

cycle which have the greatest cumulative WCET of tasks running in that tick. As long

as all tasks can meet their deadlines at this critical point with the minimum tick period,

the schedule should be valid for any tick period equal to or greater than this value.

Figure 5-6 shows how the tick period in the example in section 5.1.2 can be altered to

keep the major cycle of the system synchronised with an external cyclic signal that is

illustrated in the form of a ramp signal. In this system, it is assumed that the four ticks

of the major cycle have to be keept evenly distributed with a total period that

corresponds with an external cycle. The four parts of the figure show the execution of

the tasks as the cycle period (both the external ramp signal and the major cycle

composed of four ticks) gets progressively shorter, with part ―b‖ showing a tick period

similar to the 10 ms period in the original example.

In this example, the first and third ticks are the critical points where both task A and B

are set to run resulting in a total worst case execution time for these ticks of 8 ms

(WCET of 4 ms for both task A and B from).

This example is refered to in subsection 5.4.2 for a discussion of the validity of the four

cycles shown in the figure.

57

Figure 5-6: Graphical representation of how the major cycle period can be vaired to keep it in sync

with an external cycle (represented by a ramp signal) by varying the tick period.

5.4.1 Is it still a static schedule?

Varying the tick period at run time results in a system in which the periods of the tasks

change at run time. Such a system fails the classic definition of a statically scheduled

time-triggered system as the state of the system cannot be determined at an arbitrary

point in the future.

C A A B A B A B A C A A B ...

C A A B A B A B A ...

C A A B A B A B A C A ...

C A A B A B A B A C A ...

(a)

(b)

(c)

(d)

58

However, it is also not completely dynamic in nature because:

 The changing tick periods have no effect on the order in which the tasks are

executed as tasks within a tick are run according to their implicit priorities and

the tasks released in a previous tick have to finish before tasks released in the

current tick are able to execute.

 As the only interrupt in the system is a timer interrupt, it is possible to determine

when the next interrupt will occur.

A combination of these key features along with proper application design can result in a

system in which the code execution paths can be traced and analyzed for safety critical

applications.

Finally, unlike a purely event triggered system in which events generated by an external

signal source drive the execution of tasks, the proposed architecture will continue to run

tasks after a failure of the signal source allowing for natural error detection, opening the

possibility for various fault recovery schemes.

5.4.2 Verification of a given task-set for a range of periods

Varying the tick period in a safety critical real-time application brings with it the

challenge of guaranteeing that all the timing constraints for the tasks can be met for all

possible periods.

The fact that the task execution order remains the same despite variation in task

execution periods in a TTC architecture works in favour for providing such a guarantee.

If a task set meets all the timing criteria in the worst conditions to be encountered, it

should work for all conditions that are better than the worst case scenario. The worst

case, from the scheduling point of view will occur when the tick period is the shortest as

59

this is when the schedule will be most tightly packed. Increasing the tick period from

this minimum value will only make more slack time available in the major cycle

resulting in lower processor utilisation.

Typically the criteria that are used for verification of a schedule in real time systems

include:

1. All task deadlines are met: This is a very common criterion that is used for the

verification of task set in static and dynamic architectures. If a tasks deadline is

the same as its period, then each task should finish executing before its next

release.

2. Low jitter tolerance for some / all tasks: In control applications, it is imperative

that the jitter in the execution of some tasks is minimized or eliminated. Jitter

minimisation imposes a harsher criterion on the scheduling than task deadlines

(especially if deadline is the same as the task period).

3. Transient overloads: A transient overload in a TTC is when the tasks set to run

in a previous tick are still executing when the next tick occurs. Depending on

the application, transient overloads might be acceptable in some parts of the

major cycle, resulting in more tolerant scheduling criteria.

All these criteria for the verification of a static schedule can be checked by modelling

and analysis at the design time. Once the minimum allowable tick period is found for a

task set, it is safe to use that task set at periods greater than this value.

Referring back to the example in Figure 5-6, if the deadline of each task is considered to

be equal to its period, then all four cycles in the figure are valid.

60

If task A has low jitter tolerance, then only cycles ―a‖ to ―c‖ are valid as there is jitter in

cycle ―d‖ due to transient overloads. If there is low jitter tolerance for either task B or

task C, none of the cycles will be valid unless the execution time of task A remains

constant.

For a system with no transient overloads being allowed, the shortest acceptable tick

period has to be greater than the sum of the WCETs of all the tasks set to run in the

same tick.

5.5 Conclusion

This chapter expands the current state of the field by presenting original work on how

the flexibility of the static time-triggered cooperative scheduler could be enhanced. The

TTC architecture was analysed to understand why it is considered a static scheduler

despite some dynamic tendencies. The concepts explored for increasing the flexibility

of the TTC included:

1. Multiple operating modes and states (an existing idea mentioned in literature for

the table driven static schedulers)

2. Multi segment cycles (a novel idea to bring a greater level of control on the task

start times in a major cycle in a scheduler similar to the TTC)

3. Variable tick and cycle periods (a novel idea that has not been considered for

static as well as dynamic time-triggered architectures)

While these features will help boost the flexibility of the statically scheduled

architecture, it will result in additional scheduling overheads in the form of:

 Increased memory requirements to store the multiple task-sets and information

for the states and segments.

61

 Increased CPU requirements for the scheduler to ensure that the modes and

segments are changed correctly.

 Increased scheduler complexity to incorporate the variable ticks and multiple

task-sets.

It can be questioned if an architecture is still static when the task and cycle periods are

changed at run time. The guarantee that the task execution sequence remains the same

helps to avoid some of the potential problems like task precedence constraints (i.e.

where the output of one task is used as an input for another task) that might be faced in

a more dynamic system.

62

6 The Time-Triggered Multi Phase Cooperative

Scheduler

This chapter presents the architecture of the flexible time-triggered multiphase

cooperative (TTMPC) scheduler and shows how the desired features highlighted in the

previous chapter are incorporated in it

6.1 Phases as Building Blocks

The first two desired features outlined at the end of the previous chapter are very similar

as both of them require the definition of multiple task sets with unique tick periods. The

difference is in how or when the execution of one task set ends and that of the other

begins.

The concept of a ―phase‖ allows both these features to be grouped into a single

implementation. In the context of the Time-Triggered Multi Phase Cooperative

(TTMPC) scheduler, the phase forms the basic building block for static schedules. The

TTC can be considered as a system with a single phase with fixed tick period and an

indefinite duration. Each phase is configured with four elements (see Figure 6-1):

1. Task set: this includes the list of tasks which have to be run in that phase along

with their periods and offset.

2. Tick period: each phase has its own unique tick period. This tick period can be

varied at run time between maximum and minimum values set at design time.

3. Length of the phase: the length of the phase can either be a finite number of

ticks or can be set as an indefinite length.

4. Next designated phase: for finite duration phases, this specifies the next phase

the system should jump to once it reaches the end of the current phase.

63

While the finite duration phases switch over to the next designated phase automatically,

the scheduler also needs a system call that can be used to enforce a phase change at any

point during execution to implement finite state machines.

Figure 6-1: Graphical representation of a phase.

Finite length phases can be linked together to form multiple segments of a major cycle.

The phase representation of the control example in section 5.3 is shown in Figure 6-2.

At the end of each phase, the system should automatically jump to the next phase

setting the correct tick period and swapping to the correct task set.

Figure 6-2: Phase representation of the example in Section 5.3.

Phase #: 0 (sampling)

Tick period: 0.5ms, 0.5ms, 0.5ms

Phase length: 10

Next phase: 1

Task-set:

Sampling (1, 0)

Phase #: 1 (control)

Tick period: 6ms, 6ms, 6ms

Phase length: 1

Next phase: 2

Task-set:

Control computation (1, 0)

Phase #: 2 (actuation)

Tick period: 1ms, 1ms, 1ms

Phase length: 1

Next phase: 3

Task-set:

Control actuation (1, 0)

Phase #: 3 (housekeeping)

Tick period: 2ms, 2ms, 2ms

Phase length: 4

Next phase: 0

Task-set:

Communications (4, 0)

Housekeeping A (4, 1)

Housekeeping B (4, 2)

Housekeeping C (4, 3)

Phase #: X

Tick period: Min, Current, Max

Phase length: 1-65535 (finite) or 0 (indefinite)

Next phase: Y

Task-set:

Task A (period, initial delay)

Task B (period, initial delay)

Task C (period, initial delay)

64

Figure 6-3 shows the phase representation of the security system example in section 5.2.

The phase changes have to be initiated by a system call indicating the phase to which

the system should jump to at the end of the current tick.

Figure 6-3: Phase representation of multi-state system in Section 5.2.

This system changes phases (and in effect the operating states) in response to external

events. When viewed from a high level, the system is inherently event-triggered. The

difference between a purely event-triggered and the multi phase time-triggered

implementation become clear when the actual task executions are examined. In the

Phase #: 1 (Configure)

Tick period: Tick period for the

configuration state

Phase length: 0 (indefinite length)

Next phase: N/A

Task-set:

Task set for the configuration state

Phase #: 3 (Alarm triggered)

Tick period: Tick period for the

alarm triggered state

Phase length: 0 (indefinite length)

Next phase: N/A

Task-set:

Task set for alarm triggered state

Phase #: 2 (Alarm set)

Tick period: Tick period for the

alarm set state

Phase length: 0 (indefinite length)

Next phase: N/A

Task-set:

Task set for the alarm set state

Phase #: 0 (Standby)

Tick period: Tick period for the

standby state

Phase length: 0 (indefinite length)

Next phase: N/A

Task-set:

Task set for the standby state

Phase #: 4 (Fault)

Tick period: Tick period for the

fault state

Phase length: 0 (indefinite length)

Next phase: N/A

Task-set:

Task set for fault state

Intrusion

detected
Fault

Fault

Fault

Command to

disable

Command

to arm

Command

to disarm

End of

reconfiguration

Command to

reconfigure

65

event-triggered implementation, all the tasks are run in response to events. Because of

this, the execution sequence of tasks cannot be determined at design time. In the time-

triggered multi phase setup, the tasks within a particular state are run in accordance with

the phase‘s static schedule. Only the phase changes occur in response to events, but

these are carried out at pre-determined points in the static schedules, allowing smooth

transitioning from one operating state to another.

6.2 Phase Transitions under Transient Overload

Special care has to be given to how the transitions between phases are handled under

transient overloads. Key questions to be answered are:

 After a forced phase change, should the remaining tasks in the currently

executing tick be allowed to run?

 What to do in case of a back log of tasks belonging to more than one tick at a

phase change (most probably due to a badly designed scheduled or under

estimated task WCET)?

 If tasks from the old phase are still waiting, should the tick period be changed to

the one required for the new phase.

6.2.1 Transient overload and automatic phase changes

Automatic phase changes are to be used for implementing segments in the major cycle

for cyclic executives. All the tasks scheduled to run in the major cycle have to be

executed in the order they are supposed to run and no tasks should be skipped because

of the overload.

66

The tick periods should change to correspond to the new phase that is being delayed due

to the transient overload. If this is not done, the timing of the major cycle could be

affected.

Some sort of mechanism is needed to keep track of the automatic phase changes to

ensure that all the tasks that were delayed are run in the order they were supposed to run

despite the overload. This is fairly straightforward because of the periodic nature of the

changes, and should allow the actual task execution to lag by more than one phase

transition and still have a chance to catch up.

6.2.2 Transient overloads and forced phase changes

Forced phase changes are to be used to jump from the cyclic executive of the old state

to the cyclic executive of the new state. Such a change request will usually be in

response to a command or change in the operating conditions making it desirable to

switch to the new mode as soon as possible. However, in order to limit the points in the

cycle at which a change can take place and to make the modelling of forced phase

changes easier, the tasks in the current tick should be allowed to finish before the switch

to the next phase.

Because of the unpredictability of the transitions (i.e. it might not be known in advance

when an event requiring a forced phase change might occur), the only way to keep track

of the changes would reqire maintaining some sort of log of these changes.

67

6.3 Key Parts of the Time-Triggered Multiphase Cooperative

Scheduler

Like the TTC on which it is based (see section 3.2.2), the TTMPC is composed of two

parts.

1. Scheduler Timer ISR

The timer‘s ISR is used to indicate the occurrence of a tick to the scheduler‘s

dispatcher. The timer‘s ISR also maintains and updates the shadow state of the

scheduler. The actual state of the system is synchronised with this shadow state

when all tasks are finished within their allocated ticks. This allows tasks

overrunning the tick boundary so as not to result in missing any pending task in the

previous tick at phase boundaries (see Flowchart 6-1 for details of the Scheduler

update function).

Flowchart 6-1: Flowchart of the TTMPC scheduler’s Timer ISR.

Timer Interrupt

Change phase (shadow)

Tick_count = Tick_count + 1

End ISR

Has the current

phase (shadow)

ended?

Sync the scheduler variables with
their shadow counterparts

Yes

No

Set new tick period and indicate a

phase change (shadow)

Is the system in
sleep?

Force a phase
change?

Yes

Yes

No

No

68

Flowchart 6-2: Flowchart of the TTMPC system’s main structure.

2. Scheduler dispatcher

The TTMPC‘s dispatcher is derived from the dispatcher of the TTC. The major

difference between the two dispatchers is that in the TTMPC, it has to track phase

changes in addition to updating the correct task array and running tasks from it.

The implementation of TTC from which the TTMPC is derived allows tasks to

overrun tick boundaries. This allows the TTC to schedule tasks with a worst case

execution time (WCET) larger than the tick period provided another task with a

shorter period is not blocked. In order to retain this flexibility, and maintain high

determinability (i.e. ensuring that all tasks which are due to run in a tick are

System start

Go to sleep

Initialize the tasks and

phases,
Tick_count = 0

Start scheduler timer

Tick_count > 0

Update task array and run
tasks scheduled to run in

current tick.

No

Yes

Wake up on interrupt

Scheduler’s Dispatcher

Force a phase
change?

Has the current
phase ended?

Change phase

Force the phase change Yes

Yes

No

No

69

completed regardless of a phase change at its end), the dispatcher has to keep

separate track of phase changes.

6.4 Features of the Time-Triggered Multiphase Cooperative

Scheduler Implementation

To summarize, the current version of the TTMPC scheduler (version 3) has the

following features:

 Ability to define multiple phases with unique task sets, tick rates and phase

lengths.

 Automatic and forced phase change mechanisms are implemented.

 Upon the start of a new phase, the originally specified task offsets are restored.

 Indefinite length phases are possible by specifying a phase length of zero.

 A shadow system state is maintained in the scheduler update (timer ISR), while

the actual system state is maintained in the dispatcher to allow for transient

overloads across phase boundaries.

 In the case of a forced phase change under transient overload, the currently

executing tick is allowed to complete before the phase change is enforced. Any

additional pending ticks and phases due to the overload are ignored.

 In the case of an automatic phase change under transient overload condition, the

scheduler continues to run all the tasks in that major cycle in the order they were

supposed to execute in and should catch up if there is sufficient slack time in the

major cycle.

 If a forced phase change is requested in the last tick of a finite duration phase,

the system jumps to the phase indicated by the forced change request.

70

 Tick periods of each phase can be varied at run time between the minimum and

maximum values specified at design time.

6.5 Limitations of the Design

Despite the flexibility that is obtained by introduction of phases, the system suffers from

some key limitations:

 It is not possible to schedule task sets where WCET of the longest task is more

than the period of another task (non liquid task sets).

 While the system will be able to recover from a task overshooting its WCET

estimate if there is sufficient slack in the schedule, there is no way to recover

from a catastrophic overrun (e.g. a hardware or software fault that results in an

infinite loop due to the failure of a component of the logical test condition for a

software loop).

6.6 Possible Operating Configurations of the Time-Triggered

Multiphase Cooperative Scheduler

The configuration of the scheduler and in general, the system, has an impact on the

predictability of the end product. The possible operating configurations allowed by the

TTMPC are:

1. Single Cycle multiphase with Fixed Tick periods Cooperative (SCFTC): All

systems in which there is a single major cycle that has one or more segments

with all segments running with fixed tick periods fall under this configuration.

The TTC scheduler can be considered a special case of SCFTC with a single

segment in the major cycle.

71

2. Single Cycle multiphase with Variable Tick period Cooperative (SCVTC): The

difference between SCCFT and this configuration is that one or more segments

in the major cycle have variable tick period.

3. Multi Cycle multiphase with Fixed Tick periods Cooperative (MCFTC): All

systems which have multiple major cycles where all the tick periods are fixed

fall under this category.

4. Multi Cycle multiphase with Variable Tick period Cooperative (MCVTC): All

systems which have multiple major cycles where at least one cycle has variable

tick period fall under this category.

6.6.1 Predictability and determinability of configurations

While time-triggered statically scheduled systems are considered highly predictable, the

overall predictability is expected to drop with increase in the level of run time

flexibility.

Generally, it will be more difficult to predict the operating state of multi state systems at

any arbitrary point in the future if the state changes are in response to events. This also

applies to a system in which there is one major cycle for all the states, but the code that

is executed in the tasks depends on the operating state of the system (e.g. switch case

statements in C / C++ etc.).

In the statically scheduled setup, the ability to predict or determine what code the

system is running at the current time depends on the amount of information that is

available:

72

For the SCFTC, assuming accurate system timer, only the time at which the system was

powered on is required to determine the operating mode of the system and what tasks

are being run.

MCFTC systems require the tracking and logging of the events that influence the

operating states along with the knowledge of the power up time to determine the

operating mode of the system.

While it might not be possible to determine which tasks are being run at what moment

in time in variable tick cooperative execution systems (assuming the system is varying

tick periods to stay in sync with an external signal), the current operating state can still

be predicted if the relevant information is logged (e.g. power on time, events that cause

state changes, signals / events that affect the tick period, etc.).

Even in an MCVTC system, the remaining time till the next timer interrupt can be

easily calculated. This results in better predictability than an event-triggered system

where it might not be possible to determine when the next event would occur.

The forgoing discussion on the predictability and determinability of the various

configurations may be summarised as in Table 6-1.

73

Table 6-1: Summary of the predictability and determinability of statically scheduled

cooperative systems.

System Required info Predictability and determinability

SCFTC Power on time. Current state can be accurately determined.

Determinable till any arbitrary point in the

future.

MCFTC Power on time.

Log of all events that

affect operating state.

Current state can be accurately determined.

Determinable till the end of the current cycle

/ point at which state change might occur due

to an event.

SCVTC Power on time.

Log of all events /

signals that affect the

tick period.

Current state cannot be determined but can be

predicted.

Predictable till the point at which the new tick

periods are calculated. (Predictable beyond

that if certain estimates can be made with

regard to the new tick periods.)

MCVTC Power on time.

Log of all events that

affect operating state.

Log of all events /

signals that affect the

tick period.

Current state cannot be determined but can be

predicted.

Predictable till the point in the cycle at which

the new tick periods are calculated or state

change can occur (which ever point comes

first)

74

6.7 Conclusion

This chapter introduces the concept of phases to combine two of the flexibility

enhancements identified in the previous chapter into a single construct. These phases

can be used as a building block for both multi state systems and multi segment cycles.

The phases and the variable tick and cycle periods are incorporated into the time-

triggered multiphase cooperative scheduler (TTMPC) derived from the time-triggered

cooperative (TTC) scheduler. A discussion on the predictability of the new architecture

concludes that while the predictability is adversely affected by the flexibility, even in

the most flexible configuration, the exact moment of the occurance of the next event in

the system can always be determined in advance. This results in better predictability

than an ET design where, while statistical limits could be placed on some of the event,

the exact time till the next event cannot be determined.

75

7 Engine Synchronisation Case Study

This chapter introduces the software and hardware setup of the engine synchronization

test-bed and demonstrates how the flexible time-triggered implementation might be used

as an alternative platform for a challenging application.

7.1 Introduction to the Case Study Setup

As mentiond in section 4.2.4, the primary responsibility of the software in the engine

control unit is to perform actions (e.g. fuel injection, spark ingintion, etc) at specific

points in the engine‘s cycle. This case study tries to assess the viability of the flexible

time-triddered architecture as a foundation for the engine control applications. This is

done by guaging the ability of various architectures (both time-triggered and classical

event-triggered) to synchronise task executions with an external crank signal.

In the case study setup, shown in Figure 7-1, one microcontroller was used to run one of

the three synchronisation architectures that were tested while another microcntroller

generated the crank signal against which the synchronisation performance was

measured.

The architecture test platform consists of an STM32M103RB microcontroller. For

these tests, the microcontroller was clocked at 72 MHz using an 8 MHz external

oscillator and the internal PLL. The details of the peripherals of the microcontroller can

be found in its reference manual (STMicroelectronics 2011).

The crank signal generator runs on an LPC2129 microcontroller. For this

implementation, this controller was clocked at 60MHz with its timers operated at a

resolution of either 1µs or 0.1µs using the timer prescalers. The details of the

peripherals of the microcontroller can be found in its reference manual (NXP 2008).

76

Figure 7-1: Block representation of the case study setup for evaluation of various

architectures under identical conditions.

The crank signal gernerated in this case study is modelled on the Rover M series 1994cc

DOHC (double overhead cams) engine. This engine has an idling speed of 850 rpm

with the red line speed of 6250 rpm (John S Mead 1991).

Most of the information about the operation of this engine and its controller was

obtained from notes made when the engine was installed in the departement, a chapeter

from an anonymous manual (RoverMEMS - MPi/SPi) and experimental verification of

these documents.

In this engine, the engine control unit (ECU) is responsible for the amount of fuel being

injected and moment when the fuel air mixture in the cylinders is ignited. These

operations have to be synchronised with the internal state of the engine. Failure to do

this can result in reduced efficiency, higher emissions, and possibly damage to the

engine. (RoverMEMS - MPi/SPi, Jinnelov 2002)

The ECU determines the rough amount of fuel to inject and the moment of spark

ignition based on readings from the manifold absolute pressure (indicating the load on

Crank signal generator

(LPC 2129)

Platform for running test

architecture

(STM32M103RB)

Crank signal Synchronisation

signal

77

the engine) and speed of the engine and its internal position (derived from the crank

sensor). These values are then fine-tuned based on the temperature of the air, fuel and

coolant, detection of knocking, etc (RoverMEMS - MPi/SPi).

Figure 7-2: The Rover M16 test bed.

The engine test-bed comprises of the above mentioned engine connected to a

dynamometer (see Figure 7-2). Most of the data used for this work was extracted by

tapping into the circuitry of the engine test bed and logging various sensor values and

control actuations at 80,000 samples per second while the engine was operated at

various speeds and load combinations. These logs include the following signals:

1. Manifold absolute pressure.

2. Crank sensor output after a basic chopper and comparator circuit.

3. Throttle plate angle.

4. Oxygen sensor.

5. Temperatures of air, fuel and coolant.

6. Knock sensor.

7. Supply voltage.

78

8. Injector actuations.

9. Ignition coil primary side.

The raw captured data was processed using Matlab script files to extract lookup tables

and other modelling information.

7.2 Crank Angle Sensor

The crank angle sensor provides the internal position of the engine. Its output consists

of a pulse for every 10 degrees of rotation with missing pulses to indicate the top or

bottom dead-centre for the pistons (a total of 17 pulses for every half revolution).

The times at which the signal rises and falls can be used to determine if a top dead-

centre condition (TDC) is observed and how many pulses have arrived since the last

TDC condition, giving the internal position of the crankshaft.

Figure 7-3: Plot of the actual crank sensor (one signal of the differential pair) and an

external TDC sensor at 1800 RPM.

Figure 7-3 shows one of the differential pair of signals from the crank sensor at 1800

RPM while the pulse from an external top dead centre sensor for cylinder 1 can also be

79

seen (note the missing pulse at the TDC and BDC). This signal is passed through a

chopper and comparator circuit before it is connected to the microcontroller. Figure 7-4

show the processed signal that was captured at an engine speed of 1500 RPM.

Figure 7-4: Captured crank waveform after chopper and comparator circuit at 1500 RPM.

7.2.1 Implementing the crank sensor interface

In the target controller hardware, the times at which the rising and falling edges occur in

are noted using a free running timer and two of its capture inputs. The rising and falling

times are formatted into pulse data with the start time, high and low durations or each

pulse being stored in a FIFO buffer. Finally, glitch suppression logic is used to merge

the glitches into its adjacent pulse. The high and low durations of the contents of the

glitch free pulse buffer are then used to update the crank interface state machine. Figure

7-5 shows the data flow diagram for the above mentiond process.

80

Figure 7-5: Crank interface data flow diagram

The engine status and crank interface‘s finite state machine (FSM) has the following

four states:

1. No Sync state: This is the default state in which the system is waiting for

detection of valid pulses with a duty cycle in the 40% to 60% range. This

corresponds to the duty cycle of the majority of pulses in a crank cycle and is

used to overcome the startup noise enounctered when the crankshaft is stationary

or turning below a certain speed.

2. No lock state: After the start / resumption of valid pulses, the system waits for a

TDC condition to occur. This is needed to synchronise the controller with the

position of the crankshaft.

3. Tentative lock state: This state is used to verify if the controller software is

really in sync with the crankshaft. If the TDC condition is encountered again

after the correct number of normal pulses, it is assumed that the crank interface

logic is in sync with the crank shaft with proper identification of the start of the

cycles.

4. Locked state: This state is used for the normal operation of the controller. The

control software should inject the fuel and ignite the spark only in this state to

Rising edge capture
mechanism

Falling edge capture
mechanism

Engine status and crank
interface FSM’s state

Pulse train
formation

Glitch filter

Crank interface
finite state

machine logic

Falling edge
timestamps

Rising edge
timestamps

Raw pulse high &
low durations and

start time

Engine
position and

speed
Filtered pulse high

& low durations
and start time

81

try to ensure that the engine is not damaged by an incorrect synchronisation with

the crankshaft.

In order to make the crank interface software modular to enable its use in the event

triggered as well as time-triggered architectures with as few modifications as possible, it

was split into two tasks:

1. Crank sample: This part is responsible for getting the edge time stamps from the

timer capture registers / buffers into the rising and falling edge timestamp

buffers.

2. Crank state: This part is responsible for forming the pulse train, applying the

glitch filter logic and updating the crank state machine.

Figure 7-6: State machine of the crank interface logic.

7.2.2 Start of cycle test condition

The detection of the TDC condition is at the heart of the crank interface logic. During

analysis of the captured data, it was noted that there were two distinct patterns that

2: No lock

3: Tentative

lock

4: Locked

1: No sync

At system
initialisatio

n

Detection of 3 consecutive
pulses with 40-60% duty cycle

Detection of
valid TDC
condition

Detection of TDC condition after
correct number of pulses

TDC condition
after incorrect

number of pulses

TDC condition after
incorrect number of

pulses

82

could be observed in the crank signal. The test conditions were derived from empirical

data collected from the engine and are as follows:

1. Normal operation: Under normal operation, the captured crank signal consisted

of 16 pulses with similar high and low durations followed by one pulse with a

low duration significantly greater than the high duration, indicating the missing

pulse at the top dead centre. The following test condition is used to check for

normal TDC.

(Current pulse low duration > 2.2 * Previous pulse low duration) AND

(Current pulse high duration < 1.7 * Previous pulse low duration) AND

(Current pulse high duration > 0.6 * Previous pulse low duration)

2. During starting / stall at low speeds: When the engine is being cranked at start-

up, a different pattern is observed. By the combination of low angular

momentum, energy needed to compress the air in the compression stroke and

absence of fuel injection and ignition during the cranking stage of start-up, the

high duration of the first pulse is significantly longer than the high duration of

the previous pulses. The following test condition is used to check for starting

TDC:

(Current pulse high duration > 2.3 * Previous pulse high duration) AND

(Current pulse low duration < 1.7 * Previous pulse low duration) AND

(Current pulse low duration > 0.6 * Previous pulse low duration)

With correct fuel injection and spark ignition, the transition from the condition

encountered during starting to the normal operating condition usually takes place within

one cycle.

83

7.2.3 Worst case execution time analysis of the crank interface task

WCET measurements were made early on in the development of the crank interface

logic. These measurements were required for the proper scheduling of the tasks in the

system. In order to conserve the limited resources in the microcontroller, the free

running crank interface timer with a pre-scalar of 10 µs was used for these timing

measurements by noting its value at the start and end of the tasks to be measured. Over

multiple runs of the crank interface logic, the worst case time noted was 170 µs. Taking

the scheduling overheads into account, this placed a limit of 180 µs on the lowest tick

period that could be used while ensuring that there were no transient overloads in the

system.

Despite the WCET being a measured value, this timing can be considered as a very

conservative estimate for the final version of the crank interface tasks. This is mainly

because of two key differences that are in the code whose timing was measured and the

final version of the code:

1. If the validity of the order of rising and falling transitions cannot be verified (i.e.

the time stamps indicate that the rising and falling edges are not alternating) in

the crank state task. On detection of the erroneous condition, the final version

resets all queues and buffers in the crank interface logic while the initial version

waited for newer values to be added to allow the erroneous sequences to flush

out automatically. The steps taken in the final version allow a quicker recovery

from the erroneous condition while significantly reducing the WCET of the

crank tasks.

2. A glitch was discovered in the DMAs being used to capture transitions for the

time-triggered implementation. Steps taken to resolve the DMA issues resulted

84

in the elimination of the error that was causing the validity check failure of the

rising and falling edges.

7.3 Implementations of Architectures for Performance

Comparison

In order to evaluate the performance of the flexible time-triggered architecture, it needs

to be compared to other architectures. The three architectures compared in this case

study are:

1. Event-triggered.

2. Classic time-triggered polling approach.

3. Flexible time-triggered.

7.3.1 Event-triggered implementation

The event triggered implementation has one interrupt source and has an interrupt driven

super-loop architecture. The execution times of the ISR and non-pre-emptable critical

sections have been kept to a minimum, with the bulk of the processing being done in the

super-loop.

Rising and falling edges in the output of the crank sensor trigger hardware capture

events in the timer peripheral. Each capture event causes the value of the timer to be

noted at the time of the event, giving a corresponding timestamp. In addition to the

capture event, the rising transition also triggers the interrupt service routine (ISR).

The timer capture ISR is used to copy the most recent rising and falling edge transitions

into a shadow FIFO buffer of the most recent transitions. After the ISR, the main logic

first creates a copy of the shadow buffer or transition timestamps and then processes

them to update the crank interface state machine. This is done to allow the ISR to

85

capture additional transitions into the shadow FIFO buffer while it is in the middle of

processing the current batch of transitions.

Figure 7-7: Flowcharts for the Event triggered implementation

7.3.2 Static time-triggered implementation

The static time-triggered implementation is used to provide a benchmark of the

performance of a typical timer driven polling setup. In both the time-triggered setups,

the timer capture is used in conjunction with the onboard DMA to transfer the captured

value into buffers in the RAM. It is up to the crank interface task to copy the data from

these buffers and process any newly detected transitions.

Timer ISR

Hardware rising edge
capture event

Rising edge time-stamp is
copied into the corresponding

capture register

Copy the recently captured
rising and falling edge

transitions into the shadow
buffers

Indicate the need to update
the logic

End ISR

Hardware operations

Hardware falling edge
capture event

Falling edge time-stamp is
copied into the corresponding

capture register

End

Wake up after interrupt

Update
required?

CRITICAL SECTION: Copy
the shadow transition buffers

to normal buffers for
processing

Run the crank interface logic
using the normal transition

buffers

Run the payload tasks
(including serial interface

update)

End

Yes

No

86

For the static TT implementation, the crank interface task is run with a period of 1ms

and can be expected to process from zero to eight transitions in each execution

depending on the speed and position of the engine.

Figure 7-8: Flowchart of the time-triggered implementation of the crank interface

7.3.3 Flexible time-triggered implementation

The flexible time-triggered implementation consists of two major cycles:

1. Default cycle: The default major cycle is similar to the static time-triggered

implementation with polling based fixed period control implementation. This

mode is used when the engine is not running or when the engine speed is outside

the normally expected limits.

2. Variable length cycle: The variable length major cycle is used when the engine

is running within normal operating limits. The duration of this major cycle is

varied in an attempt to keep it synchronised with a feature of the external signal.

In the case of the crank sensor output, the synchronisation feature can be any pulse out

of the 17 pulses in each cycle. Due to the lag introduced by the glitch filter, setting a

Hardware operations

Hardware rising edge
capture event

Rising edge time-stamp is
copied into the corresponding

capture register

End

If enabled, DMA copies the
data into the rising edge buffer

Hardware falling edge
capture event

Falling edge time-stamp is
copied into the corresponding

capture register

End

If enabled, DMA copies the
data into the falling edge buffer

Crank task launched by
scheduler

Disable DMA, copy the raw
transitions into buffers for

processing, re-enable DMA

Check if any transitions were
missed while the DMA was
disabled. If yes, add them to
the buffer to be processed

Run the crank interface logic
using the normal transition

buffers

End

87

system to synchronise with the first pulse of the new cycle will in reality cause it to

synchronise at a point after the completion of the second pulse.

Because of the feedback nature of the mechanism for varying the period of the major

cycle, it is desired that the crank signal is sampled at a high rate near the time the

synchronisation feature is expected to be visible at the output of the glitch filter. At the

same time, the DMA transfers allow the crank interface tasks to be run at a rate lower

than the rate of arrival of the pulses, freeing up more CPU time for other tasks. To

implement these ideas, the variable length major cycle was divided into two parts:

1. Resynchronisation segment: In this segment, only the crank signal is sampled

and processed. It consists of four ticks with a tick period of 0.04 of the expected

cycle period.

2. Payload segment: this part of the master cycle has five ticks spread evenly over

the remaining time in the expected cycle period (tick period of approximately

0.168 of the estimated major cycle period). While the first task in each of these

ticks is to sample and process the crank signal, the relatively long tick periods

allow the addition of tasks for increased functionality.

The number of ticks and their tick period ratios in the resynchronisation segment are

dependent on the following factors:

 Worst case execution time of the tasks to process the crank signal. This should

be less than the tick period of the resynchronisation phase when the engine is at

its maximum expected speed. With the WCET for the crank sampling and

processing with scheduling overheads in the order of 180µs and a tick period of

0.04 of the expected cycle period, this allows the system to operate at engine

speeds of up to 6666.66 RPM while ensuring that the sampling task does not

88

overrun the tick boundaries under the worst execution conditions. It should be

noted that the engine has a red line speed of 6250 RPM.

 Maximum rate of change of period expected from cycle to cycle. This dictates

the minimum ratio of the cycle period that should be dedicated to the

resynchronisation part to capture the worst expected change of rates under

normal operating conditions. With a tick period of 0.04 of the cycle period per

tick and the estimated synchronisation point, it is able to maintain

synchronisation with an error of up to 8 percent between the projected and actual

period.

Figure 7-9: Crank signal events and estimation of the next point in time when synchronisation

feature will be detected.

Figure 7-9 shows the crank signal, the ticks and various events that are associated with

the calculation of the new periods for the next cycle. These events are as follows:

 Event a: start of the first pulse of the cycle

 Event b: point in time after which the start pulse of the cycle will be visible at

the output of the glitch filter stage.

 Event c: start of the tick in which the start of the cycle is detected by the logic.

 Event x: estimated point in time at which the next cycle will start.

89

 Event y: estimated point in time when it would be possible to detect the start of

the new cycle.

 Calculating the new periods involves:

1. Estimate the period of the new cycle (α) based on the last two cycles (period of

the last cycle and the rate of change of periods between the last two cycles).

2. Calculate the new period for the resynchronisation ticks (0.04 × α).

3. Estimate the period from the current start of cycle to the estimated detection

possibility of the next cycle (β = 1.1 × α).

4. Compensate for the time elapsed since the start of the cycle, the tick in which

the start of the cycle is detected and the tick number or the resynchronisation

state in which the next cycle should be detected and divide it (βremaining) over

payload ticks.

The flexible time-triggered implementation based on the variable tick TTMPC

architecture consists of four phases (see Figure 7-10):

1. Default state: The operations in this state are very similar to the polling

implementation of the static TT design.

2. Transition phase: The periods for this phase are equal to the payload phase. It is

used only during the transition from the default cycle to the variable length

major cycle.

3. Payload segment: This state is designed to allow the user to add additional

functionality to the system that is not integral to getting in sync with the crank

signal.

4. Resynchronisation segment: This state has short tick periods and runs only tasks

which are integral to the crank signal interface and crank synchronisation.

90

Figure 7-10: Phase diagram for flexible TT implementation

7.4 Test Setup for Synchronisation Performance Comparison

A crank signal generator was implemented to test the synchronisation performance of

the three architectures under investigation under similar circumstances. An NXP

LPC2129 running at 60MHz is used to simulate the signals expected from the engine.

This simulator can be used to output the processed crank signals captured from the

engine test-bed or alternately, a simulated signal can be generated to a preset profile.

The signal simulation utilizes a lookup table that contains the ratios of the high and low

pulse durations of the actual signal at idling speed and no load. The values in this table

are then scaled to generate the signal for any speed.

Phase #: 0 (Default)

Tick period: 1ms, 1ms, 1ms

Phase length: 0 (indefinite length)

Next phase: N/A

Task-set:

Similar to polling TT implementation

with checks to move to cycle

synchronised mode

Phase #: 2 (Resynchronisation state)

Tick period: 180 µs, 0.04 × α, 5ms

Phase length: 4 ticks

Next phase: 1

Task-set:

Crank interface

Calculation of new period

Phase #: 1 (Payload state)

Tick period: 600 µs, variable

depending on the cycle period, 25ms

Phase length: 5 ticks

Next phase: 2

Task-set:

Crank interface

Calculation of new period

Payload tasks (sync signal

generation, sending timing

measurements, communications, etc)

Speed out of

bounds / loss

of crank sync

Crank

interface

locked and

speed within

bounds

Speed out of

bounds / loss

of crank sync

Phase #: 4 (Transition phase)

Tick period: 600 µs, variable

depending on the cycle period, 25ms

Phase length: 5 ticks

Next phase: 2

Task-set:

Crank interface

91

Table 7-1: Pulse duration ratios used for crank signal simulation.

Pulse # High duration Low duration Pulse # High duration Low duration

1 0.0335 0.0297 10 0.0297 0.0260

2 0.0297 0.0297 11 0.0260 0.0297

3 0.0260 0.0297 12 0.0260 0.0297

4 0.0297 0.0297 13 0.0260 0.0260

5 0.0260 0.0297 14 0.0260 0.0297

6 0.0260 0.0297 15 0.0260 0.0260

7 0.0260 0.0297 16 0.0260 0.0297

8 0.0260 0.0297 17 0.0260 0.0781

9 0.0260 0.0260

For cycles where the initial speed is not the same as the final speed (i.e. there is

acceleration or deceleration), intermediate scaling speeds are calculated for each pulse

according to the following equation:

𝑺𝒄𝒂𝒍𝒊𝒏𝒈_𝒔𝒑𝒆𝒆𝒅𝒊 = 𝝎𝒊𝒏𝒊𝒕𝒊𝒂𝒍 + 𝒊 − 𝟏 × 𝝎𝒇𝒊𝒏𝒂𝒍−𝝎𝒊𝒏𝒊𝒕𝒊𝒂𝒍

𝟏𝟔
 (7-1)

Where i is the pulse number for which the scaling speed is being calculated, ωinitial is the

initial cycle speed and ωfinal is the final cycle speed.

In addition to generating the crank signal, the NXP LPC2129 also has an input on which

it expects a synchronisation pulse from the system being tested. At the end of each

cycle, the crank simulator outputs the period of the next cycle and the point in time at

which the pulse was received in the previous cycle (relative to the start of that cycle).

This information is sent via an RS232 link at a baud rate of 256 kbps.

92

To check the dynamic performance of the systems under test, each system generates a

sync signal which indicates that the ECU software has reached the point where it will

run the control algorithm. The time difference between the start of the cycle and the

occurrence of the sync signal are logged by the engine simulator. The ratio between

this time to synchronise and the period of the cycle can be plotted to indicate the

effectiveness of the setup.

𝑺𝒚𝒏𝒄 𝒓𝒂𝒕𝒊𝒐 =
∆𝒕 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝒔𝒕𝒂𝒓𝒕 𝒐𝒇 𝒄𝒚𝒄𝒍𝒆 & 𝑜𝑐𝑐𝑢𝑟𝑎𝑛𝑐𝑒 𝑜𝑓 𝑠𝑦𝑛𝑐 ℎ𝑜𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑷𝒆𝒓𝒊𝒐𝒅 𝒐𝒇 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒄𝒚𝒄𝒍𝒆
 (7-2)

For the static time-triggered and event-triggered setups, the sync signal is generated

immediately after the start of the new cycle is detected. For the flexible TT, the sync

signal is generated when the system is expected to run the control algorithm, i.e. at the

start of the first tick of the payload state.

Ideally, due to the crank interface glitch suppression and the interrupt being triggered

only on the rising edge, the sync signal in the ET setup should be generated

immediately after the end of the second pulse in the crank cycle. The ideal response by

the ET implementation for the given test profile can be obtained by the engine simulator

logging the start times of the cycle and the third pulse. Using the pulse ratio lookup

table, it can be seen that at constant speed, the synchronisation should occur near the

12.27% into the cycle.

The TT implementation‘s ability to process partially received pulses allows the

detection of the first pulse after the falling edge of the second pulse. Assuming no

processing overheads and constant speed, this allows for the detection of the new cycle

at 9.29% into the cycle. In the case of the static TT, this gives the lower limit on

93

detection window. The detection window is dependent on the ratio of the tick period

and the overall cycle period.

In the case of the flexible TT, the new tick periods are calculated such, that based on the

last cycle period and the rate of change of period, the detection of the new cycle should

be possible sometime after the middle of the 2
nd

 resynchronisation tick. This gives an

offset of approximately 10% period ratio (2.5 × 0.04 cycle period) between the

estimated detection of new cycle (from the period β = 1.1 × α) and the generation of the

synchronisation signal.

Plots of the sync ratio vs speed give an idea of how well an architecture under test is

able to remain synchronised with the generated crank signal. As a general rule, a

syncrronisation ratio plot that is confined to a narrow range of ratio values over the wide

range of test speeds indicates a good synchronisation ability, while a wide range for

ratio values could indicate problems with the synchronisation performance.

7.5 Test Case 1: Basic Synchronisation Test

A simple periodic test profile was used to generate a crank signal that comprises of

periods at constant speed and transitions of constant rate of change of speed per cycle.

This profile was devised to test the ability of the architectures being tested to remain

synchronised over the major portion of the engine‘s operating range. The profile starts

with a speed of 600 RPM for a duration of 600 cycles (300 revolutions) to allow the

ECU under test to initialize and synchronise with the generated crank signal. After this

it generates constant speeds of 500, 1000, 2000, 3000, 4000, 5000 and 6000 RPM for

200 cycles. Between the constant speed periods, the rate of change of speed is 25 RPM

per cycle. Figure 7-11 and Figure 7-12 show this test profile with the number of cycles

and the time on the x-axis respectively.

94

Figure 7-11: Speed vs. cycle number crank simulation test profile used for comparing

synchronisation performance.

Figure 7-12: Speed vs. time crank simulation test profile used for comparing synchronisation

performance.

Figure 7-13, Figure 7-14 and figure 7-15 show the synchronisation performance of the

TT static, TT flexible and ET systems respectively for the basic test profile. These plots

show the ratio of the synchronisation point to the period of the cycle versus the speed

range covered in the test profile (equation 7-2). From figure 7-13, it can be seen that

while the static TT allows the earliest sync signal generation in some cycles, the overall

jitter in the generation of the sync signal increases with the increase in speed of the

95

engine. At around 6000 rpm, this jitter ranges from approximately 0.09 to 0.29, giving

and overall jitter of about 20% of the cycle period. From these figures, it is evident that

the performance of the flexible TT and ET designs is greatly superior to the

performance of the static TT design.

Figure 7-13: Sync performance of static time-triggered system

Figure 7-14: Sync performance of flexible time-triggered system

Figure 7-15: Sync performance of event-triggered system

96

7.5.1 Performance comparison of event-triggered and flexible time-

triggered implementations

Figure 7-16 provides a closer comparison between the flexible TT and the ET designs

and also provides the ideal case for the ET implementation. Several observations can be

made:

 The flexible TT design synchronises at a later point in the cycle as compared to

the ET design. This is mainly due to the fundamental differences in the point in

the cycle the synchronisation signal is generated in the two designs. It should be

noted that the point at which the ET or the flexible TT generate the

synchronisation signal can be moved by selecting a different feature / pulse of

the crank signal to which these systems synchronise to.

 Increase in jitter in synchronisation of the flexible TT with the increase in the

speed of the engine. This is most probably caused by the timer resolution that is

used to measure the crank signal period. With a resolution of 10 µs, the

quantisation error in the measurement of the period at a speed of 500 RPM

results in a reading that could range from 499.917 to 500.083 RPM. At a speed

of 6000 RPM, the quantisation error could result in a reading in the range of

5988.024 to 6012.024 RPM. Although the ET design uses the same timer

resolution, it is not affected by this as its execution is dictated by the timing of

the pulses being generated by the crank signal simulator.

97

Figure 7-16: Comparison of the synchronisation performance of flexible time-

triggered, event-triggered and ideal case.

 Spikes in the synchronisation signal plot of the flexible TT indicate the points

when there is a sudden change in speed. The current flexible TT tries to guess

the period of the next cycle only on the basis of the past periods that it has

observed. When there is a sudden change in the speed of the crank signal, these

estimates are thrown off. The spikes are a result of the overshoot because of the

prediction mechanism used. In an actual engine, where the speed of the engine

is partly affected by the outputs of the controller (e.g. amount of fuel, ignition,

etc.); it should be possible to make better predictions of how the future periods

will be effected.

 There is a noticeable upward trend in the ET design compared to the ideal case.

This is caused by the time it takes to process the new pulses and update the

logic. The flexible TT does not exhibit this trend as it compensates for the time

it takes to process new pulses.

98

7.5.2 Implications on code size and CPU usage

In addition to the dynamic performance of the systems, the software code size and CPU

usage of the systems was also measured to provide a better comparison of the

architectures. Table 7-2 gives a comparison of the code sizes for the designs. The size

difference between the ET and static TT is mainly due to the added code complexity for

making the system able to log and process multiple pulses per execution. The size

difference between the static TT and flexible TT designs is solely because of the

scheduler and synchronisation algorithm.

Table 7-2: Code size comparison.

System Code size Size relative to ET Size relative to

static TT

Event triggered 20648 bytes 100% 89.23%

TT static 23140 bytes 112.07% 100%

TT flexible 25268 bytes 122.38% 109.2%

Figure 7-17 provides a comparison of the CPU usage per engine cycle for the three

systems under test.the CPU usage per cycle for the flexible TT and ET designs remains

farily constant regardless of the engine speed. Contrary to this, the CPU usage of the

static TT design remains dependent on the ratio between the tick period and the cycle

period. At low speeds, the CPU usage of the static TT is fairly higher than the other

designs. It has comparable usage to the other systems around 2500 RPM speed,

however, at these speeds, its synchronisation performance is significantly worse than

both the other designs as evident from the sync performance plots.

99

Figure 7-17: CPU usage vs engine speed for the systems under test.

Table 7-3: Comparison of CPU usage per cycle of ET and flexible TT.

 Event-triggered Flexible time-triggered

 Overall (µs) Total ISRs and

critical sections

(µs)

Overall (µs) Scheduler

overheads (µs)

Min. 681 123 632 83

Max. 711 148 662 98

Avg. 693.56 134.116 646.0836 90.8281

Std.

Dev.

3.357 3.7972 2.6174 2.4883

Table 7-3 provides a detailed comparison of the ET and flexible TT designs. It can be

seen that despite the schdeuler overheads, the flexible TT has lower overall CPU usage

as it can allow for pulses to arrive and be logged by the DMA while processing them in

one go. A similar technique can be used in an ET design if there are no glitches in the

crank signal. However, the presense of glitches will complicate the ET design‘s logic

as the new cycle cannot be guaranteed to occur after 17 events.

100

7.6 Effects of Increase in Timing Resolution on Flexible Time-

Triggered Performance

Based on the observations on the flexible TT‘s jitter in the engine synchronisation at

high speeds, it was decided to experiment with using a higher timer resolution. The

initial decision to use the 10 µs pre-scalar for the timer used to measure the crank signal

pulse durations was influenced by the size of the timer (16 bits) and the mechanism that

was used to measure the period of the cycle.

 Original method for calculating period of a captured cycle: In order the find the

period of a captured cycle, the 16 bit value of the timer at the start of the cycle

was subtracted (signed) from the 16 bit value at the end of the cycle. This

limited the maximum period that could be measured to a timer count of less than

32767.

 Lowest speeds observed: During engine start, speeds as low as 150 to 200 RPM

were encountered. At these speeds, the output of the crank signal was stable

enough for the ECU to start fuel injection and spark ignition.

Table 7-4 provides the minimum speed that can be measured by the original method for

some timer pre-scalar values. In addition to these, the quantisation error encountered at

2000 and 6500 RPM for these pre-scalars is also included. The original 10 µs pre-scalar

was selected as it allowed the detection and correct period measurement of the cycles

encountered during engine start up while allowing for the least amount of quantisation

error at high speeds.

101

Table 7-4: Effects of pre-scalar value on the minimum speed measurable and the quantisation

errors at 2000 RPM and 6500 RPM.

 Timer pre-scalar

 1 µs 5 µs 10 µs 20 µs

Minimum speed

(RPM)

915.555 457.777 91.555 45.777

Timer count at 2000

RPM cycle

15000 3000 1500 750

Quantisation error at

2000 RPM
1

0.13 RPM 0.67 RPM 1.33 RPM 2.66 RPM

Timer count at 6500

RPM cycle

4615 923 461 230

Quantisation error at

6500 RPM

1.41 RPM 7.04 RPM 14.08 RPM 28.23 RPM

In order to increase the timer resolution, the following options were possible:

1. Increasing the timer and capture units size: The STM32M103RB controller

allows the two or more 16 bit timers to be daisy chained to form higher

resolutions (e.g. 32 bits, 48 bits, 64 bits, etc.). While this offers a seemingly

easy and straight forward extension with no change in the logical part of the

software, the separate DMA handling of the high and low 16-bit capture values

for the rising and falling edges of the transitions would have been complex.

2. Alternate mechanism to measure crank cycle period: The crank signal interface

task maintains a FIFO of the last 20 filtered pulses that were detected. When an

unprocessed pulse is being processed, its period is added to a running total. At

the valid detection of the end of cycle / start of new cycle, the running total is

noted as the period of the last cycle and is reset. The disadvantage of this

1
 Speed difference corresponding to the count indicated for the speed and the count incremented by 1.

102

method is the requirement to maintain a running total of the cycle period. This

adds an additional step of a 32 bit addition (on a 16-bit architecture) in the

processing of the pulses. For a 17 pulse cycle, this translates as seventeen 32-bit

additions per cycle compared to the single 16-bit signed subtraction for the

original method.

The above mentioned alternate period calculation method was used with a 1 µs timer

pre-scalar in the high resolution performance tests. Minimum speed that can be

measured by this method is limited by the period of the longest pulse in the cycle. At

constant speed, the longest pulse is the 17th pulse with a period approximately 10.41%

of the whole cycle (Table 7-1). This give the maximum cycle period bound of 314.764

ms (i.e. 32767 / 10.41%) which translates to a speed of 95.309 RPM.

Figure 7-18: Synchronisation performance with a timer resolution of 10 µs

103

Figure 7-19: Synchronisation performance with a timer resolution of 1 µs

Figure 7-18 and Figure 7-19 show the synchronisation performance with a timer

resolution of 10 µs and 1 µs respectively. From these figures, it is evident that there is a

significant reduction in the level of jitter at high speeds with the increase in timer

resolution. The level of jitter at 6000 RPM has been reduced to one half of that for the

original resolution.

Table 7-5: Effect of different period calculation methods on CPU usage.

 10 µs pre-scalar 1 µs pre-scalar

 Overall execution

time (µs)

Scheduler

overheads (µs)

Overall execution

time (µs)

Scheduler

overheads (µs)

Min. 632 83 632 83

Max. 662 98 674 99

Avg. 646.0836 90.8281 647.3241 90.8895

Std.

Dev.

2.6174 2.4883 2.9324 2.5735

Table 7-5 shows the comparison of the CPU usage for the two calculation methods.

There is a slight increase in the CPU usage for the new method; however, this was to be

expected with the increase in complexity of the calculations. In addition to this, the

104

code size for the new setup has gone up to 25312 bytes from the 25268 bytes for the

original method (an insignificant increase of 0.17%).

7.7 Test Case 2: Realistic Driving Cycle

The second test cycle (Figure 7-20 for the test profile) derived from an engine emissions

dynamometer test is used to guage how the flexible time-triggered system would

perform in a more realistic setting.

Figure 7-20: Second test profile used to check the synchronisation performance of the

various architectures.

The New York Non Freeway (NYNF) and the Los Angeles Non Freeway (LANF)

portions of the Federal Test Procedure (FTP) heavy duty transient cycle are used as the

starting point for the realistic test cycle. The operations carried out on the original test

cycle to make it suitable for the synchronisation testing are:

i. The original cycle was scaled such that the idling speed was 850 RPM and the

maximum speed achieved by the engine was 6250 RPM.

105

ii. The discontinuous step commands of the scaled cycle were smoothed to obtain

continuously varying speed profile. Figure 7-21 shows the results of the

smoothing process on a portion of the cycle.

Figure 7-21: The scaled step commands and the output of the smoothing process show from

time 375 to 440 seconds of the test profile.

iii. From this continuous profile, initial and final speeds for each cycle of the

simulated crank signal were calculated to make the generated crank signal

mimic the smoothed profile.

A lookup table with 47805 cycle speed entries is used by the crank signal generator to

generate the test crank signal that follows the speed profile. In addition to this, other

changes were made between this and the previous test setup. These included increased

timing resolution in the crank signal generator from 1µs to 0.1µs to reduce quantisation

errors in the generated speed near the top end of the speed spectrum. Also, based on the

observations in section 7.6, a 1µs timer resolution is used in the architectures being

tested.

106

Figure 7-22, Figure 7-23 and Figure 7-24 show the synchronisation performance of the

static time-triggered, flexible time-triggered and event-triggered architectures over the

realistic drive cycle. Similar to the observation made in the basic synchronisation test in

section 7.5, the performance of the static time-triggered architecture is significantly

inferior to the performance of the other two architectures being tested due to the large

amounts of jitter in the generation of its synchronisation signal.

Figure 7-22: Synchronisation performance of static time-triggered architecture on the

realistic drive cycle.

Figure 7-23: Synchronisation performance of flexible time-triggered architecture on the

realistic drive cycle.

107

Figure 7-24: Synchronisation performance of event-triggered architecture on the realistic

drive cycle.

7.7.1 Performance comparison of event-triggered and flexible time-

triggered implementations

Figure 7-25 shows the side-by-side synchronisation performance of the flexible time-

triggered, the observed event-triggered and the ideal case event triggered. Some of the

observations made in the previous test case (in section 7.5) are still valid, while others

are greatly reduced due to increased timing resolutions both in crank signal generation

and detection.

Figure 7-25: Side-by-side synchronisation performance comparison of TT flexible, event-

triggered and ideal case.

108

Like the previous test case, the flexible TT design synchronises at a later point in the

cycle as compared to the ET design. This is mainly due to the synchronisation signal

being generated at the moment the start of the cycle is detected in the ET and at a fixed

point in the staticly scheduled major cycle of the flexible TT design. Also, the

noticeable upward trend in the ET design compared to the ideal case is again evident.

Unlike the previous test case in section 7.5, there is no noticeable increase in jitter in the

synchronisation of the flexible TT with the increase in the speed of the engine. This is

helped by the increase in timing resolution of the crank signal capture as indicated in

section 7.6 and the increase in timing resolution of the crank signal generator.

Figure 7-26: Close up view highlighting the similarity of the contours of the ideal case event-

triggered (top plot) and the flexible TT (bottom plot)

109

In Figure 7-26 it can be seen that there are no pronounced spikes in the flexible TT‗s

synchronisation plot similar to those encountered in the previous case study in section 7.5.

To examin this phenomenon in detail, two metrics for the test profile mut be defined:

i. First order speed difference: This metric provides informantion on how rapidly the

speed changes from one cycle to the next. It is given by equation 7-3:

∆𝝎𝒊 = 𝝎𝑭𝒊 − 𝝎𝑰𝒊 = 𝝎𝑭𝒊 − 𝝎𝑭(𝒊−𝟏) (7-3)

Where Δωi is the speed difference for cycle i, ωFi is the final speed for cycle i, ωIi is

the initial speed for cycle i and ωF(i-1) is the final speed for cycle i-1.

ii. Second order speed difference: This metric provides a correlation between the

speed changes in the previous and current cycle, and is given by equation 7-4:

∆𝟐𝝎𝒊 = ∆𝝎𝒊 − ∆𝝎𝒊−𝟏 = 𝝎𝑭𝒊 −𝝎𝑰𝒊 − 𝝎𝑭(𝒊−𝟏) −𝝎𝑰(𝒊−𝟏) (7-4)

Where Δωi is the speed difference for cycle i, Δω(i-1) is the speed difference for

cycle i-1, ωFi is the final speed for cycle i, ωIi is the initial speed for cycle i, ωF(i-1)

is the final speed for cycle i-1 and ωI(i-1) is the initial speed for cycle i-1.

Figure 7-27 show plots of the first order speed difference for the realistic (top) and basic

test profiles (bottom) respectively. From these, it can be seen that the maximum value

for the realistic test profile is close to 50 RPM difference between the initial and final

speeds of a cycle (encountered at cycle number 11275), but does not exceed ±25 RPM

for the the basic test profile.

110

Figure 7-27: First order speed difference for the realistic drive cycle (top) and basic test

profile (bottom).

Figure 7-28 shows the plots of the second order speed difference for the realistic (top)

and basic test profiles (bottom) respectively. From these, it can be seen that the maxium

values for the realistic cycle fall within ±5 RPM but remains ±25 RPM for the basic test

cycle. The reason why seond order speed difference is a better indicator of

synchronisation performance for a particular test input lies in the current mechanism

that is used to estimate the expected period of the next cycle (section 7.3.3).

Figure 7-28: Second order speed difference for the realistic drive cycle (top) and basic

test profile (bottom).

111

7.8 Conclusion

The engine synchronisation case study presented in this chapter provides a challenging

problem for time-triggered systems. The literature review on the subject failed to

provide any references for purely time-triggered architecture being used for engine

management of the reciprocating engines.

The work culminated in the implementation of the following solutions:

1. Static time-triggered synchronisation platform that relied on polling the crank

signal at a fixed period.

2. Flexible time-triggered synchronisation platform that constantly changed its

cycle periods to remain synchronised with the crank signal.

3. An event-triggered platform that relied on events generated by the crank signal

to maintain synchronisation.

The two test cases used to test the performance of these architectures managed to

highlight the limitations of the static TT for this application and shows why, in the

absence of flexible TT, such applications can be considered to be only in the domain of

ET architectures. The novel flexible TT approach manages to provide a platform that is

capable of remaining synchronised with the internal orientation of the engine‘s crank

shaft, allowing tasks to run at specific points in the cycle.

This flexible TT implementation could form the foundation for an internal combustion

engine control setup. Such a setup should have a more predictable nature than event-

triggered architectures.

112

8 Adding Flexible Pre-Emption

This chapter looks at how flexible pre-emption can be added to the multiphase

cooperative scheduler. It discusses the behaviour of the Time-Triggered Hybrid (TTH)

scheduler and why its extension is not a very flexible alternative. Finally, it presents

and discusses the flexible dual scheduler architecture.

8.1 Classifying the Time-Triggered Hybrid Architecture

The Time-Triggered Hybrid (TTH) acts as a fixed priority semi pre-emptive scheduler

with two priority groups. While the tasks run cooperatively within these groups, tasks

from the higher priority group can pre-empt tasks from the lower priority group. Figure

8-1 shows the implied task priorities and their ability to pre-empt other tasks for a

hybrid system with m pre-emptive tasks and n cooperative tasks.

Figure 8-1: Implied fixed priorities in the Time-Triggered Hybrid (TTH) scheduler

Index 0

Index 1

....

Index n - 1

Cooperative task array

(n tasks)

In
cr

ea
si

n
g
 P

ri
o
ri

ty

Index 0

Index 1

....

Index m - 1

Pre-emptive task array

(m tasks)

Ability to pre-empt

113

While the Time-Triggered Cooperative (TTC) can still be considered a static scheduler

as the task execution order is not affected by variations in task timings, the same cannot

be said about the TTH. The pre-emptive nature of some tasks along with variations in

the timings of the cooperative tasks could mean that the actual number of paths through

the program could be infinite. That said, the combination of single path execution or

code balancing techniques (described in section 2.2.3) with the advance knowledge of

when the next interrupt will occur can be used to limit the number of paths through the

program.

8.2 Adding Flexible Limited Pre-Emption

At times, a system needs to run a task periodically with a short period/deadline along

with one or more task(s) whose worst case execution time (WCET) is more than this

value. As mentioned in section 2.4, this is not possible in a cooperative environment

without breaking up the long task. Examples of the tasks that could require short

periods include sampling an input signal (e.g. for sampling an audio signal), generating

an output pattern in accordance with earlier control computations (e.g. variable

frequency sine wave generation using look up tables) or responding to an external event

very quickly (e.g. over-current detection to protect a critical or expensive component).

In order to make a highly predictable scheduler architecture that meets the needs of

generic applications, some key assumptions have to be made with regards to the

potential applications:

1. Most of the processing should be done in cooperative tasks to keep the pre-

empting tasks as short as possible.

2. The pre-empting task(s) has to be run periodically regardless of the phase / state,

the rest of the system is in.

114

3. There should be an option to vary the period of the pre-empting task at run time.

8.3 Single Scheduler Architecture with Limited Pre-Emption

Similar to the concept of a hybrid version of the TTC (i.e. TTH) that allows a single

frequent task to pre-empt the other (cooperative) tasks, a hybrid version of Time-

Triggered Multiphase Cooperative (TTMPC) seems like a good starting point. The

Time-Triggered Multiphase cooperative with Variable Rate pre-emption Hybrid

(TTMPVRH) scheduler is based on first version of the TTMPC scheduler (support for

only finite duration phases, no transient overloads across phase boundaries and fixed

tick periods for the phases).

8.3.1 Timing relationships between cooperative and pre-emptive tasks

In order to limit the code complexity caused by the introduction of a single pre-emptive

task, some limitations had to be enforced on the timing relationships between the

various periods in the system. A new time unit (base time period) was defined such

that:

 phasesallofdurationstickFACTORCOMMONHIGHESTperiodtimebase

Alternately, if an arbitrary base tick period is selected, it limits the cooperative tick

periods to values given by the following equation:

 ...,3,2,1* nwherenperiodtimebaseperiodtickecooperativpossible

The relationship between the base tick period and the pre-emptive task‘s period is given

by the following equation:

 255...,,3,2,1 nwhere
n

periodtimebase
periodtickpreemptive

The pre-emptive task‘s period (i.e. timer interrupt period) can be changed at run time by

calling a scheduler function with the desired configuration parameters.

115

8.3.2 Code complexity of the flexible time-triggered hybrid scheduler

A significant amount of code complexity is added to the TTMPVRH to support the

variable rate hybrid task. Table 8-1 gives the code complexity of the two schedulers.

Table 8-1: Code complexity comparison for TTMPC v1.0 and TTMPVRH v1.0.

 TTMPC v1.0 TTMPVRH v1.0

 Sch_Update

(ISR)

Complete

scheduler

Sch_Update

(ISR)

Complete

scheduler

Cyclomatic complexity

(McCabe 1976)

4 28 7 33

Lines of code (LOC) - total
2
 27 197 38 230

LOC – execution 17 101 22 117

LOC – declaration 2 31 2 38

It can be seen from Table 8-1 that the complexity of the scheduler timer ISR is

increased significantly (40% increase in total LOC, 75% increase in cyclomatic

complexity of the scheduler ISR). This problem is compounded if the system is adapted

to accept multiple pre-emptive tasks.

Also, because the pre-emptive task is run from within the scheduler update, a

catastrophic failure in this task will result in the failure of the whole system.

8.3.3 Pros and cons of a single scheduler architecture

Advantages of such a design include:

 Effectively an extension of the existing TTH architecture, allowing adapting the

techniques and tools for the TTH to the TTMPVRH.

 The use of a single time unit (GCD of all periods involved) for the cooperative

and pre-empting tasks ensure that there is a high level of synchronisation

between all tasks.

2
 The total LOC includes white space lines in the code. These lines are not counted in the other two LOC

measures.

116

 It can be extended to allow for pre-empting tasks that are specific to individual

phases.

The limitations of such a design include:

 Restrictions are imposed on the task periods and the tick periods of the different

phases. Inappropriate selection of tick periods in different phases can result in

excessive overheads (e.g. a two phase system with one phase having a tick

period of 1.2 ms and the second phase tick period of 2 ms will require periodic

interrupt generation ever 0.2 ms).

 Such a design cannot be used in implementations where the tick periods have to

be varied arbitrarily at run time to synchronise the major cycle with an external

system.

 Greatly increased code complexity of the scheduler ISR. This value will be

further increased if support for multiple pre-empting tasks is required.

8.4 Dual Scheduler Architecture

In order to limit the complexity while increasing the flexibility, a dual scheduler

architecture was also evaluated. The resulting system is in effect two disjoint

schedulers running on the same machine (Figure 8-2). In this architecture, each

scheduler has its own timer and ISR.

117

Figure 8-2: Overview of the TTxC + TTP architecture.

The cooperative scheduler can either be a regular time-triggered cooperative (TTC)

scheduler described in section 3.2.2 or the Time-Triggered Multiphase Cooperative

(TTMPC) scheduler in chapter 6.

8.4.1 The pre-emptive scheduler

The time-triggered pre-emptive (TTP) scheduler is to be used in parallel with a

cooperative scheduler. The key points of the TTP‘s design are as follows:

 The scheduler uses a free running timer (incrementing from zero to the

maximum value and then overflowing back to zero) and uses the timer ISR to

pre-empt any cooperative task and run the pre-empting tasks.

 The scheduler keeps track of the time (timer value) at which all the tasks are due

to run next, and uses the timer match interrupt to launch the task that is supposed

to run next (similar to an EDF scheduler).

 Because of the way the scheduler is designed and implemented, the pre-empting

tasks do not require time periods that are multiples of a base time unit. Also,

offsets can be used to minimize jitter in multiple pre-empting tasks with the

same period.

Pre-emptive Scheduler (TTP)

Cooperative Scheduler (TTC / TTMPC)

Timer ISR

Dispatcher

Timer for

Cooperative

Scheduler

Timer for

Pre-emptive

Scheduler

Timer ISR &

dispatcher

118

 Despite the name, all the pre-emptive tasks run cooperatively. If more than one

pre-empting tasks are due to run at the same time, an implied static priority is

used to determine the order of execution.

Flowchart 8-1: TTP Scheduler’s update and dispatch mechanism.

 With provisions to change the periods of existing tasks, deleting them or adding

new tasks in the pre-emptive scheduler while the system is running, flexible

scheduling can be achieved to quickly respond to the changes. However, this is

achieved at the cost of reduced predictablity.

8.4.2 Interactions between the cooperative and pre-emptive

schedulers

The two schedulers run concurrently on the target platform. The key points of this

hybrid architecture are:

 In the system, only the timer interrupts for the two schedulers are enabled. All

other events have to be polled for in user tasks.

TTP scheduler‘s Timer
Match Interrupt

Run the preempting task due to be

run, and update it‘s next run time.

End ISR

Set the match mechanism to

interrupt at the time the next task

is due to run

Find the task with the earliest next

run time

Has the time the
task was due to

run passed?

Yes

No

119

 The cooperative and pre-emptive schedulers use two separate timers to allow

greater flexibility in the selection of the time periods of the cooperative and pre-

empting tasks (Figure 8-2).

 The pre-empting task is launched from the TTP scheduler‘s timer ISR and can

pre-empt any currently running cooperative task (Figure 8-3).

 The cooperative scheduler‘s timer ISR can pre-empt TTP‘s timer ISR as well as

any pre-empting task (refer to Figure 8-3 for details). This can ease the

implementation of a suitable task guardian.

Figure 8-3: Priority levels in the dual scheduler architecture.

 Because of the high level of temporal flexibility offered by the architecture, the

responsibility of using appropriate resource sharing techniques is left to the user.

This is done so that applications that have limited or no resource sharing

between cooperative and pre-emptive tasks do not suffer the associated

overheads. However, applications that require resource sharing will be more

complicated from the user‘s point of view.

8.4.3 Alternate configuration for the dual scheduler architecture

An alternate configuration is also possible for the dual scheduler architecture. Instead

of using two timers, the Scheduler Update (the timer ISR) for the cooperative scheduler

can be scheduled to run as another pre-empting task (see Figure 8-4 and Figure 8-5 for

details).

TTC / TTMPC‘s timer ISR

TTP‘s timer ISR & dispatcher

TTC / TTMPC‘s dispatcher

P
ri

o
ri

ty

120

Figure 8-4: Overview of the alternate configuration of the TTxC + TTP architecture.

The pros and cons of this configuration compared to the original configuration are as

follows:

 Only one timer is required for the two schedulers, freeing up a valuable

peripheral in the system.

 Higher level of synchronisation between the cooperative and pre-empting tasks

is possible with fewer overheads as the same time source is used. This is more

challenging in the original configuration as there is a slight offset in the start

times of the two timers at system initialisation.

 Some modification will be required in the cooperative scheduler to operate in

the alternate configuration. The main changes will be in parts of the scheduler

code that setup the timer and vary the tick periods.

 As the pre-empting tasks are run from the only ISR in the system, the

implementation of the task guardian is not straight forward.

Figure 8-5: Priority levels in the alternate configuration of the dual scheduler architecture.

TTP‘s timer ISR & dispatcher

(including the TTC / TTMPC‘s update)

TTC / TTMPC‘s dispatcher

P
ri

o
ri

ty

Pre-emptive Scheduler (TTP)

Cooperative Scheduler (TTC / TTMPC)

Scheduler Update

Dispatcher

Timer for

Pre-emptive

Scheduler

Timer ISR &

dispatcher

121

8.5 Operating Configurations of the Dual Scheduler Architecture

The possible operating configurations of the TTP scheduler architecture are:

1. Fixed Period Hybrid (FPH): All the pre-empting task periods remain fixed at run

time.

2. Variable Period Hybrid (VPH): The period of at least one pre-empting task can

change at run time.

The overall operating configuration of the combined system is dependent on both the

configuration of the pre-empting scheduler and the configuration of the cooperative

scheduler (section 6.6).

The level of predictability of the overall system is adversely affected by the level of

flexibility that is allowed in it. The highest level of predictability will be achieved if all

the task periods and execution times remain constant at run time. Any of the following

factors will have a detrimental effect on the predictability of the overall system:

1. Variations in the execution times of the pre-empting or cooperative tasks.

2. Change in the operating mode of the cooperative scheduler

3. Variations in the task periods in the cooperative or pre-empting tasks.

Regardless of the operating configuration, from the software‘s point of view, it is

always possible to find how much time remains till the next pre-emption. In addition to

the definition of non-pre-emptable critical sections, this also opens up the possibility of

using the Timed Resource Access Protocol (TRAP) to manage resources used by both

the cooperative and pre-empting tasks (Maaita 2008).

122

8.6 Conclusion

This chapter presents the novel dual scheduler architecture for flexible limited pre-

emption time-triggered implementations. This architecture, uses seprate timers for the

purely cooperative and limited pre-emption schedulers to allow very high level of

flexibility that cannot be achieved by a single timer architecture (like the time-triggered

hybrid) without significant overheads.

The flexible architecture allows the designer to choose between a ridigd but highly

predictable architecture and a flexible architecture at the cost of reduced predictability.

This flexibility can be used to tailor an implementation to specific application

requirements.

Like in the case of the multi phase cooperative scheduler in chapter 6, even in the most

flexible configuration, it can still be calculated when the next event (and in the case of

cooperative tasks, the possible pre-emption) will occur.

123

9 Brushless DC Motor Case Study

This chapter presents the setup used and the results of the brushless DC motor case

study
3
.

9.1 Target Platform

The brushless DC motor (BLDCM) controller is implemented using ST

Microelectronics‘ STM32F103RB microcontroller. This microcontroller uses ARM‘s

Cortex M3 core as its basis and comes with many peripherals (four 16 bit timers with

capture and compare IO, Onboard ADC, etc.) that are of great value in motor control

applications.

The brushless motor used for the research was a Maxon Motor 32 volt, 50 watt

permanent magnet brushless motor. This motor was fitted with the hall sensors and

quadrature incremental encoder for absolute position and speed measurements

respectively.

The SGS Thomson L6234 three phase driver IC was used to implement the motor drive.

The L6234 operates on a wide range to supply voltages, accepts TTL input signals, and

includes inbuilt cross conduction protection and thermal shutdown.

9.2 Components

This section covers the specifics of the implementation of the test bed.

9.2.1 Time-triggered scheduler setup

The TTC + TTP scheduler setup was used for the time-triggered implementation. The

Cortex M3‘s System Tick timer is used to generate the periodic interrupts for the

3
 Parts of this chapter have been published previously in (Hanif, Pont et al. 2008)

124

cooperative scheduler. The pre-emptive scheduler is driven by the 16 bit TIM2 general

purpose timer module. A 10 µs prescaler is used to drive the TIM2 timer.

These two schedulers are used to run all the tasks in the time-triggered implementation

of the controllers.

9.2.2 Speed measurement

STM32F103‘s general purpose timer module 3 (TIM3) is interfaced with the quadrature

encoder on the motor. The counter‘s value is incremented or decremented by the

sequence of pulses coming from the encoder.

A cooperative task is used to measure the motor‘s speed by reading the counter‘s value

and resetting it. It is important that the task for reading the speed is the first task in a

tick as jitter in starting time of the task will cause an error in the speed measurement.

9.2.3 Speed controller

A cooperative task can be used to calculate the control outputs. The high speed 32-bit

controller allows for reasonably fast calculation of the speed controller algorithm.

A TIM1 output was used as a 30 kHz pulse width modulator signal to control the

amount of power going to the motor. The PWM signal is used to modulate the high

side transistors in the drive circuit while the low side transistors are kept on in

accordance with the lookup table (Table 9-2).

9.2.4 Commutation and drive setup

A pre-empting task checks the hall sensor outputs and updates a six bit output pattern.

Combinational logic was used to modulate the generated patterns with the PWM signal

to control the order and time for which the phases were energised using the L6234

125

driver IC. Table 9-1 provides the inputs and corresponding outputs for a single half

bridge of the L6234.

Table 9-1: L6234’s input combinations and corresponding output configurations.

Enable (ENx) Input (INx) Output (OUTx)

0 0 Floating

0 1 Floating

1 0 Low

1 1 High

Table 9-2 shows the possible hall sensor outputs and the corresponding phases drive

sequences that have to be generated for clockwise rotation of the motor. It also shows

the input combinations needed for the L6234 driver.

Table 9-2: Hall sensor inputs and corresponding drive configuration for clock wise rotation of

brushless DC motor.

Hall

sequence

(ABC)

Motor windings L6234 inputs

A (Out1) B (Out2) C (Out3) EN1, IN1 EN2, IN2 EN3, IN3

000

(Invalid)

Floating Floating Floating 0, 0 0, 0 0, 0

001 Floating Low High 0, 0 1, 0 1, 1

010 Low High Floating 1, 0 1, 1 0, 0

011 Low Floating High 1, 0 0, 0 1, 1

100 High Floating Low 1, 1 0, 0 1, 0

101 High Low Floating 1, 1 1, 0 0, 0

110 Floating High Low 0, 0 1, 1 1, 0

111

(invalid)

Floating Floating Floating 0, 0 0, 0 0, 0

9.2.5 Data to PC

The measured speed and additional data is sent to the PC over an RS232 serial link.

Although the speed is measured every 1ms, it is sent to the pc every 10ms.

126

9.3 Commutation Generation Techniques

For the implementation of sensor based commutation sequence generator in a purely

time-triggered manner using the proposed architecture, the following Time-Triggered

systems were tested:

1. By statically scheduling a pre-empting task to update the commutation sequence

with very short period (every 50µs). This is close to what can be achieved with

existing timeline and TTH architectures. This setup was referred to as the Time-

Triggered High pre-emption Rate Static (TT HRS).

2. By statically scheduling a pre-empting task to update the commutation sequence

with a moderately short period (every 250µs). This is done to reduce the

overheads because of commutation update. This setup was referred to as the

Time-Triggered Low pre-emption Rate Static (TT LRS).

3. By using a pre-empting task that changes its period dynamically. The general

idea is that once the commutation takes place, the task does not need to run till it

is closer to the time at which the next commutation update is expected. The

algorithm used for doing this is given in Code listing 9.1. This setup was

referred to as the Time-Triggered Mixed pre-emption Rate Flexible (TT MRF).

If change in hall sensor sequence

 Update drive circuit‘s activation pattern

 Calculate the expected time of the next commutation

 Set task‘s period to: (0.9 * expected period) % 50 µs

Else

 Change task‘s period to 50 µs

End

Code listing 9.1: Algorithm for pre-emptive variable rate commutation update task.

127

9.4 Results

It was planned to compare the open-loop, no-load-speed performance of the three time-

triggered implementations presented in the previous section against an event-triggered

system. However, during implementation of the event-triggered system, spurious

interrupts caused damage to the motor‘s drive circuit. It was decided that the time-

triggered systems will be compared to the performance of a simulated event-triggered

system.

The simulated event-triggered system (ET sim) was implemented by using two

STM32F103 microcontrollers. One was responsible for running only the modified

commutation update sequence in a polling loop, while the second controller took care of

all the data collection. The first controller was able to run the commutation update

sequence every 2.5 µs.

Figure 9-1: Open loop maximum speed plots for different implementations.

For all four test models, the open loop speed, number of pre-emptions per second, the

duration of each pre-emption and the current through the drive circuit was measured. A

standard deviation and average speed were calculated using 300 speed readings for all

128

test models (over a duration of 3s). The standard deviation of the speed readings offers

a measure of the effectiveness of each implementation. Lower standard deviation tends

to indicate smoother and more efficient running of the motor as can seen from the

current readings of the models.

Table 9-3: Comparison of different implementation methods.

 ET sim TT HRS TT LRS TT MRF

Speed Minimum (RPM) 20,100 20,160 20,190 20,220

Speed Maximum (RPM) 20,190 20,340 20,520 20,340

Speed Average (RPM) 20,148 20,287 20,362 20,284

Standard deviation in

measured speed
27.421 28.861 67.996 30.543

Average number of pre-

emptions per second
2014.8 20,000 4,000 5,798.3

Duration of each pre-emption 2.5 µs 8 µs 8 µs 8-12 µs

Effective CPU loading 0.5 % 16 % 3.2 % 5.45 %

Current consumption (A) 0.16 0.17 0.53 0.18

Efficiency measure

(Speed (RPM) / Current (A))
125925 119335.3 38418.87 112688.9

Efficiency relative to ET sim 100 % 94.77 % 30.50 % 89.49 %

For the event-triggered simulation‘s number of pre-emptions and the CPU loading have

been calculated using the average speed of the motor, the number of events per

revolution and the time to run through the polling loop.

129

Figure 9-2: A comparison of the efficiency of the test cases.

Figure 9-1 shows the plot of the speed readings from the four models. From both this

figure and the data from Table 9-3, it can be seen that the event-triggered

implementation offers the best open loop control scheme. In addition to the superior

open loop control, the CPU loading, because of the commutation update task for

achieving this, is the lowest among all models. However, it must be noted that this

superior performance is achieved at the cost of determinability (i.e. at any point in time,

it is never known when the next pre-emption will occur).

The TT HRS model offers the second best performance amongst all models. The 50 µs

period of the commutation update task proves to be fast enough to be comparable with

the event-triggered simulation model. The constant period of the pre-empting task also

offers excellent determinability as it is known well in advance when the next pre-

emption will occur. However, this performance and predictability is achieved at the

cost of a comparatively high CPU loading.

The TT LRS model tries to reduce the CPU loading by lowering the rate at which the

commutation update task is called. This results in the expected lower processor loading

0

20000

40000

60000

80000

100000

120000

140000

ET sim TT HRS TTLRS TT MRF

125,925
119,335

38,419

112,689

E
ff

ic
ie

n
cy

A

v
er

ag
e

sp
ee

d
 (

R
P

M
)/

C
u
rr

en
t

(A
)

Test cases

130

but sacrifices the high speed open loop performance. This arrangement can still be used

in safety critical applications that require high determinability but do not require the

operation of the motor at high speeds.

The TT MRF model tries to reduce the CPU loading by varying the rate of execution of

the commutation update task as given by the algorithm in Code listing 9.1. By using the

90% value of the time till the next commutation, the system ensures responsiveness

when the motor is accelerating. Although the determinability of this model is not as

high as the first two time-triggered models, it is still better than the event-triggered

model as at any point in time, the time till the next pre-emption can be easily

determined. The determinability of this system is further increased by the modulus

operation in the calculations of the new period after a commutation. The modulus

operation effectively limits the pre-empting task to a fixed number of time slots in

which the pre-emption can occur and thereby greatly limits the permutations of the

program execution path.

9.5 Conclusion

The brushless motor control case study demonstrates how the flexible limited pre-

emption architecture could be used to provide the foundation software architecture for

motor control applications. The use of the flexible TT architecture allows the designer

to make trade offs between performance, CPU utilization and system predictability.

The results indicate that similar performance can be achieved at lower CPU overheads if

the desired predictability levels can be reduced.

131

10 Conclusions and Future work

The conclusions drawn from the work presented in this thesis are presented in this

chapter along with potential applications and possible extensions. Recommendations

for further work are also made.

10.1 Summary of Thesis Contributions

The contributions of this thesis are as follows:

 The concept of flexible time-triggered (TT) scheduling was introduced. At its

core lay the novel idea of changing the task and cycle periods without changing

the order of execution of tasks at the run time. In this setup, the time at which

next event in the system occurs is known in advance. This arrangement brings

about the possibility of using statically scheduled architectures to interface with

and control pseudo-periodic systems (i.e. systems where the cycle period varies

from one cycle to the next instead of remaining fixed at a particular value).

 Two flexible time-triggered scheduler architectures were presented:

i. The cooperative flexible TT scheduler incorporated the above mentioned

technique along with support for multiple task sets that had been

suggested by others (section 2.4.1.7).

ii. A novel dual scheduler arrangement was presented to allow addition of

flexible limited pre-emption in a predominantly cooperative

environment. This arrangment provided greater flexibility than a simple

extension of a single hybrid scheduler architecture like the TTH (section

3.2.3) or its derivatives, while still retaining the ability to determine the

time till the next interrupt.

132

 Two representative case studies were carried out to test the performance of the

flexible TT architecture in real world applications:

i. An engine synchronisation case study was used to test the performance

of the cooperative flexible architecture and its underlying theory. The

results of this case study clearly demonstrated the ability of the flexible

cooperative time-triggered architecture to synchronise task executions

with a generated crank signal over a wide range of engine operating

speeds.

ii. A brushless motor control case study was used to test the effectiveness of

the limited pre-emption flexible TT scheduler. The results of this case

study demonstrated how the dual scheduler architecture allowed trading

predictability for performance and vice versa.

10.2 Review of the Contributions

This thesis makes contributions to the fields of real-time scheduling and to the

application areas of internal combustion engine control architecture and brushless DC

motor control architectures.

10.2.1 Scheduling theory and architectures

In an attempt to overcome the limitations of the cooperative static schedulers while

retaining their high levels of predictablity, this thesis introduces the novel concept of

flexible static scheduling where the task execution orders remain fixed (i.e. set and

verified at design time), but the overall period of the major cycle is changed by varying

the tick periods. In addition to this, it was also determined that the flexibility of the

133

TTC scheduler could be further increased by allowing the major cycle to be composed

of segments with their own task sets and tick periods. When coupled with the existing

concept of multiple operating modes with unique task sets (Baker, Shaw 1988, Kopetz,

Nossal et al. 1998, Xu, Parnas 2000) this gave form to the construct of phases. The

Time-Triggered Multi Phase Cooperative (TTMPC) scheduler architecture combines all

these concepts in a single cooperative time-triggered scheduler.

In order to cope with situations and applications, where some limited form of pre-

emption is required, the following two separate architectures are developed and

evaluated (Sections 8.3, 8.4 and 8.5):

1. A hybrid scheduler based on the concept of the Time-triggered Hybrid presented

by Pont (Pont 2001).

2. A novel dual scheduler architecture that employs separate schedulers for the

cooperative tasks and the pre-emptive tasks.

Based on this evaluation, the dual scheduler architecture was selected due to its greater

flexibility.

These proposed architectures (the TTMPC alone, or the TTC / TTMPC in conjunction

with the TTP) allow the user to vary the amount of flexibility in the system so as to

implement solutions that range from highly predictable but rigid solutions to very

flexible solutions at the cost of reduced predictability. It should be noted that even in

the most flexible configuration, due to the completely time-triggered basis of the

architectures, it is always possible to determine when the next interrupt / pre-emption

will occur.

134

10.2.1.1 Features and limitations of the proposed architectures

The Time-triggered Multi Phase Cooperative (TTMPC) scheduler implements the

proposed architecture as follows (see sections 6.4 and 6.5 for more details):

 Support for multiple phases with unique task sets and tick periods.

 Support for automatic phase changes at the end of a finite duration phase. This

aids in the formation of segments of a major cycle.

 Support for forced phase change at any point in the cycle. The change is

enforced after all the tasks set to run in the tick with the phase change request

have executed. In case of a multi mode system, this functionality helps to jump

from one operating mode / state to an other.

 Support for changing the tick periods of a phase at run time. This effectively

changes the period of the major cycle in which that phase is included. The new

period can only be within a range that is specified during system initialisation so

as to allow minimum and maximum limits to be imposed at design time.

 While the system‘s operating mode and tick periods can be changed at run time,

the task execution orders in each phase remain the same as what is specified at

the design time.

 Support for transient overloads across phase boundaries in a major cycle.

Some of the key points of the cooperative + TTP architecture are as follows (see section

8.4):

 It has the ability to include pre-empting tasks in a predominantly cooperatively

scheduled system.

 One pre-empting task cannot pre-empt another pre-empting task.

135

 The periods and offsets of the pre-empting tasks do not have to be constrained to

multiples of a base period or the tick period of the cooperative tasks. This

allows fine timing control for these tasks.

 The periods of the tasks can be changed to any arbitrary value limited by the

scheduler‘s timer resolution at run time. However, stricter limits can be

imposed by the user to achieve a more predictable behaviour.

10.2.1.2 Predictability of Flexible Time-Triggered Systems

The increased flexibility afforded by the two proposed scheduler architectures has an

adverse effect on the predictability of the overall system.

Unlike a simple cyclic executive with a single task set and fixed task periods is highly

predictable or even determinable under some conditions (i.e. it can be found what task

the system would be running at any point in the future), the flexible time-triggered

architecture is not completely determinable (i.e. even in the worst case, at any point

during the execution, while it is known when the next tick will occur and what tasks

would be run next, it might not be possible to determine the state of the system at an

arbitrary point of time in the future). These issues were discussed in sections 6.6 and

8.5 for the cooperative and dual scheduler architectures respectively. In any case, even

in the most flexible configuration, in a flexible TT system, it can always be found out

when the next event or interrupt will occur in the system. It allows for the user software

to prepare for it and utilise techniques like the TRAP protocol to avoid conflicts in the

shared resources. This is better than an event-triggered system where even if statistical

limits can be placed on when an event might occur, the exact moment an event occurs

cannot be determined.

136

10.2.2 Internal combustion engine synchronisation

Synchronising with and controlling reciprocating internal combustion engines provides

a significant challenge to time-triggered systems. The execution of tasks has to be

synchronised with the internal position of the crank shaft (provided by the crank angle

sensor). Conventionally, this task is performed by using events which are generated on

the basis of internal orientation of the various engine parts. The use of the novel

flexible time-triggered scheduling with variable tick periods opens up the possibility of

using a time-triggered (TT) design in an application area that has seen wide spread use

of event-triggered (ET) designs and has no mention of purely time-triggered

implementations in the published literature.

A brief description of the contributions of this study is as follows:

 A crank sensor interface that could work efficiently with both event-triggered

and time-triggered task scheduling has been developed and tested. This

efficiency was obtained by using hardware DMAs to capture the pulses for time-

triggered implementation allowing the crank interface tasks to be polled at a rate

considerably lower than the expected rate of arrival of pulses.

 Synchronisation tests were carried out by providing the same crank signal

pattern to event-triggered, traditional time-triggered and flexible time-triggered

architectures. The results of the synchronisation tests indicate that while the

traditional TT based design is inadequate for use in this application area, the

flexible TT based design was able to keep itself synchronised with simulated

crank signal through various speed changes across the engine‘s operating range.

 Despite this improvement in synchronising ability, the performance of the ET

was better than that of the flexible TT (smooth tracking during speed changes).

137

However, the performance of the TT design is closely linked with its ability to

predict the next period. In case the TT design is actually controlling the engine

(fuel injection and moment of spark ignition) and in effect, the changes in the

crank signal, it should be possible to take this information into account so as to

make better predictions for the next cycle period.

 The proposed techinque of using a DMA to capture potentially noisy data gives

the flexible TT design an advantage over the ET design which has to capture

each transition as it arrives because it does not know, in advance, whether it is a

glitch or start of a normal pulse.

 It was also shown that increasing the resolution of the criteria used to predict the

next period (in this case, the period of the cycle) has a positive effect on the

synchronisation performance.

 The developed flexible TT solution can be used as a foundation for an engine

controller with highly predictable software.

10.2.3 Brushless DC motor control

Brushless DC motor (BLDCM) drives and 3 phase motor drives, in general, are

challenging for time-triggered systems because of the high rate of polling that is

required to quickly detect changes in the position sensors. While it is possible to run

such a motor with a static time-triggered architecture (like the Time-Triggered Hybrid

scheduler), using a flexible TT design allows the motor to be operated at high speeds

with reduced CPU usage compared to a static TT design.

In this case study a sensor based block commutation 3 phase drive was implemented for

a brushless DC motor in various architectures for comparison purposes. Only open loop

speed tests were carried out to investigate the effects of the design choices of the test

138

cases on the performance as closed loop tests might have compensated for the

performance differences by taking feedback into consideration.

The main contributions of this case study were as follows:

 The efficiency of various architectures was compared. While the efficiency of

the simulated ET was the best out of the four cases, the high rate static and

mixed rate flexible time-triggered implementations came around 94.8 % and

89.5% of the open loop event triggered implementation.

 Implications of the design choices on the predictability of the test cases were

discussed. With the static schedules, it was possible to determine when all the

pre-emptions would occur at design time. With the flexible TT, it was still

possible to determine how much time remained till the next pre-emption. Also,

limiting the period of the pre-empting task to integer factors of the cooperative

tick period had the effect of limiting the points in the cooperative tick where pre-

emption could occur.

10.3 Alternate Application Areas for Flexible Time-Triggered

Two potential alternate application areas for flexible time-triggered architecture are:

10.3.1 Long term tracking of geographical features

Land and mud slides are a cause of large number of casualties worldwide. The failure

mode of these slids may range from a few hours to several days (Rose, Hungr 2006) and

conditions that can lead to failures take even longer to come into effect (e.g. for mud

slides, water has to reach the failure prone fault surface which can take days after the

start of heavy rains). Signs of increased chances of failure include change in rate of

movement of the ground. Some possible methods that could be used to track the rate of

139

movement could be comprised include triangulation of position or the nodes (either

with the help of active beacons or by taking measurements of known fixed features),

measuring distances between adjacent nodes, strain gauges (for brittle surfaces), etc.

It is possible to use the proposed architectures for the implementation of battery

powered long term monitoring networks to monitor geographic slope stability. The

sensor nodes used for this application could be loosely based on the shared clock

scheduler architecture. Considering that at low risk times, the measurements have to be

taken at a very low rate (a couple of readings per day or even slower), keeping the

receivers powered on the slaves will be a waste of power. Alternately, the slave nodes

could power down their receivers for the majority of the time between the readings,

turning them on only a limited time before the synchronising tick message is expected.

The operation of the slave nodes can be based on the following steps:

1. Turn on receiver and enter a waiting state.

2. Upon receiving a valid tick message, use variable tick periods of a

synchronisation state to compensate for any timing error.

3. After the synchronisation state, take the measurements and send the relevant

results to the master for evaluating the situation. After evaluation of the

captured data, the master specifies the time till the next reading

4. The slave nodes go into power saving state for the specified duration.

The operation of the master node will differ from the slave nodes as it will have to send

out the synchronisation tick messages. In addition the master might keep its receiver on

all the time in order to detect reset on a slave and help it to initialize.

140

10.3.2 Wireless sensor networks

Wireless sensor networks are used to monitor and log physical and environmental data.

These are useful in a wide range of applications and are a topic of active research

(Werner-Allen, Lorincz et al. 2006, Xu, Rangwala et al. 2004, Cardei, Du 2005,

Sohrabi, Gao et al. 2000). Some of the main requirements for the nodes in wireless

sensor networks are:

 Battery management and life time maximisation.

 Reliability.

 Flexible configuration.

The flexible time-triggered architectures proposed in this thesis could be used for

implementation of decentralized wireless sensor network where the nodes are allowed

to run independently but also retain the capability to resynchronise if required. It is

difficult to go into more details at an abstract level as the nodes in the network are

usually highly specialized for specific applications (e.g. some require high data

transmission rates (Werner-Allen, Lorincz et al. 2006, Xu, Rangwala et al. 2004) while

others might require multi path data transmission for reliability in hostile

environments).

141

10.4 Future Work

This section outlines the areas where further work will help expand the understanding

and usefulness of the work presented in this thesis.

10.4.1 Scheduler architectures

The following items may require further work to expand the usefulness and reliability of

the scheduler architectures presented in this thesis:

 Integration of task guardians in the TTMPC and dual scheduler architectures

would help provide recovery options in the case of task overruns. The task

guardian for the TTC should be easily extendable to the TTMPC architecture.

 Reducing scheduling jitter from the scheduler side using code balancing or

single path programming. Single path implementation of the schedulers might

help with their certification for high reliability and safety critical applications (as

it limits the number of flow paths through the code.).

 Adapting existing automatic schedule determination techniques (such as TTSA1

and TTSA2 (Gendy, Pont 2008, Gendy 2009)) to take advantage of the multi

segment cycles. Implementation of efficient techniques could also open the path

for systems that are able to compute new static task sets at run time in response

to anticipation of changes in an operating environment.

 More work is required to be able to quantify the level predictability of a general

architecture and more specifically, an implemented system. This issue has been

highlighted but still remains unresolved (John 1988, Halang, Gumzej et al.

2000).

 The scheduler architectures presented in this thesis were limited to single

processor architectures. More research may be required to integrate this into

142

distributed shared clock scheduling. Some thoughts on this issue were presented

earlier in this chapter but more work may be undertaken for realization and

further analysis.

 The technique of varying the task periods can also be applied to dynamic

schedulers and should be studied in detail to understand the effects of such

changes on the system behaviour.

10.4.2 Internal combustion engines

The implementation of an engine controller based on the flexible TT architecture is

required to verify its feasibility. Work along these lines had to be abandoned due to

complications caused by a general absence of manufacturer‘s specifications and control

algorithms and the limited resources available. Without the implementation of the

controller, detailed performance comparisons between the conventional and proposed

architecture may not be carried out.

10.4.3 3 phase motor drives

The comparison of the efficiency for the different control schemes presented in this

thesis was limited due to the low resolution of the current measurements and the lack of

ability to apply constant loads at various speeds. These are required to understand in

detail the effects of various control schemes on the efficiency of the motor.

143

10.5 Final Conclusion

The work done in this thesis is aimed at exploring the possibility of applying a variation

of the standard time-triggered approach to a class of systems that are usually considered

to be outside of the domain of time-triggered solutions. A gap was identified in real-

time scheduling practices and accordingly, the implications of varying task and cycle

periods at run time were studied.

The two flexible TT scheduler architectures (the purely cooperative – TTMPC and the

limited pre-emption dual scheduler TTxC + TTP) which have been developed have

opened up the possibility of trading the predictability for performance and vice versa

depending on the design choices. This flexibility and its advantages were highlighted in

the results and observations of the engine synchronization and brushless DC motor case

studies.

The software developed for both the case studies can form the foundation framework

for controllers utilising flexible TT architectures.

144

References

Adler, P. (1998) ―Apollo 11 Program Alarms‖, NASA, WWW website (last accessed

13
th

 August 2009), URL: http://www.hq.nasa.gov/office/pao/History/alsj/a11/a11.

1201-pa.html.

Allworth, S.T. (1981) ―An Introduction to Real-Time Software Design‖. Macmillan,

London.

ARM (2004) ―ARM7TDMI - Technical Reference Manual‖, ARM, available online

(last accessed 16
th

 September 2011), URL: http://infocenter.arm.com/help/topic/

com.arm.doc.ddi0210c/DDI0210B.pdf.

ARM (2010) ―Cortex-M3 Devices - Generic User Guide‖, ARM, available online (last

accessed 16
th

 September 2011), URL: http://infocenter.arm.com/help/topic/com.arm.

doc.dui0552a/DUI0552A_ cortex_m3_dgug.pdf.

Atmel (2006) ―AVR443: Sensor-based control of three phase Brushless DC motor‖,

Atmel, available online (last accessed 13
th

 August 2009), URL: http://www.atmel.

com/dyn/resources/prod_documents/doc2596.pdf.

Atmel (2007) ―AVR449: Sinusoidal driving of 3-phase permanent magnet motor using

ATtiny261/461/861‖, Atmel, available online (last accessed 13
th

 August 2009), URL:

http://www.atmel.com/dyn/resources/prod_documents/doc8030.pdf.

Audsley, N., Tindell, K. and Burns, A. (1993) ―The end of line for static cyclic

scheduling?‖, in the Fifth Euromicro Workshop on Real-Time Systems, 22-24 Jun

1993, pp. 36-41.

Austen, I. (2003) ―A Chip-Based Challenge to a Car's Spinning Camshaft‖, New York

Times, WWW website (last accessed 13
th

 August 2009), URL: http://www.nytimes.

com/2003/08/21/technology/what-s-next-a-chip-based-challenge-to-a-car-s-spinning-

camshaft.html?sec=&spon=&pagewanted=1.

Babaoglu, Ö., Marzullo, K. and Schneider, F.B. (1990). ―Priority Inversion and its

Prevention‖, Department of Computer Science, Cornell University.

Baker, T.P. and Shaw, A. (1988) ―The cyclic executive model and Ada‖, in the

proceedings of the Real-Time Systems Symposium, pp. 120-129.

Barr, M. (2003) ―Choosing an RTOS‖. Embedded Systems Programming, WWW

websit (last accessed 12 August 2011), URL: http://www.eetimes.com/discussion/

other/4024563/Special-Report-Choosing-an-RTOS.

Bellis, M., ―The History of the Automobile‖, About.com, WWW website (last accessed

13
th

 August 2009), URL: http://inventors.about.com/library/weekly/aacarsgasa.htm.

145

Bertorelli, P. (2010) ―Lycoming's IE2: Perfect Timing?‖ AV Web, WWW website (last

accessed 30
th

 July 2011), URL: http://www.avweb.com/blogs/insider/AvWebInsider

_LycomingEyeEeeTwo_202445-1.html [July 30, 2011].

Bosch (2004) ―25 years of Bosch Motronic: Think tank under the bonnet‖, Bosch,

WWW website (last accessed 28
th

 July 2011) URL: http://www.bosch.com/content/

language2/html/3074_3184.htm.

Brown, W. (2001) ―AN857: Brushless DC motor control made easy‖, Microchip, online

application note (last accessed 8
th

 May 2011), URL: http://ww1.microchip.com/

downloads/en/AppNotes/00857a.pdf.

Burns, A. (1995) ―Generating feasible cyclic schedules‖, Control Engineering Practice,

volume 3 issue 2, pp. 151-162.

Buttazzo, G.C. (2005a) ―Hard Real-Time Computing Systems: Predictable Scheduling

Algorithms and Applications‖ Second edition edn., Springer.

Buttazzo, G.C. (2005b) ―Rate monotonic vs. EDF: judgment day‖. Real-Time Systems,

volume 29 issue 1, pp. 5-26.

Buttazzo, G.C., and Gai, P. (2006) ―Efficient EDF Implementation for Small Embedded

Systems‖, in the proceedings of the 2nd Int. Workshop on Operating System

Platform for Embedded Real-Time applications (OSPERT 2006), Dresden, Germany,

July 2006

Cardei, M. and Du, D.Z. (2005) ―Improving Wireless Sensor Network Lifetime through

Power Aware Organization‖ Wireless Networks, volume 11 issue 3.

Chapman, S.J. (1985) ―Electric Machinery Fundamentals‖ McGraw-Hill.

Continental Motors, ―Continental Motors: Company history timeline‖ homepage of

Continental Motors, WWW website (last accessed 28
th

 July 2011), URL:

http://www.genuinecontinental.aero/history.aspx.

Dempsey, M.W. (2011) ―Aircraft Piston Engines – time for some new technology?‖,

Get Aviation blog, WWW website (last accessed28th July 2011), URL: http://get-

aviation.com/blog/aviation-thoughts/aircraft-piston-engines-%E2%80%93-time-for-

some-new-technology.

Denton, T. (1995) ―Automobile electrical and electronic systems‖ Arnold, ISBN 0-340-

58604-4

Deverge, J. and Puaut, I. (2005) ―Safe measurement-based WCET estimation‖, Proc. of

the 5th Workshop on Worst-Case Execution Time Analysis, held in conjunction with

the 17th Euromicro Conference on Real-Time Systems, July 2005 2005, pp. 7-10.

Dijkstra, E.W. (1970) ―Notes on structure programming‖, Technological University of

Eindhoven.

146

Engblom, J., Ermedahl, A., Sjoedin, M., Gustafsson, J. and Hansoon, H. (2003) ―Worst-

case execution-time analysis for embedded real-time systems‖, Journal of Software

Tools for Technology Transfer (STTT), volume 4 issue 4, pp. 437-455.

Eyles, D. (2004). ―Tales from the lunar module guidance computer‖, Advances in the

Astronautical Sciences, volume 118.

FAA (2008) ―Pilot's Handbook of Aeronautical Knowledge‖ U.S. Department of

Transport, available online (last accessed 19
th

 July 2011), URL:

http://www.faa.gov/library/manuals/aviation/pilot_handbook/media/FAA-H-8083-

25A.pdf

Fidge, C.J. (2002) ―Real-Time Scheduling Theory‖ Software verification research

center, The University of Queensland.

Ganssle, J. and Barr M. (2003) ―Embedded systems dictionary‖ CMP Books.

Gendy, A.K. (2009) ―Techniques for scheduling time-triggered resource-constrained

embedded systems‖, Ph.D. thesis, University of Leicester.

Gendy, A.K. and Pont, M.J. (2008) ―Automatically configuring time-triggered

schedulers for use with resource-constrained, single-processor embedded systems‖,

IEEE Transactions on Industrial Informatics, volume 4 issue 1, pp. 37-46.

Gendy, A.K. and Pont, M.J. (2007) ―Towards a generic 'single-path programming'

solution with reduced power consumption‖, Proceedings of the ASME 2007

International Design Engineering Technical Conferences & Computers and

Information in Engineering Conference (IDETC/CIE 2007), 4-7 September 2007.

Grasblum, P. (2001) ―AN1916D: 3-Phase BLDC Motor Control with Hall Sensors

Using DSP56F80x‖ Motorolla, application note (last accessed 8
th

 May 2008) URL:

http://www.motorola.com.cn/semiconductors/mcudsp/forms/appnote/AN1916.pdf.

Halang, W.A., Gumzej, R., Colnaric, M. and Druzovec, M. (2000) ―Measuring the

performance of real-time systems‖ Real-Time Systems, volume 18 issue 1, pp. 59.

Hanif, M.A. (2004) ―Brushless Motor Speed Controller‖, M.Sc. dissertation, University

of Leicester.

Hanif, M.A., Pont, M.J. and Ayavoo, D. (2008) ―Implementing a simple but flexible

time triggered architecture for practical deeply embedded applications‖, 4th UK

Embedded Forum, September 2008, Southampton, UK.

Hughes, Z.H. and Pont, M.J. (2008) ―Reducing the impact of task overruns in resource-

constrained embedded systems in which a time-triggered software architecture is

employed‖, Transactions of the Institute of Measurement and Control, volume 30,

pp. 427-450.

147

Hughes, Z.H. and Pont, M.J. (2004) ―Desing and test of a task guardian for use in TTCS

embedded systems‖ UK Embedded Forum, October 2004, University of Newcastle

upon Tyne, pp. 16-25.

Jeffay, K., Stanat, D.F. and Martel, C.U. (1991) ―On non-preemptive scheduling of

periodic and sporadic tasks‖, the 12 th IEEE Symposium on Real-Time Systems 1991,

pp. 129-139.

Jinnelov, M. (2002) ―Analysis of an Engine Control System in Preparation of a Real-

Time Database‖, M.Sc. thesis, Linköpings University.

John, A.S. (1988) ―Misconceptions about Real-Time Computing: A Serious Problem for

Next-Generation Systems‖, Computer, volume 21, issue 10, pp. 10-19.

Joinathan, J. (1994) ―Safety-Critical Computing: Hazards, Practices, Standards, and

Regulation‖, University of Washington, WWW website (last accessed 12
th

September 2011) URL: http://staff.washington.edu/jon/pubs/safety-critical.html.

Jones, E.M. (2011) ―The first lunar landing‖, NASA, WWW website (last accessed 20
th

September 2011), URL: http://next.nasa.gov/alsj/a11/a11.landing.html.

Kalinsky, D. (2001) ―Context switch.‖ Embedded Systems Programming, volume 14

issue 1, pp. 94; 105.

Kopetz, H., Nossal, R., Hexel, R., Kruger, A., Millinger, D., Pallierer, R., Temple, C.

and Krug, M. (1998) ―Mode handling in the Time-Triggered Architecture.‖ Control

Engineering Practice, volume 6, issue 1, pp. 61.

Kopetz, H. (1991) ―Event-triggered versus time-triggered real-time systems‖,

Proceedings of the International Workshop on Operating Systems of the 90s and

Beyond, Springer-Verlag, pp. 87-101.

Laplante, P.A. (1997) ―Real-Time Systems Design and Analysis - An Engineer's

Handbook‖, IEEE Press.

Lehoczky, J., Sha, L. and Ding, Y. (1989) ―The rate monotonic scheduling algorithm:

exact characterization andaverage case behaviour‖, Proceedings of Real Time

Systems Symposium, pp. 166-171.

Levenson, N. (1995) ―Medical Devices: The Therac-25‖, Software: System safety and

computers. Addison-Wesley.

Little, M. (2009) ―Continental Motors Announces Turbo FADEC Receives FAA

Certification‖, Continental Motors, press release (last accessed 28
th

 July 2011), URL:

http://www.genuinecontinental.aero/DOCUMENTS/CertifiedTurboFADEC.pdf.

Liu, C.L. and Layland, J.W. (1973) ―Scheduling algorithms for multiprogramming in a

hard real-time environment‖, Journal of the ACM, volume 20, issue 1, pp. 40-61.

Liu, J.W.S. (2000) ―Real-Time Systems‖, Prentice Hall.

148

Locke, C.D. (1992) ―Software architecture for hard real-time applications: Cyclic

executives vs. fixed priority executives.‖ The Journal of Real-Time Systems, volume

4, pp. 37-53.

Lycoming (2010) ―Lycoming iE2 Technology Offered on Lancair Evolution‖,

Lycoming, WWW website (last accessed 15
th

 July 2011), URL: http://www.

lycoming.com/news-and-events/press-releases/release-07-26-10a.html.

Maaita, A.A. (2008) ―Techniques for Enhancing the Temporal Predictability of Real-

Time Embedded Systems Employing a Time-Triggered Software Architecture‖,

Ph.D. thesis, University of Leicester.

Maaita, A. and Pont, M.J. (2005) ―Using ‗planned pre-emption‘ to reduce levels of task

jitter in a time-triggered hybrid scheduler‖, Proceedings of the Second UK

Embedded Forum, October 2005, University of Newcastle upon Tyne, pp. 18-35.

Martin, F.H. (1994) ―Apollo 11: 25 years later‖, NASA, WWW website (last accessed

13
th

 September 2011), URL: http://www.hq.nasa.gov/alsj/a11/a11.1201-fm.html.

McCabe, T.J. (1976) ―A Complexity Measure‖, IEEE Transactions on Software

Engineering, volume 2, issue 4, pp. 12-308.

Mead, J.S. (1991) ―Rover 820 Owners Workshop Manual‖, Haynes Publishing Group.

Mezzetti, E., Holsti, N., Colin, A., Bernat, G. and Vardanega, T. (2008) ―Attacking the

source of unpredictablity in the instruction cache behaviour‖, proceedings of the 16th

International Conference on Real-Time and Network Systems, 4 November 2008, pp.

151.

Motorola (2001) ―Reference Manual: M-CORE with M210/M210S Specifications‖,

Motorola Inc.

NXP (2008) ―UM10114: LPC21xx and LPC22xx User manual‖, NXP, Online user

manual (last accessed 8
th

 December 2010), URL: http://www.nxp.com/documents

/user_manual/UM10114.pdf

Oxford English Dictionary (1989) ―Oxford English Dictionary 2nd edition‖, Oxford:

Clarendon Press.

Phatrapornnant, T. and Pont, M.J. (2006) ―Reducing Jitter in Embedded Systems

Employing a Time-Triggered Software Architecture and Dynamic Voltage Scaling‖,

IEEE Transactions on Computers, volume 55, issue 2, pp. 113-124.

Pont, M.J., Kurian, S., Wang, H. and Phatrapornnant, T. (2007) ―Selecting an

appropriate scheduler for use with time triggered embedded systems‖, 12th European

Conference on Pattern Languages of Programs 2007.

Pont, M.J. (2001) ―Patterns for Time-Triggered Embedded Systems‖. Addison Wesley.

149

Proctor, F.M. and Shackleford, W.P. (2001) ―Real-time Operating System Timing Jitter

and its Impact on Motor Control‖, proceedings of the 2001 SPIE Conference on

Sensors and Controls for Intelligent Manufacturing II, Vol. 4563-02.

Pulkrabek, W.W. (1997) ―Engineering Fundamentals of the Internal Combustion

Engine‖, Prentice-Hall.

Puschner, P. (2003) ―The single-path approach towards WCET-analysable software‖,

Proceedings of IEEE International Conference on Industrial Technology, December

2003, pp. 699-704.

Puschner, P. and Burns, A. (2002a) ―Transforming execution-time boundable code into

temporally predictable code‖, Proceedings of the IFIP 17th World Computer

Congress - TC10 Stream on Distributed and Parallel Embedded Systems: Design and

Analysis of Distributed Embedded Systems (DIPES 2002), pp. 163-172.

Puschner, P. and Burns, A. (2002b) ―Writing temporally predictable code‖, Proceedings

of the 7th IEEE International Workshop on Object-Oriented Real-Time Dependable

Systems, pp. 85-91.

Rose, N.D. and Hunger, O. (2006) ―Forcasting potential slope failure in open pit mines -

contingency planning and remediation‖, International Journal of Rock Mechanics &

Mining Sciences, volume 44, pp. 308-320.

RoverMEMS - MPi/SPi, anonymous online technical manual (last accessed 19
th

 July

2011), URL: http://www.gaima.co.uk/peter/RoverMEMS.pdf.

Savier (1995) ―Electronic ignition for aircraft (part 2)‖, Sport Aviation, WWW website

(last accessed 16 July 2011), URL: http://www.lightspeedengineering.com/

Technicalities/sport_aviation95.html.

Scheler, F. and Schroder-Preikschat, W. (2006) ―Time-triggered vs. event-triggered: A

matter of configuration?‖, GI/ITG Workshop on Non-Functinal Properties of

Embedded Systems, March 2006, VDE Verlag GmbH.

Sha, L., Abdelzaher, T., Arzen, K., Cervin, A., Theodore, B., Burns, A., Buttazzo, G.,

Caccamo, M., Lehoczky, J. and Mok, A.K. (2004) ―Real Time Scheduling Theory: A

Historical Perspective‖, Real Time Systems, volume 28, pp. 101-155.

Shearer, D. (2008) ―Greening Up' Blue Skies‖, Aircraft Maintenance Technology,

WWW website (last accessed: 16 July 2011), URL: http://www.amtonline.com/

publication/article.jsp?pubId=1&id=6564&pageNum=1.

Short, M.J., Pont, M.J. and Fang, J. (2008) ―Exploring the Impact of Task Preemption

on Dependability in Time-Triggered Embedded Systems: a Pilot Study‖, Euromicro

Conference on Real-Time Systems, 2-4 July 2008, pp. 83-91.

Short, M.J. (2010) ―The Case For Non-preemptive Deadline-driven Scheduling In Real-

time Embedded Systems‖, Proceedings of the World Congress on Engineering, June

30 - July 2 2010.

150

Smith, D. (2007) ―General Aviation: FADEC: Making a Piston Engine Act Like a

Turbine‖, Aviation today, WWW website (last accessed 31
st
 July 2011), URL:

http://www.aviationtoday.com/am/categories/bga/General-Aviation-FADEC-

Making-a-Piston-Engine-Act-Like-a-Turbine_13506.html.

Smithsonian, ―Smithsonian National Air and Space Museum: Rutan Voyager‖, WWW

website (last accessed 28
th

 July 2011), URL: http://www.nasm.si.edu/collections

/artifact.cfm?id=A19880548000.

Sohrabi, K., Gao, J., Ailawadhi, V. and Pottie, G.J. (2000) ―Protocols for self-

organization of a wireless sensor network‖, IEEE Personal Communications, volume

7, issue 5.

Spuri, M. and Buttazzo, G. (1996) ―Scheduling aperiodic tasks in dynamic priority

systems‖, Real-Time Systems, volume 10, issue 2, pp. 179-210.

Stewart, D.B. (2001) ―Twenty-Five Most Common Mistakes with Real-Time Software

Developement‖, International Conference on Embedded Systems, April, 2001.

Stewart, D.B. and Khosla, P.K. (1991) ―Real-Time Scheduling of Sensor-Based Control

Systems‖, Eighth IEEE Workshop on Real-Time Operating Systems and Software in

conjunction with 17th IFAC/IFIP Workshop on Real-Time Programming, May 1991,

pp. 144-150.

STMicroelectronics (2011) ―Reference Manual: STM32F101xx, STM32F102xx,

STM32F103xx, STM32F105xx and STM32F107xx advanced ARM-based 32-bit

MCUs‖, Online reference manual (last accessed 19
th

 July 2011), URL: http://www.

st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/R

EFERENCE_MANUAL/CD00171190.pdf.

TCM (2009) ―Full Authority Digital Engine Controls‖, Teledyne Continental Motors,

Online document (last accessed 17
th

 September 2011), URL: http://www.

genuinecontinental.aero/documents/fadec.ppt.

Vallerio, K.S. and Jha, N.K. (2003) ―Task graph extraction for embedded system

synthesis‖, Proceedings of the 16th Int. Conference on VLSI Design concurrently

with the 2nd International Conference on Embedded Systems Design, 4-8 January

2003, IEEE Computer Society, Washington DC, pp. 480-486.

Wang, H. and Pont, M.J. (2008) ―Design and Implementation of a Static Pre-emptive

Scheduler with Highly-Predictable Behaviour‖, 4th UK Embedded Forum 2008, pp.

88-94.

Werner-Allen, G., Lorincz, K., Welsh, M., Marcillo, O., Johnson, J., Ruiz, M. and Lees,

J. (2006) ―Deploying a Wireless Sensor Network on an Active Volcano‖, IEEE

Internet Computing, volume 10, issue 2, pp. 18.

Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., Bernat,

G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I., Puschner, P.,

Staschulat, J. and Stenström, P. (2008) ―The worst-case execution-time problem —

151

Overview of methods and survey of tools‖, ACM Transactions on Embedded

Computing Systems, volume 7, issue 3.

Xu, J., Parnas, D.L. (1990) ―Scheduling processes with release times, deadlines,

precedence and exclusion relations‖, IEEE Transactions on Software Engineering,

volume 16, issue 3, pp. 360-369.

Xu, N., Rangwala, S., Chintalapudi, K.K., Ganesan, D., Broad, A., Govindan, R. and

Estrin, D. (2004) ―A wireless sensor network For structural monitoring‖, Proceedings

of the 2nd international conference on Embedded networked sensor systems,

November 03-05, 2004, Baltimore, MD, USA.

Xu, J. (2007) ―A software architecture for simplifying verification of system timing

properties‖, Eighth ACIS International Conference on Software Engineering,

Artificial Intelligence, Networking, and Parallel/Distributed Computing.

Xu, J. (2003) ―On inspection and verification of software with timing requirements‖,

IEEE Transactions on Software Engineering, volume 29, issue 8, pp. 705-720.

Xu, J. and Parnas, D.L. (1993) ―On satisfying timing constraints in hard - real - time

systems‖, IEEE Transactions on Software Engineering, volume 19, issue 1, pp. 70-

84.

Xu, J. and Parnas, D.L. (2000) ―Priority Scheduling Versus Pre-Run-Time Scheduling‖,

The International Journal of Time-Critical Computing Systems, volume 18, pp. 7-23.

Yedamale, P. (2003) ―AN885: Brushless DC (BLDC) Motor Fundamentals‖,

Microchip, Application note (last accessed 12
th

 July 2011), URL: http://ww1.

microchip.com/downloads/en/AppNotes/00885a.pdf.

Yodaiken, V. (2002) ―Against priority inheritance‖, Finite State Machine Labs

(FSMLabs), URL: http://www.math.unipd.it/~tullio/SCD/2007/Materiale/Yodaiken-

200207.pdf.

