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Abstract

This project is devoted to the study of solid-liquid interfaces in pure Fe

and Fe-C alloys using molecular simulation. It consists of three parts: first,

we use the coexisting phases approach to calculate melting phase diagrams of

several recent Fe-C interaction potentials, such as Embedded Atom Method

(EAM) potential of Lau et al. [1], EAM potential of Hepburn and Ackland [2],

and Analytic Bond Order (ABOP) potential of Henriksson and Nordlund [3].

Melting of both bcc (ferrite) and fcc (austenite) crystal structures is investi-

gated with C concentrations up to 5 wt%. The results are compared with the

experimental data and suggest that the potential of Hepburn and Ackland is

the most accurate in reproducing the melting phase diagram of the ferrite but

the austenite cannot be stabilised at any C concentration for this potential.

The potential of Lau et al. yields the best qualitative agreement with the

real phase diagram in that the ferrite-liquid coexistence at low C concentra-

tions is replaced by the austenite-liquid coexistence at higher C concentrations.

However, the crossover C concentration is much larger and the ferrite melting

temperature is much higher than in the real Fe-C alloy. The ABOP potential

of Henriksson and Nordlund correctly predicts the relative stability of ferrite

and austenite at melting, but significantly underestimates the solubility of C

in the solid phases.

Second, we develop a new direct method for calculating the solid-liquid in-

terfacial free energy using deformation of the solid-liquid coexistence system.

The deformation is designed to change the area of the interface, while preserv-

ing the volume of the system and crystal structure of the solid phase. The



interfacial free energy is calculated as the deformation work divided by the

change of the interfacial area. The method is applied to the bcc solid-liquid

interface of pure Fe described by the Hepburn and Ackland potential. The ob-

tained results are somewhat different from those calculated by the established

methods so further development and analysis are required.

Third, we investigate the dependence on C concentration of the bcc solid-

liquid interfacial free energy of Fe-C alloy described by the Hepburn and Ack-

land potential. We use the method proposed by Frolov and Mishin [4] which is

analogous to the Gibbs-Duhem integration along the solid-liquid coexistence

line. The calculations are performed for three different crystal orientations

(100), (110) and (111), allowing us to determine the anisotropy of the interfa-

cial free energy and its dependence on C concentration along the coexistence

line. Although the precision is somewhat limited by the high computational

cost of such calculations.

This PhD project is a part of the MintWeld project; Modelling of Inter-

face Evolution in Advanced Welding (www.le.ac.uk/mintweld), funded by the

European Commission under the Framework Seven Programme (FP7).
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Chapter 1

Introduction

1.1 MintWeld

This PhD project is a part of the MintWeld project - Modelling of Inter-

face Evolution in Advanced Welding (www.le.ac.uk/mintweld) funded by the

European Commission under the Framework Seven Programme (FP7). The

MintWeld project aims to establish the capability to design and engineer weld-

ing processes with a multi-scale, multi-physics computational modelling ap-

proach. The particular attention will be paid to the evolution of the solid-liquid

interface.

Partners of the project:

• TATA Steel UK Limited, London, UK

• Delft University of Technology, Delft, The Netherlands

• Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland

• Institute of Welding, Gliwice, Poland

• Norwegian University of Science and Technology, Trondheim, Norway
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• KTH Royal Institute of Technology, Stockholm, Sweden

• TWI Ltd, Cambridge, UK

• University College Dublin, Dublin, Ireland.

• University of Leicester, Leicester, UK

• University of Oxford, Oxford, UK

• Frenzak Sp. Zoo, Mikolow, Poland.

The project aims to understand better the technology for welding deep sea

gas and oil transportation systems in an engineering research project using

advanced methods to revolutionise the welding industry.

This PhD project is linked with the ab initio group which is creating

new interaction potentials for molecular simulations suitable for simulations

at higher temperatures close to melting and the phase field group which re-

quires anisotropy properties of explored structures which can be calculated

through Molecular Dynamics simulations. Both groups are based at the Ecole

Polytechnique Federale de Lausanne, in Lausanne, Switzerland.

The aim of this PhD project is to model by computer the processes of

solidification and interface evolution in simple models of metals and alloys

using classical molecular simulations. The simulations are performed using one

of the open source molecular dynamics packages DLPOLY [5]. To achieve the

goals of the project DLPOLY needs to be modified, so a substantial component

of this project is to extend the functionality of DLPOLY in order to handle a

wider range of interatomic potentials and methods of the solid-liquid interfacial

free energy calculation. Within the project a microscopic understanding of the
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properties of solid-liquid interfaces, as well as the processes taking place during

the solidification of metals and alloys have been developed.

For investigation of the properties of steel several different effective in-

teraction potentials for Fe and Fe-C systems can be found in the literature.

Unfortunately, most of them are for low temperature states of iron (ferrite)

and therefore their abilities to describe properties of austenite are rather poor.

Only some of those which include C-C interactions (therefore higher concen-

trations of C) have been selected as candidates for modelling of iron in a high

temperature state [6, 7, 8].

1.2 Molecular Dynamics simulations

Computer molecular simulations is a powerful tool for gaining fundamental

knowledge of materials processes and properties, and for providing input mod-

els for continuum models and materials design. The capabilities of such simu-

lations continue to grow with the progress in modern computer technology.

Here, the main ideas behind Molecular Dynamics (MD) simulations are

briefly outlined. The description is based on D. Frenkel and B. Smit- ‘Under-

standing Molecular Simulation: From Algorithms to Applications ’[9], ‘Intro-

duction to Molecular Dynamics Simulation ’by M. Allen [10] and M. Allen’s

and D. Tildesley’s book ‘Computer Simulation of Liquids ’[11].

Molecular dynamics simulations are computer simulations carried out to

understand the time evolution of molecular assemblies in terms of their struc-

ture and microscopic interactions between them. Providing a guess at the

interactions between particles, we obtain ’exact’ predictions of the bulk prop-
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erties of our model system. These predictions are ’exact’ in the sense that

they can be made as accurate as we like, depending on our computer budget.

Simulations act as a bridge between theory and experiment. At the same time,

we may also run simulations which are difficult or even impossible to carry out

in a laboratory. MD simulations are in many respects very similar to real ex-

periments. During a real experiment, we prepare a sample of the material that

we wish to study. We connect this sample to a measuring instrument (e.g., a

thermometer or manometer), and we measure the properties of interest over a

certain time interval. If our measurements are subject to statistical noise (as

most measurements are) then the longer we average, the more accurate our

measurement becomes. In a MD simulation, we follow exactly the same ap-

proach. First, we prepare a sample: we select a model system consisting of N

particles of mass mi (i = 1, 2, 3..N) with given initial positions and velocities.

Then we solve Newton’s equations of motion where ri is the position of particle

i, fi is the force acting on particle i due to the interaction with other particles

and (possibly) external fields, and the dots over ri denote time differentiation.

mi ~̈ri = ~fi(~r1, ..., ~rN) (1.1)

Equation (1.1) is a system of 3N 2nd order differential equations, which cannot

be solved exactly, but can be solved approximately using numerical algorithms.

The most popular is the Velocity Verlet (VV) [13] algorithm. Writing the

equation of motion in terms of Taylor series for a particle i at time t−∆t and

t+∆t:

~ri(t−∆t) = ~ri(t)−∆t~̇ri(t) +
∆t2

2!
~̈ri(t)−

∆t3

3!

...
~r i(t) +O(∆t4) (1.2)
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~ri(t+∆t) = ~ri(t) + ∆t~̇ri(t) +
∆t2

2!
~̈ri(t) +

∆t3

3!

...
~r i(t) +O(∆t4) (1.3)

Adding equations (1.2) and (1.3):

~ri(t−∆t) + ~ri(t +∆t) = 2~ri(t) + ∆t2~̈ri(t) +O(∆t4) (1.4)

Thus

~ri(t +∆t) = 2~ri(t)− ~ri(t−∆t) +
∆t2

mi

~fi(t) +O(∆t4). (1.5)

To find the new position and velocity the VV relies on the two previous steps.

The velocity at midpoint at time t + ∆t/2 is calculated from the position at

time t and t +∆t:

~vi(t +∆t/2) =
~ri(t+∆t)− ~ri(t)

∆t
(1.6)

~ri(t+∆t) = ~ri(t) + ∆t~vi(t +∆t/2). (1.7)

Similarly, velocity at the midpoint between t−∆t and t:

~vi(t−∆t/2) =
~ri(t)− ~ri(t−∆t)

∆t
(1.8)

The acceleration can be found from an approximation of the second derivative:

~ai(t) =
~vi(t+∆t/2)− ~vi(t−∆t/2)

∆t
=

~fi(t)

mi
(1.9)
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Hence

~vi(t+∆t/2) = ~vi(t−∆t/2) +
∆t

mi

~fi(t) (1.10)

And finally velocity at time t+∆t can be written as:

~vi(t+∆t) = ~vi(t +∆t/2) +
∆t

2

~fi(t +∆t)

mi
(1.11)

In the VV algorithm ~vi and ~ri are calculated in the three steps described by

equations (1.7), (1.10) and (1.11).

1.2.1 Interaction potentials

Atoms and molecules consist of electrons and nuclei which obey the laws of

quantum mechanics. However, solving the Schrödinger equation is much more

difficult than solving Newton’s equation, especially for systems containing hun-

dreds of atoms. Thus the influence of electrons on the nuclei can be replaced

with an effective interaction, which only depends on the positions of nuclei.

~fi = − ∂

∂~ri
U(~r1, ..., ~rN) (1.12)

where ~fi is the force acting on the particle i and U is the potential energy

of the system of N particles. The types of interactions between particles can

be classified according to the number of particles involved in the interaction.

Therefore, the potential energy can be formally represented as the sum of

12



single-particle interactions, pair-interactions, triplets, etc.

U (~rN) =
∑

i

u1 (~ri) +
∑

i

∑

j>i

u2 (~ri, ~rj) +
∑

i

∑

j>i

∑

k>j

u3 (~ri, ~rj, ~rk) + ...

(1.13)

Where u1 (~ri) is the externally applied potential field or the effects of the

container walls and u2 represents interaction between pairs of particles, etc.

The most commonly studied systems in molecular dynamics are described only

in terms of pair interactions, while higher order interactions are neglected.

However, it was found that for metals it is not enough to provide only pair

potentials, since pair potentials do not have environmental dependence and

do not account for the directional nature of the bond. This problem was

solved in different ways described in the chapter devoted to different interaction

potential for iron systems.

Potential based methods of computer simulations based on atomistic mod-

els perform fast calculations of the system energy and classical interatomic

forces, and provide access to systems containing millions of atoms. This

technique enables researchers to run simulations for tens or even hundreds

of nanoseconds.

Interatomic potentials parameterise the configuration space of the material

and express U as a relatively simple function of all atomic positions (config-

uration point). The forces are then computed (usually analytically) as coor-

dinate derivatives of U . This computation of U and ~fi is a simple and very

fast numerical procedure with an order-N scaling. It does not involve any

quantum-mechanical calculations although they are often used during the de-

velopment of potentials. The potential functions contain fitting parameters,
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which are adjusted to reproduce selected properties of the material known

from experiment and/or first-principles calculations. Once the fitting process

is complete and parameters fixed, the potential is used in all simulations of

the given material. The underlying assumption is that a potential which gives

accurate energies/forces on configuration points used during the fit will also

give reasonable results for configurations between and beyond those points.

This property of potentials is referred to as ‘transferability ’and is the most

adequate measure of their quality [14].

1.2.2 Thermodynamic properties

Macroscopic properties of materials (e.g. density, temperature, structure) de-

pend on microscopic properties of particles (i.e. mass, shape, velocity, inter-

action). Thus a variety of thermodynamic properties can be calculated from

computer simulations. Computer simulations enable predictions to be made of

the thermodynamic properties of systems for which there is no experimental

data, or for which experimental data is difficult or impossible to obtain. The

thermodynamic properties are usually defined by a small set of parameters

such as number of particles N , temperature T , and pressure P . The system

evolves in time and changes its point in phase space, hence thermodynamic

properties of the system can be written in terms of a position in phase space.

Thus macroscopic properties of the system are defined as an average over all

possible thermodynamic states of the system (ensemble average). If the system

contains many particles, it can be assumed that it is an ergodic system, for

which the ensemble average of some property A is equal to the time average

14



(ergodic hypothesis):

〈A 〉 = ¯A (t) (1.14)

The internal energy is easily obtained from a simulation as the ensemble av-

erage of the energies of the states that are examined during the course of the

simulation:

U = 〈U〉 = 1

M

M∑

i=1

Ui (1.15)

where M is the number of time steps.

The pressure is usually calculated via the virial theorem of Clausius. The

virial is defined as the expectation value of the sum of the products of the

coordinates of the particles and the forces acting on them. This is usually

written W =
∑

~ri~̇pi where ri is a position of the particle i and ~̇pi is the time

derivative of the momentum. The theorem of Clausius states that the virial is

equal to −3NkBT for 3-dimensional systems.

If the particles interact through a pairwise potential, the contribution to

the virial from the intermolecular forces can be derived. The contribution to

the virial from the interaction u(rij) between atoms i and j is given by:

W =

[

xi
∂

∂xi
+ xj

∂

∂xj
+ yi

∂

∂yi
+ yj

∂

∂yj
+ zi

∂

∂zi
+ zj

∂

∂zj

]

u(rij) (1.16)

Two atoms i and j separated by a distance rij :

rij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (1.17)
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Since:

xi
∂rij
∂xi

= xi
(xi − xj)

rij
and xj

∂rij
∂xj

= −xj
(xi − xj)

rij
(1.18)

and similarly for the y and z coordinates, we can apply the chain rule, ∂/∂xi =

(∂/∂rij)(∂rij/∂xi), as follows:

Wreal =

[
(xi − xj)

2

(rij)
+

(yi − yj)
2

(rij)
+

(zi − zj)
2

(rij)

]
∂u(rij)

∂rij
= rij

∂u(rij)

∂rij
(1.19)

When we include the contribution from all pairs of atoms, we obtain:

Wreal =
N∑

i=1

N∑

j=i+1

rij
∂u(rij)

∂rij
(1.20)

In an ideal gas, the only forces are those due to interactions between the gas

and the container and it can be shown that the virial in this case equals −3PV .

This result can also be obtained directly from PV = NkBT . Forces between

the particles in a real gas or liquid affect the virial and hence the pressure. The

total virial for a real system is equal to the sum of an ideal gas part (−3PV )

and contribution due to interaction between the particles. The result obtained

is:

W = −3PV +
N∑

i=1

N∑

j=i+1

rij
∂u(rij)

∂rij
= −3NkBT (1.21)

If ∂u(rij)/∂rij is written as −fij , the force acting between atoms i and j, then

we have the following expression for the pressure:

P =
1

V

[

NkBT − 1

3

N∑

i=1

N∑

j=i+1

rijfij

]

(1.22)

The forces are calculated as part of a molecular simulation, and so little ad-
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ditional effort is required to calculate the virial and thus the pressure [12].

Notice that the equations above (1.16)-(1.22) are for the pair interaction only,

thus applying many-body interaction potential pressure calculation should be

adapted for the potential.

The temperature T is directly related to the kinetic energy, K , of the

system as follows:

K =
N∑

i=1

|~pi|2
2mi

=
kBT

2
(3N −Nc) (1.23)

where ~pi is the total momentum of particle i and mi is its mass, Nc, is the

number of constrains on the system. In molecular dynamics simulation the

total linear momentum of the system is often constrained to a value of zero,

which has the effect of removing three degrees of freedom from the system and

so Nc would be equal to 3.
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1.2.3 Periodic Boundary Conditions

Figure 1.1: 2D parallelepiped pe-

riodic boundary conditions for a sys-

tem of three particles.

To avoid surface effects in MD simulations

periodic boundary conditions have to be

used. For instance for a system of 1000 atoms

in a 10x10x10 cube, around half of the par-

ticles are on the outer faces, this can have a

large effect on the measured properties. Even

for a system of 106 atoms, the surface atoms

amount to 6% of the total. Thus in simula-

tions, if the particle leaves the basic simula-

tion box, attention can be switched to the in-

coming periodic image. Figure 1.1 illustrates

2D cubic periodic boundary conditions.

The common experience in simulations is that periodic boundary conditions

do not have a big effect on the equilibrium thermodynamic properties and

structure of fluids. However, investigation of liquid-solid interface periodic

boundary conditions are required in order to consider interfacial properties.

Hence for the investigations of the liquid-solid interface two interfaces have to

be created to match periodic boundary conditions. This is described in the

chapter devoted to phase diagram calculations.
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1.3 Structure of the thesis

In order of investigate interfacial properties of the Fe-C system we begin with

testing different existing interaction potentials by computing phase diagrams

and comparing them with experimental data. Using the best suitable potential

for our calculations we obtained solid-liquid interfacial free energy of the pure

Fe system. Different methods of interfacial free energy calculations have been

employed including a method developed within the project which uses the de-

formation of the solid-liquid coexisting system. Using results of solid-liquid

interfacial free energy for one component Fe system we applied the method by

Frolov and Mishin [4] to obtain interfacial free energy along the coexistence

line. The thesis consists of three main chapters: testing of the selected recent

interaction potentials for the Fe-C system, methods of interfacial free energy

calculation and implementation of Frolov and Mishin method for the Fe-C

system. The final chapter summarises the PhD project and provides recom-

mendations for future work within the area. The description of the software

and hardware used within the project can be found in the Appendix.
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Chapter 2

The melting phase diagrams

We investigate low concentration Fe-C alloys (up to 5wt%), since within the

MintWeld project properties of steels are to be explored. We test how selected

potentials for the Fe-C system predict melting properties of the system by

calculating melting phase diagrams.

The Finnis-Sinclair (FS) method [15] and the embedded atom method

(EAM) [16] are the most widely used potential formats for metallic systems.

They have been applied to simulations of interfaces, dislocations, fracture, dif-

fusion, structural transformations, solidification and melting, and many other

processes. Over the past two decades, these potential forms have produced an

excellent record of delivering reasonable values of different properties of metals

including binary systems [17].
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Figure 2.1: Melting phase diagram obtained experimentally for the Fe-C alloy [18].
The region of interest is highlighted in red.

2.1 Methodology

Figure 2.1 illustrates the experimental Fe-C melting phase diagram [18]. The

region of interest (highlighted in red) consists of austenite (γ) face-centred

cubic structure (fcc) and ferrite (δ) body-centred cubic structure (bcc). In

order to obtain a phase digram, coexisting concentrations of C in the solid and

liquid states have to be found for a range of temperatures below the melting

temperature of the pure Fe system. Such coexisting points can be calculated

for different crystal structures (bcc and fcc are the structures we are interested

in).
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The coexistence of two phases is characterised by the thermal equilibrium,

mechanical equilibrium and material equilibrium:

Tsol = Tliq, Psol = Pliq, and µFe,sol = µFe,liq, µC,sol = µC,liq (2.1)

where T is temperature, P is pressure, µ is chemical potential and subscripts

sol and liq indicate that the property is for solid or liquid states respectively. In

recent years a quantitative computing of phase diagrams has become possible.

With the use of computers, simultaneous optimisations of thermodynamic and

phase equilibrium data can be applied to the critical evaluation of binary and

ternary systems.

Figure 2.2: Schematic illustrations of the

common tangent construction of Gibbs free

energy curves for both the liquid and solid

states at the constant temperature.

Traditionally phase diagrams are

obtained by combination of the

common tangent construction [19]

and Gibbs-Duhen integrations (GDI)

[20]. Within the method, Gibbs

free energy should be calculated for

a specified temperature for different

concentrations of the second compo-

nent of the mixture for both states.

The common tangent construction

simultaneously minimises the total

Gibbs energy and ensures the equal-

ity of the chemical potentials, thereby showing that these are the equivalent cri-

teria for equilibrium between liquid and solid phases [19]. Figure 2.2 schemat-

ically shows Gibbs free energy curves for both liquid and solid states with a
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common tangent at constant temperature. This can be done for other tem-

peratures to obtain a smooth coexistence line. Unfortunately it turns out

to be inefficiently time consuming, since it requires a significant number of

free energy calculations for different concentrations of the second component.

However the rest of the coexistence line can be calculated by using GDI, with-

out performing additional free energy calculations. The method is equivalent

to the numerical integration of the Clausius-Clapeyron equation. When two

phases α and β coexist at a given temperature T and pressure P , their chemi-

cal potentials must be equal. Changing both the pressure and the temperature

by infinitesimal amounts dP and dT , respectively, the difference in chemical

potential, µ, of the two phases becomes:

dµα − dµβ = −(sα − sβ)dT + (vα + vβ)dP. (2.2)

where s and v are the molar entropy and volume. Along the coexistence line

µα = µβ and T∆s = ∆h, hence:

dP

dT
=

sα − sβ
vα + vβ

=
∆h

T∆v
(2.3)

As ∆h, T and ∆v can be computed directly in a simulation, dP/dT can be

calculated from equation (2.3). To solve equation (2.3) predictor-corrector

algorithms can be used [21, 22]. This method has been applied to locate

the vapour-liquid [20, 23] and solid-liquid coexistence curve of the Lennard-

Jones fluid [24]. The Gibbs-Duhem integration is potentially a very efficient

technique for tracing a coexistence curve. However the numerical errors in the

integration of equation (2.3) may result a large deviations of the computed

coexistence points from the true coexistence curve. Similarly, any error in the

location of the initial coexistence points will lead to an incorrect estimate of
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the coexistence curve. Such errors can be reduced by performing additional

calculations of more points where two phases are in equilibrium using the

common tangent technique. As was mentioned before, such calculations require

a number of long simulations making the method inefficiently time consuming.
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2.2 The coexisting phase approach

Figure 2.3: Initial system structure

with two solid-liquid interfaces. Par-

allelepiped boundary conditions ap-

plied, thus the system consists of two

interfaces. Fe particles are displayed

in green and C in red. The interfaces

are perpendicular to the z-axis.

Diffusion coefficients of carbon have been cal-

culated for different carbon concentrations of

the Fe-C system using different interaction

potentials. It was found that carbon dif-

fuses relatively fast inside both liquid and

solid states. Results for carbon diffusion in

the system are provided in the section de-

voted to the diffusion coefficients and densi-

ties in the Fe-C system. Thus it was decided

to take advantage of diffusion properties of

Fe-C systems and use the so called coexist-

ing phase approach [25, 26]. The methodol-

ogy of the coexisting phase approach, used

for determining the melting phase diagrams,

is described below.

Temperature and pressure can be con-

trolled in molecular simulations, while com-

putations for chemical potential are not so

unequivocal. To control chemical potential,

the grand-canonical ensemble has to be applied, which allows fluctuation of

the total number of particles. This is complicated for the interstitial systems

such as Fe-C. The coexisting phase approach may be used when a solid-liquid

interfacial system is created within a simulation box. As long as the simulation

time is sufficiently long to allow carbon to move through the solid phase to

and from the interface, the equilibrium concentrations and hence the equality
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Figure 2.4: BCC crystal structure of the Fe-C system with all possible positions of
C. Fe particles are shown in grey and C in green.

of chemical potentials for Fe and C, can be reached. This explains why the

ability of carbon to diffuse relatively fast in the system is an important factor

when implementing the coexisting phase approach.

The melting temperature for the pure iron system can be found by running

simulations of the solid-liquid 0% carbon concentration system at different

temperatures and looking for a temperature where the system neither melts

nor freezes. Using the known melting temperature for the pure iron system

and the shape of the experimental phase diagram, we can guess approximate

carbon concentrations in the liquid and solid states for the temperatures be-

low the melting temperature of the pure iron system. Configurations with two

interfaces placed against the z-direction as shown in Figure 2.3 were created

to match periodic boundary conditions. Figure 2.3 illustrates a configuration

where the solid phase is placed between two liquid parts, whilst due to periodic

boundary conditions, liquid can be placed between two crystals. As was men-

tioned before, two crystal types had to be created: ferrite (body-centred cubic)

and austenite (face-centred cubic). These two crystallographic structures with

all possible carbon positions are shown in Figures 2.4 – 2.5.
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Figure 2.5: FCC crystal structure of the Fe-C system with all possible positions of
C. Fe particles are shown in grey and C in green.

Figure 2.6 displays parameters monitored during the simulations. These

are total and potential energy, volume of the simulation box, pressure compo-

nents and density profile with time evolution. The density profile illustrates

how the system density as a function of coordinate z (z-axis is perpendicular

to the interface) changes during the simulation. There are three regions on

the plot of the density profile, light blue is for liquid phase and stripy is for

solid phase. Using the isothermal-isobaric constant - NPT ensemble, temper-

ature and pressure of the simulation can be controlled and equilibrium can

be achieved at the desired temperature. Within this ensemble the pressure

is adjusted by adjusting the volume. Figure 2.6 illustrates parameters of the

system which reached equilibrium. The system energy and volume go up and

down and pressure components fluctuate around zero meaning that the sys-

tem is neither melting nor freezing. Also, we can see coexistence of solid and

liquid phases on the plot for total density profiles. The system will either

melt or freeze if the simulations temperature and/or initial concentrations of

carbon are too far from values of coexistence. Once we obtain the coexistence

conditions at some temperature, it is not hard to find approximate carbon

concentrations at the lower temperatures and apply the coexistence approach
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Figure 2.6: Energy, volume, pressure and density profile of the system monitored
during the simulation. A system of 16293 (Fe - 16128, C-165) particles was used.
T=1700K

to precise C concentrations.

We obtained detailed information about the structural and dynamic prop-

erties of the solid-liquid interfaces. During simulations, we could observe car-

bon concentration changes in liquid and solid parts of the system. Monitoring

iron and carbon density profiles (Figure 2.7) we could make the carbon density

function smooth using filtering techniques and see carbon distribution in the

system across the interface. Oscillations of the density represent the crystal

layers in the solid phase, while smooth densities (cyan for Fe and pink for C)

are shown, which better represent the average density in each phase and how

it changes across the interface (top picture). In the figure (bottom picture),

the filtered carbon density profile is shown. To determine the average den-

sity of Fe and C in the crystal phase at the coexistence point we average over

the density profile oscillations [27]. Observing that carbon concentrations in
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Figure 2.7: The top figure illustrates Fe density profiles obtained during the sim-
ulation including filtered density functions (cyan for Fe and pink for C). The lower
figure shows the C concentration in the system at one step of the long simulation.
Both figures display results for the Hepburn and Ackland potential [2] at T = 1760K.

the liquid and solid remain around the same values we could assume that the

system is equilibrated in terms of carbon concentration.

To obtain density profiles the system should be split into bins in the z-

direction hence knowing number of particles in each bin and the volume of

the bins, the density can be calculated as a discrete function of z. As was

mentioned before using this function, we can estimate the amount of liquid

and solid in the system and see if the system is melting/solidifying. Within

the project DLPOLY has been modified such that profiles can be obtained

for the density of both components, stress tensor and potential energy of the

system. More detailed information about this modification of the code can be

found in the chapter devoted to the Frolov and Mishin method.

For the simulations, systems of size ≈ 30 × 30 × 60Å have been used.

For each simulation up to 16 CPUs were used (hardware used in the project

is described in Appendix B). Knowing the carbon distribution in the system
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during a short-time simulation we could observe how carbon diffuses from the

liquid state part into the solid state part and/or backwards. Thus changing

initial concentrations and/or temperature an equilibrium of the system can be

reached. Depending on how far the initial carbon concentrations in the solid

and liquid states are from equilibrium concentrations, longer simulations may

be required. However it was found that on average a 5ns simulation was enough

to reach the equilibrium if initial carbon concentrations and temperature are

relatively close to the equilibrium conditions. Each 5ns simulation was split

into up to ten short simulations, such that temperature could be adjusted at

different stages of the whole simulation.

2.3 Interaction Potentials for Fe-C system

As was mentioned above, two of the tested potentials Lau et al. [1], and

Hepburn and Ackland [2] use the Finnis-Sinclair (FS) [15] and the embedded

atom method (EAM) [16] correspondingly. One of the challenges in FS and

EAM simulations is the lack of flexibility in addressing chemical effects. Each

time a new solute B is added to a metal A to examine its effect on a particular

property, a new binary potential AB must be constructed (unless it already

exists). The construction of an accurate binary potential is a highly demanding

task. This explains why a common strategy in this field is to generate new

potentials that are not only accurate but also ‘universal ’.

The third tested potential by Henriksson and Nordlund for the Fe-C system

[3] uses the analytical bond-order potential (ABOP) formalism ([28] and refer-

ences therein) it is a suitable approach for a potential that is able to describe

different bonding types. It is essentially a modified form of the Brenner[29, 30]

and Tersoff [31] potentials, which were originally developed for C-H and Si,
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respectively. The ABOP formalism has been used previously for metals, semi-

conductors, and combinations of these, such as Ga-As, [28] Si-C, [32] and Pt-C

[33].

2.3.1 Hepburn and Ackland potential

This section introduces an empirical potential based on insights from density

functional theory, showing covalent-type bonding for carbon. This is a many-

body interaction potential by Hepburn and Ackland [2] which describes the

interaction of carbon and iron across a wide range of defect environments. The

potential can be used for billion atom MD simulation systems, as it has EAM

form [16]:

U(rij) =
1

2

∑

i

∑

j 6=i

V(α,β)(rij) +
∑

i

F(α)(ρα), (2.4)

ρα =
∑

i 6=j

Φ(α,β)(rij) (2.5)

where V(α,β), Φ(α,β), and F(α) are parametrised functions dependent on element

types, α and β. Since the Hepburn and Ackland potential describes Fe-C

interaction α and β can be Fe or C. F(α) represents the local bond-structure

energy of atom i of type α, so called embedded function. In the Hepburn and

Ackland potential the interaction between iron and carbon is not symmetric:

V(α,β) ≡ V(β,α) (2.6)

Φ(α,β) 6= Φ(β,α). (2.7)
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In other words, Fe atom has different density function for interaction with Fe

and C atoms, Φ(Fe,Fe) and Φ(Fe,C), respectively. And the same for C atom

interacting with Fe and atoms, i.e. Φ(C,Fe) and Φ(C,C), respectively. This

requires changes in the DLPOLY code for EAM potentials, since the initial

code sets one density function for both Φ(α,β) and Φ(β,α). Thus the code was

modified by introducing the potential (reading tables of the functions) and

force calculations. Equation (2.4) can be split into two parts:

U(rij) =
1

2

∑

i

∑

j 6=i

V(α,β)(rij)

︸ ︷︷ ︸

u1

+
∑

i

F(α)(ρα)

︸ ︷︷ ︸

u2

(2.8)

Hence the force acting on the particle k can be written as:

fk = −∇ku = −(∇ku1 +∇ku2). (2.9)

For the first part −∇ku1 of the equation (2.8):

−∇ku1 =
∑

i

∑

j 6=i

V ′
(α,β)∇krij (2.10)

where V ′
(α,β) is the first derivative of V(α,β) with respect to r.

∇krij = ∇k|ri − rj| =
ri − rj
rij

δik −
ri − rj
rij

δjk (2.11)
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Introducing γ which is a type of particle k (γ = Fe, C), then it can be written

that:

−∇ku1 = −1

2

∑

i

∑

i 6=j

V ′
(α,β)(rij)

rij
(ri − rj)δik +

1

2

∑

i

∑

i 6=j

V ′
(α,β)(rij)

rij
(ri − rj)δjk =

−1

2

∑

j 6=k

V ′
(γ,β)(rkj)

rkj
(rk − rj) +

1

2

∑

i 6=k

V ′
(α,γ)(rik)

rik
(ri − rk) =

−1

2

∑

j 6=k

[
V ′
(γ,β)(rkj) + V ′

(β,γ)(rjk)
] rk − rj

rkj
.

(2.12)

Where V(γ,β) = V(β,γ) are from equation (2.6). For −∇ku2 from equation (2.8):

−∇ku2 = −
∑

i

F ′
α(ρi)∇kρi (2.13)

using (2.5) and (2.11) it can be written that

∇kρi = ∇k

∑

j 6=i

Φ(α,β)(rij) =
∑

j 6=i

Φ′
(α,β)(rij)∇krij =

∑

j 6=i

Φ′
(α,β)(rij)

[
ri − rj
rij

δik −
ri − rj
rij

δjk

]

.

(2.14)

−∇ku2 = −
∑

j 6=k

F ′
k(ρk)Φ

′
(γ,β)(rkj)

rk − rj
rkj

+
∑

i 6=k

F ′
i (ρi)Φ

′
(α,γ)(rkj)

ri − rk
rik

=

−
∑

j 6=k

[
F ′
k(ρk)Φ

′
(γ,β)(rkj) + F ′

j(ρj)Φ
′
(β,γ)(rkj)

] rk − rj
rkj

.

(2.15)

Equations (2.9)-(2.15) describe modifications in the forces calculations which

have been implemented in DLPOLY code. Tables which describe pair interac-
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tions, density and embedded functions had to be created: three pair interaction

function for Fe-Fe, Fe-C and C-C, density functions for Fe-Fe, Fe-C, C-Fe and

C-C and embedded functions for Fe and C. This has been done by modifying

tables taken from the LAMMPS Molecular Dynamics Simulator [86]. Notice

that the initial DLPOLY code assumes that Φ(α,β) = Φ(β,α) and uses eight

functions for a binary system. As was mentioned before, the modified code

reads tables of functions in a way that all functions can be used.

According to Hepburn and Ackland the potential allows the correct predic-

tion of the interactions between carbon and a range of defects in iron, many

of which are intractable with other potentials.

2.3.2 Lau et al. potential

This is a many-body interaction potential for an alloy of arbitrary point de-

fect concentration, body-centred cubic α-Fe supersaturated in C. According to

authors [1] simulations with this interaction potential shows agreement with

carbon-vacancy (nC-nVa) point defect cluster formation energies for defects

that were determined by first principle calculations [34].

To create this potential, Lau et al. hypothesise that a better description

can be achieved by fitting the potential to the energies and also to the configu-

rations of point defects and clusters thereof as predicted by density functional

theory (DFT). For this purpose an adopted FS formalism was used [15]. The

description of a C-C interaction was provided because of the requirement to

distinguish defect clusters including more than 1 C atom. This formalism es-

sentially is EAM where the embedded function in equation (2.4) is a square

root.

34



Similar to the previously described potential by Hepburn and Ackland, the

potential by Lau et al. is not symmetric in the sense of interaction between

Iron-Carbon and Carbon-Iron, since the density functions for Fe-C and C-

Fe are not equal. This led to problems in using this potential with the initial

software code, since DLPOLY uses one set of data for Iron-Carbon and Carbon-

Iron interaction. Thus changes in the DLPOLY code are required, in order to

use this potential. Using the FS formalism initially implemented in the code,

Fe-C and C-Fe interactions were separated with different fitting parameters

for the density functions. Similarly, to modifications in DLPOLY for EAM,

we change the code so that it creates nine functions for a binary system.

2.3.3 Potential by Henriksson and Nordlund

The analytic bond-order interaction potential by Henriksson and Nordlund has

been developed for the iron-carbon system for use in molecular simulations.

According to the paper by Henriksson and Nordlund [3] the potential has

been successfully fitted to the most important crystalline polytypes among the

many known metastable iron carbide phases - cementite and Hagg carbide.

Properties of other carbides and the simplest point defects obtained using

this potential match well with available data from experiments and density-

functional theory calculations.

The potential uses the analytic bond-order formalism (ABOP) ([28] and

references therein) which is appropriate for a potential that is able to describe

different bonding types. As was mentioned before ABOP is a modified form

of the Brenner and Tersoff potentials, therefore to implement this potential,

the Tersoff potential coded in DLPOLY was modified.
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As reported by Henriksson and Nordlund, fairly good results were obtained

testing the potential on the carbides Fe7C3 and Fe4C. The results were less than

15% off experimental and density-functional theory properties of Fe carbides.

Parameters for Fe-Fe interactions developed by Muller et al. [8] were used,

which gives the correct dependence of the relative stability of fcc and bcc

phases on temperature. The potential for the C-C interaction is taken from

[35, 36].
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Figure 2.8: Phase diagram obtained using Hepburn and Ackland potential. Exper-
imental data [18] is shown as a solid line and bcc coexisting points are represented
in crosses.

2.4 Results

Hepburn and Ackland Potential. Figure 2.8 illustrates results calculated

using the Hepburn and Ackland potential. Obtained coexisting points for bcc

are shown in crosses and experimental results [18] in a solid line. Concentration

is represented by percentage of the atoms. It can be seen that compared

with the experimental data, the potential is good in reproducing the melting

properties of bcc Fe; the potential predicts the shape of the melting diagram

similar to the experimental results. However simulations of the fcc Fe-C system

with up to 20% carbon showed that the potential fails to predict the austenite

crystal stabilisation.
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Figure 2.9: Phase diagram obtained using the Lau et al. potential. Experimental
data is shown as a solid line, bcc coexisting points are represented in crosses and fcc
coexisting points are in circles.

Lau et al. potential. The melting phase diagram obtained using the Lau

et al. potential is shown in Figure 2.9. Again results for bcc are shown by

crosses and experimental data is the solid line, whilst coexisting points for fcc

are shown by circles. Comparing with experimental data, the obtained results

agree quite well in the sense of the shape of the diagram. Austenite becomes

more stable than bcc at the higher carbon concentrations, so the model phase

diagram is qualitatively similar to the experimental. However as can be seen,

quantitative agreement is rather poor. The melting temperature of the pure

Fe bcc solid is about 2400K, that is about 600K more than the experimental

melting temperature. The Fe-Fe interaction which directly affects the melting

temperature of the pure iron system is taken from the Rosato [39] poten-

tial which was not created to describe properties of Fe at high temperatures.

The bcc phase remains more stable compared to fcc at all temperature be-
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Figure 2.10: Phase diagram obtained using the ABOP Henriksson and Nordlund
potential. Experimental data is shown as a solid line, bcc coexisting points are
represented in crosses and fcc coexisting points are in circles.

low melting and at a temperature about 1820K fcc-liquid coexistence appears

with 12.5% of carbon in the liquid and 9.5% of carbon in the fcc solid phase.

While in the real alloy, fcc becomes more stable than bcc with much lower

concentrations.

Henriksson and Nordlund potential. Figure 2.10 shows results obtained

with the ABOP Henriksson and Nordlund potential. On the figure the same

representation of bcc, fcc and expreimental data for previously presented phase

diagrams is used. As can be seen, the potential also overestimates the melting

temperature of the Fe-C alloy, but it correctly predicts the changes of the

stable phase at melting from bcc to fcc as the carbon concentration in the

liquid is increased by about 3%. However the problem with this model is that

it predicts much lower carbon concentration within the fcc solid phase than
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shown by the experimental data.

Potential for the future calculations. After comparing phase diagrams

obtained using the selected potentials, the Hepburn and Ackland potential

was selected. It predicts coexisting points for the bcc Fe-C alloy fairly close

to the coexistence line obtained experimentally. Therefore for all calculations

described in the chapters below the Hepburn and Ackland potential has been

used. The results shown are for the bcc structure, since it was found that using

the Hepburn and Ackland potential, the fcc structure is unstable.

2.5 Density and diffusion coefficients.

For the three tested potentials densities inside the liquid and solid have been

calculated. This simplifies the creation of initial liquid-solid systems with coex-

isting carbon concentrations. Moreover, diffusion coefficients were calculated

for carbon inside the liquid and solid states. Figures 2.11 and 2.12 show

results for densities of iron and carbon in the solid and liquid states obtained

using the Hepburn and Ackland potential. Here we present results only for the

Hepburn and Ackland potential since this potential was chosen for all future

calculations. From the diffusion coefficients, shown in Figure 2.13 it can be

seen that carbon diffuses fairly rapidly in both liquid and solid. This makes

it possible to use the coexisting phase approach for the Fe-C systems as was

mentioned above. Figure 2.13 compares obtained results with the experimental

data [37],[38], and shows relativity good quantitative agreement.
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Figure 2.11: Fe density in the liquid and solid states obtained by the Hepburn and
Ackland potential.

Figure 2.12: C density in the liquid and solid states obtained by the Hepburn and
Ackland potential.
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Figure 2.13: Diffusion coefficients for C inside the liquid and solid states obtained
by the Hepburn and Ackland potential including experimental data in coloured lines
[37],[38]
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Figure 2.14: Logarithmic dependence of the diffusion coefficients for C on reciprocal
temperature inside the liquid and solid states obtained by the Hepburn and Ackland
potential.

Using the obtained diffusion coefficients and the Arrhenius equation:

D = D0e
−E/RT (2.16)

we calculated the activation energy for the diffusion. D0 is the diffusion coef-

ficient when the temperature goes to infinity, R is the universal gas constant

and E is the activation energy for diffusion process. Figure 2.14 illustrates

logarithmic dependence of the diffusion coefficient on reciprocal temperature

which was used to predict D0s and D0l. Obtained activation energy for the

diffusion of carbon in the solid is Es = 2.128 × 104 cal/mol and in the liquid

El = 2.448× 104 cal/mol.
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Chapter 3

Interfacial free energy

calculation

The crystal-melt interfacial free energy γ, is the work required to create a unit

area of crystal and its coexisting melt interface. Its anisotropy (i.e., the de-

pendence of γ on the orientation of the crystal with respect to the interface) is

also of particular interest for pattern formation in solidification; for example,

the anisotropy can determine the dendrite growth direction in directional so-

lidification [40]. Even small anisotropies are important, as they are necessary

for the stable growth of dendrites [41]. The interfacial free energy has been

the focus of numerous studies [42] – [57] primarily due to its importance in

crystal nucleation and growth [58] – [63].

Direct experimental determinations of γ are usually based on contact angle

measurements [64, 65]. Such measurements are quite difficult and have been

done only for a handful of materials [66]. The lack of reliable direct experi-

mental methods for determining γ and its anisotropy has motivated a growing

number of studies aimed at computing γ and its anisotropy for model systems

via molecular simulation [47] – [57].
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Currently, three qualitatively different approaches are being employed to

determine the crystal-melt interfacial free energy in computer simulations: the

cleaving method [67], the Capillary Fluctuation (CF) method [47] (both of

which have been used within the MintWeld project and are described below

in this chapter) and Classical Nucleation Theory (CNT)[68] (this method is

also briefly described in this chapter). Within the project a new deformation

method has been invented which uses the deformation of liquid and crystal

systems by keeping the system volume and crystal structure constant. This

chapter aims to discuss the new method and compare the results with the

cleaving and capillary fluctuation methods.
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3.1 Capillary fluctuation method

Figure 3.1: Sample geometry

from the (100) interface simulation.

Spheres are coloured according to

whether they are part of the crystal

(light grey) or liquid (dark grey).

The capillary fluctuation method, which ex-

amines the magnitude of capillary fluctua-

tions in the profile of a thin strip of the inter-

face, [49] – [53], [55], [57] has been used over

the past few years. Figure 3.1 illustrates the

simulation geometry. Spheres are coloured

according to whether they are part of the

crystal (light grey) or liquid (dark grey) as

determined by the value of the order param-

eter calculated as described in [50].

For a macroscopically rough interface, the

size of the capillary fluctuation modes is re-

lated to the interfacial stiffness γ̃ which is

given in terms of the interfacial free energy

γ by the formula:

γ̃(θ) = γ + d2γ/dθ2 (3.1)

where θ is the angle between the instantaneous local normal to the interface

and the average orientation for the reference flat interface. By simulating

a number of interfaces with different crystal orientations and measuring the

average magnitude of the fluctuation modes, stiffness can be found from the

simulations and the anisotropic interfacial free energy can be extracted.

Within the method, interfacial free energy is obtained from the interface

fluctuation approximately, thus making the method ‘indirect ’and less accurate.
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Figure 3.2: The cleaving of the bulk hard-sphere system by two moving walls.
Spheres are assigned types 1 and 2 based on their position with respect to the
cleaving plane (dashed line).

The capillary fluctuation approach was first applied to the hard-sphere system

[57]. Within the MintWeld project interfacial free energy for the pure Fe

system and Fe-C alloys has been obtained by the capillary fluctuation method

for three crystal orientations.

3.2 Cleaving method.

Within the “cleaving” method, separate bulk crystal and melt systems pre-

pared at the crystal-melt coexistence conditions are transformed along a con-

tinuous path that brings them in contact with each other, creating an interface.

Thermodynamic integration is performed along the path in order to determine

the reversible work involved in the transformation process. The value of γ is

then obtained as the work, divided by the area of the created interface.

In this method external “cleaving” potentials are used to separate the liquid

and crystal, which are at the coexisting temperatures and densities. Solid and
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liquid are placed next to each other and to merge them into a coexisting

interface, the potentials are removed. This approach uses only hard-sphere

interactions in the order to cleave the bulk hard-sphere systems and this allows

the application of the Broughton-Gilmer cleaving procedure [47].

The “cleaving” process is shown in Figure 3.2 [48]. Spheres are assigned

types 1 and 2 based on their position with respect to the cleaving plane (dashed

line). Two walls of type 1 and 2, which interact only with spheres of similar

type, are placed on the opposite sides of the cleaving plane, so that initially

there are no collisions between walls and spheres (as shown in the diagram).

The system is then cleaved by moving the walls in directions indicated by the

arrows. The walls do not interact with the spheres when the distance from the

walls to the cleaving plane is larger than the sphere radius.

When the wall are gradually moved towards each other, starting from po-

sition zi (initial) and finishing at zf , the spheres of different types no longer

face each other at the cleaving plane. The work per unit area is

W =

∫ zf

zi

P (z) dz (3.2)

where P (z) is the pressure measured as a function of the walls’ position.

The crystal-liquid interfacial free energy can be measured in the following

four steps (Figure 3.3):

1. Cleaving the bulk crystal by the inserting two walls at the cleaving plane

and moving them in z-direction;

2. Cleave the bulk liquid in a similar way;

3. Match the cleaved crystal and liquid by changing the periodic bound-
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Figure 3.3: Cleaving method in 4 steps: cleaving the bulk crystal, cleave the bulk
liquid, match the cleaved crystal and liquid by changing the periodic boundary
conditions and move the walls back to their initial positions.
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ary conditions, while keeping the crystal and liquid restricted by the

respective cleaving walls;

4. Slowly move the walls back on their initial positions.

According to [69] obtained results using this method are about 10% higher

than that determined from experiments. Within the MintWeld project inter-

facial free energy between the crystal and its melt have been calculated by the

cleaving method for the pure iron for three crystal orientations: (100), (110)

and (111). Results are presented later in the thesis in the section devoted to

the comparison of the interfacial free energy obtained using different methods.
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3.3 Classical Nucleation Theory

Classical nucleation theory (CNT) can be applied to a wide range of under-

cooling temperatures to directly estimate the interfacial free energy. The tem-

perature dependence of the interfacial energy can also be calculated with this

method. According to CNT [70], to form a small solid sphere of radius r in a

supercooled liquid, the change in the Gibbs free energy can be expressed as:

∆Gr = −4

3
πr3∆GV + 4πr2γSL (3.3)

where γSL is the orientationally averaged solid-liquid interfacial energy and

∆GV is the Gibbs free energy difference per unit volume between solid and

liquid phases at the same temperature. Based on experimental results [71]

[47], there is an empirical relation between ∆GV and the latent heat of fusion

[48]:

∆GV
∼= LV

∆T

Tm
(3.4)

where LV is the latent heat of fusion per unit volume at the equilibrium melting

temperature, Tm is the equilibrium melting temperature, and ∆T = (Tm − T )

is the undercooling temperature. The critical nucleus radius is obtained from

equation (3.3):

r∗ =
2γSL
∆GV

∼=
(
2γSLTm

LV

)
1

∆T
. (3.5)

Notice that equations above use ‘thin wall approximation ’[72]. Molecular

dynamic simulations can be used to determine the size of the critical radius

as a function of ∆T , so that interfacial free energy can be obtained. For

most materials, the indirect estimates of this quantity are obtained from the
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nucleation rate measurements, using the (approximate) relationship between

γSL and the nucleation rate from the classical nucleation theory (or variants

thereof). However, since this approach yields an orientationally averaged value

of γSL, it is unable to resolve the anisotropy.
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a) b)

– liquid – solid

Lx
Ly

Lz

sxLx
syLy

szLz

Figure 3.4: Deformation of the solid-liquid system: a) initial system, b) after
deformation.

3.4 Deformation method

The deformation method for a crystal and its melt interfacial free energy cal-

culation in Molecular Dynamics simulations has recently been invented. Below

a description of the method including the obtained results is presented.

3.4.1 Idea

The idea of the deformation method is to take an equilibrated solid-liquid

interfacial system of size (Lx, Ly, Lz) and deform it into a system of size

(sxLx, syLy, szLz), as shown in Figure 3.4, where sx, sy, sz > 0 are the scaling

factors. If we manage to deform the system in such a way that the final state

of the bulk solid and liquid phases is the same as the initial state, then the

only change in the system is the change in the area of the interfaces:

∆A = 2(sxsy − 1)LxLy . (3.6)
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If we measure the reversible work, W , required to perform the deformation,

then the solid-liquid interfacial free energy can be determined as:

γsl =
W

∆A
. (3.7)

The deformation of the system is carried out at constant temperature. To

preserve the state of the bulk liquid, we simply need to preserve its volume.

This can be done by setting sz = (sxsy)
−1.

Preserving the state of the bulk solid is more complicated since we need

to preserve both its volume and structure. Let’s view the solid as consisting

of crystal layers parallel to the x-y plane. One possible way to preserve its

structure is to squeeze the system in the z direction to half its original size,

i.e. sz = 1/2, and rearrange the atoms so that a pair of neighboring layers is

merged into one crystal layer with the same structure as the original layer. So,

if Ri = (Xi, Yi, Zi) are the coordinates of atoms in the ideal crystal structure,

then their coordinates after the deformation are:

R̄i = (X̄i, Ȳi, Z̄i) = (sxXi + dx,i, syYi + dy,i, szZi + dz,i) , (3.8)

where di = (dx,i, dy,i, dz,i) is the displacement vector of atom i required to

recover the original crystal structure after the deformation.

For example, consider a (100) oriented bcc crystal (see Figure 3.5). The

smallest crystal block that can be deformed in such a way has the size (Lx, Ly, Lz) =

(a, a, 2a), where a = 3

√

2/ρs is the length of the unit bcc cube with ρs be-

ing the density of the solid, and contains four atoms with coordinates R1 =

(1/4, 1/4, 1/4),R2 = (3/4, 3/4, 3/4),R3 = (1/4, 1/4, 5/4),R4 = (3/4, 3/4, 7/4)

54



Figure 3.5: Splitting of bcc structure with (100) orientation into layers in the z-
direction.

in units of a. If we choose the scaling factors sx = sy =
√
2, sz = 1/2,

and the displacement vectors d1 = (
√
2/4, 0, 1/8), d2 = (

√
2/4, 0,−1/8),

d3 = (−
√
2/4, 0, 1/8), d4 = (−

√
2/4, 0,−1/8) in units of a, then the size

of the crystal block after deformation will be (L̄x, L̄y, L̄z) = (
√
2a,

√
2a, a) and

the atoms will be in the original (100) oriented bcc crystal structure. Other

orientations of the bcc crystal, as well as the fcc and other crystal structures,

can be deformed in a similar way. The details are given in Tables 3.1 – 3.3.

Coordinates of atoms, Ri, and displacement vectors, di, are given in units of

the bcc unit cube length a = 3

√

2/ρs, where ρs is the density of the solid. It can

be seen that different orientations require different minimum number of atoms

for the deformation. Thus for (100) orientation the minimum is 4 atoms, 8

atoms for (110) and 12 atoms for (111) orientation.

3.4.2 Continuous Deformation Process

In order to calculate the reversible work required to perform the deformation,

we need to set up a continuous process that deforms the system from its initial
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Table 3.1: Deformation parameters for the (100) oriented bcc crystal block.

(Lx, Ly, Lz) (sx, sy, sz)

(a, a, 2a)
(√

2,
√
2, 1/2

)

i Ri di

1 (1/4, 1/4, 1/4)
(√

2/4, 0, 1/8
)

2 (3/4, 3/4, 3/4)
(√

2/4, 0,−1/8
)

3 (1/4, 1/4, 5/4)
(
−
√
2/4, 0, 1/8

)

4 (3/4, 3/4, 7/4)
(
−
√
2/4, 0,−1/8

)

Table 3.2: Deformation parameters for the (110) oriented bcc crystal block.

(Lx, Ly, Lz) (sx, sy, sz)

(a,
√
2a, 2

√
2a)

(√
2,
√
2, 1/2

)

i Ri di

1
(
3/4, 3

√
2/4,

√
2/4
) (

0,−1/4,
√
2/8
)

2
(
1/4,

√
2/4,

√
2/4
) (

0, 1/4,
√
2/8
)

3
(
3/4,

√
2/4, 3

√
2/4
) (

0,−1/4,−
√
2/8
)

4
(
1/4, 3

√
2/4, 3

√
2/4
) (

0, 1/4,−
√
2/8
)

5
(
3/4, 3

√
2/4, 5

√
2/4
) (

0, 1/4,
√
2/8
)

6
(
1/4,

√
2/4, 5

√
2/4
) (

0,−1/4,
√
2/8
)

7
(
3/4,

√
2/4, 7

√
2/4
) (

0, 1/4,−
√
2/8
)

8
(
1/4, 3

√
2/4, 7

√
2/4
) (

0,−1/4,−
√
2/8
)

to its final state. This can be done using a standard coupling parameter ap-

proach, where the state of the system during the deformation process depends

on a coupling parameter λ which changes continuously from zero at the start

of the process to one at the end. We introduce λ-dependent scaling factors

Sα(λ), α = x, y, z, such that Sα(0) = 1 and Sα(1) = sα. For simplicity, we

choose Sx and Sy to be linear functions of λ, i.e. Sα(λ) = 1 + λ(sα − 1),

α = x, y, and define Sz(λ) = (SxSy)
−1, so that the system volume remains

constant throughout the deformation process.

Using the λ-dependent scaling factors, we can gradually scale the size of
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Table 3.3: Deformation parameters for the (111) oriented bcc crystal block.

(Lx, Ly, Lz) (sx, sy, sz)

(
√
2a,

√
6a,

√
3a)

(√
3, 2/

√
3, 1/2

)

i Ri di

1
(√

2/4, 5
√
6/12,

√
3/4
) (

−
√
6/6, 5

√
2/12,−

√
3/24

)

2
(√

2/4,
√
6/12,

√
3/12

) (
−
√
6/6,

√
2/12,

√
3/24

)

3
(
3
√
2/4, 11

√
6/12,

√
3/4
) (

−
√
6/6,−

√
2/12,−

√
3/24

)

4
(
3
√
2/4, 7

√
6/12,

√
3/12

) (
−
√
6/6,−5

√
2/12,

√
3/24

)

5
(
3
√
2/4,

√
6/4, 5

√
3/12

) (√
6/6,

√
2/4,

√
3/24

)

6
(√

2/4, 3
√
6/4, 5

√
3/12

) (√
6/6,−

√
2/4,

√
3/24

)

7
(√

2/4, 5
√
6/12, 3

√
3/4
) (

0,−
√
2/12,

√
3/24

)

8
(√

2/4,
√
6/12, 7

√
3/12

) (√
6/6,

√
2/12,−

√
3/24

)

9
(
3
√
2/4, 11

√
6/12, 3

√
3/4
) (√

6/6,−
√
2/12,−

√
3/8
)

10
(
3
√
2/4, 7

√
6/12, 7

√
3/12

) (
0,
√
2/12,

√
3/8
)

11
(
3
√
2/4,

√
6/4, 11

√
3/12

) (
0,−

√
2/4,−

√
3/24

)

12
(√

2/4, 3
√
6/4, 11

√
3/12

) (
0,
√
2/4,−

√
3/24

)

the simulation box, (SxLx, SyLy, SzLz), as well as the atom positions, r̄i(λ) =

(x̄i, ȳi, z̄i) = (Sxxi, Syyi, Szzi) and calculate the reversible deformation work

using thermodynamic integration:

W =

∫ 1

0

〈
∂U

∂λ

〉

λ

dλ (3.9)

To apply thermodynamic integration the system was equilibrated at all in-

termediate values of λ (up to 100 steps from 0 to 1). As mentioned in the

section devoted to calculations of the melting phase diagrams, where different

interaction potentials for Fe-C have been tested, all interfacial free energy cal-

culations used the potential by Hepburn and Ackland. The potential uses the

Embedded Atom Method, the general form of which is described by equations

(2.4) and (2.5). Thus ∂U/∂λ from (3.9) can be established using:

∂U

∂λ
=
∑

i

(

1

2

∑

j 6=i

V ′
rij

∂rij
∂λ

+ F ′(ρi)
∂ρi
∂λ

)

(3.10)
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where

∂ρi
∂λ

=
∑

j 6=i

Φ′(rij)
∂rij
∂λ

. (3.11)

Hence

∂U

∂λ
=
∑

i

∑

j 6=i

(
1

2
V ′ + F ′(ρi)Φ

′

)
∂rij
∂λ

. (3.12)

Taking the equations (2.12) and (2.15) for the force fij interacting between

particles i and j, for the Hepburn and Ackland potential, ∂U/∂λ can be written

as:

∂U

∂λ
=
∑

i

∑

j 6=i

fij
∂rij
∂λ

(3.13)

During the deformation the distance between liquid particles r̄ij changes as

described by the following equation:

∂r̄ij
∂λ

=
1

r̄ij

[
(x̄i − x̄j)

2S ′
x/Sx + (ȳi − ȳj)

2S ′
y/Sy + (z̄i − z̄j)

2S ′
z/Sz

]
. (3.14)

For the liquid state:

〈
∑

i

∑

j>i

fij
(x̄i − x̄i)

2

r̄ij
〉 = 〈

∑

i

∑

j>i

fij
(ȳi − ȳi)

2

r̄ij
〉 = 〈

∑

i

∑

j>i

fij
(z̄i − z̄i)

2

r̄ij
〉

(3.15)

Note also that, since we define Sz = (SxSy)
−1, we have S ′

z/Sz = −S ′
x/Sx −

S ′
y/Sy. From these observations it is immediately clear that the work of de-

forming a block of bulk liquid is equal to zero.

〈
∂U

∂λ

〉

λ

= 0 (3.16)
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for any λ. This is a direct consequence of the fact that the liquid is deformed

while its volume is held constant.

Continuous deformation of the solid block requires more care because the

deformation process is carried out at a finite temperature and the solid does not

have the correct crystal structure at the intermediate stages of the deformation

process. In order to carry out a continuous deformation of the solid block, we

introduce an external potential:

Φ =
∑

i

∑

j

φ(|ri −Rj|) (3.17)

which attracts solid atoms to the ideal crystal positions, Rj. For the interaction

between wells and particles a potential constructed for wells in [74] was taken:

φ(r) =







dw[(r/rw)
2 − 1]3, r < rw ,

0, otherwise,
(3.18)

where dw determines the depth of the well, and rw determines its width.

During the deformation process, the positions of the atoms are scaled

r̄i(λ) = (x̄i, ȳi, z̄i) = (Sxxi, Syyi, Szzi) as before, while Rj are scaled and

shifted:

R̄j(λ) = (X̄j , Ȳj, Z̄j) = (SxXj + λdx,j, SyYj + λdy,j, SzZj + λdz,j) (3.19)

The total potential energy of the system is the sum of interatomic and external

potentials:

U(λ) =
∑

i

∑

j>i

u(r̄ij) +
∑

i

∑

j

φ(|r̄i − R̄j|) (3.20)
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Figure 3.6: Potential energy per atom during continuous deformation.

and thus

∂U

∂λ
=
∑

i

∑

j>i

fij
∂r̄ij
∂λ

+
∑

i

∑

j

φ′(|r̄i − R̄j|)
∂|r̄i − R̄j|

∂λ
, (3.21)

where

∂|r̄i − R̄j|
∂λ

=
1

|r̄i − R̄j |
{
(x̄i − X̄j)[(x̄i − X̄j)S

′
x/Sx + (λS ′

x/Sx − 1)dx,j] + · · ·
}

(3.22)

where the ellipsis indicates similar terms for y and z coordinates. Using this

expression, we can calculate the reversible work required to deform the solid.

Although the above expressions are derived only for EAM potential, other

types of potential also can be made dependent on λ through r̄ij, so that ∂U/∂λ

can be evaluated in a simulation.

60



3.4.3 Optimizing the Deformation Path

During the deformation process, the solid is deformed away from its initial

crystal structure towards structures with higher potential energy. This is il-

lustrated in Figure 3.6, where we plot
∑

i

∑

j>i u(R̄ij) as a function of λ, i.e.

potential energy of the solid block during deformation at zero temperature. It

is clear that the deformation process takes the solid system over a potential

energy barrier. The higher the barrier, the more effort is required, leading

to deterioration in the precision of the reversible work calculation. Therefore,

it would be beneficial to find a deformation path along which the height of

the barrier is minimized. In order to do that, we replace the λ factors that

multiply the displacement vector components in Eq. (3.19) with functions of

λ:

R̄j(λ) = (X̄j, Ȳj, Z̄j) = (SxXj+hx,j(λ)dx,j, SyYj+hy,j(λ)dy,j, SzZj+hz,j(λ)dz,j) ,

(3.23)

where hα,j(λ), α = (x, y, z), are continuous functions such that

hα,j(λ) =







0, λ = 0

1, λ = 1

(3.24)

Thus we can formulate and solve an optimisation problem to find such hα,j(λ)

that the height of the potential energy barrier during deformation is minimised.

The optimisation of the method allows us to reduce the statistical error by

reducing the amount of work required to be done on the system. As mentioned

before, a minimum of m=4 atoms are required for deformation of a (100)

orientation bcc crystal (m=8 for (110) and m=12 for (111)), thus the potential
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energy per atom can be written as:

U(λ) =
1

m

∑

α

4∑

i

4∑

j>i

u (r̄ij) (3.25)

where α refers to the neighbouring unit cells within the cut-off radius of the

interaction potential. The total energy of the deformed system is:

E =

∫ 1

0

|U(λ)− U(0)| dλ (3.26)

which in the discrete version needed to implement the algorithm for computa-

tions becomes:

E ∼= 1

K

K∑

k=0

|U(λk)− U(0)| (3.27)

where λk = k/K. Interaction with particles around the cell was considered by

creating image particles using periodic boundary conditions.

Thus we were looking for such a function hα,j(λ), that

∂E

∂hα,j(λ)
→ 0. (3.28)

To simplify this solution hα,j were taken as polynomial functions of degree 5.

Using the MATLAB Optimisation Toolbox [84], ‘optimal ’paths were found

for the bcc structure for three crystallographic orientations: (100), (110) and

(111). The result for the (100) oriented bcc crystal is shown in Figure 3.7.

Note that, because of the symmetry of the problem, hα,j(λ) are equal for all

j = 1, 2, 3, 4. For other orientation and/or other crystal structures this may

not be the case.
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Figure 3.7: Top: Potential energy per atom (eV). Bottom: Optimal functions
hα,j(λ).
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3.4.4 Usage of the method

The calculation of the interfacial free energy is carried out in a three step

process. Starting with an equilibrated solid-liquid interfacial system

Step 1 Introduce the external potential within the solid part of the system which

attracts atoms to the ideal crystal positions Rj. Calculate the work

required to insert the potential;

Step 2 Deform the system by scaling the simulation box and atom positions,

as well as scaling and shifting the ideal crystal positions of the external

potential. Calculate the work of deformation;

Step 3 Remove the external potential from the deformed system. Calculate the

work required to remove the external potential.

To calculate the reversible work, we used both thermodynamic integration and

nonequilibrium work measurements and obtained consistent results for each of

the three steps.

3.4.5 Results

Within the MintWeld project in order to obtain anisotropy coefficients in-

terfacial free energy has been calculated using the cleaving and CF methods

described above. That gave us an opportunity to test the deformation method.

Knowing that deformations for liquid and crystal separately give zero expended

energy, we can presume that for a solid-liquid system, the expended energy

obtained for the whole deformation is the work required for expanding an

interface area. However results (see Table 3.4) show that γ obtained using

the deformation method do not match with ones obtained with cleaving and

capillary fluctuation methods.
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Results for the (100), (110), and (111) bcc crystal/melt interfaces of Fe

described by the EAM potential of Hepburn and Ackland were obtained. The

melting temperature is 1791K. The initial system size is approximately 35 by

35 by 140 Å with 12 000 atoms.

Table 3.4: Results for work per interfacial area difference ∆A (mJ/m2).

Orientation (100) (110) (111)
Step 1 -45956.6(1.4) -48037.6(2.2) -44986.9(2.1)
Step 2 286.6(1.3) 279.1(2.1) 286.7(2.5)
Step 3 45903.4(1.0) 48004.8(2.2) 44940.2(1.9)
γsl 233.4(2.2) 246.3(3.8) 240.0(3.8)

Cleaving Method γsl 196.4(0.7) 192.3(0.7) 192.3(0.7)

CF γsl 186.0(4.9) 182.5(4.7) 181.8(4.7)

As can be seen from Table 3.4, neither the average value, nor the anisotropy

agree with the results obtained with the cleaving method. A variety of tests of

the implementation of the deformation method has been done. When deform-

ing only liquid or only solid system, we get zero work, as expected. Deforming

along different paths (closer or further away from the optimal one), also gives

consistent results. Thus the method requires additional investigations and im-

provements, as discussed in the last chapter devoted to conclusions and future

work.

Comparing to other existing methods, the deformation method is easy to

implement within existing MD codes, as the method consists of three steps.

Calculation of interfacial free energy comes straight from the definition and

no additional approximations to define γ is applied. The DLPOLY code has

been modified so that the deforming external field can be applied and γ can

be calculated.
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Chapter 4

Interfacial free energy along the

coexistence line

In order to obtain the interfacial free energy γ, for the Fe-C system along

the coexistence line, the Frolov and Mishin method [4] was chosen. Chemical

potential of at least one of the chemical components in a nonhydrostatic solid

is an undefined quantity, however Frolov and Mishin show that the interface

free energy γ can be defined as the excess of an appropriate thermodynamic

potential that depends on the chemical potentials in the liquid phase. In the

paper [4] Frolov and Mishin analyse the thermodynamics of the solid-liquid

interface of the Cu-Ag system using Monte Carlo (MC) simulations. It is

shown that γ computed by thermodynamic integration along a coexistence

path for the Cu-Ag system decreases with increasing composition difference

between the phases. In contrast to the Cu-Ag system, Fe-C is an interstitial

solution, and that requires some changes in the method. This chapter provides

brief description of the method used by Frolov and Mishin and changes in the

method required to apply it to an interstitial system. Results obtained by the

method for Fe-C solution for a range of temperatures and three crystallographic
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Figure 4.1: Schematic presentation of a binary solid-liquid system. The vertical
dashed line indicates the approximate position of the interface [4].

orientations are shown.

4.1 Description of the method

Within the method a rectangular block of material containing coexisting liquid

and solid, has to be considered. The z-axis is directed towards the interface,

with periodic boundary conditions in all three directions.

Phase equilibrium can be described by:

1. Thermal equilibrium.

T = const

2. Mechanical equilibrium.
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The stress tensor in the solid σ33 = −p, where p is pressure in the liquid.

3. Chemical equilibrium.

• The quantity.

M21 =

(
∂U

∂N2

)

N,S,V,eij

= const (4.1)

Where U , S and V are the internal energy, entropy and volume

containing N = N1 + N2 atoms, where N1 and N2 for different

species 1 and 2. For solid regions the elastic strain tensor eij is fixed

(i and j refer to Cartesian coordinates) and consequently shape of

the simulation box is also fixed.

For a liquid phase using (4.1):

M21 = µ2 − µ1 (4.2)

where µ1 and µ2 are chemical potentials of the components in the

liquid.

• For all homogeneous regions inside the phases,

0 = Us − TSs + pV s − µ1N
s
1 − µ2N

s
2 , (4.3)

0 = U l − TSl + pV l − µ1N
l
1 − µ2N

l
2, (4.4)

where superscripts s and l refer to solid and liquid states, respec-

tively.

In order to introduce the interface free energy γ, first consider a homoge-

neous region inside one of the phases. It can be both the liquid and solid, but
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let this phase be the solid. The region has the form of a layer bounded by two

imaginary geometric planes aa’ and bb’ (Figure 4.1, the left part of the block

is the solid phase, the right part is the liquid phase). It is assumed that the

thickness of this layer (i.e. distance between aa’ and bb’) is much larger than

the thickness of the region perturbed by the interface. Plane aa’ is moving

to the right, whereas bb’ is simultaneously displaced in the same direction in

such a way that the total number of atoms contained between the planes aa’

and bb’ is conserved. The volume between aa’ and bb’ will vary, because of

difference in densities of the solid and liquid phases. Moving the planes until

the interface is inside the moving layer and the planes aa’ and bb’ are in ho-

mogeneous solid and liquid regions, respectively, all required non-mechanical

work is a total interface excess γA. Thus γA can be written as:

γA = U − TS + pV − µ1N1 − µ2N2 (4.5)

Using Cramer’s rule of linear algebra [75] and equations (4.3) and (4.4), equa-

tion (4.5) can be written as:

γA = [U ]XY − T [S]XY + p[V ]XY − µ1[N1]XY − µ2[N2]XY , (4.6)

where X and Y are any two of the extensive properties S, V , N1 and N2, and

[Z]XY is defined as:

[Z]XY ≡

det









Z X Y

Zs Xs Y s

Z l X l Y l









det






Xs Y s

X l Y l






(4.7)

69



Here Z,X and Y in the first row of the determinant in the numerator are for

the whole system. Superscripts s and l refer to solid and liquid states. From

the determinant properties it is obvious that [X ]XY ≡ [Y ]XY ≡ 0. Introducing

variable N = N1 +N2 equation (4.6) can be written as:

γA = [U ]XY − T [S]XY + p[V ]XY − µ1[N ]XY −M21[N2]XY . (4.8)

The system can receive and release heat, do mechanical work, and exchange

atoms with the environment. Thus, the reversible variation in its internal

energy is:

dU = TdS +
∑

i,j=1,2

σijV deij + σ33AdL+M21dN2 (4.9)

where σij the stress tensor averaged over the entire volume of the system and

L is the size of the system normal to the interface. Equation 4.9 is essentially

the first law of thermodynamics for a closed system in which the particles of

the system are of different types. A full differential of equation (4.5) combined

with (4.9), following expression for d(γA), can be written as:

d(γA) = −SdT + V dp−N1dµ1 −N2dµ2 +
∑

i,j=1,2

(σij + δijp)V deij , (4.10)

where it is used that dV =
∑

i,j=1,2δijV deij + AdL including equation (4.2).

The seven differentials appearing on the right-hand side are not independent

because this equation must satisfy the phase coexistence conditions. Equations

expressing such conditions can be readily obtained by applying (4.10) to the

homogeneous solid and liquid regions with γA ≡ 0. This immediately gives us
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the Gibbs-Duhem equations for the solid and liquid phases

0 = −SsdT + V sdp−N s
1dµ1 −N s

2dµ2 +
∑

i,j=1,2

(
σs
ij + δijp

)
V sdeij, (4.11)

0 = −SldT + V ldp−N l
1dµ1 −N l

2dµ2. (4.12)

Cramer’s rule can be used to solve system of differential equation (4.10) –

(4.12):

d(γA) = −[S]XY dT + [V ]XY dp− [N1]XY dµ1 − [N2]XY dµ2+

∑

i,j=1,2

[(σij + δijp)V ]XY deij. (4.13)

Here X and Y are any two of the seven extensive properties S, V , N1 and

N2 and (σij + δijp)V . Two of seven differential equations in (4.13) are zero.

Taking [S]XY from equation (4.8) equation (4.13) can be written as:

d

(
γA

T

)

= − [Ψ]XY

T 2
dT +

[V ]XY

T
dP − [N ]XY

T
dµ1 −

[N2]XY

T
dM12

+
1

T

∑

i,j=1,2

[(σij + δijp)V ]XY deij,
(4.14)

where Ψ ≡ U +pV −µ1N −M12N2. This process can be mapped on a path on

the phase coexistence surface on which dP = 0. This path can be parametrised

by any of the intensive variables. Letting this variable be temperature, (M21 =
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M21(T ) and eij = eij(T )). Then

dM21 =

(
dM21

dT

)

p,coex

dT (4.15)

deij =

(
deij
dT

)

p,coex

dT (4.16)

where p, coex is a reminder that the derivatives are taken on the phase coex-

istence surface at a constant pressure. Choosing X and Y as N1 and V or as

N1 and N2 equation (4.14) can be integrated along the T path:

γA =
(γA)0T

T0
− T

∫ T

T0

(
[U −N2M21]NV

T ′2
−

∑

i,j=1,2

[(σij + δijp)V ]NV

T ′

(
deij
dT

)

P,coex

+
[N2]NV

T ′

(
dM21

dT

)

P,coex

)

dT ′

(4.17)

γA =
(γA)0T

T0
−

T

∫ T

T0

(

[U − pV ]NN2

T ′2
−
∑

i,j=1,2

[(σij + δijp)V ]NN2

T ′

(
deij
dT

)

P,coex

)

dT ′

(4.18)

where T0 is the initial state of the path. Both (4.17) and (4.18) are performed

along the same path and only differ in the choice of the conserved properties

X and Y .

4.2 Application for an interstitial system

As mentioned above, some changes in the equations given in the previous sec-

tion have been made in order to use them for the Fe-C interstitial system. For

an interstitial solution N1 is always fixed for a given system while N2 changes
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along the coexistence line. Thus the constancy of M21 should be replaced by

the condition that the chemical potential µ2 of the interstitial species (which

is now well-defined in the solid [76] – [78]) be uniform throughout the system

i.e. µ2 = const.

In order to derive γA, a process of selection using a solid layer bounded

by aa’ and bb’ (Figure 4.1) has to be considered. For the case of intersitial

solutions a number of atoms N1 of component 1 inside the layer has to be fixed

during the process. The solid-liquid equilibrium conditions formulated in the

section above have some modifications. By inserting [S]XY from (4.6)

[S]XY =
1

T
([U ]XY + p[V ]XY − µ1[N1]XY − µ2[N2]XY − γA) (4.19)

into (4.10), and dividing it by T

d(γA)

T
− γA

T 2
dT = d

(
γA

T

)

=

− [Ψ]XY

T 2
dT+

[V ]XY

T
dP− [N1]XY

T
dµ1−

[N2]XY

T
dµ2+

1

T

∑

i,j=1,2

[(σij+δijp)V ]XY deij

(4.20)

We can take N1 and N2 for X and Y which gives:

d

(
γA

T

)

= − [U + pV ]N1N2

T 2
dT +

1

T

∑

i,j=1,2

[(σij + δijp)V ]N1N2
deij. (4.21)

In calculations for the Cu-Ag system Frolov and Mishin use MC simulation

with the grand-canonical ensemble assuming that the volume of the system is
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constant, therefore the interfacial area A = const for any used temperature.

While using MD simulations for an interstitial system we use the isothermal-

isobaric ensemble to equilibrate the system where the volume of the system

changes with temperature. That required some additional modifications in the

method. We introduce a new variable potential energy per unit of interfacial

area u = U/A and length of the system/homogeneous regions in z-direction

Lz. Hence dividing by A equation (4.21) can be written as:

1

A
d

(
γA

T

)

= − [u+ pLz]N1N2

T 2
dT +

1

T
deij

[
∑

i,j=1,2

(σij + δijp)Lz

]

N1N2

(4.22)

The elastic strain tensor can be calculating by the linear thermal-expansion

[79]:

α =

(
∂eij
∂T

)

p,coex

=
1

a

(
∂a

∂T

)

P,coex

(4.23)

where a is a bulk lattice parameter of the solid at temperature T . Function α

is a function of temperature only. Using expression:

dA

A
=

2da

a
(4.24)

and assuming that at constant pressure a crystal expands/shrinks equally in

all directions with a change of temperature it can be written that:

dA

A
= 2deii (4.25)

Introducing two new variables: the density of Fe in the solid expressed as a

number of particles per unit volume, ρS, and the interfacial free energy per
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interfacial particle γg = γρ
−2/3
S . We can cancel A from equation (4.22) and

write it in the following form:

d(γg/T )

dT
= −ρ

−2/3
S




[u+ pLz]N1N2

T 2
+

1

3TρS

[
∑

i,j=1,2

(σij + δijp)Lz

]

N1N2

(
dρS
dT

)




(4.26)

The temperature derivative of ρS can be found from interpolating values of

ρS for different temperatures (see Fig. 4.3). Integrating both sides of equation

(4.26) from T0 to T γg can be derived:

γg =
γg(T0)T

T0
+

T

∫ T0

T

ρ
−2/3
S




[u+ pLz]N1N2

T ′2
+

1

3T ′ρS

[
∑

i,j=1,2

(σij + δijp)Lz

]

N1N2

(
dρS
dT

)


 dT ′

(4.27)

where T0 is the melting temperature of the pure iron system. Hence, equation

(4.27) can be applied for interstitial solutions. Notice that takingN1 andN2 for

X and Y in equation (4.20) we cancel µ1 and µ2, since the chemical potential

calculation is problematic for the interstitial Fe-C system as mentioned earlier

in the thesis.

Using Fe-C phase diagrams we can use coexisting concentrations of carbon

in liquid and solid states for specific temperatures. For equilibrated systems

with coexisting solid and liquid states, parameters required for (4.27) can be

obtained within Molecular Dynamics (MD) simulations. Thus for (4.27) po-

tential energy U and stress tensor components σ11 and σ22 have to be obtained

as a profile in the z direction (the direction which faces the solid-liquid in-
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Figure 4.2: Liquid-Solid system divided into bins parallel to the interfaces.

terface), in order to obtain average values for a specific region. To calculate

these parameters in homogeneous regions, the system has to be divided into

a number of bins as shown in Figure 4.2. Considering the potential energy

Uij of two interacting particles i and j which are located in different bins (a

and c for instance) 1
2
Uij is assigned to both bins a and c. The same technique

can be used for the stress tensor profile calculation. The DLPOLY code has

been modified to obtain such energy and stress profiles. Knowing the inter-

facial free energy at initial state (pure iron system), which can be calculated

using methods of the interfacial free energy calculation described in the previ-

ous chapter, the dependence of the interfacial free energy on temperature (or

carbon concentrations) along the coexistence line can be found.

To assign a homogeneous liquid and solid region we use the iron density

function of z and the distribution of potential energy along the z-axis. In Fig-

ure 4.3, the function of iron density in the system and potential energy profiles

at monitored steps of long simulations are presented. Red lines separate homo-

geneous regions from interfacial regions. The distance between homogeneous

regions, 2d′ (Fig. 4.4) is significant, since its value has to be large enough to

exclude the influence of the interfaces on bulk properties and large amount of

solid and liquid is required for accurate calculations.
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Figure 4.3: Top: Iron density functions for different steps of the simulation. Bot-
tom: Potential energy as a function of z for different steps of the simulation. The
interfacial region is separated from homogeneous regions by red lines on both pic-
tures.

Figure 4.4: Schematic presentation of the system involved in the calculations. L

is the total length thickness of the system. Applying periodic boundary conditions
the distance d can be set as 0; the distance d′ is discussed in the text.
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In order to analyse the thermodynamics of solid-liquid interfaces of the Fe-

C system for different carbon concentrations in three main orientations (100),

(110) and (111), the system shown in Figure 4.4 was chosen and periodic

boundary conditions applied.
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Figure 4.5: Variable β calculated for three orientations: (100), (110) and (111).
Blue dashed lines represent the average value of β for each orientation.

4.3 Results

Equation (4.27) requires a calculation of Fe density in the solid ρs as a func-

tion of temperature T . This has been done during the calculation of the

phase diagram using the Hepburn and Ackland potential (Fig. 2.11). It can

be seen that density does not change much with temperature. The tempera-

ture derivative of ρS has been calculated and it was found that ∂ρs(T )/∂T ≈

1.3·10−6, 1/(KÅ3). Running constant pressure simulations we assume that the

pressure of the equilibrated system in homogeneous regions (ps and pl) and in

the whole system p are 0. Hence neglecting the term consisting ∂ρs(T )/∂T
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and assuming that p = ps = pl = 0 equation (4.27) can be written as

γg(T ) = γg(T0)
T

T0
+ T

∫ T0

T

ρ
−2/3
S

(
[u]N1N2

T 2

)

dT (4.28)

Also neglecting changes of density of Fe in the solid with temperature ρs(T ) =

ρs = const we can divide equation (4.28) by ρ
−2/3
S and get

γ(T ) = γ0
T

T0
+ T

∫ T0

T

βdT (4.29)

where β is:

β(T ) =
[u]N1N2

T 2
(4.30)

Thus the interfacial free energy dependence on temperature can be separated

on the linear dependence into temperature (γ0
T
T0

), and the term which includes

β. To solve equation (4.29), the intermediate variable β has to be calculated

for 0 carbon concentration or β has to be obtained as a function of temperature

T . It can be seen from equation (4.7) that β cannot be calculated explicitly for

N2 = 0 (pure Fe system). Results for β for three crystallographic orientations

in Figure 4.5 suggest that within the obtained accuracy β can be chosen as a

negative constant; the average value of β is shown as a blue dashed line in the

figure. Hence we assume that β is an average of obtained values:

β̄ =
1

M

M∑

i=1

β(Ti) = const (4.31)

where M = 3 since β has been calculated for three different temperatures.

Using this assumption equation (4.29) can be written as:

γ(T ) = γ0
T

T0

+ T (T0 − T )β̄ (4.32)
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The difference of β for the three illustrated orientation remains within the

error, hence with the obtained accuracy we cannot specify if β is different for

different orientations.

To calculate β̄ we use systems of size ≈ 61×61×125(Å) ( 40,000 particles).

For the simulations HPC Alice (Appendix B) was used and each simulation

was running on 64 CPUs. Three temperatures were used T=1580K, T=1640K

and T=1740K with the corresponding carbon concentrations taken from the

Phase Diagram (given in Chapter 2). Using the Hepburn and Ackland poten-

tial melting temperature for the pure Fe system is T0 = 1791K. Simulations

of about 5ns were used to equilibrate the system, with a further 3ns required

to calculate the properties for β as defined by equation (4.30). Knowing the

interfacial free energy for the pure iron system, the interfacial free energy γ

can be obtained from equation (4.32) for any temperate below T0. Within the

MintWeld project interfacial free energies for the pure iron system have been

calculated for three crystallographic orientations (Table 3.4). Three orienta-

tion are required as a minimum to obtain anisotropy of the crystal. Using

these values, the dependence of interfacial free energy on temperature/carbon

concentration has been calculated.

Figures 4.6–4.8 illustrate interfacial free energy dependence on tempera-

ture including the β term (shown as a black line) and without (linear depen-

dence γ(T ) = γ0
T
T0

shown as a red dashed line). Results calculated within

the MintWeld project using CF method are shown in green: solid line for the

actual results and dashed line is for a linear function γCF (T ) = γCF (T0)
T
T0

. It

can be seen that γ(T ) obtained by both methods decreases with decreasing

temperatures along the coexistence line. Moreover, the value for the actual γ

for both methods are smaller than values for γ = γ0
T
Tm

. However quantita-
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tive agreement of results obtained by the two methods is rather poor. Results

for three orientations suggest that γ(T ) obtained by the Frolov and Mishin

method, decreases faster with the temperature decrease compared to γ(T )

obtained by the CF method.

Using the CF method, γ has been calculated independently for three crys-

tallographic orientations for melting temperatures T=1791K and T=1705K.

The Frolov and Mishin method, similar to Gibbs-Duhem integration, relies on

the accuracy of initial results γ0 (pure Fe system) and the accuracy of β com-

puted for temperatures below melting. This causes an increase in the error of

the predicted values of interfacial free energy for lower temperatures. Having

γ only for the pure Fe system, the Frolov and Mishin method requires simu-

lations of systems of more particles in order to reduce the statistical error of

the obtained β. Calculating β at a greater number of temperatures along the

coexistence line (we use three temperatures for each orientation), increases the

accuracy.

Figure (4.9) illustrates three functions γ(100), γ(110) and γ(111) obtained us-

ing the Frolov and Mishin method (solid lines), including linear dependence

γ(T ) = γ0
T
T0

(dashed lines) on one plot. Notice that values of γ0 for orienta-

tions (110) and (111) are equal, hence the linear function (dashed green line)

is identical for these two orientations. It can be seen that deviation of an ac-

tual interfacial free energy from a linear dependence is different for differents

orientations. Thus the obtained results suggest that anisotropy changes with

carbon concentration. However these changes are observed within the error

bars.
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Figure 4.6: Interfacial free energy for (100) crystal orientations including results
obtained by the CF method. Dashed lines represent linear dependence on T .
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Figure 4.7: Interfacial free energy for (110) crystal orientations including results
obtained by the CF method. Dashed lines represent linear dependence on T .
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Figure 4.8: Interfacial free energy for (111) crystal orientations including results
obtained by the CF method. Dashed lines represent linear dependence on T .
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Figure 4.10 shows the orientationally averaged interfacial free energy γ0 and

Figure 4.11 illustrates the anisotropy coefficients of the interfacial free energy ǫ1

and ǫ2. These parameters quantify the anisotropy. The interfacial free energy

and its anisotropy is determined based on the cubic harmonic expansion of

Fehlner and Vosko [80]:

γ(n)/γ0 = 1 + ǫ1

(
3∑

i=1

n4
i −

3

5

)

+ ǫ2

(
3∑

i=1

n4
i + 66n2

1n
2
2n

2
3 −

17

7

)

(4.33)

where n1, n2, n3 are the Cartesian components of the unit vector n normal

to the interfacial plane. That give us a system of three equations for three

crystallographic orientations:

γ(n)/γ0 =







1 + 2
5
ǫ1 +

4
7
ǫ2, (100)

1− 1
10
ǫ1 − 13

14
ǫ2, (110)

1− 4
15
ǫ1 +

64
63
ǫ2, (111)

(4.34)

Solving 4.34 γ0, ǫ1 and ǫ2 can be found. It can be seen from the obtained data

that both ǫ1 and ǫ2 increase at lower temperatures, hence the results suggest

that anisotropy changes along the coexistence line. However these changes of

the parameters ǫ1 and ǫ2 remain within the statistical error, thus with this

accuracy it cannot be specified how anisotropy behaves along the coexistence

line.

It can be seen that the Frolov and Mishin method is easy in implementa-

tion. Using thermodynamic properties of the solid-liquid system and interfacial

free energy for a one component system (0% concentration of the second com-
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ponent) γ can be predicted along the coexistence line. It is challenging to

compute interfacial free energy of a two component system by most of the

existing methods. Coding direct methods of interfacial free energy calculation

such as cleaving and deformation interaction between Fe-C and C-C has to be

considered hence additional coding is required.
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Chapter 5

Conclusion and future work

During the project the open source DLPOLY code has been modified to allow

the use of modern potentials for Fe-C systems. Using the changed code and

the computer power of HPC Alice (Appendix A) temperature phase diagrams

for Fe-C solution were obtained for different potentials by the phase coexisting

approach. The EAM potential by Hepburn and Ackland showed the most

reliable results of melting properties of the Fe-C system in comparison with

the experimental data and was chosen for further calculation. The MintWeld

project aims to create a new potential suitable for simulations at temperatures

close to melting. Hence a new potential can be easily tested by the coexisting

approach method including the recent potential for the Fe-C systems [81] which

used so called Modified embedded-atom method (MEAM) [82].

A new method of interfacial free energy calculation between a crystal and its

melt was invented and tested in Fe-C systems. The method uses deformation

of the solid-liquid system in order to change interfacial area, while preserving

the volume of the system and crystal structure of the solid phase. Results are

compared with the data obtained using other existing method for interfacial

free energy calculations and suggest the need for further development and
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analysis. Taking into consideration the fact that deformations for liquid and

crystal separately give zero expended energy, it was assumed that for solid-

liquid system, the expended energy obtained for the whole deformation is the

work required for expanding an interface area. Thus this method requires

additional investigations, such as an application of the method for a simple

potential; Lennard-Jones for instance. The deformation method has some

advantages over other existing methods. It consists of three simple steps which

can be done within one simulation and this is a direct method where interfacial

free energy can be obtained straight from the definition of the interfacial free

energy. In addition, different deformations paths can be used to reduce the

statistical errors and the method can be used for different crystallographic

structures and orientations. As a future work deformation paths can be created

for fcc structure and different ways of introducing the wells can be found.

The Frolov and Mishin method has been adopted for an interstitial sys-

tem and applied for the Fe-C system to calculate interfacial free energy along

the coexistence line. Using fairly big systems (∼ 40,000 particles) and long

simulations (∼3ns) it was found that the method can predict the decrease of in-

terfacial free energy with decreased temperature. However, with the obtained

accuracy we cannot predict changes of the anisotropy along the coexistence

line and hence the statistical error should be reduced by using bigger systems.

Moreover, comparing results obtained using the Frolov and Mishin method

with the results obtained using the capillary fluctuation method it can be seen

that the Frolov and Mishin method overestimates a drop of interfacial free

energy for lower temperatures. This requires additional investigation of the

method and modifications applied for an interstitial system.
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Appendix A

Software

After an extensive and comprehensive search and review of publicly available

open source code for Molecular Dynamic simulations the DLPOLY software

[5] was chosen. It is a general purpose serial and parallel molecular dynamics

simulation package written in Fortran 90 and developed at Daresbury Lab-

oratory by I.T. Todorov and W. Smith. The former DLPOLY.2.0 version

(authored by W. Smith and T.R. Forester) has been used in this project and

now transformed into DLPOLY.CLASSIC available as open source under the

BSD at CCPForge. DLPOLY.CLASSIC can be executed as a serial or a par-

allel application. The code achieves parallelisation using the Replicated Data

strategy which is suitable for homogeneous, distributed-memory, parallel com-

puters. The code is useful for simulations of up to 30,000 atoms with good

parallel performance on up to 100 processors, though in some circumstances

it can exceed or fail to reach these limits. Though the code is designed for

distributed memory parallel machines, it can, with minimum modification, be

run on popular workstations. Scaling up a simulation from a small workstation

to a massively parallel machine is therefore a useful feature of the package.

Also a Graphical User Interface (GUI) is available for DLPOLY.CLASSIC,
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based on the Java language from Sun Microsystems. The Java programming

environment is free and it is particularly suitable for building graphical user in-

terfaces. The GUI is an integral component of the DLPOLY.CLASSIC package

and is available under the same terms.

The package allows simulations of metals and alloys described by several

types of potentials. The DLPOLY code is easily extendable, so other types of

potentials and new capabilities relevant to the modelling of interfacial systems

can be added. Such modifications were necessary in order to use the tested

potentials.

To process data obtained from DLPLOY simulations, numerical computing

environment MATLAB [84] was used. MATLAB was also used to create initial

configurations and additional files required for the simulations.
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Appendix B

Hardware

Simulations were run on a High Performance Computing (HPC) cluster ALICE

[85]. The system is composed of 256 standard computer nodes, two login nodes,

two management nodes and a high performance parallel file system of 100TB

capacity. Additionally there are five ‘fat ’(large memory) nodes and four nodes

containing three Tesla GPU cards. All of these components are connected by

a fast Infiniband network. Each standard compute node has a pair of quad-

core 2.67GHz Intel Xeon X5550 CPUs and 12GB of RAM. In total therefore

there are 2048 CPU cores available for running jobs. ALICE is running 64-bit

Scientific Linux 5.4, a variant of Redhat Enterprise Linux.
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