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ABSTRACT 
 

STUDY OF THE KEY DETERMINANTS OF STATISTICAL POWER IN 
LARGE SCALE GENETIC ASSOCIATION STUDIES 

 
AMADOU GAYE 

 

A large number of participants is often required by association studies investigating the 
causal mechanisms of complex diseases because of the generally weak causal effects 
involved in these conditions. The large sample sizes necessary for adequately powered 
analyses are mainly achieved by large studies. This can be an expensive undertaking 
and it is important that the correct sample size is identified. But, the analysis of the 
statistical power of large consortia and major biobanks demands that a number of 
complicating issues are taken into proper account. This includes the impact of 
unmeasured aetiological determinants and the quality of measurement of both outcome 
and explanatory variables. Conventional methods to analyse power use closed-form 
solutions that are not flexible enough to allow for these elements to be taken easily into 
account and this results in a potentially substantial overestimation of the actual power.  

In this thesis, I describe the radical rebuilding of an existing power calculator known as 
ESPRESSO to develop and implement the ESPRESSO-forte algorithm. ESPRESSO-
forte is intended as a comprehensive study simulation platform aimed at supporting the 
design of large scale association studies and biobanks. I then applied the newly 
developed software to two real world scientific problems: (1) to assess the power of a 
large multi-provincial Canadian cohort for the study of quantitative traits; and (2) to 
estimate the impact of the particular standard operating procedures that were applied to 
the collecting and processing of biosamples in UK Biobank, on the likely power of 
future nested case-control studies. 

Some analyses now explore the role of copy-number variants (CNVs) in disease. I 
evaluated the accuracy of CNVs genotypes measured on four SNP genotyping platforms 
to inform future studies that plan to use existing SNP intensity data to measure CNVs or 
carry de novo CNV measurements from SNP genotyping platforms.
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CHAPTER 1 

1. GENERAL INTRODUCTION 

1.1. BACKGROUND AND AIM 

According to the World Health Organisation, common chronic diseases such as asthma, 

diabetes, cancer and cardiovascular diseases are expected to account for 57% of the 

burden of all diseases by 2020 (1). Common diseases are caused by complex 

interactions between genetic determinants as well as between genetic and environmental 

factors (2, 3). They represent an important public health issue which is expected to 

worsen in the future. It is hence important to develop and improve methods that would 

help to understand the genetic mechanisms of these diseases for a better prevention, 

diagnosis and treatment. 

The field of genetic epidemiology has raised hope for the understanding of the 

pathogenesis of common diseases (4-6) by means of genetic association studies. There 

are, however, some technical challenges to solve for an optimal use of these studies. 

One of the limitations of genetic association studies in the investigation of the genetic 

basis of common diseases is the lack of power: the ability to detect the true genetic 

determinants of a disease (7, 8). 

This PhD project aims to extend our knowledge of the key determinants that influence 

the power of genetic association studies in order to help us to design studies that take 

full account of their impact. The work has three principal elements: 
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a. Explore and understand the biology, epidemiology and statistical characteristics 

of the factors that most critically determine the statistical power of contemporary 

genetic association studies. 

b. Contribute to the extension of the study simulation platform known as 

ESPRESSO that has explicitly been designed to enable the impact of the key 

power determining factors to be studied and to be taken into full account in 

designing large scale biobanks and genetic association studies. 

c. Apply the extended ESPRESSO version to answer relevant scientific questions 

that have been identified as being critical in these regards.   

The work undertaken in this PhD required the understanding and application of some 

key concepts in genetics and genetic epidemiology. The remainder of this chapter is a 

recap of those fundamental concepts, a review of some previous studies that have 

influenced the field and a brief introduction to the method development and analyses 

carried out in the thesis. 

1.2. GENETICS 

1.2.1. DNA, GENOME AND GENES 

Deoxyribonucleic acid (DNA) is the nucleic acid that carries genetic information in 

humans. This information is stored as a code of four chemical bases or nucleotides: 

adenine (A), guanine (G), cytosine (C), and thymine (T). Human DNA contains about 

3200 million nucleotide pairs (A paired with T and G paired with C) maintained by a 

sugar phosphate backbone forming a double helix (Figure 1). DNA can replicate 

identically by opening up and using each strand of the double helix as a template for a 

new complementary strand. The entire genetic complement of an individual is referred 



CHAPTER 1 
 

15 | P a g e  
 

to as the genome. The human genome consists of 23 pairs of chromosomes: 22 paired 

autosomes, one X-chromosome and one Y-chromosome for males, and 22 paired 

autosomes and two X-chromosomes for females. Since they have two sets of 

homologous chromosomes, humans are diploid. 

 

Figure 1: Simplified view of DNA structure. 

Genes are segments of chromosomes coding, mainly, for proteins (polypeptide chains). 

Gene expression is the process that leads to a functional product, usually a protein. The 

gene is transcribed into messenger RNA (mRNA), a single stranded ribonucleic acid 

similar to DNA with the base uracil (U) instead of thymine (T) and the sugar ribose 

instead of deoxyribose, and following some degree of post-transcriptional processing, 

the mature mRNA is ultimately translated into an amino acid chain (Figure 2). It is the 

DNA sequence that determines the mRNA sequence which then determines the amino 

acid sequence of the protein. Most genes are made up of coding segments (exons), 

which are ultimately translated into protein, and non-coding segments (introns) spliced 

out during transcription. Gene expression is mainly regulated by the control of the rate 

of transcription. Transcription can be up-regulated by a regulatory region named an 

enhancer that can be located thousands of base pairs upstream of the regulated gene. 

There are other regulatory elements termed silencers that can suppress or down-regulate 

gene expression.  

Adenine (A) 

Thymine (T) 

Guanine (G) 

Cytosine (C) 

Sugar phosphate backbone 
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Figure 2: Overview of gene expression. 

Each human genome is unique partly due to genetic recombination and mutations 

affecting the genome.  

1.2.2. GENETIC RECOMBINATION AT MEIOSIS 

Gametes are haploid human cells. The process by which gametes are formed is termed 

meiosis. Meiosis is a cell division process which results in the production of four 

haploid cells (gametes) from one diploid cell. In the first stage of meiosis the 

chromosomes in the diploid cell are duplicated to obtain a tetrad of chromosomes. 

Homologous chromosomes pair-up and the cell undergoes a division resulting in two 

diploid cells. In the second stage of meiosis, each of these diploid cells divides to 

produces two haploid cells, resulting in four haploid gametes. When homologous 

chromosomes pair-up in meiosis they exchange (crossover) some segments so that the 

resulting gametes are a mixture of segments from the initial chromatids; this re-

composition of chromosomes during meiosis is one form of genetic recombination. 

Crossovers do not occur at an even rate across the genome. There are some regions of 

the genome, termed recombination hotspots (9), where a crossover is more likely to 

occur and other regions where crossover is less likely to occur.  

Uracil (U) 

Transcription of DNA into RNA  

copied 
strand 

mRNA 

Translation of mRNA into an amino-acid chain  

Amino-acid sequence of a protein 
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1.2.3. GENETIC POLYMORPHISMS AND LINKAGE 
DISEQUILIBRIUM 

Genetic polymorphisms are mutations caused by errors occurring during DNA 

replication or by external agents (mutagens) acting on the DNA. A mutation that occurs 

within a gene can alter the product of gene expression whilst a mutation occurring 

within a regulatory region can affect the regulation of gene expression; in both cases 

there could be some functional consequences for the individual. Mutations that cause a 

change in the amino acid chain of the protein are termed non-synonymous mutations 

and mutations that do not cause a change in the amino acid chain of the protein are 

synonymous mutations, also termed silent mutations. A polymorphism which consists 

of the change of one single nucleotide (one base) is termed a Single Nucleotide 

Polymorphism (SNP). Some polymorphisms are genomic structural variations resulting 

from genomic rearrangements involving anywhere between a small number of 

nucleotides to megabase regions (10). One form of structural variation is copy-number 

variation (CNV) which is a duplication or deletion of a genomic region of hundreds to 

millions of base pairs. There are other types of polymorphism, but my work focuses on 

SNP and CNV polymorphisms which are covered in the next two sub-sections. 

DNA sequences at a specific chromosomal position (locus) that vary between different 

copies of the same chromosome are termed alleles. Two or more alleles are observed at 

a polymorphic locus; an initial allele termed the wild type and the (new) mutant 

allele(s). The genotype of an individual at a particular locus is the combination of the 

alleles on each of the two homologous chromosomes. The individual is homozygous if 

both chromosomes present the same allele at that locus and he/she is heterozygous if the 

alleles are different. 
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1.2.3.1. Single Nucleotide Polymorphism 

A single nucleotide polymorphism (SNP) results from an ancestral mutation that 

replaces one nucleotide by another. Most SNPs are biallelic; the frequency of the less 

common allele is termed minor allele frequency (MAF).There are approximately 10 

million SNPs in the human genome (6). The HapMap project (11) has generated a large 

database of well characterized SNPs of varying minor allele frequencies. SNP variation 

is well characterised (e.g. HapMap) and SNPs are relatively straightforward to 

accurately genotype on a large scale; this makes SNPs suitable polymorphisms for use 

in genetic association studies.  

 SNP genotyping 

SNP genotyping is the identification of the alleles at a SNP locus within one individual. 

The genotyping can be done using methods based on oligonucleotide hybridisation 

analysis. In such analysis a short single stranded oligonucleotide of about 50bp is 

synthesized and allowed to hybridise (pair up) with a single stranded DNA sequence 

(target DNA, DNA of the individual being genotyped) under stringent conditions that 

allow only for the formation of a fully paired hybrid. If both strands are fully 

complementary, the formed hybrid is stable but if two nucleotides cannot pair up at 

every position because they are not complementary (i.e. they contain different alleles) 

then the hybrid is not stable (Figure 3). This way the two alleles of a SNP can be 

identified since one forms a stable hybrid and the other not.  
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Figure 3: Overview of the oligonucleotide hybridization method. 

The raw intensities from each allele can be represented graphically; in Figure 4, the y-

axis is assigned to the red intensity (allele A) and the x-axis is assigned to the green 

intensity (allele C). Figure 4a shows the expected positions of three individuals (an 

individual homozygous for the A allele, a heterozygous individual and an individual 

homozygous for the C allele).  Figure 4b shows the same plot for a population of 

individuals who have been assayed on the same array; individuals with the same 

underlying genotype will tend to cluster together. Genotype calling algorithms use these 

clusters to assign individuals to genotypes. Due to possible genotyping errors, poor 

DNA quality (sample quality) and calling algorithm errors some genotypes will not be 

determined precisely causing overlaps between clusters, outlying genotypes and 

undetermined genotypes (individuals that failed to genotype). 

 

Figure 4: Graphical representation of genotype calls for one SNP. 

The calls are for three individuals (a) or several individuals (b). 
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1.2.3.2. Copy-Number Variation 

Copy Number Variation (CNV) is a form of genomic structural variation where DNA 

segments of hundreds to millions of base pairs are deleted or duplicated (12). CNVs can 

be simple deletions or duplications as well as multiallelic variation at a given locus 

involving both duplication and deletion. 

It is not fully understood yet how all CNVs originate but some mechanisms have been 

suggested. CNVs can arise from non-allelic homologous recombination (NAHR) when, 

at meiosis (see section 1.2.2), crossover between chromosomes does not occur at the 

same homologous position on both chromosomes (non-symmetric – Figure 5) (10). This 

results in a gain or loss of segments of DNA. NAHR occurs because there is a similarity 

of sequence on two non-homologous positions of the chromosomes where the crossover 

took place. This phenomenon can also occur between two daughter chromatids 

(interchromatid NAHR) or within one chromatid which then forms a loop and crossover 

with itself (intrachromatid NAHR). 

 
Figure 5: Genomic rearrangement due to interchromosal NAHR. 

Non-homologous end joining (NHEJ) during DNA repair (Figure 6) can also lead to 

CNV. NHEJ is a mechanism used to repair DNA double-strand breaks which otherwise 
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could result in cell death (13).  The two broken ends are joined without using a short 

homologous template and the new DNA segment may be elongated or shortened due to 

addition or loss of some nucleotides (10).  

 
Figure 6: Genomic rearrangement due to NHEJ. 

Array based Comparative Genome Hybridization (aCGH) and SNP genotyping arrays 

are two of the methods used to detect CNVs. 

 CNV detection and genotyping 

In array based Comparative Genome Hybridization, a target DNA and a reference DNA 

are labelled differently with a fluorescent dye; they are then mixed and allowed to 

hybridize with probes disposed as spots on an array (Figure 7). The array is then 

scanned and the fluorescence of each spot recorded as an intensity which reflects the 

concentration of the spotted probe. The fluorescent ratio between target and reference 

DNA is finally calculated for each spot and plotted relative to the position of the probes 

on the genome.  
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Figure 7: Overview of array-comparative genomic hybridization method. 

The plot of the fluorescent ratios shows the regions of the genome where there is a gain 

or loss of DNA segment(s). 

For each probe a logarithmic ratio of test DNA over reference DNA termed Log R Ratio 

(LRR), is computed and the values are normalized to have a mean of zero over the 

array. This ratio allows us to identify locations where the test DNA and the reference 

DNA have unequal copy number.  Typically, if the reference DNA has two copies at a 

particular location whilst the test DNA has only one copy at that location, the log R 

ratio will be equal to -1.A log R ratio of 0 indicates two copies for both the test and the 

reference DNA. A log R ratio of 1means the copy number of the test DNA is twice the 

copy number of the reference DNA. Array-CGH enables the identification of regions of 

test and reference DNA that differ in copy number but cannot tell if the deletion or 

duplication occurred in the test or reference sample. For example, if LRR = -1, it is not 

possible to tell if what is observed corresponds to a deletion in the test DNA or a 

duplication in the reference DNA. Array-CGH is also limited in allowing one to 

determine the copy number as this must be inferred from the intensity ratio which can 

be very noisy. The resolution of array-CGH depends on the probe lengths; if probes 

have, for example, a length of 500 base-pairs (bp), the length of CNVs shorter than 
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500bp will be difficult to determine as it is impossible to tell how much shorter than the 

probe they are. 

CNV genotyping can also be carried out using SNP genotyping array data. Some SNP 

arrays contain both SNP probes and CNV probes (CNVIs); CNVIs are non-polymorphic 

probes which, whilst not measuring sequence variation, are useful for regions likely to 

contain CNVs(14).  

CNV genotyping consists of the identification of the number of diploid copies carried 

by an individual (copy number status). Several algorithms have been developed for 

calling CNVs and determining the copy number statuses of individuals; details of how 

the algorithm CNVtools works are covered in section 5.2.2.   

One of the early limitations (prior to 2006) in the use of SNP arrays to study CNVs was 

their low resolution; it was not possible to fit very large numbers of SNPs. Also SNPs 

located within CNV regions were generally excluded from SNP arrays after failing a 

Hardy-Weinberg Equilibrium (HWE) test because CNV duplications or deletions cause 

a deviation of the SNP genotypes from HWE (the test principle states that if individuals 

in a population are randomly mating and there are no significant evolutionary forces 

acting; the frequencies of the genotypes present in the population and the frequencies of 

the alleles are stable over generations). A general limitation is related to the way to 

interpret overlapping CNVs and the ascertainment of CNV boundaries. A calling 

algorithm may detect overlapping CNV segments across individuals, and in this case it 

is difficult to determine if the detected overlapping regions actually represent signals 

from the same underlying CNV or if they are separate CNVs; thus there is a risk of 

misclassification (15). It is important to measure precisely the copy number level of an 

individual at a given CNV locus in order to investigate a genetic association without a 
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serious risk of bias. The analysis in chapter 5 is an investigation of the level of accuracy 

when copy numbers are measured using intensity data from SNP genotyping arrays.  

 Recent CNV maps 

The recently developed CNV maps have improved the characterisation of CNVs and the 

on-going improvements allow one to undertake CNV association studies without 

carrying out CNV detection and characterisation at the same time. McCarroll et al.(16) 

used the Affymetrix SNP Array 6.0 to analyse simultaneously SNPs and CNVs and 

develop a human CNV map. In the study carried out by McCarroll et al., approximately 

half of the observed CNVs were present in many unrelated individual at a resolution of 

approximately 2kb. A large majority of the detected CNVs were inherited. The results 

also indicated that the contribution of some CNVs to disease can be captured by 

analysing the association between disease and SNPs that are correlated with CNVs. 

Conrad et al.(17)used a high density aCGH approach and developed a map of CNVs 

greater than ~500bp in length using data from two populations (European and West 

African). They detected ~11700 copy number variants; 77% of the common CNVs 

(CNVs with a frequency > 0.05) were tagged by SNPs. The study found 30 CNV loci 

that correlate with SNPs associated with complex traits, which means that these CNV 

loci may have some influence on complex traits. According to Conrad et al. most (80-

90%) of the CNVs greater than 1kb in length have now been identified. 

1.2.3.3. Linkage Disequilibrium 

Linkage Disequilibrium (LD) is the dependence of alleles located at different positions 

in the genome at a population level, or the measure of correlation between alleles at 

population level (18). If two alleles at two different loci are in strong LD then each of 

the alleles may be used to predict the other.  
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 LD calculation 

If we consider two biallelic loci; locus A, with alleles A and a, and locus C, with alleles 

C and c, the combination of alleles that could occur together and their probabilities is 

summarized in Table 1 which is similar to an example presented by R.C. Lewontin (19). 

Alleles C c 
A PAC PAc 

a PCa Pac 

Table 1: Possible allelic combinations given two biallelic loci. 

PAC = Probability of A and C occurring together. PAc = Probability of A and c 

occurring together. PCa = Probability of C and a occurring together. Pac =Probability 

of a and c occurring together. 

The Pearson correlation coefficient r and Lewontin’s coefficients D and D’ are usually 

used to compute the magnitude of a linkage disequilibrium; r2 = 1 denotes a perfect 

correlation and r2 = 0 denotes the absence of correlation. The Lewontin’s D coefficient 

is given by(20):  

D = (PAC×Pac) - (PAc×PCa) 

The Lewontin’s D' coefficient is a normalized version of D because D depends on 

alleles frequencies. If D ≥ 0, D’ is given by     
 

    
 where Dmax is the smallest value 

between (PA×Pa) and (PC×Pc), the products of the probabilities of the occurrence of the 

alleles. If D < 0, D’ is given by     
 

    
 where Dmin is the largest value between -

(PA×PC) and-(Pa×Pc) (19, 20).D' varies between -1 and 1, |D'| = 1 denotes maximum 

linkage (21). D' is inflated for small samples and not accurate for rare alleles (22). The 

square of the correlation coefficient, r2,is given by:  
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Alleles at distinct loci, on the same chromosome, which are in high LD, tend to be 

inherited together as a block; such a set of alleles represents a haplotype. Haplotype 

usually refers to a set of SNP alleles but can also include other polymorphisms. Regions 

with low recombination exhibit higher LD than average (with extended haplotype 

blocks).Within a haplotype, information about the other SNPs in the haplotype block 

can be captured by one or more SNPs termed a tag SNP(s). Tag SNPs are very useful 

for genetic association studies because they reduce the number of SNPs that it is 

necessary to genotype in order to achieve efficient coverage of the genome. The aim of 

the HapMap project (11) was to capture most of the genetic variation in the human 

genome by identifying haplotypes and creating a map of haplotypes where tag SNPs 

would facilitate association studies between common genetic variants and disease. The 

1000 Genomes Project is establishing a more extensive database of human genetic 

variation (common and rare sequence variants and, where detected, structural 

variations) by sequencing the genomes of many individuals from different populations. 

This project will also help to determine the relative allelic frequencies of the detected 

genetic variants across several populations. 

1.2.4. GENETIC POLYMORPHISMS AND DISEASE 

The change in the quality or quantity of the product of gene expression caused by 

variants within genes or within regulatory regions may explain why some 

polymorphisms play a role in the onset of diseases as well as influencing continuous 

traits. Both SNPs and CNVs have now been associated with a number of diseases or 

continuous traits. For example, the SNP rs1801282 in the PPARG gene was found to be 

associated with type 2 diabetes (23, 24). Two SNPs, rs10516526 and rs2571445, located 
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respectively in the genes GSTCD and TNS1 were found to be associated with the trait 

FEV1 - forced expiratory volume in 1 second (25). 

CNVs may lead to functional consequences by affecting gene dosage, the number of 

functional copies of a gene, which may determine the amount of functional protein 

produced. They could also disrupt regulatory regions of genes. For example, a common 

CNV lying about 20kb upstream of the IRGM gene is strongly associated with Crohn's 

disease and suspected to play a role in the disease by altering the regulation of IRGM 

(26). A CNV on chromosome 17 is believed to be associated with the rate of AIDS 

progression. This CNV is subject to a varying number of duplications; a higher copy 

number of the geneCCL3L1 is believed to be associated with a decreased susceptibility 

to HIV-1 infection (27). The effect of CNVs could have other clinical implications such 

as speeding up or slowing down the way drugs are metabolised in the body and hence 

inducing toxicity in the event of high concentration of a drug or reducing drug efficacy 

if the concentration of the drug is too low. Examples of this are deletions and 

duplications affecting the expression of CYP2A and CYP2D genes that are involved in 

drug metabolism (28). Understanding relationships between CNVs and disease has so 

far been limited by inaccuracies in measuring the number of copies within individuals. 

Accordingly, the analysis in chapter 5 specifically investigates the inferential impact of 

inaccuracy in the number of copies measured from SNP genotyping platform data. 

Studying associations between polymorphic sites (genetic variants) and traits can lead to 

the identification of genes involved in the pathways of disease. This is an aim pursued 

by genetic epidemiologists through methods such as genetic association studies. 
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1.3. GENETIC EPIDEMIOLOGY 

Genetic epidemiology has been defined as “a science which deals with the aetiology, 

distribution, and control of disease in groups of relatives and with inherited causes of 

disease in populations” (29). Whilst traditional epidemiology explores environmental 

(in a wide sense) and social factors influencing the occurrence and development of 

disease, genetic epidemiology addresses the genetic causes of disease and investigates 

interactions between genetic determinants and the joint effect of genetic and 

environmental determinants of disease.  

Although genetic epidemiology and classical epidemiology share many methods; 

genetic epidemiology presents unique challenges that require analytical approaches 

different to those of traditional epidemiology. For example in association studies, 

genetic epidemiology can use biological information such as LD to infer the existence 

of an association without directly measuring a causal variant. This is achieved by 

establishing an indirect association between another variant that is in LD with the causal 

one, and can also be demonstrated to be correlated with the disease. In contrast to 

studies in classical epidemiology, genetic association studies are much less subject to 

confounding by lifestyle factors because genotype is randomly assigned at conception; 

this concept is fundamental to analyses based on Mendelian randomization (30-32). 

Complex disorders are caused by multiple genetic and environmental determinants 

interacting in complex ways. The small effect size of common genetic variants involved 

in complex disorders constitutes a constraint for many genetic epidemiology methods 

(2). 

In earlier years, linkage analysis was the main method used in genetic epidemiology to 

map the location of genes related to a trait. Linkage analysis is based on the principle 
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that shorter haplotypes tend to not be broken down by recombination and are hence 

inherited intact. If a genetic marker is inherited together with a disease more often than 

it can be expected by chance this may indicate that the variant involved in the disease is 

located near the genetic marker. Linkage is a family-based approach where results are 

derived from relationships within a family and not between families; results from 

several families are then combined to obtain an overall result. Linkage analysis is useful 

for mapping genes that cause a large increase in risk; but linkage is in general not 

sufficiently powerful to investigate complex disorders because the genes involved in 

such disorders have usually small effect sizes. Genetic association studies provide more 

power than linkage analysis in the search of genes associated with complex traits (33); 

association studies are considered in more details in the next section.  

1.3.1. GENETIC ASSOCIATION STUDIES 

1.3.1.1. Definition and generalities 

Association can formally be defined in a number of ways. It describes a statistical 

relationship where the distribution of the values taken by one variable depends on the 

values taken by another variable, so that the variables are not independent from one 

another (34). If two variables A and B are associated then there is a function E(B|A) 

termed the regression function of B on A which gives the expected value of B given a 

known value of A. The curve obtained when the regression function is drawn with 

respect to A is the regression curve (35). The nature of prediction errors around the 

regression curve reflects the distribution of the dependent variable. This may be a 

normal, Poisson, binomial or some other distribution (see section 2.4 on generalized 

linear modelling [GLM] in chapter 2).  The values of A allow for the prediction of the 

values of B. The extent to which the knowledge of A enhances the prediction of B 
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represents the magnitude or strength of the association. In other words the magnitude of 

an association reflects the level of interdependence between the associated variables. 

Association studies explore the relationship between an outcome variable, termed the 

dependent variable, and one or more other variables, termed independent variables or 

covariates, to identify an association and determine its magnitude. The independent 

variables may be of any type, while the dependent variable is typically one of the 

exponential family distributions (36). The analyses in this thesis focus mainly on binary 

and normally distributed dependent and on binary or quantitative independent variables. 

In traditional epidemiology, association studies are used to investigate relationship 

between exposures, the independent variables, and a disease or disease-related trait, the 

dependent variable; the exposures are typically life-style or environmental factors. 

Genetic association studies resemble association studies in classical epidemiology. As 

well as life-style/environmental factors they also explore relationships between genomic 

variants - equivalent to exposures in classical epidemiology - and phenotypic variation 

with the aim to detect association between genetic variants and the phenotypic trait (18). 

The availability of the large HapMap database of polymorphisms combined with the 

continuous fall of the cost of genotyping and the development of genotyping platforms 

with dense network of markers (hundreds of thousands to one million markers) has 

enabled association studies using whole-genome scans termed genome-wide association 

studies (GWAS). 

1.3.1.2. Sampling and interpretation of findings 

My work focuses on individual-based genetic association studies; in such studies the 

data are from individuals expected to be unrelated rather than from families. This type 

of study enables us to achieve the large sample sizes that are more appropriate for the 
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investigation of the genetic causes of complex traits (37). Individual-based studies may 

have to deal with the issue of population heterogeneity or population admixture: 

different ethnicity or groups of different geographical locations may have different 

prevalence for the same disease and different frequencies for the alleles linked to the 

disease; such population stratification can cause spurious association, between genetic 

variants and disease, which in fact just reflects the difference of ancestry (38).  

As the cost of genotyping becomes more affordable, more variants can now be included 

in studies. This increase in the number of variants to test for association increases the 

burden of multiple testing which is an issue especially when a very large number of 

variants is tested as in genome-wide association studies (6). It is then necessary to set a 

significance threshold that takes into account the number of variants. If the number of 

equivalent genetic variants that have some influence in human traits is about 106 then a 

significance threshold of 5×10-8 (p.value of 0.05 corrected for 106 tests) would be an 

appropriate benchmark for single association studies when there is no pre-existing 

biological evidence for the influence of individual SNPs  (39). A less stringent 

significance threshold can be set for association studies involving genes with some prior 

evidence of biological effect. On the other hand if a variant reaches genome-wide 

significance (p.value < 5×10-8) then it may be worth following it up even if there is no 

biological evidence linking it to the trait of interest as, if artefactual association has been 

ruled out, it might just be that its involvement in the pathway is unknown as yet. When 

interpreting findings eventual bias resulting for example from genotyping errors should 

be taken into account as it reduces the power of the study. The impact of bias on power 

is covered in more details in the next section. 
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1.3.2. POWER IN GENETIC ASSOCIATION STUDIES 

The design stage is probably one of the most important steps of a study because poor 

design cannot be retrieved whilst a well-designed study provides opportunities for 

different analytic approaches. One of the most crucial decisions to make at the design 

stage is to determine the sample size required to achieve adequate statistical power. If 

the sample size is underestimated, the study might have a low precision i.e. not enough 

power and might hence fail to provide a reliable answer. On the other hand, if the 

sample size is too large, resources may be wasted. 

1.3.2.1. Definition 

This section addresses some of the principles underpinning the concept of statistical 

power. 

 Confidence interval 

Due to variation occurring by pure chance when samples are drawn from a population, 

the observed mean value is just an estimate of the true mean value. Different samples 

drawn from the same population would yield different estimates. The true mean is not 

therefore known but the range of values within which it is likely to lie, termed the 

confidence interval (CI), can be established by using the observed data to compute a 

lower and upper bound. Under the framework of classical frequentist inference, a 

confidence interval must necessarily be defined as the long-run probability of an 

observable event. For example,“if new data were repeatedly to be sampled, the same 

model applied and a series of 95% confidence intervals calculated, 19 out of 20 such 

intervals would include the true value of the parameter being estimated”(40). But this 

definition is so opaque that many contemporary statisticians instead adopt a pseudo-

Bayesian interpretation. For example: “95% confidence intervals are commonly 
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understood to represent a range of values within which one may be 95% certain that the 

true value of whatever one is estimating really lies. [This] is valid as a statement of 

Bayesian posterior probability, provided that the prior distribution that represents pre-

existing beliefs is uniform, which means flat, on the scale of the main outcome variable” 

(41). It is this latter, pseudo-Bayesian interpretation that is used in this thesis. 

 Hypothesis testing 

In drawing formal inferences based on a conventional hypothesis test, a null hypothesis 

(H0) typically refers to the assumption that there is no difference between two (or more) 

groups being compared e.g. they have the same true mean (42), or more generally the 

same value for a specified test statistic. The p.value is then defined as the probability 

that a particular study/analysis as specified will generate a result for the test statistic as 

extreme, or more extreme, than the result actually observed given that the null 

hypothesis is true (43). A type I error occurs when the null hypothesis is rejected whilst 

it is true; the probability of the occurrence of a type I error is denoted by α. A type II 

error occurs when the null hypothesis is not rejected whilst it is false; the probability of 

the occurrence of a type II error is denoted by β. Statistical power is the ability of a test 

to reject the null hypothesis when it is false i.e. the probability that a test does not 

commit a type II error (β); it follows that power = 1 – β (see Figure 8). If for example a 

study is investigating an association between a certain factor and a disease or 

continuous trait, the power is the ability of the study to detect the association if that 

association truly exists.  
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Figure 8: Illustration of type I error, type II error and power in a two-tailed test. 

The red and blue curves are respectively the sampling distributions under the null 

hypothesis and under the alternative hypothesis. α is the probability of the occurrence 

of a type I error and β is the probability of the occurrence of a type II error. µ0 and µ1 

are respectively the mean under the null hypothesis and the mean under the alternative 

hypothesis and Δµ is the mean difference. SM is the standard error of the mean. 

1.3.2.2. Some factors affecting power 

There are a number of factors that influence power in any association study and others 

that are specific to genetic association studies. Power depends mainly on effect size, 

type 1 error, and sample size (44-47). When a key variable is categorical (e.g. binary) 
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the power is influenced not only by the total sample size but also by the size of 

individual categories – the number of observations in the rarest category typically 

dominates the statistical power. This is true both for outcomes and exposure variables 

and it means, for example, that in a genetic association study, power depends critically 

on the frequency of the allele conferring disease susceptibility at each locus. This may 

be (though is not universally) the rarer allele; the population frequency of the rarer 

allele (the proportion of chromosomes where the locus exhibits the rarer allele) is the 

minor allele frequency (MAF). The power of a genetic association is also dependent on 

the strength of linkage disequilibrium (LD) between a causal variant and a genotyped 

variant (6) and on the particular genetic model that applies (7, 8, 48). These concepts 

have important parallels in the non-genetic setting (i.e. the quality of a proxy measure 

for any quantity of interest and the particular bio-clinical model that may apply in any 

setting) but they must always be considered in the genetic setting.  The next sub-

sections explore the relationships between effect size, type I error, sample size and 

power. The effect of imperfect linkage disequilibrium between causal and observed 

genetic variant on power is investigated in section 2.8. 

 Effect size 

Effect size is the strength of the relationship between two variables. It is for example the 

magnitude of the difference between two groups being compared (exposed vs. 

unexposed, treated vs. not treated) expressed as Δµ, mean difference, in Figure 8. In 

epidemiological studies the effect size is often measured as a relative risk or odds ratio 

(see section 2.3). Here it is relevant to note that when an analysis is undertaken using 

logistic regression, the logarithm of the odds ratio may be regarded as a mean difference 

on the scale of log-odds.  Effect size can also be understood as a measure of the effect 

of an independent variable on a dependent variable. If a study is investigating an 
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association between a genetic variant and a trait the effect size is how much the genetic 

factor influences or decreases the risk (or odds) of the trait occurring (for a binary trait) 

or by how much it increases or decreases the level of the trait (for a quantitative trait). 

The power required to detect an association decreases with decreasing effect size of the 

causal variable. If the effect size (here the mean difference Δµ) decreases, there is a 

shift to the left of the blue region in Figure 9, and the area that represents the power 

decreases. This decrease in power with decreasing effect size means simply - and 

intuitively - that it is more difficult to detect a difference between two groups if that 

difference is small. If an effect size is negligible, a study would have great difficulty 

detecting the underlying association even if that study is very large. 

If the effect size is unknown, power calculations are undertaken based on estimating the 

power of the study to detect an effect size that is scientifically relevant. If practical 

considerations mean that a study cannot be as large as is ideally required to detect the 

minimum effect size that is scientifically (or bio-clinically) relevant one may end up 

concluding, for example, that the proposed study will have adequate power (e.g. 83%) 

to detect the true effect if it corresponds to an odds ratio as large as 1.75, but inadequate 

power (e.g. 29%) if the corresponding odds ratio is as low as 1.30.  Crucially, once a 

study has been undertaken, if no association has been detected, it does not mean that 

there is no causal effect. It may only be inferred that, after adjusting for potential bias 

and confounding, any real effect of the putative causal factor is likely to be smaller than 

the minimum effect size that the study was adequately powered to detect. 
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Figure 9: Illustration of how a decrease in effect size causes a decrease of power. 

The area that represents the power shrinks when Δµ becomes smaller. α is the 

probability of the occurrence of a type I error and β is the probability of the occurrence 

of a type II error. µ0 and µ1 are respectively the mean under the null hypothesis and the 

mean under the alternative hypothesis and Δµ is the mean difference. SM is the standard 

error of the mean. 

 Sample size 

As already mentioned, if many random samples are drawn from a population, the mean 

of each sample is an estimate of the true mean. Furthermore, the mean of those sample 

means is also a (better) estimate of the true mean.  The magnitude of observed 

(stochastic) variation of the sample means from sample to sample may be quantified by 

the standard error of the mean SM (often abbreviated to SEM or SE) which provides an 

estimate of the true variation of sample means. Crucially, as a sample size becomes 

larger, its mean becomes a more precise estimate of the true mean because the standard 

deviation of the mean becomes smaller as reflected in Figure 10 and in the equation 

below: 
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𝑆𝑀  
𝜎𝑆
𝑁

 

Where σS is the estimated standard deviation of individual measurements in the 

population, and N is the number of observations in the sample. 

 
Figure 10: Illustration of how power increases following sample size increase. 

The standard deviation of the mean, SM, becomes smaller whilst the effect size, Δµ, 

remains unchanged. α is the probability of the occurrence of a type I error and β is the 

probability of the occurrence of a type II error. µ0 and µ1 are respectively the mean 

under the null hypothesis and the mean under the alternative hypothesis and Δµ is the 

mean difference. SM is the standard error of the mean. 

 

 Type 1 error 

From the graph in Figure 11, it can be seen that if  the type I error (α)decreases the type 

II error (β) increases and since power is equal to (1 – β) it follows that if α becomes 

more stringent the statistical power decreases and the sample size required increases. As 

a corollary, if α is increased (more false positives allowed) β decreases and it follows 

that the power increases. However increasing power by just allowing more false 
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positives (using a relaxed p.value) is not a good solution because that would mean 

having to accept many spurious associations involving numerous genetic variants that 

are not real and this impedes the development of bioscience. 

 

 
Figure 11: Illustration of the influence of type I error on power. 

Allowing for a smaller value of alpha corresponds to choosing a more stringent 

significance threshold which decreases the power. α is the probability of the occurrence 

of a type I error and β is the probability of the occurrence of a type II error. µ0 and µ1 

are respectively the mean under the null hypothesis and the mean under the alternative 

hypothesis and Δµ is the mean difference. SM is the standard error of the mean. 

1.4. OUTLINE OF THE METHOD 
DEVELOPMENT AND THE ANALYSES IN 
THE THESIS 

This thesis contains six chapters; the first and the last chapters are respectively a general 

introduction and conclusions/recommendations. The second chapter describes the 

development of an algorithm for power analysis and sample size estimation. The aim of 

this development is to make available a tool that allows for many of the bio-clinical and 

study design factors that in reality affect statistical power in genetic association studies, 
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but that, in reality, are typically ignored by traditional power calculation tools, to be 

taken into account. Such a tool would enable us to achieve a more realistic estimation of 

the sample size required for adequate power in any given study. The algorithm 

developed could be of use to investigators to analyse power and estimate sample size in 

nested or standalone association studies. It could allow funding bodies to verify the 

power claimed by applicants – the funding of studies that are seriously underpowered is 

not viewed as an appropriate use of resources. As outlined in chapters 3, 4 and 5 such a 

tool would also be used in answering a range of important scientific questions. 

The third chapter is an analysis to estimate the minimal sample size required by a pre-

existing cohort study to enable the investigation of a set of quantitative traits. One of the 

goals of the cohort is to establish a well powered platform which permits biomedical 

researches of quantitative traits. The cohort is still recruiting participants and the 

eventual sample size is yet to be definitively determined. This has important strategic 

and financial implications and it is therefore important to know the size that the cohort 

should achieve if it is to enable appropriately powered studies of the targeted 

quantitative traits.    

The fourth chapter explores the impact of some of the protocols used by UK Biobank to 

process bio-samples once they had been obtained. Assessment errors, introduced 

through poor assessment or physical measurement or because of inconsistent/or 

inappropriate standard operating procedures for collecting, processing, storing and/or 

analyzing bio-samples, can have a severely negative impact on statistical power (49). 

Thus, it is important to quantify such errors and to understand how they might impact 

on statistical power, particularly in association studies nested in biobanks and large bio-

repositories. 
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The fifth chapter evaluates how accurately and precisely copy number variants can be 

called from recent and older SNP genotyping platforms and the impact of inaccuracy in 

CNV calling on the power of genetic association studies investigating the role of CNVs 

on the onset of diseases. CNV genotyping can potentially be carried out using SNP 

platforms and SNP intensity data can be used in CNV association studies. It is therefore 

important to estimate the nature of errors in data from these platforms to inform 

investigators about the accuracy and precision of the CNVs they might want to include 

in their studies and the appropriate design of these studies. 
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CHAPTER 2 

2. ESPRESSO-FORTE, ALGORITHM 
FOR MORE REALISTIC POWER 
ANALYSIS AND SAMPLE SIZE 
ESTIMATION 

The initial version of this algorithm was developed by Professor Paul Burton. The 

development of the current version, named ESPRESSO-forte, was a key component of 

my thesis work. It is the new functionalities that I built in, including the possibility to 

analyse quantitative variables, which made possible the analyses carried out in sections 

2.8 and 2.9 and in chapters 3 and 4. The purpose of section 2.2, which follows the 

introduction to this chapter, is to explain my contribution by highlighting the differences 

between the original version of ESPRESSO and the version I developed as part of this 

thesis. 

2.1. INTRODUCTION 

A critical question to answer at the design stage of large scale studies and biobanks is 

what sample size is required to achieve adequate statistical power. For a large study 

aimed at exploring weak effects, the answer can have major implications for funding 

and resources. But this answer depends on a number of key issues such as the study 

design (longitudinal, cross-sectional, individual or family based), the class of analysis, 

the time required to observed sufficient number of events and the quality of the 

measurements, which in some cases depend on the number of repeated measurements 

that can be afforded. Assessment error in outcome and in explanatory variables can 
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substantially reduce the power of association studies (49).Conventional approaches to 

estimate the sample size required to achieve adequate power often fail to take into 

account some complex  elements (7) such as the sensitivity and specificity of the 

assessment of binary outcomes and explanatory variables or the reliability of the 

assessment of quantitative outcomes and explanatory variables. A failure to include 

these elements in power analyses at the design stage of a study may result in a serious 

over-estimation of its true statistical power and a research platform that is critically 

underpowered when it comes to analysis. 

ESPRESSO (Estimating Sample-size and Power in R by Exploring Simulated Study 

Outcomes) was developed to take into account the key issues and complex elements 

mentioned in the preceding paragraph and hence allow for more realistic power analysis 

and sample size calculation in genetic association studies. It is a simulation based 

approach, written in the R programming language (50) that supports power and sample 

size calculations for stand-alone studies and analyses nested in cohort studies. The 

simulation based approach, as opposed to the closed form solutions offered by 

conventional power and sample size calculators, allows for the high flexibility required 

to include the complex elements already mentioned. 

The ESPRESSO algorithm can be used by researchers involved in designing and setting 

up studies to investigate the genetic and environmental basis of complex traits. In 

particular, it enables those designing large cohorts and biobanks to better estimate the 

sample size required to achieve adequate power. ESPRESSO also allows funding bodies 

to verify the statistical power calculations put forward by researchers in their grant 

applications, thereby helping to ensure that resources are not wasted in underpowered 

studies. Although well conducted underpowered studies may be useful for meta-

analyses in the absence of serious reporting and publication biases, the primary aim of 
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an association study is not, generally, to generate results to be included in meta-analysis 

studies. The algorithm can also be used to explore specific scientific questions relevant 

to the design and set up of large-scale association studies and biobanks. For example, it 

may be used to help design protocols and standard operating procedures (SOPs) that 

enable appropriate account to be taken of errors introduced during the collection, 

transport and/or storage of samples. SOPs that entirely eradicate or minimise such errors 

are typically very expensive, in time, resources or invasiveness for participants. A 

sensible balance must therefore be struck between optimisation of SOPs and avoidance 

of approaches that are so time or resource intensive that the resultant opportunity cost - 

not being able to do other things instead – is simply too high. In this regard, chapter 4, 

details the exploration of the power implications of the SOP adopted by UK Biobank 

protocol that determined the distribution of delay time between the collection of bio-

samples (blood and urine) and final processing and cryo-storage. 

The aim of this project is to re-construct and re-program the original - published (7)- 

version of ESPRESSO to: (1) make it more user friendly and intuitive to use; (2) allow 

the algorithm to deal with quantitative variables (both outcomes and explanatories); and 

(3) extend the range of biomedical scenarios that can be investigated. The updated 

version of ESPRESSO has been called ESPRESSO-forte. 

2.2. ORIGINAL AND NEW VERSION OF 
ESPRESSO 

2.2.1. RECONSTRUCTING ESPRESSO 

The original version of the algorithm was written in a procedural way where each line 

of code consisted in the execution of a command that produced an output required by 

one or more of the next commands. This programming paradigm was fine for a concise 
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project as the early version of ESPRESSO, but as the length and the complexity of the 

original script increased, it became less easy to debug (to find and fix errors) and 

maintain the programme. So it was necessary to re-write the original script in a modular 

way to simplify it and work around the difficulties mentioned above; I did this by 

writing functions which are easier to use than several interdependent lines of 

instructions. These modifications of the original script were sufficient for the purpose of 

the web based version under the Public Population Project in Genomics (P3G) website: 

http://www.p3gobservatory.org/powercalculator.htm. However, to make the programme 

accessible to a wider audience and allow for researchers proficient in the R 

programming language to use the algorithm as written or modify some functions in a 

way that suits their analyses, I built the algorithm as an R package (an R library) which 

is now available for download from the Comprehensive R Archive Network (CRAN) 

repository of contributed packages: http://cran.r-

project.org/web/packages/ESPRESSO/index.html. 

2.2.2. EXTENDING ESPRESSO 

The original version of ESPRESSO allowed for the fitting of two explanatory variables 

(a genetic exposure and a binary environmental exposure) and one binary outcome. In 

the new version two genetic and two environmental exposures can be analysed 

simultaneously (under a main effect model) and the environmental exposure can also be 

quantitative. The main purpose of extending the number of explanatory variables that 

can be fitted was to allow for the investigation of quantitative traits which are becoming 

increasingly important as biomarkers are being more and more measured to assess 

disease (binary outcome) status. 

http://www.p3gobservatory.org/powercalculator.htm
http://cran.r-project.org/web/packages/ESPRESSO/index.html
http://cran.r-project.org/web/packages/ESPRESSO/index.html
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Table 2 shows the classes of analyses that were possible in the original version of 

ESPRESSO (cells shaded light green and light blue) and those that are now possible 

with the new version (cells shaded dark green and dark blue). In addition, whereas the 

original version of ESPRESSO focussed primarily on binary disease outcomes, 

ESPRESSO-forte allows for outcomes to be either binary traits or quantitative 

measures.  

  
Additive 
genetic variant 
(GA) 

Binary 
genetic 
variant(GB) 

Quantitative 
environmental 
exposure (EQ) 

Binary 
environmental 
exposure (EB) 

Additive 
genetic variant 
(GA) 

GA×GA     
Binary 
genetic variant 
(GB) 

GB×GA GB×GB   

Quantitative 
environmental 
exposure (EQ) 

EQ×GA EQ×GB EQ×EQ   
 

Binary 
environmental 
exposure (EB) 

EB×GA EB×GB EB×EQ EB×EB  
 

Table 2: Overview of the original ESPRESSO algorithm and the newly developed one. 

This table shows the genetic and environmental main effects scenarios that could be 

investigated under the original version of ESPRESSO (light green) and under the new 

version (dark green); and the interaction scenarios that can be analysed under the 

original version (light blue) and under the new version (dark blue). 

In working with binary outcomes, although the ESPRESSO algorithm was actually 

developed for the purpose of supporting design of cohort studies, the power calculations 

undertaken were based on the power of the nested case-control (or more often nested 

case-cohort) such cohorts can support. This is because, in most realistic settings, it is the 

nested case-control studies that a cohort can support that represent the power-limiting 

feature of the cohort design. If a cohort study is large enough to support typical nested 

case-control studies, it will almost certainly have plenty of power to provide for other 
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sub-study designs such as exposure-based studies (including genotype-based studies). 

Given the fundamental role of nested case-control analyses in the ESPRESSO 

algorithm, the next two sections cover some fundamental aspects of case-control design 

and regression analysis that are relevant to the context of ESPRESSO-forte. These will 

hopefully help readers to understand the architecture and logic of the algorithm.  

When ESPRESSO-forte is used to explore power for analyses involving a quantitative 

outcome (e.g. measured systolic blood pressure), the required analysis is not formally a 

case-control analysis but rather an association analysis (usually regression based) that is 

carried out on a sample of participants (possibly all) from the cohort study. 

2.3. CASE-CONTROL STUDIES 

A case-control study compares a group of affected persons, cases, to a group of 

unaffected persons, controls, to investigate possible association between one or more 

exposures (explanatory variables) and a binary outcome. The exposures can include 

particular personal attributes (e.g. genetic variants in ESPRESSO-forte) or 

environmental factors or interactions between them. If the frequency of the exposure is 

higher in the case group then an association between the exposure and the outcome may 

be inferred. Association does not necessarily imply causation; the explanatory variable 

may or may not cause or causally influence the outcome variable. For example, an 

association might be observed because of confounding consequent upon a third 

variable. A confounder is a variable associated with both the outcome and the 

explanatory variable (Figure 13) but not on a causal pathway linking the two together. 

The effect of the explanatory variable is mixed with the effect of the confounder 

therefore the estimated effect of the explanatory variable is distorted. A confounder may 

be adjusted for by techniques such as matching, stratification, multivariate adjustment 
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(51), if it is known; if it is not known randomization can be used as a solution such as in 

randomized controlled trials where subjects are randomly allocated to treatment groups. 

 

Figure 12: Graphical illustration of a confounder. 

A confounder is related to both independent and dependent variable but is not in the 

causal pathway. 

To ensure that the estimate of a true association is not masked or distorted by some bias, 

it is essential, as for any study design, to include only cases with strong evidence of 

disease to prevent misclassification (assigning an individual to a category or class 

he/she does not belong to). Controls should be representative of the population that the 

cases are selected from; they should be chosen independent of exposure or non-

exposure to reflect the proportion of exposed and unexposed individuals in the source 

population. The best controls are generally similar to cases except for the fact that they 

have not developed the disease (52). It is difficult to sample such a control group, but a 

group close to that ideal sample can be obtained by, for example, incidence density 

sampling which consists of drawing controls from a group of individuals, in a cohort, 

who are at risk at the moment where a case occurs (53). Another option is to use an 

unmatched control group and adjust for possible confounders (54). The sampling of 

controls can also be carried out by choosing for each case a control(s) that is similar for 

some variables such as age, sex, ethnicity (a process called pair-matching) or by 

sampling a control group that is overall similar to the case group for these variables 

(group matching). Matching can make an association less obvious or even mask the 

Explanatory Variable Outcome Variable 

Confounder 
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association if cases and controls are matched for a variable that is correlated with the 

possible cause of the disease but is not itself a cause of the disease (overmatching) (55). 

The results of an unmatched case-control study with one exposure of interest are often 

reported in a table similar to Table 3 and the odds ratio is calculated from the figures in 

the table. The odds ratio (OR) is used to express the ratio between exposed and non-

exposed. The odds of an event is the probability of an event (for example a disease) 

occurring over the probability of it not occurring so the OR is the ratio of the odds in the 

exposed group over the odds in the unexposed group. The OR described here uses 

prospective likelihood which is based on the probability of disease given the exposure 

status (56). In the case of a rare disease, when the prevalence of the disease is less than 

10% (57), the number of new occurring cases (incident cases) is very small compared to 

the non-diseased in both the exposed and unexposed group and the odds ratio is then a 

good approximation of the relative risk (RR) a measure often used for rare diseases and 

which represents the risk of developing a disease.  

  Cases Controls 
Exposed exposed cases (a) exposed controls (b) 

Unexposed unexposed cases (c) unexposed controls (d) 
Total a + c b + d 

Table 3: Summary of case-control study results. 

𝑅𝑅  
𝑎/(𝑎 + 𝑏)

𝑐/(𝑐 + 𝑑)
 Equation (2) 

In rare disease (a+b) ≈ b and (c+d) ≈ d, hence 𝑅𝑅   / 

 / 
≈OR. 

The advantage of case-control design is that there is no need to wait for incident cases; 

so the length of the study is relatively short and that contributes to cost effectiveness. 

This study design is suitable for rare conditions and more than one exposure can be 

𝑂𝑅  
𝑎/𝑏

𝑐/𝑑
 Equation (1) 
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investigated in one study. The disadvantage of this design is that it can be difficult to 

find an appropriate control group and exposure is assessed retrospectively which is not 

the most reliable way of collecting data. Furthermore it can be difficult to determine if 

the exposure preceded the disease. The incidence of the disease in the population at risk 

is unknown unless the sampling fraction (ratio of sample size over population size) is 

known both for cases and for controls. Critically the sampling fraction may be different 

for cases and controls – one often aims to sample a high proportion of cases (to enhance 

power) while using a low proportion of potential controls (to avoid recruiting too many 

controls which is statistically inefficient). ESPRESSO-forte implements an unmatched 

case-control design with, by default, four controls for one case. If for example the 

number of cases is limited, power can be gained by increasing the number of controls 

but generally there is little gain of power over a ratio of four cases for one control (52). 

2.4. REGRESSION ANALYSIS AND 
GENERALIZED LINEAR MODELS 

In regression analysis mathematical models are used to describe the relationship 

between one or more input variables (also termed independent or explanatory variables 

or covariates) and an output (also known as dependent or outcome) variable. The aim of 

regression analysis is to determine the values of the parameters of the model that – 

based on an appropriate optimization criterion such as likelihood or least squares – best 

describe the relationship between the explanatory variables and the outcome variable. 

Regression analysis can enable us to understand and estimate relationships and predict 

future values of the outcome variable given observed values of the explanatories.  

If an outcome variable y is quantitative and a given change in an explanatory variable x 

is associated with a fixed change in y, x and y are said to have a linear relationship and 
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the model is called linear regression. Such a model can be expressed mathematically as 

follows: 

    +    +    Equation (3) 

 The above linear regression model has one explanatory variable or covariate (x) and 

two parameters (β0 and β1).The intercept, β0, is the value of y when x is zero; it is 

therefore the y-coordinate of the point where the regression line cuts the y-axis. 

β1reflects the change in magnitude of y for a unit change in x. ε is the error term, it 

represents random variability and may also incorporate errors in measurement, changes 

in the conditions under which measurements were carried out or the impact of other 

determinants of y which have not been measured. A conventional linear regression 

model assumes: a quantitative and normally distributed outcome and a normally 

distributed error term which has a constant variance across the data (homoscedasticity) 

and is independent of the covariate. 

Other types of regression model can be considered if the relationship between the 

covariate and the outcome is not linear. For example, if the outcome variable is binary, 

a logistic regression model can be used to carry out regression analysis. Logistic 

regression models the changes in the natural logarithm of the odds of the outcome 

variable given some covariates; the model with one covariate (x) can be expressed 

mathematically as follows:  

  (
 

   
)    +     Equation (4) 

Where Y is the probability of success (the probability of the occurrence of an event y 

such as a disease);   (  

   
) or logit(y) is the logistic transform or logit transform; β0 is 

the value of logit(y) when x is equal to zero, and so estimates the log of the odds 
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corresponding to the probability of response when all covariates are zero (here, x=0); 

β1is the estimated effect of a one unit increase in x on the log odds of y. This implies 

that the relationship between x and logit(y) is modelled as being linear. Logistic 

regression models are very useful for association study designs with quantitative 

covariates where the results are expressed using odds ratios because the exponential 

transform conveniently relates the covariates to odds ratios (ORs). Thus, if we consider 

the simple model:  ogit(y)   β0+ β1 x, where x is a quantitative variable, β1 estimates 

the increase in the log(odds) of a positive response given a one unit change in the 

explanatory variable x. This implies that the exponential of the coefficient (i.e. ℮
 β1), 

estimates the multiplicative increase in the odds associated with a one unit change in x. 

At the same time, β0estimates the log-odds of a positive response when x=0 and, 

applying the expit, or inverse logit transform, this therefore means that, if x=0, the 

estimated probability of a positive response is  
  

       
. 

Generalized linear models (GLMs) represent a broad class of regression models that 

allow for two important extensions of the conventional multiple linear regression model 

(36): (1) errors in estimation of the fitted values of the outcome variable in a GLM do 

not necessarily follow a normal (Gaussian) distribution; and (2) the functional 

relationship between the outcome variable and the covariates can be a non-linear 

function. The two regression models (linear and logistic) described in the two 

paragraphs above are therefore both GLMs. 

In a GLM the functional relationship between the outcome variable and the linear 

predictor (a linear combination of covariates and coefficients) is known as the link 

function.  By allowing functions other than the identity link that is found in a 

conventional linear model (where a linear combination of covariates and coefficients 
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[β + β  x +β2x2....] directly predicts the expected value of the outcome variable) GLMs 

are greatly more flexible than standard linear regression models.  

The relationship between outcome and linear predictor of a GLM, here with two 

covariates, is typically written as follows: 

 ( )    +     +      Equation (5) 

Where β + β  x +β2x2 is the linear predictor (often denoted eta [η]) and g(.) is the link 

function which links linear predictor (LP) and Y. The inverse link function is often 

denoted h(.) = g-1(.). Each observed value of the outcome variable, y, is assumed to be 

distributed stochastically around its modelled expectation Y (often denoted µ) following 

one of the many distributions from the exponential family (36). The link function, g(.), 

is monotonic and therefore preserves the ordering of the relationship so that the 

expectation of y increases, decreases or remains constant if the LP respectively 

increases, decreases or remains constant. The parameters of the model are usually 

optimised via maximisation of the likelihood (56). The likelihood associated with a 

particular parameter value β1 given y is computed by working out how probable y would 

be if the parameter was set to the specific value β1 (56). In maximum likelihood 

estimation, the particular parameter values to explore may be chosen in several different 

ways. (1) In closed form (when a solution can be found in one step as in a linear model); 

(2) by systematic searching (e.g. based on the Iterative Reweighted Least Squares 

Algorithm [IRLS] which is closely related to Newton Raphson (58); or rarely, (3) 

randomly or by trial and error when closed form solutions and/or systematic search 

regimes are unavailable. However, the evaluation points are chosen, the likelihood of 

the data given the parameter values at each point is then calculated and likelihood 
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surface is derived. The peak value of likelihood across this surface jointly defines the 

maximum likelihood estimate (MLE) for every parameter being considered.   

The precise form of the maximum likelihood calculations are determined by the 

particular error distribution that is assumed to apply. Thus the full formulation of a 

GLM is usually given as follows: 

 ( )    +     +      

y~ expo e tia .fami y( , .) 

It is the second element that specifies that the observed values, y, are distributed with 

expectation Y (as predicted by the linear predictor and link function) and the error 

around those predictions follows an exponential family distribution which may include 

parameters relating to the variance function (.). 

Table 4 gives a summary of the link and variance functions for the two GLMs used in 

ESPRESSO-forte to analyse simulated quantitative (normally distributed) and binary 

outcome data. Note that the variance function for the linear model is unrelated to Y. This 

implies that the errors are homoscedatic. But, the variance function does include an 

additional argument σ2 which relates to the variance of the residuals. On the other hand, 

the variance function for logistic regression is fully defined by Y, and so the error 

distribution is heteroscedatic (with a specified functional form) but there is no need to 

estimate any additional parameters equivalent to σ2 in the setting of the linear model. 

Model Distribution g(.) Variance Function 

Linear Normal y σ2 

Logistic Binomial logit(y) Y(1-Y) 

Table 4: GLM's link and variance functions analysed by ESPRESSO-forte. 
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For the sake of simplicity the mathematical expressions of the models presented in this 

section have included only one or at most two covariates; there could be however more 

than one covariate of any type. Under a main effect model ESPRESSO-forte allows for 

the fitting of GLM models with four covariates (two genetic and two environmental 

determinants) and three covariates (two determinants and the interaction term) under an 

interaction model. The next section explores the concepts of main effects and 

interactions. 

2.5. MAIN AND INTERACTION EFFECT 

An outcome variable may depend on one or more covariates and each covariate may 

have an effect not related to the effects of the other covariates. This is termed the main 

effect; it is the effect of each covariate fitted in the absence of interaction between 

covariates. Although the definition of main effect can be used for models with only one 

covariate it is mainly used when there is more than one covariate acting on an outcome 

variable. In the presence of more than one covariate if the combined observed effect is 

not equal to the sum of the single effects this could indicate an interaction between 

covariates.  

If for example an outcome y is determined by two binary exposures XA and XB, there is 

no interaction if the effect of XA is independent from the effect of XB. Though, this 

assumes an ideal situation where the outcome is only affected by XA and XB, and there 

is no bias or all biases have been controlled. The example can be illustrated as in Table 

5 which reports the levels of the outcome for the two values of XA and the two values of 

XB. The difference between the levels of the outcome under the two levels of the 

exposure XA (in blue in Table 5) is the same regardless of what the status of the second 

exposure (XB) is. It follows that the difference between the levels of the outcome under 
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the two levels of the exposure XB (in red in Table 5) is also the same regardless of what 

the status of the other exposure (XA) is.  

  XA.0 XA.1 XA.1 - XA.0 

XB.0 300 400 100 

XB.1 500 600 100 

XB.1 - XB.0 200 200   

Table 5: Example of two independent binary explanatory variables 

The table reports the levels of the two independent binary explanatory variables XA and 

XB. The effect of XA on the outcome is not influenced by the effect of XB and the effect of 

XB is also independent from that of XA. 

Returning to the above example to illustrate an interaction, if the difference between the 

levels of the outcome under the two levels of the exposure XA is not the same for the 

two levels of the second exposure XB, this indicates an interaction between the two 

determinants of the outcome i.e. the effect of one determinant is not independent from 

the effect of the other determinant as illustrated in Table 6.  

  XA.0 XA.1 XA.1 - XA.0 

XB.0 100 400 300 

XB.1 500 600 100 

XB.1 - XB.0 400 200   

Table 6: Example of two dependent binary explanatory variables. 

The table reports the levels of two dependent binary explanatory variables XA and XB. 

The effect of XA on the outcome is dependent upon the effect of XB and vice versa. 

So, in the absence of relevant biases, a departure from additivity in this setting indicates 

interaction. However biologically there could be an interaction even when the sum of 

the single effects is equal to the observed combined effects of the covariates; this could 

be the case if for example there are two antagonist types of interaction of the same 

magnitude that cancel out each other (59). Thus the absence of statistical interaction 

does not necessary imply an absence of biological interaction. 
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If a real interaction effect is not taken into account in the estimation of a joint effect this 

will lead to bias; the accuracy of the estimated relationship between the covariates and 

the outcome will be reduced. Typically, the predicted value Y will be overestimated for 

some combination of the covariate values and underestimated at others. The accuracy 

will depend, among other things, on the magnitude of the omitted interaction term 

relative to the main effect estimates; the larger that relative magnitude, the less accurate 

inferences based on the main effects alone will be. Because measurement errors in the 

values of covariates involved in an interaction may be amplified in multiplying each 

covariate by the other covariate in creating the product term, and by the combination of 

errors from each covariate, measurement error often has a larger impact on the precision 

of estimation (and hence statistical power) under interaction compared to main effect 

models. 

Because interactions relate to the impact of one covariate at different levels of another 

covariate, the amount of information that is available to estimate them is generally 

smaller than for main effects (7). This means that it is generally more difficult to 

identify and prove the existence of an interaction effect than it is for main effects. 

Consequently, studies are often underpowered to investigate interaction (60) because 

most of them are designed to investigate main effect models (61). 

2.6. DETAILS OF THE ESPRESSO-FORTE 
ALGORITHM 

An ESPRESSO-forte power calculation involves repeatedly simulating a dataset with a 

number of key characteristics and seeing in what proportion of the simulations the effect 

of interest can be detected by an appropriate test of statistical inference, such as a 

p.value at a given level of statistical significance. The flowchart in Figure 13 shows the 
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three main blocks of the algorithm (parameters settings, data simulation and data 

analysis) and the different steps within each block.  

 

Figure 13: Flowchart of the main steps in ESPRESSO-forte simulation. 

The details of each of the three main parts of ESPRESSO-forte are covered in this 

section. In the first part (step 1 in Figure 13) a series of input parameters required to run 

ESPRESSO-forte (general, genetic exposure, environmental exposure and other 

parameters) are loaded and merged into one input table. In the second part (steps 2 and 

3 in Figure 13), an error free dataset which contains the true outcome and determinant 

values for each simulated individual is generated. Crucially, the word ‘true’ here refers 

not to the ‘true’ value of some real individual in the real world, but rather the true 

values (without error) of each simulated variable in each simulated subject within 

ESPRESSO-forte. Then a simulated error is generated for the outcome and for each of 

the covariates and added to the true data to produce the ‘observed’ data. The level of 

error depends on the input parameters reflecting the sensitivity and specificity of the 

assessments of binary variables or on the reliability of the assessment of quantitative 

variables. In the third and last part of the algorithm (steps 4 and 5 in Figure 13) the 

observed data generated in the simulation stage is analysed by GLM, the sample size 
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required to achieve the specified power is calculated and the empirical and modelled 

power achieved with the input sample size are estimated.  

In sections 2.6.1, 2.6.2, and 2.6.3 each of the three main parts of the algorithm, 

respectively the parameters setting, the simulation of outcome and exposure data and 

the analysis of the simulated data, are explained in details. 

2.6.1. INPUT PARAMETERS 

The parameters are subdivided into four input tables to make the maintenance of the 

web-based version easier and more flexible. The first input table named general.params 

(see page 258 of the R package manual under Appendix 1) contains parameters that 

relate to all simulations such as the number of simulations and other parameters that 

relate to the outcome variable and to effects other than the genetic and environmental 

ones. The second table (table of genetic parameters, see page 256 of the R package 

manual under Appendix 1) contains parameters that relate to the genetic exposures (two 

bi-allelic SNPs, G1 and G2). The third input table (table of environment parameters, see 

page 255 of the R package manual under Appendix 1) contains parameters that relate to 

the environmental exposures (two environmental/life style exposures, E1and E2). The 

fourth input table which is not listed here but can be found in page 288 of the R package 

manual under Appendix 1) is optional and is only used if the user chooses to estimate 

the unknown sensitivity and specificity of the assessment of the alleles of the genetic 

variant or the sensitivity and specificity of the assessment of the binary environmental 

exposure. 

Some of the outcome and covariates parameters may not be known to the user; in this 

case it is reasonable to use known values from pre-existing data. If there is no known 
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pre-existing data from which to generate reasonable parameter values, the user should 

consider running a sensitivity analysis to find out how sensitive the final estimated 

sample size is to the unknown parameters; if the estimated sample is relatively robust to 

the choice of parameters then a rough approximation is acceptable. 

In the next three sub-sections the input parameters and their meaning are listed in Table 

7, Table 8, Table 9 and Table 10which are followed by detailed explanations of the 

parameters and some considerations that would apply depending on what the parameters 

are set at. 

2.6.1.1. General and other parameters 

In this section, the input parameters in the table general.params are presented in two 

distinct tables for the sake of clarity but these two tables (Table 7 and Table 8) represent 

actually one table when running the software. 

 General parameters 

Parameter Description 
scenario ID An integer code for each simulation. 
number of simulations An integer that indicates the number of runs. 
random number seed An integer between 1 and 9999999. 
number of cases An integer indicating the number of cases for a binary outcome model. 
number of controls An integer indicating the number of controls for a binary outcome model. 
number of subjects An integer indicating the sample size for a quantitative outcome. 
p.value A value defining statistical significance. 
power A value between 0.1 and 1defining the desired level of statistical power 

main effect/interaction 

A discrete indicator that takes the value 0 for a main effect model, 1 for an 
interaction between genetic and environmental exposures, 2 for an 
interaction between the two genetic exposures and 3 for an interaction 
between the two environmental exposures. 

display LD 

A binary indicator set to 1 if the two SNPs that represent the genetic 
exposures are modelled as being in linkage disequilibrium and if a 
summary of the simulated LD values should be displayed on screen. The 
parameter is set to 0 if no summary should be displayed. 

calculate sensitivity 

and specificity 

A binary indicator variable set to 1 if the sensitivity and the specificity of 
the binary exposures should be estimated (e.g. if they are unknown) or 0 
otherwise. 

Table 7: Outline of the general parameters required by the algorithm. 
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The parameter scenario ID enables each simulated scenario to be identified in the 

output; there is no requirement that the IDs be sequential. 

The parameter ‘random number seed’ - technically, a pseudo-random number seed - is 

an integer between 1 and 9999999 that allows for the user to repeat precisely the same 

analysis on as many occasions as needed,  to for example look at the results in more 

detail or to reproduce the results if an error is suspected. The parameter is passed on as 

an argument to an R pseudorandom number generator function which creates a 

sequence of numbers that behaves as if it were a random sequence even though it is 

actually deterministic. But, because it is actually deterministic, once a specific seed 

value has been specified, it is possible to generate precisely the same sequence of 

numbers by using the same seed. 

The parameter ‘number of simulations’ sets the number of simulation to run. The more 

simulations that are run, the better reflection the set of simulations will provide of the 

particular scenario that has been specified. However, the number of runs has a 

computational cost; the larger the number of simulations, the longer the runtime will be. 

It is probably better to run a small number of simulations (e.g. 10-100) for a first 

exploration and run rather more simulations (e.g. at least 500) for the final results. 

The parameters ‘number of cases’ and ‘number of controls’ set the starting sample size 

for a binary outcome model. Here, ‘starting’ refers to the number of individuals in each 

simulation – this will in general be different to ‘final’ sample size, which is the sample 

size calculated in step 5 that is needed to generate the statistical power required.  It is 

important to note that: (1) the ratio of the number of cases over the number of controls 

(cases/controls) is important because the sample size that is calculated at the end of the 

simulation (in step 5) is the required size for a case-control study with cases/controls 
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times as many controls as cases to produce the desired power to detect the simulated 

effect.  In other words, the estimated power relates specifically to a case-control study 

with the chosen ratio of cases to controls and conclusions would in general be different 

if an alternative ratio was to be used; (2) the smaller the absolute number of cases and 

controls, the faster the program will run, but the more variable the results will be and 

therefore more runs will be required. If an inadequate number of cases and controls is 

specified, rare combinations may not occur at all in a dataset and this might generate 

misleading results or cause the model to fail. In the other hand very large number of 

cases and controls will cause the programme to run very slowly. The number of cases 

and controls that is specified must necessarily be higher if the model of interest 

includes, for example, an interaction that will be present in very few individuals in each 

simulation. 

The parameter ‘number of subjects’ sets the starting sample size for a quantitative 

outcome. Here there is no distinction into cases and controls; there is simply a number 

of individuals each of whom have a measured quantitative outcome. However, as for the 

number of case and controls; the smaller the absolute number of subjects, the faster the 

program will run, but the more variable the results will be and therefore more runs will 

be required. 

The parameter ‘p.value’ defines statistical significance (see paragraph on type 1 error in 

section 1.3.2.2). Instead of setting the parameter totally arbitrarily, it is probably more 

advisable to take into account the biological plausibility of the association between 

determinant and trait of interest and other elements that may obscure an existing 

association. However the choice of a relaxed p.value threshold can be legitimated by the 

aim of the investigator; if the aim is to not miss the true signal then one can afford to set 
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a non-stringent threshold just as a screening test whose main goal is to detect all 

affected individuals, for such test a high rate of false positive can be allowed. 

The parameter ‘power’ sets the statistical power to achieve; its value is up to the user 

but it should reflect the power required for detecting a bio-clinically meaningful main 

effect of an exposure or joint effect of several exposures. In ESPRESSO-forte the power 

is by default set arbitrarily to 80%.  

The parameter ‘main effect/interaction’ determines if there is an interaction between 

the covariates. This parameter indicates a main effect model, an interaction between 

genetic and environmental determinants, an interaction between the two genetic 

determinants and an interaction between two environmental determinants if set 

respectively to 0, 1, 2 and 3. Under a gene-environment interaction model, it is the first 

genetic determinant (G1) and the first environmental determinant (E1) that are used to 

form the interaction term; the results of the analysis should then be ignored for the other 

two covariates. 

The parameter ‘display LD’ is only relevant if the user chooses to model two SNPs 

(genetic exposures) as being in linkage disequilibrium (LD). In that case if the 

parameter is set to 1 a summary which consists of the target and simulated frequency of 

the major haplotype and the target and simulated level of LD between the two SNPs 

(the LD is measured as both a Pearson correlation coefficient and Lewontin’s D) is 

displayed on screen after each simulation. This means that if the number of runs is 500, 

a summary will be displayed 500 times, thus this parameter is meant to be used only for 

a short number of simulations to verify that the target LD and the simulated LD do 

match. 
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The parameter ‘calculate sensitivity and specificity’ indicates if the sensitivity and 

specificity of the exposures should be estimated empirically or not. It might be 

necessary to estimate these values if for example they are unknown to the user and 

where not available from the literature. For the genetic exposure, the function 

sim.geno.sesp, (see page 279of the manual under Appendix 1) that I wrote as part of the 

ESPRESSO-forte R package allows for the user to estimate the sensitivity and 

specificity required to generate the squared correlation between the ‘true’ alleles and the 

‘observed’ alleles used to construct the genotypes, given the minor allele frequency of 

the SNP. For the binary environmental exposure, the sensitivity and specificity of the 

assessment of the exposure can be calculated using the function sim.env.sesp that I also 

wrote as part of the ESPRESSO-forte R package (see page 277 of the manual under 

Appendix 1). This function generates the appropriate sensitivities and specificities 

corresponding to the reliability that is required (given the prevalence of the ‘at-risk’ 

environmental determinant). 

In the functions sim.geno.sesp and sim.env.sesp, the measurement error is represented as 

an incomplete correlation between the vector of “true” measurements and the vector of 

“observed” measurements. The calculated sensitivity and specificity values will 

overwrite the values specified in the genetic and environment parameters input tables. If 

the user chooses to estimate the sensitivity and specificity, the arguments to be passed 

on to the functions sim.geno.sesp and sim.env.sesp should be specified in the input table 

sim.sesp.params (see page 288 of the package manual under Appendix 1). 
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 Parameters for the outcome and the other risk effects 

Parameter Description 
outcome model 

A binary indicator variable set to 0 if the outcome is to be modelled as 
binary and 1 if it is to be modelled as normally distributed 

disease prevalence The frequency of the binary outcome in the general population 
outcome sensitivity The sensitivity of the assessment of the binary outcome 
outcome specificity The specificity of the assessment of the binary outcome 
outcome reliability The reliability of the measurement of the quantitative outcome 

baseline OR 
The effect associated with the heterogeneity in baseline disease risk for 
a binary outcome 

interactive OR 
The effect associated with the interaction between two exposures for a 
binary outcome 

interactive effect 
The effect associated with the interaction between two exposures for a 
quantitative outcome 

Table 8: Parameters related to the outcome, the baseline risk and the interaction term. 

The parameter ‘outcome model’ determines the type of the trait of interest which can be 

a binary trait or a quantitative trait.  

The parameter ‘disease prevalence’ represents the frequency of the binary outcome in 

the general population on which the study is to be based. If the true prevalence is very 

low, a very large number of subjects will have to be simulated before enough cases are 

generated and this will make the simulation process very slow. It might not even be 

possible to generate enough cases for an extremely low prevalence. 

The parameters ‘outcome sensitivity’ and ‘outcome specificity’ represent the sensitivity 

and specificity of the assessment of disease. One of the main strengths of the 

ESPRESSO-forte algorithm is that it allows taking into account measurement error in 

both outcome and explanatory variables. The level of assessment error depends on the 

accuracy of the test used to ascertain the presence or absence of a binary trait (outcome 

variable) or a binary exposure (explanatory variable). The accuracy of a test (or more 

correctly, here, categorisation) may be defined by its sensitivity and specificity (35). 

Sensitivity is the proportion of all those with the disease who are correctly identified as 

diseased (categorised as having the disease). Specificity is the proportion of all those 
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without the disease who are correctly identified as not diseased (categorised as not 

having the disease) (62). An ideal test is characterized by a very high sensitivity and a 

very high specificity (63). However one of these two characteristics might be more 

important than the other, depending on the purpose of the categorisation. 

The parameter ‘outcome reliability’ represents the reliability of the assessment of a 

quantitative outcome. Reliability (test-retest reliability) is a characteristic of a measure 

which reflects the consistency of the observed measurement of a quantitative variable 

across several repeats. An estimate of the reliability is given by the ratio of the variance 

of the true measurement (  . 
 ) to the variance of the observed measurement (  .   

 ): 

𝑅   𝑎𝑏       
𝜎𝑀. 
 

𝜎𝑀.  𝑆
  Equation (6) 

In Equation (6) the denominator can be replaced by   . 
  +   . 

  (variance of the true 

measurement + variance of the error) because an observed measurement MOBS is equal 

to the sum of a true measurement MT and an error EM (MOBS= MT + EM). So the 

equation can be re-written as: 

𝑅   𝑎𝑏       
𝜎𝑀. 
 

𝜎𝑀. 
 + 𝜎𝑀. 

  Equation (7) 

In ESPRESSO-forte, Equation (7) is exploited to generate observed normal data with a 

specified reliability. 

The parameter ‘baseline OR’ represents the heterogeneity in disease risk arising from 

determinants not measured or not included in the model. The variance in baseline risk is 

assumed to follow a normal distribution on the logistic scale – i.e. a normally 

distributed error term that is added to the linear predictor. Set for example to10, it 

means that a person at high risk (an individual at the top 95% percentile of population 
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risk) is, all else being equal, at 10 times the odds of developing the disease compared to 

a person at low risk (bottom 5% percentile of population risk). 

The parameter ‘interactive OR’ represents the ratio of the odds ratios of two interacting 

exposures, for a binary outcome; it is the odds ratio associated with the interaction term. 

If, for example, a disease is determined by the interaction between a SNP and an 

environmental factor, ‘interactive OR’ is the odds ratio associated with having an ‘at 

risk’ genotype rather than a ‘not at risk’ genotype in subjects exposed to the ‘at risk’ 

environmental determinant compared to the same odds ratio in subjects not exposed to 

the ‘at risk’ environmental determinant.  

The parameter ‘interactive effect’ represents the effect of the interaction term on a 

normally distributed outcome. It is the expected change in the magnitude of the 

outcome phenotype that results from a one unit change in the magnitude of the 

interaction term. 

2.6.1.2. Parameters for the genetic exposure 

Parameter Description 
genetic model 

A binary indicator set to 1 if a genetic exposure (SNP) is to be modelled as 
additive and to 0 if it is to be modelled as binary. 

MAF The prevalence of the rarer (minor) allele. 
genetic OR The effect associated with the minor allele for a binary outcome model 

genetic effect 
The effect associated with the minor allele for a quantitative outcome 
model. 

genetic sensitivity The sensitivity of the assessment of the alleles that form the genotype 
genetic specificity The specificity of the assessment of the alleles that form the genotype 

LD 
A binary indicator set to 1 if the two SNPs are to be modelled as being in 
LD and to 0 if they are to be modelled as independent. 

Target LD The level of LD between the two SNPs, if they are to be modelled as in LD. 

Table 9: Parameters for the genetic exposures. 

The genetic exposures are two SNPs which can be modelled as being in linkage 

disequilibrium. 
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The parameter ‘genetic model’ sets the parameterisation model for a genetic exposure 

(SNP). In ESPRESSO-forte the genetic model can be either binary (dominant or 

recessive) or additive. To explain these models in detail let us consider a binary trait 

(disease) determined by a biallelic SNP; the two alleles are d and D. There will then be 

three possible genotypes: dd, dD and DD. A genetic model describes how a phenotype 

(trait) is related - logically or quantitatively - to the alleles composing the underlying 

genotype. If a single copy of one of the alleles suffices to determine that an individual is 

‘at high risk’ of expressing a binary phenotype and a second copy has no additional 

impact then that allele is said to be dominant. This is also true if a single copy of an 

allele has the same quantitative impact on a quantitative trait as two copies. In either 

case, the alternative allele only determines the level of phenotypic response if it is 

present in two copies and is then said to be recessive.  In a co-dominant genetic model 

neither of the alleles determines the phenotype alone in heterozygous individuals, both 

alleles contribute to the phenotype but they do not necessarily have the same 

contribution.  

- Dominant model  

If D is the ‘risk allele’ (the allele that increases the risk of disease relative to the other 

allele); then any individual carrying that allele (heterozygous dD and homozygous DD) 

is at risk. Under this setting, if the genetic model is binary, one copy of the risk allele D 

is sufficient to reach the maximum risk. However if the dominance of D is incomplete 

i.e. the phenotype of the heterozygous dD is not identical to the phenotype of the 

homozygous DD, the risk is typically larger for the homozygous DD. Incomplete 

dominance can be regarded as one form of co-dominance. 
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- Recessive model 

If D is the dominant allele it means d is the recessive allele. Even if d increases the risk 

of disease then it will only be homozygous dd individuals that express this increased 

genetic risk. One copy of d is not sufficient to put the individual at risk.  

- Additive model 

The additive genetic model is a special case of the co-dominant model under which the 

effect of the heterozygote genotype (1 copy of the allele) is precisely midway between 

the effects of the two homozygote genotypes. If D confers increased risk then under a 

logistic model if the Dd genotype confers k times the odds of disease compared to the 

dd genotype, then the DD genotype confers k2 time the odds of the dd genotype and k 

times the odds of the Dd genotype. Here “additivity” is technically observed on the 

scale of log-odds (the fundamental scale of analysis of a logistic model), and the model 

can equally well be viewed as ‘multiplicative’ on the scale of odds. 

Similarly, for a quantitative trait such as obesity measured by BMI, under the additive 

genetic model, each copy of the ‘risk’ allele increases the expected BMI by a certain 

magnitude (effect size). This means that the expected BMI associated with the 

heterozygote genotype is exactly midway between the expected value associated with 

the two homozygote genotypes. This reflects ‘additivity’ on the natural scale on which 

BMI is measured. If the expected BMI associated with the Dd genotype is h kg/m2 

higher than that associated with the dd genotype, the expected BMI associated with DD 

will be h kg/m2 higher than Dd and 2h kg/m2 higher than dd.  

This parameter ‘MAF’ represents the frequency of the rarer allele in the population. If 

this frequency is low the simulation runs for longer. It may not be possible to generate 

the specified number of individuals if the risk allele is extremely rare.  
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The parameter ‘genetic OR’is the odds ratio associated with one unit increase in the 

genetic covariate (the extent to which the odds of disease is multiplied by being ‘at risk’ 

rather than ‘not at risk’ in a binary genetic model). 

The parameter ‘genetic effect’ is the additive effect of each additional minor allele (the 

‘risk’ allele) of a SNP, for a quantitative outcome model. If the SNP is binary, a second 

copy of the risk allele does not increase the risk further and if the SNP is additive each 

additional copy of the risk allele increases the risk. This explanation refers to a 

dominant model (complete dominance of the risk allele).  

The parameters‘genetic sensitivity’ and ‘genetic specificity’ reflects the accuracy of the 

measurements of the alleles. This accuracy depends on the genotyping platform, the 

technology used for the assays and the algorithm used to call the genotypes (64). 

In ESPRESSO-forte the two SNPs that represent the genetic exposures can be modelled 

as being in linkage disequilibrium. The parameter ‘LD’is a binary indicator that takes 

the value 1 if the two SNPs are to be modelled as in LD and 0 if there are to be 

modelled as independent. The correlated SNPs are generated using a multivariate 

normal distribution function and the method developed in the R package HapSim (65). 

HapSim models a haplotype (defined in section 1.2.3.3 ) as a multivariate random 

variable with known marginal distributions and pairwise correlation coefficients. The 

package allows for the simulation of a SNP haplotype of several biallelic loci. In my 

implementation of the method for ESPRESSO-forte I limited the number of loci to two 

because I am generating only two SNPs in LD.  My implementation of the method 

consisted in two main steps: (1) I compute the covariance matrix required to generate 

two correlated binary vectors of length n (each vector represents one SNP and n is the 

number of observations i.e. individuals); this is done by the function make.cov.mat (see 
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page 264 of the package manual under Appendix 1). (2) I use the covariance computed 

in (1) to generate a matrix of data that follow a multivariate normal distribution; this 

second step is carried out by the function sim.LDsnps (see page 282of the package 

manual under Appendix 1). For two loci, there are four possible haplotypes; the sum of 

the frequencies of the four possible haplotypes across the n simulated individual is 1 

and the Lewontin D and r correlation values calculated from the single frequencies of 

the four haplotypes is equal to the target level of correlation (desired level of LD) 

specified in the first step. If the number of individuals to simulate is large, the 

programme runs more slowly. Because this setting could be very time consuming, it is 

preferable to set the sample size and the number of simulations to low values for an 

initial explorative analysis. 

The parameter ‘target LD’ represents the level of linkage disequilibrium between the 

two SNPs if they are to be modelled as in linkage disequilibrium (LD). The user should 

consider the minor allele frequencies of the two SNPs when setting the desired level of 

LD; the minor allele frequencies of the SNPs should not be markedly different. It is for 

example not possible to simulate an LD of 1 if one SNP has a MAF of 0.05 and the 

other a MAF of 0.4. As shown in the below equations where: the random variables X 

and Y represent two distinct SNPs; Corr(X,Y), the correlation between X and Y; 

Cov(X,Y), the covariance between X and Y; V(X) and V(Y), the variances of  X and Y 

and E(X) and E(Y), the expectations of X and Y. As the covariance between X and Y 

tends toward zero (i.e. X and Y are independent) the correlation also tends toward zero.  

    ( ,  )  
   ( , )

√ ( ) ( )
  and     ( ,  )   ( ,  )    ( ) ( ) 

So     ( ,  )   ( , )    ( ) ( )

√ ( ) ( )
 .  
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The expectation of a binary variable X is given by E(X) = np where p is the probability 

of success (here it is the MAF) and n the number of observations. It follows that 

correlation is dependent upon the difference in MAF between the two binary variables. 

2.6.1.3. Parameters for the environmental/life style exposure 

Parameter Description 

environmental exposure 

model 

A discrete indicator variable set to 0 if the exposure is binary, 1 if 
the exposure follows the normal distribution and 2 if it follows 
the uniform distribution. 

environment prevalence 
The frequency of the ‘at risk’ environmental/lifestyle exposure in 
the study population 

environment OR 
The effect associated with the ‘at risk’ environmental/lifestyle 
exposure for a binary outcome model 

environment effect 
The effect associated with the ‘at risk’ environmental/lifestyle 
exposure for a quantitative outcome model 

environment sensitivity 
The sensitivity of the assessment of the binary ‘at risk’ 
environmental/lifestyle exposure 

environment specificity 
The specificity of the assessment of the binary ‘at risk’ 
environmental/lifestyle exposure 

environment reliability 
The reliability of the measurement of the quantitative ‘at risk’ 
environmental/lifestyle exposure 

mean/lower  limit 
The mean value if the exposure is normally distributed or the lower 
limit of the exposure if it is uniformly distributed 

sd/upper limit 
The standard deviation if the exposure is normally distributed or the 
upper limit of the exposure if it is uniformly distributed 

skewness The magnitude of the skewness of the normally distributed exposure 

Table 10: Parameters for the environmental/life style exposure. 

This exposure can be modelled as a binary, normal or uniform variable. 

In ESPRESSO-forte, the parameter ‘environmental exposure model’is set to 0 if the 

environmental exposure is binomially distributed, 1 if it is normally distributed and 2 if 

it is uniformly distributed.   

The parameter ‘environment prevalence’represents the frequency of the ‘at risk’ 

environmental/lifestyle exposure in the general population on which the study is to be 

based. 
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The parameter ‘environment OR’ is the odds ratio reflecting the ratio of the risk of 

developing the disease in subjects exposed to the ‘at risk’ level of the environmental 

exposure compared to those that are not exposed to this ‘at risk’ level. 

The parameter ‘environment effect’ represents the effect size of the ‘at risk’ 

environmental determinant; it reflects the expected change in the magnitude of the 

outcome that is related to one unit change in the ‘at risk’ environmental exposure. 

The parameters ‘environment sensitivity’ and ‘environment specificity’ represent the 

sensitivity and specificity of the assessment of the binary environmental exposure. The 

measurement error in an environmental exposure is determined by considering the 

reliability of a latent quantitative variable that is assumed to underlie the binary variable 

under consideration. This is an approach that is used widely in genetic epidemiology 

and is sometimes called the latent threshold model (66-69). Basically, one assumes that 

there is a standardized normally distributed variable underlying the binary variable in 

question and if the value of this Gaussian variable exceeds a threshold T, the subject is 

“at risk” (binary variable = 1) and if it is less than T then the subject is “not at risk” 

(binary variable = 0). The value T is fixed at the value that corresponds to the correct 

prevalence of being “at risk” in the population under study. Assessment error may then 

be viewed as being quantified by the hypothetical reliability of that latent variable. In 

the setting of ESPRESSO-forte, therefore, it is effectively assumed that the observed 

values of a binary exposures are realisations of a latent threshold model that generates 

the desired exposure prevalence, and that measurement error is modelled by imperfect 

reliability of the normally distributed latent variable (i.e. by adding an appropriate level 

of normally distributed error to that latent variable).  
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The parameter ‘environment reliability’ is the reliability of the assessment of a 

quantitative environmental exposure. Reliability (test-retest reliability) is a 

characteristic of a measure which reflects the consistency of the observed measurement 

of a quantitative variable across several repeats. 

The parameters ‘mean/lower limit’, ‘sd/upper limit’ and ‘skewness’ are sub-arguments 

used when the environmental exposure is modelled as quantitative. The parameter 

‘mean/lower limit’represents the mean under a quantitative normal exposure and the 

lower limit under a quantitative uniform exposure; ‘sd/upper limit’represents the 

standard deviation under quantitative normal exposure and the upper limit under a 

quantitative uniform exposure. The parameter ‘skewness’ sets the asymmetry of the 

probability distribution of the generated normal environmental exposure data; it takes 

positive values (> 0) for a right skewed distribution, negative values (< 0) for a left 

skewed distribution and 0 for a non-skewed distribution. 

2.6.2. DATA SIMULATION 

In this part of the algorithm, the task is to first generate the true (error free) exposure 

and outcome data (step 2 in Figure 13) and then generate errors which are then added to 

the true data to obtained the ‘observed’ data (step 3 in Figure 13).  

In step 2, subjects are sampled, in batches of twenty thousand subjects, from the 

population on which the study is to be based (by default the maximum size of the 

population is set to 20 million individuals) until the specified number of cases and 

controls (under binary outcome) or the specified number of subjects (under quantitative 

outcome) are achieved. For each individual, error free genetic, environmental and 

subject effect (effect related to the heterogeneity in baseline disease risk) data are 
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generated; this effect data is then used to generate the ‘true’ outcome data. The effect 

and outcome data are then stored in a matrix where the rows represent individuals.  

In step 3, the observed outcome and exposures data are generated using the same 

strategy: an error is simulated and added to the true data generated earlier in step 2. If 

the outcome or exposure is binary, the error is a binomially distributed vector generated 

with a probability (probability of disease for the outcome or probability of being at risk 

for the exposure) given by the misclassification rate. For a binary variable that takes 

values 0 and 1, where 0 is a negative test (non-diseased or control) and 1 a positive test 

(diseased or case); the misclassification rate from 0 to 1 (true control classified as case) 

is given by 1-specificity and the misclassification rate from 1 to 0 (true case classified as 

control) is given by 1-sensitivity.  If the outcome or exposure is normal, the error is a 

normally distributed vector with a mean of zero and a variance   . 
  derived from 

Equation (7) in page 66:  

  . 
  (

  . 
 

𝑅   𝑎𝑏     
)    . 

  Equation (8) 

For the uniformly distributed environmental exposure, the error is a normally 

distributed vector with a mean of zero and a variance obtained in the same way as in 

Equation (8). Although the uniformly distributed exposure is not encountered as often 

as the normally distributed exposure, it is useful to have this option in ESPRESSO-forte 

to model ranked data when it is more appropriate to use ordered quantitative 

measurement. If, for example, the aim is to compare two groups and if the variable of 

interest was measured differently in each group, so that a direct comparison is not a 

sensible approach to use, the data can be ranked to hence obtain uniformly distributed 

data, which can then be directly compared. 
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The subsections 2.6.2.1 to 2.6.2.7 explain in details how the true and observed exposure 

and outcome data are generated in ESPRESSO-forte. Under each subsection a 

mathematical formula was included, where necessary, to explain the method and some 

pseudo code was included to show how the method was implemented in R. 

2.6.2.1. True genetic exposure data 

The genotypes are formed from the two alleles (alleles A and B) of a biallelic SNP. Each 

allele is a binomially distributed vector where the MAF represents the probability of 

having the risk allele (i.e. probability of ‘success’); the number of observations (i.e. 

number of trials) is n: 

       ~  ( ,   ) 

The common allele is denoted by 0 and the rare allele (risk allele) is denoted by 1. 

allele.A = rbinom (number.of.individuals, 1, MAF) 

allele.B = rbinom (number.of.individuals, 1, MAF) 

Under an additive genetic model the genotype of an individual is the sum of two alleles. 

Under a binary genetic model, the genotype is formed by summing up the two alleles 

and then assigning 1 (individual at risk) to any individual that has a sum greater than 0.  

GADDITIVE = allele.A + allele.B 

GBINARY = GADDITIVE> 0 

2.6.2.2. True environmental exposure data 

Under a binary environmental exposure model, the exposure is a binomially distributed 

vector where the prevalence of the ‘at risk’ environmental exposure is the probability of 

being exposed to the ‘at risk’ environment (i.e. probability of ‘success’); the number of 

observations (i.e. number of trials) is n: 
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        ~  ( ,     𝑎   𝑐 ) 

EBINARY = rbinom (number.of.individuals, 1, prevalence) 

Under a quantitative normal environmental exposure model, the exposure is a normally 

distributed vector with a specified mean and a standardised standard deviation of 1. 

Under a quantitative uniform exposure, the exposure is a uniformly distributed vector 

with a specified lower (minimum) and upper limit (maximum). 

    𝑀   ~ 𝑁(  𝑎 ,  ) 

       𝑀 ~  (       , 𝑎     ) 

ENORMAL = skew.rnorm (number.of.individuals,mean,1,skewness) 

EUNIFORM = runif (number.of.individuals,minimum,maximum) 

2.6.2.3. Effect related to the heterogeneity in baseline risk of 
disease 

This component models the impact of the heterogeneity in baseline disease risk. The 

baseline odds ratio (for individual on 95th percentile vs. 5th population percentile) has to 

be converted into the corresponding variance 𝜎       .        for a normally distributed 

effect because the variance in baseline risk 𝜎        .   is assumed to follow a normal 

distribution on the logistic scale. 

𝜎       .      
  [

 og (𝜎        .  
 )

2       ( .  )
]

 

 Equation( 9) 

The subject effect data is, then, a normally distributed vector with a mean of zero and a 

variance 𝜎       .       .  

𝑆.     𝑐  ~ 𝑁( ,  𝜎       .      
 ) 

S.effect = rnorm (number.of.individuals,0, sqrt(σ
2
subject.effect)) 
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2.6.2.4. True outcome data 

 Binary outcome 

Under a main effect model, the linear predictor (LP) used to determine the statuses of 

the simulated individuals is constructed using the true exposure data already simulated 

(two genetic determinants, two environmental determinants and the subject effect). 

LPMAIN.EFECT = β0 + βX1X1 + βX2X2 + βX3X3 + βX4X4 + s.effect 

Under an interaction model only two covariates are used to construct the LP; the 

interaction term is the product of two interacting covariates. 

LPX1.X2 = β0 + βX1X1 + βX2X2 + βX1.X2(X1*X2) + s.effect 

As indicated earlier (in section 2.4) the beta values are the log(OR) of the covariates 

and       (
𝑑   𝑎       𝑎   𝑐 

  𝑑   𝑎       𝑎   𝑐 
), here ‘disease prevalence’ refers to the prevalence of 

the disease in the study population. The true outcome data is a binomially distributed 

vector where the probability of disease is given by mu, the expit transformation of the 

LP:       

     
 . 

OUTBINARY = rbinom (number.of.individuals, 1, mu) 

 

 Quantitative outcome 

The below R code lines give the LP under respectively the main effect and the 

interaction model.  

LPMAIN.EFECT = β0 + βX1X1 + βX2X2 + βX3X3 + βX4X4 + s.effect 

LPX1.X2 = β0 + βX1X1 + βX2X2 + βX1.X2×(X1*X2) + s.effect 
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The beta values represent the effect sizes of the covariates and β0 is the trait mean. The 

true outcome data is a normally distributed vector that has a mean equal to the LP and a 

standard deviation of 1. 

OUTNORMAL = rnorm (number.of.individuals,LP,1) 

2.6.2.5. Observed genetic exposure data 

The observed genetic exposure data is generated by introducing some misclassification 

in the vectors of true alleles (alleles A and B) generated previously using the function 

misclassify which I wrote as part of the ESPRESSO-forte R package (see page 267 of 

the manual under Appendix 1). The function misclassify turns some risk alleles into 

non-risk alleles (1→0) and some non-risk alleles into risk alleles (0→1). The level of 

misclassification is determined by the misclassification rates: error1→0 = 1 – sensitivity 

and error0→1= 1 - specificity. The newly generated alleles are then combined to 

construct the observed genotypes. 

allele.A.obs = misclassify (allele.A, error1→0, error0→1) 

allele.B.obs = misclassify (allele.B, error1→0, error0→1) 

GADDITIVE.OBS = allele.A.obs + allele.B.obs 

GBINARY.OBS = GADDITIVE.OBS> 0 

2.6.2.6. Observed environmental exposure data 

Under a binary environmental exposure model, the error is equivalent to a case-control 

misclassification. The misclassifications rates are determined by the sensitivity and 

specificity of the assessment of the exposure:error1→0 = 1 – sensitivity and error0→1= 1 - 

specificity. The observed data are then obtained by applying these misclassification rates 

to simulated true data using the function misclassify. 

EBINARY.OBS = misclassify (EBINARY, error1→0, error0→1) 
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Under a quantitative normal exposure, the reliability of the assessment of the exposure 

is used to compute the variance of the assessment error. This variance is used to 

generate a normally distributed error with a mean of zero which is then added to the 

vector of true exposure data to obtain the observed data.  

𝑅   𝑎𝑏      
     .     
 

     .     
 +       

  

It follows that:  

     .     
 +       

  
     .     
 

𝑅   𝑎𝑏     
 

Then:  

      
  (

     .     
 

𝑅   𝑎𝑏     
)       .     

  

 

      ~ 𝑁( ,       
 ) 

Error = rnorm (number.of.individuals, 0, σERROR) 

ENORMAL.OBS = ENORMAL + Error 

Under a quantitative uniform exposure, the error is a normally distributed vector that 

has a mean of 0 and a variance obtained using the same logic as for the quantitative 

normal error because the error variance, here, is a close approximation of the variance 

of a normally distributed error. The error is added to the true uniform exposure to obtain 

the observed exposure. 

      ~ 𝑁( ,      
 ) 

Error = rnorm (number.of.individuals, 0, σTRUE) 

EUNIFORM.OBS = EUNIFORM + Error 
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2.6.2.7. Observed outcome data 

The same method as for the binary and quantitative exposure is used to generate the 

observed outcome data. The true outcome data was constructed using the simulated true 

exposure data. To obtain the observed outcome data, an error determined by the 

sensitivity and specificity of the assessment of disease (for binary outcome) or the 

reliability of the outcome measurement (for quantitative outcome) is generated and 

added to the true outcome data. 

 Binary outcome 

The error is a case-control misclassification. The misclassification rates are used to 

introduce the appropriate level of error in the true outcome data to obtain the observed 

data.  

OUTBINARY.OBS = misclassify (OUTBINARY, error1→0, error0→1) 

 Quantitative outcome 

The reliability of assessment of outcome is used to compute the variance of the 

assessment error. This variance is then used to generate a normally distributed error 

with a mean of zero which is then added to the vector of true outcome data to obtain the 

observed outcome data.  

      
  (

     .     
 

𝑅   𝑎𝑏     
)       .     

  

      ~ 𝑁( ,       
 ) 

Error = rnorm (number.of.individuals, 0, σERROR) 

OUTNORMAL.OBS = OUTNORMAL + Error 
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2.6.3. DATA ANALYSIS 

In this part of the algorithm, the observed data generated in the simulation block of the 

algorithm are analysed by regression analysis (steps 4 in Figure 13) and the estimates 

obtained from the regression analysis are used to calculate the sample size required to 

achieve the power specified in the input parameters and to estimate the power achieved 

under the specified settings (steps 5 in Figure 13). 

2.6.3.1. GLM analysis 

Steps 2, 3 and 4, in Figure 13, are repeated for a number of times equal to the specified 

number of runs; after each run a dataset D is generated as illustrated in Figure 14. The 

dataset is a matrix that contains the observed exposure, the observed outcome, and some 

other information not relevant for the analysis section; each row of the matrix holds the 

records of one individual. After each run the data is analysed using a generalised linear 

model (GLM). The linear predictor of the GLM is constructed using the observed 

exposure effect data and is different from the linear predictor used to determine 

outcome statuses in the simulation phase. The estimates (beta, standard error and z-

score), obtained from the GLM analysis, are stored in three distinct vectors.  

 

Figure 14: Graphical view of the GLM analysis in ESPRESSO-forte. 

After each simulation a dataset is generated analysed and the estimates (beta, standard 

error and z-statistic) of the covariates stored. 
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The subsections below describe the GLMs fitted for binary and quantitative outcomes 

under main effect and interaction models. 

 Binary outcome 

Logit(y)= β0 + βX1X1 + βX2X2 + βX3X3 + βX4X4 

Logit(y) = β0 + βX1X1 + βX2X2 + βX1.X2×(X1*X2)  

 Quantitative outcome 

y = β0 + βX1X1 + βX2X2 + βX3X3 + βX4X4 

y = β0 + βX1X1 + βX2X2 + βX1.X2×(X1*X2)  

2.6.3.2. Sample size calculation 

To calculate the sample size required to achieve the desired power, I first estimate by 

how much the input study sample size needs to be inflated or shrunk (the relative 

change in standard error required) to reach the desired level of power. The relative 

change in standard error required is given by the ratio of the z-statistic required for the 

desired power (z.power.required) to the mean z-statistic obtained from the fitted GLM. 

The below formula shows how the sample size required (for difference in means 

between two groups) relates to the z-statistic required for the desired power, in a two-

tailed test: 

𝑁  
2𝜎 (  +   / )

(  ) 
 

For the sake of simplicity the above formula assumes two equal groups and the same 

variance, σ2, for both groups. The sample size required N depends on the z-statistic 

required for the desired power which is the sum of the z-statistic of the desired power Zβ 

and the z-statistic of the desired level of statistical significance Zα/2. The effect size is 

represented by the difference in means Δμ. 
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After each run the estimates of the GLM including the z-statistic are stored; the mean z-

statistic is simply the average of the stored z-statistics. The sample size required to 

achieve the desired power is the product of the level of inflation or shrinkage required 

by the input sample size. 

In ESPRESSO-forte, I obtain Zβ and Zα/2 by computing respectively the quantile values 

that correspond to the desired level of power (desired.power) and the desired level of 

statistical significance (pvalue); the z-statistic required for the desired power, denoted 

by z.power.required in ESPRESSO-forte, is then the sum of these two z-statistics 

as shown in the below formula where Q is the quantile function: 

z.power.required = Q(desired.power) + Q(pvalue)= Zβ + Zα/2 

In R the quantile function (with by default a mean of 0 and a standard deviation of 1) is 

‘qnorm’ so the z-statistic required for the desired power is obtained as follows: 

z.power.required = qnorm (desired.power) + z.pvalue 

where  .   𝑎          (     𝑎   
2
) 

The lines of code below show how the inflation/shrinkage required is computed for 

respectively main effect and interaction. The relative change in standard error required 

corresponds to a relative change on scale of square root of sample size; therefore the 

ratios in the below lines of code are squared. For a binary outcome the number of cases 

required and the number of controls required are calculated separately but the ratio of 

the number of cases to number of controls is preserved. 

inflate.shrink.X = (z.power.required/mean.z.X)
2 

inflate.shrink.X1X2 = (z.power.required/mean.z.X1X2)
2
 

sample.size.required.X = input.sample * inflate.shrink.X 
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sample.size.required.X1X2= input.sample *inflate.shrink.X1X2 

2.6.3.3. Power estimation 

The power is estimated both empirically (empirical power) and theoretically (modelled 

power). However it is the modelled power that is usually considered because under 

certain circumstances, explained below, the empirical power is not informative.  

The empirical power is the proportion of simulations in which the z-statistic for the 

parameter of interest exceeds the z-statistic for the desired level of statistical 

significance (z.pvalue). Under respectively genetic effect and interaction, the empirical 

power is given by:  

empirical.power.X = mean (z.X> z.pvalue) 

empirical.power.X1X2 = mean (z. X1X2> z.pvalue) 

The empirical power is not informative for extreme values of the standard error of the 

log odds ratio (i.e. when some of the counts (a, b, c or d) in Table 11 are extremely 

small) because the confidence interval becomes too wide as explained below (for a 95% 

confidence level): 

  Cases Controls 
Exposed a b 

Unexposed c d 

Table 11: Contingency table reporting the results of a case-control study. 

The approximate value of the standard error of the log odds ratio is given by:  

𝑆   √
 

𝑎
+
 

𝑏
+
 

𝑐
+
 

𝑏
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The limits of the confidence interval are given by:        ̅   (𝑆    .  ),where 

 ̅represents the sample mean. This formula shows that as SE becomes larger the 

confidence interval becomes wider. 

The modelled power should be considered if the empirical power is not informative. 

The modelled power is based on the ratio of the mean beta over the mean standard 

error,  ( )
 (𝑆 )

, and on the z-statistic for the desired level of statistical significance Zα/2. It 

is the probability that the z-statistic obtained from the GLM fit takes any value less than 

or equal to (  ( )
 (𝑆 )

   / ). So the modelled power is basically the cumulative 

distribution function (cdf) associated with the z-statistic, here a random variable, 

obtained from the GLM fit and this can be written mathematically as in the below 

formula where Z is the random z-statistic. 

  𝑑  .        (   
 ( )

 (𝑆 )
   / ) 

In ESPRESSO-forte the ratio of the mean beta over the mean standard error is denoted 

mean.z and the R function pnorm is used to calculate the cdf:  

mean.z = mean.beta / mean.se 

model.power = pnorm (mean.z - z.pval)  

2.7. HOW TO USE ESPRESSO-FORTE? 

Currently the algorithm can be used as an R package or interactively from the Public 

Population Project in Genomics (P3G) website: 

http://www.p3gobservatory.org/powercalculator.htm 

It is the ESPRESSO version developed in this thesis, ESPRESSO-forte,  that forms the 

basis of the power calculator under the above link. 

http://www.p3gobservatory.org/powercalculator.htm
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The R environment is required to use ESPRESSO-forte as an R package. The R 

development environment can be downloaded from the Comprehensive R Archive 

Network (CRAN) website (http://cran.r-project.org/). After installing R, the 

ESPRESSO-forte package can be installed by running, in R, the command 

‘install.packages (“ESPRESSO”)’which requires a connection to internet. Under 

UNIX operating system the package can downloaded from the CRAN repository of 

contributed packages (http://cran.r-project.org/web/packages/ESPRESSO/index.html) 

and installed by running, on the terminal, the command ‘R CMD INSTALL 

ESPRESSO_1.1.tar.gz’after setting correctly the path to the downloaded file. Under 

a WINDOWS operating system the R interface offers the possibility to download and 

install the package. Examples on how to use each of the 25 functions in the 

ESPRESSO-forte R package can be found in the package manual under Appendix 1. 

Users proficient in the R programming language can amend any of the functions to 

answer scientific questions that cannot be investigated directly using the downloadable 

version of the algorithm.  

In the interactive version of the program that can be run directly from theP3Gwebsite, 

the parameters are specified by typing numbers into appropriate boxes. The program is 

then run by clicking the ‘Run calculation’ button at the bottom of the screen and 

a summary of the answers appears in an output window. 

If the algorithm is run from R, a summary of the simulation output is printed on the 

terminal screen and a more detailed output is stored as a ‘.csv’ file (semicolon delimited 

file) in the working directory. In the interactive version a detailed output is also 

produced and can be downloaded as a ‘.csv’ file. In addition to the main input 

parameters and the most relevant outputs (the sample size required to achieve the 

desired level of power and the modelled and empirical power), the detailed output also 

http://cran.r-project.org/
http://cran.r-project.org/web/packages/ESPRESSO/index.html
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contains the estimated effect sizes for each of the covariates. These estimates allow for 

the user to evaluate the level of shrinkage (shrinkage towards the null) of for example 

the ORs, in the presence of a non-differential error (an error which occurs with the same 

distribution in cases and controls) that is generated by the random error terms. The 

number of output values that are returned by the algorithm is restricted to the most 

relevant estimates to avoid unhelpful information overload; it is however possible to 

obtain the empirical estimates of almost all the input parameters by making minor 

amendments to some of the functions in order to store more estimates after each run. 

In the first chapter I explained theoretically how statistical power is influenced by effect 

size, type I error and sample size. In the next two sections I apply ESPRESSO-forte to 

explore the influence on power (1) if an association is inferred using an observed 

genetic variant (here a SNP) in linkage disequilibrium with the unobserved causal 

variant and (2) if the genetic model of a SNP is not correctly specified. 

2.8. EXPLORING THE IMPACT OF THE LEVEL 
OF LINKAGE DISEQUILIBRIUM BETWEEN 
CAUSAL AND OBSERVED GENETIC 
VARIANT ON POWER 

2.8.1. INTRODUCTION 

Alleles in linkage disequilibrium (LD) are more likely to segregate together (to be 

inherited together) than alleles that are not in LD (see section 1.2.3.3 for definition and 

calculation of LD). The stronger the LD is, the higher the probability is that the alleles 

will be co-inherited. This principle is used in genetic association studies to infer an 

association between an unobserved causal genetic variant and a particular trait, based 
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not on the causal variant itself, but on an observed genetic variant in close LD with the 

causal marker as shown graphically in Figure 15. 

 

Figure 15: Inferring an association between an unobserved variant and a trait. 

The LD between an observed genetic variant and an unobserved causal genetic variant 

can be used to infer an association between the unobserved variant and a trait. 

In an association study, when an observed variant is in perfect LD (r2 = 1) with the 

unobserved causal variant, if the observed variant is genotyped it is as if the causal 

variant had been typed, provided that there are no genotyping errors. But if the level of 

LD between the two variants is less than 1, it cannot be assumed that the two variants 

are equivalent i.e. the observed marker does not carry all of the information that would 

have been available had the causal variant been genotyped. In this case when the 

observed variant is typed it is as if the causal variant was typed with a certain level of 

error; the magnitude of the error depends on the level of LD between the two variants, 

the weaker the LD is, the larger the error will be. The aim of the analysis in this section 

is to evaluate the influence of this error which is consequent solely on incomplete LD 

on the power of a hypothetical SNP genetic association study. Obviously the power is 

also influenced by the minor allele frequency of the genetic variant but the influence of 
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allele frequencies is not investigated here; the settings of the simulation ensure that the 

error influencing power depends solely on the incomplete LD between the observed and 

the causal variant. 

2.8.2. METHODS 

In ESPRESSO-forte, one modulates the sensitivity and specificity of the genotype 

assessment in order to generate an appropriate level of error in the observed genotypes 

(see section 2.6.2.5). In this analysis the first task was to calculate the sensitivity and 

specificity values that correspond to the specified levels of incomplete LD between 

observed variant and unobserved causal variant. The sensitivity and specificity levels 

were computed using the ESPRESSO-forte function sim.geno.sesp. The R 

documentation of the function is in page 279 of the package manual under Appendix 1. 

However, since the function is central to this analysis, the below section details the 

method implemented in the function. 

 

DETAILS OF THE FUNCTION ‘sim.geno.sesp’  

The function uses an approach called latent threshold model (explained in page 73). 

This approach assumes a standardized normally distributed variable underlying the 

binary variable of interest. In the context of the function ‘sim.geno.sesp’ the underlying 

variable is a SNP allele where the allele that carries the risk (“at risk” allele) is given the 

value 1 and the other allele (“not at risk” allele) is 0. If the underlying variable, X, 

exceeds a threshold T, the subject has the “at risk” allele (allele = 1) and if it is less than 

T then the subject has the “not at risk” allele (allele = 0). The value T is fixed at the 

value that corresponds to the correct prevalence of being “at risk” in the population 



CHAPTER 2 
 

91 | P a g e  
 

under study. The assessment error is viewed here as being quantified by the 

hypothetical reliability of the underlying Gaussian variable. For the binary variable the 

assessment can be described as the level of correlation between the true and the 

observed measurements of the “at risk” allele.  

Description of the function in 7 steps: 

(1) Setting the input parameters  

𝜎                            𝑎𝑏               𝑎                  𝑑         𝑎  𝑎𝑏     
 
𝜎    𝜎            𝑎  𝑎𝑐  𝑑          𝑎                  𝑑         𝑎  𝑎𝑏     
 
                              𝑎   𝑐         'at risk' allele in the study population 

 

       
                 𝑎              𝑐     𝑎     𝑏            𝑎 𝑑  𝑏     𝑑 𝑎      𝑑𝑎 𝑎 

 

                          𝑐        𝑐   𝑎       𝑐   𝑎        𝑎     𝑎 𝑑 𝑐      𝑑           

                           𝑐     𝑎     𝑏            𝑎 𝑑  𝑏     𝑑 𝑎      𝑑𝑎 𝑎 
 
                           𝑎         ,        𝑏       𝑏    𝑎      

 

 

 

 

 
(2) Generating the normally distributed true and observed underlying X variable 

  ~ 𝑁( , 𝜎 
 )        𝑑         𝑎  𝑎𝑏               𝑏  𝑐   𝑎         𝑐   𝑐 𝑆𝑁    𝑐   

  ~ 𝑁( , 𝜎 
 )    𝑎               𝑑𝑎 𝑎             𝑏  𝑐    

     +      𝑏     𝑑   𝑑         𝑎  𝑎𝑏               𝑏  𝑐    

 
(3) Calculating the thresholds T1 and T2 for respectively  the true and observed 

allele data (Qp = the sample quantiles that correspond to the given prevalence p) 

 
     (  ) 

     (  ) 
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(4) Generating the binary vector,X1B ,of true allele data by assigning 1 to all 

observations of X1 that are less than the threshold T1 and 0 to all observations of 

X1 that are equal to or greater than the T1. X1B is hence equivalent to a binary 

variable with parameters n and p. 

For the sake of clarity the subset of X1B observations assigned 1 is named X1B1 

and those assigned 0 represent X1B0.In the below equations the lower x’s denote 

the actual realisations of the variables.  

   ~  ( ,  ) 

                  

                  

 
(5) Generating the binary vector,X2B ,of observed allele data by assigning 2 to all 

observations of X2 that are less than the threshold T2 and 1 to all observations of 

X2 that are equal to or greater than the T2. X2B is hence equivalent to a binary 

variable with parameters n and p. 

For the sake of clarity the subset of X2B observations assigned 2 is named X2B2 

and those assigned 1 represent X2B1. In the below equations the lower x’s denote 

the actual realisations of the variables. 

 

   ~  ( ,  ) 

     2           

                 

 
 

(6) Tabulating the binary vectors X1B vs. X2B (each has two levels) and deriving the 

sensitivity and specificity of the assessment of the binary variable (i.e. the allele) 

  
X2B1 

Observed 
non-risk 

X2B2 
Observed 
risk allele 
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allele 

X1B0 
True non-risk allele a b 

a + b 
Total number of individuals 
not affected by the risk 
allele 

X1B1 
True risk allele c d 

c + d 
Total number of individuals 
affected by the risk allele 

Table 12: Summary of the tabulation of X1B versus X2B. 

 

            
𝑑

𝑐 + 𝑑
                   𝑐   𝑐    

𝑎

𝑎 + 𝑏
 

 
(7) Calculating the correlation between the true and observed binary allele data and 

comparing it to the target level of correlation 

          
  [    (   ,    )]

  

 

If|                    
 |     :  

The computed sensitivity and specificity values represent the sensitivity and specificity 

that correspond to the target correlation between the true and observed alleles, i.e. the 

allele is measured with the sensitivity and specificity values computed at step 6.  

 

If|                    
 |    :  

The same process (steps 1 to 7) is re-run iteratively, with different sample size n and 

reliability σ1, in a manner that minimises the value |                    
 | , until 

convergence is reached. 

 

For the purpose of this analysis ten levels of LD were investigated: 0.1, 0.2, 0.3, 0.4, 

0.5, 0.6, 0.7, 0.8, 0.9 and 1. The MAF frequency of the genetic variant (a SNP) was set 
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arbitrarily to 0.1. For each of the levels of LD one sensitivity value and one specificity 

value were obtained (Table 15). 

The influence of incomplete LD on power was investigated for a binary outcome and 

for a quantitative normal outcome. For both the binary and the quantitative normal 

outcome, there is only one covariate: the genetic exposure. The fitted GLM can be 

written as follows: 

 ( )    +      

In the above model Y is the outcome β0 is the intercept value, β1 is the effect size of the 

covariate G1 which represents a genetic exposure (here a SNP). The terms in this model 

are explained in more details under the GLM section at page 52-53. 

Under each of these two outcome models, ESPRESSO-forte was used to determine (1) 

the sample size required to achieve 80% power and (2) the power achieved with an 

input sample size of 2000 cases and 8000 controls (under binary outcome) and 5000 

individuals (under quantitative outcome). Two genetic exposure models were analysed 

under each of the above settings: a binary and an additive SNP. The general and genetic 

parameters required by the algorithm to carry out the simulations are respectively under 

Table 13 and Table 14.  

Parameter Value 
runs 1000 
cases 2000 
controls 8000 
subjects 5000 
outcome model 0/1 
disease prevalence 0.1 
baseline or 10 
p.value 0.0001 
power 0.8 
sensitivity 1 
specificity 1 
reliability 1 



CHAPTER 2 
 

95 | P a g e  
 

Table 13: General and outcome parameters used in the analysis. 

These input parameters were used for each of the ten levels of LD investigated. The 

outcomes analysed were binary (0) and normal (1). 

 

Parameter Value 
genetic model 0 /1 
MAF 0.1 
OR 1.5 
effect 0.25 
sensitivity 0.39 
specificity 0.93 

Table 14: Parameters of the genetic exposure. 

These input parameters were used for each of the ten levels of LD investigated. The 

SNP was simulated as binary (0) and additive (1). 

2.8.3. RESULTS 

The results are presented as comparative plots and tables that show how the magnitude 

of the error (indicated by the level of LD) affects sample size and power. Table 15 

contains the levels of LD that were investigated and the corresponding sensitivity and 

specificity values calculated using the function sim.geno.sesp (see page 279 of the 

package manual under Appendix 1). As the LD decreases, the sensitivity and specificity 

also decrease but the specificity is better preserved i.e. for the same levels of LD, the 

sensitivity is lower than the specificity. However as power is less affected by low 

sensitivity it is unsurprising that even moderate levels of LD preserve power (see Table 

16 and Table 17). 

For the binary outcome, the power achieved with the additive SNP was higher than that 

achieved with the binary SNP, across the 10 levels of LD investigated (Table 16). For 

the quantitative outcome also the power achieved was larger with the additive SNP 

(Table 17). These observations were confirmed by the sample sizes required to achieve 

80% power; under both outcome models, the sample size required was smaller for the 

additive SNP. The results are shown graphically in Figure 16 and Figure 17. 
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LD (r2) Sensitivity Specificity 
0.1 0.39 0.93 
0.2 0.50 0.94 
0.3 0.59 0.95 
0.4 0.67 0.96 
0.5 0.74 0.97 
0.6 0.80 0.98 
0.7 0.85 0.98 
0.8 0.91 0.99 
0.9 0.95 0.99 
1.0 1.00 1.00 

Table 15: Sensitivity and specificity values used in the analysis. 

The above sensitivity and specificity figures correspond to the r
2
values specified for a 

SNP that has a MAF of 0.1. 

 

 

 

 

 

 

 

 

 

 

 

LD Power achieved (2000 cases 
and 8000 controls) 

Sample size (cases and controls) 
required for 80% power 

  Additive SNP Binary SNP Additive SNP Binary SNP 
0.1 5% 3% 46125 59655 
0.2 20% 11% 24320 31490 
0.3 44% 29% 16035 19965 
0.4 66% 46% 12120 15560 
0.5 83% 68% 9550 11720 
0.6 92% 80% 8085 10025 
0.7 97% 89% 6815 8515 
0.8 99% 95% 5900 7405 
0.9 100% 97% 5330 6640 
1 100% 99% 4815 5680 

Table 16: Power achieved with 2000 cases and 8000 controls. 

The table also reports the sample sizes required to achieve 80% power under a binary 

outcome model and under different levels of LD. The ratio of cases to controls is 1:4. 
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LD Power achieved (5000 subjects) Sample size required for 80% power 
  Additive SNP Binary SNP Additive SNP Binary SNP 

0.1 7% 4% 19728 23851 
0.2 28% 19% 10319 12214 
0.3 56% 43% 6896 8082 
0.4 76% 64% 5319 6199 
0.5 91% 83% 4132 4738 
0.6 96% 92% 3475 3978 
0.7 99% 97% 2818 3420 
0.8 100% 99% 2430 2918 
0.9 100% 100% 2189 2628 

1 100% 100% 1967 2359 

Table 17: Power achieved with a sample size of 5000 subjects. 

The table reports also the sample sizes required to achieve 80% power under a 

quantitative outcome model and under different levels of LD. 

 

Figure 16: Binary outcome: impact of incomplete LD on power and sample size 

The outcome is determined by an additive or a binary SNP.  
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Figure 17: Quantitative outcome: impact of incomplete LD on power and sample size 

The outcome is determined by an additive or a binary SNP. 

2.8.4. DISCUSSION 

An association between an unobserved causal SNP and a trait can be inferred through 

LD between the causal SNP and an observed non-causal SNP (18). If the LD between 

the two variants is incomplete (r2 < 1), the error in the estimated association has a 

component that depends on the level of LD. By measuring a variant not in perfect LD 

with the causal variant, it is as if we were measuring the causal SNP with an error 

equivalent to the incomplete LD.  

The results of the analysis show that the sensitivity decreases markedly with a 

decreasing level of LD. The magnitude of the loss of power that is due to incomplete 

LD between the observed and the causal variant is larger for a binary SNP than for an 

additive SNP under both binary and quantitative outcome models. The relationship 

between the loss of power and the level of LD was not linear. As the LD decreases the 
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power is better preserved when the outcome is quantitative than when it is binary i.e. the 

lowest power setting was encountered when the outcome was binary.  This suggests that 

the binary outcome model is more sensitive to incomplete LD. It is hence advisable, in a 

candidate gene study, to consider only markers that are very close to the supposed 

position of the causal variant, when inferring an indirect association between a SNP and 

an outcome; because markers that are physically close are in higher LD.  

The results of this analysis are in the line with the argument that power can be gained by 

choosing a model based on additive allelic effects instead of a binary genetic model (7). 

However, modelling a binary SNP as additive represents in fact a misspecification of 

the genetic model. In the next section, I investigate the consequences of such genetic 

model misspecification on power, under different settings. 

2.9. EXPLORING THE IMPACT OF GENETIC 
MODEL MISSPECIFICATION ON POWER 

2.9.1. INTRODUCTION 

In order to explore the impact of the misspecification of a genetic model using 

simulation-based power calculation, it is necessary to simulate the “true” data under one 

genetic model (the “true” model) and then to analyse those data as if they had been 

generated under an alternative model (the “misspecified” model). This was impossible 

using the original version of ESPRESSO (7), because a single model was specified as 

an argument to the function and this model was used both for simulation and analysis. 

But an exploration of the impact of misspecifying the genetic model is important, and 

this section describes the development and use of an extended version of ESPRESSO-

forte that enables such an analysis to be undertaken. 
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Figure 18 provides a pictorial representation of one form of genetic model 

misspecification: a binary variant is erroneously analysed as additive and vice-versa. 

 

Figure 18: Graphical illustration of genetic model misspecification. 

This illustration assumes a biallelic genetic variant. If an additive genetic model is 

analysed as binary (A) the modelled risk is underestimated for individuals homozygous 

for the risk allele (in red); two copies of the risk allele are treated as being equivalent to 

one copy. If a binary model is analysed as additive (B) the risk is overestimated for 

individuals homozygous for the risk allele in the fitted model it is as if the second copy 

increases further the modelled risk whilst this should not be the case in a binary model. 

In this analysis ESPRESSO-forte was modified to investigate the impact of the error 

caused by genetic model misspecification on the statistical power of a SNP association 

study.  The aim is to understand the implications of misspecifying the underlying 

genetic model in estimating statistical power for a binary or quantitative trait of interest. 

This analysis is important because the genetic model of each of the genetic determinants 

of a given trait are generally not known with certainty a priori; the results of this 

investigation could tell how detrimental genetic model misspecification is to power for 

binary and quantitative traits. If the impact on power is substantial then methods for a 

better ascertainment of the genetic models of traits determinant should be sought.  
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2.9.2. METHODS 

In this analysis also only one genetic exposure (a SNP) is fitted as covariate. The fitted 

GLM model can be written as follows: 

 ( )    +      

In the above model Y is the outcome β0 is the intercept value, β1 is the effect size of the 

covariate G1, the genetic exposure (here a SNP). The terms in this model are explained 

in more details under the GLM section at page 52-53. 

For each of the two types of misspecification shown in Figure 18, the analysis was done 

in two steps: (1) simulation of data (2) analysis of the data. 

(1) The alleles used to construct the genotypes are generated as explained in section 

2.6.2. Under both genetic models (binary or additive), the genotype of an 

individual with no copy of the ‘at risk’ allele is 0. Under a binary model, the 

genotype of an individual with either one or two copies is 1. Under an additive 

model the genotype of an individual with one copy of the ‘at risk’ allele is 1 and 

that of an individual with two copies is 2. A linear predictor is used, as explained 

in details in section 2.6.2, to produce the outcome values.  

(2) A logistic regression model is fitted and the sample size required to achieve a 

power of 80% is calculated (see section 2.6.3 for details of the analysis and 

sample size calculation in ESPRESSO-forte). The sample size is calculated 

twice: once assuming no misspecification of the genetic model and once 

assuming that the genetic model was misspecified. If a genetic model (binary or 

additive) is used in the simulation step to construct the genotypes and the same 

model is used for the genotypes fitted in the regression analysis then there is no 

misspecification. But if for example a binary genetic model is used in the 
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simulation step whilst an additive one is fitted in the logistic regression then a 

misspecification occurs. 

The difference between the sample size value estimated under the “true” model and the 

one estimated under the “misspecified” model represents the sample size increase 

required to compensate for the loss of power caused by the misspecification. The 

parameters used for the analysis are under Table 18 and Table 19. The analysis was 

carried for ten different levels of minor allele frequency (0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 

0.3, 0.35, 0.4, 0.45) to investigate whether the effect of the genetic model 

misspecification error on power is influenced by the MAF of the SNP; this, because the 

proportion of individuals, in the study sample size, whose genotypes were incorrectly 

assessed (individuals homozygous for the risk allele) depends on the MAF (here, the 

frequency of the ‘at risk’ allele). It is reasonable to hypothesize that the magnitude of 

the error resulting from the misspecification depends on the proportion of individuals 

whose genotypes were incorrectly assessed and hence on the MAF. 

Parameter  Value 
runs 1000 
cases 1000 
controls 4000 
subjects 2500 
outcome model 0/1 
disease prevalence 0.1 
baseline or 10 
p.value 0.0001 
power 0.8 
sensitivity 1 
specificity 1 
reliability 1 

Table 18: General and outcome parameters used in the analysis. 

These input parameters were used for each of the ten levels of MAF investigated. The 

outcomes analysed were binary (0) and normal (1). 
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Parameter  Value 
genetic model 0 /1 
OR 1.5 
effect 0.25 
sensitivity 1 
specificity 1 

Table 19: Parameters of the genetic exposure. 

These input parameters were used for each of the ten levels of MAF investigated. The 

genetic exposure was a SNP simulated as binary (0) and additive (1). 

2.9.3. RESULTS 

2.9.3.1. Power of case-control studies 

The results in Table 20 report the percentage increase in sample size required to achieve 

a power of 80%when the genetic model of a binary or additive SNP was correctly or 

incorrectly specified under case-control settings (binary outcome). When an additive 

SNP was analysed as binary (Table 20), the misspecification causes a loss of power 

which increases with the increasing MAF of the SNP; hence the sample size required to 

compensate for the loss of power resulting from the error (Table 20) was larger for more 

frequent SNPs. When a binary SNP was erroneously analysed as additive (Table 20), 

the misspecification of the genetic model causes also a loss of power which increases 

with increasing MAF but the magnitude of the loss was slightly less than what was 

observed when an additive SNP was misspecified as binary.  
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MAF Additive SNP Binary SNP 

  

Analysed 
as 
additive 

Analysed 
as binary 

% sample 
size 
increase  

Analysed 
as binary 

Analysed 
as 
additive  

% sample 
size increase  

0.01 9083 9139 1% 9238 9232 0% 

0.05 1794 1866 4% 2012 2049 2% 

0.1 968 1049 8% 1168 1240 6% 

0.15 689 780 13% 924 1005 9% 

0.2 571 669 17% 849 969 14% 

0.25 499 605 21% 805 921 14% 

0.3 464 587 27% 836 1018 22% 

0.35 433 583 35% 877 1101 26% 

0.4 413 602 46% 948 1263 33% 

0.45 419 660 58% 1077 1514 41% 

Table 20: Case-control study: number of cases required to achieve 80% power. 

The figures reported in table were the number of cases required to achieve 80% power 

when the genetic model of a binary or additive SNP was misspecified in a case-control 

study. The number of controls was 4 fold the number of cases. 

 

2.9.3.2. Power for quantitative traits 

The results in Table 21 report the percentage increase in sample size required to achieve 

a power of 80% when the genetic model of a binary or additive SNP was correctly or 

incorrectly specified whilst the outcome is a quantitative trait. When an additive SNP 

was analysed as binary (Table 21), the misspecification causes a loss of power which 

increases with the increasing MAF of the SNP; the more frequent the SNP is the larger 

the sample size required to compensate for the loss of power resulting from the error 

(Table 21). When a binary SNP was erroneously analysed as additive (Table 21), the 

misspecification of the genetic model causes also a loss of power which increases with 

increasing MAF. The magnitude of the loss was similar to what was observed when an 

additive SNP was misspecified except for MAFs of 0.2 and 0.25. The sample size 

increase required to compensate for the loss of power, when an additive SNP with a 

MAF of 0.2 was misspecified as binary, was nearly twice that required when a binary 
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SNP with the same MAF was fitted as additive. The sample size increase required, 

when a binary SNP with a MAF of 0.25 was fitted as additive, was nearly twice that 

required when an additive SNP with the same MAF was fitted as binary. 

MAF Additive SNP Binary SNP 

  

Analysed 
as 
additive 

Analysed 
as binary 

% sample 
size 
increase  

Analysed 
as binary 

Analysed 
as 
additive  

% sample 
size increase  

0.01 19028 18985 0% 19138 19340 1% 

0.05 3725 3859 4% 4044 4107 2% 

0.1 1963 2089 6% 2311 2421 5% 

0.15 1422 1532 8% 1785 1956 10% 

0.2 1106 1296 17% 1606 1732 8% 

0.25 975 1095 12% 1433 1725 20% 

0.3 861 1043 21% 1445 1757 22% 

0.35 806 1025 27% 1506 1920 27% 

0.4 759 1028 35% 1606 2121 32% 

0.45 708 1045 48% 1748 2546 46% 

Table 21: Quantitative outcome: number of cases required to achieve 80% power. 

The figures reported in table were the number of cases required to achieve 80% power 

when the genetic model of a binary or additive SNP was misspecified whilst the 

outcome was quantitative. The number of controls was 4 fold the number of cases. 

2.9.4. DISCUSSION 

The results showed that, in a SNP association study, power is lost if the genetic model 

of the SNP is not correctly specified; the amount of power lost is relatively small for 

very rare and rare SNPs (MAF 0.01 and 0.05) and larger for moderately common (MAF 

0.1 to 0.25) and fairly common SNPs (MAF 0.3 to 0.45). If the SNP is binary the loss of 

power is more important than when it is an additive SNP that is incorrectly specified. 

The adverse effect of the genetic model misspecification on power was more 

pronounced for a binary outcome than for an additive outcome if the SNP is additive. If 

it is a binary SNP that is misspecified the impact on power is similar whether the 

outcome is quantitative or binary.  
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If the genetic variant that determines the outcome is additive and if complete dominance 

is assumed, each additional copy of the allele that carries the risk (risk allele) increases 

the risk so that individuals with two copies of the risk allele have a higher risk than 

those with one copy. If a true additive model is incorrectly specified as binary, the risk 

is underestimated for individuals homozygous for the risk allele because under a binary 

model the second risk allele does not increase the risk. This underestimation of the risk 

of some homozygous individuals that results from the genetic model misspecification 

represents an error that affects adversely the power. This explains why the 

misspecification in Figure 18A (additive SNP analysed as binary), causes a loss of 

power. The power loss increases with the increasing frequency of the risk allele because 

the proportion of individuals whose risk is underestimated becomes larger which causes 

a larger error. 

Under a true binary genetic model an individual with two copies of the risk allele has 

the same risk as an individual with only one copy because an additional allele does not 

increase further the risk as can be seen in Figure 18B. Thus, if a binary model is 

incorrectly specified as additive, the risk for individuals homozygous for the risk allele 

is overestimated. The overestimation of the risk for homozygous subjects represents an 

error that decreases the power of a study. The proportion of homozygous individuals 

increases with increasing MAF and hence the proportion of individuals whose risk is 

overestimated becomes larger and that causes an increase in the magnitude of the error 

resulting from the model misspecification. 

Genetic model misspecification has little effect on power for very rare SNPs (MAF < 

0.05) because there are nearly no individuals carrying two copies of the risk allele when 

a SNP is very rare. In other word, there is virtually no individual whose risk is under or 

overestimated because the error arises only when there are subjects with two copies of 
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the ‘at risk’ allele. For moderately common and common SNPs, the error is responsible 

for a substantial loss of power, particularly for common SNPs (MAF ≥ 0.3). 

In the next chapter, I use ESPRESSO-forte, developed as described in chapter 2, to 

explore the statistical power profile of a large Canadian cohort study given a range of 

possible sizes which that cohort could be planned to achieve at the end of the 

recruitment process. The analysis in chapter 3 constitutes an illustration of an important 

real-world application of the ESPRESSO-forte platform. 
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CHAPTER 3 

3. ANALYSIS OF THE POWER OF 
THE CANADIAN PARTNERSHIP 
FOR TOMORROW COHORT 
PROJECT TO STUDY 
QUANTITATIVE TRAITS 

This analysis was requested by The Canadian Partnership for Tomorrow (CPT) to 

inform the primary (and immediate) strategic decision to be made by the Canadian 

Partnership Against Cancer (CPAC) on whether to continue recruitment at a rate that is 

likely to produce a total of approximately 110000 participants by the end of March 

2012, or alternatively to prioritise and step up recruitment with the aim of recruiting as 

many as 180000.  

The request of CPT including two main tasks: (1) the analysis of the power profile of 

the cohort for the investigation of quantitative traits and (2) the analysis of the power of 

profile of the cohort for the investigation of binary traits. My task was to undertake the 

first analysis (investigation of the power profile of CPT for quantitative traits) and it is 

this work that is reported in this chapter. The investigation of the power profile of CPT 

for binary traits was completed by Professor Paul Burton. Both analyses ( power 

profiles for quantitative and binary traits) were reported in one document sent to the 

CPT board. The text of this chapter is closely based on the text of the report sent to the 

CPT board, with the permission of Professor Paul Burton who jointly wrote that report 

with me. 
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3.1. INTRODUCTION 

The Canadian Partnership for Tomorrow (CPT) is a pan-Canadian initiative funded by 

the Canadian Partnership Against Cancer (CPAC). It aims to create a national 

biobank/bio-repository to provide a platform for future research on common chronic 

disease including cancer and cardiovascular disease (70). CPT is to be based on the 

integration of five large provincial cohorts each recruiting several tens of thousands of 

middle-aged participants. The planned (target), current and projected final recruitment 

numbers for the CPT project (at the time of this thesis) are outlined in Table 22 (70). 

The estimated range of the probable final sample size is 110000-180000. 

Name Age-range at 
recruitment 

Target 
sample 
size 

Current number of 
recruits (approximate) 

Likely sample size by 
31/3/2012 
(approximate) 

Atlantic Cohort 40-69 years 30,000 11,000 15,000-25,000 

British 
Columbia 
Cohort 

40-69 years 40,000 11,000 15,000-25,000 

CARTaGENE 35-69 years 20,000 20,000 20,000 (Quebec) 
Ontario Health 
Survey 
(Ontario) 

35-69 years 150000 11,000 35,000-70,000 

The Tomorrow 
Project 
(Alberta) 

40-69 years 50,000 14,000 25,000-40,000 

CPT Project 
overall 

Predominantly 
35-69 years 250,000 67,000 110000 – 180,000 

Table 22: Planned, current and probable final recruitment configuration of the CPT. 

Contemporary bioscience often demands huge sample sizes. This is because most 

diseases of public health importance are multi-factorial and effect sizes are typically 

small. In consequence, many of the scientific questions that are now being asked simply 

cannot be answered using data from one study or one biobank alone (7, 71, 72) and 

large collaborative consortia have been responsible for much of the recent progress in 
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human population genomics (73-82). The aim of this analysis is to assess the statistical 

power of CPT as a platform for research projects exploring quantitative traits as 

outcomes given its likely definitive sample size. 

When designing a large infrastructural platform for future biomedical research that costs 

millions of dollars to set up, even a small misjudgement of the required sample size can 

have major financial and scientific implications. It is hence crucial, for the power and 

sample size calculations of a large platform such as CPT, to use an approach that takes 

realistic account of unavoidable complexities in biomedical datasets such as assessment 

error in outcome and explanatory data, and the likely impact of many causal factors of 

any complex disease that will not have been measured by even the most thorough of 

studies. The ESPRESSO-forte algorithm was used to carry out the calculations because 

unlike standard approaches it takes account of the complex elements mentioned above. 

The detailed assumptions that were made to underpin the power calculations are 

outlined under section 3.2.4. These assumptions reflect a rational attempt to take 

appropriate account of the realistic uncertainty that exists in the analysis of any complex 

trait. Although this uncertainty is often ignored in conventional power calculations (7) it 

consistently increases sample size requirements and it is the ability to take realistic 

factors, such as these, into account that renders power calculation by simulation the 

preferred approach when undertaking power analyses for large cohorts and biobanks 

which demand vast investment of time and effort. 

3.2. METHODS 

The exploration of the power profiles of CPT for quantitative outcomes was based on 

the estimates of participant-to-participant variation (standard deviation) of an extensive 
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range of critical disease-related traits. These traits were originally drawn up for the 

power calculations of the CARTaGENE project (83) carried out by Paul Burton and 

Catherine Boileau 

The outcome variables investigated in the current analysis (i.e. included in this thesis) 

are either physical measures or biochemical and haematological parameters. The 

scientific rationales that justified the inclusion of these variables in this study are 

reported under sections 3.2.1 and 3.2.2; they are the same as those that justified the 

inclusion of the variables in the CARTaGENE project. The set of outcome variables to 

analyse and their assumed distribution (mean and standard deviation) are under Table 

23 to Table 38. These distributions were derived from a literature review (as 

referenced), and/or from empirical data derived from the optimization phase of the 

CARTaGENE project. The biomedical scenarios for which CPT power profiles were 

investigated are detailed in Table 39 under section 3.2.3. 

3.2.1. SCIENTIFIC RATIONALES AND STATISTICAL 
DISTRIBUTIONS OF THE PHYSICAL 
VARIABLES ANALYSED AS OUTCOMES 

3.2.1.1. Arterial stiffness and central blood pressure 

Unrelated studies have reported that central arterial stiffness is increased in elderly (84) 

and in patients with coronary artery disease (85), myocardial infarction (86), heart 

failure(87), hypertension (88), stroke (89), diabetes (90), end stage renal disease (91, 

92) and hypercholesterolemia (90).  The Anglo-Scandinavian Cardiac Outcomes Trial 

(ASCOT) study has suggested that central aortic blood pressure (BP) is a better 

predictor of cardiovascular mortality and morbidity than peripheral. A recent study 

found that more than 70% of individuals with high-normal brachial pressure  and those 
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with stage 1 hypertension have similar aortic pressure; this suggests that central 

pressure cannot be reliably inferred from peripheral pressure (93).The measures 

required (Table 23) were obtained using a SphygmoCor, a non-invasive device that 

derives the central aortic pressure waveform from the pressure pulse measured at 

peripheral sites. 

Outcome Mean Standard Deviation 
Aortic Systolic BP   118 mm/Hg 18.3 
Aortic Diastolic BP   82 mm/Hg 11.1 
Aortic Pulse Pressure   36 mm/Hg 10.4 
Aortic augmentation index   28.6 mm/Hg 11.4 

Table 23: Variables that relate to arterial stiffness and central blood pressure. 

The table reports the distributions (in the CARTaGENE project) of the set of outcome 

variable. 

3.2.1.2. Electrocardiogram (ECG) 

ECG is a non-invasive tool for investigating cardiac arrhythmias and other cardio-

electrical abnormalities in epidemiological studies. It is a key component of a 

cardiovascular work-up in the clinical setting. A full 12-lead ECG could not be used in 

all of the projects in CPT. This is in part because of the time and resources that would be 

required, in part because of the consequent need to act clinically in response to the 

potentially subtle abnormalities that may be found, and in part because the preparation 

of a full ECG requires the individual to partially undress and some subjects are 

uncomfortable with that. In consequence, a limited ECG (four lead ECG) was 

undertaken allowing derivation of the RR and QS intervals, respectively the interval 

between two consecutive heart beats and the interval between the Q and S waves of the 

QRS complex (a graphical depiction of the electrical energy generated by the heart, in 

an ECG). These are clinically relevant because 10 milliseconds (ms) increase in the QS 

interval is associated with a 15% higher risk for incident heart failure, a 13% higher risk 

for coronary heart disease, and a 17% higher risk for mortality in patients with chronic 
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kidney disease (94). And also, abnormalities in the variability and duration of the QT 

interval have been reported to be associated with life-threatening arrhythmias (95). The 

QT interval is the time elapsed from the beginning of a QRS complex to the T wave; in 

the below table it is the corrected QT interval, QTc - ratio of the QT interval by the 

square root of the preceding RR-interval (96)-, that is reported 

Outcome Mean Standard Deviation 

RR-interval   796 ms  107  

QS-interval   100 ms  19 
QTc-interval   426 ms  61 

Table 24: Variables that relate to cardiac function. 

The table reports the distributions (in the CARTaGENE project) of the set of outcome 

variable. 

3.2.1.3. Peripheral Blood pressure 

High peripheral blood pressure is a well-known risk factor for coronary heart disease, 

stroke and several other vascular, cerebrovascular and renal diseases. Approximately 

50% of cardiovascular disease can be attributed to supraoptimal blood pressure due to 

its strong causal relationship. The  prevalence of hypertension and the prescription of 

antihypertensive drugs have increased in Canada (97). Diabetes and obesity are strongly 

associated with hypertension and cardiovascular disease and 51.9% of Canadian 

diabetics are hypertensive (98). The measurements in Table 25 represent the mean of 3 

measurements carried out by an automated device (Colin Press-Mate Prodigy II 2200) 

that uses the oscillometric method for assessing blood pressure. 

Outcome Mean Standard Deviation 
Systolic BP (mean of 3 
measurements)   126 mm/Hg 18.2 

Diastolic BP (mean of 3 
measurements)   81 mm/Hg 10.7 

Table 25: Variables that relate to blood pressure. 

The table reports the distributions (in the CARTaGENE project) of the set of outcome 

variable. 
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3.2.1.4. Lung function 

Spirometry is the gold standard for the diagnosis and assessment of chronic obstructive 

pulmonary disease (COPD) because it is the most reproducible, standardized and 

objective way of measuring airflow limitation (99). Spirometry is a long-term predictor 

for overall survival rates in both genders (100) and it has been reported as a predictor 

for cardiovascular and cerebrovascular disease and for death from all causes (101), as 

well as for lung cancer and chronic lung disease (102). The values for the forced 

expiratory volume in 1 second (FEV1, the volume of air that can been forcibly expelled 

in 1 second) and the forced vital capacity (FVC, the volume of air that can be expelled 

after full inspiration) reported in Table 26 were obtained using a portable USB 

spirometer (MiniSpir). The values reported in the table below represent the proportion 

of predicted values (similar to percent predicted) and not the raw measures which are 

usually measured in litres per second (FEV1) and litres (FVC). 

Outcome Mean Standard Deviation 
FEV1 proportion of predicted  0.96 0.202 
FVC proportion of predicted  0.94 0.203 
FEV1/FVC  1.03 0.113 

Table 26: Variables that relate to lung function. 

The table reports the distributions (in the CARTaGENE project) of the set of outcome 

variable. 

3.2.1.5. Bone density 

Bone mineral density (BMD) is a reliable predictor of cardiovascular (in white men) 

and other causes combined (in whites and blacks) as well as death from all causes in 

white men and blacks (103). Femoral dual x-ray absorptiometry (DXA )and ultrasound 

have a similar capacity to predict the risk of hip fracture (104). Quantitative calcaneal 

ultrasound appears to have the same ability as BMD to predict osteoporotic fracture and 

may predict fracture independent of bone mineral density (105). The values in Table 27 
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were obtained using the Achilles QUS Systems. This device a bone ultrasonometer that 

evaluates the bone status in the heel by measuring the speed at which sound travels 

through the bone in m/s and the amount of sound absorbed by the bone (broadband 

ultrasound attenuation – BUA) in db/MHz (106-108). 

Outcome Mean Standard Deviation 
Os calcis BUA index  33.44 dB/MHz 0.522 
Os calcis bone density t-score  -0.07 1.1 

Os calcis percent normal bone density  99.00% 17.56 

Table 27: Variables that relate to bone density. 

The table reports the distributions (in the CARTaGENE project) of the set of outcome 

variable. 

3.2.1.6. Grip strength 

Hand grip strength is a predictor of functional limitations and disability in old age as 

well as all cause and cardiovascular mortality (109, 110). Hand grip strength was 

reported as highly predictive of functional limitations and disability 25 years later, 

among healthy 45 to 68 years old men (111). For women, low hand grip strength was 

associated with an increased risk of developing incident vertebral fracture. Low hand 

grip strength was also associated with lower bone mass. The grip strength values in 

Table 28 represent the mean of two measurements obtained using a Digital Hydraulic 

Hand Dynamometer. 

Outcome Mean Standard Deviation 
Grip strength left hand (mean 
of two measures)   32.8 Kg 12.1 

Grip strength right hand (mean 
of two measures)   33.8 Kg 12.4 

Table 28: Grip strength for left and right hand. 

The table reports the distributions (in the CARTaGENE project) of these two variables. 
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3.2.1.7. Bioimpedance 

Bioimpedance analysis is non-invasive tool used to determine body composition. It 

allows for the level of many body fluids and tissues to be estimated. These measures 

when combined appropriately with data on age, sex, weight and height can be a good 

indicator of the absolute and relative amounts of adipose and lean tissue. It is a clinical 

method and a potential field for evaluating skeletal muscle mass. Body composition 

modulates common carotid artery remodelling independently of metabolic and 

atherosclerotic factors. It is also a good indicator for the assessment of nutritional status 

in individuals with bowel disorders (112). The measurements in Table 29 were obtained 

using a device (TANITA, TBF -10) that measures simultaneously leg-to-leg impedance 

and body weight. 

Outcome Mean Standard Deviation 
Fat mass by bioimpedance   22.38 Kg 10 
Lean mass by bioimpedance   51.61 Kg 10.14 
Percent body fat by bioimpedance   30.56 Kg 10.26 

Table 29: Variables that relate to bioimpedance. 

The table reports the distributions (in the CARTaGENE project) of these two variables. 

3.2.1.8. Weight and height 

Weight and height are measured in many large-scale epidemiologic studies because they 

are key predictors and reflectors of health, and changing health, across many systems 

including the cardiovascular, gastrointestinal, metabolic, musculoskeletal, and 

respiratory systems. Weight is an informative indicator of body fatness when height is 

adequately taken into account. Information on height is important as it refines the 

interpretation of a number of other key measures such as weight, body fat content, and 

lung function. The weight measures in Table 30 were obtained using the same device as 
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for the bioimpedance; the height measures represent an average of two measurements 

obtained using a portable stadiometer.  

Outcome Mean Standard Deviation 

Body weight   66.82Kg (female)  
80.96Kg (male) 13.4 

Height  160.0 cm (female)  
173.0 cm (male) 6.4 

Table 30: Body weight and height. 

The table reports the distributions (in the CARTaGENE project) of these two variables. 

3.2.1.9. Body Mass Index (BMI) 

BMI is derived directly from weight and height, it is the ratio of weight to height. There 

is now clear evidence that a BMI above 25 kg/m2 increases the risk of developing 

ischaemic heart disease(113), ischaemic stroke (114), type 2 diabetes, osteoarthritis and 

various types of cancer (115).  

Outcome Mean Standard Deviation 

BMI   26.12 Kg/m2 (female)  
27.05 Kg/m2 (male) 4.7 

Table 31: Body Mass Index. 

The table reports the distributions (in the CARTaGENE project) of BMI. 

3.2.1.10. Waist-Hip circumference 

Excessive presence of fat in the intra-abdominal cavity may be harmful. Intra-

abdominal fat mass can be inferred reasonably well from waist circumference (WC). It 

has been reported in some clinical studies that, within each sex, waist circumference is 

highly correlated with intra-abdominal fat mass estimated by ultrasonography and MRI 

(116, 117). The ratio of waist circumference to hip circumference (WC/HP) has been 

shown to be a good clinical tool for assessing the risk of cardiovascular diseases 

(CVD)(118). This ratio has also been found to be more relevant and closely related to 
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CVD risk factors than BMI(119). WC/HP is positively associated with both arterial 

stiffness and early atherosclerosis markers such as common carotid arteries-intima-

media thickness (120). WC and WC/HC are better indicators of risk of central adiposity 

in postmenopausal women(121). WC is also a good predictor of pulmonary 

function(122). Both waist and hip circumference were measured as an average of two 

measurements carried out using a circumference measuring tape.  

Outcome Mean Standard Deviation 

Waist circumference(WC)   85.2 cm (female)  
96.3 cm (male) 11.9 

Hip circumference(HC)   103.3 cm (female)  
101.6 cm (male) 10.3 

WC/HC ratio   0.83 cm (female)  
0.95 cm (male) 0.073 

Table 32: Waist and hip circumferences and the ratio of the two. 

The table reports the distributions (in the CARTaGENE project) of these variables. 

3.2.1.11. Cognitive function 

It is well recognised that only a limited number of population-based biobanks 

concentrate rigorously on assessing cognitive function and psychosocial determinants. 

In the UK, for example, this has led to joint action by the Medical Research Council 

(MRC), Wellcome Trust and the Economic and Social Research Council (ESRC) in an 

attempt to enhance this element of the underlying science. It is important, not only 

because many of the traits that fall in these domains are of direct interest as disease-

related phenotypes in their own right (e.g. depression, anxiety, cognitive function), but 

also because they reflect key intermediates in causal pathways that might lead to novel 

insights into disease aetiology or to the development of enhanced treatment 

mechanisms. 

The CARTaGENE project used widely spread tests and validated paradigms to measure 

cognitive function. These tests are self- administered using a touch screen computer 
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platform. Because the parameters to be assessed under this domain are all algorithmic 

(generally linear) scales, their means and standard deviations will be sensitive to their 

precise distribution in the Quebec population and yet because they were not included in 

the CARTaGENE optimization phase, these distributions are unknown. Consequently, 

rather than estimating the minimum absolute effect sizes that will be detectable for each 

scale individually, a generic table (Table 40), indicating the fraction of a standard 

deviation that will be detectable for each scenario, was constructed. 

3.2.1.12. Anxiety and depression 

Clinical associations between psychiatric illness and chronic medical conditions are 

supported by a substantial literature. Most research focused on depression found that 

depression can adversely affect selfcare and increase the risk of incident medical illness, 

complications and mortality (123, 124). The burden of disease attributable to depression 

is alarming: depression is becoming the major source of disability, second only to 

cardiovascular diseases; it is the main source of disability in the Canadian workplace 

(125). Depression has repeatedly been associated with morbidity and mortality from 

several diseases. There is for instance growing evidence indicating that depression is an 

important primary and secondary risk factor for coronary heart disease (CHD)(126-

128). The prevalence of depression is three times greater in people with type 2 diabetes 

than in the general population(129). 

For anxiety and depression too, a generic table (Table 40), indicating the fraction of a 

standard deviation that will be detectable for each scenario, was constructed. 
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3.2.2. SCIENTIFIC RATIONALES AND STATISTICAL 
DISTRIBUTIONS OF THE BIOCHEMICAL AND 
HAEMATOLOGICAL VARIABLES ANALYSED 
AS OUTCOMES 

An analysis of biochemical and haematological parameters on fresh blood is useful 

because: (1) it provides a series of valuable quantitative traits which are meaningful in 

their own right as complex traits that are worthy of aetiological study; (2) it provides a 

series of quantitative traits that reflect intermediate traits that lie on the causal pathways 

leading to a number of complex binary traits that are of scientific interest; (3) it includes 

a number of “health screening” parameters that are of interest to potential recruits and 

therefore provide a tangible “return” for agreeing to participate. 

Although most of the parameters returned by an automated biochemical or 

haematological analysis are of direct value clinically (e.g. white blood cell count) many 

have little or no obvious role in the epidemiological setting. Even though these 

parameters were analysed, there is no attempt to justify them here from a scientific 

perspective. 

3.2.2.1. Insulin, glucose and glycosylated haemoglobin (HbA1C) 

These measures reflect activity in causal pathways involving the metabolic syndrome 

and diabetes which both have a substantial importance to the public health. All the non-

diabetic subjects with the morning appointments were asked to fast. This is because 

when fasting, the plasma glucose levels increases in the body; in subjects without 

diabetes, insulin is produce to re-balance the level of plasma glucose whilst in subjects 

with diabetes the level of plasma glucose remains high either because not enough 

insulin is produced or because the insulin is not used effectively. Consequently when 
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glucose levels are tested, subjects with diabetes have much higher glucose levels than 

those without diabetes. 

Outcome Mean Standard Deviation 
Insulin (in non-diabetics)   107.2 uU/ml 107.2 
Glucose (in non-diabetics)   4.84 mmol/L 0.925 
HbA1C (in non-diabetics)   5.54 % 0.494 

Table 33: Insulin, Glucose and HbA1C. 

The table reports the distributions (in the CARTaGENE project) of these variables. 

3.2.2.2. Cholesterol components and triglycerides 

These measures are linked positively or negatively with cardiovascular disease and they 

also reflect causal pathways associated with the metabolic syndrome. 

Outcome Mean Standard Deviation 
Total cholesterol   5.27 mmol/L 0.986 
LDL cholesterol   2.85 mmol/L 0.844 
HDL cholesterol   1.56 mmol/L 0.487 
LDL:HDL ratio  1.84 0.832 
Triglycerides  1.93 1.14 

Table 34: Cholesterol components included in the analysis and triglycerides. 

The table reports the distributions (in the CARTaGENE project) of these variables. 

3.2.2.3. Uric acid 

Hyperuricaemia is associated with renal disease, hypertension and a number of 

haematological conditions. It is the primary pathophysiology underlying gout. 

Hyperuricaemia is highly prevalent among individuals suffering from metabolic 

syndrome (130, 131)and some studies have found an association between plasma uric 

acid and the incidence of type 2 diabetes (106, 107). 

Outcome Mean Standard Deviation 
Uric acid   296.0 umol/L 74.98 

Table 35: Uric acid. 

The table reports the distributions (in the CARTaGENE project) of the variable. 



CHAPTER 3 
 

122 | P a g e  
 

3.2.2.4. Thyroid hormones 

Hypothyroidism and hyperthyroidism are amongst the most frequent endocrine 

conditions. To understand both pituitary and thyroid dysfunction and properly interpret 

thyroid function, it is necessary to measure thyroid stimulating hormone (TSH) and free 

thyroxine (free T4). 

Outcome Mean Standard Deviation 
Free T4   15.06 pmol/L 1.95 
TSH   2.17 mIU/L 1.99 

Table 36: Thyroid hormones. 

The table reports the distributions (in the CARTaGENE project) of these variables. 

3.2.2.5. Creatinine 

Creatinine is a marker of renal function and provides a convenient and easily derived 

reflection of the glomerular filtration rate. The reciprocal of the creatinine concentration 

often declines in a relatively linear fashion and longitudinal monitoring of creatinine 

therefore provides a particularly straightforward way to investigate determinants of the 

rate of decline of renal function over time (for example in diabetes). Creatinine was not 

measured in the optimization phase of CARTaGENE and so an approximate mean and 

standard deviation were inferred from the literature (132). 

Outcome Mean Standard Deviation 
Creatinine   97.2 umol /L 44.2 

Table 37: Creatinine. 

The table reports the distributions of the variable inferred from the literature. 

3.2.2.6. Haemoglobin and mean red blood cell volume 

Because many estimates generated by standard haematology screen are important in 

clinical practice but of limited value in the epidemiological setting, the study focuses on 

just two measures which are commonly abnormal because they are associated with 
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anaemia (and its particular causes) and are determined by a number of key factors 

including nutritional status, chronic ill health and cancer. 

Outcome Mean Standard Deviation 
Haemoglobin   143.7 g/L 13.5 
Mean cell volume   91.1 fL 5.06 

Table 38: Haemoglobin and red blood cell volume. 

The table reports the distributions (in the CARTaGENE project) of these variables. 

 

3.2.3. THE BIOMEDICAL SCENARIOS 
INVESTIGATED 

The power profiles of CPT were analysed for the six scenarios summarised in Table 39. 

For each outcome and under each scenario, an iterative approach was used in 

ESPRESSO-forte to determine the minimum estimated effect that can be detected with 

a power of 80%± 2% using the probable final samples sizes of CPT (110000 and 

180000). The iterative approach consisted of looping through a range of effect sizes 

until reaching the smallest effect that ensures a power of 80%; these minimum effects 

were referred to as minimum detectable effect sizes (MDES). Section 3.3.1 explains how 

an MDES should be interpreted.  

Scenario 

Minor 
Allele 
Frequency 
(MAF) 

Prevalence of ‘at risk ‘ 
environmental 
determinant 

Mathematical model 

1 - Common determinants 0.30 0.50 Main effects only 
2 - Moderately common determinants 0.10 0.20 Main effects only 
3 - Uncommon determinants 0.05 0.10 Main effects only 
4 - Common determinants 0.30 0.50 Main effects + interaction 
5 - Moderately common determinants 0.10 0.20 Main effects + interaction 
6 - Uncommon determinants 0.05 0.10 Main effects + interaction 

Table 39: The six scenarios that were explored in constructing each power profile. 
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3.2.4. ANALYTIC ASSUMPTIONS ABOUT THE 
OUTCOME AND THE GENETIC AND 
ENVIRONMENTAL DETERMINANTS 

For each of the scenarios 1, 2 and 3 in Table 39, the GLM model fitted in ESPRESSO-

forte consist of one outcome (the quantitative trait being analysed) and one covariate; 

the 3 scenarios were analysed twice, once with a SNP as covariate and once with an 

environmental factor as covariate. The GLM model for these main effect scenarios can 

be written as follows: 

 ( )    +      

Where Y is the outcome β0 is the intercept value, β1 is the effect size of the covariate x1. 

The terms in this model are explained in more details under the GLM section at page 

52-53. 

For each of the scenarios 4, 5 and 6 in Table 39, the GLM model fitted in ESPRESSO-

forte consists of one outcome (the quantitative trait being analysed) and two interacting 

covariates (a SNP and an environmental factor). The GLM model for these interaction 

scenarios can be written as follows: 

 ( )    +     +     +        

Where Y is the outcome, β0 is the intercept value, β1 is the effect size of the SNP, β2 is 

the effect size of the environmental factor and β3 is the effect size of the interaction term 

G1E1. 

The genetic determinants were modelled as SNPs using an additive genetic model, as is 

now most commonly used (24); the genotyping error was taken as being equivalent to 

the error that arises when the genotype at a locus of interest is inferred from the 
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genotype of an observed marker (with the same allelic distribution) that is in linkage 

disequilibrium with the unobserved causal variant at the locus of interest at r2=0.8. This 

corresponds to the weakest LD with HapMap 2 markers on the Affymetrix 500K chip 

(133). The environmental determinants were modelled as binary, and measurement 

error was introduced by assuming an underlying latent variable with a reliability of 0.7. 

This reflects a moderate level of measurement error corresponding, for example, to 

blood pressure measurement in the Intersalt Study (134).  Gene-environment 

interactions were modelled using product terms again assuming an additive genetic 

model. Significance tests for genetic main effects and interactions were based on 

p.value <0.0001 (i.e. assuming vague candidate genes) or p.value <10-7 (genome wide 

association studies), while non-genetic effects were tested at p.value <0.01. Unless 

otherwise specified, power estimation was based on the standard deviation and on the 

measurement reliability of the trait being considered as obtained from the analysis of the 

CARTaGENE optimization phase. When no firm evidence to the contrary was available 

to determine the likely measurement reliability of the quantitative trait being 

considered, it was taken to be 0.7. 

3.3. RESULTS 

3.3.1. INTERPRETATION OF THE 
MINIMUM DETECTABLE EFFECT SIZE 

It is important to understand how an MDES should be interpreted. To illustrate the 

interpretation let us use Table 48 which provides the power profile for systolic blood 

pressure (mean of 3 measurements) measured conventionally in a clinic setting.  

Conventional (peripheral) blood pressure is measured as the mean of 3 measurements. 

The device chosen (Colin Prodigy II Vital Signs Monitor OM-2200) is an automated 
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device that uses the oscillometric method for assessing blood pressure. The 

measurement process is both quick (2-3 min) and simple. 

 
The population distribution of the variable reported in Table 48 (systolic blood 

pressure) is: mean = 126 mm/Hg and standard deviation = 18.2. In the body of the table, 

the MDES for the environmental main effect for the moderately common exposure was 

reported as 0.9323mm/Hg. This scenario (see Table 2) invokes a binary environmental 

exposure with a prevalence of 0.2 (20%).  The reported results therefore imply that if 

the final sample size of CPT was 110000 participants, if conventional clinic blood 

pressure was measured using the standard operating protocol (SOP) outlined in the 

second paragraph above, and if scientific interest focused on the impact of a binary 

environmental exposure which had realistic characteristics corresponding to those 

outlined in section 3.2.4, the power calculations would indicate that there was an 80% 

chance of detecting, at p.value < 0.01, a real effect that corresponded to that 

environmental determinant increasing (or decreasing) systolic blood pressure (SBP) by 

0.9323 mm/Hg.  Similarly, if interest focused on a rare SNP in a genome wide 

association study (GWAS) there would be an 80% chance of detecting the effect of a 

SNP with a minor allele frequency of 0.05 (5%) at p.value < 10-7 (for genome-wide 

inference) if that SNP really increased or decreased SBP by at least 1.4806 mm/Hg. 

Alternatively, if it was known that the SOP that was actually used for measuring SBP 

across the CPT project produces an SBP distribution with a rather higher standard 

deviation than the SOP for the CARTaGENE project (e.g. 21.1 mm/Hg not 18.2), then 

the corresponding entries (0.0512 and 0.0813) could be read from Table 40 and then 

multiplied by 21.1. This would generate estimated MDESs of 0.0512 × 21.1 ≈ 1.08 

mm/Hg (instead of 0.93) and 0.0813 × 21.1 = 1.72 mm/Hg (instead of 1.48) implying, 
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as would be expected, that if SBP is fundamentally more variable, the effect size that 

can reliably be detected must inevitably be larger. Reassuringly, if the value 18.2 is fed 

into Table 40 the values 0.93 and 1.48 are obtained, in other words the same answers 

that were obtained directly from Table 48. 

3.3.2. TABULATED POWER PROFILES 

Each of the tables below reports the MDES results for one outcome variable. The tables 

are subdivided into two parts; the top part (A.) summarises the expected power profile if 

CPT ultimately recruits a total of 110000 participants, while the bottom part (B.) 

overviews the corresponding profile given 180000 recruits. The variables cognitive 

function, anxiety and depression were treated as standardized variables (see section 

3.3.2.1); the results for these variables are therefore derived from Table 40. 

3.3.2.1. Generic standardized variable 

If there is a specific reason to believe that the population distribution of a particular 

quantitative trait is markedly different in Quebec compared to elsewhere in Canada and 

that the standard deviation that has been reported from CARTaGENE may therefore be 

misleading for CPT as a whole; the corresponding power profile for that particular trait 

could be obtained by treating it as a standardized variable(mean = 0, SD = 1) and 

multiplying the tabulated MDES values in Table 40 by the known standard deviation of 

the trait.  

The same method can be used to obtain the power profile of a trait that was measured 

using a different approach (SOP) or equipment:  the tabulated MDES values in Table 40 

are multiplied by the known standard deviation of the trait under the approach that is to 

be used. 
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  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.0291sd 0.0379sd 0.0372sd 0.0902sd 0.1176sd 
Moderately 
common 
determinants 

0.0440sd 0.0573sd 0.0512sd 0.1895sd 0.2469sd 

Uncommon 
determinants 0.0624sd 0.0813sd 0.0745sd 0.3700sd 0.4821sd 

B. 180000 recruits      
Common  0.0227sd 0.0296sd 0.0291sd 0.0705sd 0.0919sd 
Moderately 
common 
determinants 

0.0344sd 0.0448sd 0.0400sd 0.1481sd 0.1930sd 

Uncommon 
determinants 0.0488sd 0.0636sd 0.0582sd 0.2892sd 0.3768sd 

Table 40: Minimal detectable effect sizes for variables that have mean=0 and SD=1. 

 

3.3.2.2. Aortic systolic blood pressure 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.5323mm/Hg 0.6936mm/Hg 0.6802mm/Hg 1.6513mm/Hg 2.1516mm/Hg 
Moderately 
common 
determinants 

0.8051mm/Hg 1.0491mm/Hg 0.9374mm/Hg 3.4677mm/Hg 4.5184mm/Hg 

Uncommon 
determinants 1.1425mm/Hg 1.4887mm/Hg 1.3635mm/Hg 6.7703mm/Hg 8.8217mm/Hg 

B. 180000 recruits       
Common  0.4161mm/Hg 0.5422mm/Hg 0.5317mm/Hg 1.2909mm/Hg 1.6820mm/Hg 
Moderately 
common 
determinants 

0.6294mm/Hg 0.8201mm/Hg 0.7328mm/Hg 2.7108mm/Hg 3.5322mm/Hg 

Uncommon 
determinants 0.8931mm/Hg 1.1638mm/Hg 1.0659mm/Hg 5.2926mm/Hg 6.8962mm/Hg 

Table 41: Minimal detectable effect sizes for aortic systolic blood pressure. 
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3.3.2.3. Aortic diastolic blood pressure 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.3229mm/Hg 0.4207mm/Hg 0.4126mm/Hg 1.0016mm/Hg 1.3051mm/Hg 
Moderately 
common 
determinants 

0.4883mm/Hg 0.6363mm/Hg 0.5686mm/Hg 2.1034mm/Hg 2.7407mm/Hg 

Uncommon 
determinants 

0.6930mm/Hg 0.9030mm/Hg 0.8270mm/Hg 4.1066mm/Hg 5.3509mm/Hg 

B. 180000 recruits      
Common  0.2524mm/Hg 0.3289mm/Hg 0.3225mm/Hg 0.7830mm/Hg 1.0202mm/Hg 
Moderately 
common 
determinants 

0.3818mm/Hg 0.4974mm/Hg 0.4445mm/Hg 1.6443mm/Hg 2.1425mm/Hg 

Uncommon 
determinants 0.5417mm/Hg 0.7059mm/Hg 0.6465mm/Hg 3.2103mm/Hg 4.1830mm/Hg 

Table 42: Minimal detectable effect sizes for aortic diastolic blood pressure. 

 

3.3.2.4. Aortic pulse pressure 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.3025mm/Hg 0.3942mm/Hg 0.3866mm/Hg 0.9384mm/Hg 1.2228mm/Hg 
Moderately 
common 
determinants 

0.4576mm/Hg 0.5962mm/Hg 0.5327mm/Hg 1.9707mm/Hg 2.5678mm/Hg 

Uncommon 
determinants 0.6493mm/Hg 0.8460mm/Hg 0.7749mm/Hg 3.8476mm/Hg 5.0134mm/Hg 

B. 180000 recruits      
Common  0.2365mm/Hg 0.3081mm/Hg 0.3022mm/Hg 0.7336mm/Hg 0.9559mm/Hg 
Moderately 
common 
determinants 

0.3577mm/Hg 0.4661mm/Hg 0.4164mm/Hg 1.5406mm/Hg 2.0074mm/Hg 

Uncommon 
determinants 0.5076mm/Hg 0.6614mm/Hg 0.6057mm/Hg 3.0078mm/Hg 3.9192mm/Hg 

Table 43: Minimal detectable effect sizes for aortic pulse pressure. 
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3.3.2.5. Aortic augmentation index 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.3316mm/Hg 0.4321mm/Hg 0.4237mm/Hg 1.0287mm/Hg 1.3404mm/Hg 
Moderately 
common 
determinants 

0.5015mm/Hg 0.6535mm/Hg 0.5839mm/Hg 2.1602mm/Hg 2.8148mm/Hg 

Uncommon 
determinants 

0.7117mm/Hg 0.9274mm/Hg 0.8494mm/Hg 4.2176mm/Hg 5.4955mm/Hg 

B. 180000 recruits      
Common  0.2592mm/Hg 0.3378mm/Hg 0.3312mm/Hg 0.8041mm/Hg 1.0478mm/Hg 
Moderately 
common 
determinants 

0.3921mm/Hg 0.5109mm/Hg 0.4565mm/Hg 1.6887mm/Hg 2.2004mm/Hg 

Uncommon 
determinants 0.5564mm/Hg 0.7250mm/Hg 0.6640mm/Hg 3.2970mm/Hg 4.2960mm/Hg 

Table 44: Minimal detectable effect sizes for aortic augmentation index. 

 

3.3.2.6. RR-Interval 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  3.1124msecs 4.0555msecs 3.9771msecs 9.6551msecs 12.5806msecs 
Moderately 
common 
determinants 

4.7075msecs 6.1339msecs 5.4809msecs 20.2757msecs 26.4192msecs 

Uncommon 
determinants 6.6803msecs 8.7044msecs 7.9722msecs 39.5858msecs 51.5803msecs 

B. 180000 recruits      
Common  2.4331msecs 3.1703msecs 3.1090msecs 7.5477msecs 9.8347msecs 
Moderately 
common 
determinants 

3.6800msecs 4.7951msecs 4.2846msecs 15.8502msecs 20.6528msecs 

Uncommon 
determinants 5.2222msecs 6.8045msecs 6.2322msecs 30.9457msecs 40.3222msecs 

Table 45: Minimal detectable effect sizes for RR-Interval. 
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3.3.2.7. QS-Interval 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  1.0181msecs 1.3266msecs 1.3009msecs 3.1582msecs 4.1151msecs 
Moderately 
common 
determinants 

1.5398msecs 2.0064msecs 1.7928msecs 6.6322msecs 8.6418msecs 

Uncommon 
determinants 

2.1851msecs 2.8472msecs 2.6077msecs 12.9486msecs 16.8721msecs 

B. 180000 recruits      
Common  0.7959msecs 1.0370msecs 1.0170msecs 2.4689msecs 3.2170msecs 
Moderately 
common 
determinants 

1.2037msecs 1.5685msecs 1.4015msecs 5.1846msecs 6.7556msecs 

Uncommon 
determinants 1.7082msecs 2.2258msecs 2.0386msecs 10.1224msecs 13.1895msecs 

Table 46: Minimal detectable effect sizes for QS-Interval. 

 

3.3.2.8. QTc-Interval 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  1.7744msecs 2.3120msecs 2.2673msecs 5.5043msecs 7.1721msecs 
Moderately 
common 
determinants 

2.6837msecs 3.4969msecs 3.1246msecs 11.5590msecs 15.0614msecs 

Uncommon 
determinants 3.8084msecs 4.9623msecs 4.5449msecs 22.5676msecs 29.4056msecs 

B. 180000 recruits      
Common  1.3871msecs 1.8074msecs 1.7724msecs 4.3029msecs 5.6067msecs 
Moderately 
common 
determinants 

2.0980msecs 2.7336msecs 2.4426msecs 9.0361msecs 11.7740msecs 

Uncommon 
determinants 2.9771msecs 3.8792msecs 3.5529msecs 17.6419msecs 22.9874msecs 

Table 47: Minimal detectable effect sizes for QTc-Interval. 
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3.3.2.9. Systolic blood pressure 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.5294mm/Hg 0.6898mm/Hg 0.6765mm/Hg 1.6423mm/Hg 2.1399mm/Hg 
Moderately 
common 
determinants 

0.8007mm/Hg 1.0433mm/Hg 0.9323mm/Hg 3.4488mm/Hg 4.4937mm/Hg 

Uncommon 
determinants 

1.1363mm/Hg 1.4806mm/Hg 1.3560mm/Hg 6.7333mm/Hg 8.7735mm/Hg 

B. 180000 recruits      
Common  0.4138mm/Hg 0.5392mm/Hg 0.5288mm/Hg 1.2838mm/Hg 1.6728mm/Hg 
Moderately 
common 
determinants 

0.6259mm/Hg 0.8156mm/Hg 0.7288mm/Hg 2.6960mm/Hg 3.5129mm/Hg 

Uncommon 
determinants 0.8883mm/Hg 1.1574mm/Hg 1.0601mm/Hg 5.2637mm/Hg 6.8585mm/Hg 

Table 48: Minimal detectable effect sizes for systolic blood pressure. 

 

3.3.2.10. Diastolic blood pressure 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.3112mm/Hg 0.4055mm/Hg 0.3977mm/Hg 0.9655mm/Hg 1.2581mm/Hg 
Moderately 
common 
determinants 

0.4708mm/Hg 0.6134mm/Hg 0.5481mm/Hg 2.0276mm/Hg 2.6419mm/Hg 

Uncommon 
determinants 0.6680mm/Hg 0.8704mm/Hg 0.7972mm/Hg 3.9586mm/Hg 5.1580mm/Hg 

B. 180000 recruits      
Common  0.2433mm/Hg 0.3170mm/Hg 0.3109mm/Hg 0.7548mm/Hg 0.9835mm/Hg 
Moderately 
common 
determinants 

0.3680mm/Hg 0.4795mm/Hg 0.4285mm/Hg 1.5850mm/Hg 2.0653mm/Hg 

Uncommon 
determinants 0.5222mm/Hg 0.6805mm/Hg 0.6232mm/Hg 3.0946mm/Hg 4.0322mm/Hg 

Table 49: Minimal detectable effect sizes for diastolic blood pressure. 
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3.3.2.11. Forced expiratory volume in 1second (FEV1) 

(FEV1 was reported as the proportion of predicted values) 
  Genetic main 

effect 
Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.0059 0.0077 0.0075 0.0182 0.0238 
Moderately 
common 
determinants 

0.0089 0.0116 0.0103 0.0383 0.0499 

Uncommon 
determinants 0.0126 0.0164 0.0151 0.0747 0.0974 

B. 180000 recruits      
Common  0.0046 0.0060 0.0059 0.0142 0.0186 
Moderately 
common 
determinants 

0.0069 0.0091 0.0081 0.0299 0.0390 

Uncommon 
determinants 0.0099 0.0128 0.0118 0.0584 0.0761 

Table 50: Minimal detectable effect sizes for FEV1. 

As indicated at the top of the table FEV1 was measured as the proportion of predicted. 

3.3.2.12. Forced vital capacity (FVC) 

(FVC was reported as the proportion of predicted values) 
  Genetic main 

effect 
Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.0059 0.0077 0.0075 0.0183 0.0239 
Moderately 
common 
determinants 

0.0089 0.0116 0.0104 0.0385 0.0501 

Uncommon 
determinants 0.0127 0.0165 0.0151 0.0751 0.0979 

B. 180000 recruits      
Common  0.0046 0.0060 0.0059 0.0143 0.0187 
Moderately 
common 
determinants 

0.0070 0.0091 0.0081 0.0301 0.0392 

Uncommon 
determinants 0.0099 0.0129 0.0118 0.0587 0.0765 

Table 51: Minimal detectable effect sizes for FVC 

As indicated at the top of the table FEV1 was measured as the proportion of predicted. 
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3.3.2.13. FEV1/FVC ratio 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.0033 0.0043 0.0042 0.0102 0.0133 
Moderately 
common 
determinants 

0.0050 0.0065 0.0058 0.0214 0.0279 

Uncommon 
determinants 

0.0071 0.0092 0.0084 0.0418 0.0545 

B. 180000 recruits      
Common  0.0026 0.0033 0.0033 0.0080 0.0104 
Moderately 
common 
determinants 

0.0039  0.0051 0.0045 0.0167 0.0218 

Uncommon 
determinants 0.0055 0.0072 0.0066 0.0327 0.0426 

Table 52: Minimal detectable effect sizes for FEV1/FVC ratio. 

 

3.3.2.14. Os calcis BUA index 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 10-4 (candidate 
gene study) 10-7 (GWAS) 

A. 110000 recruits           
Common  0.0152dB/MHz 0.0198dB/MHz 0.0194dB/MHz 0.0471dB/MHz 

dB/MHz 
0.0614dB/MHz 

Moderately 
common 
determinants 

0.0230dB/MHz 0.0299dB/MHz 0.0267dB/MHz 0.0989dB/MHz 0.1289dB/MHz 

Uncommon 
determinants 0.0326dB/MHz 0.0425dB/MHz 0.0389dB/MHz 0.1931dB/MHz 0.2516dB/MHz 

B. 180000 recruits      
Common  0.0119dB/MHz 0.0155dB/MHz 0.0152dB/MHz 0.0368dB/MHz 0.0480dB/MHz 
Moderately 
common 
determinants 

0.0180dB/MHz 0.0234dB/MHz 0.0209dB/MHz 0.0773dB/MHz 0.1008dB/MHz 

Uncommon 
determinants 0.0255dB/MHz 0.0332dB/MHz 0.0304dB/MHz 0.1510dB/MHz 0.1967dB/MHz 

Table 53: Minimal detectable effect sizes for os calcis BUA index. 
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3.3.2.15. Os calcis bone density t-score 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.0320 0.0417 0.0409 0.0993 0.1293 
Moderately 
common 
determinants 

0.0484 0.0631 0.0563 0.2084 0.2716 

Uncommon 
determinants 

0.0687 0.0895 0.0820 0.4070 0.5303 

B. 180000 recruits      
Common  0.0250 0.0326 0.0320 0.0776 0.1011 
Moderately 
common 
determinants 

0.0378 0.0493 0.0440 0.1629 0.2123 

Uncommon 
determinants 0.0537 0.0700 0.0641 0.3181 0.4145 

Table 54: Minimal detectable effect sizes for os calcis bone density t-score. 

 

3.3.2.16. Os calcis percent normal bone density 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.5108 0.6655 0.6527 1.5845 2.0646 
Moderately 
common 
determinants 

0.7726 1.0066 0.8995 3.3275 4.3357 

Uncommon 
determinants 1.0963 1.4285 1.3083 6.4965 8.4650 

B. 180000 recruits      
Common  0.3993 0.5203 0.5102 1.2387 1.6140 
Moderately 
common 
determinants 

0.6039 0.7869 0.7032 2.6012 3.3894 

Uncommon 
determinants 0.8570 1.1167 1.0228 5.0786 6.6174 

Table 55: Minimal detectable effect sizes for os calcis percent normal bone density. 
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3.3.2.17. Grip strength left hand 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.3520Kg 0.4586Kg 0.4497Kg 1.0918Kg 1.4227Kg 
Moderately 
common 
determinants 

0.5323Kg 0.6936Kg 0.6198Kg 2.2929Kg 2.9876Kg 

Uncommon 
determinants 

0.7554Kg 0.9843Kg 0.9015Kg 4.4765Kg 5.8329Kg 

B. 180000 recruits      
Common  0.2751Kg 0.3585Kg 0.3516Kg 0.8535Kg 1.1121Kg 
Moderately 
common 
determinants 

0.4162Kg 0.5422Kg 0.4845Kg 1.7924Kg 2.3355Kg 

Uncommon 
determinants 0.5905Kg 0.7695Kg 0.7048Kg 3.4995Kg 4.5598Kg 

Table 56: Minimal detectable effect sizes for left hand grip strength. 

 

3.3.2.18. Grip strength right hand 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.3607Kg 0.4700Kg 0.4609Kg 1.1189Kg 1.4579Kg 
Moderately 
common 
determinants 

0.5455Kg 0.7108Kg 0.6352Kg 2.3497Kg 3.0617Kg 

Uncommon 
determinants 0.7742Kg 1.0087Kg 0.9239Kg 4.5875Kg 5.9775Kg 

B. 180000 recruits      
Common  0.2820Kg 0.3674Kg 0.3603Kg 0.8747Kg 1.1397Kg 
Moderately 
common 
determinants 

0.4265Kg 0.5557Kg 0.4965Kg 1.8368Kg 2.3934Kg 

Uncommon 
determinants 0.6052Kg 0.7886Kg 0.7222Kg 3.5862Kg 4.6729Kg 

Table 57: Minimal detectable effect sizes for right hand grip strength. 
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3.3.2.19. Fat mass by bioimpedance 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.2909Kg 0.3790Kg 0.3717Kg 0.9023Kg 1.1758Kg 
Moderately 
common 
determinants 

0.4400Kg 0.5733Kg 0.5122Kg 1.8949Kg 2.4691Kg 

Uncommon 
determinants 

0.6243Kg 0.8135Kg 0.7451Kg 3.6996Kg 4.8206Kg 

B. 180000 recruits      
Common  0.2274Kg 0.2963Kg 0.2906Kg 0.7054Kg 0.9191Kg 
Moderately 
common 
determinants 

0.3439Kg 0.4481Kg 0.4004Kg 1.4813Kg 1.9302Kg 

Uncommon 
determinants 0.4881Kg 0.6359Kg 0.5824Kg 2.8921Kg 3.7684Kg 

Table 58: Minimal detectable effect sizes for fat mass by bioimpedence. 

 

3.3.2.20. Lean mass by bioimpedance 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.2950Kg 0.3843Kg 0.3769Kg 0.9150Kg 1.1922Kg 
Moderately 
common 
determinants 0.4461Kg 0.5813Kg 0.5194Kg 1.9215Kg 2.5037Kg 
Uncommon 
determinants 0.6331Kg 0.8249Kg 0.7555Kg 3.7514Kg 4.8881Kg 
B. 180000 recruits      
Common  0.2306Kg 0.3004Kg 0.2946Kg 0.7153Kg 0.9320Kg 
Moderately 
common 
determinants 0.3487Kg 0.4544Kg 0.4060Kg 1.5021Kg 1.9572Kg 
Uncommon 
determinants 0.4949Kg 0.6448Kg 0.5906Kg 2.9326Kg 3.8212Kg 

Table 59: Minimal detectable effect sizes for lean mass bioimpedence 
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3.3.2.21. Percent body fat by bioimpedance 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.2984% 0.3889% 0.3814% 0.9258% 1.2063% 
Moderately 
common 
determinants 

0.4514% 0.5882% 0.5256% 1.9442% 2.5333% 

Uncommon 
determinants 

0.6406% 0.8346% 0.7644% 3.7958% 4.9459% 

B. 180000 recruits      
Common  0.2333% 0.3040% 0.2981% 0.7237% 0.9430% 
Moderately 
common 
determinants 

0.3529% 0.4598% 0.4108% 1.5198% 1.9804% 

Uncommon 
determinants 0.5007% 0.6525% 0.5976% 2.9673% 3.8664% 

Table 60: Minimal detectable effect sizes for percent body fat by bioimpedence 

 

3.3.2.22. Body weight 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.3898Kg 0.5079Kg 0.4981Kg 1.2091Kg 1.5755Kg 
Moderately 
common 
determinants 

0.5895Kg 0.7682Kg 0.6864Kg 2.5392Kg 3.3086Kg 

Uncommon 
determinants 0.8366Kg 1.0901Kg 0.9984Kg 4.9575Kg 6.4596Kg 

B. 180000 recruits      
Common  0.3047Kg 0.3970Kg 0.3894Kg 0.9452Kg 1.2316Kg 
Moderately 
common 
determinants 

0.4609Kg 0.6005Kg 0.5366Kg 1.9850Kg 2.5864Kg 

Uncommon 
determinants 0.6540Kg 0.8522Kg 0.7805Kg 3.8754Kg 5.0497Kg 

Table 61: Minimal detectable effect sizes for body weight 
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3.3.2.23. Height 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.19cm 0.24cm 0.24cm 0.58cm 0.75cm 
Moderately 
common 
determinants 

0.28cm 0.37cm 0.33cm 1.21cm 1.58cm 

Uncommon 
determinants 

0.40cm 0.52cm 0.48cm 2.37cm 3.09cm 

B. 180000 recruits      
Common  0.15cm 0.19cm 0.19cm 0.45cm 0.59cm 
Moderately 
common 
determinants 

0.22cm 0.29cm 0.26cm 0.95cm 1.24cm 

Uncommon 
determinants 0.31cm 0.41cm 0.37cm 1.85cm 2.41cm 

Table 62: Minimal detectable effect sizes for height. 

3.3.2.24. Body Mass Index 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.1367Kg/m2 0.1781Kg/m2 0.1747Kg/m2 0.4241Kg/m2 0.5526Kg/m2 
Moderately 
common 
determinants 

0.2068Kg/m2 0.2694Kg/m2 0.2407Kg/m2 0.8906Kg/m2 1.1605Kg/m2 

Uncommon 
determinants 0.2934Kg/m2 0.3823Kg/m2 0.3502Kg/m2 1.7388Kg/m2 2.2657Kg/m2 

B. 180000 recruits      
Common  0.1069Kg/m2 0.1393Kg/m2 0.1366Kg/m2 0.3315Kg/m2 0.4320Kg/m2 
Moderately 
common 
determinants 

0.1616Kg/m2 0.2106Kg/m2 0.1882Kg/m2 0.6962Kg/m2 0.9072Kg/m2 

Uncommon 
determinants 

0.2294Kg/m2 0.2989Kg/m2 0.2737Kg/m2 1.3593Kg/m2 1.7712Kg/m2 

Table 63: Minimal detectable effect sizes for BMI 
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3.3.2.25. Waist circumference (WC) 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.3461cm 0.4510cm 0.4423cm 1.0738cm 1.3991cm 
Moderately 
common 
determinants 

0.5235cm 0.6822cm 0.6096cm 2.2550cm 2.9382cm 

Uncommon 
determinants 

0.7429cm 0.9681cm 0.8866cm 4.4025cm 5.7365cm 

B. 180000 recruits      
Common  0.2706cm 0.3526cm 0.3458cm 0.8394cm 1.0938cm 
Moderately 
common 
determinants 

0.4093cm 0.5333cm 0.4765cm 1.7628cm 2.2969cm 

Uncommon 
determinants 0.5808cm 0.7568cm 0.6931cm 3.4416cm 4.4844cm 

Table 64: Minimal detectable effect sizes for waist circumference (WC). 

 

 

3.3.2.26. Hip circumference (HC) 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.2996cm 0.3904cm 0.3828cm 0.9294cm 1.2110cm 
Moderately 
common 
determinants 

0.4532cm 0.5905cm 0.5276cm 1.9518cm 2.5432cm 

Uncommon 
determinants 0.6431cm 0.8379cm 0.7674cm 3.8106cm 4.9652cm 

B. 180000 recruits      
Common  0.2342cm 0.3052cm 0.2993cm 0.7266cm 0.9467cm 
Moderately 
common 
determinants 

0.3542cm 0.4616cm 0.4124cm 1.5258cm 1.9881cm 

Uncommon 
determinants 0.5027cm 0.6550cm 0.5999cm 2.9789cm 3.8815cm 

Table 65: Minimal detectable effect sizes for hip circumference (HC). 
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3.3.2.27. WC/HC ratio 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.0021 0.0028 0.0027 0.0066 0.0086 
Moderately 
common 
determinants 

0.0032 0.0042 0.0037 0.0138 0.0180 

Uncommon 
determinants 

0.0046 0.0059 0.0054 0.0270 0.0352 

B. 180000 recruits      
Common  0.0017 0.0022 0.0021 0.0051 0.0067 
Moderately 
common 
determinants 

0.0025 0.0033 0.0029 0.0108 0.0141 

Uncommon 
determinants 0.0036 0.0046 0.0043 0.0211 0.0275 

Table 66: Minimal detectable effect sizes for WC/HC ratio. 

 

3.3.2.28. Insulin (in non-diabetics) 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  3.1182uU/ml 4.0630uU/ml 3.9845uU/ml 9.6731uU/ml 12.6041uU/ml 
Moderately 
common 
determinants 

4.7163uU/ml 6.1453uU/ml 5.4911uU/ml 20.3136uU/ml 26.4686uU/ml 

Uncommon 
determinants 6.6928uU/ml 8.7207uU/ml 7.9871uU/ml 39.6598uU/ml 51.6767uU/ml 

B. 180000 recruits      
Common  2.4376uU/ml 3.1762uU/ml 3.1148uU/ml 7.5618uU/ml 9.8531uU/ml 
Moderately 
common 
determinants 

3.6869uU/ml 4.8040uU/ml 4.2926uU/ml 15.8798uU/ml 20.6914uU/ml 

Uncommon 
determinants 5.2320uU/ml 6.8173uU/ml 6.2438uU/ml 31.0035uU/ml 40.3976uU/ml 

Table 67: Minimal detectable effect sizes for insulin (in non-diabetics). 
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3.3.2.29. Glucose (in non-diabetics) 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.0269mmol/l 0.0351mmol/l 0.0344mmol/l 0.0835mmol/l 0.1088mmol/l 
Moderately 
common 
determinants 

0.0407mmol/l 0.0530mmol/l 0.0474mmol/l 0.1753mmol/l 0.2284mmol/l 

Uncommon 
determinants 

0.0578mmol/l 0.0752mmol/l 0.0689mmol/l 0.3422mmol/l 0.4459mmol/l 

B. 180000 recruits      
Common  0.0210mmol/l 0.0274mmol/l 0.0269mmol/l 0.0652mmol/l 0.0850mmol/l 
Moderately 
common 
determinants 

0.0318mmol/l 0.0415mmol/l 0.0370mmol/l 0.1370mmol/l 0.1785mmol/l 

Uncommon 
determinants 0.0451mmol/l 0.0588mmol/l 0.0539mmol/l 0.2675mmol/l 0.3486mmol/l 

Table 68: Minimal detectable effect sizes for glucose (in non-diabetics). 

 

3.3.2.30. HbA1C (in non-diabetics) 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.0144% 0.0187% 0.0184% 0.0446% 0.0581% 
Moderately 
common 
determinants 

0.0217% 0.0283% 0.0253% 0.0936% 0.1220% 

Uncommon 
determinants 0.0308% 0.0402% 0.0368% 0.1828% 0.2381% 

B. 180000 recruits      
Common  0.0112% 0.0146% 0.0144% 0.0348% 0.0454% 
Moderately 
common 
determinants 

0.0170% 0.0221% 0.0198% 0.0732% 0.0954% 

Uncommon 
determinants 0.0241% 0.0314% 0.0288% 0.1429% 0.1862% 

Table 69: Minimal detectable effect sizes for HbA1C (in non-diabetics). 
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3.3.2.31. Cholesterol 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.0287mmol/l 0.0374mmol/l 0.0366mmol/l 0.0890mmol/l 0.1159mmol/l 
Moderately 
common 
determinants 

0.0434mmol/l 0.0565mmol/l 0.0505mmol/l 0.1868mmol/l 0.2435mmol/l 

Uncommon 
determinants 

0.0616mmol/l 0.0802mmol/l 0.0735mmol/l 0.3648mmol/l 0.4753mmol/l 

B. 180000 recruits      
Common  0.0224mmol/l 0.0292mmol/l 0.0286mmol/l 0.0696mmol/l 0.0906mmol/l 
Moderately 
common 
determinants 

0.0339mmol/l 0.0442mmol/l 0.0395mmol/l 0.1461mmol/l 0.1903mmol/l 

Uncommon 
determinants 0.0481mmol/l 0.0627mmol/l 0.0574mmol/l 0.2852mmol/l 0.3716mmol/l 

Table 70: Minimal detectable effect sizes for cholesterol. 

 

3.3.2.32. LDL cholesterol 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.0246mmol/l 0.0320mmol/l 0.0314mmol/l 0.0762mmol/l 0.0992mmol/l 
Moderately 
common 
determinants 

0.0371mmol/l 0.0484mmol/l 0.0432mmol/l 0.1599mmol/l 0.2084mmol/l 

Uncommon 
determinants 0.0527mmol/l 0.0687mmol/l 0.0629mmol/l 0.3122mmol/l 0.4069mmol/l 

B. 180000 recruits      
Common  0.0192mmol/l 0.0250mmol/l 0.0245mmol/l 0.0595mmol/l 0.0776mmol/l 
Moderately 
common 
determinants 

0.0290mmol/l 0.0378mmol/l 0.0338mmol/l 0.1250mmol/l 0.1629mmol/l 

Uncommon 
determinants 0.0412mmol/l 0.0537mmol/l 0.0492mmol/l 0.2441mmol/l 0.3181mmol/l 

Table 71: Minimal detectable effect sizes for LDL cholesterol. 
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3.3.2.33. HDL cholesterol 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.0142mmol/l 0.0185mmol/l 0.0181mmol/l 0.0439mmol/l 0.0573mmol/l 
Moderately 
common 
determinants 

0.0214mmol/l 0.0279mmol/l 0.0249mmol/l 0.0923mmol/l 0.1202mmol/l 

Uncommon 
determinants 

0.0304mmol/l 0.0396mmol/l 0.0363mmol/l 0.1802mmol/l 0.2348mmol/l 

B. 180000 recruits      
Common  0.0111mmol/l 0.0144mmol/l 0.0142mmol/l 0.0344mmol/l 0.0448mmol/l 
Moderately 
common 
determinants 

0.0167mmol/l 0.0218mmol/l 0.0195mmol/l 0.0721mmol/l 0.0940mmol/l 

Uncommon 
determinants 0.0238mmol/l 0.0310mmol/l 0.0284mmol/l 0.1408mmol/l 0.1835mmol/l 

Table 72: Minimal detectable effect sizes for HDL cholesterol. 

 

3.3.2.34. LDL/HDL ratio 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.0242 0.0315 0.0309 0.0751 0.0978 
Moderately 
common 
determinants 

0.0366 0.0477 0.0426 0.1577 0.2054 

Uncommon 
determinants 0.0519 0.0677 0.0620 0.3078 0.4011 

B. 180000 recruits      
Common  0.0189 0.0247 0.0242 0.0587 0.0765 
Moderately 
common 
determinants 

0.0286 0.0373 0.0333 0.1232 0.1606 

Uncommon 
determinants 0.0406 0.0529 0.0485 0.2406 0.3135 

Table 73: Minimal detectable effect sizes for LDL/HDL ratio. 
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3.3.2.35. Triglycerides 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.0332mmol/l 0.0432mmol/l 0.0424mmol/l 0.1029mmol/l 0.1340mmol/l 
Moderately 
common 
determinants 

0.0502mmol/l 0.0654mmol/l 0.0584mmol/l 0.2160mmol/l 0.2815mmol/l 

Uncommon 
determinants 

0.0712mmol/l 0.0927mmol/l 0.0849mmol/l 0.4218mmol/l 0.5495mmol/l 

B. 180000 recruits      
Common  0.0259mmol/l 0.0338mmol/l 0.0331mmol/l 0.0804mmol/l 0.1048mmol/l 
Moderately 
common 
determinants 

0.0392mmol/l 0.0511mmol/l 0.0456mmol/l 0.1689mmol/l 0.2200mmol/l 

Uncommon 
determinants 0.0556mmol/l 0.0725mmol/l 0.0664mmol/l 0.3297mmol/l 0.4296mmol/l 

Table 74: Minimal detectable effect sizes for triglycerides. 

 

3.3.2.36. Uric acid 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  2.1810umol/l 2.8419umol/l 2.7869umol/l 6.7658umol/l 8.8158umol/l 
Moderately 
common 
determinants 

3.2988umol/l 4.2983umol/l 3.8407umol/l 14.2081umol/l 18.5132umol/l 

Uncommon 
determinants 4.6812umol/l 6.0996umol/l 5.5865umol/l 27.7397umol/l 36.1448umol/l 

B. 180000 recruits      
Common  1.7050umol/l 2.2216umol/l 2.1786umol/l 5.2890umol/l 6.8916umol/l 
Moderately 
common 
determinants 

2.5788umol/l 3.3601umol/l 3.0024umol/l 11.1070umol/l 14.4724umol/l 

Uncommon 
determinants 3.6594umol/l 4.7683umol/l 4.3672umol/l 21.6851umol/l 28.2557umol/l 

Table 75: Minimal detectable effect sizes for uric acid. 
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3.3.2.37. Free Thyroxine (Free T4) 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.0567pmol/l 0.0739pmol/l 0.0725pmol/l 0.1760pmol/l 0.2293pmol/l 
Moderately 
common 
determinants 

0.0858pmol/l 0.1118pmol/l 0.0999pmol/l 0.3695pmol/l 0.4815pmol/l 

Uncommon 
determinants 

0.1217pmol/l 0.1586pmol/l 0.1453pmol/l 0.7214pmol/l 0.9400pmol/l 

B. 180000 recruits      
Common  0.0443pmol/l 0.0578pmol/l 0.0567pmol/l 0.1376pmol/l 0.1792pmol/l 
Moderately 
common 
determinants 

0.0671pmol/l 0.0874pmol/l 0.0781pmol/l 0.2889pmol/l 0.3764pmol/l 

Uncommon 
determinants 0.0952pmol/l 0.1240pmol/l 0.1136pmol/l 0.5640pmol/l 0.7348pmol/l 

Table 76: Minimal detectable effect sizes for free thyroxine. 

 

3.3.2.38. Thyroid stimulating hormone (TSH) 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.0579mlU/l 0.0754mlU/l 0.0740mlU/l 0.1796mlU/l 0.2340mlU/l 
Moderately 
common 
determinants 

0.0876mlU/l 0.1141mlU/l 0.1019mlU/l 0.3771mlU/l 0.4913mlU/l 

Uncommon 
determinants 0.1242mlU/l 0.1619mlU/l 0.1483mlU/l 0.7362mlU/l 0.9593mlU/l 

B. 180000 recruits      
Common  0.0453mlU/l 0.0590mlU/l 0.0578mlU/l 0.1404mlU/l 0.1829mlU/l 
Moderately 
common 
determinants 

0.0684mlU/l 0.0892mlU/l 0.0797mlU/l 0.2948mlU/l 0.3841mlU/l 

Uncommon 
determinants 0.0971mlU/l 0.1266mlU/l 0.1159mlU/l 0.5755mlU/l 0.7499mlU/l 

Table 77: Minimal detectable effect size sfor thyroid stimulating hormone. 
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3.3.2.39. Creatinine 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  1.2857umol/l 1.6752umol/l 1.6429umol/l 3.9884umol/l 5.1968umol/l 
Moderately 
common 
determinants 

1.9446umol/l 2.5338umol/l 2.2641umol/l 8.3756umol/l 10.9133umol/l 

Uncommon 
determinants 

2.7595umol/l 3.5956umol/l 3.2932umol/l 16.3523umol/l 21.3070umol/l 

B. 180000 recruits      
Common  1.0051umol/l 1.3096umol/l 1.2843umol/l 3.1178umol/l 4.0626umol/l 
Moderately 
common 
determinants 

1.5202umol/l 1.9808umol/l 1.7699umol/l 6.5475umol/l 8.5314umol/l 

Uncommon 
determinants 2.1572umol/l 2.8108umol/l 2.5744umol/l 12.7832umol/l 16.6565umol/l 

Table 78: Minimal detectable effect sizes for creatinine. 

 

3.3.2.40. Haemoglobin 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.3927g/l 0.5117g/l 0.5018g/l 1.2182g/l 1.5873g/l 
Moderately 
common 
determinants 0.5939g/l 0.7739g/l 0.6915g/l 2.5581g/l 3.3333g/l 
Uncommon 
determinants 0.8428g/l 1.0982g/l 1.0058g/l 4.9945g/l 6.5078g/l 
B. 180000 recruits      
Common  0.3070g/l 0.4000g/l 0.3923g/l 0.9523g/l 1.2408g/l 
Moderately 
common 
determinants 0.4643g/l 0.6050g/l 0.5406g/l 1.9998g/l 2.6057g/l 
Uncommon 
determinants 0.6589g/l 0.8585g/l 0.7863g/l 3.9044g/l 5.0874g/l 

Table 79: Minimal detectable effect sizes for haemoglobin. 
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3.3.2.41. Mean red blood cell volume 

  Genetic main 
effect 

Genetic main 
effect 

Environment 
main effect 

G×E 
interaction 

G×E 
interaction 

P value 
10-4 
(candidate 
gene study) 

10-7 (GWAS) 0.01 
10-4 

(candidate 
gene study) 

10-7 (GWAS) 

A. 110000 recruits           
Common  0.1472fl 0.1918fl 0.1881fl 0.4566fl 0.5949fl 
Moderately 
common 
determinants 

0.2226fl 0.2901fl 0.2592fl 0.9588fl 1.2494fl 

Uncommon 
determinants 

0.3159fl 0.4116fl 0.3770fl 1.8720fl 2.4392fl 

B. 180000 recruits      
Common  0.1151fl 0.1499fl 0.1470fl 0.3569fl 0.4651fl 
Moderately 
common 
determinants 

0.1740fl 0.2268fl 0.2026fl 0.7496fl 0.9767fl 

Uncommon 
determinants 0.2470fl 0.3218fl 0.2947fl 1.4634fl 1.9068fl 

Table 80: Minimal detectable effect sizes for mean red blood cell volume. 

 

3.4. CONCLUSIONS 

It has recently become clear that tens of thousands of subjects are often required to 

study quantitative disease-related phenotypes, because allelic effect sizes may be as 

small as one tenth of a standard deviation, or even less (25, 77, 78). To date, the 

majority of small effect sizes that have been found to be associated with quantitative 

traits pertain to genetic main effects (25, 77, 78). However, there is no reason to believe 

that relevant gene-environment interactions will be any larger. A gene-environment 

interaction simply represents the difference in the magnitude of a genetic effect between 

two different population subgroups defined by exposure to an environmental 

determinant. If the genetic effect in both groups is likely to be very small, it is also 

likely that the difference (the interaction effect) will be small. But, despite the extensive 

difficulties, the exploration of gene-environment interactions is fundamental to our 
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ultimate understanding of the causal architecture of complex diseases. This is because 

the processes that underpin human evolution are based primarily on selection on the 

basis of interactions between the genome and the contemporaneous environment to 

which individuals are exposed. In consequence, it is inevitable that many of the chronic 

diseases that affect contemporary society will have a primary basis in the way in which 

our genome interacts with the modern day environment. 

 Given the considerations outlined in the preceding paragraph, the potential contribution 

of CPT to study the aetiological architecture of quantitative traits is obvious. Scrutiny of 

the power profiles of the quantitative variables tabulated individually demonstrates that 

given a sample size of 110000 or 180000, genetic and environmental main effects 

associated with any quantitative variables that are collected across the whole CPT 

project will all be able to be studied with substantial power – effect sizes as small as 

1/12th of a standard deviation will reliably be detectable even under the most 

challenging scenario (uncommon genotype [MAF = 0.05] with testing at p.value< 10-7 

under a GWAS). But, as would be anticipated (7, 49) the power to detect gene-

environment interactions is considerably less strong.  Given the central relevance of 

such interactions (see above), it is important to note that a sample size of 180,000 rather 

than 110000 would markedly enhance the capacity to study gene-environment 

interactions when the interacting determinants are both other than common. For 

example, when both determinants are moderately common (MAF = 0.10, prevalence of 

environmental determinant = 0.2) and testing is at p.value < 10-4, a sample size of 

110000 will enable detection of an effect equivalent to 0.19 of a standard deviation. A 

sample size of 180000 will support detection of 0.15 of a standard deviation.  Similarly, 

when both determinants are uncommon (MAF = 0.05, prevalence of environmental 

determinant = 0.1) the detectable effect sizes will be 0.37 and 0.29 respectively. The 
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larger sample size will also allow additional scope for data sub-setting. For example, the 

data from Table 40 indicate that if a separate analysis is required, for example, in women 

aged > 65, and if this subgroup represents 10% of the overall data set, the minimal 

detectable effect size for a main effect associated with an uncommon environmental 

determinant (prevalence = 10%)would be 0.24 (nearly one quarter of a standard 

deviation) with a sample size of 110000 compared to 0.18 (less than one fifth of a 

standard deviation) with a sample size of 180000.  

 
These differences are not trivial. It is clear that if the scientific focus in relation to 

quantitative traits - that are collected across CPT as whole - is directed solely at main 

effects of genetic and environmental determinants across the data set as a whole, CPT 

will provide a research platform that will be highly competitive at an international level 

and will provide more than adequate power given a sample size of 110000. But, if there 

is any potential interest in gene-environment interactions (which there logically should 

be) and any interest in being able to study key subsets of the overall data set (for 

example, men alone) then the power to detect effect sizes of plausible magnitude will be 

limiting, and there would then be no doubt that a larger sample size such as 180,000 

would potentially be more useful. 

This analysis shows the importance of achieving large sample sizes for the investigation 

of the genetic and environmental/life style factors underlying complex traits. It is 

however equally important to ensure good quality data by attempting to limit errors and 

control random variation during data collection and processing. Chapter 4 investigates 

the pattern of measurement errors that can arise from delays in the definitive processing 

and storage of biosamples as new participants are enrolled into a growing biobank and 
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explores their potential impact on the statistical power of association studies based on 

biosample measures generated by that study.
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CHAPTER 4 

4. UNDERSTANDING THE EFFECTS 
OF VARIATION IN SAMPLE 
COLLECTION AND HANDLING 
ON THE POWER OF GENETIC 
ASSOCIATION STUDIES 

The analysis I carried out in this chapter follows a question put through to Professor 

Paul Burton by Dr Tim Peakman, Executive Director of UK Biobank. Tim wanted to 

know the impact of pre-analytical variations, introduced through samples processing 

and storage, on studies that uses the biobank data. It was not possible to answer this 

question with the initial version of ESPRESSO developed by Professor Paul Burton 

because that version did not allow for the analysis of quantitative environmental 

variables. After I completed the development of ESPRESSO-forte Paul asked me to 

investigate Tim’s question. A paper, that is now awaiting submission, was subsequently 

written about this analysis with me as first author. 

4.1. INTRODUCTION 

A biobank may be defined as “an organized collection of human biological 

material(e.g., blood, urine, or extracted DNA) and associated information stored for 

one or more research purposes”(72, 135). Most contemporary biobanks are large by 

design because the aetiological determinants (genes, environment and interactions) of 

complex diseases are typically weak (e.g. relative risks between 1.1 and 1.3) and their 

resolution therefore demands many subjects (7) with data that are both accurate and 
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precise. Crucially, errors introduced through poor assessment or physical measurement 

or because of inconsistent/or inappropriate standard operating procedures for collecting, 

processing, storing or analysing biosamples can seriously impair data quality. This can 

dramatically reduce the statistical power of a study, particularly if one is studying gene-

environment interactions (7, 49). Given the vast cost and effort that is needed to 

establish and maintain a contemporary biobank, even a small loss of power can impact 

substantially on the balance of costs and benefits of developing adequately powered 

study resources. The quality and future utility of biological samples can be affected by 

factors arising during the collection, transport, processing and storage of biosamples 

(136). It is therefore crucial to use carefully selected and validated protocols that 

minimise any changes in the quantity or nature of the constituents (biological analytes) 

of each biosample and allow for the further re-use of the samples (137-140). It is for this 

reason that certain procedures (138, 141) that ensure minimal pre-analytical variability 

between samples are published - as best practice guidelines for biological resource 

centres - by organisations involved in the conceptualization, design and conduct of 

samples collection, processing and analysis. This includes the Public Population Project 

in Genomics (P3G) (138, 140, 141) and the International Society for Biological and 

Environmental Repositories (ISBER) (138, 140-144). 

A critical issue is the impact of any delay between sample collection and the processing 

step that definitively stabilizes that sample (typically, the needle-to-freezer time). This 

is because some biological analytes are not stable under certain conditions and their 

concentration changes over time. For example, the concentration of aspartame 

transaminase (AST), a biochemical analyte present in red blood cells, changes over one 

day (24 hours) by 15.2% and 1.5% under respectively21°C  and 4°C (145). If there is 

any tendency for a particular analyte to degrade (or accumulate) over time ahead of 
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stabilization, any delay in definitive processing will introduce measurement error. If the 

rate of degradation is very similar in all samples then a standard operating procedure 

that requires a fixed (though non-zero) delay till processing (e.g. 24 hours) will ensure 

that all samples to be analysed will be similarly affected and 

biostatistical/epidemiological analyses may therefore be unbiased. But, if case and 

control samples are processed under protocols that incur a different processing time – or 

distribution of processing times - serious systematic bias may arise. Additional 

problems arise if the rate of degradation varies markedly from subject to subject. Then 

any delay in processing will introduce random error that will usually reduce statistical 

power; even if every sample is subject to the same delay. Furthermore, the magnitude of 

the consequent bias will become steadily more serious as the duration increases. 

Unfortunately, although the bioscience might generally favour a common protocol with 

a constant minimal delay, this may prove to be extremely expensive. For example, in a 

multi-centre study, it may require that every collection site has a local capacity for state-

of-the-art processing and storage rather than restricting such facilities to a single central 

facility. In a nationwide study this may well be unaffordable. There are three possible 

solutions to prevent or minimize pre-analytical variability: (1) use a common standard 

operating procedure (SOP) involving local processing for all studies; (2) set up a large 

study with rapid sample transportation and central processing such that any delays are 

acceptable; or (3) carefully assess the impact of biosample deterioration so that, where 

possible, its impact can be taken into account in the analysis. 

Because the optimal standard operating procedure (taking account of both scientific 

rigour and cost) may vary from analyte to analyte – and possibly from study to study - it 

is clear that a sound quantitative understanding is required of the manner in which 

individual analytes degrade or accumulate in unprocessed samples. As a minimum, we 
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need to know the time course of the degradation, and the variability of that time course 

between subjects. Given these data, it may then be possible to select a standard 

operating procedure that provides an acceptable balance between science and cost for 

the set of analytes that are most crucial for the proposed project. This chapter describes 

an analysis that explores these issues in this way. 

The analysis we describe is a joint venture between UK Biobank and the University of 

Leicester and represents part of the international biobank harmonization programs of 

P3G and BioSHARE-EU (146). It uses a set of samples that were originally collected by 

UK Biobank, before definitive data collection began, with the express purpose of 

exploring the stability of analytes in the period prior to definitive storage. Although 

these data have previously been analysed with a similar intention in mind, the analysis 

that was used (147) invoked a very particular “cost of errors” model which does not 

necessarily capture the impact of certain potentially important classes of degradation or 

accumulation. To be specific, the previous analysis focused on estimating the 

probability that a given analyte would markedly degrade (or accumulate) over a given 

period, but less attention was paid to the impact of differing rates of degradation (or 

accumulation) in different subjects.  

UK Biobank is a large biobank of 500,000 participants aimed at investigating the role of 

genetic factors, environmental exposures and lifestyle in the causes of major diseases of 

late and middle age (148). Although the data used in this project are from a UK Biobank 

pre-pilot study, the conclusions of the analysis are potentially generalisable to other 

biobanks and large scale biosample collections. Furthermore,  although UK Biobank has 

completed its primary sample collection and so its standard operating protocols for that 

collection are immutable, the analysis we describe will be of value to UK Biobank in 

future collection sweeps. Finally, due to the large sample sizes required to investigate 
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the causes of complex disease, it is often necessary to combine data from more than one 

platform (71, 149, 150). The results of my analysis can potentially inform an 

interpretation of the comparison of analytes between platforms that have used SOPs 

with unavoidably different needle to freezer delays and of meta-analyses synthesising 

data across multiple biobanks. 

4.2. METHODS 

The work described in this chapter entails three complementary analyses of the 

concentration over time (before definitive long-term storage) of 47 different biological 

analytes. In the first analysis, stability is investigated by estimating the proportionate 

change in concentration attributable to delay in processing. The second analysis 

explores heterogeneity in the rate of change of concentration between samples from 

different subjects. In the third analysis the impact of delay in sample processing on the 

power of genetic association studies is estimated through computer simulations using 

the ESPRESSO-forte power calculator. 

The data used in this analysis are from a pre-pilot study set up during the design phase 

of UK Biobank, to devise Standard Operating Procedures (SOPs) for all analytes. They 

consist of the measured values of 47 blood and urine analytes collected from 40 subjects 

at a variety of times between 0 and 36 hours after initial blood sampling. All samples 

were kept at 4°C until entering definitive long-term frozen storage. The 40 subjects 

were healthy volunteers and are not among the 500,000 participants ultimately recruited 

into UK Biobank.  

The structure of the data is hierarchical with three levels (subject, time point and 

replicate measure). Measurements were taken at four time points (0, 12, 24 and 36 
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hours) for 19 analytes and at two time points (0 and 24 hours) for the other 28 analytes. 

These time points represent the time elapsed since the collection of the sample; 0 hour 

means the assay was carried out immediately after sample collection (Figure 19). Two 

replicate measurements were taken at each nominal time point except at 24 hours in 

those analytes studied at four time points – here, four measurements were taken but two 

were used to study the effect of freeze/thaw and, as these two measurements were not 

true replicates, they were not included in my analysis. A total of 320 measurement 

values were therefore analysed for the 19 analytes with measurement at four distinct 

time points and 160 values in the other 28 analytes. The analyte C Reactive Protein was 

excluded from the analysis because its data were censored; all measurement values < 

0.2 were reported as 0.2, this distorted the correlation structure both within and between 

subjects. The remaining 46 analytes were analysed one at a time. 

 

Figure 19: Time points of the repeated measurement. 

Measurements were taken over 24 or 36 hours for each analyte and each subject. 
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4.2.1. FIRST ANALYSIS: ESTIMATING THE 
PROPORTION OF THE VARIANCE IN ANALYTE 
CONCENTRATION THAT MAY BE 
ATTRIBUTED TO DELAY IN PROCESSING 

The observed variability between samples from different participants combines the real 

biological heterogeneity between subjects with random measurement error and with the 

pre-analytical variability caused by processing delays. Although the variability due to 

delay in processing is in fact a real biological effect – i.e. the change in concentration 

(usually degradation) of a biological analyte over time is real - it leads to a loss of 

information from the sample, and is in that sense as undesirable as random 

measurement errors. To estimate the proportion of the observed variability between 

subjects that can be attributed to delay in processing; a three-level variance component 

model was fitted in MLwiN 2.1, a software tool that fits multilevel models to complex 

hierarchical data (151). 

 

Figure 20: Graphical view of the three-level model fitted in MLwiN. 

Algebraically, this ‘random intercept’ model may be expressed as follows: 

             (MODEL 1) 

Where: i, j and k represents respectively the lowest (replicate measurement level), the 

middle (processing time level) and the highest level (subject level). 

        +    +     +       

Subject 

0h 

Value1 Value2 

12h 

Value1 Value2 

24h 

Value1 Value2 

36h 

Value1 Value2 

Level 3 

Level 2 

Level 1 
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   ~ 𝑁( , 𝜎  
 ) 

    ~ 𝑁( , 𝜎  
 ) 

     ~ 𝑁( , 𝜎  
 ) 

In Figure 20: Level 1 is the level of replicated measurements; the variance at this 

level,    , reflects random measurement error. Level 2 reflects measurement time-point; 

variance at this level,    , incorporates variability arising from delay in processing. 

Level 3 is the subject level; variance at this level,    , captures the real biological 

difference between subjects, and it is this - informative - variability that might be 

expected to provide the basis for useful scientific enquiry. The distribution of the 

residuals at levels 1, 2 and 3, respectively e0ijk, w0jk andv0k was explored and verified as 

Gaussian using normal probability plots. The model was fitted without explanatory 

variables; i.e. with x0 taking the constant value of 1.00, all subjects are modelled as 

sharing a common mean intercept of β0. Specifically, this means that in analysing the 

data with four time points, the nominal times were treated as a non-ordered categorical 

variable. As an alternative an ordinal parameterization would have been possible and 

would have been more powerful for detecting a weak but consistent decline (or 

increase) in concentration over time. But it was considered preferable to minimise any 

assumptions and to treat each time point as an independent entity rather than assuming a 

natural order. Given that consistent changes over time were easily detected for many of 

the analytes with four time points anyway - despite this small loss of statistical power - 

it would appear that this decision was not unreasonable. For analytes measured at only 

two time points, the two models are equivalent.   
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On the basis of this modelling, the proportion of variability that may be attributed to 

delay in measurement is estimated as the ratio of the variance at the second level of the 

model (level 2) over the sum of the variances at all 3 levels:      
 

(   
      

     
 )

 

4.2.2. SECOND ANALYSIS: ESTIMATING THE 
PROPORTION OF HETEROGENEITY BETWEEN 
SUBJECTS THAT IS DUE TO VARIABILITY IN 
THE RATE OF DEGRADATION OF ANALYTES 

In considering the stability of a biological analyte over time, there are three fundamental 

scenarios (Figure 21): (1) Samples are stable and there is no change in the concentration 

of the analyte over time; (2) samples are unstable, but the rate of change in 

concentration is the same in all samples from all individuals; (3) samples are unstable 

and the rate of change in concentration varies from sample to sample. 

 

Figure 21: Variation in biological analyte concentration over time. 

The above graphs illustrate the comparison of 4 samples under the 3 scenarios 

mentioned in the paragraph above. 

These three scenarios may be modelled using a series of nested two-level multilevel 

models (Figure 22).  
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Figure 22: Graphical view of the two-level model. 

This graph illustrates the model for an analyte measured at two time points (0 and 24 

hours). 

 

Scenario 3 is the general case and is captured by the model: 

          +         (MODEL 2) 

Where i and k represent respectively the lower (replicate measurement level) and the 

upper level (subject level) and the nominal processing time is modelled as a fixed 

covariate (rather than as an extra level in the random effects hierarchy, as in Model 1), 

       +    +      

      +     

     

     𝑎 𝑑      𝑎  𝑎𝑏   𝑐 𝑑         𝑎       (     ,    2   )for the ith 

sample of the kth subject. 

Under this model: 

     𝑎  𝑐  𝑐    𝑎        𝑎 𝑎     𝑎       𝑎           

     𝑎 𝑑       𝑐 𝑏      𝑐  𝑐    𝑎      𝑎 𝑎    𝑎    𝑎 𝑑 2   

   ~ 𝑁( , 𝜎  
 )   subject level random effect reflecting the variance between subjects 

in the expected concentration of analyte at 0h.     

   ~ 𝑁( , 𝜎  
 )   subject level random effect reflecting the variance between subjects 

in the expected rate of change in concentration between 0 and 24 h. 

Subject 

Value1 
(0h) 

Value2 
(0h) 

Value3 
(24h) 

Value4 
(24h) 

Level 2 

Level 1 
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    ~ 𝑁( , 𝜎  
 )   residual error at level 1. 

Under the general model (scenario 3) the expected change of concentration between 0 

and 24 hours may be non-zero (1 0) and the rate of change may vary from subject to 

subject (    >1). Scenario 2 is a special case of scenario 3 in which the slope may be 

non-zero (1 0) but the rate of change is the same in samples from all subjects(    = 

0). Scenario 1 is a special case of scenario 2 in which the slope is identically zero in all 

subjects (1= 0 and     = 0). The coefficients of these models may be used to estimate 

the overall variance at 0 h and the overall variance at 24 h (see Figure 23). 

 

Figure 23: Using variance function to determine overall variance at 0 and 24h. 

 

The sign and magnitude of the covariance term u0.1 in comparison to the subject 

variance in slope (    ) determine the relative magnitudes of the overall variance at 24 h 

(    
 ), and that at base-line (   

 ). Specifically, if the covariance term is sufficiently 

negative, the variance at 24h may be lower than at 0h and, at first glance, this might 

lead one to believe that a gain in power could potentially be achieved by measuring all 

samples at 24 h rather than 0h. But, this is misleading. Here, variability reflects a 
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combination of the intercept variance, reflecting the real biological difference between 

subjects - which holds the scientific information that is generally of interest to an 

analysis - and random error and slope variance that both degrade the information that 

may be extracted. There can be no gain in power at 24 h, the between subject variance 

in slope can only lead to loss of information – it just happens that if there is a negative 

covariance between intercept and slope, subjects with a high base-line value will tend to 

exhibit a greater decline in concentration than those with low base-line values. The lines 

depicting concentration (Figure 24) will then tend to converge from left to right and, in 

the extreme a zero variance at 24 h (all lines meet at a point) will indicate a total loss of 

the information carried by the between subject variance in intercept at 0 h. 

In order to model the loss of power consequent upon between subject variance in slope 

if all samples are measured at 24 h rather than 0 h, it should instead be noted that 

(measurement error aside) the observed analyte concentrations at base-line (0 h) are 

‘real’, while those at 24 h are contaminated not only by measurement error but also by 

the between subject variability in the slope. In consequence, the overall assessment 

error (around the true biological effects) increases from     to     +     and it is this 

increase in error variance that should be incorporated into the power calculation.  

The term u0.1 that was central to the characteristics of the ‘intuitive’ approach plays no 

explicit role in the interpretation outlined. However, the term was included in MODEL 

2 to reflect the covariance between u0k and u1k, and this is essential if consistent 

estimates of all model terms (including     and     ) are to be obtained; the term was 

also included in the calculation when estimating the average variance of errors around 

the true biological effects. The model contained no covariance term between     and 

    (these random effects are assumed conditionally independent), and no covariance 
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term is therefore required in calculating their combined impact (   +    ) on the 

analyte measure at 24 h.  

4.2.3. THIRD ANALYSIS: ESTIMATING THE IMPACT 
OF DELAYS IN SAMPLES PROCESSING ON THE 
POWER OF GENETIC EPIDEMIOLOGY CASE-
CONTROL STUDIES 

This aim of this analysis is to determine the amount of power lost due to variance of 

slope between individuals (    ). This was done by estimating, through simulations, the 

increase in sample size required to compensate for the loss of power in a hypothetical 

association study that investigates a binary outcome determined by an interaction 

between a genetic variant and an environmental factor; the analytes measurements were 

considered as the biological responses to environmental factors. The simulations were 

carried out using the ESPRESSO-forte algorithm.  

The input parameters of the outcome and the genetic, environment determinants are 

respectively under Table 81, Table 82 and Table 83. Sections 2.6.1, 2.6.2and 2.6.3 

explain in details how data are generated and analysed by ESPRESSO-forte. The same 

analysis was run for seven different interactions odds-ratios (1.05, 1.1, 1.2, 1.33, 1.5, 

1.75, and 2.0) using the same input parameters reported on the 3 input tables (Table 81, 

Table 82 and Table 83). So only the difference between these scenarios is the 

interactions odd-ratios. 

For each of the seven interactions odds-ratios mentioned above, the GLM model fitted 

in ESPRESSO-forte consists of one outcome (a binary trait) and two interacting 

covariates (a SNP and an environmental factor). The GLM model for these interaction 

scenarios can be written as follows: 
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 ( )    +     +     +        

Where Y is the outcome, β0 is the intercept value, β1 is the effect size of the SNP, β2 is 

the effect size of the environmental factor and β3 is the effect size of the interaction term 

G1E1 

Parameter Value 
number of runs 500 
number of cases 10000 
number of controls 40000 
interaction yes 
outcome model binary 
disease prevalence 0.2 
subject effect 12.36 
p.value 0.0001 
power required 0.8 
sensitivity outcome 1 
specificity outcome 1 

Table 81: General and outcome parameters used in the analysis. 
Seven scenarios were analysed - one scenario for each of the seven interaction OR. 

 

Parameter Value 
genetic model binary 
MAF 0.1 
or 1.0 
sensitivity 0.95 
specificity 0.95 

Table 82: Parameters for the genetic determinant 

These input parameters were used for each of the seven interactions OR investigated. 

The sensitivity and specificity values are the actual sensitivity and specificity of the 

assessment of the individual alleles that form the genotypes. 

 

Parameter Value 
exposure model quantitative 
prevalence  “at risk” exposure 0.1 
reliability 1 
or 1.0 
sensitivity 0.99 
specificity 0.99 

Table 83: Parameters for the environmental exposure. 
These input parameters were used for each of the seven interactions OR investigated. 
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The sample size required to reach a power of 80% was calculated under the two below 

scenarios A and B. The difference between the sample size calculated under scenario A 

and the one calculated under scenario B represents the sample size increase required to 

compensate for the loss of power caused by the slope variance(    ) if measurements 

are delayed by 24 hours. For each of the seven interaction ORs and for each analytes, 

the difference of sample size between scenario A and scenario B was calculated and the 

results were reported as the ratio of the mean sample size for scenario B over the mean 

sample size for scenario A  i.e. the multiplicative increase. 

4.2.3.1. Scenario A 

All measurements are taken at 0h; there is no variability arising due to slope variance 

because there was no delay in the processing. Therefore only the random measurement 

error affects the power - all other variability at baseline relates to true (biologically 

meaningful) variation between individuals (i.e.     ). The true outcome D1 (error-free 

data), is therefore generated with a mean β0 (mean intercept at time 0h) and a variance  

   
  . The observed outcome D2is obtained by adding the random measurement error ER 

to D1.  

  ~ 𝑁(  , 𝜎  
 ) 

  ~ 𝑁( , 𝜎  
 ) 

      +    

4.2.3.2. Scenario B 

Measurements are taken at 24h; there is a delay in the processing. Therefore both the 

random measurement error and the error arising from the variability of slope between 

subjectsaffect the power. The true outcome D1 is generated with the same variance       
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as in scenario 1 (because the between subject variance remains the same) and a mean 

β0+β1 (β1is the average slope). The observed outcome D2is obtained by adding the 

random measurement error ER and the error due to slope variance SR toD1.  

  ~ 𝑁(  +   , 𝜎  
 ) 

  ~ 𝑁( , 𝜎  
 ) 

𝑆 ~ 𝑁( , 𝜎  
 ) 

      +   + 𝑆  

4.3. RESULTS 

4.3.1. FIRST ANALYSIS 

Using the three level model with no heterogeneity in slope between subjects (MODEL 

1) the proportion of the observed variability that can be attributed to processing time 

(    ) is ≥ 10% for 16 out of 46 analytes (see Table 84).  Eight analytes have between 

5% and 10% of the observed variability attributable to delay in processing. For the 

remaining 22 analytes the contribution of the variance resulting from delay in 

processing represents less than 5% of the observed variance. Bicarbonate seems 

particularly sensitive to delayed processing with 61% of the observed variability coming 

from     . For MCHC, basophils, total protein, albumin and potassium,      accounts 

for between 28% and 38% of the total variability.  
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Analyte Mean Between subject variance (σ2
v0) Variance due to delay in processing (σ2

w0) Residual  (σ2
e0) σ2

w0 / (σ2
v0 + σ2

w0 + σ2
e0) 

Bicarbonate 26.0938 (mmol/L) 0.6787 1.2875 0.1563 61% 

Albumin 41.6880 (g/L) 4.5735 2.8563 0.1687 38% 

Total Protein 68.7312 (g/L) 14.4590 9.1812 2.4062 35% 

MCHC 33.0156 (g/dL) 0.1440 0.1119 0.0582 36% 

Potassium 4.0597 (mmol/L) 0.0754 0.0326 0.0015 30% 

Basophils 0.0445(×109/L) 0.0003 0.0001 0.00008 28% 

Eosinophils 0.1377 (×109/L) 0.0063 0.0013 0.0005 16% 

Calcium 2.2345 (mmol/L) 0.0070 0.0013 0.0001 15% 

Packed Cell Volume 0.4212 (-) 0.0020 0.0004 0.00002 15% 

Haemoglobin 13.8962 (g/dL) 2.2303 0.3641 0.004 14% 

Haemoglobin A1C 3.3047 (%) 0.0507 0.0110 0.0173 14% 

Sodium 137.6812 (mmol/L) 2.4703 0.4719 0.6063 13% 

Red Blood Cell 4.5452 (×1012/L) 0.2359 0.0330 0.0028 12% 

Chloride 106.3250 (mmol/L) 3.8819 0.5500 0.3875 11% 

Platelet Count 240.3508 (×109/L) 2873.8896 346.1551 46.6603 11% 

Haemoglobin A1CX 0.4842(%) 0.0035 0.0004 0.0003 10% 

Glucose 5.3384 (mmol/L) 0.2277 0.0194 0.0023 8% 

Bilirubin 14.7856 (µmol/L) 16.9216 1.4912 2.2736 7% 

Glucose (F. Oxalate) 5.6100 (mmol/L) 0.2478 0.0176 0.0019 7% 

Magnesium 0.8854 (mmol/L) 0.0027 0.0002 0.00005 6% 

Lymphocytes 1.9247 (×109/L) 0.3463 0.0195 0.0068 5% 

Insulin 7.2404 (mIU/L) 17.5079 0.9419 0.0494 5% 

Cholesterol 5.2481 (mmol/L) 1.0490 0.0539 0.0024 5% 

Monocytes 0.4131 (×109/L) 0.0275 0.0015 0.0019 5% 

Fibrinogen 3.0472 (g/L) 0.4428 0.0206 0.0074 4% 

High Density Lipid 1.5668 (mmol/L) 0.1888 0.0068 0.0018 3% 

Amylase 71.5250 (IU/L) 559.6944 15.5124 2.0375 3% 

White Cell Count 6.4375 (×109/L) 6.1661 0.1674 0.0501 3% 

Alkaline Phosphatase 61.3954 (IU/L) 307.2807 7.4825 2.4989 2% 
Creatinine 89.8375 (µmol/L) 160.5050 3.8938 14.9 2% 

Mean Cell Volume 92.7881(fL) 17.5896 0.3760 0.0489 2% 

AST 22.9688 (IU/L) 29.1178 0.6063 0.7437 2% 

Neutrophils 3.9184 (×109/L) 4.5051 0.0680 0.0273 1% 

MCH 30.6269 (pg) 1.5992 0.0229 0.0458 1% 

CK MB Fraction 4.7951 (IU/L) 21.8518 0.2348 0.1457 1% 

Urinary Urea 246.2291 (mmol/L) 11998.9326 127.6297 27.7411 1% 

Triglyceride 1.2653 (mmol/L) 0.5557 0.0056 0.001 1% 

Creatinine Kinase 106.5875 (IU/L) 2655.4072 20.7750 2.0125 1% 

Gamma GT 30.5960 (IU/L) 354.5936 2.1418 3.0115 1% 

ALT 23.5438 (IU/L) 133.4745 0.7000 0.5687 1% 

Inorganic Phosphorus 1.0374 (mmol/L) 0.0205 0.0001 0.0016 0% 

Uric Acid 301.9563 (µmol/L) 3336.3438 12.2125 3.6188 0% 

Blood Urinary Nitrogen 2.6881 (mmol/L) 0.3189 0.0009 0.0016 0% 

Urinary Calcium 2.2970 (mmol/L) 1.9764 0.0050 0.0272 0% 

Urinary Sodium 96.1281 (mmol/L) 2605.4973 0.0833 9.0594 0% 

Urinary Potassium 49.6527 (mmol/L) 651.4268 0.6566 6.8331 0% 

Table 84: Proportion of the observed variability attributable to processing time. 

The analytes are ranked by decreasing contribution of delay in processing to observed 

variability between subjects- reported in the last column. The first column contains the 

names of the biochemical analytes. The second column contains the mean of the 

measurements across the 40 subjects for the fitted 3-level model. The third column 

holds the variance at the subject level. The fourth column contains the variance arising 

from the delay in processing – processing time level. The fifth column contains the ‘the 

variance that represents the random measurement error. 
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4.3.2. SECOND ANALYSIS 

Prior to fitting the full two-level model with a random intercept and random slope 

(MODEL 2) for each analyte, the nested model with a constant but non-zero slope (1 

0,     = 0) was fitted. On removing the constraint on the variance (    > 0) the 

likelihood ratio test showed a highly significant improvement in fit (Table 85) for 

almost all analytes, suggesting that there was substantive evidence of between subject 

heterogeneity in slope for most analytes. This suggests that the impact of delayed 

processing should be explored carefully for most analytes. 
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Analyte Mean (β0) Slope (β1) 
Expected % change per 

12hours 
Between subjects 

variance (σ2
u0) 

Between slopes 
variance (σ2

u1) 
Residual  (σ2

e0) χ2 P.Value 

Bicarbonate 26.688 (mmol/L) -1.188 -2.22 1.506 1.165 0.156 64.687 8.78E-16 
Potassium 4.107 (g/L) -0.032 -0.77 0.093 0.007 0.018 188.206 7.83E-43 
Albumin 42 (g/L) -0.763 -0.91 6.766 5.131 0.169 151.673 7.47E-35 
Total Protein 69.488 (g/dL) -1.513 -1.09 20.840 16.075 2.406 59.583 1.17E-14 
MCHC 32.9 (mmol/L) 0.231 0.35 0.166 0.170 0.058 32.018 1.53E-08 
Basophils 0.046 (×109/L) -0.002 -2.47 0.000 0.000 0.000 31.491 2.00E-08 
Calcium 2.26  (×109/L) -0.017 -0.74 0.008 0.000 0.000 689.672 5.27E-152 
Eosinophils 0.157 (mmol/L) -0.039 -12.40 0.009 0.001 0.001 27.142 1.89E-07 
Packed Cell Volume  0.428  (-) -0.014 -1.68 0.002 0.001 0.000 142.267 8.50E-33 
Haemoglobin A1C 3.261 (g/dL) 0.029 0.89 0.057 0.002 0.023 113.637 1.56E-26 
Haemoglobin 14.078  (%) -0.363 -1.29 2.482 0.597 0.004 270.890 7.26E-61 
Red Blood Cell 4.604 (mmol/L) -0.118 -1.29 0.259 0.052 0.003 118.800 1.16E-27 
Glucose (F. Oxalate) 5.651 (×1012/L) -0.027 -0.48 0.253 0.004 0.011 224.603 8.96E-51 
Chloride 106.15 (mmol/L) 0.350 0.16 4.159 0.978 0.388 23.268 1.41E-06 
Platelet Count 245.738  (×109/L) -11.408 -2.32 3269.157 548.204 46.660 86.048 1.76E-20 
Sodium  138.131 (%) -0.300 -0.22 2.364 0.084 0.762 0.000 1.00E+00 
Insulin  6.837 (mmol/L) 0.268 3.92 17.593 0.239 0.417 0.000 1.00E+00 
Bilirubin 15.225  (µmol/L) -0.879 -2.89 18.188 2.210 2.274 6.519 1.07E-02 
Fibrinogen 3.146  (mmol/L) -0.066 -2.09 0.470 0.002 0.016 183.268 9.37E-42 
Glucose 5.378  (mmol/L) -0.027 -0.49 0.229 0.004 0.013 163.010 2.49E-37 
Magnesium 0.888  (×109/L) -0.006 -0.32 0.003 0.004 0.000 59.021 1.56E-14 
Lymphocytes 1.966 (mIU/L) -0.082 -2.09 0.389 0.032 0.007 45.793 1.31E-11 
Cholesterol 5.403 (mmol/L) -0.103 -1.91 1.133 0.004 0.027 92.411 7.04E-22 

Haemoglobin A1CX 0.486 (×109/L) -0.001 -0.23 0.004 0.000 0.001 704.404 3.30E-155 

Monocytes 0.424  (g/L) -0.022 -2.59 0.029 0.002 0.002 9.628 1.92E-03 

High Density Lipid 1.638 (mmol/L) -0.045 -2.76 0.226 0.001 0.004 364.579 2.83E-81 

Amylase 73.051  (IU/L) -3.050 -2.09 599.198 21.722 2.038 85.765 2.03E-20 

White Cell Count 6.515 (×109/L) -0.155 -1.19 6.061 0.311 0.050 56.796 4.83E-14 

Alkaline Phosphatase 62.471  (IU/L) -2.146 -1.72 318.718 10.379 2.497 38.308 6.04E-10 

Mean Cell Volume 93.049 (µmol/L) -0.521 -0.28 17.309 0.480 0.049 80.493 2.92E-19 

AST 23.05  (fL) -0.163 -0.35 29.938 1.186 0.744 13.050 3.03E-04 

Creatinine 91.023 (IU/L) -0.790 -0.87 173.816 0.403 16.770 0.000 1.00E+00 

Neutrophils 3.923 (×109/L) -0.009 
-0.11 

4.313 0.136 0.027 49.600 1.89E-12 

MCH 30.603 (pg) 0.049 
0.08 

1.621 0.044 0.046 6.294 1.21E-02 

CK MB Fraction 4.905  (IU/L) -0.218 
-2.22 

24.768 0.417 0.146 60.985 5.75E-15 

Triglyceride 1.308  (mmol/L) -0.028 
-2.15 

0.584 0.001 0.004 414.335 4.17E-92 

Creatinine Kinase 108.225  (mmol/L) -3.275 
-1.51 

2673.261 30.825 2.013 105.437 9.80E-25 

ALT 23.788  (IU/L) -0.488 
-1.02 

135.898 1.162 0.569 18.373 1.82E-05 

Gamma GT 31.324  (IU/L) -0.488 
-1.56 

389.502 0.540 3.738 0.000 1.00E+00 

Inorganic Phosphorus 1.042 (IU/L) -0.010 
-0.46 

0.021 0.000 0.002 0.275 6.00E-01 

Uric Acid  300.875  (mmol/L) 2.163 
0.36 

3328.925 19.749 3.619 49.927 1.60E-12 

Blood Urinary Nitrogen 2.69  (µmol/L) -0.0037 -0.07 0.3174 0.0019 0.0016 8.9756 2.74E-03 

Urinary Urea 246.5983  (mmol/L) -0.2461 -0.10 11609.8408 24.6165 101.8849 0.0000 1.00E+00 

Urinary Sodium  96.3476  (mmol/L) -0.1463 -0.15 2629.6777 0.5562 8.3056 0.0000 1.00E+00 

Urinary Calcium  2.305  (mmol/L) -0.0056 -0.24 1.9686 0.0044 0.025 0.0000 1.00E+00 

Urinary Potassium  50.0015  (mmol/L) -0.2349 -0.47 686.5211 0.6045 6.4321 0.0000 1.00E+00 

Table 85: Heterogeneity in the rate of change of analyte concentration in 24 hours. 

The first column contains the names of the biochemical analytes. The second column 

contains the mean of the measurements across the 40 subjects. The third column holds 

the rate of change in the analyte’s concentration over 24 hours. The fourth column 

contains the percentage change in analyte concentration per 12 hours. The fifth column 

contains the ‘real’ biological variance between subjects (i.e. the biological difference of 

interest for the study). The sixth column holds the variance that represents the 

heterogeneity in the rate of change of the analyte’s concentration. The random 

measurement error in recorded in the sixth column. The seventh column holds the chi-

squared values for the comparison between the two fitted models (the model with a 

random intercept only vs. the model with the random slope and random intercept). The 

significance of the difference of fit between the two models is reported as p-value in the 

last column. 
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4.3.3. THIRD ANALYSIS 

The sample size increase compensating for the loss of power resulting from delayed 

processing as estimated in the second analysis - and the consequent impact of slope 

heterogeneity - is expressed as a multiplicative factor in Table 86. Five analytes 

demanded an increase > 2, that is, more than 100% increase in sample size; fourteen 

analytes required a sample size increase of between 10% and 81%; twenty two analytes 

required a sample size increase of between 1% and 9%.  The loss of power, and hence 

the required increase in sample size, is largest when     is large. 
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Analyte Mean (β0) 
Slope 
(β1) 

Between 
subjects 

variance (σ2
u0) 

Between 
slopes 

variance 
(σ2

u1) 

Residual  
(σ2

e0) 

Multiplicative 
increase required 
to compensate for 

power loss 
Potassium 4.107 (g/L) -0.032 0.093 0.007 0.018 3.20 
Basophils 0.046 (×109/L) -0.002 0 0 0 2.31 
Bicarbonate 26.688 (mmol/L) -1.188 1.506 1.165 0.156 2.28 
Albumin 42 (g/L) -0.763 6.766 5.131 0.169 2.28 
Total Protein 69.488 (g/dL) -1.513 20.84 16.075 2.406 2.22 
MCHC 32.9 (mmol/L) 0.231 0.166 0.17 0.058 1.81 
Calcium 2.26  (×109/L) -0.017 0.008 0 0 1.41 
Packed Cell Volume  0.428  (-) -0.014 0.002 0.001 0 1.26 
Haemoglobin 14.078  (%) -0.363 2.482 0.597 0.004 1.25 
Chloride 106.15 (mmol/L) 0.35 4.159 0.978 0.388 1.25 
Red Blood Cell 4.604 (mmol/L) -0.118 0.259 0.052 0.003 1.18 
Glucose (F. Oxalate) 5.651 (×1012/L) -0.027 0.253 0.004 0.011 1.18 
Eosinophils 0.157 (mmol/L) -0.039 0.009 0.001 0.001 1.17 
Haemoglobin A1CX 0.486 (×109/L) -0.001 0.004 0 0.001 1.17 
Platelet Count 245.738  (×109/L) -11.408 3269.157 548.204 46.66 1.16 
Glucose 5.378  (mmol/L) -0.027 0.229 0.004 0.013 1.16 
Magnesium 0.888  (×109/L) -0.006 0.003 0.004 0 1.13 
Insulin  6.837 (mmol/L) 0.268 17.593 0.239 0.417 1.12 
Bilirubin 15.225  (µmol/L) -0.879 18.188 2.21 2.274 1.11 
Fibrinogen 3.146  (mmol/L) -0.066 0.47 0.002 0.016 1.09 
Monocytes 0.424  (g/L) -0.022 0.029 0.002 0.002 1.09 
Cholesterol 5.403 (mmol/L) -0.103 1.133 0.004 0.027 1.08 
Lymphocytes 1.966 (mIU/L) -0.082 0.389 0.032 0.007 1.07 
High Density Lipid 1.638 (mmol/L) -0.045 0.226 0.001 0.004 1.07 
Creatinine 91.023 (IU/L) -0.79 173.816 0.403 16.77 1.07 
Haemoglobin A1C 3.261 (g/dL) 0.029 0.057 0.002 0.023 1.06 
White Cell Count 6.515 (×109/L) -0.155 6.061 0.311 0.05 1.06 
AST 23.05  (fL) -0.163 29.938 1.186 0.744 1.03 
Neutrophils 3.923 (×109/L) -0.009 4.313 0.136 0.027 1.03 
Blood Urinary Nitrogen 2.69  (µmol/L) -0.0037 0.3174 0.0019 0.0016 1.03 
Amylase 73.051  (IU/L) -3.05 599.198 21.722 2.038 1.02 
Alkaline Phosphatase 62.471  (IU/L) -2.146 318.718 10.379 2.497 1.02 
ALT 23.788  (IU/L) -0.488 135.898 1.162 0.569 1.02 
Uric Acid  300.875  (mmol/L) 2.163 3328.925 19.749 3.619 1.02 
Urinary Urea 246.5983  (mmol/L) -0.2461 11609.8408 24.6165 101.8849 1.02 
Sodium  138.131 (%) -0.3 2.364 0.084 0.762 1.01 
Mean Cell Volume 93.049 (µmol/L) -0.521 17.309 0.48 0.049 1.01 
Creatinine Kinase 108.225  (mmol/L) -3.275 2673.261 30.825 2.013 1.01 
Inorganic Phosphorus 1.042 (IU/L) -0.01 0.021 0 0.002 1.01 
Urinary Sodium  96.3476  (mmol/L) -0.1463 2629.6777 0.5562 8.3056 1.01 
Urinary Calcium  2.305  (mmol/L) -0.0056 1.9686 0.0044 0.025 1.01 
Urinary Potassium  50.0015  (mmol/L) -0.2349 686.5211 0.6045 6.4321 1.00 
MCH 30.603 (pg) 0.049 1.621 0.044 0.046 0.99 
CK MB Fraction 4.905  (IU/L) -0.218 24.768 0.417 0.146 0.99 
Triglyceride 1.308  (mmol/L) -0.028 0.584 0.001 0.004 0.98 
Gamma GT 31.324  (IU/L) -0.488 389.502 0.54 3.738 - 

Table 86: Sample size increase required to compensate for the power loss. 

The columns 1 to 6 are as defined in Table 85. The values in the last column represent 

the sample size multiplicative increase required to compensate for the power loss 

caused by the bias arising from slope heterogeneity reported in Table 85. The sample 

size multiplicative increase values reported for the 3 last analytes (0.99, 0.99 and 0.98) 

seem to indicate a gain of power but this is due to the stochastic nature of the 

simulations; these figure are the average multiplicative increase across the 7 

interactions OR investigated; for some ORs the increase was slightly greater than 1.0 

and slightly less than 1.0 for others. There was no multiplicative increase calculated for 

the analyte Gamma GT because there was not any heterogeneity in slope for this 

analyte (𝜎     ). 
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4.4. DISCUSSION 

The work reported in this chapter builds directly on the earlier paper of Jackson et 

al.(147). The relevant component of their analysis (see their table 1 and figure 1) 

focussed on four statistical measures of the impact of needle-freezer time delay: (1) the 

expected proportionate change (generally a decline) in the concentration of each analyte 

as a percentage of the level of that same analyte at baseline, with a 95% prediction 

interval for the change in a given individual; (2) the predicted probability of a 

consistently negative (or positive) change in the level in a given future individual; (3) a 

likelihood ratio test for “significant” evidence of heterogeneity of slope (decline or 

increase) between individuals; (4) the proportion of the total variance at a given time 

point that can reasonably be explained by this heterogeneity of slope. 

 In brief summary they demonstrated that the percentage change in analyte 

concentration per 12 hours of delay was generally small. It was less than 3% in absolute 

magnitude for all but two analytes: insulin at +3.9%; and eosinophils count at -12%.  

Only four analytes (calcium, fibrinogen, cholesterol, HDL cholesterol) exhibited a high 

(>90%) probability of a consistently negative or positive change in an arbitrary future 

individual– none was so consistent that the posterior probability exceeded 97.5%. No 

analytes exhibited a >90% probability of a consistently positive change. They 

concluded that their results: “suggest that any instability in assay results up to 36 h is 

likely to be small in comparison with between individual differences and assay error, 

and that a single assay measurement at any time between 0 and 36 h should give a 

representative value of the analyte concentration at time zero for that individual.” 
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I started by fitting a similar range of models, though using a different modelling 

environment, MLwiN 2.1 (151), and broadly confirm the equivalent estimates published 

by Jackson et al (147). But I chose to interpret these parameters from a rather different 

perspective and this led me on to undertake additional analyses that I feel shed 

additional light on the need to consider and adjust for processing delay in designing and 

using large biobanks. The need for this additional perspective is illustrated by 

consideration of why biobanks exist at all, and why consistent standard operating 

procedures are so important. To be specific, contemporary bioscience has a focus on 

dissecting the weak aetiological signals that collectively represent the architecture of the 

common complex diseases. Even in the most ideal of worlds, weak signals can demand 

vast sample sizes to generate adequate statistical power (7). But the real world is not 

ideal – the actual biological signals that might in theory be detected are almost always 

degraded by a variety of factors such as measurement error, and including the impact of 

delay in final processing. Rational biobanking demands an understanding of which of 

these factors can be addressed, with what impact and at what cost to time and resources. 

But, the true balance between costs and benefits can often only be determined with 

empirical evidence. 

One of the key decisions that must be undertaken in designing a new biobank is whether 

to invest a substantive amount of resources in enabling rapid local processing and 

definitive storage to prevent biosamples degradation, or to invest those same resources 

recruiting more participants under a more flexible regime that means that biosamples 

will be transported centrally before final processing and that some will therefore be 

subject to significant delay. It is the type of empirical study described in the Jackson et 

al paper and now re-analysed in the current chapter that enables such a decision to be 

taken rationally. But, I would argue that the mathematics underpinning that decision can 
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only be fully informed if one directly assesses the loss of power that is likely to emanate 

from degradation of the biological signal. Jackson et al, clearly demonstrate that any 

instability is likely to be small in comparison to the between individual differences and 

to assay error. They also demonstrate that the probability of a consistently negative or 

positive trend in analyte levels is less than 90% for all but four analytes. My findings 

are entirely consistent with these basic conclusions, but I would argue that what 

typically matters in terms of the impact of delayed processing on statistical power, is the 

quantitative effect of these factors on the power to detect relevant changes in the true 

biological signal. In other words, even if the expected rate of change with time for a 

given analyte is zero (no consistent change), if there is nevertheless marked 

heterogeneity in the rate of change between subjects (as exhibited by many analytes, 

both in our analysis and in that of Jackson et al), then this can lead to substantial 

degradation of the true biological signal, and a meaningful loss of statistical power for 

many of the classes of analysis that are likely, in the real world, to be undertaken. 

Furthermore, as outlined earlier (see Figure 23), this cannot be evaluated by simply 

comparing the variance at baseline with that at the time that processing was finalised. 

Rather, one must work directly with the parameters reflecting the biological signal and 

its degradation via slope variance – the power must necessarily fall with delay time, 

even if, as is possible, the total variance appears to decrease with time. 

If we are to design biobanks using rational standard operating procedures, and are to 

analyse data from biobanks in a manner that enables us to take proper account of the 

likely loss of power, the important analyses reported by Jackson et al and confirmed in 

the first part of this chapter, need to be supplemented by the analyses addressed in the 

second phase of our work. These are detailed in Table 86 and are reflected in the 
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additional interpretation fundamental to the current chapter. This interpretation must 

necessarily be analyte specific and must be quantitative. 

Thus, for example, Table 84 demonstrates that given the distribution of processing 

times fundamental to this empirical study, 30% of the variance in the level of potassium 

can reasonably be attributed to factors related to a delay in processing; either a 

consistent decrease /increase in concentration or random variation in slope between 

subjects. Table 85 indicates that, in this case, the latter is more important. In fact, the 

consistent change over time represents an estimated -0.77% decrease in concentration 

over 12 hours (in agreement with the findings of Jackson et al who reported a -0.77% 

decrease and 64% probability of a consistent negative trend. In contrast, there is strong - 

highly significant - evidence of heterogeneity in slope between participants (Table 85), 

and the additional variance arising directly from this variability of slope if processing is 

delayed by 24 hour is of a similar order of magnitude to the between subject variance at 

baseline. This implies that there could be a substantial degradation of biological signal 

if processing is delayed by 24 hour. To quantify the impact on statistical power of this 

degradation in signal, Table 86 demonstrates that if one does want to analyse potassium 

levels assayed in biosamples that are processed 24 hour after collection, then the 

required sample size should be increased by a factor by a factor of more than three – 

compared to what would be anticipated if all samples had been processed immediately 

after collection. 

As more and more analyses involve sharing and meta-analysing data over several 

biobanks (7), the need to reflect carefully on the impact of a range of different SOPs 

becomes ever more important. As emphasised in this analysis, this requires careful 

consideration of the difference between the impact of a consistent rate of 
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decline/increase and of a rate that varies markedly between subjects.  The former may 

be circumvented if all biosamples are subject to the same delay, but is seriously 

problematic (though potentially correctable – at least in theory) if, for example, cases 

and controls are derived from different biobanks with different delays. The latter 

implies that processing delay should, where possible, be constricted in all subjects, but 

if it is unavoidable then analytic adjustment must be made – for example by modifying 

expectations in terms of realistic statistical power. 

The empirical study initially carried out by Jackson et al, and now subject to additional 

analysis and interpretation in the present chapter illustrates an important way forward. 

Like UK Biobank (148), all new biobanks need to determine clear and rational standard 

operating procedures for sample pre-processing (147, 148, 152) that ensure consistency 

for things that can reasonably be kept constant, and ensures faithful recording of 

parameters that may then vary between subjects, in order that they can later be adjusted 

for in analysis. Adjustment may involve tentative correction of mean bias when delay 

time is known and an analyte is subject to a known and consistent rate of 

decline/increase in concentration over time. This may take the form of a correction of 

the primary analysis (where the rate of decline is known with near certainty) or, more 

often, a sensitivity analysis that can only produce a clear answer if both the primary 

(unadjusted) analysis and the adjusted analysis generate equivalent conclusions. Where 

the problem is due to variation in rate of decline/increase in concentration over time 

between subjects, the key issue is to ensure that statistical power calculations take 

proper account of the distribution of delay times (particularly, differences between 

different studies in a meta-analysis). In addition, some adjustment may sometimes be 

required in meta-analyses to down-weight the influence of studies with greater 

variability - because processing delay is longer - relative to those with shorter delay. 
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In the analyses carried out so far, in this thesis, I have investigated the impact on power 

of errors associated with outcome and explanatory variables in studies involving single 

nucleotide polymorphisms (SNPs) as the genetic determinants of interest. Some studies 

are now investigating the potential role of copy number variants (CNVs), another type 

of polymorphism, in causing disease and influencing complex traits. Some CNVs have 

already been found to be associated with complex traits. In the next chapter, CNV 

measurement errors are explored to estimate how well previously discovered CNVs can 

be measured using different SNP platforms and how this might impact upon the 

statistical power of association studies involving CNVs. The aim of this work is to help 

inform the design and analysis of future CNV association studies. 
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CHAPTER 5 

5. ESTIMATING THE ACCURACY OF 
CNV MEASUREMENTS 
USINGINTENSITY DATA FROM 
SNP GENOTYPING PLATFORMS 

5.1. INTRODUCTION 

It is important to measure accurately the copy number level of an individual at a given 

copy number variant (see section 1.2.3.2) locus in order to investigate this type of 

genetic association without bias. CNV genotypes are subject to random measurement 

errors; if ignored, such errors will result in an underestimation of the true effects of the 

genotypes on the trait of interest. To understand the true relationship between CNVs 

and disease it is, hence, crucial to determine accurately the number of copies within 

individuals.  

If a CNV association study aims to use CNV measurements from SNP genotyping 

platform data (see the paragraph about SNP genotyping under section 1.2.3.1), it can be 

useful to know how accurately CNVs can be measured from the platforms in order to 

make a decision about the CNVs to call from that data. If some CNV and platform 

characteristics are good predictors of the accuracy of CNV measurements, this 

information could be used by an investigator to choose the SNP platform from which 

the CNVs investigated in the study can be most accurately measured. If, as is often the 

case, the platform has already been decided for other reasons, then this knowledge  

might help to guide whether to proceed with CNV association studies and on whether 

pooling information across studies might be needed to achieve adequate power for 
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association testing. This project investigates some CNV and SNP platform 

characteristics to find out how they relate to the accuracy of CNV calls. 

In this analysis, the approach used to estimate the accuracy of CNV measurements from 

SNP genotyping platform data was to compare copy numbers called from SNP 

genotyping intensity data with copy numbers called from array-comparative genomic 

hybridization (aCGH) platform data, using the same set of samples. The aCGH intensity 

data was considered as the gold standard because aCGH is a reliable technology to 

detect CNVs and it is currently the most reliable data available in the sample set used in 

this project for calling CNVs.The SNP intensity data in this study was from the Illumina 

Infinium 1.2M array, one of the most recent SNP arrays for which probe intensity data 

was available for the selected set of samples. The results of the comparison between 

copy numbers from the SNP platform data and from the gold standard, expressed as a 

correlation between the two, indicates the level of accuracy of the measurements 

obtained from the SNP platform data.  

The correlation was checked against some CNV characteristics to investigate whether 

those characteristics can help to predict the level of accuracy. The characteristics that 

are informative about the accuracy of CNV measurements can be used to decide 

whether or not the intensity data of a specific platform should be used to call certain 

CNVs. The accuracy of CNV measurements from SNP platforms with different probe 

densities was also estimated; the results can help to decide whether or not certain CNVs 

should be called from platforms with comparatively low probe densities. If for example 

the probe density of the platform does not allow for an adequate level of accuracy of 

CNV calls, the investigator may decide to use data from a different platform, run new 

assays to specifically detect the relevant CNV(s) or exclude from his study the CNV(s) 

that is not well called from the platform of concern. Some SNP platforms contain CNVI 
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probes, CNV-targeted markers designed using the same strategy as SNP probes(see 

paragraph on CNV detection and genotyping under section 1.2.3.2), in addition to the 

SNP probes; the accuracy of CNV calls was estimated using SNP and CNVI probes 

separately and together. This analysis can also inform the decision about the choice of 

platform (with or without CNVI probes) that provides a better accuracy of CNV calls.  

A summary of the accuracy of measurement of a specific CNV using a particular 

genotyping platform can be used as a key parameter for the ESPRESSO-forte power 

calculator (chapter2) for a simulation based analysis to determine the impact of copy 

number accuracy on the statistical power of a study that investigates the association 

between the CNV and a trait. 

This project aims to: 

 Estimate how accurately known CNVs can be measured from the Illumina 

Infinium 1.2M array and determine the proportion of CNV genotype 

information carried by SNP probes and by CNVI probes. 

  Investigate whether key CNV characteristics, including CNV frequency, level 

of linkage disequilibrium between the relevant CNV and a HapMap SNP, 

number of CNV classes, type of polymorphism and CNV length, are associated 

with how well a CNV can be measured. 

 Estimate the level of accuracy when copy numbers are measured using data 

from SNP genotyping platforms older than the 1.2M array. 

 Assess the impact of the accuracy of copy number measurement on the power 

of a CNV association study that uses CNV genotype information derived from a 

SNP platform analysed in this study.  
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The results of the analysis can provide useful information for the choice of CNVs to 

include in a study and inform recommendations for investigators planning to use CNV 

measurements, derived from SNP platform intensity, in candidate CNV or genome-wide 

CNV studies.  

5.2. METHODS 

5.2.1. DATA DESCRIPTION 

The two datasets used for the analysis consist of normalised probe intensities from an 

aCGH platform and normalised probe intensities from an Illumina 1.2M platform. A set 

of 1284 samples from the 1958 British Birth Cohort (1958BC) (153) for which data 

available on both the aCGH and the 1.2M data, was extracted for the analysis. The set 

of CNVs selected for the analysis was chosen from the WTCCC CNV study 

(WTCCC+) (154) that was informed by the study of Conrad et al (17) which used a 

custom designed array to detect CNVs (see the paragraph on recent CNV maps under 

section 1.2.3.2 for a summary of the Conrad study). 

5.2.1.1. aCGH data 

The aCGH data for 1284 individuals from the 1958BC are from the WTCCC+ study. 

The WTCCC+ study designed an aCGH experiment to measure copy number variation 

at 3432 polymorphic CNV loci and study association with eight common diseases. The 

aCGH dataset contains normalised CNV probe intensities with an average of 10 probes 

per CNV. The probe intensities were normalized using different methods and the 

optimum normalization method for each CNV was available from the WTCCC+ study. 
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 For the purpose of this analysis an initial set of 3215 independent CNVs which showed 

an appropriate clustering (the clusters reflecting different CNV classes) in the WTCCC+ 

study were selected. The optimum normalization methods for the probe intensities of 

the selected CNVs were     (
 

 
), the log2 ratio of the red channel (test DNA) and green 

channel (reference DNA) or     (
     ( )

     ( )
), the transformed log2 ratio of the quantile 

normalized red and green channel. 

5.2.1.2. Illumina 1.2 data 

For the same 1284 individuals, the Illumina 1.2M dataset consists of the x and y 

intensities, one intensity channel for the A-allele and one for the B-allele, from which 

genotypes were called as part of the a recent WTCCC genome-wide study of common 

diseases (WTCCC2), an extension of the WTCCC1 study (24). The platform measured 

a total of 1238733 probes (SNPs and CNVIs) for each sample. Of the initial 3215 CNVs 

initially selected, 2700 had SNP and/or CNVI probes within their boundaries in the 

1.2M platform and were therefore included in further analysis. 

5.2.2. CNVTOOLS ALGORITHM 

For both aCGH and Illumina 1.2M, the copy number status of each of the individuals in 

the sample set was determined using CNVtools (155), an algorithm designed to analyse 

CNV array data. CNVtools takes as input a one-dimensional signal, for each sample, 

obtained by summarizing the intensities across all the probes within the CNV, and fits a 

mixture model to the one-dimensional data.  
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5.2.2.1. Summary methods 

The first paragraph of this section explains how summary methods were used in the 

WTCCC+ study to summarise probe intensities and the second paragraph details how 

the summary was carried out in this analysis. 

 Summary methods in WTCCC+ 

Several different approaches to summarising information across probes within a CNV 

were compared. The intensities of the probes within each CNV were summarised using 

first the mean summary method in which the single value for each sample was the 

statistical mean of the probe intensities. Alternatively, the intensities were summarised 

using principal component analysis (PCA) which transforms the data and attenuates the 

effect of outliers (the mean method is more sensitive to outliers that cause the average 

value to be inflated or deflated). The summary method that allowed for the best 

clustering of the signal was chosen. After summarising the data by mean or PCA, the 

clustering was refined by linear discriminant analysis to find a linear transformation 

called linear discriminant function (LDF) that transforms the predictors (the one-

dimensional signal values) of the copy numbers into values that allow for a better 

segregation between CNV classes. 

 Summary methods used for this analysis 

The optimal summary method (mean, mean +LDF, PCA, PCA+LDF) for each of the 

2700 CNVs was known for the aCGH data from the WTCCC+ study. I applied the same 

summary method for each CNV to the 1.2M probe intensities. Since any signal that is a 

proxy for the number of copies can be used to summarize probe intensities (155), I 

combined the x and y intensities of the CNV and SNP probes in the Illumina 1.2M 

dataset by the sum of x and y to obtain one value for each probe and used the predefined 

summary method (mean or PCA) from the WTCCC+ study to summarise the 
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information across probes within the CNV boundaries. I systematically applied LDF to 

the output of the predefined summary method to optimize the clustering for both the 

aCGH and the 1.2M data. 

To fit the model appropriately, the algorithm requires the different classes of the CNV 

to be distinct i.e. to form separated clusters, with no or limited overlap, on the histogram 

of the one-dimensional signal (see histogram in Figure 24); if the clustering is not 

efficient the mixed model will not fit correctly.  

5.2.2.2. CNVtools parameters 

To fit a mixture of gaussians to the summarised data CNVtools requires (1) a vector of 

numeric values (start.mean) to set the starting values for the means in the likelihood 

process, (2) a formula (model.mean) that describes the linear model for the location of 

the mean signal intensity (a linear model with free means or a linear model with means 

proportional to the number of copies), (3) a formula (model.var) similar to model.mean 

but used to model the variances, (4) an integer for the number of CNV classes and (5) 

an integer for the number of iterations to maximise the likelihood. 

In the WTCCC+ study, some CNVs could not be appropriately fitted at the first attempt 

using a random start.mean value; for those CNVs the WTCCC+ study determined the 

optimal start.mean. For the aCGH data, I used the start.mean values available from the 

WTCCC+ study to set the starting values for the CNVs,  where required (i.e. where the 

model could not be successfully fitted with random start.mean values). For the 1.2M 

data, I allowed CNVtools to pick the starting points randomly. The number of copy 

number classes I fitted in CNVtools, for each CNV, was available from the WTCCC+ 

study. For the aCGH data, I used the optimal mean.model values where available from 

the WTCCC+ paper. When information about the mean.model parameter was not 
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available from WTCCC+, I used an iterative approach to determine the values of 

model.mean and model.var, for aCGH, that gave the highest correlation between aCGH 

and 1.2M copy numbers. To estimate copy numbers from the 1.2M intensity data, I used 

the same model.mean and model.var values that I used to estimate copy numbers from 

the aCGH intensity data, hence assuming that the optimal parameters are the same for 

the aCGH and the 1.2M data. 

5.2.2.3. Convergence of the model 

CNVtools uses an expectation-maximisation (EM) approach to estimate the maximum 

likelihood (155). After fitting a mixture model it is possible to verify the status of the fit 

to find out if the model converged. For each CNV, and for both aCGH and 1.2M, I 

specified 5 EM iterations to maximize the likelihood. For aCGH, for each CNV I 

checked the status of the fitted model and only considered CNV calls where the model 

converged because failure to reach convergence could indicate underestimated or 

overestimated number of clusters, constrained/relaxed values for model.mean and 

model.var, or presence of one or more outliers that cause the posterior probability to rise 

again after falling to zero (155). Since there was a risk that the model converges to a 

local maximum which did not represent the optimal solution, convergence was also 

confirmed by visual examination to ensure there was no discrepancy of the posterior 

probabilities of the CNV classes. 

5.2.2.4. Obtaining copy numbers 

The copy numbers were determined separately for the samples using the aCGH and the 

Illumina 1.2M data. The copy number status of an individual was determined by 

calculating the posterior probability of belonging to each CNV class; the highest 



CHAPTER 5 
 

187 | P a g e  
 

posterior probability indicated the most likely copy number of an individual. Figure 24 

illustrates an analysis where the clustering was unambiguous; the CNV was fitted in 

CNVtools with 3 classes.  

 

Figure 24: Example of an unambiguous clustering generated by CNVtools. 

Three individuals (in blue, red and green) were, respectively, assigned to copy number 

classes 1, 2 and 3 represented by the three clusters on the histogram (A). The coloured 

lines on the histogram plot represent the posterior probability for each of the three copy 

number classes. Columns ‘P1’, ‘P2’ and ‘P3’ in the table (B), hold the posterior 

probabilities of belonging to copy number class 1, 2 or 3. The column ‘signal’ 

represents the one-dimensional signal where each value represents a summary of the 

probe intensities for one individual (see section 5.2.2.1 on how probe intensities are 

summarized). The column ‘cn’ holds the copy numbers. 

 

5.2.3. EVALUATING THE ACCURACY OF COPY 
NUMBER CALLS FROM ILLUMINA 1.2M 
PLATFORM 

The accuracy of copy numbers called from the 1.2M data was assessed by comparing 

copy numbers called from the 1.2M data with those called from the gold standard 

A 

B 
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(aCGH) data; the correlation between the copy number calls from the aCGH   and the 

1.2M platforms was used to represent the level of accuracy of copy numbers called from 

1.2M data. For each CNV, the correlation between two vectors (one for each platform) 

of n copy number values (where is the n is the number of individuals) was computed. 

I carried out sample quality control (QC) checks prior to running the CNVtools 

analysis. Samples were excluded if they met one or more of the following four 

exclusion criteria, any sample excluded from one dataset (aCGH or 1.2M) was also 

excluded from the other dataset:  

1) Derivative log ratio spread (DLRS) greater than 0.35 (DLRS is a measure of the 

variability of log2[R/G] across all probes), irrespective of which normalisation 

was chosen. This criterion was applied to the aCGH dataset. 

2) Low signal intensity in the aCGH data (signal intensity < 100 for either the red 

or the green channel).This criterion was applied to the aCGH dataset. 

3) Standard deviation of the x and y intensities, across all probes located in 

autosomal chromosomes, greater than 0.65. For each sample in the 1.2M dataset, 

the standard deviations of the x and y intensities, across all probes located in 

autosomal chromosomes, were calculated; a large standard deviation indicates 

poor genotyping quality. This criterion was applied to the 1.2M dataset. 

4) Presence in the WTCCC2 study samples exclusion list (samples in that list were 

excluded from WTCCC2 for meeting QC criteria including missing 

heterozygosity, related individuals, ethnic outliers, unknown identity, outlying 

mean x or y intensity); since the 1.2M intensity data used in this analysis are 

from the WTCCC2 study it is reasonable to exclude samples that were excluded 

from WTCCC2. This criterion was applied to the 1.2M dataset. 
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After the CNVtools analysis and before calculating the correlation between 1.2M and 

aCGH copy numbers, CNV QC checks were carried out on the 2700 selected set of 

CNVs and CNVs were excluded if they met one or more of the following three 

exclusion criteria:  

1) The fitted model did not converge. 

2) The clustering failed (cluster plots were visually inspected). 

3) More than 5% of the individuals had missing intensities at one or more probes 

within the CNV boundaries.  

The first two QC filters (non-converged model and failed clustering) were applied only 

to CNV measurements from the aCGH data because a failure to converge or to cluster, 

on the 1.2M data, may just indicate that the CNV is not “callable” from the 1.2M data. 

The CNVs that passed the two first QC filters are those for which there was a gold 

standard set of copy number measurements i.e. it is assumed that the CNVs were 

measured correctly from the aCGH data. 

The correlation between 1.2M and aCGH copy numbers was calculated using SNP 

probes only, CNVI probes only and finally both SNP and CNVI probes combined, from 

the 1.2M data to assess whether one type of probe (SNP or CNVI) carries more copy 

number genotype information, in the 1.2M data. The correlation coefficients were 

calculated before and after applying LDF to the optimal summary. Where applying LDF 

did not improve the correlation, the correlation coefficient obtained prior to LDF was 

reported. 
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5.2.4. EVALUATING THE EFFECT OF CNV 
CHARACTERISTICS ON THE ACCURACY OF 
COPY NUMBER CALLS FROM ILLUMINA 1.2M 
PLATFORM 

The influence of some CNV characteristics, including minor allele frequency (MAF), 

level of linkage disequilibrium with a HapMap SNP (11), number of copy number 

classes of the CNV, type of variation (deletion, duplication, deletion and duplication) 

and CNV size, on the accuracy of copy numbers called from the Illumina 1.2M data, 

was investigated.  

Consistent with the WTCCC+ study (154), I used the copy numbers called from the 

aCGH intensity data to calculate the minor allele frequency of CNVs called with 2 or 3 

classes using the formula           

  
  where n0 and n1 are the genotype counts for 

the rare homozygote and heterozygote respectively and n the total genotype count. The 

linkage disequilibrium values I used in the analysis were available from the WTCCC+ 

study which calculated linkage disequilibrium as the Pearson r2 value between CNV 

genotypes and SNP genotypes using samples from the WTCCC+ study itself and 

samples from previous WTCCC studies (154). For each CNV, the number of classes I 

used in this analysis was from the WTCCC+ which determined CNV classes after a 

visual inspection of the histogram of probe intensities. The information about CNV type 

that I used was available from WTCCC+; the type of variations were reported by 

Conrad et al. (17) who classified CNVs with a diploid copy number of 0, 1 or 2 as 

deletions, CNVs with a diploid copy number of 2, 3 or 4 as duplications and CNVs with 

more than 3 possible diploid copy numbers as multiallelic (CNVs involving 

duplications and deletions). 
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5.2.5. EVALUATING THE EFFECT OF EARLIER 
VERSUS NEWER GENERATION SNP 
GENOTYPING PLATFORM ON THE ACCURACY 
OF COPY NUMBER CALLS 

The probe intensities of the 1958 British Birth Cohort (58C) samples used in the first 

comparison (aCGH vs. 1.2M) were not available for Illumina 660 (ILM660K) and 610 

(ILM610K), two platforms that contain SNP and CNVI probes, and for Illumina 300 

(ILM300K), a platform without CNVI probes. The 58C intensity data from the 1.2M 

platform was used to generate datasets that closely resembled intensity data from 

ILM660K, ILM610K and ILM300K by selecting subsets of probes from the 1.2M 

which were known to feature on the ILM660K, ILM610K and ILM300K. For example, 

for ILM660K I identified 1.2M probes not present in the ILM660K platform and 

excluded them. A similar approach was taken to generate datasets that mimicked 

ILM610K and ILM300K platforms. This strategy assumes that the three platforms 

differ only on probe density (the number of probes on a genotyping array); the 

implication of this assumption will be discussed later.  

The accuracy of copy numbers measured from ILM660K, ILM610K, and ILM300K 

was evaluated using the same strategy as for 1.2M. The correlation between copy 

numbers measured from the gold standard (aCGH) and those measured from ILM660K, 

ILM610K and ILM300K reflects the level of accuracy of copy number calls obtained 

using probe intensities from the three SNP genotyping platforms. The accuracy was 

evaluated using SNP and CNVI probes combined and using SNP probes only where 

CNVI probes were not present. The levels of accuracy of copy number called from 

1.2M, ILM660K, ILM610K and ILM300K were compared. 
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5.2.6. IMPACT OF COPY NUMBER 
CALLINACCURACY ON THE POWER OF AN 
ASSOCIATION STUDY 

This part of the analysis was an illustration of how the estimated level of accuracy of 

CNV calls can be used in ESPRESSO-forte (chapter2), developed as part of this thesis, 

to evaluate the effect of copy number measurement errors on the statistical power of a 

candidate CNV association study that investigates the association between a CNV 

measured on the 1.2M and a hypothetical binary outcome. 

The accuracy of CNV calls was assessed as the level of correlation between copy 

numbers called from 1.2M intensity data and copy numbers called from the aCGH 

intensity data (gold standard). The maximum accuracy, which corresponds to a 

correlation r = 1, denotes the absence of measurement error in copy numbers called 

from the 1.2M data; the largest measurement error was obtained for the lowest accuracy 

(r = 0). The ESPRESSO-forte algorithm uses assessment error in the outcome and in the 

genetic determinant (genotype) to calculate (1) the power that can be achieved under the 

specified sample size and (2) the sample size required to achieve the specified desired 

level of power. In this analysis, the estimated measurement error of one of the CNVs 

analysed in this project (CNVR5101.1) was transferred to ESPRESSO-forte to evaluate 

its effect on power.  

In ESPRESSO-forte the genetic determinant is a SNP; CNVR5101.1 is a biallelic CNV 

and its analysis is hence similar to the analysis of a biallelic SNP under a binary genetic 

model, so the analysis did not require major changes in the algorithm. CNVR5101.1 

consisted of a single deletion; the genotypes were coded as 0 and 1, where 1 is the ‘at 

risk’ genotype (one deletion) and 0 the common homozygous (no deletion). The user 

function ‘sim.geno.sesp’ that I wrote as part of the ESPRESSO-forte R package 
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(documented in page 279 of the algorithm’s manual under Appendix 1) was used to 

calculate the sensitivity and specificity that corresponds to the accuracy (correlation r 

between 1.2M and aCGH genotypes) that was estimated for CNVR5101.1. This 

function calculates the sensitivity and specificity required to generate the squared 

correlation between two simulated binary vectors where one vector represents the ‘true’ 

(error free) measurements and the other vector represents the ‘observed’ (‘true’ 

measurement + error) measurements. In this analysis, the sensitivity and specificity 

values reflect the incomplete correlation between copy numbers called from 1.2M and 

those called from the gold standard. These sensitivity and specificity values were used 

by ESPRESSO-forte to calculate the misclassification rates in the two binary vectors 

that represent the alleles used to construct the observed genotypes (as explained in 

section 2.6.2.5). 

The power achieved for a hypothetical binary outcome determined by CNVR5101.1 and 

the sample size required to achieve a power of 80% were calculated under three 

scenarios:  

(1) In the first scenario, it was assumed that CNVR5101.1 was measured 

without error (r = 1) and the outcome was also assumed to be measured 

without error (sensitivity=1 and sensitivity=1). 

(2) In the second scenario, CNVR5101.1 was fitted with its actual measurement 

error as evaluated in this chapter (the estimated level of correlation between 

1.2M and gold standard copy numbers for this CNV) whilst the outcome was 

still assumed to be measured without error. 

(3) In the third scenario, both the outcome and the genetic determinant 

(CNVR5101.1) were assumed to be measured with an error. The error on 

CNVR5101.1 was the same as the one mentioned in the second scenario and 
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the sensitivity and specificity of the outcome were set arbitrarily to 0.72 and 

0.99 respectively because these values are reasonable.  

The difference between the power values achieved under scenario 1 and  scenario 2 

indicated the amount of power loss caused by the measurement error on CNVR5101.1 

(since the outcome was assumed to be assessed without error, the power loss observed 

was solely due to measurement error on CNVR5101.1). The difference between the 

power values achieved under scenario 1 and scenario 3 indicated the amount of power 

loss if both the outcome and the genetic determinant are measured with some error. 

Likewise the sample size required to achieve a power of 80% under the first scenario 

was compared to those required to achieve the same level of power under the second 

and third scenario. The difference indicated the increase in sample size required to 

compensate for the power loss caused by the measurement error on CNVR5101.1 

genotype (scenario 1 vs. scenario2) and the increase in sample size required to 

compensate for the power loss if both the outcome and the determinant are measured 

with some error (scenario 1 vs. scenario 3). 

5.3. RESULTS 

5.3.1. SAMPLE QUALITY CONTROL 

This paragraph is a summary of samples excluded from the analysis for meeting one or 

more of the four QC criteria in the second paragraph of section 5.2.3. Any sample 

excluded from one of the two datasets (aCGH or 1.2M) was also excluded from the 

other.  
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1) Seven samples with a DLRS > 0.35 were excluded from the aCGH dataset and 

not replaced by their replicate because the replicate did not exist or because the 

DLRS of the replicate was not greater than 0.30.  

2) Two samples were excluded from the aCGH dataset for low signal intensity.  

3) Ten samples were excluded from the 1.2M dataset because the standard 

deviation of the x and/or y intensity was greater than 0.65 (Figure 25). 

4) A total of 80 samples excluded from the WTCCC2 study were excluded from 

the 1.2M dataset.  

Of the initial 1284 samples, 99 were excluded; the analysis was carried out with the 

remaining 1185 samples. 

 

Figure 25: Standard deviations of x and y intensities from Illumina 1.2M data. 

In red, the 10 samples excluded for x or y intensity greater than 0.65. 
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5.3.2. CNV QUALITY CONTROL 

Figure 26 is a summary of CNV exclusions, from the aCGH dataset, according to the 

three CNV quality control criteria listed in the third paragraph of section 5.2.3. For 605 

CNVs called from the aCGH data, the fitted model did not converge and the CNVs 

were excluded (step 1 in Figure 26); CNVs with 2 copy number classes were 

overrepresented in this exclusion list, they represented approximately 56% of the CNVs 

that did not converge whilst only 36% of all CNVs had 2 classes. All the CNVs with 2 

classes excluded for no convergence were rare (MAF < 0.05). A total of 485 CNVs 

were excluded for failing to cluster (step 2 in Figure 26). These CNVs were excluded 

after visual inspection of the posterior plots which for the majority showed that all the 

samples were assigned to one copy number class or that the posterior lines did not 

follow the contours of the clusters. The 1610 CNVs which passed the two QC filters 

mentioned above are the ones for which there was a gold standard (highlighted in red on 

Figure 26).  

For a total of113 CNVs, the number of samples with missing intensity at one or more 

probes represented more than 5% of all 1185 samples (step 3 in Figure 26); this was 

observed only in the 1.2M data, none of the probes in the aCGH data presented missing 

intensities. These 113 CNVs were assigned a correlation coefficient of zero which 

means that they were considered as not “callable” from the 1.2M data. 
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Figure 26: Summary of CNV exclusions. 

This chart shows the number of CNVs for which clustering and copy number assignment 

went well for aCGH, highlighted in red, and the number of CNVs that passed all CNV 

QC checks. 

5.3.3. ACCURACY OF CNV CALLS FROM THE 
ILLUMINA 1.2M DATA 

Table 87 reports the number of CNVs by levels of correlation between copy numbers 

measured from the aCGH and 1.2M intensity data; these correlations represent the 

levels of accuracy of copy number calls from the 1.2M data. A proportion of 49% of 
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the 1610 CNVs tested had a correlation equal to or greater than 0.8. Figure 27 shows the 

distribution of correlation coefficients.  

Correlation (r) ≥ 0.8 0.5 ≤ r < 0.8 < 0.5 
Number of CNVs 791 (49%) 231 588 

Table 87: CNV counts by level of accuracy. 

The accuracy of copy number calls was assessed as the correlation between copy 

numbers from aCGH and 1.2M. The percentage represents the corresponding 

proportion in the 1610 CNVs tested. 

 

Figure 27: Distribution of levels of accuracy when SNPs and CNVI were combined. 

The number of CNVs called with no accuracy (r=0) was inflated because of the CNVs 

that were assigned a correlation of 0 when the number of samples with missing intensity 

at one or more probe  represented more than 5% of all 1185 samples. 

Most of the correlations reported in Table 87 were positive; however, there were 46 

CNVs with a negative correlation of less than -0.1. It is reasonable to expect some 

correlations of up to -0.3 to occur by chance but some CNVs had very high negative 

correlations; one of such CNVs is CNVR551.3 (r = −0.9). For this CNV and the other 4 

that showed a high negative correlation, a large number of individuals assigned a copy 
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number of 1 in the aCGH data were assigned a copy number of 3 in the 1.2M data and 

vice-versa. To further investigate this apparent flip between copy numbers of 3 and 1, 

the CNV calling was repeated for CNVR551.3 using each probe separately (rather than 

by summarising across multiple probes). 

CNVR551.3 had 9 probes (5 SNPs and 4 CNVIs) within its boundaries on the 1.2M 

data and 10 probes on the aCGH data. First a CNVtools analysis was carried out using 

the probes in the 1.2M dataset one by one and then calculating the correlation with 

aCGH calls (which were generated using all the probes within the boundaries of the 

CNV). Then another analysis was carried using the aCGH probes one by one whilst 

using all the probes on the 1.2M to generate the 1.2M calls. The results in Table 88 

indicate that depending on the probe included some individuals were assigned to the 

same class on both aCGH and 1.2M and a positive correlation was calculated or they 

were assigned to different copy number classes (to class 1 in aCGH and class 3 in 1.2M 

or the other way round) and a negative correlation was then calculated. Since negative 

correlations were observed even when the probe intensities were not summarised, this 

shows that the reversing of the order of copy number classes (negative correlation) was 

not attributable to the summary methods.   

1.2M aCGH 
Probes Correlation (r) Probes Correlation (r) 
cnvi0068801 -0.89 7278 0.12 
cnvi0104294 -0.78 7279 0.51 
rs11807244 -0.89 7280 0.1 
rs11807542 0.74 7281 -0.16 
rs12758021 -0.38 7282 -0.2 
rs12759359 0.67 7283 0.02 
rs16833833 -0.8 7284 -0.88 
rs28444730 -0.45 7285 -0.87 
rs28704525 -0.9 7286 0.77 
    7287 -0.08 

Table 88: Level of accuracy of copy number calls achieved using each probe alone. 
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5.3.3.1. Influence of CNV size on the accuracy of copy number 
calls 

Forty eight percent of the 1610 CNVs tested were shorter than 3kb; 41% were between 

3 and 22kb and 11% were greater than 22kb in length. The proportion of CNVs with a 

correlation ≥ 0.8between aCGH and 1.2M CNV measures in each of the three size 

categories, in Table 89, decreases with increasing CNV size. The results suggest that the 

copy number status of shorter CNVs is measured with a higher accuracy and that the 

accuracy decreases with increasing CNV length as shown by the gradient of the line of 

best fit on Figure 28. However, for any given CNV size, there was considerable 

variation in the accuracy of calling and 16% of CNVs of size ≥22kb could still be called 

accurately (r≥ 0.8). 

 

Figure 28: Plot of accuracy versus CNV size. 

The line of best fit is in red. 
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Correlation (r) size <3kb 3kb ≤ Size < 22kb Size ≥ 22kb 
≥ 0.8 444 (58%) 312 (47%) 35 (16%) 
0.5 ≤ r < 0.8 113 90 28 
< 0.5 212 260 116 
Total 769 662 179 

Table 89: CNV count by CNV size and level of accuracy. 

The accuracy of copy number calls was assessed as the correlation between copy 

numbers from aCGH and 1.2M. The percentages represent the corresponding 

proportions in the number of CNVs within the size category. 

 

5.3.3.2. Influence of the number and type of probes on the 
accuracy of copy number calls 

 Number of probes versus accuracy of copy number calls 

Figure 29 shows the relationship between the number of probes within CNV boundaries 

in the 1.2M data and the levels of accuracy for the three CNV length categories in Table 

89. The plots in Figure 29 were stratified by the three CNV size categories to take into 

account the fact that the number of probes may be partly a function of the size of the 

CNV. The graphs indicated that: There was no strong correlation between number of 

probes and accuracy for any CNV length category although the accuracy of calls 

increased very slightly for CNVs shorter than 3kb, and decreased very slightly for 

CNVs of length greater than 22kb. Similar trends were observed when finer intervals 

were chosen to stratify the CNV size characteristic (see Figure 38 under Appendix 2).  
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Figure 29: Plots of number of probes against accuracy. 

The accuracy of copy number calls was assessed as the correlation between copy 

numbers from aCGH and 1.2M for four CNV size categories. The red line across each 

plot represents the line of best fit. 

 Type of probes (SNP or CNVI) versus accuracy of copy number calls 

A total of 1276 CNVs had both SNP and CNVI probes within their boundaries on the 

Illumina 1.2M platform. The histograms in Figure 30 show similar distributions of 

accuracy whether SNP probes only or CNVI probes only were analysed. The proportion 

of CNVs with a correlation ≥ 0.8 was 49% for CNVIs probes only and 42% for SNP 

probes only(Table 90). This seems to indicate that copy numbers were measured slightly 

more accurately with CNVI probes alone than with SNP probes alone on the 1.2M 

platform. When both types of probes were combined the accuracy was further improved 

(52% of the CNVs tested had an r ≥ 0.8). 
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Correlation (r) SNPs only CNVIs only SNPs & CNVIs 
≥ 0.8 536 (42%) 619 (49%) 660 (52%) 
0.5 ≤ r < 0.8 228 174 190 
< 0.5 512 483 426 
Total 1276 1276 1276 

Table 90: CNV count by type of probes and level of accuracy. 

The accuracy of copy number calls was assessed as the correlation between copy 

numbers from aCGH and 1.2M. The percentages represent the corresponding 

proportions in the 1276 CNVs tested. 

 

 
Figure 30: Distribution of accuracy by type of probe. 

The above histograms show the distribution of CNV calls accuracy when 1.2M SNP and 

CNVI probes were analysed separately or together for the 1276 CNVs which had both 

SNP and CNVI probes within their boundaries on the 1.2M platform. 

5.3.3.3. Influence of MAF on the accuracy of copy number calls 

Table 91 reports the number of CNVs by level of accuracy of copy number calls and 

minor allele frequency (calculated as described in 5.2.4). Twenty seven percent of the 

1543 CNVs which had 2 or 3 copy number classes, were rare (MAF < 0.05) and 73% 
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were common CNVs (MAF ≥ 0.05). The difference between the accuracy of CNV 

measurement for common and rare CNVs is shown in Figure 31, where the mean and 

median accuracy (r) of the common CNVs were above 0.8 whilst both the mean and the 

median were below 0.5 for the rare CNVs.  Furthermore 58% of the common CNVs had 

a correlation ≥ 0.8 compared to only 28% for the rare CNVs. Similar observations to 

those above were made when the common CNVs (MAF ≥ 0.05) were divided into 3 

intervals (see Figure 39 and Table 100 under Appendix 3): the results indicated a better 

accuracy for the more frequent CNVs. 

 

Figure 31: Plot of accuracy of copy number calls by CNV MAF. 

The black lines on the boxplots are the medians and the black diamonds represent the 

statistical means. The extremities of the whiskers represent the minimum and maximum 

values. The corresponding summary statistics are shown. 
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Correlation (r) MAF < 0.05 MAF ≥ 0.05 
≥ 0.8 115 (28%) 657 (58%) 

0.5 ≤ r < 0.8 83 125 

< 0.5 215 348 

Total 413 1130 

Table 91: CNV count by MAF and level of accuracy. 

The accuracy of copy number calls was assessed as the correlation between copy 

numbers from aCGH and 1.2M. The percentages represent the corresponding 

proportions in the MAF category. 

5.3.3.4. Influence of CNV type on the accuracy of copy number 
calls 

Fifty nine percent of the 1508 CNVs, for which information about the type of variation 

was available, were deletions, 28% were duplications and 13% consisted of variations 

involving duplication and deletion. Table 92 reports the accuracy of CNV calls by CNV 

type: 72% of the CNVs involving duplication and deletion, 48% of the duplications and 

49% of the deletions had an accuracy ≥ 0.8; this observation was shown graphically in 

Figure 32 which shows that the mean and median correlations were greater than 0.5 for 

all 3 types of CNV tested. The overall level of accuracy was roughly the same for 

duplications and deletions and higher for duplication/deletion type CNVs. However 

when the relationship between accuracy of CNVs calls and CNV type was stratified by 

the number of CNV classes (Table 93), the results showed that CNVs involving 

duplications and deletion were less accurately measured than simple duplications and 

deletions when the number of CNV classes was greater than 3. 
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Correlation (r) Duplication Duplication/Deletion Deletion 
≥ 0.8 200 (48%) 144 (72%) 433 (49%) 
0.5 ≤ r < 0.8 53 20 141 
< 0.5 168 37 312 
Total 421 201 886 

Table 92: CNV count by CNV type and level of accuracy. 

The accuracy of copy number calls was  assessed as the correlation between copy 

numbers from aCGH and 1.2M. The percentages represent the corresponding 

proportions in each CNV type. 

 
Figure 32: Plot of accuracy of copy number calls by CNV type. 

The black lines on the boxplots are the medians and the black diamonds represent the 

statistical means. The extremities of the whiskers represent the minimum and maximum 

values. The corresponding summary statistics are shown. 
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Copy number classes CNV Type r ≥ 0.8 r < 0.8 Total count 
          

2  
Duplication 36 (32 %) 76 (68 %) 112 
Duplication/Deletion 6 (38 %) 10 (62 %) 16 
Deletion 89 (25 %) 269 (75 %) 358 

  486 
          

3  
Duplication 159 (56 %) 127 (44 %) 286 
Duplication/Deletion 136 (80 %) 34 (20 %) 170 
Deletion 332 (67 %) 167 (33 %) 499 

  955 
          

> 3  
Duplication 5 (22 %) 18 (78 %) 23 
Duplication/Deletion 2 (13 %) 13 (87 %) 15 
Deletion 12 (41 %) 17 (59 %) 29 

  67 

Table 93: CNV counts by accuracy and CNV type stratified by number of CNV copy 

number classes. 

The percentages show the proportion of CNVs called with high accuracy(r ≥ 0.8) and 

low accuracy (r<0.8) for each CNV type within each copy number class category. 

5.3.3.5. Influence of number of CNV copy number classes on the 
accuracy of copy number calls 

Thirty six percent of the 1610 CNVs analysed had two copy number classes, 60% had 

three classes and 4% had more than 3 classes. Sixty-five percent of the CNVs 

with3copy number classes had a high accuracy of calling on the 1.2M platform (r≥ 0.8); 

25% of CNVs with two copy number classes had a high accuracy and 28% of CNVs 

with a number of copy number classes greater than 3 had a high accuracy. Figure 33 

shows the difference in level of accuracy between CNVs by number of classes. The 

level of accuracy in 3-class CNVs (mean and median > 0.75) was markedly higher than 

that of CNVs with more than 3 classes; 2-class CNVs were measured with the lowest 

accuracy (69% of the 2-class CNVs were rare). The mean correlation was0.51 for CNVs 

with a number of classes greater than 3, but these CNVs represent only 4% of the 1610 

CNVs tested (Table 94). 
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Correlation (r) 2 Classes 3  Classes > 3 Classes 
≥ 0.8 143 (25%) 629 (65%) 19 (28%) 

0.5 ≤ r < 0.8 98 110 23 

< 0.5 337 226 25 

Total 578 965 67 

Table 94: CNV count by number of copy number classes and level of accuracy. 

The accuracy of copy number calls was assessed as the correlation between copy 

numbers called from aCGH and 1.2M. The percentages represent the corresponding 

proportions in each category of CNV copy number class. 

 

Figure 33: Plot of accuracy of copy number calls by copy number classes. 

The black lines on the boxplots are the medians and the black diamonds represent the 

statistical means. The extremities of the whiskers represent the minimum and maximum 

values. The corresponding summary statistics are shown. 

5.3.3.6. Influence of linkage disequilibrium with a HapMap SNP 
on the accuracy of copy number calls 

A measure of linkage disequilibrium with a HapMap SNP was available for 1581 

CNVs. Of these, 83% were in high linkage disequilibrium (linkage disequilibrium ≥ 

0.75) with a HapMap SNP. More than half (52%) of the 636 CNVs in weak linkage 
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disequilibrium (linkage disequilibrium< 0.5) with a HapMap SNP had a correlation ≥ 

0.5 between aCGH and 1.2M genotypes; this suggests that CNVs that are not well 

tagged by a HapMap SNP could be measured with relatively good accuracy on the 1.2M 

platform. Figure 34 shows that the mean and median correlations were ≥ 0.5 for the four 

levels of linkage disequilibrium (LD) considered and both the mean and the median 

increased with increasing LD. Table 95 shows an increasing proportion of CNVs with a 

correlation ≥ 0.8 as LD with a HapMap SNP increases. 

 
Figure 34: Plot of accuracy of copy number calls by level of LD with HapMap SNP. 

The black lines on the boxplots are the medians and the black diamonds represent the 

statistical means. The extremities of the whiskers represent the minimum and maximum 

values. The corresponding summary statistics are shown. 

Correlation (r) LD < 0.25 0.25 ≤ LD < 0.5 0.5 ≤ LD < 0.75 LD ≥ 0.75 
≥ 0.8 124 (29%) 93 (44%) 72 (51%) 502 (62%) 

0.5 ≤ r < 0.8 81 30 18 100 

< 0.5 220 88 51 202 

Total 425 211 141 804 

Table 95: CNV count by level of LD with HapMap SNP and level of accuracy. 

The accuracy of copy number calls was assessed as the correlation between copy 

numbers from aCGH and 1.2M. The percentages represent the corresponding 

proportions in the LD category. 
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5.3.4. ACCURACY OF COPY NUMBER CALLS FROM 
OLDER SNP GENOTYPING PLATFORMS 

5.3.4.1. Overlapping probes between Illumina 1.2M, 660, 610 and 
300 platforms 

Figure 35 shows the overlap of probes between 1.2M, ILM660K and ILM610K 

platforms. Each of the platforms contains SNP and CNVI probes but the name of some 

probes changed from one platform to another. The probe counts were obtained after 

mapping the positions and using one probe ID (the name of the probe on the 1.2M 

platform) for each SNP and CNVI probe. More than 99% of the probes (SNPs and 

CNVIs) on ILM660K were also on 1.2M and 90.6% of the probes (SNPs and CNVIs) 

on ILM610K were present on 1.2M.  

 

Figure 35: SNP and CNVI probes overlap in Illumina 1.2M, 660 and 610 platforms. 

 
Given the noticeable difference in the number of non-overlapping CNVI probes 

between ILM660K and ILM610K, I decided to analyse the accuracy of copy number 

measurements from both platforms data. 
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Figure 36 shows the SNP probe overlap between 1.2M and ILM300K platforms; 99% of 

probes on ILM300K were also on the 1.2M platform. ILM300K does not contain CNVI 

probes. 

 

Figure 36: SNP probes overlap in Illumina 1.2M and 300 platforms. 

The 1610 CNVs for which there was a gold standard were analysed to evaluate the 

accuracy of calls on ILM660K, ILM610K and ILM300K. Table 96 summarises the 

number of CNVs with and without probes within their boundaries on each of the three 

platforms. The older the platform, the larger the proportion of CNVs without probes 

within their boundaries; this observation is consistent with the lower probe density of 

older platforms. 

Platform CNVs with probes (SNPs and/or 
CNVIs) within their boundaries 

CNVs without probes within their 
boundaries 

1.2M 1610 0 

ILM660K 1553 57 
ILM610K 1351 259 
ILM300K 1110 500 

Table 96: Number of CNVs with and without probes within their boundaries. 

The figures in this table represent the number of CNVs among the 1610 CNVs for which 

there was a gold standard. 

 

The CNVs which did not have probes within their boundaries cannot be called from the 

SNP genotyping platforms; those CNVs were assigned a correlation coefficient of zero 

  825972 

Illumina 1.2M Illumina 300 

314680 3437 
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to reflect the inability to accurately measure the CNV on the relevant SNP genotyping 

platform.  

5.3.4.2. Accuracy of copy number calls from Illumina 660, 610 and 
300 

For each platform, CNVs were assigned a correlation coefficient of zero when 5% or 

more of all the samples presented missing intensities at one or more probes within the 

CNV boundaries (third QC criteria under section 5.3.2); the number of CNVs that met 

this criterion are reported in Table 97. Some CNVs that clustered when called from the 

1.2M data did not cluster when called using data from ILM660K, ILM610K and 

ILM300K; these CNVs were also assigned a correlation of 0 i.e. it was not possible to 

call them from those platforms; the counts for these CNVs are reported under Table 97.   

Platform 
CNVs where more than 5% of all samples 
have missing intensities at one or more 
probes 

CNVs that clustered with 1.2M 
data but not with this platform data 

1.2M 113 - 

ILM660K 97 1 
ILM610K 40 13 
ILM300K 11 13 

Table 97: Counts of CNVs excluded for meeting the above two QC criteria. 

All these CNVs were assigned a correlation coefficient of zero. 

The results of the evaluation of the accuracy of calls from each platform are reported in 

Table 98. For ILM660K, 49% of the 1610 CNVs tested had a correlation ≥ 0.8. Of the 

1553 CNVs which had SNP and/or CNVI probes within their boundaries in the 

ILM660K data, 1236 contained both SNP and CNVI probes. Thirty-eight percent of 

these CNVs had a correlation ≥ 0.8 when SNP probes alone were included in the 

analysis, 44% had a correlation ≥ 0.8 when CNVI probes alone were considered, and 

50% when SNP and CNVI probes were combined. As was observed for the 1.2M data, 

the accuracy on ILM660K was improved when SNP and CNVI probes were combined. 
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For ILM610K, there were no CNVI probes within the boundaries of the 1610 CNVs 

tested. Forty-six percent of the 1610CNVs tested had a correlation ≥ 0.5 and 31% had a 

correlation ≥ 0.8. This indicates that, overall (across the 1610 for which there was a gold 

standard), copy numbers were measured with a lower accuracy using probe intensity 

data from the ILM610K compared to using probe intensity data from 1.2M and 

ILM660K. 

For ILM300Kthere were no CNVI probes within the boundaries of the 1610 CNVs 

tested. Thirty-six percent of the 1610CNVs tested had a correlation ≥ 0.5 and 23% had a 

correlation ≥ 0.8. This suggests an overall lower accuracy of copy number calls when 

probe intensity data from ILM300K was used to measure CNVs, in comparison with 

1.2M, ILM660K and ILM610K. 

Correlation (r) 1.2M ILM660K ILM610K ILM300K 
≥ 0.8 791 (49%) 781 (49%) 499 (31%) 364 (23% 

0.5 ≤ r < 0.8 231 219 247 217 

< 0.5 588 610 864 1029 

Total count 1610 1610 1610 1610 

Table 98: CNV counts by level of accuracy and SNP platform. 

The accuracy of copy number calls was assessed as the correlation between copy 

numbers from aCGH and Illumina 1.2M, 660, 610 and 300 platforms based on all the 

probes and on the 1610 CNVs for which there was a gold standard. The percentages 

represent the corresponding proportions in the 1610 CNV tested. 

5.3.4.3. Comparing accuracy of copy number calls from Illumina 
1.2M, 660, 610 and 300 SNP platforms 

Figure 37 compares the four SNP genotyping platforms, investigated in this analysis, to 

assess the extent to which existing data from older platforms can be used to study 

CNVs. The CNVs that did not cluster in any of the platforms were assigned a 

correlation level of 0. Figure 37 shows a decreasing accuracy of copy number 

measurements from the latest platform included in this analysis (1.2M) to the oldest 
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(ILM300K). The accuracy was roughly the same for copy number calls from 1.2M and 

ILM660K data but markedly lower for ILM610K and ILM300K.  

 
Figure 37: Plot of accuracy by SNP genotyping platform. 

The plots are based on the 1610 CNVs for which there was a gold standard. The black 

lines on the boxplots are the medians and the black diamonds represent the statistical 

means. The extremities of the whiskers represent the minimum and maximum values. 

The corresponding summary statistics are shown. 

5.3.5. ESTIMATING THE IMPACT OF COPY NUMBER 
CALLS INACCURACY ON POWER 

Table 99 contains the relevant parameters used for the power and sample size 

calculations in ESPRESSO-forte. The measurement error of CNVR5101.1, r = 0.71, 

corresponded to a sensitivity of 0.72 and a specificity of 0.99.  All the parameters, 

except the sensitivity and specificity of the measurement of CNVR5101.1 and the 

outcome, were the same in all three scenarios detailed on page 193. So the differences 

between the power and sample size values calculated under the first scenario and those 
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calculated under the second and third scenarios were due to the measurement error on 

CNVR5101.1 (in scenario 2) and to measurement errors on the outcome and on 

CNVR5101.1 (in scenario 3).  

The power achieved was 0.86 under the first scenario (no measurement error i.e. r = 1) 

and 0.36 under the second scenario (r = 0.71). The measurement error on the 

determinant was responsible of the loss of more than half of the power that could be 

achieved in the absence of measurement error. The OR (estimated empirically) shrank 

from 1.47, under the first scenario, to 1.32 under the second scenario. The sample size 

required to achieve a power of 80% was 1820 cases and 7279 controls, under the first 

scenario (r =1) and 3565 cases and 14261 controls under the second scenario (r = 0.71). 

This means that the sample size required to achieve a power of 80% has to be increased 

by 96% to compensate for the loss of power caused by the measurement error on the 

genetic determinant.  

In the third scenario, in addition to the measurement error on the genotype of 

CNVR5101.1, there was also a measurement error on the outcome which was arbitrarily 

assumed to be measured with a sensitivity of 0.72 and a specificity of 0.99. The power 

decreased from 86% to 0%, the OR shrank from 1.47 to 1.1 and the initial sample size 

has to be multiplied by 19.2 to compensate for the loss of power resulting from the two 

measurements errors. 
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PARAMETERS SCENARIO 1 SCENARIO 2 SCENARIO 3 
Simulation and outcome parameters       

number of runs 1000 1000 1000 
number of cases 2000 2000 2000 
number of controls 8000 8000 8000 
outcome model binary binary binary 
disease prevalence 0.1 0.1 0.1 
p.value 1.00E-04 1.00E-04 1.00E-04 
power required 0.8 0.8 0.8 
sensitivity  of the assessment of outcome 1 1 0.72 
specificity of the assessment of outcome 1 1 0.99 
Genotype parameters       

genetic model binary binary binary 
MAF 0.05 0.05 0.05 
OR 1.5 1.5 1.5 
sensitivity 1 0.72 0.72 
specificity 1 0.99 0.99 
Results       

Power achieved with 2000 cases and 8000 controls 0.86 0.36 0 
Sample size required to achieve a power of  80% 
(cases/controls) 1820/7279 3565/14261 34919/139675 

Estimated OR 1.47 1.32 1.1 

Table 99: Parameters and results of the analysis 

The OR of CNVR5101.1 was arbitrarily set to 1.5. The results show power and sample 

size figures under the first scenario (no measurement error on both the outcome and 

determinant), under the second scenario (no measurement error on outcome but 

determinant measured with an error) and under third scenario (measurement errors on 

both outcome and determinant. 

5.4. DISCUSSION 

5.4.1. OVERVIEW, STRENGHTS AND 
WEAKNESESSES OF THE STUDY 

The power achieved by a genetic association study depends partially on the quality of 

the measurements of the genetic determinants of the trait of interest. If a CNV is used as 

genetic determinant in a genetic association study that uses CNV measurements from 

SNP genotyping platform data, it might be important to know how accurately the CNV 
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was measured from that data in order to take into account the level of measurement 

error and interpret the findings correctly.  

In this project, the accuracy of CNV measurements from four SNP genotyping 

platforms was evaluated by comparing copy numbers called from these platforms with 

copy numbers called, for the same individuals, from an array-CGH platform which can 

be considered as a gold standard in copy number genotyping. The results of the 

comparison, expressed as a level of correlation between copy number calls from the 

SNP platforms and the aCGH platform, indicate how well the CNVs were measured 

from the SNP platforms. 

CNVtools was used to determine the copy number statuses of the individuals. This 

algorithm allows for the tuning of some parameters to optimize the clustering of each 

CNV. However given the large number of CNVs to investigate in this project and the 

fact that CNVtools allows only for the analysis of one CNV at a time, it was necessary 

to automate the process. A script was written in R to use CNVtools in ‘batch mode’. 

This allowed for a considerable gain in efficiency but it was not possible to try all 

possible combinations of parameters to cluster appropriately each CNV. The copy 

number statuses of the individuals were determined based on the most likely copy 

number which was indicated by the highest posterior probability; so all the comparisons 

between copy numbers from SNP platforms and from aCGH were based on the most 

likely CNV genotype (copy numbers).  To verify that this approach was reasonable 

another strategy was used to assign copy numbers to individuals; in this strategy, the 

copy number statuses of individuals were determined based on all the posterior 

probabilities and not only on the highest probability. Reassuringly the results (see 

Appendix 4) of the comparisons between aCGH and 1.2M copy numbers carried out 

using CNV genotypes determined through this second strategy were similar to those 
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obtained when only the highest posterior probability was used to assign individuals to 

copy number classes. 

Information about the optimal CNVtools parameters for the set of CNVs that were 

studied was obtained from the WTCCC+ paper where available. When this information 

was not available the optimal parameters were chosen, through an iterative approach, as 

the combination of parameters that yields the highest accuracy (largest proportion of 

CNVs with high correlation) across all the CNVs. So the parameters used might not be 

the optimal ones for each CNV; some CNVs may have been better clustered using 

different parameters. Each of the 2600 clustering plots (one for each CNV), generated 

through the automated process and using the aCGH data, was visually inspected and the 

1610 CNVs that clustered appropriately and had correct posterior probabilities were 

considered to be those for which a gold standard measure was available. 

The set of individuals from the 1958 British Birth Cohort, from whom the aCGH and 

1.2M data was available for this analysis had not been genotyped on the Illumina 660, 

610 and 300 platforms. I generated datasets mimicking each of these platforms by 

thinning the available 1.2M platform data aiming to obtain a probe content identical to 

the older platforms. So, the variability in the level of accuracy between the SNP 

genotyping platforms investigated in this chapter reflects the difference in probe density 

between the platforms. There have been developments in the chemistry and other 

aspects of the genotyping technology between these platforms (including the ability to 

run “multiplex” assays across multiple samples simultaneously) that may not be fully 

reflected in these mimicked datasets.  

The measurement error on the genotype of a CNV, called from the Illumina 1.2M 

platform, was used in the ESPRESSO-forte algorithm to assess the impact of CNV call 
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inaccuracy on the statistical power of a hypothetical association study that investigates 

the association between the selected CNV and a binary outcome. This analysis 

illustrates how a CNV call accuracy estimated in this analysis can be used to analyse the 

effect on power, using the ESPRESSO version that was developed as part of this thesis. 

5.4.2. KEY FINDINGS 

5.4.2.1. Summary of the results 

The accuracy of copy number calls was measured as the level of correlation between 

copy numbers called from SNP genotyping platform data and from aCGH platform 

data. In the paragraphs below high accuracy refers to a correlation ≥ 0.8. 

The analysis of the accuracy of calls from the 1.2M platform dataset was carried out for 

the 1610 CNVs for which there was a gold standard set of copy number calls (section 

5.3.2).  The results of the analysis showed that 49% of the 1610 CNVs tested were 

measured with a high accuracy on the Illumina 1.2M platform. The accuracy was 

optimal when SNP and CNVI probes were combined compared to when these two types 

of probes were analysed separately.  

The accuracy of copy number callson the 1.2M platform decreased with increasing 

CNV length; 59% of the CNVs shorter than 3kb were measured with a high accuracy 

whilst this proportion was 50% for CNVs of between 3 and 22kb in length and 29% for 

CNVs longer than 22kb. However, a cross-tabulation of CNV frequency against CNV 

size (under Appendix 5) indicated that the accuracy of calls was not driven by CNV 

length alone; the proportion of CNVs measured with an accuracy r ≥ 0.8 under each 

CNV length category were not similar for the two frequency categories. For example, 

for CNVs shorter than 3kb, the majority (61%) of the common CNVs (MAF ≥ 0.05) 
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were measured with an accuracy r ≥0.8 whilst only 33% of rare CNVs (MAF < 0.05) 

were measured with the same level of accuracy; if the accuracy was driven by CNV 

length alone, the proportions observed under these two MAF categories would have 

been similar.  

Common CNVs (MAF > 0.05) were measured with a greater accuracy on the 1.2M 

platform than rare CNVs (MAF < 0.05); 58% of the common CNVs were measured 

with a high accuracy whilst only 28% of the rare CNVs were measured with the same 

level of accuracy. CNVs with 3 copy number classes were better called than CNVs with 

2 classes with respectively 65% and 25% of highly accurate calls for 3-class and 2-class 

CNVs. CNVs classified as duplications/deletions were genotyped more accurately on 

the 1.2M array than simple deletions or duplications; the respective proportions of 

CNVs called with a high accuracy in each of these types of variation were 72%, 49%, 

and 48%. CNVs reported by the WTCCC+ study as well tagged by HapMap SNPs were 

better called from the 1.2M platform; 62% of CNVs in high linkage disequilibrium (r2 ≥ 

0.75) with a HapMap SNP were measured with a high accuracy on the 1.2M platform. 

The accuracy increased with increasing level of linkage disequilibrium (LD) but even 

CNVs in low LD with HapMap SNPs were relatively well measured on the 1.2M 

platform: 44% of the CNVs with a level of LD between 0.25 and 0.5 (0.25 ≤ LD < 0.5) 

and 29% of the CNVs with a level of LD between 0.02 and 0.25 (0.02 ≤ LD < 0.25) 

were called with a high accuracy on the 1.2M platform 

The results of cross-tabulations between the CNV characteristics (Table 93 in section 

5.3.3.4 and Table 101 to Table 109 in Appendix 5) showed that the accuracy of calls 

was not driven by one CNV characteristic alone. I carried out chi-squared tests of 

independence to assess the correlation between the CNV characteristics considered in 

this project (CNV size, minor allele frequency, CNV type, number of classes and LD 
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with HapMap SNP). The results of the tests (reported in Table 110under Appendix 5) 

indicate that all the characteristics were significantly correlated with each other except 

CNV type and LD where the p.value was slightly greater than 0.05.  

The comparison of the accuracy of calls between Illumina 1.2M and three older SNP 

genotyping platforms (Illumina 660, 610 and 300) showed that 49% of the 1610 CNVs 

tested were measured with a high accuracy on the Illumina 1.2M whilst the proportions 

of CNVs measured with the same level of accuracy were respectively 49%, 31% and 

23% on the Illumina 660, 610and 300 platforms. These figures indicate that accuracy of 

copy number calls on Illumina 660 was roughly similar to that on 1.2M and that CNVs 

were less well measured on the two oldest platforms (Illumina 610 and 300) 

investigated in this analysis. On the 1.2M and 660 platforms, the accuracy of calls was 

higher when information from CNVI probes and SNP probes were combined.  

5.4.2.2. About the negative correlations between aCGH and 1.2M 
copy numbers 

A low correlation of between 0 and -0.3 can be expected to occur by chance; however 

17 (1%) of the 1610 CNVs analysed had a correlation lower than -0.3. In section 5.3.3, 

the correlation was calculated using one probe at time for CNVR551.3 which had the 

highest negative correlation; the results of this investigation showed that the correlation 

was not negative for all the probes. It was not possible to know, with the available data, 

if the eventual error that causes this occurs on the aCGH or the 1.2M data or whether if 

it is a characteristic of the CNV itself. So a negative correlation should be interpreted as 

an impossibility to determine the copy number statuses of individuals for the tested 

CNV. 
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5.4.2.3. About accuracy versus CNV characteristics on the 1.2M 
platform 

The observed trends between high accuracy and CNV characteristics should be 

carefully interpreted as it is not clear what characteristics are the best predictors of 

accuracy. As an illustration, when the accuracy was checked against CNV length (Table 

89) the results showed that shorter CNVs were better called than longer CNVs; but 

when these results were checked against CNV frequency (Table 109 under Appendix 5) 

it appeared that shorter CNVs were more accurately measured but that was only true for 

common CNVs; shorter CNVs were poorly measured when they were rare. 

Similar remarks can be made about the influence of the number of CNV classes on 

accuracy; CNVs with 3 copy number classes seemed more accurately measured than 

CNVs with 2 copy number classes, but here again the checks against the frequency 

indicate completely opposite observations for rare and common CNVs within that class 

category: among the 3-class CNVs, the common ones were well measured whilst the 

rare ones were poorly measured; this suggests that rare CNVs are measured with lower 

accuracy. Since 69% of the 2-class CNVs that were analysed were rare this can explain 

why the 2-class CNVs were less well measured. Furthermore the 2-class CNVs might 

be in fact 3-class CNVs where one class is missing: if the minor allele is rare, 

individuals homozygous for the minor allele will be even rarer and it will be as if only 

two classes exist (7, 154). 

Conrad et al found that duplications and CNVs involving both duplications and 

deletions were “more difficult” to genotype than deletions (17). In this analysis, when 

the accuracy of calls was checked against the types of variations it was observed that 

CNVs involving duplications and deletions were better called than simple deletions 

(Table 92). When the figures reported in Table 92 were stratified by the number of 
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CNV classes (Table 93), the conclusions did not change for simple deletions and 

duplications with deletions being slightly more accurately measured than duplications. 

But it appeared that actually CNVs involving duplications and deletions were less 

accurately measured than deletions when the number of classes was greater than 3 and 

this is in accordance with the observation of Conrad et al. Only 15 (7%) of the 201 

CNVs involving duplications and deletions had more than 3 classes; the lower 

proportion of complex CNVs in the subset that was analysed in this study could explain 

the higher accuracy reported in Table 92, for this CNV type. 

5.4.2.4. About the influence of probes on the accuracy of calls 

The accuracy of CNV calls from the Illumina 1.2M platform does not increase as the 

number of probes within the CNV increases (even when taking into account the overall 

CNV length); this suggests that some probes carry more genotype information than 

others. If the probes that carry most of the information are present then the copy 

numbers are measured with a relatively high accuracy even if there are only a limited 

number of probes. To investigate this, the level of accuracy was evaluated iteratively by 

removing one probe at a time and re-calculating correlation for one CNV 

(CNVR1063.1). The accuracy was markedly reduced when some probes were removed 

or remained unchanged when some other probes were excluded. For CNVR1063.1, the 

accuracy was r = 0.93 when all the probes were included, it decreased to r = 0.81 when 

the SNP probe rs10195936 was excluded but remained unchanged when SNP probe 

rs13003047 or CNVI probe cnvi0103164 were excluded. This suggests that rs10195936 

carries more copy number information than rs13003047 and cnvi0103164. Similar 

results were observed for the probes on the aCGH platform, some probes were more 

informative then others; for CNVR1063.1, probe 13325 carries more information than 
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probe 13334. This can explain why the accuracy of calls does not necessarily increase 

with increased number of probes. 

5.4.2.5. About the accuracy of calls by type of probe (SNP probe 
vs. CNVI probe) 

The proportion of CNVs measured with a high accuracy using CNVI probes alone was 

higher than that of SNP probes. This may be because CNVI probes are specifically 

designed to map CNVs. A difference in GC-content (the proportion of guanine and 

cytosine nucleotides) between SNP and CNVI probes might also explain the difference 

in accuracy; if SNP probes have larger GC-content the signal-to-noise ratio might be 

lower for SNP probes and the intensity used to determine the number of copies will then 

be less accurately measured (156). This is because if the GC content is high (> 55%), 

the denaturation of the DNA (i.e. separation of the two DNA strands to obtain single 

DNA strands), may not be complete making it impossible for the allele specific 

oligonucleotide to hybridise with the target DNA (see paragraph on SNP genotyping 

under section 1.2.3.1). The level of accuracy achieved when SNPs and CNVIs were 

combined was higher than when the probes were used separately; this suggests that 

SNPs and CNVIs do not carry the same type of information.  

5.4.2.6. About the comparison of the accuracy of calls on different 
SNP platforms 

The comparison of copy number calls accuracy across the four SNP genotyping 

platforms included in this analysis (results in section5.3.4) showed that platforms with a 

higher density of probes allow capture of more CNV genotype information and hence 

ensure a higher accuracy of calls, however, as mentioned in section 5.4.2.4, because 

some probes may carry more genotype information whilst others may increase the level 
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of noise, a large number of probes does not always improve the accuracy of calls. This 

could probably explain why ILM610 had a level of accuracy similar to that of 1.2M 

which has a higher probe density. In this analysis, the probe intensity data from older 

platforms was generated by thinning the intensity data from Illumina 1.2M, so the 

implicit assumption was that the platforms differ only by probe density. The technology 

evolved from one platform to another. So the inaccuracy of calls, on the three older 

platforms evaluated here represents the level of error that could be expected due to 

lower probe density alone. The true error on the earlier genotyping platforms might be 

higher than what was estimated in this project because the signal-to-noise ratio is lower 

in earlier platforms; due to improved technology and laboratory experience over time 

the latest platform have a larger signal-to-noise ratio. Nevertheless, the results are 

informative about the minimum level of error that should be expected if intensity data 

from Illumina 660, 610 and 300 were used to determine copy number statuses. 

5.4.3. RECOMMENDATIONS 

If intensity data from the Illumina 1.2M platform are to be used in a CNV association 

study and if a decision is to be made about what CNVs to measure, based on how well 

they can be called from that data, it is not advisable to use one CNV characteristic alone 

as indicator of how accurately the CNV can be called from the 1.2M intensity data. This 

is because the CNV characteristics analysed in this project were related and it is not 

clear which characteristics drive the accuracy of CNV measurements.  

The analysis in this chapter can inform about how accurately each of 1610 CNVs, for 

which there was a gold standard, was measured from each of the four SNP platforms 

analysed in this project. The results can be used by investigators as a guide to decide if a 

particular CNV can be measured accurately using intensity data from one of the four 
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Illumina platforms. The results can also be used as a guide to decide if it is worth 

calling a particular CNV from one of the four SNP platforms. However for a 

comprehensive study of all CNVs, new assays should be run for the CNVs that could 

not be called accurately from any of the four platforms.  

For a genome-wide CNV association study it is preferable to not use intensity data from 

the Illumina 610 and 300 platforms. This is because 69% and 77%, respectively, of the 

genotypes called from the Illumina 610 and Illumina 300 data were not accurately 

measured. For a candidate CNV association, any of the four SNP platforms could be 

used provided that the investigator chooses CNVs that were called accurately from the 

region of interest (the region to test the CNV association). If for a specific platform, 

none of the CNVs located in the particular region to test for association was measured 

accurately then that platform should not be used for the candidate CNV study. 

The findings of this analysis suggest that where a choice of platform is available for de 

novo CNV measurement it would be preferable to use a platform that has both SNP and 

CNVI probes and where existing datasets are being used then information from both 

SNP probes and CNVI probes should be used in CNV studies. 
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CHAPTER 6 

6. GENERAL CONCLUSION 

6.1. INTRODUCTION 

This thesis explores the key factors that influence power in large scale genetic 

association studies. As scientists, our control of statistical power depends mainly on the 

number of participants we choose to enrol into an analysis (sample size) and on the 

quality of the data and samples we decide to collect (7, 71). The first element of the 

work described in this thesis was therefore to develop a tool that enables for more 

realistic calculation of sample size by taking into account errors in outcome and 

exposure measures that alter the quality of the data. The ESPRESSO-forte power 

calculator developed in this thesis builds on an earlier version of the software which 

could not allow for many of the classes of analysis carried out in this thesis. The newly 

developed tool was subsequently used to explore the statistical power profile of an 

existing large cohort i.e. to estimate the minimum effect that could be detected by a 

study using the entire data generated by a large multi-centre Canadian cohort to 

investigate quantitative traits. The tool was also used to find out how errors and biases 

that relate to biobank procedures, for the collection and processing of biosamples, 

influence the power of the association studies that subsequently use that biobank data. 

Although, to date, most genetic association studies have primarily investigated single 

nucleotide polymorphisms, genome-wide association data are widely available from 

which the association between copy number variants and disease can be tested(15). The 

accuracy of CNV genotype assessment, using different SNP platforms, was explored to 

inform future studies that may use existing SNP platforms data to measure CNVs. By 
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choosing a platform that allows for the most accurate measurements, the investigator 

can improve the potential statistical power of his/her study. 

6.2. SUMMARY OF THE CHAPTERS 

The first chapter introduces some key concepts in genetics and genetic epidemiology 

that are centrally relevant to my thesis. It was essential to have a clear understanding of 

those concepts in order to undertake the analyses carried out in the thesis. The chapter 

ended with a graphical explanation on how effect size, sample size and type I error 

affect statistical power. 

The second chapter goes through the details of the development of ESPRESSO-forte. 

Most crucially, the algorithm allows for elements not taken into account in conventional 

calculators to be considered in the power and sample size calculations for stand-alone 

case-control and cohort studies and for case-control analyses nested in cohort studies. 

ESPRESSO-forte was implemented as an open source R package to allow for 

researchers proficient in the R programming language to use it in a flexible way and to 

access the code which they could eventually alter to answer scientific questions that 

require some modification to the downloadable version. Analyses can be run 

interactively using the web-based version of the software hosted within the P3G website. 

The influence of minor allele frequency, level of linkage disequilibrium between the 

observed and the causal variant and genetic model misspecification on power were 

explored in Chapter 2 after describing the building and implementation of the 

ESPRESSO-forte algorithm.  The development of ESPRESSO-forte enabled me to 

undertake the subsequent analyses carried out in chapter 3 and 4 and to explore the 

impact of CNV measurement accuracy on statistical power, in chapter 5.  
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The results of the analysis in chapter 3 answer a question raised by the Canadian 

Partnership for Tomorrow project (CPT); that is, what would be the power of this multi-

provincial cohort to study quantitative traits, relevant for cancer studies, given its likely 

final size of either 110000 or 180000 participants? For each of the chosen traits, the 

minimum detectable effect size was calculated under several biomedical scenarios. 

These power analyses demonstrated that CPT can provide a world leading platform for 

studying the etiological architecture of quantitative traits and for conducting exposure-

based studies with either of the two potential final sample sizes; but, all else being 

equal, 180000 participants would undoubtedly be more informative than 110000. 

However, consideration should only be given to increasing sample size provided it was 

first ensured that the phenotyping protocol (for outcomes and exposures) was fit-for-

purpose and would produce high quality data that could effectively be pooled – between 

provinces - across all of the component studies. This is because the gain of power 

obtained through larger sample sizes would be negated if errors related to outcome and 

exposure measurements are not minimized by a carefully developed protocol that limits 

measurement errors and ensures adequate harmonization to enable effective data sharing 

and pooling. 

The fourth chapter consists of an exploration of the UK Biobank protocols for the 

collection and storage of biosamples. The aim was to estimate the magnitude of the pre-

analytical variation i.e. “non-biological” variation introduced if the processing of the 

samples was delayed for up to 24 or 36 hours after their collection, and to investigate 

the effect of such variation on the power of association studies that then use these 

biobank data. The results showed that (1) the majority of the analytes investigated in my 

analysis, were stable over a period of 36 hours, (2) for some analytes, the concentration 

declines or increases over the same period of time but there was no heterogeneity in the 
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rate of decline or increase across the individuals; and (3)for some analytes, the 

concentration declines or increases over the same period of time with a significant 

heterogeneity in the rate of decline or increase across all the individuals. For the 

analytes that are stable, i.e. there is no significant change in concentration over the 

period of time between the collection of the sample and the processing (quantification 

of the analyte), there is no bias resulting from the delay in processing and it is perfectly 

acceptable to quantify the analytes at any time point within the processing time period. 

For the analytes for which there is a decline or increase in concentration but no 

heterogeneity in the rate of change across individuals, there will be a systematic bias if 

the samples are not processed at the same time point; a delay in processing however is 

acceptable if this delay is the same for all samples or if the difference in change of 

concentration is to be calibrated thereafter (if the samples are not processed at the same 

time point). If an analyte exhibits a change of concentration over time and a significant 

heterogeneity in the rate of change of concentration across individuals, the solution to 

avoid a systematic bias is to process all samples immediately after the samples 

collection as there will be a systematic bias with any delay even if all samples are 

processed at the same time point because the magnitude of the change in concentration 

will not be the same across the individuals. If the pre-analytical variation occurring due 

to delays in sample processing is ignored it affects adversely the power of the studies 

that use the data which may then not be well powered to detect existing association. 

Most genetic association studies undertaken to date have investigated the potential role 

of single nucleotide polymorphisms (SNPs) in causing disease, there are however an 

increasing number of studies that are now looking at the corresponding role of  copy 

number variants (CNVs). The accuracy of CNV measurements has not yet reached that 

of SNPs. In Chapter 5, the accuracy of CNV genotypes measured from some SNP 
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genotyping platforms was assessed. The results showed that the accuracy of a CNV 

measurement depends on the characteristics of the particular CNV to be assessed - a set 

of characteristics that are all correlated. Amongst the four contemporary SNP platforms 

investigated, the Illumina Infinium 1.2Mappeared, overall, to be the best platform to 

measure the particular set of CNVs investigated in this analysis but the Illumina 660 

platform also offers a good level of accuracy considering its lower probe density in 

comparison with Illumina 1.2M. These findings can inform future studies that plan to 

use SNP platforms data to call CNVs. 

6.3. FURTHER DEVELOPMENT WORK 

The documentation of the web-based ESPRESSO-forte has been updated to reflect the 

new elements of the algorithm. Likewise, the current graphical user interface (GUI), 

under the P3G website, needs now to be rebuilt to reflect the new features of the 

software. In ESPRESSO-forte, it is possible to model two genetic variants that are in 

linkage disequilibrium; such analysis can however be very time consuming particularly 

if the number of subjects to simulate is large. The run-time could be improved by 

writing the required function in a programming language such as C which is 

computationally more efficient.  

An extension of ESPRESSO-forte is currently being developed that would enable the 

design of a prospective analysis to be entered, the impact on expected statistical power 

to be generated, and appropriate modifications of meta-analysis weights to be derived. 

But none of this will be practicable unless, in keeping with the analysis carried out 

based on the UK Biobank biosamples, standard operating procedures are carefully 

thought through, well described and are freely available to biobank users on request. 
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With the current version of ESPRESSO-forte, it is not possible to carry out power 

calculations that precisely represent reality, when an analysis involves a large number of 

genetic variants. This is because ESPRESSO-forte allows for the modelling of up to two 

genetic exposures and two environment/life style exposures only. The reason that this is 

not seriously problematic is that it is often possible to undertake a perfectly valid 

analysis of key components of such an analysis (e.g. two SNPs in linkage 

disequilibrium) and it is only if the inferences based on those two SNPs in isolation 

would differ substantially from their equivalents if all SNPs were considered in totality 

that there would be problem. In many settings there is no substantive difference at all. 

For example, if a GWAS analysis deals sequentially with one million separate variant-

disease associations, it is perfectly acceptable to model one of those associations in 

isolation. On the other hand, there are some settings – for example involving the 

derivation of haplotypes and generation of inferences based up them – where individual 

SNPs cannot be considered alone (or even on a two-by-two basis incorporating linkage 

disequilibrium) and so the current ESPRESSO-forte approach is potentially restrictive. 

It is therefore desirable to extend the software by implementing additional methods that 

do enable the joint consideration of a large number of genetic variants. 

The current version of ESPRESSO-forte assumes independent observations and is 

hence unsuitable for directly estimating the power of analyses based on longitudinal or 

family data. Another useful extension would therefore be the incorporation of methods 

allowing for the correlation of observational units. 

6.4. FINAL CONCLUSIONS 

Many of the recent successes in genomic epidemiology – in particular the identification 

of replicable associations - have been achieved primarily through large sample sizes (7, 
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24, 154). This move to using much larger sample sizes has been critical, primarily 

because of the generally modest - or weak – effect of the genetic variants underlying 

these conditions. The work undertaken, in this thesis, confirms the vital importance of 

very large sample sizes in the investigation of the mechanisms of complex diseases. 

However, this work confirms that of others (24, 49, 157) in showing that a large sample 

size is not a panacea and that the gain of power obtained through increased number of 

participants can be jeopardised if the outcome and exposures data are of poor quality or 

if they cannot reasonably be pooled between different studies (7, 71, 72). This is 

because the biases and errors built into a dataset can cause a profound loss of power 

(18) and if data are simply too different to reasonably be pooled then the potential 

desirability of the consequent sample size increase becomes, in practice, irrelevant. 

It is therefore crucial to take into full account the uncertainty of outcome and exposure 

measurements, in the power analysis at the design stage of a study, to ensure that the 

probability of finding an existing true association is not overestimated. By substantially 

overestimating the power of a study, one might ultimately conclude that no association 

exists between an outcome and an exposure of interest whilst in actuality that 

association does exist but the analysis that was used had almost no real chance of 

detecting it. This not only leads to a failure to detect real effects but, in addition, 

because any form of statistical inference leads inevitably to a predictable proportion of 

false positives (associations that are declared as real when in fact they are not), 

widespread low power can lead directly to a situation in which most positive 

associations that are reported are false positives. This is reflected in a persistent failure 

to replicate and can lead to a serious waste of scientific resources. This consideration is 

not merely an esoteric possibility that might theoretically occur. Rather, it can strongly 

be argued to have been precisely the situation that pertained in genetic and genomic 
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epidemiology before successful projects such as the Wellcome Trust Case Control 

Consortium led to a step change in the average sample size of genetic association 

studies. The blunt truth of the power calculations undertaken using ESPRESSO-forte 

software provides a valuable reality check and thereby supports the move to more 

realistic power analysis and sample size calculation; the analyses in later chapters 

provide practical examples of applications of the software to real world scientific 

problems (chapters 3 and 4) and to a theoretical problem that undoubtedly exists 

(chapter 5). 

Finally, the large sample sizes required for the investigation of complex conditions are 

often achieved through pooling of data (meta-analysis) from different sources and 

platforms. Yet, these platforms (large cohorts and biobanks) have not always used the 

same standard operating procedures (SOPs) for collecting, transporting, storing and 

processing the data and samples from which key information are obtained. It is 

therefore important that studies develop protocols that minimize pre-analytical 

variability of both data and samples. In addition, we must develop and implement 

approaches to retrospective harmonization that can optimise the extraction of valid 

information across a series of legacy data sets to be pooled. In this regard, ESPRESSO-

forte can serve as a tool to promote effective harmonization endeavours by clearly 

demonstrating how many studies need to be brought together in order to answer a 

particular scientific question of interest. 



BIBLIOGRAPHY 
 

235 | P a g e  
 

BIBLIOGRAPHY 

7. BIBLIOGRAPHY 
1. Who/Fao. Diet, Nutrition, and the Prevention of Chronic Diseases. WHO/FAO; 
2009. 

2. Burton PR, Tobin MD, Hopper JL. Key concepts in genetic epidemiology. 
Lancet 2005 Sep 10-16;366(9489): 941-51. 

3. Gibson G. Decanalization and the origin of complex disease. Nature 

reviewsGenetics 2009 Feb;10(2): 134-40. 

4. Davey Smith G, Ebrahim S, Lewis S, Hansell AL, Palmer LJ, Burton PR. 
Genetic epidemiology and public health: hope, hype, and future prospects. Lancet 2005 
Oct 22-28;366(9495): 1484-98. 

5. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of 
complex diseases. Nature 2009 Oct 8;461(7265): 747-53. 

6. Palmer LJ, Cardon LR. Shaking the tree: mapping complex disease genes with 
linkage disequilibrium. Lancet 2005 Oct 1;366(9492): 1223-34. 

7. Burton PR, Hansell AL, Fortier I, et al. Size matters: just how big is BIG?: 
Quantifying realistic sample size requirements for human genome epidemiology. 
International journal of epidemiology 2009 Feb;38(1): 263-73. 

8. Pearson TA, Manolio TA. How to interpret a genome-wide association study. 
JAMA : the journal of the American Medical Association 2008 Mar 19;299(11): 1335-
44. 

9. Hey J. What's so hot about recombination hotspots? PLoS biology 2004 
Jun;2(6): e190. 

10. Gu W, Zhang F, Lupski JR. Mechanisms for human genomic rearrangements. 
PathoGenetics 2008 Nov 3;1(1): 4. 

11. International HapMap C, Frazer KA, Ballinger DG, et al. A second generation 
human haplotype map of over 3.1 million SNPs. Nature 2007 Oct 18;449(7164): 851-
61. 

12. Redon R, Ishikawa S, Fitch KR, et al. Global variation in copy number in the 
human genome. Nature 2006 Nov 23;444(7118): 444-54. 

13. Poplawski T, Stoczynska E, Blasiak J. Non-homologous DNA end joining--new 
proteins, new functions, new mechanisms. Postepy biochemii 2009;55(1): 36-45. 

14. Illumina Inc. Genome-Wide DNA analysis BeadChips.  2010  [cited 2011 
08.09.2011]; Available from: 
http://www.illumina.com/Documents/products/datasheets/datasheet_infiniumhd.pdf 

http://www.illumina.com/Documents/products/datasheets/datasheet_infiniumhd.pdf


BIBLIOGRAPHY 
 

236 | P a g e  
 

15. Wain LV, Armour JA, Tobin MD. Genomic copy number variation, human 
health, and disease. Lancet 2009 Jul 25;374(9686): 340-50. 

16. McCarroll SA, Kuruvilla FG, Korn JM, et al. Integrated detection and 
population-genetic analysis of SNPs and copy number variation. Nature genetics 2008 
Oct;40(10): 1166-74. 

17. Conrad DF, Pinto D, Redon R, et al. Origins and functional impact of copy 
number variation in the human genome. Nature 2009 Oct 7. 

18. Cordell HJ, Clayton DG. Genetic association studies. Lancet 2005 Sep 24-
30;366(9491): 1121-31. 

19. Lewontin RC. On measures of gametic disequilibrium. Genetics 1988 
Nov;120(3): 849-52. 

20. Lewontin RC. The Interaction of Selection and Linkage. I. General 
Considerations; Heterotic Models. Genetics 1964 Jan;49(1): 49-67. 

21. Gaut BS, Long AD. The lowdown on linkage disequilibrium. The Plant Cell 

2003 Jul;15(7): 1502-6. 

22. Ito T, Chiku S, Inoue E, et al. Estimation of haplotype frequencies, linkage-
disequilibrium measures, and combination of haplotype copies in each pool by use of 
pooled DNA data. American Journal of Human Genetics 2003 Feb;72(2): 384-98. 

23. Altshuler D, Hirschhorn JN, Klannemark M, et al. The common PPARgamma 
Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 

2000 Sep;26(1): 76-80. 

24. Wellcome Trust Case Control Consortium. Genome-wide association study of 
14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007 Jun 
7;447(7145): 661-78. 

25. Repapi E, Sayers I, Wain LV, et al. Genome-wide association study identifies 
five loci associated with lung function. Nat Genet 2010 Jan;42(1): 36-44. 

26. McCarroll SA, Huett A, Kuballa P, et al. Deletion polymorphism upstream of 
IRGM associated with altered IRGM expression and Crohn's disease. Nature genetics 

2008 Sep;40(9): 1107-12. 

27. Nakajima T, Kaur G, Mehra N, Kimura A. HIV-1/AIDS susceptibility and copy 
number variation in CCL3L1, a gene encoding a natural ligand for HIV-1 co-receptor 
CCR5. Cytogenetic and genome research 2008;123(1-4): 156-60. 

28. Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C. Influence of 
cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, 
pharmacoepigenetic and clinical aspects. Pharmacology & therapeutics 2007 
Dec;116(3): 496-526. 

29. Morton NE. Outline of Genetic Epidemiology. New York: S. Karger; 1982. 

30. Didelez V, Sheehan N. Mendelian randomization as an instrumental variable 
approach to causal inference. Stat Methods Med Res 2007;16(4): 309-30. 



BIBLIOGRAPHY 
 

237 | P a g e  
 

31. Smith GD, Ebrahim S. Mendelian randomization: prospects, potentials, and 
limitations. International journal of epidemiology 2004 Feb;33(1): 30-42. 

32. Smith GD, Lawlor DA, Harbord R, Timpson N, Day I, Ebrahim S. Clustered 
environments and randomized genes: a fundamental distinction between conventional 
and genetic epidemiology. PLoS medicine 2007 Dec;4(12): e352. 

33. Risch N, Merikangas K. The future of genetic studies of complex human 
diseases. Science (New York, NY) 1996 Sep 13;273(5281): 1516-7. 

34. Elston R, Olston J, Palmer L. Biostatistical Genetics and Genetic Epidemiology. 
UK: John wiley & Sons Ltd; 2003. 

35. Armitage P, Berry G, Matthews JNS. Statistical Methods in Medical Research. 
USA: Blackwell Science Ltd; 2002. 

36. McCullagh P, Nelder JA. Generalized Linear Models. USA: CHAPMAN & 
HALL/CRC; 1989. 

37. Barrett JH, Sheehan NA, Cox A, Worthington J, Cannings C, Teare MD. Family 
based studies and genetic epidemiology: theory and practice. Human heredity 

2007;64(2): 146-8. 

38. Thomas DC, Witte JS. Point: population stratification: a problem for case-
control studies of candidate-gene associations? Cancer epidemiology, biomarkers & 

prevention : a publication of the American Association for Cancer Research, 

cosponsored by the American Society of Preventive Oncology 2002 Jun;11(6): 505-12. 

39. Hattersley AT, McCarthy MI. What makes a good genetic association study? 
Lancet 2005 Oct 8;366(9493): 1315-23. 

40. Burton PR. Helping Doctors to Draw Appropriate Inferences from the Analysis 
of Medical Studies. Statistics in medicine 1994 Sep 15;13(17): 1699-713. 

41. Burton PR, Gurrin LC, Campbell MJ. Clinical significance not statistical 
significance: a simple Bayesian alternative to p values. J Epidemiol Commun H 1998 
May;52(5): 318-23. 

42. Swinscow TD, Campbell MJ. Statistics at Square One. London: BMJ Books; 
2002. 

43. Rothman KJ. Epidemiology, An Introduction. New York: Oxford university 
Press, Inc.; 2002. 

44. Grunkemeier GL, Jin R. Power and sample size: how many patients do I need? 
The Annals of Thoracic Surgery 2007 Jun;83(6): 1934-9. 

45. Lenth RV. Some Practical Guidelines for Effective Sample Size Determination. 
The American Statistician 2001;55(N/A): 187-8-93. 

46. Schultz KF, Grimes DA. Sample size calculations in randomised trials: 
mandatory and mystical. Lancet 2005;365(N/A): 1348-9;50;51;52;53. 



BIBLIOGRAPHY 
 

238 | P a g e  
 

47. Seo J, Gordish-Dressman H, Hoffman EP. An interactive power analysis tool for 
microarray hypothesis testing and generation. Bioinformatics (Oxford, England) 2006 
Apr 1;22(7): 808-14. 

48. Spencer CC, Su Z, Donnelly P, Marchini J. Designing genome-wide association 
studies: sample size, power, imputation, and the choice of genotyping chip. PLoS 

genetics 2009 May;5(5): e1000477. 

49. Wong MY, Day NE, Luan JA, Chan KP, Wareham NJ. The detection of gene-
environment interaction for continuous traits: should we deal with measurement error 
by bigger studies or better measurement? International journal of epidemiology 2003 
Feb;32(1): 51-7. 

50. Ihaka R. R: Past and future history. Comp Sci Stat 1998;30: 392-6. 

51. Wunsch H, Linde-Zwirble WT, Angus DC. Methods to adjust for bias and 
confounding in critical care health services research involving observational data. 
Journal of critical care 2006 Mar;21(1): 1-7. 

52. Grimes DA, Schulz KF. Compared to what? Finding controls for case-control 
studies. Lancet 2005 Apr 16-22;365(9468): 1429-33. 

53. Richardson DB. An incidence density sampling program for nested case-control 
analyses. Occup Environ Med 2004 Dec;61(12): e59. 

54. Bland GM, Altman DG. Statistics notes: Matching. BMJ 1994;309(NK): 1128-. 

55. Sorensen ST, Gillman MW. Matching in case-control studies. BMJ 

1994;309(NK): 1128-. 

56. Clayton D, Hills M. Statistical Models in Epidemiology. New York: Oxford 
Science Publications; 1993. 

57. Zhang J, Yu KF. What's the relative risk? A method of correcting the odds ratio 
in cohort studies of common outcomes. JAMA : the journal of the American Medical 

Association 1998 Nov 18;280(19): 1690-1. 

58. Kuk AYC, Cheng YW. The Monte Carlo Newton-Raphson algorithm. J Stat 

Comput Sim 1997;59(3): 233-50. 

59. Rothman KJ, Greenland S, Lash L. Modern Epidemiology. Philadelphia, PA 
19106 USA: LIPPINCOTT WILLIAMS & WILKINS; 2008. 

60. Greenland S. Tests for interaction in epidemiologic studies: a review and a study 
of power. Statistics in medicine 1983 Apr-Jun;2(2): 243-51. 

61. Marshall SW. Power for tests of interaction: effect of raising the Type I error 
rate. Epidemiologic perspectives & innovations : EP+I 2007 Jun 19;4: 4. 

62. Altman DG, Bland JM. Diagnostic tests. 1: Sensitivity and specificity. BMJ 

(Clinical research ed) 1994 Jun 11;308(6943): 1552. 

63. Motulsky H. Intuitive Biostatistics. New York: Oxford university Press, Inc.; 
1995. 



BIBLIOGRAPHY 
 

239 | P a g e  
 

64. Carvalho BS, Louis TA, Irizarry RA. Quantifying uncertainty in genotype calls. 
Bioinformatics 2010 January 15, 2010;26(2): 242-9. 

65. Montana G. HapSim: a simulation tool for generating haplotype data with pre-
specified allele frequencies and LD coefficients. Bioinformatics 2005 Dec 1;21(23): 
4309-11. 

66. Falconer DS. The inheritance of liability to certain diseases, estimated from the 
incidence among relatives. Annals of human genetics 1965;29: 51-71. 

67. Hopper JL. Variance components for statistical genetics: applications in medical 
research to characteristics related to human diseases and health. Stat Methods Med Res 

1993;2(3): 199-223. 

68. Khoury MJ, Beaty TH, Cohen BH. Fundamentals of Genetic Epidemiology. 
New York: Oxford University Press, Inc.; 1993. 

69. Todorov AA, Suarez BK. Liability of model.  Biostatistical Genetics and 

Genetic Epidemiology. Chichester: John Wiley & Sons; 2002. p. 430-5. 

70. Borugian MJ, Robson P, Fortier I, et al. The Canadian Partnership for 
Tomorrow Project: building a pan-Canadian research platform for disease prevention. 
Can Med Assoc J 2010 Aug 10;182(11): 1197-201. 

71. Burton P, Fortier I, Deschenes M, Hansell A, Palmer L. Biobanks and Biobank 
Harmonization. In: Palmer l, Burton P, Davey Smith G, editors. An Introduction to 

Genetic Epidemiology Bristol: Policy Press; 2011. 

72. Burton P, Fortier I, Knoppers B. The Global Emergence of Epidemiological 
Biobanks; Opportunities and Challenges. Building the evidence for using genetic 
information to improve health and prevent disease. In: Khoury M, Gwinn M, Bradley L, 
Little J, Higgins J, Ioannidis J, editors. Human Genome Epidemiology (Second Edition). 
New York: Oxford University Press; 2010. 

73. Burton PR, Clayton DG, Cardon LR, et al. Association scan of 14,500 
nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet 

2007 Nov;39(11): 1329-37. 

74. Easton DF, Pooley KA, Dunning AM, et al. Genome-wide association study 
identifies novel breast cancer susceptibility loci. Nature 2007;447(17529967): 1087-93. 

75. Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO 
gene is associated with body mass index and predisposes to childhood and adult obesity. 
Science 2007 May 11;316(5826): 889-94. 

76. Hindorff LA, Sethupathy P, Junkins HA, et al. Potential etiologic and functional 
implications of genome-wide association loci for human diseases and traits. 
Proceedings of the National Academy of Sciences of the United States of America 2009 
Jun 9;106(23): 9362-7. 

77. Newton-Cheh C, Eijgelsheim M, Rice KM, et al. Common variants at ten loci 
influence QT interval duration in the QTGEN Study. Nat Genet 2009 Apr;41(4): 399-
406. 



BIBLIOGRAPHY 
 

240 | P a g e  
 

78. Newton-Cheh C, Johnson T, Gateva V, et al. Genome-wide association study 
identifies eight loci associated with blood pressure. Nature Genetics 2009 Jun;41(6): 
666-76. 

79. Saxena R, Voight BF, Lyssenko V, et al. Genome-wide association analysis 
identifies loci for type 2 diabetes and triglyceride levels. Science 2007;316(17463246): 
1331-6. 

80. Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study 
of type 2 diabetes in Finns detects multiple susceptibility variants. Science 

2007;316(17463248): 1341-5. 

81. Stacey SN, Manolescu A, Sulem P, et al. Common variants on chromosomes 
2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat 

Genet 2007 Jul;39(7): 865-9. 

82. Zeggini E, Weedon MN, Lindgren CM, et al. Replication of genome-wide 
association signals in UK samples reveals risk loci for type 2 diabetes. Science 

2007;316(17463249): 1336-41. 

83. CARTaGENE. Cartagene, the world within you.  2008  [cited 2012 23.07]; 
Available from: 
http://www.cartagene.qc.ca/index.php?option=com_content&task=view&id=2&Itemid=
60 

84. Franklin SS, Gustin Wt, Wong ND, et al. Hemodynamic patterns of age-related 
changes in blood pressure. The Framingham Heart Study. Circulation 1997 Jul 1;96(1): 
308-15. 

85. Gatzka CD, Cameron JD, Kingwell BA, Dart AM. Relation between coronary 
artery disease, aortic stiffness, and left ventricular structure in a population sample. 
Hypertension 1998 Sep;32(3): 575-8. 

86. Hirai T, Sasayama S, Kawasaki T, Yagi S. Stiffness of systemic arteries in 
patients with myocardial infarction. A noninvasive method to predict severity of 
coronary atherosclerosis. Circulation 1989 Jul;80(1): 78-86. 

87. Nichols WW, Pepine CJ. Ventricular/vascular interaction in health and heart 
failure. Comprehensive therapy 1992 Jul;18(7): 12-9. 

88. Benetos A, Adamopoulos C, Bureau JM, et al. Determinants of accelerated 
progression of arterial stiffness in normotensive subjects and in treated hypertensive 
subjects over a 6-year period. Circulation 2002 Mar 12;105(10): 1202-7. 

89. Laurent S, Katsahian S, Fassot C, et al. Aortic stiffness is an independent 
predictor of fatal stroke in essential hypertension. Stroke 2003 May;34(5): 1203-6. 

90. Wilkinson IB, Prasad K, Hall IR, et al. Increased central pulse pressure and 
augmentation index in subjects with hypercholesterolemia. Journal of the American 

College of Cardiology 2002;39(11897443): 1005-11. 

91. Blacher J, Guerin AP, Pannier B, Marchais SJ, Safar ME, London GM. Impact 
of aortic stiffness on survival in end-stage renal disease. Circulation 

1999;99(10318666): 2434-9. 

http://www.cartagene.qc.ca/index.php?option=com_content&task=view&id=2&Itemid=60
http://www.cartagene.qc.ca/index.php?option=com_content&task=view&id=2&Itemid=60


BIBLIOGRAPHY 
 

241 | P a g e  
 

92. Safar ME, London GM, Plante GE. Arterial stiffness and kidney function. 
Hypertension 2004 Feb;43(2): 163-8. 

93. McEniery CM, Yasmin, McDonnell B, et al. Central pressure: variability and 
impact of cardiovascular risk factors: the Anglo-Cardiff Collaborative Trial II. 
Hypertension 2008 Jun;51(6): 1476-82. 

94. Kestenbaum B, Rudser KD, Shlipak MG, et al. Kidney function, 
electrocardiographic findings, and cardiovascular events among older adults. Clinical 

journal of the American Society of Nephrology : CJASN 2007 May;2(3): 501-8. 

95. Tavernier R, Jordaens L, Haerynck F, Derycke E, Clement DL. Changes in the 
QT interval and its adaptation to rate, assessed with continuous electrocardiographic 
recordings in patients with ventricular fibrillation, as compared to normal individuals 
without arrhythmias. European heart journal 1997 Jun;18(6): 994-9. 

96. Barr CS, Naas A, Freeman M, Lang CC, Struthers AD. QT dispersion and 
sudden unexpected death in chronic heart failure. Lancet 1994 Feb 5;343(8893): 327-9. 

97. Onysko J, Maxwell C, Eliasziw M, Zhang JX, Johansen H, Campbell NR. Large 
increases in hypertension diagnosis and treatment in Canada after a healthcare 
professional education program. Hypertension 2006 Nov;48(5): 853-60. 

98. Mo F, Pogany LM, Li FC, Morrison H. Prevalence of diabetes and 
cardiovascular comorbidity in the Canadian Community Health Survey 2002-2003. 
TheScientificWorldJournal 2006;6: 96-105. 

99. Pauwels RA, Buist AS, Calverley PM, Jenkins CR, Hurd SS. Global strategy for 
the diagnosis, management, and prevention of chronic obstructive pulmonary disease. 
NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) 
Workshop summary. American journal of respiratory and critical care medicine 2001 
Apr;163(5): 1256-76. 

100. Schunemann HJ, Dorn J, Grant BJ, Winkelstein W, Jr., Trevisan M. Pulmonary 
function is a long-term predictor of mortality in the general population: 29-year follow-
up of the Buffalo Health Study. Chest 2000 Sep;118(3): 656-64. 

101. Hole DJ, Watt GC, Davey-Smith G, Hart CL, Gillis CR, Hawthorne VM. 
Impaired lung function and mortality risk in men and women: findings from the 
Renfrew and Paisley prospective population study. BMJ 1996;313(8819439): 711-5. 

102. Eberly LE, Ockene J, Sherwin R, Yang L, Kuller L. Pulmonary function as a 
predictor of lung cancer mortality in continuing cigarette smokers and in quitters. Int J 

Epidemiol 2003 Aug;32(4): 592-9. 

103. Mussolino ME, Madans JH, Gillum RF. Bone mineral density and mortality in 
women and men: the NHANES I epidemiologic follow-up study. Ann Epidemiol 2003 
Nov;13(10): 692-7. 

104. Lochmuller EM, Zeller JB, Kaiser D, et al. Correlation of femoral and lumbar 
DXA and calcaneal ultrasound, measured in situ with intact soft tissues, with the in 
vitro failure loads of the proximal femur. Osteoporos Int 1998;8(10326066): 591-8. 



BIBLIOGRAPHY 
 

242 | P a g e  
 

105. Gregg EW, Kriska AM, Salamone LM, et al. The epidemiology of quantitative 
ultrasound: a review of the relationships with bone mass, osteoporosis and fracture risk. 
Osteoporos Int 1997;7(9166387): 89-99. 

106. Diaz-Guerra GM, Gil-Fraguas L, Jodar E, et al. Quantitative ultrasound of the 
calcaneus in long-term liver or cardiac transplantation patients. Journal of clinical 

densitometry : the official journal of the International Society for Clinical Densitometry 

2006 Oct-Dec;9(4): 469-74. 

107. Lim YW, Chan L, Lam KS. Broadband ultrasound attention reference database 
for southeast Asian males and females. Annals of the Academy of Medicine, Singapore 

2005 Oct;34(9): 545-7. 

108. Funke M, Kopka L, Vosshenrich R, et al. Broadband ultrasound attenuation in 
the diagnosis of osteoporosis: correlation with osteodensitometry and fracture. 
Radiology 1995 Jan;194(1): 77-81. 

109. Gale CR, Martyn CN, Cooper C, Sayer AA. Grip strength, body composition, 
and mortality. Int J Epidemiol 2007 Feb;36(1): 228-35. 

110. Ruiz JR, Sui X, Lobelo F, et al. Association between muscular strength and 
mortality in men: prospective cohort study. BMJ 2008;337(18595904). 

111. Rantanen T, Guralnik JM, Foley D, et al. Midlife hand grip strength as a 
predictor of old age disability. JAMA 1999;281(10022113): 558-60. 

112. Valentini L, Schaper L, Buning C, et al. Malnutrition and impaired muscle 
strength in patients with Crohn's disease and ulcerative colitis in remission. Nutrition 

2008 Jul-Aug;24(7-8): 694-702. 

113. Allison MA, Michael Wright C. Body morphology differentially predicts 
coronary calcium. International journal of obesity and related metabolic disorders : 

journal of the International Association for the Study of Obesity 2004 Mar;28(3): 396-
401. 

114. Hu G, Tuomilehto J, Silventoinen K, Sarti C, Mannisto S, Jousilahti P. Body 
mass index, waist circumference, and waist-hip ratio on the risk of total and type-
specific stroke. Archives of internal medicine 2007 Jul 9;167(13): 1420-7. 

115. Office of Nutrition Policy and Promotion HC. Canadian Guidelines for Body 
Weight Classification in Adults. Ottawa: Health Canada Publications Centre; 2003. 

116. Ribeiro-Filho FF, Faria AN, Azjen S, Zanella MT, Ferreira SR. Methods of 
estimation of visceral fat: advantages of ultrasonography. Obesity research 2003 
Dec;11(12): 1488-94. 

117. Schreiner PJ, Terry JG, Evans GW, Hinson WH, Crouse JR, Heiss G. Sex-
specific associations of magnetic resonance imaging-derived intra-abdominal and 
subcutaneous fat areas with conventional anthropometric indices. The Atherosclerosis 
Risk in Communities Study. Am J Epidemiol 1996;144(8712190): 335-45. 

118. Lean ME, Han TS, Seidell JC. Impairment of health and quality of life in people 
with large waist circumference. Lancet 1998;351(9525361): 853-6. 



BIBLIOGRAPHY 
 

243 | P a g e  
 

119. Zhu S, Wang Z, Heshka S, Heo M, Faith MS, Heymsfield SB. Waist 
circumference and obesity-associated risk factors among whites in the third National 
Health and Nutrition Examination Survey: clinical action thresholds. Am J Clin Nutr 

2002 Oct;76(4): 743-9. 

120. Czernichow S, Bertrais S, Oppert JM, et al. Body composition and fat repartition 
in relation to structure and function of large arteries in middle-aged adults (the 
SU.VI.MAX study). Int J Obes (Lond) 2005 Jul;29(7): 826-32. 

121. Donato GB, Fuchs SC, Oppermann K, Bastos C, Spritzer PM. Association 
between menopause status and central adiposity measured at different cutoffs of waist 
circumference and waist-to-hip ratio. Menopause 2006 Mar-Apr;13(2): 280-5. 

122. Chen Y, Rennie D, Cormier YF, Dosman J. Waist circumference is associated 
with pulmonary function in normal-weight, overweight, and obese subjects. Am J Clin 

Nutr 2007 Jan;85(1): 35-9. 

123. Evans DL, Charney DS. Mood disorders and medical illness: a major public 
health problem. Biological psychiatry 2003 Aug 1;54(3): 177-80. 

124. Kessler RC, Ormel J, Demler O, Stang PE. Comorbid mental disorders account 
for the role impairment of commonly occurring chronic physical disorders: results from 
the National Comorbidity Survey. Journal of occupational and environmental medicine 

/ American College of Occupational and Environmental Medicine 2003 Dec;45(12): 
1257-66. 

125. Vasiliadis HM, Lesage A, Adair C, Wang PS, Kessler RC. Do Canada and the 
United States differ in prevalence of depression and utilization of services? Psychiatr 

Serv 2007 Jan;58(1): 63-71. 

126. Blumenthal JA. Depression and coronary heart disease: association and 
implications for treatment. Cleveland Clinic journal of medicine 2008 Mar;75 Suppl 2: 
S48-53. 

127. Carney RM, Freedland KE, Steinmeyer B, et al. Depression and five year 
survival following acute myocardial infarction: a prospective study. Journal of affective 

disorders 2008 Jul;109(1-2): 133-8. 

128. Jiang W. Impacts of depression and emotional distress on cardiac disease. 
Cleveland Clinic journal of medicine 2008 Mar;75 Suppl 2: S20-5. 

129. Potyralska MM, Krawczyk AK. [Depression in patients with type 2 diabetes 
mellitus--clinical and therapeutical implications]. Wiad Lek 2007;60(18350720): 449-
53. 

130. Sui X, Church TS, Meriwether RA, Lobelo F, Blair SN. Uric acid and the 
development of metabolic syndrome in women and men. Metabolism: clinical and 

experimental 2008 Jun;57(6): 845-52. 

131. Nan H, Qiao Q, Soderberg S, et al. Serum uric acid and components of the 
metabolic syndrome in non-diabetic populations in Mauritian Indians and Creoles and 
in Chinese in Qingdao, China. Metabolic syndrome and related disorders 2008 
Mar;6(1): 47-57. 



BIBLIOGRAPHY 
 

244 | P a g e  
 

132. Brown JR, Cochran RP, Dacey LJ, et al. Perioperative increases in serum 
creatinine are predictive of increased 90-day mortality after coronary artery bypass graft 
surgery. Circulation 2006 Jul 4;114(1 Suppl): I409-13. 

133. Barrett JC, Cardon LR. Evaluating coverage of genome-wide association 
studies. Nat Genet 2006;38(16715099): 659-62. 

134. Dyer AR, Elliott P, Shipley M. Urinary electrolyte excretion in 24 hours and 
blood pressure in the INTERSALT Study. II. Estimates of electrolyte-blood pressure 
associations corrected for regression dilution bias. The INTERSALT Cooperative 
Research Group. Am J Epidemiol 1994;139(8166144): 940-51. 

135. Genomics PPPi. The Biobank Lexicon.  2005  [cited 2011 29.12.2011]; 
Available from: http://p3g.org/ 

136. Holland NT, Smith MT, Eskenazi B, Bastaki M. Biological sample collection 
and processing for molecular epidemiological studies. Mutation research 2003 
Jun;543(3): 217-34. 

137. Bowen RA, Hortin GL, Csako G, Otanez OH, Remaley AT. Impact of blood 
collection devices on clinical chemistry assays. Clin Biochem 2010 Jan;43(1-2): 4-25. 

138. Hallmans G, Vaught JB. Best practices for establishing a biobank. Methods in 

molecular biology 2011;675: 241-60. 

139. Lehmann S, Roche S, Allory Y, et al. Preanalytical guidelines for clinical 
proteomics investigation of biological fluids. Annales de Biologie Clinique 2009 Nov-
Dec;67(6): 629-39. 

140. Vaught JB. Blood collection, shipment, processing, and storage. Cancer 

epidemiology, biomarkers & prevention : a publication of the American Association for 

Cancer Research, cosponsored by the American Society of Preventive Oncology 2006 
Sep;15(9): 1582-4. 

141. Public Population Project in G. P3G Observatory - Lexicon. Public Population 
Project in Genomics; 2005. 

142. Hallmans G, Vaught JB. Best practices for establishing a biobank. Methods in 

molecular biology (Clifton, NJ);675: 241-60. 

143. International Society for B, Environmental R. ISBER Best Practices For 
Repositories. ISBER; 2009. 

144. Public Population Project in G. Sample Collection and Processing. Public 
Population Project in Genomics; 2009. 

145. Clark S, Youngman LD, Palmer A, Parish S, Peto R, Collins R. Stability of 
plasma analytes after delayed separation of whole blood: implications for 
epidemiological studies. International journal of epidemiology 2003 Feb;32(1): 125-30. 

146. BioSHARE-EU. Biobank Standardisation and Harmonisation for Research 
Excellence in the European Union (BIOSHARE-EU) In: Groningen AZ, editor. 
Groningen, Netherlands: CORDIS RTD-PROJECTS; 2010. 

http://p3g.org/


BIBLIOGRAPHY 
 

245 | P a g e  
 

147. Jackson C, Best N, Elliott P. UK Biobank Pilot Study: stability of 
haematological and clinical chemistry analytes. International journal of epidemiology 

2008 Apr;37 Suppl 1: i16-22. 

148. Peakman TC, Elliott P. The UK Biobank sample handling and storage validation 
studies. International journal of epidemiology 2008 Apr;37 Suppl 1: i2-6. 

149. Wolfson M, Wallace SE, Masca N, et al. DataSHIELD: resolving a conflict in 
contemporary bioscience--performing a pooled analysis of individual-level data without 
sharing the data. Int J Epidemiol 2010 Oct;39(5): 1372-82. 

150. Fortier I, Burton PR, Robson PJ, et al. Quality, quantity and harmony: the 
DataSHaPER approach to integrating data across bioclinical studies. Int J Epidemiol 

2010;39(20813861): 1383-93. 

151. Rasbash J, Charlton C, Browne WJ, Healy M, Cameron B. MLwiN Version 2.1. 
UK: Centre for Multilevel Modelling, University of Bristol; 2009. 

152. Dunn WB, Broadhurst D, Ellis DI, et al. A GC-TOF-MS study of the stability of 
serum and urine metabolomes during the UK Biobank sample collection and 
preparation protocols. International journal of epidemiology 2008 Apr;37 Suppl 1: i23-
30. 

153. Power C. Cohort profile: 1958 British birth cohort (National Child Development 
Study). International journal of epidemiology 2006;35(1): 34-41. 

154. Wellcome Trust Case Control C, Craddock N, Hurles ME, et al. Genome-wide 
association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared 
controls. Nature 2010 Apr 1;464(7289): 713-20. 

155. Barnes C, Plagnol V, Fitzgerald T, et al. A robust statistical method for case-
control association testing with copy number variation. Nature genetics 2008 
Oct;40(10): 1245-52. 

156. Kitchen RR, Sabine VS, Simen AA, Dixon JM, Bartlett JM, Sims AH. Relative 
impact of key sources of systematic noise in Affymetrix and Illumina gene-expression 
microarray experiments. Bmc Genomics 2011;12: 589. 

157. Schwartz D, Collins F. Medicine. Environmental biology and human disease. 
Science 2007;316(17478705): 695-6. 

 
 
 



APPENDIX 
 

246 | P a g e  
 

APPENDIX 

8. APPENDIX 

Appendix 1  
This appendix contains the R-package manual of the ESPRESSO-forte algorithm 
developed in this thesis.  
P.S: The original name ‘ESPRESSO’ was kept for the ESPRESSO-forte R package 
submitted to the Comprehensive R Archive Network (CRAN) because ‘ESPRESSO-
forte’ was not a valid package name according to CRAN standards.  
 
 

Package  
‘ESPRESSO’ 

 
May 20, 2012 

 
Type Package 

Title Power Analysis and Sample Size Calculation 

Version    1.3 

Date  2011-04-01 

Author  Amadou Gaye under the supervision of Prof Paul Burton 

Maintainer  Amadou Gaye <ag239@le.ac.uk> 

Description The package allows for the Estimation of Sample-size and Power by 
Exploring Simulated Study Outcomes. It supports simulation-based 
power calculation for stand-alone case-control studies and for case-
control analyses nested in cohort studies that take account of realistic 
assessment error. 

Depends MASS 

License  GPL-2 
LazyLoad  yes 
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R topics documented: 
 
ESPRESSO 248 
EMPIRICAL.POWER.CALC 252 
ENV.PARAMS 255 
GEN.PARAMS 256 
GENERAL.PARAMS 258 
GET.CRITICAL.RESULTS 259 
GET.OBSERVED.DATA 261 
INIT.DATA 262 
IS.POSDEF 263 
MAKE.COV.MAT 264 
MAKE.OBS.ENV 265 
MAKE.OBS.GENO 266 
MAKE.POSDEF 267 
MISCLASSIFY 267 
MODEL.POWER.CACL 268 
OBS.DATA 270 
REGR.ANALYSIS 271 
SAMPLSIZE.CALC 271 
SIM.CC.DATA 274 
SIM.ENV.DATA 276 
SIM.ENV.SESP 277 
SIM.GENO.DATA 278 
SIM.GENO.SESP 279 
SIM.INTERACT.DATA 280 
SIM.LDGENO.DATA 281 
SIM.LDSNPS 282 
SIM.LDSNPS 283 
SIM.PHENO.QTL 285 
SIM.QTL.DATA 287 
SIM.SESP.PARAMS 288 
SIM.SUBJECT.DATA 289 
SKEW.RNORM 290 
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ESPRESSO Package for power analysis and sample size calculation 
 
 
Description 

A package to estimate sample-size and power by exploring simulated study 
outcomes. It supports simulation-based power calculation for stand-alone case-
control studies and for case-control analyses nested in cohort studies that take 
account of realistic assessment error. 

Details 
ESPRESSO(Estimating Sample-size and Power in R by Exploring Simulated 
Study Outcomes)allows for the calculation of the sample size required to 
achieve a desired statistical power in a case control study. It also allows one to 
calculate the power achieved with a specified sample size. The simulated dataset 
consists of a binary or a continuous outcome and two genetic and two 
environmental determinants. The functions sim.CC.data and sim.QTL.data 
simulate the outcome (phenotype) and the initial effects data considered as the 
true measures of the determinants. The function make.obs.data adds some error 
to the effect data generated by sim.CC.data or sim.QTL.data to obtain the 
observed measures of the determinants. The function regr.analysis carries out a 
regression analysis of the covariates (genetic variants, environmental exposures 
and interaction term) over the outcome. The function samplsize.calc calculates 
the sample sizes required to achieve the desired power under the specified effect 
model (main effect or interaction). The functions empirical.power.calc and 
model.power.calc calculate, respectively, the empirical power and the theoretical 
power achieved under the specified sample size. 

Author(s) 
Amadou Gaye under the supervision of Prof. Paul Burton 

Maintainer 
Amadou Gaye <ag239@le.ac.uk> 

References 
Burton, P.R., Hansell, A.L., Fortier, I., Manolio, T.A., Khoury, M.J., Little, J. & 
Elliott, P. 2009,Size matters: just how big is BIG?: Quantifying realistic sample 
size requirements for human genome epidemiology, International journal of 
epidemiology,vol. 38, no. 1, pp.263-273. 

Examples 
# This example illustrates how to use the main functions of the 

# package. 

# load input control files and make one table of parameters 

data(general.params) 

data(gen.params) 

data(env.params) 

s.temp  <-  merge(general.params, gen.params) 

s.parameters  <-  merge(s.temp, env.params) 

# create up to 20m subjects in blocks of 20k until required 

number 

# of cases and controls is achieved. in general the only problem 

# in achieving the required number of cases will occur if the 

# disease prevalence is very low. 
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allowed.sample.size <- 20000000 

block.size <- 20000 

# tracer to monitor iterations 

#trace.interval <- 10 

# total number of scenarios 

numscenarios  <-  dim(s.parameters)[1] 

# scenario to start with 

start.at.scenario  <-  1 

# number of scenarios to run 

stop.at.scenario  <-  numscenarios 

for(j in start.at.scenario : stop.at.scenario) 

{ 

set.seed(s.parameters$seed.val[j]) 

# general parameters 

scenario.id  <-  s.parameters$scenario.id[j] 

seed.val  <-  s.parameters$seed.val[j] 

numsims  <-  s.parameters$numsims[j] 

numcases  <-  s.parameters$numcases[j] 

numcontrols  <-  s.parameters$numcontrols[j] 

num.subjects  <-  s.parameters$num.subjects[j] 

is.interaction  <-  s.parameters$interaction[j] 

pheno.model  <-  s.parameters$pheno.model[j] 

disease.prev  <-  s.parameters$disease.prev[j] 

or.int  <-  s.parameters$or.int[j] 

int.efkt  <-  s.parameters$int.efkt[j] 

if(is.interaction != 0) {or.int  <-  s.parameters$or.int[j]} 

sigma.subject  <-  s.parameters$RR.5.95[j] 

pval  <-  s.parameters$p.val[j] 

power  <-  s.parameters$power[j] 

pheno.error  <-  c(1-s.parameters$sensitivity.pheno[j], 

1-s.parameters$specificity.pheno[j]) 

reliability.pheno  <-  s.parameters$reliability.pheno[j] 

# genetic determinants parameters 

is.add  <-  c(s.parameters$model.geno1[j], 

s.parameters$model.geno2[j]) 

MAF  <-  c(s.parameters$MAF.geno1[j], s.parameters$MAF.geno2[j]) 

or.geno  <-  

c(s.parameters$or.geno1[j],s.parameters$or.geno2[j]) 

geno.efkt  <-  c(s.parameters$geno1.efkt[j], 

s.parameters$geno2.efkt[j]) 

LD  <-  s.parameters$LD[j] 

R.target  <-  s.parameters$R.target[j] 

display  <-  s.parameters$display[j] 

geno.error  <-  c(1-s.parameters$sensitivity.geno[j], 

1-s.parameters$specificity.geno[j]) 

# environmental determinants parameters 

env.expo  <-  c(s.parameters$model.env1[j], 

s.parameters$model.env2[j]) 

reliability.env  <-  c(s.parameters$reliability.env1[j], 

s.parameters$reliability.env2[j]) 

env.prev  <-  

c(s.parameters$env1.prev[j],s.parameters$env2.prev[j]) 

env.mean.lowlm  <-  c(s.parameters$env1.mean.lowlm, 

s.parameters$env2.mean.lowlm) 

env.stdev.uplm  <-  c(s.parameters$env1.stdev.uplm, 

s.parameters$env2.stdev.uplm) 

or.env  <-  c(s.parameters$or.env1[j],s.parameters$or.env2[j]) 

env.efkt  <-  

c(s.parameters$env1.efkt[j],s.parameters$env2.efkt[j]) 

env.error  <-  c(1-s.parameters$sensitivity.env[j], 

1-s.parameters$specificity.env[j]) 
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skewness  <-  c(s.parameters$skewness1,s.parameters$skewness2) 

# the covariance matrix required to generate 2 variants with 

# the desired ld 

cor.mat  <-  matrix(c(1,R.target,R.target,1),2,2) # cor. matrix 

cov.mat.req  <-  make.cov.mat(cor.mat, c(1-MAF[1], 1-MAF[2])) 

# if the required covariance matrix is not positive-definite get 

# the nearest positive-definite matrix (tolerance = 1e-06) 

if(!is.posdef(cov.mat.req, 0.000001)){ 

cov.mat.req  <-  make.posdef(cov.mat.req, 0.000001) 

} 

# empty vectors for results of the analyses of each simulation 

# in the scenario 

# genotype 

beta.geno1.results <- rep(NA,numsims) 

se.geno1.results <- rep(NA,numsims) 

z.geno1.results <- rep(NA,numsims) 

beta.geno2.results <- rep(NA,numsims) 

se.geno2.results <- rep(NA,numsims) 

z.geno2.results <- rep(NA,numsims) 

# environment 

beta.env1.results <- rep(NA,numsims) 

se.env1.results <- rep(NA,numsims) 

z.env1.results <- rep(NA,numsims) 

beta.env2.results <- rep(NA,numsims) 

se.env2.results <- rep(NA,numsims) 

z.env2.results <- rep(NA,numsims) 

# interaction 

beta.int.results <- rep(NA,numsims) 

se.int.results <- rep(NA,numsims) 

z.int.results <- rep(NA,numsims) 

# tracer to detect exceeding max allowable sample size 

sample.size.excess  <-  0 

# generate and analyse datasets one at a time 

for(s in 1:numsims) 

{ 

if(pheno.model == 0){ # under binary outcome 

# generate cases and controls untill the required number 

# of cases, controls and sample size is achieved 

sim.matrix  <-  sim.CC.data(block.size, numcases, numcontrols, 

allowed.sample.size, is.interaction, 

disease.prev, MAF, is.add, R.target, 

LD, cov.mat.req, display, or.geno, env.expo, 

env.mean.lowlm, env.stdev.uplm, env.prev, 

or.env, skewness, or.int, sigma.subject, 

pheno.error) 

}else{ # under quantitative outcome model 

# generate the specified number of subjects 

sim.matrix  <-  sim.QTL.data(num.subjects, is.interaction, 

MAF, is.add, R.target, LD, cov.mat.req, 

display, geno.efkt, env.expo, env.mean.lowlm, 

env.stdev.uplm,env.prev, env.efkt, skewness, 

int.efkt, reliability.pheno) 

} 

# add appropriate errors to produce observed genotypes 

observed.data  <-  get.observed.data(is.interaction, sim.matrix, 

geno.error, is.add, MAF, env.expo, env.prev, 

env.error, reliability.env) 

sim.df  <-  observed.data$sim.df 

# data analysis 

glm.estimates  <-  regr.analysis(is.interaction, pheno.model, 

sim.df) 
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# genetic variants estimates 

beta.geno1.results[s]  <-  glm.estimates[1] 

se.geno1.results[s]  <-  glm.estimates[2] 

z.geno1.results[s]  <-  glm.estimates[3] 

beta.geno2.results[s]  <-  glm.estimates[4] 

se.geno2.results[s]  <-  glm.estimates[5] 

z.geno2.results[s]  <-  glm.estimates[6] 

# environment estimates 

beta.env1.results[s]  <-  glm.estimates[7] 

se.env1.results[s]  <-  glm.estimates[8] 

z.env1.results[s]  <-  glm.estimates[9] 

beta.env2.results[s]  <-  glm.estimates[10] 

se.env2.results[s]  <-  glm.estimates[11] 

z.env2.results[s]  <-  glm.estimates[12] 

# interaction estimates 

beta.int.results[s]  <-  glm.estimates[13] 

se.int.results[s]  <-  glm.estimates[14] 

z.int.results[s]  <-  glm.estimates[15] 

# print tracer after every nth dataset created 

# if(s %% trace.interval ==0)cat("\n",s,"of",numsims, 

# "completed in scenario",scenario.id) 

} 

cat("\n\n") 

# summary of primary parameter estimates 

# genetic variants 

mean.beta.geno1  <-  round(mean(beta.geno1.results),3) 

mean.se.geno1  <-  round(sqrt(mean(se.geno1.results^2)),3) 

mean.model.z.geno1  <-  mean.beta.geno1/mean.se.geno1 

mean.beta.geno2  <-  round(mean(beta.geno2.results),3) 

mean.se.geno2  <-  round(sqrt(mean(se.geno2.results^2)),3) 

mean.model.z.geno2  <-  mean.beta.geno2/mean.se.geno2 

mean.model.z.geno  <-  c(mean.beta.geno1/mean.se.geno1, 

mean.beta.geno2/mean.se.geno2) 

# environments 

mean.beta.env1  <-  round(mean(beta.env1.results),3) 

mean.se.env1  <- round(sqrt(mean(se.env1.results^2)),3) 

mean.model.z.env1  <-  mean.beta.env1/mean.se.env1 

mean.beta.env2  <-  round(mean(beta.env2.results),3) 

mean.se.env2  <- round(sqrt(mean(se.env2.results^2)),3) 

mean.model.z.env2  <-  mean.beta.env2/mean.se.env2 

mean.model.z.env  <-  c(mean.beta.env1/mean.se.env1, 

mean.beta.env2/mean.se.env2) 

# interaction 

if(is.interaction == 0){ 

mean.beta.int  <-  NA 

mean.se.int  <-  NA 

mean.model.z.int  <-  NA 

}else{ 

gen.params 11 

mean.beta.int <- round(mean(beta.int.results),3) 

mean.se.int <- round(sqrt(mean(se.int.results^2)),3) 

mean.model.z.int  <-  mean.beta.int/mean.se.int 

} 

mean.betas  <-  c(mean.beta.geno1, mean.beta.geno2, 

mean.beta.env1, mean.beta.env2, mean.beta.int) 

# calculate the sample size required under each model 

sample.sizes.required  <-  samplsize.calc(numcases,numcontrols, 

num.subjects, pheno.model, 

is.interaction, pval, power, 

mean.model.z.geno,mean.model.z.env, 

mean.model.z.int) 
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# calculate empirical power ie simply the proportion of 

# simulations in which the z statistic for the parameter of 

# interest exceeds the z statistic for the desired level of 

# statistical significance 

empirical.power  <-  empirical.power.calc(is.interaction,pval, 

z.geno1.results,z.geno2.results,z.env1.results, 

z.env2.results, z.int.results) 

# calculate the power reached under the initial sample size 

model.power  <-  model.power.calc(is.interaction, pval, 

mean.model.z.geno, mean.model.z.env, 

mean.model.z.int) 

# return critical results and print a summary 

res  <-  get.critical.results(j, is.interaction, pheno.model, 

is.add, env.expo, sample.sizes.required, empirical.power, 

model.power, mean.betas) 

} 

 
 
 
 
empirical.power.calc Calculates empirical power 
 
 
Description 

Determines the proportion of simulations in which the z-statistic for the 
parameter of interest exceeds the z-statistic for the desired level of statistical 
significance. 

Usage 
empirical.power.calc(is.interaction=0, pval, 

z.geno1.results,z.geno2.results, z.env1.results, z.env2.results, 

z.int.results) 

Arguments 
is.interaction 

Effect model: main effects=0, Gene-Environment interaction=1, Gene-
Gene interaction=2 and Environment-Environment interaction=3 

pval 

Cut-off p-value defining statistical significance 

z.geno1.results 

Vector of z-statistics for the main effect of genetic variant 1 

z.geno2.results 

Vector of z-statistics for the main effect of genetic variant 2 

z.env1.results 

Vector of z-statistics for the main effect of environment 1 

z.env2.results 

Vector of z-statistics for the main effect of environment 2 

z.int.results 

Vector of z-statistics for interaction effect 
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Value 
A list containing: 

empirical.power.geno1 

Empirical power under the main effect of genetic variant 1 

empirical.power.geno2 

Empirical power under the main effect of genetic variant 2 

empirical.power.env1 

Empirical power under the main effect environment 1 

empirical.power.env2 

Empirical power under the main effect environment 2 

empirical.power.int 

Empirical power under Interaction 

Author(s) 
Amadou Gaye 

See Also 
samplsize.calc, model.power.calc 

Examples 
# set outcome type to binary 

pheno.model <- 0  

# set the model 

is.interaction  <- 0 # main effect model 

# number of runs 

numsims  <-  10 

# empty vectors to store the results of each run 

# gene 

beta.geno1.results <- rep(NA,numsims) 

se.geno1.results <- rep(NA,numsims) 

z.geno1.results <- rep(NA,numsims) 

beta.geno2.results <- rep(NA,numsims) 

se.geno2.results <- rep(NA,numsims) 

z.geno2.results <- rep(NA,numsims) 

# environment 

beta.env1.results <- rep(NA,numsims) 

se.env1.results <- rep(NA,numsims) 

z.env1.results <- rep(NA,numsims) 

beta.env2.results <- rep(NA,numsims) 

se.env2.results <- rep(NA,numsims) 

z.env2.results <- rep(NA,numsims) 

# interaction 

beta.int.results <- rep(NA,numsims) 

se.int.results <- rep(NA,numsims) 

z.int.results <- rep(NA,numsims) 

# tracer to detect exceeding max allowable sample size 

sample.size.excess  <-  0 

# generate and analyse datasets one at a time 

for(s in 1:numsims) 

{ 

if(pheno.model == 0){# under binary outcome 

# generate cases and controls untill the required number 

# of cases, controls and sample size is achieved 

sim.matrix  <-  sim.CC.data(20000,2000,8000,20000000,0,0.1, 
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c(0.1,0.1),c(0,0),0.7,0,cov.mat.req=NULL, FALSE,c(1.5,1.5), 

c(0,0),c(3.3,3.3),c(1,1),c(0.1,0.1),c(1.5,1.5),c(0,0),1.8, 

12.36,c(0,0)) 

}else{# under quantitative outcome model 

# generate the specified number of subjects 

sim.matrix  <-  sim.QTL.data(1000,0,c(0.1,0.1),c(0,0), 

0.7,0,cov.mat.req=NULL,FALSE,c(0.25,0.25),c(0,0),c(3.3,3.3), 

c(1,1),c(0.1,0.1),c(0.25,0.25),c(0,0),0.5,0.9) 

} 

# add appropriate errors to produce observed genotypes 

observed.data  <-  get.observed.data(0, sim.matrix,c(0.95,0.95), 

c(0,0),c(0.1,0.1),c(0,0),c(0.1,0.1),c(0.85,0.85),c(0.8,0.8)) 

sim.df  <-  observed.data$sim.df 

# data analysis 

glm.estimates  <-  regr.analysis(is.interaction, pheno.model, 

sim.df) 

# genetic variants estimates 

beta.geno1.results[s]  <-  glm.estimates[1] 

se.geno1.results[s]  <-  glm.estimates[2] 

z.geno1.results[s]  <-  glm.estimates[3] 

beta.geno2.results[s]  <-  glm.estimates[4] 

se.geno2.results[s]  <-  glm.estimates[5] 

z.geno2.results[s]  <-  glm.estimates[6] 

# environment estimates 

beta.env1.results[s]  <-  glm.estimates[7] 

se.env1.results[s]  <-  glm.estimates[8] 

z.env1.results[s]  <-  glm.estimates[9] 

beta.env2.results[s]  <-  glm.estimates[10] 

se.env2.results[s]  <-  glm.estimates[11] 

z.env2.results[s]  <-  glm.estimates[12] 

# interaction estimates 

beta.int.results[s]  <-  glm.estimates[13] 

se.int.results[s]  <-  glm.estimates[14] 

z.int.results[s]  <-  glm.estimates[15] 

# print tracer after every nth dataset created 

# if(s %% trace.interval ==0)cat("\n",s,"of",numsims, 

# "completed in scenario",scenario.id) 

} 

cat("\n\n") 

# summary of primary parameter estimates 

env.params 5 

# genetic variants 

mean.beta.geno1  <-  round(mean(beta.geno1.results),3) 

mean.se.geno1  <-  round(sqrt(mean(se.geno1.results^2)),3) 

mean.model.z.geno1  <-  mean.beta.geno1/mean.se.geno1 

mean.beta.geno2  <-  round(mean(beta.geno2.results),3) 

mean.se.geno2  <-  round(sqrt(mean(se.geno2.results^2)),3) 

mean.model.z.geno2  <-  mean.beta.geno2/mean.se.geno2 

mean.model.z.geno  <-  c(mean.beta.geno1/mean.se.geno1, 

mean.beta.geno2/mean.se.geno2) 

# environments 

mean.beta.env1  <-  round(mean(beta.env1.results),3) 

mean.se.env1  <- round(sqrt(mean(se.env1.results^2)),3) 

mean.model.z.env1  <-  mean.beta.env1/mean.se.env1 

mean.beta.env2  <-  round(mean(beta.env2.results),3) 

mean.se.env2  <- round(sqrt(mean(se.env2.results^2)),3) 

mean.model.z.env2  <-  mean.beta.env2/mean.se.env2 

mean.model.z.env  <-  c(mean.beta.env1/mean.se.env1, 

mean.beta.env2/mean.se.env2) 

# interaction 

if(is.interaction == 0){ 
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mean.beta.int  <-  NA 

mean.se.int  <-  NA 

mean.model.z.int  <-  NA 

}else{ 

mean.beta.int <- round(mean(beta.int.results),3) 

mean.se.int <- round(sqrt(mean(se.int.results^2)),3) 

mean.model.z.int  <-  mean.beta.int/mean.se.int 

} 

# calculate empirical power ie simply the proportion of 

# simulations in which the z statistic for the parameter of 

# interest exceeds the z statistic for the desired level of 

# statistical significance 

empirical.power  <-  empirical.power.calc(is.interaction,1e-04, 

z.geno1.results,z.geno2.results,z.env1.results, 

z.env2.results, z.int.results) 

 
 
 
 
env.params Parameters to simulate environmental exposures data 
 
 
Description 

A table of scenarios (rows) and parameters (columns). 

Usage 
data(env.params) 

Format 
A data frame with 24 observations for the following21 variables: 

scenario.id 
Scenario number 

model.env1 
Models of the first environmental exposure: 0 for binary, 1 for 
quantitative-normaland 2 for quantitative-uniform 

model.env2 
Models of the first environmental exposure: 0 for binary, 1 for 
quantitative-normaland 2 for quantitative-uniform 

reliability.env2 

Reliability of the assessment of quantitative exposure 1 

reliability.env2 
Reliability of the assessment of quantitative exposure 2 

env1.prev  

Prevalence of environment 1 

env2.prev  

Prevalence of environment 2 

env1.mean.lowlm  
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Mean measure for environment 1 under quantitative-normal model and 
lower limit under quantitative-uniform model 

env2.mean.lowlm  

Mean measure for environment 2 under quantitative-normal model and 
lower limit under quantitative-uniform model 

env1.stdev.uplm  

Standard deviation under quantitative-normal model and upper limit 
under quantitative-uniform model, environment 1 

env2.stdev.uplm  

Standard deviation under quantitative-normal model and upper limit 
under quantitative-uniform model, environment 2 

or.env1  

Odds ratio for environment 1 

env1.efkt  

Effect size for environment 1 

or.env2  

Odds ratio for environment 1 

env2.efkt  

Effect size for environment 2 

sensitivity.env  

Sensitivity of the assessment to environment 1 

specificity.env  

Specificity of the assessment to environment 2 

skewness1  

Determines skewness under quantitative-normal model for environment 
1;rightskeweddistribution if set to a positive value and left-skewed when 
set to a negative value 

skewness2  

Determines skewness under quantitative-normal model for environment 
2; right skewed distribution if set to a positive value and left-skewed 
when set to a negative value 

Examples 
data(env.params) 

 
 
 
 
gen.params Parameters to simulate genetic data 
 
 
Description 

The table contains scenarios (rows) and parameters (columns). 
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Usage 
data(gen.params) 

Format 
A data frame with 24 observations for the following14 variables. 

scenario.id  

Scenario number; each row stores parameters for one scenario 

model.geno1  

Genetic model of the first variant: 0 for binary and 1 for additive 

model.geno2  

Genetic model of the second variant: 0 for binary and 1 for additive 

MAF.geno1  

Minor allele frequency of genetic variant 1 

MAF.geno2  

Minor allele frequency of genetic variant 2 

or.geno1  

Odds-ratio of genetic variant 1 

geno1.efkt  

Effect of genetic variant 2 

or.geno2  

Odds-ratio of genetic variant 1 

geno2.efkt  

Effect of genetic variant 2 

LD  

Sets independence or LD between the two genetic variants: 0 for 
independence and 1 for LD 

R.target  

Correlation coefficient required if the alleles of the two genetic variants 
are in LD 

display 

If TRUE, a summary is printed on screen 

sensitivity.geno 

Sensitivity of the assessment of genotype 

specificity.geno  

Specificity of the assessment of genotype 

Examples 
data(gen.params) 
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general.params Main parameters of the simulations 
 
 
Description 

A table of scenarios (rows) and parameters (columns). 

Usage 
data(general.params) 

Format 
A data frame with 24 observations for the following18 variables. 

scenario.id  

The id of the scenario (each row stores parameters for one scenario 

seed.val  

Seed value 

numsims 

Number of runs for each simulation 

numcases 

Number of cases under binary outcome 

numcontrols 

Number of controls under binary outcome 

num.subjects  

Number of subjects under continuous outcome 

interaction 

Effect model: main effects=0, Gene-Environment interaction=1, Gene-
Gene interaction=2 and Environment-Enviroment interaction=3 

pheno.model  

Type of the outcome; 0 for binary and 1 for continuous 

disease.prev  

Prevalence of the binary outcome 

or.int  

Odds ration of the interaction 

int.efkt  

Interaction effect 

RR.5.95  

The baseline odds ratio for subjects on 95 percent population centile 
versus 5 percentile. This parameter reflects the heterogeneity in disease 
risk arising from determinants that have not been measured or have not 
been included in the model. If this parameter is set to 10, the implication 
is that a high risk subject (someone at the upper 95 percent centile of 
population risk) is, all else being equal, at 10 times the odds of 
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developing disease compared to someone else who is at low risk 
(individual at the lower 5 percent centile of population risk). 

p.val  

Cut-off p-value defining statistical significance 

power 

Desired power 

sensitivity.pheno  

Sensitivity of the assessment of binary outcome 

specificity.pheno  

Specificity of the assessment of binary outcome 

reliability.pheno  

Reliability of the assessment of continuous outcome 

sim.sesp.geno.env  

Tells if sensitivity and specificity values should be simulated for 
genotypicand environmental exposures assessment; set to 1 to simulate. 

Examples 
data(general.params) 

 
 
 
 
get.critical.results Summarizes the main results 
 
 
Description 

Gets the number of cases and controls or subjects and the empirical and 
theoretical power under each model and prints a summary on the screen. 

Usage 
get.critical.results(scenario, is.interaction = 0, pheno.model = 

0, is.add = c(0, 0), env.expo = c(0, 0), sample.sizes.required, 

empirical.power, model.power, mean.betas) 

Arguments 
scenario 

Scenario number 

is.interaction 

Effect model: main effects=0, Gene-Environment interaction=1, Gene-
Gene interaction=2 and Environment-Enviroment interaction=3 

pheno.model  

Type of the outcome; 0 for binary and 1 for continuous 

is.add  

Genetic models of the two variants: 0 for binary model and 1 for additive 
model. 
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env.expo  

Models of the environmental exposures 

sample.sizes.required 

Number of cases and controls or number of subjects required to achieve 
thedesired power. 

empirical.power 

Estimated empirical power 

model.power  

Calculated theoretical power 

mean.betas  

Mean beta value of each of the determinants 

Value 
A table containing the following variables: 

models 

Model of each of the covariates 

numcases 

Number of cases required to achieve the desired power under each model 

numcases 

Number of controls required to achieve the desired power under each 
model. 

powers1   
Estimated empirical power under each model 

powers2  

Power achieved under each model with the specified sample size 

models 

Model of each of the covariates 

numsubjects 

Number of subjects required to achieve the desired power under each 
model 

est.ORs  

Estimated odds-ratios - due to shrinkage toward the null resulting from 
misclassification 

Author(s) 
Amadou Gaye 

Examples 
# scenario number 

j  <-  1 

# main effect model 

is.interaction  <-  1 

# outcome 

pheno.model  <-  1 
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# models of the genetic variants 

is.add  <-  c(0,0) 

# models of the environmental exposures 

env.expo  <-  c(0,0) 

# Estimated sample sizes required for a continuous outcome 

sample.sizes.required  <-  c(1000, 1300, 2000, 2400, 7000) 

# Estimated values for empirical power 

empirical.power  <-  c(0.2,0.3,0.56,0.6,0.15) 

# power values calculated from the set number of subjects 

model.power  <-  c(0.18,0.27,0.58,0.59,0.17) 

# mean beta values for each determinant 

mean.betas  <-  c(0.18,0.18,0.10,0.10,0.15) 

# return critical results and print a summary 

res  <-  get.critical.results(j, is.interaction, pheno.model, 

is.add, env.expo, sample.sizes.required, empirical.power, 

model.power, mean.betas) 

 

 

 

 
get.observed.data  Generates exposure data with some error 
 
 
Description 

Uses functions make.obs.geno and make.obs.env to generate effect data with a 
set level oferror. 

Usage 
get.observed.data(is.interaction = 0, true.data, geno.error = 

c(0.05, 0.05), is.add = c(0, 0), MAF = c(0.1, 0.1), env.expo = 

c(0, 0), env.prev = c(0.1, 0.1), env.error = c(0.15, 0.15), 

reliability.env=c(0.8,0.8)) 

Arguments 
is.interaction 

Effect model: main effects=0, Gene-Environment interaction=1, Gene-
Gene interaction=2 and Environment-Enviroment interaction=3 

true.data  

Input table of simulated data considered as true data 

geno.error  

Misclassification rates in the assessment of genotypes 

is.add  

Genetic models of the two variants: 0 for binary model and 1 for additive 
model 

MAF  

Minor Allele frequencies 

env.expo  

Model of the exposure: binary=1, quantitative-normal=1 or quantitative-
uniform=2 

env.prev  

Prevalence of the two environmental exposures 
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env.error  

Misclassification rates in environmental exposures assessment: 1-
sensitivityand 1-specificity 

reliability.env 

Reliability of the assessment of quantitative exposures 

Value 
A matrix containing 11 variables 

Author(s) 
Amadou Gaye 

See Also 
make.obs.geno, make.obs.env 

Examples 
# load the 'true' data 

data(init.data) 

# adds some error to the 'true' exposure data and generate 

# 'observed' data 

obs.data  <-  get.observed.data(0, init.data, c(0.05, 0.05), 

c(0, 0), c(0.1, 0.1), c(0, 0), c(0.1, 0.1), 

c(0.15, 0.15), c(0.8, 0.8)) 

 

 

 

 
init.data Simulated genotypes, phenotypes and environmental exposure data 
 
 
Description 

A table of simulated true data. The number of rows represents the number of 
cases and controls (under binary outcome) or the number of subjects (under 
continuous outcome). 

Usage 
data(init.data) 

Format 
A data frame with 10000 observations for the following11 variables: 

id 

Scenario id 

cc.U  

Phenotypes 

geno1.U  

Genotype for the first genetic variant 

geno2.U  

Genotype for the second genetic variant 

allele.A1  

Alelle A of genetic variant 1 
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allele.B1  

Alelle B of genetic variant 1 

allele.A2  

Alelle A of genetic variant 2 

allele.B2  

Alelle B of genetic variant 2 

env1.U  

Exposure data for environment 1 

env2.U  

Exposure data for environment 2 

int.U  

Data for the interaction term 

Examples 
data(init.data) 

 
 

 

 
is.posdef Tells if a matrix is positive definite 
 
 
Description 

Checks if any of the eigenvalues of the matrix is smaller than the set tolerance 
value. 

Usage 
is.posdef(matrix, tolerance = 1e-06) 

Arguments 
matrix 

Input matrix 

tolerance 

A constant 

Value 
TRUE or FALSE 

Author(s) 
Amadou Gaye 

See Also 
make.posdef 

Examples 
# Example 1 

# a positive definite matrix 

mat1  <-  matrix(c(0.9999934,0.9999914,0.9999914,0.9999934),2,2) 

# check if the matrix is positive definite 

is.posdef(mat1, 0.000001) 
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# Example 2 

# a non positive definite matrix 

mat2  <-  matrix(c(0.9999924,0.9999924,0.9999924,0.9999924),2,2) 

# check if the matrix is positive definite 

is.posdef(mat2, 0.000001) 

 

 

 

 
make.cov.mat Generates the covariance matrix required to achieved the desired 

LD 
 
 
Description 

Finds the covariance values required to achieve the specified frequency of major 
allele haplotype. 

Usage 
make.cov.mat(cor.mat, freqs) 

Arguments 
cor.mat  

Correlation matrix 

freqs 

Major allele frequencies of the two snps 

Value 
A 2X2 covariance matrix 

Author(s) 
Amadou Gaye 

References 
Montana, G. 2005, HapSim: a simulation tool for generating haplotype data 
with pre-specified allele frequencies and LD coefficients., Bioinformatics, 
vol. 21 (23), pp.4309-4311. 

See Also 
sim.LDsnps 

Examples 
# MAF of the first snp 

maf1  <-  0.1 

# MAF of the second snp 

maf2  <-  0.1 

# target LD 

R.target  <-  0.8 

# correlation matrix 

cor.mat  <-  matrix(c(1,R.target,R.target,1),2,2) 

# covariance matrix required to generate 2 variants with the 

desired LD 

cov.mat.req  <-  make.cov.mat(cor.mat, c(1-maf1, 1-maf2)) 
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make.obs.env Adds some error to environmental exposure data 
 
 
Description 

Adds a set level of error to simulated binary or quantitative data (the true data) 
to obtain data with a larger variance (the observed data). The level of error is 
determined by the misclassification rates in binary data and by the set level of 
variance in the quantitative data. 

Usage 
make.obs.env(env.data, env.expo = 0, env.prev = 0.1, env.error = 

c(0.15, 0.15), reliability.env = 0.8) 

Arguments 
env.data  

A vector of environmental measures that represents the true data 

env.expo  

Model of the exposure: binary=1, quantitative-normal=1 or quantitative-
uniform=2 

env.prev  

Prevalence of the environmental determinant 

env.error  

Misclassification rates: 1-sensitivity and 1-specificity 

reliability.env 

Reliability of the assessment of quantitative exposure 

Value 
A dataframe of two columns: 

environ.orig  

Input data (true data) 

environ.new  

Observed data 

Author(s) 
Amadou Gaye 

See Also 
sim.env.data, misclassify 

Examples 
# load a dataframe that contains environmental exposure data 

data(init.data) 

# get observed data by adding some error to the initial data 

true.env.data  <-  init.data$env1.U 

x  <-  make.obs.env(true.env.data) 

observed.env.data  <-  x$environ.new 
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make.obs.geno Adds some error to genotype data 
 
 
Description 

Simulates errors and adds it to the true data to obtain observed data. The alleles 
simulated by the function sim.geno.data are randomly misclassified and used to 
form new genotypes that represent the observed genotypes. 

Usage 
make.obs.geno(allele1, allele2, error.1.0=0.05, error.0.1=0.05, 

is.add=0, MAF=0.1) 

Arguments 
allele1  

Allele A 

allele2  

Allele B 

error.1.0  

1 to 0 misclassification rate 

error.0.1  

0 to 1 misclassification rate 

is.add  

Genetic model: Set to 0 for binary model and 1 for additive model 

MAF  

Minor Allele frequency 

Value 
A dataframe containing the following columns: 

genotyp.U  

observed genotypes 

allele.A.orig 

true A alleles 

allele.A.new  

observed A alleles 

allele.B.orig 

true B alleles 

allele.B.new  

observed B alleles 

Author(s) 
Amadou Gaye 

See Also 
sim.geno.data 

Examples 
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# Example 1 

# 

# simulate genotypes for two independent genetic variants 

geno  <-  sim.geno.data(10000,0.1,0) 

allele.A  <-  geno$allele.A 

allele.B  <-  geno$allele.B 

# randomly misclassify the above simulated alleles and form 

# observed genotypes 

obs.geno  <-  make.obs.geno(allele.A, allele.B, 0.05, 0.05, 0, 

0) 

 

 

 

 
make.posdef Turns a matrix into a positive definite one 
 
 
Description 

Computes the nearest positive definite matrix of a real symmetric matrix. 

Usage 
make.posdef(matrix, tolerance = 1e-06) 

Arguments 
matrix 

Input matrix 

tolerance 

A constant 

Value 
A positive-definite matrix 

Author(s) 
Amadou Gaye 

References 
N.J. Higham, 1988 Computing a nearest symmetric positive semidefinite matrix, 
Linear Algebra Appl. vol. 103, pp.103 118 

See Also 
is.posdef 

Examples 
# a non positive definite matrix 

mat  <-  matrix(c(0.9999924,0.9999924,0.9999924,0.9999924),2,2) 

# make the matrix positive definite 

mat.new  <-  make.posdef(mat, 0.000001) 

 

 

 

 

 

 
misclassify Adds some misclassification error to binary data 
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Description 
Introduces some misclassification in binary data. The number of values 
misclassified is determined by the misclassification rates. 

Usage 
misclassify(binary.vector, error.1.0 = 0.05, error.0.1 = 0.05) 

Arguments 
binary.vector 

A vector binary values 

error.1.0  

1 to 0 misclassification rate 

error.0.1  

0 to 1 misclassification rate 

Value 
A.new  

A binary vector 

Author(s) 
Amadou Gaye 

Examples 
# Example 1 

# 

# simulate a vector of 0s and 1s 

v1  <-  rbinom(100,1,0.4) 

# 1 to 0 misclassification rate 

error.1.0  <-  0.2 

# 0 to 1 misclassification rate 

error.0.1  <-  0.2 

# randomly misclassify the vector v 

v1.new  <-  misclassify(v1, error.1.0, error.0.1) 

# Example 2 

# 

# simulate a vector of 2s and 3s 

v2  <-  ifelse(runif(100, 0, 1) <= 0.4, 2,3) 

# 1 to 0 misclassification rate 

error.1.0  <-  0.2 

# 0 to 1 misclassification rate 

model.power.calc 23 

error.0.1  <-  0.2 

# randomly misclassify the vector v 

v2.new  <-  misclassify(v2, error.1.0, error.0.1 

 

 

 

 

 
model.power.cacl Calculates the theoretical power 
 
 
Description 

Computes the power of the study from the set sample size and desired power. 
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Usage 
model.power.calc(is.interaction = 0, pval = 1e-04, 

mean.model.z.geno, mean.model.z.env, mean.model.z.int) 

Arguments 
is.interaction 

Type of interaction; 1 for gene-environment, 2 for gene-gene and 3 for 
environment-environmentinteraction 

pval 

Cut-off p-value defining statistical significance 

mean.model.z.geno 

mean z-statistics of the two genetic determinants 

mean.model.z.env 

mean z-statistics of the environmental determinants 

mean.model.z.int 
mean z-statistics of the interaction term 

Value 
A list containing: 

model.power.geno1 

Theoretical power under the main effect of genetic variant 1 

model.power.geno2 

Theoretical power under the main effect of genetic variant 2 

model.power.env1 

Theoretical power under the main effect environment 1 

model.power.env2 

Theoretical power under the main effect environment 2 

model.power.int 

Theoretical power under Interaction 

Author(s) 
Amadou Gaye 

See Also 
empirical.power.calc 

Examples 
# sets the model 

is.interaction  <-  0 # no interaction 

# cut-off p-value 

pval  <-  1e-04 

# mean z-statistics for the effects of the two genetic variants 

mean.model.z.geno  <-  c(0.269, 0.268) 

# mean z-statistics for environmental exposures 

mean.model.z.env  <-  c(2.508, 2.512) 

# mean z-statistics for the interaction part 

mean.model.z.int  <-  NA 

# calculate the power reached under the initial sample size and 
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# desired power 

power  <-  

model.power.calc(is.interaction,pval,mean.model.z.geno, 

mean.model.z.env,mean.model.z.int) 

 

 

 

 

 
obs.data Simulated genotypes, phenotypes and environmental exposure data 
 
 
Description 
A table of simulated observed data. The number of rows represents the number of cases 
and controls (if the outcome is binary) or the number of subjects (if the outcome is 
continuous). 

Usage 
data(obs.data) 

Format 
A data frame with 10000 observations for the following11 variable: 

id 

Scenario id 

cc.U  

Phenotypes 

geno1.U  

Genotypes for genetic variant 1 

geno2.U  

Genotypes for genetic variant 2 

allele.A1  

Alelle A of genetic variant 1 

allele.B1  

Alelle B of genetic variant 1 

allele.A2  

Alelle A of genetic variant 2 

allele.B2  

Alelle B of genetic variant 2 

env1.U  

Data for environment 1 

env2.U  

Data for environment 2 

int.U  

Data for the interaction term 

Examples 
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data(obs.data) 

 

 

 

 

 
regr.analysis carries out regression analysis  
 
 
Description 

Fits a conventional unconditional logistic regression model with a binary or 
continuous phenotype as outcome and the genetic, environmental, interaction 
determinants as covariates. 

Usage 
regr.analysis(is.interaction = 0, pheno.model = 0, sim.df) 

Arguments 
is.interaction 

Effect model: main effects=0, Gene-Environment interaction=1, Gene-
Gene interaction=2 and Environment-Environment interaction=3 

pheno.model  

Type of the outcome; 0 for binary and 1 for continuous 

sim.df  

A dataframe that contains covariates and outcome data 

Value 
A vector containing the beta, standard-error and z-statistic of each of the 
covariates 

Author(s) 
Amadou Gaye 

Examples 
# load a table containing covariates and binary outcome data 

data(obs.data) 

# binary outcome 

pheno.model  <-  0 

# is there an interaction 

is.interaction  <-  0 

# regression analysis 

glm.estimates  <-  regr.analysis(is.interaction, pheno.model, 

obs.data) 

 
 
 
 
samplsize.calc Calculates the sample size required to achieved the desired power 
 
 
Description 
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Estimates by how much the simulated study size needs to be inflated or shrank 
in order to obtain the specified level of power. The ratio of z- statistic required 
for desired power to mean model z-statistic obtained indicates the relative 
change in standard error required. This corresponds to relative change on scale 
of square root of sample size. 

Usage 
samplsize.calc(numcases = 2000, numcontrols = 8000, num.subjects 

= 500, pheno.model = 0, is.interaction = 0, pval = 1e-04, power 

= 0.8, mean.model.z.geno, 

mean.model.z.env, mean.model.z.int) 

Arguments 
numcases 

Number of cases when outcome is binary 

numcontrols 

Number of controls when outcome is binary 

num.subjects  

Number of subjects when outcome is continuous 

pheno.model  

Outcome type, 0 for binary and 1 for continuous 

is.interaction 

Effect model: main effects=0, Gene-Environment interaction=1, Gene-
Gene interaction=2 and Environment-Enviroment interaction=3 

pval 

Cut-off p-value defining statistical significance 

power 

Desired power 

mean.model.z.geno 

Ratio of mean beta estimate over mean se estimate for genetic main 
effect 

mean.model.z.env 

Ratio of mean beta estimate over mean se estimate for environment main 
effect 

mean.model.z.int 

Ratio of mean beta estimate over mean se estimate for Interaction effect 

Value 
A list containing: 

numcases.required.geno1 

Number of cases required to achieve the desired power under genetic 
variant 1main effect 

numcontrols.required.geno1 

Number of controls required to achieve the desired power under genetic 
variant1 main effect 
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numcases.required.geno2 

Number of cases required to achieve the desired power under genetic 
variant 2main effect 

numcontrols.required.geno2 

Number of controls required to achieve the desired power under genetic 
variant2 main effect 

numcases.required.env1 

Number of cases required to achieve the desired power under 
environment 1main effect 

numcontrols.required.env1 

Number of controls required to achieve the desired power under 
environment 1main effect 

numcases.required.env2 

Number of cases required to achieve the desired power under 
environment 2main effect 

numcontrols.required.env2 

Number of controls required to achieve the desired power under 
environment 2main effect 

numcases.required.int 

Number of cases required to achieve the desired power under interaction 
effect 

numcontrols.required.int 

Number of controls required to achieve the desired power under 
interaction effect 

numsubjects.required.geno1 

Number of subjects required to achieve the desired power under genetic 
variant1 main effect 

numsubjects.required.geno2 

Number of subjects required to achieve the desired power under genetic 
variant2 main effect 

numsubjects.required.env1 

Number of subjects required to achieve the desired power under 
environment 1main effect 

numsubjects.required.env2 

Number of subjects required to achieve the desired power under 
environment 2main effect 

numsubjects.required.int 

Number of subjects required to achieve the desired power under 
interaction 

Author(s) 
Amadou Gaye 
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See Also 
empirical.power.calc, model.power.calc 

Examples 
# Example 1: sample size calculation for a binary outcome 

# set outcome type to binary 

pheno.model  <-  0 

# set the model 

is.interaction  <-  0 # no interaction 

# cut-off p-value 

pval  <-  1e-04 

# desired power 

power  <-  0.80 

# mean z-statistics for genetic variants 

mean.model.z.geno  <-  c(0.269, 0.268) 

# mean z-statistics for environmental exposures 

mean.model.z.env  <-  c(2.508, 2.512) 

# mean z-statistics for the interaction part 

mean.model.z.int  <-  NA 

# calculate the sample size required under each model 

sample.sizes.required  <-  samplsize.calc(2000,8000, NA, 

pheno.model, is.interaction,pval, power, 

mean.model.z.geno,mean.model.z.env, 

mean.model.z.int) 

# Example 2: sample size calculation for a continuous outcome 

# set outcome type to binary 

pheno.model  <-  1 

# set the model 

is.interaction  <-  0 # no interaction 

# cut-off p-value 

pval  <-  1e-04 

# desired power 

power  <-  0.80 

# mean z-statistics for genetic variants 

mean.model.z.geno  <-  c(4.890, 4.872) 

# mean z-statistics for environmental exposures 

mean.model.z.env  <-  c(2.508, 2.512) 

# mean z-statistics for the interaction part 

mean.model.z.int  <-  NA 

# calculate the sample size required under each model 

sample.sizes.required  <-  samplsize.calc(NA,NA, 1000, 

pheno.model, 

is.interaction,pval, power, mean.model.z.geno,mean.model.z.env, 

mean.model.z.int) 

 

 

 

 

 
Sim.CC.data Simulates cases and controls 
 
 
Description 

Generates affected and non-affected subjects until the set sample size is 
achieved. 

Usage 
sim.CC.data(num.obs = 20000, numcases = 2000, numcontrols = 

8000,allowed.sample.size = 2e+07, is.interaction = 0, 
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disease.prev = 0.1, MAF = c(0.1, 0.1), is.add = c(0, 0), 

R.target = 0.7, LD = 0, cov.mat.req, display = FALSE, 

or.geno = c(1.5, 1.5), env.expo = c(0, 0), env.mean.lowlm = 

c(3.3, 3.3), env.stdev.uplm = c(1, 1), env.prev = c(0.1, 0.1), 

or.env = c(1.5, 1.5), skewness = c(0, 0), or.int = 1.8, 

sigma.subject = 12.36, pheno.error = c(0, 0)) 

Arguments 
num.obs  

Number of observations to generate per iteration 

numcases 

Number of cases to simulate 

numcontrols 

Number of controls to simulate 

allowed.sample.size 

Maximum number of observations allowed 

is.interaction 

Effect model: main effects=0, Gene-Environment interaction=1, Gene-
Gene interaction=2 and Environment-Enviroment interaction=3 

disease.prev  

Prevalence of the binary outcome 

MAF  

Minor allele frequencies of the genetic variants is.add Genetic models of 
the variants: 0 for binary model and 1 for additive model R.target 
Correlation coefficient required if the alleles of the two genetic variants 
are inLD 

LD  

Sets independence or LD between the two genetic variants: 0 for 
independence and 1 for LD 

cov.mat.req  

The covariance matrix required to generate 2 genetic variants in LD 

display 

If TRUE, a summary is printed on screen 

or.geno  

Odds ratios of the genetic variants 

env.expo  

Models of the environmental exposures 

env.mean.lowlm 

Mean under quantitative-normal model and lower limit under 
quantitative-uniform model 

env.stdev.uplm 
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Standard deviation under quantitative-normal model and upper limit 
under quantitative uniform model 

env.prev  

Prevalences of the environmental determinants or.env Odds ratios of the 
environmental determinants 

skewness 

Determines skewness under quantitative-normal model; right-skewed 
distribution if set to a positive value and left-skewed when set to a 
negative value 

or.int  

Odds ration of the interaction 

sigma.subject 

Baseline odds ratio for subject on 95 percent population centile versus 5 
percentile. This parameter reflects the heterogeneity in disease risk 
arising from determinants that have not been measured or have not been 
included in the model 

pheno.error  

Phenotype misclassification rates 

Value 
A matrix that contains 11 variables 

Author(s) 
Amadou Gaye 

See Also 
sim.geno.data, sim.LDgeno.data, sim.env.data, sim.subject.data, sim.pheno.bin 

Examples 
# number of cases 

numcases  <-  2000 

# number of controls 

numcontrols  <-  8000 

# main effect model 

is.interaction  <-  0 

# generate cases and controls untill the set number of cases, 

# controls and sample size is achieved 

sim.matrix  <-  sim.CC.data(10000, numcases,numcontrols, 

20000000,is.interaction, 0.1, c(0.1,0.1), c(0,0), 0.7, 0, 

cov.mat.req=NULL, FALSE, c(1.5,1.5), c(0,0),c(3.3,3.3), c(1,1), 

c(0.1,0.1), c(1.5,1.5), c(0,0),1.8,12.36,c(0,0)) 

 

 

 
sim.env.data Simulates cases and controls 
 
 
Description 

Generates data for a binary, quantitative-normal, or quantitative-uniform 
environmental determinant. 
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Usage 
sim.env.data(num.obs = 20000, env.expo = 0, env.mean.lowlm = 

3.3,env.stdev.uplm = 5, env.prev = 0.1, skewness = 0) 

Arguments 
num.obs  

Number of observations to simulate 

env.expo  

Model of the exposure: binary=0, quantitative-normal=1, quantitative-
uniform=2 

env.mean.lowlm 

Mean under quantitative-normal model and lower limit under 
quantitative-uniformmodel 

env.stdev.uplm 

Standard deviation under quantitative-normal model and upper limit 
under quantitative-uniform model 

env.prev  

Prevalence of the environmental exposure 

skewness 

Determines skewness under quantitative-normal model; right-skewed 
distributionfor positive values, left-skewed for negative value. The 
default is 0 (nonskewed). 

Value 
A vector of continuous or binary values 

Author(s) 
Amadou Gaye 

See Also 
make.obs.env 

Examples 
# Generate data for a binary enviromental exposure 

env.data  <-  sim.env.data(1000, 0, 3.3, 5, 0.1, 0) 

 

 

 

 

 

 
sim.env.sesp Estimates sensitivity and specificity for environmental exposure 

assessment 
 
 
Description 

Generates environmental exposure status and tabulates truly exposed versus 
observed exposed to determine the number of false positives and false negatives 
which are then used to compute sensitivity and specificity. 
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Usage 
sim.env.sesp(seed.val = 333333, prevalence.exp = 0.5, 

reliability = 0.8) 

Arguments 
seed.val  

Seed value 
prevalence.exp 

Prevalence of the exposure 
reliability 

Reliability of the environmental exposure assessment 

Details 
The function uses reliability as estimate of a standardized error (1-reliability) 
and generates exposure data with and without error. The prevalence of the 
exposure represents the probability ina quantile function to determine the 
threshold of truly exposed in the observed data (data without error) and in the 
true data (data with error). 

Value 
A vector of two values: 

sensitivity 

Estimated sensitivity of environmental exposure assessment 
specificity 

Estimated specificity of environmental exposure assessment 

Author(s) 
Amadou Gaye 

See Also 
sim.geno.sesp 

Examples 
# simulate sensitivity and specificity 

env.sens.spec  <-  sim.env.sesp(333, 0.2, 0.8) 

 

 

 

 

 

 

 

 

 

 

 
sim.geno.data  Simulates genotypes for a genetic variant 
 
 
Description 

Generates two alleles and combines them to form the genotype of a SNP under a 
binary or additive genetic model. 

Usage 
sim.geno.data(num.obs = 20000, MAF = 0.1, is.add = 0) 
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Arguments 
num.obs  

Number of observations to simulate 

MAF  

Minor allele frequency of the variant 

is.add  

Genetic model of the variant 

Value 
A dataframe that contains the following variables: 

allele.A  

Major allele 

allele.B  

Minor allele 

geno.U  

Genotype 

Author(s) 
Amadou Gaye 

See Also 
sim.LDsnps, sim.LDgeno.data 

Examples 
# simulate genotypes for a binary SNP with a MAF of 0.1 

geno  <-  sim.geno.data(num.obs = 10000, 0.1, 0) 

 

 

 

 

 
sim.geno.sesp Estimates sensitivity and specificity for allele assessment 
 
 
Description 

Generates the sensitivity and specificity values to assess the genotype of an 
unobserved variant based on the knowledge of an observed variant in LD with 
the unobserved one. 

Usage 
sim.geno.sesp(seed.val = 333333, prevalence.exp = 0.5, R2.target 

= 0.8) 

Arguments 
seed.val  

Seed value 

prevalence.exp 

Prevalence of the observed genetic variant 
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R2.target  

Measure of LD between the observed and the unobserved variant 

Value 
A vector of two values: 

sensitivity.mid 

Estimated sensitivity 
specificity.mid 

Simulated specificity 

Author(s) 
Amadou Gaye 

See Also 
sim.env.sesp 

Examples 
# simulate sensitivity and specificity 

geno.sens.spec  <-  sim.geno.sesp(333333,0.5,0.8) 

 

 

 

 
sim.interact.data Generates data for the interaction term 
 
 
Description 

Computes the interaction term for the pre-specified interaction model. 

Usage 
sim.interact.data(geno1.U, geno2.U, env1.U, env2.U, 

is.interaction = 1) 

Arguments 
geno1.U  

Genotype data for genetic variant 1 

geno2.U  

Genotype data for genetic variant 2 

env1.U  

Exposure data for environment 1 

env2.U  

Exposure data for environment 2 

is.interaction 

Effect model: main effects=0, Gene-Environment interaction=1, Gene-
Gene interaction=2 and Environment-Environment interaction=3 

Value 
A numerical vector 

Author(s) 
Amadou Gaye 
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Examples 
# genotypic data 

geno1  <- sim.geno.data(10000, 0.1, 0) 

geno2  <- sim.geno.data(10000, 0.2, 0) 

# Environmental exposure data 

env1  <-  sim.env.data(1000, 0, 3.3, 5, 0.1, 0) 

env2  <-  sim.env.data(1000, 0, 3.3, 5, 0.2, 0) 

# interaction data for a gene-environment interaction model 

int.data  <-  sim.interact.data(geno1, geno2, env1, env2, 1) 

 
 
 
 
sim.LDgeno.data Simulates genotypes for two genetic variants in LD 
 
 
Description 

Generates alleles of two SNPs in LD and uses these alleles to form the 
genotypes of the genetic variants. Each variant can be binary or additive. 

Usage 
sim.LDgeno.data(num.obs = 20000, MAF = c(0.1, 0.1), is.add = 

c(0, 0), R.target = 0.7, cov.mat.req, display = FALSE) 

Arguments 
num.obs  

Number of observations to simulate 

MAF  

Minor allele frequencies of the two variants 

is.add  

Models of the two variants 

R.target  

Correlation coefficient, desired level of LD 

cov.mat.req  

Covariance matrix required required to achieved the desired LD 

display 

If TRUE, a summary is printed on screen 

Value 
A dataframe that contains the following variables: 

allele.A1  

Major allele of variant 1 

allele.B1  

Minor allele of variant 1 

geno1.U  

Genotype of variant 1 
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allele.A2  

Major allele of variant 2 

allele.B2  

Minor allele of variant 2 

geno2.U  

Genotype of variant 2 

Author(s) 
Amadou Gaye 

See Also 
sim.LDsnps, sim.geno.data 

Examples 
# desired LD 

R.target  <-  0.8 

# MAFs of the two genetic variants 

MAFs  <-  c(0.1,0.1) 

# the covariance matrix required to generate 2 variants with the 

# desired LD 

cor.mat  <-  matrix(c(1,R.target,R.target,1),2,2) # cor. matrix 

cov.mat.req  <-  make.cov.mat(cor.mat, c(1-MAFs[1], 1-MAFs[2])) 

# if the required covariance matrix is not positive-definite get 

# the nearest positive-definite matrix (tolerance = 1e-06) 

if(!is.posdef(cov.mat.req, 0.000001)){ 

cov.mat.req  <-  make.posdef(cov.mat.req, 0.000001) 

} 

# generate genotypes for two gentic variants in LD 

LDgeno  <-  sim.LDgeno.data(10000, c(0.1, 0.1), c(0, 0), 0.8, 

cov.mat.req, TRUE) 

 

 

 
 
sim.LDsnps Simulates alleles for two biallelic SNPs in linkage disequilibrium 
 
 
Description 

Generates alleles data for pre-specified alleles frequencies. The covariance 
matrix required to achieve the desired LD is computed and used to produce a 
random vector from a bivariate normal distribution. 

Usage 
sim.LDsnps(num.obs, maf.snp1 = 0.1, maf.snp2 = 0.1, R.target = 

0.7, cov.mat.req, display = FALSE) 

Arguments 
num.obs  

Number of observations to simulate 

maf.snp1  

Minor allele frequency of the first snp 

maf.snp2  
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Minor allele frequency of the second snp 

R.target  

Correlation coefficient, desired level of LD 

cov.mat.req  

Covariance matrix required to achieved the desired LD 

display 

If TRUE, a summary is printed on screen 

Value 
A dataframe of two variables where the rows represent haplotypes 

snp1.allele  

allele data for the first snp 

snp2.allele  

allele data for the second snp 

Author(s) 
Amadou Gaye 

References 
Montana, G. 2005, HapSim: a simulation tool for generating haplotype data 
with pre-specified allele frequencies and LD coefficients., Bioinformatics, 
vol. 21 (23), pp.4309-4311. 

See Also 
sim.LDgeno.data 

Examples 
# desired LD 

R.target  <-  0.8 

# MAF of the first snp 

maf.1  <-  0.1 

# MAF of the second snp 

maf.2  <-  0.1 

# the covariance matrix required to achieve the desired LD 

cor.mat  <-  matrix(c(1,R.target,R.target,1),2,2) # cor. matrix 

cov.mat.req  <-  make.cov.mat(cor.mat, c(1-maf.1, 1-maf.2)) 

# if the required covariance matrix is not positive-definite get 

# the nearest positive-definite matrix (tolerance = 1e-06) 

if(!is.posdef(cov.mat.req, 0.000001)){ 

cov.mat.req  <-  make.posdef(cov.mat.req, 0.000001) 

} 

# generate allele data 

alleles  <-  sim.LDsnps(10000, maf.1, maf.2, R.target, 

cov.mat.req, 

TRUE) 

 

 

 

 
sim.LDsnps Simulates alleles for two biallelic SNPs in linkage disequilibrium 
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Description 
Uses the effects data and the odds-ratios of genetic, environmental and 
eventually interaction determinants to construct a linear predictor (LP). The 
probability of disease, obtained through logistic transformation of the LP, is 
used to generate a binomially distributed outcome (the true phenotypes).The 
vector of true phenotypes is then randomly misclassified to obtain the observed 
phenotypes. The level of misclassification is given by the sensitivity and 
specificity of the phenotype assessment. 

Usage 
sim.pheno.bin(num.obs = 20000, is.interaction = 0, disease.prev 

= 0.1, geno1.U, geno2.U, env1.U, env2.U, int.U, subject.effect, 

or.geno = c(1.5, 1.5), or.env = c(1.5, 1.5), or.int = 1.8, 

pheno.error = c(0, 0)) 

Arguments 
num.obs  

Number of observations to simulate 

is.interaction 

Effect model: main effects=0, Gene-Environment interaction=1, Gene-
Gene interaction=2 and Environment-Enviroment interaction=3 

disease.prev  

Prevalence of the binary outcome 

geno1.U  

Genotype data for genetic variant 1 

geno2.U  

Genotype data for genetic variant 2 

env1.U  

Exposure data for environment 1 

env2.U  

Exposure data for environment 2 

int.U  

Interaction effect data 

subject.effect 

Subject effect data, reflects the heterogeneity in baseline disease risk 

or.geno  

Odds ratios of the two genetic variants 

or.env  

Odds ratios of the two environments 

or.int  

Odds ratio of the interaction 

pheno.error  
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Misclassification rates in phenotype assessment 

Value 
A dataframe of two columns: 

pheno.original 

True phenotypes 

environ.new  

Observed phenotypes 

Author(s) 
Amadou Gaye 

See Also 
misclassify 

Examples 
# simulate genotype data for 2 genetic variants 

geno1.data  <-  sim.geno.data(10000, 0.1, 0) 

geno1  <-  geno1.data$geno.U 

geno2.data  <-  sim.geno.data(10000, 0.2, 0) 

geno2  <-  geno2.data$geno.U 

# simulate environmental measures for two environments 

sim.pheno.qtl 39 

env1  <-  sim.env.data(10000, 0, 3.3, 5, 0.1, 0) 

env2  <-  sim.env.data(10000, 0, 3.8, 5, 0.1, 0) 

# generate interaction effect data 

int  <-  sim.interact.data(geno1, geno2, env1, env2, 1) 

# simulate subject effect data 

subject.effect  <-  sim.subject.data(10000, 12.36) 

# generate phenotypes 

pheno.data  <-  sim.pheno.bin(10000, 1, 0.1, geno1, geno2, env1, 

env2, int, subject.effect, c(1.5,1.5), c(1.5,1.5), 

1.8, c(0,0)) 

true.pheno  <-  pheno.data$pheno.original 

observed.pheno  <-  pheno.data$pheno.U 

 

 

 

 

 

 

 

 

 

 
sim.pheno.qtl Simulates continuous outcome data 
 
 
Description 

Uses the effects data of the determinants to construct a linear predictor (LP). The 
outcome is normally distributed variable generated with a mean equal to LP and 
a standard deviation of 1. Some error is then added to the simulated outcome to 
obtained the observed outcome. 

Usage 
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sim.pheno.qtl(num.subjects = 10000, is.interaction = 0, geno1.U, 

geno2.U, env1.U, env2.U, int.U, geno.efkt = c(0.25, 0.25), 

env.efkt = c(0.25, 0.25), int.efkt = 0.5, reliability.pheno) 

Arguments 
num.subjects  

Number of subjects to simulate 

is.interaction 

Effect model: main effects=0, Gene-Environment interaction=1, Gene-
Gene interaction=2 and Environment-Environment interaction=3 

geno1.U  

Genotypes for genetic variant 1 

geno2.U  

Genotypes for genetic variant 2 

env1.U  

Exposure data for environment 1 

env2.U  

Exposure data for environment 2 

int.U  

Interaction effect data 

geno.efkt  

Effects of the genetic variants 

env.efkt  

Effects of the environmental determinants 

int.efkt  

Effect of the interaction term 

reliability.pheno 

Reliability of the phenotype assessment 

Value 
A dataframe of two columns: 

pheno.original 

True phenotypes 

environ.new  

Observed phenotypes 

Author(s) 
Amadou Gaye 

Examples 
# simulate genotype data for 2 genes 

geno1.data  <-  sim.geno.data(10000, 0.1, 0) 

geno1  <-  geno1.data$geno.U 

geno2.data  <-  sim.geno.data(10000, 0.2, 0) 
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geno2  <-  geno2.data$geno.U 

# simulate environmental measures for two environments 

env1  <-  sim.env.data(10000, 0, 3.3, 5, 0.1, 0) 

env2  <-  sim.env.data(10000, 0, 3.8, 5, 0.1, 0) 

# generate interaction effect data 

int  <-  sim.interact.data(geno1, geno2, env1, env2, 1) 

# generate phenotypes 

pheno.data  <-  sim.pheno.qtl(10000, 1, geno1, geno2, env1, 

env2,int, c(0.25, 0.25), c(0.25, 0.25), 0.5, 0.9) 

true.pheno  <-  pheno.data$pheno.original 

observed.pheno  <-  pheno.data$pheno.U 

 

 

 

 
sim.QTL.data  Simulates subjects for continuous outcome 
 
 
Description 

Generates the specified number of subjects using functions sim.geno.dataor 
sim.LDgeno.data,sim.env.dataandsim.pheno.bin 

Usage 
sim.QTL.data(num.subjects, is.interaction = 0, MAF = c(0.1, 

0.1), is.add = c(0, 0), R.target = 0.7, LD = 0, cov.mat.req, 

display = FALSE, geno.efkt = c(0.25, 0.25), env.expo = c(0, 0), 

env.mean.lowlm = c(3.3, 3.3), env.stdev.uplm = c(1, 1),env.prev 

= c(0.1, 0.1), env.efkt = c(0.25, 0.25), skewness = c(0, 0), 

int.efkt = 0.5, reliability.pheno=0.9) 

Arguments 
num.subjects  

Number of subjects to simulate 

is.interaction 

Effect model: main effects=0, Gene-Environment interaction=1, Gene-
Gene interaction=2 and Environment-Environment interaction=3 

MAF  
Minor allele frequencies of the two genetic variants 

is.add  

Genetic models of the two variants: 0 for binary and 1 for additive 

R.target  

Correlation coefficient required if the alleles of the two genes are in 
linkage disequilibrium 

LD  

Are the alleles of the two genes in LD (0 for no LD and 1 for LD 

cov.mat.req  

Covariance matrix required to generate 2 genetic variants in LD 

display 

If TRUE, a summary is printed on screen 
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geno.efkt  

Effects of the genetic variants 

env.expo  

Models of the environmental exposures 

env.mean.lowlm 

Mean under quantitative-normal model and lower limit under 
quantitative-uniformmodel 

env.stdev.uplm 

Standard deviation under quantitative-normal model and upper limit 
under quantitative-uniformmodel 

env.prev  

Prevalences of the environmental exposures 

env.efkt  

Effects of the environmental determinants 

skewness 

Determines skewness under quantitative-normal model; right-skewed 
distributionif set to a positive value and left-skewed when set to a 
negative value. 

int.efkt  

Effect of the interaction 

reliability.pheno 

Reliability of the phenotype assessment 

Value 
A matrix that has 11 variables 

Author(s) 
Amadou Gaye 

See Also 
sim.geno.data, sim.LDgeno.data, sim.env.data and sim.pheno.qtl 

Examples 
# number of subjects 

num.subjects  <-  500 

# main effect model 

is.interaction  <-  0 

# generate cases and controls untill the set number of cases, 

# controls and sample size is achieved 

sim.QTL.data(num.subjects, is.interaction, c(0.1, 0.1), c(0, 0), 

0.7, 0,cov.mat.req=NULL, FALSE, c(0.25, 0.25), c(0, 0), c(3.3, 

3.3), c(1, 1), c(0.1, 0.1),c(0.25, 0.25), c(0, 0), 0.5, 0.9) 

 

 

 

 

 
sim.sesp.params Table of parameters to simulate sensitivity and specificity values 
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Description 

Parameters stored in this table are used to simulate sensitivity and specificity 
values for genotype and environmental measures assessment. 

Usage 
data(sim.sesp.params) 

Format 
A table that contains fiveconstants 

seed.val  

Seed value 

prev.expo.geno  

Prevalence of the genotype 

prev.expo.env  

Prevalence of the environmental exposure 

R2.target  

Squared correlation coefficient to compute sensitivity and specificity for 
the genetic determinant 

reliability 

Reliability to compute sensitivity and specificity for the genetic 
determinant 

Examples 
data(sim.sesp.params) 

 

 

 

 
sim.subject.data Simulates the individual effect related to heterogeneity in disease 

risk 
 
 
Description 

The variation in baseline disease risk is assumed to be normally distributed on 
the logistic scale. If this parameter is set to 10, the implication is that a ’high 
risk’ subject (someone at the upper 95 percentile of population risk) is, all 
else being equal, at 10 times the odds of developing disease compared to 
someone else who is at ’low risk’ (at the lower 5 percentile of population 
risk). 

Usage 
sim.subject.data(num.obs = 20000, sigma.subject = 12.36) 

Arguments 
num.obs  

Number of observations to simulate 
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sigma.subject  

Baseline odds ratio for subject on 95 percent population centile versus 5 
percentile. This parameter reflects the heterogeneity in disease risk 
arising from determinants that have not been measured or have not been 
included in the model 

Value 
A numerical vector 

Author(s) 
Amadou Gaye 

Examples 
# generate subject effect data with a baseline OR of 10 

subject.effect  <-  sim.subject.data(20000, 10) 

 

 

 

 
skew.rnorm Allows to generate right or left-skewed normal distributed data 
 
 
Description 

This function allows one to set a level of skewness for normally distributed data. 

Usage 
skew.rnorm(num.obs = 20000, mean = 0, sd = 1, skewness = 0) 

Arguments 
num.obs  

Number of observations to simulate 

mean 

Statistical mean 

sd 

Standard deviation 

skewness 

Determines the direction and level of skewness; right-skewed for 
positive value,left-skewed for negative value. The default is 0 (non 
skewed) 

Value 
A numerical vector 

Author(s) 
Amadou Gaye 

References 
Azzalini, A. 1985, A class of distributions which includes the normal ones., 
Scandinavian Journal of Statistics, vol. 12, pp171-178. 

See Also 
sim.env.data 
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Examples 
some.data <-  skew.rnorm(20000, 0, 1, 0) 
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Appendix 2  
The graphs in Figure 38 are plots of the accuracy of CNV calls by CNV size and number 
of probes. These plots show that the conclusions are similar to those made from Figure 
29 even when a finer breakdown of CNV length was chosen.  

 

Figure 38: Plots of number of probes against accuracy. 

The accuracy was assessed as the correlation between copy numbers from aCGH and 

1.2M for seven CNV size categories. The red line across each plot represents the line of 

best fit. The beta and p.values at the bottom of each plot represent respectively the 

gradient of the line of best fit and the significance of the test of association between 

accuracy and number of probe for the given size category. 
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Appendix 3  
Figure 39 and Table 100 show the distribution of accuracy by minor allele frequency 
when finer MAF intervals, than those on Table 91 and Figure 31 in section 5.3.3.3, are 
used. The conclusion is similar to that derived from Figure 31 and Table 91 where the 
MAF was divided into two categories (≥ 0.05 and < 0.05) 

 
Figure 39: Plot of accuracy by CNV MAF. 

The summary statistics that explain the proportion of data points within each part of the 

boxplots are in the boxes at the bottom of the plot. The black lines on the boxplots are 

the medians and the black diamonds. 

 

Correlation (r) MAF < 0.05 0.05 ≤  MAF < 0.15 0.15 ≤  MAF < 0.3 MAF ≥ 0.3 

≥ 0.8 115 (28%) 198 (56%) 244 (55%) 215 (66%) 

0.5 ≤ r < 0.8 83 43 40 42 

< 0.5 215 115 163 70 

Total 413 158 203 112 

Table 100: CNV count by MAF and level of accuracy and level of accuracy. 

The accuracy was assessed as the correlation between copy numbers from aCGH and 

1.2M. The percentages represent the corresponding proportions in the MAF category.
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Appendix 4  
This appendix explains how the CNV genotype dose for each individual was calculated 
in the process of determining the accuracy of CNV calls using genotype dose. 

The accuracy of CNV calls from SNP platforms (Illumina 1.2M, 660, 610, and 300) 
was evaluated by comparing copy numbers measured from the gold standard (aCGH 
data) with those measured from the SNP platforms. The copy numbers used for these 
comparisons were assigned based on the highest posterior probability (the other 
posterior probabilities were not taken into account).  

I undertook a sensitivity analysis as a check for the copy number assignment approach 
described above. In this analysis the comparison between aCGH and 1.2M was based on 
CNV genotype dose for each individual where the CNV dose, for each of the two 
arrays, for a CNV with genotypes 0,1 and 2 was as follows: 

         [       .    (       .  )] + [       .    (       .  )] + [       .    (       .  )] 

Where: 

 ( 𝑁     .  ) was the posterior probability of CNV genotype 0, 

 ( 𝑁     .  ) was the posterior probability of CNV genotype 1, 

 ( 𝑁     .  ) was the posterior probability of CNV genotype 2. 

The dose took into account of all the posterior probabilities. There was little difference 
between the results of the comparison that used the CNV dose strategy and those of the 
comparison that used the ‘highest posterior probability’ strategy as shown on the Q-Q 
plot in Figure 40. 



APPENDIX 
 

295 | P a g e  
 

 

Figure 40: Q-Q plot that compares correlation coefficients obtained. 

This plot compares the correlation coefficients obtained when the CNV dose strategy 

was used to those obtained when the highest posterior probability determined the CNV 

genotype. This comparison was done across the 1610 CNVs for which there was a gold 

standard measure of the genotype. 
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Appendix 5  
In this appendix I cross-tabulated the accuracy of CNV calls by CNV characteristics to 
determine what characteristic actually drives the accuracy of calls. I also used the 
figures in the below tables to carry out a chi-squared test of independence (see Table 
110) which showed that the characteristics were nearly all correlated. 

Accuracy of calls by CNV size and type 

CNV Type CNV size r ≥ 0.8 r < 0.8 Total count 
          

Duplication 
size < 3kb 125 (59 %) 88 (41 %) 213 
3kb ≤ Size < 22kb 63 (46 %) 73 (54 %) 136 
Size ≥ 22kb 12 (17 %) 60 (83 %) 72 

  421 
          

Duplication / Deletion 
Size < 3kb 86 (83 %) 17 (17 %) 103 
3kb ≤ Size < 22kb 53 (79 %) 14 (21 %) 67 
Size ≥ 22kb 5 (16 %) 26 (84 %) 31 

  201 
          

Deletion 
Size < 3kb 230 (53 %) 206 (47 %) 436 
3kb ≤ Size < 22kb 188 (47 %) 215 (53 %) 403 
Size ≥ 22kb 15 (32 %) 32 (68 %) 47 

  886 

Table 101: CNV counts by accuracy and CNV length stratified by CNV type. 

The percentages represent the proportion obtained by dividing the count by the total 

count on the same row. 

Accuracy of calls by CNV MAF and type 

CNV Type MAF r ≥ 0.8 r < 0.8 Total 
          

Duplication < 0.05 14 (25 %) 43 (75 %) 57 
≥ 0.05 181 (53 %) 160 (47 %) 341 

Of the 421 CNVs in this category, 23 had > 3 classes (no MAF calculated), 421-823= 398 
          

Duplication / Deletion < 0.05 3 (23 %) 10 (77 %) 13 
≥ 0.05 139 (80 %) 34 (20 %) 173 

Of the 201 CNVs in this category, 15 had > 3 classes (no MAF calculated), 201-15 = 186 
  

 
  

  

Deletion < 0.05 86 (32 %) 181 (68 %) 267 
≥ 0.05 335 (57 %) 255 (43 %) 590 

Of the 886 CNVs in this category, 29 had > 3 classes (no MAF calculated), 886-29 = 857 

Table 102: CNV counts by accuracy and MAF stratified by CNV type. 

The percentages represent the proportion obtained by dividing the count by the total 

count on the same row. 
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Accuracy of calls by CNV level of LD with HapMap SNP and CNV 
type 

CNV Type LD  r ≥ 0.8 r < 0.8 Total count 

          

Duplication 

LD < 0.25 26 (28 %) 68 (72 %) 94 
0.25 ≤ LD < 0.5 18 (35 %) 34 (65 %) 52 
0.5 ≤ LD < 0.75 18 (44 %) 23 (56 %) 41 
LD ≥ 0.75 138 (61 %) 87 (39 %) 225 

Of the 421 CNVs in this category, 9 had no LD info available, 421-9 = 412 
          

Duplication / 
Deletion 

LD < 0.25 12 (34 %) 23 (66 %) 35 
0.25 ≤ LD < 0.5 19 (61 %) 12 (39 %) 31 
0.5 ≤ LD < 0.75 11 (69 %) 5 (31 %) 16 
LD ≥ 0.75 102 (86 %) 16 (14 %) 118 

Of the 201 CNVs in this category, 3 had no LD info available, 200-1 = 200 
          

Deletion 

LD < 0.25 76 (31 %) 166 (69 %) 242 
0.25 ≤ LD < 0.5 55 (51 %) 53 (49 %) 108 
0.5 ≤ LD < 0.75 42 (53 %) 37 (47 %) 79 
LD ≥ 0.75 260 (58 %) 185 (42 %) 445 

Of the 886 CNVs in this category, 12 had no LD info available, 886-12 = 874 

Table 103: CNV counts by accuracy and level of LD stratified by CNV type. 

The percentages represent the proportion obtained by dividing the count by the total 

count on the same row. 

Accuracy of calls by CNV size and number of CNV classes 

Copy number classes CNV size r ≥ 0.8 r < 0.8 Total 
count 

          

2 
size < 3kb 58 ( 28 % ) 147 ( 72 % ) 205 
3kb ≤ Size < 22kb 75 ( 24 % ) 232 ( 76 % ) 307 
Size ≥ 22kb 10 ( 15 % ) 56 ( 85 % ) 66 

  578 
          

3 
Size < 3kb 383 ( 69 % ) 173 ( 31 % ) 556 
3kb ≤ Size < 22kb 224 ( 68 % ) 106 ( 32 % ) 330 
Size ≥ 22kb 22 ( 28 % ) 57 ( 72 % ) 79 

  965 
          

>3 
Size < 3kb 3 ( 38 % ) 5 ( 62 % ) 8 
3kb ≤ Size < 22kb 13 ( 52 % ) 12 ( 48 % ) 25 
Size ≥ 22kb 3 ( 9 % ) 31 ( 91 % ) 34 

  67 

Table 104: CNV counts by accuracy and CNV size stratified by number of CNV classes. 

The percentages represent the proportion obtained by dividing the count by the total 

count on the same row. 
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Accuracy of calls by level of LD with HapMap SNP and number of 
CNV classes 

Copy number classes LD  r ≥ 0.8 r < 0.8 Total 
count 

          

2 

LD < 0.25 66 (25 %) 198 (75 %) 264 
0.25 ≤ LD < 0.5 17 (21 %) 65 (79 %) 82 
0.5 ≤ LD < 0.75 5 (12 %) 37 (88 %) 42 
LD ≥ 0.75 55 (33 %) 110 (67 %) 165 

Of the 578 CNVs in this category, 25 had no LD info available, 578-25 = 553 

          

3 

LD < 0.25 51 (44 %) 66 (56 %) 117 
0.25 ≤ LD < 0.5 71 (61 %) 46 (39 %) 117 
0.5 ≤ LD < 0.75 62 (66 %) 32 (34 %) 94 
LD ≥ 0.75 445 (70 %) 189 (30 %) 634 

Of the 965 CNVs in this category, 3 had no LD info available, 965-3 = 962 

          

> 3 

LD < 0.25 7 (16 %) 37 (84 %) 44 
0.25 ≤ LD < 0.5 5 (42 %) 7 (58 %) 12 
0.5 ≤ LD < 0.75 5 (100 %) 0 (0 %) 5 
LD ≥ 0.75 2 (40 %) 3 (60 %) 5 

Of the 67 CNVs in this category, 1 had no LD info available, 67-1 = 66 

Table 105: CNV counts by accuracy and LD stratified by number of CNV classes. 

The percentages represent the proportion obtained by dividing the count by the total 

count on the same row. 

Accuracy of calls by CNV MAF and number of CNV classes 

Copy number classes MAF r ≥ 0.8 r < 0.8 Total 
count 

          

2 
< 0.05 109 (28 %) 287 (72 %) 396 

≥ 0.05 34 (19 %) 148 (81 %) 182 
  578 

          

3 
< 0.05 6 (35 %) 11 (65 %) 17 

≥ 0.05 623 (66 %) 325 (34 %) 948 
  965 

  
 

  
  

> 3 No MAF calculated for this category of CNV 67 

Table 106: CNV counts by accuracy and MAF stratified by number of CNV classes. 

The percentages represent the proportion obtained by dividing the count by the total 

count on the same row. 
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Accuracy of calls by level of LD with HapMap SNP and CNV MAF 

CNV MAF LD  r ≥ 0.8 r < 0.8 Total count 

          

< 0.05 

LD < 0.25 62 (31 %) 141 (69 %) 203 
0.25 ≤ LD < 0.5 12 (20 %) 47 (80 %) 59 
0.5 ≤ LD < 0.75 5 (19 %) 22 (81 %) 27 
LD ≥ 0.75 36 (32 %) 76 (68 %) 112 

Of the 413 CNVs in this category, 12 had no LD info available, 413-12 = 401 

          

≥ 0.05 

LD < 0.25 55 (31 %) 123 (69 %) 178 
0.25 ≤ LD < 0.5 76 (54 %) 64 (46 %) 140 
0.5 ≤ LD < 0.75 62 (57 %) 47 (43 %) 109 
LD ≥ 0.75 464 (68 %) 223 (32 %) 687 

Of the 1130 CNVs in this category, 3 had no LD info available, 1130-16 = 1114 

Table 107: CNV counts by accuracy and level of LD stratified by CNV frequency. 

The percentages represent the proportion obtained by dividing the count by the total 

count on the same row. 

Accuracy of calls by level of LD with HapMap SNP and CNV size 

CNV Size LD  r >= 0.8 r < 0.8 Total 
count 

          

size < 3kb 

LD < 0.25 43 (38 %) 70 (62 %) 113 
0.25 ≤ LD < 0.5 49 (52 %) 46 (48 %) 95 
0.5 ≤ LD < 0.75 47 (63 %) 28 (37 %) 75 
LD ≥ 0.75 305 (64 %) 173 (36 %) 478 

Of the 769 CNVs in this category, 8 had no LD info available, 769-8 = 761 

          

3kb ≤ Size < 22kb 

LD < 0.25 70 (32 %) 150 (68 %) 220 
0.25 ≤ LD < 0.5 40 (44 %) 50 (56 %) 90 
0.5 ≤ LD < 0.75 21 (38 %) 35 (62 %) 56 
LD ≥ 0.75 181 (64 %) 104 (36 %) 285 

Of the 662 CNVs in this category, 11 had no LD info available, 662-11 = 651 

          

Size ≥ 22kb 

LD < 0.25 11 (12 %) 81 (88 %) 92 
0.25 ≤ LD < 0.5 4 (15 %) 22 (85 %) 26 
0.5 ≤ LD < 0.75 4 (40 %) 6 (60 %) 10 
LD ≥ 0.75 16 (39 %) 25 (61 %) 41 

Of the 179 CNVs in this category, 10 had no LD info available, 179-10 = 169 

Table 108: CNV counts by accuracy and level of LD stratified by CNV length. 

The percentages represent the proportion obtained by dividing the count by the total 

count on the same row. 
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Accuracy of calls by CNVMAF and CNV size 

CNV Size MAF r ≥ 0.8 r < 0.8 Total 

          

size < 3kb < 0.05 38 (27 %) 104 (73 %) 142 

≥ 0.05 403 (65 %) 216 (35 %) 619 

Of the 769 CNVs in this category, 8 had > 3 classes (no MAF calculated), 769-8 = 761 
          

3kb ≤ Size < 22kb < 0.05 69 (31 %) 155 (69 %) 224 

≥ 0.05 230 (56 %) 183 (44 %) 413 

Of the 662 CNVs in this category, 25 had > 3 classes (no MAF calculated), 662-25 = 637 
  

 
  

  

Size ≥ 22kb < 0.05 8 (17 %) 39 (83 %) 47 

≥ 0.05 24 (24 %) 74 (76 %) 98 

Of the 179 CNVs in this category, 34 had > 3 classes (no MAF calculated), 179-34 = 145 

Table 109: CNV counts by accuracy and CNV frequency stratified by CNV length. 

The percentages represent the proportion obtained by dividing the count by the total 

count on the same row. 

 

Table 110 contains the results of the chi-squared tests of independence carried out to 
assess the correlation between the five CNV characteristics cross-tabulated in this 
appendix. The counts of CNVs measured with an accuracy r ≥ 0.8 in Table 93 and Table 
101 to Table 109, were used for the tests. 

  Size Type Number of classes LD 

Type 
statistic = 9.92 
p.value = 4.18E-002 
df = 4       

Number of classes 
statistic = 35.64 
p.value = 3.43E-007 
df = 4 

statistic = 22.54 
p.value = 1.56E-004 
df = 4     

LD 
statistic = 33.62 
p.value = 7.96E-006 
df = 6 

statistic = 12  
p.value = 6.20E-002 
df = 6 

statistic = 155.94 
p.value = 4.29E-031 
df = 6   

MAF 
statistic = 32.08 
p.value = 1.08E-007 
df = 2 

statistic = 39.52 
p.value = 2.62E-009 
df = 2 

statistic = 514.77 
p.value = 5.80E-114 
df = 1 

statistic = 160.33 
p.value = 1.56E-034 
df = 3 

Table 110: Results of the chi-squared tests. 

The table reports the results of the chi-squared tests of independence between CNV 

characteristics; df represents the degrees of freedom. All the tests were statistically 

significant, at a cut-off p.value of 0.05, except for the test between CNV type and LD. 

 




