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The Fundamental Groupoid and the Geometry of

Monoids

Ilia Pirashvili

Abstract

This thesis is divided in two equal parts. We start the first part by studying the
Kato-spectrum of a commutative monoid M , denoted by KSpec(M). We show that
the functor M ↦ KSpec(M) is representable and discuss a few consequences of this
fact. In particular, when M is additionally finitely generated, we give an efficient
way of calculating it explicitly.

We then move on to study the cohomology theory of monoid schemes in general
and apply it to vector- and particularly, line bundles. The isomorphism class of the
latter is the Picard group. We show that under some assumptions on our monoid
scheme X, if k is an integral domain (resp. PID), then the induced map

Pic(X)→ Pic(Xk)

from X to its realisation is a monomorphism (resp. isomorphism).
We then focus on the Pic functor and show that it respects finite products. Fi-

nally, we generalise several important constructions and notions such as cancellative
monoids, smoothness and Cartier divisors, and prove important results for them.

The main results of the second part can be summed up in fewer words. We prove
that for good topological spaces X the assignment U ↦ Π1(U) is the terminal object
of the 2-category of costacks. Here U is an open subset of X and Π1(U) denotes the
fundamental groupoid of U . This result translates to the étale fundamental groupoid
as well, though the proof there is completely different and involves studying and
generalising Galois categories.
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Introduction

This thesis is made up of two independent parts. Outside of Section 5.2, which gives

a brief connection, there will be basically no intersection and dependence between

these parts. The first part, consisting of Chapters 2 and 3, focuses on the study of

commutative monoids and monoid schemes. In the second part, we move toward the

so called 2-categories and give a new characterisation of the fundamental groupoid,

both in the classical (topological), as well as the étale (algebraic) case. It should

be noted that while the main statement in both cases will be identical, the proofs

given, are vastly different.

Introduction to ‘The Geometry of Monoids’

The formal study of monoids and related objects (for example semigroups) goes

back over a hundred years. But as the term ‘semigroup’ already suggests, these

were considered to be generalisations of groups and as such they were studied from

much the same perspective.

It was mainly the paper by Kato [26] in 1994 that led to a new perspective

on commutative monoids, as it demonstrated the link between toric varieties and

monoid schemes. In 2008 Deitmar built on this result and showed that the realisation

of irreducible, connected, integral (cancellative in our terminology) monoid schemes

of finite type over the complex numbers were (complex) toric varieties [14, Theorem

4.1]. These two papers alone give validity to the study of monoid schemes, as they

can be thought of as a generalisation of the classical field of toric varieties without

a fixed base field.

There are however many other areas that use monoid schemes. These include

tropical geometry [37], logarithmic geometry [1][27] and the geometry over F1, both

the version of Connes [10][11] and of Deitmar [13].
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The fundamental idea of monoid schemes is to treat monoids as if they were

rings, but disregard addition everywhere. For example, an ideal I of a monoid M

would simply be a subset, satisfying a ∈ I, m ∈M ⇒ am ∈ I.

The first chapter of this thesis focuses on the set of prime ideals of a commutative

monoid M . This set, which is denoted by KSpec(M), after K. Kato, is endowed

with a natural topology, called the Zariski topology, which is defined in much the

same way as for rings. Unlike for ring however, here, the union of prime ideals is

again a prime ideal. This induces a monoid structure on the Kato-spectrum. One

of the main results we prove in the second chapter, claims that for any commutative

monoid M , one has a natural isomorphism of topological monoids

KSpec(M) ≅ Hom(M, I), (1)

where Hom is taken in the category of commutative monoids and I = {0,1} is the

monoid with the obvious multiplication. For the topology involved in this isomor-

phism see Section 2.3. From isomorphism (1) one easily deduces the ‘reduction

isomorphism’

KSpec(M) ≅ KSpec(M sl), (2)

where M sl is the monoid obtained by quotiening out M with the congruence gen-

erated by m2 ∼ m. That is to say, it is the canonical semilattice associated to

M .

Another result says that for any commutative monoid M there is an injective,

order preserving map

αM ∶M sl → KSpec(M),

which is an isomorphism, provided M is finitely generated. In particular, these

results give an effective way of computing KSpec(M) for an arbitrary, finitely gen-

erated, commutative monoid M . Note that M sl is considered as a poset where v ≤ u
if and only if uv = v, u, v ∈M sl.

Lastly, we focus on localisation and show that every localisation of M is iso-

morphic to a localisation by a single element. We further show that two elements

will define the same localisation if and only if they map to the same element with

the canonical map M → M sl. This result was previously already obtained in [12,

Lemmas 1.1 and 1.3].
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Having obtained these results, we then move on to study monoid schemes in

the next chapter. Let X denote a monoid scheme. We will show that the category

of sheaves on the underlying topological space of X is equivalent to the category

of functors on its underlying poset. Part ii) of Proposition 3.1.9 shows that for

separated monoid schemes, we can use the simpler Ĉech cohomology to calculate

the (Grothendieck) cohomology. These two results greatly simplify the calculation

of sheaf cohomologies of monoid schemes.

In [13, Propositin 4.3], Deitmar showed that the Picard group (also called the

group of line bundles) Pic(P1) of the projective line (in the monoid world) is Z,

which agrees with the Picard group of the complex projective line P1(C). This

raises the natural question whether this result generalises and whether we can use

the cohomology of monoid schemes to calculate the cohomology of their realisations.

In Section 3.2 we show that the vector bundles over a monoid scheme (being defined

as locally free M -sets) can be calculated using cohomology, exactly as in the classical

case. We then proceed to prove that over any separable noetherian monoid scheme

X, every vector bundle is a coproduct of line bundles.

This already clearly shows that getting a strong relation between the vector bun-

dles over a monoid scheme and its realisation is unlikely. For line bundles however,

the situation is much more interesting and hopeful. Indeed, as we will show in

Section 3.3, Corollary 3.3.3, under some assumptions on X, there is an isomorphism

Pic(X)→ Pic(Xk),

when k is a PID. This result shows the importance of Pic(X) for a separated monoid

scheme X and the rest of the chapter is devoted to studying it in more detail.

We first prove that the functor Pic is additive in the monoid world. In other

words, the canonical map

Pic(X)⊕ Pic(Y ) ≅ Pic(X × Y )

is an isomorphism.

In Section 3.5 we move on to study the Picard group in more detail. For this

we restrict our class of monoid schemes even more. We introduce the notion of

s-cancellative monoids and monoid schemes as well as s-regular elements. These

generalise the notions of cancellative monoids and regular elements respectively.

3



CONTENTS

This is important because as we will show, it is the biggest class of monoid schemes

where the maps induced by localisations are injective on the invertible elements.

This allows us to embed the sheaf (X,O∗
X) in a (in general) bigger constant sheaf

than the sheaf of meromorphic functions. We show that for s-cancellative monoid

schemes, there is an isomorphism

Pic(X) ≅ sCl(X),

where s-Cl is the analogue of CaCl, the classes of Cartier divisors, in our setting.

Lastly we generalise the notion of smooth monoid schemes with s-smooth monoid

schemes and show that for such schemes, the higher cohomologies vanish. We then

give a few examples of s-smooth monoids which are not smooth, as well as a small

conjecture.

Introduction to ‘Stacks, Costacks and the Funda-

mental Groupoid’

The second part of this thesis focuses on the theory of 2-categories. Its foundations

can be traced back to Grothendieck and his school, more precisely, the gluing of

the categories of schemes, also known as the descent data. While this theory was

not formally known as 2-categories back then, it carried much of the essence. The

main idea here is that a 2-category is essentially a category enriched in categories

and as such two objects can now be either equal, isomorphic or equivalent. Every

categorical construction has a natural, 2-categorical analogue. For example, stacks

are the analogue of sheaves.

In this thesis we will focus on the dual notion of stacks, namely costacks. We

will show that while slightly overlooked, they are an important class of 2-functors.

They will allow us to give an axiomatic description of the fundamental groupoid,

both in the classical, as well as the algebraic case.

More precisely, we will show that the assignment U ↦ Π1(U) defines the 2-

terminal costack over X. Here X can be a topological space with U ⊂ X an open

subset, or the site of étale coverings over a noetherian scheme, with U an object in

the said site.

4
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While it might seem like an artificial property for a (strict) 2-functor F to be

a costack, it is in essence only saying that F satisfies (a slightly reformulated ver-

sion) of the Seifert-van Kampen theorem. Hence Theorems 5.1.4 and 8.0.9 can be

reinterpreted as saying that the Seifert-van Kampen theorem is in fact the defining

property of the fundamental groupoid.

We give separate proofs for the topological and algebraic case, both of which are

of intrinsic interest.

The proof for the topological case gives an effective way to calculate the fun-

damental groupoid explicitly, whenever we are given a so called discrete covering

(Definition 5.1.3). In Section 5.2 we give a big class of such spaces and demonstrate

its application.

The algebraic case mainly involves the study of Galois categories from a 2-

categorical viewpoint and generalising them to the finitely connected case. We

then proceed to prove that the 2-category of finitely connected, profinite groupoids

(see Definition 4.1.12) is 2-equivalent to the 2-category of finitely connected Galois

categories.

Though we do not touch on this subject in this thesis, it is likely that this proof

can be modified to prove that the Nori-fundamental groupoid scheme (adequately

defined) will be the terminal costack with values in the 2-category of groupoid

schemes. To do this, we would have to replace the Galois categories with Tannakian

categories.

5



Chapter 1

Preliminaries from Category

Theory and Homological Algebra

In this chapter we will give some basic results regarding sheaf cohomology and areas

related to that. Everything here is of course well known and is only stated to

fix notation and for the convenience of the reader. In more detail, we will start by

defining what a Grothendieck topology, also called a site, is and give a few examples.

This will be used in our discussion of the étale fundamental groupoid.

We will then define the Ĉech cohomology of a presheaf and the Grothendieck

cohomology of a sheaf, for which we will state an array of important results in

Theorem 1.4.1. Finally we mention a few words about non-abelian cohomology,

until restricting ourselves to the cohomology theory of topological spaces.

1.1 Grothendieck Topology

Following [2], a Grothendieck topology T, which is also called a site, consists of a

small category Cat T and a set Cov T of families of morphisms {Ui
φiÐ→ U}i∈I in

Cat T called coverings , satisfying the following:

i) If φ is an isomorphism then {φ} ∈ Cov T;

ii) If {Ui → U}i∈I ∈ Cov T and {Vij → Ui}j∈Ji ∈ Cov T then the family

{Vij → U}i∈I,j∈Ji ∈ Cov T;

6



1.1 Grothendieck Topology

iii) If {Ui → U}i∈I ∈ Cov T and V → U ∈ Cat T is arbitrary then Ui ×U V exists

and {Ui ×U V → V }i∈I ∈ Cov T.

By abuse of notation we will call T a Grothendieck topology.

Definition 1.1.1. Let {Ui → U}i∈I and {Vs → U}s∈S be two coverings of U . A

morphism of coverings

{Ui → U}i∈I → {Vs → U}s∈S

is given by a map ε ∶ I → S, and for every i ∈ I a morphism fi ∶ Ui → Vε(i), such that

the diagram

Ui

��

fi // Vε(i)

}}
U

commutes. This is also called a refinement of {Ui → U}i∈I .

Remark 1: In more modern literature this is known as a Grothendieck pre-topology .

Since however a pre-topology defines a topology in a unique way, we can use this

significantly simpler definition for the purposes of this thesis.

Example 1: Let X be a topological space. One can associate to it the following

Grothendieck topology. Define Off(X) to be the category corresponding to the

poset of open subsets of X. That is, objects of Off(X) are open subsets of X, while

HomOff(X)(V,U) has one element if V ⊂ U and is empty otherwise. This category,

with the usual coverings, is a Grothendieck topology.

Example 2: Let X be a noetherian scheme. We define the faithfully flat topology

FF(X) as follows:

� Cat FF(X) is the category of faithfully flat schemes of finite presentation over

X.

� Cov FF(X) are finite surjective families of maps.

7



1.1 Grothendieck Topology

Example 3: Let X be a noetherian scheme. We define the fpqc topology Fpqc(X)
by declaring:

� Cat Fpqc(X) to be the category of schemes over X which are faithfully flat, of

finite presentation and quasi-compact.

� Cov Fpqc(X) to be finite surjective families of maps.

Example 4: Let X be a noetherian scheme and define FEC(X) as follows:

� Cat FEC(X) is the category of étale schemes over X. Note that by our defini-

tion, see Section 8, this includes finiteness.

� Cov FEC(X) are finite surjective families of maps.

It is well known (see [2, Example (0.7)]) that for any scheme Z over X the functor

HomSch/X(−, Z) is a sheaf in the faithfully flat topology, where Sch/X denotes the

category of schemes over X.

Let T be a Grothendieck topology. A presheaf of sets is a contravariant functor

from T to the category of sets. A presheaf F is called a sheaf if for any covering

{Ui → U} ∈ Cov T, the diagram

F (U)→∏
i∈I
F (Ui)⇉∏

ij

F (Ui ×U Uj)

is exact. Recall that exactness means the following: If both parallel arrows map an

element (ai) ∈∏i∈I F (Ui) to the same element in ∏ij F (Ui×UUj), then there exists a

unique element a ∈ F (U) such that a↦ (ai) via the first map. An other way of saying

that is that F (U) is the kernel, or limit, of the diagram F (Ui) ⇉ ∏ij F (Ui ×U Uj).
One can also talk about sheaves with values in groups, rings etc.

For a sheaf F and an object U of Cat T elements of the set F (U) are sometimes

called sections of F over U . In the case of a topological space X with U = X, we

will simply say section or global section of F .

8



1.2 Čech Cohomology

1.2 Čech Cohomology

Let T be a Grothendieck topology. For a given covering {Ui → U}i∈I one constructs

iterated fibre products Ui0 ×U Ui1 ×U ⋯ ×U Uin . Then for any presheaf of abelian

groups F one can form a cochain complex (see [2, Section 3])

∏
i

F (Ui)→∏
ij

F (Ui ×U Uj)→∏
ijk

F (Ui ×U Uj ×U Uk)→ ⋯.

The n-th cohomology of this cochain complex is denoted by Hn({Ui → U}, F ) and

is called the n-th Čech cohomology of the covering {Ui → U} with coefficients in F .

From the morphism of coverings of a site one obtains a cochain map

∏sF (Vs) //

f∗

��

∏stF (Vs ×U Vt) //

f∗

��

∏ijk F (Vs ×U Vt ×U Vr) //

f∗

��

⋯

∏iF (Ui) //∏ij F (Ui ×U Uj) //∏ijk F (Ui ×U Uj ×U Uk) // ⋯.

It is well known that any two morphisms {Ui → U}i∈I → {Vs → U}s∈S yield homotopic

chain maps [2, Proposition 3.4] and hence the induced homomorphism in cohomology

Hn({Vs → U}, F ) → Hn({Ui → U}, F ) is independent from our choice of morphism

of coverings.

For a given object U let us consider the following poset: Elements are coverings

{Ui → U}i∈I . One says that {Ui → U} ≥ {Vs → U} if there is a morphism of coverings

{Ui → U}→ {Vs → U}. It follows that the assignment

{Ui → U}i∈I ↦Hn({Ui → U}, F )

gives rise to a functor on that poset. We let Ȟn(U,F ) be the colimit of this functor.

That is, we define:

Ȟn(U,F ) ∶= colim{Ui→U}H
n({Ui → U}, F ).

These groups are known as the Čech cohomology of U with coefficients in a presheaf

F .

Observe that the category P of presheaves on T with values in the category of

9



1.3 Sheafification

abelian groups is an abelian category. A sequence of presheaves

0→ F1 → F → F2 → 0

is short exact if and only if for any object U , the sequence of abelian groups

0→ F1(U)→ F (U)→ F2(U)→ 0

is exact. If this is the case, one has a long exact sequence of abelian groups

0→ Ȟ0(U,F1)→ Ȟ0(U,F )→ Ȟ0(U,F2)→ Ȟ1(U,F1)→ Ȟ1(U,F )→ Ȟ1(U,F2)→ ⋯.

1.3 Sheafification

For any abelian presheaf F , the group Ȟ0({Ui → U}i∈I , F ) coincides with the set of

all collections (ai)i∈I , ai ∈ F (Ui), such that the image of ai under the map F (Ui)→
F (Ui ×U Uj) agrees with the image of aj under the map F (Uj)→ F (Ui ×U Uj).

We observe that this definition makes sense even for presheaves with values in

sets. Since the ordered set of all coverings is filtered [2, Remark on p.25] the same

is true for Ȟ0(U,F ).
A presheaf F is called separated if for any {Ui → U} ∈ Cov T the natural map

F (U)→∏iF (Ui) is injective.

It is clear that a presheaf is a sheaf if and only if for any {Ui → U} ∈ Cov T the

natural map F → Ȟ0({Ui → U}i∈I , F ) is an isomorphism.

For a presheaf (of sets) F , one defines a presheaf F + by

F +(U) = Ȟ0(U,F ).

We have the following result (see [2, Lemma 1.4]):

Proposition 1.3.1. i) For any presheaf F , the presheaf F + is separated.

ii) For any separated presheaf F , the presheaf F + is a sheaf. Further, the natural

map F → F + is injective.

10



1.4 Sheaf Cohomology

It follows that for any presheaf F , the presheaf F̂ = (F +)+ is a sheaf. This is

called the sheafification of F . The natural morphism i ∶ F → F + yields a morphism

i ∶ F → F̂ , which has the following universal property: For any sheaf G and any

morphism of presheaves f ∶ F → G there is a unique morphism g ∶ F̂ → G such that

f = gi.

1.4 Sheaf Cohomology

Denote by S the category of sheaves on a site T with values in abelian groups. There

is an inclusion functor i ∶ S → P. It is well known that both categories are abelian

categories. The kernel of a morphism of sheaves can be computed in the category

of presheaves. Hence for any exact sequence of sheaves

0→ F1 → F → F2

one has an exact sequence

0→ F1(U)→ F (U)→ F2(U).

However, if f ∶ F1 → F is a morphism of sheaves, then the presheaf

U ↦ Coker(F1(U)→ F (U))

is not a sheaf in general. The sheafification of this presheaf is the cokernel of f in

the category S.

The sheafification gives rise to a functor ˆ∶ P → S, which is exact (see [2, Theorem

2.14]).

A sheaf I is called injective if the functor HomS(−, I) ∶ S → Ab is exact. It is well

known [2] that for any sheaf F there is an injective sheaf I and a monomorphism

0 → F → I. It follows that any F ∈ S has an injective resolution, that is an exact

sequence of sheaves

0→ F → I0 → I1 → ⋯

such that all In, n ≥ 0 are injective sheaves. For any object U one can consider the

11



1.4 Sheaf Cohomology

cochain complex

0→ I0(U)→ I1(U)→ ⋯.

The n-th cohomology of this complex is denoted by Hn(U,F ) and is called the n-th

Grothendieck cohomology or cohomology of U with coefficients in a sheaf F . We

have the following well-known facts ([2], [19, Section II.5.4],[44]):

Theorem 1.4.1. i) For all n ≥ 0, we have a functor Hn(U,−) ∶ S → Ab, given

by the assignment F ↦Hn(U,F ).

ii) If I is an injective sheaf, then Hn(U, I) = 0, for n > 0.

iii) For any sheaf F one has

F (U) =H0(U,F ).

iv) For any short exact sequence of sheaves

0→ F1 → F → F2 → 0

one has a long exact sequence of abelian groups

0→H0(U,F1)→H0(U,F )→H0(U,F2)→H1(U,F1)→H1(U,F )→H1(U,F2)→ ⋯.

v) For any sheaf F and any {Ui → U}i∈I ∈ Cov T there is a spectral sequence

Epq
2 =Hp({Ui → U}i∈I ; Hq(F ))⇒Hp+q(U,F ).

Here Hq is the presheaf given by V ↦Hq(V,F ). Further, we have the five-term

exact sequence:

0→ E10
2 →H1(U,F )→ E01

2 → E20
2 →H2(U,F ).

12



1.5 Non-abelian Cohomology

vi) For any sheaf F there are natural homomorphisms

ηn ∶ Ȟn(U,F )→Hn(U,F ), n ≥ 0.

The homomorphisms η0 and η1 are isomorphisms, while η2 is a monomor-

phism.

1.5 Non-abelian Cohomology

Following [25], we can also talk about non-abelian cohomology. Assume G is a

presheaf on T with values in the category of groups. In this case one can still define

the cohomology with coefficients in G, but only in dimensions 0 and 1. In fact

we already defined the 0-th cohomology. Recall that H0({Ui → U},G) consists of

families (gi) such that gi ∈ G(Ui) and for any i and j both elements gi and gj have

the same image in G(Ui ×U Uj). One observes that this set is in fact a group. It

follows that Ȟ0(U,G) is also a group.

To define the first cohomology H1({Ui → U},G), one needs to consider families

of the form (gij), where gij ∈ G(Ui×U Uj), i, j ∈ I. Such a family is called a 1-cocycle

provided for any i, j, k ∈ I the following equation

gik = gijgjk

holds in the group G(Ui ×U Uj ×U Uk). By putting i = j = k one obtains that gii = 1,

and hence from k = i we get gji = g−1
ij . Denote the collection of all 1-cocycles by

Z1({Ui → U},G). Two 1-cocycles (gij) and (fij) are called cohomologous provided

that there are elements hi ∈ G(Ui) such that the equation

fij = higijh−1
j

holds in the group G(Ui ×U Uj). One checks that this is an equivalence relation and

the set of equivalence classes is denoted by H1({Ui → U},G) (see [25, Section 5.1]).

The first non-abelian cohomology has in general no group structure, though it still

has a special element, which is the class of the trivial family gij = 1 for all i and j.

13



1.5 Non-abelian Cohomology

As in the abelian case one passes to colimits with respect to all coverings to obtain

the group Ȟ1(U,G). In the case where G is a sheaf of groups we write H1(U,G) for

Ȟ1(U,G). By (vi) of Theorem 1.4.1, this is consistent with the abelian case. Let

1→ G1
iÐ→ G→ G2 → 1

be a short exact sequence of sheaves of groups. Thus for any object U the map

i(U) ∶ G1(U) → G(U) is injective. Moreover the subgroup Im(i(U)) is a normal

subgroup of G(U) and G2 is the sheafification of the presheaf U ↦ Coker(i(U)).
In this generality the group G2(U) acts on the set H1(U,G1), as follows from [25,

p.75]. Take x ∈ G2(U) and take a covering {Ui → U}i∈I such that there are elements

gi ∈ G(Ui) with the following property: the image of gi in G2(Ui) is the same as the

image of x in G2(Ui). Such a covering exists because G → G2 is an epimorphism

of sheaves. Next, take an element y ∈ H1(U,G1), without loss of generality we can

assume that y is represented by a 1-cocycle (yij) ∈ Z1({Ui → U},G1). Then one

defines x ⋆ y to be the class in H1(U,G1) represented by the 1-cocycle

(giyijg−1
j ) ∈ Z1({Ui → U},G1).

It can be checked that this action is well defined. We have the following result [25,

Proposition 5.3.1]:

Proposition 1.5.1. Let

1→ G1
iÐ→ G→ G2 → 1

be a short exact sequence of sheaves of groups. Then one has an exact sequence of

pointed sets

1→ G1(U)→ G(U)→ G2(U) δÐ→H1(U,G1)
i1Ð→H1(U,G)→H1(U,G2).

Moreover the first two non-trivial homomorphisms are group homomorphisms and

for elements y, z ∈H1(U,G1), one has i1(y) = i2(y) if and only if z = x ⋆ y for some

element x ∈ G2(U).

From this we immediately obtain the following:

14



1.6 The Case of Topological Spaces

Proposition 1.5.2. Assume

1→ G1
αÐ→ G

βÐ→ G2 → 1

is a split short exact sequence of sheaves of groups. We have a short exact sequence

of pointed sets

1→H1(U,G1)G2(U)
α∗Ð→H1(U,G)→H1(U,G2)→ 1

Here H1(U,G1)G2(U) is the orbit space of H1(U,G1) under the action of the group

G2(U).

1.6 The Case of Topological Spaces

In the case of topological spaces, one can check exactness of a sequence of sheaves

‘pointwise’. For this we need to introduce the notion of a stalk of a sheaf over a

point.

Let X be a topological space. For a presheaf F and a point x ∈ X one defines

the stalk Fx of F over x by

Fx ∶= colimx∈UF (U).

The sequence of sheaves

F ′ → F → F ′′

is exact in the category S, if and only if the sequence of abelian groups

F ′
x → Fx → F ′′

x

is exact for all x ∈X. Elements of F (X) are known as global sections of F .

There is a big class of sheaves for which the higher cohomology vanishes: A sheaf

F on a topological space X is called flasque provided for any open subset U ⊂ X,

the restriction map F (X) → F (U) is an epimorphism. We have the following well-

known result [19, Theorem 4.4.3]:
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Lemma 1.6.1. If a sheaf of abelian groups F is flasque, then Hn(U,F ) = 0 for all

n > 0 and any open subset U .

We also need a vanishing result due to Grothendieck [19, Theorem 4.15.2]. Recall

that a topological space X is called noetherian (Zariski space in the terminology of

[24]) provided for any closed subsets

Y1 ⊇ Y2 ⊇ ⋯

there exist a natural number n such that Ym = Ym+1 for all m ≥ n. For such spaces,

one writes dim(X) ≤ n, if any strictly descending sequence of irreducible subsets

contains at most n + 1 members. Here, a closed subset A is called irreducible, if

for closed subsets B and C the equality A = B ∪ C implies A = B or A = C. The

following result is well known [24, Theorem 3.6.5].

Theorem 1.6.2. If X is a noetherian space such that dim(X) ≤ n, then for any

sheaf F one has H i(X,F ) = 0 provided i > n.

1.7 Constant Sheaves

Let A be an abelian group. Denote by PA the presheaf given by PA(U) = A for all

objects U ∈ T, where for any morphism V → U , the induced map

A = PA(V )→ PA(U) = A

is the identity. The sheafification P̂A of PA is known as the constant sheaf associated

to the abelian group A. A constant sheaf considered as a presheaf is in general not

constant.

In this section we mainly restrict ourselves to topological spaces. In this case,

for any constant sheaf P̂A and an open set U , one has:

P̂A(U) = {locally constant functions U→ A}.

If U = {Ui ⊂ U}i∈I is an open covering of X, then the nerve NU of the covering

U is a simplicial complex, whose vertices are elements of I. A finite subset J of I

forms a simplex of the nerve, provided ⋂j∈J Uj /= ∅. We have the following result:
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1.7 Constant Sheaves

Lemma 1.7.1. Let A be an abelian group and U = {Ui ⊂ U}i∈I any covering of

non-empty open sets such that the intersections ⋂Ui are empty or connected. One

has an isomorphism

H∗({Ui → U}, P̂A) =H∗(NU ,A)

where the cohomology on the right hand side is the cohomology of simplicial com-

plexes.

Proof. Since P̂A(V ) = A if V is a non-empty, connected open subset and P̂A(∅) = 0,

it follows that we have the following:

∏ P̂A(Ui) // //

∣∣

∏ P̂A(Uij)
// ////

∣∣

∏ P̂A(Uijk) ⋯

∣∣

∏
(NU)0

A // // ∏
(NU)1

A
////// ∏
(NU)2

A ⋯ .

Thus the cochain complexes C∗({Ui → U}, P̂A) and C∗(NU ,A) are the same and

hence so are their cohomologies. Q.E .D

We also need the following well-known result due to Grothendieck (see for ex-

ample [35, Theorem 1.1] or [19]).

Theorem 1.7.2. If X is irreducible and F is a constant sheaf, then H i(X,A) = 0

for all i > 0.
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Part I

The Geometry of Monoids
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Chapter 2

The Kato-Spectrum

In the last years there has been considerable interest in the theory of monoid schemes

[10],[11],[13],[14],[26]. It is believed that these objects play a central role in the theory

of schemes over ‘the field with one element’. See also [30] for more about geometry

over the field with one element. As such, the prime ideal spectrum of commutative

monoids, as well as localisations, are of importance.

The aim of this chapter is to prove several useful results, about the spectrum of

commutative monoids as well as about localisations. Thereby, we essentially define

affine monoid schemes. This chapter is organised as follows:

In the first section we will give a brief overview of what a monoid is. In Section

2.2 we will discuss posets and in particular semilattices. Our interest in them is, as

we will show in the following section, that the set of prime ideals of a monoid form

a natural semilattice.

In Subsection 2.3.1 we will give several ways of explicitly calculating the spectrum

of a commutative monoid, especially when it is finitely generated. Lastly we will

discuss localisation.

2.1 Introduction

A set M is said to be a semigroup if we are given a binary, associative operation

× ∶M ×M →M . Of course instead of writing ×(a, b) we will write ab. If additionally

we have a distinguished element 1M , such that 1Mm = m1M = m, then we say

that M is a monoid . We immediately see that a monoid is essentially a group
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2.1 Introduction

without necessarily having inverses. It is further said to be commutative, if ab = ba.

Throughout this thesis, we will only work with commutative monoids.

Let M and N be two monoids. We say that a map f ∶M → N is a monoid homo-

morphism (henceforth referred to as a homomorphism unless there is ambiguity) if

f(1M) = 1N and f(ab) = f(a)f(b). For simplicity, we will use 1 instead of 1M from

now on. It is obvious that if M and N are monoids, then the set of homomorphisms

Hom(M,N) has a natural monoid structure where fg(a) = f(a)g(a).
The free commutative monoid with one generator is denoted by N and is iso-

morphic to ⟨x⟩ ∶= {1, x, x2,⋯, xn,⋯}, with the obvious operation. An important fact

is that every monoid is a quotient of a free monoid, with possibly infinitely many

generators. Hence, every monoid can be written as ⟨x1,⋯, xn,⋯⟩ /K, where K is a

congruence relation. That is, an equivalence relation respecting the monoid struc-

ture. It is clear that for every relation R there exists a unique associated congruence

relation KR, which is the smallest congruence relation containing R. A typical way

of defining monoids is in terms of generators and relations.

If M and N are commutative monoids, their tensor product M ⊗N is defined to

be the commutative monoid generated by the elements m ⊗ n with m ∈ M,n ∈ N ,

modulo the relations:

� (m1m2)⊗ n = (m1 ⊗ n)(m2 ⊗ n)

� m⊗ (n1n2) = (m⊗ n1)(m⊗ n2)

� 1⊗ n =m⊗ 1 = 1⊗ 1.

Note that the last relation does not follow from the first two, as it does in the case

of abelian groups. We immediately see that the exponential property

Hom(M ⊗N,S) ≅ Hom(M,Hom(N,S))

holds, where M,N and S are commutative monoids.

Most of the categorical definitions, like limits and colimits, that exist in abelian

groups, also exist for monoids and are constructed in the same way. The connection

of monoids with groups is of course long known. But it has been observed relatively

recently that they also have many similarities with commutative rings. For exam-

ple, one can consider the analogue of prime ideals for monoids as well, and define

KSpec(M), the Kato-Spectrum of M , with its own Zariski topology and structure
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2.2 Posets, Semilattices and Lattices

sheaf. Using this, we can also define gluing and extend the category of monoids to

monoid schemes. This has much intrinsic interest but one of the main uses of it is

the fact that we can generalise toric varieties using monoid schemes.

2.2 Posets, Semilattices and Lattices

The results of this section are well known. See for example [20]. The notations we

use however, do not follow it.

As already mentioned, abelian groups form a full subcategory of monoids. Now

we will discuss the ‘opposite’ of groups, i.e. a full subcategory where for every

element m ∈M , m2 =m. It is the opposite in the sense that if we were to invert an

element m of M , we would get m = 1. In other words Mm ≅M/m, where Mm is the

localisation of M (see Subsection 2.3.2) with respect to m and M/m is the quotient

of M by m ∼ 1. In particular, MGr =MM ≅ 1, where MGr is the Grothendieck group

of M . That is, the localisation of M with respect to all of M . As we will see, this

category, called the category of semilattices, is very important to do ‘geometry’ over

monoids.

Definition 2.2.1. Let P be a partially ordered set, or poset for short. We call an

element a ∨ b the join of a and b if a, b ≤ a ∨ b and for every element m ∈ M such

that a, b ≤ m, we have a ∨ b ≤ m. A poset P is said to be a join semilattice if for

every pair of elements (a, b) the join a ∨ b exists.

Dually we define the meet a∧ b of a and b to be an element satisfying a, b ≥ a∧ b,
and for every element m ∈M such that a ≥m,b ≥m, a∧ b ≥m. Hence we can define

a meet semilattice as well.

Definition 2.2.2. Let S and S′ be two join semilattices. A map f ∶ S → S′, is a

morphism of join semilattices if f(a ∨ b) = f(a) ∨ f(b).

Similarly we can define the morphisms of meet semilattices as well. It is obvious

that these two categories are equivalent, and the equivalence is given by reversing

the ordering. A semilattice (meet or join) is called bounded if additionally we have

a unit. In other words an element 1 such that 1 ∧ a = a (or 0 ∨ a = a) for all a ∈M .
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2.2 Posets, Semilattices and Lattices

If the semilattice is a join semilattice, then the identity is called the least element.

In the case of meet semilattices, it is referred to as the greatest element .

From now on, whenever we use the term semilattice, we mean bounded. Fur-

thermore unless we specifically care about the orientation of the ordering, we will

simply say semilattice instead of join or meet semilattice and use the notations of a

join semilattice.

It is immediately obvious that the category of semilattice is equivalent to the

category of idempotent monoids , i.e. where m2 =m for every m ∈M . The operation

of the monoid is induced by the join (or meet) of the semilattice. Conversely, the

ordering is given by x ≤ y if xy = y. We have a functor

sl ∶ Monoids→ Semilattices (2.1)

given by M ↦M/a2 ∼ a which is the left adjoint of the inclusion functor. Explicitly,

this relation is given as follows: [20, Theorem 1.2 of Chapter III]. We have a ∼ b
provided there exist natural numbers m,n ≥ 1 and elements u, v ∈ M , such that

am = ub and bn = va.

We denote the image of M under sl by M sl and the class of an element a ∈M in

M sl by [a].

Lemma 2.2.3. 1. The relation ∼ is a congruence relation on M .

2. If X is a join semi-lattice and f ∶ M → X is a monoid homomorphism, then

f can be uniquely decomposed as:

M //

f ""

M sl

��
X.

Remark 2: Let M be a monoid. It is obvious that the ordering on M sl is induced

by the monoid structure on M . In other words [a] ≤ [b]⇔ [b] = [ab].

Corollary 2.2.4. Let f ∶ M → N be a monoid homomorphism. Then the induced

map f∗ ∶M sl → N sl respects ordering.
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2.3 Prime Ideals of Commutative Monoids

Definition 2.2.5. A poset L is said to be a lattice if it is both a join and a meet

semilattice.

Lemma 2.2.6. If L is a finite join semi-lattice, then L is a lattice.

Proof. First, we show that L possesses a greatest element. In fact, if L = {x1,⋯, xn},

then x1 ∨⋯∨xn is the greatest element. Now for any a, b ∈ L we consider the subset

Qa,b ∶= {x ∈ L∣x ≤ a, and x ≤ b}.

It is clear that the least element belongs to Qa,b, so it is non-empty. It is also clear

that Qa,b is a join subsemilattice of L. Thus, Qa,b has the greatest element a∧ b and

we are done. Q.E .D

Let f ∶ L → L′ be a morphism of finite join semilattices. Then, as we have seen,

L and L′ are lattices. However, in general, f is not a morphism of lattices.

Definition 2.2.7. Let P be a poset. Define a topology on P by declaring U ⊂ P to

be open if x ∈ U, y ≤ x implies y ∈ U . This is called a poset topological space and we

denote it by XP .

Note that we can also defined a topology on a poset P by declaring U to be open

if x ∈ U, y ≥ x implies y ∈ U . However, the categories obtained, are clearly equivalent.

For more on poset topologies, see Subsection 3.1.1.

2.3 Prime Ideals of Commutative Monoids

In this section we will focus on the set of prime ideals of a commutative monoid M .

This set, together with its natural topology, is denoted by KSpec(M) after K.Kato,

who introduced it in [26]. It plays the same role in the theory of monoid schemes, as

the classical set of prime ideals Spec(R), of a commutative ring R, does in the theory

of (ring) schemes. We will first show that KSpec(M) has an additional structure

compared to its classical counterpart. Namely, the union of (prime) ideals is again a

(prime) ideal. We will prove several important results for KSpec(M), most notably

Theorems 2.3.5 and 2.3.10.
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2.3 Prime Ideals of Commutative Monoids

Having given an effective way of calculating KSpec(M) for finitely generated

monoids, we will move on to localisations. We will show in Theorem 2.3.18 that for

a finitely generated monoid, every localisation can be assumed to be a localisation by

the multiplicative subset generated by an element, or equivalently, the localisation

at a prime ideal. This result first appears in [12, Lemmas 1.1 and 1.3]. After this,

we will prove that if we have two elements f and g, with f ≅ g under the image

sl ∶M →M sl, they will define the same localisation.

Definition 2.3.1. A subset a ⊂ M of a monoid M is called an ideal, provided for

any a ∈ a and x ∈ M one has ax ∈ a. For an element a ∈ M , we let (a) be the

principal ideal aM .

Definition 2.3.2. An ideal p is called prime, provided p /=M and the complement

of p in M is a submonoid.

Thus, an ideal p is prime, if and only if 1 /∈ p, and if xy ∈ p, either x ∈ p or y ∈ p.

We let KSpec(M) be the set of all prime ideals of M . It is equipped with a topology,

where the sets

D(a) = {p ∈ KSpec(M)∣a /∈ p}

are the base of open sets. Here a is an arbitrary element of M , see [13, p.92],[26],[30].

Observe that if f ∶ M1 → M2 is a homomorphism of monoids, for any prime ideal

p ∈ KSpec(M2), the pre-image f−1(p) is a prime ideal of M1. Hence, any monoid

homomorphism f ∶M1 →M2 gives rise to a continuous map

f−1 ∶ KSpec(M2)→ KSpec(M1); p↦ f−1(p).

Unlike in the case of rings, we have the following easy, but important facts.

Lemma 2.3.3. Let M be a commutative monoid, then:

1. The union of ideals is an ideal.

2. The union of prime ideals is a prime ideal.

3. The empty set ∅ is a prime ideal.

4. The maximal ideal m = ⋃
q∈KSpec(M)

q =M ∖M∗, satisfies m ∪ p = m for all p,
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2.3 Prime Ideals of Commutative Monoids

5. If a is an ideal, the set of prime ideals contained in a has a greatest element,

denoted ma.

6. KSpec(M) forms a lattice.

Proof. 1. Let a and b be ideals. Take u ∈ a ∪ b and m ∈ M . Since u ∈ a ∪ b,

without loss of generality u ∈ a, hence mu ∈ a ⊂ a∪b. So a∪b is again an ideal.

2. Assume p and q are prime ideals. To see that their union is again prime,

consider xy ∈ p ∪ q, x ∉ p ∪ q. Without loss of generality xy ∈ p. Since x ∉
p∪q⇒ x ∉ p. Hence we have xy ∈ p, x ∉ p⇒ y ∈ p ⊂ p∪q, proving the assertion.

3,4. Obvious.

5. It is easily seen that ma = ⋃
p⊂a
p, p ∈ KSpec(M) does the trick.

6. This is a result of the above statements, with the two operations being

p ∨ q↦ p ∪ q, p ∧ q↦ mp∩q.

Q.E .D

It should be pointed out that for a monoid homomorphism f ∶ M1 → M2 the

induced map

f−1 ∶ KSpec(M2)→ KSpec(M1)

is only a homomorphism of join semilattices (i.e. the operation induced by union),

even when both M1 and M2 are finitely generated. Hence we will still refer to the

associated lattice of a monoid as semilattice, to avoid confusion.

Lemma 2.3.4. KSpec(M) is a topological monoid.

Proof. Take a principal open subset D(f) of KSpec(M) and consider its preimage

via the operation map ∪ ∶ KSpec(M) ×KSpec(M)→ KSpec(M). Clearly

∪−1(D(f)) = (D(f),D(f))

which is open in the product topology. Q.E .D
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2.3 Prime Ideals of Commutative Monoids

Example 5: Here we give a small example of how the Kato-spectrum of a commu-

tative monoid looks like, with its lattice structure.

(x, y)

(x) (x)

88

(y)

ff

∅ ∅
OO

∅

gg 77

KSpec(Z) KSpec(N) KSpec(N2).

2.3.1 Reduction Theorem

Recall that for any monoid M there is a semilattice M sl and the quotient homomor-

phism f ∶M →M sl =M/ ∼ (see lemma 2.2.3), universal among all homomorphism

into semilattices. Denote by I the topological monoid with the two elements {0,1}
and obvious multiplication. The open sets are {∅,1, I}.

Theorem 2.3.5. Let M be a commutative monoid. Then:

1. The canonical homomorphism f ∶M →M sl yields the isomorphism of topolog-

ical monoids

f−1 ∶ KSpec(M sl) ∼Ð→ KSpec(M).

2. There is an isomorphism of topological monoids

Hom(M, I) ≅ KSpec(M).

The topology on the LHS is induced by the product topology on ∏
m∈M

I.

3. There is an isomorphism of topological monoids

M ⊗ I ≅M sl,

where the topology in M sl is induced by the ordering (see Definition 2.2.7).
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2.3 Prime Ideals of Commutative Monoids

Proof. 1. Surjectivity of f implies that the induced morphism KSpec(M sl) →
KSpec(M) is injective. To see that it is also surjective, take a prime ideal p of

M . Since f is surjective, f(p) = q is an ideal of M sl.

Our first claim is that 1 /∈ q. For this, assume 1 ∈ q. Hence, there exists a ∈ p
such that f(a) = 1. That is, 1 ∼ a where ∼ is the congruence given in lemma

2.2.3. We get that a must be invertible, which contradicts the condition that

p is prime.

To see that q is a prime ideal of M sl, suppose q(x)q(y) ∈ q. Hence, there exists

an element a ∈ p, such that xy ∼ a. So (xy)n = au for some n ≥ 1. It follows

that xnyn ∈ p. Since p is prime, we see that x ∈ p or y ∈ p. This means that

q(x) or q(y) belongs to q, implying that q is a prime ideal. It remains to show

that

p = f−1(q) = f−1(f(p)).

Take an element x ∈ f−1(f(p)). There is an element b ∈ p such that f(x) = f(b).
Thus x ∼ b i.e. xn = bv ∈ p, which implies that x ∈ p. So we have proven that

p ⊃ f−1(f(p)). Since p ⊂ f−1(f(p)) is obvious, the result follows.

For every a ∈M , f(D(a)) =D(f(a)), f−1 is continuous. Conversely,

f−1(D([a])) = ⋃
f(b)∈[a]

D(b),

and the result follows. Indeed as we will show in 2.3.15, we don’t need to take

the union over all such b. It suffices to just take any one.

2. Since I is a monoid we can talk about KSpec(I). It is obvious that the only two

prime ideals of I are {∅,0}. Since the preimage of a prime ideal is prime, we

have a homomorphism u ∶ Hom(M, I) → KSpec(M), given by u(f) = f−1(0).
On the other hand, we have the map v ∶ KSpec(M) → Hom(M, I), given by

v(p) = fv where fv(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, x ∈ p

1, x ∉ p
. Since M ∖ p is a submonoid of M , this
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2.3 Prime Ideals of Commutative Monoids

map is a monoid homomorphism as well. It is straight forward to see that

they are inverse to each other.

By the definition of the product topology, subsets of the form

P (a) = {f ∶M → I ∣f(a) = 1}, a ∈M

form a prebase of the topology on ∏m∈M I. Here f is a map of sets. Hence, a

pre-base of the induced topology on Hom(M, I) is given by the subsets

U(a) = {f ∈ Hom(M, I) ∣f(a) = 1}.

As U(a) ∩ U(b) = U(ab), these subsets form a basis. Since u(U(a)) = D(a),
the result follows.

3. Let S be a semilattice. We have

Hom(M ⊗ I, S) ≅ Hom(M,Hom(I, S)) ≅ Hom(M,S) ≅ Hom(M sl, S).

The first isomorphism comes from the fact that the tensor product is the

adjoint of the Hom-functor. For the second isomorphism we use the fact that

I is the free object with one generator in the category of semilattices. Now

Yoneda’s lemma gives us the desired result.

Q.E .D

Corollary 2.3.6. Let f ∶M → N be a morphism of monoids.

� If f is surjective, then the associated map f−1 ∶ KSpec(N) → KSpec(M) is

injective.

� If f is surjective, then the associated map f sl ∶M sl → N sl is surjective.

Proof. This follows from Theorem 2.3.5, part 2 and 3 respectively, and the fact that

Hom(−, I) maps epimorphisms to monomorphisms and −⊗ I is right exact. Q.E .D
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2.3 Prime Ideals of Commutative Monoids

Corollary 2.3.7. Let I be a small category and M ∶ I → {comutative monoids} a

functor. Then we have a natural isomorphism of topological monoids:

KSpec(colim
i

Mi) ≅ lim
i

KSpec(Mi).

In particular,

KSpec(M ×N) ≅ KSpec(M) ×KSpec(N).

Proof. This follows straight from part 2 of Theorem 2.3.5, and the fact that Hom(−,A)
sends colimits to limits. The second assertion is due to the fact that for commutative

monoids, finite products and coproducts agree. Q.E .D

We also obtain the following fact, which sharpens Lemma 4.2 in [14].

Corollary 2.3.8. Let B be a submonoid of A and assume for any element a ∈ A
there exist a natural number n such that an ∈ B. Then

KSpec(A)→ KSpec(B)

is a bijection.

Proof. It suffice to show that Bsl → Asl is an isomorphism. Take any element a ∈ A.

Since a ∼ an for all n we see that the map in question is surjective. Now take two

elements b1, b2 in B and assume b1 ∼ b2 in A. Then there are u, v ∈ A such that

bk1 = ub2 and bm2 = vb1. Take r such that u1 = ur ∈ B and v1 = vr ∈ B. Then bkr1 = u1br2

and br2 = v1br1. Thus b1 ∼ b2 in B and we are done. Q.E .D

Lemma 2.3.9. Let M be a finitely generated monoid. Denote by L(M,p) = {q∣q ⊂ p}
the sublattice of KSpec(M) consisting of sub prime ideals of p. Then principal open

sets are in a one-to-one correspondence with open sets of the form L(M,p).

Proof. First observe that since there is an isomorphism of topological monoids

KSpec(M) → KSpec(M sl), it suffices to prove this assertion when M is a finitely
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2.3 Prime Ideals of Commutative Monoids

generated lattice. That is, when M is a finite lattice. One side of this correspon-

dence is straight forward. If D(f) is a principal open set, L(M,pf) does the trick.

Here where pf = ⋃
p∈D(f)

p. The other side requires the finiteness condition.

Let p be a prime ideal of M and consider M ∖ p. By the definition of prime

ideals, this is a submonoid of M , and as such, a finite lattice. Take its maximal

element mp = ∏
mi∉p

mi. We define

L(M,p)↦D(mp) ⊂ KSpec(M).

Clearly L(M,p) ⊂D(mp). For the other side, take q ∈D(mp). Then

mp = ∏
mi∉p

mi ∉ q⇔mi ∉ q

for every i. Hence, for every element mi ∈M ∖ p, we have

mi ∈M ∖ q⇒M ∖ q ⊃M ∖ p⇔ q ⊂ p⇔ q ∈ L(M,p).

Q.E .D

Theorem 2.3.10. Let M be a finitely generated monoid. There exists a (non-

functorial) isomorphism of topological monoids

αsl ∶ KSpec(M) ≅M sl,

where the topology in M sl is induced by the ordering.

Proof. First recall the classical result [20, Chapter III, Lemma 1.1] that D(f) =D(g)
if and only if there are n,m ∈ N and x, y ∈M such that fn = gy and fx = gm. This

is the same as the congruence given on page 22, in order to obtain M sl. Hence,

there is a one-to-one correspondence between principal open sets and elements of

M sl. We have already shown in Lemma 2.3.9, that prime ideals themselves are in a

one-to-one relation with principal open sets. This implies the result. The topology is
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2.3 Prime Ideals of Commutative Monoids

respected since it’s induced by the ordering in both sides, and all the isomorphisms

given above, respect ordering. Q.E .D

Remark 3: For an alternative proof see [38, Corollary 3.9]. There we also construct

the above map more explicitly, and show that it is given as follows : To a prime

ideal of M , we associate the maximal element of M sl whose intersection with p is

empty. Conversely, to an element [f] of M sl we associate the biggest prime ideal p

not containing [f]. That is, the union of all prime ideals not containing [f].

As we have shown in Lemma 2.3.3, the Kato-spectrum of a monoid is a lattice

and as such again a monoid. We can iterate the functor KSpec and we denote by

KSpec2(M) the 2-fold composite of this functor. We have the following result:

Corollary 2.3.11. Let M be a finitely generated monoid. There is a (non-functorial)

isomorphism

KSpec2(M) ≅ KSpec(M).

Proof. This follows straight from the above theorem and the fact that the functor

sl ∶ Monoids→ Semilattices (given in formula 2.1 on page 22) is stable under iteration.

Q.E .D

Corollary 2.3.12. Let M be a finitely generated monoid with n generators. The

number of elements of KSpec(M) is bounded by 2n.

Proof. As shown, KSpec(M) is isomorphic to M sl, which is itself a quotient of M .

Thus, it has at most n generators. Since m2 = m in M sl, every element is just a

distinct combination of generators, and so their number is bounded by 2n. Q.E .D

Example 6: Let M = ⟨a, b, c, d⟩ /{ab = b, cd = d, bc = ad} be a commutative monoid.

By Theorem 2.3.10 we have know that M sl is M , modulo the relation m2 = m.

Hence M sl = {[1], [a], [b], [c], [d], [ac], [ad]}. The only nontrivial operation here

is that [ac][ad] = [ad]. The semilattice structure is given below, with the arrows

31



2.3 Prime Ideals of Commutative Monoids

indicating the ordering.

M sl KSpec(M)

[ad] (a, b, c, d)

[b]

AA

[ac]

OO

[d]

]]

(a, b, d)

AA

(b, c, d)

]]

[a]

OO AA

[c]

OO]]

(a)

OO

(b, d)

]] AA

(c)

OO

[1]

]] AA

∅

]] OO AA

Here αL(ad) = ∅, αL(b) = (c), etc. We also see an obvious, but important fact.

While KSpec(M) is just M sl with the inverted ordering, they are very different in

terms of generators and relations. We have M sl = ⟨a, b, c, d⟩ /{ab = b, cd = d, bc = ad}
and KSpec(M) = ⟨x, y, z⟩ /{xz = xyz}, in the category of semilattices.

2.3.2 Localisation of Monoids

It is an obvious fact that we have the inclusion functor

Monoids→ Abelian Groups.

This functor has both left and right adjoints. The right adjoint maps a monoid

to its invertible elements, which is clearly an abelian group. The left adjoint is

constructed via localisation. Let M be a monoid and N ⊂ M a submonoid. We

define the localisation of M by N , denoted MN as follows: Elements of MN are

equivalence classes of pairs (m,n), m ∈ M , n ∈ N , where (m,n) ∼ (m′, n′) if and

only if there exists an element r ∈ N such that rmn′ = rm′n. In the case when

N =M , MN is a group, called the Grothendieck Group of M . It is universal in the

following sense: We have a homomorphism g ∶ M → MGr, such that for any other
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homomorphism f ∶M → G, where G is an abelian group, we have a homomorphism

h ∶MGr → G with f = h ○ g. An other way of saying that, is the functor

Gr ∶ Monoids→ Abelian Groups

is the left adjoint of the forgetful functor.

An important case is the localisation with an element f ∈ M . For this, take

an element f ∈ M , and consider the submonoid ⟨f⟩ ⊂ M generated by f . The

localisation of M by the submonoid ⟨f⟩, is denoted by Mf rather then M⟨f⟩.

Proposition 2.3.13. Let f ∈M . Then Mf ≅M[f].

Proof. First recall that [f] = [g] if there exists n,m ∈ N, u, v ∈M such that fn = gu
and gm = fv. We clearly have ⟨f⟩ ⊂ [f] and hence we can define the natural map

Mf →M[f] given by (r, fk)↦ (r, fk), r ∈M , k ∈ N.

Injectivity: Say (r, fk) ≅M[f] (r′, fk′). This is to say there exists g ∈ [f] such that

grfk
′ = gr′fk. But since g ∈ [f], [g] = [f] and so we have gu = fn. From this we get:

gurfk
′ = gur′fk

⇔ fnrfk
′ = fnr′fk

⇔ (r, fk) ∼Mf
(r′, fk′).

Surjectivity: Take a general element (r, g) ∈M[f]. Since rug = rfn, we immediately

see that (ru, fn) ∼M[f] (r, g), where (ru, fn) is clearly in the image. Q.E .D

Corollary 2.3.14. Let f, g ∈ M , such that they define the same class in M sl, i.e.

[f] = [g]. Then Mf ≅Mg.

Proof. This follows straight from Proposition 2.3.13 since Mf ≅M[f] =M[g] ≅Mg.

Q.E .D

Lemma 2.3.15. Let M be a monoid and N ⊂ M be a multiplicative subset, such

that N ⊂ [f], for some f ∈M . Then MN ≅Mf .
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Proof. By Corollary 2.3.14 we can assume that f ∈ N and as such ⟨f⟩ ⊂ N ⊂ [f].
Hence we have the following canonical homomorphisms

Mf →MN →M[f].

By Proposition 2.3.13, we know that the composition is an isomorphism. This

immediately implies that Mf →MN is injective. To show surjectivity, it suffices to

show that MN → M[f] is injective as well. So let (r, s) ∼M[f] (r′, s′), r ∈ M,s ∈ N .

That is to say, we have an element g ∈ [f] such that grs′ = gr′s. Multiplying both

sides by u yields fnrs′ = fnr′s and since ⟨f⟩ ⊂ N , we have (r, s) ∼MN
(r′, s′). Q.E .D

Lemma 2.3.16. For a subset S of M , we denote by ⟨S⟩ the associated multiplicative

subset. Let S1 and S2 be subsets of M . Then

(M⟨S1⟩)⟨S2⟩ ≅M⟨S1∪S2⟩.

Proof. The proof of this is straightforward. We will just mention that the map is

given by ((r, s1), s2)↦ (r, s1s2). Q.E .D

Just like in the classical case, we can also localise at a prime ideal. For this, take

the complement M ∖p of p. It is clearly a submonoid and so we can localise M with

respect to it.

Lemma 2.3.17. Let M be a monoid and assume [f] ≤ [g]. Then M[g] ≅M[f]∪[g].

Proof. We have

M[f]∪[g] =M⟨[f]∪[g]⟩ ≅ (M[f])[g] ≅Mfg ≅M[fg] ≅M[g].

Q.E .D

We note that the following theorem is already in [12] as Lemmas 1.1 and 1.3.

Theorem 2.3.18. Let M be a finitely generated monoid.

i) For every multiplicative subset N ⊂M , there exists an element fN , such that

MfN ≅MN .
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ii) For every prime ideal p ⊂M , we have an isomorphism Mp ≅Mαsl(p). Here

αsl is the isomorphism defined in Theorem. 2.3.10.

Proof. i) Since [1] ≤ [f] for all f ∈M , by Lemma 2.3.17, we can assume that N is

a submonoid. We have the composition Φ ∶ N ⊂M slÐ→M sl. Since M sl is finite,

so is the sublattice Φ(N) ⊂M sl. Denote the preimage of the elements of Φ(N)
under sl by [fi] and the preimage of its maximal element by [fN] = [f1×⋯×fn].
Further let Ni = N ∩ [fi]. Clearly N ⊂ ⋃[fi] and so N = ⋃Ni. We have

MN =M⋃Ni ≅ ((MN1)N2)⋯Nn ≅ ((Mf1)f2)⋯fn ≅MfN .

Here the second equality is coming from Lemma 2.3.16 and the third from

Lemma 2.3.15.

ii) This essentially follows from Remark 3 on page 31 and Proposition 2.3.16,

since localising with respect to the submonoid M ∖p is canonically isomorphic

to localisation by the maximal element of (M)sl, whose intersection with p is

empty.

Q.E .D

Note that the second statement also holds the other way. Namely, that for every

element [f] of M sl (and hence for every element of M), we can find a prime ideal

pf such that M[f] ≅Mpf . This is due to Theorem 2.3.10.
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Chapter 3

Cohomology of monoid schemes

The aim of this chapter is to study the cohomology theory of monoid schemes in

general and apply it to vector- and line bundles. We will prove that any vector

bundle over any separated monoid scheme is a coproduct of line bundles. This

fact generalises the main result of [5, Theorem 2.6], where they proved this for the

special case when X = Pn. It should be said that our methods are different from the

ones used in the above. We use cohomological machinery, which could have other

applications beyond monoid schemes.

This result shows that vector bundles, being H i(X,O∗
X), are not very interesting

in the case when i ≥ 2. In this case when i = 1 however, things are very different. As

in the classical case, H1(X,O∗
X) forms an abelian group under the tensor product. It

is called the Picard group and is denoted by Pic(X). We investigate the relationship

between line bundles over a monoid scheme X and line bundles over its geometric

realisation k[X], where k is a commutative ring. We prove that if k is an integral

domain (resp. principal ideal domain) and X is a cancellative and torsion free

(resp. seminormal and torsion-free) monoid scheme, then the induced map Pic(X)→
Pic(k[X]) is a monomorphism (resp. isomorphism).

The assignment X ↦ Pic(X) gives rise to a contravariant functor from the cate-

gory of monoid schemes to the category of abelian groups. We will prove that Pic

respects finite products, in other words the natural map

Pic(X)⊕ Pic(Y ) ∼Ð→ Pic(X × Y ),

is an isomorphism for separated monoid schemes X and Y .
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Next we will introduce the notion of s-cancellative monoids. They are monoids

for which the equality ax = ay implies that (xy)nx = (xy)ny for some natural number

n. By taking n = 0, we see that every cancellative monoid is s-cancellative. A monoid

scheme is s-cancellative if it is obtained by gluing s-cancellative monoids. This class

is important since it is the biggest class of monoids where the subgroup of invertible

elements M∗ of M map injectively in its group of fractions, denoted by MGr. As

we will see in Section 3.5, this will enable us to embed O∗
X in a constant sheaf.

We develop the theory of s-divisors and we prove that for an s-cancellative monoid

scheme X, the group Pic(X) can be described in terms of s-divisors. For cancellative

monoid schemes, s-divisors agree with the Cartier divisors.

Lastly, we introduce a class of monoid schemes, called s-smooth monoid schemes,

which includes the class of all smooth monoid schemes, and we will prove that for

them H i(X,O∗
X) = 0 for all i ≥ 2.

This chapter is organised as follows: In the first section we will discuss posets

and the topological spaces that they define. These are important, as the underlying

topological spaces of monoid schemes of finite type (see Definition 3.1.6) are merely

finite posets, and then proceed to clarify the relationship between sheaf cohomology

and poset cohomology.

In Section 3.2, using a cohomological argument, we will prove that over separated

monoid schemes, any vector bundle is a coproduct of line bundles. This already

implies that vector bundles are less interesting for monoid schemes and as such we

focus our attention on line bundles. Section 3.3 considers the relationship between

line bundles over monoid schemes and its realisations, and shows that in many cases,

we actually have an isomorphism.

Recall that the isomorphism classes of line bundles forms an abelian group, which

is isomorphic to the Picard group. We show in the next section that the functor Pic

is additive in the monoid world.

In Section 3.5, we translate the classical theory of Cartier divisors for monoid

schemes and we show that for cancellative monoid schemes line bundles, up to

isomorphisms, can be described using Cartier divisors. Afterwards we generalise

these results and prove that for s-cancellative monoid schemes line bundles can be

classified using s-divisors.

In the last two sections we define and study s-smooth monoids and monoid
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schemes and we will prove that the cohomology H i(X,O∗
X) vanishes for them. Fi-

nally we give several examples of s-smooth monoids which are not smooth.

3.1 Basic Facts about Monoid Schemes

In this section we will define monoid schemes and show that instead of working

with sheaves over a topological space, we can work with functors from a poset, see

Lemma 3.1.7. This greatly simplifies the cohomology of monoid schemes. Indeed

from this we will obtain, amongst other things, that the Grothendieck cohomology

is equivalent to the significantly simpler Ĉech cohomology.

3.1.1 Monoid Schemes and the Poset Topology

The results of this subsection, other then Lemma 3.1.7, are well known with citations

given below.

Let M be a commutative monoid. As we have shown in Section 2.3, there is a

functorial way of assigning a topological space KSpec(M) to M . But more is true.

Recalling the results obtained in [13, Section 2.1] [12, p.4], one can also define a

sheaf of monoids on KSpec(M). Just like in classical algebraic geometry, we assign

the localisations Mf to the principal open subsets D(f) ⊂ KSpec(M) and extend

this in the natural way. It is called an affine scheme.

Definition 3.1.1. A monoid scheme is a pair (X,OX), where X is a topological

space, and OX is a sheaf of monoids on X that is locally affine. In other words, it

is locally isomorphic to (KSpec(M),OKSpec(M)) for a monoid M .

For simplicity, when there is no ambiguity, we will write X instead of (X,OX).
If (X,OX) and (Y,OY ) are two monoid schemes, then f ∶ X → Y is a morphism

of monoid schemes , if it is a morphism of sheaves that is additionally local . In

other words, for every point x ∈ X, the induced morphism OY,f(x) → OX,x, maps

non-invertible elements of OY,f(x), to non-invertible elements of OX,x. We have the

bijection

Hom(M,N) ≅ HomMSchm(KSpec(N),KSpec(M)),

where KSpec(M) denotes the affine scheme (i.e. the space together with the struc-

ture sheaf) of M .
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Theorem 3.1.2. Products exist in the category of monoid schemes. Furthermore:

i) The underlying topological space of the product, is the product of the underlying

topological spaces;

ii) Γ(X × Y,OX×Y ) ≅ Γ(X,OX) × Γ(Y,OY ).

Here (X,OX) and (Y,OY ) are monoid schemes, and Γ is the global section functor.

Proof. The first assertion, that products exist, is shown in [13, p.10]. Part i) is

shown in [12, Proposition 3.1].

To see assertion ii) we cover X and Y with affine open subsets X = ⋃Uα and

Y = ⋃Vβ. By Part i) we have X × Y = ⋃
α,β
Uα ×Uβ. Hence Γ(X × Y,OX×Y ) =

OX×Y (X × Y ) ≅ ker[∏
α,β
OX×Y (Uα ×Uβ) //// ∏

α,β,α′,β′
OX×Y (Uα ×Uβ) ∩ (Uα′ ×Uβ′)].

The fact that the global sections commute with products in the affine case is checked

in [13, p.11]. Hence the above is equivalent to:

ker[∏
α,β
OX(Uα) ×OY (Uβ) //// ∏

α,β,α′,β′
OX(Uα ∩U ′

α) ×OX(Uβ ∩U ′
β)] ≅

ker[∏
α
OX(Uα) //// ∏

α,α′
OX(Uα ∩U ′

α)] × ker[∏
β
OX(Uβ) //// ∏

β,β′
OX(Uβ ∩U ′

β)] ≅

OX(X) ×OY (Y ) ≅ Γ(X ×OX) × Γ(YOY ).

This proves the assertion. Q.E .D

The aim of this subsection is to show that monoid schemes can be described in

a simpler way.

Definition 3.1.3. A T0 space is a topological space, satisfying the following condi-

tion: for any two distinct points x, y ∈ X, there is an open set U , such that, either

x ∈ U and y ∉ U or y ∈ U and x ∉ U . A T0-topological space is called a P-topological

space, provided any intersection of open sets is again open.
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Recall the topology defined on a poset in Definition 2.2.7. The link between

P-topological spaces and poset topological spaces is well known, see [40] and [34].

We state and prove the following facts (which are discussed in the above citation),

for the convenience of the reader:

Proposition 3.1.4. 1) Let P be a poset and XP its associated topological space.

For any element x ∈ XP , the smallest open subset of XP containing x is

L(P,x) = {x′∣x′ ≤ x}. Further, the open subsets of the type L(P,x) form a

basis of the topology.

2) Let XP and XQ be the two topological spaces associated to P and Q respectively.

Then we have a bijection

C(XP ,XQ) ≅ MHom(P,Q),

where MHom denotes the set of monotonic maps from P to Q, and C denotes

the set of continuous maps from XP to XQ.

3) The category of P-topological spaces with continues maps is equivalent to the

category of posets with monotonic maps.

Proof. 1) This follows straight from the definition.

2) Let f ∶XP →XQ be a continuous map and let x ≤ y ∈XP . Take

L(Q,f(y)) ⊂XQ.

Unless f(x) ≤ f(y), in other words f(x) ∈ L(Q,f(y)), x is not an element of

f−1(L(P, f(y))) = L(P, y).

But then we get a contradiction, since x ≤ y.

Now let f ∶ P → Q be a monotonic map and U ⊂ XQ open. Take y ∈ f−1(U)
and x ≤ y. Since f is monotonic, f(x) ≤ f(y). Hence f(x) ∈ U implies that
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f(x) is also an element of U , which implies that x ∈ f−1(U).

3) Take two distinct points x, y ∈ XP . Without loss of generality, assume either

x ≤ y, or they are not comparable. Either way, for the open subset L(P,x),
we have x ∈ L(P,x) but y ∉ L(P,x). Hence Xp is a T0 space.

Take a collection of open subsets {Ui} and let U = ⋂Ui. Pick y ∈ U and x ≤ y.

Since y is in the intersection, for every i, we have y ∈ Ui. This implies that

x ∈ Ui, so x ∈ U . Hence U is again open and so XP is a P-topological space.

To see the reverse, take a P-topological space X, and construct a poset PX

as follows: Elements of PX are points of X, and we say x ≤ y if and only if

Ux = (⋂Ui∣x ∈ Ui) ⊂ Uy = (⋂Uj ∣y ∈ Uj). It is straightforward to see that this

defines a poset and that these two constructions are inverse to each other.

Q.E .D

Using this proposition, we will identify posets equipped with the ordering topol-

ogy given above, with P-topological spaces. It is a well known fact that a sheaf F

over a topological space X is uniquely defined by its values on the bases of open sets.

Hence, using part 1 of the above Proposition, to define a sheaf on a P-topological

space, it is sufficient to define it only on the open subsets of the form Ux. That is, it

suffices to only define it on the stalks of the underlying poset P . If x ≤ y⇒ Ux ⊂ Uy,
which yields a homomorphism Fy → Fx.

Lemma 3.1.5. Let XP be a P-topological space and F a sheaf of sets on XP . Then

the map F ↦ Fx gives rise to an equivalence between the category of sheaves on X,

and the category of contravariant functors on the poset P .

To see this result, it suffices to say that the corresponding sheaf F on XP is

defined by F(U) = limx∈UFx.

Definition 3.1.6. A monoid scheme X is called of finite type, provided there is a

finite open cover by affine schemes Ui = KSpec(Mi), such that all Mi’s are finitely

generated monoids.
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Lemma 3.1.7. Let (X,OX) be a monoid scheme of finite type. The underlying

topological space X, is a finite P-topological space and equivalent to XP , where P

satisfies the property that for all x ∈ P , L(P,x) is a finite lattice. We say that such

a poset is locally a finite lattice.

Proof. Since openness of a subset is a local condition, it suffices to consider the case

when X is affine. But this follows straight from the results of the previous chapter.

Q.E .D

Thus monoids schemes can and will be described using pairs (X,OX), where X

is a poset that is locally a finite lattice, and OX is a contravariant functor defined

on it.

As we said in the introduction, a (commutative) monoid is a set M with an

operation ×, such that × is commutative and associative. Additionally, we have a

unique element 1 such that 1 ×m = 1. There is however a slightly different theory

developed in [11][10][12], which is based on pointed monoids. Recall that a pointed

monoid is a monoid with distinguished element 0. In this theory, all homomorphisms

and all ideals are pointed. If M is a usual monoid, we let M+ denote the pointed

monoid obtained from M by adding a new element 0.

Observe that the space of prime ideals of M and the space of pointed prime

ideals of M+ are essentially the same. Since the functor M ↦M+ is compatible with

localisation, it has a unique extension to monoid schemes (X,OM) ↦ (X,OM+).
The resulting functor from the category of monoid schemes in the sense of [13] to

the category of monoid schemes in the sense of [11][10][12], is faithful and preserves

finite products. Because of this, the concepts and results from [12] can be applied

to monoid schemes in the sense of [13]. For instance, we can talk about separated

monoid schemes [12, Definition 3.3], which are formally defined using the product

as for classical schemes.

We have the following fact, as proven in [12, Corollary 3.8].

Lemma 3.1.8. If X is a separated monoid scheme, the intersection of two affine

open subsets is again affine.

It should be noted that from here on onwards, monoids and monoid schemes

are again assumed to be unpointed. Furthermore, the above lemma states the only

property about separated monoid schemes that we will care about in this thesis.
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3.1.2 Cohomology of Posets

Recall that if X is a topological space and F is a presheaf of groups on X, then for

any open cover U = (Ui ↪X)i∈I , ⋃iUi =X, the zeroth cohomology group H0(U , F )
and the first cohomology pointed set H1(U , F ) are defined. If F has values in

abelian groups, then there are well defined cohomology groups Hn(U , F ), n ≥ 0, and

these groups are abelian. If F is a sheaf, we also have the sheaf (or Grothendieck)

cohomology Hn(X,F) defined. It is well known that

H i(X,F) = colimUH i(U ,F) = Ȟ i(X,F), i = 0,1,

where the colimit is taken with respect to all open covers.

Proposition 3.1.9. Let X be a monoid scheme and F a sheaf of groups.

i) If X is affine, then

H1(X,F ) = 0.

Moreover, if F is a sheaf of abelian groups, then H i(X,F ) = 0 for all i ≥ 1.

ii) Let X be a separated monoid scheme and U an affine cover of X. If F is a

sheaf of abelian groups, then H∗(X,F ) =H∗(U, F ).

Proof. i) Let M be a monoid and denote X = KSpec(M). Let m be the subset

of non-invertible elements of M . If m ∈ D(f) for an element f ∈ M , then f

is invertible, and thus D(f) = X. Hence, the only open subset of X which

contains m, is X itself. Thus, for any sheaf F one has

F (X) = Fm.

Since F ↦ Fm is an exact functor in the category of sheaves, we see that

the global section functor is an exact functor. This already proves the result

for abelian sheaves, because H∗(X,−), being derived functors of an exact

functor, vanish in positive dimensions. If F is not necessary abelian, the proof

is essentially the same: Any open cover of X must contain X as a member.
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A cover consisting of a single element X is cofinal among all covers. The

cosimplicial object corresponding to this cover is constant, and so the result

follows.

ii) Since X is separated, the intersection of any two open, affine, monoid sub-

schemes is again affine (see Lemma 3.1.8). Hence, ii) is a formal consequence

of i) and Leray’s theorem (see for example [19, Corollary of Theorem II.5.4.1]).

In more detail, let U = {Ui}si∈I be a covering of X, where every Ui is the affine

scheme associated to the monoid Mi. Using the spectral sequence associated

to said covering (Theorem 1.4.1, v)), we know that Hp(U,Hq(F )) abuts to

Hp+q(X,F ). Here Hq denotes the presheaf given by V ↦ Hq(V,F ). From i)

of this proposition, we know that Hq(Ui, F ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

F (Ui), q = 0

0, q ≥ 1

.

So Epq
2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Hp(U, F ), q = 0

0, q ≥ 0

, and hence the second page of the Leray-Serre

spectral sequence looks as follows:

0 0 0 0 0 ⋯

H0(U, F ) H1(U, F ) H2(U, F ) H3(U, F ) H4(U, F ) ⋯.

As this is clearly already the stable page, the result follows.

Q.E .D

Recall that for a monoid scheme X of finite type, PX is finite. It follows that

if X is additionally separated, then L(X,x) ∩ L(X,y) is either an empty set or

again of the type L(X,z), where z = x ∧ y. Thus, if X is a connected separated

monoid scheme of finite type, then X is a meet semi-lattice with smallest element.

In particular, the nerve of such a poset is contractible.

Lemma 3.1.10. Let X be a separated monoid scheme of finite type.
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i) For any constant sheaf G with values in groups, one has

H1(X,G) = 0.

If G is also abelian, then Hn(X,G) = 0 for all n ≥ 1.

ii) Assume X is connected and m1, . . . ,mk are maximal elements of X. For any

sheaf F on X the cohomology H∗(X,F ) can be computed using the cochain

complex

k

∏
i=1

Fmi →∏
i,j

Fmi∧mj →∏
i,j,k

Fmi∧mj∧mk → ⋯→ Fm1∧⋯∧mk → 0→ ⋯.

In particular, Hn(X,F ) = 0, for all n > k, where n is the minimal natural

number such that X has an open cover by n affine monoid schemes.

Proof. i) We can assume that X is connected. In this case the nerve of the poset

X is contractible, as stated just above the lemma, and hence by Lemma 1.7.1

the result follows.

ii) This follows from part ii) of the Lemma 3.1.9, applied to the open covering

(Ui)ki=1, where Ui = L(X,mi). In fact, since mj1∧⋯∧mjk is the greatest element

in Uij1 ∩⋯ ∩Uijk , one has F (Uij1 ∩⋯ ∩Uijk ) = Fmj1∧⋯∧mjk .
Q.E .D

Let us recall that for a point x ∈ X, the height of x is the supremum of natural

numbers k, for which there is a sequence x0 < ⋯ < xk = x.

Definition 3.1.11. Let X be a monoid scheme of finite type. The Krull dimension

dim(X) of X is defined as

dim(X) = supx∈Xht(x).

Similarly to the last assertion of Lemma 3.1.10, we have H i(X,F ) = 0, for all

k > dim(X). This is a consequence of the well-known result of Grothendieck on

noetherian spaces (Theorem 1.6.2).
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Corollary 3.1.12. Assume X is a non-affine monoid scheme of finite type. Then

there exists a sheaf F of abelian groups such that H1(X,F ) is non-trivial.

Proof. It immediately follows from the assumptions that X has at least 2 maximal

elements. Call them p and q. Then by Proposition 3.1.5, for any abelian group G,

there is a sheaf F for which

Fx =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if x /= p ∧ q

G, if x = p ∧ q.

It follows that H1(X,F ) = G. Q.E .D

3.2 Vector Bundles over Monoid Schemes

The main result of this section claims that any vector bundle over any separated

monoid scheme is a coproduct of line bundles. We start by recalling the notion of

a vector bundle over a monoid scheme [5, Definition 2.4, Remark 2.5], [14]. Then

we use a cohomological description of isomorphism classes of n-dimensional vector

bundles to prove the main result.

Definition 3.2.1. Let M be a monoid and A a left M-set (also called M-act). Then

A is free of rank n, if it is isomorphic to an M-set of the form A =M ×X. Here X

is a set of cardinality n and M acts on A by n(m,x) = (nm,x), x ∈X and m,n ∈M .

The disjoint union∐ of the underlying sets induces the coproduct in the category

of M -sets. If S and T are left M -sets, the tensor product S⊗M T is an M -set defined

to be the quotient of S × T by the equivalence relation generated by

(ms, t) ∼ (s,mt) =∶m(s, t),

where s ∈ S, t ∈ T and m ∈M . One easily sees that if S and T are free of rank m and

n respectively, S∐T and S⊗M T are free of rank n+m and nm respectively. Hence,

a free M -set of rank n is isomorphic to the coproduct of n-copies of free modules of

rank 1. Because of this we can write M∐n for a free M -set of rank n.
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Denote by GL(n,M) the group of automorphisms of M∐n. Then we have the

following result, as shown in [13, p.15]:

Proposition 3.2.2. The group GL(n,M) is isomorphic to the group of all n × n
matrices (with the obvious multiplication) such that:

� there is exactly one non-zero entry in each row and column;

� every entry is an invertible element of M .

Proposition 3.2.3. The automorphism group GL(n,M) of M∐n is isomorphic to

the semidirect product (M∗)n ⋊Σn, where Σn is the symmetric group and M∗ is the

subgroup of invertible elements. The action of Σn on (M∗)n is given by permuting

the factors.

Proof. A free M -set is M∐n = M × S, where S = {1,⋯, n}, with the action given

by m(m′, s) = (mm′, s′). Hence f ∶ M × S → M × S is an M -isomorphism if f

is a bijection and (m(m′, s)) = mf(m′, s). We have f(1, s) = (x(s), ϕ(s)), where

x(s) ∈M and ϕ(s) ∈ S. Since they only depend on s, we actually have 2 functions

x ∶ S →M and ϕ ∶ S → S. By definition, we have (m,s) =m(1, s), and so

f(m,s) =mf(1, s) =m(x(s), ϕ(s)) = (mx(s), ϕ(s)).

As f is a bijection, there exists g ∶M × S →M × S such that g ○ f = Id. We will fix

notations and say that g(m,s) = (my(s), φ(s)). Hence we have:

(1, s) = Id(1, s) = g ○ f(1, s) = g(x(s), ϕ(s)) = (x(s)y(ϕ(s)), φ(ϕ(s))) (3.1)

(1, s) = Id(1, s) = f ○ g(1, s) = f(y(s), φ(s)) = (y(s)x(φ(s)), ϕ(φ(s))) (3.2)

The first component of 3.1 implies x(s)y(ϕ(s)) = 1, so x(S) ⊂ M∗. To see that

ϕ ∈ Σn, i.e. that ϕ ∶ S → S is a bijection, take the second components of 3.1 and 3.2.

This shows that ϕ ○ φ = φ ○ ϕ = Id. These two equations also show that we have a

semidirect product (M∗)n ⋊Σn. Q.E .D
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By the above proposition, we have a split short exact sequence of groups

1→ (M∗)n inÐ→ GL(n,M)→ Σn → 1. (3.3)

The coproduct induces an obvious homomorphism of groups

c = ck,n ∶ GL(k,M) ×GL(n,M)→ GL(k + n,M),

which fits in the following commutative diagram with exact rows:

1 // (M∗)k × (M∗)n //

c′ ≅
��

GL(k,M) ×GL(n,M) //

c

��

Σk ×Σn
//

c̃

��

1

1 // (M∗)k+n // GL(k + n,M) // Σk+n // 1.

Here c′((x1,⋯, xk), (y1,⋯, yn)) = (x1,⋯, xk, y1,⋯, yn), and for σ1 ∈ Σk, σ2 ∈ Σn, the

permutation c̃(σ1, σ2) ∈ Σk+n is given by:

c̃(σ1, σ2)(i) =
⎧⎪⎪⎨⎪⎪⎩

σ1(i) 1 ≤ i ≤ k,
σ2(i − k) k ≤ i ≤ k + n.

Definition 3.2.4. A vector bundle of rank n on a monoid scheme X is a sheaf V
of sets on X, together with an action of OX , such that locally, V is isomorphic to

O∐n
X . We let Vectn(X) be the category of vector bundles of rank n on X. The set

of their isomorphism classes of rank n on X is denoted by Vectn(X). In the special

case when the rank is one, we use the term line bundle and write Pic(X).

For a given monoid scheme X, we denote the group of automorphism of X∐n by

GL(n,X). Since a monoid homomorphism maps invertible elements to invertible

elements, the description of GL(n,M), as given in Proposition 3.2.2, gives rise to a

functor. We have the following result (see [13, p.16, Proposition 5.2]):

Proposition 3.2.5. The functor GL(n,M) is representable as a monoid scheme.

This immediately implies that the construction given in Proposition 3.2.2, ex-

tends to a sheaf, and it is straightforward to see that it agrees with GL(n,X).
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The coproduct and tensor product of M -sets yield corresponding operations on

vector bundles:

∐ ∶ Vectm(X) ×Vectn(X)→Vectn+m(X)

and

⊗OX ∶ Vectm(X) ×Vectn(X)→Vectmn(X).

Proposition 3.2.6. The tensor product yields an abelian group structure on Pic(X).

Proof. The fact that it is a semigroup is trivial. The identity is clearly OX , mak-

ing it a monoid. To see that it is a group, we need to give an inverse for a

line bundle L. Just like in the classical case, HomOX(L,OX) does the trick since

L⊗HomOX(L,OX) ≅ OX . The isomorphism is given by x⊗ f ↦ f(x). Q.E .D

Proposition 3.2.7. There is a natural bijection

Vectn(X) ≅H1(X,GL(n,OX))

and isomorphism of groups

Pic(X) =H1(X,O∗
X).

Moreover one has a commutative diagram

Vectk(X) ×Vectn(X) //

∼
��

Vectk+n(X)
∼
��

H1(X,GL(k,OX)) ×H1(X,GL(n,OX)) // H1(X,GL(k + n,OX)).

Proof. This is standard. Assume we are given an open cover U = (Ui ↪ X)i∈I ,

⋃iUi =X and a 1-cocycle (fij ∈ GL(X,OX)). As in the classical case, the associated

vector bundle is obtained from the trivial vector bundles on Ui, by gluing on Ui⋂Uj
via fij. One easily checks that this construction yields a bijection. Q.E .D

Corollary 3.2.8. Any vector bundle over an affine monoid scheme is trivial.
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3.2 Vector Bundles over Monoid Schemes

For line bundles this fact first appears in [15, Lemma 5.2].

Proof. This follows from the fact that cohomology vanishes for affine monoid schemes.

See Proposition 3.1.9. Q.E .D

Theorem 3.2.9. Let X be a connected, separated monoid scheme of finite type.

Then any vector bundle of rank n is a coproduct of n copies of line bundles. More-

over, this decomposition is unique up to permuting summands.

Proof. The coproduct induces the natural map

Pic(X)n → Vectn(X). (3.4)

Since the operation induced by the coproduct is commutative, this factors through

the orbit space Pic(X)nΣn → Vectn(X). We need to show that this map is a bijection.

By the commutativity of the diagram in Proposition 3.2.7, we see that the map in

(3.4) is the same (up to isomorphism) as the map

H1(X, (O∗
X)n) i∗nÐ→H1(X,GL(n,OX)).

Here in is the sheaf homomorphism, which fits in the following split short exact

sequence:

0→ (O∗
X)n inÐ→ GL(n,OX)→ Σn → 0.

The last term Σn, is considered as a constant sheaf. Apply Proposition 1.5.2 to get

the short exact sequence of pointed sets

0→ (H1(X,O∗
X))n

Σn

i∗nÐ→H1(X,GL(k,OX))→H1(X,Σn)→ 1.

By Lemma 3.1.10 i), the last term vanishes. Hence in yields the isomorphism

(Pic(X))nΣn ≅ (H1(X,O∗
X))n

Σn
≅H1(X,GL(k,OX)) ≅ Vectn(X),

50



3.3 Comparison between Line Bundles over a Monoid Scheme and its
Realisation

and the result follows. Q.E .D

For the special case when X = Pn (in the monoid world), this theorem was first

proven in [5, Theorem 2.6], by completely different means.

3.3 Comparison between Line Bundles over a Monoid

Scheme and its Realisation

Fix a commutative ring k. If M is a monoid, we can define the monoid ring k[M], by

considering the free module k∣M ∣ of rank #∣M ∣ over k. We define the multiplication

on the basis according to the monoid structure. As described in [12, Section 5], or

[13], we can extend this construction to monoid schemes, and as such, we have a

functorial way of assigning a k-scheme k[X] to a monoid scheme X. We call k[X]
the realisation of X over k.

If S is a free M -set, then k[S] is a free k[M]-module. After gluing, one obtains

a functor Vectn(X) → Vectn(k[X]). This induces a homomorphism Pic(X) →
Pic(k[X]), or more generally a map Vectn(X)→ Vectn(k[X]), n > 0.

For example, if k is a field, X = P1, then by the classical result of Grothendieck

[23, Theorem 2.1] any vector bundle over P1
k is a direct sum of line bundles. By

Theorem 3.2.9 and the computation of Pic(P1) made in [13, Proposition 4.3], it

follows that

Vectn(P1)→ Vectn(P1
k)

is a bijection for all n ≥ 1. We will see soon that this fact is a particular case of a

more general result. See Corollary 3.3.3 below.

Let X be a separated monoid scheme. To analyse the natural homomorphism

Pic(X) → Pic(k[X]) we will use the low-dimensional exact cohomological sequence

associated to a spectral sequence of a cover, see Theorem 1.4.1 v). In our case it

takes the following form. Let U = (Ui ↪ X)i∈I be an open cover of a separated

monoid scheme X, using affine monoid schemes Ui = KSpec(Mi), where Mi are

monoids. By our assumption on X and Lemma 3.1.8, we have that for any i, j we

have Uij = Ui ∩Uj = KSpec(Mij) for some monoid Mij. Then the cochain complex of

the covering Uk of k[X] and the sheaf of invertible elements of k[OX] = Ok[X] looks

as follows:

∏
i∈I

(k[Mi])∗ →∏
i,j

(k[Mij])∗ → ⋯.
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The p dimensional cohomology of this cochain complex is denoted by Ep0
2 . We also

have

E01
2 = Ker(∏

i∈I
Pic(k[Mi])→∏

i,j

Pic(k[Mij])) .

Then we have an exact sequence (Theorem 1.4.1, v)):

0→ E10
2 → Pic(k[X])→ E01

2 → E20
2 . (3.5)

Recall that a monoid is torsion-free if and only if xn = yn for some n > 0 implies

x = y. We will say that a monoid scheme X is torsion-free provided for any affine

open monoid subscheme KSpec(M), the monoid M is torsion-free. One easily sees

that X is torsion-free if and only if OX,x is torsion-free for any x ∈X.

Proposition 3.3.1. Assume k is an integral domain and X is a torsion-free can-

cellative monoid scheme. Then E10
2 = Pic(X) and hence the natural map

Pic(X)→ Pic(k[X])

is a monomorphism.

Proof. By Theorem 11.1 in [18], if k is an integral domain and M is a torsion-free

cancellative monoid, one has (k[M])∗ = k∗ ×M∗. Thus, in this case, the cochain

complex computing E∗0
2 -terms is a direct sum of two subcomplexes, corresponding

to the ring and monoid factors. Hence

E∗0
2 ≅H∗(U ,OX∗)⊕H∗(U , k∗),

where k∗ is considered as a constant sheaf on X. The homology of the second

summand vanishes in positive dimensions and hence the result follows. Q.E .D

A finitely generated cancellative monoid M is called seminormal if for any x ∈
M gr with x2, x3 ∈M , it follows that x ∈M . Here M gr is the group of fractions of M .

A monoid scheme X is seminormal provided for any affine open monoid subscheme

KSpec(M), the monoid M is seminormal.
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Proposition 3.3.2. Assume k is a PID and X is a seminormal monoid scheme.

Then the natural map

Pic(X)→ Pic(k[X])

is an epimorphism.

Proof. It is well known that if M is seminormal, then Pic(k[M]) = 0 (see [7, Theorem

8.4]. It follows that E01
2 = 0. Hence the result follows from the exact sequence (3.5)

and Proposition (3.3.1). Q.E .D

Corollary 3.3.3. Assume k is a PID, and X is a seminormal and torsion-free

monoid scheme. Then the natural map

Pic(X)→ Pic(k[X])

is an isomorphism.

For X = Pn, this result was first proven by direct computation in [13, Proposition

4.3] (if n = 1) and it follows trivially from [5, Theorem 2.6] (if n ≥ 2).

3.4 Additivity of the Functor Pic

We now continue to study the Picard functor in more detail. In this section we

will prove that the natural map Pic(X)⊕ Pic(Y ) ∼Ð→ Pic(X × Y ) is an isomorphism

provided X and Y are separated monoid schemes.

Let T be a contravariant functor defined on the category of separated monoid

schemes, with values in the category of abelian groups. We will say that the functor

T is additive for the pair (X,Y ), if the natural morphism T (X)⊕T (Y )→ T (X ×Y )
is an isomorphism. Moreover, T is called additive, if it is additive for all pairs

(X,Y ), where X and Y are separated monoid schemes. For instance, the functor

X ↦ O∗
X(X) =H0(X,O∗

X)

is additive, as shown in Theorem 3.1.2.
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Lemma 3.4.1. Let X,Y be separated monoid schemes and U,V ⊂X open, such that

X = U ∪ V and W = U ∩ V . Assume the functors X ↦H i(X,O∗
X), i ∈ {n − 1, n} are

additive for the pairs (U,Y ), (V,Y ) and (W,Y ). Then X ↦Hn(X,O∗
X) will also be

additive for the pair (X,Y ).

Proof. The proof follows from the Mayer-Vietoris sequences for the coverings X =
U ∪ V and Y = Y ∪ Y , and using the five-lemma to compare their direct sum with

the Mayer-Vietoris sequence of the covering X × Y = (U × Y ) ∪ (V × Y ). In more

detail, since X = U ∪ V , we get the Mayer-Vietoris sequence:

⋯→Hn−1(X)→Hn−1(U)⊕Hn−1(V )→Hn−1(W )→

→Hn(X)→Hn(U)⊕Hn(V )→Hn(W )→ ⋯.

Here we denote Hn(A,O∗
A) by Hn(A) for simplicity. Likewise, by looking at Y as

the union with itself, i.e. Y = Y ∪ Y , we get

⋯→Hn−1(Y )→Hn−1(Y )⊕Hn−1(Y )→Hn−1(Y )→

→Hn(Y )→Hn(Y )⊕Hn(Y )→Hn(Y )→ ⋯.

Putting these two together yields:

⋯→Hn−1(X)⊕Hn−1(Y )→Hn−1(U)⊕Hn−1(V )⊕Hn−1(Y )⊕Hn−1(Y )→

→Hn−1(W )⊕Hn−1(Y )→Hn(X)⊕Hn(Y )→

→Hn(U)⊕Hn(V )⊕Hn(Y )⊕Hn(Y )→Hn(W )⊕Hn(Y )→ ⋯.

From the assumption now, we have the following:

⋯→Hn−1(X)⊕Hn−1(Y )→Hn−1(U × Y )⊕Hn−1(V × Y )→Hn−1(W × Y )→

→Hn(X)⊕Hn(Y )→Hn(U × Y )⊕Hn(V × Y )→Hn(W × Y )→ ⋯
(3.6)
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3.5 Divisors and Line Bundles

The Mayer-Vietoris sequence for X × Y , gives us:

⋯→Hn−1(X × Y )→Hn−1(U × Y )⊕Hn−1(V × Y )→Hn−1(W × Y )→

→Hn(X × Y )→Hn(U × Y )⊕Hn(V × Y )→Hn(W × Y )→ ⋯.
(3.7)

Now comparing (3.6) and (3.7) and using the five-lemma, we get the desired result.

Q.E .D

Theorem 3.4.2. Let X and Y be separated monoid schemes with finite affine cov-

erings. For all i ≥ 0, one has H i(X × Y,O∗
X×Y ) ≅ H i(X,O∗

X) ⊕ H i(Y,O∗
Y ). In

particular

Pic(X × Y ) ≅ Pic(X)⊕ Pic(Y ).

Proof. First recall that for i = 0, this result holds by Theorem 3.1.2. Let i ≥ 1. We

will prove this by induction on the number of affine coverings of X and Y . The

base step holds since the cohomologies vanish for affine monoid schemes, as shown

in Corollary 3.2.8. Now assume additivity holds for all pairs with n and m or less

affine coverings. We will then prove that it also holds for n+1 and m affine coverings.

By symmetry, it will hold for n and m + 1 as well, and hence for any pair of finite

affine coverings.

Let X be a monoid scheme with n + 1 and Y with m affine covers. Then X

can be written as X = X ′ ∪ U , where U is affine and X ′ can be covered by n affine

components. Since X ′∩U can be covered by n affine components, by our assumption

of separability, the condition of the above Lemma is satisfied. Hence additivity has

been proven for X and Y , which implies the theorem. Q.E .D

For the special case Y = KSpec(N), this was first proven in [15] by completely

different means, for the functor Pic.

3.5 Divisors and Line Bundles

We start by defining an analogue of the Cartier divisors for monoid schemes. To

do so, we will closely follow the classical construction of the Cartier divisors for the
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3.5 Divisors and Line Bundles

usual schemes (see for example [4, p. 434–444]).

Definition 3.5.1. Let M be a monoid, we call an element m ∈M regular, provided

for every elements x, y such that mx =my, we have x = y.

Denote by R(M) the submonoid of all regular elements of M and by MR(M)

the localisation of M with respect to R(M). The canonical map M → MR(M) is

injective.

It is clear that U ↦ OX(U)RX(U) is a presheaf of monoids. The sheaf associated

to it is denoted by MX and referred to as the meromorphic functions on X. The

same argument as for the classical case shows that the presheaf U ↦ OX(U)RX(U) is

separated and hence by Proposition 1.3.1 is a subpresheaf of its sheafification MX .

Hence OX →MX is injective. Consider now the short exact sequence of sheaves of

abelian groups:

1→ O∗
X →M∗

X →M∗
X/O∗

X → 1. (3.8)

As in the classical case, the global sections of the sheaf M∗
X/O∗

X are called the

Cartier divisors . A Cartier divisor is called principal , provided it corresponds to

the image of an element of M∗
X(X).

The quotient of the group of Cartier divisors by the principal divisors is denoted

by CaCl(X).
Recall that a monoid is called cancellative if for every x, y, z ∈M , xz = yz implies

that x = y. A separated monoid scheme X is called cancellative if for any affine open

monoid subscheme KSpec(M), the monoid M is cancellative. One easily sees that

X is cancellative if and only if OX,x is cancellative for any x ∈X.

Proposition 3.5.2. One has a monomorphism CaCl(X) → Pic(X), which is an

isomorphism if X is cancellative.

Proof. Take the short exact sequence in (3.8). We apply iv) from Theorem 1.4.1 to

get the exact sequence

M∗
X(X)→M∗

X/O∗
X(X)→ Pic(X)→H1(X,M∗

X).

SinceMX is a constant sheaf, so isM∗
X and hence its first cohomology is zero. The

result now follows from the definition of CaCl(X). Q.E .D

56



3.5 Divisors and Line Bundles

This very proof shows us that we actually don’t need for OX to map injectively

to MX . We only need for O∗
X to map injectively to M∗

X . The rest of this section

will be devoted to generalising the notions of cancellative monoids, regular elements

and the Cartier divisors.

Definition 3.5.3. A monoid M is called s-cancellative provided for any elements

a, x, y with ax = ay we have (xy)nx = (xy)ny for some n ∈ N.

It is clear that any cancellative monoid is s-cancellative. Our next aim is to give

several equivalent conditions for a monoid to be s-cancellative, but first a notation.

For an element c ∈M we set

pc = ⋃
c/∈p∈KSpec(M)

p.

Since the union of prime ideals in a monoid is a prime ideal, we see that pc is the

maximal prime ideal which does not contain c.

Lemma 3.5.4. For elements b, c of a monoid M , one has b /∈ pc if and only if there

is a natural number n and t ∈M , such that

cn = bt.

Proof. Clearly b /∈ pc if and only if any prime ideal which contains b contains c as

well. Thus the result follows from [20, Lemma III.1.1]. Q.E .D

Theorem 3.5.5. Let M be a finitely generated monoid. Then the following condi-

tions are equivalent:

1. M is s-cancellative.

2. For any elements x, y, a with xa = ya and any prime ideal p such that x, y /∈ p,

there exists an element b /∈ p such that xb = yb.

3. For any prime ideals q ⊂ p, the induced map on invertible elements

(Mp)∗ → (Mq)∗

is injective.
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3.5 Divisors and Line Bundles

4. For any elements x, y, a with xa = ya there exists an element b /∈ pxy such that

xb = yb.

Proof. 1) Ô⇒ 2). It suffices to take b = (xy)n.

2) Ô⇒ 3). Without loss of generality we may assume that q = ∅. In this case Mq is

a group, which is obtained by localising M with respect to all of M . This group is

denoted by G. Take an element

x

y
∈Ker ((Mp)∗ → G) , x ∈M, y /∈ p.

Thus there exists an element a ∈M such that xa = ya. By assumption this implies

that xb = yb, where b /∈ p and therefore x
y = 1 in Mp.

3) Ô⇒ 4). By assumption the map (Mp)∗ → G is injective for any prime ideal p,

where G is the same as in the previous case. Suppose a, x, y ∈M are such elements

that xa = ya. Since x, y /∈ pxy, we have

z = x
y
∈ (Mpxy)

∗
.

The condition xa = ya implies that the image of z in G is 1. Hence z = 1 by

assumption. Therefore xb = yb for some b /∈ pxy.

4) Ô⇒ 1). Assume xa = ya. Then by assumption xb = yb, where b /∈ pxy. By Lemma

3.5.4 there is a natural number n and an element t ∈M such that (xy)n = bt. So

(xy)nx = btx = bty = (xy)ny.

Q.E .D

Definition 3.5.6. A monoid scheme X is called s-cancellative provided for any

q ≤ p the induced map O∗
X,p → O∗

X,q is injective.

By Theorem 3.5.5 an affine monoid scheme KSpec(M) is s-cancellative if and

only if M is s-cancellative.
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3.5 Divisors and Line Bundles

Proposition 3.5.7. If X and Y are s-cancellative monoid schemes, then X × Y is

again s-cancellative.

Proof. The proof of this is actually trivial. Since the stalks respect the product, i.e.

on the point (p,q) we have Mp×Mq, where Mp and Mq are the monoids standing on

the stalks p ∈X and q ∈ Y respectively, it is clear that if every morphism Mp →Mp′

and Mq → Mq′ coming from inclusions p′ ⊂ p ∈ X and q′ ⊂ q ∈ Y are injections,

then the morphism Mp ×Mq → Mp′ ×Mq′ is an injection as well. With the above

statement, the proposition is proven. Q.E .D

Next we will generalise the notion of regular elements. We call an element a ∈M
s-regular , provided for some elements a, u, v with amu = amv for any m ∈ N, we have

u(uv)n = v(uv)n for some n ∈ N. Denote the set of s-regular elements by S(M).

Lemma 3.5.8. For any element f ∈ M the localisation homomorphism M → Mf

sends s-regular elements to s-regular elements. In particular, if M is a finitely

generated monoid, then the same is also true for the localisation homomorphism

M →Mp, for any prime ideal p.

Proof. Let a ∈ S(M) be an s-regular element of M . Assume we have

anu′ = anv′

in Mf . If u′ = u
f i

and v′ = v
fj

, u, v ∈M , then we can rewrite

an
u

f i
= an v

f j
.

Hence there exists a natural number k ∈ N such that fkanuf j = fkanvf i in M . Since

a is semi-regular, there exists a natural number m ∈ N such that

(f 2k+j+iuv)mfkuf j = (f 2k+j+iuv)mfkvf i.

We obtain

fk(2m+1)(uv)mufm(i+j)f j = fk(2m+1)(uv)mvfm(i+j)f i.
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3.5 Divisors and Line Bundles

Hence
(uv)mu
fm(i+j)f i

= (uv)mv
fm(i+j)f j

.

Or, equivalently (u′v′)mu′ = (u′v′)mv′. Thus a is semi-regular in Mf . To see the

second part, observe that if M is finitely generated, then X = KSpec(M) is a finite

T0-space. Hence any point p ∈ KSpec(M) has a smallest open neighbourhood, say

D(f). Then

Mp = OX,p = OX(D(f)) =Mf

and the result follows. Q.E .D

Proposition 3.5.9. The collection of all s-regular elements S(M) ⊂M is a multi-

plicative subset containing 1, and the localisation map M∗ → (MS(M))∗ is injective.

Proof. Let a, b ∈ S(M). Assume that (ab)mu = (ab)mv for some m ∈ N and u, v ∈M .

Since a ∈ S(M), we have am(bmu) = am(bmv) imply that

(bmubmv)n(bmu) = (bmubmv)n(bmv)

bm(2n+1)(uv)nu = bm(2n+1)(uv)nv.

Since b ∈ S(M), we have

((uv)nu(uv)nv)n′(uv)nu = ((uv)nu(uv)nv)n′(uv)nv

(u(2n+1)n′un)(v(2n+1)n′vn)u = (u(2n+1)n′un)(v(2n+1)n′vn)v

(uv)(2n+1)n′+nu = (uv)(2n+1)n′+nv

Hence ab ∈ S(M). To see that localising with the s-regular elements of a monoid

induces an injection on the invertible elements, we only have to prove that m
1 = m′

1

in MS(M) if and only if m = m′ in M∗. But this is easy to see, since m
1 = m′

1 is

equivalent to saying that there exists an element a ∈ S(M) such that ma = m′a.

Since a is s-regular, we have (mm′)nm = (mm′)nm′. But since m,m′ ∈ M∗, it

implies that mm′ ∈M∗, hence m =m′, as required. Q.E .D
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It follows that one can take the localisation MS(M). Moreover, the assignment

p ↦ (Mp)S(Mp) gives rise to a contravariant functor on the poset of KSpec(M).
The associated sheaf is denoted by sMX and is called the sheaf of s-meromorphic

functions on X. Even though OX → sMX is no longer injective in general, we still

have that O∗
X → sM∗

X is injective. Hence we get the short exact sequence of abelian

groups:

1→ O∗
X → sM∗

X → sM∗
X/O∗

X → 1. (3.9)

We call the sections of the sheaves sM∗
X/O∗

X and sM∗
X the s-divisors and the

principal s-divisors respectively. The quotient of the group of the s-divisors by the

principal s-divisors is denoted by sCl(X). If M is s-cancellative any element in M

is s-regular since for every elements a, u, v with amu = amv we have (uv)nu = (uv)nv
as am ≡ b ∈ M . Hence sM∗

X is the constant sheaf G, where G is the Grothendieck

group of M . Clearly this is also true for any s-cancellative monoid scheme X. By

Theorem 3.5.5 the sheaf O∗
X is a subsheaf of sM∗

X . For cancellative schemes one

has sM∗
X =M∗

X .

Hence by applying the long cohomological exact sequence to the short exact

sequence (3.9) we obtain the following fact.

Proposition 3.5.10. One has a monomorphism sCl(X) → Pic(X), which is an

isomorphism if X is s-cancellative.

Remark 4: Note that neither in the definition of s-regular elements, nor in the

Propositions 3.5.8 and 3.5.9 did we use the fact that we were working with monoids

and not with rings. Indeed this generalisation as well as that of the Cartier divisors

holds for rings as well.

3.6 Vanishing of H i(X,O∗
X), i ≥ 2

A monoid scheme of finite type is called smooth, provided there exist an open cover-

ing with affine monoid schemes of the type KSpec(M), where M = Nr ×Zs. It is well

known that H i(X,O∗
X), i ≥ 2 vanishes for smooth (ring)-schemes. The aim of this

section is to prove that the analogue holds for monoid schemes. Actually, we will

prove a more general result, see Theorem 3.6.6 below. We will generalise smoothness
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by introducing the notion of s-smoothness and we prove that the vanishing result is

true for s-smooth monoid schemes.

3.6.1 S-Flasque Sheaves and Functors

A sheaf F of abelian groups on a topological space X is called s-flasque provided

for any open subset U the restriction map F (X)→ F (U) has a section. By Lemma

3.1.5 in our circumstance sheaves can be replaced by functors. So we will work with

functors instead of sheaves.

Let P be a poset. Recall that a subset X ⊂ P is called open, provided for any

x ∈ X and y ≤ x, it follows that y ∈ X. Let F be a contravariant functor on P with

values in the category of abelian groups. F is called s-flasque, provided for all open

subsets X ⊂ Y the induced map

Γ(Y,F ) = lim
y∈Y

Fy → lim
x∈X

Fx = Γ(X,F )

is a split epimorphism. It is obvious that such functors correspond exactly to the

s-flasque sheaves under the equivalence constructed in Lemma 3.1.5.

Let Ae = (Aex)x∈P be a collection of abelian groups indexed by a poset P . A

functor generated by the collection Ae is the contravariant functor A on P defined

by

Ax =∏
y≤x

Aey,

and for x ≤ y, the map Ay → Ax is the natural projection.

Lemma 3.6.1. Let X be a P-topological space and P the poset associated to X as

in Proposition 3.1.4, part 3. A contravariant functor F defined on P is s-flasque, if

and only if F is isomorphic to a functor generated by a collection of abelian groups

Ae = (Aex)x∈P .

Proof. Assume F is a functor generated by a collection Ae. Then for any open

subset U ⊂X, one has

lim
u∈U

Fu ≅∏
x∈U

Aex, (3.10)

and hence F is s-flasque.
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The converse will be proven by induction on the Krull dimension dim(X) of

X. The case dim(X) = 0 being trivial. Assume F is s-flasque. Let us define the

collection Ae by

Aex = ker(Fx
fxÐ→ lim

y<x
Fy).

We claim there is an isomorphism θ ∶ F → Ae. To construct θ, we choose at once

sections sx of the maps fx ∶ Fx → lim
y<x

Fy for all x ∈X. Next, we define

θx ∶ Fx → Ax

by induction on the hight of x. If the hight of x is zero, then x is a minimal element

of X, thus in this case Fx = Aex = Ax, and we can take θx to be the identity map.

Assume θy is defined for all y, for which ht(y) < ht(x) and let Y = {y ∈ X ∣y < x}.

The Krull dimension of Y is strictly smaller than the Krull dimension of X. Thus by

the induction assumption, the functor F restricted on Y is isomorphic to a functor

generated by a collection of abelian groups (Aey)y<x, and hence by the isomorphism

(3.10) one has an isomorphism:

lim
y<x

Fy →∏
y<x

Aey.

Using sx, we now can define θx as the composite of isomorphisms

Fx → Aex × lim
y<x

Fy → Aex ×∏
y<x

Fy =∏
y≤x

Fy.

Q.E .D

This result has the following immediate consequence.

Proposition 3.6.2. Let F be a sheaf on a P-topological space X. Then F is s-

flasque if and only if F is locally s-flasque.

Recall that if P and Q are posets, then P ×Q is a poset, with (p1, q1) ≤ (p2, q2)
if and only if p1 ≤ p2 and q1 ≤ q2.
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Lemma 3.6.3. Let P (resp. Q) be a poset with the least element denoted by e (resp.

f). Let A (resp. B) be a contravariant functor defined on P (resp. on Q). Define

A ×B to be a contravariant functor defined on P ×Q by

(A ×B)(p,q) = Ap ×Bq.

If A and B are s-flasque, then A ×B is also s-flasque.

Proof. By assumption A is generated by (Aex)x∈P and B is generated by (Be
y)y∈Q.

Define

Ce
(x,y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aex ×Be
y x = e, y = f

Aex x ≠ e, y = f

Be
y x = e, y ≠ f

0 x ≠ e, y ≠ f.

One sees that

(A ×B)(p,q) = (∏
x≤p

Aex) × (∏
y≤q
Be
y) = ∏

(x,y)≤(p,q)
Ce
x,y

and the result follows. Q.E .D

3.6.2 S-Smooth Monoid Schemes

All monoids in this subsection are assumed to be of finite type.

Definition 3.6.4. An s-cancellative monoid scheme is called s-smooth provided

the sheaf sM∗
X/O∗

X is s-flasque. An s-cancellative monoid M is s-smooth provided

X = KSpec(M) is s-smooth.

Proposition 3.6.5. i) For a monoid scheme to be s-smooth is a local property.

ii) If X and Y are s-smooth monoid schemes, then X × Y is also s-smooth.

iii) Any smooth monoid scheme is s-smooth.

Proof. i) This is a direct consequence of Theorems 3.6.2 and 3.5.7.
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ii) According to [12] X × Y locally looks like KSpec(M1 ×M2) for monoids M1

and M2. So by (i) we need to consider only the affine case. In this case the

statement follows from Lemma 3.6.3.

iii) By previous results, we only need to show that Z and N are s-smooth monoids.

Both are trivial to prove.

Q.E .D

Proposition 3.6.6. If X is an s-smooth monoid scheme, then for all i ≥ 2 one has

H i(X,O∗
X) = 0.

Proof. By the same argument as in the proof of Proposition 3.5.2, the sheaf sM∗
X

is constant, provided X is s-cancellative. Thus for separated and s-cancellative

monoid schemes one has

H i(X,O∗
X) =H i−1(X,sM∗

X/O∗
X), i ≥ 2.

If additionally X is s-smooth, the last group vanishes, because any s-flasque sheaf

is flasque and hence has zero cohomology in all positive dimensions, as mentioned

in Lemma 1.6.1. Q.E .D

As a corollary we obtain that H i(X,O∗
X) = 0, for all i ≥ 2, provided X is smooth.

This finishes the classical analogue and while the proof might have been longer, it

is also more general. Now we give examples of monoids, which are s-smooth, but

not smooth.

Example 7: Let

M = ⟨a1,⋯, an, e1,⋯, em⟩ /a1⋯an = a1⋯an⋅ ei11 ⋯einn , e
kj
j = ekj+ijj .

Then M is s-smooth.

Example 8: Another example of an s-smooth monoid is M = ⟨u, a, b⟩ /u2 = ab = u3.
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Conjecture. While these examples are distinct from each other, neither are can-

cellative. Indeed I have a suspicion that if M is a finitely generated, cancellative

monoid and M∗
X/O∗

X is flasque, then M/M∗ ≅ Nr.

Since we are not giving proofs, the next example, which is a special case of Ex.7,

is written out in detail to convince the reader.

Example 9: Let S = ⟨a, b, e⟩ /ab = abe, e2 = e. Then S is s-smooth.

Proof. First observe that e2 = e is not going to affect the associated semilattice Ssl

of S. Hence the Kato-spectrum of this monoid is going to be dual to the monoid

M given in Example 6 on page 31. That is KSpec(S) and M sl will have the same

ordering. This immediately tells us how the semilattice KSpec(S) is going to look,

including the fact that it has 7 elements. In more detail, we have

X = KSpec(S) = {∅, (a), (b), (a, b), (a, e), (b, e), (a, b, e)}.

Hence O∗
X and sM∗

X/O∗
X look as follows, in the category of abelian groups (in other

words ⟨a⟩ denotes Z, rather then N, etc.):

O∗
X sM∗

X/O∗
X

1

�� �� ��

⟨a, b⟩

}} �� ""
⟨a⟩

��

1

�� ��

⟨b⟩

��

⟨b⟩

��

⟨a, b⟩

}} ""

⟨a⟩

��
⟨a⟩

��

⟨b⟩

��

⟨b⟩

!!

⟨a⟩

||⟨a, b⟩ 1

Since every morphism is the canonical morphism, i.e. a↦ a, it is straightforward to

see that sM∗
X/O∗

X is indeed s-flasque. It is also clear that M is not smooth.Q.E .D
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Lemma 3.6.7. Let M be a finitely generated s-cancellative monoid and X = KSpec(M).

Then

sM∗
X/O∗

X = sM∗
X/X∗/O∗

X/X∗

where X/X∗ denotes the Spectrum of M/M∗.
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Chapter 4

2-Mathematics

The roots of ‘2-mathematics’ go back to Grothendieck and possibly even earlier.

However, it was only relatively recently that it started to gain popularity in main-

stream mathematics. Today however, 2-categories, or more generally n- or even

∞-categories are seen everywhere in algebraic topology, algebraic geometry and of

course category theory.

Purely from its definition, a (strict) 2-category is just a category enriched in

categories, i.e. where for every two objects A and B, Hom(A,B) is a category.

As such, the categorical philosophy here is that we generalise sets to categories.

Furthermore, just as we were generally interested in objects up to isomorphisms in

category theory, here we are interested in objects up to equivalences. This already

introduces notions like 2-limits and 2-colimits in a natural way.

The topological philosophy however, is slightly different. Here the analogue of

a set, which can be seen as a topological space (up to homotopy) with only π0, is

not a category, but a groupoid. Formally, a groupoid is just a category where every

morphism is an isomorphism. But they can be thought of as a topological space (up

to homotopy) that only has π0 and π1.

This viewpoint enables for a more conceptual approach to many aspects of topol-

ogy. One of its many uses, is the fact that it enables us to get rid of the basepoint

when dealing with the fundamental group. We will build on this advantage and show

in Theorems 5.1.2 and 8.0.7 that the fundamental groupoid has a universal property.

More precisely, we will given an axiomatic definition using costacks, the dual no-

tion of stacks. To do so however, we need to be familiar with 2-limits and 2-colimits.
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4.1 Introduction to 2-Category Theory

In the first section, we will first give some basic definitions and results on 2-

categories, including groupoids. In Section 4.2 we will talk about the various types

of limits that arise in 2-categories and compare them with each other. We will

also give explicit constructions for these definitions, except for the general case of

a 2-colimit. As we will prove in Subsection 4.2.5, we can reduce the 2-colimit of

a diagram, to the colimit, by ‘deforming’ our categories. This result has many

calculatory uses as we will show in Section 5.2.

After this, we will talk a little about the 2-mathematical analogue of sheaves,

namely stacks. Instead of defining them using the descent data however, we will use

the more categorical approach and define them using 2-limits. This will give us a

direct way of defining their dual notion, the less well-known costacks. While we do

not know if costackification exists, in Subsection 4.3.2.3 we give a simplification for

checking whether a 2-functor F is a costack or not.

4.1 Introduction to 2-Category Theory

4.1.1 Definition and Basic Results on 2-Categories

This subsection, as well as 4.3.1, follows the second chapter (Lecture) of [36] very

closely, even on notations.

Definition 4.1.1. A strict 2-category C consists of the following:

1. A class of objects, denoted by obj(C);

2. A family of categories HomC(X,Y ), indexed by obj(C) × obj(C);

objects of HomC(X,Y ) are called morphisms of C, or sometimes 1-cells,

morphisms of HomC(X,Y ) are called 2-morphisms of C, or 2-cells;

3. A family of functors

µx,y,z ∶ HomC(X,Y ) ×HomC(Y,Z)→ HomC(X,Z)
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indexed by obj(C) × obj(C) × obj(C), called composition functors, such that the

following diagram

HomC(X,Y ) ×HomC(Y,Z) ×HomC(Z,T )
Id×µY,Z,T //

µX,Y,Z×Id
��

HomC(X,Y ) ×HomC(Y,T )

µX,Y,T

��
HomC(X,Z) ×HomC(Z,T ) µX,Z,T

// HomC(X,T )

is commutative for all 4-tuples (X,Y,Z,T ) of objects of C;

4. For each object X of C, there is an object iX of HomC(X,X) such that the

following diagrams

1 ×HomC(X,Y) iX×Id //

=
))

HomC(X,X) ×HomC(X,Y )

µX,X,Ytt
HomC(X,Y )

and

HomC(Y,X) × 1
Id×iX //

=
((

HomC(Y,X) ×HomC(X,X)

µY,X,Xtt
HomC(Y,X)

commute. Here 1 denotes the category with one object and only the identity

morphism.

Whenever one of our arrows are invertible, we add the prefix iso. For example,

an invertible morphism (i.e. object of HomC(X,Y ))is called an isomorphism, an

invertible 2-morphism a 2-isomorphism, and so on.

Definition 4.1.2. A morphism F ∶ A→ B in a 2-category is called an equivalence,

if we are given the following:

� A morphism G ∶ B → A;

� Two 2-isomorphisms f ∶ F ○G→ IdB and g ∶ G ○ F → IdA.
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Note that there exists a more general version of this, where composition need

not be associative, but only associative up to a 2-isomorphism which satisfies a

coherence condition. But since we will only deal with strict 2-categories, we will

not define the more general version. Indeed we will usually try to define the least

general cases that we need.

Definition 4.1.3. Let C and D be two 2-categories. We say F ∶ C→D is a (covari-

ant) 2-functor if

� F takes objects to objects, morphisms to morphisms and 2–morphisms to 2-

morphisms.

� For all chains A
iÐ→ B

jÐ→ C in C, we have a 2-isomorphism τi,j ∶ j∗i∗ ⇒ (ji)∗,

where i∗ denotes F(i), such that for all triple compositions A
iÐ→ B

jÐ→ C
kÐ→D,

the diagram

(kji)∗
τk,ji +3

τi,kj

��

k∗(ji)∗
k∗τi,j
��

(kj)∗i∗
τj,ki

∗
+3 k∗j∗i∗

commutes. This is called the coherent compatibility condition.

� On 2-morphisms we require that F respects the composition.

If the above 2-functor is invertible, that is, if we have G ∶D → C with F ○G = Id

and G ○ F = Id, then F is called a 2-isomorphism. In this case, we say that C and D

are 2-isomorphic.

Remark 5: It should be pointed out, that we use the term 2-isomorphism for two

different concepts. However, since there can be no ambiguity from the context, we

will keep this terminology for simplicity.

Definition 4.1.4. A 2-functor F ∶ C → D is said to be strict, if for all i, j ∈ I, the

isomorphism τi,j is the identity.

Definition 4.1.5. Let F ∶ C → D and G ∶ C → D be two 2-functors. A natural

transformation φ ∶ F⇒ G of 2-functors is the following data:
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� A morphism φU ∶ F(U)→ G(U) for each U ∈ obj(C),

� A 2-isomorphism αi ∶ i∗φV ⇒ φU i∗ for each i ∶ V → U , i.e.

F(V ) φV //

i∗
��

@Hαi

G(V )
i∗
��

F(U)
φU
// G(U)

such that for each composition W
jÐ→ V

iÐ→ U , the diagram

(ij)∗φW
αij +3

τj,iφWu}

φU(ij)∗

φU τj,i !)
i∗j∗φW

i∗αj +3 i∗φV j∗
αij∗ +3 φU i∗j∗

commutes.

An invertible natural transformation is called a natural isomorphism.

Definition 4.1.6. Let φ,ψ ∶ F ⇒ G be two natural transformations of two 2-

functors. A natural 2-transformation µ ∶ φ → ψ, also known as a fibred trans-

formation or modification, consists of 2-morphisms

µU ∶ φU ⇒ ψU ,

for each U ∈ obj(C), such that for every i ∶ V → U , the diagram

i∗φV
αi +3

i∗µV
��

φU i∗

µU i∗
��

i∗ψV βi
+3 ψU i∗

commutes.

Following the notations, if µ is invertible, we will call it a natural 2-isomorphism.
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Definition 4.1.7. Let C and D be two 2-categories and F ∶ C → D a 2-functor

between them. We say that F is a 2-equivalence, if there exists a 2-functor G ∶D→ C,

and two natural isomorphisms φ ∶ F ○G⇒ Id, ϕ ∶ G ○ F⇒ Id. If that is the case, C

and D are said to be 2-equivalent.

We have the following well-known (see for example in [29, Prop. 1.5.13]) result.

Proposition 4.1.8. The 2-functor F ∶ A → B is a 2-equivalence of 2-categories if

and only if the following two conditions hold:

� For every A,A′ ∈ obj(A) we have an equivalence of categories

HomA(A,A′)→ HomB(F(A),F(A′));

� For every object B ∈ B, there exists an object B′ ∈ B, such that B′ is equivalent

to B and B′ is in the image of F.

When F satisfies the first condition, we say that F is full and faithful . When it

satisfies the second, we call F essentially surjective.

4.1.2 Groupoids

Definition 4.1.9. Let G be a category. We say that G is a groupoid, if every

morphism in G is an isomorphism.

Note that we can look at a group as a groupoid by defining its objects to be a

single object, and its endomorphisms to be the elements of the group. Composition

is given by the group law. As such, groupoids generalise groups in a very natural

way. Indeed, one can think of a group as a connected groupoid, due to the following

simple, and well-known lemma.

Lemma 4.1.10. Let G be a groupoid such that for every pair of objects x, y ∈ G,

there exists a morphism φ ∶ x → y. Then G is equivalent to a groupoid coming from

a group.
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A groupoid satisfying the condition of the lemma is called a connected groupoid .

A connected groupoid such that Aut(x) is trivial, is called a trivial or simply con-

nected groupoid. It is equivalent to the groupoid with one object and only the

identity morphism, and is denoted by 1.

But in general, a groupoid is not connected. The set of connected components of

a groupoid is denoted by π0(G). Likewise, Aut(x) is sometimes written as π1(G, x).
We say that a groupoid is discrete, if for every object x of our groupoid, Aut(x)
only has the identity.

Proposition 4.1.11. Let G be a connected groupoid and let x ∈ G. We have an

equivalence of categories

HomCat(G,Sets) ≅ Aut(x)-Sets

where Aut(x)-Sets denotes the category of Aut(x)-Sets.

Proof. We know that equipping a set S with a G-set structure is equivalent to saying

that we have a map G→ Aut(S). Since G is connected, we can assume that it only

has one object x. Take F ∈ HomCat(G,Sets) and let F(x) = S, where S is a set.

Since a morphism in the 2-category of categories is a functor, F induces a map

Aut(x)→ Aut(S), hence defines an Aut(x)-set. It can be easily checked that natural

transformations between two such functors F and G are equivalent to equivariant

maps. Q.E .D

If we changed Sets with FSets, the category of finite sets, this result would still

hold. This result enables us to generalise group actions to groupoid actions, which

we will use in chapter 6

Definition 4.1.12. Let G be a groupoid. We say that G is a finitely connected,

profinite groupoid, if it is equivalent to the 2-coproduct, in the 2-category of groupoids

(see Subsection 4.2.4), of finitely many, connected groupoids coming from profinite

groups.

Note that this is not the best way to define a profinite groupoid in the general

case, as it does not deal with the topology on its connected components. One should
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define it as simply the filtered 2-limit (see Subsection 4.2.2) of finite groupoids

endowed with the profinite topology. But for the purposes of this thesis however,

this simpler definition is adequate.

4.2 2-Limits and 2-Colimits

Just like the limit and colimit of a functor are of fundamental importance in category

theory, so too are the 2-limit and 2-colimit of a 2-functor in 2-category theory. If

the 2-functor is strict however, we can also talk about its limit and colimit.

Analogous to how a set S can be seen as a category S, whose objects are the

elements of S and the only morphisms are identities, a category can be ‘lifted’ to a

2-category. Here the objects and morphisms remain the same and the 2-morphisms

are just taken to be the identities. Hence, we can talk about 2-functors between

categories and 2-categories.

The aim of this section is to give the definitions and constructions of the various

limits of 2-categories. Note that, just like in the last subsection, we will not define

the most general cases, but only up to the generality we will actually need. Most

notably, this means that the source of our functors will be categories, rather then

2-categories.

We will give the definitions, as well as constructions, of the limit/2-limit and

the colimit of 2-functors. However, we will not give the general construction for the

2-colimit. The reason is that it is not an easy construction, and as we will show in

Subsection 4.2.5, we will not actually need to for the purposes of this thesis.

We will now fix the notations, that will be used throughout this section. Let

F ∶ I → Cat be a covariant 2-functor from the category I to the 2-category Cat of

categories. For an element i ∈ I, let Fi be the value of F at i. For a morphism

ψ ∶ i → j, let ψ∗ ∶ Fi → Fj be the induced functor. For any chain i
ψÐ→ j

νÐ→ k, one has

the natural transformation µψ,ν ∶ ν∗ψ∗⇒ (νψ)∗, satisfying the coherent condition.

4.2.1 Limits of Categories

Definition 4.2.1. Let F ∶ I → Cat be a strict 2-functor. The limit of F is a category

lim
i
Fi, together with a collection of morphisms fi ∶ lim

i
Fi → Fi, such that ψ∗ ○ fi = fj.
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4.2 2-Limits and 2-Colimits

This data has to satisfy the following property:

� For any category G with gi ∶ G → Fi satisfying ψ∗ ○ gi = gj, there is a unique

morphism g ∶ G→ lim
i
Fi, such that for all i, the diagram

G
gi

&&

g

��
lim
i
Fi fi

// Fi

commutes.

� If g, h ∶ G → lim
i
Fi are two functors, then for any collection of natural trans-

formations

αi ∶ fi ○ g⇒ fi ○ h

for which ψ∗(αi) = αj, there exists a unique natural transformation α ∶ g⇒ h,

such that αi = fiα

Proposition 4.2.2. Limits exist, and objects of the category lim
i
Fi are families

(xi), where xi is an object of the category Fi, such that all maps ψ ∶ i → j, one

has ψ∗(xi) = xj. A morphism (xi) → (yi) is a family (fi), where fi ∶ xi → yi is a

morphism of Fi, such that for any ψ ∶ i→ j, one has ψ∗(fi) = fj.

This is well known. See for example [17, p.5]. To define limits for other 2-

categories, such as the 2-category of groupoids, one only needs to consider the

uniqueness condition in said 2-category. Alternatively, one can define limits as

follows:

Definition 4.2.3. Let F ∶ I → A be a strict covariant 2-functor in a general 2-

category A. The limit of F is the following:

� An object lim
i
Fi in A, together with morphisms fi ∶ lim

i
Fi → Fi, satisfying

fi ○ ψ∗ = fj;
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� For all objects A ∈ A, the functor

HomA(A, lim
i
Fi)→ lim

i
HomA(A,Fi)

given by κ ∶ χ↦ (χ ○ fi), where χ ∈ HomA(A, lim
i
Fi), is an isomorphism.

It is straightforward to see that when A is the 2-category of categories, these two

definitions coincide.

4.2.2 2-Limits of Categories

Definition 4.2.4. The 2-limit of F ∶ I → Cat is a category 2-lim
i
Fi, together with a

family of functors (fi ∶ 2-lim
i
Fi → Fi)i∈obj(I) and natural transformations

(ζψ ∶ ψ∗ ○ fi⇒ fj)ψ∈HomI(i,j),

satisfying the coherent condition for any composable maps i
ψÐ→ j

νÐ→ k in I. In other

words, ζνζψµψ,ν = ζνψ. These data must satisfy the following properties:

� For any category G with gi ∶ G → Fi and compatible ηψ ∶ ψ∗ ○ gi → gj, we have

a functor a ∶ G→ 2-lim
i
Fi and a natural isomorphism ai ∶ gi⇒ fi ○ a, such that

the diagram

ψ∗ ○ gi
ηψ +3

ψ○ai
��

gj

aj

��
ψ∗ ○ fi ○ aζψ○a

+3 fj ○ a

commutes.

� If there is given a category G and two functors a, b ∶ G→ 2-lim
i
Fi, then for any

collection of natural transformations

αi ∶ fi ○ a⇒ fi ○ b,
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for which the diagram

ψ∗ ○ fi ○ a
ψ∗(αi) +3

ζψ○a
��

ψ∗ ○ fi ○ b
ζψ○b
��

fj ○ a αj
+3 fj ○ b

commutes, there exists a unique natural transformation α ∶ a ⇒ b, such that

αi = fiα

Proposition 4.2.5. 2-Limits exist and:

� Objects of the category 2-lim
i
Fi are collections (xi, ξψ), where xi is an object of

Fi, while ξψ ∶ ψ∗(xi) → xj for ψ ∶ i → j is an isomorphism of the category Fj,

satisfying the 1-cocycle condition. That is, for any i
ψÐ→ j

νÐ→ k, the diagram:

ν∗(ψ∗(xi))
ν∗(ξψ) //

µψ,ν

��

ν∗(xj)
ξν

��(νψ)∗(xi) ξψν
// xk

commutes

� Morphisms from (xi, ξψ) to (yi, ηψ) are collections of morphisms (fi ∶ xi → yi),

such that for any ψ ∶ i→ j, the following is a commutative diagram:

ψ∗(xi)
ξψ //

ψ∗(fi)
��

xj

fj

��
ψ∗(yi) ηψ

// yj.

This result is well known and is a particular case of a far more general construc-

tion given in [42]. Comparing this construction to the one given for limits shows us

immediately that the following holds:
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Lemma 4.2.6. Let F ∶ I → Cat be a strict 2-functor. Then the functor

γ ∶ limF→ 2- limF,

given by

γ(xi) = (xi, Id),

is full and faithful.

Remark 6: Let f ∶ A → B and g ∶ B → C be two morphisms in the 2-limit of

F ∶ I → Cat. Then composition is defined componentwise. To see that consider the

following commutative diagram:

ψ∗(Ai)
αψ //

ψ∗(fi)
��

Aj

fj

��
ψ∗(Bi)

βψ //

ψ∗(gi)
��

Bj

gj

��
ψ∗(Ci)

γψ // Cj.

Since ψ∗, the induced functor of ψ ∶ i → j, is by definition a functor, we have that

ψ∗(fi)ψ∗(gi) = ψ∗(figi). Hence (figi) defines a morphism in the 2-limit of F, which

we denote by fg.

Remark 7: Let (xi, ξψ) and (yi, νψ) be objects in the 2-limit of F ∶ I → Cat. From

Proposition 4.2.5 we immediately see that we have the following exact sequence of

sets:

Hom2- lim
i
Fi(a, b) //∏

i
HomFi(ai, bi) //// ∏

ψ∶i→j
HomFj(ψ∗(ai), bj).

The alternative definition of 2-limits is as follows:

Definition 4.2.7. Let F ∶ I → A be a covariant 2-functor in a general 2-category A.

The 2-limit of F is the following data:

80



4.2 2-Limits and 2-Colimits

� An object 2-lim
i
Fi with morphisms fi ∶ 2-lim

i
Fi → Fi and 2-morphisms

ζψ ∶ fi ○ ψ∗⇒ fj, satisfying the coherent condition, meaning ζνζψµψ,ν = ζνψ;

� Additionally we require that for all objects A ∈ A, the functor

HomA(A,2 − lim
i
Fi)→ 2 − lim

i
HomA(A,Fi)

given by κ ∶ χ→ (χ○fi, χ○ζφ), where χ ∈ HomA(A,2− lim
i
Fi), is an equivalence

of categories .

It can be shown that this definition agrees with the above definition in the

case when A is the 2-category of categories. We have the following fact which is

straightforward to check:

Proposition 4.2.8. The assignment

L ∶ {2-Functors over I with values in categories}→ Cat

defined in the following way:

i) {F ∶ I → Cat}↦ 2-limF on objects;

ii) {ϕ ∶ F→ G}↦ {ϕ′ ∶ 2-limF→ 2-limG} given by

x = (xi, ξ)↦ (ϕ(xi), ϕ(ξ)), {f ∶ x→ y} = (fi)↦ (ϕ(fi))

on morphisms, and

iii) {λ ∶ ϕ ⇒ φ} ↦ {λ′ ∶ ϕ′ ⇒ φ′} given by λ′(ϕ′(x)) = λ(ϕ(xi), ϕ(ξ)) on 2-

morphisms,

defines a 2-functor.
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4.2.3 Colimits of Categories

Definition 4.2.9. Let F ∶ I → Cat be a strict 2-functor. The colimit of F is a

category colim
i

Fi, together with morphisms fi ∶ Fi → colim
i

Fi such that fi = fj ○ ψ∗.

This data must satisfy the following property:

� For any other category G with gi ∶ Fi → G satisfying gi = gj ○ ψ∗, we have a

unique morphism g ∶ colim
i

Fi → G, such that for all i, the diagram

Fi
gi

''

fi

��
colim

i
Fi g

// G

commutes.

� If g, h ∶ colim
i

Fi → G are two functors, then for any collection of natural trans-

formations

αi ∶ g ○ fi⇒ h ○ fi

for which ψ∗(αi) = αj, there exists a unique natural transformation α ∶ g⇒ h,

such that αi = αfi

Alternatively we can define the colimit as follows:

Definition 4.2.10. Let F ∶ I → A be a strict 2-functor and A a general 2-category.

Then the colimit of F is:

� An object colim
i

Fi of A, together with a collection of functors

fi ∶ Fi → colim
i

Fi

such that fi = fj ○ ψ∗.

� Additionally, one requires that for any object G of A, the canonical functor

c ∶ HomA(colim
i

Fi,G)→ lim
i

HomA(Fi,G),
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given by c(χ) = (χ○fi), is an isomorphism of categories. Here, χ ∶ colim
i

Fi → G

is is a morphism in A,

It is well known that colimits exist in the 2-categories of groupoids and categories

[17, p. 36].

4.2.3.1 Construction in the General Case

The construction of the colimit of a diagram of small categories, is quite a bit harder

then the limit. First we will need to define what a graph is, then take the colimit

of graphs, make a free category out of that obtained graph and finally quotient the

obtained category in such a way, that compositions are respected. The following

construction is of course well known. See for example [17, p.4].

Definition 4.2.11. Let A0 and A1 be sets and let

A1
d0 //

d1
// A0 i // A1

be a diagram. We say that it is a graph if d0 ○ i = d1 ○ i = IdA1, and denote it with

A∗ for short.

Elements of A0 are called objects, while elements of A1 are called arrows. For an

arrow f ∈ A1, d0(f) and d1(f) are called the domain and range of f . For an object

a ∈ A0, the arrow i(a) is called the identity arrow of a.

Definition 4.2.12. Let A∗ and B∗ be graphs. A morphism of graphs f∗ ∶ A∗ → B∗

is defined to be a pair of maps f 0 ∶ A0 → B0 and f 1 ∶ A1 → B1, such that

� di ○ f 0 = f 1 ○ di for i = 0,1 and

� i ○ f 1 = f 0 ○ i.

Hence we can talk about the category of graphs, which we denote by Graphs.

There is an obvious forgetful functor U ∶ Cat → Graphs, which assigns to a small

category C the sets C0,C1 of objects and arrows. The forgetful functor has a left

adjoint functor F ∶ Graphs→ Cat given by assigning to a graph A∗ the free category

generated by A∗.
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Objects of F (A∗) are the elements of A0. For two objects a, b ∈ A0, a morphism

is defined to be a sequence (f 1,⋯, fk) where f 1,⋯, fk ∈ A1, d0(fk) = a, d1(f 1) = b1,

and d1(f i) = d0(f i+1),0 ≤ i ≤ k. Moreover, if k > 1, then f i ∈ A1 ∖ i(A0), i = 1,⋯, k.

Composition of (f 1,⋯, fk) and (g1,⋯, gn) is defined in the obvious way if k,n ≥ 2.

If k = 1 and f 1 = i(a) or n = 1 and g1 = i(b), then the composition is (g1,⋯, gn) or

(f 1,⋯, fk) respectively.

Let G ∶ I → Graphs be a functor. For any i ∈ I, one has a graph Gi with set of

objects G0
i and set of arrows G1

i . In this way, one obtains two functors

G0,G1 ∶ I → Sets

and natural transformations

G1
d0 //

d1
// G0 i // G1 .

Now passing to the colimits, we obtain a diagram of sets

colimG1
d0 //

d1
// colimG0 i // colimG1 ,

which is a graph, and it is the colimit in the category Graphs. Assume F ∶ I → Cat is

a functor. To take the colimit of F, we first take the colimit of G ∶≡ U ○G ∶ I → Graphs

and obtain

G1
d0 //

d1
// G0 i // G1 .

Denote the graph by B. We can form a free category F (B). For any i, we have a

morphism of graphs αi ∶ U(Fi) → F (B). The colimit of F ∶ I → Cat is the quotient

of F (B) by the minimal congruence on F (B) under which αi(g) ○αi(f) ∼ αi(g ○ f),
for all i ∈ I and all composable morphisms a

fÐ→ b
gÐ→ c in Fi.

4.2.3.2 The Filtered Case

Let I be a filtered category and let F ∶ I → Cat a strict 2-functor. For any i ∈ Obj(I),
any object A ∈ Obj(Fi) defines an object [A] in colimFi. For B ∈ Obj(Fi), one has

[A] = [B] if and only if there are morphisms i
αÐ→ k

β←Ð j, such that α∗(A) = β∗(B)
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in Fk. Any morphism f ∶ A→ A′ of the category Fi defines the morphism

[f] ∶ [A]→ [A′].

For a morphism g ∶ B → B′ of the category Fj, one has [f] = [g], if and only if there

are morphism i
αÐ→ k

β←Ð j, such that

α∗(A) = β∗(B), α∗(A′) = β∗(B′), α∗(f) = β∗(g).

If f ∶ A → A′ is a morphism in Fi and g ∶ B → B′ is a morphism in Fj such that

[A′] = [B′], then the composite [g] ○ [f] ∶ [A] → [B′] is defined as follows: Choose

morphisms i
αÐ→ k

β←Ð j such that α∗(A′) = β∗(B). Then

[g] ○ [f] ∶= [β∗g ○ α∗f].

4.2.4 2-Colimits of Categories

Definition 4.2.13. Let F ∶ I → Cat be a 2-functor. The 2-colimit of F is the

following:

� A category 2-colim
i

Fi, together with a family of functors

αi ∶ Fi → 2 − colim
i

Fi

and natural transformations λψ ∶ αjψ∗⇒ αi, satisfying the following condition:

For any i
ψÐ→ j

νÐ→ k, the following diagram

αk(νψ)∗
λνψ +3 αi

αkν∗ψ∗ λν∗○ψ∗
+3

αk○µψ,ν
KS

αjψ∗

λψ

KS

commutes.
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� For any category C, the canonical functor

κ ∶ HomCat(2 − colim
i

Fi,C)→ 2 − lim
i

HomCat(Fi,C)

is an equivalence of categories. Here κ is given by κ(χ) = (χ ○ αi, χi ○ λψ).

It is well known that the 2-colimit exists and is unique up to an equivalence of

categories, see, [8, pp. 192-193]. The analogous statement for groupoids holds as

well [22, Exposé VI, Section 6].

4.2.4.1 The Filtered Case

Let I be a filtered category and F ∶ I → Cat a 2-functor in the 2-category of small

categories. The set of objects of the category 2-colimF is the disjoint union of the

objects of Fi. Thus, any object A ∈ Fi is also an object of 2-colimF. Take A ∈ Fi
and B ∈ Fj. Any diagram of the form

i
αÐ→ k

β←Ð j

and any morphism α∗(A) hÐ→ β∗(B) in Fk determines a morphism A → B in the

category 2-colimF. This morphism will be denoted by [α,β, h]. If we take an other

morphism [α′, β′, h′] with i
α′Ð→ k′

β′←Ð j and h′ ∈ HomFk(α′∗(A), β′∗(B)), then

[α,β, h] = [α′, β′, h′]

if and only if there exists a diagram k
γÐ→ l

γ′←Ð k′, such that γα = γ′α′, γβ = γ′β′ and

that the following is a commutative diagram:

(γα)∗(A) //

Id
��

γ∗α∗(A) γ∗h // γ∗β∗(B) // (γβ)∗(B)
Id
��

(γ′α′)∗(A) // γ′∗α
′
∗(A)

γ′∗h′
// γ′∗β

′
∗(B) // (γ′β′)∗(B).
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It follows from the definition, that if [α,β, h] ∶ A → B is a morphism in 2-colimF,

then for every morphism ν ∶ k → l, one has

[α,β, h] = [να, νβ, ν∗(h)].

To define the composition in 2-colimF, let [α,β, h] ∶ A → B and [γ, δ, g] ∶ B → C

be morphism in 2-colimF, where h ∶ α∗(A) → β∗(A) and g ∶ γ∗(B) → δ∗(C) are

morphism in Fk and Fm respectively. Here, i
αÐ→ k

β←Ð j and j
γÐ→m

γ←Ð l are diagrams

in I. Since I is directed, there are morphisms k
µÐ→ n

ζ←Ðm such that µβ = ζγ. Then

one puts

[γ, δ, g] ○ [α,β, h] = [µα,µβ = ζγ, ζ∗g ○ µ∗h].

Proposition 4.2.14. Let I be a filtered category and F ∶ I → Cat be a 2-functor.

Take A ∈ Fi and α ∶ i → j, a morphism in I. Then, A and α∗(A) are isomorphic in

the 2-colimit of F.

Proof. The diagram i
αÐ→ j

Id←Ð j in I, induces the map [α, Idj, Idα∗(A)] ∶ A → α∗(A).
Its inverse is given by [Idj, α, Idα∗(A)] ∶ α∗(A)→ A, which is coming from the diagram

j
IdÐ→ k

α←Ð i. Q.E .D

By the very definition of morphisms in the 2-colimit, we have the following result:

Proposition 4.2.15. Let F ∶ I → Cat be a filtered 2-colimit. Take a ∈ Fi and b ∈ Fj
and denote by Ii,j ∶= {i αÐ→ k, j

βÐ→ k}. Then we have a bijection

Hom2- colim
i

Fi(a, b) = colim
k∈Ii,j

HomFk(α∗(a), β∗(b)).

We have the following straight forward to check fact:

Proposition 4.2.16. The assignment

L ∶ {2-Functors over I with values in categories}→ Cat

defined in the following way:

i) {F ∶ I → Cat}↦ 2-colimF on objects;
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ii) {ϕ ∶ F→ G}↦ {ϕ′ ∶ 2-colimF→ 2-colimG} given by

x = xi ↦ ϕ(xi), [α,β, f ∶ xi → yj]↦ [ϕ(α), ϕ(β), ϕ(f)]

on morphisms, and

iii) {λ ∶ ϕ ⇒ φ} ↦ {λ′ ∶ ϕ′ ⇒ φ′} given by λ′(ϕ′(x)) = λ′(ϕ′(xi)) = λ(ϕ(xi)) on

2-morphisms,

defines a 2-functor.

4.2.5 Comparison of the Colimit and the 2-Colimit

Proposition 4.2.17. Let I be a filtered poset and F ∶ I → Cat a strict 2-functor.

We have an equivalence of categories

δ ∶ 2- colim
i

Fi → colim
i

Fi.

Proof. We will start by describing the functor δ. Recall that objects of the 2-colimit

are the disjoint union of the objects of the Fi-s (Section 4.2.4.1). Since the objects

of the colimit of F are a quotient of the disjoint union of obj(Fi) (Section 4.2.3.2),

we clearly have δ defined on objects. We also immediately see that δ is essentially

surjective (indeed it is surjective).

To define δ on morphisms, take A ∈ Fi, B ∈ Fj and

ϕ ∈ Hom2- colim
i

Fi(a, b) ≅ colim
k∈Ii,j

HomFk(α∗(A), β∗(B))

(for the result and notation see Proposition 4.2.15). Pick a representative

Fk ∋ ϕk ∶ α∗(A)→ α∗(B)

of ϕ. Since every morphism in every Fk defines a morphism in the colimit, clearly

so does ϕk. It is straightforward to see that this map is well defined.
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To show that δ is full and faithful, assume δ(ϕ) = δ(φ) in Homcolim
i

Fi(δ(A), δ(B)).
There exists k ∈ Ii,j such that δ(ϕ)k = δ(φ)k. This is the exact same condition as

for the equality in the 2-colimit. Lastly, to prove surjectivity between the Hom-sets,

take f ∶ A→ B in the colimit of F. Since f is in the colimit, choose a representative

fk of f in some Fk. Clearly [Id, Id, fk] ∈ Hom2- colim
i

Fi
(A,B) maps to f . Q.E .D

Lemma 4.2.18 (Deformation Lemma). Let

A
|� λ

i1 //

i2
��

B
j1
��

C
j2
// D

be a 2-diagram of groupoids, that is, λ ∶ j1i1 ⇒ j2i2 is a natural isomorphism. If

the functor i1 is injective on objects, there exist a functor j′1 ∶ B → D and a natural

transformation κ ∶ j1 ⇒ j′1, for which the diagram

A i1 //

i2
��

B
j′1
��

C
j2
// D

commutes and λ coincides with κ ○ i1 ∶ j1i1 → j′1i1 = j2i2.

Proof. Define j′1 on objects by

j′1(b) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

j1(b), if b /∈ Im(i1)

j2i2(a), if b = i1(a).

To define j′1 on morphisms, we proceed as follows. Let β ∶ b1 → b2 be a morphism in

B. To define

j′1(β) ∶ j′1(b1)→ j′1(b2),

we have to consider five different cases.
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Case 1. b1 = i1(a1) and b2 /∈ Im(i1). One defines j′1(β) to be the composite:

j′1(b1) = j2i2(a1)
λ−1(a1)ÐÐÐÐ→ j1i1(a1) = j1(b1)

j1(β)ÐÐ→ j1(b2) = j′1(b2).

Case 2. b1 = i1(a1), b2 = i1(a2), but β /∈ Im(i1). One defines j′1(β) to be the

composite:

j′1(b1) = j2i2(a1)
λ−1(a1)ÐÐÐÐ→ j1i1(a1) = j1(b1)

j1(β)ÐÐ→ j1(b2) = j1i1(a2)
λ(a2)ÐÐÐ→ j2i2(a2) = j′1(b2).

Case 3. β ∈ Im(j1). We choose α ∶ a1 → a2 in A such that β = i1(α). One defines

j′1(β) by

j′1(b1) = j2i2(a1)
j2i2(α)ÐÐÐ→ j2i2(a2) = j′1(b2).

To check that this is independent of the choice of α, consider α′ ∶ a1 → a2 with the

property i1(α′) = β. Since λ is a natural transformation, we have a commutative

diagram

j1i1(a)
λ(a) //

j1i1(α)
��
=
��
j1i1(α′)
��

j2i2(a)
j2i2(α)

��
j2i2(α′)
��

j1i1(a′)
λ(a′)

// j2i2(a′)

Since the left vertical arrows are equal and the horizontal ones are isomorphisms, it

follows from the commutativity, that the right vertical arrows are also equal. Hence,

j′1(β) is well-defined in this case.

Case 4. b1 /∈ Im(i1) and b2 = i1(a2). One defines j′1(β) to be the composite

j′1(b1) = j1(b1)
j1(β)ÐÐ→ j1(b2) = j1ii(a2)

λ(a2)ÐÐÐ→ j2i2(a2) = j′2(b2).

Case 5. b1 /∈ Im(i1) and b2 /∈ Im(i1). One defines j′1(β) as

j′1(b1) = j1(b1)
j1(β)ÐÐ→ j1(b2) = j′1(b2).
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Checking case by case shows that j′1 is really a functor, with j′1i1 = j2i2. Define κ by

κ(b) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Idj1(b), if b /∈ Im(i1)

λ(a), if b = i1(a).

One easily sees that j′1 and κ satisfy the assertions of the Lemma. Q.E .D

Theorem 4.2.19. Let

A
i1 //

i2
��

B

C

be a diagram of groupoids, where i1 is injective on objects. Then the colimit and the

2-colimit are equivalent.

Proof. Consider the diagram

A
i1 //

i2
��

B

��

��

C //

))

P

W,

α

ff

where P is the pushout and W is the 2-pushout (weak pushout) of C
i2←Ð A

i1Ð→ B.

Let E be any groupoid and consider:

Hom(A,E) Hom(B,E)
i∗1
oo

Hom(C,E)

i∗2

OO

Hom(P,E)

OO

oo

α∗

))
Hom(W,E).

ll

dd

Since Hom(−,E) maps pushouts and 2-pushouts to pullbacks and 2-pullbacks, we

have that Hom(P,E) and Hom(W,E) are the pullback and 2-pullback of the diagram

91



4.3 Stacks and Costacks

Hom(A,E)
i∗1←Ð Hom(B,E)

i∗2Ð→ Hom(P,E) respectively. Using Lemma 4.2.6, we know

that α∗ is full and faithful. To see that it’s an equivalence of categories, we only

need to show that it’s essentially surjective.

Since as mentioned Hom(W,E) is the 2-pullback, taking an object there is the

same as taking objects in Hom(B,E) and Hom(C,E), and an equivalence between

these objects in Hom(A,E). That is to say we, have a 2-commutative diagram:

A
i1 //

i2
��

B

��
C // E.

<D

From this, we immediately see that the Deformation Lemma (4.2.18) shows essential

surjectivity of α∗. This in turn, using the Yoneda lemma for 2-categories [32, Lemma

2.3], shows that α ∶W → P is an equivalence of categories, completing the proof.

Q.E .D

4.3 Stacks and Costacks

In this section we will talk about the 2-categorical analogues of sheaves and its dual

notion cosheaves, which are called stacks and costacks respectively. We will define

these using the 2-limit and 2-colimit constructed in the previous section.

As we will show, a costack is a very important construction. Indeed, saying that

a 2-functor is a costack, is equivalent to saying that it satisfies a slightly reformulated

version of the Seifert-van Kampen theorem for every covering. Lastly, we will give a

simplified method for checking whether a 2-functor F is a costack, by showing that

it suffices to check whether F satisfies the costack condition for every covering with

only 2 objects.

Stacks and costacks will play a major role in this thesis, as it is our aim to prove

that costacks enable us to axiomatise the fundamental groupoid. We will use stacks

to prove this result in the algebraic case, as we will work with Galois categories,

which form a stack over the site of étale coverings.
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4.3.1 Stacks

As already mentioned, this subsection follows [36] closely, even on notation. Let X

be a site and F ∶ Xop → Cat a 2-functor, where Cat is the 2-category of categories.

This is called a fibred category over X. If F is a strict 2-functor, we would call

it a strict fibred category. It should be noted to avoid any confusion, that this is

often called a prestack (which we call something else). We will however stick to

this terminology. If we have two (strict) fibred categories over X, then a morphism

between them is called a (strict) fibred functor . The following important fact holds:

Lemma 4.3.1. Let F be a fibred category over X and A,B be objects in F(U). The

assignment V ↦ HomF(V )(i∗(A), i∗(B)), for any morphism i ∶ V → U , defines a

presheaf on X ∣U . It is denoted by HomF(A,B).

Definition 4.3.2 (Prestack). If the presheaf HomF(A,B) is in addition a sheaf, we

say that F is a prestack.

It is clear that every prestack is a fibred category. Hence, we have the inclusion

2-functor

A ∶ {Prestacks over X}→ {Fibred Categories over X}

given in the obvious way. This 2-functor has a left adjoint, called prestackification,

which is given by sheafifying the functors HomF(A,B) for all A and B. More pre-

cisely, to a contravariant 2-functor F ∶X → Cat, we assign F ∶X → Cat. The objects

of the category F(U) are the same as that of F, and for every pair of objects (A,B),
we define HomF(U)(A,B) to be the section of the sheafification of HomF(A,B), seen

as a contravariant functor.

Let X be a site and F ∶ Xop → Cat a 2-functor. Let U be an object in X and

U = {Ui → U} a covering of U . Then we can consider the following diagram:

⊓
i∈I

F(Ui) // // ⊓
i,j∈I

F(Uij) // //
// ⊓
i,j,k∈I

F(Uijk),

where Uij ∶= Ui×U Uj and Uijk ∶= Ui×U Uj ×U Uk. We denote its 2-limit by 2-lim(U,F)
and if the above 2-functor is additionally strict, its limit by lim(U,F). Note that the

last part ⊓
i,j,k∈I

F(Uijk) does not factor in the limit, if it is defined, only the 2-limit.

Also note that the 2-limit in this case is usually called the descent data and the
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following notation Des(U,F) is often used. But since we will work with 2-limits and

2-colimits throughout this thesis, we will keep using the above notation.

Definition 4.3.3 (Sheaf of categories). A strict fibred category F over a site X is

called a sheaf, if for all objects U of X and for all coverings U of U , the functor

F(U)→ lim(U, F ) is an isomorphism of categories.

Definition 4.3.4 (Stack). A fibred category F over X is called a stack, if for all

objects U of X and for all coverings U of U , the functor F(U) → 2-lim(U,F) is an

equivalence of categories.

Let X be a site. From Remark 7 on page 80 we immediately see that every stack

over X is also a prestack over X, i.e. we have an inclusion 2-functor:

B ∶ {Stacks over X}→ {Prestacks over X}.

Proposition 4.3.5. [Stackification] The 2-functor B has a left adjoint, called stack-

ification. If F is a prestack, its associated stack is defined by

F̂(U) ∶= 2- colimU(2- lim(U,F)).

For the proof of the above proposition, see [36, Theorem 2.1]. Just like for

sheaves, the associated stack of a 2-functor can also be defined by its uniqueness

property.

Definition 4.3.6 (Uniqueness Property). Let F be a fibred category over a site X.

Then F̂ is the associated stack of F if we are given a natural transformation F⇒ F̂

of 2-functors, such that for every stack G over X, the induced functor

HomSt(F̂,G) ≅Ð→ HomFb(F,G),

is an equivalence of categories. Here St denotes the 2-category of stacks and Fb the

2-category of fibred categories.
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Hence, by simply composing A and B and their adjoints, we can associate a stack

to every fibred category over X. But there exists another, direct, way of stackifying

a 2-functor, as shown in [41, Theorem 3.8]:

Proposition 4.3.7 (Direct Stackification). Let F ∶Xop → Cat be a 2-functor and de-

fine F′(U) ∶= 2-colimU(2-lim(U,F)). Clearly we can iterate this construction. Then,

F̂ ∶= F′′′(U) = 2- colimU(2- lim(U,F′′))

is the associated stack of F.

4.3.2 Costacks

4.3.2.1 Cosheaves

Before we define the dual notion of a stack, we will mention what it means for a

functor to be a cosheaf.

Definition 4.3.8. Let X be a site and G ∶ X → A be a functor with values in a

category A. We say that G is a cosheaf if for any covering U = {Ui → U} of any

object U ∈X, the diagram

∐i,jG(Ui ∩Uj)
b0 //

b1
//∐iG(Ui) a // G(U) // 1

is exact, where 1 is the terminal object of A. In other words, G(U) is the coequaliser

of b0, b1. That is to say, G is a cosheaf if and only if for any object S of A the presheaf

F defined by F (U) = HomA(G(U), S) is a sheaf of sets [8].

Definition 4.3.9. Let G ∶ X →A be a functor from a site X to a category A. We

say that Ĝ ∶X →A is the associated cosheaf of G, if:

� We are given a natural transformation ε ∶ Ĝ⇒ G;

� For any cosheaf G′ ∶X →A and any natural transformation ϕ ∶ G′⇒ G, there
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is a unique natural transformation ϕ̂ ∶ G′⇒ Ĝ, such that the diagram

G′ ϕ +3

ϕ̂ �#

G

Ĝ

ε

KS

commutes.

4.3.2.2 Costacks

Let X be a site and F ∶X → Cat a 2-functor, where Cat is the 2-category of categories.

Dually to Subsection 4.3.1, we call this a cofibred category over X. Take an object

in U ∈X with a covering U = {Ui → U}. Consider the following diagram:

⊓
i∈I

F(Ui) ⊓
i,j∈I

F(Uij)oo oo ⊓
i,j,k∈I

F(Uijk),oo oooo

where Uij ∶= Ui ×U Uj and Uijk ∶= Ui ×U Uj ×U Uk. We denote its 2-colimit by 2-

colim(U,F). If F is additionally strict, we can also talk about its colimit, which is

denoted by colim(U,F). Note that the last part ⊓
i,j,k∈I

F(Uijk) does not factor in the

colimit, only the 2-colimit.

Definition 4.3.10 (Cosheaf). A strict cofibred category F over X is called a cosheaf,

provided, for every object U of X and every covering U of U , the induced functor

F(U)← colim(U,F), is an isomorphism of categories.

Definition 4.3.11 (Costack). A cofibred category F over X is called a costack, if

for every object U of X and every covering U of U , the functor F(U)← 2-colim(U,F)
is an equivalence of categories.

Due to the fact that Hom(−,A) is left exact, we immediately obtain the following

lemma:

Lemma 4.3.12. Let F be a cofibred category over X. Then F is a costack, if and

only if for every category C, the assignment U ↦ HomC(F(U),C) is a stack.

96



4.3 Stacks and Costacks

It should be noted that since Hom(−,A) is not (in general) right exact, the

duality between stacks and costacks breaks down here. Namely, it would not be

sufficient to check that U ↦ HomCat(F(U),−) is a costack for F to be a stack.

Definition 4.3.13 (Uniqueness Property). Let F be a cofibred category over a site

X. Then F̂ is the associated costack of F if we are given a natural transformation

F⇒ F̂, such that for every costack G over X, the induced functor

HomCofb(G,F) ≅ HomCost(G, F̂),

is an equivalence of categories. Here Cofb denotes the 2-category of cofibred cate-

gories and Cost the 2-category of costacks.

Note that if our 2-functor F took values in groupoids, it would suffice to check

it only for costacks with values in groupoids. Unfortunately, unlike for stacks, it is

not known whether every cofibred category has an associated costack.

4.3.2.3 From 2-Pushouts to Costacks

We will restrict ourself to topological spaces in this subsection, rather then work

with general sites. Although this result should hold for sites as well, there are some

additional difficulties, and since we will only need it for spaces, we will lower the

generality.

Definition 4.3.14. Let n ≥ 2 be an integer. We will say that a strict 2-functor

F ∶ Off(X) → Cat has the property sh(n) (resp. st(n)), if for any open subset U of

X and any open cover U1,⋯, Un of U , the canonical functor

F(U) // lim[∏i F(Ui) ////∏i,j F(Uij)]

is an isomorphism of categories, (resp.

F(U) // 2- lim[∏i F(Ui) ////∏i,j F(Uij)
////// ∏
i,j,k

F(Uijk]
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is an equivalence of categories). That is to say, F satisfies the sheaf (resp. stack)

condition for all coverings having n-members.

In an analogous way we can define cosh(n) and cost(n).

Theorem 4.3.15. Let X be a topological space and F ∶Off(X) → Grpd a covariant

2-functor that commutates with filtered colimits.

� Assume F is a strict 2-functor. Then F is a cosheaf if and only if F has the

property cosh(2).

� F is a costack if and only if F has the property cost(2).

To prove this, we first need to prove the following lemma.:

Lemma 4.3.16. If F satisfies the condition sh(2) (resp. st(2)), then F satisfies the

condition sh(n) (resp. st(n)) for any n ≥ 2.

Proof. We consider only the case n = 3, since the only difference between this and

the general case is the notation. By definition, the objects of

2- lim[∏i F(Ui) ////∏i,j F(Uij)
// //// ∏
i,j,k

F(Uijk)]

are

((g1, g2, g3), α12, α13, α23)

where gi is an object of F(Ui), i = 1,2,3 and α12 ∶ g1∣U12 → g2∣U12 , α13 ∶ g1∣U13 → g3∣U13 ,

and α23 ∶ g2∣U23 → g3∣U23 are morphisms in F(U12), F(U13) and F(U23) respectively.

One also requires that these data satisfy the 1-cocycle condition. The morphisms

are (h1 ∶ g1 → g′1, h2 ∶ g2 → g′2, h3 ∶ g3 → g′3), such that restricted on the intersections,

the obvious diagrams commute.

We set V = U1 ∪ U2. Since F satisfies the condition st(2), we can assume that

the objects of F (U) = F (V ∪U3) are the same as those of the category

2- lim[F(V ) × F(U3) // // F(V ∩U3)].
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Hence, we can assume that they are of the form

((gv, g3), γ ∶ gv ∣V ∩U3 → g3∣V ∩U3),

where gv is an object of F(V ). Since V = U1 ∪U2 and F satisfies the condition st(2),
we may assume that the objects of F(V ) have the form

gv = ((g1, g2), δ ∶ g1∣U12 → g2∣U12).

Thus, the objects of F(U) = F(V ∪U3), can be written as

((g1, g2, g3), δ ∶ g1∣U12 → g2∣U12 , γ1 ∶ g1∣U13 → g3∣U13 , γ2 ∶ g2∣U23 → g3∣U23),

such that

g1∣U123
//

δ∣U123
��

g3∣U123

Id
��

g2∣U123
// g3∣U123

commutes. Since the last condition is exactly the 1-cocycle condition, we can see

that the categories F(U) and

2- lim[∏i F(Ui) ////∏i,j F(Ui ×U Uj)
////// ∏
i,j,k

F(Ui ×U Uj ×U Uk)]

have essentially the same objects.

The morphisms of F(U) = F(V ∪U3) are (ϕV ∶ gV → g′V , ϕU3 ∶ g3 → g′3), such that

the obvious diagram commutes. Those of F(V ) are (λU1 ∶ g1 → g′1, λU2 ∶ g2 → g′2),
such that again, the obvious diagram commutes. Hence, plugging one into the other,

we get: (ϕV ∶ gU1∪U2 → g′U1∪U2
, ϕU3 ∶ g3 → g′3). That is, the morphisms of F(U) are

(ϕU1 ∶ g1 → g′1, ϕU2 ∶ g2 → g′2, ϕU3 ∶ g3 → g′3),

such that on the pairwise intersections, the restrictions agree. This shows that F(U)
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4.3 Stacks and Costacks

is equivalent to

2- lim[∏i F(Ui) // //∏i,j F(Ui ×U Uj)
////// ∏
i,j,k

F(Ui ×U Uj ×U Uk)] .

Hence st(3) holds.

The fact that sh(2) implies sh(3) is a special case of the above proof, by simply

taking the αi-s to be identities. Q.E .D

Proof of Thm 4.3.15. The ‘only if’ part is obvious. Assume F satisfies the condition

cosh(2). This is equivalent to saying that the functor FG, defined by

FG(U) ∶= HomGrpd(F(U),G),

satisfying the property sh(2) for every groupoid G (see Lemma. 4.3.12). From

Lemma 4.3.16, we know that FG satisfies sh(n) for every n ∈ N and every groupoid

G. Hence, by using Lemma 4.3.12 again, we know that F has the property cosh(n).
Let U be an open set and {Ui}i∈I be a cover of U . Denote by f(I) the set of

finite subsets of I. Then f(I) is a filtered system. For a fixed λ ∈ f(I), we denote

Uλ = ⋃iUi, i ∈ λ. By assumption, F satisfies the cosheaf condition for any finite

covering. We have

F(U) = F(colim
λ

Uλ) = colim
λ

F(Uλ) = colim
λ

(colim[ ∐
i,j∈λ

F(Uij) // // ∐
i∈λ

F(Ui)]) =

colim[colim
λ

∐
i,j∈λ

F(Uij) // // colim
λ

∐
i∈λ

F(Ui)]s = colim[ ∐
i,j∈I

F(Uij) //// ∐
i∈I

F(Ui)]

as desired. Here the second equality is true by the assumption that F commutes

with filtered colimits. Recall that by Proposition 4.2.17, we have

F(U) = colim
λ

F(Uλ) ≅ 2- colim
λ

F(Uλ).
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4.3 Stacks and Costacks

Thus, we can repeat the above computation, replacing colim
λ

with 2- colim
λ

and

colim[ ∐
i,j∈I

F(Uij) //// ∐
i∈I

F(Ui)]

with

2- colim[ ∐
i,j,k∈λ

F(Uijk) ////// ∐
i,j∈I

F(Uij) //// ∐
i∈I

F(Ui)].

In this way we, prove the analogous statement for costacks. Q.E .D

Theorem 4.3.17. Let X be a topological space and F ∶ Off(X) → Grpd a cosheaf

satisfying the following properties:

� For every inclusion U ⊂ V , the induced functor F(U) → F(V ) is injective on

objects;

� F commutes with filtered colimits.

Then F is a costack.

Proof. Since F is a cosheaf, it clearly satisfies the condition cosh(2). Using Theorem

4.2.19, we know that F satisfies cost(2) as well. Hence the second statement of

Theorem 4.3.15 now implies the desired result. Q.E .D
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4.4 Examples of Stacks

4.4.1 Modules and Algebras

Let R be a commutative ring with unit and R → S a faithfully flat R-algebra.

By abuse of notations, we denote P ⊗R Q by P ⊗ Q. For any homomorphism of

R-modules

ψ ∶ P1 ⊗⋯⊗ Pn → Q1 ⊗⋯⊗Qm,

we denote by

ψi ∶ P1 ⊗⋯⊗ Pi−1 ⊗ S ⊗ Pi ⊗⋯⊗ Pn → Qi ⊗⋯⊗Qi−1 ⊗ S ⊗Qi ⊗⋯⊗Qm (4.1)

the homomorphism obtained by tensoring with IdS in the i-th position. Let M0 be

an R-module and M = M0 ⊗ S. The canonical automorphism g ∶ S ⊗M → M ⊗ S
given by g(s1⊗x⊗s2) = x⊗s1⊗s2 satisfies the the 1-cocycle condition, i.e. g2 = g3g1,

where the gi are defined as in 4.1. More explicitly, the diagram

S ⊗ S ⊗M g2 //

g1

((

M ⊗ S ⊗ S

S ⊗M ⊗ S

g3
66

commutes. Such an S⊗S automorphism g is called a descent datum for the S-module

M . The collection of all such pairs (M,g) with morphisms f ∶ (M,g)→ (N,h) being

the obvious commutative squares, is the descent datum of the covering R → S in the

faithfully flat topology. As we already remarked in our discussion with stacks, we

prefer to work in terms of 2-limits. Hence, we observe that we have the diagram

0 // R // S //// S ⊗R S ////// S ⊗R S ⊗R S

associated to R → S. Acting on this with the functor M, where M denotes the

assignment R ↦ {Modules over R}, gives us the diagram:

0 //M(R) //M(S) ////M(S)⊗RM(S) //////M(S)⊗RM(S)⊗RM(S)
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4.4 Examples of Stacks

whose 2-limit we denote by 2-lim(S/R,M). This is the descent data we mentioned

above and hence, we have defined the functor

LS ∶M(R)→ 2- lim(S/R,M)}

on objects. On morphisms, we send f ∶M0 →M ′
0 to f ⊗ 1 ∶M0 ⊗R S →M ′

0 ⊗R S.

Proposition 4.4.1. The functor LS constructed above is an equivalence of cate-

gories.

For the proof of this, see [28, chapter 3. (p.106) Prop. (1.1.1)]. But indeed

more is true. Denote by M(Y ) the category of quasi-coherent sheaves on Y . The

following holds:

Proposition 4.4.2. Let f ∶ Z → Y be a faithfully flat morphism of schemes and let

LZ ∶M(Y )→ 2- lim(Z/Y,M) be a functor, extending LS in the obvious way. Then,

LZ is an equivalence of categories.

For the proof see [21, p.154, Corollary 1.3]. Let X be a scheme and FFX the

site of faithfully flat schemes over X. We say that a 2-functor F ∶ FFX → Cat is

additive, if for every Y,Y ′ ∈ FFX , F(Y ∐Y ′) = F(Y ) × F(Y ′).

Lemma 4.4.3. Let X be a quasi-compact scheme and F ∶ FFX → Cat be additive.

Then F is a stack, if the functor LZ ∶ F(Y ) → 2-lim(Z/Y,F) is an equivalence

of categories for every covering Z → Y in FFX . Here LY denotes the canonical

inclusion map into the 2-limit.

Proof. Let Y →X be an object in FFX and {Zi → Y } a covering of Y . Since every

Zi → Y is flat, the coproduct ∐Zi → Y is flat, and since the collection is a covering,

it is furthermore faithful. Hence, Z ∶=∐Zi ∈ FFX and so we can use the condition

of the proposition to say that

0 // F(Y ) // F(Z) //// F(Z ×Y Z) ////// F(Z ×Y Z ×Y Z)
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is 2-exact. By the assumption that F is additive, we know that

F(Z ×Y Z) ≅∏F(Zij) and F(Z ×Y Z ×Y Z) ≅∏F(Zijk),

where the Zij-s and the Zijk-s are the ‘intersections’ of the Zi-s, i.e. Zi ×Y Zj. We

have the following 2-exact sequence:

0 // F(Y ) //∏F(Zi) ////∏F(Zij) //////∏F(Zijk).

This proves the assertion. Q.E .D

Proposition 4.4.4. Let X be a quasi-coherent scheme. The assignment Y ↦MY

forms a stack in the faithfully flat topology over X.

Proof. By Proposition 4.4.2 and Lemma 4.4.3 we immediately see that the only thing

to prove is that M is an additive functor. In other words, that it takes coproducts

to products. By the fact, that a module over a scheme is a sheaf of modules on its

underlying space, it is clear that we only need to check it for the basis of open sets,

which are affine. So we only need to check that for a ring R,

MR(S1 × S2) ≅MR(S1) ×MR(S2).

To see this take an S1 × S2 module M , and consider M1 ∶= e1M and M2 ∶= e2M as

modules over S1 and S2 respectively. Here, e1 and e2 are the obvious idempotents

of S1 × S2. In essence we only need to check that M ≅ e1M × e2M .

Define the map M → e1M × e2M by m ↦ (e1m,e2m) and the inverse maps by

(m1,m2) ↦ m1 +m2. Clearly, m ↦ (e1m,e2m) ↦ e1m + e2m is the identity, since

e1m + e2m − (1,1)m = 0. The other side follows from the fact that e1M2 = 0 = e2M1,

where M is a module on S1 and M ′ on S2. On homomorphisms, we define it by

sending f ∈ Hom(M,N) to (e1f, e2f) and (f1, f2) ∈ Hom(M1×M2,N1×N2) to f1×f2.

Q.E .D
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It is clear that this result also extends to the case of finite modules by essentially

just repeating the proof.

Proposition 4.4.5. Let X be a quasi-coherent scheme. The assignment Y ↦ AY
forms a stack in the fpqc topology over X, where AY denotes the category of affine

schemes over Y .

The proof of this is given in [43, Theorem 4.33]. We also mention that the above

is true for quasi-affine schemes as well.
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Chapter 5

The Topological Fundamental

Groupoid

In this chapter, we will prove one of the main theorem of this thesis. We will

show that the topological fundamental groupoid can be defined by the Seifert-van

Kampen theorem. More precisely, we will show that for a topological space X, the

assignment U ↦ Π1(U) defines the 2-terminal costack over X.

The methods we use to prove this result however have also independent uses.

In Section 5.2, we will give several examples of such applications, including giving

a simple way to calculate the fundamental group of real, smooth, toric varieties

explicitly, in terms of generators and relations.

5.1 The Seifert-van Kampen Theorem

Our aim in this section is to establish a 2-dimensional analogue of the following

easy, but important fact. Recall that for an open subset U ⊂X, the set of connected

components is denoted by π0(U).

Lemma 5.1.1. Let X be a locally connected topological space. The assignment

U ↦ π0(U) is a cosheaf, which is a terminal object in the category of cosheaves on

X. Alternatively, it is the cosheafification of the functor pt given by pt(U) = ⋆ where

⋆ denotes the singleton.
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5.1 The Seifert-van Kampen Theorem

Proof. The proof is done by the universal property of the associated cosheaf. For

this, we first need to construct a map α from G to p̂t for, every cosheaf G defined on

X. Then, we need to check that it is unique. To define G(U)→ p̂t(U), consider the

cover {Ui} of U by its connected components. Since the intersection of connected

components is either itself or empty, and π0 of a connected space is the singleton, it

is clear that we have unique maps

∐i,jG(Ui ∩Uj)
b0 //

b1
//

��

∐iG(Ui) a //

��

G(U) //

∃!
��

1

∐i,j π0(Ui ∩Uj)
b0 //

b1
//∐i π0(Ui) a // π0(U) // 1.

It follows from the exactness of the above sequences that there is a unique map

G(U)→ π0(U). Q.E .D

Now we turn to costacks with values in groupoids. Recall that a groupoid G is

simply connected, provided for any two objects a and b of G, there is exactly one

morphism a→ b.

Recall that an object t of a 2-category A is 2-terminal, provided that for any

object x of A the category HomA(x, t) is a simply connected groupoid, which is to

say that HomA(x, t) is equivalent to the groupoid 1, with one object and one arrow.

For a topological space X, we let Π1(X) be the fundamental groupoid of X, see

[6]. Recall that the objects of Π1(X) are the points of X, while morphisms are the

homotopy classes of paths. It follows immediately that for every element x ∈ Π1(X)
we have Aut(x) = π1(X,x). Furthermore, if we denote by π0(Π1(X)) the set of

connected components of the fundamental groupoid, then π0(Π1(X)) = π0(X). We

have the following result:

Theorem 5.1.2 (Seifert-Van Kampen). Let X be a topological space. The strict

2-functor given by Π1 ∶ U ↦ Π1(U) defines simultaneously a cosheaf and a costack

with values in the 2-category of small groupoids.

Proof. In [6, p. 226, Statement 6.7.2] R.Brown demonstrated that for V = U1 ∪ U2
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5.1 The Seifert-van Kampen Theorem

and W = U1 ∩U2, the pushout of the diagram

Π1(U1)

Πi(W )

OO

// Π1(U2)

is Π1(U). This essentially says that the strict 2-functor Π1 satisfies cosh(2). Since

Π1 commutes with filtered colimits, we can use Theorem 4.3.15 to deduce that Π1

is a cosheaf.

Since for any inclusion W ↪ Ui, the the functor Π1(W )→ Π1(Ui) is injective on

objects, Theorem 4.3.17 gives us the desired result. Q.E .D

It should be noted that [33, Theorem II.7] essentially showed the cosheaf condi-

tion, but only for coverings with connected open sets.

This already demonstrates the importance of costacks, but indeed more is true.

Definition 5.1.3. Let X be a topological space and U ⊂ X an open subset. We

call a covering U = {Ui}i∈I of U discrete (of order 3), if every Π1(Ui),Π1(Uij) and

Π1(Uijk) are discrete groupoids. Recall that we called a groupoid discrete, if for any

two objects x, y we had at most one morphism between them.

Call a topological space X good , if any open subset U of X possesses a discrete

covering. We can now state the main theorem of this section.

Theorem 5.1.4. Let X be a good topological space. Consider the constant, strict

2-functor P ∶ U ↦ 1, where 1 is the trivial groupoid. Then P has an associated

costack, which is the fundamental groupoid, i.e. P̂ (U) = Π1(U). Thus the costack

given by U ↦ Π1(U) is a 2-terminal object in the 2-category of all costacks on X.

Proof. By Theorem 5.1.2, the 2-functor Π1 ∶ U ↦ Π1(U) is a costack. To prove that

it is the costackification of P , we will use the universal property. It is clear that

for any 2-functor Q ∶ Off(X) → Grpd we have a canonical 2-morphism q ∶ Q → P

of 2-functors. So we only have to prove that given a costack Q ∶ Off(X) → Grpd,
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there exists an essentially unique 2-morphism α ∶ Q→ Π1 such that q = p ○ α, where

p ∶ Π1 → P is the canonical 2-functor.

To define α(U), cover U by a discrete covering (of order 3). We can do this by

the assumption on X. Since Q is a costack

∐
i,j,k

Q(Ui ∩Uj ∩Uk) // ////∐
i,j
Q(Ui ∩Uj) ////∐

i
Q(Ui) // Q(U) // 1

is 2-exact. Likewise for Π1. Note that on the empty set Q is empty, just like Π1.

For the Ui-s and their non-empty intersections Ui ∩ Uj and Ui ∩ Uj ∩ Uk, Π1 is a

trivial groupoid, since they are simply connected. It follows that there is essentially

a unique functor from Q(Ui),Q(Ui ∩Uj) and Q(Ui ∩Uj ∩Uk) to Π1(Ui),Π1(Ui ∩Uj)
and Π1(Ii ∩Uj ∩Uk), respectively.

Hence, by 2-exactness, we get a map, which is unique up to a unique natural

transformation α(U) ∶ Q(U) → Π1(U) satisfying the compatibility condition. It is

also clear that q = p ○ α since q is unique.

Q.E .D

5.2 Examples

In this section, we will use the obtained results to calculate the fundamental group

of some real geometric objects. (By real we mean a subset of Rn). Throughout this

part, we will use the following notations for discrete groupoids:

� Denote the groupoid with one object and one morphism by ●;

� Denote the groupoid with 2 objects and no non-identity morphisms by ● ● ;

� Denote the groupoid with 2 objects x, y and one non-identity isomorphism

α ∶ x→ y from x to y by ●
α
(( ● ; and so on.

Let X be a topological space and U = {Ui}i∈I a covering of X. Assume that I is

a finite set and for all i, Π1(Ui) is a finitely connected, discrete groupoid. The

advantage of 2-colimits is that the groupoids involved can be changed by equivalent
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ones. Hence, using Theorem 5.1.2, we can assume that all functors in the diagram

associated to a covering

∐
i,j,k

Π1(Uijk) //////∐
i,j

Π1(Uij, ) // //∐
i

Πi(Ui)

are injective on objects. Using Theorems 4.2.19 and 4.3.15, we know that the 2-

colimit of the above diagram is equivalent to its colimit. That is, the colimit of the

following sub diagram:

∐
i,j

Π1(Uij) ////∐
i

Πi(Ui).

Example 10 (The Sphere): Let us cover S1 by U1 and U2, where both are open subsets

of S1, with a single point removed (of course different). Let V be the intersection of

U1 and U2. Then we have Π1(U1) = Π1(U2) = ● and Π1(V ) = ● ● . Hence the

diagram of groupoids, associated to the covering, is

● ●

●

ff 55

●

ii 88

.

This is equivalent to

●
α
(( ● ●

β
(( ●

●

gg 77

●

gg 77

.

From the construction of the colimit given in Subsection 4.2.3.1, we know that

the colimit of the above diagram is the free category of the graph ●
α
((

β

66 ●

β−1

VV

α−1

��
, modulo

the composition quotient. Since we are only interested in the colimit up to an

equivalence of categories, we can use any of the arrows to equate the two objects.

We choose α and see that the fundamental groupoid of S1 is connected, and the
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automorphism group is isomprhic to

⟨α,α−1, β, β−1⟩ /[α = 1, α ○ α−1 = 1, β ○ β−1 = 1].

This is clearly Z.

Compare this computation with the computation in [6, pp. 233-234] which uses

the more complicated groupoid Π1XA, where A is an additional set.

Since the construction of the colimit was described for categories, we also had to

write the inverses for every morphism and then quotient out the fact that α○α−1 = 1.

But from now on, since we are restricting ourselves to groupoids, we will omit them

from our notation. Hence for example, the above graph would become ●
α
((

β

66 ● .

5.2.1 The Fundamental Group of Real Smooth Toric Vari-

eties

The above method makes it essentially straight forward to calculate the fundamental

groupoid of an object X, if we are given a discrete covering. Note that while most

real geometric objects admit a discrete covering, writing it down explicitly can be

tricky. However, there are situations when we can do it, as we will discuss in this

subsection.

For a monoid scheme X, we denote by R[X], the realisation of X over the real

numbers. Here we look at R[X] as a real geometric object, rather then a scheme.

For simplicity, we will restrict ourselves to the case when X is noetherian, smooth

and connected.

Recall that a monoid scheme is smooth if it is coverable by affine monoid schemes

of the form KSpec(Nri × Zsi). The assumption that X is connected implies that

ri + si =m, where m is a constant integer. The localisation homomorphism

Nri ×Zsi → Nri−1 ×Zsi+1

corresponds to removing the hyperplane xj = 0 (where xj was inverted) in its reali-

sation.

An affine covering {Ai} of X induces a covering of its realisation, which we call

an affine covering in this subsection. Clearly Π1(R[Nri × Zsi]) is equivalent to a
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discrete groupoid with 2si elements and the localisation homomorphisms

Π1(R[Nri ×Zsi])→ Π1(R[Nri−1 ×Zsi+1])

are surjective on objects.

By adding isomorphic objects, we can replace a functor between groupoids by

an equivalent one, which is injective on objects. It follows that the groupoids

Π1(RAi),Π1(RAij) and Π1(RAijk) can be assumed to have 2m = 2ri+si objects, and

every functor in our affine covering to be bijective on objects. The colimit and

2-colimit of this diagram will now be equivalent.

These objects of the discrete groupoid Π1(R[Zm]), correspond to subsets of Rm

of the form

{x1 > 0, x2 > 0,⋯xm > 0},{x1 > 0, x2 > 0,⋯xm < 0},⋯,{x1 < 0, x2 < 0,⋯xm < 0}.

Two such objects, p and q, are connected in Π1(R[Nri × Zsi]), if there exists a

generator xj, such that xj has the same sign in both p and q, and is not invertible

in Nri ×Zsi .
The gluing automorphism will induce an automorphism of these objects, allowing

us to draw a diagram of discrete groupoids. In this way, we can calculate the

fundamental groupoid of a smooth toric variety over the reals numbers.

We will now give a few demonstrations of this approach. The examples are taken

from [16, pp.6].

Example 11 (The real projective plane): Lemmas 3.1.5 and 3.1.7 enable us to describe

a monoid scheme using a functor from a locally lattice poset. The diagram below,

with the obvious maps, represents P2:

⟨a, b⟩

�� ''

⟨a, a−1b⟩

ww ((

⟨ab−1, b−1⟩

��vv
⟨a, a−1, b⟩

''

⟨a, b, b−1⟩

��

⟨a, a−1b, b−1⟩

vv
⟨a, a−1, b, b−1⟩ .

Its realisation is the real projective plane. We observe that this is covered by three

copies of N2, A1 = ⟨a, b⟩ ,A2 = ⟨a, a−1b⟩ and A3 = ⟨ab−1, b−1⟩. On its own, every one
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of the affine components will look as follows:

●
α1 '' ●

β1
'' ●

γ1
'' ●

●
a1 '' ●

66

●
c1 '' ● ●

a1b1
**●
b1c1

44

hh

● ●

● ●

66hh

● ●

Here the dotted arrows indicate the morphisms between the groupoids. These func-

tors are bijective between objects (by the argument given above) and map a1 to α1,

a1b1 to α1 ○ β1 etc. The gluing isomorphisms induce the following bijections:

● ● ● ● ● ● ● ●
A1 → A2 ⇒ and A1 → A3 ⇒

● ● ● ● ● ● ● ●

They imply that the diagram ∐
i,j

Π1(RAij) // //∐
i

Πi(RAi) looks as follows:

●
α1 '' ●

β1
'' ●

γ1
'' ● ●

α2 '' ●
β2

**● ●
γ2
gg ●

α3

33● ●
β3
ww ●

γ3
ww

●
a1
77 ●

OO 44

●
c1
77 ● ●

a2b2

44●
b2c2

44

jj 44

● ● ●

a3b3c3

;;●
b3

77

OOjj

● ●

Here the triple intersection is omitted, as it does not factor in the colimit. Hence,

the fundamental groupoid of P2(R) is the free groupoid associated to the graph

●
α2

��α1 //

α3

55●
β2

&&β1 // ● γ2 //
β3``

●
γ3

``

γ2

��

module the relations induced by the arrows in the second line of the above diagram:

a1 ⇒ α1 = α2; a2b2 ⇒ α1β1 = α3γ−1
3 ; a3b3c3 ⇒ α2β2 = α3;

c1 ⇒ γ1 = γ−1
2 ; b2c2 ⇒ β1γ1 = β−1

3 γ−1
3 ; b3 ⇒ β2γ−1

2 = β−1
3 .
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Finally, since we are only interested in the groupoid up to equivalence, we can use

any of the connecting arrows between two objects to equate them. We choose α1, β1

and γ1 and set them to 1, to get the connected groupoid, (i.e. group)

⟨α2, α3, β2, β3, γ2, γ3⟩ /[α2 = 1, γ−1
2 = 1, α3γ−1

3 = 1, β−1
3 γ−1

3 = 1, α2β2 = α3, β2γ−1
2 = β−1

3 ].

This can be easily seen to be the cyclic group with 2 elements.

This method, which is quite a bit simpler than it looks, works for every finite,

discrete covering in exactly the same way.

Example 12: Another example, (also from [16]) is the following: Consider the scheme

covered by four affine components,

A1 = ⟨x, y⟩ ,A2 = ⟨x, y−1⟩ ,A3 = ⟨x−1, xny−1⟩ ,A4 = ⟨x−1, xny⟩

all being isomorphic to N2. The patching data is given by

⟨x, y⟩ //

��

⟨x−1, xny⟩

��
⟨x, y−1⟩ // ⟨x−1, x−ny−1⟩

with the obvious morphisms. Assume n ≥ 1 and n is odd. The induced diagram of

groupoids looks as follow:

●
α1 && ●

β1 && ●
γ1 && ● ●

α2 && ●
β2 && ●

γ2 && ● ●
α3 && ●

β3
))● ●γ3ff ●

α4 && ●
β4

))● ●γ4gg

●
a1
88 ●

OO 44

●
c1
88 ● ●

a2b2

55●
b2c2

55

jj 22

● ● ●
a3b3

55●
b3c3

55

OOjj

● ● ●
a4
88 ●

OOjj

● ●.
c4
gg

Hence the fundamental groupoid is the free groupoid associated to the graph:

●

α3

��

α4

FFα2
;;

α1 "" ●
β2 ;;
β1 ""

β3

  

β4

>>●
γ2 ;;
γ1 "" ●

γ4

XX

γ3

��
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5.2 Examples

modulo the congruence generated by the second row of the above diagram, i.e.

a1 ⇒ α1 = α2; a2b2 ⇒ α1β1 = α4β4γ−1
4 ; a3b3 ⇒ α2β2 = α3β3γ−1

3 ; a4 ⇒ α3 = γ4

c1 ⇒ γ1 = γ2; b2c2 ⇒ β1γ1 = β4; b3c3 ⇒ β2γ2 = β3; c4 ⇒ γ3 = γ4.

As in the previous example, we impose α1 = 1, β1 = 1 and γ1 = 1 to equate our objects

and get the abelian group Z2.

In the case when n is even (including 0), we get the abelian group Z2 as well,

thought the diagram will look a bit different.
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Chapter 6

Galois Categories

Our aim for the rest of this thesis is to give an axiomatisation of the étale fundamen-

tal groupoid of a finitely connected, noetherian scheme X, in exactly the same way

as we did for the topological one. While most parts of the proof given in Chapter

5 would easily translate to this setting, the restriction we had on topological spaces

would be too rigid for the algebraic case. More precisely, there are very few schemes

that admit a discrete covering, as required in the previous proof.

As such, we will have to try and costackify the association U ↦ pt, where pt is

the trivial groupoid. Unfortunately we don’t know anything about costackification,

so instead, we will compose our 2-functor with HomCat(−,FSets) and work with

stackification. The exact nature of this approach will be discussed in the proof of

Theorem 8.0.9, but one of the main technical difficulties lies in showing the following:

Assume we have a contravariant 2-functor given by U ↦ (GU ,FSets), with the

functors Hom(GU ,FSets)→ Hom(GV ,FSets) being induced by the functors between

the groupoids GV → GU . We want to show that its associated stack is again of this

type. There is however a difficulty. While we know that

Hom(2- limGi,A) ≅ 2- colim Hom(Gi,A),

we have no such formula for Hom(2-colimGi,A), even when the 2-colimit is filtered.

This is why we will use the so called Galois categories. We will show that the

classical result by Grothendieck generalises to finitely connected, profinite groupoids.

In other words, that G-FSets, being HomCat(G,FSets) (see page 124)), is equivalent

to a slightly reformulated Galois category, as given in Definition 6.1.1. As we will
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6.1 Finitely Connected Galois Categories

show in Chapter 7, individually, every one of the axioms is preserved by both the

2-limit as well as the filtered 2-colimit. This will show that the stackification of the

2-functor U ↦ Hom(GU ,FSets) is again of the form U ↦ (ĜU ,FSets), even though

we do not know what ĜU is in terms of the original groupoids GU -s.

Unfortunately, reducing the equivalence between finitely connected Galois cat-

egories and G-FSets, where G is a finitely connected, profinite groupoid, to the

connected case is not as easy as one might expect. The main part of this chapter

will be devoted to doing just that.

In the first section, we will show that the analogue of Grothendieck’s classical re-

sult holds, and that a finitely connected Galois category is equivalent to the category

of G-FSets, where G is a finitely connected, profinite groupoid and FSets denotes

the category of finite sets.

In the next section, we will talk about the whole 2-category of such Galois cate-

gories, which includes the morphisms and 2-morphisms. We will sharpen the result

above, by proving that there is a 2-equivalence between the 2-category of finitely

connected categories and the 2-category of finitely connected, profinite groupoids.

While there are many generalisations of Galois categories, some of which are no

doubt more general than ours, this reformulation of the classical theorem seems to

be new.

Indeed, it will follow that an even more general formulation is true, namely

Corollary 6.2.8.

6.1 Finitely Connected Galois Categories

In order to give the main definition, recall that a morphism u ∶ A→ B of a category

C is an epimorphism (resp. monomorphism), if for any object X, the induce map

HomC(B,X) → HomC(A,X) (resp. HomC(X,A) → HomC(X,B)) is injective.

Moreover, an epimorphism u is called a strict epimorphism if the pull-back

A ×B A
p1 //

p2
��

A

u
��

A
u // B
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6.1 Finitely Connected Galois Categories

exists and B is the coequaliser of the diagram

A ×B A
p1 //
p2
// A

u // B.

It should be noted that the following definition of a Galois category differs from

the standard definition of a Galois category (see for example [9]).

Definition 6.1.1. A (finitely-connected) Galois category is a category C together with

a set of covariant functors {Fj ∶ C → FSets}j∈J , satisfying the following axioms:

1. Finite limits exist in C.

2. Finite colimits exist in C.

3. Any morphism u ∶ Y → X in C factors as Y
u′Ð→ X ′ u′′Ð→ X, where u′ is a

strict epimorphism and u′′ is a monomorphism and there is an isomorphism

v ∶ X ′∐X ′′ → X such that u′′ = vi1, where i1 ∶ X ′ → X ′∐X ′′ is the standard

inclusion.

4. Every Fj is right exact, i.e. Fj respects finite colimits.

5. Every Fj is left exact, i.e. Fj respects finite limits.

6. Let {u ∶ Y → X} be a morphism in C. Then there exists a finite subset I ⊂ J
such that u is an isomorphism if and only if Fi(u) is an isomorphism for all

i ∈ I.

If I can be chosen to be a one element set, then C is called connected . This

is equivalent to the standard definition of a Galois category. However, from now

on, Galois category will refer to Definition 6.1.1. For more on connected Galois

categories, see [9]. Several facts (Lemma 2.6 i), ii); Proposition 3.1; Proposition 3.2

(1), (3) i), iii)) proven in [9] have immediate generalisation in our situation. To state

these statements, recall that an object X is called connected , if X /= 0 and for any

decomposition X = Y ∐Z one has X = 0 or Y = 0. Here 0 denotes the initial object.

Proposition 6.1.2. Let C be a finitely connected Galois category. Then the following

properties hold:
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6.1 Finitely Connected Galois Categories

i) A morphism u is a monomorphism (resp. strong epimorphism), if and only if

for all i ∈ I, the map Fi(u) is injective (resp. surjective). A morphism is an

isomorphism, if and only if it is a monomorphism and a strong epimorphism.

ii) An object X is initial (resp. terminal), provided for all i ∈ I, the set Fi(X) = ∅
(resp. F(X) = ∗). Here ∗ denotes the singleton.

iii) Any object X has a unique decomposition X = U1∐⋯∐Uk, where the Ui-s are

connected.

iv) If U and V are connected, any morphism U → V is a strong epimorphism. In

particular, any endomorphism U → U is an automorphism.

v) If U is connected, then for any objects A1⋯Am the natural map

m

∐
i=1

Hom(U,Ai)→ Hom(U,
m

∐
i=1

Ai)

is a bijection.

The proof is the same as for the connected case. (see [9]).

Lemma 6.1.3. Let C be a finitely-connected Galois category and t = e1∐⋯∐ ed be

a decomposition of the terminal object as a coproduct of connected objects. Then for

each 1 ≤ i ≤ d one has (after re-indexing) Fi(ei) = ∗ and Fi(ej) = ∅, j /= i, 1 ≤ i, j ≤ d.

Proof. Let 1 ≤ i ≤ d. Since 0 → ei is not an isomorphism, there exist at least one F
such that F(ei) /= ∅. After reindexing we can assume that F = Fi. Since Fi(t) = ∗
and Fi respects coproducts we see that

Fi(e1)∐⋯∐Fi(ed) = ∗

So, all terms except Fi(ei) are empty sets and the result follows. Q.E .D

Now we are in a position to prove the following result.
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6.1 Finitely Connected Galois Categories

Lemma 6.1.4 (Main Lemma). Let C be a finitely-connected Galois category and

t = e1∐⋯∐ ed

the decomposition of the terminal object t as a coproduct of connected objects. Then

there is an equivalence of categories

C ≅ C1 ×⋯ × Cd

where Ci , 1 ≤ i ≤ d is the following full subcategory of C

Ci = {X ∈ C∣ Fj(X) = ∅, j /= i,1 ≤ j ≤ d}.

Furthermore the pair (Ci,Fi) is a connected Galois category and for any element

k ∈ J the functor Fk is isomorphic to exactly one of the functors F1,⋯,Fd.

Proof. We proceed by induction on d. Assume d = 1. Thus t is connected. In this

case C1 = C. Take any of Fi and call it F . First we show that F reflects isomorphisms,

meaning that if v is a morphism, such that F(v) is an isomorphism, then v is an

isomorphism. If U is connected, then U → t is a strict epimorphism thanks to

Proposition 6.1.2 iv). It follows that F(U) → F(t) = ∗ is a strict epimorphism.

Thus F(U) /= ∅. Since any object is a coproduct of connected ones and F respect

coproducts, it follows that if A is not an initial object, then F(A) /= ∅. Assume

u ∶ A → B is a monomorphism, such that F(u) is an isomorphism, then B ≅ A∐C.
Hence F(C) = ∅ so, C = 0 and u is an isomorphism.

Now let v ∶ A → B be a general morphism, such that F(v) is an isomorphism.
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6.1 Finitely Connected Galois Categories

Consider the following commutative diagram

A
Id

))
δ ##

Id

��

A ×B A //

��

A

v
��

A
v // B

.

Here δ is the diagonal map and hence a monomorphism. Apply F to this diagram

and use the fact that F preserves pullbacks and F(v) is an isomorphism. We obtain

that F(δ) is an isomorphism. Thus δ is an isomorphism. It follows that v is a

monomorphism (thanks to [9, Lemma 2.4]) and hence an isomorphism. Thus, F
reflects isomorphisms and (C,F) is a connected Galois category. By [9, Theorem

2.8] any other Fi is isomorphic to F . This proves the lemma for d = 1.

Assume now that d > 1. Thanks to Lemma 6.1.3 we have Fi(ej) = ∅ for all j /= i
and Fi(ei) = ∗, 1 ≤ i, j ≤ d. One easily sees that for each 1 ≤ i ≤ d the subcategory Ci
is closed under finite limits and colimits.

Assume X =∐k
j=1Uj is a decomposition as a coproduct of connected objects.

Claim 1: We have X ∈ Ci if and only if U1,⋯, Uk ∈ Ci. In fact if U1,⋯, Uk ∈ Ci,
then for any j /= i, 1 ≤ j ≤ d one has Fj(U1) = ⋯ = Fj(Uk) = ∅. Thus,

Fj(X) = Fj(U1)∐⋯∐Fj(Uk) = ∅.

Hence X ∈ Ci. Conversely, if X ∈ Ci, then

∅ = Fj(X) = Fj(U1)∐⋯∐Fj(Uk).

Thus Fj(U1) = ⋯ = Fj(Uk) = ∅ and U1,⋯Uk ∈ Ci.
Claim 2: The object ei is a terminal object in the category Ci. So, we have to

prove that the set Hom(X,ei) is a singleton provided X ∈ Ci. By the first claim it is
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6.1 Finitely Connected Galois Categories

enough to assume that X is connected. According to Proposition 6.1.2 v)

∗ = Hom(X, t) = Hom(X,e1)∐⋯∐Hom(X,ed)

So the set Hom(X,ei) has at most one element. To show that it has exactly one

element, we need to show that Hom(X,ej) = ∅ for j /= i. Assume there is a morphism

X → ej. Since both objects are connected, this map must be a strict epimorphism.

This implies that ∅ = Fj(X) → Fj(ej) = ∗ is surjective and hence a contradiction.

Thus, our second claim is proven. It follows from the case d = 1, that the pair (Ci,Fi)
is a connected Galois category.

Claim 3: Our third claim is that if i /= j, then for any objects 0 /= X ∈ Ci and

Y ∈ Cj one has Hom(X,Y ) = ∅. In fact, since ej is terminal in Cj there exist a unique

morphism Y → ej. Thus it suffice to show that Hom(X,ej) = ∅, but this was shown

in the proof of claim 2.

Define the functor

ξ ∶ C1 ×⋯ × Cd → C

by

ξ(X1,⋯,Xd) =X1∐⋯∐Xd.

We will show that the functor ξ is an equivalence of categories. Take an object X ∈ C
and consider the pull-back

Xi

��

// X

��
ei // t.

Claim 4: We want to show that Xi ∈ Ci. Take any j /= i and consider the image of
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6.1 Finitely Connected Galois Categories

the above diagram under Fj. We obtain a diagram of sets:

Fj(Xi)

��

// Fj(X)

��
∅ // Fj(t).

Since the functor Fj respects pullbacks, it follows that Fj(Xi) = ∅, and thus Xi ∈ Ci.
Moreover, the natural morphism X1∐⋯∐Xd → X is an isomorphism, because

every Fi takes it to an isomorphism. It follows that the functor ξ is essentially

surjective. It remains to show that the functor ξ is full and faithful. Take objects

Xi, Yi ∈ Ci, i = 1,⋯, d. We have:

Hom(
d

∐
i=1

Xi,
d

∐
i=1

Yi) =
d

∏
i=1

Hom(Xi, Y1∐⋯∐Yd).

It remains to show that for any object Z ∈ Ci, one has

Hom(Z,Y1∐⋯∐Yd) = Hom(Z,Yi)

If Z is connected, this follows from Proposition 6.1.2 v) and claim 3. For the general

case, we decompose Z = Z1∐⋯∐Zk.

We have

Hom(Z,Y1∐⋯∐Yd) = Hom(
k

∐
j=1

Zj, Y1∐⋯∐Yd)

=
k

∏
j=1

Hom(Zj, Y1∐⋯∐Yd)

=∏
j

Hom(Zj, Yi)

= Hom(∐Zj, Yi)

= Hom(Z,Yi)

Hence ξ is an equivalence of categories. Q.E .D
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6.2 The 2-category of Galois Categories

Recall that we showed in Proposition 4.1.11, that for a connected groupoid G,

we have an equivalence of categories

HomCat(G,FSets) ≅ Aut(x)- FSets .

Hence, we can now generalise group actions to groupoid actions, and for a groupoid

G, we write G-FSets or HomCat(G,FSets). It should be emphasised that we use two

different notations for the exact same category. The second notation will mainly be

used in calculations. If however, G is a profinite groupoid, then we only consider the

continuous actions. For simplicity though, we will still refer to it as HomCat(G,FSet)
or G-FSets.

Corollary 6.1.5. Let {Fi ∶ C → FSets}i∈I be a finitely connected Galois Category.

Then it is equivalent to G-FSets, where G is a finitely connected profinite groupoid.

Proof. As proven in the Lemma 6.1.4,

{Fi ∶ C → FSets}i∈I ≅ {Fj ∶∏
j′∈J
Cj′ → FSets}j∈J ,

such that J is a finite set and Fj(Ck) = ∅ for k ≠ j. This shows that our Galois

category is equivalent to ∏j∈J(Fj ∶ Cj → FSets). Again by the above lemma, we

know that for each j ∈ J , the functor Fj ∶ Cj → FSets is a connected Galois category.

Using lemma 4.1.11 we know that its equivalent to G-FSets where G is a connected,

profinite groupoid. The result now follows from the fact that

∏
j∈J

HomCat(Gj,FSets) ≅ HomCat(∐
j∈J

Gj,FSets).

Q.E .D

6.2 The 2-category of Galois Categories

Definition 6.2.1. Let {Fi ∶ C → FSets}i∈I and {Gj ∶ D → FSets}j∈J be two Galois

categories. A morphism of Galois categories consists of a map f ∶ J → I, a functor
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6.2 The 2-category of Galois Categories

ϕ ∶ C → D preserving finite limits and finite colimits, and a collection of natural

isomorphisms λj, j ∈ J , as given in the following commutative diagram:

D

Gj ##
ks
λj

Cϕoo

Ff(j)||
FSets.

We will refer to it as {(ϕ,λj) ∶ Ff(j) → Gj}j∈J .

To define composition, we need to define the composition of the λj’s. Say we have

E

Hk

''

y� λk,φ

D

Gf(k)

��

φ
oo

]e
λj,ϕ

Cϕ
oo

Fg(j)

ww
FSets

Define λk,φ ○ λk,ϕ(x) = λk,φ(ϕ(x)) ○ λk,ϕ(x). In more detail we have

λk,φ ○ λk,ϕ(x) ∶ F(x)
λk,ϕ(x)ÐÐÐÐ→ G(ϕ(x))

λk,φ(ϕ(x))ÐÐÐÐÐ→ E(φ ○ ϕ(x)).

It is easily verified that the above construction is strictly associative.

Definition 6.2.2. A 2-morphism between {(ϕ,λj,ϕ) ∶ Ff(j) → Gj} and

{(φ,λj,φ) ∶ Ff(j) → Gj} is a collection of natural transformations

C
φ
//

ϕ //
ζj�� D,

such that additionally the following diagram

F(x) λj,ϕ(x)//

λj,φ(x) %%

G(ϕ(x))
ζ(x)
��

G(φ(x))

commutes for all j and all x.
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6.2 The 2-category of Galois Categories

This shows that we can talk about the (strict) 2-category of Galois categories.

We will denote it by GCat.

Lemma 6.2.3. Let {Fi ∶ C1×⋯×Cn → FSets}i∈I be a finitely connected Galois category

and G ∶ D → FSets a connected Galois category.

Let A ∶ C1 × ⋯ × Cn → D be a functor between the Galois categories preserving

finite limits and finite colimits. Then there exists an i ∈ I and Ai ∶ Ci → D, such that

A factors through Ai.

Proof. Take t ∈ C. As in Lemma 6.1.4, t =∐i∈I ei, where every ei is connected. Since

D is connected, its terminal object is connected. Since A respects finite limits and

colimits there exists i ∈ I such that A(ei) = ⋆ and A(ej) = ∅ for all j ≠ i. Recall the

equivalence C ≅ C1×⋯×Cn as constructed in Lemma 6.1.4. For every X ∈ C, we have

X ≅∐n
i Xi where Xi is the pullback of the diagram:

X

��
ei // t =∐i∈I ei.

A respects pullbacks, and so for all j ≠ i, we know that A(Xj) is the pullback of

A(X)

��
A(ej) // A(t).

Since Y → ∅ implies that Y is the empty set, we get that A(Xj) = ∅. So

A(X) =∐
j

A(Xj) = A(Xi).

Hence A factors through the projection C1 ×⋯ × Cn → Ci. Q.E .D

Corollary 6.2.4. Let Gi be a finitely connected, profinite groupoid and H be a
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6.2 The 2-category of Galois Categories

connected, profinite groupoid. Then we have an equivalence of categories:

HomGCat(HomCat(∐
i∈I

Gi,FSets),HomCat(H,FSets)) ≅

≅∐
i∈I

HomGCat(HomCat(Gi,FSets),HomCat(H,FSets)).

Proof. This follows from the Lemmas 6.2.3 and 6.1.5, and the fact that by definition,

functors in GCat respect finite limits and finite colimits. Q.E .D

Theorem 6.2.5. The 2-category of finitely connected Galois categories is contravari-

antly 2-equivalent to the 2-category of profinite, finitely connected, groupoids.

Proof. This equivalence is given by associating to a profinite groupoid G, the Galois

category HomCat(G,Sets). On functors and natural transformations, the 2-functor

is defined in the obvious way by composition. Using Proposition 4.1.8, we only need

to show that it’s essentially surjective and full and faithful. Both of course in the

2-mathematical sense. Essential surjectivity is proven in Corollary 6.1.5.

Full and Faithful: Let G and H be profinite and finitely connected groupoids. We

have G ≅ ∐i∈I Gi and H ≅ ∐j∈J Hj, where the Gi-s and Hj-s are profinite groupoids

with one object. Hence

HomCat(G,H) ≅ HomCat(∐
j∈J

Gi,∐
j∈J

Hj)

≅ ∏
i∈I

HomCat(Gi,∐
j∈J

Hj)

≅ ∏
i∈I
∐
j∈J

HomCat(Gi,Hj).

The last equivalence comes from the fact that the Gi-s and Hj-s have a single object

and so any functor Gi can only go to a single Hj. From [21, Corolarry 6.2. p.111] we

get that HomCat(Gi,Hj) ≅ HomGCat(HomCat(Hj,FSets),HomCat(Gi,FSets)). On the
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6.2 The 2-category of Galois Categories

other hand, we have:

HomGCat(HomCat(H,FSets),HomCat(G,FSets))

≅ HomGCat(HomCat(∐
j∈J

Hj,FSets),HomCat(∐
i∈I

Gi,FSets))

≅ HomGCat(HomCat(∐
j∈J

Hj,FSets),∏
i∈I

HomCat(G,FSets))

≅ ∏
i∈I

HomGCat(HomCat(∐
j∈J

Hj,FSets),HomCat(G,FSets)).

Using Corollary 6.2.4, we get the desired result. Q.E .D

Corollary 6.2.6. Let E ∶ G → H be a functor between finitely connected, profinite

groupoids and F ∶ HomCat(H,FSets) → HomCat(G,FSets) the induced functor. Then

F is an equivalence if and only if E is an equivalence.

Proof. From Theorem 6.2.5 we know that

HomCat(G,H) ≅ HomCat(G- FSets,H- FSets).

This equivalence clearly holds when restricted to AutCat, being the category of equiv-

alences. Q.E .D

Unfortunately, due to our definition, we can not take general 2-limits with values

in GCat. So we can not talk about stacks with values in the 2-category of Galois

categories for a general site. However, it follows from Proposition 7.1.10, that if

we only consider sites where every covering can be replaced by a finite one, we can

avoid that problem.

Definition 6.2.7. We call a site finitely coverable, if for every covering {Ui → U}i∈I ,
there exists a refinement {Vj → U}j∈J , such that J is a finite set.

Let X be a finitely coverable site. We will call a 2-functor F ∶ Xop → GCat

a fibered Galois category over X. If X was a prestack, we would refer to it as a

Galois prestack . Similarly, we use the term Galois Stack . A natural transformation

between two 2-functors F,G ∶ X → GCat, that respects the structure, will be called

a Galois transformation.
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6.2 The 2-category of Galois Categories

Let X be a site and F ∶ X → Grpd a covariant 2-functor. We denote by FS

the contravariant 2-functor given by U ↦ HomCat(F(U),Sets). Take two covariant

2-functors E,F ∶ X → Grpd and F ∶ E⇒ F a natural transformation between them.

It is clear that FS ∶ FS ⇒ ES is a Galois transformation. But indeed Theorem 6.2.5

shows that the reverse is also true. Hence, we have the following:

Corollary 6.2.8. Let X be a site. The 2-category of fibered Galois categories over X

is contravariantly equivalent to the 2-category of cofibered profinite groupoids over X.
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Chapter 7

Properties Preserved under

Stackification

In Chapter 4 we defined the notion of a stack (Definition 4.3.4) and showed that for

every fibered category F over X, we had an associated stack F̂ (Proposition 4.3.5).

In this chapter, we will talk a little about some of the structures preserved under

this construction. To do so, we will use the direct stackification given in Proposition

4.3.7, which showed that we only have to check that a given property is preserved

by both 2-limits and filtered 2-colimits.

Our main interest in them is to study how Galois categories behave under stack-

ification. However, since there is much intersection, we will mention a little about

abelian categories as well, although we will not use these results.

7.1 Properties Preserved under 2-Limits

7.1.1 General Properties

Let F ∶ X → Cat be a 2-functor and f ∶ A → B, g ∶ B → C and h ∶ A → C morphisms

in 2-lim
i
Fi. It follows straight from Remark 6 on page 80, that if the projects of h

and f ○ g agree for every i, then f ○ g = h. From this, we immediately see that a

diagram D in the 2-limit of F commutes, if and only if its projections commute for

every i.
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Theorem 7.1.1 (Limits and Colimits). Let I be a small category, A ∶ I → Cat a

2-functor and denote by L ∶= 2-limi∈I Ai.

i) Assume limits exist in every category Ai and the functors Ai → Aj preserve

limits. Then limits exist in L and the canonical functors L→ Ai respect limits

as well.

ii) Assume colimits exist in every category Ai and the functors Ai → Aj preserve

colimits. Then colimits exist in L and the canonical functors L → Ai respect

colimits as well.

Proof of Thm. 7.1.1. Let C be a small category and A ∶ C → L a functor. Consider

the composite functor C
AÐ→ L

fiÐ→ Ai and denote its limit by Pi. Here fi is the

canonical projection. First, we aim to show that the Pi define an object in L. To

this end, consider the diagram

C
A // L

fi //

fj &&

Ai
ψ∗
��
Aj.

:Bζψ

Since Pi is the limit of fi ○A ∶ C → Ai, we have maps pic ∶ Pi → (fi ○A)(c). Hence,

we have

ψ∗(pic) ∶ ψ∗(Pi)→ ψ∗((fi ○A)(c)) = ψ∗(fi(A(c)))
ζψÐ→ fj(A(c)),

where ζψ is the natural isomorphism from the diagram. By the universality of Pj,

this defines a map pψ ∶ ψ∗(Pi)→ Pj.
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To see that the collection (Pi,Pψ) is compatible, consider the following diagram:

ν∗(ψ∗(Pi))
ν∗(pψ) //

µψ,ν

��

ν∗,ψ∗,pic

((

ν∗(Pj)
ν∗pjc

''
pν

��

ν∗(ψ∗(fi(A(c))))

µψ,ν

��

ν∗αcψ // ν∗(fj(A(c)))

αcν

��

(νψ)∗(Pi)
(νψ)∗pic

((

p(νψ) // Pk
pkc

''
(νψ)∗(fi(A(c)))

αc(νψ) // fk(A(c)).

Here pic, pjc and pkc are the natural projections of Pi, Pj and Pk onto fi(A(c)), fj(A(c))
and fk(A(c)) respectively, and αcψ is the compatible isomorphism. It exists since

fi(A(c)) and fj(A(c)) are the natural projections of the objects of L. First look at

the ’top’ square of our cube:

ψ∗(Pi)
pψ //

ψ∗,pic

''

(Pj)
pjc

%%

(1)

ψ∗(fi(A(c))) αcψ // fj(A(c)).

We know that it commutes by the construction of the morphism pψ (which was the

‘gluing’ of the αcψ’s) and composing with ν∗, which is a functor, maps commutative

diagrams to commutative diagrams. Likewise the ’bottom’ square will commute

since p(νψ) is the gluing of the αc(νψ)’s. The ’left’ square commutes since µψ,ν is a

natural isomorphism. The ’right’ square will commute since pν is the gluing of the

αcν . The ’front’ square:

ν∗(ψ∗(fi(A(c))))
µψ,ν

��

ν∗αcψ // ν∗(fj(A(c)))
αcν
��

(νψ)∗(fi(A(c)))
αc(νψ) // fk(A(c))

commutes since fi(A(c)), fj(A(c)) and fk(A(c)) are objects of the 2-limit. Hence
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the following diagram:

ν∗(ψ∗(Pi))
ν∗(pψ) //

µψ,ν

��

ν∗(Pj)
pν○pkc
��

(νψ)∗(Pi)
α(νψ)○αc(νψ) // fk(A(c))

will commute. Since this is true for all c ∈ C, the ’back’ square commutes as well.

This shows that the (Pi, pψ) define an object in the 2-limit L.

To see that P is indeed the limit of A ∶ C → L, we need to show that we have

compatible maps P → A(c) and that P is universal with respect to this property.

We know that P = (Pi, pψ ∶ Pi → Pj) and that

A(c) = (fi(A(c)), αcψ ∶ fi(A(c))→ fj(A(c)).

Hence, we define the map

pc ∶ P → A(c) ∶= (pic ∶ Pi → fi(A(c)).

The fact that they are compatible and define a morphism in L is saying that Square

(1) commutes, which we already know. The fact that it is compatible is straight

forward. To see that P is universal, let Q ∈ L be an other object with compatible

maps qc ∶ Q → A(c). Since Q ∈ L, Q = (Qi,qψ ∶ Qi → Qj), and so for every i ∈ I, we

can define compatible ai ∶ Qi → Pi. To see that the (ai) define a morphism in L,

consider the following diagram:

ψ∗(Qi)
ψ∗(ai) //

qψ

��

ψ∗(qic)

''

ψ∗(Pi)

ψ∗(pic)ww
pψ

��

ψ∗(fi(A(c)))

fi(u)

��

Qj

aj //

qic

''

Pj

picww
fj(A(c)).

The top and bottom triangle commute since Pi and Pj are limits in Ai and Aj
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respectively, and ψ∗ is a functor. The left and right squares will commute since

(Qi, qψ ∶ Qi → Qj) and (Pi, pψ ∶ Pi → Pj) define objects in the limit L (see dia-

gram (1)). Hence the whole diagram commutes, which implies that the (ai) are

compatible.

Since for all i ∈ I, the composition triangle commutes in Ai after composing with

fi, we have qc = pc ○ a. This proves the assertion for the limit of A ∶ C → L.

Since we didn’t use the construction of the limit at any point, just the univer-

sality, it is clear that the exact same proof, with the obvious adjustments (i.e. we

will not have arrows pic ∶ (fi ○A)(c) → Pi for example, and the induced arrows will

be pψ ∶ Pj → ψ∗(Pi)), will also hold for the colimit. Q.E .D

Proposition 7.1.2. Let I be a category, F,G ∶ I → Cat be two 2-functors and

ϕ ∶ F⇒ G a natural transformation. Let ϕ′ denote the induced functor between the

2-limits 2-limF and 2-limG of F and G respectively.

i) If for every i, ϕ(i) preserves limits, then so will ϕ′.

ii) If for every i, ϕ(i) preserves colimits, then so will ϕ′.

Proof. Since ϕ′ is defined componentwise and every component respects limits (col-

imits), it is clear that it will respect limits (colimits) as well. Q.E .D

Remark 8: We can see from the proofs of Theorem 7.1.1 and Proposition 7.1.2, that

their analogues would hold for finite limits and colimits as well.

Proposition 7.1.3. Let F ∶ I → Cat be a 2-functor and u ∶ a → b be a morphism in

2-lim
i
Fi.

i) If for all i, ui ∶ ai → bi is a monomorphism, then u is a monomorphism.

ii) If for all i, ui ∶ ai → bi is an epimorphism, then u is an epimorphism.

iii) If for all i, ui ∶ ai → bi is a strict epimorphism, then u is a strict epimorphism.
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iv) If for all i, ui ∶ ai → bi is an isomorphism, then u is an isomorphism.

Proof. i) Recal that u ∶ a→ b is a monomorphism if for all maps v, v′ ∶ c→ a,

c
v //

v′
// a

u // b

vu = v′u ⇒ v = v′. It is clear that vu = v′u implies viui = v′iui, and since by

assumption the ui’s were monomorphisms, we have vi = v′i for every i, implying

that v = v′ as desired.

ii) The proof is identical to the above one.

iii) From Theorem 7.1.2 we know that a ×b a exists, since its a limit of a finite

diagram. Further, we know that for all i, ai ×bi ai is the pullback of the

projected diagrams onto the Fi-s. By assumption, the for every i, bi is the

colimit of the diagram

ai ×bi ai
p1 //
p2
// ai.

Hence, by the same theorem, we know that b is the colimit of the diagram

a ×b a
p1 //
p2
// a,

proving the assertion.

iv) Follows from i) and iii).

Q.E .D

7.1.2 Abelian Categories

Let I be a category and F ∶ I → Cat a 2-functor. We say that F takes values in

abelian categories if:

� For all i ∈ I, Fi is an abelian category;

� For all morphisms j → i, the induced functors Fi → Fj preserve the structure,

i.e. are exact.
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The aim of this subsection is to sprove that 2-lim
i
F is again an abelian category,

which we will do piecewise.

7.1.2.1 Additive Categories

Let F ∶ I → Cat be a 2-functor with values in pre-additive categories. By that

we mean that for all i ∈ I, Fi is a pre-additive category, and for every morphism

ψ ∶ i→ j, the induced functor ψ∗ ∶ Fj → Fi is additive. That is to say, the map

Hom(ai, bi)→ Hom(ψ∗(ai), ψ∗(bi))

is a group homomorphism. We want to show that 2-lim
i
F will be a pre-additive

category as well.

Proposition 7.1.4. Let a, b ∈ 2-lim
i
F. Then Hom(a, b) is an abelian group and the

composition map ○ ∶ Hom(a, b) ×Hom(b, c)→ Hom(a, c) is bilinear.

Proof. This follows straight from the formula given in Remark 7 on page 80.Q.E .D

Proposition 7.1.5. The projection functors pi ∶ 2-lim
i
F→ Fi are additive.

Proof. The proof of this follows from the very definition of the group structure in

the hom-sets of 2-lim
i
Fi. Q.E .D

This shows that 2-lim
i
F is a pre-additive category. Let us now assume that F

took values in additive categories. Theorem 7.1.1 then implies the 2-limit is additive.

Remark 9: Let A and B be additive categories and T ∶ A → B a functor. The

following are equivalent:

� T is additive, that is for all a, a′ ∈ A, HomA(a, a′) → HomB(T (a), T (a′)) is a

homomorphism.

� T respects finite direct summands, T (a)⊕ T (a′) ≅Ð→ T (a⊕ a′).

See [31, p.77].
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Proposition 7.1.6. Let F,G ∶ I → AdCat be two 2-functors with values in the 2-

category of additive categories and additive functors, and φ ∶ F→ G be a morphism of

2-functors. By the uniqueness of the 2-limit, we get a functor φ′ ∶ 2-lim
i
F→ 2-lim

i
G.

i) If for every i, φ(i) is additive, then φ′ is additive as well.

ii) If for every i, φ(i) maps finite biproducts to finite biproducts, then so does φ′.

Proof. The first assertion follows straight from Proposition 4.2.8 point (ii), and

Remark 9 shows that the second statement is equivalent to the first. Q.E .D

7.1.2.2 Preabelian Categories

Next we want to show that the 2-limit of a preabelian category is preabelian. Recall

that a pre-abelian category is an additive category that has all kernels and cokernels.

Assume that F ∶ I → AdCat satisfies all the previous conditions. We already know

that additivity is preserved under the 2-limit and hence, we have a zero morphism

in 2-lim
i
Fi.

Proposition 7.1.7. Assume that for all i ∈ I, Fi has kernels/cokernels, and for

all morphism ψ ∶ i → j, the induced functor ψ∗ ∶ Fi → Fj maps kernels/cokernels to

kernels/cokernels. Then 2-lim
i
F has kernels/cokernels and the projection functors

pi ∶ 2-lim
i
F→ Fi map kernels/cokernels to kernels/cokernels.

Proof. This follows from the fact that for a morphism f ∶ A→ B,

Ker(f) = lim( A
f //

0
// B )

and

Coker(f) = colim( A
f //

0
// B ),

and Theorem 7.2.1. Q.E .D

Proposition 7.1.8. Let F ∶ I → Ab and G ∶ I → Ab be two 2-functors and φ ∶ F⇒ G

a natural transformation. Assume that for all i, φ(i) ∶ F→ G maps kernels/cokernels
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to kernels/cokernels. Then the induced map ψ′ ∶ 2-lim
i
Fi → 2-lim

i
Fi maps ker-

nels/cokernels to kernels/cokernels as well.

Proof. As we have already mentioned in the previous proposition, the kernel and

cokernel are both limits/colimits of some diagram. Hence, this result follows from

Proposition 7.1.2.

Q.E .D

7.1.2.3 Abelian Categories

Lastly we want to show that the 2-limit preserves abelian categories.

Proposition 7.1.9. Let F ∶ I → Ab be a 2-functor with values in abelian categories.

Then 2-lim
i
Fi is abelian as well and the projection maps 2-lim

i
Fi → Fi respect the

structure.

Proof. Using the results from the previous sections, we already know that the 2-limit

is preabelian and the canonical projections are structure preserving. Hence, using

[3, Theorem 2.3.2 (p.100)], we know that 2-lim
i
Fi is an abelian category if for every

morphism

λ ∶ A ∶→ B

with kernel (Kerλ,κ) and cokernel (Cokerλ,χ), the morphism

ψ ∶ Cokerκ→ Kerχ

is an isomorphism. But since by assumption, for every i the projection ψi of this

morphism in Fi is an isomorphism, so is ψ. Q.E .D

7.1.3 Galois Categories

Proposition 7.1.10. Let I be a finite category and F ∶ I → GCat a 2-functor from

I to the 2-category of Galois categories, given by i ↦ {Fij ∶ Ci → FSets}j∈Ji. The 2-
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limit of F is again a Galois category and all the canonical projections 2-lim
i
Fi → Fi

preserve the Galois structure, i.e. are exact.

Proof. We claim that {Fij ∶ C → FSets}, ij ∈ Ji is the 2-limit, where C the 2-limit

of the Ci-s and by abuse of notations Fij is the composition C Ð→ Ci
FijÐ→ FSets. In

order to prove this, we have to check that the axioms are respected by the 2-limit:

1,4. Follows from Theorem 7.1.1 i) (see Remark 8).

2,5. Follows from Theorem 7.1.1 ii) (see Remark 8).

3. Let u ∶ Y → X be a morphism in C. We know that for all i, it’s canonical

projection factors as Yi
u′iÐ→ X ′

i

u′′iÐ→ Xi in Ci. By [9, p. 174, Lemma 2.3], we

know that the X ′
i-s and X ′′

i -s define objects X ′ and X ′′ in the 2-limit (indeed

the ξψ-s are the identities) and u′i-s and u′′i -s define morphisms u′ and u′′ in

the 2-limit. Since for all i, ui = u′i ○ u′′i , we have u = u′ ○ u′′. Finally, Theorem

7.1.1 ii) implies that X ≅X ′∐X ′ and ’Proposition 7.1.3 i) and iii) implies the

rest.

6. By assumption, there exists a finite subset Ki ⊂ Ji for every i, such that the

{Fik}ik∈Ki reflect isomorphisms in Ci. Proposition 7.1.3 iv) shows that the

union of the Ki-s (which is finite since I is finite) does the trick.

Q.E .D

7.2 Properties Preserved under Filtered 2-Colimits

7.2.1 General Properties

Theorem 7.2.1 (2-colimits preserve finite limits and colimits). Let I be a filtered

category and F ∶ I → Cat a 2-functor.

� Assume finite limits exist in every category Fi and the maps Fi → Fj preserve

finite limits. Then finite limits exist in 2-colimi∈I Fi and the canonical maps

Fi → 2-colimi∈I Fi respect finite limits as well.
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� Assume finite colimits exist in every category Fi and the maps Fi → Fj preserve

finite colimits. Then finite colimits exist in 2-colimi∈I Fi and the canonical maps

Fi → 2-colimi∈I Fi respect finite colimits as well.

Proof. Let C be a finite category and A ∶ C → 2-colimi∈I Fi a functor. By the

definition of the 2-colimit for filtered systems, every Ac can be thought to be in

one of the Fi’s. Since C is finite and I is filtered, Proposition 4.2.14 shows that

we can find a single Fj, such that the whole diagram A ∶ C → 2-colimi∈I Fi can be

represented in it. We then take the colimit of A in any such Fj. This gives us an

element in L which we denote it by P . Note that it does not depend on our choice

of Fj. To show that it is indeed the colimit in 2-colimi∈I Fi, consider an other object

Q ∈ 2-colimi∈I Fi, such that we have compatible maps Q → Ac for all c ∈ C. Again

by the definition of the 2-colimit, Q is in one of the Fi’s and we can again find a

category Fk, such that the diagram A ∶ C → 2-colimi∈I Fi, P , Q, as well as all the

morphisms, are inside it and hence we will have a map Q → P . Uniqueness follows

trivially as well. The proof for the colimit is analogous to the above one. Q.E .D

Proposition 7.2.2. Let I be a category, F,G ∶ I → Cat be two 2-functors and

ϕ ∶ F⇒ G a natural transformation between them. Let ϕ′ denote the induced functor

between the 2-colimits LF, LG of F and G respectively.

� If for every i, ϕ(i) preserves finite limits, then so will ϕ′.

� If for every i, ϕ(i) preserves finite colimits, then so will ϕ′.

Proof. Consider the following diagram:

C
∃ //

A %%

Fi
ϕ(i) //

��

Gi

��
2- colimi∈I Fi

ϕ′
// 2- colimi∈I Gi.

Here the square commutes. For the triangle on the left, we know that the limit (col-

imit) of A ∶ C → 2-colimi∈I Fi is isomorphic to the limit (colimit) of the composition
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C → Fi → 2-colimi∈I Fi. Since we have already shown that Gi → 2-colimi∈I Gi respects

limits (colimits), as does by assumptions ϕ(i), clearly so does the composite

ϕ′ = Fi
ϕ(i)ÐÐ→ Gi → 2- colimi∈I Gi.

Q.E .D

Proposition 7.2.3. Let F ∶ I → Cat be a 2-functor, Li ∶ Fi → 2-colimFi the canonical

functor and ui ∶ ai → bi a morphism in Fi.

i) If ui is a monomorphism and for all α ∶ i→ j the induced functor α∗ ∶ Fi → Fj

respects monomorphisms, then Li(ui) is a monomorphism.

ii) If ui is an epimorphism and for all α ∶ i → j the induced functor α∗ ∶ Fi → Fj

respects epimorphisms, then Li(ui) is an epimorphism.

iii) If ui is a strict epimorphism and for all α ∶ i→ j the induced functor α∗ ∶ Fi →
Fj respects strict epimorphisms, then Li(ui) is a strict epimorphism.

iv) If ui is an isomorphism and for all α ∶ i → j the induced functor α∗ ∶ Fi → Fj

respects isomorphisms, then Li(ui) is an isomorphism.

Proof. i) Recall that Li(ui) is a monomorphism if for all maps v, v′ ∶ c → ai in

2-colimi∈I Fi,

c
v //

v′
// ai

ui // bi

vui = v′ui ⇒ v = v′. Since v ∶ c → ai ∈ 2-colimi∈I Fi, there exists j ∈ I, such that

v is coming from vj ∶ cj → α∗(ai). Similarly there exists a j′ for v′. Since I is

filtered, we can find k ∈ I such that we have maps αik ∶ i → k, αjk ∶ j → k and

αj′k ∶ j′ → k. Hence, the whole diagram

ck
vk //

v′k
// ak

uk // bk

can be represented in Fk, where by abuse of notation we write ak instead

of αik∗(α∗(ai)) etc. While in general vkuk does not have to equal v′kuk, we
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can find k′ ∈ I, such that vk′uk = v′k′uk in Fk′ . Since all the α∗ respected

monomorphisms, uk′ ∶ ak′ → bk′ is a monomorphism and so vk′ = v′k′ . This

implies that v = v′, proving the assertion.

ii) This is done in exactly the same way.

iii) From by Theorem 7.2.1 we know that a ×b a exists, since its a limit of a finite

diagram. Further we know, that for all i, ai×biai is the pullback of the projected

diagrams onto the Fi-s. By assumption, the for every i, bi is the colimit of the

diagram

ai ×bi ai
p1 //
p2
// ai.

By the same theorem, we know that b is the colimit of the diagram

a ×b a
p1 //
p2
// a.

This proves the assertion.

iv) Follows from i) and iii).

Q.E .D

7.2.2 Abelian Categories

Let I be a category and F ∶ I → Cat a 2-functor. We want to prove that 2-colim
i

F is

again an abelian category. Again we will prove this piecewise.

7.2.2.1 Additive Categories

Let F ∶ I → Cat be a 2-functor with values in pre-additive categories. We want to

show that 2-colim
i

F will be a pre-additive category as well.

Proposition 7.2.4. Let a, b ∈ 2-colim
i

F. Then Hom(a, b) is an abelian group and

the composition map ○ ∶ Hom(a, b) ×Hom(b, c)→ Hom(a, c) is bilinear.

Proof. Since the filtered colimit of abelian groups, considered as sets, is again an

abelian group, the first assertion follows from Proposition 4.2.15. Bilinearity of the
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composition follows from the fact that composition commutes with filtered colimits

and the fact that Ii,j, as defined in the same proposition, is a filtered category.Q.E .D

Proposition 7.2.5. The canonical functors Li ∶ Fi → 2-colim
i

F are additive.

Proof. The proof of this follows directly from the definition of the group structure

in the Hom-sets of 2-colim
i

Fi. Q.E .D

This shows that 2-colim
i

F of pre-additive categories is a pre-additive category.

Let us now assume that F took values in additive categories. We then immediately

see from 7.2.1 that the 2-colimit will as well.

Proposition 7.2.6. Let F,G ∶ I → AdCat be two 2-functors with values in the

2-category of additive categories and φ ∶ F ⇒ G be a natural transformation of

2-functors. By the uniqueness of the 2-colimit, we get a functor φ′ ∶ 2-colim
i

F → 2-

colim
i

G.

i) If for every i, φ(i) is additive, then φ′ is be additive as well.

ii) If for every i, φ(i) maps finite biproducts to finite biproducts, then so does φ′.

Proof. i) This follows straight from proposition 4.2.16, point (ii).

ii) See (i) Remark 9.

Q.E .D

7.2.2.2 Preabelian Categories

Next we want to show that the 2-colimit of a preabelian category is preabelian. We

already know that additivity is preserved under the 2-colimit and hence we have a

zero morphism in 2-colim
i

Fi.

Proposition 7.2.7. Assume for all i ∈ I, Fi has kernels/cokernels, and for all

morphism ψ ∶ i→ j, ψ∗ ∶ Fi → Fj maps kernels/cokernels to kernels/cokernels. Then

2-colim
i

F has kernels/cokernels and the canonical maps Li ∶ Fi → 2-colim
i

F map

kernels/cokernels to kernels/cokernels.
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Proof. This follows from the fact that for a morphism f ∶ A→ B, Ker(f) = lim( A
f //

0
// B )

and Coker(f) = colim( A
f //

0
// B ) and Theorem 7.1.1. Q.E .D

Proposition 7.2.8. Say we have F ∶ I → Cat and G ∶ I → Cat and a natural transfor-

mation φ ∶ F ⇒ G between them, that maps kernels/cokernels to kernels/cokernels.

Then the induced functor φ′ ∶ 2-colim
i

Fi → 2-colim
i

Fi maps kernels/cokernels to ker-

nels/cokernels as well.

Proof. Take a map f ∶X → Y in 2-colim
i

Fi and let K be its kernel. By the definition

of the 2-colimit we know that we can choose a representative fi ∶ Xi → Yi ∈ Fi with

kernel Ki.

Kernels exist in 2-colim
i

Gi by Proposition 7.2.7 and so φ(f) ∶ φ′(X)→ φ′(Y ) has

a kernel, which we denote by Ker(φ(f)). This means that we only have to show

that Ker(φ(f)) is isomorphic to φ(K). But since they agree on the restrictions by

Proposition 7.2.8, by the uniqueness property of the 2-colimit, they are isomorphic.

The same argument works for cokernels as well. Q.E .D

7.2.2.3 Abelian Categories

Proposition 7.2.9. Let I be a filtered system and F ∶ I → Ab a 2-functor with

values in abelian categories. Then 2-colim
i

Fi is an abelian category and the projection

functors Fi → 2-colim
i

Fi respect the structure.

Proof. Using the results from the previous sections, we already know that the 2-

colimit is preabelian and the canonical projections are structure preserving. Hence,

using [3, Theorem 2.3.2 (p.100)], we know that 2-colim
i

Fi is an abelian category if

for every morphism

λ ∶ A→ B,

with kernel (Kerλ,κ) and cokernel (Cokerλ,χ), the morphism

ψ ∶ Cokerκ→ Kerχ
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is an isomorphism. By the definition of the 2-colimit for filtered systems, we can

assume that the whole diagram

Kerλ
κ // A

λ //

##

B
χ // Coker

Cokerκ
ψ // Kerχ

<<

is in some Fi. By assumption, ψ is an isomorphism in Fi and thus by Proposition

4.2.14, it is an isomorphism in the 2-colimit. Q.E .D

7.3 Properties Preserved under Stackification

As mentioned at the beginning of this chapter, if a property is preserved by both

2-limits and filtered 2-colimits, it is preserved by stackification. This section will

basically be a summing up of the results obtained in the previous two sections, for

the convenience of the reader.

Theorem 7.3.1. Let X be a site and F ∶X → C a 2-functor from X to the 2-category

C. The associated stack F̂ ∶X → C exists if C is any of the following:

i) The 2-category of (finite) complete categories;

ii) The 2-category of (finite) cocomplete categories;

iii) The 2-category of (finite) bicomplete categories;

iv) The 2-category of pre-additive categories;

v) The 2-category of additive categories;

vi) The 2-category of pre-abelian categories;

vii) The 2-category of abelian categories.

Proof. This follows from Proposition 4.3.7 and:

i) Theorems 7.1.1 i) and 7.2.1 i) (see Remark 8, p.134);
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ii) Theorems 7.1.1 ii) and 7.2.1 ii) (see Remark 8, p.134);

iii) The above two statements;

iv) Propositions 7.1.4, 7.1.5, 7.2.4 and 7.2.5;

v) Statement iii) and iv);

vi) Propositions 7.1.7 and 7.2.7;

vii) Propositions 7.1.9 and 7.2.9.

Q.E .D

Lemma 7.3.2. Let X be a site, F ∶ X → Cat a 2-functor and G ∶ X → Cat a stack.

Let ψ ∶ F ⇒ G be a natural transformation. Denote by F̂ the associated stack of

F̂ and let ψ̂ ∶ F̂ ⇒ G be the associated natural transformation. Then the following

results hold:

i) If ψ respects (finite) limits, so does ψ̂;

ii) If ψ respects (finite) colimits, so does ψ̂;

iii) If ψ is additive, then so is ψ̂.

Proof. This follows from Proposition 4.3.7 and:

i) Propositions 7.1.2 i) and 7.2.2 i) (see Remark 8, p.134);

ii) Propositions 7.1.2 ii) and 7.2.2 ii) (see Remark 8, p.134);

iii) Propositions 7.1.6 and 7.2.6.

Q.E .D

Recall that using Proposition 7.1.10 we can talk about stacks with values in

Galois categories (called Galois stacks). As such, using the universal definition, we

still have the notion of an associated Galois stack, even if we don’t prove that it

always exists. We then have the following:
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7.3 Properties Preserved under Stackification

Corollary 7.3.3. Let F ∶ X → GCat be a 2-functor, G ∶ X → GCat a Galois stack

and ψ ∶ F⇒ G a Galois transformation. If F has the associated Galois stack F̂, then

ψ̂ ∶ F̂⇒ G is a Galois transformation as well.

Proof. This follows from i) and ii) of the above lemma and iii) of Theorem 7.3.1.

Q.E .D
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Chapter 8

The Étale Fundamental Groupoid

In this chapter we will prove our final main result of this thesis. The original problem,

posed by my supervisor, was to prove a version of the van-Kampen theorem for the

étale fundamental groupoid. The version we prove is that for any covering Y ↦ X

of a noetherian scheme X, the association Y ↦ Π1(Y ) is a costack, rather then a

cosheaf, as initially expected.

But more is true. The étale fundamental groupoid is indeed defined by the

Seifert-van Kampen theorem, in complete analogy to the topological case, however,

the proof is vastly different.

To prove that it’s the 2-terminal costack over any noetherian scheme X is equiv-

alent to saying that it is the associated costack of the constant, covariant 2-functor

taking the trivial groupoid as its value. Unfortunately we don’t know much about

costackification, so instead we will compose it with the functor Hom(−,FSets), and

hence get a Galois category.

Since by the definition of a costack, after composing with Hom(−,FSets), we will

get a stack, we can use stackification to prove this theorem. This is also our main

reason for studying properties preserved under 2-limits and filtered 2-colimits in the

above chapter.

We follow [35] on the notations. Let k be a field. A polynomial f ∈ k[x] is

separable if f(x) is irreducible over k and has no multiple roots. A field extension

k → L is separable if the minimal polynomial mk(a) of every element a ∈ L over k is

separable over k.
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A homomorphism A → B is called finite, if B is finitely generated as an A-

module. Now let A and B be local rings and f ∶ A→ B a local homomorphisms. We

say that f is unramified if A/mA → B/f(mA)B is a finite, separable field extension.

Let Y be a scheme such that it can be covered by affine subschemes Vi = Spec(Ai),
where the Ai are noetherian. Let f ∶X → Y be a morphism of schemes, and assume

further that for all i, f−1(Vi) can be covered by finitely many affine subschemes

Uj = Spec(Bj), where the Bj-s are noetherian as well.

We say that f ∶ X → Y is of finite type if the Bj-s are finitely generated Ai-

algebras for every i. Note that in this case we require them to be finitely generated

as algebras, not as modules, as we did in the case of finite homomorphisms.

A morphism ϕ ∶ Y → X of schemes is unramified if it is of finite type and if

OX,ϕ(y) → OY,y are unramified for all y ∈ Y .

A morphism A → B of rings is called flat , if the functor M ↦ B ⊗A M from

A-modules to B-modules is exact. A morphism of schemes is flat , if the local

homomorphisms OX,ϕ(y) → OY,y are flat for every y ∈ Y .

Let X,Y be schemes and f ∶ X → Y a morphism between them. We say that

f is étale if it is flat and unramified. In this case, we also say that X is étale over

Y . If additionally f is surjective on the underlying topological spaces of Xs and Y ,

then f is said to be an étale covering. See also Example 4 on page 8.

Let X be a noetherian scheme. Denote by FEC(X) the site of finite étale cov-

erings of X. It is a well-known result that the category of finite étale coverings is a

Galois category.

Lemma 8.0.1. Let X and Y be quasi-compact, noetherian schemes. We have

FEC(X∐Y ) ≅ FEC(X) × FEC(Y ), where FEC(X) denotes the category of finite

etale coverings over X.

Proof. From the proof of Proposition 4.4.4 we know that this is true for the under-

lining modules. Further, we know that it suffices to check it only in the affine case.

Let R and S be commutative rings and denote by Alg(R) the category of algebras

over R.

As Algebras: Take an algebra A ∈ Alg(R×S). Since it’s also a module over R×S, we

define modules e1A and e2A over R and S respectively. It is clear that the ring struc-

ture on A induces a ring structure on e1A by saying that (1,0)a × (1,0)b = (1,0)ab.
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Similarly for e2A. For the reverse, take A1 and A2 in Alg(R) and Alg(S) re-

spectively. By defining (a1, a2)(b1, b2) = (a1b1, a2b2) we get a ring structure on

A1 × A2. This argument trivially extends to morphisms as well. Hence we have

Alg(R × S) ≅ Alg(R) ×Alg(S).
Unramifiedness: Recall that if A ≅ AR ×AS, then we have

Spec(A) ≅ Spec(AR)∐Spec(AS), (8.1)

given by pR ↦ (pR,AS) and pS ↦ (AR,pS). Let f ∶ R × S → A be an R × S-algebra

and take p ∈ Spec(A). We know that there are fR ∶ R → AR, fS ∶ S → AS with

A ≅ AR × AS and f = fR × fS. Without loss of generality, we can assume that

p = (pR,AS). We have

f−1(p) = f−1(pR,AS) = (f−1
R (pR), f−1

S (AS)).

pR is prime, so is its pre-image and f−1(p) = (f−1
R (pR),AS). This implies that

(R × S)f−1(p) ≅ (R × S)f−1(pR),AS .

Since (1,AS) ⊂ R × S ∖ (f−1
R (pR),AS), we get (R × S)f−1(p) ≅ Rf−1R (pR). Similarly

Ap ≅ (AR)pR . Hence f ∶ R × S → A being unramified is without loss of generality

equivalent to

fR ∶ Rf−1R (pR) → (AR)pR

being unramified.

Flatness: Recall that we have

(MR ×MS)⊗R×S (NR ×NS) ≅ (MR ⊗R NR) × (MS ⊗S NS).

Assume now that MR and MS are flat over R and S respectively. Take any module

N over R × S. By Proposition 4.4.4 we know that N ≅ NR × NS were NR is an
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R-module and NS is an S-module. By the above formula and our assumption, we

get that N is flat over R × S. Same for the other side. This implies the result.

Surjectivity: Let f ∶ A→ R × S be a be a ring homomorphisms that is surjective on

the set of prime ideals. Formula 8.1 implies that its equivalent to

f−1
R ∐ f−1

S ∶ Spec(R)∐Spec(S)→ Spec(AR)∐Spec(AS)

being surjective. This now implies the result. Q.E .D

Given a geometric point s ∶ Spec(ω) → X of X, we denote the underlying set

associated to the scheme Ys ∶= Y ×X Spec(ω) by XSet
s . Thus, we obtain the functor

Fs ∶ FEC(X)→ FSets,

given by

Fs(Y ) = Y + sSets.

We have the following well-known result:

Theorem 8.0.2. Let X be a finitely connected, noetherian scheme. The category

FEC(X) of finite etale coverings of X, together with all the functors

{Fsi ∶ FEC(X)→ FSets}i∈I

induced by every geometric point si ∶ Spec(ωi) → X, i ∈ I, is a (finitely connected)

Galois category.

Theorem 8.0.3. Let X be a finitely connected, noetherian scheme and denote by

FEC(X) the site of finite étale coverings of X. The 2-functor FEC ∶ FEC(X)→ GCat,

given by

Y ↦ {Fsi ∶ FEC(Y )→ FSets}i∈I ,

is a stack.

Proof. Recall first that for finitely coverable sites, we could talk about stacks with
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values in Galois categories (Definition 6.2.7). Since for a noetherian scheme X the

site of finite étale coverings FEC(X) satisfies said finiteness condition, the proof

follows from [21, p.187, Proposition 4.1], and Lemmas 8.0.1 and 4.4.3. Q.E .D

Definition 8.0.4. Let {Fj ∶ C → FSets}j∈J be a finitely connected Galois category.

We define its fundamental groupoid Π1(C) as follows:

� Objects of Π1(C) are the functors {Fj ∶ C → FSets}j∈J ;

� For Fi and Fj we define HomFnct(Fi,Fj) ∶= IsoFnct(Fi,Fj) where IsoFnct denotes

the set of natural isomorphisms.

Definition 8.0.5. Let X be a finitely connected site. Define the étale fundamental

groupoid Π1(X) of X to be the fundamental groupoid of the Galois category FEC(X),

being {Fsi ∶ FEC(X)→ FSets}i∈I .

Equivalently, Theorem 8.0.3 can be stated as follows:

Theorem 8.0.6. The 2-functor FEC ∶ FEC(X) → GCat given by Y ↦ Π1(Y )-FSets,

where Π1(Y ) denotes the étale fundamental groupoid of Y , is a stack.

Proof. In the case of connected schemes this result is a classical result by Grothendieck.

We use our proof of the generalised case, when X need not be connected, given in

Theorem 6.2.5 to obtain this result. Q.E .D

Theorem 8.0.7 (Seifert-van Kampen Theorem). Let X be a finitely connected,

noetherian scheme. The assignment Y ↦ Π1(Y ) defines a costack on the site of

finite étale coverings of X.

Proof. For any covering Z ∈ Cov(Y ), we have the 2-functor 2-colim(Z,Π1)→ Π1(Z),
where 2-colim(Z,Π1) denotes the 2-colimit of

Π1(Z ×X Y ) Π1(Z ×X Y ×X Y )oooo Π1(Z ×X Y ×X Y ×X Y ).oooooo

Hence we get the associated functor Π1(Z)-FSets→ 2-colim(Z,Π1)-FSets, where we

denoted by G-FSets the functor category HomCat(G,FSets). Since HomCat(−,FSets)
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is left exact, we have

2- colim(Z,Π1)- FSets ≅ 2- lim((Z,Π1)- FSets),

where 2-lim((Z,Π1)-FSets) denotes the 2-limit of

Π1(Z ×X Y )- FSets // // Π1(Z ×X Y ×X Y )- FSets // //
//
Π1(Z ×X Y ×X Y ×X Y )- FSets .

By Theorem 8.0.6, the functor Π1(Z)- FSets→ 2-lim((Z,Π1)-FSets) is an equivalence

of categories. Hence from Corollary 6.2.6, 2-colim(Z,Π1)→ Π1(Z) is an equivalence

of categories as well. This proves the assertion. Q.E .D

Definition 8.0.8. Let C be a 2-category. We say that T is the 2-terminal object of

C, if for any other object C ∈ C, HomCat(C,T) is equivalent to the 1-point category.

Theorem 8.0.9. Let X be a finitely connected, noetherian scheme. The assignment

U ↦ Π1(U), U ∈ X is the 2-terminal costack of groupoids over the site of étale

coverings of X.

To prove this theorem, we first need a few other results.

Lemma 8.0.10. Consider the constant covariant 2-functor s ∶ U ↦ FSets. Its

associated prestack is given by s ∶ U ↦ CS(U), where CS(U) denotes the category

of constant sheaves of finite sets on U .

Proof. Recall our discussion about prestacks in Subsection 4.3.1. We know that the

objects remain the same, but the morphisms are replaced by the sections of the

sheafification of the presheaves HomU(a, b). We claim that this is equivalent to the

category of constant sheaves on U . The fact that the objects of these two categories

are equivalent is clear. To see that the Hom-sets are isomorphic, first observe that

the sheafification of HomU(a, b) is Hom(π0(u),Hom(a, b)), which is isomorphic to
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(ba)π0(U) = baπ0(U). Denote by a the constant sheaf with value a. Then

HomSheaf(a, b) = HomPresheaf(a, b)

= HomPresheaf(a, b).

Since b is given by U ↦Hom(π0(U), b), we have

HomPresheaf(a, b) =Hom(a,Hom(U, b)).

This is isomorphic to (bπ0(U))a = bπ0(U)a, proving the assertion. Q.E .D

Corollary 8.0.11. Consider the constant covariant 2-functor s ∶ U ↦ FSets. Its

associated stack ŝ is given by ŝ(U) = LCS(U), where LCS(U) denotes the category

of locally constant sheaves of finite sets on U .

Let A be a covariant 2-functor. Recall that we denoted by AS the contravariant

2-functor given by U ↦Hom(A(U),FSets).

Proof of Thm. 8.0.9. We have already shown that the 2-functor U → Π1(U) forms

a costack. Hence, to prove this theorem, we only have to show that for every costack

C of groupoids, we have an essentially unique map C ⇒ Π1.

Denote by P the constant, covariant assignment U ↦ pt, where pt is seen as a

groupoid. It is clear that we have a natural transformation C ⇒ P , and as such,

a Galois transformation PS ⇒ CS. As shown in Corollary 8.0.11, the stackification

of PS exists and is U ↦ LCS(U), where LCS(U) denotes the category of locally

constant sheaves on U . In the case of noetherian schemes, LCS(U) is equivalent

to the Galois category Π1(U)-FSets. Since C was a costack, CS is a Galois stack

and hence, PS ⇒ CS factors through Π1S. Using Corollary 7.3.3, we know that the

obtained natural transformation Π1S ⇒ CS is a Galois transformation.

By the uniqueness of the associated stack (see Definition 4.3.6) and Corollary

6.2.8 respectively, we have the following equivalences of categories:

HomGal(PS,CS) ≅ HomGal(Π1S,CS) ≅ HomCat(C,Π1).
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Here HomGal denotes the category of Galois transformations (i.e. of natural transfor-

mations respecting finite limits and colimits). Uniqueness and existence now comes

from the fact that we have precisely one exact natural transformation PS ⇒ CS. The

last claim is true because PS is equivalent to FSets and hence a functor respecting

finite colimits is defined by its value on the singleton ⋆, which has to map to the

terminal object of CS. Q.E .D
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