Investigating the physiological role of HDAC1 and HDAC2 in embryonic stem cells

Thesis submitted for the degree of Doctor of Philosophy at the University of Leicester

by

Shereen Jamal Jamaladdin

College of Medicine, Biological Sciences, and Psychology Department of Biochemistry University of Leicester

2016

Shereen Jamal Jamaladdin

Investigating the physiological role of HDAC1 and HDAC2 in embryonic stem cells

Abstract

Histone deacetylases 1 and 2 (HDAC1/2) are highly similar proteins (83% identical) that form the core catalytic components of corepressor complexes that modulate gene expression. Germline deletion of *Hdac1* in mice results in early embryonic lethality and conditional deletion of *Hdac1* but not *Hdac2* causes precocious differentiation in ES cells. Therefore to further investigate the role of HDAC1/2 during the early embryogenesis, we have generated a compound conditional knockout ES cell line $Hdac1^{ko}$; $Hdac2^{Het}$ in which HDAC1/2 activity is reduced but not entirley lost. $Hdac1^{ko}$; $Hdac2^{Het}$ cells have a significant reduction in total deacetylase activity and disruption of corepressor complex integrity. The prolifration capicity of $Hdac1^{ko}$; $Hdac2^{He}$ cells is not inhibited, however, upon differentiation they were predisposed to toward the cardiomyocyte lineage.

In most cell types, deletion of both *Hdac1* and *Hdac2* is required to produce a phenotype, suggesting their activity is redundant. To circumvent this functional redundancy, we generated a double conditional knockout (DKO) cells in which both *Hdac1* and *Hdac2* can be inactivated simultaneously. Loss of HDAC1/2 results in a 60% reduction in total HDAC activity and a loss of cell viability, which is associated with increased abnormal mitotic spindle, chromatin bridges and miconuclei, suggesting that HDAC1/2 are necessary for accurate chromosome segregation. Transcriptome analysis reveals 1,708 differentially expressed genes in DKO cells including a reduction in the expression of the ES cells core pluripotent factors. HDAC1/2 activity can be regulated in vitro through the binding of inositol tetraphosphate (IP4). By rescuing the viability of DKO cells using wt and mutant forms of HDAC1/2 in vivo. We have also shown that treatment of DKO ES cells with RA results in reduces induction of HOX genes, suggesting a positive role of HDAC1/2 in gene activation as well as gene repression.

Acknowledgments

I would firstly like to express my sincere thanks and appreciations to my supervisor Dr. Shaun Cowley for the support, encouragement and continual guidance he has provided throughout my PhD research studies. I also would like to express my gratitude to my PhD committee members; Dr. Sally Prigent and Dr. Salvador Macip for their valuable discussions and comments. I would like to thank Dr. Richard Kelly for his invaluable support and help during my project. Many thanks to Dr. Nicola Portolano for all the support he provided when I started my lab work.

Thank you to all colleagues and friends in lab 3/37 for their prompt help, a special thanks to Marwah and Ghalia for sharing all these happy and sad moments with me. To my friends; Sarah, Hasna and Afrah, I express my gratitude for their unconditional friendship, encouragement and patience throughout these years and for being there for me when I needed.

Finally, and most importantly, I would like to express my deepest gratitude to my mother, Hania and father, Jamal for their constant support, encouragement, care, love, and always been there for me, they helped me a lot to reach this stage in my life, Thank you so much !!. I would like also to thank my brothers, Abdulshakoor and Ammar and my sister for their unconditional support and encouragement.

List of contents:

Abstract	II
Acknowledgments	III
Table of contents	IV
List of figures	IX
List of tables	XI
Abbreviation	XII

Table of contents:

Chapter	1: Introduction	1
1.1 Chro	omatin	1
1.2 Histo	one modifications	4
1.2.1	Acetylation	7
1.2.2	Phosphorylation	8
1.2.3	Ubiquitylation and sumoylation	9
1.2.4	Methylation	10
1.3 The	Histone deacetylases (HDACs) family	12
1.3.1	Four distinct HDAC classes	12
1.4 Clas	s I HDAC co-repressor complexes	15
1.4.1	Sin3 complex	17
1.4.2	CoREST complex	18
1.4.3	NuRD complex	18
1.4.4	SMRT/NCoR complex	19
1.5 Role	e of HDACs in transcriptional activation	20
1.6 Nor	-Histone target of HDACs	21
1.7 HD.	AC knock-out mice.	22
1.8 Con	ditional HDAC1/2 knockout studies in mice	25

use embryonic stem (mES) cells	27
Maintenance of pluripotency	28
Pluripotency factors	30
Differentiation of mES cells in culture	
romatin state of embryonic stem (ES) cells	34
ms of the project	37
2: Materials and Methods	38
neration of <i>Hdac1</i> , <i>Hdac2</i> double knockout (DKO) ES cells	
ture and maintenance of mouse ES cells	
Thawing and plating of mES cells	
Passage of mES cells	
Freezing of mES cells.	
dia and reagents used for culture of ES cells	40
tein and enzymatic analysis	42
Protein extraction	42
Western blotting	43
Co-immunoprecipitation	45
Histone extraction and analysis of post-translation modifications	45
Histone deacetylase assay	45
uction of HDAC1, HDAC2 protein deletion	46
cells growth curves	46
w cytometry	47
Propidium iodide (PI) staining	47
Analysis of apoptosis using Annexin-V	47
Analysis of GFP expression	48
IA isolation and q-RT-PCR	49
RNA isolation from ES cells and Embryoid bodies (EBs)	49
Reverse transcription	50
Quantitative real time PCR (qRT-PCR)	51
croarray Hybridization	52
RNA amplification	52
Array hybridization	53
Analysis of microarray hybridization	53
	use embryonic stem (mES) cells

2.10 Analysis of ES cell Pluripotency and Differentiation	54
2.10.1 Alkaline phosphatase assay	54
2.10.2 Differentiation of ES cells as Embryoid Bodies (EBs)	54
2.10.3 Differentiation of ES cells with Retinoic Acid (RA)	55
2.10.4 Differentiation of ES cells in LIF-free medium	55
2.10.5 Differentiation of ES cells in serum-free N2B27 media	56
2.11 Plasmid Transfection	57
2.11.1 Transformation and culture of bacterial cells	57
2.11.2 Plasmid transfection	57
2.12 Rescue of KO cells	
Chapter 3: Examination of proliferation and differentiation	
potential of <i>Hdac1</i> ^{Lox/Lox} ; <i>Hdac2</i> ^{Lox/WT} ; <i>CreER</i> embryonic stem	cells59
3.1 Chapter aims	59
3.2 Results	61
3.2.1 Generation of conditional knockout ES cells	61
3.2.2 Decrease in total cellular deacetylase activity	64
3.2.3 Reduction in levels of co-repressor complex components	65
3.2.4 Proliferation and differentiation ability of $Hdac1^{KO}$; $Hdac2^{Het}$ cell	s is not
inhibited	68
3.2.5 Gene expression profiling of <i>Hdac1^{Lox/Lox}; Hdac2^{Lox/WT}; CreER</i> ES	S cells in
LIF-free media.	73
3.3 Conclusions	
Chapter 4: Histone deacetylase (HDAC) 1 and 2 are essential	for
accurate cell division and pluripotency of embryonic stem cells	s82
4.1 Chapter aims	82
4.2 Results	83
4.2.1 Generation of conditional double-knockout (DKO) ES cells	83
4.2.2 Inactivation of <i>Hdac1/2</i> causes loss of cell viability	86
4.2.3 Cell death in DKO ES cells is mediated by apoptosis	88
4.2.4 Cell cycle exit rescues the viability of DKO ES cells	91
4.2.5 Loss of HDAC1/2 causes defective chromosomal segregation	93

4.2.6 Loss of HDAC1/2 disrupts corepressor complex integrity and leads to an
increase in global histone acetylation
4.2.7 HDAC1/2 regulate the ES cells transcriptome and are required for the
expression of Oct4 and Nanog
4.2.8 HDAC1 and an HDAC1-2 chimera are able to rescue DKO ES cells
viability
4.2.9 Rescue of DKO cells is dependent upon the integrity of HDAC1 IP_4
binding pocket
4.3 Conclusions
Chapter 5: Understanding the role of HDAC1 and HDAC2 in ES
cells differentiation
5.1 Chapter aims
5.2 Results
5.2.1 Increased expression of cardiomyocyte markers in <i>Hdac1^{KO}; Hdac2^{Het}</i>
embryoid bodies (EBs)
5.2.2 Differentiation of <i>Hdac</i> 1 ^{KO} ; <i>Hdac</i> 2 ^{Het} ES in serum-free (N2B27) media
5.2.3 HDAC1/2 positively regulate expression of HOX genes following RA
treatment
5.3 Conclusions
Chapter 6: Discussion
6.1 HDAC1 and HDAC2 are the dominant deacetylases in ES cells
6.2 Loss of HDAC1 and HDAC2 causes defective chromosomal segregation and
loss of cell viability
6.3 HDAC1/2 regulate expression of core pluripotency factors in ES cells141
6.4 Inositol tetraphosphate (IP4) regulates activity of HDAC1 in vivo
6.5 Deletion of HDAC1-KO; HDAC2-Het predisposes cardiac differentiation of
ES cells
6.6 HDAC1/2 positively regulate expression of HOX genes
6.7 Summary
Amondiana 140
Appenuices

Table 1: List of antibodies	149
Table 2: List of primers and Universal Probe Library (UPL) hydrolysis pr	obe used
for qRT-PCR	150
Table 3: List of genes used to assess pluripotent and differentiation state	152
Table 4: List of genes deregulated \geq 1.4-fold (adjusted P < 0.05) in C vs. K	C(+LIF),
C vs. K(-LIF), and C+LIF vs. C-LIF	153
Table 5: List of genes deregulated \geq 1.4-fold (adjusted P < 0.05) in Hdac1/	'2-deleted
cells at day 2 (day 0 vs. day 2) and day 3 (day 0 vs. day3)	176
Table 6: List of genes deregulated \geq 1.4-fold (adjusted P < 0.05) in C vs. (C+RA,
and KO vs. KO+RA	210
References	216

List of figures:

Figure	1.1	Phases of chromatin compaction	2
Figure	1.2	The reversible role of histone acetyletransferases (HATs)	8
		and histone deacetylases (HDACs) on chromatin compaction	
Figure	1.3	Classification and domain organization of the classical $(Zn^{2+}$	14
		dependent) histone deacetylases (HDAC) family	
Figure	1.4	Class I HDAC co-repressor complexes	16
Figure	1.5	Origin of mouse ES cells derived from the ICM of the	28
		blastocyst (E3.5)	
Figure	1.6	Transcriptional network maintaining pluripotency in mouse	32
		ES cells	
Figure	3.1	Schematic of conditional knockout system	62
Figure	3.2	Quantification of HDAC1 and HDAC2 levels following	63
		gene inactivation	
Figure	3.3	Decrease in the overall deacetylase activity in <i>Hdac1</i> ^{Lox/Lox} ;	64
		$Hdac2^{Lox/WT}$; CreER ES cells	
Figure	3.4	Reduction in Sin3A, MTA2, and CoREST protein levels in <i>Hdac1</i> ^{Lox/Lox} ; <i>Hdac2</i> ^{Lox/WT} ; CreER ES cells	66
Figure	3.5	Increase in the global histone H3 acetylation levels	67
Figure	3.6	proliferative capacity of <i>Hdac1</i> ^{Lox/Lox} ; <i>Hdac2</i> ^{Lox/WT} ; <i>CreER</i>	68
U		ES cells is unchanged	
Figure	3.7	Hdac1 ^{Lox/Lox} ; Hdac2 ^{Lox/WT} ; CreER ES cells are able to	70
-		differentiate upon LIF withdrawal	
Figure	3.8	Cell cycle analysis of Hdac1 ^{Lox/Lox} ; Hdac2 ^{Lox/WT} ; CreER ES	72
		cells shows an increase in the percentage of sub-G1 cells	
Figure	3.9	Gene expression profiling of <i>Hdac1^{Lox/Lox}; Hdac2^{Lox/WT};</i>	74
		CreER ES cells	
Figure	3.10	Comparative analysis of pluripotency and differentiation	75
		genes in <i>Hdac1^{Lox/Lox}; Hdac2^{Lox/WT}; CreER</i> ES cells	
Figure	3.11	Validation of changes in gene expression by qRT-PCR	76

Figure	3.12	Functional annotation clustering of differentially expressed genes between control (untreated) and KO (OHT-treated) in the presence of LIE	78
Figure	3.13	Functional annotation clustering of differentially expressed genes between control (untreated) in the presence of LIF $(C+)$ and control in the absence of LIE (C_{-})	79
Figure	3.14	Functional annotation clustering of differentially expressed genes between control (untreated) and KO (OHT-treated) in the absence of LIF	80
Figure	4.1	Generation of conditional double-knockout (DKO) ES cells	84
Figure	4.2	Deletion of HDAC1/2 results in reduction in deacetylase activity	85
Figure	4.3	Inactivation of <i>Hdac1/2</i> causes loss of cell viability	87
Figure	4.4	Cell death in DKO cells is mediated by apoptosis	90
Figure	4.5	Cell cycle exit rescues the viability of the DKO ES cells	92
Figure	4.6	Loss of HDAC1/2 causes defective chromosomal segregation	94
Figure	4.7	Total cellular deacetylase activity of cell lines	96
Figure	4.8	Loss of HDAC1/2 disrupts corepressor complex integrity	98
Figure	4.9	Deletion of HDAC1/2 leads to increased global histone acetylation	99
Figure	4.10	HDAC1/2 regulate the ES cell transcriptome	102
Figure	4.11	Functional annotation analysis of differentially expressed genes	103
Figure	4.12	HDAC1/2 are required for the expression of Oct4 and Nanog	105
Figure	4.13	Transfection efficiency of HDAC1 constructs 48 hours after transfection	108
Figure	4.14	HDAC1 and HDAC1-2 chimera are able to rescue DKO ES cells viability	109
Figure	4.15	Catalytic activity of HDAC1 is dependent upon the integrity of the inositol tetraphosphate (IP ₄) binding pocket	111

Figure	4.16	Cell viability is dependent upon the integrity of the inositol	112
		tetraphosphate (IP ₄) binding pocket	
Figure	4.17	The IP4 pocket may also essential for binding of HDAC	113
Figure	5.1	Loss of HDAC1/2 effects embryoid body differentiation (EBs)	117
Figure	5.2	Loss of HDAC1/2 enhanced cardiomyocyte differentiation of EBs	119
Figure	5.3	Differentiation of ES cells lacking HDAC1/2 is associated with a slight induction of mesoderm and endoderm markers	121
Figure	5.4	Differentiation of <i>Hdac1^{KO}</i> , <i>Hdac2^{Het}</i> ES cells in serum-free media	124
Figure	5.5	Expression of neuronal specific markers in $Hdac1^{KO}$; $Hdac2^{Het}$ ES cells	126
Figure	5.6	Number of differentially expressed genes in RA treated cells	128
Figure	5.7	Expression levels of pluripotent factors are unchanged at six hours following RA treatment	129
Figure	5.8	HDAC1/2 positively regulate expression of primary RA response genes	132
Figure	5.9	Expression of RA receptors is unchanged in <i>Hdac1/2</i> deleted cells	134
Figure	5.10	Comparative analysis of the top one hundred up- and down- regulated genes following RA treatment	136

List of tables:

Table 1.1	Post-translation modification of histone tails	6
Table 1.2:	A summary of germ-line deletion of HDAC phenotypes in mice	24

Abbreviations:

4-OHT	4-hydroxytamoxifen
aa	amino acid
ac	acetyl
AP	alkaline phosphatase
ASCL1	achaete-scute homolog 1
ATP	adenosine triphosphate
BMP4	bone morphogenic protein4
BocK	Boc-acetyle lysine
Вр	base pair
BP-GO	biological process gene ontology
СаМК	calcium/calmodulin-dependent protein kinase
CDK	cyclin-dependent kinase inhibitors
cDNA	complimentary deoxyribonucleic acid
Cdx1	caudal type homeobox1
CHD	chromo-domain helicase DNA
CHD1-4	chromo-domain helicase DNA binding protein
ChIP	chromatin immunoprecipitation
ChIP-seq	ChIP combined with high-throughput sequencing
ChK1	checkpoint kinase1
сКО	conditional knock-out
CNS	central nervous system
Co-IP	coimmunoprecipitation
CoREST	co-repressor to REST
CreER	cre recombinase, estrogen receptor
Ct	cross threshold
CtBP	carboxyl-terminal terminal binding protein
CTT	carboxyl-terminal tail
CXCR4	C-X-C chemokine receptor type 4
CYP26a	cytochrome P450 26 subfamily
DAD	deacetylase activation domain
DAVID	database for annotation, visualization, and integrated discovery
DEPC	diethylpyrocarbonate
DMSO	dimethyle-sulphoxide
DNA	deoxyribonucleic acid
DNMT	DNA (cytodine-5)-methyltransferase
Dnmt3b	DNA (cytodine-5)-methyltransferase 3b
E2F4	E2 transcription factor 4
EBs	embryoid bodies
eGFP	enhanced green fluorescent protein

ELM2	egl-27 and MTA1 homology 2 domain
ERK	extracellular signal-regulated kinase
Esrrb	estrogen-related receptor beta
FACS	fluorescence-activated cell sorting
FAM	6-carboxyfluorescein
FBS	foetal bovine serum
Fc	fold change
FGF4	fibroblast growth factor 5
FRAP	fluorescent recovery after photobleach
FZD9	frizzled 9
GAPDH	glyceraldehyde 3-phosphate dehydrogenase
GATA4	GATA-binding protein4
GCNF	germ cell nuclear factor
GPS2	G protein suppressor 2
Н	histone
HAT	histone acetyletransferases
HDAC	histone deacetylase
HEPES	4-(2-hydroxyethyle)-1-piperazineethanesulfonic acid
HEX	hexachlorofluorescein
HID	HDAC interaction domain
HOP	homeodomain only protein
HP1	heterochromatin protein 1
ICM	inner cell mas
Id	inhibitor of differentiation
Ikaros	Ikaros family zinc finger protein1
IL-10	interleukin 10
IP4	inositol tetraphosphate (1,4,5,6)
IVT	in vitro transcription
JMJD	jumonji C domain containing demethylase
KMT	lysine methyletransferase
LB	luria-bertani
LBD	ligand-binding domain
Lhx1	LIM homeobox1
LIF	leukemia inhibitory factor
LoxP	locus of X over P1
LSD1	lysine demethylase
MBD	methyl-CpG binding domain
me1,2,3	mono, di-, tri-methylation
MeCP	methyl-CpG binding protein 2
MEF	mouse embryonic fibroblast
MEF2	myocyte enhancer factor2
Mef2c	myocyte enhancer factor 2C
Meis2	homeobox protein Meis2

mES	mouse embryonic stem		
Mi-2B	chromodomain helicase DNA binding protein3		
MMP	matrix metalloproteinase		
MTA1-3	metastasis associated protein		
Myc	myelocytomatosis oncogene		
MyoD	myogenic differentiation1		
Nanog	nanog homeobox		
NCoR	nuclear receptor corepressor		
NKX2-5	homeobox protein NK-2 homolog E		
NODE	Nanog- and Oct4-associated deacetylase complex		
NuRD	nucleosome remodelling and histone deacetylase complex		
Oct4	POU domain-containing transcription factor		
Otx2	orthodenticle homeobox 2		
P21	cyclin dependent kinase inhibitor 1A		
P300	histone acetyletransferases p300		
p53	tumor suppressor protein		
P57	cyclin-dependent kinase inhibitor 1C		
РАН	paired amphipathic helix		
PARP	Poly (ADP-ribose) polymerase 1		
PAX6	Paired box protein6		
PBS	phosphate buffered saline		
PBST	phosphate buffered saline- tween		
PI	Propidium iodide		
PKD	protein kinase D		
PLB	protein loading buffer		
PRC1	polycomb repressive complex1		
PRC2	polycomb repressive complex2		
PRMT	arginine methyletransferases		
PS	phosphatidylserine		
PTM	post-translation modification		
qRT-PCR	quantitative real-time polymerase chain reaction		
RA	retinoic acid		
RAR	retinoic acid receptor		
RARE	retinoic acid response element		
RbAp46/48	retinoblastoma associated protein		
REST	repressor element-1 silencing transcription factor		
Rif1	telomere-associated protein		
RIN	RNA integrity number		
Rme1	arginines can be mono-methylated		
RNaseA	RNaseA		
RT	room temperature		
Runx2	runt-related transcription factor-2		
RXR	retinoic X receptors		

SAM	S-adenosylemethionine
SDS	sodium dodecyle sulphate
SDS-PAGE	sodium dodecyle sulphate polyacrylamide gel electropheresis
SDS3	suppressor of defective silencing 3
SEM	standard error of mean
SET	Su(var)3-9, Enhancer of Zeste and Trithorax
Sin3a	SWI-independent 3
Sir2	silent information regulator 2
SMRT	silencing mediator of retinoid and thyroid receptor
SOX1-2	SRY-Related HMG-Box
STAT3	signal transducer and activator transcription 3
Stra8	stimulated by retinoic acid 8
SUMO	small ubiquitin-related modifier
SWI/SNF	SWI/sucrose non-fermentable
TBL1	transducing β-like1)
TBX5	T-box transcription factor
TE	trophectoderm
TIMP1	inhibitor of metalloproteinase1
TNNT2	cardiac troponin type 2
TSA	trichostatin A
UBC9	SUMO-conjugating enzyme E2
UPL	universal probe library
WCE	whole cell extract
Wnt	wingless-integration 1
WT	wildtype

Chapter 1: Introduction

1.1 Chromatin

The genome of eukaryotic species is greatly compacted into chromatin, a dynamic protein-DNA structure that can change its shape and conformation during the life of a cell. The dynamic nature of chromatin plays a crucial role in regulating gene expression, structural and chemical modifications on chromatin can alter the expression of specific genes. Interphase chromatin exists in two forms based on its level of compaction: heterochromatin, a condensed form, which is transcriptionally inactive, and a less condensed/relaxed form, known as euchromatin that is transcriptionally active (Grewal, S., and Jia, S., 2007).

The basic repeating structural unit within eukaryotic chromatin is the nucleosome. In 1997, the crystal structure of the core nucleosome was determined by Timothy Richmond's group, it is composed of 146 base pairs (bp) of DNA wrapped 1.65 times around an octamer of histone proteins consisting of two molecules of each of the four core histones, in which two H2A-H2B dimers form a complex with an H3-H4 tetramer (Luger. K., et al., 1997). Each histone consists of a globular core domain and an unstructured N-terminal tail, which protrudes from the chromatin making it subject to covalent modifications which subsequently affect the level of chromatin compaction and alters the accessibility of DNA to the transcription machinery.

In the first level of chromatin compaction, the adjacent nucleosomes form nucleosomal arrays in an 10nm fiber known as "beads on a string" with approximately 20-80 bp of linker DNA between nucleosomal subunits which can be bound by histone 1 (H1) and other non-histone proteins (Zhou, YB., et al.,1998; Thoma, F., et al., 1979). Nucleosome units are further organized into a more compact structure known as the 30nm fiber with approximately six nucleosomes per turn in a helical solenoid or zigzag model (Finch, J., and Klug, A., 1976; Thoma, F., et al., 1979) (Figure 1.1). During metaphase, the chromatin is further compacted into loops with the assistance of fibrous proteins to generate a highly condensed chromatin.

Figure 1.1: Phases of chromatin compaction. DNA wrapped 1.65 times around an octamer of histone which then further compact to form a 30nm chromatin fiber.

As described above, the level of chromatin compaction can affect the ability of gene transcription machinery to access DNA and thereby control gene expression. There are a number of mechanisms that are able to modulate chromatin structure, including: ATP-dependent remodeling complexes, DNA methylation (CpG di-nucleotide methylation) and post-translation modification of histones.

ATP-dependent chromatin remodeling complexes utilize the energy from the hydrolysis of ATP to reposition nucleosomes. They are large group of proteins conserved within eukaryotes, characterized by the presence of the ATPase subunit of SNF2 and classified into four different families: SWI/SNF family that is required for gene activation, ISWI or imitation SWI family which are involved in transcription repression, Mi-2 or CHD family that possess deacetylase activity in addition to their chromatin remodeling, and INO80 family which are involved in various biological processes, including transcription, DNA replication and DNA repair (Clapier, C., et al., 2009; Jin, J., et al., 2005).

DNA methylation is a common epigenetic modification associated with gene silencing and is important for the regulation of development and a number of key processes including genomic imprinting. DNA methylation occurs via DNA methyletransferases (DNMTs), which attach a methyl group to the 5-position of cytosine within the context of CpG dinucleotides. A CpG refers to a dinucleotide of cytosine and guanine bases that are connected by phosphodiester bond, the unmethylated CpG sites are often clustered together in CpG islands which are 1000-2000 bp in length and found in the vicinity of gene promoters. Methylated DNA is bound by methyl-CpG binding proteins (MBDs), which recruit other protein complexes, causing chromatin compacting and transcriptional repression. For example, MeCP2 (methyl-CpG binding protein 2) is a member of MBD family that interacts with transcriptional corepressor complex Sin3a (Cukier, H., et al., 2008). Moreover, MBD2 (methyl-CpG binding domain2) is associated with NuRD corepressor complex that repress the transcription through the deacetylation of histone tails by HDACs (Hendrich, B., et al., 2001).

Remodeling of chromatin structure can also be achieved by covalently modifying histones, which effect the chromatin compaction and thereby influence gene expression. Most histone modifications predominantly occur at their unstructured N-terminal tails. Important histone modifications include acetylation, methylation, phosphorylation and ubiquitylation.

1.2 Histone modifications

The flexible charged N-terminal tails of histones protrude from the nucleosome and are subject to a several types of post-translation modifications (PTMs) that were first identified in the 1960s. Allfrey et al., showed that histone acetylation correlated with the level of RNA synthesis and regulation (Allfrey, V., et al, 1964). Histone modifications may directly alter chromatin compaction by influencing nucleosomes interactions or they can act as marks to be recognized by other non-histone protein complexes. More than 60 different histone residues have been found to be modified to date, with eight distinct types of modifications, including acetylation, methylation, phosphorylation, ubiquitylation, sumoylation, ADP-ribosylation, deamination and proline isomeration (Kouzarides. T., 2007). Most of the enzymes that carry out these

modifications are involved in regulating gene expression or other genomic functions. Table 1.1 summarizes a number of posttranslation modifications of core histones.

The combination of modification marks on histones and their biological significance led to the proposal of a "histone code hypothesis" in which the pattern of histone modifications acts as a code that can be recognized (or read) by protein complexes that modulate gene expression through their effect on chromatin structure (Allis, C.D. and Strahl, B.D, 2000). Different types of histone modifications cooperate or "cross-talk" to regulate biological processes. PTM cross-talk can serve as a signal that promotes or blocks the addition of a second modification. Cross-talk between modifications can occur on a single histone or between histones in a single nucleosome, or across nucleosomes (Suganuma, T., et al. 2008; Fischle, W., et al. 2003).

РТМ	Histone	Residue	Transcriptional role or/Function
Acetylation	H3 H4 H2A H2B	K4, 9, 14, 18, 36, 56 K 5, 8, 12,16 K5 K5, 12, 15, 20	Activation Activation Activation
Phosphorylation	H3 H4 H2A	T3, T11, S10 S28 S1 S1, T120	Mitosis Activation Activation Mitosis
Methylation	H3 H4	R2, 8,17,26 K4, 36 K9, 27 K20 R3	Activation Activation Repression Activation
Ubiquitination	H2A H2B	K119 K120	Repression Activation
Sumoylation	H2B H2A H4	K6, 7 K126	Repression Repression Repression
Isomeration	Н3	P30 P38	Activation Repression

Table 1.1 Post-translation modification of histone tails. K, lysine; T, threonine; S, serine; R, arginine; P, proline. (Adapted from Berger, S.L., 2007 and Kouzarides, T., 2007).

There are distinct sets of histone modifications associated with silent heterochromatin, which generally shows low levels of acetylation and high levels of H3K9, H3K27 and H4K20 methylation, whereas the actively transcribed euchromatin shows high levels of acetylation and tri-methylated H3K4, H3K36, and H3K79. Below, I will discuss how each of the individual types of histone PTMs effects chromatin structure and gene expression.

1.2.1 Acetylation

The first histone PTMs shown to have an effect on chromatin compaction and associated with transcription activation was acetylation (Allfrey, V., et al, 1964; Hebbes, T., et al., 1988). Histone acetyletransferases (HATs) catalyze the addition of acetyl group to the ε-amino group of lysine residues on the N-terminal tails of histones which neutralize the positively charged nitrogen atom that mediates the interaction between histone tails and negatively charged DNA and thereby increasing chromatin accessibility. HATs can be divided into two major classes: Type-A HATs, catalyze the acetylation of nucleosomal histories in the nucleus, and Type-B HATs, catalyze the acetylation of the newly synthesized histones (H4 at K5 and K12 and different sites on H3) in the cytoplasm leading to their transport to the nucleus and deposition onto newly replicated DNA (Sterner, D., and Berger, S., 2000). Three families of HATs have been identified based on their catalytic domains: GANT, MYST and CBP/p300 (Verdone, L., et al., 2006). Most acetylation sites are present within the N-terminal tails of histones H3 (K4, 9, 14, 18, 36) and H4 (K5, 8, 12, 16), which are positively correlated with gene activation. The steady-state level of lysine acetylation and deacetylation is achieved through the action of histone acetyletransferases (HATs) and histone deacetylases (HDACs). Deacetylation restores the positively charge to histones and thus yields a compact chromatin structure and consequently represses gene transcription (discussed in greater details in 1.3) (Figure 1.2).

Figure 1.2: The reversible role of histone acetyletransferases (HATs) and histone deacetylases (HDACs) on chromatin compaction. (Rodd, A.L., et al., 2012).

1.2.2 Phosphorylation

Histone phosphorylation is also associated with transcriptional activation. Histones are phosphorylated at serines, tyrosines and threonines by specific protein kinases which catalyzed the addition of a phosphate group (PO4) while phosphatase mediate removal of it. Phosphorylation of serine 10 of histone H3 (H3S10P) is the most studied site and associated with transcriptional activation of genes, for instance heat shock genes. However, the H3S10P has been also involved in chromosome condensation and segregation during mitosis (Nowak, S., 2004), which indicates that the effect of this modification is more context-dependent. Phosphorylation of Threonine 11 of Histone 3

(H3Thr11P) by Dlk/Zip kinase is predominant at the centromeres during mitosis. It can be further phosphorylated by ChK1 and has been involved in transcriptional repression of specific genes upon DNA damage (Banerjee, T., and Chakravarti, D., 2011).

1.2.3 Ubiquitylation and sumoylation

Histones are also subjected to ubiquitylation, which refers to the covalent attachment of a 76 amino acid protein (ubiquitin) to the ε-amino group of lysine residues, and sumoylation, which is the addition of SUMO (small ubiquitin-related modifier) protein to the lysine residue. Histone H2A and H2B are the most highly ubiquitinatd sites, they can be mono- or polyubiquitylated, however, the most abundant forms is monoubiquitylated of H2A on lysine119 and H2B on lysine 120. The ubiquitylation of H2A at lysine 119 that mediated by Ring1b (E3 ligase) is associated with transcriptional repression. Ring1b was found in polycomb repressive complex 1(PRC1) which plays a role in gene silencing (Cao, J. and Yan, Q., 2012). Contrary to H2A, The ubiquitylation of H2B at lysine 120 is correlated with gene activation, for instance, HOX gene expression (Zhu, B., et al., 2005). Histone sumoylation has been found on H2A, H2B and mainly on H4 (Nathan, D., et al., 2006). Sumoylation of Histone H4 by UBC9 (SUMO-conjugating enzyme E2) is associated with transcriptional repression through the recruitment of histone deacetylases (HDACs) and heterochromatin protein1 (HP1) (Shiio, Y., et al., 2003).

1.2.4 Methylation

Unlike the other histone modifications discussed so far, histone methylation can occur at lysine or arginine residues and does not alter the positive charge of the amino acids. Lysines can be mono-methylated (me1), di-methylated (me2) or tri-methylated (me3), whereas arginines can be mono-methylated (Rme1), symmetrically (Rme2s) or asymmetrically (Rme2a) di-methylated. Lysine methyletransferases (KMTs) are responsible for the addition of a methyl group from the donor S-adenosylemethionine (SAM) to ε-amino group on lysine residue. With the exception DOT-1, all lysine known methyletransferases contain a conserved SET domain (Su(var)3-9, Enhancer of Zeste and Trithorax) responsible for the enzymatic activity (Rea, S., et al., 2000). In contrast to histone acetyletransferases (HATs), KMTs show a high specificity for their target lysine and the degree of methylation. For example, EZH2 KMT (a part of PRC2 complex) catalyzes H3K27me3, whereas, Suv39h KMT is responsible for methylation of H3K9me3 which is associated with formation of heterochromatin (O'Carroll,D., et al., 2001; Lachner, M., et al., 2001). Arginine is methylated by a distinct group of methyletransferases known as protein arginine methyletransferases (PRMTs), which catalyze the transfer of methyl group from SAM to the ω -guanidino group of arginine. PRMTs are classified into two classes, type I (Rme1 and Rme2as) and type II (Rme1 and Rem2s). Originally, the methylation of lysine was proposed to be stable and irreversible until the discovery of the first lysine demethylase, LSD1, which mediates demethylation of H3K4me2 (Shi., Y., et al., 2004). Lysine demethylases are now classified into two families; amine oxidases (LSD1 and LSD2) and Jumonji C (Jmjc-) domain containing demethylase (JMJD) (Whetstine., J., et al., 2006 and Tsukada., Y.,

et al., 2006). Lysine methylations are associated with transcriptional activation (H3K4, H3K36 and H3K79) and repression (H3K9, H3K27 and H4K20). The effect of Lysine methylation on gene transcription is context dependent, relying on the specific residue and the number of methyl moieties. For example, transcriptional activation is associated with methylation of H3K4, H3K36 and H3K79; while repression is linked with the methylation of H3K9, H3K27 and H4K20. The functionality of these sites is manifested by the recruitment of a specific binding protein with cognate chromodomain, tudor domain or PhD fingers. For example, the chromodomain containing heterochromatin protein 1 (HP1) binds H3K9me3 and is responsible for establishing constitutive heterochromatin and gene silencing (Bannister, A., et al., 2001). H3K27me3 recruits the PRC1 complex (polycomb repressive complex1) which is implicated in silencing HOX genes and X chromosome inactivation and genomic imprinting (Bracken., A., et al., 2006). On the other hand, the ATP-dependent chromatin remodelers CHD1 binds H3H3K4me3 through their chromodomain, this modification is predominantly present around the transcription start site and associated with transcriptional activation (Barski., A., et al., 2007).

1.3 The Histone deacetylases (HDACs) family

The first HDAC (HDAC1) was identified in 1996 using the HDAC inhibitor trapoxin as an affinity tag (Taunton, J., et al., 1996), and was found to be an orthologue of the yeast protein, Rpd3 which was known to be a global gene regulator with histone deacetylase activity (Vidal, M. and Gaber, R., 1991). Subsequently, using a combination of protein homology and complex purification, 18 mammalian HDACs have been identified and classified based on their homology to the yeast HDAC Rpd3. These HDACs have been designated as the Zn⁺² dependent "classical family ", since the discovery of Sir2 (silent information regulator 2) or sirtuin protein family that are NAD⁺ dependent (Haigis, M. and Guarente. L., 2006). The classical HDAC family is grouped into class I, class II and class IV, with class II being further subdivided into subclasses IIa and IIb (Figure 1.3). The NAD⁺ dependent sirtuins were referred as class III (De Ruijter. A., et al., 2003). The HDAC classes are different in their structure, function, subcellular localization and expression patterns. I will discuss each of the different HDAC classes below.

1.3.1 Four distinct HDAC classes

The class I HDAC family consists of HDAC1, HDAC2, HDAC3 and HDAC8, which are ubiquitously expressed, localized in the nucleus and exhibit high enzymatic activity toward histone substrates (De Ruijter. A., et al., 2003). With the exception of HDAC8, the class I HDACs are components of multiprotein complexes, which are crucial for

their transcriptional repression activity. HDAC1 and HDAC2 are highly similar proteins (83% sequence identity), with conserved catalytic domains and divergent C-terminal tails, which harbor two tandem casein kinase 2 phosphorylation sites that can be modified and effect their deacetylase activity and complex formation (Sengupta, N., and Seto, E., 2004). In mammalian cells, HDAC1 and 2 are found together in three main co-repressor complexes which modulate their deacetylase activity and DNA binding. The main HDAC1/2 containing complexes are the Sin3A, NuRD and CoREST (Yang, X. and Seto, E., 2008), discussed in detail below (section 1.4). HDAC3 shares 68% sequence identity with HDAC1and HDAC2, although it exits in distinct co-repressor complexes with the nuclear receptor co-repressor SMRT and NCoR, which are essential for activation of its deacetylase activity (Watson, P., et al., 2012; Millard, C., et al., 2013). HDAC8 is most similar to HDAC3 (34% identical) and it is fully functional in solution without need to interact with a co-repressor complex.

Class IIa HDACs comprise HDAC4, HDAC5, HDAC7 and HDAC9, which consists of deacetylase domain and a conserved long N-terminal region that contain conserved binding sites for the transcription factor MEF2 (myocyte enhancer factor2) and the chaperone protein 14-3-3. Upon phosphorylation by kinases, for instance CaMK (calcium/calmodulin-dependent protein kinases) or PKD (protein kinase D), these HDACs shuttle from the nucleus to the cytoplasm through their binding with 14-3-3 protein (Grozinger, C., and Schreiber, S., 2000). In contrast, association with MEF2 promotes nuclear localization of HDACs and therefore leads to transcriptional repression of the target genes. Class IIa HDACs have negligible deacetylase activity due to the presence of Histidine rather than Tyrosine in their catalytic site (Lahm. A., et al., 2007). In contrast to class I HDACs, the expression and function of class IIa is

tissue-specific, HDAC4, 5 and 9 are enriched in brain heart and muscle, whereas, HDAC7 is highly expressed in endothelial cells and thymocytes (Heberland, M., et al., 2009b and De Ruijter. A., et al., 2003).

Figure 1.3: Classification and domain organization of the classical (Zn2+ dependent) histone deacetylases (HDAC) family. Dark blue bars represent the deacetylase domain, red bars represent serine phosphorylation sites and grey bars represent Myocyte enhancer factor 2(MEF)-binding motifs (Adapted from Mihaylova and Shaw, 2013). Class IIb contains only HDAC6 and HDAC10. HDAC6 is the main cytoplasmic deacetylase enzyme and it is distinct from all other HDACs, as it contains two tandem deacetylase domains and C-terminal zinc finger domain that can bind ubiquitin (Yang. X., and Seto. X., 2008). HDAC10 has one deacetylase domain that is highly similar to the N-terminal deacetylase domain of the HDAC6, and a leucine-rich C-terminal domain. HDAC10 plays a role in suppression of cervical cancer through inhibition of matrix metalloproteinase 2 and 9 (MMP2 and MMP9) (Song, C., et al., 2013).

HDAC11 is the sole member of class IV HDACs. HDAC11 is highly conserved across species, composed of a deacetylase domain that is closely related to class I and class II HDACs, and a small N-terminal domain (Gao, L., et al., 2002). HDAC11 has been shown to negatively regulate interleukin 10 (IL-10), which effects the inflammatory response (Villagra, A., et al., 2009).

1.4 Class I HDAC co-repressor complexes

With the exception of HDAC8, all class I HDACs must be recruited into multiprotein corepressor complexes to activate their enzymatic activity and be recruited to their appropriate genomic targets. The main co-repressor complexes for Class I HDACs in mammalian cells are Sin3A, NuRD, CoREST and NCoR/SMRT (Figure 1.4). HDAC1 and HDAC2 form the catalytic core of all co-repressor complexes, except HDAC3 in the NCoR/SMRT complex.

Complex	Component	Protein domain
Sin3	HDAC1, HDAC2	deacetylase
	RbAp46, RbAp46	WD40 repeat
	Sin3A	PAH motifs
	Sds3	
	RBP1	
	SAP18	Ubiquitin fold
	SAP30	
	ING1/2	PHD finger
NuRD	HDAC1,HDAC2	Deacetylase
	RbAp46, RbAp46	WD40 repeat
	Mi2α/β	Helicase
	MTA1/2/3	SANT domain
	MBD2/3	Methyl CpG binding
	Ρ66α/β	
CoREST	HDAC1,HDAC2	Deacetylase
	CoREST	SANT domain
	LSD1	SWIRM domain
	BCH30	PHD finger
	CtBP	Dehydrogenase
NCoR/SMRT	HDAC3, HDAC4	Deacetylase
	NCoR/SMRT	SANT domain
	TBL1/TBLR1	WD40 repeat
	GPS2	
	JMJD2A	PHD finger/Tudor domain
	Kaiso	Methyl CpG binding

Figure1.4: Class I HDAC co-repressor complexes. The schematic shows composition co-repressor complexes (kindly provided by Dr.Shaun Cowley). The table detailed the list of components and protein binding domains (Adapted from Yang, X. and Seto, E., 2008).

1.4.1 Sin3 complex

Sin3 was initially identified as the corepressor utilized by Mad-Max in order to repress Myc target genes. Sin3 was identified as a homolog of the yeast transcriptional repressor Sin3 (Ayer. D., et al., 1995). Mammals have two Sin3 isoforms, Sin3A and Sin3B, which are 57% identical sharing highly conserved PAH and HID (HDAC interaction domain) domains. Sin3A and B are thought to provide a platform for the assembly of the complex, while HDAC1/2 provides the catalytic activity. SDS3 (suppressor of defective silencing 3) is an integral component that is required for the integrity and catalytic activity of the complex. The RbAp46/48 (retinoblastoma associated protein) are important to stabilise the interaction with the nucleosome. The Sin3A complex does not contain a DNA binding motif; therefore, it is recruited to chromatin targets by interacting with DNA-binding transcription factors, such as Mad1, Ikaros and p53 (Silverstein, R., and Ekwall, K., 2005). Sin3A is required for early embryonic development and T-cell proliferation. Knockout of mSin3A in mouse embryonic fibroblasts (MEFs) results in de-repression of genes involved in cell cycle progression, apoptosis, DNA replication, DNA repair and delocalization of HP1a (heterochromatic protein) (Cowley et al., 2005; Dannenberg et al., 2005). Sin3B plays an essential role in late stage of development in mice, deletion of Sin3B shows defect of multiple lineages differentiation due to de-repression of E2F4 and Mxd1 target genes (David et al. 2008).

1.4.2 CoREST complex

CoREST was initially identified as a corepressor of REST (repressor element-1 silencing transcription factor), which plays an important role in the regulation expression of neuronal genes in non-neuronal cells (Andres, M., et al 1999). Subsequently, CoREST was demonstrated by You et al., to be a component of HDAC1/2-containing co-repressor complex (You, A., et al 2001). HDAC1 and HDAC2 interact with the ELM2/SANT1 domains of CoREST, which confers catalytic activity within the CoREST complex. Further components include, LSD1 (Lysine specific demethylase 1) which demethylates H3K4me2/me (a positive marker of transcription) and regulates the stability of the CoREST complex (Foster, C., et al., 2010). The transcriptional corepressor CtBP (C-terminal binding protein) is also a member of the CoREST complex (Hayakawa, T., and Nakayama, T., 2011). Through its recruitment by REST, the CoREST complex is involved in regulating neural gene expression by deacetylation and demethylation of histones of histone tails (Lakowski, B., et al 2006).

1.4.3 NuRD complex

NuRD (nucleosome remodelling and histone deacetylation) complex was initially characterized based on its chromatin remodelling and deacetylase activities (Xue, Y., et al., 1998). The catalytic core of the NuRD consists of HDAC1, HDAC2, RbAp46, RbAp48 and metastasis associated protein (MTA) isoforms1, 2, and 3. All three MTA proteins contain an ELM2-SANT domain which directly recruits and activates

HDAC1 in the presence of inositol phosphate (IP4) (Millard, C., et al., 2013). The chromatin remodelling activity of NuRD is provided by CHD3/CHD4 (Mi- $2\alpha/\beta$) which are members of SWI2/SNF2 chromatin-remodelling ATPase family. NuRD is integrated into epigenetic gene regulation further by the presence of MBD2 and MBD3, which belong to methyl-CpG binding domain (MBD) family. Although a central component of NuRD, MBD3 is unable to bind methylated-CpG, however, it is essential for mouse development (Hendrich et al., 2001). Embryonic stem (ES) cells lacking MBD3 (which disrupts NuRD) show a defect in differentiation due to the inability to repress OCT4. (Kaji, K., et al., 2006). A unique NuRD-like complex has been identified in ES cells, which contains Oct4, Nanog and the core components in NuRD complex but lacks MBD3. This complex named NODE (Nanog- and Oct4-associated deacetylase), displays deacetylase activity comparable to that of NuRD complex (Liang, J., et al., 2008). It has shown that, knockdown of NODE components leads to increased expression of differentiation genes.

1.4.4 SMRT/NCoR complex

The silencing mediator of retinoid and thyroid receptor (SMRT or NCOR2) and nuclear receptor corepressor (NCoR or NCOR1) are homologous proteins that share 40% identity. HDAC3 is the catalytic component of the complexes; its activity depends on the interaction with a conserved DAD (deacetylase activation domain) within SMRT in combination with IP4 (Watson, P., et al., 2012). The NCoR/SMRT complexes also contain TBL1 (transducing β -like1) that interacts directly with chromatin and mediates the function of HDAC3, and GPS2 (G protein suppressor 2) that stabilises the assembly of the complex (Wong, M., et al., 2014). NCoR /SMRT are important for development, NCoR is essential for neural differentiation and T-cell development (Jepsen, K., et al., 2000), whereas SMRT is essential for heart development (Jepsen, K., et al., 2007).

1.5 Role of HDACs in transcriptional activation

A correlation between histone acetylation and increased gene expression was established earlier, in which acetylation of lysine residues within histone tails induced relaxation of chromatin structure. According to this model, histone acetyltransferases (HATs) are associated with transcriptional activation whereas histone deacetylases (HDACs) are associated with transcriptional repression. However, the transcription profiles of the yeast deleted for Rpd3, the yeast orthologue of HDAC1, revealed that the number of transcripts that were down-regulated was more than up-regulated (Bernstein, B., et al., 2000). Treatment of yeast with Trichostatin A (TSA), a class I and II HDAC inhibitor, also results in down-regulation of certain genes within 15 minutes of treatment, suggesting a function for HDACs in transcriptional activation.

Other studies have also suggested a link between HDACs and transcriptional activation. Kurdistani et al., used ChIP (chromatin immunoprecipitation) to map the genome-wide binding sites of Rpd3 in yeast, and found that it was preferentially associated with regions upstream of active genes (Kurdistani, S., et al., 2002) Moreover, in human primary CD4⁺ T cells, ChIP-seq (ChIP combined with high-

throughput sequencing) experiments revealed an enrichment of HDACs (class I and class II) at transcriptionally active and primed genes, which co-localised with many HATs (Wang, Z., et al., 2009). In embryonic stem (ES) cells, HDAC1 was found to predominantly bind active genes including pluripotency factors, *Oct4*, *Nanog* and *Sox2* (Kidder, B., et al., 2011). The recruitment of HDACs to active genes is thought to reset chromatin state after the actions of HATs and RNA polymerase II, suggesting that gene activation process requires a cyclical utilization of both HATs and HDACs (Wang, Z., et al., 2009). Therefore one model which explains these observations is that HDACs participate in promoter clearance required to reinitialize the promoter for multiple rounds of transcriptional activation (Dovey, O., et al., 2010).

1.6 Non-Histone target of HDACs

Histone deacetylases (HDACs) are generally identified with the deacetylation of lysine residues within the histone proteins. However, a number of non-histone proteins have also been shown to be deacetylated by HDACs, including the transcription factors p53, E2F, STAT3 and GATA4 (GATA-binding protein4) (Gu, W. and Roeder, R., 1997; Boyes, J., et al., 1998). Moreover, HDAC6 regulates microtubule cell motility by deacetylation of α -tubulin, cytoskeletal protein (Hubbert, C., et al., 2002). A mass-spectrometry based analysis of the "acetylome" of three independent cell lines identified 3,600 lysine acetylation sites on 1,750 proteins involved in major molecular process including chromatin remodelling, transcription, DNA replication, cell cycle
and splicing (Choudhary, C., et al., 2009), suggesting that acetylation of lysine is an abundant post-translation modification which contributes to many cellular processes.

1.7 HDAC knock-out mice.

Deletion of each member of the class I HDACs leads to lethality in mice, suggesting an essential role of each HDAC (Table 1.2). HDAC1 has an essential role during embryogenesis. HDAC1-null mice die before embryonic day 10.5 and exhibit severe proliferation defects and growth retardation (Lagger, G., et al., 2002). In contrast, HDAC2 knock-out mice exhibit a phenotype in late embryos and adult animals. In one study, HDAC2-null (*Hdac2^{-/-}*) mice die within the first 24 hours after birth due to cardiac defect associated with uncontrolled proliferation of cardiomyocytes that leads to obliteration of the right ventricle lumen (Montgomery, R., et al., 2007). However, in two further studies (using the same genetrap constructs) nearly half of the Hdac2^{-/-} pups died during the first 25 postnatal days, whereas the remaining littermates survived. The surviving mice had smaller heart than wild-type littermates and were unable to show normal cardiac hypertrophic responses (Trivedi, C., et al., 2007), and a decreased in the incidence of intestinal tumour formation (Zimmermann, S., et al., 2007). The cardiac defects have been previously linked to the disruption of HOP (homeodomain only protein) which functions during cardiac development as a regulator of cardiomyocyte proliferation (Chen, F., et al., 2002). It has been found previously that HOP interacts with HDAC2, deletion of HOP results in hyperprolifiation of cardiomyocytes, suggesting that HOP-HDAC2 co-repressive interactions regulate cardiac proliferation and differentiation. Combinatorial and tissue

specific deletion of HDAC1/2 will be discussed in more detail below (section 1.8).

HDAC3 is also required for early embryonic development. HDAC3-null ($Hdac3^{-/-}$) mice die before embryonic day 9.5 (E9.5) due to gastrulation defects (Montgomery, R., et al., 2008; Bhaskara, S.et al., 2008). Deletion of HDAC8 in mice results in perinatal lethality due to craniofacial abnormalities, this result was phenocopied upon conditional deletion in neural crest cells as a result of the de-repression of homeobox transcription factors such as Otx2 and Lhx1 (Haberland, M., et al., 2009a).

Several of the Class II HDACs have also been deleted in mouse models. HDAC4 has an essential role in the skeleton formation; it is expressed in the chondrocyte hypertrophy during endochondral ossification. HDAC4 negatively regulates Runx2 (runt-related transcription factor-2), which regulates the development of bone. Therefore loss of HDAC4 leads to excessive bone formation such that the rib-cage cannot expand and the mice can not breath properly and die by postnatal day 10 (P10) (Vega, R., et al., 2004). Mice lacking HDAC5 or HDAC9 are viable, whereas compound mutants HDAC5/HDAC9 die during embryogenesis and the perinatal period due to defects in growth and maturation of cardiomyocytes (Chang, S., et al., 2004). Loss of HDAC5/9 deregulates MEF2 (myocyte enhancer factor-2) activity resulting in precocious differentiation of cardiomyocytes and cardiac defects. In addition, double mutant mice are hypersensitive to cardiac stress (Chang, S., et al., 2004). HDAC7-null mice die by day (E11.0) due to cardiovascular defects. Deletion of HDAC7 leads to up-regulation of MEF-2 target gene, MMP10 (matrix metalloproteinase 10), combined with down-regulation of TIMP1 (inhibitor of metalloproteinase) leading to dilatation and ruptured blood vessels (Chang, S., et al.,

2006). In agreement with the function of HDAC6 as the main tubulin deacetylase, HDAC6-null mice are viable and display a massive increased in acetylated α -tubulin (Zhang, Y., et al., 2008).

Class	Member	Phenotype of mouse gene deletion
Ι	HDAC1	Embryonic lethality by E10.5 due to proliferation defects
	HDAC2	Perinatal death due to cardiac defect
	HDAC3	Embryonic lethality by E9.5 with gastrulation defects
	HDAC8	Perinatal lethality due to craniofacial abnormalities
IIa	HDAC4	Postnatal death (P10), chondrocyte hypertrophy
	HDAC5	Cardiac hypertrophy
	HDAC9	Cardiac hypertrophy
	HDAC7	Embryonic lethality E11 due to cardiovascular defects
IIb	HDAC6	Increased in acetylated α-tubulin
	HDAC10	-
IV	HDAC11	-

Table 1.2: A summary of germ-line deletion of HDAC phenotypes in mice. (Adaptedfrom Haberland, M., et al., 2009b)

1.8 Conditional HDAC1/2 knockout studies in mice

As discussed, deletion of both HDAC1 and HDAC2 leads to lethal phenotypes in mice, therefore, conditional deletion of Hdac1 and Hdac2 alleles were created using standard Cre/LoxP technology, which allows an analysis of their functions in a tissue specific manner. In addition, constitutive and conditional knockout cell lines have also been generated. HDAC1-null embryonic stem (ES) cells show reduced proliferation capacity and increased expression level of the cyclin-dependent kinase inhibitor p21, that is associated with a hyperacetylation of the histone H3 and H4 at the p21 promoter (Lagger, G., et al., 2002). Disruption of p21 in HDAC1-null mES cells rescued the reduced proliferation phenotype (Zupkowitz, G., et al., 2010). However, it was not sufficient to rescue the developmental phenotype, since Hdac1/p21 double knockout mice are still embryonic lethal, suggesting that the developmental defects observed in the Hdac1-null mice is not due to proliferation defects (Zupkowitz, G., et al., 2010). HDAC1 also plays an essential role in the differentiation of mES cells. HDAC1deficient mES cells exhibit precocious differentiation identified by elevated expression of cardiomyocyte and neural markers in EBs (embryoid bodies) (Dovey, O., et al., 2010). However, deletion of HDAC2 in ES cells did not yield that same phenotype, suggesting that HDAC1 is the predominant enzyme in this cell type.

Interestingly, tissue specific deletion of either HDAC-1 or -2 alone did not produce obvious phenotype, suggesting a redundant function of these two enzymes (reviewed by Kelly and Cowley, 2013). Whereas, deletion of both HDAC1/2 produced a profound phenotype in a variety of tissues, including epidermis, T-cells and B-cells (LeBoeuf, M.,et al., 2010 ; Dovey, O., et al., 2013 ; Yamaguchi, T., et al.,2010). Indeed, singular deletion of HDAC1 results in compensatory expression of HDAC2. Dovey et al., found that, conditional deletion of both HDAC1/2 (DKO) in T-cells caused development arrest, whereas, deletion of either enzymes alone did not produce a noticeable phenotype. DKO mice exhibited a 5-fold reduction in thymocyte cellularity and down-regulation of T-cell receptor signalling components. In addition, development arrest in T-cells results in lethality at approximately 15 weeks, as of neoplastic transformation of immature T-cells (Dovey, O., et al., 2013). Another study has indicated the crucial role of HDAC1 and HDAC2 in the regulation of cell cycle. Deletion of HDAC1 and HDAC2 in mouse embryonic fibroblasts (MEFs) results in growth arrest and cell cycle block in G1-phase that is associated with up-regulation of cell cycle inhibitors p21 and p57 (Yamaguchi, T., et al., 2010). ChIP experiments also indicated the binding of both HDAC1 and HDAC2 to the promoters of P21 and P57, functional knock-down of these cell cycle inhibitors rescue the cell cycle block. Deletion of both HDAC1 and HDAC2 block B-cell development at the pre-BII stage associated with G1-phase cell cycle arrest and increased apoptosis. However, deletion of enzymes in mature resting B-cells has no negative effect on cell viability unless cells induced to proliferate they undergo rapid apoptosis (Yamaguchi, T., et al., 2010).

HDAC1 and HDAC2 are also required for development of the central nervous system (CNS). Deletion of either HDAC1 or HDAC2 alone has no deleterious effect on neuronal development. However, deletion of both HDAC1 and 2 in neurons results in hippocampal abnormalities, loss of foliation of the cerebellum, failure of differentiation of neuron precursors and lethality by postnatal day7 (Montgomery, R., et al., 2009).

1.9 Mouse embryonic stem (mES) cells

The mouse embryo 3.5 days after fertilization forms a blastocyst that is segregated into cells of the inner cell mas (ICM), which will subsequently develop into the embryo, and trophectoderm (TE), which will form the placenta. Mouse embryonic stem cells (ES cells) are derived from the inner cell mass (ICM) the day E3.5 blastocyst (Figure 1.5). In 1981, the derivation of first ES cells from mouse embryo was achieved through explanting ICM onto a feeder layer of mouse embryonic fibroblasts (Evans, M., and Kaufman, M., 1981, Martin, G., 1981). Stem cells have two distinctive properties: the ability to self-renew, they are capable of dividing indefinitely, and the capacity to differentiate into all cell types, defined as pluripotency. Importantly, ES in culture also retain the ability to differentiate into the three primary germ layers, therefore serving as a model system to recapitulate the events of early embryonic development (Doetschman, T., et al., 1985; Smith, A., 2001). ES cells can also be genetically modified which facilitates the investigation of loss of gene function in the early embryo. Moreover, the potential capacity of ES cells to produce an unlimited number of homogeneous cells indefinitely that have a normal diploid karyotype is another advantage of using these cells. Pluripotency and lineage-specific differentiation of ES cells are achieved by regulating gene activity through remodeling chromatin structure, therefore, ES cells are an excellent model to study the roles of modifying enzymes during embryonic development.

Figure 1.5: Origin of mouse ES cells derived from the ICM of the blastocyst (E 3.5). After fertilization, the zygote develops into a blastocyst through series of cleavage divisions (2-6 cell stage). ES cells are derived from the ICM cells at E3.5 (Huang, G., et al., 2015).

1.9.1 Maintenance of pluripotency

Originally, mouse embryonic stem cells were maintained in co-culture with a feeder layer of mouse embryonic fibroblasts (MEFs), supplemented with a cytokine called leukemia inhibitory factor (LIF), which promotes self-renewal of ES cells (Smith, A., et al., 1988). LIF belongs to the interleukin-6 family of cytokines that initiates signaling via its receptor gp130, resulting in activation of the STAT3 (signal transducer and activator transcription 3) pathway (Niwa, H., et al., 1998). The presence of serum or BMP4 (bone morphogenic protein4) is required to coordinate with LIF to maintain pluripotency of mES cells. BMP4 signals through SMAD activation, which promotes expression of Inhibitor-of-differentiation (Id) proteins that suppress ectodermal differentiation (Ying, QL., et al. 2003). ES cells produce FGF4 that leads to the activation of MEK/ERK signaling pathway in an autocrine manner. The FGF/MEK/ERK signaling pathway is suggested to promote differentiation of ES cells as deletion of FGF4 restricts the differentiation ability of ES cells (Kunath, T., et al., 2007). Ying et al found that, the maintenance of self-renewal can be achieved by blocking differentiation-inducing signaling without requirement of LIF or serum/BMP4. A defined culture media was developed to maintain pluripotent state of ES cells using three small-molecule inhibitors (3i media): SU5402, inhibits FGF receptor; PD184352, inhibits MEK; and CHIR99021, inhibits GSK3 kinase. (Ying, QL., et al., 2008). GSK3 inhibitor maintains self-renewal through Wnt signaling pathway, which promotes stabilization and activation of β -catenin. Recently a combined inhibition of MEK and GSK3 (2i media) have been identified to promote naive ES cells (Leitch, H., et al., 2013). Culture ES cells under 2i condition is suggested to establish the ground state of pluripotency (more epiblast) characterized by generating homogeneous morphology and low level of DNA methylation, in which de novo methyletransferases Dnmt3a, Dnmt3b and Dnmt3l were downregulated. (Leitch, H., et al., 2013).

1.9.2 pluripotency factors

The expression of key transcription factors is essential for the maintenance of the ICM during mouse development and for maintenance of self-renewal and pluripotency of ES cells. Oct4 (Pou5f1) is a POU domain-containing transcription factor, its expression is restricted to the inner cell mass and it has been identified as a crucial factor for ICM pluripotent identity (Niwa, H., et al., 2000). Indeed, ES cells lacking OCT4 differentiate inappropriately into trophectoderm. However, overexpression of Oct4 induces differentiation toward extra-embryonic endoderm and mesoderm linages. This implicates that the restriction of Oct4 expression is required for pluripotency (Niwa, H., et al., 2000). Nanog is a homeodomain transcription factor that plays an important role in the maintenance of pluripotency in epiblast and ES cells. Loss of Nanog in ES cells results in spontaneous differentiation into primitive endoderm. Conversely, over-expression of Nanog induces ES cell self-renewal even in the absence of LIF (Mitsui, K., et al., 2003, Chambers, I., et al., 2003). Sox2 is a high mobility group (HMG)-box transcription factor that acts cooperatively with OCT4 to maintain pluripotency and self-renewal by regulating expression of multiple genes including FGF4. Unlike Oct4, expression of Sox2 is not restricted to pluripotent cells it also expressed in early primitive ectoderm (Avilion, A., et al., 2003).

A Genome-wide ChIP analysis used to map binding sites of Oct4, Nanog and Sox2 throughout human and mouse ES cells revealed that many of their target genes overlap (Boyer, L., et al., 2005; Loh, YH., et al., 2006). In mouse ES cells, 1083 and 3006 binding sites are targeted by Oct4 and Nanog respectively, of which 345 genes are bound by both. Most of these genes encode transcription factors, including Oct4, Nanog and Sox2 themselves, as well others factors that promote pluripotency and

inhibit differentiation of ES cells. Overall, core pluripotency factors act cooperatively to construct a regulatory circuitry consisting of auto-regulatory and feed-forward loops of regulation (Boyer, L., et al., 2005; Loh, YH., et al., 2006). Core pluripotency factors are believed to be critical for repression differentiation programme. Nanog and Oct4 activate genes encoding transcription factors that mediate gene repression including, Esrrb, Rifl and REST. Knockdown of these genes has been shown to promote ES cell differentiation (Loh, YH., et al., 2006). Moreover, core pluripotency factors regulate activation of genes encoding a component histone-modifying complex, such as Jmjd1a and Jmjd2c which are demethylase enzymes that are regulated by Oct4, depletion both of them induces ES cell differentiation (Loh., YH., et al., 2007). Perturbation of the balance between pluripotency and differentiation factors favors of differentiation and leads to lose of pluripotency. For example, a loss of balance between Nanog and Gata4 or Gata6, by decreasing Nanog or over-expression of Gata4 or Gata6, will lead to differentiation of primitive endoderm (Mitsui, K., et al., 2003; Fujikura, J., et al., 2002). Transcription factors thus work in a mutually antagonist way to regulate cell fate determination within the blastocyst, typified by the function of Cdx2 (caudal-type homeodomain transcription factor) which is required for trophectoderm, which counters the gene expression programme of Oct4 in the ICM (Niwa, H., et al., 2005).

Figure1.6: Transcriptional network maintaining pluripotency in mouse ES cells. The core pluripotency factors Oct4, Nanog and Sox2 work cooperatively to regulate expression of other pluripotency factors (including themselves), while repressing differentiation genes. Figure from Loh, YH.,et al., 2011.

A recent analysis revealed an expanded set of transcription factors network containing the core pluripotent factors (Nanog, Oct4 and Sox2) in addition to other factors that control the pluripotent state of ES cells (Kim, J., et al., 2008). The nine transcription factors (Oct4, Nanog, Sox2, Dax1, Zpf281, Nac1, Klf4, Rex1 and Myc) occupy more than a third of mouse promoters in different combinations. Previously, Loh et al. found that 345 genes were co-occupied by pluripotency core factors (Nanog, Oct4 and Sox2), However, more than 800 promoters were found to be occupied by at least four of the nine transcription factors (Kim, J., et al., 2008). Moreover, the level of expression was found to correlate with number of bound factors; promoters bound by more than one factor are more likely to be transcriptionally active, whereas those bound by fewer factors were generally repressed, including $\sim 50\%$ of genes occupied by only one factors. It also found that, Myc (occupied 18% of all promotors) and Rex1were distinct from the other factors as they highly bound active genes involved in protein metabolism. The remaining factors are enriched in genes implicated in developmental processes (Kim, J., et al., 2008).

1.9.3 Differentiation of mES cells in culture

ES cells offer the potential to study the gene expression and signaling events of early embryogenesis in a tissue culture system. ES cells have the capacity to differentiate under appropriate conditions to generate different lineages that facilitate the investigation of several aspects of early development in vitro. The first in vitro model of embryogenesis was based on differentiation of ES cells into a three embryonic germ layers: mesoderm, endoderm and ectoderm by generation of embryoid bodies (EBs), which mimic the early post-implantation embryo (Doetschman, T., et al., 1985; Keller, G., 1995).

Three general approaches are commonly used to initiate differentiation of ES cells in vitro. The first most common method involves aggregation of ES cells in suspension to form embryoid bodies (EBs) in the absence of LIF. Formation of EBs begins with the specification of the outer layer toward primitive endoderm and other lineages derived from the core of the structure (Doetschman, T., et al., 1985; Keller, G., 1995). The second method involves direct culture of ES cells on stromal cells, most often OP9 cells, in which the differentiation is initiated by cell-cell contact (Nakano, T., et al.,

1994). The third approach involves inducing differentiation of ES cells in a monolayer on extracellular matrix protein (Nishikawa, S., et al., 1998). Cells within EBs will differentiate to more advanced, committed cell types including, cardiomyocytes, neuronal cells and haematopoietic precursors. In addition, removal of LIF and serum (BMP4) will promote spontaneous differentiation of ES. Removal of LIF alleviates the inhibitory effect of STAT3 leading to differentiation towards endoderm and mesoderm, while removal of BMP4 relieves the inhibitory effect of Id protein leading to neuroectoderm differentiation. In addition, the addition of growth factors helps direct differentiation of ES cells toward specific lineages, examples include retinoic acid (RA), insulin and Wnt proteins.

1.10 Chromatin state of embryonic stem (ES) cells

ES cell Chromatin displays characteristics of transcriptionally permissive euchromatin, such an abundance of acetylated histones and increased accessibility to nucleases (Boyer, L., et al., 2006). Upon differentiation, chromatin associated with repressed genes is modified into facultative heterochromatin with a decrease in histone acetylation. Analysis of global chromatin dynamic by measuring the binding of chromatin-associated protein using fluorescent recovery after photobleach (FRAP) revealed that heterochromatin associated protein (HP1) and other histone variants are hyper-dynamically bound with chromatin of pluripotent cells and become tightly associated with chromatin in differentiated cells (Phair, R., et al., 2004; Meshorer, E.,

et al., 2006). Moreover, It has shown that, replacement of histone H1 with aversion that binds tightly to chromatin inhibited differentiation of ES cells. These data indicate that pluripotent ES cells are maintain an open arrangement of chromatin structure that becomes more compact in differentiated cells.

ES cell pluripotency is characterized by a specific epigenetic profile where lineage specific genes remain in a semi-permissive transcriptional state. These genes are typically not expressed in ES cells but become activated upon differentiation, are enriched for dual marks or bivalent domains, consisting of repressive H3K27me3 and activating H3K4me3 modifications (Azuara,V., et al., 2006, Bernstein, B., et al., 2006). The bivalent domain may promote ES cell pluripotency by maintaining the expression of lineage-specific genes in a quiescent or poised state for activation which then resolved appropriately depending on the cell type.

Most transcription factors encoding genes with a role in developmental processes have a bivalent domains bound by pluripotency factors (Oct4, Nanog, Sox2) and are also target of Polycomb repressive complex 2 (PRC2) which catalyses tri-methylation of H3K27me3. Deletion of key components of PRC2 results in de-repression of most developmental regulators genes, including HOX genes, and leads to differentiation of ES cells (Azuara,V., et al., 2006; Boyer, L., et al., 2005 ; Chamberlain, S., et al., 2008). This indicates that maintenance of a poised state is necessary for differentiation programs and indicates that histone modifying enzymes have a role in maintaining pluripotency. The histone demethylases Jmjd1a and Jmjd2c, which are positively regulated by Oct4, are required for the expression of Nanog through demethylation of repressive marks H3K9me2 and H3K9me3. Depletion of both enzymes results in differentiation of ES cells (Loh, Y., et al., 2007). The orphan nuclear receptor GCNF (germ cell nuclear factor), which is a transcriptional repressor, mediates repression of Oct4 and Nanog through direct promoter binding, or indirectly for SOX2. Depletion of GCNF inhibits repression of Oct4 upon differentiation (Gu, P., et al., 2005). The mechanism of Oct4 repression was identified by Feldman et al., in which the targeting of the H3K9 methyletransferase, G9a to the Oct4 promoter initiates heterochromatinisation through the binding of HP1 and then recruitment of de novo DNA methyltransferases Dnmt3a/b (Feldman, N., et al., 2006).

Deletion of a component of the HDAC1/2-containing complex, NuRD, prevents repression of Oct4. ES cells lacking Mbd3 are unable to differentiate upon withdrawal of LIF (Kaji, K., et al., 2006). Sin3A-HDAC corepressor complex was found to positively regulate expression of Nanog in ES cells. Knockdown of mSin3A leads to reduction in the expression level of Nanog (Baltus, G., et al., 2009). HDAC1 was found to effect differentiation of ES cells. Deletion of HDAC1 in ES cells results in precocious differentiation that is identified by elevated expression of cardiomyocyte and neural markers in EBs (embryoid bodies) (Dovey, O., et al., 2010). Moreover, another study found that treatment of day 7 EBs with TSA (HDAC inhibitor) promotes differentiation into cardiomyocytes that is identified by induced expression of Nkx2.5 (Kawamura, T., et al., 2005). Collectively these data indicate a functional role of HDAC-containing complexes in embryonic gene regulation.

1.11 Aims of the project

Many mouse knockout studies have demonstrated the essential role of HDAC1/2 in the development of numerous tissues (discussed in section 1.8). Moreover, HDAC1 and HDAC2 are functionally redundant in most cell types, deletion of both HDAC1/2 is required to produce a profound phenotype. In this project two model systems were used to investigate the role of HDAC1 and HDAC2 in ES cells. Firstly, a compound deletion of *Hdac1* and *Hdac2* (*Hdac1* ^{Lox/Lox}; *Hdac2* ^{Lox/WT}; *CreER* ES cell line (in which only a single copy of HDAC2 remains) is used a model system in which HDAC1/2 activity is decreased but not entirely lost. Secondly, a double conditional knockout (DKO) *Hdac*1^{Lox/Lox}; *Hdac*2^{Lox/Lox}; CreER ES cell line is used to circumvent the functional redundancy between HDAC1/2.

Therefore, using these two model systems the aims of the project were:

- To investigate the effect of deletion during proliferation and differentiation of ES cells.
- To assess the biochemical properties of ES cells lacking HDAC1/2 and their contribution to the regulation of the ES cell transcriptome.
- To investigate the positive role of HDAC1/2 in regulating gene expression.

Chapter 2: Materials and Methods

2.1 Generation of *Hdac1*, *Hdac2* double knockout (DKO) ES cells.

The conditional *Hdac1*, *Hdac 2* knockout ES cells used in this thesis were generated by Dr. Shaun Cowley. E14 ES cells expressing a CreER fusion protein from the ROSA26 locus were used to generate *Hdac1^{Lox/Lox}*; *Hdac2^{Lox/Wt}*; CreER ES cells and *Hdac1^{Lox/Lox}*; *Hdac2^{Lox/Lox}*; CreER conditional knockout ES cells, using multiple rounds of gene targeting (Jamaladdin, S. et al, 2014). LoxP sites were placed flanking exon 2 of each gene. Addition of 4-hydroxytamoxifen (4-OHT) to the growth media induced Cre-recombinase activity and resulted in deletion of exon 2. The deletion of exon 2 disrupts the open reading frame of HDAC1 and HDAC2 and a premature stop codon is introduced into exon 3.

2.2 Culture and maintenance of mouse ES cells

2.2.1 Thawing and plating of mES cells

Cryovials of mES cells were removed from liquid nitrogen and thawed rapidly in a 37° C waterbath. The 1ml of thawed cells was transferred to a 15ml falcon tube and 4ml of ES cell media were added. The cells were then pelleted by centrifugation for 5mins at 1200rpm. The cell pellet was re-suspended in M15 ES cell media and plated onto 10 cm^2 tissue culture plate coated with 0.1% gelatin solution in PBS. ES cells were subsequently maintained in standard ES cell mediau (M15+LIF) and were grown in a 5% CO₂ incubator at 37°C.

2.2.2 Passage of mES cells

ES cells were routinely passaged every two days. Culture media was aspirated and cells were washed twice with room temperature PBS. An appropriate amount of trypsin solution was added (3ml for 10cm² plate), cells were incubated for 5mins at 37°C. To inactivate the trypsin, 6ml of standard mES cell medium (M15+LIF) were added and cells were suspended by pipetting up and down several times to separate the cells. Cells were centrifuged for 5mins at 1200rpm, and cells pellet was re-suspended in fresh media and split into gelatinized plates. The plated cells were mix carefully (sideways) to distribute the cells evenly.

2.2.3 Freezing of mES cells.

ES cells were frozen from an 80% confluent 10cm^2 plate that yields approximately 3 x 10^7 cells. ES cells were trypsinised as described in (2.2.2) and re-suspended in equal volumes of 2x freezing media and ES cell media. 1ml aliquot of cells were transferred to 1.5ml freezing cryovials and placed into a freezing pot containing iso-propanol and placed at -80C (cells will freeze at 1°C per minute). After 1-2 days, cryovials were transferred to liquid nitrogen for long-term storage.

2.3 Media and reagents used for culture of ES cells

M15+LIF ES cell medium

Knockout DMEM (GIBCO, Life Technologies)	500ml
Foetal Bovine Serum (Seralab)	90ml
100X Glutamine/Pencillin/Streptomycin (Gibco)	6ml
100mM β-mercaptoethanol	600µL
Leukaemia Inhibitory Factor (LIF, Synthesized In House)	40 µL

0.1% Gelatin

PBS (GIBCO)	500ml
2% Bovine gelatin solution	25ml

2X Freezing media

Knockout DMEM (GIBCO, Life Technologies)	60%
Foetal Bovine Serum (Seralab)	20%
DMSO (Invitrogen)	20%

EB media (M15)

Knockout DMEM (GIBCO, Life Technologies)	500ml
Foetal Bovine Serum (Seralab)	90ml
100X Glutamine/Pencillin/Streptomycin	6ml
100mM β-mercaptoethanol	600µL

Retinoic acid differentiation media (RA)

M15+ LIF	500ml
100mM all trans-Retinoic Acid (Sigma)	50 µL

N2B27 differentiation media (50ml)

Knockout DMEM/F12 (GIBCO)	50ml
N-2 supplement (Invitrogen)	500 μL
B-27 supplement (Invitrogen)	1000 μL
Recombinant mouse FGF basic (R and D system)	10 μL (50μg/ml stock)

2.4 Protein and enzymatic analysis

2.4.1 Protein extraction

ES cells were cultured until 80% confluent in 10cm² plates, media was removed and plates were washed twice with 1x PBS and then scraped in 1ml PBS. Samples were pelleted at 1200rpm, re-suspended in 400µl ice-cold IP buffer and placed in rotator for 20mins at 4°C. Samples were spun for 20mins at 14,000 rpm in a 4°C pre-cooled centrifuge and the supernatant transferred to a fresh 1.5ml tube. Protein concentration was quantified using Bradford reagent (BIO-RAD) and a standard spectrophotometer.

IP Buffer

250mM	NaCL
20mM	HEPES (pH 7.4)
0.5%(v/v)	IGEPAL

1X Protease inhibitor cocktail (Sigma)

2.4.2 Western blotting

Protein samples were prepared for electrophoresis by using 35µg of protein with an equal volume of 2x protein loading buffer. Samples were boiled at 100°C for 5mints to denature the protein and loaded into the 4-12% SDS-PAGE gel and run for approximately 1hour at 150 V. The gel was placed in the transfer sandwich (foam pad-filter paper-gel-nitrocellulose membrane-filter paper-foam pad), placed in a transfer tank filled with transfer buffer and transferred for 1 hour at 90 V.

Following transfer, the membrane was blocked with odyssey blocking buffer (LI-COR) for 1 hour at room temperature and then incubated for 1 hour with appropriately diluted primary antibody in 3ml of odyssey blocking buffer (LI-COR). The membrane was washed 3 times with PBST (PBS+0.1%Tween) for 10min, followed by incubation with the appropriate IRDye conjugated secondary antibodies for 45mins. After incubation, the membrane was washed 3 times with PBST and once with PBS. Proteins were detected using the Odyssey Infrared Imaging System (Li-COR Biosciences).

1X Running buffer

- 25mM Tris-base
- 0.1% SDS

1X Transfer buffer

192mM	Glycine
	5

- 25mM Tris
- 10% Methanol

Protein loading buffer (PLB)

- 70mM Tris-HCL (PH6.8)
- 200mM β-mercaptoehanol
- 2% SDS
- 20% Glysrol

Bromophenol Blue

2.4.3 Co-immunoprecipitation

Co-immunoprecipitation assays were performed using protein-G agarose beads (GE Life Sciences, Buckinghamshire). 50µl of beads were washed twice with ice-cold PBS and incubated with 1µg of antibody for 20mins at 4°C. The bead-antibody mix was washed 3 times with ice-cold PBS and incubated with 600µg of protein extract overnight at 4°C. The following day, the bead-Protein complexes were washed 3 times with IP buffer and split into two aliquots, one aliquot was used to assess the enzymatic activity of the immunoprecipitates using a commercially available HDAC Assay kit (Active Motif) and the second aliquot was resolved by SDS-PAGE and probed with antibodies raised against known components of the immunoprecipitated complexes.

2.4.4 Histone extraction and analysis of post-translation modifications

Cells were harvested by scraping in 1ml PBS and whole cell extract (WCE) was isolated as described in (2.4.1). Pellets were re-suspended in 400 μ l 0.2M H₂SO₄ and incubated overnight with rotation at 4°C. The following day, samples were spun for 20mins at 14,000 in 4°C pre-cooled centrifuge, with the supernatant transferred to a fresh 1.5ml tube. 20 μ g of each histone extract was resolved by SDS-PAGE and probed with antibodies raised against a numbers of the specific histone modifications indicated. Membranes were scanned using the Odyssey Infrared Imaging System and quantification of proteins performed using the appropriate IRDye conjugated secondary antibodies (Li-COR Biosciences).

2.4.5 Histone deacetylase assay

The HDAC assay was performed using a commercially available colorimetric kit (Active Motif), which utilizes a BoC-Lys(Ac)-AMC substrate that contains an acetylated lysine residue. Once the substrate is deacetylated, the lysine residue then reacts with the Developing Solution and releases the chromaphore from the substrate resulting in a yellow colored product that absorbs maximally at 405nm. The 80µl of immunoprecipitated protein extract generated in (2.4.3) was split into triplicates and added into 96-well plate. 20µl of HDAC assay buffer and 5µl of the colorimetric substrate were added to each well. The plate was incubated for 3 hours at 37°C. The reaction was stopped by the addition of 50µl of the developing solution, incubated for 15mins at room temperature and read using a plate reader at 405nm.

2.5 Induction of HDAC1, HDAC2 protein deletion

ES cells were plated in 10cm^2 plate with M15+LIF medium and treated with 1µM 4hydroxytamoxifen (OHT) for 24 hours. The following day, media was changed and cells cultured for a further 4 -8 days. Protein extracts were isolated as described in (2.4.1), antibodies used in western blotting are indicated in (Appendix Table1).

2.6 ES cells growth curves

ES cells were plated at 3 x10⁵ cells per well in triplicate in a 6-well plate with M15+LIF medium. Viable cells were counted over 4 days after the deletion of HDAC1, HDAC2 had been induced. Cells were counted using automated cell counter Bio-Rad TC-10.

2.7 Flow cytometry

2.7.1 Propidium iodide (PI) staining

The culture media was collected from each sample, cells were then harvested by trypsinisation and pooled with the media in 15ml tubes. Samples were centrifuged for 5mins at 1100rpm, pellets were fixed by drop-wise addition of 1ml ice-cold 70% ethanol and then either stained or stored at 4°C. Cells were subsequently washed with PBS and re-suspended in 500µl PI buffer (50µg/ml of Propidium Iodide, 10µg/ml RNaseA in 1x PBS) and incubated for 30min in the dark. FACS analysis was performed on the BD FACSCanto II and FACSDiva 6.0 software for acquisition and analysis.

2.7.2 Analysis of apoptosis using Annexin-V

Cells were harvested by trypsinization and collected in 15ml tubes, centrifuged for 5mins at 1100rpm, and then washed once with PBS. Cell pellets were re-suspended in 500µl 1x annexin-V binding buffer, 5µl of annexin-V was added (Invitrogen) and incubated for 15mins at room temperature. FACS analysis was performed on the BD FACSCanto II and FACSDiva 6.0 software for acquisition and analysis.

2.7.3 Analysis of GFP expression

Cells were harvested by trypsinisation and washed twice with PBS. Cells were pelleted at 1100rpm and re-suspended in 1ml PBS. Live cells were analyzed using BD FACSAria II and gated based on FSC and SSC, the GFP expression in each cell measured by the FITC-A channel. GFP-expressed cells were sorted and collected in 1.5ml ES cells media.

2.8 RNA isolation and q-RT-PCR

2.8.1 RNA isolation from ES cells and Embryoid bodies (EBs)

All Chemicals and equipment used in RNA isolation were treated with RNAseZap spray (Ambiob) to completely remove RNAase contamination. ES cells were harvested from 6cm plates and EBs were collected in 1.5ml tubes. For each experiment, samples were collected in TRIzol reagent (Life technologies) and stored at -80°C until RNA isolation. To isolate RNA from ES cells, plates were washed twice with PBS, 1ml of TRIzol was added directly to the plate to lyse cells and extract RNA. Samples were collected by pipetting up and down several times and transferred to 1.5ml tubes. For EBs, 500-1000µl of TRIzol was added depending on the size and number of the EBs.

Direct-zolTM RNA MiniPrep kit (ZYMO RESEARCH) was used to isolate the RNA from samples stored in TRIzol. Following thawing of -80°C stored samples, 1ml of 100% ethanol was added and mixed by vortex. Samples were loaded into a Zymo-Spin II Column in a collection tube and centrifuged for 1min. 400µl RNA wash buffer was added and centrifuged for 30s, the flow-through was discarded. Each Sample was treated with DNase I reaction mix: 5µl Dnase I, 8µl 10x DNase I reaction buffer, 3µl DNase/RNase free water, 64µl RNA wash buffer, incubated for 15min at room temperature and centrifuged for 30s. Samples were washed twice with 400µl of Directzol RNA Prewash and centrifuged 30s. 700µl of RNA wash buffer was added and centrifuged for 30s. The column was transferred to a new collection tube and centrifuged for 2min to ensure complete removal of wash buffer. To elute RNA, 25µl of DNase/RNase free water was added to column and centrifuged for 1min. RNA concentration was quantified using NanoPhotometer®(Implen). Then RNA samples used in the microarray analysis underwent a second purification step using an RNeasy MinElute Cleanup Kit (Qiagen).

2.8.2 Reverse transcription

Total RNA was quantified using a NanoPhotometer® (Implen). cDNA was prepared using 0.5µg of total RNA with the Q-Script cDNA Supermix (Quanta Biosciences). To each sample the following were added, 4µl of qScript cDNA Supermix , 0.5µg of RNA and DNase/RNase free water up to a volume of 20µl. cDNA synthesis was carried out in the thermo cycler with the following temperatures:

5 minutes	25°C
30 minutes	42°C
5 minutes	85°C
Hold	4°C

The resulting cDNA was diluted with an equal volume of DEPC treated H_2O before use for RT-PCR experiments.

2.8.3 Quantitative real time PCR (qRT-PCR)

The primers used for each gene were designed using the Universal ProbeLibrary Assay Design Centre (www.roch-applied-science.com). In the multiplex PCR, GAPDH was used as a reference control to normalize the target gene Ct value. Probes consisted of Lock Nucleic Acid technology, which upon binding of the reaction amplicon and polymerase elongation released a HEX or FAM fluorophore. The multiplex reaction mix was made using the LightCycler Probes Master (Roche) as per the manufacturer's instructions. Reactions were performed in wells of white LightCycler 480 Multiwell plate 96(Roche) using 2µl of diluted cDNA per reaction. Reaction was carried out on Roche Light Cycler 480 under the following conditions:

10 minutes 94°C

Advanced relative quantification analysis using the Roche LightCycler software generated a relative expression value based on the comparative Ct calculations ([delta][delta] Ct = [delta] Ct, sample - [delta] Ct, reference).

2.9 Microarray Hybridization

RNA was isolated form ES cells using a Direct-zol[™] RNA MiniPrep kit (ZYMO RESEARCH) and an RNeasy MinElute Cleanup Kit (Qiagen) as described (2.8.1). Quality control of total mRNA was performed using a 2100 Bioanalyser (Agilent). Only samples that had an RNA integrity number of 8.6 or higher were selected for processing and array hybridization.

2.9.1 RNA amplification

RNA amplification was performed using an IIIumina [®] TotalPrep RNA amplification kit according to manufacture's instruction which generated biotinylated, amplified RNA for Hybridization with the Illumina bead array. The kit is based on the RNA amplification protocol developed in the laboratory of James Eberwine (Vangelder *et al.*, 1990). The procedure consists of reverse transcription with an oligo (dT) primer bearing a T7 promoter using a reverse transcriptase enzyme engineered to produce higher yields of first strand cDNA the wild type enzymes. This enzyme catalyzes the synthesis of virtually full-length cDNA, which is the best way to ensure production of reproducible microarray samples. The cDNA then undergoes second strand synthesis and cleanup to become a template for in vitro transcription (IVT) with T7 RNA polymerase.

2.9.2 Array hybridization

Comparative microarray gene expression profiles were generated using the Illumina mouseWG-6, version 2.0 Beadchip that covers 45,200 different mouse transcripts. The Direct Hybridizaion Assay system uses gene-specific probes to detect labeled RNA, each bead in the array contains a 50bp gene-specific oligo probe .The labeled RNA was hybridized to the probes on the beadchip for 14-20 hours at 58°C, the beadchip was then washed twice and the signal detected using Illumina iScan system.

2.9.3 Analysis of microarray hybridization

Raw expression data was analyzed using Illumina BeadStudio software. The detection P values of <0.01 were used to filter all data. Significant differentially expressed genes were defined using fold change of \geq 1.4 (Fc \geq 1.4) with an adjusted P value of <0.05. Quality analysis and differential expression analyses were performed using Partek Genomics Suite (version 6.5) and ArrayTrack. Analysis of functionally related gene groups among deregulated genes was carried out using the Database for Annotation, Visualization, and Integrated Discovery (DAVID), version 6.7.

2.10 Analysis of ES cell Pluripotency and Differentiation

2.10.1 Alkaline phosphatase assay

Initially, ES cells were plated at $5x10^2$ cells per well in 6-well plates in the presence of LIF. On the following day, cells were then cultured either in the presence or absence of LIF for 6 days to allow colonies to form. Colonies were fixed with 4% paraformaldehyde in PBS for 2mins, washed twice in PBS+ 0.1% Tween and then stained with the a commercial Alkaline Phosphatase detection Kit (Millipore): Fast Red Violet, Naphthol and water in a 2:1:1 ratio, incubated for 15mins in dark at room temperature and washed in PBS+ 0.1% Tween. Cells were visualized by light microscopy and scored undifferentiated (dark purple staining), mixed (intermediate purple staining) and differentiated (colorless).

2.10.2 Differentiation of ES cells as Embryoid Bodies (EBs)

Embryoid bodies (EBs) were created by plating $7x10^2$ cells per well in Corning[®] Costar[®] Ultra-Low attachment round bottom 96 wells plate (Sigma-Aldrish). EBs were cultured in M15 medium (-LIF) for 12 days. EBs were visualized every 2 days by light microscopy and diameters measured using the Leica Application Suite software.

2.10.3 Differentiation of ES cells with Retinoic Acid (RA)

To induce differentiation and cell cycle withdrawal, Hdac1/2 of DKO ES cells (1.5 $\times 10^5$ cells) were plated in triplicate in 6cm² plates and treated for two days with 1µM retinoic acid (RA) diluted in M15 media. After two days cultures in the presence of RA, cells were counted each day over 4 days using an automated cell counter (Bio-Rad TC-10).

For microarray experiments, $3X10^5$ ES cells were plated in 6cm^2 plates and treated with 1µM 4-hydroxytamoxifen (OHT) for 24 hours, 2.5 days later, 1µM retinoic acid (RA) was added for 6hrs. 1ml of TRIzol was added directly to the plate, pipetting the cells up and down several times to lyse the cells, before transferring to 1.5ml tubes and storage at -80°C until the RNA was isolated as described in (2.8.1)

2.10.4 Differentiation of ES cells in LIF-free medium

 $7x10^5$ ES cells were plated in 6cm² plate in M15 media (-LIF) for 4 days. 1ml of TRIzol was added and RNA was isolated as described in (2.8.1).

2.10.5 Differentiation of ES cells in serum-free N2B27 media

ES cells were plated with N2B27 media in 6cm^2 plate coated with laminin. Plates were coated with $2\text{ml}(10\mu\text{g/ml})$ Natural Mouse Laminin (Invitrogen) and incubated at 37°C for 3 hours. Differential cell numbers were plated: day 0, $1x10^{6}$; day 2, $5x10^{5}$; day4, $2x10^{5}$; day6, $1.3x10^{5}$. Cells were collected in TRIzol and RNA was isolated as described in (2.8.1).

2.11 Plasmid Transfection

2.11.1 Transformation and culture of bacterial cells

Different histone deacetylase 1 (HDAC1) mutants and chimeric cDNAs were generated by PCR and sub-cloned into a pCAG-IRES-eGFP plasmid using In-Fusion HD EcoDry Cloning Plus kit (Clontech). For transformation, 50µl of α -select competent cells (Bioline) were thawed on ice and mixed with 1µl of plasmid. Cells were incubated on ice for 30min and heat shocked for 30s at 42°C then placed on ice for 2mins. 950µl of SOC medium were added. Bacterial cells were grown at 37°C for 1 hour in a shaking incubator, then 5µl of transformed cells spread on LB agar plate containing Ampicillin and incubated overnight at 37°C. For Maxipreps, bacterial colonies were picked from agar plates and used to inoculate of 100ml of LB media containing the appropriate antibiotic and incubated overnight in 37°C shaker. The EndoFree Plasmid Maxi Kit (Qiagen) was used for plasmid isolation as per manufacturer's instructions.

2.11.2 Plasmid transfection

Transfection of ES cells with plasmids was performed using Lipofectamine 2000 (Invitrogen). A day before transfection, 2.5×10^5 cells were plated in 6-well plates. For each transfection, 12µl of lipofectamine was mixed with 250µl of DMEM in an Eppendorf tube and incubated at room temperature. In another tube, 5µg of DNA was added to 250µl of DMEM. After 5 mins incubation, the diluted DNA and diluted lipofectamine were combined together, mixed and incubated for 20mins at room temperature. After incubation, 500µl of the mixture was pipetted drop-wise into the culture medium.
2.12 Rescue of KO cells

Rescue of *Hdac1/2* DKO ES cells was performed using different cDNA plasmids. DKO ES cells were transfected with 5 μ g of DNA plasmids using Lipofectamine 2000 (Invitrogen) as described in (2.11.2). Cells were cultured for 48 hours in 5% CO₂ incubator at 37°C before sorting for GFP-positive cells using BD FACSAria II as described in (2.7.3). GFP-positive cells were plated in triplicate in 96-well plate with M15+LIF medium and treated with 1 μ M 4-hydroxytamoxifen (OHT) for 24 hours. Cells were cultured for 4 days; viable cells were counted using automated cell counter Bio-Rad TC-10.

Chapter 3: Examination of proliferation and differentiation potential of *Hdac1*^{Lox/Lox}; *Hdac2*^{Lox/WT}; *CreER* Embryonic stem cells

3.1 Chapter aims

The class I HDACs, HDAC1 and HDAC2 are highly similar enzymes (82% identical), which are present in the multiprotein co-repressor complexes Sin3a, NuRD, and CoREST. Disruption of *Hdac1* gene in mice results in embryonic lethality around embryonic day E10.5 due to severe proliferation defects (Lagger, G., et al., 2002). In another study, it has shown that deletion of HDAC1 results in embryonic lethality by E9.5. In contrast, mice lacking HDAC2 survive embryogenesis and died 24 hours after birth due to cardiac defects (Montgomery, R., et al., 2007), or survive to adulthood in two further studies (Trivedi, C.M. et al., 2007 and Zimmermann, S., et al., 2007). Moreover, conditional deletion of Hdac1 in mouse ES cells causes enhanced differentiation of embryoid bodies EBs compared to control and Hdac2- deficient ES cells, the differentiation characterized by increased expression of cardiomyocyte and neural markers (Dovey, O.M. et al, 2010). These results suggest the essential role of HDAC1 at earlier developmental stage. In many cell types, deletion of both Hdac1 and Hdac2 is required to produce a profound phenotype. For instance, cardiac deletion of Hdac1 or Hdac2 has no effect while deletion of both Hdac1/2 causes dilated cardiomyopathy and neonatal lethality (Montgomery, R., et al., 2007). These results suggest a functional redundancy between the function of HDAC1 and HDAC2 and degree of compensation in their expression.

Therefore, in this chapter I aimed to investigate a compound deletion of *Hdac1* and *Hdac2* (*Hdac1^{ko}; Hdac2^{Het}*) during the differentiation of ES cells, as model system of the events of the early embryogenesis.

3.2 Results

3.2.1 Generation of conditional knockout ES cells

An E14 ES cell line expressing a Cre/estrogen receptor (CreER) fusion from ROSA26 locus was used to generate $Hdac1^{Lox/Lox}$; $Hdac2^{Lox/WT}$; CreER ES cell line using multiple rounds of gene targeting (Figure 3.1A). The Cre-Lox system relies on site-specific recombination; Cre (causes recombination) is a 38kDa protein from bacteriophage p1 that catalyzes recombination between pairs of LoxP (locus of X over P1) sites. A LoxP site is 34bp in size and consists of two 13bp inverted repeats separated by 8bp asymmetric region .The recombination depends on the orientation of loxP sites. Inverted *loxP* sites will cause an inversion, while a direct repeat will cause a deletion of the DNA sequence between pairs of LoxP sites.

To achieve the conditional knockout gene targeting, Cre fused to a mutated ligandbinding domain (LBD) of the estrogen receptor (ER), in which Glycine 521 mutated to Arginine. The mutated CreER is only activated by 4-hydroxytamoxifen (4-OHT) and is unresponsive to endogenous 17 β -estradiol (E2) (Sauer, et al. 1988).

Using homologous recombination, we have generated $Hdac1^{Lox/Lox}$; $Hdac2^{Lox/WT}$; CreER ES cell line, in which exon 2 of Hdac1 (both alleles) and Hdac2 (one allele) is flanked by LoxP sites (Figure 3.1). Addition of 4-hydroxytamoxifen (OHT) for 24hours to the growth media induced translocation of the Cre/ER into the nucleus and mediated recombination of loxP sites that resulted in deletion of exon 2 (Figure 3.1). The deletion of exon 2 disrupts the open reading frame of HDAC1 and HDAC2 and a premature stop codon is introduced into exon3, which is subjected to nonsensemediated decay or produces a non-functional protein that lacks the catalytic deacetylase domain in both HDAC1 and HDAC2.

Figure 3.1: Schematic of conditional knockout system. Activation of CreER by adding 4-OHT that results in translocation of Cre to the nucleus which catalyzes recombination between two LoxP sites and results in deletion of exon 2 of *Hdac1* and *Hdac2* genes.

Following inactivation of *Hdac1 (KO)* and *Hdac2 (Het)* genes protein levels of HDAC1 and HDAC2 were analyzed by quantitative western blotting of control (untreated) and KO (OHT-treated) cells over an 8 day time-course. As seen in figure 3.2, following OHT treatment a further 2-3 days are required for the complete loss of HDAC1 protein. We also observed a slight reduction in HDAC2 protein level, which is

in contrast *Hdac1^{Lox/Lox}; CreER* cells which show increased HDAC2 levels (Dovey, O.M. et al, 2010), which is presumably due to having only a single copy of the *Hdac2* allele (Figure 3.2B).

Figure 3.2: Quantification of HDAC1 and HDAC2 levels following gene inactivation. (A) Quantitative western blot showing loss of HDAC1 proteins following gene inactivation (0-8d) in *Hdac1*^{Lox/Lox}; *Hdac2*^{Lox/WT}; *CreER* ES cells. Cells were cultured with, or without, 4-OHT for 24 h. α -Tubulin was used to normalized protein loading (B) Fold change in HDAC1 and HDAC2 protein level 3d following gene inactivation relative to α -Tubulin. Western blot was visualized and quantified using odyssey scanner. All values are means (n = 3) ±SEM.

3.2.2 Decrease in total cellular deacetylase activity

A reduction in the level of HDAC1 and HDAC2 in *Hdac1^{KO}; Hdac2^{Het}* cells (Figure 3.2) suggested that there may be an overall reduction in total deacetylase levels. Therefore, total deacetylase activity of the cells was measured four days after genes inactivation (OHT treatment) at the point when protein levels have reached a minimum. We observed a reduction in the deacetylase activity by day 3 of approximately 56% consistent with the loss of HDAC1 protein (Figure 3.3). This result suggests that HDAC1 (in the absence of a compensatory increase in HDAC2) contributes the majority of the deacetylase activity in embryonic stem cells.

Figure 3.3: Decrease in the overall deacetylase activity in *Hdac1*^{Lox/Lox}; *Hdac2*^{Lox/WT}; *CreER* ES cells. Deacetylase activity was measured in whole-cell extract on 4 consecutive days following gene inactivation using a commercially available kit. All values are means $(n = 3) \pm SEM$. The significant (P value) was calculated using a two-tailed t test (****P* < 0.0001).

3.2.3 Reduction in levels of co-repressor complex components

HDAC1 and HDAC2 are normally associated with the multi-protein complexes Sin3A, NuRD, and CoREST. To assess the integrity of the HDAC1/2 co-repressor complexes in *Hdac1^{KO}; Hdac2^{Het}* cells, Sin3A and MTA2 were co-immunoprecipitated with HDAC1 and HDAC2 followed by western blotting. In the KO cells the level of Sin3A and MTA2 are significantly decreased compared to the control (Figure 3.4A). To further confirm this result and test if we obtain the same reduction in the level of CoREST, western blots were also performed on protein extracts from KO cells (day3) and control (untreated). Consistent with the CO-immunoprecipitation result, the level of MTA2 is reduced as were CoREST protein levels (Figure 3.4 B). Since we observed reduction in the level of direct HDAC1/2 binding partners, it suggests that the integrity of the complexes is disrupted in *Hdac1^{KO}; Hdac2^{Het}* cells as a result of lacking HDAC1, despite the fact that we still detect HDAC2 (50% reduction compare to WT) (Figure 3.2).

Figure 3.4: Reduction in Sin3A, MTA2, and CoREST protein levels in *Hdac1*^{Lox/Lox}; *Hdac2*^{Lox/WT}; **CreER ES cells.** (A) Specific antibodies to the indicated proteins were used to immunoprecipitate Sin3A and MTA2 from untreated (Ctrl) and OHT-treated (KO) ES cells. IgG was used as a non-specific antibody control. (B) Quantitative Western blotting for CoREST and MTA2 protein levels was performed on untreated (Ctrl) and OHT-treated (KO) cells 3d following gene inactivation. Blots were quantified using an Odyssey scanner.

The reduction in the co-repressor complexes stability and reduction in total deacetylase activity prompted us to analyze global histone acetylation levels in $Hdac1^{KO}$; $Hdac2^{Het}$ (KO) cells. We detected a slight change in the acetylation status of H3K18Ac, H3K9Ac, H3K23Ac and H3K27Ac (figure 3.5). In addition, we observed that H3K14Ac and H3K56Ac were increased 1.3 fold and 2.3 fold, respectively. The significant increased in the acetylation level of H3K56Ac is in agreement with previous results in *Hdac1* deleted cells (Dovey, O.M. et al, 2010). This modification is associated with DNA damage, nucleosome assembly and the activity of stem cell factors (Das C., et al., 2009, Tjeertes J.V., et al., 2009 and Xie W., et al., 2009).

Figure 3.5: Increase in the global histone H3 acetylation levels. Quantitative Western blotting was used to determine the levels of global H3 acetylation. Histones were acid extracted from untreated (Ctrl) and OHT-treated (KO) cells 3d following gene inactivation. Acetylation levels were normalized to the total amount of H3 quantified using an Odyssey scanner. All values are means $(n = 3) \pm SEM$.

3.2.4 Proliferation and differentiation ability of $Hdac1^{KO}$; $Hdac2^{Het}$ cells is not inhibited

It has previously shown that the proliferation ability of ES cells is not inhibited by loss of HDAC1, or HDAC2 alone (Dovey, O.M. et al, 2010). HDAC1 has been implicated in cell cycle regulation, it is required for transcription repression mediated by retinoblastoma tumor suppressor protein, Rb (Brehm, A., et al 1998), and controls expression of specific CDK inhibitors (Lagger, G., et al., 2002 and Senese, S., et al., 2007). Therefore, the proliferative ability of $Hdac1^{KO}$; $Hdac2^{Het}$ cells was assessed compared to controls (untreated) over a four-day period. As shown in figure 3.6, the growth rates of ES cells were similar, with a slight reduction in growth of the $Hdac1^{KO}$; $Hdac2^{Het}$ (OHT treated) cells beyond day 2 when HDAC1 protein is lost and the level of HDAC2 is decreased. This result suggests that homozygous deletion of Hdac1, heterozygous deletion of Hdac2 had a little effect on the growth rate.

Figure 3.6: proliferative capacity of $Hdac1^{Lox/Lox}$; $Hdac2^{Lox/WT}$; *CreER* ES cells is unchanged. Growth rate of untreated (Ctrl) and $Hdac1^{KO}$; $Hdac2^{Het}$ cells (OHT-treated) following gene inactivation was assessed by counting cells over a 4-day period. All values are means $(n = 3) \pm SEM$.

Next, the ability of $Hdac1^{KO}$; $Hdac2^{Het}$ cells to retain pluripotency when cultured in the presence of LIF was assessed and their ability to differentiate upon removal of LIF. Control (untreated) and $Hdac1^{KO}$; $Hdac2^{Het}$ (OHT-treated) cells were plated at low density in the presence or absence of LIF, cultured for six days and then assayed for alkaline phosphatase (AP) activity, a pluripotent marker. We observed that, colonies derived from control and $Hdac1^{KO}$; $Hdac2^{Het}$ cells had equal AP staining indicating that they were able to retain pluripotent in the presence of LIF and were able to differentiate upon withdrawal of LIF (Figure 3.7). $Hdac1^{KO}$; $Hdac2^{Het}$ cells showed an increased percentage of mixed colonies in the presence of LIF which suggested a small increase in differentiated cells (increased by approximately 20%). In the absence of LIF, controls and $Hdac1^{KO}$; $Hdac2^{Het}$ cells showed a comparable level of differentiated colonies (Figure 3.7). Overall, these data demonstrated that the proliferation and differentiation capacity of $Hdac1^{KO}$; $Hdac2^{Het}$ cells is not inhibited, KO cells are able to proliferate in the presence of LIF and able to differentiate upon removal of LIF.

Figure 3.7: *Hdac1*^{Lox/Lox}; *Hdac2*^{Lox/WT}; **CreER ES cells are able to differentiate upon LIF withdrawal.** ES cells were cultured at low density in the presence (+) or absence of LIF for 6 days before staining for the presence of alkaline phosphatase and visualised by light microscopy. Colonies were scored undifferentiated (dark purple staining), mixed (intermediate purple staining) and differentiated (colorless).

The fact that we observed a very slight reduction in the growth rate of $Hdac1^{KO}$; $Hdac2^{Het}$ cells beyond day2 compared to control, this correlates with a reduction in the protein levels of HDAC1 and HDAC2. Therefore, the cell cycle profile of $Hdac1^{KO}$; $Hdac2^{Het}$ cells was analyzed compared to control cells over an 6-day period. As observed in figure 3.8, both control and $Hdac1^{KO}$; $Hdac2^{Het}$ cells displayed similar cell cycle profile. Although, we detected a slight increase in the percentage of cell death in $Hdac1^{KO}$; $Hdac2^{Het}$ cells, by day 6, 13.8% of $Hdac1^{KO}$; $Hdac2^{Het}$ cells showed a sub-G1 DNA content compared to 4.2% of control cells (Figure 3.8). This result may explain the difference in the growth rate we observed in KO cells which may indicate that KO cells are more susceptible to cell death (Figure 3.6).

DNA content

Figure 3.8: Cell cycle analysis of Hdac1^{Lox/Lox}; **Hdac2**^{Lox/WT}; **CreER ES cells shows an increase in the percentage of sub-G1 cells.** Cell cycle distribution of Ctrl (untreated) and *Hdac1*^{KO}; *Hdac2*^{Het} (OHTtreated) ES cells over a 6-days period was performed using propidium iodide (PI) staining and FACS analysis. The arrow indicates the percentage of cells with a sub-G1 amount of DNA.

3.2.5 Gene expression profiling of *Hdac1^{Lox/Lox}*; *Hdac2^{Lox/WT}*; *CreER* ES cells in LIF-free media.

Loss of HDAC1 altered the differentiation capacity of ES cells (Dovey et al, 2010), Therefore to analyze differentiation of *Hdac1^{KO}*; *Hdac2^{Het}* ES cells, the transcriptome of ES cells was examined in LIF-free media. LIF maintain ES cell self-renewal via binding to the gp130 receptors and activation of the STAT3 signaling pathway; withdraw of LIF is a subtle method of inducing differentiation in ES cell.

RNA was isolated from control (untreated) and *Hdac1^{KO}; Hdac2^{Het}* (OHT-treated) cells that were cultured in the presence and absence of LIF for four days and then used to perform a comparative microarray analysis using an Illumina Whole-Genome Expression BeadChip platform. We compared the transcriptome of control (C+) and *Hdac1^{KO}; Hdac2^{Het}* KO (K+) cells cultured in the presence of LIF and control (C-) and *Hdac1^{KO}; Hdac2^{Het}* KO (K-) cells cultured in the absence of LIF. Quality control of total mRNA was performed using a 2100 Bioanalyser (Agilent), samples that had an RNA integrity number (RIN) of 8.6 or higher were selected for processing and array hybridization.

Transcripts up- or down-regulated by ≥ 1.4 -fold (FC ≥ 1.4 , adjusted P<0.05) were identified from three independent experiments using ArrayTrack analysis software. A total of 470 transcripts were deregulated in KO compared to control (C+ versus K+), with 337 up-regulated and 133 down-regulated transcripts (Figure 3.9A and appendix table 4), which are considered as the effect of *Hdac1^{KO}; Hdac2^{Het}* deletion in ES cells transcriptome. The large number of up-regulated transcripts compared to downregulated is consistent with the role of HDAC1 and HDAC2 in transcription repression, and also the detected number of down-regulated genes suggested their role in transcriptional activation at specific genes. Removing of LIF resulted in a change in the expression of 1,081 transcripts (C+ versus C-), with approximately the same numbers of up-(577) and down-regulated genes (504). Finally, we compared control and KO cells cultured in the absence of LIF (C- versus K-), and we found 553 deregulated genes, of which 330 were up-regulated and 223 down-regulated (Figure 3.9A and appendix table 4).

Hierarchical clustering of samples based on their signal detection suggests that the transcription programme of samples (control and KO) cultured in the presence of LIF is distinct from the one that cultured in the absence of LIF (Figure 3.9B).

A.

В.

Figure 3.9: Gene expression profiling of *Hdac1^{Lox/Lox}*; *Hdac2^{Lox/WT}*; *CreER* ES cells. Control untreated (C) and Knockout KO (K) ES cells were cultured for four days in the presence of LIF (C+),(K+) or in the absence of LIF (C-),(K-). (A) The number of differentially expressed genes altered by \geq 1.4-fold change (adjusted P< 0.05) is shown. (B) Hierarchical clustering of samples based on signal detection values. Hybridisation experiments were performed in triplicate using mRNA that had an RNA integrity number of 8.6 or higher. 74

Next, the expression level of genes associated with pluripotency and differentiation of ES cells were analyzed in samples from the microarray results (Figure 3.10). In a comparative analysis, we observed that, expression of pluripotent genes was down-regulated in control cells in the absence of LIF (C+ versus C-), as expected upon removal of LIF. Interestingly, a slight reduction on the same set of genes was also observed in KO cells cultured in the presence of LIF (C+ versus K+). Moreover, removal of LIF in *Hdac1^{KO}; Hdac2^{Het}* cells caused an increased reduction in the expression of pluripotent genes compared to Control (C- versus K-) (Figure3.10). In terms of differentiation specific markers (appendix table 3), we observed a slight increase in the expression of genes associated with differentiation in the absence of LIF (C+ versus C-) (Figure 3.10). However, KO cells that were cultured in the absence of LIF did not show similar induction in the expression of differentiation genes (Figure 3.10).

Figure 3.10: Comparative analysis of pluripotency and differentiation genes in *Hdac1^{Lox/Lox}; Hdac2^{Lox/WT}; CreER* ES cells. Analysis of expression levels of pluripotency and differentiation associated genes between Control, untreated (C+) and KO (K+) in the presence of LIF, with Control (C-) and KO (K-) in the absence of LIF, and between (C+) and (C-), using mean log_2 fold change of microarray data.

To verify the microarray results, the expression levels of a set of genes were validated by quantitative real-time PCR (qRT-PCR). For each of the genes we analyzed we were able to corroborate the microarray result (Figure 3.11). The transcript level of pluripotent factor *Nanog*, was 1.5-fold down-regulated on the array and 2.6-fold by qRT-PCR, in control compared to KO (in the presence of LIF). In addition, *Oct4 (Pou5f1)* was down regulated by 1.4-fold. The transcript level of *Amnionless* and *Blvrb* were 2.6 and 1.8-fold up-regulated on the array and 5.1 and 3.9-fold by qRT-PCR, respectively (in the presence of LIF). As observed previously in microarray results, transcription levels of pluripotent markers were reduced in KO more than control (in the absence of LIF), Nanog and Oct4 being reduced 1.6-fold and 1.7-fold by qRT-PCR, respectively (Figure 3.11). These data suggest a positive role of HDAC1and HDAC2 in the expression of embryonic stem cell pluripotent markers.

Figure 3.11: Validation of changes in gene expression by qRT-PCR. Validation of the changes in expression of some genes from the microarray by qRT-PCR, normalized to GAPDH. Experiments were performed in triplicate (n=3), mean values \pm SEM plotted.

Then analysis of functionally related genes groups among deregulated genes was performed using Database for Annotation, Visualization, and Integrated Discovery (DAVID). In the presence of LIF (control compared to KO), we observed enrichment of genes involved in transcription regulation among down-regulated genes ($p = 2.9 \times 10^{-5}$) (Figure 3.12). Down-regulated transcripts were also enriched for genes with role in regulation cell cycle and RNA processing ($p = 1.4 \times 10^{-2}$, 7.7 x 10⁻³), which suggests a role for HDAC1/2 in these processes. In the absence of LIF (control compared to KO), among up-regulated transcripts we found a significant enrichment for genes associated with embryonic development ($p = 4.2 \times 10^{-5}$), and genes that involved in regulation of cell cycle were down-regulated ($p = 6.5 \times 10^{-3}$) as might be expected (Figure 3.13). In *Hdac1^{KO}; Hdac2^{Het}* cells (KO) cultured in the absence of LIF, we observed a down-regulation of genes associated with nucleosome assembly, RNA processing and regulation of cell proliferation ($p = 3.3 \times 10^{-9}$, 5.2x10⁻³ and 9.2x10-³, respectively) (Figure 3.14).

GO terms (BP) Up regulated

Figure 3.12: Functional annotation clustering of differentially expressed genes between control (untreated) and KO (OHTtreated) in the presence of LIF. Biological process gene ontology terms (BP-GO terms) of the up-regulated and down-regulated genes were identified in ES cells using DAVID. Analysis reveals enrichment of genes involved in RNA processing and stem cell differentiation are down-regulated and cell signaling genes are upregulated.

Figure 3.13: Functional annotation clustering of differentially expressed genes between control (untreated) in the presence of LIF (C+) and control in the absence of LIF(C-). Biological process gene ontology terms (BP-GO terms) of the up-regulated and down-regulated genes were identified in ES cells using DAVID. Analysis reveals enrichment of genes involved in stem cell development are up-regulated and regulation of cell cycle genes are down-regulated

GO terms (BP) Up regulated

GO terms (BP) Down regulated

Figure 3.14: Functional annotation clustering of differentially expressed genes between control (untreated) and KO (OHT-treated) in the absence of LIF. Biological process gene ontology terms (BP-GO terms) of the up-regulated and down-regulated genes were identified in ES cells using DAVID. Analysis reveals enrichment of genes involved in stem cell differentiation are up-regulated and cell proliferation genes are down-regulated.

3.3 Conclusions

Inducible inactivation of $Hdac1^{KO}$; $Hdac2^{Het}$ cells does not inhibit proliferation or differentiation ability of ES cells. KO cells were able to proliferate in the presence of LIF and exit pluripotent state upon LIF withdrawal (Figure 3.7). $Hdac1^{KO}$; $Hdac2^{Het}$ cells had a reduction in the expression level of pluripotent factors, which is more pronounced upon removal of LIF suggesting a positive role for HDAC1 and HDAC2 in the maintenance of ES cells pluripotency (Figure 3.10). We also observed a reduction in the stability of co-repressor complexes (Figure 3.4). Analysis of a biochemical deacetylase activity of KO cells indicates significant reduction (\approx 56%) in the total activity, which reveals the effective role of HDAC1/2 in ES cells. Analysis of histone acetylation reveals an increased in the acetylation status of analyzed histone with the largest change in H3K56Ac (Figure 3.5).

Chapter 4: Histone deacetylase (HDAC) 1 and 2 are essential for accurate cell division and pluripotency of embryonic stem cells

4.1 Chapter aims

As discussed in chapter three, the viability and pluripotent potentials of $Hdac1^{Lox/Lox}$; $Hdac2^{Lox/wt}$;CreER ES cells was unaffected. It has been previously demonstrated in other system (LeaBoeuf, M., et al., 2010, Yamaguchi, T., et al, 2010 and Dovey, O.M., et al, 2013) that deletion of both HDAC1 and HDAC2 is required to produce a phenotype, which suggests that the function of HDAC1/2 in many cell type is redundant. Therefore, to circumvent this functional redundancy, we generated a double conditional knockout (**DKO**) $Hdac1^{Lox/Lox}$; $Hdac2^{Lox/Lox}$; CreER ES cell line. Using DKO ES cells, I aimed to assess the biochemical and proliferative properties of ES cells lacking HDAC1/2 and their contribution to the regulation of the ES cell transcriptome.

4.2 Results

4.2.1 Generation of conditional double-knockout (DKO) ES cells

An E14 ES cell line expressing a Cre/estrogen receptor (CreER) fusion from the ROSA26 locus was used to generate *Hdac*1^{Lox/Lox}; *Hdac*2^{Lox/Lox}; CreER DKO ES cell line, in which exon 2 of each gene is flanked by LoxP sites (Figure 4.1A). Adding 4-hydroxytamoxifen (OHT) to the growth media induces Cre-recombinase activity and resulting in a deletion of exon 2 which disrupts the open reading frame of HDAC1 and HDAC2 and a premature stop codon is introduced into exon3. mRNA is subjected to nonsense-mediated decay and/or a non-functional protein is produced due to lack the catalytic deacetylase domain in both HDAC1 and HDAC2.

Inactivation of *Hdac1* and *Hdac2* genes resulted in loss of each protein 2-3 days following OHT treatment (Figure 4.1B,C), indicating that the half-life of each protein is \approx 24 hours.

В.

C.

A.

Next, the total deacetylase activity of the cell was measured on four consecutive days following 4-OHT treatment. Loss of HDAC1 and HDAC2 resulted in a 60% decrease in cellular deacetylase activity (Figure 4.2), which indicates that HDAC1/2 are biochemically the predominant HDAC enzymes in the ES cells.

Figure 4.2: Deletion of HDAC1/2 results in reduction in Deacetylase activity. Total deacetylase activity was measured in whole-cell extracts on 4 consecutive days following OHT treatment; n/c represent the negative control. Data are representative of n>3 independent experiments. Significant (P value) was calculated using a two-tailed t test.

4.2.2 Inactivation of *Hdac1/2* causes loss of cell viability

Analysis of the growth ability and cell cycle profile of *Hdac1/2* deleted ES cells compared to the control (untreated) cells revealed a loss of cell viability in the absence of HDAC1/2. We monitored the growth of DKO ES cells compared to control (untreated) cells and found that DKO cells stopped proliferating beyond day 2, followed by a profound loss of cell viability at day 4 (Figure 4.3A). Three days following OHT treatment, we observed a change in the morphology of the DKO cells compared to controls (Figure 4.3B). In order to assess the effect of *Hdac1/2* deletion on cell cycle distribution, the cell cycle profile of DKO cells were analyzed over four days using propidium iodide (PI) staining followed by FACS. As shown in figure 4.3C, the percentage of cells with a sub-G1 content (indicative of cell death) increased form 2% to 11% by day 3, and to 75% at day4 in DKO cells.

Loss of HDAC1 has previously been implicated in reduced proliferation in ES cells (Lagger, M., et al. 2002). Moreover, loss of cell proliferation is a common phenotype in all *Hdac1/2* knockout and knockdown studies (Yamaguchi, T., et al., 2010; Wilting, R.H., et al., 2010, and Zupkovitz, G., et al., 2010), which is associated with up-regulation of cyclin-dependent kinase (CDK) inhibitors P21^{WAF1/CIP1} and P57^{Kip2} leading to G1 phase arrest. However, our cell cycle analysis revealed no obvious cell cycle arrest before cell death on day 4.

Α.

Β.

Figure 4.3: Inactivation of *Hdac1/2* causes loss of cell viability. (A) Comparative viable cell counts between control ES cells (Ctrl, untreated DKO cells) and Hdac1/2 double-knockout ES cells. All values are means $(n=3) \pm SEM$ (B) Phase contrast microscopy used to take images of Hdac1/2 deleted cells at the indicated time points following 4-hydroxtamoxifen (OHT) treatment. The black arrows indicate examples of cells that have undergone a change in morphology. (C) Cell cycle distribution of Hdac1/2 deleted cells over a 4-d period following gene inactivation was performed using propidium iodide staining and FACS analysis. The arrow indicates the percentage of cells with a sub-G1 amount of DNA.

4.2.3 Cell death in DKO ES cells is mediated by apoptosis

We previously observed that inactivation of *Hdac1/2* causes loss of ES cells viability. Therefore, to determine whether DKO ES cell were dying via apoptosis, flow cytometry was performed in DKO ES cells using AnnexinV and Propidium iodide (PI) staining.

One of the earlier cellular changes of the apoptotic process is translocation of phosphatidylserine (PS) from the inner side of the plasma membrane to the cell surface. Annexin V is a protein that interacts strongly with exposed phosphatidylserine, when it is fluorescently labelled, it can be used to detect apoptotic cells. Propidium iodide (PI) is a fluorescent molecule that binds nucleic acid. PI is used in conjunction with Annexin V, which allows for the discrimination between viable, apoptotic and necrotic cells depending on their plasma membrane integrity and permeability. The intact plasma membrane excludes PI in viable and early apoptotic cells, whereas, the membrane of late apoptotic and necrotic cells are permeable to PI.

To confirm whether *Hdac1/2* deleted cells were dying via apoptosis, DKO cells were stained with Annexin and PI at days 0, 1, 2, 3 and 4 then analyzed using flow cytometery. As shown in figure 4.4A (lower left quadrant), the percentage of viable cells (Annexin V / PI negative) decreased from 90.2% to 12.9% at days 4. A total of 51.4% of the cells were positive for Annexin V and excluded PI, which represents early apoptotic cells.

The late apoptotic cell population increased gradually from 1.1% to 34.8% at day4 (upper right quadrant). The AnnexinV/ PI staining result suggests that, cell death in DKO cells is mediated by apoptosis. To further confirm this we performed Western blots for apoptotic markers on protein extracts from DKO cells (0-3 days) following gene inactivation. Caspase3 plays a central role in the process of apoptosis, it synthesized as an inactive pro-enzyme that is activated by proteolytic cleavage during apoptosis. Induction of apoptosis can be followed by monitoring the expression levels of full length (32 kDa) pro-caspase 3 as well as the large fragment (19 kDa) of active caspase-3 generated by cleavage at aspartic acid 175. As seen in figure 4.4 B, we detect increased in the level of active subunit of caspase 3 by day3 following gene inactivation. During apoptosis, active caspase3 proteolytically cleaves and inactivates Poly (ADP-ribose) polymerase 1 (PARP). It can be seen that over the 3-day time period, the protein level of full length PARP (116 kDa) was reduced in parallel with the increased in the level of cleaved large fragment (89 kDa) of PARP (figure 4.4B). These result show that deletion of HDAC1/2 in ES cells resulted in cells dying via apoptosis.

В.

Figure 4.4: Cell death in DKO cells is mediated by apoptosis. (A) Evaluation of apoptosis by AnnexinV/PI dual staining assay and flow cytometer analysis of *Hdac1/2* deleted cells over a 4-day period following gene inactivation. (B) Quantitative Western blot showing expression of PARP and Caspase3 protein levels following gene inactivation (0-3days). Blots were visualized and quantified using an Odyssey scanner.

4.2.4 Cell cycle exit rescues the viability of DKO ES cells

The predominant phenotype of *Hdac1/2* DKO cells is a loss of viability 4 days after gene inactivation. HDAC1/2 have been implicated in the regulation of cell cycle in a number of other model systems (Leggar, G., et al., 2002 and Zupkovitz, G., et al., 2010), therefore to test the effect of growth on the lethal phenotype we stimulated differentiation and cell cycle exit of DKO ES cells before deleting of HDAC1/2. The first differentiation method we used was the treatment of ES cells with retinoic acid (RA) for two days before the addition of OHT, after which we cultured the cells for four days in the absence of LIF. As shown in figure 4.5A, the majority of cells remained viable. Next, we stimulated differentiation of DKO ES cells by generating embryoid bodies (EBs). We also found that most of the DKO cells were able to aggregate to form EBs and remained viable after the deletion of *Hdac1/2* (figure 4.5B). These results demonstrate that, the lethal phenotype in the *Hdac1/2* deletion ES cells is cell cycle dependent.

В.

Α.

Figure 4.5: Cell cycle exit rescues the viability of the DKO ES cells. (A) ES cells were treated with 1µM retinoic acid (RA) for 2 days to induce differentiation and cell cycle withdrawal, before the addition of OHT. Comparative viable cell counts of untreated (Ctrl), and OHT-treated DKO cells are shown for a 4-days period. (B) Embryoid bodies (EBs) were generated by plating ES cells on to bacterial dishes . OHT was add to the growth media at the indicated times following plating. The mean size if EBs is shown (n>30) \pm SEM. (Figure 4.5B is provided by Dr.Richard Kelly).

4.2.5 Loss of HDAC1/2 causes defective chromosomal segregation

The lethal phenotype observed in the DKO ES cells is dependent on an active cell cycle (Figure 4.5). Therefore, the next experimental direction was to search for the potential cell cycle defects in DKO cells. It has been previously observed that, deletion of other HDAC1/2 complex components, SDS3 and Sin3A, have a role in chromosome separation and segregation (David, G., et al. 2003; Silverstein, R., et al. 2003). To explore the cell cycle defects, control (DKO cells, day0), individual *Hdac1*-KO and *Hdac2*-KO cells, a compound *Hdac1*-KO; *Hdac2*-Het KO, and DKO cells at day3 after gene inactivation, were stained with anti- α -tubulin, anti- γ -tubulin and Hoechst 33258 to visualize chromosomes during various stages of cell cycle (Figure 4.6).

It can be observed in figure 4.6A that the majority of DKO cells in metaphase had a monopolar rather than bipolar mitotic spindle. Additionally, we detected a significant increase in the number of DKO cells with segregation defects, which is not observed in the individual and a compound KO (Figure 4.6C,D). Interestingly, we observed a significant increase in DNA abnormalities with *Hdac1*-KO, *Hdac1*-KO; *Hdac2*-Het KO, and DKO cells, but not *Hdac2*-KO cells (Figure 4.6E), which correlate with the dosage of HDAC activity, in which all cell lines showed a reduction in the HDAC activity but not *Hdac2*-KO cells (Figure 4.7).

Segregation defects, including lagging chromosomes and chromatin bridges, were only observed in the DKO cells, suggesting the presence of both pre-mitotic and mitotic errors. These results show that, loss of *Hdac1/2* causes mitotic errors and DNA replication defects. This may explained by data from Sirbue et al. (2011), who showed that HDAC1/2 are present at active replication forks. Moreover, it has been recently
shown that, inhibition or knockdown HDAC1/2 reduced the replication fork velocity and activates replication stress response (Bhaskara, S., et al., 2013). Therefore, these data supported our results that lethal phenotype in DKO ES cells is a combination of DNA replication and mitotic defects.

Figure 4.6: Loss of HDAC1/2 causes defective chromosomal segregation. ES cells were stained with anti- α -Tubulin (red), anti- γ -Tubulin (green), and Hoechst. Experiments were preformed on untreated DKO (day 0, control) and DKO cells following deletion (day 3), single *Hdac1* and *Hdac2* knockout cells and a compound *Hdac1*-KO; *Hdac2*-Het knockout cells. Images show examples of mitotic cells with monopolar spindles (A) and segregation defects (B) following *Hdac1/2* deletion. The white arrows indicate individual examples of lagging chromosomes (Center) and chromatin bridges (Right). The images correspond to z projections. (Scale bar, 10µM).

Figure 4.6 Continued. (C-D) Images show examples of individual mitotic and interphase (E) cells. (F) Quantitative analysis of chromosome segregation defects following loss of HDAC1/2. The mean (\pm SD) percentage of cells with abnormal DNA is indicated based on counts of at least 50 cells from n≥3 experiments. Significance (*p* value) was calculated using a two-tailed t test (**P* < 0.01, ***P* < 0.001, ****P* < 0.0001). Images were provided by Laura O'Regan.

Figure 4.7: Total cellular deacetylase activity of cell lines . Deacetylase activity was measured from cells of the indicated genotype. All values are means $(n>30) \pm SEM$ and are normalized relative to the level of α -tubulin. Significance (*p* value) was calculated using a two-tailed t test (**P* < 0.01, ****P* < 0.0001).

4.2.6 Loss of HDAC1/2 disrupts corepressor complex integrity and leads to an increase in global histone acetylation

HDAC1 and HDAC2 are often found within a complex of proteins that are fundamental for their deacetylase activity and for binding DNA (Zhang ,Y., et al., 1999). HDAC1/2 are recruited into three main transcriptional corepressor complexes: Sin3A, NuRD and CoREST (Laherty, C., et al. 1997, Xue, Y., et al. 1998, You, A., et al. 2001). In order to assess the effect of HDAC1/2 deletion on the integrity of corepressor complexes, we performed Western blots on protein extracts from control and day3 DKO cells. As shown in figure 4.8 A and C, left panel, there is a reduction in the protein levels of Sin3A and MTA2, both are direct binding partners of HDAC1/2. We observed a 4.2 fold decrease in the level of Sin3A and a significant 7.1 fold decrease in the level of MTA2 which mediates the interaction of HDAC1/2 with the NuRD complex through its ELM2-SANT domain (Millard, C., et al. 2013, Lee, M., et al. 2006). The significant reduction we detected in the level of MTA2 can be explained by the fact that the ELM2-SANT domain of MTA1 wraps completely around the catalytic domain of HDAC1 making extensive protein-protein contracts (Figure 4.8E). Importantly, the conserved N-terminal region of ELM2 (residues 162-198), which binds an extended groove on the side of HDAC1, lacks extensive secondary structure. Therefore, in the absence of HDAC1/2 this region is likely to be solvent exposed and therefore lead to increased protein turnover of MTA2. We also observed a 2.6 fold reduction in the level of SDS3 that facilities the interaction of Sin3A/HDAC1 (David, G., et al 2003, Fleischer, T., et al. 2003). Interestingly, in the absence of HDAC1/2 we observed a 7-fold increase in the expression level of HDAC3 (Figure 4.8 B, D),

B.

Figure 4.8: Loss of HDAC1/2 disrupts corepressor complex integrity. Experiments were performed on untreated (Ctrl), or OHT-treated double-knockout (DKO) cells 3d following gene inactivation. (A, B) Quantitative Western blot showing the relative levels of indicated proteins. (C, D) Quantitative western blot data for the indicated proteins were performed using an Odyssey scanner and normalized to the level of α-tubulin. Loss of HDAC1/2 causes increased expression of HDAC3 in DKO (day3) cells compared with control (Ctrl). (E) Structure of the ELM2-SANT region of MTA1 (orange) bound to the catalytic domain HDAC1 (grey). All values are means $(n>3) \pm SEM$. The significance (P value) of data in C and D and was calculated using a two-tailed t test (*P < 0.01, **P < 0.001).

a highly related class I that a components of the SMRT/NCoR complex, which suggests a degree of compensation for the loss of HDAC1/2.

Next, global histone acetylation levels in the absence of HDAC1/2 were examined using quantitative Western blotting (Figure 4.9). We detected a relatively modest increase in acetylation levels at most sites due to the fact that pluripotent ES cells maintain a relatively plastic chromatin structure and consequently have high basal levels of histone acetylation (Dovey et al. 2010). Consequently, the notable changes detected were a 3-fold and 4-fold increased in the levels of H3K14Ac and H3K56Ac, respectively. Additionally, we observed that the levels of two methylation sites within H3 tail, H3K4me2 and H3K9me3, were unchanged. We conclude then, the loss of HDAC1/2 caused a reduction in the stability of the corepressor complexes that had an effect on the levels of global acetylation levels of H3 and H4.

Figure 4.9: Deletion of HDAC1/2 leads to increased global histone acetylation. Quantitative Western blotting was used to determine the levels of global histone acetylation. Acetylation levels were normalized to the total amount of H3 quantified using an Odyssey scanner. All values are means (n>3) ±SEM. The significance (*P* value) of data was calculated using a two-tailed t test (*P < 0.01, **P < 0.001).

4.2.7 HDAC1/2 regulate the ES cells transcriptome and are required for the expression of Oct4 and Nanog

HDAC1/2 have been implicated in the regulation of gene expression (Kelly, R. and Cowley, S., 2013). The global changes in histone acetylation in DKO ES cells (Figure 4.8) suggested that the pattern of gene expression may well be altered and therefore examined the consequence of *Hdac1/2* deletion on the ES cell transcriptome. mRNA was isolated from DKO cells at 0, 1, 2 and 3 days following *Hdac1/2* inactivation to perform a comparative microarray analysis using an Illumina Whole-Genome Expression BeadChip platform. Quality control of total mRNA was performed using a 2100 Bioanalyser (Agilent). Only samples that had an RNA integrity number of 8.6 or higher were selected for processing and array hybridization.

Transcripts that were deregulated ≥ 1.4 -fold (p< 0.05) were identified from three independent experiments using ArrayTrack analysis software (Figure 4.10A and appendix table 5). Interestingly, we observed a correlation between the reduction in HDAC activity and the number of deregulated genes. We detected only three aberrantly expressed transcripts on day 1 and an increasing number on day 2 (560 genes) and 1,708 genes by day 3, as HDAC1/2 are progressively lost (Figure 4.10B). The majority of deregulated genes were up-regulated on day 2 (419 up-regulated compared with 141 down-regulated) and on day3 (994 up-regulated compared with 714 down-regulated), consistent with the role of HDAC1/2 in transcriptional repression. However, the large number of down-regulated genes also indicates the role of HDAC1/2 in transcriptional activation of specific genes, supported by recent genome-wide ChIP studies which revealed an enrichment of HDAC1 binding at active gene loci (Wang, Z., et al. 2009, Kurdistanti, S., et al. 2002). To further verify the microarray results, the levels of six down-regulated, seven up-regulated, and five unchanged transcripts were quantified by quantitative real-time PCR (qRT-PCR) (Figure 4.10C). RT-PCR data for all 18 transcripts corroborated the microarray results.

В.

Figure 4.10: HDAC1/2 regulate the ES cell transcriptome. (A) A heat map showing 1,708 genes that are differentially expressed in DKO ES cells over a 3-d time course following gene inactivation. The red and green labeling indicates relative gene expression levels. (B) Number of genes differentially expressed at the indicated days (compared with day 0) following deletion of *Hdac1/2*. (C) qRT-PCR was used to validate the change in expression of a subset of genes from the microarray. Values indicate comparative means $(n=3) \pm SEM$ between DKO cells at day 0 and day 3 following gene inactivation.

We then performed an analysis of functionally related gene groups among deregulated genes using Database for Annotation, Visualization, and Integrated Discovery (DAVID). We found that there was an enrichment for genes involved in cell death are up-regulated, whereas cell cycle genes are down-regulated (Figure 4.11), confirming the phenotype observed in the DKO cells. Also, It can be observed that down-regulated transcripts are highly enriched for genes with a role in the regulation of transcription (p = 7.4×10^{-14}) and cell cycle processes (p = 4.88×10^{-5}). Interestingly, genes involved in RNA processing are also decreased to the same level of significance (p = 8.4×10^{-14}), suggesting a putative role for HDAC1/2 in the regulation of RNA splicing.

Figure 4.11: Functional annotation analysis of differentially expressed genes. DAVID was used to identify biological process (BP) and gene ontology (GO) of probes up-regulated or down-regulated in DKO cells.

Significant to the self-renewal properties of ES cells, we detected reduction in the expression levels of pluripotent factors. *Nanog* was down regulated 1.81-fold on the array and 4.6-fold by qRT-PCR. In addition, *Oct4 (Pou5f1), Rex1 (Zfp42), Essrb*, and *Zfx*, were all significantly reduced between 1.45- and 1.63-fold (Figure 4.10C). We further performed Western blots on protein extracts from control and day3 DKO cells and found that the protein levels of Oct4 and Nanog were reduced in parallel with the decrease of HDAC1/2 activity (Figure 4.12 A, B). We analyzed an additional 39 genes (80 probes) associated with pluripotency and observed a progressive loss of pluripotent factor expression over 3-day time period in which HDAC1/2 activity is lost ($R^2 = 0.96$; p = 0.019). However, analysis of 111 genes associated with stem cell differentiation showed only a weak positive correlation which was not significant ($R^2 = 0.66$; p = 0.186) (Figure 4.12 C and appendix table 3).

These results suggest that HDAC1/2 are required for the expression of pluripotent factors, Nanog and Oct4, which explained the change in cell morphology of DKO cells at day3 (Figure 4.3B). However, loss of HDAC1/2 is not sufficient to depress genes associated with early differentiation.

Figure 4.12: HDAC1/2 are required for the expression of Oct4 and Nanog. (A) Quantitative Western blot data for Oct4 and Nanog proteins indicate reduction in parallel with the decrease of HDAC1/2 activity. (B) Quantitative western blot data for the indicated proteins were performed using an Odyssey scanner and normalized to the level of α -tubulin. (C) Regression analysis of pluripotency and differentiation associated genes using mean log2 fold changes of microarray data. Significance (*P* value) was calculated using a two-tailed t test (***P* < 0.001, ****P* < 0.0001).

4.2.8 HDAC1 and an HDAC1-2 chimera are able to rescue DKO ES cells viability

It seemed likely that the essential requirement for HDAC1/2 in cell division and their ability to influence gene expression was dependent upon deacetylase activity. To confirm this, DKO cells were transfected with cDNAs for HDAC1 wild type and catalytically inactive version of HDAC1 (HDAC1^{Y303H}) to examine their ability to rescue the cell viability. The catalytically inactive HDAC1^{Y303H} was generated by a site directed mutation of Tyrosine303 to Histidine that reduced HDAC1 enzymatic activity (Fischle, W., et al. 2002).

cDNAs were generated by PCR and sub-cloned into a pCAG-IRES-eGFP plasmid using In-Fusion HD EcoDry Cloning Plus kits (Clontech). The eGFP (enhanced green fluorescent protein) tag was used to assess the transfection efficiency as well as select eGFP-positive cells by using fluorescence-activated cell sorting (FACS).

ES cells were transfected with 5 μ g of wt-HDAC1 and HDAC1^{Y303H}, and cultured for 48hours before sorting for GFP-positive (transfected) cells using a FACS. The FACS analysis showed the percentage of ES cells expressing HDAC1 constructs (between 42% to 45%) (Figure 4.13), and western blots with anti-Flag antisera revealed the level of wild-type and chimeric HDAC1 expression (Figure 4.14B). Transfected cells (FACS sorted for GFP expression) were then treated with 4- hydroxytamoxifen (OHT) (for 24 hours) and cultured for a further 4 days before cell counting. As seen in figure 4.13C, wild-type HDAC1 was able to rescue DKO cells, while the majority of cells transfected with HDAC1^{Y303H} died at day 4 following *Hdac1/2* inactivation.

This result prompted us to use the DKO cells as a model system in which to interrogate aspects of HDAC1 activity. HDAC1, 2, and 3 share a highly conserved catalytic domain and a divergent C-terminal domain that is subject to post-translation modifications which are thought to regulate protein stability, catalytic activity and complex formation (Hassig, C.A. et al., 1997). We therefore swapped the C-terminal domain between HDAC1and HDAC2 (HDAC1-2 CTT); and HDAC1 with HDAC3 (HDAC1-3 CTT). As observed in figure 4.14C, HDAC1-2 CTT was able to rescue cell viability, while most of cells transfected with HDAC1-3CTT died at day 4 following *Hdac1/2* deletion. However, the expression levels of HDAC1-3 CTT was very low compared to other constructs (Figure 4.14C). This result suggests that, C- terminal tails of HDAC1 and HDAC2 are essential for their catalytic activity and the C-terminal tail of HDAC3 is less efficient.

Figure 4.13: Transfection efficiency of HDAC1 constructs 48 hours after transfection. FACS analyses identify percentages of GFP-positive transfected cells for HDAC1, HDAC1^{Y303H}, HDAC1-2, HDAC1-3 constructs and untransfected cells used as control. Transfection efficiency between 42-45% for each construct.

Figure 4.14: HDAC1 and HDAC1-2 chimera are able to rescue DKO ES cells viability. (A) Schematic diagram of the HDAC1 mutant constructs. (B) The number of viable cells, transfected with the indicated HDAC1 expression constructs, were counted 4 days after *Hdac1/2* inactivation. (C) Western blot performed with anti-FLAG and anti- α -tubulin antisera to determine the relative expression level of individual HDAC1 constructs. All values are mean (n>3) ± SEM. Significance (*P* value) was calculated using a two-tailed t test.

4.2.9 Rescue of DKO cells is dependent upon the integrity of HDAC1 IP₄ binding pocket

It has been recently shown that the activity of HDAC1 and HDAC3 is modulated by Inositol tetraphosphate (1,4,5,6) P4, (IP4) (Millard, C., et al 2013, Watson, P., et al. 2012). As shown in figure 4.14A, The IP4 binding pocket on the surface of HDAC1 is made up of a number of positively charged residues (K31, R270, and R306), which form hydrogen bonds with the negatively charged phosphate of IP4. To test the requirement for IP4 binding to the activity of HDAC1. DKO cells were transfected with 5 forms of mutated HDAC1, lysine 31, arginine 270, and arginine 306 were mutated to glutamine, a polar non-charged residue, individually (K31Q, R270Q, R306Q), as double mutants (K31Q/R270Q, R270Q/R306Q), or as a triple mutants (K31Q/R270Q/ R306Q). As shown in figure (4.15B), the deacetylase activity of individual mutants was reduced, the double mutants showed a lower activity compared to the individual and the triple mutants had lowest deacetylase activity of all.

Figure 4.15: Catalytic activity of HDAC1 is dependent upon the integrity of the inositol tetraphosphate (IP₄) binding pocket. (A) Structure of HDAC1deacetylase domain with positively charged residues critical for the interaction with IP₄ (K31, R270, and R306) marked in blue. (B) Relative deacetylase activity was measured using individual Flag-tagged HDAC1 constructs immunoprecipitation using anti-Flag antisera. All values are means (n>3) \pm SEM and are normalised relative to the level of protein expression (Shown in the lower panel). Significance (*P* value) was calculated using a two-tailed t test. Western blot performed with anti-FLAG and anti- α -tubulin antisera to determine the relative expression level of individual HDAC1 constructs.

We further tested the ability of the mutant HDAC1 constructs to rescue the viability of the DKO cells at 4 days following gene inactivation (Figure 4.16). We also observed that, the single-point mutations (K31Q, R270Q, R306Q) produced a lower number of viable cells compared with controls, whereas double and triple mutation resulted in an additive effect, with the smallest number of viable cells. These results indicate that, IP4 binding is necessary for the full activity of HDAC1 in vivo.

Figure 4.16: Cell viability is dependent upon the integrity of the inositol tetraphosphate (IP₄) binding pocket. The number of viable cells, transfected with the indicated HDAC1 expression constructs, were counted 4 d after *Hdac1/2* inactivation. All values are means (n>3) ± SEM. Significance (*P* value) was calculated using a two-tailed t test.

We then wanted to test the ability of HDAC1 mutants to bind their binding partners (Sin3A and MTA2) in co-repressor complexes. To do this, HDAC1 mutants were coimmunoprecipitated with endogenous Sin3A and MTA2. As shown in figure 4.17, Sin3A and MTA2 were immunoprecipitated from all single-point mutation except K31Q mutant. However, double and triple mutants were unable to immunoprecipitate the endogenous proteins. Together these results suggest that the IP4 pocket may also essential for binding of HDAC1 to their protein partners and formation of co-repressor complexes.

Figure 4.17: The IP4 pocket may also be essential for binding of HDAC1. Flag-tagged HDAC1 constructs immunoprecipitation using anti-Flag antisera followed by anti-Sin3A and anti-MTA2 western blot to detect pulled down endogenous proteins (Sin3A and MTA2).

4.3 Conclusions

We have generated ES cells in which *Hdac1* and *Hdac2* can be simultaneously inactivated. Loss of HDAC1/2 results in a 60% reduction in HDAC activity (figure 4.2) as well as loss of cell viability 4 days after gene inactivation (figure 4.3A). The lethal phenotype is dependent on an active cell cycle by stimulating cell cycle exit before inactivation of *Hdac1/2* by using retinoic acid (RA) or generating embryoid bodies (EBs), the majority of cells remained viable (Figure 4.5). DKO cells at day3 show a significant increase in DNA abnormalities and segregation defects that is likely the major cause of cell death.

Analysis of global histone acetylation reveals a relatively modest increase in the acetylation levels at most sites that analyzed which is consistent with the reduction in the integrity of co-repressor complexes in the absence of both enzymes (Figure 4.8).

Loss of HDAC1/2 activity correlates with the down-regulation of almost 2,000 genes including the pluripotent factors, which suggests that HDAC1/2 are required for the expression of Oct4 and Nanog (Figure 4.12). A recent study revealed the binding of HDAC1 close to the transcription start site of pluripotent factors, including Oct4, Nanog, Sox2, and Rex1, suggesting a positive role in the maintenance of cell self-renewal (Kidder et al. 2012)

Recently, it was shown that, using in vitro assays, activity of HDAC1 and HDAC3 is modulated through the binding of IP4. Mutations of residues that abolish IP4 binding reduce HDAC1 activity in vivo (Figure 4.15).

Chapter 5: Understanding the role of HDAC1 and HDAC2 in ES cells differentiation

5.1 Chapter aims

Using $Hdac1^{Lox/Lox}$, $Hdac2^{Lox/WT}$ ES cells (Chapter 3) I aimed to further elucidate the role of HDAC1/2 in the differentiation of ES cells. The differentiation of $Hdac1^{KO}$; $Hdac2^{Het}$ cells was assessed using two different differentiation assays, generating embryoid bodies (EBs), and using LIF-free /Serum-free medium.

Further, I aimed to identify genes directly regulated by HDAC1/2, by treatment of ES cells with retinoic acid (RA) which is effective way of activating a well characterized gene expression programme. Approximately 200 genes are induced within 6 hours, in particular, HOX genes, which are retinoic acid (RA) primary response genes. The induction of retinoic acid (RA) target genes was compared between control (untreated) and *Hdac1*/2 deleted cells (DKO) (chapter 4).

5.2 Results

5.2.1 Increased expression of cardiomyocyte markers in *Hdac1^{KO}*; *Hdac2^{Het}* embryoid bodies (EBs)

It has been previously shown that, loss of HDAC1 causes enhanced EBs differentiation into mesoderm and ectoderm cell linages (Dovey, O.M. et al, 2010). Embryoid bodies lacking HDAC1 were reduced in size and exhibited induction of the cardiomyocyte specific markers. In chapter 3 we found that, the differentiation ability of $Hdac1^{KO}$; $Hdac2^{Het}$ ES cells (KO) was not inhibited, cells were able to differentiate upon LIF withdrawal (Figure 3.7). Therefore, further differentiation analyses were required to investigate the role of HDAC1 and HDAC2 in greater detail.

Hdac1^{KO}, *Hdac2^{Het}* ES cells were used to generate embryoid bodies (EBs). Control (untreated) and KO (OHT- treated) cells were cultured in the absence of LIF and plated onto Corning[®] Costar[®] Ultra-Low attachment plates which prevented cell adhesion and produced a uniform size of EBs similar to the hanging drop method. EBs were cultured for 10 days and visualized every 2 days. As shown in figure 5.1A, control and *Hdac1^{KO}; Hdac2^{Het}* cells were able to aggregate and form EBs over a two-day period. However, extended culture revealed that EBs derived from *Hdac1^{KO}; Hdac2^{Het}* cells were irregular and reduced in size compared to control (Figure 5.1 A and B). The reduction in size implied increased differentiation of EBs derived from *Hdac1^{KO}; Hdac2^{Het}* compared to controls.

Figure 5.1: Loss of HDAC1/2 effects embryoid body differentiation (EBs). (A) Images representative of EBs at indicted time points shows that $Hdac1^{KO}$; $Hdac2^{Het}$ EBs (OHT treated) are reduced in size. (B) Mean size of EBs during a 10-days experiment. All values are mean (n = 3) ±SEM.

Gene expression analysis of EBs was performed to determine cell types present during EB differentiation. Quantitative RT-PCR was performed for lineage specific markers using mRNA isolated from control and *Hdac1^{KO}; Hdac2^{Het}* EBs over a 10-day period. As observed in figure 5.2, HDAC1^{ko}; HDAC2^{Het} EBs were able to repress *Nanog* (a stem cell marker), indicating that KO cells are able to exit pluripotent state. As demonstrated previously (Dovey, O.M. et al, 2010), EBs lacking HDAC1 were differentiated toward mesodermal lineage, therefore we examined the expression patterns of cardiomyocyte-specific markers. NKX2-5 and Mef2c are transcription factors essential for differentiated cardiomyocyte and heart development. Induction of NKX2-5 and Mef2c expression was observed in EBs derived from control and *Hdac1^{KO}*; *Hdac2^{Het}* by day4 when *Nanog* has already been repressed (Figure 5.2). However, transcript level of both genes was higher in EBs derived from HDAC1^{ko}; HDAC2^{Het} than that in control. Additionally, TBX5 (an early cardiomyocyte marker) and TNNT2 (a late cardiomyocyte marker) were induced in a similar pattern, with a higher expression in EBs derived from HDAC1^{ko}; HDAC2^{Het} compared to control. TBX5 was induced by day 4 in control EBs, earlier than EBs derived from Hdac1^{KO}; Hdac2^{Het}. Notably, the induction of TNNT2 occurred at day 6 later than other cardiomyocyte markers, and again the transcript level was higher in EBs derived from Hdac1^{KO}: Hdac2^{Het} compared to controls (Figure 5.2). Together, these result suggest that the differentiation into cardiomyocyte (mesodermal) lineage is enhanced in cells with reduced levels of HDAC activity.

Figure 5.2: Loss of HDAC1/2 enhanced cardiomyocyte differentiation of EBs. Quantitative RT-PCR data of undifferentiated stem cell marker (*Nanog*), cardiomyocyte specific markers (*NKX2-5*, *Mef2c*), early cardiomyocyte marker (*TBX5*), and late cardiomyocyte marker (*TNNT2*) was performed on mRNA collected from control (untreated) and *Hdac1^{KO}*; *Hdac2^{Het}* (OHT treated) at days 0,4,6,8, and 10 days during EB differentiation. All values are mean (n = 3) ±SEM. Values indicate expression of gene relative to the *Gapdh* reference gene, measured using Universal ProbeLibrary hydrolysis probes.

We then examined the expression level of *MyoD*, a skeletal muscle marker, and *GATA4*, an endoderm linage marker. As shown in figure 5.3, *MyoD* showed a similar induction through the same period, levels were higher in EBs derived from *Hdac1^{KO}*; *Hdac2^{Het}* compared to control, after 10 days of differentiation it exhibited a significant increase with a 8-fold in *Hdac1^{KO}*; *Hdac2^{Het}* EBs compared to 5.6-fold in EBs derived from control. This result further confirmed that, induced differentiation toward mesodermal linages in EBs lacking HDAC1 and with 50% of HDAC2. However, endoderm marker *GATA4* did not show a similar induction, we detected only a slight increase in the expression level of *GATA4* in *Hdac1^{KO}*; *Hdac2^{Het}* EBs compared to compared to controls (Figure 5.3).

Altogether, these results indicate that induced differentiation of HDAC1^{KO}; HDAC2^{Het} ES cells, via formation of EBs in LIF-free media, resulted in increased expression of cardiomyocyte-specific markers, which reveal their role in control cardiac differentiation.

Figure 5.3: Differentiation of ES cells lacking HDAC1/2 is associated with a slight induction of mesoderm and endoderm markers. Quantitative RT-PCR data for skeletal muscle mesoderm (*MyoD*) and endoderm (*GATA4*) marker was performed on mRNA collected from control (untreated) and *Hdac1^{KO}*; *Hdac2^{Het}* (OHT treated) at days 0, 4, 6, 8, and 10 days during EB differentiation. All values are mean (n = 3) ±SEM. Values indicate expression of gene relative to the *Gapdh* reference gene, measured using Universal ProbeLibrary hydrolysis probes.

5.2.2 Differentiation of *Hdac*1^{KO}; *Hdac*2^{Het} ES in serum-free (N2B27) media

Maintenance of the undifferentiated state of mES cells in vitro requires addition of LIF to the growth media. Leukaemia inhibitory factor (LIF) acts by activating the STAT3 signaling pathway that helps maintain pluripotency by blocking endodermal and mesodermal differentiation. However, it has been shown that LIF is insufficient to block neuronal differentiation in serum-free mES cell culture medium, therefore, the presence of serum is required. Bone morphogenic protein (BMP4) was identified as the constituent of serum, signaling through SMAD proteins, which promotes expression of Inhibitor-of-differentiation (Id) proteins that suppress ectodermal differentiation (Ying, Q., et al. 2003). Accordingly, LIF and serum (BMP4) are required to maintain pluripotency and suppress differentiation of mES cells in vitro. Therefore, another differentiation assay was performed in N2B27 media (lacking LIF and serum (BMP4)) to examine the effect of deletion HDAC1^{KO}; HDAC2^{Het} on ES cell differentiation under serum-free conditions

Control (untreated) and HDAC1^{KO}; HDAC2^{Het} (KO) (OHT treated) ES cells were cultured in LIF-free, serum-free (N2B27) media for 6 days culture period. ES cells were plated onto laminin-coated dishes to enhance cell viability and induce neuronal differentiation. Removal of LIF releases the inhibitory effects of STAT3 on mesoderm and endoderm differentiation while removal of BMP prevents inhibitory effects of Id on neuroectoderm differentiation.

In order to identify cell types present during differentiation, mRNA was collected from control (untreated) and $Hdac1^{KO}$; $Hdac2^{Het}$ (OHT treated) cells at 0, 2, 4, and 6

days and quantitative RT-PCR was performed for linage specific markers. The undifferentiated (stem cell) marker, *Nanog*, was used as a control and was found to be repressed in control and *Hdac1^{KO}*; *Hdac2^{Het}* cells indicating that these cells exit the pluripotent program when cultured in LIF-free and serum-free culture media (Figure 5.4)

Differentiation of mES cells using serum-free media induced neuroectoderm lineage, which gives rise to neurons. The neuroectoderm lineage is characterized by the expression of transcription factor SOX1 (Suter, D.M., et al 2009). SRY-Related HMG-Box Gene 1 (SOX1) plays a role in development and maintenance of neuroectodermal stage. The quantitative RT-PCR data indicated that the induction of neuroectoderm lineage was unaffected in *Hdac1^{KO}*; *Hdac2^{Het}* cells, since there was no consistent difference in the activation of SOX1 compared to control cells (Figure 5.4). A 3-fold induction was observed in control compared to 2-fold in Hdac1^{KO}; Hdac2^{Het} cells at day 2, however at day 4 it increased in *Hdac1^{KO}*; *Hdac2^{Het}* while stayed the same in control (4.5-fold compared to 3-fold). To further confirm that we had induced differentiation of neuronal lineage we also examined expression of the transcription factor PAX6 (Figure 5.4). PAX6 is activated later than SOX1, (1.07- compared to 3.4fold at day 2), which is expected as neurons further differentiated toward radial glia they switch from SOX1 to PAX6 expression (Suter, D.M., et al 2009). We noticed that the expression level of both SOX1 and PAX6, are not significantly changed in Hdac1^{KO}; Hdac2^{Het} cells compared to controls, which suggests that the differentiation is unaffected (Figure 5.4).

Figure 5.4: Differentiation of $Hdac1^{KO}$, $Hdac2^{Het}$ ES cells in serum-free media. Quantitative RT-PCR data for undifferentiated stem cell marker (*Nanog*), and neuroectodem transcription factors (*SOX1* and *PAX6*) was performed on mRNA collected from control (untreated) and $Hdac1^{KO}$; $Hdac2^{Het}$ (OHT treated) cells cultured in serum-fee (N2B27) media on days 0, 2, 4, and 6. All values are mean (n=3) ±SEM. Values indicate expression of gene relative to the *Gapdh* reference gene, measured using Universal ProbeLibrary hydrolysis probes.

We further examined the expression levels of neuronal specific markers. The expression level of ASCL1, a transcription factor that plays an essential role in neuronal commitment and differentiation, was up-regulated at day 2 and there was no significant difference in the expression between control and $Hdac1^{KO}$; $Hdac2^{Het}$ (1.8compared to 1.3-fold) (Figure 5.5). Control and Hdac1^{KO}; Hdac2^{Het} cells showed a similar induction of CXCR4, which plays a role in neuronal guidance, and FZD9 that is expressed in neural precursor cells (Figure 5.5). However, the expression level of CXCR4 and FZD9 were slightly decreased by day6 in Hdac1^{KO}; Hdac2^{Het} (4.7- and 4.2-fold) compared to control (4.8- and 5.7-fold change). Additionally, Noggin (expressed in neural precursor cells) was induced in a similar pattern at day 2, with a small difference in the expression level between control and $Hdac1^{KO}$; $Hdac2^{Het}$ cells (2.5-fold compared to 3.7-fold), then it increased to 9.4-fold in control and 8.6-fold in Hdac1^{KO}; Hdac2^{Het} (Figure 5.5). Overall, These results suggest that under these differentiation conditions, ES cells lacking HDAC1/2 are able to differentiate toward neuroectoderm linage, and there is no significant change in the expression of neuroectoderm markers compared to control cells.

Figure 5.5 Expression of neuronal specific markers in $Hdac1^{KO}$; $Hdac2^{Het}$ ES cells. Quantitative RT-PCR data for neuronal specific markers: *ASCL1, CXCR4, FZD9*, and *Noggin*, was performed on mRNA collected from control (untreated) and $Hdac1^{KO}$; $Hdac2^{Het}$ (OHT treated) cells cultured in serum-fee (N2B27) media on days 0, 2, 4, and 6. All values are mean (n=3) ±SEM. Values indicate expression of gene relative to the *Gapdh* reference gene, measured using Universal ProbeLibrary hydrolysis probes.

5.2.3 HDAC1/2 positively regulate expression of HOX genes following RA treatment

As previously demonstrated in chapter 4, the transcriptome analysis of Hdac1/2 deleted ES cells revealed that approximately 2000 genes are deregulated. Furthermore, there is correlation between the reduction in HDAC activity and the number of deregulated genes (Figure 4.9), many genes were down-regulated as well as upregulated which suggests that HDAC1/2 may also play a positive role in the expression of some genes. We also found that the expression levels of *Oct4* and *Nanog* were down-regulated when HDAC1/2 are lost in ES cells (Figure 4.11). To identify direct effects of HDAC1/2 on gene expression, we compared the induction of retinoic acid (RA) target genes between control (untreated) and $Hdac1^{Lox/Lox}$; $Hdac2^{Lox/Lox}$; CreER (**DKO**) ES cells (OHT treated). All-trans-retinoic acid (RA) is a metabolic product of vitamin A that plays a role in regulating ES cell differentiation.

Cells were cultured in the presence of 4-hydroxytamoxifen (OHT) for 24 hours to induce the deletion of *Hdac1/2*, and then 2.5-days following gene inactivation (at point which both proteins are lost), cells were then treated with 1µM retinoic acid (RA) for 6 hours. mRNA was isolated from control, and DKO with , and without RA to perform a comparative microarray analysis. Transcripts up-regulated or down-regulated by \geq 1.4fold change (FC \geq 1.4, adjusted P<0.05) were identified from three independent experiments using ArrayTrack analysis software (appendix table 6). Adding RA resulted in a change in the expression of 238 transcripts (C versus C+RA), with 167 up-regulated and 71 down-regulated transcripts (Figure 5.6). A total of 195 deregulated transcripts were detected in DKO+RA compared to DKO as a result of adding RA, of these, 115 transcripts were up-regulated and 79 down-regulated.

Analysis of the expression level of pluripotent factors revealed that, *Nanog* and *Oct4 (Pou5f1)*, were uniformly expressed (unchanged) in all samples treated with RA (Figure 5.7A). However, transcript levels of pluripotent factors were significantly reduced in DKO compared to control (Figure 5.7B), in agreement with our previous result (chapter 4) demonstrating that HDAC1/2 regulate expression of pluripotent factors.

Figure 5.6: Number of differentially expressed genes in RA treated cells. Control and DKO (*Hdac*1^{Lox/Lox}; *Hdac*2^{Lox/Lox}) cells were cultured with OHT for 24h, and then 2.5-day later were treated with 1µM retinoic acid (RA) for 6 hours. A comparative microarray analysis was performed on mRNA isolated from C, C+RA, DKO, and DKO+RA. Transcripts deregulated \geq 1.4 (P<0.05) were identified from three independent experiments.

Figure 5.7: Expression levels of pluripotent factors are unchanged at six hours following RA treatment. (A) Expression of *Nanog, Oct4 (pou5f1)* and *Rex1 (Zfp42)* were compared between control treated with RA(C+RA) versus control and between DKO treated with RA (DKO+RA) versus DKO, (B) and between control versus DKO cells. Fold change was calculated using microarray data.
RA acts by binding to the retinoic acid receptor RARs (RAR α , RAR β , and RAR γ), a member of the nuclear receptor family, in combination with retinoic X receptors RXRs (RXR α , RXR β , and RXR γ). In the nucleus, RA-bound RAR/RXR dimers induce expression of target genes by binding to DNA sequences known as retinoic acid response elements (RAREs) (Rochette-Egly, C., et al, 2009). Addition of RA induced transcription of primary RA response genes that possess RAREs in proximity to the transcription sites e.g. HOX genes, within two hours of treatment.

Therefore, we first analyzed the expression pattern of HOX genes (direct targets of RA) between RA treated and untreated cells. We found that six hours following RA treatment, transcript levels of HOX genes (Hoxa1, Hoxa5, Hoxb1, etc.) were significantly up-regulated (between 3-fold and 2-fold change) in control treated with RA (C+RA) compared to untreated control (C) (Figure 5.8A), demonstrating that RA is efficiently inducing their expression. Interestingly, DKO cells treated with RA (DKO+RA) showed reduced induction through the same time period. The transcript levels of almost all HOX genes were unchanged in DKO+RA compared to DKO cells (Figure 5.8A). Notably, the expression level of Hoxa1 was significantly induced by 2.9-fold in C+RA, and only 1.2-fold in DKO+RA. Furthermore, the transcript levels of the Hoxa5 and Hoxb1 were also induced between 2.3- and 2.2-fold on C+RA, while in the DKO+RA they induced between 1.2- and 1.1-fold (Figure 5.8A), suggesting a positive role of HDAC1/2 in their induction.

However, HOXb4 was induced to the same level in RA treated cells (C+RA) and (DKO+RA) by 2.3-fold change. Moreover, HOXb5 was increased modestly (1.4-fold) in DKO+RA compared to 2-fold in C+RA following RA treatment (Figure 5.8A).

The lack of change in HOX genes expression observed in DKO+RA cells prompted us to examine the transcription levels of more RA primary response genes. *CYP26a* (cytochrome P450 26 subfamily) that mediates RA catabolism (Pennimpede T. et al., 2010) was significantly induced by 13-fold in C+RA, but only 9.7-fold in DKO+RA (Figure 5.8B). Furthermore, addition of RA resulted in reduced induction of the transcript levels of *Cdx1* (Caudal Type Homeo-Box Transcription Factor 1), *Meis2* (Homeobox protein Meis2), and *Stra8* (stimulated by retinoic acid 8). Control cells treated with RA showed more induction (3.7-, 2.3-, and 4.6-fold change) compared to DKO+RA cells (2.8-, 1.2-, and 3-fold change) (Figure 5.8B). The reduced RA induction among primary response genes in *Hdac1/2* deleted ES (DKO) cells suggests a positive role of HDAC1/2 in regulating the expression of these genes.

В.

A.

Figure 5.8: HDAC1/2 positively regulate expression of primary RA response genes. (A) Expression levels of HOX genes and (B) RAprimary response genes were compared between control treated with RA(C+RA) versus control and between DKO treated with RA (DKO+RA) versus KO. Fold change was calculated using microarray data.

As mentioned above, RA initiates gene expression by binding to RA receptors, which then binds RAREs within the promoters of target genes. To examine whether the reduction in the expression of RA target genes is a direct effect of Hdac1/2 deletion or RA receptor levels, I examined the expression levels of RARs and RXRs in control and DKO cells. The expression level of RAR and RXR receptors was unchanged between control and DKO cells (Figure 5.9 A and C). RAR β , which is primary RA responsive gene, was induced by RA treatment, although its induction was also reduced by the absence of HDAC1/2 (C+RA versus DKO+RA).

D.

B.

Figure 5.9: Expression of RA receptors is unchanged in *Hdac1/2* **deleted cells.** Expression levels of (A) retinoic acid receptors RARs and (B) retinoic x receptors RXRs compared between control treated with RA (C+RA) versus control and between DKO treated with RA (DKO+RA) versus DKO (C and D) between C (control) versus DKO (OHT treated). Fold change was calculated using microarray data.

Furthermore, the transcription levels of the top one hundred up-regulated and the top one hundred down-regulated genes (ranked based on fold changes) from the microarray data were compared between RA treated cells (C+RA versus DKO+RA), we also found that the pattern of gene expression is reduced in DKO+RA compared to C+RA (Figure 5.10). Among the one hundred up-regulated genes, *Aurkc* (a protein kinase) showed a reduced induction in DKO+RA compared to C+RA (4.5-compared to 1.5-fold). Moreover, the induction of *Tal2* and *Cdx1* were reduced by the absence of HDAC1/2 (3.1-, 3.6-fold in C+RA compared to 1.2-, 2.5-fold in DKO+RA). Out of the one hundred down-regulated genes, *Otx2* and *Fgf 8* showed less reduction in DKO+RA compared to 2-, 1.1-fold).

An analysis of functionally related genes groups among up-regulated genes comparing RA treated cells with untreated cells, revealed that genes involved in development, for instance, nervous system development, organ development and embryonic development were significantly up-regulated in control and DKO treated with RA (Figure 5.10).

DKO v DK+RA

Figure 5.10 Comparative analysis of the top one hundred up- and down-regulated genes following RA treatment. Transcription levels were compared between control treated with RA (C+RA) versus control and between DKO treated with RA (DKO+RA) versus DKO. Genes ranked based on fold change.

5.3 Conclusions

In conclusion, $Hdac1^{KO}$; $Hdac2^{Het}$ KO ES cells were able to form EBs over a two-day period. However, the EBs were irregular, reduced in size (Figure 5.1) and showed increased expression of cardiomyocyte-specific markers (mesodermal linages) (Figure 5.2 and 5.3). Whereas, differentiation of $Hdac1^{KO}$; $Hdac2^{Het}$ KO ES cells in LIF- free and Serum-free medium toward neuroectoderm linage suggested the differentiation is unaffected, the expression of two important neuroectoderm linage transcription factors, SOX1 and PAX6, were unchanged in $Hdac1^{KO}$; $Hdac2^{Het}$ cells compared with undeleted control (Figure 5.4).

HDAC1 and HDAC 2 appear to positively induce the expression of RA primary response genes, particularly HOX genes. Comparative microarray analysis of *Hdac1/2* deleted cells treated with RA (6hours) revealed that, although transcript levels of HOX genes (RA direct gene response) increased, it was to a lesser extent than in control cells (Figure 5.9A). Moreover, induction of RA primary response genes were reduced in *Hdac1/2* deleted cells in compared to control cells (Figure 5.9B). These results suggest that HDAC1/2 are involved in gene activation as well as gene repression.

Chapter 6: Discussion

6.1 HDAC1 and HDAC2 are the dominant deacetylases in ES cells.

To assess the requirement of HDAC1 and HDAC2 in early embryogenesis, we have generated ES cells in which both copies of Hdac1 (KO) and a single Hdac2 (Het) gene can be inactivated conditionally (Figure 3.1). The total deacetylase activity of the cell decreased by approximately 56% three days after gene inactivation (Figure 3.3). Dovey et al. and Lagger et al. indicated a reduction in the deacetylase activity in their Hdac1^{-/-} ES cells (Dovey, O.M. et al, 2010, Lagger, G., et al., 2002). However, in Hdac1^{KO}; Hdac2^{Het} cells the level of HDAC2 protein is only slightly reduced and did not compensate for the loss of HDAC1, which is presumably due to having only a single copy of the *Hdac2* allele (Figure 3.2). Loss of both copies *Hdac1* and *Hdac2* (DKO) in ES cells (chapter 4) also results in a 60% reduction in the cellular deacetylase activity (Figure 4.2) despite a compensatory increase in the protein level of HDAC3, a highly related class I HDAC (Figure 4.7A). Concordant with these results, the level of direct HDAC1/2 binding partners (Sin3A, CoREST and MTA2) were significantly reduced (Figure 3.4 and 4.7). These results indicate that HDAC1 and HDAC2 are the dominant deacetylases in the ES cells, and their loss disrupts corepressor complex integrity. Even though the deacetylase activity is significantly reduced, we observed a relatively modest increase in the acetylation levels of lysines within the tails of H3and H4 (Figure 3.5 and 4.8). A plausible explanation for this result is the fact that ES cells maintain a relatively plastic chromatin structure, to have the capacity to enter multiple distinct differentiation pathways as directed by the correct signals. Therefore, it shows a relatively high basal level of histone acetylation.

6.2 Loss of HDAC1 and HDAC2 causes defective chromosomal segregation and loss of cell viability.

HDAC1 and HDAC2 have been implicated in cell cycle regulation, they are required for transcription repression mediated by retinoblastoma tumor suppressor protein, Rb (Brehm, A., et al 1998), and they control expression of specific CDK inhibitors such as $p21^{Cdkn1a}$ (Lagger, G., et al., 2002 and Senese, S., et al., 2007, and Zupkovitz G., et al., 2010). The Proliferative ability of *Hdac1^{KO}*; *Hdac2^{Het}* cells is not effected (Figure 3.6), however, deletion of both *Hdac1/2* (DKO) results in a profound loss of cell viability (figure 4.3) with 75% sub G1 cells, implying that a reduction in gene dosage negatively effects ES cell viability, since cells retaining only a single copy of the *Hdac2* allele are viable. Finally, it also suggests functional redundancy between HDAC1 and HDAC2.

If DKO cells are stimulated to exit cell cycle before deletion of both *Hdac1/2*, by making embryoid bodies or using retinoic acid (RA), the majority of cells remained viable, suggesting that the lethality is cell cycle dependent. We observed a significant increase in the number of cells with segregation defects and monopolar spindles. Moreover, we detected a significant increase in DNA abnormalities in DKO cells compared to *Hdac1-KO*, and *Hdac1-KO*; *Hdac2-Het* cells but not *Hdac2-KO* cells (Figure 4.6). Comparing the HDAC activity of these cell lines revealed a significant reduction in HDAC activity in all but *Hdac2-KO* cells, suggesting that DNA abnormalities are dependent on the dosage of HDAC activity.

HDAC1 has previously been implicated in reduced proliferation in ES cells (Lagger et al. 2002). Deletion of Hdac1/2 in MEFs results in growth arrest and cell cycle block

in G1-phase that is associated with up-regulation of cell cycle inhibitors p21 and p57 (Yamaguchi, T., et al., 2010 and Wilting, R., et al., 2010). Loss of cell proliferation is a common phenotype in all *Hdac1/Hdac2* knockout, knockdown and HDAC inhibitors studies (Yamaguchi T., et al., 2010 Wilting R.H., et al., 2010, and Zupkovitz G., et al., 2010), a phenotype associated with up-regulation of cyclin-dependent kinase (CDK) inhibitors p21^{Cdkn1a} that limits G1-to S-phase transition. Therefore, HDAC activity is crucial during this regulatory G1 phase. However, our analysis of DKO cell cycle revealed no obvious arrest before cell death occurred (Figure 4.3C), which is likely due to the fact that ES cells have a short G1 phase (1.5 hours), in which CDK2 complexes are constitutively active and RB hyper-phosphorylated (Budon, T., et al. 2002, Savatier, P., et al. 1994). Therefore, DKO ES cells lacking the normal G1 regulatory step observed in somatic cells, are unable to arrest in G1 phase and consequently enter S phase and then mitosis where the absence of HDAC1/2 activity causes lethality. The significant increased in both chromatin bridges and micronuclei in DKO cells, suggests that deletion of HDAC1/2 leads to DNA replication defects. This is supported by a data from Sirbu et al. who used the iPOND (isolation of proteins on nascent DNA) and found that HDAC1/2 are present at active replication forks (Sirbu, B., et al., 2001). Moreover, a recent study has found that knockdown or chemical inhibition of HDAC1/2 reduced replication fork velocity and activates the replication stress response (Bhaskara, S., et al., 2013). Another study has also demonstrated that the deletion of other HDAC1/2 co-repressor components, including SDS3 in MEFs and Sin3A in S. Pombe impairs chromosome segregation and formation of pericentric heterochromatin, implying that HDAC1/2 activity maintain hypoacetylated state of pericentric heterochromatin, a requirement for appropriate assembly of the kinetochore

(David, G., et al., 2003; Silverstein, R., et al., 2003). We therefore conclude that a combination of DNA replication and mitotic defects are the major cause of death in DKO cells.

6.3 HDAC1/2 regulate expression of core pluripotency factors in ES cells

A reduction in the expression level of pluripotent factors was detected in both *Hdac1^{KO}; Hdac2^{Het}* and DKO cells, implying that loss of HDAC1/2 activity correlates with the reduced expression of pluripotent factors (Figure 3.10, 3.11 and 4.11). Interestingly, this phenotype contrasts with the disruption of other HDAC1/2-containing complexes in ES cells. Deletion of LSD1 (lysine demethylase 1) perturbs the CoREST complex but does not effect expression of Oct4 (Foster, C., et al., 2010). Conversely, deletion of MBD3, a component of the NuRD complex, prevents repression of Oct4 (Kaji, K., et al., 2006). However, the Sin3A-HDAC complex was found to positively regulate expression of Nanog in ES cells (Baltus, G., et al., 2009). Moreover, A recent genome-wide analysis (ChIP-chip) revealed binding of HDAC1 to active genes in ES cells, including core pluripotent factors Oct4, Nanog and SOX2 (Kidder, B., et al., 2011), suggesting the positive role of HDAC1 in maintaining self-renewal of ES cells.

ChIP analysis has been used to map the genome-wide binding sites of HDAC1 and reveal enrichment of HDAC1 binding to active gene loci (Kurdistani, S., et al., 2002; Wang, Z., et al., 2009). Altogether, HDAC1/2 are necessary for the expression of pluripotent factors, which also revealed the positive role of HDACs in transcription and change the view of HDAC1/2 as repressive factors.

6.4 Inositol tetraphosphate (IP4) regulates activity of HDAC1 in vivo

The cellular requirement for HDAC1 and HDAC2 in cell division and to influence gene expression is dependent upon deacetylase activity. For instance, we found a correlation between the reduction in deacetylase activity over time and the number of deregulated genes in DKO ES cells (Figure 4.9B). The increase in DNA abnormalities is also dependent on the dosage of HDAC1/2 deacetylase activity (Figure 4.7). We were able to demonstrate an essential requirement of the HDAC1/2 activity using rescue experiments (section 4.2.8). The lethal phenotype of DKO ES cells could be rescued by transfection with cDNA for a wild-type HDAC1, while a catalytically inactive HDAC1^{Y303H} was unable to rescue the cell viability and the cells died at day 4 following *Hdac1/2* deletion (Figure 4.13B).

Recently, it has been shown that the deacetylase activity of HDAC1 and HDAC3 is regulated through binding of IP4 molecules, sandwiched between the HDAC and its cognate corepressor, in a highly basic pocket (Millard, C., et al 2013, Watson, P., et al. 2012). This finding raised an important question as to whether IP4 regulates HDAC activity in vivo as well. Therefore, DKO cells were used as model system to test the requirement for IP4 binding to the activity of HDAC1. Substitution of the positively charged residues in the IP4 binding pocket , essential for IP4 binding to a polar non-charged Glutamine (K31Q, R270Q, and R306Q) reduced the deacetylase activity of HDAC1 and also its ability to rescue the viability of DKO cells. The double mutants (K31Q/R270Q and R270Q/R306Q) showed a lower activity compared to the individual whereas the triple mutants (K31Q/R270Q/R306Q) had lowest deacetylase

activity of all and the smallest number of viable cells (Figure 4.14 and 4.15), implying that mutations that prevent IP4 binding reduced the activity of HDAC1 in vivo.

6.5 Deletion of HDAC1-KO; HDAC2-Het predisposes cardiac differentiation of ES cells.

It has been previously shown that, ES cells lacking MBD3 exhibit a differentiation defect due to inability to repress Oct4 gene (Kaji, K., et al., 2006). However, disruption of the NODE complex, which contains similar core components to NuRD complex but lacks MBD3, leads to increased differentiation. Knockdown of MTA1 causes activation of expression of endodermal-specific markers (GATA6 and Foxa2) (Liang, J., et al., 2008). Inactivation of $Hdac1^{KO}$; $Hdac2^{Het}$ does not inhibit the differentiation capacity of ES cells since AP staining is lost upon removal of LIF (Figure 3.7). Moreover, $Hdac1^{KO}$; $Hdac2^{Het}$ ES cells were able to switch off expression of core pluripotency factors (Oct4 and Nanog) when induced to differentiate using different methods, including withdrawal of LIF, generating EBs and using N2B27 serum-free media (Figure 3.11, 5.2 and 5.4), suggesting that the potential of ES cells to exit the pluripotent state is not inhibited by deletion of $Hdac1^{KO}$; $Hdac2^{Het}$.

Dovey et al, demonstrated that deletion of HDAC1 causes precocious differentiation of ES cells identified by elevated expression of cardiomyocyte and neural markers in EBs (embryoid bodies), whereas, HDAC2-deficient cells were similar to controls (Dovey, O., et al., 2010). *Hdac1^{KO}; Hdac2^{Het}* cells were able to form EBs, however, from day 4 EBs derived from *Hdac1^{KO}; Hdac2^{Het}* were irregular and reduced in size compared to undeleted controls, suggesting the presence of increased differentiation (Figure 5.1 A

and B). This might be expected because EBs lacking HDAC1 showed a similar phenotype (Dovey, O., et al., 2010), and both cell types had a significant reduction in the deacetylase activity. Moreover, analysis of the transcriptional profile by particularly examined cardiomyocyte-specific marker, revealed that EBs lacking Hdac1^{KO}; Hdac2^{Het} were predisposed to differentiate toward cardiomyocyte (mesodermal) lineages. The expression levels of early cardiomyocyte markers (Nkx2-5, *Mef2c)* and late cardiomyocyte markers (*TBX 5*, *TNNT2*) were increased in *Hdac1^{KO}*; Hdac2^{Het} EBs (Figure 5.2), suggesting that reduction in deacetylase activity promotes cardiomyocyte differentiation under the growth condition used. This result is consistent with a number of studies, in which treatment of day 7 EBs with TSA (an HDAC inhibitor) for 24 hours induced expression of Nkx2.5, which indicates cardiomyocyte differentiation (Kawamura, T., et al., 2005). A further study showed that the WNT signaling pathway promotes expression of Nkx2.5 by downregulation of HDAC1, which consequently induced cardiomyogenesis (Liu, Y., et al., 2009). In contrast, induced differentiation of ES cell toward neuroectodermal lineage is unaffected in HDAC1^{KO}; HDAC2^{Het} cells. We used LIF-free/Serm-free (N2B27) media to induce neuroectodermal differentiation in HDAC1^{KO}; HDAC2^{Het} ES cells. Expression of neuroectodermal markers (SOX1 and PAX6) were induced, implying that HDAC1^{KO}; HDAC2^{Het}ES cells have successfully entered the neuronal lineage and exited the pluripotent state, as Nanog was repressed by day 2 (Figure 5.6). Moreover, we observed no differences in the level of additional neuronal markers, including ASCL1, CXCR4, FZD9, and Noggin (Figure 5.6).

Collectively, gene expression data indicate that, the cardiomyocyte markers Nkx2-5 and Mef2c are regulated by HDAC1/2 since loss of HDAC1^{KO}; HDAC2^{Het} increased their expression and consequently promotes cardiomyogenesis, whereas, HDAC1/2 are non-essential for neuronal lineage since the neuroectodermal markers are not significantly effected in HDAC1^{KO}; HDAC2^{Het} ES cells under these growth conditions.

6.6 HDAC1/2 positively regulate expression of HOX genes

Inactivation of HDAC1/2 in ES cells (DKO) results in deregulation of almost 2,000 genes, with a correlation between the reduction in deacetylase activity and the number of deregulated genes (Figure 4.9A). By day 3, 994 transcripts were down-regulated, suggesting that HDAC1/2 may have a role in maintaining the expression of some genes, in addition to their well characterized role in gene repression (Figure 4.9B). As already discussed, among these down-regulated transcripts were the pluripotency factors Oct4 and Nanog (Figure 4.9 C and 4.11). Genome-wide ChIP studies that mapping binding sites of HDAC1 in human and Rpd3 in yeast revealed enrichment of HDAC1/Rpd3 at active gene loci and are positively associated with gene transcription, in which they positively correlate with pol II levels, mRNA expression levels and interestingly with histone acetylation levels (Wang, Z., et al., 2009 ; Kurdistani, S., et al., 2002).

Treatment of ES cells with retinoic acid is a simple and effective way of activating a well characterized gene expression programme. Within 6 hours approximately 200 genes are induced and therefore we hypothesized that any changes in the expression of these genes in the absence of HDAC1/2, should be a direct transcriptional effect. Therefore, to identify direct effects of HDAC1/2 on gene expression, HDAC1/2 deleted cells (DKO) were treated with RA (for 6 hours) that rapidly induces expression of target genes. Treatment of DKO ES cells (day 2.5 post OHT treatment) with RA results in a change in the expression of 195 genes (Figure 5.7, compare DKO versus DKO+RA) compared to 238 genes in the control (Figure 5.7, compare C versus CRA), suggesting that loss of HDAC1/2 is affecting the expression of these genes. Addition

of RA to ES cells (control) induces transcription of RA primary response genes, in particular HOX genes (2-3 fold change at 6 hours) and CYP26 (13-fold), which mediates RA catabolism (Figure 5.9). However, addition of RA to DKO cells did not induce the expression of these genes to same extent as detected in control cells (Figure 5.9). CYP26a was induced by only 7.9-fold at 6 hours in DKO+RA. The expression levels of Hoxa1, Hoxa5 were significantly induced in C+RA (2.9- and 2.3-fold), compared to only 1.2-fold change in DKO+RA. Furthermore, the induction of Hoxb1 and Hoxb5 were reduced in DKO+RA (1.1- and 1.4-fold) compared to (2.2- and 2fold) in C+RA. The gene expression pattern was also reduced in DKO+RA compared to C+RA (Figure 5.11). All these data implying that, loss of HDAC1/2 effect induction of RA target genes, particularly HOX genes. A recent study has reported the binding of HDAC1/2 to various RAREs in the promoter or enhancer of RA target genes (Urvalek, A., and Gudas, L., 2014), which suggests that HDAC1/2 are directly regulating their expression. HDAC1 has been shown to be co-activator for the glucocorticoid receptor (GR) and this function is dynamically regulated by acetylation of C-terminal tail of HDAC1 which regulate its deacetylase activity (Qiu, Y., et al., 2006). Collectively these data indicate positive role of HDAC1/2 in gene activation as well gene repression.

6.7 Summary

In this thesis, we have shown that HDAC1/2 are required for the integrity and full deacetylase activity of the HDAC1/2- corepressor complexes. Loss of HDAC1/2 leads to deregulation of almost 2,000 genes including a down-regulation of the core pluripotent factors, Oct4 and Nanog, suggesting essential role of HDAC1/2 in regulation of stem cell self-renewal. The deacetylase activity of HDAC1/2 appeared to be required for the induction of HOX genes, which demonstrate the positive role of HDAC1/2 in regulating gene expression. We also demonstrated that the binding of IP4 is necessary for the full activity of HDAC1 vivo.

Inactivation of *HDAC1/2* resulted in loss of ES cell viability due to defects in DNA replication and mitosis, which suggest that blocking deacetylase activity using specific inhibitors of HDAC1/2 could potentially be an effective therapeutic strategy for the treatment of cancer.

Appendices

Table 1: List of antibodies

Antibody	Clonality	Source	Dilution	Company	Product Code
Hdac1	Polyclonal	Rabbit	1:2000	Santa Cruz	SC-7972
Hdac2	Monoclonal	Mouse	1:2000	Millipore	05-814
Hdac3	Monoclonal	Rabbit	1:2000	Abcam	Ab32369
Hdac8	Monoclonal	Mouse	1:2000	Abcam	Ab12176
mSin3a	Monoclonal	Rabbit	1:2000	Abcam	Ab129087
MTA-2	Monoclonal	Mouse	1:2000	Sigma	M-276
SDS3	Polyclonal	Goat	1:2000	Bethyle	A300-235A
LSD-1	Polyclonal	Rabbit	1:2000	Abcam	Ab37165
Oct4	Polyclonal	Rabbit	1:500	Abcam	Ab19857
Nanog	Polyclonal	Rabbit	1:2500	Bethyle	A300-397A
α-Tubulin	Monoclonal	Mouse	1:5000	Sigma	TC168
H3	Monoclonal	Mouse	1:2000	Milipore	05-499
H3K9ac	Monoclonal	Rabbit	1:2000	Milipore	04-1003
H3K14ac	Monoclonal	Rabbit	1:2000	Millipore	04-1044
H3K18ac	Monoclonal	Rabbit	1:2000	Milipore	04-1107
H3K23ac	Polyclonal	Rabbit	1:2000	Active Mtif	39132
H3K27ac	Polyclonal	Rabbit	1:2000	Active Motif	39135
H3K36ac	Polyclonal	Rabbit	1:2000	Milipoore	07-540
H3K56ac	Polyclonal	Rabbit	1:2000	Active Motif	39281
H4K5ac	Polyclonal	Rabbit	1:2000	Active Motif	39699
H4K12ac	Polyclonal	Rabbit	1:2000	Active Motif	29927
H4K16ac	Polyclonal	Rabbit	1:2000	Active Motif	39167
PARP	Polyclonal	Rabbit	1:1000	Cell Signaling	4592
Caspase 3	Polyclonal	Mouse	1:5000	Cell Signaling	9668

Table 2: List of primers and Universal Probe Library (UPL)hydrolysis probe used for qRT-PCR

Cono	Universal Probe Library primer	UPL hydrolysis	
Gene	sequence	probe	Size (pp)
Nanog	L gcctccagcagatgcaag	91	75
	R ggttttgaaaccaggtcttaacc	51	,,,
Rex1	L ttctctcaatagagtgagtgtgcag	33	68
	R aggcgatcctgctttcttct		
Pou5f1	L aatgccgtgaagttggagaa	95	70
	R ccttctgcagggctttcat		
Ccdn2	L caccgacaactctgtgaagc	17	71
	R tccacttcagcttacccaaca		
Gdf3	L gggtgttcgtgggaacct	7	78
	R ccatcttggaaaggtttctgtg		
Fif5	L cgcgttgggtttatgtcttt	46	77
	R gctatgtttccccaatacaggt		
Amnionless	L tacgagacagtcacgccatc	34	64
	R gaggccaggaccaactcc	51	
Camk2n2	L ccagtctgcccaattctga	79	61
	R gataccttgggaggaggagt		01
Adssi1	L aaggccgtgtcattcattg	13	88
703311	R tcagccctttcttctcgttc		
Thv1	L aactcttggcaccatgaacc	15	89
, -	R tcaggctggtcaccttctg		
Lv6a	L aaggtcaacgtgaagacttcct	72	56
Lyou	R cctccattgggaactgctac	, 2	50
Blyrb	L cgatgtggacaagactgtgg	104	90
Bivio	R tcggacattactgtagtgggact	104	
HMGN3	L gcaaatggtgacactaaagttga	98	79
	R ttccacgacaattcactctcc	50	
Med7	L tgggataagaaatcggcaaa	7	72
	R tgaagatgacaaggaaccaaaa	,	, 2
Pfn1	L ctgtcaccatgactgccaag	18	68
	R gatcaaaccaccgtggaca	10	
Tcf25	L ctcaccatgttccctggagt	67	61
10125	R catcaggtcgcacactgc	07	01
ΜΤΔ2	L ccgaagaccctatgcaccta	13	70
1011742	R agccttaggaagtcggatcg	15	70
Nestin	L tgcaggccactgaaaagtt	2	89
	R ttccaggatctgagcgatct		-
GPS1	L gcaggaagatccgcagaa	22	90
	R ccactgtagctggctgcata		-

ΔSCI 1	L gacctgccaggctctcct	20	71	
ASCLI	R cgttggcgagaaacactaaag	50	/1	
CYCP4	L tggaaccgatcagtgtgagt	20	70	
CACH4	R gggcaggaagatcctattga	50	70	
E7D0	L tttcttctccacggccttc	Λ	62	
1203	R ggtactggaaccggtgagg	4	02	
Noggin	L tgatggatccccaccaac	10	66	
Noggin	R cgctagagggtggtgaaact	10	00	
Park	L gttccctgtcctgtggactc	79	61	
Faxu	R accgcccttggttaaagtct	70	01	
SOV1	L gtgacatctgccccatc	60	60	
30/1	R gaggccagtctggtgtcag	00	00	
Cup26a1	L ccggcttcaggctacaga	17	125	
Cypzoar	R ggagctctgttgacgattgtt	17	125	
CDV1	L acgccctacgaatggatg	70	70	
CDXI	R cttggttcgggtcttaccg	70	12	
Mois2	L agacaaggacgcaatctatgg	6	69	
IVIEISZ	R gctcgcacttctcaaaaacc	0	68	
Hova1	L agaaaccctcccaaaacagg	70	122	
HUXAI	R ttgttgaagtggaactccttctc	70	122	
Hova2	L agaaggcggccaagaaaa	70	02	
HUXd2	R catcagctatttccagggattc	70	33	
HoyaE	L agctgcacattagtcacgaca	1	110	
похаз	R gcggttgaagtggaattctt	T	110	
Hoyb1	L aagagaaacccacctaagacagc	22	76	
HOXDI	R tgaagtttgtgcggagacc	55	70	
Hoyb4	L ctggatgcgcaaagttcac	62	110	
HUXD4	R gtgaaactccttctccaactcc	02	110	
Hoyh7	L ctggatgcgaagctcagg	1	100	
HUXD7	R ccgagtcaggtagcgattgta	T	109	
0+v2	L gactgcagggcagagacg	25	111	
Otx2	R ggtagatttggagtgacggaac	25	111	
CDE	L aggacaggaaactgggtcgt	70	60	
542	R gatggctcggactttgga	79	60	
Marb 2	L ggatcctgagacgactggac	10	80	
IVISI DZ	R aaacacatggccaaggtgag	10	69	
Ever1	L tctcacgacccgacctgt	7	62	
EVXI	R cttccctgccaatgtcaaac	/	02	
	L tcccacttgaaagcacatca	2	00	
KIf6	R acttcttgcaaaacgccact	2	90	
Danal	L ctccaatggacgtgatggta	(2)	101	
Dappi	R gaaagtgtttgacagagtctttgg	02	101	
Nido	L tgaccagcacacttgtatcttga	10	65	
INIUZ	R aggtgtgactgccatcgag	TO	co	
	L gagccctgaaggaaactcg	00	76	
FGFS	R gcgaaacaaaatgacctgact	69	/0	
Thur	L cgaagtgggcacagagatg	0	70	
Tbx5	R caccttcactttgtaactaggaaaca	9	70	

Tnnt2	L atgtctgacgccgaggag	25	04	
	R ctgcctcctcttgctcgt	23	54	
Myod	L ccaggacacgactgctttct	52	76	
iviyou	R cacaccggctgtcctctac	52	70	
Nkx2.5	L gacgtagcctggtgtctcg	52	70	
	R gtgtggaatccgtcgaaagt		,0	
MEF2c	L tctgccctcagtcagttgg	77	63	
	R cgtggtgtgtgtgtgggtatc		05	
Gata4	L ggaagacaccccaatctcg	13	75	
Gutur	R catggccccacaattgac	10	,,,	

Table 3: List of genes used to assess pluripotent and differentiation state

Pluripotent Genes	Differentiation genes		
Bmp4	Afp	Hoxb2	Neurod2
Ccna2	Alb	Hoxb3	Nkx2-4
Cdc42	Amn	Hoxb4	Nkx6-1
Cfc1	Ascl2	Hoxb5	Nodal
Chd1	Cdh5	Hoxb6	Nog
Dppa1	Cdx2	Hoxb7	Otx2
Dppa2	Chrd	Hoxb8	Pax2
Dppa3	Cldn4	Hoxb9	Pax6
Dppa4	Dkk1	Hoxc10	Plac1
Dppa5	Dnmt3l	Hoxc11	Plac1l
E2f1	Eomes	Hoxc12	Plac8
Eed	Esx1	Hoxc13	Plac8l1
Ep300	Fabp1	Hoxc4	Smad2
Esrrbl1	Fgf5	Hoxc5	Smad3
Fgf4	Fgf8	Hoxc6	Snai1
Klf4	Foxa2	Hoxc8	Snai2
Klf5	Gata4	Hoxc9	Snai3
Lin28	Gata6	Hoxd1	Sox1
Мусbp	Gdf1	Hoxd10	Sox17
Nacc1	Gdf3	Hoxd11	Sox18
Nanog	Gfab	Hoxd12	Sox3
Nanogpd	Hand1	Hoxd13	Sox7
Nr0b1	Hand2	Hoxd3	Syp
Nr5a2	Hnf4a	Hoxd4	Sypl
Pou5f1	Hoxa1	Hoxd8	Т
Prdm14	Hoxa10	Hoxd9	Tbx5
Sall4	Hoxa11	Irx3	Tbx6
Slc2a3	Hoxa11s	Lmna	Tead2
Smad1	Hoxa13	Mesp1	Tead3

Sox2	Hoxa2	Mesp2	Tead4
Stat3	Hoxa3	Mixl1	Tubb3
Suz12	Hoxa4	Msi1	Vim
Tcfcp2l1	Hoxa5	Msi1h	Wnt1
Tert	Hoxa6	Myh7	Wnt3a
Utf1	Hoxa7	Myod1	
Zfp296	Hoxa9	Ncam1	
Zfp42	Hoxb1	Ncam	
Zfx	Hoxb13	Nes	

Table 4: List of genes deregulated ≥1.4-fold (adjusted P < 0.05) in C vs. K(+LIF), C vs. K(-LIF), and C+LIF vs. C-LIF

C vs. K (+LIF)				
Gene Symbol	FC down-regulated	Gene Symbol	FC up-regulated	
Cbr3	2.252558277	Slc38a5	2.917329641	
Gli2	2.174903663	Rbp1	2.785492067	
Zfhx2	2.118774367	Amn	2.605649708	
LOC208080	2.071353918	S100a6	2.59928191	
Slc11a1	2.066920379	Mylpf	2.483426651	
Phlda2	1.901891393	Ddx19b	2.404531434	
Epb4.9	1.848924392	LOC100047651	2.366311058	
AF067061	1.842900622	Gpx2	2.334610751	
Notch4	1.814667991	Fabp3	2.332307462	
Pitx2	1.758915444	Htra1	2.32703134	
Hirip3	1.741823566	Taf9b	2.264709226	
Gm1967	1.740600422	Cotl1	2.210645475	
EG627299	1.732587424	1190020J12Rik	2.207514936	
Nr5a2	1.7235139	Hmgn3	2.192903308	
lfitm3	1.722772529	1110008P14Rik	2.183438515	
Ccnd1	1.721485238	Zbtb32	2.167550692	
LOC675933	1.719290821	LOC381283	2.152935896	
Phc1	1.717242535	Fgfr2	2.148313809	
Pml	1.71692661	Slc30a3	2.136551007	
Spp1	1.716329605	Taf7l	2.127520761	
Frrs1	1.685341441	Ly6a	2.123575967	
Rdm1	1.6810236	Cd74	2.107704924	
Nanog	1.670167479	Rsph1	2.100641543	
LOC381844	1.648351285	Slc5a5	2.082077266	
2810474019Rik	1.646048356	Adssl1	2.075417568	
Nanogpd	1.641407458	lgf2	2.049937798	
Ncor1	1.63844508	Myl4	2.028097501	
2410081M15Rik	1.615890841	C3	2.010013761	
5730528L13Rik	1.615643687	Plcd1	1.995415924	
Dppa3	1.605073722	1700007E06Rik	1.994935036	
Pus3	1.600503041	Ela2a	1.990884843	
Senp3	1.599907012	Slc6a13	1.982733296	
0610006I08Rik	1.595998356	Blvrb	1.97853189	
Exosc5	1.587691635	LOC100046120	1.977286155	
Jtb	1.580880072	Thy1	1.975608806	

C vs. K (+LIF)				
Gene Symbol	FC down-regulated	Gene Symbol	FC up-regulated	
Ephx2	1.575690618	Guca1a	1.974439426	
Rpp25	1.573158254	Rab25	1.944700451	
LOC386199	1.572609487	Sct	1.923545322	
Bckdha	1.549443468	Pmp22	1.923428749	
Nupr1	1.546136322	Calml4	1.917381963	
Zfp35	1.545982482	LOC677144	1.91264274	
Tmem51	1.545599288	H19	1.910190049	
Mettl4	1.545369297	Crxos1	1.898496298	
Ssr2	1.544309772	2810003C17Rik	1.873706894	
Bhlhb2	1.544190774	Cpm	1.867642017	
LOC100043402	1.543075484	Chst1	1.858759385	
Rnf113a2	1.542044044	Wnt7b	1.856287059	
lsy1	1.534265492	Gpx3	1.856150116	
Mid1ip1	1.530562566	Krtdap	1.854669969	
4933434E20Rik	1.5290166	Crlf1	1.840744027	
Zcwpw1	1.526486868	Ttc9b	1.837329407	
Wdr43	1.526086947	Ptprs	1.835158277	
SIc28a1	1.517627628	Atp12a	1.834794167	
Nodal	1.5174405	Dusp4	1.815304709	
Upp1	1.516822015	Actn2	1.811842408	
Cobl	1.515830221	Tspan17	1.811491737	
Sfrs5	1.515660264	Acss1	1.797965891	
10C383491	1 510996934	Tex19.2	1 797586625	
Pank1	1.510481446	Pdlim4	1,794805886	
Mia1	1 496234179	Wfdc2	1 791504636	
Brn1b	1 494010107	Dkk3	1 781640009	
Actn3	1 492172231	Cih2	1 774529498	
Ecd	1 489871095	Pvv	1 773028446	
Hsphan1	1 489760618	Gstk1	1 772117809	
BC085271	1 488851454	4933421H10Rik	1 770682119	
Zscan4c	1 485657149	Camk2n2	1 767516129	
Yan1	1 484107604	Fhln2	1 763588161	
Hsd17b1	1 482595005	Snink2	1 75970862	
Rabif	1.482572619	Fbxo2	1.754887174	
Msi2	1 481755339	Anxa5	1 743251855	
Bxdc2	1 481235725	H2-BI	1 742384379	
Cwf19l2	1 480864026	A530057A03Rik	1 740952791	
Dnaic7	1 480711831	Rmn1	1 739382029	
Myst4	1 479124123	Crahn2	1 737393132	
Mtrf1	1 477516986	Sstr2	1 735929003	
San30	1 477457488	Coro1a	1 728199348	
lfitm1	1 476291784	Tes	1 719508317	
2/10137M1/Bik	1 475252865	FG630/99	1 71726083	
Def6	1.475252805	Δηγα?	1.716806627	
	1.471121327	Ddzk1	1,710240005	
Made	1.470493292		1.710240003	
BC088083	1 /68222012/4	Tnnn?	1 706/65207	
Dtumk	1.400227071	19992012012012012012012012012012012012012012	1 7000403207	
	1 167021106	Eml1	1 607755620	
	1.40/231400		1.032/33033	
D4VVSU132e	1.4030/230	Lgdiss	1.090920028	
	1.4001//322	r peis		
2310001H12KIK	1.401/20089	GdSD		
	1.400851678	LDN	1.085410458	
IVIrps18b	1.460485721	Csrp1	1.685260693	

C vs. K (+LIF)				
Gene Symbol	FC down-regulated	Gene Symbol	FC up-regulated	
2600005C20Rik	1.453167932	Ostm1	1.678942509	
Kdelc1	1.452729369	Stxbp1	1.668596431	
Bcap29	1.451683644	LOC100044190	1.66601333	
Deadc1	1.451395147	Ctnnal1	1.664970687	
Mtbp	1.447458097	Mapk13	1.664816716	
LOC638892	1.444830028	Fam115c	1.661878804	
Tmem39a	1.444171577	Espn	1.660262616	
Dhdh	1.443811339	Gng13	1.658856663	
Zfp292	1.443774565	LOC100045542	1.65867347	
Ppp1r8	1.443606456	Acadvl	1.657224075	
Tmem92	1.443034702	Npw	1.654908225	
Rnaseh2b	1.442353952	Stard10	1.654265208	
1110002D22Rik	1.441622455	Lypd2	1.650720081	
Gm428	1.437675068	Ndrl	1.649990089	
Tut1	1.435851004	Stag3	1.649963147	
Silg111	1.435207513	Sdc3	1.649586963	
Mrpl17	1.434747678	Ckb	1.649519721	
Kti12	1.432076413	LOC100045981	1.64839309	
Hrmt1l2	1.432058524	Cyba	1.642092804	
Nudt5	1.42932167	Prkcb	1.640091678	
Hvcn1	1.428697211	Pip4k2c	1.636391783	
Sfrs2ip	1.42582193	1700027N10Rik	1.633240529	
Hdgf	1.423409765	Casp9	1.631365406	
Tcstv3	1.422446648	Rtn1	1.62700379	
Jarid1b	1.419728893	Smarca2	1.62628679	
Ech1	1.419262985	9130213B05Rik	1.62299977	
E330016A19Rik	1.41826458	Cuta	1.621046852	
Prmt6	1.417424241	Lamb3	1.616051454	
Zscan10	1.417194839	Micall2	1.613412874	
3110009E18Rik	1.414952956	Dbndd2	1.611436518	
Cugbp1	1.414164189	Mgst3	1.607444834	
1110039B18Rik	1.413999794	Tdrkh	1.605947656	
Alkbh3	1.411205552	Rgs10	1.604990355	
Epdr1	1.410968228	Phc2	1.60437958	
Sulf1	1.410800248	Cnn2	1.603810025	
Gdf15	1.408640134	Gstt1	1.60374352	
Ogt	1.408511414	Gstt3	1.603127254	
Zfp219	1.407641665	Nid2	1.600860883	
Ubl4	1.406691334	Reep5	1.599625279	
Hes1	1.406615719	1700016K19Rik	1.598257542	
Zfp239	1.404993426	LOC100048733	1.595352365	
BC019806	1.40285662	Tmem45b	1.593128411	
Utx	1.401889818	Bgn	1.592131715	
Use1	1.401731881	Arpc1b	1.59098891	
		LOC100047937	1.589890527	
		Mt1	1.586633403	
		Nrip3	1.584094843	
		Dctn3	1.582850895	
		Prkcz	1.582115422	
		Spag6	1.581722878	
		LOC674135	1.581203667	
		Mfge8	1,578893359	
		Cldn10	1.576223228	
		Slc24a6	1.576157599	

C vs. K (+LIF)				
Gene Symbol	FC down-regulated	Gene Symbol	FC up-regulated	
		Gpsm1	1.574681472	
		Fam131a	1.573581541	
		Klrg2	1.573150038	
		Sema7a	1.569227215	
		Mfsd7c	1.566968361	
		Gm1673	1.566835468	
		Copz2	1.564597734	
		Eno2	1.564179973	
		Ptrf	1.562972341	
		Nudt4	1.562799547	
		Tmem130	1.56154645	
		2700060E02Rik	1.561109621	
		Slc17a7	1.556926453	
		Cstb	1.555866518	
		Ctsh	1.555260084	
		Psmb9	1.554432986	
		Col4a2	1.55392876	
		Akr7a5	1.55372263	
		Acss2	1.552265051	
		Col4a1	1.551040362	
		100671878	1.550441951	
		Stat3	1 549654407	
		Insl6	1 548611666	
		D330028D13Rik	1 54800793	
		Tsno	1 546138748	
		Nr6a1	1 543022836	
		Pia?	1 542239923	
		Mylk2	1 540150757	
		Mtch1	1 53911295	
		Cd63	1 538553772	
		1700088F04Rik	1 538410234	
		Tax1hn3	1 537619121	
		Prof5	1 535797823	
		RnI3I	1 533972218	
		Rell1	1 53384979	
		Psors1c2	1 533664126	
		Nuak1	1 530880824	
		Cyn4f14	1 530691577	
		Δldh3a1	1 529885652	
			1 529784384	
		Mov10l1	1 528385135	
		Cldn6	1 5278/1369	
		Tceal5	1 527777818	
		Pan2in	1.52607148	
		Dhf12	1.52571052	
		FIIITS	1 527/1322	
		USP2 Edam2	1 5244/4009	
			1.321/0/28 1.5311/0606	
			1.521140595	
		GILD 170005202201	1.520589546	
			1.52002232	
		WTOCIU	1.519202125	
		GCNT	1.518063233	
		Rhox6	1.514/41714	
		Rab3d	1.514/39227	

C vs. K (+LIF)				
Gene Symbol	FC down-regulated	Gene Symbol	FC up-regulated	
		Plat	1.513479205	
		Piwil1	1.513317661	
		Fa2h	1.511965506	
		Defb36	1.510138335	
		LOC270344	1.508482857	
		Maged2	1.507819603	
		Jak2	1.504878044	
		Matn1	1.503808749	
		Trp53inp2	1.502587253	
		Als2	1.502366167	
		Podxl	1.500295383	
		Lrp10	1.500149823	
		Nphp4	1.50014204	
		Stac2	1.498146945	
		Dner	1 49739449	
		Ostf1	1 496412362	
		BC021614	1 49639995	
		Ctsh	1 493927415	
		Crym	1 493870184	
		Nagk	1 /03/8//05	
			1.4933063//	
		Drmt2	1.455500544	
		170001C10Pik	1.493170042	
		Slc2Qa/	1.492043070	
		JIC2 304	1.492124092	
		P2m	1.49200300	
		DZIII Php7	1.492020170	
		RUP7	1.491779444	
		Calu	1.491343632	
		Calu	1.400391204	
		Synpo	1.480323284	
		App Ket7	1.405409059	
		KIL7 SomaCh	1.485479072	
			1.404525925	
			1.484019330	
		SILUUUIAISKIK	1.483398107	
		Psap	1.482851188	
		Ngir	1.481949255	
		Alixdo	1.48123911	
		I memob	1.479455832	
		Map1ic3a	1.479206166	
		Gprc5a	1.478944912	
		Atp6V001	1.47/976977	
		Epb4.112	1.476790434	
		SIC9a3r2	1.476266703	
			1.4/61/8912	
		Asphd2	1.4/4901693	
		Imem53	1.4/1442328	
		AA407659	1.469376538	
		Dync2li1	1.468445231	
		Col18a1	1.468200447	
		Col5a1	1.46730735	
		Slc39a11	1.464079031	
		0610007P22Rik	1.462970326	
		8430427H17Rik	1.460998689	

C vs. K (+LIF)				
Gene Symbol	FC down-regulated	Gene Symbol	FC up-regulated	
		Col7a1	1.460899169	
		LOC100045780	1.460553186	
		H2-DMa	1.460371577	
		Vill	1.45992432	
		Dnajc12	1.459157514	
		Spag1	1.458762873	
		Sccpdh	1.458292277	
		Alox5ap	1.457722779	
		Tesc	1.45630731	
		D16H22S680E	1.45531432	
		Plac8	1.454309036	
		Cd79b	1.453945119	
		2510002J07Rik	1.453039589	
		Limk1	1.4512258	
		Cmtm8	1.449904982	
		Aacs	1.449544596	
		Nudt18	1.447777742	
		E2f6	1.447619499	
		Stbd1	1.447444143	
		Oas1d	1.447082095	
		Lypd3	1.446923079	
		Atp2a3	1.446884801	
		Nppb	1.446848795	
		Gaa	1.446771	
		Kns2	1.446697878	
		Slc6a12	1.444651421	
		Tcfap2c	1.443365015	
		Ap2a2	1.44321504	
		Slc6a8	1.441391881	
		Wnt3a	1.440292279	
		2310043N10Rik	1.439678005	
		4930455F23Rik	1.439028792	
		Lamc2	1.438521567	
		Ctgf	1.438196822	
		Olfm1	1.437417455	
		Ppl	1.436099867	
		BC026585	1.435866093	
		EG244911	1.435439103	
		Fhl1	1.434264933	
		Dgat2	1.433006845	
		Pts	1.432764067	
		Emid1	1.431746639	
		Smap2	1.43098229	
		2310004N11Rik	1.430854798	
		2410076l21Rik	1.430386145	
		Trappc2l	1.430108778	
		Sonih1	1.42947624	
		Soat1	1.428348456	
		LOC638935	1.428290404	
		Mpped1	1.428009384	
		Sepx1	1.42717769	
		Prkaca	1.426043119	
		Oat	1.425903381	
		Plyap	1.425685654	

C vs. K (+LIF)				
Gene Symbol	Gene Symbol FC down-regulated Gene Symbol FC up-regulated			
		Si	1.424485926	
		Car12	1.424421404	
		Lmna	1.424287444	
		Kctd17	1.424005092	
		Rab11fip5	1.423192052	
		2700050C19Rik	1.423080768	
		8030474K03Rik	1.422627555	
		Arhgdib	1.421366357	
		Acaa2	1.420836189	
		Mapkapk2	1.41814695	
		Grn	1.418096666	
		5031436003Rik	1.41666134	
		Gm817	1.414947034	
		Arpc1a	1.414768566	
		Tm4sf5	1.414330429	
		AW555464	1.412665899	
		Stard8	1.409166456	
		LOC640972	1.407776487	
		Gch1	1.407337273	
		Moxd1	1.407288261	
		Ccdc3	1.407275452	
		Tmem121	1.407187007	
		Rab28	1.406244774	
		2810452K22Rik	1.405381828	
		Lrpap1	1.404067857	
		Card10	1.403955468	
		Ttyh2	1.403169712	
		2310016C08Rik	1.4030598	
		Tmem50b	1.40241555	
		Smarcd2	1.401850324	
		Col17a1	1.401840313	

C vs. K (-LIF)				
Gene	FC down-regulated	Gene	FC up-regulated	
Enpp2	3.282067982	Mylpf	3.134486573	
Car14	2.585868843	Taf7l	3.113325407	
Gdf3	2.579384905	Tgm1	2.965140707	
Meis2	2.448402593	Zbtb32	2.868511848	
Aph1a	2.324678447	Ddx19b	2.817229609	
PhIda2	2.317281544	Fgfr2	2.778122502	
Grb10	2.274324383	Gng13	2.734942193	
Cxcl12	2.138328107	S100a6	2.728441332	
Slc7a3	2.134265209	Laptm5	2.709483131	
Mid1ip1	2.010946228	Lgals3	2.473378317	
Pycr2	2.003572105	Acta1	2.45118373	
Cdc42ep5	1.931969205	lgf2	2.440623862	
Hes1	1.921748833	LOC677144	2.426240514	
Ccnd2	1.902727363	1110008P14Rik	2.349132049	
Epdr1	1.863138361	LOC100047651	2.327532424	
Kras	1.845355491	Slc6a8	2.286114354	
Rasd2	1.839278041	Taf9b	2.260322888	
St6gal1	1.836163262	Mt1	2.191215509	

C vs. K (-LIF)				
Gene	FC down-regulated	Gene	FC up-regulated	
Fgf17	1.835248383	Rsph1	2.178901483	
Sall2	1.821381533	Hmgn3	2.156405628	
Fiz1	1.817686083	Htra1	2.143831735	
Gtf2i	1.807496438	Rbp1	2.139827194	
Nanog	1.804238684	Gpx2	2.112935678	
N6amt2	1.802611787	Stat3	2.103077645	
Pde1b	1.801713946	Bgn	2.096784948	
Igfbp3	1.776310856	Myl4	2.083909042	
Ctgf	1.768490514	1500009L16Rik	2.07855126	
ENSMUSG0000074075	1.764390789	Calml4	2.054308719	
Pou5f1	1.750005853	Dnmt3l	2.050314926	
Rnf130	1.746332525	Wfdc2	2.049863615	
Zcwpw1	1.730960538	Tcea3	2.046496551	
Tlr2	1.727410819	Atp12a	2.044471716	
Elmo1	1.726926541	Psors1c2	2.038413594	
Atp10a	1 725579119	Id2	2 031667715	
6720469N11Rik	1.723206041	Mfsd7c	2.024522476	
Gpr23	1 720477481	Finc	2 006094223	
2610019F17Rik	1 718050328	Prkch	2 001900518	
2310045L10Bik	1 715541377	Krt19	1 964742174	
3110013H01Rik	1 714658002	4933421H10Rik	1 961364337	
Mid1	1 712865979	Ghn2	1.901504337	
Nudt19	1.712003575	2700050C19Rik	1 92057363	
Vidir	1.675673945	Ptrf	1.92037303	
	1.67/856837	Mmn17	1.010762008	
Nfatc4	1.074850857	Mfge8	1.912703908	
	1.670002449	Ebyo2	1.034434082	
06100061088	1.070092440	PDX02 Dicd1	1.094302091	
	1.00519572	Ficul	1.00300337	
PIICI Culf1	1.00050201	Lildi Fom102o	1.070130149	
Sulli	1.058905187	FdIII102d	1.8/08/0921	
GII2	1.055021135	RDP7	1.80078853	
A1837181	1.04547531	CXCIID	1.86022879	
	1.645409118	Gaso	1.846095053	
AF067061	1.641851686	FOS Carial 2	1.838278094	
ECO	1.630105912	Spink2	1.824864459	
LUC381844	1.622976945	AU018091	1.820566283	
Mycl1	1.621340476	Скр	1.812496223	
Grb7	1.619/51322	Cyb5r3	1.799497984	
Hist1h3d	1.612600218	PqIc1	1.794962635	
Silg111	1.60/9603//	SIC5a5	1./94032156	
Gm50	1.605888404	Prr13	1.79122658	
Fgfbp1	1.596426291	LOC100048733	1.777226825	
Hist1h2bf	1.59596316	Mtf2	1.774461266	
Foxh1	1.59147807	Pygl	1.767711848	
Hist1h2ab	1.587180715	Dusp4	1.766242116	
Hist1h2ad	1.585917078	Hbegf	1.766136776	
Hist1h4a	1.585763202	Cib2	1.763350882	
Hist1h3h	1.575049673	Tex19.2	1.763104291	
Pml	1.571352008	Pip4k2c	1.762731794	
Hirip3	1.570736512	Klf5	1.755264019	
Satb1	1.570436402	Arpc1b	1.750311887	
Lass2	1.570159907	Hebp1	1.749642784	
Kbtbd2	1.57012987	Spag1	1.746772968	
Hist1h2be	1.568744147	Mt2	1.742222693	

C vs. K (-LIF)				
Gene	FC down-regulated	Gene	FC up-regulated	
1700013A01Rik	1.56588456	Dkk3	1.739933003	
Dis3l	1.564725241	Metrn	1.735734495	
Hist1h3e	1.564645529	LOC100045780	1.722695138	
2610002J02Rik	1.560889594	Hcn2	1.717330882	
Bckdha	1.560302116	Lgals1	1.71550126	
Mrpl34	1.558558174	Csrp1	1.714522299	
Tcea2	1.558242816	Tcfcp2l1	1.713955395	
Hdef	1 556555749	Rasa3	1 713424476	
Abch8	1 553976162	2810003C17Rik	1 709267054	
Trih3	1 552462868	H19	1 701038566	
Hist1h2ag	1 550852367	Rell1	1 699810774	
Rdm1	1 548917421	Tmem130	1 697483495	
Gm428	1 5/8378715	Slc29a/	1 603150/20	
Kcnk1	1.548312753	lcam1	1 689666187	
Deadc1	1.546312733	Dia?	1.005000102	
	1.540792348	Fjaz	1.669957250	
Ninc1	1.545270505	Cryab	1.008857559	
NpC1 Dabas1	1.545067952		1.004945509	
	1.543055701	Alixdo	1.002243202	
1700034H14Rik	1.543005011		1.659072414	
Npm3-ps1	1.540814298	Col5a1	1.659003156	
Upp1	1.540139077	HSDD1	1.656822289	
Ddx25	1.53901297	Ctnnal1	1.655310305	
Hspb6	1.535813065	2700060E02Rik	1.654268662	
Ctsc	1.534494209	Gadd45a	1.650566209	
Sfrs5	1.529731275	Crlf1	1.648885976	
IIf3	1.527931606	Ephx1	1.645741487	
Smo	1.527519724	LOC245128	1.645454276	
Creld1	1.527206328	Rgs17	1.645187466	
Hist1h2ah	1.524646552	Ccdc19	1.641949704	
Mnd1	1.521963424	Klrg2	1.640094326	
C330034C07Rik	1.518871148	Col4a2	1.635203457	
Mettl3	1.517471659	Gltp	1.628744814	
D14Ertd449e	1.517073489	LOC665753	1.628087681	
Rhobtb3	1.516496448	Тѕро	1.62201011	
Hist1h3f	1.515465339	Rab11fip5	1.621979798	
Oprs1	1.512215513	Nid2	1.621761687	
Nol5a	1.509382328	Ostm1	1.620079253	
Hax1	1.508919563	Anxa6	1.619412946	
Zfp219	1.508176619	LOC674195	1.615680043	
Hist1h2bm	1.506937976	Tceal5	1.615589401	
Rrp1b	1.506456349	Lamc2	1.612847048	
Aip	1.50611377	Cd9	1.611991988	
LOC639910	1.504472664	Ehmt2	1.610938981	
Yap1	1.504448019	Nptn	1.609815672	
Ubr7	1.50444697	Acss1	1.609438505	
Rdh11	1.503493526	Ctsb	1.608995321	
Exosc5	1.501482096	Rnase4	1.608952851	
Kdelc1	1.500349256	Adam15	1.605162994	
Hist1h2bj	1.499083723	Snap29	1.602879256	
Prkcbp1	1.498342294	Amn	1.602861428	
Thoc7	1.498209962	Cd74	1.599153191	
Btbd6	1.496870953	LOC100045280	1.598070087	
Med12	1.496458192	Krt17	1.596937485	
Hist1h2bh	1.495619079	Plk3	1.593835054	

C vs. K (-LIF)				
Gene	FC down-regulated	Gene	FC up-regulated	
Mat2a	1.495547121	1700088E04Rik	1.588133807	
Dhps	1.493331556	Hspb1	1.587872978	
Mfsd10	1.490936356	Rgs10	1.586600167	
Atp10d	1.488950667	Nme5	1.585684557	
Xpot	1.486582794	Rab3d	1.584777018	
Trip6	1.48626481	Tfpi	1.582386545	
1190005F20Rik	1.484825205	Opct	1.576757571	
Hist2h2ab	1.48444581	Cenpf	1.576538772	
Nsmaf	1.48413339	Blyrb	1.576463126	
2810432D09Rik	1.482653483	Lamb3	1.571841044	
Hist2h2be	1.482333265	Agp3	1.570694293	
Yif1b	1.480894042		1.566911283	
LOC100045005	1.480838206	Atxn10	1.565099008	
SIc27a2	1.480271864	Spag6	1.563932936	
Npm3	1 478663938	Clmn	1 562948352	
Pus3	1 478485013	Rah28	1 560062886	
Pold2	1 47843329	Tmem50h	1 558212266	
Bola1	1 476681937	Δη2α2	1 557158939	
Bamn2	1.476666607	Slc25a30	1 556376497	
Stv3	1 /758/359/	Aldh4a1	1 556026006	
	1 473801566	lak2	1.550020000	
ZewimA	1.473665370	Krtdan	1.554211512	
Dido1	1.475005545	Cannel	1 552701520	
Bron	1.471070024	Trim71	1.552/17388	
Testv1	1 //70058357	Fam129h	1,5515318/6	
Hist1h2hk	1 47002438		1 549127403	
2610003106Bik	1 /69//7976	DemhQ	1 5/18701229	
Rhnms2	1.468496145	Hist1h2hc	1 548717114	
L rig3	1 468397227	Abch1h	1 548181301	
Mank12	1.467841042	Rfv2	1 547924109	
Bcl11b	1 466837459	Mant	1 546788971	
Bpp25	1 465304576	1500031L02Rik	1 546495298	
Sox11	1 464280284	8430427H17Rik	1 545864291	
ler5l	1 463734097	Dgat2	1 543052195	
lsv1	1 461636671	Arhødih	1 540509923	
Sshn1	1 461383279	Tcfan2c	1 537437325	
Føf13	1 461293344	Skan2	1 537241904	
Pitx2	1 460783532	8030474K03Rik	1 536171435	
Lifc1	1 458228351	Acnl2	1 534318858	
Rab34	1 45729513	Impa2	1 530710794	
Slitrk5	1 456870283	Rh1	1 530626863	
Nrcam	1 454739236	Bmn8h	1 529930611	
Rnf145	1 452960797	Imna	1 527558445	
Ildi1	1 45139787	Twsg1	1 527553289	
Arid1a	1 448331475	Corola	1 527210064	
7fn260	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ebl1	1 527030336	
MrnI3	1 446974941	Δςς1	1 526610676	
Cct3	1.446803182	3100002123Rik	1.526101871	
100627985	1 4461299192	2900060R14Rik	1 525695062	
W/dr74	1 445522711	Conda	1 525657702	
Pnn1r8	1 442617868	Rhm47	1 57/25/01	
9430020K10Bib	1 442540886	SIC3U23	1 573715/187	
0+v3	1 442092182	Ftnk1	1 522768105	
Nmral1	1.441542596	Lpp	1.518868336	

C vs. K (-LIF)				
Gene	FC down-regulated	Gene	FC up-regulated	
LOC100045738	1.440962398	Fam115c	1.518492385	
Dorz1	1.440247013	Pdgfa	1.51837186	
Polr1a	1.439218429	ltgb4	1.518062212	
LOC381947	1.438965434	Mgst3	1.517723238	
Megf8	1.438205775	Ppl	1.516167675	
Stk17b	1.43442172	LOC638935	1.515791555	
Hist1h2an	1.433312448	Acadvl	1.514767412	
Ndrg2	1.433078648	Ptges	1.514420486	
Gm129	1.432617586	Usp48	1.514353483	
Ccdc77	1.432327287	Actb	1.513736862	
Lrrc59	1.431410534	Gstk1	1.512247352	
Sfrp2	1.430717864	Ly6a	1.510395008	
Zscan4c	1.429576772	Car4	1.509638921	
2500002G23Rik	1.429086937	Peg3	1.50904181	
Smarce1	1.427857998	1700047I17Rik1	1.508361984	
BC017612	1.427669667	MsInl	1.507325522	
Arl4c	1.426939828	Gadd45b	1.507218749	
Zfp334	1.426324998	Mvp	1.506459843	
AW548124	1.423691648	Slc25a20	1.506427525	
SIc6a9	1.422810848	Ppp2r5c	1.506275368	
Tlcd1	1.420917122	B2m	1.504816732	
LOC208080	1.419559519	Prei4	1.504758945	
LOC100045439	1.418988193	Garnl3	1.504555787	
Mrps31	1.418776172	Wsb1	1.503480856	
Mrpl44	1.41827072	Rab3a	1.502907163	
Fancd2	1.416878437	Slc38a5	1.502012019	
Dtwd1	1.416807329	Foxj3	1.5012841	
Akt3	1.414125853	Ostf1	1.499172995	
2810004N23Rik	1.411355626	Cyba	1.498582095	
Angel2	1.41110525	Nuak1	1.498340563	
Dgkz	1.410600807	Hsp90aa1	1.497594151	
Hbp1	1.410297082	Tek	1.497327305	
Hist1h3g	1.408524971	Etfa	1.496865831	
Seh1l	1.408354443	AA407659	1.495385648	
Tcstv3	1.407627545	3110001A13Rik	1.495362363	
Ppil3	1.406355364	Rps6ka1	1.495260007	
Dci	1.406301618	Rhbdl2	1.494474732	
Smad3	1.40540759	Hmgcl	1.490968402	
2410081M15Rik	1.403984759	Got1l1	1.490672206	
Nme3	1.402219329	Nagk	1.490572082	
Nudt1	1.40123492	Nptx2	1.488606483	
Shmt2	1.401132892	Hpcal1	1.487429654	
Pla2g12a	1.400324497	Unc84b	1.487391029	
		Idh1	1.484779301	
		Nfu1	1.480401976	
		Osbpl6	1.480373287	
		Pramef12	1.478140609	
		Pop5	1.477580183	
		Mapkapk2	1.477495332	
		Ptprs	1.477143752	
		Ssbp4	1.477136751	
		D16H22S680E	1.476559987	
		Rtn1	1.475085122	
		Susd4	1.474763208	

C vs. K (-LIF)			
Gene	FC down-regulated	Gene	FC up-regulated
		Tax1bp3	1.474688957
		BC022687	1.474479291
		Ehd1	1.474443008
		Plec1	1.47435654
		Gstt3	1.474351272
		Trappc2l	1.4740472
		Slc44a4	1.473898526
		Acaa2	1.471659819
		Tspan14	1.470565186
		Cpm	1.470023589
		5330431N19Rik	1.469610292
		Mbnl2	1.467036104
		Myo1c	1.465652108
		Slc39a11	1.464843958
		Crxos1	1.459860183
		B230114H05Rik	1.459306099
		Cdc5l	1.459091433
		Copz2	1.457656628
		Sap30l	1.457603406
		1700016K19Rik	1.457567191
		Slc39a4	1.454969124
		Arntl	1.453441698
		Vcl	1.453178323
		H2-BI	1.453058194
		Gpsm1	1.452838174
		Podxl	1.451868156
		Rp[3]	1.451580239
		4930455F23Rik	1.447930311
		2310036D04Rik	1.447572858
		Sdc3	1.446812474
		Nedd4l	1.446461726
		Atp6v1a	1.446341925
		Palc3	1.446255585
		Sirt7	1.445072749
		Chst1	1.444243463
		FG212753	1.443329494
		Pdzk1	1.442335002
		Kremen2	1.442120511
		LOC100047863	1.440910121
		D14Ertd668e	1.440822924
		B230343A10Rik	1.44066822
		H2-T10	1.440014267
		Spata6	1 439289433
		Eml1	1 439010145
		Adamtsl4	1 438763725
		Fno?	1 438637744
		BC026585	1 437116762
		Tmem66	1 436142096
		Irrc2/	1 125/77202
		Drbod	1 /22200025
		Acot7	1 /225/2210
		Man1/c2a	1 127701055
		iviap1103d	1.432/84033
		BC000162	1 120620000

C vs. K (-LIF)				
Gene	FC down-regulated	Gene	FC up-regulated	
		5033414D02Rik	1.428529647	
		Aof1	1.428033213	
		Mybl2	1.428030536	
		LOC381738	1.426583032	
		Hap1	1.425783294	
		Lrrc59	1.424946176	
		Sod2	1.42487191	
		Tmem9b	1.424385734	
		Wnk1	1.423323419	
		Fhod1	1.421365421	
		Gstm2	1.420909875	
		Ankrd13a	1.420371574	
		Micall2	1.41908978	
		Plat	1.418950646	
		Bbs9	1.417855791	
		Edem2	1.416643066	
		Tgfbi	1.416513655	
		Kif3a	1.415022058	
		Lypd2	1.413947264	
		Sec14l1	1.413000885	
		Arpc1a	1.412830175	
		Afap1l1	1.412496006	
		Tex261	1.412245602	
		5730494M16Rik	1.410733418	
		Smarca2	1.41014179	
		2310007F21Rik	1.409834516	
		Triml1	1.409667402	
		Tmed10	1.408543725	
		Plac8	1.408288981	
		Atp6v0d1	1.407074737	
		AI115600	1.406738898	
		LOC100044566	1.404937737	
		Rshl2a	1.404916396	
		Dctn3	1.404413349	
		Mns1	1.403785105	
		lgfbp4	1.403444178	
		Ywhaq	1.402552075	
		Mbp	1.402006731	
		2310043N10Rik	1.40137956	
		Vill	1.401129358	
		Rnf185	1.400996484	
		Tinagl1	1.400603854	

C+LIF vs. C-LIF				
Gene	FC down-regulated	Gene	FC up regulated	
Socs3	7.173990337	LOC381283	5.824513097	
Esrrb	5.688409224	Gbp1	5.685245172	
Zfp42	5.675484424	Gbp2	5.442416577	
Laptm5	4.455346955	Acta1	5.224517903	
KIf4	3.774052414	Pitx2	5.02047154	
Sgk1	3.760038497	Enpp2	4.764931614	
Emp1	3.736516647	Car4	4.738122787	
Cobl	3.724368489	Slc40a1	4.250690501	
C+LIF vs. C-LIF				
-----------------	-------------------	----------------	-----------------	--
Gene	FC down-regulated	Gene	FC up regulated	
Spink3	3.559446007	Fgf8	3.50398467	
Fbxo15	3.49740608 Tpm1		3.474495869	
Tcfcp2l1	3.447720916 Actc1		3.412718167	
Slc11a1	3.386191155	Lrp2	3.356448108	
lcam1	3.306745861	Kif1a	3.344846745	
2410004A20Rik	3.306320447	Ctgf	3.168996526	
Tcl1	3.296507801	Ppp4r4	3.076976942	
Fbxo2	3.20288071	SIc30a3	3.053313335	
Aqp3	3.178170365	Podxl	2.883998851	
KIf2	3.169716403	Gpr23	2.847066506	
Lrrc34	3.16444244	Tacstd2	2.826886456	
LOC100047200	3.080326786	Gja1	2.802874622	
Lama1	3.069749775	Myl9	2.769757239	
Manba	3.061633398	scl0003547.1 6	2.72649263	
Myl4	3.051547924	Otx2	2.693323811	
Eras	3.036302891	Pdlim3	2.689897921	
Myst4	3.017839697	Efna5	2.645475708	
Cpsf4l	2.988433107	Soat1	2.623301436	
Mreg	2.96770054	App	2.601421026	
Tbx3	2.950185934	LOC100044190	2.585632451	
Nupr1	2.943942386	Ddr1	2.570580178	
Tdh	2.941161306	Car14	2.493678263	
2200001115Bik	2 843114983	7/1	2 484054427	
10C386199	2.836664825	Gp38	2.476065702	
Clenkh	2 835470118	Cxcl12	2 469674217	
Clonkb	2 835470118	Lrpap1	2 434997336	
Bfx2	2 77732656	Cxcl16	2 433844026	
Lybebe	2 754609908	Krt18	2 386707051	
	2 69812824	Pou3f1	2 385475248	
lam2	2 68472486	Plekhg2	2 384706787	
2310014G06Rik	2 684243002	F830002F14Rik	2 37699608	
Calml4	2 673822141	Prkchn1	2 372193777	
Rhox10	2.658383022	Rhobtb3	2.371454182	
Spp1	2.647244003	Meis2	2.349974436	
10C270589	2.635844633	St6gal1	2.314651808	
Mras	2 629122007	Cst3	2 308943084	
SIc29a1	2.62619459	10C677448	2.293359348	
Tuba3a	2 609164734	Psme1	2 265164432	
Tex14	2 607286803	lfi27	2 264312654	
Aes	2.577546434	Aph1a	2.261125793	
Krt42	2.575632313	Dnmt3b	2.250474279	
2410116G06Rik	2.569192892	lpas	2.247978844	
2410146L05Rik	2 568538468	Shroom2	2 243037573	
Pfkp	2 563290939	Dok2	2 241204072	
1190003115Bik	2 552946494	Oasl2	2 239274403	
MyInf	2.532540454	Csrn1	2,235274403	
Serninh6c	2.520013400	Cldp3	2 231562824	
Mant	2.522574500	Pdlim7	2 226917975	
Giha	2.303130001	R7m	2.220317373	
17000200110ib	2.403120373	Konk1	2.21/3/1134	
	2.402070030	Cdc/2an5	2.210924939	
Pnn25	2.400434033	6720/60N110H	2.130370003	
Αμείο	2.43/2104/0	Daho	2.134330303	
7fn57	2.431307242	Rah25	2.131301373	
2ip37	2.423900084	rduzo	2.10/200120	

C+LIF vs. C-LIF				
Gene	FC down-regulated	Gene	FC up regulated	
Kdelr3	2.410862462	Atp10a	2.176534176	
Acp6	2.367144253	Ccnd2	2.175746532	
Timp1	2.352273177	Klf6	2.175661393	
Nr5a2	2.349799188	Gpr177	2.173119757	
Сххсб	2.334192258	Plekha1	2.166396172	
LOC100044968	2.27702854	Grina	2.16231324	
KIf5	2.270847588	llk	2.160570991	
Kit	2.258826632	Wasf1	2.157460492	
Tex19.1	2.252794248	Stx3	2.154518871	
Triml1	2.249634702	Bst2	2.141433	
Fer1l3	2.24664921	Irs2	2.13173276	
Cpn1	2.240148823	Arl4c	2.128069986	
Fblim1	2.227769827	Cldn6	2.12089262	
Ddc	2 203700098	Lama5	2 115489556	
Tcea3	2 190569972	Centd3	2 096669576	
1700019N12Rik	2 165801494	Peg3	2 080965177	
Prr13	2.105001454	løfhn3	2.000303177	
linn1	2.145293727	Ghn3	2.075042320	
Aard	2.145172709	Prnn	2.037211227	
Sod2	2.145172785	Tsnan7	2.037211227	
Notch4	2.140341472	Gny8	2.013034430	
Skan2	2.134374011	Bhm35a	2.013720432	
Linh	2.12340477	Sall2	2.00933113	
	2.121933313	Khthd?	2.009208428	
Chrpa9	2.117130373	100623453	2.003244308	
Chrna9	2.11353132	Tmem552	1 979991612	
	2.11333132	Myb9	1.07017/1525	
D1/Ertd668a	2.111040417		1.979174555	
	2.1104/3422	E00100040120	1.972/30/68	
Gpy7	2.105545205	Gtf2i	1.970216129	
2410078106Bik	2.05271550	Basd2	1.969763594	
Tcf15	2.083760692	Ptk7	1 966728177	
AU018091	2.0047000052	Rah15	1 943904481	
Gli2	2.074504500	Rab13	1 943279968	
100381269	2.070503181	Ghr	1 93795341	
Bdb2	2.070505101	Bras	1 93/360839	
3100002123Bik	2.005057252	Sov11	1 930515905	
Cdvl2	2.055054175	Amotl2	1 929997544	
1700123119Bik	2.053034173		1 92636803	
C330048E19	2.0535144522	Nudt11	1 922929803	
2410137M14Rik	2.031334301	Finh	1 92166412	
Δss1	2.045671582	Agrn	1 91758173	
Angntl4	2.043068966	Mycl1	1 909593467	
	2.039582075	SIc1a3	1 904285108	
Etv4	2.035362675	Sepn1	1 9021152	
A930010120Bik	2.030400001	2610528111Bik	1 901612003	
Gm1967	2.033107343	Nfatr4	1 898400051	
Ttc29	2.031742117	Stk17b	1 895742152	
10C245128	2.021492656	Cvr61	1.888213146	
Calh2	2 016724436	lof?	1 881485253	
Mmrn2	2.016663933	Pawr	1.88141313	
Tnfsf12-tnfsf13	2.012499863	Mank12	1.88046993	
Tcfan2c	2.005147454	Grh10	1.878628667	
1700061G19Rik	1.985225769	Vasn	1.870425776	

C+LIF vs. C-LIF				
Gene	FC down-regulated	Gene	FC up regulated	
E130012A19Rik	1.973806713	LOC674135	1.869890769	
Ccdc3	1.972290982	1.865060673		
Pqlc1	1.969218778	1.864830141		
1700012H05Rik	1.956023053	Tpm2	1.863607638	
Cd97	1.948872921	Cask	1.861889744	
Btbd11	1.94534614	Klf7	1.861340113	
Pcsk6	1.942092887	Neu1	1.860751668	
Itpka	1.915028786	Krtcap3	1.859025125	
Grasp	1,912698986	Rhbdf1	1.858579951	
Zfhx2	1.91101526	Polg	1.857380995	
Ankrd47	1.909454576	Eif4e3	1.852056273	
10C386298	1,909395236	Gpc1	1.850400175	
Gstn2	1 907599756	Pln2	1 8484466	
Ptprv	1 9003081	Rgs9hn	1 846608632	
Pecam1	1 89909055	2310016C16Bik	1 844719402	
7fp710	1.89883/277	D0H4S114	1.844719402	
E13001/105Bik	1.890/66651	Tmem632	1 836369385	
7mym3	1 880751211	Hvi	1.836057424	
Ecart	1 880120206	Phome	1.830037424	
	1.009129290		1.034427001	
SIC23820	1.003423723	042002810681	1.035347071	
Cypiiai M4+f2	1.000017100	Sanh1	1.029023030	
IVILIZ	1.009000574	Sprib1	1.020454427	
Chichard Chick and Chick a	1.805173402	Ptph14	1.82505551	
Chendio	1.8651/3462	Hexa	1.82552527	
Ngtr	1.861611676	Uapili	1.824324835	
SIC2831	1.860192826	Gng2	1.81/180108	
2fp296	1.859630568	Fina	1.813/5352	
Gcnt2	1.85431965	Niogat2	1.812911001	
Acadm	1.84/6//996	Irim67	1.801368369	
lat13	1.840/26828	Inadi	1.80130972	
Pcolce	1.839612464	Fgtr2	1.798725441	
BCI3	1.835573336	Trip6	1.796290975	
lfitm2	1.830803209	Wbp2	1.79623163	
E2t1	1.828023706	Cdkn1c	1.79332912	
Ztp36l1	1.827396394	Ogfr	1.793274572	
Dyrk3	1.826484569	Ctsc	1.792141665	
Gm1631	1.823053573	Lmo4	1.791321645	
Sox2	1.82021971	Tceal5	1.789373887	
Cd9	1.817519048	Kras	1.787093341	
Tulp2	1.809114705	AL022832	1.786847609	
Lgals3	1.808811643	Cul7	1.784774722	
Inpp5d	1.803896929	BC014795	1.784041371	
Ampd3	1.801548759	Dock11	1.781283715	
Plekha4	1.800681171	Hmgb2l1	1.776698151	
Itgb7	1.799717539	Vwa5a	1.774106337	
8430410A17Rik	1.797409093	Serpinh1	1.773461885	
LOC386330	1.79059632	Endod1	1.77287307	
Dnajc6	1.784730029	Fkbp9	1.772084022	
BC032203	1.784594349	Pycr2	1.767817016	
A130092J06Rik	1.784194245	Prss8	1.766719579	
Trim25	1.780456926	Flt1	1.765946635	
Gadd45a	1.778203519	Fam171b	1.76574326	
Tubb2b	1.77258037	Nrcam	1.765631843	
Zscan4c	1.772357645	Plcg2	1.763278729	

C+LIF vs. C-LIF				
Gene	FC down-regulated	Gene	FC up regulated	
4930504E06Rik	1.768832869	LOC624662	1.760196976	
4932425124Rik	1.768680827	Vldlr	1.75755006	
G3bp2	1.765993099	Ssbp3	1.755286546	
Gcdh	1.761888133	Pcbp4	1.755207074	
Hap1	1.760171408	Rbms1	1.753957225	
1500009L16Rik	1.760088581	Tap2	1.75180761	
Clgn	1.757135285	Pls3	1.748268472	
Clgn	1.757135285	Prickle3	1.747820784	
Fez1	1.755711417	H2-K1	1.743725843	
LOC673578	1.754862286	LOC100047093	1.742375306	
Senp3	1.754847834	2310022B05Rik	1.733135138	
BC030476	1.752259108	FInc	1.729530165	
1300013J15Rik	1.747965009	Ppp1r1a	1.729299089	
Impa2	1.74586621	H2-D1	1.720275486	
LOC208080	1.745748992	Amfr	1.71993449	
lfitm1	1.740394631	1700034H14Rik	1.717905859	
0610010I05Rik	1.739494742	Stk39	1.714321264	
Prf1	1.732263121	LOC100041569	1.713266321	
Stmn2	1.728545488	LOC621823	1.712831776	
Ssbp4	1.722382886	Satb1	1.71117963	
Tdgf1	1.721142669	Pnpla2	1.71035627	
Mt2	1.719472887	1700019F19Rik	1.707928555	
Nanog	1 716438984	Tax1bn3	1 704816285	
Msh6	1.715589929	Col18a1	1.70163151	
Tgfhi	1 7090203	2310045A20Bik	1 70086863	
Gdf15	1 705457727	C330034C07Bik	1 700578631	
D130003B22Bik	1 705172222	Bri3	1 699984624	
Twf2	1 704696807	Mtch1	1 698514892	
Aifm2	1 70155858	Acyr2b	1 697671546	
Bmn4	1 697222529	Sort1	1 697635867	
Mmp11	1 695676442	Bnf130	1 694831215	
Hsd17b14	1 691503163	Hsng2	1 692520496	
	1 691019002	D330001E17Rik	1 691601528	
Pdgfa	1 690521191	Tes	1.690267572	
Pros1	1 689680542	Npc1	1 690215837	
100100041835	1 683426971	Arbgef16	1 68915089	
Fch1	1 683164287	Mdk	1 688528507	
Gtsf1	1 682809742	Tcf3	1 688409825	
Myo1f	1 67921291	Mtan7d1	1 684362697	
løfhn7	1 67134608	7fn496	1 68362331	
10C100047583	1 667236744	Ttyh3	1 68319984	
Srr	1 663601804	Scarf2	1 683056356	
9/30023120Bik	1.662/157157	Smad3	1.681063842	
Nfatc2in	1 661889009	Tmem18/2	1 679959232	
	1.660077361	lato	1.67526125	
Mia1	1.000077301	Igtp Mogf9	1.674471409	
	1 657602202	Col2a1	1 671052081	
	1.037008292		1.071033981	
Cappm	1 655255600	Tom/	1 668802060	
	1.00020098	1 p1114	1.000003009	
Pid2g10	1.0044908/1	Dag1	1.00/91/8/4	
	1.00040/302		1.00//90011	
		L L L L L L L L L L L L L L L L L L L	1.00//0/348	
Nicam Deelic	1.00024520	Clicb	1.00//25//5	
DOCKO	1.649834528	GNS	1.66/330546	

C+LIF vs. C-LIF				
Gene	FC down-regulated	Gene	FC up regulated	
Trip12	1.648649106	Rgs17	1.666246883	
Cd3eap	1.646387822	1.665162959		
Mgmt	1.64241569	1.661220331		
Xbp1	1.641417189	Igsf9	1.655599416	
1700025K23Rik	1.641097504	Mapkapk2	1.654626737	
Aplp1	1.640540918	4631426J05Rik	1.653064846	
Stat4	1.639015553	Punc	1.651691555	
Tgm1	1.6345663	Cxcl10	1.651624866	
LOC638935	1.634515625	Stard10	1.651002149	
C330036H15Rik	1.633927166	Gm784	1.648916019	
Tekt1	1.633492906	Parva	1.64870951	
Pgc	1.63303412	Notch3	1.642993967	
Sfrp1	1.631992675	Spire1	1.641575323	
Rtn1	1.630214653	Acsl5	1.640277678	
Rarg	1.625801689	Sulf1	1.639005846	
Amhr2	1.620593242	Nuak1	1.638346223	
Svce1	1.618516784	F130102H24Rik	1.636411106	
Fbn2	1 615838157	Smo	1 634045438	
Phf17	1 614113781	FG630499	1 632583678	
100100047749	1 613027595	Smarca2	1 631889358	
Spire2	1 612701822	Stybn1	1 631282344	
Commd5	1 61113339	Ptprs	1 630875504	
201000911284	1.60968663	Arbgef18	1.6300631//3	
ltnk1	1 607028298	Sov	1.627869367	
Domt21	1.606222217	Bab34	1.627711654	
Drinitsi Deoleo2	1.000223217	II17rd	1.627252/20	
Clth	1.005745217	Espp	1.027333439	
Npbs1	1.003044470	Spurf	1.020323387	
Crad	1.005392380	Arco	1.023633785	
Scr2	1.604020026	Alsa Nr6a1	1.023031140	
	1.604550638	Pcdb1	1.022008002	
	1.004030028	Igfhp2	1 610710145	
Z0107a	1 508/17386	7fp608	1.610170752	
Plydc1	1.597867861	lasf1	1.61/15030/6	
	1.507/02687	Ercc2	1.614261045	
Brco2	1.597492087	Dtpp21	1.014201945	
	1.595904132	Arid2h	1.012007913	
Poot1b	1.595740165		1.605000285	
Nfan1h	1.591524025	Igi II Tefan 2a	1.003900283	
Iviiap1D Smodl2b	1.590529055		1.005050071	
Nol11	1.590494670	BC039210	1.005509790	
	1.569579705	ALSIS Caseba	1.004459555	
	1.58849992	Cacinos	1.604293949	
	1.58/205614	Stx7	1.603583641	
LUC383491	1.58/08396/		1.601067528	
	1.585324029	2900073G15RIK	1.600874287	
24100/2D24RIK	1.58459/6/6	BSCI2	1.600482247	
XIr4a	1.579062439	Homer2	1.599681106	
Napsa	1.57902468		1.599232434	
41883	1.5/8592289	Imprss2	1.59/355885	
Dcun1d4	1.578380164	Smpd1	1.597000283	
Aoc3	1.577563015	LOC381770	1.595519221	
Aire	1.576539792	CIn5	1.593675899	
LOC100045304	1.576320234	Tspan6	1.592374265	
Cdc37l1	1.575283909	Stab1	1.591926717	

C+LIF vs. C-LIF				
Gene	FC down-regulated	Gene	FC up regulated	
Rage	1.575052078	ENSMUSG0000068790	1.589172568	
AI850995	1.573602163	Vstm2b	1.588159979	
Adam23	1.573356718	Fgd2	1.586875259	
Rbbp5	1.571199618	Lhfpl2	1.586293298	
Spats1	1.570981568	Creb3	1.585645617	
Apobec3	1.567504838	Gnas	1.583817503	
Vmn2r-ps14	1.567140771	Tuba1a	1.581702487	
Tek	1.566673183	Sidt2	1.581492036	
Cmtm7	1 5648587	Been5	1 581231613	
Ebxo6	1 562444949	Prkd2	1 579478005	
Zeh1	1 560332566	Dhn	1 578576894	
Atmin	1 559687749	100100048105	1 57578156	
AE067061	1.558501909	Egefr	1 575713888	
FG/3/729	1.5570/20/2	ltm2a	1 57/865811	
Mih2	1.557545042	Apo10	1.574050075	
	1.550049882	Eloy/1	1.574055575	
	1.555/44/64		1.5740520	
	1.555520101		1.575520625	
	1.551083416		1.5/2101564	
HISTINZOC	1.550/55302		1.5/1/30432	
Lrrc28	1.550467747	FmnI2	1.5/0/64334	
Ada	1.549850397	Iriobp	1.569939487	
Capns1	1.549038948	Med14	1.567397081	
Eit2s2	1.548816415	Has2	1.566990679	
EG382161	1.547062468	Eml1	1.566125544	
B4gaInt4	1.546915293	Svop	1.565096295	
2410076I21Rik	1.545516104	Crlf1	1.564306387	
Dppa5	1.544647198	BC023829	1.56398655	
Rabif	1.54324127	Wwc2	1.56379727	
Htra1	1.543012023	Zfp185	1.563780761	
Tmc6	1.542590386	Furin	1.563250064	
Hsd3b7	1.540305764	Ap1m2	1.563116073	
Mif4gd	1.538924448	Hmga1	1.559584961	
LOC277927	1.538756123	Nes	1.558058523	
Ndp52	1.537218283	Hes6	1.557341486	
Hr	1.534593011	Dennd2a	1.556856942	
Plk3	1.533837438	Grip1	1.556270098	
LOC433801	1.533562132	Gstm2	1.556031157	
Zscan5b	1.532446083	Wbp5	1.552983837	
Rusc2	1.532364385	Rap2c	1.551581094	
Shmt1	1.529960381	Rnd3	1.549251467	
Tfpi	1.529365849	Zkscan17	1.548415895	
Srxn1	1.529278993	Fgfbp1	1.548011269	
Tuba3b	1.528426738	9930039L23Rik	1.546473051	
Pga5	1.528074686	Pde1b	1.546471033	
Arhgap30	1.527244097	97 Card10 1 54581		
Znhit1	1.526270225	Supt6h	1.544612912	
Atp6v1a	1.526233054	Cd63	1.543928141	
Epb4.9	1.526164382	Sparc	1.543339414	
St8sia1	1.52605643	Foxh1	1.54289852	
Zfp97	1.525750179	Mllt4	1.541717428	
Fzd5	1,525653906	Arhgap29	1.540929131	
Atp11b	1.525392047	Tceal8	1.540689267	
Dazl	1.525270876	Rnpenl1	1.539266618	
Cenpt	1.525043956	Orai3	1.535727132	

C+LIF vs. C-LIF				
Gene	FC down-regulated	Gene	FC up regulated	
Cenpt	1.525043956	Dnd1	1.534638623	
Rpl3I	1.524752825	1.534421561		
Rrp9	1.523719357	Bok	1.533753416	
Nid1	1.522544801	AI314180	1.533472532	
Map2k3	1.521537932	Trio	1.532262775	
D16Ertd472e	1.517515879	VgII3	1.532051664	
Bxdc2	1.51689382	Lbh	1.531821511	
Nubp2	1.515097815	AW555464	1.530246758	
9530048009Rik	1.5150804	Tbrg1	1.530208449	
Etfb	1.514046168	Sepp1	1.528925788	
Rrm2	1.513451415	Tmem132a	1.528903438	
Gtf2h1	1.511296683	Myh10	1.527579684	
Rmnd5b	1.511082087	Ppp2cb	1.52676015	
Slc1a1	1.510109619	Nelf	1.526269416	
Rhox5	1.509005925	Pim2	1.526159499	
LOC333331	1.508911508	2600010E01Rik	1.525971763	
LOC383616	1.508910063	Erdr1	1.524787593	
1110008P14Rik	1.508287282	Dgkz	1.524217648	
Sdf2l1	1.508024761	5031439A09Rik	1.522912282	
Ccnd3	1 507940864	Tanhn	1 521700075	
H2afy	1 507693877	Winf3	1 521371488	
Arntl	1 506600812	Mmd	1 521346615	
100386268	1 50605655	lan	1 521195406	
Vwf	1 504503112	Vnel3	1 519523893	
Mybl2	1 50381/15//	AW/5/812/	1 518285223	
100381284	1 503803169	Atp10d	1.516535/16	
Ctnpal1	1.503665157	Vel	1 513752935	
Cyth4	1.503005157	Khk	1 513/05010	
Myo5c	1.502057148	Stag?	1.513455515	
Strag	1.502207804	Ptn2	1.512560476	
Gca	1 50027751		1.512000470	
larid1b	1.50027751	SIc525	1 510503244	
Brdm16	1.300093141	Gush	1.510505544	
ALI022252	1 /00201068	T+ΙΙΛ	1 506/60593	
Papolg	1 / 96856859	Tmem125	1.506201211	
	1,450050055	BC057271	1 50515080	
6230/07123Pik	1,494240801	Capk1d	1.50313989	
Dtnn6	1 /02//7/05	Zor1	1 50280025	
Gprc5a	1.455447055	2011 Anya2	1.50265055	
Akap11	1.488827070		1.502080247	
Akapii Abcf2	1.400210040	7fby3	1.501873572	
	1.407633300	Dty4	1.501177195	
LUC233104	1.407019007	Dix4	1.300100037	
	1.40/041002	Sypi Tef7	1.499745774	
	1.403101303	ICI7	1.496447015	
	1,404304/24	VV WUI 1	1.43010097	
	1.48420/05		1.497740082	
	1.483328138		1.490925533	
	1.482837450	Igraps	1.4908000/5	
	1.4818/0436		1.496646942	
Bivra	1.4813/2416	1190005106Rik	1.496640297	
Retsat	1.4/9401315	Gstm5	1.496210293	
Stat3	1.4/9155573	Cad	1.49552514	
Tex19.2	1.478419825	Cyba	1.495317375	
Foxn4	1.478397426	Scand1	1.495073377	

C+LIF vs. C-LIF				
Gene	FC down-regulated	Gene	FC up regulated	
Bbs2	1.47787911	Gpx3	1.495037719	
lgsf21	1.474979514	1.494807531		
Elac2	1.473786177	Nudt19	1.494292	
Ak1	1.473696222	Pef1	1.494238733	
Nqo2	1.473368588	Bcl11b	1.494204397	
Aars	1.472117843	LOC654467	1.493853645	
Crtap	1.472093807	Car12	1.491285234	
BC019806	1.471679132	Krt19	1.490953817	
Ly6g6d	1.471439347	Kctd10	1.490908812	
Gm288	1.469142409	Tmem54	1.490739108	
Tfrc	1.468910492	Arhgef5	1.489352917	
Rasa3	1.468124525	Tpbg	1.488325695	
Vegfa	1.467908596	Them2	1.487935814	
2810474019Rik	1.466881714	Akt3	1.487608632	
Ppp2r5c	1.464717943	Prickle1	1.487520144	
BC004022	1.46453929	A430088H15Rik	1.487301196	
Nme7	1.464374261	Rbpms2	1.487048289	
7fn28	1 463724135	Irrk2	1 486174041	
Tnfrsf22	1 462294286	Gats	1 485577698	
BC021614	1 461670571	Ptnla	1 485146037	
Kcnk5	1 460491912	Gnntg	1 484785735	
Libaln4	1 458981634	St14	1 484308426	
C/3000/E15Bik	1.458/25685	C920027118Bik	1 /8/15771	
Fla2a	1.458174107	Pfkm	1 483929207	
Csrpp2	1.458166277	Sorf1	1 / 82680222	
Dnaih13	1 / 5780025	Nt5dc2	1.483/372/5	
Ccpe1	1 /55217125	Gria	1 / 22205500	
2700097009Bik	1.455082051	Brmt2	1.483235533	
	1.455062215	Hist1h2he	1.401000411	
Somada	1.455002215		1.481300123	
	1.454555515	Swap70	1.480082797	
Spryd4	1.452054298		1.480233172	
18100638078ik	1.452442400	6320502C02Pik	1.479707570	
	1.451505718	Crym	1.478205521	
	1.450101555	Eryili Inpol1	1.477030343	
	1.449030473	Beenv	1.470977904	
Atp02	1.449020336	Tmom106c	1.47090021	
Cacdal	1.44037237	Dkp2	1.474104034	
Cztuzi Gpv4	1.448300371	2810022102816	1.472922508	
	1.440349339		1.472050370	
Scn2	1.440327703		1.471352278	
Jestv2	1.440123113	Abca2	1.471204511	
Cib1	1.44/342/21	ADCa5	1.470370323	
Cib1	1.445/42255	ThedZa	1.4/052/12/	
	1.445/42255	Tilsu7a	1.409800981	
RODO4	1.443344568	Infrst 12a	1.469494338	
	1.443190903		1.408935180	
Pppirii	1.442810485	AU040320	1.468630722	
	1.44253120	Giiprz		
C130035G06Rik	1.441006357	Dig3	1.46/31//49	
Acaala	1.440/256	1810049H13Rik	1.466912659	
Hs3st3b1	1.440469651	Snx21	1.466512801	
Frrs1	1.440052531	LOC224532	1.465356113	
Ceacam20	1.439456697	Adk	1.465023919	
ler3ip1	1.439262809	Cugbp2	1.464876483	

C+LIF vs. C-LIF				
Gene	FC down-regulated	Gene	FC up regulated	
Mfap5	1.439161614	Cdc20	1.46486667	
Atp2a3	1.437103224 A930004K21Rik		1.464548594	
6430527G18Rik	1.435314394 Prox1		1.463907046	
Nasp	1.434774176	lrgm1	1.463577376	
Mrps12	1.434077287	MII1	1.462246543	
Top1	1.433128632	Clk4	1.462210165	
Mns1	1.432075651	Fbxl10	1.461995951	
Dbt	1.431005191	Dhps	1.461941294	
Ei24	1.430886534	lsyna1	1.461436097	
Rhbdl2	1.430405048	Obfc2b	1.461102772	
D130017D19Rik	1.430146628	Pcsk9	1.460803065	
Sephs2	1.429794801	Rbp1	1.46057793	
1700037H04Rik	1.42930727	D10Ertd610e	1.460372212	
Ldb1	1.429130414	Ube2e2	1.458691256	
1300001I01Rik	1.427459801	Myl6	1.458185572	
Rars	1.425965437	Cxadr	1.456516094	
BC028528	1.425705143	Casc3	1.454779293	
Rabgef1	1.425538105	Aldh5a1	1.454537186	
Pgs1	1.425400829	5730525022Rik	1.454365609	
5730419I09Rik	1.424639618	Cthrc1	1.453983609	
Nsf	1.424168848	Ctdsp2	1.453001288	
Heatr3	1.423829743	Dhx34	1.452448379	
Ireb2	1.422912815	Kif1b	1.452271182	
SIc25a5	1.422886119	Pdgfb	1.451994232	
Mak16	1 42157724	Com	1 450917125	
Tipin	1.419872322	10C100046608	1.450863187	
Jak3	1.419242919	Nup210	1.450511159	
Piwil2	1.415738707	Itm2b	1.449971791	
10C100045280	1.415630413	Cmtm8	1.449760921	
Siah1b	1.415354778	Chd7	1.44961062	
Atp6a1	1.41526894	Timm50	1.449398815	
BC038881	1 415071937	Foxn3	1 448938509	
Crtac1	1 414654017	Mfan2	1 447449107	
LOC100045983	1.414626781	Cln3	1.447006626	
Extl1	1 41451235	ltpr2	1 446524784	
Wdr5	1 414399727	lgf2hn3	1 444501841	
Zcchc17	1 412915346	Bhhn7	1 443991944	
Sn2	1 412235057	SIc15a2	1 443445467	
4930461P20Bik	1 410638345	Pfkl	1 443427559	
Chnt1	1 410515054	5930412G12Rik	1 440930143	
Chpt1	1 410515054	Clic4	1 440825549	
Znrd1	1 410410809	Pdlim2	1 440409391	
2/10081M15Rik	1 /09901272	Olfm1	1 / 38507/85	
Sov15	1.405501272	Mtmr14	1 / 38381579	
Thumpd3	1.408754555	Haple4	1.430301373	
Miba	1.408301327		1.437025085	
Timm%22	1 /08282821	Mid1	1 /36/10222	
Mrps21	1.400202021		1.430419323	
Dout1h	1.400203340	Crf	1 125821200	
	1.407020060	211000101200	1.433024200	
Cfod1	1.40/029808		1.455/1550	
	1.400003095	PuelUa	1.4555/500/	
Ospi1	1.400390/03	Ld01	1.43433/581	
	1.404309488		1.43443050/	
LUC385959	1.40344653	i mem98	1.433888456	

C+LIF vs. C-LIF				
Gene	FC down-regulated	Gene	FC up regulated	
Sphk2	1.403033287	Pi4k2b	1.432859844	
Elovl6	1.402716097	ld1	1.431715347	
Sod1	1.40206735	Ndn	1.431340337	
Grtp1	1.401946519	Rdh11	1.430515357	
EG433923	1.401922024	H2-T10	1.430476354	
Robld3	1.401539269	Dlk1	1.430372471	
Fign11	1.401438424	Sdf2	1.429799802	
Pafah2	1 401114229	Ezd2	1 428765284	
Ddx19b	1 400301732	Arnc5	1 428384024	
Gpr133	1 400223044	2310045I 10Rik	1 427943598	
OP : 100	11100220011	Dicer1	1 427905802	
		100629364	1 427714687	
		Wtin	1 / 27590773	
		Ffna1	1,427070768	
		Vests2	1 12605622	
		Edap11	1.42033023	
		Sostd1	1.42094307	
		Buk	1.420011202	
		KyK Impact	1.425750569	
		Nemof	1.424001241	
		INSITIAT	1.425900700	
		apro9	1.425545274	
			1.422697468	
		2610524A10RIK	1.422389469	
			1.420922547	
		Armcx2	1.420813572	
		LUC100048295	1.420647108	
			1.420536752	
		LUC621824	1.420353371	
		Smtn	1.419894974	
		H2-123	1.419400693	
		3110004L20RIK	1.419047492	
		Gcim	1.418882964	
		Renbp	1.418516743	
		H19	1.418420007	
		Rnf103	1.418250038	
		Dyrk1b	1.418213386	
		Gpil	1.41/4/14/4	
		AI448196	1.41661/809	
		Cd276	1.416512618	
		LUC214575	1.415910946	
		Per1	1.4156/8625	
		Figla	1.415659291	
		5133401N09Rik	1.41556767	
		Nudt7	1.415516504	
		Stxbp5	1.415146419	
		Gcap27	1.414327607	
		scl0002617.1_582	1.413294166	
		Gpsm1	1.413199129	
		Mrps34	1.412553677	
		Atp6v0a1	1.412331328	
		Сре	1.412212445	
		Hectd1	1.412002529	
		Apaf1	1.411950453	
		Samhd1	1.411140765	

C+LIF vs. C-LIF			
Gene	FC down-regulated	Gene	FC up regulated
		Fhod1	1.410281422
		Lip1	1.409420933
		LOC545013	1.409041284
		Sqstm1	1.408720728
		D14Ertd449e	1.408643507
		Hist1h2bf	1.408223074
		ltgb5	1.406862087
		Pcgf5	1.406504621
		Prtg	1.406427186
		Tmem9	1.405996517
		Dusp3	1.405393807
		Gnai2	1.405383497
		Rpl13a	1.405229513
		Lpcat4	1.405205456
		Fbxo32	1.405059807
		Pvrl2	1.404407876
		Trabd	1.404118975
		Oxct1	1.404076025
		9530095P18Rik	1.403717219
		Ubr7	1.403396778
		Cdh1	1.403332985
		Rnf11	1.403284746
		H13	1.402998581
		Dsp	1.401866036
		1810037C20Rik	1.40139107
		Ss18	1.400931456
		Cln6	1.400870366
		Pabpc4	1.400818721
		Gtl2	1.400748262

Table 5: List of genes deregulated \geq 1.4-fold (adjusted P < 0.05) in Hdac1/2-deleted cells at day 2 (day 0 vs. day 2) and day 3 (day 0 vs. day3)

Day0 vs. Day2					
Gene Symbol	p-value	FC	Gene Symbol	p-value	FC
		Up-			Down-regulated
		regulated			
Egr1	0.000000	2.95558	Atl3	0.000003	-1.40027
Sct	0.000023	2.48233	Nip7	0.000559	-1.40152
Tex19.2	0.000005	2.4284	Zfx	0.000143	-1.40227
Myl2	0.000003	2.39869	Socs4	0.000752	-1.40249
Hmgn3	0.000001	2.36772	Rpusd4	0.000266	-1.40405
LOC381283	0.000000	2.3599	Rnf113a1	0.000646	-1.40422
Blvrb	0.000021	2.34608	Pus3	0.000835	-1.40642

Day0 vs. Day2							
Gene Symbol	p-value	FC	Gene Symbol	p-value	FC		
		Up-			Down-regulated		
DA.IA	0.000000	regulated	N 4	0.000000	4.40075		
Myl4	0.000036	2.34431	Mras	0.000336	-1.40675		
ler3	0.000603	2.33569	BC027231	0.000297	-1.40/11		
Adssl1	0.000001	2.27478	Rbak	0.000008	-1.40886		
3110079015Rik	0.000005	2.25067	Pnrc2	0.000022	-1.40891		
LOC100047651	0.000024	2.2437	SIc35f2	0.001834	-1.40969		
LOC100045403	0.000014	2.22745	Ubtf	0.000968	-1.41172		
Gch1	0.000003	2.22258	2310008H09Rik	0.000125	-1.41252		
Taf7l	0.000039	2.20032	Pon2	0.000586	-1.41336		
2900060B14Rik	0.001477	2.12691	Setdb1	0.000043	-1.41551		
Mlf1	0.000001	2.12097	Rbmx	0.000702	-1.41606		
Slc38a5	0.000000	2.08428	Hsd17b11	0.000761	-1.41609		
Serpine2	0.000022	2.05423	Ccdc55	0.001012	-1.41622		
Ephx1	0.000017	2.04638	2410016F19Rik	0.000453	-1.4189		
Crym	0.000162	2.04595	Ddb1	0.000174	-1.42187		
Guca1a	0.000002	2.02793	Rpp25	0.000881	-1.42378		
Dusp1	0.000042	2.01996	Eif2b1	0.000987	-1.42421		
1190020J12Rik	0.000239	2.00749	2410081M15Rik	0.000030	-1.42753		
H2-BI	0.000013	1.99243	Sall3	0.000027	-1.42796		
Ttc9b	0.000176	1.98251	Utp14a	0.001112	-1.42845		
Wfdc2	0.000006	1.9825	D230004N01Rik	0.000078	-1.42857		
Gstt1	0.000049	1.974	E330016A19Rik	0.000000	-1.43161		
EG630499	0.000045	1.97206	5730596K20Rik	0.000007	-1.43258		
Camk2n2	0.000102	1.96148	C230055K05Rik	0.000130	-1.4331		
Rgs10	0.000398	1.94517	4930584N22Rik	0.000335	-1.4341		
lfngr2	0.000291	1.94303	Apex1	0.000751	-1.43554		
Ddx19b	0.000135	1.94185	2310044G17Rik	0.000072	-1.43584		
Fos	0.000046	1.93321	2310014H01Rik	0.000382	-1.43602		
Gas6	0.000001	1.93015	2410137M14Rik	0.002301	-1.43656		
Pdlim4	0.000011	1.9181	Stc2	0.000331	-1.43873		
Slc46a3	0.000060	1.91671	Gja1	0.000990	-1.44113		
1700007E06Rik	0.000056	1.90726	LOC383491	0.000481	-1.4442		
EG546894	0.000008	1.90627	Wdr5	0.000634	-1.44499		
Fabp3	0.000109	1.90497	C330016O10Rik	0.000256	-1.44535		
Cldn6	0.000000	1.90398	5830411120	0.000031	-1.44775		
Thv1	0.000158	1.89636	D1Pas1	0.000261	-1.44832		
6330403K07Rik	0.000009	1.89322	Erh	0.000055	-1.44979		
Acss1	0.000043	1.89087	Thtpa	0.000733	-1.45032		
2600009P04Rik	0.000003	1.88521	LOC100045887	0.000363	-1.45049		
Cplx1	0.000003	1.87874	LOC100046744	0.000761	-1.45306		
Crabp2	0.000001	1.87479	2600005C20Rik	0.000901	-1.45599		
Rab3d	0.000002	1,86981	10C232887	0.000388	-1 45761		
Acot1	0.000001	1.86865	Rcor2	0.001473	-1.45802		
ld1	0.000002	1.86849	Wdr74	0.000980	-1.45822		
scl0002540 16	0.000097	1 86572	C430020H24Rik	0.000216	-1 45983		
	0.000003	1.86018	Socs2	0.002268	-1 45989		
	5.550005	1.00010		5.552200	1.15505		

Day0 vs. Day2							
Gene Symbol	p-value	FC	Gene Symbol	p-value	FC		
		Up-			Down-regulated		
	0.00001.0	regulated	M/J=42	0.000520	4.46047		
HISTINIC	0.000018	1.85638	War43	0.000528	-1.46047		
Psmb9	0.000006	1.84834	2010309J24Rik	0.000597	-1.46286		
Bmf	0.000001	1.84765	Rarg	0.000042	-1.46399		
Acaalb	0.001308	1.83113	Epb4.1I4a	0.000435	-1.46553		
Mapk13	0.000058	1.82866	Fgd1	0.001062	-1.47034		
Pgc	0.000106	1.81926	Cdca5	0.000029	-1.47071		
BB287469	0.001727	1.81229	LOC386405	0.000051	-1.47082		
LOC381844	0.000048	1.81197	Ars2	0.000002	-1.47198		
LOC666185	0.000012	1.81039	6330407J23Rik	0.000007	-1.47363		
Nrip3	0.000025	1.8098	Nol8	0.000533	-1.47414		
Nptx2	0.000027	1.80348	Myo1f	0.000035	-1.47428		
Amn	0.000088	1.80267	Hspd1	0.000588	-1.47591		
ldh1	0.000087	1.79957	A630072M18Rik	0.000113	-1.47743		
Gpx2	0.000109	1.79866	Exosc4	0.001320	-1.47886		
Ly6a	0.000640	1.79803	Zbtb45	0.000525	-1.48007		
Ctnnbip1	0.000080	1.78811	9630029G12Rik	0.000066	-1.48028		
Gpx3	0.000047	1.78711	Zfp473	0.001045	-1.4813		
AA467197	0.000004	1.78643	Etv4	0.000846	-1.48131		
Coro1a	0.000001	1.78142	C130032J12Rik	0.000293	-1.48274		
TagIn2	0.000183	1.7814	2310057K05Rik	0.001991	-1.4828		
Zscan4c	0.001393	1.7765	Rbm4	0.002232	-1.48359		
Taf9b	0.000000	1.77318	Patz1	0.000204	-1.48407		
Lamb3	0.000014	1.77192	Imp4	0.000007	-1.487		
Lefty1	0.000040	1.76572	Ext1	0.000077	-1.49014		
1110008P14Rik	0.000147	1.76529	Zfp91	0.000400	-1.50193		
Csrp1	0.000177	1.7619	Luc7l	0.001050	-1.50418		
LOC546233	0.000009	1.75996	Prpf40a	0.002190	-1.50805		
D0H4S114	0.000048	1.75861	lsy1	0.000033	-1.50889		
Grina	0.000379	1.74832	1110001A07Rik	0.000094	-1.51113		
Rims3	0.000003	1.74561	Hrmt1l2	0.000026	-1.51334		
Rnase4	0.000021	1.74551	Gm129	0.000653	-1.51519		
Rem2	0.000000	1.74501	Sumo3	0.000288	-1.52002		
EG244911	0.000007	1.74335	Ccno	0.000181	-1.52256		
Hspb8	0.000001	1.74219	Tmem79	0.000207	-1.5237		
S100a1	0.000031	1.74174	Etv5	0.000885	-1.52726		
Mip	0.000096	1.74059	scl0001487.1 50	0.000317	-1.53115		
Reep5	0.000066	1.74047	Smpdl3b	0.000488	-1.53301		
Pop1r3c	0.000002	1.7392	2610020J05Rik	0.000001	-1.53401		
Rgs17	0.000209	1.73482	Ktelc1	0.000297	-1.53811		
LOC677144	0.000007	1.73389	Rrp1b	0.000003	-1.54328		
1110046J11Rik	0.000001	1.73067	EG627299	0.001526	-1.55131		
Krt19	0.000364	1.73062	Timm10	0.001813	-1.55414		
4933439C20Rik	0.000007	1.73021	Rn18s	0.000647	-1.5552		
Ddit4	0.000156	1.73018	5730543M03Rik	0.001296	-1 56026		
Hist1h2bc	0.000181	1.72774	D11Frtd636e	0.000023	-1 56747		
	0.000101	, _, , , ,		2.200023	1.007 //		

Day0 vs. Day2						
Gene Symbol	p-value	FC	Gene Symbol	p-value	FC	
		Up-			Down-regulated	
		regulated				
Cox6b2	0.000101	1.72587	Ztp423	0.000055	-1.56914	
Alox12b	0.000584	1.72412	Zscan10	0.000729	-1.59246	
Wfdc10	0.000003	1.72373	6720463L11Rik	0.000004	-1.60875	
Spon2	0.000051	1.72268	LOC100043257	0.001092	-1.60909	
Sord	0.000144	1.72205	Frrs1	0.000455	-1.61455	
Anxa2	0.000007	1.72028	Ccnd2	0.000154	-1.61628	
Casp6	0.000048	1.7198	Zcwpw1	0.000014	-1.63905	
Ostm1	0.000057	1.7191	Ppcs	0.001906	-1.64414	
A830059I20Rik	0.000099	1.7187	Chac1	0.000052	-1.65138	
H2-DMa	0.000073	1.71861	Tut1	0.000298	-1.66339	
Lrp10	0.000039	1.71815	Tceal7	0.000372	-1.66677	
Hebp1	0.000131	1.71781	2700023E23Rik	0.000222	-1.68363	
Pdzk1	0.000000	1.71473	Epb4.9	0.000001	-1.68478	
Tdrkh	0.000006	1.70105	8430410A17Rik	0.000166	-1.6892	
Klk1	0.000721	1.69943	Fgf17	0.000060	-1.68969	
Garnl3	0.000014	1.69921	Cpsf4l	0.000112	-1.69418	
1700023M03Rik	0.000016	1.69831	Gadd45g	0.000013	-1.7058	
Insl6	0.000681	1.69743	Slc28a1	0.000423	-1.71956	
2810003C17Rik	0.000016	1.69668	BC032203	0.000000	-1.72213	
Rras	0.000048	1.69647	Dusp27	0.002069	-1.7477	
Vegfb	0.001390	1.69613	Tlcd1	0.000057	-1.75906	
5133401N09Rik	0.000644	1.69248	Gm1967	0.000007	-1.76543	
Rhbdl2	0.000938	1.69186	Slc7a3	0.000124	-1.77219	
Trh	0.000211	1.68999	LOC100048330	0.000000	-1.79636	
Lrp11	0.000090	1.68993	2810017I02Rik	0.000352	-1.80007	
Mmp2	0.000148	1.68927	Gli2	0.000002	-1.80297	
1190007F08Rik	0.000928	1 68875	Fiz1	0.000023	-1 80583	
100385167	0.001520	1 68752	Vegfc	0.000021	-1 82795	
Leftv2	0.000580	1 6871	F130014105Rik	0.002123	-1 84454	
Tcfan2c	0.000015	1 67483	Msc	0.0002123	-1 89111	
1500009116Bik	0.000015	1.67205	D130003B22Bik	0.000013	-1 93628	
Mond	0.000167	1 6719	Snink3	0.000002	-1 95023	
Hcn2	0.000107	1 67176	Gdf3	0.000204	-1 96818	
FG623230	0.000011	1.67132	Senn3	0.000007	-1 97352	
Social	0.000000	1.67132	Enov1	0.000057	-1.00205	
50035 Gn29	0.000073	1.00939	Mois2	0.000033	-1.99203	
	0.000104	1.00854		0.000020	2.01398	
LUC301/2/	0.000043	1.00371	LOC100040802	0.000024	-2.01998	
Allge14	0.000097	1.00504		0.000001	-2.02101	
Aluli3d1	0.000420	1.00450	GDX2	0.000002	-2.12347	
	0.000406	1.00217		0.000037	-2.13133	
	0.000486	1.00181		0.000005	-2.14207	
ACPIZ	0.000000	1.66049	21p428	0.000008	-2.15/32	
	0.000018	1.65//		0.000010	-2.18269	
SIC39a11	0.000005	1.65723	2610019E17Rik	0.000227	-2.39737	
Rbp7	0.000026	1.6531				

Day0 vs. Day2						
Gene Symbol	p-value	FC	Gene Symbol	p-value	FC	
		Up-			Down-regulated	
		regulated				
Dtnbp1	0.000154	1.65138				
Phox2a	0.000020	1.64644				
Asphd2	0.000720	1.64641				
Sdc3	0.000050	1.64617				
AW212394	0.000005	1.6442				
Dcxr	0.000361	1.6423				
BC061212	0.000128	1.6412				
Mfge8	0.000015	1.64037				
Bik	0.000083	1.64005				
Copz2	0.000056	1.63975				
3110018K01Rik	0.002337	1.63663				
2810410A03Rik	0.000240	1.63662				
Ckmt1	0.000482	1.63621				
LOC100045343	0.000008	1.636				
Rassf5	0.000143	1.63477				
Rsph1	0.000164	1.63308				
Lbh	0.000003	1.62991				
4930583H14Rik	0.001189	1 62951				
Rtn1	0.000018	1 62885				
Ptn4a3	0.001368	1 6272				
5031436003Rik	0.001354	1.62666				
	0.001334	1.62359				
Tynin	0.000013	1.02355				
Mact2	0.000057	1.02208				
Anah	0.000333	1.02028				
Apen	0.000007	1.61943				
Ctsh Phan 10	0.000012	1.61676				
RNOX10	0.000508	1.61537				
8030474K03RIK	0.000125	1.61517				
Gotili	0.000075	1.61503				
Gstt3	0.000194	1.61149				
Spink2	0.000001	1.6103				
LOC244061	0.000853	1.60989				
OTTMUSG00000010537	0.000008	1.60826				
Cd74	0.000460	1.60748				
Acta1	0.000255	1.60564				
Ctsb	0.001172	1.60454				
Pygl	0.000203	1.60453				
5031439G07Rik	0.000037	1.60365				
Gnaz	0.000017	1.60351				
Gm1467	0.000106	1.60349				
Carhsp1	0.001587	1.60338				
Tex101	0.000424	1.60205				
LOC266459	0.001913	1.60152				
ld3	0.000168	1.59976				
	1		l			

ie FC	Gene Symbol	p-value	FC
Up-			Down-regulated
regulated			
40 1.59896			
1.59184			
91 1.59142			
08 1.59115			
39 1.58987			
85 1.5871			
1.58489			
21 1.5843			
87 1.58204			
65 1.57982			
03 1.57855			
05 1.57692			
45 1.57625			
24 1.57462			
08 1.57164			
23 1.5713			
02 1.57119			
35 1.56993			
01 1.56902			
62 1.56786			
82 1.56625			
15 1.56411			
42 1.56397			
1.56395			
20 1.56354			
68 1.56216			
83 1.56112			
56 1.55991			
06 1.55972			
09 1.55748			
04 1.55702			
81 1.55666			
09 1.55612			
14 1.55516			
1.55226			
13 1.55172			
1.55144			
85 1.54967			
04 1.54951			
22 1.54949			
38 1.54748			
28 1.54609			
02 1.54126			
10 1.54113			
	FC Up- regulated 1.59896 1.59142 1.59142 1.59142 1.59142 1.59142 1.59142 1.59142 1.59142 1.59142 1.59142 1.58987 1.58987 1.5843 1.5843 1.57852 1.57852 1.57692 1.57692 1.57692 1.57692 1.57625 1.57625 1.57625 1.57625 1.57625 1.57625 1.57625 1.57625 1.5713 1.5713 1.56993 1.56993 1.56902 1.56354 1.56354 1.56354 1.56354 1.55991 1.55702 1.55748 1.55161 1.55161 1.55161 1.	FC Gene Symbol Up- regulated 1.59896 1.59184 1.59184 1.59184 1.59184 1.59184 1.59184 1.59185 1.5871 1.58987 1.5843 1.58204 1.57982 1.57625 1.57625 1.57625 1.5713 1.5714 1.5692 1.5713 1.57625 1.5713 1.5692 1.5713 1.5692 1.5713 1.5692 1.5693 1.5693 1.56411 1.5634 1.5612 <	FC Gene Symbol p-value Up- regulated 0 p-value 1.59896 1.59896 p-value 155 1.59184 p-value 100 1.59896 p-value 155 1.59184 p-value 101 1.59115 p-value 1159115 1.58987 p-value 120 1.58987 p-value 185 1.5871 p-value 188 1.58489 p-value 1.5843 p-value p-value 1.5815 p-value p-value 1.58204 p-value p-value 1.5813 p-value p-value 1.5702 p-value p-value 1.57055 p-value p-value 1.57625 p-value p-value 1.5714 p-value p-value 1.56991 p-value p-value 1.56354 p-value p-value 1.5516 p-value p-value

Day0 vs. Day2						
Gene Symbol	p-value	FC	Gene Symbol	p-value	FC	
		Up-			Down-regulated	
		regulated				
Prkra	0.000494	1.54013				
Csrnp2	0.000152	1.53804				
Sertad1	0.001431	1.53783				
Rln1	0.000182	1.53619				
Actn2	0.000002	1.53523				
Gm1673	0.001399	1.53254				
Flywch2	0.000002	1.53177				
Bzrap1	0.000009	1.531				
Susd4	0.000427	1.52895				
BC026585	0.001111	1.52724				
Htra1	0.000977	1.52709				
2410076I21Rik	0.000930	1.52675				
1810020D17Rik	0.000100	1.52584				
Gal	0.000408	1.5252				
Tax1bp3	0.000685	1.52436				
Fgd2	0.000567	1.52432				
Dmrtc2	0.000420	1.52414				
Hist1h4i	0.001750	1 52051				
Chi3l1	0.0001750	1 51834				
Wdr92	0.0000000	1.5165				
Twog1	0.001000	1 51/181				
Gra	0.000033	1.51461				
lfi20	0.000324	1.51458				
11150 ConnE	0.002299	1.51204				
	0.000136	1.51109				
I CEGIS	0.000124	1.51108				
NK02	0.000232	1.51081				
les	0.000054	1.50858				
Pardbg	0.000357	1.50824				
2410088K16Rik	0.001654	1.50824				
Defb42	0.000815	1.50794				
Stag3	0.000459	1.50722				
Nrarp	0.000007	1.50644				
3110040M04Rik	0.000221	1.50592				
Zfp36	0.000028	1.50516				
Flot1	0.000109	1.50513				
Dusp26	0.000162	1.50458				
Stxbp1	0.000037	1.50278				
Papss1	0.002052	1.50183				
BC021614	0.000118	1.50087				
Lgi2	0.000213	1.50014				
LOC100044298	0.000065	1.49934				
Rasa3	0.000082	1.49862				
2210408F11Rik	0.000006	1.49818				
Gm2a	0.000784	1.49814				
==			l			

Day0 vs. Day2							
Gene Symbol	p-value	FC	Gene Symbol	p-value	FC		
		Up-			Down-regulated		
		regulated					
Casp14	0.000035	1.49742					
Acot7	0.000037	1.49709					
Unc84b	0.000615	1.49497					
Acbd4	0.000160	1.49473					
LOC236311	0.000106	1.49441					
Hspa2	0.000012	1.49423					
Tmem45b	0.000192	1.4941					
Mmd	0.000000	1.494					
Crlf1	0.000298	1.49313					
Prmt2	0.000033	1.49232					
lgf2	0.000167	1.49175					
Tnfaip8	0.001989	1.4901					
EG434729	0.000151	1.48993					
Matn1	0.000645	1.48866					
Tgfb1	0.000883	1.48866					
Tmem130	0.000052	1.48858					
Tuft1	0.000218	1.48823					
Txndc13	0.000001	1.487					
Pacsin1	0.000000	1.48658					
Pip4k2c	0.000160	1.48615					
Pnma2	0.000168	1.48566					
LOC100046207	0.000078	1.48522					
Acss2	0.000027	1.48449					
Gstm5	0.000785	1.48319					
Cxcl14	0.000171	1.48309					
1700052O22Rik	0.001328	1.48185					
Nudt18	0.000208	1.48146					
Hist1h4f	0.001524	1.48104					
BC080695	0.000454	1.47961					
Neurl	0.000222	1.47912					
Pscd3	0.001010	1.47909					
Fbxo10	0.000304	1.47746					
0610011F06Rik	0.000021	1.47722					
1700123119Rik	0.001879	1.47635					
Unc13b	0.002241	1 47571					
Cd79b	0.000112	1 47486					
Atp12a	0.000075	1.47469					
Rh1	0.000023	1 47264					
H1fx	0.000782	1 47125					
2210410E06Bik	0.000782	1 47088					
	0.000203	1 /17025					
2310047A01Rik	0.000083	1 /6002					
Lvnd2	0.000003	1 46272					
-ypu2	0.000341	1.400/0	1				

	Day0 vs. Day2							
Gene Symbol	p-value	FC	Gene Symbol	p-value	FC			
		Up-			Down-regulated			
Knc2	0.000054	1 46772						
NIISZ 20100111100ik	0.000034	1.40772						
2010011119016	0.000393	1.40110						
2310040C09KIK	0.000225	1.40108						
	0.000500	1.46006						
Agapi	0.000110	1.45900						
	0.00078	1.45881						
Placo	0.000793	1.45857						
	0.000015	1.45720						
	0.001269	1.45706						
2310005E10RIK	0.001542	1.45692						
sci0002507.1_236	0.000203	1.45566						
Ccbl1	0.000284	1.4556						
Rec8	0.001062	1.45444						
Dap	0.001060	1.45249						
Cdkn3	0.000011	1.45236						
Hist1h4m	0.000533	1.45181						
Gpc3	0.000253	1.45124						
LOC100046120	0.002076	1.45082						
Rab28	0.000549	1.45038						
Greb1	0.000142	1.44814						
Rnase1	0.000852	1.44799						
LOC236371	0.001748	1.44728						
Tnni2	0.000681	1.44694						
Gm817	0.002322	1.44675						
Acsl6	0.000008	1.4456						
Apoc1	0.001166	1.44518						
Stard10	0.001219	1.44469						
Mtch1	0.000024	1.44403						
Maged2	0.000120	1.443						
Fam162a	0.001295	1.44275						
Prnp	0.000237	1.44232						
Hist1h3e	0.001202	1.44229						
Hist1h3f	0.001563	1.4408						
Enpp5	0.000347	1.43999						
Phc2	0.001183	1.43933						
Sil1	0.000415	1.43907						
Tuba3a	0.001243	1.43893						
Tmem22	0.000439	1.43862						
Mgst1	0.000470	1.43804						
2700050C19Rik	0.001345	1.43733						
Aldoc	0.000019	1.43721						
Ramp3	0.000589	1.43718						

	Day0 vs. Day2							
Gene Symbol	p-value	FC	Gene Symbol	p-value	FC			
		Up-			Down-regulated			
	0.000112	regulated						
Acaa2	0.000113	1.43697						
Vps37d	0.000125	1.43675						
Ypel5	0.000071	1.43544						
LOC382183	0.000698	1.4348						
Tpm4	0.001761	1.42637						
LOC100046518	0.000130	1.42636						
Flot2	0.000065	1.42537						
Svop	0.000482	1.4242						
EG212753	0.001816	1.42392						
Nphp4	0.000011	1.4236						
4930539E08Rik	0.000621	1.42355						
D330028D13Rik	0.000623	1.42247						
Tmem159	0.000279	1.42237						
Sirt7	0.001091	1.42231						
Ankrd37	0.000060	1.42186						
Adrb2	0.000793	1.42112						
Etfa	0.000803	1.42052						
2010007H12Rik	0.000009	1.42015						
Aloxe3	0.000343	1.42009						
Gstm6	0.001770	1.41951						
LOC381860	0.000333	1.41904						
9430080K19Rik	0.000562	1.41809						
Alg14	0.000014	1.41806						
LOC100046232	0.000023	1.41749						
Moxd1	0.000026	1.41734						
AI662250	0.000009	1.41697						
Cxcr4	0.000434	1.41566						
Klk13	0.000242	1.41443						
Gltp	0.000969	1.41437						
H2-T23	0.001896	1.41429						
Akr1b8	0.001076	1.41408						
Sstr2	0.000039	1.41355						
Tmem184b	0.000004	1.41293						
Rpl22	0.000070	1.41219						
1700006H02Rik	0.000109	1.40974						
Cldn4	0.000744	1.40932						
Car4	0.000398	1.40886						
ααΑ	0.000230	1.4087						
Anxa11	0.000375	1.40826						
Føln3	0.000270	1 40707						
Hist1h4d	0.000672	1 405/17						
1113111140	0.000072	1.40342						

Day0 vs. Day2								
Gene Symbol	p-value	FC Up-	Gene Symbol	p-value	FC Down-regulated			
		regulated						
Prkcb	0.000075	1.4046						
Magee1	0.001549	1.40411						
Tmem53	0.000127	1.40302						
Galk1	0.000031	1.40166						
Pbk	0.000811	1.40162						

Day0 vs. Day3								
Gene Symbol	p-value	FC Up- regulated	Gene Symbol	p-value	FC Down- regulated			
Amn	0.000000	6.9085	2410075B13Rik	0.004162	-1.40065			
Ly6a	0.000001	5.72	Prrg3	0.003049	-1.40104			
Slc38a5	0.000000	5.20997	Tdrd3	0.000069	-1.40184			
Ttc9b	0.000001	4.71217	D630036F01Rik	0.000991	-1.40239			
LOC666185	0.000000	4.4466	Ide	0.001520	-1.40252			
Camk2n2	0.000001	4.44423	Gabpa	0.001498	-1.40283			
LOC666238	0.000000	4.39212	Zfp219	0.002830	-1.40303			
Tex19.2	0.000000	4.00852	LOC100047226	0.000942	-1.40316			
LOC100047651	0.000001	3.94597	Gpr125	0.005035	-1.40343			
Hmgn3	0.000000	3.6708	BC027246	0.001889	-1.40352			
Taf7l	0.000002	3.54941	LOC626152	0.000195	-1.40406			
LOC381283	0.000000	3.40705	D330038O06Rik	0.002360	-1.40472			
BB287469	0.000026	3.24502	Gars	0.000497	-1.40532			
Tnnc2	0.000064	3.0559	Тbp	0.000482	-1.4054			
1110008P14Rik	0.000002	3.01503	Zfp317	0.000810	-1.40562			
Blvrb	0.000004	3.00213	B230333E16Rik	0.000061	-1.4057			
Hebp1	0.000001	2.96487	Cpsf4l	0.001563	-1.4057			
Thy1	0.000005	2.96472	IIf3	0.001805	-1.40605			
Guca1a	0.000000	2.9618	Ahctf1	0.001913	-1.40639			
Gpx2	0.000002	2.95862	LOC100047963	0.000780	-1.40644			
Cd74	0.000002	2.92514	Auh	0.000234	-1.4067			
Cplx1	0.000000	2.92303	Zranb3	0.000000	-1.40691			
Crabp2	0.000000	2.88293	EG232875	0.002114	-1.40692			
Rsph1	0.000001	2.87801	LOC100042492	0.000937	-1.40753			
Cyba	0.000191	2.85587	6820406G21Rik	0.004527	-1.40796			
Slc30a2	0.000001	2.84119	Adam23	0.000205	-1.40827			
Myl4	0.000010	2.80629	Rnf145	0.000202	-1.40851			
Sfn	0.000005	2.74412	Tcea2	0.001031	-1.40879			
ld1	0.000000	2.7343	Zfp512	0.002275	-1.40913			
Psors1c2	0.000006	2.72188	Mthfd2	0.000809	-1.40921			
Htra1	0.000004	2.69736	Smek1	0.000245	-1.40924			
Wfdc2	0.000001	2.64864	Ppid	0.001086	-1.40953			

Day0 vs. Day3								
Gene Symbol	p-value	FC Up- regulated	Gene Symbol	p-value	FC Down- regulated			
BC061212	0.000002	2.61955	Tcf20	0.000056	-1.40972			
Rtn1	0.000000	2.61695	4930563B10Rik	0.000560	-1.40985			
Mt3	0.001455	2.61024	Herpud1	0.000070	-1.41006			
Nptx2	0.000001	2.60217	Sirt5	0.000241	-1.41031			
LOC546233	0.000000	2.59543	Plekha1	0.004092	-1.41056			
Gp38	0.000002	2.56801	9830143E02Rik	0.003307	-1.41093			
Reep5	0.000002	2.55158	Gbp1	0.000589	-1.411			
Zscan4c	0.000073	2.53872	Hspbap1	0.000810	-1.41254			
Sct	0.000020	2.52881	Aprin	0.000193	-1.41277			
1190020J12Rik	0.000039	2.52114	Rpap2	0.000005	-1.41328			
Tcstv1	0.000015	2.51704	Zfp162	0.001368	-1.41337			
LOC100046207	0.000000	2.50923	LOC673501	0.001600	-1.41395			
Ela2a	0.000075	2.50005	A430092C21Rik	0.000575	-1.41491			
Dusp4	0.000000	2.49642	Tmem47	0.001905	-1.41492			
LOC244061	0.000014	2.49343	Bcor	0.000255	-1.41501			
2810003C17Rik	0.000000	2.48019	scl0002064.1_2	0.001667	-1.41542			
LOC435337	0.000103	2.46832	Map4k3	0.001715	-1.41546			
S100a6	0.000034	2.45676	Psma8	0.000641	-1.4157			
Rgs10	0.000063	2.44205	D4Wsu132e	0.005877	-1.41581			
Crym	0.000041	2.42581	LOC100048372	0.002119	-1.41589			
Slc6a13	0.000020	2.42332	Use1	0.000206	-1.41807			
Cdkn3	0.000000	2.42044	Mat2a	0.003883	-1.41823			
EG630499	0.000008	2.41991	Arl4a	0.000092	-1.4185			
AF067061	0.000753	2.41763	Mme	0.000260	-1.41854			
Tgfb1	0.000006	2.41536	Myo10	0.000000	-1.41873			
Gch1	0.000002	2.41502	Ccdc58	0.000024	-1.41894			
Tceal5	0.000001	2.41449	Ccnc	0.000128	-1.4194			
Krt14	0.000016	2.41101	Msi2	0.001093	-1.41962			
Cldn6	0.000000	2.41004	Aebp2	0.000148	-1.41967			
2810410A03Rik	0.000006	2.40958	Ubr1	0.001792	-1.41972			
LOC677144	0.000000	2.40016	Gpbp1	0.000612	-1.41987			
ld3	0.000003	2.38981	6330407J23Rik	0.000014	-1.42001			
1700088E04Rik	0.000001	2.37987	Adprh	0.004029	-1.42005			
Crygd	0.000000	2.36094	EG433229	0.002092	-1.42013			
Cuta	0.000001	2.35429	Luc7l	0.002456	-1.42042			
Cmtm8	0.000087	2.35253	6430590103Rik	0.000991	-1.42069			
Cotl1	0.000056	2.34731	Cla3	0.000058	-1.4208			
LOC381844	0.000004	2.34647	Raf1	0.000524	-1.4216			
LOC381727	0.000001	2.34203	Ddc	0.000270	-1.42181			
LOC266459	0.000053	2.33746	9230108M03Rik	0.001651	-1.42195			
2410088K16Rik	0.000019	2.32388	Casp2	0.000054	-1.4222			
Fabp3	0.000019	2.31841	Cd2bp2	0.001467	-1.42289			

Day0 vs. Day3							
Gene Symbol	p-value	FC Up- regulated	Gene Symbol	p-value	FC Down- regulated		
Vegfb	0.000084	2.31281	Deadc1	0.004812	-1.4231		
Gstk1	0.000018	2.30744	BC085271	0.002487	-1.4231		
Arhgdig	0.000024	2.30141	LOC100040061	0.000064	-1.42311		
Nrip3	0.000003	2.29963	Mbnl1	0.000123	-1.42355		
Ctnnbip1	0.000008	2.29635	LOC381285	0.004472	-1.42395		
Mylpf	0.000000	2.29251	E030007N04Rik	0.000016	-1.42405		
H2-BI	0.000004	2.28184	Gcnt2	0.000901	-1.42432		
Ngfr	0.000001	2.27661	Вссір	0.000312	-1.42451		
Acaa1b	0.000212	2.2708	Hnrnph1	0.000352	-1.42471		
Тѕро	0.000001	2.26846	Prdx3	0.000048	-1.42472		
Npw	0.000098	2.26019	Fxr2	0.000009	-1.42479		
A430089I19Rik	0.000000	2.25859	A630072M18Rik	0.000208	-1.42483		
BC021614	0.000001	2.25704	Papd4	0.001817	-1.42494		
Cdk2ap2	0.000154	2.25639	Sntb2	0.000420	-1.42535		
Fhod1	0.000010	2.25289	Arih1	0.000257	-1.42543		
LOC639910	0.000208	2.24629	Tle4	0.000300	-1.42577		
5031439G07Rik	0.000001	2.23548	scl0001118.1_0	0.000409	-1.4258		
Adssl1	0.000001	2.23315	Shmt2	0.000433	-1.42768		
Mapk13	0.000009	2.2277	9030416H16Rik	0.001181	-1.42798		
9130213B05Rik	0.000000	2.22092	Coil	0.000765	-1.4288		
Tubb4	0.000000	2.2193	Gmeb2	0.001412	-1.42898		
Mlf1	0.000000	2.21487	Dnajc6	0.001623	-1.4291		
Hba-a1	0.000482	2.19638	Arid1b	0.000072	-1.42932		
Grn	0.000005	2.18958	Cul5	0.000188	-1.42943		
LOC236311	0.000001	2.18469	Dbr1	0.000340	-1.42956		
Gstt1	0.000020	2.17961	Syde1	0.001150	-1.42986		
Sstr2	0.000000	2.17959	Syncrip	0.000039	-1.43047		
ler3	0.001003	2.17681	Mterf	0.000073	-1.43086		
LOC331259	0.000043	2.17534	LOC209281	0.005851	-1.43132		
LOC245892	0.000195	2.17498	Tnrc6a	0.004693	-1.43135		
LOC382183	0.000006	2.15922	Etv4	0.001399	-1.43346		
Tax1bp3	0.000015	2.15801	Alkbh	0.000086	-1.43417		
Hcn2	0.000001	2.15787	LOC100045567	0.000081	-1.43444		
Crip2	0.000009	2.15597	Cfp	0.001068	-1.43465		
Rbp1	0.000084	2.1521	Ndufaf1	0.001188	-1.43467		
Lrp10	0.000004	2.14319	Sdccag1	0.003841	-1.4364		
Tes	0.000001	2.13799	Akap9	0.000003	-1.43645		
Ldoc1	0.000000	2.1237	1500012F01Rik	0.000130	-1.43766		
6330403K07Rik	0.000003	2.12303	C330048F19	0.002912	-1.43771		
Coro1a	0.000000	2.12149	Usp7	0.001252	-1.438		
Rap2ip	0.000001	2.11887	Sbno1	0.000125	-1.43805		
Myl2	0.000008	2.11871	Trps1	0.000082	-1.43851		

Day0 vs. Day3								
		FC		_	FC			
Gene Symbol	p-value	Up- regulated	Gene Symbol	p-value	Down-			
2000060B14Bik	0.001545	2 11/11	Rabaath	0.000336	-1 /3858			
	0.001343	2.11411		0.000330	-1.43636			
ALSSI Cm1672	0.000013	2.11300	Geta2	0.000098	-1.43800			
	0.000045	2.11291	Gsld5	0.000059	-1.4369			
Cripa	0.000022	2.11002	Ognopz Dbpc	0.000018	-1.45694			
Grind Tmom 45h	0.000002	2.10647	Drips Srfha1	0.001779	-1.45910			
	0.000003	2.10545	Shippi Bood 1	0.003897	-1.43938			
CXCI14	0.000003	2.10434		0.000259	-1.43952			
	0.000004	2.10128		0.001585	-1.43991			
Ccdc23	0.000307	2.09995	Nol1	0.000015	-1.44029			
Gas6	0.000001	2.09655	2210015K02Rik	0.000493	-1.44043			
BC030476	0.004676	2.09316	Rnu65	0.001831	-1.44081			
Batf3	0.000072	2.09063	Ccnd1	0.000936	-1.44229			
Ehd1	0.000068	2.08875	Papola	0.000266	-1.44285			
Josd2	0.000423	2.08673	Pak2	0.001942	-1.44304			
LOC384298	0.000002	2.0859	Plod2	0.000190	-1.4436			
Tspan17	0.000316	2.0834	Cep57	0.000961	-1.44362			
Mip	0.000015	2.08331	BC088983	0.000119	-1.44425			
LOC100046120	0.000033	2.08166	Eif5	0.002407	-1.44445			
EG244911	0.000001	2.07872	Irf9	0.000051	-1.44454			
8030474K03Rik	0.000008	2.07563	Slc35f2	0.001243	-1.44464			
Fbxo2	0.000778	2.07417	C920004C08Rik	0.000107	-1.44478			
Slc39a11	0.000000	2.0629	Cept1	0.000360	-1.44496			
lsyna1	0.000116	2.06211	2310007G05Rik	0.000388	-1.44524			
1700016K19Rik	0.000007	2.0609	LOC100045005	0.000644	-1.44549			
OTTMUSG00000010438	0.000000	2.05423	Krr1	0.001026	-1.44572			
Lgals1	0.000152	2.05367	2700092H06Rik	0.000069	-1.44579			
Sqstm1	0.000084	2.05221	4631405K08Rik	0.000014	-1.4459			
Sccpdh	0.000034	2.05154	Sema4a	0.000352	-1.44721			
			OTTMUSG00000106					
AW212394	0.000000	2.0513	73	0.000460	-1.44722			
Zyx	0.000007	2.05033	Epdr1	0.000567	-1.44729			
LOC386085	0.001854	2.04527	Adal	0.000491	-1.44731			
Fam171a2	0.001345	2.03446	Mrpl1	0.000754	-1.44825			
Gstt3	0.000015	2.03362	Gtf2i	0.001578	-1.44865			
Phf13	0.000000	2.03129	AI314180	0.001660	-1.44876			
5133401N09Rik	0.000104	2.02968	Ттро	0.000275	-1.44889			
Asphd2	0.000083	2.02919	Serinc1	0.001475	-1.44892			
LOC383616	0.000030	2.02872	Dars	0.000385	-1.45037			
lgf2	0.000004	2.02572	Ascc3l1	0.001159	-1.45055			
Pmp22	0.000060	2.02538	LOC384382	0.002558	-1.45077			
LOC100041290	0.000050	2.01614	Pum2	0.005868	-1.45093			
Magee1	0.000018	2.00977	Tmc7	0.002445	-1.45116			
Rnase1	0.000016	2.00757	LOC100046035	0.001312	-1.45166			

Day0 vs. Day3							
Gene Symbol	p-value	FC Up- regulated	Gene Symbol	p-value	FC Down- regulated		
Spsb2	0.000002	2.00247	C330016O10Rik	0.000238	-1.45167		
Rab3d	0.000001	2.0013	2410017P07Rik	0.000386	-1.45245		
LOC100046518	0.000002	1.99609	Nphs1	0.000003	-1.45276		
Sec11c	0.000388	1.99289	Nthl1	0.000133	-1.45285		
Rassf5	0.000016	1.99287	Pon2	0.000369	-1.45295		
Rhox10	0.000053	1.99046	A930013G23Rik	0.000084	-1.45296		
Stard10	0.000025	1.99041	Rbbp9	0.000329	-1.45319		
Lbh	0.000000	1.98987	D11Ertd636e	0.000077	-1.45363		
Slc5a5	0.000000	1.98859	Rabep1	0.000213	-1.4538		
Maged2	0.000002	1.98835	BC027231	0.000169	-1.45384		
Rhox9	0.000178	1.98654	Sbds	0.000106	-1.4539		
H47	0.000012	1.98389	Wdr74	0.001021	-1.45438		
Dtnbp1	0.000021	1.98344	Fzd7	0.000824	-1.45502		
AU018829	0.000000	1.98271	Scml2	0.000235	-1.45591		
Spnb3	0.000034	1.97368	C330024D21Rik	0.000369	-1.45595		
Tmem54	0.000027	1.97298	EG435970	0.000401	-1.45616		
Slc46a3	0.000046	1.97177	6720467C03Rik	0.000031	-1.45678		
LOC385167	0.000328	1.97134	Bxdc2	0.000142	-1.45701		
Rem2	0.000000	1.96963	LOC100046586	0.001461	-1.45703		
Sertad1	0.000091	1.96952	Tlcd1	0.000705	-1.4573		
Card10	0.000037	1.96839	Hnrpl	0.005558	-1.45769		
EG434729	0.000005	1.96816	Esrrb	0.004961	-1.45805		
LOC665290	0.000022	1.96471	LOC100047674	0.000070	-1.45823		
Rgs17	0.000058	1.96266	LOC386405	0.000059	-1.45847		
Unc84b	0.000024	1.96229	Nanos1	0.000534	-1.45855		
Nans	0.000129	1.96131	Ankrd13c	0.000485	-1.4592		
Vat1	0.004348	1.95828	Nup62	0.000322	-1.46009		
S100a1	0.000009	1.95819	LOC100046393	0.000287	-1.4608		
Cd79b	0.000003	1.95735	Tor1aip1	0.000005	-1.46089		
Akr1b8	0.000017	1.957	Pank1	0.001669	-1.46099		
Klrg2	0.000011	1.95575	Zfp644	0.004716	-1.46124		
Ckb	0.000127	1.95495	C030048B08Rik	0.002560	-1.46141		
Nagk	0.000227	1.95376	5830411120	0.000026	-1.46164		
lfi30	0.000133	1.95165	LOC226486	0.000474	-1.46165		
AW555464	0.000019	1.94768	Gtpbp10	0.000900	-1.46338		
Acta1	0.000029	1.94695	Rnaseh2b	0.002907	-1.46345		
LOC100045864	0.000008	1.94021	E330011I20Rik	0.001358	-1.46357		
H2-DMa	0.000020	1.93844	2310001H12Rik	0.000012	-1.46469		
Serpine2	0.000039	1.93701	Wdr21	0.001109	-1.46494		
Mgst3	0.000078	1.93698	Хро4	0.000003	-1.4654		
Hsbp1	0.000056	1.93594	Papolg	0.001075	-1.46612		
Rbp7	0.000004	1.93541	Slc35d2	0.003869	-1.46706		

Day0 vs. Day3							
Gene Symbol	p-value	FC Up- regulated	Gene Symbol	p-value	FC Down- regulated		
Tcstv3	0.000702	1.9354	Car11	0.002837	-1.46731		
Casp6	0.000013	1.93183	Nampt	0.002657	-1.46823		
Fdps	0.000073	1.92997	Zbtb26	0.000726	-1.46853		
Spink2	0.000000	1.92724	lvns1abp	0.003008	-1.46871		
Mapre2	0.000098	1.92635	Cetn3	0.000623	-1.46872		
lfngr2	0.000321	1.92212	Cct6a	0.001270	-1.46921		
Pglyrp1	0.000213	1.92196	Lrrc34	0.000318	-1.46922		
Pip4k2c	0.000006	1.92129	LOC100047264	0.000020	-1.4694		
Tdrkh	0.000002	1.92073	2310037I24Rik	0.001045	-1.46959		
Slc25a10	0.000163	1.92071	Aars	0.000239	-1.46964		
Dgat2	0.000625	1.91952	Gtpbp4	0.001851	-1.47012		
Тррр3	0.000086	1.91947	Rbak	0.000004	-1.47118		
1190003J15Rik	0.001583	1.91129	Ganab	0.000093	-1.4712		
Acot7	0.000002	1.91127	Gnl3	0.002951	-1.47143		
Gpx3	0.000024	1.90716	Ireb2	0.001912	-1.47172		
Slc9a3r2	0.000004	1.9047	LOC100048295	0.000085	-1.47224		
2200001I15Rik	0.000667	1.89717	Rragb	0.000266	-1.47245		
Tmem120a	0.000203	1.89655	Sall1	0.000231	-1.47275		
Prmt2	0.000001	1.89472	Eif4enif1	0.000627	-1.47302		
Chka	0.000828	1.8933	Mkln1	0.001101	-1.47323		
Phc2	0.000037	1.89295	Hrmt1l2	0.000040	-1.47366		
Sirt7	0.000027	1.89129	LOC245350	0.000599	-1.47391		
Actn2	0.000000	1.8905	Pcf11	0.000022	-1.47444		
Med10	0.003227	1.89017	2810017I02Rik	0.003755	-1.47455		
Psmb9	0.000005	1.89013	Ddx26	0.000369	-1.47564		
Rims3	0.000001	1.88998	A430106B04Rik	0.002327	-1.47566		
Egr1	0.000003	1.88955	Efr3a	0.004051	-1.4763		
EG546894	0.000009	1.8895	E030026I10Rik	0.000002	-1.47651		
D16H22S680E	0.000000	1.8879	Dhx35	0.000317	-1.47701		
Asprv1	0.000019	1.8879	C920006O11Rik	0.000173	-1.47712		
Carhsp1	0.000275	1.88738	Cenpi	0.002539	-1.47766		
Suds3	0.000000	1.88664	LOC676748	0.001038	-1.47837		
Dmkn	0.000032	1.88564	Top1	0.004880	-1.47837		
Cstb	0.000000	1.88205	Oxnad1	0.000066	-1.47882		
2600009P04Rik	0.000004	1.88185	Gm1815	0.000432	-1.4794		
1190007F08Rik	0.000307	1.87816	1200015N20Rik	0.000045	-1.47984		
Sh3bgrl3	0.000915	1.87608	Bbs2	0.004321	-1.48003		
Crxos1	0.000001	1.87468	Zfp518b	0.000062	-1.48012		
LOC212386	0.000330	1.86841	Hspb6	0.000938	-1.4803		
4921521F21Rik	0.000002	1.86801	1700081H05Rik	0.000201	-1.48078		
Sep-08	0.000098	1.86725	AW549877	0.000683	-1.48153		
Rhbdf1	0.000023	1.86649	LOC381302	0.002313	-1.48168		

Day0 vs. Day3							
Gene Symbol	p-value	FC Up- regulated	Gene Symbol	p-value	FC Down- regulated		
Stbd1	0.000008	1.86643	Rnf113a2	0.000342	-1.48227		
Rab11fip5	0.000007	1.86542	Ccnt2	0.000202	-1.48232		
Slc29a1	0.000002	1.86429	Gtf2e1	0.000479	-1.48347		
Flnc	0.000088	1.86353	Kat2a	0.000414	-1.48361		
Lamb3	0.000008	1.8623	Tanc1	0.002491	-1.4844		
Anxa5	0.000012	1.86184	Myst4	0.000158	-1.48471		
Col5a1	0.000036	1.86041	Sfrs1	0.000436	-1.48494		
Chst1	0.000005	1.85581	Zfp508	0.000905	-1.48506		
Map1lc3a	0.000096	1.85451	Pou5f1	0.001378	-1.48521		
Rsad2	0.000004	1.85432	Ttc39b	0.000258	-1.48554		
Limk1	0.000365	1.85175	Smug1	0.000022	-1.48615		
Agpat2	0.000003	1.85013	Tbl1xr1	0.000043	-1.48622		
Lypla2	0.000016	1.84932	C130032J12Rik	0.000282	-1.48637		
Csrp1	0.000106	1.8483	Ccnl	0.002028	-1.48679		
LOC382184	0.000002	1.8471	Tcerg1	0.000350	-1.48703		
Rogdi	0.000743	1.84709	3632413B07Rik	0.001582	-1.48754		
AI836003	0.000000	1.84648	Fbxl11	0.003498	-1.48764		
Tesc	0.000582	1.84586	5730601F06Rik	0.000091	-1.48766		
Anxa2	0.000003	1.84341	Prpf4	0.000586	-1.48875		
Atp12a	0.000004	1.84265	2410078J06Rik	0.000449	-1.48875		
Sohlh1	0.000001	1.84064	2410002O22Rik	0.004916	-1.48949		
Ddx19b	0.000229	1.83989	Arid1a	0.000484	-1.4902		
C3	0.000054	1.83944	BC038822	0.001803	-1.49026		
LOC100040016	0.000091	1.83923	Pprc1	0.000890	-1.49091		
Dctn3	0.000502	1.83867	2310008I22Rik	0.001508	-1.49099		
Tmem9b	0.000000	1.83728	Ddx52	0.001424	-1.49146		
Apeh	0.000001	1.83598	BC020002	0.002834	-1.4932		
Tcf19	0.000093	1.8347	LOC544988	0.000550	-1.49378		
Klhl21	0.000192	1.83453	2310031L18Rik	0.000578	-1.49444		
Sdcbp2	0.000001	1.83342	Inpp5d	0.001790	-1.49555		
9130211I03Rik	0.000102	1.83338	Noc3l	0.002218	-1.4966		
LOC630179	0.000007	1.83292	Alkbh3	0.000290	-1.4971		
Cldn10	0.000002	1.82632	Prmt8	0.000086	-1.49772		
Lin7b	0.000014	1.82392	Secisbp2	0.000748	-1.49776		
Copz2	0.000016	1.82274	9530048009Rik	0.000007	-1.49794		
Prf1	0.001998	1.8212	Ech1	0.001238	-1.50026		
Rhbdl3	0.000017	1.81947	Jtb	0.000033	-1.50159		
Nppb	0.000437	1.81919	Nudt5	0.000006	-1.50161		
Crlf1	0.000023	1.8191	Chrna9	0.000158	-1.50216		
Dusp26	0.000014	1.81821	Oxsr1	0.000419	-1.50276		
Phox2a	0.000006	1.81768	Mbtd1	0.002766	-1.50395		
Plekhf1	0.000025	1.81734	Pde1b	0.000662	-1.50419		

Day0 vs. Day3								
Gene Symbol	p-value	FC Up- regulated	Gene Symbol	p-value	FC Down- regulated			
Fbxo10	0.000020	1.81717	Wwp1	0.001158	-1.50437			
EG212753	0.000076	1.81665	Mre11a	0.000419	-1.50441			
Pgd	0.000017	1.81509	1810026B05Rik	0.002033	-1.50503			
1110019N10Rik	0.000346	1.81395	Slc19a2	0.002853	-1.50612			
LOC236220	0.000245	1.81374	LOC234360	0.000057	-1.50617			
4933421H10Rik	0.000013	1.81158	Tmem39a	0.000016	-1.50634			
ltsn1	0.000144	1.81156	2310005L22Rik	0.005366	-1.50669			
Rala	0.000035	1.81009	C530038F07Rik	0.001689	-1.5068			
Mapkapk2	0.000170	1.80965	Dbf4	0.003228	-1.50698			
LOC100040479	0.000740	1.8094	LOC232887	0.000229	-1.50772			
Ctsh	0.000003	1.80905	Sesn2	0.000808	-1.50794			
Gnptg	0.000000	1.80675	Cobl	0.000028	-1.5085			
Arpc1b	0.000341	1.80665	Irf2bp2	0.000008	-1.50906			
Impdh1	0.000527	1.80629	Eif2b5	0.000003	-1.50912			
2310040C09Rik	0.000013	1.8042	Mrps31	0.000047	-1.50978			
4930519N16Rik	0.000247	1.8031	1110059G02Rik	0.000894	-1.51027			
Tmem121	0.001010	1.80267	C130085G02Rik	0.004587	-1.51074			
Fcho1	0.000401	1.8015	BC034076	0.001619	-1.51089			
Mfge8	0.000005	1.80024	Asxl1	0.000046	-1.51113			
Tex101	0.000108	1.79917	Catsper2	0.000042	-1.51311			
OTTMUSG00000010537	0.000002	1.79779	Gart	0.002002	-1.51444			
Rabl4	0.000276	1.79726	E330018D03Rik	0.000588	-1.51475			
LOC384964	0.000144	1.79726	Qtrtd1	0.001961	-1.51482			
Alg14	0.000000	1.7967	Noc2l	0.000011	-1.51492			
Myl9	0.001285	1.79555	Zfp42	0.000656	-1.51506			
Rhox6	0.000032	1.79394	1300006C19Rik	0.003900	-1.51551			
Tagln2	0.000170	1.79337	Ddb1	0.000060	-1.51574			
Ostf1	0.000007	1.79218	Bcat2	0.000931	-1.51635			
LOC100048733	0.002193	1.79143	Atf5	0.000870	-1.51821			
Gpc1	0.000001	1.79035	Fkbp10	0.002596	-1.51824			
Slc24a6	0.000264	1.78917	C230055K05Rik	0.000050	-1.51846			
Psap	0.000463	1.78864	A930010I20Rik	0.000494	-1.51854			
Dnmt3l	0.000009	1.78856	1810030N24Rik	0.000014	-1.51925			
LOC625360	0.001335	1.78726	Uck2	0.000008	-1.51946			
Tmem192	0.000156	1.78567	Dnajb6	0.000006	-1.51969			
Ctgf	0.000006	1.78455	C130072A16Rik	0.000778	-1.5203			
AF067063	0.000155	1.78384	Hmgb2l1	0.000448	-1.52046			
Lypd2	0.000025	1.78338	Hirip3	0.002268	-1.52048			
EG623230	0.000003	1.7831	Dtwd1	0.005082	-1.52074			
D330028D13Rik	0.000028	1.78248	Ccne2	0.000620	-1.5209			
Alad	0.000065	1.78137	9430088P09Rik	0.002575	-1.52204			
Rasa3	0.000008	1.77923	Socs4	0.000202	-1.52209			

Day0 vs. Day3							
Gene Symbol	p-value	FC Up- regulated	Gene Symbol	p-value	FC Down- regulated		
H2-D1	0.000241	1.77857	Utp14a	0.000415	-1.52382		
9530058B02Rik	0.000105	1.7772	LOC270491	0.001635	-1.52505		
Fez2	0.000326	1.77675	Sall3	0.000009	-1.52582		
Ints1	0.000249	1.7733	9430081H08Rik	0.002109	-1.52693		
Gstp1	0.000537	1.77052	Uspl1	0.000155	-1.52702		
Eif1b	0.001590	1.76812	Fktn	0.001077	-1.52813		
Adfp	0.000517	1.76797	Atf4	0.002578	-1.52835		
Pdlim4	0.000026	1.7676	D030034I04Rik	0.000111	-1.52948		
3110040M04Rik	0.000027	1.76522	Clk4	0.000010	-1.53048		
B230343A10Rik	0.000000	1.76469	LOC100040353	0.000165	-1.53054		
Commd9	0.000010	1.76196	Ctage5	0.003809	-1.53059		
Pitpna	0.000122	1.7607	6430527G18Rik	0.003016	-1.53118		
Nudt22	0.000109	1.76	Gpt2	0.000004	-1.53127		
B2m	0.000001	1.75833	Boll	0.000139	-1.53174		
LOC277049	0.000570	1.75808	A830080D01Rik	0.000585	-1.53328		
Gsto1	0.000113	1.75615	Gemin4	0.000425	-1.53396		
Als2	0.000001	1.75508	Gm525	0.000007	-1.53456		
Smcx	0.000185	1.75439	scl0004020.1_31	0.003949	-1.53504		
Acaa2	0.000007	1.74733	Cul1	0.002690	-1.53624		
Gchfr	0.000096	1.74531	Ccdc47	0.000007	-1.53718		
Нуі	0.001028	1.74132	Eif4b	0.000494	-1.53781		
2200002D01Rik	0.002258	1.74122	Pias2	0.000008	-1.53829		
LOC195150	0.000002	1.73989	Rock1	0.004973	-1.53881		
LOC270344	0.001749	1.73819	1200014J11Rik	0.000363	-1.53891		
5031436003Rik	0.000652	1.73621	Ptch1	0.000075	-1.53919		
Accn2	0.000156	1.7342	Orc5l	0.000404	-1.54039		
ldh1	0.000133	1.73238	Epc1	0.000011	-1.54087		
Gnaz	0.000006	1.73219	Rrm1	0.002346	-1.54216		
Rwdd2	0.000527	1.72986	LOC548597	0.001587	-1.54225		
Phlda1	0.001491	1.72968	Gtf2h4	0.000151	-1.54277		
Rnaset2b	0.000085	1.72866	Gbl	0.000013	-1.54287		
AW120700	0.000038	1.7283	Dtwd2	0.002014	-1.54299		
Mov10l1	0.001381	1.72704	Fgd1	0.000531	-1.54305		
Rasl11a	0.000027	1.72698	Fanci	0.005164	-1.54338		
1110018J23Rik	0.000093	1.72674	B230363H02Rik	0.001880	-1.54342		
1700007E06Rik	0.000165	1.72572	Zfp281	0.000821	-1.54365		
Creld2	0.000004	1.7256	Jmjd1a	0.000051	-1.54391		
Ccl27	0.000168	1.72441	Dscr1l2	0.000155	-1.54437		
Aldh3a1	0.000286	1.72287	2010309E21Rik	0.000252	-1.54446		
Srr	0.001472	1.72248	Rarg	0.000018	-1.54513		
Akr7a5	0.001595	1.72208	LOC271505	0.004010	-1.54528		
Bex2	0.000054	1.7214	LOC100045887	0.000137	-1.54561		

Day0 vs. Day3								
Gene Symbol	p-value	FC Up- regulated	Gene Symbol	p-value	FC Down- regulated			
Actc1	0.000000	1.72082	Zcchc3	0.000174	-1.54607			
Slc9a3r1	0.000009	1.72077	BC049349	0.001208	-1.54647			
Garnl3	0.000012	1.72071	2810008M24Rik	0.000021	-1.54672			
1110021J02Rik	0.000624	1.72019	Alpk3	0.000045	-1.54679			
Cyb561	0.000005	1.71875	Zfp91-cntf	0.000051	-1.54693			
1700019E19Rik	0.000532	1.71866	Anp32a	0.000069	-1.54796			
Pdia6	0.000506	1.71862	Hsd3b7	0.000015	-1.54802			
Ebp	0.000154	1.71569	Actn3	0.000078	-1.54921			
2510002J07Rik	0.000273	1.71381	D930048N14Rik	0.000001	-1.54953			
Mrps6	0.000002	1.71321	Hsd17b11	0.000184	-1.55169			
Rps6kl1	0.000022	1.71017	2310045L10Rik	0.000191	-1.5519			
Gal	0.000092	1.70949	9130422G05Rik	0.001101	-1.55246			
Atp6v0e	0.000009	1.70918	LOC624198	0.002279	-1.55248			
Camk2b	0.001030	1.70873	1110004P21Rik	0.003449	-1.55251			
Lgi2	0.000036	1.70844	Dpp4	0.000004	-1.55313			
1110014O20Rik	0.000019	1.70831	A730098D12Rik	0.000412	-1.55363			
Rabac1	0.002523	1.70799	lgf2bp3	0.000041	-1.55397			
Syp	0.000130	1.70752	Ei24	0.000090	-1.55419			
Ada	0.000263	1.7062	Nhlrc2	0.000308	-1.55451			
Rhbdl2	0.000858	1.70564	Pml	0.000079	-1.55559			
Chaf1b	0.000046	1.70411	ll11ra1	0.000024	-1.55572			
Nrgn	0.000231	1.7026	Pim3	0.004912	-1.55644			
Mpped1	0.000028	1.70197	LOC433721	0.000597	-1.55673			
Mapk8ip1	0.000001	1.70174	Zfp91	0.000237	-1.5573			
Myh3	0.000040	1.70103	2610524F24Rik	0.000082	-1.55808			
Rfxap	0.000456	1.70098	Eno3	0.001635	-1.56008			
Reep6	0.000365	1.69951	LOC333751	0.003911	-1.56018			
Slc35c1	0.000003	1.6981	Fez1	0.000440	-1.56041			
Kcnh3	0.000227	1.69763	Sep-02	0.000547	-1.56062			
Zfp36	0.000005	1.69713	2310014H01Rik	0.000105	-1.56072			
Dbndd2	0.000065	1.69421	Smg7	0.000291	-1.56105			
Bmf	0.000004	1.69374	Trim2	0.000176	-1.56163			
Morn2	0.000175	1.69347	Lypla1	0.001535	-1.56214			
2810402K13Rik	0.000061	1.69346	Rnf113a1	0.000120	-1.56284			
Olfm1	0.000002	1.69335	Psip1	0.000945	-1.56393			
4930502E18Rik	0.000011	1.69321	4833442J19Rik	0.000128	-1.56512			
Pdlim3	0.000019	1.69255	Zfp451	0.000583	-1.56559			
Emilin2	0.000365	1.69202	Atl3	0.000000	-1.56633			
Tpd52l1	0.000054	1.69047	Ext1	0.000035	-1.56805			
Tmem22	0.000044	1.68955	Zfp292	0.000553	-1.56953			
Prkra	0.000150	1.68933	0610006I08Rik	0.000283	-1.56977			
Spon2	0.000065	1.68901	Fxr1h	0.000313	-1.56983			

Day0 vs. Day3							
Gene Symbol	p-value	FC Up- regulated	Gene Symbol	p-value	FC Down- regulated		
Cercam	0.000070	1.6869	Asz1	0.000039	-1.57035		
Ptrh1	0.001342	1.68607	3110009E18Rik	0.000213	-1.57063		
Tmbim6	0.000829	1.686	Pafah1b1	0.000155	-1.57105		
Elovl4	0.000192	1.68595	Ufc1	0.003727	-1.57177		
Gprasp2	0.002584	1.68436	Gtdc1	0.002069	-1.57183		
Mlycd	0.005281	1.68313	Marveld1	0.000095	-1.57204		
C2cd2l	0.000229	1.68193	2610020J05Rik	0.000001	-1.573		
B020004J07Rik	0.000011	1.68097	Rmnd5b	0.004176	-1.57377		
D9Ertd280e	0.000188	1.68095	Krt10	0.000579	-1.57382		
LOC100045300	0.001497	1.68031	Hspa9	0.000954	-1.57391		
Upk2	0.000040	1.68013	Fxyd6	0.000084	-1.5753		
0610011F06Rik	0.000003	1.67939	Rnf17	0.002178	-1.57593		
Rras	0.000055	1.67822	AI747699	0.000332	-1.57683		
S100a11	0.000197	1.67609	Bahcc1	0.001109	-1.57695		
H2-Q8	0.000186	1.67567	Mical1	0.000049	-1.57713		
Tmem41a	0.000171	1.67387	Mgea6	0.003903	-1.57723		
Tspan7	0.000369	1.67307	Slc6a15	0.000050	-1.57734		
EG381936	0.000020	1.6724	Tbc1d15	0.003142	-1.57775		
Bik	0.000065	1.6715	Angel2	0.000444	-1.5781		
Dusp2	0.000157	1.67122	XEDAR EDA-A2R	0.000764	-1.57815		
Ramp3	0.000068	1.67042	LOC381200	0.000082	-1.57943		
Ccdc3	0.000000	1.67033	Pnrc2	0.000003	-1.5809		
B230369L08Rik	0.000654	1.67016	Rcor2	0.000472	-1.58111		
LOC100045981	0.000038	1.66894	Ube1c	0.002015	-1.58181		
Tst	0.000129	1.66784	Nfs1	0.000002	-1.58241		
Nuak1	0.000065	1.6672	2700023E23Rik	0.000481	-1.58246		
C030002B11Rik	0.000002	1.667	Ssr2	0.000948	-1.58319		
Gpsn2	0.000274	1.66486	Dus4l	0.000496	-1.58357		
Cidea	0.000084	1.66463	Ccdc55	0.000185	-1.58588		
Trp53inp2	0.000064	1.66396	scl00238693.1_37	0.001462	-1.58772		
Trh	0.000255	1.66326	LOC100048330	0.000002	-1.58898		
Plcd1	0.003116	1.66246	Uba2	0.000195	-1.59269		
Tcfap2c	0.000017	1.66177	Ccnl1	0.000010	-1.59496		
Pcp4l1	0.000001	1.66041	Birc2	0.000167	-1.59501		
Vgf	0.000127	1.65928	Zfp260	0.000084	-1.59659		
Mmp17	0.000014	1.65812	B930030B22Rik	0.000004	-1.59738		
Exoc3l	0.001993	1.65777	Msh6	0.000141	-1.59775		
Rab25	0.000048	1.65762	Matr3	0.001185	-1.59954		
Nkd2	0.000064	1.65757	D1Pas1	0.000058	-1.59961		
Lrp11	0.000115	1.65729	Zfp57	0.005024	-1.60226		
Trappc2I	0.000310	1.65596	Usp1	0.001841	-1.60232		
Fam115c	0.000385	1.65574	Wdsub1	0.001777	-1.60418		

Day0 vs. Day3							
Gene Symbol	p-value	FC Up- regulated	Gene Symbol	p-value	FC Down- regulated		
Cib1	0.001471	1.65526	Yme1l1	0.004154	-1.60437		
Eml1	0.000002	1.6552	LOC100046343	0.000208	-1.60461		
Ptp4a3	0.001130	1.65436	LOC638892	0.003610	-1.60645		
Mmp2	0.000192	1.65432	lsy1	0.000013	-1.60869		
9430080K19Rik	0.000058	1.65284	4933434E20Rik	0.000028	-1.60899		
2810452K22Rik	0.000014	1.65233	Cugbp1	0.000032	-1.60944		
Slc25a20	0.000000	1.65199	Sumo3	0.000128	-1.61067		
Wdr92	0.000333	1.65091	Pds5a	0.003006	-1.61071		
Gprasp1	0.000095	1.65089	Lrrc28	0.000214	-1.61412		
Dkk3	0.000001	1.65054	Siah1a	0.000126	-1.61676		
Stambpl1	0.000074	1.64996	Rpusd4	0.000029	-1.61679		
Krt19	0.000630	1.64985	Ube2g1	0.003331	-1.61689		
1700027N10Rik	0.000002	1.64819	Hnrnpa2b1	0.000001	-1.61766		
Slc7a7	0.000051	1.64666	Notch4	0.000013	-1.6178		
Gmpr	0.003018	1.64591	RIf	0.000013	-1.61903		
D19Wsu162e	0.000007	1.64429	LOC100044776	0.000005	-1.61995		
Esrra	0.000009	1.64331	5730453I16Rik	0.000386	-1.62014		
Ctsb	0.000884	1.64292	Trip12	0.002743	-1.62055		
Tmbim4	0.000023	1.64224	Immp2l	0.001097	-1.62176		
Acd	0.000001	1.64136	Tex14	0.000168	-1.62196		
Defb36	0.000034	1.6403	Akr1e1	0.000721	-1.62226		
Papss1	0.000667	1.64004	A330080J22Rik	0.000333	-1.6228		
1700008105Rik	0.000144	1.63965	E330016A19Rik	0.000000	-1.62281		
Sap130	0.000208	1.63931	Eif4a2 ENSMUSG000000531	0.000062	-1.62304		
Krtdap	0.000310	1.63838	78	0.000063	-1.62398		
Arid3a	0.001441	1.63778	Def6	0.000636	-1.62489		
Rprml	0.000081	1.63706	Zfp131	0.002598	-1.62532		
Cd276	0.000493	1.63693	2210013021Rik	0.000678	-1.62552		
ld2	0.001095	1.63653	Ints12	0.000771	-1.62771		
Tm6sf1	0.000089	1.63625	Zfx	0.000013	-1.62911		
2310022B05Rik	0.000022	1.63572	Tom1l1	0.000387	-1.63023		
Gm817	0.000443	1.63572	4930504E06Rik	0.000001	-1.63135		
Ing2	0.000020	1.63558	4930503L19Rik	0.001628	-1.63202		
Lpl	0.000032	1.63527	Sulf1	0.000076	-1.63211		
Abhd8	0.000047	1.63363	LOC100041430	0.002309	-1.63349		
Smtn	0.000194	1.63298	Dusp27	0.004088	-1.63529		
1300011L04Rik	0.001239	1.63125	Gfpt2	0.001068	-1.63684		
1810020D17Rik	0.000039	1.63113	Etaa1	0.000611	-1.63723		
Dctn6	0.001790	1.63109	Stag2	0.000086	-1.63782		
Elof1	0.000173	1.63046	Sfrs5	0.000117	-1.63928		
BC080695	0.000116	1.62928	Pa2g4	0.002809	-1.64214		
Wfdc10	0.000005	1.62794	Smc5l1	0.000896	-1.64786		

Day0 vs. Day3							
Gene Symbol	p-value	FC Up- regulated	Gene Symbol	p-value	FC Down- regulated		
Rnf208	0.000013	1.62729	6030408C04Rik	0.000693	-1.64793		
Nomo1	0.003002	1.62653	Ptprv	0.000068	-1.64818		
Ethe1	0.001337	1.62589	Setd5	0.000031	-1.6484		
Comt	0.000218	1.625	Fam120a	0.001267	-1.64842		
Pdzk1	0.000001	1.62465	LOC100040573	0.000175	-1.65038		
Junb	0.000115	1.62463	1700123A16Rik	0.000424	-1.65092		
Syt5	0.000100	1.62445	LOC100041797	0.000614	-1.65116		
Fam129b	0.000249	1.62386	Wapal	0.000787	-1.6518		
scl0001647.1_23	0.001280	1.62254	C230091E03Rik	0.002237	-1.65209		
Tmem50b	0.000000	1.62211	Zscan10	0.000462	-1.65231		
LOC100047214	0.000387	1.62211	Nol8	0.000107	-1.65352		
Tmem159	0.000037	1.62207	C430020H24Rik	0.000035	-1.65417		
Pygl	0.000176	1.62191	4933412A02Rik	0.001695	-1.65459		
Csrnp2	0.000073	1.62179	Ddx46	0.004374	-1.6563		
Pdrg1	0.003863	1.62165	2900062L11Rik	0.000016	-1.65653		
Нрса	0.005732	1.62136	Fzd5	0.000011	-1.65738		
Htr5b	0.000009	1.62113	LOC632684	0.003432	-1.65837		
LOC638935	0.000239	1.62089	Tlr2	0.000071	-1.65876		
LOC100047937	0.000020	1.62055	Eif1a	0.000747	-1.6599		
Hspa2	0.000003	1.62005	BC003940	0.000007	-1.66105		
AA467197	0.000015	1.61989	LOC100046049	0.000138	-1.66139		
Rpl3l	0.000038	1.61937	2610002J02Rik	0.000111	-1.66198		
Gale	0.000550	1.61929	Zfp263	0.002182	-1.66231		
Litaf	0.000025	1.61845	Ampd1	0.000020	-1.66335		
St8sia5	0.000000	1.61822	Ncor1	0.000134	-1.6642		
Sertad3	0.000764	1.61798	Clk1	0.000344	-1.66421		
Fam108a	0.000521	1.61791	2610101N10Rik	0.000699	-1.66558		
Nphp4	0.000001	1.6172	Topors	0.001042	-1.66648		
Gdf1	0.000146	1.61667	2310044G17Rik	0.000007	-1.66665		
LOC674135	0.000393	1.61597	Mapk1ip1l	0.000481	-1.66853		
Acrbp	0.000204	1.61554	Zfp770	0.000006	-1.66922		
Ctsz	0.004566	1.61376	Skiv2l2	0.000505	-1.67054		
Pfn2	0.000845	1.61376	LOC100043257	0.000700	-1.6708		
Greb1	0.000027	1.61319	Sfrs2ip	0.000081	-1.67095		
LOC100044298	0.000022	1.61272	Gm428	0.000120	-1.67238		
Fgfbp1	0.002712	1.61217	Rsrc2	0.000513	-1.67293		
Sema7a	0.000001	1.61026	Tpi1	0.000001	-1.6736		
1500031L02Rik	0.000020	1.60883	Cops2	0.000012	-1.67478		
Cyb5b	0.000004	1.6084	Tnpo3	0.002053	-1.67581		
Gm1467	0.000102	1.60824	Pdha1	0.000041	-1.67591		
AA407659	0.000000	1.60818	Mtbp	0.000017	-1.67854		
Cst3	0.001536	1.6075	LOC432730	0.002241	-1.67922		

Day0 vs. Day3								
Gene Symbol	p-value	FC Up- regulated	Gene Symbol	p-value	FC Down- regulated			
Mtch1	0.000004	1.60707	Seh1l	0.000000	-1.6801			
Сре	0.000085	1.60665	Trim8	0.000253	-1.68151			
Scamp1	0.000004	1.60543	Patz1	0.000035	-1.68166			
Abca3	0.000005	1.60518	Aasdh	0.000002	-1.6824			
Acpl2	0.000000	1.60509	Stc2	0.000034	-1.68282			
Dscr1	0.000008	1.60436	Lars	0.000550	-1.68302			
Tm2d2	0.000809	1.60382	Set	0.000219	-1.68321			
Abp1	0.000045	1.60315	Morc3	0.004458	-1.68761			
E430003J01Rik	0.004452	1.60049	Ptcd3	0.001145	-1.68765			
D430019H16Rik	0.000006	1.60003	Cbx3	0.001909	-1.68828			
Cib2	0.000094	1.59975	Atad1	0.001565	-1.6898			
Mrpl28	0.000993	1.59807	Zfp473	0.000177	-1.69404			
Plekhg5	0.000928	1.59718	Rpp38	0.000079	-1.69521			
Dpysl5	0.000001	1.59694	Tada2l	0.000003	-1.69679			
1810046J19Rik	0.002082	1.59641	Асрб	0.000490	-1.69688			
Bola2	0.000767	1.59557	Zmym1	0.000703	-1.69715			
Pdlim1	0.000218	1.59555	Fignl1	0.000249	-1.69917			
LOC640972	0.000276	1.59231	Taf5l	0.000117	-1.69923			
2210408F11Rik	0.000003	1.59181	2610028H07Rik	0.000769	-1.70066			
Nrtn	0.000063	1.59144	B930007L02Rik	0.001318	-1.70082			
Defb30	0.005360	1.59094	Hspd1	0.000083	-1.70594			
Apbb1	0.000228	1.59029	2310045K21Rik	0.004054	-1.70603			
2010317E24Rik	0.000119	1.58594	Wdr5	0.000061	-1.70988			
Fhl2	0.000335	1.58537	Arf6	0.002130	-1.71067			
Tmem14c	0.000015	1.58489	Gtf3c3	0.000014	-1.71119			
LOC433943	0.000523	1.58436	Arhgef18	0.000005	-1.71315			
Pafah1b3	0.002279	1.58384	Sall2	0.000020	-1.71481			
E2f6	0.000011	1.58377	Gtf2h1	0.000350	-1.71552			
Slc29a4	0.000005	1.58333	Laptm5	0.000037	-1.71597			
1700014N06Rik	0.000008	1.5831	Cd68	0.002574	-1.71787			
1810013D10Rik	0.003151	1.58306	B930014J03Rik	0.004319	-1.71805			
lgfbp4	0.000002	1.58208	N∨I	0.000074	-1.71911			
scl000416.1_19	0.000060	1.5819	2010009J12Rik	0.004047	-1.72136			
Fkbp11	0.001154	1.58101	Bckdha	0.000040	-1.72307			
Gng13	0.004133	1.58087	Kdelc1	0.000067	-1.72873			
Mxra7	0.000061	1.58037	Gm129	0.000118	-1.73167			
Emp3	0.000603	1.57934	Apobec1	0.000044	-1.73294			
LOC100046883	0.000122	1.5792	Dis3l	0.000513	-1.73381			
Creg1	0.000014	1.5782	Phf20	0.000455	-1.73631			
2410164B09Rik	0.004411	1.57795	1700019D03Rik	0.000282	-1.74133			
Abcc3	0.000069	1.57742	Schip1	0.000213	-1.74156			
Рор5	0.000457	1.57542	Rrp1b	0.000001	-1.74158			

Day0 vs. Day3									
Gene Symbol	p-value	FC Up- regulated	Gene Symbol	p-value	FC Down- regulated				
Itfg3	0.000396	1.57539	Ccdc77	0.000097	-1.74237				
Tnfaip8	0.000948	1.57525	1110034G24Rik	0.000169	-1.74237				
BC026585	0.000743	1.5742	Smarcad1	0.001039	-1.74453				
Ripk3	0.000352	1.57252	lfitm3	0.002198	-1.74578				
H2-T23	0.000401	1.57233	Utx	0.001329	-1.74814				
Lmna	0.000090	1.57124	Tmem79 ENSMUSG000000687	0.000033	-1.7511				
Hmha1	0.001295	1.57109	90	0.000188	-1.75505				
Tmem130	0.000023	1.57036	Etv5	0.000152	-1.76078				
Endod1	0.000256	1.57022	Fusip1	0.000201	-1.76247				
Dner	0.000015	1.57008	Hnrnpf	0.000112	-1.766				
LOC100044204	0.000020	1.57007	Rev1	0.000984	-1.77378				
Anxa11	0.000067	1.56839	Usp28	0.001810	-1.77567				
Nefm	0.000449	1.56784	Hcfc1	0.000909	-1.77665				
Oat	0.000189	1.56742	Nus1	0.000011	-1.77894				
Klk1	0.001866	1.56721	Scarb2	0.000001	-1.78172				
Stxbp1	0.000019	1.56702	Bcl7a	0.000005	-1.78532				
Prkd2	0.000049	1.56699	LOC673578	0.000822	-1.79252				
2400006N03Rik	0.003750	1.56603	1700030K09Rik	0.000008	-1.79271				
Stard8	0.000001	1.56553	Akap12	0.000622	-1.7936				
Esam	0.000468	1.56485	Dnajc7	0.002038	-1.79482				
5033414D02Rik	0.000184	1.56462	Ephx2	0.000356	-1.79529				
3110001P07Rik	0.003078	1.56436	2410137M14Rik	0.000132	-1.79658				
Tnni2	0.000214	1.56332	E130102H24Rik	0.000078	-1.79735				
Cdo1	0.002032	1.56295	Fubp1	0.000019	-1.79805				
Rnase4	0.000088	1.56111	LOC675933	0.003904	-1.80128				
Hn1	0.000067	1.56085	Fus	0.003855	-1.80799				
Hspb1	0.000104	1.55795	LOC382010	0.000006	-1.81042				
Taf9b	0.000001	1.55788	Nanog	0.000978	-1.81258				
Furin	0.000028	1.55744	Eif2s3x	0.000936	-1.81325				
Pex16	0.002591	1.55729	Csde1	0.000018	-1.81391				
Rab3a	0.000014	1.5561	1500011K16Rik	0.000089	-1.81704				
9330175B01Rik	0.000655	1.55543	Nol5a	0.000355	-1.8187				
Tmem66	0.000005	1.55519	6330534C20Rik	0.000187	-1.81873				
Tmem147	0.000872	1.55491	Sirt1	0.000173	-1.82357				
Deb1	0.002349	1.5547	2810403A07Rik	0.000000	-1.82606				
Ebpl	0.004288	1.55466	2410081M15Rik	0.000001	-1.82611				
Elovl1	0.000104	1.5546	LOC100041567	0.000947	-1.82885				
Aplf	0.000667	1.55404	BC019806	0.000104	-1.83012				
Plaur	0.000887	1.55355	Tceal7	0.000130	-1.83234				
Ctdspl	0.000028	1.55349	EG627299	0.000223	-1.83463				
1700020N15Rik	0.000870	1.55335	Pus3	0.000021	-1.84333				
Prkaca	0.001975	1.55222	Trib3	0.000006	-1.84943				

Day0 vs. Day3									
Gene Symbol	p-value	FC Up- regulated	Gene Symbol	p-value	FC Down- regulated				
Acot1	0.000008	1.55143	Lrig3	0.000011	-1.85168				
Pnma2	0.000087	1.55136	LOC100046744	0.000032	-1.862				
Pard6g	0.000240	1.55042	Msc	0.000015	-1.86361				
Ppif	0.000246	1.55021	8430410A17Rik	0.000055	-1.8651				
Atp6v0b	0.000007	1.55	Fancd2	0.000011	-1.86519				
Mknk2	0.000188	1.54972	LOC100046401	0.001864	-1.86874				
2810011L19Rik	0.000163	1.54935	2610019E17Rik	0.001649	-1.86967				
2310047M10Rik	0.000306	1.54931	Pkd2	0.000537	-1.86995				
Slc17a7	0.004298	1.5481	Hsd17b1	0.000079	-1.87125				
Pts	0.000339	1.54586	Cep55	0.000148	-1.87781				
Hip1r	0.000011	1.54568	Gja1	0.000033	-1.87991				
Camkv	0.000651	1.54543	Slc2a1	0.000003	-1.87994				
Rabl5	0.003411	1.54537	Rn18s	0.000068	-1.88727				
LOC100047863	0.000191	1.54493	Ubxn2a	0.003022	-1.88952				
D630003M21Rik	0.000007	1.54492	Mettl4	0.000006	-1.89075				
Dync2li1	0.001330	1.54332	Lace1	0.000192	-1.89183				
Mgst1	0.000157	1.54329	2810026P18Rik	0.000016	-1.89591				
Gtf3a	0.000471	1.54258	LOC633016	0.000118	-1.89805				
2410076I21Rik	0.000812	1.54198	Hmox1	0.000016	-1.90205				
Fbxo21	0.000226	1.54147	BC025546	0.000010	-1.90445				
Mrpl43	0.000059	1.54129	AU021838	0.000353	-1.90584				
Cnn2	0.000529	1.5411	Epb4.1l4a	0.000015	-1.90685				
Smap2	0.000248	1.54044	Smpdl3b	0.000036	-1.90801				
Sort1	0.000034	1.54012	Fiz1	0.000013	-1.90928				
Pnpla2	0.000483	1.53944	Bcap29	0.000015	-1.91553				
Ypel5	0.000022	1.53907	LOC668183	0.000992	-1.91792				
Slc4a2	0.000085	1.53907	Mia1	0.000011	-1.91809				
2610018I05Rik	0.000043	1.53899	Gbx2	0.000006	-1.92344				
Pcbd1	0.001563	1.53834	2600005C20Rik	0.000026	-1.93782				
Lrrc15	0.000154	1.53828	Wdr43	0.000015	-1.93955				
Popdc3	0.000147	1.53746	Emp1	0.000016	-1.94158				
3110079015Rik	0.000333	1.53691	Frrs1	0.000058	-1.94565				
Svop	0.000145	1.53668	Ccno	0.000009	-1.95118				
Nnat	0.000001	1.53666	C330036H15Rik	0.000002	-1.95816				
Ela1	0.000006	1.53648	Mid1ip1	0.000073	-1.96519				
Ephx1	0.000449	1.53631	Rpp25	0.000014	-1.97009				
Kcnab2	0.000010	1.53513	Slc28a1	0.000104	-1.97251				
Tspan2	0.001028	1.53512	Cwf19l2	0.000005	-1.97561				
Triobp	0.000212	1.53471	Caprin1	0.005149	-1.98166				
Cldn11	0.000235	1.53462	Zcwpw1	0.000002	-1.98501				
Gnal1	0.000124	1.53289	6720463L11Rik	0.000000	-1.98807				
Srf	0.000015	1.53255	Thumpd3	0.000023	-1.99004				
Day0 vs. Day3									
---------------	----------	------------------------	-----------------	----------	--------------------------	--			
Gene Symbol	p-value	FC Up- regulated	Gene Symbol	p-value	FC Down- regulated				
Ppl	0.000001	1.5321	Armcx1	0.000502	-1.99141				
Neurl	0.000131	1.53135	Setd1b	0.000067	-1.99181				
Slc25a1	0.000034	1.53088	Cbr3	0.000025	-2.01115				
Rtn2	0.000712	1.52901	5730528L13Rik	0.000060	-2.01163				
Kif1a	0.002400	1.5282	scl0001487.1_50	0.000013	-2.01727				
Susd4	0.000432	1.52763	LOC100045617	0.000005	-2.01759				
2310007A19Rik	0.000101	1.52719	Myo1f	0.000001	-2.03682				
Llgl2	0.000040	1.52703	Cth	0.000267	-2.0385				
Ostm1	0.000271	1.52699	Enox1	0.000044	-2.04007				
LOC673556	0.000082	1.52659	Zfp428	0.000014	-2.04469				
Jak1	0.000046	1.52653	Prpf40a	0.000078	-2.04639				
Uap1l1	0.005916	1.52634	Thtpa	0.000011	-2.05816				
2300002D11Rik	0.000062	1.52555	Tnfsf12-tnfsf13	0.000003	-2.05981				
Cyp4f14	0.000618	1.52538	Slc25a36	0.000038	-2.06456				
llk	0.000165	1.52518	Tdh	0.000277	-2.07019				
Map2k6	0.000000	1.52506	Mid1	0.000040	-2.07626				
Galnt10	0.000040	1.52503	Nanogpd	0.000014	-2.07839				
Gltp	0.000301	1.52428	Fgf4	0.000052	-2.09785				
Alox5ap	0.000350	1.52427	Upp1	0.000004	-2.10195				
1110012005Rik	0.000292	1.52389	5730406M06Rik	0.000017	-2.10743				
Dmrtc1c	0.000292	1.52388	5033413D16Rik	0.000001	-2.13437				
LOC100048169	0.001699	1.52323	Ktelc1	0.000007	-2.14204				
3110001A13Rik	0.000599	1.52291	Gdf15	0.000008	-2.16128				
Car12	0.000023	1.52175	Slc7a3	0.000018	-2.1645				
Hdc	0.000012	1.52142	Rdm1	0.000056	-2.17217				
Plcd3	0.001280	1.52037	Snora65	0.000002	-2.18093				
Aacs	0.000031	1.51878	LOC383491	0.000003	-2.23164				
Арр	0.000066	1.51864	LOC100046320	0.003795	-2.24417				
Wnt4	0.000144	1.5182	Phc1	0.000007	-2.25489				
Insl6	0.002616	1.51819	BC028528	0.000006	-2.27063				
Gstp2	0.000054	1.51796	Сххсб	0.000034	-2.27118				
Maged1	0.000222	1.5179	Vegfc	0.000002	-2.28763				
Stab1	0.000138	1.51772	Ccnd2	0.000004	-2.29722				
Htatip2	0.002768	1.51688	Tera-pending	0.000487	-2.32922				
9530064J02	0.000033	1.51675	Zfhx2	0.000008	-2.32941				
H19	0.000001	1.51631	Manba	0.000002	-2.33313				
Lad1	0.001016	1.51597	BC032203	0.000000	-2.37505				
Amigo2	0.000000	1.51519	D130003B22Rik	0.000000	-2.4262				
Prkcd	0.000858	1.51481	Gm1967	0.000000	-2.4808				
A530057A03Rik	0.000004	1.51336	Epb4.9	0.000000	-2.48301				
Mir16	0.000005	1.51322	Spp1	0.000166	-2.50207				
Pex6	0.000116	1.51258	Fgf17	0.000001	-2.52125				

		Day0 v	s. Day3		
Gene Symbol	p-value	FC Up- regulated	Gene Symbol	p-value	FC Down- regulated
Hs3st3b1	0.000004	1.51232	Meis2	0.000003	-2.60559
Tusc4	0.005700	1.51148	Gli2	0.000000	-2.61574
Arhgdib	0.000951	1.51147	Gdf3	0.000001	-2.70091
D15Wsu169e	0.003996	1.51116	E130014J05Rik	0.000110	-2.73198
Fam125a	0.000164	1.51085	Senp3	0.000003	-2.76786
Ly6e	0.000197	1.51075	E430003D02Rik	0.003067	-2.96588
Nid2	0.002352	1.51073	Chac1	0.000000	-3.3549
Lcmt1	0.000024	1.51022	Nupr1	0.000136	-3.76715
Galk1	0.000008	1.50946	LOC208080	0.000000	-4.54358
Plcg2	0.000295	1.50916	LOC100046802	0.000000	-5.41523
Rilpl1	0.002061	1.50797			
Ssbp3	0.000256	1.50666			
Aqp11	0.001615	1.5063			
Crtac1	0.005857	1.50618			
Mgat4b	0.000066	1.50612			
Obox6	0.000040	1.50549			
Espn	0.000022	1.5051			
H1fx	0.000558	1.50508			
EG433923	0.002318	1.50392			
1700123J19Rik	0.001457	1.5033			
Ube2n	0.000005	1.50284			
Sepx1	0.000022	1.50236			
Ap1b1	0.000034	1.50231			
Slc4a1	0.000011	1.50211			
Sep	0.000003	1.50171			
Sdf2l1	0.005391	1.50082			
Tuba4a	0.000242	1.49902			
Ng23	0.002283	1.49897			
Dusp1	0.001271	1.49861			
Slc13a4	0.003217	1.49695			
lgf2r	0.000299	1.4968			
Hk1	0.000971	1.49593			
ltpr3	0.001146	1.4945			
D0H4S114	0.000411	1.49427			
Cyb5r3	0.000441	1.49423			
Fos	0.000978	1.49421			
Zfyve21	0.001579	1.49346			
LOC380878	0.000154	1.49297			
Zcchc18	0.000035	1.49285			
Gstm1	0.000029	1.49283			
Unc119b	0.000058	1.49162			
Mns1	0.000142	1.49087			

Day0 vs. Day3					
Gene Symbol	p-value	FC Up- regulated	Gene Symbol	p-value	FC Down- regulated
Edem2	0.000181	1.49			
Tph2	0.000028	1.49			
Tpcn1	0.000095	1.48965			
Mfsd7c	0.000041	1.48901			
Bloc1s1	0.003141	1.48727			
Prkcz	0.000025	1.48679			
Ptrf	0.000099	1.48634			
9630007E23Rik	0.000083	1.48591			
Pde2a	0.000337	1.48579			
Rhog	0.000357	1.48571			
Jtv1	0.001579	1.48553			
Scly	0.000209	1.48466			
Hes6	0.000280	1.48451			
Mvd	0.004084	1.4842			
Adamts7	0.000244	1.48417			
Lasp1	0.000532	1.48364			
Rpl22	0.000030	1.48263			
6230427J02Rik	0.000203	1.48261			
Lzts2	0.000267	1.48181			
Gmds	0.000131	1.48161			
Acss2	0.000028	1.48134			
Wnt7b	0.000058	1.48063			
Zbtb46	0.001420	1.4804			
1110046J11Rik	0.000010	1.4803			
Ell3	0.000080	1.48024			
Brms1	0.000092	1.47952			
lft20	0.000380	1.47889			
Pgc	0.001391	1.4783			
2210011C24Rik	0.000750	1.47816			
Zbtb32	0.000596	1.47785			
Coro1c	0.000595	1.47765			
Flot1	0.000146	1.47729			
Ybx1	0.000892	1.47697			
LOC100045343	0.000039	1.47671			
LOC332788	0.000733	1.47568			
1700108L22Rik	0.001943	1.47532			
Yaf2	0.001150	1.47486			
Col7a1	0.000021	1.47372			
Ptges	0.000456	1.47364			
Gstm5	0.000865	1.47356			
1200003C05Rik	0.000900	1.47351			
Lrpap1	0.000031	1.47302			

	Day0 vs. Day3					
Gene Symbol	p-value	FC Up- regulated	Gene Symbol	p-value	FC Down- regulated	
Chi3l1	0.000488	1.47273				
Dpp3	0.000005	1.47197				
Tcea3	0.000518	1.47152				
Lrrc8a	0.003280	1.47137				
LOC624662	0.000576	1.47127				
Gm1006	0.000028	1.47122				
C330002I19Rik	0.000019	1.4711				
Acadvl	0.000036	1.4709				
Sult4a1	0.000047	1.46991				
Pdgfb	0.000113	1.46978				
Tesk1	0.000021	1.46969				
Gps2	0.000002	1.46836				
Rabl2a	0.000453	1.46745				
Tspan33	0.004187	1.46664				
2210410E06Rik	0.000298	1.46628				
4933439C20Rik	0.000077	1.46582				
Gcap27	0.000558	1.46553				
Rab3ip	0.004728	1.46535				
OTTMUSG00000010552	0.000602	1.46463				
Glrx	0.000648	1.46462				
Nudt18	0.000250	1.46457				
Acbd4	0.000223	1.46379				
Руу	0.001621	1.46333				
Tm4sf5	0.000695	1.46329				
Kctd17	0.000191	1.4631				
Stxbp2	0.000259	1.46227				
Mtif3	0.003195	1.46184				
1700086L19Rik	0.000200	1.46142				
Tpm4	0.001216	1.46106				
4930511J11Rik	0.000438	1.46027				
Efemp2	0.003600	1.45996				
1500009L16Rik	0.004152	1.45995				
BC039093	0.003017	1.45987				
Scara5	0.000127	1.45975				
Zdhhc12	0.000568	1.45796				
Wbp2nl	0.000944	1.45783				
Limch1	0.005879	1.45772				
Tmed10	0.000010	1.45758				
Ctnnal1	0.000872	1.45583				
Rnaset2	0.005177	1.45572				
Vps53	0.001241	1.45444				
Prr5	0.000866	1.45327				

Day0 vs. Day3					
Gene Symbol	p-value	FC Up- regulated	Gene Symbol	p-value	FC Down- regulated
Atp1b2	0.002372	1.4531			
Suclg1	0.000281	1.45254			
Brp17	0.001444	1.45211			
Sar1a	0.004754	1.45194			
Fhl1	0.000202	1.45183			
Gaa	0.000125	1.45153			
Tro	0.000104	1.45147			
Optn	0.000054	1.45121			
Enpp5	0.000306	1.45093			
Xpr1	0.000020	1.45075			
Bcas1	0.001045	1.45065			
Tnfrsf12a	0.001553	1.45062			
ENSMUSG00000054212	0.000049	1.45058			
D030035F05Rik	0.000483	1.45058			
Tbcb	0.000029	1.45045			
Tspan14	0.000105	1.4504			
Srprb	0.004595	1.45021			
ldb2	0.002276	1.44963			
Unc119	0.000067	1.44867			
Atp6v1c2	0.000123	1.44865			
ltm2b	0.000017	1.44861			
Tmem184b	0.000002	1.44846			
Ccbl1	0.000307	1.44846			
Txndc5	0.000315	1.44825			
Bcl9l	0.000951	1.44814			
Tmem141	0.001340	1.44802			
Tmem86a	0.000920	1.44798			
Moxd1	0.000018	1.44768			
1700006H02Rik	0.000068	1.4473			
2310005E10Rik	0.001738	1.44541			
Sh3pxd2b	0.000067	1.44464			
Zcchc12	0.000034	1.44404			
Bad	0.000271	1.44388			
Plac8	0.000931	1.44378			
4930431B09Rik	0.000014	1.44297			
Myo1e	0.001239	1.44294			
Bahd1	0.000057	1.44253			
5031425E22Rik	0.000231	1.44212			
Gde1	0.000179	1.44192			
Mad2l1bp	0.000029	1.4416			
Cmas	0.001045	1.44148			
LOC639931	0.002239	1.44068			

Day0 vs. Day3					
Gene Symbol	p-value	FC Up- regulated	Gene Symbol	p-value	FC Down- regulated
1500001M20Rik	0.000052	1.44041			
Pygb	0.000346	1.4399			
Reg1	0.000521	1.43985			
D13Ertd608e	0.000457	1.43975			
Pigx	0.002354	1.43943			
Cklf	0.000000	1.43917			
Pepd	0.000277	1.43812			
2310047A01Rik	0.000130	1.43808			
Lpcat3	0.000744	1.43765			
LOC633360	0.000052	1.43699			
Spsb4	0.000022	1.43694			
Ankrd37	0.000050	1.43677			
Mrps26	0.000198	1.43673			
Lypd3	0.000794	1.43651			
Dpysl2	0.000123	1.43644			
LOC381860	0.000273	1.43537			
Usp2	0.000023	1.43502			
Tex261	0.000443	1.43496			
Arpc4	0.000733	1.43483			
Wnt7a	0.000004	1.43474			
Pes1	0.001235	1.43447			
Aldh1l1	0.001531	1.43439			
Gpsm1	0.000057	1.43433			
Rrbp1	0.001172	1.4336			
Fgfr2	0.000002	1.43263			
Psme1	0.000611	1.43237			
Cdk5r1	0.000002	1.4319			
Apoa1bp	0.003734	1.43144			
scl0002540.1_6	0.002623	1.43107			
Sirt2	0.004023	1.43107			
Qpct	0.000328	1.43101			
LOC329984	0.000049	1.43063			
Rfc3	0.000583	1.43011			
Fmnl3	0.000033	1.43002			
Prkacb	0.005806	1.42905			
Arf2	0.000249	1.42893			
Trim41	0.000824	1.42886			
Hdac5	0.000021	1.42883			
Snai3	0.002149	1.42876			
LOC100046918	0.002278	1.42734			
Ccnjl	0.000372	1.42712			
4732471D19Rik	0.002265	1.42708			

		Day0 v	s. Day3		
Gene Symbol	p-value	FC Up- regulated	Gene Symbol	p-value	FC Down- regulated
Stard5	0.000083	1.42662			
Defb42	0.001868	1.42654			
A830080H07Rik	0.000037	1.42644			
Stac2	0.000143	1.42622			
Ngfrap1	0.002688	1.42598			
Asb2	0.000086	1.42592			
Acsl6	0.000010	1.4249			
0610037M15Rik	0.001313	1.42429			
Rhof	0.000001	1.42414			
Atp6v1e1	0.001110	1.42407			
Tomm34	0.000157	1.42354			
Lman2	0.003770	1.42323			
3010026009Rik	0.001143	1.42267			
Taldo1	0.005108	1.42254			
Diras2	0.000717	1.42192			
Col18a1	0.000455	1.42186			
Cldn4	0.000642	1.42148			
Ctsl	0.000359	1.42124			
Pscd3	0.001861	1.42119			
Tuba3a	0.001519	1.42086			
Bcl2l11	0.000229	1.41999			
Cgrrf1	0.000675	1.41929			
2310014G06Rik	0.000036	1.41898			
Sord	0.001990	1.41849			
Scand1	0.003427	1.4179			
Nr6a1	0.000127	1.41783			
Fxn	0.000303	1.41732			
Crygs	0.000482	1.41672			
Fam110c	0.002471	1.41658			
LOC384348	0.002849	1.41647			
Socs3	0.000822	1.41544			
Tex19.1	0.002570	1.41534			
Ndufa10	0.002545	1.41516			
Ndufa12l	0.002513	1.41505			
Mrpl4	0.002374	1.41448			
Dap	0.001617	1.41424			
Dnajb11	0.002998	1.41334			
Ndufa12	0.000357	1.41319			
Fam148c	0.000541	1.41318			
9430038101Rik	0.000303	1.413			
Arc	0.000753	1.4129			
D15Mit260	0.000000	1.41257			

Day0 vs. Day3					
Gene Symbol	p-value	FC Up- regulated	Gene Symbol	p-value	FC Down- regulated
Ttc39a	0.000019	1.41249			
F2rl1	0.000067	1.41219			
Sep-15	0.000947	1.41207			
Ccdc92	0.000048	1.41199			
Ptpn18	0.004348	1.41183			
2310061C15Rik	0.001954	1.41121			
Dapk2	0.000006	1.41071			
Hmgcl	0.000003	1.41071			
Pemt	0.000115	1.41051			
Agap1	0.000215	1.40999			
Atp6v0d1	0.000138	1.40992			
Rab15	0.002679	1.40935			
A430088H15Rik	0.000170	1.40858			
Gm347	0.002074	1.40854			
Chga	0.000452	1.40825			
En1	0.000176	1.40816			
Slc1a1	0.000239	1.40807			
H2-Ke6	0.001147	1.40804			
Rnasek	0.001188	1.40795			
Adrb2	0.000928	1.40795			
Gm2a	0.002032	1.40793			
Lgals6	0.002790	1.40778			
Fxyd5	0.002805	1.4071			
Prnp	0.000364	1.40693			
2610014I16Rik	0.000417	1.4063			
Rbm38	0.000120	1.4058			
Areg	0.000083	1.40513			
B020031M17Rik	0.005717	1.40475			
Impa2	0.000131	1.40468			
Reep3	0.000095	1.4038			
2010007H12Rik	0.000012	1.40309			
6230400G14Rik	0.000097	1.40222			
A530050D06Rik	0.005792	1.40185			
LOC236277	0.000074	1.40176			
Aard	0.000147	1.4015			
Plvap	0.001957	1.401			
Srxn1	0.000092	1.40025			
1700052O22Rik	0.003143	1.4			

Table 6:List of genes deregulated \geq 1.4-fold (adjusted P < 0.05) in C vs.

C+RA, and KO vs. KO+RA.

C vs. C+RA						
Gene Symbol	FC up-regulated	Gene Symbol	FC down-			
			regulated			
Cyp26a1	13.06429623	Otx2	2.697001444			
Aurkc	4.518015463	Chst1	2.106977307			
Cdx1	3.700597632	Ndrl	2.032011113			
Rarb	2.607989595	Ndrg1	1.935035031			
Camk2n1	2.718890815	Slc40a1	1.883861451			
Hoxb1	2.235125425	Socs2	1.866457438			
Zfhx2	2.090949689	Enc1	1.738388809			
Rhobtb1	1.88205112	Zfp459	1.734138458			
Ррbр	2.479178951	Gjb3	1.729839525			
Ppl	1.913943321	Fst	1.716368959			
Folr1	1.709015971	Aire	1.683127342			
Raet1b	1.754149208	lgfbp5	1.676517832			
Rin2	1.747737325	Fgf17	1.666300735			
Gabarapl2	1.696408063	Ly6g6e	1.622791517			
Cotl1	1.624153367	Kndc1	1.619921682			
Mdk	1.638335728	LOC100044968	1.617399166			
Cpm	1.558971644	Ddx58	1.587240885			
Irak2	1.639268018	Zfp42	1.561294953			
Aebp2	1.607079892	1190003J15Rik	1.55774474			
Ndp52	1.514332028	Slc6a15	1.55406297			
Raet1c	1.504392531	Rhbdf1	1.54955408			
Gpx4	1.497309501	Msrb2	1.535414041			
Tcfap2c	1.537221096	Gcnt2	1.535312216			
Sesn1	1.517466944	Fgf5	1.532526037			
Cd97	1.498892399	Plec1	1.529718239			
Clgn	1.500938203	Cdc42ep4	1.519443827			
Erf	1.454985254	Armcx1	1.503802654			
Pml	1.442750871	Dnajc6	1.501432877			
Pvrl2	1.410815609	Pcyt1b	1.489970394			
Pgpep1	1.406655363	Cdc42ep5	1.484934868			
Atp2a2	1.570621279	Spata13	1.482432476			
Csnk	5.96921548	Cav1	1.481954461			
Csn3	5.804414844	Klf6	1.480816898			
Hoxa1	4.801685941	Zfp710	1.472437896			
Aqp3	4.718720212	Slc30a3	1.4718655			
Stra8	4.675900346	2810022L02Rik	1.464321476			
Tal2	3.132498647	Ghr	1.461825044			
Tle6	2.629599959	2310043N10Rik	1.459910075			
Hoxa5	2.389604451	Klf4	1.458504806			
Hoxb4	2.33330503	lgsf9	1.458187529			
Meis2	2.323009518	Egr1	1.456721746			
Wfikkn1	2.320491498	Dapk1	1.448027082			
Rbp1	2.26975113	Cxcl1	1.445129565			
Gpr124	2.233321213	Fzd5	1.444392783			
Mrg1	2.155800597	En2	1.444366726			
Rgma	2.138962431	Sgk1	1.444297678			
Dppa2	2.128485266	En1	1.441876704			
Grasp	2.098080663	Fam129b	1.441490829			
Gata6	2.085329687	Klf9	1.427881647			

	C vs. C+I	RA	
Gene Symbol	FC up-regulated	Gene Symbol	FC down-
			regulated
Hoxb2	2.084743007	1700019H03Rik	1.421908207
Notch4	2.037366622	Socs3	1.421889332
Dlx3	2.01956158	1110012J17Rik	1.421869718
4933421H10Rik	2.016756288	Rbm35a	1.419212469
Hoxb5	2.006265957	Dapp1	1.418662029
Tgm2	2.003796683	1700019D03Rik	1.417527411
Lefty1	1.962439333	Tle4	1.416252243
8030467N07Rik	1.951956814	Ahnak2	1.415737487
Nrip1	1.939515007	Nefm	1.412637043
Rhbdl3	1.936319088	Id4	1.409091626
Foxn4	1.924186008	Cd59b	1.407515167
Dleu7	1.911251335	Slc29a1	1.406235915
Zmym3	1.904159538	Nid2	1.402000062
Meis1	1.888858069	Pde1b	1.84809482
Irf5	1.88811861	Slc27a2	1.702333223
Foxp1	1.877774802	Dnmt3l	1.749279434
Ltbp3	1.874900175	Ildr1	1.594741839
Rage	1.872276392	Zic3	1.573843764
Dusp9	1.871000377	Lrrc34	1.551483342
H2-BI	1.860964989	F2rl1	1.456398322
D16Bwg1494e	1.85423442	Dusp4	1.450917521
Pdyn	1.839523864	Zfp36l1	1.451750561
5930418K15Rik	1.782647146		
Pptc7	1.780752617		
Wnt3a	1.763818414		
2600009P04Rik	1.75912626		
LOC100047268	1.75304771		
Porcn	1.742484952		
Myo1f	1.739638233		
LOC100040525	1.739442776		
Cd37	1.739346532		
Plk3	1.738545197		
G630016D24Rik	1.723462648		
Ccdc88b	1.721212107		
Spsb1	1.715368044		
Nt5e	1.689708173		
Nphp4	1.688340473		
Gm22	1.6/9959453		
ler5l	1.6//408419		
Adtp	1.6/5010883		
	1.658/36805		
Pmp22	1.032530/11		
	1.018909001		
Prrt3	1.01//0883/		
FCgrt	1.015399/14		
Enpp4	1.011/93950		
	1 601750079		
	1 508204002		
	1 502214200		
	1.333214389		
	1.204099939		
LIBIZ	1.301/1304/		
	1.579304012		
0306-2	1.309620304	211	

	C vs. C+RA					
Gene Symbol	FC up-regulated	Gene Symbol	FC down- regulated			
Raet1a	1.568832932					
Cidea	1.56620483					
Nr6a1	1.561588671					
LOC100047651	1.557103966					
BC019806	1.556888222					
Epb4.1l1	1.547937609					
6330442E10Rik	1.544818818					
2700038C09Rik	1.53564068					
scl0004020.1_31	1.529109535					
Pacsin1	1.527528263					
Uck1	1.52690082					
D14Ertd668e	1.526359066					
LOC676420	1.524990101					
2200001I15Rik	1.524810739					
Twf2	1.52139231					
Tnfrsf13c	1.521274632					
Tinagl1	1.513790443					
Kit	1.513446221					
Ski	1.50453728					
B3gnt7	1.499093877					
LOC435145	1.498303545					
Cxcl10	1.493122529					
C2cd2l	1.491332479					
Ccdc120	1.487121885					
Gca	1.480531759					
Dok4	1.480038722					
Tmtc1	1.47850134					
Elavl3	1.474573912					
3110001A13Rik	1.473902536					
Slc38a8	1.466882383					
Elovl6	1.466657131					
Tmem166	1.463181029					
Tmem181	1.460971456					
Gpr114	1.460726134					
Dock6	1.460453022					
Smyd2	1.460288315					
Aitm2	1.459094161					
	1.454004269					
Dusp14	1.453/41426					
	1.45228287					
Att3	1.4502/1/61					
Synpo Tmom1225						
imem132e	1.445192741					
	1.443850795					
0330534C2UKIK	1.43/2/911					
	1.4354/11/					
Sema4g	1.43539525					
	1.433494132					
	1.430012938					
4631416L12Rik	1.428414466					
Fbp2	1.42/371329					
	1.4261201/					
ETND1	1.422343556	212				
		L1L				

C vs. C+RA						
Gene Symbol	FC up-regulated	Gene Symbol	FC down- regulated			
Oaz2	1.420945128					
5730593F17Rik	1.413851779					
Ttc7b	1.410626127					
Wdr6	1.410519707					
1700028I16Rik	1.409581063					
Mtf2	1.40485765					
Dgkz	1.404832776					
Myo10	1.404542623					
Fbxo27	1.403628667					
Snai1	1.401191235					

KO vs. KO+RA						
Gene Symbol	FC up-regulated	Gene Symbol	FC down-regulated			
 Cvp26a1	9 788999727	Pdk4	1 460454128			
Csnk	9.53296688	Ndrl	1.835072063			
Csn3	9.245236816	Ndrg1	1.837279788			
Hoxa1	1.51763988	Sp5	1.944351241			
Agp3	4,242441074	Socs2	1.636267034			
Stra8	3.10576649	SIc27a2	1.53616021			
Aurko	1.540476807	lgfbp5	1.846371394			
Cdx1	2.69236107	Dnmt3l	1.555414976			
Rarb	1.700682662	Enc1	1.584276326			
Ppbp	6.758186399	Zfp459	1.74859238			
Camk2n1	1.679619364	Gib3	1.703621665			
Tle6	2.879699256	Fst	1.743448594			
Hoxb4	2.376718042	Aire	1.447406267			
Wfikkn1	2.229497114	Zic3	1.494688251			
Gpr124	2.241493948	LOC100044968	1.596780644			
Rgma	1.492665836	Lor	1.486358822			
Rhobtb1	1.444719638	Zfp42	1.891881106			
DIx3	2.764453854	Rhbdf1	1.448229962			
4933421H10Rik	1.563857608	Gcnt2	1.643488548			
Hoxb5	1.476767509	F2rl1	1.678994973			
Tgm2	2.188088697	Ildr1	1.437455073			
Ppl	2.268464763	Cav1	1.408032884			
8030467N07Rik	2.12283515	Klf6	1.566424879			
Nrip1	1.914527871	Dusp4	1.600960027			
Rhbdl3	1.600979376	Zfp710	1.633896921			
Zmym3	1.485906202	Zfp36l1	1.401884558			
Ltbp3	2.163537555	Igsf9	1.431930694			
Dusp9	2.151725068	Egr1	1.648956294			
H2-BI	1.918329982	Sgk1	1.563513896			
5930418K15Rik	1.542448612	Fam129b	1.455163515			
Pptc7	1.456924757	Klf4	1.469625686			
Porcn	1.534129522	Socs3	1.980302793			
LOC100040525	1.404298116	Slc29a1	1.44977191			
Cd37	1.603961343	ler3	1.483518302			
Ccdc88b	2.117239308	C130035G06Rik	1.487919878			
Mdk	1.536982108	Bmp4	2.139120308			
Nphp4	1.597369012	Cited2	1.589316832			
Срт	1.730314978	Thy1	1.461895433			
Gm22	1.894365215	Enox1	1.433456716			

KO vs. KO+RA					
Gene Symbol	FC up-regulated	Gene Symbol	FC down-regulated		
Mmd	1.660800383	Vgf	1.877759027		
Atp2a2	1.4691846	A730027B03Rik	1.539546604		
Pmp22	1.941294443	Klf5	1.657548073		
D230007K08Rik	1.502752016	Nrp2	1.542082071		
Tinagl	1.40560688	Slc7a3	1.404047192		
Llgl2	1.433627109	Fgfbp1	1.563375914		
D17H6S56E-5	1.714225138	LOC100048710	1.577226632		
Cidea	1.411723903	Stx11	1.443531871		
Aebp2	1.444275377	Hs3st3b1	1.41078325		
scl0004020.1_31	1.483902	Nppb	1.809377761		
LOC676420	1.650028392	Pmaip1	1.526421492		
Tinagl1	1.671577459	Zfp57	1.598617507		
Kit	1.783697972	Bdnf	1.470932348		
B3gnt7	1.592245369	Tgif1	1.612376202		
Letmd1	1.682982647	Zscan10	1.499483952		
Erf	1.493841279	Ztp296	1.465045724		
Elovl6	1.406485979	Tcstv3	1.442509045		
Dock6	1.457091461	Tpbg	1.475425659		
Atf3	1.742878703	Trim25	1.50927177		
Synpo	1.775201771	Calca	1.516987436		
Sema4g	1.712656252	Rem2	1.53144964		
Zfhx3	1.435059057	Lmna	1.422817521		
Ttc7b	1.483556432	Plaur	1.543050431		
Mtf2	1.462668458	Esrrb	1.5039306		
Pcdh1	1.907195406	LOC100046232	1.453869733		
H2-T23	1.523695038	3110040M04Rik	1.460254398		
Cdv3	1.770856208	Krt14	2.570029373		
Plcd3	1.506712907	Ankrd1	1.415011264		
Plvap	1.582045436	Arc	1.428035081		
Skil	1.614509285	Timp1	1.421489806		
BC020108	1.942767617	Col6a3	1.423582787		
Stra6	1.76690039	lgfb1i1	1.591220372		
Csnkle	1.45//35432	Cd274	1.552539745		
Smox	1.404923994	Crct1	1.9991/3059		
EG630499	1.402617208	Nts	1.877064161		
Plekng6	1.536955122	Sm	1.552988906		
	1.595861608	LCelf	1.680450805		
Gsei	1.01920070	Gatas	1.505926355		
	1.550065045		1.445190504		
2310010CUORIK	2.072242447		1.696177409		
Ddafrb	2.095015950	DISEILUOUSE	1.457800270		
	1.52/9/509/				
LUC000052	1.58/848459				
Ezd7	1.030330037				
Dtnn21	1 / 98701706				
Δrσ1	1 655827515				
Smad3	1 580998487				
Døkz	1 400078455				
Centda	1 840047047				
2510009F07Rik	1 442602426				
Arrdc2	1 933980367				
Cehnh	1 402762725				
Pnn2r1h	1 503407341				
1 442110	1.505407541	214			

KO vs. KO+RA				
Gene Symbol	FC up-regulated	Gene Symbol	FC down-regulated	
Lrig1	1.405743037			
D14Ertd668e	1.410795785			
Cgnl1	1.481332649			
Gbx2	1.947557141			
Chac1	1.516951237			
2310007B03Rik	1.40459634			
Prickle1	1.542986298			
Epn2	1.415401293			
LOC100043671	1.550444976			
Fkbp14	1.659616816			
Baiap2l1	1.876958052			
LOC100044702	1.452478307			
EG546036	1.413575292			
Crybg3	1.583706676			
Pfkfb4	1.749304862			
Ets2	1.442854499			
1700031F05Rik	1.692589193			
LOC100047659	1.524915994			
Slc13a4	1.520863952			
Celsr3	1.57972284			
Rec8	1.468039621			
E130014J05Rik	1.657780773			

References:

Allfrey, V.G., Faulkner, R. and Mirsky, A.E. (1964) 'Acetylation and Methylation of Histones and their Possible Role in the Regulation of RNA Synthesis', *Proceedings of the National Academy of Sciences of the United States of America*, 51(5), pp. 786-794.

Allis, C.D. and Strahl, B.D. (2000) 'The language of covalent histone modifications', *Nature*, 403(6765), pp. 41-45.

Andres, M.E., Burger, C., Peral-Rubio, M.J., Battaglioli, E., Anderson, M.E., Grimes, J., Dallman, J., Ballas, N. and Mandel, G. (1999) 'CoREST: A Functional Corepressor Required for Regulation of Neural-Specific Gene Expression', *Proceedings of the National Academy of Sciences of the United States of America*, 96(17), pp. 9873-9878.

Avilion, A.A., Nicolis, S.K., Pevny, L.H., Perez, L., Vivian, N. and Lovell-Badge, R. (2003) 'Multipotent cell lineages in early mouse development depend on SOX2 function', *Genes & development*, 17(1), pp. 126-140.

Ayer, D.E., Lawrence, Q.A. and Eisenman, R.N. (1995) 'Mad-max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3', *Cell*, 80(5), pp. 767-776.

Azuara, V., John, R.M., Perry, P., Fisher, A.G., Casanova, M., Spivakov, M., Merkenschlager, M., Gouti, M., Jorgensen, H.F., Warnes, G. and Sauer, S. (2006) 'Chromatin signatures of pluripotent cell lines', *Nature cell biology*, 8(5), pp. 532-538.

Baltus, G.A., Kowalski, M.P., Tutter, A.V. and Kadam, S. (2009) 'A Positive Regulatory Role for the mSin3A-HDAC Complex in Pluripotency through Nanog and Sox2', *Journal of Biological Chemistry*, 284(11), pp. 6998-7006.

Banerjee, T. and Chakravarti, D. (2011) 'A Peek into the Complex Realm of Histone Phosphorylation', *Molecular and cellular biology*, 31(24), pp. 4858-4873.

Bannister, A.J., Zegerman, P., Partridge, J.F., Miska, E.A., Thomas, J.O., Allshire, R.C. and Kouzarides, T. (2001) 'Selective recognition of methylated lysine 9 on

histone H3 by the HP1 chromo domain', Nature, 410(6824), pp. 120-124.

Barski, A., Cuddapah, S., Cui, K., Roh, T., Schones, D.E., Wang, Z., Wei, G., Chepelev, I. and Zhao, K. (2007) 'High-Resolution Profiling of Histone Methylations in the Human Genome', *Cell*, 129(4), pp. 823-837.

Berger, S.L. (2007) 'The complex language of chromatin regulation during transcription', *Nature*, 447(7143), pp. 407-412.

Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., Jaenisch, R., Wagschal, A., Feil, R., Schreiber, S.L. and Lander, E.S. (2006) 'A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells', *Cell*, 125(2), pp. 315-326.

Bernstein, B.E., Tong, J.K. and Schreiber, S.L. (2000) 'Genomewide Studies of Histone Deacetylase Function in Yeast', *Proceedings of the National Academy of Sciences of the United States of America*, 97(25), pp. 13708-13713.

Bhaskara, S., Chyla, B.J., Amann, J.M., Knutson, S.K., Cortez, D., Sun, Z. and Hiebert, S.W. (2008) 'Deletion of Histone Deacetylase 3 Reveals Critical Roles in S Phase Progression and DNA Damage Control', *Molecular cell*, 30(1), pp. 61-72.

Bhaskara, S., Jacques, V., Rusche, J.R., Olson, E.N., Cairns, B.R. and Chandrasekharan, M.B. (2013) 'Histone deacetylases 1 and 2 maintain S-phase chromatin and DNA replication fork progression', *Epigenetics & chromatin*, 6(1), pp. 27.

Boyer, L.A., Lee, T.I., Cole, M.F., Johnstone, S.E., Levine, S.S., Zucker, J.P., Guenther, M.G., Kumar, R.M., Murray, H.L., Jenner, R.G., Gifford, D.K., Melton, D.A., Jaenisch, R. and Young, R.A. (2005) 'Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells', *Cell*, 122(6), pp. 947-956.

Boyer, L.A., Levine, S.S., Plath, K., Vidal, M., Bell, G.W., Medeiros, L.A., Lee, T.I., Brambrink, T., Ray, M.K., Gifford, D.K., Jaenisch, R., Tajonar, A., Young, R.A., Otte, A.P., Wernig, M. and Zeitlinger, J. (2006) 'Polycomb complexes repress developmental regulators in murine embryonic stem cells', *Nature*, 441(7091), pp. 349-353.

Boyer, L.A., Mathur, D. and Jaenisch, R. (2006) 'Molecular control of pluripotency', *Current opinion in genetics & development*, 16(5), pp. 455-462.

Boyes, J., Byfield, P., Nakatani, Y. and Ogryzko, V. (1998), 'Regulation of activity of the transcription factor GATA-1 by acetylation', *Nature*, 396(6711), pp. 594-598.

Bracken, A.P., Dietrich, N., Pasini, D., Hansen, K.H. and Helin, K. (2006) 'Genomewide mapping of Polycomb target genes unravels their roles in cell fate transitions', *Genes & development*, 20(9), pp. 1123-1136.

Brehm, A., Miska, E.A., McCance, D.J., Reid, J.L., Bannister, A.J. and Kouzarides, T.(1998) ' Retinoblastoma protein recruits histone deacetylase to repress transcription', *Nature*, 391(6667), pp. 597-601.

Burdon, T., Smith, A. and Savatier, P. (2002) 'Signalling, cell cycle and pluripotency in embryonic stem cells', *Trends in Cell Biology*, 12(9), pp. 432–438.

Cao, J. and Yan, Q. (2012) 'Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer', *Frontiers in oncology*, 2, pp. 26.

Chamberlain, S.J., Yee, D. and Magnuson, T. (2008) 'Polycomb Repressive Complex 2 Is Dispensable for Maintenance of Embryonic Stem Cell Pluripotency', *Stem cells*, 26(6), pp. 1496-1505.

Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S. and Smith, A. (2003) 'Functional Expression Cloning of Nanog, a Pluripotency Sustaining Factor in Embryonic Stem Cells', *Cell*, 113(5), pp. 643-655.

Chang, S., McKinsey, T.A., Zhang, C.L., Richardson, J.A., Hill, J.A. and Olson, E.N. (2004) 'Histone Deacetylases 5 and 9 Govern Responsiveness of the Heart to a Subset of Stress Signals and Play Redundant Roles in Heart Development', *Molecular and cellular biology*, 24(19), pp. 8467-8476.

Chang, S., Young, B.D., Li, S., Qi, X., Richardson, J.A. and Olson, E.N. (2006)

'Histone Deacetylase 7 Maintains Vascular Integrity by Repressing Matrix Metalloproteinase 10', *Cell*, 126(2), pp. 321-334.

Chen, F., Kook, H., Milewski, R., Gitler, A.D., Lu, M.M., Li, J., Nazarian, R., Schnepp, R., Jen, K., Biben, C., Runke, G., Mackay, J.P., Novotny, J., Schwartz, R.J., Harvey, R.P., Mullins, M.C. and Epstein, J.A. (2002) 'Hop Is an Unusual Homeobox Gene that Modulates Cardiac Development', *Cell*, 110(6), pp. 713-723.

Choudhary, C., Kumar, C., Gnad, F., Nielsen, M.L., Rehman, M., Walther, T.C., Olsen, J.V. and Mann, M. (2009) 'Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions', *Science*, 325(5942), pp. 834-840.

Clapier, C.R. and Cairns, B.R. (2009) 'The biology of chromatin remodeling complexes', *Annual Review of Biochemistry*, 78(1), pp. 273-304.

Cowley,S.M.,Iritani,B.M.,Mendrysa,S.M.,Xu,T.,Cheng,P.F.,Yada,J.,Liggitt H.D. and Eisenman, R. N.(2005), 'The mSin3A chromatin modifying complex is essential for embryogenesis and T cell development , *Molecular and cellular biology*, 25(16), pp. 6990-7004.

Cukier, H.N., Perez, A.M., Collins, A.L., Zhou, Z., Zoghbi, H.Y. and Botas, J. (2008) 'Genetic modifiers of MeCP2 function in Drosophila', *PLoS genetics*, 4(9), pp. e1000179.

Dannenberg, J., David, G., Zhong, S., van der Torre, J., Wong, W.H. and Depinho, R.A. (2005) 'mSin3A corepressor regulates diverse transcriptional networks governing normal and neoplastic growth and survival', *Genes & development*, 19(13), pp. 1581-1595.

Das, C., Lucia, M.S., Hansen, K.C. and Tyler, J.K. (2009), 'CBP/p300-mediated acetylation of histone H3 on lysine 56', *Nature*, 459 (7243), pp. 113-117.

David, G., Grandinetti, K.B., Finnerty, P.M., Simpson, N., Chu, G.C. and DePinho, R.A. (2008) 'Specific Requirement of the Chromatin Modifier mSin3B in Cell Cycle

Exit and Cellular Differentiation', *Proceedings of the National Academy of Sciences of the United States of America*, 105(11), pp. 4168-4172.

David, G., Turner, G.M., Yao, Y., Protopopov, A. and DePinho, R.A. (2003) 'mSin3associated protein, mSds3, is essential for pericentric heterochromatin formation and chromosome segregation in mammalian cells', *Genes & development*, 17(19), pp. 2396-2405.

De Ruijter, A.J.M., Gennip, V., Caron, H.N., Kemp, S. and Kuilenburg, V., A.B.P. (2003) 'Histone deacetylases (HDACs): characterization of the classical HDAC family', *Biochemical Journal*, 370(Pt 3), pp. 737-749.

Doetschman, T.C., Eistetter, H., Katz, M., Schmidt, W. and Kemler, R. (1985) 'The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium', *Journal of embryology and experimental morphology*, 87, pp. 27.

Dovey, O.M., Foster, C.T. and Cowley, S.M. (2010) 'Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation', *Proceedings of the National Academy of Sciences of the United States of America*, 107(18), pp. 8242-8247.

Dovey, O.M., Foster, C.T., Conte, N., Edwards, S.A., Edwards, J.M., Singh, R., Vassiliou, G., Bradley, A. and Cowley, S.M. (2013) 'Histone deacetylase 1 and 2 are essential for normal T-cell development and genomic stability in mice', *Blood*, 121(8), pp. 1335.

Evans, M.J. and Kaufman, M.H.(1981) ' Establishment in Culture of Pluripotential Cells from Mouse Embryo', Nature, 292, pp. 154-156.

Feldman, N., Gerson, A., Fang, J., Zhang, Y., Shinkai, Y., Cedar, H. and Bergman, Y.(2006) 'G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis', *Nature cell biology*, 8(2), pp. 188-194.

Finch, J.T. and Klug, A. (1976) 'Solenoidal Model for Superstructure in Chromatin',

Proceedings of the National Academy of Sciences of the United States of America, 73(6), pp. 1897-1901.

Fischle W, Dequiedt , F., Hendzel , M .J ., Guenther, M.G., Lazear, M.A., Voelter ,W. and Verdin, E . (2002) ' Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR', *Molecular Cell*, 9(1), pp. 45–57.

Fischle, W., Wang, Y. and Allis, C.D. (2003) 'Histone and chromatin cross-talk', *Current opinion in cell biology*, 15(2), pp. 172-183.

Fleischer, T.C., Yun, U.J. and Ayer, D.E. (2003) ' Identification and characterization of three new components of the mSin3A corepressor complex', *Molecular Cell Biology*, 23(10), pp. 3456–3467.

Foster, C.T., Dovey, O.M. and Cowley, S.M. (2010) 'Emphasizing the positive: A role for histone deacetylases in transcriptional activation', *Cell Cycle*, 9(14), pp. 2700-2701.

Foster, C.T., Dovey, O.M., Lezina, L., Luo, J.L., Gant, T.W., Barlev, N., Bradley, A. and Cowley, S.M. (2010) 'Lysine-Specific Demethylase 1 Regulates the Embryonic Transcriptome and CoREST Stability', *Molecular and cellular biology*, 30(20), pp. 4851-4863.

Fujikura, J., Yamato, E., Yonemura, S., Hosoda, K., Masui, S., Nakao, K., Miyazaki Ji, J. and Niwa, H. (2002) 'Differentiation of embryonic stem cells is induced by GATA factors', *Genes & development*, 16(7), pp. 784-789.

Gao, L., Cueto, M.A., Asselbergs, F. and Atadja, P. (2002) 'Cloning and Functional Characterization of HDAC11, a Novel Member of the Human Histone Deacetylase Family', *Journal of Biological Chemistry*, 277(28), pp. 25748-25755.

Grozinger, C.M. and Schreiber, S.L. (2000) 'Regulation of Histone Deacetylase 4 and 5 and Transcriptional Activity by 14-3-3-Dependent Cellular Localization', *Proceedings of the National Academy of Sciences of the United States of America*, 97(14), pp. 7835-7840.

Gu, P., LeMenuet, D., Chung, A.C.-., Mancini, M., Wheeler, D.A. and Cooney, A.J. (2005) 'Orphan Nuclear Receptor GCNF Is Required for the Repression of Pluripotency Genes during Retinoic Acid-Induced Embryonic Stem Cell Differentiation', *Molecular and cellular biology*, 25(19), pp. 8507-8519.

Gu, W. and Roeder, R.G. (1997) 'Activation of p53 Sequence-Specific DNA Binding by Acetylation of the p53 C-Terminal Domain', *Cell*, 90(4), pp. 595-606.

Haberland, M., Mokalled, M.H., Montgomery, R.L. and Olson, E.N. (2009a) 'Epigenetic control of skull morphogenesis by histone deacetylase 8', *Genes & development*, 23(14), pp. 1625.

Haberland, M., Olson, E.N. and Montgomery, R.L. (2009b) 'The many roles of histone deacetylases in development and physiology: implications for disease and therapy', *Nature Reviews Genetics*, 10(1), pp. 32-42.

Haigis, M.C. and Guarente, L.P. (2006) 'Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction', *Genes & development*, 20(21), pp. 2913-2921.

Hassig, C.A., Fleischer, T.C., Billin, A.N., Schreiber, S.L., Ayer, D.E. (1997) 'Histone deacetylase activity is required for full transcriptional repression by mSin3A', *Cell*, 89(3), pp. 341–347.

Hayakawa, T. and Nakayama, J. (2011) 'Physiological Roles of Class I HDAC Complex and Histone Demethylase', *Journal of Biomedicine and Biotechnology*, 2011, pp. 1-10.

Hebbes, T.R., Thorne, A.W. and Crane-Robinson, C. (1988) 'A direct link between core histone acetylation and transcriptionally active chromatin', *The EMBO journal*, 7(5), pp. 1395-1402.

Heideman, M.R., van der Torre, J., Yanover, E., Wilting, R.H., DePinho, R.A., Dannenberg, J., Jacobs, H. and Horner, J. (2010) 'Overlapping functions of Hdac1 and Hdac2 in cell cycle regulation and haematopoiesis', *The EMBO journal*, 29(15), pp.

2586-2597.

Hendrich, B., Guy, J., Ramsahoye, B., Wilson, V.A. and Bird, A. (2001) 'Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development', *Genes & development*, 15(6), pp. 710-723.

Huang, G., Ye, S., Zhou, X., Liu, D. and Ying, Q. (2015) 'Molecular basis of embryonic stem cell self-renewal: from signaling pathways to pluripotency network', *Cellular and Molecular Life Sciences*, 72(9), pp. 1741-1757.

Hubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y., Ito, A., Nixon, A., Yoshida, M., Wang, X.F., Yao, T.P.(2002) 'HDAC6 is a microtubule-associated deacetylase', *Nature*, 417(6887), pp. 455-458.

Jamaladdin, S., Kelly, R.D.W., O'Regan, L., Dovey, O.M., Hodson, G.E., Millard, C.J., Portolano, N., Fry, A.M., Schwabe, J.W.R. and Cowley, S.M. (2014) 'Histone deacetylase (HDAC) 1 and 2 are essential for accurate cell division and the pluripotency of embryonic stem cells', *Proceedings of the National Academy of Sciences of the United States of America*, 111(27), pp. 9840-9845.

Jepsen, K., Hermanson, O., Onami, T.M., Gleiberman, A.S., Lunyak, V., McEvilly, R.J., Kurokawa, R., Kumar, V., Liu, F., Seto, E., Hedrick, S.M., Mandel, G., Glass, C.K., Rose, D.W. and Rosenfeld, M.G. (2000) 'Combinatorial Roles of the Nuclear Receptor Corepressor in Transcription and Development', *Cell*, 102(6), pp. 753-763.

Jepsen, K., Solum, D., Zhou, T., McEvilly, R.J., Kim, H., Glass, C.K., Hermanson, O. and Rosenfeld, M.G.(2007) 'SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron', *Nature*, 450(7168), pp. 415-419.

Jia, S. and Grewal, S.I.S. (2007) 'Heterochromatin revisited', *Nature Reviews Genetics*, 8(1), pp. 35-46.

Jin, J., Cai, Y., Yao, T., Gottschalk, A.J., Florens, L., Swanson, S.K., Gutiérrez, J.L., Coleman, M.K., Workman, J.L., Mushegian, A., Washburn, M.P., Conaway, R.C. and Conaway, J.W. (2005) 'A Mammalian Chromatin Remodeling Complex with Similarities to the Yeast INO80 Complex', *Journal of Biological Chemistry*, 280(50),

pp. 41207-41212.

Kaji, K., Caballero, I.M., MacLeod, R., Nichols, J., Wilson, V.A. and Hendrich, B. (2006) 'The NuRD component Mbd3 is required for pluripotency of embryonic stem cells', *Nature cell biology*, 8(3), pp. 285-292.

Kawamura, T., Ono, K., Morimoto, T., Wada, H., Hirai, M., Hidaka, K., Morisaki, T., Heike, T., Nakahata, T., Kita, T. and Hasegawa, K. (2005) 'Acetylation of GATA-4 Is Involved in the Differentiation of Embryonic Stem Cells into Cardiac Myocytes', *Journal of Biological Chemistry*, 280(20), pp. 19682-19688.

Keller, G.M. (1995) 'In-vitro Differentiation of Embryonic Stem-Cells', *Current Opinion in Cell Biology*, 7(6), pp. 862-869.

Kelly, R.D.W. and Cowley, S.M. (2013) 'The physiological roles of histone deacetylase (HDAC) 1 and 2: complex co-stars with multiple leading parts', *Biochemical Society transactions*, 41(3), pp. 741.

Kidder, B.L. and Palmer, S. (2011) 'HDAC1 regulates pluripotency and lineage specific transcriptional networks in embryonic and trophoblast stem cells', *Nucleic acids research*, 40(7), pp. 2925-2939.

Kim, J., Chu, J., Shen, X., Wang, J. and Orkin, S.H. (2008) 'An Extended Transcriptional Network for Pluripotency of Embryonic Stem Cells', *Cell*, 132(6), pp. 1049-1061.

Kouzarides, T. (2007) 'Chromatin Modifications and Their Function', *Cell*, 128(4), pp. 693-705.

Kunath, T., Saba-El-Leil, M.K., Almousailleakh, M., Wray, J., Meloche, S. and Smith, A. (2007) 'FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment', *Development*, 134(16), pp. 2895-2902.

Kurdistani, S.K., Robyr, D. Tavazoie, and Grunstein, M. (2002) 'Genome-wide

bindingmap of the histone deacetylase Rpd3 in yeast', *Nature genetics*, 31(3), pp. 248-254.

Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. and Jenuwein, T. (2001) 'Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins', *Nature*, 410(6824), pp. 116-120.

Lagger, G., O'Carroll, D., Rembold, M., Khier, H., Tischler, J., Weitzer, G., Schuettengruber, B., Hauser, C., Brunmeir, R., Jenuwein, T., and Seiser, C. (2002) 'Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression', *The EMBO journal*, 21(11), pp. 2672-2681.

Laherty, C.D., Yang, W.M., Sun, J.M., Davie, J.R., Seto, E. and Eisenman, R.N. (1997) 'Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression', *Cell*, 89(3), pp. 349–356.

Lahm, A., Paolini, C., Pallaoro, M., Nardi, M.C., Jones, P., Neddermann, P., Sambucini, S., Bottomley, M.J., Surdo, P.L., Carfi, A., Koch, U., De Francesco, R., Steinkühler, C. and Gallinari, P. (2007) 'Unraveling the Hidden Catalytic Activity of Vertebrate Class IIa Histone Deacetylases', *Proceedings of the National Academy of Sciences of the United States of America*, 104(44), pp. 17335-17340.

Lakowski, B., Roelens, I. and Jacob, S. (2006) 'CoREST-like complexes regulate chromatin modification and neuronal gene expression', *Journal of Molecular Neuroscience*, 29(3), pp. 227-239.

LeBoeuf, M., Terrell, A., Trivedi, S., Sinha, S., Epstein, J.A., Olson, E.N., Morrisey, E.E. and Millar, S.E. (2010) 'Hdac1 and Hdac2 act redundantly to control p63 and p53 functions in epidermal progenitor cells', *Developmental Cell*, 19(6), pp.807–818.

Lee, M.G., Wynder, C., Schmidt, D.M., McCafferty, D.G. and Shiekhattar, R. (2006) 'Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications', *Chemistry and Biology*, 13(6), pp. 563–567. Leitch, H.G., McEwen, K.R., Turp,A., Encheva,V., Carroll,T., Grabole, N., Mansfield,W., Nashun, B., Knezovich,J.G., Smith, A., Surani,M.A. and Hajkova, P. (2013) ' Naive pluripotency is associated with global DNA hypomethylation', *Nature Structural and Molecular Biology*, 20, pp. 311-316.

Liang, J., Wan, M., ., Zhang, Y., Gu, P., Xin, H., Jung, S.Y., Qin, J., Wong, J., Cooney, A.J., Liu, D. and Songyang, Z. (2008) 'Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells', *Nature cell biology*, 10(6), pp. 731-739.

Liu, Y., Liu, Z., Li, T., Li, Y., Jia, Z., Zhang, C., Chen, P., Ma, K., Affara, N. and Zhou, C. (2009) 'WNT signaling promotes Nkx2.5 expression and early cardiomyogenesis via downregulation of Hdac1', *BBA - Molecular Cell Research*, 1793(2), pp. 300-311.

Loh, Y., Wu, Q., Chew, J., Vega, V.B., Zhang, W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J., Wong, K., Sung, K.W., Lee, C.W.H., Zhao, X., Chiu, K. Lipovich, L., Kuznetsov, V.A., Robson, Stanton, L.W., Wei, C., Ruan, Y., Lim, B. and Ng, H. (2006) 'The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells', *Nature genetics*, 38(4), pp. 431-440.

Loh, Y., Yang, L., Yang, J.C., Li, H., Collins, J.J. and Daley, G.Q. (2011) 'Genomic Approaches to Deconstruct Pluripotency', *Annual Review of Genomics and Human Genetics*, 12, pp. 165-185.

Loh, Y., Zhang, W., Chen, X., George, J. and Ng, H. (2007) 'Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells', *Genes and development*, 21(20), pp. 2545-2557.

Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. and Richmond, T.J. (1997) 'Crystal structure of the nucleosome core particle at 2.8 angstrom resolution', *Nature*, 389(6648), pp. 251.

Martin, G.R. (1981) 'Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells',

Proc.Natl.Acad.Sci.U.S.A., 78(12), pp. 7634-7638.

Meshorer, E., Yellajoshula, D., George, E., Scambler, P.J., Brown, D.T. and Misteli, T. (2006) 'Hyperdynamic Plasticity of Chromatin Proteins in Pluripotent Embryonic Stem Cells', *Developmental Cell*, 10(1), pp. 105-116.

Mihaylova, M.M. and Shaw, R.J. (2013) 'Metabolic reprogramming by class I and II histone deacetylases', *Trends in endocrinology and metabolism: TEM*, 24(1), pp. 48-57.

Millard, C.J., Watson, P.J., Celardo, I., Gordiyenko, Y., Cowley, S.M., Robinson, C.V., Fairall, L. and Schwabe, J.W.R. (2013) 'Class I HDACs share a common mechanism of regulation by inositol phosphates', *Molecular Cell*, 51(1), pp. 57-67

Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M. and Yamanaka, S. (2003) 'The Homeoprotein Nanog Is Required for Maintenance of Pluripotency in Mouse Epiblast and ES Cells', *Cell*, 113(5), pp. 631-642.

Montgomery, R.L., Davis, C.A., Potthoff, M.J., Haberland, M., Fielitz, J., Qi, X., Hill, J.A., Richardson, J.A. and Olson, E.N. (2007) 'Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility', *Genes & development*, 21(14), pp. 1790-1802.

Montgomery, R.L., Hsieh, J., Barbosa, A.C., Richardson, J.A. and Olson, E.N. (2009) 'Histone Deacetylases 1 and 2 Control the Progression of Neural Precursors to Neurons during Brain Development', *Proceedings of the National Academy of Sciences of the United States of America*, 106(19), pp. 7876-7881.

Montgomery, R.L., Potthoff, M.J., Haberland, M., Qi, X., Matsuzaki, S., Humphries, K.M., Richardson, J.A., Bassel-Duby, R. and Olson, E.N. (2008) 'Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice', *The Journal of clinical investigation*, 118(11), pp. 3588-3597.

Nakano, T., Kodama, H. and Honjo, T. (1994) 'Generation of lymphohematopoietic

cells from embryonic stem cells in culture', Science, 265(5175), pp. 1098-1101.

Nathan, D., Ingvarsdottir, K., Sterner, D.E., Bylebyl, G.R., Dokmanovic, M., Dorsey, J.A., Whelan, K.A., Krsmanovic, M., Lane, W.S., Meluh, P.B., Johnson, E.S. and Berger, S.L. (2006) 'Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications', *Genes & development*, 20(8), pp. 966-976.

Nishikawa, S.I., Nishikawa, S., Hirashima, M., Matsuyoshi, N. and Kodama, H. (1998) 'Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages', *Development*, 125(9), pp. 1747.

Niwa, H., Burdon, T., Chambers, I. and Smith, A. (1998) 'Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3', *Genes & development*, 12(13), pp. 2048-2060.

Niwa, H., Miyazaki, J. and Smith, A.G. (2000) 'Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells', *Nature genetics*, 24(4), pp. 372-376.

Niwa, H., Toyooka, Y., Shimosato, D., Strumpf, D., Takahashi, K., Yagi, R. and Rossant, J. (2005) 'Interaction between Oct3/4 and Cdx2 Determines Trophectoderm Differentiation', *Cell*, 123(5), pp. 917-929.

Nowak, S.J. and Corces, V.G. (2004) 'Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation', *Trends in Genetics*, 20(4), pp. 214-220.

O'Carroll, D., Erhardt, S., Pagani, M., Barton, S.C., Surani, M.A. and Jenuwein, T. (2001) 'The polycomb-group gene Ezh2 is required for early mouse development', *Molecular and cellular biology*, 21(13), pp. 4330-4336.

Pennimpede, T., Cameron, D.A., MacLean, G.A., Li, H., Abu-Abed, S. and Petkovich,M. (2010) 'The role of CYP26 enzymes in defining appropriate retinoic acid exposure

during embryogenesis', Birth Defects Research Part A: Clinical and Molecular Teratology, 88(10), pp. 883-894.

Phair, R.D., Scaffidi, P., Elbi, C., Vecerova, J., Dey, A., Ozato, K., Brown, D.T., Hager, G., Bustin, M. and Misteli, T. (2004) 'Global Nature of Dynamic Protein-Chromatin Interactions In Vivo: Three-Dimensional Genome Scanning and Dynamic Interaction Networks of Chromatin Proteins', *Molecular and cellular biology*, 24(14), pp. 6393-6402.

Qiu, Y., Zhao, Y., Becker, M., John, S., Parekh, B.S., Huang, S., Hendarwanto, A., Martinez, E.D., Chen, Y., Lu, H., Adkins, N.L., Stavreva, D.A., Wiench, M., Georgel, P.T., Schiltz, R.L. and Hager, G.L. (2006) 'HDAC1 Acetylation Is Linked to Progressive Modulation of Steroid Receptor-Induced Gene Transcription', *Molecular cell*, 22(5), pp. 669-679.

Rea,S.,Eisenhaber,F.,O'Carroll,N., Strahl, B.D., Sun, Z.W., Schmid, M., Opravil, S., Mechtler, K., Ponting, C.P., Allis, C.D. and Jenuwein, T.(2000) 'Regulation of chromatin structure by site specific histone H3 methyltransferases' , *Nature*, 406(6796), pp. 593-599.

Rochette-Egly, C. and Germain, P. (2009) 'Dynamic and combinatorial control of gene expression by nuclear retinoic acid receptors (RARs)', *Nuclear receptor signaling*, 7, pp. e005.

Rodd, A.L., Ververis, K. and and Karagiannis, T.C. (2012) 'Current and Emergin Therapeutics for Cutaneous T-Cell Lymphoma: Histone Deacetylase Inhibitors', *Lymphoma*, 2012, pp. 1-10.

Savatier, P., Huang, S., Szekely, L., Wiman, K.G. and Samarut, J. (1994) 'Contrasting patterns of retinoblastoma protein expression in mouse embryonic stem cells and embryonic fibroblasts', *Oncogene*, 9(3), pp. 809–818.

Senese, S., Zaragoza, K., Minardi, S., Muradore, I., Ronzoni, S., Passafaro, A., Bernard, L., Draetta, G.F., Alcalay, M., Seiser, C. and Chiocca, S.(2007) 'Role for histone deacetylase 1 in human tumor cell proiferation'. *Molecular and Cellular*

Biology, 27(13), pp. 4784–4795.

Sengupta, N. and Seto, E. (2004) 'Regulation of histone deacetylase activities', *Journal of cellular biochemistry*, 93(1), pp. 57-67.

Shi, Y., Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J.R., Cole, P.A. and Casero, R.A. (2004) 'Histone Demethylation Mediated by the Nuclear Amine Oxidase Homolog LSD1', *Cell*, 119(7), pp. 941-953.

Shiio, Y. and Eisenman, R.N. (2003) 'Histone Sumoylation Is Associated with Transcriptional Repression', *Proceedings of the National Academy of Sciences of the United States of America*, 100(23), pp. 13225-13230.

Silverstein, R.A., Ekwall, K. (2005) 'Sin3: a flexible regulator of global gene expression and genome stability', *Current genetics*, 47(1), pp. 1-17.

Silverstein, R.A., Richardson, W., Levin, H., Allshire, R. and Ekwall, K. (2003) 'A New Role for the Transcriptional Corepressor SIN3; Regulation of Centromeres', *Current Biology*, 13(1), pp. 68-72.

Sirbu, B.M., Couch, F.B., Feigerle, J.T., Bhaskara, S., Hiebert, S.W. and Cortez, D. (2011) 'Analysis of protein dynamics at active, stalled, and collapsed replication forks', *Genes & development*, 25(12), pp. 1320-1327.

Smith, A.G., Heath, J.K., Donaldson, D.D., Wong, J., Stahl, M. and Rogers, D. (1988) 'Inhibition of Pluripotential Embryonic Stem-Cell Differentiation by Purified Polypeptides', Nature, 336 (6200), pp. 688-690.

Smith, A.G.(2001) 'Embryo-derived stem cells: Of mice and men', *Annual Review of Cell and Developmental Biology*,17, pp. 435-462.

Song, C., Zhu, S., Wu, C. and Kang, J. (2013) 'Histone deacetylase (HDAC) 10 suppresses cervical cancer metastasis through inhibition of matrix metalloproteinase (MMP) 2 and 9 expression', *The Journal of biological chemistry*, 288(39), pp. 28021-28033.

Sterner, D.E. and Berger, S.L. (2000) 'Acetylation of Histones and Transcriptio-Related Factors', *Microbiology and Molecular Biology Reviews*, 64(2), pp. 435-459.

Suganuma, T. and Workman, J.L. (2008) 'Crosstalk among Histone Modifications', *Cell*, 135(4), pp. 604-607.

Suter, D.M., Tirefort, D., Julien, S. and Krause, K.H. (2009) 'A SOX1 to PAX6 switch drives neuroectoderm to radial glia progression during differentiation of mouse embryonic stem cells', Stem Cells, 27(1), pp. 49-58.

Taunton, J., Hassig, C.A. and Schreiber, S.L. (1996) 'A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p', *Science*, 272(5260), pp. 408-411.

Thoma, F. and Klug, A. (1979) 'Involvement of Histone H1 in the Organization of the Nucleosome and of the Salt-Dependent Superstructures of Chromatin', *The Journal of cell biology*, 83(2), pp. 403-427.

Tjeertes, J.V., Miller, K.M. and Jackson, S.P. (2009), 'Screen for DNA damage responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells', *The EMBO journal*, 28(13), pp. 1878-1889.

Trivedi, C.M., Luo, Y. and Yin, Z. , Zhang, M.,Zhu, W., Wang,T., Floss, T., Goettlicher,M.,Noppinger,P.R.,Wurst,W.,Ferraru,V.A.,Abrams,C.S., Gruber,P.J. and Epstein,J.A. (2007) 'Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity', *Nature Medicine*, 13(3), pp. 324-331.

Tsukada, Y., Fang, J., Erdjument-Bromage, H., Warren, M.E., Borchers, C.H., Tempst, P. and Zhang, Y. (2006) 'Histone demethylation by a family of JmjC domaincontaining proteins', *Nature*, 439(7078), pp. 811-816.

Urvalek, A.M. and Gudas, L.J. (2014) 'Retinoic acid and histone deacetylases regulate epigenetic changes in embryonic stem cells', *The Journal of Biological* Chemistry, 289(28), 19519-19530.

Vega, R.B., Matsuda, K., Oh, J., Barbosa, A.C., Yang, X., Meadows, E., McAnally, J.,

Pomajzl, C., Shelton, J.M., Richardson, J.A., Karsenty, G. and Olson, E.N. (2004) 'Histone Deacetylase 4 Controls Chondrocyte Hypertrophy during Skeletogenesis', *Cell*, 119(4), pp. 555-566.

Verdone, L., Agricola, E., Caserta, M. and Di Mauro, E. (2006) 'Histone acetylation in gene regulation', *Briefings in functional genomics & proteomics*, 5(3), pp. 209-221.

Vidal, M. and Gaber, R.F. (1991) 'RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae', *Molecular and cellular biology*, 11(12), pp. 6317-6327.

Villagra, A., Seto, E., Pinilla-Ibarz, J., Maurin, M., Nguyen, D., Glozak, M., Wright, K.L., Atadja, P.W., Wang, H., Bhalla, K., Sotomayor, E.M., Cheng, F. and Suarez, I.

(2009) 'The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance', *Nature immunology*, 10(1), pp. 92-100.

Wang, Z., Zang, C., Cui, K., Schones, D.E., Barski, A., Peng, W. and Zhao, K. (2009) 'Genome-wide Mapping of HATs and HDACs Reveals Distinct Functions in Active and Inactive Genes', *Cell*, 138(5), pp. 1019-1031.

Watson, P.J., Fairall, L., Santos, G.M. and Schwabe, J.W.R. (2012) 'Structure of HDAC3 bound to co-repressor and inositol tetraphosphate', *Nature*, 481(7381), pp. 335-340.

Whetstine, J.R., Nottke, A., Lan, F., Huarte, M., Smolikov, S., Chen, Z., Spooner, E., Li, E., Zhang, G., Colaiacovo, M. and Shi, Y. (2006) 'Reversal of Histone Lysine Trimethylation by the JMJD2 Family of Histone Demethylases', *Cell*, 125(3), pp. 467-481.

Wilting, R.H., Yanover, E., Heideman, M.R., Jacobs, H., Horne, J., van der Torre, J., DePinho, R.A. and Dannenberg, J.H. (2010) 'Overlapping functions of Hdac1 and Hdac2 in cell cycle regulation and haematopoiesis', *EMBO Journal*, 29(15), pp. 2586–2597.

Wong, M.M., Guo, C. and Zhang, J. (2014) 'Nuclear receptor corepressor complexes in

cancer: mechanism, function and regulation', *American journal of clinical and experimental urology*, 2(3), pp. 169-187.

Xie, W., Song, C., Young, N.L., Sperling, A.S., Xu, F., Sridharan, R., Conway, A.E., Garcia, B.A., Plath, K., Clark, A.T. and Grunstein, M. (2009) 'Histone h3 lysine 56 acetylation is linked to the core transcriptional network in human embryonic stem cells', *Molecular cell*, 33(4), pp. 417-427.

Xue, Y., Wong, J., Moreno, G.T., Young, M.K., Cote, J. and Wang, W. (1998) 'NURD, a Novel Complex with Both ATP-Dependent Chromatin-Remodeling and Histone Deacetylase Activities', *Molecular cell*, 2(6), pp. 851-861.

Yamaguchi, T., Cubizolles, F., Zhang, Y., Reichert, N., Kohler, H., Seiser, C. and Matthias, P. (2010) 'Histone deacetylases 1 and 2 act in concert to promote the G1-to-S progression', *Genes & development*, 24(5), pp. 455-469.

Yang, X. and Seto, E. (2008) 'The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men', *Nature Reviews Molecular Cell Biology*, 9(3), pp. 206-218.

Ying, Q., Nichols, J., Chambers, I. and Smith, A. (2003) 'BMP Induction of Id Proteins Suppresses Differentiation and Sustains Embryonic Stem Cell Self-Renewal in Collaboration with STAT3', *Cell*, 115(3), pp. 281-292.

Ying, Q., Wray, J., Nichols, J., Batlle-Morera, L., Doble, B., Woodgett, J., Cohen, P. Smith, A. (2008) 'The ground state of embryonic stem cell self-renewal', *Nature*, 453(7194), pp. 519-523.

You, A., Tong, J.K., Grozinger, C.M. and Schreiber, S.L. (2001) 'CoREST is an Integral Component of the CoREST-Human Histone Deacetylase Complex', *Proceedings of the National Academy of Sciences of the United States of America*, 98(4), pp. 1454-1458.

Zhang ,Y., Ng, H.H., Erdjument-Bromage, H., Tempst, P., Bird, A. and Reinberg, D. (1999) 'Analysis of the NuRD subunits reveals a histone deacetylase core complex and

a connection with DNA methylation', Genes Development, 13(15), pp. 1924–1935.

Zhang, Y., Kwon, S., Yamaguchi, T., Cubizolles, F., Rousseaux, S., Kneissel, M., Cao, C., Li, N., Cheng, H., Chua, K., Lombard, D., Mizeracki, A., Matthias, G., Alt, F.W., Khochbin, S. and Matthias, P. (2008) 'Mice Lacking Histone Deacetylase 6 Have Hyperacetylated Tubulin but Are Viable and Develop Normally', *Molecular and cellular biology*, 28(5), pp. 1688-1701.

Zhang,X., Wen, H., Shi, X. (2012) 'Lysine methylation : beyond histones', *Acta Biochimica et Biophysica Sinica*, 44(1), pp. 14-27.

Zhou, Y.B.,Gerchman, S.E., Ramakrishnan, V., Travers and Muyldermans, S. (1998) 'Position and orientation of the globular domain of linker histone H5 on the nucleosome', *Nature*, 395(6700), pp. 402-405.

Zhu, B., Zheng, Y., Pham, A., Mandal, S.S., Erdjument-Bromage, H., Tempst, P. and Reinberg, D. (2005) 'Monoubiquitination of Human Histone H2B: The Factors Involved and Their Roles in HOX Gene Regulation', *Molecular cell*, 20(4), pp. 601-611.

Zimmermann, S., Kiefer, F., Prudenziati, M., Spiller, C., Hansen, J., Floss, T., Wurst, W., Minucci, S. and Göttlicher, M. (2007) 'Reduced body size and decreased intestinal tumor rates in HDAC2-mutant mice', *Cancer research*, 67(19), pp. 9047-9054.

Zupkovitz, G., Grausenburger, R., Brunmeir, R., Senese, S., Tischler, J., Jurkin, J., Rembold, M., Meunier, D., Egger, G., Lagger, S., Chiocca, S., Propst, F., Weitzer, G. and Seiser, C. (2010) 'The Cyclin-Dependent Kinase Inhibitor p21 Is a Crucial Target for Histone Deacetylase 1 as a Regulator of Cellular Proliferation', *Molecular and cellular biology*, 30(5), pp. 1171-1181.