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Abstract 

Chronic obstructive pulmonary disease (COPD) is a leading cause of death 

worldwide. Lung function measures obtained through spirometry play a key role 

in the diagnosis of COPD. Both COPD and lung function are affected by genetic 

factors, and identifying genetic variants that have an effect on lung function or 

COPD risk has the potential to lead to improved treatment and prevention of 

COPD. 

This thesis is structured in five chapters, an introductory, a concluding chapter 

and three main chapters which present different approaches that aim to bring 

insights into the genetics of COPD and lung function. Chapter 2 tests the 

association with COPD risk of genetic variants previously associated with lung 

function, and tests their combined effect on lung function and COPD risk, in 

order to explore the role of risk prediction. Chapter 3 aims to identify new 

genetic variants associated with lung function and tests the association of 

genetic variants genome-wide. Chapter 4 focuses on the analysis of low 

frequency variants using different approaches and methodologies, and includes 

two studies. One study assesses associations of low frequency variants 

genome-wide, and the other focuses on genetic regions associated with lung 

function, in order to improve the localization of association signals that often 

comprise broad regions and several genes.  

These studies overall have identified 16 new genetic variants associated with 

lung function, have shown the association with COPD of 4 genetic variants 

previously associated with lung function, and present suggestive evidence of 

association with COPD for low frequency variants within regions associated with 

lung function. 
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Chapter 1:  Introductory chapter 

This chapter provides an introduction to the genetic epidemiology of lung 

function and chronic obstructive pulmonary disease (COPD). It provides an 

introduction to genetic epidemiology in general, explaining the genetic concepts 

used throughout the thesis and placing a special emphasis on genetic 

association studies to identify common and rare variant associations. It 

describes COPD and the lung function measures used for its diagnosis. Finally, 

it sets the context for the genetic epidemiology studies described in this thesis 

and presents the outline of the thesis. References to publications where I am a 

co-author are marked with * in the main text (to aid situations when multiple 

publications are referenced together, publications where I am a co-author are 

also marked with * in the bibliography), and the two articles directly related to 

the thesis are provided in Appendix A. 

 

1.1 Genetic epidemiology 

Epidemiology studies the distribution and causes of health and disease 

conditions in populations, and genetic epidemiology focuses on the study of 

genetic causes and their interactions with environmental factors. Identifying the 

genetic causes of a disease will lead to an improved understanding of the 

underlying biological pathways, which may point to molecular targets for the 

development of new treatments. In addition, understanding the genetic causes 
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of a disease will enable the development of genetic risk profiles which may be 

used in disease prevention strategies or stratified approaches to treatment. 

 

1.1.1  Genetic concepts 

Table 1-1 provides a glossary for genetic terms highlighted in bold throughout 

this section. 

Table 1-1 Genetics glossary box 

allele: alternative DNA sequence in a genomic location 

base pair : 
DNA nucleotides joined by a hydrogen bond between strands at a given 
position  

chromosome: structure in which the DNA is tightly packed together 

crossover: exchange of genetic information between chromosome pairs 

deletion: mutation where some DNA sequence is missing 

diploid: cell that has two copies of each chromosome 

exons: DNA sequence in a gene that codes for a functional unit 

gene: 
stretch of DNA sequence that codes for a protein, or a functional RNA 
molecule, which includes exons, introns and UTRs  

gene expression: 
process that uses the information encoded by a gene to create a functional 
product 

genotype: alleles at a chromosomal position on both chromosomes 

haploid: cell that has one copy of each chromosome 

heterozygous: genotype formed by two different alleles  

homozygous: genotype formed by two copies of the same allele 

Hardy Weinberg 
Equilibrium : 

principle which states that under random mating and no major evolutionary 
influences, allele and genotype frequencies will be stable over generations 
in a population 

insertion: mutation where some DNA sequence is added 

introns: DNA sequence in a gene that is removed by RNA splicing 

linkage 
disequilibrium: 

correlation between alleles of genetic variants produced due to the 
recombination process 

locus: genomic location 

MAF: Minor Allele Frequency, frequency of the less common allele in a population 

mutation: permanent change in the DNA sequence 

nucleotides: molecules which are the subunits of nucleic acids 

recombination: process by which two DNA molecules exchange information 

sex cell (or 
gamete) : 

cell capable of fusing with the sex cell from the opposite sex to form a 
fertilized egg 

SNP: 
Single Nucleotide Polymorphism, genetic variation produced by a 
nucleotide change 

somatic cell: all cells other than sex cells 

transcription: process by which DNA produces RNA 

translation: process by which mRNA produces protein 
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Double-stranded deoxyribonucleic acid (DNA) makes the human genome, and it 

is formed by four kinds of molecules called nucleotides: adenine (A), cytosine 

(C), guanine (G) and thymine (T).  These molecules are joined by strong 

covalent bonds within a single strand, and by weaker hydrogen bonds with the 

complementary strand. Adenines are always paired up with thymines and 

cytosines are always paired up with guanines between strands forming base 

pairs (bp) (Figure 1-1).  The two ends of each strand are called the 5’ (five 

prime) end and 3’ (three prime) end, and the two strands are orientated in 

opposite directions (Figure 1-1). The strand orientated 5’ to 3’ is called the 

“forward” strand and the one orientated 3’ to 5’ is called the “reverse” strand. 

The DNA is located in the nucleus of the cell and it is organized in 

chromosomes, each somatic cell has 22 pairs of autosomal chromosomes 

and one pair of sex chromosomes. One chromosome of each pair is inherited 

from the mother and the other is inherited from the father. 

Figure 1-1 DNA structure 
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Genes are the regions of DNA which encode functional molecules such as 

proteins. In order to produce proteins, bonds between DNA strands are broken 

and single stranded DNA is used as a template to produce ribonucleic acid 

(RNA) in a process called transcription (Figure 1-2). RNA is similar to DNA, 

but it has uracil (U) instead of thymine. The DNA sequence in genes is formed 

by alternating regions of exons and introns. Both exons and introns are 

transcribed into RNA, but only exons contain the sequence that encodes the 

proteins. Therefore introns are then removed, and exons are spliced together to 

produce messenger RNA (mRNA) (Figure 1-2). Messenger RNA travels from 

the nucleus to the cytoplasm of the cell in order to produce proteins in a process 

called translation (Figure 1-2). Sometimes exons are spliced in different ways, 

so that a single gene can encode multiple proteins. At each side of the gene 

sequence there are untranslated regions (UTRs), the 5’ UTR on the 5’ end of 

the gene and the 3’ UTR on the 3’ end of the gene (Figure 1-2). These regions 

are also transcribed into RNA but do not translate into protein; they may play a 

role in regulating gene expression. 

Figure 1-2 From DNA to protein 
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Around 3% of the human genome is comprised of protein-coding genes (4). The 

function of the remainder of the genome is largely unknown, although efforts 

like ENCODE (4) are making important advances; the genome outside of the 

protein-coding gene regions is likely to be involved in regulating gene 

expression through different mechanisms. Proteins carry out a range of 

fundamental functions in the human body, and DNA changes that affect protein 

function or availability can influence health and disease. 

 

Most of the DNA sequence is the same between two individuals. However it 

may differ at a given location (locus), and this difference is called a mutation. 

The alternative sequences of DNA at that location are called alleles (Figure 

1-3). The alleles of an individual at a chromosomal position in both the maternal 

and paternal chromosomes form the genotype (Figure 1-3). A genotype can be 

heterozygous if it is made of two different alleles, for example TG, or 

homozygous if it is made of two copies of the same allele (GG). Since 

information in both strands is complementary, genotypes only use information 

from one strand; genotypes for the two individuals shown in Figure 1-3, could 

be read as GG and TG, or CC and AC depending on which strand we use, but 

both give the same information. Alleles on the forward strand are more 

commonly reported. The term minor allele frequency (MAF) refers to the 

frequency of the “minor”, or less common allele, in a population; for instance in 

Figure 1-3 the minor allele is T (or A if we use the other strand). According to 

the Hardy Weinberg Equilibrium principle, allele and genotype frequencies 
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will be stable over generations, assuming random mating and no major 

evolutionary influences in a population. Genetic variation produced by a 

nucleotide change, such as the one shown in Figure 1-3, is called a single 

nucleotide polymorphism (SNP). Sometimes a given sequence can be deleted 

(deletion) or repeated (by inserting the same sequence again: insertion). 

Large (for example 1kb and above) deletions or insertions are referred to as 

copy number variants. The work presented here focuses mainly on SNPs and 

includes also some analyses of INDELs (small INsertions or DELetions) which 

are treated in the analysis similarly to SNPs; analyses of larger copy number 

variants are more complex and are not covered in this thesis. 

Figure 1-3 Alleles for two individuals at one position 

 

Whilst somatic cells are diploid, sex cells or gametes (sperm and egg) are 

haploid: they only have 23 chromosomes instead of 23 pairs of chromosomes. 

Maternal and paternal sex cells fuse to form the zygote, which will become a 

human embryo with a diploid genome. The chromosomes that make the sex 
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cells are made from a combination of the two original pairs of chromosomes; for 

instance the maternal sex cells are formed by a combination of the maternal 

grandparents’ chromosomes. When sex cells are being produced, crossover 

events occur and chromosome pairs exchange information, which leads to 

recombination (Figure 1-4). Thus, new versions of chromosomes, now made 

from a combination of the two original chromosomes, are assigned randomly to 

sex cells. Due to this process of recombination, genetic variants that are located 

close to each other in a chromosome are more likely to be passed on together 

over many generations. Therefore, in a population the correlation of alleles from 

variants that are located close to each other tends to be higher than the 

correlation of alleles from variants located further apart. This correlation is 

called linkage disequilibrium (LD). 

Figure 1-4 Crossover and recombination for a maternal chromosome 

 



8 

 

1.1.2  Genetic epidemiology: an overview 

There are several steps in the analysis of a trait in genetic epidemiology. The 

first step is to assess whether that trait is influenced by genetic factors. This can 

be done by assessing whether it aggregates within families and in that case, 

whether the pattern of aggregation is consistent with a genetic effect. At this 

stage no direct measures of genetic variants are needed.  

 

A trait aggregates within families if there is greater frequency of a disease 

among close relatives of individuals with the disease than among relatives of 

individuals without the disease. Once aggregation within families is shown, in 

order to assess whether the pattern of aggregation is consistent with a genetic 

effect, variance components models can be used. Variance components 

modelling takes into account how a gene or group of genes might affect the trait 

of interest (for example, through an additive effect) and the probability of 

sharing alleles which have been inherited directly from the same ancestor, 

identical by descent (IBD), among different classes of relatives. With these 

models it is possible to estimate the proportion of the variance of the trait that is 

attributable to genetic effects, called heritability. Narrow sense heritability is the 

proportion of the trait variance explained by additive genetic effects; and broad 

sense heritability is the proportion of the trait variance attributable to all genetic 

effects, including additive and non-additive effects. To estimate broad sense 

heritability, specific familial structures such as monozygous twins are required.  
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For quantitative traits, heritability is formally defined, and for binary traits it can 

be derived using the concept of liability, a quantitative measure assumed to be 

normally distributed that determines the probability of an individual developing 

the disease of interest (5), so that an individual is considered diseased if their 

liability exceeds a certain threshold. Heritability estimates for both quantitative 

and binary traits might be affected by biases, and in particular the heritability of 

the liability of a binary trait may be especially hard to interpret (6, 7). With 

modern advances in technologies, new methodologies to estimate heritability 

using genomics data have arisen (8). Despite their pitfalls, heritability remains a 

relevant metric, which can inform decisions about study design. Once it is 

established that a trait is influenced by genetic factors, different approaches can 

be used to identify the genomic locations that have an effect on the trait.  

 

Genetic linkage studies are based on a limited number of genetic variants 

spread throughout the genome and on models that quantify how often alleles 

are transmitted through a family with the disease status, based on the biology of 

gamete formation and chromosomal recombination. Genetic linkage studies 

have been successful in identifying genes with large effects for monogenic 

disorders (9). However, studying complex traits, affected by the interaction of 

many genetic variants with small effect sizes and environmental factors, has 

proven to be more challenging (10).  
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Candidate gene studies test the association of genes selected in advance (for 

example due to their suggested biological function) with the trait of interest, and 

are therefore limited by existing knowledge. These studies have often been 

underpowered mainly due to their small sample sizes, and their findings have 

not generally been replicated (10). 

 

The development of chip-based microarray technology, that allows cost-

effective assay of a large number of genetic variants genome-wide, made 

possible the phenomenon of genome-wide association studies (GWAS). In 

GWAS, individuals are genotyped using microarrays and the association of 

each variant with the trait of interest is tested. A detailed explanation of 

genome-wide association studies is provided in section 1.1.3. GWAS have been 

successful in identifying common genetic variants (MAF > 5%) associated with 

a number of diseases (11, 12). However, these loci tend to have small effect 

sizes and explain only a small proportion of the heritability for these traits. A 

series of hypotheses have been formulated to explain this issue (13, 14). One of 

them (13) indicates that variants with lower allele frequency are more likely to 

have larger effects and therefore could explain a larger proportion of the 

heritability. A large focus in the study of the genetics of complex diseases at the 

moment is to study rare genetic variation, and different study designs are 

currently being used. These approaches are discussed in section 1.1.4. 
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1.1.3 Study of common variants: GWAS 

Genome-wide association studies are a powerful tool to study the effect of 

common genetic variants (MAF > 5%) on complex traits. These studies aim to 

test the association of common genetic variation genome-wide with a trait of 

interest, by testing the association of a subset of variants (≥ 300,000) spread 

throughout the genome. Given the linkage disequilibrium existing between 

variants across the genome, this limited number of variants tags a large 

proportion of the common variation genome-wide. In addition, the number of 

variants being analysed in GWAS can increase to millions after undertaking 

imputation; this technique makes use of the LD patterns across the genome to 

infer the genotypes of variants that have not been genotyped by using a 

reference panel with data on a larger number of variants. Details of this 

approach are given later in this section. The development of chip-based 

microarray technology, where a single chip can be used to measure genetic 

variants in multiple samples in one experiment, has made it possible to assay 

hundreds of thousands of variants in thousands of individuals at an affordable 

cost, empowering these studies to detect genetic associations. In addition, 

GWAS present a hypothesis-free design, which has the potential to identify new 

biological pathways for the trait of interest. 

 

1.1.3.1 Post-genotyping quality control checks 

In order to minimise false positive associations, quality control (QC) checks, 

both per genetic variant and per individual, are undertaken on the genotype 
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data (15). Genetic variant QC checks include: (i) estimating variant call rate (for 

a given variant, proportion of individuals with no missing data), to identify 

variants with low call rate which may indicate a failure of the assay for that 

variant; (ii) identifying variants out of Hardy Weinberg Equilibrium (see 

explanation in Table 1-1), which can indicate genotyping or genotype-calling 

errors; and (iii) depending on the genotyping array used and its coverage for 

low allele frequency variants, variants with MAF below a certain threshold have 

often been excluded. Individual sample QC checks include: (i) inferring sex from 

genomic data and comparing it with the sex information provided in the 

phenotypic data, in order to identify potential DNA sample mix-up or DNA 

sample contamination; (ii) estimating heterozygosity rates (the proportion of 

heterozygous genotypes for a given individual), since individuals with outlying 

heterozygosity are likely to point to DNA sample contamination; (iii) estimating 

individual call rate (for a given individual, proportion of genotypes with no 

missing data), since individuals with low call rate indicate low DNA quality or 

concentration; and (iv) estimating relatedness for each pair of individuals, in 

order to identify duplicated individuals, which may have been introduced 

intentionally as positive controls, or may point to sample mix-ups, or related 

individuals, which need to be taken into account when choosing association 

testing methods.  
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1.1.3.2 Imputation 

After undertaking quality control checks on the genotype data, imputation is 

usually undertaken to increase the number of genetic variants that will be tested 

for association with the trait of interest, and to fill in any missing genotypes for 

genotyped variants. Thanks to the LD patterns across the genome, missing 

genotypes can be inferred using a reference panel with complete data for those 

variants with missing genotypes, in a process called imputation. Projects like 

HapMap (16), which sequenced 270 individuals from different ancestries in the 

first phase and made the data publicly available, allow this inference of missing 

genotypes. Using HapMap’s reference panel (16) the number of variants tested 

can increase from ~ 300,000 genotyped variants to ~ 2.5 million imputed 

variants. Well tested methods (17-19) are available to implement this 

imputation, and they provide imputation quality metrics for each variant (20). 

Variants with low imputation quality are usually excluded from the analysis. 

 

1.1.3.3 Association testing 

Different genetic models can be used to test the effect of a genetic variant on a 

trait. According different biological scenarios we can use a recessive, dominant 

or additive genetic model. The effect of one allele on the trait is usually 

reported, and this allele is referred to as the coded or effect allele. A coded 

allele is recessive, if two copies are required for it to have an effect on the trait, 

whereas a coded allele is dominant if only one copy is required to have an 

effect on the trait and that effect is the same as if there were two copies. In 
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contrast, a coded allele is additive if the effect on the trait is in equal increments 

per copy of the coded allele. For instance, given three possible genotypes for 

one genetic variant, AA, AG and GG, if we want to measure the effect of A (A is 

coded allele) in a model and A is a recessive allele, we will code the genotypes 

as 1 for AA and 0 for AG and GG; if A was a dominant allele we would code AA 

and AG as 1 and GG as 0; and if A had an additive effect we would code AA as 

2, AG as 1 and GG as 0. The true genetic model is usually unknown, and 

additive genetic models are the most commonly employed in GWAS (21, 22)*. 

 

Both quantitative traits and binary disease status (case/control) are studied in 

GWAS. Case-control studies are generally more prone to being affected by 

biases; for instance if cases and controls have been genotyped separately, 

differential biases can arise. In some instances, quantitative traits underlie 

disease status and a powerful approach in this case is to study the quantitative 

traits genome-wide and then assess the association with the disease only for 

the variants that showed association with the quantitative traits (23, 24)*.  

 

Genetic association studies are not as severely affected by confounding as 

observational epidemiological studies, and often little adjustment is made for 

covariates. Due to the random allocation of alleles in gamete formation, lifestyle 

factors are not likely to confound genetic associations. However genetic 

associations can be confounded by differences in population structure; if a 
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given allele varies in frequency across strata of a study population, and if the 

trait of interest also happens to vary also across strata of the study populations, 

this population structure can confound the association, and potentially cause a 

“false positive” association. Two main approaches have been developed to deal 

with population structure in GWAS. The first one is to summarise genetic 

variation genome-wide across individuals using principal components analysis 

(25). Principal components are calculated using the covariance matrix of 

individuals included in the study. These principal components can be used in 

two ways. They can be calculated jointly for individuals in the study and for 

individuals of known different ancestries. This way, individuals of different 

ancestries to the population being studied can be identified and excluded or 

analysed separately. Alternatively, if all individuals in the study belong to the 

same ancestry, principal components can be calculated only for individuals 

included in the study and they can be added as covariates to the model to 

account for more subtle population structure. The second approach is to assess 

whether the association test statistics are over-inflated genome-wide, which 

would be expected in the presence of population structure, and in this case 

adjust the test statistics. This method is called genomic control (26). In order to 

assess whether the statistics are over-inflated, the genomic inflation factor (𝜆) is 

calculated as the median of the test statistics divided the median of the 

distribution of these test statistics under the null hypothesis of no association. If 

𝜆 is greater than one this indicates possible over-inflation, and the statistics are 

divided by 𝜆 in order to correct for this over-inflation. 
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1.1.3.4 Post-association testing quality control checks  

Once the genome-wide association testing has been undertaken, additional 

checks are usually performed on the most significant variants because 

associations with very low P-values can be enriched for variants affected by 

biases. Cluster plots of hybridization intensities for each allele at directly 

genotyped genetic variants can be examined. Calling algorithms compare the 

relative strength of hybridization intensities for each allele to call genotypes; if 

the three genotype clusters (homozygous for one allele, heterozygous and 

homozygous for the other allele) are not well separated this indicates that the 

genotype calls might not be reliable. Given the linkage disequilibrium that exists 

between genetic variants that are located close to each other, it is expected that 

if a variant is significant, variants in LD with it will also be significant. Manhattan 

plots, which show P-values genome-wide ordered by chromosomal position, are 

used to visualise the results genome-wide, and zoomed in versions of the 

Manhattan plot are produced for any interesting regions. These zoomed in 

versions of the Manhattan plot are called region plots, and also show the 

degree of LD for variants in the region with the top variant, represented with 

different colours; and are used to assess whether variants in LD with the top 

variant show support for the association. 

 

1.1.3.5 Follow-up studies and replication  

Despite undertaking thorough quality control checks throughout the analytic 

process, some false positive associations might still arise given the large 
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number of variants tested. For this reason after undertaking the association 

testing genome-wide, studies seek replication of the GWAS top signals in 

independent samples. Therefore genome-wide association studies usually have 

a discovery stage, where associations are tested genome-wide, and a follow-up 

(or replication) stage, where only a reduced number of variants with the 

strongest evidence from discovery are tested in a set of independent samples. 

Effect estimates of the top signals in the discovery stage are likely to be 

affected by winner’s curse bias (27), and overestimate the true effect sizes. For 

this reason, larger sample sizes for the follow-up stage are required in order to 

detect the genetic associations identified in discovery; and effect size estimates 

from the follow-up stage will be more reliable than from discovery.  

 

1.1.3.6 Significance threshold 

In GWAS a very large number of hypotheses are being tested, and it is 

therefore important to use a suitable significance threshold. There is a general 

consensus on a threshold of ~5 x 10-8 for considering a variant genome-wide 

significant in European populations, after correcting for 1-2 million independent 

tests (11). In order to increase power, the discovery stage and the follow-up 

stage are often meta-analysed for the subset of variants selected for follow-up, 

and a variant is considered genome-wide significant if it meets the P < 5 x 10-8 

threshold after discovery and follow-up meta-analysis (11, 28). 
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1.1.3.7 Meta-analysis 

Common genetic variants that affect complex traits tend to have moderate 

effect sizes, and very large sample sizes are required to detect them. For this 

reason many studies join their efforts forming large consortia. Sharing individual 

level data is often challenging, and a common practice in consortia is to develop 

an analysis plan, which is then followed by each study; and then meta-analyse 

results across studies centrally. Often studies use different genotyping platforms 

including different sets of variants, in this context imputation becomes relevant, 

not just due to the increase in number of variants being analysed, but because it 

allows the meta-analysis of the same set of variants across studies. It is 

important that studies included in a meta-analysis have similar characteristics, 

for instance that the trait being analysed has been produced in the same way. 

There are different approaches to meta-analyse findings across studies; fixed 

effect meta-analyses are commonly used, but in the presence of heterogeneity 

across studies, when for example not all the studies have been undertaken in 

the same way, random effect meta-analyses might be preferred instead. 

 

Additional quality control checks are undertaken when meta-analysing study 

level results. Before undertaking the meta-analysis it is important to ensure the 

quality of the data for all the studies that will take part in the meta-analysis. In 

general additive genetic models are used in GWAS, so that the effect size of 

one allele is reported by each study. It is crucial when meta-analysing effect 

sizes that they all correspond to the same allele, so effect sizes often need to 
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be flipped for some studies. A comprehensive description of these quality 

control checks is provided in Chapter 3. Once the meta-analysis has been 

completed, additional checks can be implemented for the top findings. For 

instance, evaluating heterogeneity across studies, by formally testing for 

heterogeneity and by producing forest plots, where the effect sizes across 

studies are plotted together. In addition, when working with imputed data, a 

statistic termed “N effective” can be calculated for each variant, by multiplying 

the imputation quality by the sample size in each study and then summing these 

across studies. This statistic aids to assess how well imputed a variant is across 

studies. 

 

1.1.4 Study of rare variants 

Despite the success of GWAS in identifying common variants that affect 

complex traits, variants that meet the genome-wide significance threshold in 

GWAS tend to explain collectively a small proportion of the heritability (11, 12). 

In addition, identifying the causal variants that drive GWAS signals is often 

challenging since GWAS signals often involve several correlated variants and 

can span several genes. There is evidence in the literature (29, 30) of synthetic 

associations (associations of common markers as a result of multiple low allele 

frequency [1% < MAF < 5%] or rare [MAF < 1%] causal variants) explaining 

some GWAS signals. Although it is not clear how frequently these synthetic 

associations might occur, it is unlikely that they will explain many GWAS hits 

(31). There is also evidence in the literature (32) of rare variants in the same 



20 

 

locus identified by a GWAS association for a common variant, which also have 

an effect on the trait but independently of the common variant. Once a rare 

variant associated with a trait is identified, it is usually easier to narrow down the 

association signal, since rare variants are produced by more recent mutations 

and therefore they are only correlated with a limited number of other variants 

(33). In addition, rare variants may directly affect function and according to 

evolutionary theory, deleterious alleles with large effects are more likely to be 

rare (34). For these reasons rare variants are expected to be more clinically 

relevant and to be important for explaining the missing heritability. 

 

1.1.4.1 GWAS approaches to identify rare variants 

Detecting associations for rare variants is challenging. Tools that have been 

used in GWAS are not ideal for detecting rare variant associations. GWAS SNP 

chips mainly contain common variants, and genotype calling algorithms that are 

based on genotype clustering do not always perform well when there is a small 

number of variants within a genotype cluster (35), as is the case for rare 

variants. However, new genotyping chips are being designed with larger content 

of rare and low allele frequency variants, such as the exome chip which 

includes coding variants down to low allele frequencies. Imputation for rare 

variants is also more challenging since imputation uses LD patterns across the 

genome to infer missing genotypes, and rare variants are only correlated with a 

limited number of other variants. Larger imputation reference panels are 

currently being produced by sequencing large numbers of individuals, which 
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enables the imputation of increasingly lower frequency variants. The 1000 

Genomes Project Phase 1(36) sequenced 1,092 individuals from 14 populations 

from Europe, Africa, East Asia and America in Phase 1 and has made publicly 

available an imputation reference panel which comprises around 38 million 

SNPs and 1.4 million INDELs. The UK10K project (http://www.uk10k.org/) is a 

UK based project that has sequenced 3,781 British individuals and has 

combined their data with the 1000 Genomes Project (36) to produce a 

combined reference panel. In addition, the Haplotype Reference Consortium 

(http://www.haplotype-reference-consortium.org/) combines data from multiple 

cohorts and will create a reference panel with more than 30,000 individuals 

mainly of European ancestry. 

 

1.1.4.2 Sequencing 

DNA sequencing is the process used to determine the nucleotides of a DNA 

molecule and their order. Therefore sequencing studies have data available for 

every nucleotide (both those that vary between individuals and those that do 

not) and not just a subset of genetic variants like in GWAS. For this reason they 

would be the preferred choice for identifying associations with rare variants and 

for identifying the causal variants that underlie GWAS findings. 

 

In the sequencing process, the DNA is broken into small fragments which are 

then sequenced in a large number of parallel reactions. The strings of 

http://www.uk10k.org/
http://www.haplotype-reference-consortium.org/
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nucleotides in each DNA fragment produced after the sequencing process are 

called reads (Figure 1-5). In order to find which part of the genome each read 

comes from, these reads are mapped to a reference genome in a process 

called alignment (Figure 1-5). Depth of coverage for a given position is the 

number of reads that align to that position (Figure 1-5). When different 

nucleotides appear in different reads for the same position, variant calling 

algorithms attempt to distinguish whether this difference is due to a sequencing 

error or due to a true variant. Reliable variant calling is highly dependent on 

depth of coverage. 

Figure 1-5 Screenshot of read alignment 

 

Although sequencing studies are a promising tool for studying rare variants, 

they also present challenges. The sources of variation that affect the 

sequencing process are more varied than those affecting genotyping and are in 

general less well understood (37). In contrast to the consistent performance of 

genotyping platforms, sequencing has a higher error rate, which varies across 

the genome. The use of different sequencing technologies within a study can 
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introduce biases, and ideally all individuals in an association study based on 

sequencing should be sequenced using the same technology (37). Even when 

the same technology and protocol are applied, sequencing reactions theirselves 

can vary and introduce variation between units of DNA that have been 

sequenced separately (38). These variation needs to be taken into account in 

the variant calling process to avoid false positive calls, and variant calling 

algorithms are gradually incorporating this information (39). In addition, QC and 

association pipelines for sequencing are not as clear or as well tested as they 

are for GWAS. Nevertheless, sequencing technologies are improving rapidly, 

and advances are being made in producing software and guidelines to analyse 

sequence data (37, 40). 

 

Sequencing prices have dropped in the last few years, but high depth whole 

genome sequencing remains expensive. For this reason there are sequencing 

study designs that target specific variation or specific regions, such as exome 

sequencing studies where only the coding part of the genome is sequenced, or 

targeted sequencing studies where only candidate regions, or regions with prior 

evidence of association with the trait are sequenced. In order to maximise 

sample size, a pooled sample design can be used, where DNA from multiple 

individuals is pooled, so that DNA from different individuals is sequenced 

together. This design is especially beneficial for targeted sequencing studies, 

where only target regions are sequenced instead of whole genomes and this 

design allows a cost-efficient use of the sequencing capacity. In addition, in 
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targeted sequencing studies there is high cost involved in capturing the targeted 

regions. This step consists of enriching the DNA for the regions of interest. In a 

pooled design this step only needs to be undertaken once per pool, instead of 

once per individual reducing the cost considerably. However this comes at a 

price, and variant calling is more challenging in this context. When individuals 

are sequenced separately, for a variant with a heterozygous genotype an 

individual is expected to have one allele in around 50% of the reads and the 

other allele in the remaining 50% of reads, regardless of how common the 

variant is in the population. However, if a number of individuals are sequenced 

together in a pool, the number of reads with the minor allele for a rare variant 

will be small, and depending on depth, could be close to the sequencing error 

rate, making it much harder to identify a true rare variant. Several methods (41-

47) have been developed to account for pooled designs when calling variants, 

and a selection of them are discussed and applied in Chapter 4.  

 

1.1.4.3 Collapsing methods 

Single variant analysis is often underpowered for detecting associations with 

rare variants. In order to increase power to detect associations with rare 

variants, their effect can be analysed jointly within a region. Regions can be 

defined in different ways according to different biological scenarios, for instance 

regions can be defined using gene coordinates in order to detect the effect of 

multiple variants in a gene, or can be defined as sliding windows in order to 

detect the effect of regulatory regions. A large range of methods for analysing 
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rare variants has been developed in the last few years (48). Some of these 

methods (49-52) aggregate information across rare variants into a single 

quantity, which is then tested for association with the trait. These methods are 

called burden tests, and they assume that all rare variants tested within a region 

have an effect on the trait on the same direction (all protective or all damaging). 

Other methods (53, 54) have been developed that model similarities across 

individuals, and these allow variants within a region to have different direction of 

effect on the trait. Variants might be weighted according to data quality, allele 

frequency or functionality. A selection of these methods are discussed and 

applied in Chapter 4.  

 

1.2 COPD, lung function and spirometry  

Chronic obstructive pulmonary disease (COPD) is a major health concern 

across the world. According to the World Health Organization 

(http://www.who.int/en/) around 64 million people were estimated to have COPD 

worldwide in 2004, with more than 3 million deaths from COPD in 2005, 90% of 

which occurred in low- and middle-income countries; these numbers are 

expected to increase in the coming decades. 

 

1.2.1  Definition 

COPD is a preventable and treatable disease, characterized by chronic airflow 

limitation that is not fully reversible and by pathological changes in the lung (55). 

http://www.who.int/en/
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Symptoms include breathlessness, chronic cough and chronic sputum 

production. Exacerbations, episodes of acute worsening of symptoms, are 

common in patients with COPD. Chronic inflammation in response to inhaled 

irritants leads to the narrowing of the small airways (obstructive bronchitis) and 

to the destruction of lung functional tissue (emphysema), which produce chronic 

airflow limitation (55). 

 

COPD prevalence estimates vary from study to study according to differences 

in the methodologies used (56). COPD often results from accumulation of long 

term exposure to noxious agents, and is usually developed later in life (56, 57). 

The prevalence in individuals over 40 years old is estimated to be around 10% 

(56) and is higher in smokers (around15% (56)) and ex-smokers (around 10% 

(56)) than in never-smokers (3% to 7% (56, 58)). 

 

1.2.2  Risk factors 

The main risk factor for COPD is smoking; cigarette smoking is more common, 

but other types of tobacco as well as passive smoking are also risk factors (55). 

However, not all smokers develop COPD and genetics are known to play a role. 

What is known of the genetics of COPD is discussed in the next section (1.3). 

Occupational exposures to dusts and fumes (59, 60) and outdoor air pollution 

are also risk factors for COPD (61), as well as indoor pollution from biomass 
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cooking and heating (62-64), which is particularly relevant in developing 

countries. 

 

Aging is associated with increased risk of COPD (55), however it is unclear 

whether the aging process is itself a risk factor or whether it only reflects the 

accumulation of exposures through life. The prevalence of COPD in males used 

to be greater than in females, however recent studies show that prevalence is 

almost equal (65); this is likely to be due to the increase in women taking up 

smoking. 

 

Lung growth and development also have an effect on the risk of developing 

COPD. Since the lungs are not fully developed until late adolescence (66), 

factors that affect fetal development, childhood or adolescence might also have 

an effect on an individual’s risk of developing COPD; for example, maternal 

smoking (67), childhood respiratory infections (68) or asthma in childhood (69). 

 

1.2.3  Diagnosis 

Patients who suffer from breathlessness, chronic cough, or sputum production, 

or who have a history of exposure to risk factors or a family history of COPD are 

considered for clinical diagnosis of COPD (55). In order to make a clinical 

diagnosis of COPD, spirometry is required. Spirometry is a simple test that 
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measures airflow limitation reproducibly and reliably (55, 70), and should be 

undertaken following published guidelines (71). The three spirometry measures 

most commonly used in the diagnosis of COPD are: Forced Vital Capacity 

(FVC), total volume of air exhaled in one breath; Forced Expiratory Volume in 

one second (FEV1), volume of air expired in the first second of a maximal 

expiration and the ratio of FEV1 over FVC. A ratio of FEV1 over FVC after using 

a bronchodilator, a substance that dilates the bronchi and bronchioles, below 

0.7 in adults indicates airflow limitation. Postbronchodilator FEV1 is used to 

assess the severity of this airflow limitation. Since FEV1 is influenced by age, 

sex, height and ethnicity, a percentage of the predicted normal value is used 

instead, using normal values for the local populations (72, 73). According to the 

Global initiative for chronic Obstructive Lung Disease (GOLD) guidelines (55), 

patients with airflow obstruction (FEV1/FVC < 0.7) and FEV1≥ 80% of predicted 

are classified as mild or GOLD stage 1, those with 50% ≤ FEV1 < 80% of 

predicted are classified as moderate or GOLD stage 2, those with 30% ≤ FEV1 

< 50% of predicted are classified as severe or GOLD stage 3 and those with 

FEV1 < 30% of predicted are classified as very severe or GOLD stage 4.  

 

Until the most recent version of the GOLD guidelines, COPD could be 

diagnosed only by undertaking spirometry, However, the current version of 

these guidelines also requires an assessment of the risk of exacerbations and 

of symptoms according to two questionnaires: the COPD Assessment Test 

(CAT) or the modified British Medical Research Council (mMRC). Patients are 



29 

 

now divided into four categories: A) GOLD stage 1 or 2, one or less 

exacerbations per year and a CAT score < 10 or a mMRC score between 0 and 

1; B)  GOLD stage 1 or 2, one or less exacerbations per year and a CAT score 

≥ 10 or a mMRC score ≥ 2; C) GOLD stage 3 or 4, two or more exacerbations 

per year and a CAT score < 10 or a mMRC score between 0 and 1; and D) 

GOLD stage 3 or 4, two or more exacerbations per year and a CAT score ≥ 10 

or a mMRC score ≥ 2. Additionally an assessment of co-morbidities is also 

recommended. 

 

Differential diagnoses for COPD include congestive heart failure, 

bronchiectasis, tuberculosis, etc. Asthma symptoms often overlap with COPD 

symptoms. However asthma often starts in childhood (55), and is characterised 

by attacks of breathlessness and wheezing followed by relatively symptom-free 

periods. In addition, airflow obstruction in asthma is reversible by the use of 

bronchodilators, whereas in COPD it is not fully reversible. It is sometimes not 

possible to distinguish chronic asthma from COPD using current testing 

techniques, and in these cases it is assumed that asthma and COPD coexist 

(55). 

 

1.2.4  Biological mechanisms and features of COPD  

The inhalation of noxious particles triggers an abnormal inflammatory response 

in the lungs of patients with COPD (55). This abnormal inflammatory response 
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leads to faulty injury and repair mechanisms that result in structural changes 

and narrow the airways. Another consequence of the abnormal inflammatory 

process is the destruction of lung functional tissue (74). The nature of the 

inflammatory response in patients who do not smoke and have not inhaled 

other harmful particles is unknown, as are the mechanisms involved in lung 

inflammation after smoking cessation. The inflammatory response in the lungs 

leads to the release of proteolytic enzymes as a defence mechanism. However 

if insufficient antiproteases are produced, an imbalance occurs that might lead 

to the destruction of elastin, an elastic protein that plays a major role in lung 

parenchyma. The loss of elasticity in the lungs produced by the destruction of 

elastin, is a key feature of emphysema (55). Inhalation of harmful particles 

produces an increase in reactive oxygen species in the lungs, which might 

produce an imbalance if insufficient antioxidants are produced to counteract 

their effect. This imbalance is called oxidative stress, and it is thought to 

contribute to the worsening of COPD through different mechanisms (75). 

 

Airway obstruction in COPD results in air trapping during expiration, so that 

patients are not able to exhale completely and air is trapped in their lungs (55). 

This is called hyperinflation, and it also reduces inspiratory capacity, especially 

during exercise. Gas exchange through the alveolar-capillary membrane is 

often altered in COPD patients, and worsens with disease progression (55). 

Hypersecretion of mucus and the consequential chronic cough are present in 

patients with chronic bronchitis (76). However, they are not always a feature of 
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COPD, and they are not necessarily associated with airflow limitation (55). 

Bacterial or viral infections, pollutants or other unknown factors can trigger 

exacerbations of respiratory symptoms in COPD patients. Exacerbations 

accelerate disease progression (77) and their frequency varies from patient to 

patient, although they tend to become more regular when the disease is more 

severe.  

 

1.3 Genetic epidemiology of lung function and COPD 

Family studies have shown that lung function and COPD aggregate within 

families (78-80), and narrow sense heritability estimates between 40% and 50% 

for cross sectional lung function (70, 81, 82) and around 60% for COPD 

susceptibility have been reported (83). COPD is one of the leading causes of 

death worldwide (55), and lung function measures such as FEV1 and FEV1/FVC 

are used in diagnosis. The understanding of the genetics of lung function and 

COPD has the potential to lead to the development of new treatment and 

preventive strategies. 

  

The first gene convincingly associated with COPD was SERPINA1. Mutations in 

this gene lead to alpha1-antitrypsin (AAT) deficiency (84) and cause COPD 

(AAT deficiency accounts for 1-2% of COPD cases) (85). Given that AAT 

protects the lung against proteolytic damage, AAT deficiency leads to early-

onset emphysema (84). AAT deficiency is produced by mutations in only one 
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gene (it is a monogenic disorder), however the development and severity of the 

disease varies among patients (85). 

 

Linkage studies reported linkage with lung function and COPD in several 

genomic locations; including chromosomes 1, 2, 12 and 19 (86-88). However, 

this linkage was reported in large genomic regions containing millions of base 

pairs and hundreds of genes, which made it hard to narrow down the signals. 

Candidate gene studies selected genes based on their potential connection with 

COPD, such as those involved in proteinase–antiproteinase and oxidative 

stress pathways (89). Many candidate gene studies were published for lung 

function and COPD, but their results were not often replicated (90). Candidate 

genes that remained significant after meta-analysing findings across different 

studies include GSTM1, TNF, TGFB1 and SOD3 (91). A comprehensive 

assessment of the effect of genes reported to be associated with lung function 

in candidate gene studies on lung function in a GWAS with more than 20,000 

individuals did not show strong evidence of association for these genes (92)*. 

Overall, evidence from the candidate gene literature is hard to interpret (93)*. 

Differences in study populations, such as different ancestries, as well as 

differences in adjustments, particularly smoking adjustments, could explain 

some of the differing results obtained between studies. However, more serious 

issues are the limited power due to generally small sample sizes, the liberal 

statistical threshold for significance, failing to properly account for multiple 

testing, and the severe reporting and publication bias. 
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Genome-wide association studies overcome many of these problems, given 

that they present a hypothesis-free approach and use a well-established 

statistical threshold (the current consensus is P < 5 x 10-8) to define an 

association. GWAS for lung function and COPD have identified a number of loci 

to date. Two GWAS published in 2009, identified variants associated with 

FEV1/FVC (94) and COPD (95) near HHIP (hedgehog interacting protein) at 

4q31.21, and variants associated with COPD (95) in the alpha-nicotinic 

acetylcholine receptor CHRNA 3/5 at 15q25.1. In 2010 two large consortia, 

SpiroMeta (23) and CHARGE (96), each with over 20,000 individuals, meta-

analysed GWAS results for FEV1 and FEV1/FVC. Jointly these two studies 

identified 10 additional variants that were genome-wide significantly associated 

with lung function in at least one consortium, in or near: TNS1, FAM13, GSTCD, 

HTR4, ADAM19, AGER, GPR126, PTCH1, THSD4 and PID1. GSTCD 

(glutathione S-transferase, C-terminal domain containing) may affect lung 

function through its involvement in cellular detoxification (97). HTR4 (5-

hydroxytryptamine (serotonin) receptor 4, G protein-coupled) may play a role in 

mediating air calibre (98). AGER is highly expressed in the lung (99), and 

reduced AGER expression has been related to pulmonary fibrosis (100, 101). 

THSD4 may have an effect on lung function by playing a role in would healing 

and inflammation (23, 102). Another GWAS of COPD (103) showed that FAM13 

was also associated with COPD. In Chapter 3 I present a meta-analysis of 

studies that contributed to the SpiroMeta meta-analysis (23), to the CHARGE 

meta-analysis (96) and of some additional studies, with a total sample size of 

48,201 individuals, the largest meta-analysis of GWAS for lung function (2)* at 
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the time. In Chapter 5 I discuss the findings of additional GWAS of COPD and 

lung function undertaken after the studies presented here. 

 

Collectively, all the lung function loci discovered to date only explain a small 

proportion of the lung function heritability (2)*, similar to findings for other 

complex traits (13). For this reason, several efforts are in progress with the aim 

to identify low allele frequency and rare variants associated with lung function 

and COPD. In Chapter 4 I present two analyses undertaken with the aim of 

identifying rare variants associated with lung function.  

 

1.4 Outline of the thesis 

Chapter 2 describes an analysis of the association with COPD of a subset of 

variants associated with lung function which were identified in the first 

SpiroMeta study (23), and assesses their joint effect on lung function and 

COPD. This study was undertaken by the studies that participated in the initial 

SpiroMeta study (23). For this study I liaised with analysts from the different 

studies, carried out thorough quality control checks and meta-analysed the 

results across studies. I also designed and undertook sensitivity analyses using 

individual level data from a subset of studies to show the robustness of the 

findings. This work was published in the American Journal of Respiratory 

Critical Care Medicine in 2011 (24)*, and it is presented in Appendix A. 
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In Chapter 3 I present a large meta-analysis of GWAS of lung function. For this 

study I designed the analysis plan and coordinated analyses undertaken by the 

studies that took part in the meta-analysis. This chapter puts a particular 

emphasis on the in-depth quality control procedure that I undertook and 

highlights some of the issues encountered and how they were resolved. I meta-

analysed the results across studies and undertook additional analyses to aid the 

interpretation of the findings. This work was published in Nature Genetics in 

2011 (2)* and it is presented in Appendix A. 

 

In Chapter 4 I present two different approaches to study the effect of rare 

variants on lung function. In section 4.2 of Chapter 4 I describe a meta-analysis 

of the results of a burden test undertaken by a subset of SpiroMeta studies. 

Since this was a new approach, I first piloted the analysis using individual level 

data from one study and then designed the analysis plan for the burden test 

analysis. After that, I applied the same procedure as in previous chapters, 

ensuring the quality of the data, meta-analysing results across studies and 

interpreting the findings. In section 4.3, I present a targeted sequencing study, 

with a pooled design, of the 26 loci associated with lung function in Chapter 3 

and previous GWAS (23, 94, 96) undertaken in 300 COPD cases and 300 

controls. Here I applied a range of methods to deal with the issues that arose 

from working with pooled sequence data and designed the final strategy for the 

analysis. I tested the effect of single variants, and the combined effect of rare 

variants in a locus using two different approaches. 
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Finally, Chapter 5 summarises the findings from the different chapters, 

discusses analytic approaches and limitations, gives an update of additional 

studies undertaken in the field and presents some potential applications of the 

findings.
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Chapter 2:  Associations with COPD and risk scores in the 

SpiroMeta dataset 

This chapter assesses the association with COPD risk of six genetic variants (in 

or near TNS1, GSTCD, HHIP, HTR4, AGER and THSD4) associated with lung 

function in the SpiroMeta consortium (23), and investigates the combined effect 

of risk alleles in these six loci on lung function and COPD risk. This work was 

published in the American Journal of Respiratory Critical Care Medicine in 2011 

(24)* (Appendix A). 

  

2.1 Introduction 

Chronic obstructive pulmonary disease aggregates in families (78-80) and is a 

leading cause of morbidity and mortality worldwide (104). The discovery of 

genetic variants that affect COPD risk could lead to the development of new 

preventive and treatment strategies. Many studies have investigated the 

genetics of COPD to date, however only a limited number of loci have been 

convincingly associated with COPD (92, 105)* (see section 1.3 in Chapter 1 for 

details). Among others, the reduced statistical power of analyzing a binary 

outcome (COPD cases vs. controls), has been one of the main limitations of 

these studies. Genome-wide association studies test the association of a trait 

with genetic variants across the genome and require a strict correction for 

multiple testing to avoid false positive associations. This strict correction 

coupled with the limited power of analyzing a binary trait makes it very 

challenging to detect genetic associations with COPD risk in a COPD GWAS. 
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However, if we assume that common genetic variants may have an effect on 

the risk of developing COPD through their effect on lung function, we could 

study the quantitative spirometry measures used in the diagnosis of COPD, 

instead of studying the disease status. Undertaking a GWAS on lung function 

measures and then assessing the association with COPD risk for the genetic 

variants with an effect on lung function would reduce the number of multiple 

tests undertaken and could be a statistically powerful approach. 

 

FEV1 and FEV1/FVC play a key role in the diagnosis of COPD (details in section 

1.2 in Chapter 1). Reduced FEV1/FVC indicates airway obstruction and reduced 

FEV1 is used to grade the severity of the obstruction. If common genetic 

variants exert an effect on COPD risk mediated via an effect on lung function, 

loci associated with FEV1 and/or FEV1/FVC will be expected to be also 

associated with COPD risk. This chapter investigates whether the loci reported 

to be significantly associated with FEV1 and/or FEV1/FVC by the SpiroMeta 

consortium (23) (TNS1, GSTCD, HHIP, HTR4, AGER and THSD4) are also 

associated with COPD risk.  

 

As well as to aid development of new treatments to alleviate disease, another 

potential use of genetic information is to predict disease risk. Although the use 

of common genetic variants for prediction has been shown to still be of limited 

use for a range of complex diseases due to their small effect sizes (106, 107), 

the combined effect of the recently discovered risk alleles on COPD had not 

been evaluated. This chapter also assesses the combined effect of the genetic 
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variants associated with lung function reported by SpiroMeta on lung function 

and COPD risk by constructing risk scores.  

 

2.2 My role in the study 

To understand my role in the study, first it is necessary to set the context. The 

analyses presented in this chapter started just after the meta-analysis of lung 

function GWAS was completed in the SpiroMeta consortium in 2009 (23). They 

were undertaken as a follow-up of the findings in Repapi et al. (23) in a subset 

of the studies that took part in the SpiroMeta meta-analysis. 

I became involved in this project in September 2009, when the analysis plan for 

this study had already been agreed and shared with the studies, however I still 

contributed to the overall strategy of the study. First, my main tasks were to 

coordinate analyses undertaken by the studies, to liaise with analysts to give 

advice on analytic issues, as well as interpreting and checking thoroughly the 

results sent by the studies to make sure no errors had been made. After that, I 

undertook a meta-analysis of the results and carried out pertinent sensitivity 

analyses. A subset of studies provided individual level data and this allowed me 

to design and undertake sensitivity analyses in subsets of studies with the data 

of interest available. A list of all the analyses included in this chapter and the 

studies that participated in each analysis, with an indication of which analyses I 

undertook are given in Table 2-1.



40 

 

Table 2-1 Analyses undertaken 

Definitions study abbreviations in section 2.3.1. The analyses that I undertook indicated in bold and the ones I corrected with *. 

Study 

Primary analyses COPD risk sensitivity analyses 

Associations with 
COPD risk for 
TNS1, GSTCD, 
HTR4, AGER and 
THSD4 

Associations 
with COPD 
risk for HHIP 

Lung 
function 
and COPD 
risk scores 
analyses 

Effect of pack- 
years 
adjustment on 
the results 

Effect in of analysing only 
ever-smokers on the 
results 

Effect of the use 
of bronchodilator 
on COPD 
classification 

Effect of 
excluding 
asthma cases 
on the results 

Effect of the use 
of lower limit of 
normal COPD 
definition on the 
results 

EPIC obese cases  Yes Yes - - Yes - - - 

EPIC population-
based  

Yes Yes - - Yes - - - 

GS:SFHS Yes - - - Yes (not for HHIP) - - - 

KORA F4 Yes (not for HTR4) - - - Yes (not for HTR4 or HHIP) - - - 

ADONIX Yes Yes Yes - Yes - - - 

BHS Yes Yes Yes - Yes (not for HHIP) - - - 

BRHS Yes Yes Yes - Yes - - Yes 

BWHHS Yes Yes Yes * - Yes - Yes Yes 

Gedling Yes Yes Yes * Yes Yes - Yes Yes 

HCS Yes Yes Yes - Yes - - - 

Health 2000 Yes Yes Yes - Yes (not for HHIP) - - - 

Nottingham Smokers Yes Yes Yes * Yes Yes Yes - Yes 

NSHD Yes Yes Yes - Yes (not for HHIP) - - - 
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2.3 Associations with COPD risk 

A meta-analysis undertaken in the SpiroMeta consortium (23), with a discovery 

stage of 20,288 individuals and a follow-up stage for the top signals of over 50,000 

individuals, confirmed the association with lung function of the previously 

discovered HHIP locus (94) and identified five new loci (TNS1, GSTCD, HTR4, 

AGER and THSD4) that were associated with lung function. These new loci were 

followed up in a subset of the studies involved in the SpiroMeta meta-analysis to 

assess their association with COPD and their results were then pooled together in 

a meta-analysis. Although the association of HHIP with COPD had already been 

reported (95), it was also included in this analysis for completeness. 

 

2.3.1 Method 

Populations, phenotyping and genotyping 

The study population was made of 31,422 individuals over the age of 40 years 

drawn from 12 population-based studies (Figure 2-1). The characteristics of the 

study participants are shown on Table 2-2. Only one of these studies (EPIC) was 

part of the discovery stage that identified the five new loci (23), all the other studies 

took part in the follow-up stage. These studies included: the European Prospective 

Investigation into Cancer and Nutrition obese cases cohort (EPIC-obese cases) 

and population cohort (EPIC  population-based), Generation Scotland: Scottish 

Family Health Study (GS:SFHS), Cooperative Health Research in the Region of 
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Augsburg (KORA F4), Adult-onset asthma and nitric oxide (ADONIX) study, 

Busselton Health Study (BHS), British Regional Heart Study (BRHS), British 

Women’s Heart and Health Study (BWHHS), Gedling study (Gedling), 

Hertfordshire Cohort Study (HCS), Finnish Health 2000 survey (Health 2000), 

Nottingham Smokers study (Nottingham Smokers) and Medical Research Council 

National Survey of Health and Development (NSHD, or British 1946 Birth Cohort). 

 

Figure 2-1 Study design 
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Table 2-2 Study characteristics 
Abbreviations: N = number, SD =standard deviation. 

Study name Subset 
N 
associations 
with COPD 

N risk 
scores   

Male (N); 
female (N) 

Age mean 
(SD)(years) 

FEV1: 
mean(SD) 
(litres) 

FEV1 
predicted: 
mean(SD) 
(litres) 

FVC: 
mean(SD) 
(litres) 

FEV1/FVC: 
mean(SD) 

Never- 
smokers 
(N); Ever- 
smokers (N) 

% of COPD 
cases in 
GOLD stage 
3-4 

Genotyping 

Associations with COPD risk 

EPIC obese 
cases  

All 1104 
 

476;628 59.1 (8.8) 2.35 (0.69) 2.91 (0.62) 2.84 (0.87) 0.82(0.17) 489;615 
 

Affymetrix 
500K 

Cases 75 
 

47;28 60.6 (8.45) 1.82 (0.67) 
 3.09 
(0.63) 

 3.01 
(1.05) 

0.61 (0.09) 22;53 30.14 

Controls 599 
 

252;347 58.3 (8.76) 2.67 (0.62) 2.88 (0.61) 3.13 (0.79) 0.86 (0.07) 281;318 
 

EPIC population-
based  

All 2336 
 

1100;1236 59.2 (9.0) 2.50 (0.72) 2.95 (0.62) 3.04 (0.90) 0.85 (0.16) 1061;1275 
 Affymetrix 

500K 
Cases 190 

 
105;85 62.3 (8.54) 1.81 (0.62) 2.95 (0.63) 3.00 (0.96) 0.60 (0.09) 72;118 20.11 

Controls 1442 
 

677;765 58.8 (8.81) 2.78 (0.64) 2.94 (0.62) 3.29 (0.82) 0.85 (0.08) 709;733 
 

GS:SFHS 

All 5474 
 

2254;3220 46.0 (14.3) 3.15 (0.87) 3.32 (0.75) 4.11 (1.03) 0.77 (0.10) 3005;2469 
 

TaqMan  Cases 335 
 

118;217 58.4 (9.2) 1.89 (0.54) 2.89 (0.59) 3.32 (0.85) 0.58 (0.10) 123;212 11.94 

Controls 2567 
 

1053:1514 53.2 (8.5) 3.12 (0.72) 3.11 (0.63) 3.99 (0.91) 0.78 (0.07) 1457;1110 
 

KORA F4 

All 1305 
 

610;695 51.6 (5.7) 3.32 (0.81) 3.29 (0.63) 4.28 (1.00) 0.78 (0.06) 499;806 
 

TaqMan  Cases 59 
 

30;29 53.4 (6.0) 2.14 (0.66) 3.24 (0.64) 3.47 (0.96) 0.61 (0.06) 12;47 10.17 

Controls 1109 
 

512;597 51.5 (5.7) 3.45 (0.76) 3.28 (0.62) 4.36 (0.96) 0.79 (0.04) 456;653 
 

Associations with COPD and lung function and COPD risk scores 

ADONIX 

All 1423 1282 669;754 49.1 (13.5) 3.34 (0.86) 3.23 (0.66) 4.24 (1.02) 0.79 (0.07) 798;625 
 

KaSPar ‡ Cases 46 41 27;19 55.7 (9.3) 2.02 (0.57) 3.23 (0.66) 3.35 (0.87) 0.60 (0.07) 12;34 13.04 

Controls 783 711 361;422 61.4 (8.4) 3.23 (0.73) 3.23 (0.67) 4.08 (0.91) 0.79 (0.04) 448;335 
 

BHS § 

All 4350 787 1793;2557 50.1 (17.0) 3.02 (0.97) 3.18 (0.82) 3.89 (1.16) 0.77 (0.08) 2459;1891 
 

TaqMan  Cases 200 92 132;68 66.9 (11.6) 1.60 (0.60) 2.85 (0.66) 2.73 (0.91) 0.58 (0.09) 67;133 19.5 

Controls  2307 386 944;1363 57.9 (12.3) 2.87 (0.83) 2.93 (0.73) 3.66 (1.05) 0.78 (0.05) 1387;920 
 

BRHS All 3877 3415 3877;0 68.7 (5.5) 2.57 (0.69) 3.03 (0.4) 3.37 (0.84) 0.77 (0.12) 1125;2752 
 

KaSPar ‡ 
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Study name Subset 
N 
associations 
with COPD 

N risk 
scores   

Male (N); 
female (N) 

Age mean 
(SD)(years) 

FEV1: 
mean(SD) 
(litres) 

FEV1 
predicted: 
mean(SD) 
(litres) 

FVC: 
mean(SD) 
(litres) 

FEV1/FVC: 
mean(SD) 

Never- 
smokers 
(N); Ever- 
smokers (N) 

% of COPD 
cases in 
GOLD stage 
3-4 

Genotyping 

Cases 641 572 641;0 69.7 (5.4) 1.76 (0.51) 3 (0.4) 3.01 (0.8) 0.59 (0.09) 111;530 28.39 

Controls 2168 1905 2168;0 68.3 (5.5) 2.96 (0.48) 3.03 (0.4) 3.65 (0.65) 0.82 (0.07) 760;1408 
 

BWHHS 

All 3644 3319 0;3644 68.8 (5.5) 1.98 (0.52) 2.16 (0.31) 2.82 (0.76) 0.71 (0.09) 2060;1584 
 

KaSPar ‡ Cases 659 600 0;659 69.8 (5.4) 1.36 (0.35) 2.14 (0.3) 2.32 (0.54) 0.59 (0.08) 253;406 15.63 

Controls 1808 1653 0;1808 68.2 (5.4) 2.23 (0.41) 2.18 (0.3) 2.93 (0.56) 0.76 (0.05) 1153;655 
 

Gedling 

All 1263 1188 632;631 56.2 (12.3) 2.85 (0.85) 3.07 (0.69) 3.68 (1.02) 0.77 (0.07) 633;630 
 

KaSPar ‡ Cases 103 98 67;36 66.2 (9.1) 1.73 (0.61) 2.88 (0.66) 2.82 (0.83) 0.61 (0.09) 21;82 24.27 

Controls 840 789 417;423 57.3 (9.8) 3 (0.73) 3.03 (0.65) 3.80 (0.9) 0.79 (0.04) 431;409 
 

 
HCS 

All 2850 2343 1511;1339 66.1 (2.8) 2.44 (0.68) 2.80 (0.55) 3.42 (0.92) 0.72 (0.09) 1319;1531 
 KaSPar ‡ 

Cases 536 441 308;228 66.3 (2.8) 1.84 (0.55) 2.87 (0.56) 2.09 (0.85) 0.60 (0.09) 159; 377 15.1 

Controls 1519 1264 758;761 66.0 (2.9) 2.67 (0.60) 2.75 (0.54) 3.51 (0.82) 0.76 (0.04) 837; 682 
  

Health 2000 

All 888 882 427;456 50.2 (11.0) 3.32 (0.91) 3.14 (0.67) 4.19 (1.08) 0.79 (0.07) 266; 617 
 Illumina 

610K  
Cases 32 32 20;12 60.91 (8.83) 1.78 (0.68) 3.05 (0.66) 3.05 (0.95) 0.58 (0.10) 5;27 37.5 

Controls 580 580 256;324 53.19 (8.31) 3.28 (0.77) 3.15 (0.67) 4.09 (0.97) 0.80 (0.05) 192;388 
 

Nottingham 
Smokers 

All 509 466 280;229 59.5 (10.4) 2.00 (0.95) 2.98 (0.61) 3.02 (1.06) 0.64 (0.16) 0;509 
 

KaSPar ‡ Cases 242 227 145;97 63.2 (9.5) 1.28 (0.57) 2.87 (0.59) 2.5 (0.87) 0.51 (0.12) 0;242 64.46 

Controls 153 138 70;83 54.8 (8.9) 2.89 (0.61) 3.08 (0.62) 3.69 (0.81) 0.79 (0.05) 0;153 
 

NSHD 

All 2404 2201 1206;1198 53 (0) 2.80 (0.70) 3.20 (0.56) 3.51 (0.89) 0.80 (0.09) 1003;1401 
 

KaSPar ‡ Cases 166 149 102;64 53 (0) 2.11 (0.58) 3.35 (0.54) 3.46 (0.89) 0.61 (0.08) 49;117 15.06 

Controls 1663 1526 848;815 53 (0) 3.03 (0.62) 3.20 (0.56) 3.69 (0.81) 0.83 (0.06) 765;898 
 

Total 

All 31422 15883 
         

Cases 3284 2252 
         

Controls 17538 8952 
         

 
‡ KaSPar genotyping (KBiosciences, Hoddesdon, Herts, UK, http://www.kbioscience.co.uk/). § BHS had genotype data for HHIP only in a subset of individuals (N = 
1168, 131 COPD cases and 565 controls); this is therefore the subset included in the lung function and COPD risk scores calculations. 

http://www.kbioscience.co.uk/
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The spirometry methods used to measure FEV1 and FEV1/FVC in each study are 

detailed in (23). Individuals were defined as COPD cases if they had percent 

predicted FEV1 < 80% and FEV1/FVC < 0.7 (i.e. individuals in stages 2, 3 or 4 of 

the Global Initiative for Chronic Obstructive Lung Disease [GOLD] (104)) (Figure 

2-2). Individuals were classified as controls if they had percent predicted FEV1 > 

80% and FEV1/FVC > 0.7 (Figure 2-2). In order to minimize potential 

misclassification of COPD cases and controls, individuals with percent predicted 

FEV1 > 80% and FEV1/FVC < 0.7 (GOLD stage 1) or with percent predicted FEV1 < 

80% and FEV1/FVC > 0.7 were excluded from the analysis (Figure 2-2). The 

calculation of percent predicted FEV1 was undertaken using reference values of 

FEV1 that take into account age, sex and height according to previously described 

equations (72, 73).  

Figure 2-2 Selection of COPD cases and controls  
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Genotyping was undertaken for the sentinel SNP at each of the five loci: TNS1 

(rs2571445), GSTCD (rs10516526), HTR4 (rs3995090), AGER (rs2070600) and 

THSD4 (rs12899618). KORA F4 failed to genotype HTR4 (Table 2-1). Standard 

quality control approaches, such as ensuring Hardy Weinberg equilibrium and an 

adequate call rate, were taken by the studies for all the sentinel SNPs. Data for 

HHIP (rs12504628) were also available in a subset of studies: those that used 

KASPar genotyping (KBioscience, Hoddesdon, Herts, UK) (Table 2-2), EPIC, 

Health 2000 and a subset of BHS that had in silico data (Table 2-1). 

 

Statistical analysis 

An analysis plan was designed centrally to ensure that each study undertook the 

same analysis. The analysis plan is provided in Appendix B. 

 

Study level analyses 

 A genetic additive effect was assumed (coding each genotype as 0, 1 or 2 

according to the count of the coded allele) and logistic regression was fitted by 

each study to test the effect of each SNP on COPD risk. Adjustment for additional 

covariates was not applied, since percent predicted FEV1 was used in the definition 

of COPD cases and controls, and this measure takes into account age, sex and 

height (108).  
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Consortium central analyses 

First, the study level results were checked for errors. These checks consisted 

mainly of identifying any unusual pattern of findings which could indicate 

inconsistencies between studies and following them up to understand the source; 

for instance, checking consistency of direction of effects and of allele frequencies 

across studies. When the quality of the results was ensured, and all the effect 

estimates were orientated to the forward strand of the National Center for 

Biotechnology (NCBI) build 36 reference sequence of the human genome using 

the risk allele (the allele associated with reduced FEV1 or FEV1/FVC in the results 

of the SpiroMeta meta-analysis (23)) as the coded allele, the effect estimates and 

standard errors were meta-analysed across studies using inverse variance 

weighting. A Bonferroni correction for 5 tests was used for TNS1, GSTCD, HTR4, 

AGER and THSD4, defining statistical significance as P-value < 0.01. 

 

2.3.2 Results  

The quality control checks undertaken uncovered that one study had reported the 

wrong coded allele for the SNP rs12504628. Figure 2-3 shows that the direction of 

effect for one study was opposite to the direction of effect for all the other studies 

and that the allele frequency reported for the coded allele for that study was below 

0.5, whereas for all the others was above 0.5. This suggested that the coded allele 

had been wrongly reported. After contacting the analyst for this study the error was 

corrected.  
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Figure 2-3 Allele frequencies against odds ratios for rs12504628 in an early 
stage of the quality control checks  

 

Out of the 31,422 individuals included in this analysis, 3,284 were classified as 

COPD cases (percent predicted FEV1 < 80% and FEV1/FVC < 0.7) and 17,538 

were classified as controls (percent predicted FEV1 > 80% and FEV1/FVC > 0.7) 

(Table 2-2). Variants at three out of the five new loci associated with lung function 

(TNS1, GSTCD and HTR4) showed significant associations (P-value < 0.01) with 

COPD risk (Table 2-3). These loci showed consistent direction of effect with the 

effect estimates reported for lung function (23) (Figure 2-4). For the other two loci 

(AGER and THSD4), the magnitude and direction of effects were also consistent 

with the direction of effect estimates reported for lung function (23) (Figure 2-4), 

but they did not reach statistical significance (Table 2-3). The previously reported 
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association of the locus 4q31 near HHIP with COPD (94, 95) was confirmed in a 

subset of 2,890 COPD cases and 13,862 controls (Table 2-3). 

Table 2-3 COPD results 
Abbreviations: OR = odds ratio, CI =confidence intervals, P =P-value. 

SNP ID (gene) Coded allele OR 95% CI P N cases N controls 

rs2571445 (TNS1) A 1.10 1.03-1.16 1.89x10−3 3,284 17,538 

rs10516526 (GSTCD) A 1.24 1.10-1.40 3.75x10−4 3,284 17,538 

rs12504628 (HHIP) T 1.19 1.12-1.27 4.55x10−8 2,890 13,862 

rs3995090 (HTR4) A 1.12 1.05-1.18 1.79x10−4 3,225 16,429 

rs2070600 (AGER) C 1.10 0.98-1.24 1.2x10−1 3,284 17,538 

rs12899618 (THSD4) A 1.08 1.00-1.16 6x10−2 3,284 17,538 

 
Figure 2-4 Association of six lung function loci with COPD, FEV1 and 
FEV1/FVC  
FEV1 and FEV1/FVC associations were extracted from the combined discovery and 
follow-up data reported by Repapi et al (23), where the lung function measures 
were inverse normally transformed. The bars indicate the point estimates of the 
effect sizes and the whiskers the 95% confidence intervals. Abbreviations: freq. = 
frequency.  
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Heterogeneity of effect sizes across studies was tested for each SNP with a chi-

square heterogeneity test and was not statistically significant for any of the six 

SNPs (P > 0.1) (Table 2-4, Figure 2-5). This indicates that the results illustrate a 

common trend across studies and they are not driven by just one or two studies.  

Table 2-4 Heterogeneity test 
Abbreviations: P = P-value, d.f. = degrees of freedom. 

SNP ID (gene) Chi-square statistic P d.f. 

rs2571445 (TNS1) 10.541 5.69x10−1 12 

rs10516526 (GSTCD) 10.190 5.99x10−1 12 

rs3995090 (HTR4) 17.165 1.03x10−1 11 

rs2070600 (AGER) 8.729 7.26x10−1 12 

rs12899618 (THSD4) 4.242 9.79x10−1 12 

rs12504628 (HHIP) 4.799 9.04x10−1 10 
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Figure 2-5 Forest plots of the meta-analysis of association tests with COPD for the 6 loci 

The logarithm of the odds ratios are presented for each study and for the meta-analysis results (“summary” in the plots). 
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Sensitivity analyses 

Smoking behaviour 

Smoking is a major risk factor for developing COPD and as expected a much 

higher proportion of individuals are ever-smokers among the cases (72%) than 

among the controls (49%) (Table 2-2). This might lead us to think that the 

associations found with COPD are mediated via smoking behaviour. In order to 

explore this hypothesis, several analyses were undertaken. First, the association of 

the six genetic variants with two smoking-related traits was assessed in the Oxford-

GlaxoSmithKline (Ox-GSK) consortium dataset (109). None of the SNPs was 

significantly associated (P > 0.1) with either ever smoking status (18,598 ever-

smokers vs. 15,041 never-smokers) or number of cigarettes smoked per day 

(15,574 individuals) (Table 2-5).



53 

 

Table 2-5 Six loci associated with lung function looked up for smoking 
related traits 
Abbreviations: Chr. = chromosome, P = P-value, SE = standard error. 

 Chr. 
SNP ID (NCBI36 
position), function 

 Coded 
allele 

 Lung 
measure 

Cigarettes per day Ever vs. never-smokers  

Beta SE P Beta SE P 

2 
rs2571445 
(218391399),  TNS1 

(ns) 
G FEV1 -0.014 0.012 2.4x10−1 -0.011 0.019 5.55x10−1 

4 
rs10516526 
(106908353), GSTCD 
(intron) 

G FEV1 0.026 0.022 2.35x10−1 -0.001 0.034 9.79x10−1 

4 
rs1032296 
(145654138),  HHIP 
(upstream) 

T FEV1 0.007 0.011 5.61x10−1 -0.014 0.018 4.43x10−1 

4 
rs11100860 
(145698589),  HHIP 
(upstream) 

G FEV1/FVC 0.018 0.011 1.03x10−1 0.006 0.017 7.32x10−1 

5 
rs3995090 
(147826008),  HTR4 

(intron) 
C FEV1/FVC -0.007 0.011 5.4x10−1 0.001 0.018 9.7x10−1 

6 
rs2070600 (32259421),  
AGER (ns) 

T FEV1/FVC 0.043 0.028 1.23x10−1 -0.01 0.043 8.13x10−1 

15 
rs12899618 
(69432174),  THSD4 

(intron) 
G FEV1/FVC -0.019 0.015 2.4x10−1 -0.03 0.024 2.07x10−1 
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Secondly, the effect of a pack-years adjustment in two of the studies (Gedling and 

Nottingham Smokers) with data on pack-years available was assessed, and the 

effect sizes in ever-smokers with and without pack-years adjustment were 

compared and there was no substantial difference (Figure 2-6).  

Figure 2-6 SNPs associations unadjusted against associations adjusted for 
pack-years 
Data from Gedling and Nottingham Smokers studies only. Effect is for the 
alphabetically higher allele on the forward strand. 

Finally, the effect sizes of the six genetic variants in all individuals and in ever-

smokers only were compared, and again no substantial difference was found 

(Figure 2-7). These results suggest that the effect of each of these genetic variants 

on COPD risk is independent of smoking. However, further insights could be 

gained from analyses in populations with more detailed smoking phenotypes. 
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Figure 2-7 SNP associations in all individuals against associations in ever-
smokers only  
Data from all the studies was used for all the SNPs except for rs3995090 (HTR4) 
that was not available in KORA F4 and for rs12504628 (HHIP) that was not 
available for ever-smokers in Generation Scotland, KORA F4, BHS, NSHD and 
Health 2000 (Table 2-1). Effects are shown for the effect alphabetically higher 
allele on the forward strand. 

 

 

Misclassification of cases and controls  

The GOLD guidelines (104) recommend the use of post-bronchodilator FEV1 /FVC 

(measure taken after inhaling a short-acting bronchodilator) in the diagnosis of 

COPD to minimize variability. However, post-bronchodilator FEV1 /FVC was not 

available in most of the studies included in this analysis and for that reason the 

selection of COPD cases and controls was based on pre-bronchodilator 

FEV1/FVC. Individuals recruited in the Nottingham Smokers study had both pre 
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and post bronchodilator spirometry measures taken, making possible a comparison 

of the classification of COPD cases and controls using both criteria. As previously 

shown (110), the comparison undertaken here showed that if the definition of 

COPD cases had included individuals with mild COPD (GOLD stage 1) the number 

of individuals misclassified would have been substantial (Table 2-6), however 

when individuals with mild COPD (GOLD stage 1) were excluded, the number of 

individuals misclassified was minimal (Table 2-7). This illustrates the relevance of 

the exclusion criteria used in this study excluding individuals with GOLD stage 1.
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Table 2-6 Effect of misclassification using pre-bronchodilator spirometry had 
GOLD stage 1 individuals been included in our COPD case definition  
The table illustrates the number of individuals that would be classified as COPD 
cases and controls had cases been defined as GOLD stage 1-4. Data from 
Nottingham Smokers of individuals with no missing values for pre and post-
bronchodilator FEV1 were used for this table. 
 

 

 

 

 

 

Table 2-7 Number of COPD cases and controls defined using pre and post- 
bronchodilator FEV1 
Cases were defined as GOLD stage 2-4. Data from Nottingham Smokers of 
individuals with no missing values for pre and post-bronchodilator FEV1 were used 
for this table. 
 
 

 

 

 

 

 

  Post   

   COPD 
cases 

controls Total 

Pre COPD 
cases 

227 27 254 

 controls 16 182 198 

 Total 243 209 452 

 

Number of COPD cases defined on 

pre-bronchodilator reclassified as 

controls on post-bronchodilator = 27 

Positive predictive value = 89% 

Number of controls defined on pre-

bronchodilator reclassified as COPD 

cases on post-bronchodilator = 16 

Negative predictive value = 92% 

 

  Post   

   COPD 
cases 

controls Total 

Pre COPD 
cases 

201 4 205 

 controls 2 120 122 

 Total 203 124 327 

 

Number of COPD cases defined on 

pre-bronchodilator reclassified as 

controls on post-bronchodilator = 4 

Positive predictive value = 98% 

Number of controls defined on pre-

bronchodilator reclassified as COPD 

cases on post-bronchodilator = 2 

Negative predictive value = 98% 
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COPD patients are characterized by airway obstruction that is not fully reversible, 

whereas asthma patients often have fully reversible airway obstruction. For this 

reason, another consequence of using pre-bronchodilator spirometry in the 

definition of COPD cases might be the misclassification of some asthma patients 

as COPD cases. This misclassification would have the potential to overestimate 

genetic effects on the risk of COPD if the SNPs analysed had an effect on asthma. 

In order to investigate the impact of a possible misclassification of asthma cases 

on the results, the effect sizes obtained for all the individuals and the effect sizes 

obtained excluding diagnosed asthma subjects from the cases were compared for 

all the SNPs in a subset of the data (BWHHS and Gedling) with asthma diagnosis 

available to us. For rs10516526, the odds ratio estimated in individuals without 

asthma seemed to indicate a greater risk of developing COPD for individuals with 

the risk allele than the odds ratio estimated for all individuals. This would be 

inconsistent with an effect of the SNP on asthma that could have overinflated the 

COPD odds ratio, and it would be consistent with the asthma cases adding noise 

to the data instead for this SNP. Overall this comparison showed that the results 

from both analyses were consistent (Figure 2-8), and the potential 

misclassification of asthma cases did not seem to have a substantial impact on the 

results.
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Figure 2-8 SNP associations for all individuals against associations 
excluding patients with known asthma from the cases 
Data from BWHHS and Gedling studies only. Effect is for the alphabetically higher 
allele on the forward strand. 

 

The Global Initiative for Chronic Obstructive Lung Disease (104) suggests the use 

of a fixed FEV1/FVC ratio (< 0.7) to define airflow obstruction and then classify 

severity according to FEV1 predicted into mild, moderate, severe and very severe. 

The use of a fixed FEV1/FVC ratio in this definition will tend to increase the 

prevalence of COPD in the elderly, while reducing it in adults younger than 45 

years old, especially the diagnosis of mild disease (104). Another way to define 

airway obstruction that overcomes these issues is to use a cutoff based on the 

lower limit of normal (LLN) values for FEV1/FVC (108). This definition classifies the 

bottom 5% of a healthy population distributed normally as cases. However, this 
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method is highly dependent on the choice of reference equations (104). Although 

in this study only individuals aged over 40 years and with at least a moderate stage 

of COPD were included in the analysis, to assess the consistency of the results, 

the analysis was repeated using the LLN definition of COPD cases. This analysis 

was performed in a subset of the studies (BRHS, BWHHS, Gedling and 

Nottingham Smokers) that provided individual level data to test the associations 

with COPD, and it showed that effect size estimates for both analyses were of 

similar magnitudes (Figure 2-9). 

Figure 2-9 SNP associations using GOLD against associations using LLN 
Data from BRHS, BWHHS, Gedling and Nottingham Smokers,studies only. Effect 
is for the alphabetically higher allele on the forward strand.  

 

Misclassification of cases and controls due to random spirometry measurement 

error is also possible, although it would be minimized by the exclusion of mild 
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COPD cases. This misclassification would lead to an underestimation of SNPs 

effect on COPD risk.  

 

Exclusion of discovery samples 

Effect sizes estimated in discovery samples might overestimate the real effect of a 

genetic variant due to winner’s curse bias (27). For that reason, most of the studies 

included in this analysis belong to the follow-up stage of the study that discovered 

the five genetic variants analysed here (23). However, in order to increase the 

power to detect the small effect of genetic variants on the binary COPD status, the 

EPIC study, part of the discovery stage, was also included in this analysis. To 

assess the effect of this study on the results, the effect sizes with and without the 

EPIC study were compared, and their magnitudes did not differ substantially 

(Figure 2-10).
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Figure 2-10 SNPs associations excluding EPIC studies compared with all 
the studies 
Effect is for the alphabetically higher allele on the forward strand.

 

 

2.3.3 Discussion 

Three of the five new loci associated with lung function in the SpiroMeta dataset 

showed a significant association with COPD risk in this study, and the 

remaining two variants showed consistent magnitude and direction of effect but 

their associations were not statistically significant. An explanation for this might 

be the lack of power of this study to detect the small effect of these loci on a 

binary outcome. Post-hoc power calculations showed that this study was well 

powered to detect association with COPD for TNS1, GSTCD and HTR4, 

however it was underpowered to detect potential associations for AGER and 

THSD4 (Table 2-8). Post-hoc calculations were undertaken just to illustrate a 



63 

 

point, since they do not really add new information to the results. Variants with 

less significant P-values will always correspond to decreased power to detect 

them, as discussed by J.M. Hoenig and D.M. Heisey (111). 

Table 2-8 Post-hoc power calculations  
Abbreviations: N = number, OR = odds ratio. 

N cases N controls SNP ID (gene) OR Coded allele Allele frequency Alpha Power 

3,284 17,538 rs2571445 (TNS1) 1.1 A 0.39 0.01 0.82 

3,284 17,538 rs10516526 (GSTCD) 1.24 A 0.94 0.01 0.84 

3,225 16,429 rs3995090 (HTR4) 1.12 A 0.59 0.01 0.93 

3,284 17,538 rs2070600 (AGER) 1.1 C 0.94 0.01 0.17 

3,284 17,538 rs12899618 (THSD4) 1.08 A 0.15 0.01 0.31 

 

The association of HHIP with COPD was confirmed in this study. However the 

effect size estimate for the HHIP locus presented here (OR = 1.19, 95% CI 

1.12-1.27) is modest compared with some of the estimates obtained in previous 

studies, such as the Bergen case-control and the US National Emphysema 

Treatment Trial (NETT)/Normative Aging Study (NAS) (95), with estimated odds 

ratios of around 1.4. Other studies, such as the Rotterdam (112) and 

Framingham (94) studies estimated odds ratios of 1.25 and 1.1, more in line 

with the estimates obtained here. The variability of the magnitude of odds ratio 

estimates might be caused by differences in the characteristics of the study 

populations, such as age distribution. Yet another factor that can contribute to 

this variation is an upwards bias of the effect sizes estimated in the discovery 

samples known as winner’s curse bias (27). Odds ratios estimated in large 

populations independent of discovery, such as SprioMeta, are needed in order 

to obtain more accurate estimates of real effect sizes.  
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2.4 Lung function and COPD risk scores 

In order to assess the combined effect of the genetic variants associated with 

lung function in the SpiroMeta dataset (23) (in or near TNS1, GSTCD, HHIP, 

HTR4, AGER and THSD4) risk scores were constructed in studies that took part 

in the follow-up stage of the SpiroMeta meta-analysis. Effects of these risk 

scores on lung function and COPD risk were assessed in each study separately 

and then their results were pooled together in a meta-analysis.  

 

2.4.1 Methods 

Populations, phenotyping and genotyping 

The populations included in this analysis are a subset of the populations that 

took part in the COPD analysis (section 2.3). Only those studies that (i) had 

genotype data available in all six SNPs and (ii) did not take part in the discovery 

stage of the SpiroMeta meta-analysis were included. Details of these studies 

are given in Figure 2-1 and Table 2-2. Phenotyping and genotyping information 

for these populations are already included in section 2.3. 

 

Statistical analyses 

Centrally, an analysis plan was designed to ensure that all the studies 

undertook the exact same analysis. This analysis plan gave instructions on how 

to construct risk scores and on how to assess their association with FEV1, 

FEV1/FVC and COPD risk. The analysis plan is provided in Appendix B. Only 



65 

 

individuals with (i) complete data for all of the six SNPs and (ii) with complete 

data for both FEV1 and FEV1/FVC were included in the analysis. 

 

Study level analyses: construction of unweighted risk scores 

To create unweighted risk scores, the number of risk alleles per individual within 

the six loci associated with lung function in the SpiroMeta dataset (23) were 

summed, with risk allele as the allele associated with reduced FEV1 or  reduced 

FEV1/FVC in the results of the SpiroMeta meta-analysis (23). Thus, the risk 

score for an individual could range from 0 risk alleles, if the individual was 

homozygous for the non risk allele at all six loci, to 12 risk alleles, if the 

individual was homozygous for the risk allele at all six loci.  

 

This definition of unweighted risk score would group individuals into twelve 

categories (individuals having 0 to 12 risk alleles), however some of these 

categories included a very small number of individuals or no individuals at all 

(Figure 2-11). For this reason, individuals were grouped instead into five 

categories: 0-4 risk alleles, 5-6 risk alleles, 7 risk alleles, 8-9 risk alleles and 10-

12 risk alleles (Figure 2-11). The group with 7 risk alleles was used as the 

baseline group for comparisons, since this was estimated to be the mean and 

median number of risk alleles per person, using summaries provided by the 

studies. Twenty-eight percent of all individuals carried 7 risk alleles. 

 

 



66 

 

Figure 2-11 Number of individuals per risk score category in the Gedling 
dataset 

 

Study level analyses: risk score association analyses 

Association of risk score categories with FEV1, FEV1/FVC and COPD risk were 

undertaken. First, the lung function measures (FEV1 and FEV1/FVC) were 

adjusted for age, age2, sex and height using linear regression, and the residuals 

obtained here were then used for the subsequent association analyses. The 

COPD analysis was not adjusted for any covariates as the selection of COPD 

cases and controls was based on percent predicted FEV1, which takes into 

account age, sex and height (section 2.3).  

 

To assess the effect of the unweighted risk score on the lung function 

measures, indicator variables were created for the four non baseline risk 

categories, and they were added as covariates to linear regressions with 

residuals for FEV1 and FEV1/FVC as the outcome variables. COPD cases and 
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controls were defined as in section 2.3. Individuals over 40 years old with 

FEV1/FVC < 0.7 and percent predicted FEV1 < 80% were classified as COPD 

cases; individuals over 40 years old with FEV1/FVC > 0.7 and percent predicted 

FEV1 >  80% were classified as controls and; individuals that did not fall in 

either category were excluded (Figure 2-2). The effect of the unweighted risk 

score on COPD risk was assessed using logistic regression with indicator 

variables for the four non baseline risk categories as covariates and COPD 

status as the outcome variable. 

 

Consortium central analyses 

Quality control checks were carried out centrally on the study level results to 

ensure that no errors were included in the analysis. Checks included ensure 

that range of measurements given were biologically plausible, that units 

reported by all the studies were consistent, and that any inconsistency across 

study results could be explained. Once the quality of the results was ensured, 

effect estimates and standard errors were pooled together using an inverse 

variance weighted meta-analysis. 

 

Sensitivity analyses 

Construction of weighted risk scores (only for FEV1 and FEV1/FVC) 

In order to assess the effect on the results of assigning weights to each variant 

according to the magnitude of their effects on lung function, weighted risk 

scores were calculated as follows. The number of risk alleles for each individual 

in each particular locus was multiplied by the weight of that locus, and the risk 
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score for that individual was obtained by adding up these products across the 

six loci. Weights for each locus were obtained separately for FEV1 and 

FEV1/FVC, using untransformed effect sizes estimated by linear regressions of 

FEV1 and FEV1/FVC assuming an additive effect for each locus and adjusting 

for age, age2, sex and height in the SpiroMeta discovery dataset, results shown 

in Table 2-9, derived from Repapi et al. (23).  

Table 2-9 Effect sizes and weights for FEV1 and FEV1/FVC used to obtain 
the weighted risk score  
Weights for FEV1 and FEV1/FVC were obtained using untransformed effect 
sizes estimated by linear regressions of FEV1 and FEV1/FVC, assuming an 
additive effect for each locus and adjusting for age, age2, sex and height in the 
SpiroMeta discovery dataset (23). 

SNP ID (gene) 
FEV1 FEV1/FVC 

Beta (ml) Weights Beta (%) Weights 

rs2571445 (TNS1) 23.088 1.014 0.163 0.345 

rs10516526 (GSTCD) 52.475 2.304 0.325 0.687 

rs12504628 (HHIP) 26.233 1.152 0.553 1.167 

rs3995090 (HTR4) 18.783 0.825 0.347 0.733 

rs2070600 (AGER) 7.392 0.325 0.817 1.724 

rs12899618 (THSD4) 8.654 0.380 0.636 1.344 

 

Weighted risk scores were constructed so they add up to 12 for individuals who 

were homozygous for the risk allele in all the six loci. Again, due to the small 

numbers in some of the categories, individuals were grouped into five 

categories instead of 12: risk score < 5, 5 <= risk score < 7, 7 <= risk score < 8, 

8 <= risk score < 10 and 10 <= risk score < 12; and the middle group (7 <= risk 

score < 8) was used as baseline for comparisons. 
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Weighted risk scores were not calculated for COPD because there were no 

data on previously estimated odds ratios for all the six loci that could be used as 

weights.  

 

COPD per allele risk score approximations 

In order to compare the effect of a COPD risk score in all individuals and in 

ever-smokers only, an approximated risk score was calculated from the single 

SNP results in a subset of the studies included in section 2.3 that had 

ever/never smoking data available (Adonix, BWHHS, Gedling, Nottingham 

Smokers, EPIC, HCS and BRHS). A method developed by Toby Johnson and 

colleagues (113, 114) that uses summary data from single variant analyses to 

estimate risk scores was adapted for this purpose. This method approximates 

the effect of an m-SNP risk score on a trait in a testing dataset, given the effects 

of m SNPs on a different trait in a discovery dataset, using only betas and 

standard errors from single SNP association tests. A simplification of this 

approximation (with only one trait and one dataset) was used here to obtain the 

effect of a 6-SNP risk score on COPD risk given their single SNP results.  

 

A brief description of the method is shown here.  

For an m-SNPs genetic risk score, 

𝑠𝑗 =  𝑠0 + 𝑤1𝑥1 + ⋯ + 𝑤𝑚𝑥𝑚  

𝑤ℎ𝑒𝑟𝑒   𝑠0 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,  

𝑤1, . . , 𝑤𝑚 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑆𝑁𝑃𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑎𝑛𝑑 

 𝑥1, . . , 𝑥𝑚 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑖𝑠𝑘 𝑎𝑙𝑙𝑒𝑙𝑒𝑠 𝑝𝑒𝑟 𝑆𝑁𝑃  
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 the following regression model for individual j,  

𝑦𝑗 =  𝑦0 +  𝑎𝑠𝑗 +  𝑒𝑗 (1) 

𝑤ℎ𝑒𝑟𝑒 𝑦0𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡, 𝑒𝑗𝑖𝑠 𝑡ℎ𝑒 𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚, 𝑠𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑚 − 𝑆𝑁𝑃𝑠 𝑟𝑖𝑠𝑘 𝑠𝑐𝑜𝑟𝑒 

𝑎𝑛𝑑 𝑎 𝑡ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑖𝑠𝑘 𝑠𝑐𝑜𝑟𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑡𝑟𝑎𝑖𝑡 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 (𝑦𝑗) 

can be written as  

𝑦𝑗 =  𝛽0 +  𝛽1𝑥1 + ⋯ + 𝛽𝑚𝑥𝑚 +  𝑒𝑗 (2) 

𝑓𝑜𝑟 𝛽𝑖 = 𝑎𝑤𝑖 𝑤𝑖𝑡ℎ 𝑖 ≥ 1 

𝑎𝑛𝑑  𝛽0 =  𝑦0 +  𝑎𝑠0 

We were interested in calculating the maximum likelihood estimate of 𝑎 (the 

effect of the risk score on the trait of interest). To obtain the maximum likelihood 

estimate of 𝑎, we needed to maximize the likelihood function of model (1) or 

equivalently of model (2). 

 

For large sample sizes, the likelihood function for the parameters of a 

regression model is approximately Gaussian, and when the explanatory 

variables are uncorrelated and the fraction of the variance explained by them is 

small, the likelihood function for a multi-SNP regression model is well 

approximated by the sum of the likelihood functions for the corresponding single 

SNP regression models (113). Given that these assumptions hold we could use 

the single SNPs likelihood functions in the testing dataset (specified in terms of 

single SNPs effect sizes and standard errors) to approximate the likelihood 

function for model (2) and then find the value of 𝑎 that maximizes that likelihood 

function. 
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For the simplified analysis carried out here, there is only one trait (COPD risk) 

and one dataset (the testing dataset). The same rationale explained above was 

followed but the effects of the SNPs on the discovery dataset (𝑤1, . . , 𝑤𝑚) were 

assumed to be one, which would be equivalent to estimating an unweighted risk 

score, where all the SNPs were assumed to have the same magnitude of effect 

on the trait. The sample size for all individuals is 11,804 (2,492 cases and 9,312 

controls) and for smokers only was 6,535 (1,842 cases and 4,693 controls); the 

six SNPs were not in LD with each other; and their effect sizes are small, we 

could therefore presume that the assumptions hold. 

 

2.4.2 Results  

The analyses of the combined effect of risk alleles on lung function measures 

included a total of 15,883 individuals and on COPD included 2,252 cases and 

8,952 controls. Individuals were sampled from nine population-based studies 

(Table 2-2, Figure 2-1) from the follow-up stage of the SpiroMeta meta-analysis 

(23), and had complete data on all six SNPs analysed (rs2571445 in TNS1, 

rs10516526 in GSTCD, rs3995090 in HTR4, rs2070600 in AGER and 

rs12899618 in THSD4). 

 

The issues encountered in the quality control stage are described here. The 

inclusion in one study of individuals with outlying values for FEV1/FVC was 

identified by an abnormal range of values for FEV1/FVC (from 0.43 to 1.57). 

Analysts for that study were contacted and the analysis was repeated after 
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excluding these two outliers. Results were reported in different units to those 

requested, in one study for FEV1 and in three studies for FEV1/FVC (Figure 

2-12). Estimates for these studies were converted to the correct units before 

meta-analysing the results.
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Figure 2-12 Effect sizes for the unweighted genetic risk scores for FEV1 and FEV1/FVC in a subset of studies in an 
early stage of the quality control checks 
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When checking for consistency of direction of effect across studies, an issue 

was identified for one study. Figure 2-13 shows that the direction of effect for 

the 8-9 risk alleles category, which had a small P-value, is opposite to the 

estimates for all the other studies. After contacting the analyst for this study, 

they identified a problem with allele coding and some outlying values for the 

lung function measures, which were then corrected, and results that were 

consistent across studies were provided. 

Figure 2-13 P-values against effect sizes for the unweighted risk scores 
for FEV1 in an early stage of the quality control checks 

Different symbols represent different risk score categories, and the filled 
symbols point out one study with an inconsistent direction of effect for the 8-9 
risk alleles category. 

 

A programming error in the COPD analysis made in one study was found by 

comparing magnitudes of odds ratios across studies (Figure 2-14). The binary 
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disease status had been treated as a continuous trait instead in the modelling 

process. Corrected analyses were provided after contacting the analyst for this 

study. 

Figure 2-14 P-values against odds ratios for the unweighted risk scores 
for COPD in an early stage of the quality control checks 
Different symbols represent different risk score categories, and the filled 
symbols point out one study with very small odds ratios compared to the other 
studies.  

 

After resolving all quality control issues the meta-analysis was undertaken. 

Associations of the unweighted risk scores with both FEV1 and FEV1/FVC 

showed a clear trend, with positive effects on lung function for groups with less 

risk alleles than the baseline (7 risk alleles) and negative effects on lung 

function for groups with more risk alleles than the baseline (Table 2-10). Having 

10 to 12 risk alleles in comparison to having 7 risk alleles was strongly 

associated with a reduction in FEV1 and FEV1/FVC (P-values < 4x10-4), with a 
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magnitude of effect for FEV1 equivalent to the physiological average ageing 

decline in FEV1 over approximately four years in a non-smoking population 

(115).  

Table 2-10 Statistics of association of unweighted risk scores with lung 
function and COPD 
Abbreviations: SE = standard error, CI = confidence interval, P = P-value. 

 

The results of the COPD risk score analysis also showed a clear trend across 

risk categories (Table 2-10), consistent with the trend observed for lung function 

(Figure 2-15). Again the strongest association (P = 1.46x10-5) was for the group 

with the highest risk score, with a 1.6 fold increased risk for individuals with 10-

12 risk alleles (5% in our population) compared to individuals with 7 risk alleles 

(28% in our population).

  Risk 
alleles 

 FEV1(ml)  FEV1/FVC (%)  COPD 

Beta (SE) 95% CI P 
Beta 
(SE) 

95% CI P OR(SE) 95% CI P 

0-4  
36.722 
(28.742) 

(-19.612, 
93.057) 

2.01x10−1 1.498 
(0.478) 

(0.561, 
2.435) 

1.73x10
-3

 
0.776 
(0.196) 

(0.528, 
1.14) 

1.97x10
-1

 

5-6 
23.614 
(10.616) 

(2.806, 
44.421) 

2.6x10−2 0.581 
(0.179) 

(0.229, 
0.932) 

1.19x10
-3

 
0.813 
(0.067) 

(0.712, 
0.927) 

1.96x10
-3

 

7 0 
  

0 
  

1 
  

8-9 
-35.021 
(9.94) 

(-54.504, -
15.539) 

4.26x10
-4

 
-0.465 
(0.168) 

(-0.794,  
-0.136) 

5.64x10
-3

 
1.127 
(0.06) 

(1.002, 
1.268) 

4.55x10
-2

 

10-12 
-72.213 
(20.361) 

(-112.122, 
-32.305) 

3.90x10
-4

 
-1.532 
(0.339) 

(-2.197,  
-0.867) 

6.35x10
-6

 
1.628 
(0.112) 

(1.306, 
2.03) 

1.46x10
-5
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Figure 2-15 Association of unweighted risk scores with lung function and 
COPD  
The bars indicate the point estimates of the effect sizes and the whiskers 
indicate the 95% confidence intervals.  

 

II
To facilitate the plotting of the effect size estimates for FEV1 and FEV1/FVC on the same axes, effect 

sizes are given in terms of the proportion of a standard deviation of FEV1 and FEV1/FVC; A standard 
deviation of 754 ml for FEV1 and 0.092 for FEV1/FVC (obtained as weighted averages across studies) 
were used. 

**
Proportions of individuals within each risk score category are given on the x-axis. 

 

To assess the effect of weighting the loci according to the single effect of the 

sentinel SNP on lung function, weighted risk scores were constructed in a 

subset of studies that provided individual level data (BHS, BRHS, BWHHS, 

Gedling and Nottingham Smokers). The results obtained were broadly 

consistent with the effect of unweighted risk scores constructed for these 

studies, although stronger effects where shown for FEV1 the when using 

weighted risk scores (Table 2-11).  
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Table 2-11 Statistics of association of unweighted and weighted risk 
scores with lung function 

Data was available for: BHS, BRHS, BWHHS, Gedling and Nottingham 
Smokers. Abbreviations: ml = millilitres, SE = standard error, CI = confidence 
interval, P = P-value. 

  Risk alleles   FEV1(ml)   FEV1/FVC (%) 

Beta (SE) 95% CI P Beta (SE) 95% CI P 

Unweighted analysis 

0-4  33.111 (38.655) (-42.65,108.88) 3.92x10−1 2.075 (0.693) (0.72,3.44) 2.77x10−3 

5-6 30.040 (14.469) (1.68,58.40) 3.79x10−2 0.689 (0.262) (0.18,1.20) 8.58x10−3 

7 0 
  

0 
 

  

8-9 -29.842 (13.467) (-56.24,-3.45) 2.67x10−2 -0.344 (0.244) (-0.82,0.13) 1.58x10−1 

10-12 -61.890 (27.284) (-115.37,-8.41) 2.33x10−2 -1.357 (0.49) (-2.32,-0.40) 5.58x10−3 

Weighted analysis 

0-4  58.619 (36.419) (-12.76,13) 1.08x10−1 1.483 (0.513) (0.48,2.49) 3.85x10−3 

5-6 35.105 (17.809) (0.12,70.01) 4.87x10−2 0.641 (0.249) (0.15,1.13) 1.01x10−2 

7  0 
 

  0 
 

  

8-9 -30.434 (14.072) (-58.02,-2.85) 3.06x10−2 -0.473 (0.246) (-0.95,0.01) 5.4x10−2 

10-12 -81.828 (20.089) (-121.20,-42.45) 4.64x10−5 -1.566 (0.635) (-2.81,-0.32) 1.36x10−2 

 

Per allele risk scores estimated for COPD risk for all individuals (OR = 1.145) 

and for ever-smokers only (OR = 1.132) in a subset of studies with ever 

smoking data available (Adonix, BWHHS, Gedling, Nottingham Smokers, EPIC, 

HCS and BRHS) were consistent, suggesting that the effect of these loci on 

COPD is similar in the general population and in ever-smokers only. 

 

2.4.3 Discussion 

This study has estimated combined effects of risk alleles in six genetic variants 

on lung function and COPD risks and has shown significantly reduced lung 
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function and increased risk of COPD for individuals with 10 to 12 risk alleles in 

comparison to individuals carrying 7 risk alleles. 

 

 The studies that took part in this analysis were all part of the follow-up stage of 

the study that discovered five out of the six variants. This becomes especially 

relevant when estimating combined effects across variants, since the potential 

over estimation of effect sizes due to winner’s cure bias (27) would be 

cumulative if discovery samples were included. 

 

The choice of an adequate baseline for comparisons in this context is also 

important. As discussed by Goddard and Lewis (116), comparisons with a 

group of average risk are more meaningful than comparisons between groups 

with more extreme risks. Comparisons with a baseline of 0 risk alleles for 

instance would probably give a misleading impression of the real predictive 

value of the genetic variants. For this reason the average number of risk alleles 

per person across studies (7 risk alleles) was chosen as the baseline group for 

comparisons.  

 

Sensitivity analyses undertaken previously (section 2.3.2) to assess the effect of 

smoking behaviour on the lung function and COPD associations of these six 

loci, support the hypothesis of an effect on lung function independent of 

smoking behaviour. However, to investigate this hypothesis further, 

approximations of risk scores were constructed for COPD both for all individuals 

and for ever-smokers only in a subset of studies included in section 2.3 with 
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ever smoking status data available. Per allele risk scores for all individuals and 

ever-smokers only were very similar, supporting a genetic effect on COPD risk 

that is not mediated via smoking behaviour. 

 

The computation of unweighted risk scores is simpler and the results easier to 

interpret than if using weighted risk scores, however they do not account for the 

fact that not all risk alleles at the six SNPs exert the same effect on lung 

function. For this reason, weighted risk scores weighting risk alleles in each 

SNP by their estimated effect sizes were also constructed in a subset of the 

studies that provided their individual level data, as a sensitivity analysis. Overall, 

results from the weighted and unweighted analyses were consistent in this 

study (Table 2-11). However, there are greater differences between weighted 

and unweighted analyses for FEV1 than for FEV1/FVC; this might be explained 

by the larger variation in effect size magnitudes for FEV1 in comparison to 

FEV1/FVC (Figure 2-4) for the variants included in the risk scores, which is 

taken into account in the weighted analysis. As more comprehensive risk scores 

are constructed including a wider range of effect sizes, the inclusion of weights 

will likely become more relevant. 

 

New studies undertaken afterwards have identified additional regions 

associated with lung function and COPD (details are given in the following 

chapters). Fine mapping of some of these regions where signals are not well 

localized might lead to the discovery of multiple causal variants within a locus. 
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Incorporating all the genetic variants known to be associated with lung function 

and their potential multiple causal variants will lead to improved risk scores.  

 

2.5 Conclusion  

This chapter has shown that three genetic variants (GSTCD, TNS1 and HTR4) 

out the five associated with lung function in the SpiroMeta dataset are also 

associated with COPD, and that the remaining two variants (AGER and THSD4) 

have the magnitude and direction of effect expected although they do not reach 

statistical significance. Another study undertaken by Castaldi and colleagues 

(117), subsequently confirmed the association of GSTCD with COPD and also 

showed associations with COPD for AGER and ADAM19. Variants near HHIP 

and in FAM13 had previously been reported to be associated with COPD (95, 

103). This illustrates that studying the quantitative spirometry measures in order 

to detect common genetic variants that can ultimately shown to be associated 

with COPD is a promising approach. 

 

Individuals with 10 to 12 risk alleles (5% of our population) had significantly 

reduced lung function and 1.6 fold increase in their risk of developing COPD in 

comparison to individuals with 7 risk alleles (28% of our population). Improved 

risk scores will be obtained after incorporating the remaining loci known to be 

associated with lung function, and their utility in comparison with existing risk 

predictions using age, sex, height, family history, etc will need to be assessed. 

In particular, risk scores incorporating genetic information might become 
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relevant for smokers since their absolute risk of developing COPD is already 

high (118).  

 

2.6 Extension of this work: Royal Society Summer Science 

Exhibition 

The effect of TNS1, GSTCD, HHIP, HTR4, AGER and THSD4 on COPD risk 

presented in this chapter was used to develop “The Risky Gene Machine”, an 

activity that was part of the “Breathless genes: the lung and the short of it” 

exhibition at the Royal Society Summer Science Exhibition in London 2012 

(http://sse.royalsociety.org/2012/exhibits/breathless-genes/). This is a week 

long exhibition attended by over 10,000 members of the public and 2,000 

school students. Using the method described in COPD per allele risk score 

approximations, in section 2.4.1, a per allele COPD risk score was 

approximated using the single SNP effects on COPD risk for the six loci 

analysed in this chapter. Baseline COPD risk for ever and never-smokers was 

taken from a study published in 2006 on 8,045 individuals followed up for 25 

years (118). This allowed the estimation of COPD absolute risk for an individual 

given their smoking status and their number of risk alleles. The Risky Gene 

Machine looks like a “fruit machine”, but instead of a random combination of 

fruits, a random combination of risk and non risk alleles is provided for the six 

loci; the user starts by being a smoker and then changes to being a non-smoker 

and sees the difference that the number of risk alleles and the smoking status 

makes on their risk of developing COPD.

http://sse.royalsociety.org/2012/exhibits/breathless-genes/
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Chapter 3:  Analysis of common genetic variants: GWAS of 

lung function 

This chapter describes a meta-analysis of genome-wide association studies of 

lung function measures. It includes a detailed explanation of the quality control 

checks undertaken on the study level results and the kind of issues found in this 

process. It also presents the 16 novel loci discovered in this study and 

discusses their effect on other relevant traits. This study was published in 

Nature Genetics in 2011 (2)* (Appendix A). I was the lead analyst for this study 

(as reflected by my first author status on the publication) and I independently 

generated all results that appear in the paper and in this thesis, unless 

otherwise stated. As this study was a collaboration between the pre-existing 

SpiroMeta and CHARGE cohorts, a second analyst (Daan Loth, representing 

the CHARGE consortium) independently analysed the data, and more detailed 

description of his role and the outputs from this work is described in the 

“Statement of originality of the work” in the introduction to this thesis 

 

3.1 Introduction 

Lung function measures predict morbidity and mortality (119-121), and are used 

in the diagnosis of chronic obstructive pulmonary disease (COPD). As 

discussed in Chapter 1 section 1.3, lung function measures are known to 

aggregate in families, and heritability studies estimate narrow sense heritability 

of lung function to be between 40% and 50% (70, 81, 82). Detecting genetic 
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variants associated with lung function measures might provide insights into the 

molecular pathways involved in lung function and lung disease. 

 

Previous genome-wide association studies (23, 96) undertaken by the 

SpiroMeta and the CHARGE consortia separately, each one in over 20,000 

individuals, have confirmed the association of a locus (4q31) known to affect 

lung function (94) and reported 10 additional genetic variants associated with 

lung function which reached genome-wide significance in at least one of the 

consortia. However, these variants only explain a very small proportion of the 

heritability of the lung function measures (23). Due to the modest effects of 

genetic variants, large sample sizes are required in order to detect them. This 

chapter presents a joint meta-analysis of GWAS including studies from the 

SpiroMeta and CHARGE consortia and studies new to both consortia with a 

discovery stage of 48,201 individuals and with the top signals followed up in up 

to 46,411 individuals. 

 

Often, sharing individual level data is a complicated process, and a meta-

analysis of study level results according to a shared analysis plan is a common 

approach to overcome this issue in genetic studies. Meta-analysing study level 

results has been shown to be as efficient as analysing individual level data 

jointly (122). Concerns that may arise when meta-analysing published findings, 

where studies are selected on the basis of their findings, such as publication 
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bias, are not an issue in the context of a meta-analysis of study level results 

according to a common analysis plan, where the studies are selected before 

undertaking the analysis. However, challenges are still faced when meta-

analysing results from different studies, particularly if many studies and 

therefore many analysts are involved in analyses of very large datasets where 

the consequences of programming errors may be harder to detect. This chapter 

presents the procedure I adopted to ensure the quality of the results and 

discusses the issues found.  

 

New genomic regions associated with lung function discovered in this study are 

also presented, as well as the effect of variants in these regions, and in regions 

previously reported to affect lung function, on other traits of interest, such as 

smoking, height or lung cancer. 

 

3.2 SpiroMeta-CHARGE meta-analysis of GWAS: methods 

3.2.1 Study design 

This study consisted of two stages (Figure 3-1). A discovery stage (stage 1), 

where around 2.5 million SNPs were analysed in 23 studies and 48,201 

individuals of European ancestry; and a follow-up stage (stage 2), where the 10 

strongest signals were analysed in up to 17 studies and up to 46,411 individuals 

of European ancestry and a further 24 SNPs in a subset of up to 21,674 

individuals. 
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Figure 3-1 Study design 
Definitions of all study abbreviations are given in section 3.2.2. 

 
* Studies with genome-wide data which provided results for the ten top SNPs and up to an additional 24 
SNPs; # Study which undertook genotyping on a 32-SNP multiplex genotyping platform including the ten 
top SNPs and an additional 12 SNPs 

3.2.2 Stage 1 samples 

Stage 1 was formed of 23 studies, 17 from the SpiroMeta consortium and 6 

from the CHARGE consortium. The studies were: AGES, Age, 

Gene/Environment Susceptibility; ARIC, Atherosclerosis Risk in Communities; 

B58C T1DGC, British 1958 Birth Cohort Type 1 Diabetes Genetics Consortium; 

B58C WTCCC, British 1958 Birth Cohort Wellcome Trust Case Control 

Consortium; BHS1, Busselton Health Study 1; CHS, Cardiovascular Health 

Study; the CROATIA- Korcula study; the CROATIA-Vis study; ECRHS, the 

European Community Respiratory Health Survey; EPIC obese cases, European 

Prospective Investigation into Cancer and Nutrition, Obese Cases; EPIC 

population based, European Prospective Investigation into Cancer and Nutrition 
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Cohort; FHS, Framingham Heart Study; FTC, Finnish Twin Cohort incorporating 

FinnTwin16 and FITSA; Health ABC, Health, Aging, and Body Composition; 

H2000, Finnish Health 2000 survey; KORA F4, Cooperative Health Research in 

the Region of Augsburg; KORA S3, Cooperative Health Research in the Region 

of Augsburg; NFBC1966, Northern Finland Birth Cohort of 1966; ORCADES, 

Orkney Complex Disease Study; RS-I and RS-II, Rotterdam Studies; SHIP, 

Study of Health in Pomerania; the TwinsUK-I study. Table 3-1 gives descriptive 

information of the studies. Spirometry measurements were undertaken in each 

study as described in (2)*. 
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Table 3-1 Sample population characteristics for each study in stage 1 
Abbreviations: N = number, y. =years, s.d. =standard deviation, smk = ever-smokers, nonsmk = never-smokers. 
 

Study 
N 
total 

N 
male 

N 
female 

Age range 
(y) 
 at 
FEV1/FVC 
measure
ment 

Mean age, 
 y (s.d.) 

Mean FEV1, 
L (s.d.) 

Mean FVC, 
L (s.d.) 

Mean 
FEV1/ FVC 
(s.d.) 

N 
smk 

N 
nonsmk 

Genomic 
inflation factor 
(λ) FEV1 

Genomic inflation 
factor 
(λ) FEV1/FVC 

Smk Nonsmk Smk Nonsmk 

AGES 1689 686 1003 66-95 
76.19 
(5.63) 

2.13 (0.69) 2.86(0.85) 0.74 (0.11) 886 803 1.009 1.012 1.003 1.003 

ARIC 9078 4279 4799 44-66 
54.27 
(5.70) 

2.94 (0.78) 3.99 (0.98) 0.74 (0.08) 5458 3620 1.034 1.007 1.019 1.019 

B58C T1DGC 2343 1131 1212 44–45 44.5 (0) 3.31 (0.78) 4.19 (0.96) 0.79 (0.08) 1651 692 1.009 0.999 1.023 1.009 

B58C 
WTCCC 

1372 691 681 44–45 44.5 (0) 2.93 (0.75) 4.18 (0.96) 0.79 (0.08) 978 394 0.999 0.996 1.007 0.99 

BHS1 1168 455 713 17-91 
52.98 
(17.07) 

2.81 (0.97) 3.68 (0.11) 0.76 (0.09) 515 653 1.02 1.034 1.02 1.015 

CHS 3140 1226 1914 65-95 72.3 (5.4) 2.12 (0.66) 3.00 (0.87) 0.71 (0.11) 1597 1543 1.035 1.021 1.02 1.033 

CROATIA-
Korcula 

825 300 525 18–90 55.5 (13.5) 2.84 (0.81) 3.37 (0.93) 0.84 (0.09) 428 397 1.039 1.014 0.999 1.041 

CROATIA-Vis 769 323 446 18–88 56.3 (15.3) 3.39 (1.22) 4.38 (1.43) 0.77 (0.09) 441 328 1.019 1.002 1.066 1.027 

ECRHS 1594 784 810 19-48 
33.90 
(7.17) 

3.78 (0.82) 4.59 (1.03) 0.83 (0.07) 895 699 1.018 1.014 1.005 1.024 

EPIC obese 
cases 

1104 476 628 39–76 59.1 (8.8) 2.35 (0.69) 2.84 (0.87) 0.82 (0.17) 615 489 1.005 1.02 1.02 1.014 

EPIC 
population 
based 

2336 1100 1236 39–77 59.2 (9.0) 2.50 (0.72) 3.04 (0.90) 0.85 (0.16) 1275 1061 1.013 1.008 1.002 1.018 
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Study 
N 
total 

N 
male 

N 
female 

Age range 
(y) 
 at 
FEV1/FVC 
measure
ment 

Mean age, 
 y (s.d.) 

Mean FEV1, 
L (s.d.) 

Mean FVC, 
L (s.d.) 

Mean 
FEV1/ FVC 
(s.d.) 

N 
smk 

N 
nonsmk 

Genomic 
inflation factor 
(λ) FEV1 

Genomic inflation 
factor 
(λ) FEV1/FVC 

Smk Nonsmk Smk Nonsmk 

FHS 7911 3650 4261 19-92 52.2 (14.6) 3.03 (0.94) 4.02 (1.14) 0.75 (0.08) 4355 3556 1.02 1.032 1.007 1.026 

FTC 134 13 121 23–76 57.4 (19.3) 2.69 (0.94) 2.93 (0.61) 0.79 (0.09) 30 104 1.054 1.011 1.005 1.003 

Health ABC 1472 786 686 70-79 73.7 (2.8) 2.31 (0.66) 3.11 (0.81) 0.74 (0.08) 831 641 0.997 1.001 0.998 1.012 

Health 2000 821 394 427 30-75 
50.47(10.9
1) 

3.29 (0.90) 4.16 (1.07) 0.79 (0.07) 572 249 1.001 1.023 1.007 1 

KORA F4 904 426 478 42-61 
53.82(4.39
) 

3.25 (0.79) 4.20 (0.97) 0.77 (0.06) 560 344 1.051 1.013 1.032 1.017 

KORA S3 555 261 294 29–73 47.6 (9.0) 3.43 (0.78) 4.18 (0.99) 0.83 (0.07) 289 266 1.014 1.019 1.012 1.029 

NFBC1966 4556 2182 2374 31–31 31.0 (0) 3.96 (0.79) 4.73 (0.99) 0.84 (0.06) 2908 1648 1.022 1.011 1.023 1.004 

ORCADES 692 322 370 19–93 54.9 (15.3) 2.88 (0.84) 3.58 (0.98) 0.80 (0.09) 288 404 1.014 1.046 1.015 1.051 

RS-I 1224 556 668 65-97 74.5 (5.6) 2.31 (0.73) 3.16 (0.92) 0.73 (0.08) 863 361 1.029 1.023 1.026 1.017 

RS-II 852 381 471 58-88 67.2 (6.3) 2.71 (0.78) 3.61 (1.08) 0.76 (0.09) 565 287 1.027 1.006 1.009 1.016 

SHIP 1777 870 907 25–85 52.3 (13.7) 3.28 (0.89) 3.87 (1.03) 0.87 (0.06) 1004 773 1 0.996 1.016 0.991 

TwinsUK-I 1885 0 1,885 18–79 48.4 (12.2) 2.73 (0.56) 3.40 (0.61) 0.80 (0.08) 942 943 0.998 1.012 1.009 1.005 

Stage 1 
sample size 

48201  
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3.2.3 Association analyses of stage 1  

I designed a common analysis plan to ensure that the same analyses were 

undertaken across all studies. This was circulated between the studies and after 

discussion it was agreed and adopted by all studies. The analysis plan can be 

found in Appendix B. After that, I carried out quality control checks on the data 

uploaded and meta-analysed the results once all the QC issues had been 

resolved.  

 

3.2.3.1 Study level analyses 

The genotyping platforms and quality control criteria implemented by each study 

are given in Appendix C. Each study carried out imputation of non-genotyped 

SNPs against the European subset of samples in HapMap NCBI build 35 or 36 

(Appendix C). The software programs used for imputation differed between 

studies and included: MACH (18), IMPUTE (17) or BIMBAM (123). MACH  and 

IMPUTE are two software implementations that share similar underlying 

population genetic models (124), and BIMBAM has been shown to perform 

similarly to MACH and IMPUTE in contrast with other imputation methods (125, 

126). 

 

Forced expiratory volume in one second (FEV1) and the ratio of FEV1 over 

forced vital capacity (FEV1/FVC) were the traits studied. Only individuals with no 

missing data for ever smoking status and with complete data on both FEV1 and 



91 

 

FEV1/FVC were included in the analysis. Both traits were adjusted for age, 

age2, sex, height and ancestry principal components using linear regression. To 

ensure the normality of the data, the residuals obtained in the linear regressions 

were then transformed to ranks and to normally distributed Z-scores. These 

transformed residuals were then used as the dependent variables for 

association testing assuming additive genetic effects, separately for ever-

smokers and never-smokers. The software used for association testing is 

specified in Appendix C. Appropriate tests for association in related individuals 

were applied where necessary, as described in (2)*. 

 

3.2.3.2 Consortium central analyses 

Quality control checks 

A series of quality control checks were carried out on the study level results to 

make sure that no analytic errors were included in the meta-analysis. A series 

of plots were generated genome-wide for each dataset in each study to assess 

the quality of the data and to identify any irregularities.  

 

SNPs with low imputation quality indicate that there is not enough information 

from surrounding SNPs in LD with the SNPs being imputed to reliably infer their 

genotype. These SNPs may give erroneous results in the association tests. 

SNPs with low minor allele frequencies (MAF) are more prone to errors in the 

variant calling process, since most clustering-based algorithms do not perform 
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well when there is a small number of samples within a genotype cluster (35). 

Moreover, an error in the calling of a SNP with low minor allele frequency will 

have a substantial influence in the overall allele frequency for that SNP, and this 

may also influence the association test results. For these reasons, some of the 

checks performed across studies were mainly focused on the SNPs remaining 

after applying an imputation quality filter (SNPs with imputation quality < 0.3 

were removed) and a minor allele frequency filter (SNPs with minor allele 

frequency < 0.05 were removed) using study specific information. These SNPs 

were only excluded for the quality control checks, when meta-analysing the 

results only SNPs with imputation quality < 0.3 were removed, but no minor 

allele frequency filter was applied. 

 

File formatting 

Files uploaded by each study were checked to make sure that they were 

formatted as requested in the analysis plan and they were re-formatted when 

that was not the case. The inclusion of wrongly formatted files in the analysis 

may have serious consequences, producing errors in the meta-analysis 

process, or giving incorrect results in the meta-analysis. When managing large 

data files automated pipelines are often used and “eyeballing” the data is not a 

common practice. However, simple checks such as manually going through all 

the column names in the files to make sure they are as requested, or checking 

that a study has not uploaded the same file twice with a different name, by 

making sure all the file sizes are different, proved to be useful. 
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Consistency across studies 

As described below, plots were generated genome-wide for each study and 

then compared in order to identify inconsistencies between studies. 

Inconsistencies might arise due to genuine differences in the study population 

or they could also reveal systematic biases; they could for instance be 

introduced due to a programming error during the analysis or due to an error in 

reporting coded alleles or strands. Some systematic errors, such as a 

programming error that leads to underestimated standard errors and therefore 

inflated statistics, can be very influential in the meta-analysis results.  

 

Plots generated include: (i) plots of effect sizes and standard errors for all SNPs 

after applying imputation quality (< 0.3) and minor allele frequency (< 0.05) 

filters; (ii) plots of the density of weights (the inverse of the standard error 

squared was used as the weight) used in the meta-analysis: this might highlight 

systematic differences in the way the results were estimated; and (iii) plots of 

study allele frequencies against HapMap allele frequencies: to ensure that the 

allele coding was consistent across studies, the effect sizes were flipped so that 

the effect of the alphabetically higher allele on the forward strand of the NCBI 

build 36 reference sequence of the human genome was reported by each study, 

and then their allele frequencies were plotted against HapMap frequencies for 

the same alleles. 
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Data quality 

Quantile quantile plots (QQ plots) are used to compare two probability 

distributions, by plotting the quantiles of one distribution against the quantiles of 

the other distribution. If the two distributions are the same, the quantiles would 

be expected to follow the line of correlation with slope equal to 1. In genome-

wide association studies QQ plots are used to compare the distribution of the 

observed P-values with the distribution of the expected P-values if the null 

hypothesis holds, that is in case of no association. The –log10 of the P-values 

are usually plotted instead of the P-values to facilitate visualization. If the 

observed P-values show no more associations than expected by chance, we 

would expect the dots representing SNPs on the plot to follow the line of 

correlation with slope equal to 1. If there are some real associations we would 

expect to have more significant P-values on the observed set of P-values and 

therefore we would expect to see a deviation at the upper right end of the plot.  

 

QQ plots are also a useful tool to detect genomic inflation; overinflated statistics 

would produce smaller P-values than expected by chance all along the 

distribution of P-values distribution. In order to assess the overinflation of the 

statistics in a GWAS, the genomic inflation factor (𝜆) is calculated. The test 

statistic used to test the association of a SNP with the trait in a linear regression 

((Beta/SE) 2) should follow a Chi-square distribution with one degree of 

freedom, and overinflated statistics will deviate from it by a factor 𝜆. The 

genomic inflation factor is obtained as the median of the test statistics over the 
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median of a Chi-square distribution with one degree of freedom. The expected 

value of 𝜆 if there is no overinflation is around 1. Genomic inflation can arise for 

example due to population structure or relatedness that have not been 

appropriately adjusted for in the modelling process.  

 

For each study, QQ plots were generated after applying imputation quality (< 

0.3) and minor allele frequency (< 0.05) filters and genomic inflation factors 

generated. Imputation quality metrics r2.hat (MACH), .info (IMPUTE) or OEvar 

(BIMBAM), were also plotted across studies.  

 

Meta-analysis 

SNPs with imputation quality below 0.3 were excluded from the analysis. 

Genomic control (26) (explained in section 1.1.3 in Chapter 1) was applied to 

the ever-smokers and never-smokers datasets separately for each study using 

the genomic inflator factors (λ) given in Table 3-1. For each study the effect 

sizes were flipped so that the effect of the alphabetically higher allele in the 

forward strand of the NCBI build 36 reference sequence of the human genome 

was reported. Then, effect size estimates and standard errors for ever-smokers 

and never-smokers for each study were meta-analysed using inverse variance 

weighting (the inverse of the standard error squared was used as the weight), 

and genomic control was applied to the pooled estimates at study level. Finally, 

effect sizes and standard errors were meta-analysed across studies using 
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inverse variance weighting and genomic control was applied one last time to the 

final estimates. 

 

3.2.4 Selection of SNPs for stage 2 

First, a list of the strongest associations was produced, selecting only the most 

significant SNP (or sentinel SNP) for each independent region, using a P-value 

threshold of P < 3 x 10-6 for either FEV1 or FEV1/FVC. Independent regions 

were defined as those with sentinel SNPs more than 500kb apart. Only novel 

regions were selected for follow-up, hence SNPs in previously reported regions 

(23, 94, 96) were removed from the list. The criteria to select SNPs from the 

novel regions took into account their effective sample size (obtained as the sum 

across studies of the product of the imputation quality metric for each SNP and 

the sample size), the association shown by surrounding SNPs assessed by 

examining region plots and the consistency of the direction of effect across 

studies assessed by examining forest plots. Only SNPs with effective sample 

sizes ≥ 70% of the total stage 1 sample size, with association signals for 

surrounding SNPs that were consistent with their correlation (or LD) with the 

sentinel SNP, and with consistent direction of effect across studies were 

selected. SNPs in twenty-nine regions met these criteria. In two regions, the 

sentinel SNP had effective sample size ≥ 70% but < 80% of the total stage 1 

sample size and, for that reason, a proxy SNP from each  of these two regions 

(r2 = 1 and r2 = 0.97) with effective sample size > 80% was also selected. In 

three regions there were different sentinel SNPs showing association with FEV1 
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and FEV1/FVC and all of them were taken forward. In total, 29 regions and 34 

SNPs were selected for follow-up in stage 2.  

 

Table 3-2 presents the list of SNPs followed up in stage 2 and includes the 

reason why each SNP was selected: “sentinel SNP” if it was the sentinel SNP 

with P < 3 x 10-6, “proxy for …” if it was a proxy with effective sample size >= 

80% for a sentinel SNP with P < 3 x 10-6 and N effective < 80%, and “sentinel 

SNP (different trait)” if it was the second SNP selected in a region with different 

sentinel SNPs for each trait. Table 3-2 also provides a ranking (“Ranking for 

follow-up”) by P-value for association with the trait (“Measure”) that had the 

strongest association, used to prioritise SNPs for follow-up in a larger number of 

samples.
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Table 3-2 List of SNPs selected for follow-up 
Definitions of all study abbreviations are given in section 3.2.5. Abbreviations: N = effective sample sizes, Chr. = chromosome. 
 

Chr. Measure 
SNP_ID (NCBI36 position), 
function 

N stage1 N stage2 

Why 
selected 
 for follow-
up? 

Ranking  
for  
follow- up 

Direct genotyping follow-up In-silico follow-up 

In ADONIX, 
BRHS, BWHHS, 
Gedling, HCS, 
Nottingham 
Smokers, NSHD 
and SAPALDIA? 

In 
BHS2? 

In GS: 
SFHS
? 

In CARDIA, 
CROATIA-
SPLIT, 
LBC1936, 
LifeLines, 
MESA-Lung 
and RS-III? 

In 
TwinsUK
-II? 

10 FEV1/FVC 
rs7068966 (12317998), 
CDC123 (intron) 

47085 45892 
sentinel 
SNP 

1 Yes Yes Yes Yes Yes 

3 FEV1/FVC 
rs1529672 (25495586), RARB 
(intron) 

40624 45386 
sentinel 
SNP 

2 Yes Yes Yes Yes Yes 

1 FEV1/FVC 
rs2284746 (17179262), MFAP2 
(intron) 

45944 35310 
sentinel 
SNP 

3 Yes Yes - Yes Yes 

10 FEV1 
rs1878798 (12283489), 
CDC123 (intron) 

46164 21086 

sentinel 
SNP  
(different 
trait) 

4 - - Yes Yes Yes 

2 FEV1/FVC 
rs12477314 (239542085), 
HDAC4 (downstream) 

45585 45704 
sentinel 
SNP 

5 Yes Yes Yes Yes Yes 

5 FEV1/FVC 
rs1551943 (52230790), ITGA1 
(intron) 

43787 45914 
sentinel 
SNP 

6 Yes Yes Yes Yes Yes 

12 FEV1/FVC 
rs1036429 (94795559), 
CCDC38 (intron) 

47814 46183 
sentinel 
SNP 

7 Yes Yes Yes Yes Yes 

10 FEV1 
rs11001819 (77985230), 
C10orf11 (intron) 

45546 45677 
sentinel 
SNP 

8 Yes Yes Yes Yes Yes 

16 FEV1/FVC 
rs2865531 (73947817), CFDP1 
(intron) 

47594 46286 
sentinel 
SNP 

9 Yes Yes Yes Yes Yes 

16 FEV1/FVC 
rs12447804 (56632783), 
MMP15 (intron) 

35123 23693 
sentinel 
SNP 

10 - Yes Yes Yes Yes 
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Chr. Measure 
SNP_ID (NCBI36 position), 
function 

N stage1 N stage2 

Why 
selected 
 for follow-
up? 

Ranking  
for  
follow- up 

Direct genotyping follow-up In-silico follow-up 

In ADONIX, 
BRHS, BWHHS, 
Gedling, HCS, 
Nottingham 
Smokers, NSHD 
and SAPALDIA? 

In 
BHS2? 

In GS: 
SFHS
? 

In CARDIA, 
CROATIA-
SPLIT, 
LBC1936, 
LifeLines, 
MESA-Lung 
and RS-III? 

In 
TwinsUK
-II? 

16 FEV1/FVC 
rs3743563 (56636666), MMP15 

(missense) 
47179 43190 

proxy for 
 rs12447804 

11 Yes - Yes Yes Yes 

6 FEV1/FVC 
rs2857595 (31676448), NCR3 
(upstream) 

45540 45657 
sentinel 
SNP 

12 Yes Yes Yes Yes Yes 

6 FEV1 
rs2855812 (31580699), MICB 
(intron) 

46921 21190 

sentinel 
SNP  
(different 
trait) 

13 - - Yes Yes Yes 

6 FEV1/FVC 
rs1928168 (22125717), 
AK026189 (intron) 

47936 21323 
sentinel 
SNP 

14 - - Yes Yes Yes 

2 FEV1/FVC 
rs2544527 (15843619), DDX1 

(downstream) 
45352 21115 

sentinel 
SNP 

15 - - Yes Yes Yes 

6 FEV1 
rs6903823 (28430275), 
ZKSCAN3 (intron) 

47057 21428 
sentinel 
SNP 

16 - - Yes Yes Yes 

1 FEV1/FVC 
rs993925 (216926691), TGFB2 
(downstream) 

42402 21162 
sentinel 
SNP 

17 - - Yes Yes Yes 

2 FEV1 
rs3769124 (239014101), ASB1 

(intron) 
44924 10579 

sentinel 
SNP 

18 - - - Yes Yes 

6 FEV1/FVC 
rs2798641 (109374743), 
ARMC2 (intron) 

46369 20999 
sentinel 
SNP 

19 - - Yes Yes Yes 

16 FEV1 
rs12716852 (76746239), 
WWOX (intron) 

47510 21228 
sentinel 
SNP 

20 - - Yes Yes Yes 

6 FEV1 
rs3094548 (29463181), 
OR12D2 (upstream) 

42516 20733 
sentinel 
SNP 

21 - - Yes Yes Yes 

21 FEV1/FVC 
rs9978142 (34574109), KCNE2 
(upstream) 

44577 20693 
sentinel 
SNP 

22 - - Yes Yes Yes 
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Chr. Measure 
SNP_ID (NCBI36 position), 
function 

N stage1 N stage2 

Why 
selected 
 for follow-
up? 

Ranking  
for  
follow- up 

Direct genotyping follow-up In-silico follow-up 

In ADONIX, 
BRHS, BWHHS, 
Gedling, HCS, 
Nottingham 
Smokers, NSHD 
and SAPALDIA? 

In 
BHS2? 

In GS: 
SFHS
? 

In CARDIA, 
CROATIA-
SPLIT, 
LBC1936, 
LifeLines, 
MESA-Lung 
and RS-III? 

In 
TwinsUK
-II? 

6 FEV1 
rs3734729 (150612560), 
PPP1R14C (untranslated-3) 

43680 20998 
sentinel 
SNP 

23 - - Yes Yes Yes 

15 FEV1/FVC 
rs8040868 (76698236), 
CHRNA3 (synonymous) 

35121 21131 
sentinel 
SNP 

24 - - Yes Yes Yes 

15 FEV1/FVC 
rs12914385 (76685778), 
CHRNA3 (intron) 

47226 21327 
proxy for 
 rs8040868 

25 - - Yes Yes Yes 

3 FEV1 
rs9310995 (32904119), TRIM71 
(intron) 

44835 21070 
sentinel 
SNP 

26 - - Yes Yes Yes 

12 FEV1/FVC 
rs11172113 (55813550), LRP1 
(intron) 

45387 20256 
sentinel 
SNP 

27 - - Yes Yes Yes 

5 FEV1/FVC 
rs10067603 (131831767), 
C5orf56 (downstream) 

44134 21167 
sentinel 
SNP 

28 - - Yes Yes Yes 

3 FEV1 
rs1344555 (170782913), 
MECOM (intron) 

46067 21104 
sentinel 
SNP 

29 - - Yes Yes Yes 

5 FEV1/FVC 
rs153916 (95062456), SPATA9 
(upstream) 

47530 21428 
sentinel 
SNP 

30 - - Yes Yes Yes 

15 FEV1 
rs2036527 (76638670), 
CHRNA5 (uptream) 

45038 20874 

sentinel 
SNP  
(different 
trait) 

31 - - Yes Yes Yes 

12 FEV1/FVC 
rs4762767 (19757396), AEBP2 
(downstream) 

48016 21324 
sentinel 
SNP 

32 - - Yes Yes Yes 

4 FEV1 
rs1541374 (106267809), TET2 
(upstream) 

45221 20516 
sentinel 
SNP 

33 - - 

Yes  
(reser
ve 
 list) 

Yes Yes 
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Chr. Measure 
SNP_ID (NCBI36 position), 
function 

N stage1 N stage2 

Why 
selected 
 for follow-
up? 

Ranking  
for  
follow- up 

Direct genotyping follow-up In-silico follow-up 

In ADONIX, 
BRHS, BWHHS, 
Gedling, HCS, 
Nottingham 
Smokers, NSHD 
and SAPALDIA? 

In 
BHS2? 

In GS: 
SFHS
? 

In CARDIA, 
CROATIA-
SPLIT, 
LBC1936, 
LifeLines, 
MESA-Lung 
and RS-III? 

In 
TwinsUK
-II? 

6 FEV1/FVC 
rs2647044 (32775888), HLA-
DQB1 (upstream) 

44610 8381 
sentinel 
SNP 

34 - - - Yes - 
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3.2.5 Stage 2 samples 

Studies that contributed to stage 2 with in-silico data (studies that already had 

GWAS data) were: CARDIA, Coronary Artery Risk Development in Young 

Adults; the CROATIA-Split study; LBC1936, Lothian Birth Cohort 1936; the 

LifeLines study; MESA-Lung, Multi-Ethnic Study of Atherosclerosis; RS-III, 

Rotterdam Study and; the TwinsUK-II study. Studies that contributed to stage 2 

with direct genotyping (studies that did not have GWAS data and undertook de 

novo genotyping for a selection of the variants) were: ADONIX, Adult-Onset 

Asthma and Nitric Oxide; BHS2, Busselton Health Study 2; BRHS, British 

Regional Heart Study; BWHHS, British Women’s Heart and Health Study; the 

Gedling study; GS:SFHS, Generation Scotland: Scottish Family Health Study; 

HCS, Hertfordshire Cohort Study; the Nottingham Smokers study; NSHD, 

Medical Research Council National Survey of Health and Development (also 

known as the British 1946 Birth Cohort) and; SAPALDIA, Swiss study on Air 

Pollution and Lung Disease in adults. Table 3-3 gives descriptive information of 

these studies.
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Table 3-3 Sample population characteristics for each study in stage 2 
Abbreviations: N = number, y = years, s.d = standard deviation, L = litres, smk = ever-smokers, nonsmk = never-smokers. 
 

Study 
N 
total 

N 
male 

N 
female 

Age range 
(y) at 
FEV1/FVC 
measurem
ent 

Mean age, y 
(s.d.) 

Mean FEV1, 
 L (s.d.) 

Mean FVC, 
 L (s.d.) 

Mean  
FEV1/ FVC 
 (s.d.) 

N 
nonsmk  

N 
smk 

Studies with in-silico data 

CARDIA  1626 768 858 17-32 25.6 (3.33) 3.68 (0.81) 4.70 (1.00) 0.82 (0.06) 932 694 

CROATIA-SPLIT 491 209 282 18-85 49.07 (14.60) 3.19 (0.91)  3.80 (1.06) 0.84 (0.08) 239 252 

LBC1936  991 501 490 67-71 69.55 (0.84) 2.38 (0.67)   3.04 (0.87) 0.79 (0.10) 437 554 

LifeLines  3078 1232 1846 21-88 54.94 (9.75) 3.15 (0.81)  4.21 (1,01) 0.75 (0.08) 1075 2003 

MESA-Lung 1469 737 732 48-90 66.1 (9.7) 2.57 (0.76)  3.44 (0.99) 0.73 (0.09) 636 833 

RS-III 1247 549 698 46-89 56.59 (5.58) 3.15 (0.85) 4.06 (1.14) 0.78 (0.09) 425 822 

TwinsUK-II 2373 0 2373 17-85 53.5(14.3) 2.62(0.61)  3.27(0.65) 0.80 (0.08) 1230 1143 

Studies with direct genotyping 

ADONIX 1410 660 750 25-75 49.08 (13.54) 3.34 (0.86)  4.24(1.02) 0.79 (0.07) 792 618 

BHS2 3038 1368 1670 18-97 50.0 (16.7) 3.05 (0.951)  3.97 (1.15) 0.78 (0.08) 1633 1405 
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Study 
N 
total 

N 
male 

N 
female 

Age range 
(y) at 
FEV1/FVC 
measurem
ent 

Mean age, y 
(s.d.) 

Mean FEV1, 
 L (s.d.) 

Mean FVC, 
 L (s.d.) 

Mean  
FEV1/ FVC 
 (s.d.) 

N 
nonsmk  

N 
smk 

BRHS 3862 3862 0 58-80 68.72 (5.48) 2.58 (0.69) 3.38 (0.84) 0.77 (0.17) 1121 2741 

BWHHS  3635 0 3635 59-80 68.83 (5.49) 1.98 (0.52) 2.82 (0.76) 0.71 (0.09) 2055 1580 

Gedling 1266 633 633 27-80 56.14 (12.29) 2.85 (0.85) 3.68 (1.01) 0.77 (0.07) 634 632 

GS:SFHS  10399 4304 6095 18-93 46.37 (14.61) 3.11 (0.87) 4.05 (1.02) 0.77 (0.09) 5674 4725 

HCS 2848 1509 1339 59-73 66.14 (2.84) 2.44 (0.68)  3.42 (0.92) 0.72 (0.09) 1318 1530 

Nottingham Smokers 521 236 285 36-89 59.60 (10.48) 1.10 (0.95) 3.02 (1.05) 0.64 (0.16) 0 521 

NSHD 2511 1258 1253 53 53 2.79 (0.70)  3.50 (0.90)  0.80 (0.09) 1045 1466 

SAPALDIA 5646 2753 2893 18-62 42.0 (11.4) 3.58 (0.84)  4.53 (1.04) 0.79 (0.07) 2653 2993 

Stage 2 sample size 46411  
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All 34 SNPs were followed up in up to 11,275 individuals from seven studies 

with in silico data: CARDIA, CROATIA-SPLIT, LBC1936, LifeLines, MESA-

Lung, RS-III and TwinsUK-II. The SNP rs2647044 was not available in 

TwinsUK-II (Table 3-2). The top ten ranking SNPs (Table 3-2) were selected for 

follow-up by direct genotyping in up to 35,136 individuals from ADONIX, BHS2, 

BRHS, BWHHS, Gedling, GS:SFHS, HCS, Nottingham Smokers, NSHD and 

SAPALDIA. If a SNP in the top ten had an N effective < 80%, only the proxy 

SNP (with N effective >= 80%) was included in the top ten for follow-up. For 

regions that showed association with both FEV1 and FEV1/FVC, only the 

leading SNP with the lowest P-value for either trait was included if it was within 

the top ten SNPs. rs3743563 (proxy for rs12447804 with N effective >= 80%) 

could not be genotyped in BHS2, so rs12447804 was genotyped instead (Table 

3-2). The genotyping in GS: SFHS was undertaken using a 32-SNP multiplex 

genotyping platform, so the top ten SNPs were included plus an additional 22: 

the 32 top ranking SNPs, including proxies and both SNPs from regions that 

showed association with both FEV1 and FEV1/FVC. This assay failed for one 

SNP (rs3769124), which was subsequently replaced with the thirty-third ranking 

SNP (rs1541374); and rs2284746 was excluded because of poor clustering 

(Table 3-2). 

 

3.2.6 Association analyses of stage 2 

The analysis plan that I drafted was circulated to all stage 2 studies for 

comments. The final agreed version was then re-sent to all studies as included 
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in Appendix B. I undertook study level association analyses for BRHS, 

BWHHS, Gedling, GS:SFHS and Nottingham Smokers. Then I undertook 

quality control checks on the uploaded results, and once all issues were 

resolved I meta-analysed the results. 

 

3.2.6.1  Study level analyses 

Each study undertook the same association analysis as in stage 1 for up to 34 

SNPs as described in section 3.2.3.1. In two follow-up studies (BHS2 and GS: 

SFHS), which had family data, ever-smokers and never-smokers were analysed 

together in order to account for familial correlations, and ever smoking status 

was included as a covariate in the model. The Nottingham Smokers study only 

included smokers, so the analysis was only done in one dataset.  

 

3.2.6.2 Consortium central analyses 

Quality control checks 

A series of quality control checks once study-level results were provided was 

undertaken to make sure that no analytic errors were included in the meta-

analysis. In the context of a follow-up analysis when only a small number of 

SNPs are analysed, checking data quality and consistency across studies was 

more challenging. Systematic differences that can appear obvious genome-

wide, such as reporting the wrong coded allele, are much harder to identify 
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when only looking at a small subset of SNPs where the role of chance is harder 

to rule out.  

 

File formatting 

Files uploaded by each study were checked to make sure that they were 

formatted as requested in the analysis plan and they were re-formatted if 

necessary.  

 

Consistency across studies and data quality 

Imputation quality metrics for the SNPs analysed were requested and assessed 

for those studies with in-silico data. The consistency of direction of effect size 

estimates across studies was examined by generating forest plots and the 

consistency of the allele frequency for the coded allele was also examined by 

plotting coded allele frequencies across studies. When inconsistencies were 

found they were followed up contacting the study analysts. 

 

Meta-analysis 

After the quality of the results was ensured, the effect sizes were flipped so they 

were all reported for the alphabetically higher allele on the forward strand of the 

NCBI build 36 reference sequence of the human genome. For each study with 

stratified results effect sizes and standard errors for ever-smokers and never-
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smokers were meta-analysed using an inverse variance weighted meta-

analysis. Those studies which undertook the analysis genome-wide, although 

they only reported results for up to 34 SNPs, provided the genomic inflation 

factor (λ), so the pooled estimates for those studies were then corrected for 

genomic control. Finally, pooled effect sizes and standard errors across studies 

were obtained using inverse variance weighted meta-analysis. 

 

3.2.7 Combined analysis of stage1 and stage 2 samples 

Results from stage 1 and stage 2 were meta-analysed for the 34 top SNPs 

followed up in stage 2, using inverse variance weighted meta-analysis. 

Statistical significance was defined as equivalent to a Bonferroni correction for 

one million tests (P < 5 x 10-8) (11).  

 

3.2.8 Additional analyses 

Associations in stage 1 of SNPs previously associated with lung function 

Associations in stage 1 of 13 previously reported regions were investigated. 

Regions included were: (i) 11 regions (with signals in or near TNS1, PID1, 

FAM13A, GSTCD-NPNT, HHIP, HTR4, ADAM19, AGER, GPR126, PTCH1 and 

THSD4) reported as showing genome-wide significant association (P < 5 × 

10−8) with lung function (23, 94, 96), (ii) CHRNA3-CHRNA5-IREB2-LOC123688 

reported as showing genome-wide significant association with COPD with 

additional evidence of association with lung function (95), and (iii) DAAM2, 
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which reached borderline genome-wide significance in the SpiroMeta 

consortium (23). If multiple SNPs had been reported for these regions, results 

for all SNPs were extracted, as well as the SNP that showed the strongest 

association in the stage 1 of this study. 

 

Association of lung-function-associated SNPs with other traits 

The association with other traits of sentinel SNPs in the new regions that met 

genome-wide significance after meta-analysing stage 1 and stage 2, and of  

sentinel variants in 12 previously discovered regions associated (P < 5×10−8) 

with lung function or COPD (and also associated with lung function) was tested. 

The following related traits were assessed: (i) lung function in children; (ii) 

height in the GIANT consortium (127) dataset; (iii) smoking amount and ever 

smoking status in the Ox-GSK consortium (109) dataset; and (iv) lung cancer in 

the International Lung Cancer Consortium (ILCCO) dataset (128). For regions 

with multiple SNPs reported, all the SNPs were included, except those having r2 

> 0.9 with another SNP already selected which were excluded. The most 

significant SNP in stage 1 of this study was also included for each region.  

 

Gene x smoking interaction analysis 

The analysis carried out to test for gene x smoking interaction was a Z-test 

comparing the effect of a given SNP in ever-smokers and in never-smokers. 
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Proportion of variance explained by loci discovered to date 

The number of putative undiscovered variants with similar effects on lung 

function to those associated with lung function in the SpiroMeta-CHARGE 

dataset was estimated, and then the proportion of the variance that they 

collectively explain was calculated. The approach used was based on the 

method developed by Park et al. (129). Winners’ curse bias free effect sizes 

were estimated, and then the number of undiscovered variants were estimated 

using the statistical power in the discovery dataset (discovery power) to detect 

the unbiased effect sizes.  

 

To calculate the unbiased (winners’ curse bias free) effect sizes for the 26 

genome-wide significant (P < 5 x 10-8) variants (including both new and 

previously discovered variants) discovery data were excluded for each variant. 

Effect size estimates for the new variants that were genome-wide significant 

after meta-analysing stage1 and stage2 were obtained using SpiroMeta-

CHARGE stage 2 data. The first study to report the association of HHIP with 

lung function was undertaken using data from FHS (94), therefore this study 

was excluded when estimating the effect size for HHIP. For the remaining 9 loci 

previously discovered, effect sizes were calculated excluding studies involved in 

the discovery GWAS of Repapi et al. 2010 (23), or in the discovery GWAS of 

Hancock et al. 2010 (96), or studies from both discovery GWAS, depending on 

which studies originally reported the loci.  
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To estimate the power for discovered associations the approach used by the 

ICBP consortium for systolic and diastolic blood pressure (113) was followed. 

This approach takes into account that two phenotypes were analysed in parallel 

and it also takes into account uncertainty about true effect sizes of the 

discovered variants. The discovery power is expressed as a function of the true 

effect sizes and it is then integrated with respect to a joint probability distribution 

for true effect sizes on FEV1 and FEV1/FVC. This joint probability distribution is 

a bivariate normal distribution with mean the unbiased (winners’ curse bias free) 

effect size estimates for FEV1 and FEV1/FVC and variance-covariance matrix 

formed by their corresponding standard errors and the phenotypic correlation 

between FEV1 and FEV1/FVC. 

 

 The approach in Park et al. 2010 (129) was followed to obtain the proportion of 

variance explained by the inferred number of variants. First, the number of 

variants of a given effect size was obtained as the inverse of the power to 

detect them. Then, the proportion of variance explained by the 𝑖-th variant (𝑖 

ranging from 1 to 26 in this case), with effect size 𝛽𝑖 and allele frequency 𝑝𝑖 was 

calculated as 
2 𝑝𝑖(1−𝑝𝑖)𝛽𝑖

2

𝑉
 where 𝑉 is the phenotypic variance. Finally, the 

proportion of variance explained by the inferred number of variants was 

obtained by summing the product of the number of variants of a given effect 

size by the proportion of variance explained by one of them, over each of the 26 
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genome-wide significant (P < 5 x 10-8) variants. Heritability of 40% (70, 81, 82) 

was assumed to estimate the proportion of the additive polygenic variance of 

each trait.  The confidence interval for the total number of variants was obtained 

using bootstrapping, as in Park et al. 2010 (129). 

 

3.3 SpiroMeta-CHARGE meta-analysis of GWAS: results  

3.3.1 Results of the quality control checks in stage 1 

Before meta-analysing the stage 1 study level results, a series of quality control 

checks were carried out. Details about the method and rationale for each check 

are given in Quality control checks, section 3.2.3.2. 

 

Only plots for a selection of studies and datasets are presented here for 

simplicity. Study names in this section are not given; a random number has 

been allocated to all the stage 1 and stage 2 studies, so they are referred to by 

their number. A different dataset (for example, all individuals or ever-smokers 

only) for the same study may be presented to illustrate different issues in 

different sections. 

 

3.3.1.1 File formatting 

Files were re-formatted when they did not follow the guidance provided in the 

analysis plan. For instance, column names had to be changed to agree with 
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those requested in the analysis plan for a subset of studies. In addition, one 

study uploaded the same file for the never-smokers and ever-smokers results 

for FEV1 and for FEV1/FVC. This was identified by checking the file sizes. The 

analyst was contacted and the appropriate files were provided. 

 

3.3.1.2 Consistency across studies 

Plots of effect sizes and standard errors 

Effect sizes (beta) and standard errors (SE) for all ~2.5 million SNPs for each 

study were plotted to look for inconsistencies across studies.  

 

Figure 3-2 illustrates the effect of using minor allele frequency (< 0.05) and 

imputation quality (< 0.3) filters on the effect size estimates. The magnitude of 

the betas after the filtering appears to range between -0.5 and 0.5 in study 23 

(N < 400) and between -0.15 and 0.15 in study 24 (N > 3000), while clear 

outliers can be observed before the filtering (Figure 3-2). A similar pattern can 

be seen for the SE (Figure 3-3). The plots for these two studies also illustrate 

that the magnitude of betas and SE differs between studies according to sample 

size. Larger studies have more accurate beta estimates and thus smaller SE 

(such as study 24), while estimates from smaller studies tend to be more 

variable and have larger SE (such as study 23).The same trend for variation 

according to sample size was seen across all studies. 
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Figure 3-2 Beta plots for study 23 and study 24 using different filtering strategies 

   
 
 

     

a) Study 23 unfiltered  b) Study 23 MAF filtered    c) Study 23 MAF and imputation quality filtered  
     
 

a) Study 24 unfiltered   b) Study 24 MAF filtered    c) Study 24 MAF and imputation quality filtered 
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Figure 3-3 Standard error plots for study 23 and study 24 using different filtering strategies 

    

   

a) Study 24 unfiltered  b) Study 24 MAF filtered  c) Study 24 MAF and imputation quality filtered 

a) Study 23 unfiltered  b) Study 23 MAF filtered  c) Study 23 MAF and imputation quality filtered 
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A remarkably high number of outliers were observed for study 20 (N < 300) 

after using minor allele frequency (< 0.05) and imputation quality (< 0.3) filters 

(Figure 3-4 a) and b)). The imputation quality for SNPs with outlying betas and 

standard errors after applying the filters ranged from 0.3 to 0.94, however their 

minor allele frequencies were all between 5% and 10% with most of them were 

between 5% and 7% (Figure 3-4 d)). This seemed to indicate that their outlying 

values could still be related to their allele frequency. Study 20 is a southern 

Finnish study, and allele frequencies with another Finnish study, study 19, in 

this case a northern Finnish study with a larger sample size (N >1000) were 

compared. Most of the outlying variants in study 20 had minor allele frequencies 

< 5% in study 19 (Figure 3-4 c)). This discrepancy in allele frequencies could 

be explained by south Finnish specific variation or due to the reduced sample 

size of this subset of study 20. Nevertheless, it seemed that the overall allele 

frequency for these variants across studies would be < 5% and since low allele 

frequency variants are not well imputed, this set of variants would be filtered out 

at the meta-analysis due to low N effective anyway, therefore this issue did not 

seem problematic.  

 

There were no issues with beta or standard error plots for any other study.
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Figure 3-4 Beta and SE plots for study 20 and allele frequency distribution for SNPs with outlying values 

 

      

      

a) SE unfiltered    b) SE MAF and imputation   c) SE MAF (using study 19 and 20 MAF) and
      quality filtered       imputation quality filtered 
   

a) Betas unfiltered    b) Betas MAF and imputation   c) Betas MAF (using study 19 and 20 MAF) and
      quality filtered       imputation quality filtered 
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d) Major allele frequency distribution for SNPs with Betas with absolute value > 1 (on the left) and for SNPs with SE > 1 (on the right) 
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Plot of density of weights 

Inverse variance weighted meta-analysis was used to produce pooled estimates 

of effect sizes and standard errors across studies. The density of the weights 

(inverse of the standard errors squared) was plotted across studies in order to 

identify possible systematic differences. However, they all seemed consistent. 

Figure 3-5 shows the density of weights for a subset of studies with different 

sample sizes. Only a subset of studies are plotted here to facilitate visualization. 

Since standard errors scale inversely with sample size, we expect the weights 

to scale with sample size, as can be observed in Figure 3-5 .  

 

Figure 3-5 Density plot of FEV1 weights 
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Plot of study allele frequencies against HapMap allele frequencies 

In order to meta-analyse effect sizes across studies it is necessary to ensure 

that all the effect size estimates for a given SNP corresponded to the same 

allele. To do that, effect sizes were flipped so that the effect of the alphabetically 

higher allele on the forward strand of the NCBI build 36 reference sequence of 

the human genome was reported by each study. Allele frequencies for the 

coded alleles in each study versus the allele frequency for the same allele in 

HapMap were plotted as an additional check. Figure 3-6 a) shows these plots 

for three studies and they illustrate that the allele frequencies of the studies 

were highly consistent with the HapMap allele frequencies. Figure 3-6 b) shows 

an inconsistency between the allele frequencies plotted for HapMap and 

another study, which seemed to correspond to different alleles, highlighting an 

error in how the alleles were reported in that study. The analysts for this study 

were contacted regarding this issue and the correct information for the allele 

coding was provided.  

 

There were no issues with allele coding for any other study.
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Figure 3-6 Study specific allele frequencies (x-axis) plotted against HapMap allele frequencies (y-axis) 

     

 a) Regular allele frequencies for three studies 

 b) Irregular allele frequencies for one study 
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3.3.1.3 Data quality 

Quantile-quantile plots 

For each study, QQ plots were generated after applying imputation quality (< 

0.3) and minor allele frequency (< 0.05) filters. Figure 3-7 a) shows regular QQ 

plots for a subset of studies, whereas Figure 3-7 b) shows an abnormal QQ 

plot, as well as plots for Betas and SEs, for another study (N < 500). The Betas 

for the study with abnormal QQ plots seemed consistent with the Betas for other 

studies of similar sample size (see study 23 in Figure 3-2), however the 

standard errors were noticeably higher (compared with study 23 in Figure 3-3) 

leading to the very non-significant P- values shown in the QQ plot. The genomic 

inflation factor for this study was 0.014. The analyst of this study was contacted, 

but no explanation was found for this abnormal results. For this reason this 

study had to be excluded from the analysis. QQ plots for the remaining studies 

looked satisfactory. Genomic inflation factors were also calculated for all studies 

and are presented in Table 3-1.
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Figure 3-7 Quatile quantile plots  
 

     

     

a) Regular QQ plots 

b) Irregular QQ plot for one study, Beta and Standard error plots for the same study 
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Plots of imputation quality 

Imputation quality metrics: r2.hat (MACH), .info (IMPUTE) or OEvar (BIMBAM), 

were plotted across studies. Figure 3-8 a) shows regular histograms of 

imputation quality for three studies, with a clear peak for imputation quality 

around 1. Figure 3-8 b) shows a histogram of imputation quality for another 

study, with a peak around 1, but also another peak at around 0.1. The analysts 

of this study were contacted and they reported a bug in the association software 

(mach2qtl) which had rounded values of imputation quality 0.99 to 0.1 instead of 

1. The association was undertaken again with a more recent version of the 

software with the bug fixed and the new results were uploaded.  

 

There were no issues with imputation quality metrics for any other study.
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Figure 3-8 Histograms of imputation quality 
 

   

 a) Regular imputation quality 

 

b) Irregular imputation quality 
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3.3.2 Association analyses of stage 1 

The stage 1 (discovery stage) of this analysis consisted of 48,201 individuals of 

European ancestry in 23 studies, where the association of FEV1 and FEV1/FVC 

with 2.5 million SNPs was tested adjusting for age, age2, sex, height and 

ancestry principal components, and stratifying by ever smoking status (details 

on the method are given in section 3.2.3.1). Once all the issues found in the 

quality control process were solved, stage 1 study level results were meta-

analysed using inverse variance weighted meta-analysis. Details on the 

strategy followed for the meta-analysis are given in Meta-analysis, section 

3.2.3.2. 

 

QQ plots of the –log10 P-values expected under the null hypothesis against the 

–log10 P-values observed in stage 1 meta-analysis (Figure 3-9) showed a large 

deviation from the expected line of slope 1 at the right end of the plot, 

suggesting that an increased number of significant associations were detected 

both for FEV1 and FEV1/FVC. The deviation from the expected line was still 

apparent in the QQ plots after the exclusion of regions previously reported (23, 

94-96), suggesting that new associations were also identified.  
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Figure 3-9 QQ plots for FEV1 and FEV1/FVC 
Black dots represent all SNPs and red dots represent only the SNPs remaining 
after the exclusion of SNPs in regions previously reported (23, 94, 96) to be 
associated with lung function (in or near TNS1, PID1, FAM13A, GSTCD/NPNT, 
HHIP, HTR4, ADAM19, AGER, DAAM2, GPR126, PTCH1 and THSD4). 
Regions were defined as 500kb either side of the lead reported SNP. 
 

 

The genomic inflation factors (𝜆𝐺𝐶) were 1.12 for FEV1 and 1.09 for FEV1/FVC 

after applying genomic control twice at study level (before and after meta-

analysing ever and never-smokers). A final correction for genomic control was 

also applied at the meta-analysis level. Genomic inflation is known to increase 

with sample size, as the power to detect genetic associations also increases 

(130). This has been observed for other traits (127, 131, 132). Genomic inflation 

factors scaled to a sample size of a 1000 individuals (𝜆𝐺𝐶_1000) both for FEV1 

and FEV1/FVC were 1.002, indicating that there was no over inflation of the test 

statistics. 

 

FEV1 FEV1/FVC 
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3.3.3 Results of the quality control checks in stage 2 

After the stage 1 meta-analysis, a selection of 34 SNPs in 29 independent 

regions were taken forward for follow-up in seven studies with in-silico data and 

10 studies that undertook direct genotyping. Details on the SNP selection and 

the stage 2 samples are given in sections 3.2.4 and 3.2.5 respectively. Results 

from these studies were also subject to a thorough quality control process 

(details on the method followed can be found in section 3.2.6.2). 

  

Study names in this section are not given; a random number has been allocated 

to all the stage 1 and stage 2 studies, so they are referred to by their number. 

 

3.3.3.1 File formatting 

Files were re-formatted when they did not follow the guidance provided in the 

analysis plan. For one study the column names did not match the column 

values: the column names included two “Markerid” columns and did not include 

the “coded allele” column, however the data had the correct fields. A query was 

sent to the analyst and the correct column names were provided. 

 

3.3.3.2 Consistency across studies and data quality 

Imputation quality for all imputed SNPs included in stage 2 was > 0.6. 
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Consistency of direction of effect and of allele frequency across studies was 

examined, and two issues were found. Figure 3-10 a) shows a forest plot for 

rs2284746, where most of the effect sizes were negative, except for four studies 

that had positive effect. Two of these four studies (studies 8 and 34) also had 

allele frequencies < 0.5, whereas the rest had allele frequencies > 0.5 (Figure 

3-10 b)). Overall, the allele frequencies for this SNP were all around 0.5, so that 

made harder to rule out that the variation seen was just due to chance. Also, the 

alleles of this SNP were G and C which meant that it was not possible to detect 

whether the wrong strand had been reported just by looking at the alleles. The 

analysts of these two studies were contacted to enquire about these issues. 
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Figure 3-10 Forest plot and plot of betas vs. allele frequencies for 
rs2284746 in stage 2  

a) Forest plot for rs2284746 

  

b) Effect sizes vs. allele frequencies for rs2284746 
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Although study 34 had reported that alleles for all the SNPs were on the forward 

strand, alleles for rs2284746 were found to be on the reverse strand, so the 

effect size had to be flipped. Study 8 however, did not find any issue with the 

allele coding or with the strand. Figure 3-11 shows forest plots for the SNPs 

that were analysed in study 8 (results shown just for FEV1/FVC for simplicity) 

and the direction of effect goes in the opposite direction to most of the studies in 

most instances. After sharing this information with the study 8 analysts, they 

noticed that the ranking of the phenotype values undertaken in the 

transformation had been done in the wrong direction and that explained the 

pattern seen in the results. Corrected results were then provided. 

 

Consistent results were found for the remaining studies.
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Figure 3-11 Forest plots for FEV1/FVC for 10 SNPs in stage 2 at an early stage of the quality control process 
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3.3.4 Combined analysis of stage1 and stage 2 samples 

Thirty-four SNPs in 29 independent regions with P-values < 3 x 10-6 in stage 1 

were followed up in stage 2 in up to 46,411 individuals. After the stage 2 study 

level results for the 34 SNPs passed the quality control process and the issues 

found were resolved (clean results for the 34 SNPs are shown in Appendix C), 

stage 2 results were meta-analysed across studies (method in section 3.2.6.2), 

and then stage1 and stage 2 results were also meta-analysed.  

 

SNPs in 16 regions achieved stage 1 and stage 2 combined P-values below 5 x 

10-8 (Table 3-4 and Figure 3-12), and 9 of these 16 also showed independent 

replication in stage 2, reaching a Bonferroni corrected threshold for 34 tests (P 

< 1.47 × 10−3) (Table 3-4). Out of these 16 loci, three of the sentinel SNPs 

showed the strongest association with FEV1: in MECOM (intron), ZKSCAN3 

(intron)/ ZNF323 (intron) and C10orf11 (intron); one locus showed genome-wide 

significance for FEV1 and FEV1/FVC, in CDC123 (intron); and the remaining 12 

loci showed strongest association with FEV1/FVC in or near: MFAP2 (intron),  

TGFB2 (downstream), HDAC4 (downstream), RARB (intron), SPATA9 

(upstream), NCR3 (upstream), ARMC2 (intron), LRP1 (intron), CCDC38 

(intron), MMP15 (intron), CFDP1 (intron) and KCNE2 (upstream). Region plots 

and forest plots for these 16 regions are presented in Appendix D.
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Table 3-4 Results for the 16 new regions associated with lung function 
 Abbreviations: Chr. =chromosome, freq. = frequency, SE = standard error, P = P-value, N = effective sample size. 
  

Chr. 
SNP_ID 
(NCBI36 position),  
Function 

Coded 
allele 

Measure 

Stage 1 Stage 2 
Joint meta-analysis of 
all stages 

Beta 
(SE)  

P  
Coded 
allele 
freq.  

N  
Beta 
(SE)  

P  
Coded  
allele  
freq.  

N  
Beta 
(SE)  

P 

1 
rs2284746 (17179262), 
MFAP2 (intron) 

G 

FEV1/FVC 
-0.042 
(0.007) 

2.47x10−9 

0.516 45944 

-0.038 
(0.007) 

2.64x10−7 

0.522 35371 

-0.04 
(0.005) 

7.5x10−16 

FEV1 
0.008 
(0.007) 

2.78x10−1 
0.006 
(0.007) 

3.7x10−1 
0.007 
(0.005) 

1.48x10−1 

1 
rs993925 (216926691), 
TGFB2 (downstream) 

T 

FEV1/FVC 
0.04 
(0.007) 

2.54x10−7 

0.308 42402 

0.023 
(0.01) 

1.76x10−2 

0.348 21414 

0.034 
(0.006) 

1.16x10−8 

FEV1 
0.025 
(0.007) 

1.51x10−3 
0.003 
(0.007) 

7.29x10−1 
0.014 
(0.005) 

8.71x10−3 

2 
rs12477314 (239542085), 
HDAC4 (downstream) 

T 

FEV1/FVC 
0.052 
(0.008) 

4.48x10−9 

0.202 45585 

0.031 
(0.008) 

8.41x10−5 

0.206 45821 

0.041 
(0.006) 

1.68x10−12 

FEV1 
0.032 
(0.008) 

2.77x10−4 
0.025 
(0.007) 

1.82x10−4 
0.028 
(0.005) 

1.02x10−7 

3 
rs1529672 (25495586), 
RARB (intron) 

C 

FEV1/FVC 
-0.06 
(0.009) 

7.75x10−10 

0.829 40624 

-0.038 
(0.009) 

1.16x10−5 
0.831 45466 

-0.048 
(0.006) 

3.97x10−14 

FEV1 
-0.037 
(0.009) 

1.78x10−4 
-0.011 
(0.007) 

9.33x10−2 
-0.02 
(0.006) 

2.16x10−4 

3 
rs1344555 (170782913), 
MECOM (intron) 

T 

FEV1/FVC 
-0.019 
(0.008) 

2.61x10−2 
0.205 46067 

-0.017 
(0.012) 

1.55x10−1 
0.209 21313 

-0.018 
(0.007) 

6.65x10−3 

FEV1 
-0.042 
(0.008) 

1.91x10−6 
-0.025 
(0.009) 

6.44x10−3 
-0.034 
(0.006) 

2.65x10−8 

5 
rs153916 (95062456), 
SPATA9 (upstream) 

T 

FEV1/FVC 
-0.033 
(0.007) 

2.06x10−6 

0.552 47530 

-0.025 
(0.009) 

6.67x10−3 

0.535 21647 

-0.031 
(0.005) 

2.12x10−8 

FEV1 
-0.001 
(0.007) 

8.91x10−1 
0.004 
(0.007) 

6.22x10−1 
0.001 
(0.005) 

8.2x10−1 

6 
rs6903823 (28430275), 
ZKSCAN3 (intron) / 

G FEV1/FVC 
-0.027 
(0.008) 

2.28x10−3 0.209 47057 
-0.013 
(0.011) 

2.34x10−1 0.246 21489 
-0.021 
(0.007) 

1.19x10−3 
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Chr. 
SNP_ID 
(NCBI36 position),  
Function 

Coded 
allele 

Measure 

Stage 1 Stage 2 
Joint meta-analysis of 
all stages 

Beta 
(SE)  

P  
Coded 
allele 
freq.  

N  
Beta 
(SE)  

P  
Coded  
allele  
freq.  

N  
Beta 
(SE)  

P 

ZNF323 (intron) 
FEV1 

-0.046 
(0.008) 

2x10−7 
-0.029 
(0.008) 

4.75x10−4 
-0.037 
(0.006) 

2.18x10−10 

6 
rs2857595 (31676448), 
NCR3 (upstream) 

G 

FEV1/FVC 
0.049 
(0.009) 

7.86x10−8 

0.809 45540 

0.028 
(0.008) 

5.36x10−4 

0.796 46107 

0.037 
(0.006) 

2.28x10−10 

FEV1 
0.04 
(0.009) 

1.46x10−5 
0.017 
(0.007) 

9.41x10−3 
0.025 
(0.005) 

1.3x10−6 

6 
rs2798641 (109374743), 
ARMC2 (intron) 

T 

FEV1/FVC 
-0.047 
(0.009) 

2.81x10−7 

0.183 46369 

-0.03 
(0.012) 

1.57x10−2 

0.179 21173 

-0.041 
(0.007) 

8.35x10−9 

FEV1 
-0.046 
(0.009) 

5.39x10−7 
-0.009 
(0.01) 

3.35x10−1 
-0.03 
(0.006) 

4.69x10−6 

10 
rs7068966 (12317998), 
CDC123 (intron) 

T 

FEV1/FVC 
0.045 
(0.007) 

1.28x10−10 

0.519 47085 

0.023 
(0.006) 

3.86x10−4 

0.518 46067 

0.033 
(0.005) 

6.13x10−13 

FEV1 
0.04 
(0.007) 

1.19x10−8 
0.022 
(0.005) 

3.56x10−5 
0.029 
(0.004) 

2.82x10−12 

10 
rs11001819 (77985230), 
C10orf11 (intron) 

G 

FEV1/FVC 
-0.019 
(0.007) 

6.5x10−3 

0.522 45546 

-0.006 
(0.006) 

3.17x10−1 

0.506 45932 

-0.012 
(0.005) 

7.58x10−3 

FEV1 
-0.041 
(0.007) 

1.42x10−8 
-0.022 
(0.005) 

3.1x10−5 
-0.029 
(0.004) 

2.98x10−12 

12 
rs11172113 (55813550), 
LRP1 (intron) 

T 

FEV1/FVC 
-0.035 
(0.007) 

1.36x10−6 

0.607 45387 

-0.026 
(0.01) 

5.83x10−3 

0.59 20509 

-0.032 
(0.006) 

1.24x10−8 

FEV1 
-0.021 
(0.007) 

3.55x10−3 
-0.003 
(0.007) 

6.94x10−1 
-0.013 
(0.005) 

1.19x10−2 

12 
rs1036429 (94795559), 
CCDC38 (intron) 

T 

FEV1/FVC 
0.049 
(0.008) 

1.24x10−8 
0.2 47814 

0.028 
(0.008) 

3.35x10−4 

0.214 46311 

0.038 
(0.006) 

2.3x10−11 

FEV1 
0.01 
(0.008) 

2.67x10−1 
0.004 
(0.006) 

5.38x10−1 
0.006 
(0.005) 

2.26x10−1 

16 
rs12447804 (56632783), 
MMP15 (intron) 

T 

FEV1/FVC 
-0.053 
(0.009) 

7.12x10−8 

0.208 35123 

-0.021 
(0.01) 

4.2x10−2 

0.222 24398 

-0.038 
(0.007) 

3.59x10−8 

FEV1 
-0.017 
(0.009) 

8.02x10−2 
0.004 
(0.007) 

5.71x10−1 
-0.004 
(0.006) 

4.73x10−1 
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Chr. 
SNP_ID 
(NCBI36 position),  
Function 

Coded 
allele 

Measure 

Stage 1 Stage 2 
Joint meta-analysis of 
all stages 

Beta 
(SE)  

P  
Coded 
allele 
freq.  

N  
Beta 
(SE)  

P  
Coded  
allele  
freq.  

N  
Beta 
(SE)  

P 

16 
rs2865531 (73947817), 
CFDP1 (intron) 

T 

FEV1/FVC 
0.039 
(0.007) 

2.3x10−8 

0.418 47594 

0.024 
(0.006) 

1.94x10−4 

0.409 46304 

0.031 
(0.005) 

1.77x10−11 

FEV1 
0.024 
(0.007) 

6.3x10−4 
0.011 
(0.005) 

3.89x10−2 
0.016 
(0.004) 

1.09x10−4 

21 
rs9978142 (34574109), 
KCNE2 (upstream) 

T 

FEV1/FVC 
-0.048 
(0.009) 

8.23x10−7 

0.156 44577 

-0.031 
(0.013) 

1.75x10−2 

0.149 20944 

-0.043 
(0.008) 

2.65x10−8 

FEV1 
-0.012 
(0.009) 

2.47x10−1 
-0.015 
(0.01) 

1.35x10−1 
-0.013 
(0.007) 

5.57x10−2 
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Figure 3-12 Manhattan plots for FEV1 and FEV1/FVC 
SNPs with −log10 P > 5 are indicated in red. Newly associated regions that 
reached genome-wide significance after meta-analysis of stages 1 and 2 are 
labelled. 
 

a) Manhattan plot for FEV1 

 

b) Manhattan plot for FEV1/FVC 
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Chi-square heterogeneity tests were undertaken for effect sizes across stage 1 

and stage 2 studies for the 16 novel SNPs. None of the SNPs reached 

statistical significance for heterogeneity after applying a Bonferroni correction 

for 16 tests (P = 0.05 / 16 = 3.13 x 10-3), although a limited number of SNPs had 

P < 0.05 (rs11001819 in C10orf11 for FEV1; rs153916 in SPATA9 and 

rs9978142 in KCNE2 for FEV1/FVC) (Table 3-5). The forest plots presented in 

Appendix D illustrate however, that most of the studies have consistent 

direction of effect for these SNPs and that the associations described here do 

not seem to be driven just by a small number of studies.  

Table 3-5 Chi-square heterogeneity test results for the 16 new regions 
associated with lung function 
Abbreviations: P = P-value, d.f. = degrees of freedom 
 

SNP ID Gene(function) Measure 

Stage1 & stage2 

Chi  
squared 

P d.f. 

rs1036429 CCDC38 (intron) FEV1/FVC 39.334 4.55x10−1 39 

rs11001819 C10orf11 (intron) FEV1 56.046 3.8x10−2 39 

rs11172113 LRP1 (intron) FEV1/FVC 26.303 6.6x10−1 30 

rs12447804 MMP15 (intron) FEV1/FVC 19.209 7.41x10−1 24 

rs12477314 HDAC4 (downstream) FEV1/FVC 41.187 3.75x10−1 39 

rs1344555 MECOM (intron) FEV1 28.977 5.19x10−1 30 

rs1529672 RARB (intron) FEV1/FVC 42.577 3.2x10−1 39 

rs153916 SPATA9 (upstream) FEV1/FVC 50.318 1.1x10−2 30 

rs2284746 MFAP2 (intron) FEV1/FVC 35.254 5.97x10−1 38 

rs2798641 ARMC2 (intron) FEV1/FVC 31.217 4.05x10−1 30 

rs2857595 NCR3 (upstream) FEV1/FVC 40.503 4.04x10−1 39 

rs2865531 CFDP1 (intron) FEV1/FVC 40.387 4.09x10−1 39 

rs6903823 ZKSCAN3 (intron)/ZNF323 (intron) FEV1 23.72 7.85x10−1 30 

rs7068966 CDC123 (intron) FEV1/FVC 39.482 4.48x10−1 39 

rs7068966 CDC123 (intron) FEV1 31.199 8.09x10−1 39 

rs993925 TGFB2 (downstream) FEV1/FVC 35.13 2.38x10−1 30 

rs9978142 KCNE2 (upstream) FEV1/FVC 45.681 3.3x10−2 30 
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3.3.5 Plausible pathways for lung function involving new loci 

The most significant signal was an intronic SNP (rs2284746) in MFAP2. This 

gene encodes a major antigen of elastin-associated microfibrils (133) that might 

be involved in the causation of inherited connective tissue diseases (134). 

Another potential candidate to influence lung function in this region is an intronic 

SNP (rs7513616) with an r2 of 0.42 with the sentinel SNP located in CROCC, 

which encodes rootletin, a component of cilia (135). Experiments suggest 

impaired mucociliary clearance in CROCC knockout mice (136). 

 

The next most significant signal was found in Retinoic Acid Receptor Beta 

(RARB), which is a vitamin A metabolite receptor. This receptor also controls 

cell proliferation and differentiation. Retinoic acid has been implicated in 

embryonic lung branching morphogenesis (137); and the epigenetic regulation 

of the RARB gene promoter has been linked to various cancers including non-

small cell lung cancer (138). 

 

The third most significant signal, the only one genome-wide significant both for 

FEV1 and FEV1/FVC, was found in CDC123, a cell division cycle protein 123 

homolog. Its homolog in yeast plays a role in regulating eukaryotic initiation 

factor 2 in times of cell stress (139). 
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The following strongest association was for a SNP (rs12477314) downstream of 

HDAC4, a gene that codes for histone deacetylase 4, and could possibly 

repress gene transcription. It has been shown that COPD patients have a 

reduction in histone deacetylase activity (140). 

 

3.3.6 Additional analyses 

Associations in stage 1 of SNPs previously associated with lung function 

Effects in stage 1 of loci previously reported to be associated with FEV1, 

FEV1/FVC, or COPD (23, 94-96) providing that they also showed association 

with lung function, were assessed for both lung function measures (Table 3-6). 

Details of the selection of these SNPs are shown in section 3.2.8. Ten regions 

(TNS1, FAM13A, GSTCD-NPNT, HHIP, HTR4, ADAM19, AGER, GPR126, 

PTCH1 and TSHD4) previously reported to be associated with lung function 

(23, 94-96) reached genome-wide significance in stage 1 (Table 3-6). DAAM2, 

PID1 and CHRNA3/5 reprted in (23, 95, 96), did not reach genome-wide 

significance (Table 3-6).
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Table 3-6 Lung function associations (FEV1 and FEV1/FVC) in stage 1 for all previously reported loci 
Abbreviations: ns = nonsynonymous, s = synonymous., SE =  standard error, P = P-value, N = effective sample sizes. 
 

Chr. Paper reported Measure 
SNP ID (NCBI36 position),  
function 

Gene reported 
Coded 
allele 

FEV1 FEV1/FVC 
N  

Beta (SE)  P Beta (SE)  P 

2 Repapi et al. FEV1 rs2571445 (218391399), TNS1 (ns) TNS1 G 
0.047 
(0.007) 

9.83x10−11 
0.033 
(0.007) 

4.46x10−6 45839 

2 Hancock et al. FEV1/FVC 
rs10498230 (229210747), PID1 
(downstream) 

PID1 T 0.03 (0.014) 3.6x10−2 
0.068 
(0.014) 

1.13x10−6 44957 

4 Hancock et al. FEV1/FVC 
rs2869967 (90088355), FAM13A 
(intron) 

FAM13A T 
0.012 
(0.007) 

9.38x10−2 
0.047 
(0.007) 

2.08x10−11 47710 

4 SpiroMeta-CHARGE FEV1/FVC 
rs2045517 (90089987), FAM13A 
(intron) 

FAM13A T 
-0.012 
(0.007) 

8.93x10−2 
-0.047 
(0.007) 

2x10−11 47675 

4 Cho et al. COPD 
rs7671167 (90103002), FAM13A 
(intron) 

FAM13A T 
-0.017 
(0.007) 

1.64x10−2 
-0.042 
(0.007) 

1.27x10−9 47723 

4 Repapi et al. FEV1 
rs10516526 (106908353), GSTCD 
(intron) 

GSTCD-NPNT G 
0.108 
(0.014) 

4.75x10−14 
0.039 
(0.014) 

6.17x10−3 47970 

4 Hancock et al. FEV1 
rs17331332 (107027556), NPNT 

(upstream) 
GSTCD-NPNT G 

-0.102 
(0.014) 

1.11x10−12 
-0.057 
(0.014) 

5.3x10−5 39503 

4 SpiroMeta-CHARGE FEV1/FVC 
rs6823809 (107048244), NPNT 
(intron) 

GSTCD-NPNT T 
0.050 
(0.011) 

4.82x10−6 
0.056 
(0.011) 

2.2x10−7 23656 

4 SpiroMeta-CHARGE FEV1 
rs1032296 (145654138), HHIP 
(upstream) 

HHIP T 
-0.047 
(0.007) 

8.74x10−11 
-0.050 
(0.007) 

3.42x10−12 45318 

4 Repapi et al. FEV1/FVC 
rs12504628 (145655774), HHIP 

(upstream) 
HHIP T 

-0.044 
(0.007) 

1.03x10−9 
-0.063 
(0.007) 

5.54x10−19 46204 

4 Wilk et al. FEV1/FVC 
rs11100860 (145698589), HHIP 
(upstream) 

HHIP G 
0.041 
(0.007) 

4.27x10−9 
0.064 
(0.007) 

6.81x10−20 47876 

4 Hancock et al. FEV1/FVC 
rs1980057 (145705188), HHIP 
(upstream) 

HHIP T 
0.042 
(0.007) 

4.07x10−9 
0.063 
(0.007) 

1.06x10−19 47865 

5 Hancock et al. FEV1/FVC 
rs11168048 (147822546), HTR4 

(intron) 
HTR4 T 

-0.046 
(0.007) 

2.43x10−10 
-0.047 
(0.007) 

5.97x10−11 44976 

5 Repapi et al. FEV1 
rs3995090 (147826008), HTR4 
(intron) 

HTR4 C 
0.045 
(0.007) 

3.33x10−10 
0.046 
(0.007) 

1.04x10−10 47607 
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Chr. Paper reported Measure 
SNP ID (NCBI36 position),  
function 

Gene reported 
Coded 
allele 

FEV1 FEV1/FVC 
N  

Beta (SE)  P Beta (SE)  P 

5 SpiroMeta-CHARGE FEV1 
rs1985524 (147827981), HTR4 
(intron) 

HTR4 G 
-0.048 
(0.007) 

3.06x10−11 
-0.045 
(0.007) 

2.9x10−10 45623 

5 Hancock et al. FEV1/FVC 
rs2277027 (156864954), ADAM19 
(intron) 

ADAM19 C 
-0.026 
(0.007) 

3.1x10−4 
-0.042 
(0.007) 

6.65x10−9 48023 

5 SpiroMeta-CHARGE FEV1/FVC 
rs11134779 (156869344), ADAM19 
(intron) 

ADAM19 G 
-0.027 
(0.007) 

2.4x10−4 
-0.042 
(0.007) 

6.01x10−9 48075 

6 
Hancock et al. and 
Repapi et al. 

FEV1/FVC rs2070600 (32259421), AGER (ns) AGER T 
0.025 
(0.016) 

1.27x10−1 
0.126 
(0.016) 

9.07x10−15 46314 

6 Repapi et al. FEV1/FVC 
rs2395730 (39892343), DAAM2 
(intron) 

DAAM2 C 
-0.004 
(0.007) 

5.95x10−1 
0.022 
(0.007) 

1.39x10−3 47256 

6 SpiroMeta-CHARGE FEV1/FVC 
rs11756622 (39898021), DAAM2 
(intron) 

DAAM2 T 
0.047 
(0.019) 

1.23x10−2 
0.064 
(0.019) 

5.48x10−4 28276 

6 Hancock et al. FEV1/FVC 
rs3817928 (142792209), GPR126 

(intron) 

GPR126- 
LOC153910 

G 
0.023 
(0.009) 

8.63x10−3 
0.059 
(0.008) 

2.27x10−12 46730 

6 SpiroMeta-CHARGE FEV1/FVC 
rs262129 (142894837), LOC153910 
(unknown) 

GPR126- 
LOC153910 

G 
0.031 
(0.008) 

5.44x10−5 
0.056 
(0.008) 

2.91x10−13 47014 

9 SpiroMeta-CHARGE FEV1/FVC 
rs16909859 (97244613), PTCH1 
(downstream) 

PTCH1 G 
-0.014 
(0.013) 

2.93x10−1 
0.08 
(0.013) 

7.45x10−10 43353 

9 Hancock et al. FEV1/FVC 
rs16909898 (97270829), PTCH1 

(intron) 
PTCH1 G 

0.015 
(0.012) 

2.21x10−1 
-0.072 
(0.012) 

3.94x10−9 42486 

15 Repapi et al. FEV1/FVC 
rs12899618 (69432174), THSD4 
(intron) 

THSD4 G 0.036 (0.01) 1.57x10−4 
0.076 
(0.01) 

1.86x10−15 46657 

15 SpiroMeta-CHARGE FEV1/FVC 
rs8033889 (69467134), THSD4 
(intron) 

THSD4 T 
-0.044 
(0.009) 

3.01x10−7 
-0.072 
(0.008) 

2.03x10−17 46995 

15 DeMeo et al (2009) COPD 
rs2568494 (76528019), IREB2 
(intron) 

CHRNA3-
CHRNA5-IREB2-
LOC123688 

G 
0.023 
(0.007) 

1.64x10−3 
0.029 
(0.007) 

5.25x10−5 47919 

15 Pillai et al. (2009) COPD 
rs8034191 (76593078), LOC123688 

(intron) 

CHRNA3-
CHRNA5-IREB2-
LOC123688 

T 
0.031 
(0.007) 

2.07x10−5 
0.032 
(0.007) 

9.65x10−6 47954 

15 SpiroMeta-CHARGE FEV1 
rs2036527 (76638670), CHRNA5 

(upstream) 

CHRNA3-
CHRNA5-IREB2-
LOC123688 

G 
0.036 
(0.008) 

2.4x10−6 
0.032 
(0.007) 

1.19x10−5 45038 
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Chr. Paper reported Measure 
SNP ID (NCBI36 position),  
function 

Gene reported 
Coded 
allele 

FEV1 FEV1/FVC 
N  

Beta (SE)  P Beta (SE)  P 

15 SpiroMeta-CHARGE FEV1/FVC rs8040868 (76698236), CHRNA3 (s) 
CHRNA3-
CHRNA5-IREB2-
LOC123688 

T 
0.039 
(0.008) 

2.98x10−6 
0.04 
(0.008) 

1.14x10−6 35121 



145 

 

Association with lung function in children 

The effects of the 16 new variants, as well as the 12 previously reported 

variants for lung function and COPD (23, 95, 96) (details of the selection of 

these variants in section 3.2.8), were assessed in two children’s cohorts: the 

Avon Longitudinal Study of Parents and Children (ALSPAC) (141) and the 

Raine Study (142-144), with a joint sample size of 6,281 individuals aged 

between 7 and 9. 

 

Out of the 16 new loci associated with lung function, 11 showed consistent 

direction of effect in children (Appendix C), and out of the 12 regions previously 

discovered 11 had consistent direction of effects (Appendix C). To compare 

direction of effects for a locus the direction of effect of the most significant SNP 

in the SpiroMeta-CHARGE dataset across both traits was used. 

 

Association of lung function loci with height 

The effect of the 16 new loci and of 12 previously discovered loci (23, 95, 96) on 

height was assessed by looking up their association results in the GIANT 

consortium dataset (N = 183,727) (127). After applying a Bonferroni correction 

for 28 tests (P < 1.8 x 10-3) the sentinel SNP in MFAP2 (rs2284746) showed a 

significant association with height (P = 5.64 x 10-15), although with different 

direction of effect; the allele associated with increased height was also 

associated with decreased FEV1/FVC (Appendix C). Three of the previously 
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discovered loci known to be associated with height (127, 145) (HHIP, PTCH1 

and GPR126) also showed significant P-values after applying the Bonferroni 

correction for 28 tests (Appendix C). The direction of effect for HHIP was the 

same for height and FEV1/FVC, however for PTCH1 and GPR126 it was in the 

opposite direction (Appendix C). 

 

Association of lung function loci with smoking 

Smoking is a major risk factor for developing COPD and it is known to severely 

affect lung function. For this reason the analyses undertaken here were 

stratified by ever smoking status, however it was not possible to adjust for 

amount smoked, since there was not enough information available in all studies. 

To further investigate whether the association of the 16 novel regions or any of 

the 12 previously reported regions (23, 95, 96) might be mediated via smoking 

behaviour, the association of these variants with two smoking phenotypes was 

assessed in the Oxford-GlaxoSmithKline (Ox-GSK) study: ever smoking status 

(N = 33,639) and number of cigarettes smoked per day (N = 15,574) (109). 

None of the 16 novel regions showed a significant association for either trait 

using a Bonferroni correction for 28 tests (P < 1.8 x 10-3); the lowest P-value for 

either trait was 3.7 x 10-2 (Appendix C). None of the previously reported regions 

showed even nominal significance (P < 0.05) in their association with ever 

smoking status (Appendix C). The CHRNA3/5 locus, associated with nicotine 

dependence (146, 147), was the top signal in the Ox-GSK meta-analysis (109), 

and as expected showed a strong association with number of cigarettes per day 
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(P < 3 x 10-15) (Appendix C). The PID1 locus showed evidence of association 

with number of cigarettes per day (P = 1.6 x 10-3) (Appendix C), which would 

pass a Bonferroni corrected threshold for 28 tests (P < 1.8 x 10-3).  

 

To assess whether the 16 new associations might have arisen due to a gene by 

smoking interaction, effect sizes were calculated separately in ever and in 

never-smokers and compared by testing whether they differed substantially. 

None of the loci showed significant interaction with ever smoking status after 

applying a Bonferroni correction for 16 tests (P < 3.1 x 10-3) (Table 3-7). 
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Table 3-7 Associations in never-smokers and ever-smokers in the joint 
meta-analysis of stage 1 and 2 data, and tests for interaction with smoking 
Abbreviations: Chr. = chromosome, SE = standard error, P = P-value. 
 

Chr. 
SNP_ID (NCBI36 position), 
function 

Measure 

Joint meta-analysis of all 
stages 

Interaction 

Ever-smokers 
Never-
smokers 

Beta SE Beta SE P 

1 
rs2284746 (17179262), MFAP2 

(intron) 
FEV1/FVC -0.043 0.007 -0.036 0.007 5.12x10−1 

1 
rs993925 (216926691), TGFB2 
(downstream) 

FEV1/FVC 0.041 0.008 0.026 0.009 1.91x10−1 

2 
rs12477314 (239542085), HDAC4 
(downstream) 

FEV1/FVC 0.048 0.008 0.032 0.008 1.88x10−1 

3 
rs1529672 (25495586), RARB 

(intron) 
FEV1/FVC -0.059 0.009 -0.033 0.009 4.29x10−2 

3 
rs1344555 (170782913), MECOM 
(intron) 

FEV1 -0.040 0.009 -0.029 0.009 3.81x10−1 

5 
rs153916 (95062456), SPATA9 
(upstream) 

FEV1/FVC -0.035 0.008 -0.024 0.008 3.28x10−1 

6 
rs6903823 (28430275), ZKSCAN3 
(intron)/ ZNF323 (intron) 

FEV1 -0.038 0.008 -0.037 0.008 9.64x10−1 

6 
rs2857595 (31676448), NCR3 
(upstream) 

FEV1/FVC 0.043 0.008 0.031 0.009 3.11x10−1 

6 
rs2798641 (109374743), ARMC2 
(intron) 

FEV1/FVC -0.050 0.010 -0.030 0.010 1.67x10−1 

10 
rs7068966 (12317998), CDC123 

(intron) 
FEV1/FVC 0.041 0.006 0.024 0.007 7.15x10−2 

10 
rs11001819 (77985230), 
C10orf11 (intron) 

FEV1 -0.026 0.006 -0.031 0.006 5.56x10−1 

12 
rs11172113 (55813550), LRP1 
(intron) 

FEV1/FVC -0.035 0.008 -0.029 0.008 5.97x10−1 

12 
rs1036429 (94795559), CCDC38 
(intron) 

FEV1/FVC 0.044 0.008 0.033 0.008 3.45x10−1 

16 
rs12447804 (56632783), MMP15 
(intron) 

FEV1/FVC -0.045 0.010 -0.030 0.010 2.71x10−1 

16 
rs2865531 (73947817), CFDP1 
(intron) 

FEV1/FVC 0.034 0.006 0.028 0.007 5.42x10−1 

21 
rs9978142 (34574109), KCNE2 
(upstream) 

FEV1/FVC -0.052 0.011 -0.032 0.011 1.94x10−1 
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Association of lung function loci with lung cancer 

Effects of the 16 novel SNPs and the 12 previously reported SNPs associated 

with lung function or COPD  (23, 95, 96) on lung cancer were assessed in the 

International Lung Cancer Consortium (ILCCO) GWAS meta-analysis (128). 

The ILCCO GWAS meta-analysis (13,300 cases and 19,666 controls) only had 

data on directly genotyped SNPs, for this reason proxy SNPs were given when 

the top SNP was not included in their data. No proxy SNPs were available for 

TGFB2, therefore only the associations of 27 loci with lung cancer were tested. 

 

Out of the 15 new regions tested, SNPs in two loci (ZKSCAN3/ ZNF323 and 

NCR3) that are in linkage disequilibrium (r2 > 0.6) with the sentinel SNP in each 

region were significantly associated with lung cancer (P < 4 x 10-5) after 

applying a Bonferroni correction for 28 tests (P < 1.8 x 10-3), and had consistent 

direction of effect with lung function, the alleles associated with reduced lung 

function were also associated with increased risk of developing lung cancer 

(Appendix C). Out of the previously reported regions, CHRNA3/5 known to be 

associated with lung cancer (147-149) showed a very strong association (P < 

2.2 x 10-46) in the ILCCO dataset, and also showed consistent direction of 

effects for the lung function (Appendix C). 
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Proportion of variance explained by loci discovered to date 

The association of 10 previously discovered regions (TNS1, FAM13A, GSTCD-

NPNT, HHIP, HTR4, ADAM19, AGER, GPR126, PTCH1 and THSD4) with lung 

function was confirmed in stage1 of the SpiroMeta-CHARGE meta-analysis 

(Table 3-6). In addition to these 10 variants, 16 further variants reached 

genome-wide significance in stage 1 and stage 2 combined, bringing the total 

number of loci associated with lung function at genome-wide significant levels in 

the SpiroMeta-CHARGE dataset to 26. Jointly these 26 variants explained 1.5% 

of the additive polygenic variance of FEV1 and 3.2% of the additive polygenic 

variance of FEV1/FVC. Methods have been developed in order to estimate the 

number of undetected variants with similar effect sizes to those identified in a 

GWAS and calculate the proportion of the variance of a given trait that both the 

discovered and the estimated number of undetected variants would explain 

(129). This method (details in section 3.2.8) was applied and it estimated that 

there were a total of 102 (95% confidence interval 57-155) independent 

variants, including the 26 reported and 76 putative additional variants of similar 

effect sizes. In aggregate the 102 variants would explain 3.4% of the additive 

polygenic variance for FEV1 and 7.5% of the additive polygenic variance for 

FEV1/FVC (Table 3-8).
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Table 3-8 Estimated number of undiscovered variants and proportion of variance explained 
Effect sizes and standard errors estimated using non-discovery data are shown for genome-wide significant loci in SpiroMeta-
CHARGE stage 1 or stage1 + 2 data. Abbreviations: Chr. = chromosome, N = effective sample sizes, SE = standard deviation. 
 

Chr. SNP ID (NCBI36 position),  function 

FEV1 excluding 
 winners' curse 
 bias 

FEV1/FVC  
excluding  
winners' curse 
 bias 

N Power 

Estimated 
number of 
variants of 
similar 
effect 

R2 (%) 
 FEV1 

R2 (%)  
FEV1/FVC 

Beta SE Beta SE 

1 rs2284746 (17179262), MFAP2 (intron) 0.006 0.007 -0.038 0.007 35371
n2

 0.707 1.4 0.002 0.072 

1 rs993925 (216926691), TGFB2 (downstream) 0.003 0.007 0.023 0.01 21414
n2

 0.214 4.7 0 0.024 

2 rs2571445 (218391399), TNS1 (ns) 0.041 0.009 0.034 0.009 29130
s
 0.863 1.2 0.082 0.055 

2 rs12477314 (239542085), HDAC4 (downstream) 0.025 0.007 0.031 0.008 45821
n2

 0.341 2.9 0.02 0.031 

3 rs1529672 (25495586), RARB (intron) -0.011 0.007 -0.038 0.009 45466
n2

 0.376 2.7 0.003 0.041 

3 rs1344555 (170782913), MECOM (intron) -0.025 0.009 -0.017 0.012 21313
n2

 0.207 4.8 0.021 0.01 

4 rs2045517 (90089987), FAM13A (intron) -0.006 0.009 -0.037 0.009 25736
c
 0.654 1.5 0.002 0.067 

4 rs10516526 (106908353), GSTCD (intron) 0.07 0.034 0.035 0.033 7587
sc

 0.627 1.6 0.062 0.016 

4 rs11100860 (145698589), HHIP (upstream) 0.042 0.008 0.058 0.007 40202
f
 0.996 1 0.085 0.163 

5 rs153916 (95062456), SPATA9 (upstream) 0.004 0.007 -0.025 0.009 21647
n2

 0.252 4 0.001 0.031 

5 rs1985524 (147827981), HTR4 (intron) -0.047 0.017 -0.052 0.017 7204
sc

 0.961 1 0.107 0.134 

5 rs11134779 (156869344), ADAM19 (intron) -0.03 0.01 -0.023 0.01 25917
c
 0.495 2 0.04 0.024 

6 
rs6903823 (28430275), ZKSCAN3 
(intron)/ZNF323 (intron) 

-0.029 0.008 -0.013 0.011 21489
n2

 0.248 4 0.031 0.006 

6 rs2857595 (31676448), NCR3 (upstream) 0.017 0.007 0.028 0.008 46107
n2

 0.129 7.8 0.009 0.025 

6 rs2070600 (32259421), AGER (ns) 0.012 0.04 0.093 0.04 7226
sc

 0.695 1.4 0.001 0.084 
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Chr. SNP ID (NCBI36 position),  function 

FEV1 excluding 
 winners' curse 
 bias 

FEV1/FVC  
excluding  
winners' curse 
 bias 

N Power 

Estimated 
number of 
variants of 
similar 
effect 

R2 (%) 
 FEV1 

R2 (%)  
FEV1/FVC 

Beta SE Beta SE 

6 rs2798641 (109374743), ARMC2 (intron) -0.009 0.01 -0.03 0.012 21173
n2

 0.214 4.7 0.002 0.026 

6 rs262129 (142894837), LOC153910 (unknown) 0.014 0.01 0.045 0.01 25317
c
 0.319 3.1 0.008 0.081 

9 rs16909859 (97244613), PTCH1 (downstream) -0.021 0.018 0.062 0.017 22923
c
 0.539 1.9 0.006 0.058 

10 rs7068966 (12317998), CDC123 (intron) 0.022 0.005 0.023 0.006 46067
n2

 0.209 4.8 0.024 0.026 

10 rs11001819 (77985230), C10orf11 (intron) -0.022 0.005 -0.006 0.006 45932
n2

 0.108 9.3 0.024 0.002 

12 rs11172113 (55813550), LRP1 (intron) -0.003 0.007 -0.026 0.01 20509
n2

 0.292 3.4 0 0.033 

12 rs1036429 (94795559), CCDC38 (intron) 0.004 0.006 0.028 0.008 46311
n2

 0.204 4.9 0.001 0.026 

15 rs8033889 (69467134), THSD4 (intron) -0.039 0.011 -0.072 0.011 28974
s
 0.996 1 0.05 0.174 

16 rs12447804 (56632783), MMP15 (intron) 0.004 0.007 -0.021 0.01 24398
n2

 0.059 16.8 0.001 0.015 

16 rs2865531 (73947817), CFDP1 (intron) 0.011 0.005 0.024 0.006 46304
n2

 0.175 5.7 0.006 0.028 

21 rs9978142 (34574109), KCNE2 (upstream) -0.015 0.01 -0.031 0.013 20944
n2

 0.253 3.9 0.006 0.024 

Total variants 
 

101.5 
  

Total % variance explained by estimated variants 
 

1.355 3.016 

Total % polygenic variance explained by estimated 
variants  

3.388 7.538 

 

 

n2
 no exclusions in SpiroMeta-CHARGE stage 2 

s
 excluding SpiroMeta consortium discovery GWAS of Repapi et al. (2010) 

c
 excluding CHARGE consortium discovery GWAS of Hancock et al. (2010) 

sc
 excluding SpiroMeta consortium discovery GWAS of Repapi et al. (2010) and CHARGE consortium discovery GWAS of Hancock et al. (2010) 

f
 excluding FHS from SpiroMeta-CHARGE stage 1
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3.4 SpiroMeta-CHARGE meta-analysis of GWAS: discussion 

This chapter presents a meta-analysis of 23 genome-wide association studies 

of lung function including 48,201 individuals, with a follow-up stage of 17 studies 

and up to 46,411 individuals undertaken for 29 independent regions. Previously 

reported associations with lung function were evaluated in the genome-wide 

results and the association of 10 regions (TNS1, FAM13A, GSTCD-NPNT, 

HHIP, HTR4, ADAM19, AGER, GPR126, PTCH1 and THSD4) was confirmed 

with P-values reaching genome-wide significance (P < 5 x 10-8). Out of the 29 

independent regions that were followed up, 16 achieved genome-wide 

significance after meta-analysing stage 1 and stage 2. All these novel loci are 

located in genomic regions that had not been previously related to lung function 

and they have the potential to highlight new molecular pathways that would 

improve our understanding of lung health.  

 

The 16 new variants bring the total number of loci with strong evidence of 

association with lung function to 26. However, these 26 variants combined with 

another 76 putative (as yet undiscovered) variants estimated (129) to have 

similar effect sizes, only explain a small proportion (7.5% for FEV1/FVC) of the 

additive polygenic variance of the lung function measures. This is consistent 

with findings for other complex traits (13). It is likely that part of the heritability 

not yet explained is accounted for by additional common variants of small effect 

sizes. A recently developed approach estimates that around 45% of the 

variance for height would be explained by all common genetic variants captured 
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in GWAS chips (150). It would be of interest to apply the same approach to 

estimate the proportion of the variance of the lung function traits that would be 

explained by common variants, however it requires individual level data 

genome-wide which were not available in this study. Studies with larger sample 

sizes will be required in order to identify these common variants with small 

effect sizes. Rare variants are expected to have larger effect sizes and the 

discovery of these would also add to the proportion of the variance explained. In 

addition, the study of rare variants in known regions where the signals are not 

well localized could help fine mapping these regions. For other traits it has been 

shown that the same region could host more than one independent signal (151); 

conditional analyses within discovered regions conditioning on the genome-

wide significant variants could add to the proportion of the variance explained if 

additional signals were identified. Structural variation has not yet been studied 

so widely due to its more complex nature, however it might also play an role in 

explaining the missing heritability. 

 

Three of the 26 regions associated with lung function (AGER (rs2070600), 

NCR3 (rs2857595) and ZKSCAN3/ ZNF323 (rs6903823)) are within a 3.8Mb 

window in the major histocompatibility complex (MHC), known to be a long 

range linkage disequilibrium region. LD estimated using HapMap data indicates 

that these three regions are independent (r2 ~ 0.01 between rs2070600 and the 

other two SNPs; and r2 ~ 0.31 between rs2857595 and rs6903823). However 

the HapMap sample size is limited and estimates in larger populations would be 
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required to obtain more accurate estimates of LD patterns, especially for 

variants with comparatively low allele frequency, such as rs2070600 (MAF = 

0.05). In addition, a joint analysis of these three variants conditioning on each 

other would bring more insights into their dependency or lack thereof. 

 

Population structure can lead to increased type I error. For this reason the 

studies that took part in the meta-analysis were asked to adjust their models 

using ancestry principal components, and genomic control was applied three 

times in the meta-analysis process, twice at study level (for ever-smokers and 

never-smokers separately and after meta-analysing them) and once at the 

meta-analysis level. The use of genomic control in this study is likely to be 

overly conservative, given that genomic inflation factors are known to increase 

with sample size, as the power to detect real associations for polygenic traits 

also increases (130). 

 

Inadequate adjustment for relatedness in the data is also known to increase 

type I error. Most studies included in these analyses had data on unrelated 

individuals, but a subset of studies included related individuals. All the studies 

with data on related individuals undertook their analysis taking proper account 

of relatedness, although in some instances related individuals were split into 

ever smoking and never smoking categories and their association results were 

meta-analysed. This could have led to inflated statistics, however the 
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conservative approach taken when applying genomic control probably 

accounted for this and the final stage lambdas were not overinflated (𝜆𝐺𝐶_1000 = 

1.002). 

 

Heterogeneity of the results across studies was tested using a Chi-square test 

and no significant results were found when applying a Bonferroni corrected 

threshold. This test however is of limited value, since it is underpowered when 

there are few studies (for example < 20) (152) and it can be too sensitive if 

there are many studies. Also, a Bonferroni corrected threshold is a conservative 

approach to account for multiple testing. Forest plots show that the results are 

broadly consistent across studies and not just driven by just a small number of 

studies (Appendix D). However, applying an additional approach, such as 

estimating I2, which measures the amount of heterogeneity that is not due to 

chance, would have provided a more complete analysis to assess 

heterogeneity. 

 

This study focused on lung function in adult individuals, however the effect of 

the 26 variants shown to influence lung function were also assessed in two 

cohorts of children (141-144). Overall the direction of effects seemed to be 

consistent between children and adults for the majority of the variants. This 

would suggest that either there is an overlap of pathways involved in the 

development and decline of lung function or that the pathways detected so far 
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are mainly involved in developmental processes. To investigate specific 

pathways influencing the decline of lung function, longitudinal analysis of lung 

function measures in adults would be required. 

 

In order to assess whether an inappropriate adjustment for smoking behaviour 

might have led to some of the findings, since quantitative information on amount 

smoked was not available for many studies, I assessed the association of the 

16 new regions and other previously discovered regions with ever smoking 

status and with number of cigarettes per day in the Oxford-GlaxoSmithKline 

(Ox-GSK) study (109). No evidence of association was found for any of the 16 

novel loci with either of the traits. However, the sentinel SNP in PID1, a locus 

that was genome-wide significantly associated with FEV1/FVC in the CHARGE 

consortium (96), but which did not replicate in the SpiroMeta consortium (96), 

and which did not reach genome-wide significance in the SpiroMeta-CHARGE 

results (P = 1.13 x 10-6) shows evidence of association with number of 

cigarettes per day (P = 1.6 x 10-3). This could indicate that the association seen 

with lung function might be mediated via an effect on smoking behaviour. To 

assess whether the novel findings might have occurred in part due to a gene by 

smoking interaction, the genetic effects were evaluated separately in ever and 

never-smokers. Effect sizes in ever and never-smokers were consistent overall. 

These results show that the associations of the 26 regions associated with lung 

function do not seem to be mediated via a smoking behaviour or a gene by 

smoking interaction.  
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Some of the loci previously associated with lung function (HHIP, GPR126) have 

an effect on height (127), and one of the novel loci (MFAP2) also shows a 

significant association with height in the GIANT consortium dataset (127). For 

the lung function sentinel SNPs in GPR126 and MFAP2, the allele associated 

with increased height is associated with reduced FEV1/FVC. For HHIP the 

direction of effect is the same for the lung function sentinel SNP, although the 

SNP with the strongest association with height is not associated with FEV1 or 

FEV1/FVC (P > 0.3). This suggests that the association of these regions with 

lung function is not simply through an incomplete adjustment of height in the 

lung function analysis. 

 

This study presented 16 novel regions associated with lung function and 

evaluated the effect of these variants and other previously discovered (23, 94-

96) on other traits, with the aim of providing additional insights on the 

mechanisms by which they influence lung function. However, little is known 

about the molecular pathways involved, and additional analyses within these 

genomic regions are required. Understanding the molecular pathways by which 

these regions affect lung function should provide new insights into the 

regulation of lung function and could lead to the development of new 

therapeutic targets. 
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Chapter 4:  Analyses of rare genetic variants 

This chapter focuses on the study of rare (MAF < 1%) and low allele frequency 

(1% < MAF < 5%) variants and presents two different approaches undertaken in 

order to identify rare or low allele frequency variants that have an effect on lung 

function. The first approach presented is a collapsing method that was 

undertaken by a subset of SpiroMeta studies; the studies provided summary 

statistics according to a central analysis plan that I developed and I undertook 

quality control checks, meta-analysed and interpreted their results. The second 

approach is a targeted sequencing study of the 26 genomic regions known to 

affect lung function (2, 23, 94-96)* at the time of the study in 300 COPD cases 

and 300 controls. The sequencing was outsourced and I undertook the data 

processing, quality control checks, analysis and interpretation of the data. The 

results obtained and the challenges that these data presented are discussed 

here. 

 

4.1 Introduction 

Genome-wide association studies (2, 23, 94-96)* discussed in previous 

chapters have collectively identified 26 loci that have an effect on lung function. 

However the proportion of the variance of the lung function measures that these 

variants explain is very limited (around 3.2% of the additive polygenic variance 

of FEV1/FVC, see Chapter 3 for more details). Genome-wide association 

studies of lung function undertaken to date have focused on identifying common 
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variants (MAF > 5%). It is hypothesized that variants with lower allele frequency 

might have larger effect sizes and therefore they might play an important role in 

explaining the missing heritability (13). In addition, many of the association 

signals for the loci known to affect lung function are not well localized, and 

identifying rare or low allele frequency variants within these regions can aid 

identification of the causal variants. 

 

Detecting new associations for rare or low allele frequency variants is 

challenging. Meta-analyses of GWAS undertaken to date were designed to 

detect common variants, however they did not have enough power to detect 

single low frequency variants with small to moderate effect sizes. Collapsing 

methods, which pool the effect of rare or low allele frequency variants within a 

locus, increase the power to detect new associations. I hypothesized that loci 

with rare or low allele frequency variants that have a moderate effect on lung 

function could be identified by applying a collapsing method to the SpiroMeta 

studies (23). Therefore the collapsing method implemented by the software 

QuTie (153) was applied to a subset of studies within the SpiroMeta consortium 

with a total sample size of 20,941 individuals.  

 

Given that COPD can be diagnosed using spirometry measures, I hypothesized 

that loci associated with lung function measures would also be associated with 

COPD. The association to date of 12 out of the 26 lung function regions with 
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COPD risk or airflow obstruction (TGFB2, TNS1, RARB, FAM13, GSTCD, 

HHIP, HTR4, ADAM19, AGER, GPR126, C10orf11 and THSD4) (24, 95, 103, 

117, 154, 155)*, support this hypothesis. In order to fine map or identify new 

signals within the loci known to affect lung function, the 26 regions (2, 23, 94-

96)* were sequenced in 300 COPD cases and 300 controls, assuming that loci 

associated with lung function also affect COPD susceptibility. To maximize the 

sample size of this study a cost-effective pooled design was chosen. This 

consisted of pooling individual DNA across individuals, separately for cases and 

controls. The design was made of 24 pools (12 case pools and 12 control pools) 

with DNA from 25 individuals in each pool.  

 

The challenges that these analyses presented and the strategies chosen to deal 

with them as well as the results obtained are reported in this chapter. 

 

4.2 Collapsing method to detect rare variants in the SpiroMeta 

dataset 

The collapsing method described in (153) was undertaken by a subset of 

SpiroMeta studies according to a central analysis plan. This method, 

implemented by the software QuTie v4 (153), examines the accumulation of low 

frequency and rare variants in a given locus either using a gene-based or 

sliding window approach. In order to develop the analysis plan I piloted the 

analysis in the Busselton dataset (BHS1, n = 1168) to familiarize myself with the 
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method and the possible complications that could arise while running it. I 

coordinated these analyses within the consortium and meta-analysed their 

results. 

 

4.2.1 Methods and quality control 

Based on the QuTie manual an analysis plan was developed and shared with 

the SpiroMeta studies. The analysis plan can be found in Appendix B. 

 

Study level analysis 

Samples 

SpiroMeta studies that undertook these analyses were: ALSPAC, B58C, BHS1, 

ECRHS, the EPIC studies (obese cases and population-based studies), the 

EUROSPAN studies (CROATIA-Korcula, CROATIA-Vis and ORCADES), FTC 

(incorporating the FinnTwin16 and Finnish Twin Study on Aging), Health 2000, 

KORA F4, KORA S3, NFBC1966, SHIP and TwinsUK-I. The total sample size 

was 20,941. Details on phenotype and genotype can be found in (2, 23)*. 

 

Trait preparation 

Only unrelated individuals were included in this analysis, hence studies with 

family data only undertook the analysis in a subset of unrelated individuals. All 
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individuals included in the analysis had complete data for ever smoking status, 

age, sex, height, FEV1 and FVC. FEV1 and FEV1/FVC were regressed against 

the following covariates: age, age2, sex, height, ever smoking status and 

ancestry principal components. The residuals were then transformed to ranks 

and to normally distributed Z-scores. 

 

Collapsing method 

The analysis was only applied to directly genotyped SNPs, within genes, that 

passed the study level quality control process without any MAF filter. In order to 

assess genotyping quality of any interesting signal, cluster plots could be 

examined at a later stage.  

 

The command line for the perl script that runs QuTie v4 (153) was provided to 

the studies, as well as a file with the gene coordinates required by the software 

in order to undertake the gene-based analysis.  

 

Algorithm: 

 QuTie v4 (153) filters variants with MAF greater than a given threshold 

 It tests whether the means of a quantitative trait are significantly different 

between individuals with and without rare or low allele frequency variants 
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for each locus using linear regression and Student’s T-test; the loci are 

defined by the gene coordinates file provided +/- certain distance 

 It then runs permutations for loci with P-values below a certain threshold 

in order to generate empirical P-values 

 

For these analyses the quantitative traits used were the inverse normal 

transformed residuals for FEV1 and FEV1/FVC, the loci were defined as the 

gene coordinates +/- 50kb either side; only SNPs with MAF < 5% in each study 

were included, and loci with P-values < 10-5 were subject to 100,000 

permutations. The version of QuTie v4 used was last updated on the 7th of May 

2009. 

 

Consortium central analyses 

QC issues 

Each study provided results and plots (Manhattan and histograms of the 

phenotype) produced by the software. These plots together with plots of betas, 

standard errors, and QQ plots produced centrally were examined as well as the 

genomic inflation factor (𝜆) for each study, in order to detect studies with 

irregular results. One study was removed from the meta-analysis due to a high 

𝜆 (𝜆 for FEV1 = 1.59 and 𝜆 for FEV1/FVC = 1.31). No other issues were found. 
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Meta-analysis 

After the quality control checks, the P-values were meta-analysed across 

studies using the standard weighted Stouffeer’s method weighting the P-values 

by the square root of the sample size. Genomic control was applied at study 

level and after the meta-analysis of the findings. Four meta-analyses were 

undertaken for different scenarios depending on the number of rare variants 

that each study had for a given gene: 1) only studies with at least 1 rare variant, 

2) only studies with at least 2 rare variants, 3) only studies with at least 3 rare 

variants included and 4) only studies with at least 4 rare variants. 

 

4.2.2 Results 

QQ plots with genomic inflation values are presented in Figure 4-1 both for 

FEV1 and FEV1/FVC for the four meta-analyses. The lambdas decreased as the 

criteria for inclusion in the meta-analysis became stricter, which reflects a 

reduction in power when the criteria were stricter and a smaller number of 

studies were included in the meta-analysis for each locus.
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Figure 4-1 QQ plots for the collapsing method applied to SpiroMeta 
studies 

a) for FEV1 
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b) for FEV1/FVC 
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Lower allele frequency variants are known to have poor clustering properties 

that could lead to spurious associations, for this reason in order to select a 

locus for follow-up, it was required that the association signal was driven by 

more than two variants and that the association was seen in more than one 

study. To select regions for follow-up they needed to meet both of the following 

conditions: (i) to have P-values below 10-5 in the meta-analyses with at least 3 

or 4 rare variants, and (ii) to have rare variants in more than one study.  

 

Table 4-1 presents results for genes with P-values below 10-5, and none of 

them met the criteria for follow-up. Three genes had P-values < 10-5 for FEV1 

and no regions for FEV1/FVC exceeded this threshold. The two most significant 

genes for FEV1 (LOC402116 and CRYGFP1) had rare variants only present in 

one study. The third most significant gene for FEV1 only met the significance 

threshold in the meta-analysis of studies with at least 2 rare variants, but not in 

the meta-analyses of at least 3 or 4 rare variants.
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Table 4-1Top results for the collapsing method applied to SpiroMeta studies 

Results for genes with P-values < 10-5 are shown. Only results for FEV1 are presented, since no gene reached the threshold for 
FEV1/FVC. P-values < 10-5 are presented in bold. Abbreviations: Chr. = chromosome. 

Gene Chr. Start End 
Minimum number of 
rare variants per 
study 

Mean number of 
rare variants across 
studies 

Number 
of studies 

Sample 
size 

Number of 
individuals with 
rare alleles 

Z meta-
analysis 

P meta-
analysis 

LOC402116 2 209701737 209803983 

1 2.67 3 4587 396 -1.886 5.93x10−2 

2 6 1 1953 391 -4.728 2.26x𝟏𝟎−𝟔 

3 6 1 1953 391 -4.728 2.26x𝟏𝟎−𝟔 

4 6 1 1953 391 -4.728 2.26x𝟏𝟎−𝟔 

CRYGFP1 2 209668096 209770774 

1 4.33 3 4545 510 -1.118 2.64x10−1 

2 4.33 3 4545 510 -1.118 2.63x10−1 

3 9 1 1923 401 -4.587 4.49x𝟏𝟎−𝟔 

4 9 1 1923 401 -4.587 4.49x𝟏𝟎−𝟔 

FLJ45966 4 8509455 8615237 

1 3.44 9 11651 2088 4.295 1.74x10−5 

2 3.75 8 9942 1487 4.460 8.21x𝟏𝟎−𝟔 

3 4.8 5 3566 740 3.703 2.13x10−4 

4 6 3 2235 545 1.438 1.5x10−1 
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4.2.3 Discussion 

The rationale for applying this collapsing method was to increase the power to 

detect rare or low allele frequency variants with modest effect sizes that would 

not have been picked up by previously employed GWAS analyses. This study 

had a large sample size (N = 20,941), however no convincing association 

signals were detected. A possible explanation for this is that the GWAS 

platforms used by the studies included in these analyses were primarily 

designed to capture common variation and do not tag lower frequency variants 

adequately. In addition different platforms were used by different studies, and 

therefore a different set of uncommon variants was genotyped in each study, 

which reduced the power of the meta-analysis. Denser genotyping arrays and 

imputation panels that enable reliable imputation of low frequency variants, 

such as the 1000 Genomes Project (36) or UK10K (http://www.uk10k.org/), and 

the decreased cost of sequencing will help to overcome these issues in future 

studies. 

 

The approach followed here was to meta-analyse P-values using the standard 

weighted Stouffeer’s method weighting the P-values by the square root of the 

sample size, instead of the inverse variance weighted meta-analysis used for 

common variants in the previous chapters. This is because the standard 

weighted Stouffeer’s approach is more robust and therefore more suitable for 

the meta-analysis of rare variants results. 

http://www.uk10k.org/
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A limitation of the collapsing method used here is that it assumes the direction 

of effect of all the rare alleles to be the same within a gene, either deleterious or 

protective. This method is underpowered to detect loci with rare alleles that 

affect lung function in opposite directions. In recent years collapsing methods 

have improved dramatically (34, 44, 156); an additional method that collapses 

effects of both deleterious and protective variants (53) is presented in the next 

section (4.3). 

 

An additional challenge of this study was not having access to the individual 

level data. If the individual level data had been available, the findings could 

have been examined further. Cluster plots could have been assessed for the 

variants in the most significant loci. If the same variants were driving the 

associations in all the studies and these variants had acceptable cluster plots, 

that would have given more confidence in the findings.  

 

4.3 Targeted sequencing in COPD cases and controls 

Twenty six regions known to affect lung function (2, 23, 94-96)* were 

sequenced in 300 COPD cases and 300 controls in order to identify rare and 

low allele frequency variants that could aid to fine map the association signals in 

these regions or that might point to new signals. In order to maximise sample 

size, a pooled design was used here, with DNA pooled for sets of 25 individuals 

and sequenced together, separately within cases and controls. This made the 
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variant calling step particularly challenging since sequencing error rates and 

minor allele frequencies for rare variants can be very similar when using a 

pooled design. This section starts with a brief introduction to the pooled 

sequencing design used, then provides a detailed description of the methods 

and presents and discusses the findings. 

 

4.3.1 Introduction to the pooled sequencing design 

In order to sequence DNA, it must first be fragmented and prepared in DNA 

libraries. In a pooled experiment, DNA from several individuals is combined in a 

single DNA library (Figure 4-2). In the experiment presented in this chapter, 

DNA from different libraries was sequenced together in a lane (Figure 4-2), 

therefore the DNA in each library was indexed so that at the end of the 

sequencing experiment we could track the library each DNA fragment came 

from. Since it was a pooled design, DNA from all the individuals in the same 

library (or pool) had the same index and it was not possible to know which 

individual a specific fragment of DNA belonged to, only which library they 

belonged to. In a targeted sequencing experiment, only the sequence in the 

target regions is of interest, and an enrichment step is necessary, where the 

DNA in the relevant regions is copied many times, in order to increase its 

amount (Figure 4-2). For this enrichment step it is necessary to design a probe 

library, which defines the regions we want to sequence. This design takes into 

account local characteristics of the genome that can influence the performance 

of the sequencing and alignment, and these include repetitive sequence and 
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GC content. A large proportion of the genome is made of highly repetitive DNA 

sequences (157), which can create ambiguities in the alignment of reads to a 

reference genome, especially when sequencing small DNA fragments. GC 

content bias is the dependence between the GC content (guanine-cytosine 

content) of a DNA fragment and the coverage of this fragment (158). In 

particular this affects the ability to call copy number variants.  

 

More general concepts about sequencing are explained in Chapter 1 section 

1.1.4.2. 

Figure 4-2 Pooled sequencing diagram  
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4.3.2 Methods 

4.3.2.1 Study design 

Samples 

Individuals from three studies were included in this analysis: Gedling, 

Nottingham Smokers and the Leicester COPD cases. Spirometry procedures 

for Gedling and Nottingham Smokers can be found in (2)* and for the Leicester 

COPD cases in (159).  

 

Individuals were excluded if: (i) they were younger than 40 years old, (ii) they 

had pack-years of smoking < 5, or > 100, or (iii) if they had DNA concentration 

≤ 20ng/ul (minimum concentration required for quality sequencing). 

Additionally, in the Leicester COPD cases study individuals with asthma were 

also excluded. This left a sampling frame of 965 individuals (403 from Gedling, 

468 from Nottingham Smokers and 96 from the Leicester COPD cases).  

 

COPD cases were defined as spirometric GOLD stage 2 (104)(55) and above 

(percent predicted FEV1 < 80% and FEV1/FVC < 0.7) and controls as 

individuals with percent predicted FEV1 > 80% and FEV1/FVC > 0.7, based on 

pre-bronchodilator spirometry. Individuals with percent predicted FEV1 > 80% 

and FEV1/FVC < 0.7 (GOLD stage 1 (104)) or with percent predicted FEV1 < 

80% and FEV1/FVC > 0.7 were excluded from the analysis to minimize 

misclassification. The calculation of percent predicted FEV1 was undertaken 
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using reference values of FEV1 that take into account age, sex and height 

according to previously described equations (72, 73). In order to select the most 

extreme 300 COPD cases and controls, COPD cases and controls were ranked 

according to their percent predicted FEV1. In addition, to remove extremely 

healthy individuals from the controls, individuals were excluded if: (i) they had 

percent predicted FEV1 > 120.26 (the 99th percentile of percent predicted FEV1) 

or (ii) if they had FEV1/FVC > 0.85 (the 95th percentile of FEV1/FVC). 

Characteristics of individuals included in the study are presented in Table 4-2. 

Figure 4-3 a) illustrates how cases and controls were selected. Individuals were 

grouped into pools of 25 (separately for cases and controls), following the 

percent predicted FEV1 ranking, so that individuals with more similar phenotype 

would be grouped together (Figure 4-3 b)). 

Table 4-2 Study characteristics 

Abbreviations:N = number, s.d. = standard deviation, y = years, L = litres. 

Status 
N 
Total 

N 
male 

N 
female 

Age 
range (y)  

Mean 
age, y 
(s.d.) 

Mean 
FEV1, 
L 
(s.d.) 

Mean 
% 
predict
ed 
FEV1 
(s.d.) 

Mean 
FVC, 
L 
(s.d.) 

Mean 
FEV1/ 
FVC 
(s.d.) 

Mean 
Pack-
years 
(s.d.) 

Case 300 192 108 40-86 
65.35 
(9.61) 

1.15 
(0.48) 

39.8 
(12.96) 

2.42 
(0.78) 

0.47 
(0.12) 

41.94 
(19.18) 

Control 300 162 138 40-79 
56.89 
(9.97) 

3.04 
(0.68) 

99.27 
(8.02) 

3.90 
(0.86) 

0.78 
(0.04) 

24.69 
(16.37) 
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Figure 4-3 Selection of COPD cases and controls 

a) All individuals 

  

b) Cases and controls allocated to pools 
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Definition of regions 

Region plots produced with GWAS data from the SpiroMeta-CHARGE meta-

analysis results for FEV1 and FEV1/FVC (2)* (Chapter 3) for the 26 regions 

associated with lung function (2, 23, 94-96)* were examined to define the 

association regions. SNPs with – 𝑙𝑜𝑔10(𝑃 − 𝑣𝑎𝑙𝑢𝑒)  >  2.5 and not further than 

50kb away from the next SNP moving away from the sentinel SNP, were 

selected. Any gene intersecting the association region was added to the region 

+/-10kb. If the association region did not include or intersect the closest gene, 

the association region was enlarged to include the closest gene +/- 10kb. If the 

enlarged regions also intersected other genes, the regions were not enlarged 

again, so they included small portions of genes. Regions were selected using 

the – 𝑙𝑜𝑔10(𝑃 − 𝑣𝑎𝑙𝑢𝑒) for the most significant trait only, except for CDC123 

which was genome-wide significant for FEV1 and FEV1/FVC and the sentinel 

SNP was the same for both traits. For CDC123 the association region was 

defined so it included the association regions for both traits. Region plots 

generated with data from the SpiroMeta-CHARGE meta-analysis (2)* with the 

association region highlighted can be found in Appendix E. The regions 

covered a total of 10.3Mb (Table 4-3).
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Table 4-3 Regions summary 

The columns “GWAS sentinel” and “GWAS gene” present the lung function 
GWAS sentinel SNP and the closest gene to the sentinel respectively (2)*. 
Abbreviations: Chr. = chromosome. 

Chr. GWAS.sentinel GWAS.gene Start End Length Number 
of genes 

1 rs2284746 MFAP2 17238444 17455948 217504 5 

1 rs993925 TGFB2 218508675 218885482 376807 2 

2 rs2571445 TNS1 218627794 218818796 191002 1 

2 rs12477314 HDAC4 239839616 240332643 493027 2 

3 rs1529672 RARB 25459833 25649422 189589 2 

3 rs1344555 MECOM 168791286 169391563 600277 1 

4 rs2045517 FAM13A 89637105 90077431 440326 2 

4 rs10516526 GSTCD 106280233 106902828 622595 5 

4 rs11100860 HHIP 145227600 145669881 442281 1 

5 rs153916 SPATA9 94984019 95038027 54008 2 

5 rs1985524 HTR4 147682118 148026624 344506 4 

5 rs11134779 ADAM19 156597906 157139503 541597 7 

6 rs6903823 ZKSCAN3 27982152 28415572 433420 14 

6 rs2857595 NCR3 30584612 31959223 1374611 75 

6 rs2070600 AGER 31996092 32205942 209850 14 

6 rs2798641 ARMC2 109159618 109305352 145734 1 

6 rs262129 LOC153910 142613055 142968973 355918 2 

9 rs16909859 PTCH1 98153197 98313032 159835 1 

10 rs7068966 CDC123 12170174 12335588 165414 4 

10 rs11001819 C10orf11 77532518 78643886 1111368 1 

12 rs11172113 LRP1 57472676 57617125 144449 4 

12 rs1036429 CCDC38 96041582 96400071 358489 6 

15 rs8033889 THSD4 71423787 72085722 661935 1 

16 rs12447804 MMP15 57906243 58143392 237149 5 

16 rs2865531 CFDP1 75252927 75538926 285999 5 

21 rs9978142 KCNE2 35595821 35753440 157619 2 
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Sequencing method 

The enrichment and the sequencing were outsourced. The enrichment kit was 

produced by Agilent (http://www.agilent.com/) and the sequencing was 

undertaken by Source BioScience (http://www.sourcebioscience.com/). 

 

I used Agilent’s eArray for the first draft of the design probe library for 

enrichment of the target regions from genomic DNA prior to sequencing. I then 

liaised with Agilent and they finalized the design. After applying a correction for 

GC content and applying repeat-masking filters, a total of 7.7Mb of sequence 

was covered by probes in the final design. 

 

Sequencing was undertaken using Illumina HiSeq2000 with 100 bp paired-end 

reads (both ends of a DNA fragment are sequenced forming a paired-end read) 

and 8 lanes, each with 3 pools. Pools were assigned to lanes sequentially, so 

that pool1 to pool3 were allocated to lane 1, pool4 to pool6 were allocated to 

lane 2 and so on; in total there were four case lanes and four control lanes. 

 

Coverage per individual of around 40x was expected, assuming 50% on-target 

capture (proportion of the reads that overlap the target sequence). 

 

http://www.agilent.com/
http://www.sourcebioscience.com/
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4.3.2.2 Data processing 

The data were provided in FASTQ format. Since the sequencing was 

undertaken using paired-end reads, two files were provided per pool, one with 

the forward strand derived reads and other with the reverse strand derived 

reads. These files include base quality scores for each base in each read. The 

base quality scores are presented as phred quality scores 

(−𝑙𝑜𝑔10(𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 𝑐𝑎𝑙𝑙𝑒𝑑 𝑖𝑠 𝑤𝑟𝑜𝑛𝑔)); for instance a base quality 

of 30 would indicate that the probability of the base called being wrong is 0.001. 

 

The data were aligned against 1000 Genomes Project Phase 1 data (36) 

(GRCh37; h19) using BWA.6.2 (160), with –q 15 for read trimming, to remove 

the 3’ end of the reads which tend to have lower quality. BWA (160) generates a 

mapping quality score, also presented as a phred quality score 

(−𝑙𝑜𝑔10(𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 𝑖𝑠 𝑤𝑟𝑜𝑛𝑔)). 

 

Alignments were then sorted and PCR duplicates were removed using 

SAMtools (161). PCR duplicates are artefacts from the sequencing technology 

that are exact copies of each other and do not add new information, therefore 

they are usually removed. After the removal of duplicates, coverage summaries 

were produced using SAMtools (161) and BEDtools (162). Given that the 

alignment of INDELs is particularly challenging, local realignment around 

INDELs was undertaken with GATK (39) using known INDEL coordinates from 
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1000 Genomes Project Phase 1 data (36) and Mills et al. (163) as reference. 

Also, in order to obtain more accurate base quality scores than those produced 

in the sequencing process, an empirical recalibration of base quality scores was 

undertaken using GATK (39). This recalibration of base quality scores takes into 

account the reported quality score, the position within the read and the 

preceding and current nucleotide observed by the sequencing machine. 

 

In order to assess the quality of the data, coverage summaries were produced. 

Coverage per individual per pool calculated after removing unmapped reads, 

duplicated reads and reads outside of the regions of interest ranged from 

12.28x to 42.23x with an average of 28.74x (Table 4-4). 
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Table 4-4 Number of reads per pool and coverage 

Pool 

Number of reads 

On-
target 
capture 
(%) 

Coverage 
per 
individual In total Mapped  

Mapped 
after 
removing 
duplicates 

Mapped in 
regions of 
interest 
after 
removing 
duplicates  

1 109,826,166 109,516,893 66,490,002 50,852,447 76.48 26.42 

2 102,470,681 102,132,135 79,072,130 60,697,022 76.76 31.53 

3 82,185,922 81,864,111 62,490,941 48,364,746 77.39 25.12 

4 121,167,978 120,842,295 82,980,615 64,349,712 77.55 33.43 

5 134,842,243 134,497,208 72,815,031 56,264,867 77.27 29.23 

6 137,317,797 136,991,796 78,031,571 60,221,653 77.18 31.28 

7 186,147,801 185,658,558 71,068,003 54,682,451 76.94 28.41 

8 124,843,995 124,427,602 91,418,655 69,630,567 76.17 36.17 

9 93,129,017 92,770,408 81,055,677 61,021,017 75.28 31.7 

10 112,581,871 112,166,404 88,035,910 67,479,703 76.65 35.05 

11 139,217,132 138,677,742 100,177,543 76,376,749 76.24 39.68 

12 189,602,678 188,962,411 107,617,615 81,346,912 75.59 42.26 

13 138,857,591 138,517,962 73,573,204 56,301,930 76.53 29.25 

14 66,785,328 66,608,716 57,138,920 43,783,474 76.63 22.74 

15 75,171,767 75,008,024 53,430,349 41,506,061 77.68 21.56 

16 122,464,563 122,134,268 93,657,958 71,209,717 76.03 36.99 

17 110,294,762 110,017,214 60,638,846 46,864,360 77.28 24.35 

18 182,786,012 182,316,562 72,460,650 55,730,089 76.91 28.95 

19 155,797,230 155,419,610 74,221,765 56,702,253 76.4 29.46 

20 106,332,429 106,060,303 67,605,216 52,577,023 77.77 27.31 

21 157,062,037 156,698,524 30,232,596 23,648,595 78.22 12.28 

22 141,975,890 141,629,730 57,062,737 44,022,937 77.15 22.87 

23 122,808,781 122,485,636 67,981,471 52,943,898 77.88 27.5 

24 151,301,579 150,916,877 40,203,619 31,102,507 77.36 16.16 
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Pools 21 and 24 had lower coverage (12.28x and 16.16x respectively) than the 

rest and a higher proportion of duplicated reads (80.7% and 73.4% respectively) 

(Table 4-4). Enquiries with Agilent (http://www.agilent.com/) and Source 

BioScience (http://www.sourcebioscience.com/) indicated that the DNA quality 

for these two pools was lower than for the rest. For this reason these two pools 

were excluded from the analysis. The average coverage per individual after 

excluding these two pools was 30x. There was some variation in coverage per 

region, and the same pattern of variation between regions was observed in all 

pools (Figure 4-4). 

http://www.agilent.com/
http://www.sourcebioscience.com/
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Figure 4-4 Mean coverage per individual per region and per pool  
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4.3.2.3 Variant calling 

In order to distinguish true calls from sequencing error, three different calling 

algorithms specific for pooled data were used. These were vipR (41), SNVer 

(42) and Syzygy (43). A description of the three algorithms is presented here 

and the notation used in this section is given in Table 4-5. Throughout this 

section “allele read count” at a given position refers to the number of reads with 

a certain allele, and “allele chromosome count” refers to the number of 

chromosomes with a certain allele. In a pool made of 25 individuals, at a given 

position a variant may have an allele read count up to the coverage at that 

position, however it can only have an allele chromosome count up to 50. 

Table 4-5 Notation for variant calling algorithms  

𝑁 Number of haploid individuals per pool (50) 

𝑀 Number of pools (24) 

𝑟𝑐 Read counts 

𝑀𝐴𝐹 Minor allele frequency 

𝐶 Coverage 

𝜀 Sequencing error rate 

𝑆𝐸𝑐 Sequencing error count 

𝑒𝑥𝑝𝑆𝐸𝑐 Expected sequencing error count 

𝑀𝐴𝑐 (or 𝐴𝐿𝑇𝑟𝑐) Minor allele count (or alternative allele read count) 

𝑜𝑏𝑠𝑀𝐴𝑐 (or 𝑜𝑏𝑠𝐴𝐿𝑇𝑟𝑐) Observed minor allele count (or observed alternative 
allele read count) 

𝐴𝐿𝑇𝑐ℎ𝑟𝑐 Alternative allele chromosome count 

𝑅𝐸𝐹𝑟𝑐 Reference allele read count 

𝑅𝐸𝐹𝑐ℎ𝑟𝑐 Reference allele chromosome count 
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vipR 

The principle behind this algorithm (41) is that data from multiple DNA pools can 

be used to compensate for differences in sequencing error rates along genomic 

regions assuming that sequence-dependent error rate is conserved across 

pools. If the sequence-dependent error rate is conserved across pools, we 

would expect to see the same sort of variation due to sequencing error at a 

given position across pools. vipR (41) simply tests whether minor allele 

frequencies differ significantly between pools, and calls a variant when its minor 

allele frequency in at least 2 pools is significantly different and this difference is 

unlikely to be due to sequencing error. This idea had been put in practice 

previously by the software CRISP (44), however vipR presents a more 

computationally efficient implementation. 

 

To test whether variation seen for a base is a variant or sequencing error, vipR 

(41) uses the Skellam distribution. The Skellam distribution is a discrete 

probability distribution that models the difference between two statistically 

independent variables following Poisson distributions with different expected 

values. The number of sequencing errors, the sequencing error count (𝑆𝐸𝑐𝑖), for 

a given base that occurs in the 𝑖𝑡ℎ DNA pool can be thought as following a 

Poisson distribution with the expected number of sequencing errors in that pool 

(𝑒𝑥𝑝𝑆𝐸𝑐𝑖), obtained as the product of the sequencing error rate (𝜀) and the 

coverage in that pool (𝐶𝑖), as its expected value. 
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𝑆𝐸𝑐𝑖~𝑃𝑜𝑖𝑠(𝑒𝑥𝑝𝑆𝐸𝑐𝑖) 𝑎𝑛𝑑  𝑆𝐸𝑐𝑗~𝑃𝑜𝑖𝑠(𝑒𝑥𝑝𝑆𝐸𝑐𝑗) 

𝑆𝐸𝑐𝑖 − 𝑆𝐸𝑐𝑗~𝑆𝑘𝑒𝑙𝑙𝑎𝑚(𝑒𝑥𝑝𝑆𝐸𝑐𝑖, 𝑒𝑥𝑝𝑆𝐸𝑐𝑗) 

𝑓𝑜𝑟 𝑒𝑥𝑝𝑆𝐸𝑐𝑖 =  𝜀 𝐶𝑖, 

𝑒𝑥𝑝𝑆𝐸𝑐𝑗 =  𝜀 𝐶𝑗 , 

𝑖, 𝑗 = 1, … , 𝑀 𝑎𝑛𝑑 𝑖 ≠ 𝑗 

Therefore, by using the Skellam distribution we can test whether the observed 

difference of minor allele counts between the 𝑖𝑡ℎ pool (𝑜𝑏𝑠𝑀𝐴𝑐𝑖) and the 𝑗𝑡ℎ pool 

(𝑜𝑏𝑠𝑀𝐴𝑐𝑗) is produced by sequencing errors in both pools. If this hypothesis is 

rejected for any combination of 𝑖𝑡ℎ and 𝑗𝑡ℎ pools, a variant is called. 

𝐻0: 𝑜𝑏𝑠𝑀𝐴𝑐𝑖 − 𝑜𝑏𝑠𝑀𝐴𝑐𝑗   ~𝑆𝑘𝑒𝑙𝑙𝑎𝑚(𝑒𝑥𝑝𝑆𝐸𝑐𝑖, 𝑒𝑥𝑝𝑆𝐸𝑐𝑗) 

𝐻1: 𝑜𝑏𝑠𝑀𝐴𝑐𝑖 − 𝑜𝑏𝑠𝑀𝐴𝑐𝑗  ≁ 𝑆𝑘𝑒𝑙𝑙𝑎𝑚(𝑒𝑥𝑝𝑆𝐸𝑐𝑖, 𝑒𝑥𝑝𝑆𝐸𝑐𝑗) 

𝑓𝑜𝑟 𝑖, 𝑗 = 1, … , 𝑀 𝑎𝑛𝑑 𝑖 ≠ 𝑗 

 

Algorithm: 

 Use SAMtools to produce allele counts for each strand and to filter 

positions with base quality below 10 or mapping quality below 20. 

 Estimate sequencing error rate for each strand across pools as: 𝑞𝑡ℎ 

percent quantile of the minor allele frequencies. 
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 Test whether variation seen for a given base is a variant or is sequencing 

error. For each variant one sided P-values are computed based on the 

Skellam distribution for all possible pairs of pools, using minor allele 

count differences between pools, error rate estimates and coverage 

(coverage is unified between pools before estimating the number of 

expected sequencing errors). This is done both for the forward and the 

reverse strands. For each base in each pool the most significant P-value 

(out of all the pair-wise comparisons) is kept for both strands. A base in a 

pool is considered a variant if the P-value for both strands are significant 

after a Bonferroni correction for 2 x number of sequencing positions. If 

the coverage of one strand is below a pre-defined threshold, a significant 

P-value on the other strand (with good enough coverage) is enough to 

call a variant. 

 

The parameters used for this analysis were: 97.5th percentile of minor allele 

frequencies to estimate the sequencing error rate and 50x as the minimum 

coverage in a pool to call a variant. These parameters were chosen empirically 

looking for consistency with the other calling algorithms. 

 

This algorithm does not detect insertions, only deletions, and this is done in a 

separate execution of the algorithm, where the deletion is treated as a fifth base   

(”-“ alongside A, C, G and T). The sequencing error rate is set to 1/

(1.5 𝑥 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑎𝑝𝑙𝑜𝑡𝑦𝑝𝑒𝑠 𝑖𝑛 𝐷𝑁𝐴 𝑝𝑜𝑜𝑙) in both strands for deletions. vipR 



189 

 

only calls 1bp deletions, thus long deletions are called as a series of 1bp 

deletions. For this reason long deletion were re-formatted and for each pool the 

minimum 𝑅𝐸𝐹𝑐ℎ𝑟𝑐 and the minimum 𝐴𝐿𝑇𝑐ℎ𝑟𝑐 across the positions that form the 

long deletion were selected as the allele counts for the long deletion. All 

deletions were also left aligned in order to have comparable results across 

algorithms. 

 

vipR provides allele counts for all pools for each variant that was successfully 

called in at least one pool and provides a list of pools where the variant was 

successfully called. Only data in pools where the variant was successfully called 

and in pools where the 𝐴𝐿𝑇𝑐ℎ𝑟𝑐 (alternative allele chromosome count) was 0 

were included in the allele frequency calculation and in the analyses. If only 

pools with 𝐴𝐿𝑇𝑐ℎ𝑟𝑐 > 0 were included, minor allele frequency for rare variants 

would be overestimated. 

 

SNVer 

This algorithm (42) uses a binomial-binomial model to test whether the variation 

observed for a base is a variant in each pool. Then, it applies the Simes method 

(164) to calculate a pooled P-value across pools for each variant.  
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For each pool, SNVer (42) tests the null hypothesis that the population minor 

allele frequency (𝑀𝐴𝐹𝑝𝑜𝑝) for a base is smaller than or equal to a threshold (𝜌) 

against the alternative hypothesis that 𝑀𝐴𝐹𝑝𝑜𝑝 >  𝜌, in which case it calls a 

variant. 

𝐻0: 𝑀𝐴𝐹𝑝𝑜𝑝 ≤   𝜌 

𝐻1: 𝑀𝐴𝐹𝑝𝑜𝑝 >  𝜌 

Given a base with minor allele frequency 𝑀𝐴𝐹𝑝𝑜𝑝 in a population, if we sample 

𝑁 haploid individuals and 𝑛 of them carry the minor allele, then we can assume 

that 𝑛 follows a binomial distribution with parameters 𝑁 and 𝑀𝐴𝐹𝑝𝑜𝑝. 

𝑛~𝐵(𝑁, 𝑀𝐴𝐹𝑝𝑜𝑝) 

If the coverage for that base is 𝐶 and if there is no error rate we can assume 

that the minor allele count (𝑀𝐴𝑐) belongs to a binomial distribution with 

parameters 𝐶 and 𝑛/𝑁. 

𝑀𝐴𝑐~𝐵(𝐶, 𝑛/𝑁) 

 If there is error rate 𝜀, under which the minor allele can be flipped to one of the 

other three nucleotides we can assume that 𝑀𝐴𝑐 belongs to a binomial 

distribution with parameters 𝐶 and 
𝑛

𝑁
(1 − 𝜀) +

𝑁−𝑛

𝑁

𝜀

3
 . 

𝑀𝐴𝑐~𝐵 (𝐶,
𝑛

𝑁
(1 − 𝜀) +

𝑁 − 𝑛

𝑁

𝜀

3
 ) 
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To test the null hypothesis (𝐻0: 𝑀𝐴𝐹𝑝𝑜𝑝 ≤   𝜌) SNVer (42) estimates the 

probability that the minor allele count in a pool (𝑀𝐴𝑐) is greater than or equal to 

the number of minor alleles observed (𝑜𝑏𝑠𝑀𝐴𝑐), given a minor allele frequency 

(𝑀𝐴𝐹𝑝𝑜𝑝) equal to the threshold (𝜌 ). If this probability is smaller than a given 

threshold, it rejects the null hypothesis and classifies the base as a variant. 

𝑃 (𝑀𝐴𝑐 ≥ 𝑜𝑏𝑠𝑀𝐴𝑐; 𝑀𝐴𝐹𝑝𝑜𝑝 = 𝜌) = 1 − 𝑃(𝑀𝐴𝑐 < 𝑜𝑏𝑠𝑀𝐴𝑐; 𝑀𝐴𝐹𝑝𝑜𝑝 = 𝜌) 

To calculate this probability we have the distribution of 𝑀𝐴𝑐 (𝑀𝐴𝑐~𝐵 (𝐶,
𝑛

𝑁
(1 −

𝜀) +
𝑁−𝑛

𝑁

𝜀

3
 )) and we know all the parameters except 𝑛, so we can sum over all 

the values of 𝑛 using 𝑛~𝐵(𝑁, 𝑀𝐴𝐹𝑝𝑜𝑝). 

𝑃(𝑀𝐴𝑐; 𝑀𝐴𝐹𝑝𝑜𝑝) = ∑ 𝑃(𝑀𝐴𝑐|𝑛)𝑃(𝑛; 𝑀𝐴𝐹𝑝𝑜𝑝)

𝑁

𝑛=0

 

After testing the null hypothesis in each pool for a given base, we have a P-

value per pool. SNVer (42) calls a variant if the null hypothesis is rejected in at 

least one pool. To do this, it applies the Simes method (164), which orders all 

the P-values (𝑃1, 𝑃2, … , 𝑃𝑀), so that 𝑃1is the smallest P-value and 𝑃𝑀 is the 

largest P-value, and then it estimates a pooled P-value as min(
𝑀

𝑗
𝑃𝑗 , 𝑓𝑜𝑟 𝑗 =

1, … , 𝑀). 
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Algorithm: 

 Use SAMtools to obtain allele counts for each strand and to filter base 

quality below 17 or mapping quality below 20.  

 Estimate sequencing error as coming from two sources of error, mapping 

error, which is set up to be 0.01 and base error, estimated as a weighted 

mean of the base quality. 

 Test for strand bias and remove potential false positives using a one-

sided binomial test for the alternative forward allele count and the 

alternative reverse allele count with a threshold of 10-4. 

 Tests for allele imbalance and remove potential false positives using a 

one-sided Fisher’s exact test with a threshold of 10-4. 

 Inactivate strand bias and allele imbalance tests if more than a certain 

number of alternative allele counts are observed (30 by default). 

 Removes bases with less than a minimum number of reads with the 

alternative allele for both strands (1 by default). 

 Test whether variation seen for a base is a variant using a binomial-

binomial model for each pool, and then apply the Simes method (23) to 

calculate a pooled P-value across pools. If this pooled P-value is 

significant after a Bonferroni correction for the number of tests a variant 

is called. 
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This algorithm is applied to detect SNPs but also insertions and deletions. All 

INDELs were left aligned in order to have comparable results across algorithms. 

Default settings, as described above, were used for this analysis. 

 

SNVer estimates allele frequencies per pool and then estimates an overall allele 

frequency by calculating the average across pools of allele frequencies which 

are > 0. This calculation would overestimate allele frequencies for rare variants. 

Allele frequencies were obtained by dividing the number of 𝐴𝐿𝑇𝑐ℎ𝑟𝑐 by the 

number of total chromosome counts across pools. For each variant SNVer only 

provides data from pools that pass all the QC steps. 

 

Syzygy 

Syzygy (43) calls variants by computing a logarithm of odds (LOD) score for 

each base that compares the likelihood of obtaining the data if there are no 

alternative allele chromosome counts (𝐴𝐿𝑇𝑐ℎ𝑟𝑐) with the likelihood of obtaining 

the data if there is at least one alternative allele chromosome count.  

𝐻0: 𝐴𝐿𝑇𝑐ℎ𝑟𝑐 = 0 

𝐻1: 𝐴𝐿𝑇𝑐ℎ𝑟𝑐 > 0 

The likelihood computations use Bayes’ Rule, and Watterson’s theta (165) to 

generate prior probabilities.  
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For each variant we can classify the read counts (𝑟𝑐) into three categories: 

reference allele read counts (𝑅𝐸𝐹𝑟𝑐), alternative allele read counts (𝐴𝐿𝑇𝑟𝑐) and 

sequencing error counts (𝑆𝐸𝑐), and we can classify the chromosome counts into 

two categories: reference allele chromosome count (𝑅𝐸𝐹𝑐ℎ𝑟𝑐) and alternative 

allele chromosome count (𝐴𝐿𝑇𝑐ℎ𝑟𝑐). 

𝑟𝑐 = (
𝑅𝐸𝐹𝑟𝑐
𝐴𝐿𝑇𝑟𝑐

𝑆𝐸𝑐
)    

The probability of the observed read counts (𝑟𝑐) if there are 𝑛 alternative allele 

chromosomes counts (𝑃(𝑟𝑐 | 𝐴𝐿𝑇𝑐ℎ𝑟𝑐 = 𝑛)) is calculated using a multinomial 

distribution. A multinomial distribution is a generalization of the binomial 

distribution. Each of a number of independent trials leads to a success for one 

of a number of categories (instead of one of two categories for the binomial 

distribution), each category having a fixed probability of success. This 

distribution gives the probability for a combination of successes for the various 

categories. In this case the three categories are the number of 𝑅𝐸𝐹𝑟𝑐, the 

number of 𝐴𝐿𝑇𝑟𝑐 and the number of 𝑆𝐸𝑐; the number of independent trials is the 

coverage (𝐶) and their probabilities are computed taking into account the allele 

chromosome counts (𝑅𝐸𝐹𝑐ℎ𝑟𝑐 and 𝐴𝐿𝑇𝑐ℎ𝑟𝑐), the total number of haploid 

individuals in the pool (𝑁) and error rate (𝜀) as follows: 

𝑟𝑐 | 𝐴𝐿𝑇𝑐ℎ𝑟𝑐 = 𝑛~ 𝑀𝑢𝑙𝑖𝑡𝑛𝑜𝑚𝑖𝑎𝑙(𝐶, (
𝑃(𝑅𝐸𝐹𝑟𝑐 = 1)

𝑃(𝐴𝐿𝑇𝑟𝑐 = 1)

𝑃(𝑆𝐸𝑐 = 1)
))  

𝑃(𝑅𝐸𝐹𝑟𝑐 = 1) =  
𝑅𝐸𝐹𝑐ℎ𝑟𝑐

𝑁
−  

𝑅𝐸𝐹𝑐ℎ𝑟𝑐

𝑁
 𝑥 𝜀 
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𝑃(𝐴𝐿𝑇𝑟𝑐 = 1) =  
𝑛

𝑁
− 

𝑛

𝑁
 𝑥 𝜀 

𝑃(𝑆𝐸𝑐 = 1) =   𝜀 

In order to reduce computational cost, Syzygy (43) obtains the probability of the 

observed read counts (𝑟𝑐) if there are no alternative allele chromosome counts 

(𝑃(𝑟𝑐 | 𝐴𝐿𝑇𝑐ℎ𝑟𝑐 = 0)) using a binomial distribution with parameters the 

coverage 𝐶 and 1 − 𝜀, which is equivalent but computationally more efficient. 

 

The LOD score is the base 10 logarithm of the likelihood of obtaining the data if 

there is at least 1𝐴𝐿𝑇𝑐ℎ𝑟𝑐 (computed summing over the probabilities of 

obtaining the data if there are 𝑛 𝐴𝐿𝑇𝑐ℎ𝑟𝑐 with 𝑛 = 1, … ,50 using a prior 

probability of 0.005 for having 𝐴𝐿𝑇𝑐ℎ𝑟𝑐 > 0), over the likelihood of obtaining the 

data if there are 0 𝐴𝐿𝑇𝑐ℎ𝑟𝑐 (computed using a prior probability of 0.99 for 

having 0 𝐴𝐿𝑇𝑐ℎ𝑟𝑐). The LOD score is computed for both strands separately 

(𝐿𝑂𝐷 𝑠𝑐𝑜𝑟𝑒 𝑓𝑤𝑑 and 𝐿𝑂𝐷 𝑠𝑐𝑜𝑟𝑒 𝑟𝑒𝑣) and also jointly (𝐿𝑂𝐷 𝑠𝑐𝑜𝑟𝑒 𝑗𝑜𝑖𝑛𝑡). If the 

𝐿𝑂𝐷 𝑠𝑐𝑜𝑟𝑒 𝑗𝑜𝑖𝑛𝑡 is ≥  3, which would indicate 1000 to 1 odds of obtaining the 

data observed if the alternative chromosome count is at least 1, a variant is 

called at that base. 

𝐿𝑂𝐷 𝑠𝑐𝑜𝑟𝑒 𝑓𝑤𝑑 = log10(
0.005 𝑃(𝑟𝑐𝑓 | 𝐴𝐿𝑇𝑐ℎ𝑟𝑐 = 1) + ⋯ + 0.005 𝑃(𝑟𝑐𝑓 | 𝐴𝐿𝑇𝑐ℎ𝑟𝑐 = 50) 

0.99 𝑃(𝑟𝑐𝑓 | 𝐴𝐿𝑇𝑐ℎ𝑟𝑐 = 0)
) 

𝐿𝑂𝐷 𝑠𝑐𝑜𝑟𝑒 𝑗𝑜𝑖𝑛𝑡 = log10(
𝑃(𝑟𝑐𝑓 | 𝐴𝐿𝑇𝑐ℎ𝑟𝑐 = 1) + ⋯ + 𝑃(𝑟𝑐𝑓 | 𝐴𝐿𝑇𝑐ℎ𝑟𝑐 = 50)

𝑃(𝑟𝑐𝑓 | 𝐴𝐿𝑇𝑐ℎ𝑟𝑐 = 0)
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𝑥
𝑃(𝑟𝑐𝑟 | 𝐴𝐿𝑇𝑐ℎ𝑟𝑐 = 1) + ⋯ + 𝑃(𝑟𝑐𝑟 | 𝐴𝐿𝑇𝑐ℎ𝑟𝑐 = 50)

𝑃(𝑟𝑐𝑟 | 𝐴𝐿𝑇𝑐ℎ𝑟𝑐 = 0)
𝑥

0.005

0.99
) 

𝑓𝑜𝑟 𝑟𝑐𝑓 𝑡ℎ𝑒 𝑟𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑠𝑡𝑟𝑎𝑛𝑑 

𝑎𝑛𝑑 𝑟𝑐𝑟 𝑡ℎ𝑒 𝑟𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 𝑠𝑡𝑟𝑎𝑛𝑑 

Syzygy (43) also estimates variant allele dosages within pools and allele 

frequencies. To do this it performs an expectation –maximization (EM) 

algorithm. An EM algorithm is an iterative method to estimate parameters in 

statistical models where the model depends on observed and unobserved latent 

variables. In this case we have allele read counts for each variant in each pool 

(our observed variables), we want to estimate allele frequencies (our 

parameters), but in order to do that we need the number of 𝐴𝐿𝑇𝑐ℎ𝑟𝑐 (our 

unobserved latent variables). This method starts by assigning random values to 

the set of parameters, then it computes the expected values for the latent 

variables using the random values assigned to the parameters, after that it 

estimates the parameters using the expected values for the latent variables, 

and so on. It carries on iterating between these two steps until it reaches 

convergence.  

 

For a given variant in a given pool the algorithm starts by assigning a value of 

0.4 to the minor allele frequency (𝑀𝐴𝐹) 

𝑀𝐴�̂�𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛=1 = 0.4 
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Then, the posterior probability of having 𝑛 𝐴𝐿𝑇𝑐ℎ𝑟𝑐 given the observed  𝐴𝐿𝑇𝑟𝑐 

(𝑃(𝐴𝐿𝑇𝑐ℎ𝑟𝑐 = 𝑛 | 𝐴𝐿𝑇𝑟𝑐 = 𝑜𝑏𝑠𝐴𝐿𝑇𝑟𝑐)) with 𝑛 = 0, … , 𝑁 are obtained using 

Bayes’ Rule and the allele frequency estimate from the previous step as follows:  

𝑃(𝐴𝐿𝑇𝑐ℎ𝑟𝑐 = 𝑛 | 𝐴𝐿𝑇𝑟𝑐 = 𝑜𝑏𝑠𝐴𝐿𝑇𝑟𝑐)𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛=1

= 𝑃(𝐴𝐿𝑇𝑟𝑐 = 𝑜𝑏𝑠𝐴𝐿𝑇𝑟𝑐 | 𝐴𝐿𝑇𝑐ℎ𝑟𝑐 = 𝑛) 𝑥 𝑃(𝐴𝐿𝑇𝑐ℎ𝑟𝑐 = 𝑛) 

 𝑓𝑜𝑟 𝐴𝐿𝑇𝑟𝑐 | 𝐴𝐿𝑇𝑐ℎ𝑟𝑐 = 𝑛 ~𝐵(𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒, 0.001), 𝑖𝑓 𝑛 = 0, 

𝐴𝐿𝑇𝑟𝑐 | 𝐴𝐿𝑇𝑐ℎ𝑟𝑐 = 𝑛 ~𝐵 (𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒,
𝑛

𝑁
) , 𝑖𝑓 𝑛 > 0, 

𝐴𝐿𝑇𝑐ℎ𝑟𝑐 ~𝐵(𝑁, 𝑀𝐴�̂�𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛=1), 

𝑎𝑛𝑑 𝑛 = 0, … , 𝑁 

With these posterior probabilities the expected number of 𝐴𝐿𝑇𝑐ℎ𝑟𝑐 in a pool are 

calculated as 

𝐸(𝐴𝐿𝑇𝑐ℎ𝑟𝑐)𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛=1 = ∑ 𝑛 𝑥 𝑃(𝐴𝐿𝑇𝑐ℎ𝑟𝑐 = 𝑛 | 𝐴𝐿𝑇𝑟𝑐 = 𝑜𝑏𝑠𝐴𝐿𝑇𝑟𝑐)𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛=1

𝑁

𝑛=0

 

After that, using the expected 𝐴𝐿𝑇𝑐ℎ𝑟𝑐 the allele frequency is estimated as 

𝑀𝐴�̂�𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛=2 =   
𝐸(𝐴𝐿𝑇𝑐ℎ𝑟𝑐)𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛=1

𝑁
 

These two steps are iterated as many times as required for convergence. 
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Algorithm: 

 Filter positions with base quality below 22 or mapping quality below 1, 

and undertake additional filters on mapping quality according to 

alignment types as given by the CIGAR variable in the file obtained after 

alignment. 

  Use SAMtools to obtain allele counts for each strand. 

 Estimate sequencing error rate. Sequencing error rate is estimated by 

modelling the miscall rate ((𝐶 − 𝑅𝐸𝐹𝑟𝑐)/𝐶) assuming that the factors that 

explain base to base variation in the miscall rate are: strand, sequence 

context and coverage around a base. Details of the error rate estimation 

are given in Appendix F. 

 If the LOD score calculated using both strands (𝐿𝑂𝐷 𝑠𝑐𝑜𝑟𝑒 𝑗𝑜𝑖𝑛𝑡) is ≥ 3 in 

at least one pool and the coverage is ≥ 50 a variant is called at that 

base. 

 Test for strand bias using Fisher’s Exact test when 𝐿𝑂𝐷 𝑠𝑐𝑜𝑟𝑒 𝑗𝑜𝑖𝑛𝑡 ≥ 3 

and  𝐿𝑂𝐷 𝑠𝑐𝑜𝑟𝑒 𝑟𝑒𝑣 ≤ −1.5 or 𝐿𝑂𝐷 𝑠𝑐𝑜𝑟𝑒 𝑓𝑤𝑑 ≤ −1.5. 

 Perform an EM algorithm to estimate variant allele frequencies and allele 

dosages in each pool. 

 Syzygy (43) undertakes an additional test for strand bias, it constructs a 

strand logarithm of odds (LOD) score (𝑠𝑡𝑟𝑎𝑛𝑑 𝐿𝑂𝐷 𝑠𝑐𝑜𝑟𝑒) comparing the 

maximum of the likelihood of obtaining the data if the overall allele 

frequency is the same as the allele frequency for one strand and the 

allele frequency for the other strand is zero, against the likelihood of 
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obtaining the data if the overall allele frequency is the same as the allele 

frequency calculated using information from either strand. Details of the 

method are given in Appendix F. 

 

Syzygy classifies variants as high quality variants if: (i) 

𝑚𝑒𝑑𝑖𝑎𝑛 (𝐹𝑖𝑠ℎ𝑒𝑟 𝑃𝑣𝑎𝑙 𝑡𝑜 𝑡𝑒𝑠𝑡 𝑓𝑜𝑟 𝑠𝑡𝑟𝑎𝑛𝑑 𝑏𝑖𝑎𝑠 𝑎𝑐𝑟𝑜𝑠𝑠 𝑝𝑜𝑜𝑙𝑠) > 0.1, (ii) there is no 

other variant within a 4 bp window and (iii) their 𝑠𝑡𝑟𝑎𝑛𝑑 𝐿𝑂𝐷 𝑠𝑐𝑜𝑟𝑒 < 0. For the 

analysis only high quality variants were selected. In addition, within the variants 

selected, data from pools which had a P-value < 0.05 for the Fisher’s Exact test 

to test for strand bias were removed. 

 

4.3.2.4 Quality control and selection of high quality variants 

In order to select a subset of high quality variants out of those called by the 

different calling algorithms, to take forward for association testing, a number of 

additional quality control checks and filtering strategies were performed. The 

steps of this process are described in this section and illustrated with the 

number of variants kept in each step in Figure 4-5. Data quality for INDELs was 

poorer than for SNPs, for this reason an additional QC step for INDELs was 

undertaken (Figure 4-5). 
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Figure 4-5 Flow chart of the variant selection process 

 

Variant overlap across algorithms 

The overlap of variants called by each algorithm was examined (Figure 4-6). 

The assumption that most variants with MAF > 1% would already be included in 

public databases was used to assess which subset of variants was called more 

reliably. More than 90% of SNPs with MAF > 1% called by at least two 

algorithms were in dbNSP137 (166) (Figure 4-6 a)) and more than 46% of 

INDELs with MAF > 1% called by at least two algorithms were in 1000 

Genomes Project Phase 1 (36) and more than 51% in Mills et al. (163) (Figure 

4-6 b)). For this reason variants called by at least two algorithms were taken 

forward (Figure 4-5).
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Figure 4-6 Venn diagrams of variants called by vipR, SNVer or Syzygy 

a) Venn diagrams of SNPs called by any of the three algorithms with and without a 1% MAF filter. The proportion of SNPs 

included in dbSNP137 (166) for each section is presented in brackets. 
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b) Venn diagrams of INDELs called by any of the three algorithms with and without 1% MAF filter. The proportion of INDELs 

included in 1000 Genomes Project Phase 1 data (36) and the proportion included in Mills et al. (163) for each section are 

presented in brackets in this order. 
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Allele overlap across algorithms 

A small number of variants (122 SNPs and 64 INDELs) were called by at least 

two algorithms but their alleles did not match across algorithms, so they were 

excluded (Figure 4-5). 

 

Repeat mask regions 

Despite applying repeat-masking filters at the probe design stage, some repeat 

mask regions were sequenced. Variants within repeat mask regions were 

removed (Figure 4-5). Repeat mask regions were extracted from UCSC table 

browser (167). 

 

Pool and lane tests 

The sequencing experiment consisted of 12 case pools and 12 control pools, 

grouped into 4 case lanes (with 3 pools each) and 4 control lanes (with 3 pools 

each). Note that 2 control pools were excluded due to low DNA quality. In order 

to remove variants which could generate false associations due to a lane or 

pool effect, two additional tests were run. 

 

The lane test was designed to detect variants affected by lane effects; given 

that lanes included only case pools or only control pools, a sequencing artefact 

in a lane could lead to a false association. Figure 4-7 a) illustrates two 
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examples where alternative allele counts in pools 4, 5 and 6, all of them in lane 

2, are higher than the rest, and would lead to a significant association, with no 

support from pools in other lanes; these two associations could be the result of 

a sequencing artefact in lane 2. A chi-square test with three degrees of freedom 

was run for the four case lanes and the four control lanes for each variant. The 

pool test assessed whether the data were consistent between case pools and 

between control pools, and was designed to detect sequencing artefacts in 

pools which could lead to false associations. Figure 4-7 b) illustrates two 

examples where significant associations would be driven by allele counts in one 

pool only (pool 4 for chr4:106565917 and pool 14 for chr6:32077690); and 

therefore a sequencing artefact in pool 4 or pool 14 could have driven these 

associations. A Binomial test was performed for each pool, testing whether the 

observed allele count would be expected given the number of chromosomes in 

the pool and the allele frequency observed across case or control pools (allele 

frequency was calculated separately for case pools and control pools). Variants 

with either a P-value in the lane test (lane P-value) for case pools or control 

pools, or a P-value in the pool test (pool P-value) for any pool < 0.01 were 

excluded (Figure 4-5).
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Figure 4-7 Allele count plots 

The plots show alternative allele counts per pool on the y axis and pool numbers on the x axis. Counts obtained for each algorithm 
are represented with different symbols, as indicated in the legend. At the bottom of the plot it is indicated which of the three 
algorithms called the variant in each pool, with a “Y” from “Yes” if the variant was called and nothing if the variant was not called. A 
vertical dashed line separates case pools (1 to 12) from control pools (13 to 20, 22 and 23). Pools within the same lane are 
presented with the same color. 

a) Example of variants that would be excluded due to lane P-value < 0.01 
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b) Example of variants that would be excluded due to pool P-value < 0.01 
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Allele frequency comparisons 

As a quality control check allele frequencies were compared between 

algorithms and with 1000 Genomes Project Phase 1 data (36). For SNPs, allele 

frequencies were consistent overall (Figure 4-8). 

 

Allele frequency comparisons for INDELs showed more discrepancies, 

especially when comparing SNVer vs. Syzygy (Figure 4-9 a)). There was a 

subset of INDELs (55 variants in the top left corner and bottom right corner of 

the SNVer vs. Syzygy plot in Figure 4-9 a)), for which allele frequencies 

seemed to be flipped between SNVer and Syzygy. The two calling algorithms 

provided the same alleles for these variants (otherwise they would have been 

removed in a previous step), however the reference allele for one algorithm was 

the alternative allele for the other. These INDELs seemed to be in repetitive 

regions (not removed by filtering out repeat mask regions) where variants are 

harder to call, and it seemed that where one algorithm called an insertion the 

other algorithm called a deletion. Most of these variants were not present in 

1000 Genomes Project Phase 1 data (36), probably indicating that they were 

calling artefacts rather than actual variants since they were not especially rare 

(only one variant with MAF < 1% for SNVer or Syzygy). The other subset of 

variants (247 INDELs) for which there was an allele frequency discrepancy 

between SNVer and Syzygy was present in 1000 Genomes Phase 1 data (36). 

The comparison with 1000 Genomes (36) allele frequencies (Figure 4-9 b)) 

showed that 1000 Genomes (36) and SNVer allele frequencies were consistent 
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for this set of variants, whereas there was a discrepancy between 1000 

Genomes (36) and Syzygy allele frequencies. Looking at some of these variants 

in more detail it seemed that the discrepancy was caused by higher coverage 

estimated by Syzygy than by SNVer for these variants; probably due to Syzygy 

using a more liberal approach to filtering reads at an early stage of the pipeline, 

since this discrepancy appeared in the SAMtools output of allele counts. In 

order to remove variants with allele frequency discrepancies across algorithms 

Fisher’s exact tests (FET) were performed for allele counts obtained by the 

different algorithms. INDELs with FET P-values < 0.01 using any allele 

frequency comparison between algorithms are indicated in red in Figure 4-9 

and were removed (Figure 4-5). 
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Figure 4-8 Allele frequency comparisons for SNPs 

a) Between algorithms 

   

b) With 1000 Genomes 
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Figure 4-9 Allele frequency comparisons for INDELs 

a) Between algorithms 

   

b) With 1000 Genomes 
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The quality control checks undertaken illustrate that the quality of the data for 

INDELs was not as good as for SNPs. For this reason SNPs and INDELs were 

analysed separately and burden test analyses were only undertaken for SNPs. 

 

4.3.2.5 Association testing 

Single variant associations were tested as well as combined effects across 

variants using two different collapsing methods. 

 

Single variant 

Fisher’s exact tests on allele counts were run in order to test whether the 

variants were associated with COPD risk. Tests were run both for SNPs and 

INDELs using allele counts produced by the different calling algorithms. Only 

variants that met the criteria described in section 4.3.2.4 were included. 

 

Collapsing method: burden test 

The burden test applied here is a modification of CCRaVAT (Case-Control Rare 

Variant Analysis Tool) (153), a method similar to QuTie (153) applied to 

quantitative traits in the SpiroMeta consortium in section 4.2, but for case-

control analyses. CCRaVAT (153) tests whether accumulation of rare variants 

in a locus (number of individuals with at least one rare allele) is associated with 

COPD risk. This method assumes that all the variants included in the test will 



212 

 

exert their effect on COPD risk in the same direction, they will be either all 

protective or all detrimental. Only variants with MAF < 1% were included in this 

analysis. In order to infer how many individuals had at least one rare allele it 

was assumed that individuals with the alternative allele would always be 

heterozygous (rather than homozygous, since only overall allele count per pool 

was available). This seemed a sensible assumption, since the probability of 

having a homozygous individual out of 600 individuals for a variant with MAF = 

1% is 10-4. In addition, it was assumed that rare variants within a locus were 

independent, so that for example if there were 2 variants with 1 alternative allele 

count each in the same pool it was assumed they belonged to 2 different 

individuals. Fisher’s exact test was used to test whether accumulation of rare 

variants in a locus was associated with COPD risk. 

 

Collapsing method: C-alpha 

In order to test whether a locus was associated with COPD risk allowing for 

variants to be protective or detrimental, the C-alpha test (53) was also applied. 

This test compares the variance of the observed distribution of alternative allele 

counts in cases relative to controls for a set of variants in a region, with the 

variance of their expected distribution in the case of no association. If variants in 

the region are either protective or detrimental, it would be expected that their 

alternative allele counts in cases would be either decreased (if protective) or 

increased (if detrimental); in both cases this would lead to over-dispersion.  
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The C-alpha test statistic 𝑇 compares the variance of each observed alternative 

allele count in a locus with 𝑚 variants, with the expected variance in the case of 

no association assuming a binomial distribution. 

𝑇 = ∑[(𝑦𝑖 − 𝑛𝑖𝑝0)2 − 𝑛𝑖𝑝0(1 − 𝑝0)]

𝑚

𝑖=1

 

𝑓𝑜𝑟 𝑦𝑖 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑎𝑙𝑙𝑒𝑙𝑒 𝑐𝑜𝑢𝑛𝑡𝑠 𝑖𝑛 𝑐𝑎𝑠𝑒𝑠, 𝑎𝑛𝑑 𝑦𝑖~𝐵(𝑛𝑖 , 𝑝𝑖), 

𝑛𝑖𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑎𝑙𝑙𝑒𝑙𝑒 𝑐𝑜𝑢𝑛𝑡𝑠 𝑖𝑛 𝑐𝑎𝑠𝑒𝑠 𝑎𝑛𝑑 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠, 

𝑤𝑖𝑡ℎ 𝑖 = 1, … , 𝑚 

𝑎𝑛𝑑 𝑝0 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑖𝑛𝑔 𝑎𝑛 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑎𝑙𝑙𝑒𝑙𝑒 𝑐𝑜𝑢𝑛𝑡 

 𝑖𝑛 𝑎 𝑐𝑎𝑠𝑒 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑛𝑢𝑙𝑙 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 

(𝑝0 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠
) 

  The variance of 𝑇 is: 

𝑐 =  ∑ 𝑚(𝑛) ∑[(𝑢 − 𝑛𝑝0)2 − 𝑛𝑝0(1 − 𝑝0)]2𝑓(𝑢|𝑛, 𝑝0)

𝑛

𝑢=0

max 𝑛

𝑛=2

 

𝑓𝑜𝑟 𝑚(𝑛) 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑎𝑙𝑙𝑒𝑙𝑒 𝑐𝑜𝑢𝑛𝑡𝑠 

 𝑎𝑛𝑑 𝑓(𝑢|𝑛, 𝑝0) 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑢, 𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝑢~ 𝐵(𝑛, 𝑝0) 

Under the null hypothesis   
𝑇

√𝑐
 ~𝑁(0,1); and we reject the null hypothesis if 

𝑇

√𝑐
 is 

greater than expected using a one-tailed standard normal distribution for 

reference. 
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Singletons do not provide information on over-dispersion, and this test accounts 

for them by collapsing their allele accounts into one and then treating this allele 

count as coming from a single variant. In this sense the test assumes that all 

singletons will have an effect on the phenotype in the same direction, as does 

the burden test. The test does not run for loci with only singletons, as it would 

not run if only data for a single variant was present. This test works best for 

larger number of variants in a region and for sets of variants with similar allele 

frequencies (53). It also assumes that variants within a region are independent 

(53).  

 

Collapsing method: region definition 

Loci boundaries were defined in three different ways, in order to detect 

associations given different biological scenarios: (i) sliding window: 3kb sliding 

windows with an overlap of 1.5kb to detect the effect of regulatory variants, (ii) 

gene based: gene coordinates to detect gene effects, and (iii) exon based: 

exons, 5’ UTR and 3’ UTR for each gene to detect the effect of functional or 

regulatory variants within a gene. Tests were run separately for these three 

definitions using chromosome counts from each of the three algorithms used for 

variant calling. For each algorithm only SNPs that met the criteria described in 

section 4.3.2.4 and had MAF < 1% were included. Gene, UTR and exon 

coordinates were extracted from UCSC table browser (167) using the RefSeq 

Genes track. 
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Collapsing method: sensitivity analysis 

In order to assess the effect on the results of the assumption that variants with 

MAF < 1% in a locus were independent, the collapsing tests were run again for 

the top hits after removing variants in LD (r2 > 0.2) with each other. Within a 

group of variants in LD the one with the smallest P-value across methods was 

chosen. LD was calculated using the combined UK10K (http://www.uk10k.org/) 

and 1000 Genomes Project Phase 1 (36) (UK10K+1000G) reference panel. The 

effect on the results of assuming that variants not present in UK10K+1000G 

were independent or were in LD with any of the other variables in the region 

was assessed, by running the collapsing methods with and without variants not 

in UK10K+1000G.  

 

4.3.2.6 Significance thresholds 

Significance thresholds to account for multiple testing were defined for each of 

the 26 regions separately. As there is already strong prior evidence for the 

association of the 26 regions with lung function (2, 23, 94-96)*, no multiple 

testing adjustment for the number of regions was undertaken. Significance 

thresholds for the single variant and collapsing methods are described below 

and presented in Table 4-6. 

 

 

 

http://www.uk10k.org/
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Single variant 

For each region the effective number (𝑀𝑒𝑓𝑓) of independent variants tested 

(equivalent to the number of independent tests) was estimated using the 

approach developed by Li and Ji (168), and then a Bonferroni correction for the 

number of independent tests was applied. The Li and Ji method (168) 

calculates the eigenvalues (𝜆𝑖 𝑓𝑜𝑟 𝑖 = 1, … , 𝑀) of a correlation matrix for the 

variants included in the region, and then calculates the number of independent 

variants using this formula:  

𝑀𝑒𝑓𝑓 = ∑ 𝑓

𝑀

𝑖=1

(|𝜆𝑖|) 

𝑓(𝑥) = 𝐼(𝑥 ≥ 1) + (𝑥 − [𝑥]), 𝑥 ≥ 0 

𝑓𝑜𝑟 𝜆𝑖 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒, 

 𝐼(𝑥 ≥ 1) 𝑡ℎ𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑤ℎ𝑖𝑐ℎ 𝑔𝑖𝑣𝑒𝑠 1 𝑤ℎ𝑒𝑛 𝑥 ≥ 1 𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 

[𝑥]𝑡ℎ𝑒 𝑓𝑙𝑜𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑤ℎ𝑖𝑐ℎ 𝑔𝑖𝑣𝑒𝑠 𝑡ℎ𝑒 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ≤ 𝑥  

UK10K+1000G data were used to estimate the correlation matrix for each 

region, and the variants not included in UK10K+1000G were assumed to be 

independent.  
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Collapsing method: sliding window 

A Bonferroni correction was applied for the number of independent tests within 

each region. A test was undertaken for each sliding window. However, given the 

overlap between windows the number of independent tests was defined as the 

number of sliding windows divided by 2. 

 

Collapsing method: gene based and exon based 

A Bonferroni correction was applied for the number of independent tests within 

each region. A test was undertaken for each gene, so the number of 

independent tests was defined as the number of genes. 
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Table 4-6 Significance thresholds 

Significance thresholds for each region are presented for SNPs and INDELs for the single variant analysis and for SNPs for the 
collapsing methods (no INDELs were included in the collapsing methods analysis).The column “GWAS gene” presents the gene 
reported in the lung function GWAS (2)* for each region. Abbreviations: Chr. = chromosome, N: number. 

Chr.: start-end 
GWAS 
gene 

Variant 
type 

Collapsing methods thresholds 
N 
variants 

N variants 
in UK10K+ 
1000G 

N tests in  
UK10K+1000G 

N tests 
final 

Single 
variant 
thresholds 

Gene 
based 

Exon 
based 

Slide  
window 

chr1:17238444-17455948  MFAP2 
SNP 1.25x10−2 1.67x10−2 1.72x10−3 338 291 99 146 3.43x10−4 

INDEL    9 5 5 9 5.56x10−3 

chr1:218508675-218885482  TGFB2 
SNP 5x10−2 5x10−2 4.24x10−4 691 612 248 327 1.53x10−4 

INDEL    36 23 18 31 1.61x10−3 

chr2:218627794-218818796  TNS1 
SNP 5x10−2 5x10−2 1.09x10−3 337 309 146 174 2.87x10−4 

INDEL    5 5 5 5 1x10−2 

chr2:239839616-240332643  HDAC4 
SNP 5x10−2 5x10−2 3.68x10−4 1243 1159 396 480 1.04x10−4 

INDEL    34 26 21 29 1.72x10−3 

chr3:25459833-25649422  RARB 
SNP 2.5x10−2 2.5x10−2 5.81x10−4 471 414 200 257 1.95x10−4 

INDEL    24 18 14 20 2.5x10−3 

chr3:168791286-169391563  MECOM 
SNP 5x10−2 5x10−2 1.87x10−4 1326 1152 460 634 7.89x10−5 

INDEL    54 37 29 46 1.09x10−3 

chr4:89637105-90077431  FAM13A  
SNP 5x10−2 5x10−2 5x10−4 666 591 200 275 1.82x10−4 

INDEL    31 24 18 25 2x10−3 

chr4:106280233-106902828  GSTCD 
SNP 1x10−2 1.25x10−2 2.69x10−4 1031 922 328 437 1.14x10−4 

INDEL    58 37 20 41 1.22x10−3 

chr4:145227600-145669881  HHIP SNP 5x10−2 5x10−2 2.76x10−4 802 686 248 364 1.37x10−4 



219 

 

Chr.: start-end 
GWAS 
gene 

Variant 
type 

Collapsing methods thresholds 
N 
variants 

N variants 
in UK10K+ 
1000G 

N tests in  
UK10K+1000G 

N tests 
final 

Single 
variant 
thresholds 

Gene 
based 

Exon 
based 

Slide  
window 

INDEL    25 15 12 22 2.27x10−3 

chr5:94984019-95038027  SPATA9 
SNP 2.5x10−2 NA 2.5x10−3 77 69 42 50 1x10−3 

INDEL    2 2 2 2 2.5x10−2 

chr5:147682118-148026624  HTR4  
SNP 1.25x10−2 1.67x10−2 4.9x10−4 468 414 197 251 1.99x10−4 

INDEL    17 13 7 11 4.55x10−3 

chr5:156597906-157139503  ADAM19 
SNP 8.33x10−3 1.25x10−2 5.88x10−4 670 615 236 291 1.72x10−4 

INDEL    25 20 17 22 2.27x10−3 

chr6:27982152-28415572 ZKSCAN3 
SNP 3.85x10−3 1x10−2 4.39x10−4 520 459 162 223 2.24x10−4 

INDEL    26 23 10 13 3.85x10−3 

chr6:30584612-31959223  NCR3 
SNP 1.22x10−3 3.13x10−3 2.79x10−4 3507 3307 647 847 5.9x10−5 

INDEL    115 98 54 71 7.04x10−4 

chr6:31996092-32205942  AGER 
SNP 7.14x10−3 2.5x10−2 2.17x10−3 283 270 87 100 5x10−4 

INDEL    14 11 10 13 3.85x10−3 

chr6:109159618-109305352  ARMC2 
SNP 5x10−2 5x10−2 1.11x10−3 213 189 97 121 4.13x10−4 

INDEL    9 7 6 8 6.25x10−3 

chr6:142613055-142968973 GPR126 
SNP 2.5x10−2 5x10−2 4.27x10−4 443 388 196 251 1.99x10−4 

INDEL    20 9 6 17 2.94x10−3 

chr9:98153197-98313032  PTCH1 
SNP 5x10−2 NA 9.8x10−4 226 200 96 122 4.1x10−4 

INDEL    13 8 6 11 4.55x10−3 

chr10:12170174-12335588  CDC123 
SNP 1.67x10−2 5x10−2 1.09x10−3 226 192 91 125 4x10−4 

INDEL    11 4 4 11 4.55x10−3 

chr10:77532518-78643886  C10orf11 SNP 5x10−2 NA 1.71x10−4 1513 1336 535 712 7.02x10−5 
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Chr.: start-end 
GWAS 
gene 

Variant 
type 

Collapsing methods thresholds 
N 
variants 

N variants 
in UK10K+ 
1000G 

N tests in  
UK10K+1000G 

N tests 
final 

Single 
variant 
thresholds 

Gene 
based 

Exon 
based 

Slide  
window 

INDEL    31 17 15 29 1.72x10−3 

chr12:57472676-57617125  LRP1 
SNP 1.25x10−2 2.5x10−2 1.56x10−3 169 155 87 101 4.95x10−4 

INDEL    2 2 2 2 2.5x10−2 

chr12:96041582-96400071  CCDC38 
SNP 8.33x10−3 1.67x10−2 5.05x10−4 651 586 216 281 1.78x10−4 

INDEL    26 21 18 23 2.17x10−3 

chr15:71423787-72085722  THSD4  
SNP 5x10−2 5x10−2 2.66x10−4 1266 1151 446 561 8.91x10−5 

INDEL    32 19 18 31 1.61x10−3 

chr16:57906243-58143392  MMP15 
SNP 1x10−2 1.67x10−2 1.61x10−3 310 288 130 152 3.29x10−4 

INDEL    9 4 4 9 5.56x10−3 

chr16:75252927-75538926  CFDP1 
SNP 1x10−2 2.5x10−2 5.88x10−4 517 481 177 213 2.35x10−4 

INDEL    7 2 2 7 7.14x10−3 

chr21:35595821-35753440  KCNE2 
SNP 2.5x10−2 5x10−2 1.25x10−3 213 190 108 131 3.82x10−4 

INDEL    8 6 6 8 6.25x10−3 
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4.3.2.7 Selection of top hits 

In order to minimise false positive associations, the criteria to select the top hits 

required that a variant met the significance threshold using allele counts for one 

calling algorithm and that it also showed supporting evidence (described below) 

when using allele counts from another calling algorithm. The motivation for this 

was that the most significant (P = 5.8 x 10-10) association across regions and 

algorithms was achieved using allele counts obtained by Syzygy (43), however 

when using SNVer allele counts it was not significant (P = 0.13). When looking 

in more detail at this signal, Syzygy had classified it as very high quality, 

however the 𝐿𝑂𝐷 𝑠𝑐𝑜𝑟𝑒 for the pools that seemed to drive the associations was 

high for one strand but rather low (around -1) for the other, suggesting evidence 

of strand bias, although none of them made the -1.5 threshold to test for strand 

bias in Syzygy.  

 

Single variant 

Variants were selected if their FET P-value met the significance threshold using 

the allele counts for at least one calling algorithm and showed supportive 

evidence (P-value < threshold x 2) when using allele counts from another 

calling algorithm. 
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Collapsing method 

Loci were selected if: (i) their P-value met the significance threshold using the 

allele counts for at least one calling algorithm after the sensitivity analysis 

(either assuming that variants not in UK10K+1000G were independent or were 

in LD with other variants in the region) and (ii) supportive evidence (P-value < 

threshold x 2) was shown when using allele counts from another calling 

algorithm after the sensitivity analysis (either assuming that variants not in 

UK10K+1000G were independent or were in LD with other variants in the 

region). 

 

Alignments were visually inspected for all the single variant top hits and a 

random sample of the variants in the collapsing method top hits. 

 

4.3.2.8 Follow-up (stage 2) 

Follow-up resource 

Variants and loci selected were followed-up in UK BiLEVE, a subset of ~50,000 

individuals from UK Biobank (http://www.ukbiobank.ac.uk/) sampled from the 

extremes of the % predicted FEV1 distribution separately in never-smokers and 

heavy-smokers. 

 

http://www.ukbiobank.ac.uk/
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An Affymetrix custom array was designed for the genome-wide genotyping of 

the UK BiLEVE project. This array includes 130K rare missense and loss of 

function variants (selected to be polymorphic in UK populations based on 

currently available “exome chip” data), 642K variants selected for optimal 

imputation of common variation and improved imputation of low frequency 

variation (MAF 1-5%), and 9000 variants selected for improved coverage of 

known and candidate respiratory regions. These data had been imputed against 

the UK10K+1000G joint reference panel using SHAPEIT (169) and IMPUTE2 

(125).  

 

Selection of cases and controls 

The sampling frame was made of 41,260 individuals over 40 years old, with no 

asthma (diagnosed or self-reported) who smoked between 5 and 100 pack 

years. Case-control status was defined as in the COPD case-control 

sequencing study (stage 1). COPD cases were individuals with COPD 

spirometric GOLD stage 2 (104) or above (percent predicted FEV1 < 80% and 

FEV1/FVC < 0.7) and controls were individuals with percent predicted FEV1 > 

80% and FEV1/FVC > 0.7, based on pre-bronchodilator spirometry. Percent 

predicted FEV1 was obtained using reference values from healthy (no 

respiratory diseases diagnosed) never-smokers (N= 81,719) from UK Biobank. 

In total there were 4,249 COPD cases and 11,916 controls. 
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Association testing: single variant 

The association of single variants with COPD risk in UK BiLEVE was tested 

using logistic regression on allele dosages obtained from the imputation output. 

IMPUTE2 (125) provides probabilities for each of three possible genotypes for 

each variant (𝑃0, 𝑃1, 𝑃2) and allele dosages were obtained as 0𝑥𝑃0 + 1𝑥𝑃1 +

2𝑥𝑃2. An adjustment for 5 principal components of ancestry was included; and 

an adjustment for pack-years of smoking was undertaken as a sensitivity 

analysis. 

 

Association testing: burden test 

The same method as in stage 1 was used. The most likely genotype for each 

individual was used for the analysis, only including genotypes with probability 

(as given by IMPUTE2 (125)) > 0.9. Sensitivity analyses were undertaken for 

the top hits including only independent variants (r2 < 0.2) within each locus.  

 

Association testing: C-alpha test 

The same method as in stage 1 was used. The most likely genotype for each 

individual was used for the analysis using a threshold of 0.9. Sensitivity 

analyses were undertaken for the top hits including only independent variants 

(r2 < 0.2) within each locus. In addition, 10,000 permutations (permuting case 
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control status) were run for the top hits, only including independent variants, in 

order to obtain more accurate P-values.   

 

Association testing: collapsing methods region definition 

The same region boundaries as in stage 1 were used and only variants with 

MAF < 1%, HWE P-value > 10-6 and imputation quality ≥ 0.8 were included. 

 

Association testing: significance thresholds 

Significance thresholds per region were defined by a Bonferroni corrected 

threshold for the number independent tests undertaken in each region. For the 

single variant analysis the number of independent tests were the number of 

variants followed up. For the gene based and exon based analyses a gene was 

considered as an independent test, and for the sliding window analysis, two 

overlapping windows were counted as 1.5 tests. 

 

4.3.3 Results 

After undertaking quality control checks a total of 18,177 SNPs and 643 INDELs 

across the 26 regions were selected to be tested for association with COPD risk 

in 300 COPD cases and 250 controls (individuals from two control pools were 

excluded given low DNA quality). A subset of these variants were novel: 1,429 

SNPs (93% with MAF < 1%) were not in dbSNP137 (166) or UK10K+1000G 
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and 216 INDELs (4% with MAF < 1%) were not in 1000 Genomes Project 

Phase 1 data (36) or Mills et al. (163). 

 

4.3.3.1 Single variant association testing 

A total of 8 SNPs and 3 INDELs (Table 4-7), with minor allele frequencies 

ranging from 1% to 40% for SNPs and from 3% to 5% for INDELs met the 

significance thresholds described in 4.3.2.7, and were taken forward for follow 

up in UK BiLEVE. All these variants were present in the UK10K+1000G 

imputation reference panel and had imputation quality > 0.8.
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Table 4-7 Single variants associated with COPD risk: stage 1  

Single variants results for stage 1 are presented for variants that met the criteria for follow-up. The columns “Threshold” and 
“Threshold support” present the threshold and the threshold for supporting evidence for each region. The column “GWAS gene” 
presents the gene reported in the lung function GWAS (2)* for each region. Abbreviations: chr. = chromosome, Ref. = reference, 
Alt. = alternative, M.A.F. = minor allele frequency and a.c. = allele count. 

Rs number (chr.: position), 
function 

GWAS 
gene 

Ref. 
allele 

Alt. 
 allele 

Threshold 
Threshold 
support 

Calling 
algorithm 

M.A.F. 
Alt. a.c.  
cases 

Alt. a.c. 
controls 

 P-value 

rs11678706 (chr2:239908773), 
intergenic 

HDAC4 A C 1.04x10−4 2.08x10−4 

vipR 0.219 111 20 6.92x10−1 

SNVer 0.158 120 51 8.26x10−6 

Syzygy 0.159 118 57 1.87x10−4 

rs16854211 (chr3:169338409), 
intronic (MECOM) 

MECOM G T 7.89x10−5 1.58x10−4 

vipR 0.169 116 50 4.23x10−3 

SNVer 0.159 117 53 5.29x10−5 

Syzygy 0.155 117 54 7.92x10−5 

rs1895031 (chr3:169354498), 
intronic (MECOM) 

MECOM G C 7.89x10−5 1.58x10−4 

vipR 0.291 138 173 9x10−4 

SNVer 0.289 146 178 5x10−5 

Syzygy 0.298 150 178 1.58x10−4 

rs999741 (chr5:147727048), 
transcript (RP11-373N22.3) 

HTR4  C G 1.99x10−4 3.98x10−4 

vipR 0.254 88 144 2.15x10−2 

SNVer 0.231 113 146 6.24x10−5 

Syzygy 0.235 116 143 3.53x10−4 

rs193259319 (chr5:147823559), 
downstream  (FBXO38) 

HTR4  T C 1.99x10−4 3.98x10−4 

vipR 0.043 24 2 2.56x10−5 

SNVer 0.039 30 6 1.26x10−4 

Syzygy 0.033 30 6 2.9x10−4 

rs138649528 (chr6:30776469), 
downstream (NCRNA00243) 

NCR3 AT A 7.04x10−4 1.41x10−3 
vipR NA NA NA NA 

SNVer 0.032 9 29 1.02x10−4 
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Rs number (chr.: position), 
function 

GWAS 
gene 

Ref. 
allele 

Alt. 
 allele 

Threshold 
Threshold 
support 

Calling 
algorithm 

M.A.F. 
Alt. a.c.  
cases 

Alt. a.c. 
controls 

 P-value 

Syzygy 0.033 10 26 1.11x10−3 

rs35278224;rs67982043 
(chr6:32164665), intronic (NOTCH4) 

AGER CT C 3.85x10−3 7.69x10−3 

vipR NA NA NA NA 

SNVer 0.045 13 39 1.2x10−5 

Syzygy 0.046 16 34 1.24x10−3 

rs146088795 (chr6:142640832), 
intronic (GPR126) 

GPR126 A G 1.99x10−4 3.98x10−4 

vipR 0.011 0 7 1.98x10−4 

SNVer 0.018 3 16 4.08x10−3 

Syzygy 0.018 3 17 3.73x10−4 

rs7174934 (chr15:71571345), 
intronic (THSD4) 

THSD4  G A 8.91x10−5 1.78x10−4 

vipR 0.432 191 248 3.54x10−4 

SNVer 0.423 221 251 1.03x10−5 

Syzygy 0.434 228 249 9.18x10−5 

rs75958385 (chr16:75403497), 
intronic (CFDP1) 

CFDP1 G A 2.35x10−4 4.7x10−4 

vipR 0.013 0 7 4.16x10−4 

SNVer 0.015 2 13 2.75x10−3 

Syzygy 0.014 1 14 2.31x10−4 

rs199588075 (chr21:35679578), 
transcript (AP000318.2) 

KCNE2 CT C 6.25x10−3 1.25x10−2 

vipR 0.048 25 0 1.55x10−5 

SNVer 0.034 29 7 1.78x10−3 

Syzygy NA NA NA NA 
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Two variants had nominally significant P-values (P < 0.05) in UK BiLEVE (Table 

4-8). One of these (rs75958385 in the CFDP1 region) had opposite direction of 

effect in UK BiLEVE compared to stage 1 (Table 4-7 and Table 4-8), indicating 

that it was probably a false positive association. The other variant (rs999741 in 

the HTR4 region) had a P-value = 0.002 and MAF of 26% in UK BiLEVE and it 

was in a long non-coding RNA (lncRNA) region. The alternative allele of this 

variant and of the sentinel SNP previously reported (2)* rs1985524 in this 

region, were positively correlated (r = 0.45 and r2 = 0.2 in UK BiLEVE) and both 

had a protective effect. When conditioning on the previously reported variant 

(2)* (rs1985524), the rs999741 signal disappeared (Table 4-9) indicating that 

this association was most likely a consequence of its LD with the more 

significant previously reported SNP (rs1985524).
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Table 4-8 Single variant top hits results in stage 2 

The column “GWAS gene” presents the gene reported in the lung function GWAS (2)* for each region. Abbreviations: chr. = 
chromosome, freq = frequency, OR = odds ratio, SE = standard error. 

Rs number (chr: position), 
function 

GWAS 
gene 

Non 
coded  
allele 

Coded 
allele 

Coded 
allele  
freq. 

Imputation 
information 

Without pack-years 
adjustment 

With pack-years adjustment Consistent 
direction 
of effect? OR SE P-value OR SE P-value 

rs11678706 (chr2:239908773), 
intergenic 

HDAC4 A C 0.175 0.986 0.953 0.034 1.52x10−1 0.955 0.035 1.88x10−1 NO 

rs16854211 (chr3:169338409), 
intronic (MECOM) 

MECOM G T 0.156 0.977 1.058 0.035 1.07x10−1 1.055 0.036 1.4x10−1 YES 

rs1895031 (chr3:169354498), 
intronic (MECOM) 

MECOM G C 0.295 1 0.987 0.028 6.5x10−1 0.978 0.029 4.5x10−1 YES 

rs999741 (chr5:147727048), 
transcript (RP11-373N22.3) 

HTR4  C G 0.256 0.999 0.915 0.029 2x10−3 0.928 0.031 1.5x10−2 YES 

rs193259319 
(chr5:147823559), downstream 
(FBXO38) 

HTR4  T C 0.021 1 1.053 0.085 5.46x10−1 1.034 0.089 7.11x10−1 YES 

rs138649528 (chr6:30776469), 
downstream (NCRNA00243) 

NCR3 AT A 0.028 0.999 1.062 0.073 5.7x10−2 1.057 0.077 9.8x10−2 NO 

rs35278224;rs67982043 
(chr6:32164665), intronic 
(NOTCH4) 

AGER CT C 0.047 0.99 
1.081 

0.058 1.8x10−1 
1.106 

0.06 9.4x10−2 NO 

rs146088795 
(chr6:142640832), intronic 
(GPR126) 

GPR126 A G 0.016 0.987 0.934 0.104 5.1x10−1 0.907 0.109 3.69x10−1 YES 

rs7174934 (chr15:71571345), 
intronic (THSD4) 

THSD4  G A 0.414 0.987 1.002 0.026 9.39x10−1 0.997 0.027 9x10−1 NO 

rs75958385 (chr16:75403497), 
intronic (CFDP1) 

CFDP1 G A 0.029 0.956 1.185 0.075 2.4x10−2 1.182 0.079 3.3x10−2 NO 

rs199588075 
(chr21:35679578), transcript 
(AP000318.2) 

KCNE2 CT C 0.031 0.955 0.886 0.079 1.25x10−1 0.871 0.083 9.5x10−2 NO 
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Table 4-9 Conditional analysis in HTR4 region 

The column “GWAS gene” presents the gene reported in the lung function GWAS (2)* for each region. Abbreviations: chr. = 
chromosome, freq = frequency, OR = odds ratio, SE =standard error. 

Rs number (chr.: position), function 
GWAS 
gene 

Non 
coded  
allele 

Coded 
allele 

Coded 
allele  
freq. 

Imputation 
information 

Unconditional Joint 
r 

OR SE P-value OR SE P-value 

rs999741 (chr5:147727048), transcript 
(RP11-373N22.3) 

HTR4  C G 0.256 0.999 0.915 0.029 2.35x10−3 0.969 0.033 3.3x10−1 
0.45 

rs1985524 (chr5:147847788), intronic 
(HTR4) 

HTR4  G C 0.445 1 0.882 0.026 1.08x10−6 0.893 0.029 8.54x10−5 
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Results for the 26 sentinel SNPs previously reported (or other SNPs in perfect 

LD with the sentinels) are presented in Appendix G. SNPs in four regions 

(MECOM, HHIP, SPATA9, HTR4) out of the 26 had nominally significant P-

values when using allele counts for at least two calling algorithms and their 

direction of effect agreed with the previously reported (2)* effect on lung 

function (negative effect on lung function and increased risk of COPD, or 

positive effect on lung function and reduced risk of COPD) (Table 4-10).  

Association with COPD risk for HHIP and HTR4 had already been reported (24, 

95)*, but not for SPATA9 or MECOM. The P-values for the SPATA9 association 

were only nominally significant (P = 0.020 for SNVer and P = 0.023 for Syzygy) 

(Table 4-10), but the P-values for MECOM (P = 5 x 10-4 for SNVer and P = 6 x 

10-4 for Syzygy) met the Bonferroni corrected threshold for 26 tests (2 x 10-3) 

(Table 4-10). Overall, 13 variants of the 26 had consistent direction of effect 

when using allele counts for at least two calling algorithms (Appendix G).
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Table 4-10 Single variant results for known variants 

Abbreviations: Ref. = reference, Alt. or alt. = alternative, MAF =minor allele 
frequency, N = number, a.c. = allele count, OR = odds ratio. 

Rs number 
GWAS 
gene 

Calling 
algorithm 

Ref. 
allele 

Alt. 
allele 

MAF 
N. alt. 
a.c. 
case 

N. alt. 
a.c. 
control  

OR P-value 

rs1344555 MECOM 

SNVer C T 0.2 143 77 1.72 4.93x10−4 

Syzygy C T 0.21 148 81 1.69 5.93x10−4 

vipR C T 0.23 130 54 1.6 9.29x10−3 

rs11100860  HHIP 

SNVer A G 0.37 202 205 0.73 1.44x10−2 

Syzygy A G 0.37 204 202 0.76 3.28x10−2 

vipR A G 0.4 159 203 0.97 8.37x10−1 

rs153916 SPATA9 

SNVer C T 0.43 360 265 1.33 2.03x10−2 

Syzygy C T 0.43 363 268 1.33 2.35x10−2 

vipR C T 0.45 237 191 1.09 1.33x10−1 

rs1985524  HTR4  

SNVer G C 0.41 227 224 0.75 2.27x10−2 

Syzygy G C 0.41 230 223 0.77 3.67x10−2 

vipR G C 0.44 171 223 0.93 5.89x10−1 

 

4.3.3.2 Collapsing method 

A total of 59 3kb sliding windows from 18 regions out of the 26 regions 

sequenced, and 23 genes (21 from gene based tests, 1 from exon based tests 

and 1 that was selected for both) from 19 regions out of the 26 sequenced met 

the criteria described in 4.3.2.7 (Appendix G), and were taken forward to be 

followed up in UK BiLEVE. Of these, two sliding windows and 3 genes from the 

gene based analysis were selected due to their P-values in the burden analysis. 

All the remaining windows and genes were selected because of their C-alpha 

test P-values. Four of the five regions selected in the burden test were also 

selected in the C-alpha test (the exception was GRP126). Only 32 sliding 

windows out of the 59 were tested for association in UK BiLEVE, because only 

32 windows had at least two variants that met the conditions specified in 4.3.2.8 
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(MAF < 1%, imputation quality > 0.8 and HWE P > 10-6) in the UK BiLEVE data. 

All the 23 genes had at least two variants in UK BiLEVE that met the conditions 

specified in 4.3.2.8. 

 

None of burden test results were significant (P < 0.05) in UK BiLEVE (Table 

4-11).  

Table 4-11 Burden test results in stage 2 

The column “GWAS gene” presents the gene reported in the lung function 
GWAS (2)* for each region. 

Locus 
GWAS 
gene 

Number of 
variants 

P-value 

chr3:168984786-168987786 MECOM 2 4.15x10−1 

FLJ20184 (chr4:106473776-106552837)  GSTCD 46 3.84x10−1 

chr4:145278600-145281600  HHIP 2 8.83x10−1 

ITK (chr5: 156607906-156682109) ADAM19 23 7.58x10−1 

GPR126 (chr6:142623055-142767403) GPR126 82 8.7x10−1 

 

In the C-alpha test undertaken for sliding windows, one sliding window 

(chr3:169238286-169241286 in the MECOM region) met a Bonferroni corrected 

threshold (P < 8 x 10-3) for that region, and two sliding windows 

(chr3:25633833-25636833 in the RARB region and chr4:145293600-145296600 

in the HHIP region) showed suggestive evidence (P = 0.053 and P = 0.042 

respectively), but did not meet a Bonferroni corrected threshold (0.0125 for both 

regions) (Table 4-12 a)). In the C-alpha test for gene based analysis, C10orf11 

met the significance threshold (P = 0.04, Bonferroni corrected thresthold for 1 

test = 0.05) (Table 4-12 b)), and TNXB, in the AGER region, showed 
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suggestive evidence (P = 0.061, Bonferroni corrected thresthold for 1 test = 

0.05) (Table 4-12 b)).In the C-alpha test for exon based analysis another gene 

(NPNT) in the GSTCD region showed suggestive evidence of association (P = 

0.053, Bonferroni corrected threshold = 0.025) (Table 4-12 c)).
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Table 4-12 C-alpha test stage 2 results 

“GWAS gene” is the gene reported in the lung function GWAS (2)* for each 
region. P-values that reach a Bonferroni corrected threshold as defined in 
4.3.2.8 are highlighted in bold. 

a) Sliding window 
 

Locus 
GWAS 
gene 

Number 
of 
variants 

Number of 
alternative allele 
counts in cases 
and controls 

P-value 

chr1:218531175-218534175  TGFB2 3 421 8.13x10−1 

chr2:218807794-218810794  TNS1 2 244 7.57x10−1 

chr2:239973116-239976116  HDAC4 2 147 7.3x10−1 

chr2:240325616-240328616  HDAC4 3 401 6.57x10−1 

chr3:168984786-168987786 MECOM 2 252 8.25x10−1 

chr3:169238286-169241286 MECOM 2 573 2.94x𝟏𝟎−𝟑 

chr3:169310286-169313286 MECOM 4 604 8.35x10−1 

chr3:169311786-169314786 MECOM 2 238 6.73x10−1 

chr3:169340286-169343286 MECOM 3 665 8.87x10−1 

chr3:169341786-169344786 MECOM 3 590 8.71x10−1 

chr3:169371786-169374786 MECOM 5 908 5.26x10−1 

chr3:169373286-169376286 MECOM 4 607 1.99x10−1 

chr3:25464333-25467333  RARB 4 466 4.48x10−1 

chr3:25510833-25513833  RARB 6 1155 8.04x10−1 

chr3:25512333-25515333  RARB 4 878 7.54x10−1 

chr3:25632333-25635333  RARB 4 494 1.51x10−1 

chr3:25633833-25636833  RARB 3 363 5.32x10−2 

chr4:145269600-145272600  HHIP 2 158 7.54x10−1 

chr4:145278600-145281600  HHIP 2 210 7.82x10−1 

chr4:145293600-145296600  HHIP 2 167 4.16x10−2 

chr4:145341600-145344600  HHIP 2 299 4.18x10−1 

chr5:147829118-147832118  HTR5 3 276 5.75x10−1 

chr5:147830618-147833618  HTR6 4 597 7.83x10−1 

chr5:156912906-156915906 ADAM19 2 480 6.32x10−1 

chr9:98180197-98183197  PTCH1 6 565 4.81x10−1 

chr9:98181697-98184697  PTCH1 4 358 6.61x10−1 

chr10:12207674-12210674 CDC123 2 423 8.36x10−1 

chr12:57529676-57532676  LRP1 3 280 3.34x10−1 

chr12:96157082-96160082 CCDC38 4 856 8.65x10−1 

chr12:96158582-96161582 CCDC38 5 1115 8.85x10−1 

chr15:71704287-71707287  THSD4  2 205 7.5x10−1 

chr21:35646821-35649821  KCNE2 2 245 5.77x10−1 
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b) Gene based 
 

Locus 
GWAS 
gene 

Number of 
variants 

Number of 
alternative 
allele counts 
in cases and 
controls 

P-value 

TGFB2 (chr1:218518675-218617961)  TGFB2 65 7090 6.58x10−1 

TNS1 (chr2:218664511-218808796)  TNS1 84 13588 1.55x10−1 

HDAC4 (chr2:239969863-240322643)  HDAC4 247 34906 9.59x10−1 

RARB (chr3:25469833-25639422)  RARB 76 9629 8.39x10−1 

MECOM (chr3:168801286-169381563)  MECOM 450 69543 1 

FAM13A (chr4:89647105-89978323) FAM13A  123 13561 6.55x10−1 

FLJ20184 (chr4:106473776-106552837)  GSTCD 46 5725 6.25x10−1 

HHIP (chr4:145567147-145659881)  HHIP 31 3882 7.94x10−1 

ITK (chr5:156607906-156682109) ADAM19 23 3253 5.33x10−1 

DDR1 (chr6:30856464-30867933)  NCR3 7 953 7.56x10−1 

TNXB (chr6:32008931-32077151)  AGER 37 8086 6.08x10−2 

ARMC2 (chr6:109169618-109295352)  ARMC2 65 8782 9.21x10−1 

LOC153910 (chr6:142847591-
142958973) 

GPR126 86 12820 
5.46x10−1 

PTCH1 (chr9:98205263-98270831)  PTCH1 52 6850 2.58x10−1 

NUDT5 (chr10:12209572-12238143)  CDC123 12 1894 9.24x10−1 

CDC123 (chr10:12237960-12292589)  CDC123 32 4619 9.4x10−1 

C10orf11 (chr10:77542518-78317126) C10orf11 304 39634 4.03x𝟏𝟎−𝟐 

NTN4 (chr12:96051582-96184536) CCDC38 88 14103 1 

HAL (chr12:96367141-96390071) CCDC38 14 1407 7.11x10−1 

THSD4 (chr15:71433787-72075722)  THSD4  291 38799 7.86x10−1 

CNGB1 (chr16:57916243-58005020)  MMP15 44 5877 9.61x10−1 

MMP15 (chr16:58059281-58080804)  MMP15 20 2098 3.92x10−1 

 

c) Exon based 
 

Locus GWAS gene 
Number 
of 
variants 

Number of 
alternative 
allele counts 
in cases and 
controls 

P-value 

HDAC4 (chr 2: 239969863-240322643)  HDAC4 7 996 7.43x10−1 

NPNT (chr4: 106816596-106892828) GSTCD 9 1400 5.25x10−2 
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Sensitivity analyses were undertaken in these six loci repeating the C-alpha 

association test including only independent variants (r2 < 0.2). The variants 

present in the 3 sliding windows were already independent, and therefore their 

results were the same (Table 4-13). For the three genes, the number of variants 

included was reduced from 9 to 3, from 37 to 11 and from 304 to 124 for NPNT, 

TNXB and C10orf11 respectively. When testing only independent variants, 

NPNT was no longer significant (Table 4-13) but TNXB and C10orf11 became 

more significant (P=0.047 and 0.028 respectively) (Table 4-13) meeting the 

Bonferroni corrected threshold for these two regions (0.05).
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Table 4-13 Sensitivity analysis of top hits in stage 2 

The column “GWAS gene” presents the gene reported in the lung function GWAS (2)* for each region. P-values that meet the 
threshold are shown in bold.  

Locus 
GWAS 
gene 

Threshold 

All variants Independent variants 

Number 
of 
variants 

Number of 
alternative 
allele 
counts 

P-value 
Number 
of 
variants 

Number of 
alternative 
allele 
counts 

P-value 
P-value after 
permutations 

chr3:25633833-25636833 RARB 1.25x10−2 3 363 5.32x10−2 3 363 5.32x10−2 6.25x10−2 

chr3:169238286-169241286 MECOM 8x10−3 2 573 2.94x𝟏𝟎−𝟑 2 573 2.94x𝟏𝟎−𝟑 1.92x10−2 

chr4:145293600-145296600 HHIP 1.25x10−2 2 167 4.16x10−2 2 167 4.16x10−2 6.19x10−2 

NPNT (chr4:106816596-106892828) GSTCD 2.5x10−2 9 1400 5.25x10−2 3 422 5.1x10−1 4.07x10−1 

TNXB (chr6:32008931-32077151) AGER 5x10−2 37 8086 6.08x10−2 11 1752 4.73x𝟏𝟎−𝟐 6.69x10−2 

C10orf11 (chr10:77542518-78317126) C10orf11 5x10−2 304 39634 4.03x𝟏𝟎−𝟐 124 15529 2.77x𝟏𝟎−𝟐 5x10−1 
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The C-alpha test authors (53) recommend undertaking permutations for the top 

loci, especially when only a small number of variants are included in the loci 

tested; which was the case for most of the top hits. Ten thousand permutations 

were run for the 6 most significant loci including only independent variants. The 

P-value for NPNT, which was no longer significant when testing only 

independent variants, was slightly smaller after permutations, but remained 

non-significant (P = 0.410). All other P-values became less significant (Table 

4-13) after the permutations. The P-value for C10orf11 became non-significant 

(P = 0.500). The most significant locus (chr3:169238286-169241286) was 

nominally significant (P = 0.019) (Table 4-13) and the other three were close to 

nominal significant with P-values ≤ 0.067 (Table 4-13); however none of them 

met the Bonferroni corrected thresholds (Table 4-13).  

 

In summary, 3 sliding windows (chr3:25633833-25636833 in the RARB region, 

chr3:169238286-169241286 in the MECOM region and chr4:145293600-

145296600 in the HHIP region) and three genes (NPNT in GSTCD region, 

TNXB in the AGER region and C10orf11) that had P-values close to nominal 

significance (P < 0.061), two (chr3:169238286-169241286 and C10orf11) of 

which met Bonferroni corrected thresholds, were selected to undertake 

sensitivity analyses. After running the C-alpha test only on independent variants 

the NPNT signal disappeared (P = 0.510), but the other five regions still showed 

suggestive evidence of association. After running permutations, NPNT 

remained non-significant, C10orf11 became non-significant and the other 
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regions showed suggestive evidence of association, although none of them met 

the Bonferroni corrected threshold. In order to gain more insights into the 4 

regions that showed suggestive evidence of association, single variant results 

for the variants included in each region were examined, and drop one plots 

were generated, where the C-alpha test was re-run for each region removing 

one variant at a time, to assess how much influence each individual variant had 

on the results.  

 

The C-alpha tests for the sliding window chr3:25633833-25636833 in RARB 

were based on 5 variants only present in stage 1 (2 of them not in 

UK10K+1000G), one variant only present in stage 2 and 2 variants that were 

present both in stage 1 and stage 2 (Figure 4-10 a)). For one of these variants 

(chr3:25635243) the direction of effect between stage 1 and stage 2 agreed and 

for the other (chr3:25633946) it did not. Surprisingly, the strongest association 

both in stage 1 (P = 0.005 for SNVer and P = 0.009 for Syzygy) and stage 2 (P 

= 0.020) was for the variant with different direction of effect in stage 1 and 

stage2 (chr3:25633946). The drop one analysis for this region (Figure 4-10 a)) 

showed that the signal both in stage 1 and in stage 2 seemed to be driven by 

the variant chr3:25633946, indicating that this is likely to be a false positive 

association. 
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For the strongest signal in stage 2 (chr3:169238286-169241286) the C-alpha 

association tests were based on 4 stage 1 variants (2 not in UK10K+1000G) 

and two stage 2 variants, with no overlap between stage 1 and stage 2 variants 

(Figure 4-10 b)).Two variants in MECOM, one in stage 1 (chr3:169238973) and 

one in stage 2 (chr3:169240816), had nominally significant P-values (P = 0.049 

for SNVer and P =0.019 for Syzygy, and P = 0.029 respectively) and they 

seemed to drive the associations in stage 1 and stage 2 respectively according 

to the drop one plots (Figure 4-10 b)). Therefore in each stage these signals 

appear to be single variant signals rather than the multiple variant signals the C-

alpha test was designed to detect. 

 

The C-alpha association tests for chr4:145293600-145296600 were based on 3 

stage 1 variants (1 not in UK10K+1000G) and 2 stage 2 variants, again with no 

overlap between stage 1 and 2 (Figure 4-10 c)). Two variants upstream of 

HHIP, one in stage 1 (chr4:145295641) and one in stage 2 (chr4:145296265), 

had nominally significant P-values (P = 0.068 for SNVer and P = 0.018 for 

Syzygy, and P = 0.020 respectively) and the drop plots show that they have the 

strongest effect on the results (Figure 4-10 c)). The drop one plots (Figure 4-10 

c)) also show that when removing variant chr4:145296136 the test is no longer 

significant, indicating that this variant could also be relevant.  

 



243 

 

 The TNXB signal was based on 14 stage 1 variants (6 not in UK10K+1000G), 8 

stage 2 variants and 3 that were present in both stages (Figure 4-10 d)). One of 

the variants (chr6:32056907) that was present in both stages had consistent 

direction of effect between stage 1 and stage 2, but the other two 

(chr6:32041621 and chr6:32061339) did not. Figure 4-10 d) shows that 

chr6:32036678 is the variant with the strongest association in stage 1 (P = 

0.063 for SNVer and P = 0.019 for Syzygy); and chr6:32073912 the variant with 

strongest association in stage 2 (P = 0.004), although chr6:32046050 was also 

nominally significant in stage 2 (P = 0.010).
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Figure 4-10 Drop one (top) and single variant association results (bottom) plots 

A drop one plot for a locus is obtained by undertaking the C-alpha test removing 
one variant at a time; the P-value plotted for each variant represented on the x-
axis is the P-value obtained after removing that variant. Results obtained using 
calls from different calling algorithms are represented in different colors 
according to the legend in each figure. Not all calling algorithms called the same 
set of variants, when there is no visible P-value represented for a variant for a 
given calling algorithm, it is because that variant was not called by that calling 
algorithm. For example for region chr3:25633833-25636833, vipR only called 
one variant (chr3:25633946) and therefore no drop one results were plotted for 
vipR in this region. If a region only includes two variants, no drop one plot is 
produced, since no C-alpha test can be undertaken with only one variant. 
Asymptotic P-values are presented here for the C-alpha test. The single variant 
plots show the P-values obtained for each variant, and they also show the 
direction of effect by plotting on the y-axis the -log10(P-value)x direction of 
effect, with the direction of effect=1 if OR > 1 and =-1 if OR < 1. For each region 
the first row shows drop one plots and second row shows single variant plots for 
the same variants; the first column presents results from stage 1 excluding 
variants not in UK10K+1000G, the second column presents results from stage 1 
including variants not in UK10K+1000G (marked with * on the x-axis) and the 
third column presents results for stage 2. Variants that are included both in 
stage 1 and stage 2 are highlighted in bold. The horizontal dashed line 
represents the collapsing method significance threshold for each region (note 
that different thresholds were used for stage 1 and stage 2). 
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a) chr3:25633833-25636833 

    

      



246 

 

b) chr3:169238286-169241286 
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c) chr4:145293600-145296600 
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d) TNXB 
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4.3.4   Discussion  

The aim of this study was to find low frequency and rare variants in genetic 

regions known to be associated with lung function in order to gain insights into 

the biological pathways that link these regions with COPD risk. To do this, 26 

regions associated with lung function (2, 23, 94-96)* were sequenced in 300 

COPD cases and 300 controls using a cost-effective pooled design. Single 

variant analyses and collapsing methods were undertaken and top hits were 

followed up in 4,249 COPD cases and 11,916 controls from the UK BiLEVE 

study. None of the top hits met the significance threshold defined in stage 2, but 

suggestive evidence of association was shown for a window in RARB, a window 

in MECOM, one intergenic window upstream of HHIP and for the TNXB gene in 

the AGER region. In addition, the previously reported sentinel SNP for lung 

function in each region was tested for association with COPD. The strongest 

association (P < 6 x 10-4 for Syzygy and SNVer) meeting the Bonferroni 

corrected threshold for 26 tests (2 x 10-3) was for the MECOM sentinel SNP. 

This is the first report of an association with COPD for this region. 

 

The strongest collapsing signal in stage 2 was for a sliding window in an intronic 

region of MECOM. This gene encodes a transcriptional regulator protein and 

oncoprotein that might be involved in hematopoiesis, apoptosis, development, 

and cell differentiation and proliferation. MECOM has been associated with 

osteoporosis (170) and renal function-related traits (171) in East Asians and 

with blood pressure (172) and ageing (173) in Europeans. The sliding window 
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~270kb upstream of HHIP that showed suggestive evidence of association with 

COPD is located in a region that contains a DNase hypersensitivity site and 

transcription factor binding sites found in blood cells, renal epithelium cells and 

embryonic stem cells (174). This region does not overlap with another region 

~85kb upstream of HHIP known to interact with the HHIP promoter and to 

function as an HHIP enhancer (175). TNXB within the AGER region showed 

suggestive evidence of association with COPD risk. This gene encodes a 

member of the tenascin family of extracellular matrix glycoproteins and it is 

thought to function in matrix maturation during wound healing. SNPs in TNXB 

have been associated with age-related macular degeneration (176), 

phospholipid levels in plasma (177), systemic lupus erythematosus (178) and 

HIV-1 control (179) in Europeans. The sliding window in RARB is located in a 

region that contains two DNase hypersensitivity sites and transcription factor 

binding sites found in lung fibroblasts and epithelial cells derived from lung 

carcinoma tissue among other cells (174). However, the association signal for 

this window seems to be driven by the same intronic variant (chr3:25633946) in 

stage 1 and stage 2, and the direction of effect is not consistent between stages 

suggesting that this might be a false positive association.  

 

Single variant association analyses for sentinel variants previously associated 

with lung function (2)*, confirmed the previously reported associations with 

COPD risk for HHIP (95) and HTR4 (24)*, showed for the first time the 
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association of the MECOM sentinel variant with COPD risk and provided 

suggestive evidence of a novel association for the sentinel SNP in SPATA9. 

 

The main limitation of this study was power, due to small sample sizes. 

Assuming a COPD prevalence of 30% among smokers, a study with 300 cases 

and 300 controls would need an OR of 5 in order to detect a variant with 

MAF~1% and an OR of 2 for a variant with MAF~5% with 80% power at a 

nominal level of significance (0.05). Since this study only included 250 controls 

in the final analysis due to low DNA quality in two pools and as the significance 

threshold used per region was lower than 0.05, larger OR would have been 

required in order to detect associations for low frequency rare variants in this 

study. In addition, despite the large sample size of the stage 2 resource, this 

study was not ideal since most of the variants followed up were imputed, rather 

than genotyped, and a considerable proportion (46%) of the top regions did not 

have enough variants in the stage 2 study to be followed up. 

 

The key strength of this study was the ability to identify novel low frequency or 

rare variants through sequencing. A total of 1,429 new SNPs and 216 new 

INDELs passed the quality control checks. However, the pooled design made 

the variant calling step especially challenging, and validation of a subset of 

these variants through direct genotyping would have been valuable. 

Unfortunately, not enough DNA was available for the participants of the study 
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after having to repeat the sequencing experiment three times due to issues with 

the enrichment kit. Alternatively, a design like the one presented in (43), where 

the targeted sequencing is used to identify new variants and then these variants 

are genotyped in large populations where their association with the trait of 

interest is tested, would have had greater power, although very costly.  

 

Three variant calling algorithms were used in this study in order to minimize the 

occurrence of false positive calls. The three algorithms used different statistical 

methods to call variants and they also performed differently. vipR was less 

sensitive than the other two algorithms and it called a much smaller number of 

variants (39,211 SNPs and 459 deletions, compared to 62,506 SNPs and 5,811 

INDELs by SNVer and 55,886 SNPs and 5,331 INDELs by Syzygy), most of 

which had MAF > 1% (85% of SNPs and 99% of INDELs). SNVer also called 

mainly common (MAF > 1%) variants (81% of SNPs and all INDELs), whereas 

Syzygy called the largest number of rare variants (43% SNPs and 35% of 

INDELs). In terms of specificity, Syzygy and vipR show the best specificity when 

assessing the proportion of SNPs with MAF > 1% included in dbSNP137 (166) 

(97.08% for vipR and 98.2% for Syzygy), compared to a 72% for SNVer. When 

calling INDELs all algorithms had lower specificity than when calling SNPs, 

assessed as the proportion of INDELs with MAF > 1% included in the 1000 

Genomes Project (36), (67.55% for vipR, 35% for SNVer and 50% for Syzygy). 

The Syzygy calculation of allele frequencies was problematic for a subset of 

INDELs. Despite this issue, Syzygy seems to be the algorithm that performs 
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best in terms of sensitivity and specificity and also presents additional features 

that the other algorithms do not such as taking into account uncertainty in 

estimating allele counts by providing allele dosages. However, in terms of 

implementation Syzygy was more challenging than the other two algorithms, 

both in terms of installation due to its many dependencies (other programs are 

required for the software to work) and in terms of execution. vipR was easy to 

implement, although a bug in the source code was detected, fixed and reported, 

and SNVer was the easiest and quickest.  

 

There was a notable difference in the quality of the data for SNPs and INDELs. 

Twenty-three percent of the SNPs called by at least one algorithm remained 

after all quality control checks, whereas only 7% of the INDELs passed the 

quality control checks. In addition, out of the new variants (SNPs not in 

dbSNP137 (166) or UK10K+1000G and INDELs not in 1000 Genomes Project 

Phase 1 data (36) or Mills et al. (163)) that passed the quality control checks, 

93% of the SNPs had MAF < 1%, whereas only 4% of the INDELs had MAF < 

1%; and since most common variation is expected to have been already 

identified, new variants would be expected to be rare. 

 

The potential for false positive calls when working with pooled data led me to 

apply some strict filters. In some instances these filters might have been over 

conservative, for instance the repeat mask filter removed 18,622 SNPs and 
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1,161 INDELs. This filter could have excluded some real variants, however, it 

would have been very challenging to distinguish a real variant from a 

sequencing error or a misalignment in a repeat mask region. 

 

Study design impacts on the power of the study and the potential for false 

positives in the association testing. A flaw in our study design meant that the 

sequencing lanes included case pools only or control pools only, making a 

possible lane effect a clear issue for the association testing. The lane test that 

was implemented to deal with this issue may have been over conservative by 

removing any true signal that happened to be driven by pools within the same 

lane. In addition, both the lane test and pool test removed variants whose 

association was driven either by a single lane or by a single pool with discrepant 

allele counts in comparison with the rest (treating cases and controls 

separately). However in some instances they might have also removed variants 

where the discrepancy for a lane or a pool would have only led to shrinkage to 

the null of a true association, instead of to a false association. Sensitivity 

analyses, performing the association testing again after removing the discrepant 

lane or pool could have been undertaken in order to identify those variants for 

which the discrepant lane or pool only led to shrinkage to the null. In addition, 

since cases were ordered by severity of COPD then assigned to pools 

sequentially and then pools were assigned to lanes sequentially, an association 

signal driven only by the lane that contained the most extreme COPD cases 

would have been indistinguishable from a lane artefact. 
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There are some practical lessons that I have learned while undertaking this 

study. Descriptive analyses, quality control, and investigation of quality control 

anomalies remain important in the context of outsourced sequencing. Until the 

data presented in this chapter was obtained, two previous attempts failed, and it 

was thanks to thorough quality control checks that I discovered what the issue 

was and it was possible to negotiate the next experiment with better conditions 

and free of charge. In addition, when running publicly available software it is 

very important to have a clear understanding of the methods being implemented 

in the software and critically assess the output obtained. It also helps to 

familiarise yourself with the source code being used. In two instances I found 

bugs in publicly available software, where the software did not implement the 

methods as intended. 

 

Overall, I have presented here the challenges of working with pooled 

sequencing data and the strategies I have used to overcome these issues. 

Suggestive evidence for the association of rare variants in 3 sliding windows 

and one gene was provided, but no strong findings arose from this study. 

Additional studies which are better powered will be required to identify rare 

variants associated with COPD risk. This study has shown for the first time that 

MECOM is associated with COPD risk. 
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4.4 Conclusion 

This chapter has presented two different approaches to study low allele 

frequency and rare variants and the challenges that they present. The first 

approach was implemented genome-wide in a large number of individuals 

(20,941), however these individuals were genotyped using older genotyping 

arrays, which do not provide good coverage for rare variants; the second 

approach was a targeted sequencing study (sequencing currently being the 

optimal approach for measurement of rare variation) but was only undertaken in 

a limited number of individuals (300 COPD cases and 300 controls). Neither of 

these studies have been successful in confidently identifying rare variants with 

an effect on lung function or COPD risk. An ideal study aimed at detecting 

associations with rare variants would bring together the advantages from both 

studies, the large sample size and the good coverage for identifying rare 

variants obtained by sequencing, ideally deep whole genome sequencing. 

However the cost of these kinds of studies is still very high, and alternative 

study designs are still required. Alternative study designs include: low depth 

whole genome sequencing in large numbers of individuals, exome sequencing, 

the use of genotyping arrays with better coverage for low frequency or rare 

variants such as, the exome chip, imputation to denser imputation reference 

panels, such as 1000 Genomes Project (36) or UK10K+1000G, etc. In addition, 

studies including different ancestries may be beneficial for fine mapping signals 

(180, 181), especially populations with shorter haplotypes than those typically 

seen in European populations.
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Chapter 5:  Conclusion 

Chronic obstructive pulmonary disease is a heritable disease (78, 83) predicted 

to be the third cause of death worldwide in 2030 (182). The biological 

mechanisms involved in the development and progression of this disease are 

still poorly understood. The aim of the work presented here was to identify new 

genomic regions associated with lung function and COPD, but also explore 

existing regions and risk prediction. These genetic discoveries may improve the 

knowledge of the biological mechanisms underlying the disease and lead to the 

development of new preventive and treatment strategies. This chapter gives a 

brief description of the findings presented in this thesis, discusses some of the 

analytic approaches and limitations of the studies undertaken, gives an update 

on other studies that have been undertaken in the field, and discusses potential 

applications of the findings. 

 

When I started this work, genome-wide association studies had reported 11 loci 

(TNS1, FAM13A, GSTCD, HHIP, HTR4, ADAM19, AGER, GPR126, PTCH1, 

THSD4 and PID1) associated with lung function (23, 94, 96) and 3 loci (FAM13, 

HHIP and CHRNA 3/5) associated with COPD (95, 103). Chapter 2 showed that 

3 (GSTCD, TNS1 and HTR4) out of 5 variants (TNS1, GSTCD, HTR4, AGER 

and THSD4) associated with lung function were also associated with COPD; 

and that individuals with 10 to 12 risk alleles in TNS1, GSTCD, HHIP, HTR4, 

AGER and THSD4 (5% of our population) had 1.6 fold increase in their risk of 

developing COPD in comparison to individuals with 7 risk alleles in the same 
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loci (28% of our population). Chapter 3 aimed to identify new common genetic 

variants associated with lung function, and presented the largest meta-analysis 

of lung function GWAS at the time. It confirmed the association of 10 (TNS1, 

FAM13A, GSTCD-NPNT, HHIP, HTR4, ADAM19, AGER, GPR126, PTCH1 and 

THSD4) out of the 11 previously reported loci (23, 94, 96) and identified 16 new 

lung function loci (MFAP2, TGFB2, HDAC4, RARB, MECOM, SPATA9, 

ZKSCAN3, NCR3, ARMC2, CDC123, C10orf11, LRP1, CCDC38, MMP15, 

CFDP1 and KCNE2). This brought the total number of loci associated with lung 

function to 26. Chapter 4 presented two different approaches for identifying low 

allele frequency and rare genetic variants associated with lung function and 

COPD. One approach was a burden test applied to a large number individuals 

(N = 20,941) in a meta-analysis of studies in the SpiroMeta consortium. No 

convincing novel findings arose from this study, probably due to low coverage 

for rare variants in the genome-wide arrays used by the studies. The second 

approach was a targeted sequencing study for the 26 loci associated with lung 

function. Although this study was strongly limited in power as it included 300 

COPD cases and 300 controls, it reported suggestive evidence for the 

combined effect of rare variants in three sliding windows (chr3:25633833-

25636833 in the RARB region, chr3:169238286-169241286 in the MECOM 

region and chr4:145293600-145296600 in the HHIP region) and one gene 

(TNXB in the AGER region). In addition, this study was the first to report the 

association with COPD of a common variant in MECOM known to be 

associated with lung function.  
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Throughout the thesis I have worked with different kinds of data. I have mainly 

used summary data for the analyses undertaken in Chapters 2, 3 and in the first 

study of Chapter 4. The motivation to use summary data was to enable a simple 

form of data sharing between studies to achieve the large sample sizes required 

to detect modest genetic effect sizes. However, having only access to summary 

data had its challenges. This required me to work closely with a large number of 

researchers undertaking study-level analyses. There was potential for 

heterogeneity in the approaches undertaken by study-level analysts despite the 

standard analysis plan that I developed, and for programming errors to be 

undetected. I tried to minimize heterogeneity across studies by providing 

sufficiently detailed analysis plans. In addition, I undertook thorough quality 

control checks to detect any discrepancy across studies. I liaised with analysts 

to understand the source of these discrepancies and once they were 

understood I took the necessary measures. Several issues were found and 

solved in the various analyses undertaken, highlighting the relevance of a 

careful quality control pipeline. Another challenge was the inability to undertake 

additional analyses, such as sensitivity analyses, without having to coordinate 

large numbers of analysts. I was able to access individual level data for a 

subset of studies. This allowed me to pilot some of the analyses (section 4.2 

Chapter 4) before finalising the analysis plan, to undertake sensitivity analyses 

(section 2.3 Chapter 2), and to carry out analyses for a subset of studies 

included in the follow-up stage of the study presented in Chapter 3. In the 

second study presented in Chapter 4, the sequencing study I designed with my 

supervisors generated pooled sequencing data and I had access to the raw 
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data. This gave me the opportunity to process the data myself, and allowed me 

to try different approaches to analyse the data before choosing the final 

strategy.  

 

Overall, throughout the thesis I have taken a strict approach in order to avoid 

false positive associations when aiming to discover associations for lung 

function or COPD. In some instances this approach may have been over 

conservative and I might have missed some true associations. In the meta-

analysis of lung function GWAS undertaken in Chapter 3 I undertook genomic 

control (26) at study level twice, before and after meta-analysing smoking strata 

within studies and then again at the meta-analysis level. Genomic inflation 

factors are known to increase with sample size for highly polygenic traits, due to 

the increase in power; and a recent GWAS undertaken for height (183) 

suggested that single genomic control correction might suffice. Additional 

signals might have been detected in the meta-analysis of GWAS undertaken in 

Chapter 3 if a less strict approach was undertaken for genomic control 

correction, although this would have increased the risk for false positive 

associations. Data analysis for the pooled targeted sequencing presented in 

Chapter 4 was particularly challenging due to the similar magnitude of 

sequencing error rate and minor allele frequencies for rare variants. For this 

reason, I also applied very strict filters, removing a large number of variants, 

which may again have removed some true association signals. 
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Associations with COPD presented in Chapter 2 and Chapter 4 used the GOLD 

(104) spirometric definition of COPD as a reference. Individuals classified as 

GOLD stage 2 and above (percent predicted FEV1 < 80% and FEV1/FVC < 0.7) 

(104) were classified as cases and individuals with percent predicted FEV1 > 

80% and FEV1/FVC > 0.7 as controls, whereas individuals with GOLD stage 1 

(percent predicted FEV1 > 80% and FEV1/FVC < 0.7) (104) or with percent 

predicted FEV1 < 80% and FEV1/FVC > 0.7 were excluded to avoid 

misclassification. The GOLD guidelines (55, 104) recommend using post-

bronchodilator spirometry for this diagnosis; however, this would have reduced 

the sample size considerably and therefore the power to detect associations 

with COPD. For this reason pre-bronchodilator spirometry was used in Chapter 

2 and Chapter 4. I showed in a sensitivity analysis undertaken in Chapter 2 

(section 2.3) using data from a study with both pre and post-bronchodilator 

measures that using the criteria described above, excluding individuals 

classified as GOLD stage 1, only a small number of individuals were 

misclassified when using pre-bronchidolator spirometry. The most recent GOLD 

guidelines (55) include assessment of risk of exacerbations and symptoms in 

order to make a diagnosis, and recommend also an assessment of co-

morbidities. The advantage of using only spirometry is that is a well measured 

and objective criterion; however a more complete diagnosis with information on 

exacerbations, symptoms and co-morbidities would have the potential to enable 

genetic studies that could provide insights into more specific aspects of the 

disease. 
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Alongside the work presented here, additional analyses have been undertaken 

which have discovered a number of new loci associated with lung function and 

with COPD. I took part in a large meta-analysis of GWAS of forced vital capacity 

undertaken in SpiroMeta and CHARGE (3)*, which discovered 6 additional loci 

(EFEMP1, BMP6, MIR129-2–HSD17B12, PRDM11, WWOX and KCNJ2). 

Overall, work undertaken here and by others have now shown association with 

airflow obstruction or COPD for 13 lung function loci (TGFB2, TNS1, RARB, 

MECOM, FAM13, GSTCD, HHIP, HTR4, ADAM19, AGER, GPR126, C10orf11 

and THSD4) (24, 95, 103, 117, 154, 155)* (Chapter 4, section 4.3), illustrating 

that studying the genetics of lung function is a powerful approach for 

understanding the genetics of COPD. Additional studies (155, 184) have 

identified other new loci (MMP12, RIN3, RAB4B-EGLN2-CYP2A6) for COPD. 

 

The fact that smoking is a major risk factor for COPD but not all smokers 

develop COPD, seems to point to a gene by smoking interaction, however none 

of the associations presented here have shown a gene by smoking interaction. I 

have contributed to a genome-wide gene by smoking interaction study (185)*, 

which identified three additional signals (DNER, HLA-DQ, and KCNJ2/SOX9) 

that became genome-wide significant when testing both the main effect and the 

interaction term together. However, none of these regions showed a very strong 

interaction, and to my knowledge no other gene by smoking interactions have 

been reported for lung function. Detecting gene by environment interaction for 

complex traits has been challenging (186). Particularly, in the case of gene by 
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smoking interaction, the environment is not easy to measure, given that we 

often rely on self-reported information. Improvement in the quality of smoking 

behavior information, as well as increased sample sizes will be required in order 

to improve the power of these studies.  

 

Analyses presented here have focused on analyzing cross-sectional lung 

function, and have not covered genetic effects on longitudinal lung function. I 

have also contributed to a large meta-analysis of longitudinal lung function 

GWAS (187)*. However, study heterogeneity in number of time points 

measured, length of follow-up, method used to measure spirometry in each time 

point, baseline age, cigarette smoking, and the increased power required to 

detect an effect on slope rather than on baseline for longitudinal lung function, 

have made these analyses very challenging. Currently little is known about the 

genetics of decline in lung function in adults, and future studies with more 

homogeneous data, very large sample sizes and long enough follow-up will be 

required in order to shade some light into this field. Possibly, data being 

collected in a homogenous manner by large biobanks will enable this kind of 

study. 

 

The work undertaken in this thesis, and by others, has identified a number of 

genetic associations for lung function and COPD. However, these loci tend to 

have moderate effect sizes, and there is still a large proportion of the variance 
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of these traits that remains unexplained.  Analyses undertaken for other 

complex traits (32, 43, 188) indicate that it is likely that both common and rare 

variants play an important role in explaining the remaining proportion of the 

variance. Additional analyses would give insights into the genetic architecture of 

lung function. If I had been able to access individual level data genome-wide, I 

could have estimated the proportion of the variance of the lung function 

measures and COPD risk that is explained collectively by all common variants 

measured by a DNA microarray. This kind of analysis has shown that a 

substantial proportion of the heritability for height, Crohn’s disease, bipolar 

disorder, and type 1 diabetes is explained by common variation (150, 189). 

Rare variants on the other hand, are expected to have large effect sizes and to 

also play a role in explaining the missing heritability; in addition they are likely to 

have a more immediate clinical application due to their potential to be 

deleterious (34). For these reasons the study of both common and rare variants 

is relevant. No strong associations with rare variants have been presented here, 

or have been published for lung function at present, with the exception of those 

causing alpha1 antitrypsin deficiency (85, 190). This illustrates the challenges of 

identifying rare variants. A key message that comes across in the thesis is the 

relevance of sample size to enable genetic discoveries. As sample sizes 

increase, sequencing costs drop and new analytic techniques are developed to 

deal with the issues related to analyzing rare variation, the number of reported 

rare variant associations is likely to rise. I am currently working on a meta-

analysis of GWAS imputed to the 1000 Genomes Project Phase 1 data 
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reference panel (36) which has the potential to discover additional associations 

for common and low allele frequency variants.  

 

The mechanisms through which discovered loci affect lung function are not yet 

well understood. Follow-up analyses undertaken for lung function loci presented 

in Chapter 3 provided some insights into these mechanisms. None of the 26 

lung function loci associated with lung function in Chapter 3 showed association 

with smoking behavior or seemed to be caused by gene by smoking interaction. 

The direction of effect in children (7-9 years of age) and adults was consistent 

for 20 out of 26 sentinel variants. This suggests that overall these loci may 

affect lung function through lung development. An additional study (191) has 

shown evidence of association with infant lung function for variants in 4 (HHIP, 

HDAC4, NCR3, RARB) of the 26 genes, providing some support for this 

hypothesis. Some lung function loci have also shown associations with other 

traits, such as height (127) or lung cancer (128); understanding the 

mechanisms of these pleiotropic effects will also provide insights into the 

biological process involved in lung disease. Functional studies have been 

undertaken for some of the loci associated with lung function, and have given 

some insights into their function (175, 192, 193)*. However, further studies will 

be required to fully understand how these loci affect lung function and COPD, 

and to translate this knowledge into possible treatments.  
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A more immediate application of the findings could be in the prevention of 

smoking and in smoking cessation campaigns, by the use of genetic risk 

scores. In using genetic risk scores it is not necessary to understand the 

biological processes through which the loci exert an effect on lung function. It is 

enough to have a number of independent variants robustly associated with lung 

function and accurate estimates of their effect size. The accuracy of risk scores 

will increase as the number of variants associated with lung function increases 

and as we get closer to the causal variants. Loci discovered to date have small 

effect sizes, but individuals who smoke have a high baseline risk for developing 

COPD (118), and the small variation in risk provided by the genetic information 

may become relevant in this context. Presenting personalized genetic risk 

profiles for COPD could aid in the development of smoking prevention and 

cessation campaigns. This concept inspired the development of “The Risky 

Gene Machine”, an activity that was part of an exhibition at the Royal Society 

Summer Science Exhibition in London 2012 (“Breathless genes: the lung and 

the short of it”, http://sse.royalsociety.org/2012/exhibits/breathless-genes/). The 

Risky Gene Machine was like a “fruit machine”, but instead of a random 

combination of fruits, it provided a random combination of risk and non risk 

alleles with their associated risk of developing COPD both for smokers and 

nonsmokers. Results presented in Chapter 2 were used to estimate genetic risk 

and baseline risk for smokers and nonsmokers was extracted from (118).  

 

http://sse.royalsociety.org/2012/exhibits/breathless-genes/
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The studies that form this thesis have identified 16 new loci associated with lung 

function, showed association with COPD risk for 4 lung function loci and 

presented suggestive evidence for the combined effect of rare variants in 3 

windows and one gene, within in known loci. These findings have pointed to 

genomic regions not previously related to lung function and have the potential to 

lead to the discovery of new molecular pathways involved in lung health and 

disease, and to the development of new preventive and treatment strategies. 
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B. Analysis plans 

COPD associations analysis plan 

 

Analysis plan for replication studies 
 
Please confirm the numbers of individuals included in the analyses and the 
distribution of the phenotypes after any exclusions.  
 
For the SNPs of interest, replication studies will provide summary statistics about 
genotype data (genotype counts, mean phenotype values for the three genotypes, 
statistics testing for Hardy-Weinberg, counts of genotype inconsistencies in duplicate 
samples and/or relatives), and association statistics (strand, coded allele, beta, 
standard error) for the quantitative lung function phenotypes of interest.  
 
Association testing will be based on the following: 
 

For each locus two tests for association with COPD should be performed.  
a) First restrict datasets to individuals with age>40, then COPD cases & controls 

should be selected under the following criteria: 

 Cases: FEV1<80% predicted [see below for definition] and FEV1/FVC ratio 
of <70% 
Controls: FEV1>80% predicted and FEV1/FVC ratio of >70% 

 Individuals with FEV1<80% predicted with FEV1/FVC ratio>70%, or vice 
versa, should be excluded from both groups. 

 
Perform a logistic regression analysis, with COPD (case=1; control=0) status as 
the outcome and with the SNP (coded 0, 1, 2 for the number of copies of the 
coded allele) as the only covariate. The effects should be reported in logit scale. 
  
b) As above, first restrict datasets to individuals with age>40 and pack-

years>5then COPD cases & controls should be selected under the following 
criteria: 

 Cases: FEV1<80% predicted and FEV1/FVC ratio of <70% 
Controls: FEV1>80% predicted and FEV1/FVC ratio of >70% 

 Individuals with FEV1<80% predicted with FEV1/FVC ratio>70%, or vice 
versa, should be excluded from both groups. 

 
Perform a logistic regression analysis, with COPD (case=1; control=0) status as 
the outcome and with the SNP (coded 0, 1, 2 for the number of copies of the 
coded allele) as the only covariate. The effects should be reported in logit scale. 

 
 
 
 
 
 
 
 
 

For calculating the predicted FEV1: 

 if this has already been calculated in the replication cohort using 
appropriate reference values for the local population, we suggest use of 
that value (please let us know what this is when you send in your results) 

 if this has not yet been calculated, we suggest use of the following 
formula1:  

 
Males: Expected FEV1 = 0.5536 - 0.01303*age - 0.000172*age2 
+0.00014098*height2; 
Females: Expected FEV1 = 0.4333 - 0.00361*age - 0.000194*age2 + 
0.00011496*height2. 
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File format 
 

It would be helpful if the results of the analyses will be given in comma separated 
value files (csv files) following the naming scheme described in the next paragraph.  
 
The following fields will be required for each SNP. It would be appreciated if the 
fields are named following the bold titles as below.  
 

- Chr : Chromosome of the SNP (an integer from 1 to 22) 
- Position:  Position of the SNP (an integer) 
- Markerid: rs number (a character string beginning with “rs”) 
- Markerid2: other ID when the rs number is not available e.g. affy id(a 

character string or empty when nothing to report) 
- Bas_all: baseline allele (a single character: “A” “C” “G” “T”) 
- Cod_all: coded allele (effect allele) (a single character: “A” “C” “G” “T”) 
- Strand: the strand of the baseline and the coded alleles (a single character: 

“+” or “-“) 
- Freq: allele frequency for coded allele (numeric data)   
- Beta: effect size for each copy of the coded allele (numeric data) 
- Se: standard errors of beta (numeric data) 
- Type: whether the SNP was genotyped or imputed (a character string: “gen” 

or “imp”) 
- Imp_info: r^2.hat or .info for imputed SNPs (numeric data) 

 
We would recommend that at least four decimal places will be kept for all the 
statistics.  
 
In addition, the COPD analyses should include the following: 
 

- Chr : Chromosome of the SNP (an integer from 1 to 22) 
- Position:  Position of the SNP (an integer) 
- Markerid: rs number (a character string beginning with “rs”) 
- Markerid2: other ID when the rs number is not available e.g. affy id(a 

character string or empty when nothing to report) 
- Bas_all: baseline allele (a single character: “A” “C” “G” “T”) 
- Cod_all: coded allele (effect allele) (a single character: “A” “C” “G” “T”) 
- Strand: the strand of the baseline and the coded alleles (a single character: 

“+” or “-“) 
- Beta: effect size for each copy of the coded allele (numeric data) In logit 

scale. 
- Se: standard errors of beta (numeric data) 
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Naming scheme 
 

Each analysis should be given in a different file named as: 
 
cohortname_repl_phenotype_dataset_ version.csv  
or  
cohortname_repl_phenotype _ version.csv  (for COPD analyses) 
 
where: 
 

cohortname will be an identifier for the specific cohort 
phenotype will be one of “FEV1”,”FF” (for the ratio FEV1/FVC), “COPD” or 
“COPDpy” (for the analysis with the pack-years criteria) 

 dataset will be one of “all”,” smk”, “smkPY” (for the pack-years adjustment as  
 defined in 4) or ”nonsmk”  

version will be the date of the day of the uploading (ddmmyy) 
 
For example a file name from the cohort ILFGC would be: 
 ILFGC_repl_FEV1_smk_190109.csv  
 ILFGC_repl_COPD_190109.csv  
or  ILFGC_repl_COPDpy_190109.csv  
 
 
Please address any questions regarding the analysis plan to Martin Tobin 
mt47@leicester.ac.uk or Emmanouela Repapi er82@leicester.ac.uk 
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Lung function and COPD risk scores analysis plan 

 

Analysis plan for Modelling the joint effect of Risk 

Alleles 
 

Please confirm the numbers of individuals included in the analyses and the numbers of the 

individuals in each group (for both a. and b. analyses) after any exclusions.  

Coding of Risk alleles 

Risk alleles and their weights are defined in the table below. Exclude all individuals with any 
missing genotype data. 

Table1 
 
Chrom SNPID (Position) Gene Risk Allele 

for NCBI 
B36, 
HapMap 
Data Rel24  

Risk Allele 
for NCBI 
B36.3, 
dbSNP 

Risk 
allele 
freq 

Weights 
for 
FEV1 

Weights 
for FF 

2  rs2571445 (218,391,399) 
TNS1  

A T 0.41 1.014 0.345 

4  rs10516526 (106,908,353) 
GSTCD  

A A 0.94 2.304 0.687 

4  rs12504628 (145,655,774) 
HHIP  

T T 0.56 1.152 0.733 

5  rs3995090 (147,826,008) 
HTR4  

A A 0.59 0.825 1.724 

6  rs2070600 (32,259,421) 
AGER  

C G 0.94 0.325 1.344 

15  rs12899618 (69,432,174) 
THSD4  

A A 0.15 0.380 1.167 

 

 

 

For SNPs rs2571445 and rs2070600 the databases don’t agree on which base is on the + 

strand. For rs2571445 the risk allele should be A or T (with the non-risk being G or C 

respectively) and for rs2070600 the risk allele should be C or G (with the non-risk being T or A 

respectively) depending on the database that you have the genotypes reported in. 
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Grouping the individuals: 

1. Unweighted analyses 

Count the total number of risk alleles an individual carries and group the individuals in 5 
groups according to the number of risk alleles that they carry.  

Create four indicator variables: ui1 (unweighted indicator 1), ui2, ui3 and ui4. The first one 
will be 1 for individuals with a total of 0-4 risk alleles (and 0 for the rest), the second-one 
for individuals with a total of 5-6 risk alleles (and 0 for the rest), the third for individuals 
with a total of 8-9 risk alleles (and 0 for the rest) and the last for individuals with a total of 
10-12 risk alleles (and 0 for the rest), as specified in the following table. 

 
 

No of risk 
alleles 

Group ui1 ui2 ui3 ui4 

0-4 1 1 0 0 0 

5-6 2 0 1 0 0 

7 3 (Baseline) 0 0 0 0 

8-9 4 0 0 1 0 

10-12 5 0 0 0 1 

 

2. Weighted analyses 

Multiply the number of risk alleles for each SNP by the appropriate weight. Add up the 
products for each individual to calculate the total score of Risk allele and assign each 
individual to a group. Create four indicator variables: wi1 (weighted indicator 1), wi2, wi3 
and wi4 and code them as follows: 

 
 
 
 
 
 
 
 
 

Example for weighted analyses: 
 
Genotypes for 6 individuals: 

SNP ID 

rs10516526 

rs12899618 

rs2070600 

rs2571445 

rs3995090 

rs12504628 

indiv 1        

A:A        

G:A       

G:G        

C:C        

C:C 

T:C 

indiv 2              

A:A         

G:A        

G:G        

T:C        

A:A 

T:C 

indiv 3 

A:A         

G:G        

G:G        

T:C        

C:A 

T:C 

indiv 4        

A:A         

G:G        

G:G       

T:T        

C:C 

T:C 

indiv 5        

G:A         

G:A        

G:G        

T:C        

C:A 

T:C 

indiv 6        

A:A         

G:A        

G:G        

C:C        

A:A 

T:T 

 

Risk allele Group wi1 wi2 wi3 wi4 

0< risk score< 5 1 1 0 0 0 

5<=risk score< 7 2 0 1 0 0 

7<=risk score< 8 3(Baseline) 0 0 0 0 

8<=risk score< 10 4 0 0 1 0 

10<= risk score< =12 5 0 0 0 1 
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Let’s assume that we would like to calculate the risk allele score and the group for each of these 
6 individuals for the FEV1 analysis. Taking the risk alleles and the weights for FEV1 from table 1 
we have: 
 

SNP ID Risk allele for our 
version 

Weights for 
FEV1 

rs10516526  A 2.304 

rs12899618  A 0.380 

rs2070600  G 0.325 

rs2571445  T 1.014 

rs3995090  A 0.825 

rs12504628   T 1.152 

 
The numbers of risk alleles for each individual are: 
 

SNP ID 

rs10516526_risk 

rs12899618_risk 

rs2070600_risk 

rs2571445_risk 

rs3995090_risk 

rs12504628_risk 

indiv 1               

2               

1              

2              

0              

0 

1 

indiv 2                

2               

1              

2              

1              

2 

1 

indiv 3               

2               

0              

2              

1              

1 

1 

indiv 4                     

2               

0               

2              

2               

0 

1 

indiv 5                 

1               

1              

2              

1              

1 

1 

indiv 6              

2               

1              2              

0              2 

2 

 
By multiplying them with the weights we have the risk score of each individual for each SNP: 
 

SNP ID 

rs10516526_risk 

rs12899618_risk 

rs2070600_risk 

rs2571445_risk 

rs3995090_risk 

rs12504628_risk 

indiv 1 

4.608            

0.38           

0.65          

0 

0 

1.152 

indiv 2 

4.608            

0.38           

0.65          

1.014          

1.650           

1.152 

indiv 3 

4.608            

0           

0.65          

1.014          

0.825           

1.152 

indiv 4           

4.608            

0 

0.65          

2.028          

0 

1.152 

indiv 5                

2.304            

0.38           

0.65          

1.014          

0.825           

1.152 

indiv 6       

4.608            

0.38           

0.65          

0 

1.650           

2.304 

 
       The total risk score and the group each individual will be assigned to are: 

 
 
Risk score 
wi1 
wi2 
wi3 
wi4 

indiv 1 
6.790  
0 
1 
0 
0 

indiv 2 
9.454 
0 
0 
1 
0 

indiv 3 
8.249 
0 
0 
0 
0 

indiv  4 
8.438 
0 
0 
0 
0 

indiv  5 
6.325 
0 
1 
0 
0 

indiv  6 
9.592 
0 
0 
1 
0 
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Association testing: 

 

Restrict dataset to those individuals with no missing data for the 
eversmoking/neversmoking variable and to those with complete data on both FEV1 and 
FVC. Also exclude all individuals with any missing genotype data. 

1. Residual phenotype calculation 

Undertake linear regression of FEV1 onto age, age2, sex, and height and use residuals for 
all subsequent association analyses. 

Repeat using FEV1/FVC ratio in place of FEV1. 

You should not transform the phenotypes at any point in this analysis. 

2. Unweighted analyses 

a) Continuous phenotypes.  Separately for the FEV1 and FEV1/FVC residual phenotypes 
calculated in step 1, perform the following analysis: 

i. Fit a normal linear multiple regression model with the residual phenotype as the 
outcome variable, and an intercept and the unweighted indicator variables as the 
explanatory variables.  Report the effect size (beta coefficient) and standard error 
for the intercept and for each of the indicator variables.  Report also the sum of 
squared errors and the sample size. 

ii. Positive control analyses:   

Part 1: For each SNP fit a normal linear regression model, with the residual 
phenotype as the outcome variable and an intercept and the risk dosage (number 
of risk alleles an individual carries for each SNP, exactly as used to get the risk 
score - same risk alleles) as the explanatory variables.  Report the effect size (beta 
coefficient) and standard error for the intercept and for the risk dosage of each 
model.   

Part 2: Fit a normal linear regression model, with the identical outcome variable 
and an intercept and the unweighted Risk score (total number of risk alleles an 
individual carries before grouping) as the explanatory variable.  Report the effect 
size (beta coefficient) and standard error for the intercept and for the Risk score 
variable. Report also the sum of squared errors and the sample size. 

 
b) COPD analysis. First restrict datasets to individuals with age>40, then COPD cases & 

controls should be selected under the following criteria (Note: the definition of COPD 
is identical to previous analyses): 

 Cases: FEV1<80% predicted [see below for definition] and FEV1/FVC ratio of <70% 
Controls: FEV1>80% predicted and FEV1/FVC ratio of >70% 

 Individuals with FEV1<80% predicted with FEV1/FVC ratio>70%, or vice versa, 
should be excluded from both groups. 

 

Perform a logistic multiple regression analysis, with COPD (case=1; control=0) status as the 

outcome and with an intercept and the indicator variables as the explanatory variables.   
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Report the effect size (beta coefficient) and standard error for the intercept and for each of 

the indicator variables.  The effects should be reported in logit scale. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. Weighted analyses 

 
Repeat analysis 2.a.i above, but using the indicator variables calculated from the weighted risk 
score. Note: the weights and therefore the indicator variables will be different for the analyses 
of FEV1 and of FEV1/FVC. 
 

At this stage we are not requesting weighted COPD analysis because the COPD weights are expected 

to change with the inclusion of additional data. [We will therefore review the issue if the referees’ 

comments require such analysis.] 

 

 

For calculating the predicted FEV1: 

 if this has already been calculated in the replication cohort using appropriate 
reference values for the local population, we suggest use of that value (please 
let us know what this is when you send in your results) 

 if this has not yet been calculated, we suggest use of the following formula:  
 

Males: Expected FEV1 = 0.5536 - 0.01303*age - 0.000172*age2 
+0.00014098*height2; 
Females: Expected FEV1 = 0.4333 - 0.00361*age - 0.000194*age2 + 
0.00011496*height2. 
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SpiroMeta-CHARGE stage 1 analysis plan 

 

INTERNATIONAL LUNG FUNCTION GENOMICS CONSORTIUM (SPIROMETA): ANALYSIS 

PLAN 

Version:  19
th

 January 2009 

ANALYSIS STEPS WITHIN EACH COHORT 

DESCRIPTIVE STATISTICS  

Cohorts will be asked to provide information on QC (see below) and on the distribution (range, mean, sd) of 
FEV1, FEV1/FVC, FVC, age, sex, height, smoking status, pack-years of smoking, numbers diagnosed with 
asthma, COPD.   
 
Cohorts will also be asked to provide histograms of FEV1, residuals from linear regression after adjusting for 
covariates age, age

2
, sex, height (described under “Phenotype for association testing” below). 

The same will be requested for FEV1/FVC and FVC.  
 
We have asked for copies of the questionnaires used to collect smoking data, and additional information 
where needed so that we can assess the consistency of approaches used. 

QC 

Internal QC of initial genotype data will be undertaken by each of the cohorts, such as exclusion of subjects 
with poor genotype call rate, subjects with evidence of non-Caucasian ancestry, SNPs with low call rate and 
SNPs out of HWE.  To date many cohorts within GWAS consortia have used no minor allele frequency (MAF) 
filter prior to imputation, or have filtered out SNPs with MAF<0.01. Exact QC thresholds tend to vary between 
cohorts. This is probably appropriate given the different technologies. Cohorts must provide information on 
the quality filters used (see spreadsheet for study information). The analysis working group will be happy to 
discuss quality filters as required. 

IMPUTATION  

Imputation can potentially be used to (i) infer untyped HapMap SNPs; (ii) fill in missing genotypes for typed 
SNPs and (iii) change typed SNP calls where these appear inconsistent with Hapmap haplotypes. Individual 
cohorts will decide precisely how they implement their imputation – and this may vary with their platform 
used and data quality - (e.g. whether (ii) is also implemented; (iii) above is normally not implemented). Only 
cohorts which have imputed untyped HapMap SNPs will have their data included in the meta-analysis. Two of 
the most commonly used programs are IMPUTE (Marchini et al, Oxford) and MACH (Abecasis et al, UMich). 
SNPs will be excluded by individual cohorts if they are imputed with low confidence/quality i.e. if .info<0.3 
(IMPUTE) or r^2.hat <0.3 (MACH). Cohorts employing other imputation approaches are strongly encouraged to 
discuss these with the analysis group in advance so that we can ensure consistency as far as is possible. We 
would not encourage use of PLINK for imputation at present. 
 

ASSOCIATION TESTING AND SOFTWARE 

Where possible, ancestry principal components will be estimated using EIGENSTRAT or equivalent software. 

Association testing will be undertaken within cohorts based on ~2.2 million HapMap SNPs (less a proportion 

missing due to low imputation quality; this will vary across platforms). A variety of association testing software 

is available. Commonly used software packages include SNPTEST (Marchini et al, designed to utilize output 
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use of PLINK for MACH-imputed data is fine. Again, cohorts using different packages for association testing are 
encouraged to liaise with the analysis working group to confirm that consistent approaches are employed and 
that consistent output is available. Where possible, we would encourage use of programs/options that make 
use of the posterior probabilities of the genotype calls (e.g. Proper option in SNPTEST, ProbABEL package) 
rather than a simple threshold approach. Where genotypes have been coded as missing where the most likely 
genotype falls below a given threshold, cohorts should supply details of the threshold used. 

PHENOTYPES FOR ASSOCIATION TESTING 

Initial analyses for FEV1, FVC and FEV1/FVC   

ADULT COHORTS:  

1. Restrict dataset to those individuals with no missing data for the eversmoking/neversmoking variable and 
to those with complete data on both FEV1 and FVC. Undertake linear regression of age, age

2
, sex, height, 

ancestry principal components on FEV1 and use residuals for all subsequent analyses. Transformation 
would be taken once for each trait (FEV1, FVC and FEV1/FVC ratio) and used for all analyses (including 
subgroups). 

a. Transformed analysis: transform residuals to ranks and then to normally distributed z-scores. 
These inverse-normal transformed residuals are then used as the phenotype for association 
testing under an additive genetic model. 

b. Untransformed analysis: use untransformed residuals for association testing under an additive 
genetic model (units of millilitres for FEV1 please). This will assist interpretation of findings from 
a. above.  

 
2. Ever-smokers only:   a.  analysis as for 1a above 

b.  analysis as for 1b above 
c. Undertake linear regression of age, age

2
, sex, height, ancestry principal 

components and pack-years on FEV1. Transform residuals to ranks and then to normally 
distributed z-scores. These inverse-normal transformed residuals are then used as the 
phenotype for association testing under an additive genetic model. 

 
d. Repeat 2c for FEV1/FVC ratio (using same approach as for FEV1). 

 
3. Never-smokers only:  a.  analysis as for 1a above 

b.  analysis as for 1b above 
 

Repeat the above for outcomes: FVC and FEV1/FVC ratio (using same approach as for FEV1, untransformed 
analysis to use millilitres for FVC and percentage for FEV1/FVC ratio). 
 
4. Positive control analysis: Association testing under an additive genetic model using BMI as the outcome 

(no transformation of BMI required, no covariates in the model). No transformation of BMI is required for 
this analysis as it is simply for positive control purposes. We would be very grateful if cohorts could 
undertake this analysis as a positive control. To be useful as a positive control the analysis would have to 
be undertaken by the same analyst that is performing analyses 1-3 above. However, if it inconvenient to 
perform genome-wide analyses, the output related to chromosome 16 will suffice. 
 

CHILDREN’S COHORTS: undertake analyses 1a, 1b, repeat for FVC and FEV1/FVC ratio and 4 (the control 

analysis). No smoking-stratified analyses will be expected. 

ASSOCIATION TESTING OUTPUT 

The output statistics and file formats required for each SNP are shown in the file: 
 “SpiroMeta_file_format_19012009.doc” 
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NATIONAL LUNG  

 FUNCTIONGENOMICS CONSORTIUM (SPIROMETA): AN

In addition, for control purposes, we would also like to receive (from analysis 1a) a file with the output for the 
first 500 SNPs of chromosome 1 from the software package that has been used by each cohort. 
 
A nominated analyst for each cohort will upload these association test statistics to a sFTP site.   
 

CONSORTIUM ANALYSIS WORKING GROUP: CHECKS AND META-ANALYSIS 

A small analysis working group will be established to work out analytic issues applicable to the individual 
GWASs and the meta-analysis. This will include recommendation to the consortium of the datasets to be 
merged based on the completeness of data and on checks below by timescales to be decided by the 
consortium members.  
 
Checks of correctness will be performed and reported, including (i) data from positive controls i.e. genome-
wide (or chromosome 16)  association with BMI by the same analyst undertaking the association testing with 
FEV1, FVC & FEV1/FVC. This enables checking of (i) consistency of effect size direction and labelling. (ii) 
concordance of allele frequency of alphabetically larger allele across studies, and (iii) correlation [or lack of 
correlation] of effect size estimates across studies.  
 
Careful attention will be paid to alignment of data sets. For each SNP (and for each genetic model assumed if 
any model other than additive is ultimately examined), the pooled effect size estimate and standard error may 
be computed using inverse variance weighting or alternate weighting schemes as appropriate. P-values will be 
reported under normality assumptions. For SNPs with p-values below some agreed threshold, standard meta-
analysis statistics may be reported. QQ plots will be shown after addition of each cohort. The meta-analysis 
will need to be performed using a suitable criterion (and perhaps using several different criteria) for 
inclusion/exclusion of individual results according to e.g. imputation quality. 
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SpiroMeta-CHARGE stage 2 analysis plan 

 

Analysis plan for follow-up studies: version 9 June 2010 
 
Please provide the following summary information for the subset of individuals for which 
this analysis is undertaken: 
N 
total 

N 
males 

N 
females 

Age range at 
measurement  

Mean 
age y 
(s.d.) 

Mean 
FEV1 
(s.d.) 

Mean 
FEV1/FVC 
(s.d.) 

N never 
smokers 

N ever 
smokers 

N ever 
smokers with 
pack-years 
data* 

          

*See analysis (d) below 

 
For the SNPs of interest, please provide summary statistics about genotype data (genotype 
counts, mean phenotype values for the three genotypes, statistics testing for Hardy-
Weinberg, counts of genotype inconsistencies in duplicate samples and/or relatives), and 
association statistics (strand, coded allele, beta, standard error) for the quantitative lung 
function phenotypes of interest.  
 
The analysis plan below assumes unrelated individuals. Please contact us to discuss options 
if you have related individuals. 
 
Association testing will be based on the following: 

 
a)  All individuals: Restrict dataset to those individuals with no missing data for 
the eversmoking/neversmoking variable and to those with complete data on both 
FEV1 and FEV1/FVC. Undertake linear regression of age, age2, sex and height on 
FEV1 (studies with GWAS data please also adjust for ancestry principal components 
if available) and use residuals for all subsequent analyses. Transformation would be 
taken once for each trait (FEV1 and FEV1/FVC ratio) and used for all analyses 
(including subgroups). Transform residuals to ranks and then to normally distributed 
z-scores. These inverse-normal transformed residuals for FEV1 are then used as the 
phenotype for association testing under an additive genetic model (SNP coded 0, 1, 2 
for the number of copies of the coded allele). 

  
b)  Never-smokers only: Repeat analysis as for a)  

 
c)  Ever-smokers only:  Repeat analysis as for a) 
 
d) Ever-smokers only with smoking status (current/past) and Pack-years 
adjustment: Restrict dataset to those individuals with no missing data for the 
smoking status and pack-years variable and to those with complete data on FEV1. 
Undertake linear regression of age, age2, sex, height, smoking status and pack-years 
on FEV1. Transformation would be taken once for each trait (FEV1 and FEV1/FVC 
ratio) and used for all analyses (including subgroups).Transform residuals to ranks 
and then to normally distributed z-scores. These inverse-normal transformed 
residuals are then used as the phenotype for association testing under an additive 
genetic model. 

  
Repeat the above for FEV1/FVC ratio (using same approach as for FEV1) 
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SpiroMeta-CHARGE GWAS meta-analysis for FEV1 and FEV1/FVC 

 

File format 
 

It would be helpful if the results of the analyses will be given in comma separated value files 
(csv files) following the naming scheme described in the next paragraph.  
 
The following fields will be required for each SNP. It would be appreciated if the fields are 
named following the bold titles as below.  
 

- Chr : Chromosome of the SNP (an integer from 1 to 22) 
- Position:  Position of the SNP (an integer) 
- Markerid: rs number (a character string beginning with “rs”) 
- Markerid2: other ID when the rs number is not available e.g. affy id(a character 

string or empty when nothing to report) 
- Bas_all: baseline allele (a single character: “A” “C” “G” “T”) 
- Cod_all: coded allele (effect allele) (a single character: “A” “C” “G” “T”) 
- Strand: the strand of the baseline and the coded alleles (a single character: “+” or  

“-“) 
- Freq: allele frequency for coded allele (numeric data)   
- Beta: effect size for each copy of the coded allele (numeric data) 
- Se: standard errors of beta (numeric data) 
- Type: whether the SNP was genotyped or imputed (a character string: “gen” or 

“imp”) 
- Imp_info: r^2.hat or .info for imputed SNPs (numeric data) 

 
We would recommend that at least four decimal places will be kept for all the statistics.  
 
Note for studies with GWAS data: if your analysis pipeline includes a GWAS and then a lookup of the 
relevant SNPs, do not apply a genomic control correction, but please supply the lambda for analyses 
(a) to (d) so that this correction can be applied by us later if required. 
 

Naming scheme 
 

Each analysis should be given in a different file named as: 
cohortname_repl_phenotype_dataset_ version.csv  
 
where: 
 cohortname will be an identifier for the specific cohort 

phenotype will be one of “FEV1”,”FF” (for the ratio FEV1/FVC)  
dataset will be one of “all” (analysis 1.a),”nonsmk” (analysis 1.b),”smk” (analysis 1.c), 
or “smkPY” (analysis 1.d)  
version will be the date of the day of the uploading (ddmmyy) 

 
For example a file name from the cohort ILFGC would be: 
 ILFGC_repl_FEV1_smk_09062010.csv  
 

 Please address any questions regarding the analysis plan to Maria Soler Artigas 
msa20@leicester.ac.uk and Martin Tobin mt47@leicester.ac.uk.  
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SpiroMeta burden test analysis plan 

 

SpiroMeta gene-based rare variant analysis  
[version 26th Jan 2010, adapted from QuTie v4] 
 
Phenotype data preparation and exclusions  
 
Please note that the method is designed for unrelated individuals.  
Note for studies with related individuals: please extract a subset of unrelated 
individuals.  
 
Restrict dataset to those individuals with no missing data for the 
eversmoking/neversmoking variable and to those with complete data on both FEV1 
and FVC.  

Undertake linear regression of age, age2, sex, height, eversmoking/neversmoking, 
ancestry principal components on FEV1 and use residuals for the subsequent 
analysis.(N.B. the residuals need to be recalculated for all the cohorts, since the 
eversmoking/neversmoking variable is now included as a covariate in the linear 
regression) 

Transformation would be taken once for each trait (FEV1 and FEV1/FVC). Transform 
residuals to ranks and then to normally distributed z-scores. The rare variants analysis 
must be run twice: (i) using the inverse-normal transformed residuals for FEV1 as the 
phenotype and (ii) the inverse-normal transformed residuals for FEV1/FVC as the 
phenotype.  

Please provide the following summary information for the subset of individuals for 
which this analysis is undertaken (N.B. this will be the same as that provided for the 
original SpiroMeta meta analysis if no related individuals need to be excluded). This 

can be provided by email to Maria Soler Artigas msa20@le.ac.uk 
 

N 
total 

N 
males 

N 
females 

Age range at 
measurement  

Mean 
age y 
(s.d.) 

Mean 
FEV1 
l 
(s.d.) 

Mean 
FEV1/FVC 
(s.d.) 

N never 
smokers 

N ever 
smokers 

         

 

Any questions please get in touch with Maria Soler Artigas  

[msa20@le.ac.uk, tel:0116 229 7208]. 

 
The results can be uploaded to the folders already set up for the initial SpiroMeta 
analyses. When you are ready for upload please contact Maria Soler Artigas. 
 
 
Rare variant analysis 
 
Please run the analysis on directly typed SNPs passing QC (but with no MAF exclusions) 
on unrelated individuals. To run the perl script, please create 22 folders named chr01,  
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chr02, ... to chr22. In each folder place 3 files, one of each of ped, map and gene (see 
below). 
 
3 types of input file are needed: 
Note: Files should be whitespace (space/tab) delimited 
 
1. A ped file (format example below; you can also use 1,2,3,4 coding for alleles). No 
naming convention is needed, as long as the file has a .ped extension. No header row 
is needed. Individuals with missing phenotype values should be removed. 
FamilyID IndID FatherID MotherID Sex Phenotype(numerical-value) SNP1-

allele1 
SNP1-
allele2 

1 1 0 0 1 21.3 G G 

2 2 0 0 2 24.8 G C 

 
 

2. A map file (with .map extension; format example below). Please note that the 
coordinates here should be based on the same human genome build (build 36) as the 
coordinates in the gene file (see below). No header row is needed. 
Chromosome SNP Position(bp)build36 

1 rs12345 9876543 

1 rs54321 9877654 

 

3. A gene file (centrally provided, based on build 36). 
 

The command line is: 
 
perl QuTie_v4.pl –gene –maf=0.05 –nchr –ext=50 –pout=0.01 –ttest –nperm=100000 –
pperm=0.00001 –graph –glog=4  
 
The script takes between a few hours and a few days to run, depending on sample size 
and on the number of permutations. The different options in the command line denote 
the following: 
-gene: gene-centric analyses will be run 
-maf=0.05: only SNPs with MAF≤0.05 will be analysed 
-nchr: analysis for all chromosomes 
-ext=50: gene intervals will be defined as 50kb either side of the gene coordinates  
-pout=0.01: SNP lists with p values<0.01 will be produced 
-ttest: t test statistic will also be calculated 
-nperm=100000: phenotypes will be permuted 100,000 
-pperm=0.00001: permutations will be run for genes with p≤0.00001 
-graph: a Manhattan plot will be produced 
-glog=4: p values≤0.0001 will be highlighted in the plot. 
 
*if the map file has four columns (chromosome, snp identifier, genetic distance and 
base-pair position), then the –plink option will be required 
 
Individual chromosome gene-based results will be output as a text file within each 
chromosomal directory along with chromosome-specific SNP lists. The genome-wide 
summary graphic and text files will be output to the directory where the script is run.  
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Further information can be found at 
http://www.sanger.ac.uk/resources/software/ccravat-qutie/ 
 
 
 
File structure and naming convention 
 
From each chromosomal directory, the file containing the gene-based results will be 
needed. If the map and ped filed are called plink.recode.map and plink.recode.ped 
this file will be called :  

plink.recode_QTRVgene_MAF0.05.txt. 
 
No format editing is required but each file must be re-named as follows: 
 

Cohortname_rv_phenotype_all_transformed_chr_date.txt 
 
For example, if the cohort is named ILFGC, the files for the first chromosome will be: 
 

ILFGC_rv_FEV1_all_transformed_1_270110.txt 
ILFGC_rv_FF_all_transformed_1_270110.txt 

 
In total there will be 22 .txt files for FEV1 and 22 .txt files for FEV1/FVC. 
 
In addition the following genome-wide summary graphic and text files saved in the 
directory from where the script is run must also be provided: 
 

chr1-22.WG_summary_plink.recode_QTRVgene_MAF0.05_histogram.png 
 

chr1-22.WG_summary_plink.recode_QTRVgene_MAF0.05.png 
 

chr1-22.GenWide_Signif_Pvals_Perms_MAF0.05gene.txt 
 
They must be re-named (using the convention described above): 
 

Cohortname_rv_phenotype_all_transformed_hist_date.png 
 

Cohortname_rv_phenotype_all_transformed_manh_date.png 
 

Cohortname_rv_phenotype_all_transformed_pval_date.txt 
 
A total of 50 files should therefore be uploaded (25 per phenotype). 
 
All other output files produced by the script must be saved, as they might be needed 
once the meta-analysis is done but do not need to be uploaded at this point. 
 
In addition, it may be necessary for the individual SNP cluster plots to be viewed at a 
later date in order to identify where genotyping errors may have led to a false signal. 
We will contact studies in due course if this becomes necessary but please let us know 
as soon as possible if you anticipate that this will cause any problems. 
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C. Chapter 3 additional tables 

Genotyping platform and quality control criteria for each study in stage1  

Genotyping platforms, filters applied to SNPs and individuals (if any) before imputation, imputation software and genotype-
phenotype association software are given. Abbreviations: GWAS= Genome-Wide Association Study, imp’n=imputation, HWE= 
Hardy Weinberg Equilibrium, MAF= minor allele frequency. 

Study 
GWAS 
platform  

Calling 
algorithm  

Individual call 
rate filter applied 
(before imp’n)  

SNP call rate 
filter applied 
before imp’n  

SNP  
HWE 
Filter 
 applied  
(before 
 imp’n)  

SNP 
MAF 
filter 
applied 
(before 
imp’n)  

Other filter  

No of 
SNPs 
after 
filtering 
(before 
imp’n)  

Imp’n 
softwar
e and 
version  

NCBI; 
HapMa
p CEU 
versio
n for 
imp’n  

Genotype-
phenotype 
associatio
n software 
and 
version  

AGES 
Illumina 
Hu370CNV 

BeadStudio 0.97 0.90 1x10
-6

 0.01 
remove 
AT/GC SNPs 

208340 
MACH 
1.0.16 

36;21a 
ProbABEL 
0.1 

ARIC 
Affymetrix 
6.0 

Birdseed 0.95 0.95 1x10
-6

 0.01 
no 
chromosomal 
location 

669450 
MACH 
1.0.16 

36;22 
ProbABEL 
0.1-3 

B58C 
T1DGC  

Illumina 
550K  

ILLUMINUS  0.98 No  No  No  No  520010 
MACH 
1.0.13  

35;21  
ProbABEL 
0.0-5b  

B58C 
WTCCC  

Affymetrix 
500K  

CHIAMO  0.98 No  No  No  No  490033 
IMPUT
E 0.2.0  

35;21  
SNPTEST 
1.1.3  

BHS1 
Illumina 
610-Quad 

BeadStudio 0.97 

0.99 for SNPS 
with MAF<1%, 
0.95 for all other 
SNPs 

5.7x10
-7

 0.01 No 549294 
MACH 
1.0.16 

36 
Mach2Qtl 
1.0.8 

CHS 
Illumina 
370 CNV 

BeadStudio 0.95 0.97 1x10
-5

 

heterozy
gote 
frequenc
y >0 

reproducibility 
errors<2 

306655 
BimBa
m 0.99 

36 R 
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Study 
GWAS 
platform  

Calling 
algorithm  

Individual call 
rate filter applied 
(before imp’n)  

SNP call rate 
filter applied 
before imp’n  

SNP  
HWE 
Filter 
 applied  
(before 
 imp’n)  

SNP 
MAF 
filter 
applied 
(before 
imp’n)  

Other filter  

No of 
SNPs 
after 
filtering 
(before 
imp’n)  

Imp’n 
softwar
e and 
version  

NCBI; 
HapMa
p CEU 
versio
n for 
imp’n  

Genotype-
phenotype 
associatio
n software 
and 
version  

CROATIA-
Korcula  

Illumina 
HumanHap 
370cnv  

Beadstudio  

0.98 (for SNP of 
call rate 
>=0.98,MAF>=0.0
2,HWE>=E-10)  

0.98 1x10
-6

 0.01 No  307728 
MACH 
1.0.15  

36;22  
GenABEL 
1.4.2 , 
ProbABEL  

CROATIA-
Vis  

Illumina 
HumanHap 
300 v1  

Beadstudio  

0.97 (for SNP of 
call rate 
>=0.98,MAF>=0.0
2,HWE>=E-10)  

0.98 1x10
-6

 0.01 No  305068 
MACH 
1.0.15  

36;22  
GenABEL 
1.4.2, 
ProbABEL  

ECRHS 
(population 
based 
sample from 
first survey) 

Illumina 
Quad 610k 

GenCall None None None None None 582892 
MACH 
1.0 

36;22 
ProbABEL 
0.0-9 

EPIC obese 
cases  

Affymetrix 
500K  

BRLMM  0.94 0.90 1x10
-6

 0.01 No  397438 
IMPUT
E 0.3.1  

35;21  
SNPTEST 
1.1.5  

EPIC 
population-
based  

Affymetrix 
500K  

BRLMM  0.94 0.90 1x10
-6

 0.01 No  397438 
IMPUT
E 0.3.1  

35;21  
SNPTEST 
1.1.5  

FHS 

Affy 500K 
+ 50K 
Gene 
focused 

Bayesian 
robust linear 
modelling 
using 
Mahalanobis 
distance 
(BRLMM)  

0.97 0.97 1x10
-6

 0.01 

MISHAP 
p<10-9, 
mendelian 
errors>100 

378163 
MACH 
1.0.15 

36;22 GWAF 

FTC  
Illumina 
317K  

BeadStudio  0.95 0.90 1x10
-5

 0.01 No  315987 
MACH 
1.0.16  

36;22  PLINK 1.06  
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Study 
GWAS 
platform  

Calling 
algorithm  

Individual call 
rate filter applied 
(before imp’n)  

SNP call rate 
filter applied 
before imp’n  

SNP  
HWE 
Filter 
 applied  
(before 
 imp’n)  

SNP 
MAF 
filter 
applied 
(before 
imp’n)  

Other filter  

No of 
SNPs 
after 
filtering 
(before 
imp’n)  

Imp’n 
softwar
e and 
version  

NCBI; 
HapMa
p CEU 
versio
n for 
imp’n  

Genotype-
phenotype 
associatio
n software 
and 
version  

Health 2000 
Illumina 
610K 

Illuminus 0.95 0.95 1x10
-6

 0.01 

MDS-plot 
outliers 
removed 
(non-
European 
ancestry) 

555388 
MACH 
1.0 

36;22 ProbABEL 

Health ABC 
Illumina 
Human 
1M-Duo 

BeadStudio 
3.3.7 

0.97 0.95 1x10
-6

 0.01 

No sex 
mismatch, 
and cryptic 
relatedness 

914263 
MACH 
1.0.16.a 

36;22 
R version 
2.9.2 

KORA F4 
Affymetrix 
6.0 

Birdseed2 0.93 No No No No 909622 
IMPUT
E 0.4.2 

36;22 
SNPTEST 
1.1.5 

KORA S3  
Affymetrix 
500K  

BRLMM  0.93 No  No  No  No  490033 
MACH 
1.0.9  

35;21  
MACH2QT
L 1.0.4  

NFBC1966  
Illumina 
HumanCN
V370-Duo  

Beadstudio  none  0.95 1x10
-4

 0.01 No  328007 
IMPUT
E v1.0  

35; 21  
SNPTEST 
1.1.5  

ORCADES  
Illumina 
HumanHap 
300 v2  

Beadstudio  

0.98 (for SNP of 
call rate 
>=0.98,MAF>=0.0
2,HWE>=E-10)  

0.98 1x10
-6

 0.01 No  306207 
MACH 
1.0.15  

36;22  
GenABEL 
1.4.2, 
ProbABEL  
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Study 
GWAS 
platform  

Calling 
algorithm  

Individual call 
rate filter applied 
(before imp’n)  

SNP call rate 
filter applied 
before imp’n  

SNP  
HWE 
Filter 
 applied  
(before 
 imp’n)  

SNP 
MAF 
filter 
applied 
(before 
imp’n)  

Other filter  

No of 
SNPs 
after 
filtering 
(before 
imp’n)  

Imp’n 
softwar
e and 
version  

NCBI; 
HapMa
p CEU 
versio
n for 
imp’n  

Genotype-
phenotype 
associatio
n software 
and 
version  

RS-I 
Illumina 
HapMap 
550K 

BeadStudio 0.98 0.98 1x10
-6

 0.01 

excess 
autosomal 
heterozygosit
y, sex 
mismatch or 
outlying 
identity-by-
state 
clustering 
estimates 

512349 
MACH 
1.0.15 

36;22 

MACH2QT
L as 
implemente
d in GRIMP 

RS-II 
Illumina 
550K + 
610 Quad 

GenomeStu
dio 

0.98 0.98 1x10
-6

 0.01 

excess 
autosomal 
heterozygosit
y, sex 
mismatch or 
outlying 
identity-by-
state 
clustering 
estimates 

537405 
MACH 
1.0.16 

36;22 

MACH2QT
L as 
implemente
d in GRIMP 

SHIP  
Affymetrix 
6.0  

BirdseedV2  0.92 No  No  No  
QC callrate > 
0.86 each 
Chip  

869224 
IMPUT
E 0.5.0  

36;22  
SNPTEST 
1.1.5  

TwinsUK-I  
Illumina 
317K  

Beadstudio  0.95 
0.95 if MAF>0.05; 
<0.99 if 
0.01<=MAF<0.05  

5.7x10
-7

 0.01 

unexpected 
relatedness 
based on 
pi_hat  

296293 
IMPUT
E 0.5.0  

36;22  
GenABEL 
1.4.2  
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Tests for association with lung function for all SNPs followed up in stage 2 

Results in stage 2 for the 34 SNPs which showed novel evidence of association (P < 3 x 10-6) in stage 1 are shown. Abbreviations: 
Chr.=chromosome, N = effective sample size as the product of sample size and imputation quality metric summed up across 
studies, ns =nonsynonymous, s = synonymous.  

Chr. Measure 
SNP_ID (NCBI36 position), 
function 

Coded 
allele 

Stage 1 Stage 2 Stage 1 + stage 2 meta-analysis 

Beta (Se)  P N Beta (Se)  P N 
Beta 
(Se) 

P N 

1 FEV1/FVC 
rs2284746 (17179262), 
MFAP2(intron) 

G 
-0.042 
(0.007) 

2.47x10−9 45944 
-0.038 
(0.007) 

2.64x10−7 35310 
-0.04 
(0.005) 

7.5x10−16 81254 

1 FEV1 
rs2284746 (17179262), 
MFAP2(intron) 

G 
0.008 
(0.007) 

2.78x10−1 45944 
0.006 
(0.007) 

3.7x10−1 35310 
0.007 
(0.005) 

1.48x10−1 81254 

1 FEV1/FVC 
rs993925 (216926691), 
TGFB2(downstream) 

T 
0.04 
(0.007) 

2.54x10−7 42402 
0.023 
 (0.01) 

1.76x10−2 21162 
0.034 
(0.006) 

1.16x10−8 63564 

1 FEV1 
rs993925 (216926691), 
TGFB2(downstream) 

T 
0.025 
(0.007) 

1.51x10−3 42402 
0.003 
(0.007) 

7.29x10−1 21162 
0.014 
(0.005) 

8.71x10−3 63564 

2 FEV1/FVC 
rs2544527 (15843619), 
DDX1(downstream) 

T 
-0.04 
(0.007) 

1.08x10−7 45352 0 (0.01) 9.75x10−1 21115 
-0.026 
(0.006) 

8.73x10−6 66467 

2 FEV1 
rs2544527 (15843619), 
DDX1(downstream) 

T 
-0.024 
(0.007) 

1.55x10−3 45352 
-0.017 
(0.007) 

1.95x10−2 21115 
-0.021 
(0.005) 

5.53x10−5 66467 

2 FEV1/FVC 
rs3769124 (239014101), 
ASB1(intron) 

G 
-0.038 
(0.01) 

1.95x10−4 44924 
-0.032 
(0.02) 

1.11x10−1 10579 
-0.036 
(0.009) 

2.83x10−5 55503 

2 FEV1 
rs3769124 (239014101), 
ASB1(intron) 

G 
-0.053 
(0.01) 

2.76x10−7 44924 
-0.023 
(0.02) 

2.44x10−1 10579 
-0.047 
(0.009) 

6.5x10−8 55503 

2 FEV1/FVC 
rs12477314 (239542085), 
HDAC4(downstream) 

T 
0.052 
(0.008) 

4.48x10−9 45585 
0.031 
(0.008) 

8.41x10−5 45704 
0.041 
(0.006) 

1.68x10−12 91289 

2 FEV1 
rs12477314 (239542085), 
HDAC4(downstream) 

T 
0.032 
(0.008) 

2.77x10−4 45585 
0.025 
(0.007) 

1.82x10−4 45704 
0.028 
(0.005) 

1.02x10−7 91289 

3 FEV1/FVC 
rs1529672 (25495586), 
RARB(intron) 

C 
-0.06 
(0.009) 

7.75x10−10 40624 
-0.038 
(0.009) 

1.16x10−5 45386 
-0.048 
(0.006) 

3.97x10−14 86010 
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Chr. Measure 
SNP_ID (NCBI36 position), 
function 

Coded 
allele 

Stage 1 Stage 2 Stage 1 + stage 2 meta-analysis 

Beta (Se)  P N Beta (Se)  P N 
Beta 
(Se) 

P N 

3 FEV1 
rs1529672 (25495586), 
RARB(intron) 

C 
-0.037 
(0.009) 

1.78x10−4 40624 
-0.011 
(0.007) 

9.33x10−2 45386 
-0.02 
(0.006) 

2.16x10−4 86010 

3 FEV1/FVC 
rs9310995 (32904119), 
TRIM71(intron) 

T 
0.017 
(0.007) 

1.7x10−2 44835 
-0.013 
(0.009) 

1.6x10−1 21070 
0.007 
(0.006) 

2.36x10−1 65905 

3 FEV1 
rs9310995 (32904119), 
TRIM71(intron) 

T 
0.035 
(0.007) 

1.28x10−6 44835 
0.009 
(0.007) 

2x10−1 21070 
0.023 
(0.005) 

3.6x10−6 65905 

3 FEV1/FVC 
rs1344555 (170782913), 
MECOM(intron) 

T 
-0.019 
(0.008) 

2.61x10−2 46067 
-0.017 
(0.012) 

1.55x10−1 21104 
-0.018 
(0.007) 

6.65x10−3 67171 

3 FEV1 
rs1344555 (170782913), 
MECOM(intron) 

T 
-0.042 
(0.008) 

1.91x10−6 46067 
-0.025 
(0.009) 

6.44x10−3 21104 
-0.034 
(0.006) 

2.65x10−8 67171 

4 FEV1/FVC 
rs1541374 (106267809), 
TET2(upstream) 

T 
-0.026 
(0.007) 

5.56x10−4 45221 
-0.014 
(0.01) 

1.72x10−1 20516 
-0.022 
(0.006) 

2.05x10−4 65737 

4 FEV1 
rs1541374 (106267809), 
TET2(upstream) 

T 
-0.036 
(0.007) 

2.43x10−6 45221 
-0.015 
(0.007) 

4.36x10−2 20516 
-0.026 
(0.005) 

5.8x10−7 65737 

5 FEV1/FVC 
rs1551943 (52230790), 
ITGA1(intron) 

G 
0.048 
(0.008) 

1.2x10−8 43787 
0.007 
(0.008) 

3.71x10−1 45914 
0.026 
(0.006) 

2.43x10−6 89701 

5 FEV1 
rs1551943 (52230790), 
ITGA1(intron) 

G 
0.022 
(0.008) 

9.93x10−3 43787 
-0.006 
(0.006) 

3.53x10−1 45914 
0.004 
(0.005) 

3.61x10−1 89701 

5 FEV1/FVC 
rs153916 (95062456), 
SPATA9(upstream) 

T 
-0.033 
(0.007) 

2.06x10−6 47530 
-0.025 
(0.009) 

6.67x10−3 21428 
-0.031 
(0.005) 

2.12x10−8 68958 

5 FEV1 
rs153916 (95062456), 
SPATA9(upstream) 

T 
-0.001 
(0.007) 

8.91x10−1 47530 
0.004 
(0.007) 

6.22x10−1 21428 
0.001 
(0.005) 

8.2x10−1 68958 

5 FEV1/FVC 
rs10067603 (131831767), 
C5orf56(downstream) 

G 
-0.04 
(0.008) 

1.6x10−6 44134 
-0.006 
(0.011) 

6.03x10−1 21167 
-0.028 
(0.006) 

1.46x10−5 65301 

5 FEV1 
rs10067603 (131831767), 
C5orf56(downstream) 

G 
-0.007 
(0.008) 

3.83x10−1 44134 
0.013 
(0.008) 

1.14x10−1 21167 
0.002 
(0.006) 

6.74x10−1 65301 

6 FEV1/FVC 
rs1928168 (22125717), 
AK026189(intron) 

T 
0.037 
(0.007) 

8.99x10−8 47936 
0.011 
(0.009) 

2.4x10−1 21323 
0.028 
(0.005) 

1.69x10−7 69259 

6 FEV1 
rs1928168 (22125717), 
AK026189(intron) 

T 
0.025 
(0.007) 

2.61x10−4 47936 
0.002 
(0.007) 

7.69x10−1 21323 
0.015 
(0.005) 

2.25x10−3 69259 
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Chr. Measure 
SNP_ID (NCBI36 position), 
function 

Coded 
allele 

Stage 1 Stage 2 Stage 1 + stage 2 meta-analysis 

Beta (Se)  P N Beta (Se)  P N 
Beta 
(Se) 

P N 

6 FEV1/FVC 
rs6903823 (28430275), 
ZKSCAN3(intron)/ZNF323(intron) 

G 
-0.027 
(0.008) 

2.28x10−3 47057 
-0.013 
(0.011) 

2.34x10−1 21428 
-0.021 
(0.007) 

1.19x10−3 68485 

6 FEV1 
rs6903823 (28430275), 
ZKSCAN3(intron)/ZNF323(intron) 

G 
-0.046 
(0.008) 

2x10−7 47057 
-0.029 
(0.008) 

4.75x10−4 21428 
-0.037 
(0.006) 

2.18x10−10 68485 

6 FEV1/FVC 
rs3094548 (29463181), 
OR12D2(upstream) 

G 
-0.027 
(0.008) 

1.15x10−3 42516 
-0.015 
(0.01) 

1.37x10−1 20733 
-0.022 
(0.006) 

3.39x10−4 63249 

6 FEV1 
rs3094548 (29463181), 
OR12D2(upstream) 

G 
-0.042 
(0.008) 

4.11x10−7 42516 
-0.016 
(0.008) 

3.6x10−2 20733 
-0.029 
(0.005) 

1.45x10−7 63249 

6 FEV1/FVC 
rs2855812 (31580699), 
MICB(intron) 

T 
-0.034 
(0.008) 

5.11x10−5 46921 
-0.015 
(0.011) 

1.59x10−1 21190 
-0.027 
(0.006) 

2.45x10−5 68111 

6 FEV1 
rs2855812 (31580699), 
MICB(intron) 

T 
-0.045 
(0.008) 

8.57x10−8 46921 
-0.013 
(0.008) 

1.06x10−1 21190 
-0.03 
(0.006) 

1.8x10−7 68111 

6 FEV1/FVC 
rs2857595 (31676448), 
NCR3(upstream) 

G 
0.049 
(0.009) 

7.86x10−8 45540 
0.028 
(0.008) 

5.36x10−4 45657 
0.037 
(0.006) 

2.28x10−10 91197 

6 FEV1 
rs2857595 (31676448), 
NCR3(upstream) 

G 
0.04  
(0.009) 

1.46x10−5 45540 
0.017 
(0.007) 

9.41x10−3 45657 
0.025 
(0.005) 

1.3x10−6 91197 

6 FEV1/FVC 
rs2647044 (32775888), HLA-
DQB1(upstream) 

G 
0.053 
(0.011) 

2.71x10−6 44610 
0.007 
(0.022) 

7.63x10−1 8381 
0.044 
(0.01) 

5.95x10−6 52991 

6 FEV1 
rs2647044 (32775888), HLA-
DQB1(upstream) 

G 
0.031 
(0.011) 

6.71x10−3 44610 
0.009 
(0.022) 

6.71x10−1 8381 
0.027 
(0.01) 

5.62x10−3 52991 

6 FEV1/FVC 
rs2798641 (109374743), 
ARMC2(intron) 

T 
-0.047 
(0.009) 

2.81x10−7 46369 
-0.03 
(0.012) 

1.57x10−2 20999 
-0.041 
(0.007) 

8.35x10−9 67368 

6 FEV1 
rs2798641 (109374743), 
ARMC2(intron) 

T 
-0.046 
(0.009) 

5.39x10−7 46369 
-0.009 
(0.01) 

3.35x10−1 20999 
-0.03 
(0.006) 

4.69x10−6 67368 

6 FEV1/FVC 
rs3734729 (150612560), 
PPP1R14C(untranslated-3) 

G 
-0.045 
(0.017) 

8.71x10−3 43680 
-0.058 
(0.023) 

1x10−2 20998 
-0.05 
(0.013) 

1.93x10−4 64678 

6 FEV1 
rs3734729 (150612560), 
PPP1R14C(untranslated-3) 

G 
-0.085 
(0.016) 

1.08x10−6 43680 
-0.021 
(0.017) 

2.24x10−1 20998 
-0.055 
(0.012) 

4.48x10−6 64678 

10 FEV1/FVC 
rs1878798 (12283489), 
CDC123(intron) 

G 
0.042 
(0.007) 

3.48x10−9 46164 
0.024 
(0.009) 

1.15x10−2 21086 
0.035 
(0.005) 

9.56x10−11 67250 
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Chr. Measure 
SNP_ID (NCBI36 position), 
function 

Coded 
allele 

Stage 1 Stage 2 Stage 1 + stage 2 meta-analysis 

Beta (Se)  P N Beta (Se)  P N 
Beta 
(Se) 

P N 

10 FEV1 
rs1878798 (12283489), 
CDC123(intron) 

G 
0.042 
(0.007) 

3.11x10−9 46164 
0.015 
(0.007) 

3.65x10−2 21086 
0.029 
(0.005) 

1.84x10−9 67250 

10 FEV1/FVC 
rs7068966 (12317998), 
CDC123(intron) 

T 
0.045 
(0.007) 

1.28x10−10 47085 
0.023 
(0.006) 

3.86x10−4 45892 
0.033 
(0.005) 

6.13x10−13 92977 

10 FEV1 
rs7068966 (12317998), 
CDC123(intron) 

T 
0.04 
(0.007) 

1.19x10−8 47085 
0.022 
(0.005) 

3.56x10−5 45892 
0.029 
(0.004) 

2.82x10−12 92977 

10 FEV1/FVC 
rs11001819 (77985230), 
C10orf11(intron) 

G 
-0.019 
(0.007) 

6.5x10−3 45546 
-0.006 
(0.006) 

3.17x10−1 45677 
-0.012 
(0.005) 

7.58x10−3 91223 

10 FEV1 
rs11001819 (77985230), 
C10orf11(intron) 

G 
-0.041 
(0.007) 

1.42x10−8 45546 
-0.022 
(0.005) 

3.1x10−5 45677 
-0.029 
(0.004) 

2.98x10−12 91223 

12 FEV1/FVC 
rs4762767 (19757396), 
AEBP2(downstream) 

G 
-0.036 
(0.007) 

2.42x10−6 48016 
-0.008 
(0.011) 

4.47x10−1 21324 
-0.027 
(0.006) 

8.15x10−6 69340 

12 FEV1 
rs4762767 (19757396), 
AEBP2(downstream) 

G 
-0.028 
(0.007) 

3.85x10−4 48016 
-0.012 
(0.008) 

1.34x10−1 21324 
-0.021 
(0.005) 

1.52x10−4 69340 

12 FEV1/FVC 
rs11172113 (55813550), 
LRP1(intron) 

T 
-0.035 
(0.007) 

1.36x10−6 45387 
-0.026 
(0.01) 

5.83x10−3 20256 
-0.032 
(0.006) 

1.24x10−8 65643 

12 FEV1 
rs11172113 (55813550), 
LRP1(intron) 

T 
-0.021 
(0.007) 

3.55x10−3 45387 
-0.003 
(0.007) 

6.94x10−1 20256 
-0.013 
(0.005) 

1.19x10−2 65643 

12 FEV1/FVC 
rs1036429 (94795559), 
CCDC38(intron) 

T 
0.049 
(0.008) 

1.24x10−8 47814 
0.028 
(0.008) 

3.35x10−4 46183 
0.038 
(0.006) 

2.3x10−11 93997 

12 FEV1 
rs1036429 (94795559), 
CCDC38(intron) 

T 
0.01 
(0.008) 

2.67x10−1 47814 
0.004 
(0.006) 

5.38x10−1 46183 
0.006 
(0.005) 

2.26x10−1 93997 

15 FEV1/FVC 
rs2036527 (76638670), 
CHRNA5(uptream) 

G 
0.032 
(0.007) 

1.19x10−5 45038 0 (0.01) 9.82x10−1 20874 
0.022 
(0.006) 

1.81x10−4 65912 

15 FEV1 
rs2036527 (76638670), 
CHRNA5(uptream) 

G 
0.036 
(0.007) 

2.4x10−6 45038 
0.015 
(0.008) 

5.44x10−2 20874 
0.026 
(0.005) 

6.9x10−7 65912 

15 FEV1/FVC 
rs12914385 (76685778), 
CHRNA3(intron) 

T 
-0.03 
(0.007) 

2.28x10−5 47226 
0.002  
(0.01) 

8.08x10−1 21327 
-0.019 
(0.006) 

5.17x10−4 68553 

15 FEV1 
rs12914385 (76685778), 
CHRNA3(intron) 

T 
-0.034 
(0.007) 

2.95x10−6 47226 
-0.015 
(0.007) 

4.1x10−2 21327 
-0.025 
(0.005) 

4.72x10−7 68553 
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Chr. Measure 
SNP_ID (NCBI36 position), 
function 

Coded 
allele 

Stage 1 Stage 2 Stage 1 + stage 2 meta-analysis 

Beta (Se)  P N Beta (Se)  P N 
Beta 
(Se) 

P N 

15 FEV1/FVC 
rs8040868 (76698236), 
CHRNA3(s) 

T 
0.04 
(0.008) 

1.14x10−6 35121 
-0.005 
(0.01) 

6.1x10−1 21131 
0.022 
(0.006) 

3.01x10−4 56252 

15 FEV1 
rs8040868 (76698236), 
CHRNA3(s) 

T 
0.039 
(0.008) 

2.98x10−6 35121 
0.012 
(0.007) 

9.86x10−2 21131 
0.025 
(0.005) 

4.06x10−6 56252 

16 FEV1/FVC 
rs12447804 (56632783), 
MMP15(intron) 

T 
-0.053 
(0.009) 

7.12x10−8 35123 
-0.021 
(0.01) 

4.2x10−2 23693 
-0.038 
(0.007) 

3.59x10−8 58816 

16 FEV1 
rs12447804 (56632783), 
MMP15(intron) 

T 
-0.017 
(0.009) 

8.02x10−2 35123 
0.004 
(0.007) 

5.71x10−1 23693 
-0.004 
(0.006) 

4.73x10−1 58816 

16 FEV1/FVC 
rs3743563 (56636666), 
MMP15(missense) 

G 
0.043 
(0.008) 

1.8x10−7 47179 
0.013 
(0.008) 

1.22x10−1 43190 
0.028 
(0.006) 

6.76x10−7 90369 

16 FEV1 
rs3743563 (56636666), 
MMP15(missense) 

G 
0.015 
(0.008) 

8.52x10−2 47179 
-0.001 
(0.007) 

8.74x10−1 43190 
0.006 
(0.005) 

2.79x10−1 90369 

16 FEV1/FVC 
rs2865531 (73947817), 
CFDP1(intron) 

T 
0.039 
(0.007) 

2.3x10−8 47594 
0.024 
(0.006) 

1.94x10−4 46286 
0.031 
(0.005) 

1.77x10−11 93880 

16 FEV1 
rs2865531 (73947817), 
CFDP1(intron) 

T 
0.024 
(0.007) 

6.3x10−4 47594 
0.011 
(0.005) 

3.89x10−2 46286 
0.016 
(0.004) 

1.09x10−4 93880 

16 FEV1/FVC 
rs12716852 (76746239), 
WWOX(intron) 

G 
0.011 
(0.007) 

1.24x10−1 47510 
-0.004 
(0.009) 

6.85x10−1 21228 
0.006 
(0.005) 

2.81x10−1 68738 

16 FEV1 
rs12716852 (76746239), 
WWOX(intron) 

G 
0.036 
(0.007) 

3.45x10−7 47510 
0.013 
(0.007) 

7.11x10−2 21228 
0.025 
(0.005) 

1.92x10−7 68738 

21 FEV1/FVC 
rs9978142 (34574109), 
KCNE2(upstream) 

T 
-0.048 
(0.009) 

8.23x10−7 44577 
-0.031 
(0.013) 

1.75x10−2 20693 
-0.043 
(0.008) 

2.65x10−8 65270 

21 FEV1 
rs9978142 (34574109), 
KCNE2(upstream) 

T 
-0.012 
(0.009) 

2.47x10−1 44577 
-0.015 
(0.01) 

1.35x10−1 20693 
-0.013 
(0.007) 

5.57x10−2 65270 
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Association of loci influencing lung function with FEV1 and FEV1/FVC in children 

Effects of the 16 novel SNPs, and effects of SNPs in regions previously reported as associated with lung function, on FEV1 and 
FEV1/FVC in children were looked up in ALSPAC and Raine. To enable a comparison of effect sizes between children and adults, 
effect sizes in the SpiroMeta-CHARGE stage 2 dataset only (to avoid potential winners’ curse bias) are given for the novel loci. 
Effect sizes in the SpiroMeta-CHARGE GWAS stage 1 are provided for the previously reported regions. For each loci the direction 
of effects were compared using the most significant SNP in the SpiroMeta-CHARGE dataset across both traits. Abbreviations: 
ns=nonsynonymous, s= synonymous 
 

Chr. Measure SNP_ID(NCBI36 position), function 
 ALSPAC+Raine meta-analysis SpiroMeta-CHARGE 

Coded allele  Beta Se P  Beta Se P  

Novel loci 

1 FEV1/FVC rs2284746 (17179262), MFAP2(intron) G 0.004 0.023 8.6x10−1 -0.038 0.007 2.64x10−7 

1 FEV1 rs2284746 (17179262), MFAP2(intron) G -0.013 0.024 5.93x10−1 0.006 0.007 3.7x10−1 

1 FEV1/FVC rs993925 (216926691), TGFB2(downstream)  T 0.043 0.025 8.9x10−2 0.023 0.01 1.76x10−2 

1 FEV1 rs993925 (216926691), TGFB2(downstream)  T 0.039 0.026 1.26x10−1 0.003 0.007 7.29x10−1 

2 FEV1/FVC rs12477314 (239542085), HDAC4(downstream) T 0.083 0.028 4x10−3 0.031 0.008 8.41x10−5 

2 FEV1 rs12477314 (239542085), HDAC4(downstream) T 0.037 0.029 2.03x10−1 0.025 0.007 1.82x10−4 

3 FEV1/FVC rs1529672 (25495586), RARB(intron) C -0.064 0.03 3.1x10−2 -0.038 0.009 1.16x10−5 

3 FEV1 rs1529672 (25495586), RARB(intron) C 0.033 0.03 2.76x10−1 -0.011 0.007 9.33x10−2 

3 FEV1/FVC rs1344555 (170782913), MECOM(intron) T -0.01 0.029 7.43x10−1 -0.017 0.012 1.55x10−1 

3 FEV1 rs1344555 (170782913), MECOM(intron) T -0.03 0.03 3.2x10−1 -0.025 0.009 6.44x10−3 

5 FEV1/FVC rs153916 (95062456), SPATA9(upstream) T 0.032 0.022 1.6x10−1 -0.025 0.009 6.67x10−3 

5 FEV1 rs153916 (95062456), SPATA9(upstream) T 0.017 0.023 4.64x10−1 0.004 0.007 6.22x10−1 

6 FEV1/FVC rs6903823 (28430275), ZKSCAN3(intron)/ZNF323(intron) G -0.065 0.027 1.4x10−2 -0.013 0.011 2.34x10−1 
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Chr. Measure SNP_ID(NCBI36 position), function 
 ALSPAC+Raine meta-analysis SpiroMeta-CHARGE 

Coded allele  Beta Se P  Beta Se P  

6 FEV1 rs6903823 (28430275), ZKSCAN3(intron)/ZNF323(intron) G 0.002 0.028 9.51x10−1 -0.029 0.008 4.75x10−4 

6 FEV1/FVC rs2857595 (31676448), NCR3(upstream) G 0.055 0.028 4.9x10−2 0.028 0.008 5.36x10−4 

6 FEV1 rs2857595 (31676448), NCR3(upstream) G -0.034 0.029 2.41x10−1 0.017 0.007 9.41x10−3 

6 FEV1/FVC rs2798641 (109374743), ARMC2(intron) T -0.053 0.03 7.3x10−2 -0.03 0.012 1.57x10−2 

6 FEV1 rs2798641 (109374743), ARMC2(intron) T -0.097 0.03 1x10−3 -0.009 0.01 3.35x10−1 

10 FEV1/FVC rs7068966 (12317998), CDC123(intron) T 0.026 0.022 2.45x10−1 0.023 0.006 3.86x10−4 

10 FEV1 rs7068966 (12317998), CDC123(intron) T 0.042 0.024 7.4x10−2 0.022 0.005 3.56x10−5 

10 FEV1/FVC rs11001819 (77985230), C10orf11(intron) G -0.038 0.023 9.7x10−2 -0.006 0.006 3.17x10−1 

10 FEV1 rs11001819 (77985230), C10orf11(intron) G -0.026 0.024 2.78x10−1 -0.022 0.005 3.1x10−5 

12 FEV1/FVC rs11172113 (55813550), LRP1(intron) T -0.025 0.023 2.85x10−1 -0.026 0.01 5.83x10−3 

12 FEV1 rs11172113 (55813550), LRP1(intron) T -0.037 0.024 1.21x10−1 -0.003 0.007 6.94x10−1 

12 FEV1/FVC rs1036429 (94795559), CCDC38(intron) T 0.05 0.028 7.6x10−2 0.028 0.008 3.35x10−4 

12 FEV1 rs1036429 (94795559), CCDC38(intron) T -0.01 0.03 7.43x10−1 0.004 0.006 5.38x10−1 

16 FEV1/FVC rs12447804 (56632783), MMP15(intron) T -0.017 0.028 5.52x10−1 -0.021 0.01 4.2x10−2 

16 FEV1 rs12447804 (56632783), MMP15(intron) T -0.053 0.028 6.1x10−2 0.004 0.007 5.71x10−1 

16 FEV1/FVC rs2865531 (73947817), CFDP1(intron) T -0.004 0.023 8.67x10−1 0.024 0.006 1.94x10−4 

16 FEV1 rs2865531 (73947817), CFDP1(intron) T -0.046 0.024 5x10−2 0.011 0.005 3.89x10−2 

21 FEV1/FVC rs9978142 (34574109), KCNE2(upstream) T 0.018 0.033 5.9x10−1 -0.031 0.013 1.75x10−2 

21 FEV1 rs9978142 (34574109), KCNE2(upstream) T 0.008 0.034 8.13x10−1 -0.015 0.01 1.35x10−1 

Previously reported regions 

2 FEV1/FVC rs2571445(218391399), TNS1 (ns) G 0.011 0.023 6.31x10−1 0.033 0.007 4.46x10−6 

2 FEV1 rs2571445(218391399), TNS1(ns) G 0.048 0.024 4.25x10−2 0.047 0.007 9.83x10−11 
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Chr. Measure SNP_ID(NCBI36 position), function 
 ALSPAC+Raine meta-analysis SpiroMeta-CHARGE 

Coded allele  Beta Se P  Beta Se P  

2 FEV1/FVC rs10498230(229210747), PID1(downstream) T 0.026 0.043 5.44x10−1 0.068 0.014 1.13x10−6 

2 FEV1 rs10498230(229210747), PID1(downstream) T 0.07 0.044 1.13x10−1 0.03 0.014 3.6x10−2 

4 FEV1/FVC rs2045517(90089987), FAM13A(intron) T -0.007 0.023 7.78x10−1 -0.047 0.007 2x10−11 

4 FEV1 rs2045517(90089987), FAM13A(intron) T -0.028 0.024 2.43x10−1 -0.012 0.007 8.93x10−2 

4 FEV1/FVC rs7671167(90103002), FAM13A(intron) T 0.009 0.023 6.85x10−1 -0.042 0.007 1.27x10−9 

4 FEV1 rs7671167(90103002), FAM13A(intron) T -0.022 0.023 3.44x10−1 -0.017 0.007 1.64x10−2 

4 FEV1/FVC rs10516526(106908353), GSTCD(intron) G 0.106 0.045 1.98x10−2 0.039 0.014 6.17x10−3 

4 FEV1 rs10516526(106908353), GSTCD(intron) G 0.102 0.047 2.81x10−2 0.108 0.014 4.75x10−14 

4 FEV1/FVC rs17331332(107027556), NPNT(upstream) G -0.081 0.045 7.14x10−2 -0.057 0.014 5.3x10−5 

4 FEV1 rs17331332(107027556), NPNT(upstream) G -0.108 0.046 1.79x10−2 -0.102 0.014 1.11x10−12 

4 FEV1/FVC rs6823809(107048244), NPNT(intron)  T 0.112 0.036 2.18x10−3 0.056 0.011 2.2x10−7 

4 FEV1 rs6823809(107048244), NPNT(intron)  T 0.052 0.038 1.64x10−1 0.05 0.011 4.82x10−6 

4 FEV1/FVC rs1032296(145654138), HHIP(upstream) T -0.004 0.024 8.68x10−1 -0.05 0.007 3.42x10−12 

4 FEV1 rs1032296(145654138), HHIP(upstream) T -0.004 0.024 8.57x10−1 -0.047 0.007 8.74x10−11 

4 FEV1/FVC rs11100860(145698589), HHIP(upstream) G 0.004 0.024 8.68x10−1 0.064 0.007 6.81x10−20 

4 FEV1 rs11100860(145698589), HHIP(upstream) G 0.01 0.024 6.82x10−1 0.041 0.007 4.27x10−9 

5 FEV1/FVC rs11168048(147822546), HTR4(intron) T -0.044 0.024 6.08x10−2 -0.047 0.007 5.97x10−11 

5 FEV1 rs11168048(147822546), HTR4(intron) T 0.018 0.024 4.7x10−1 -0.046 0.007 2.43x10−10 

5 FEV1/FVC rs3995090(147826008), HTR4(intron) C 0.049 0.023 3.12x10−2 0.046 0.007 1.04x10−10 

5 FEV1 rs3995090(147826008), HTR4(intron) C -0.014 0.023 5.41x10−1 0.045 0.007 3.33x10−10 

5 FEV1/FVC rs1985524(147827981), HTR4(intron) G -0.043 0.023 6.1x10−2 -0.045 0.007 2.9x10−10 

5 FEV1 rs1985524(147827981), HTR4(intron) G 0.015 0.024 5.35x10−1 -0.048 0.007 3.06x10−11 
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Chr. Measure SNP_ID(NCBI36 position), function 
 ALSPAC+Raine meta-analysis SpiroMeta-CHARGE 

Coded allele  Beta Se P  Beta Se P  

5 FEV1/FVC rs11134779(156869344), ADAM19(intron) G -0.003 0.024 9.06x10−1 -0.042 0.007 6.01x10−9 

5 FEV1 rs11134779(156869344), ADAM19(intron) G -0.021 0.024 3.93x10−1 -0.027 0.007 2.4x10−4 

6 FEV1/FVC rs2070600(32259421), AGER(ns) T 0.146 0.045 1.15x10−3 0.126 0.016 9.07x10−15 

6 FEV1 rs2070600(32259421), AGER(ns) T 0.063 0.046 1.75x10−1 0.025 0.016 1.27x10−1 

6 FEV1/FVC rs3817928(142792209), GPR126(intron) G 0.086 0.029 2.75x10−3 0.059 0.008 2.27x10−12 

6 FEV1 rs3817928(142792209), GPR126(intron) G -0.011 0.029 7.11x10−1 0.023 0.009 8.63x10−3 

6 FEV1/FVC rs262129(142894837), LOC153910(unknown) G 0.098 0.025 8.19x10−5 0.056 0.008 2.91x10−13 

6 FEV1 rs262129(142894837), LOC153910(unknown) G -0.008 0.026 7.61x10−1 0.031 0.008 5.44x10−5 

9 FEV1/FVC rs16909859(97244613), PTCH1(downstream) G 0.049 0.044 2.66x10−1 0.08 0.013 7.45x10−10 

9 FEV1 rs16909859(97244613), PTCH1(downstream) G 0.013 0.045 7.8x10−1 -0.014 0.013 2.93x10−1 

9 FEV1/FVC rs16909898(97270829), PTCH1(intron) G -0.068 0.042 1.06x10−1 -0.072 0.012 3.94x10−9 

9 FEV1 rs16909898(97270829), PTCH1(intron) G 0.006 0.043 8.85x10−1 0.015 0.012 2.21x10−1 

15 FEV1/FVC rs12899618(69432174), THSD4(intron) G 0.06 0.032 6.03x10−2 0.076 0.01 1.86x10−15 

15 FEV1 rs12899618(69432174), THSD4(intron) G -0.026 0.033 4.39x10−1 0.036 0.01 1.57x10−4 

15 FEV1/FVC rs8033889(69467134), THSD4(intron) T -0.067 0.028 1.7x10−2 -0.072 0.008 2.03x10−17 

15 FEV1 rs8033889(69467134), THSD4(intron) T 0.051 0.029 7.41x10−2 -0.044 0.009 3.01x10−7 

15 FEV1/FVC rs2568494(76528019), IREB2(intron) G 0.018 0.024 4.48x10−1 0.029 0.007 5.25x10−5 

15 FEV1 rs2568494(76528019), IREB2(intron) G -0.011 0.025 6.68x10−1 0.023 0.007 1.64x10−3 

15 FEV1/FVC rs8034191(76593078), CHRNA3/5(intron) T 0.014 0.024 5.47x10−1 0.032 0.007 9.65x10−6 

15 FEV1 rs8034191(76593078), CHRNA3/5(intron) T -0.017 0.024 4.75x10−1 0.031 0.007 2.07x10−5 

15 FEV1/FVC rs2036527(76638670), CHRNA5(uptream) G 0.023 0.025 3.66x10−1 0.032 0.007 1.19x10−5 

15 FEV1 rs2036527(76638670), CHRNA5(uptream) G 0.002 0.026 9.51x10−1 0.036 0.008 2.4x10−6 
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Chr. Measure SNP_ID(NCBI36 position), function 
 ALSPAC+Raine meta-analysis SpiroMeta-CHARGE 

Coded allele  Beta Se P  Beta Se P  

15 FEV1/FVC rs8040868(76698236), CHRNA3(s)  T 0.019 0.023 4.25x10−1 0.04 0.008 1.14x10−6 

15 FEV1 rs8040868(76698236), CHRNA3(s)  T 0.016 0.024 5.09x10−1 0.039 0.008 2.98x10−6 
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Association of loci influencing lung function with height 

Effects of the 16 novel SNPs, and previously reported SNPs, associated with lung function on height were looked up in the GIANT 
dataset. Both effect sizes for lung and for height can be interpreted as proportion of a standard deviation. Results for the SpiroMeta-
CHARGE stage 1 and stage 2 meta-analysis for the lung function measure that showed stronger association are reported for the 
novel loci. Results from the GWAS Stage 1 for the lung function measure that showed stronger association are reported for the 
previously reported loci. For each loci the direction of effects were compared using the most significant SNP in the SpiroMeta-
CHARGE dataset across both traits. Abbreviations: Chr.= chromosome, ns=nonsynonymous, s= synonymous. 
 

Chr. SNP ID(NCBI36 position),  function 
Coded 
allele  

Measure 

Lung function  
(Stage 1+ stage 2 meta-analysis) 

Height   
(GIANT consortium) 

Beta  Se  P  Beta Se P  

Novel loci 

1 rs2284746 (17179262), MFAP2(intron) G FEV1/FVC -0.04 0.005 7.5x10−16 0.0354 0.0045 5.64x10−15 

1 rs993925 (216926691), TGFB2(downstream) T FEV1/FVC 0.034 0.006 1.16x10−8 0.0105 0.005 3.61x10−2 

2 rs12477314 (239542085), HDAC4(downstream) T FEV1/FVC 0.041 0.006 1.68x10−12 -0.0029 0.0057 6.12x10−1 

3 rs1529672 (25495586), RARB(intron) C FEV1/FVC -0.048 0.006 3.97x10−14 0.0012 0.0063 8.49x10−1 

3 rs1344555 (170782913), MECOM(intron) T FEV1 -0.034 0.006 2.65x10−8 -0.0145 0.0056 9.68x10−3 

5 rs153916 (95062456), SPATA9(upstream) T FEV1/FVC -0.031 0.005 2.12x10−8 0.0027 0.0045 5.51x10−1 

6 rs6903823 (28430275), ZKSCAN3(intron)/ZNF323(intron) G FEV1 -0.037 0.006 2.18x10−10 -0.0017 0.0056 7.62x10−1 

6 rs2857595 (31676448), NCR3(upstream) G FEV1/FVC 0.037 0.006 2.28x10−10 -0.0148 0.006 1.31x10−2 

6 rs2798641 (109374743), ARMC2(intron) T FEV1/FVC -0.041 0.007 8.35x10−9 -0.0042 0.0058 4.72x10−1 

10 rs7068966 (12317998), CDC123(intron) T FEV1/FVC 0.033 0.005 6.13x10−13 0.0078 0.0045 8.52x10−2 

10 rs11001819 (77985230), C10orf11(intron) G FEV1 -0.029 0.004 2.98x10−12 0.0024 0.0045 5.96x10−1 

12 rs11172113 (55813550), LRP1(intron) T FEV1/FVC -0.032 0.006 1.24x10−8 0.003 0.0047 5.19x10−1 

12 rs1036429 (94795559), CCDC38(intron) T FEV1/FVC 0.038 0.006 2.3x10−11 -0.0053 0.0056 3.44x10−1 
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Chr. SNP ID(NCBI36 position),  function 
Coded 
allele  

Measure 

Lung function  
(Stage 1+ stage 2 meta-analysis) 

Height   
(GIANT consortium) 

Beta  Se  P  Beta Se P  

16 rs12447804 (56632783), MMP15(intron) T FEV1/FVC -0.038 0.007 3.59x10−8 0.0077 0.0075 3.05x10−1 

16 rs2865531 (73947817),  CFDP1(intron) T FEV1/FVC 0.031 0.005 1.77x10−11 -0.0129 0.0045 4.42x10−3 

21 rs9978142 (34574109),  KCNE2(upstream) T FEV1/FVC -0.043 0.008 2.65x10−8 -0.0122 0.0062 4.91x10−2 

Previously reported loci 

2 rs2571445 (218391399), TNS1(ns) G FEV1 0.047 0.007 9.83x10−11 -0.0032 0.0047 4.91x10−1 

2 rs10498230 (229210747), PID1(downstream) T FEV1/FVC 0.068 0.014 1.13x10−6 -0.0111 0.0087 2.02x10−1 

4 rs2045517 (90089987), FAM13A(intron) T FEV1/FVC -0.047 0.007 2x10−11 0.0058 0.0045 2.01x10−1 

4 rs7671167 (90103002), FAM13A(intron) T FEV1/FVC -0.042 0.007 1.27x10−9 0.0072 0.0045 1.12x10−1 

4 rs10516526 (106908353), GSTCD(intron) G FEV1 0.108 0.014 4.75x10−14 0.0032 0.0092 7.28x10−1 

4 rs17331332 (107027556), NPNT(upstream) G FEV1 -0.102 0.014 1.11x10−12 -0.002 0.0093 8.3x10−1 

4 rs6823809 (107048244), NPNT(intron) T FEV1/FVC 0.056 0.011 2.2x10−7 -0.0001 0.0072 9.89x10−1 

4 rs1032296 (145654138), HHIP(upstream) T FEV1/FVC -0.05 0.007 3.42x10−12 -0.0152 0.0047 1.08x10−3 

4 rs11100860 (145698589), HHIP(upstream) G FEV1/FVC 0.064 0.007 6.81x10−20 0.0151 0.0045 8.62x10−4 

5 rs11168048 (147822546), HTR4(intron) T FEV1/FVC -0.047 0.007 5.97x10−11 -0.0133 0.0049 6.52x10−3 

5 rs3995090 (147826008), HTR4(intron) C FEV1/FVC 0.046 0.007 1.04x10−10 0.0143 0.0049 3.45x10−3 

5 rs1985524 (147827981), HTR4(intron) G FEV1 -0.048 0.007 3.06x10−11 -0.015 0.0049 2.16x10−3 

5 rs11134779 (156869344), ADAM19(intron) G FEV1/FVC -0.042 0.007 6.01x10−9 -0.0092 0.0047 4.79x10−2 

6 rs2070600 (32259421), AGER(ns) T FEV1/FVC 0.126 0.016 9.07x10−15 0.0094 0.0114 4.12x10−1 

6 rs3817928 (142792209), GPR126(intron) G FEV1/FVC 0.059 0.008 2.27x10−12 -0.0368 0.0055 1.97x10−11 

6 rs262129 (142894837), LOC153910(unknown) G FEV1/FVC 0.056 0.008 2.91x10−13 -0.0443 0.005 9.17x10−19 

9 rs16909859 (97244613), PTCH1(downstream) G FEV1/FVC 0.08 0.013 7.45x10−10 -0.0266 0.0082 1.23x10−3 

9 rs16909898 (97270829), PTCH1(intron) G FEV1/FVC -0.072 0.012 3.94x10−9 0.0313 0.0078 5.39x10−5 
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Chr. SNP ID(NCBI36 position),  function 
Coded 
allele  

Measure 

Lung function  
(Stage 1+ stage 2 meta-analysis) 

Height   
(GIANT consortium) 

Beta  Se  P  Beta Se P  

15 rs12899618 (69432174), THSD4(intron) G FEV1/FVC 0.076 0.01 1.86x10−15 -0.0075 0.0061 2.18x10−1 

15 rs8033889 (69467134), THSD4(intron) T FEV1/FVC -0.072 0.008 2.03x10−17 0.0015 0.0054 7.8x10−1 

15 rs2568494 (76528019), IREB2(intron) G FEV1/FVC 0.029 0.007 5.25x10−5 0.0021 0.0047 6.52x10−1 

15 rs8034191 (76593078), CHRNA3/5(intron) T FEV1/FVC 0.032 0.007 9.65x10−6 -0.0002 0.0047 9.66x10−1 

15 rs2036527 (76638670), CHRNA5(uptream) G FEV1 0.036 0.008 2.4x10−6 -0.0005 0.0048 9.17x10−1 

15 rs8040868 (76698236), CHRNA3(s)  T FEV1/FVC 0.04 0.008 1.14x10−6 -0.006 0.0064 3.52x10−1 
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Association of loci influencing lung function with ever smoking status and number of cigarettes per day 

Effects of the 16 novel SNPs, and previously reported SNPs, on two smoking phenotypes (ever-smokers vs. never-smokers and 
number of cigarettes per day) were looked up in the Oxford-GlaxoSmithKline (Ox-GSK) study, a collaborative effort to investigate 
the genetic basis of smoking-related behavioral traits. Results for the SpiroMeta-CHARGE joint meta-analysis of stage 1 and stage 
2 for the lung function measure that showed stronger association are reported for the novel loci. Results for the SpiroMeta-
CHARGE GWAS stage (stage 1) for the lung function measure that showed stronger association are reported for the previously 
reported loci. Abbreviations: Chr.=chromosome, ns=nonsynonymous, s= synonymous 
 

    

Lung function  
(stage 1 and stage 2 
 meta-analysis) 

Cigarettes per day Ever vs. Never smoking 

Chr. SNP ID(NCBI36 position),  function 
Coded  
allele 

Measure Beta Se P Beta Se P Beta Se P 

Novel loci 

1 rs2284746 (17179262), MFAP2(intron) G FEV1/FVC -0.04 0.005 7.5x10−16 0.004 0.01 6.85x10−1 -0.015 0.018 3.99x10−1 

1 rs993925 (216926691), TGFB2(downstream) T FEV1/FVC 0.034 0.006 1.16x10−8 -0.007 0.011 5.12x10−1 -0.027 0.019 1.53x10−1 

2 rs12477314 (239542085), HDAC4(downstream) T FEV1/FVC 0.041 0.006 1.68x10−12 -0.021 0.012 8.83x10−2 0.014 0.022 5.2x10−1 

3 rs1529672 (25495586), RARB(intron) C FEV1/FVC -0.048 0.006 3.97x10−14 -0.013 0.014 3.65x10−1 0.024 0.025 3.38x10−1 

3 rs1344555 (170782913), MECOM(intron) T FEV1 -0.034 0.006 2.65x10−8 0.011 0.013 3.86x10−1 0.01 0.022 6.51x10−1 

5 rs153916 (95062456), SPATA9(upstream) T FEV1/FVC -0.031 0.005 2.12x10−8 -0.021 0.01 3.7x10−2 0.02 0.018 2.72x10−1 

6 rs6903823 (28430275), ZKSCAN3(intron)/ZNF323(intron) G FEV1 -0.037 0.006 2.18x10−10 0.02 0.012 8.86x10−2 -0.026 0.021 2.16x10−1 

6 rs2857595 (31676448), NCR3(upstream) G FEV1/FVC 0.037 0.006 2.28x10−10 -0.002 0.014 8.55x10−1 -0.009 0.025 7.12x10−1 

6 rs2798641 (109374743), ARMC2(intron) T FEV1/FVC -0.041 0.007 8.35x10−9 0.007 0.013 5.69x10−1 -0.036 0.025 1.39x10−1 

10 rs7068966 (12317998), CDC123(intron) T FEV1/FVC 0.033 0.005 6.13x10−13 0.001 0.01 9.22x10−1 0.02 0.018 2.74x10−1 

10 rs11001819 (77985230), C10orf11(intron) G FEV1 -0.029 0.004 2.98x10−12 -0.011 0.01 2.7x10−1 0.015 0.018 4.05x10−1 

12 rs11172113 (55813550), LRP1(intron) T FEV1/FVC -0.032 0.006 1.24x10−8 -0.006 0.01 5.41x10−1 0.022 0.019 2.44x10−1 
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Lung function  
(stage 1 and stage 2 
 meta-analysis) 

Cigarettes per day Ever vs. Never smoking 

Chr. SNP ID(NCBI36 position),  function 
Coded  
allele 

Measure Beta Se P Beta Se P Beta Se P 

12 rs1036429 (94795559), CCDC38(intron) T FEV1/FVC 0.038 0.006 2.3x10−11 0.006 0.012 6.35x10−1 0.028 0.021 1.85x10−1 

16 rs12447804 (56632783), MMP15(intron) T FEV1/FVC -0.038 0.007 3.59x10−8 -0.005 0.013 6.69x10−1 -0.005 0.022 8.06x10−1 

16 rs2865531 (73947817), CFDP1(intron) T FEV1/FVC 0.031 0.005 1.77x10−11 0.019 0.01 5.3x10−2 0.002 0.018 9.13x10−1 

21 rs9978142 (34574109),  KCNE2(upstream) T FEV1/FVC -0.043 0.008 2.65x10−8 0.007 0.013 5.84x10−1 0.007 0.024 7.59x10−1 

Previously reported loci 

2 rs2571445(218391399), TNS1(ns) G FEV1 0.047 0.007 9.83x10−11 -0.011 0.011 3.09x10−1 0.023 0.02 2.47x10−1 

2 rs10498230(229210747), PID1(downstream) T FEV1/FVC 0.068 0.014 1.13x10−6 -0.061 0.019 1.62x10−3 -0.05 0.033 1.38x10−1 

4 rs2045517(90089987), FAM13A (intron) T FEV1/FVC -0.047 0.007 2x10−11 -0.01 0.01 3.23x10−1 0.004 0.018 8.4x10−1 

4 rs7671167(90103002), FAM13A (intron) T FEV1/FVC -0.042 0.007 1.27x10−9 -0.013 0.01 1.91x10−1 0.014 0.018 4.35x10−1 

4 rs10516526(106908353), GSTCD(intron) G FEV1 0.108 0.014 4.75x10−14 0.03 0.02 1.23x10−1 0.018 0.034 6.08x10−1 

4 rs17331332(107027556), NPNT (upstream) G FEV1 -0.102 0.014 1.11x10−12 -0.037 0.019 5.25x10−2 -0.031 0.033 3.51x10−1 

4 rs6823809(107048244), NPNT(intron) T FEV1/FVC 0.056 0.011 2.2x10−7 0.011 0.026 6.77x10−1 -0.045 0.066 5.02x10−1 

4 rs1032296(145654138), HHIP(upstream) T FEV1/FVC -0.05 0.007 3.42x10−12 0.007 0.01 4.97x10−1 -0.002 0.018 9.01x10−1 

4 rs11100860(145698589), HHIP(upstream) G FEV1/FVC 0.064 0.007 6.81x10−20 -0.002 0.01 8.58x10−1 0.001 0.017 9.32x10−1 

5 rs11168048(147822546), HTR4(intron) T FEV1/FVC -0.047 0.007 5.97x10−11 0.003 0.01 7.34x10−1 -0.012 0.018 5.04x10−1 

5 rs3995090(147826008), HTR4(intron) C FEV1/FVC 0.046 0.007 1.04x10−10 -0.002 0.01 8.69x10−1 0.014 0.018 4.25x10−1 

5 rs1985524(147827981), HTR4(intron) G FEV1 -0.048 0.007 3.06x10−11 0 0.01 9.97x10−1 -0.027 0.018 1.32x10−1 

5 rs11134779(156869344), ADAM19(intron) G FEV1/FVC -0.042 0.007 6.01x10−9 -0.015 0.01 1.43x10−1 0.012 0.019 5.27x10−1 

6 rs2070600(32259421), AGER(ns) T FEV1/FVC 0.126 0.016 9.07x10−15 0.033 0.026 1.98x10−1 0.056 0.044 2.03x10−1 

6 rs3817928(142792209), GPR126(intron) G FEV1/FVC 0.059 0.008 2.27x10−12 -0.004 0.012 7.16x10−1 0.005 0.021 8.1x10−1 

6 rs262129(142894837), LOC153910(unknown) G FEV1/FVC 0.056 0.008 2.91x10−13 0.005 0.011 6.56x10−1 0.019 0.02 3.39x10−1 
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Lung function  
(stage 1 and stage 2 
 meta-analysis) 

Cigarettes per day Ever vs. Never smoking 

Chr. SNP ID(NCBI36 position),  function 
Coded  
allele 

Measure Beta Se P Beta Se P Beta Se P 

9 rs16909859(97244613), PTCH1(downstream) G FEV1/FVC 0.08 0.013 7.45x10−10 -0.005 0.02 7.81x10−1 -0.012 0.033 7.09x10−1 

9 rs16909898(97270829), PTCH1(intron) G FEV1/FVC -0.072 0.012 3.94x10−9 0.024 0.018 1.91x10−1 0.019 0.031 5.45x10−1 

15 rs12899618(69432174), THSD4(intron) G FEV1/FVC 0.076 0.01 1.86x10−15 -0.013 0.014 3.36x10−1 -0.012 0.024 6.31x10−1 

15 rs8033889(69467134), THSD4(intron) T FEV1/FVC -0.072 0.008 2.03x10−17 -0.004 0.012 7.57x10−1 -0.02 0.022 3.59x10−1 

15 rs2568494(76528019), IREB2(intron) G FEV1/FVC 0.029 0.007 5.25x10−5 -0.082 0.01 2.15x10−15 -0.016 0.018 3.62x10−1 

15 rs8034191(76593078), CHRNA3/5(intron) T FEV1/FVC 0.032 0.007 9.65x10−6 -0.09 0.011 1.59x10−17 -0.02 0.018 2.75x10−1 

15 rs2036527(76638670), CHRNA5(uptream) G FEV1 0.036 0.008 2.4x10−6 -0.091 0.011 6.34x10−18 -0.016 0.018 3.86x10−1 

15 rs8040868(76698236), CHRNA3(coding-synon) T FEV1/FVC 0.04 0.008 1.14x10−6 -0.09 0.011 2.53x10−17 -0.023 0.019 2.26x10−1 
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Association of loci influencing lung function with lung cancer 

Effects of the 16 novel SNPs, and previously reported SNPs, associated with lung function on lung cancer were assessed in the 
International Lung Cancer Consortium (ILCCO) GWAS meta-analysis. The ILCCO GWAS meta-analysis only had genotyped data, 
for this reason proxy SNPs were given when the top SNP was not included in their data. Leading SNP, region name and r2 between 
leading SNP and proxy SNP are also provided. Results for the SpiroMeta-CHARGE stage 1 and stage 2 meta-analysis are reported 
for the SNPs that were followed up in stage 2 and were included in the lung cancer dataset (rs1529672, rs2857595, rs2798641, 
rs11001819, rs11172113, rs1036429) and results from the GWAS Stage 1 only are provided for the other loci, for the lung function 
measure that showed stronger association. Abbreviations: Chr.=chromosome, ns=nonsynonymous, s= synonymous 
 

Chr. Proxy SNP ID (NCBI36 position), function 
Leading SNP (region 
name), r

2
 with proxy 

Coded 
allele 

Lung function Lung cancer 

Measure Beta  Se  P  Beta Se P 

Novel loci 

1 rs761423 (17174259), MFAP2 (intron) rs2284746 (MFAP2), 0.63 T FEV1/FVC 0.038 0.007 8.72x10−8 0.033 0.017 6.24x10−2 

1 rs2871775 (17218492), SDHB (intron) rs2284746 (MFAP2), 0.66 G FEV1/FVC -0.040 0.007 9.08x10−9 -0.015 0.017 3.81x10−1 

2 
rs4591362 (239542675), 
HDAC4(downstream) 

rs12477314 (HDAC4), 0.94 G FEV1/FVC -0.049 0.009 8.29x10−9 -0.020 0.021 3.49x10−1 

3 rs1529672 (25495586), RARB (intron) rs1529672 (RARB), 1 C FEV1/FVC -0.048 0.006 3.97x10−14 -0.013 0.027 6.33x10−1 

3 rs2056777 (25515395), RARB (intron) rs1529672 (RARB), 0.77 T FEV1/FVC -0.050 0.009 5.31x10−8 -0.011 0.027 6.8x10−1 

3 rs1362772 (170739927), MECOM(intron) rs1344555 (MECOM), 1 T FEV1 -0.040 0.009 3.24x10−6 -0.010 0.022 6.63x10−1 

3 rs7642776 (170753972), MECOM(intron) rs1344555 (MECOM), 0.94 G FEV1 0.038 0.008 5.38x10−6 0.013 0.021 5.37x10−1 

5 rs2548125 (95037182), SPATA9 (intron) rs153916 (SPATA9), 0.61 G FEV1/FVC -0.029 0.007 3.5x10−5 -0.012 0.018 5.08x10−1 

6 
rs209181 (28900456), LOC401242 
(downstream) 

rs6903823 
(ZKSCAN3/ZNF323), 0.69 

G FEV1 0.035 0.012 2.25x10−3 -0.106 0.026 3.41x10−5 

6 rs3099844 (31556955), HCG26 (downstream) rs2857595 (NCR3), 0.67 C FEV1/FVC 0.058 0.011 1.92x10−7 -0.141 0.027 2.21x10−7 

6 rs2857595 (31676448), NCR3(upstream) rs2857595 (NCR3), 1 G FEV1/FVC 0.037 0.006 2.28x10−10 -0.051 0.022 1.91x10−2 
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Chr. Proxy SNP ID (NCBI36 position), function 
Leading SNP (region 
name), r

2
 with proxy 

Coded 
allele 

Lung function Lung cancer 

Measure Beta  Se  P  Beta Se P 

6 rs1475055 (109350925), ARMC2 (intron) rs2798641 (ARMC2), 0.73 T FEV1/FVC 0.027 0.008 7.67x10−4 -0.011 0.020 5.87x10−1 

6 rs2798641 (109374743), ARMC2 (intron) rs2798641 (ARMC2), 1 T FEV1/FVC -0.041 0.007 8.35x10−9 0.006 0.022 7.72x10−1 

10 rs1317549 (12285320), CDC123 (intron) rs7068966 (CDC123), 0.68 T FEV1/FVC -0.038 0.007 8.95x10−8 0.013 0.018 4.78x10−1 

10 rs4478891 (12307660), CDC123 (intron) rs7068966 (CDC123), 0.85 G FEV1/FVC 0.043 0.007 8.71x10−10 -0.005 0.018 7.61x10−1 

10 rs2130800 (77944824), C10orf11 (intron) rs11001819 (C10orf11), 0.73 T FEV1 0.038 0.007 5.45x10−8 0.031 0.017 7.8x10−2 

10 rs11001819 (77985230), C10orf11 (intron) rs11001819 (C10orf11), 1 G FEV1 -0.029 0.004 2.98x10−12 -0.051 0.020 1.21x10−2 

10 
rs2637260 (77990352), C10orf11 
(downstream) 

rs11001819 (C10orf11), 0.72 T FEV1 0.035 0.007 7.38x10−7 0.024 0.017 1.72x10−1 

12 rs11172113 (55813550), LRP1 (intron) rs11172113 (LRP1), 1 T FEV1/FVC -0.032 0.006 1.24x10−8 -0.010 0.018 5.84x10−1 

12 rs1466535 (55820737), LRP1 (intron) rs11172113 (LRP1), 0.72 G FEV1/FVC -0.025 0.007 5.76x10−4 0.004 0.018 8.45x10−1 

12 rs7307510 (94761701), SNRPF (upstream) rs1036429 (CCDC38), 0.96 T FEV1/FVC 0.049 0.009 3.49x10−8 0.009 0.023 6.82x10−1 

12 rs1036429 (94795559), CCDC38 (intron) rs1036429 (CCDC38), 1 T FEV1/FVC 0.038 0.006 2.3x10−11 0.011 0.022 6.06x10−1 

16 rs2304488 (56631711), MMP15 (intron) rs12447804 (MMP15), 0.88 G FEV1/FVC -0.040 0.008 9.45x10−7 0.019 0.021 3.62x10−1 

16 
rs12597233 (56657709), MMP15 
(downstream) 

rs12447804 (MMP15), 0.87 G FEV1/FVC 0.038 0.008 4.8x10−6 -0.012 0.022 5.85x10−1 

16 rs4243111 (73878328), CFDP1(downstream) rs2865531 (CFDP1), 0.93 T FEV1/FVC -0.037 0.007 1.52x10−7 -0.036 0.018 4.22x10−2 

16 rs1424013 (74053487), TMEM170 (intron) rs2865531 (CFDP1), 0.82 T FEV1/FVC 0.033 0.007 3.92x10−6 0.046 0.018 1x10−2 

21 
rs973754 (34555400), C21orf82 
(downstream) 

rs9978142 (KCNE2), 0.81 G FEV1/FVC -0.043 0.010 2.09x10−5 -0.010 0.025 6.78x10−1 

Previously reported regions 

2 rs1035672 (218383444), TNS1 (intron) rs2571445 (TNS1), 0.96 G FEV1 -0.046 0.007 3.03x10−10 -0.020 0.018 2.66x10−1 

2 rs2571445 (218391399), TNS1 (ns) rs2571445 (TNS1), 1 G FEV1 0.047 0.007 9.83x10−11 0.016 0.018 3.72x10−1 

4 rs2869967 (90088355), FAM13A (intron) rs2045517 (FAM13A), 1 T FEV1/FVC 0.047 0.007 2.08x10−11 0.026 0.018 1.36x10−1 

4 rs6849143 (90147512), FAM13A (intron) rs2045517 (FAM13A), 0.75 T FEV1/FVC -0.038 0.007 5.99x10−8 -0.020 0.018 2.51x10−1 
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Chr. Proxy SNP ID (NCBI36 position), function 
Leading SNP (region 
name), r

2
 with proxy 

Coded 
allele 

Lung function Lung cancer 

Measure Beta  Se  P  Beta Se P 

4 rs11727735 (106851319), GSTCD (intron) rs10516526 (GSTCD), 1 G FEV1 0.105 0.014 1.65x10−13 -0.029 0.036 4.19x10−1 

4 rs10516526 (106908353), GSTCD (intron) rs10516526 (GSTCD), 1 G FEV1 0.108 0.014 4.75x10−14 -0.029 0.036 4.31x10−1 

4 rs1828591 (145700230), HHIP (upstream) rs11100860 (HHIP), 1 G FEV1/FVC 0.063 0.007 1.44x10−19 -0.005 0.018 7.82x10−1 

4 rs1512288 (145710731), HHIP (upstream) rs11100860 (HHIP), 1 G FEV1/FVC -0.062 0.007 3.46x10−19 0.000 0.018 9.89x10−1 

5 rs2277027 (156864954), ADAM19 (intron) rs11134779 (ADAM19), 1 C FEV1/FVC -0.042 0.007 6.65x10−9 0.007 0.018 6.93x10−1 

5 rs1422795 (156868942), ADAM19 (ns) rs11134779 (ADAM19), 1 T FEV1/FVC 0.041 0.007 1.05x10−8 -0.007 0.018 7.11x10−1 

6 rs2070600 (32259421), AGER (ns) rs2070600 (AGER), 1 T FEV1/FVC 0.126 0.016 9.07x10−15 -0.004 0.044 9.27x10−1 

6 rs2854050 (32293583), NOTCH4 (intron) rs2070600 (AGER), 1 G FEV1/FVC -0.083 0.016 9.34x10−8 0.022 0.040 5.8x10−1 

6 rs6570507 (142721265), GPR126 (intron) rs262129 (GPR126), 0.72 G FEV1/FVC -0.051 0.008 2.25x10−11 0.006 0.019 7.49x10−1 

6 rs11155242 (142733242), GPR126 (ns) rs3817928 (GPR126), 1 C FEV1/FVC 0.055 0.009 1.88x10−10 0.003 0.022 8.99x10−1 

6 
rs3748069 (142809326), GPR126 
(downstream) 

rs262129 (GPR126), 0.84 G FEV1/FVC 0.053 0.008 2.02x10−12 -0.007 0.019 7.01x10−1 

6 
rs7776356 (142818722), GPR126 
(downstream) 

rs3817928 (GPR126), 1 G FEV1/FVC 0.059 0.008 4.16x10−12 -0.001 0.021 9.69x10−1 

9 rs10512249 (97296130), PTCH1 (intron) rs16909859 (PTCH1), 0.84 G FEV1/FVC 0.066 0.012 1.54x10−8 -0.067 0.029 1.9x10−2 

15 rs1913768 (69436598), THSD4 (intron) rs8033889 (THSD4), 0.673 G FEV1/FVC 0.075 0.009 2.77x10−15 -0.014 0.024 5.49x10−1 

15 rs8033889 (69467134), THSD4 (intron) rs8033889 (THSD4), 1 T FEV1/FVC -0.072 0.008 2.03x10−17 0.014 0.025 5.85x10−1 

15 rs8034191 (76593078), AGPHD1 (intron) rs8040868 (CHRNA3), 0.70 T FEV1/FVC 0.032 0.007 9.65x10−6 -0.258 0.018 2.19x10−46 

15 rs1051730 (76681394), CHRNA3 (s) rs8040868 (CHRNA3), 0.76 G FEV1/FVC 0.032 0.007 1.46x10−5 -0.273 0.018 1.91x10−51 
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D. Chapter 3 additional figures 

Region plots for the 16 new loci 

Regional association plots of 16 novel lung function-associated loci. Statistical significance of each SNP on the –log10(P) scale as a 
function of chromosome position (NCBI Build 36) in the meta-analysis of stage 1 data alone. The sentinel SNP at each locus is 
shown in blue with the correlations (r2) of surrounding SNPs to the sentinel indicated by colour (red: r2>0.8, orange: r2>0.5, yellow: 
r2>0.2, grey: r2<0.2, white: r2 unknown).  The fine scale recombination rate is shown in blue.  
 

a) FEV1 only 
 

  
 

b) FEV1/FVC only 



  Appendix D 

343 

 



  Appendix D 

344 

 

 



  Appendix D 

345 

 

c) Both FEV1 and FEV1/FVC 
 

 
FEV1 FEV1/FVC 
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Forest plots for the 16 new loci 

Forest plots for the 16 loci associated with lung function for stage 1 and stage 2 
separately. Each of the SNPs included in the figure showed genome-wide 
significant association (P < 5 × 10−8) with either FEV1 or FEV1/FVC in the data 
from stages 1 and 2. For each SNP there is a plot for the meta-analysis of the 
stage 1 data and another for the meta-analysis of the stage 2 data. The 
contributing effect (transformed beta) from each study is shown by a square, 
with confidence intervals indicated by horizontal lines. The contributing weight 
of each study to the meta-analysis is indicated by the size of the square. The 
combined meta-analysis estimate is shown at the bottom of each graph.
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E. Region selection for targeted sequencing 
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F. Additional Syzygy method details 

Error rate estimation 

Syzygy estimates sequencing error rate by modelling the miscall rate, defined 

as (𝐶 − 𝑅𝐸𝐹𝑟𝑐)/𝐶 for coverage 𝐶 and. 𝑅𝐸𝐹𝑟𝑐 number of reference allele read 

counts. To do that it assumes that the factors that explain base to base variation 

in the miscall rate are: strand, sequence context and coverage around a base. 

A neighborhood quality score (𝑛𝑞𝑠) is calculated in order to identify bases with 

lower coverage respect to their neighbors, since this can indicate lower 

accuracy of the calls for these bases. The neighborhood quality score compares 

the coverage at a given position with the coverage of the neighboring bases (+/- 

10kb) 

𝑛𝑞𝑠 =
𝐶 𝑎𝑡 𝑎 𝑏𝑎𝑠𝑒

𝑚𝑒𝑑𝑖𝑎𝑛 (𝐶 𝑜𝑓 𝑏𝑎𝑠𝑒𝑠 + 𝑎𝑛𝑑 − 10 𝑏𝑝, 𝑤𝑖𝑡ℎ 𝐶 > 0)
 

Syzygy selects bases not included in dbSNP137 with miscall rate < 0.01, 

neighborhood quality score (𝑛𝑞𝑠) > 0.2 and ≤ 1.5. and coverage > 1. Then, it 

models the miscall rate for these bases using 𝑛𝑞𝑠 and the 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑛𝑔 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 

(a factor of trinucleotides for a base +/- 1bp) as covariates for each strand 

separately. After that, it uses the estimated effect sizes of 𝑛𝑞𝑠 and 

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑛𝑔 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 to estimate the error rate for all bases with 𝑛𝑞𝑠 ≥ 0.2 and 

≥ 1.7. This is done across pools (for example to estimate the miscall rate, 𝐶 and 

𝑅𝐸𝐹𝑎𝑐 are added up across pools) and for each strand separately, so it 

produces error rate estimates per position and per strand (𝐸𝑅𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛,𝑠𝑡𝑟𝑎𝑛𝑑). 

Error rates specific for each pool, as used in the LOD score calculations, that 

vary per position, strand and pool (𝐸𝑅𝑝𝑜𝑜𝑙,𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛,𝑠𝑡𝑟𝑎𝑛𝑑) are obtained as follows:  
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𝐸𝑅𝑝𝑜𝑜𝑙,𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛,𝑠𝑡𝑟𝑎𝑛𝑑 = max(min 𝐸𝑅𝑝𝑜𝑜𝑙,𝑠𝑡𝑟𝑎𝑛𝑑 , 𝐸𝑅𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛,𝑠𝑡𝑟𝑎𝑛𝑑) 

for min 𝐸𝑅𝑝𝑜𝑜𝑙,𝑠𝑡𝑟𝑎𝑛𝑑 = max (miscall rate𝑝𝑜𝑜𝑙,𝑠𝑡𝑟𝑎𝑛𝑑  ,0.001) 

 for miscall rate𝑝𝑜𝑜𝑙,𝑠𝑡𝑟𝑎𝑛𝑑 =
∑ 𝐶𝑝𝑜𝑜𝑙,𝑠𝑡𝑟𝑎𝑛𝑑,𝑝𝑝 𝜖 𝑃 − ∑ 𝑅𝐸𝐹𝑟𝑐𝑝𝑜𝑜𝑙,𝑠𝑡𝑟𝑎𝑛𝑑,𝑝𝑝 𝜖 𝑃

∑ 𝐶𝑝𝑜𝑜𝑙,𝑠𝑡𝑟𝑎𝑛𝑑,𝑝𝑝 𝜖 𝑃
 

𝑎𝑛𝑑 𝑃 = 𝑎𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 

 

Strand bias test 

Syzygy undertakes an additional test for strand bias, more specifically it tests 

whether the minor allele frequency estimated for the forward strand (𝑀𝐴𝐹𝑓𝑤𝑑) 

and the reverse strand (𝑀𝐴𝐹𝑟𝑒𝑣) are equal to the overall allele frequency across 

both strands (𝑀𝐴𝐹) or the allele frequency in one strand is equal to the overall 

allele frequency and the allele frequency in the other strand is 0. 

𝐻0: 𝑀𝐴𝐹𝑓𝑤𝑑 = 𝑀𝐴𝐹𝑟𝑒𝑣 = 𝑀𝐴𝐹 

𝐻1: 𝑀𝐴𝐹𝑓𝑤𝑑 = 𝑀𝐴𝐹 𝑎𝑛𝑑 𝑀𝐴𝐹𝑟𝑒𝑣 = 0  

𝐻2: 𝑀𝐴𝐹𝑟𝑒𝑣 = 𝑀𝐴𝐹 𝑎𝑛𝑑 𝑀𝐴𝐹𝑓𝑤𝑑 = 0 

To do this it constructs a strand logarithm of odds (LOD) score 

(𝑠𝑡𝑟𝑎𝑛𝑑 𝐿𝑂𝐷 𝑠𝑐𝑜𝑟𝑒) comparing the maximum of the likelihood (𝐿) of obtaining 

the data under 𝐻1or 𝐻2vs the likelihood of obtaining the data under 𝐻0. 

𝑠𝑡𝑟𝑎𝑛𝑑 𝐿𝑂𝐷 𝑠𝑐𝑜𝑟𝑒 = log10(
max (𝐿(𝐻1), 𝐿(𝐻2))

𝐿(𝐻0)
) 

Likelihoods are computed as explained previously using the Bayes’ Rule.
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G. Chapter 4 additional tables 

Single variant results for known variants  

Results of COPD association for variants previously associated with lung function are presented here and ordered by chromosome 

and position. P-values < 0.05 are highlighted in bold. The column “GWAS gene” presents the gene reported in the lung function 

GWAS undertaken in Chapter 3 for each region. Abbreviations: MAF = minor allele frequency, N. alt. a.c. = number of alternative 

allele counts, N. ref. a.c. = number of reference allele counts, O.R. = odds ratio. 

Rs number (chr.: position) 
GWAS 
gene 

Calling 
algorithm 

Ref. 
allele 

Alt. 
allele 

MAF 

N. alt. a.c. 
 case/ 
N. ref. a.c. 
 case 

N. alt. a.c.  
control / 
N. ref. a.c.  
control 

O.R. P-value 
Consistent 
direction of  
effect? 

rs2284746 (chr1:17306675)  MFAP2 vipR G C 0.48 246/254 207/243 1.14 3.3x10−1 NO 

rs2284746 (chr1:17306675)  MFAP2 syzygy C G 0.46 328/272 266/234 1.06 6.28x10−1 YES 

rs2284746 (chr1:17306675)  MFAP2 SNVer C G 0.48 318/282 258/242 1.06 6.71x10−1 YES 

rs993925 (chr1:218860068)  TGFB2 SNVer C T 0.38 237/363 179/321 1.17 2.12x10−1 NO 

rs993925 (chr1:218860068)  TGFB2 syzygy C T 0.38 239/361 182/318 1.16 2.62x10−1 NO 

rs993925 (chr1:218860068)  TGFB2 vipR C T 0.39 220/330 149/251 1.12 4.19x10−1 NO 

rs2571445 (chr2:218683154)  TNS1 SNVer A G 0.49 300/300 268/232 0.87 2.5x10−1 YES 

rs2571445 (chr2:218683154)  TNS1 vipR G A 0.44 118/82 52/48 1.33 2.68x10−1 YES 

rs2571445 (chr2:218683154)  TNS1 syzygy A G 0.48 304/296 266/234 0.90 4.31x10−1 YES 

rs12477314 (chr2:239877148)  HDAC4 SNVer C T 0.18 114/486 86/414 1.13 4.8x10−1 NO 

rs12477314 (chr2:239877148)  HDAC4 syzygy C T 0.18 114/486 88/412 1.10 5.84x10−1 NO 

rs12477314 (chr2:239877148)  HDAC4 vipR C T 0.21 98/352 70/280 1.11 6x10−1 NO 

rs1529672 (chr3:25520582)  RARB SNVer C A 0.15 86/514 83/417 0.84 3.14x10−1 YES 
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Rs number (chr.: position) 
GWAS 
gene 

Calling 
algorithm 

Ref. 
allele 

Alt. 
allele 

MAF 

N. alt. a.c. 
 case/ 
N. ref. a.c. 
 case 

N. alt. a.c.  
control / 
N. ref. a.c.  
control 

O.R. P-value 
Consistent 
direction of  
effect? 

rs1529672 (chr3:25520582)  RARB syzygy C A 0.16 89/511 84/416 0.86 4.06x10−1 YES 

rs1529672 (chr3:25520582)  RARB vipR C A 0.16 85/465 82/418 0.93 7.36x10−1 YES 

rs1344555 (chr3:169300219)  MECOM SNVer C T 0.2 143/457 77/423 1.72 4.93x10−4 YES 

rs1344555 (chr3:169300219)  MECOM syzygy C T 0.21 148/452 81/419 1.69 5.93x10−4 YES 

rs1344555 (chr3:169300219)  MECOM vipR C T 0.23 130/370 54/246 1.60 9.29x10−3 YES 

rs2045517 (chr4:89870964)  FAM13A  vipR C T 0.45 228/272 200/250 1.05 7.44x10−1 YES 

rs2045517 (chr4:89870964)  FAM13A  SNVer C T 0.43 260/340 219/281 0.98 9.03x10−1 NO 

rs2045517 (chr4:89870964)  FAM13A  syzygy C T 0.44 264/336 219/281 1.01 9.51x10−1 YES 

rs10516526 (chr4:106688904)  GSTCD vipR A G 0.09 37/313 26/324 1.47 1.86x10−1 NO 

rs10516526 (chr4:106688904)  GSTCD SNVer A G 0.07 42/558 30/470 1.18 5.42x10−1 NO 

rs10516526 (chr4:106688904)  GSTCD syzygy A G 0.07 44/556 32/468 1.16 5.54x10−1 NO 

rs11100860 (chr4:145479139)  HHIP SNVer A G 0.37 202/398 205/295 0.73 1.44x10−2 YES 

rs11100860 (chr4:145479139)  HHIP syzygy A G 0.37 204/396 202/298 0.76 3.28x10−2 YES 

rs11100860 (chr4:145479139)  HHIP vipR A G 0.4 159/241 203/297 0.97 8.37x10−1 YES 

rs153916 (chr5:95036700)  SPATA9 SNVer C T 0.43 360/240 265/235 1.33 2.03x10
−2

 YES 

rs153916 (chr5:95036700)  SPATA9 syzygy C T 0.43 363/237 268/232 1.33 2.35x10
−2

 YES 

rs153916 (chr5:95036700)  SPATA9 vipR T C 0.45 191/259 237/263 0.82 1.33x10
−1

 YES 

rs1985524 (chr5:147847788)  HTR4  SNVer G C 0.41 227/373 224/276 0.75 2.27x10
−2

 YES 

rs1985524 (chr5:147847788)  HTR4  syzygy G C 0.41 230/370 223/277 0.77 3.67x10
−2

 YES 

rs1985524 (chr5:147847788)  HTR4  vipR G C 0.44 171/229 223/277 0.93 5.89x10
−1

 YES 

rs11134779 (chr5:156936766)  ADAM19 vipR A G 0.35 166/334 150/250 0.83 1.83x10
−1

 NO 
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Rs number (chr.: position) 
GWAS 
gene 

Calling 
algorithm 

Ref. 
allele 

Alt. 
allele 

MAF 

N. alt. a.c. 
 case/ 
N. ref. a.c. 
 case 

N. alt. a.c.  
control / 
N. ref. a.c.  
control 

O.R. P-value 
Consistent 
direction of  
effect? 

rs11134779 (chr5:156936766)  ADAM19 SNVer A G 0.32 187/413 171/329 0.87 3.01x10
−1

 NO 

rs11134779 (chr5:156936766)  ADAM19 syzygy A G 0.33 190/410 169/331 0.91 4.78x10
−1

 NO 

rs6903823 (chr6:28322296)  ZKSCAN3 vipR A G 0.25 135/465 103/247 0.70 1.98x10
−2

 NO 

rs6903823 (chr6:28322296)  ZKSCAN3 syzygy A G 0.23 132/468 117/383 0.92 6.13x10
−1

 NO 

rs6903823 (chr6:28322296)  ZKSCAN3 SNVer A G 0.24 120/380 122/378 0.98 9.41x10
−1

 NO 

rs2857595 (chr6:31568469)  NCR3 vipR G A 0.24 114/336 102/348 1.16 3.91x10
−1

 YES 

rs2857595 (chr6:31568469)  NCR3 SNVer G A 0.22 133/467 109/391 1.02 9.42x10
−1

 YES 

rs2857595 (chr6:31568469)  NCR3 syzygy G A 0.22 133/467 112/388 0.99 9.42x10
−1

 NO 

rs2070600 (chr6:32151443)  AGER SNVer C T 0.06 37/463 24/426 1.42 2.33x10
−1

 NO 

rs2070600 (chr6:32151443)  AGER syzygy C T 0.07 48/552 31/469 1.32 2.91x10
−1

 NO 

rs2070600 (chr6:32151443)  AGER vipR C T 0.09 31/319 23/227 0.96 8.86x10
−1

 YES 

rs2798641 (chr6:109268050)  ARMC2 vipR C T 0.19 96/454 94/356 0.80 1.7x10
−1

 NO 

rs2798641 (chr6:109268050)  ARMC2 SNVer C T 0.18 100/500 99/401 0.81 1.82x10
−1

 NO 

rs2798641 (chr6:109268050)  ARMC2 syzygy C T 0.18 103/497 96/404 0.87 3.88x10
−1

 NO 

rs262129 (chr6:142853144) LOC153910 SNVer A G 0.29 177/423 144/356 1.03 8.42x10
−1

 NO 

rs262129 (chr6:142853144) LOC153910 vipR A G 0.31 169/381 140/310 0.98 9.45x10
−1

 YES 

rs262129 (chr6:142853144) 
 
LOC153910 

syzygy A G 0.29 175/425 146/354 1.00 1 YES 

rs16909859 (chr9:98204792)  PTCH1 SNVer G A 0.05 25/575 32/468 0.64 1.03x10
−1

 NO 

rs16909859 (chr9:98204792)  PTCH1 syzygy G A 0.05 28/572 31/469 0.74 2.84x10
−1

 NO 

rs16909859 (chr9:98204792)  PTCH1 vipR G A 0.06 16/284 26/324 0.70 3.38x10
−1

 NO 
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Rs number (chr.: position) 
GWAS 
gene 

Calling 
algorithm 

Ref. 
allele 

Alt. 
allele 

MAF 

N. alt. a.c. 
 case/ 
N. ref. a.c. 
 case 

N. alt. a.c.  
control / 
N. ref. a.c.  
control 

O.R. P-value 
Consistent 
direction of  
effect? 

rs7068966 (chr10:12277992)  CDC123 vipR C T 0.48 259/241 230/220 1.03 8.46x10
−1

 NO 

rs7068966 (chr10:12277992)  CDC123 SNVer C T 0.5 298/302 252/248 0.97 8.56x10
−1

 YES 

rs7068966 (chr10:12277992)  CDC123 syzygy C T 0.5 302/298 250/250 1.01 9.52x10
−1

 NO 

rs11001819 (chr10:78315224)  C10orf11 vipR G A 0.48 272/278 208/242 1.14 3.4x10
−1

 NO 

rs11001819 (chr10:78315224)  C10orf11 syzygy G A 0.47 291/309 228/272 1.12 3.63x10
−1

 NO 

rs11001819 (chr10:78315224)  C10orf11 SNVer G A 0.46 283/317 225/275 1.09 5.04x10
−1

 NO 

rs11172113 (chr12:57527283)  LRP1 vipR T C 0.44 161/189 148/202 1.16 3.61x10
−1

 NO 

rs11172113 (chr12:57527283)  LRP1 SNVer T C 0.4 233/367 204/296 0.92 5.36x10
−1

 YES 

rs11172113 (chr12:57527283)  LRP1 syzygy T C 0.4 234/366 205/295 0.92 5.36x10
−1

 YES 

rs1036429 (chr12:96271428)  CCDC38 vipR C T 0.25 96/304 89/261 0.93 6.72x10
−1

 YES 

rs1036429 (chr12:96271428)  CCDC38 syzygy T C 0.22 467/133 386/114 1.04 8.28x10
−1

 YES 

rs1036429 (chr12:96271428)  CCDC38 SNVer T C 0.23 460/140 383/117 1.00 1 YES 

rs8033889 (chr15:71680080)  THSD4  SNVer G T 0.2 116/484 107/393 0.88 4.08x10
−1

 NO 

rs8033889 (chr15:71680080)  THSD4  syzygy G T 0.21 120/480 109/391 0.90 5.02x10
−1

 NO 

rs8033889 (chr15:71680080)  THSD4  vipR G T 0.21 105/395 105/395 1.00 1 NA 

rs12447804 (chr16:58075282)  MMP15 vipR C T 0.22 100/350 75/275 1.05 7.97x10
−1

 YES 

rs12447804 (chr16:58075282)  MMP15 SNVer C T 0.2 119/481 101/399 0.98 8.8x10
−1

 NO 

rs12447804 (chr16:58075282)  MMP15 syzygy C T 0.2 120/480 100/400 1.00 1 NA 

rs35263058 (chr16:75391937)  CFDP1 SNVer T C 0.41 348/252 304/196 0.89 3.56x10
−1

 NO 

rs35263058 (chr16:75391937)  CFDP1 syzygy T C 0.41 352/248 302/198 0.93 5.79x10
−1

 NO 
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Rs number (chr.: position) 
GWAS 
gene 

Calling 
algorithm 

Ref. 
allele 

Alt. 
allele 

MAF 

N. alt. a.c. 
 case/ 
N. ref. a.c. 
 case 

N. alt. a.c.  
control / 
N. ref. a.c.  
control 

O.R. P-value 
Consistent 
direction of  
effect? 

rs35263058 (chr16:75391937)  CFDP1 vipR C T 0.44 221/279 170/230 1.07 6.36x10
−1

 NO 

rs9978142 (chr21:35652239)  KCNE2 SNVer A T 0.16 100/500 76/424 1.12 5.63x10
−1

 YES 

rs9978142 (chr21:35652239)  KCNE2 vipR A T 0.17 99/501 77/373 0.96 8.03x10
−1

 NO 

rs9978142 (chr21:35652239)  KCNE2 syzygy A T 0.16 98/502 79/421 1.04 8.69x10
−1

 YES 
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Burden test top hits in stage 1  

Locus (sliding windows or genes) that reach the threshold for follow-up after sensitivity analyses either with (“Independent variants 
and variants not in UK10K+1000G”) or without (“Independent variants”) including variants not in UK10K+1000G for the burden test. 
The column “GWAS gene” presents the gene reported in the lung function GWAS undertaken in Chapter 3 for each region. 
Abbreviations: N.: number of variants 

Locus Threshold 

All variants Independent variants 
Independent variants and variants  
not in UK10K+1000G 

vipR SNVer Syzygy vipR SNVer Syzygy vipR SNVer Syzygy 

P N P N P N P N P N P N P N P N P N. 

chr3: 
168984786- 
168987786 

1.87x10−4 NA NA 2.25x10−4 5 7.87x10−5 5 NA NA 7.24x10−3 2 9.81x10−4 2 NA NA 2.25x10−4 5 7.87x10−5 5 

FLJ20184 1x10−2 1 27 1.28x10−2 42 5.12x10−4 46 1 15 1.43x10−2 23 1.12x10−4 25 1 22 4.21x10−2 37 1.57x10−3 41 

chr4: 
145278600- 
145281600 

2.76x10−4 NA NA 2.34x10−4 4 2.15x10−4 4 NA NA 3.76x10−3 2 1.38x10−3 2 NA NA 2.34x10−4 4 2.15x10−4 4 

ITK 8.33x10−3 1 13 3.98x10−4 28 1.41x10−4 29 1 10 5.81x10−5 20 5.01x10−5 21 1 12 3.98x10−4 28 1.64x10−4 28 

GPR126 2.5x10−2 7.18x10−1 63 2.04x10−3 110 3.21x10−2 109 7.98x10−1 33 8.11x10−2 61 3.91x10−1 60 5.15x10−1 50 1.51x10−3 93 4.65x10−2 91 
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C-alpha test top hits in stage 1 

Locus (sliding windows: a), genes: b) or exon based genes: c)) that reach the threshold for follow-up after sensitivity analyses either 
with (“Independent variants and variants not in UK10K+1000G”) or without (“Independent variants”) including variants not in 
UK10K+1000G for the burden test. The column “GWAS gene” presents the gene reported in the lung function GWAS for each 
region. Abbreviations: N.: number. 

a) Sliding window 
 

Locus Threshold 

All variants Independent variants 
Independent variants and variants  
not in UK10K+1000G 

vipR SNVer Syzygy vipR SNVer Syzygy vipR SNVer Syzygy 

N P N P N P N P N P N P N P N P N P 

chr1:218531175-
218534175 

4.24x10−4 1 NA 2 7.67x10−7 2 7.67x10−7 1 NA 2 7.67x10−7 2 7.67x10−7 1 NA 2 7.67x10−7 2 7.67x10−7 

chr2:218807794-
218810794 

1.09x10−3 3 6.33x10−5 4 1.91x10−5 3 2.92x10−3 2 9.25x10−4 3 1.19x10−4 2 3.5x10−2 2 9.25x10−4 3 1.19x10−4 2 3.5x10−2 

chr2:239890616-
239893616 

3.68x10−4 1 NA 3 5.76x10−6 3 6.33x10−5 NA NA 2 6.05x10−6 2 6.65x10−5 1 NA 3 5.76x10−6 3 6.33x10−5 

chr2:239971616-
239974616 

3.68x10−4 1 NA 3 8.03x10−11 3 1.33x10−9 1 NA 3 8.03x10−11 3 1.33x10−9 1 NA 3 8.03x10−11 3 1.33x10−9 

chr2:239973116-
239976116 

3.68x10−4 1 NA 4 2.71x10−13 4 3.4x10−12 1 NA 3 8.03x10−11 3 1.33x10−9 1 NA 3 8.03x10−11 3 1.33x10−9 

chr2:240325616-
240328616 

3.68x10−4 2 2.61x10−6 2 3.95x10−11 2 7.05x10−3 2 2.61x10−6 2 3.95x10−11 2 7.05x10−3 2 2.61x10−6 2 3.95x10−11 2 7.05x10−3 

chr3:168984786-
168987786 

1.87x10−4 2 2.48x10−2 5 1.5x10−5 5 2.74x10−6 1 NA 2 1.12x10−4 2 1.06x10−5 2 2.48x10−2 5 1.5x10−5 5 2.74x10−6 

chr3:169238286-
169241286 

1.87x10−4 1 NA 4 4.52x10−5 4 5.34x10−6 1 NA 2 3.5x10−4 2 1.46x10−5 1 NA 4 4.52x10−5 4 5.34x10−6 

chr3:169310286-
169313286 

1.87x10−4 2 2.48x10−2 3 1.99x10−8 3 1.99x10−8 2 2.48x10−2 2 6.65x10−5 2 2.85x10−6 2 2.48x10−2 2 6.65x10−5 2 2.85x10−6 

chr3:169311786-
169314786 

1.87x10−4 2 2.48x10−2 3 1.99x10−8 3 1.99x10−8 2 2.48x10−2 2 6.65x10−5 2 2.85x10−6 2 2.48x10−2 2 6.65x10−5 2 2.85x10−6 
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Locus Threshold 

All variants Independent variants 
Independent variants and variants  
not in UK10K+1000G 

vipR SNVer Syzygy vipR SNVer Syzygy vipR SNVer Syzygy 

N P N P N P N P N P N P N P N P N P 

chr3:169340286-
169343286 

1.87x10−4 3 2.95x10−9 4 5.29x10−6 4 8.75x10−6 2 7.82x10−9 2 7.06x10−5 2 7.06x10−5 2 7.82x10−9 3 3.82x10−5 3 6.7x10−5 

chr3:169341786-
169344786 

1.87x10−4 6 2.54x10−10 5 3.03x10−6 6 1.37x10−10 4 1.7x10−9 2 7.06x10−5 3 9.65x10−10 5 6.58x10−10 4 2.05x10−5 5 4.54x10−10 

chr3:169371786-
169374786 

1.87x10−4 2 7.36x10−2 7 2.69x10−5 6 1.36x10−5 1 NA 4 2.18x10−4 3 6.3x10−5 2 7.36x10−2 7 2.69x10−5 6 1.36x10−5 

chr3:169373286-
169376286 

1.87x10−4 4 4.59x10−2 6 2.64x10−7 6 9.73x10−7 3 1.26x10−1 3 5.39x10−6 3 5.39x10
−6

 4 4.59x10
−2

 6 2.64x10
−7

 6 9.73x10
−7

 

chr3:25464333-
25467333 5.81x10

−4
 3 1.25x10

−4
 4 1.63x10

−5
 5 9.01x10

−3
 3 1.25x10

−4
 3 1.51x10

−5
 4 5.69x10

−3
 3 1.25x10

−4
 4 1.63x10

−5
 5 9.01x10

−3
 

chr3:25510833-
25513833 5.81x10

−4
 4 1.62x10

−3
 3 5.19x10

−8
 2 5.02x10

−7
 4 1.62x10

−3
 3 5.19x10

−8
 2 5.02x10

−7
 4 1.62x10

−3
 3 5.19x10

−8
 2 5.02x10

−7
 

chr3:25512333-
25515333 5.81x10

−4
 3 2.03x10

−3
 2 6x10

−8
 2 5.02x10

−7
 3 2.03x10

−3
 2 6x10

−8
 2 5.02x10

−7
 3 2.03x10

−3
 2 6x10

−8
 2 5.02x10

−7
 

chr3:25527333-
25530333 5.81x10

−4
 1 NA 2 6.65x10

−5
 2 6.65x10

−5
 1 NA 2 6.65x10

−5
 2 6.65x10

−5
 1 NA 2 6.65x10

−5
 2 6.65x10

−5
 

chr3:25599333-
25602333 5.81x10

−4
 2 3.76x10

−5
 2 1.52x10

−4
 2 1.52x10

−4
 2 3.76x10

−5
 2 1.52x10

−4
 2 1.52x10

−4
 2 3.76x10

−5
 2 1.52x10

−4
 2 1.52x10

−4
 

chr3:25632333-
25635333 5.81x10

−4
 2 2.48x10

−2
 6 1.14x10

−5
 6 7.35x10

−4
 2 2.48x10

−2
 6 1.14x10

−5
 6 7.35x10

−4
 2 2.48x10

−2
 6 1.14x10

−5
 6 7.35x10

−4
 

chr3:25633833-
25636833 5.81x10

−4
 1 NA 7 3.36x10

−7
 7 1.87x10

−5
 1 NA 5 9.43x10

−7
 5 4.73x10

−5
 1 NA 7 3.36x10

−7
 7 1.87x10

−5
 

chr4:106514233-
106517233 2.69x10

−4
 1 NA 2 3.12x10

−9
 2 7.37x10

−9
 1 NA 2 3.12x10

−9
 2 7.37x10

−9
 1 NA 2 3.12x10

−9
 2 7.37x10

−9
 

chr4:106515733-
106518733 2.69x10

−4
 2 4.19x10

−3
 5 3.15x10

−9
 5 8.26x10

−9
 1 NA 3 2.17x10

−8
 3 5.09x10

−8
 2 4.19x10

−3
 5 3.15x10

−9
 5 8.26x10

−9
 

chr4:145265100-
145268100 2.76x10

−4
 3 5.88x10

−1
 6 4.45x10

−7
 7 1.26x10

−11
 3 5.88x10

−1
 3 1.71x10

−4
 4 1.76x10

−8
 3 5.88x10

−1
 5 6.4x10

−5
 6 1.66x10

−9
 

chr4:145266600-
145269600 2.76x10

−4
 5 5.57x10

−3
 9 1.04x10

−8
 8 6.12x10

−11
 3 1.73x10

−2
 4 1.44x10

−5
 4 2.66x10

−7
 5 5.57x10

−3
 8 1.33x10

−6
 7 7.91x10

−9
 

chr4:145268100-
145271100 2.76x10

−4
 8 1.45x10

−3
 9 9.28x10

−7
 8 5.78x10

−8
 5 5.57x10

−3
 5 6.14x10

−6
 5 2.39x10

−7
 8 1.45x10

−3
 9 9.28x10

−7
 8 5.78x10

−8
 



  Appendix G 

368 

 

Locus Threshold 

All variants Independent variants 
Independent variants and variants  
not in UK10K+1000G 

vipR SNVer Syzygy vipR SNVer Syzygy vipR SNVer Syzygy 

N P N P N P N P N P N P N P N P N P 

chr4:145269600-
145272600 2.76x10

−4
 4 4.59x10

−2
 4 1.37x10

−4
 4 4.21x10

−5
 3 5.88x10

−2
 3 1.71x10

−4
 3 3.89x10

−5
 4 4.59x10

−2
 4 1.37x10

−4
 4 4.21x10

−5
 

chr4:145272600-
145275600 2.76x10

−4
 3 1.01x10

−2
 4 8.26x10

−6
 4 3.01x10

−6
 3 1.01x10

−2
 4 8.26x10

−6
 4 3.01x10

−6
 3 1.01x10

−2
 4 8.26x10

−6
 4 3.01x10

−6
 

chr4:145278600-
145281600 2.76x10

−4
 3 1.26x10

−1
 4 2.55x10

−4
 4 1.46x10

−5
 2 1.75x10

−1
 2 4.02x10

−4
 2 1.69x10

−5
 3 1.26x10

−1
 4 2.55x10

−4
 4 1.46x10

−5
 

chr4:145289100-
145292100 2.76x10

−4
 4 4.59x10

−2
 7 2.91x10

−6
 7 4.52x10

−6
 3 5.88x10

−2
 5 3.74x10

−9
 5 2.05x10

−8
 3 5.88x10

−2
 5 3.74x10

−9
 5 2.05x10

−8
 

chr4:145290600-
145293600 2.76x10

−4
 2 1.75x10

−1
 5 2.66x10

−7
 5 1.28x10

−5
 1 NA 3 6.81x10

−7
 3 3.33x10

−5
 2 1.75x10

−1
 4 6.31x10

−7
 4 3.06x10

−5
 

chr4:145293600-
145296600 2.76x10

−4
 3 8.88x10

−3
 6 1.58x10

−8
 5 3.92x10

−7
 1 NA 2 5.4x10

−4
 2 1.11x10

−5
 1 NA 3 5.31x10

−3
 3 1.19x10

−4
 

chr4:145332600-
145335600 2.76x10

−4
 5 8.25x10

−3
 6 1.14x10

−9
 7 3.66x10

−13
 2 3.47x10

−2
 3 1.84x10

−5
 4 7.88x10

−7
 2 3.47x10

−2
 3 1.84x10

−5
 4 7.88x10

−7
 

chr4:145334100-
145337100 2.76x10

−4
 7 2.72x10

−5
 9 1.48x10

−17
 

1
0 2.85x10

−17
 2 1.12x10

−2
 2 9.84x10

−6
 4 3.08x10

−4
 3 8.88x10

−3
 3 9.18x10

−5
 4 3.08x10

−4
 

chr4:145335600-
145338600 2.76x10

−4
 

1
0 

1.72x10
−7

 
1
3 1.25x10

−27
 

1
3 2.12x10

−26
 2 3.61x10

−3
 2 1.09x10

−7
 3 3.62x10

−5
 3 2.85x10

−3
 4 7.58x10

−7
 4 3.77x10

−5
 

chr4:145341600-
145344600 2.76x10

−4
 2 7.34x10

−2
 4 3.65x10

−8
 4 3.54x10

−12
 1 NA 2 1.42x10

−4
 2 9.27x10

−8
 1 NA 2 1.42x10

−4
 2 9.27x10

−8
 

chr4:145382100-
145385100 2.76x10

−4
 5 2.78x10

−3
 6 3.33x10

−9
 6 4.3x10

−10
 4 7.04x10

−3
 5 4.57x10

−7
 5 5.79x10

−8
 4 7.04x10

−3
 5 4.57x10

−7
 5 5.79x10

−8
 

chr4:145383600-
145386600 2.76x10

−4
 3 5.56x10

−2
 4 9.98x10

−7
 4 4.91x10

−7
 2 1.75x10

−1
 3 1.43x10

−4
 3 6.99x10

−5
 2 1.75x10

−1
 3 1.43x10

−4
 3 6.99x10

−5
 

chr4:89812605-
89815605 5x10

−4
 2 7.36x10

−2
 2 9.25x10

−4
 2 3.76x10

−5
 2 7.36x10

−2
 2 9.25x10

−4
 2 3.76x10

−5
 2 7.36x10

−2
 2 9.25x10

−4
 2 3.76x10

−5
 

chr4:89814105-
89817105 5x10

−4
 2 7.36x10

−2
 3 5.76x10

−6
 3 2.71x10

−6
 2 7.36x10

−2
 3 5.76x10

−6
 3 2.71x10

−6
 2 7.36x10

−2
 3 5.76x10

−6
 3 2.71x10

−6
 

chr5:147826118-
147829118 4.9x10

−4
 2 3.76x10

−5
 2 9.87x10

−14
 2 4.7x10

−6
 2 3.76x10

−5
 2 9.87x10

−14
 2 4.7x10

−6
 2 3.76x10

−5
 2 9.87x10

−14
 2 4.7x10

−6
 

chr5:147829118-
147832118 4.9x10

−4
 

N
A 

NA 3 2.86x10
−7

 3 6.81x10
−7

 NA NA 2 3.03x10
−7

 2 7.22x10
−7

 
N
A 

NA 3 2.86x10
−7

 3 6.81x10
−7
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Locus Threshold 

All variants Independent variants 
Independent variants and variants  
not in UK10K+1000G 

vipR SNVer Syzygy vipR SNVer Syzygy vipR SNVer Syzygy 

N P N P N P N P N P N P N P N P N P 

chr5:147830618-
147833618 4.9x10

−4
 

N
A 

NA 3 2.86x10
−7

 3 6.81x10
−7

 NA NA 2 3.03x10
−7

 2 7.22x10
−7

 
N
A 

NA 3 2.86x10
−7

 3 6.81x10
−7

 

chr5:156912906-
156915906 5.88x10

−4
 1 NA 3 2.33x10

−8
 3 5.11x10

−5
 1 NA 2 6x10

−8
 2 5.53x10

−5
 1 NA 3 2.33x10

−8
 3 5.11x10

−5
 

chr9:98180197-
98183197 9.8x10

−4
 1 NA 3 1.88x10

−6
 3 1.06x10

−4
 1 NA 2 2.68x10

−7
 2 3.5x10

−5
 1 NA 3 1.88x10

−6
 3 1.06x10

−4
 

chr9:98181697-
98184697 9.8x10

−4
 1 NA 4 1.02x10

−5
 4 2.84x10

−4
 1 NA 3 1.88x10

−6
 3 1.06x10

−4
 1 NA 4 1.02x10

−5
 4 2.84x10

−4
 

chr10:12207674-
12210674 1.09x10

−3
 2 2.7x10

−2
 4 9.11x10

−5
 4 1.6x10

−7
 2 2.7x10

−2
 3 4.8x10

−4
 3 1.02x10

−6
 2 2.7x10

−2
 4 9.11x10

−5
 4 1.6x10

−7
 

chr10:12209174-
12212174 1.09x10

−3
 2 2.7x10

−2
 4 9.11x10

−5
 4 1.6x10

−7
 2 2.7x10

−2
 3 4.8x10

−4
 3 1.02x10

−6
 2 2.7x10

−2
 4 9.11x10

−5
 4 1.6x10

−7
 

chr10:77609018-
77612018 1.71x10

−4
 3 1.55x10

−1
 5 2.17x10

−4
 5 6.3x10

−5
 3 1.55x10

−1
 4 2.04x10

−4
 4 5.91x10

−5
 3 1.55x10

−1
 5 2.17x10

−4
 5 6.3x10

−5
 

chr12:57529676-
57532676 1.56x10

−3
 1 NA 4 7.04x10

−6
 4 6.14x10

−4
 1 NA 4 7.04x10

−6
 4 6.14x10

−4
 1 NA 4 7.04x10

−6
 4 6.14x10

−4
 

chr12:96134582-
96137582 5.05x10

−4
 4 4.66x10

−3
 3 4.44x10

−6
 2 5.33x10

−4
 3 1.02x10

−2
 2 9.28x10

−6
 2 5.33x10

−4
 4 4.66x10

−3
 3 4.44x10

−6
 2 5.33x10

−4
 

chr12:96136082-
96139082 5.05x10

−4
 3 6.69x10

−2
 3 4.44x10

−6
 2 5.33x10

−4
 2 2.24x10

−1
 2 9.28x10

−6
 2 5.33x10

−4
 3 6.69x10

−2
 3 4.44x10

−6
 2 5.33x10

−4
 

chr12:96157082-
96160082 5.05x10

−4
 1 NA 2 4.69x10

−7
 2 4.84x10

−9
 1 NA 2 4.69x10

−7
 2 4.84x10

−9
 1 NA 2 4.69x10

−7
 2 4.84x10

−9
 

chr12:96158582-
96161582 5.05x10

−4
 2 7.36x10

−2
 3 1.22x10

−4
 3 2.78x10

−6
 2 7.36x10

−2
 3 1.22x10

−4
 3 2.78x10

−6
 2 7.36x10

−2
 3 1.22x10

−4
 3 2.78x10

−6
 

chr12:96335582-
96338582 5.05x10

−4
 1 NA 3 2.56x10

−9
 3 5.15x10

−5
 1 NA 3 2.56x10

−9
 3 5.15x10

−5
 1 NA 3 2.56x10

−9
 3 5.15x10

−5
 

chr15:71704287-
71707287 2.66x10

−4
 3 1.45x10

−3
 3 8.69x10

−6
 3 2.42x10

−4
 2 4.19x10

−3
 2 2.46x10

−6
 2 7.9x10

−5
 3 1.45x10

−3
 3 8.69x10

−6
 3 2.42x10

−4
 

chr16:58032243-
58035243 1.61x10

−3
 

N
A 

NA 3 1.67x10
−7

 4 2.68x10
−6

 NA NA 2 3.99x10
−9

 2 3.25x10
−4

 
N
A 

NA 2 3.99x10
−9

 3 1.81x10
−5

 

chr21:35645321-
35648321 1.25x10

−3
 3 1.71x10

−4
 4 1.99x10

−2
 5 1.82x10

−4
 2 4.14x10

−4
 2 5.4x10

−2
 3 4.83x10

−4
 3 1.71x10

−4
 3 3.33x10

−2
 4 2.98x10

−4
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Locus Threshold 

All variants Independent variants 
Independent variants and variants  
not in UK10K+1000G 

vipR SNVer Syzygy vipR SNVer Syzygy vipR SNVer Syzygy 

N P N P N P N P N P N P N P N P N P 

chr21:35646821-
35649821 1.25x10

−3
 4 1.59x10

−6
 5 1.65x10

−2
 5 1.82x10

−4
 2 4.14x10

−4
 2 5.4x10

−2
 3 4.83x10

−4
 3 1.71x10

−4
 3 3.33x10

−2
 4 2.98x10

−4
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b) Gene based 
 

Locus Threshold All variants Independent variants Independent variants and variants  
not in UK10K+1000G 

vipR SNVer Syzygy vipR SNVer Syzygy vipR SNVer Syzygy 

N P N P N P N P N P N P N P N P N P 

TGFB2 5x10−2 34 1.61x10−3 60 7.43x10−7 65 2.9x10−5 21 3.34x10−3 31 3.54x10−8 33 5.57x10−9 30 1.39x10−3 45 2.92x10−9 49 7.7x10−8 

TNS1 5x10−2 22 5.32x10−4 69 2.07x10−2 72 3.74x10−1 12 1.52x10−2 41 3.38x10−2 42 3.08x10−1 19 5.75x10−3 61 5.2x10−3 62 1.56x10−1 

HDAC4 5x10−2 65 3.43x10−34 174 1.42x10−22 189 2.95x10−4 32 3.2x10−24 93 2.07x10−18 100 2.15x10−5 41 7.87x10−26 141 8.81x10−25 151 2.63x10−5 

RARB 2.5x10−2 68 1.48x10−17 125 7.24x10−12 127 2.44x10−7 48 4.33x10−13 72 1.17x10−7 76 5.33x10−4 60 1.02x10−15 111 6.04x10−11 112 3.14x10−8 

MECOM 5x10−2 331 5.13x10−32 496 1.89x10−29 509 7.08x10−25 95 7.8x10−19 164 2.02x10−7 172 3.36x10−11 168 9.08x10−19 308 8.71x10−25 315 2.85x10−25 

FAM13A 5x10−2 65 8.86x10−3 131 7.67x10−4 137 3.48x10−2 38 1.75x10−2 63 1.1x10−2 68 6.18x10−2 52 2.28x10−3 109 1.58x10−4 115 9.38x10−3 

FLJ20184 1x10−2 27 5.52x10−11 42 7.52x10−7 46 1.93x10−3 15 1.82x10−8 23 9.67x10−6 25 1.24x10−3 22 1.65x10−11 37 6.27x10−7 41 2.37x10−3 

HHIP 5x10−2 37 1.89x10−8 66 4.31x10−8 65 1.45x10−3 21 2.04x10−6 31 5.1x10−4 28 8.33x10−3 33 1.01x10−5 57 3.5x10−7 56 7.07x10−3 

ITK 8.33x10−3 13 1.05x10−1 28 9.31x10−6 29 5.94x10−3 10 2.31x10−1 20 2.66x10−5 21 8.36x10−3 12 1.75x10−1 28 9.31x10−6 28 2.41x10−3 

DDR1 1.22x10−3 5 5.2x10−3 6 9.8x10−8 6 1.66x10−6 4 6.62x10−3 4 1.11x10−6 4 3.87x10−6 5 5.2x10−3 6 9.8x10−8 6 1.66x10−6 

TNXB 7.14x10−3 6 5.54x10−3 17 7.03x10−3 21 3.81x10−2 1 NAx10𝑁𝐴 9 6.91x10−3 11 7.65x10−3 3 1.26x10−1 15 2.84x10−3 17 5.45x10−3 

ARMC2 5x10−2 55 9.82x10−11 63 3.91x10−5 68 7.16x10−6 29 4.27x10−7 39 1.45x10−3 44 2.19x10−3 39 4.71x10−7 58 1.33x10−5 62 1.94x10−5 

LOC153910 2.5x10−2 28 3.06x10−10 44 3.15x10−4 45 2.15x10−1 19 2.83x10−9 28 8.85x10−5 30 1.17x10−1 22 3.12x10−10 41 1.82x10−5 43 1.56x10−1 

PTCH1 5x10−2 22 6.15x10−14 57 5.21x10−4 54 1.66x10−1 6 1.64x10−2 27 1.71x10−2 26 2.99x10−1 13 3.07x10−3 41 3.87x10−3 40 2.34x10−1 

CDC123 1.67x10−2 10 7.91x10−4 18 2.86x10−3 23 4.78x10−1 7 3.03x10−3 11 6.57x10−3 14 5.82x10−1 10 7.91x10−4 18 2.86x10−3 22 4.78x10−1 

NUDT5 1.67x10−2 12 5.96x10−3 22 1.44x10−2 26 3.29x10−3 7 8.47x10−4 11 1.36x10−3 13 2.72x10−3 11 9.6x10−4 18 2.02x10−4 20 6.13x10−4 

C10orf11 5x10−2 221 5.53x10−32 370 7.13x10−10 389 9.73x10−17 102 3.95x10−18 163 7.56x10−9 176 9.54x10−6 149 3.45x10−24 275 1.48x10−12 292 2.85x10−15 

HAL 8.3x10−3 7 2.84x10−2 17 2.01x10−3 19 1.08x10−2 5 4.8x10−2 10 2.89x10−3 11 3.39x10−3 7 2.84x10−2 16 1.62x10−3 18 7.76x10−3 

NTN4 8.3x10−3 43 1.44x10−6 57 1.39x10−2 62 1.36x10−6 21 1.73x10−8 31 8.06x10−3 35 3.06x10−9 28 1.6x10−7 47 5.11x10−3 50 1.64x10−8 
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Locus Threshold All variants Independent variants Independent variants and variants  
not in UK10K+1000G 

vipR SNVer Syzygy vipR SNVer Syzygy vipR SNVer Syzygy 

N P N P N P N P N P N P N P N P N P 

THSD4 5x10−2 150 2.1x10−39 293 3.37x10−6 340 4.89x10−3 87 3.68x10−24 144 6.88x10−10 157 2.41x10−6 111 9.78x10−30 224 4.51x10−13 243 1.97x10−5 

CNGB1 1x10−2 9 1.88x10−3 25 2.14x10−3 25 4.16x10−2 7 1.14x10−2 18 5.04x10−4 18 1.36x10−2 7 1.14x10−2 21 2.47x10−4 21 1.55x10−2 

MMP15 1x10−2 5 2.78x10−3 5 7x10−8 6 3.89x10−6 4 3.5x10−3 3 3.25x10−7 4 8.63x10−6 5 2.78x10−3 4 2.63x10−7 5 7x10−6 
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c) Exon based 
 

Locus Threshold All variants Independent variants Independent variants and variants  
not in UK10K+1000G 

vipR SNVer Syzygy vipR SNVer Syzygy vipR SNVer Syzygy 

N P N P N P N P N P N P N P N P N P 

HDAC4 5x10−2 1 NA 4 3.66x10−11 4 2.11x10−8 1 NA 4 3.66x10−11 4 2.11x10−8 1 NA 4 3.66x10−11 4 2.11x10−8 

NPNT 1.25x10−2 7 3.38x10−6 10 6.76x10−5 12 5.36x10−4 3 1.81x10−3 6 2.88x10−3 5 1.75x10−1 3 1.81x10−3 8 2.84x10−3 7 1.96x10−1 

 


