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Abstract

Advances in lithographic technology have made it possible to fabricate systems 
in which electrons are confined magnetically. With an inhomogeneous circularly 
symmetric magnetic field, B z, that was modulated so as the magnetic field was 
zero in the centre, electrons could, theoretically, be confined to a disk region. 
These systems are referred to  as magnetic quantum dots, and the purpose of this 
thesis is to investigate their properties.

The eigenstates of the single electron system are calculated using new methods 
based on wave function matching. These enable the eigenstates to be determined 
for all values of B z. Exact numerical diagonalisation is used to calculate the 
A'-electron eigenstates, and new procedures are derived to evaluate the Coulomb 
matrix elements. It is shown that a dot is able to confine interacting electrons, 
and is therefore stable. Numerical results for GaAs and InSb dots indicate the 
existence of a stability boundary as a function of the dot radius and B z . The 
form of this boundary is investigated and an analytic expression for it is obtained. 
The stability of the system is enhanced in a homogeneous external magnetic field, 
Bext- Results are also presented for the electron density, the pair distribution, 
and the pair correlation function.

The response of GaAs and InSb dots to far infrared radiation (FIR) is 
investigated as a function of Bz and Bext- The FIR response of the one and 
two electron systems are dissimilar, and this is shown to be a consequence of the 
interaction. Results for an InSb system with two electrons show a large splitting 
of the spectrum. This is investigated and an explanation is given. As a function of 
Bext, the single electron FIR response is similar to that of an electrostatic quantum 
dot in a magnetic field. The FIR spectrum of the equivalent two electron system  
is shown to have a rich structure, which should be experimentally verifiable.
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Chapter 1

Introduction

The advent of new lithographic techniques have made it possible to couple a 

spatially inhomogeneous magnetic field, on a length scale of nanometres, to a two 

dimensional electron gas (2DEG). This technology has enabled novel magnetic 

structures to be investigated. Many of these structures have been fabricated by 

depositing magnetic strips near a 2DEG. These strips are generally ferromagnetic, 

and provide a spatially modulated magnetic field with a rectangular geometry. 

Alternatively, strips of superconducting material near a 2DEG in an external 

magnetic field can also be used to achieve this. If the spatially modulated 

magnetic field was of circular geometry, it would be possible to confine electrons 

to a disk region, in what is commonly termed a magnetic quantum dot. It has 

been suggested that such systems could be used as memory elements in future 

electronic components [1]. Magnetic quantum dots are dissimilar to electrostatic 

quantum dots in that the form of the confinement is different. It is therefore 

expected that the physical properties will also be different. Research in to these 

physical properties is very much in its infancy, and little work has been performed 

so far to investigate the physics of these novel and potentially fascinating systems. 

The main aim of this thesis is to redress this.

1
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One of the reasons why these systems are of interest, is the way the 

inhomogeneous magnetic field affects the motion of the electrons in the system. 

There are regions of zero and non-zero magnetic field. In the region where the 

magnetic field is finite, the lowest energy state the electrons can occupy is the 

zeroth Landau level [2]. This state has an energy that is non-zero. In the region 

where the magnetic field is zero, the electrons are essentially free and the lowest 

energy state they can occupy is roughly zero. Therefore electrons moving from the 

zero magnetic field region will encounter an energy barrier. If the inhomogeneous 

magnetic field was circularly symmetric (as is the case of the magnetic quantum 

dot) this inhomogeneity could be used to confine electrons to a disk region.

To the authors knowledge magnetic quantum dots have not been realised 

experimentally. Other magnetically confined electron systems have been 

fabricated with a rectangular geometry [3, 4, 5, 6], and interesting physical 

effects, such as oscillations in the magnetoresistance have already been observed. 

Magnetic quantum dots have been the subject of some theoretical interest. The 

work by Solimany and Kramer [7], and independently Ibrahim and Peeters [8], was 

the first in this field. Solimany and Kramer [7] modelled the confining magnetic 

field in the magnetic quantum dot as a step function. That is, in the magnetic 

field free region the magnetic field is exactly zero, and in the region with magnetic 

field the confining magnetic field is equal to a constant. Although this is a good 

approximation for the majority of cases, it does not fully take in to account many 

recent experimental and theoretical findings [9, 10]. These findings show that 

a step function is not an accurate form for the confining magnetic field, if the 

ferromagnetic or superconducting material is very close to the 2DEG. In this 

regime, it is found that the confining magnetic field contains an overshoot at the
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point where there is a transition from the magnetic field free region to the region 

with magnetic field. To take account of possible future experiments, this effect 

should be included in any theoretical model devised to describe the magnetic 

quantum dot. In the work performed by Peeters et al [9] and later by Reijniers 

et al [10], this effect is fully accounted for.

The most common technique employed to find the eigenstates of a magnetic 

quantum dot is wave function matching [7, 11, 12]. It is a requirement of 

quantum mechanics that the wave function of a system, and its derivative must be 

continuous. This is ensured by matching the wave functions and their derivatives 

at the discontinuity in the system. In the magnetic quantum dot this is the point 

at which there is a transition from the magnetic field free region to the region 

with magnetic field. By matching the wave functions and their derivatives at 

this transition point, the energy eigenvalues of the single electron system can be 

obtained.

In this thesis a further method to obtain the eigenstates of a magnetic quantum 

dot is employed. The method is exact numerical diagonalisation, and this, given 

infinite computer resources, can be used to determine the energy eigenvalues, not 

only of the ground state of a magnetic quantum dot but also of excited states. 

A significant advantage of the numerical diagonalisation over the technique 

discussed previously, is that the method is readily adapted to calculate the 

eigenstates of a magnetic quantum dot containing more than one electron. Peeters 

et al [9] and independently Reijniers et al [10] have considered a system containing 

more than one electron, however, these authors neglect the effect of the electron- 

electron interaction. Using the exact numerical diagonalisation method, the effect 

of the electron-electron interaction in a magnetic quantum dot is investigated in



Chapter 1 4

this thesis for the first time. The electron-electron interaction is a fundamental 

property of a many electron system, and due to the scale of these systems, must 

be accounted for to obtain reliable results that are comparable with any future 

experimental data.

1.1 Aims

The aim of the present work is to develop a greater understanding of the 

potentially fascinating physics of magnetic quantum dots, and this goal is largely 

achieved through the investigation of the electronic and optical properties of this 

system. The physics of the single electron system is mostly understood, and much 

of it can be investigated with the techniques that have already been developed, 

such as numerical diagonalisation and wave function matching. To complete 

the single electron picture, in this work, the wave function matching method is 

applied, for the first time, to a magnetic quantum dot with an overshoot in the 

confining magnetic field. In contrast, the physics of the many electron system is 

yet to be examined fully, and the little work that has been performed in this field 

ignores the effect of the electron-electron interaction. This must be accounted for 

to obtain reliable results, and for the case of the electrostatic quantum dot it has 

been shown to result in a range of physically observable effects, and structure in 

the magnetisation and specific heat capacity has already been predicted [13, 14]. 

Due to the unique form of the confinement in a magnetic quantum dot, it is 

expected that the electron-electron interaction will strongly affect the electronic 

and optical properties of this system. For example, in contrast to an electrostatic 

quantum dot, confinement of interacting electrons is not always possible. Because 

the form of the confinement is such that it is constant everywhere outside a



Chapter 1 5

magnetic quantum dot, certain energy conditions must be satisfied for interacting 

electrons to be confined. This unusual characteristic of a magnetic quantum dot 

is examined in great detail in this thesis, and it is found to have a great influence 

on the resulting physics of this system.

1.2 Synopsis of the Thesis

To complement the introductory information on magnetic quantum dots given 

in this chapter, in the following chapter a comprehensive discussion of the relevant 

background needed for subsequent chapters is given. In particular, fabrication 

techniques are suggested, and the magnetic field profiles in these proposed systems 

are described. Model magnetic field profiles are introduced that are based on the 

real magnetic field profiles. Given these, a simple theoretical model of a magnetic 

quantum dot is formulated, and this serves as a basis for the work contained in 

subsequent chapters.

In chapter 3, the theoretical model of a magnetic quantum dot is applied 

to a system containing one electron. Two different numerical methods are 

used to obtain the single electron eigenvalues. The first method is a numerical 

diagonalisation technique, and some details of this method are given in chapter 

2. In chapter 3, this technique is developed further. The second method 

used to obtain the single electron results is a technique based on wave function 

matching. The matching technique is similar to those described in elementary 

quantum mechanics texts [15], in which solutions are required for systems with 

potential steps and potential wells for instance. It is found that severe numerical 

problems are encountered on applying wave function matching to a system with 

an overshoot in the confining magnetic field, and ways to overcome these problems
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are given. Finally, the results obtained using both methods are compared and a 

discussion of the advantages and disadvantages associated with each method is 

given.

The main purpose of chapter 4 is to investigate the effect of the electron-electron 

interaction in a magnetic quantum dot. To the authors knowledge interaction 

effects have not been included in any calculations concerning magnetic quantum 

dots thus far, and therefore the results presented in this chapter are thought to 

be unique. The results are obtained using exact numerical diagonalisation, and in 

order to facilitate this the Coulomb matrix elements are required. This calculation 

is discussed in chapter 4, however, due to its complexity the details are given in 

appendix A. For a numerical diagonalisation calculation that includes a large 

number of Landau levels, numerical problems are encountered upon attempting 

to evaluate these matrix elements. These problems are discussed in detail and 

ways to overcome them are described. The eigenstates are obtained, firstly, for 

a system containing two interacting electrons. It is shown that confinement of 

two interacting electrons is possible, but only if certain energy conditions are 

satisfied. The effect of a homogeneous external magnetic field throughout the 

system is also considered. In a real system it is thought that the 2DEG would 

be of finite thickness, and therefore calculations are performed in order to reflect 

this. Other effects expected in a realistic system are speculated upon. A system  

containing three interacting electrons is investigated, and it is shown that it is 

possible to confine all three electrons in the magnetic quantum dot.

Chapter 5 begins with an overview of far infrared radiation (FIR) experiments, 

and specifically these experiments applied to electrostatic quantum dots. 

Subsequently the discussion is extended to include magnetic quantum dots. To
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model the interaction of the electromagnetic radiation with the magnetic quantum 

dot the well known dipole approximation is used, and the dipole matrix elements 

are calculated. The FIR response of a magnetic quantum dot as a function of 

the confining magnetic field is calculated for a GaAs and InSb system containing 

one and two electrons. It is shown that the FIR response of the one and two 

electron systems is dissimilar and that this is a consequence of the electron- 

electron interaction in the two electron systems. The FIR response of a InSb 

magnetic quantum dot containing two interacting electrons is shown to have an 

unusual structure, and a possible explanation for this is given. The FIR response 

of a GaAs and InSb magnetic quantum dot is also calculated as a function of an 

external magnetic field. It is shown that the FIR response of the one electron 

GaAs system is similar to that of an electrostatic quantum dot. The FIR response 

of the two electron systems exhibit interesting structure, and this is shown to be 

a consequence of changes in the ground state quantum numbers as the external 

magnetic field increases.

Finally, chapter 6 summarises and concludes the work of this thesis. 

Additionally, suggestions are made for future work.



Chapter 2

Background

In this chapter, a theoretical model of a magnetic quantum dot is introduced. 

The model is used to determine the single electron hamiltonian of the system, 

which in turn is used to formulate a many electron hamiltonian. By numerically 

diagonalising the many electron hamiltonian, the eigenstates of a magnetic 

quantum dot can be determined. This method is used to obtain the energy 

eigenvalues of a single electron system in chapter 3, and a system containing up 

to three electrons in chapter 4. The single electron hamiltonian is also used in 

chapter 3, where an alternative method, based on a matching procedure, is used 

to determine the electron energies of a one electron system.

This chapter is organised as follows. First, an overview of existing magnetic 

structures and their properties is given. The next section is devoted to magnetic 

quantum dots. A description of two proposed fabrication techniques is presented. 

The form of the magnetic field profile in a magnetic structure is then investigated, 

and two model magnetic field profiles are introduced. The model magnetic field 

profiles are used in the following section, in which the theoretical framework for 

the description of a magnetic quantum dot is constructed. Finally, the numerical 

diagonalisation method is discussed.

8
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2.1 Magnetic Structures

Several experimental groups have succeeded in coupling spatially periodic 

magnetic fields to a two dimensional electron gas (2DEG). H. A. Carmona et 

al [3] deposited an array of superconducting strips on the surface of a GaAs- 

AlGaAs heterostructure. P. D. Ye et al [6] and S. Izawa et al [5] achieved 

magnetic modulation by depositing ferromagnetic strips on top of a GaAs-AlGaAs 

heterostructure. The groups deposited arrays of strips with periods between 

500 nm and 1 pm. In the experiments performed by H. A. Carmona et al 

[3], P. D. Ye et al [6] and S. Izawa et al [5] the magnetoresistance oscillations 

predicted by Peeters and Vasilopoulos [16] were observed for the first time. 

These oscillations are analogous to the Weiss oscillations observed when a 2DEG 

is subject to a weak periodic electric field [17]. The oscillations result from 

a commensurability effect between the two characteristic length scales of the 

system: the classical cyclotron radius and the period of the magnetic modulation. 

Further experiments have been performed to investigate the magnetoresistance 

of hybrid ferromagnetic/semiconductor devices. The group at Nottingham [18] 

have measured the magnetoresistance, and used this to deduce the hysteretic 

properties of a thin ferromagnetic line on top of a 2DEG. The same group have 

also investigated the temperature dependence of the magnetoresistance in these 

devices [19], and found that for a given magnetic field the magnetoresistance 

decreases with increasing temperature.

Many other magnetic structures have been proposed and have been investigated 

theoretically. Ibrahim and Peeters [8] have considered several systems in which 

a periodic magnetic field is present. These include a magnetic Kronig-Penney 

system in which the magnetic field profile consists of a periodic array of S
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functions with alternating sign, a system with a sawtooth magnetic field profile, 

a system with a sinusoidal magnetic field profile and a system with a step 

function magnetic field profile. While the previous work is concerned with 

periodic magnetic structures, earlier work by Peeters and Matulis [20] includes 

a theoretical investigation of electrons coupled to a one dimensional magnetic 

step, magnetic barrier and magnetic well. Further theoretical work has been 

performed by a number of groups [7, 9, 11, 12], to investigate the properties 

of a two dimensional magnetic well with cylindrical symmetry. A system with 

this form is known as a magnetic quantum dot, and its electronic and optical 

properties form the foundation for the work contained in this thesis.

2.2 M agnetic Quantum Dots

In this section the fabrication techniques employed by H. A. Carmona et al 

[3], P. D. Ye et al [6] and S. Izawa et al [5] are discussed. It is proposed that the 

techniques may be adapted to produce a magnetic quantum dot. The form of the 

magnetic field profile in a magnetic quantum dot is then investigated, and finally 

a theoretical model of a magnetic quantum dot is developed.

2.2.1 Fabrication Techniques

The system investigated by H. A. Carmona et al [3] consists of a 2DEG formed 

in a standard GaAs-AlGaAs heterostructure. A metallic gold gate, thickness 150 

nm, is deposited on the surface of the heterostructure. The purpose of the gold 

gate is to screen the electric field modulations that are produced by the differential 

contraction between the superconducting strips and the 2DEG [21]. Insulating 

germanium of thickness 200 nm is then deposited and finally, superconducting
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strips of thickness 100-200 nm are fabricated. P. D. Ye et al [6] and S. Izawa et 

al [5] deposited ferromagnetic instead of superconducting strips. P. D. Ye et al 

[6] used a 10 nm NiCr film to screen the electric field modulations, and deposited 

200 nm dysprosium strips, while S. Izawa et al [5] deposited 150 nm nickel strips 

and screened the electric field modulations by electrically connecting them, to 

ensure that all parts of the striped gate were at the same electrical potential.

In this chapter, both methods of fabricating magnetic structures are discussed 

and it is shown in the next section that the fabrication method affects the 

magnetic field profile in the structure. To fabricate a magnetic quantum dot, 

the previous techniques need only a slight modification. Figure 2.1 (top) shows 

a schematic diagram of a proposed magnetic quantum dot structure that is 

fabricated by depositing a ferromagnetic film. It is proposed that a thin film 

of ferromagnetic material, which is magnetised in the growth direction of the 

structure, is deposited over the area of the device. Using lithography techniques 

a cylinder of this thin film could be etched away, leaving a volume at the 

centre of the device devoid of magnetic material. Figure 2.1 (bottom) shows 

a schematic diagram of a proposed magnetic quantum dot structure that is 

fabricated by depositing a superconducting material near to a 2DEG. To fabricate 

this structure, it is proposed that a thin disk of a superconducting material is 

placed on top of the 2DEG. If the system is subject to an external magnetic field, 

the superconducting disk would screen the magnetic field directly underneath, 

a consequence of the Meissner effect. If it is assumed that the structures are of 

similar dimensions to those used in the experiments performed by H. A. Carmona 

et al [3], P. D. Ye et al [6] and S. Izawa et al [5], the dimension of the structures 

in the growth direction is approximately 700 nm.
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Figure 2.1: Schematic diagram of a proposed magnetic quantum dot structure fabricated 

using a ferromagnetic material (top) and a superconducting material (bottom). The vertical 

arrows indicate the location and direction of the intrinsic magnetic field (top) and the external 

magnetic field (bottom).
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2.2.2 Magnetic Field Profile

The form of the magnetic field profile in a magnetic structure, depends on the 

separation between the ferromagnetic or superconducting material and the 2DEG. 

The magnetic field profile becomes interesting if the separation is of the order of 

the width of the ferromagnetic or superconducting material. On this length scale 

there is a coupling between the magnetic field from the ferromagnetic material, 

or the screening caused by the superconducting material and the 2DEG.

The relationship between the magnetic field profile, and the separation 

between a ferromagnetic or a superconducting material and the 2DEG, has been 

investigated theoretically by Peeters et al [1,9], and more recently by Reijniers et 

al [10]. Figure 2.2 is a schematic diagram of the magnetic field profile produced by 

a ferromagnetic strip (after Peeters [1]). The figure shows how the magnetic field 

profile varies with position, r e ,  along a ferromagnetic strip of width d. The two 

curves represent differing separations, z0, between the ferromagnetic material and 

the 2DEG. When z0 =  0.3d (dashed curve), the magnetic field is roughly constant 

under the ferromagnetic strip. Under the edge of the ferromagnetic strip the 

magnetic field begins to decrease steadily, and away from the ferromagnetic strip 

the magnetic field is roughly zero. With =  O.ld (solid curve), the separation 

between the 2DEG and the ferromagnetic material is less. The figure shows that 

this has a drastic effect on the magnetic field profile produced by the ferromagnetic 

strip. Directly under the ferromagnetic strip the magnetic field is no longer 

constant. At the edge of the ferromagnetic strip the magnetic field decreases 

sharply and becomes negative, before eventually rising to roughly zero away from 

the ferromagnetic strip. The differing forms of these two curves can be explained 

with the aid of figure 2.3. The figure shows a schematic diagram of the magnetic
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Figure 2.2: Schematic diagram of the magnetic field profile produced by a ferromagnetic strip 

(after Peeters [1]). The solid curve is for z0 =  O.ld and the dashed curve is for zQ =  0.3d.

field lines around a ferromagnetic material close to a 2DEG. When z0 =  0.1c?, it is 

seen that all the magnetic field lines penetrate into the 2DEG. The figure shows 

that the direction of the magnetic field of the inner magnetic field line (closest 

to the edge of the ferromagnetic strip) is into the 2DEG, this would produce a 

net negative magnetic field in this region, hence explaining the negative trough 

present in figure 2.2. Underneath the ferromagnetic strip, the direction of the 

magnetic field is out of the 2DEG, this results in a net positive magnetic field, 

hence the positive magnetic field in figure 2 .2 . When z0 =  0.3d, the 2DEG is 

further away from the ferromagnetic strip. In this case, the inner magnetic field 

lines would not penetrate into the 2DEG under the edge of the ferromagnetic 

strip, hence there would be no net negative magnetic field in this region, and the 

negative trough present in the previous example is no longer present.
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Figure 2.3: Schematic diagram of the magnetic field lines emanating from a ferromagnetic 

material. The solid horizontal lines indicate the position of the 2DEG, with a separation, z0, 

between the 2DEG and ferromagnetic material.

A structure fabricated by depositing a superconducting material near to a 

2DEG has a very different magnetic field profile. Reijniers et al [10] calculated 

the magnetic field profile induced in the 2DEG by a very thin superconducting 

disk subject to an external magnetic field. The results of these calculations are 

shown in figure 2.4. The figure shows a schematic diagram of a figure from 

Reijniers et al [10]. Magnetic field profiles for two differing separations, z, between 

the 2DEG and superconducting disk are shown, and all lengths are measured in 

units of the superconducting disk radius a. It is seen that for both curves, the 

magnetic field under the superconducting disk (between r / a  =  0 and r / a  =  1) 

is small. This is a consequence of the Meissner effect. The magnetic field far 

from the disk becomes equal to the external magnetic field Ba. It is the form of 

the magnetic field under the edge of the superconducting disk that is of interest. 

The figure shows that for both curves there is an overshoot of the magnetic field.
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Figure 2.4: Schematic diagram of a figure from Reijniers et al [10], showing the magnetic field 

profile produced by a superconducting (s/c) disk subject to an external magnetic field. The 

radius of the s/c disk is denoted by a and Ba is the external magnetic field. The inset shows 

a schematic diagram of the external magnetic field lines around the s/c disk close to a 2DEG 

(indicated by thick horizontal line).

For z /a  =  0.2 (dashed curve) this overshoot is only slight, but for z /a  =  0.01 

(solid curve) the magnetic field overshoot is very prominent. The cause of the 

prominent overshoot is attributed to the dense magnetic field lines around the 

edge of the superconducting disk (see inset in figure 2.4). When the disk is close 

to the 2DEG, these dense magnetic field lines penetrate into the 2DEG, this 

results in a large positive magnetic field in this region. As the disk is moved 

away from the 2DEG, the magnetic field lines in the 2DEG under the edge of 

the superconducting disk become less dense, hence the overshoot becomes less 

prominent.
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Figure 2.5: Model magnetic field profiles and their corresponding vector potentials.

In order to simplify the theoretical model that is discussed in the next section, 

two model magnetic field profiles that approximate the real magnetic field profiles 

shown in figure 2.2 and figure 2.4 are introduced. The model magnetic field 

profiles that are proposed are shown in figure 2.5, along with their corresponding 

vector potentials. The magnetic field profile shown in the lower frame of figure 2.5 

(a), could represent a real system in which a superconducting disk and 2DEG are 

separated by roughly z =  0 .2ro (see dashed curve in figure 2.4). The profile could 

also represent the magnetic field profile produced by a ferromagnetic material 

when the separation between the ferromagnetic material and 2DEG is roughly 

0.3d (see dashed curve in figure 2.2). Upon comparing the real magnetic field 

profiles with the model profile, several small differences are noticed. The model 

does not account for the slight overshoot of the magnetic field at rQ (dashed 

curve in figure 2.4), and the non-zero magnetic field in the region directly under



Chapter 2 18

the superconducting disk (dashed curve in figure 2.4) or in the region not directly 

under the ferromagnetic material (dashed curve in figure 2 .2). The lower frame of 

figure 2.5 (b) shows a second model magnetic field profile. The model represents 

quite well the real magnetic field profile shown by the solid curve in figure 2 .4 . 

The prominent overshoot seen in figure 2.4 is represented in the model by a 8 

function at r0.

Reijniers et al [10] have calculated the single electron energy spectrum for 

a magnetic quantum dot, using the model magnetic field profiles and the real 

magnetic field profile. They found that including the real magnetic field profile 

in their calculations, produced results which show an intermediate behaviour 

between the results produced using the two model profiles. The calculation using 

the real magnetic field profile did not alter their conclusions qualitatively. It is 

therefore supposed, that the two model magnetic field profiles contain all the 

essential physics of the system.

2.2.3 Theoretical M odel of a Magnetic Quantum Dot

In this section, a simple theoretical model to describe a magnetic quantum dot 

is developed. A common approximation utilised when modelling quantum dots, 

and employed here, is to assume that the electrons move in the x — y  plane. This 

is justified because in these devices the confinement in the x — y plane is much 

weaker than in the growth direction, z. If this is the case then the 2DEG can be 

treated as a layer of infinitesimally small thickness, and the magnetic quantum 

dot can essentially be treated as a two dimensional system. In a real system the 

2DEG is of finite thickness. A more sophisticated model is introduced in chapter 

4 to take account of this.
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For a system in which the 2DEG is treated as a layer of infinitesimally small 

thickness, the model is one in which the electrons move in the x — y  plane and 

are subject to a perpendicular magnetic field, B =  (0,0, Bz). The device has 

cylindrical symmetry, and it is assumed that the magnetic field is non-zero except 

within a cylinder of radius r0. As with many quantum mechanics problems, 

the starting point is to write down the hamiltonian that describes the system. 

For a system that is subject to a magnetic field, it is well known from classical 

electrodynamics that the hamiltonian is

f t = (p +  eA (r))»
2m*

where e is the absolute value of the electronic charge, m* is the effective mass of 

the electron, p is the momentum of the electron and A(r) is the vector potential. 

Expanding the square on the right hand side of Eq. 2.1, replacing p by the 

momentum operator, —zftV, and adding a Zeeman energy term gives

= - < £ v 2  -  S A(r) • v + i A ( r ) 2 + ( 2 -2)

where g* is the effective g factor, p s  is the Bohr magneton and Sz is the z 

component of the electron spin. Due to the inhomogeneity of the magnetic field 

in the system, the vector potential has the general form defined by

{A(r) for r >  r0,
(2.3)

0 for r <  r0,

where r is the cylindrical radial coordinate. At this point an explicit form for the 

vector potential is needed.

To obtain a form for the vector potential the relation B =  V x A is used. In 

cylindrical coordinates, the vector potential is A =  (Ar,A^), where A r is the r 

component, and A $ is the </> component of the vector potential. In this model the
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magnetic field is directed along the 2 axis, and so Ar =  0. The magnetic field is 

then given by

Using Eq. 2.4 it is possible, given the magnetic field profile, to determine an 

explicit form for the vector potential in the system. The model magnetic

where 9(r — r0) =  1 for r > rQ and 9(r — r0) =  0 for r < r 0 is the step function. 

The lower frame of figure 2.5 (b) shows a model magnetic field profile also with 

a step function form, but with a S function at r0. This may be written as

Given the magnetic field profiles, it is now possible to determine the vector 

potential in each case. To do this, the magnetic field profiles are substituted into 

Eq. 2.4 and the equation is solved for A ^ r ) .  The vector potential corresponding 

to a magnetic field profile given by Eq. 2.5, is shown in the upper frame of 

figure 2.5 (b), and can be written as

(2.4)

field profiles discussed in the previous section are now utilised. Figure 2.5 (a) 

(bottom) shows a model magnetic field profile with the form of a step function. 

Mathematically this may be written as

B(r) =  Bz0(r -  r„) (2.5)

B(r)  =  Bz8(r -  r„) +  BzrS(r -  r0)/2. (2 .6)

(2.7)

That corresponding to Eq. 2.6 is given by

(2 .8)

the form of which is shown in the upper frame of figure 2.5 (a). It should 

be apparent that while these two forms for the vector potential approximate
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the vector potentials in the real systems well, they are independent of z, the 

separation between the ferromagnetic material or superconducting disk and the 

2DEG. To avoid repeatedly referring to Eq. 2.7 and Eq. 2.8, in subsequent 

chapters, a system with a vector potential given by Eq. 2.7 is referred to as 

a system without a magnetic field overshoot at r0, and a system with a vector 

potential given by Eq. 2.8 is referred to as a system with a magnetic field overshoot 

at r0. In the following section, the hamiltonian is used to develop a numerical 

diagonalisation method. In subsequent chapters this method is employed to 

determine the energy spectrum for the magnetic quantum dot system.

2.3 Numerical Diagonalisation

In this section, a numerical diagonalisation technique is discussed. The 

method is used to calculate the eigenstates of a single electron system and a 

system containing up to three interacting electrons in chapter 3 and chapter 4 

respectively. The basic idea is to diagonalise an TV-electron hamiltonian. This 

is accomplished by using a many particle basis set, that is a many particle wave 

function expressed as an infinite sum of Slater determinants. Given infinite 

computer resources, a calculation of this type would yield the exact energy 

eigenvalues, not only of the ground state but also of excited states. Obviously the 

use of an infinite series of Slater determinants is not a viable option, and therefore 

to make the problem tractable the many particle basis set must be truncated. 

The choice of the single particle functions from which the Slater determinants 

are constructed is of course arbitrary. However, to reduce the number of basis 

states required to achieve a good accuracy in the calculation, it is prudent to 

choose single particle functions that describe the system as well as possible.
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The system consists of A-interacting electrons. As usual, the starting point is 

to write down the hamiltonian describing the system. This has the form

H = Y,h(Ti ) +  (2 -9)
1=1 Z 1=1 j  = 1

where the first term gives the single particle energy of the system and the 

second term describes the Coulomb interaction between the electrons. To aid 

computation of the energy eigenvalues, the transformation to an occupation 

number representation is made. This yields

H  =  \  H  {ij\v\kl)c\c}cick, (2.10)

where i, j, k and I are single particle states, c\ is a creation operator and c* is a 

destruction operator. Explicitly the matrix elements in Eq. 2.10 have the form

(*1%) =  /  # (r ) /i(r )^ (r )d r  (2.11)

and

(ij\v\kl) =  J / ^ ( r i ) ^ ( r 2) , ( r i ,r 2) ^ ( r i ) ^ ( r 2)dr1dr2. (2 .12)

To determine the energy eigenvalues of the system, the iV-electron hamiltonian 

given by Eq. 2.10, is diagonalised. There exist many algorithms to accomplish 

this. To obtain the results shown in this thesis a standard “Black Box” routine 

from the NAG library is used. A routine of this form is capable of diagonalising 

matrices with an order equal to several thousand. The largest hamiltonian matrix 

utilised in this work is typically 1000x 1000.

To construct the Slater determinants, the single particle functions are chosen 

to be the well known Fock-Darwin states [22, 23]. These states form the exact 

solution of a system with one electron in a homogeneous magnetic field, and are
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given by
Hi

M r ,  <t>) =  iVnie - 2/ ^  2 Lgl (J ^ j e-»*, (2.13)

where

Nn‘ ~  lBV ^ U n + W  ( 2 ' 1 4 )

is a normalisation constant, Ib =  y h / e B  is the magnetic length, n is the radial 

quantum number, I is the angular momentum quantum number and L]^(r2/2l%) 

is an associated Laguerre polynomial. The reason for this choice of single particle 

function, as opposed to tpi(r,<f)), which is an eigenstate of h, becomes apparent 

on attempting to calculate the Coulomb matrix elements (Eq. 2.12). If the exact 

eigenstates of h are chosen as the single particle functions, the calculation of 

the Coulomb matrix elements involves evaluating complicated integrals in two 

regions, r >  r0 and r <  rQ. With ^FD(r, </>) as the single particle functions, 

a relatively simple analytic form for the Coulomb matrix elements is obtained, 

which can be evaluated using existing software [24]. Although ,0 FD(r, 0) is not an 

exact eigenstate of h, for a system with a small magnetic quantum dot radius 

(r0), accurate values for the energy eigenvalues should be attainable with a 

reasonable number of basis states. Convergence and numerical issues will be 

discussed in more detail in subsequent chapters. Given the form of the single 

particle function it is now possible to calculate explicitly the single electron matrix 

elements (Eq. 2.11) and the two electron matrix elements (Eq. 2.12). In chapter 

3 the details of the single electron matrix element calculations are given. The 

calculation of the two electron matrix element is rather more complicated and is 

discussed in chapter 4, and further details are given in appendix A.
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Single Electron in a M agnetic Quantum D ot

In this chapter, the properties of a single electron in a magnetic quantum 

dot are investigated. The single electron energies of the system are obtained 

using two methods, the numerical diagonalisation method, which is discussed in 

chapter 2, and a matching procedure. Essentially the matching procedure involves 

solving the Schrodinger equation in the regions r < r 0 and r >  r0, and matching 

the wave functions at the boundary, r0. The matching technique has already 

been applied successfully to a system without a magnetic field overshoot at r0 

[7 ,11, 12]. However, for a system with a magnetic field overshoot at r0, the author 

is unaware of any work in which the matching procedure is used to determine the 

single electron energies of the system. In this chapter the matching procedure is 

used to the determine the energies of such a system, and ways to overcome the 

numerical problems associated with evaluating the energies are given.

A considerable amount of theoretical work has already been performed for 

a system without a magnetic field overshoot at r0. An example of such work, 

is that performed by Solimany and Kramer [7]. They determined the energy 

spectrum of the system using a matching procedure. The energies they obtained 

as a function of the angular momentum quantum number, were compared with

24
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the corresponding energies for a system with a single electron in a homogeneous 

magnetic field (commonly known as Landau levels [2]). Their results show that 

the single electron energies increase or decrease with angular momentum quantum 

number, depending on the sign of the angular momentum quantum number, as 

compared to the Landau levels. The same system has also been investigated 

by Heung-Sun Sim et al [11]. They calculated the classical trajectories of an 

electron in a magnetic quantum dot and the corresponding probability densities 

for various eigenstates. They found that if the classical trajectory passes through 

the origin of the magnetic quantum dot, the state carries no current. A system  

with a magnetic field overshoot at rQ has been studied by Peeters et al [9] and 

more recently by Reijniers et al [10]. To obtain the energies of the system, they 

solved the Schrodinger equation numerically, using a Newton iteration technique 

and subjected the solution to the appropriate boundary conditions. Their results 

show, in contrast to the previous system, that the electron energy is increased 

when the maximum of the electron wave function is situated near r0.

This chapter is organised as follows. First, the system without a magnetic 

field overshoot at r0 is investigated. The single electron matrix elements for the 

system are calculated. In the next section the matching procedure is described in 

detail, and finally results calculated using the numerical diagonalisation method 

and the matching procedure are presented. The results show the energy as a 

function of angular momentum quantum number and magnetic quantum dot 

radius. Further results showing the electron density of several systems are also 

presented. In the second part of the chapter the system with a magnetic field 

overshoot is investigated. The single electron matrix elements are given. In the 

next section the matching procedure and the numerical problems encountered
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on applying it to this system are described. Finally, results calculated using the 

numerical diagonalisation method and the matching procedure are presented, and 

comparisons are made with the results obtained for a system without a magnetic 

field overshoot at r0.

3.1 A System without a Magnetic Field Overshoot

3.1.1 Calculation of the Single Electron Matrix Elem ents

In this section, the single electron matrix elements given by Eq. 2.11 are 

calculated explicitly. To do this the hamiltonian inside the magnetic quantum 

dot (hr<ro) and the hamiltonian outside the magnetic quantum dot (hr>To) are 

determined. Once the hamiltonians have been found, the integrals in Eq. 2.11 

can be evaluated, giving an explicit form for the single electron matrix element.

The hamiltonian for a single electron in the magnetic field free region (r <  r0) 

is the hamiltonian for a free electron and is given by

while in the region with magnetic field (r >  r0), the hamiltonian is given 

by Eq. 2.2. Upon substitution of the vector potential for the system without 

magnetic field overshoot, which is given by Eq. 2.7, into Eq. 2.2, the second and 

third terms in the resulting equation take on the form

h r < r °  ~  2 TO*
(3.1)

2m*

e
(3.2)

and
e2B ,V  e2B y 0 e2B 2zrj

r* a ' O8m* 4m* 8m* r28m* r 2
(3.3)
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respectively, where L =  —hlz is the angular momentum. Introducing ujc =  

eBz/m * , where u c is the cyclotron frequency, it follows that

hr > r 0
h2 m*u;2r2 hucl t huclrl

2m 8 +
2r2

m o;cr0 +  m u cr̂0 +
8 r2

(3.4)

where, for the system in question, V 2 takes its cylindrical coordinate 

representation, i.e

V 2 =
d 2 I d  I d 2

+ + (3.5)
dr2 r dr r 2 d(j>2 ’

with <£ being the polar angle. At this stage it is possible to calculate the integral 

in Eq. 2 .11. The term containing V 2 is present in both Eq. 3.1 and Eq. 2 .2 , hence 

this is integrated over all space, i.e from 0 to oo. The remaining terms, are present 

in the hamiltonian that describes the region outside the magnetic quantum dot, 

so these are integrated from rQ to oo. Thus

m*u2r 2 hucl _ hujclrl m*u2r2r 27T roo
(i\h\j) =  I 4>'„n '{r,4>)

J 0 J r0
+

m*u2r* . „  _
+   -----1- 9 VbB zSz8r2

r2ir roo

+  I  IJo Jo

8 2 2r2

^ni(r? <i>)rdrd<l> 

h2 .

2m*
tpni{r, (t>)rdrd(j). (3.6)

Substituting the explicit form for the single particle wave function (Eq. 2.13) into 

this equation and introducing the dimensionless variable x =  r2/2 l2B gives

hu)c
{i\h\j) =  5W

r2 
+  — 
+  11

((2n +  \l\ +  1) -  0  -  +  9 ' hbB A2

hucl m*u2r2

Snnt

+
16

AnA„' [  e Xx^ 1L^l(x)L^}(x)dx 
Jx0

+
huJ m*uj2r2

2
hujc

+ -  -  g*nBBzSz A„A„- J  e xx wL^,(x)L^(x)dx

XnXn, f  ° e~xx^+1L % ) L ^ ( x ) d x  | , (3.7)
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where An =  yjn\/(n  +  |/|)!. There exist many integration routines that can 

be used to evaluate the integrals in Eq. 3.7, for example, Simpson’s rule or 

the trapezium rule. However, these routines often require the integrand to 

be evaluated at a large number of points to obtain an accurate result. A 

more efficient routine, that yields the exact result if the integral is of the form 

/ a°° e~TP(x)dx , where P(x)  is a polynomial, and a >  0, is a modified Gauss- 

Laguerre integration routine [25]. The routine that is used is from the NAG 

library, and is exact for an integral with a finite lower limit. By evaluating each 

of the integrands in Eq. 3.7 at 32 points, integrals are evaluated that are accurate 

to at least seven decimal places. This accuracy of the results is determined by 

comparing the results, with those obtained using the computational mathematics 

software, Maple.

3.1.2 Matching Procedure

In this section, a technique is described to obtain the single electron energies of 

an electron in a magnetic quantum dot. The method that is described is similar 

to that used when solving the potential step problem encountered in elementary 

quantum mechanics, and involves the matching of solutions at a discontinuous 

boundary. To obtain the single electron energies of the system, the Schrodinger 

equation is solved for the two regions, inside the magnetic quantum dot (r <  r0) 

and outside the magnetic quantum dot (r >  r0). The energies are obtained by 

matching the wave functions and their derivatives at the boundary r0.

For the region r <  r0, the Schrodinger equation is given by /ir<ro'0 r<ro(r5 4>) =  

Eipr<ro(r, <t>), where hr<To is the hamiltonian for a free electron and is given by
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Eq. 3.1. On substituting Eq. 3.5 into Eq. 3.1, the Schrodinger equation becomes

Taking advantage of the cylindrical symmetry of the problem allows the wave 

function to be written in its separable form, ipr<r0{r,<t>) =  ur<To(r)e~d(f>. Upon 

substitution into Eq. 3.8, with k2 =  2m*E/h2 and p =  kr  it follows that

This is Bessel’s differential equation, and the solution is a combination of Bessel 

functions, Ji(x), and Neumann functions, Ni(x). Because of the non-regularity 

of the Neumann function at r =  0, this function is disregarded, and the required 

solution is

where C  is a normalisation constant, and the dimensionless quantities, e =  E/Tiuc 

and 77 =  r/Zj3, have been introduced.

In the region r >  rc, the Schrodinger equation is given by hr>ro'ipr>ro(r, 4>) =  

E?/v>ro(r, 0), with hr>To given by Eq. 3.4. The Zeeman term provides only 

a small contribution to the total energy of the system, and is neglected in 

this chapter without affecting the resulting physics. In subsequent chapters 

Zeeman splitting is taken fully into account. Again, a wave function of separable 

form Vv>r0(r>0) =  ur>r0{r )e~tl<*> 1 is employed. Upon substitution of hr>To and 

Vv>r0(r, <̂>) =  ur>ro(r)e~ll<i> into the Schrodinger equation and introducing the 

dimensionless quantities e =  E / Huc and 77 =  r/Zjg, it follows that

h2 \ & _  l d _  1 d2 ' 
2m* dr2 ^  r dr  ^  r2 d<f>2

^r<r„(r, 0) =  E ^ r<ro(r, 4>). (3.8)

(3.9)

UiKthiv) =  CJ,(V2sr]) (3.10)

i2 + in, u = 0. (3.11)
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Introducing the equations leg =  I +  ^0/ 2 , 2f =  leg +  2e and the substitutions 

u(rj) =  and y =  rj1/ 2, the previous equation takes the form of

Rummer’s differential equation

1 +  Keffl — 2 £* G  ri, , 1 i dG
y-^ 2  +  I M  + 1 -  »1 G =  0. (3.12)

Using the notation of Magnus et al [26], the linearly independent solutions of 

Rummer’s differential equation are given by

G ^ ( y )  =  A ^ \ F 1(a-,c-,y) (3.13)

and

G™(y) =  A W y ^ F ^ a  -  c +  1; 2 -  c; y), (3.14)

where -4^  and are normalisation constants, 1^ 1(0 ; c; y) is a confluent 

hypergeometric function, a =  1 +  |/eff| — 2 f/2  and c =  \leg\ +  1. Eq. 3.13 and 

Eq. 3.14 are solutions to Rummer’s differential equation only if c is not an integer 

or zero. This holds when rl/21% ^  n, where n is an integer or zero, and is the 

case dealt with in this section. It will be shown in the next section that for the

special case when r l / 2 lB =  n, the solutions are similar to those obtained for a

system with a magnetic field overshoot at r0. Substituting the explicit form for a 

and c and using the fact that u{rj) — the final form for the wave

function in the region r > r0 is found to be

,2 '
A WlFl  |/eff| +  1; 1 .

(3.15)

U r ix iM  =  " /4

+  , < • > ( ! ) " • %  ( I

To determine the single electron energy of the system, the wave functions (given 

by Eq. 3.10 and Eq. 3.15), and their derivatives are matched at the boundary
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(r =  r0). This ensures that the wave function that describes the system, and its 

slope, are continuous. The continuity relations are

u r<r0{r )\r=r0 =  u r>r0 {r )\r=r0 (3.16)

and

dr“r<r» d (^  =  J * r > r A r )
r=r0 r=r0

(3.17)

To eliminate the unknown quantities, A ^ \  A ^  and C, the continuity relations 

are solved simultaneously. Substituting Eq. 3.10 and Eq. 3.15 into Eq. 3.17, 

performing the differentiations and dividing the resulting equation by A^l\  gives 

an equation with terms containing C / A ^  and A ^ / A ^ \  Ultimately this equation 

is rearranged to give an expression for the single electron energy (see Eq. 3.22), 

however the unknown quantities, C /A W and A ^ /A ^ l\  first must be determined. 

The ratio C / A W is obtained by substituting Eq. 3.10 and Eq. 3.15 into the first 

continuity relation (Eq. 3.16), giving

J I M  J,(y/toh)r V  2  . M  +  l ,

A V > (  2 \ ^  / l - M - 2 ?  r?0
+  A W { ^ 0)   2----' i - I W - T

An equation for the ratio A ^ / A ^  is obtained by demanding that the wave 

function given by Eq. 3.15 vanishes for 77 —► 00 . In order to fulfill this requirement, 

the asymptotic form of the confluent hypergeometric function for large 77 is 

introduced. From Magnus et al [26], the asymptotic form of the confluent 

hypergeometric function is

1F1(a;c;y) =  l [ ^ eV - c, (3.19)

where T(a) is a gamma function. On substituting this result into Eq. 3.15 it is

(3.18)
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found that

**■)»)■. (»7) =  f?1'effle“’’2/4

+  A<2>(?)

4(1) r (lWl +  1) v2/2 f v _ \  V 2 )
r ^ i± M b H V  \ 2  j

"-1 rq -M ) ,„,/2
. (3.20)

To satisfy the condition of the wave function vanishing for a large argument, the 

right hand side of Eq. 3.20 is set equal to zero. It is found that both terms in the 

resulting equation diverge as rj —► oo. The term with factor diverges to a large 

positive value and the term with factor A ^  diverges to a large negative value. 

However, the divergent factors cancel exactly when the ratio of the normalisation 

constants is
4p) rnui + nr('1~|i<fl~2e'i

(3.21)
Aw r(iui + i)r(1~|if l~2e)
4l(i) -  r ^ i± M h S ^ r ( 1 _ | /efl|) -

The final form of the equation used to determine the single electron energy

is obtained as described in the paragraph preceeding Eq. 3.18 and with d\ =  

1 +  \ks\ ~  2 f/2 , ci =  \leg\ +  1, 02 =  1 -  \he\ ~  2 f/2  and c2 =  1 -  |Zeff| this is given 

by

1 /  J,(V2er,0) \ 2 \ l  
2 \ j M (Vterlo) )  \

-  A

Keff[ Vo

v 7 ~  ~2

if! («i; ci; y) + (3) ^  (“2 ) y
- 1 x 2

(3.22)

where

lzeffl

X a2T,° F (n  I I t  I 2 F (n  - - V° '— ,F t I a2 +  1, c2 4-1, -  I -  — 1*1 I 02, 2j y (3.23)

Eq. 3.22 is solved using a numerical routine based on a bisection method [25]. A 

separate routine is used to bracket the root, with the energy value of the initial
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end point used as an initial guess at the energy. The bracketed energy range is

1 x 10 16) is obtained. To evaluate the confluent hypergeometric function, the 

relation

is used, where (a)n =  T(a +  n )/r(a ) is Pochhammer’s symbol. The series is 

evaluated for up to a maximum of n =  1000 , and is truncated if the difference 

between two consecutive terms is less than 1 x 10-20.

3.1.3 Results

In this section the theoretical methods described in the previous sections are 

used to determine the single electron energies of a magnetic quantum dot system  

without a magnetic field overshoot at r0. There are two main aims of the results 

presented in this section. The first is to compare the two numerical methods 

that have been described, and to show that both methods give the same results. 

The second aim is to illustrate various interesting properties of the system, such 

as the energy as a function of the angular momentum quantum number and the 

magnetic quantum dot radius. All the results obtained are for a GaAs system, 

this material has an effective mass, ra*, of 0.067me, where m e is the mass of the 

electron, and a relative permittivity of 12.4.

Figure 3.1 shows the single electron energy as a function of the angular 

momentum quantum number, Z, for a magnetic field, B z =  5 T and a magnetic 

quantum dot radius, r0 =  10 nm. The crosses are the results obtained using 

the matching procedure, and the diamonds are the results obtained using the 

numerical diagonalisation method. To calculate the results using the numerical

then bisected until a value of the energy accurate to machine precision (roughly

(3.24)
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Figure 3.1: Energy as a function of angular momentum quantum number, Z, for magnetic 

field , Bz =  5 T and r0 =  10 nm. The diamonds indicate results calculated using the 

numerical diagonalisation technique and the crosses indicate results calculated using the 

matching procedure.

diagonalisation method, three Landau levels (corresponding to four basis states) 

are included in the calculation. To ascertain that the energies have converged, 

the number of Landau levels included in the calculation is increased by one. 

This is found to shift the energy at I =  0 by roughly 0.3 x 10-3 meV, and the 

energy at I =  10 by roughly 4 x 10-5 meV, equivalent to an error of 0.01% and 

0.001% respectively. It is clear that the energies obtained using the numerical 

diagonalisation method and the matching procedure agree very well. Indeed, the 

points obtained using each method are almost indistinguishable throughout the 

I range. The figure shows that as I increases, the energy gradually increases to a 

constant value at roughly I =  2 and remains constant as I increases further. The
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Figure 3.2: Electron density as a function of radial distance for Bz = 5 T, r0 =  10 nm, I = 0 

(solid curve), I =  1 (short dashed curve) and I =  2 (long dashed curve). The vertical dotted 

line indicates the position of r0.

reason for the gradual increase in energy as I increases from I =  0 to I =  2 can 

be explained by investigating how the electron density varies with increasing I. 

Figure 3.2 shows how the electron density varies as a function of radial distance 

for Bz =  5 T, r0 =  10 nm, I — 0 (solid curve), I =  1 (short dashed curve) 

and I =  2 (long dashed curve). For I =  0 (solid line in the figure) the electron 

wave function is localised at the centre of the magnetic quantum dot. This is 

the magnetic field free region and hence the energy of the electron is lower than 

in the region where a magnetic field is present. If the electron is excited into a 

higher angular momentum state, its orbital radius correspondingly increases [27] 

and the electron wave function becomes localised away from the centre of the 

magnetic quantum dot. The vertical dotted line indicates the position of rc. It
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Figure 3.3: Same as Fig. 3.1 but for a magnetic quantum dot of radius r0 = 60 nm.

is seen for / =  1 and 1 =  2 , that most of the electron wave function is localised in 

the region outside the magnetic quantum dot and so the electron energy increases 

due to the magnetic field. As I becomes large all of the electron wave function 

becomes localised outside the magnetic quantum dot, and the energy becomes 

constant with a value equal to the energy of the zeroth Landau level (huc/ 2).

The electron energy as a function of /, for B z =  5 T and r0 =  60 nm 

is shown in figure 3.3. The crosses indicate the results obtained using the 

matching procedure, and the diamonds indicate the results obtained using the 

numerical diagonalisation method. Seven Landau levels are included in the 

numerical diagonalisation calculation, to obtain energies that are accurate to 

roughly 0.0003% for I =  0 and roughly 0.0002% for I =  10. Again, it is clear that 

energies obtained using the numerical diagonalisation method and the matching 

procedure agree well. The figure shows similar features to figure 3.1, in that the
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Figure 3.4: Energy as a function of magnetic quantum dot radius, r0, for Bz = 5 T, I = 0 

(solid curve), I =  1 (short dashed curve) and I =  2 (long dashed curve).

energy gradually increases to a constant value as I increases. Again, for I =  0 the 

electron wave function is localised at the centre of the magnetic quantum dot. 

The energy for / =  0 is lower for a system with rQ =  60 nm as compared to a 

system with r0 =  10 nm because more of the electron wave function is localised 

in the magnetic field free region. As I increases, the energy increases because 

gradually more of the electron wave function becomes localised outside of the 

magnetic quantum dot. When I >  9 the energy becomes constant with a value 

again equal to the energy of the zeroth Landau level, because all of the electron 

wave function is localised outside the magnetic quantum dot.

Figure 3.4 shows the energy as a function of magnetic quantum dot radius. 

The results are obtained for a system with Bz =  5 T and the energy is calculated 

using the matching procedure. For r0 =  0 nm the system consists of a constant
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magnetic field, hence the energy is equal to the energy of the zeroth Landau level 

for all values of the angular momentum quantum number. As r0 increases, the 

energy decreases steadily because more of the electron wave function becomes 

localised in the magnetic field free region, hence the electron energy due to the 

magnetic field decreases. For large r0, the energy tends to zero, which is the free 

electron energy, because all of the electron wave function is localised inside the 

magnetic quantum dot.

3.2 A  S ystem  w ith  a M agnetic  F ield  O vershoot

3.2.1 C alculation  o f  th e  Single E lectron  M atr ix  E lem en ts

In this section the single electron matrix elements given by Eq. 2.11 are 

calculated explicitly for a system with a magnetic field overshoot at r0. The 

method used is exactly the same as for the system without a magnetic field 

overshoot.

The hamiltonian in the magnetic field free region (r <  rQ) is the same as for 

the system without a magnetic field overshoot and is given by Eq. 3.1. After 

substituting the vector potential given by Eq. 2.8 into Eq. 2.2, and again with 

L =  — hi and u c =  eBz/m*,  the hamiltonian for the region with magnetic field 

(r > r0) is found to be

All the terms in this equation are also present in Eq. 3.4. This is because 

the vector potential given by Eq. 2.7, consists of two terms, the first equal to 

Eq. 2.8. To determine the final form for the single electron matrix elements, the 

hamiltonian inside the magnetic quantum dot (Eq. 3.1), the hamiltonian outside

(3.25)
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the magnetic quantum dot (Eq. 3.25), the single particle wave function (Eq. 2.13) 

and the dimensionless variable, x =  r2/2 l2B are substituted into Eq. 2.11. The 

resulting form for the matrix element is

huc
(i\h\j) =  6u>

hujcl

((2 n +  |/| +  !) — /) +  g*PBBzSz

+

2
r x Q

dnn.'

2 
huc

— 9*Pb B zS z AnAn' f  e  x x ^ L ^ , ( x ) L ^ ( x ) d x
Jo

AnAn' J  e xx ^ lL^,{x)L^{x)dx^ . (3.26)

The integrals in this equation are evaluated numerically using the modified Gauss- 

Laguerre integration routine discussed in section 3.1.1, with each of the integrands 

evaluated at 32 points. Again, the results are verified using Maple, and it is found 

that the results are accurate to roughly seven decimal places.

3.2.2 Matching Procedure

The procedure followed in this section is similar to that described for a 

system without a magnetic field overshoot at r0. For the region r <  r0, the 

hamiltonian is given, as in the previous case, by Eq. 3.1, so the wave function 

in this region is given by Eq. 3.10. The hamiltonian in the region r  >  r0 

is now given by Eq. 3.25. Neglecting the Zeeman energy term, substituting 

Eq. 3.25, Vv>ro(r>0) =  ur>r0e-1^, and the dimensionless quantities e =  E / h u c 

and rj — t/Iq into the Schrodinger equation gives

d?u 1 du 7?2 I2 . .
—  +  -  — u -  — u +  2 =  0, (3.27)
arj1 7] dr) 4 r\l

where 2£ =  I +  2e. The form of this equation is very similar to Eq. 3.11. The 

difference between the two equations is that in Eq. 3.11, Jeff replaces I, other than

this the equations are identical. Substituting u(rj) =  r j^e^2lAG{rj) and y  =  ry2/ 2
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into the previous equation gives Kummer’s differential equation

1 +  |/| — 2fd?G rm n . dG
G =  0. (3.28)

2

It is at this point which the two methods for obtaining the energies become 

dissimilar. The solution to the Eq. 3.28 is no longer given by Eq. 3.13 and Eq. 3.14, 

because I is an integer. If I is an integer then either G ^ ( y )  =  G^2\ y ) ,  with 

G ^ ( y )  given by Eq. 3.13 and G ^ ( y )  given by Eq. 3.14, or one of these solutions 

is not defined [28]. This is also the case for a system without a magnetic field 

overshoot at r0 when r 2/2 l2B =  n, in this case Zeff is an integer. In order to give a 

general solution to the differential equation it is necessary to find another linearly 

independent solution. Luke [28] gives a third linearly independent solution as

G ^ ( y )  =  A^U(a-,c-,y), (3.29)

where A ®  is a normalisation constant, o =  1 +  \l\ — 2 f/2  and c =  |/| +  1. The 

general solution to Eq. 3.28 is then given by

uv>vo(v) =  77|i|e"T72/4 [24(1)iF i(a;c;y) +  A {3)U{a;c;yj\  . (3.30)

The wave function given by Eq. 3.30 is required to vanish as 77 —> 00 . Because 

the confluent hypergeometric function diverges as rj —>• 00 , is set to zero. 

The asymptotic form of the second term is U{a\ c; y) =  y~a [26], so provided a is 

positive, this term converges. The required solution for the region r > r0 is then 

given by

(n) =  ( 1 +  l̂ ~ 2^; |t| +  1; y )  • (3.31)

To determine the single electron energies of the system, the continuity 

relations (Eq. 3.16 and Eq. 3.17) are used. By solving the continuity equations 

simultaneously, the unknown quantities, A ^  and C  can be eliminated, and the
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equation used to determine the single electron energies of the system is found to  

be

2 Vl - \ l \  T)0 U ( a +  l ; c +  1;=  I  (  M V ^ V q) V
2 \ j l+1(V2ivo)J

O ^O ‘ / „2 \Vo 2 JJ (a; c; &-J

This equation is solved using the bisection method, that has been discussed 

previously. In order to evaluate U (a; c; y) numerically, the function is written in 

its alternative form y~a2 Fo(a-, 1 +  a — c;— 1/y)  [29]. To write the hypergeometric 

function as an infinite series, the generalised hypergeometric series [26] is used

pFq(oti,a 2, •" . Op ; &,&.•••>/?, ;z) =  £) ■>%*] ’• S- (3-33)
n = 0  ' W n  711

On substituting the parameters p =  2, q =  0, a i =  a, a 2 =  1 +  a — c and 

z =  —1/y  into the previous equation it is found that the series diverges for 

all z 7̂  0 [26]. Because the series is an infinite power series in —1/y,  where 

y =  r)2/2  and rj =  t / Ib,  the functions U(a; c; 77̂ /2) and U(a +  1; c 4- 1; 7̂ / 2) 

cannot be evaluated for small r0, by the use of a numerical series. To overcome 

this problem, the ratio of the functions is calculated. It is conjectured that the 

divergent factors associated with the individual functions cancel, and therefore 

the ratio is expected to be well behaved.

To obtain an equation for the ratio R  =  U (a+1; c+1; y ) / U (a; c; y),  the following 

relation, obtained from Magnus [26] is divided by U (a; c; y)

~ I 7  (a; c; y) +  aU(a +  1; c +  1; y) =  0, (3.34)
ay

giving

R =  — ----- ~ U ( a - , c ; y ) .  (3.35)
aU{a; c; y) dy

By differentiating Eq. 3.35 with respect to y, and substituting the result, along

with Eq. 3.35 into Kummers differential equation, an equation for R  can be found

(3.32)
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and is given by

(3.36)

This equation has the form of a Riccati equation [30], and is solved using a 

Runge-Kutta routine from the NAG library. The initial value of R  is calculated 

using the generalised hypergeometric series for a large argument (s/initial =  100). 

For an argument of this size the hypergeometric series converges, and the series 

is evaluated in a similar manner to the confluent hypergeometric series. The 

numerical solution to the Riccati equation is then obtained by a step-by-step 

calculation, and values of R  are calculated at specified intervals between 2/initiai 

and the desired end point, yenci =  ro/2- The interval at which R  is calculated, is 

determined by a parameter (=  (yend — 2/imtiai) / where n =  2000 is the number 

of points at which R  is evaluated) in the routine. The accuracy of the solution 

is controlled by a tolerance parameter in the NAG routine. The value of this 

parameter is set to 1 x 10"8 for all the calculations performed in this chapter, 

resulting in a solution accurate to at least seven decimal places.

For values of r0 less than approximately 30 nm, it is found that R  as a function 

of the argument, y, contains a number of singularities, depending on the values of 

the parameters a and c. Figure 3.5 shows how the ratio, R , varies with argument, 

y, for a =  —1.5, c =  5 and r0 =  10 nm. In order to calculate the ratio at 

2/end (~  0.38 in this case), the routine is required to calculate values of R  close 

to a singularity. The numerical routine used to determine the solution of the 

differential equation (Eq. 3.36) fails on calculating large positive or large negative 

values of R. To overcome this problem, if R  is large, a differential equation with 

a solution, 1/R,  is solved. Substituting R! =  1 /R  into Eq. 3.36, the differential
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Figure 3.5: Ratio, R, as a function of argument, y, for o =  —1.5, c — 5 and r0 = 10 nm. 

equation for R ' is found to be

Pn p>
(3.37)

dR' R'2 , , R  n
—  +  a ---------- ( c - y  —  =  0 .
ay y y

As i? becomes large, J7' becomes small, and the solution of Eq. 3.37 can be 

determined using the numerical routine. If |jR| <  0.08 Eq. 3.36 is solved for R , 

otherwise the differential equation given by Eq. 3.37 is solved for R!.

3.2.3 Results

In this section the theoretical methods described in the previous sections 

are used to determine the single electron energies of a magnetic quantum dot 

with a magnetic field overshoot at r0. The results presented are compared with 

the results obtained for a system without a magnetic field overshoot at r0, and 

contrasts are made. Again, all the results calculated are for a GaAs system.
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Figure 3.6: Energy as a function of angular momentum quantum number, I, for magnetic 

field Bz =  5 T and r0 — 35 nm. The diamonds indicate results calculated using the numerical 

diagonalisation method and the crosses indicate results calculated using the matching procedure.

Figure 3.6 shows the single electron energy as a function of angular momentum 

quantum number, I, for a system with a magnetic field overshoot at rc. The 

results are for a system in which the magnetic field, B z =  5 T, and the radius, 

rQ =  35 nm. The crosses are the results obtained using the matching procedure, 

and the diamonds are the results obtained using the numerical diagonalisation 

method. To obtain converged energy values, six Landau levels are included in 

the numerical diagonalisation calculation. This gives an accuracy of ~  0.017% 

for I =  0 and ~  0.08% for I =  10. Again, the figure shows a good agreement 

between the results obtained using the numerical diagonalisation calculation and 

the results obtained using the matching technique. It is observed that the energy 

increases steadily with increasing angular momentum quantum number. As I
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Figure 3.7: Electron density as a function of radial distance for Bz = 5 T, r0 — 35 nm, I = 0 

(solid curve), I — 3 (short dashed curve) and I = 10 (long dashed curve). The vertical dotted 

line indicates the position of r0.

increases further, the energy reaches a maximum and then gradually begins to 

decrease before reaching a constant value. In contrast to the system without a 

magnetic field overshoot at r0, there exists a maximum in the electron energy as a 

function of 1. The same effect has also been reported by Peeters et al [9] and also 

by Reijniers et al [10]. The cause of the energy maximum is explained in terms 

of the effective potential of the systems, however, some insight into the effect 

can be gained by investigating the electron density. Figure 3.7 shows how the 

electron density varies as a function of radial distance for Bz =  5 T, r0 =  35 nm, 

I =  0 (solid curve), I =  3 (short dashed curve) and I =  10 (long dashed curve). 

As expected for / =  0 the electron wave function is localised at the centre of the 

magnetic quantum dot. It is seen in figure 3.6 that the maximum in the energy,



Chapter 3 46

corresponds to an angular momentum quantum number of I =  3. From figure 3.7, 

it is seen that for I =  3 (short dashed curve in the figure), the maximum of the 

electron wave function is situated a distance very close to the radius, rc, away 

from the centre of the magnetic quantum dot (the vertical dotted line indicates 

the position of r0). The form of the effective potential of the system at r0 is 

found from Eq. 3.25 to be V& =  m*ulr2/8, hence at r =  r0, Veg =  m*u2r l /8 .  

By comparing this effective potential with the effective potential of the system  

without a magnetic field overshoot at r0, the reason for the energy increase in 

figure 3.6 becomes apparent. From Eq. 3.4, the effective potential for the system  

without a magnetic field overshoot is

m ' u y  h w j r l  m ' u l r *
V-f =  ~ T ~ +  +  8r  ̂ ’ (3’38)

therefore at r =  r0,

The two terms in this equation cancel exactly with existing constants in the 

hamiltonian (Eq. 3.4), resulting in an energy that is less than the energy for 

the corresponding system with a magnetic field overshoot, and this explains the 

energy maximum in figure 3.6. As I increases further, the electron wave function 

becomes more localised in the region outside the magnetic quantum dot, where 

the magnetic field is constant, and hence the energy gradually decreases and 

eventually becomes equal to the energy of the zeroth Landau level.

This effect can also be seen in figure 3.8. The figure shows the energy as a 

function of magnetic quantum dot radius, rG, for B z =  5 T, I =  0 (solid curve), 

I =  1 (short dashed curve) and I =  2 (long dashed curve). The energy is calculated 

using the numerical diagonalisation method. For rQ =  0 nm the system consists 

of a constant magnetic field, hence the energy is equal to the energy of the zeroth
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Figure 3.8: Energy as a function of magnetic quantum dot radius, r0, for Bz = 5 T, I =  0 

(solid curve), I =  1 (short dashed curve) and I =  2 (long dashed curve).

Landau level for all values of the angular momentum quantum number. For I >  0 

the energy as a function of r0 exhibits a maximum. Again, the maxima in the 

energies occur when the maximum of the electron wave function for a given I, 

is situated a distance very close to the radius, rc, away from the centre of the 

magnetic quantum dot. Therefore the energy is increased in the way described 

previously. As r0 increases further, most of the electron wave function becomes 

localised in the magnetic field free region, and hence the energy decreases.

3.3 Comparison of the Numerical Methods

In this section the advantages and disadvantages associated with each numerical 

method are described, and the factors that influence the choice of which numerical 

routine to use to calculate the single electron energies are discussed.
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The computational time required to perform a numerical calculation is a crucial 

factor that must be considered carefully before undertaking a complex numerical 

calculation. Fortunately, both the numerical routines used to calculate the 

results given in this chapter are computationally inexpensive. For instance, the 

computational time required to obtain the data shown in figure 3.6 is roughly ten 

seconds using a HP 735 workstation, using the numerical diagonalisation method, 

while the time to calculate the data using the matching procedure is roughly five 

minutes. To obtain the data shown in figure 3.1 and figure 3.3, the numerical 

diagonalisation routine again takes roughly ten seconds, while the time taken to 

calculate the data using the matching procedure decreases significantly, taking 

approximately twenty seconds. The increase in CPU time required to calculate 

the data when the system has a magnetic field overshoot, is attributed to the fact 

that this routine evaluates a generally more complicated function. It is thought 

that a significant portion of this time difference is required to the calculate the 

ratio of the hypergeometric functions, R.

Several other factors also influence the choice of routine to use to calculate the 

energies of the systems. The accuracy of the calculated results is very important. 

In the numerical diagonalisation routine this is determined by the number of 

Landau levels included in the calculation. For a calculation involving one electron, 

the errors associated with the data shown in figure 3.1 are better than 0.01%. If 

a more accurate solution is required, the inclusion of more Landau levels in the 

calculation does not increase the CPU time greatly. The results calculated using 

the matching procedure are shown to be accurate to roughly machine precision. 

If greater accuracy is required, the number of bisections the routine performs to 

obtain a value for the energy can be increased. However, this may increase the
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computational time required to perform a calculation.

The final factor that is discussed, is the programming effort that is required to 

write the individual programs. It is found that the routines based on the matching 

procedure are the less laborious to write. The length of each of these routines, 

written using Fortran 77, is roughly 500 lines of code. However, the programming 

effort necessary for the numerical diagonalisation routine is significantly greater, 

and the total length of this routine is over 3000 lines of code. Therefore a 

great amount of effort is required to write the numerical diagonalisation routine. 

However, this method is readily adapted to include more electrons, a fact that is 

exploited in subsequent chapters.
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Interacting Electrons in a M agnetic Quantum

Dot

In this chapter a magnetic quantum dot containing more than one electron is 

investigated, and the new physics that arises as a consequence of the electron- 

electron interaction is discussed. The chapter is organised as follows. First, 

a review of some of the previous work in this field is given. The Coulomb 

matrix elements that are needed for the numerical diagonalisation calculation are 

then determined, and the computational problems encountered on attempting to 

evaluate them are discussed. In the next section, the possibility of a magnetic 

quantum dot confining interacting electrons is investigated. A magnetic quantum 

dot containing two interacting electrons is considered, and the question of how 

to determine if the magnetic quantum dot is able to confine the electrons is 

answered. In the following section, results are presented for a magnetic quantum 

dot containing two interacting electrons, showing regions where confinement 

of the electrons is possible as a function of the magnetic quantum dot radius 

and the confining magnetic field. The theoretical model of the system is then 

modified to account for the three dimensional motion of the electrons in a more

50
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realistic system. The results are compared with the results obtained for the two 

dimensional system. Finally, the effect of adding a third electron to the system  

is investigated and the results are compared with the results calculated for the 

two electron system.

4.1 Previous Work

To date, the author is unaware of any work concerning magnetic quantum dots, 

in which the electron-electron interaction is included explicitly in calculations. 

Peeters et al [9] and Reijniers et al [10] have considered non-interacting electrons 

in a magnetic quantum dot. Through energy considerations, they conjectured 

that an electron will only be situated in the magnetic quantum dot, if its energy 

is lower than in the region outside the magnetic quantum dot (huc/2  if the Zeeman 

energy is neglected). For a system without a magnetic field overshoot at rD, their 

results show that there is an infinite number of states available in the dot, with 

energy less than huc/2,  consequently all the electrons are attracted to the centre 

of the magnetic quantum dot. For a system with a magnetic field overshoot at r0, 

they found that most of the electrons are repelled and forced outside the magnetic 

quantum dot. Only when the radius of the magnetic quantum dot is sufficiently 

large, do magnetic quantum dot states become available with energies less than 

huc/2. From this Peeters et al [9] and Reijniers et al [10] obtained the electron 

filling of a magnetic quantum dot, and determined that the number of electrons 

in the dot increases in discrete steps at particular magnetic quantum dot radii.

Interaction effects in nanostructure boxes were first studied theoretically by 

Bryant [31]. He investigated electron correlation effects of few-electron systems 

confined in quasi-zero-dimensional, ultrasmall, quantum well boxes. He found
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that the single electron matrix elements scale as 1/L2, where L is the linear 

dimension of the quantum well box, while the Coulomb matrix elements scale as 

1/L . Results show that for small L, the Coulomb interactions are insignificant 

compared to the single electron level spacing, and the electrons behave as 

independent, uncorrelated particles. When L is large, the author found that 

correlation effects become important, and the electrons form a Wigner lattice 

[32]. More recently, Maksym and Chakraborty [14] studied interacting electrons 

confined in quantum dots in a magnetic field. Their idealised model consists 

of a confining potential that is parabolic in form and a 2DEG that is of 

infinitesimally small thickness. Their results show, for systems containing three 

and four electrons, that the ground state only occurs at certain “magic” values 

of the total angular momentum quantum number. As the magnetic field is 

increased, the ground state angular momentum quantum number increases to 

a higher “magic” angular momentum quantum number. They suggested that 

the reason for this is because the magnetic field compresses the wave function 

of the system and therefore increases the Coulomb energy. At certain critical 

magnetic fields the system can reduce its energy by making a transition to a new 

ground state, which has a larger spatial extent and a higher angular momentum  

quantum number. Pfannkuche et al [33] investigated the electronic properties 

of an idealised quantum dot system containing two interacting electrons. They 

compared an interacting system with a non-interacting system. For the non­

interacting system, it has been known for many years [22, 23] that the energy 

levels tend to arrange in groups, forming different Landau levels [2]. Pfannkuche 

et al [33] showed that with the interaction, much of the clear structure immanent 

in the non-interacting spectra is destroyed, and energy level crossings within
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each Landau level are observed. The effect of the electron-electron interaction, 

on the total ground state spin quantum number has been studied by Maksym 

and Chakraborty [13] and independently by Wagner et al [34]. Maksym and 

Chakraborty [13] investigated the magnetisation of interacting electrons in a 

parabolic quantum dot. Their results show for systems containing three and 

four electrons, that the magnetisation as a function of the magnetic field contains 

a number of discontinuities. These authors showed that the discontinuities are a 

consequence of changes in the ground state spin and angular momentum quantum 

numbers as the magnetic field increases. Wagner et al [34] investigated the 

ground state energy of a two electron idealised quantum dot, as a function of 

magnetic field. Their results show that as the magnetic field is increased, the 

spin configuration of the electrons oscillates between spin singlet and spin triplet 

ground states. In further studies, more realistic models of quantum dots have 

been used. Bruce and Maksym [35] have included three dimensional motion of 

interacting electrons in their calculations, electron screening effects due to the gate 

electrodes, and made no assumptions about the form of the confining potential. 

They compared their results to an idealised two dimensional system and found 

that the total angular momentum transition of the ground state in the realistic 

model generally occurs at higher magnetic fields as compared to the idealised two 

dimensional system.
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In this section, the calculation of the Coulomb matrix elements given by 

Eq. 2.12 is discussed. The explicit details of the calculation are given in appendix 

A. Here, the numerical and computational issues associated with evaluating the 

matrix elements are discussed, and new methods to compute the Coulomb matrix 

elements are given. Three different ways of evaluating the Coulomb matrix 

elements are investigated.

The evaluation of the Coulomb matrix elements is potentially one of the 

most CPU intensive aspects of a numerical diagonalisation calculation. For a 

calculation that includes a large number of Landau levels, it is found that a 

large number of matrix elements must be evaluated. For example, a two electron 

calculation with total angular momentum quantum number J  =  0, including 

seventeen Landau levels requires 803247 distinct Coulomb matrix elements to be 

evaluated (see figure 4.1), and this number increases further as J  increases. With 

so many matrix elements to evaluate, it is important to develop highly efficient 

algorithms to calculate them.

The underlying method by which the Coulomb matrix elements are calculated, 

is the same for each of the three ways. This method follows from the work of 

Maksym [14], and involves taking the Fourier transform of l / |r | .  The interaction 

potential, u (r i,r2), can then be written as

To calculate an explicit form for the Coulomb matrix elements, this expression 

along with Eq. 2.13 are substituted into Eq. 2.12. The details of the calculation

u (r i,r2) =
e2 1

4nte0 |rx -  r2|

(4.1)
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are given in appendix A, the result being

^ j^a+/3+7+<5

a\p\-f\6\

where

A =

B =

q̂: +  (3 +  -  [\k\ +  \U\ -  |A|]  ̂ , 

^7 +  8 +  -  [\lj\ +  |Z*| -  |A|]^

(4.3)

(4.4)

and X =  li — l{ =  lj — Ik- To evaluate the Coulomb matrix elements, the integral 

over q in Eq. 4.2 can be evaluated in two ways. An analytic form for the integral 

can be obtained by performing a series expansion of the associated Laguerre 

polynomials, the resulting expression can then be integrated term by term. This 

method has been shown to work well [24, 36], for total angular momentum  

quantum numbers of roughly J  < 60, when only one Landau level is included 

in the calculation, and roughly J <  40 when four are included. For higher values 

of the quantum numbers the method is prone to numerical error. The reason 

for this is the roundoff errors that are accumulated due to the cancellation of 

successive terms with alternating sign. To overcome this, the integral is evaluated 

numerically. It is seen that the integral is a product of a Gaussian function and a 

polynomial, and hence can be evaluated exactly using a standard Gauss-Hermite 

routine with the integrand evaluated at 64 points. Using this method to evaluate 

the integral is advantageous in a number of ways. First, it is approximately 

ten times faster than the analytic method, taking roughly 1 ms on a HP 735 

workstation to evaluate one Coulomb matrix element. This method is also more
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numerically stable than the analytic method. If one Landau level is included in 

the calculation, then it is numerically stable for up to roughly J  =  100. Because 

the ground state of the system usually has a much lower value of J, this is not 

a problem. Further, for J  =  0, calculations including up to the eighth Landau 

level are possible, before any numerical problems are encountered.

To obtain converged energy eigenvalues for systems with large radii, 

calculations involving more Landau levels are needed. This is because the Fock- 

Darwin states are only exact when r0 =  0 nm, hence to obtain converged energy 

eigenvalues, more Landau levels must be included in a numerical diagonalisation 

calculation. It is therefore necessary to derive a new method to evaluate the 

Coulomb matrix elements, which is numerically stable for calculations including 

larger values of the quantum numbers. The method that is used is due to Maksym 

[24], and again involves substituting Eq. 2.13 and Eq. 4.1 into Eq. 2 .12. The 

details are given in appendix A, the result being

where s =  (|/»| +  H| — A)/2 and t  =  (\lj\ +  \lk\ — X)/2. The integrals over q, Xi and x2 

are evaluated numerically. To evaluate the q integral, the integrand is calculated 

at 100 points and a Gauss-Hermite routine is used. The X\ and x2 integrals 

are evaluated using a Gauss-Laguerre routine, each with 150 points. Using this 

method to evaluate the Coulomb matrix elements, up to fifteen Landau levels 

can be included in a numerical diagonalisation calculation for J  =  0, before any 

numerical problems arise. If one Landau level is included in the calculation then

(m +  A)! 

q2pL}(x2)
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the routine is numerically stable for up to roughly J  =  80. While this method 

allows calculations involving a larger number of Landau levels, the computational 

time to evaluate a Coulomb matrix element is higher, taking roughly 50 ms to 

evaluate one Coulomb matrix element.

For calculations involving more than fifteen Landau levels, a third method 

to evaluate the Coulomb matrix elements is used. Again the method involves 

taking the Fourier transform of the interaction potential, and substituting this 

along with Eq. 2.13 into Eq. 2.12. The expression that the routine evaluates is 

given here, and the details of the method are given in appendix A. The routine 

evaluates the expression

To evaluate the integrals over x\  and x2, an adaptive integration routine from 

the NAG library is used. This routine is especially suited to oscillating, non­

singular integrands, and calculates an approximation to the integral over a finite 

interval. Because the exponential functions cause the integrands to decay rapidly, 

the upper limit of the integral is set to 20. This ensures precision to roughly 

twelve decimal places. In appendix A it is shown that the analytic form of 

the integrals over Xi and x2 is a Gaussian function multiplied by a polynomial. 

This allows the integral over q, to be evaluated exactly using a standard Gauss- 

Hermite routine, with the integrand evaluated at 220 points. The disadvantage 

of using this method to evaluate the Coulomb matrix elements is that it is 

extremely slow. To evaluate one Coulomb matrix element, typically takes up 

to four seconds. However, the method is extremely stable, and no numerical

X fo Xl <HM+le X2lLn}(Xl)Lnli ( x i ) M ^ Q x l)dxl

X lo (4.6)
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Figure 4.1: The number of Landau levels included in a two electron numerical diagonalisation 

calculation, as a function of the number of distinct Coulomb matrix elements that must be 

evaluated, for J  =  0. The squares indicate results obtained from the numerical diagonalisation 

calculation and the solid curve is the result of a fit of this data to the expression ax4 +  bx3 +  

cx2 -+- dx 4- e.

problems are encountered with a calculation for J  =  0, including up to twenty 

Landau levels.

The issue of the computational effort required to evaluate the Coulomb matrix 

elements is now addressed. Figure 4.1 shows the number of Landau levels 

included in a two electron numerical diagonalisation calculation, as a function 

of the number of distinct Coulomb matrix elements that must be evaluated, for 

a total angular momentum quantum number J  =  0. The squares indicate results 

obtained from a numerical diagonalisation calculation, and the solid curve is the 

result of a fit of this data to an expression of the form ax4 +  bx3 +  cx2 +  dx +  e,
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where a, b, c, d and e are constants. The fit is obtained using the plotting package, 

Xmgr. Obviously fitting the data to expressions of higher degree improves the fit 

further, however as is seen in the plot, the fit to a quartic expression is excellent 

throughout the range of Landau level values. From the figure it is seen that for 

less than approximately six Landau levels, the number of distinct matrix elements 

that must be evaluated is of the order of a few thousand. This corresponds to 

roughly five hours of computational time, using the final method described to 

evaluate the matrix elements. As the number of Landau levels is increased further, 

the number of distinct matrix elements that must be calculated increases rapidly, 

with eighteen Landau levels included in a numerical diagonalisation calculation, 

roughly one and a half million matrix elements need to be calculated. If Eq. 4.6 

is used to evaluate the matrix elements, then over sixty days of computational 

time are needed. Obviously, given finite computing resources, this is far from 

ideal. To make the calculation tractable for numerical diagonalisation calculations 

involving such a large number of Landau levels, the fastest routine that is stable 

is used to evaluate the matrix elements. For calculations including up to the 

eighth Landau level, Eq. 4.2 is used to evaluate the matrix elements. The matrix 

elements are evaluated using Eq. 4.5, for calculations including between the eighth 

and the fifteenth Landau level, otherwise Eq. 4.6 is used.

Several other methods to evaluate the Coulomb matrix elements have been 

devised. Instead of taking the Fourier transform of l / |r | ,  Girvin and Jach 

[37] calculated the Coulomb matrix elements by changing to centre of mass 

and relative coordinates, and evaluated the matrix elements between the lowest 

Landau level states. Ultimately an expression involving a triple sum of terms 

with alternating sign is obtained, and therefore this method is also prone to the
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same numerical difficulties discussed previously due to roundoff errors. Another 

method that avoids such numerical instabilities is due to Stone et al [38]. They 

also calculated the Coulomb matrix elements between the lowest Landau level 

states, and used a Gaussian integral to represent l / |r | .  The resulting formula 

for the Coulomb matrix elements contains an infinite series of positive terms. 

Consequently, the roundoff errors that are discussed previously are avoided. The 

convergence is, however, very slow. The generalisation of this method to include 

higher Landau levels is not easy [24], and therefore the method is thought to be 

unsuitable for calculating the electronic properties of magnetic quantum dots.

4.3 Confining Interacting Electrons in a M agnetic Quantum D ot

In this section the possibility of confining interacting electrons in a magnetic 

quantum dot is discussed. The form of the confining magnetic field in a 

magnetic quantum dot is compared to the confining potential of the more familiar 

electrostatic quantum dot, and contrasts are made. It is argued, for a magnetic 

quantum dot containing two interacting electrons, that confinement is possible, 

but only if certain energy conditions are satisfied. This argument can also be 

extended to discuss systems containing more electrons.

In figure 4.2, the confining magnetic field in a magnetic quantum dot (shown 

by the solid line in the figure) is compared to a typical confining potential 

in an electrostatic quantum dot (shown by the dashed curve in the figure). 

The confining potential in an electrostatic quantum dot can be provided by 

a negatively biased modulated gate fabricated on top of a heterostructure in 

which a 2DEG is defined [39]. Prom the figure it is seen that the confining 

potential in an electrostatic dot, which is usually assumed to be parabolic in
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Figure 4.2: Comparison of the confining potential in an electrostatic quantum dot (dashed 

curve) and the confining magnetic field in a magnetic quantum dot (solid curve).

form, tends to infinity for large distances. Because of this, interacting electrons 

in an electrostatic quantum dot will always be confined. The form of the confining 

magnetic field in a magnetic quantum dot, is defined by the spatial variation of 

the magnetic field in the system, and in turn this is defined by the geometry of 

the ferromagnetic layer or superconducting disk deposited near the 2DEG. The 

figure shows a typical confining magnetic field profile in a magnetic quantum dot, 

and it is seen that the confining magnetic field is constant for large distances. 

Therefore if the repulsive Coulomb force is large enough, electrons will be forced 

outside the dot.

In chapter 3 it is shown that the ground state configuration of a magnetic 

quantum dot containing one electron has an angular momentum quantum number 

I =  0 , for all values of the magnetic field and magnetic quantum dot radius.
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Figure 4 .3 :  A  schematic diagram of the available electron configurations, for a magnetic 

quantum dot containing two interacting electrons. The shaded circles indicate the electrons.

Therefore, the electron is localised at the centre of the magnetic quantum dot (see 

figure 3.2 for example), and hence is always confined. However, this is not the case 

if a second electron is added to the system. Due to the repulsive Coulomb force 

between the two electrons, confinement of both electrons is only possible under 

certain conditions. For two interacting electrons to be confined in a magnetic 

quantum dot, the energy of the electrons localised inside the magnetic quantum 

dot must be less than the energy of any other electron configuration. This can 

be investigated qualitatively by treating the electrons as particles. Under this 

premise an electron is either inside or outside the magnetic quantum dot, and 

figure 4.3 shows a schematic diagram of the possible electron configurations in a 

two electron system.

In the figure, the wells represent the magnetic field profile in the system, with 

the magnetic field at the bottom of the well equal to zero, and the electrons 

are indicated by the shaded circles. Figure 4.3 (a) shows a system in which two 

interacting electrons are confined in the magnetic quantum dot. In figure 4.3 (b),
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one of the electrons is confined in the magnetic quantum dot, and the other is in 

the region with magnetic field. Figure 4.3 (c) shows a system in which both of the 

electrons are in the region outside the magnetic quantum dot. The total energy 

of this system can always be decreased by one electron being localised in the 

magnetic field free region (giving the electron configuration shown in figure 4.3 

(b)) and so the configuration shown in figure 4.3 (c) never occurs. The energy 

due to the magnetic field, of the electron outside the magnetic quantum dot in 

figure 4.3 (b) is constant at any distance, and therefore the total energy of this 

system is decreased by increasing the electron separation, hence the Coulomb 

energy effectively tends to zero. Therefore if one electron is in the magnetic 

quantum dot, and the energy to add the second electron is less than the energy 

due to the magnetic field (huc/2 +  g*p bB zSz), the two electrons can be confined 

and the system is said to be stable.

4.4 Two Interacting Electrons in a Magnetic Quantum Dot

The main aim of this section, is to investigate how the stability of a magnetic 

quantum dot containing two interacting electrons depends on the confining 

magnetic field and the magnetic quantum dot radius. First, the question of 

how to determine if a system is stable is answered and the physics of stability 

is discussed. Results are presented for a GaAs system with and without a 

magnetic field overshoot at r0. For comparison results are also calculated for 

an InSb system. This enables the effect of the material parameters (effective 

mass, relative permittivity and effective g factor) on the stability of the system  

to be investigated. In the next section the results for the GaAs system without a 

magnetic field overshoot at r0 are compared with those obtained when the system
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is in an additional external magnetic field and contrasts between the two sets of 

results are made. The results are also compared to those calculated for a more 

realistic system, with an electron layer of finite thickness.

4.4.1 Determining the Stability of the System

To determine whether a system is stable, an investigation of the two electron 

energy as a function of angular momentum quantum number is undertaken. 

Energies as a function of angular momentum quantum number, for a spin 

unpolarised, 5  =  0, where 5  is the sum of the single electron spin quantum 

numbers, and a spin polarised, 5  =  1, GaAs system without a magnetic field 

overshoot at r0 are shown in figure 4.4. The results shown by the diamonds in 

the figure are for a spin unpolarised system, and the results shown by the squares 

in the figure are for a spin polarised system. The magnetic field is B z =  5 T, 

the magnetic quantum dot radius is r0 =  40 nm, and the results are calculated 

using the numerical diagonalisation method with seven Landau levels included 

in the calculation. This ensures the results are accurate to roughly 0.01% for 

J  =  0 and 0.001% for J  =  12. From the figure it is seen that ground state energy, 

calculated for the given parameters, coincides with J  =  0 for a spin unpolarised 

system and J  =  1 for a spin polarised system. As J  increases, the two electron 

energy increases to a maximum, and as J  increases further, the energy decreases 

steadily. The energy for the spin polarised system is lower for large J  because of 

the Zeeman energy. The energy begins to decrease steadily for large J, because 

one of the electrons is in the magnetic field region. By increasing the angular 

momentum quantum number, J, the separation of the electrons is increased [27], 

hence decreasing the Coulomb energy, and the total energy of the system.
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Figure 4.4: Two electron energy as a function of angular momentum quantum number, for 

a spin unpolaxised, GaAs system without a magnetic field overshoot at r0 (diamonds), and a 

spin polarised, GaAs system without a magnetic field overshoot at r0 (squares). The magnetic 

field is B z =  5 T and the magnetic quantum dot radius is r0 — 40 nm. The solid lines are to 

guide the eye.

To determine whether this system is stable, the ground state energy of the two 

electrons localised in the centre of the magnetic quantum dot (energy at J  =  0 

for S  =  0 or J  =  1 for S  =  1), is compared with the total energy of one electron 

localised in the centre of the magnetic quantum dot and one electron localised at 

an infinite distance from the centre in the region with a magnetic field (energy 

at J  =  oo). The ground state energy for finite J  is found from the calculated 

data, and for the spin unpolarised system the ground state energy coincides with 

J  =  0, and is found to be 2.6347 meV. For the spin polarised system the ground 

state energy coincides with J  — 1, and is 2.6972 meV. Therefore the ground state
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energy at finite J  is 2.6347 meV. To determine the energy at J  =  oo, the energy 

of the electron localised in the centre of the magnetic quantum dot is calculated 

using the numerical diagonalisation method, and is found to be 0.9597 meV. The 

energy of the second electron is the energy due to the magnetic field and is given 

by huc/ 2 +  g*pBBzSz, where g* =  -0 .4 4  is the effective g factor for GaAs and 

Sz =  1/ 2 , hence the energy at J  =  oo is found to be 2.6079 meV per electron. 

Comparing this with the energy per electron at J  =  0, which is 2.6347 meV, it is 

found that the energy at J  =  oo is the true ground state of the system, and the 

magnetic quantum dot is unable to confine both electrons, hence this system is 

unstable.

Repeating this procedure for systems with different confining magnetic fields 

and magnetic quantum dot radii, it is possible to determine how the stability 

of a magnetic quantum dot depends on these parameters. Figure 4.5 shows the 

stability as a function of the system parameters, for a GaAs magnetic quantum 

dot without a magnetic field overshoot at rc. The solid curve in the figure is the 

result of a least squares fit to the data, and this is discussed more thoroughly in 

section 4.4.2. The region to the right and above the solid curve indicates a system  

that is stable, while the region to the left and below the solid curve indicates a 

system that is unstable. The uncertainty in the data, shown by the error bars 

in the figure, is due to the finite sampling of the confining magnetic field points. 

The energies are calculated at steps of 0.5 T for the confining magnetic field, and 

steps of 5 nm for the magnetic quantum dot radius. To obtain the data shown in 

the figure, seventeen Landau levels are included in the numerical diagonalisation 

calculation. This enables all the energies for the given parameters to be calculated 

with an accuracy of better than 4%. As a rough guide to the computational time
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Figure 4.5: Stability as a function of the system parameters for a GaAs magnetic quantum 

dot without a magnetic field overshoot at r0. The solid curve is the result of a least squares fit 

to the data.

required to calculate one stability point, a numerical diagonalisation calculation 

including seventeen Landau levels requires approximately 50 hours of CPU time 

on a HP 735 workstation. Roughly all of this time is used to evaluate the Coulomb 

matrix elements, hence they are stored in a look up table. This enables the 

remaining stability points to be determined in an additional time of roughly 30 

hours.

The figure shows the existence of a stability boundary in the system parameter 

space. It is seen that the system is stable for relatively small magnetic quantum 

dot radii, if the magnetic quantum dot has a large confining magnetic field 

(Bz ~  10 T). This is because the energy due to the magnetic field, outside the 

magnetic quantum dot is greater than the energy due to the Coulomb repulsion
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between the electrons. For systems with a larger magnetic quantum dot radii, the 

magnetic quantum dot is able to confine the electrons with a smaller confining 

magnetic field because the electrons are able increase their separation, so that 

the energy due to the Coulomb repulsion is less than the energy due to the 

magnetic field outside the magnetic quantum dot. The stability of this system is 

discussed in greater detail later in this chapter. Also further results showing the 

stability of other magnetic quantum dot systems are presented. First a theoretical 

investigation of the two electron system is undertaken and the physics of stability 

is discussed. Through this discussion, an analytic form for the stability boundary 

is obtained.

4.4.2 Physics of Stability

To investigate the physics of stability, and to predict the form of the stability 

boundary as a function of the system parameters (the confining magnetic field 

and the magnetic quantum dot radius) the energy of the two electron system  

at finite J  and the energy of the two electron system at infinite J  are found 

by dimensional analysis. By equating these energies, an analytic form for the 

stability boundary is determined.

To obtain an equation for the energy, E, at finite J, the hamiltonian for the 

system is written as

H = ^-2^+/(r<)—r~+/(ri)_r
+  g'nBB (n )S zi +  f  1 - | , (4.7)

47Tee0 |ri -  r2|

where f ( r)  has the form (1 — r2/ r 2)9(r — r0) or 9(r — rQ) depending on whether 

the vector potential is given by Eq. 2.7 or Eq. 2.8. Introducing the dimensionless
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variable r' =  r / r Q and h2/2m* as the energy unit, the following eigenvalue

equation can be obtained

z = i  Lz = i  L

(4.8)

where a  =  m*r0e2/2ft27ree0, (3 =  m*r20u c/h,  7  =  2m*rlg*fj,BB z/h 2, A =  

2m*r2E/T^ and the substitution B{r') =  B zb(r‘), where b(r') =  0(r' — 1), has 

been made. If the form of the wave function, ^ (a , /?, 7 , r'), is known, A can be 

found by taking matrix elements of the dimensionless hamiltonian, hence it is 

found that

where hn(a , (3, 7 ) is the matrix element of the term in square brackets in Eq. 4.8, 

vn(a, f3,7 ) is the matrix element of 6(r'), gn(a,{3,7 ) is the matrix element of 

l / |r ' i  — r;21 and n is an eigenvalue quantum number. Converting Eq. 4.8 back to 

standard S.I. units, the final form of the energy, £ ,  at finite J  is found to be

The energy, E 00, of the system for infinite J, is obtained by a similar argument. 

The total energy of the system is the energy of one electron localised at the centre

distance from the centre. The energy of one electron localised at the centre of 

the dot is

where h'n((3,7 ) and v'n{(3,7 ) are matrix elements that are different from hn( a , (3, 7 ) 

and vn(a,!3,7 ) in Eq. 4.10. The energy of the electron localised an infinite

A =  hn(a, 0 , 7 ) +  7  Szvn{a, 0 , 7 ) +  a g j a ,  0 , 7 ) (4.9)

of the magnetic quantum dot and the energy of one electron localised an infinite

(4.11)
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distance from the centre of the magnetic quantum dot, is the energy due to the 

magnetic field and is given by huc/ 2 if the Zeeman term is neglected. Therefore 

the energy, £<», of the system for infinite J  is

E°° =  7) +  ^ bB , S M 0 ,  7 ) +  (4.12)

For a system to be stable the condition E  < E must be satisfied, hence the 

stability condition is found by equating Eq. 4.10 and Eq. 4.12, giving

H  - *» + - « + <4I3>
The explicit forms of the matrix elements in this equation are unknown, 

nevertheless a curve can be fitted to the stability data shown in figure 4.5 by 

assuming that the matrix elements (ho, hf0, v0, vJ, and go) are constant. By 

making this assumption, the stability condition becomes B z «  a/r^ +  b /r0, where 

a and b are constants, and the solid curve in figure 4.5 is the result of a least 

squares fit to this form. To obtain the best fit to the numerical data shown 

in figure 4.5, points on the best curve through the errors bars are input into a 

standard least squares fitting routine. The values of the constants are then found 

to be a =  141 ±  14 and b =  3413 ±  340.

From figure 4.5 it is seen that the fit (shown by the solid curve in the figure) is 

excellent for large magnetic quantum dot radii and small confining magnetic field, 

but for small magnetic quantum dot radii and large confining magnetic field the 

fit deviates from the data. The reason for this deviation is that as the confining 

magnetic field becomes large, the single electron energy of an electron inside the 

magnetic quantum dot tends to the energy due to the magnetic field, given by 

heBz/2m*, which is independent of r0. Thus the assumption that h0 and h'0 are 

constant breaks down.
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4.4.3 Stability Results for a GaAs System

Figure 4.6 shows the stability boundaries for a GaAs magnetic quantum dot 

with and without a magnetic field overshoot at r0, as a function of the system  

parameters. The dark shaded region indicates a system that is stable, while the 

unshaded region indicates a system that is unstable. The light shaded region 

indicates a system that is unstable only in the presence of the magnetic field 

overshoot at r0. The stable systems are all spin unpolarised. The solid curves in 

the figure are the results of a least squares fit to the numerical data. From the 

figure it is seen that the system with a magnetic field overshoot at rQ is less stable 

than the corresponding system without a magnetic field overshoot. The reason for 

this can be determined by comparing the total energy of a stable system, with the 

total energy of the corresponding unstable system. For the stable system without 

a magnetic field overshoot, with Bz =  9.5 T and r0 =  30 nm, the single electron 

energy is 4.60 meV and the Coulomb energy is 3.74 meV, giving a total energy 

of 8.34 meV. These system parameters are chosen because the convergence of 

the energy eigenvalues is good for a calculation including relatively few Landau 

levels. Seven Landau levels are used to obtain energies accurate to roughly 1%. 

The single electron energy of the corresponding unstable system with a magnetic 

field overshoot is found to be 6.93 meV, and the Coulomb energy is 5.13 meV, 

hence the total energy of the unstable system is 12.06 meV. Therefore the total 

energy of the two electrons inside the magnetic quantum dot increases in the 

presence of the magnetic field overshoot, hence the decrease in stability is caused 

by an increase in the total energy of the system.

To investigate the stable and unstable states of this system further, the electron 

density, the pair distribution and the pair correlation functions of the stable
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Figure 4.6: Stability as a function of the system parameters for a GaAs magnetic quantum 

dot with and without a magnetic field overshoot at r Q. The solid curves are the result of a least 

squares fit to the numerical data.



Chapter 4 73

& 0.4
ca>*o

o<D
W 0.2

0.0
0.0 2.0 4.0 6.0 8.0

Radial distance (r//s)

Figure 4.7: Electron density as a function of the radial distance for a GaAs magnetic quantum 

dot. The solid curve indicates the results obtained for a system with an overshoot, and the 

dashed curve indicates the results obtained a system without an overshoot at r0. The system 

parameters are Bz =  9.5 T and r0 — 30 nm.

system without a magnetic field overshoot, are compared with those of the 

corresponding unstable system with a magnetic field overshoot. Figure 4.7 shows 

the electron density as a function of the radial distance for a GaAs system with 

and without a magnetic field overshoot at rD, for B z — 9.5 T and r0 =  30 

nm. The density is normalised such that 2tt / 0°° n{x)xdx  =  N , where x =  t/Ib - 

The solid curve indicates the results obtained for a system with a magnetic field 

overshoot and the dashed curve indicates the results obtained for a system without 

a magnetic field overshoot. The figure shows that the effect of the overshoot in 

the magnetic field, is to localise the electrons more strongly inside the magnetic 

quantum dot (the vertical dotted line indicates the position of rQ). In chapter
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Figure 4.8: Pair distribution function as a function of the radial distance for a GaAs magnetic 

quantum dot. The solid curve indicates the results obtained for a system with an overshoot 

in the magnetic field at rG, and the dashed curve indicates the results obtained for a system 

without a magnetic field overshoot at r0. The confining magnetic field is Bz =  9.5 T and the 

magnetic quantum dot radius is r0 =  30 nm.

3, the overshoot in the magnetic field is shown to increase the single electron 

energy of the system. Because the electrons are localised more strongly inside 

the magnetic quantum dot, the Coulomb energy of the system is also increased. 

This is consistent with the increase in the calculated Coulomb energy for the 

stable and unstable systems.

Figure 4.8 shows the pair distribution function as a function of the radial 

distance for a GaAs system, with and without a magnetic field overshoot at rc, 

again for B z =  9.5 T and rQ =  30 nm. The definition of the pair distribution
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function, g(r), follows the convention used by Maksym [40], and is given by

s(r) = i v ^ i j ( g 5(ri- ^  + r)) ’ (4-14)

where the angular brackets denote the expectation value. Expressing Eq. 4.14 

in terms of the dimensionless variable x — r / l B, ensures that g(x) obeys the 

normalisation condition / 0°° g(x)xdx =  1. The pair distribution function gives the 

distribution of interelectron distances. The figure shows that in the presence of the 

magnetic field overshoot, the interelectron distance is less than the interelectron 

distance for the system without a magnetic field overshoot. From the figure it 

is seen that the pair distribution function is finite for an interelectron distance 

equal to zero. The reason for this is that the ground state of this system is spin 

unpolarised (5  =  0), hence the electrons have different spin quantum numbers.

To visualise the states of a magnetic quantum dot further, the pair correlation 

function is introduced. The definition of the pair correlation function, P(r, r'), 

follows from the convention used by Maksym [40], and is proportional to

( l l <5 (r -  ri )5 (r' -  rj ) )  • (4-15)
\t#j /

The pair correlation function gives the probability of finding an electron at 

position r, given that there is one at position r', and is normalised in the way 

described by Maksym [40]. The position, r', of the fixed electron is chosen to be 

the position of the maximum value of the electron density.

The pair correlation function for a GaAs system, with and without a magnetic 

field overshoot at r0, for Bz =  9.5 T and r0 =  30 nm is shown in figure 4.9. The 

top frame shows the pair correlation function for a system without a magnetic 

field overshoot at r0, while the bottom frame shows the pair correlation function 

for a system with a magnetic field overshoot. The axes for the pair correlation
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Figure 4.9: Pair correlation function for a GaAs magnetic quantum dot, with (bottom) and 

without (top) a magnetic field overshoot. The black spot indicates the position of the fixed 

electron. The confining magnetic field is Bz =  9.5 T and the magnetic quantum dot radius is 

r0 =  30 nm.
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plots are graduated in steps of length Ib / 3, with the origin at the centre of each 

plot. The black spots in the frames indicate the position of the fixed electron, r'. 

For the system with a magnetic field overshoot at rQ (bottom frame in the figure), 

it is seen that pair correlation function has a sharp peak. This peak indicates 

the most probable position of the second electron, and it is seen that the most 

probable separation between the electrons is relatively small. The structure seen 

in the top frame of figure 4.9, which is for a system without a magnetic field 

overshoot at r0, is less sharp. It is also observed that the most probable electron 

separation is greater than for the system with a magnetic field overshoot. Again, 

this verifies the electron density and pair distribution results, and indicates that 

the electrons are localised more strongly inside the magnetic quantum dot when 

the magnetic field overshoot at r0 is present.

4.4.4 Stability Results for a InSb System

To determine the effect of the material parameters on the stability of the system, 

the stability results are recalculated for an InSb magnetic quantum dot. The 

material parameters are the effective mass, the relative permittivity and effective 

g factor. InSb has an effective mass, m*, of 0.014me and a relative permittivity of 

17. For this material the effective g factor is not a constant, but is found to depend 

on the magnetic field [41]. This dependence is included in the calculation and the 

form of the dependence is approximated by g* =  —(51 — 1.7B z). By choosing a 

material with these parameters values, the energy outside the magnetic quantum

dot, due to the magnetic field, will increase due to the smaller effective mass in

InSb. Therefore it is expected that the stability of this system will be enhanced. 

The results are obtained in exactly the same way as for the GaAs system, and
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Figure 4.10: Stability as a function of the system parameters for a InSb magnetic quantum 

dot with and without a magnetic field overshoot at r 0. The solid curves axe the result of a least 

squares fit to the numerical data.
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again seventeen Landau levels are included in the calculation, to obtain energies 

that are accurate to better than 4%.

Figure 4.10 shows the stability boundaries for a InSb magnetic quantum dot, 

with and without a magnetic field overshoot at r0, as a function of the system  

parameters. The dark shaded region indicates a system that is stable, while the 

unshaded region indicates a system that is unstable. The light shaded region 

indicates a system that is unstable only in the presence of the magnetic field 

overshoot at r0. Again, the solid curves in the figure are the result of a least 

squares fit to the numerical data. It is seen that the fit is excellent for both 

systems in the case of large magnetic quantum dot radii and small confining 

magnetic field. As expected, for small magnetic quantum dot radii and large 

confining magnetic field, the fit deviates from the data because h0 and h'0 in 

Eq. 4.13 are not constant. From the figure it is observed that the system  

without a magnetic field overshoot at r0 is more stable than the equivalent GaAs 

system. This is mainly a consequence of the reduced effective mass in the InSb 

system (g* has a small effect on the stability). InSb has an effective mass of 

0.014me, compared with 0.067me for a GaAs system. The effect of the reduced 

effective mass is to increase the energy of an electron in the magnetic field region 

(,heBz/2 m *). For example, for a system with B z =  5 T, the energy due to the 

magnetic field increases from 4.32 meV for the GaAs system, to 20.68 meV for 

the InSb system. Therefore the energy of the system for infinite J, E0Q, increases, 

thus enhancing the stability of the system.
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In this section, the effect of adding a homogeneous external magnetic field, Bext, 

to a GaAs magnetic quantum dot containing two interacting electrons without 

a magnetic field overshoot at r0 is investigated. The addition of a homogeneous 

external magnetic field to the system, alters the hamiltonians, for the single 

electron inside and outside the magnetic quantum dot, therefore a new form 

for the single particle matrix elements has to be determined. Of course, these 

matrix elements depend on the form of the single particle function that is used 

to calculate them, and in turn the single particle functions are a function of the 

magnetic field via the magnetic length parameter, Ib. The introduction of the 

external magnetic field, Bext, in the system, raises the question of which magnetic 

field to choose to represent the magnetic length parameter. Because there are two 

magnetic fields present in the system, it is possible to express the magnetic length 

as a function of B z , as a function of B^t, or as a function of some combination 

of the two magnetic fields. Therefore there are several possible forms for the 

single particle function. The single particle function that is used to calculate the 

single electron matrix elements, is the one that gives the best convergence of the 

energy eigenvalues. By performing tests to determine the optimum form of single 

particle function, it is found that the single particle function with magnetic length 

parameter Ib =  yJh/e(Bz +  jBext) gives the best convergence. For example, the 

energies of a spin unpolarised, two electron, GaAs magnetic quantum dot with 

J  =  0, r0 =  30 nm, B z =  2 T, and Bext =  5 T for a calculation including nine 

Landau levels are accurate to 0.016% with Ib =  yJh/e(Bz +  B ext), 0.025% with 

Ib =  <Jh/eBext and 0.2% with Ib =  yjTi/eBz. Similar accuracies are also obtained 

for calculations with Bext < Bz .
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4.5.1 Calculation of the Single Electron M atrix Elements

To calculate the single electron matrix elements, a method similar to that 

described in chapter 3 is used. The hamiltonian for a single electron in the 

region, r < r Q is given by

L h V 2 (
hrKro — ~ “ H

*/.*2 ~2 
e x t1 “b 9 ^zBext j (4.16)

2m* 8 2

where u ext =  eBext/m*. In the region r > r0, the hamiltonian is no longer given 

by Eq. 2.2, because there is an additional vector potential, Aext(r) =  B extr /2 ,  as 

a result of the external magnetic field. The hamiltonian for the region outside 

the magnetic quantum dot becomes

h
h2V 2 m*r2

r> r0
/ 2 2 n \ huclrl  m*uj2cr2Q

+  — (̂ C +  < 4 .) -  +  “ ext) +  --------2m*

+  -  OT- - ^ e:rtr° +  sThbS'IB ,  +  f ^ t ) .  (4.17)

The matrix elements are determined by substituting this equation along with 

Eq. 4.16, the single particle function (Eq. 2.13) and the dimensionless variable

x =  r2/2Z|, where Is =  \Jh/e(Bz +  i?ext), into Eq. 2.11, giving 

' h2
4m*l%

(2 n +  |/| +  1)<W +  y/n(n +  l)^n'n-i

+  \/(n  +  l) (n  +  |2| +  l)£n'n+i + l i m u ext [(2 n +  \l\ +  l)$ r

\Jn{n +  l)<5n/n_i — yj(n +  l)(n  +  \l\ +  l)Jn/n+i 

h/UjQxt l — 9* P'b SzBqxx X I 0  
unn ' * j2  

lB

hurl m*u2rl
+

hwcl , m*u2zr 20 m*ujcuextr l  * 0 D
— ---- 1-------  1---------   g Pb o zJd2

16

m* u 2c m*ujcLJext
(4.18)

where

/*00
Ti =  j  e~xx^~lL^,(x)L^(x)dx,

Jx0
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/•OO

I 2  =  I  e~xx lllL ]̂ (x)L^{x)dx,  
Jx0

/•OO

Is  =  f  e~xx lll+1L^r{x)L^{x)dx.
JXo

(4.19)

The integrals in this equation are evaluated numerically using a routine obtained 

from the NAG library. The routine, which is also used in chapter 3 to evaluate the 

single particle matrix elements, is based on a modified Gauss-Laguerre procedure, 

and is exact for an integral with a finite lower limit. Each of the integrands are 

evaluated at 32 points, giving results that are accurate to roughly seven decimal 

places. The accuracy of the results is verified by comparing the obtained results 

with those calculated with Maple.

4.5.2 Results

The effect of the additional external magnetic field on the stability of a GaAs 

magnetic quantum dot without a magnetic field overshoot at r0 is shown in 

figure 4.11. The results are obtained as described in the previous sections, 

and again seventeen Landau levels are included in the numerical diagonalisation 

calculation, to obtain energies accurate to at least 4%. The figure shows the 

stability boundaries for a GaAs magnetic quantum dot without a magnetic field 

overshoot at r0, with and without an additional external magnetic field of Bext =  5 

T. The dark shaded region indicates a system that is stable, while the unshaded 

region indicates a system that is unstable. The light shaded region indicates a 

system that is stable only in the presence of the external magnetic field. The solid 

curves in the figure are the result of a least squares fit to the numerical data. From 

the figure it is seen that the system in an external magnetic field is more stable 

than the corresponding system without an external magnetic field. The reason 

for this can be explained by referring to the stability condition (Eq. 4.13). First
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Figure 4.11: Stability as a function of the system parameters for a GaAs magnetic quantum 

dot with and without an additional external magnetic field of B ext = 5 T. The solid curves are 

the result of a least squares fit to the numerical data.
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the energy of the system at infinite J  is determined. In a homogeneous external 

magnetic field, the energy of the electron inside the magnetic quantum dot tends 

to huext/ 2, and so E qq ~  huext +  Tiuc/ 2. The energy of the system at finite J  is 

E  ~  huext +  Ec, where Ec is the energy due to the Coulomb interaction between 

the electrons. By equating E  and £<*> the stability condition is obtained, and 

can be shown to be heBz/2m* ~  Ec. Therefore under the approximation that 

the energy of the electron inside the magnetic quantum dot tends to huext/2 , 

the equivalent of the first term in Eq. 4.13 cancels. Calculating the Coulomb 

energy for the stable system Bext =  5 T, Bz =  7.5 T and rQ =  30 nm, it is found 

that Ec =  3.036 meV, while the Coulomb energy of the corresponding unstable 

system is 2.282 meV, a change of approximately 25%. By comparing the stability 

conditions for a system with and without an external magnetic field, it is found 

that the right hand side of heBz/2m* ~  Ec is 3.036 meV, while the right hand side 

of Eq. 4.13 is 6.082 meV. Therefore, because the energy of the electrons inside the 

the magnetic quantum dot is decreased in the presence of the external magnetic 

field, the stability boundary is shifted down and the stability is enhanced.

Figure 4.12 shows the electron density as a function of the radial distance for a 

GaAs magnetic quantum dot with and without an additional external magnetic 

field of Bext =  5 T. The confining magnetic field is B z =  7.5 T and the magnetic 

quantum dot radius is rQ =  30 nm. The solid curve in the figure indicates the 

results obtained for a system in an additional external magnetic field, while the 

dashed curve indicates the results obtained for a system without an external 

magnetic field. From the figure it is seen that the effect of the external magnetic 

field is to localise the electrons more strongly inside the magnetic quantum dot 

(the vertical dotted line indicates the position of rG). The solid curve also shows
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Figure 4.12: Electron density as a function of the radial distance for a GaAs magnetic 

quantum dot containing two interacting electrons. The solid curve indicates the results obtained 

for a system with an additional external magnetic field of Bext =  5 T, and the dashed curve 

indicates the results obtained for a system without an additional external magnetic field. The 

confining magnetic field is Bz =  7.5 T and the magnetic quantum dot radius is r0 — 30 nm.

that the electron density has a well defined peak, indicating the most probable 

radial distance of the two electron wave function. The electron density for the 

system without an external magnetic is observed from the figure to be roughly 

constant, with no well defined peak, inside the magnetic quantum dot. As the 

radial distance increases further, the electron density gradually decreases to zero.

The pair distribution function as a function of the radial distance for a GaAs 

system without a magnetic field overshoot at rc, with and without an external 

magnetic field is shown in figure 4.13. Again, the results are calculated for a 

stable system with B z =  7.5 T, r0 =  30 nm and Bext =  5 T, and an unstable
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Figure 4.13: Pair distribution function as a function of the radial distance for a GaAs magnetic 

quantum dot. The solid curve indicates the results obtained for a system with an additional 

external magnetic field of Bext =  5 T, and the dashed curve indicates the results obtained for a 

system without an additional external magnetic field. The confining magnetic field is Bz =  7.5 

T and the magnetic quantum dot radius is r0 =  30 nm.

system with B z =  7.5 T, rQ — 30 nm and Bext =  0 T. The solid curve in the 

figure shows the results obtained for a system in an external magnetic field, while 

the dashed curve shows the results obtained for a system without an external 

magnetic field. The figure shows that for the system in an external magnetic 

field, the average interelectron separation is less than for the system without an 

external magnetic field. It is seen that in the presence of the external magnetic 

field, the interelectron distance decreases by roughly 25%. This is consistent 

with the increase in the calculated Coulomb energy for the stable and unstable 

systems.
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Figure 4.14: Pair correlation function for a GaAs magnetic quantum dot, with (top) and 

without (bottom) an additional external magnetic field of Bext =  5 T. The black spot indicates 

the position of the fixed electron. The confining magnetic field is Bz =  7.5 T and the magnetic 

quantum dot radius is r0 — 30 nm.



Chapter 4 88

The pair correlation function for a GaAs system without a magnetic field 

overshoot at r0, with and without an external magnetic field is shown in 

figure 4.14. The top frame shows the pair correlation for the stable system with 

B z =  7.5 T, rD =  30 nm and Bext =  5 T, while the bottom frame shows the 

corresponding unstable system with Bext =  0 T. The axes for the pair correlation 

plots are graduated in steps of length Ib / 3, where Ib =  yJTi/eBz, with the origin 

at the centre of each plot. The black spots indicate the position of the fixed 

electron, r'. The position, r', of the fixed electron is chosen to be the position 

of the maximum value of the electron density. From the figure it is observed 

that the pair correlation plot for the system in an external magnetic field has 

a compact sharp structure. This indicates that the electrons have a fairly well 

defined separation, and this is confirmed with the solid curve in figure 4.13. The 

pair correlation function shown for the system without an external magnetic field 

(bottom frame), has a less compact structure and it is observed that the most 

probable separation between the two electrons is increased. This again supports 

the results shown in figure 4.13.

4 .6  Towards a  M ore R ea listic  S ystem

In this section a GaAs magnetic quantum dot without a magnetic field 

overshoot at r0, with an electron layer of finite thickness is considered. The 

model considered is that in which a 2DEG is formed in a standard AlGaAs-GaAs 

heterostructure. Further, it is assumed that the donors in the AlGaAs layer 

are fully ionised, and therefore the number of electrons in the 2DEG is equal to 

the number of donor charges in the AlGaAs layer. To deplete the electrons in 

the 2DEG it is suggested that a gate is deposited on top of the device. If this
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gate is uniform throughout the device, the electron density should be decreased 

everywhere in the system. Alternatively, a modulated gate that keeps the electron 

density low in the region of the dot could also be used. It is expected that the 

stability of such a system will be enhanced due to the extra degree of freedom 

available to the electrons, as compared to the stability of a GaAs system with an 

electron layer of infinitely small thickness. This section is organised as follows. 

First, the necessary modifications to the hamiltonian due to this extra degree 

of freedom, are made, and a wave function that describes the motion of the 

electrons in the perpendicular direction is introduced. This allows the single 

electron matrix elements and the Coulomb matrix elements to be calculated for 

this system. Given the form of the matrix elements, a numerical diagonalisation 

calculation is performed and the stability of the system is determined. Finally, 

a brief discussion of other effects expected in a more realistic system is given, 

and the consequences that these effects have on the stability of the system are 

speculated upon.

4.6.1 Theoretical Treatment

With the motion of the electrons not limited to the x —y  plane, the hamiltonian 

for the system is given by

N  -j N  N

H  =  Y i M*i> ^ )  +  ; E E  u (r” 2i> Ti > zi )> (4 -20)
i=1 Z 1=1 j=1i#*

where 2 is the co-ordinate in the direction perpendicular to the plane x — y. The 

first term in this equation gives the single particle energy of the system, while 

the second term describes the Coulomb interaction between the electrons. The 

transformation to an occupation number representation gives an equation similar
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to Eq. 2.10

H  =  £ ( i |/ i |j } c fc j  +  \ Y s (ij\v\kl)clclcick, (4.21)
i j  i,j,k,l

where h and v  now depend on z. To obtain the energy eigenvalues of the system,

the iV-electron hamiltonian, given by this equation, is diagonalised. The explicit

form of the matrix elements are given by

(i\h\j) =  j  ̂ *(r, z)h{r, z)ipi(T, z)drdz  (4.22)

and

( i j \ v \k l )  =  j  J 'lp*{Ti,Zi)'lp*j {T2 ,Z2) v ( r i , Z U r 2 ,Z2)

X xjjk(Ti,Zi)'lpi(T2,Z2)dTidZidT2dZ2. (4.23)

The single particle functions that are required to calculate these matrix elements 

are chosen to be separable, and are given by

^ i(r ,z )  =  ^ i(r )X tW , (4.24)

where, again, the in plane functions, are chosen to be the Fock-Darwin

states, and these are given by Eq. 2.13. The single particle functions, Xi(z ), that 

describe the electron motion perpendicular to r, are chosen to be the Fang-Howard 

states [42, 43]. These states have the form

x(2) =  ( ? ) 2 ze~bz/2> (425) 

where b is a variational parameter, that is determined by minimising the energy of 

the system. Strictly, b is determined by minimising the total energy of the system; 

this includes the parallel and perpendicular components of the single electron 

energy and Coulomb energy. However, in section 4.6.4 an analysis of the total 

energy of the system, and its dependence on b is undertaken, and consequently
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a simple approximation is introduced, allowing b to be determined much more 

easily. Given the form of the single particle functions it is now possible to calculate 

the matrix elements.

4 .6 .2  C a lcu la tio n  o f  th e  S in g le  E le c tr o n  M a tr ix  E lem en ts

W ith the inclusion of a third dimension in the problem, the single electron 

hamiltonian for the system is w ritten as

where h(r) is the in plane ham iltonian given by Eq. 3.1 and Eq. 3.4, and h(z) is 

the hamiltonian describing the electron motion perpendicular to the plane, and 

is given by

The function U(z)  in this equation, is the confining potential perpendicular to 

the plane. The potential is approximated by an infinite barrier for z <  0, and by 

U{z) =  e2N 2DEGz/ee0 [44] for z  >  0, where W2DEg is the number of electrons per 

unit area in the 2DEG. Because th e hamiltonian separates, in the way given in 

Eq. 4.26, the modification to the single electron matrix elements, due to motion of 

the electrons perpendicular to the plane, is calculated by evaluating the integral

giving the contribution to the single electron matrix elements, due to the 

perpendicular motion of the electrons as

The integral over r in Eq. 4.22 has already been calculated, and the details of 

this calculation are given in chapter 3.

h(r, z)  =  h(r) -I- h(z) (4.26)

(4.27)

(4.28)



Chapter 4 92

4 .6 .3  C alcu la tion  o f  th e  C oulom b M atr ix  E lem en ts

The Coulomb interaction between a pair of electrons located at (r i,z i)  and 

(r2, z2) is given by

e2 1
v { t u z u t 2 i z 2 ) =  ~A 7= -=--=■-= . (4.30)

47ree° VK'l -  r2)2 +  (Z1 -  Z*)2]

The modified Coulomb matrix elements are calculated by taking the Fourier 

transform of this new interaction potential. By doing this and substituting the 

result, along with Eq. 4.24 into Eq. 4.23, the Coulomb matrix elements are found 

to separate into r and z  dependent parts, giving

g2 r O O  f O O  g**l'(rl —:r2)

{ i j \v \kl )  =  — —  / d q  ^ * ( r i ) ^ ( r 2) ---- j-:-----^ ( r ! ) ^ ( r 2)d r id r2
o7rzee0 Jo Jo |q|

too
x /  X*{zi)x*{z2)e~q{zi~Z2lx{zi)x(z2)dzidz2. (4.31)

Jo

The integral over 2: in this equation is known as the form factor, F(q)  [43], and 

gives the modification to the Coulomb matrix elements, due to the electron motion 

perpendicular to plane. The form factor has been evaluated by Ando et al [43] 

for a system in which a semiconductor with dielectric constant eSc fills the space

z >  0, and an insulating medium of dielectric constant fills the space z  <  0.

If it is assumed that the electrons occupy the same material, then esc =  and 

the expression calculated by Ando et al [43] reduces to the following

f(9)= i ( 1 + !)’3 (8 + 9I +3 0 - (432)
Therefore multiplying the existing expressions for the Coulomb matrix elements 

(Eq. 4.2, Eq. 4.5 and Eq. 4.6) by F(q), the electron motion perpendicular to the 

plane is taken into account.
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4 .6 .4  D eterm in in g  th e  V ariational P aram eter, b

To determine the variation parameter, b, the total energy of the system is 

minimised. To achieve this, the total energy of the system is differentiated with 

respect to b, and the subsequent result is set to zero, allowing the variational 

parameter to be determined. However, the form factor, F(q), can be shown 

to result in a modified Coulomb energy that is roughly constant as a function 

of b. Figure 4.15 shows a typical example of the total energy of the system  

as a function of the variational parameter b, and the total energy without the 

contribution due to the single electron energy perpendicular to the plane, as 

a function of b. The solid curve shows the total energy of the system as a function 

of 6, while the dashed curve shows the total energy without the contribution due 

to the single electron energy perpendicular to the plane as a function of b. The 

results shown by the dashed curve have been scaled by a factor of ten in order to 

compare the data more easily. The data is obtained for a two electron system with 

J =  0, 5  =  0, =  5 T and rQ =  30 nm, using the numerical diagonalisation

routine with six Landau levels included in the calculation to obtain energies 

accurate to roughly 0.01% throughout the b range. The number of electrons per 

unit area in the 2DEG, N 2De g ,  is taken to be 3.0 x 1010 cm-2 [35]. The solid 

curve in the figure shows the presence of an energy minimum as a function of 

the variational parameter, b. The dashed curve, which shows the total energy 

without the contribution due to the single electron energy perpendicular to the 

plane, shows no minimum, and is very nearly constant throughout the b range. 

The only b dependent term present in the energy shown by the dashed curve is the 

form factor F(q ), hence this term is approximated as constant, and is therefore 

independent of b. Upon making this assumption, b is found by minimising the
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Figure 4.15: Energy as a function of the variational parameter, b. The solid curve shows 

the total energy as a function of b, while the dashed curve shows the total energy without the 

contribution due to the single electron energy perpendicular to the plane as a function of 6.

single electron energy perpendicular to the plane, thus

=  0. (4.33)
fi b 3ê Â 2DEG

4 m *  ec0bP

Therefore the variational parameter, 6, that minimises the energy can be shown

to be

•■(t S*)'- «“•>
Using the value of iV2DEG already given, the variational parameter that minimises 

the energy is b =  0.167 x 109 m-1 . This corresponds to an average width in the 

perpendicular direction of roughly 18 nm.
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4.6.5 Results
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Figure 4.16: Stability as a function of the system parameters for a GaAs system without a 

magnetic field overshoot at r0, with an electron layer of finite thickness. The solid curve is the 

result of a least squares fit to the data.

In this section the stability of a GaAs system without a magnetic field overshoot 

at rQ, with an electron layer of finite thickness, and the stability of the equivalent 

system with an electron layer of infinitely small thickness are compared. In 

figure 4.16 the stability boundary for a GaAs system without a magnetic field 

overshoot at r0, with an electron layer of finite thickness is shown. The solid curve 

in the figure is the result of a least squares fit to the data given by the error bars. 

Again, seventeen Landau levels are included in the numerical diagonalisation 

calculation to obtain energies accurate to better than 4%. From the figure it is 

seen that the fit (shown by the solid curve) is excellent throughout the range 

of the data, and deviates only slightly from the data for a system with small
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confining magnetic field and large magnetic quantum dot radii. This deviation is 

thought to be a result of the low resolution of the confining magnetic field points.

The solid curve is shown, along with the result of the least squares fit to the 

data calculated for the system with an electron layer of infinitely small thickness 

in figure 4.17. The dark shaded region indicates a system that is stable, while 

the unshaded region indicates a system that is unstable. The light shaded region 

indicates a system that is stable only if an electron layer of finite thickness is 

considered. The error bars are omitted from the figure to avoid confusion from 

overlaying points. From the figure it is seen the system with an electron layer 

of finite thickness is more stable than the equivalent system with an electron 

layer of infinitely small thickness. The figure shows that the stability of the 

system with an electron layer of finite thickness is enhanced slightly, and no 

enhancement of the stability is predicted for systems with large radii. The reason 

for the enhanced stability is determined by comparing the Coulomb energies of 

the systems. First, the system with parameters B z =  9.5 T and r0 =  30 nm 

is considered. This system is stable for both systems with an electron layer 

of infinitely small thickness and an electron layer of finite thickness. For the 

system with an electron layer of finite thickness, the Coulomb energy is found 

to be 3.64 meV, while the Coulomb energy for the system with an electron 

layer of infinitely small thickness is 3.74 meV, a change of roughly 2.7%. The 

additional contribution to the single electron energy, due to the finite thickness 

of the electron layer, is found to cancel on equating E  and Eqo to obtain the 

stability condition. Therefore the single electron energy of the system is not 

expected to affect the form of the stability curve. Hence the decrease in the 

Coulomb interaction energy increases the stability of the system.
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Figure 4.17: Stability as a function of the system parameters for a GaAs magnetic quantum 

dot without a magnetic field overshoot at r 0, with and without an electron layer of finite 

thickness.



Chapter 4 98

From figure 4.17 it is seen that the stability of the system with an electron 

layer of finite thickness is not enhanced for systems with large magnetic radii. 

The reason for this is because as r0 increases, the electron separation tends to 

the in plane separation (roughly 2r0, if the electrons are diametrically opposite), 

and therefore the vertical separation of the electrons (roughly 18 nm) becomes 

less significant. Hence there is no enhancement of the stability of the system.

If the electrons in the magnetic quantum dot are confined in the z  direction by 

a quantum well, it is expected that the stability of the system will be enhanced 

further. In the paper by Brey et al [45], the authors propose that quantum well 

systems with a thickness of greater than 2000 A can be achieved. This is compared 

with an effective width of roughly 200 A for a system in which the 2DEG is formed 

in a heterostructure. Therefore because the electrons in a quantum well are able 

to increase their separation to a distance greater than that in a heterostructure, 

the Coulomb energy should decrease further and the stability of the system should 

be enhanced.

4.6.6 Other Effects Expected in a More Realistic System

As well as an electron layer of finite thickness, other effects have also been 

predicted in more realistic systems. For example, electrons in electrostatic 

quantum dots induce charges on adjacent electrodes [46]. This influences the 

total energy of the system via two effects. First, there is a shift in the total 

energy of the system caused by the interaction of each electron with its own 

image charge, and second, the induced charges screen the Coulomb interaction 

between the electrons. The form of this screened potential has been shown to 

vary as 1 /r 3 [46] when the electron separation is large. It is possible that this
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effect will also occur in a magnetic quantum dot, although the effect may be 

somewhat different due to the geometry of the magnetic quantum dot system. If 

this effect is included in the calculation to determine the stability of a system, it 

is expected that the stability of the system would be enhanced.

In a real system the confining magnetic field is known to be less than 0.5 T [47] 

if the system is fabricated by depositing a ferromagnetic material near a 2DEG. 

Therefore much of the stability curves shown in figure 4.6, figure 4.10, figure 4.11 

and figure 4.16 can be probed experimentally. These stability curves show systems 

that are stable with a confining magnetic field of less than 0.5 T, and therefore a 

magnetic quantum dot radius of greater than roughly 100 nm. Fabrication of a 

device with these system parameters should be possible with current technology, 

thus allowing direct experimental verification of the theoretical predictions made 

in this chapter.

4.7 More Interacting Electrons

In this section the effect of adding a third electron to the magnetic quantum 

dot system is described. The system investigated is a GaAs magnetic quantum 

dot without a magnetic field overshoot at r0. Unfortunately, a direct comparison 

of the stability boundary for a two electron system with the stability boundary 

for a three electron system is not possible, due to the large number of basis 

states required for a three electron calculation. It is found that the number 

of basis states grows rapidly with the number of Landau levels included in a 

numerical diagonalisation calculation. For example, it is estimated that for a 

calculation including seventeen Landau levels, the order of the matrix needed 

to be diagonalised, would be roughly 13000. This is compared with a matrix
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with an order of approximately 1000 for a two electron calculation. The current 

numerical diagonalisation routine used to calculate the energy eigenvalues is 

capable of diagonalising matrices with a maximum order of roughly 5000, and it 

is found that the number of Landau levels that can be included in a three electron 

numerical diagonalisation calculation is restricted to a maximum of ten. Larger 

scale calculations are possible in principle but further time would be required to 

develop the necessary software.

Of course this restriction on the number of Landau levels included in a three 

electron numerical diagonalisation calculation has a consequence on the accuracy 

of the obtained results. For example, a calculation including nine Landau levels 

for a three electron system with B z =  6 T, r0 =  80 nm, 5  =  1/2 and J  =  1 yields 

results that are accurate to better than 6%. In order to obtain energy eigenvalues 

that are more accurate than this, results are obtained for systems with smaller 

magnetic quantum dot radii. Energy eigenvalues calculated for a system with 

a small magnetic quantum dot radius will require less basis states to become 

converged, and therefore the results will be more accurate. Because of this, 

systems with large confining magnetic fields are investigated, and consequently it 

is shown that a stability boundary exists and that these systems become stable 

for reasonably small values of the magnetic quantum dot radius.

4.7.1 Results

Although a direct comparison of the stability boundary for a two electron 

system with the stability boundary for a three electron system is not possible, 

individual systems can be compared. To determine the stability of a three electron 

system, a similar argument to that given in section 4.4.1 is used. The three
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electron system is stable if the total energy of the electrons localised in the 

centre of the magnetic quantum dot, is less than the total energy of two electrons 

localised in the centre of the magnetic quantum dot and one electron localised 

at an infinite distance from the centre in the region with magnetic field. The 

system that is chosen for investigation is that with a confining magnetic field of 

Bz =  10 T. It is found that the ground state at finite J  corresponds to a total spin 

quantum number of S  =  1/2 and a total angular momentum quantum number 

of J  =  1, this is also found to be the case for other systems with different system 

parameters. By analysing the stability of various systems with different magnetic 

quantum dot radii, it is found that this system becomes stable when r0 >  50 

nm. The corresponding two electron system with B z =  10 T becomes stable 

when r0 >  30 nm, so the addition of another electron to the system decreases the 

stability of the system. The reason for this can be determined by comparing the 

energy of the two electron system with the energy of the three electron system. 

For the two electron system with B z =  10 T and rQ =  50 nm, the single electron 

energy per electron is 1.22 meV and the Coulomb energy is 1.23 meV, giving a 

total energy per electron of 2.45 meV. The single electron energy per electron of 

the corresponding three electron system is 1.81 meV, and the Coulomb energy is 

2.60 meV, hence the total energy per electron for the three electron system is 4.41 

meV. Therefore the total energy increases for the system with three electrons, and 

this is mainly a consequence of the increased Coulomb energy, hence the decrease 

in stability of the three electron system is caused by an increase in the total 

energy of the system.

The previous calculations confirm the existence of a stability boundary for the 

three electron system, but does this stability boundary follow the same general
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trend as the stability boundary for the two electron system? The trend followed by 

the stability boundary of the two electron system is that as the confining magnetic 

field is increased, the system becomes stable at smaller values of the magnetic 

quantum dot radius. To determine if this also occurs for a system containing 

three electrons, the stability of a system with B z =  12 T is investigated. Indeed, 

this is exactly what is found, and the system with B z =  12 T becomes stable 

when rQ >  40 nm, compared with rQ > 50 nm for the system with B z =  10 T.

To investigate the stable and unstable states of the three electron system, 

the electron density, the pair distribution and the pair correlation functions of 

the stable system with B z =  10 T and r0 =  50 nm, are compared with the 

corresponding unstable system with r0 =  30 nm. Figure 4.18 shows the electron 

density as a function of the radial distance for a GaAs magnetic quantum dot 

without an overshoot, containing three interacting electrons. The solid curve in 

the figure shows results for the unstable system with r0 =  30 nm, while the dashed 

curve shows results for the stable system with r0 =  50 nm. From the figure it 

is seen that the electron density for the system with rQ =  30 nm has a better 

defined peak than the electron density for the system with r0 =  50 nm. The 

figure also shows that for the system with r0 =  30 nm, the electrons are localised 

more strongly towards the centre of the magnetic quantum dot, and therefore it 

is expected that the Coulomb energy of this system would be greater than the 

Coulomb energy of the system with r0 — 50 nm. Indeed, this is what is found. 

The Coulomb energy for the unstable system with r0 =  30 nm is found to be 3.40 

meV, while the Coulomb energy of the stable system with r0 =  50 nm is 2.60 

meV. Calculations also show that the single electron energy of the system with 

r0 =  30 nm is greater than that of the system with r0 =  50 nm. Therefore the
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Figure 4.18: Electron density as a function of the radial distance for a GaAs magnetic 

quantum dot without overshoot containing three interacting electrons. The solid curve indicates 

the results obtained for an unstable system with Bz =  10 T and r0 =  30 nm, and the dashed 

curve indicates the results obtained for a stable system with Bz =  10 T and r0 — 50 nm.

system with r0 =  30 nm is less stable than the system with rQ =  50 nm because 

the total energy of the system is greater. Further interesting aspects of the three 

electron system can be seen by comparing the figure with the electron density of 

a magnetic quantum dot containing two electrons. Comparing figure 4.18 with 

figure 4.7 it is immediately seen that the spatial extent of the electron density 

function for the three electron system is greater than that of the two electron 

system. The electron density of the two electron system has a peak at roughly 

r / l B =  2, while the electron density of the three electron system peaks at roughly 

r / l B =  10. In the three electron system it is expected that the Coulomb force 

would be larger than in the two electron system, hence the Coulomb energy of
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Figure 4.19: Pair distribution function as a function of the radial distance for a GaAs magnetic 

quantum dot without overshoot containing three interacting electrons. The solid curve indicates 

the results obtained for an unstable system with Bz =  10 T and r0 =  30 nm, and the dashed 

curve indicates the results obtained for a stable system with Bz =  10 T and r0 =  50 nm.

the three electron system is also larger. To reduce this the electrons maximise 

their separation. Therefore the spatial extent of the three electron wave function 

is greater than that of the two electron system.

The pair distribution function as a function of the radial distance for a GaAs 

system without an overshoot containing three interacting electrons is shown in 

figure 4.19. Again, the results are calculated for an unstable system with B z =  10 

T and r0 =  30 nm, and a stable system with B z — 10 T and r0 =  50 nm. 

The solid curve in the figure indicates the results obtained for a system with 

rQ =  30 nm, while the dashed curve indicates the results obtained for the system 

with r0 =  50 nm. The figure shows that for the system with r0 =  50 nm, the
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average interelectron separation is greater than for the system with rQ =  30 nm. 

This is expected and is due to the larger magnetic quantum dot radius in this 

system. Because the radius is greater, the electrons can increase their separation 

to a distance greater than that of the system with r0 =  30 nm, and, of course, 

because of this the Coulomb energy of the system with r0 — 50 nm is less. This 

is consistent with the decrease in the calculated Coulomb energy for the stable 

and unstable systems.

The pair correlation function for a GaAs system without an overshoot 

containing three interacting electrons is shown in figure 4.20. The top frame 

shows the pair correlation function for the unstable system with B z =  10 T 

and r0 =  30 nm, and the bottom frame shows the pair correlation function for 

the stable system with B z =  10 T and rQ =  50 nm. The axes for the pair 

correlation plots are graduated in steps of length Ib / 3, with the origin at the 

centre of each plot. The black spots indicate the position of the fixed electron, 

r'. The position, r', of the fixed electron is chosen to be the position of the 

maximum value of the electron density. Immediately it is seen from the figure 

that the pair correlation function for the system with r0 =  30 nm has a much 

more compact, sharp structure compared to that for the system with r0 =  50 nm. 

Again, this is what is expected, and is due to the greater magnetic quantum dot 

radius in the r0 =  50 nm system. This allows the three electron wave function 

to have a greater spatial extent and this is clearly seen in the figure. It is also 

interesting to observe the form of the electron configuration for the three electron 

system. Both the frames clearly show that the pair correlation function has well 

defined peaks, and that the electron configuration for the three electron system is 

roughly an equilateral triangle. This is expected, and the electrons are arranged



Chapter 4 106

60 

40 

20 

0
0 20 40 60

0 20 40 60
X

Figure 4.20: Pair correlation function for a GaAs magnetic quantum dot with overshoot 

containing three interacting electrons. The top frame shows the pair correlation function for 

an unstable system with Bz =  10 T and r0 — 30 nm, and the bottom frame shows the pair 

correlation function for a stable system with Bz =  10 T and r0 =  50 nm.

T™''!""!.. ....... .................. ..............

i * . . .  i « . . .  i ■ i ^ .  >. i . , , .  i . . , ,  i . i . . . .  i . . . .  i . . .  11



Chapter 4 107

in this way to minimise the Coulomb energy of the system. In contrast, the 

Coulomb energy of the two electron system is minimised by the electrons being 

diametrically opposite.
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Far Infrared Absorption Spectra

In this chapter the far infrared (FIR) optical absorption spectra of a magnetic 

quantum dot containing up to two interacting electrons are investigated. FIR 

spectroscopy is one of many experimental techniques that are used to determine 

information about the electronic and optical properties of nanostructure devices. 

This technique is applicable to a wide range of low dimensional systems, including 

quantum dots, quantum wires and quantum wells.

This chapter is organised as follows. First, a brief overview of other work in this 

field is given and the generalised Kohn’s theorem is discussed. In the following 

section the theoretical background required to perform an optical absorption 

calculation is given, and the optical matrix elements are calculated. Consequently 

the selection rules are determined. The FIR response as a function of the 

confining magnetic field is calculated for a GaAs and InSb magnetic quantum 

dot, containing one and two electrons. The FIR response as a function of an 

external homogeneous magnetic field is also calculated, and contrasts are made 

between the results for the FIR response as a function of the confining magnetic 

field. It is hoped that the results presented here will provide the motivation for 

experimental groups to fabricate and investigate this system.

108
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5.1 Previous Work

FIR spectroscopy has been used to study the optical properties of electrostatic 

quantum dots. For example, Sikorski and Merkt [48] used FIR spectroscopy to 

investigate the electronic properties of an array of InSb quantum dots. Arrays 

of roughly 108 quantum dots were prepared on InSb surfaces with typical areas 

of 9 mm2. They controlled the number of electrons in the quantum dots by 

adjusting the applied gate voltage. They found, that within experimental error, 

the FIR spectrum is independent of the number of electrons in the device, and 

therefore the experiments are insensitive to electron-electron interactions. These 

findings were also reported by Brey et al [45]. These authors studied the optical 

absorption of a parabolic GaAs quantum well theoretically and found that the 

absorption spectrum is independent of the electron-electron interaction, and also 

independent of the number of electrons in the quantum well.

Demel et al [49] used FIR spectroscopy to investigate the response of an array 

of GaAs quantum dot structures containing between 210 and 25 electrons per 

dot. Their results show that the FIR response consists of a set of resonances 

which split, in a magnetic field, into upper and lower branches. Further, they 

found that the upper branch of the FIR spectra exhibits anticrossing behaviour 

at low magnetic fields. Similar results were also obtained by Liu et al [50]. 

These authors investigated, theoretically and experimentally, the allowed optical 

transitions of a quantum dot in a magnetic field. They modelled the quantum 

dot theoretically assuming a parabolic confining potential. Using this model these 

authors predicted two transition energies as a function of the magnetic field (upper 

branch and lower branch) for the allowed optical transitions. They verified their 

theoretical predictions by experimentally obtaining the magnetotransmission
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spectra of the system, and found that the experimental results agreed with the 

theoretical predictions for the energies of the upper branch.

There has been much debate as to the cause of the anticrossing reported by 

Demel et al [49]. These authors attribute this effect to plasma excitations in 

the system, while Chakraborty et al [51] suggested that a similar behaviour 

may result from the Coulomb interaction between neighbouring quantum 

dots. An alternative interpretation was given by Pfannkuche and Gerhardts 

[52]. They proposed that the anticrossing effect is due to deviations from a 

perfectly parabolic confining potential, therefore resulting in otherwise forbidden 

transitions. In the paper by Jacak et al [53] a theory is presented that describes 

a quantum dot that contains many electrons. In addition to the usual factors 

taken into account when describing a quantum dot, these authors included the 

spin-orbit interaction in their calculations. For a given fitting parameter, their 

results show that the FIR resonance energies obtained using their model agree 

well with the results reported by Demel et al [49]. To confirm the validity of their 

theory, Jacak et al [53] made a number of predictions, and predicted the critical 

magnetic field at which the anticrossing occurs and the resonance energy at the 

point of this anticrossing. It should be noted that the work performed by Jacak 

et al [53] has yet to be fully accepted by their peers, and the issue of what causes 

this anticrossing behaviour remains an open question.

The experiments performed by Sikorski and Merkt [48], Demel et al [49] and 

Liu et al [50] showed for the first time that in FIR spectroscopy measurements 

on quantum dot structures, the measured absorption energy is independent of 

the number of electrons in the device. In essence this is the generalised Kohn 

theorem [54] and this is discussed more thoroughly in the following section.
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The consequence of the finding that the measured absorption energy is 

independent of the number of electrons, is that electron-electron interactions in 

the quantum dot do not influence the FIR spectra. Therefore, FIR spectroscopy 

cannot be used to probe electron-electron interaction effects in this system. These 

experimental results demonstrate a variation of Kohn’s theorem [54]. Explicitly 

the theorem states that in a 2DEG, the cyclotron resonance is unaffected by 

electron-electron interactions.

The pioneering work of Maksym and Chakraborty [14] showed for the first time 

that Kohn’s theorem could be applied to a system with parabolic confinement. 

These authors found that when the confining potential is quadratic in form, the 

centre of mass and relative motions of the electrons separate in the same way as 

for free electrons. Therefore the hamiltonian can be written as

H  =  ± { P  +  Q K ? +  \ M u 20R 2 +  (5.1)

where P  =  Pi is the total electron momentum, R  =  X)i*i/ N  is the centre of 

mass coordinate and M  =  Nm*  is the total electron mass, and Q =  N e is the total 

electron charge. The last term in this equation is a function of only the relative 

coordinates, and contains all the effects of the electron-electron interaction. These 

authors considered the perturbation due to the electromagnetic radiation within 

the dipole approximation. This approximation is valid because of the relatively 

large wavelength of the incident far infrared radiation, compared with the size of 

a typical quantum dot. Far infrared radiation typically has a wavelength of 50 

/zm, while the size of a quantum dot is typically 100 nm, therefore the spatial 

variation of the incident radiation can be neglected, and the electric field, E 0,
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is independent of position within the quantum dot. The perturbing hamiltonian 

therefore has the form

N
H' =  e E 0 • r* exp(—iut)  =  QE0 • R ex p (—iut). (5.2)

i

From this equation it is seen that the perturbing hamiltonian is expressed solely 

in terms of the centre of mass coordinates. Therefore the FIR radiation couples 

only to the centre of mass motion and does not affect the relative motion of the 

electrons, hence leading to an excitation spectrum that is identical to that of a 

single electron.

In other theoretical papers, several authors have considered electrostatic 

quantum dots with a non-parabolic confining potential [33, 35]. Pfannkuche et 

al [33] investigated the FIR response of an electrostatic quantum dot containing 

two interacting electrons. These authors considered deviations from the parabolic 

confining potential, and showed that the centre of mass and relative motions of the 

electrons no longer decouple. As a consequence, the generalised Kohn theorem 

no longer holds and Pfannkuche et al [33] found new resonances in the FIR 

spectra. Bruce and Maksym [35] investigated the FIR response of a realistic three 

dimensional electrostatic quantum dot containing three interacting electrons. The 

confining potential in the device was calculated numerically. These authors found 

that Kohn’s theorem is violated, not only as a consequence of the non-parabolicity 

of the confining potential, but also as a consequence of the motion of the electrons 

in the third dimension.

Imamura et al [55] studied the ground state and excited state properties of 

vertically coupled quantum dots in a magnetic field. These authors assume that 

the confining potential of the quantum dots is parabolic in form. The generalised 

Kohn theorem does not hold for two vertically coupled quantum dots with
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different confining potentials even when they are both parabolic. Consequently 

Imamura et al [55] found a one-to-one correspondence between the magnetic field 

at which the absorption line jumps and the magnetic field at which the total 

angular momentum quantum number and/or the total spin of the ground state 

changes from one “magic” number state to another. Imamura et al [55] predict 

that these jumps are of the order of tenths of meV, and should be experimentally 

observable.

Reijniers et al [10] have calculated the optical absorption spectrum of a 

magnetic quantum dot containing a single electron. From their analysis, they 

found that the selection rule for the radial quantum number is not the same as 

for an electrostatic quantum dot with parabolic confinement. Consequently, their 

results show that the absorption spectrum consists of many additional transitions. 

These authors attribute these transitions to a violation of Kohn’s theorem, due to 

a coupling of the centre of mass motion and other degrees of freedom. However, 

their interpretation of the results is questionable. For the single electron system 

the centre of mass motion is the same as the position of the electron, and therefore 

there are no other degrees of freedom to couple to!

5.3 Theoretical Treatment

In this section the theoretical background needed to perform a many electron 

optical absorption calculation is given. First, the single electron case is dealt 

with, then this is generalised to calculate the many electron optical absorption. 

In order to calculate the transition probabilities, the dipole approximation is used.

To calculate the single electron dipole matrix elements, it is assumed that the 

incident radiation is circularly polarised. The single electron functions are chosen
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to be the Fock-Darwin states, and these are given by Eq. 2.13. Within this 

framework, the transition probability of a single electron being excited from an 

initial single electron state ipni to a final single electron state ipnii', is proportional 

to |dnj,n'H2 [56, 57], where

dnl,n'V =  {^ n i \r e ±l<i,\'ipn>i') (5.3)

is the dipole matrix element, and %l)ni has the form given by Eq. 2.13. Substituting 

the explicit form for the Fock-Darwin states into Eq. 5.3, the single electron dipole 

matrix element becomes

-  NnlN n,v Jo Jo e r / 2 'B ( 2, | )

x  1% III!1 (5.4)

Performing the integral over <f> gives 27r^_//)±i- As a consequence of the Kronecker 

delta, 5z_i',±i, the angular momentum quantum number for the initial and final 

states can only differ by one, thus leading to the selection rule A l =  I' — I =  ±1. 

To evaluate the integral over r, the substitution x  =  r2/2l% is made, giving

dni,n>v =  (V 2 lB)Z7rNniNn'i/ jf e~xx m+ll'l+1)/2L ^ (x)L ll){x)dx .  (5.5)

This integral is evaluated using standard methods [58] and different results are 

obtained depending on whether V =  I + 1, V =  I — 1, I >  0, I <  0 and Z =  0. It is 

found that for I =  0

d n 0 ,n '± l  — \f2l'B  \J ( f l  "t" 1 ) 3n',n ,n—l

for V =  I +  1

d nl,n'l+ 1 =  <

(5.6)

V 2 l B [ \ / ( 71 +  |Z| +  l ) ^ n ' , n  “  V ^ n ' . n - 1 ]  f ° r  Z >  0 ,

. V21b [^/(n +  |i|)<5„',„ -  y/n +  l<5n-,„+i] for I <  0,
(5.7)
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and for I' =  I — 1

y/2lB [J{n+\l\)8n',n ~ y/n +  15n',n+i] for I >  0,
dnl,n 'l—1 =  < ----------------------- (5-8)

k \/2 /b  [yj(n +  |/| +  l)^n',n -  y/nSn^n-ij for I <  0.

These equations are the single electron dipole matrix elements. The calculation

of the single electron dipole matrix element has been performed previously and 

similar equations to these are given in the literature [36].

To calculate the optical absorption intensities of the many electron system, 

Eq. 5.3 is written in second quantised form, thus

= (5-9)
i , j

where cj and Cj are the usual creation and destruction operators, i and j  are single 

electron states, and d ^ j  is a single electron dipole matrix element given by Eq. 5.6, 

Eq. 5.7 or Eq. 5.8 depending on I and V. To calculate the many electron absorption 

spectra, matrix elements of D ^ j  are taken between the numerically calculated 

ground state and all the excited states. Therefore all possible transitions out of 

the ground state are considered.

5.4 FIR Response as a Function of the Confining Magnetic Field

In this section results are presented showing the FIR response of various 

magnetic quantum dot systems. First, results showing the FIR response as a 

function of the confining magnetic field, B z , are presented. It is shown that the 

FIR spectrum of a GaAs and an InSb system containing two interacting electrons 

is markedly different from that of the equivalent system containing one electron. 

Subsequently this difference is shown to be a direct consequence of the electron- 

electron interaction in the two electron system.
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5.4.1 FIR Response of a GaAs Magnetic Quantum D ot

The top frame of figure 5.1 shows the FIR spectra of a GaAs magnetic 

quantum dot containing one electron. Eleven Landau levels are included in 

the numerical diagonalisation calculation to obtain energies that are accurate to 

approximately 0.001%. The frame shows the transition energies and calculated 

absorption intensities as a function of the confining magnetic field for a magnetic 

quantum dot radius of rQ — 40 nm. The ground state quantum numbers for this 

particular system are I =  0 and 5  =  1/2 throughout the confining magnetic field 

range. The results shown by the upper branch in the frame are the energies 

of the A l  =  — 1 transition, and the results shown by the lower branch are 

the energies of the AZ =  1 transition. The diameters of the filled circles are 

proportional to the calculated absorption intensities. It is seen that the calculated 

absorption intensities of the upper and lower branch are very similar, and no 

discernible difference is predicted throughout the confining magnetic field range. 

Additionally, it is seen that the transition energy of the upper branch for B z=6  

T is roughly 1.75 meV, while the equivalent transition energy of the lower branch 

is approximately 1.25 meV. As the confining magnetic field increases, the energy 

difference between the A l  =  — 1 transition and the A l  =  1 transition decreases. 

This is expected, and is because in the large confining magnetic field regime 

Ib  ^  rQ, most of the electron wave function is localised inside the magnetic 

quantum dot. The energies of the system in this large field regime are then similar 

to those of the single electron in a circular dot in the absence of a magnetic field, 

and these are determined by the zeros of the Bessel function, J\i\(kr) [10].
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Figure 5.1: Dipole allowed optical absorption energies and intensities of a GaAs magnetic 

quantum dot with rQ =  40 nm. The diameters of the filled circles are proportional to the 

calculated absorption intensities.
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In the centre frame of figure 5.1 the transition energies and calculated 

absorption intensities of a GaAs magnetic quantum dot containing two interacting 

electrons, as a function of the confining magnetic field are presented. Eleven 

Landau levels are included in the numerical diagonalisation calculation to obtain 

energies that are accurate to roughly 0.5%, and the results are calculated for a 

system with a magnetic quantum dot radius of r0 =  40 nm. Because this is a two 

electron system, the ground state quantum numbers do not necessarily coincide 

with those of the one electron system. Therefore for each confining magnetic 

field value at which the FIR response of the system is calculated, the ground 

state quantum numbers are determined. The system is found to be stable for all 

the values of the confining magnetic field for which the FIR response has been 

calculated, and the ground state quantum numbers are J  =  0 and 5  =  0. The 

results shown by the upper branch in the frame are the energies of the A  J  =  — 1 

transition, and the results shown by the lower branch are the energies of the 

A J  =  1 transition. The diameters of the filled circles are proportional to the 

calculated absorption intensities. It is seen that the transition energies of the 

upper and lower branches are dissimilar to those shown in the upper frame of 

the figure. The transition energy of the upper branch for B z= 6  T is now roughly

2.5 meV, while the equivalent transition energy of the lower branch is roughly

1.5 meV. Also it is seen that the calculated absorption intensities for the upper 

branch are less than those for the lower branch. The fact that the two electron 

FIR spectra is not identical to the one electron FIR spectra suggests that Kohn’s 

theorem is violated in the case of the magnetic quantum dot, and this has already 

been reported by Reijniers et al [10]. This result is not unexpected, and is due to 

coupling of the centre of mass and relative motion of the electrons in this system.
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Unlike the FIR response of an electrostatic quantum dot, the FIR response of 

magnetic quantum dot containing two interacting electrons is markedly different 

to that of the equivalent one electron system. This, in principle, allows electron- 

electron interaction effects to be probed in a magnetic quantum dot. To be 

certain that this difference is caused by the electron-electron interaction in the two 

electron system, additional calculations are performed. By intentionally setting 

the dielectric constant, e, to a large number, the effect of the electron-electron 

interaction on the FIR response of the system should become less.

The bottom frame of figure 5.1 shows the transition energies and calculated 

absorption intensities for a GaAs magnetic quantum dot containing two 

interacting electrons. The results are calculated for a system with a magnetic 

quantum dot radius of r0 =  40 nm, and the ground state quantum numbers are 

found to be J  =  0 and S  =  0 for all values of the confining magnetic field. 

The results shown by the upper branch and lower branch in the frame are the 

energies of the A  J  =  — 1 and A  J  =  1 transition respectively. The diameters of 

the filled circles are proportional to the calculated absorption intensities. The 

only difference between the results shown in this frame and the results shown in 

the centre frame of the figure is that the dielectric constant, e =  10000. It is seen 

that the FIR response of this system is very similar to that calculated for the 

one electron system (see the top frame of figure 5.1). The transition energy of 

the upper branch at B z =  6 T is roughly 1.25 meV, and the equivalent transition 

energy of the lower branch is roughly 1.75 meV. Additionally, it is seen that the 

calculated absorption intensities for the upper branch are less than those for the 

lower branch. This is probably a result of the small, but nevertheless finite effect 

of the electron-electron interaction in this system.
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5.4.2 FIR Response of an InSb M agnetic Quantum Dot

The upper frame of figure 5.2 shows the transition energies and the calculated 

absorption intensities of an InSb magnetic quantum dot containing one electron. 

The results are obtained for a system with a magnetic quantum dot radius of rQ =  

40 nm, and eleven Landau levels are included in the numerical diagonalisation 

calculation to obtain results that are accurate to roughly 0.001%. The ground 

state quantum numbers for this system are found to be I =  0 and 5  =  1/2  

throughout the confining magnetic field range. The results shown by the upper 

branch and lower branch in the frame are the energies of the Al  =  — 1 transition, 

and of the Al  =  1 transition respectively. The diameters of the filled circles are 

proportional to the calculated absorption intensities. It is seen that the form of 

the transition energies for both the upper and lower branch, are similar to those 

calculated for the equivalent GaAs system. However, it is noticed that the energy 

difference between the two branches is roughly 4 meV, in contrast to an energy 

difference of roughly 0.5 meV for the GaAs system. This is thought to be a result 

of the reduced effective mass in the InSb system.

The FIR response of the equivalent system containing two interacting electrons 

is shown in the lower frame of figure 5.2. Again, eleven Landau levels are included 

in the numerical diagonalisation calculation to obtain results that are accurate to 

roughly 0.7%. The system is found to be stable for all the values of the confining 

magnetic field at which the FIR optical absorption has been calculated. As 

in the previous two electron calculation, the ground state quantum numbers are 

determined for each confining magnetic field value, and they are found to be J  =  1 

and 5  =  1 for all values of the confining magnetic field. The results shown by 

the upper branches in the frame are the energies of the A J  =  — 1 transition, and
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Figure 5.2: Dipole allowed optical absorption energies and intensities of an InSb magnetic 

quantum dot with r0 =  40 nm, containing one electron (upper frame), and two interacting 

electrons (lower frame). The diameters of the filled circles axe proportional to the calculated 

absorption intensities.
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the results shown by the lower branch are the energies of the A J  =  1 transition. 

The diameters of the filled circles are proportional to the calculated absorption 

intensities. It is noticed from the frame that there is a large splitting of the upper 

branch.

It is conjectured that this splitting is due to a combination of effects involving 

the ground state quantum numbers and the coupling of the centre of mass and 

relative motion of the electrons. Indeed, further calculations were performed 

during the course of this work to investigate the FIR response of a similar system  

to the previous, but with r0 =  0.01 nm. For such a small magnetic quantum dot 

radius the system effectively consists of electrons in an homogeneous magnetic 

field, and hence the centre of mass and relative motion of the electrons decouple. 

From the results it is found that there are two transitions from the J  =  1 state to 

the J  =  0 state, however, both transitions are found to have the same energy. To 

investigate these transitions further, an analysis of the quantum numbers of the 

initial and final states is undertaken. The centre of mass and relative motion of the 

electrons decouple, and therefore the centre of mass angular momentum quantum 

number, JCM, and the relative motion angular momentum quantum number, JRM, 

are good quantum numbers, and J  =  JCM+ JRM- For this system, the ground state 

total angular momentum quantum number is J  — 1, and because JCM =  0 for the 

ground state of the two electron system [59], JRM =  1. From the single electron 

dipole matrix element (Eq. 5.6), it is found that two transitions are permitted, 

one A J  =  — 1 transition resulting in the final state quantum numbers JCM =  — 1 

and JRM =  1, and one A J  =  1 transition resulting in the final state quantum 

numbers JCM =  1 and JRM =  1- This, however, contradicts the obtained results, 

that show two distinct transitions for A J  =  — 1. To resolve this contradiction
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it is noted that the state with JCM =  — 1 and JRM =  1 is degenerate with the 

state JCM =  1 and JKM =  — 1 (see Pfannkuche et al [33]). In the presence of an 

inhomogeneous magnetic field, it is conjectured that these states become coupled, 

and their degeneracy is lifted, thus explaining the splitting of the upper branch 

in the lower frame of figure 5.2.

Further calculations verify this hypothesis, and show a splitting of the upper 

branch that increases with the magnetic quantum dot radius. Figure 5.3 shows 

the FIR response of an Insb magnetic quantum dot containing two interacting 

electrons for various magnetic quantum dot radii. All the frames in the figure 

show the results of the A J  =  — 1 transition only, and the diameters of the filled 

circles are proportional to the calculated absorption intensities. The top frame of 

the figure shows results for a magnetic quantum dot with r0 =  1 nm, the centre 

frame shows results for a magnetic quantum dot with r0 =  5 nm, and the bottom  

frame shows results for a magnetic quantum dot with r0 =  9 nm. It is seen that 

as the radius of the magnetic quantum dot increases, the splitting of the branch 

correspondingly increases. For example, a system with rQ — 1 nm and B z — 4 

T has negligible splitting. As the radius of the magnetic quantum dot increases 

to  rQ =  5 nm, the splitting is equal to roughly 2 meV, and for rQ =  9 nm the 

splitting increases to roughly 5 meV.

The reason why no splitting is observed in the case of the GaAs magnetic 

quantum dot containing two interacting electrons is because the ground state 

angular m om entum of this system is J  =  0. Again for explanatory purposes, 

the lim it of sm all rQ is taken. In this regime the centre of mass and relative 

motion decouple, and therefore J  =  JCM +  4m- The ground state total angular 

mom entum value for the GaAs system is J  =  0, and hence JCM =  0 and JRM =  0.
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Figure 5.3: Dipole allowed optical absorption energies and intensities of an Insb magnetic 

quantum dot with various r 0. The diameters of the filled circles are proportional to the 

calculated absorption intensities.
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From the single electron dipole matrix element (Eq. 5.6), it is found that two 

transitions are permitted, one A J  =  — 1 transition resulting in the final state 

quantum numbers JCM =  — 1 and JRM =  0, and one A J  =  1 transition resulting 

in the final state quantum numbers JCM =  1 and JRM =  0. Neither of these states 

are degenerate, and therefore no splitting is observed as the confining magnetic 

field increases and the centre of mass and relative motion become coupled.

5.5 FIR  Response as a Function of an External M agnetic Field

In this section results are presented showing the FIR response of an InSb 

and a GaAs magnetic quantum dot containing one electron as a function of an 

applied external magnetic field, Bext. These results are shown to be similar to the 

FIR spectra of an electrostatic quantum dot with a parabolic confining potential. 

The FIR response of the equivalent two electron systems is calculated. These 

are shown to contain interesting structure that is absent from the single electron 

results, and explanations for these differences are given.

5.5.1 FIR  R esponse of an InSb Magnetic Quantum Dot

The upper frame of figure 5.4 shows the FIR response of a magnetic quantum 

dot containing one electron as a function of a homogeneous external magnetic 

field. Eleven Landau levels are included in the numerical diagonalisation 

calculation to obtain energies that are accurate to approximately 0.001%. The 

frame shows the transition energies and calculated absorption intensities of an 

InSb magnetic quantum dot as a function of the external magnetic field for a 

magnetic quantum dot radius of rQ =  100 nm and a confining magnetic field 

of B z =  1 T. The ground state quantum numbers for this particular system are
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found to be Z =  0 and 5  =  1/2 throughout the external magnetic field range. The 

results shown by the upper branch in the frame are the energies of the AZ =  — 1 

transition, and the results shown by the lower branch are the energies of the 

AZ =  1 transition. The diameters of the filled circles are proportional to the 

calculated absorption intensities. It is seen that the form of the FIR spectrum 

as a function of the external magnetic field is very different from the form as a 

function of the confining magnetic field shown in section 5.4.1 and section 5.4.2. 

As the external magnetic field increases the transition energies of the lower branch 

in the frame tend to zero very rapidly, while the transition energies of the upper 

branch tend to a linear function of the external magnetic field. The reason is that 

for a large external magnetic field, the confining magnetic field is relatively small 

and therefore the system behaves essentially as a single electron in a homogeneous 

magnetic field. The energies of the system then tend to the energies of the Landau 

levels, and therefore the transition energies of the lower and upper branch tend 

to zero and huc respectively. For small values of the external magnetic field, 

the transition energies approach a value greater than zero. This is because in 

this regime the confining magnetic field is of the same magnitude as the external 

magnetic field, and hence the inhomogeneity of the confining magnetic field is 

noticeable and cannot be neglected. Additionally, it is seen that there is a non­

zero splitting of the upper and lower branch at zero external magnetic field.

For comparison, the lower frame of figure 5.4 shows the transition energies and 

calculated absorption intensities of an electrostatic quantum dot containing one 

electron. The results are for a system with a confinement energy of hu0 =  1 meV, 

and again the ground state quantum numbers are found to be Z =  0 and 5  =  1/2  

for all values of the magnetic field. The results shown by the upper branch in
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Figure 5.4: Dipole allowed optical absorption energies and intensities of an InSb magnetic 

quantum dot with rQ =  100 nm and B z =  I T  (upper frame), and an electrostatic quantum dot 

with confining energy, huj0 =  1 meV (lower frame), containing one electron. The diameters of 

the filled circles are proportional to the calculated absorption intensities.
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the frame are the energies of the A J  =  —I transition, and the results shown by 

the lower branch are the energies of the A J  =  1 transition. The diameters of the 

filled circles are proportional to the calculated absorption intensities. The form of 

the FIR spectrum is very similar to that shown in the upper frame of the figure. 

The reason for this can be understood by investigating the form of the transition 

energies for an electrostatic quantum dot. The transition energies are given by 

AE± =  h £ l±  huc/2  [36], where Q2 =  a;2 +  and the + ( —) sign corresponds 

to left (right) circular polarisation. Because the confining energy, huj0, is small 

compared with the cyclotron energy, huc, for much of the FIR spectrum (shown in 

the lower frame of figure 5.4), the approximation Q =  u c/2  can be made. Within 

this approximation the transition energies for the electrostatic quantum dot are 

AE±  =  huc/2  ±  hjujc!2, and therefore the transition energies of the lower and 

upper branch tend to zero and huc respectively as the magnetic field increases. 

These are the same transition energies as in the case of a magnetic quantum dot 

in an external magnetic field, and hence the two FIR spectra are very similar. In 

contrast to the FIR response of the magnetic quantum dot, it is seen that at zero 

external magnetic field the splitting of the upper and lower branch is zero.

Figure 5.5 (upper frame) shows the the FIR response of a magnetic quantum 

dot containing two interacting electrons as a function of an external magnetic 

field. Ten Landau levels are included in the numerical diagonalisation calculation 

to obtain energies that are accurate to approximately 1%. The frame shows 

the transition energies and calculated absorption intensities of an InSb magnetic 

quantum dot as a function of the external magnetic field for a magnetic quantum 

dot radius of rQ =  100 nm and a confining magnetic field of B z =  1 T. This 

system is stable even in the absence of an homogeneous external magnetic field.
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As in the previous two electron calculation, the ground state quantum numbers 

are determined for each magnetic field value, and it is found that the ground state 

angular momentum quantum number increases with the external magnetic field. 

The lower frame of the figure shows how the ground state total angular momentum 

quantum number changes with external magnetic field. The total spin quantum 

number is found to be S  =  1 for all values of the external magnetic field. The 

results shown by the upper branch and lower branch in the upper frame of the 

figure are the energies of the A J  =  — 1 transition, and of the A J  =  1 transition 

respectively. The diameters of the filled circles are proportional to the calculated 

absorption intensities.

From the upper frame of the figure it is seen that the general form of the 

FIR spectrum is similar to that of the single electron FIR spectrum (shown in 

figure 5.4). Again, as the external magnetic field increases, the transition energies 

of the lower branch tend to zero, and the transition energies of the upper branch 

tend to the cyclotron energy. However, it is seen that there is interesting structure 

to the upper branch. There is a splitting of the upper branch, which generally 

decreases with increasing magnetic field. For a system with no external magnetic 

field, the magnetic field in the system is given by the inhomogeneous magnetic 

field inherent to the ferromagnetic material deposited upon the heterostructure. 

The reason for the splitting can then be understood by the argument given in 

section 5.4.2, and is due to a coupling between the centre of mass and relative 

motion states of the electrons. Due to this coupling the degeneracy of these 

states is lifted, resulting in the two distinct transition energies shown in the 

upper branch of the figure. As the external magnetic field increases, the effect 

of the inhomogeneity due to the inherent magnetic field associated with the
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Figure 5.5: The upper frame shows the dipole allowed optical absorption energies and 

intensities of an InSb magnetic quantum dot with r0 — 100 nm and Bz =  1 T, containing 

two interacting electrons. The diameters of the filled circles are proportional to the calculated 

absorption intensities. The lower frame shows the ground state total angular momentum 

quantum number as a function of the external magnetic field
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ferromagnetic material becomes less, and the coupling between the centre of 

mass and relative motion of the electrons becomes weaker, therefore resulting 

in a smaller splitting. The system is essentially two interacting electrons in a 

homogeneous magnetic field when the external magnetic field is large, and in 

this regime the centre of mass and relative motion of the electrons decouple, and 

therefore no splitting is observed.

Further interesting features of the FIR spectrum are noticed when viewed 

in conjunction with the lower frame of the figure. It is seen that there is a 

direct correlation between changes in the ground state total angular momentum 

quantum number and the structure of the splitting seen in the upper frame of 

the figure. For example, the ground state total angular momentum quantum 

number of a system with B ext =  0 — 0.375 T is found to be J  =  1. From the 

figure this corresponds to two strong transitions in the upper branch. As the 

external magnetic field increases (Bext =  0.5 — 0.75 T), the ground state total 

angular momentum quantum number increases to J  =  3, and the structure of the 

splitting changes. It is seen that, rather than two transitions in the upper branch 

(as is the case when J  =  1) there are now three transitions. As the external 

magnetic field increases further, the correlations between the ground state total 

angular momentum quantum number and the structure of the splitting become 

less discernible. However, there do seem to be several oscillations from a doublet 

structure to a triplet structure in the upper branch.

5.5.2 FIR R esponse of a GaAs Magnetic Quantum Dot

The FIR response of a GaAs magnetic quantum dot containing two interacting 

electrons is shown in the upper frame of figure 5.6. Ten Landau levels are included
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in the numerical diagonalisation calculation to obtain energies that are accurate 

to approximately 0.8%. The frame shows the transition energies and calculated 

absorption intensities of a GaAs magnetic quantum dot as a function of the 

external magnetic field for a magnetic quantum dot radius of r0 =  50 nm and a 

confining magnetic field of B z =  5 T. The results shown by the upper branch and 

lower branch in the upper frame of the figure are the energies of the A J  =  — 1 

transition, and of the A J  =  1 transition respectively. The diameters of the 

filled circles are proportional to the calculated absorption intensities. Again, 

because this is a two electron calculation the ground state quantum numbers are 

determined for each magnetic field value. It is found that the ground state angular 

momentum quantum number increases with the external magnetic field, and this 

is shown in the lower frame of the figure. In contrast to the InSb results (shown 

in figure 5.5), in which the total spin quantum number is S  =  1 for all values of 

the external magnetic field, it is found that there is a total spin quantum number 

transition from 5  =  0 to 5  =  1 at roughly Bext =  0.3 T. The inset in the upper 

frame of the figure shows the FIR response for B ext <  0.5 T, and the consequence 

of this spin transition on the calculated results. It is seen that for B ext <  0.3 T, 

the calculated absorption intensities are relatively small. For B ext >  0.3 T there 

is a sudden increase in the calculated absorption intensity.

As with the InSb results (figure 5.5) it is seen that there is interesting structure 

to the upper branch. There is a splitting of the upper branch, which generally 

decreases with increasing magnetic field. An exception to this is the data 

calculated with B ext <  0.3 T. In this regime no splitting of the upper branch 

is predicted, and the reason for this is given in latter part of section 5.4.2, and is 

due to the ground state of the system having quantum numbers 5  =  0 and J  =  0.
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Figure 5.6: The upper frame shows the dipole allowed optical absorption energies and

intensities of a GaAs magnetic quantum dot with r0 =  50 nm and Bz =  5 T, containing 

two interacting electrons. The diameters of the filled circles are proportional to the calculated 

absorption intensities. The inset shows the effect of the spin transition on the calculated data. 

The lower frame shows the ground state total angular momentum quantum number as a function 

of the external magnetic field



Chapter 5 134

For the calculated data with Bext >  0.3 T, the results show a similar trend to 

those calculated and presented in figure 5.5. The explanation of the splitting is 

given in the previous section, and is due to a coupling between centre of mass 

and relative motion states.

When viewed in conjunction with the lower frame of the figure, it is seen that 

a direct correlation exists between changes in the ground state total angular 

momentum quantum number and the structure of the splitting seen in the upper 

frame of the figure. For Bext =  0 T, J  =  0 and this corresponds to a weak 

transition in the upper branch. As Bext increases upto 1.5 T, the ground state 

angular momentum of the system changes from J  =  0 to J  =  1. This corresponds 

to two strong transitions in the upper branch. As B ext increases further, J  also 

increases, and consequently subtle changes of the structure of the splitting are 

observed. Furthermore, observing the slopes of the upper and lower branches, it 

is just possible to see changes in the gradient of these branches that are correlated 

with the structural changes of the splitting.

5.6 Scope for Future Experiments

Many of the theoretical results presented in this chapter should be 

experimentally verifiable with near or existing technology. The single electron 

results calculated for the GaAs and InSb magnetic quantum dot as a function 

of the confining magnetic field should pose little or no problems to acquire 

experimentally. To obtain the relatively high confining magnetic fields used 

to obtain these results, it is suggested that the systems could be fabricated by 

depositing a superconducting material near to a 2DEG. The confining magnetic 

field is then the external magnetic field applied to the system, and these high
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magnetic fields should be relatively easy to attain. The single electron results 

for the GaAs magnetic quantum dot as a function of the external magnetic 

field may prove more difficult to obtain. Because the confining magnetic field is 

constant, while the external magnetic field varies, the system must be fabricated 

by depositing a ferromagnetic material near to a 2DEG. The ferromagnetic 

material then provides the constant confining magnetic field. As discussed in 

chapter 4, a typical confining magnetic field produced by the ferromagnetic 

material is B z =  0.5 T. For the results calculated and presented in the upper 

frame of figure 5.4 the confining magnetic field is B z =  1 T, and this may just be 

out of reach with current experimental capabilities. However, it is thought that 

the results would not differ greatly with Bz =  0.5 T.

With the parameters used to obtain the two electron results for the GaAs 

magnetic quantum dot as a function of the confining magnetic field, the system 

should be able to be fabricated experimentally with existing technology. Again, 

to obtain the high confining magnetic fields it is suggested that the system is 

fabricated by depositing a superconducting material near to a 2DEG. For all the 

parameters used, the system is stable and therefore the magnetic quantum dot 

always confines the two interacting electrons. This is also the case for the results 

obtained for the equivalent InSb magnetic quantum dot. This is encouraging, 

because it should therefore be possible to verify experimentally the predicted 

large splitting of the upper branch shown in the lower frame in figure 5.2.

The FIR response of the two electron systems as a function of the external 

magnetic field may be difficult to obtain experimentally. These results are 

arguably the most interesting due to the correlations between the structure of 

the splitting and the changes in the ground state quantum numbers. Potential
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experimental difficulties arise because the relatively large confining magnetic 

fields used to obtain the theoretical results are currently unattainable. Such 

large confining magnetic fields were chosen primarily to ease computation of 

the results. For example, the results shown in figure 5.5 are calculated with 

rQ =  100 nm and B z =  I T .  With these parameters the system is stable even 

in the absence of the external magnetic field. If the confining magnetic field 

is decreased, the magnetic quantum dot radius at which the system becomes 

stable increases. Therefore more Landau levels must be included in the numerical 

diagonalisation calculation to obtain converged energy eigenvalues, and hence the 

computational time required to obtain the results increases. However, it is seen 

that both figure 5.5 and figure 5.6 show results of a similar trend, with a splitting 

of the upper branch, and it is likely that this trend will continue as the confining 

magnetic field is decreased to experimentally attainable values. Therefore the 

splitting of the upper branch predicted in these figures, which is the order of 1 

meV for low external magnetic fields, should exist for Bz =  0.5 T, and hence 

should be experimentally detectable with current technology.
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Summary and Conclusions

The analysis that has been undertaken during the course of this work has 

led to much interesting and novel physics, and many new discoveries have been 

made. The properties of the magnetic quantum dot have been investigated with 

numerical and semi-analytic techniques such as exact numerical diagonalisation 

and wave function matching. These have enabled the single electron system, 

which forms the majority of the existing work in this field, to be examined 

thoroughly. Using new methods devised in this work, it is now possible to apply 

the wave function matching technique successfully to this system when it has a 

magnetic field overshoot. However, the primary focus of this thesis is concerned 

with understanding the physics of the many electron system. This system has not 

been subject to previous investigation. It has been shown in this thesis that the 

electron-electron interaction strongly affects the electronic and optical properties 

of the magnetic quantum dot. This is primarily due to the unusual form of 

the confinement in this system, and many of the results presented in chapter 4 

and chapter 5 follow from this. It is believed that the work contained in these 

chapters, and indeed the whole of this thesis, will serve as a basis for any future 

work in this field.

137
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The initial part of this thesis has been concerned with formulating a theoretical 

model of the magnetic quantum dot. This model provides an accurate, yet simple, 

description of the magnetic quantum dot, and one of the reasons for this is that it 

is independent of the £ coordinate. This theoretical model is formulated in chapter 

2 following an investigation of how the various magnetic field profiles associated 

with the magnetic quantum dot arise. Much of this work is a continuation from 

the work of Peeters et al [9]. This model of the magnetic quantum dot has been 

used in all subsequent chapters, and in chapter 3 has been used to investigate the 

electronic properties of a magnetic quantum dot containing a single electron. This 

system has been investigated using exact numerical diagonalisation and the wave 

function matching technique to obtain the eigenstates and energy eigenvalues. 

The main development in chapter 3 has been the application of the wave function 

matching technique to the system with a magnetic field overshoot. During this 

work several analytic and numerical problems have been overcome. By evaluating 

the ratio of the hypergeometric functions rather than the divergent individual 

hypergeometric functions, the energy of this system has been calculated for the 

first time using the wave function matching method. The ratio, R , has been 

evaluated by solving a first order differential equation which has the form of a 

Riccati equation. Depending on the magnitude of R, a differential equation for 

R  or 1 /R  is solved. This is because numerical problems due to singularities in 

R  are encountered. This work is an important extension to the existing work in 

this field, and completes the work on the single electron system. It is believed 

that the advantages of using this method, namely computational ease, make it 

worthwhile, and outweigh any disadvantages arising from its complexity.

The plots showing the single electron energy as a function of the angular
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momentum quantum number presented in chapter 3 for the system without the 

magnetic overshoot are mainly intuitive. One would expect the energy of an 

electron to increase and then become constant as the angular momentum quantum 

number increased. However, the results obtained for the system with a magnetic 

field overshoot can not be explained in such simple terms. It is difficult to imagine 

how the peak in the energy versus angular momentum quantum number arises. 

Although Peeters et al [9] obtain similar results, they fail to give a satisfactory 

explanation for this phenomenon. In this work this effect has been analysed in 

terms of the effective potential. This analysis results in a simple, comprehensible 

explanation that is supported with results for the electron density.

The second method used to investigate the single electron system is exact 

numerical diagonalisation. This method has been shown to be a very efficient 

way of obtaining results. However, it is believed that the wave function matching 

technique is more suited to the single electron system due to the greater 

programming effort required to write the numerical diagonalisation routine. The 

advantage of the numerical diagonalisation method is that it is readily adapted 

to include more electrons. A fact which has been exploited in chapter 4 and 

chapter 5. In chapter 4 the electronic properties of the magnetic quantum dot 

containing interacting electrons have been investigated. In order to calculate the 

results presented in chapter 4, new methods to evaluate the Coulomb matrix 

elements have been devised. These new methods are required because of the 

roundoff errors which arise on attempting to calculate the matrix elements with 

large quantum numbers. These errors accumulate due to the cancellation of 

successive terms with alternating sign, and can swamp the desired result. The 

new methods that have been devised, while being more numerically stable, are
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also more CPU intensive. Therefore, the fastest routine that is stable is used to 

evaluate the Coulomb matrix elements. The main emphasis of the work contained 

in chapter 4 follows from the fact that the magnetic quantum dot is able to confine 

interacting electrons, and this is one of the main conclusions resulting from this 

thesis. From this follows the concept of stability, which is paramount in all of 

the subsequent work. Stability diagrams for a particular system, provide a way 

of depicting whether a system is stable or unstable as a function of the system  

parameters. The analytical form of the stability curves have been determined 

from a dimensional analysis of the hamiltonians. This enables the position of 

the stability boundary to be predicted to a reasonable accuracy. This stability 

condition has been used in chapter 4 to explain why various systems are stable or 

unstable, and these predictions are supported and verified with numerical values 

for the energies of the stable and unstable systems.

The effect of the material parameters on the stability has been investigated. 

The main conclusion resulting from this work is that the InSb system is more 

stable than the equivalent GaAs system. The reason for this is mainly due to the 

smaller effective mass in the InSb system, and this result can be obtained quite 

simply from the stability condition. Other systems have also been investigated 

in chapter 4. Arguably, some of the more interesting results are obtained when a 

homogeneous external magnetic field is applied to the system. The introduction of 

another magnetic field to the system enables several possible forms for the single 

particle basis function. However, with a convergence analysis, the optimum basis 

function has been determined. This system has been shown to have enhanced 

stability, and this is due to the energy of the electrons inside the magnetic 

quantum dot being decreased. This fact is supported with numerical values for
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the energy and also by the analytic stability condition. The stability of a realistic 

system with a 2DEG of finite thickness has been investigated. The Fang-Howard 

states are used to describe the motion of the electrons in the z direction, and 

the variational parameter has been calculated explicitly. To determine this a 

simple approximation has been introduced, and it is shown that the form factor 

results in a modified Coulomb energy that is roughly constant as a function of 

this variational parameter. This proves to be a crucial result as it enables the 

variational parameter to be evaluated quite simply. The stability of this system 

has been shown to be enhanced. This result is intuitive and is a direct consequence 

of the extra separation of the electrons, resulting in the energy of the electrons 

decreasing. The work that concludes chapter 4 is the investigation of a magnetic 

quantum dot containing three interacting electrons. This work is very important 

as it shows that more electrons can be confined in the magnetic quantum dot. In 

order to confine three electrons it has been shown that the radius and the confining 

magnetic field of the dot are required to be greater than those of the equivalent 

two electron system. This is a consequence of the greater Coulomb energy in the 

three electron system. Many of the results in chapter 4 are supported with plots 

of the electron density, pair distribution and pair correlation functions. These 

provide a more pictorial explanation of the differences in stability, and clarify the 

electron positions and separations within the various systems.

The treatment of an experimentally realisable system is crucial if reliable 

comparisons with experiments are to be made. In chapter 5, the FIR response 

of several experimentally realisable magnetic quantum dot systems has been 

investigated. The intensity of a particular transition has been calculated from 

the dipole matrix elements between a numerically calculated ground state and



Chapter 6 142

all the excited states. The final states have been determined using the selection 

rules, which follow from the dipole matrix element calculation. In chapter 5 

the FIR response of GaAs and InSb magnetic quantum dots containing one 

and two electrons as a function of the confining magnetic field and an external 

magnetic field has been investigated. It has been shown that Kohn’s theorem is 

violated, and this is found to be a consequence of coupling between the centre 

of mass and relative motion of the electrons. The importance of this result can 

not be overstated. Because Kohn’s theorem is violated, the effect of electron- 

electron interactions in this system can be probed by optical experiments. The 

FIR response of a GaAs system containing two interacting electrons has been 

shown to be markedly different to that of the equivalent InSb system. A large 

splitting in the upper branch of the FIR response of the InSb system has been 

predicted. A possible explanation for this interesting result is offered. It has 

been conjectured that the effect is due to a combination of the ground state 

angular momentum quantum number value and the coupling of the centre of 

mass and relative motion states of the electrons. The FIR response as a function 

of the external magnetic field provides more insight into these novel systems. 

The single electron results have shown that the response is very similar to that 

of the electrostatic quantum dot. However, it is the results for the two electron 

systems that are most interesting. Both the GaAs and InSb systems show similar 

features. For low external magnetic fields a splitting of 1 meV is predicted in the 

upper branches. This splitting has been explained in terms of the coupling of the 

centre of mass and relative motion states of the electrons. The magnitude and 

structure of this splitting has been shown to be directly correlated to changes in 

the ground state angular momentum quantum number.
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In spite of the numerical diagonalisation program being an efficient method 

to obtain the quantum states of a magnetic quantum dot, several limitations of 

the current method should be pointed out. The technique is best when used 

to calculate the states of a system with a small magnetic quantum dot radius, 

containing one or two electrons. Deviations from these ideal conditions result 

in calculations that become increasingly difficult to perform. Additionally, if 

many Landau levels are included in a calculation, this problem is compounded 

by the fact that two of the routines to evaluate the Coulomb matrix elements 

are significantly more computationally expensive than the original routine. It 

should be possible to ease these problems by making several modifications to 

the current program. Because, in many calculations, the majority of the CPU 

time is spent calculating the Coulomb matrix elements, modifications to these 

routines seem the obvious choice. During the course of this work great effort has 

been taken to ensure that highly efficient algorithms have been devised, and it is 

thought that improving the efficiency would prove difficult. Nevertheless, if more 

efficient versions of these algorithms could be constructed, the CPU time should 

decrease dramatically, thus allowing larger scale calculations to be performed. A 

further option could be to attempt to use the correct single particle eigenstates 

of a magnetic quantum dot to represent the single particle functions. This should 

increase the accuracy of the results, thus enabling less basis states to be included 

in a calculation, although it is expected that many analytic and numerical 

difficulties would be encountered if this was attempted. The investigation of 

systems containing more than three electrons may prove difficult. In this regime 

the size of the hamiltonian matrix becomes the dominant problem. However,
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this problem may be relieved somewhat by storing only non-zero elements of the 

matrix to save computer memory. Additionally, using an iterative method to 

determine only a few low-lying eigenstates of the matrix, such as the Lanczos 

method [25], instead of the whole spectrum would also improve computational 

time and save on memory usage. Therefore, in principle, the limitations of the 

current program could be largely removed, resulting in a much wider range of 

applications.

W ith these modifications, it is possible that much more fascinating physics may 

be discovered. For example, the investigation of systems with more electrons 

could potentially lead to more novel effects. It is predicted that with more 

interacting electrons, the system would require an ever increasing confining 

magnetic field, or magnetic quantum dot radius to confine the electrons in 

the magnetic quantum dot region. Whether a stability boundary is a generic 

characteristic of a magnetic quantum dot system remains an open question, 

and studies of a system with more than three interacting electrons could go 

some way to addressing this. Possible experimental studies include transport 

spectroscopy, electron capacitance spectroscopy and the investigation of laterally 

and vertically coupled magnetic quantum dots. All of these aspects have been 

studied experimentally and theoretically for the case of the electrostatic quantum 

dot [51, 55, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70], and they have already yielded 

many fascinating results. Perhaps similar novel physics exists for the case of the 

magnetic quantum dot.



A PPE N D IX  A

Calculation of the Coulomb M atrix Elements

2, the Coulomb matrix elements must be evaluated. In this appendix three ways 

of evaluating the Coulomb matrix elements are given. The underlying method 

by which the Coulomb matrix elements are calculated is the same for each each 

of the three ways, and involves taking the Fourier transform of the interaction 

potential, l / |r | .

Explicitly the Coulomb matrix element, which is present in Eq. 2.10 is given

where ipi(r) are the Fock-Darwin states, and these are given by Eq. 2.13. To 

proceed, the Fourier transform of l / |r |  is taken, giving

The exponential term in this equation can be expressed in scalar form as 

eiqricos<t>ie-iqr2cos<f>2  ̂ hence after substituting Eq. A.2 and Eq. 2.13 into Eq. A .l, 

the <f> integrals take the form

To perform the exact numerical diagonalisation calculation described in chapter

by

(ij\v\kl) =  —  /  ^ ; ( r i ) ^ ( r 2):— -— r ^ (r 2) ^ ( r i)dri dr2# i # 2, (A .l)
47ree0 J J |ri — r2|

(A.2)
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Using the relation
oo

gtgrcos  ̂_  £  Jx{qT)ixeiX*, (A.4)
X——00

where J\{qr)  is a Bessel function of order A, the integrals over <f> given by Eq. A.3 

reduce to the following

I  =  47r2Ji[- i i (qri)Jik. l j( - q r 2)ill~li+lk~lj. (A.5)

Due to the conservation of angular momentum l{ +  lj =  /* +  /*, and therefore 

ih-h+ik-h =  i  u sing the identity, J_n(—x) =  Jn{x) [29], the Bessel function with 

the negative argument in Eq. A.5 reduces to J\(qr 2 ), where A =  lt — =  lj — lk.

Substituting X  back into Eq. A .l and introducing the dimensionless variable 

x2 =  r 2/2 l2B gives

(ij \v\k l) =  ^ ^ N niliNnihNnkliNnill Jo°° dg

x jf” *!f,l+ftl+1e-*?lg;l(x?)i!5l(a?)J*(v'29x0*1  

x (A.6)

This equation is the result given in chapter 3 by Eq. 4.6 and is also the common

starting point used in the other two methods to derive the Coulomb matrix

elements.

The first of the other methods follows from the work of Maksym [24] and

involves writing the associated Laguerre polynomials in Eq. A.6 as a power series,

thus giving

(a .7)

Substituting this form for the associated Laguerre polynomials in Eq. A.6, allows 

the integrals over x i and x<i to be evaluated [58]. Therefore the final result for
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the Coulomb matrix element is found to be

( e> P i r l 2A 2  n i  n i  n j  n * (  —  - W a + P + y + S
{ m k l )  =  v ^ L NniliNnjijNnklkNnih E E Z E L I )

c c °  q = 0  /3 = 0  7= 0  (5= 0  W . f J . y . O .

X n* +  +  K/f\ Ab +  |Jjf\ /^* +
^ n i - a j y n i - (3 j y r i j - i  ) \ n k - 5  )  

? ) 'r,«(a)>(iawiaw (A.8)

where

and

-A— (<* +  /?+  -[|Z*| +  |Zj| -  |A|]) (A.9)

£  — ^7 +  6 +  -  [\lj\ +  |lk\ -  |A|]  ̂ , (A.10)

and this is the result in chapter 3 given by Eq. 4.2.

A further method to evaluate the Coulomb matrix elements is also due to 

Maksym [24]. Again, Eq. A .6 is the starting point. Rewriting the x  integrals in 

Eq. A .6 in terms of three associated Laguerre polynomials. To begin, the Bessel 

functions in Eq. A .6 are substituted with the following expression obtained from 

Magnus et al [26]
oo t  X/ T \ nn

J x V J q x )  =  e - \x q )>  £  (A .ll)
n=o (n  +  A) !

The integral over x\  then takes the form 

qxeyXp—q2 oo Jin
dx1e - ^ x ^ +w+x)/2L ^ ( x 1) L ^ ( x 1) L ^ x l ), (A.12)

1 n=o Vn  *+■ A/- ■'0

where a change of variable from x\  to x\ has been made. A similar expression 

to this is also obtained for the integral over X2- Introducing the constant 

s =  (|^| +  \lt \ — A)/2, it is seen that x sL ^ ( x i ) L ^ ( x i )  is a polynomial of order 

s +  rii +  7̂ , and therefore must have an expansion of the form

s+ni+ni
£  a « L i(* i) . (A.13)

77 1 = 0
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Substituting this expression along with s =  (|^| +  \li\ — A)/2 into Eq. A .12, results 

in the orthogonality integral for the associated Laguerre polynomial, and hence 

the integral over Xi is found to take the form

n^f>-q2 s+U i+m  2mq e  „
2 £s> ml v ;

The am in this expression are obtained from Eq. A. 13, and using the orthogonality 

condition for the associated Laguerre polynomial they are found to be

ml
O/m. —

r  OO

(:m  +  x y . l o  d x i e ~X' x l +XLi ( x i ) L n K x M H x i ) -  (A.15)

Therefore substituting this into Eq. A. 14 it is found that an expression similar 

to Eq. A. 12 is obtained, except the sum over n is restricted. By repeating this 

procedure for the integral over £2, the final form for the Coulomb matrix element 

is found to be

M v \ k l )  =  ikN njliNnklkN nik d q q ^ e -2"2

x f °  dx ie -*'x{+xLM(x  O L g W  T "
J0 m=0 I771 “i" A)[
roo t+ni+nk a2pLx(xA

X fo dx2e - ^ x ‘2+xL ^ ( x 2) L ^ ( x 2) £  +  (A.16)

and this is the result given in chapter 3 by Eq. 4.5.
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