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Abstract

Evidence Synthesis & Decision Modelling for Metabolic Syndrome.

Milena Castro

Metabolic Syndrome (MetS) may be defined as a clustering of risk factors

for diabetes mellitus (T2DM) and cardiovascular disease (CVD) which

puts individuals at increased risk of developing these conditions and con-

sequently leads to a reduction in life expectancy and increased morbidity.

Although there are a number of definitions of MetS, essentially having any

three of the following five risk factors confers a diagnosis of MetS; (i) im-

paired fasting glucose levels, (ii) raised blood pressure, (iii) raised triglyc-

erides, (iv) low levels of high-density lipoprotein cholesterol (HDLC), and

(v) increased waist circumference. A comprehensive decision model has

been developed to combine different levels of evidence in a Markov model.

This model is based in the behavior of MetS and its possible progression

to T2DM and CVD, in order to evaluate the potential impact of a MetS

based intervention at population level. Evidence synthesis methods are

going to be incorporated in the model to integrate different levels of in-

formation. Firstly, a Mixed Treatment Analysis (MTC) of Randomized

Controlled Trials (RCTs), which have evaluated a number of lifestyle and

pharmacological interventions in individuals with MetS was undertaken.

This information also assessed the possibility of reversing a diagnosis of

MetS. Secondly, a systematic review of published literature was conducted

to assess the evidence related with the association between the MetS and

development of T2DM and/or CVD. A Bayesian approach to the problem

has also been advocated which enables flexibility to develop a Markov

model of this complexity. WinBugs offers a comfortable solution for the

evaluation of a Markov model, given its Gibbs sampler. Main findings of

this thesis are related with large amount of uncertainty, presuming a dif-

ficulty to provide a clear decision related to the application of MetS for

prevention of T2DM and CVD.
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Introduction
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Metabolic Syndrome (MetS) has existed, as a concept, since the 1920s when Kylin

determined a clustering of hypertension, hyperglycaemia, and gout (Cameron et al.

[2004]; Eckel et al. [2005]; Kylin [1923]). It was until 1998, that the World Health

Organization proposed a set of criteria to use as a tool for clinicians and researchers

(Eckel et al. [2005]). MetS is a term describing the cluster of 3 or more cardiovascular

risk factors, from a list of 5 established risk factors related to cholesterol, triglycerides,

blood pressure, obesity and glucose intolerance (Alberti et al. [2006]; Cleeman et al.

[2001]; Grundy et al. [2004]; Zimmet et al. [2005]). The lack of agreement between the

different directions of the debate around the conformation of this criteria has led to a

delay in its application to clinical practice (for example, there are no specific guidelines

directed to the treatment of MetS in the British health care system). While there is still

need for medical consensus on the use of the term, given its criticism, it is important to

understand different stages of MetS to decide on the utility of this definition as a tool

for prevention of cardiovascular disease. It is important to explore the possible impact

that an intervention based on MetS criteria could have on a specific population.

Type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD), are non-communicable

disease of major public health challenges world-wide. By year 1990, 83% of deaths

between 15-59 years were in the developing world (Murray and Lopez [1997]; Zim-

met et al. [2001]). Research about these diseases is overwhelming, mainly because

of the complexity in their clinical definition (classification) resulting in an increased

variability of the terms used across scientific publications. This panorama derives into

a considerable list of different outcome definitions. Which is inherent to epidemiolog-

ical behavior of CVD, because is determined as the sum of stroke and coronary heart

disease outcomes. The type of events included as criteria for coronary heart disease
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can present important variation over the literature, and therefore have a possible im-

pact in use of this definition of CVD. This variation is more probable when studying

the accumulation of evidence for chronic diseases across different populations, given

the different uses of the terms over time and spaces of application. The exploration of

the contradiction between the amount of information and the reality of these concepts

could be the key to allow for an effective prevention of CVD.

This thesis aims to collate and synthesise evidence already published, assessing the

MetS criteria to evaluate the possibility of applying a prevention strategy, such as an

intervention based on MetS criteria. Understanding of MetS is important to develop the

structure of a model for clinical and health policy decision making. The fundamental

question that this thesis aims to answer is whether it is clinically useful and cost-

effective to use MetS based interventions in order to have an impact on the incidence

of CVD, T2DM and associated mortality? Therefore, the decision model will compile

all the information extracted from the evidence synthesis, and will contribute to the

discussion surrounding MetS. The outcomes of this analysis will expose important

aspects to assess the impact of using MetS criteria in a population based prevention

strategy.

In addition, since economic factors are also interacting within a public health frame-

work, a comprehensive analysis for decision making is needed to evaluate different

prevention strategies for T2DM and CVD. Therefore, the synthesis of evidence be-

comes crucial in order to accommodate different sources of information, and the use

of Bayesian methods will not only enable the actual evidence synthesis analyses un-

dertaken, but also provide a seamless transition between evidence synthesis and incor-

poration of these results within an economic decision model.
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The following sections are going to specify the need of evaluating MetS using a com-

prehensive analysis. The definition of the problem and the research approach outlined

in the introduction, are going to be supported with a background overview in Chapter

2 (Context and definition of MetS) and discussion of the statistical methodology in

Chapter 3. Chapters 4 and 5 will describe the evidence synthesis and Chapter 6 is go-

ing to develop an economic decision model for a MetS population. Then, conclusions

in Chapter 7 will integrate the main results into a discussion interpreting outcomes for

decision making.

This section aims to introduce an overview of the structure of this thesis. Section 1.1

presents an argument of the importance of MetS, the definition of MetS is introduced

in section 1.2. Section 1.3 presents a justification of the methodological approach of

this thesis and section 1.4 presents an overview of the chapters composing the docu-

ment.

1.1 Importance of Metabolic Syndrome: The global sit-

uation

The MetS criteria were developed to improve understanding of links between insulin

resistance and vascular disease (Sattar et al. [2008]). Given the need for developing

prevention strategies for T2DM and CVD, a broad evaluation of MetS could provide

clear answers of finding a way of approaching solutions. The prevalence varies in ur-

ban populations from 8% (India) to 24% (USA) in men, and from 7% (France) to 43%

(Iran) in women, and 30% in the UK (Khunti et al. [2010]). The prevalence of MetS is

highly dependent on the prevalence of its individual components among populations.
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Just as definitions used vary across countries, differences are also reflected in genetic

background, diet, levels of physical activity, population age and sex structure, nutrition

levels and lifestyle (Cameron et al. [2004]; Eckel et al. [2005]).

Alberti et al. [2006] have proposed the use of MetS as a diagnostic tool in clinical prac-

tice and the world-wide use of the criteria to be able to compare different populations

from different regions. MetS criteria could be used to identify people at higher risk of

developing T2DM and/or CVD.

MetS criteria was first introduced by Raeven (Eckel et al. [2005]) and as a result the

definition has led research in different directions since then. The concept itself is con-

stituted by many sources of variation, making a comprehensive overview challenging.

The different aspects related with MetS prevalence across populations, that were men-

tioned previously in this section, represent sources of variation of MetS. The definition

of MetS is a composition of risk factors and each contributes with variability. Each

risk estimate involves a specific population with a specific condition, that associates

with the other risk factors, these populations can encounter different interactions re-

lated with the habits that helped develop the condition. In order to develop a model

that can reflect reality of MetS, these sources of variation should be considered within

any model. In a complex model, like the one that this thesis is aiming to develop, there

are a number of challenges for all sources of variation coming from MetS and that from

all other sources are captured within the model. Since decision making is the ultimate

aim of this thesis, for a population based intervention, there will be sources of variation

that will be outside of the scope of this model; like individual patient level. Chapter

2 will present a detailed overview of the context of MetS. But firstly, a definition of

MetS is necessary to start.
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1.2 What is Metabolic Syndrome?

Given a list of the five determined risk factors for cardiovascular disease (impaired

glucose intolerance, high cholesterol, high triglycerides, high blood pressure and high

waist circumference), if a person presents any combination of 3 or more risk factors,

would constitute a MetS diagnosis. The occurrence of this event (accumulation 3 or

more risk factors) represents 16 possible combinations (3 of 5 risk factors) that can

be present in a person that classifies with a positive result. Different organizations

like World Health Organization (WHO), National Cholesterol Education Programs

Adult Treatment Panel III (NCEP) and the International Diabetes Federation (IDF)

have made an effort to specify MetS criteria for medical research and clinical practice

(Alberti et al. [1998, 2006]; Cleeman et al. [2001]; Grundy et al. [2004]; Zimmet et al.

[2005]). However, the simplicity in the numerical definition incorporates semantic het-

erogeneity; because, at the individual-patient level, the multiple combinations that the

terms can evidence in the clustering of risk factors. The simple addition of components

can introduce a particular variability from the combination of the components and its

prevalences.

There is also a debate surrounding a constructive benefit for the design of a health in-

tervention from clinical practice and detractors mention a possible benefit of increasing

markets for therapies which they see as unwarranted (Gale [2008]). Chapter 2 presents

a discussion about the validity of MetS. Advantages related with the term are pointed

to a potential preventive property of T2DM and CVD, because of the simplicity to be

applied in clinical practice and could have an impact in the reduction of population

costs related with the diseases involved.
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In Chapter 2, contextualizing issues of Metabolic Syndrome, a broad definition of the

MetS is complemented with a literature review of the actual situation. Examination of

this polemic context of MetS, provides clarity to the interpretation of outcomes result-

ing from the decision model developed. It shows an important role for the structuring

of biological patterns presented when modelling a syndrome.

These two previous sections have presented the need of studying MetS to this level of

detail, the following section introduces the approach that this thesis is undertaking to

achieve sufficient understanding of MetS to be able to produce recommendations for

its application and future research.

1.3 Why take a comprehensive decision modelling ap-

proach?

Synthesis of different sources of evidence is needed to analyze a broad overview of

factors (medical, economic and statistical issues) related to the assessment of MetS

criteria and its use as a prevention tool.

Chronic diseases like T2DM and CVD require a comprehensive approach given their

complexity. There are many factors interacting in a population that can allow the pro-

gression of these diseases. A broad analysis incorporating different types of evidence

becomes key to the understanding of the behavior of the syndrome. Since the cause of

T2DM and CVD is linked to lifestyle factors marked by the long duration a person can

have a chronic disease, it is necessary to take into account different possible sources

of variation. Decision models allow the incorporation of information from different
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sources (clinical and economic information) in a structured manner which supports

decision making related to public policy.

1.4 Outline of the thesis

This thesis starts with an examination of the context of MetS Chapter 2: contextual-

izing issues of Metabolic Syndrome: concept and antecedents presents an overview

of the history behind the concept of MetS. This review is required given more than

85 years of research using this term. However, this literature review corresponds to

the need of exploring the linguistic understanding in order to produce precise interpre-

tations of the data outcomes. What are the factors interacting around the concept of

MetS? How is this important for the development of the analysis? How will this thesis

contribute to the debate? What are the possible constraints of a MetS model?

Chapter 3: Bayesian modelling and evidence synthesis: methodological introduction

will specify important details of the methods used to address the problem outlined in

the background. What are Bayesian methods? What is evidence synthesis? How can

these methods provide an answer to the problems posed? What is a comprehensive

decision model? What are the limitations of this methodology?

There will be 3 main data outcomes. The first outcome of the thesis is presented in

Chapter 4: Appraisal of Interventions for Metabolic Syndrome Reversal: mixed treat-

ment comparison analysis, which explores possible treatments available to reverse pro-

gression of MetS. This analysis compares pharmacological and lifestyle interventions

to discuss possible strategies for prevention. Which could be the best intervention?

The Lifestyle changes are very complex, given that changing lifestyle trends in the
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population require different levels of intervention, taking into account structural trans-

formations; which are elements of the systems where the individuals are part of. In

order to increase access to improve their quality of life, these interventions should be

contextualized according to the characteristics of the environment where individuals

live. Expanding the access to a healthy life could build a real possibility of developing

a successful prevention program.

The second important outcome of the thesis is described in Chapter 5: Assessing the

risk of developing diabetes and cardiovascular disease: a cohort systematic review.

This chapter aims to estimate the potentially increased risk of the possible progression

from MetS to diseases such as T2DM and CVD, and ultimately mortality death. It is

important to estimate probabilities of the different biological stages of these chronic

diseases. This information will support the structural transitions of the model. Positive

relations between a pre-state of MetS and development of T2DM and CVD have been

found previously.

The third and main outcome brings previous chapters together to converge in a compre-

hensive decision model. Results coming from this analysis are going to be developed

in Chapter 6: Modelling a population with Metabolic Syndrome. An introduction to

the methods can be found in Chapter 3: the methodology of the thesis.

All the different results of this comprehensive analysis are going to be discussed in

the final Chapter 7: Reviewing the evidence and discussion of possible solutions: con-

clusions. This chapter summarizes the results of the different analyses undertaken for

this research, discussing the impact of the findings of the thesis and proposing further

work. New research questions that have arise after this synthesis of contributions to

the knowledge of MetS. New information is needed to give the next step in prevention
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of T2DM and CVD. The aim of the thesis is to contribute to the knowledge of MetS

and consequently to illuminate the possibility of improving quality of life in people at

increased risk of developing T2DM or CVD.
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Chapter 2

Contextualizing issues of Metabolic

Syndrome: Concept & Antecedents
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Prevalence of cardiovascular disease (CVD) and diabetes mellitus (DM) are increasing

worldwide (Murray and Lopez [1997]; Zimmet et al. [2001]).

In this chapter, clinical definitions lead the introduction to the Metabolic Syndrome

(MetS) concept in the section 2.1, aiming to specify the language of this thesis. This

glossary of core definitions will support the overview of the debate around the defini-

tion in section 2.2. An epidemiological review of the concepts related with the risk of

developing T2DM and CVD will be discussed in section 2.3. Section 2.4 introduces

the available therapies to treat a diagnosis of MetS, 2.5 describe the model proposed for

the development of the analysis required to achieve the thesis aim and 2.6 will discuss

evident constraints given the natural root of the problem being addressed. A summary

will be presented in section 2.7. This chapter corresponds to a conceptual introduction

to the problem, where each section compiles an introduction to each chapter-analysis

presented in this thesis.

Moreover, scientific information about MetS itself and related consequences is abun-

dant; showing the need of a synthesis of such amount of evidence for decision making.

These following sections represent current general discussions and attempt to define

this specific analysis. However, this thesis is aiming to compile substantial evidence to

contribute to a comprehensive analysis of MetS.

The main ideas encapsulated in the concept of MetS and its antecedents are going to

be summarized at the end of the chapter. Which is the main role of the MetS criteria

in this analysis? How this criteria is going to be useful to start a research development

for decision making related to prevention of T2DM and CVD?
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2.1 Definition of Metabolic Syndrome

Since the MetS has been established as a starting point for this clinical economic eval-

uation, there is the need to discuss issues surrounding its definition. Lusis et al. [2008]

defines MetS as ”a group of metabolic conditions that occur together and promote the

development of CVD and T2DM”. However, as the definition has included diagnosis of

T2DM as part of the criteria, proposed by the World Health Organization Consultation

(Alberti and Zimmet [1998]), this becomes an important issue when specifying a defi-

nition for this thesis. Revising the definition in Reaven [1988], it states that ”hyperin-

sulinemia, impaired glucose intolerance, increased plasma triglyceride concentration

and decreased high-density lipoprotein cholesterol concentration, represent the risk

factors initiating coronary artery disease in the population as a whole. It also raises

the possibility that resistance to insulin stimulated glucose uptake and hyperinsuline-

mia are involved in the etiology and clinical course of three major related diseases

(non-insulin dependent diabetes mellitus, hypertension and coronary artery disease)”.

Therefore, MetS may be defined as a clustering of risk factors for T2DM and CVD,

that possibly increases the risk of developing these conditions and consequently lead-

ing individuals to a reduction in life expectancy and increased morbidity. Essentially

having any three of the following five risk factors confers a diagnosis of MetS; (i) im-

paired fasting glucose levels, (ii) raised blood pressure, (iii) raised triglycerides, (iv)

low levels of high-density lipoprotein cholesterol (HDL-C) and (v) increased waist

circumference (Grundy et al. [2004]). Evidence using the World Health Organization

definition is going to be excluded to avoid possible biases in the results.

Although there are a number of definitions of MetS, which will be more explicit in

section 2.2; this section is going to describe each component used to constitute diag-
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nostic criteria for MetS. The five risk factors mentioned correspond to a measurement

method to assess different problems stated in the definition of MetS.

2.1.1 Components: Biological definitions

Each component represents a recognized risk factor for future cardiovascular events

and for development of new onset diabetes. Individually, these components lead to

a reduction of life expectancy. As each of them are a determined cardiovascular risk

factor, there is a lot of research underlying these concepts. Here, biological terms are

going to be introduced according to their clinical impact related to MetS. Figure 2.1

presents the 4 main components: hypertension, dyslipidaemia (cholesterol and triglyc-

erides), obesity and glucose intolerance. The following paragraphs explain in detail,

how these concepts underly the addition of the 5 risk factors; previously specified in

section 2.1 to constitute a definition of MetS.

These definitions were based on the ”Health information for the public” section of the

National Heart Lung and Blood Institute (Grundy; NHLBI).

Hypertension: Having high blood pressure means the force of blood pushing against

the walls of the arteries as the heart pumps blood. A damage in the heart, can be

produced if the pressure rises and stays high over time; it can also lead to plaque

buildup (thickening and inelasticity of the arteries). The common cut point for systolic

blood pressure is 130mmHg and for diastolic blood pressure is 85mmHg (the mmHg

is millimeters of mercurythe units used to measure blood pressure), above those lim-

its the subject will be diagnosed as hypertensive. In MetS criteria, hypertension is

measured with evidence of high blood pressure such as intake of drug therapy for its
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treatment.

This component is physiologically linked to a recognized risk factor for pathological

conditions or events (as heart attack, heart failure, stroke, end-stage renal disease, or

retinal hemorrhage).

Dyslipidaemia: is a condition marked by abnormal concentrations of lipids or lipopro-

teins. This composite disorder is related with levels of cholesterol and triglycerides.

Cholesterol: There are 2 types of cholesterol: low density lipoprotein (LDL) and high

density lipoprotein (HDL). In terms of MetS, low levels of HDL (less than 1.3 mmol/L

in women and less than 1.0 mmol/L in men) is considered a cholesterol disorder. The

HDL helps remove cholesterol from the arteries. (Figure 2.1).

Triglycerides: A high triglyceride level means this type of fat is raised in the blood in

the form of lipoproteins.

Hypertriglyceridemia: If a person show levels of triglycerides over 1.7mmol/L, then

is diagnosed as having the risk factor present.

Obesity: refers to a condition that is characterized by excessive accumulation and

storage of fat in the body. Excess fat in the stomach area is a greater risk factor for

heart disease.

There are different ways of measuring obesity, which has determined the derivation

in different classifications available, such as central or abdominal obesity (assessed by

waist circumference) or overweight (assessed by body mass index (BMI)). According

to Visscher et al. [2001] waist circumference may be more predictive of overweight

than BMI.
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The obesity sources will determine differences in treatment, but the way MetS criteria

includes obesity ignores these differences by using a generalized rule of measuring

waist circumference or BMI, which are used as quantified expressions of obesity.

Latest lifestyle modifications have been influenced by societal dynamics changing

healthy diets and increasing reliance on mechanized objects reducing physical ef-

forts; positioning obesity as an increasing problem in modern times. This situation

could be an important key in the elevated incidence of related problems like CVD and

T2DM.

Glucose: If a person presents a higher fasting blood glucose than 6.1 mmol/L, they

will be diagnosed with impaired fasting glucose (Zimmet et al. [2001]). As higher

levels of blood glucose can reach a T2DM condition, this component of MetS includes

the diagnosis of T2DM in the definition presented by WHO and in the IDF definition

an individual with T2DM could be included according to its stated definition; but the

NCEP criteria considers a cut point in the glucose level to define a different classifica-

tion algorithm excluding diagnosed diabetic patients (Figure 2.1).

2.2 The debate around the definition: The Classifica-

tion Problem

The earliest publication describing a clustering of hypertension, gout and hypergly-

caemia was in 1923, by Kylin. This paper provides a start for empirical observation of a

definition that later will be revised to benefit comparable research(Eckel et al. [2005]).

In 1988, Reaven presented a triad of diabetes, hyperlipidaemia and hypertension and
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Figure 2.1: Metabolic Syndrome definitions by organizational criteria

stated insulin resistance as the common origin for all three disorders. Obesity was not

part of the equation at the beginning (Gale [2005]), but scientific discussion has led

criticism in opposite ways. It is in 1998, when a formal MetS definition was proposed

by the World Health Organization, to be used in research and also aimed to facilitate

clinical identification of individuals with increased cardiovascular risk factors (Alberti

and Zimmet [1998], Balkau and Charles [1999], Eckel et al. [2005]). Eckel’s first line

of the paper specifies that ”the concept of the metabolic syndrome has existed for at

least 80 years (Cameron et al. [2004]).” In 2001, a newer definition was proposed by

the NCEP (EPD [2001]). This other definition excludes the confirmed diagnosis of

T2DM of the definition of MetS. During the last 10 years, different authors have ad-

dressed the need of establishing a diagnosis for MetS (Reaven [2004], Grundy et al.

[2004], Gale [2005], Kahn et al. [2005], Kahn [2006], Lusis et al. [2008]). Therefore,
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the key point of the discussion gets reduced to a classification problem. Its clinical

usefulness has been questioned, since there is no additional value besides the sum of

its parts (Kahn [2006]; Reaven [2006]). This means that, by adding components to

build a classification of MetS, the impact will be the same as there is no biological

interaction identified and yet confirmed in terms of public value, for healthcare.

Research surrounding the criteria for MetS and its association with CVD and T2DM

has became relevant to design prevention strategies (Sattar et al. [2008]). Which makes

this debate of great importance, as the possibility of preventing these chronic disease is

a goal in public health. Given the fact that each individual component constitutes a risk

factor for CVD and/or T2DM, the MetS criteria is an evident tool for the prevention of

possible outcomes like CVD and T2DM (Khunti and Davies [2005]).

The National Cholesterol Education Program (NCEP), the World Health Organization

(WHO) and the International Diabetes Federation (IDF) (Alberti et al. [2006]; Cleeman

et al. [2001]; Grundy et al. [2004]; Yasein et al. [2010]; Zimmet et al. [2005]) have

made an effort proposing a definition of MetS with differences on the diagnostic cut

points of the components and requirements to meet criteria.

Figure 2.1 shows specifications of MetS according to these 3 organizations. Main vari-

ations are evident in cut points, the use of BMI or central obesity concepts and the

use of glucose cut point or diabetes diagnosis. A relevant contrast with requirements

for diagnosis can be noticed between WHO and the others, this organization uses con-

firmed T2DM diagnosis. Whereas, NCEP is the only one setting a positive diagnosis

with any combination of factors. By fixing one of the components a pattern is already

defined, thus it is necessary to take this specifications into account, when analyzing the

evidence.
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This thesis considers evidence only from studies that used NCEP definition for their

methodological design, to be congruent with the definition presented in section 2.1.

Evidence from studies using WHO definition where collected but excluded from the

synthesis of evidence methods used for the comprehensive analysis; given the re-

quested diagnosis of T2DM (Eckel et al. [2005]).

The thresholds in the definitions of positivity for the criteria for MetS might present

a source of variation for the synthesis and therefore the modelling; given the multiple

possible combinations from the 5 risk factors. This could be controlled if individual

patient data was available, but the efforts for this thesis did not collected any detailed

data from the studies. The differences presented across definitions (WHO, NCEP and

IDF) may have an impact in the amount of people that will be classified with having a

diagnosis for MetS.

Differences are also presented according to the population under study. Across lit-

erature it is possible to find researchers using their own cut points to adapt criteria,

producing more accurate diagnostics. Even though there are differences between defi-

nitions, the components are the same for all.

Kahn et al. [2005] has made a complete literature review where all the criticism is ex-

posed. This publication states that the MetS has been imprecisely defined, questioning

its certainty related with its pathogenesis and serious critiques to the predictive value

for CVD. The British Medical Journal has published both sides of the discussion. One

side suggest to drop the term given its redundancy in those who already have T2DM,

and it affirms that there is no additional value for those who do not have this disease.

The other side, supports the idea of using MetS criteria as a stepwise approach as a

simple public health strategy to identify people at increased risk (Gale [2008]). When
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some authors support the criteria for its potential for prevention of CVD and T2DM

(Zimmet et al. [2003]), others highlight its lack of clinical use and the possibility of

market creation as an outcome of the determination of a MetS diagnosis (Gale [2005]).

Authors mentioned in this section, show that scientific community have behaved con-

troversially about this matter.

This thesis is aiming to bring light to this discussion, by making the effort of getting

evidence together for the different factors related with MetS and its potentiality to

provide a health care solution. The work presented in this document, represents a

pathway through the evidence available for MetS. Following section 2.3 is going to

provide an overview of the antecedents of the relation between MetS and CVD/T2DM

outcomes. Section 2.4 introduces the evidence available for the treatments identified

for people with MetS. These two aspects of MetS are key to be integrated in a decision

model, as a thesis result, introduced in section 2.5. Constraints of this model will be

discussed in section 2.6.

2.3 Epidemiological issues: Risk of Cardiovascular dis-

eases & Type 2 Diabetes Mellitus

The aim of this thesis requires to look at some important antecedents related with

the assessment of the risk of developing CVD and/or T2DM and contrasting people

with MetS. The main outcomes to be consider are mortality and morbidity (incidence

measures), in order to obtain epidemiological results corresponding with the behavior

and management of these diseases.
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Association of MetS with T2DM has been reported (Sattar et al. [2008]) and there are

previous estimations of the risk of MetS with CVD. A meta-analysis showed a relative

risk (RR) of 1.78 for CVD in people with MetS (Ford [2005]; Gami et al. [2007]; Li

et al. [2008]). The three publications had differences: Gami et al. [2007] observed in-

cident and mortality events related with CVD, Ford [2005] looked at incident and mor-

tality events related with CVD and incident T2DM and Li et al. [2008] only consider

outcomes with stroke events. This situation shows a variation on the type of outcomes

considered for each study. The criteria used for CVD also represents a diversity, as

studies may have only looked at one particularity of the definition (like stroke). This

thesis will consider all possible outcomes according to the events reported in the lit-

erature to be synthesized. The chronic nature of CVD and T2DM diseases requires a

review incorporating fatal and non-fatal events combinations as a classification of the

outcomes and obtain a more realistic quantification of the risk. Chapter 5 will develop

a systematic review to update the studies included in the previous meta-analysis and to

obtain data for the classifications of the outcomes to be contrasted.

MetS components as risk factors of CVD and T2DM have the potential to accelerate

the process of developing these conditions and there is important evidence address-

ing an increased risk. It is essential to explain how this biological result behaves in

populations.

Moreover, when investigation about these diseases is abundant there is still uncertainty

of MetS criteria and its validity for prediction, leading to a saturation of research with-

out an agreement after several years of debate and miss-guided application in clinical

practice. After many years using the term without an agreement whether it is useful or

not for the health care application, it behaves in a miss-guided manner where there can
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be a health professional using the term, but is not a systematic procedure. Therefore,

this could be a contradiction between the amount of information available and its lack

of application. Given so much information not yet organized completely, this thesis is

aiming to compile this evidence in a decision making scenario, and therefore offer a

research guideline before it is applied to a population level.

2.4 Potential interventions for the Metabolic Syndrome

As a result of a establishment of a MetS definition, an intervention could be designed

for prevention purposes. Therefore, Chapter 4 is dedicated to the analysis of possible

interventions for the reversal or delay of the progression of MetS.

Pharmacological interventions are considered as part of the therapy that MetS com-

ponents required. These treatments are already determined by medical guidelines for

these conditions (for example, Metformin is used for the treatment of T2DM and the

Statins for cholesterol). Lifestyle interventions are going to be considered as part of

the need of producing a significant change in the life of a person, to really overcome

the risk of developing CVD or T2DM. Obesity components in MetS definitions re-

quire exercise and diet solutions to allow a reversal of the diagnosis. Details of these

treatments are presented in Chapter 4, where their effectiveness will be assessed.

Capewell and Graham [2010] have analyzed different scenarios of interventions for

prevention of cardiovascular disease. Discussion about designing targeted interven-

tions and/or overall population strategies is needed. The possibility of creating inequal-

ities after the implementation of a prevention intervention can allow the population for

the development of other type of problems that need to be evaluated before favoring
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any decision on its application.

Considering the inherent lifetime in chronic disease, an intervention of this level can

have unexpected consequences or might not work under a long term basis. Analy-

sis of each factor interacting in these diseases is needed before deciding for a public

policy.

2.5 Developing a model structure for Metabolic Syn-

drome population scenarios

Can MetS criteria be used as a screening strategy for prevention? Is an intervention

cost-effective to prevent T2DM and CVD? MetS criteria can be useful to identify peo-

ple at higher risk of developing CVD and T2DM, but its evaluation is needed before

encouraging a health policy based on it. Synthesis of evidence is crucial to build a

comprehensive analysis, Chapter 3 will introduce details of the methodology used for

the development of the analysis.

Figure 2.2 shows the model designed for this thesis. The first part of the model refers

to the identification of people with MetS. The second part shows people with MetS

and the possibility of reversing this diagnose. A mixed treatment comparison was con-

ducted for the interventions available, the details are shown in Chapter 4. The third

part of the model assess the increased risk of developing T2DM, CVD and all cause

mortality for people with MetS. The fourth section explains the aim of a systematic

review that is being conducted to update the previous research (Chapter 5). Further-

more, a cost effective analysis will be performed for this part of the model in Chapter
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Figure 2.2: Decision Model for the Metabolic Syndrome

Since previous evidence has linked the MetS criteria with risk of developing T2DM

and CVD (Ford [2005]; Gami et al. [2007]; Li et al. [2008]) structuring the model is as

presented in Figure 2.2. There is a MetS state as a starting point of observation, then

the possibility of reversing those diagnosed is represented as moving to a healthy state.

Following a MetS state, are T2DM and CVD as a result of the progression of MetS.

A combined state has been added, given the clinical possibility of a patient developing

both diseases as a result of the progression of previous states. Death is a state that can

be presented by any patient at any point of a lifetime and therefore is represented at the

end of the model as a possible outcome of any of the previous states. The healthy state

is also linked to T2DM and CVD, as a patient can develop this disease without being

in a MetS state before.
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2.6 Constraints of the model for the Metabolic Syn-

drome

As MetS criteria only incorporates 5 risk factors for CVD, this situation leaves out a

list of risk factors that are interacting in the behavior of this disease. It is important

to make this explicit as this thesis is only concentrating in the evaluation of MetS for

prevention.

There are also sociological factors needed to take into account when developing a

health policy and specifically in the design of a lifestyle intervention. An intervention

is implemented to set up a pattern in the population that will hopefully decrease the

prevalence of CVD, but this patterns could also lead the population into non-desirable

consequences related with consumption. Obesity is a key risk factor of the MetS cri-

teria, and is defined based on the increased calorie intake. The access to healthy food

is restricted by the price (Capewell and Graham [2010]). The contents of the interven-

tions should be contextualized according to the environment of the target population,

in order to recommend interventions that are more likely to be effective and decrease

the risk of changing the focus of the problem without providing a real solution. Society

has the need to explore the real possibilities for a change to take place, and there are

structural changes needed as well. Sedentarism is one of the patterns that is leading

population to increase incidence of CVD and is important to look for the sources of

this behavior to allow a real change in the trends.

Questions arise also, when there is the need for the health system to develop a strategy

to prevent this situation increasing in frequency. As a lifestyle trend can be introduced

with an intervention, ethical issues can present at the time of deciding on the lifestyle of
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a person. The way a disease is communicated to the population can have psychological

effects with the possibility of building a bigger problem along the side of the disease

trying to be prevented. This situation takes place with the current debate of defining a

metabolic syndrome.

All of these issues should be explored in more detailed, when a health policy is being

considered.

2.7 Background summary

This chapter has presented a description of the definition of MetS, as clustering 3 or

more cardiovascular risk factors from a list of 5. This definition has been the center

of debate over 85 years, with authors defending it for prevention purposes and others

stating a possible opening to the industry and its markets, introduced inside the de-

bate around MetS (section 2.2). This thesis is going to assess MetS criteria for the

development of a prevention strategy.

A comprehensive analysis (Chapter 6), from MetS treatments (Chapter 4) to the pos-

sibility of predicting the risk of CVD and T2DM (Chapter 5) is going to be developed

as a result of this thesis. The next chapter describes the methodology implemented to

evaluate the MetS criteria as an intervention to reduce the risk of developing T2DM

or/and CVD in a population (Chapter 3).
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Chapter 3

Bayesian Modelling & Evidence

Synthesis: Methodological

Introduction
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Statistical methods presented in this methodological chapter are aiming to improve

the scientific understanding of MetS. I used a Bayesian approach to design an eco-

nomic decision model based on synthesized evidence to support decision making in

public health (Spiegelhalter et al. [2004]). This chapter has the intention to provide a

basic conceptual overview of the statistical methods and is not going to describe all

details of the theory supporting these models. This chapter represents a methodolog-

ical introduction of core concepts implemented in a decision model framework using

Bayesian methods and evidence synthesis. Therefore, the chapter is presented in three

main sections (Decision models, Bayesian methods and Evidence synthesis) introduc-

ing technical concepts used to undertake the process of analysis needed. This thesis

aims to evaluate MetS criteria as a possible intervention strategy, to have an impact in

the possible progression of other diseases related (i.e. T2DM or CVD).

Definitions and specific assumptions related with any of the main concepts will be

presented at the beginning of each section. In addition, it is important to outline dis-

cussion of their advantages and disadvantages for the decision process implemented

in this thesis. This is introduced as the methodological concepts are presented in this

chapter.

Description of specific analysis required for the process outlined in this methodological

chapter and the purpose of this thesis, is going to be presented in the methodological

section of the following chapters undertaking a decision process, Chapters 4 and 5

are evidence synthesis exercises about available treatments for MetS and the risk of

progression to T2DM and CVD, respectively. Chapter 6 describes the decision model

setting for a MetS criteria evaluation, integrating all the evidence produced in the firsts

steps of the decision analysis. To open a methodological argument, decision issues are
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exposed firstly in section 3.1, to address options surrounding a MetS model evaluation.

Followed by an introduction to the basic concepts of a Bayesian approach in section

3.2 and evidence synthesis methods used to bring together all information needed for

this specific decision process are described in section 3.3. A summary of this method-

ological chapter will be in section 3.4.

3.1 Decision Models

There will be many situations in life that will require a decision making process to

intent to take the most appropriate action. Different levels of uncertainty are present in

decision and evaluation processes. Therefore, a systematic analysis taking into account

significant aspects to consider in a decision process; like the effectiveness to evaluate

the clinical performance of an intervention for health care, and information on the costs

of the implementation of the potential strategy (Briggs et al. [2006]). Collection of data

for the cost and effectiveness of a specific strategy integrates a decision model, in this

case, for health care evaluation.

Assumptions for decision models depend primarily, on the context of each specific

problem and how the researcher perceives this context (Kansal [2004]). Implementa-

tion of probabilistic methods for decision making provides a framework to approxi-

mate reality, up to a certain extent, that would reduce uncertainty. Reduction of un-

certainty has to be significant to be able to have a conclusive result from the decision

process. Therefore, the methodology will have limitations introduced by the assump-

tions needed to be able to model the most natural version of the process implicit in the

decision problem and it will be constraint by the specifications of the methods used.
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Assumptions of the statistical methods are described in section 3.1.7, where decision

trees, Markov models and combinations are introduced. Measures like the quality-

adjusted-life-year (QALY), the incremental cost-effectiveness ratio (ICER) and the

cost-effectiveness acceptability curve (CEAC), that are used for economic evaluation

will be described in section 3.1.8.

There are different decision analysis approaches (Bouyssou [2000]), this thesis will

undertake an economic evaluation using stochastic models for an analytical process

of decision making based on the integration of a cost-effectiveness analysis using ev-

idence synthesis methods to extract the information needed for the decision problem

(described in section 3.1.1).

The model in this thesis, incorporates different levels of information (cost and utilities),

and consequently performs an evaluation to process a decision for the use of MetS cri-

teria as an strategic intervention for the prevention of T2DM and/or CVD. Output of

the model allows a more integral understanding of diseases involved. Incorporating

clinical estimations with economical data available to develop a wider observation of

the patterns of the phenomena under study and possible consequent diseases; could al-

low the development of more understanding by the integration of previous knowledge.

This provides the possibility to execute more accurate decision making; in order to

elaborate a consequence addressing a real improvement in quality of life.

Application of a model without previous evaluation can lead to creation of more com-

plications, resulting in higher cost for following efforts to reverse mortal disease. The

presence of a condition on an individual, that can be used as a risk factor (as a clin-

ical indicator), could lead clinical practice to implement assessment of this specific

condition as a prevention program. When the study of a population confirms the need
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of delivering efforts to reduce the risk of progression of conditions that can decrease

the quality of life, the program becomes a social importance for their survival. How-

ever, limitations in data and the need to undertake more research to be able to integrate

evidence from other sources of variation require to be acknowledged. The potential

influence of the interactions implicit in reality, but constraint in the model. The popu-

lation aimed to be modeled is immerse in specific social, economic and political envi-

ronments that will constitute the context of a model. Also, given particularities of the

behavior of chronic disease, the model has a dependent variable over time. Chronic

diseases are developed in people over a long period of time. Therefore, time becomes

an important issue to consider carefully in the interpretation of the effect under study.

Simulation methods developed for the decision process should implement different

rates to incorporate aging processes using different mortality rates for specific age

groups.

Briggs et al. [2006] recognizes different stages of developing a decision model for eco-

nomic evaluation. This section uses Briggs structure to describe the methodological

process of the model presented for this thesis. This introduction to decision models

shows the analytical discussion underlying the model, by stating a decision problem

coming from a complex debate of the usefulness of MetS criteria to identify people

at higher risk of developing CVD, T2DM or death (section 3.1.1). Constraints of this

thesis are going to be reflected in section 3.1.2, with possible extensions for future

research. The parts of the model will be explained to justify introduction of specific

methods in this thesis in section 6.1. Issues related to the process of populating the

model are also exposed in section 3.1.4 and necessary concepts to take into account

in the design of a model, especially uncertainty and heterogeneity inherent to situa-
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tions under observation are described in section 3.1.5. A justification for the use of

decision models is presented in section 3.1.6. Description of specific decision methods

considered for this thesis are described in section 3.1.7. Specific measures used for

cost-effectiveness analysis are presented in section 3.1.8.

3.1.1 Decision Problem

Is an intervention based on MetS criteria for clinical practice useful to prevent the

progression to T2DM, CVD and all-cause mortality, in UK? MetS criteria is going to

be evaluated, if appropriate to use an intervention based on the identification of people

with MetS in clinical practice, given the greater risk related with the development of

T2DM and/or CVD in people with this condition.

Does the metabolic syndrome criteria present a possibility to reduce mortality for these

causes in the UK? Is it useful to improve quality of life by introducing a prevention

program? Is it cost-effective? The fact that MetS could be a state where people with

this diagnosis could develop CVD, T2DM or death at an earlier age compared to indi-

viduals in a healthy state, identifies a question over the quantification of this risk.

There is evidence suggesting a significant risk for people with MetS, meaning a higher

probability of developing T2DM or CVD than people without this previous diagnosis

of MetS (Ford [2005]; Gami et al. [2007]; Li et al. [2008]). This thesis dedicates

Chapter 5 to undertake an update of this previous reviews, implementing an analysis

of the concept of MetS and its variability.

There are different treatments assessed with randomized control trials to measure the

effect on the reversal of MetS (Anderssen et al. [2007]; Athyros et al. [2005]; Azad-
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bakht et al. [2005]; Clearfield et al. [2005]; Esposito et al. [2004, 2006]; Geluk et al.

[2005]; Orchard et al. [2005]; Phelan et al. [2007]; Ramachandran et al. [2007]; Sat-

tar et al. [2003]; Stewart et al. [2005]; Van Gaal et al. [2005]; Villareal et al. [2006]).

Chapter 4 presents an analysis of these different therapies (lifestyle interventions, phar-

macological therapies or combination of both) to evaluate which intervention has the

maximun effect on the reversal of MetS and how this interventions interact.

This information produced in Chapters 4 and 5 will be integrated in Chapter 6; costs

and health utilities associated to each state of progression of the diseases involved

in this analysis will be incorporated to constitute the model evaluating the impact of

MetS as a strategy for the prevention of T2DM and/or CVD. Section 6.1 explains

details of costs, health utilities and how the model was structured. Cost-effectiveness

evaluation is decisive for the viability of application of a prevention strategy. The aim

is to compare clinical and economical cost-data of hard states of CVD and T2DM

with a state placed in clinical practice to identify people at increased risk (MetS). This

identification of people make possible targeted interventions from a clinical practice

perspective. If MetS has a strong predictive association, the interventions could be

justified. Thereafter, the need of analyzing the social cost of a guideline based on

this criteria, where other variables can have an important role defining a public health

strategy.

The population effectiveness could be reflected in the impact on life expectancy, if the

intervention under observation could have a significant impact over time. If the prob-

ability of progression gets reduced in each health state, mortality could be delayed as

a consequence. This situation is expected to be the most beneficial for the population

targeted. The influence in the cost would be expected to be reflected in a reduction of
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costs when a cohort develop hard states like T2DM or CVD; if the intervention has

a positive impact in the population, less people would be living with T2DM or CVD,

therefore it would reduce the cost of health care as these specific hard states (T2DM

and CVD) represent expensive diseases in public health. This affirmation is supported

by the long time that people live with these specific conditions and the recurrent prob-

ability of suffering an event that compromises their quality of life.

Assessment of the potential of MetS as possible useful criteria for prediction of out-

comes of interest, provides an analytical discussion to decide whether to elaborate a re-

alistic strategy and permit the proportion of the population at high risk to be prevented

from mortality outcomes or a poor quality of life given their health conditions.

Population based studies confront limitation concerning the management and collec-

tion of evidence. Moreover, it is important to consider that possible influential factors

determine certain behavior of the model given the presence of different options the

model could have.

3.1.2 Boundaries of the Model

There are several issues concerning the behavior of patterns in reality. The influence

of these possible patterns is important to be recognized, but is better to not complicate

the model by keeping control over the important transitions and their limitations that

possible options could raise. A model can always be extended to measure issues of

interest, but is critical to assess the advantages, disadvantages and possible implica-

tions a change or addition to the original model could develop; especially if resulting

decisions mislead improvement of quality of life.
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The model presented consider diseases (CVD and T2DM) under study like aggregated

concepts and does not take into account possible complications (especially in T2DM)

or other states that can be developed between the diagnosis and death events. Com-

plications like blindness, amputations or any other different than cardiovascular events

were not included in this analysis, because data reported was not consistent in the

results presented using this specifications. Modelling this requires an adequate data

identification to be able to introduce the possibility of this complications to any level

of information (cost, utilities, clinical research) and evaluation of how it can be imple-

mented in the structure proposed by this analysis, but this is not part of the scope of

this thesis.

Moreover, there is no research data for some of the transitions, like a probability of

developing T2DM after a CVD stage and others discussed in Chapter 6 and the pro-

cess of populating the model. Lack of individual patient data limits the analysis to

aggregated published information. Debate surrounding predictive value of MetS could

be expanded to political implications.

These constraints of the model are crucial for the interpretation of its outcomes. It

becomes important to be clear on the limitations that a model presents and evaluate if

there are important possible risks for the population involve in the eventual application

of the strategies under study. Other issues are related with the debate surrounding

the predictive value of MetS (introduced in Chapter 2), placing a question over the

definition and the variability introduced by the different proposed definitions (WHO,

IDF, NCEP). Each source of information introduces variability to the model, increasing

heterogeneity in the behavior of the simulation.

The process of analyzing a structure for a decision model reflects the boundaries, as it is
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possible to visualize options taken into account for this thesis. Since reality becomes

an abstract matter in this decision problems, definition of a logic for the model to

follow is crucial to establish relations between transitions. Therefore, it is important to

elaborate clear ideas for the collection of data.

3.1.3 Structuring a Decision Model

Figure 3.1: Decision model structure used for this analysis

To be able to direct answers for the questions raised by the decision problem it is

important to establish how the relations are going to be incorporated in the model.

Options previously defined help building the picture of the model and the purpose of

the transitions are determined by the aim introduced in the problem.

Figure 3.1 shows how the model follows biological and clinical logics of events. Peo-

ple with MetS are identified from the general population if they have any combination
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of three risk factors shown in the 5 first boxes in the figure (Waist circumference, Hy-

pertension, Triglycerides, Cholesterol and Glucose); when people are identified with

MetS in the yellow box, there are different possibilities, one will be related with the

progression to T2DM, CVD (red circles) and all-cause mortality (blue rectangle), and

second will be the option of reversing a MetS diagnosis and go back to a healthy state

highlighted with green in the diagram of the model. The diagram shows also the option

of developing a complication after T2DM and CVD states leading patients to a red oval

state combining both diagnosis together, before the link with death at the end of the

model. There is a central warning for people with MetS, given a higher risk for CVD

and T2DM with an additional level of risk combining the presence of both conditions.

Other components of the model measure probabilities of the reversal of MetS, and

consequently the risk of developing CVD and T2DM from a healthy state. All states

converge in a common end point for all outcomes integrating death causes.

The model is constituted by different inputs: probabilities, costs and utilities. This

measures are going to provide information on transition rates between health states

defined in the model. The utility parameters represent a measure of health condition,

when lower values represent the worse possible health state and 1 represents perfect

health condition (Briggs et al. [2006]). The cost data is collected from the total amount

of capital needed to treat a patient in a particular health state, healthier states will cost

less than states indicating progression to hard states like T2DM and/or CVD. This part

of the process will be described in section 3.1.8.

MetS represents a chronic state and the consequence outcomes are also chronic. Thus,

time is an important variable for risk changes. Identification of evidence requires de-

termination of the model relations drawn.
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3.1.4 Identifying and Synthesizing Evidence

Once a structure is proposed, the process of populating the model begins. This step

of decision modeling represent challenges to bring together all relevant information

to be synthesized and feed the relations stated in the structure. Clinical evaluation

involves rigorous analysis demanding a systematic approach for the identification of

relevant evidence, hence making evidence synthesis a critical aspect to perform a better

assessment of the decision problem.

Evidence synthesis methods utilized for the collection of data required are going to be

introduced in the last section 3.3 of this methodological Chapter, after Bayesian meth-

ods in section 3.2. There is the need to integrate all possible and relevant information to

develop wider observation ensuring a decision making process to be engaged with the

reality of the object under study. Comprehensive decision modeling gives the advan-

tage of facilitating understanding of uncertainty in the evidence (Briggs et al. [2006];

Cooper et al. [2004]).

There are also other aspects to consider in the process of building a model, which relate

to inherent dynamics of populations under study and possible behavior of patterns

producing an influence. These aspects have to be included in the analytical process to

be able to interpret results coming from the evaluation of the model.

3.1.5 Uncertainty & Heterogeneity

Variability. There are implicit differences between individuals under study. Individ-

ual cases hold particularities given their own experience and associated health-related

quality of life. Probabilistic models take into account this variability inherent to any
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clinical situation, however additional data collection cannot reduce it. As populations

hold different sources of variability and even when individual details of the behavior

of disease under observation, there is a need of understanding population variability to

design more inclusive outputs of the model. Application of strategies excluding impor-

tant issues could initiate undesirable performance and creation of more complications,

nevertheless is important to recognize the difficulty in integrating all possible partic-

ular issues concerning chronic disease in a model designed for population decision

making.

Parameter uncertainty. Refers to the precision of parameter estimation inputed in

the model. Given limited evidence, precision of the parameter can be compromised,

therefore incorporation of additional information should reduce uncertainty. This con-

cept challenges compilation of evidence for chronic disease, as additional information

can take long time to collect. Hence the need to use available information effectively

to point new research to increase understanding of patterns and evaluation of possible

population decisions becomes crucial to address safe solutions to improve quality of

life in real time.

Decision uncertainty. Parameter uncertainty determines whether a decision is strongly

supported by evidence or otherwise can lead to mistaken decisions. It is important to

take into account the real impact of a possible implementation to avoid generation of

more complications in the population and consequently incur in expenses with costly

implications in economic and clinical levels. Distribution of cost-effectiveness relating

to the options under comparison can be used to indicate the probability that the correct

decision has been taken.

Heterogeneity. The effort of including variables related to subject characteristics that
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can explain a proportion of the variability in a determined population. Even though,

when uncertainty will remain in those parameters, exploring heterogeneity by sub-

group estimates conditioning cost-effectiveness and decision uncertainty to individual

characteristics can address more accurate decisions.

In the following description of the model determination of this thesis, there are dif-

ferent methodologies that were incorporated to address issues stated in previous para-

graphs. After the definition of a comprehensive decision model, Bayesian methods

becomes crucial given its technical flexibility and other advantages that are going to

be discussed in section 3.2, together with an introduction of essential concepts for the

compilation of Bayesian models, like Markov Chain Monte Carlo for parameter esti-

mation. Thereafter, basic concepts of evidence synthesis are also going to be described

in the third section 3.3 of this chapter with a presentation of the process undertaken for

the collection of valuable information and populate the model. Specific analyses for

evidence synthesis are going to be explained in the corresponding chapters referring to

particular parts of the model previously described.

3.1.6 Why a Comprehensive Decision Model?

Developing a comprehensive decision model allows the incorporation of all parameter

uncertainty taken into account for the decision problem. It also facilitates the assess-

ment of structural uncertainty and heterogeneity, and correlation induced by the same

study informing separate components of the decision model.

This thesis uses a probabilistic Markov model integrating clinical and economical vari-

ables to develop a decision process. In order to propose solutions for health care prob-
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lems it is necessary to explore the alternative options available. Economic evaluation

becomes a key to design realistic strategies, and obviously it is crucial to contrast the

economic scenarios with their clinical applicability.

The development of a decision model allows an evaluation of the consequences of

interest, in this case, prevention reflected in the improvement of quality of life of a

population. But it is important to recognize a big limitation in sociological terms,

as this models do not assess the social impact that a prevention program could have

in the population. Therefore, incorporation of qualitative studies is necessary before

implementing an intervention of any kind.

Moreover, the main advantage of decision modelling is the ability to analyse evidence

from randomized trials and cohort studies together with external information related

with the cost and utilities inherent to the evidence previously generated. This evalu-

ation is needed in the process of decision making for the elaboration of useful health

policies.

3.1.7 Methodological Definition of Decision Models

A decision model is a systematic approach to decision making under uncertainty. A

decision analytic model uses mathematical relationships to define a series of possible

consequences that would flow in a set of alternative options being evaluated. The likeli-

hood of each consequence is expressed in terms of probabilities and each consequence

has a cost and an outcome. The key concept behind decision modelling is the ability to

incorporate variability and uncertainty associated with the decision of interest (Briggs

et al. [2006]).
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A modelling approach found in literature is system-based approach applied to MetS

and its genetic understanding. These models integrate genomic, molecular and physi-

ological data, also incorporating genetic and biochemical approaches targeting a better

appraisal of the complexity of MetS (Lusis et al. [2008]). Different approaches have

been applied to the study of T2DM. Kansal [2004] summarizes key issues of differ-

ent models developed for the understanding of T2DM. From minimal models to pro-

gression models, Kansal [2004] writes about the difference between models for acute

events than for chronic disease, making time scale an important issue to include in the

simulation. According to Briggs et al. [2006] the type of model applied in this thesis is

a cohort model. The most common forms of this type of models used in similar context

(economic evaluation) are the decision tree and the Markov model.

Decision trees: Represent a way of displaying the decision algorithm. They are usu-

ally based on a tree graph constituted by nodes indicating decision alternative options.

Pathways are mutually exclusive sequences of events and are the routes through the

tree. Probabilities show the likelihood of a particular event occurring at a chance node.

The first probabilities in the tree show the probability of an event and subsequent prob-

abilities are conditional (Briggs et al. [2006]).

Markov models: Are commonly used in decision analysis to manage the added com-

plexity of modelling options with multiplicity of possible consequences. These models

are used for the evaluation of screening programs, diagnostic technologies and thera-

peutic interventions. The flexibility of the Markov model relates to the fact that it is

structured around mutually exclusive disease states, representing the possible conse-

quences of the options under evaluation. Discrete time periods can easily be incor-

porated in Markov models, as a set of possible transitions between the disease states
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over cycles (time periods). Cost and effects are integrated as a mean value per state

per cycle, and expected values are calculated by adding the costs and outcomes across

the states and weighting according to the time the patient is expected to be in each

state. The restriction that this model has is related to a memoryless assumption. This

assumption means that once a patient has moved from one state to another, the model

will have no memory regarding where that person has come from or the timing of

that transition (Briggs et al. [2006]). For the composition of the Markov model aimed

for this thesis, a circularity was identified in the range of definitions available for the

concept of MetS. The definition criteria proposed by the World Health Organization

includes T2DM diagnosis. Therefore, the evidence identified using this particular def-

inition were excluded from the analysis. It is important to acknowledge that it is as-

sumed the bias is controlled and that all determined states of the model structure are

mutually exclusive.

This assumption is reflected in how individuals transit from state to state according to

biological relations. There is the possibility to relax the memoryless issue, by adding

nodes simulating another state. This state represents a pathway to a different node, that

can be a single state or even a network; where individuals transiting in this part of the

model, have specific population estimated rates, during the simulation process of the

cohort.

Combination of decision trees and Markov models: Markov models are a form of

recursive decision tree, and for some evaluations they can be used jointly. If a transition

between Markov states are characterized in terms of a tree, then combination of both

types of model is required (Briggs et al. [2006]).

Interesting examples of Markov models applied to the study of T2DM are Zhou et al.
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[2005] with a comprehensive model to assess the impact of screening, prevention,

and treatment strategies on T2DM and its complications, comorbidities, quality of

life and cost. Gillies [2008] presents a model taking into account options like undi-

agnosed/diagnosed impaired glucose tolerance as a predictor of T2DM. The state of

T2DM was also divided into undiagnosed, screen diagnosed and clinically diagnosed.

Markov models were integrated with a decision tree to address decision issues in rela-

tion to the medical practice of concepts in a T2DM context.

When the setting of the structure of the model compiles all the options to be evaluated

in the simulation and the evidence needed to support the hypothesis has been collected

and imputed in the model, then there is the need to assess outcomes of the model.

Cohort simulation and model outcomes: The method used for the evaluation of

decision models is known as cohort simulation. The proportion of the cohort ending in

one state is multiplied by the correspondent transition probability of the consequence,

and derives the proportion starting in another state. The simulation provides enough

information for the calculation of expected values like life expectancy and expected

costs, which constitute the main outcomes for a cost-effectiveness analysis.

3.1.8 Cost-Effectiveness Analysis

The final step in the decision analysis process is the interpretation of the outcomes

of the model. Cost-effectiveness measures represent a helpful summary to be able to

assess the usefulness of the intervention reflected on the possible impact that it could

have on the populating being simulated.

The comprehensive perspective requires the analysis of different levels of information.
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Given a medical context where an important component of health is reflected in a

perspective of quality of life and together with a measure of the impact in economical

terms can provide important information about the possible behavior of MetS criteria

in a population dynamic. The following paragraphs will define measures used for the

analytical treatment of the outcomes and its strategy for the evaluation of an economic

decision model.

Quality adjusted life years (QALY): this measure is used to assess the clinical ef-

fectiveness of the intervention or screening program under observation. QALY is an

indicator combining the length of life and the health-related quality of life, this allows

mortality and morbidity to be analyzed (Briggs et al. [2006]). Utilities: this is a mea-

sure used to express a health score. Values between 0 and 1 are used to provide a utility

weight, where 1 represents perfect health. Values less than 0 can be used, but would

not be appointed when mortality is being represented. Utility weights are applied to

each life year to obtain an estimate of the QALYs.

The cost-effectiveness plane: Figure 3.2 represents all possibilities in the cost-effectiveness

analysis. The vertical axis represents the cost difference (∆C) per patient between the

intervention and the control (comparator). The horizontal axis represents the effective-

ness difference (∆E). Each of its resulting quadrants of the plane complete a range of

options where the decision evaluation can be located. The slope of the line joining any

point on the cost-effectiveness plane and the origin is equal to the incremental cost-

effectiveness ratio (ICER) (Briggs et al. [2006]). The ICER represent an important

statistic in cost-effectiveness analysis. Equation 3.1 shows the specific calculation of
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Figure 3.2: Cost-effectiveness plane
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the ICER, dividing the cost difference by the effectiveness difference:

∆C/∆E (3.1)

Markov models will simulate different positions resulting from the model settings,

providing a visual perspective of the variability and position of the average model

results. If an intervention based on MetS criteria, after obtaining results from the cohort

simulation model, provides a cost difference under the willingness-to-pay threshold

(λ) (cost per QALY that a health care provider would be preparing to pay to achieve a

unit of effectiveness ), then the intervention is consider cost-effective and could have

a potential to be implemented for clinical practice. Equation 3.2 represents the cost-

effectiveness evaluation.

∆C/∆E < λ (3.2)

When an intervention is more effective than the comparator and requires less resources

(situation of the II Quadrant in figure 3.2) or when an intervention is less effective

and is more costly (IV Quadrant), these represent a straight forward decision; if the

intervention results in II Quadrant facilitates a positive decision to implement the in-

tervention that is forecasting a good benefit with less resources. These situations give

dominated results for the new treatment or intervention under evaluation. If results

point to the III Quadrant, decision could be influenced by the contextual needs of the

health care evaluation.

The willingness-to-pay threshold (λ) can be explored by summarizing the uncertainty

that fall under λ. Therefore, if different values of λ are plotted against a probabil-
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ity of being cost-effective, the resulting curve shows the behavior of the evidence in

support of the intervention being cost-effectiveness (acceptable). This use of the out-

comes of the model for its analysis represent a Cost-effectiveness acceptability curve

(CEAC).

Development of an economic evaluation model for MetS is a novelty of this research.

After many years of constant research using MetS concept, it becomes an important

task to bring all evidence together and evaluate population-based questions. Health

care issues are recurrent when chronic disease represent a challenge in the administra-

tion of public health resources; creating the need of integrating daunting information

of different research questions that will fit and create options simulated in the model to

be able to undertake an evaluation of important aspects to make the most appropriate

decision for public health.

The next section is going to introduce Bayesian methods. Issues related with these

methods in relation to the development of a Markov decision model are going to be

described. Bayesian models are frequently used for the implementation of complex

situations requiring a comprehensive approach (Cooper et al. [2004], Kansal [2004],

Zhou et al. [2005], Briggs et al. [2006]).
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3.2 Bayesian Methods

Figure 3.3: Thomas Bayes

Bayesian inference was initiated after a posthumous publication by Thomas Bayes in

1763. He developed a solution of probability theory known as Bayes theorem. This re-

sult relates the conditional and marginal probabilities of two random variables. The im-

plicit subjectivity and complexity of these statistical models has produced controversial

debates over decades, however these methods have been used more frequently in recent

years. The development of statistical tools like WinBUGs (statistical software for the

Bayesian analysis using Markov chain Monte Carlo methods) has made the computa-

tion of complex statistical models straightforward (Spiegelhalter et al. [2004]).

The idea of a Bayesian approach requires the specification of beliefs related to the

plausibility of the results excluding the data available. This is defined as a prior belief

and is introduced as a prior distribution in the analysis. The likelihood is constructed
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from the data and then, using the Bayes theorem the likelihood is combined with the

prior distribution to produce a third density known as the posterior distribution. This

section explains in general terms these ideas.

The Bayesian approach was defined as: The explicit quantitative use of external ev-

idence in the design, monitoring, analysis, interpretation of a health-care evaluation

(Spiegelhalter et al. [2004]). Therefore, in the case of a health care economic evalu-

ation, there is the need of gathering exhaustive evidence relevant to the intervention

(based on MetS criteria) that could be applied to prevent people to progress to T2DM

or CVD diseases. Bayesian methods combine external evidence to feed each part of

this economic evaluation. Advantages given by this approach are related with the flex-

ibility of developing a unique model for each particular situation, the efficiency in

utilizing all the evidence available, the usefulness in providing predictions with a clear

interpretation for decision making, planning research and public policy. Ethical issues

also conform an advantage in terms of randomisation and fully exploiting experience

of past patients. Decision making could be based on available randomised control tri-

als (RCTs), but under a systematic approach integrating different types of evidence

(RCTs, Cohort studies and other relevant evidence), information brings efficiency to

the decision making process. RCTs need a controlled selection of the subjects to be ob-

served and randomisation implies bioethical issues when the study is on human beings,

specifically if there are known differences on the effect of the treatments under obser-

vation and can have an impact on the health of the volunteered patients participating

in the study. RCTs also are designed for short term observations. The incorporation

of longitudinal data into the evaluation model, enables the use of wider observations

(while including the information from the experience of past patients). The ability of
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combining all available evidence to approximate the decision problem up to what has

been studied about the event of interest (in this case is about MetS criteria), provides

a decision panorama and highlights new important paths to direct research needed.

The data and the model in Bayesian methods, are assumed to be random quantities

(Spiegelhalter et al. [1999],Gilks et al. [1996]).

This thesis adopted a Bayesian approach to make complete use of the benefits given

by these models. In Chapter 4 there will be a comparison between classical and

Bayesian methods to give a clear idea of the advantages of performing the analy-

sis with a Bayesian perspective. An analysis of the evidence available on the treat-

ments for MetS is going to be performed with Classical statistical methods besides

the Bayesian approach. This is to compare and assess the outcomes provided between

the two methodologies. This argument can be found at the end of Chapter 4 in the

discussion and limitations section.

Given the Bayes’ theorem as the core concept of this methods, following sections

are going to describe basic Bayes theory used to develop the model approaching the

decision problem of this thesis.

3.2.1 Bayes’ Theorem

The Bayes theorem shows a relation between two conditional probabilities. It ex-

presses a posterior probability using prior information of the events under observa-

tion combined with relevant data collected. The calculation of the likelihood is ob-

tained with the conditional density of the data given the parameters (Spiegelhalter et al.

[2004]). The Bayes theorem for binary events a and b, representing two mutually ex-
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clusive events (i.e. a as the proportion of people with a disease and b as the proportion

of people without the disease), can be expressed as follows:

p(b|a) = p(a|b)
p(a)

× p(b) (3.3)

A prior probability p(b) is transformed to a conditional probability p(b|a) when the

occurrence of the event a is taken into account. This statement assumes a formal

mechanism for learning from experience (Spiegelhalter et al. [2004]).

The Bayes’ Theorem for general quantities, where θ is the parameter of interest, y is

the data, p(θ|y) is the posterior distribution of the parameter after including the data,

p(y|θ) is the conditional likelihood of the data given the parameter, and p(θ) is the

prior distribution of the parameter of interest. Equation 3.4 is deduced from probability

theory and clearing p(y) to be the denominator of the conditional statements providing

the likelihood p(y|θ)× p(θ), to obtain Equation 3.5.

p(y, θ) = p(y|θ)× p(θ) = p(θ|y)× p(y) (3.4)

p(θ|y) = p(y|θ)× p(θ)

p(y)
(3.5)

In order to obtain the marginal distribution p(y) from the joint distribution p(y, θ) of

continuos variables, equation 3.6 shows the integration required to produce a distribu-
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tion on y, when the conditional distribution is averaged by the prior distribution:

p(y) =

�
p(y|θ)p(θ)dθ (3.6)

When there are multiple parameters the marginal posterior would be express as fol-

lows:

p(θ|y) =
� �

φ

p(θ,φ|y)dφ (3.7)

The complexity of these models may not be analytically tractable and require the use

of alternative approaches for the integration of E[f(θ)|y], which can be impossible to

apply (Gilks et al. [1996], Spiegelhalter et al. [2004]). Asymptotic approximations are

used as alternative for integration using the Laplace approximation (Kass et al. [1988]),

numerical integration techniques (Quadrature) can also be used, but numerical evalu-

ation is difficult and inaccurate and Monte Carlo integration (Markov Chain Monte

Carlo), in which software like WinBUGS is available and practical for this simulation.

(Gilks et al. [1996]). Section 3.2.2 will describe details of MCMC and WinBUGS

related concepts.

3.2.2 Estimation of Model Parameters

Markov Chain Monte Carlo (MCMC) is a method used to integrate over the pos-

terior distribution of the model parameters given the data. Monte Carlo integration

draws samples from the distribution, then create sample averages to approximate ex-

pectations. These samples are calculated by running a Markov chain for long time
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(Gilks et al. [1996]).

Gibbs Sampling is a specific technique of MCMC and consists in sampling from full

conditional distributions (Gilks et al. [1996]). In the ’long run’ samples drawn from

conditionals will converge to marginal distributions. The joint posterior distribution

can be express by P (Θ) = P (θ1, θ2, · · · θp|y), where Θ is the parameter of interest and

y represent the data. Hence a full conditional posterior distribution is used to generate

consecutive samples of the parameter (j):

P (Θj|Θ(−j), y), j = 1 · · · p (3.8)

given the value of the rest of the parameters (−j) and the data (y). If Θ0 represents

the initial value for the parameter, the Gibbs sampler provides a series of observations

from the full conditional distribution represented in Equation 3.8. Equation 3.9 shows

the algorithm description for each of the p parameters sampled.

θ1|θ02, θ03 · · · θ0p, y ∼ [−,−] ⇒ θ11

θ2|θ11, θ03 · · · θ0p, y ∼ [−,−] ⇒ θ12

...

θp|θ11, θ13 · · · θ1p−1, y ∼ [−,−] ⇒ θ1p

(3.9)

A Markov chain applies the algorithm m times to produce the series of observations
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needed to estimate the parameter of interest.

θ1 = (θ11 · · · θm1 )
...

θp = (θ1p · · · θmp )

(3.10)

In order to assess convergence there are diagnostic tools used for it. Length of burn

and sample the MCMC chains; checking autocorrelation and to run the model with

different starting values with multiple chains.

If the values being sampled present a chain with erratic behavior, then is showing

lack of convergence. This situation could be because the chain has not been ran long

enough. In order to make sure the impact of the initial values is minimized on the

posterior inference, a burn-in period can be defined to discard the first set of values of

the Markov chain. The beginning of the chain can be erratic due to the initial values

specified, also it is important to run multiple chains with different initial values to avoid

areas where it might be stuck and does not shows a steady trajectory (Spiegelhalter

et al. [2004]).

Autocorrelation can also be an issue between simulations. When sequential draws of

a parameter are correlated producing a pattern of serial correlation in the chain. This

means the Gibbs sampler will take longer time to explore the entire posterior distribu-

tion. These diagnostic tools are useful to determine the length of the chain. Complexity

of these techniques require the support of specific software like WinBUGS
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3.2.3 WinBUGS

WinBUGS is the software used to perform MCMC models. It is straightforward to

assess Bayesian analysis, because of its flexibility of language for model specifica-

tion (BUGS: Bayesian inference Using Gibbs Sampling). This tool provides a way of

evaluating Bayesian models, obtaining summary statistics of the posterior distribution,

checking of convergence, run multiple chains and can generate its own list of initial

values. Building-up a model in WinBUGS can become a slow process as errors in the

code are not necessarily obvious. If WinBUGS is trying to compile a model that is

not yet featured, it can crash or provide very wrong results. The use of this software

requires understanding of MCMC methods.

3.2.4 Prior Distributions

Prior distributions represent frequency distributions of previous beliefs of the phenom-

ena being observed. This prior information constitutes the subjective part of Bayesian

models as often there is no data available to inform the priors. Objective priors can be

obtained from previous data of the parameter of interest. Specific distributions were

used to obtain possible values of the parameters of interest. A sensitivity analysis of

prior distributions is presented in Chapter 4 to choose the distribution for the Mixed

Treatment Comparison model.
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3.2.5 Direct Probability Statements

The Bayesian approach gives the possibility to calculate specific probability state-

ments. Unobserved variables can be assigned a posteriori conditional distribution

given the data collected on the observed variables (Dempster [1963]). The Bayesian

framework provides a direct probability of the problem under study.

P (θ > c) (3.11)

Where θ is the parameter and c is a specific possible outcome of the parameter. If

uncertainty is actually being explained to a satisfactory level by the Bayesian model,

the resulting probability will be the real probability of the event under study of hap-

pening.

3.2.6 Summarizing the Posterior Density

It is necessary to give a complete interpretation of the posterior distribution. In order

to take a decision it is required to compute different estimates that allow a clear un-

derstanding of the results. This section describes point estimates (mean, median and

mode) and interval estimates (credible intervals and highest posterior density inter-

vals). This measures conform the results of the analysis and should be complemented

with estimations of uncertainty like, standard error.
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Point Estimates

The common statistical measures of central tendency are the mean, median and mode.

This type of estimation is very informative if the posterior distribution is symmetric

and unimodal, given that the three measures are going to be estimating the same point.

This situation may not be similar for all cases, therefore if the distribution is skewed is

important to report all of them (Spiegelhalter et al. [2004]).

The conditional mean of θ given y is defined as (Lee [1997]):

E(θ|y) =
�

θp(θ|y)dθ (3.12)

The conditional variance is defined as:

V (θ|y) = E(θ2|y)− E(θ|y)2 (3.13)

The median is defined as any value y0 such that:

P (y ≤ y0) ≥ 1/2 (3.14)

and

P (y ≥ y0) ≥ 1/2 (3.15)

The mode is defined as the value at which the probability density function is a maxi-

mum (Lee [1997]).
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Interval Estimates

The interpretation of the posterior density should be completed with interval estimates

as a measure of uncertainty. For this section, two types of intervals are going to be

considered: 95% credible Intervals and highest posterior density intervals.

Credible Intervals: The 95% credible Interval [CrI] gives 95% probability that the

true θ lies in the interval. Each tail area has equal probability (θL, θU ), where p(θ <

θL|y) = 0.025, and p(θ < θU |y) = 0.975. If the distribution is skewed there will be

some parameter values with lower posterior probability than value outside the interval,

therefore this intervals are not appropriate.

The posterior probability density function of the parameter of interest can be used to

estimate and answer probability questions. Probability is equal to the area under the

probability density function. If the posterior density is continuous, a direct probability

statement can be P (0.1 < y < 0.9), where the probability is equivalent to the area

under the curve between the two values of the range (Curran [2005]). The calculation

can start with a determined value for the probability, like p = 0.95, for the 95% credible

interval. Providing the interpretation as the 95% of credibility that the true value of the

parameter of interest is between l and u.

Highest Posterior Density (HPD) Intervals: The HPD intervals are useful when the

posterior distribution is skewed. It is adjusted in a way that each tail give a similar

probability, so the interval is calculated from the narrowest possible area including the

required probability; therefore the shortest credible interval is from the region with

highest posterior density. If the distribution has multiple modes, then the HPD will be

composed with a group of intervals (Spiegelhalter et al. [2004]).

59



3.3 Evidence Synthesis

Evidence-based health care is becoming an important tool to certify public policies and

decision making. To compile all the scientific evidence produced is not a trivial task,

therefore the synthesis is crucial to identify the best health strategy based on relevant

and reliable research. The following sections introduce details related with the process

of synthesis of evidence.

Next section 3.3.1 describes systematic reviews methods used for the analysis pre-

sented in Chapter 4 and Chapter 5. Details of meta-analysis methods are introduced in

sections 3.3.2 and 3.3.3. Section 3.3.4 describes techniques utilized for the exploration

of heterogeneity in meta-analysis models.

3.3.1 Systematic Reviews

Systematic reviews are used to identify all the scientific evidence and to compile to-

gether all the research done in a particular area of study in a structural way. To organize

all the evidence related with a specific research question becomes complex when the

scientific knowledge is abundant. Therefore, the task of combining the evidence sys-

tematically, is crucial in order to obtain reliable results and be able to replicate the

review.

Authors consulted for this section started with Higgins et al. [2008] (Cochrane hand-

book on systematic reviews) and include Goodwin and Geddes [2004] stating the rel-

evance of these methods for their support in decision making and clinical practice.

Stroup et al. [2000] and Moher et al. [2009] presented a reporting format for the re-
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sults of a systematic review; Meta-analysis of observational studies in epidemiology

(MOOSE) and the Preferred reporting items of systematic reviews and meta-analysis

(PRISMA), respectively. Sutton et al. [2000] was also consulted for the meta-analysis

methods. See Moreno et al. [2009a,b] for publication bias criticism.

Systematic reviews differ from qualitative narrative reviews in the way the informa-

tion is organized for its analysis. A systematic approach ensures a structural way of

collecting relevant data for a specific research question. Given a known structure it is

possible to use meta-analysis methods to assess the evidence collected in a way that can

be replicated (Goodwin and Geddes [2004] ). This techniques allows more informed

decisions to be taken.

Given the scientific progress and increasing knowledge relevant to health care, research

developing a more collective observation is needed to solve issues related with diver-

gent results. This sparsity of the knowledge becomes a serious problem when there

is the need of making decisions for health policy and clinical practice. Systematic re-

views are one of the first steps in the chain by which research evidence can inform

policy and practice (Sutton et al. [2000]).

The identification of all the evidence is fundamental for the quality of the results of a

review. It is necessary to design complete search strategies to be sure all the evidence is

included. These search strategies are used in databases like EMBASE and MEDLINE.

A weak data extraction can lead to bias results or ignore important related information.

Definition of the inclusion and exclusion criteria identifies the specific evidence for the

search strategies. The quality of a study is also relevant to the results of a systematic

review. All type of studies are subject of bias and therefore their quality can have

influence on the estimates (Egger et al. [2001]). Each type of study requires different
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quality assessment as they differ on its methodological features.

Juni et al. [1999] has discussed the problematic around the use of scores for quality as-

sessment of trials and recommends methodological aspect to be assessed individually

as the results can differ depending on the scale used. Results from Juni et al. [1999]

analysis shows non-conclusive results about the use of a particular score for quality

assessment. Comparison of 25 different scales presented a pattern influencing the in-

terpretation of a meta-analysis. This issue should be explored, as it is very critical to

address a particular conclusion from the interpretation of results. In observational stud-

ies synthesis the subjectivity around a quality assessment can be significantly different

than trials and represent a challenge.

Since systematic reviews are based on published research, publication bias is a present

issue for these methods. Research with statistically significant results is potentially

more likely to be submitted or published, leading to a preponderance of false-positive

results in the literature. This situation represents an important problem in evidence

synthesis, as the combination of identified published studies may lead to incorrect esti-

mates of the parameters. Therefore it is necessary to implement evaluation of possible

publication bias. The use of funnel plots facilitates the visual assessment. Large stud-

ies appear toward the top of the graph and tend to cluster around the mean effect size

drawing a funnel with small studies at the bottom. The effect size is plotted in X axis

and the standard error on the Y axis. If there is no evidence of publication bias studies

will be distributed symmetrically about the mean effect size (due to sampling error);

if the studies present a pattern with a significant area of missing studies towards the

bottom of the graph, it is showing presence of bias (Borenstein et al. [2009]).

If the funnel reflects evidence of bias, then corrections can be made; and the situation
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can show the need of undertaking more research to be able to conclude about the prob-

lems under study (Moreno et al. [2009a,b]). Egger’s test can be used to fit a regression

analysis to provide an estimate adjusted with the publication bias effect.

The next sections introduces the meta-analysis methods used for the statistical synthe-

sis of the data extracted from the studies included in the systematic reviews on Chapters

4 and 5.

3.3.2 Meta-Analysis

Meta-Anlysis methods combine the study estimates related to a research hypotheses in

particular (Sutton et al. [2000]). There are two types of assumptions, that determine

two methods: Fixed effects (FE) and Random effects (RE). These methods are going

to be described as follows:

Fixed Effects Methods

The principal assumption for a fixed effect model is that there is no heterogeneity

between the study results. The method exposed in this section is the inverse variance-

weighted method, where a weight is given to each study estimate. This weight is

calculated proportional to the precision of the trial. A pooled estimate of the treatment

effect is shown by the equation 3.16. Where i = 1, , k is the number of studies to be

combined, Ti is the observed effect size, θi is the underlying population effect size, but

for a fixed effects model all population effect size are assumed equal (θ1 = θ2 · · · θk,

the studies are assumed to be estimating a single true underlying effect size), and wi is

the weight given by the inverse of the variance vi (wi = 1/vi) (Sutton et al. [2000]).
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The formulae 3.17 shows the variance of the pooled estimate T , shown in equation

3.16.

T =

�k
i=1 wiTi�k
i=1 wi

(3.16)

var(T ) = 1/
k�

i=0

wi (3.17)

Random Effects Methods

When the assumption of equal population effect size θi is not realistic for some cases,

a random effects model should be considered. This method assumes the estimates of

the studies have different effect sizes and takes into account the heterogeneity between

trials. A random distribution is assumed from the collection of study specific effect

sizes (Sutton et al. [2000]). The equation 3.18 shows the case, where T i is the estimate

of the pooled effect size and θi is the true effect size in the ith study, and ei is the error

of the estimation (ei ∼ N(0, vi)). The variance is represented in the formulae 3.19,

where τ 2θ is the random effects variance and vi is the variance related to sampling error

in the ith study. When τ = 0 it becomes a fixed effects model.

T i = θi + ei (3.18)

var(T i) = τ 2θ + vi (3.19)
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For a fixed effect model T is estimated by weighting each study effect size with the

precision (wi = 1/vi), producing a single fixed effect estimate (Equation 3.16). In the

case of random effects each study will be providing an estimate for Ti (Equation 3.18),

adding a random effect to the estimation (ei). If Equation 3.20 is used in Equation 3.16

the random effect pooled estimate is obtained.

w∗
i =

1

[(1/wi) + τ 2]
(3.20)

Since the fixed effect estimate assumes θi = θk, τ becomes 0 in the absence of varia-

tion, thus Equation 3.19 is reduced to Equation 3.17.

3.3.3 Bayesian Meta-Analysis

Bayesian methods were introduced in Section 3.2 and their advantages were exposed.

In the context of meta-analysis, all evidence regarding the problem under observation

can be taken into account, allowing a summary of the current state of knowledge (Sut-

ton et al. [2000]). This thesis is aiming to collate all evidence available in MetS for

the analysis of its behavior and measure its usefulness for a potential intervention to

prevent progression to chronic disease. The Bayesian approach makes more efficient

use of the evidence obtained for this specific comprehensive evaluation.

The log odds ratio (LOR) represents a measure of the effect size extracted from each

study selected for the meta-analysis. The generic meta-analysis model for fixed effect

is represented by Ti = LORi. Equation 3.21 shows the Bayesian fixed effect model,
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where a prior distribution needs to be defined for µ ∼ N(0, 1002).

Ti ∼ N(µ, vi) (3.21)

Where vi is the observed variance. A normal distribution can be used for this prior. If

there is no information on previews believes of the effect size to specify a prior distri-

bution, then vague priors are used to let data dominate the posterior density (Lambert

et al. [2005]). The Bayesian model for random effects is given by:

Ti ∼ N(θi, vi) (3.22)

where θi represent the estimated effect size in the study ith and vi is the variance of the

estimation. θi is defined as a normal distribution with δ and τ 2θ as the random effect

variation.

θi ∼ N(δ, τ 2θ ) (3.23)

In random effects models a prior is needed for µ and for τ (µ is the pooled effect size

and τ is the between study heterogeneity), µ ∼ N(0, 1002) as a vague prior and τ 2

can take different priors like Uniform (U(0, k)), Half Normal (HN(0, h)) or Gamma

(1/τ 2 ∼ G(0.001, 0.001)).

Given the fact that data is often collected in groups, there is the need to specify the

model for binary data. If a two-arm study is considered, in which rA and rB are the

observed number of outcomes of nA and nB, respectively. Equation 3.24 presents the
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first part of the model:

rAi ∼ Bin(πAi, nAi)

rBi ∼ Bin(πBi, nBi)
(3.24)

where πA and πB are the two unknown parameters for the two arms of the study.

Applying the logit transformation of each of the two parameters, then

logit(πAi) = µi

logit(πBi) = µi + θi

(3.25)

where µi is the log odds of an event in the control group of the ith study and θi be-

comes the parameter of interest (log odds ratio), which is assumed to follow a normal

distribution and prior distributions need to be define for µ and τ 2θ .

θi ∼ N [µ, τ 2θ ] (3.26)

with µ representing the pooled effect estimate, on a log odds ratio scale, and τ 2θ is the

between study heterogeneity (Sutton et al. [2000]).
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3.3.4 Exploring Heterogeneity

This section present methods used to explore heterogeneity and explain its sources

(Higgins and Thompson [2002]). Random effects models do not provide a justification

for heterogeneity. Exploration for heterogeneity is important in order to find associa-

tions between study or patient characteristics and the outcome measure. There are two

methods to explore heterogeneity:

Subgroup Analysis can be used to explore heterogeneity at a level of study or patient

characteristics. One type considers subsets defined by study or patient characteristics

(i.e. quality, length of follow-up). The other type of subgroup analysis explores subsets

of patients within the studies.

Meta - Regression: The model presented in 3.23 can be extended to include a co-

variate, xi. Equation 3.27 representing general quantities and Equation 3.28 for binary

data representation

θi ∼ N(µ+ βxi, τ
2
θ ) (3.27)

logit(πBi) = µi + θi + βxi (3.28)

The parameter in model 3.29 can be estimated using Restricted Maximun Likeli-

hood (REML) in a number of classical statistics packages; i.e. metareg in Stata, or

a Bayesian approach can be adapted by placing prior distributions on µ, β and τ . As β

is a regression parameter it can take values as the real line and therefore a vague prior

could be N(0, 1002).
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Adjusting for Baseline Risk: The model 3.29 can be extended to include an adjust-

ment for baseline risk. The baseline risk reflects risk of outcome event for a patient

under the control condition and indicates average risk of patient in that trial if they

were not treated. Differences in patient characteristics among studies may result in

different treatment effects.

logit(πBi) ∼ N(µi + δi + β(µi − µ̄), τ 2θ ) (3.29)

with β representing the impact of the underlying effect at baseline and δi is the under-

lying log odds in the ith study.

3.4 Summary of the Methodology

The methodology described in this chapter have introduced the basic concepts to sup-

port a decision model framework. Bayesian methods are going to be used to develop a

Markov decision model in WinBUGS. Evidence synthesis is going to be performed to

collect all evidence needed to populate the decision model. The result of this thesis is

a comprehensive decision model for a clinical and economic evaluation of a possible

intervention dedicated to the prevention of T2DM and CVD. The intervention is going

to be based on MetS criteria.

Chapter 4 presents the results of a synthesis of evidence of treatments for the reversal

of MetS and Chapter 5 describes a systematic review undertaken for the assessment of

the risk to develop T2DM and CVD in patients with MetS. Chapter 6, then presents

all this information integrated in a comprehensive decision model and incorporates
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economic data to complete the evaluation of MetS.
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Chapter 4

Appraisal of Interventions for

Metabolic Syndrome Reversal: Mixed

Treatment Comparison Analysis
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This Chapter aims to identify the best intervention for the reversal of MetS. The in-

tervention identified could be a potential tool for the prevention of T2DM and CVD.

There were 13 Randomised Controlled Trials (RCTs) identified and 12 different inter-

ventions (Control, Diet, Exercise, Lifestyle with supervised exercise/exercise advice,

Antiobesity, Antidiabetics, Antiobesity plus Lifestyle, Antidiabetics plus Lifestyle,

Statins, Fenofibrate and Statins plus Fenofibrate), these interventions are presented

in section 4.1.2, as part of the description of this systematic review, in section 4.1. In-

direct and direct evidence was combined and classical methods were compared with

Bayesian models, which are based in a Mixed Treatment Comparison framework, ex-

plained in section 4.2. Additive and hierarchical models were also developed for the

analysis of the networks drawn from the studies included in this analysis.

Two networks were defined: the first has 4 treatments in which cluster: a) the Lifestyle

interventions (Diet and Exercise), b) the Pharmacological treatments (Antidiabetics,

Antiobesity and Statins), c) the combination of both and d) control group. The sec-

ond network, including 12 treatments, was built by splitting the previous network into

more specific interventions. The selected trials were included, if the treatments re-

mained connected, to at least one node of the network. The reduced network concen-

trates more studies in each node, providing more evidence to each treatment compar-

ison. The network is extended, by splitting the nodes into others equivalent and more

specific arm-groups; that are observed in the trials. The node representing Lifestyle

interventions (in the reduced network), in which Diet and Exercise (represented in the

extended network), are clustered. If there are not enough information collected, some

trials could disconnect from the network. More evidence could be needed to connect,

any particular study, with the single matching treatment that is already represented in
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the network. Details about the networking process is presented in section 4.2.1 and

Figures 4.4 and 4.5 show the diagram of the two networks developed in this chap-

ter.

The risk of healthy individuals of developing MetS or developing T2DM, CVD or have

any mortality event are integrated in Chapter 6; where the decision model is developed

and interventions are going to be evaluated with comprehensive evidence of the MetS

context. The increased risk of individuals with MetS of developing T2DM, CVD or

overall mortality sets a high importance on its resolution; these risks are calculated and

discussed in Chapter 5, where results of a systematic cohort review are presented. The

results produced for this analysis will feed the evidence of resolution of the syndrome

and determine the basis for further links with T2DM and CVD. Figure 4.1 illustrates

the part of the model where this chapter fits in. The red arrow indicates the transition

of the model, where this analysis is going to provide evidence synthesis. All the blue

arrows represent other transitions of the model requiring to be filled with correspondent

evidence. The reason to start the analysis in the transition from MetS to Healthy is

because: a, the comprehensive model will start the simulation in that state for the

evaluation stated for this thesis; and b, if there is a significant possibility to reverse

MetS added to a demonstrated risk of developing T2DM and/or CVD, then there could

be greater probabilities to have an impact in the risk of developing T2DM and CVD.

A prevention strategy could be based on the identified intervention, and it could be

customized according to the evidence obtained in this analysis.

This chapter will describe the assessment of available treatments for MetS to calcu-

late probabilities of reversing MetS diagnostics under different types of interventions

(lifestyle, pharmacological or both). Section 4.1 presents details of the systematic re-
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Figure 4.1: Mixed Treatment Comparison analysis in the Model diagram.
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view that provided the data needed for the Mixed Treatment Comparison. Section 4.2

describes the statistical methods to perform this specific analysis. The analysis will

be divided in two parts: section 4.3 and section 4.4, corresponding to a proposal of a

Reduced network and an Extended network of analysis. Results from the analysis will

be discussed in section 4.5. A summary of the chapter is presented in 4.6.

4.1 Systematic Review Details

This systematic review is the start of the comprehensive analysis stated for this the-

sis. Chapter 2 described the main problem, as a decision analysis evaluating MetS

criteria (Section 2.5) and discussion about potential interventions based in MetS and

its possible impact as a prevention strategy to prevent T2DM and/or CVD was started

in Section 2.4. The evidence collected for the main model will be assemble in Chap-

ter 6. The epidemiological situation related with MetS was introduced in Section 2.3;

this analysis starts with a known risk associated with MetS and higher probabilities

of developing T2DM and CVD (Ford [2005]; Gami et al. [2007]; Li et al. [2008]).

An update of these estimations calculated by these authors is going to be presented in

Chapter 5.

Therefore, there is the need of assessing potential interventions introduced in Section

2.4. This chapter develops a systematic review to obtain evidence about the possible

reversal of a MetS diagnosis (representing the transition from MetS to Healthy states in

the main model), appraising different interventions with effectiveness evidence avail-

able (from RCTs). This analysis will provide options for the model to be evaluated,

depending on the variety of interventions.
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4.1.1 Background

The aim of the review is to identify, which of the stated interventions is more effec-

tive in reversing a diagnosis of MetS. Given the diversity of the interventions, the

analysis represents a methodological challenge, showing the need of combining the

evidence available and taking into account this variability. Combination of this evi-

dence will provide support in identifying the best strategy for the prevention of T2DM

and CVD.

The importance given to MetS criteria have the particular interest of understanding

its prognostic significance, as there is a rising pattern on the prevalence of MetS. The

prevention of T2DM and CVD highlights the need of developing strategies, and MetS

criteria is aimed to be easy to use in clinical setting. Lifestyle (diet and exercise)

are currently recommended as the initial management approach for people with MetS,

with the addition of pharmacotherapy if lifestyle alone is ineffective and/or individuals

are at high CVD risk (Alhyas et al. [2011]; Grundy et al. [2005]).

However, the optimal way to achieve lifestyle changes is unclear. Similarly, whilst sev-

eral pharmacological agents including lipid lowering, anti-diabetic, and anti-obesity

drugs have the potential to provide incremental benefit, their clinical and cost effec-

tiveness in MetS is undecided.

Several RCTs of interventions (lifestyle and/or pharmacological) aimed at the primary

prevention of CVD and/or T2DM have been conducted but no systematic review of

the evidence has until now been published. The outcome evaluated is determined by

the reversal of MetS; therefore data can be extracted from trials under the context of

T2DM and CVD prevention, as there are no RCTs addressing this specific use of the
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concept of MetS, yet published. Therefore data has to be derived from epidemiological

studies.

4.1.2 Interventions

There were 12 different interventions (Control, Diet, Exercise, Lifestyle with super-

vised exercise/exercise advice, Antiobesity, Antidiabetics, Antiobesity plus Lifestyle,

Antidiabetics plus Lifestyle, Statins, Fenofibrate and Statins plus Fenofibrate) identi-

fied. Evidence available for all of the evaluated interventions comes from 13 different

RCTs (1. Anderssen et al. [2007], 2. Azadbakht et al. [2005], 3. Esposito et al. [2004],

4. Stewart et al. [2005], 5. Clearfield et al. [2005], 6. Villareal et al. [2006], 7. Orchard

et al. [2005], 8. Ramachandran et al. [2007], 9. Esposito et al. [2006], 10. Phelan

et al. [2007], 11. Van Gaal et al. [2005], 12. Geluk et al. [2005] and 13. Athyros et al.

[2005]).

There are four categories of interventions defined for the analysis. It is important to

discuss about each type of intervention to explore the variability within each group

of treatments and take it into account with respect to the complexity of the models,

which will be developed in Chapter 6. Table 4.1 presents the list of studies included,

the categorization for each treatment in each study, the number of reversed and not re-

versed cases, the sample size for each treatment and period of follow-up. The sample

size considered for the calculation of the correspondent proportions (at baseline and re-

solved MetS) defining the outcome, were based only on individuals with MetS. Table

4.1 present the number of individuals with MetS after the intervention and the number

of individuals that could resolve their MetS diagnosis, by each study-treatment. The ta-

ble summarizes study characteristics of included trials (proportions add horizontally).
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The incidence of MetS was the measure used to define the outcome of reversal of

MetS. Studies using definition other than NCEP were included in the analysis, but is

important to take into account as a source of variability in the meta-analysis. Studies

identified are from 2004, before that year the concept of MetS was not used in a RCT.

The concept has existed over 90 years by now, but its application in research is very

recent.

The control group: was defined differently across the studies. There were only two

trials where the control had no treatment and the individuals in the group were adviced

not to change lifestyle. (Anderssen et al. [2007]; Villareal et al. [2006]). The rest of the

studies gave at least some type of advice on lifestyle changes. Furthermore, there is the

need of analysing the impact of the control interventions and the related heterogeneity

added to this research. Table 4.1 displays the intervention for the control group in

each trial. The cases of MetS presented in these groups are going to be used for the

adjustment for baseline risk, given heterogeneity of the placebo interventions applied

across studies (section 4.3.2).

Lifestyle Interventions: were even more heterogeneous in nature than the control

groups. The exercise interventions differ within trials and also the lifestyle combined

intervention (diet plus exercise). Two trials used a supervised exercise intervention

(where individuals were coached and directed for specific needs on exercise) and did

not give any specific intervention for the control group (Anderssen et al. [2007]; Vil-

lareal et al. [2006]). The remaining studies just gave an advice on physical activity. A

sensitivity analysis on the network of evidence was conducted to evaluate the impact

of splitting the lifestyle category in two (Individualized diet plus supervised exercise

compared with Individualized diet plus exercise advice). The selected extended net-
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work considers both types of exercise interventions, as indirect evidence can be pro-

duced to compare them and provides explanations for heterogeneity between studies.

The intervention using a supervised exercise is compared with lifestyle components

and the therapy that only provides an exercise advice is used in studies assessing drug

treatments.

Pharmacological Treatments: were also heterogeneous and contained a number of

classes of pharmaceuticals. It was decided to consider three categories of drugs, An-

tidiabetics (Metformin and Rosiglitazone), Antiobesity (Sibutramine and Rimonabant

in two different doses 20mg and 5 mg) and Statins (Pravastatin, Atorvastatin and

Fenofibrate) (Athyros et al. [2005]; Esposito et al. [2006]; Geluk et al. [2005]; Or-

chard et al. [2005]; Phelan et al. [2007]; Ramachandran et al. [2007]; Van Gaal et al.

[2005]).

Combined Interventions: Two trials used a combination of both lifestyle interven-

tions and pharmacological treatments (Phelan et al. [2007]; Ramachandran et al. [2007]).

Ramachandran used Metformin and Phelan used Sibutramine. Both studies used indi-

vidualized diet and exercise advice as lifestyle intervention.

This analysis is targeting MetS populations: adults with ages from 18 years old identi-

fied as having MetS according to a recognized definition. Therefore, all definitions of

MetS are included in the systematic review and given the lack of evidence the analysis

will be supported with the information being contributed by the trials using definitions

different than NCEP. Table 4.1 shows all trials considered for the analysis.
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4.1.3 Search Strategy and Data Extraction

The trials included had a follow-up period of at least 24 weeks, outcomes of incidence

of T2DM and/or CVD or reversal of MetS and compared lifestyle, pharmacological,

or surgical interventions, with placebo, usual care or active control (drug intervention

or lifestyle). Because the focus of the review was primary prevention, studies where

more than 10% of the population had established CVD and/or T2DM were excluded.

No language restrictions were applied but only studies published as full-length articles

were included.

Data used was extracted mainly from 13 studies selected, after undertaking a specific

search strategy to identify RCTs observing the effectiveness of interventions for the

primary prevention of T2DM and/or CVD in people with MetS. A search strategy was

defined for MEDLINE (1950 to Dec 2007), EMBASE (1980 to Dec 2007), CINAHL

(1982 to Dec 2007), BNI (1985 to Dec 2007), The Cochrane Library (Issue 4, 2007),

Science Citation Index (Web of Knowledge) (1980 to Dec 2007), and PubMed (2004

to Dec 2007). MeSH terms and keywords were combined with the CRD/Cochrane

Highly Sensitive Search Strategy RCT filter (Higgins et al. [2008]) and tailored to

individual bibliographic databases. Search results were obtained from a strategy ran

in December 2007. Updates to this review should be undertaken, as new important

research has been published; but in terms of the aim of this thesis, updates to the data

collected could be implemented in the model and evaluate expand the understanding

of the behavior of MetS criteria.

Abstracts and titles were independently assessed by 2 reviewers and potentially rele-

vant articles retrieved and compared independently against the inclusion criteria with
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differences resolved through discussion and referral with a third reviewer where nec-

essary. Foreign language papers were translated sufficiently to ascertain compliance

with the inclusion criteria with full translation if necessary. Where studies met all the

inclusion criteria but data were incomplete, authors were contacted for additional data

and/or clarification. Papers were subsequently excluded if no reply was received. Ex-

perts in the field of MetS and first authors of included papers were contacted in an

attempt to identify further papers not identified through electronic searching, and the

reference lists of included papers and relevant reviews were also scanned.

The quality of selected studies was assessed by using a scoring system based on the

Delphi list (Verhagen et al. [1998]) (recommended by the Centre for Reviews and Dis-

semination (CRD) (Khan et al. [2001]) and was chosen in preference to Jadad score

(Jadad et al. [1996]) due to its inclusion of allocation concealment as well as several

other key indicators known to influence the internal validity of trials. One mark was

awarded for each criterion met giving a total possible nine marks. Half a mark was

awarded where baseline characteristics of intervention and control groups were anal-

ysed and included some but not all of the following: age, sex, weight/BMI and all

components of the metabolic syndrome (NCEP/IDF definitions). Half a mark was also

awarded to studies with both lifestyle and pharmacological intervention groups which

were only able to blind subjects randomised to pharmacological treatment or placebo.

Claims by authors to have analysed results on an intention-to-treat (ITT) basis were

verified with reference to primary data. Where a trial was reported to be randomised

but the method used was not described, no mark was given.

Data were extracted independently by 2 reviewers using a form designed specifically

for this review (with reference to the Cochrane handbook (Higgins et al. [2008]) and
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CONSORT guidelines (Moher et al. [2001]) and were checked for consistency prior

to analysis of results. All papers relating to a particular study were retrieved includ-

ing those on design and methodology (if reported separately) and original trial results

in the case of sub-group analyses. Data reported in the narrative of each paper were

checked with that presented in tables where applicable. Where minor inconsistencies

were evident (affecting one paper only (Anderssen et al. [2007]; Esposito et al. [2004])

), data were extracted from tables as this was considered to be more likely to be accu-

rate.

The challenge presented for the methodological issues, given the sources of the data, is

going to be addressed with a strategic analysis based on networks of evidence (Salanti

et al. [2008]). While, Chapter 3 introduced core concepts related to the systematic

reviews in section 3.3.1 and Bayesian methods in Section 3.2, this analysis requires

the specification of a Mixed Treatment Comparison model introduced in Section 4.2.

Results are presented by network in Sections 4.3 and 4.4. Additive models are also

going to be compared using the two networks proposed (Reduced section 4.3.3 and

Extended in section 4.4.1). Hierarchical models are included in the analysis of the

extended network in section 4.4.2. Heterogeneity will be explored with covariates in

a meta-regression model using follow up length and quality of studies, as variables.

Baseline risk is also included in the analysis for heterogeneity in section 4.3.2. Section

4.5 presents the discussion outlined.

The 13 studies identified did not evaluate all the treatments of interest. This situa-

tion represents a methodological challenge, given the need of assessing all available

treatments for the reversal of MetS. Therefore, Mixed Treatment Comparison methods

becomes crucial for this analysis.
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4.2 Mixed Treatment Comparison Methods

Healthcare decision making process becomes more complex when different treatment

options are available. Therefore, there is a need to use methodologies combining all

evidence to provide an improved strategy for these type of decisions. Problems arise

with the lack of RCTs analyzing direct pairwise comparisons with all available inter-

ventions, specially with increased number of treatments. Other issues take place, if

direct evidence is inconclusive, but indirect or combined evidence can reach a clearer

conclusion (Caldwell et al. [2005]). Bayesian Mixed Treatment Comparison (MTC)

methods give a clear solution combining direct evidence and indirect evidence, provid-

ing a more efficient way of analyzing the evidence.

In addition, classical methods can be useful, but they present different problems dis-

cussed in this section, as a comparison between both methodologies was performed

to address the limitations of the data available on the different interventions for the

reversal of MetS and the different issues identifying the best treatment.

Firstly, it becomes important to present the concept of network of evidence, clarifying

direct evidence between pairwise comparisons. Then, both methodologies (Classical

and Bayesian) are introduced in the following subsections. Results are presented by

network designed in sections 4.3 and 4.4, after description of MTC methods.

4.2.1 Network of Evidence

The number of interventions available for the reversal of MetS presents a challenge for

the analysis of the data. RCTs have been performed for different intervention options,
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but the number of trials is almost similar to the number of treatments to evaluate. This

indicates high sparsity of the studies and therefore, the need for designing a network

of interventions to set an analysis including all of them. Analyzing the data using this

methodology gives an efficient utilization of all the available evidence and overcomes

to the limitations presented by the sparsity.

Therefore, two networks were drawn. One that integrates similar interventions, like

different diets and exercise interventions were combined in a Lifestyle intervention

group, the different pharmaceutics were synthesized in a pharmacological intervention

group and a third group with combined interventions together. This network aims to

analyze the data more efficiently, by reducing sparsity and providing more evidence

for each comparison of therapies. The second network is an expansion using all the

different interventions constituting each node in the first network. Sparsity, in this

case, is showing how heterogenous these interventions can be and represents the need

for analysis of decision making related with MetS, as different therapies can be used.

More research should be directed for the intervention that shows better performance,

concentrating efforts for the prevention of complex diseases like T2DM or CVD.

The networks can be represented graphically as diagrams of all pairwise comparisons

based on the studies available for the different treatment options. Figure 4.2 shows a

network of evidence example, with three nodes representing available treatment op-

tions. Lines connecting nodes, represent evidence available for that particular com-

parison; which will constitute the direct evidence provided by the network. In this

case, there is no direct estimate for the comparison between B and C nodes. Figure

4.3 shows the network of evidence with an indirect estimate for B and C comparison,

drawn from the information of the direct evidence. Treatments must have at least one
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link making them part of the network, otherwise the estimation of indirect evidence is

not possible.

C A 

B 

Figure 4.2: Network of evidence example, with nodes A, B and C

C A 

B 

Figure 4.3: Network of evidence showing an indirect estimate for unconnected nodes.

Network analysis allows the combination of direct and indirect evidence, as all pair-

wise comparisons may not be explored by any of the trials. Therefore, consistency

becomes an important assumption for both types of estimates (Salanti et al. [2008]).

According to Salanti, consistency and inconsistency models can be set. This thesis
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adopted a consistency model, given the type of data and its needs of combination for

the calculation of indirect evidence needed.

The principle of consistency allows the estimation using direct and indirect data. Com-

bination of both types of evidence give a more efficient use of the data in a decision

making framework. Assuming there are three treatments, A, B and C from Figures

4.2 and 4.3, the three possible pair-wise comparisons are AB, AC, and BC. Therefore,

three unrelated estimates of the treatment effects µ̂AB, µ̂AC and µ̂BC , can be obtained

out of three separate meta-analyses. If the three estimates are assumed to be consistent,

a consistency model can be stated by the inter-relation of the three parameters in the

following form:

µBC = µAC − µAB (4.1)

Then, the parameter µBC , which is the effect of B relative to C, can be estimated

using both direct BC data and indirect data on AC and AB, defining the principle of

consistency (Salanti et al. [2008]).

Geometry & Asymmetry

Characteristics related with geometry and asymmetry can reveal interesting network

dynamics. Geometry refers to the overall pattern of comparisons among different

treatments whereas the asymmetry describes the extent to which specific comparison

or treatment is more represented in the network than others (Salanti et al. [2008]).

Exploring these properties can help to understand the context of the treatments and

support the analysis.
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Two different networks were designed. First, a reduced network clustering classes of

interventions. This network consisted of 4 nodes (Control, Lifestyle, Pharmacologi-

cal and Pharmacological plus Lifestyle) and was developed from 12 trials. One trial

of fenofibrate was not connected to the rest of the network and so was not included

(Athyros et al. [2005]). The network diagram is shown in Figure 4.4.
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Figure 4.4: Reduced Network.

In addition, an extended network incorporate 11 treatments (Control, Diet, Exercise,

Lifestyle with supervised exercise/exercise advice, Antiobesity, Antidiabetics, An-

tiobesity plus Lifestyle, Antidiabetics plus Lifestyle, Statins, Fenofibrate and Statins

plus Fenofibrate) was built from 13 trials. Figure 4.5 shows the diagram of the net-

work.
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Figure 4.5: Extended Network

4.2.2 Classical Approach

Classical methods can be used to combine evidence. Since classical methods are not

part of the main methodological aim of this thesis, they were not explained in Chapter

3, therefore an introduction is presented in this section. Nevertheless, there are some

limitations, which are discussed later. Indirect and direct evidence is going to be as-

sessed in order to perform a combination of both types of evidence. When there is a

network that has direct evidence as shown in Figure 4.2 for segments AB and AC, but

there is a segment BC without direct evidence, producing a network not completely

connected. Then, the segment BC can be estimated indirectly as shown in the diagram

in Figure 4.3.
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Indirect/Direct evidence

Direct pairwise comparisons using classical models were calculated when data was

available, given the lack of direct evidence for some of the comparisons. Indirect esti-

mates are possible to obtain, but it is necessary to ensure all sources of uncertainty and

correlation as considered (Bucher et al. [1997]). Each of the estimates is surrounded

in a specific context of variation. All sources of variation should be accounted for its

interpretation. Stata was used to determine all the direct estimates, by performing each

of the meta-analysis to combine direct evidence. Indirect estimates, then can be obtain

by:

ln(ORInd) = ln(ORAB)− ln(ORAC) (4.2)

V (lnORInd) = V (lnORAB) + V (lnORAC) (4.3)

where Ind =Indirect estimate (BC) & V = V ariance. Assumption of consistency

applies to this setting. Given the possibility to obtain an estimate, from the direct

evidence, to provide information on the missing direct comparisons, the resulting value

is a measure of the effect size for that particular comparison. The log odds ratio is

frequently used in this framework. Equation 4.2 shows the estimate and its variance in

Equation 4.3.

90



Combination of evidence

The combination of indirect and direct evidence is possible with classical methods

(Bucher et al. [1997]). There is the need for both types of estimates to be consistent.

In classical methods, as the number of indirect estimates increases the combination be-

comes complex in order to decide which estimate to use. An example of this situation

will be presented for the extended network and multiplicity of options for the treatment

combinations.

4.2.3 Bayesian Approach

Bayesian Mixed Treatment Comparison (MTC) methods (Caldwell et al. [2005]; Lu

and Ades [2004]) were used to assess the effectiveness of interventions for the reversal

of MetS. The MTC approach provides estimates for all the possible pairwise com-

parisons if the treatments are connected by a network, combining the direct evidence

available and the indirect evidence from all the comparisons.

The key assumption is that indirect comparisons are the same as those which would

be obtained if a head to head comparison had been performed. For fixed effects anal-

ysis, assumes that the relative effect of one treatment compared with another is the

same across all the trials. For random effects models it is assumed that the common

distribution is the same across all trials.

Bayesian meta-analysis was introduced in section 3.3.3, and MTC is a particular case

of meta-analysis. It is possible to define r as the reversal in the i study in the j inter-

vention and has a Binomial distribution (rij ∼ Bin[πij, nij]). Then, using a network

of evidence specified in section 4.2.1 (Equation 4.1), the MTC model can be written as
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follows:

θij = log

�
πij

1− πij

�
(4.4)

θij ∼ N [µi + dj − dbi , τ
2] (4.5)

Where θij is a reparameterization of the likelihood specified above (rij ∼ Bin[πij, nij]),

therefore the logit of Equation 4.4 (logarithm of the odds) is defined with a normal dis-

tribution, as shown in Equation 4.5. τ is the common between study standard deviation,

for a random effects model taking into account variability given by the differences of

the studies. dbi is the baseline comparator for study i (corresponding to the specific

treatment, to be use as the reference for a particular comparison), contrasting the treat-

ment effect represented by the pooled effect size as dj , which is the pooled logarithm

of the Odds (LOD) for treatment j, dj = 0 when j = bi and µi is the baseline effect for

study i, representing the study-type effect. For fixed effects model it is assumed that

τ = 0.

The prior distributions used for the model were µi ∼ N [0, 1000], dj ∼ N [0, 1000],

given no previous information on these estimates and let data to dominate the posterior

distribution. For random effects models a prior for τ ∼ Unif [0, 2] was specified, after

a sensitivity analysis performed, the analysis is described in section 4.3.

The WinBUGS free software was used to implement all the Bayesian models. A burn-

in of 10,000 simulations followed by a sample of 50,000 on which the posterior distri-

bution was estimated. This run length and burn-in were defined to ensure convergence
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of compiling models. Convergence was assessed by checking trace plots, the level

of autocorrelation and running multiple chains with radically different starting values.

Section 3.2.2 explained these concepts of MCMC.

The Deviance Information Criteria (DIC) is a tool used as a method for comparing

fixed and random effects models. The DIC is a measure of the expected posterior

loss when adopting a particular model. When comparing two Bayesian models, small-

est DIC suggest a better fit of the model to the data observed. (Spiegelhalter et al.

[2002]).

The absolute treatment effects were estimated and ranked the best treatment in each

simulation. The percentage of the ranking across all simulations was used to obtain

the probability of being the best treatment.

4.3 Reduced Network

The reversal of Metabolic Syndrome was expressed as an odds ratio (OR) in each par-

ticular pairwise comparison. Table 4.2 presents the OR for each class of intervention

(Control, Lifestyle, Pharmacological and Pharmacological plus Lifestyle). Posterior

means of the odds ratios for the reduced network are presented in the up-right part of

the table. The lower-left part shows the classical direct estimates. Fixed effects and

random effects estimates are shown respectively in each box; the first box providing

odds ratios is Lifestyle treatments compared with Control interventions, the Bayesian

fixed effect estimate for the OR is 3.45 with a standard error of 0.35 and the Bayesian

random effect estimate for this comparison is 4.90 with a standard error of 2.19. The

diagonal box providing the classical estimates for the comparison (L vs C), shows a
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fixed effect OR of 3.31 with a standard error of 0.05 and a random effect OR of 3.77

with a standard error of 0.10. There are 7 studies (n) contributing with evidence for

this specific comparison. The letter shown in the box is the treatment showing an effect

over the other type of intervention; in this case, Lifestyle is showing around three times

more odds of reversing MetS than the Control intervention.

Table 4.2 Odds Ratios (OR) for Reduced Network
n=number of studies

Bayesian MTC [FE / RE]
Control Lifestyle Pharmacological P+L

OR n 3.45 1.56 1.75
C SE 0.35 0.16 0.52

OR 4.90 1.99 2.86
SE 2.19 0.95 3.42

3.31 7 OR n 0.45 0.51
L 0.05 SE 0.05 0.15

3.77 OR 0.44 0.62
L 0.10 SE 0.23 0.62

1.46 5 0.51 3 OR n 1.13
P 0.04 0.05 SE 0.33

1.68 0.49 OR 1.54
P 0.09 L 0.20 SE 1.71

1.13 1 0.52 2 1.11 2 OR n
P+L 0.19 0.15 0.15 SE

1.14 0.52 1.31 OR
P+L 0.44 L 0.15 P 0.55 SE

Classical Direct [FE / RE]

In both classical and Bayesian results, lifestyle interventions appear to be more effec-

tive in terms of the reversal of the MetS than the rest of the treatments; both Bayesian

and Classical fixed effects (FE) models gave similar estimates of the OR which were

both over 3 (3.45 95% CrI [2.81, 4.20] and 3.31 95% CI [2.67, 4.09], respectively). The
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OR of these interventions compared to pharmacological treatments was 2.22 (Bayesian

random effects). Shown in Table 4.2 with the inverse scale: 1/0.45 = 2.22. The es-

timates for the combined intervention were not significant, as there is only one study

with direct evidence there is no possibility to conclude for this type of treatments. The

uncertainty was clearly higher for the Bayesian models as indirect evidence is included

in the estimates.

These issues are shown in the Figure 4.6 where the intervals for direct evidence are

smaller and it illustrates the evidence of heterogeneity between the trials. These ORs

are in the inverse scale, because of the visual standardization needed, given the level of

heterogeneity estimates this form is easier to compare across all studies and different

interventions. Estimates close to values of 1 are showing no treatment effect. Forest

plots are comparing interventions with control groups. Studies analyzed in lifestyle

interventions had one arm-group with one of these type of interventions; and if the

study presented another intervention for pharmacological or for the combined therapy,

it was included for the correspondent meta-analysis.

Evidence for Lifestyle interventions shows high variability and is reflected on the I2

with a value of 70%. Pharmacological interventions were more consistent showing a

I2 of 66%, but also concentrating important variability. Bayesian estimates provide a

wider credible interval than classical methods, as it is taking into account that variabil-

ity.

In the Bayesian fixed effects model, the ranking of the treatments gave a probability

of 0.99 of lifestyle interventions of being the best treatment; for the Bayesian random

effects (RE) model, the probability was 0.85. All the other treatments had very low

probabilities in both models, only the probability for the combine intervention (P+L)
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Figure 4.6: Forest Plot: Interventions vs Control
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was 0.12 in the Bayesian random effects model; reflecting the lack of evidence stated.

This situation with the combined intervention could be an interaction implicit by the

psychological effect of this addition of therapies; where people performed an unknown

disorganized pattern reducing the possible added effect of the combination. This issue

should be address with the production of more evidence related with these type of

interventions.

Table 4.3: Indirect Estimates

Estimate Comparison LOR OR VAR SE

CL CP-LP 0.456 1.578 0.050 0.225
CPL-LPL 0.336 1.399 0.221 0.470

CP CL-LP 1.619 5.049 0.053 0.230
CPL-PPL 0.103 1.108 0.054 0.710

CPL CL-LPL 1.607 4.989 0.035 0.187
CP-PPL 0.211 1.235 0.315 0.561

LP CL-CP 1.163 3.200 0.019 0.139
LPL- PPL -0.233 0.792 0.331 0.575

LPL CL-CPL 1.271 3.566 0.208 0.456
LP-PPL -0.245 0.783 0.349 0.590

PPL CP-CPL 0.108 1.114 0.206 0.453
LP-LPL -0.012 0.988 0.066 0.257

Note: C = Control, L = Lifestyle, P= Pharmacological,
LOR = Log Odds Ratio, OR = Odds Ratio,
VAR = Variance, SE = Standard Error

Tables 4.3 and 4.4 present the estimates calculated with the classical method. Table

4.3 shows the indirect estimates obtained by the contrast of comparisons available for

the calculation of indirect estimates for each possible comparison. The indirect esti-

mates that were pooled from the comparisons available for each treatment comparison;

and combined estimates of this evidence with the direct effect estimations are presented

in Table 4.4. Results from classical and Bayesian models gave similar results, giving
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Table 4.4
Odds Ratios for Classical Models

Combined Evidence
Control Lifestyle Pharmacological P+L

C OR 2.24 2.23 4.16
SE 0.07 0.06 0.08

L 1.54 OR 2.66 1.23
0.08 SE 0.05 0.11

P 4.37 2.96 OR 1.01
0.09 0.05 SE 0.09

P+L 4.34 2.02 1.02 OR
0.07 0.15 0.09 SE

Indirect Evidence

validity to the results. However, Bayesian models make more efficient use of the ev-

idence and calculate more realistic variability, by taking into account all the indirect

evidence combined. Multiple comparisons can become a complex task when number

of treatments increase and there is lack of direct evidence for some comparisons. This

situation will be explored with the extended network in section 4.4.

The goodness of fit of the Bayesian model was evaluated by calculating the total resid-

ual deviance, which should be equal to the number of data points. The total residual

deviance for the fixed effects model was 50.57 and for the random effects model was

28.98, against 26 data points. The DIC for the fixed effects model was 189.77 and for

the random effects model was 167.19. Both results suggest that random effects models

are fitting better.

The median for τ in the random effects model was 0.80 with a 95% credible interval of

[0.39, 1.58]; this shows evidence of high heterogeneity. A sensitivity analysis (Spiegel-

halter et al. [2004]) was undertaken to assess the impact of the prior distribution for the
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between-study standard deviation, including use of half-normal and inverse gamma for

the precision. Figure 4.7 shows the log odds ratio for each prior. All the priors pro-

duced similar results on the log odds ratio; therefore, a uniform [0,2] prior distribution

was used for the between-study standard deviation in the random effects model. With

these results there is the need of exploring consistency of the studies, which are ex-

plored in section 4.3.1 and adjustment for baseline risk and other covariates, in order

to explain heterogeneity observed, will be describe in section 4.3.2. Then, an added

value of intervention analysis is developed in section 4.3.3. Discussion of these results

will be develop in Section 4.5, together with results from the extended network to be

introduced in Section 4.4.

4.3.1 Consistency & Sensitivity analysis

It is important to consider the consistency of all the trials used to fit the MTC model.

If some inconsistency is found, sensitivity analysis should be performed in order to

measure the impact of inconsistent studies. Sensitivity analysis is performed to ensure

quality of the assessment and consistency in the evaluation of the results with and

without the studies or data points that appears to be inconsistent. The next section

explains the measures used to assess consistency and their interpretation.

P-Values (Cross-validation & Mixed)

Firstly, it is necessary to introduce some definitions of the core terms used in this

section. The deviance uses the likelihood function to provide a measure of the fit of
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Figure 4.7: Sensitivity Analysis for the Prior of τ
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the model to the data points and it can be calculated as follows:

Deviance = −2log(likelihood) (4.6)

Therefore, if the likelihood is large the model fit closer and the deviance becomes

smaller. The saturated model is a model with a parameter for every observation to fit

the data accurately. Then, if the deviance for the saturated model is subtracted, the

residual deviance can be obtained as presented in equation 4.7. The residual deviance

is expected to be equal to the number of unconstrained data points.

Dres = −2(loglikelihoodmodel − loglikelihoodsat) (4.7)

When inconsistencies are found with one or more studies, then sensitivity analysis is

needed to evaluate the impact of these studies on the results (Lu and Ades [2006]).

The principle of consistency mentioned in section 4.2.1 is evaluated with these meth-

ods. An inconsistency means the study arm is not providing coherent information to

the rest of the studies, therefore it might not be adding consistent evidence due to par-

ticularities of the intervention in that specific study, like small sample size or interven-

tion characteristics. It becomes important to explore the sources of the inconsistency

as it can introduce bias. Methods such as cross-validation and mixed p-values can be

calculated to examine more in depth the consistency.

Crossvalidation estimates a predictive distribution for omitted data points using re-

maining data. Mixed P-values are a predictive measure of the data points, but uses

the full data set to approximate a cross-validation p-value. A mixed predictive model
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checking based on the complete data. Running a single MCMC simulation and then

resampling the output assumes to remove the influence of a single study effect, then the

cross-validation is checked with a posterior predictive model based on the full data set,

replicating the observation generated at each iteration from its conditional distribution

p(yrepi |Θi, y) (Marshall and Spiegelhalter [2003]). Both predictions pretend to explore

the probability of difference between the observed and predicted effects, where lower

p-values indicate statistically significant inconsistency. These p-values are expected to

correspond with the measures of deviance.

Results: Consistency diagnostics

Analysing the consistency of the data in the reduced network, one study was identified

as an outlier (Villareal et al. [2006]). The consistency was assessed by calculating the

deviances for each treatment reported in the RCTs and the residual deviance of the

model with Equation 4.7. The deviance of the Villareal et al. [2006] study should be

around 2 points, because it has two arms, but this trial obtained a value grater than

4 points. This result shows a deviance for a 4-arm trial, making the inconsistency

evident. The number of unconstrained data points is equal to the number of arms of a

study, as previously defined.

Figure 4.8 shows the deviances for each study, where the blue diamonds represent the

studies with two arms and should be around the first line (accumulating a value of ap-

proximate 2 in their deviance); the red squares represent the studies with three arms

and should be around the level of the second line (accumulating a value of approx-

imate 3 in their deviance); the green triangle represent the study with four arms and

should be around the fourth line accumulating a value of approximate 4 in its deviance.
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Figure 4.8: Deviances by study

Therefore, one of the blue diamonds reaches the fourth line, classifying it as an outlier.

The sensitivity analysis conducted to evaluate the impact of taking this study out of the

analysis showed no significant difference for the estimates. Table 4.5 shows the odds

ratios of the model without the Villareal et al. [2006] study and are very similar to the

results presented previously in Table 4.2.

To explore more in depth the observed inconsistency with this study, mixed-p values

and cross validation was calculated to support the analysis. The lowest mixed p-values

were approximately 0.17 in three trials (Esposito et al. [2004]; Ramachandran et al.

[2007]; Villareal et al. [2006]). There was no evidence of significant difference be-

tween the observed and the predicted estimates. This result means there is very low

probability that there are differences between the observed and the predicted effects,

therefore the inconsistency found with is not statistically significant. However, cross-

validation values were obtained for the Villareal et al. [2006] study (p = 0.08) and for

103



Table 4.5
Odds Ratios for Reduced Network without

Villareal et al. [2006]

Bayesian MTC [FE / RE]
C L P P+L

OR n 3.36 1.54 1.72
C SE 0.34 0.15 0.51

OR 4.14 1.86 2.51
SE 1.56 0.73 2.13

3.34 7 OR n 0.46 0.51
L 0.05 SE 0.05 0.15

3.89 OR 0.48 0.64
L 0.11 SE 0.22 0.50

1.46 5 0.51 3 OR n 1.11
P 0.04 0.05 SE 0.32

1.68 0.49 OR 1.42
P 0.09 L 0.20 SE 1.20

1.13 1 0.52 2 1.11 2 OR n
P+L 0.19 0.15 0.15 SE

1.13 0.52 1.31 OR
P+L 0.19 L 0.15 P 0.54 SE

Classical Direct [FE / RE]

the Esposito et al. [2006] study (p = 0.09), which were the trials with just 2 arms, mak-

ing its computation less complex than the others. These values are over 0.05, providing

non significant results for inconsistencies observed. Esposito et al. [2006] was calcu-

lated an even higher crossvalidation value, but this study did not show inconsistent

deviance in Figure 4.8. The Villareal et al. [2006] study could be giving this particular

outcome, because of random error related with the small sample size used for the trial.

An additional factor that can be influencing this result is the intervention design, as it

was the study that did not provide a particular session for the control group similar to

other studies.
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After this complete analysis of the consistency across data available for this combi-

nation of evidence, there were no statistical significant values associated with incon-

sistencies observed. However, heterogeneity represents an issue inside this context of

health care evaluation, next section is going to explain results obtained while exploring

the observed heterogeneity.

4.3.2 Explaining Heterogeneity

Given the inherent variability between studies it is necessary to investigate in detail

different possible explanations of heterogeneity of the developed models (Higgins and

Thompson [2002]; Thompson [1994]). This section gives a closer view inside variables

that can be generating this variability. Models used for this analysis were Bayesian

random effects models, as heterogeneity is intended to be explained. Variables re-

lated with quality of the studies and follow up were collected to evaluate the hetero-

geneity in a meta-regression, fitting those variables as covariates. In order to explain

heterogeneity related with the underlying risk of reversing a diagnosis of MetS, the

evidence is based on the control interventions defined in each randomized control trial

included.

Baseline risk and other covariates

As presented in Chapter 3 (Methods) in section 3.3.4, meta-analysis methods can be

extended to include study level covariates as part of the analysis in order to explain

between-study heterogeneity of treatment effects. General covariates such as length

of follow-up and quality of studies can be included in the MTC model, which can be
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denoted by:

θij ∼ N [µi + dj − dbi + βXij, τ
2] (4.8)

Where µi is the baseline effect of study i, dj − dbi represents the MTC estimates

previously defined in equation 4.5, β is the covariate coefficient and represents the

adjustment effect of Xij , which is the data collected for the observed covariate. Length

of follow up, quality of studies and baseline risk are possible covariates to evaluate in

this model. The analysis can be complemented with three different covariate models.

One, assuming all interactions between types of interventions are identical; this model

uses common βs for the classes of interventions defined (Lifestyle, Pharmacological

and combination of both), assuming that the influence of the covariate will be the same

for each treatment effect. Second, assuming interactions are different and unrelated,

therefore the effects of the three types of interventions are assumed independent and

a β is estimated for each treatment effect, as shown in Equation 4.9. A third model,

assumes interactions are different but exchangeable.

θij ∼ N [µi + dj − dbi + (βij − βi)Xij, τ
2] (4.9)

One important variable to explore in terms of heterogeneity is baseline risk among

trials; it can reflect differences in patient characteristics (e.g. age, medical history, co-

morbidities, etc) that may produce different treatment effects across studies. Baseline

risk is defined as, the risk of outcome event for a patient under the control condition

and indicates average risk of patient in a particular study, if they were not treated. It is

usually considered in terms of the log odds of an event in the control arm of each study.
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Underlying risk of study population can modify the treatment/intervention effect in a

determined trial. The MTC model presented in Equation 4.5 can be also extended to

include baseline risk. When Xij = µi, the model becomes a MTC analysis adjusting

for baseline risk, denoting the following:

θij ∼ N [µi + dj − dbi + β(µi − µ̄i), τ
2] (4.10)

θij ∼ N [µi + dj − dbi + (βij − βi)µi, τ
2] (4.11)

where µi is the baseline effect of study i and substitutes the Xi values to adjust evi-

dence by the effect at baseline. Equation 4.11 denotes a model with separate effects

(β) on the baseline risk, providing a coefficient for each of the interventions. Ex-

changeable models can also be developed to evaluate the correlations involve in the

interventions.

Results: Heterogeneity diagnostics

Adding length of follow-up as a covariate to the model, gave a β of -0.004 (95% CrI

[-0.0135, 0.0048]). Comparing the DIC of this model (167.228) with the DIC of the

original model (167.195), showing negligible difference. The total residual deviance

was 28.75, also presenting very low variation (the original model had 28.94 and the

number of data points was 26). The results for the analysis of the quality as a covariate

calculated a β = 0.04 95% CrI [-0.266, 0.386]) were similar, with a DIC of 167.022

and a total residual deviance of 28.43. This situation means that the length of follow-
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up and the quality of the studies are unlikely to have any answer for the heterogeneity

observed, since the DIC and the residual deviance, showed that the models including

both covariates considered for this analysis, have no better goodness of fit compared

with the original model.

To explore the baseline risk, specific models were constructed. Modifications to the

data were required in order to be able to undertake the analysis. As there was a study

without a defined control group Phelan et al. [2007], making the comparison with the

rest of the trials more complex, it was excluded from this analysis. Phelan et al. [2007]

and Ramachandran et al. [2007] studies were the trials with a combined intervention;

so when Phelan et al. [2007] was excluded, this made Ramachandran et al. [2007]

the study characterized by the inclusion of a fourth arm with this type of treatment,

therefore the fourth arm of this trial was excluded. This changes reduced the analysis

data set, producing a need of developing a comparator model without baseline risk

using this specific data set.

The inherent heterogeneity on the control group, makes the analysis of baseline risk

more complex, as it is difficult to define a common baseline risk across all the studies.

In order to explain the heterogeneity related with the underlying risk of each study,

a MTC model fitted with a covariable is developed. The underlying risk is based on

data from the control interventions defined in the randomized control trials included.

As there was a study without a defined control group (Phelan et al. [2007]) and the

fourth arm of Ramachandran et al. [2007] were removed from the analysis, given that

the last one was the only study with four arms in the experimental design after taking

out the previous study. Adjusting the MTC analysis for baseline risk (restricted to the

10 studies which used a common control group), but assuming a common effect for
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all interventions, appeared to produce a more parsimonious model. A change in the

DIC of 3.797 and residual deviance of 21.53 points from the common effect model,

compared to 25.31 points from the comparator model (against a total of 22 data points).

The model estimated a negative effect of baseline risk on the logarithm of the odds

ratio scale (-1.04, 95% CrI -1.29, -0.71), indicating that as the baseline risk of reversal

increases, the effectiveness of the interventions reduces. In terms of effect on the OR, a

1% increase in the baseline probability of reversal reduces the OR for the interventions

(lifestyle, pharmacological and both) by 12%. To interpret this result a transformation

of the β coefficient is required.

eµ =

�
p

1− p

�
(4.12)

µ = log

�
p

1− p

�
(4.13)

p =

�
eµ

1 + eµ

�
(4.14)

Providing a baseline probability of 8% (p=0.08580) of reversing MetS. This probabil-

ity will be estimating all interventions as the model estimates a common coefficient. If

a 1% is increased in the baseline probability the effect in the odds ratio for the inter-

ventions will be approximately

eβ×c (4.15)

109



c = µ∗ − µ (4.16)

µ∗ = log

�
p+ 0.01

1− p+ 0.01

�
(4.17)

The value of µ is obtained when the logit is applied to the probability:

log

�
0.08580

1− 0.08580

�
= −2.366905 (4.18)

Then adding 0.01 to the baseline probability, a value of µ∗ for an increase of 1% can

be obtained:

log

�
0.09580

1− 0.09580

�
= −2.244788 (4.19)

Therefore the effect in the odds ratio can be calculated:

e−1.04(−2.244788+2.36595) = 0.8816074 (4.20)

The reduction of the odds ratio is observed by obtaining the inverse of the previous

result.

1− 0.8816074 = 0.1183926

∼ 12%
(4.21)
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Whilst the level of baseline risk for which lifestyle and pharmacological interventions

(compared to control) are no longer clinically effective are 48% and 43% respectively;

this means that the interventions will not be effective if the baseline risk increases up

to that levels (if a population under study have a high underlying risk of developing

MetS, the odds of reversing it decreases). The baseline probability of reversing MetS

for each study varies from 3% in the Villareal et al. [2006] study to 44% in the Van Gaal

et al. [2005] study, reducing the effect of the pharmacological therapy for this last

study. These results show a high level of heterogeneity in the baseline risk across

studies.

The between-study standard deviation was significantly reduced illustrating the degree

of heterogeneity in effect explained by baseline risk (0.54, 95% HPDI 0.24, 0.93),

the comparator model obtained a standard deviation of 0.74. However, allowing for

separate effects of baseline risk on the effectiveness of the various interventions did

not further improve model fitness (change in DIC 0.53 and a residual deviance of

21.55).

Given the fact that the trial of Villareal et al. [2006] showed to be an outlier (Figure

4.8), the model for the common β was analyzed without it to measure the impact

of influence of this study on the heterogeneity. This model calculated a β of -0.72

(95%CrI [-1.39; -0.05]) and had a standard deviation of 0.57, in which comparing

with the previous results, taking out this study does not decreases significantly the

heterogeneity.
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4.3.3 Added-value of Intervention

Interventions available for the reversal of MetS are particularly complex. As they

consist in groups of components, this raises the research question of whether an in-

tervention with an specific component or a combination of components will be more

effective. Welton et al. [2008] describes two models with a MTC framework for com-

plex interventions with several different components. This analysis is useful to address

research questions related with the effectiveness of interventions with a particular com-

ponent or combination of components. Thus, the intervention with Lifestyle and Phar-

macological treatment as components, can be explored more in depth to understand the

possible interaction within. These results are going to be compared with the previous

results obtained. The additive models allows inclusion of other interventions that the

trials have not taken into account, as the model have a parameter for each component.

This situation will be easier to observe in the extended network with more possibilities

for combination of the intervention components.

Main Effect Model

In this model there is a separate effect for each of the different components of an in-

tervention. The total intervention effect dk is a sum of the relevant component effects,

dLifestyle, dPharmacological for a particular intervention, k. So for the combined interven-

tion dk = dLifestyle + dPharmacological. In this case, since there is only one combination

the model is fairly straight forward.

dk = dLifestyle ∗ Ik⊃Lifestyle + dPharmacological ∗ Ik⊃Pharmacological (4.22)
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Where the notation Ik⊃Lifestyle means that intervention k contains a Lifestyle compo-

nent.

Two-way Interaction Model

This is an extention of the main effects model with additional terms for the combination

of each pair of components. This model allows interventions with particular pairs of

components to have either a bigger or smaller effect than would be expected from the

sum of their effects alone. A model can be written:

dk = dLifestyle + dPharmacological + dLifestyle∗Pharmacological (4.23)

dk = dLifestyle ∗ Ik⊃Lifestyle + dPharmacological ∗ Ik⊃Pharmacological (4.24)

+dLifestyle∗Pharmacological ∗ Ik⊃{Lifestyle,Pharmacological}

Where the notation Ik⊃{Lifestyle,Pharmacological} indicates whether an intervention has

both Lifestyle and Pharmacological components.

This models are estimating an intervention effect denoted by dk, which is calculated

from the addition of each individual effect of each component of the intervention being

estimated.
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Results: Added value of intervention analysis

Table 4.6 presents the odds ratios for both models designed. Residual deviance for

Main effects model was 28.8 compared with 29.3 for the two-way interaction model

and the number of data points (26), showing the first model fitting better. DIC for both

models was ∼167.74. Main effects mean for heterogeneity was 0.96 and 0.83 showing

similar results with previous Bayesian models.

Table 4.6
Odds Ratios for Additive Models

Main effects
C L P P+L

C OR 3.41 1.57 5.46
SE 1.33 0.70 3.76

L 4.61 OR 0.51 1.57
1.98 SE 0.29 0.70

P 1.99 0.47 OR 3.41
0.89 0.24 SE 1.33

P+L 0.35 0.10 0.23 OR
0.35 0.18 0.42 SE

Two way interaction

These results are showing a significant effect from the Lifestyle interventions with an

OR of 3.41 (95% CrI [1.62; 6.63]) for the Main effect model and an OR of 4.61 (95%

CrI [2.14; 9.35]) for the Two way interaction model, compared with a control interven-

tion. Pharmacological interventions appear to be better than placebo interventions, but

not better than Lifestyle therapies. The combined intervention (P+L) presented dra-

matically different results between these two models; this situation can be explained

by the lack of evidence in this intervention and a possible interaction. Main effects

model calculated an intervention effect of 1.53 (95% [0.42; 2.68]), showing a sig-
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nificant effect of the interaction. However, Two way interaction model generated a

negative interaction effect of -1.312 (95% CrI [-2.81; 0.15]) and giving non significant

results. Variability of the odds ratios was reduced from 3.76 (Main effects model) to

0.35 (Two way interaction model) evidencing that the consideration of the interaction

effects could be explaining the differences found, nevertheless more research is needed

to be able to conclude on this issue.

These results from the reduced network are going to be supported with the analysis of

an extended network considering different components of the interventions used in the

trials. Even when sparsity is an issue with this network, the results of this exploratory

analysis will highlight where more research is needed, by exposing the network details

accounted in each of the reduced network nodes.

4.4 Extended Network

A complete analysis of the network is helpful in order to explain the lack of direct

evidence, sparsity and heterogeneity of the interventions and therefore the studies. This

analysis will compare 12 treatment options drawn from the data that could be integrated

in the extended network (Figure 4.5). This network includes Lifestyle interventions in

two options (with supervised exercise and exercise advice); Lifestyle interventions

used in the combined therapy provided exercise advice only. This network is going to

be analysed with classical, Bayesian, Additive and Hierarchical models. Only Additive

models provide a longer list of treatment options, given its structure.

Classical methods can be used to estimate indirect evidence in this network. The nodes

that can be used to calculate the indirect estimates for each comparison are presented

115



in Tables 4.7.a to 4.7.d. The table shows each possible comparison with the thera-

pies specified for the extended network, the number of direct and indirect estimates

available for each comparison and the nodes that make possible the estimation of indi-

rect evidence. For example, the first comparison in the table is comparing the control

intervention with diet and there are 2 direct estimates, as shown in Figure 4.5. The

indirect estimates for this comparison can be obtained from nodes Exercise (E), given

the estimate between Diet and Exercise and the 2 estimates for Exercise and Con-

trol comparisons; also, the calculation for another indirect estimate is possible given

the estimates between Lifestyle supervised, Diet and Control. In cases like the 18th

comparison (Diet and Antiobesity+Lifestyle), estimates can be obtained using indirect

estimates to complete evidence needed to be able to calculate the desired comparison;

the 8th estimation is used to calculate an indirect estimate for Control to Antiobe-

sity+Lifestyle, then the direct estimates available for Control and Diet are integrated

together to generate an indirect estimate.

Since inclusion of Statin treatments (the 9th comparison in Table 4.7.a) are possible

because of the one comparison with Control, it gets disconnected when trying to obtain

indirect evidence. The lack of direct evidence with other treatments of the network

restricts calculation of indirect estimates.

Limitations with classical models are related with the amount of trials available for

each comparison narrowing the possibilities of obtaining results for all of the poten-

tial comparisons, that can be drawn from the available interventions. Combination of

evidence is calculated when comparisons provide direct and indirect evidence; it was

possible to use 19 direct estimates from a total of 66 pairwise comparisons. ORs from

fixed and random effects models are in Table 4.8.
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With Bayesian models it was possible to obtain a full set of estimates for each pairwise

comparison (Table 4.8). Nevertheless, some of the odds ratios became unstable, there-

fore the need to explore other types of models to study the nature of the very high ORs

(e.g. Control and Lifestyle with exercise supervised). Additive and Hierarchical mod-

els were developed to explore a better fit with the data. These models have the potential

of making more efficient use of the data available, as the complexity of interventions

is determined by the addition of different therapies into one. This situation requires

an analysis of each of those differences implicit in the interventions assessed by the

RCTs. Exploration of the effect of separate components can improve understanding of

the combined interventions.
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Table 4.7.a

Comparisons for Extended Network

Comparisons Estimates

Direct Indirect Nodes

1 Control Diet 2 2 E & Lsup

2 Exercise 2 2 D & Lsup

3 Lifestyle (SupE) 2 2 E & D

4 Lifestyle (AdvE) 3 3 AO, AD+L & AD

5 Antidiabetics 3 2 LEA & AD+L

6 Antidiabetics +L 1 2 LEA & AD

7 Antiobesity 1 1 LEA

8 Antiobesity+L 0 2 AO & LEA

9 Statin (S) 1 0 Network disconnection

10 Fenofibrate (F) 0 1 S

11 S + F 0 1 S

12 Diet Exercise 1 2 Lsup & C

13 Lifestyle (SupE) 1 2 E & C

14 Lifestyle (AdvE) 0 1 C

15 Antidiabetics 0 1 C

16 Antidiabetics +L 0 1 C

17 Antiobesity 0 1 C

18 Antiobesity+L 0 1 Use No 8 to C

19 Statin (S) 0 1 C

20 Fenofibrate (F) 0 1 Use No 10 to C

21 S + F 0 1 Use No 11 to C
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Table 4.7.b

Comparisons for Extended Network –continued from previous page

Comparisons Estimates

Direct Indirect Nodes

22 Exercise Lifestyle (SupE) 1 2 C & D

23 Lifestyle (AdvE) 0 1 C

24 Antidiabetics 0 1 C

25 Antidiabetics +L 0 1 C

26 Antiobesity 0 1 C

27 Antiobesity+L 0 1 Use No 8 to C

28 Statin (S) 0 1 C

29 Fenofibrate (F) 0 1 Use No 10 to C

30 S + F 0 1 Use No 11 to C

31 Lifestyle (SupE) Lifestyle (AdvE) 0 1 C

32 Antidiabetics 0 1 C

33 Antidiabetics +L 0 1 C

34 Antiobesity 0 1 C

35 Antiobesity+L 0 1 Use No 8 to C

36 Statin (S) 0 1 C

37 Fenofibrate (F) 0 1 Use No 10 to C

38 S + F 0 1 Use No 11 to C
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Table 4.7.c

Comparisons for Extended Network –continued from previous page

Comparisons Estimates

Direct Indirect Nodes

39 Lifestyle (AdvE) Antidiabetics 2 2 C & AD+L

40 Antidiabetics +L 1 2 C & AD

41 Antiobesity 1 2 C & AO+L

42 Antiobesity+L 1 1 AO

43 Statin (S) 0 1 C

44 Fenofibrate (F) 0 1 Use No 10 to C

45 S + F 0 1 Use No 11 to C

46 Antidiabetics Antidiabetics +L 1 2 C & LEA

47 Antiobesity 0 1 C

48 Antiobesity+L 0 1 LEA

49 Statin (S) 0 1 C

50 Fenofibrate (F) 0 1 Use No 10 to C

51 S + F 0 1 Use No 11 to C

52 Antidiabetics +L Antiobesity 0 1 LEA

53 Antiobesity+L 0 1 Lea

54 Statin (S) 0 1 C

55 Fenofibrate (F) 0 1 Use No 10 to C

56 S + F 0 1 Use No 11 to C
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Table 4.7.d

Comparisons for Extended Network –continued from previous page

Comparisons Estimates

Direct Indirect Nodes

57 Antiobesity Antiobesity+L 1 1 LEA

58 Statin (S) 0 1 C

59 Fenofibrate (F) 0 1 Use No 10 to C

60 S + F 0 1 Use No 11 to C

61 Antiobesity+L Statin (S) 0 1 Use No 8 to C

62 Fenofibrate (F) 0 2 Use 8 & 10 to C

63 S + F 0 2 Use 8 & 11 to C

64 Statin (S) Fenofibrate (F) 1 1 SF

65 S + F 1 1 F

66 Fenofibrate (F) S + F 1 1 S

Tables 4.7.a to 4.7.d also present the 66 possible comparisons from the 12 interven-

tions used for this extended analysis of the network. Table 4.8 presents results for

classical, Bayesian and Hierarchical models, showing the missing estimates from clas-

sical models and the complete list for the others. Additive model results are presented

in Appendix A (7.4), because the additional treatment options produce a very long

table.
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The aim of this analysis is related with the identification of the best intervention, there-

fore the extended network becomes crucial for decision making; given the variability

within the therapies, it is important to determined whether a particular combination of

components is more effective than others. This is possible to explore with the extended

network, however the lack of evidence is a significant issue, making the analysis an

exploratory overview needing more research to be conclusive. The reduced network

analysis was undertaken by concentrating the evidence and to be able to draw con-

clusions on the best strategy for reversal of MetS; the extended network will expose

with more detail which could be the next step in research for prevention of T2DM and

CVD.

Goodness of fit measures are presented in Table 4.9, for all the models developed

for the extended network. Additive model results are described in section 4.4.1 and

Hierarchical models are described in section 4.4.2.

Table 4.9

Model Goodness of Fit Measures

Model SE DIC Residual Data

Deviance Points

Bayesian FE - 204.477 37.39 31

RE 0.65 195.457 31.56

Additive Main Effects 0.76 195.317 32.00 31

Two-way Interaction 0.53 195.685 32.58

Hierarchical Common 0.55 194.839 32.28 31

Different 0.49 195.611 33.11
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4.4.1 Additive Models

The Welton et al. [2008] method is also applied to the extended network. This method-

ological exercise can contrast the impact of the two different networks in the additive

model performance and its results. Figure 4.9 shows the list of all the possible interven-

tions from the extended network, to be assessed with additive models. The components

are combined exhaustively to obtain all possible combinations for the actual context.

With the Main effects model was possible to obtain estimates for all pair-wise compar-

isons drawn from 30 interventions; giving 18 more treatment options not researched in

any of the trials. Figure 4.9 indicates all of the treatment options compared to a control

group. The rest of the comparisons are presented in the Appendix A (7.4), as pair-wise

combinations provide 435 estimates. The appendix presents all estimates from addi-

tive models, the mean, the standard error, the 95% credible interval and the median are

also shown for each of the comparisons.

The sparsity of the network represents a big issue for the estimates and the results are

incongruent, as the odds ratio for the comparisons, with lack of direct evidence, are

large with very wide credible intervals. This situation produced inconclusive results

about any of the interventions or interactions under observation.

For the Two-way interaction model the results are more extreme and the possibility to

estimate treatments with more than 3 components is not allowed, even-thought there

are 22 treatment options, 10 more than Bayesian models. Result tables for these models

are attached in Appendix A (7.4).
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Figure 4.9: Interventions assessed with the Additive models

Given the lack of evidence and the huge proportion of possible estimates obtained from

these models, results are not sensible. Hierarchical models could present a better fit of

the data, with the same amount of estimates obtained for the Bayesian models.

4.4.2 Hierarchical Models

The extended network implies further challenges, given the issue related with similar

number of trials and treatment options; that was mentioned in section 4.2.1, where the
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concept of network of evidence is introduced. Hierarchical models are going to be

applied to the data available to obtain benefit of their structure and observe if there is

a better fit of the model to the data extracted. Hierarchical models organize the anal-

ysis with a joint probability model to estimate parameters that are correlated in some

way. Using a population distribution to structure some dependance into the parameters

avoids problems of overfitting, making better use of the data when estimating a higher

number of parameters than data points. (Gelman et al. [2004]).

In this case, Lifestyle and Pharmacological interventions have shown a particular cor-

relation in the context of the reversal of MetS, from previous analysis presented in

this chapter. Therefore, both interventions can represent a cluster of similar therapies

targeting the same effect (like diet and exercise for lifestyle and different types of phar-

maceutics). The evidence collected allows the analysis of the correlation between the

interventions. The second level of analysis in hierarchical models will estimate ef-

fect sizes for all possible pair-wise comparisons from the list of 12 available treatment

options (also used with classical and Bayesian models). This type of model analyse

the data in levels of aggregation. Therefore, lifestyle interventions were defined in the

same cluster and pharmacological interventions in another cluster, where each cluster

represent different treatments addressing lifestyle modifications and pharmacological

interventions. Also combination of both types of intervention is possible. This model

can compare the same number of combinations of interventions as in Bayesian models.

Equation 4.25 presents the Hierarchical model, where yij represents the vector of data

of each treatment option in each study. The data is estimating a parameter ψij with

variance s2ij and this parameter is determined by the average over the uncertainty in

ψij:
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yij ∼ N(ψij, s
2
ij)

ψij = Θi + σizij

Θi = µ+ τεi

zij ∼ N(0, 1)

εi ∼ N(0, 1)

(i = 1, . . . , I; j = 1, . . . , ni)

(4.25)

The distribution of the priors must assume symmetry, which is represented probabilis-

tically by exchangeability. Parameters are exchangeable in their joint distribution if

p(ψ1, ..., ψj) is invariant to permutations of the indexes (1, ..., j) (Gelman [2007]).

This feature of Hierarchical models makes possible the borrowing of strength between

clusters of interventions, providing estimates from a more stable model.

Two models were designed, one with a common precision and other with a different

precision for each class of interventions. The precision is defined as the inverse of the

variance 1/σ2 (Spiegelhalter et al. [2004]). Using a common precision assumes vari-
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ability is the same for all the parameter estimates and the different precision assumes

each parameter variance follows a distribution.

Results: Hierarchical model analysis

Hierarchical models allows levels of interventions, where each level cluster groups

of treatments that are similar. Results for Hierarchical models are presented in Ta-

ble 4.8 showing odds ratios are more stable than Bayesian models. Table 4.9 shows

the comparison of all goodness of fit measures for all the models used with the ex-

tended network. Looking at the residual deviance Bayesian random effects are better

than the rest, but looking at the DIC, hierarchical models with a common precision fit

better.

The inclusion of additive and hierarchical models into this analysis of the extended

network, gave a wider observation of the interactions drawn from the networks of ev-

idence. Hierarchical models provided a better fit of the data compared with the other

models. While additive models performed less efficient, because data available is not

enough for the amount of parameters, hierarchical models efficiently structured the

data, to obtain better estimates. Lifestyle interventions presented higher odds ratios,

compared to placebo interventions. Lifestyle interventions with a supervised exercise

component needs to be more investigated, as its estimation calculates a very high odds

ratio; but far from meaning a very strong effectiveness, it is showing lack of evidence

(there are only 2 trials with evidence for this specific treatment option Anderssen et al.

[2007]; Villareal et al. [2006]). In the network (Figure 4.5), this node shows a discon-

nection, therefore indirect evidence introduced nuisance in the estimation.
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Additionally, control interventions used for these studies, were defined by the absence

of intervention and did not provide any advice for lifestyle; for example Villareal et al.

[2006] control group participants were told not to make any changes in their lifestyle

habits and Anderssen et al. [2007] participants were instructed that after the 1-year

trial period, they would be offered dietary advice and supervised physical training.

This situation could be influencing more extreme differences contrasting the other in-

terventions. Even though, more research is needed in order to obtain real results about

this statement.

Lifestyle interventions with an exercise advice component instead of supervision, cal-

culated a moderate odds ratio of 4.23 (95% CrI [2.22; 7.81]) providing the best estimate

compared to control, after dietary treatments with an odds ratio of 6.11 (95% CrI [2.36;

13.41]).

It is important to contrast these results from the extended network as a complementary

analysis of the reduced network results. This discussion is developed in the next sec-

tion, together with conclusions drawn from the results of this extensive analysis.

4.5 Discussion & Limitations

This chapter proposed two networks of evidence and four different model structures.

Starting with classical methods, Bayesian, additive and hierarchical perspectives were

also applied accordingly to the needs of each network. This section outlines main

results from the analysis and its limitations. A discussion of the models used for the

analysis of each network is going to be contrasted with conclusions about the treatment

options presented in this chapter.
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According to all the evidence synthesized with the different models, lifestyle inter-

ventions were more effective than other interventions at reversing MetS. These results

were consistent between the two networks presented in the analysis. The reduced net-

work analysis had 4 possible therapies to contrast, and all of the interventions were

defined as clusters of specific therapies related with any of the 4 main intervention

groups. The extended network had 12 treatment options that were drawn from split-

ting the previous nodes, defined in the reduced network, to the specific therapies in

each cluster. The reduced network results provided good estimates of the effect sizes

in each clustered intervention, producing valuable evidence. The extended network is

basically widening the research question to all specific therapies available; therefore,

making it potentially possible to speculate which therapies are better in each of the

intervention clusters defined in the reduced network. Nonetheless, more evidence is

needed to be able to conclude on specifications of lifestyle interventions, individual-

ized dietary programs combined with either supervision or advice on physical activity

requirements.

It is important to highlight that the reduced network showed the best set of interven-

tions (lifestyle therapies), whereas extended network showed were more research is

needed. This is because of the specification of therapies in the nodes, making one

node from the reduced network to be separated into therapy nodes, that represent dif-

ferent treatment interventions applied in the included trials; therefore if the estimates

produced by the models are not reasonably sensible, it shows that the estimation has

became unstable due to lack of evidence. The extended network analysis can answer

the question of which of the components of the clustered interventions are making the

intervention groups more effective; however heterogeneity has been a considerable is-
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sue across the analysis, representing a source of uncertainty for the general results.

Trials have concentrated in particular features of lifestyle interventions (for example

it is cheaper to provide simple advice on increasing physical activity than provide a

personal trainer to manage the physical activities of the participants) and pharmaco-

logical interventions gather a range of different pharmacotherapies. Number of trials

was similar for the lifestyle and pharmaceutical interventions. If more research is pro-

duced on the different parts of the network that are particularly needed, to obtain better

specific estimates of the interventions assessed in this meta-analysis; then this analysis

would reach the ability to provide a clear cut intervention that effectively reverses a

MetS diagnosis.

Lack of studies presented a real challenge for the analysis and consequently compli-

cating conclusions related with these results. Complexity of the MetS definition still

requires a more profound analysis and the lack of individual patient data do not al-

low identification of which is the specific risk factor of the MetS criteria that is being

reversed. These statements represent the main limitations of this analysis.

Performance between classical and Bayesian methods was evidently better from Bayesian

models. Classical methods were confusing in the process of estimation of the specific

indirect possible estimates, specially when the treatment options increased. Lack of

RCTs assessing all the interventions limited the amount of possible pair-wise compar-

isons to be estimated with classical models. Bayesian models made more efficient use

of the data and had better model fit for both networks.

In the reduced network analysis, Bayesian and additive models presented similar re-

sults. All of the interventions performed better than the control groups, pharmacologi-

cal interventions were better than the combined intervention. There were no signifiant
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inconsistencies found across the evidence. Covariate models showed no significant

effect size influence from measurements of the quality of the trials and the length of

follow up. When adjustment based on the underlying risk of the population of each trial

was taken into account, models presented an important reduction of the between study

variation. There was an inverse effect found between the baseline risk and the odds

ratio for the interventions, if the baseline risk of the population increases the effect of

the intervention gets reduced. These results showed a large heterogeneity in the prob-

ability of reversal across studies, having an impact on the effect of interventions and

therefore, minimizing these effects. The control interventions were a range of general

lifestyle advices related with dietary and exercise habits, introducing different effects

and making the analysis more complex for comparability and interpretation. Villareal

et al. [2006] was the study with a real control group in the sense that the participants

were told to continue with their regular habits, the rest of the studies provided leaflets

or related advice on lifestyle changes.

In order to be able to have clear cut conclusions, the extended network was proposed

aiming to show specific relations with better effectiveness; however, network diagram

shows lack of direct evidence (adding weight to indirect evidence). Given the pres-

ence of high sparsity in the extended network, hierarchical models were included in

the analysis. This model fitted better for the extended network, but there is also high

uncertainty justified by the low direct evidence in this network. Additive models pro-

duced a very long list of treatment options and estimates were not sensible for drawing

conclusions from them.

The combined intervention (lifestyle and pharmacological) results are not providing

evidence to support the addition of both types of therapies. Several issues might be
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involved in this result including lack of RCTs observing this intervention. Combination

of these therapies could be having an important psychological effect influencing the

results. Combined treatments showed an important need to undertake more research,

as this was the type of therapy with less evidence. This situation makes a conclusion

unclear in deciding for a specific intervention to be applied in a population.

The estimates calculated with this level of evidence showed lifestyle interventions to

have better effectiveness in all the models presented. Hence, more research is needed

in order to have clearer conclusions about the specifications of therapies.

After all this analysis, the Bayesian MTC model (Equation 4.5) from the reduced

network was identified as the most appropriate, for its incorporation in the decision

Markov model (section 6.2.1). The model producing results on Table 4.2 adjusted

ORs by the follow up, in order to provide estimates by year. This model was the most

parsimonious for its integration in the Markov model and also showed better goodness

of fit to the data available. Lifestyle Interventions (OR 4.48, SE 1.605), Pharmacologi-

cal therapies (OR 2.05, SE 0.771) and both treatments together (OR 1.55, SE 1.313)).

Showing Lifestyle as the most effective intervention for the reversal of MetS.

This chapter represents an exhaustive analysis of the available evidence and will be an

important part of the main model. This analysis provided valuable information about

the possible strategies that can be more effective for the prevention of T2DM and

CVD. If a MetS condition has an elevated risk of developing T2DM and/or CVD and

a specific therapy is found more effective for the reversal, then probabilities of having

an impact in the prevention of these diseases could increase. Issues related with the

risk between MetS and other diseases is debated in Chapter 5 and assessment of the

impact in prevention is going to be addressed in Chapter 6.
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4.6 Summary of the Mixed Treatment Comparison Anal-

ysis

This chapter has synthezised the evidence available from the different therapies re-

searched by the RCTs. Two networks were proposed for the analysis of the data ex-

tracted from published studies. This analysis identified four different concepts to clus-

ter the treatments (control, lifestyle, pharmacological and both together). Complexity

of the data required a Mixed Treatment Comparison analysis. The reduced network

results from the different models applied (classical, Bayesian and additive) concluded

that lifestyle interventions had better effect size compared to the baseline group and

to pharmaceutics. Models developed for the extended network included hierarchical

methods to fit complex structures of the data available. These last models had a better

fit for the extended network and highlighted the evidence towards lifestyle interven-

tions to be more effective than others. Neverthless, more research is needed.

This analysis constitutes a source of evidence for the comprehensive decision model

to be populated in Chapter 6, where the code of the model selected will be part of

the main model code. Chapter 5 describes the systematic review undertaken for the

assessment of the risk associated with MetS and development of T2DM and CVD.

Chapter 7 summarizes the main results of this thesis.
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Chapter 5

Assessing the Risk of Developing

Cardiovascular Disease & Diabetes:

Cohort Systematic Review
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The systematic review presented in this chapter aims to update the assessment of the

risk between MetS and T2DM and/or CVD. This chapter is after the previous analysis,

of available treatments for the reversal of MetS, because at the start of the analysis

there were some systematic reviews providing important evidence of the risk. At the

last version of this thesis document, the review undertaken was already out of date.

This chapter was an up to date of the estimated risk in 2008. However, it is the best

available evidence for the estimate of the relative risk of MetS associated with T2DM

and CVD. Different meta-analyses were performed according to several characteristics

of the data extracted (e.g. type of cardiovascular events, type of statistical scale [hazard

ratio, odds ratio, relative ratio]).

People with Metabolic Syndrome (MetS) are at increased risk of developing T2DM

and CVD events (Ford [2005]; Gami et al. [2007]; Li et al. [2008]), but not all of

the cardiovascular end points have been assessed; these antecedents are going to be

described in Section 5.1. A comprehensive systematic review and meta-analysis were

undertaken to quantify the risk of CVD, Coronary Heart disease (CHD), Stroke, T2DM

and all-cause mortality in individuals with MetS.

There were identified, from EMBASE and Medline, 62 prospective cohort studies in

which MetS diagnosis was assessed at inception and individuals were followed up

between 1972 to 2004. Studies included had a mean sample size of 4,945 individuals

(Range: 154 to 60,754). Random effects meta-analysis models were used to calculate

a pooled Relative Risk (RR) for each outcome. Only adjusted estimates (minimal

adjustment by age and sex) using the National Cholesterol Education Program (NCEP)

definition for MetS were included, all references and study characteristics are shown in

Table 4.1 (a, b and c). Sensitivity analyses were performed to explore heterogeneity
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related to differences in scale of effect size (hazard ratios, odds ratios or relative risk)

and type of events (fatal, non-fatal or both together). Assessment of publication bias

was performed with previously evaluated methods (Moreno et al. [2009a]).

MetS diagnosis could be used as a tool to identify people at higher risk of developing

T2DM, CVD outcomes and/or Mortality. The design and evaluation of appropriate

screening strategies for individuals with MetS is of major public health importance for

prevention of chronic diseases like T2DM or CVD.
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Figure 5.1: Cohort Systematic Review in the Model diagram

Figure 5.1 highlights were this analysis fits in the overall model of the thesis. Evi-

dence identified after this analysis is going to feed the probabilities of transiting from

the MetS state to T2DM or CVD states. Red arrows in Figure 5.1 demonstrate the tran-
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sitions between states. Evidence for the transition from MetS to healthy was presented

in Chapter 4. Chapter 6 presents a model for the evaluation of the previously defined

interventions with additional economic and population data for a comprehensive as-

sessment (cost effectiveness analysis).

Reporting of this systematic review follows guidelines from Stroup et al. [2000]. This

chapter starts introducing the previous research preceding the production of this sys-

tematic review in Section 5.1. Data sources and search strategies of articles are de-

scribed in Section 5.2. Systematic review techniques and meta-analyses methods used

are going to be presented in Section 5.3. Then, Section 5.4 describes the results ob-

tained from this analysis. Discussion and limitations are developed in Section 5.5 and

the chapter closes with a summary in the last Section 5.6

5.1 Antecedents for a systematic review

Prevalence of CVD and T2DM are increasing worldwide (Murray and Lopez [1997];

Zimmet et al. [2001]). Epidemiological issues related with the assessment of the risk

associated with MetS and CVD and/or T2DM were introduced in Section 2.3. Re-

search surrounding the debate over the criteria for a MetS definition and its associa-

tion with CVD and T2DM has became relevant to design prevention strategies (Sat-

tar et al. [2008]). The National Cholesterol Education Program (NCEP), the World

Health Organization (WHO) and the International Diabetes Federation (IDF) (Yasein

et al. [2010]) had made an effort proposing a definition of MetS with differences on the

diagnostic cut points of the components and requirements to meet criteria, as shown

in Section 2.1 in Figure 2.1. Moreover, when investigation about these diseases is
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overwhelming there is still uncertainty of MetS criteria and its validity for prediction,

leading to a saturation of research without an agreement after several years of debate

and miss-guided application in clinical practice. These means that after a considerable

time researching about MetS concept and its latest and slow start of its application in

clinical trials, there is a need to analytically process all the evidence available. The

MetS criteria incorporates many components requiring different levels of research to

be able to conclude on its usefulness.

Association of MetS with T2DM has previously been reported extensively (Sattar et al.

[2008]) and there are previous estimations of the risk of MetS with CVD (Ford [2005];

Gami et al. [2007]; Li et al. [2008]). Two of them have considered WHO and NCEP

definitions and relative risk as a scale for the effect size (Ford [2005]; Gami et al.

[2007]). Li et al. [2008] only used stroke as outcome. And Sattar et al. [2008] used an

NCEP definition, hazard ratios for the effect sizes estimations, did not include death as

a possible outcome and only used 2 prospective cohorts for the analysis.

Ford [2005] estimated a relative risk of 1.27 (95% CI [0.90; 1.78]) for all-cause mor-

tality, 1.65 (95% CI [1.38; 1.99]) for CVD, and 2.99 (95% CI [1.96; 4.57]) for T2DM.

These estimates are pooled from the studies that used the NCEP definition for MetS.

Three studies were identified by Ford [2005] reporting all-cause mortality outcomes,

seven studies were identified reporting CVD outcomes and four studies were identified

using T2DM as outcome.

Gami et al. [2007] found 37 eligible studies from 43 cohorts. This meta-analysis did

not provide estimation of the risk for the outcome of T2DM. The reported relative risk

of cardiovascular events and death was 1.78 (95% CI [1.58; 2.00]). The association

was found to be stronger in women and relative risk was significantly higher for studies
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using factor analysis or the WHO definition (RR 2.68 and 2.06 compared to 1.67 for

NCEP).

However, the chronic complex nature of CVD and T2DM requires a review incorpo-

rating fatal and non-fatal as possible endpoints of the outcomes under observation.

Consideration of CVD as a composed definition from the possibility of the occurrence

of fatal and non-fatal events is handled by the available literature in diverse combina-

tions of the concepts. To obtain a more realistic quantification of the risk, this issue of

the CVD definition can be taken into account as part of the heterogeneity implicit in

the term. These issues related with the language used by the publications identified for

this analysis, are going to be described in more detail in the inclusion criteria section

5.2.2; where data sources will be introduced.

This cohort systematic review summarizes epidemiological evidence of the association

between MetS and the development of CVD, T2DM and consequently related mortal-

ity. The use of MetS as a prevention tool could enable targeted interventions in identi-

fied people with the syndrome. An extension of the analyses published with previews

calculations of the risk, will provide an up to date review and the possibility to quantify

the association with inherent features of the outcomes under observation. Synthesis of

evidence becomes crucial for decision making related to health care evaluation.

5.2 Data sources

A systematic review of prospective cohort studies in individuals with MetS was under-

taken. Relevant published articles were identified from databases including EMBASE

from 1980 and Medline from 1950 to February week 1, 2008.
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Guidelines for the identification of the studies were specified and used for the data ex-

traction; however, a protocol was not formally written. Extensive detail of the strategy

was discussed previous to the start of the review. Two independent reviewers per-

formed an evaluation of the study selection and data extraction. The search strategy

details and inclusion criteria used for the identification of the articles, is going to be

presented in the next sections (5.2.1 and 5.2.2).

5.2.1 Search strategy

The amount of cohort studies to be identified for this analysis has possibly substantially

increased since publication of previous meta-analysis. This makes the development of

a search strategy a crucial step for this review. The need to be comprehensive in the

selection expands the number of terms to be incorporated in the strategy.

Identification of articles was designed based on 3 common characteristics, that all the

cohort studies should have defined in the publication: (1) a baseline characteristic was

considered to identify cohorts that used people with MetS at cohort inception (number

of participants with a MetS diagnosis had to be greater than 0%); (2) the different terms

used for the outcomes of interest were also incorporated in the search strategy param-

eters and (3) the study design terms were used to identify articles by the methodology.

Figure 5.2 represents a diagram of the search strategy terms. Independent searches

were ran for each of these research concepts to obtain the universe of all the possible

articles that can apply for those terms. These independent searches were combined

and the intersection of all three sets determines the list of articles to check and select

studies for the meta-analyses.

141



Figure 5.2 shows the different terms used for the baseline of the articles. Metabolic

syndrome is the most common term used lately, initial research for MetS also used

terms like Insulin Resistance Syndrome, Egir and Reaven. These two last terms were

proposed by the person who introduced the term as expressed in Chapter 2. In the

Figure 5.2 a word ’or’ is highlighted in red under each of the independent concepts of

interest, means all the terms specified below were link with a relation of addition of

all the results. This creates a universe of possibilities for articles using those specific

terms. The same procedure is performed with the other terms used for the 3 com-

mon characteristics of the articles to be identified from the search strategy results. In

order to obtain a list of the articles with the three terms together, the intersection of

these three universes needs to be selected. The word ’and’ (also highlighted with red)

shows the implementation in the search strategy manager. Results were obtained for

both databases (EMBASE and Medline) using the online library resources available

at the University of Leicester. 5,345 articles were identified from the initial search

of relevant abstracts and titles, by merging the two databases results and cleaning the

duplicates.

Support for the implementation of the search strategy and the handling of references

using software like EndNotes, was obtained from the librarian of the Health Sciences

department of the University of Leicester.
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Figure 5.2: Literature search strategy

All possible medical names and statistical terminology were integrated to refine the

search strategy in titles, abstracts and keywords. No restrictions on language were ap-

plied. Validation of search strategy was designed through a filter to find references used

on previous published systematic reviews in MetS (Ford [2005]; Gami et al. [2007];

Li et al. [2008]). The articles used by the authors were located in the search strategy

resulting list, to ensure evidence already identified was covered and also aiming to

identified additional new research using those particular terms. If any article was not

found, then specific terms were added to expand the universe and be able to include

similar articles. When the search strategy terms were fully validated, a clean search

was obtained for the selection of the new articles. Description of the procedures fol-
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lowed for the selection of the cohort studies and identification of evidence for all of the

outcomes of interest is presented in the next section.

5.2.2 Inclusion criteria

Articles were selected according to verification of a prospective design, if the study as-

sessed the risk in relation to at least one of the possible outcomes (Coronary Heart De-

sease (CHD), Stroke, CVD and T2DM) and the cohort had a proportion (greater than

0%) of people with MetS. Studies with outcomes defined as mortality (fatal events) or

events (non-fatal, fatal/non-fatal combined or major cardiovascular events) in general

were investigated to assess the risk. The articles presented a particular heterogeneity

determined by the different terms used for CVD. For this review, the concepts of CHD

and stroke together define CVD outcomes (CHD + Stroke = CV D). The reporting

of evidence uses all these terms across the literature, nonetheless some articles reported

only one part of the outcome or presented the detailed part (CHD + Stroke), or di-

rectly presented a composed CVD. Articles did not consistently reported whether the

outcomes under study were defined as specific fatal events or otherwise, therefore the

’events’ word is referring to all possible types of events described above. Figure 5.3

shows the results of the procedures for the selection of articles and presents the number

of studies included by outcome and type of event specified in the article.

A research fellow from the department of Health Sciences performed an indepen-

dent study selection and estimate extraction. Then, results were compared and ver-

ified for any difference found; articles were consulted again for the differences ac-

counted.
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Figure 5.3: Article selection by outcome

5.3 Data extraction

A group of variables were extracted related with study-patient characteristics: age,

sex, present disease at inception, country, sample size and inception year of the co-

hort. These characteristics are presented in Table 5.1 (a, b and c). Hazard ratios,

relative risks and odds ratios were extracted together with confidence intervals, stan-

dard errors or any measure of uncertainty. Adjustment criteria applied to the estimates

was also collected. No attempt was made to identify unpublished studies or contact

authors.
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No specific scale was used for quality characteristics extraction, however discussion

about a quality assessment of the review and a detailed publication bias analysis is

going to be performed. An exhaustive analysis of the publication bias that could be

accounted in the review, can provide evidence of the statistical quality of the studies

included.

Treatment of estimate duplicates and statistical methods are specified in sections below

(5.3.1 and 5.3.2).

5.3.1 Multiple Studies

The prospective feature and the multiple outcomes analysis presented some situations

where exclusion criteria was needed to eliminate estimate duplicates. In such situa-

tions the latest estimate was considered, if studies presented estimates of cohorts with

repeated measures across time and publications corresponded to the same outcome.

Different outcomes at different times were treated as the same study with multiple

outcomes adding more information to the analysis. For published articles showing re-

sults from different cohort studies, estimates were considered as separate studies, if

information was available.

5.3.2 Statistical analyses

Synthesis of the evidence was undertaken with the use of meta-analysis models intro-

duced in Section 3.3. Subgroup analysis techniques were specified for three different

meta-analysis by outcome using three independent variables extracted (gender of the

cohort, scale of the risk measures and the reported type of events). Each outcome was
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assessed with adjustment by gender, where studies were arranged by the gender of the

cohort (if the article reported a male or female cohorts, or reported a mixed cohort or

estimates for both genders combined). A similar analysis was performed to observe the

different scale size effects and reported type of events. STATA (version 10.0) was used

to calculate pooled Relative Risks (RR) from hazard ratios, relative risks and odds ra-

tios with their correspondent 95% confidence intervals (CI). Estimates extracted were

adjusted by age and sex, but other risk factors such as smoking habits, levels of choles-

terol, treatments or lifestyle variables could be part of a minimal adjustment applied.

Only minimal levels of adjustment were used for the meta-analysis as variables used

presented considerable heterogeneity. Unadjusted estimates were excluded.

Meta-Analyses

Random-effect models were used to calculate pooled effect estimates for each out-

come. I-squared heterogeneity test (x2 test) was also calculated. This test assesses

whether observed differences in estimates obtained from the meta-analysis, are statis-

tically significant or are produced by random factors (Higgins and Thompson [2002]).

Separate meta-analysis for each event and fatal outcome were developed. Since one

study could present more than one outcome there is the need of developing different

analysis in order to avoid duplicates in the estimates for each possible end point.

Publication Bias

Small study effects was assessed with contour-enhanced funnel plots. Eggers regres-

sion was used to assess asymmetry of the funnel plots (Peters et al. [2006]). Larger
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studies with greater investment of time and money are more likely to be of high

methodological quality and published, even if their results are negative (Sterne et al.

[2001]). Funnel plots were explained in section 3.3.1. Trim & fill and variance

weighted regression-based methods (which are extensions of the Egger’s test) were

also considered for the evaluation of the potential impact of publication bias (Hedges

and Vevea [1996]; Moreno et al. [2009a,b]; Peters et al. [2006]). The trim and fill

method pools an estimate from a reduced data set obtained after the trim of the asym-

metric studies. Then, an adjusted pooled effect estimate is obtained after filling or

imputing the counterparts of the asymmetric studies (Hemingway et al. [2010]).

Sensitivity analysis

Given the nature of CVD, T2DM and the additional role of mortality, it is important to

explore sources of variability implicit in cohort studies and this systematic review. Ob-

servational studies accumulate a number of particularities related with the design mak-

ing necessary the extraction of variables to measure possible sources of uncertainty.

Sensitivity analysis was conducted to study heterogeneity shown in data extraction.

Odds ratios, hazard ratios and relative risk were included as different ways of assess-

ing the risk of developing any of the outcomes. There were different types of event

defined by the authors. Articles referring to the counting of ’events’ were not speci-

fied as fatal or non-fatal, risk estimations were extracted as general ”events”. Also, if

the article specified ”non-fatal” events and both types of events combined (”fatal/non

fatal”) were pooled together as ’events’. Meaning that the use of this counts of events,

cannot be interpreted as events independent of mortality. Influence plots were used to

assess the influence of individual studies on the pooled RR for each study.
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5.4 Data synthesis

Data synthesis includes only studies using NCEP definition for the baseline of the

cohort. This definition was chosen over WHO and IDF definitions, because it does not

include diagnosis of T2DM as part of the components or requirements to meet the MetS

criteria. Exposure of MetS was defined from the incidence of MetS in individuals after

follow up periods in the cohort studies. Studies that did not report a proportion of the

cohort with MetS, as baseline prevalence, were excluded. Cohorts did not consistently

reported the use of drug treatments, however this is an important issue for MetS, as

some of their components imply a drug treatment already defined for that specific

component (like hypertension).

The main results of this chapter are going to be described in following sections, starting

with the identification of articles in section 5.4.1. A qualitative summary of the studies

included in the meta-analyses is presented in section 5.4.2. Then, a summary of the

estimates obtained from the set of meta-analyses are described by outcome in section

5.4.3 and adjustment for publication bias results are shown in section 5.4.4.

5.4.1 Search results and study inclusion

5,345 articles (Figure 5.2) were identified after merging the results from both databases

used, 96% were not related with the assessment of the risk of metabolic syndrome

(Figure 5.3). 202 full articles were obtained after reviewing and classification of titles

and abstracts from the original set; 55 were excluded because their design was not

of a prospective cohort with at least some months of follow up or the article had no

data related to the risk of developing any of the outcomes. In total 147 articles were
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reviewed, but only 62 are included in this meta-analysis. One japanese study was

excluded, as it was the only one with no english abstract. There were other non-

english studies, one spanish, one german, two chinese and one extra japanese; all of

these had at least an english abstract were data could be obtained. A meeting with a

medical expert with knowledge of the german language was arranged to verify the data

extraction on the german article. Experts for other languages like chinese or japanese

were not identified for consultation.

When analysing frequencies by definition of MetS, there were 120 estimates from

62 selected articles using NCEP definition and having at least a minimal level of ad-

justment. Articles that presented estimates adjusted by specific baseline prevalences

(particular conditions present in different proportions within the cohort) were filtered

to use estimations with healthier people at baseline. For some cases, enough data was

extracted in order to obtain a combined estimate including all different populations of

the observed cohort. These procedures were undertaken to be able to use the estimates

of these articles and reduce the introduction of bias, given by the particular adjustments

of the data in only a few articles. Details about particular issues related with the design

or the estimate calculation were considered for the cleaning of the database. Articles

with more than one cohort were considered as separate estimates. The article report-

ing the latest publication and the highest follow up length was chosen when multiple

publications of the same cohort were accumulated. The data extraction was cleaned to

avoid estimates overlapping and to obtain good quality data.
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5.4.2 Qualitative summary

Cohort studies included were incepted from 1972 to 2004 (Table 5.1(a-b)). Mean

sample size of cohorts was around 4,945 individuals, with a minimum of 154 subjects

and 60,754 the largest. Participants were approximate 58 years old. Studies had a

minimum of 0.8 to 20 years of follow up (mean=7.8 years), 52% of men in average

(some cohorts chose 100% women or men) and prevalence of MetS was around 30%

in average (7.5% minimum and 68.4% maximum) at baseline. A 15% of the studies

did not report prevalence of outcomes under observation at baseline (Brevetti et al.

[2006]; Chen et al. [2006]; Larsson et al. [2005]; McNeill et al. [2006]; Rana et al.

[2005]; Ravaglia et al. [2006]; Stern et al. [2005]; Thomas et al. [2006]; Vaccarino et al.

[2008]). Exclusion of these studies was considered a loss of important evidence.

Authors used the age and the gender as common variables for adjustment, but major-

ity of estimates were adjusted by smoking habits, alcohol consumption and physical

activity. Cardiovascular risk factors were also used as variables to adjust the estimates

by cholesterol levels, ethnicity, social status, therapy intake. Others variables consid-

ered were related with the purpose of the study itself and the populational distribution.

Different combinations of these variables were used across all cohorts.

5.4.3 Summary estimates

Selected estimates were meta-analysed by outcome, type of event and gender Pooled

estimates showed a statistically significant higher risk for all outcomes, for those in-

dividuals with MetS compared to those without. Estimates by gender also showed an

increased risk in people with MetS. Figure 5.4 present pooled estimates (RR) for each
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outcome. Cohort estimates represent the number of studies included for that specific

pooled estimate.

For the articles that only reported events of the outcome and did not provide any fur-

ther information on the composition of these observed event, were classified for the

meta-analysis of events in general. But it is not possible to define this concept as an

addition of incidence and mortality, because this might not necessarily be the case for

all the studies. There could be some studies only observing incidence or only mortal-

ity, however it was not clear in the related articles. Estimates for general events tend

to be lower than mortality ones, which could hint a predominance of the incidence, as

evidence collected for these estimates. Nevertheless, this cannot be confirmed unless

the details of the composition of this category are disclosed.

All-cause mortality. There were 21 cohorts combined with a pooled RR of 1.50 (95%

CI: 1.29-1.76). In Figure 5.4, pooled RRs by gender of the cohort, are shown. There

is 1 cohort with women only, showing a RR of 2.50 (95% CI: 2.18-2.87) and 2 male

studies with a non-significant RR.

CVD. Studies included in this analysis were defined as general CVD or as addition

of CHD and stroke events by the authors. Summary estimates for CVD were pooled

from 15 estimates for mortality and 19 for events. In both cases magnitude of the RR

was significant 1.81 (1.45-2.35) for fatal events and 1.67 (1.47-1.89) for general CVD

events. There were 2 studies in women for mortality (RR 3.32, 95% CI: 2.70-4.09)

and 2 studies for general events (RR 2.61, 95% CI: 1.66-4.11). And there were other 2

studies presenting estimates for mortality in men (RR 2.07 95% CI: 1.17-3.66).

Coronary heart disease. Specific estimates for CHD only were 7 for mortality and

17 for events. The effect size was markedly higher for mortality with RR 2.26 (1.46-
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Figure 5.4: Relative risk for cardiovascular and diabetes outcomes and association with
metabolic syndrome, by gender of the cohort and type of events reported in the article
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3.51) compared to a RR of 1.71 (1.51-1.93) for general events. There were only 2

specific gender cohorts looking at fatal events with a RR of 4.50 (95% CI: 3.36-6.03)

for women and a RR of 3.40 (95% CI: 1.37-8.43) for men.

Stroke. These outcomes accumulated only 2 estimates for fatal events (RR 1.67, 95%

1.05-2.63) in contrast with 10 estimates for general events (RR 1.77, 95% 1.37-2.29).

And there was only 1 male specific cohort (RR 2.00, 95% 1.01-3.96).

T2DM. There were 10 estimates for diabetes with a RR of 4.40 (95% 3.35-5.78).

Sensitivity analysis observing the impact of different scales used presented no major

difference within each scale. Differences in events definitions were also explored,

showing no marked contrast between the 3 groups (events, non-fatal and fatal/non-

fatal together).

Corresponding forest plots for each of the meta-analysis performed in this chapter are

presented in Appendix B: from B1 to B8 are meta-analyses by gender of the cohorts,

from B9 to B16 are the meta-analyses by scale of the effect size and from B17 to B19

forests plots presented are by type of events. Figures from B20 to B26 are specific fun-

nel plots for each of the outcomes. In general, the forest plots show a higher relative

risk, in adults with MetS, associated with T2DM. CVD outcomes are more prevalent

across the studies selected for the review. Fatal strokes are the outcomes with less

published studies, therefore higher uncertainty in the risk estimation. The different

risk scales (Hazard, Odds and Risk ratios) are providing similar estimates of the risk.

Looking for differences across type of events (non-fatal, events and both, as the avail-

able linguistic classification of CVD events), estimates were relatively similar.

Heterogeneity tests obtained small p-values (p = 0.00) for CVD, all-cause mortality

and all event estimates in mixed gender cohorts. Relative risks derived from small

157



number of cohort estimates available (under 5 cohort estimates), tested non significant

for heterogeneity, as shown in Figure 5.4. This situation is expected from a collec-

tion of evidence observing outcomes with components implicit in their definition; for

example the issues related with CVD and its overlapping definition with CHD and

stroke, producing variability across publications. All-cause mortality presented vari-

ability in its definition. Scale differences did not showed significant differences within

the pooled estimation.

5.4.4 Publication Bias

The funnel plots presented visual asymmetry showing less small studies reporting

higher relative risk than larger cohorts for all-cause mortality, CVD outcomes, T2DM

and stroke events (fatal stroke was excluded from this analysis for having only 2 studies

involved). This means there could be small studies missing. If the funnel plot is sym-

metric, the small studies would reflect their counterparts, the large studies. Appendix

B20 presents an asymmetric funnel plot for articles reporting all-cause mortality out-

comes. This funnel shows majority of studies concentrating at the top right of the

figure and only one study very close to the base of the axis. The absence of more

studies towards the base of the funnel is evidence of publication bias. Small studies

tend to have less statistical power and negative results are more likely to be rejected

for publication (Sterne et al. [2001]). This situation is more extreme for T2DM; and

for the case of CHD events and mortality; funnel plots did not show important patterns

of small study asymmetry. Whereas for CVD events, funnel plot showed more asym-

metry than the funnel for CVD mortality outcomes. Stroke events also showed visual

evidence of publication bias. Funnel plots for each of the outcomes of this analysis are
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presented at the end of Appendix B (Figures from B20 to B26).

Egger�s test calculated significant asymmetry for all-cause mortality (p=0.006) and

fatal CVD (p=0.010); however test results for CVD events (p=0.745), fatal CHD

(p=0.886), CHD events (p=0.687), stroke events (p=0.748) and T2DM (p=0.393) were

uncertain of the effect of small studies. Egger tests the hypothesis of a significant effect

of the small studies creating the asymmetry in the funnel plot. In other words, whether

the asymmetry is important or not. Previous estimates were adjusted using Egger�s

regression coefficients. This adjustment reduced the estimate for all-cause mortality

to 1.15 (95% CI: 1.12-1.18) with a 23% reduction and CVD mortality to 1.24 (95%

CI: 1.18-1.31) with 33% reduction. Publication bias adjustment results are presented

in Table 5.2. Given the visual asymmetry, adjustment was estimated for all outcomes

to measure the possible impact, only CHD mortality did not required adjustment (esti-

mate marked in Table 5.2 with an asterisk). Relative risks remained statistically signif-

icant after publication bias adjustment. Discussion can be developed after such results.

This adjustment has been previously evaluated by Moreno et al. [2009a], where evi-

dence of the better performance of regression based adjustments was presented. Then

number of studies included in this analysis allows quality of the adjustment. The va-

lidity of this adjustment could be investigated by undertaking methods for the tracking

of small studies not yet published.

This evidence synthesis presents updated results of the estimates and shows important

results related with publication bias, as described in this section. Discussion of the

arguments produced by this research are going to be developed in Section 5.5.
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5.5 Discussion & Limitations

This results confirm a strong association between MetS and incident CVD and incident

T2DM, based on the findings of 59 prospective studies. This meta-analysis allowed a

wider observation of the association across different population world wide and estab-

lish a clearer epidemiology of these diseases.

Strongest association was found in coronary heart disease and specially in T2DM,

supporting previous findings (Sattar et al. [2008]). Statistical analysis was performed

assuming independence of the outcomes and its variants, but discussion relating them

all given their chronic feature is crucial for the understanding of the patterns presented.

Combination of the components of the MetS produce different scenarios that makes

necessary an analysis of the whole concept together, given the lack of individual patient
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data it is important to assume a correlated effect by the presence of any 3 or more risk

factors. Moreover, all of the pooled estimates showed a clear higher risk of developing

any of the outcomes under study.

Sensitivity analysis showed sources of heterogeneity were not strongly influential on

the results. Definition of the outcomes determined a complicated scenario when stud-

ies looked at a large number of endpoints for CVD, increasing events heterogeneity.

Most of the studies showing risk for general events did not give a specification of the

severity of these events. Therefore, the need of analyzing the effect of these differ-

ences across studies to help interpretation. Moreover, CVD constitutes a wide concept

also, incorporating coronary heart disease and stroke showing cohort studies provide

evidence related with interactions in populations (counfounding).

The number of studies included in the meta-analysis is sufficient to measure uncer-

tainty of any of the variables extracted from the cohorts. Hence this analysis could

be defined as a extended observational study. Heterogeneity issues were analyzed to

assure only qualified estimates of inclusion. Minimal levels of adjustment were con-

sidered as a quality indicator; however there is a lot of variability across all different

factors chosen for adjustment. Observational studies have different levels of unmea-

sured bias implicit, but these biases are linked to reality of interactions related with

MetS, thus a meta-analysis including a large number of this type of studies gives a

more realistic estimate of the risk (in consequence more accurate of the global situ-

ation), equivalent to a synthesis of 3 decades of observation of different populations.

This means quantity of estimates available can provide an overview of the review qual-

ity. The analysis of publication bias provides evidence of the implicit quality of each

study.
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Even though, publication bias is a real issue in these results, specially for all- cause

and CVD mortality. There is a markedly difference in the behavior of patterns between

CVD and CHD, observing the funnel plots in Appendix B. The increased proportion

of studies looking at CVD more than CHD, raises the question of why is CHD less

reported? Given the fact that CHD is a component of CVD, this situation could be

explained by the variability illustrated by the definition each author uses for the end-

points. Moreover, the majority of studies showed results for more than one outcome (in

different combinations); separating CHD and Stroke makes studies more specialized,

but at the end aiming to give an estimate of the risk for a composite CVD, leading more

observation over this outcome and concentrating higher risk in larger studies. Reduc-

tion after small study bias adjustment on the relative risks for events was a lot smaller

than for mortality outcomes, this could be explained by a wider inclusion of endpoints

in this classification.

Strengths of this analysis incorporate a comprehensive evaluation of all possible out-

comes related with the nature of these chronic diseases, allowing comparison of pat-

terns. Inclusion of a large number of cohorts to extract available evidence to produce

updated quantifications of the risk in various populations. A wide search strategy was

developed and validated aiming to identify the all cohort studies related with the pro-

posed research question. Previous meta-analysis did not explore risk for different com-

ponents of the outcomes (Ford [2005]; Gami et al. [2007]; Li et al. [2008]). Publication

bias was also not considered in the previous meta-analysis. This review reported im-

portant evidence of publication bias that was taken into account for the calculation of

the relative risks.

Studies without a clear definition of MetS were not included. Sensitivity analysis could
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be used to explore the impact of the studies without reported baseline prevalences of

the outcomes. However, in general studies observed outcomes according to its baseline

composition. The predictability of MetS compared to individual factors could not be

assessed with the data available, as individual patient data would be needed for that

analysis.

Large systematic reviews require the extraction of a range of variables to allow the

possibility of evaluating the heterogeneity given by each detail of prospective studies.

Measured variation across studies of different levels allow a better evaluation of the

quality of the review, by performing sensitivity analysis to explore ways of reducing

heterogeneity. Limitations of this analysis go over the bias underlying observation in

large cohort studies. Lack of data reported for baseline diseases in some cases made

uncertain the discrimination of studies.

Further work in analyzing more trends to cover the need of observational biases to

reduce uncertainty. Methods should expand to be able to evaluate integrated lifestyle

characteristics that determine the development of the MetS, making more efficient to

meta-analyse complex aggregated information and therefore obtaining more accurate

estimates compatible with reality. There is the need to understand about all impli-

cations of MetS with a more integral approach and design proper lifestyle strategies

to build a real possibility to reduce incident CVD, T2DM and therefore mortality

for related causes. New research should be directed to answer a question of cost-

effectiveness of clinical applied strategies in practice and quantification on reducing

prevalence.

There is more research needed for the evidence of publication bias. If there is a real

trend, then questions related with the causes of this bias should be addressed. Conflict
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of interest could be influencing the research of MetS. The use of drug treatment also

represents a big question for the cohorts; the lack of individual patient data limits

the possibility to measure the possible interactions in the application of MetS criteria

(depending on the combination of prevalent components).

Identification of people with MetS in the general population represent a starting point

for prevention of CVD and T2DM. It would be a great achievement to encourage peo-

ple to get more involved in their general health, by translating the information of these

issues and allowing for real transforming actions to reduce the disease progression.

If people are informed and they develop knowledge about how to decrease their risk,

can establish an effective probability of reducing these diseases incidence. Moreover,

as prevalence of CVD and T2DM has been increasing in recent years more research

is necessary in how to eradicate the roots of lifestyle conditions leading to a chain of

mortal events.

5.6 Summary of the Cohort Systematic Review

This chapter produced important evidence related with the risk of developing T2DM

and/or CVD in people with MetS. Estimates presented from the analysis are going

to be used for the calculation of transition probabilities of the relevant links of the

model.

After synthesis of evidence of the risk of progression in individuals with MetS and

assessment of potential therapies for its reversal (Chapter 4), a complete model can be

built in Chapter 6, integrating information about the costs and the utilities related with

the MetS context. The evidence of the risk and the identification of treatments, provide
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important tools for the evaluation of an intervention based on MetS criteria to have an

impact in the incidence of T2DM and CVD. A discussion of all the evidence presented

in the thesis will be in Chapter 7.
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Chapter 6

Modelling a population with Metabolic

Syndrome: Health economic

evaluation
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Once enough evidence have been synthesized, it can be integrated in a Markov model.

With the use of Bayesian methods, a Markov model is going to be developed for de-

cision making, regarding the use of MetS criteria in interventions targeting preven-

tion of T2DM and/or CVD. These interventions are assessed for their applicability to

health care services and their possible impact in society related to the introduction of

changes for the benefit of the population. This benefit should develop a knowledge

transfer for the population in terms of improvement of quality of life and therefore a

related increase in life expectancy. Two different meta-analyses have been performed,

a complete systematic review updating the quantification of the risk of MetS in the

progression to T2DM or CVD outcomes (Chapter 5); and a second review performed a

Mixed Treatment Comparisons analysis to assess available treatments for MetS rever-

sal (Chapter 4). These results are going to be incorporated in the Markov model, along

with the incidence rates from the UK population (incidence rates for all the state tran-

sitions progressing from MetS, see Table 6.1). The model incorporates a time horizon

of 55 years (1 year = 1 cycle), given the chronic nature of the problem under study. UK

costs will also be identified from literature and utilities estimated for broad populations

are going to be integrated with all the previous evidence identified for this thesis. Year

2009 is the base year for the costs included in the model. These inputs will describe

the disease patterns that the model follows.

Only evidence using NCEP definition for MetS was used in this chapter, as the aim

of the thesis includes prevention of T2DM; other definitions like WHO or IDF add

presence of the outcome at baseline. Inclusion of studies using these other terms would

provide an endogenous result, given the need of the research design to evaluate an

intervention that does not contain the outcome of interest. The assessment is aiming to
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demonstrate if the intervention can effectively prevent from progression to T2DM and

CVD. Undertaking a health economic evaluation for the MetS criteria, compiles the

evidence collected in this thesis and allows the analysis of a broad observation. There

is a need to incorporate economical factors to evaluate the development of a prevention

policy (strategy) using this criteria. Even when this research is not at the stage of the

application of a public policy, it is important to project the possible consequences of

the use of these model results; and provide a discussion from early research stages to

be able to improve the assessment of the different therapy options.

This chapter provides a detailed description of the data sources and its extraction to

support decisions related with MetS criteria. Challenges in structuring and developing

a Markov model in WinBUGS, the main outcomes of this evaluation and sensitivity

analysis are reported in the following sections.

Section 6.1 describes how the structure of the model was defined for this analysis. This

section shows how the model is going to be populated according to survival probabil-

ities in each state-transition. Then the calculation of transition probabilities using the

incidence rates (λ’s) is explained in section 6.2. Data sources for each state transition

is also specified. Section 6.4 presents the economic data collected and section 6.5 de-

scribes the utilities used for each state and its sources of information. Then, section

6.6 provides specifications for the model related with the starting proportions of in-

dividuals according to each state. Section 6.8 describes the results obtained from the

model. Section 6.9 provides the sensitivity analysis, comparing a base case with differ-

ent variations of the model. A discussion and a summary of the chapter are developed

in sections 6.10 and 6.11.
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6.1 Populating the Model: Specification of the model

structure

The main model developed in this thesis evaluates the impact of introducing MetS-

based interventions for prevention of T2DM and CVD, which are posterior states of

progression from MetS state (according to the evidence presented in Chapter 5). The

model has been built with different sources of evidence, that are described in section

6.2.

The MetS state is the starting node of the model developed, followed by a healthy

state for people who reverse the condition of MetS and states for T2DM and CVD.

Figure 6.1 shows all the relational links for each transition studied. Each λ represents

a transition rate in the model and its calculation is explained in section 6.2. Incidence

rates are required for each transition, adjusted for intervention and treatment effects to

complete the Markov model (evidence from Chapter 4).

In Figure 6.1, the first λ1 is represented with an orange arrow transiting from the MetS

state to the healthy state, in the model structure diagram. The MetS state is represented

with a purple pentagon to express the five risk factors involved in the MetS defini-

tion (obesity, high cholesterol, high tryglicerides, impaired glucose and hypertension).

The healthy state is a green circle with different options for the following transitions.

This transition will be using empirical evidence obtained in Chapter 4 to calculate a

transition probability for a UK population (Table 6.1 shows calculated values for all

transitions of the model). Details of the incorporation of this evidence is provided in

section 6.2.1. This is where the Markov simulation starts.
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Figure 6.1: Schematic diagram of the model rates and specific transitions
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λ2−4 are represented with purple arrows from MetS to T2DM and CVD states, these

two last states are drawn as red circles. Transition from MetS to death is showed with

a dotted purple arrow. Death is pictured as a blue rectangle, to direct transitions to

all-cause mortality and introduce aging to the model. Evidence for this transition was

produced in Chapter 5 and its incorporation into the model will be described in section

6.2.2.

λ5 shows the transition from the healthy state back to the MetS state and it is repre-

sented with a red triple line arrow in Figure 6.1. Details of the evidence for this specific

transition will be provided in section 6.2.3. Healthy transitions to T2DM, CVD and

all-cause mortality (λ6−8) are presented with dark green double arrows. Data identified

for this part of the model is described in section 6.2.4.

λ9 transition is drawn with a solid red arrow to the combined state of T2DM and CVD

state. The combined state is shown with a red oval in the diagram. Evidence feeding

this part of the model assumes CVD is produced as a complication from T2DM. λ10−12

are shown in the model diagram with dark red arrows transiting from T2DM and CVD

states to a death state. Evidence imputed in the model for these transitions is presented

in section 6.2.5.

Transition (λ13) is drawn in gray because it shows a possible option of the model to be

considered, but not included. Transiting from CVD to a combined state of T2DM and

CVD together is biologically possible, but evidence available was limited; therefore,

it was decided to exclude this transition from the model structure to avoid bias from

the available information, that was reporting CVD as a complication of T2DM. Issues

related with this transition assumption over the model and evidence for the transition

from CVD to the combined state (λ13 represented with a gray arrow) will be discussed
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in section 6.2.6.

Table 6.1 show all data used for the model, incidences, odds ratios, risk ratios and the

references of the source data. The estimated specific state incidences were identified

for MetS, T2DM and CVD for the UK population. These incidences are represented

with λi, and were used to obtain the transition probabilities. and parameters were

calculated for the sthocastic nodes. Evidence from the MTC (Chapter 4) and the risk

review (Chapter 5), is presented in the Table as the estimates for the broad population.

This estimates are inputing the odds ratios of MetS reversal and the increased relative

risk of developing T2DM and/or CVD from a MetS state.

The proposed model considers logical disease pathways related with MetS. If the

model provides cost-effective results for the use of MetS interventions and also show

a reduction of the incidence for T2DM and/or CVD (with a possible impact in life ex-

pectancy), then MetS criteria could be considered useful for the prevention of T2DM

and CVD. Screening strategies for the identification of people with MetS can be incor-

porated in the model using decision trees, but first it is necessary to evaluate whether

MetS could represent an effective tool to reduce the incidence of T2DM and CVD in

the UK population.

The Markov model uses transition rates to move a cohort of adults with a diagnosis

of MetS and age of 45 years old between states over a number of cycles. Each cycle

represents one year of simulation, therefore the model was defined with a time horizon

of 55 years. These transition rates were calculated using evidence available for each

specific state-transition presented in the model (Figure 6.1). The data was extracted

from studies that provided evidence for each state in different levels: incidences and

risks, treatment effects, costs (section 6.4) and utilities (section 6.5). Inputs related
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with the incidences were considered for the UK population and the odds and risks

ratios were synthesized using worldwide available evidence. This definition of the data

incorporated in the model is aiming to assess a decision making process for a British

population behavior of the incidences, using optimal estimates of the risk ratios.
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6.2 Converting Incidence rates to transition probabili-

ties

Incidence rates are needed to feed the transitions of the structure of the Markov model

proposed. This section describes the sources of the incidence rates obtained for each

transition integrated into the model.

In order to convert incidence rates (λ’s) to transition probabilities an exponential dis-

tribution was assumed due to the time homogeneous Markov nature of the model. The

stochastic processes implicit in the Markov chains implies that each state transition

probability, depend only on relevant information about the current time (Briggs et al.

[2006]; Gilks et al. [1996]). This memoryless assumption was introduced in section

3.1.7. Exponential distributions have a memoryless property. Survival analysis can be

used to obtain transition probabilities, the Survivor function represents the time people

remain in a particular state, S(t), is given by:

S(t) = e−λt (6.1)

and the event of interest is moving from one state to another state, assuming an ex-

ponential distribution parametrized by λi, therefore the one year transition probability,

P(1), is given by:

P (1) = 1− e−λ (6.2)

As P(1) is a probability and therefore bounded between 0 and 1, a Beta distribution is
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the best probability distribution to use in order to incorporate uncertainty. If a random

variable, x, has a Beta distribution, Be(α, β), with hyper-parameters α and β, then the

mean E(x) and variance V (x) are defined by:

E(x) = α/(α + β) (6.3)

V (x) = αβ/((α + β)2(α + β + 1)) (6.4)

Consequently if estimates of E(x) and V (x) can be obtained, then Equations 6.3 and

6.4 can be used in a ”Method of Moments”, which is a method of estimation of popu-

lation parameters like mean and variance (Collett [2003]), to obtain appropriate values

of α and β. Equation 6.2 produces an estimate of E(P), then using the delta method

(Cox [1974]) and Equation 6.2 an estimate of V(P) can be derived.

The variance of λ, V(λ), can itself be obtained from the variance of log(λ) using a

delta method. If λ is estimated as d/y, where d is the number of events and y is the

total person years at risk, then V (log(λ)) is 1/d. Thus, if λ = ez, with z = log(λ),

then:
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V (λ) =

�
dλ

dz

�2

× var(z)

= (ez)2 × var(z)

= λ2 × var(z)

=
λ2

d

(6.5)

Applying the delta method to 6.2 yields:

V (P ) =

�
dP

dλ

�2

× var(λ)

=
e−λ2 × λ2

d

=
λ2e−2λ

d

(6.6)

Once the hyperparameters (α and β) have been obtained for each state transition, then

the stochastic features of the model can be implemented to calculate probabilities on

how the simulation will transit between the states. Following sections will describe

details of calculation of the incidence rates (λs) for each state transition. Table 6.1

shows all the probabilities and its calculated parameters for all the state transitions of

the Markov model. CODE 1, 2 and 3 show the WinBUGS code for the definition of

each state transition in the model, with their respective calculated parameters for Beta

distributions.
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6.2.1 λ1: MetS transition to Healthy

The Mixed Treatment Comparison (MTC) performed in Chapter 4 was used to inform

the decision model for the transition from MetS to the healthy state. Figure 6.2 shows

the network chosen specifically for this analysis, each number represents the number of

studies for that specific comparison. The transition probability from MetS to healthy
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for the control group was estimated using a random effect meta-analysis on the log

hazard scale in order to produce an overall pooled log hazard estimate, which was then

transformed on to a probability scale to produce a one year transition probability of

0.136 (SE 0.022). Also odds ratios for each of the treatments studied (Lifestyle (OR

4.48, SE 1.605), Pharmacological (OR 2.05, SE 0.771) and both together (OR 1.55,

SE 1.313)). These ORs were estimated with a Bayesian Mixed Treatment Comparison

analysis in Chapter 4. The MTC model (Equation 4.5), incorporated in the Markov

model, was a random effects model adjusting by follow up, to obtain a year estimate.

Table 6.1 shows the transition probability using the incidence rate of λ1 and the Beta

parameters estimated for this relation between MetS to healthy state. The MetS state is

the start of the simulation. CODE 4 shows the WinBUGS code for the incorporation

of the MTC analysis into the model.
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Figure 6.2: Network of treatments for MetS
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6.2.2 λ2,3,4: MetS transition to T2DM, CVD and All-cause mortal-

ity

The systematic review undertaken in Chapter 5 provided evidence to the model for the

estimation of the transition probabilities related with the risk of developing T2DM,

CVD and All-cause mortality. Table 6.1 shows the UK population incidence rates

estimated for MetS to T2DM. The transition probability for λ2 (P (λ2) = 0.017) was

calculated from the multiplication of the transition probability of λ6 (corresponding

to the transition from a healthy state to T2DM), by the risk ratio estimated from the

cohort systematic review presented in Chapter 5. This is the risk of developing T2DM

given a MetS diagnosis (RR = 3.60).

For the transition from the state of MetS to the state of CVD, a transition probabil-

ity for P (λ3) is obtained by the multiplication of the transition probability of P (λ7)

estimated for the transition between healthy and CVD (P (λ7) = 0.018) and the risk

of developing CVD when a MetS diagnosis has been assessed positive (RR = 1.61);

therefore the transition probability is 0.018× 1.61 = 0.028.

The transition rates between MetS to All-cause mortality represented by λ4 were spec-

ified according to 5 age groups (45-54, 55-64, 65-74, 75-84, 85+). Incidence rates

increase with age, therefore it is necessary to adjust the transition rates by age accord-

ing to the number of cycles integrated in the model. λ4 integrates aging into the model.

The mortality rates for the healthy states to death (represented by λ8) for all age groups

were extracted from the Office of National Statistics of UK. These rates were multi-

plied by the pooled risk ratio of having a fatal event given a previous MetS diagnosis

(RR = 1.15), to obtained the range of transition probabilities needed for the different
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age groups in the transition from MetS to All-cause mortality.

Estimates from the systematic review introduced in Chapter 5 are presented for a broad

population in Table 6.1. Risk ratios were estimated for each MetS transition, to T2DM

(3.60 SE 1.051), to CVD (1.61 SE 1.016) and to a death state (1.15 SE 1.006). The

effect estimates of the risk ratio are assumed to follow a LogNormal distribution. Cred-

ible intervals and LogNormal parameter estimates to be used in this specific transition

are also presented in Table 6.1. Box 1 shows the WinBUGS code for the incorporation

of these probabilities into de model.

6.2.3 λ5: Healthy transition to MetS

The San Antonio Heart Study (Han et al. [2002]) was used to extract the incidence of

MetS. This study was designed as a cohort study with a follow up of 8 years. They

observed Mexican Americans and non-Hispanic whites with ages between 25 and 64

years. The incidence of MetS was computed by dividing the number of people who de-

veloped MetS (267) with the total number of people in the study (n = 1637) multiplied

by the number of years of follow-up (8 years). The longitudinal characteristic of this

identified study provides a reliable estimation of the incidence of MetS in a specific

population. The estimated incidence rate can be represented as follows:

λ5 = 267/(1637× 8)

= 0.02038790

= 0.02

(6.7)
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Therefore, the estimation of the standard error is given by:

SE = 1/ 2
√
267

= 0.06119901

= 0.06

(6.8)

Using the result from 6.7 a transition probability can be obtained as follows:

P (λ5) = 1− e−0.02

= 0.01980133

= 0.020

(6.9)

This study performed an observational description of a mixed population in the area

around the borders between USA and Mexico. It is important to remark the lack of

evidence from other regions of the world, this can be introducing high uncertainty

for the estimation of λ5. The CODE 1 introduces the implementation of this data in

the Stochastic decision model using WinBUGS. Table 6.1 shows the Beta parameters

calculated for this model.

6.2.4 λ6,7,8: Healthy transition to T2DM, CVD & Death

Three different sources were used for the transitions related with the healthy state. A

cohort study to estimate a 10 year risk of acquiring T2DM was identified (Hippisley-
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Cox et al. [2009]). This prospective cohort used data from 355 general practices in

England and Wales and also validated the score (QDScore). This score was a result of

the analysis of the factors observed in the cohort for their predictability related with

T2DM, (λ6 = Incidence = 4.7, SE = 0.004). This was a weighted average between

women age standardized rate 4.19 (4.09 to 4.29) and men 5.54 (5.43 to 5.66) per 1000

person years.

Estimates used for the CVD transition (λ7) were extracted from Shepherd et al. [1995]

(Incidence = 10.02, SE = 0.58). This estimate was calculated using the information

from the placebo groups of the study. This randomized control trial was designed to

assess the effectiveness of pravastatin in the reduction of the incidence risk of non fatal

myocardial infarction and death of coronary heart disease. The average follow up of

was 4.9 years. It is important to appoint that there are limitations with this data, as

it comes from a trial observing a group of 6595 men, with ages from 45 to 64 years

old. This observation may introduce some selection bias as trials can only observe

from voluntary patients that consciously participate in the study, however this is the

best available evidence and the control group provide evidence of a cohort observation

for an estimation of the incidence related with development of CVD from a healthy

state. Men participating in this trial did not have MetS at baseline, but presented hy-

percholesterolemia, as it is the target of the treatment with pravastatin.

For mortality estimates (λ8), statistics from the Department of Health Statistics for

England and Wales were used. Extracted from Gillies [2008], page 126. Incorporation

of these mortality rates apply the effect of aging in the model, as mortality rates were

extracted according to age groups defined. Details of data used for this transition can

be found in Table 6.1 and WinBUGS code is presented in Box 1.
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6.2.5 λ9,10,11,12: T2DM & CVD transitions to Death

The combined state of CVD and T2DM was considered as a complication of T2DM

(λ9), as the evidence to feed this transition from T2DM to CVD is extracted from

the United Kingdom Prospective Diabetes Study (UKPDS) (Clarke et al. [2004]).

This study was designed to estimate lifetime health outcomes of patients with T2DM

like progression of the disease to CVD. There were 3642 patients involved in this

study.

The Decode study (group on behalf of the European Diabetes Epidemiology Group

[1999]) was used for the transition between T2DM and mortality (λ10). This analy-

sis assessed baseline data from 13 prospective European cohort studies, for a total of

18,048 men and 7,316 women with a minimum of 30 years old. Mortality was evalu-

ated according to different diagnostic glucose categories.

Estimates calculated by Hamer and Stamatakis [2009] were used for the transition from

CVD to death (λ11). This study examined the mortality associated to different types

of physical activities (domestic, walking, sports) in patients with established CVD.

Scottish Health Surveys were used to extract the data for the analysis. 175 people died

during the follow up period (average of 5.6 years) from a total of 837 men and women

with a CVD diagnosis confirming their clinical condition.

The UKPDS (Clarke et al. [2004]) also was used for the estimates of the combined

state of T2DM and CVD to death (λ12). This is possible as the combined state does

not compile evidence related with a progression in the other direction (from a baseline

of CVD to T2DM), therefore CVD is still considered as a complication resulting from

the degenerative effect of T2DM. Table 6.1 presents the different values found for the
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data needed for the model and specifyied transitions. Box 1 shows the incorporation

of parameters calculated for this part of the model.

6.2.6 λ13: Transition from CVD to T2DM+CVD

Evidence for the transition from CVD state to the combined state T2DM and CVD

together was very difficult to identify. Figure 6.1 shows this relation in the model

with a gray arrow; because, even when there can be people developing CVD and then

T2DM, there is no enough research about this transition. Investigation have tended to

focus on the examination of the T2DM and its complications considering CVD, but

CVD research looking at the risk of developing T2DM as a posterior outcome of CVD

was not identified. Therefore, the potential bias on the available research concentrating

in one direction of the relation led the elimination of λ13 to be more realistic with the

interpretation of the results.

Efforts to find evidence for this transition were related with undertaking search strate-

gies for published literature, about studies observing a specific group individuals with

CVD; and not used as a complication from a cohort with T2DM as a baseline char-

acteristic. However, there is lack of published evidence observing individuals with

previous CVD diagnosed and using the development of T2DM as outcome.

After defining each transition of the model structure different information is required

to obtain a simulation close to the reality of this context. Following sections describe

the incorporation of data related with the intervention, costs and utilities to characterize

each health state of the model.

The model being fitted is a discrete-time discrete-state Markov model, for predicting
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costs and benefits over time. These models assume that in each cycle an individual is

in one of a number of states; besides the Markov property, however it depends on the

cycle and other progressive risk factors (Spiegelhalter and Best [2003]).

A discrete-time model is assumed:

t = 1, ..., T (6.10)

It is assumed that, within each cycle t a subject remains in one of K states, and that all

transitions occur at the start of each cycle. The probability distribution at the start of

the first cycle t = 1 is represented by a row vector π1. A transition matrix ∆t where

i, jth element is the probability of moving from state i to state j between cycle t − 1

and t. A marginal probability distribution πt during cycle t < 1, follows this relation

(Spiegelhalter and Best [2003]) for different transition matrices,

πt = πt−1∆st (6.11)

If the cost of spending a cycle in state k is ck, k = 1, ..., K, using appropriate year

prices, and there is a fixed cost input c0. Then the total cost assumed by each patient in

the population is, with discount costs (Spiegelhalter and Best [2003]),

E[C] = c0 +
T�

t=1

πtc�

(1 + δc)t−1
(6.12)

If utilities of being in each state are given by a row vector b, also discounted per

cent per cycle, the total expected QALYs for each patient is (Spiegelhalter and Best
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[2003]),

E[B] =
T�

t=1

πtb�

(1 + δb)t−1
(6.13)

6.3 Incorporating the intervention

As the principal aim of the model is to evaluate the effect of an intervention based

on MetS, the model needs specification of it. A three year intervention was defined

based on the study period of the Diabetes Prevention Program (Herman et al. [2003]).

This study evaluated intensive lifestyle and pharmacological therapies like metformin

as it is focused on T2DM. These results demonstrated lifestyle interventions to reduce

the incidence of T2DM by 58% when compared with the placebo intervention and the

metformin therapy reduced the incidence of T2DM by 31% over 2.8 years. The in-

tervention under observation with the model presented in this Chapter will also assess

prevention of CVD and all-cause mortality. Therefore, MetS was determined as the

optimal criteria to achieve this aim, given the cluster of risk factors related with both

T2DM and CVD. Chapter 4 was performed to evaluate the effectiveness of different

therapies to reverse a diagnosis of MetS, presenting the main assumption related with

the effective reversal of MetS to have an important impact in preventing individuals

to progress to T2DM, CVD and all-cause mortality. If this argument is realistic the

simulation performed by the model should show individuals spending more time in a

healthy state and significantly less time in states like T2DM or CVD. The Mixed Treat-

ment Comparison model developed in Chapter 4 without covariates was integrated into

the model as described in section 6.2.1. The costs integrated for the 3-year intervention
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are going to be describe in section 6.4.2.

6.4 Calculating the Costs

In order to specify a model that can also provide information contrasted economically,

the costs related with the health states previously defined are also incorporated into the

Markov simulation. Table 6.2 presents the costs per person year. A health economic

evaluation requires the identification of evidence related to the clinical factors involved

in the model. The costs of the interventions under study are also incorporated in the

model, to obtain an estimate of the total cost that would be involved in the implemen-

tation of a MetS-based intervention for the UK population. This additions to the model

allows the analysis of economic behaviors that are closely link to the clinical pattern

that is being represented by the model structure. These results will also provide infor-

mation to assess each possible intervention economically. This analysis is undertaken

from the perspective of health system and to have an impact in society.

This section specifies the sources of information related with the costs associated with

each health state represented in the model and the costs estimated for the lifestyle and

pharmacological interventions to be evaluated in the cost-effectiveness analysis.

6.4.1 Costs associated with the health states

Different sources were identified to extract the data needed to incorporate cost infor-

mation related with each state of the model. Since this analysis is aiming to provide a

solution strategy for UK, the identification of the costs is constrained to this population.
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Table 6.2 presents the data related with the costs in each state transition.

The cost of being in MetS state was estimated with data extracted from Smith et al.

[2010], which uses evidence from the Diabetes Prevention Program (Herman et al.

[2005]). Data related with costs of MetS using UK prices was difficult to identify,

Smith et al. [2010] undertook a cost-effectiveness analysis of a modified diabetes pre-

vention program intervention (for 3-year period) to reduce risk of T2DM and CVD

in Southwestern, Pennsylvania (2005-2007); making this study the best available ev-

idence for this type of cost estimates. The healthcare costs in USA are significantly

higher than in UK, therefore this estimate was adjusted to the UK prices in health-

care by obtaining drug and clinical attention costs specific to the UK. The information

needed for the MetS state cost has to be restricted to the individual cost of having

this diagnosis and it depends on the specific combination of risk factors that the in-

dividual is showing; however given the lack of individual patient data, the costs are

representing an average of the related factors. The average cost of treating a subject

with diagnosed MetS was calculated at £52,33 per person year, with a standard error

of £6,38. A Gamma distribution was used to incorporate the stochastic nodes related

with the cost in each state. Cost data are constrained to be non-negative and are based

of counts of resource use weighted by unit costs; count data is usually represented by

the Poisson distribution, however the gamma distribution is conjugate to the Poisson,

meaning that posterior parameter distributions for Poisson data are often characterized

by gamma distributions and it is constrained to the interval 0 to the positive infinity,

making gamma distribution appropriate to represent the uncertainty in cost parame-

ters, given is highly skewed characteristic (Briggs et al. [2006]). Calculated Gamma

parameters (α, β) specified to each health state are presented in Table 6.2.
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The costs of having a diagnosis of T2DM were extracted from the United Kingdom

Prospective Diabetes Study (Clarke et al. [2005]). This study assessed the impact of

complications deriving from T2DM on healthcare costs. The evidence identified for

the cost of T2DM was based in individuals who have not developed any complication,

providing the best reference for the Markov simulation.

For the costs associated with CVD, synthesis of evidence was crucial, given the vari-

ability presented by the definition of CVD. Different sources were identified in Picot

et al. [2009] and Ward et al. [2007], where evidence specific for CHD and Stroke

was obtained; however the best available information was identified from the UKPDS,

where costs are provided by specification of fatal and non-fatal myocardial infarction,

fatal and non-fatal stroke and heart failure. This data was combined and adjusted to

obtain specific costs of CVD and excluding the cost of T2DM, as CVD events are con-

sider diabetes-related complications. Gamma parameters were calculated after combi-

nation of specific CHD and Stroke event costs. In the case of the combined state T2DM

and CVD, the UKPDS information provided the best evidence; given the previous de-

termination of this state considering CVD as a T2DM complication. The health state

and death state were consider costless for healthcare.

Table 6.2 also presents evidence used for the utilities incorporated in the model, which

are going to be explain in the Section 6.5. CODE 5 presents the WinBUGS code for

the economic evaluation and its incorporation into the decision model. Inflation factors

for the appropriate number of years were used to adjust costs to 2009 prices.
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6.4.2 Costs of Lifestyle & Pharmacological Interventions

Costs of lifestyle interventions were based on the Diabetes Prevention Program (Her-

man et al. [2003, 2005]). This costs were converted to UK currency and adjusted to

2009 prices using economic inflation data. A log-normal distribution was used for

the stochastic integration of these evidence, given its skewness. The log-normal dis-

tribution enjoys similar characteristics of the gamma distribution for costs. Table 6.3

presents the costs values for the interventions in british sterling pounds. The cost for

the pharmacological therapies evaluated in this analysis, were extracted from the

British National Formulary of Great Britain and Association [2009] (BNF). The AD-

DITION study (Sandbaek et al. [2008]) was used to obtain estimates of proportions

of individuals with conditions needing drug treatments. This study is a randomized

control trial of the effectiveness of intensified multifactorial treatment on 5-year car-

diovascular morbidity and mortality rates in people with screen-detected T2DM in the

Netherlands, UK and Denmark. Therefore a binomial distribution was determined

for the stochastic incorporation into de Markov simulation of the costs related with

pharmacological therapies. The model uses this proportions to calculate costs for indi-

viduals with MetS needing this specific treatment. This was defined as not every single

subject with MetS needs a pharmacological therapy related with specific combinations

of the risk factors involved in MetS. Given MetS is defined as a cluster of risk factors,

different combinations of these factors can be identified in a group of individuals, with

a MetS diagnosis.

The costs extracted from the BNF are then multiplied by the proportions estimated to

obtain the cost of the pharmacological intervention during the 3-year period of the in-

tervention. Proportions were obtained for blood preassure, cholesterol and tryglicerides,
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and glucose interventions. Beta hyperparameters were specified for these proportions

(pi ∼ Beta[1, 1], where i is representing the three different proportions incorporated

in the model).
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CODE 6 shows the WinBUGS code used to integrate the costs of the lifestyle inter-

ventions and CODE 7 shows the code for the costs related with the pharmacological

interventions.
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6.5 Integrating the Utilities of the health states

A cost-effectiveness analysis involves incorporation of quality of life weights for each

of the health states under consideration in the Markov model. Integration of this evi-

dence will provide estimates related with improvement of quality of life obtained after

introducing the interventions of interest. In order to obtain quality adjusted life years as

principal outcomes from the model, as explained in section 3.1.8, a measure of utility

is needed. These outcomes will be supporting the understanding of British population

patterns for health decision making. Different sources were identified for the utility

estimates. Table 6.4 presents estimates used for the utilities in the Markov simula-

tion.

For the MetS state, the utility estimate was identified in the Diabetes Prevention Pro-

gram (Herman et al. [2005]), however this estimate (0.73) is based on a different pop-

ulation of interest. The ADDITION study (Sandbaek et al. [2008]) was used to obtain

an estimate for the UK population (0.825), based on the EQ-5D score (Dolan [1997]).

The T2DM state utility was extracted from the UK Prospective Diabetes Study (Clarke

et al. [2002]). Also the utilities for the combined state T2DM and CVD were extracted

from this study, as this state is considering CVD like a complication progressing from

T2DM. The utilities for CVD were extracted from the report of One Thousand Health-

Related Quality of Life Estimates (Tengs and Wallace [2000]). Studies for the estima-

tion of health utilities are few and this report provides utilities for CVD that were not

identified in other studies. This report combines evidence from 154 documents yield-

ing 1000 original quality of life weights, however is important to mention the difficulty

in the identification of quality evidence related with the utility estimates, making this

source the bet available evidence to be use for cost-effectiveness analysis. The lack of
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this evidence could be introducing bias to the model. Parameters from a Beta distribu-

tion were calculated for the stochastic integration of the utilities.

CODE 8 presents the WinBugs code incorporating utilities into the decision model

and calculation of model outcomes like the total cost and total utilities for each inter-

vention. This section of the code also presents an undiscounted calculation of QALYs;

meaning that this calculation does not take into account the population norms of aging

as it is a summary of the time spent in each state multiplied by its state utility. The

calculation of QALYs taking into account aging are presented in CODE 11 in Section

6.7.

Model outcomes are defined as a totalization of cost and utilities are calculated for

each of the interventions including control as a reference for comparison of the inter-

ventions. The ICER is calculated as the ratio of the difference in cost and the difference

of the utilities, this difference is contrasting the therapies of interest with the control

intervention. The model also calculates probabilities of each intervention to be cost-

effective at different thresholds of willingness to pay from the healthcare providers.

The range of the inversion needed to achieve significant effects were set from £100 to

£150,000. The threshold of interest for this analysis is £20,000, therefore the interven-

tions have to show important effectiveness when an investment of that level is imple-

mented or be effective for less in order to be consider by the UK authorities.
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6.6 Defining starting states

The model specification requires a starting proportion for each state of the model struc-

ture (starting states). A Dirichilet distribution can be used for the transition matrix.

Proportions for the states of MetS, T2DM and CVD were extracted from the ADDI-

TION study (Sandbaek et al. [2008]). The rest of the states (T2DM+CVD and Death)

were fixed at 0 for the start. These values were incorporated into the model as a multi-

nomial distribution with a vague Dirichilet distribution, to let the data dominate this

prior. However for the base case model developed, the entire cohort starts in MetS

state; the starting proportions using ADDITION data will be discussed as part of the

sensitivity analysis in Section 6.9. CODE 9 shows the WinBUGS code for the defini-

tion of starting states for the simulation of the model.

rij ∼ multinomial(πij, Ni) (6.14)

πij ∼ dirichilet(1, 1, 1) (6.15)

πi1 + πi2 + πi3 = 1 (6.16)

The dirichilet distribution is an extension of the beta distribution and can be used to

model more than two outcomes. In these case three proportions are going to be inte-

grated in the model for Healthy state, MetS state and T2DM state, in order to simulate

the different possibilities there are for people to enter in a process like the one aiming
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by this thesis. πij represent each of the proportions integrated in the Markov model

using the ADDITION data to be compared with the base case model, where there is

no distribution of these proportions. In CODE 9 is reflected as 1 for the second state

defined in the model (MetS), meaning the full cohort will start in MetS.
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6.7 Characterizing the population for simulation

For these Markov model, the proportion of people in each state at each yearly cycle of

the model (time), was calculated using the inprod command in WinBUGS. This com-

mand uses the transition rate between states and the estimated proportion of people to

be in each state at the previous time (previous cycle simulation). Each cycle represent

a year in time. CODE 10 shows the definition of the cycle proportions calculated.

Transition rates were varied depending on the year cycle of the model, to be able to

simulate population aging, from 45 year of age at the start of the model to 100 years of

age when the model reaches the 55th cycle. The sensibility analysis takes into account

other lengths (20 years) of the horizon defined for the base case in section 6.9 and also

different ages at entry (40 and 60 years).

The base case scenario assumes the aging effect is given by the state condition deter-

mined, therefore utilities by age were set at 1 and uses the utilities previously incor-

porated in each health state described in section 6.5. However, in order to incorporate

aging, population norms for the healthy state utilities were based on the EQ-5D scale

from the UKPDS (Clarke et al. [2004]). The ADDITION study collected quality of

life data using EQ-5D questionnaries, on screen detected population. This algorithm

was developed using a representative sample of the UK population and elicited direct

valuations for EuroQol health states using the time trade-off method (Dolan [1997];

Srinivasan [2011]). Model with defined health utilities are presented in the sensitivity

analysis in section 6.9.

As a result of modelling aging in the Markov model, it provides the ability of obtain-

ing estimation of QALYs and cost depending on age. Therefore, the code presents a
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calculation of these model outcomes taking into account the different QALY and cost

for each state according to the age. Incorporation of aging into the model is shown in

CODE 11. The complete code is presented in Appendix C.
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6.8 Results of a Base Case

A base case model was developed for a cohort simulation of 55 years. Individuals have

an initial age of 45 years old and 100% of them start at MetS state. The intervention

assessed was 3 years long. Results are based on a sample of 50,000 simulations, after a

’burn-in’ of 10,000 simulations. Table 6.5 shows the resulting values for total cost, total
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QALYs and estimation of the incremental cost-effectiveness ratio (ICER). Table 6.6

presents estimation of time (years) spent in each state by type of intervention. Figures

6.4 and 6.5 show the cost-effectiveness plane and the cost-effectiveness acceptability

curve respectively.

Lifestyle interventions average cost, per person, is £2,338 and it is higher than average

pharmacological cost per person (£2,179). These therapies implemented separately are

individually lower than the cost of both together £2,851. QALYs across interventions

were more favorable for lifestyle interventions (16.81); giving pharmacological inter-

ventions a total QALY of 16.43 and for both therapies combined the total QALY was

16.19, showing small advantage over control. Differences between the three types of

interventions under evaluation are minimal or might not be significant to this level of

information.

Table 6.6 presents the time spent in each health state (Healthy, MetS, T2DM, CVD,

T2DM plus CVD and Death) according to the different types of intervention (Lifestyle,

Pharmacological and Both). The table suggest that the highest effect can be identified

for MetS in the Lifestyle intervention if it is compared with a control group. After

being in a lifestyle intervention, people spent more time in Healthy state (18.45 years)
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Figure 6.3: Literature search strategy

and less time in MetS (3.23 years) compared with control, 13.18 years in Healthy state

and 6.89 years in MetS state. Credible intervals are wider for pharmacological and

both interventions (there is less information for these interventions than for lifestyle

interventions). The important result is the increment on the duration in healthy state

after the intervention in MetS state, showing an important effect from Lifestyle inter-

ventions; this difference is of 5 years of effect between the control group and lifestyle

interventions. The pharmacological and combined interventions are less effective from

lifestyle interventions, therefore it is expected that people in MetS will take longer time

in this state, as it will take more time for them to be able to reverse a MetS condition

if they are intervene with a less effective therapy.

The incremental costs were £132.3 per QALY gained for the lifestyle interventions,

£534.2 per QALY gained for pharmacological therapies and £672.4 per QALY gained

for the combined therapy compared to a control intervention. Showing the com-

bined therapy as the less cost-effective. Credible intervals for the incremental cost-

effectiveness ratios (ICER) show important uncertainty, see Table 6.5 for these results.

Figure 6.4 presents the cost-effectiveness plane for the simulation of the base case,
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Figure 6.4: Cost-effectiveness plane

Figure 6.5: Cost effectiveness aceptability curve
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showing a wide range of possibilities and important uncertainty in the model, meaning

there is more evidence needed. The cost-effectiveness plane plot the cost difference

in the vertical axis and the effect difference in the horizontal axis, therefore the slope

of a straight line from the origin provides the ICER. It is noticeable, that the range of

values for the simulation take an important area over the cost-effective range of the

plane, however the three therapies show values were the new therapies are dominated

by the control, showing considerable uncertainty for a decision making. A new therapy

is dominated if the cost is higher and less effective, also it is said a new treatment is

dominated if it is more costly and more effective, then a decision is required on the

threshold that the healthcare provider is willing to pay for additional units of benefit

Briggs et al. [2006]. A control group is necessary for reference of comparison. Accord-

ing to the ICERs, lifestyle and pharmacological are economically favorable in contrast

to the willingness to pay. Probabilities of cost-effectiveness at £20,000 are 0.7786

for lifestyle interventions and 0.6683 for pharmacological interventions, see Figure

6.5, where the probabilities of cost-effectiveness are plotted against the willingness

to pay threshold for each of the interventions. An interesting result of the base case

model is the achievement of a high cost-effective probability for a threshold of £1000,

giving lifestyle interventions a probability of 0.7951 and pharmacological therapies a

probability of 0.7124, reaching the highest point of the cost-effectiveness acceptability

curve. These results show favorable potential for these interventions.

The aim of the Markov model was to assess a MetS criteria based interventions and

observe whether the intervention had an effect on life expectancy or that people will

spend significant time in a healthy state, decreasing the proportion of people progress-

ing to T2DM or CVD. The risk of progression was evaluated in the Cohort Systematic
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review presented in Chapter 5 and this evidence is based on observational studies con-

trasting people with and without MetS to calculate the risk of developing T2DM or

CVD. Therefore, the research question of the Markov model relies on the assessment

of the cost-effectiveness of an intervention to prevent people of progression. Nonethe-

less, the death state is not significantly reduced for any of the interventions, meaning

they do not reach an effect in life expectancy; under this specific circumstances mod-

elled.

These results show a need of undertaking a sensitivity analysis to explore where the

differences, presented by the results of this base case analysis, are coming from. Next

section 6.9 presents a description summarizing sensitivity analysis results.

Many sociological variables are implicit in observational studies; this situation ex-

plodes the possibilities of interpretations of these results. As well, the inclusion of

costs into the model, sets an economical panorama for the population under study.

These issues should be contrasted in order to have a better interpretation and explore

the needs of the modelling. The model holds a wide range of information, therefore

is crucial to undertake a review of sociological factors that can be affecting the model

and its usefulness for decision making.

6.9 Sensitivity Analysis

This process of analysis was performed to explore heterogeneity produced by the dif-

ferences on the assumptions of the model. Tables 6.7 present the results of the sensitiv-

ity analysis. There were 12 different models defined for the comparison with the base

case scenario; these models were related with the healthy utilities, MetS utilities, MetS
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proportions, time horizon, lifestyle intervention, age at entry, healthy costs).

In terms of costs, all models presented little differences and showed the same numer-

ical pattern (Lifestyle interventions as the second most expensive after both types of

interventions combined). The utilities also present minimal differences between mod-

els. Calculation of the ICER was controversial as uncertainty of the model provides so

many options for its calculation resulting completely unstable even after high levels of

iterations of the model in WinBUGS. All of the models presented one of the treatments

with a dominated result reflected in the ICER estimation (marked in the table as (*)),

meaning that the new treatment under evaluation is not better than the control.

Table 6.7 presents the specifications of each of the models and the base case character-

istics. Table 6.7 a, b and c present the results for each of the variations of the Markov

model implemented for this analysis. Results of the average total cost and total utili-

ties are shown for each model. As the ICER presented important uncertainty, an ICER

calculated by the implementation in the Markov model is presented as ”MCMC ICER”

and a calculation of the ICER based on the results presented in the table was computed

for comparison.
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The tables also present the probability of the treatment of being cost-effective at a

threshold of £20,000 and a threshold of £1,000, as the cost-effectiveness acceptability

curve showed the maximum effectiveness at this second threshold.

When aging is incorporated in the model, as discounted health utility according to the

age group, lifestyle interventions show a dominated result. This could be explained as

the impact that the lifestyle intervention should have in order to overcome the effect of

age in the population. It is important to take into account that lifestyle changes could

be harder according to the age and the model is simulating people starting at 45 years

old that have already developed their lifestyle patterns, presenting a challenge for these

type of interventions. However, results are showing these interventions to be more ef-

fective for a long term effect. If the MetS utility is changed to 0.73, the model shows a

reduction of the utility for the control group compared with the base case, and the rest

of the utilities are slightly reduced. This model presented the combined intervention

to be dominated. The model taking into account proportions of individuals starting in

healthy, MetS and T2DM states using the ADDITION data, presented similar estimates

for the total cost and total utilities compared with the base case scenario, however the

ICER estimation becomes more uncertain as credible intervals are wider and proba-

bility of being cost-effective for a threshold of £20,000 decreases to 0.62 for lifestyle

interventions and the probability for a threshold of £1,000 is even lower (0.41). If time

horizon is reduced to 20 years, utilities and costs are reduced; but maintaining the same

pattern of the base case, showing lifestyle interventions the more appropriate decision.

ICER uncertainty also gets reduced in this version of the model, but also presenting

a both interventions to be dominated. Probabilities of lifestyle interventions of being

cost-effective for this horizon goes up to 0.92 for a threshold of £20,000.
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Related to the lifestyle intervention costs, a model considering an intervention of only

one year of duration was developed. Also a model with the same length for the lifestyle

intervention and a 25% reduction in the effect of the treatment was defined. For both

models the lifestyle intervention presented lower cost than control and better clinical

effects. The incremental cost was -£84 and -£106 per QALY gained with the lifestyle

interventions, respectively to each model. Lifestyle interventions showed a probability

of being cost-effective at £20,000 of 0.78 for the model considering only the one year

intervention and 0.80 for the model considering the 25% reduction in effect. These

probabilities are increased at a threshold of £1,000, to 0.88 and 0.89 respectively for

lifestyle interventions.

If different types of cohorts are introduced in the model by changing the age at the start

of the simulation for 50 and 60 years, results demonstrate the same cost and utility

pattern. However with the 60 year old cohort, costs get slightly reduced. Clinical

benefits are still showing lifestyle interventions to be more effective.

When health costs are incorporated in the model, an increment is reflected in the av-

erage total cost. Sensitivity analysis for the prior distribution of the Mixed Treatment

Comparison to a uniform bounded from 0 to 2 and a second model with a uniform

from 0 to 10, was also undertaken, but showing very similar results to the base case

scenario.
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6.10 Discussion & Limitations

For the assessment of interventions based on MetS criteria, a Markov model has been

described in this chapter. A health economic evaluation was undertaken to identify

a cost-effective treatment of MetS. Therefore, the assessment underlies the effective-

ness of treating a MetS population associated to the prevention of CVD and T2DM. If

individuals can be prevented at an early stage of developing hard outcomes like cardio-

vascular events or T2DM, could have an impact in the quality of life by incrementing

the probabilities of being healthy for longer time in their lives.

This model integrates different levels of information, cost-utility data was identified

to complete a comprehensive decision model. It can be extended to evaluate more

complex interventions or different modelling approaches. Sources of the model should

be updated and obtain the support of undertaking more systematic reviews of different

sources. There is the need of prioritizing where more evidence is needed to improve

the quality of the information and therefore to have an impact in the reduction of the

uncertainty of the model. Also, the model does not take into account the side effects

of the drugs involved in the interventions.

Sensitivity analysis was performed, in order to observe the behavior of the model

contrasting variations in the modelling. Given changes with regards to the model in-

puts/distributions and a number of methodological assumptions, the results showed

very little sensitivity. Modeling a full cohort in MetS state was contrasted with a

model were there are proportions defined for the start of the model in the states of

MetS, Healthy and T2DM. The impact of this change incremented the overall utili-

ties.

221



A replication of the model could be developed to assess a cohort without MetS, in or-

der to evaluate the contrast of using MetS criteria or other diagnostic strategies for the

identification of cost-effective population prevention strategies. However, this chapter

concentrated in developing a model for a MetS population. Given the debate surround-

ing the certainty of MetS as a recognized condition, this thesis stands in a conservative

position, describing an evaluation of the criteria of MetS itself. The interventions to

be identified as cost-effective are based on the evidence supporting the effectiveness

of interventions reversing MetS conditions and the incremented probability associated

with the development of CVD and T2DM for the proportion of the population with

signs of MetS.

The healthcare providers could identify people with MetS in order to allocate them in

a prevention program. The use of lifestyle and pharmacological combined intervention

was dominated in the incremental cost-effectiveness analysis, with the use of both of

them independently producing greater health gain at lower cost. Given the fact that the

lifestyle intervention and the pharmacological therapies are more effective indepen-

dently, the use of both presents correlation. The specification of the therapy is more

effective than the additional information given by the combined intervention. Besides,

there could be an psychological interaction effect in the individuals under both inter-

ventions, making them more erratic in the compliance of their treatment. However,

more evidence is needed for these assumptions. The evidence synthesis undertaken

in Chapter 4, presented lack of clinical trials concerning this specific combination of

treatment.

Pharmacological intervention was cost-effective compared to standard care (ICER £534

with a probability of 0.67 at a threshold value of £20K/QALY), and lifestyle inter-
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vention was cost-effective compared to pharmacological. When lifestyle is compared

to standard care, the model shows this intervention as the most cost-effective (ICER

£132 with a probability of 0.78 at a threshold value of £20K/QALY). However, the

base case scenario showed higher probabilities of being cost-effective for lifestyle and

pharmacological interventions at a lower threshold value (0.80 and 0.71 respectively at

a threshold value of £1K/QALY). The Markov model suggests a lifestyle change could

produce the best effect, resulting more cost-effective. It is important to further explore

individual patient data to understand the behavior of MetS in itself, as recommendation

of lifestyle interventions only could impact in a trivial mistake, as a proportion of the

population under observation requires pharmacological treatment, given the specific

combination of the risk factor present.

This analysis has made evident the needs of information at any level. Specifically,

the model is aiming a lifetime impact, therefore sources of information have to be

abundant in order to be able to inform all possible relations drawn in the diagram of

Figure 6.1.

This chapter described the process of evaluating a comprehensive decision model for

MetS. If a 3 year intervention is applied to health care system in the UK, according

with a Markov model implemented in WinBUGS. There is an improvement in quality

of life, however an effect in life expectancy was not observed to this level of informa-

tion.
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6.11 Summary of the Decision model for MetS inter-

ventions

This chapter summarizes the aim of this thesis. The evaluation of a possible inter-

vention based on the criteria of the MetS. Firstly, evidence related with the associated

risk of developing CVD and T2DM was inputed into the model (Chapter 5), then inte-

grating evidence on the probabilities of the reversal of a MetS diagnosis with different

treatments available (Chapter 4), plus data collected about the different costs related

with the health states and the intervention under evaluation. All this information was

compiled with a Markov model in order to measure if the proposal of an intervention

based on MetS criteria could be useful to prevent at least an increase on the incidences

of CVD or T2DM.

Lifestyle and pharmacological interventions independently are showing to be cost-

effective in reversing a MetS condition and therefore preventing people to progress to

T2DM and CVD. However, more evidence is needed to improve the model parameter

estimation.
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Chapter 7

Reviewing the Evidence & Discussion
of Possible Solutions: Conclusions
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This final chapter aims to present a summary of all the evidence collected for this

comprehensive analysis. Thereafter, the need to build a critical discussion around the

results of the cost-effectiveness analysis is exposed to drive main conclusions. Limita-

tions are going to be contrasted with the benefits of the analysis, in order to provide a

conclusion based on a wider discussion.

Section 7.1, describes the main ideas developed in each chapter. Brings all the specific

points of the analysis of this thesis. Section 7.2, develops a discussion using the find-

ings of this process of investigation. Section 7.3 aims to complement the limitations

discussion with the suggestion for possible further work deriving from the experience

and results of this thesis. Section 7.4, summarizes main findings of the thesis.

7.1 Summary of the thesis

The background described in Chapter 2, gave a position for the decision problem pre-

sented in this thesis, the possibility of using the MetS criteria as a diagnostic tool to

support a prevention strategy. Therefore, the need of exploring more about the behavior

of a possible application of the MetS criteria as an intervention, to support prevention

of chronic disease (Zimmet et al. [2003]). Previous evidence have found a relationship

between MetS criteria and T2DM plus CVD (Ford [2005]; Gami et al. [2007]; Li et al.

[2008]; Sattar et al. [2008]). There is also a discussion on the applicability of MetS

criteria. Gale affirms that this criteria has been developed with a market expansion in-

terest instead of producing a real clinical benefit. MetS criteria was mainly developed

to make research comparable (Gale [2005]; Kahn et al. [2005]).

This overview draws a question in whether the MetS criteria is an effective tool or not.
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Chapter 3, makes explicit the methodological strategy that was addressed in Chapter

2. There is the need to contribute to this discussion, because the environment is re-

quiring a solution (Murray and Lopez [1997]; Zimmet et al. [2001]). Therefore, it is

important to evaluate strategies based on MetS criteria and explore for more practical

and effective solutions, for preventions at a population level. Given the accumulated

publications related with MetS, T2DM and CVD, the model combines this evidence

to offer a good quality information for decision making. However, when solutions are

needed, uncertainty has to be reduced in more pragmatic ways. It is important to ac-

knowledge, the MetS concept is linked to different sociological aspects of life that are

not incorporated in the model. This could provide a closer overview of the concepts

under study, more immediate results, and consequently faster application of a learning

process. This thesis proposed the use of a comprehensive decision model to compile

evidence about the MetS and its relationship with T2DM and CVD. This thesis used

a Bayesian approach, because of the technical advantages for the implementation of

evidence synthesis models and integration of different types of models into a main

Markov model (using MCMC from WinBUGS).

Chapter 4, presented an intervention assessment. The use of MTC methods provided

a methodological solution for the type of evidence available. Given the need of eval-

uating treatments related with the reversal of MetS (as main outcome), the identified

studies compared only a few of the possible interventions to treat MetS. Therefore, the

need of implementing a method able to integrate direct and indirect evidence. The type

of treatments included, were related with lifestyle changes (diet and exercise), phar-

macological therapy (Metformin, Rimonabandt, Sibutramine, Statins and Fenofibrate)

or combination of both. The heterogeneity of the interventions was considerable; spe-
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cially in the control groups, were all studies did different interventions related with

lifestyle advice or complete placebo (no intervention). The main result of Chapter 4,

was the better performance from lifestyle interventions.

There is also, another important question taking place in Chapter 5. Is MetS related to

a higher risk of developing T2DM or CVD? Individuals with MetS were at higher risk

(compared to those without a positive diagnosis of MetS and after adjusting for age

and sex) of All-cause mortality with a age-sex-adjusted RR of 1.50 and 95% CI 1.29-

1.76, CVD mortality (RR 1.85, 95% CI 1.45-2.35), CHD mortality (RR 2.26, 95%

CI 1.46-3.51) and Stroke mortality (RR 1.67, 95% CI 1.05-2.63). Articles reporting

CVD events had similar results (RR 1.67, 95% CI 1.47-1.89), CHD events (RR 1.71,

95% CI 1.51-1.93), Stroke events (RR 1.77, 95% CI 1.37- 2.29) and DM with the

highest RR of 4.40 (95% CI 3.35-5.78). Metabolic Syndrome diagnosis can be used

as a tool to identify people at higher risk of developing T2DM, CVD outcomes and/or

Mortality.

Chapter 6, describes the process of evaluating a comprehensive decision model for

MetS in WinBUGS. If a 3 year intervention is applied to health care system in the UK,

according with a Markov model implemented in WinBUGS, there is an improvement

in quality of life. An effect on life expectancy was not observed. Lifestyle interven-

tions showed a better performance to the population level for MetS state. Lifestyle in-

terventions are more expensive than pharmacological, but both interventions together

are more expensive compared to each intervention. There is the need to inform with

more evidence each relation of the model, as uncertainty is evident in these results,

complicating a clear conclusion.

This last Chapter 7, is aiming to remind the concept of the main problem stated in
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the introduction (Chapter 1) and to expose a discussion about the main results of this

thesis.

7.2 Discussion & Limitations

The main outcome of this thesis is the approximation to a debate of, whether an inter-

vention based on MetS criteria would be able to prevent chronic disease like T2DM

and CVD, in a cost-effective way. The evidence available is not showing the benefit

of using MetS criteria to prevent chronic disease under study (T2DM and CVD). The

comprehensive approach of this thesis is requiring more evidence feeding this model,

to allow conclusive outcome. An over-parametrized model could lead to conclusions

that are not enough, in the sense of interpreting clear cut decisions. The model needs

to incorporate constant updates of the evidence to achieve quality on the estimations

produced. If a linear regression and a multilevel model are contrasted, in both cases the

coefficients are equally estimated but the variance-covariance matrix of the observa-

tions has more structure in the multilevel model than the regression. This phenomenon

could affect the robustness of the inference of the Markov model developed, therefore

more research is needed to provide an appropriate use of the model.

The increasing mortality of causes like T2DM and CVD represent a public health

problem (Murray and Lopez [1997]; Zimmet et al. [2001]). A public health problem

requires a public solution, but how this solution is proposed and developed, represent

a big issue for society. According to the results of the MTC, lifestyle interventions

had better performance, in contrast to the pharmacological therapies or even combina-

tion of both types of intervention. These results show a need of making changes to a
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lifestyle level. In other words, they have the possibility to be at the base of public pol-

icy discussions. Thereafter, when exploring the underlying risk of the studies included

in the meta-analysis, important heterogeneity is found between the characteristics of

the control interventions or the absence of one. The higher the probability of reversal in

the control group, lower the chances of the intervention to be effective. Showing that

the pharmacological interventions could be minimized by this effect. This situation

only increments the complexity of the discussion for public application, representing

just a component of a comprehensive perspective.

Lifestyle problems have lifestyle roots, therefore it is important to raise the question

of, how possible is to produce a lifestyle change? Which is the real access to a healthy

life? Why changing to a lifestyle level? In order that an intervention to be worth,

it should be able to produce changes to a long term basis. This is evident from the

results of the model, as a 3 year intervention did not have an impact in the long term

of the simulation. Then, it becomes a temporary solution that could have the potential

of incrementing economical related problems. The intervention proposed could be

creating undesired inequalities in the population, if not considered before in a accurate

perspective. Targeted interventions require support from structural changes that allow

the change in the population (Capewell and Graham [2010]).

If the intervention works only on the basis that people maintain these habits as long as

they are in the intervention, there is the possibility of making a contrast between the

previous habits and the habits produced by the intervention. Then, those habits will be

making people change and will be related to sources where people can access what is

needed, in order to be able to achieve a healthy state, that has been recommended. A

change then could be produced only on the type of consumption, if these changes are
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not carefully understood. That eventually will go back to the original habits. Which

it could be expected if there are economical differences on the type of consumption

needed for a healthy lifestyle. This situation will be producing inequalities related with

economical factors related with the effects of the intervention under study, that should

be explored in more detail in future research of MetS. In this sense, publication bias

seems to be relevant to consider, as evidence of reporting bias is present in the results

of the cohort systematic review undertaken to assess the risk of developing T2DM and

CVD in Chapter 5.

More statistical modeling needs to be performed not only in order to implement the

contribution of Sharp and Thompson [2000], but also in order to account the partial ob-

servability represented by the papers which are published in contrast to studies which

do not arrive to be accepted in the main stream journals. This last issue could be

modeled following the partial observability models as introduced by Manski [1995],

as and endogenous effect should be explore more in depth in the models developed,

producing interpretation challenges. The relation between the MetS criteria and the

risk of developing T2DM and CVD have been confirmed by the data collected for this

thesis. But publication bias is a major issue in these results and there are still problems

with the definition (described in Chapter 2). Is it really necessary to apply a crite-

ria, with serious doubts on its definition, to provide an epidemiological solution? The

presence of publication bias in these particular part of the evidence represents a risk

to the conclusions and recommendations to be made out of this work. However, this

synthesis represents a start in research related with MetS that integrates different types

of evidence in a Markov model.

The distribution of a population in the model according to their transitions from one
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state to the other, determined the approach of this thesis. There is a health problem

that needs to be explored for solutions to allow an improvement of quality of life

in people who are suffering these type of conditions, that deteriorates life in general

terms. Therefore, this thesis is taking a position to evaluate methods of identifying

high risk people at a population level, in such a way that their results allow, in future

research, to critically evaluate the pertinence of these models to the phenomenon under

study.

The evidence synthesized in this thesis showed a need of investigating more in the dif-

ferent possibilities that there could be to actually produce an observable change in the

health structure of the population under simulation. The creation of health policies re-

quires a type of research considering different factors related with the implementation

of the specific context of the policy. Questions like, who develops the policy? Which

institutions are related? Who undertakes the research?

It seems relevant to consider many aspects that could be excluded in the modelling.

An important issue is the fact that while an intervention is implementing, some people

with MetS could die during that time. Therefore, the type of meta-analysis models

developed in this thesis requires to be complemented with censored data models, as

those introduced by Cox. It is also important to consider the proportion of subjects in

the whole population who will never experience the event of interest. If this is correctly

taken into account, the censored data models need to be carefully chosen, if not bias

estimations could be pointed Oulhaj and San Martin [2012].

Such a wide observation aimed with this thesis, required different levels of analysis.

For example, the systematic review in Chapter 5, conforms just a step in the process

of synthesis. Observational studies provide many levels of information that increase
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heterogeneity (Egger et al. [2001]).

Improving the information level (in quality and quantity terms) of the model will in-

troduce more evidence to the structure proposed by the Markov model. This could

result in a more accurate explanation of the reality aimed by the model. An important

limitation is related with the lack of qualitative information related with having a MetS

diagnosis. Qualitative evidence could be contrasted to obtain estimated ranges of re-

action in the population under study. An effect can be observed after applying specific

interventions, therefore to answer the question of how convenient are these effects for

the population? is a crucial argument to be assessed and elaborated according to the

needs and real access of the population of interest.

Crucial evidence generated during this process of analysis is showing that a lifestyle

factor is an important determinant of the trend progressing to T2DM and CVD from

a previous MetS condition. The cohort simulated in the thesis is aged 45 years at

start. If a lifestyle pattern is involved, then the impact of the intervention has to be

very effective to produce a significant change. An intervention could be introduced

at an earlier age to assess the incremental on the probabilities of prevention, given

the lifestyle factors to be important determinants of health. Alternative clinical and

educational programs could be developed for these purposes.

7.3 Further Work

After the extensive process of the revision of this thesis many issues are raised for

future research. to be developed and provide results contrasting other alternatives to

the problem stated in this document. This methodological exercise represents aimed a
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description of the observable patterns of the available evidence. The first main meta-

analysis presented in Chapter 4, reaches interpretability for underlying risk variance of

the studies. However, the evidence from the control groups of the randomized control

trials, showed important heterogeneity in the definition of each intervention for the

control group.

More complex sensitivity analysis can be developed for validity assessment of the

model. From its fundaments to its possible extensions. Tornado diagrams can represent

a useful tool to support this analysis. Other analyses to be implemented are explained

in the following sections.

7.3.1 Reporting bias and outcome correlation

It is important to consider the correlation between the outcomes related with CVD

definitions. Reporting bias is a relevant issue, as outcome report does not follow a

standardized terminology. This situation shows an important variability from CVD

terms to specific CHD or Stroke events. The articles often did not clarified whether

type of reported event included fatal events or specific non-fatal events. This discus-

sion leads to a need of exploring the assumptions based on the evidence reported in

published studies. Results from Chapter 5 showed evidence of considerable publica-

tion bias.

To provide a closer examination of the correlation of the outcomes a multivariate meta-

analysis can be fitted to assess the impact of outcome reporting bias. A study using sim-

ulations for a bivariate fixed effects meta-analysis (Kirkham et al. [2012]). However,

for this analysis it is relevant to understand the behavior of the terminology of CVD as,
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CHD and Stroke are contained in the first term; therefore modelling of these outcomes

requires specification of physiological characteristics of the terminology defining the

outcomes. In order to understand more on which are the reasons of not reporting partic-

ular terms or either the research design should take these characteristics of the outcome

into account from the beginning.

A problem related to reporting bias is the problem of publication bias in the sense that

the meta-analyses reported in this thesis are based on published papers only, and not

consider the studies which were submitted but rejected. In other words, not all the stud-

ies produced around the world are published. In order to show, at a conceptual level,

which would be the impact of this partial observability phenomenon, let us denote by

Y a dependent variable, representing the outcomes of studies. Let X be a vector of

predictors which influence the outcome Y . Finally, let D be a binary random variable

such that D = 1 means that a study was published, and D = 0 otherwise. Using this

notation, we have the following decomposition:

P (Y |X) =P (Y |X,D = 1)P (D = 1|X)

+ P (Y |X,D = 0)P (D = 0|X)
(7.1)

where

• P (Y | X) denotes the distribution of Y given X . This model is differently

specified, but for this conceptual discussion it is not necessary to make precise a

specific model; the only issue to be considered is that the process generating Y

given X must be decomposed into two sub-processes described below.
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• P (Y | X,D = 1) represents the distribution of the outcome given the predictors

of a published study.

• P (Y | X,D = 0) represents the distribution of the outcome given the predictors

of a non published study.

• P (D = 1 | X) represents the distribution of a published study given the predic-

tors.

• P (D = 0 | X) represents the distribution of an unpublished study given the

predictors.

A first conclusion that can be derived from the above decomposition is the following:

suppose a meta-analysis claims that the potential publication bias has not an impact on

the results. Then it is implicitly assumed that

P (Y | X,D = 1) = P (Y | X,D = 0). (7.2)

It follows that P (Y | X,D = 1) = P (Y | X,D = 0) = P (Y | X); that is, it is

assumed that the publication is an exogenous variable with respect to the distribution

generating Y given X , which can be doubted. An exogenous variable means, for this

piece, that there is an external function of the risk estimates, that is shown by the

publication bias. Chapter 5, illustrated a pooled risk estimate with publication bias

evidence. Ideally, scientific information is not influenced by the editorials.

If the publication bias is taken into account, it is important to analyze which prob-

abilities of decomposition (7.1) can be identified (and therefore estimated) from the

data. In a first approach, it seems reasonable to assume that there not exists informa-

tion (or the information is not available) about the unpublished studies. In this case,
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P (Y | X,D = 1) is not identified and therefore it is an unknown. Denoting it as

γ. If moreover there is information about the numbers of unpublished studies, then

P (D = 0 | X) is identified and, therefore, estimable from the data. Consequently,

(7.1) is rewritten as

P (Y | X) = P (Y | X,D = 1)P (D = 1 | X) + γP (D = 0 | X). (7.3)

Since γ is not identifiable and, consequently, not estimable, the meta-analysis reporting

should consider the following inequalities:

P (Y | X,D = 1)P (D = 1 | X)

≤ P (Y | X) ≤

P (Y | X,D = 1)P (D = 1 | X) + P (D =| X).

(7.4)

The larger this interval is, the lager the impact of publication biased. In a future work,

this phenomenon will be carefully analyzed. It can be mention that Manski [1995] has

used this approach to evaluate the impact of public policies in education.

7.3.2 Epistemological issues

A systematic review of the literature related to MetS for a more ethnographic perspec-

tive, should be undertaken. Meaning to explore also the cultural behaviors associated

with an increased prevalence of risk factors. This contrast can provide qualitative in-

formation that will support the process of understanding results from observational
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studies. A comprehensive perspective should aim to access evidence from all the rele-

vant areas of knowledge that are involved in a population level problem.

It also becomes crucial to investigate the model according to observation of the eco-

nomical environment. Costs of implementation are not exclusively economical, also

sociological. Leading to a new research question of Which is the behavior of MetS

considering the socio-political and economical environment of the population under

simulation? and How should these costs and measures be implemented into a statisti-

cal model, for better understanding of the economical dynamics in the model?

7.3.3 Further development of the estimation process

Extensions of the model can be proposed, in order to explore more possibilities with

the information available and produced day by day. One option of the model would

be the incorporation of a state for people that are completely healthy and other branch

for people who have been previously diagnosed with MetS. Are people with at least

one previous diagnosis of MetS at higher risk than healthy individuals? The Markov

assumption can be relaxed by having different transitions to major states (CVD or

T2DM) depending on whether subjects had entered in a MetS state or come from a

completely healthy state. Another key extension of the model would be to incorporate

a screening model before subjects transit to appropriate states in the current model. An

example of how this model would be is presented in Gillies [2008].

To incorporate more analysis of the meta-analysis undertaken to feed the Markov

model. Comparison of different MetS criteria for the estimation of the risk of de-

veloping T2DM or CVD. Comparison of other types of criteria to identify people at
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high risk that could be contrasted with MetS for its evaluation. These comparisons lead

to a better understanding of the behavior of conditions derived from MetS. Disclosure

of individual patient data used in the different analyses, could provide evidence for

the investigation of the dynamics related with the composition of prevalences of the

different components of MetS in the participants of the study. The possible estimation

of probabilities related with the combinations of risk factors; this information would

help to know which of the combinations of the risk factors is more likely to progress

to T2DM or CVD. Expected value of information can be explored to investigate added

value of collecting more information (Briggs et al. [2006]).

Efforts could also be addressed for the incorporation of qualitative research of all the

emotional processes involved in these diseases. Contrasting qualitative information

with quantitative support can lead to a better understanding of the phenomenon under

observation. This thesis represents an important effort of compiling a wide range of

evidence, however it is only a start for the development of these models as they can be

cumulative. In other words, more evidence is produce, more updated the models will

be, leading to more accuracy of the estimations calculated.

Technology can provide an important tool to accomplish extraction of data needed.

Specialized software used in social sciences for literature reviews, could be applied for

the acceleration of the extracting process. However, this could lead to problems related

with validity and understanding a wide range of articles will require a full reading, for

discussion and interpretation of results. Therefore, information could be systemati-

cally organized to update models and increase their precision. This also would allow

the closer observations to important issues of the modelling and the understanding of

reality for a better decision making in health.
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7.4 Conclusions

Available evidence from different interventions highlighted the performance of Lifestyle

interventions for their impact in the effectiveness. However, less information was avail-

able for comparisons relating combination of lifestyle and pharmacological interven-

tions together, in relation with the amount of evidence for lifestyle interventions (more

direct comparisons available) (Chapter 4).

There is large amount of information relating the risk of MetS and CVD and T2DM.

There is the need to update it again and compile more evidence relating different spec-

ifications of the semantics of the definitions present in this thesis. Publication bias has

to be evaluated in more detail (Chapter 5).

Lifestyle interventions are more cost-effective than the rest of interventions. More

information is needed as there is a lot of uncertainty in the results of the MCMC sim-

ulation (Chapter 6). The main impact of the lifestyle interventions was detected while

being in MetS state. Since the intervention is based on MetS criteria the effect is re-

flected specifically for the people assessed with this criteria.

The debate introduced in Chapter 2 can not be ignore in the interpretation of results.

Decision making process should be able to consider and evaluate all possible options

and their impact. Population interventions are delicate matter when the health of a

broad population can be compromised. Discussion is crucial for the encourage of

better understanding of the main issues relating health problems.

There is the need of a psychological, sociological and political evaluation of these re-

sults. Lifestyle changes are showing to be the answer of the prevention of chronic

disease. But complexity of its application can be controversial. Therefore, method-
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ological challenges are present, to be able to incorporate different type of sources of

information required to have more understanding of the problems under observation.

Also development of technological tools to implement the data extraction from large

amounts of publications available. Chronic diseases have a specific challenge, when

they are related to a long period of time and can be present in a lifetime, incorporating

a source of increasing variability and uncertainty needing an examination. Implement-

ing the possibility of processing the data extraction with more efficiency in terms of

minimizing the time, can provide more updated information and providing a better sup-

port for decision making process. Economical intervention factors should be consider

more carefully, as not all economical classes have the same access to healthy lifestyles

(Capewell and Graham [2010]).

The complexity of the events modeled in this thesis, shows a need of the incorporation

of more research and consideration of other levels of information. In order to con-

trol related structures of the context of this model. The additional direct value to the

published literature is the synthesis of that evidence into a Markov model; that can be

updated and actively used for decision making related with future research. From the

methodological and biological characteristics of the model to its potential for clinical

practice applications. There is a need to build more agreement on the debate. What is

going to be more important: the effectiveness or the cost? What is exactly the effect

expected from this application?

Chapters 4, 5 and 6 can be published, however an update should be undertaken for the

systematic reviews. Chapter 4 presents an unpublished analysis with Mixed Treatment

Comparison methods and different models like, additive and hierarchical models were

compared methodologically. Chapter 5 was assumed as update of the previous sys-
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tematic reviews (Ford [2005]; Gami et al. [2007]; Li et al. [2008]). This review also

incorporates in the analysis a diverse classification of outcomes, in order to integrate

all evidence related with MetS. Chapter 6 is the model developed from the integration

of all the previous evidence synthesis with additional information about the utilities,

the cost and the incidences of MetS, T2DM and CVD.
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Appendix A

Additive models results from the extended network presented in Chapter 4.
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Main Effects

 mean  sd 2.50% median 97.50%

Control Diet 12.25 10.05 2.96 9.74 36.30

Eadv 0.38 0.39 0.06 0.29 1.22

Esup 3.86 3.98 0.75 2.96 12.21

AD 2.06 1.58 0.56 1.70 5.65

AO 1.22 1.24 0.23 0.96 3.76

Statin 1.38 1.76 0.23 1.01 4.71

Fenofibrate 2.84 13.23 0.10 1.12 13.87

D+Eadv 3.07 1.51 1.10 2.82 6.58

D+Esup 42.24 55.75 6.36 28.61 156.40

D+AD 25.87 49.15 3.34 16.72 101.50

D+AO 15.30 34.40 1.44 9.41 62.78

D+S 17.75 50.29 1.49 9.81 76.10

D+F 41.00 458.10 0.75 10.91 189.70

Eadv+AD 0.74 1.14 0.08 0.49 2.89

Eadv+AO 0.50 1.24 0.03 0.28 2.23

Eadv+S 0.53 1.32 0.03 0.29 2.36

Eadv+F 1.19 9.76 0.02 0.32 5.56

Esup+AD 8.28 19.95 0.88 5.03 33.77

Esup+AO 4.87 12.87 0.39 2.82 20.30

Esup+S 5.55 16.99 0.39 2.99 24.47

Esup+F 12.59 99.53 0.20 3.33 60.20

D+Eadv+AD 6.02 5.59 1.29 4.76 18.18

D+Eadv+AO 4.01 6.28 0.41 2.70 14.94

D+Eadv+S 4.28 7.52 0.47 2.84 16.25

D+Eadv+F 9.18 56.25 0.22 3.14 43.78

D+Esup+AD 92.95 621.30 7.62 49.08 403.50

D+Esup+AO 53.97 190.90 3.42 27.54 250.30

D+Esup+S 65.42 583.20 3.48 29.23 291.40

D+Esup+F 151.80 1877.00 1.85 32.53 685.80

Diet Eadv 0.07 0.24 0.00 0.03 0.36

Esup 0.55 1.65 0.04 0.30 2.42

AD 0.26 0.34 0.03 0.17 0.96

AO 0.15 0.24 0.01 0.10 0.59

Statin 0.17 0.33 0.01 0.10 0.71

Fenofibrate 0.36 2.38 0.01 0.11 1.82

D+Eadv 0.38 0.39 0.06 0.29 1.22

D+Esup 3.86 3.98 0.75 2.96 12.21

D+AD 2.06 1.58 0.56 1.70 5.65

D+AO 1.22 1.24 0.23 0.96 3.76

D+S 1.38 1.76 0.23 1.01 4.71

D+F 2.84 13.23 0.10 1.12 13.87

Eadv+AD 0.14 0.80 0.00 0.05 0.75

Eadv+AO 0.10 0.64 0.00 0.03 0.52

Eadv+S 0.10 0.63 0.00 0.03 0.55

Eadv+F 0.27 4.39 0.00 0.03 1.10

Esup+AD 1.25 8.59 0.05 0.51 5.92

Esup+AO 0.72 4.44 0.02 0.29 3.44

Esup+S 0.80 3.73 0.02 0.31 4.13

Esup+F 2.01 23.52 0.01 0.34 8.74

D+Eadv+AD 0.74 1.14 0.08 0.49 2.89

D+Eadv+AO 0.50 1.24 0.03 0.28 2.23



D+Eadv+S 0.53 1.32 0.03 0.29 2.36

D+Eadv+F 1.19 9.76 0.02 0.32 5.56

D+Esup+AD 8.28 19.95 0.88 5.03 33.77

D+Esup+AO 4.87 12.87 0.39 2.82 20.30

D+Esup+S 5.55 16.99 0.39 2.99 24.47

D+Esup+F 12.59 99.53 0.20 3.33 60.20

Eadv Esup 17.25 36.56 1.86 10.25 72.10

AD 11.29 30.19 0.89 5.97 51.37

AO 5.79 14.16 0.50 3.33 25.51

Statin 7.26 23.42 0.45 3.49 33.82

Fenofibrate 18.23 280.90 0.24 3.90 79.22

D+Eadv 12.25 10.05 2.96 9.74 36.30

D+Esup 320.10 1698.00 8.52 99.25 1765.00

D+AD 257.20 2371.00 3.56 58.42 1363.00

D+AO 128.10 1097.00 2.01 32.36 690.30

D+S 178.10 2113.00 1.90 34.35 856.10

D+F 642.10 22700.00 1.17 38.16 1707.00

Eadv+AD 2.06 1.58 0.56 1.70 5.65

Eadv+AO 1.22 1.24 0.23 0.96 3.76

Eadv+S 1.38 1.76 0.23 1.01 4.71

Eadv+F 2.84 13.23 0.10 1.12 13.87

Esup+AD 41.25 238.10 2.11 17.55 196.20

Esup+AO 20.73 77.92 1.16 9.86 97.23

Esup+S 27.74 354.40 1.06 10.39 128.40

Esup+F 72.16 1703.00 0.59 11.57 295.70

D+Eadv+AD 25.87 49.15 3.34 16.72 101.50

D+Eadv+AO 15.30 34.40 1.44 9.41 62.78

D+Eadv+S 17.75 50.29 1.49 9.81 76.10

D+Eadv+F 41.00 458.10 0.75 10.91 189.70

D+Esup+AD 826.80 10940.00 10.61 170.60 4288.00

D+Esup+AO 413.30 4994.00 5.97 95.23 2134.00

D+Esup+S 649.30 19040.00 5.65 101.10 2659.00

D+Esup+F 2283.00 113500.00 3.62 112.40 5185.00

Esup AD 0.90 1.42 0.10 0.58 3.60

AO 0.53 1.30 0.04 0.33 2.20

Statin 0.61 1.91 0.04 0.34 2.68

Fenofibrate 1.30 10.14 0.02 0.38 6.54

D+Eadv 1.34 1.76 0.17 0.95 4.72

D+Esup 12.25 10.05 2.96 9.74 36.30

D+AD 13.58 67.53 0.55 5.67 66.91

D+AO 8.01 47.01 0.25 3.17 40.25

D+S 9.80 91.09 0.27 3.35 47.14

D+F 27.25 790.60 0.15 3.68 98.40

Eadv+AD 0.28 0.52 0.02 0.17 1.23

Eadv+AO 0.19 0.59 0.01 0.09 0.88

Eadv+S 0.20 0.50 0.01 0.10 0.98

Eadv+F 0.43 3.36 0.00 0.11 2.16

Esup+AD 2.06 1.58 0.56 1.70 5.65

Esup+AO 1.22 1.24 0.23 0.96 3.76

Esup+S 1.38 1.76 0.23 1.01 4.71

Esup+F 2.84 13.23 0.10 1.12 13.87

D+Eadv+AD 2.65 4.80 0.24 1.61 10.98

D+Eadv+AO 1.77 5.71 0.09 0.91 8.01



D+Eadv+S 1.90 7.84 0.10 0.95 8.64

D+Eadv+F 4.22 38.91 0.05 1.06 20.20

D+Esup+AD 25.87 49.15 3.34 16.72 101.50

D+Esup+AO 15.30 34.40 1.44 9.41 62.78

D+Esup+S 17.75 50.29 1.49 9.81 76.10

D+Esup+F 41.00 458.10 0.75 10.91 189.70

AD AO 0.83 1.16 0.08 0.57 3.15

Statin 0.96 2.19 0.08 0.59 3.83

Fenofibrate 2.08 15.01 0.04 0.66 9.91

D+Eadv 2.22 2.70 0.31 1.65 7.39

D+Esup 29.05 55.46 2.44 16.84 126.70

D+AD 12.25 10.05 2.96 9.74 36.30

D+AO 10.46 28.07 0.59 5.51 47.36

D+S 12.62 62.60 0.61 5.78 57.45

D+F 32.19 575.70 0.33 6.40 133.70

Eadv+AD 0.38 0.39 0.06 0.29 1.22

Eadv+AO 0.36 1.31 0.01 0.16 1.76

Eadv+S 0.39 1.39 0.01 0.17 1.87

Eadv+F 0.91 9.51 0.01 0.19 4.10

Esup+AD 3.86 3.98 0.75 2.96 12.21

Esup+AO 3.30 12.13 0.16 1.67 15.15

Esup+S 3.85 14.60 0.16 1.75 18.11

Esup+F 9.25 97.54 0.09 1.95 41.97

D+Eadv+AD 3.07 1.51 1.10 2.82 6.58

D+Eadv+AO 2.89 6.87 0.15 1.59 12.91

D+Eadv+S 3.19 14.08 0.17 1.68 13.86

D+Eadv+F 7.42 92.67 0.09 1.85 32.94

D+Esup+AD 42.24 55.75 6.36 28.61 156.40

D+Esup+AO 36.62 139.30 1.45 16.17 181.10

D+Esup+S 45.78 423.20 1.46 17.24 218.70

D+Esup+F 113.40 1724.00 0.83 19.04 473.80

AO Statin 1.97 7.38 0.14 1.05 8.93

Fenofibrate 4.54 85.45 0.07 1.16 21.36

D+Eadv 3.94 4.29 0.65 2.91 13.54

D+Esup 59.62 165.90 3.99 30.04 286.10

D+AD 36.97 116.40 2.17 17.27 183.80

D+AO 12.25 10.05 2.96 9.74 36.30

D+S 26.68 189.00 1.03 10.22 127.50

D+F 75.20 2712.00 0.56 11.41 287.60

Eadv+AD 0.98 3.04 0.06 0.51 4.52

Eadv+AO 0.38 0.39 0.06 0.29 1.22

Eadv+S 0.71 4.28 0.02 0.30 3.43

Eadv+F 1.71 50.49 0.01 0.33 7.90

Esup+AD 12.03 65.21 0.60 5.24 57.23

Esup+AO 3.86 3.98 0.75 2.96 12.21

Esup+S 7.97 48.11 0.28 3.13 40.80

Esup+F 20.60 579.40 0.16 3.45 89.27

D+Eadv+AD 7.85 17.51 0.89 4.95 31.93

D+Eadv+AO 3.07 1.51 1.10 2.82 6.58

D+Eadv+S 5.75 26.23 0.36 2.94 25.47

D+Eadv+F 12.94 200.30 0.18 3.25 62.25

D+Esup+AD 131.30 595.60 5.37 51.22 669.40

D+Esup+AO 42.24 55.75 6.36 28.61 156.40



D+Esup+S 97.06 1015.00 2.51 30.39 475.10

D+Esup+F 287.50 11680.00 1.41 33.65 980.80

Statin Fenofibrate 2.29 9.87 0.12 1.11 10.26

D+Eadv 4.08 5.61 0.45 2.79 15.53

D+Esup 56.67 134.00 3.33 28.51 278.60

D+AD 36.69 202.80 1.87 16.49 176.70

D+AO 21.58 96.87 0.84 9.27 102.70

D+S 12.25 10.05 2.96 9.74 36.30

D+F 30.70 192.70 0.90 10.89 145.00

Eadv+AD 1.04 5.97 0.04 0.48 4.77

Eadv+AO 0.69 3.22 0.02 0.27 3.41

Eadv+S 0.38 0.39 0.06 0.29 1.22

Eadv+F 0.98 11.02 0.02 0.32 4.35

Esup+AD 12.02 135.30 0.50 5.00 56.09

Esup+AO 6.64 27.91 0.23 2.81 32.36

Esup+S 3.86 3.98 0.75 2.96 12.21

Esup+F 10.19 97.55 0.24 3.28 46.76

D+Eadv+AD 8.22 21.08 0.64 4.73 35.31

D+Eadv+AO 5.59 24.58 0.23 2.68 25.86

D+Eadv+S 3.07 1.51 1.10 2.82 6.58

D+Eadv+F 7.51 63.85 0.27 3.12 33.03

D+Esup+AD 138.00 3203.00 4.55 48.79 663.90

D+Esup+AO 76.05 759.70 2.02 27.22 390.30

D+Esup+S 42.24 55.75 6.36 28.61 156.40

D+Esup+F 113.30 1241.00 2.15 32.13 545.40

Fenofibrate D+Eadv 6.65 71.18 0.17 2.54 32.71

D+Esup 105.40 3043.00 1.44 25.98 511.50

D+AD 64.33 813.80 0.80 14.92 325.10

D+AO 40.09 750.90 0.37 8.42 187.30

D+S 24.83 312.80 0.72 8.84 120.20

D+F 12.25 10.05 2.96 9.74 36.30

Eadv+AD 1.69 14.21 0.02 0.44 8.82

Eadv+AO 1.24 24.47 0.01 0.25 5.89

Eadv+S 0.71 6.44 0.02 0.26 3.59

Eadv+F 0.38 0.39 0.06 0.29 1.22

Esup+AD 19.60 205.30 0.22 4.51 96.43

Esup+AO 11.33 137.40 0.10 2.56 56.52

Esup+S 7.40 42.41 0.20 2.66 36.83

Esup+F 3.86 3.98 0.75 2.96 12.21

D+Eadv+AD 13.46 75.48 0.26 4.30 69.55

D+Eadv+AO 9.68 121.10 0.10 2.44 47.00

D+Eadv+S 5.74 40.31 0.22 2.54 26.71

D+Eadv+F 3.07 1.51 1.10 2.82 6.58

D+Esup+AD 225.10 3693.00 2.07 44.32 1121.00

D+Esup+AO 139.20 3273.00 0.95 24.93 664.40

D+Esup+S 89.08 1417.00 1.83 25.97 436.50

D+Esup+F 42.24 55.75 6.36 28.61 156.40

D+Eadv D+Esup 17.25 36.56 1.86 10.25 72.10

D+AD 11.29 30.19 0.89 5.97 51.37

D+AO 5.79 14.16 0.50 3.33 25.51

D+S 7.26 23.42 0.45 3.49 33.82

D+F 18.23 280.90 0.24 3.90 79.22

Eadv+AD 0.26 0.34 0.03 0.17 0.96



Eadv+AO 0.15 0.24 0.01 0.10 0.59

Eadv+S 0.17 0.33 0.01 0.10 0.71

Eadv+F 0.36 2.38 0.01 0.11 1.82

Esup+AD 3.71 17.46 0.24 1.79 16.94

Esup+AO 1.87 5.84 0.13 1.01 8.15

Esup+S 2.30 9.73 0.12 1.06 10.79

Esup+F 5.31 51.83 0.06 1.18 25.63

D+Eadv+AD 2.06 1.58 0.56 1.70 5.65

D+Eadv+AO 1.22 1.24 0.23 0.96 3.76

D+Eadv+S 1.38 1.76 0.23 1.01 4.71

D+Eadv+F 2.84 13.23 0.10 1.12 13.87

D+Esup+AD 41.25 238.10 2.11 17.55 196.20

D+Esup+AO 20.73 77.92 1.16 9.86 97.23

D+Esup+S 27.74 354.40 1.06 10.39 128.40

D+Esup+F 72.16 1703.00 0.59 11.57 295.70

D+Esup D+AD 0.90 1.42 0.10 0.58 3.60

D+AO 0.53 1.30 0.04 0.33 2.20

D+S 0.61 1.91 0.04 0.34 2.68

D+F 1.30 10.14 0.02 0.38 6.54

Eadv+AD 0.05 0.22 0.00 0.02 0.25

Eadv+AO 0.03 0.20 0.00 0.01 0.17

Eadv+S 0.03 0.13 0.00 0.01 0.19

Eadv+F 0.07 0.82 0.00 0.01 0.37

Esup+AD 0.26 0.34 0.03 0.17 0.96

Esup+AO 0.15 0.24 0.01 0.10 0.59

Esup+S 0.17 0.33 0.01 0.10 0.71

Esup+F 0.36 2.38 0.01 0.11 1.82

D+Eadv+AD 0.28 0.52 0.02 0.17 1.23

D+Eadv+AO 0.19 0.59 0.01 0.09 0.88

D+Eadv+S 0.20 0.50 0.01 0.10 0.98

D+Eadv+F 0.43 3.36 0.00 0.11 2.16

D+Esup+AD 2.06 1.58 0.56 1.70 5.65

D+Esup+AO 1.22 1.24 0.23 0.96 3.76

D+Esup+S 1.38 1.76 0.23 1.01 4.71

D+Esup+F 2.84 13.23 0.10 1.12 13.87

D+AD D+AO 0.83 1.16 0.08 0.57 3.15

D+S 0.96 2.19 0.08 0.59 3.83

D+F 2.08 15.01 0.04 0.66 9.91

Eadv+AD 0.07 0.24 0.00 0.03 0.36

Eadv+AO 0.07 0.59 0.00 0.02 0.39

Eadv+S 0.08 0.64 0.00 0.02 0.41

Eadv+F 0.20 3.56 0.00 0.02 0.78

Esup+AD 0.55 1.65 0.04 0.30 2.42

Esup+AO 0.48 3.31 0.01 0.17 2.47

Esup+S 0.55 2.93 0.01 0.18 2.90

Esup+F 1.48 24.38 0.01 0.20 5.87

D+Eadv+AD 0.38 0.39 0.06 0.29 1.22

D+Eadv+AO 0.36 1.31 0.01 0.16 1.76

D+Eadv+S 0.39 1.39 0.01 0.17 1.87

D+Eadv+F 0.91 9.51 0.01 0.19 4.10

D+Esup+AD 3.86 3.98 0.75 2.96 12.21

D+Esup+AO 3.30 12.13 0.16 1.67 15.15

D+Esup+S 3.85 14.60 0.16 1.75 18.11



D+Esup+F 9.25 97.54 0.09 1.95 41.97

D+AO D+S 1.97 7.38 0.14 1.05 8.93

D+F 4.54 85.45 0.07 1.16 21.36

Eadv+AD 0.19 1.52 0.00 0.05 1.05

Eadv+AO 0.07 0.24 0.00 0.03 0.36

Eadv+S 0.15 3.23 0.00 0.03 0.72

Eadv+F 0.52 41.80 0.00 0.03 1.45

Esup+AD 1.95 29.14 0.04 0.54 9.09

Esup+AO 0.55 1.65 0.04 0.30 2.42

Esup+S 1.29 33.05 0.02 0.32 6.28

Esup+F 4.71 446.80 0.01 0.35 12.71

D+Eadv+AD 0.98 3.04 0.06 0.51 4.52

D+Eadv+AO 0.38 0.39 0.06 0.29 1.22

D+Eadv+S 0.71 4.28 0.02 0.30 3.43

D+Eadv+F 1.71 50.49 0.01 0.33 7.90

D+Esup+AD 12.03 65.21 0.60 5.24 57.23

D+Esup+AO 3.86 3.98 0.75 2.96 12.21

D+Esup+S 7.97 48.11 0.28 3.13 40.80

D+Esup+F 20.60 579.40 0.16 3.45 89.27

D+S D+F 2.29 9.87 0.12 1.11 10.26

Eadv+AD 0.24 8.05 0.00 0.05 1.08

Eadv+AO 0.14 1.46 0.00 0.03 0.71

Eadv+S 0.07 0.24 0.00 0.03 0.36

Eadv+F 0.23 5.96 0.00 0.03 0.92

Esup+AD 2.58 192.60 0.03 0.51 8.68

Esup+AO 1.03 12.86 0.01 0.29 5.04

Esup+S 0.55 1.65 0.04 0.30 2.42

Esup+F 1.82 52.74 0.02 0.34 7.00

D+Eadv+AD 1.04 5.97 0.04 0.48 4.77

D+Eadv+AO 0.69 3.22 0.02 0.27 3.41

D+Eadv+S 0.38 0.39 0.06 0.29 1.22

D+Eadv+F 0.98 11.02 0.02 0.32 4.35

D+Esup+AD 12.02 135.30 0.50 5.00 56.09

D+Esup+AO 6.64 27.91 0.23 2.81 32.36

D+Esup+S 3.86 3.98 0.75 2.96 12.21

D+Esup+F 10.19 97.55 0.24 3.28 46.76

D+F Eadv+AD 0.37 6.66 0.00 0.04 1.71

Eadv+AO 0.27 7.49 0.00 0.03 1.10

Eadv+S 0.14 1.99 0.00 0.03 0.73

Eadv+F 0.07 0.24 0.00 0.03 0.36

Esup+AD 3.51 103.40 0.01 0.46 14.14

Esup+AO 1.85 50.01 0.01 0.26 8.05

Esup+S 1.11 10.19 0.01 0.27 5.51

Esup+F 0.55 1.65 0.04 0.30 2.42

D+Eadv+AD 1.69 14.21 0.02 0.44 8.82

D+Eadv+AO 1.24 24.47 0.01 0.25 5.89

D+Eadv+S 0.71 6.44 0.02 0.26 3.59

D+Eadv+F 0.38 0.39 0.06 0.29 1.22

D+Esup+AD 19.60 205.30 0.22 4.51 96.43

D+Esup+AO 11.33 137.40 0.10 2.56 56.52

D+Esup+S 7.40 42.41 0.20 2.66 36.83

D+Esup+F 3.86 3.98 0.75 2.96 12.21

Eadv+AD Eadv+AO 0.83 1.16 0.08 0.57 3.15



Eadv+S 0.96 2.19 0.08 0.59 3.83

Eadv+F 2.08 15.01 0.04 0.66 9.91

Esup+AD 17.25 36.56 1.86 10.25 72.10

Esup+AO 13.25 52.10 0.54 5.79 65.94

Esup+S 18.24 244.60 0.50 6.17 85.46

Esup+F 47.58 945.80 0.29 6.83 186.10

D+Eadv+AD 12.25 10.05 2.96 9.74 36.30

D+Eadv+AO 10.46 28.07 0.59 5.51 47.36

D+Eadv+S 12.62 62.60 0.61 5.78 57.45

D+Eadv+F 32.19 575.70 0.33 6.40 133.70

D+Esup+AD 320.10 1698.00 8.52 99.25 1765.00

D+Esup+AO 262.70 2885.00 2.93 55.76 1362.00

D+Esup+S 435.20 13380.00 2.71 59.75 1690.00

D+Esup+F 1490.00 62190.00 1.78 65.91 3161.00

Eadv+AO Eadv+S 1.97 7.38 0.14 1.05 8.93

Eadv+F 4.54 85.45 0.07 1.16 21.36

Esup+AD 69.38 998.70 1.40 18.31 348.70

Esup+AO 17.25 36.56 1.86 10.25 72.10

Esup+S 48.11 938.50 0.73 10.81 217.60

Esup+F 167.00 8977.00 0.43 11.97 449.20

D+Eadv+AD 36.97 116.40 2.17 17.27 183.80

D+Eadv+AO 12.25 10.05 2.96 9.74 36.30

D+Eadv+S 26.68 189.00 1.03 10.22 127.50

D+Eadv+F 75.20 2712.00 0.56 11.41 287.60

D+Esup+AD 1444.00 35410.00 7.81 179.90 6630.00

D+Esup+AO 320.10 1698.00 8.52 99.25 1765.00

D+Esup+S 1254.00 44650.00 4.07 105.30 4135.00

D+Esup+F 6656.00 557900.00 2.74 117.70 7488.00

Eadv+S Eadv+F 2.29 9.87 0.12 1.11 10.26

Esup+AD 58.74 656.60 1.32 17.37 300.20

Esup+AO 29.01 231.80 0.70 9.75 150.00

Esup+S 17.25 36.56 1.86 10.25 72.10

Esup+F 50.55 997.10 0.71 11.35 230.50

D+Eadv+AD 36.69 202.80 1.87 16.49 176.70

D+Eadv+AO 21.58 96.87 0.84 9.27 102.70

D+Eadv+S 12.25 10.05 2.96 9.74 36.30

D+Eadv+F 30.70 192.70 0.90 10.89 145.00

D+Esup+AD 1283.00 46570.00 7.19 170.10 5771.00

D+Esup+AO 621.80 15600.00 4.00 93.94 2907.00

D+Esup+S 320.10 1698.00 8.52 99.25 1765.00

D+Esup+F 1322.00 69540.00 4.09 110.80 4332.00

Eadv+F Esup+AD 105.80 1695.00 0.63 15.71 501.10

Esup+AO 53.21 759.50 0.33 8.89 253.80

Esup+S 35.87 314.80 0.59 9.29 188.50

Esup+F 17.25 36.56 1.86 10.25 72.10

D+Eadv+AD 64.33 813.80 0.80 14.92 325.10

D+Eadv+AO 40.09 750.90 0.37 8.42 187.30

D+Eadv+S 24.83 312.80 0.72 8.84 120.20

D+Eadv+F 12.25 10.05 2.96 9.74 36.30

D+Esup+AD 2858.00 185200.00 3.86 152.80 8502.00

D+Esup+AO 1392.00 51540.00 2.06 85.95 4393.00

D+Esup+S 857.50 28910.00 3.34 90.38 3490.00

D+Esup+F 320.10 1698.00 8.52 99.25 1765.00



Esup+AD Esup+AO 0.83 1.16 0.08 0.57 3.15

Esup+S 0.96 2.19 0.08 0.59 3.83

Esup+F 2.08 15.01 0.04 0.66 9.91

D+Eadv+AD 1.34 1.76 0.17 0.95 4.72

D+Eadv+AO 1.29 5.25 0.03 0.54 6.37

D+Eadv+S 1.43 9.64 0.04 0.56 6.88

D+Eadv+F 3.55 73.88 0.02 0.62 14.95

D+Esup+AD 12.25 10.05 2.96 9.74 36.30

D+Esup+AO 10.46 28.07 0.59 5.51 47.36

D+Esup+S 12.62 62.60 0.61 5.78 57.45

D+Esup+F 32.19 575.70 0.33 6.40 133.70

Esup+AO Esup+S 1.97 7.38 0.14 1.05 8.93

Esup+F 4.54 85.45 0.07 1.16 21.36

D+Eadv+AD 3.53 12.43 0.18 1.68 16.74

D+Eadv+AO 1.34 1.76 0.17 0.95 4.72

D+Eadv+S 2.89 80.00 0.08 1.00 12.91

D+Eadv+F 6.37 160.10 0.05 1.09 27.69

D+Esup+AD 36.97 116.40 2.17 17.27 183.80

D+Esup+AO 12.25 10.05 2.96 9.74 36.30

D+Esup+S 26.68 189.00 1.03 10.22 127.50

D+Esup+F 75.20 2712.00 0.56 11.41 287.60

Esup+S Esup+F 2.29 9.87 0.12 1.11 10.26

D+Eadv+AD 3.84 21.16 0.14 1.59 18.30

D+Eadv+AO 2.67 25.64 0.05 0.90 12.64

D+Eadv+S 1.34 1.76 0.17 0.95 4.72

D+Eadv+F 3.31 26.11 0.06 1.05 15.50

D+Esup+AD 36.69 202.80 1.87 16.49 176.70

D+Esup+AO 21.58 96.87 0.84 9.27 102.70

D+Esup+S 12.25 10.05 2.96 9.74 36.30

D+Esup+F 30.70 192.70 0.90 10.89 145.00

Esup+F D+Eadv+AD 6.66 77.07 0.06 1.44 32.63

D+Eadv+AO 4.86 86.66 0.02 0.82 21.54

D+Eadv+S 2.53 15.00 0.05 0.86 13.09

D+Eadv+F 1.34 1.76 0.17 0.95 4.72

D+Esup+AD 64.33 813.80 0.80 14.92 325.10

D+Esup+AO 40.09 750.90 0.37 8.42 187.30

D+Esup+S 24.83 312.80 0.72 8.84 120.20

D+Esup+F 12.25 10.05 2.96 9.74 36.30

D+Eadv+AD D+Eadv+AO 0.83 1.16 0.08 0.57 3.15

D+Eadv+S 0.96 2.19 0.08 0.59 3.83

D+Eadv+F 2.08 15.01 0.04 0.66 9.91

D+Esup+AD 17.25 36.56 1.86 10.25 72.10

D+Esup+AO 13.25 52.10 0.54 5.79 65.94

D+Esup+S 18.24 244.60 0.50 6.17 85.46

D+Esup+F 47.58 945.80 0.29 6.83 186.10

D+Eadv+AO D+Eadv+S 1.97 7.38 0.14 1.05 8.93

D+Eadv+F 4.54 85.45 0.07 1.16 21.36

D+Esup+AD 69.38 998.70 1.40 18.31 348.70

D+Esup+AO 17.25 36.56 1.86 10.25 72.10

D+Esup+S 48.11 938.50 0.73 10.81 217.60

D+Esup+F 167.00 8977.00 0.43 11.97 449.20

D+Eadv+S D+Eadv+F 2.29 9.87 0.12 1.11 10.26

D+Esup+AD 58.74 656.60 1.32 17.37 300.20



D+Esup+AO 29.01 231.80 0.70 9.75 150.00

D+Esup+S 17.25 36.56 1.86 10.25 72.10

D+Esup+F 50.55 997.10 0.71 11.35 230.50

D+Eadv+F D+Esup+AD 105.80 1695.00 0.63 15.71 501.10

D+Esup+AO 53.21 759.50 0.33 8.89 253.80

D+Esup+S 35.87 314.80 0.59 9.29 188.50

D+Esup+F 17.25 36.56 1.86 10.25 72.10

D+Esup+AD D+Esup+AO 0.83 1.16 0.08 0.57 3.15

D+Esup+S 0.96 2.19 0.08 0.59 3.83

D+Esup+F 2.08 15.01 0.04 0.66 9.91

D+Esup+AO D+Esup+S 1.97 7.38 0.14 1.05 8.93

D+Esup+F 4.54 85.45 0.07 1.16 21.36

D+Esup+S D+Esup+F 2.29 9.87 0.12 1.11 10.26



Two way Interaction

 mean  sd 2.50% median 97.50%

Control Diet 8.51 6.237 2.509 7.269 21.9

Eadv 0.2477 3.239 0.006721 0.07757 1.092

Esup 1.858 1.922 0.3305 1.396 6.223

AD 8.784 10.92 1.3 6.122 31.46

AO 1.164 0.93 0.2885 1.035 2.823

Statin 1.21 1.014 0.3069 1.008 3.331

Fenofibrate 1.848 5.346 0.1639 1.096 7.703

D+Eadv 11.24 52.05 0.5668 5.657 48.44

D+Esup 5.847 13.64 0.7258 3.857 21.49

D+AD 5.04E+06 3.20E+08 9.17E-07 0.318 234400

D+AO 2.31E+14 4.50E+16 3.17E-09 0.939 3.02E+08

D+S 1.08E+15 2.36E+17 2.94E-09 0.9741 3.55E+08

D+F 2.44E+15 5.08E+17 3.04E-09 1.004 3.84E+08

Eadv+AD 54760 1.13E+06 4.87E-07 0.403 150100

Eadv+AO 1.01E+13 1.84E+15 3.57E-09 1.06 3.40E+08

Eadv+S 2.97E+15 6.61E+17 2.93E-09 0.9589 3.73E+08

Eadv+F 2.10E+15 4.62E+17 2.97E-09 1.012 2.97E+08

Esup+AD 1.77E+16 3.97E+18 2.91E-09 1.03 4.24E+08

Esup+AO 4.66E+17 1.04E+20 3.10E-09 0.9472 3.48E+08

Esup+S 1.00E+14 1.85E+16 3.78E-09 1.039 3.59E+08

Esup+F 1.03E+13 1.57E+15 2.48E-09 0.9818 3.23E+08

Diet Eadv 0.09447 3.812 5.08E-04 0.01058 0.2688

Esup 0.2975 0.6161 0.03204 0.1904 1.164

AD 1.421 2.957 0.1268 0.8492 5.991

AO 0.1875 0.3076 0.02584 0.1406 0.6038

Statin 0.1964 0.31 0.02683 0.1382 0.7

Fenofibrate 0.3127 1.383 0.01676 0.1494 1.397

D+Eadv 2.072 23.79 0.06069 0.773 8.613

D+Esup 1.262 11.73 0.05546 0.5292 5.354

D+AD 1.15E+06 7.21E+07 1.24E-07 0.0428 37460

D+AO 1.27E+14 2.76E+16 4.35E-10 0.1302 4.27E+07

D+S 2.20E+14 4.83E+16 4.14E-10 0.1326 4.99E+07

D+F 6.08E+14 1.25E+17 4.09E-10 0.1377 5.14E+07

Eadv+AD 8927 190500 6.61E-08 0.05528 21020

Eadv+AO 6.90E+11 1.13E+14 4.65E-10 0.1406 4.53E+07

Eadv+S 1.44E+14 3.18E+16 4.23E-10 0.1354 5.48E+07

Eadv+F 4.70E+14 1.04E+17 3.98E-10 0.1362 4.22E+07

Esup+AD 1.73E+15 3.86E+17 3.88E-10 0.1402 5.98E+07

Esup+AO 2.53E+16 5.65E+18 4.03E-10 0.1309 4.78E+07

Esup+S 1.08E+13 1.82E+15 4.85E-10 0.1438 5.29E+07

Esup+F 1.25E+12 1.53E+14 3.16E-10 0.1349 4.38E+07

Eadv Esup 78.74 1438 0.8959 17.62 318.4

AD 777.7 15270 1.838 78.65 3189

AO 38.61 445.5 0.7093 13.24 172.9

Statin 45.57 490.6 0.7461 13.05 186.4

Fenofibrate 100.9 2342 0.5609 14.02 292

D+Eadv 3989 143800 0.6194 73.08 5970

D+Esup 162.1 883.6 2.59 50.07 854

D+AD 6.95E+07 5.10E+09 9.64E-06 3.837 3.41E+06

D+AO 2.77E+15 5.32E+17 3.43E-08 11.88 4.28E+09

D+S 5.05E+15 1.05E+18 3.23E-08 12.18 5.03E+09



D+F 1.09E+16 2.27E+18 3.17E-08 12.55 5.56E+09

Eadv+AD 1.08E+06 2.64E+07 5.00E-06 4.832 1.77E+06

Eadv+AO 2.84E+14 4.06E+16 3.68E-08 13.72 5.09E+09

Eadv+S 3.49E+17 7.80E+19 3.28E-08 12.49 5.35E+09

Eadv+F 1.75E+16 3.62E+18 3.16E-08 12.36 4.34E+09

Esup+AD 8.95E+17 2.00E+20 2.96E-08 12.71 6.47E+09

Esup+AO 1.78E+19 3.99E+21 3.37E-08 12.09 4.96E+09

Esup+S 1.59E+15 2.63E+17 3.95E-08 12.63 5.27E+09

Esup+F 7.73E+13 7.44E+15 2.62E-08 12.49 4.73E+09

Esup AD 8.286 19.36 0.5085 4.463 37.29

AO 1.095 1.935 0.1001 0.7377 4.096

Statin 1.164 2.711 0.1064 0.7273 4.662

Fenofibrate 1.806 7.42 0.0695 0.7908 8.705

D+Eadv 10.84 84.6 0.2576 4.073 51.92

D+Esup 10.34 170.6 0.1595 2.79 45.54

D+AD 1.77E+06 9.37E+07 5.38E-07 0.2274 211200

D+AO 1.85E+14 3.54E+16 2.31E-09 0.7062 2.22E+08

D+S 3.55E+14 7.33E+16 2.01E-09 0.6938 2.54E+08

D+F 4.72E+15 1.03E+18 2.18E-09 0.6987 2.87E+08

Eadv+AD 61550 1.63E+06 3.15E-07 0.2841 107300

Eadv+AO 1.23E+13 2.36E+15 2.56E-09 0.7472 2.73E+08

Eadv+S 9.52E+15 2.13E+18 1.96E-09 0.6918 2.74E+08

Eadv+F 1.75E+15 3.87E+17 2.02E-09 0.7132 2.29E+08

Esup+AD 1.06E+16 2.38E+18 1.99E-09 0.7189 2.87E+08

Esup+AO 3.25E+17 7.27E+19 2.09E-09 0.6785 2.39E+08

Esup+S 9.68E+13 1.94E+16 2.48E-09 0.737 2.61E+08

Esup+F 1.04E+13 1.70E+15 1.63E-09 0.7178 2.45E+08

AD AO 0.2685 0.895 0.02095 0.1631 1.021

Statin 0.2838 0.9298 0.02173 0.1631 1.211

Fenofibrate 0.4786 3.892 0.01448 0.1785 2.194

D+Eadv 1.247 2.106 0.162 0.9362 4.204

D+Esup 1.442 10.59 0.06237 0.6291 6.532

D+AD 3.08E+06 2.51E+08 1.29E-07 0.05296 51710

D+AO 3.65E+13 6.04E+15 4.86E-10 0.1575 5.11E+07

D+S 2.34E+14 5.08E+16 4.59E-10 0.1548 6.49E+07

D+F 3.13E+14 6.49E+16 5.09E-10 0.1625 6.75E+07

Eadv+AD 16310 6.51E+05 6.17E-08 0.06028 29930

Eadv+AO 2.51E+12 4.86E+14 5.16E-10 0.1684 6.38E+07

Eadv+S 1.92E+14 4.26E+16 4.64E-10 0.151 6.49E+07

Eadv+F 3.12E+14 6.88E+16 4.45E-10 0.1594 5.21E+07

Esup+AD 4.38E+14 9.77E+16 4.69E-10 0.161 6.99E+07

Esup+AO 4.98E+16 1.11E+19 4.69E-10 0.1584 5.95E+07

Esup+S 2.29E+13 4.70E+15 5.76E-10 0.1667 6.02E+07

Esup+F 4.67E+12 8.08E+14 3.49E-10 0.1592 5.51E+07

AO Statin 1.562 4.951 0.2114 0.9788 6.101

Fenofibrate 2.59 19.54 0.1284 1.058 11.6

D+Eadv 14.73 120.6 0.4618 5.598 68.42

D+Esup 8.089 75.81 0.5487 3.776 33.47

D+AD 7.17E+06 5.12E+08 8.77E-07 0.3105 253400

D+AO 2.17E+14 4.49E+16 3.07E-09 0.9691 3.33E+08

D+S 1.09E+15 2.34E+17 2.91E-09 0.9736 3.68E+08

D+F 3.47E+15 7.14E+17 3.11E-09 1.036 3.99E+08

Eadv+AD 65370 1.97E+06 4.64E-07 0.3979 151100



Eadv+AO 6.13E+12 8.41E+14 3.34E-09 1.071 3.83E+08

Eadv+S 3.34E+15 7.43E+17 2.93E-09 0.9821 4.03E+08

Eadv+F 1.86E+15 4.12E+17 2.90E-09 1.019 3.05E+08

Esup+AD 1.30E+16 2.91E+18 2.92E-09 0.9976 4.38E+08

Esup+AO 2.85E+17 6.38E+19 2.81E-09 0.9519 3.32E+08

Esup+S 8.57E+13 1.51E+16 3.61E-09 1.06 3.75E+08

Esup+F 1.56E+13 2.60E+15 2.38E-09 1.014 3.40E+08

Statin Fenofibrate 1.76 14.14 0.1909 1.084 6.404

D+Eadv 13.54 52.92 0.3902 5.676 65.65

D+Esup 7.502 57.87 0.5007 3.819 30.55

D+AD 1.72E+07 1.46E+09 8.59E-07 0.3201 274800

D+AO 2.22E+14 3.40E+16 3.09E-09 0.9443 2.98E+08

D+S 8.19E+14 1.77E+17 2.97E-09 0.9631 3.62E+08

D+F 1.51E+15 3.18E+17 3.02E-09 0.9907 3.86E+08

Eadv+AD 54530 1.19E+06 4.57E-07 0.4025 1.50E+05

Eadv+AO 5.03E+12 6.95E+14 3.57E-09 1.046 3.54E+08

Eadv+S 5.32E+15 1.18E+18 2.56E-09 0.9457 3.93E+08

Eadv+F 6.23E+14 1.29E+17 2.84E-09 1.013 2.92E+08

Esup+AD 2.83E+16 6.32E+18 2.79E-09 1.004 4.33E+08

Esup+AO 3.83E+17 8.57E+19 2.91E-09 0.9556 3.46E+08

Esup+S 1.29E+14 2.50E+16 3.59E-09 1.056 3.66E+08

Esup+F 9.66E+12 1.36E+15 2.40E-09 1.004 3.38E+08

Fenofibrate D+Eadv 19.55 418.6 0.2283 5.204 90.87

D+Esup 15.62 1181 0.2753 3.501 43.58

D+AD 4.02E+07 3.46E+09 7.24E-07 0.281 299800

D+AO 7.63E+14 1.39E+17 2.75E-09 0.8658 2.83E+08

D+S 9.43E+14 2.06E+17 2.59E-09 0.8793 3.73E+08

D+F 2.56E+15 5.51E+17 2.63E-09 0.8957 3.98E+08

Eadv+AD 45200 921300 3.78E-07 0.3796 155300

Eadv+AO 6.96E+12 8.47E+14 3.08E-09 0.9598 3.32E+08

Eadv+S 2.34E+16 5.24E+18 2.28E-09 0.8836 3.48E+08

Eadv+F 5.90E+14 1.20E+17 2.48E-09 0.9019 2.61E+08

Esup+AD 8.91E+16 1.99E+19 2.38E-09 0.906 3.93E+08

Esup+AO 1.55E+17 3.47E+19 2.58E-09 0.8793 3.23E+08

Esup+S 1.39E+14 2.63E+16 3.14E-09 0.949 3.32E+08

Esup+F 8.09E+12 1.11E+15 1.97E-09 0.8851 3.24E+08

D+Eadv D+Esup 2.762 39.49 0.04936 0.6735 11.9

D+AD 5.83E+06 3.43E+08 1.30E-07 0.05873 66960

D+AO 2.69E+13 3.45E+15 5.28E-10 0.1772 5.79E+07

D+S 3.43E+14 7.22E+16 5.06E-10 0.1722 7.82E+07

D+F 7.26E+14 1.52E+17 5.14E-10 0.1799 7.97E+07

Eadv+AD 21700 682100 6.18E-08 0.0654 35880

Eadv+AO 1.75E+12 3.19E+14 5.31E-10 0.1839 7.37E+07

Eadv+S 1.27E+14 2.79E+16 4.74E-10 0.1728 8.31E+07

Eadv+F 3.50E+14 7.72E+16 4.99E-10 0.1793 6.27E+07

Esup+AD 1.17E+15 2.60E+17 4.73E-10 0.181 8.66E+07

Esup+AO 7.79E+16 1.74E+19 4.86E-10 0.1776 7.05E+07

Esup+S 3.66E+13 5.78E+15 5.92E-10 0.1883 7.04E+07

Esup+F 7.96E+12 1.36E+15 3.93E-10 0.178 6.91E+07

D+Esup D+AD 4.05E+06 3.29E+08 2.04E-07 0.07937 82410

D+AO 2.33E+13 2.45E+15 7.23E-10 0.2427 8.01E+07

D+S 7.65E+14 1.69E+17 7.61E-10 0.2454 9.95E+07

D+F 7.34E+14 1.61E+17 7.01E-10 0.2665 1.08E+08



Eadv+AD 20140 686700 1.05E-07 0.09995 41410

Eadv+AO 3.68E+12 6.59E+14 8.08E-10 0.2779 9.16E+07

Eadv+S 3.18E+14 6.99E+16 6.86E-10 0.2494 1.11E+08

Eadv+F 3.72E+14 8.10E+16 6.99E-10 0.2518 8.14E+07

Esup+AD 2.25E+15 5.02E+17 7.11E-10 0.2581 1.22E+08

Esup+AO 3.78E+17 8.46E+19 7.70E-10 0.2422 1.01E+08

Esup+S 3.43E+13 5.64E+15 8.72E-10 0.2684 9.83E+07

Esup+F 2.23E+12 3.33E+14 6.14E-10 0.2502 9.56E+07

D+AD D+AO 5.85E+16 6.77E+18 9.79E-11 2.165 5.21E+10

D+S 4.56E+16 6.84E+18 7.80E-11 2.311 5.00E+10

D+F 1.36E+17 1.92E+19 8.02E-11 2.33 5.05E+10

Eadv+AD 7.39E+12 3.18E+14 2.18E-12 1.304 1.53E+11

Eadv+AO 2.78E+16 3.71E+18 6.42E-11 2.749 3.66E+10

Eadv+S 3.60E+16 6.29E+18 8.11E-11 2.313 6.25E+10

Eadv+F 2.09E+18 4.22E+20 1.04E-10 2.091 4.71E+10

Esup+AD 1.19E+19 2.43E+21 7.69E-11 2.309 5.27E+10

Esup+AO 9.75E+17 1.31E+20 7.73E-11 2.225 5.68E+10

Esup+S 1.14E+17 1.66E+19 1.06E-10 2.13 4.40E+10

Esup+F 4.99E+16 5.53E+18 6.33E-11 2.335 4.24E+10

D+AO D+S 9.18E+18 1.09E+21 1.05E-12 0.9243 1.24E+12

D+F 3.84E+21 6.54E+23 8.48E-13 1.07 1.32E+12

Eadv+AD 5.81E+15 1.17E+18 8.81E-12 0.2864 5.71E+09

Eadv+AO 9.47E+23 2.11E+26 1.04E-12 1.087 1.16E+12

Eadv+S 1.44E+21 2.31E+23 1.04E-12 1.103 1.10E+12

Eadv+F 5.45E+20 1.18E+23 9.28E-13 1.103 9.29E+11

Esup+AD 3.58E+20 7.90E+22 7.19E-13 1.072 1.29E+12

Esup+AO 7.69E+20 1.60E+23 9.85E-13 1.088 9.25E+11

Esup+S 4.21E+20 5.89E+22 1.24E-12 1.072 1.20E+12

Esup+F 1.04E+22 1.86E+24 8.90E-13 1.062 8.83E+11

D+S D+F 2.27E+20 3.97E+22 9.73E-13 0.9964 1.20E+12

Eadv+AD 3.52E+18 7.83E+20 8.80E-12 0.2908 6.32E+09

Eadv+AO 4.95E+20 7.31E+22 1.19E-12 1.145 1.12E+12

Eadv+S 2.07E+23 4.62E+25 1.01E-12 1.023 1.27E+12

Eadv+F 1.02E+22 2.24E+24 8.59E-13 1.039 1.11E+12

Esup+AD 3.66E+21 5.25E+23 6.82E-13 0.9673 1.02E+12

Esup+AO 3.47E+22 6.68E+24 9.43E-13 1.043 1.09E+12

Esup+S 5.71E+20 1.21E+23 9.91E-13 1.047 1.02E+12

Esup+F 4.25E+21 6.23E+23 7.73E-13 1.029 1.05E+12

D+F Eadv+AD 2.86E+17 6.39E+19 9.22E-12 0.2979 5.25E+09

Eadv+AO 3.69E+20 6.68E+22 9.23E-13 1.054 1.12E+12

Eadv+S 3.04E+23 6.77E+25 7.80E-13 0.9254 1.31E+12

Eadv+F 9.74E+23 2.14E+26 8.90E-13 0.9854 1.23E+12

Esup+AD 1.90E+24 4.00E+26 8.61E-13 0.9889 1.36E+12

Esup+AO 6.72E+23 1.50E+26 9.62E-13 0.9706 1.18E+12

Esup+S 3.12E+25 6.97E+27 1.11E-12 0.9904 1.05E+12

Esup+F 1.07E+22 2.38E+24 6.59E-13 1.003 1.36E+12

Eadv+AD Eadv+AO 1.09E+18 2.22E+20 2.70E-10 3.509 1.07E+11

Eadv+S 1.20E+22 2.69E+24 1.69E-10 3.639 1.08E+11

Eadv+F 6.39E+17 1.14E+20 1.71E-10 3.568 9.30E+10

Esup+AD 1.69E+18 2.60E+20 1.56E-10 3.442 1.12E+11

Esup+AO 9.48E+21 2.12E+24 1.83E-10 3.734 8.89E+10

Esup+S 1.50E+20 2.44E+22 1.83E-10 3.678 9.10E+10

Esup+F 1.06E+17 2.26E+19 1.47E-10 3.663 1.18E+11



Eadv+AO Eadv+S 7.32E+21 1.60E+24 1.14E-12 0.9029 1.06E+12

Eadv+F 7.43E+27 1.66E+30 9.24E-13 0.8433 8.85E+11

Esup+AD 2.39E+20 4.81E+22 8.29E-13 0.9046 9.77E+11

Esup+AO 3.69E+20 7.89E+22 9.18E-13 0.9277 1.07E+12

Esup+S 2.60E+21 5.63E+23 7.03E-13 0.985 1.22E+12

Esup+F 2.72E+21 6.01E+23 8.11E-13 0.8962 9.80E+11

Eadv+S Eadv+F 1.98E+21 3.61E+23 8.29E-13 0.9623 1.30E+12

Esup+AD 1.30E+22 2.84E+24 9.20E-13 0.968 1.28E+12

Esup+AO 5.60E+29 1.25E+32 1.04E-12 0.9887 1.20E+12

Esup+S 4.71E+20 7.77E+22 1.08E-12 1.029 1.43E+12

Esup+F 6.28E+21 1.23E+24 8.37E-13 0.9901 8.75E+11

Eadv+F Esup+AD 9.45E+20 2.09E+23 9.37E-13 0.9882 1.45E+12

Esup+AO 1.80E+24 4.00E+26 9.78E-13 0.9825 1.54E+12

Esup+S 8.56E+20 1.68E+23 9.09E-13 1.096 1.10E+12

Esup+F 5.35E+20 6.92E+22 7.84E-13 0.915 1.11E+12

Esup+AD Esup+AO 3.30E+22 5.60E+24 8.20E-13 1.01 1.41E+12

Esup+S 1.77E+23 3.13E+25 9.89E-13 1.083 9.65E+11

Esup+F 1.80E+21 2.45E+23 8.35E-13 1.055 9.69E+11

Esup+AO Esup+S 2.68E+22 6.00E+24 9.20E-13 1.083 1.03E+12

Esup+F 1.33E+22 2.25E+24 9.95E-13 0.9697 8.44E+11

Esup+S Esup+F 1.31E+20 1.64E+22 8.09E-13 1.011 8.81E+11
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CODE 1: Definition of a transition matrix 
 
# Stochastic decision model: Base case. 
 
model { 
 
# States, Transitions<-p 
    #1=Healthy,  
    #2=MetS,  
    #3=T2 Diabetes,  
    #4=CVD, 
    #5=T2+CVD,  
    #6=Death 
 
# Age groups for HD and MD transitions, K 
   #1=45-54,  
   #2=55-64,  
   #3=65-74,  
   #4=75-84,  
   #5=85+ 
 
# Treatment groups for MH, j 
   #1=Control,  
   #2=Lifestyle Intervention,  
   #3=Pharnacological 
   #4=Lifestyle+Pharmacological 
 
#Transitions from healthy state 
 
for (j in 1:4) { 
for (k in 1:5) { 
 
p[j,k,1,2] ~ dbeta(268.73412,13302.787)  # H to M 
p[j,k,1,3] ~ dbeta(153787.29,32505219) # H to T2 0.005 
p[j,k,1,4] ~ dbeta(98.014537,5451.3929)  # H to CVD 0.018 
p[j,k,1,5] <- 0 
p[j,k,1,6] <- HD[k]  # H to D 
p[j,k,1,1] <- 1 - (p[j,k,1,2]+p[j,k,1,3]+p[j,k,1,4]+p[j,k,1,6])   
 
lambda13[j,k]  <- -log(1-p[j,k,1,3]) 
lambda14[j,k] <- -log(1-p[j,k,1,4]) 
lambda16[j,k] <- -log(1-HD[k]) 
}} 
 
 
 
 



 
 
CODE 2: Definition of a transition matrix 
 
#Transition from MetS state to healthy 
 
# Integrate MTC into decision model - 4 treatments 
 
for (k in 1:5) { 
#p[1,k,2,1] ~ dbeta(160.1025,1015.3931)  # M to H - Control  
p[1,k,2,1] <-  prob.mh  # M to H - Control  
p[2,k,2,1] <- ((p[1,k,2,1]/(1-p[1,k,2,1]))*OR[1,2])/(1+(p[1,k,2,1]/(1-p[1,k,2,1]))*OR[1,2]) 
p[3,k,2,1] <- ((p[1,k,2,1]/(1-p[1,k,2,1]))*OR[1,3])/(1+(p[1,k,2,1]/(1-p[1,k,2,1]))*OR[1,3]) 
p[4,k,2,1] <- ((p[1,k,2,1]/(1-p[1,k,2,1]))*OR[1,4])/(1+(p[1,k,2,1]/(1-p[1,k,2,1]))*OR[1,4])  } 
 
 
 
# Use RRs from Cohort Systematic Review for effect of MetS 
 
logrr23.m <- log(3.60) 
logrr23.s <- (log(4.52)-log(2.87))/(2*1.96) 
logrr23.p <- 1/(logrr23.s*logrr23.s) 
logrr23 ~ dnorm(logrr23.m,logrr23.p) 
rr23 <- exp(logrr23) 
 
logrr24.m <- log(1.61) 
logrr24.s <- (log(1.73)-log(1.49))/(2*1.96) 
logrr24.p <- 1/(logrr24.s*logrr24.s) 
logrr24 ~ dnorm(logrr24.m,logrr24.p) 
rr24 <- exp(logrr24) 
 
logrr26.m <- log(1.15) 
logrr26.s <- (log(1.18)-log(1.12))/(2*1.96) 
logrr26.p <- 1/(logrr26.s*logrr26.s) 
logrr26 ~ dnorm(logrr26.m,logrr26.p) 
rr26 <- exp(logrr26) 
 
 
 
 
 
 
 
 
 
 



CODE 3: Definition of a transition matrix 
 
# Transitions from MetS, T2DM, CVD and T2DM+CVD 
 
for (j in 1:4) { 
for (k in 1:5) { 
#p[j,k,2,3] ~ dbeta(2.7740265,161.87177)  # M to T2 0.017 
p[j,k,2,3] <- 1-exp(-lambda13[j,k]*rr23) 
#p[j,k,2,4] ~ dbeta(7.7445077,266.08191) # M to CVD 0.028 
p[j,k,2,4] <- 1-exp(-lambda14[j,k]*rr24) 
p[j,k,2,5] <- 0 
#p[j,k,2,6] <- MD[k]   # M to D 
p[j,k,2,6] <- 1-exp(-lambda16[j,k]*rr26) 
p[j,k,2,2] <- 1 - (p[j,k,2,1] + p[j,k,2,3] + p[j,k,2,4] + p[j,k,2,6])  
 
p[j,k,3,1] <- 0 
p[j,k,3,2] <- 0 
p[j,k,3,3] <- 1 - (p[j,k,3,5]+p[j,k,3,6]) 
p[j,k,3,4] <- 0 
p[j,k,3,5] ~ dbeta(77.996773,5910.4975)   # T2 to CVD+T2 
p[j,k,3,6] ~ dbeta(0.3089547,26.828762)   # T2 to D 
 
p[j,k,4,1] <- 0 
p[j,k,4,2] <- 0 
p[j,k,4,3] <- 0 
p[j,k,4,4] <- 1 - p[j,k,4,6] 
p[j,k,4,5] <- 0 
p[j,k,4,6] ~ dbeta(0.18972,5.0332918)   # CVD to D 
#p[j,k,4,6] ~ dbeta(2.19,121.676)   # CVD to D sensitivty analysis 
 
p[j,k,5,1] <- 0 
p[j,k,5,2] <- 0 
p[j,k,5,3] <- 0 
p[j,k,5,4] <- 0 
p[j,k,5,5] <- 1 - p[j,k,5,6]     
p[j,k,5,6] ~ dbeta(2.0981077,6.377917) # T2+CVD to D 
#p[j,k,5,6] ~ dbeta(0.07,1.345) # T2+CVD to D sensivity analysis 
} } 
 
for (j in 1:4) { 
for (k in 1:5) { 
p.test[j,k] <- p[j,k,1,1]*p[j,k,2,2]*p[j,k,3,3]*p[j,k,4,4]*p[j,k,5,5]  
p.neg[j,k] <- 1-step(p.test[j,k]) }} 
 
 
 



CODE 4: Integration of the Mixed Treatment Comparison Analysis 
 
# MTC Model - 4 treatments 
 
for(i in 1:nstud) { 
 w[i,1]<-0 
 delta[i,tx[i,1]]<-0 
 mu[i] ~ dnorm(0,.0001) 
  
 for (k in 1:na[i]) { 
 r[i,k] ~ dbin(pr[i,k],n[i,k]) 
 logit(pr[i,k]) <- mu[i] + delta[i,tx[i,k]]  
 } 
  
 for (k in 2:na[i]) { 
 # Model  
 delta[i,tx[i,k]] ~dnorm(md[i,tx[i,k]],taud[i,tx[i,k]]) 
 md[i,tx[i,k]] <- d[tx[i,k]] - d[tx[i,1]] + sw[i,k] 
 taud[i,tx[i,k]] <- tau *2*(k-1)/k 
 w[i,k] <- (delta[i,tx[i,k]] - d[tx[i,k]] + d[tx[i,1]]) 
 sw[i,k] <- sum(w[i,1:k-1])/(k-1) } 
 } 
 
d[1]<-0 
for (k in 2:ntreat) {d[k]~dnorm(0,0.0001) } 
sd~dunif(0,5) 
tau<-1/(sd*sd) 
 
#Adjusting the probability to one year 
 
for (k in 1:9) { 
loghaz[k] <- log(r[k,1]/(n[k,1]*fup[k])) 
loghaz.prec[k] <- r[k,1] 
loghaz[k] ~ dnorm(theta[k],loghaz.prec[k]) 
theta[k] ~ dnorm(mu.loghaz,tau.loghaz) } 
mu.loghaz ~ dnorm(0.0,0.001) 
tau.loghaz <- 1/pow(sd.loghaz,2) 
sd.loghaz ~ dunif(0,2) 
prob.mh <- 1 - exp(-exp(mu.loghaz)) 
 
# All pairwise log odds ratios and odds ratios      
for (c in 1:(ntreat-1)) { 
 for (k in (c+1):ntreat) { 
      LOR[c,k]<- d[k] - d[c] 
      log(OR[c,k])<- LOR[c,k]  } } 
 



CODE 5: Definition of starting states 
 
# Using ADDITION for starting states 
add.start[1:3] ~ dmulti(add.p[1:3],add.N)  
add.p[1:3] ~ ddirch(alpha[1:3])  
 
# Starting vector/states 
for (j in 1:4) { 
start[j,1] <- 0    #Healthy 
start[j,2] <- 1    #Metabolic Syndrome 
start[j,3] <- 0    #Diabetes 
start[j,4] <- 0    #CVD 
start[j,5] <- 0    #T2+CVD 
start[j,6] <- 0 }  #Death 
 
# s = proportion of people in each state at time t, (treatment, state, time=1) 
#for (j in 1:2) {    #treatments from MTC 
#for (i in 1:6) {     #States 
#s[j,i,1] <- start[j,i] } }  
 
for (j in 1:4) { 
s[j,1,1]<-start[j,1] 
s[j,2,1]<-start[j,2] 
s[j,3,1]<-start[j,3] 
s[j,4,1]<-start[j,4] 
s[j,5,1]<-start[j,5] 
s[j,6,1]<-start[j,6] } 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CODE 6: Definition of cycles for time estimation 
 
# Updates proportion and definition of cycles 
 
for (j in 1:4) {     #Treatments 
for (i in 1:5) {     #States 
 
for (t in 2:10) {                                                     #Time to run the model/cycles 
s[j,i,t]<- inprod(s[j,1:5,t-1], p[j,1,1:5,i]) }           #Run the model for t cycles 
 
for (t in 11:20) {                                                     #Time to run the model/cycles 
s[j,i,t] <- inprod(s[j,1:5,t-1], p[j,2,1:5,i]) }          #Run the model for t cycles 
 
for (t in 21:30) {                                                    #Time to run the model/cycles 
s[j,i,t] <- inprod(s[j,1:5,t-1], p[j,3,1:5,i]) }          #Run the model for t cycles 
 
for (t in 31:40) {                                                    #Time to run the model/cycles 
s[j,i,t] <- inprod(s[j,1:5,t-1], p[j,4,1:5,i])  }         #Run the model for t cycles 
 
for (t in 41:55) {                                                     #Time to run the model/cycles 
s[j,i,t] <- inprod(s[j,1:5,t-1], p[j,5,1:5,i]) }   } }    #Run the model for t cycles 
 
for (j in 1:4) { 
for (k in 1:5) { 
time[j,k]<- sum(s[j,k,])  } 
time[j,6]<- 55-(time[j,1]+time[j,2]+time[j,3]+time[j,4]+time[j,5]) } 
 
for (t  in 1:55){ 
for (j in 1:4) { 
for (k in 2:5) { 
qaly.state[j,k,t]<- s[j,k,t]*util[k]  
cost.state[j,k,t] <- s[j,k,t]*cost[k]  }   }} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CODE 7: Incorporation of aging 
 
 
# Use UK EQ5D age-adjusted population norms for HEALTHY state 
 
for (j in 1:4) { 
# 45-54 
for (t in 1:10) { 
qaly.state[j,1,t]<- s[j,1,t]*util.healthy[1]  
cost.state[j,1,t] <- s[j,1,t]*cost[1]   } 
# 55-64 
for (t in 11:20) { 
qaly.state[j,1,t]<- s[j,1,t]*util.healthy[2]  
cost.state[j,1,t] <- s[j,1,t]*cost[1]   } 
# 65-74 
for (t in 21:30) { 
qaly.state[j,1,t]<- s[j,1,t]*util.healthy[3]  
cost.state[j,1,t] <- s[j,1,t]*cost[1]   } 
# 75+ 
for (t in 31:55) { 
qaly.state[j,1,t]<- s[j,1,t]*util.healthy[4]  
cost.state[j,1,t] <- s[j,1,t]*cost[1]   } 
} 
 
 
# Defining calculation of QALYs and Cost of each state 
 
for (t  in 1:55){ 
for (j in 1:4) { 
qaly.tot[j,t] <- qaly.state[j,1,t] +   qaly.state[j,2,t] +  qaly.state[j,3,t]  + qaly.state[j,4,t] + 
qaly.state[j,5,t]  
qaly.distot[j,t] <- qaly.tot[j,t] * pow(0.965,t-1)  
cost.tot[j,t] <- cost.state[j,1,t] +   cost.state[j,2,t] +  cost.state[j,3,t]  + cost.state[j,4,t] + 
cost.state[j,5,t]  
cost.distot[j,t] <- cost.tot[j,t] * pow(0.965,t-1)  
  }} 
 
 
 
 
 
 
 
 
 
 



CODE 8: Incorporation of costs of healthy states 
 
 
# Costs - adjusted to 2009 prices 
 
diab.cost0 ~ dgamma(606.02623,3.8600397) 
diab.cost <- diab.cost0*1.03*1.028*1.032*1.043*1.04 
mets.cost ~ dgamma(67.336248,1.2866799) 
cvd.cost ~ dgamma(102.22309,0.3096852) 
cvdt2.cost0 ~ dgamma(264.80522,0.5024371) 
cvdt2.cost <- cvdt2.cost0*1.03*1.028*1.032*1.043*1.04 
 
cost[1] <- 0 
cost[2] <- mets.cost 
cost[3] <- diab.cost 
cost[4] <- cvd.cost 
cost[5] <- cvdt2.cost 
cost[6] <- 0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CODE 9: Integration of costs of lifestyle interventions 
 
 
# Use  DPP costs for lifestyle intervention (exchange & 2009 prices) 
# and fitting a log-Normal distribution to aggregated costs 
 
life.sup.mean1 <- 
(1399/1.52)*1.018*1.017*1.029*1.03*1.028*1.032*1.043*1.04 
life.sup.var1 <- 
((1189/1.52)*1.018*1.017*1.029*1.03*1.028*1.032*1.043*1.04) 
life.sup.sigma12 <- log(1+life.sup.var1/pow(life.sup.mean1,2)) 
life.sup.prec1 <- 1/life.sup.sigma12 
life.sup.mu1 <- log(life.sup.mean1) - 0.5*life.sup.sigma12 
 
life.sup.mean2 <- 
(679/1.52)*1.018*1.017*1.029*1.03*1.028*1.032*1.043*1.04 
life.sup.var2 <- 
((577/1.52)*1.018*1.017*1.029*1.03*1.028*1.032*1.043*1.04) 
life.sup.sigma22 <- log(1+life.sup.var2/pow(life.sup.mean2,2)) 
life.sup.prec2 <- 1/life.sup.sigma22 
life.sup.mu2 <- log(life.sup.mean2) - 0.5*life.sup.sigma22 
 
life.sup.mean3 <- 
(702/1.52)*1.018*1.017*1.029*1.03*1.028*1.032*1.043*1.04 
life.sup.var3 <- 
((597/1.52)*1.018*1.017*1.029*1.03*1.028*1.032*1.043*1.04) 
life.sup.sigma32 <- log(1+life.sup.var3/pow(life.sup.mean3,2)) 
life.sup.prec3 <- 1/life.sup.sigma32 
life.sup.mu3 <- log(life.sup.mean3) - 0.5*life.sup.sigma32 
 
 
life.sup1 ~ dlnorm(life.sup.mu1,life.sup.prec1) 
life.sup2 ~ dlnorm(life.sup.mu2,life.sup.prec2) 
life.sup3 ~ dlnorm(life.sup.mu3,life.sup.prec3) 
 
life.sup <- (life.sup1+life.sup2+life.sup3)*add.p[2] 
 
cost.intv[1] <- 0 
cost.intv[2] <- life.sup 
cost.intv[3] <- cost.pharm3 
cost.intv[4] <- life.sup + cost.pharm4 
 
 
 



CODE 10: Integration of costs of pharmacological interventions 
 
 
# Cost proportions from ADDITION 
 
# BP intervention - ACE inhibitor, Lisinopril, BNF page 105  
# Cholesterol/tryglicerides intervention - Statin, Pravastatin, BNF  page   
# Glucose intervention - Metformin, BNF page 383 
 
 
cost.pharm3 <- time[3,2]*cost.pharm 
cost.pharm4 <- time[4,2]*cost.pharm 
 
cost.pharm <- p.bp*15.48 + p.trychol*20.52 + p.fp*33.48 
 
add.bp ~ dbin(p.bp,1981) 
add.trychol ~ dbin(p.trychol,1981) 
add.fp ~ dbin(p.fp,1981) 
 
p.bp ~ dbeta(1,1) 
p.trychol ~ dbeta(1,1) 
p.fp ~ dbeta(1,1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CODE 11: Integration of utilities 
 
# Utilities 
 
mets.util ~ dbeta(5.2624878,1.1191474) # 0.825 
diab.util ~ dbeta(117.27245,44.482653)  # 0.725 
cvd.util ~ dbeta(1.671705,1.0914438) # 0.605 
cvdt2.util ~ dbeta(29.439466,43.611319) # 0.403 
 
util[1] <- 1 
util[2] <- mets.util 
util[3] <- diab.util 
util[4] <- cvd.util 
util[5] <- cvdt2.util 
util[6] <- 0 
 
# Alternative calculation of qalys – undiscounted 
 
for (j in 1:4) { 
tot.util2[j] <- time[j,1]*util[1] + time[j,2]*util[2] + time[j,3]*util[3] + time[j,4]*util[4] + 
time[j,5]*util[5] + time[j,6]*util[6] } 
 
for (j in 1:4) { 
tot.costa[j] <- sum(cost.distot[j,]) 
tot.cost[j] <- tot.costa[j] + cost.intv[j] 
tot.util[j] <- sum(qaly.distot[j,]) } 
 
for (l in 2:4) { 
diff.cost[l] <- tot.cost[l] - tot.cost[1] 
diff.util[l] <- tot.util[l] - tot.util[1]  
 
ICER[l] <- diff.cost[l]/diff.util[l] 
 
# CEAC 
 
for (k in 1:18)  { 
INB[l,k] <- K[k]*diff.util[l] - diff.cost[l] 
Q[l,k] <- step(INB[l,k]) }  } 
 
}  #End model  
 
!



Appendix D

Report of interventions used in different studies in the Mixed Treatment Comparisons

analysis for the identification of the best treatment strategy for adults with Metabolic

Syndrome. Chapter 4.
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Diet
Individulised 

diet

Dietary counseling was given together with the spouse at the start, and 
then to the participants alone after 3 and 9 months. The advice was 
individualized and adapted according to each person's dietary history 
and risk profile (estimated from total cholesterol, HDL, triglycerides, 

blood preassure, and body weight. The intervention focused primarily 
on energy restriction in those who were overweight. Fish and fish 

products, and reduced intake of saturated fat and cholesterol, were 
recomended to all participants, but especially to those whose elevated 
total cholesterol was the more important component of the risk profile. 
In order to assess dietary compliance, each participant responded to a 
180-item food frequency questionaire Smoking habits were recorded by 

a questionaire as well as estimated through serum thiocyanate 
concentration.

Exercise
Supervised 
Exercise

The exercise program entailed supervised endurance-based exercise, 
such as aerobics, circuit training, and fast walking jogging, three times 
per week. The duration of each workout was 60 min. The intensity of 
the training was 60-80% of the participant's individual peak heart rate 
as measured by a treadmill test at baseline. The exercise group and 
combined diet and exercise group intermingled during supervised 

training sessions. The attendance of each workout was recorded, as was 
additional physical activity performed by some participants. A Polar 
Sportstester heart rate recorder (Polar Electro OY, Kempele, Finland) 

was used to measure training intensity.

Lifestyle
Diet + 

Exercise
Combined the exercise program with dietary counseling.

Control
No 

intervention

 Participants in the control group were told not to change their lifestyle 
during the trial, but as all the other participants, they were advised 

againt smoking. At randomization, the control group participats were 
told that after the 1-year trial period, they would be offered dietary 

advice and supervised physical training. 

Report of interventions used in different studies in the Mixed Treatment Comparisons 
analysis for the identification of the best treatment strategy for adults with Metabolic 
Syndrome.

Anderssen 2007 IDF1

#
Trial, 

Publication 
Author

Year MetS 
Def'n Intervention Group Details



Diet

Individualised 
Diet + 

guidance 
physical 
activity 

(Lifestyle)

Patients consuming the intervention diet were given detailed advice 
about the usefulness of the experimental diet. Through a series of 

monthly small-group sessions, intervention parients received education 
in reducing dietary calories (if needed), personal goal-setting, and self-
monitoring using food diaries. Behavioral and psychological counseling 
was also offerded. The dietary advice was tailored to each patient on 
the basis of 3-day food records. The recommended composition of the 
dietary regimen was as follows: carbohydrates, 50% to 60%; proteins, 
15% to 20%; total fat, less than 30%; saturated fat, less than 10%; 
and cholesterol sonsumption, less than 300 mg per day. Moreover, 

patients were advised to consume at least 250 to 300 g of fruits, 125 to 
150 g of walnuts per day; in addition, they were also encouraged to 

consume 400 g of whole grains (legumes, rice, maize, and wheat) daily 
and to increase their consumption of olive oil. Patients were in the 

program for 24 months and had monthly sessions for the second year. 
Compliance with the program was assessed by attendance at the 

meetings and completion of the diet diaries. All patients in both groups 
also received guidance on increasing their level of physical activity, 
mainly by walking for a minimum of 30 minutes per day but also by 

swimming or playing aerobic ball games (eg. soccer)

Control

Control + 
Lifestyle 
advice 

(Control)

Patients consuming the control diet were given general oral and written 
information about healthy food choices at baseline and at subsequent 
visits but were offered no specific individualized program However, the 
general recommendation for macronutrient composition of the diet was 

similar to that for the intervention group (carbohydrates, 50%-60%; 
proteins, 15%-20%; and total fat, <30%). Moreover, patients in the 

control group also had bimonthly sessions with study personnel during 
the 2-year study. All patients in both groups also received guidance on 

increasing their level of physical activity, mainly by walking for a 
minimum of 30 minutes per day but also by swimming or playing 

aerobic ball games (eg. soccer)

Exercise

Supervised 
Exercise + 

guidance on 
diet (Lifestyle)

Supervised exercise was performed three times per week, and followed 
American College of Sports Medicine guidelines.34 The prescribed 

number of sessions was 78 (3 days!26 weeks). If a participant fell short 
of 62 sessions at 6 months (80% compliance), an extra month was 

allowed.
A stretching warm-up was followed by resistance training consisting of 
two sets of 10 to 15 repetitions per exercise, at 50% of one-repetition 

maximum. The same seven exercises that were used for strength 
testing were used for resistance training. When the participant could 
complete 15 repetitions of an exercise with little difficulty, the weight 

was increased. Following resistance training, aerobic exercise was per- 
formed for 45 minutes. The participant could use a treadmill, stationary 

cycle, or stair stepper. A heart rate (HR) monitor (Polar, Inc., Lake 
Success NY) was worn and an alarm beeped when HR was outside the 

target heart range, set at 60% to 90% of maximum HR from the 
baseline exercise test. Em- phasis was placed on maintaining HR toward 

the higher end of the range as tolerated. As fitness improved, the 
exercise workload was increased to maintain target levels.

Control

Control + 
Lifestyle 
advice 

(Control)

All participants were given the National Institute of Aging Guidelines for 
Exercise (http://www.nia.nih.gov/exercisebook) and the American Heart 
Association Step I Diet (http://www.americanheart.org) at the time of 

screening, and were asked to maintain their normal caloric intake during 
the study. Participants in both groups reported twice monthly for BP 

safety checks. If the SBP was"159 or DBP "99 mm Hg, the participant 
was assessed weekly; the participant was withdrawn if BP was above 

range for 4 consecutive weeks.

Details#
Trial, 

Publication 
Author

Year MetS 
Def'n Intervention Group

3 Stewart 2005 NCEP

2 Esposito 2004 NCEP



Lifestyle

Individualised 
diet + 

Exercise 
Advice 

(Lifestyle)

Control
Unstructured 

advice 
(Control)

Lifestyle

Individualised 
diet + 

Supervised 
Exercise 

(Lifestyle)

Each participant was pre- scribed a balanced diet to provide an energy 
deficit of approxi- mately 750 kcal/d.34 Daily calorie requirement was 
deter- mined by estimating resting energy expenditure and multiplying 
the obtained value by 1.3.35 The diet contained approximately 30% of 
energy as fat, 50% as carbohydrate, and 20% as protein. Total calorie 
intake was adjusted to prevent more than a 1.5% loss of body weight 
per week, with the goal of 10% weight loss at the completion of the 

study. Participants were in- structed to take a multivitamin supplement 
daily.The curricu- lum from the the Diabetes Prevention Program’s 
Lifestyle Change Program36 was used and modified for this study. 

Subjects met weekly as a group with a study dietitian experienced in 
group behavioral therapy. Standard behavioral strategies, including goal 
setting, self-monitoring, stimulus control techniques, prob- lem-solving 

skills, identification of high-risk situations, and re- lapse prevention 
training, were used to modify eating habits. Each participant was given 

the 2003 edition of The Doctors Pocket Guide of Calorie, Fat and 
Carbohydrate Counter,37 a book with information on the calorie content 

of foods, food diary sheets, and a binder in which to file educational 
materials distributed during group sessions. Subjects participated in 

group exercise training sessions on 3 nonconsecutive days each week. 
Each session was supervised by a physical therapist. The exercise pro- 

gram focused on improving flexibility, endurance, strength, and balance. 
Each session lasted 90 minutes and began with 15 min- utes of warm-

up flexibility exercises followed by 30 minutes of endurance exercise, 30 
minutes of strength training, and 15 minutes of balance exercises.

Control
No 

intervention 
(Control)

Subjects assigned to the control group were instructed to maintain their 
usual diet and activi- ties during the study period. They were prohibited 

from par- ticipating in any weight loss or exercise program.

Antidiabetic
Metformin + 

standard 
lifestyle

Standard lifestyle recommendations plus metformin, 850 mg twice per 
day

Lifestyle

Individualised 
diet + 

Exercise 
Advice

An intesive program of lifestyle intervention. The goals of the lifestyle 
program were to achieve and maintain a weight reduction of at least 
7% of clinical body weight through a healthy low-calorie, low-fat diet 
and to engage in physical activity of moderate intensity, such as brisk 

walking, for at least 150 minutes per week. Participants were seen 
quarterly, when blood pressure was assessed. Fasting glucose levels 
were determined at the 6-months visits, and fasting lipid levels and 

waist circumference were measured annually.

Control + 
Lifestyle

Placebo + 
Lifestyle 
advice

Standard lifestyle recommendations plus placebo

#
Trial, 

Publication 
Author

Year MetS 
Def'n Intervention Group Details

6 Orchard 2005 NCEP

5 Villareal 2006 NCEP

4 Bo 2007 NCEP



Lifestyle

Individualised 
diet + 

Exercise 
Advice

Subjects followed lifestyle modification (LSM)

Antidiabetic Metformin Subjects were treated with metformin (MET)

Antidiabetic 
+ Lifestyle

Metformin + 
Lifestyle

Subjects were given LSM plus MET

Control
Standard 
advice

Subjects were given standard health care advice (control)

Antidiabetic Rosiglitazone

Control
Placebo + 
Diet advice

#
Trial, 

Publication 
Author

Year MetS 
Def'n Intervention Group Details

7 Ramachandran 2006 WHO

Patients were instructed to follow a weight-maintaining diet consisting 
of 50% carbohydrates, 30% lipid (<10% saturated fat), and 20% 

protein throughout the study and underwent a 6-week run-in period, 
after which they were randonmly assigned to receive either 

rosiglotazone (4mg/day, n=50) or matching placebo (n=50) for the 12-
month double-blind phase. Patients were seen at screening visit (before 

run-in), 1 week before randomization for baseline determinations, at 
randomization, and at 1 month interval for physical examination. 

8 Esposito 2006 NCEP



Antiobesity Sibutramine

Fifty-five subjects were assigned to receive sibu- tramine alone. They 
had eight brief visits (10 to 15 minutes each) with a primary care 
provider at weeks 1, 3, 6, 10, 18, 26, 40, and 52. During week 1, 

subjects were given a daily dose of 5 mg of sibutramine (provided by 
Abbott Laboratories, which otherwise had no involvement in the study), 
and the dose was increased to 10 mg at week 3 and to 15 mg at week 
6. Subjects received a copy of “On Your Way to Fitness,”19 a pamphlet 

that provides tips for healthy eating and activity. They were not 
instructed to keep records of food intake or activity, and the primary 

care providers gave only general encouragement. Weight and vital signs 
were mea- sured at all visits. The primary care providers in- cluded 

three internists and one nurse practitioner, none of whom specialized in 
obesity management.

Lifestyle

Individualised 
diet + 

Exercise 
Advice

A total of 55 subjects were assigned to receive life- style modification 
alone. They attended weekly group meetings from weeks 1 through 18, 
sessions conducted every other week from weeks 20 through 40, and a 
follow-up visit at week 52. Meetings in- cluded 7 to 10 subjects, lasted 

90 minutes, and were led by trained psychologists. For the first 18 
weeks, sessions followed the LEARN (Lifestyle, Exercise, Attitudes, 
Relationships, and Nutrition) Program for Weight Control,20 which 

instructed subjects to complete weekly homework assignments that in- 
cluded keeping daily records of food and calorie in- take and physical 
activity. Records were reviewed at weekly meetings. From weeks 20 
through 40, ses- sions were conducted with the use of the Weight 

Maintenance Survival Guide.

Antiobesity + 
Lifestyle

Sibutramine + 
Lifestyle

Sixty subjects were assigned to combined therapy. They were given the 
same two treatments as those in the first two groups, but with a slight 
modifica- tion. They received sibutramine, attended medical visits, and 

attended group sessions of lifestyle counseling that followed a version of 
the LEARN Pro- gram for Weight Control22 that was adapted to in- 

clude sibutramine.

Antiobesity + 
Brief Lifestyle

Sibutramine + 
Brief lifestyle

A total of 54 subjects received sibutramine and met with a primary care 
provider (10 to 15 minutes per session) on the same schedule as 

subjects in the group given sibutramine alone. They also were given the 
two treatment manuals21,22 and were in- structed to complete 
homework assignments, in- cluding daily food-intake and activity 
records, which they reviewed during visits with the primary care 
providers. (Additional details about treatment implementation are 

provided in the Supplementary Appendix, available with the full text of 
this article at www.nejm.org.)

#
Trial, 

Publication 
Author

Year MetS 
Def'n Intervention Group Details

Phelan 2007 NCEP9



Antiobesity
Rimonabant 

20mg

Antiobesity 
(diferent 

dose)

Rimonabant 
5mg

Control Placebo

Statin Pravastatin

Control Placebo The group without pravastatin treatment is labelled as control group.

Statin Atorvastatin

Fenofibrate Fenofibrate

Statin + 
Fenofibrate

Atorvastatin + 
Fenofibrate

#
Trial, 

Publication 
Author

Year MetS 
Def'n Intervention Group Details

10 Van Gaal 2005 NCEP

All subjects received lifestyle advice. This included exercise (walking for 
at least 30 minutes 5 days a week or equivalent exercise) and low-fat 

(NCEP ATP III) hypocaloric diet. After estimating the appropiate energy 
intake for a specific subject (according to his/her job and leisure time 

activity), we provided him/her (according to the suggestions of a 
dietician) with a computer-generated diet (taking into consideration 

his/hers dietary preferences) with a daily energy intake of 2092 J less 
than that estimated as appropriate. The compliance to the diet was 

established at every visit with a 3-day food intake questionnaire.

12 Athyros 2005 NCEP

Treatments were allocated to patients using the interactive voice 
responding system according to the predefined randomisation list (1: 2: 

2 ratio for placebo, 5 mg rimonabant, and 20 mg rimonabant, 
respectively). A central laboratory (ICON Laboratories, Farmingdale, 

USA, and Dublin, Ireland) ensured that the randomisation of treatment 
was balanced within each centre and was stratified based on the loss of 
bodyweight (<=2 kg or >2 kg) recorded during the run-in period, per 
protocol. During the double-blind period, patients were seen every 14 
days during the first month and thereafter every 28 days until the end 

of the study.
Basal metabolic rate was estimated with the Harris Benedict formula, 

and 600 kcal were subtracted by a dietician to calculate a recommended 
daily energy intake for each patient. At each visit, patients received 

dietary counselling and were encouraged to increase physical activity. 
Bodyweight, waist circumference, and blood pressure were measured at 
screening, at randomisation, and at every treatment visit, whereas lipid 
profile, fasting glucose, and insulin were measured every 3 months by 

use of standard procedures in the central laboratory (ICON 
Laboratories).

11 Geluk 2005 NCEP
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