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Our greatest weakness lies in giving up. The most certain way to succeed is always

to try just one more time.

Thomas Edison



Abstract

The concept of a groupoid was first introduced in 1926 by H. Brandt in his fun-

damental paper [7]. The idea behind it is a small category in which every arrow

is invertible. This notion of groupoid can be thought of as a generalisation of the

notion of a group. Namely, a group is a groupoid with only one object. After

the introduction of topological and differentiable groupoids by Ehresmann in 1950

in his paper on connections [19], the concept has been widely studied by many

mathematicians in many areas of topology, geometry and physics. In this thesis,

we deal with topological groupoids as the main object of study. We first develop

the main concepts of homotopy theory of topological groupoids. Also, we study

general versions of Morita equivalence between topological groupoids, which lead

us to discuss topological stacks. The main objective of this thesis is then to develop

and analyse a notion of Lusternik-Schnirelmann category for general topological

groupoids and topological stacks, generalising the classical work by Lusternik and

Schnirelmann for topological spaces and manifolds [30] and for orbifolds and Lie

groupoids as introduced by Colman [11]. Fundamental in the classical definition

of the LS-category of a smooth manifold or topological space is the concept of a

categorical set. A subset of a space is said to be categorical if it is contractible in

the space. The Lusternik-Schnirelmann category cat(X) of a topological space X

is defined to be the least number of categorical open sets required to cover X, if

that number is finite. Otherwise the category cat(X) is said to be infinite. Here

using a generalised notion of categorical subgroupoid and substack, we generalise

the notion of the Lusternik-Schnirelmann category to topological groupoids and

topological stacks with the intention of providing a new useful tool and invariant to

study homotopy types of topological groupoids and topological stacks, which will

be important also to understand the geometry and Morse theory of Lie groupoids

and differentiable stacks from a purely homotopical viewpoint.
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Chapter 1

Introduction

The Lusternik-Schnirelmann category or (LS-category) of a topological space is a
topological invariant introduced by Lusternik and Schnirelmann [30] in the early
1930s. This Lusternik-Schnirelmann category invariant became an important tool
in algebraic topology and especially homotopy theory. For more details on the
importance of the LS-category in topology and geometry see [27], [26] and [14].
The main concept in the definition of the Lusternik-Schnirelmann category is that
of a categorical set. A subset of a space is said to be categorical if it is contractible
in the space. The Lusternik-Schnirelmann category cat(X) of a topological space
X is defined to be the least number of categorical open sets required to cover X,
if that number is finite, otherwise the category cat(X) is said to be infinite.

Our aim in this thesis is to develop a Lusternik-Schnirelmann category theory
invariant in the context of topological groupoids and generalise the notion of
Lusternik-Schnirelmann category from topological spaces to topological stacks
with the intention of providing a useful tool and invariant to study the homotopy
theory of topological stacks. As we know, a groupoid is a common generalisation
of the concepts of spaces and groups. A groupoid G = [G1 ⇒ G0] consists of a set
of objects G0 and a set of arrows G1 with source and target maps s, t : G1 → G0

and there is a multiplication defined for composable pairs of morphisms. Finally
there is also an inverse map. Specifically, topological groupoids are groupoids
where both G0 and G1 in addition are topological spaces and for which all the
structure maps (source, target, multiplication, unit and inversion) are continu-
ous. In this thesis, we will study the homotopy theory of topological groupoids,
and develop an analogue of the Lusternik-Schnirelmann category for topological
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Introduction 2

groupoids. Furthermore, since topological stacks are defined as a Morita equiva-
lence class of topological groupoids, [21], [15] and [43], we show that our notion of
LS-category for topological groupoids is also invariant under Morita equivalence
and therefore defines an invariant for topological stacks. In our analysis we have
to study several notions of homotopy between topological groupoids. In particu-
lar, we discuss a notion of homotopy between generalised maps, which turns out
to be Morita invariant. Roughly speaking, ageneralised map from a topological
groupoid H to a topological groupoid G is given by first replacing H by a Morita
equivalent groupoid H′ and then mapping H′ into G by a homomorphism of topo-
logical groupoids. Topological groupoids, functors between them and continuous
natural transformations between the functors defines a 2-category, which we will
denote by G. In general topological categories J and J ′, the usual notion of
homotopy is called an ordinary homotopy. It is said that two continuous functors
f, g : J → J ′ are homotopic if there is a continuous functor H : J ×I → J ′ such
that H0 = f , H1 = g and I is the unit groupoid over the unit interval [0, 1]. But
these two notions of natural transformation and ordinary homotopy are not in-
variant under Morita equivalence in general. So we have to look for an alternative
notion of homotopy which is in fact invariant under Morita equivalence and gen-
eralises the notions of natural transformation and ordinary homotopy. To achieve
this, we start to define strong and essential equivalence notions between general
topological groupoids. We introduce the set of all essential equivalences between
topological groupoids denoted by E and we obtain a bicategory of fractions of
G when inverting all these essential equivalences E. In this way we get a new
bicategory Gpd = G(E−1). This bicategory is obtained by the collection of all
topological groupoids as objects, generalised maps as morphisms and 2-morphisms
between the generalised maps.
We then introduce a new notion of 1-homotopy between continuous functors which
includes the notions of natural transformation and ordinary homotopy but this is
not yet invariant under Morita equivalence. The resulting 2-category is denoted
by H. Afterwards we introduce a notion of essential 1-homotopy equivalence for
the arrows in this 2-category H. The class of essential 1-homotopy equivalences
will be denoted by W and we prove that this class admits a bicalculus of fractions
H(W−1) and will determine our correct 1-homotopy equivalences: a generalised
map is a 1-homotopy equivalence if it is an equivalence in H(W−1). In order to
do so, we first recall the construction of Haefliger’s G-paths and the fundamen-
tal groupoid of a topological groupoid and prove that it admits a right calculus
of fractions that inverts the essential equivalences W . We prove that the notion
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of 1-homotopy equivalence obtained in this bicategory is invariant under Morita
equivalence and generalises the notions of natural transformation and ordinary
homotopy.
When inverting the essential equivalences E in the 2-category G of topological
groupoids, functors and continuous natural transformations, the following diagram
of bicategories commutes

G

��

U |G //G(E−1)

iG(E−1)

��
H U //H(W−1)

where U and U |G are the universal homomorphisms as defined in [42] and the
arrows iG(E−1) exists by the universal property of U |G.
We also develop a notion of homotopy between generalised maps. We start with
a notion of strong homotopy between strict maps which is not Morita invariant,
and introduce a related notion of essential homotopy equivalence that at the same
time weakens strict homotopy and generalises an essential equivalence. We will
say that two topological groupoids G and K have the same Morita homotopy type
if there exists a third groupoid J and essential homotopy equivalences η and ν

K J η //νoo G

Our notion of Morita homotopy types corresponds to the 2-arrows in the bicat-
egory H(W−1). This deformation within the groupoid is closely related to the
notion of G-path developed by Haefliger (see [24]and [23]). Based on this Morita
homotopy type, we define the notion of a G-categorical subgroupoid for the def-
inition of the Lusternik-Schnirelmann category of topological groupoids. A sub-
groupoid U is G-categorical if it can be deformed by a Morita homotopy into a
transitive groupoid. The least number of G-categorical subgroupoids that cover
G is the groupoid LS-category of the topological groupoid G. When G is the unit
groupoid over a topological space X, this number specialises to the classical LS-
category of the topological space X. We prove that cat(G) is an invariant of the
Morita homotopy type. Therefore, cat(G) is invariant under Morita equivalence.
Finally, we introduce categories fibered in groupoids and define stacks over the
category of topological spaces Top. Moreover, we prove how a category fibered
in groupoids and stacks are associated to a given topological groupoid. That
leads us to define topological stacks and also how to associate a topological stack
to a topological groupoid. One of our aims is then to generalise the notion of
Lusternik-Schnirelmann category from topological groupoids to topological stacks
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by showing that the groupoid LS-category is in fact a Morita invariant notion.

Classically, the Lusternik-Schnirelmann category (LS-category) of a topological
space X is given as the least number n such that there is an open cover of X
of n + 1 subsets contractible to a point in the space X. This concept was first
introduced in 1930 by L. Lusternik and L. Schnirelmann [30] in the study of the
geometry of differentiable manifolds via Morse theory. Later on, R. Fox [20] intro-
duced the geometric category, another definition of the LS-category, where each
subset of the cover is required to be contractible in itself, and he developed the
LS-category in the field of algebraic topology further showing that it is indeed a
homotopical invariant. More description of the two alternative definitions and a
complete overview of topolgical and geometrical results about the LS-category for
topological spaces and differentiable manifolds can be found in [14].
It can be expected that the stacky LS-category we discuss here for topological
stacks will be also a very useful topological invariant for this kind of generalised
spaces, including topological spaces, manifolds and orbifolds, which do appear nat-
urally in geometry and physics. We aim to study these geometrical and topological
aspects of the stacky LS-category also in further work.

The constructions of stack and groupoid LS-category here will be presented in a
purely homotopical manner and employ the recent homotopy theory of topological
groupoids and topological stacks (see [40] and [39]). The new notion of the stacky
LS-category for topological stacks discussed here employs the new notion of cate-
gorical substacks and it turns out that this is again an invariant of the homotopy
type of topological stacks. Therefore, this notion of stacky LS-category generalises
the notions of LS-category of topological groupoids and is indeed an homotopical
invariant of topological stacks.
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Thesis outline

The content in this thesis is subdivided into five chapters and organised as follows:

Chapter 1 reviews the theory of categories and groupoids. In this chapter we intro-
duce the basic concepts that will be used in the thesis. We begin with definitions
from category theory and describe the groupoid notions, as well as giving some
examples of groupoids, including the fundamental groupoid that will be relevant
in the subsequent chapters. Then we introduce background material on cover-
ing groupoids and discuss the classification of coverings of groupoids. To end the
chapter we present a classical description of topological groupoids that will be the
base throughout this work and lay out some examples.

Chapter 2 defines morphisms and equivalences of topological groupoids. We first
introduce the different notions of equivalence of topological groupoids, starting
with essential equivalence and reaching Morita equivalence. Then we introduce
some background on bicategories. To finalise the chapter we present the different
notions of maps between topological groupoids that enlarge the usual definition of
groupoid morphisms; these are the generalised maps and Hilsum-Skandalis maps.
After that we will give an explicit construction of a bijective correspondence be-
tween generalized maps and bibundles which will allow us to switch from one to
the other when needed.

Chapter 3 is concerned with the general homotopy theory of topological groupoids.
It presents the notion of 1-homotopy for generalised maps. First we recall the
construction of Haefliger G-path and the fundamental groupoid of topological
groupoids. Then we introduce the 1-homotopy bicategory H. We will show that
the notion of 1-homotopy equivalence obtained in this bicategory is invariant un-
der Morita equivalence and generalises the notions of natural transformation and
ordinary homotopy for topological spaces. At the end of this chapter, we introduce
the notion of homotopy of topological groupoids, essential equivalence homotopy
and homotopy pullback of topological groupoids.
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Chapter 4 is dedicated to stacks and topological stacks. We define categories
fibered in groupoids over Top, the category of topological spaces and continu-
ous maps, also introducing the language of 2-categories as categories fibered in
groupoids over Top form a 2-category. Then we introduce the notion of stacks and
see how stacks can be associated to topological groupoids. After that we define
topological stacks which we will use in the final chapter.

Chapter 5 deals with Lusternik-Schnirelmann category theory. We start with
recalling the notion of Lusternik-Schnirelmann category for topological spaces and
give some examples. Then we introduce the notion of Lusternik-Schnirelmann
category for topological groupoids and prove that it is invariant under Morita
equivalence therefore giving a new topological invariant, the stacky Lusternik-
Schnirelmann category for topological stacks. We will finish this final chapter by
studying some basic but fundamental properties of these new notions of Lusternik-
Schnirelmann category for topological groupoids and topological stacks.



Chapter 2

Categories and Groupoids

2.1 Categories

In this first chapter we introduce the basic concepts to be used in this thesis. We
start to recall some of the basic definitions of categories, groupoids and topological
groupoids. we follow here the book [8] regarding the notions for category theory.

Definition 2.1.1. A category C consists of:

• A collection of objects of C denoted by Ob(C).

• A set C(x, y) called the set of morphisms in C from x to y, for each pair of
morphisms x, y ∈ Ob(C).

• For each x, y, z ∈ Ob(C) and for each pair of morphisms g in C(y, z) and f
in C(x, y), there is a composition function g ◦ f in C(x, z), we will just write
normally gf .

These terms must satisfy the following axioms:

1. (Associativity): If h ∈ C(z, w), g ∈ C(y, z), and f ∈ C(x, y), then h(gf) =

(hg)f .

2. (Identity): For each x in Ob(C) there is an element 1x in C(x, x), such that
if g ∈ C(w, x) and f ∈ C(x, y), then 1xg = g and f1x = f .

7



Categories and Groupoids 8

Definition 2.1.2. A functor F : C → D, where C and D are categories, consists
of F : Ob(C) → Ob(D), C 7→ FC and for any c1, c2 ∈ Ob(C), F : C(c1, c2) →
D(Fc1, F c2) such that F (idC) = idFC and F (g ◦ f) = F (g) ◦ F (f). Here C(c1, c2)

denotes the collection of morphisms in C from c1 to c2.
A functor F : C → D is said to be an isomorphism if there exists a functor
F−1 : D → C such that F−1F is the identity functor idC of C and FF−1 is the
identity of functor D idD.

Definition 2.1.3. A functor F : C → D is full if for any x, y ∈ Ob(C) the map
F : C(x, y)→ D(F (x), F (y)) is onto. It is faithful if F : C(x, y)→ D(F (x), F (y))

is injective. A functor that is full and faithful is fully faithful. A functor F : C → D
is essentially surjective if for any y ∈ Ob(D) there is a x ∈ Ob(C) and an invertible
arrow γ ∈ D from F (x) to y.

Definition 2.1.4. (Subcategory) If we have two categories C and D, we say D is
a subcategory of C if the following conditions are satisfied:

1. Ob(D) ⊆ Ob(C), any object of D is an object of C,

2. For each x, y in Ob(D), we have D(x, y) ⊆ C(x, y),

3. The composition of morphisms in D is the same as that for C, and

4. The identity in D(x, x) is the identity in C(x, x), for each x ∈ Ob(D).

The subcategory D of C is called full if for each objects x, y ∈ D, we have D(x, y) =

C(x, y).

Definition 2.1.5. [16] A 2-category is a system of 2-cells or "maps" which can be
compose in two different but commuting categorical ways, horizontal and vertical.
A 2-category consists of

1. objects

2. 1-morphisms between objects

3. 2-morphisms between morphisms

The morphisms can be composed along the objects, while the 2-morphisms can be
composed in two different directions: along objects called horizontal composition
and along morphisms called vertical composition.
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Note that, this notion of 2-category is different from the more general notion of
bicategory that we will talk more about it in the next section.

Definition 2.1.6. [16] A 2-functor F : C → D between 2-categories is assignment

Ob(C) 3 x 7→ F (x) ∈ Ob(D)

together with functors

C(x, y)
Fx,y// D(F (x), F (y))

that preserve identity objects and intertwine the compositions of C and D up to
coherent natural transformations.

2.2 Bicategories

The definition of a bicategory is used to extend the notion of a category to handle
the cases where the composition of morphisms is not (strictly) associative, but
only associative up to an isomorphism, we follow the work in [12].

A bicategory B consists of a class of objects, morphisms between objects and 2-
morphisms between morphisms together with several ways of composing them.
We will picture the objects as points:

•G

the morphisms between objects as arrows:

K φ // G

2-morphism as double arrows

K
φ
&&

ψ

88�� a G

Definition 2.2.1. [12] A 2-morphism a : φ ⇒ ψ is a 2-isomorphism in B if it
is invertible, i.e. if there exists a 2-morphism b : ψ ⇒ φ such that ab = idψ and
ba = idφ. In this case we say that the morphisms φ and ψ are equivalent and write
φ ∼ ψ.

Definition 2.2.2. [12] A morphism ϕ : K → G is an equivalence in B if it is
invertible up to a 2-isomorphism; i.e. if there exists a morphism ξ : G → K such
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that ϕξ ∼ idG and ξϕ ∼ idK. In this case we will say that the objects K and G are
equivalent and write K ∼ G.

Now we want to describe the composition φϕ of morphisms ϕ : K → L and
φ : L → G which is denoted by:

K ϕ // L φ // G .

We can compose 2-morphisms in two ways called horizontal and vertical compo-
sition. The horizontal composition ab of 2-morphisms b : ϕ ⇒ ϕ′ and a : φ ⇒ φ′

is denoted by

K
ϕ
&&

ϕ
88�� b L

φ
&&

φ

88�� a G

The vertical composition a · b of 2-morphisms b : φ⇒ ϕ and a : ϕ⇒ ψ is denoted
by

K•

φ

���� b
BB

ψ

�� a
// •G

(a · b)(c · d) = (ac) · (bd) this law relates horizontal and vertical compositions
together

K

ϕ

���� d
DD

ϕ
�� c
// L

φ

���� b
DD

ψ

�� a
// G

We can see that the vertical composition is strictly associative whereas horizontal
composition is only associative up to 2-isomorphism (associator).
The unit laws for morphisms hold up to 2-isomorphisms (left and right unit con-
straints).
Associator and unit constraints are required to be natural with respect to their
arguments.
The notion of a 2-category differs from the more general notion of a bicategory in
which the horizontal composition is required to be strictly associative, whereas in
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a bicategory it needs only be associative up to isomorphism. So a 2-category is a
bicategory in which the natural 2-isomorphisms are identities.

2.3 Groupoids

Since 1926 [7] groupoids were first introduced by Heinrich Brandt, there are many
works on groupoids and its algebraic structures. We follow in this section the
works of Moerdijk [34] and Brown [9]. We introduce the notion G of a groupoid
and provide some examples. In the general way of defining groupoids, we can see
it as a certain generalization of a group that allows for individual elements to have
"internal symmetries".

Definition 2.3.1. A groupoid G is a small category in which every arrow is invert-
ible. Small category means there is a set of objects Ob(G) and a set of morphisms
Mor(G), and maps s, t : Mor(G)→ Ob(G), u : Ob(G)→Mor(G) with appropriate
properties.
To clarify concepts and fix notation, a groupoid G in the category Sets of sets,
denoted [G1 ⇒ G0], consists of a set of arrows G1 and a set of objects G0, together
with five structure maps

G1 ×G0 G1
m // G1

u

��

t
//

s //
G0

oo

The maps s and t are called source and target. An element g ∈ G1 with s(g) = x

and t(g) = y is an arrow from x to y and will be denoted by g : x→ y or x g−→ y

The set
G1 ×G0 G1 = {(h, g) ∈ G1 ×G1|s(h) = t(g)}

consists of composable arrows, and m is called the composition or multiplication
map, where G1 ×G0 G1 fits into the pullback square

G1 ×G0 G1

pr

��

pr // G1

s

��
G1 t

// G0

For a pair (h, g) of composable arrows, the composition is denoted by m(g, h) = hg.
The map u is called the unit map and we write u(x) = 1x, and the map i is called
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the inversion map and we write i(g) = g−1

The names of the maps become clear as they must satisfy the following conditions

• s(h · g) = s(g), t(h · g) = t(h)

• Associativity k · (h · g) = (k · h) · g

• Identity 1t(g)g = g = g1s(g)

• s1x = x = t1x

• Inverse s(g−1) = t(g), t(g−1) = s(g) and g−1 · g = 1s(g) g · g−1 = 1t(g)

for any k, h, g,∈ G1 with s(k) = t(h) and s(h) = t(g).

Definition 2.3.2. For any x, y ∈ G0 and G a groupoid. The set Ox := t(s−1(x)) =

{y ∈ G0 : ∃g : x → y} ⊂ X is called the orbit of x. The orbits of G define an
equivalence relation on G0

x ∼ y ⇔ y ∈ Ox

and the quotient space for this relation is called the orbit space of G and denoted
by G0/G or |G|.

Definition 2.3.3. If G = [G1 ⇒ G0] is a groupoid, and x, y ∈ G0 then

1. the source-fiber at x is the set of all arrows from x; Gx = G(x, ·) = s−1(x) =

{g ∈ G1|s(g) = x}

2. the target-fiber at y is the set of all arrows to y Gy = G(·, y) = t−1(y) =

{g ∈ G1|t(g) = y}

3. the isotropy group at x is the set of self arrows at x Gx
x = s−1(x) ∩ t−1(x) =

{g ∈ G1|x→g x}

Definition 2.3.4. A groupoid G is connected if G(x, y) is non-empty for all objects
x, y ∈ G. The components of G are the maximal connected subgroupoids of G. If
every arrow in G is an identity, we say that G is trivial or discrete.

Definition 2.3.5. A groupoid G = [G1 ⇒ G0] is called transitive if for all x, y ∈
G0 there is an g ∈ G1 with s(g) = x and t(g) = y.
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Theorem 2.3.6. Let x, y, x′, y′ be objects of a connected groupoid G. There is a
bijection

ϕ : HomG(x, y) −→ HomG(x
′, y′)

which if x = y, x′ = y′ can be chosen to be an isomorphism of groups.

Proof. Let’s take x α−→ x′ and y β−→ y′ in G which exist by connectedness. We define

ϕ : HomG(x, y) −→ HomG(x
′, y′)

γ 7→ β + γ − α
ψ : HomG(x

′, y′) −→ HomG(x, y)

δ 7→ −β + δ + α

So we get ϕ(γ) = β + γ − α and ψ(γ) = −β + γ + α

x

α
��

γ // y

β
��

x′
ϕ(γ)

// y′

It is clear that ϕψ = 1HomG(x′,y′) i.e, ϕψ = 1 and ψϕ = 1HomG(x,y) i.e, ψϕ = 1

So ϕ is a bijection.
Also, if x = y and x′ = y′ we have that α = β so that ϕ sends γ 7→ α + γ − α. If
γ, γ′ ∈ HomG(x, x) ,then ϕγ+ϕγ′ = α+γ−α+α−γ′−α = α+γ+γ′−α = ϕ(γ+γ′)

Therefore, ϕ is an isomorphism.

We will now discuss some basic examples that will be playing a role in the rest of
this work.

Example 2.3.7 (Unit groupoid). Any set X can be viewed as a groupoid itself
G = u(X), G = [X ⇒ X], where the only arrows are the identities 1x ∈ X and the
object set is X, for any x in X. This is the trivial groupoid, or the unit groupoid,
and is simply written as X. The source and target maps are the identity map 1x,
and multiplication is only defined between an element x ∈ X and itself xx = x.
The unit groupoid over the interval I = [0, 1] with the space objects and space
arrows are the same I and all the arrows are units is denoted by I.

Example 2.3.8 (Pair groupoid). Any set X gives rise to the pair groupoid of
X, denoted by Pair(X). The objects set is G0 = X, and the set of arrows is
G1 = X ×X, so we have G = [X ×X ⇒ X]. It has source map s(y, x) := x and
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target map t(y, x) := y for every pair (y, x) ∈ X ×X (where s and t are the first
and second projection maps). Multiplication is given by (z, y)(y, x) = (z, x). The
unit map is u(x) = (x, x). The inversion is defined by (y, x)−1 = (x, y).

Example 2.3.9 (Equivalence relation). An equivalence relation R on X becomes
a groupoid with s, t : R → X the two projections and product (x, y)(y, z) = (x, z)

whenever (x, y), (y, z) ∈ R. The identity for x ∈ X is (x, x). Thus, every equiva-
lence relation R ⊂ X ×X gives a groupoid [R⇒ X].

Example 2.3.10 (Group). Any group can be considered as a special case of a
groupoid. If we have a group G, then we take G0 = ∗, G1 = G, the source (and
target) map is the unique map G→ ∗, the unit map u(∗) = 1G, multiplication and
inversion are the same as in the group G. So we have a groupoid [G⇒ ∗].
More generally, given a collection of points, a collection of groups over those points
is a groupoid. So a group can be thought as a groupoid with only one object and a
groupoid can be thought as a group with many objects.

2.4 The fundamental groupoid of a topological space

In this section we will introduce the fundamental groupoid of a topological space
and in order to do that we shall first describe a path category PX of the topological
space. Let X be a topological space. A path in X is just a continuous function I :=

[0, 1] → X. But composition of paths might not be associative in general, so one
needs to either use homotopy classes of paths or Moore paths as reparametrisation
to repair it. Moore paths are parametrised paths fα : [0, r]→ X for real numbers
r ≥ 0 (see [9]). Though these do not have inverses and don’t form a groupoid,
Moore paths do form a category as we will now explain (see [9] for all details).
The composition of Moore paths is associative as we will see below.
A path component of X is an equivalence class of X under the equivalence relation
which makes x equivalent to y if there is a path from x to y. Reparametrization
as used above is consistent with taking equivalence classes (see [9]).
So we define a category PX, the path category of the topological space X which
has as objects the points of X, and for any x, y ∈ X, the set PX(x; y) is the set
of Moore paths from x to y .
Composition of paths is defined as follows and written additively: for α : [0, t0]→
X and β : [0, t1] → X we set: β + α : [0, t0 + t1] → X. The identity in PX(x, x)

is the zero path 0x on the degenerate interval [0, 0]. Finally, addition of paths is
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associative since if γ, β, α are paths of lengths r, q, p respectively, then γ+ (β+α)

is defined if and only if (γ + β) + α is defined, and both paths are given by

t 7→


α(t), 0 6 t 6 p,

β(t− p), p 6 t 6 p+ q,

γ(t− p− q), p+ q 6 t 6 p+ q + r

Thus, the category PX of Moore paths on X is not a groupoid since if α is a path
in X of positive length then there is no path β such that β + α is a zero path.
We will work with Moore paths and call them simply paths here, but we will
use reparametrisation to the unit interval in what follows to simplify notations if
necessary (see also [9]).
Now we introduce an equivalence relation on PX(x, y) = HomPX(x; y). We will
say that two paths α, β are homotopic rel endpoints x, y if there exists a homotopy
of paths between them (see [9]).
We use the notation F : α ∼ β to mean that F is a homotopy rel endpoints from
α to β. This is an equivalence relation because:

• (Reflexivity) There is a unique homotopy of length 0 from α to α.

• (Symmetry) If F : α ∼ β is a homotopy of length q, then −F , defined by
(s, t) 7→ F (s, q − t), is a homotopy β ∼ α of length q.

• (Transitivity) If F : α ∼ β, G : β ∼ γ are homotopy of length q, q′ respec-
tively where α, β, γ are of length r, then the sum of F and G
G+ F : [0, r]× [0, q + q′] −→ X

(s, t) 7→

F (s, t) , 0 6 t 6 q,

G(s, t− q) , q 6 t 6 q + q′

is continuous by gluing continuous functions and is a homotopy α ∼ γ of length
q + q′.
So, α ∼ β if we can construct a continuous family of paths from x to y such that
the first of those paths is just α and the last is β. The equivalence classes of paths
from x to y are called homotopy classes of paths from x to y.

Definition 2.4.1. The fundamental groupoid ΠX of a topological space X is the
groupoid whose objects are the points of X and whose morphisms x → y are
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homotopy classes of paths from x to y. Thus, the fundamental groupoid of a space
X is a groupoid ΠX with Ob(ΠX) = X and HomΠX(x, y) = HomPX(x, y)/ ∼.

The set of homotopy classes of paths forms a groupoid, where the set of objects
is the set X, (ΠX)0 = X and the set of morphisms is the set of homotopy classes
of paths in X denoted by (ΠX)1. This groupoid [(ΠX)1 ⇒ X] has a source map
defined by s([α]) = α(0) and a target map by t([α]) = α(1). Composition is
induced by concatenation of paths

α′ + α(t) =

α(2t) , t ≤ 1
2

α′(2t− 1) , t > 1
2

The unit u(x) at x ∈ X is defined by the constant path [x] and the inverse is
defined by [α]−1 = [α−1] where α−1(t) = α(1 − t). So the fundamental groupoid
ΠX is a groupoid.
If we restrict to a single x0 ∈ X, then the collection of homotopy classes of paths
in X that start and end at x0 is a group: the fundamental group π1(X, x), based
at x0. So the isotropy groups of the fundamental groupoid are the fundamental
groups of the space, and are all isomorphic if the space is connected.

Theorem 2.4.2. There is a functor Π : Top −→ Grpd from the category of
topological spaces to the category of groupoids, which sends a topological space X
to its fundamental groupoid ΠX.

Proof. Let f : X → Y be a map of spaces and Pf : PX → PY the corresponding
functor of paths categories. Suppose first of all that α, β are two homotopic paths
in X of length r from x to x′. Then there is a map F : [0, r] × I −→ X such
that F0 = α, F1 = β and F (0, t) = x, F (r, t) = x′ for all t ∈ I. The composite
f ◦ F : [0, r]× I −→ Y is a homotopy between f ◦ α and f ◦ β, f ◦ α ∼ f ◦ β.
If α, β are equivalent paths in X from x to x′, then there are constant paths r, s
such that r + α, s+ β are homotopic r + fα = f(r + α) ∼ f(s+ β) = s+ fβ and
so fα is equivalent to fβ. Thus we have a well defined function

Πf : ΠX −→ ΠY

[α] 7→ [fα]

Πf([α]) = [f ◦ α],

which is a morphism between the groupoids ΠX and ΠY . Now we have successfully
created our functor Π : Top −→ Grpd : given a space X it gives its fundamental
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groupoid ΠX and given a continuous f : X −→ Y it gives the morphism Πf :

ΠX → ΠY as constructed above.

2.5 Covering groupoids

The theory of covering spaces is one of the most beautiful theories in classical
algebraic topology. In this section we will extend the study of coverings of spaces
to the case of general groupoids and give some definitions and theorems of coverings
of groupoids. We will use the sources [9], [31].

Definition 2.5.1. Given a topological space X, a covering space of X is a space
X̃ together with a map p : X̃ → X such that there exists an open cover {Uα} of X
such that for each α, p−1(Uα) is a disjoint union of open sets in X̃ each of which
maps homeomorphically onto Uα by p.

Definition 2.5.2. Let X and Y be two topological spaces with a covering space
p : X̃ → X. Consider a map f : Y → X. Then, the map f̃ : Y → X̃ is said to be
a lift to f if p ◦ f̃ = f .

Definition 2.5.3. Let G be a groupoid and x be an object in G. Define the star of
x, denoted St(x) or StG(x), to be the set of morphisms of G with source x. Here
we write π(G, x) = G(x, x) for the group of automorphisms of the object x.

Definition 2.5.4. Let p : G̃ −→ G be a morphism of groupoids. We say p is
a covering morphism if for each object x̃ of G̃ the restriction of p : StG̃(x̃) −→
StG(px̃) is bijective. In such a case, we call G̃ a covering groupoid of G. The
covering morphism p is called connected if both G̃ and G are connected.

Remark 2.5.5. A covering morphism p : G̃ → G of groupoids is called transitive if
both groupoids G̃ and G are transitive.

Proposition 2.5.6. [46] Let p : (G̃, e′) → (G, e) be a covering of groupoids, then
the induced map p : π(G̃, e′)→ π(G, e) is injective.

Proposition 2.5.7. [31] If p : X̃ → X is a covering of spaces, then the induced
functor Πp : ΠX̃ → ΠX is a covering of groupoids.

Example 2.5.8. Let p : X̃ −→ X be a covering map, let A be a subset of X and
let Ã = p−1(A). Then the induced morphism Πp : ΠÃ −→ ΠA is a covering of
groupoid.
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Proof. Let x̃ ∈ Ã and let p(x̃) = x. For each path α in X with initial point x, let α̃
denote the unique covering path of X̃ with initial point x̃. If the final point of α is
in A, then the final point of α̃ is in Ã. Also, the equivalence class of α̃ depends only
on the equivalence class of α by path lifting property. So the function [α] 7→ [α̃]

is inverse to the restriction of p which maps St(x̃) 7→ St(x). Thus we proved the
bijectivity of the restriction map of p, so it is a covering groupoid.

The next definition is from the source [31].

Definition 2.5.9. Let p : G̃ −→ B be a covering of groupoids. For an object
x ∈ G, let Fx denote the set of objects of G̃ such that p(x̃) = x, then p−1(St(x))

is the disjoint union over x̃ ∈ Fx of St(x̃). Define the fiber translation functor
T = T (p) : B → G as follows. For an object x ∈ B, T (x) = Fx. For a morphism
f : x → x′ of B , T (f) : Fx → Fx′ is specified by T (f)(e) = e′, where e′ is the
target of the unique g in St(e) such that p(g) = f .

For a covering space p : E → B and a path f : b→ b′, T (f) : Fb → Fb′ is given by
T (f)(e) = g(1) where g is the path in E that starts at e and covers f .

2.5.1 Group actions and groupoid actions

After having defined covering spaces and covering groupoids, we would like to
classify the maps between theses objects . To do so, we need to give a brief detour
by considering the theory of group actions and how we can generalise this to obtain
the notion of groupoid actions. Let us first recall some basic definitions.

Definition 2.5.10. Let G be a group, and X a set.

1. A (left) action of a group G on a set X is a function π : G×X → X such
that e.x = x and (g′g).x = g′(gx) for all x ∈ X.

2. The stabilizer or isotropy group Gx of a point x is the subgroup of G with
elements {g|gx = x}.

3. An action is free or semiregular if all stabilizers are trivial.

4. An action is transitive if for every pair of elements x and x′ ∈ X, there is a
group element g ∈ G such that gx = x′.

5. An action is regular if it is both free and transitive.
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The set X with a G-action is called a G-set.

Definition 2.5.11. Let G be a group, and let X and Y be G-sets. A G-map
φ : X → Y is a set function that respects the G-set structure, i.e. such that
φ(gx) = gφ(x) for all x ∈ X and g ∈ G. If φ is also a bijection, we call it an
isomorphism of G-sets.

Definition 2.5.12. Let G be a group. The orbit category of G, denoted O(G) is
defined to be the category with objects the G-sets G/H and morphisms the G-maps
between them. These G-sets are called canonical orbits.

It is possible to generalize the notion of group actions to groupoids. Since a group
action is a functor from a group G to a category Set, where the objects are all
small sets and arrows are functions between them, it is natural to define a groupoid
action as a functor Ψ from a groupoid G to Set.

Definition 2.5.13. [46] Form the category A with objects all triples (G,X, ·),
where G is a group, X a set, and · : G × X → X is a group action. Given
two objects (G,X, ·) and (G′, X ′, ·′), we define a morphism (α, φ) : (G,X, ·) →
(G′, X ′, ·′) whenever α : G→ G′ is a homomorphism and φ : X → X ′ is a G-map
satisfying φ(g · x) = α(g) ·′ φ(x) for all g ∈ G and x ∈ X. We call a morphism
in this category a map of group actions, and an isomorphism, an isomorphism of
group actions.

Definition 2.5.14. Let G be a groupoid. An action of G on a set S consists of
a set S, a function w : S −→ Ob(G), and a partial function G × S � S defined
as (g, s) 7→ g · s, which for each x, y ∈ Ob(G), assigns to an element (g, s), where
g ∈ HomG(x, y) and s ∈ w−1(x), an element g · s ∈ w−1(y).
The following rules are to be satisfied:

• If x ∈ Ob(G), s ∈ w−1(x), then 1x · s = s

• If g ∈ HomG(x, y), h ∈ HomG(y, z), s ∈ w−1(x), then (h · g) · s = h · (g · s)

We also say G acts on S via w, and that S is a G-set.
The action of the groupoid G on the set S is said to be transitive if for all x, y in
Ob(G), s ∈ w−1(x), t ∈ w−1(y), there is a g ∈ HomG(x, y) such that g · s = t.
If s ∈ w−1(x), the group of stabilizes of S is the subgroup Gs of G of elements g
such that g · s = s.
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An action is free (or semi-regular) if all stabilizers are trivial. So if g · s = s

implies g = e, that is, if Gs = e for every s ∈ S.

Definition 2.5.15. [9] Let G be a group and Γ be a groupoid with G acting on
the left. The semidirect product groupoid Γ o G has object set Ob(Γ) and arrows
x → y the set of pairs (γ, g) such that g ∈ G and γ ∈ Γ(g · x, y). The sum of
(γ, g) : x→ y and (δ, h) : y → z in Γ oG is defined to be

(δ, h) + (γ, g) = (δ + h · γ, hg).

Definition 2.5.16. Let p : G̃ −→ G be a covering morphism of groupoids, and let
S = Ob(G̃), w = Ob(p), then we obtain an action of the groupoid G on the set S
via a morphism w : S −→ Ob(G).

Corollary 2.5.17. The projection p : G n S −→ G, given on objects by w : S →
Ob(G) and on elements by (s, g) 7→ g, is a covering morphism of groupoids.

Proof. It is clear from the definition above that p is a morphism of groupoids.
Also p is a covering morphism, because if g ∈ HomG(x, y), s ∈ w−1(x), then (s, g)

is the unique element of G n S which has source s and projects to g.

Proposition 2.5.18. The groupoid GnS is connected if and only if the action is
transitive.

Proof. Here we need only to note that (G n S)(s, t) is non-empty if and only if
there is a g in G such that g · s = t.

2.5.2 The classification of coverings of groupoids

Given a groupoid G, we want to classify all its coverings and the maps between
them. In order to do this, we should clarify the notion of a map between coverings
of groupoids. Since classification in mathematics is always done up to isomorphism
type, we will show how two coverings of groupoids can be isomorphic. Now we
shall start with the following theorem and in the whole section we will use May’s
book as the main source [31].

Definition 2.5.19. A covering p : G̃ −→ G of groupoids is regular if p(π(G̃, e)) is
a normal subgroup of π(G, b) and it is universal if p(π(G̃, e)) = {e}, for each object
e ∈ G̃, where b = p(e).
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Corollary 2.5.20. A 1-connected covering groupoid of G covers every covering
groupoid of G. So a 1-connected covering groupoid of G is called a universal cov-
ering groupoid of G.

Proof. The proof is shown in [9].

Theorem 2.5.21 (The fundamental theorem of covering groupoid theory). Let
p : G̃ −→ G be a covering of groupoids, and f : H −→ G be a functor. Choose x0 ∈
H and let b0 = f(x0) and e0 ∈ Fb0 in G̃. Then there exists a functor g : H −→ G̃
such that g(x0) = e0 and p ◦ g = f if and only if f(π(H, x0)) ⊂ p(π(G̃, e0)) in
π(G, b0). When this condition holds, there is a unique such functor g.

Proof. It’s shown in [31].

Definition 2.5.22. let p : G̃ −→ G and f : H −→ G be coverings of a groupoid
G. A map g : G̃ −→ H of coverings of G is a functor g such that the following
diagram of functors is commutative:

G̃ g //

p
��

H

f��
G

Then we say that g is a map of coverings over H.

Lemma 2.5.23. A map g : G̃ −→ H of coverings of G is itself a covering of H.

Proof. The proof is immediate from 2.5.22 of covering groupoids and it’s shown
in [31].

After we see that the map g : H −→ G̃ is a covering in the above lemma, we can
rewrite the theorem in this way:

Theorem 2.5.24. [31] Let p : G̃ −→ G and f : H −→ G be coverings of G
and choose base objects x ∈ G, x̃ ∈ G̃, and x′ ∈ H such that p(x̃) = x = f(x′).
There exists a morphism g : G̃ −→ H of coverings with g(x̃) = x′ if and only
if p(π(G̃, x̃)) ⊂ f(π(H, x′)). In particular, two maps of covers g, g′ : G̃ −→ H
coincide if g(x̃) = g′(x̃) for any one object x̃ ∈ G̃.

Proof. The proof is shown in [31].
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Proposition 2.5.25. Let p : G̃ −→ G and f : H −→ G be coverings, g : G̃ → H
is an isomorphism if and only if the displayed inclusion of subgroups of π(G, x)

is an equality, for x ∈ G. Therefore, G̃ and H are isomorphic if and only if
p(π(G̃, x̃)) and f(π(H, x′)) are conjugate whenever p(x̃) = f(x′). Furthermore, if
the map g : G̃ −→ H of coverings exists, the universal cover of G is unique up to
isomorphism and covers any other cover.

Definition 2.5.26. Let G be a groupoid. We define Cov(G) to be the category with
objects the covering groupoids of G, and morphisms the maps of coverings. So we
write Cov(G) to denote the category of coverings of G; when G is understood, and
we write Cov(G̃,H) for the set of maps G̃ −→ H of coverings of G.

We have the following theorem

Theorem 2.5.27. Let p : G̃ −→ G and p′ : H −→ G be coverings, choose a base
object x ∈ G, and let A = π(G, x). If g : G̃ −→ H is a map of coverings, then g

restricts to a map Fx −→ F ′x of A-sets, and restriction to fibers specifies a bijection
between Cov(G̃,H) and the set of A-maps Fx −→ F ′x .

Proof. Let e ∈ Fx and f ∈ π(G, x). By definition, fe is the target of the map
f̃ ∈ StG(e) such that p(f̃) = f . Clearly g(fe) is the target of g(f̃) ∈ StH(g(e))

and p′(g(f̃)) = p(f̃) = f . Again by definition, this gives g(fe) = fg(e). The
theorem above shows that restriction to fibers is an injection on Cov(G̃,H). To
show surjectivity, let α : Fx → Fx′ be a A-map. Choose e ∈ Fx and let e′ = α(e).
Since α is an A-map, the isotropy group p(π(G̃, e)) of e is contained in the isotropy
group p′(π(G, e′)) of e′. Therefore the previous theorem ensures the existence of a
covering map g that restricts to α on fibers.

2.6 Topological groupoids

Until now, we have only considered groupoids G = [G1 ⇒ G0], in the category
Sets of sets, where G0 and G1 are sets. In most interesting cases, they could
be topological spaces or smooth manifolds for example and its maps will have
more structure. So in the first case when all the sets are topological spaces, the
structure maps are continuous functions, it will be a groupoid in Top and it is
called a topological groupoid, where Top is a topological category or a category
of topological spaces and defined as the category whose objects are topological
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spaces and whose morphisms are continuous maps. Also a smooth groupoid (or
Lie groupoid) is a groupoid in Diff where all the objects are smooth i.e. C∞-
manifolds, all maps are smooth and, in addition, the source map is a smooth
submersion map. So a groupoid with a topological structure (resp. a differential
structure) is called a topological groupoid (resp. a Lie groupoid).
Here we will be concerned mainly with the case where theG0 andG1 are topological
spaces, in which case G = [G1 ⇒ G0] is a topological groupoid. At the beginning
we define and describe the internal structure of topological groupoids. Then we
will determine some examples of topological groupoids. (See also [34], [12], [36]) .

Definition 2.6.1. A topological groupoid G is a small topological category such
that all morphisms are invertible. Here small category means there is a set of
objects Ob(G) and a set of morphisms Mor(G), and maps s, t : Mor(G)→ Ob(G),
u : Ob(G) → Mor(G) with appropriate properties. Topological means that all the
maps s, t, u,m, i, are continuous functions.
A topological groupoid is called open if the source map s : Mor(G) → Ob(G) is
open. Moreover, it is called an etale groupoid if in addition s (and so also t) is a
local homeomorphism.

The internal categorical structure of a topological groupoid:
As we have seen in the definition above a topological groupoid G = [G1 ⇒ G0]

consists of the following:

1. the object space G0 is a topological space,

2. the arrow space G1 is a topological space,

3. (source)
a source map which is a continuous map s : G1 → G0,

4. (target)
a target map which is a continuous map t : G1 → G0,

5. (unit)
a unit map which is a continuous map u : G0 → G1,

6. (multiplication)
a multiplication map which is a continuous map m : G1 ×s,t G1 → G1,
(g, h) 7→ g · h

7. (inverse) an inversion map which is a homeomorphism i : G1 → G1.
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These maps satisfy the following identities:

• s(u(x)) = x = t(u(x))

• u(t(g)) · g = g = g · u(s(g))

• s(g · h) = s(h) , t(g · h) = t(g)

• (g · h) · k = g · (h · k)

• s(i(g)) = t(i(g)) = s(g) , g · i(g) = u(t(g)) and i(g) · g = u(s(g))

s(g)
g
33 t(g)

i(g)
ss

, x
u(x)−−→ x , z

h
//

h·g
&&

y g
// x

Let us look at a few examples of topological groupoids related to the examples of
groupoids in the last section.

Example 2.6.2 (Topological space). Let X be a topological space. Let G0 = G1 =

X, all structure maps are the identity map. This turns any topological space into
a topological groupoid G = [X ⇒ X].

Example 2.6.3 (Topological group). Let G be a topological group. Let G0 = ∗,
G1 = G, s and t the unique maps G → ∗, u(∗) = 1G, m and i the multiplication
and inversion in G. This turns any topological group into a topological groupoid
G = [G⇒ ∗].
The disjoint union of topological groups is a topological groupoid which is not a
topological group.

Example 2.6.4 (Pair groupoid). (see example 2.3.8) The pair groupoid Pair(X)

is viewed as topological groupoid with the set of objects Pair(X)0 = X and arrows
Pair(X)1 = X×X. The source and target map are the first and second projection.
The multiplication is unique, because any x, x′ ∈ X there is exactly one arrow from
x to x′. Note that any continuous map p : Y → X induces a homomorphism of
pair groupoids p×p : Pair(Y )→ Pair(X). Furthermore, if p is open surjection we
may define the kernel groupoid Ker(p) over Y , which is a topoligical subgroupoid of
Pair(Y ), consisting of all pairs (y, y′) ∈ Y × Y with p(y) = p(y′), i.e. Ker(p)1 =

Y ×X Y .
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Example 2.6.5 (Fundamental groupoid of a topological space). Let X be a topo-
logical space. Consider the topological groupoid

[(ΠX)1
t
//

s //
X]

where Π1 = [α] : α : [0, 1]→ X the set of homotopy classes of paths in X. For an
arrow [α] ∈ Π1(X) its source and target are given by s([α]) = α(0), t([α]) = α(1)

while the composition of two arrows is just concatenation of paths [α][β] = [α.β].

Example 2.6.6 (Covering groupoid). Let U = {Ui}i∈I be an open cover of a
locally compact space X. We use the notation Uij = Ui ∩Uj for i, j ∈ I. Consider
the groupoid [

⊔
i,j∈I

Ui,j ⇒
⊔
i∈I
Ui], whose object set is

⊔
i

Ui.

Here the source map is the inclusion Ui,j → Uj and the target map is the inclusion
Ui,j → Ui. Composition Ui,j×s,tUj,k → Ui,k is defined as (x, y) 7→ x(= y). The unit
is the identity Ui 7→ Uii = Ui. The inverse map is the identity Ui,j → Uj,i. This
groupoid is called the covering groupoid associated to the cover U of X. Moreover
this covering groupoid is an etale groupoid, as s and t are local homeomorphisms.

Example 2.6.7 (Action groupoid). Suppose a topological group G acts from the
left on a topological space X. Then we construct the translation groupoid GnX =

[G×X ⇒ X], with the objects sets (GnX)0 = X and the arrows set (GnX)1 =

G × X, (g, x) ∈ G × X. The source map is defined by projection s(g, x) := x

and the target is given by the action map t(g, x) := g · x. The multiplication is
(g′, y)(g, x) = (g′g, x), if y = g ·x or we can just say (g′, g ·x)(g, x) = (g′g, x). The
unit map is defined by u(x) := (e, x) and the inversion by (g, x)−1 = (g−1, g · x).
This groupoid is a topological groupoid if the action is continuous.



Chapter 3

Morphisms and Equivalences of

Groupoids

In this work, we deal with the homomorphisms of topological groupoids and we
will give the definition of equivalences between them. Also, in this chapter we will
present a broader concept of maps between topological groupoids, namely gener-
alized maps and Hilsum-Skandalis maps, that will define equivalent bicategories.

3.1 Homomorphisms between groupoids

As the definition of a groupoid can be put in categorical terms, it is natural to
define morphisms between groupoids in the following way by using [22] and [34]
and provide a concept of natural transformation which gives a way of "moving
between the images of two functors".

Definition 3.1.1. A homomorphism between two groupoids G and K is a functor
φ : G → K; it is given by a map on objects G0 → K0 and a map on arrows
G1 → K1, which together preserve the groupoid structure, i.e. φ(s(g)) = s(φ(g)),
φ(t(g)) = t(φ(g)), φ(1x) = 1φ(x) and φ(gh) = φ(g)φ(h), for any g, h ∈ G1 with
s(g) = t(h) and any x ∈ G0.

Definition 3.1.2. A homomorphism between topological groupoids G and K is
by definition a continuous functor φ : G → K given by two continuous maps
φ0 : G0 → K0 and φ1 : G1 → K1 that together commute with all the structure

26
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maps of the groupoids G and K.
Let G and K be topological groupoids. A homomorphism φ : G → K is a continuous
functor between topological gropoids. Specifically, φ is defined by two continuous
maps, φ0 : G0 → K0 and φ1 : G1 → K1 which satisfy the functor relations:

• If x ∈ G0, then φ1 takes the identity map on x in G to the identity map on
φ0(x) in K; φ(1x) = 1φ(x)

• If g ∈ G1, then φ preserves the source s and target t of g;

φ0(s(g)) = s(φ1(g)), φ0(t(g)) = t(φ1(g))

• If g1 and g2 are two arrows in G1 such that t(g1) = s(g2), then the ar-
rows φ1(g1) and φ1(g2) can be composed in K1 since φ preserves the source
and target. Moreover, φ1 respects the composition: m(φ1(g1), φ1(g2)) =

φ1(m(g1, g2)). It follows from the above that φ preserves inverses as well.

After we have defined the homomorphisms of topological groupoids, now we will
define induced groupoids and transformations between these homomorphisms of
topological groupoids. A natural transformation gives a way of "moving between
the images of two functors".

Definition 3.1.3. Let G be a topological groupoid and φ : X → G0 a continuous
map. Then we can define the induced groupoid φ∗(G) as the groupoid φ∗(G) =

[X ×G0 G1×G0 X ⇒ X] in which the arrows from x to y are the arrows in G from
φ(x) to φ(y), i.e.

φ∗(G)1 = X ×G0 G1 ×G0 X,

= {(x, g, y)|φ(x)
g // φ(y)}

and the multiplication is given by the multiplication in G, and defined as (x, g, y)(m,h, n) =

(x, gh, n) for any x, y,m, n ∈ X and g, h ∈ G1.
The space φ∗(G)1 can be constructed by two pull-backs as in the diagram

φ∗(G)1
//

��

X

φ

��
G1 ×G0 X

pr1 //

��

G1
t //

s

��

G0

X
φ // G0
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The lower pull-back has a natural continuous structure and if the composition
t◦pr1 is an open surjection, then the upper pull-back has also a natural continuous
structure. It follows that the square

φ∗(G)1
//

(s,t)

��

G1

(s,t)

��
X ×X φ×φ // G0 ×G0

is a pull-back of topological spaces. Therefore φ∗(G) is a topological groupoid when-
ever the map t ◦ pr1 : G1 ×G0 X → G0 is an open surjection. The map φ induces
a homomorphism of topological groupoids φ : φ∗(G)→ G.

Example 3.1.4 (Restricted). Let G be a groupoid and U open in G0. Then the
induced groupoid of U → G0 is the subgroupoid of arrows between elements of U .

Definition 3.1.5. A natural transformation T between two morphisms φ, ψ : G →
K of topological groupoids is a continuous map T : G0 → K1 such that for each
x ∈ G0, T (x) is an arrow from φ(x) to ψ(x) in K1, T (x) : φ(x) → ψ(x) and for
each arrow g : x→ y in G1 the square

φ(x)
T (x) //

φ(g)

��

ψ(x)

ψ(g)

��
φ(y)

T (y) // ψ(y)

commutes and the identity ψ(g)T (x) = T (y)φ(g) holds. We write φ ∼T ψ to
indicate that T is such a transformation from φ to ψ.

We can compose two transformations as follows.

Definition 3.1.6. Let φ, ψ, ρ : G → K be topological groupoid homomorphism, T
and S are two natural transformations between them as follows T : φ → ψ and
S : ψ → ρ. We define S ◦T : φ→ ρ to be the transformation with S ◦T : G0 → K1

given by

(S ◦ T )(x) = (φ(x)
T (x) // ψ(x)

S(x) // ρ(x)) = S(x) ◦ T (x)

Definition 3.1.7. Given two functors φ, ψ : G → K, a natural isomorphism
T : φ⇒ ψ is a natural transformation that has an inverse i.e., a natural transfor-
mation S : ψ ⇒ φ such that T ◦ S = 1φ and S ◦ T = 1ψ.
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In particular, the homomorphisms from G to K are themselves the objects of a
groupoid with transformations as arrows. In fact, topological groupoids, homo-
morphisms and natural transformations form a 2-category, denoted G.

3.2 Equivalences of topological groupoids

Here we summarize some of the notions of equivalence of groupoids. These notions
come directly from category theory, some amendments have to be made as we work
in the continuous case [34]

Definition 3.2.1. (Isomorphisms) Two topological groupoids G and K are said to
be isomorphic if there are homomorphisms φ : G → K and ψ : K → G such that
φ ◦ ψ and ψ ◦ φ are the identity morphisms of K and G respectively.

Now we give a definition of equivalence of categories and that will lead us to define
equivalences of topological groupoids.

Definition 3.2.2. (Equivalences of categories) Two categories C and D are said
to be equivalent if there are functors F : C → D and G : D → C, and natural
isomorphisms τ : F ◦G→ idD and σ : G ◦ F → idC.
Alternatively, this notion of equivalence can be described as follows. Two categories
C and D are equivalent if there is a functor F : C → D with the following two
properties:

(i) F is essentially surjective; that is, for any object y of D there is an object x
of C and an isomorphism F (x)→ y in D; and

(ii) F is full and faithful; that is, for any two objects x and x′ in C the functor
F induces a bijection

F : C(x, x′)→ D(F (x), F (x′))

between the set of all arrows from x to x′ in C and the set of all arrows from
F (x) to F (x′) in D.

These two ways of describing equivalence of course apply to groupoids and they are
coincide for general categories. However, for general categories in sets the notions
of equivalence and essential equivalence are the same. This applies to particular
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case in which the categories are groupoids. But when some extra structure is in-
volved like continuity or smoothness, these two notions are not the same any more.
Now we want to define the morphisms of groupoids which induce an equivalence
of topological groupoids. We follow the work in[34], [32] and [36].

Definition 3.2.3. (Strong equivalence of topological groupoids) Let G and K be
topological groupoids. A homomorphism φ : G → K of topological groupoids is a
strong equivalence of topological groupoids if there exists a morphism ψ : K → G of
topological groupoids and natural transformations T and T ′ such that T : φ ◦ ψ →
idK and T ′ : ψ ◦ φ→ idG.

Definition 3.2.4. (Weak equivalences of topological groupoids) Let G and K be
topological groupoids. A homomorphism ε : G → K is called a weak equivalence
(or essential equivalence) of topological groupoids if it satisfies the following two
modified conditions for being essentially surjective, and full and faithfull:

(ES) the map t ◦ pr1 : K1 ×K0 G0 → K0, sending a pair (h, x) with s(h) = ε(x) to
t(h), is an open surjection, where K1×K0 G0 is the pullback along the source
map s : K1 → K0

K1 ×K0 G0
pr1 // K1

t // K0

(FF) the following diagram is a pullback diagram

G1
ε //

(s,t)
��

K1

(s,t)
��

G0 ×G0 ε×ε
// K0 ×K0

The first condition implies that for any object y ∈ K0, there exists an object
x ∈ G0 whose image ε(x) can be connected to y by an arrow h ∈ K1. The second
condition implies that for all x, z ∈ G0, the functor ε induces a homeomorphism
ε : G(x, z)→ K(ε(x), ε(z)) between the set of all arrows from x to z in G and the
set of all arrows from ε(x) to ε(z) in K.
Basically this means that ε is an equivalence of categories (where the first condi-
tion implies essential surjectivity and the second full and faithful).
However, for general categories the notions of equivalence and essential equiva-
lence are the same. This applies to the particular case in which the categories
are groupoids. Even so when some extra structure is involved like continuity or
smoothness, these two notions are not the same anymore. An essential equivalence
implies the existence of the inverse functor using the axiom of choice but not the
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existence of continuous functors. To define generalised maps, we need to invert
the essential equivalences.

Example 3.2.5 (see example 2.3.8). Let X be a topological space and Pair(X)

its pair groupoid. The homomorphism Pair(X) → 1, to the interval one point
groupoid consisting of one object and one arrow, is a strong and essential equiva-
lence.

Example 3.2.6. Let p : X → Y be an open surjective map between topological
spaces. We view Y as the unit groupoid and consider the kernel groupoid Ker(p),
which is a topological subgroupoid of Pair(X) consisting of all Pairs (y, y′) ∈ X×X
with p(y) = p(y′), X×Y X ⇒ X. The map p induces a weak equivalence ker(p)→
Y .

Definition 3.2.7. Let φ : G → K be a homomorphism of topological groupoids
such that φ0 : G0 → K0 and φ1 : G1 → K1

(i) φ is called open if φ1 and (hence) φ0 are open maps.

(ii) φ is called essentially surjective if the map spr2 : G0 ×K0 K1 → K0 is an
open surjection. (Here the pullback is along t : K1 → K0; the condition is
of course equivalent to the condition that tpr1 : K1 ×K0 G0 → K0 is an open
surjection, where the pullback is along s.)

(iii) Consider the pullback

P //

��

K1

(s,t)
��

G0 ×G0 φ0×φ0
// K0 ×K0

φ is called faithful (resp. full, fully faithful if the map ((s, t), φ1) : G1 → P

is an inclusion (resp. an open surjection, an homeomorphism) of spaces.

Proposition 3.2.8. Every strong equivalence of topological groupoids is an essen-
tial equivalence.

Proof. Let φ : G → K be a strong equivalence, with ψ : K → G and T and T ′ as
in the definition of strong equivalence above. We want to prove that the map

t ◦ pr1 : K1 ×K0 G0 −→ K0
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in the definition of weak equivalence above is an open surjection. We can see this
because any y ∈ K0 is the image of (T (y), ψ(y)). To this end, consider the arrow
T (y0)−1h0 : φ(x0)→ φ(ψ(y0)) in K. Since φ is an equivalence of categories, there
is a unique arrow g0 : x0 → ψ(y0) in G with φ(g0) = T (y0)−1h0.
In particular, the fibred product G0 ×K0 K1 ×K0 G0 of t ◦ pr1 along φ : G0 → K0

is a topological space, which fits into a pull-back diagram

G0 ×K0 K1 ×K0 G0
pr2 //

(pr3,pr1)

��

K1

(s,t)

��
G0 ×G0 φ×φ

// K0 ×K0

since φ is an equivalence of categories, the map G1 −→ G0×K0K1×K0G0, sending
g to (s(g), φ(g), t(g)), is a bijection.

The converse of 3.2.8 does not hold for topological groupoids.

Example 3.2.9 (see example 3.2.6). Let p : X → Y be an open surjective map.
Consider the topological groupoid X ×Y X ⇒ X defined by the pull-back of topo-
logical spaces

X ×Y X
pr //

pr

��

X

p

��
X

p // Y

and the essential equivalence X ×Y X → Y induced by p, regarding Y as the unit
topological groupoid. Any morphism Y → X ×Y X amounts to choose a section
of p. If X is non-trivial principal bundle over Y , then such sections do not exist
and X ×Y X → Y is not strong equivalence of topological groupoids.

3.3 Morita equivalence

Morita equivalence is the smallest equivalence relation between topological groupoids
that they are equivalent whenever there exists an essential equivalence between
them. Firstly, We will give a definition of a notion of weak pull-back and describe
some properties of essential equivalences which will be necessary to define Morita
equivalence of topological groupoids. Until the end of the chapter we follow the
exposition in [12] and [36].
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Definition 3.3.1. Given morphisms of topological groupoids ψ : K → G and
φ : L → G the weak pullback or (fibered product) K×G L is a groupoid whose space
of objects is

(K ×G L)0 = K0 ×G0 G1 ×G0 L0

consisting of triples (x, g, y) with x ∈ K0, y ∈ L0 and g is an arrow in G1 from
ψ(x) to φ(y). An arrow between (x, g, y) and (x′, g′, y′) is a pair of arrows (k, l)

with k ∈ K(x, x′), l ∈ L(y, y′) such that g′ψ(k) = φ(l)g.

ψ(x)
g //

ψ(k)
��

φ(y)

φ(l)
��

ψ(x′)
g′ // φ(y′)

The space of arrows can be identified with

(K ×G L)1 = K1 ×ψ◦ss G1 ×tφ◦s L1 = {(k, g, l)|ψ ◦ s(k) = s(g), φ ◦ s(l) = t(g)}

which can be obtained by two fibered products

K1 ×ψ◦ss G1 ×tφ◦s L1
//

��

L1

s

��
K1 ×ψ◦ss G1 ×tφ L0

//

pr1

��

K0 ×ψs G1 ×tφ L0
pr3 //

pr1

��

L0

K1
s // K0

If at least one of the two morphisms is a continuous map on objects, then the weak
pullback K ×G L is a topological groupoid. In this case, the diagram of topological
groupoids

K ×G L
pr1 //

pr2
��

K
ψ
��

L φ // G

commutes up to a natural transformation and it is universal with this property.

The next proposition describes some properties of essential equivalences and the
weak pull-back which will be necessary to define Morita equivalence of groupoids.

Proposition 3.3.2. Let G, K and L be topological groupoids.
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(i) For two homomorphisms φ, ψ : L → G, if there is a transformation T : φ→
ψ, then φ is an essential equivalence if and only if ψ is.

(ii) If for an essential equivalence φ : L → G the map t ◦ pr1 of the essentially
surjective condition has a section, then φ is an equivalence.

(iii) The composition of two essential equivalences is an essential equivalence.

(iv) For any essential equivalence φ : L → G and any homomorphism ψ : K → G
the weak pull-back

K ×G L
pr2 //

pr1
��

L
φ
��

K ψ // G

exists and pr2 is an essential equivalence for which (K ×G L)0 −→ L0 is an
open surjection.

Definition 3.3.3. Two topological groupoids G and K are Morita equivalent if
there exists a topological groupoid J and essential equivalences ε and σ

K J σ //εoo G

Remark 3.3.4. By using the definition of the weak pullback 3.3.1 and the property
in Proposition 3.3.2 (iv), if there exist a Morita equivalence G ∼M K between two
topological groupoids G and K that defines an equivalence relation between them.
Indeed to check that we need to see the transitivity condition, suppose that we
have another Morita equivalence K ∼M L we have a third topological groupoids
between them and all the arrows are essential equivalences

G H σ //εoo K K H′ σ′ //ε′oo L

We get the following diagram

H×K H′
pr1

��

pr2

��
H

ε

��

σ

��

H′
ε′

��
σ′

��
G K L

were H×H′ is the weak pullback of σ and ε′, and observe that G and L are weakly
equivalent via ε ◦ pr1 and σ′ ◦ pr2. Hence, the weak fibered product of H and H′

over K provides a Morita equivalence between G and L.
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Example 3.3.5. Let X be a connected topological space. Consider ΠX, the fun-
damental groupoid of X and π1(X, x) the fundamental group at x of X. There is a
Morita equivalence ΠX ∼M π1(X, x) for x ∈ X, where we regard the fundamental
group π1(X, x) as a groupoid over the singleton {x}. In this case, we can see this
as the following

ΠX π1(X, x)? _oo id //π1(X, x) .

Example 3.3.6. Let G be a topological group acting freely and properly on a
topological space X. Consider the action groupoid G n X over X. There is a
Morita equivalence G nX ∼M X/G, where we regard the quotient space X/G as
the unit groupoid. So,

GnX X/G? _oo id //X/G.

3.4 Generalised maps

Generalized maps and Hilsum-Skandalis maps give different notions of morphisms
between topological groupoids. The composition of these maps is not strictly
associative. The category of topological groupoids and functors can be seen as
a 2-category G with natural transformations as 2-morphisms. We will show a
construction producing equivalent bicategories Gpd and Gpd′ in which the mor-
phisms are respectively generalized maps and bibundles. We describe in this sec-
tion the generalised maps obtained by localisation of essential equivalences (see
[21] and [42]). Considering the bicategory G of topological groupoids, functors
and natural transformations, the bicategory Gpd is obtained as the bicategory of
fractions of G when inverting the essential equivalences E, Gpd = G(E−1).

Definition 3.4.1. A generalised map from K to G is a pair of morphisms

K J φ //εoo G

such that ε is an essential equivalence. We denote a generalised map by (ε, φ).
So a generalised map from a topological groupoid K to a topological groupoid G is
obtained by first replacing K by another groupoid J essentially equivalent to it and
then mapping J into G by an ordinary morphism.

Definition 3.4.2. Two generalised maps from K to G, K J φ //εoo G and

K J ′ φ′ //ε′oo G , are isomorphic if there exists a groupoid L and essential equiv-
alences J L β //αoo J ′
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J
ε

vv

φ

((K ∼T L

α

OO

β
��

∼T ′ G

J ′
ε
′

gg

φ
′

66

where α and β are essential equivalences and the diagram commutes up to natural
transformations. We write (ε, φ) ∼ (ε′, φ′).

In other words, there are natural transformations T and T ′ such that the gener-
alised maps

K L φα //εαoo G

K L φ′β //ε′βoo G

satisfy εα ∼T ε′β and φα ∼T ′ φ′β

Remark 3.4.3. Let K, G and J be topological groupoids

1. If K J φ //εoo G and K J φ′ //εoo G are two generalised maps with φ ∼T
φ′, then (ε, φ) ∼ (ε, φ′).

2. If K J φ //εoo G and K J φ′ //ε′oo G are two generalised maps and δ :

J ′ → J an essential equivalence with φ′ = φδ and ε′ = εδ, then (ε, φ) ∼
(ε′, φ′).

There is an equivalence relation between the diagrams above. A 2-isomorphism is
an equivalence class of diagrams. We write (ε, φ) ∼ (ε′, φ′).

Proposition 3.4.4. The collection of all topological groupoids as objects, gener-
alised maps as morphisms and 2-isomorphisms is a bicategory. This bicategory
will be denoted by Gpd.

Proof. The proof of these facts can be found in [42] with more details and the
explicit description of this bicategory Gpd:

• Objects are topological groupoids.

• A 1-morphism from K to G is a generalised map K J φ //εoo G such that
ε is an essential equivalence.
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• A 2-morphism from K J φ //εoo G to K J φ′ //ε′oo G is given by equiva-
lence class diagrams

J
ε

vv

φ

((K ∼T L

α

OO

β
��

∼T ′ G

J ′
ε
′

gg

φ
′

66

where L is a topological groupoid and, α and β are essential equivalences.

All the 2-morphisms in Gpd are isomorphisms.
For each topological groupoid G the unit arrow (id, id) is defined as the generalised
map G G id //idoo G . The composition of two arrows

(G J ′ ϕ //δoo L) ◦ (K J φ //εoo G)

is given by the generalised map:

K J ×G J ′
ϕpr3 //εpr1oo L

where pr1 and pr3 are the projections in the following weak pullback of topological
groupoids:

J ×G J ′
pr2 //

pr1
��

J ′ ϕ //

δ
��

L

J φ //

ε
��

G

K

The morphism pr1 is an essential equivalence since it is the weak pullback of the
essential equivalence δ. Then ε ◦ pr1 is an essential equivalence. This composition
is associative up to isomorphism.
The unit arrow is a left and right unit for this multiplication of arrows up to
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isomorphism. The composition (G G id //idoo G) ◦ (K J φ //εoo G) is the gener-
alised map K J ×G G

pr3 //εpr1oo G . Since ϕ = δ = id implies ϕpr3 = φpr1 and
pr1 is an essential equivalence. Then pr3 ∼T φ ◦ pr1, where T is the natural trans-
formation that makes the weak pull back square commute and pr1 is an essential
equivalence. We have that (ε ◦ pr1, φ ◦ pr1) ∼ (ε, φ) as it is easily seen by the
diagram

J ×G G
ε◦pr1

{{

pr3

##
pr1 ∼T

��

K G

J
ε

cc

φ

;;

So there is an equivalence relation between the isomorphism diagrams of gen-
eralised maps. If we set a 2-isomorphism as an equivalence class of diagrams,
then groupoids, generalised maps and isomorphisms form a bicategory. Vertical
and horizontal composition of diagrams are defined in a natural way using weak
pull-backs and they satisfy the coherence axioms for a bicategory. The proof of
these facts can b found in [42] where one can find also the general construction of
bicategory of fractions.

Remark 3.4.5. Note that the invertible generalized maps are exactly the Morita
equivalences.

3.5 Hilsum-Skandalis maps

Another approach to generalised morphisms between topological groupoids is given
by Hilsum-Skandalis maps. Although the relation with 2-morphisms of generalised
maps is not immediate, the bicategory arising from this point of view is equivalent.
In this setting morphisms are defined by right principle bibundles of topological
groupoids. Such a map between topological groupoids G and K is an isomorphism
class of principal G-K-bibundles. A Hilsum-Skandalis map between G and H is
an isomorphism class of principle G-H-bibundles. These maps can be composed;
they form a category in which two topological groupoids are isomorphic if and
only if they are Morita equivalent. To give more details, we will define actions of
groupoids on topological spaces and bibundles between two topological groupoids.
Here we use [12], [36] and [42].
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3.5.1 Actions of topological groupoids on topological spaces

Definition 3.5.1. Let X be a topological space, G a topological groupoid and µ :

X → G0 a continuous map. A right action of G on X is a continuous map

X ×tG0
G1 → X, (x, g) 7→ xg

defined on X×tG0
G1 given by the following pullback of topological spaces along the

target map:
X ×tG0

G1
pr1 //

pr2

��

X

µ

��
G1

t // G0

such that µ(xg) = t(g), x1µ(x) = x and (xg)h = x(gh), for any x ∈ X, g, h ∈ G1

with µ(x) = t(g) and s(g) = t(h).
Analogously, we have a left action by considering the pullback G1 ×sG0

X along
the source map and demanding µ(xg) = s(g), 1µ(x)x = x and h(gx) = (hg)x, for
(x, g) ∈ G1 ×sG0

X and h ∈ G1 composable with g.

Definition 3.5.2. Given two right G-actions on X and Y with µ1 : X → G0 and
µ2 : Y → G0, a map f : X → Y is equivariant if µ1 = µ2 ◦ f and f(xg) = f(x)g

for (x, g) ∈ X ×tG0
G1.

This map is invariant if f(gx) = f(x).

Definition 3.5.3. The translation groupoids X o G associated to a right action
of G on X is given by (X o G)0 = X and (X o G)1 = X ×tG0

G1, where the source
map is given by the action s(x, g) = xg and the target map is just the projection
t(x, g) = x.

Example 3.5.4 (Unit groupoid). Consider the groupoid enX given by the action
of the trivial group e on the topological space X. This is a topological groupoid
whose arrows are all units. In this way, any topological space can be considered as
a groupoid.

Example 3.5.5 (Multiplication). Let H be a subgroup of topological group G.
Then H acts by multiplication on G.

Example 3.5.6 (Point groupoid). Let G be a topological group. Let • be a point.
Consider the groupoid Gn• where G acts trivially on the point. This is a topological
groupoid with exactly one object • and G is the space of arrows in which the maps
s and t coincide. We call G n • the point groupoid associated to G. In this way,
any group can be considered as a groupoid.
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Definition 3.5.7. The double translation groupoid KnX oG associated to a left
action of K on X and a right action of G on X which commute with each other
is given by (K nX o G)0 = X and (K nX o G)1 = K1 ×sK0

X ×tG0
G1 where the

space of arrows is obtained by the following pullback of topological spaces:

K1 ×sK0
X ×tG0

G1
//

��

K1

s

��
X ×tG0

G1
pr1 //

pr2

��

X τ //

ρ

��

K0

G1
t // G0

then K1×sK0
X×tG0

G1 = {(h, x, g)|s(h) = τ(x) and t(g) = ρ(x)} with s(h, x, g) = x

and t(h, x, g) = hxg−1. The composition of arrows is given by (h, x, g)(h′, x′, g′) =

(hh′, x′, gg′).

3.5.2 Bibundles

Definition 3.5.8. Let G be a topological groupoid. A right G-bundle over a space
B is a space X with a right G-action corresponding to µ : X → G0 and invariant
map π : X → B; that is π(xg) = π(x) for x ∈ X and g ∈ G1 with µ(x) = t(g).
Left bundles are defined similarly.

X

µ

��

π

��

G1

s

��

t

��
B G0

We say that a right G-bundle is principal if :

(i) the map π is open surjective.

(ii) the map
X ×tG0

G1
α // X ×B X, α(x, g) = (xg, x)

is a homeomorphism.

Example 3.5.9 (Groupoid). A groupoid G is itself a left (and a right) G-bundle
with µ = s : G1 → G0 and π = t : G1 → G0 (and with µ = t and π = s). Both
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bundles are principal and actions commute. This bundle sometimes called the unit
principal G-bundle.

We can define principal G-bundles pull back as following

Definition 3.5.10. If π : X → B is a principal G-bundle and f : N → Bis a map
then the pullback

f ∗X := N ×B X → N

is a principal G-bundle as well

N ×B X
pr1 //

pr2
��

N

f
��

X π // B

The action of G on f ∗X is the restriction of the action of G on the product N ×X
to N ×B X ⊂ N ×X.

Definition 3.5.11. A morphism between principal G-bundles π : X → B and
π′ : Y → B′ is an equivariant map if f : X → Y is commutative with all structure
maps.

Definition 3.5.12. Let G and K be topological groupoids. A KG-bibundle is a
space X that carries two bundle structures such that the corresponding two actions
commute.
There is a right K-bundle structure over µl : X → G0 with moment map µr :

X → K0, and a left G-bundle structure over µr : X → K0 with moment map
µl : X → G0. These two actions commute; that is
(gx)k = g(xk) for g ∈ G1, x ∈ X, k ∈ K1 whenever either side is well defined

G1

s

��

t

��

X

µr

��
µl

��

K1

s

��

t

��
G0 K0

Corollary 3.5.13. Let G be a topological groupoid, ξ1 → N , ξ2 → N two principal
G-bundles with anchor maps µ1 and µ2 respectively. Any G-equivariant map ψ :

ξ1 → ξ2 inducing the identity on N is homeomorphism.

Definition 3.5.14. A morphism X → Y of KG-bibundles is a continuous map
which is equivariant with respect to both actions.
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Definition 3.5.15. A KG-bibundle X is right principal if the right G-bundle τ :

X → K0 is principal. In this case, X ×tG0
G1 is homeomorphic to X ×K0 X and

X/G is homeomorphic to K0 denoted by (K, X,G). Analogously, for left principal.

Definition 3.5.16. A KG-bibundle X is biprincipal if both left and right bundles
ρ and τ are principal.

Example 3.5.17 (see example 3.5.9). The groupoid G makes the biprincipal GG-
bibundle.

Definition 3.5.18. Two KG-bibundles X and Y are isomorphic if there is a home-
omorphism f : X → Y that intertwines the maps X → G0, X → K0 and also
intertwines the K and G actions. In other words, f(hxg) = hf(x)g and τ = τ ′f ,
ρ = ρ′f . We write (K, X,G) ∼ (K, Y,G).

X
ρ

~~

τ

  
f

��

G0 K0

Y
ρ′

``

τ ′

>>

Remark 3.5.19. Every morphism of right principal KG-bibundles X → Y is an
isomorphism

Definition 3.5.20. A Hilsum-Skandalis map |(K, X,G)| is an isomorphism class
of right principal KG-bibundles.

Definition 3.5.21. Two topological groupoids are Morita equivalent if they are
isomorphic in the localisation of the category of groupoids as equivalences. In
particular, G and H are Morita equivalent, if there is a bibundle P : G → H with
the action of G being principal.

Definition 3.5.22. Let X be a two-sided principal KG-bibundles. We say that G
and K are Morita equivalent and X is a Morita equivalence between G and K.

Proposition 3.5.23. The collection of all topological groupoids as objects, right
principal bibundles as morphisms and isomorphisms of bibundles as 2-morphisms
forms a bicategory.

Proof. The proof can be found in [28].
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The bicategory will be denotedGpd′. All 2-morphisms inGpd′ are isomorphisms.
For each groupoid G the unit arrow is defined as the GG-bibundle

G1

s

��

t

��
G0 G0

The left and right actions of G onG1 are given by the multiplication in the groupoid
G. The multiplication of arrows (K, X,G) and (K, Y,G) is given by the bibundle
(K, (X ×G0 Y )/G,L) where X ×G0 Y is the pullback of topological spaces

X ×G0 Y
pr1 //

pr2

��

X

ρX

��
Y

τY // G0

and in addition, G acts on the topological space X ×G0 Y on the right (x, y)g =

(xg, g−1y).
The orbit space is a KL-bibundle

(X ×G0 Y )/G

τ

��

ρ

��
L0 K0

where τ([x, y]) = τX(x) and ρ([x, y]) = ρY (y) .The left K-action is given by
k[x, y] = [kx, y] and the right L-action by [x, y]l = [x, yl]. This bibundle is right
principal. The multiplication is associative up to isomorphism.
The unit arrow (G, G1,G) is a left and right unit for this multiplication of arrows
up to isomorphism. We have that the bibundle (K, (X×tG0

G1)/G,G) is isomorphic
to (K, X,G) since the map

(X ×tG0
G1)/G →f X, f([x, y]) = xy

is a homeomorphism satisfying f(h[x, y]g) = hf([x, y])g. Hence there is a 2-
morphism f from (K, X,G) to the composition

(G, G1,G) ◦ (K, X,G) = (K, (X ×tG0
G1)/G,G)
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.

3.6 A biequivalence Γ : Gpd′ → Gpd of bicate-

gories

We will present a process to get a bijection from the category of topological
groupoids, generalized maps and isomorphisms to the category of topological
groupoids, right principal bibundles and equivariant homeomorphisms. We will
give an explicit construction of a bijective correspondence between generalised
maps and bibundles. In addition, we conjecture that Gpd′ is biequivalent to
Gpd. Recall that a homomorphism of bicategories is a generalisation of the no-
tion of a functor sending objects, morphisms and 2-morphisms of one bicategory
to items of the same types in the other one, preserving compositions and units up
to 2-isomorphism.

Definition 3.6.1. A homomorphism Γ: Gpd′ → Gpd is a biequivalence if the
functors Gpd′ (K,G) → Gpd (ΓK,ΓG) are equivalences for all objects K and G
of Gpd′ and if for every object L of Gpd there is an object K of Gpd′ such that
ΓK is equivalent to L in Gpd.

This process is described more in [12] and [44].

Definition 3.6.2. [12] Given a right principal KG-bibundle X:

X

τ

��

ρ

��
G0 K0

where ρ is a left K-bundle and τ is a right principal G-bundle, construct a gener-
alized map K K nX o G φ //εoo G where the double action groupoid KnX o G
is defined by (K nX o G)0 = X and (K nX o G)1 = K1 ×sτ X ×ρs G1, this space
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of arrows is obtained by the following pull-backs of topological spaces

K1 ×sτ X ×ρs G1
//

��

G1

s

��
K1 ×sτ X

pr2 //

pr1

��

X
ρ //

τ

��

G0

K1
s // K0

and it has the form (K n X o G)1 = {(k, x, g)|s(k) = τ(x) and s(g) = ρ(x)}
with s(k, x, g) = x and t(k, x, g) = kxg−1. The composition of arrows is given by
(k′, kxg−1, g′)(k, x, g) = (k′k, x, g′g) and the groupoid morphisms φ, ε are defined
on arrows by the projections

φ(k, x, g) = k, ε(k, x, g) = g

by taking the following morphisms ε and φ:

X
ε0 // K0 , ε0 = τ and K1 ×sK0

X ×tG0
G1

ε1 // K1 , ε1 = pr1

X
φ0 // G0 , φ0 = ρ and K1 ×sK0

X ×tG0
G1

φ1 // G1 , φ1 = pr3

since τ is a principal bundle, ε becomes an essential equivalence.

We will show that if (K, X,G) ∼ (K, Y,G) then the associated generalised maps
(ε, φ) and (ε′, φ′) are isomorphic.

Let f : X → Y be the equivariant homeomorphism that intertwines the bundles.
Define

f : K nX o G → K n Y o G

by f 0 = f on objects and f 1(h, x, g) = (h, f(x), g) on arrows. These maps com-
mute with all the structure maps by the equivalence of f . Since f 0 is a homeo-
morphism, it is in particular surjective and the space of arrows K1 ×sK0

X ×tG0
G1

is obtained from the following pullback of topological spaces:

K1 ×sK0
X ×tG0

G1
f1 //

(s,t)

��

K1 ×sK0
Y ×tG0

G1

(s,t)

��
X ×X f0×f0 // Y × Y

Then f is an essential equivalence. Also, as f intertwines the bundles, we have that
φ′ = φf , ε′ = εf and follows that (ε, φ) ∼ (ε′, φ′) homomorphism of bicategories
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by
Γ : Gpd′ → Gpd, Γ((K, X,G)) = (ε, φ)

as constructed above on morphisms and being the identity map on objects.
For 2-morphisms f : X → Y , we define Γ(f) as the following diagram:

K nX o G
ε

yy

φ

%%K K nX o G
id

OO

f
��

G

K n Y o G
ε
′

ee

φ
′

99

where f : K n X o G → K n Y o G is defined by f(x) = f(x) on objects and
f(h, x, g) = (h, f(x), g) on arrows. Since τ ′f = τ = ε0 and ρ′f = ρ = φ0 we have
that s(h) = τ ′(f(x)) and t(g) = ρ′(f(x)).

Conversely, given a generalized map from K to G

K J φ //εoo G

we construct an associated right principal KG-bibundle X

X

τ

��

ρ

��
G0 K0

where X is the quotient by the action of J on X̃ = J0 ×tG0
G1 ×tK0

K1 given by
the following pullbacks of topological spaces:

X̃

pr4

$$

//

��

pr2

&&
Jo ×Go G1

//

��

G1
s //

t

��

Go

Jo ×Ko K1
//

��

Jo
ε //

φ

��

Go

K1
t //

s

��

Ko

Ko
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The maps ρ and τ are induced in the quotient by ρ̃ = s ◦ pr4 and τ̃ = s ◦ pr2. The
action of τ on X̃ is given by ((a, b, d), j) 7→ (t(j), bφ(j), dε(j)). The left action of
K on X = X̃/J is given by

K1 ×sK0
X → X, (k, [a, b, d]) 7→ [a, bk−1, c, d]

and the right action of G by

X ×tG0
G1 → X, ([a, b, d], g) 7→ [a, b, dg].

If (ε, φ) ∼ (ε′, φ′) then the associated bibundles (K, X,G) and (K, Y,G) are iso-
morphic.
It can be proved that the correspondences give a weak equivalence of bicategories
(composition is only preserved up to 2-morphisms).

3.7 Strict maps

This explicit construction can be used to characterize the generalised maps that
come from a strict map. We follow the work in [12] and [36].
Any strict morphism φ : K → G can be viewed as a generalised map by

K K φ //idoo G

The corresponding bibundle is constructed by taking

X = (K0 ×tG0
G1 ×tK0

K1)/K

and considering the following identifications :

(K0 ×tG0
G1 ×tK0

K1)/K = K0 ×tG0
G1

[a, b, d] 7→ (t(d), bφ(d))
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this bibundle is isomorphic to

K0 ×tG0
G1

pr1

��

spr2

��
G0 K0

Proposition 3.7.1. [36] Let K J φ //εoo G be a generalised map and (K, ρ,X,G, τ)

the associated right principal bibundle. Then φ is an essential equivalence iff ρ is
principal.

Remark 3.7.2. Essential equivalences correspond to biprincipal bibundles.

In both bicategories Gpd and Gpd′, Morita equivalences are the invertible mor-
phisms up to a 2-isomorphism, i.e. the equivalences inGpd (orGpd′). IfK ∼M G,
let K J δ //εoo G be the associated generalised map in Gpd with ε and δ essen-
tial equivalences, then the inverse generalised map is G J ε //δoo K .
In the category Gpd′, let

X

τ

��

ρ

��
G0 K0

be the biprincipal KG-bibundle representing the Morita equivalence, then the in-
verse biprincipal GK-bibundle is

X

ρ

��

τ

��
K0 G0

where the new actions are obtained from the original ones composing with the
inverse: the left action of G on X is given by g ∗ x = xg−1 induced by the right
action of G on the original bibundle. Similarly, the left action of K induces a right
action in the inverse bundle.

Proposition 3.7.3. [36] Let (K, ρ,X,G, τ) be a right principal KG-bibundle and
(ε, ϕ) = Γ((K, X,G))its associated generalised map. Then (ε, ϕ) ∼ (id, φ) if and
only if τ has a section.
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In other words, a generalised map comes from a strict map iff when seen as a
bibundle, the right principal G-bundle has a section.
If a strict map ε : K → G is an essential equivalence, regarded as a generalised
map it will be invertible. The inverse of a generalized (strict) map

K J ε //idoo G

is the generalised map G J id //εoo K which will not always come from a strict
map.
The groupoids G and K are Morita equivalent but they are not equivalent by a
natural transformation.

Example 3.7.4. If G is a topological groupoid and X a topological space, the
(principal) G-X-bibundles are exactly the (principal) G-bundles over X.

Example 3.7.5. Let X and Y be topological spaces. An action of Y on X is just
a continuous map X → Y . If p : X → Y is continuous map, then (X, p, idX) is a
principal Y -bundle over X. Conversely, let (E, p, w) be a principal Y -bundle over
X. Then w is a homeomorphism. In particular, w is a Y -equivariant map between
(E, p, w) and (X, p ◦ w−1, idX). We can thus identify the isomorphism classes of
principal Y -bundles over X with the continuous maps from X to Y .

Example 3.7.6. If X and Y are topological spaces, then the Hilsum-Skandalis
maps from X to Y are precisely the continuous maps from X to Y .



Chapter 4

Homotopy Theory of Topological

Groupoids

We look for notion of homotopy which is invariant under the Morita equivalences
and generalizes the notion of natural transformation and ordinary homotopy. We
will introduce a new notion of 1-homotopy between continuous functors which
includes the notions of natural transformation and ordinary homotopy and the
resulting is 2-category denoted by H. Then we introduce a notion of essential
1-homotopy equivalence for the arrows in this 2-category and we prove that the
classW of essential 1-homotopy equivalences admits a bicalculus of fractions. The
equivalences in this bicategory of fractionsH(W−1) will determine our 1-homotopy
equivalences: a generalized map is 1-homotopy equivalence if it is an equivalence
in H(W−1) .
Now we define a path in a topological groupoid G due to Haefliger and recall the
notions of equivalence and homotopy of G. In this chapter we follow some of the
material in [12], [11] and [8].

4.1 Haefliger paths

Definition 4.1.1. Given a topological groupoid G, we define the G-path (or a path
in G) from x to y over a subdivision of the unit interval 0 = t0 ≤ t1 ≤ · · · ≤ tn = 1

as a sequence
(g0, α1, g1, · · ·, αn, gn) (4.1.1)

where

50
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1. αi : [ti−1, ti]→ G0 are paths in G0 , 1 6 i 6 n and

2. gi ∈ G1, 0 6 i 6 n are arrows in G such that;
s(g0) = x and t(gn) = y

s(gi) = αi(ti) for all 0 < i 6 n

t(gi) = αi+1(ti) for all 0 6 i < n

We call (g0, α1, g1, · · ·, αn, gn) a G-path c from x = s(g0) to y = t(gn).
Also we say that G is connected if and only if for any two points x, y ∈ G there
exists a G-path from x to y.
The inverse of a G-path c = (g0, α1, g1, · · ·, αn, gn) over the subdivision
0 = t0 ≤ ... ≤ tk = 1 is a G-path

c−1 = (g′0, α
′
1, g
′
1, · · ·, α′n, g′n)

over the subdivision 0 = t′0 ≤ ... ≤ t′k = 1, where t′i = 1 − ti, g′i = g−1
k−i and

c′i(t) = ck−i+1(1− t).
So the terminal point of c is the initial point of c−1.

Now we define an equivalence relation ∼ on the set of G-paths, called equivalence
of G-paths by the following operations:

Definition 4.1.2. Let (g0, α1, g1, · · ·, αi, gi, · · ·, αn, gn) be a G-path from x to y

(i) If we add the identity arrow 1α(s) by taking a new point s ∈ [ti−1, ti] in the
subdivision, take the restrictions two paths α′i and α′′i of the corresponding
path αi to the new intervals [ti−1, s] and [s, ti], then we will get that these
two G-paths

(g0, α1, g1, · · ·, αi, gi, · · ·, αn, gn) (4.1.2)

and
(g0, α1, g1, · · ·, α′i, 1α(s), α

′′
i , · · ·, αn, gn) (4.1.3)

are equivalent.

(ii) If we give a map hi : [ti−1, ti] → G1 with the source s ◦ hi = αi, and replace
the following:
αi by t ◦ hi, gi−1 by hi(ti−1)gi−1 and gi by gi(hi(ti))−1

we will have the following G-paths

(g0, α1, g1, · · ·, gi−1, αi, gi, · · ·, αn, gn) (4.1.4)
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and

(g0, α1, · · ·, hi(ti−1) ◦ gi−1, t ◦ hi, gi ◦ (hi(ti))
−1, · · ·, αn, gn) (4.1.5)

are equivalent.

So if we have two G-paths (g0, α1, g1, · · ·, αn, gn) and (g′0, α
′
1, g
′
1, · · ·, α′n, g′n) with

t(gn) = s(g′n), we can concatenate these two G-paths into a new G-path

g0, α1, g1, · · ·, αn, h, α′1 · ··, α′n, g′n,

where h is an arrow from s(gn) to t(g′n)

Remark 4.1.3. [12] Note that the equivalence classes of G-paths correspond to
isomorphism classes of generalized maps from I to G, where I is the unit groupoid
associated to the interval I = [0, 1].

Now we want to define the concept of deformation between two G-paths of topo-
logical groupoids.

Definition 4.1.4. A deformation between two G-paths from x to y of the same
order (g0, α1, g1, · · ·, αn, gn) and (g′0, α

′
1, g
′
1, · · ·, α′n, g′n) is given by:

• homotopies Hi : [ti−1, ti] × I −→ G0 , with (Hi)0 = αi and (Hi)1 = α′i for
i = 1, · · ·, n ,and

• paths γi : I −→ G1, with gi = (γi)0 to g′i = (γi)1 for i = 1, · · ·, n− 1,

such that (g0, (H1)s, · · ·, (γn−1)s, (Hn)s, gn) is a G-path for each s ∈ I which satisfy
the following:

(a) H0(−, 0) = x and Hn(−, 1) = y

(b) s ◦ γi = Hi(−, 1) and t ◦ γi = Hi(−, 0) for all i = 1, ..., n

So we can see a deformation as a continuous family of G-paths of order n from x

to y, t ∈ [0, 1].

Definition 4.1.5. Two G-paths between x and y are homotopic if one can be
obtained from the other by a sequence of equivalences and deformations.
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Definition 4.1.6. The multiplication of homotopy classes of G-paths is defined by

[(g′0, α
′
1, g
′
1, ···, α′n, g′n)][(g0, α1, g1, ···, αn, gn)] := [(g0, α1, g1, ···, αn, g′0gn, α′1, ···, α′n, g′n)],

where g′0gn is the multiplication of two composable arrows in G and the paths αi
are reparametrized to the new subdivision.
The inverse of the homotopy class of the G-path [(g0, α1, g1, · · ·, αn, gn)] from x to
y is the class of the G-path from y to x

[(g−1
n , α′1, · · ·, g−1

1 , α′k, g
−1
0 )]

over the same subdivision, where α′i : [ti−1, ti]→ G0 is given by

α′i(t) = αk−i+1(tk−i+1 + (
tk−i − tk−i+1

ti−1 − ti
)(ti−1 − t)).

Definition 4.1.7. The fundamental groupoid ΠG of a topological groupoid G =

[G1 ⇒ G0] is the groupoid whose objects are the objects of G and arrows are the
homotopy classes of G-paths with the multiplication as defined above in 4.1.6, such
that

[(g′0, α
′
1, g
′
1, ···, α′n, g′n)][(g0, α1, g1, ···, αn, gn)] := [(g0, α1, g1, ···, αn, g′0gn, α′1, ···, α′n, g′n)],

where g′0gn is the multiplication of two composable arrows in G and the paths αi
are reparametrized to the new subdivision.
If we restrict to a single point x0 ∈ G0, then the collection of homotopy classes of
paths in G that start and end at x0 is a group, the isotropy group at x0, denoted
by Π(G)x0x0 = π1(G, x0). It consists of G-homotopy classes of (G, x0)-loops (or loops
in the pointed groupoid (G, x0)), which are by definition the G-homotopy classes of
G-paths from x0 to x0.

Definition 4.1.8. Let G be a topological groupoid and x0 ∈ G0 such that G0 is
locally path-connected. A G-loop in G0 with the base point x0 thus consists of
a sequence (αi)

n
i=1 of paths in G0 and a sequence (gi)

n
i=0 of arrows in G1 with

s(g0) = t(gn) = x0 and αi : [ti−1, ti] → G0 such that any path αi is from t(gi−1)

to s(gi) for all i = 1, ..., n. We denote this G-loop by (g0, α1, g1, · · ·, αn, gn) and
denotes Ω(G, x0) the set of all G-loops in G0 with base point x0.
Now we will define an equivalence relation on Ω(G, x0) which we will call simply
equivalence. It is the smallest equivalence relation such that
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(i) a G-loop
(g0, α1, g1, · · ·, αn, gn)

is equivalent to G-loop

(g0, α1, g1, · · ·, (gi+1 ◦ gi), αi+1, · · ·, αn, gn)

if αi is a constant path for some 1 ≤ i ≤ n and

(ii) a G-loop
(g0, α1, g1, · · ·, αn, gn)

is equivalent to the G-loop

(g0, α1, · · ·, gi−1, (αi−1αi), · · ·g1, α0)

if gi ∈ G1 for some 0 ≤ i ≤ n.

Here αi−1αi denotes the usual concatenation of αi−1 and αi.

A deformation of a G-loop (g0, α1, g1, · · ·, αn, gn) to G-loop (g′0, α
′
1, g
′
1, · · ·, α′n, g′n)

consists of homotopies
Hi : [0, 1]2 → G0

from Hi(0,−) = αi to Hi(1,−) = α′i (i = 1, ..., n) and paths

hi : [0, 1]→ G1

from gi to g′i (i = 0, 1, ..., n) which satisfy

(a) s ◦ hi = Hi−1(−, 1) and t ◦ hi = Hi(−, 0) for all i = 1, 2, ..., n and

(b) H0([0, 1], 0) = Hn([0, 1], 1) = {x0}.

Two G-loops in Ω(G, x0) are homotopic if one can pass from one to another in a
sequence of deformations and equivalences. With the multiplication induced by the
concatenation, the homotopy classes of G-loops in G0 with the base point x0 form
a group π1(G, x0) called the fundamental group of a topological groupoid G with the
base point x0.
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Let K be another topological groupoid with K0 locally path-connected, and let
φ : G → K be a continuous functor. Let y0 = φ0(x0). The functor φ gives a
function

φ] : Ω(G, x0)→ Ω(K, y0)

defined by

φ](g0, α1, g1, · · ·, αn, gn) = (φ(g0)(φ0 ◦ α1)...(φ0 ◦ αn)φ(gn))

This function maps homotopic G-loops to homotopic K-loops, hence it induces a
map

φ∗ : π1(G, x0)→ π1(K, y0)

which is clearly a homomorphism of groups.

Proposition 4.1.9. The fundamental groupoid ΠG of a topological groupoid G =

[G1 ⇒ G0] is a topological groupoid.

Proof. As we have seen above the G-paths in G give a sequence of paths and arrows
over a subdivision 0 = t0 ≤ ... ≤ tn = 1. Now we want to see that

ΠG = [(ΠG)1 ⇒ (ΠG)0]

satisfies all the topological groupoid axioms. First, the set of objects (ΠG)0 = G0

is the space G0 of objects of the topological groupoid which is a topological space.
Then we have the set of arrows (ΠG)1 which is the set of G-paths denoted by
PG and a sequence of deformations and equivalences of any two G-paths in PG,
so it is the set of homotopy classes of G-paths in G (with fixed end points), so
(ΠG)1 = PG/ ∼. Thus this set is the quotient space of G-paths on G given by the
surjective map that sends each G-path c to its homotopy class [c]. So it is clear
that (ΠG)1 is a topological space.
For any G-path c = (g0, α1, ..., αn, gn) from x to y, we have that ΠG = {(x, [c], y); [c]

is the homotopy class of G-paths that start at x and end at y}.
The source map is s(x, [c], y) = x and the target map is t(x, [c], y) = y, therefore
both of them are continuous maps, because they are projection maps. The unit
map is defined as u(x, [c]x, x) = x and obviously continuous. Finally we see that
the multiplication and the inversion maps, which are both defined above in 4.1.6,
are continuous maps. So it is clear that ΠG becomes a topological groupoid.
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Note that, until the end of this chapter we will refer to the fundamental groupoid
ΠG of any topological groupoid G by G∗, a morphism φ : K → G of topo-
logical groupoids induces a morphism φ∗ : K∗ → G∗ between the fundamental
groupoids given by φ∗ = φ on objects and φ∗([g0, α1, g1, ..., αn, gn]) = [φ(g0), φ ◦
α1, φ(g1), ..., φ ◦ αn, φ(gn)] on arrows.

Proposition 4.1.10. [33]

(1) If ε : K → G is an essential equivalence, then ε∗ : K∗ → G∗ is an essential
equivalence as well.

(2) If K ∼M G then K∗ ∼M G∗ and the fundamental groups are isomorphic.

(3) The fundamental groupoid G∗∗ of G∗ is isomorphic to G∗.

4.2 The homotopy bicategories

Consider the category of topological groupoids and continuous functors. In the
first section we will introduce a bicategory H and define W which is the set of
essential 1-homotopy equivalences in H, then we will define a bicategory H(W−1)

having the same objects as H but inverse morphisms of morphisms in W have
been added as well as more 2-morphisms.

4.2.1 The bicategory H

Now we introduce a notion of strict 1-homotopy between continuous functors. We
follow the exposition of Hellen in [12] but in case of topological case.

Definition 4.2.1. Let G and K be topological groupoids. The two continuous
morphisms φ : K → G and ψ : K → G are 1-homotopic if their induced mor-
phisms φ∗ and ψ∗ between the fundamental groupoids are equivalent by a natural
transformation. We write φ 'H ψ.

Since a natural transformation from φ∗ to ψ∗ associates to each object x in
(G∗)0 = G0 an arrow gx = [g0, α1, g1, ..., αn, gn] in (G∗)1 from φ(x) to ψ(x), this
notion of homotopy corresponds to the intuitive idea of continuously deforming φ
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to ψ by morphisms from K to G along G-paths.

We define a natural a 2-morphism Ha : φ ⇒ ψ as a natural transformation a :

φ∗ → ψ∗

Ha

��

K •

φ

��

ψ

EE

��

• G

��
a

��

K∗ •

φ∗

��

ψ∗

EE• G∗

Topological groupoids, functors and 1-homotopies H : φ ⇒ ψ form a bicategory
H. All the 2-morphisms in H are isomorphisms.
Horizontal and vertical compositions of 2-morphisms are given by the horizontal
and vertical compositions of natural transformations, a∗b∗ and a∗ · b∗ respectively.
This notion of homotopy generalizes the concepts of natural transformation and
ordinary homotopy, we have the following

Proposition 4.2.2. Let φ, ψ : K → G be morphisms of topological groupoids.

(1) If φ ∼T ψ where T is a natural transformation, then there is a 2-morphism
H : φ⇒ ψ in H.

(2) If φ 'F ψ where F is an ordinary homotopy, then there is a 2-morphism
H : φ⇒ ψ in H.

Proof. Let (g0, α1, g1, ..., αn, gn) be a K-path from x to y in K. We will construct
in each case a natural transformation a : K0 → G1∗ satisfying

ψ([g0, α1, g1, ..., αn, gn])a(x) = a(y)φ([g0, α1, g1, ..., αn, gn].

(1) If T : K0 → G1 is a natural transformation with T (x) : φ(x) → ψ(x) an
arrow in G1, define a natural transformation a : K0 → G1∗ by a(x) = [T (x)].
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We have that a(x) is an arrow in G1∗ from s(T (x)) = φ(x) to t(T (x)) = ψ(x)

verifying the required equality.

(2) An ordinary homotopy F : K × I → G with F0 = φ and F1 = ψ determines
for each x ∈ K0 a path Fx : I → G0 from φ(x) to ψ(x). Define a : K0 → G1∗

by a(x) = [1φ(x), Fx, 1ψ(x)].

•
�� Fx // •

��

Definition 4.2.3. Let G and K be topological groupoids. A strict 1-homotopy
equivalence is a morphism φ : K → G such that there exists another morphism
ϕ : G → K and 2-isomorphisms φϕ ⇒ idG and ϕφ ⇒ idK in H. We will say that
two groupoids K and G have the same strict 1-homotopy type if they are equivalent
in the bicategory H.

However this notion of homotopy is not invariant under Morita equivalence. We
need to add more morphisms and 2-morphisms to the bicategory H and define our
notion of Morita homotopy in an extended bicategory.

We can characterize the strict 1-homotopy equivalences as the morphisms that
induce an equivalence between the fundamental groupoids. Recall that G is the
2-category of topological groupoids, functors and natural transformations.

Proposition 4.2.4. If φ : K → G is a 1-homotopy equivalence in H, then φ∗ :

K∗ → G∗ is an equivalence in G.

Proof. If we have ϕ : G → K, then we have the following diagram

G
H

��

ϕ

""
K

φ
33

idK
// K

then (ϕφ)∗ ∼a (idK)∗ where a : K0 → (K∗)1 is a natural transformation. Since
(ϕφ)∗ = ϕ∗φ∗ and (idK)∗ = idK∗ , we have that ϕ∗φ∗ ∼a idK∗ . In the same way
φ∗ϕ∗ ∼b idG∗ and φ∗ is an equivalence.
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Consider a 2-functor π : G→ G between 2-categories given by π(G) = G∗, π(φ) =

φ∗ and π(T ) = T∗, where T∗ : φ∗ ⇒ ψ∗ is a natural transformation defined in
the following way. For each x ∈ (K∗)0 = K0, we define T∗(x) : φ(x) → ψ(x)

as the arrow in G∗ given by T∗(x) = [T (x)]. This arrow satisfies the equality
ψ([g0, α1, g1, ..., αn, gn])T∗(x) = T∗(y)φ([g0, α1, g1, ..., αn, gn]). Then two morphisms
φ and ψ are 1-homotopic if their images by π are equivalent. All the equivalences
in G are 1-homotopy equivalences in H, but there are 1-homotopy equivalences
that do not come from equivalences in G.
Now we introduce the essential 1-homotopy equivalences as the morphisms that
induce an essential equivalence between the fundamental groupoids.

Definition 4.2.5. A morphism φ : K → G is an essential 1-homotopy equivalence
if φ∗ : K∗ → G∗ is an essential equivalence.

In this case, φ∗ defines an isomorphism between fundamental groups.
Let E be the set of essential equivalences in G and W the set of essential 1-
homotopy equivalences in H. We have that every equivalence in G is an essential
equivalence in G (see Proposition 3.2.8). We will see that it is also a 1-homotopy
equivalence in H.
Strong equivalences in G ⇒ Essential equivalences in G ⇒ Essential homotopy
equivalence in H

Strong equivalences inG⇒ 1-Homotopy equivalences inH⇒ Essential homotopy
equivalence in H

Proposition 4.2.6. If φ : K → G is an equivalence in G, then φ is a 1-homotopy
equivalence in H.

Proof. Let ψ : G → K be the inverse up to equivalence in G. Then φψ ∼T idG

and ψφ ∼T ′ idK. By Proposition 4.2.2(1) there are 2-morphisms H : φψ ⇒ idG

and H ′ : ψφ⇒ idK in H.

Proposition 4.2.7. For the bicategories G and H we have the following:

(1) Every essential equivalence in G is an essential 1-homotopy equivalence in
H.

(2) In H, all 1-homotopy equivalences are essential 1-homotopy equivalences
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Proof. If ε : K → G is an essential equivalence, then ε is an essential 1-homotopy
equivalence since it induces an essential equivalence between fundamental groupoids
by Proposition 4.2.2(1).
If φ : K → G is a 1-homotopy equivalence inH, then φ∗ : K∗ → G∗ is an equivalence
in G and φ is an essential 1-homotopy equivalence in H.

Lemma 4.2.8. For all ε : J → G and φ : K → G with ε being an essential
1-homotopy equivalence, there exists a groupoid P and morphisms δ : P → K and
ψ : P → J with δ an essential 1-homotopy equivalence such that the following
square commutes up to a 2-isomorphism:

P ψ //

δ
��

J
ε
��

K φ // G

Proof. We start by defining the weak homotopy pullback of P of the morphisms

J
ε
��

K φ // G

as follows. Objects are triples (x, [g0, α1, ..., αn, gn], y) where x ∈ J0, y ∈ K0 and
[g0, α1, ..., αn, gn] is a G-path from ε(x) to φ(y).
Arrows in P from (x, [g0, α1, ..., αn, gn], y) to (x

′
, [g
′
0, α

′
1, ..., α

′
n, g

′
n], y

′
) are pairs

(j, k) of arrows j ∈ J1 and k ∈ K1 such that

[g
′

0, α
′

1, ..., α
′

n, g
′

n][ε(j)] = [φ(k)][g0, α1, ..., αn, gn]

We observe that P is the ordinary weak pullback J ×G∗ K of the morphisms φ∗iK
and ε∗iJ . Since ε∗ is an essential equivalence and iJ is the identity on objects we
can assume that ε∗iJ is a continuous on objects and P is a topological groupoid.
The square

P p1 //

p3
��

J
ε
��

K φ // G

does not necessarily commute up to a 2-cell but it does when taking the induced
morphisms of the fundamental groupoids. Consider the weak pullback J∗ ×G∗ K∗
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of groupoids
J∗ ×G∗ K∗

π1 //

π3
��

J∗
ε∗
��

K∗
φ∗ // G∗

where ε∗π1 ∼ φ∗π3 and π3 is an essential equivalence. By the definition of weak
pullback and the explicit description of arrows in P and P∗, we have that
J∗ ×G∗ K∗ = P∗ , π1 = p1∗ and π3 = p3∗, then P∗ is the weak pullback of ε∗ and
φ∗. Since the weak pullback square commutes up to natural transformation, we
have that there is a 2-morphism H : εp1 ⇒ φp3 with p3 ∈ W .

Definition 4.2.9. Two topological groupoids K and G are Morita 1-homotopy
equivalent if there exist essential 1-homotopy equivalences:

K L θ //ωoo G

for a third topological groupoid L.

This defines an equivalence relation that we denote 'M . The transitivity property
follows from Lemma 4.2.8.

4.2.2 The bicategory H(W−1)

The objects of H(W−1) are topological groupoids. The morphisms from K to G
are formed by pairs (ω, φ)

K J φ //ωoo G

such that ω is an essential 1-homotopy equivalence. The composition of morphisms

(G J ′ φ′ //ω′oo L) ◦ (K J φ //ωoo G) is given by a morphism

K P φ′pr1 //ωpr2oo L
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where P is the weak homotopy pullback of ω′ and φ.
A 2-morphism from (ω, φ) to (ω′, φ′) is given by a class of diagrams:

J
ω

vv

φ

((K ⇓H L

u

OO

v
��

⇓H′ G

J ′
ω′

gg

φ′

66

where L is a topological groupoid, u and v are essential 1-homotopy equivalences
and H : ωu ⇒ ω′v and H ′ : φu ⇒ φ′v are 2-isomorphisms in H. The vertical
composition is strictly associative, but horizontal composition is only associative
up to the natural associativity isomorphism. The full details about the construc-
tion of bicategories of fractions and the description of the horizontal and vertical
composition will be found in [42].
The notion of 1-homotopy we propose corresponds to 2-morphisms in the bicate-
gory H(W−1). That is, we will say that two morphisms are 1-homotopic if there
is a 2-morphism between them:

Definition 4.2.10. Two morphisms (ω, φ) and (ω′, φ′) are 1-homotopic if there
exists a diagram as above

J
ω

vv

φ

((K ⇓H L

u

OO

v
��

⇓H′ G

J ′
ω′

gg

φ′

66

In this case, we write (ω, φ) ' (ω′, φ′) and we say that there is a 1-homotopy
between (ω, φ) and (ω′, φ′).
In particular, when ω and ω′ are essential equivalences, we have a notion of 1-
homotopy for generalised maps and when they are identities, we have a notion of
1-homotopy for strict maps.
Two objects K and G are equivalent in H(W−1) if there are morphisms (ω, φ)

from K to G and (θ, ψ) from G to K such that (ω, φ) ◦ (θ, ψ) is 1-homotopic to the
identity (idG, idG) and (θ, ψ) ◦ (ω, φ) ' (idK, idK).
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Proposition 4.2.11. [12] A morphism (ω, φ) is invertible up to a 2-isomorphism
in H(W−1) if and only if φ is an essential 1-homotopy equivalence. In this case,
the inverse of (ω, φ) is the morphism (φ, ω).

In other words, the definition of Morita 1-homotopy equivalence in above 4.2.9
amounts to equivalence in the bicategory H(W−1). So, we write K 'M G for
equivalence of objects in H(W−1). The 1-homotopy type of G is the class of G
under the equivalence relation 'M .
We show now that the 1-homotopy type is invariant under Morita equivalence.

Proposition 4.2.12. If K ∼M G, then K 'M G.

Proof. If K and G are Morita equivalent, then there is a topological groupoid J
and essential equivalences:

K J δ //εoo G

The maps ε and δ are also essential 1-homotopy equivalences by Proposition
4.2.7(1). Then the morphisms (ε, δ) and (δ, ε) are inverse up to a 2-isomorphism
in H. Then K is equivalent to G in the bicategory H(W−1).

4.3 Homotopy of Topological Groupoids

We will now define two notions of homotopy that will generalize the notions of
strong and Morita equivalence, respectively.

4.3.1 Strict homotopy

Here we will develop the notion of strict homotopy associated to the unit interval
I = [0, 1]. We recall the notion of G-path and at the end we will introduce the
multiple G-paths.

Definition 4.3.1. Given a subdivision S = {0 = r0 ≤ r1 ≤ ... ≤ rn = 1} of
the interval I = [0, 1], consider a topological groupoid Is whose space of objects is

given by the disjoint union of
n⊔
i=1

[ri−1, ri]

An element in the connected component [ri−1, ri] will be denoted by (r, i). Then
the topological space of objects (Is)0 given by

(Is)0 = {(r, i)|r ∈ [ri−1, ri], i = 1, ..., n}
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The topological space of arrows (Is)1 is given by the disjoint union

(
n⊔
i=1

[ri−1, ri]) t {r1, ..., rn−1, r
′
1, ..., r

′
n−1}

where
n⊔
i=1

[ri−1, ri] is the set of unit arrows and for each point ri in the subdivision

S two arrows were added:
ri and its inverse arrow r′i such that the source of ri is (ri, i) and its target is
(ri, i+ 1).
Let φ, ϕ : G → H be morphisms of topological groupoids. We will say that φ is
S-homotopic to ϕ if there exists a subdivision S and a morphism HS : G×IS → K
such that HS

0 = φ and HS
1 = ϕ.

This defines an equivalence relation between morphisms that we will call S-homotopy
equivalence and that sometimes we will refer to as strong or strict homotopy equiv-
alence depending upon what feature we want to emphasize since we will introduce
a weaker version (in the same sense that an essential equivalence weakens a strong
equivalence) and a generalised version of this notion (in the same sense that a
Morita equivalence generalises an essential equivalence).

Example 4.3.2. A natural transformation T : φ → ϕ determines a homotopy
HS : G × IS → K over the subdivision S = {0 = r0, r1 = 1

2
, r2 = 1}.

The homotopy is given by

HS(x, (r, i)) =

φ(x) , r ≤ 1
2
and i = 1,

ψ(x) , r ≥ 1
2
and i = 2

on objects;

HS(k, u(r, i)) =

φ(k) , r ≤ 1
2
and i = 1,

ψ(k) , r ≥ 1
2
and i = 2

on unit arrows of IS and HS(k, r1) = T (y)φ(k) for the arrow r1 : (1
2
, 1)→ (1

2
, 2).

Therefore, there exists a subdivision S and a morphism HS such that HS(x, 0) =

φ(x), HS(x, 1) = ψ(x), and HS(k, 0) = φ(k), HS(k, 1) = ψ(k).

Example 4.3.3. A morphism H : G × I → K, with I being the unit groupoid
over the interval I = [0, 1], such that H0 ∼ φ and H1 ∼ ψ determines a homotopy
HS : G × IS → K over the subdivision S = {r0 = 0, r1 = 0, r2 = 0, r3 = 1, r4 =

1, r5 = 1}. The original morphism H : G × I → K does not define an equivalence
relation, since transitivity fails.
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Example 4.3.4. An ordinary homotopy H : G × I → K such that H0 = φ

and H1 = ψ determines a homotopy HS : G × IS → K over the subdivision
S = {0 = r0, r1 = 1}. The morphism H : G × I → K defines an equivalence
relation but fails to be invariant with respect to Morita equivalence (it is not even
invariant of strong equivalence for groupoids).

Proposition 4.3.5. Let H : U ×IS → G be a homotopy of the inclusion, H0 = iu.
Then, there is an injection j : Gx → Gyr for all yr = HS(x, (r, i)).

Proof. The homotopy HS restricted to the connected component Ux × [0, r1] de-
termines an ordinary homotopy; then Gx injects into GH(x,(r,1)) for all r ∈ [0, r1].
The isotropy groups GH(x,(r1,1)) and GH(x,(r1,2)) coincide, since there is an arrow r1

from (r1, 1) to (r1, 2). Then we have a finite number of injections:
Gxm � GH(x,(r,1)) � GH(x,(r1,1)) = GH(x,(r1,2)) � GH(x,(r,2))... � GH(x,(rn,n)) and
Gx injects into GHS(x,(r,i)) for all r ∈ [ri−1, ri] with i = 1, ..., n.

A G-path from x to y over the subdivision S = {0 = r0 ≤ r1 ≤ · · · ≤ rn = 1} of
the interval [0, 1] is a sequence: (α1, g1, α2, g2, · · ·, αn), where

1. for all 1 ≤ i ≤ n the map αi : [ri−1, ri] → G0is a path with α1(0) = x and
αn(1) = y;

2. for all 1 ≤ i ≤ n− 1, the arrow gi ∈ G1 satisfies:
s(gi) = αi(ri),
t(gi) = αi+1(ri),

Then our notion of homotopy HS : K × IS → G between HS
0 = φ and HS

1 = ψ

determines for each x ∈ K0 a G-path over the subdivision S between the objects
φ(x) and ψ(x) in G0. In fact, it determines many more paths in G1 other than the
one defined by the unit arrows. If we think of a G-path as a morphism from some
version of the interval I to G, we have that the Haeflliger G-paths correspond to
morphisms σ : IS → G, where the groupoid IS is the one constructed above.

Remark 4.3.6. A homotopy HS : K × IS → G determines a G-path HS
1x : IS → G

where 1x is the trivial groupoid over x ∈ K0.

Note that if we thinking of a G-path as a morphism σ from IS to G, since most of
the arrows IS are units so the image of the arrows in IS by σ is almost entirely
contained in u(G0), with the only exception being the arrows {r1, · · ·, rn−1}and
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their inverse. In other words, we cannot fill the space G1 with paths of arrows
given by the G-paths.
To define the several branches coming into a multiple G-path we need to introduce
several copies of each subinterval in the subdivision S. We define a groupoid I ′S
associated to the interval I and the subdivision S in the following way. Given a
subdivision S = {0 = r0 ≤ r1 ≤ · · · ≤ rn = 1} of the interval I = [0, 1], consider
the space of objects given by the disjoint union:

n⊔
i=1

mi⊔
j=1

[ri−1, ri]j,

where the extra copies of each interval are indexed by j.
An element in the connected component [ri−1, ri]j will be denoted by (r, i, j). Then
the space of objects is

(I ′S)0 = {(r, i, j)|r ∈ [ri−1, ri], j = 1, ...,m, i = 1, ..., n}.

The space of arrows of I ′S is generated by the disjoint union of:

1.
⊔
i,j

[ri−1, ri]j, is the set of unit arrows;

2.
⊔
i

ri, is the set of arrows connecting the jumps at the subdivision points ri,

i.e. the source and target of the arrow ri are s(ri) = (ri, i, 1) and t(ri) =

(ri, i+ 1, 1) and

3.
⊔
i,j

[ri−1, ri]j, the set of arrows between the different copies [ri−1, ri]j of each

subinterval, .e. the source and target of the arrow rij ∈ [ri−1, ri]j are s(rij) =

(r, i, j) and t(rij) = (r, i, j + 1).

Definition 4.3.7. A multiple G-path over a subdivision S is a morphism σ : I ′S →
G.

Note that a G-path in the sense of Haefliger is a multiple G-path over the same
subdivision by taking j = 1 for all subintervals and σ((r, i)) = αi(r) on objects;
σ(ri) = gi on arrows ri and σ(u(r, i)) = u(αi(r)for unit arrows.
We can think of a multiple G-path between orbits or as a path between orbit
subgroupoids. In this spirit, we will say that the initial subgroupoid of the path is
σ(0

′
) and the end subgroupoids is σ(1

′
). Where 0

′ and 1
′ are the full subgroupoids

over the orbits of 0 and 1, which in general will not be trivial groupoids.
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Remark 4.3.8. A homotopy HS : K × IS → G, when restricted to the full sub-
groupoid X over an orbit O(x), defines a multiple G-path between the orbit sub-
groupoids H(X, 0) and H(X, 1). If HS is a homotopy between φ and ψ, then for
all x ∈ K0, the S-homotopy defines a multiple G-path between the orbits of φ(x)

and ψ(x).

Sometimes we will denote a multiple G-path by

σ = (αj11 , g1, α
j2
2 , · · ·, α

jn−1

n−1 , gn−1, α
j
n)

where (α1
1, g1, α

1
2, · · ·, α1

n−1, gn−1, α
1
n) is a G-path and

(α1
1, g1, α

1
2, · · ·, hijgi−1, α

j
i , gih

−1
ij , · · ·, α1

n−1, gn−1, α
1
n)

is a G-path for each j = 1, · · ·mi and each i = 1, · · ·, n.

4.3.2 Essential homotopy equivalences of topological groupoids

Here we introduce the notion of essential homotopy equivalence and homotopy
pullback of topological groupoids.

Definition 4.3.9. A morphism η : K → G of topological groupoids is an essen-
tial homotopy equivalence of topological groupoids if there exists an S-homotopy
equivalence h : K → L and an essential equivalence ε : L → G such that η 'S εh.

K η //

h ��

G

L
ε

??

This implies that for any object y ∈ G0, there exists an object x ∈ K0 whose image
η(x) can be connected to y by a concatenation of paths and arrows. Also η induces
a homotopy equivalence |η| between the orbit spaces.

Remark 4.3.10. If η : K → G is an essential homotopy equivalence, then there is
an injection between the corresponding isotropy groups Kx and Gη(x).
It is clear that essential equivalences as well as (strong) homotopy equivalences
are essential homotopy equivalences.

Proposition 4.3.11. [11]
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1. An essential equivalence is an essential homotopy equivalence.

2. A homotopy equivalence is an essential homotopy equivalence.

Proposition 4.3.12. If ηφ 'S ηψ and η is an essential homotopy equivalence,
then φ 'S ψ.

Proof. Since η 'S εh, we have that εhφ 'S εhψ. Then hφ 'S hψ, because ε is an
essential equivalence. If g is the homotopic inverse of h, we have that ghφ 'S ghψ.
Thus, φ 'S ψ.

In the following we will define the groupoid homotopy pullback;

4.3.3 The groupoid homotopy pullback

Let φ : K → G and ψ : J → G be morphisms of topological groupoids and S a
subdivision of the interval I = [0, 1]. Let PS(G) be the space of G-paths over the
subdivision S.

Definition 4.3.13. The groupoid homotopy pullback PS = K×hS J is the topolog-
ical groupoid whose space of objects is
(PS)0 = {(x, σ, y)|x ∈ K0, y ∈ J0, σ ∈ PS(G) with σ(0) = φ(x) and σ(1) = ψ(y)}
whose space of arrows is
(PS)1 = {(k, σ, j)|k ∈ K1, j ∈ J1, σ ∈ PS(G) with σ(0) = φ(s(k)) and σ(1) =

ψ(t(j))}, and whose source and target maps are given by: s(k, σ, j) = (s(k), σ, s(j))

and t(k, σ, j) = (t(k), φ(j)σφ(k)−1, t(j)).

The groupoid homotopy pullback is well defined (up to homotopy) whenever one
of the maps φ or ψ is homotopic to an open surjection on objects.
We will give the construction of the topological space of objects (PS)0 for a sub-
division S = {t0 = 0, t1, t2, t3 = 1} by a sequence of pullbacks and homotopy
pullbacks of topological spaces.
We recall first the basic definition of a homotopy pullback of topological spaces.
Here we use [11].

Definition 4.3.14. Given two continuous maps f : X → Z and g : Y → Z, the
homotopy pullback is the topological space
X×h Y = {(x, α, y)|x ∈ X, y ∈ Y and α is a path between f(x) and g(y)} together
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with the projection maps making the following diagram commute up to homotopy
and it is universal (up to homotopy) with respect to this property:

X ×h Y pr1 //

pr2
��

X

f
��

Y
g // Z

Remark 4.3.15. If f is homotopic to a continuous map then the homotopic pullback
X ×h Y is a space homotopic to the ordinary pullback.

Consider the following ordinary pullbacks of spaces:

K0 ×G0 G1
pr1 //

pr2

��

K0

φ

��
G1

s // G0

and J0 ×G0 G1

pr
′
1 //

pr
′
2
��

J0

ψ

��
G1

t // G0

and the following homotopy pullback of spaces:

(PS)0
//

��

K0 ×G0 G1

pr2

��
G1

t
��

J0 ×G0 G1

pr′2 // G1
s // G0

Then we have that (PS)0 is the topological space given as:
{(x, g, α, h, y)|α is a path between t(g) and s(h) with φ(x) = s(g) and ψ(y) = t(h)}.
Analogously, we can define the space of arrows (PS)1 as the homotopy pullback
(K1 ×G0 G1)×h (J1 ×G0 G1) = K1 ×G0 G1 ×h G1 ×G0 J1.
If (k, g, α, h, j) is an arrow from (x, g, α, h, y) to (x′, gφ(k)−1, α, ψ(j)h, y′) and
(k′, g′, α, h′, j′) is an arrow from (x′, g′, α, h′, y′) to (x′′, g′φ(k′)−1, α, ψ(j′)h′, y′′),
the composition of arrows is given by

(k′, g, α, h, j′) ◦ (k, g′, α, h′, j) = (k′k, g, α, h, j′, j)

We can generalise this construction to obtain the groupoid homotopy pullback PS
corresponding to the subdivision S = {0 = r0 6 r1 6 · · · 6 rn = 1} by iterating n
homotopy pullback.
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Then we get
(PS)0 = K0 ×hG0

Gn−1 ×hG0
J0

and
(PS)1 = K1 ×hG0

Gn−1 ×hG0
J1.

We will show that the following diagram of groupoids commute up to strong ho-
motopy:

PS
pr1 //

pr2
��

K
φ
��

J ψ // G

Consider the homotopy HS : PS × IS → G given by HS((x, σ, y), (r, i, j)) =

σ((r, i, j)) on objects and HS((k, σ, j), ri) = σ(ri) on arrows (see remark 4.3.6)
We have that HS

0 = φpr1 and HS
1 = ψpr2.

The homotopy pullback of groupoids satisfies the following universal property.
For any groupoid A and morphisms δ : A → K and γ : A → J with φδ 'HS ψγ

there exists a morphisms ξ : A → PS such that both triangles commute up to
homotopy:

A

γ

��

δ

##
ξ

  
PS
pr2
��

pr1
// K
φ
��

J ψ // G

We define ξ : A → PS by ξ(ω) = (δ(ω), HS
1W
, γ(ω)) on objects and ξ(a) =

(δ(a), HS
1W
, γ(a)) on arrows, where 1W is the trivial groupoid over ω.

Note that the groupoid homotopy pullback PS is defined for each subdivision S of
the interval I = [0, 1].

Remark 4.3.16. If S = {0 = r0 ≤ r1 ≤ ... ≤ rn = 1} is a subdivision of I = [0, 1],
then for all subdivisions S ′ ⊃ S we have:

1. If φ 'HS ψ, then φ 'HS′ ψ.

2. There exists a morphism ξ : PS → PS′ such that pr′1ξ = pr1 and pr′2ξ = pr2.
Since φpr1 'HS ψpr2, then φpr1 'HS′ ψpr2 and the following commute up
to S ′-homotopy :
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PS

pr2

��

pr1

##
ξ

  
P ′S
pr′2
��

pr′1

// K
φ

��
J ψ // G

Proposition 4.3.17. If there is a subdivision S such that the following diagram
commute up to S-homotopy:

K η //

ε
��

G

L
h

OO

where ε is an essential equivalence and h is a homotopy equivalence, then η : K → G
is an essential homotopy equivalence.

Proof. Let g be the homotopic inverse of h. Then, the following triangle commutes
up to S-homotopy:

G
g

��

id

��
L

h
// G

consider the following fibered product of groupoids:

G ×L K ε′ //

g′

��

G
g

��
K ε // L

This square is commute up a natural transformation. Then it commutes up to
S-homotopy and has the universal property. Since η 'S hε, we have the following
diagram up to S-homotopy:

K

id

��

η

&&

ξ

##
G ×L K

g′

��

ε′
// G
g

��

id

��
K ε // L

h
// G
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Therefore, ε′ ◦ ξ 'S η and g′ ◦ ξ 'S id. We have that

η ◦ g′ 'S h ◦ ε ◦ g′ 'S h ◦ g ◦ ε′ 'S id ◦ ε′ 'S ε′

and also
η ◦ g′ 'S η ◦ idK ◦ g′ 'S η ◦ g′ ◦ ξ ◦ g′ 'S ε′ ◦ ξ ◦ g′.

By Proposition 4.3.12 we have that id 'S ξg′ and ξ is the homotopic inverse of
g′. Then η 'S ε′h′ with ε′ and essential equivalence and h′ = ξ a homotopy
equivalence.

Lemma 4.3.18. If ε is an essential equivalence and g is an S-homotopy equiva-
lence, then the homotopic pullback

PS ε′ //

g′

��

J
g

��
L ε // G

exists and g′ is an S-homotopy equivalence as well.

Proof. since ε is an essential equivalence, the pullback PS exists. Let f : G → J
be the homotopic inverse of g. Then fg 'S idJ and gf 'S idG. Consider the
following pullbacks

P ′S
ε
′′
//

f
′

��

G
f

��
PS ε′ //

g
′

��

J
g

��
L ε // G

By the universal property of the large square, there exists ξ : L → P ′S such that
the following diagram commutes up to S-homotopy:

L

id

��

ε

##

ξ

��
P ′S
g′f ′

��

ε′′
// G

id
��

L ε // G
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Then g′f ′ξ 'S id and ε′′ξ 'S ε. We will see that f ′ξ is the homotopic inverse of
g′. We have that

ε′f ′ξg′ 'S fε′′ξg′ 'S fgε′ 'S ε′.

By Proposition 4.3.12, f ′ξg′ 'S id and g′ is a homotopy equivalence.

Proposition 4.3.19. If η and ν are essential homotopy equivalences, then νη is
an essential homotopy equivalence as well.

Proof. We have that η 'S′ εh and ν 'S′′ σf with ε and σ being essential equiva-
lences and h and f homotopy equivalences. Consider the following diagram com-
mute up to S-homotopy:

K η //

h

��

G ν // L

A
ε

>>

B
σ

??

g

``

PS
ε′

>>

g′

``

Let h′ be the homotopic inverse of g′. Then, νη 'S σε′h′h, where σε′ is an essential
equivalence and hh′ is a homotopy equivalence.

We can pull back the decomposition in Proposition 4.3.17 and we have the follow-
ing.

Proposition 4.3.20. If ν : K → G is an essential homotopy equivalence, then
there is a subdivision S such that the morphism pr2 : PS → J is an essential
homotopy equivalence as well.

Definition 4.3.21. A topological groupoid K is Morita homotopy equivalent to G
if there exists a topological groupoid L and essential homotopy equivalences

K L ν //ηoo G .

Note that it is possible to choose these essential homotopy equivalences to be
homotopic to open surjections on objects.



Chapter 5

Stacks and Topological Stacks

In this chapter we will start with the first categorical structures which play a role
in the theory of stacks, the categories fibred in groupoids. The base category here
is the category of topological spaces Top. We will be developing the conditions to
be satisfied for a category fibred in groupoids to be a stack, and eventually for a
stack to be a topological stack. As well our goal is to define the notion of topo-
logical stacks and explain the relation between topological stacks and topological
groupoids. Topological stacks are those stacks which are isomorphic to quotient
stacks of topological groupoids. For instance, if G group acts on a topological
space X, then the canonical map X → [X/G] is an atlas. Roughly speaking,
topological stacks are topological groupoids up to Morita equivalence. The base
category Top will come with a Grothendieck topology being the usual open-cover
topology. This means that we have a notion of coverings of a topological space
X, which is a collection of morphisms {U → X}, such that each point of X is
in the image of at least one of these maps. A single map U → X is called a
covering map if {U → X} is a covering. Any covering {Uα → X} determines a
covering map U =

⊔
Uα → X, which can often be used in place of the covering.

A morphism Y → X admits local sections in the relevant topology if there exists
a covering {Uα → X} and a lift Uα → Y for each α. A stack is not only a kind
of space with some extra structure; rather it is a category. A stack (over a Top) is
a category X, together with a functor π : X→ Top, satisfying some properties. A
category together with a functor to another category, with an appropriate notion
of pullbacks, is known as a fibred category. Our fibred category will all be fibred
over Top. We will use [5], [37], [38] and [13].

74
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5.1 Categories fibred in groupoids

The first requirements for a category X, together with a functor π : X → Top to
be a stack is being a category fibred in groupoids over Top. This means that the
following two axioms in the definition must be satisfied but before that we will
start by recalling the definition of a fibre product of sets.

Definition 5.1.1. Let f : X → Z and g : Y → Z be two maps of sets. The fibre
product of f and g, or more precisely the fibre product of X and Y over Z is the
set X ×f,Z,g Y = X ×Z Y = {(x, y)|f(x) = g(y)}.

Remark 5.1.2. If f : X → Z and g : Y → Z are continuous maps between
topological spaces then the fibre product X ×Z Y is a subset of X × Y and hence
is naturally a topological space.

For any category C we want to define what it means to have a category over C and
what it means to have a morphism between such objects:

Definition 5.1.3. A morphism φ : x→ y in X is said to be strongly Cartesian if it
satisfies the following universal property. For every f : z → x and g : p(z)→ p(y)

such that p(φ)g = p(f) there is a unique h : z → y with φh = f and p(h) = g.

Definition 5.1.4. Let C and X be two categories, p : X → C a functor between
them. We say that X is fibred over C if for every x in X and g : s → p(x) in C,
there is a strongly Cartesian morphism f : y → x with p(y) = s and p(f) = g.

In this case, the fibre over an object s of C is the subcategory consisting of the
objects x of X with p(x) = s and the morphisms lifting ids.
A fibred category P : X→ C is called fibred in groupoids if all fibres are groupoids,
(i.e, all morphisms in the fibre are isomorphisms).

We now define the notion of a category fibred in groupoids. As we will see in the
next section, this will bring us very close to the definition of stacks. In fact, a
stack is defined as a category fibred in groupoids satisfying a few more axioms.

Definition 5.1.5. A category fibred in groupoids over Top is a category X, together
with a functor π : X→ Top such that the following axioms hold:

(i) For every morphism f : V → U in Top, and every object x of X lying over
U with π(x) = U , there exists an object y and an arrow φ : y → x in X lying
over f , with π(φ) = f ,
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(ii) For every commutative triangle W → V → U in Top and morphisms z → x

lying overW → U and y → x lying over V → U , there exists an isomorphism
z → y lying over W → V such that the composition z → y → x is the
morphism z → x.

Any choice of such an object y is called a pullback of x via the morphism f : V → U .
We will write as usual y = x|V or y = f ∗x.
Given a category fibred in groupoids X over Top and a topological space X of
Top, the category of all objects of X lying over a fixed object X of Top with all
morphisms of X lying over the identity morphism idX is called the fibre or category
of sections of X over X and denoted by XX or X(X). By the definition all fibres
are groupoids.
Categories fibred in groupoids over Top form a 2-category. We will explain this in
the next definition:

Definition 5.1.6. Given two categories fibred in groupoids over Top, say X and
X′,
A 1-morphism of categories fibred in groupoids over Top is a functor F : X → X′

such that π′F = π.
A 2-morphism u from F to G, with F,G : X → X′, is a natural transformation
such that π′(u(x)) = idπ(x) for all x ∈ X0.
Categories fibred in groupoids with these notions of 1- and 2-morphisms form a
2-category. This 2-category denoted by CFG.

Definition 5.1.7. Two categories fibred in groupoids X and Y are isomorphic if
there are 1-morphisms φ : X → Y and ψ : Y → X and 2-morphisms T and T ′

such that T : φ ◦ ψ ⇒ idY and T ′ : ψ ◦ φ⇒ idX.

Example 5.1.8 (Identity). Let X be the fixed category Top. Let π = idTop : Top→
Top be the projection functor. Then X = Top together with the identity map is a
category fibred in groupoids.

Example 5.1.9 (Object). Given a fixed object X ∈ Top, consider now the category
X whose objects are (U, f) where f : U → X is a morphism in Top and U an object
in Top, and whose arrows are diagrams

U
φ //

f   

V

g~~
X
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The projection functor is π : X → Top with π((U, f)) = U and π((U, f), φ, (V, g)) =

φ. We have that X is a category fibred in groupoids. In particular, in the case that
X is a point, X = ∗, we have that ∗ = Top.

Example 5.1.10. Fix a topological groupoid G, assign the category BG, with ob-
jects principal G-bundles and morphisms are G-equivariant maps. The functor
π : BG → Top that sends a principal G-bundle to its base and a G-equivariant map
between two principal G-bundles to the induced map between their bases makes the
category BG into a category fibred groupoids over the category Top of topological
spaces.
To check the conditions in the Definition 5.1.5:
Given a map f : N →M between two topological spaces and a principal G-bundle
ξ →M we have the pullback bundle f ∗ξ → N and a G-equivariant map f̃ : f ∗ξ → ξ

inducing f on the bases of the bundles.
Note that if π′ : ξ′ → N is a principal G-bundle and h : ξ′ → ξ is a G-equivariant
map inducing f : N →M then there is a canonical G-equivariant map η : ξ′ → f ∗ξ

which is given by η(x) = (π′(x), h(x)). By Corollary 3.5.13, the map η is a home-
omorphism. To check the second condition, suppose that we have three principal
G-bundles ξ′′ → M ′′, ξ′ → M ′ ξ → M , two G-equivariant maps f : ξ′′ → ξ,
h : ξ′ → ξ inducing f : M ′′ → M and h : M ′ → M respectively and a map
g : M ′′ →M ′ so that

M ′′ g //

f !!

M ′

h}}
M

commutes. We want to construct a G-equivariant map g̃ : ξ′′ → ξ′ with h ◦ g̃ =

f . We assume that ξ′′ = f ∗ξ = M ′′ ×M ξ and ξ′ = h∗ξ = M ′ ×M ξ. Define
g̃ : M ′′ ×M ξ → M ′ ×M ξ by g̃(m,x) = (g(m), x). Hence h ◦ g̃ = f , and we have
verified that π : BG → Top is a category fibred in groupoids.

Example 5.1.11 (Sheaves). Let F : Top → (Sets) be a presheaf, i.e., a con-
travariant functor from a category of topological spaces to the category of sets. We
get a category fibred in groupoids X defined as follows: objects of are pairs (U, x),
with U a topological space and x is an element of the set F (U), x ∈ F (U). A
morphism (U, x) → (V, y) is a continuous map in Top, α : U → V such that
F (α) : F (U) → F (V ) maps x to y, x = F (α)(y). The functor is defined as a
projection functor by

π : X→ Top, (U, x) 7→ U.
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Especially any sheaf F : Top→ (Sets) gives therefore a category fibred in groupoids
over Top and in particular every topological space X gives a category fibred in
groupoids X over Top as the sheaf represented by X, i.e., where

X(U) = HomTop(U,X).

To simplify notation, we will freely identify X with the topological space X.

Definition 5.1.12. A category X fibred in groupoids over Top is representable if
there exists a topological space X such that X is isomorphic to X as categories
fibred in groupoids over Top.
We call a morphism of categories fibred in groupoids X → Y representable, if for
every morphism U → Y from a topological space U , the fibred product X×Y U is
representable (or equivalent to) a topological spaces.

5.2 Stacks

Now let us recall the definition of a stack and describe it as category fibred in
groupoid [6]. In the following, let Top always be the category of topological spaces.

Definition 5.2.1. A category fibred in groupoids X over Top is a stack over Top

if the following gluing axioms hold:

(i) For any topological space X in Top, any two objects x, y in X lying over X
and any two isomorphisms φ, ψ : x → y over X, such that φ|Ui = ψ|Ui for
all Ui in a covering {Ui → X} it follows that φ = ψ.

(ii) For any topological space X in Top, any two objects x, y ∈ X lying over X,
any covering {Ui → X} and, for every i, an isomorphism φi : x|Ui → y|Ui,
such that φi|Uij = φj|Uij for all i, j, there exists an isomorphism φ : x → y

with φ|Ui = φi for all i.

(iii) For any topological space X in Top, any covering {Ui → X}, any family
{xi} of objects xi in the fibre XUi

and any family of morphisms {φij}, where
φij : xi|Uij → xj|Uij satisfying the cocycle condition φjk◦φij = φik in X(Uijk)

there exist an object x lying over X with isomorphisms φi : x|Ui → xi such
that φij ◦ φi = φj in X(Uij).
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The isomorphism φ in (ii) is unique by (i) and similar from (i) and (ii) it follows
that the object x whose existence is asserted in (iii) is unique up to a unique
isomorphism. All pullbacks mentioned in the definitions are also only unique up
to isomorphism, but the properties do not depend on choices.
Stacks over Top form a full sub 2-category of CFG whose objects are stacks and
denoted by St. Any fibred category over Top which is equivalent to a stack is itself
a stack.

Definition 5.2.2. A morphism f : X → Y of stacks is called representable if
for every map T → Y from a topological space T , the fibre product T ×Y X is a
topological space.

Roughly speaking, this is saying that the fibres of f are topological spaces.
Any property P of morphisms of topological spaces which is invariant under base
change can be defined for an arbitrary representable morphism of stacks. More
precisely, we say that a representable morphism f : X→ Y is P if for every map
T → Y from a topological space T , the base extension fT : T ×Y X is P as a map
of topological spaces; see [38].
In the next two sections, we follow [13] and recall how the category fibred in
groupoids and stacks associated to a topological groupoid constructed.

5.3 The category fibred in groupoids associated to

a topological groupoid

Definition 5.3.1. Given a topological groupoid G and X a topological space in
Top , we can construct a category fibred in groupoids π : X→ Top such that each
fibre is given by the groupoid

(XX)0 = Hom(X,G0)

(XX)1 = Hom(X,G1)

and the pullback functor is induced by composition. We will denote the category
fibred in groupoids that was constructed by G(X) and is not in general a stack as
well. However, we can associate to each category fibred in groupoids a stack. To
do this, we need first to introduce the notion of G-torsor, which is a category of
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principal G-bundle that was defined in the Example 5.1.10, we can construct the
fibred category in groupoids BG from a topological groupoid G where the objects
of BG are principal G-bundles and morphisms are G-equivariant maps.
Now we recall the definition of G-torsor:

5.3.1 Torsors

We provide the concept of action of groupoid on a topological space in the Defi-
nition 3.5.1, Now we define the groupoid torsor.

Definition 5.3.2. Let G be a topological groupoid, X a topological space. A G-
torsor over X is an open surjection p : E → X equipped with an action G1×tG0

E →
E of G on the anchor map a : E → G0 such that

G1 ×tG0
E → E ×X E

is a homeomorphism.

A morphism (φ, f) from a G-torsor over X to a G-torsor over X ′ is given by a
commutative diagram

E

p

��

φ // E ′

p′

��
X

f
// X ′

where φ is G-invariant. Note that morphisms of G-torsors over a fixed X are in-
vertible.
Hence, we will denote the category whose objects are G-torsors and whose arrows
are morphisms of G-torsors by BG.
The diagram in the definition of a morphism of G-torsors is a pullback diagram.
In the special case, that the groupoid is defined as G = [G ⇒ ∗] is a topological
group, a G-torsor is simply a principal G-bundle.

Example 5.3.3. (Trivial torsors) Let f : S → X be a continuous map. Given
f , we can induce over S in a canonical way a G-torsor, which we call the trivial
G-torsor given by f .
Simply define P to be the fibred product P = S ×f,X,s G. The structure map
π : P → S is the first projection. The anchor map of the G-action is the second
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projection followed by the target map t. The action is then defined by

(s, γ) · δ = (s, γ · δ).

One checks that this is, indeed, a G-torsor over S.

5.4 The stack associated to a topological groupoid

We can associate to each groupoid G = [G1 ⇒ G0] a stack, called the stack
completion of G(X) and we will denoted by GX, that is the same concept of quotient
stacks that denoted by [G0/G1]. It is defined as the category fibred in groupoids
π : BG → Top such that π(E → G) = X on objects and π((φ, f)) = f : X → X ′

on arrows. Each fibre is given by the groupoid
(BGX)0 = G-torsors over X
(BGX)1 =morphisms of G-torsor over X.
The category fibred in groupoids thus defined, is a stack. In the 2-category St we
can say that two stacks are equal, isomorphic or equivalent.

Example 5.4.1. The category fibred in groupoids over Top in the example 5.1.10
with canonical projection functor π : BG → Top , (E,X) 7→ X is stack.

Example 5.4.2 (Quotient Stack). Let X be a topological space with a continuous
(left) action ρ : G×X → X by a topological group G. Let [X/G] be the category
which has as objects triples (P, S, µ), where S is a topological space of Top, P a
principal G-bundle over S and µ : P → X a G-equivariant continuous map. A
morphism (P, S, µ)→ (Q, T, ν) is a commutative diagram

X

P

µ
??

ϕ //

π
��

Q

ν

__

τ
��

S
ψ // T

where ϕ : P → Q is a G-equivariant map. Then [X/G] together with the projection
functor

π : [X/G]→ Top, (P, S, µ) 7→ S
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given by π(P, S, µ) = S and π((ψ, ϕ)) = ϕ is a category fibred in groupoids over
Top and a stack.

If two groupoids are Morita equivalent, their associated stacks are equivalent as
stacks because the Morita equivalence between two groupoids defines an equiva-
lence relation 3.3.3.

Corollary 5.4.3. If G ∼M G ′ then GX ∼ G ′X.

Proof. From Remark 3.3.4, it is clear that the Morita equivalence satisfied the
equivalence relation.

For each topological groupoid G we can associate a category fibred in groupoids
G(X) and a stack GX. There is a canonical morphism of categories fibred in
groupoids F : G(X) → GX. All groupoids in the same Morita equivalence class
will have equivalent associated stacks. However, some of the groupoids in that
equivalence class will have an associated category fibred in groupoids G(X) that is
not a stack, whereas some others in the same class will have an associated G ′(X)

that is already a stack.
We will describe the groupoids G for which F : G(X) → GX is an equivalence of
categories fibred in groupoids, and therefore G(X) is a stack.

5.5 Topological stacks

Topological stacks are defined over the category of topological spaces and contin-
uous maps Top. We endow Top with a Grothendieck topology that defined by
taking the open coverings to be the usual open coverings of topological spaces.
This is a subcanonical topology. That means, the presheaf Wpre represented by
any W ∈ Top is indeed a sheaf. Now we define some related concepts like sections
and Grothendieck topology in order to define the topological stacks.

Definition 5.5.1. A section of a fibre bundle π is a continuous right inverse of
π,i.e if π : E → B then a section is σ : B → E s.t, π(σ(x)) = x ∀x ∈ B.
A local section is a continuous map s : U → E where U is an open set in B and
π(s(x)) = x, ∀x ∈ U .
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Definition 5.5.2. Let C be a category. A Grothendieck topology on C consists of,
for each object X in C, a collection Cov(X) of sets {Xi → X} of arrows, called
coverings of X, such that

1. If V → X is an isomorphism, then {V → X} ∈ Cov(X).

2. If {Xi → X} ∈ Cov(X) and any arrow Y → X, then the fibre products
Xi ×X Y exist and {Xi ×X Y } ∈ Cov(Y ).

3. If {Xi → X} ∈ Cov(X) and {Vij → Xi} ∈ Cov(Xi) for each i, then
{Vij → Xi → X} ∈ Cov(X).

A site is a category C together with a Grothendieck topology.

Definition 5.5.3. [40] A morphism f : X→ Y of stacks is called an epimorphism
if it is an epimorphism in the sheaf theoretic sense (i.e., for every topological space
W , every object in Y(W ) has a preimage in X(W ), possibly after passing to an
open cover of W ). In this case where X and Y are topological spaces, this is
equivalent to saying that f admits local sections.

Definition 5.5.4. A topological stack is a stack X over Top which admits a rep-
resentable epimorphism p : X → X from a topological space X. Such a morphism
is called atlas (or presentation) for X.

It follows that every morphism U → X from a topological space U to a topological
stack X is representable.
Every quotient stack [X0/X1] of a topological groupoid is a topological stack, and
the quotient map X0 → [X0/X1] is an atlas for it. Conversely, given an atlas
X → X for a topological stack X, X is equivalent to the quotient stack of the
topological groupoid [pr1, pr2 : X ×X X ⇒ X]. [37]
More precisely we define a stack to be a topological stack in this way:

Definition 5.5.5. A stack X over Top is a topological stack if there exists a topo-
logical space X and a local section x : X → X, i.e., there exists a topological space
X together with a morphism of stacks x : X → X such that for every topologi-
cal space U and every morphism of stacks U → X the fibre product X ×X U is
representable and the induced morphism of topological spaces X ×X U is a local
section.
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Remark 5.5.6. The atlas of a topological stack need not be unique, i.e. a topolog-
ical stack can have different presentations.

Now we present some examples on topological stacks and note that all repre-
sentable stacks are topological stacks.

Example 5.5.7. Let X be a topological space. The category fibred in groupoids
X is in fact a topological stack over Top. A presentation is given by the identity
morphism idX .

Example 5.5.8 (Torsor). Let G be a topological group. Consider the category BG

which has as objects principal G-bundles (or G-torsors) P over S and as arrows
commutative diagrams

P
ψ //

π
��

Q

τ
��

S
ϕ // T

where the map ψ : P → Q is equivariant.

The category BG together with the projection functor π : BG → Top given by
π(P → S) = S and π((ψ, ϕ)) = ϕ is a category fibred in groupoids, in fact a
topological stack, the classifying stack of G whose atlas presentation is given by
the representable open surjection ∗ → BG.

Example 5.5.9. The quotient stack [X/G] that constructed in the Example 5.4.2
is in fact a topological stack, the quotient stack of G. An atlas is given by the
representable epimorphism x : X → [X/G]. If X = ∗ is just a point, we get the
topological stack BG = [∗/G], the classifying stack of G with atlas A presentation
is given by the representable epimorphism ∗ → BG.

Example 5.5.10 (Orbifolds). Every orbifold X is a topological stack which is
locally isomorphic to a stack of the form [U/G], with G a finite group acting on
a manifold U . The coarse moduli space of X is the underlying topological space of
X(so, locally it is U/G). The inertia group of a point x is the orbifold group (or
the stabilizer group) of x. The inertia stack of X is the stack of twisted sectors of
X.

Topological stacks are basically incarnations of topological groupoids. In order to
do geometry on stacks, we have to compare them with topological spaces. Now we
see how to associate topological stacks to topological groupoids and conversely.
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5.6 The topological stack associated to a topolog-

ical groupoid

Let X be a topological stack with a given presentation x : X → X. We can asso-
ciate to X a topological groupoid G = [G1 ⇒ G0]. Let G0 = X and G1 = X×XX.
The source and target morphisms s, t : X ×X X ⇒ X of G are given as the two
canonical projection morphisms. The composition of morphisms m in G is given as
projection to the first and third factor X×XX×XX ∼= (X×XX)×X (X×XX)→
X ×XX. The morphism which interchanges factors X ×XX → X ×XX gives the
inverse morphism i and the unit morphism e is given by the diagonal morphism
X → X ×X X. In other words, because the presentation x : X → X of a topo-
logical stack has a local section, it follows that the source and target morphisms
s, t : X ×X X ⇒ X have local sections as induced maps of the fibre product.
Given instead a topological groupoid we can associate a topological stack to it.
Basically this is a generalisation of associating to a topological group G, i. e. a
topological groupoid G = [G1 ⇒ G0] with G0 = ∗ and G1 = G the classifying
stack BG.

Example 5.6.1 (G-torsors). The BG, the G-torsor in the Example 5.5.8 is the
topological stack that constructed over the category Top.

We have the following fundamental property (see for example [6][Prop. 2.3]) of
BG.

Theorem 5.6.2. For every topological groupoid G = [G1 ⇒ G0] the category fibred
in groupoids BG of G-torsors is a topological stack with a presentation τ0 : G0 →
BG.

The stack BG is also called the classifying stack of G-torsors. It follows from this
also that the topological groupoid G = [G1 ⇒ G0] is isomorphic to the topological
groupoid G(τ0) associated to the atlas τ0 : G0 → BG of the stack BG.
As the presentations of a topological stack are not unique, the associated topo-
logical groupoids might be different. In order to define algebraic invariants, like
cohomology or homotopy groups for topological stacks they should however not
depend on a chosen presentation of the stack. Therefore it is important to know,
when two different topological groupoids give rise to isomorphic stacks. This will
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be the case when the topological groupoids are Morita equivalent.

We have the following main theorem concerning the relation of the various topo-
logical groupoids associated to various presentations of a topological stack (see [6],
Theorem 2.24).

Theorem 5.6.3. Let G and H be topological groupoids. Let X and Y be the
associated topological stacks, i. e. X = BG and Y = BH. Then the following are
equivalent:

(i) the topological stacks X and Y are isomorphic,

(ii) the topological groupoids G and H are Morita equivalent.

As a special case we have the following fundamental property concerning different
presentations of a topological stack X.

Proposition 5.6.4. Let X be a topological stack with two given presentations
x : X → X and x′ : X ′ → X. Then the associated topological groupoids G(x) and
G(x′) are Morita equivalent.

Therefore topological groupoids present isomorphic topological stacks if and only
if they are Morita equivalent or in other words topological stacks correspond to
Morita equivalence classes of topological groupoids.

We now recall the fundamental notion of a continuous map between topological
stacks (see [25]).

Definition 5.6.5 (Continuous map). An arbitrary morphism X→ Y of topological
stacks is continuous, if there are atlases X → X and Y → Y such that the induced
morphism from the fibred product X×YY → Y in the diagram below is a continuous
map between spaces.

X ×Y Y //

��

X

��
X

��
Y // Y
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Let U be a subcategory of X. Recall that a subcategory is called saturated if
whenever it contains an object x then it contains the entire isomorphism class x̄
of that object and is called full if whenever it contains an arrow between x and y,
it contains the entire set Hom(x, y) of arrows.

Let π : X → Top be a topological stack and x : X → X be an atlas. Let U ⊂ X

be an open subset and consider the saturation U0 of the image x(U) in X0, i.e.

U0 = {z ∈ X0| z ∈ x̄ for some x ∈ U}.

The full subcategory U on U0 is U1 ⇒ U0 where U1 = {g ∈ X1| s(g), t(g) ∈ U0}.

Definition 5.6.6 (Restricted substack). Let π : X → Top be a topological stack
with atlas x : X → X and U ⊂ X be an open set. Consider the full subcategory U

on U0 and let π′ := π ◦ i, where i : U→ X is the inclusion. We say that U with the
projection π′ : U→ Top is the restricted substack of X to U.

Definition 5.6.7 (Constant morphism). Let c : X→ Y be a continuous morphism
between topological stacks. We say that c is a constant morphism if there are
presentations X → X and Y → Y such that the induced morphism from the fibred
product X ×Y Y → Y is a constant map.

For instance, any continuous map X → Y where Y admits a presentation by a
point ∗ → Y is a constant morphism.

Example 5.6.8. Let S1 act on S1 by rotation and consider the quotient stack
X associated to this action, X = [S1/S1]. We will show that the identity map
id[S1/S1] : [S1/S1] → [S1/S1] is a constant map. The groupoid [S1 × S1 ⇒ S1] is
Morita equivalent to a point groupoid [∗⇒ ∗], therefore the stacks X = [S1/S1] and
∗ are isomorphic. Since ∗ → ∗ is a presentation for ∗ it follows that ∗ → [S1/S1]

is a presentation for X. Hence any map with codomain X = [S1/S1] is a constant
morphism of stacks.



Chapter 6

The Lusternik-Schnirelmann

Category of a Topological Stack

The Lusternik-Schnirelmann category of a topological space is an invariant of
the homotopy type of the space introduced in the early 1930s by Lusternik and
Schnirelmann. Our aim is to develop a Lusternik-Schnirelmann theory in the
context of topological groupoids. In this chapter, we will introduce the notion
of LS-category and prove the basic results about it using [14], [11] and [3]. Also
we will generalise this notion to the case of topological groupoids and show that
LS-category is indeed an invariant of topological stacks.

6.1 Lusternik-Schnirelmann category of a space

In this section we present the classical notions of Lusternik-Schnirelmann category
of a topological space and give some examples and results on that.

Definition 6.1.1. • The Lusternik-Schnirelmann or LS-category of a topo-
logical space X is the least integer n such that there exists an open covering
U1, · · ·, Un+1 of X with each Ui contractible to a point in the space X. We
denote this by cat(X) = n and we call such a covering {Ui} categorical. If
no such integer exists, we write cat(X) =∞.

• Let A ⊆ X, the subset category of A in X, denoted catX(A) is the least inte-
ger n such that there exist open subsets, U1, · · ·, Un+1 of X which cover A and
which are contractible in X. If no such integer exists, we write catX(A) =∞.
Note that catX(X)=cat(X) and catX(A) ≤ cat(X).

88
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Example 6.1.2. 1. A contractible space X is a categorical cover of itself, so
cat(X) = 0.

2. The sphere Sn may be covered by two hemispheres which have been extended
slightly to make overlapping open sets. Each hemisphere is homeomorphic to
a disk, so is contractible in the sphere. Hence we get cat(Sn) ≤ 1.

Definition 6.1.3. If f : X → Y is a continuous map, a continuous map g : Y →
X is a right homotopy inverse for f provided that fg is homotopic to the identity
map on Y , left homotopy inverse is defined analogously.

Lemma 6.1.4. [14] If f : X → Y has a right homotopy inverse g (i.e. X

dominates Y ), then cat(X) ≥ cat(Y ).

Proof. Let g : Y → X be the right homotopy inverse for f .
That is, f ◦ g ' idY . Let cat(X) = n with categorical open cover U1, · · ·, Un+1.
Define open sets Vi = g−1(Ui) for each i. For Vi, define a contracting homotopy

K in Y by K(v, t) =

G(v, 2t) 0 6 t 6 1/2

f(H(g(v), 2t− 1)) 1/2 6 t 6 1
where G : Y × I → Y

gives f ◦ g ' idY by G(y, 0) = y and G(y, 1) = f(g(y)) and H : Ui × I → X

contracts Ui by H(u, 0) = u and H(u, 1) = x0. The homotopy K is well defined
since G(v, 1) = f(g(v)) = f(H(g(v), 0)) and K(v, 0) = G(v, 0) = v, K(v, 1) =

f(H(g(v), 1)) = f(x0) = y0. Hence, {Vi} is a categorical cover for Y with n + 1

members and so cat(Y ) 6 n = cat(X).

Theorem 6.1.5. If f : X → Y is a homotopy equivalence, then cat(X) =

cat(Y ),i.e, LS-category is a homotopy invariant.

Proof. Because f is a homotopy equivalence, there exists a map g : Y → X with
f ◦ g ' idY and g ◦ f ' idX . Now apply the lemma above to both f and g to get
that the LS-category of X and Y is less than or equal to each other.

6.2 Lusternik-Schnirelmann category of a topolog-

ical groupoid

We recall first the definition and fundamental properties for the notion of Lusternik-
Schnirelmann category of topological groupoids which is generalised from the
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Lusternik-Schnirelmann category of Lie groupoids as defined in 2.6 and for more
details see [11] and [1].
The most important property here is that the Lusternik-Schnirelmann category of
topological groupoid is in fact Morita invariant, which means that it is in fact an
invariant of the associated topological stack.
From Proposition 3.4.4 we consider our context to be the Morita bicategory of
topological groupoids Gpd obtained from Gpd = G(E−1) by formally inverting
the essential equivalences E. Objects in this bicategory are topological groupoids,
1-morphisms are generalised maps K J φ //εoo G such that ε is an essential

equivalence and 2-morphisms from K J φ //εoo G to K J ′ φ′ //ε′oo G are given
by classes of diagrams:

J
φ

��

ε

~~
K L

u

OO

v
��

G

J ′
ε′

``

φ′

??∼∼

where L is a topological groupoid, and u and v are essential equivalences.
We define path groupoid as considered in [2] which I is the unit groupoid over the
interval I = [0, 1]:

Definition 6.2.1. The path groupoid of G is defined as the mapping groupoid in
the bicategory Gpd, PG =Map(I,G), which is a generalised map from the unit
groupoid I to the topological groupoid G. That is, a map (ε, α) : I I ′ α //εoo G
where I ′ is a groupoid essentially equivalent to the unit groupoid I.

Let (σ, f) : K K′ f //σoo G and (τ, g) : K K′′ g //τoo G be generalised maps.
The map (σ, f) is groupoid homotopic to (τ, g) if there exists (ε,H) : K K̃ H //εoo PG
and two commutative diagrams up to natural transformations:

K̃
ev0H

��

ε

��
K L0

u0

OO

v0
��

G

K′
σ

``

f

??
∼∼

K̃
ev1H

��

ε

~~
K L1

u1

OO

v1
��

G

K′′
τ

``

g

>>
∼∼
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where Li is a translation groupoid, coming from the action of topological group on
a topological space which described in Example 2.6.7, and ui and vi are equivariant
essential equivalences for i = 0, 1.

Similarly as for topological stacks we also have the concept of a restricted groupoid
over a given invariant subset and that of a generalised constant map, which we
will need to define the LS-category of topological groupoids.

Definition 6.2.2. Let G = [G1 ⇒ G0] be a topological groupoid. An open set
U ⊂ G0 is invariant if t(s−1(U)) ⊂ U .
The restricted groupoid U to an invariant set U ⊂ G0 is the full groupoid over
U . In other words, U0 = U and U1 = {g ∈ G1 : s(g), t(g) ∈ U}. We write
U = G|U ⊂ G.

Now we define restricted groupoid over an orbit O.

Definition 6.2.3. A restricted groupoid G|O over an orbit O will be called an orbit
groupoid and denoted by OK, where K = Gx is the isotropy group of x for any
x ∈ O.

Definition 6.2.4. The map (ε, c) : K K′ c //εoo G is a generalised constant map
if for all x ∈ K ′0 there exists g ∈ G1 with s(g) = x0 such that c(x) = t(g) for a
fixed x0 ∈ G0.

In other words, the image of the generalised map (ε, c) is contained in a fixed orbit
O, the orbit of x0.

Definition 6.2.5. The restriction (ε, φ)|V of a generalised map K J φ //εoo G
to the restricted groupoid V ⊂ K is the composition of the generalised map (ε, φ)

and the inclusion functor V V iV //idoo K :

J ×K V
pr3

��

pr1

��
V

id

��

iV

��

J
ε

��

φ

��
V K G

where J ×K V is the fibred product groupoid 3.3.1

Definition 6.2.6. The product (ε, φ)×(ε′, φ′) of two generalised maps K J φ //εoo G

and K′ J ′ φ′ //ε′oo G ′ is given by the generalised map K ×K′ J × J ′ φ×φ
′
//ε×ε′oo G × G ′ .
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We will now define a notion of G-contraction within the topological groupoid G.
We keep the classical Lusternik-Schnirelmann terminology of categorical for con-
tractible subspace in a given space.

Definition 6.2.7. For an invariant open set U ⊂ G0, we will say that the re-
stricted groupoid U is G-categorical if the inclusion functor iU : U → G is groupoid
homotopic to a generalised constant map

U
id

��

iU

��
U U ′

u

OO

v
��

G

U ′
ε

__

c

??

where u and v are essential homotopy equivalences.

Given a categorical subgroupoid U , we have that the inclusion iU composed with
an essential homotopy equivalence u factors through an orbit groupoid up to ho-
motopy:

U
iU

!!
L

u

OO

v
��

�� G

U ′
c

==

// OK

OO

In other words, if U is a G-categorical, then there exists a groupoid L and a group
K such that the diagram

L c //

ε
��

O

��
U // G

is commutative up to groupoid homotopy where ε is an equivariant essential equiv-
alence and O is an orbit..

Proposition 6.2.8. A topological groupoid G is Morita equivalent to a point
groupoid if and only if G is transitive.

Proof. The map t : G(x0,−) → G0 is the pullback of the open surjection (s, t)

along the map G0 → G0 × G0 which sends x to (x0, x), hence it is itself open
surjection.
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Since any pointed topological groupoid is a topological group and it is clearly tran-
sitive, we only need to show that transitivity is stable under Morita equivalence.
This is true because a pullback of an open surjection is open surjection, and be-
cause a map which pulls back along an open surjection to an open surjection is
itself an open surjection.

Since an orbit groupoid is transitive, for U to be G-categorical we can substitute
the constant generalised map in 6.2.7 by a generalised map with image contained
in a point groupoid.

Definition 6.2.9. Let G = [G1 ⇒ G0] be a topological groupoid. The groupoid
LS-category, cat(G), is the least number of invariant open sets U needed to cover
G0 such that the restricted groupoid U is G-categorical.
If G0 cannot be covered by a finite number of such open sets, we will say that
cat(G) =∞.

This number is invariant of Morita equivalence that generalises the ordinary LS-
category of a topological space. If G = u(X) is the unit groupoid, then cat(G) =

cat(X), where cat(X) means the ordinary LS-category.

6.2.1 Invariance of Morita homotopy type

We will show that the LS-category of groupoid is an invariant of Morita homotopy
type, and then, invariant under Morita equivalence.

Proposition 6.2.10. If K 'M G, then cat(K) = cat(G).

Proof. We will prove that if K dominates G, then cat(K) ≥ cat(G):

let K J φ //εoo G and G J ′ ψ //δoo K be two generalised maps such that the
composition (φ, ε) ◦ (ψ, δ) is Morita homotopic to the identity in G. We have the
following diagram
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G
id

))

id

uuG
�� S

E
�� S

OO

��

G

J ′
δ

__

J
φ

??

J ×K J ′
pr2

dd

p1

::

(1)

Let U ⊂ K be a K-categorical subgroupoid, the inclusion iU : U → K is homotopic
to generalised constant map from the Definition 6.2.7 Then we have the following
induced diagram:

U
iU

((

id

xxU
�� S′

L
�� S′

OO

��

K

•K

>>

U ′

z

]]

>>

(2)

Let V ⊂ G be the groupoid given by δpr′2(U ×K J ′) in the following pullback:

U ×K J ′

pr′2
��

pr′1 // U
iU
��

G J ′δoo ψ // K

In diagram (1), take the restriction to V , i.e. compose both maps with the inclu-
sion functor V V iV //idoo G :
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V
iV

��

id

��
V

iV

��

id

��

G
id

��

id

��
V G �� S E

OO

��

�� S G

V

iV

??

id

__

J ×K J ′
φpr1

??

δpr2

__

J ×K J ′ ×G V

??__

(3)

Now take the restriction of G J ′ ψ //δoo K to V :

J ′ ×G V
pr1

��pr3��
V

id

��

iV

��

J ′
δ

��

ψ

��
V G K

(4)

Lemma 6.2.11. We have ψpr1(J ′ ×G V) ⊂ U .

Proof. Use that U is invariant and the essential equivalence δ includes a homo-
morphism between the isotropy groups.

Since ψpr1(J ′ ×G V) ⊂ U we obtain the generalised map V J ′ ×G V //oo U
from diagram (4).
Now we compose this map with the inclusion functor U U //idoo K and with
the generalised map K J φ //εoo G . We have
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J ×K U ×U J ′ ×G V

''ww
U ×U J ′ ×G V

�� ��

J

ε

��

φ

��

J ′ ×G V

����

U

����
V U K G

(5)

We will show that the generalised map V J ×K J ′ ×G V c′ //oo G obtained by
this composition is homotopic to the map

V J ×K U ′ ×U J ′ ×G V c′ //oo G

obtained from the following compositions:

J ×K U ′ ×U J ′ ×G V
pr1

''ww
U ′ ×U J ′ ×G V

�� ��

J

ε

��

φ

��

J ′ ×G V

����

U ′

c

��
z

��
V U K G

(6)

Letting c′ = φpr1, we have the following;

Lemma 6.2.12. The image of c′ = φpr1 is contained in an orbit groupoid. More-
over, if c(U ′) ⊂ OK, then c′(J ×KU ′×UJ ′×GV) ⊂ OK′, where K is homeomorphic
to K ′.
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Proof. Use the fact that ε induces a homeomorphism between the orbit spaces and
a homomorphism between the isotropy groups.

Then V J ×K U ′ ×U J ′ ×G V c′ //oo G is a generalised constant map. By using
diagram (2) we have that

V J ×K J ′ ×G V //oo G 'S′ V J ×K U ′ ×U J ′ ×G V c′ //oo G (7)

Then we have a 2-morphism

V

xx &&V �� S L

OO

��

�� S G

J ×K J ′ ×G V

ff 88

(8)

given by diagram (3) and another 2-morphism

J ×K J ′ ×G V

vv ((V �� S′ L′

OO

��

�� S′ G

J ×K U ′ ×U J ′ ×G V

hh 66

(9)

given by equation (7).
The vertical composition of these 2-morphisms (8) and (9) gives a 2-morphism
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between the inclusion and a generalised constant map:

V

iV

��

iV

��

L

OO

V

��
K ��S′′ PS′′ ��S′′

OO

��

D ��S′′ G

L′

��

U ′

??

J ×K J ′ ×G V

??__

where D = J ×K J ′ ×G V . Therefore, V is categorical for G.

From the above we therefore immediately get the following

Theorem 6.2.13. The Lusternik-Schnirelmann category of a topological groupoid
is invariant under Morita equivalence of topological groupoids, i.e. if G is a topo-
logical groupoid which is Morita equivalent to a topological groupoid G ′, then we
have

cat(G) = cat(G ′).

The groupoid Lusternik-Schnirelmann category also generalises the ordinary Lusternik-
Schnirelmann category of a topological space. In fact, if G = u(X) is the unit
groupoid, then we have cat(G) = cat(X), where cat on the right hand side means
the ordinary Lusternik-Schnirelmann category of a topological space X.

6.2.2 Homotopy restrictions

If U is G-categorical, we have that the following diagram commutes up to homo-
topy:

U
id

~~

iU

!!
U �� H L

u

OO

v
��

��H′ G

U ′
ε

__

c

>>

// •K

OO
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Then, for all y ∈ L0, the isotropy group Gy injects into Gx for x = u(y) ∈ U and
into Gz for z = v(y) ∈ U ′ by 4.3.5 and 4.3.10. We have that Gx � K. In partic-
ular, if the isotropy groups are finite, we have that |Gx| divides |K| for all x ∈ U .
For instance, a categorical subgroupoid U cannot factor through a trivial group K
except in the case that all the points in U have trivial isotropy. Because of Propo-
sition 5.6.4 and theorem 6.2.13 we can now define the Lusternik-Schnirelmann
category of topological stack by using the groupoid Lusternik-Schnirelmann cate-
gory.

6.3 Lusternik-Schnirelmann category of a topolog-

ical stack

Now we will introduce the Lusternik-Schnirelmann category for topological stacks
by using homotopical properties of topological stacks.

Definition 6.3.1. Let X be a topological stack. Consider the path stack PX =

Map([0, 1],X) of X as defined by Noohi in [39] for general topological stacks. We
will say that the morphisms f : X→ Y and g : X→ Y between topological stacks
are homotopic if there exists a morphism of stacks H : X→ PY such that the fol-
lowing diagram of stack morphisms is commutative up to natural transformations:

Y PY
ev1 //ev0oo Y

X
f

aa

g

==

H

OO

Definition 6.3.2. Let π : X→ Top be a topological stack with atlas x : X → X and
U ⊂ X be an open set. We will say that the restricted substack U is X-categorical
if the inclusion map iU : U → X is homotopic to a constant morphism c : U → X

between topological stacks.

Example 6.3.3. For instance, in Example 5.6.8 for the stack X = [S1/S1], let U
be the set of triples (P, S, µ), where S is a topological space, P a S1-torsor over S
and µ : P → S1 a S1-equivariant continuous map. That is, U = [S1/S1]. We have
that the stack U is X-categorical since the identity map id : [S1/S1] → [S1/S1] is
homotopic to a constant morphism of stacks. So we get cat(X) = 1.

Definition 6.3.4. Let π : X → Top be a topological stack with atlas x : X → X.
The stack LS-category, cat(X), is the least number of open sets U needed to cover
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X such that the restricted substack U is X-categorical. If X cannot be covered by
a finite number of such open sets, we will say that cat(X) =∞.

Example 6.3.5. From Example 5.6.8 and the above definition, we get that

cat([S1/S1]) = 1.

The following theorems establish the relationship between Lusternik-Schnirelmann
category of topological stacks and topological groupoids.

Theorem 6.3.6. Let X be a topological stack with a given presentation x : X0 → X

and associated topological groupoid G(x) = [X0 ×X X0 ⇒ X0]. Then

cat(X) = cat(G(x)).

Proof. This follows from the definition of LS-category for topological groupoids
6.2.9. The fact that LS-category of topological groupoids is Morita invariant,
implies now by using Proposition 5.6.4 that it does not depend on the chosen
presentation for the topological stack X, which gives the result.

Theorem 6.3.7. Let G be a topological groupoid and BG be the associated topo-
logical stack. Then the Lusternik-Schnirelmann category of BG, the Lusternik-
Schnirelmann category of the topological groupoid G is given by

cat(G) = cat(BG).

Proof. This follows from the explicit construction of the classifying stack BG of
G-torsors for the given topological groupoid G. Now the associated topological
groupoid of the topological stack BG is Morita invariant to the given topological
groupoid G following Theorem 5.6.3 above.
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