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Abstract

A numerical study investigating the effects of surface roughness on the stability

properties of the BEK system of flows is introduced. The BEK system of flows

occur in many engineering applications such as turbo-machinery and rotor-stator

devices, therefore they have great practical importance. Recent studies have been

concerned with the effects of surface roughness on the von Kármán flow1. The aim

of this thesis is to investigate whether distributed surface roughness could be used

as a passive drag reduction technique for the broader BEK system of flows. If it

can, what is “the right sort of roughness?” To answer these questions, a linear

stability analysis is performed using the Chebyshev collocation method to investi-

gate the effect of particular types of distributed surface roughness, both anisotropic

and isotropic, on the convective instability characteristics of the inviscid Type I

(cross-flow) instability and the viscous Type II instability. The results reveal that

all roughness types lead to a stabilisation of the Type I mode in all flows within

the BEK family, with the exception of azimuthally-anisotropic roughness (radial

grooves) within the Bödewadt flow which causes a mildly destabilising effect. In

the case of the Type II mode, the results reveal the destabilising effect of radially-

anisotropic roughness (concentric grooves) on all the boundary layers, whereas both

azimuthally-anisotropic and isotropic roughness have a stabilising effect on the mode

for Ekman and von Kármán flows. Moreover, an energy analysis is performed to

investigate the underlying physical mechanisms behind the effects of rough surfaces

on the BEK system. The conclusion is that isotropic surface roughness is the most

effective type of the distributed surface roughness and can be recommended as a

passive-drag reduction mechanism for the entire BEK system of flows.

1 Cooper et al. (2015) & Garrett et al. (2016)
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in the case of azimuthally-anisotropic roughness (radial grooves, η = 0). 57

4.9 Neutral curves of the convective instability for Ro = −0.5 in the case

of azimuthally-anisotropic roughness (radial grooves, η = 0). . . . . . 58

4.10 Neutral curves of the convective instability of the Ekman flow in the

case of azimuthally-anisotropic roughness (radial grooves, η = 0). . . 59

4.11 Neutral curves of the convective instability for Ro = 0.5 in the case

of azimuthally-anisotropic roughness (radial grooves, η = 0). . . . . . 60

4.12 Neutral curves of the convective instability of the Bödewadt flow in
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Chapter 1

Introduction

Finding a way to reduce the skin-friction drag caused by viscous shear forces

acting on the surface of a rigid body moving through a fluid is an important prob-

lem in fluid mechanics. This problem has attracted a great deal of attention from

numerous authors and has been a research priority in the community for many years.

In most technological applications, the skin-friction drag is significantly greater in

the turbulent state of the flow than in the laminar state and an intelligent strategy

towards drag reduction is to delay the onset of the transition process as long as

possible. A promising technique towards drag reduction is potentially to delay the

transition of the laminar flow via surface roughness.

The classical belief that smooth surfaces create less skin-friction drag is under-

mined with the observation of the lower drag on non-smooth (rough) surfaces created

by using v-shapes ribbons in the studies of Walsh (1982) and Bechert et al. (1985).

However, Sirovich & Karlsson (1997) established a series of wind tunnel experiments

with specified patterns of roughness on the confining walls and reported that the

drag reduction or enhancement that can be achieved depends on the arrangements

of those patterns. These studies suggest that carefully designed surface roughness

could be used to develop new drag-reduction techniques, but the main problem

that remains is to identify what is “the right sort of roughness” that leads to drag

reduction effects in any particular application (Carpenter, 1997).

Investigating the transition from laminar to turbulence in fully three-dimensional

1
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flows has been an important aim of much research in the literature for decades. This

has typically been motivated by the practical significance of applications involving

swept wings. It is well known that fully three-dimensional flows over swept wings

have similar inflectional crossflow velocity components to three-dimensional rotating

boundary layer flows. This inflectional profile leads to a convectively unstable flow

regime in which a characteristic flow instability mechanism manifesting itself in the

form of co-rotating crossflow vortices is observed. This instability mechanism is

referred to as the Type I instability mode and is inviscid in nature. Owing to this

similarity, many theoretical and experimental works using rotating disk flows have

been performed to obtain a understanding of the transition process over swept wings.

Early studies related to rotating boundary-layer flows have focussed on under-

standing the characteristics of laminar-turbulent transition over smooth disks and

the investigations of this problem were first performed for the von Kármán boundary

layer flow. This was shown by Batchelor (1951) to be a limiting case of a family

of three-dimensional rotating flows. The other limiting cases are the Ekman (1905)

and Bödewadt (1940) flows established by the introduction of the additional rotat-

ing disk in the far-field of the fluid domain. This wide class of boundary layer flows

is often referred to as the “BEK” system owing to these particular limiting cases.

However, there are infinitely many flows in between these cases established by dif-

ferential rotation rates between the lower disk and the fluid above generated by the

upper rotating disk. The stability characteristics of the BEK flows have practical

importance not only for their similarities with the flows over swept wings but also

for the occurrence of those flows in turbo-machinery and rotor-stator devices, such

as mixers.

The von Kármán flow is induced by the rotation of a single disk in a still fluid

and was first introduced by von Kármán (1921). He showed that this flow is an

exact solution of the Navier-Stokes equations using the similarity variables that are

known now as the von Kármán similarity variables. In part, this mathematical

feature makes it attractive for theoretical analyses. The main characterization of

the von Kármán flow is the lack of a radial pressure force in the vicinity of the disk
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so that the fluid spirals outwards to balance the centrifugal forces and is replaced

by an axial flow directed back towards the disk. The resulting velocity distribution

in the boundary layer is three-dimensional and has an inflectional component in the

radial direction.

The first stability analysis of the von Kármán flow was performed by Gregory

et al. (1955) who used both theoretical and experimental techniques. Their motiva-

tion was to gain a better understanding of the transition process regarding the flow

over a swept wing. The presence of the crossflow vortices had firstly been noticed in

the experimental studies of Smith (1947) and of Gray (1952) for the rotating disk

flows and flows over a swept wing, respectively. The experimental part of the study

conducted by Gregory & Walker used a china-clay technique to observe the transi-

tion from laminar to turbulent flow. Their study provided photographic evidence

showing that these vortices are in a stationary vortex pattern on the disk surface.

They reported that the crossflow vortices were first noticed at a Reynolds number

of around Re = 430, whereas the transition was first observed around Re = 530.

The numbers of vortices were around 30 in this pattern while the angle between the

normal of vortices and the outward radius vector was measured to be approximately

14 degrees. Figure 1.1 shows the laminar flow, crossflow vortices and fully developed

turbulent flow in order of increased radii in the transition process observed in that

study. The theoretical part of the study was conducted by Stuart using a linear sta-

bility analysis to model the crossflow instabilities for high Reynolds numbers. His

prediction for the number of vortices was almost 4 times the experimental observa-

tion, but this discrepancy can be attributed to the neglect of viscous forces in the

theoretical study. The predictions for the angle of the vortices on the other hand

were in total agreement with those observed in the experimental part.

The Ekman flow occurs in the particular case of the lower disk and the fluid in

the far-field rotating at approximately the same rate. The flow was first formulated

by Ekman (1905) in order to analyse planetary wind-driven rotating flows. The

Ekman flow is characterised by the balance between the radial pressure, Coriolis

and viscous forces. The stability studies of the Ekman flow was first conducted by
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Figure 1.1: Visualisation of the instability and transition on a rotating disk. Repro-
duced from Gregory et al. (1955).

experimentally Faller (1963) and then analytically by Faller & Kaylor (1966). The

onset of the inviscid Type I instability mode was obtained around Re = 126 in

the experimental study and approximately at Re = 118 in the analytical study. In

addition to the inviscid cross-flow instability, a new viscous Type 2 instability mode

was detected in both studies and was attributed to the Coriolis force and streamwise

curvature effects. This mode was also obtained in the experimental study of Tatro

& Mollo-Christensen (1967) and the existence of it was confirmed theoretically by

Lilly (1966) and Melander (1983). Lilly also concluded that the inclusion of the

Coriolis forces leads to a higher critical Reynolds number for the onset of stationary

crossflow vortices via the Type I mode compared to the non-included cases. The

Type II mode was later found by Malik (1986) in the case of the von Kármán flow.

The Bödewadt flow is established when the lower disk is stationary and the

upper fluid is rotating with a constant angular velocity. In the Bödewadt flow, the

radial pressure, Coriolis and viscous forces are in equilibrium in the far-field but

the Coriolis forces decrease towards the boundary layer due to viscous effects. This

leads to a radial flow directed inwards and an upward axial flow. The mean flow

solution of this flow was found by Bödewadt in 1940, but there were no experimental

or theoretical studies until the experimental investigations of Savas (1987). Savas
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Figure 1.2: Experimental image of the transition procces in the Bödewadt flow,
reproduced from Cros et al. (2005). The angular velocity of the fluid increases from
9rpm to 20rpm, from top left to bottom right and the radius of the disk is R = 140
mm.

reported that the laminar flow was in the form of circular waves at low values of the

Reynolds number and found a critical Reynolds number for the onset of stationary

vortices to be approximately Re = 25. This critical Reynolds number is significantly

smaller than those of the von Kármán and Ekman flows. Lingwood (1997) conducted

a stability analysis for all flows of the BEK system and found the critical Reynolds

number of Type I mode to be approximately Re = 27, which is in good agreement

with Savas (1987).

Figure 1.2 shows the transition process of the Bödewadt flow in increased order

of Reynolds number and reveals a purely laminar flow in the form of circular wave

patterns at low Reynolds numbers. As the Reynolds number increases, the sta-

tionary vortices begin to be observed and coexist with these circular waves. After a

threshold value of the Reynolds number is reached, the circular waves disappear and

the stationary vortices dominate the flow. Increasing the Reynolds number further

triggers a transition process to the turbulent state.
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Figure 1.3: Sketch of (i) stable, (ii) convectively unstable and (iii) absolutely unsta-
ble disturbances.

A third mode propagating energy towards the centre of the disk was discovered

by Mack (1985) for the von Kármán flow. This mode is referred to as the Type

III mode and is spatially damped so that it had not been observed in previous

studies. The existence of the Type III mode in the broader BEK system was shown

by Lingwood (1995). Many authors had assumed that the studies on the rotating

disk boundary layer had been complete until the results of Lingwood’s studies were

published in the mid 1990s. Lingwood used the Briggs-Bers method (Briggs, 1964;

Bers, 1975) to show that the coalescence of the Type I and Type III modes leads

to an absolute instability regime in the rotating disk flow (Lingwood, 1995, 1996,

1997). The flows are reported as stable or convectively unstable outside of the

absolute instability regime.

If a localised disturbance generated by an initial impulse propagates away from

the location where it originated both upstream and downstream, the flow is said to

be absolutely unstable. In the case the disturbance is swept away from the source

either downstream or upstream, the flow is said to be convectively unstable. Figure

1.3 demonstrates the concepts of (i) stability, (ii) convectively instability and (iii)

absolutely instability. The wave packet in case (ii) sweeps away from the source and

grows as it convects. On the other hand, the disturbance spreads both upstream
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and downstream of the source while it grows in case (iii).

The local convective - absolute behaviour and global properties of the distur-

bances have been studied by many authors in a wide range of flow types. The

interested reader is referred to Huerre & Monkewitz (1990), Billant et al. (1998),

Huerre et al. (2000), Davies & Carpenter (2003), Chomaz (2004), Healey (2010),

Schmid & Henningson (2012) and Imayama et al. (2014) for extensive discussions

on the subject.

1.1. Motivation and aim of the current study

The majority of this thesis is concerned with the effects of surface roughness on

the stability characteristics of the BEK system of flows. Interest in the characteris-

tics of laminar-turbulent transition over rough disks has started to increase recently

and some valuable contributions have already been made. In the early studies of

this area, a small number of roughness elements aligned in particular patterns were

used in order to excite some particular disturbance modes in the boundary layer. A

well-known example related to those early studies is the theoretical study of Cooper

& Carpenter (1997) that analyses the effects of the wall compliance on the stability

of the von Kármán flow. The wall compliance was found to be effective in stabilising

the inviscid Type I mode, and the effects on the viscous Type II mode were reported

as destabilising. This destabilising effect was attributed to increased energy produc-

tion by viscous forces on the disk surface. Those results were then confirmed by the

experimental studies of the Colley et al. (1999).

The interest of this thesis is, on the other hand, to analyse the effects of more

general distributed surface roughness. A study involving this type of roughness

would be the experimental investigation of Watanabe et al. (1993) who considered

the laminar-turbulent transition of the boundary layer flow over a rotating cone. An

indication of the potential stabilising effect of surface roughness was, in this case,

shown by reducing the number of vortices from 32 to 26 for a modest level of the

surface roughness.
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Due to well-known connection between the rotating cone and the rotating disk

boundary layers (Garrett et al., 2009; Garrett, 2009), a study on the effects of

distributed surface roughness on the transition of the von Kármán flow can be used

as the first step towards explaining Watanbe’s results. Two alternative models for

surface roughness in the von Kármán flow exist in the literature. The first is due

to Yoon et al. (2007), henceforth referred to as the YHP model. Under the YHP

model, surface roughness is modelled by imposing a particular surface distribution as

a function of radial position only and assuming a rotational symmetry. Thereby, this

model is limited to a particular case of anisotropic roughness, namely concentric

grooves (radially anisotropic roughness).

An alternative method to the YHP model in the literature is the MW model

developed by Miklavcic & Wang (2004). The MW approach models surface rough-

ness empirically instead of imposing a particular mathematical form by converting

the usual no-slip boundary conditions to partial-slip conditions at the disk surface.

Therefore, independent levels of roughness in the radial and azimuthal directions

can be modelled using this approach by separately modifying the boundary con-

ditions in these directions. The MW model can therefore model all variations of

distributed roughness that will be used throughout this thesis: isotropic roughness

(uniform in both directions) and two forms of anisotropic roughness, radial grooves

(azimuthally anisotropic) and concentric grooves (radially anisotropic).

Recently, those variations of the distributed surface roughness were considered

in the study of Cooper et al. (2015) using the MW model on the von Kármán flow.

The results obtained reveal that the introduction of surface roughness leads to a

stabilisation of the Type I mode in terms of increased critical Reynolds number.

However, the study of Garrett et al. (2016) for the concentric grooves case reveals

parallel results for the Type II mode to that of Garrett et al. (2012) such that

a significant destabilisation is obtained and the Type II mode becomes the most

dangerous mode in terms of critical Reynolds number for higher levels of roughness.

This current study aims to broaden the theoretical studies of the von Kármán

flow to flows within the broader BEK system. The principle objective is to under-
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stand the effects of distributed surface roughness on the characteristics of the BEK

system in terms of the response of the convective instability properties. The work is

hoped to contribute to progress towards developing an understanding of the right

sort of roughness. Therefore, a linear convective instability analyses will be ap-

plied to those flows in order to determine curves of neutral stability and produce the

convective growth rates. As discussed by Lingwood & Garrett (2011), the absolute

instability mechanism limits the computation of the convective growth rate curves

in certain flows due to the “branch exchange” issue resulting from the coalescence of

the Type I and Type III modes. Therefore, the effect of increased surface roughness

on the delaying of the “branch exchange” will also be investigated. In some sense

this is a proxy for investigating the onset of absolute instability, but it should be

noted that this is not a complete absolute instability analysis which would require

an additional, highly focused study.

It also known that the BEK system of flows are convectively unstable within

certain regions to travelling disturbances. That is, disturbances that are not sta-

tionary in the frame of the rotating disk (Lingwood, 1997). It is well known that for

smooth disks these travelling disturbances are dominant, but in the case of rough

disks, stationary disturbances are consistently excited by surface roughnesses fixed

in time in the rotating frame and are continually reinforced such that they dominate.

For this reason only stationary disturbances are studied in this thesis. The inter-

ested reader is referred to the studies of Lingwood (1997), Corke & Knasiak (1998),

Othman & Corke (2006) and Corke et al. (2007) for comprehensive discussions of

the instability characteristics of travelling modes over a rotating disk.

There are two other main drag reduction techniques discussed in the literature

and applied to the rotating disk flows in order to delay the onset of the transition

process. One of these methods is applying mass transfer at the disk surface. This

method has been widely used by many authors since Batchelor (1951) extended the

governing equations of the von Kármán flow to rotating disks flows with a uniform

axial mass flux at the disk surface. The axial mass flux is satisfied by applying a

uniform mass suction or injection. The experimental study of Gregory & Walker
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(1960) revealed that controlled surface suction might delay the onset of instability

modes. These observations are supported theoretically by the linear stability work

of Dhanak (1992) who showed that uniform suction leads to an increase in critical

Reynolds numbers of the Type I and Type II modes whereas uniform mass injection

has the reverse effect. The same effects of uniform mass flux have been observed

for the BEK system of flows in the study of Lingwood & Garrett (2011). For an

extensive review of this area of research the reader is referred to Turkyilmazoglu

(2009).

Magnetohydrodynamic (MHD) systems are also used as a potential drag reduc-

tion technique in the literature. The first application of these systems on rotating

disk flows uses the application of a uniform magnetic field to the electrically con-

ducting fluid and is studied by Sparrow & Cess (1962). They revealed that the

presence of a magnetic field has a stabilising effect on the flow. Further stability

analysis on the von Kármán flow are conducted by Jasmine (2003) and Jasmine

& Gajjar (2005). Their findings are in agreement with previous results in the lit-

erature. There are many other studies between those works and for a recent and

comprehensive review of the area interested reader is referred to Thomas (2007).

Where appropriate, the results of this thesis will be discussed in the context of these

alternative stabilisation methods.

This thesis is organised as follows: A brief introduction to the BEK system

of boundary layer flows is given in Chapter 2. The governing steady mean flow

equations are formulated using the MW model and the perturbation equations are

presented in the same chapter. The details of the mean flow solver and the spectral

Chebyshev methods used to solve those equations are then stated in Chapter 3. Here,

the Chebyshev collocation points are transformed into the fluid domain using an

exponential transformation mapping to be ensure the accuracy of the approximation

inside the boundary layer. The effects of surface roughness generated by azimuthally

anisotropic roughness (radial grooves), radially anisotropic roughness (concentric

grooves) and isotropic roughness are discussed in Chapters, 4, 5 & 6, respectively.

In each of those chapters, the mean flow profiles and convective neutral stability
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curves are presented. It is seen that increased radial grooves and isotropic roughness

have a great stabilisation effect on both Type I and Type II modes for the BEK

system of flows. The only exception is the destabilisation of the Bödewadt flow

in the case of increased radial grooves. Increased concentric grooves also has a

stabilisation effect on Type I mode, however, it causes destabilisation of the Type II

mode. These results are validated by analysing the effects of surface roughness on the

most rapidly growing modes that would be most likely to dominate and be observed

in experiments. Yet further confirmation is obtained in each case by conducting

an energy balance analysis at the location of the maximum amplification of each

instability mode. The energy balance approach also enables us to gain an insight into

the physics of the stabilisation process. This is then followed by a brief discussion of

the absolute instability that focuses on “branch exchange” between the Type I and

Type III modes. All findings discussed in those chapters are compared qualitatively

to the other drag-reduction techniques mentioned previously. The purpose of the

final chapter, Chapter 7, is to compare all findings and make comments on the

potential for using surface roughness as a control mechanism for the BEK famility

of flows. Possible extensions of this work are also discussed.

A considerable amount of the findings presented herein has already been pub-

lished as Alveroglu et al. (2016a) and a second publication will appear shortly in

the Proceedings of ISROMAC-16 (Alveroglu et al., 2016b).



Chapter 2

The governing equations of the

linear stability analysis

2.1. Overview

Analysing the response of a laminar flow to a perturbation of small amplitude

is one of the main challenges of stability theory. A flow could be defined as stable

if it returns to its original laminar state after suffering some perturbation. However

if the perturbation grows and leads to the transition of the laminar state into a

different state, the flow can be defined as unstable. Mathematically, stability theory

is concerned with the evolution of superposed perturbations on the laminar base flow.

By assuming the perturbations to be small, further simplifications can be justified

and linear equations governing the growth of the perturbation can be achieved.

However, those linear equations lose their validity as the perturbations grow above

a few percent of the base flow and nonlinear interactions begin to occur. Despite the

limited region of validity, the linear equations are important to determine physical

growth mechanisms and dominant disturbances types (Schmid & Henningson, 2012).

In this chapter, a brief description of the BEK family of boundary layers is given

in §2.2, and the derivation of nonlinear steady mean flow equations governing the

laminar base flows of the BEK system flows are outlined in §2.3.1. In §2.3.2 the

derivation of the perturbation equations is presented. A derivation of the energy

12
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balance equations is included in §2.3.3.

2.2. A brief description of the BEK flows

This study is concerned with the BEK family of boundary layers, referred to as

the BEK system for simplicity throughout the thesis. The BEK system of flows is

generated by a two rotating disk system in which the lower and upper disks rotate

around a common axis in an otherwise still, incompressible fluid. The flows are then

distinguished by a differential rotation rate between the lower disk and the fluid

above which is generated by the upper rotating disk. The angular velocities of the

lower disk and the fluid above are denoted by Ω∗D and Ω∗F indicating the disk D and

flow F , respectively.

The BEK system includes the Bödewadt, Ekman and von Kármán flows as the

main particular cases. Between these particular cases, there are flows in which both

the disk and the fluid rotate with different angular velocities. The von Kármán

flow occurs in the case of a rotational lower disk and a stationary upper fluid, i.e.

Ω∗D 6= 0 and Ω∗F = 0; whereas the Ekman flow occurs in the case of both lower disk

and upper fluid rotate with the same angular velocity in the same direction, i.e.

Ω∗D = Ω∗F 6= 0. The Bödewadt flow occurs in the case of a stationary lower disk and

a rotating upper flow, i.e. Ω∗D = 0 and Ω∗F 6= 0. It is also assumed that the lower

disk is to be rotating in a frame of reference that rotates with the disk. As a result,

the Coriolis terms and centrifugal effects due to rotation appear in the governing

equations. The existence of those Coriolis terms leads to use of the Rossby number

to distinguish the flows in the system. The Rossby number is a constant parameter

of the flow relating the ratio of Coriolis forces to inertial forces and can be defined

as

Ro =
Ω∗F − Ω∗D

Ω∗
, (2.1)

where Ω∗ is the system rotation rate and defined as
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Figure 2.1: Variation in Co with Ro for the BEK system flows
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The Rossby number for the BEK system of flows has a range from negative unity

to positive unity, i.e., Ro ∈ [−1, 1]. Furthermore, the constant parameter Coriolis

number is related to the Rossby number such that

Co = 2Ω∗D/Ω
∗ = 2−Ro−Ro2.

Figure 2.1 shows Co plotted against Ro and a classification of the BEK family of

boundary layer flows in terms of those parameters is stated in the study of Lingwood

& Garrett (2011) as

Bödewadt flow: Ro = 1 Co = 0 Ω∗ = Ω∗F

Ekman flow: Ro = 0 Co = 2 Ω∗ = Ω∗F = Ω∗D

Von Kármán: Ro = −1 Co = 2 Ω∗ = Ω∗D.
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2.3. Derivation of the governing equations

In the derivation of the governing equations for the steady mean flow and pertur-

bation equations of the BEK system, the dimensional Navier-Stokes equations are

used in a cylindrical polar coordinate system (r∗, θ, z∗). Furthermore, we assume an

incompressible flow. The momentum equations are given in (2.2) and the continuity

equation is given in (2.3)

∂U∗

∂t∗
+ U∗ · ∇U∗ − V ∗2

r∗
− 2Ω∗DV

∗

= − 1

ρ∗
∂P ∗

∂r∗
+ ν∗

(
∇2U∗ − U∗

r∗2
− 2

r∗2
∂V ∗

∂θ

)
,

∂V ∗

∂t∗
+ U∗ · ∇V ∗ +

U∗V ∗

r∗
+ 2Ω∗DU

∗

= − 1

r∗ρ∗
∂P ∗

∂θ
+ ν∗

(
∇2V ∗ +

2

r∗2
∂U∗

∂θ
− V ∗

r∗2

)
,

(2.2)

∂W ∗

∂t∗
+ U∗ · ∇W ∗ = − 1

ρ∗
∂P ∗

∂z∗
+ ν∗∇2W ∗,

∂U∗

∂r∗
+
U∗

r∗
+

1

r∗
∂V ∗

∂θ
+
∂W ∗

∂z∗
= 0. (2.3)

Here, the asterix superscript denotes the dimensional form of the quantities and

U∗ = (U∗, V ∗, W ∗) in which U∗, V ∗ & W ∗ are the radial, azimuthal and axial

velocity components, respectively. Furthermore, P ∗ is the fluid pressure, ν∗ is the

kinematic viscosity, ρ∗ is the density of the fluid and t∗ is time.

2.3.1. The steady mean flows

In the derivation of the steady mean flow equations, an axisymmetric mean flow

assumption is made. Therefore, the mean flow components and pressure term are

independent of axial direction θ. The Navier-stokes equations (2.2)-(2.3) can be
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written explicitly using this assumption as

U∗
∂U∗

∂r∗
+W ∗∂U

∗

∂z∗
− V ∗2

r∗
− 2Ω∗DV

∗

= − 1

ρ∗
∂P ∗

∂r∗
+ ν∗

(
∂2U∗

∂r∗2
+

1

r∗
∂U∗

∂r∗
+
∂2U∗

∂z∗2
− U∗

r∗2

)
,

(2.4)

U∗
∂V ∗

∂r∗
+W ∗∂V

∗

∂z∗
+
U∗V ∗

r∗
+ 2Ω∗DU

∗

= ν∗
(
∂2V ∗

∂r∗2
+
V

r∗
+
∂2V ∗

∂z∗2
− V ∗

r∗2

)
, (2.5)

U∗
∂W ∗

∂r∗
+W ∗∂W

∗

∂z∗
= − 1

ρ∗
∂P ∗

∂z∗
+ ν∗

(
∂2W ∗

∂r∗2
+
W

r∗
+
∂2W ∗

∂z∗2

)
, (2.6)

∂U∗

∂r∗
+
U∗

r∗
+
∂W ∗

∂z∗
= 0. (2.7)

To obtain the dimensionless form of these equations, global similarity variables

that extend the exact similarity solution of the Navier-Stokes equations for the von

Kármán flow, and used by Lingwood (1997), amongst others, are used here. These

dimensionless mean flow variables are assumed to have the following form:

U(z) =
U∗

r∗Ω∗Ro
, V (z) =

V ∗

r∗Ω∗Ro
,

W (z) =
W ∗

l∗Ω∗Ro
, P (r, z) =

P ∗

ρ∗l∗2Ω∗2Ro2
,

(2.8)

where l∗ =
√
ν∗/Ω∗ is the boundary layer thickness. Moreover, z = z∗/l∗ and

r = r∗/l∗ are the dimensionless forms of z∗ and r∗, respectively. The dimensionless

Reynolds number is given as

Re =
r∗∆Ω∗l∗

ν∗
= r∗

RoΩ∗

ν∗
l∗ = r∗

1

l∗2
l∗Ro =

r∗

l∗
Ro = rRo. (2.9)

Here, ∆Ω∗ = Ω∗F − Ω∗D and ∆Ω∗ = RoΩ∗ from the definition (2.1).
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Differentiations of the dimensional mean flow velocity components U∗, V ∗, W ∗

and the pressure term P ∗ are then stated in terms of the dimensionless mean flow

variables as

∂U∗

∂r∗
=

∂

∂r∗

(
U(z)r∗Ω∗Ro

)
= Ω∗RoU(z),

∂U∗

∂z∗
=
r∗Ω∗Ro

l∗
U ′(z),

∂2U∗

∂r∗2
=

∂2

∂r∗2

(
U(z)r∗Ω∗Ro

)
= 0,

∂2U∗

∂z∗2
=
r∗Ω∗Ro

l∗2
U ′′(z),

∂V ∗

∂r∗
=

∂

∂r∗

(
V (z)r∗Ω∗Ro

)
= Ω∗RoV (z),

∂V ∗

∂z∗
=
r∗Ω∗Ro

l∗
V ′(z),

∂2V ∗

∂r∗2
=

∂2

∂r∗2

(
V (z)r∗Ω∗Ro

)
= 0,

∂2V ∗

∂z∗2
=
r∗Ω∗Ro

l∗2
V ′′(z),

∂W ∗

∂r∗
=

∂

∂r∗

(
W (z)l∗Ω∗Ro

)
= 0,

∂W ∗

∂z∗
= Ω∗RoW ′(z),

∂2W ∗

∂r∗2
=

∂2

∂r∗2

(
W (z)l∗Ω∗Ro

)
= 0,

∂2W ∗

∂z∗2
=

Ω∗Ro

l∗
W ′′(z).

(2.10)

The radial pressure gradient that appears in (2.4) should be determined from

the relative circumferential flow as z −→ ∞, i.e, V −→ 1. Using the assumptions

U(z) −→ 0, U ′(z) −→ 0 and U ′′(z) −→ 0 as z −→∞ gives

Ro+ Co =
1

ρ∗Ω∗2r∗Ro

∂P ∗

∂r∗
, (2.11)

that is taken as a constant in z. Therefore, the mean pressure term can be written

as

P ∗(r, z) = ρ∗Ω∗2l∗2Ro2

(
r2
(
Ro+ Co

)
2Ro

+ P (z) + constant

)
. (2.12)

It follows that

∂P ∗

∂z∗
= P ′(z)ρ∗Ω∗2l∗Ro2. (2.13)

The dimensionless steady mean flow equations are then obtained using the cor-
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responding terms in (2.10)-(2.13). The radial component of the dimensional Navier-

Stokes equations, (2.4), can be expressed as

r∗Ω∗2Ro2

{
U2(z) +W (z)U ′(z)− V 2(z)

}
− 2Ω∗Dr

∗Ω∗RoV (z)

= − 1

ρ∗
∂P ∗

∂r∗
+

(
ν∗Ω∗Ro

r∗
U(z) +

ν∗r∗Ω∗Ro

l∗2
U ′′(z)− ν∗Ω∗Ro

r∗
U(z)

)
.

Dividing each term of this equation by ν∗r∗Ω∗Ro
l∗2

and using (2.11) gives

Ro

(
U2 +WU ′ − V 2

)
− CoV = Ro+ Co− U ′′,

as Co =
2Ω∗D
Ω∗

and ν∗

l∗2
= Ω∗. Therefore, the radial equation for the dimensionless

mean flow is

Ro

(
U2 + U ′W − (V 2 − 1)

)
− Co(V − 1)− U ′′ = 0. (2.14)

Similarly, the azimuthal component of the dimensional Navier-Stokes equations,

(2.5), can be expressed, using the dimensionless components, as

r∗Ω∗2Ro2

{
U(z)V (z)+W (z)V ′(z) + U(z)V (z)

}
+ 2Ω∗Dr

∗Ω∗RoU(z)

=

(
ν∗Ω∗Ro

r∗
V (z) +

ν∗r∗Ω∗Ro

l∗2
V ′′(z)− ν∗Ω∗Ro

r∗
V (z)

)
.

Dividing each side of this equation by ν∗r∗Ω∗Ro
l∗2

leads to the dimensionless azimuthal

steady mean flow equation

Ro

(
2UV +WV ′

)
+ CoU − V ′′ = 0. (2.15)

The axial component of the dimensional Navier-Stokes equations, (2.6), is ex-

pressed as

l∗Ω∗2Ro2W (z)W ′(z) = − 1

ρ∗
ρ∗Ω∗2l∗Ro2P ′(z) +

ν∗Ω∗Ro

l∗
W ′′(z).
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Dividing each term by ν∗Ω∗Ro
l∗

leads to the dimensionless axial equation for the steady

mean flow

Ro

(
WW ′ + P ′

)
−W ′′ = 0. (2.16)

The dimensional continuity equation (2.7) is expressed as

Ω∗RoU(z) +
r∗Ω∗Ro

r∗
U(Z) + Ω∗RoW ′(z) = 0,

which directly implies that the dimensionless continuity equation of the steady mean

flow is

2U +W ′ = 0. (2.17)

The obtained dimensionless mean flow equations for the BEK system flows are

then stated as

Ro

(
U2 + U ′W − (V 2 − 1)

)
− Co

(
V − 1

)
− U ′′ = 0,

Ro

(
2UV + V ′W

)
+ CoU − V ′′ = 0,

Ro

(
WW ′ + P ′

)
−W ′′ = 0,

2U +W ′ = 0.

(2.18)

In the above all derivatives denoted by primes are with respect to z, and U , V & W

are the mean flow components in radial, azimuthal and axial directions, the pressure

term is denoted by P .

The boundary conditions at the lower rough disk surface in the BEK system

are derived from the MW approach proposed in the study of Miklavcic & Wang

(2004). That is, the surface roughness is modelled empirically using partial-slip

conditions at the disk surface instead of the usual no-slip condition proposed by

Navier (1827). However, the far-field boundary conditions at the upper edge of the

boundary layer are identical to the no-slip condition at infinity. These partial-slip
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boundary conditions are

U(0) = λU ′(0), V (0) = ηV ′(0) and W (0) = 0,

U −→ 0, V −→ 1, as z −→ ∞.
(2.19)

Note that the derivatives (indicated with a prime) are again with respect to z and

the two parameters η and λ are empirical values related to experimental measures of

roughness in the radial and azimuthal directions, respectively. The no-slip bound-

ary conditions for a smooth disk are established at λ = η = 0. The particular cases

η > 0, λ = 0 (concentric grooves) and η = 0, λ > 0 (radial grooves) correspond

to anisotropic roughness, radially and azimuthally, whereas the case η = λ 6= 0

corresponds to isotropic roughness. The effects of these types of roughness on the

instability properties of the BEK system of flows are studied individually in the later

chapters of this thesis. The conditions are further discussed in Cooper et al. (2015).

In the case of the Ekman flow, Ro = 0, it should be noted that there is a

precise analytical solution of equations (2.18) for the velocity components subject

to boundary conditions (2.19) at general η and λ and it is stated in (2.20). The

pressure term P is not required to perform the stability analysis, as discussed later.

Therefore, an analytic solution for this term is not presented here

U =e−z(A sin z −B cos z),

V =1 + e−z(B sin z + A cos z),

W =e−z [B(sin z − cos z) + A(sin z + cos z)] +B − A,

(2.20)

where A and B are constants given by

A = − 1 + λ

(1 + λ)(1 + η) + λη
, and B =

λ

(1 + λ)(1 + η) + λη
.

Of physical interest is the resisting torque T on the lower disk as given by

T =

∫ R

0

νV ′(0)2πr2dr =
2πν

3

Re3

Ro3
V ′(0), (2.21)
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(Miklavcic & Wang, 2004). Here, R is radius of the disk and r is replaced with

Re/Ro using the dimensionless Reynolds number (2.9).

2.3.2. Derivation of the perturbation equations

In the derivation of perturbation equations, the dimensional Navier-Stokes equa-

tions (2.2)-(2.3) are used. The equations are non-dimensionalised with respect to

the local similarity variables based on a local radial position of the disk, ra. The

local similarity variables are

U(z) =
U∗

r∗aΩ
∗Ro

, V (z) =
V ∗

r∗aΩ
∗Ro

, W (z) =
W ∗

r∗aΩ
∗Ro

,

P (r, z) =
P ∗

ρ∗r∗2a Ω∗2Ro2
, t =

t∗

l∗/(r∗aΩ
∗Ro)

, and r = r∗a/l
∗.

(2.22)

The non-dimensional Reynolds number in terms of local scales is given as

Re =
r∗a∆Ω∗l∗

ν∗
= raRo. (2.23)

The local Reynolds number is therefore negative for a negative Rossby number,

however this is merely a consequence of using a single model for positive and negative

Rossby number flows. The results will therefore be presented in terms of positive

Re throughout this dissertation.

The dimensionless velocity and pressure of a perturbed flow are denoted by bared

lower-case quantities. To derive the perturbation equations, each of those quantities

are decomposed into dimensionless mean flow and perturbation parts. The mean

flow and perturbation parts are denoted by upper-case and lower-case quantities,

respectively. The expansions are as follows

ū(r, θ, z, t) =
rRo

Re
U(z) + u(r, θ, z, t)

v̄(r, θ, z, t) =
rRo

Re
V (z) + v(r, θ, z, t)

w̄(r, θ, z, t) =
Ro

Re
W (z) + w(r, θ, z, t)

p̄(r, θ, z, t) =
Ro2

Re2
P (z) + p(r, θ, z, t).

(2.24)
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It is also assumed throughout this dissertation that the imposed disturbances

are sufficiently small so that the transition process is controlled by the primary

stability of the mean flow instead of any secondary instability that can occur if the

perturbations are large enough to deform the mean flow profiles. Furthermore, the

non-linear terms arising from products of these small perturbation quantities are also

sufficiently small to be ignored in the equations. In other words, a linear analysis is

conducted. Note that bypass transition in which the initial perturbations are large

enough such that non-linear terms dominate the flow from the very beginning are

not considered here.

In order to obtain the dimensionless perturbation equations, the local similar-

ity variables (2.22) are firstly inserted in equations (2.2)-(2.3). Then, using the

perturbed flow components (2.24), and having scaled the dimensional differential

operators, we find that

r∗2a Ω∗2Ro2

l∗

{
∂

∂t

(
rRo

Re
U(z) + u(r, θ, z, t)

)

+

(
rRo

Re
U(z) + u(r, θ, z, t)

)
∂

∂r

(
rRo

Re
U(z) + u(r, θ, z, t)

)

+
1

r

(
rRo

Re
V (z) + v(r, θ, z, t)

)
∂

∂θ

(
rRo

Re
U(z) + u(r, θ, z, t)

)

+

(
Ro

Re
W (z) + w(r, θ, z, t)

)(
rRo

Re
U ′(z) +

∂u(r, θ, z, t)

∂z

)

− 1

r

(
rRo

Re
V (z) + v(r, θ, z, t)

)2
}
− 2Ω∗Dr

∗
aΩ
∗Ro

(
rRo

Re
V (z) + v(r, θ, z, t)

)

= −r
∗2
a Ω∗2Ro2

l∗
∂

∂r

(
Ro2

Re2
P (z) + p(r, θ, z, t)

)
+
ν∗r∗aΩ

∗Ro

l∗2

{
∂2

∂r2

(
rRo

Re
U(z) + u(r, θ, z, t)

)

+
1

r

∂

∂r

(
rRo

Re
U(z) + u(r, θ, z, t)

)
+

1

r2

∂2

∂r2

(
rRo

Re
U(z) + u(r, θ, z, t)

)

+
∂2

∂z2

(
rRo

Re
U(z) + u(r, θ, z, t)

)
− 1

r2

(
rRo

Re
U(z) + u(r, θ, z, t)

)
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− 2

r2

∂

∂θ

(
rRo

Re
U(z) + u(r, θ, z, t)

)}
, (2.25)

r∗2a Ω∗2Ro2

l∗

{
∂

∂t

(
rRo

Re
V (z) + v(r, θ, z, t)

)

+

(
rRo

Re
U(z) + u(r, θ, z, t)

)
∂

∂r

(
rRo

Re
V (z) + v(r, θ, z, t)

)

+
1

r

(
rRo

Re
V (z) + v(r, θ, z, t)

)
∂

∂θ

(
rRo

Re
V (z) + v(r, θ, z, t)

)

+

(
Ro

Re
W (z) + w(r, θ, z, t)

)(
rRo

Re
V ′(z) +

∂v(r, θ, z, t)

∂z

)

+
1

r

(
rRo

Re
U(z) + u(r, θ, z, t)

)(
rRo

Re
V (z) + v(r, θ, z, t)

)}

+ 2Ω∗Dr
∗
aΩ
∗Ro

(
rRo

Re
U(z) + u(r, θ, z, t)

)

= −r
∗2
a Ω∗2Ro2

l∗r

∂

∂θ

(
Ro2

Re2
P (z) + p(r, θ, z, t)

)
+
ν∗r∗aΩ

∗Ro

l∗2

{
∂2

∂r2

(
rRo

Re
V (z) + v(r, θ, z, t)

)

+
1

r

∂

∂r

(
rRo

Re
V (z) + v(r, θ, z, t)

)
+

1

r2

∂2

∂r2

(
rRo

Re
V (z) + v(r, θ, z, t)

)

+
∂2

∂z2

(
rRo

Re
V (z) + v(r, θ, z, t)

)
− 1

r2

(
rRo

Re
V (z) + v(r, θ, z, t)

)

+
2

r2

∂

∂θ

(
rRo

Re
V (z) + v(r, θ, z, t)

)}
, (2.26)

r∗2a Ω∗2Ro2

l∗

{
∂

∂t

(
Ro

Re
W (z) + w(r, θ, z, t)

)
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+

(
rRo

Re
U(z) + u(r, θ, z, t)

)
∂

∂r

(
Ro

Re
W (z) + w(r, θ, z, t)

)

+
1

r

(
rRo

Re
V (z) + v(r, θ, z, t)

)
∂

∂θ

(
Ro

Re
W (z) + w(r, θ, z, t)

)

+

(
Ro

Re
W (z) + w(r, θ, z, t)

)(
rRo

Re
W ′(z) +

∂w(r, θ, z, t)

∂z

)

= −r
∗2
a Ω∗2Ro2

l∗
∂

∂z

(
Ro2

Re2
P (z) + p(r, θ, z, t)

)

+
ν∗r∗aΩ

∗Ro

l∗2

{
∂2

∂r2

(
Ro

Re
W (z) + w(r, θ, z, t)

)
+

1

r

∂

∂r

(
Ro

Re
W (z) + w(r, θ, z, t)

)

+
1

r2

∂2

∂r2

(
Ro

Re
W (z) + w(r, θ, z, t)

)
+

∂2

∂z2

(
Ro

Re
W (z) + w(r, θ, z, t)

)}
,

(2.27)

r∗aΩ
∗Ro

l∗

{
∂

∂r

(
rRo

Re
U(z) + u(r, θ, z, t)

)
+

1

r

(
rRo

Re
U(z) + u(r, θ, z, t)

)

+
1

r

∂

∂θ

(
rRo

Re
V (z) + v(r, θ, z, t)

)
+

∂2

∂z2

(
Ro

Re
W (z) + w(r, θ, z, t)

)}
= 0.

(2.28)

Applying the differentiations and linearisation with respect to perturbation quan-

tities in equations (2.25)-(2.28) and subtracting the mean flow components gives

following equations

r∗2a Ω∗2Ro2

l∗

{
∂u

∂t
+
rRoU

Re

∂u

∂r
+
RoU

Re
u+

RoV

Re

∂u

∂θ
+
RoW

Re

∂u

∂z
− 2RoV

Re
v +

rRoU ′w

Re

}
− 2Ω∗Dr

∗
aRov

= −r
∗2
a Ω∗2Ro2

l∗
∂p

∂r
+
ν∗r∗aΩ

∗Ro

l∗2

{
∂2u

∂r2
+

1

r2

∂2u

∂θ2
+
∂2u

∂z2
− u

r2
− u

r2
− 2

r2

∂v

∂θ

}
,

(2.29)
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r∗2a Ω∗2Ro2

l∗

{
∂v

∂t
+
rRoU

Re

∂v

∂r
+
RoU

Re
v +

RoV

Re

∂v

∂θ
+
RoW

Re

∂v

∂z
+

2RoV

Re
u+

rRoV ′w

Re

}
+ 2Ω∗Dr

∗
aRou

= −r
∗2
a Ω∗2Ro2

l∗r

∂p

∂θ
+
ν∗r∗aΩ

∗Ro

l∗2

{
∂2v

∂r2
+

1

r2

∂2v

∂θ2
+
∂2v

∂z2
− v

r2
− v

r2
+

2

r2

∂u

∂θ

}
,

(2.30)

r∗2a Ω∗2Ro2

l∗

{
∂w

∂t
+
rRoU

Re

∂w

∂r
+
RoW ′

Re
w +

RoV

Re

∂w

∂θ
+
RoW

Re

∂w

∂z

}

=
r∗2a Ω∗2Ro2

l∗
∂p

∂z
+
ν∗r∗aΩ

∗Ro

l∗2

{
∂2w

∂r2
+

1

r2

∂2w

∂θ2
+
∂2w

∂z2
+
w

r

}
, (2.31)

r∗aΩ
∗Ro

l∗

{
∂u

∂r
+
u

r
+

1

r

∂v

∂θ
+
∂2w

∂z2

}
= 0. (2.32)

Equations (2.33)-(2.35) are obtained after dividing each term of the equations

(2.29)-(2.31) with r∗2a Ω∗2Ro2

l∗
. It should be noted that ν∗

l∗2
= Ω∗, Co =

2Ω∗D
Ω∗

and

ν∗r∗aΩ
∗Ro

l∗

/
r∗2a Ω∗2Ro2

l∗2
=

ν∗

r∗al
∗Ω∗Ro

=
ν∗

l∗2Ω∗raRo
=

1

Re
,

Equation (2.36) is, on the other hand, obtained directly from (2.32).

∂u

∂t
+
rRoU

Re

∂u

∂r
+
RoU

Re
u+

RoV

Re

∂u

∂θ
+
RoW

Re

∂u

∂z
−
(2RoV

Re
+
Co

Re

)
v +

rRoU ′w

Re

= −∂p
∂r

+
1

Re

(∂2u

∂r2
+

1

r2

∂2u

∂θ2
+
∂2u

∂z2
− u

r2
− 2

r2

∂v

∂θ

)
, (2.33)

∂v

∂t
+
rRoU

Re

∂v

∂r
+
RoU

Re
v +

RoV

Re

∂v

∂θ
+
RoW

Re

∂v

∂z
+
(2RoV

Re
+
Co

Re

)
u+

rRoV ′

Re
w

= − 1

Re

∂p

∂θ
+

1

Re

(∂2v

∂r2
+

1

r2

∂2v

∂θ2
+
∂2v

∂z2
− v

r2
+

2

r2

∂u

∂θ

)
, (2.34)

∂w

∂t
+
rRoU

Re

∂w

∂r
+
RoW ′

Re
w +

RoV

Re

∂w

∂θ
+
RoW

Re

∂w

∂z

=
∂p

∂z
+

1

Re

(∂2w

∂r2
+

1

r2

∂2w

∂θ2
+
∂2w

∂z2
+

1

r

∂w

∂r

)
, (2.35)
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∂u

∂r
+
u

r
+

1

r

∂v

∂θ
+
∂w

∂z
= 0. (2.36)

In order to make these linearised equations separable in r, θ and t a parallel-flow

approximation is introduced. Therefore, the variable r appearing in the coefficients

of the linearised equations is replaced with Re/Ro. In other words, variations of the

Reynolds number with radius are ignored. The terms of order (Ro/Re)2 are also

neglected. However the term of the second derivative in the azimuthal direction is

kept, this is because introducing the azimuthal wavenumber, β̄ = βRe/Ro, in the

normal mode analysis distinguishes the Re2 terms in the denominator and these

terms become comparable in size to other terms. The separable linearised equations

are then

∂u

∂t
+ U

∂u

∂r
+
RoU

Re
u+

RoV

Re

∂u

∂θ
+
RoW

Re

∂u

∂z
−
(2RoV

Re
+
Co

Re

)
v + U ′w

= −∂p
∂r

+
1

Re

(∂2u

∂r2
+
Ro2

Re2

∂2u

∂θ2
+
∂2u

∂z2

)
,

∂v

∂t
+ U

∂v

∂r
+
RoU

Re
v +

RoV

Re

∂v

∂θ
+
RoW

Re

∂v

∂z
+
(2RoV

Re
+
Co

Re

)
u+ V ′w

= − 1

Re

∂p

∂θ
+

1

Re

(∂2v

∂r2
+
Ro2

Re2

∂2v

∂θ2
+
∂2v

∂z2

)
,

(2.37)

∂w

∂t
+ U

∂w

∂r
+
RoW ′

Re
w +

RoV

Re

∂w

∂θ
+
RoW

Re

∂w

∂z

=
∂p

∂z
+

1

Re

(∂2w

∂r2
+
Ro2

Re2

∂2w

∂θ2
+
∂2w

∂z2

)
.

∂u

∂r
+
Ro

Re
u+

Ro

Re

∂v

∂θ
+
∂w

∂z
= 0. (2.38)

To make a normal-mode analysis as first introduced by Gustavsson (1979), the

perturbation quantities are expanded in the normal-mode form, as given in (2.39).

The normal mode forms are then substituted into (2.37)-(2.38) and a seventh order

system of equations involving four differential equations is obtained. The seventh

order ODE system is stated in primitive variables in (2.40)-(2.41) and consists of
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three 2nd order ODEs and one 1st order ODE.

(u, v, w, p) = (û(z), v̂(z), ŵ(z), p̂(z))ei(αr+β̄θ−iωt). (2.39)

Here α is the radial wavenumber, ω is the frequency and β̄ is the azimuthal wavenum-

ber.

− 1

Re
û′′ +

Ro

Re
Wû′ +

(
iαU + iβV − iω +

α2

Re
+
β2

Re
+
Ro

Re
U

)
û

−
(

2Ro

Re
V +

Co

Re

)
v̂ + U ′ŵ + iαp̂ = 0,

− 1

Re
v̂′′ +

Ro

Re
Wv̂′ +

(
iαU + iβV − iω +

α2

Re
+
β2

Re
+
Ro

Re
U

)
v̂

+

(
2Ro

Re
V +

Co

Re

)
û+ V ′ŵ + iβp̂ = 0,

− 1

Re
ŵ′′ +

Ro

Re
Wŵ′ +

(
iαU + iβV − iω +

α2

Re
+
β2

Re
+
Ro

Re
W ′
)
ŵ + p̂′ = 0.

(2.40)

(
iα +

Ro

Re

)
û+ iβv̂ + ŵ′ = 0. (2.41)

Consistent with the analyses of Cooper et al. (2015), the perturbation quantities

should be zero at the disk surface so that the perturbed flow components satisfy the

partial-slip condition. Furthermore, the continuity equation (2.41) implies that the

first derivative of ŵ should also be zero at the disk surface. All perturbation quan-

tities are naturally set to zero at the far end of the physical domain to ensure that

the disturbances are contained within the boundary layer. Therefore, the boundary

conditions are

û(z) = v̂(z) = ŵ(z) = ŵ′(z) = p̂(z) = 0 at z = 0, (2.42)

û(z) −→ 0, v̂(z) −→ 0, ŵ(z) −→ 0 and p̂(z) −→ 0, as z −→∞. (2.43)

The set of equations (2.37)-(2.38) with the boundary conditions leads to a dis-

persion relation

D(α, β, ω;Re, [λ, η]) = 0, (2.44)
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Figure 2.2: Evolution of an initial perturbation. (a,b) Temporal growth of a local
perturbation; (c,d) temporal growth of a global periodic ; (e,f) spatial evolution of
perturbation. Taken from Schmid & Henningson (2012).

where a non-trivial solution can be found for only specific combinations of the

wavenumbers α, ω & β for various values of the roughness parameters λ and η.

The interpretation of the results depends on which of the parameters α and ω, or

both, are considered as eigenvalues of the dispersion relation.

In a temporal stability analysis, the perturbations are applied in space and their

evolution is observed in time. The analysis is established when the complex fre-

quency ω is the eigenvalue of equations (2.40)-(2.41) for a fixed real wavenumber α,

and the stability of the flow is determined by Im(ω) < 0. In other words, the linear

growth rate of the perturbations is defined by the imaginary part of the frequency

whereas the temporal frequency is indicated by the real part. A comprehensive dis-

cussion on this type of analysis can be found in the classic textbook of Drazin &

Reid (2004).

In contrast, if a disturbance is generated at a fixed position in space and it is

the growth of the source that we are interested in, a spatial stability analysis is

required, as will be performed throughout this thesis. This analyse was first applied
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in a plasma physics problem by Landau (1946) and implemented for hydrodynamic

stability problems by Watson (1962) and Gaster (1962). Some important studies

using this method include those of Fasel (1976), Murdock (1977), Malik (1986)

and Spalart et al. (1991), for example. In a spatial analysis, the complex radial

wavenumber α is the eigenvalue of the problem for a fixed real frequency ω. It is

also assumed that β is real and O(1). The frequency is set to zero, ω = 0, as we

are interested in stationary vortices rotating with the rough disk in the rotating

frame of reference. The amplification of a normal mode in (2.39) is therefore given

by -Im(α) > 0. Furthermore, the orientation angle of the stationary vortices with

respect to a circle centred on the axis of rotation and the number of spiral vortices

on the disk surface are defined as

ε = tan−1(β/αreal). (2.45)

n = βRe, (2.46)

respectively, Spatial analyses have received the most significant attention in the

literature as their results can be compared to experimental results in which the flow

is perturbed at a reference point and the growth of the perturbation is observed as

the fluid flows downstream. Figure 2.2 shows the temporal and spatial evolutions of a

perturbation as an example. A comparison for the results of a temporal and a spatial

analysis can be made by using the Gaster transformation, but this transformation

is only valid for small growth rates (Gaster, 1962).

2.3.3. Derivation of the energy balance equations

Another useful method to analyse the stability of an initial perturbation is by

measuring its kinetic energy in the volume of boundary layer. Equations for the

kinetic energy of the disturbances are given in the work of Cooper & Carpenter

(1997) for the particular case of the von Kármán flow. These equations extend to

all flows in the BEK system considered in this study. A sketch of the derivation of

these equation is given here and full details can be found in Cooper & Carpenter
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(1997).

The linearised perturbation equations (2.40)-(2.41) are multiplied by the per-

turbation components û, v̂ & ŵ, respectively. The kinetic energy equation is then

obtained from the sum of the resulting expressions and is stated as{
∂

∂t
+ U

∂

∂r
+

V

Re

∂

∂θ
− RoW

Re

∂

∂z

}
K =

− ûŵ ∂U
∂z
− v̂ŵ ∂V

∂z
+
Ro

Re
ŵ2∂W

∂z
+
RoU

Re
û2

+
RoU

Re
v̂2 −

[
∂(ûp̂)

∂r
+

1

Re

∂(v̂p̂)

∂θ
+
∂(ŵp̂)

∂z
− Ro

Re
ûp̂

]
+

[
∂(ûjσij)

∂xi
− σij

∂ûj
∂xi

]
.

(2.47)

Here, K = 1
2
(û2 + v̂2 + ŵ2) and σij are anti-symmetric viscous stress terms,

σij =
1

Re

(
∂ui
∂xj
− ∂uj
∂xi

)
. (2.48)

Repeated suffices in (2.47) indicate summation from 1 to 3. All O(1/r) viscous

terms in this equation are neglected to ensure consistency with the neglect of the

O(1/Re2) terms in the perturbation equations. The perturbations are then averaged

over a single time period, and azimuthal mode, and followed by an integration across

the boundary layer. The steady and rotationally-symmetric nature of the energy

is enforced by neglecting both t and θ derivatives, leading to the energy integral

equation

∫ ∞
0

U ∂K
∂r︸ ︷︷ ︸
a

+
∂(ûp̂)

∂r︸ ︷︷ ︸
b

− ∂

∂r
(ûσ11 + v̂σ12 + ŵσ13)︸ ︷︷ ︸

c

 dz
=

∫ ∞
0

[(
−ûŵ ∂U

∂z

)
+

(
−v̂ŵ ∂V

∂z

)
+

(
ŵ2
Ro

Re

∂W

∂z

)]
dz︸ ︷︷ ︸

I

−
∫ ∞

0

(
σij
∂ûj
∂xi

)
dz︸ ︷︷ ︸

II

+

∫ ∞
0

(
Ro

Re
ûp̂

)
dz + (ŵp̂)w̄︸ ︷︷ ︸

III

(2.49)

−
[
ûσ31 + v̂σ32 + ŵσ33

]
w̄︸ ︷︷ ︸

IV
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+

∫ ∞
0

Ro

Re

∂K

∂z
Wdz +

∫ ∞
0

Ro

Re
û2Udz +

∫ ∞
0

Ro

Re
v̂2Udz︸ ︷︷ ︸

V

.

Overbars in the equation denote a period-averaged quantity, such that ûv̂ = ûv̂?+

û?v̂ where ? indicates a complex conjugate and the w̄ subscripts denote quantities

evaluated at the wall. For Ro = −1, this equation is identical to the energy integral

equation of the von Kármán flow (Cooper & Carpenter, 1997; Cooper et al., 2015).

As discussed by Cooper & Carpenter (1997), the energy balance can be performed

for any eigenmode of the perturbation equations and the energy balance equation is

normalized to obtain

−2αi = (P1 + P2 + P3)︸ ︷︷ ︸
I

+ D︸︷︷︸
II

+ (PW1 + PW2)︸ ︷︷ ︸
III

(S1 + S2 + S3)︸ ︷︷ ︸
IV

+ (G1 +G2 +G3)︸ ︷︷ ︸
V

,
(2.50)

Physical interpretations of the terms in the equations (2.49)-(2.50) are given as

(a) the average kinetic energy convected by the radial mean flow,

(b) the work done by the perturbation pressure,

(c) the work done by the viscous stress inside the boundary layer,

(I) the Reynolds stress energy production terms, {Pi},

(II) the viscous dissipation energy removal term, {D},

(III) pressure work terms, {PWi},

(IV) contributions from the work done on the wall by the viscous stresses, {Si},

(V) terms arising from the streamline curvature effects and the three dimension-

ality of the mean flow, {Gi}.

The terms PW2, S1, S2 and S3 in the energy balance equation (2.50) are iden-

tically zero due to the boundary conditions (2.42) for all the BEK system of flows.
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The Gi terms are also identically zero for the Ekman flow, Ro = 0. The positive

terms of the energy balance equation contribute to energy production and the neg-

ative ones remove energy from the system. A mode is spatially amplified (αi < 0)

when energy production outweighs the energy dissipation in the system.



Chapter 3

Numerical methods

In this chapter, a MATLAB boundary value problem solver, bvp4c, is used to

solve the nonlinear steady mean flow equations (2.18) with boundary conditions

(2.19); details are presented in §3.1. The eigenvalue value problem represented

by the linear perturbation equations (2.40)-(2.41) is then solved with Chebyshev

collocation method in §3.2.1. A sketch of the MATLAB implementations of these

methods is also provided and full codes are given in Appendix A.

3.1. Matlab solver for the steady mean flow

The solution of the nonlinear mean flow equations is obtained in this study using

the MATLAB function bvp4c. The numerical method of this function is based on a

finite difference code implementing the three stage Lobatto IIIa formula, that can be

viewed as an implicit Runge-Kutta formula with a continuous interpolant (Kierzenka

& Shampine, 2001). Indeed, the Lobatto IIIa method is a collocation method that

provides a C1 continuous solution that is fourth-order accurate uniformly in a finite

interval [a, b]. The error estimation and mesh selection of the method are based on

the residual of the continuous solution.

In the case of this study, the aim is to obtain the mean flow profiles U , V & W

by solving the first three mean flow governing equations (2.18)-(2.19). Note that

the pressure term P is not required to perform the stability analysis (see (2.40)-

33
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(2.41)) but, if required, it can be found from (2.18). Note also that there are precise

analytical solutions of each mean flow component for the Ekman flow, Ro = 0,

stated in (2.20), but for Ro 6= 0, no such analytical solution exists and a numerical

analysis is required to solve the governing equations between Ro ∈ [−1, 1] \ {0}.
The governing mean flow equations are required to be transformed into a first

order differential equation (ODE) system using five new differentiable functions in

order to implement the MATLAB function bvp4c. These transformation functions

are as follows

φ1(z) = U, φ2(z) = U ′, φ3(z) = V, φ4(z) = V ′ and φ5(z) = W. (3.1)

The transformed first order ODE system with the partial-slip boundary conditions

is then stated as

φ
′

1 = φ2,

φ
′

2 = Ro(φ2
1 + φ2φ5 − φ2

3 + 1)− Co(φ3 − 1),

φ
′

3 = φ4,

φ
′

4 = Ro(2φ1φ3 + φ4φ5) + Coφ1,

φ
′

5 = −2φ1,

(3.2)

φ1(0) = λφ2(0), φ3(0) = ηφ4(0) and φ5(0) = 0,

φ1 −→ 0, φ3 −→ 1, as z −→ ∞.
(3.3)

Equations (3.2) and (3.3) represent a two-point boundary value problem. The

key aspects of using the bvp4c function for this problem can be summarized as

follows:

(1) A solution guess for the boundary value problem solver bvp4c is obtained in an

initial finite interval using the MATLAB function bvpinit .

(2) The solution of boundary value problem is then evaluated in this interval using

a bvp4c function.
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(3) The solution is then extended over larger intervals (domain) by continuation,

i.e, the solution of former interval is used as a solution guess for the next.

(4) The process repeats until the desired domain size is achieved.

To determine the domain size that accurately approximates the infinite domain

of the mean flow equations, the bvp4c method is applied on a continuously extended

domain size until the computed values of φ1(0) & φ3(0) for each domain size differ

in the sixth decimal place only. It is found that a domain of integration z ∈ [0, 20]

is sufficiently large for all flows in the BEK system. This length of the interval is

consistent with the domain size obtained by Van de Vooren et al. (1987) for the

Bödewadt flow.

It is also worthwhile to note that the steady mean flow profiles of the rotating

flows have been widely solved using a shooting method. For example, the shooting

method is used by Van de Vooren et al. (1987) for the problem of an immobile disk in

a rotating fluid and by Lingwood & Garrett (2011) for a mass injection problem onto

a rotating disk. For more details of this method one can see the studies of Lingwood

(1995), Jasmine (2003) and Appelquistt (2014). However, using a shooting method

requires guesses for φ2(0) & φ4(0) individually, which is commonly hard to determine.

Therefore, the computed values of φ2(0) & φ4(0), in the case of different surface

roughness distributions, that would be helpful for the implementation of a shooting

method are presented in Chapters 4, 5 and 6 of this thesis along with the computed

mean flow profiles. The value of φ4(0) is also important for calculation of the resisting

torque (2.21).

3.2. Chebyshev spectral methods

The shooting method has been widely used in the literature to solve linear govern-

ing perturbation equations, however this approach estimates a single eigenvalue at

each run and the accuracy of the estimate is strictly dependent on the initial guesses

of the parameters, which are often difficult to determine. Moreover, the governing
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equations cannot be solved directly with this method because they should be trans-

formed into an ODE system, that requires defining suitable transformation variables.

Additionally, only one eigenvalue can be estimated at each run in this method. All

other eigenvalues should be determined iteratively. The most commonly used ver-

sion of the method is introduced by Lessen et al. (1968) for an instability analysis

of pipe flows and it is used first by Malik (1986) for an instability analysis of the

von Kármán flow. More recently it has also been used by Lingwood (1995), Garrett

& Peake (2002) and Lingwood & Garrett (2011).

A Chebyshev spectral method on the other hand is able to compute the entire

spectrum of eigenvalues in one calculation, and this allows all instability modes to

be obtained simultaneously. Furthermore, the approach uses the primitive forms of

the governing equations. Thereby, it is chosen in this study as a solution method of

the linear governing instability equations (2.40) - (2.41). The approach should not in

principle give different results to the shooting method, and the Chebyshev approach

is chosen here only for convenience. However, Garrett et al. (2016) has recently

reported some numerical discrepancies between the two approaches, particularly in

the prediction of the Type II mode.

3.2.1. Overview of the spectral methods

The full theoretical background of the spectral methods used is given by Peyret

(2013) and here we summarize his detailed description. The early uses of Cheby-

shev spectral methods in hydrodynamic stability problems were based on Galerkin

and tau formulations motivated by their high degree of accuracy. For example,

Orszag (1971) used the methods for solutions of the Orr-Sommerfeld equations of

2-D Poiseuille flow. A similar study has been performed by Bridges & Morris (1984)

to find the nonlinear eigenvalues of the same problem. However, within these ap-

proaches the derivatives of the eigenfunctions are always calculated in Chebyshev

space and for this reason major modifications may be required if a new coordinate

transformation is involved in the problem. Such problems appear in the stabil-

ity of vortex flows subject to asymmetric disturbances (Howard & Gupta, 1962).
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Therefore, the third formulation of Chebyshev methods, the Chebyshev collocation

method, has gained more interest in the literature because no major changes are

needed if a new coordinate transformation is involved. In this formulation, all the

derivatives are calculated in physical spaces.

The Chebyshev collacation method has been used in many different applications.

For example, it is used for the global stability of uniform flow around a circular

cylinder by Zebib (1984) and has been applied to the instability problem of the

trailing line vortex by Khorrami (1991). Khorrami et al. (1989) also studied the

stability of swirling flows and provide extensive details on the application of the

methods. The method is implemented for the BEK system of flows in this thesis

and largely follows the details of Khorrami et al. (1989).

Before presenting the implementation of the method, a summary of the theoret-

ical background for the Chebyshev methods is presented. This is necessary as they

are less common then the shooting method and deserve a comprehensive discussion.

Spectral methods are in general a class of weighted residual methods and approxi-

mate solutions are defined as a truncated series expansion. The error or residual of

the approximations should be set approximately to zero (Finlayson, 2013). This is

satisfied through the following process.

The truncated series expansion of a function u(x) defined on the interval [a, b]

for given orthogonal basis functions ϕk(x) is stated in (3.4). The trigonometric

functions eikx for periodic problems and Chebyshev Tk(x) or Legendre Lk(x) poly-

nomials for non-periodic problems are usually used as orthogonal basis functions in

a spectral analysis. The expansion coefficients denoted by ĉk are the unknowns of

the approximation.

uN(x) =
N∑
k=0

ĉkϕk(x), a ≤ x ≤ b. (3.4)

The residual RN(x) is defined as

RN(x) = Lun − f, (3.5)

where uN(x) is the approximate solution of the differential equation
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Lu− f = 0, (3.6)

and L is a partial differential operator subject to the appropriate boundary condi-

tions. It is assumed that f is a continuous function. The residual then is forced to

be zero by setting the following scalar product to zero,

(RN , ψi)w∗ =

∫ b

a

RNψiw∗dx = 0, i ∈ IN . (3.7)

Here, ψi(x) are the weighting functions and w∗ is the weight. The dimension of the

discrete set IN is the number of collocation points xi. The distinct formulation types

of the spectral methods are determined by the choice of the weighting functions

and the weight. For Galerkin and tau formulations the weighting functions are

the same as the basis functions and the weight is the same weight associated with

orthogonality of the basis functions. For the Chebyshev collacation method they

are chosen as

ψi(x) = δ(x− xi) and w∗ = 1, (3.8)

where δ is the Dirac delta-function and xi are selected collacation points in [a, b].

It is now clear from (3.7) and (3.8) that

RN(xi) = 0, (3.9)

which also implies, from definition of the residual, that

uN(xi) = u(xi), i = 0, · · · , N. (3.10)

The final equation raises an algebraic system of N + 1 coefficients ĉk defined as

follows

N∑
k=0

ĉkϕk(xi) = u(xi), i = 0, · · · , N. (3.11)

The main advantage of spectral methods is to obtain a higher degree of accuracy
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Figure 3.1: The first few Chebyshev polynomials of first kind.

when compared to the shooting method. The error between u(x) and uN(x) is

‖u− uN‖ ≤
c

NΓ
,

where Γ is the number of continuous derivatives of u(x), c is a constant and N is the

number of collocation points (Canuto et al., 1988). Therefore, the degree of accuracy

is determined by the smoothness of the exact solution u(x) for a sufficiently large

number of the collocation points. A comparison of the shooting and Chebyshev

methods is presented by Appelquistt (2014) in the case of the von Kármán flow.

3.2.2. Implementation of Chebyshev collocation method

The Chebyshev collocation method is based on the Chebyshev polynomials de-

fined recursively in (3.12) on the interval y ∈ [−1, 1].

T0(y) = 1,

T1(y) = y,

Tk+1(y) = 2yTk(y)− Tk−1(y).

(3.12)

Because the linear equations (2.40)-(2.41) governing the BEK system of flows

involve second order ODEs, only the first and second derivatives of the Chebyshev
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Figure 3.2: Comparable distributed nodes on the rotational disk geometry.

polynomials are needed and they can be defined in a recurrence relation as

T
′

0(y) = 0, T
′′

0 (y) = 0,

T
′

1(y) = 1, T
′′

1 (y) = 0,

T
′

2(y) = 4T
′

1(y), T
′′

2 (y) = 4T
′′

1 (y),

T
′

k(y) = 2Tk−1(y) + 2yT
′

k−1(y)− T ′k−2(y),

T
′′

k (y) = 4T
′

k−1(y) + 2yT
′′

k−1(y)− T ′′k−2(y),

for k = 3, 4, · · · , N . Here, superscripts ′ and ′′ denote the first and second derivatives

with respect to y.

In order to solve the eigenvalue problem (2.40)-(2.41), with the aim of obtaining

the eigenvalues of the radial wavenumber α and the corresponding eigenfunctions of

the perturbation quantities (û, v̂, ŵ, p̂), the Chebyshev expansions of these quantities

should be introduced at a number of points in the physical domain of the BEK

system of flows, called collocation points.

The determination of these collocation points is based on a transformation of the

Gauss-Lobatto collocation points yj, defined in (3.13) at N + 1 number of points in

the interval [−1, 1] into the physical domain [0, 20].

yj = −cos

(
jπ

N

)
, j = 0, 1, · · · , N. (3.13)



Chebyshev spectral methods 41

An exponential mapping function described in (3.14) is used in this thesis to

distribute 100 collocation points between the lower disk surface, z = 0, the top of

the domain, zmax = 20. The exponential mapping transformation distributes the

collocation points mainly into the boundary layer. This is necessary in a boundary

layer flow because the discrepancies of the quantities are high and more calculations

should be performed near the lower surface to ensure a higher degree of accuracy. A

comparison between the exponential mapping and an algebraic mapping is presented

in Figure (3.2).

z = −4log

(
y − A
B

)
,

A = −1−B,

B = 2/(e−
zmax

4 − 1),

(3.14)

where zmax = 20 in this case. In the physical space of the rotating disk flows, the

Chebyshev polynomials and their derivatives are constructed using the chain rule as

Sk(z) = Tk(y),

S ′k(z) =
dTk(y)

dz
= T ′k(y)

dy

dz
,

S ′′k (z) =
d2Tk(y)

dz2
= T ′′k (y)

(
dy

dz

)2

+ T ′k(y)
dy2

dz2
.

(3.15)

It should be noted that superscripts ′ and ′′ denote the first and second derivatives

of Sk(z) and Tk(y) with respect to z and y, respectively. The truncated series of

the perturbation quantities (û, v̂, ŵ, p̂) and of their derivatives at collocation points

zj are given in (3.16)-(3.18) as the sum of the contributions of all the transformed

Chebyshev polynomials.

û(zj) =
N∑
k=0

ĉûkSk(zj), v̂(zj) =
N∑
k=0

ĉv̂kSk(zj),

ŵ(zj) =
N∑
k=0

ĉŵk Sk(zj), p̂(zj) =
N∑
k=0

ĉp̂kSk(zj),

(3.16)
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û′(zj) =
N∑
k=0

ĉûkS
′
k(zj), v̂′(zj) =

N∑
k=0

ĉv̂kS
′
k(zj),

ŵ′(zj) =
N∑
k=0

ĉŵk S
′
k(zj), p̂′(zj) =

N∑
k=0

ĉp̂kS
′
k(zj),

(3.17)

û′′(zj) =
N∑
k=0

ĉûkS
′′
k (zj), v̂′′(zj) =

N∑
k=0

ĉv̂kS
′′
k (zj),

ŵ′′(zj) =
N∑
k=0

ĉŵk S
′′
k (zj), p̂′′(zj) =

N∑
k=0

ĉp̂kS
′′
k (zj).

(3.18)

The perturbation quantities should be zero at the disk surface so that the per-

turbed flow U + û etc. satisfy the partial-slip condition mathematically imposed on

the steady flow. Furthermore, the continuity equation (2.41) implies that the first

derivative of ŵ should also be zero at the disk surface. All perturbation quantities

are naturally set to be zero at the far end of the physical domain.

Inserting the Chebyshev expansions of the perturbation quantities along with

the boundary conditions into the linearised governing equations (2.40)-(2.41) gives

a generalized eigenvalue problem for the wavenumber α of the form

(
A2α

2 + A1α + A0

)
V = 0. (3.19)

The matrices A2, A1 and A0 are of size 4(N + 1) x 4(N + 1), where 4 is the

number of unknown quantities and V is the matrix of the eigenfunctions. The form

of the matrices are stated in (3.20)-(3.22). The complex parameter ε in the matrices

A2 and A1 is set to ε = −20i, where i =
√
−1, this ensures that the boundary

conditions are properly imposed. MATLAB includes a very efficient solver of this

generalized eigenvalue problem (polyeig function) and that is used here to develop

the spectral code in order to compute the solutions of the dispersion relation (2.44).

This is done for specific combinations of the wavenumbers α, ω & β for various

values of the roughness parameters λ & η.

In the code the solutions and eigenvalues are computed for fixed values of Re

and iteratively changed values of β. For each β the modes are sorted in a descending
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order of Im(αi) to select the mode with smallest imaginary part as a branch point

and the iteration runs until a branch point with zero imaginary part is found. That

is a neutral point on the neutral curve. This process is then repeated iteratively for

a wide range of Re until the entire neutral curve of convective instability is obtained.

The details of the code are presented in Appendix A.
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A2 =



S0(z0) 0 0 0 ...

0 SN(z0) 0 0 ...

0 0 SN(z0) 0 ...

0 0 0 SN(z0) ...

(1/Re)S0(z1) 0 0 0 ...

0 (1/Re)S0(z1) 0 0 ...

0 0 (1/Re)S0(z1) 0 ...

0 0 0 (1/Re)S0(z1) ...
...

...
...

... ...

SN(zN) 0 0 0 ...

0 SN(zN) 0 0 ...

0 0 SN(zN) 0 ...

0 0 S ′N(zN) 0 ...



(3.20)
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A1 =



εSN(z0) 0 0 0 ...

0 εSN(z0) 0 0 ...

0 0 εSN(z0) 0 ...

0 0 0 εSN(z0) ...

iUS0(z1) 0 0 0 ...

0 iUS0(z1) 0 0 ...

0 0 iUS0(z1) 0 ...

iS0(z1) 0 0 0 ...
...

...
...

... ...

εSN(zN) 0 0 0 ...

0 εSN(zN) 0 0 ...

0 0 εSN(zN) 0 ...

0 0 εS ′N(zN) 0 ...



(3.21)
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A0 =



εSN(z0) 0 0 0 ...

0 εSN(z0) 0 0 ...

0 0 εSN(z0) 0 ...

0 0 0 εSN(z0) ...

(Mx(z1) + U(z1)Ro/Re)S0(z1) + RoW (z1)
Re

S ′0(z1)− 1
Re
S ′′0 (z1) −(1/Re)(2RoV (z1) + Co)S0(z1) U ′(z1)S0(z1) 0 ...

(1/Re)(2RoV (z1) + Co)S0(z1) (Mx(z1) + U(z1)Ro/Re)S0(z1) + RoW (z1)
Re

S ′0(z1)− 1
Re
S ′′0 (z1) V ′(z1)S0(z1) iβS0(z1) ...

0 0 (Mx(z1) +W ′(z1)Ro/Re)S0(z1) + RoW (z1)
Re

S ′0(z1)− 1
Re
S ′′0 (z1) S ′0(z1) ...

(Ro/Re)S0(z1) iβS0(z1) S ′0(z1) 0 ...

...
...

...
... ...

εSN(zN) 0 0 0 ...

0 εSN(zN) 0 0 ...

0 0 εSN(zN) 0 ...

0 0 εS ′N(zN) 0 ...


(3.22)

Mx(zj) = iβV (zj)/Re− iω + β2/Re3.



Chapter 4

Effect of azimuthally anisotropic

roughness on the BEK family of

boundary layers

4.1. Overview

This chapter is concerned with the effects of azimuthally anisotropic roughness

- radial grooves - on the convective instability mechanism within the general class

of rotating BEK boundary-layers. Viscous and streamline-curvature effects are in-

cluded and local linear stability analyses are conducted for the boundary-layer flows

parametrised by a Rossby number Ro between -1 to 1. Furthermore, an energy

analysis is performed to confirm the results of the linear stability analysis.

The effects of radial grooves on the solutions of the steady mean flow equations

are discussed in §4.2. Section 4.3 includes the discussions on the convective instabil-

ity analysis. The neutral curves based on the solutions of the perturbation equations

(2.40) -(2.41) with boundary conditions (2.42) are presented in §4.3.1. In §4.3.2 ef-

fects of surface roughness on the growth rates, |αi|, of each instability mode are

discussed. The results of an energy analysis are presented in §4.4. Finally, absolute

instability is discussed briefly in §4.5.

47
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4.2. The steady mean flow solutions

Figure 4.1: Radial grooves over a disk.

In this section, we solve the steady mean flow equations (2.18) with the primary

aim of studying the effects of the azimuthally anisotropic roughness on the mean flow

profiles of the BEK family of boundary layers. The secondary aim of this section is

to compare these effects with those of the active drag control mechanisms applied

on the BEK system of flows; the surface suction technique studied by Lingwood &

Garrett (2011) and the uniform distribution of magnetic field technique studied by

Jasmine & Gajjar (2005).

The azimuthally anisotropic surface roughness corresponds to radial grooves on

the disk surface. Therefore, we set the roughness parameters in the partial-slip

boundary conditions (2.19), obtained under the MW model, to λ > 0, η = 0. The

governing equations of the steady mean flows for each boundary layer in the BEK

system are parametrised by the Rossby number. For each flow within the system,

except the Ekman flow, we solve these governing equations with the MATLAB

function described in §3.1. For the Ekman flow, the precise analytical solution of

each mean flow component is stated in (2.20).

The computed mean flow profiles are in the radial direction, U -component; az-

imuthal direction, V -component; and axial direction, W -component. They are pre-

sented in this section for different sizes of radial grooves. The initial values of U ′(0)

and V ′(0) are presented in Table 4.1 for various values of roughness parameter λ.
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Figure 4.2: Mean-flow components of the von Kármán flow in the case of
azimuthally-anisotropic roughness (radial grooves, η = 0).

Our initial values for the von Kármán flow are identical those presented by Miklavcic

& Wang (2004).

The important properties of the mean flow profiles, which are potentially affected

by increased surface roughness can be listed as: the oscillatory behaviour of each

flow component, the boundary layer thickness, the size of the radial wall jet and the

amount of fluid entrained into the boundary layer. The size of the radial wall jet

depends the maximum value of radial component U in the flow field. The amount

of fluid entrained into the boundary layer depends on the magnitude of the W

component. Another important physical property that is worthwhile to note is the

resisting torque on the disk as defined by (2.21).

The oscillatory behaviour of the mean flow components is important because
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The von Kármán layer, Ro = −1

Parameter U ′(0) V ′(0)
λ = 0 -0.510232616 0.615922011
λ = 0.25 -0.407302858 0.732947507
λ = 0.5 -0.328395172 0.791387076
λ = 0.75 -0.277176378 0.836488964
λ = 1 -0.243259325 0.879697426

Ro = −0.5

Parameter U ′(0) V ′(0)
λ = 0 -0.857041159 0.907317540
λ = 0.25 -0.672583324 1.083902785
λ = 0.5 -0.549620619 1.191662485
λ = 0.75 -0.463249007 1.263211219
λ = 1 -0.399729902 1.313836983

Ro = 0.5

Parameter U ′(0) V ′(0)
λ = 0 -1.017626469 0.961193351
λ = 0.25 -0.857841282 1.142541358
λ = 0.5 -0.751302313 1.289667892
λ = 0.75 -0.673907900 1.415161509
λ = 1 -0.614567802 1.525693670

The Bödewadt layer, Ro = 1

Parameter U ′(0) V ′(0)
λ = 0 -0.941970896 0.772885383
λ = 0.25 -0.923425784 0.900014755
λ = 0.5 -0.986879150 1.120196486
λ = 0.75 -1.280383135 1.707716448

Table 4.1: The initial values of U ′ and V ′ at the disk surface for various Ro, in the
case of azimuthally-anisotropic roughness (radial grooves, η = 0).



The steady mean flow solutions 51

z

0 5 10 15 20

U

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

λ = 0

λ = 0.25

λ = 0.5

λ = 0.75

λ = 1

(a) U -profile

z

0 5 10 15 20

V

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

λ = 0

λ = 0.25

λ = 0.5

λ = 0.75

λ = 1

(b) V -profile

z

0 5 10 15 20

W

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

λ = 0

λ = 0.25

λ = 0.5

λ = 0.75

λ = 1

(c) W -profile

Figure 4.3: Mean-flow components for Ro = −0.5 in the case of azimuthally-
anisotropic roughness (radial grooves, η = 0)

the presence of inflectional points leads to the Type I instability mechanism, that is,

the cross-flow instability (Saric & Reed, 2003). Lingwood & Garrett (2011) report

that in the smooth case the mean flow components of the BEK system of flows are

oscillatory through the boundary layer, although to a reduced extent as the flows

change from the Bödewadt flow to the von Kármán one, i.e. as Ro decreases from

unity to minus unity. In the azimuthally anisotropic rough case, it can be seen

from Figures 4.2-4.6 that the oscillatory behaviour of each mean flow component is

amplified for all flows of the BEK system as the roughness parameter λ is increased.

This observation is in contrast to the effects of increased surface suction (Lingwood

& Garrett, 2011) for all flows of the system and an increase in the uniform magnetic

field applied to the von Kármán flow (Jasmine & Gajjar, 2005). In both of these
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Figure 4.4: Mean-flow components of the Ekman flow (Ro = 0) in the case of
azimuthally-anisotropic roughness (radial grooves, η = 0).

studies the amplification of their mean flow components reduce with an increase in

their parameters.

The maximum value of the radial component, U , for all Ro increases for larger

values of roughness parameter λ as is evident from Figures 4.2(a)-4.6(a). In other

words, increased radial grooves acts to increase the radial wall jet. This is physically

sensible as the radial component U would be channelled along the radial direction

by radial grooves. The growth rate of the maximum value increases substantially as

Ro changes from -1, the von Kármán flow, to 1, the Bödewadt flow. These figures

also show that the location of the maximum value of U moves towards the disk

surface with increased roughness. Therefore, we also interpret that the thickness of

the boundary layer for all Ro reduces for increased roughness. These changes of the
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Figure 4.5: Mean-flow components for Ro = 0.5 in the case of azimuthally-
anisotropic roughness (radial grooves, η = 0).

U profile are again in contrast to those observed in the smooth case for increased

surface suction and increased uniform magnetic field cases.

It is found by Lingwood & Garrett (2011) that surface suction reduces the mag-

nitude of axial flow in the far-field for Ro ≥ 0, and increases it for Ro < 0. However,

Figures 4.2(c)-4.6(c) show that azimuthally anisotropic roughness on the disk sur-

face increases the magnitude of the axial flow for increased λ for all flows of the

BEK system with the exception of the Bödewadt flow. In the Bödewadt flow, the

magnitude of the axial flow in the far-field become decreases, when compared to

the smooth case, after a threshold of roughness parameter has been reached. This

threshold appears to be around λ = 0.5. Therefore, we predict that the amount

of fluid entrained into the boundary layer increases for all Ro as the roughness is
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Figure 4.6: Mean-flow components of the Bödewadt flow (Ro = 1) in the case of
azimuthally-anisotropic roughness (radial grooves, η = 0).

increased with the exception of the Bödewadt case.

The effects of radial grooves on the azimuthal velocity profile V are presented

in Figures 4.2(b)-4.6(b), and notable changes are not observed. These figures reveal

that the oscillatory behaviour of the component moves upwards in the axial direction

and the amplification rate is gradually increased as the roughness parameter λ is

increased. The wall value of the component is unchanged for all Ro due to a direct

implication of the partial slip boundary conditions (2.19) at η = 0. Moreover, the

resisting torque T given in (2.21) is related to the initial value of the derivative of

this component. Miklavcic & Wang (2004) reported that increasing λ increases the

torque substantially in the case of the von Kármán flow and it is seen from Table

4.1 that it is true at all Ro 6= 0 in the BEK system. In the Ekman case, the torque
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is equal to zero as might be expected in this system with zero torque between the

upper and lower flows.

A summary of the main findings in this section for each particular flow in the

BEK system indicate that the effect of azimuthally-anisotropic roughness on the jets

are consistent with those obtained by Cooper et al. (2015) for the von Kármán layer.

That is, increased radial grooves act to increase the magnitude of the wall and radial

jets. Furthermore, the effects of increased roughness on the oscillatory behaviours of

the flow components are opposite to the responses seen from the addition of surface

mass flux and the distribution of uniform magnetic field. Similarly, we obtain an

increase in the amount of fluid entering the boundary layers for the majority of the

flows in the BEK system.

4.3. The convective instability analysis

In this section we are concerned with the occurrence of convective instabilities

in the case of the surface grooves distributed in a radial direction over the rotating

disk. The convective instability is determined by the computed solutions of the

perturbation equations (2.40)-(2.41) using the spectral Chebyshev method described

in §3.2. We analyse the characteristics of convective instability in terms of neutral

curves in §4.3.1 and growth rates in §4.3.2. We suppose in the first instance that the

flow is not absolutely unstable. As a result, in the Briggs-Bers procedure (Briggs

(1964) & Bers (1975)) we can set the imaginary part of the frequency to zero, so

that ωi = 0. To produce neutral curves of convective instability we also insist that

the vortices rotate with the lower disk surface, thereby the real part of the frequency

is set to ωr = 0, and the radial wavenumber α and the azimuthal wavenumber β are

computed.

4.3.1. Neutral curves

In this section we present neutral curves for the boundary layer flows belong-

ing to the BEK system in (Re, αr), (Re, n) and (R, ε)-planes. Each curve encloses
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Figure 4.7: The two spatial branches showing region of crossflow instability for the
Ekman flow in the case of λ = 0.5; (a) at Re = 227, (b) at Re = 500 .

a region in which the boundary layers are convectively unstable. As discussed in

Chapter §1, two instability modes are found to be determine the convective insta-

bility characteristic of each flow in the BEK system. These modes are the Type

I mode of instability (due to an inflectional crossflow velocity component) and the

Type II mode of instability (due to the streamline curvature); this was shown by

Malik (1986), Hall (1986) and Lingwood (1995) for rotating disk flows. The convec-

tive instability is indicated by a branch region lying below the αr-axis. Figure 4.7(a)

shows two spatial branches in the case of a moderate roughness level, λ = 0.5 for

the Ekman flow in the complex α plane at Re = 227, where an exchange of modes

is observed. The region of convective instability is now determined by the modified

branch 1. The minima of the modified branch 1 moves downwards as Re is increased

and the branch points crossing the αr-axis move apart, causing the widening of the

regions of instability. The modified branches at Re = 500 are shown in Figure

4.7(b). Only one lobe maps out the neutral curve as there is only one minima of

the modified branch 1. This lobe characterises the Type I instability mode. This

spatial branch behaviour is typical for each flow in the BEK system in the case of

azimuthally anisotropic surface roughness.

The governing equations of each flow in the BEK system are parametrised by
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Figure 4.8: Neutral curves of the convective instability of the von Kármán flow in
the case of azimuthally-anisotropic roughness (radial grooves, η = 0).

the Rossby number, Ro, in the perturbation equations (2.40)-(2.41). The obtained

equations of each flow are solved with a MATLAB code written for this study by

using the spectral Chebyshev method. The details of the code and method are

discussed in §3.2.1.

We begin our discussion by presenting neutral curves of the von Kármán flow

in the case of azimuthally anisotropic roughness in Figure 4.8. These curves are

consistent with those of Cooper et al. (2015) and we include them in this study

for completeness of the BEK system and verification of our newly written code. It

is seen from Figure 4.8(a) that radial grooves have a strong stabilising effect on

both the Type I and Type II modes in terms of the critical Reynolds number and

the width of the instability region. We observe that the lower lobe of the neutral
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Figure 4.9: Neutral curves of the convective instability for Ro = −0.5 in the case of
azimuthally-anisotropic roughness (radial grooves, η = 0).

curve vanishes immediately in the presence of even modest levels of roughness. In

other words, the Type II mode is suppressed and the Type I mode is the dominant

instability mechanism for the von Kármán flow in the case of azimuthally anisotropic

roughness. The two other parameters that are helpful to understand the effects of

surface roughness are the number of the stationary vortices n and the vortex angle

ε. Figures 4.8(b)-(c) show that the number of vortices n and the vortex angle ε

substantially increase along both the upper and lower branches in contrast with the

strong stabilizing effect for increased roughness. Further analysis of these curves has

been discussed by Cooper et al. (2015).

We then produce neutral curves of the related flow of the BEK system for Ro =

−0.5 in which both the disk and the fluid rotate with different angular velocities.
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Figure 4.10: Neutral curves of the convective instability of the Ekman flow in the
case of azimuthally-anisotropic roughness (radial grooves, η = 0).

Figure 4.9(a) shows the strong stabilisation effect of radial grooves on both of the

instability modes and the Type II mode vanishes as the roughness is increased.

Although a stabilisation effect is observed, the convective instability of Ro = −0.5

onsets at lower Reynolds numbers at each of roughness level compared to the von

Kármán flow case. Moreover, it is clear from Figures 4.9(b)-(c) that the number of

vortices and the vortex angle increase along both branches as in the von Kármán

flow with increased roughness.

Figure 4.10 represents the neutral curves of the Ekman flow, Ro = 0, that occur

when the disk and the fluid rotate with the same angular velocity, Ω∗D = Ω∗F . Figure

4.10(a) reveals that the response of the Ekman flow to radial grooves is similar

to those of the previous flows discussed. Indeed, radial grooves lead to a strong
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Figure 4.11: Neutral curves of the convective instability for Ro = 0.5 in the case of
azimuthally-anisotropic roughness (radial grooves, η = 0).

stabilisation of the Type I and Type II modes in terms of the critical Reynolds

number and in terms of the width of the unstable region. In other words, the onset

of the convective instability is delayed to occur at a higher Reynolds number as

the roughness parameter λ is increased. However, these critical values of Reynolds

number are smaller than those of the von Kármán and Ro = −0.5 flows at each

particular level of azimuthally anisotropic roughness. Neutral curves of the Ekman

flow in terms of the stationary vortices are represented in Figure 4.10(b). There is a

slight variation in the number of vortices along the upper branch of the neutral curve

and an increase in the number of vortices along the lower branch as the roughness

is increased. Similarly, Figure 4.10(c) shows that behaviour of the vortex angle of

the Ekman flow increases for larger values of the roughness parameter λ.
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Figure 4.12: Neutral curves of the convective instability of the Bödewadt flow in the
case of azimuthally-anisotropic roughness (radial grooves, η = 0).

We present neutral curves of the related flow for Ro = 0.5 in Figure 4.11. Figure

4.11(a) reveals that radial grooves maintain their strong stabilising effect on this

flow in terms of the critical Reynolds number and the width of unstable region.

However, the effect is weaker compared to the effect of radial grooves on the Ekman

and the other flows of the system discussed so far in terms of critical the Reynolds

number. Moreover, the two lobed structure of the neutral curves in the case of a

smooth surface, λ = 0, again disappears for even modest levels of roughness. The

increase in the number of vortices n and the vortex angle ε have a similar pattern

to the von Kármán and Ekman flows, as evidenced in Figures 4.11(b)-(c). That is,

these values increase substantially for increased surface roughness levels.

The last flow that we discuss is the Bödewadt flow, Ro = 1, that is the case
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Parameter Ro = 0.69 Ro = 0.7 Ro = 0.71
λ = 0 58.32 57.38 56.46

λ = 1 61.22 58.30 55.48

Table 4.2: Critical values of observable parameters at the onset of convective insta-
bility of Type I mode for the flows around Ro = 0.7.

of the BEK system where Ω∗D = 0 and Ω∗F 6= 0. Figure 4.12 shows the neutral

curves of the Bödewadt flow for a radially grooved disk with roughness parameter

λ = 0− 0.75 in 0.25 increments. The calculations could not be performed for λ = 1

due to inconsistency of the numerical code at this level of the roughness. Only a

one lobed structure is seen in the neutral curves of the Bödewadt layer. This arises

from the crossflow instability, the Type I mode.

It is seen from Figure 4.12(a) that the response of the Bödewadt flow to radial

grooves, azimuthally-anisotropic roughness, is completely different than for the pre-

vious flows in the system in terms of the critical Reynolds number for the onset

of the Type I mode. Indeed, the response is destabilising. The critical Reynolds

number is seen to be reduced as the roughness parameter λ increased. In contrast

to the early onset of the convective instability (a clear destabilising effect), radial

grooves are seen to narrow the unstable region, which is a stabilising effect in some

respects.

Figure 4.12(b) represents neutral curves of the Bödewadt flow in terms of the

stationary vortices. Despite the destabilisation of the critical Reynolds number,

there is a slight variation in the number of vortices along the upper branch of the

neutral curve and a substantial increase of the number of vortices along the lower

branch as the roughness is increased. On the other hand, Figure 4.12(c) clearly

details the increase in the value of vortex angle as the roughness level is increased.

Therefore, the response of the Bödewadt flow to radial grooves in terms of the

number of vortices and the vortex angle are similar to other flows in the system.

Comparing the effect of radial grooves on the flows of the BEK system, it can be

seen that the strength of the stabilising effect is sensitive to the Rossby number and
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Figure 4.13: Neutral curves of convective instability for a range of flows within the
BEK system in the case of a moderate value of azimuthally-anisotropic roughness
parameter, λ = 0.5.

it is seen to decrease continuously from the von Kármán flow, Ro = −1, towards

the Bödewadt flow, Ro = 1 and turns to a destabilising effect after a particular

Rossby number in this interval. Table 4.2 presents the critical Reynolds numbers

of the Type I mode for determination of this particular point by comparing the

smooth case and λ = 1 roughness case. It is clear that the stabilizing effect of radial

grooves on the onset of convective instability is reversed around Ro ≈ 0.7. That

is, radial grooves are stabilizing for Ro ∈ [−1, 0.7] with reduced sensitivity, with

decreased Ro, until it turns into a destabilising effect whilst Ro ∈ (0.7, 1]. It is also

worthwhile to compare the changes in the stability characteristic of all flows in the

BEK system in the case of a moderately rough disk surface. The changes in the
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case of a smooth surface are well established by Lingwood (1997). By following her

idea, we present neutral curves of the related flows for a moderate level of roughness

parameter, λ = 0.5 in Figure 4.13.

Figure 4.13(a) clearly shows that the flows become increasingly unstable in terms

of critical Reynolds number, and the width of the unstable region, as the Rossby

number increases from the von Kármán layer, Ro = −1, to the Bödewadt layer,

Ro = 1. This behaviour of the flows on a radially grooved disk is similar to that

obtained in the smooth disk case (Lingwood, 1997). However, we do not obtain

the two lobed structure of neutral curves for all Rossby numbers for this level of

the roughness. This indicates that the Type II mode is suppressed in the case of

azimuthally anisotropic roughness for all the flows within the BEK system.

Figure 4.13(b) shows the number of vortices n plotted against the Reynolds

number. Clearly, the number of vortices n increases for the Rossby numbers from

-1 to -0.5 and changes its behaviour when the Rossby numbers is in the range -0.5

to 1. We observe that the vortex angle at the critical Reynolds number increases

continuously as the Rossby number increases from the von Kármán layer, Ro = −1,

to the Ekman layer, Ro = 0 and slightly decreases from the Ekman layer to the

Bödewadt, Ro = 1 as shown in Figure 4.13(c).

The numerical predictions of the critical parameters at the onset of convective

instability for the Type I mode are presented in Table 4.3 for each flow discussed

previously. The critical values of the smooth case have very close agreement with

the existing results in the literature for the BEK system and those due to Cooper

et al. (2015) for the rough rotating disk, these are taken as validation of our code.

4.3.2. The growth rates

We now consider the effect of radial grooves on the growth rates of the instability

modes of the BEK system of boundary layer flows. However, as predicted by Ling-

wood & Garrett (2011) absolute instability onsets at very small Reynolds numbers

in the Bödewadt flow and leads to a “branch exchange” that makes it impossible to

find the location of maximum amplification of either instability modes. Therefore,
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The von Kármán layer, Ro = −1

Parameter Re n ε
λ = 0 286.05 (460.92) 22.20 (21.28) 11.40

(19.28)
λ = 0.25 380.68 (–) 37.21 (–) 15.41 (–)
λ = 0.5 529.54 (–) 60.12 (–) 19.72 (–)
λ = 0.75 724.36 (–) 89.39 (–) 23.46 (–)
λ = 1 976.85 (–) 130.39 (–) 27.31 (–)

The related layer for Ro = −0.5

Parameter Re n ε
λ = 0 160.81 (–) 19.09 (–) 13.97 (–)
λ = 0.25 228.85 (–) 34.89 (–) 19.35 (–)
λ = 0.5 355.89 (–) 63.78 (–) 25.13 (–)
λ = 0.75 573.80 (–) 114.14 (–) 31.08 (–)
λ = 1 933.82 (–) 197.54 (–) 36.99 (–)

The Ekman layer, Ro = 0

Parameter Re n ε
λ = 0 116.26 (–) 16.04 (–) 14.33 (–)
λ = 0.25 149.99 (–) 26.60 (–) 19.48 (–)
λ = 0.5 212.70 (–) 44.30 (–) 25.21 (–)
λ = 0.75 316.38 (–) 73.55 (–) 30.37 (–)
λ = 1 487.69 (–) 122.18(–) 36.67 (–)

The related layer for Ro = 0.5

Parameter Re n ε
λ = 0 75.89 (–) 10.52 (–) 14.63 (–)
λ = 0.25 81.75 (–) 14.18 (–) 18.99 (–)
λ = 0.5 94.47 (–) 19.19 (–) 23.19 (–)
λ = 0.75 112.02 (–) 25.52 (–) 27.26 (–)
λ = 1 134.57 (–) 33.59 (–) 31.07 (–)

The Bödewadt layer, Ro = 1

Parameter Re n ε
λ = 0 27.38 (–) 3.12 (–) 14.32 (–)
λ = 0.25 20.82 (–) 2.53 (–) 14.90 (–)
λ = 0.5 16.40 (–) 1.99 (–) 13.75 (–)
λ = 0.75 12.41 (–) 1.45 (–) 12.03 (–)

Table 4.3: Critical values of observable parameters at the onset of convective in-
stability of both modes for the boundary layers in the BEK system in the case of
azimuthally-anisotropic roughness (radial grooves). Type I and (Type II). The most
dangerous mode is indicated as bold text in terms of critical Reynolds number.
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Figure 4.14: Growth rates of Type I instability mode within the BEK boundary
layer flows as a function of the vortex number n at Re = Recritical+25 in the case of
radial grooves, azimuthally-anisotropic roughness. The red dots indicate the most
rapidly growing mode.

equivalent plots of the convective growth rates at some level of roughness for the

Bödewadt flow are not possible to produce.

The growth rate of the instability modes is measured as the absolute value of

the negative imaginary part of the radial wavenumber, |αi|, at the particular values

of number of vortices n. Since the Type II mode vanishes at even modest levels

of radial grooves in each flow of the BEK system, we only present here the growth

rates of the Type I instability mode. Figure 4.14 shows growth rates of the Type I

instability mode within these layers at Re = Recritical + 25, at a fixed distance into

the neutral curve, as a function of the vortex number n for each level of roughness.

Figure 4.14 clearly shows the stabilising effect of radial grooves on the Type I mode
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of each flow. Furthermore, the most rapidly growing mode is of particular interest

as it would be the most likely to dominate and be observed in experiments. Clearly,

it can be determined from this presentation of the growth modes. The figure shows

that the maximum growth rate shifts to higher values of n, indicating an increase in

the number of vortices as an effect of increased surface roughness level. In contrast

to that substantial increase, the value of the maximum growth rate decreases for

increased roughness, that is a stabilising effect of the roughness.

These results are consistent with the critical parameters obtained for each layer

as stated in Table 4.3. A similar discussion of the growth rates for the von Kármán

flow has been provided by Cooper et al. (2015) and we include our results for this

flow as a validation.

4.4. Energy Analysis

In this section, we present the results of solving the energy balance equation

(2.50) following the work of Cooper & Carpenter (1997), Cooper et al. (2015),

and Garrett et al. (2016) for the three-dimensional disturbances (û, v̂, ŵ, p̂) of the

three-dimensional mean flow (U, V,W ) in the case of azimuthally anisotropic surface

roughness. The aim is to establish the underlying physical mechanisms behind the

effects of radially grooved disks on the BEK system of boundary layer flows.

We begin by considering the energy balance equation (2.49) of any eigenmode

of the perturbation equations (2.40)-(2.41). The positive terms in that equation

contribute to the energy production whereas the negative terms remove energy from

the system. The eigenmode is amplified (αi < 0) if energy production exceeds the

energy dissipation in the system. The effect of surface roughness on the instability

modes can be interpreted from this formulation by calculating the energy change

of the system, that is the sum of the energy production and dissipation terms.

Increased energy change for higher values of the roughness parameters indicates a

destabilisation effect on the modes. In contrast a reduced energy change indicates

a stabilisation effect. However, as discussed in §4.3.1, the Type II mode disappears



Energy Analysis 68

at even modest sizes of radial grooves in each flow of the BEK system. Therefore,

we only discuss the energy balance for the Type I mode in the case of azimuthally

anisotropic roughness.

We perform energy balance calculations for the BEK system of boundary layer

flows at the location of the maximum amplification discussed in the previous section

at Re = Recritical + 25. Here Recritical is the critical Reynolds number presented in

Table 4.3 for the onset of the Type I mode of instability. However, as predicted

by Lingwood & Garrett (2011) absolute instability onsets at very small Reynolds

numbers in the Bödewadt flow and leads to a “branch exchange” that makes it

impossible to find the location of maximum amplification of either instability mode.

Therefore, we instead perform the energy balance calculations for the Bödewadt flow

at fixed Re = 400 with number of vortices n = 85 for the Type I mode. This value

of n is chosen such that the point of interest is outside of the absolutely unstable

region at Re = 400.

Figure 4.15 shows the energy balance calculations for a range radial grooved

disks. Here, the results are normalized by the mechanical energy flux of the most

energetic mode within each figure and so comparisons can be made at different values

of λ. Two different figures can not however be directly compared. Clearly, there is

a stabilisation effect on the Type I mode for the flows of Ro = −1,−0.5, 0, and 0.5.

This effect arises mainly from the reduction in the energy production term P2 and in

the energy dissipation term D. However, it is also worth noting that the reductions

in these terms decrease while the Rossby number changes from negative values to

positive values. Moreover, after a certain value of the Rossby number these terms

begin to increase. Also, the energy removing effects of the terms arising from the

streamline curvature effects and the three dimensionality of the mean flow turns into

an energy production for positive values of the Rossby number. In other words, these

terms contribute to energy production in the system. As a result, destabilisation

effects are observed for the Bödewadt flow as is evidenced in the Figure 4.15(e).

As proposed by Cooper et al. (2015) some explanations about the energy trends of

the BEK system of flows can be provided by analysing the form of the disturbance
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Figure 4.15: Energy balance at the location of maximum amplification of the BEK
boundary layer flows at Re = Recritical + 25, except the Bödewadt flow for radially
anisotropic rougness. For the Bödewadt flow, Re = 400 and n = 85. The terms are
normalised by the mechanical energy flux of the most dangerous mode within each
figure.
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Figure 4.16: Type I mode profiles for the azimuthal and the axial disturbance veloc-
ity profiles of the BEK flows at the location of maximum amplification of the BEK
boundary layer flows in the case of a radially grooved disk at Re = Recritical + 25,
except for the Bödewadt flow for radially anisotropic rougness. For the Bödewadt
flow, Re = 400 and n = 85.
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Ekman flow, Ro = 0 Bödewadt flow, Ro = 1

λ = 0 219 ∼ 220 27 ∼ 28

λ = 0.25 932 ∼ 933 20 ∼ 21

λ = 0.5 > 1000 15 ∼ 16

λ = 0.75 > 1000 12 ∼ 13

λ = 1 > 1000 not applicable

Table 4.4: Critical Reynolds number for the stationary Type I mode interacting
with the absolute instability region inside the neutral curves of the BEK system of
flows in the case of radial grooves.

velocity profiles. The important disturbance profiles are the azimuthal velocity

perturbation, v̂, and the axial velocity perturbation, ŵ, which contribute to the

dominant energy production term P2. The magnitudes of these two disturbance

profiles are presented in Figure 4.16 for the BEK system of flows in the case of a

radially grooved disk for the Type I instability mode. It is seen from this figure

that the general form of both the disturbance profiles are not changed with the

profiles being simply translated towards the wall as the roughness is increased. The

strong decrease of the P2 term for the flows with negative Rossby numbers, including

Ro = 0, is due to a reduction in the amplitude of the axial velocity perturbation,

ŵ. For the positive Rossby number flows, the decrease of the P2 term is due to

the reductions in the amplitude of the disturbance profiles v̂ and ŵ with increased

roughness.

4.5. Absolute instability

Mack (1985) showed the existence of another linear instability mode, the Type III

mode, in rotating-disk boundary layer flows. As identified by Lingwood (1997), the

Type III mode coalesces with a travelling Type I cross-flow instability mode and gen-

erates a local absolute instability. If one of the coalescing modes can be suppressed,
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the onset of absolute instability could be delayed to higher Reynolds numbers. How-

ever, the effects of surface roughness on the absolute instability should be considered

in an additional and highly focused study which includes consideration of all travel-

ling Type I modes. This is beyond the scope of this study as we remain concerned

with only stationary Type I modes. In view of our study, the absolute instability

mechanism limits our findings as it leads to a “branch exchange” that makes it

impossible to determine the location of maximum amplification in any instability

modes. We therefore are not able to produce growth rate curves of the instability

modes and conduct an energy analysis at the location of the maximum amplification

when the convective instability region is crossed by the absolute instability region

at a particular Reynolds number.

Table 4.4 shows the critical Reynolds numbers at which the convective instability

region starts to interact with the absolute instability in the case of radial grooves

for the Ekman and Bödewadt flows. It is clear that the onset of the interaction is

delayed extensively to higher Reynolds number for the Ekman flow compared to the

smooth cases. We do not observe the interactions for λ ≥ 0.5 up to Re = 1000 which

is consistent with a strong delaying effect. However, radial grooves seem not to be

effective in the case of the Bödewadt flow, Ro = 1, consistent with the observed

destabilisation effect of roughness on this flow. Indeed, these results lead to the

prediction that azimuthally anisotropic surface roughness can be used to restrict

the onset of absolute instability to higher Reynolds numbers compared to a smooth

disk for the majority of the BEK flows.

4.6. Conclusion

In this chapter we have investigated the effects of azimuthally anisotropic rough-

ness (radial grooves) on the convective instability of stationary disturbances in the

BEK family of boundary layer flows. We have presented solutions of the mean

flow equations obtained using the partial-slip approach of Miklavcic & Wang (2004)

without modification. The computed mean flow components are in strong agreement
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with those in the literature for the smooth surface cases at all values of Ro. The

computed mean flow components of the von Kármán flow for the azimuthally rough

disk surfaces are identical to those presented by Cooper et al. (2015). Our findings

have revealed that azimuthally-anisotropic roughness acts to increase the amplifica-

tion of the oscillatory behaviour of the steady flows through the axial direction and

also increase the magnitudes of the radial and wall jets.

We then conducted a linear stability analyses and revealed that azimuthally-

anisotropic roughness has a strong stabilising effect on both the Type I and Type II

instabilities in terms of postponing the onset of the convective instability and width

of the unstable area enclosed by the neutral curves for Ro ∈ [−1, 0.7], although it

has a marginally destabilising effect for Ro ∈ (0.7, 1]. This rather disappointing

destabilising result might be a result of significantly increased oscillatory behaviour

of the mean flow solutions as Rossby number is increased towards 1.

For the number of the vortices n and the vortex angle ε we have seen that

increased surface roughness at all Ro acts to increase these parameters. We have

also presented supporting results to the effects of radial grooves by considering the

growth rates of each instability mode and have conducted an energy balance analysis

at the locations of the maximum amplifications for particular flows in the system.

Our findings indicate that azimuthally anisotropic surface roughness could be a

possible stabilisation mechanism that could be used to delay the onset of absolute

instability on the majority of the BEK system flows.

The observed stabilising effect of radial grooves on the instability modes are sim-

ilar to effects of other flow-control methodologies for the BEK system: the surface

suction technique as studied theoretically by Lingwood & Garrett (2011) and im-

posing increased uniform magnetic field normal to the disk as studied by Jasmine &

Gajjar (2005). Furthermore, we find that the response of the physical mechanisms

that lead to transition in the boundary layer is sensitive to the Rossby number of

the system as with the surface suction technique.



Chapter 5

Effect of radially anisotropic

roughness on the BEK family of

boundary layers

5.1. Overview

This chapter is concerned with the effects of radially anisotropic roughness -

concentric grooves - on the convective instability mechanism within the general

class of rotating BEK boundary-layers. Viscous and streamline-curvature effects

are included and local linear stability analyses are conducted for the boundary-layer

flows parametrised by a Rossby number Ro between minus unity to positive unity.

Furthermore, an energy analysis is performed to confirm the results of linear stability

analysis.

In §5.2 the effects of concentric grooves on the solutions of the steady mean flow

equations are described, and the convective instability analysis is discussed in §5.3.

We produce the neutral curves based on the solutions of the perturbation equations

(2.40) -(2.41) in §5.3.1, and discuss the effects of surface roughness on the growth

rates, |αi|, of each instability mode in §5.3.2. The results of the energy analysis are

presented in §5.4. Finally, absolute instability is discussed briefly in §5.5.

74
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5.2. The steady mean flow solutions

Figure 5.1: Concentric grooves over a disk.

The purpose of this section is to present the solutions of the steady mean flow

equations (2.18) with the primary aim of investigating the effects of the radially

anisotropic roughness on the mean flow profiles of the BEK family of the boundary

layers. The secondary aim of this section is to compare these effects with those

of other passive drag control mechanisms applied to the BEK system of flows; the

surface suction technique studied by Lingwood & Garrett (2011) and the uniform

distribution of a magnetic field studied by Jasmine & Gajjar (2005).

The radially anisotropic surface roughness has a pattern of concentric circles -

concentric grooves - on the disk. These grooves can be modelled mathematically

by setting roughness parameters in the partial-slip boundary conditions (2.19) ob-

tained under the MW model to η > 0, λ = 0. The governing equations of the

steady mean flow profiles of each boundary layer in the BEK system are distin-

guished by the Rossby number. For each non-zero Rossby number flow within the

system, the MATLAB function described in §3.1 is used to solve these governing

equations. However, we do not need to perform numerical computations forthe case

when Ro = 0, the Ekman flow, as there are precise analytical solutions of each mean

flow component for the zero Rossby number flow which are stated in (2.20).

We present computed mean flow profiles for different sizes of concentric grooves.

The radial mean flow component U is presented in Figures 5.2(a)-5.6(a) and the
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Figure 5.2: Mean-flow components of the von Kármán flow in the case of radially-
anisotropic roughness (concentric grooves, λ = 0).

azimuthal mean flow profile V is presented in Figures 5.2(b)-5.6(b). The last flow

component W , in the axial direction, is presented in Figures 5.2(c)-5.6(c). The initial

values of U ′(0) and V ′(0) are important for the computation of the flow profiles and

the resisting torque T given in (2.21). They are shown in Table 5.1 for various values

of roughness parameter η. Our initial values for the von Kármán flow are identical

to those presented by Miklavcic & Wang (2004).

The oscillatory behaviour of each mean flow component of the BEK system,

that is related to the Type I instability mechanism (Saric & Reed, 2003), is damped

for increased surface roughness, as evidenced in Figures 5.2-5.6. This observation is

similar to the effects of increased surface suction (Lingwood & Garrett, 2011) and an

increase in the uniform magnetic field applied to the von Kármán flow (Jasmine &
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The von Kármán flow, Ro = −1

Parameter U ′(0) V ′(0)
η = 0 -0.510232616 0.615922011
η = 0.25 -0.417886378 0.504189321
η = 0.5 -0.355262334 0.428851249
η = 0.75 -0.310814547 0.375196569
η = 1 -0.277059262 0.334449236

Ro = −0.5

Parameter U ′(0) V ′(0)
η = 0 -0.857041159 0.907317540
η = 0.25 -0.69137509 0.72627144
η = 0.5 -0.582170759 0.60805155
η = 0.75 -0.504040307 0.52410114
η = 1 -0.445066659 0.46112063

Ro = 0.5

Parameter U ′(0) V ′(0)
η = 0 -1.017626469 0.961193351
η = 0.25 -0.823188578 0.788230126
η = 0.5 -0.688203415 0.664651107
η = 0.75 -0.590018117 0.573151874
η = 1 -0.515770753 0.503128977

The Bödewadt flow, Ro = 1

Parameter U ′(0) V ′(0)
η = 0 -0.941970896 0.772885383
η = 0.25 -0.780006850 0.677381629
η = 0.5 -0.662521420 0.594817650
η = 0.75 -0.573875981 0.526317744
η = 1 -0.505093817 0.470038322

Table 5.1: The initial values of U ′ and V ′ at the disk surface for various Ro (con-
centric grooves, λ = 0).
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Figure 5.3: Mean-flow components for Ro = −0.5 in the case of radially-anisotropic
roughness (concentric grooves, λ = 0)

Gajjar, 2005). Both studies observe a reducing in the magnitude of the oscillations

in each mean flow component with an increase in their parameters.

Figures 5.2(a)-5.6(a) clearly show the reduction in the magnitude of the radial

wall jet with an increase in concentric grooves for all flows in the BEK system.

This is physically reasonable as the friction holding back the radial wall jet would

be increased by concentric grooves as it moves along the radial direction, Garrett

et al. (2016). The reduction rate of the radial wall jet on the other hand increases

substantially with increased η as Ro changes from -1, the von Kármán flow, to 1, the

Bödewadt flow. However, the location of the maximum value of U remains nearly

unchanged for negative Rossby flows, but moves slightly towards the disk surface

for positive Rossby flows as roughness is increased. We observe that the boundary
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Figure 5.4: Mean-flow components of the Ekman flow (Ro = 0) in the case of
radially-anisotropic roughness (concentric grooves, λ = 0).

layer thickness for positive Ro reduces for increased roughness. These changes of

the U profile are similar to those observed in the smooth case for increased surface

suction and increased uniform magnetic field techniques.

It is seen from Figures 5.2(b)-5.6(b) that the wall value of the azimuthal velocity

profile V increases for all flows with increased roughness as a direct implication of

the partial slip boundary conditions (2.19) as η 6= 0, and this effect is in contrast

to the radially grooved case. Indeed, a decrease is noted in Table 5.1 for the initial

value of the derivative of this component. This leads to a substantial decrease at

the resisting torque T for all Ro 6= 0, similar to the results of Miklavcic & Wang

(2004) in case of the von Kármán flow.

Figures 5.2(c)-5.6(c) demonstrate that increased concentric grooves reduce sub-
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Figure 5.5: Mean-flow components for Ro = 0.5 in the case of radially-anisotropic
roughness (concentric grooves, λ = 0).

stantially the magnitude of axial flow for all flows of the BEK system, that is in

parallel to the findings of Lingwood & Garrett (2011) for increased surface suction

for Ro ≥ 0 and those of Jasmine & Gajjar (2005) for increased uniform magnetic

field. In other words, the amount of flow entrained into the boundary layer reduces

for all Ro as the roughness is increased.

Our main findings in this section for the mean flow components of each partic-

ular flow in the BEK system indicate that the effect of anisotropic roughness with

concentric grooves on the radial jet are consistent with those obtained by Cooper

et al. (2015) for the von Kármán flow. That is, the increased concentric grooves act

to decrease the magnitude of the radial jet. Furthermore, the effects of increased

roughness on the oscillatory behaviours of the flow components are similar to the
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Figure 5.6: Mean-flow components of the Bödewadt flow (Ro = 1) in the case of
radially-anisotropic roughness (concentric grooves, λ = 0).

responses seen to surface mass flux and the distribution of a uniform magnetic field.

Similarly, a decrease in the amount of the fluid entrained inside the boundary layers

are observed for all flows in the BEK system. The torque T also decreases with

increased concentric grooves.

5.3. The convective instability analysis

This section is concerned with the occurrence of convective instabilities in the

case of the concentric grooves distributed over the rotating disk. The convective

instability is determined by the computed solutions of the perturbation equations

(2.40)-(2.41) using the spectral Chebyshev method described in §3.2. We analyse
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Figure 5.7: The two spatial branches after the exchange showing regions of both
streamline-curvature and crossflow instability at Re = 195 for the Ekman flow in
the case of η = 0.5.

the characteristics of convective instability in terms of neutral curves in §5.3.1 and

the growth rates of both the Type I and Type II modes in §5.14. We suppose in the

first instance that the flow is not absolutely unstable. As a result, in the Briggs-Bers

procedure we can set the imaginary part of the frequency to zero, so that ωi = 0.

5.3.1. Neutral curves

In this section, the neutral curves for the boundary layer flows belonging to the

BEK system are presented in the (Re, αr), (Re, n) and (R, ε)-planes in the case of

radially anisotropic surface roughness. Each curve encloses a convectively unstable

region. Two spatial branches determining the convective instability characteristics of

each flow are found in this case. Figure 5.7 shows two spatial branches of the Ekman

flow as an example in the case of moderate roughness levels, η = 0.5 in the complex

α plane at Re = 195, where an exchange of modes has occurred. These branches

arise from crossflow and streamline-curvature instability modes and are different

to the branches 1 & 2 discussed in §4.3.1. The region of convective instability is

indicated by a branch crossing into the region lying below the αi = 0 line and is now

determined by the modified branch 1 which has two minima. The peak in between
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Figure 5.8: Neutral curves of the convective instability of the von Kármán flow in
the case of radially-anisotropic roughness (concentric grooves, λ = 0).

these minima moves downwards and branch points crossing the line αi = 0 move

apart as Re is increased. Therefore, the region of instability expands and a two

lobed structure of the neutral curve maps out. For a sufficiently high value of Re

the peak moves below the line αi = 0 and further increases in Re to produce the

upper and lower branches of the neutral curve. This spatial branch behaviour is

typical for each flow in the BEK system in the case of anisotropic surface roughness

with concentric grooves. Moreover, in each neutral curve, the Type I mode appears

as an upper lobe that is characterised by higher wave numbers whereas the Type II

mode appears as a lower lobe that is characterised by smaller wave numbers.

The solutions of the perturbation equations (2.40)-(2.41) are obtained using the

spectral Chebyshev method discussed in §3.2.1. Figure 5.8 presents neutral curves of
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Figure 5.9: Neutral curves of the convective instability for Ro = −0.5 in the case of
radially-anisotropic roughness (concentric grooves, λ = 0).

the von Kármán flow in the case of radially anisotropic roughness. These curves are

consistent with those of Cooper et al. (2015) and are included here for completeness

of the BEK system only, and validation of our code. It is seen from Figure 5.8(a) that

increasing the level of roughness has a strong stabilising effect on the Type I mode

in terms of the critical Reynolds number and width of the instability region while

the Type II mode is destabilised. After a threshold value of the parameter η = 0.5,

the Type II mode onsets earlier than the Type I mode and becomes the dominant

instability mechanism in the system. Figures 5.8(b)-(c), on the other hand, show a

substantial decreasing of the number of vortices n and the vortex angle ε along both

the upper and lower branches of the neutral curves with increased roughness; this

is in parallel with the strong stabilising effect on the Type I mode.
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Figure 5.10: Neutral curves of the convective instability of the Ekman flow in the
case of radially-anisotropic roughness (concentric grooves, λ = 0).

Neutral curves of the related flow, Ro = −0.5, are presented in Figure 5.9. Figure

5.9(a) reveals the strong stabilisation effect of increased concentric grooves on the

Type I mode of instability in terms of the critical Reynolds number, the width of

the instability region and the destabilising effect on the Type II mode. Compared

to the von Kármán flow, both the Type I and Type II instabilities onset at lower

Reynolds numbers for each roughness level. Furthermore, it is clear from Figures

5.9(b)-(c) that the number of vortices and values of the vortex angle decrease along

both the upper and lower branches of the neutral curves for increased roughness, as

they did in the von Kármán case.

The neutral curves of the Ekman flow, Ro = 0, are presented in Figure 5.10. It is

seen from Figure 5.10(a) that concentric grooves have a similar effect on the Type I
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mode of the Ekman flow as for the von Kármán and Ro = −0.5 flows. However, the

response of the Type II mode to increased levels of roughness is notably different.

Indeed, the concentric grooves lead to a stabilising effect on the Type II mode in

terms of the critical Reynolds number although they have a destabilising effect on it

in terms of the width of unstable region. Nevertheless, the Type II mode becomes

the dominant instability mechanism for sufficiently large values of η. It is worth

noting that the critical values of the Reynolds number for both modes are smaller

than those of the previous cases, the von Kármán and Ro = −0.5 flows, at each

particular level of radially anisotropic roughness.

The neutral curves of the Ekman flow in terms of the number of spiral vortices

are represented in Figure 5.10(b). We can see a significant decrease in the number

of vortices along the upper branch of the neutral curve and a slight decrease along

the lower branch. Similarly, Figure 5.10(c) shows that the value of the vortex angle

decreases in a similar way to n along both branches for larger values of the roughness

parameter η.

The neutral curves of the related flow for Ro = 0.5 are presented in Figure

5.11. Figure 5.11(a) reveals that the strong stabilising effect of increased concentric

grooves on both the modes in terms of critical Reynolds number is maintained. The

width of the instability region of the Type II mode still expands whereas that for

the Type I mode shrinks. The decrease of the number of vortices n and the vortex

angle ε have a similar pattern for the von Kármán and Ekman flows, as evidenced

in Figures 5.11(c)-(e). In other words, these values decrease significantly along the

upper branch and decrease slightly along the lower branches for increased roughness.

The neutral curves of the Bödewadt flow are presented in Figure 5.12. In contrast

to the case of radial grooves, the effects of concentric grooves on the Bödewadt flow

are quite similar to those of the other flows in the system. However, the onset of

the Type II mode is further delayed until the roughness parameter η is varied up

to 0.5, as observed in Figure 5.12(a). It is also worth noting that the width of the

unstable region shrinks with increased roughness only up until a certain value of Re
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Figure 5.11: Neutral curves of the convective instability for Ro = 0.5 in the case of
radially-anisotropic roughness (concentric grooves, λ = 0).

is reached. After this threshold, it begins to expand along the upper branch. There

is a substantial decrease in the number of vortices along the upper branch and a

slight decrease along the lower branch as the roughness is increased, as is evidenced

in Figure 5.12(b). It is also clear from Figure 5.12(c) that an increase in roughness

level reduces the value of the vortex angle along both branches of the neutral curves.

It is also worthwhile to present the comparison of the stability characteristic of

all flows in the BEK system for a moderate level of roughness parameter, η = 0.5.

Figure 5.13(a) demonstrates that the strength of the stabilising effect on both the

Type I and Type II modes in terms of the critical Reynolds number reduces con-

tinuously from the von Kármán flow, Ro = −1, to the Bödewadt flow, Ro = 1.

Moreover, the instability area of the modes expands with increased surface rough-
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Figure 5.12: Neutral curves of the convective instability of the Bödewadt flow in the
case of radially-anisotropic roughness (concentric grooves, λ = 0).

ness. The behaviour of these flows on a radially anisotropic rough disk are similar to

those obtained in the smooth disk case (Lingwood, 1997). Similarly, we also obtain

the two lobed structure of the neutral curves for all Rossby number flows in this

case although the appearance of the Type II mode is reduced towards the Bödewadt

flow.

Figure 5.13(b) shows that the number of vortices n is slightly affected by in-

creased roughness level for the negative Rossby number flows around the onset of

the Type I mode, whereas it decreases for positive Rossby number flows. The num-

ber of vortices around the onset of the Type II mode, along the lower branch of the

neutral curves in Figure 5.13(c), is nearly unchanged for all the flows. The vortex

angle at the critical Reynolds numbers of both the modes increases continuously as
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The von Kármán layer, Ro = −1

Parameter Re n ε
η = 0 286.05 (460.92) 22.20 (21.28) 11.40(19.28)
η = 0.25 312.91 (368.56) 18.35 (13.27) 9.06 (15.42)
η = 0.5 337.42 (325.80) 16.02 (9.94) (7.66)(12.87)
η = 0.75 358.48 (307.79) 14.40 (8.16) (6.77)(11.22)
η = 1 377.36 (299.24) 13.16 (7.05) (6.11)(10.00)

The related layer for Ro = −0.5

Parameter Re n ε
η = 0 160.81 (–) 19.09 (–) 13.97 (–)
η = 0.25 178.10 (222.43) 15.86 (13.84) 10.61 (16.83)
η = 0.5 196.75 (211.82) 14.13 (10.91) 8.68 (13.85)
η = 0.75 215.62 (211.17) 13.05 (9.36) 7.38 (11.79)
η = 1 234.52 (215.21) 12.29 (8.40) 6.44 (10.29)

The Ekman layer, Ro = 0

Parameter Re n ε
η = 0 116.26 (–) 16.04 (–) 14.33 (–)
η = 0.25 142.04 (173.17) 14.68 (13.52) 10.31 (16.61)
η = 0.5 169.35 (181.65) 14.02 (11.44) 8.60 (14.89)
η = 0.75 197.33 (194.01) 13.63 (10.34) 7.45 (11.46)
η = 1 225.67 (208.65) 13.38 (9.64) 5.73 (9.74)

The related layer for Ro = 0.5

Parameter Re n ε
η = 0 75.89 (–) 10.52 (–) 14.63 (–)
η = 0.25 102.95 (–) 10.98 (–) 11 12 (–)
η = 0.5 131.72 (144.99) 11.35 (9.96) 8.88 (14.29)
η = 0.75 161.58 (163.57) 11.64 (9.40) 7.37 (11.98)
η = 1 192.15 (182.86) 11.86 (9.05) 6.30 (10.24)

The Bödewadt layer, Ro = 1

Parameter Re n ε
η = 0 27.38 (–) 3.12 (–) 14.32 (–)
η = 0.25 45.97 (–) 4.43 (–) 12.03 (–)
η = 0.5 67.00 (–) 5.55 (–) 8.60 (–)
η = 0.75 90.25 (100.70) 6.41(6.23) 8.59 (12.61)
η = 1 114.85 (119.21) 7.07 (6.20) 6.88 (11.46)

Table 5.2: Critical values of observable parameters at the onset of convective in-
stability of both modes for the boundary layers in the BEK system in the case of
radially-anisotropic roughness (concentric grooves). Type I and (Type II). The most
dangerous mode is indicated as bold text in terms of critical Reynolds number.
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Figure 5.13: Neutral curves of the convective instability of the particular flows in
the BEK system in the case of a moderate value of radially-anisotropic roughness,
η = 0.5.

the Rossby number increases from the von Kármán flow, Ro = −1, to the Bödewadt

one, Ro = 1 as shown in Figure 5.13(c). However, the increment of the vortex angle

along the lower branches is less than that along the upper branches.

The numerical predictions of the critical parameters at the onset of convective

instability are presented in Table 5.2 for each flow discussed previously. The critical

values of the Type I mode of the smooth case are in very close agreement with the

existing results in the literature for the BEK system and those due to Cooper et al.

(2015) for the rough rotating disk, however there are some minor discrepancies in

the Type II mode results. These discrepancies are consistent with the apparent sen-

sitivity of Type II mode results in the von Kármán flow due to the solution methods
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used as stated in the study of Balakumar & Malik (1990); this is also discussed by

Garrett et al. (2016). The effects of anisotropic roughness with concentric grooves

on the Type I mode of the neutral curves of the BEK system of flows are similar

to the effects of increased suction in all flows of the system and increased uniform

distribution of magnetic field in the von Kármán flow. The effects on the Type

II mode are different than those of these methods. The Type II mode has been

spatially damped by increased concentric grooves whereas increased suction invokes

this mode. An increased uniform magnetic field, on the other hand, delays the onset

of Type II mode but it is not suppressed spatially.

5.3.2. The growth rates

We now consider the effect of concentric grooves on the growth rates of the in-

stability modes of the BEK system of boundary layer flows. However, as discussed

in §4.3.2 it is not possible to produce plots of the convective growth rates of the

Bödewadt flow due to the early onset of the “branch exchange” (Lingwood & Gar-

rett, 2011).

The growth rates of the Type I and Type II instability modes within the BEK

system of flows at Re = Recritical + 25 are presented in Figure 5.14 as a function

of the vortex number n for each level of roughness. Here Recritical is the critical

Reynolds number presented in Table 5.2 for the onset of the convective instability of

the Type I mode. It is easy to identify the stabilizing effect of concentric grooves on

the Type I mode of each flow from Figures 5.14(a)-(d). That is, the value of the most

rapidly growing Type I mode indicated by a red dot decreases with an increase in the

roughness size. These figures also present the destabilization of the Type II mode

of each flow with increased roughness parameter η. In other words, the value of the

most rapidly growing Type II mode indicated by a red circle increases proportionally

to the surface roughness. Moreover, the maximum growth rate shifts to lower values

of n for both the modes, indicating a decrease in the number of vortices along upper

and lower branches as an effect of increased surface roughness level. The change of

the number of vortices is in contrast to the observations detailed for the azimuthally
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Figure 5.14: Growth rates of Type I and Type II instability modes within the BEK
boundary layer flows as a function of vortex number n at Re = Recritical + 25 in the
case of radial grooves, azimuthally-anisotropic roughness. The red dots and circles
indicate the most rapidly growing mode for Type I and Type II modes, respectively.

anisotropic roughness cases in §4.3.2.

These results are consistent with the response of the critical parameters obtained

for each flow as stated in Table 5.2. A similar discussion of the growth rates for

the von Kármán flow has been provided by Cooper et al. (2015) and we include our

results for this flow as a validation.

5.4. Energy Analysis

The aim of this section is to establish the underlying physical mechanisms behind

the effects of concentrically grooved disks on the BEK system of boundary layer flows
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by solving the energy balance equation (2.50). As discussed in §4.4, this equation

can be solved for any eigenmode of the perturbation equations (2.40)-(2.41).

The positive terms that arise from the solutions of (2.49) contribute to the energy

production and the negative ones reduce the energy of the system. A destabilisation

of any eigenmode occurs if energy production exceeds the energy dissipation in the

system. Therefore we can identify the effect of concentric grooves on the instability

modes by calculating the energy change of the system, that is the sum of energy

production and dissipation in the system.

The results obtained in this section for the BEK system of boundary layer flows

are calculated at the location of the maximum growth rates of the Type I and Type

II modes, as presented in previous section. The only exception is the Bödewadt flow

due to the “branch exchange” issue identified by Lingwood & Garrett (2011). The

energy balance of the Bödewadt flow is calculated at fixed Re = 400 with the number

of vortices, n = 30, and ,n = 12, for the Type I, and Type II modes, respectively.

The values of number of vortices are chosen for the purpose of being outside of the

absolutely unstable region at Re = 400.

Figure 5.15 shows the energy balance calculations of the Type I mode in the

case of concentric grooves. The stabilisation effect, that is the reduction in the

energy of the system as roughness is increased, is seen clearly from the Figure 5.15

for all Rossby numbers. This effect arises mainly from the reduction in the energy

production term P2 and in the energy dissipation term D for each flow, with the

exception of the Bödewadt flow. In the case of the Bödewadt flow, the main energy

production terms are G1 and G3, that arise from the streamline curvature effects

and the three dimensionality of the mean flow. Indeed, the energy removal effects of

these terms for the negative Rossby number flows turns into an energy dissipation

for the positive Rossby number flows. However, a decreasing of the G1 and G3 terms

and a substantial increasing of the viscous dissipation for increased roughness leads

to a stabilisation of the Type I mode in the Bödewadt flow. It is also worthwhile

to note that the reduction in all terms decrease as the Rossby number change from

negative unity to positive unity.
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Figure 5.15: Energy balance of the Type I mode of the BEK system of boundary
layer flows for radially anisotropic rougness at the location of maximum amplification
at Re = Recritical + 25 except the Bödewadt flow. For Bödewadt flow, Re = 400
and n = 30. The terms are normalised by the mechanical energy flux of the most
dangerous mode within each figure.
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Figure 5.16: Energy balance of the Type II mode of the BEK system of boundary
layer flows for radially anisotropic rougness at the location of maximum amplification
at Re = Recritical + 25, except the Bödewadt flow. For this flow, Re = 400 and
n = 12. The terms are normalised by the mechanical energy flux of the most
dangerous mode within each figure.



Energy Analysis 96

The energy balance calculations of the Type II mode are presented in Figure

5.16 for the case of concentric grooves. Clearly, destabilisation of the Type II modes

of each flow is due to an increase in the energy change for higher values of the

roughness parameter. The main cause of destabilisation is seen to be the strong

reduction of energy dissipation from each negative Rossby number flow, including

the Ekman flow as is evidenced in Figure 5.16(a)-(c). In contrast, destabilisation

of the positive Rossby number flows is due to a substantial increase of the energy

production term P2 with increased roughness as is evidenced in Figure 5.16(d)-(e).

Moreover, the geometric terms Gi for the Type II mode are relatively larger than

those of the Type I mode.

Forms of the azimuthal velocity perturbation, v̂, and the axial velocity pertur-

bation, ŵ, which provide some explanations about the energy trends of the BEK

system flows (Cooper et al., 2015) are presented in Figure 5.17 for the Type I mode.

It is seen from this figure that the general form of both disturbance profiles are

not changed with the profiles being translated away from the wall as the roughness

increased. The strong decrease of the P2 term in the case of the flows with negative

Rossby numbers is due to a reduction in the amplitude of the axial velocity pertur-

bation, ŵ. For the Ro = 0 and Ro = 0.5 flows, the decrease of that term results

from the strong reduction in the amplitude of the axial disturbance profile ŵ as the

roughness increases. The substantial increase of viscous dissipation in the Bödewadt

flow is seen to be caused by an increase of the amplitudes of both velocity profiles

as is evidenced in 5.17(i)-(j).

Figure 5.18 presents the form of the velocity profiles for the Type II mode. It

is clearly seen that it is the decreasing viscous dissipation that leads to destabili-

sation of Type II modes of the BEK system flows, except the Bödewadt flow. The

decreasing of the dissipation term is caused by a reduce in the amplitude of the v̂

profile with increased roughness. However, the increasing energy production in the

Bödewadt flow is caused by a substantial increase in the amplitude of the ŵ profile

as the roughness level is increased, as is evidenced in 5.18(i)-(j). On the other hand,

the v̂ disturbance profile for the Type II mode extends further into the boundary
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|ŵ
|

 

 

η = 0

η = 0.25

η = 0.5

η = 0.75

η = 1

(f) Ro = 0

z

0 1 2 3 4 5 6 7 8

|v̂
|

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
η = 0

η = 0.25

η = 0.5

η = 0.75

η = 1

(g) Ro = 0.5

z

0 1 2 3 4 5 6 7 8

|ŵ
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Figure 5.17: Type I mode profiles for the azimuthal and the axial disturbance ve-
locitity profiles of the BEK flows in the case of a concentrically grooved disk at the
location of maximum amplification at Re = Recritical+25 except the Bödewadt flow.
For Bödewadt flow, Re = 400 and n = 30.
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Figure 5.18: Type II mode profiles for the azimuthal and the axial disturbance
velocitity profiles of the BEK flows in the case of a concentrically grooved disk at
the location of maximum amplification at Re = Recritical + 25 except the Bödewadt
flow. For Bödewadt flow, Re = 400 and n = 12.
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Ekman flow, Ro = 0 Bödewadt flow, Ro = 1

η = 0 219 ∼ 220 27 ∼ 28

η = 0.25 346 ∼ 347 47 ∼ 48

η = 0.5 563 ∼ 564 78 ∼ 79

η = 0.75 > 1000 118 ∼ 119

η = 1 > 1000 174 ∼ 175

Table 5.3: Critical Reynolds number for the stationary Type I mode interacting
with the absolute instability region inside the neutral curves of the BEK system
flows in the case of concentric grooves.

layer and stretches out as roughness is increased and this could be a cause of the

destabilisation of the Type II mode.

5.5. Absolute instability

We are not able to produce growth rate curves of instability modes for the

Bödewadt flow in §5.3.2 due to the “branch exchange” issue. The issue occurs when

the Type III mode, as identified by Mack (1985), coalesces with Type I cross-flow

instability mode and leads to absolute instability (Lingwood, 1997). Therefore, in

this section we investigate the effect of anisotropic roughness with concentric grooves

on suppressing one of the coalescing modes. If it is satisfied, it can be a sign that

the onset of absolute instability could be delayed to higher Reynolds numbers.

The critical Reynolds numbers of the Ekman and Bödewadt flows at which the

“branch exchange” has occurred between the Type I and Type III modes in the

case of concentric grooves are shown in Table 5.3. We can see that the “branch

exchange” is delayed to a higher Reynolds number for both flows compared to the

smooth cases. However, the delay is not as strong as the one obtained in the case

of radial grooves. On the other hand, obtaining the delay for the Bödewadt flow

is worth being noted as there is no such delay for this flow in the case of radial
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grooves. Indeed, these results are in parallel to the stabilisation effect of concentric

grooves on the Type I mode and lead the prediction that radially anisotropic surface

roughness can be used to delay the onset of absolute instability to higher Reynolds

numbers compared to the smooth disk case.

5.6. Conclusion

In this chapter we have studied the effects of radially anisotropic roughness on

the convective instability of stationary disturbances in the BEK family of boundary

layer flows. The presented solutions of the mean flow equations are obtained using

the partial-slip approach of Miklavcic & Wang (2004) without modification. The

results are in excellent agreement with those in the literature for the smooth surface

cases at all values of Ro. Moreover, the mean flow components of the von Kármán

flow are identical to those presented by Cooper et al. (2015). Our numerics have

revealed that the effects of anisotropic roughness with concentric grooves on the

mean flow components are to decrease the amplification of the oscillatory behaviour

through the axial direction, along with the magnitude of the radial wall jet. These

behaviours are opposite to those found for in the case of anisotropic roughness with

radial grooves, as discussed in §4.2.

The local linear stability analyses conducted in §5.3 reveal that radially-

anisotropic roughness has a strong stabilising effect on the Type I instability mode

in terms of the critical Reynolds number for the onset of the convective instability

and the width of instability area for all flows in the BEK system. For the Type II

mode a stabilising effect has been observed in terms of the width of the unstable

area. Moreover, the relative importance of the Type II mode increases as the rough-

ness level is increased and they are, therefore, expected to dominate for sufficiently

high levels.

We also observed that the numbers of vortices, n, and the vortex angle, ε, are

decreased at all values of Ro as roughness is increased. The supporting results

to the effects of concentric grooves are then obtained by considering the growth
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rates of each instability mode and conducting an energy balance analysis for all

flows in the BEK system. Furthermore, we have determined the critical Reynolds

numbers at the points of which a “branch exchange” has occurred for the Ekman

and Bödewadt flows. The increase of those critical Reynolds numbers with increased

η could suggest that concentric grooves can be used to delay the onset of absolute

instability in rotating disk flows.

The effects of concentric grooves on the Type I mode are similar to effects of other

flow-control methodologies for the BEK system: the surface suction technique as

studied theoretically by Lingwood & Garrett (2011) and imposing increased uniform

magnetic field normal to the disk as studied by Jasmine & Gajjar (2005), whereas

those on the Type II mode are in contrast to the effects of these two techniques.

Furthermore, we find that the response of the physical mechanisms that lead to

transition in the boundary layer is sensitive to the Rossby number of the system as

is also shown with the surface suction technique.



Chapter 6

Effect of isotropic roughness on

the BEK family of boundary layers

6.1. Overview

This chapter is concerned with the effects of isotropic roughness on the convective

instability mechanisms within the general class of rotating BEK system of boundary-

layers. Local linear stability analyses that include both viscous and streamline-

curvature effects are conducted. The stability results of each flow are then confirmed

with an energy analysis.

For consistency of presentation across the thesis, this chapter follows the struc-

ture of Chapters 4 and 5. The effects of isotropic roughness on the solutions of the

steady mean flow equations are discussed in §6.2. The results of the convective insta-

bility analysis are presented in §6.3 and neutral curves produced from the solutions

of the perturbation equations (2.40)-(2.41) are presented in §6.3.1. The convective

growth rate curves of each instability mode are presented in §6.4 for increased levels

of the roughness. Finally, the absolute instability is discussed briefly in §6.5.

102
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Figure 6.1: Distribution of roughness isotropically over a disk.

6.2. The steady mean flow solutions

The primary aim of this section is to study the effects of isotropic roughness

on the mean flow profiles of the BEK family of boundary layers. Furthermore, we

will compare the results with those of other passive drag control mechanisms on the

BEK system of flows; surface suction studied by Lingwood & Garrett (2011) and

uniform distribution of a magnetic field studied by Jasmine & Gajjar (2005).

The isotropic surface roughness corresponds to equally distributed roughness

in the azimuthal and radial directions on the disk surface. Therefore, we set the

roughness parameters in the partial-slip boundary conditions (2.19) obtained under

the MW model to η = λ > 0. We solve the steady mean flow equations (2.18) of

the BEK family of boundary layers with the MATLAB function described in §3.1,

however, there are precise analytical solutions of each mean flow components for

the Ekman flow stated in (2.20). In the case of the Bödewadt flow, our solutions

are identical to those of Sahoo et al. (2014) obtained using two distinct methods;

a second order finite difference scheme and the Keller box method. Furthermore,

the initial values of U ′(0) and V ′(0) are shown in Table 6.1 in the case of isotropic

roughness. Note that our initial values for the von Kármán flow are identical to

those presented by Miklavcic & Wang (2004).
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Figure 6.2: Mean-flow components of the von Kármán flow in the case of isotropic
roughness (η = λ 6= 0).

The radial mean flow component U is presented in Figures 6.2(a)-6.6(a) and the

azimuthal mean flow profile V is presented in Figures 6.2(b)-6.6(b). The mean flow

component W , in axial direction, is presented in Figures 6.2(c)-6.6(c).

Figures 6.2-6.6 reveal that the oscillations of each of the mean flow components

of the BEK system are damped out with increased isotropic roughness. This effect

is similar to that observed in the case of concentric grooves in Chapter 5. It is also

similar to the effects of increased surface suction (Lingwood & Garrett, 2011) and

an increased the uniform magnetic field applied to the von Kármán flow (Jasmine

& Gajjar, 2005). In those studies, convective amplification rates reduce with an

increase in their parameters, i.e. they are stabilising.

Figures 6.2(a)-6.6(a) show that the maximum value of the radial velocity com-



The steady mean flow solutions 105

The von Kármán layer, Ro = −1

Parameter U ′(0) V ′(0)
η = λ = 0 -0.510232616 0.615922011
η = λ = 0.25 -0.327600480 0.575119454
η = λ = 0.5 -0.167015414 0.503591898
η = λ = 0.75 -0.277176378 0.446770739
η = λ = 1 -0.128216711 0.395522953

Ro = −0.5

Parameter U ′(0) V ′(0)
η = λ = 0 -0.857041159 0.907317540
η = λ = 0.25 -0.529748347 0.832737971
η = λ = 0.5 -0.353343231 0.722084578
η = λ = 0.75 -0.251546033 0.626364820
η = λ = 1 -0.188042408 0.549310236

Ro = 0.5

Parameter U ′(0) V ′(0)
η = λ = 0 -1.017626469 0.961193351
η = λ = 0.25 -0.657618690 0.908393868
η = λ = 0.5 -0.431523827 0.804078004
η = λ = 0.75 -0.295272439 0.699379912
η = λ = 1 -0.211485030 0.610129728

The Bödewadt layer, Ro = 1

Parameter U ′(0) V ′(0)
η = λ = 0 -0.941970896 0.772885383
η = λ = 0.25 -0.695524054 0.771562672
η = λ = 0.5 -0.483768497 0.729696382
η = λ = 0.75 -0.335808673 0.659134799
η = λ = 1 -0.240292848 0.586455699

Table 6.1: The initial values of U ′ and V ′ at the disk surface for various Ro, calcu-
lated by shooting method in case of isotropic roughness (η = λ 6= 0).
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Figure 6.3: Mean-flow components for Ro = −0.5 in the case of isotropic roughness
(η = λ 6= 0)

ponent, U , for each flow reduces and moves towards the disk surface as a result of

increased isotropic roughness. In other words, increased radial grooves act to de-

crease the radial wall jet. We also observe that the boundary layer thickness reduces.

These changes in the maximum value of the U profile are similar to those observed

with increased surface suction and increased uniform magnetic field. Figures 6.2(c)-

6.6(c) show that the amount of fluid entrained into the boundary layer reduces as

the magnitude of axial flow reduces substantially for increased isotropic roughness.

This is similar to the findings of Lingwood & Garrett (2011) for increased surface

suction for Ro ≥ 0 and those of Jasmine & Gajjar (2005) for increased uniform

magnetic field for the von Kármán flow.

The effects of isotropic roughness on the azimuthal velocity profile V are pre-
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Figure 6.4: Mean-flow components of the Ekman flow (Ro = 0) in the case of
isotropic roughness (η = λ 6= 0).

sented in Figures 6.2(b)-6.6(b), and they reveal that the wall value of the component

increases for each flow as roughness is increased; this is similar to the concentric

groove case discussed in Chapter 5. However, this is a direct implication of the

partial slip boundary conditions (2.19) as η 6= 0. As a result, the resisting torque T

in (2.21) also reduces for each non-zero Rossby flow, but the rate of reduction is less

than the concentric grooves case. The torque is equal to zero for the Ekman flow as

might be expected with zero net rotation between the upper and lower flows.

Our main findings in this section for each particular flow in the BEK system

indicate that the effect of isotropic roughness on the properties of mean flow com-

ponents are similar to the effects observed in the concentric grooves case, but less

pronounced. Therefore, the effects can be seen as a combination of the effects ob-
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Figure 6.5: Mean-flow components for Ro = 0.5 in the case of isotropic roughness
(η = λ 6= 0).

served for radial and concentric grooves in §4.2 & §5.2, respectively. Furthermore,

the effects of increased roughness on the oscillatory behaviour of the flow compo-

nents are similar to the responses seen from surface mass flux and the distribution

of a uniform magnetic field.
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Figure 6.6: Mean-flow components of the Bödewadt flow (Ro = 1) in the case of
isotropic roughness (η = λ 6= 0).

6.3. The convective instability analysis

In this section we are concerned with the occurrence of convective instabilities

in the case of isotropic roughness. The convective instability is determined by the

computed solutions of the perturbation equations (2.40)-(2.41). The solutions are

obtained by the spectral Chebyshev method described in §3.2. We analyse the

characteristics of convective instability in terms of neutral curves in §6.3.1 and the

growth rates in §6.13. We suppose in the first instance that the flow is not absolutely

unstable. As a result, in the Briggs-Bers procedure we can set the imaginary part

of the frequency to zero, so that ωi = 0. To produce neutral curves of convective

instability we also insist that the vortices rotate with the lower disk surface, thereby
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Figure 6.7: Neutral curves of the convective instability of the von Kármán flow in
the case of azimuthally-anisotropic roughness (η = λ 6= 0).

the real part of the frequency ωr = 0, and then the radial wavenumber α and the

azimuthal wavenumber β are computed.

6.3.1. Neutral curves

In this section we present neutral curves of the stability of the boundary layer

flows belonging to the BEK system in the (Re, αr), (Re, n) and (R, ε)-planes in

the case of isotropic surface roughness. Each curve encloses a region in which the

boundary layers are convectively unstable. Two spatial branches are found that

determine the convective instability characteristics for each size of roughness. These

branches arise from crossflow and streamline-curvature instability modes and are

identical to branches 1 & 2 discussed in §4.3.1; they are not discussed here for this
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Figure 6.8: Neutral curves of the convective instability for Ro = −0.5 in the case of
isotropic roughness (η = λ 6= 0).

reason.

The solutions of the perturbation equations (2.40)-(2.41) are obtained using the

spectral Chebyshev method discussed in §3.2.1. Figure 6.7 presents the effects of

isotropic roughness on the neutral curves of the von Kármán flow. These curves are

consistent with those of Cooper et al. (2015) and are included here for completeness.

The effects of isotropic roughness on neutral curves of other flows in the BEK system

are quite similar to the von Kármán flow, as is evidenced in Figures 6.8 - 6.11.

Figures 6.7(a) - 6.11(a) clearly reveal that increasing levels of isotropic roughness

has a strong stabilisation effect on both of the Type I and Type II instability modes

of each flow in the BEK system. The Type II mode, that appears as the lower lobe

in smooth cases of each flow, vanishes even for modest levels of isotropic roughness.
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Figure 6.9: Neutral curves of the convective instability of the Ekman flow in the
case of isotropic roughness (η = λ 6= 0).

Therefore the Type I mode remains the dominant instability mechanism of each

flow in the case of isotropic roughness. The critical Reynolds number at which the

Type I mode onsets increases with roughness level for each flow. Furthermore, the

width of instability region shrinks with an increase in the roughness level. Both are

significant stabilising effects.

Figures 6.7(b) - 6.11(b) show the effects of isotropic roughness on the number

of vortices n for each flow in the system. Clearly the number of vortices decreases

substantially along the upper branch of the neutral curves as roughness is increased.

However, there is a slight increase in the number of vortices along the lower branches

of the neutral curves for larger values of the roughness parameter. Those changes

in n appear to be the combined effects of azimuthal and radial roughness cases,
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Figure 6.10: Neutral curves of the convective instability for Ro = 0.5 in the case of
isotropic roughness (η = λ 6= 0).

because radial grooves lead to an increase in n while concentric grooves leads to a

decrease, as discussed in §4.3.1 & §5.3.1. The effects of isotropic roughness on the

vortex angle are presented in Figures 6.7(c) - 6.11(c). In contrast to the number of

vortices, the effect of increasing isotropic roughness is to decrease the vortex angle

of each flow in the system along both the upper and lower branches. However, the

strength of the decreasing effect reduces along the lower branch.

It is also worthwhile to note that the strength of the stabilising effects of isotropic

roughness is sensitive to the Rossby number and to gain a better understand of this

sensitivity we compare the stability characteristic of all flows in the BEK system for

a moderate level of isotropic roughness, η = λ = 0.5. Figure 6.12(a) clearly shows

that the flows become increasingly unstable in terms of critical Reynolds number as
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Figure 6.11: Neutral curves of the convective instability of the Bödewadt flow in the
case of isotropic roughness (η = λ 6= 0).

the Rossby number increases from the von Kármán flow, Ro = −1, to the Bödewadt

flow, Ro = 1. This behaviour is similar to that obtained in the smooth disk case

(Lingwood, 1997). The width of the instability region expands with increased surface

roughness from Ro = −1 to Ro = 0.5, whereas it shrinks slightly for Ro = 1.

Figure 6.12(b) demonstrates that the number of vortices n at the critical

Reynolds number is nearly unaffected by increased roughness for the negative Rossby

number flows whilst a sharp reduction is obtained for positive Rossby number flows.

However, the number of vortices increases from Ro = −1 to Ro = 0 and remains

nearly unchanged for positive Rossby number flows in the smooth case. Similarly,

the vortex angle at the critical Reynolds number increases sharply between Ro = −1

to Ro = −0.5 flows and remains nearly unchanged for the other flows as evidenced

in Figure 6.12(c). This behaviour is quite similar to the smooth case.

The numerical predictions of the critical parameters at the onset of convective

instability are presented in Table 6.2 for each flow discussed previously. The critical
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The von Kármán flow, Ro = −1

Parameter Re n ε
η = λ = 0 286.05 (460.92) 22.20 (21.28) 11.40 (19.28)
η = λ = 0.25 384.53 (–) 27.04 (–) 11.35 (–)
η = λ = 0.5 481.64 (–) 29.13 (–) 10.54 (–)
η = λ = 0.75 566.24 (–) 29.90 (–) 9.82 (–)
η = λ = 1 642.16 (–) 29.57 (–) 9.05 (–)

The related flow for Ro = −0.5

Parameter Re n ε
η = λ = 0 160.81 (–) 19.09 (–) 13.97 (–)
η = λ = 0.25 225.34 (–) 24.12 (–) 13.35 (–)
η = λ = 0.5 291.39 (–) 26.91 (–) 12.11 (–)
η = λ = 0.75 354.06 (–) 28.14 (–) 10.79 (–)
η = λ = 1 413.69 (–) 29.08(–) 9.72 (–)

The Ekman flow, Ro = 0

Parameter Re n ε
η = λ = 0 116.26 (–) 16.04 (–) 14.33 (–)
η = λ = 0.25 170.66 (–) 21.45 (–) 13.75 (–)
η = λ = 0.5 237.79 (–) 25.55 (–) 12.03 (–)
η = λ = 0.75 310.63 (–) 28.65 (–) 10.89 (–)
η = λ = 1 386.49 (–) 30.85 (–) 9.17 (–)

The related flow for Ro = 0.5

Parameter Re n ε
η = λ = 0 75.89 (–) 10.52 (–) 14.63 (–)
η = λ = 0.25 113.49 (–) 14.62 (–) 13.46 (–)
η = λ = 0.5 169.74 (–) 18.99 (–) 12.17 (–)
η = λ = 0.75 238.21 (–) 22.96 (–) 10.61 (–)
λ = 1 314.21 (–) 26.20 (–) 9.28 (–)

The Bödewadt flow, Ro = 1

Parameter Re n ε
η = λ = 0 27.38 (–) 3.12 (–) 14.32 (–)
η = λ = 0.25 41.02 (–) 4.55 (–) 12.60 (–)
η = λ = 0.5 69.50 (–) 7.22 (–) 12.03 (–)
η = λ = 0.75 112.15 (–) 10.45 (–) 10.88 (–)
η = λ = 1 165.52 (–) 13.64 (–) 9.74 (–)

Table 6.2: Critical values of observable parameters at the onset of convective in-
stability of both modes for the boundary layers in the BEK system in the case of
isotropic roughness. Type I and (Type II). The most dangerous mode is indicated
as bold text in terms of critical Reynolds number.
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Figure 6.12: Neutral curves of the convective instability of the particular flows in
the BEK system in the case of a moderate value of isotropic roughness, η = 0.5.

values of the Type I mode are in very good agreement with the existing results in

the literature for the BEK system and those due to Cooper et al. (2015).

6.3.2. The growth rates

We now consider the effect of isotropic roughness on the growth rates of the

instability modes of the BEK boundary layer flows. In contrast to radial and con-

centric grooves, it is also possible to produce these curves for the Bödewadt flow

after a threshold value of the isotropic roughness parameter has been surpassed. In

other words, the early onset of the “branch exchange” is delayed substantially by

increased isotropic roughness. The details for that issue will be discussed in §6.5.

The growth rates of the Type I instability within the BEK system flows at

Re = Recritical + 25 are presented in Figure 6.13 as a function of the vortex number

n at each size of roughness. Here Recritical is the critical Reynolds number presented



The convective instability analysis 117

n
20 22 24 26 28 30 32 34 36

|α
i
|

0

0.005

0.01

0.015
η = λ = 0

η = λ = 0.25

η = λ = 0.5

η = λ = 0.75

η = λ = 1

Type I
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Figure 6.13: Growth rates of Type I instability mode within the BEK boundary
layer flows as a function of vortex number n at Re = Recritical + 25 in the case of
isotropic. The red dots indicates the most rapidly growing mode for Type I.

in Table 6.2 for the onset of the mode in the case of isotropic roughness. Figure 6.13

clearly reveals the stabilising effect of isotropic roughness on the Type I mode of

each flow as the value of the maximum growth rate indicated by a red dot decreases

for increased roughness. Furthermore, location of the maximum growth rate shifts

to higher values of n, indicating an increase in the number of vortices as an effect

of increased surface roughness level. A similar discussion of the growth rates for the

von Kármán flow has been provided by Cooper et al. (2015) and we include here

our results for this flow as a validation.
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6.4. Energy Analysis

In this section we analyse the effects of isotropic roughness on the BEK system

of boundary layer flows by solving the energy balance equation (2.50). As discussed

in §4.4, this equation can be solved for any eigenmode of the perturbation equations

(2.40)-(2.41).

As discussed in §6.3.1, the Type II mode disappears for even modest levels of

isotropic roughness in each flow of the BEK system. Therefore, we only discuss the

energy balance for the Type I mode of instability here. We do this by performing

the energy balance at the location of maximum amplification that was discussed

in previous section at Re = Recritical + 25. Here Recritical is the critical Reynolds

number presented in Table 6.2 for the onset of the Type I mode of instability in the

case of isotropic roughness. Our growth rate results have shown that the interaction

with an absolutely unstable area is delayed for some levels of isotropic roughness

for the Bödewadt flow. Therefore, we can carry out the energy balance calculations

for all levels of the roughness that are possible to produce growth rate plots at

Re = Recritical + 25 for the Type I mode.

Figure 6.14 shows the energy balance calculation of the Type I mode for isotropic

roughness. Clearly the stabilisation effect obtained for each flow in the system is

due to a strong decrease in energy changes of the flows as roughness is increased.

This effect arises mainly from the changes in the energy production term P2 and

in the energy dissipation term D. Both energy production and dissipation in each

flow decrease for higher values of the roughness parameter. Furthermore, the energy

removing effects of the G1, G2 and G3 terms arising from the streamline curvature

and the three dimensionality of the mean flow result in an energy production effect

for positive values of the Rossby number. In other words, these terms contribute to

energy production in the system.

It is also possible to provide some explanation about the energy trends of the

BEK system of flows by analysing the form of azimuthal velocity perturbation, v̂,

and the axial velocity perturbation, ŵ. These profiles contribute to the dominant
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Figure 6.14: Energy balance at the location of maximum amplification of the BEK
boundary layer flows at Re = Recritical + 25 for isotropic rougness. The terms are
normalised by the mechanical energy flux of the most dangerous mode within each
figure.
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Figure 6.15: Type I mode profiles for the azimuthal and the axial disturbance veloc-
itity profiles of the BEK flows at Re = Recritical + 25 in the case of an isotropically
rough disk.
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Ekman flow, Ro = 0 Bödewadt flow, Ro = 1

η = λ = 0 219 ∼ 220 27 ∼ 28

η = λ = 0.25 > 1000 45 ∼ 46

η = λ = 0.5 > 1000 104 ∼ 105

η = λ = 0.75 > 1000 475 ∼ 476

η = λ = 1 > 1000 > 1000

Table 6.3: Critical Reynolds number for the stationary Type I mode interacting
with the absolute instability region inside the neutral curves of the BEK system
flows in the case of isotropic roughness.

energy production term P2 and energy dissipation term D. The magnitudes of these

two disturbance profiles are presented in Figure 6.15 for the BEK system of flows

in the case of an isotropically rough disk for the Type I instability mode. It is seen

that the general form of both disturbance profiles are not changed with the profiles

being translated towards the wall as the roughness is increased. The strong decrease

of the P2 term for each flow is due to the reduction in the amplitude of the axial

velocity perturbation, ŵ. The reduction in the dissipation rate of the system is due

to the increase of the maximum value of the azimuthal velocity profile v̂.

6.5. Absolute instability

Our growth rate results discussed in §6.3.2 have revealed that sufficiently large

sizes of isotropic roughness suppress the coalescing of the Type I and Type III

instability modes, that leads to the “branch exchange” issue for all flows of the

BEK system. Therefore, the onset of absolute instability could be delayed to higher

Reynolds numbers.

Table 6.3 shows that the critical Reynolds numbers for the stationary Type I

mode at which convective instability region starts to interact with the absolute

instability region in the case of isotropic roughness. It is clear that the onset of the
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interaction is delayed to higher Reynolds numbers for all the BEK system of flows as

roughness is increased. The delaying effect of isotropic roughness is not as strong as

for azimuthally anisotropic roughness for the flows between Ro = −1 and Ro = 0.5.

However, it has a certain delaying effect on the Bödewadt flow while the former

does not. Furthermore, it is stronger compared to radially anisotropic roughness

for all Rossby flows in the system. Indeed, these results lead to the prediction that

isotropic surface roughness can restrict the onset of absolute instability to higher

Reynolds numbers compared to a smooth disk.

6.6. Conclusion

In this chapter we have investigated the effects of isotropic roughness on the con-

vective instability of stationary disturbances in the BEK family of boundary layer

flows. We have presented solutions of the mean flow equations obtained using the

partial-slip approach of Miklavcic & Wang (2004) without modification. The com-

puted mean flow components are in good agreement with those in the literature for

the smooth surface cases at all values of Ro. The computed mean flow components

of the von Kármán and the Bödewadt flows are qualitatively consistent with those

presented by Sahoo et al. (2014), Cooper et al. (2015) and Garrett et al. (2016). Our

findings have revealed that isotropic roughness acts to decrease the amplification of

the oscillatory behaviour of the steady flows through the axial direction and the

boundary layer thickness of each flow.

We have then conducted a linear stability analysis and reveal that isotropic

roughness has a strong stabilising effect on both of the Type I and Type II modes

instability in terms of postponing the onset of the convective instability and the

width of the unstable area enclosed by the neutral curves at all Rossby numbers.

It is observed that increased surface roughness at all values of Ro acts to decrease

the number of vortices along the upper branch and increase them along the lower

branch. The effect of isotropic roughness is to reduce the value of the vortex angle

along both branches. We have also presented supporting results by considering
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the growth rates of each instability mode and have conducted an energy balance

analysis at the locations of the maximum amplifications for particular flows in the

system. Moreover, our findings indicate that isotropic surface roughness can be a

stabilisation mechanism that could be used to delay the onset of absolute instability

for rotating disk flows.

The observed stabilising effect in this case of roughness on the instability modes

are similar to the effects of other flow-control methodologies for the BEK system:

the surface suction technique, studied theoretically by Lingwood & Garrett (2011)

and imposing increased uniform magnetic field normal to the disk as studied by

Jasmine & Gajjar (2005). Furthermore, we find that the response of the physical

mechanisms that lead to transition in the boundary layer is sensitive to the Rossby

number of the system as with the surface suction technique.



Chapter 7

Conclusion

“This thesis aims to investigate whether distributed surface roughness could

be used as a passive drag reduction technique for the BEK system of flows. If it

can, what is the right sort roughness”. To answer those questions, we have investi-

gated the effects of particular types of distributed surface roughness, anisotropic and

isotropic, on the convective stability characteristics of the stationary disturbances

in the BEK system of flows. Each analysis has been presented seperately and a

summary of the main findings from each investigation are given briefly here. In

particular, in §7.1 we present a comparison of the effects of each surface roughness

and draw some general conclusions. As a result of the main findings of this thesis,

suggestions for future research are identified in §7.2.

7.1. Comparison of main results

Cooper et al. (2015) and Garrett et al. (2016) have previously published results

concerning the effects of surface roughness on the von Kármán flow and this thesis is

designed to extend those investigations to predict the effects of surface roughness on

the convective instability characteristics of the broader BEK system of flows. The

steady boundary layer flows within the BEK system are parametrised by the Rossby

number, Ro, and the distinct surface roughness types have been modelled using the

partial-slip approach of Miklavcic & Wang (2004) without modification. Our results
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Figure 7.1: Comparative mean-flow components of the main flows of the BEK sys-
tem. The size of roughness is set to 0.5 in each rough case.
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Figure 7.2: Comparative convective neutral curves of the main flows in the BEK
system for each type of surface roughness. The size of roughness is set to 0.5 in each
rough case.

are directly comparable to Cooper et al. (2015). The computed mean flow profiles of

each flow in the BEK system have revealed that azimuthally-anisotropic roughness

- radial grooves - acts to magnify the oscillatory behaviour of these flow components

and also increases the magnitude of the wall jet. However, radially-anisotropic

roughness - concentric grooves - and isotropic roughness have been found to have

the opposite effect. This can be attributed to increased acceleration of the radial

mean flow component U in the case of the radial grooves compared to the smooth

case as evidenced in Figure 7.1. Moreover, the thickness of the boundary layer

is reduced with increased surface roughness with the isotropic roughness showing

particular sensitivity, as observed in Figure 7.1.
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Figure 7.3: Comparative convective growth rate curves of the von Kármán and
Ekman flows for the Type I mode at the location of maximum amplification of
Recritical = Recritical + 25, where Recritical corresponds the critical Reynolds number
of each type of surface roughness. The size of roughness is set to 0.5 in each rough
case.

A convective linear stability analysis for each of the BEK system of flows has

been performed using the Chebyshev collocation method and the obtained neutral

curves of the von Kármán, Ekman and Bödewadt flows are compared in Figure

7.2 at moderate levels of the roughness parameters. All roughness parameters are

set to 0.5. Radial grooves are seen to have a stabilisation effect for the inviscid

Type I mode of instability, as evidenced by the reduced region of instability and the

increase of the critical Reynolds number at all Ro, as shown in Figure 7.2(a)-(c).

However, the stabilisation effect of the radial grooves on both instability modes loses

its strength as Ro changes towards positive unity. In fact, it switches to a marginally

destabilising effect beyond Ro ≈ 0.7 as seen in Figure 7.2(a)-(c).

The concentric grooves also have a stabilising effect on the Type I mode at all Ro.

However, the viscous Type II mode is destabilised by concentric grooves for each of

the BEK system of flows, as seen in 7.2(a)-(c). Furthermore, concentric grooves act

to promote this mode such that the mode becomes the most dangerous and is likely

to be observed in experimental studies for sufficiently negative Ro and a sufficiently

large roughness parameter. For both Type I and Type II modes isotropic roughness

has a universally stabilising effect for all flows of the BEK system and the strength
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Figure 7.4: Energy balance comprasion of Type I mode of the BEK boundary layer
flows for each rougness cases at the location of maximum amplification at Re =
Recritical+25, except the Bödewadt flow. For these flow, Re = 400 and n = 40. The
terms are normalised by the mechanical energy flux of the most dangerous mode
within each figure.

of this effect compared to anisotropic roughness cases increases with increased Ro.

The results obtained from the investigation of the convective neutral curves are

supported by a study of the effects of roughness on the growth rates, |αi|, of both the

Type I and Type II modes. However, the onset of absolute instability begins at very

small Reynolds numbers in the Bödewadt flow and it leads to a “branch exchange”

between type I and Type III modes that makes it impossible to find the location of

maximum amplification of either instability mode (Mack, 1985; Lingwood & Garrett,

2011). Therefore, the effect of each roughness type is compared here only for the
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von Kármán and Ekman flows. Moreover, the Type II mode is spatially damped

by radial grooves and isotropic roughness and so has not been presented in the

relevant chapters. The growth rate curves of the Type I mode of the von Kármán

and Ekman flows are compared in Figure 7.3. This figure reveals that the maximum

amplification of the most dangerous mode, indicated by a red circle on each curve,

is damped by radial grooves and isotropic roughness for each flow. However, the

number of vortices is approximately two times less for the isotropic case roughness.

Reducing the number of vortices is a similar indication of the potential stabilising

effect of surface roughness shown in the experimental study of Watanabe et al.

(1993) for the boundary layer flows over a rotating cone.

Other complementary results have been obtained from performing an energy

analysis. The main indicator to identify the effects of surface roughness on the

stabilisation of the BEK system of flows is the energy change associated with them,

that is, the sum of energy production and dissipation in the system. The main

contributors to the energy change of the system have been identified as the term P2,

the Reynolds stress energy production term, and the term D, the viscous dissipation

energy removal term. An increased energy change in a rough case compared to the

smooth case indicates a destabilisation of the modes, whereas a reduced energy

change indicates a stabilization. The energy balance of terms from the BEK system

of flows are calculated for the Type I mode at the location of maximum amplification

at Re = Rcritical + 25 and are compared in Figure 7.4 for each surface roughness

type. Here Recritical is the critical Reynolds number presented in Tables 4.3, 5.2 &

6.2 for radial grooves, concentric grooves and isotropic roughness, respectively. In

contrast, the energy balance calculations for the Bödewadt flow are performed at

Re = 400 with the number of vortices, n = 40, fixed due to the “branch exchange”

issue. The value of number of vortices has been chosen for the purpose of being

outside of the absolutely unstable region at Re = 400.

The behaviour of the energy balance terms are consistent with the behaviours

of the neutral curves in Figure 7.2. The largest energy change, indicating the most

powerful stabilisation effect, is obtained in case of the radial grooves at Ro = −1,
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Ekman Bödewadt

Smooth case, η = λ = 0 219 ∼ 220 27 ∼ 28

Radial grooves, λ = 0.5 > 1000 15 ∼ 16

Concentric grooves, η = 0.5 463- 564 78 ∼ 79

Isotropic roughness, η = λ = 0.5 > 1000 104 ∼ 105

Table 7.1: Critical Reynolds number for the stationary Type I mode interacting
with the absolute instability region inside the neutral curves of the BEK system
flows in the case of isotropic roughness.

however, the energy change of this case exceeds the energy change of the smooth

case as Ro is increased towards positive unity, which indicates the destabilisation

of radial grooves for sufficiently high positive Rossby number flows. The energy

changes of the system in the case of concentric grooves and isotropic roughness are

always less than the energy change of a smooth case at all Ro and this observation

supports the destabilisation effect of these types of surface roughnesses.

The final interesting finding of this thesis is the prediction of a delayed “branch

exchange” occurring between the Type I and Type III modes to higher Reynolds

numbers in the case of concentric grooves and isotropic roughness. Note that this

prediction has been made for stationary vortices, ω = 0, and therefore is not a

complete absolute instability analysis. A complete investigation of the absolute

instability mechanism requires a highly intensive study beyond the scope of this

thesis. Nevertheless, this result can give credibility to the idea that the stabilization

effect of certain types of distributed surface roughness could be used for delaying the

onset of absolute instability and turbulence. The comparison of the critical values

of the “branch exchange” is presented in Table 7.1.

The conclusions arising from this thesis are now clear. Isotropic surface roughness

is shown to have the most significant effect on delaying the onset of convective

instability at all values of the Rossby number. This conclusion is further supported

by the damped growth of the most dangerous Type I and Type II modes. We
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conclude that isotropic roughness is the most effective type of distributed surface

roughness discussed in this thesis and is recommended as a passive-drag reduction

mechanism for the entire BEK system of flows which are observed in rotor-stator

type engineering applications.

7.2. Future work

Further research is needed to fully understand the effects of surface roughness

on the BEK system of flows after completion of this thesis. First of all, there is no

experimental study that could confirm the main findings of this thesis. An exper-

imental investigation is required in order to validate our findings. The convective

instability characteristics of the BEK system of flows are investigated here using

a linear approach with the parallel flow approximation in the local scale. There-

fore a natural extension of this study is to conduct a study involving a non-parallel

mean flow by following the investigation of Davies & Carpenter (2003) for the von

Kármán flow. The occurrence of linear global modes of the BEK system of flows,

as studied by Healey (2010) in the case of von Kármán flow, over rough surfaces

could be investigated to compare with the linear local modes found in this study.

Investigating the effects of surface roughness on the nonlinear stability of the sta-

tionary cross flow mode of the BEK system of flows is another potential research

area. Theoretical investigations of such instabilities have been presented by Gajjar

(1996) for boundary layer flows over swept wings and extended to rotating disk flows

by Floriani et al. (2000) in the smooth case. The effects of the surface roughness

could also be investigated for other two-dimensional or three-dimensional boundary

layer flows such as the boundary layer flows over a flat plate or a swept wing.

Another possible area of future work would be to investigate the absolute insta-

bility characteristics of the BEK flows over rough disk as the appearance of absolute

instability has limited our growth rate and energy balance equations results. A

similar study has been conducted by Lingwood & Garrett (2011) to investigate the

effects of mass injection on the absolute instability characteristics of the BEK system
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flows.



Appendices

133



Appendix A

MATLAB codes for the convective

instability analysis

In this appendix we present the Matlab codes developed for this study. The mean

flow solver is presented in §A.1. The solvers of the neutral curves, the convective

growth rate curves and the energy analysis are presented in §A.2.

A.1. Mean flow solver

inf=15;

maxinf=27;

Ro=input('Rossby number: Ro= ');

EtaVal=input('Insert roughness parameter $\eta$ =');

LamVal=input('Insert roughness parameter $\lambda$ =');

markers = $\lbrace{'.','-','-.'\rbrace}$;

%Initial solutions

solinit= bvpinit(linspace(0,inf,5), [0.0,0.0, -1.0, 0.0, 0.0]);

options = bvpset('AbsTol', 1e-6, 'RelTol', 1e-6, 'nmax', 100000);

z = solinit.x; phi = solinit.y;

Eta= EtaVal(j); Lambda=LamVal(j);
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sol= bvp4c(@Pphiode,@Pphibc,solinit,options,Ro,Eta,Lambda);

z = sol.x; phi = sol.y;

for i=inf+1:maxinf

solinit= bvpinit(sol,[0 i]);

options = bvpset('AbsTol', 1e-40, 'RelTol', 1e-20);

sol = bvp4c(@Pphiode,@Pphibc,solinit,options,Ro,Eta,Lambda);

z = sol.x; phi = sol.y;

end

eta=z;

%Plotting mean flow components

figure(1)

axis([ 0 12 -0.5 0.5 ])

plot(z,phi(1,:), [markers{mod(j,numel(markers))+1}]);
xlabel('z'); ylabel('U(z)');

hold on

figure(2)

axis([0 10.0 0 2.2])

plot(z,phi(3,:), [markers{mod(j,numel(markers))+1}]);
ylabel('V(z)'); xlabel('z');

figure(3)

axis([0 10.0 0 4.0])

plot(z,phi(5,:), [markers{mod(j,numel(markers))+1}]);
ylabel('W(z)'); xlabel('z');

A.1.1. Function for setup of the governing mean flow equa-

tions

function dphidz = Pphiode(z,phi,Ro,Eta,Lambda)

Co=2.0-Ro-Roˆ2; % Coriolis number
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dphidz = [phi(2)

Ro*(phi(1)ˆ2+phi(2)*phi(5)-phi(3)ˆ2+1)-Co*(phi(3)-1.0)

phi(4)

Ro*(2.0*phi(1)*phi(3) + phi(4)*phi(5))+Co*phi(1)

-2.0*phi(1)];

end

A.1.2. Function for setup of the partial-slip boundary con-

ditions

function bc = Pphibc (phi0,phiinf,Ro,Eta,Lambda)

bc = [phi0(1)-Lambda*phi0(2)

phi0(3)-Eta*phi0(4)

phi0(5)

phiinf(1)

phiinf(3)+1];

end

A.2. Convective instability solvers

A.2.1. Main solver

Ro=input('Rossby number: Ro= ');

Re=input('Reynolds number: Re= ');

InitBeta=input('Initial beta: beta= '); FinalBeta=0;

%load mean flow solutions

load 'Filename'.mat

% Number of steps and step size for Reynolds number

iR=; dR=;
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% Number of steps and step size for azimuthal wavenumber beta

iB=(InitBeta-FinalBeta)/abs(dB); ;dB=;

beta=InitBeta;

%Number of Chebyshev polynomials

N=100;

i=sqrt(-1);

omega=0; %Frequency

tol=1e-2;tol2=1e-2;

etaa=0;

for i =1:iR

Rnew=R+(i-1)*dR;

Fname='Name of file saving the results';

fname=[Fname,num2str(Rnew),'.txt'];

fid=fopen(fname,'W');

%Initial calculation of eigenvalues

[C,er,z,X,u,v,w,p,U,V,W,dU,dV,dW,du,dv,dw]=chebsol(omega,...

beta,Rnew,N,Ro,phi,eta);

%Threshold to remove non-physical eigenvalues and eigenfunctions

q=find(abs(real(C))<1 & real(C)> 0 & abs(C-1/er)>1e-5);

C=C(q);X=X(:,q); u=u(:,q); v=v(:,q);w=w(:,q);

du=du(:,q); dv=dv(:,q);dw=dw(:,q);p=p(:,q);

%Sorting eigenvalues and eigenfunctions with respect to ...

imaginary part of radial wavenumber.

sorted, idx] = sort(abs(imag(C)),'descend');

C = C(idx);X=X(:,idx);u=u(:,idx);v=v(:,idx);

w=w(:,idx);du=du(:,idx); dv=dv(:,idx);dw=dw(:,idx);p=p(:,idx);

nz=find(real(C)>tol );

C=C(nz);X=X(:,nz);u=u(:,nz);v=v(:,nz);w=w(:,nz);
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du=du(:,nz); dv=dv(:,nz);dw=dw(:,nz);p=p(:,nz);

L=length(C);

%Energy terms calculation

[P1,P2,P3,D,PW1,G1,G2,G3]=intfun(u,v,w,p,U,V,W,dU,dV,dW,du,dv,dw,...

L,z,R,C,beta,Ro);

TE= P1+P2+P3+D+PW1+G1+G2+G3; %Energy change of the system

fprintf(fid,'%f %f %f %f %f %f %f %f %f %f %f ...

%f\n',beta,real(C(L)),imag(C(L)),P1,P2,P3,D,PW1,G1,G2,G3,TE);
Rc=real(C(L));

Ic=imag(C(L));

%Searching the neutral points

for j=1:iB

betanew=beta+dB*j

[C,er,z,X,u,v,w,p,U,V,W,dU,dV,dW,du,dv,dw]=chebsol(omega,...

betanew,Rnew,N,Ro,phi,eta);

q=find(abs(real(C))<1 & real(C)> 0 & abs(C-1/er)>1e-5 );

C=C(q);X=X(:,q); u=u(:,q); v=v(:,q);w=w(:,q);

du=du(:,q); dv=dv(:,q);dw=dw(:,q);p=p(:,q);

[sorted, idx] = sort(abs(imag(C)),'descend');

C = C(idx);X=X(:,idx);u=u(:,idx);v=v(:,idx);w=w(:,idx);

du=du(:,idx); dv=dv(:,idx);dw=dw(:,idx);p=p(:,idx);

nz=find(real(C)>tol );

C=C(nz);X=X(:,nz);u=u(:,nz);v=v(:,nz);w=w(:,nz);

du=du(:,nz); dv=dv(:,nz);dw=dw(:,nz);p=p(:,nz);

L=length(C);

[P1,P2,P3,D,PW1,G1,G2,G3]=intfun(u,v,w,p,U,V,W,dU,dV,dW,du,dv,dw,...

L,z,R,C,betanew,Ro);

TE= P1+P2+P3+D+PW1+G1+G2+G3;
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fprintf(fid,'%f %f %f %f %f %f %f %f %f %f %f ...

%f\n',betanew,real(C(L)),imag(C(L)),P1,P2,P3,D,PW1,G1,G2,G3,TE);

if sign(imag(C(L))) 6= sign(Ic) %Neutral point at upper branch

count=count+1;

if count==1

betatemp=betanew+0.04;

break;

%Use this part to find neutral points on lower branch

end

Rc=real(C(L));

Ic=imag(C(L));

end

fclose(fid);

end

A.2.2. Function for energy analysis

function [P1,P2,P3,D,PW1,G1,G2,G3]=intfun(u,v,w,p,...

U,V,W,dU,dV,dW,du,dv,dw,L,z,R,C,beta,Ro)

U=U';V=V';W=W';dU=dU';dV=dV';dW=dW';

i=sqrt(-1);alpha=C(L,:); norm=0; beta=beta/(Rˆ2);

a=(0.5)*(paq(u(:,L),u(:,L))+paq(v(:,L),v(:,L))+paq(w(:,L),w(:,L))).*U+...

paq(u(:,L),p(:,L))-(1/R)*(paq(2*i*alpha*u(:,L),u(:,L))+paq(i*beta*R*u(:,L)...

+i*alpha*v(:,L),v(:,L))+ paq(du(:,L)+ i*alpha*w(:,L),w(:,L)));

norm=trapz(z,a);

P1=trapz(z,paq(u(:,L),w(:,L)).*dU)/norm;
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P2=trapz(z,paq(v(:,L),w(:,L)).*dV)/norm;

P3=-(trapz(z,paq(w(:,L),w(:,L)).*dW))*(Ro/(R*norm));

d=(2/R)*(paq(i*alpha*u(:,L),i*alpha*u(:,L))...

+paq(i*beta*R*v(:,L),i*beta*R*v(:,L))...

+paq(dw(:,L),dw(:,L)))+...

(1/R)*(paq(i*beta*R*u(:,L)+i*alpha*v(:,L),i*alpha*v(:,L))...

+paq(du(:,L)+i*alpha*w(:,L),i*alpha*w(:,L))...

+paq(i*alpha*v(:,L)+i*beta*R*u(:,L),i*beta*R*u(:,L))...

+paq(dv(:,L)+i*beta*R*w(:,L),i*beta*R*w(:,L))...

+paq(i*alpha*w(:,L)+du(:,L),du(:,L))...

+paq(i*beta*R*w(:,L)+dv(:,L),dv(:,L)));

D=trapz(z,d)/norm;

PW1=trapz(z,paq(u(:,L),p(:,L)).*dW)*(Ro/(R*norm));

G1=-trapz(z,0.5*(paq(du(:,L),du(:,L))+paq(dv(:,L),dv(:,L))...

+paq(dw(:,L),dw(:,L))).*(Ro*W/R))/norm;

G2=trapz(z,paq(u(:,L),u(:,L).*U)*(Ro/R))/norm;

G3=trapz(z,paq(v(:,L),v(:,L).*U)*(Ro/R))/norm;

end

%This function calculates Period Averaged Quantities

function y=paq(a,b)

y=a.*conj(b)+b.*conj(a);

end

A.2.3. Functions for Chebyshev method

function [e,er,z,X,u,v,w,p,U,V,W,dU,dV,dW,du,dv,dw]=...

chebsol(omega,beta,R,N,Ro,phi,eta)

%Calculations of Chebyshev polynomials

[T,dT,d2T,y]=cheb(N);



Convective instability solvers 141

%Transformation of Chebyshev polynomials into physical domain

[S,dS,d2S,z]=Rcheb2(T,dT,d2T,y,N,20);

er=-20*sqrt(-1);

%Setup of matrices A0, A1 and A2

[A0,A1,A2,U,V,W,dU,dV,dW]=matrixA0A1A2(eta,N,S,dS,d2S,phi,z,omega,beta,R,Ro);

%Solving the quadratic eigenvalue problem.

[X,e]=polyeig(A0,A1,A2);

%Eigenfunctions and their derivatives

u=zeros((N+1),4*(N+1)*2); v=zeros((N+1),4*(N+1)*2); ...

w=zeros((N+1),4*(N+1)*2);

p=zeros((N+1),4*(N+1)*2);

du=zeros((N+1),4*(N+1)*2); dv=zeros((N+1),4*(N+1)*2); ...

dw=zeros((N+1),4*(N+1)*2);

for kk=1:length(e)

for jj=1:(N+1)

u(:,kk)=u(:,kk)+X(1+(jj-1)*4,kk)*S(:,jj);

v(:,kk)=v(:,kk)+X(2+(jj-1)*4,kk)*S(:,jj);

w(:,kk)=w(:,kk)+X(3+(jj-1)*4,kk)*S(:,jj);

p(:,kk)=p(:,kk)+X(4+(jj-1)*4,kk)*S(:,jj);

du(:,kk)=du(:,kk)+X(1+(jj-1)*4,kk)*dS(:,jj);

dv(:,kk)=dv(:,kk)+X(2+(jj-1)*4,kk)*dS(:,jj);

dw(:,kk)=dw(:,kk)+X(3+(jj-1)*4,kk)*dS(:,jj);

end

end

function [T, dT, d2T, y] = cheb(N)

%this function calculates chebyshev polynomials and their ...

derivatives

y=-cos(pi*(0:N)/N); %Gauss-Labotto points ordered -1 to 1



Convective instability solvers 142

T=zeros(N+1,N+1); dT=T;d2T=T; T(1,:)=1; T(2,:)=y; dT(2,:)=1; ...

dT(3,:)=4*T(2,:); d2T(3,:)=4*dT(2,:);

for i=2:N

T(i+1,:)=2*y.*T(i,:)-T(i-1,:);

if i>2

dT(i+1,:)=2*T(i,:)+2*y.*dT(i,:)-dT(i-1,:); % simple ...

derivative of the recursive expression

d2T(i+1,:)=4*dT(i,:)+2*y.*d2T(i,:)-d2T(i-1,:); % simple ...

derivative of the recursive expression

end

end

T=T'; dT=dT'; d2T=d2T';

function [S, dS, d2S, z]= Rcheb2(T, dT, d2T, y, N,Zmax)

%Mapping of Chebyshev polynomials to the physical space

aa=1/4; B=2/(exp(-aa*Zmax)-1); A=-1-B; z=-log((y-A)/B)/aa;

dydz=-aa*B*exp(-aa*z)'; d2ydz2=aaˆ2*B*exp(-aa*z)'; i=sqrt(-1); ...

er=-20*i;

S=T; dS=dT.*repmat(dydz,1,N+1);

d2S=d2T.*repmat(dydz,1,N+1).ˆ2+dT.*repmat(d2ydz2,1,N+1);

end

function [A0,A1,A2,U,V,W,dU,dV,dW]=...

matrixA0A1A2(eta,N,S,dS,d2S,phi,z,omega,beta,R,Ro)

% This function includes Construction of Matrix A in AV=BVD

Co = 2 - Ro - Roˆ2;

U = spline(eta,phi(1,:),z); V= spline(eta,phi(3,:),z);

W= spline(eta,phi(5,:),z);

dU = spline(eta,phi(2,:),z); dV= spline(eta,phi(4,:),z);

dW= -2*U;

for n=0:N
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for k=1:N-1

Mx=(i*beta*V(k+1)/R) -(i*omega) + (betaˆ2/Rˆ3);

J=S(k+1,n+1);

dJ=dS(k+1,n+1);

d2J=d2S(k+1,n+1);

A2(4*k+1,4*n+1)=(1/R)*J; A2(4*k+1,4*n+2)=0;

A2(4*k+1,4*n+3)=0; A2(4*k+1,4*n+4)=0;

A2(4*k+2,4*n+1)=0; A2(4*k+2,4*n+2)=(1/R)*J;

A2(4*k+2,4*n+3)=0; A2(4*k+2,4*n+4)=0;

A2(4*k+3,4*n+1)=0; A2(4*k+3,4*n+2)=0;

A2(4*k+3,4*n+3)=(1/R)*J;A2(4*k+3,4*n+4)=0;

A2(4*k+4,4*n+1)=0; A2(4*k+4,4*n+2)=0;

A2(4*k+4,4*n+3)=0; A2(4*k+4,4*n+4)=0;

A1(4*k+1,4*n+1)=i*U(k+1)*J; A1(4*k+1,4*n+2)=0;

A1(4*k+1,4*n+3)=0; A1(4*k+1,4*n+4)=i*J;

A1(4*k+2,4*n+1)=0; A1(4*k+2,4*n+2)=i*U(k+1)*J;

A1(4*k+2,4*n+3)=0; A1(4*k+2,4*n+4)=0;

A1(4*k+3,4*n+1)=0; A1(4*k+3,4*n+2)=0;

A1(4*k+3,4*n+3)=i*U(k+1)*J; A1(4*k+3,4*n+4)=0;

A1(4*k+4,4*n+1)=i*J; A1(4*k+4,4*n+2)=0;

A1(4*k+4,4*n+3)=0; A1(4*k+4,4*n+4)=0;

A0(4*k+1,4*n+1)=(Mx+(U(k+1)*Ro/R))*J ...

+(Ro*W(k+1)/R)*dJ-d2J/R;

A0(4*k+1,4*n+2)=-((2*Ro*V(k+1)+Co)/R)*J;

A0(4*k+1,4*n+3)=dU(k+1)*J; A0(4*k+1,4*n+4)=0;

A0(4*k+2,4*n+1)=((2*Ro*V(k+1)+Co)/R)*J;
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A0(4*k+2,4*n+2)=(Mx+(U(k+1)*Ro/R))*J+(Ro*W(k+1)/R)*dJ-d2J/R;

A0(4*k+2,4*n+3)=dV(k+1)*J; A0(4*k+2,4*n+4)=(i*beta/R)*J;

A0(4*k+3,4*n+1)=0; A0(4*k+3,4*n+2)=0;

A0(4*k+3,4*n+3)=(Mx+(dW(k+1)*Ro/R))*J+Ro*(W(k+1)/R)*dJ-d2J/R;

A0(4*k+3,4*n+4)=dJ;

A0(4*k+4,4*n+1)=(Ro/R)*J; A0(4*k+4,4*n+2)=i*beta*J/R;

A0(4*k+4,4*n+3)=dJ; A0(4*k+4,4*n+4)=0;

end

%BC at the wall

A2(1,4*n+1)=0; A2(1,4*n+2)=0; A2(1,4*n+3)=0; A2(1,4*n+4)=0;

A2(2,4*n+1)=0; A2(2,4*n+2)=0; A2(2,4*n+3)=0; A2(2,4*n+4)=0;

A2(3,4*n+1)=0; A2(3,4*n+2)=0; A2(3,4*n+3)=0; A2(3,4*n+4)=0;

A2(4,4*n+1)=0; A2(4,4*n+2)=0; A2(4,4*n+3)=0; A2(4,4*n+4)=0;

A1(1,4*n+1)=er*S(1,n+1); A1(1,4*n+2)=0; A1(1,4*n+3)=0; ...

A1(1,4*n+4)=0;

A1(2,4*n+1)=0; A1(2,4*n+2)=er*S(1,n+1); A1(2,4*n+3)=0; ...

A1(2,4*n+4)=0;

A1(3,4*n+1)=0; A1(3,4*n+2)=0; A1(3,4*n+3)=er*S(1,n+1); ...

A1(3,4*n+4)=0;

A1(4,4*n+1)=0; A1(4,4*n+2)=0; ...

A1(4,4*n+3)=er*dS(1,n+1);A1(4,4*n+4)=0;

A0(1,4*n+1)=S(1,n+1); A0(1,4*n+2)=0; A0(1,4*n+3)=0; ...

A0(1,4*n+4)=0;

A0(2,4*n+1)=0; A0(2,4*n+2)=S(1,n+1); A0(2,4*n+3)=0; ...

A0(2,4*n+4)=0;

A0(3,4*n+1)=0; A0(3,4*n+2)=0; A0(3,4*n+3)=S(1,n+1); ...

A0(3,4*n+4)=0;

A0(4,4*n+1)=0; A0(4,4*n+2)=0; A0(4,4*n+3)=dS(1,n+1); ...

A0(4,4*n+4)=0;

%BC at infinity
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A2(4*N+1,4*n+1)=0; A2(4*N+1,4*n+2)=0; A2(4*N+1,4*n+3)=0;

A2(4*N+1,4*n+4)=0;

A2(4*N+2,4*n+1)=0; A2(4*N+2,4*n+2)=0; A2(4*N+2,4*n+3)=0;

A2(4*N+2,4*n+4)=0;

A2(4*N+3,4*n+1)=0; A2(4*N+3,4*n+2)=0; A2(4*N+3,4*n+3)=0;

A2(4*N+3,4*n+4)=0;

A2(4*N+4,4*n+1)=0; A2(4*N+4,4*n+2)=0; A2(4*N+4,4*n+3)=0;

A2(4*N+4,4*n+4)=0;

A1(4*N+1,4*n+1)=er*S(N+1,n+1); A1(4*N+1,4*n+2)=0;

A1(4*N+1,4*n+3)=0; A1(4*N+1,4*n+4)=0;

A1(4*N+2,4*n+1)=0; A1(4*N+2,4*n+2)=er*S(N+1,n+1);

A1(4*N+2,4*n+3)=0; A1(4*N+2,4*n+4)=0;

A1(4*N+3,4*n+1)=0; A1(4*N+3,4*n+2)=0;

A1(4*N+3,4*n+3)=er*S(N+1,n+1); A1(4*N+3,4*n+4)=0;

A1(4*N+4,4*n+1)=0; A1(4*N+4,4*n+2)=0;

A1(4*N+4,4*n+3)=0; A1(4*N+4,4*n+4)=er*S(N+1,n+1);

A0(4*N+1,4*n+1)=S(N+1,n+1);A0(4*N+1,4*n+2)=0;

A0(4*N+1,4*n+3)=0; A0(4*N+1,4*n+4)=0;

A0(4*N+2,4*n+1)=0; A0(4*N+2,4*n+2)=S(N+1,n+1);

A0(4*N+2,4*n+3)=0; A0(4*N+2,4*n+4)=0;

A0(4*N+3,4*n+1)=0; A0(4*N+3,4*n+2)=0;

A0(4*N+3,4*n+3)=S(N+1,n+1); A0(4*N+3,4*n+4)=0;

A0(4*N+4,4*n+1)=0; A0(4*N+4,4*n+2)=0;

A0(4*N+4,4*n+3)=0; A0(4*N+4,4*n+4)=S(N+1,n+1);

end
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