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The convective instability of the boundary-layer

flow over families of rotating spheroids:

by Abdul Samad

Abstract

The majority of this work is concerned with the local -linear convective instabil-

ity analysis of the incompressible boundary-layer flows over prolate spheroids and

oblate spheroids rotating in otherwise still fluid. The laminar boundary layer and

the perturbation equations have been formulated by introducing two distinct orthog-

onal coordinate systems. A cross-sectional eccentricity parameter e is introduced to

identify each spheroid within its family. Both systems of equations reduce exactly

to those already established for the rotating sphere boundary layer. The effects of

viscosity and streamline-curvature are included in each analysis.

We predict that for prolate spheroids at low to moderate latitudes, increasing

eccentricity has a strong stabilizing effect. However, at high latitudes of θ ≥ 60,

increasing eccentricity is seen to have a destabilizing effect. For oblate spheroids,

increasing eccentricity has a stabilizing effect at all latitudes. Near the pole of both

types of spheroids, the critical Reynolds numbers approach that for the rotating

disk boundary layer. However, in prolate spheroid case near the pole for very large

values of e, the critical Reynolds numbers exceed that for the rotating disk. We

show that high curvature near the pole of prolate spheroids is responsible for the

increase in critical Reynolds number with increasing eccentricity.

For both types of spheroids at moderate eccentricity, we predict that the most

amplified modes travel at approximately 76% of the surface speed at all latitudes.
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This is consistent with the existing studies of boundary-layer flows over the related

rotating-disk, -sphere and -cone geometries. However, for large values of eccentricity,

the traveling speed of the most amplified modes increases up to approximately 90%

of the surface speed of oblate spheroids and up to 100% in the prolate spheroid case.

Key Words

Laminar flow in three-dimensional boundary layers, Convective instabilities, transi-

tion to turbulence, rotating prolate spheroids and oblate spheroids.
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Chapter 1

Introduction

For practical and theoretical reasons, rotating-disk flow has served as the fore-

most model problem for studying transition in fully 3D incompressible boundary lay-

ers for over six decades and has a huge body of associated literature (see Theodorsen

& Regier (1945); Smith (1947); Gregory, Stuart & Walker (1955); Reed & Saric

(1989); Saric, Reed & White (2003); Wimmer (1988); Owen & Rogers (1989); Malik

(1986); Lingwood (1995a), for example). The rotating-disk flow owes its practi-

cal importance to the fact that the transition of its boundary layer shares many

similarities with transition over swept wings (Reed & Saric (1989); Saric, Reed &

White (2003); Wimmer (1988)) and many types of rotating machinery (Owen &

Rogers (1989)). However, continuing developments in spinning projectiles, aerofoils

and aeroengines has led to the need to understand the onset of laminar-turbulent

transition of the boundary-layer flows over rotating cones and spheroids as objects

in their own right.

Although numerous flow-visualization studies led by Kohama and Kobayashi

have been published (Kohama & Kobayashi (1983); Kobayashi & Arai (1990); Ko-

hama (1985); Kobayashi, Kohama, & Kurosawa (1983); Kobayashi, & Izumi (1983);

1



Introduction 2

Taniguchi, Kobayashi & Fukunishi (1998); Kohama (2000)), which demonstrate an

apparent similarity to the rotating-disk flow as seen in Figure 1.1, other geometries

received only little attention theoretically prior to 2002 when Garrett & co-workers

commenced a series of studies of the boundary-layer flow over rotating cones and

spheres (Garrett (2002); Garrett & Peake (2002, 2004, 2007); Garrett, Hussain &

Stephen (2009a,b); Garrett (2010a,b,c)). This thesis should be considered as a gen-

eralization of Garrett’s previous work on rotating-sphere boundary layers to two

different types of spheroids rotating in otherwise still fluid. The general family of

spheroids can be divided into two distinct types, these are identified as (a) the family

of rotating prolate spheroids (these represent more practically significant rotating

convex nose cones) and (b) the family of rotating oblate spheroids (these repre-

sent when the sphere is flattened). We will see that the laminar flow and stability

characteristics of both types of the rotating spheroids flow is closely related to the

rotating-sphere flow, indeed the sphere is a particular case of spheroids with zero

cross-sectional eccentricity. It is therefore instructive to show a review of the ex-

isting work on the boundary-layer flow over a rotating sphere, whilst we begin this

study for the two families of spheroids as mentioned above.

The first theoretical studies on the rotating-sphere flow were by Taniguchi et

al.(1998) and Garrett & Peake (2002, 2004) who performed local convective and

absolute instability analyses of the boundary-layer flow over a sphere rotating both

in and out of enforced axial flows. The studies focused on the calculation of the

critical Reynolds numbers at the onset of instabilities at each latitude. The work

was a natural extension of the previous theoretical work into the basic-flow profiles

within that boundary layer (see Howarth (1951); Banks (1965); Manohar (1967);

Banks (1976)) and the stability analyses of the rotating-disk flow due to, for example,
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Figure 1.1: Boundary-layer flow visualizations over a rotating disk, cone and sphere due to

Kohoma, Kobayashi and co-workers. Note that for each geometry, as one moves away from

the pole the flow first remains laminar, then spiral vortices appear before the turbulent

region is entered after the vortices have broken down. Increasing the rotation rate of each

body acts to move the transitional region closer to the pole.

Malik (1986) and Lingwood (1995a,b). Garrett (2002); Garrett & Peake (2002,

2004) began their study of the rotating-sphere boundary layer by first computing

the laminar flow profiles using the series-solution method due to Howarth (1951);

Nigam (1954); Banks (1965) and then proceeded by using a more accurate numerical

solution. It is therefore natural that we proceed in a similar way for the two types of

spheroids. To our knowledge the only published work on the laminar boundary layer

over a rotating spheroid is due to Fadnis (1954) who extended the Nigham series

solution for the rotating sphere. However, Banks has since showed a flaw in Nigham’s

solution and this follows through into Fadnis’s work. Indeed, the formulation used

is such that the results cannot be verified against the laminar-flow profiles already

established for a rotating sphere, which is a particular case of spheroid. In §§2.1 &

5.1 we formulate the governing partial differential equations (PDEs) for the laminar

flow within the boundary-layer flow over the rotating prolate spheroids and oblate

spheroids respectively. Distinct coordinate systems are used for each spheroidal
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family (prolate and oblate) and we define an eccentricity parameter to distinguish

particular bodies within each family. The governing PDEs for each type of spheroids

are solved using an extension of the method originally developed by Banks for the

rotating sphere. The resulting flow profiles are compared with direct numerical

solutions of the PDEs obtained using a commercially available routine. A discussion

of the resulting laminar flows is given in §§2.4 & 5.3 with particular emphasis on

the implications for their hydrodynamic stability.

Garrett & Peake found that local convective-instability analyses could be used

to predict successfully the onset of spiral vortices at each latitude, and that the on-

set of absolute instability appears to be related to the onset of turbulence (at least

for low to moderate latitudes). As with rotating disks and broad cones, modes of

type I (crossflow) and II (streamline curvature) were found to dictate the convective

instability at all latitudes over the rotating sphere, and modes of type I and III

the absolute instability. Further information on these instability modes within the

related boundary layers can be found in Lingwood (1995a); Garrett (2002); Gar-

rett & Peake (2002, 2004, 2007); Garrett, Hussain & Stephen (2009a,b); Garrett

(2010a,b,c). In §§3.1 & 6.1 we formulate the perturbation equations that govern

the stability problem for the prolate spheroids and oblate spheroids respectively. A

linear convective instability analysis is the first step in the study of transition of

boundary-layer flows and engineering applications can require knowledge of the ex-

act critical parameters at which the convective instability can occur. Therefore, in

this thesis, we focus on the convective instability analyses for each type of spheroid.

The absolute instability analysis will be dealt in the future after completion of this

thesis.

As mentioned by Kohama (2000), the major transition process is led by the ap-
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pearance of stationary vortices. This is generally accepted by many scientists as in

practical situations, naturally occurring roughness elements leads to stationary vor-

tices. Therefore, we begin with a priori assumption that the spiral vortices rotate

with the surface of each spheroid. In §§3.4 & 6.3 the convective instability analyses

for stationary vortices at all latitudes for various values of the cross-sectional ec-

centricity are presented for the prolate spheroids and oblate spheroids respectively.

In each case viscous and streamline curvature effects are included and local convec-

tive instability analyses are conducted between latitudes of 10◦-70◦. In the limit of

zero eccentricity, results of existing rotating-sphere investigations are reproduced at

all latitudes. The effect of increasing eccentricity over the convective instability is

discussed in detail.

However, an interesting experimental observation made by Kobayashi & Arai

(1990) was that the co-rotating spiral vortices were fixed on the sphere surface when

the rotation rate was large (and transition occurred at low to moderate latitudes),

whilst they moved relative to the sphere surface when the rotation rate was smaller

(and transition occurred at high latitudes). The relative speed of the slow vortices

was always around 76% of the local surface speed of the sphere. This observation

was unique to this set of experiments, i.e. slow vortices had not been observed

by Sawatzki (1970) or Kohama & Kobayashi (1983), and also had not been ob-

served in rotating-disk and cone experiments (see Kobayashi, Kohama, & Kurosawa

(1983); Kobayashi, & Izumi (1983); Kohama (1985), for example). Garrett & Peake

originally attempted to clarify the appearance of slow vortices using a method of

investigation since denoted method 1 in Garrett (2010a). This method involves

calculating the critical parameters of a set of neutral curves, each pertaining to a

different fixed azimuthal wavenumber of disturbance; the azimuthal phase velocity
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of disturbances, c, is then calculated from the globally-critical parameters and as-

sociated with the vortex speed. This approach predicts stationary vortices (c = 1)

at all latitudes below 66◦, where the type I mode dominates. Above this latitude

an apparent point of inflection (rather than a global minimum) was found in the

distribution of critical Reynolds number with azimuthal wavenumber. Garrett &

Peake concluded that the onset of the slow vortices was related to the earlier onset

of the type II mode and the appearance of the inflection point, although they were

unable to determine a theoretical speed to compare to the observed c = 0.76. By

artificially fixing c = 0.76 (using method 2 as denoted in Garrett (2010a)), they

were able to correctly predict properties of the slow vortices, i.e. critical Reynolds

number, vortex number and angle of orientation.

Garrett (2010c) recently revisited the problem of vortex-speed selection within

the rotating-sphere boundary layer and was able to predict theoretically a selection

speed of 75% for a sphere rotating in otherwise still fluid. He also demonstrated that

this speed increases slightly with incident axial flow. These predictions were obtained

by extending the method 2 approach to consider the linear amplification rates within

the region of convective instability. The results demonstrated that, although the

type II mode had larger amplification rates than the type I mode for large values of

c, the globally maximum amplification rates throughout the convectively unstable

region occurred for the type I mode at c = 0.75. This suggests that Garrett &

Peake’s earlier observation of slow vortices at the position of streamline-curvature

dominance was merely coincidental. Garrett (2010a,b) performed similar analyses

of the boundary-layer flows over the family of rotating cones (including the disk at

the limiting half-angle) and again found that type I modes travelling at 75% were

the most amplified. Although naturally occurring surface roughness is known to
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prohibit the selection of travelling modes, Garrett’s collection of work leads to the

prediction that slow vortices travelling at a local speed of 75% would be selected

over perfectly smooth disks, cones and spheres. A similar analysis is performed here

for both types of the rotating spheroids (see §§4.1 & 6.4).

A parallel-flow approximation is used in the stability analyses of the rotating

prolate spheroids and rotating oblate spheroids boundary layers presented in Chap-

ters 3, 4 and 6, and so we are restricted to the local stability characteristics of each

flow. The parallel-flow approximation is described by Davies & Carpenter (2001)

as “when the real spatially inhomogeneous flow is approximated by a spatially ho-

mogenous flow”. This approximation leads to inaccuracies, however, we assume

that these will not be large enough to affect the general characteristics of our results

presented in this thesis. We will discuss this in the relevant chapters in detail.

We are unaware of explicit experimental studies into the stability and transition

of rotating-spheroid boundary layers. We are also unaware of any existing theoretical

studies of the stability of rotating-spheroid flows. Our study therefore represents

the first stability analysis in these geometries and, unfortunately, we will not be

able to compare our results to existing observations or results. However, we will

see that our formulation is consistent with existing investigations into the rotating-

sphere and -disk boundary layers and we will find favourable comparisons with those

when appropriate parameter values are used. Although, we present the conclusion

of related results at the end of each chapter, but we make overall general conclusion

in §7.1. In §7.2, we suggest further work that can be performed in the light of this

thesis.



Chapter 2

Laminar boundary-layer over

families of rotating prolate

spheroids

This chapter is concerned with the derivation of the steady boundary-layer equa-

tions that give the laminar flow profiles over the outer surface of a general family of

prolate spheroids rotating in otherwise still fluid. Garrett (2002); Garrett & Peake

(2002, 2004) performed stability analyses of the rotating-sphere boundary-layer and

began by first computing the laminar flow profiles using the series-solution method

due to Banks (1965), Nigham (1954) and then proceeded by using a more accurate

numerical solution. It is therefore natural that we proceed in a similar way.

In §2.1 we formulate the governing partial differential equations (PDEs) for the

laminar boundary-layer flow over rotating prolate spheroids. The prolate spheroidal

coordinate system is introduced and we define an eccentricity parameter to distin-

guish particular bodies within the family of prolate spheroids. In §2.2.1 the gov-

erning PDEs of laminar boundary-layer flow are solved using an extension of the

8



Chapter 2: Laminar boundary-layer over prolate spheroids 9

method originally developed by Banks for the rotating sphere. The resulting flow

profiles are compared with direct numerical solutions of the PDEs obtained using a

commercially available routine in §2.2.2. A discussion of the resulting flows is given

in §2.4. This chapter is based on the paper Samad & Garrett (2010).

2.1 Formulation of laminar boundary-layer equa-

tions over rotating prolate spheroids

A Cartesian frame of reference is used that is fixed in space and has origin located

at the center of the body. The prolate spheroid rotates with constant angular velocity

Ω? about the z-axis. We introduce a prolate spheroidal coordinate system (η?, θ, φ)

defined relative to the Cartesian coordinates as

x? =

√
η?2 − d?2 sin θ cos φ,

y? =

√
η?2 − d?2 sin θ sin φ,

z? = η? cos θ,

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. A sketch of prolate spheroidal coordinate system

is shown in Figure 2.1. The quantity η? is the distance from the origin of the prolate

spheroidal coordinate system and normal to the body surface at a particular latitude

θ and azimuth φ. In fact η? makes the angles θ and φ with the horizontal and vertical

planes through the z-axis respectively. Furthermore, d? is the distance of the focus

from the centre of the cross-sectional ellipse formed by the prolate spheroid. Note

that asterisks denote dimensional quantities. Obviously the major axis of each cross-

sectional ellipse formed from the prolate family are along the axis of rotation of the

body. This coordinate system is consistent with that discussed by Morse (1953)
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and we have confirmed that this 3D-system (θ, φ, η?) is orthogonal, we also note

that it reduces to the spherical coordinate system as d? → 0. In Appendix A.1 we

derive the Navier-Stokes and continuity equations in general orthogonal curvilinear

coordinates (see equations (A.19)–(A.22)). These equations are then transformed

into prolate spheroidal coordinate system in Appendix A.1.1.

Figure 2.1: Sketch of the prolate spheroidal coordinate system.

We introduce e = d?
0/η

?
0 ∈ [0, 1], which defines the constant eccentricity of the

cross-sectional ellipse of a particular prolate spheroid. The quantity d?
0 is the con-

stant distance of the focus from the centre of that particular prolate with surface

points defined by η?
0(θ, φ). Obviously η?

0 is equal in length to the semi-major axis

of that particular prolate. Following the same procedure of transformation in Ap-

pendix A.1.1, we apply Prandtl’s boundary-layer assumptions to the Navier-Stokes

equations and replace η? by constant η?
0 in equations (A.19)–(A.22) to obtain the di-

mensional boundary layer equations that govern the laminar flow. These equations
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are ,

√
η?

0
2 − d?

0
2

√
η?

0
2 − d?

0
2 cos2 θ

W ? ∂U?

∂η?
+

1√
η?

0
2 − d?

0
2 cos2 θ

(
U? ∂U?

∂θ
− V ?2 cot θ

)

= ν? η?
0
2 − d?

0
2

η?
0
2 − d?

0
2 cos2 θ

∂2U?

∂η?2
, (2.1)

√
η?

0
2 − d?

0
2

√
η?

0
2 − d?

0
2 cos2 θ

W ? ∂V ?

∂η?
+

1√
η?

0
2 − d?

0
2 cos2 θ

(
U? ∂V ?

∂θ
+ U?V ? cot θ

)

= ν? η?
0
2 − d?

0
2

η?
0
2 − d?

0
2 cos2 θ

∂2V ?

∂η?2
, (2.2)

√
η?

0
2 − d?

0
2

√
η?

0
2 − d?

0
2 cos2 θ

∂W ?

∂η?
+

1√
η?

0
2 − d?

0
2 cos2 θ

∂U?

∂θ

+

(
d?

0
2 cos θ sin θ

(η?
0
2 − d?

0
2 cos2 θ)3/2

+
cot θ√

η?
0
2 − d?

0
2 cos2 θ

)
U? = 0, (2.3)

where U?, V ? & W ? are the dimensional velocities in the θ, φ and η? directions

respectively. These equations are derived by assuming steady-state incompressible

flow with the assumption δ?/η?
0 ¿ 1. Further, we have applied the boundary-layer

assumptions that W ? ∼ O(δ?), U? ∼ O(1), V ? ∼ O(1) and (∂/∂θ) ∼ O(1), where

δ? = (ν?/Ω?)1/2 is the boundary-layer thickness and ν? is the coefficient of kinematic

viscosity. Using these in the continuity equation we can find that ∂/∂η? ∼ O(δ?−1),

and in the normal component of Navier–Stokes equations we find P ? = P ?(θ). Since,

the prolate spheroid is rotating in otherwise still fluid, P ? = constant. In the fixed

frame of reference equations (2.1)–(2.3) are subject to the boundary conditions

U? = W ? = V ? − a?Ω? sin θ = 0 on η? = η?
0,

U? = V ? = 0 as η? →∞.

(2.4)

In order to obtain the non-dimensional boundary-layer equations we scale the ve-

locities on the equatorial surface speed of the prolate, as in equation (2.5). This is

consistent with Garrett & Peake’s formulation of the rotating sphere.

U = U?

Ω?a? , V = V ?

Ω?a? , W = W ?

(ν?Ω?)1/2 . (2.5)
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Here U(η, θ; e), V (η, θ; e) and W (η, θ; e) are the scaled velocities in the θ-, φ- and

η–directions respectively. Note that a? is the equatorial radius of the body defined

for the prolate spheroid as a? = η?
0

√
1− e2. Further, η is the distance in the normal

direction from the surface of the prolate spheroid, scaled on the boundary-layer

thickness, such that η = (Ω?/ν?)1/2 (η? − η?
0). For the prolate family of spheroids,

the resulting non-dimensional laminar-flow equations are

W
∂U

∂η
+ U

∂U

∂θ
− V 2 cot θ =

√
1− e2

1− e2 cos2 θ

∂2U

∂η2
, (2.6)

W
∂V

∂η
+ U

∂V

∂θ
+ UV cot θ =

√
1− e2

1− e2 cos2 θ

∂2V

∂η2
, (2.7)

∂W

∂η
+

∂U

∂θ
+

(
e2 cos θ sin θ

1− e2 cos2 θ
+ cot θ

)
U = 0, (2.8)

We note that the limit e = 0 reduces the laminar-flow equations to those for the

rotating sphere as found in the literature (see Garrett & Peake (2002); Banks (1965),

for example). The boundary conditions are given by

U = W = V − sin θ = 0 on η = 0, (2.9)

U = V = 0 as η →∞, (2.10)

which represent the non-slip boundary condition on the prolate spheroid surface and

the quiescent fluid condition at the edge of the boundary layer.
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2.2 Solution methods for the laminar flow over

prolate spheroids

2.2.1 Series solution

In order to solve equations (2.6)–(2.8) at particular latitudes for a given eccen-

tricity, a series expansion solution in powers of θ is sought of the form

U(η; e) = θF1 + θ3F3 + . . . , (2.11)

V (η; e) = θG1 + θ3G3 + . . . , (2.12)

W (η; e) = H1 + θ2H3 + . . . . (2.13)

Here Fn, Gn and Hn are functions of the non-dimensional variable η and parameter

e, and n = 1, 3, 5, . . .. This is consistent with the series solution originally proposed

by Howarth (1951) and Banks (1965) where e = 0. The boundary conditions (2.9)–

(2.10) can then be written as

Fn(0) = Hn(0) = Gn(0)− 1

n!
(−1)(n−1)/2 = 0, (2.14)

Fn(∞) = Gn(∞) = 0. (2.15)

After substituting the above series expansions into equations (2.6)–(2.8) we ob-

tain a set of non-linear ODEs involving terms up to and including n = 7. These are

stated in Appendix B.1 as equations (B.1)–(B.12).

It is interesting to note that the leading-order equations (B.1), (B.5) and (B.9) in

the prolate case give the von Kármán equations (von Kármán (1921)) in an inertial

frame of reference, but with modified boundary conditions arising from scaling on

the equatorial surface speed. We therefore see that the flow close to the nose of the

rotating prolate spheroid is very similar to that over the rotating disk. This is to be
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expected as the spheroids are locally flat in that region.

The solution of equations (B.1)–(B.12) subject to conditions (2.14)–(2.15) repre-

sents a two-point boundary value problem which is solved using a shooting method

that incorporates a fourth order Runge–Kutta integrator over a suitably large do-

main. To decide upon the domain size that accurately approximates infinity, the

shooting method was used over a variety of domain sizes until the solution con-

verged. A domain of integration between η = 0 and 20 was found to be sufficiently

large for all e ≤ 0.7 considered. Indeed numerous programs are available to solve

such BVPs efficiently, for example bvp4c in matlab and this was used here.

If we exclude the equatorial region (close to θ = 90◦), we find that the series

solutions are everywhere convergent for all values of e ≤ 0.7. As a check of the

numerical code we note that the same values as calculated by Garrett and Banks

were obtained for the first four quantities of F ′
n(0), G′

n(0), Hn(∞) when e = 0 (note

that a prime denotes differentiation with respect to η). These values, together with

values at e = 0–0.7, are given in Appendix B.2. For the prolate spheroid, we note

that the leading-order (n = 1) boundary values are identical for all e. This reflects

that e does not appear in the governing ODEs at this order. This does not happen

in the oblate case which will be discussed in §5.1.

The resulting flow profiles are discussed in §2.3 where they are compared with

those arising from the numerical method of §2.2.2. The computational advantage

of the series-solution approximation is that only one run of the code is required

for each e: storing the resulting Fn(η; e), Gn(η; e), Hn(η; e) enables the velocity

components at each latitude to be obtained from the construction in equations

(2.11)–(2.13). However, the series solution becomes increasingly inaccurate as the

latitude increases and this is discussed in §2.3.
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2.2.2 Numerical Solutions

Manohar (1967) and Banks (1976) solve the special case of equations (2.6)–(2.8)

with e = 0 using finite difference techniques to produce accurate basic flow profiles

at each latitude. We extend these by computing solutions in the general case of

e ≤ 0.7 for prolate family of spheroids. The spatial discretization is performed using

the Keller box scheme Keller (1970) and the method of lines Berzins & Furzeland

(1989) is employed to reduce the PDEs to a system of ODEs in θ at each mesh point.

The resulting system is solved at each latitude by marching from a given complete

solution at θ = 5◦ towards the equator at θ = 90◦ in one degree increments. At each

latitude a backward differentiation formula method is used over a grid of 2000 data

points between η = 0 and η = 20. The initial solution at θ = 5◦ is found using the

series solutions of §2.2.1. The computational routine used is commercially available

from NAG as D03PEF.

The resulting profiles for e = 0 have been compared to the results of Banks

(1976) and Garrett & Peake and complete agreement is found up to the equator.

These profiles can be seen in Figure 1 of Garrett & Peake (2002), for example.

2.3 Results

In this section we present the flow profiles obtained from the numerical method

and comparisons with the profiles obtained from the series-solution approxima-

tion are made. Experimental observations of the boundary-layer flow over rotating

spheres have noted that the boundary layer erupts at latitudes close to the equator

(see Sawatzki (1970); Kohama & Kobayashi (1983), for example) and it is assumed

that this will be the case for spheroids of all eccentricities. Theoretical profiles for
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latitudes above 80◦ are therefore not considered.

Figure 2.2 demonstrates laminar-flow profiles obtained from the numerical so-

lution with increasing eccentricity at two different locations. At θ = 10◦, when

increasing e from 0 (the sphere) in increments of 0.1 we find that there is almost

negligible effect on the velocity components. Further over the body (at θ = 70◦, for

example) the variation in flow profile is slightly more pronounced, although mani-

fests mostly in the normal velocity component. As discussed in §3.4, this has limited

implications for the stability of the flow. We also note that Figure 2.2 shows that

the magnitude of the reverse flow is decreased with e at these high latitudes.
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Figure 2.2: Prolate spheroid velocity profiles at latitudes θ = 10◦ and 70◦ with

increasing e = 0–0.7 in increments of 0.1 (right to left for U ,V and left to right for

W in each frame).

In order to understand the development of the flow over prolate spheroids, Figure
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2.3 shows the flow components for e = 0.3 and 0.7 at all latitudes up to θ = 80◦. Note

that the latitudinal velocity is inflectional at all latitudes and eccentricities which

implies that it is unstable to crossflow instabilities according to Rayleigh’s theorem.

We also note that fluid is entrained into the boundary layer at all latitudes through

the negative W -component, but has a region of reverse flow close to the surface

which first appears at a particular latitude between θ = 64◦–66◦ depending on the

value of e. The rate of inflow into the boundary layer is decreasing with increasing

latitude for all values of e. This has a major implication for the convective instability

of the flow and we will discuss this in §3.5.
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Figure 2.3: Prolate spheroid velocity profiles at θ = 10◦–80◦ in increments of 10◦

(left to right in each frame) for e = 0.3 and 0.7.

The profiles arising from the series-solution approximation are compared to the

numerical solutions at various latitudes and eccentricities in Figures 2.4–2.7 ( similar
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comparisons at various other latitudes and eccentricities are shown in Appendix

B.3 Figures B.1–B.4). From these a purely visual comparison can be made and

we observe that the series solutions match the numerical solutions very well at low

latitudes, however discrepancies arise at higher latitudes which are exaggerated with

increased eccentricity. For e = 0.7 we see qualitatively different behavior from the

series solution at sufficiently high latitudes. Further investigation shows that visually

such a major discrepancy is not found at lower to moderate latitudes for e < 0.7.
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Figure 2.4: Comparison of the numerical (solid line) and series solutions (cross

points) at θ = 10◦, 50◦ 70◦ for e = 0.3.

A better measure of the accuracy of the series solution with respect to the nu-
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Figure 2.5: Comparison of the numerical (solid line) and series solutions (cross

points) at θ = 10◦, 50◦ 70◦ for e = 0.5.

merical solution can be obtained from the root mean square error

EX,e =

√√√√√√
N∑

j=1

|XNum(ηj; e)−XSer(ηj; e)|2

N
.

Here X = U, V,W indicates a velocity component and ηi is a discretized point on

η ∈ [0, 20]. The subscripts Num and Ser indicate the numerical or series-solution

velocity profiles, respectively.

Tables 2.1–2.5 give the values of EX,e computed at θ = 10◦, 30◦, 50◦, 60◦ and 70◦

at a range of eccentricities, with N = 2000. From these we see that the accuracy

of the series solution reduces with increased latitude and eccentricity, as expected

from the visual inspections. The implications of these error values is discussed in
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Figure 2.6: Comparison of the numerical (solid line) and series solutions (cross

points) at θ = 20◦, 40◦, 60◦ for e = 0.7.

§2.4.

2.4 Conclusion

In this chapter we have derived the governing PDEs for the laminar flow within

the boundary-layer flow over rotating prolate spheroids. The system is seen to limit

to the known equations for the rotating sphere by setting e = 0. Two methods are

used to solve the governing equations for general e: a series-solution approximation

and an accurate numerical solution. We note that the flow is related to that over

a rotating disk as the latitude is reduced to the pole. The series-solution method

can therefore be thought of as successive modifications to von-Kármán-type profiles
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e EU,e EV,e EW,e

0.0 4.28580651e-004 1.02571773e-003 4.64335505e-003

0.1 4.28523644e-004 1.02572095e-003 4.66467955e-003

0.3 4.26852032e-004 1.02541285e-003 4.66108975e-003

0.5 4.28045004e-004 1.02730166e-003 4.69179986e-003

0.6 4.28804415e-004 1.02799610e-003 4.69440232e-003

0.7 4.29641804e-004 1.02822675e-003 4.69972570e-003

Table 2.1: RMS error of the series-solution approximation at θ = 10◦ on the prolate

spheroid.

e EU,e EV,e EW,e

0.0 1.18616171e-003 2.87019127e-003 4.10868859e-003

0.1 1.18641710e-003 2.87103386e-003 4.10966227e-003

0.3 1.18444856e-003 2.87796789e-003 4.12698548e-003

0.5 1.19420562e-003 2.90240668e-003 4.16571560e-003

0.6 1.20198860e-003 2.92209213e-003 4.18988895e-003

0.7 1.21505060e-003 2.95117223e-003 4.33890863e-003

Table 2.2: RMS error of the series-solution approximation at θ = 30◦ on the prolate

spheroid.
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e EU,e EV,e EW,e

0.0 1.65136257e-003 4.12585180e-003 3.31639009e-003

0.1 1.65231425e-003 4.12894867e-003 3.31517144e-003

0.3 1.65617800e-003 4.15577277e-003 3.33587432e-003

0.5 1.69700396e-003 4.24025179e-003 4.43999447e-003

0.6 1.84203276e-003 4.45163542e-003 1.06666069e-002

0.7 3.36205733e-003 6.79584999e-003 4.51212468e-002

Table 2.3: RMS error of the series-solution approximation at θ = 50◦ on the prolate

spheroid.

e EU,e EV,e EW,e

0.0 1.71982519e-003 4.44895486e-003 4.98776671e-003

0.1 1.72117695e-003 4.45408096e-003 4.94239089e-003

0.3 1.72902206e-003 4.50236668e-003 4.77133691e-003

0.5 1.93656440e-003 4.89513770e-003 1.15706002e-002

0.6 3.42021406e-003 7.31978921e-003 3.72764449e-002

0.7 1.23694821e-002 2.34902790e-002 1.57428897e-001

Table 2.4: RMS error of the series-solution approximation at θ = 60◦ on the prolate

spheroid.
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Figure 2.7: Comparison of the numerical (solid line) and series solutions (cross

points) at θ = 10◦, 50◦ 70◦ for e = 0.7.

with latitude. Indeed versions of the von Kármán equations appear at leading order

in the series solutions ODEs. The implication of this for the numerical solution

is that profiles related to the von Kármán flow could be used as the initial profile

if the integration were to start at a sufficiently low latitude, say θ = 1◦. These

would be obtained from the leading-order series-solution ODEs. This avoids the

need to run the higher-order series approximations at, say θ = 5◦, as was done here.

The effect of increasing eccentricity over basic flow profiles at lower to moderate

latitudes is negligible, however at larger latitudes the profiles pronounce noticeably

with increasing e.

From visual inspections and calculation of RMS errors of the resulting series-

solution profiles with respect to the numerical solutions, we see that the series so-
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e EU,e EV,e EW,e

0.0 1.77024796e-003 4.89055591e-003 1.87557079e-002

0.1 1.77037567e-003 4.90776160e-003 1.85930635e-002

0.3 1.74378990e-003 5.12010242e-003 1.77107446e-002

0.5 3.06503473e-003 8.25161013e-003 3.65534125e-002

0.6 9.95096091e-003 2.08045536e-002 1.10611765e-001

0.7 4.08463646e-002 7.85181478e-002 4.44902646e-001

Table 2.5: RMS error of the series-solution approximation at θ = 70◦ on the prolate

spheroid.

lution is very accurate at low latitudes for all e ≤ 0.7. However, as the latitude is

increased the discrepancy between the two increases and this is exaggerated with

increasing eccentricity. At θ = 70◦ significantly different qualitative behaviour for

the flow is found with large eccentricity.

Now that the governing ODEs for the series solutions of the general family of

prolate spheroids are available in Appendix B.1, the method is considerably easier

to use in engineering applications than the numerical method on grounds of cost

and required expertise. However, the decision of which method to use should be

taken with the required accuracy levels kept in mind.

We note that the normal velocity profile W which represents the rate of inflow

into the boundary layer, decreases with increasing eccentricity. This decrease with

the increase in eccentricity exaggerates at high latitudes of prolate spheroids. In

Chapter 5 we perform similar analysis on the laminar flow within the boundary

layer over the family of rotating oblate spheroids, where we observe a counter effect

of increasing e over the normal velocity profile. In §5.2 we compare the laminar
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velocity profiles for both cases of spheroids. In Chapter 3 we conduct convective

instability analyses on the resulting flow profiles for rotating prolate spheroids (in a

similar manner to Garrett (2002); Garrett & Peake (2002, 2004)) where the impli-

cations of increasing eccentricity and the extent of the usefulness of series solution

over neutral curves of convective instability are presented in detail. Clearly we

are concerned with the use of the flow profiles within a stability analysis, however,

other applications may require different conclusions about the applicability of the

series-solution approximations. We will return to this in §3.5.



Chapter 3

The convective instability of the

boundary-layer flow over rotating

prolate spheroids

We investigate theoretically the convective instability mechanisms within the

three-dimensional boundary-layer flow over the outer surface of a general family of

prolate spheroids rotating in otherwise still fluid. This is an extension of Garrett &

Peake (2002) convective instability analyses of the rotating-sphere boundary layer.

Viscous and streamline curvature effects are included, and local convective instability

analyses are conducted between latitudes of 10◦–70◦ from the axis of rotation in 10◦

increments.

We use the prolate-spheroidal coordinate system discussed in Chapter 2. The

unsteady perturbation equations for the convective instability problem of rotating

prolate spheroids are derived in §3.1 where each particular prolate spheroid is iden-

tified by its eccentricity parameter e. In §3.2 the perturbation equations of rotating

prolate spheroids are solved. The methods of solution described here will also be used

26
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in the solution of the set of perturbation equations for rotating oblate spheroids pre-

sented in Chapter 6. The results of local convective instability analysis are presented

in §3.4 at each latitude for particular values of eccentricity between 0 ≤ e ≤ 0.7.

In practical situations, surface roughness acts to select stationery modes. We there-

fore explicitly assume stationary vortices with respect to the rotating-body surface.

Travelling modes are considered in Chapter 4. In the limit of zero eccentricity, re-

sults of existing rotating-sphere investigations are reproduced at all latitudes. The

effects of increasing eccentricity over the parameters of convective instabilities are

discussed in detail at each latitude and comparisons are made with the results of

other related geometries.

3.1 Derivation of the perturbation equations

In this section we formulate the stability problem. The prolate spheroidal co-

ordinate system (θ, φ, η?) defined in §2.1 is used to derive the set of perturbation

equations which govern the stability of the boundary-layer flow over the surface of

rotating prolate spheroids.

In Appendix A.1.1 we derived the steady continuity equation and full 3D Navier-

Stokes equations in prolate spheroidal coordinate system as (A.26)–(A.29). Assume

that U?, V ?, W ? are the steady basic flow velocity components in the θ-, φ- and η?-

directions respectively and P ? is the constant pressure. For the stability analysis we

impose infinitesimally small perturbations on the steady basic flow at a particular

latitude on the rotating prolate spheroid boundary layer. The perturbation variables

(denoted by lower case hatted quantities) are assumed to have the normal-mode

form,
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(
û?, v̂?,ŵ?, p̂?

)
=

(
u?(η), v?(η), w?(η), p?(η)

)
ei
(

α?
∫ θ
0 ds+β?r?

0φ−γ?t?
)
. (3.1)

Here ds =
√

η?
0
2 − d?

0
2 cos2 θ dθ is an element of arc length in the latitudinal di-

rection, such that
∫ θ

0
ds is the arc length from the pole to the particular latitude

under consideration; d?
0 is the constant distance of the focus from the centre of the

prolate spheroid; and r?
0 =

√
η?

0
2 − d?

0
2 sin θ is the local surface radius of the body.

The quantities α? and β? are wavenumbers in the θ- and φ- directions respectively,

and γ? is the frequency. Note that an asterisk denotes a dimensional quantity. The

dimensional velocity components and pressure of the perturbed flow are formed by

adding the perturbation quantities into the steady basic flow quantities. These are

denoted by bared upper-case quantities,

(Ū?, V̄ ?, W̄ ?, P̄ ?) = (U? + û?, V ? + v̂?,W ? + ŵ?, P ? + p̂?). (3.2)

As discussed in the beginning that in practical applications roughness elements

on the surface of rotating prolate spheroid will act to select stationary vortices

and here we explicitly assume this. Traveling vortices are considered separately in

Chapter 4. If the roughness elements on the surface are large enough, then the

mean velocity profiles may significantly be distorted by sufficiently growing vor-

tices which can cause secondary instabilities (Kohama (1984b); Lingwood (1995a)).

Throughout this thesis it is assumed that the surface roughness and the free stream

disturbances are both small enough for the transition process to be controlled by

the mean velocity profiles rather than secondary instabilities. Mathematically, we

assume the perturbating quantities to be sufficiently small so that products can be

ignored and a linear analysis conducted.

To derive the dimensional perturbation equations we substitute the dimensional
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perturbed flow variables (3.2) into dimensional continuity and Navier-Stokes equa-

tions (A.26)–(A.29). Using the flow variables (3.1) and after linearization we find the

second-order perturbation equations which govern the stability of the boundary-layer

over rotating prolate spheroids. These are presented in Appendix C.1 as equations

(C.1)–(C.4). We non-dimensionalize (C.1)–(C.4) using the boundary-layer thickness

δ? as the length scale; the maximum rotation speed of the spheroid surface a?Ω? as

the velocity scale; and ρ?(a?Ω?)2 as the pressure scale, where a? is the equatorial

radius of the prolate spheroid; Ω? is the constant angular velocity and ρ? is the

fluid density. This is consistent with the non-dimensionalization of the mean-flow

variables in §2.1, and this means that the non-dimensional perturbing quantities can

be written as

u = u?/a?Ω?, v = v?/a?Ω?, w = w?/a?Ω?,

α = α?δ?, β = β?δ?, γ = γ?δ?/a?Ω?,

p = p?/ρ?(a?Ω?)2, δ1 = δ?/a? = 1/R, l = 1/(1 +
√

1− e2 η/R).

(3.3)

where R is the Reynolds number defined as,

R =
δ?a?Ω?

ν?
=

δ?η?
0Ω

?
√

1− e2

ν?
, (3.4)

We note that a? = η?
0

√
1− e2; e is the eccentricity of the cross-sectional ellipse of

a particular prolate spheroid and η is the non-dimensional distance in the normal

direction from the surface of the prolate spheroid, scaled on the boundary-layer

thickness δ?. Indeed we have defined these in detail in §2.1.

For a general spatio-temporal analysis the latitudinal wavenumber, α, and fre-

quency, γ, are complex quantities; we write these quantities as α = αr + iαi and

γ = γr + iγi. This will permit both convective and absolute instability studies,

although only convective modes are studied in this thesis. In contrast, β is real
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to ensure periodicity around the azimuth of the spheroid. The integer number of

complete cycles of the disturbance round the azimuth is

n = βR sin θ. (3.5)

The angle that the phase fronts make with a cross-section parallel to the equator of

the prolate spheroid is denoted by ε and is found from

ε = tan−1 (β/αr) . (3.6)

Later in this chapter, we will identify ε and n as being the angle and number of

spiral vortices on the prolate spheroid surface.

Note that the Reynolds number is interpreted as a measure of the equatorial

rotation speed of the spheroid, with the location of the analysis given by the partic-

ular θ under consideration. This is in contrast to previous studies of rotating disks

Lingwood (1995a); Garrett (2010a) and rotating cones Garrett et al .(2007,2009a,b)

where the Reynolds number is interpreted as a measure of the radial location of the

analysis for a particular rotation rate. As R depends on e, care must be taken in

any direct comparison between spheroids of different eccentricities. The Reynolds

number R is used in the formulation and derivation of the perturbation equations

for consistency with previous analyses on the rotating sphere, however an alterna-

tive Reynolds number will be used in the discussion of the results which removes

the dependence on e and enables comparisons of different bodies rotating with the

same angular rate, Ω?.

After neglecting O(R−2) terms the non-dimensional perturbation equations are,

M
dw

dη
+ δ1l

(2− e2(1 + cos2 θ))

(1− e2 cos2 θ)3/2
w =

− l

[(
δ1M

(
e2 sin θ cos θ

1− e2 cos2 θ
+ cot θ

)
+ iα

)
u + iβv

]
(3.7)
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Mδ1W
du

dη
+

[
i

(
l(αU + βV )− γ

)
+ δ1l M

∂U

∂θ

]
u

− 2δ1l M cot θ V v +

(
M

∂U

∂η
+

M2δ1 l√
1− e2 cos2 θ

U

)
w =

− ilαp +
1

R

[
M2d2u

dη2
− l2(α2 + β2) u

]
(3.8)

Mδ1W
dv

dη
+

[
i

(
l(αU + βV )− γ

)
+ δ1l M cot θ U

]
v+

δ1l M

(
cotθ V +

∂V

∂θ

)
u +

(
M

∂V

∂η
+

δ1 l V√
1− e2 cos2 θ

)
w =

− il βp +
1

R

[
M2 d2v

dη2
− l2(α2 + β2) v

]
(3.9)

Mδ1W
dw

dη
+

[
i

(
l(αU + βV )− γ

)
+ δ1

(
M

∂W

∂η
+ l

e2M sin θ cos θ

1− e2 cos2 θ
U

)]
w

− 2δ1l
M2 U√

1− e2 cos2 θ
u− 2δ1l V√

1− e2 cos2 θ
v =

−M
dp

dη
+

1

R

[
M2d2w

dη2
− l2(α2 + β2)w

]
(3.10)

where

M =

√
1− e2

1− e2 cos2 θ
(3.11)

Factors 1/(1+
√

1− e2 η/R) appear multiplying terms in the perturbation equa-

tions which are set to unity in an approximation similar to the parallel-flow approx-

imation. This approximation limits the analysis to a local analysis at each value of

θ, and its validity at low and high latitudes for a fixed value of e will be discussed in

§3.5. Note also that the equations have terms multiplied by R and δ1, these factors

indicate terms arising from viscous and streamline curvature effects respectively.

Following Lingwood (1995a,b); Garrett (2002); Garrett & Peake (2002, 2004, 2007),

the perturbation equations (3.7)–(3.10) can be written as a set of six first-order

ordinary differential equations using the transformed variables

φ1(η, α, β, γ; θ,R, e) =α1u + βv,

φ2(η, α, β, γ; θ,R, e) =α1u
′ + βv′,
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φ3(η, α, β, γ; θ,R, e) =w,

φ4(η, α, β, γ; θ,R, e) =p,

φ5(η, α, β, γ; θ,R, e) =α1v − βu,

φ6(η, α, β, γ; θ,R, e) =α1v
′ − βu′,

these equations are

φ′1 =φ2 (3.12)
[
M2φ′2

R

]

v

=
1

R

([
α2 + β2

]
v
+ iR (αU + βV − γ)

)
φ1 +

[
MWφ2

R

]

s

+

(
M (α1U

′ + β1V
′) +

[
M2α1U + βV

R
√

1− e2 cos2 θ

]

s

)
φ3 + i

(
α2 + β2

−
[
iMα

R

(
e2 sin θ cos θ

1− e2 cos2 θ
+ cot θ

)]

s

)
φ4 −

[
M cot θV φ5

R

]

s

+
M

R

[(
α1

∂U

∂θ
+ β

∂V

∂θ

)
u− (

α1V − βU
)
cot θv

]

s

(3.13)

Mφ′3 =− iφ1 −
[

2− e2(1 + cos2 θ)

R(1− e2 cos2 θ)3/2
φ3

]

s

(3.14)

Mφ′4 =

[
iWφ1

R

]

s

−
[
iMφ2

R

]

v

+

[
2 (M2U u + V v)

R
√

1− e2 cos2 θ

]

s

− 1

R

([
α2 + β2

]
v
+ iR

(
αU + βV − γ

)

+

[
M

(
W ′ +

e2 cos θ sin θ

(1− e2 cos2 θ)
U

)]

s

)
φ3 (3.15)

φ′5 =φ6 (3.16)
[
M2φ′6

R

]

v

=

[
V cot θφ1

R

]

s

+

(
M (α1 V ′ − βU ′)

+

[
1

R

(
α1V√

1− e2 cos2 θ
− M βU

(1− e2 cos2 θ)

)]

s

)
φ3

+

[
βM

R

(
e2 cos θ sin θ

1− e2 cos2 θ
+ cot θ

)
φ4

]

s

+
1

R

( [
α2 + β2

]
v

+iR (αU + βV − γ)

)
φ5 +

[
M Wφ6

R

]

s

+

[
M

R

((
α1

∂V

∂θ
− β

∂U

∂θ

)
u + cot θ (α1U + βV ) v

)]

s

(3.17)
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Where a prime denotes differentiation with respect to the normal η (spatial

variable), and α1 = α − [
i M
R

]
s

(
e2 sin θ cos θ
1−e2 cos2 θ

+ cot θ
)
, where M is defined in equation

(3.11).

Equations (3.12)–(3.17) are the perturbation equations upon which convective

and absolute instability analyses of the boundary-layer over rotating prolate spheroids

can be performed for a fixed value of e, however we are analyzing only the convective

modes (of types I & II) in this chapter, while the linear growth rates of these con-

vective modes will be investigated in subsequent chapters. The subscripts v and s in

the perturbation equations (3.12)–(3.17) indicate which of the O(R−1) terms arise

from viscous and streamline-curvature effects, respectively. Coriolis terms do not

appear since a fixed frame of reference is used. Note that the perturbation velocities

u and v still appear explicitly, but can be expressed in terms of φ1 and φ2 via

u =
1

α2
1 + β2

(α1φ1 − βφ5) , v =
1

α2
1 + β2

(α1φ5 + βφ1) .

By neglecting the O(R−1) streamline-curvature terms we obtain the Orr–Sommerfeld

equation for the rotating prolate spheroid in the form

i

R

(
M3φ′′′′3 − 2M

(
α2 + β2

)
φ′′3 +

1

M

(
α2 + β2

)2
φ3

)

+ (αU + βV − γ)

(
Mφ′′3 −

(α2 + β2)

M
φ3

)
−M (αU ′′ + βV ′′) φ3 = 0

(3.18)

Further, neglecting both streamline-curvature and viscous terms leads to Rayleigh’s

equation (3.19). By doing this we assume that viscosity has a negligible effect on

the instability of the boundary-layer;

(α U + β V − γ)

(
Mφ′′3 −

1

M

(
α2 + β2

)
φ3

)
−M (α U ′′ + β V ′′) φ3 = 0 (3.19)

This study presents an analysis of the full system of perturbation equations and

these comparisons are made only to demonstrate the consistency of the full system
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with the standard equations of stability theory. We also note that in the particular

case of e = 0, the perturbation equations reduce to those derived by Garrett et al.

(2002, 2004) for the rotating sphere.

3.2 Solution of the perturbation equations

The system defined by (3.12)–(3.17) represents an eigenvalue problem, with the

homogenous boundary conditions

φi = 0 on η = 0,

φi → 0 as η →∞,

(3.20)

where i = 1, 2 . . . 6. In this section we solve these equations by extending the

techniques used by Garrett (2002) and Lingwood (1995b) in their analyses of related

geometries.

The system represents a sixth-order differential equation system at each latitude

for fixed value of e and permits six independent solutions for each transformed

variable solution. These are denoted by φj
i (η; α, β, γ; R, θ) with the superscript j

indicating one of the six independent solutions of the transformed variable solutions

denoted by i.

At the outer edge of the boundary layer U → 0, V → 0 and W → W∞ (some

fixed value). So when η → ∞ the perturbation equations (3.12)–(3.17) therefore

become,

φ′1 =φ2, (3.21)

M2φ′2
R

=
1

R

(
α2 + β2 − iRγ

)
φ1 +

MW∞φ2

R
+ i

(
α2 + β2−

iαM

R

(
e2 sin θ cos θ

1− e2 cos2 θ
+ cot θ

))
φ4, (3.22)
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Mφ′3 =− iφ1 − 2− e2(1− cos2 θ)

R(1− e2 cos2 θ)3/2
φ3, (3.23)

Mφ′4 =
iW∞
R

− iM

R
φ2 − 1

R

(
α2 + β2 − iRγ

)
φ3, (3.24)

φ′5 =φ6, (3.25)

M2φ′6
R

=
βM

R

(
e2 sin θ cos θ

1− e2 cos2 θ
+ cot θ

)
φ4+

1

R

(
α2 + β2 − iRγ

)
φ5 +

MW∞φ6

R
. (3.26)

Equations (3.21)–(3.26) permit solutions in the form

φj
i (η →∞; α, β, γ; R) = cj

ie
κjη (3.27)

Where the coefficients cj
i and exponent κj are constants with respect to η, and can

be found by substituting (3.27) into (3.21)–(3.26). After ignoring O(R−2) terms we

find the exponents to be

κ1,2 =
W∞
2M

∓ 1

M

[(
W∞
2

)2

+ α2 + β2 − iRγ

]1/2

(3.28)

κ3,4 =
W∞
2M

∓ 1

M

[(
W∞
2

)2

+ α2 + β2 − iRγ

]1/2

(3.29)

κ5,6 =∓
[
α2 + β2 − iαM

R

(
e2 sin θ cos θ

1− e2 cos2 θ
+ cot θ

)]1/2

(3.30)

where the real parts of complex square-roots are taken to be positive.

From the second boundary condition of (3.20), as η →∞ all perturbations must

decay, therefore only the j=1,3 and 5 solutions are relevant. The required coefficients

in (3.27) for the transformed variables with j=1, 3 and 5 are found to be

c1
1 = 1 c3

1 = 0 c5
1 = iκ5,

c1
2 = κ1 c3

2 = 0 c5
2 = iκ2

5,

c1
3 = −i/Mκ1 c3

3 = 0 c5
3 = M,
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c1
4 = 0 c3

4 = 0 c5
4 =

[iRγ −W∞κ5]

MRκ5

,

c1
5 = 0 c3

5 = 1 c5
5 = 0,

c1
6 = 0 c3

6 = κ3 c5
6 = 0. (3.31)

As η →∞ there are six independent solutions for each transformed variable solution

denoted by i, but only three are decaying which are relevant. Each transformed

variable solution is formed by a linear combination of these with coefficients of

C1,3,5. These coefficients can be calculated from the boundary conditions of the

transformed variables at η = 0. So we can write,




φ1(0)

φ3(0)

φ5(0)




=




φ1
1(0) φ3

1(0) φ5
1(0)

φ1
3(0) φ3

3(0) φ5
3(0)

φ1
5(0) φ3

5(0) φ5
5(0)







C1

C3

C5




=




0

0

0




. (3.32)

This matrix equation has a non-trivial solution only when the determinant of

the coefficient matrix is zero. We call the determinant D and require

D(α, β, γ; R, θ, e) = 0. (3.33)

This is the dispersion relation for the rotating prolate spheroid at a latitude θ for

a given value of e∈ [0, 1] and allows an unknown parameter (α, β or γ) to be cal-

culated given the others at each R. The dispersion relation is satisfied when the

coefficient matrix is singular, and allows C1,3,5 to be determined from singular value

decomposition.

In particular, for the prolate spheroid defined by eccentricity e, the system is

solved for certain combinations of α, β, γ, R at a particular latitude θ and fixed

value of e. The perturbation equations (3.12)–(3.17) are numerically integrated

down towards the prolate spheroid surface from each of the initial solutions defined
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by (3.27)–(3.31) at the edge of the boundary layer. As with the basic flow, the

outer edge of the boundary layer is approximated by η = 20 and a double-precision

fixed-step-size fourth-order Runge–Kutta integrator is used. The integrations result

in nine independent solutions over the domain of integration from which the coeffi-

cient matrix of equation (3.32) can be formed. The independent solutions denoted

by j = 1 and 3 grow much more rapidly than the solution denoted by j = 5 as the

integration proceeds towards the prolate spheroid surface. The round-off error of

the numerical integration follows the most rapidly growing solution and so it be-

comes difficult to preserve the linear independence of the independent solutions when

simply integrating the equations. To maintain linear independence Gram–Schmidt

orthonormalization is applied each time the solutions loose their independence, and

details of this technique can be found in Nicholson (1995), for example.

To calculate the spatial branches for a fixed value of e at each θ and R for a

given frequency γ, the wavenumber β is varied and a second-order Newton–Raphson

search method is used to find the complex value of α that produces a singular

coefficient matrix, i.e. satisfies the dispersion relation. To calculate the temporal

branches for a fixed value of e at each θ and R for a given wavenumber β and

imaginary part of the frequency γi, the real part of the frequency is varied and α

is calculated in the same way. However, in what follows we are concerned with

spatial modes only. The numerical code used is based on that provided by S. J.

Garrett (personal communication, 2008), and the subroutines of the code originate

from Press, Teukolshy, Vetterling & Flannery (1992).

Although (3.12)–(3.17) are specific to the boundary-layer of the rotating prolate

spheroids, the methods discussed here are common to the rotating oblate spheroids

stability analysed conducted in this thesis. Only slight modifications are needed
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when dealing with the stability analysis of rotating oblate spheroids, and these will

be discussed in the relevant chapter for rotating oblate spheroids.

3.3 Convective instability analysis

In this section we solve the perturbation equations (3.12)–(3.17) subject to the

homogeneous boundary conditions (3.20) with the aim of occurring only convective

instabilities. In a system that is free of absolute instabilities we can assume that the

amplitude of the external disturbances decay in time at any particular location but

grow in space leading to convective instabilities. It follows that in the Briggs-Bers

procedure we can assume excitations at only real frequencies i.e imaginary part of

frequency, γi = 0. Taniguchi et al. (1998) in their temporal analysis on rotating-

sphere, followed a procedure taking different fixed values of the vortex angles, so that

β is known in terms of α from (3.6). In another approach, we insist that the vortices

rotate with some fixed multiple of the body surface velocity. We follow this approach

computing the neutral curves of convective instabilities of rotating spheroids. As

the non-dimensional speed of the surface of the rotating spheroid is sin θ, vortices

traveling at speed c relative to the spheroid surface can be modelled by equating

c sin θ with the disturbance phase velocity in the same (azimuthal) direction, γr/β,

leading to

γr = cβ sin θ, (3.34)

this results in the dispersion relation D(α, β, γ; R, θ; e) = D(α, β; R, c, θ; e) = 0. This

approach has been denoted method 2 by Garrett (2010a). Solving the dispersion

relation enables an investigation into the spatial branches within the convectively

unstable region prior to their pinching and the occurrence of local absolute instability
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at some higher critical Reynolds number. An analysis of the local absolute instability

of the flows is however not presented in this thesis. As mentioned in §3.1, throughout

in this chapter we explicitly assume stationary vortices that rotate with the spheroid

surface and so we take c = 1.

3.4 Results

In this section we present the neutral curves of convective instability by solving

the dispersion relation D(α, β; R, c, θ; e) = 0 with the constraint that c=1 using the

numerical methods explained in §3.2. The analysis involve solving D for α whilst

marching through β at a particular set of R and θ for a fixed value of e. Neutral

curves of convective instability are determined at αi = 0. We note that the basic

flow equations (2.6)–(2.8) presented in §2.1 were solved using the accurate numerical

method of §2.2.2 and we use these solutions for the basic flow profiles in solving the

full perturbation equations for prolate spheroids. However, the accuracy of the series

solution of the basic flow in the convective instability analysis is presented in §3.4.4.

3.4.1 Spatial branches

Spatial branches have been calculated at θ = 10◦–70◦ in 10◦ increments for

e = 0.0–0.7. As with the analyses of related geometries by Lingwood (1995a)

and Garrett et al., two spatial branches are found to determine the convective-

instability characteristics at all latitudes and Reynolds numbers. Branch 1 arises

from a crossflow-instability mode (type I) and branch 2 arises from streamline-

curvature effects (type II). This can be shown in the analysis of the Orr-Sommerfeld

equation (3.18) where branch 2 is not found, which is consistent of the existing work
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on related geometries (for example see Garrett (2002, 2010a,c)).

In the complex α-plane, a branch lying below the αr-axis indicates convective

instability. Figures 3.1 shows the two spatial branches at θ = 10◦ and R = 2300 for

e = 0.6 where we see that the convective instability is determined only from branch

1. Further increasing R at the same latitude we find that an exchange of modes

occurs at a particular R and branch 1 is seen showing two minimums below the

αr-axis. Figure 3.2 shows the two branches at R = 2420 where the modified branch

1 with large region under αr-axis indicates convective instability due to crossflow-

mode and the smaller region under αr-axis indicates the convective instability due

to streamline-curvature mode. Increasing the value of R causes the two minima on

branch 1 under the αr-axis to move further downward and the points where the

branch 1 crosses the αr-axis move apart, hence widening the region of instability

and mapping out two lobes of the neutral curve. Above a certain value of R the

smaller peak on branch 1 moves below the αr–axis as shown in Figure 3.3 and further

increases in R produce the upper and lower branches of the neutral curve.

This characteristic of the two branches is typical at all latitudes below θ = 60◦–

66◦ depending on the value of e. At θ ≥ 66◦ for all values of e and θ ≥ 60◦ for

e > 0.6 we note that the two branches do not behave as described, and no branch

exchange occurs between the two branches at a particular R. In the neutral curves

for θ ≥ 66◦ for all values of e, the two lobed structure has disappeared and the

convective instability is caused only from branch 1 while a kink is shown by branch

2. However, we note that the kink in branch 2 is caused when the streamline-

curvature effects dominate over the crossflow effects. This can be seen in Figure 3.4

where at θ = 60◦ and e = 0.6 the streamline-curvature effects become dominant and

the convective instability is caused after the two spatial branches exchange but the
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Figure 3.1: The two spatial branches for e = 0.6 at θ = 10◦ and R = 2300 showing

convective instability from branch 1 only.
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Figure 3.2: The two spatial branches after the exchange for e = 0.6 at θ = 10◦ and

R = 2420 showing regions of both streamline-curvature and crossflow instabilities.
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Figure 3.3: The two spatial branches after the exchange for e = 0.6 at θ = 10◦ and

R = 2500 showing combined region of streamline-curvature and crossflow instabilities.
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Figure 3.4: The two spatial branches after the exchange showing regions of streamline-

curvatute and crossflow instability for e = 0.6 at θ = 60◦ and R = 163.
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Figure 3.5: For e = 0.7 at θ = 60◦ and R = 140 the convective instability is caused only

from branch 1 and branch 2 shows a kink.

minimum of the region showing streamline curvature instability has moved lower

than the minimum of the region showing crossflow instability. In Figure 3.5 at

θ = 60◦ and e = 0.7 the two lobed structure has disappeared and the convective

instability is caused by branch 1 where, as expected, a kink is appeared in branch

2.

3.4.2 The neutral curves

The Reynolds number R introduced in equation (6.2) is based on the equatorial

rotation speed of the body and so is dependent on e. A comparison of the stability

characteristics at a fixed latitude across bodies with different eccentricities rotating

at the same angular rate is therefore difficult to interpret when using this Reynolds
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number. However, expressing the results in terms of a Reynolds number defined as

Re =
R√

1− e2
, (3.35)

enables the direct comparison of different bodies rotating at the same angular rate

(and with equal semi-major axis lengths) at a particular value of Re. This Reynolds

number was used by Garrett in the stability analysis of rotating sphere boundary-

layer and we will call this as the spherical Reynolds number. Henceforth, the spherical

Reynolds number Re is interpreted as a measure of the angular rotation rate, Ω?.
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Figure 3.6: Neutral curves in the (Re, α)- and (Re, β)-planes at latitude 10◦ for

e = 0 (–), 0.1 (-.), 0.3(−−), 0.6 (· · ·) & 0.7 (-.).

The stability characteristics of the rotating sphere boundary-layer (i.e. when e =

0) were discussed in detail by Garrett & Peake and Garrett; where they compared
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Figure 3.7: Neutral curves in the (Re, α)- and (Re, β)-planes at latitude 60◦ for

e = 0 (–), 0.1 (-.), 0.3(−−), 0.6 (· · ·) & 0.7 (-.).

the results with other existing theoretical and experimental results. In this current

analysis our focus is on the effects of eccentricity on convective instability as the

body is deformed from a sphere to a rotating prolate spheroid. Neutral curves in

the (Re, αr)- and (Re, β)-planes are shown in Figures 3.6 & 3.7 at θ = 10◦ and

60◦ for 0 ≤ e ≤ 0.7. Furthermore, neutral curves at latitudes to θ = 70◦ (in 10◦

increments) are sketched in Figure 3.8 for e = 0.0, 0.3 and 0.7 in the (Re, αr)-

plane only. Each curve encloses a region that is convectively unstable, and we

see the characteristic two-lobed structure for low to moderate latitudes which is

also seen in other analysis of related geometries. The larger lobe, characterized by

higher wavenumbers arises from the behaviour of the type I branch; and the smaller



Chapter 3: Convective instability for prolate spheroids 46

lobe, characterized by smaller wavenumbers, from the type II branch. However, we

note that at higher latitudes and eccentricities the larger lobe either disappears or

becomes less dangerous, indicating a dominance of streamline curvature effects as

we discuss now.

Critical Reynolds numbers in terms of R and RS for the onset of both modes

are listed at all latitudes for 0 ≤ e ≤ 0.7 (in increments of 0.1) in Appendix C.3

Tables C.1–C.8. Note that R can be converted in terms of Re using the relation

(3.35) and RS is called the spin Reynolds number discussed in §3.4.3. From Figures

3.6–3.8 and Tables C.1–C.8 it is clear that the effect of increasing eccentricity on

the relative importance of the type I mode is small at low θ. This reflects the

dependence on e in the perturbation equations at O(1/R) only (the order at which

type II [streamline curvature] effects occur), and so the stability characteristics at

leading order are determined by the steady flows alone, which have been shown to

be insensitive to e for low θ. However, we also see that eccentricity acts to increase

the relative importance of the type II mode as the latitude is increased. For θ ≤ 50◦,

the type I mode remains the most dangerous (in the sense of lowest critical Reynolds

number) at each e considered; at θ = 60◦, the type II becomes the most dangerous

for sufficiently high e between 0.3 and 0.7; and for θ = 70◦, the type II lobe is seen

to be most dangerous for all eccentricities. All neutral curves shown were calculated

using the full perturbation equations (3.12)–(3.17). Neutral curves calculated using

the Orr–Somerfeld equation (3.18) were found to be single-lobed at each latitude,

with critical Reynolds numbers lower than the most dangerous modes arising from

the full system. However, this is shown only at θ = 20◦ for e = 0.7 in Figure 3.9.

The neutral curves calculated from the full system and the Orr–Somerfeld equation

are found to be consistent for large Re for all parameter sets {θ, e}.
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Considering the effect of increasing eccentricity at a particular latitude, Figure

3.8 demonstrates that increasing e increases the critical Reynolds numbers for the

onset of both modes at latitudes 10◦ ≤ θ ≤ 40◦, i.e. eccentricity acts as a stabilizing

effect at low to moderate latitudes. However, at latitudes θ ≥ 50◦ the type II mode

is seen to become increasingly dangerous with increased e, eventually becoming

dominant over the type I mode. Eccentricity therefore has a de-stabilizing effect at

high latitudes1. At all latitudes the neutral curves for e = 0 are as calculated by

Garrett & Peake (2002) for the rotating sphere. Furthermore, we predicted that the

neutral curves for the Orr-Sommerfeld equations are also stabilizing for increasing

e at moderate to lower latitudes, however this is shown only at θ = 20◦ for e = 0.1

and 0.7 in Figure 3.10.

Taking into account the interpretation of Re as a measure of the angular rotation

rate, we interpret the results as follows: rotating prolate spheroids with higher

eccentricity first become convectively unstable at high latitudes for lower angular

rotation rates than is required for lower eccentricities, however for instability to

manifest at lower latitudes, a higher angular rotation rate is required for bodies with

larger eccentricity. Eccentricity is therefore interpreted as a de-stabilizing influence

at high latitudes and stabilizing for moderate to low latitudes.

3.4.3 Comparison of results with other related Geometries

In the investigation of rotating disk boundary-layer flow, Malik (1986) and Ling-

wood (1995a) used a Reynolds number which is based on the local disk velocity at

1We note that increasing e acts to slightly narrow the region of convectively unstable parameters

at all latitudes and so could be interpreted as a stabilizing effect in this sense. However, for high

latitudes the reduced critical Reynolds number is expected to be the dominant characteristic.
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the radius under investigation and the local-boundary-layer thickness. The equiv-

alent Reynolds number in our investigation is written as RD = Re sin θ. Although

not shown here, when our results are expressed in terms of this Reynolds number

we find that for values of e ≤ 0.5, the neutral curves become very similar to that for

convective instability of the rotating-disk boundary layer (due to Malik (1986), for

example) as θ tends towards the pole. This behaviour at smaller latitude is consis-

tent with that discussed by Garrett & Peake (2002) in the case of rotating sphere.

This is of no surprise as the region close to the pole is locally flat, particularly for

small eccentricities, and so limits to a small rotating disk. Figures 3.11 & 3.12 show

that the critical Reynolds number for both crossflow and streamline curvature ef-

fects approach those of the rotating-disk as θ tends toward the pole . However, we

note that for large values of e, at lower latitudes of prolate spheroids the critical

Reynolds numbers exceed that of rotating-disk boundary-layer. We suspect this due

to curvature having a stabilizing effect at lower latitude. We explain this further in

§3.5.

Taniguchi et al.(1998) and Kohama et al.(1983) present their results for the

rotating sphere in the (RS, n)- and (RS, ε)-planes. Here RS is the spin Reynolds

number and is defined in terms of spherical Reynolds number as RS = η?
0
2Ω?/ν? =

Re2. Note that n is the number of vortices defined in (3.5) and ε is vortex angle

from (3.6). Garrett (2002) showed the results for the special case of e = 0 in these

planes and compared the results with those theoretical and experimental results of

Taniguchi et al. and Kohama et al. respectively. He found that his results were

consistent with the experimental observations of Kohama et al.. We sketch the

neutral curves of convective instability for prolate spheroids at latitudes of 10◦– 70◦

in (RS, n)- and (RS, ε)-planes for various values of e in Appendix C.2 as Figures C.1–
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C.7. We note that as the latitude decreases the number of vortices n at the onset of

instability increases for all values of e, and this is consistent with the experimental

observation of Kohama et al.. We note that at low to moderate latitudes eccentricity

has apparently no effect on the number of spiral vortices at the onset of instabilities.

However, at high latitudes the number of vortices n slightly decrease with increasing

e. At lower latitude 10◦, the number of vortices at the onset of crossflow mode is

tending to approximately 22. This is consistent with that calculated by Malik (1986)

for the rotating disk. At low to moderate latitudes of θ = 40◦ for all values of e, we

find that at the onset of instability the stationary vortices were predicted to have

roughly the same vortex angle for each mode, the values found being ε ≈ 11.4◦ and

19.4◦ at the onset of crossflow instabilities and streamline-curvature instabilities

respectively. However, as the latitude is increased above 40◦ we predict that the

vortex angle at the onset of crossflow instability decreases slightly, whilst the vortex

angle at the onset of streamline-curvature instability increases slightly; this is further

exaggerated with increasing e. However, at high latitudes where the crossflow effects

do not dominate we note that the vortex angle decreases with increasing e.

3.4.4 Accuracy of series-solution method in convective in-

stability analysis

We compare the neutral curves obtained from the full perturbation equations

using the two different solution methods (i.e the series solution method and numer-

ical method) of the steady flow equations (2.6)–(2.8) of §2.1. We intend to show the

exact limits of latitudes for different values of e up to which the series solution of the

basic flow can be used to study convective instability in this geometry. As explained

in Chapter 2, the series solution has major benefits in terms of computational power
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required.

In §2.3 we have shown the comparison between the basic flow profiles of pro-

late spheroids for the two different solution methods (series solution method and

numerical solution method) at various latitudes for e ∈ [0, 1]. These comparisons

were shown through visual inspection as well as root mean square (RMS) errors of

the basic flow profiles at various latitudes for e ≤ 0.7. We observed that at lower

latitudes the series solution was very accurate at low to moderate latitudes for all

e ≤ 0.7, but as the latitude was increased the discrepancy between the two solutions

also increased. This was further exaggerated with increasing e. We observe that

this discrepancy between the basic flow solutions is consistent with the discrepancy

found between neutral curves of convective instabilities for the two different basic

flow solutions. In Figures 3.13 & 3.14 comparison between the neutral curves for two

solutions of basic flow are shown at two latitudes of 10◦ and 60◦ for various values

of e. From these visual inspections we see that the discrepancy between the neutral

curves at lower latitude is negligible for all values of e ≤ 0.7, but as the latitude is

increased the discrepancy is increased. This is exaggerated with increasing e. We do

not show this comparison at other latitudes, but the discrepancy between the two

different solutions of the basic flow is reflected in the same way in the convective

instability characteristics. Indeed the discrepancy between the neutral curves (cal-

culated for the two types of basic flow) is increased when W -profile of the basic flow

has root mean square error of O(e−2) magnitude (see Tables 2.1–2.5). Therefore,

the series solution of the basic flow can capture the parameters and characteristics

of the convective instability very accurately at latitudes of θ ≤ 40◦ for all values of

e, 50◦ for e ≤ 0.5 and 60◦ for e ≤ 0.3.
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3.5 Conclusion

In this chapter we have formulated the perturbation equations that govern the

stability of the boundary-layer over the family of rotating prolate spheroids, and

convective instability analyses were conducted in detail. This chapter should be

viewed as a generalization of Garrett & Peake (2002) previous work through the

consideration of the more general class of prolate spheroids which includes the sphere

at e = 0, as a special case. Our results for e = 0 reproduce those for the rotating

sphere. As mentioned at the beginning, only stationary vortices were considered in

this chapter.

Analysis of spatial branches from the full perturbation equations shows that two

spatial branches (type I and type II) arise to determine the characteristics of con-

vective instability at each latitude and Reynolds number. The streamline-curvature

mode (type II) does not arise in the analysis of the Orr-Sommerfeld equation. This

is consistent with the anlyses by Lingwood and Garrett on the related geometries.

The convective instability of the boundary-layer over the family of rotating pro-

late spheroids is dependent on the steady flow of the boundary-layer. At higher

latitudes, the rate of inflow into the boundary layer was less than that at lower lat-

itudes, and this influenced the boundary layer by moving instabilities from higher

latitudes towards lower latitudes with increasing Reynolds number i.e. the rotation

rate. For increasing eccentricity at a fixed latitude our results suggest that eccentric-

ity has a de-stabilizing effect at high latitudes, i.e. lower rotation rates are required

for the flow to first become convectively unstable at higher latitudes for bodies with

larger e. However, in contrast, eccentricity is seen to be stabilizing at moderate to

low latitudes, i.e. higher rotation rates are then required to move the transition

region closer to the pole for bodies with larger e. As increasing e is equivalent to
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increasing curvature of the prolate spheroid, this is therefore convenient to conclude

that increasing curvature has a stabilizing effect on the boundary-layer over rotat-

ing prolate spheroids. This was also evident at lower latitude 10◦ where the critical

Reynolds number RD for both types (I & II) for large values of e exceeded the crit-

ical Reynolds number of the rotating-disk flow. However, with increasing latitude

from the pole towards the equator, curvature decreases. Therefore, at high latitudes

we find a combination of two destabilizing effects to the boundary-layer. These

two destabilizing effects at high latitudes are due to (i) decreasing curvature due to

increasing latitude and (ii) decreasing rate of inflow (W -profile) into the boundary

layer at higher latitudes which exaggerates with increasing e compared to that at

lower latitudes. Therefore these two destabilizing effects combine to overcome the

stabilizing effect of curvature (due to increasing e) at moderate latitudes between

50◦–60◦. This is evident from the fact that the values of critical RD are nearly the

same at these moderate latitudes for all e. As the latitude is increased above 60◦,

the combination of these two destabilizing effects aggregates and consequently we

predict a counter effect i.e. destabilizing effect of increasing e at latitudes θ ≤ 60◦.

Indeed the destabilizing effect of e at high latitudes is observed due to the faster

decrease in the rate of inflow into the boundary layer with increasing e (note that

decrease in the rate of inflow into the boundary layer has a destabilizing effect). It is

acknowledged here that we are unaware of any experimental investigations into the

rotating prolate spheroid flows considered here, which means that we are currently

unable to compare our results for e > 0 with experiments as was done by Garrett

& Peake and Garrett for e = 0.

The convective instability analysis shows that crossflow instabilities dominate

below θ = 60◦–66◦ depending on the value of e. The number of spiral vortices at the
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onset of instability for each fixed value of e are predicted to increase with decreas-

ing latitude and this is consistent with the experimental observation of Kohama &

Kobayashi in the special case when e = 0. As the analysis moves towards the pole

we predict that the number of spiral vortices approaches n ≈ 22, which is the same

predicted theoretically for rotating disk (Malik (1986)). At the onset of instability

the stationary spiral vortices have roughly the same vortex angles at low to mod-

erate latitudes for each value of e, these are ε ≈ 11.5◦ and 19.5◦ at the onset of

crossflow and streamline curvature instabilities, respectively. These values were also

predicted by Garrett (2002) in the analysis of rotating sphere and agree well with

those predicted on the rotating disk. However, at θ = 50◦ and above the vortex an-

gles at the onset of instabilities begin to reduce slightly. At θ = 60◦ and above, the

predicted value of ε approaches 14◦ at the onset of streamline curvature instabilities

for each value of e, which is in good agreement to the experimental observation of

Kohama (1984b). Our theoretical predictions suggest that the spiral vortex angle

at the onset of transition is slightly varying with latitude for the rotating prolate

spheroids at each value of e. At higher latitudes, this is further exaggerated with e.

However, Kohama and Kobayashi have reported vortex angle ε = 14◦ at the onset of

instabilities at all latitudes of the rotating sphere boundary-layer and we will discuss

this in detail in the subsequent chapter.

In the derivations of the governing equations, factors 1/(1 +
√

1− e2 η/R) that

multiplied terms in the perturbation equations have been replaced by unity. This

approximation is similar to the parallel-flow approximation found in many other

boundary-layer investigations and means that the perturbation equations solved

here are not rigorous at O(1/R). As discussed by Garrett & Peake (in the case that

e = 0), the thickening of the boundary layer, together with the fact that the critical
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Reynolds numbers decrease with latitude, means that the approximation is less valid

for higher latitudes. However, increasing e acts to counteract this slightly, and the

approximation is more valid for higher eccentricities and low latitudes. In any event,

it is our opinion that any inaccuracies introduced through this assumption are not

sufficiently large to affect the conclusions of this work. It is also acknowledged that

this work consists of a linear analysis and so would be inaccurate in situations where

the growth rates are large and non-linear effects would occur.



Chapter 3: Convective instability for prolate spheroids 55

1500 2000 2500 3000 3500
0

0.2

0.4

0.6

Re

α
r

10°

800 1000 1200 1400 1600
0

0.2

0.4

0.6

Re

α
r

20°

400 600 800 1000
0

0.2

0.4

0.6

Re

α
r

30°

300 400 500 600
0

0.2

0.4

0.6

Re

α
r

40°

300 400 500
0

0.2

0.4

0.6

Re

α
r

50°

150 200 250 300 350
0

0.2

0.4

0.6

Re

α
r

60°

0 100 200 300
0

0.2

0.4

0.6

Re

α
r

70°

Figure 3.8: Neutral curves in the (Re, α)-plane at all latitudes for e = 0.0 (–), 0.3

(· · · ) & 0.7 (-.).
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Figure 3.10: A comparison between neutral curves calculated from the Orr–Sommerfeld

equations at θ = 20◦ for e = 0.1 (–) & 0.7 (−−).
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Figure 3.13: Neutral curves in the (Re, α)-plane for numerical solution (–) and series

solution method (-.) at latitude 10◦ for e = 0, 0.1, 0.3, 0.6.
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solution method (-.) at latitude 60◦ for e = 0, 0.1, 0.3, 0.6.



Chapter 4

Vortex-speed selection within the

boundary-layer flow over prolate

spheroids rotating in still fluid

In this chapter we extend the convective instability mechanisms within the

boundary-layer flow over a family of rotating prolate spheroids presented in Chap-

ter 3 and investigate the amplification rates within the convectively-unstable region.

We use the same perturbation equations and numerical techniques for the prolate

spheroid case presented in §§3.1 & 3.2. This work is indeed a generalization of the

rotating-sphere boundary-layer by Garrett (2010c) where he associated the onset

of convective instability with the experimentally observed onset of spiral vortices

reported in the literature. In §4.1 we show the spatial amplification rates for sta-

tionary as well as traveling vortices at different speeds with respect to the prolate

spheroid surface at various latitudes for a number of values of eccentricity. Where

possible, we compare our results with those theoretical and experimental results

observed for the rotating sphere. A discussion on the results is presented in §4.2.

59
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4.1 Growth rates of stationary and traveling dis-

turbances

In §3.4 we solved the dispersion relation D(α, β; R, c, θ; e) = 0 with the constraint

that c=1. In this section we solve the same dispersion relation for a set of values

of c = 0.6–2 using the numerical methods explained in §3.2. Physically the spatial

growth rate for a fixed value of e is determined by a range of disturbance waves at a

particular location (determined by θ) and rotation rate (determined by R). Indeed,

the spatial growth rate is determined by the imaginary part of latitudinal wave

number i.e. αi at a particular θ and Re. We sketch the neutral curve of convective

instability at a particular location in the (Re, αr)-plane, and absolute values of αi

are plotted as the third dimension. This determines the spatial growth rate.

Garrett (2002) has shown that the rotating-sphere boundary layer is absolutely

unstable at particular Reynolds numbers and beyond this the flow becomes turbu-

lent. Absolute instability is the spatio-temporal instability and so the region of ab-

solute instability contained within the region of convective instability is irrespective

of c. In the rotating-sphere case, Garrett (2010c) considered the convective growth

rates through the convectively unstable region bounded by the critical Reynolds

numbers of absolute instability. Note that in producing plots of the spatial growth

rates shown in Figure 4.1 it is only possible to consider the convective instability over

a finite distance in Re before a region of absolute instability is entered. Although

we are able to consider the convective instability beyond this critical value by avoid-

ing parameters within the region of absolute instability, eventually the position of

maximum growth rate coincides with the location of a pinch point. At this point

the characteristic branch exchange between the type I and type III branches occurs
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and the maximum spatial growth rate in the convective sense is undefined. How far

the convective instability analysis for maximum growth rates can be extended for

each c, θ and e is determined by the occurrence of a pinch point in the absolutely

unstable region with γ = cβ sin θ.

4.1.1 Growth rates and vortex speed selection

In order to visualize the growth rates for stationary disturbances, Figure 4.1 plots

the spatial branches of the type I and II modes through the convectively unstable

region at various locations over the surface of prolate spheroid for a particular value

of e = 0.3. We note that the growth rates of each mode are unchanged as the

analysis moves over the surface of the prolate spheroid. At each latitude the type

I mode has significantly larger growth rate. Further investigation shows that this

analysis does not change with changing values of e. This analysis is consistent with

the rotating sphere (i.e. e = 0) by Garrett (2010c). From this we conclude that

the amplification of the two convectively unstable modes is unchanged at different

points on the prolate spheroid for each value of e and the type I mode is likely the

most amplified at all Reynolds numbers (rotation rates) in otherwise still fluid.

Disturbance speeds have been considered in the range c = 0.5–2 for each param-

eter set and neutral curves computed as in §3.4. Figures 4.2 & 4.3 show the neutral

curves at θ = 10◦ & θ = 60◦ for e = 0.3 in terms of αr, β, n, and ε for c = 0.7,

0.8, 0.9, 1 and 2. Similar neutral curves at θ = 10◦ & θ = 60◦ for e = 0.6 are also

shown in Appendix C.4 for c = 0.7, 0.8, 0.9 and 1 in Figures C.8 & C.9 respectively.

Note that n and ε are observable quantities in experiments which motivates their

use here. Recall that c = 0.7 corresponds to disturbances traveling at 70% of the

local spheroid surface speed, and c = 1.5 and 2 correspond to disturbances travelling
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Figure 4.1: Linear convective growth rates for stationary disturbances through the

convectively unstable region at various θ for e = 0.3.

at speeds greater than the prolate spheroid surface. At these latitudes and eccen-

tricities, and indeed all considered, we find that the lobe arising from the type II

mode is sensitive to the disturbance speed. In particular, the type II lobe is quickly

eliminated for c < 1 and exaggerated for c > 1. The result that quickly travelling

type II modes are the most dangerous (in the sense of lowest critical Re) is con-

sistent with the previous theoretical results on the related geometries Balakumar &

Malik (1991); Faller (1991); Turkyilmazoglu & Gajjar (1998); Garrett (2010a,b,c).

However, it is important to note that the range of waveangles and vortex numbers

predicted to be unstable to quickly travelling modes is narrowed with increased c.

In a sense this is a stabilizing effect because only a very narrow range of vortex

parameters can be selected, and is much more significant than the slight narrowing

mentioned in footnote 1 of §3.4.2.
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Figure 4.2: Neutral curves for traveling disturbances with c=0.7 (· · ·), 0.8 (-.), 0.9

(−−), 1.0 (–), 2.0 (-x) at θ = 10◦ for e = 0.3.

We therefore have two competing factors in the vortex-speed selection process

over all prolate spheroids: the critical Reynolds numbers for the onset of the type

II mode reduce with increased c, but the range of parameter values that the cor-

responding vortices can exist at becomes increasingly narrow, thereby prohibiting

selection. In order to clarify the process we follow Garrett (2010a,b,c) and con-

sider the linear growth rates for travelling modes through the region of convective

instability. The results of this at θ = 10◦ & 60◦ for e = 0.3 are given in Figures

4.4 & 4.5 respectively, where plots of the spatial branches at different values of c

are presented in order to visualize the growth rates. We see that the growth rates

within the type II lobe increase relative to the type I mode as c increases. However,

more importantly, we note that the globally maximum growth rates are for the type

I mode, and these peak between c = 0.7 and c = 0.8. Similar results of growth rates

are also shown at θ = 10◦ & 60◦ for e = 0.6 in Figures C.10 & C.11 for c = 0.7, 0.8,
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Figure 4.3: Neutral curves for traveling disturbances with c=0.7 (· · ·), 0.8 (-.), 0.9

(−−), 1.0 (–), 2.0 (-x) at θ = 60◦ for e = 0.3.

0.9 and 1.0.

Figures 4.6 & 4.7 demonstrate that the growth rates are maximized for c = 0.76.

Although the figures demonstrate this at latitude θ = 10◦ for two values of e, this

is found for all values of e and θ ≤ 60◦. It is not shown here, but the growth rates

maximized for c ≥ 0.76 at latitudes θ ≥ 70◦ for values of e ≥ 0.1. It is therefore most

likely that c = 0.76 is the preferred vortex speed over rotating prolate spheroids for

all eccentricities at θ ≤ 60◦ where roughness elements are not present enabling the

existence of travelling modes. It is interesting to note that this is entirely consistent

with the results of Garrett (2010a,b,c) where similar analyses are presented for the

related geometries and travelling modes of type I with c = 0.75 are found to be the

most amplified. However, further investigation shows that for larger values of e and

θ ≥ 70◦, the preferred vortex speed increases towards c ≈ 1.0.
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Figure 4.4: Linear convective growth rates for travelling-mode disturbances with

c = 0.7–2 for θ = 10◦, e = 0.3.
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Figure 4.5: Linear convective growth rates for travelling-mode disturbances with

c = 0.7–2 for θ = 60◦, e = 0.3.
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Figure 4.6: Maximum linear convective growth rates at θ = 10◦ for e = 0.3 at

Re = 2880.

4.1.2 Vortex angle and effect of eccentricity on neutral curves

In the experimental investigation on rotating sphere, Kohama & Kobayashi

(1983) reported the vortex angle ε ≈ 14◦ at the onset of instability at each lati-

tude. In our theoretical investigation, Figures 4.2, 4.3, C.8 & C.9 demonstrate that

the vortex angle ε ≈ 14◦ at the onset of convective instability for c ≈ 0.9. Further

investigation shows that this is the same at all latitudes up to θ = 60◦ for all values

of e. Although, at high latitudes of θ ≥ 70◦ and for all values of e, we find that the

vortex speed is slightly increased in order to have ε ≈ 14◦ at the onset of instability

and further exaggerates towards c ≈ 1.0 for large values of e. This shows a dis-

crepancy with that reported for the rotating sphere by Kohama & Kobayashi, that

the vortex angle is 14◦ at the onset of instability and the preferred vortex speed is

c = 0.76. We return to discuss this in §4.2.

Figures 4.8 & 4.9 shows that the neutral curves of convective instabilities at
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Figure 4.7: Maximum linear convective growth rates at θ = 10◦ for e = 0.6 at

Re = 3350.

each particular location for traveling disturbances are stabilizing with increasing

eccentricity. Further investigation shows that for c < 1.0, increasing values of e has

a stabilizing effect on the neutral curves of convective instabilities at all latitudes.

However, for larger values of c ≥ 1.0 and θ ≥ 60◦ the type II effects become most

dangerous and at these high latitudes increasing e has a destabilizing effect on the

neutral curves in terms of the decreasing critical Reynolds numbers.

4.2 Conclusion

We have shown that slowly rotating vortices are the most amplified and are

likely to be selected in experiments where perfectly smooth prolate spheroids are

used. The growth rates were maximized for vortices that rotate at around 76% of

the prolate spheroid surface speed at all θ ≤ 60◦ for all values of e, and this speed

increases slightly at θ ≥ 70◦ which exaggerates further at least up to 100% of the



Chapter 4: Vortex speed selection for prolate spheroids 68

1000 1500 2000 2500 3000

0.2

0.25

0.3

0.35

0.4
c=0.7

Re

α r

1000 1500 2000 2500 3000
0.1

0.2

0.3

0.4

0.5

0.6
c=0.8

Re

α r
1000 1500 2000 2500 3000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
c=0.9

Re

α r

1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
c=1.0

Re

α r

Figure 4.8: Neutral curves for traveling disturbances with c = 0.7, 0.8, 0.9, 1.0 at

θ = 10◦ for e = 0.3 (–) & e = 0.6 (-.-).
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Figure 4.9: Neutral curves for traveling disturbances with c = 0.7, 0.8, 0.9, 1.0 at

θ = 60◦ for e = 0.3 (–) & e = 0.6 (-.-).
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equatorial surface speed for large values of e. Although this is unlikely to be the

case in most practical applications where surface roughness would be unavoidable

and stationary vortices selected, the discovery is consistent with the unusual obser-

vation by Kobayashi & Arai (1990) of vortices traveling at 76% of the sphere surface

in particular conditions. It is interesting to note that the same vortex-speed selec-

tion process has been demonstrated in the boundary-layer flow over rotating disks

and cones by Garrett (2010a,b). Although experiments on smooth rotating disks

have been reported by Corke and co-workers (1998) where non-stationary modes

have been observed, their results cannot be interpreted in terms of a particular vor-

tex speed. Further experiments similar to Kobayashi & Arai (1990) are therefore

required for all geometries to test these theoretical predictions.

Our results show that the vortex angle of 14◦ at the onset of instability at each

location does not necessarily coincide with the maximum growth rates for all e and

θ, however the vortex angle is 14◦ for c ≈ 0.9 at the onset of instability for all values

of e and θ ≤ 60◦. The vortex speed slightly increases in order to have the same

vortex angle of 14◦ at the onset of instability at θ ≥ 70◦ and this exaggerates further

towards c ≈ 1.0 with increasing e. This discrepancy in the case of rotating sphere

where Kohama & Kobayashi reported the vortex speed at 76% of the surface speed

and the vortex angle of 14◦ at the onset of instability at each location, is perhaps

due to the use of few different spheres used in their experiments. In our opinion,

they might have observed the vortex speed on one sphere with perfect smoothness

and the vortex angle on another sphere with slightly less smoothness. Therefore, we

suggest further experiments to investigate the accuracy of our theoretical results in

these geometries.

The effect of increasing eccentricity at each location for traveling vortices is sta-
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bilizing over prolate spheroids. However, for vortices rotating at high speeds, when

the type II effects become most dangerous, eccentricity has a destabilizing effect at

high latitudes. Therefore, we conclude that for slow rotating vortices, increasing

eccentricity is delaying the convective instability at all latitudes for rotating prolate

spheroids.

It is acknowledged that an approximation similar to the parallel flow approxima-

tion which was discussed in detail in §3.5, will lead to inaccuracies in the predicted

results, however, this is our opinion that these will be small and will not affect the

conclusions of this work. We also acknowledge that this work consists of a linear

analysis and so would be inaccurate in situations where the growth rates are large

and non-linear effects would occur. However, we have predicted the selection of slow

vortices from the very onset of convective instability where growth rates are small;

it is therefore expected that non-linearity would affect the breakdown of the slow

vortices in situations where the onset of absolute instability is severely delayed, but

not their initial selection.



Chapter 5

Laminar boundary-layer over

families of rotating oblate

spheroids

This chapter furthers the work of Chapter 2 by investigating the laminar boundary-

layer flow over the outer surface of a general family of oblate spheroids rotating in

otherwise still fluid, and has appeared in the literature as Samad & Garrett (2010).

In §5.1 we introduce the oblate spheroidal coordinate system and the governing

laminar boundary layer equations over rotating oblate spheroids are derived. An

eccentricity parameter is defined to distinguish particular bodies within the family

of oblate spheroids. The governing partial differential equations (PDEs) of laminar

boundary-layer flow over rotating oblate spheroids for fixed values of eccentricity are

solved in §5.1 using two methods: the series solution approximation of §2.2.1 and

an accurate numerical method of §2.2.2. We note that setting the eccentricity to

zero the governing PDEs produce those established for a rotating sphere in still fluid

which is same to the prolate case discussed in §2.1. In §5.2 we present the results

71
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obtained from the two methods and the flow profiles of rotating oblate spheroids are

compared to that of rotating prolate spheroids of §2.2.2. The implication of increas-

ing eccentricity over the laminar flow profiles of oblate spheroids and the usefulness

of series-solutions are discussed in detail in §5.3.

5.1 Formulation and solution methods

We formulate the steady laminar-flow equations for the family of oblate spheroids

rotating in otherwise still fluid by extending the same procedure of §2.1. Indeed,

rotating an ellipse about its minor-axis produces an oblate spheroid and rotating the

same ellipse about its major-axis produce a prolate spheroid. Hence, the eccentricity

of the cross-sectional ellipse defined for prolate spheroid is also the same for oblate

spheroid. The oblate spheroid rotates with constant angular velocity Ω? about the

z-axis. For the oblate spheroid we introduce an oblate spheroidal coordinate system

defined relative to cartesian coordinates as

x? = η? sin θ cos φ,

y? = η? sin θ sin φ,

z? =

√
η?2 − d?2 cos θ.

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. The quantity η? is the distance from the

origin of the system and normal to the body surface at a particular latitude θ and

azimuth φ. A sketch of the oblate spheroidal coordinate system is shown in Fig-

ure 5.1 where η? makes the angles θ and φ with the horizontal and vertical planes

through the z-axis respectively. Furthermore, d? is the distance of the focus from

the center of the cross-sectional ellipse formed by the oblate spheroid. Obviously

the minor axis of each cross-sectional ellipse formed from the oblate family are along
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the axis of rotation of the body. We have confirmed that this 3D-system (θ, φ, η?)

is an orthogonal coordinate system and is consistent with that discussed by Morse

(1953). In Appendix A.1.2 we apply transformation to equations (A.19)–(A.22) and

Figure 5.1: Sketch of the oblate spheroidal coordinate system. This is sketched with

a free software called 3D-XplorMath-J.exe

full 3D Navier-Stokes equations and steady continuity equation in the above oblate

spheroidal coordinate system are obtained (see equations (A.33)–(A.36)). Following

the same procedure of transformation of Appendix A.1.2 and replacing η? by η?
0 in

equations (A.19)–(A.22), we apply the same boundary-layer assumptions of Chapter

2 to the resulting equations and obtain the dimensional boundary-layer equations

that govern the laminar flow over the family of oblate spheroids rotating in other-

wise still fluid. These equations are written as,
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In a fixed frame of reference equations (5.1)–(5.3) are subject to the same bound-

ary conditions as in equation (2.4). The quantity a?
0 in the equations of boundary

conditions represent the length of the semi-major axis of the cross-sectional ellipse

of a particular oblate spheroid and is defined as a?
0 = η?

0 which is defined differently

for prolate spheroid. Indeed a?
0 is the equatorial radius for both types of spheroid:

prolate and oblate. For consistency with the analysis on prolate spheroids and those

on spheres by Garrett (2002); Banks (1965), we scale the velocity components in

equations (5.1)–(5.3) on the equatorial surface speed as shown in equation (2.5) of

§2.1. For the oblate family of spheroids, the resulting non-dimensional laminar-flow

equations are,

W
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+

1√
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(
U
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We note that when setting e = 0, the laminar flow equations for both oblate and pro-

late reduces to those for the already established equations of rotating sphere. This is
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because the cross-sectional ellipse becomes a circle for e = 0 in both types of spheroid

(oblate and prolate). The boundary conditions in (2.4) are non-dimensionalized in

the same way and are written here for completeness as,

U = W = V − sin θ = 0 on η = 0, (5.7)

U = V = 0 as η →∞, (5.8)

In order to solve equations (5.4)–(5.6) subject to conditions (5.7)–(5.8) we again use

the two solution methods: series solution approximation of §2.2.1 and an accurate

numerical method of §2.2.2. From the series solution method we obtain a set of

non-linear ODEs for oblate spheroid containing general e, involving terms up to

and including n=7. These are stated in Appendix D.1 as equations (D.1)–(D.12).

Excluding the equatorial region (close to θ = 90◦), we find that the series solutions

are everywhere convergent for all values of e ≤ 0.8 for a domain of integration

between η = 0 and 20. The values obtained for the quantities F ′
n(0), G′

n(0), Hn(∞)

at e = 0− 0.8 (in increments of 0.1) are given in Appendix D.2 and again we obtain

very similar values of these quantities when e = 0 as calculated by Garrett (2002);

Banks (1965). We note that the leading-order boundary values (for n = 1) are not

identical at all values of e, unlike the prolate case, and this is because powers of

(1− e2) are appearing in the leading-order equations (D.1), (D.5) and (D.9).

5.2 Results

As the boundary-layer flow is assumed to erupt near equator we do not consider

theoretical profiles arising for latitudes above 80◦. The development of flow over

oblate spheroids for fixed e is found to be generally similar to that over prolate

spheroids and the equivalent plot to Figure 2.3 is not shown here. The latitudinal
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velocity is again inflectional at all latitudes and eccentricities. We also note that fluid

is entrained into the boundary layer at all latitudes through a negative W -component

and has a region of reverse flow close to the surface for sufficiently high latitudes

between θ = 60◦–64◦ depending on the value of e. Figures 5.2 & 5.3 demonstrate

laminar-flow profiles obtained from the numerical solution at four different locations.

At all latitudes, when increasing e from 0 (the sphere) we find that there is almost
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Figure 5.2: Oblate spheroid velocity profiles at latitudes θ = 10◦ and 30◦ with

increasing e = 0.1–0.8 in increments of 0.1 (right to left in each frame).

the same variation in the latitudinal and azimuthal velocity components. However,

over the body (at θ = 70◦, for example) the variation in normal velocity component

is slightly more pronounced. Further, the effect of increasing the eccentricity at

any particular location is seen to have the opposite effect on the normal velocity by
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Figure 5.3: Oblate spheroid velocity profiles at latitudes θ = 50◦ and 70◦ with

increasing e = 0.1–0.8 in increments of 0.1 (right to left in each frame).

moving the profiles in the opposite direction, entraining more fluid into the boundary

layer. It is also seen to increase the magnitude of the reverse flow that appears close

to the surface at sufficiently high latitudes. This is more clearly seen in Figure 5.4

where the flow profiles for both cases of spheroids: prolate and oblate, at e = 0.7 are

compared against those for the rotating sphere (e = 0) at low and high latitudes.

At each latitude we see that the W -profile limits to an equal distance either side of

the sphere limit. The small region of reverse flow in the normal direction is seen to

be greater for the oblate case. We also note that the latitudinal and azimuthal flows

in the oblate case are more sensitive to eccentricity at low latitudes, this is reflected

from e appearing in the leading order equations of the series solution ODEs (D.1)–
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(D.12). However, as the latitude increases, the U - and V -components for prolate

and oblate spheroids become indistinguishable at any particular e.
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Figure 5.4: A comparison of flow profiles at θ = 10◦ and 70◦ for the rotating sphere

(–), prolate spheroid with e = 0.7 (-o-) and oblate spheroid with e = 0.7 (-.).

Figures 5.5–5.8 show a visual comparison between flow profiles arising from the

series-solution approximation and numerical solutions at various latitudes and ec-

centricities. Similar visual comparisons at various other latitudes and eccentricities

are shown in Appendix D.3 as Figures D.1–D.6. The measure of the accuracy of

the series solution with respect to the numerical solution is obtained from the root

mean square error EX,e which is defined in §2.3. Tables 5.1–5.5 give the values of

EX,e computed at θ = 10◦, 30◦, 50◦, 60◦ and 70◦ for a range of eccentricities. From

these we note that the accuracy of the series solution reduces with increased latitude
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Figure 5.5: Comparison of the numerical (solid line) and series solutions (cross

points) at θ = 10◦, 30◦ 50◦ for e = 0.3.

and eccentricity, as expected from the visual inspections. We will discuss this and

its implications for the convective instability analysis in §6.3.

5.3 Conclusion

In this chapter we derived the governing PDEs for the laminar flow within the

boundary-layer over rotating oblate spheroids in otherwise still fluid. Similarly to

the prolate case, the system of PDEs for oblate spheroid also reduces to the known

equations for the rotating sphere as e → 0. Two methods of solution are used

to solve the governing equations for general e. We note that modified versions of

von Kaḿań equations also appear at leading order in the series solution ODEs,
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e EU,e EV,e EW,e

0.1 4.28951895e-004 1.02863645e-003 4.68266896e-003

0.3 4.37325695e-004 1.05015059e-003 4.77669201e-003

0.5 4.58443020e-004 1.10010825e-003 5.02727164e-003

0.6 4.78885173e-004 1.14513675e-003 5.24108957e-003

0.7 5.08797092e-004 1.21168921e-003 5.58064799e-003

0.8 5.58589632e-004 1.32029533e-003 6.26230416e-003

Table 5.1: RMS error of the series-solution approximation at θ = 10◦ on the prolate

spheroid.

e EU,e EV,e EW,e

0.1 1.16925494e-004 6.75722482e-005 7.07251784e-004

0.3 1.36264716e-004 7.58854146e-005 3.95294496e-004

0.5 1.99320339e-004 1.12700616e-004 1.78993094e-003

0.6 2.67542404e-004 1.59007669e-004 3.59885263e-003

0.7 3.66839606e-004 2.54556190e-004 6.48213098e-003

0.8 5.23661964e-004 3.75836568e-004 9.91872357e-003

Table 5.2: RMS error of the series-solution approximation at θ = 30◦ on the prolate

spheroid.
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e EU,e EV,e EW,e

0.1 1.34316665e-004 8.75939095e-005 7.39709767e-004

0.3 2.20519410e-004 1.87083080e-004 2.23667052e-003

0.5 5.31269082e-004 5.35959892e-004 7.12184623e-003

0.6 8.31484486e-004 8.47762112e-004 1.19901252e-002

0.7 1.25126879e-003 1.30929833e-003 1.96843202e-002

0.8 1.83687989e-003 1.93786194e-003 3.21181121e-002

Table 5.3: RMS error of the series-solution approximation at θ = 50◦ on the prolate

spheroid.

e EU,e EV,e EW,e

0.1 1.30660119e-004 4.00731564e-004 4.34827643e-003

0.3 2.57368684e-004 6.11464028e-004 6.51873510e-003

0.5 8.41537847e-004 1.30007085e-003 1.31344462e-002

0.6 1.36892748e-003 1.86564394e-003 1.93137272e-002

0.7 2.05032719e-003 2.58362794e-003 2.90435431e-002

0.8 2.92193292e-003 3.51407359e-003 4.61615396e-002

Table 5.4: RMS error of the series-solution approximation at θ = 60◦ on the prolate

spheroid.
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Figure 5.6: Comparison of the numerical (solid line) and series solutions (cross

points) at θ = 10◦, 30◦, 50◦ for e = 0.8.

however factors of (1 − e2) appear in these leading-order equations and this is not

seen in the prolate case. The formulation used here has led to flow profiles in the

latitudinal and azimuthal directions that behave in the same way in both the prolate

and oblate cases at fixed value of eccentricity. However, at lower latitudes in the

oblate case, the latitudinal and azimuthal profiles are more sensitive to variation in

e but at higher latitudes almost coincide with those of the prolate case for a fixed

e. Further, a significant difference in the normal component is found in that the

profiles asymptote to equal distances either side of the rotating-sphere profiles.

From visual inspections and calculations of RMS errors, we see that the discrep-

ancies resulting from the series solution profiles with respect to numerical solutions
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Figure 5.7: Comparison of the numerical (solid line) and series solutions (cross

points) at θ = 60◦, 70◦ 80◦ for e = 0.3.

are very similar to those calculated for the prolate case. We note that the series

solution is very accurate at low latitudes for all e ≤ 0.8. However, as the latitude is

increased the discrepancy between the two solutions increases and this is exaggerated

with increasing eccentricity. At θ = 80◦ we find a significantly different qualitative

behaviour for the flow with large eccentricity. Keeping in mind the RMS errors of

the series solution profiles with respect to the numerical solutions, the governing

ODEs for the series solution of the general oblate spheroid available in Appendix

D.1 are more easy to use in engineering applications than the numerical method on

ground of cost and required expertise.
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Figure 5.8: Comparison of the numerical (solid line) and series solutions (cross

points) at θ = 60◦, 70◦ 80◦ for e = 0.8.

e EU,e EV,e EW,e

0.1 6.65103503e-004 1.99939545e-003 1.89122611e-002

0.3 6.02835535e-004 2.36906675e-003 2.20993173e-002

0.6 2.18099333e-003 4.48352864e-003 3.67230584e-002

0.7 3.19035224e-003 5.29314061e-003 4.59978351e-002

0.8 4.24762359e-003 6.03269672e-003 6.61689359e-002

Table 5.5: RMS error of the series-solution approximation at θ = 70◦ on the prolate

spheroid.



Chapter 6

The convective instability of the

boundary-layer flow over rotating

oblate spheroids

This chapter is concerned with the convective instability mechanisms within the

boundary-layer flow over the outer surface of a general family of oblate spheroids

rotating in otherwise still fluid. This is an extension of Chapter 3 where we carried

out’ convective instability analyses of the boundary-layer flow over rotating prolate

spheroids. Again, viscous and streamline-curvature effects are included and local

convective instability analysis are conducted at latitudes 10◦–80◦ from the axis of

rotation in 10◦ increments for a range of particular oblate spheroids.

We use the oblate spheroidal coordinate system discussed in Chapter 5. In §6.1

we derive the unsteady perturbation equations that govern the stability problem

of the general family of rotating oblate spheroids. An eccentricity parameter e is

introduced to identify each particular oblate spheroid within its family. Similar to

the prolate case of §3.4 in the limit of zero eccentricity, the perturbation equations for

85
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oblate spheroids also produce those already established in the literature for rotating-

sphere boundary layer.

We solve these perturbation equations for oblate spheroids in §6.2 by extending

the techniques presented in §§3.2 & 3.3. Stationary convective modes are considered

in §6.3. The effect of eccentricity at each latitude on the neutral curves is discussed

and the results are compared to other related geometries. In §6.4 we consider trav-

eling modes in particular, and the linear convective growth rates of disturbances

traveling at different azimuthal phase speeds. In §6.5 we compare the results of the

two different types of spheroids i.e. the oblate spheroids and the prolate spheroids

with appropriate parameters. Conclusions are drawn in §6.6.

6.1 Derivation of the perturbation equations

In this section we use the oblate spheroidal coordinate system (θ, φ, η?) defined

in §5.1 to derive the set of perturbation equations that govern the stability of the

boundary-layer flow over the surface of rotating oblate spheroids.

In Appendix A.1.2 we have derived the continuity equation and the full 3D un-

steady Navier-Stokes equations in oblate spheroidal coordinate system as equations

(A.33)–(A.36). We use these equations to derive the perturbation equations by as-

suming that U?, V ?, W ? are the steady basic flow velocity components in the θ-,

φ- and η?- directions respectively and P ? is the constant pressure. We impose in-

finitesimally small perturbations on the steady basic flow at a particular latitude on

the rotating prolate spheroid boundary layer. The perturbation variables (denoted

by lower case hatted quantities) are assumed to have the normal-mode form

(
û?, v̂?,ŵ?, p̂?

)
=

(
u?(η), v?(η), w?(η), p?(η)

)
ei
(

α?
∫ θ
0 ds+β?r?

0φ−γ?t?
)
. (6.1)
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Here ds =
√

η?
0
2 − d?

0
2 sin2 θ dθ is an element of arc length in the latitudinal direc-

tion, such that
∫ θ

0
ds is the arc length from the pole to the particular latitude under

consideration; d?
0 is the constant distance of the focus from the centre of the pro-

late spheroid; and r?
0 = η?

0 sin θ is the local surface radius of the body. Note that

η?
0 is equal in length to the equatorial radius of a particular oblate spheroid. We

follow §3.1 and the dimensional velocity components and pressure of the perturbed

flow are formed in the same way as in (3.2). We substitute these dimensional vari-

ables of the perturbed flow into the steady continuity and unsteady Navier-Stokes

equations (A.33)–(A.36). We assume that perturbating quantities are small enough

so that products can be ignored and a linear analysis conducted. For details of

derivation of perturbation equations, the interested reader is referred to §3.1. Using

the perturbation variables (6.1) and after linearization we obtained the dimensional

perturbation equations that govern the stability of the general family of rotating

oblate spheroids. These equations are shown in Appendix E as equations (E.1)–

(E.4). These equations are non-dimensionalized on the typical length, velocity, time

and pressure scales: δ?, η?
◦Ω

?, δ?/η?
◦Ω

? and ρ?(η?
◦Ω

?)2 respectively, where ρ? is the

fluid density. The resulting non-dimensional equations are linearized by neglecting

O(R−2) terms, where

Re =
δ?a?Ω?

ν?
=

δ?η?
0Ω

?

ν?
, (6.2)

is the Reynolds number. Note that the Reynolds number is interpreted as a measure

of the equatorial rotation speed of the spheroid, with the location of the analysis

given by the particular θ under consideration. This is in contrast to previous studies

of rotating disks and cones where the Reynolds number is interpreted as a measure

of the radial location of the analysis for a particular rotation rate. Moreover, un-

like to the prolate case in §3.1, here the Reynolds number Re does not depend on
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eccentricity parameter e. We recall that this Reynolds number in §3.4.2 was called

the spherical Reynolds number, and was used by Garrett & Peake (2002) in the

stability analysis over rotating-sphere boundary-layer. The basic flow velocities are

non-dimensionlized in a similar way as in §5.1. The quantities α?, β? and γ? are

explained in detail in §3.1. The non-dimensionalized perturbation equations for

general family of oblate spheroids are written as,

N
dw

dη
+ Nδ1l

(2− e2(1 + sin2 θ))

(1− e2 sin2 θ)
w =

− l

[ (
δ1

(
−e2 sin θ cos θ

(1− e2 sin2 θ)3/2
+

cot θ√
1− e2 sin2 θ

)
+ iα

)
u + iβv

]
(6.3)

Nδ1W
du

dη
+

[
i

(
l(αU + βV )− γ

)
+

δ1l√
1− e2 sin2 θ

∂U

∂θ

]
u

− 2δ1l cot θ√
1− e2 sin2 θ

V v +

(
N

∂U

∂η
+

Nδ1 l

(1− e2 sin2 θ)
U

)
w =

− ilαp +
1

Re

[
N2d2u

dη2
− l2(α2 + β2) u

]
(6.4)

Nδ1W
dv

dη
+

[
i

(
l(αU + βV )− γ

)
+

δ1l cot θ√
1− e2 sin2 θ

U

]
v

+ δ1l

(
cotθV√

1− e2 sin2 θ
+

1√
1− e2 sin2 θ

∂V

∂θ

)
u

+

(
N

∂V

∂η
+

δ1 l V√
1− e2 sin2 θ

)
w

= −il βp +
1

Re

[
N2 d2v

dη2
− l2(α2 + β2) v

]
(6.5)

Nδ1W
dw

dη
+

[
i

(
l(αU + βV )− γ

)
+ δ1

(
N

∂W

∂η
− l

e2 sin θ cos θ

(1− e2 sin2 θ)3/2
U

)]
w

− 2δ1l
N U

(1− e2 sin2 θ)
u− 2δ1Nl V v =

−N
dp

dη
+

1

Re

[
N2d2w

dη2
− l2(α2 + β2)w

]
(6.6)

where

N =

√
1− e2

1− e2 sin2 θ
(6.7)

Factors l = 1/(1 + η/Re) appear multiplying terms in these perturbation equa-
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tions which are set to unity in an approximation similar to the parallel flow ap-

proximation. Its validity at low and high latitudes will be discussed in §6.6. The

equations have terms multiplied by Re and δ1, these factors indicate terms due to

viscous and streamline curvature effects.

Using the transformed variables of §3.1, these perturbation equations (6.3)–(6.6)

for oblate spheroids, can be written as a set of six first order ordinary differential

equations and are given as,

φ′1 =φ2 (6.8)
[
N2φ′2
Re

]

v

=
1

Re

([
α2 + β2

]
v
+ iRe (αU + βV − γ)

)
φ1 +

[
NWφ2

Re

]

s

+

(
N (α1U

′ + β1V
′) +

[
1

Re

(
Nα1U +

βV√
1− e2 sin2 θ

)]

s

)
φ3

+i

(
α2 + β2 −

[
iα

Re

(
−e2 sin θ cos θ

(1− e2 sin2 θ)3/2
+

cot θ√
1− e2 sin2 θ

)]

s

)
φ4

−
[

cot θV φ5

Re
√

1− e2 sin2 θ

]

s

+
1

Re
√

1− e2 sin2 θ

[(
α1

∂U

∂θ
+ β

∂V

∂θ

)
u

−(
α1V − βU

)
cot θ v

]

s

(6.9)

Nφ′3 =− iφ1 −
[

N(2− e2 sin2 θ)

Re(1− e2 sin2 θ)
φ3

]

s

(6.10)

Nφ′4 =

[
iWφ1

Re

]

s

−
[
iNφ2

Re

]

v

+

[
2N

Re

(
U u

(1− e2 sin2 θ)
+ V v

)]

s

− 1

Re

([
α2 + β2

]
v
+ iRe

(
αU + βV − γ

)

+

[
NW ′ − e2 sin θ cos θ

(1− e2 sin2 θ)3/2
U

]

s

)
φ3 (6.11)

φ′5 =φ6 (6.12)

[
N2φ′6
Re

]

v

=

[
V cot θφ1

Re
√

1− e2 sin2 θ

]

s

+

(
N (α1 V ′ − βU ′)
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+

[
1

Re

(
α1V√

1− e2 sin2 θ
− N βU

(1− e2 sin2 θ)

)]

s

)
φ3

+

[
β

Re

( −e2 cos θ sin θ

(1− e2 sin2 θ)3/2
+

cot θ√
1− e2 sin2 θ

)
φ4

]

s

+
1

Re

( [
α2 + β2

]
v

+iRe (αU + βV − γ)

)
φ5 +

[
N Wφ6

Re

]

s

+

[
1

Re
√

1− e2 sin2 θ

((
α1

∂V

∂θ
− β

∂U

∂θ

)
u + cot θ (α1U + βV ) v

)]

s

(6.13)

Where a prime denotes differentiation with respect to the normal η (spatial variable),

and α1 = α − [
i N
Re

]
s

(
−e2 sin θ cos θ

(1−e2 sin2 θ)3/2 + cot θ√
1−e2 sin2 θ

)
, where N is defined in equation

(6.7).

Equations (6.8)–(6.13) are the perturbation equations for oblate spheroids upon

which the convective and absolute instability analyses can be performed. However,

we only perform convective instability analyses over oblate spheroids for various

values of eccentricity parameter e. The subscripts v and s in the perturbation

equations indicate terms arising from viscous and streamline curvature effects re-

spectively. Coriolis terms do not appear since a fixed frame of reference was used.

The perturbation velocities u and v in the perturbation equations can be written ex-

plicitly in terms of φ1 and φ2 and are similar to those defined in the prolate spheroid

case. The Orr-Sommerfeld and Rayleigh’s equation for oblate spheroids are similar

to that for prolate spheroids presented in equations (3.18) & (3.19) respectively,

except the constant M is replaced by N , where N is defined in (6.7). Note that the

perturbation equations (6.8)–(6.13) for the oblate spheroids reduce to those of the

rotating sphere boundary-layer established in the literature Garrett & Peake (2002,

2004) for e = 0.
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6.2 Solution of the perturbation equations

The solution methods for solving the perturbation equations for oblate spheroids

are the same as described in §3.2. However, we discuss the small amendments

to solve the eigenvalue problem defined by equations (6.8)–(6.13) subject to the

boundary conditions (3.20). For a particular oblate spheroid defined by a value of

e ∈ [0, 1], the eigenvalue problem will be solved for a certain combinations of values

of α, β and γ at each Reynolds number and each particular value of θ. We form

a dispersion relation D(α, β, γ; Re, θ, e) = 0, for rotating oblate spheroids, with the

aim of calculating the convective instability branches.

As explained in §3.2, we assume that at the outer edge of the boundary-layer

U → 0, V → 0 and W → W∞ as η → ∞. An approximate solution at the outer

edge of the boundary-layer can be found by solving the perturbation equations

(6.8)–(6.13) at the outer edge of the boundary-layer, we obtain,

φ′1 =φ2, (6.14)

N2φ′2
Re

=
1

Re

(
α2 + β2 − iReγ

)
φ1 +

NW∞φ2

Re
+ i

(
α2 + β2

− iα

Re

(
−e2 sin θ cos θ

(1− e2 sin2 θ)3/2
+

cot θ√
1− e2 sin2 θ

))
φ4, (6.15)

Nφ′3 =− iφ1 − N(2− e2 sin2 θ)

Re(1− e2 sin2 θ)
φ3, (6.16)

Nφ′4 =
iW∞
Re

− iN

Re
φ2 − 1

Re

(
α2 + β2 − iRe γ

)
φ3, (6.17)

φ′5 =φ6, (6.18)

N2φ′6
Re

=
β

Re

(
−e2 sin θ cos θ

(1− e2 sin2 θ)3/2
+

cot θ√
1− e2 sin2 θ

)
φ4

+
1

Re

(
α2 + β2 − iReγ

)
φ5 +

NW∞φ6

Re
. (6.19)

Equations (6.14)–(6.19) permits solutions of the form cj
ie

κjη and following the meth-
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ods of §3.2, the numerical solution for kj are obtained for each j. Note that as we

require an exponentially decaying solution we use only the solution with kj < 0.

Extensive experimentation with the maximum value of η has shown that the eigen-

values are independent of the domain as long as it allows the fully developed basic

flow components of velocity to be used, i.e. η > 15. Therefore, we form an ap-

proximate numerical solution of the perturbation equations at η = 20 for each of

the transformed variables defined by i. We numerically integrate the full perturba-

tion equations from these initial solutions down towards η = 0 enables the correct

eigenvalues to be calculated. Details of this process are given in detail in §3.2.

6.3 The convective instability analysis for station-

ary vortices

In this section we solve the perturbation equations (6.8)–(6.13) with the aim of

studying the occurrence of convective instabilities. Since, we are supposing that

the flow is not absolutely unstable, in the Briggs-Bers procedure we can reduce the

imaginary part of the frequency down to zero, so that γi = 0. For computing the

neutral curves of convective instabilities of rotating oblate spheroids, we assume that

the vortices rotate with some fixed multiple of the body surface. This procedure is

identical to that described in §3.2. Following this procedure, vortices traveling with

speed c relative to the oblate spheroid surface can be modeled by the same relation in

equation (3.34). Note that the perturbation equations for oblate spheroids contain

the laminar flow profiles U , V and W and these have been already solved numerically

in §5.2. In this section, we discuss stationary modes, that is when the vortices rotate

with the spheroid surface. The traveling disturbances in the range of c ∈ [0, 2] are
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considered in §6.4.

6.3.1 The neutral curves

As discussed in §3.1, naturally occurring surface roughness is known to select

stationary modes in the boundary-layer flows over related rotating geometries, we

therefore begin by making the a priori assumption that spiral vortices rotate with

the oblate spheroid surface. As with the analyses of the prolate spheroids in §3.4.1

and other related geometries Lingwood (1995a); Garrett (2002); Garrett & Peake

(2002, 2004, 2007); Garrett, Hussain & Stephen (2009a,b); Garrett (2010a,b,c), two

spatial branches are found to determine the convective-instability characteristics at

all latitudes and Reynolds numbers. These arise from the crossflow (type I) and

the streamline-curvature (type II) effects. Spatial branches have been calculated at

θ = 10◦–70◦ for the oblate spheroids for e = 0.0–0.8. The detailed behaviour of the

branches is not discussed here, however these spatial branches are consistent with

those found for prolate spheroids described in §3.4.1.

The boundary-layer eruption close to the equator of the rotating spheroids dis-

rupts the flow beyond θ = 80◦, therefore we do not consider latitudes beyond θ = 70◦.

Neutral curves in the (Re, αr)-, (Re, β)-planes are shown in Figures 6.1 and 6.2 at

θ = 10◦ and 60◦ for 0 ≤ e ≤ 0.8. Furthermore, neutral curves at latitudes to θ = 70◦

(in 10◦ increments) are shown in Figure 6.3 for e = 0.0, 0.3, 0.6 and 0.8 in the

(Re, αr)-plane only. Each curve encloses a region that is convectively unstable, and

we see the characteristic two-lobed structure for latitudes θ ≤ 60◦ for all values of e

and for θ = 70◦ for e ≥ 0.6 which is also seen in the analysis of related geometries.

The larger lobe, characterized by higher wavenumbers arises from the behaviour of

the type I branch with Reynolds number; and the smaller lobe, characterized by
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smaller wavenumbers, from the type II branch. Note that the two lobed structure

in the prolate case was disappeared for large values of e at θ = 60◦ and for θ = 70◦

for all values of e. However, in the oblate spheroid case the two lobe structure only

disappears at 70◦ for small values of e ≤ 0.5.
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Figure 6.1: Neutral curves in the (Re, α)- and (Re, β)-planes at latitude 10◦ for

e = 0 (–), 0.3 (−−), 0.6 (-.), 0.7 (· · ·) & 0.8 (-.).

All neutral curves shown were calculated using the full perturbation equations

(6.8)–(6.13). Neutral curves calculated using the Orr–Somerfeld equation for oblate

spheroids are not shown here, however they were found to be single-lobed at each

latitude similar to that for prolate spheroids, with critical Reynolds numbers lower

than the most dangerous modes arising from the full system. Moreover, similar to

the prolate case, the neutral curves calculated from the full system and the Orr–

Somerfeld equation for oblate spheroids are also found to be consistent for large Re
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Figure 6.2: Neutral curves in the (Re, α)- and (Re, β)-planes at latitude 60◦ for

e = 0 (–), 0.3 (−−), 0.6 (-.), 0.7 (· · ·) & 0.8 (-.).

for all parameter sets {θ, e}.

At all latitudes the neutral curves for e = 0 are as calculated by Garrett & Peake

(2002) and this is to be expected as in the limiting case of e = 0 the full perturbation

equations in both cases of spheroids become exactly those already established for

rotating sphere. From Figures 6.1–6.3, it is clear that type I remains as the most

dangerous (in the sense of lower critical Reynolds number) at all θ ≤ 60◦ for all

values of e; the type II effects become the most dangerous at θ ≥ 70◦ for small

values of e ≤ 0.5. However, for large values of e > 0.5 the type I effects become the

most dangerous at this high latitude.

The critical Reynolds numbers for the onset of convective instability for both

modes, are listed in Appendix E.2 Tables E.1–E.9 in terms of spherical Reynolds



Chapter 6: Convective instability for oblate spheroids 96

number Re and the spin Reynolds numbers RS for 0 ≤ e ≤ 0.8 (in increments of 0.1)

at each latitude (the spin Reynolds number has been explained in §3.4.3). We note

from Figure 6.1 that there is almost negligible effect of increasing e over the neutral

curves at low θ = 10◦. However close numerical inspection from Tables E.1–E.9

shows that for increasing e, the critical Reynolds number for both type I [viscous

effects] & type II [streamline curvature effects] increases but swiftly start decreasing

for higher values of e ≥ 0.7. Figure 6.3 demonstrates that except at θ = 10◦ at

all other latitudes the effect of increasing e increases the critical Reynolds numbers

for the onset of both modes, i.e. eccentricity has a stabilizing effect at all latitudes

except near to the pole1. Near to the pole (at θ ≤ 10◦), increasing e has a stabilizing

effect, however for very large values of e ≥ 0.7, this stabilizing effect of e reverses

slightly. Eccentricity therefore has a stabilizing effect at all latitudes except for

very large values of e near to the pole. We note that as the latitude increases, the

stabilizing effect of eccentricity also increases. Furthermore, the neutral curves cal-

culated for the Orr-Sommerfeld equations of the oblate spheroids are also stabilizing

for increasing e at all latitudes, although we do not show it here.

Interpreting the Reynolds number Re as a measure of the angular rotation rate,

we can interpret the results as follows: neglecting the unusual behavior for large

values of eccentricity near to the pole, rotating oblate spheroids with higher eccen-

tricity become convectively unstable at all latitudes for higher rotation rates than

is required for lower eccentricities. However, for instability to manifest near to the

pole of the bodies is affected negligibly with eccentricity. Eccentricity is therefore

1 We note that increasing e acts to slightly expand the region of convectively unstable parameters

at all latitudes and so could be interpreted as a destabilizing effect in this sense. However, for all

latitudes the increased critical Reynolds number is expected to be the dominant characteristic in

many engineering applications.
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interpreted as a stabilizing influence at all latitudes for the oblate spheroids rotating

in otherwise still fluid.

The neutral curves obtained from the full perturbation equations for oblate

spheroids were compared for the two different solutions of the steady basic flow

profiles obtained from equations (5.4)–(5.6) of §5.1 which were obtained by using

the two different solution methods (i.e. the series solution method and numerical

method). The intention is to calculate the exact limits of latitudes for different

values of e up to which the series solution method is appropriate to study the con-

vective instability analyses over oblate spheroids. In §5.2, the root mean square

errors (RMS) were calculated to measure the numerical errors between the series

solution and the numerical solution of the steady basic flow for oblate spheroids.

These (RMS) errors are shown at various latitudes in Tables 5.1–5.5 for a range of

eccentricities. We note that as the latitude increases the discrepancy between the

two solutions of the steady basic flow increases which is further exaggerated with

increasing e. Although, we do not show it here, it is observed that the discrep-

ancy between the basic flow solutions is consistent with that predicted between the

neutral curves of convective instabilities for oblate spheroids when the perturbation

equations were solved for the two different solutions of the basic flow. In §3.4.4,

similar observations were made in the prolate spheroid case where we showed the

visual difference between the neutral curves for the two solutions of the basic flow

in Figures 3.13 & 3.14 at two latitudes for various values of e. The discrepancy

between the neutral curves is increased when the W -profile of the steady flow for

oblate spheroids has RMS error of O(e−2) magnitude (see Tables 5.1–5.5). There-

fore, it is sufficient to use the series solution to capture accurately the characteristics

of convective instabilities for oblate spheroids at latitudes of θ ≤ 30◦ for all values
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of e, 40◦ for e ≤ 0.6, 50◦ for e ≤ 0.5 and 60◦ for e ≤ 0.4. The series solution method

is easy to use in terms of computational power and technical expertise required.

6.3.2 Comparison of results with other related geometries

In §3.4.3 we compared the results for prolate spheroids using the Reynolds num-

ber used by Malik (1986); Lingwood (1995a) in their investigation of rotating disk

boundary layer and the spin Reynolds number used in the investigation of rotating

sphere boundary layer by Taniguchi et al.(1998) and Kohama et al.(1983). We also

follow this for comparing the results of the oblate spheroids. The purpose is to

show the consistency of our results in the appropriate parameters with the related

theoretical and experimental results.

As mentioned in §3.4.3, the Reynolds number used by Malik and Lingwood is

based on the local radius of the rotating disk and is written as RD = Re sin θ. When

our results are expressed in terms of this Reynolds number at latitudes near to the

pole, however not shown here, we find that the neutral curves for all values of e

become very similar to those for rotating disk boundary layer presented by Malik

(1986). This is because the oblate spheroid is locally flat near the pole for all values

of e and so limits to a small rotating disk. This prediction is consistent with that

discussed in §3.4.3 for prolate spheroids. Figures 6.4 & 6.5 show that the critical

Reynolds number for both crossflow and streamline curvature instabilities approach

those of the rotating disk as θ tends towards the pole and this occurs for all val-

ues of e. However, as the latitude is increased the difference between the critical

Reynolds numbers at each latitude for increasing e increases. From this we sus-

pect that increasing the curvature has a stabilizing effect over instabilities. Note

that increasing latitude from the pole of oblate spheroids increases the curvature.
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Moreover increasing the value of e also increases the curvature at a particular lo-

cation above moderate latitudes of oblate spheroids. The large increase in critical

Reynolds numbers for both crossflow and streamline curvature instabilities at each

location ( from moderate to high latitudes) with increasing e reflects that curvature

has a stabilizing effect. Note that at low latitudes of oblate spheroids, the curvature

decreases for increasing e, but strong inflow with increasing e has strong stabilizing

effect which dominates the destabilizing effect of low curvature. Further note that

in the prolate spheroid case, the critical Reynolds number for both crossflow flow

and streamline curvature effects for large values of e at lower latitude near the pole

exceeded the critical Reynolds number of rotating disk. We will again discuss this

in detail in §6.5.

As discussed in §3.4.3, the angle that the phase fronts make with a circle parallel

to the equator is denoted by ε, and is found from ε = arctan (β/αr). The integer

number of complete cycles of the disturbance round the azimuth is n = βRe sin θ.

We identify ε and n as being the angle and number of spiral vortices on the spheroid

surface, respectively. Taniguchi et al.(1998) and Kohama et al.(1983) presented their

results for the rotating sphere in the (RS, n)- and (RS, ε)-planes. Here RS is called

the spin Reynolds number and is defined in terms of spherical Reynolds number as

RS = η?
0
2Ω?/ν? = Re2. In Appendix E.3, Figures E.1–E.7 show the neutral curves

of convective instabilities in the (RS, n)- and (RS, ε)-planes for oblate spheroids at

latitudes 10◦–70◦ for various values of e. We note that for decreasing latitude, the

number of spiral vortices n at the onset of convective instability increases for all

values of e, and this is consistent with the experimental observation of Kohama et

al. in their investigation over rotating sphere. At latitude 10◦, the number of spiral

vortices at the onset of crossflow instability tend to approximately 22 for all values of
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e. This is consistent with that calculated for rotating disk by Malik (1986). We also

note that from low to moderate latitudes eccentricity has no effect on the number

of spiral vortices, however above moderate latitudes n slightly increase with e at the

onset of both crossflow instability and streamline curvature instability. This is in

contrast to that predicted for the prolate spheroids.

Figures E.1–E.7 also demonstrate that at low to moderate latitudes up to 40◦,

the stationary vortices are predicted to have the same vortex angle at the onset

of instabilities for all values of e. The values found being ε ≈ 11.4◦ and 19.4◦ at

the onset of crossflow instability and streamline curvature instability respectively.

However, as the latitude increases above 40◦, we note that the vortex angle at

the onset of streamline curvature instability increases slightly with increase in e,

although apparently remains the same at the onset of crossflow instability.

6.4 Growth rates and vortex speed selection

In this section we follow the techniques of §4.1 and investigate the growth rates

of stationary and traveling disturbances for oblate spheroids at each latitude for

various values of e. The disturbance relation is solved for disturbance speeds in the

range c = 0.6 − 2.0 for each parameter set and neutral curves are computed as in

§6.3.1. As discussed in detail in §4.1, the spatial growth rate is determined from

the range of absolute values of αi at particular vortex speed. We also note that

in producing the plots for spatial growth rates as shown in Figure 6.6, it is only

possible to consider a finite distance in Re before a region of absolute instability is

entered (for detail on this the interested reader is referred to §4.1).

In Figure 6.6, we visualized the growth rates for type I & II modes for stationary
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vortices through the convectively unstable region at various latitudes over oblate

spheroid for a particular value of e = 0.6. We note that the growth rates for

both modes at each location over oblate spheroid does not change as the analysis

moves over the surface of oblate spheroid. At each location the type I mode has

significantly larger growth rate. Moreover, this analysis remains the same for each

value of e. This is also consistent with such analysis over prolate spheroids. From

this we conclude that the amplifications of the two convectively unstable modes are

unchanged at equal distances in Re at all locations on both types of spheroids, and

that type I mode is likely the most amplified at all Reynolds numbers. Figures 6.7

& 6.8 show the neutral curves at θ = 20◦ for e = 0.3 and θ = 60◦ for e = 0.7 in

(Re, αr), (Re, β), (Re, n), (Re, ε)–planes for c=0.7, 0.8, 0.9, 1.0 and 2.0 respectively.

Note that the quantities n and ε are the quantities through which we associate

the results with the experimental observations of Kohama & Kobayashi (1983). At

these latitudes and indeed all considered, we find that similar to previous analysis

on related geometries, the type II mode is sensitive to the vortex speed. The type

II mode is quickly eliminated for c < 1 and exaggerated for c > 1. Indeed, the

type II modes are the most dangerous for quickly traveling modes (in the sense of

lower critical Reynolds number) and this is consistent with the results predicted for

prolate spheroids.

In Figures 6.9 & 6.10, we show the growth rates at θ = 20◦ for e = 0.3 and θ = 60◦

for e = 0.7 in order to visualize the growth rates of the linear spatial branches at

different values of c. We see that type I mode has the globally maximum growth

rates for all values of c considered, and these peak between c=0.7 & c=0.8. Further

investigation shows that these predictions are the same for all latitudes and small

values of e ∈ [0, 0.6]. However, at high latitudes and for e ≥ 0.7, the peek of growth
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rates occurred for slightly above c=0.8.

Figure 6.11 demonstrates that the growth rate is maximized for c = 0.75 at

θ = 20◦ for e = 0.3. Further investigation shows that the growth rates are maximized

for the same value of c = 0.75 at all latitudes for small values of e ≤ 0.6. However, as

the eccentricity is increased we note that at high latitudes of θ ≥ 60◦, the maximum

growth rates are predicted at c ≥ 0.76. Figure 6.12 demonstrates that the growth

rates are maximized for c = 0.78 at θ = 60◦ for e = 0.7. We note that in general

these predictions for oblate spheroids that the maximum growth rates at all latitudes

and eccentricities occur at c ≈ 0.76, are fully consistent with already predicted

experimental and theoretical results over rotating spheres.

The vortex angle ε at the onset of convective instability at lower to moderate

latitudes is predicted at c ≈ 0.9. However, as the latitude increases above 60◦, the

value of c tends towards 1.0 in order to have the value of ε ≈ 14◦ at the onset of

instability. This prediction is consistent with the prolate spheroid case. We note

that unlike the prolate spheroid case, in the oblate case for large values of e and high

latitudes, the value of ε = 14◦ at the onset of instability again returns at c ≈ 0.9.

However, as discussed in the prolate spheroid case that Kohama & Kobayashi (1983)

reported ε ≈ 14◦ at the onset of instability at each latitude of rotating sphere. In

general for all values of e and all latitudes, our theoretical results show that the

vortex angle ε ≈ 14◦ at the onset of instability, does not necessarily coincide with

the vortex speed ((c ≈ 0.76)) when the maximum growth rates occur. We will

discuss this slight discrepancy of our results with the experimental results further

in §6.6.

Figure 6.13 demonstrates that the increasing eccentricity has a stabilizing effect

for both type I & II instabilities for various speeds of traveling disturbances, although
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it is shown only at θ = 60◦. We have predicted that this observation is similar at

all other latitudes. From this we conclude that eccentricity has a stabilizing effect

on the convective instability of the rotating oblate spheroids for all vortex speeds

considered.

6.5 Comparison of the results of oblate spheroids

and prolate spheroids

In this section we focus on the main distinctions between the convective instabil-

ity results for the two different types of spheroids. The prolate spheroids convective

instability analyses were performed in Chapters 3 & 4.

In the prolate spheroid case, Figures 3.11 & 3.12 demonstrate that the critical

Reynolds numbers at θ = 10◦ for e ≥ 0.4 exceeded the critical Reynolds numbers

of crossflow and streamline curvature instabilities of rotating disk. However, in

the oblate spheroid case, Figures 6.4 & 6.5 demonstrate that the critical Reynolds

numbers for both types I & II instabilities at lower latitude θ = 10◦ for all values

of e are tending to converge to those critical Reynolds numbers of type I & II

predicted for rotating disk boundary layer. Physically, it seems sensible that near the

pole, oblate spheroids become more similar in shape to rotating disks than prolate

spheroids. As we mentioned in §3.5 that increase in curvature has a stabilizing

effect on convective instability for both type I & II instabilities of the boundary

layer over rotating prolate spheroids. This observation now also seems justified in

the rotating oblate spheroids case. Obviously at lower latitudes near the pole on the

surface of prolate spheroids the curvature is larger than that for oblate spheroids.

Further, we note that increase in curvature with e near the pole of prolate spheroids
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is robust, but the curvature decreases with e near the pole of oblate spheroids. This

is, therefore, near the pole on rotating prolate spheroids with increase in e we see

a rapid increase in critical Reynolds numbers for both types I & II instabilities.

Although this increase in critical Reynolds numbers for the oblate spheroids near

the pole is very slow. Note that the stabilizing effect with e, near the pole of the

prolate spheroids is happening due to the large increase in curvature. In the oblate

spheroids case the slow stabilizing effect near the pole, is due to the increase in

the rate of inflow into the boundary layer flow with e. This is also demonstrated in

Appendix E.4, Figures E.8–E.12, where the neutral curves for both prolate spheroids

and oblate spheroids are sketched in the same planes at θ = 10◦–60◦ for various

values of e. It is to be noted that by stabilization of convective instability at a

particular location we mean a neutral curve with large critical Reynolds number

than another at the same location and eccentricity for the two types of spheroids.

These figures also demonstrate that the eccentricity has a strong stabilizing effect

on the convective instability for prolate spheroids than those for oblate spheroids

up to latitudes θ ≤ 50◦. We note that eccentricity has a destabilizing effect in

terms of critical Reynolds number for prolate spheroids at θ ≥ 60◦ for e > 0.3.

However, at θ ≥ 60◦, eccentricity show a strong stabilizing effect for the convective

instability of oblate spheroids. This can be interpreted as the curvature increase with

increasing latitude over the surface of oblate spheroids and this exaggerates strongly

with eccentricity at high latitudes, therefore, we predict a strong stabilizing effect

of eccentricity for oblate spheroids at these high latitudes.

In §§4.1 & 6.4, we predicted that the growth rates for traveling vortices maxi-

mized for c ≈ 0.76 for all values of e at θ ≤ 60◦ for both types of spheroids but to

attain the maximum growth rates at θ ≥ 60◦ for large values of e, the value of c is
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slightly to be increased. However, we note that the increase in value of c to attain

the maximum growth rates at high latitudes for large values of e, is comparatively

slower for the oblate spheroids than that observed in the prolate spheroids case.

6.6 Conclusion

In this chapter we followed the techniques of Chapter 3 and formulated the per-

turbation equations that govern the stability of the boundary-layer over the general

family of rotating oblate spheroids. The convective instability analyses were per-

formed in detail. The techniques of Chapter 4 were extended to investigate the

amplification rates for traveling disturbances. In similar way to the prolate spheroid

case, when e = 0 our results for the oblate spheroids also reproduce those for the

rotating sphere.

In general, our results for the oblate spheroids are consistent with those for the

prolate spheroids. Similar to the prolate spheroids case, the convective instability

of the boundary layer for oblate spheroids is also dependent on the rate of inflow

into the boundary layer. We note that for each value of e, the rate of inflow into the

boundary layer over oblate spheroid, was decreasing with increasing latitude and

this influenced the convective instability of the boundary layer by decreasing the

critical Reynolds number with increasing latitude.

At a fixed latitude, our results suggest that increasing eccentricity has a stabi-

lizing effect i.e. higher rotation rates are required for the boundary layer to become

convectively unstable at a fixed latitude with higher value of e. This prediction

that eccentricity has a stabilizing effect, is true at all latitudes over oblate spheroids

except very near to the pole for very large values of e. However, at lower to mod-
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erate latitudes the stabilizing effect of eccentricity is slow compared to that at high

latitudes. Near the pole of oblate spheroids, the stabilizing effect of e is almost neg-

ligible. This reflects that as there is almost negligible increase in curvature near the

pole, which results in negligible increase in critical Reynolds numbers of convective

instability near the pole. Although, as the latitude increases, the curvature increases

and it further exaggerates with increasing e, we observe that the critical Reynolds

numbers also increase with e. At high latitudes, curvature exaggerates more rapidly

with e and this results with more rapid increase in critical Reynolds numbers. This

effect of e was slightly different in the prolate spheroids case, where e played a

strong stabilizing role from low to moderate latitudes and then at high latitudes,

the effect of e was reversed into a destabilizing role. From this we conclude that

the rotating prolate spheroids are convectively more stable than the rotating oblate

spheroids at lower to moderate latitudes for the same value of e θ. However, at high

latitudes, oblate spheroids become strongly stable than the prolate spheroids for

the same value of e and θ. In the case of traveling vortices, we also concluded that

for all speeds of rotating vortices, increasing eccentricity is delaying the convective

instability at all latitudes for the rotating oblate spheroids.

The number of spiral vortices for stationary vortices at the onset of instability

decreased with decreasing latitude and this is consistent with that predicted in the

prolate spheroid case. As the analysis moves towards the pole, the number of spiral

vortices for all values of e approaches that predicted for rotating disk by Malik

(1986). At the onset of instability the stationary vortices have roughly the same

vortex angles at low to moderate latitudes for all values of e and these are identical

to those predicted for prolate spheroids.

Similar to the prolate spheroid case we have shown that slowly rotating vortices
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are the most amplified and are likely to be selected in experiments where perfectly

smooth oblate spheroids are used. We predicted that the growth rates were max-

imized for vortices that rotate at around 75% of the oblate spheroid surface at all

θ ≤ 60◦ for all values of e ≤ 0.6. However this speed increases slightly for θ ≥ 60◦

and e > 0.6 up to 90% of the equatorial surface speed of the oblate spheroid.

The increase in the speed of vortices at maximum growth rates at high latitudes

and large values of e for oblate spheroids was comparatively slow than that in the

prolate spheroid case. This discovery is consistent with the unusual observation

of Kobayashi & Arai (1990) that vortices rotate at 76% of the sphere surface in

particular conditions where very smooth surfaces are selected and surface rough-

ness is avoided. This is also consistent with the theoretical predictions of Garrett

(2010a,b,c) in his analyses over the boundary layer of rotating disk, cone and sphere.

Further experiments similar to Kobayashi & Arai (1990) are suggested to confirm

our results at high latitudes and larger eccentricities.

We predicted that the vortex angle of 14◦ at the onset of instability at each

location does not coincide with the the maximum growth rates for all values of e.

This is also consistent with the prolate spheroid case. We found that for the rotating

oblate spheroids the vortex angle at the onset of instability is 14◦ for c ≈ 0.9 at

latitudes θ ≤ 60◦ for all values of e. However, at θ ≥ 70◦ the vortex speed c slightly

exaggerates for the vortex angle to be at 14◦, however this is for small values of e at

this high latitude. For large values of e and large latitudes, the vortex angle of 14◦

at the onset of instability again returns to c ≈ 0.9. This prediction is not consistent

with that observed by Kohama et al.(1983) and Kobayashi et al.(1990) that the

vortex angle at each latitude of the rotating sphere is 14◦ at the onset of instability.

As we suggested in §4.2 this discrepancy might be due to their use of different



Chapter 6: Convective instability for oblate spheroids 108

spheres in experiments. This is our opinion that they might have investigated the

vortex angle at the onset of instability on a sphere with larger surface roughness

and the vortex speed on another with perfectly smooth surface. We suggest further

experiments to clarify our predictions in these geometries.

Factors 1/(1+η/Re) that multiply terms in the governing perturbation equations

for the oblate spheroids have been replaced by unity and is similar to parallel flow

approximations found in many other boundary layer investigation. As we discussed

in §3.5 that this approximation is less valid at high latitudes. The validity of this

approximation is also discussed by Garrett (2002) in detail for e = 0. However,

this is our opinion that any inaccuracies introduced through this assumption are

not large enough to affect the conclusion of this work. It is also acknowledged that

our analyses would be inaccurate in situations where the growth rates are large and

non-linear effects dominate.
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Figure 6.3: Neutral curves in the (Re, α)-plane at all latitudes for e = 0.0 (–), 0.3

(−−), 0.6 (-.) & 0.8 (· · ·).
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spheroids due to crossflow effects at each latitude with those of the Malik (1986) for the

rotating disk (horizontal line).
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Figure 6.5: A comparison of the critical RD values for convective instability due to

streamline curvature mode of oblate spheroids at each latitude with those of the Malik
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Figure 6.6: Linear convective growth rates for stationary disturbances through the

convectively unstable region at various θ for e = 0.6.
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Figure 6.7: Neutral curves for traveling disturbances with c=0.7 (· · ·), 0.8 (-.), 0.9

(−−), 1.0 (–), 2.0 (-x) at θ = 20◦ for e = 0.3.
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Figure 6.8: Neutral curves for traveling disturbances with c=0.7 (· · ·), 0.8 (-.), 0.9

(−−), 1.0 (–), 2.0 (-x) at θ = 60◦ for e = 0.7.
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Figure 6.9: Linear convective growth rates for travelling-mode disturbances with

c = 0.7–2 for θ = 20◦, e = 0.3.
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Figure 6.10: Linear convective growth rates for travelling-mode disturbances with

c = 0.7–2 for θ = 60◦, e = 0.7.
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Figure 6.11: Maximum linear convective growth rates at θ = 20◦ for e = 0.3 at

Re = 1400.



Chapter 6: Convective instability for oblate spheroids 114

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

c

m
ax

(−
α i)

Figure 6.12: Maximum linear convective growth rates at θ = 60◦ for e = 0.7 at

Re = 370.
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θ = 60◦ for e = 0.3 (–) & e = 0.7 · · ·.



Chapter 7

Conclusions

This thesis is concerned with the laminar flow and convective instability within

the boundary layer over spheroids rotating in otherwise still fluid. A detailed sum-

mary and conclusion drawn from the results of each investigation can be found at

the end of the relevant chapters. However, in §7.1 we review the important results

and make some general conclusions, and in §7.2 suggestions for further research are

made in the light of this thesis.

7.1 Completed work

As in previous stability analyses over other geometries, we began with the lami-

nar flow within the boundary layer and then the stability analyses were performed.

We followed this procedure to investigate the stability analysis over the two types

of spheroids. We introduced two distinct three-dimensional orthogonal coordinate

systems for the prolate spheroids and oblate spheroids. By using these two coordi-

nate systems, the laminar boundary-layer equations have been formulated for each

type of spheroids. As discussed in Chapter 1, until now we are unaware of the
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laminar flow equations for these two types of spheroids, but indeed these equations

are consistent with those established for the rotating sphere in the literature. An

eccentricity parameter e appears in each set of the laminar flow equations which

identify each particular spheroid within its family. We solved these equations by

using the two different solution methods i.e. the series solution method (originally

introduced by Banks (1965)) and an accurate numerical method (using the NAG

routine D03PEF). The results were compared for increasing eccentricity for each

type of spheroid. For e = 0, both systems reproduced exactly the same results for

the laminar flow over rotating spheres.

The perturbation equations that govern the stability problem have been for-

mulated separately for both types of spheroids. Setting the eccentricity parameter

e = 0, both systems reproduce the same perturbation equations for the rotating-

sphere boundary layer that appeared in the literature Garrett & Peake (2002); Gar-

rett (2010c). This is physically reasonable as for eccentricity equal to zero, both

types of spheroids reduce geometrically to a sphere.

We have noticed that as the latitude is increased for each type of spheroid, the

normal component of velocity which represents the rate of inflow into the boundary

layer, is decreased and this was the same for all values of eccentricity. This reflected a

major implication for the stability of the boundary layer over both types of spheroids.

We note that for each value of e, as the latitude was increased, the critical Reynolds

numbers for convective instability were decreased. This was the same for both types

of spheroids. From this we conclude that the convective instability is dependent

in general on the laminar flow inside the boundary layer over rotating spheroids,

and is influenced essentially by the rate of inflow into the boundary layer. This is

consistent with the previous experimental and theoretical observations over rotating
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spheres, where we see that keeping in mind the curvature of a sphere is constant,

but the boundary layer became convectively unstable at higher latitudes for smaller

angular rotation rates than at lower latitudes. This fact was observed for both types

of spheroids at each value of eccentricity that the instabilities moved from higher

latitudes towards lower latitudes with increasing angular rotation rates i.e. Reynolds

numbers.

From above discussion we conclude that the rate of inflow (the W -profile) into the

boundary-layer flow over both types of spheroids, influence the convective instability

within the boundary-layer flow. For increasing the rate of inflow into the boundary

layer flow we predict increase in the critical Reynolds numbers for both types I (cross-

flow) & II (streamline curvature) modes and vice versa. Therefore it is reasonable

to expect that the increase or decrease in the rate of inflow into the boundary-layer

flow due to the variation in e should also influence the critical Reynolds numbers

for both types I & II modes. In the oblate spheroid case for increasing e, the rate of

inflow into the boundary-layer increases at each latitude. This increase in the rate

of inflow has a stabilizing effect on the convective instability within the boundary

layer flow over oblate spheroids. At lower latitudes of oblate spheroids, the rate

of inflow increases slightly with increasing e and this reflects slight increase in the

critical Reynolds numbers for both types I & II modes. However, above moderate

latitudes of oblate spheroids, the rate of inflow at a fixed latitude increases strongly

with e, which influence the boundary layer flow by strongly increasing the critical

Reynolds number at these high latitudes.

On the other hand for the prolate spheroids at each particular latitude, the

rate of inflow into the boundary layer flow decreases with increasing e. However, its

effect on the stability is not observed as discussed above in the oblate spheroids case.
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Conventionally, the decrease in the rate of inflow into the boundary-layer should have

a destabilizing effect on the boundary layer flow over any such related geometries.

For prolate spheroids at latitudes θ ≥ 60◦, this convention is in good agreement.

This is obvious from the results that at a fixed latitude, critical Reynolds numbers

decrease with increasing e at these high latitudes of prolate spheroids. However,

this convention does not agree at moderate to lower latitudes of prolate spheroids

for increasing eccentricity at a fixed latitude. We see that at lower to moderate

latitudes of prolate spheroids, the critical Reynolds numbers increase with increasing

eccentricity at a fixed latitude. This increase in critical Reynolds numbers with e

exaggerates with decreasing latitude. One possible explanation for this stabilizing

effect despite the slight decrease in the rate of inflow with e, is the large local mean

curvature at lower latitudes. For prolate spheroids, simple algebra and calculus leads

to derive that decreasing latitude, increase the curvature and this exaggerates with

increasing e. The type II mode is dependent on the curvature of the body and the

neutral curves of instability for prolate spheroids show that, increasing curvature

has a stabilizing effect on the type II lobe. At lower latitudes of prolate spheroids,

increase in e strongly increase the curvature. Since, the decrease in the rate of

inflow with e particularly at lower latitudes for prolate spheroids, is small and its

destabilizing effect on the boundary layer should also be small. Although this small

destabilize effect is not seen due to the strong curvature effects with increasing e

at lower to moderate latitudes. Note that similar phenomenon also happens near

the pole of oblate spheroids, where the curvature is very small and that we observe

a destabilizing effect at θ = 10◦ for e ≥ 0.7. We suspect moving below 10◦, the

effect of e will be more destabilizing. Moreover, at lower to moderate latitudes of

oblate spheroid, the stabilizing effect of e is negligible. This is because at lower
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to moderate latitude curvature is small and also the rate of inflow slightly increase

with e. Consequently, we see slight increase in critical Reynolds numbers at low to

moderate latitudes of oblate spheroids.

The results obtained for the laminar flow equations by using the two different

solutions methods, were compared visually and numerically by introducing the root

mean square (RMS) errors. We found that the RMS errors were increasing with

increasing latitudes for both types of spheroids and these errors were exaggerated

with increasing eccentricity. The implications of the RMS errors for the stability of

the boundary layer for both types of spheroids were consistent with that predicted

for the laminar flow over rotating spheroids. We observed that at low to moderate

latitudes the series solution produce accurate stability characteristics for both types

of spheroids for all values of e. However, the discrepancy for the stability charac-

teristics due to series solution increased at high latitudes, which exaggerated with

increasing eccentricity. The interested reader is refereed to the relevant chapters

to know the exact limits of latitudes and eccentricity up to which series solutions

can be used to capture with accuracy the characteristics of convective instability for

both types of spheroids. We note that we are concerned with the use of the flow

profiles within the stability analysis and other applications may require different

limits about the accuracy of the series solution approximations.

For both types of spheroids, we observed that the slowly rotating vortices are the

most amplified and are likely to be selected in experiments where perfectly smooth

rotating spheroids are used. We predicted that for both types of spheroids, for

small values of eccentricity the growth rates were maximized at approximately 76%

of the local surface speed of the spheroids. However, this speed slightly increased

at high latitudes of 60◦ and e ≥ 0.6 up to 90% of the local surface speed of rotating
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oblate spheroids. For prolate spheroids, this speed was increased up to 100% of

the local surface speed at these high latitudes and large values of eccentricity. This

prediction is consistent with the experimental observations of Kohama & Kobayashi

(1983) and Kobayashi & Arai (1990) that vortices rotate at 76% of the sphere surface

in particular condition where very smooth surfaces are used and surface roughness

is avoided. This prediction is also consistent with the theoretical observations of

Garrett (2010a,b,c) in the stability analysis of the boundary layer over rotating

disk, cone and sphere.

Kohama et al.(1983) and Kobyashi et al.(1990) reported a vortex angle 14◦ at

the onset of instability over the rotating sphere. We note that the theoretical vortex

angle for both types of spheroids is approximately 14◦ at the onset of instability at all

latitudes for the vortex speed at approximately 90% of the surface speed. However,

the vortex speed slightly exaggerates with increasing latitude and eccentricity for

the vortex angle to be at 14◦ at the onset of instability. This means that for both

types of rotating spheroids, the vortex angle of ε ≈ 14◦ at the onset of instability

at all latitudes does not necessarily coincide with the maximum growth rates. This

is the same for all values of eccentricity. This is a slight discrepancy between the

theoretical and experimental results. We, therefore suggest more such experiments

to clarify these theoretical predictions, with greater focus on vortex speed.

7.2 Further work

This thesis must be considered as a preliminary investigation into the boundary

layer over rotating spheroids. As this thesis is a natural generalization of the sta-

bility analysis over the boundary layer of rotating sphere by Garrett (2002), where
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he performed other analyses in addition to the convective instability analyses. In

particular, absolute instability analyses and the repetition of these analyses in axial

flow. The absolute instability is likely to be linked to transition of the flow into a

turbulent flow and is very important in many engineering applications. In the same

way, in future we intend to perform the absolute instability analysis over both types

of spheroids in still fluid as well as in the uniform axial flow. We note that that

in the absolute instability analysis, the perturbation equations for both types of

spheroids remain the same. Similarly for the stability analysis of the boundary layer

over spheroids rotating in uniform axial flow, we only need to modify the steady

laminar flow. We also need to numerically clarify the stability analysis very near to

the poles of both types of spheroids. Particularly as in the prolate spheroid case,

near to the pole at 10◦ for large values of eccentricity, the critical Reynolds number

exceeded that predicted for the rotating disk. We need to investigate how far these

exceed the critical Reynolds number of rotating disk when the latitude is further

reduced towards the pole. We also suggest experiments to investigate the stability

of the boundary layer of rotating spheroids to clarify our results presented in this

thesis.

In the investigation of rotating cone boundary layer, Garrett, Hussain & Stephen

(2009a,b) compared their numerical results at large Reynolds numbers with the

results obtained through another approach to the boundary-layer problem, called

an asymptotic analysis. The asymptotic analysis are rigorous at (O(1/R)) and

we can also use this approach to compare our results at large Re for the rotating

spheroids. The global mode analysis such as found by Pier & Huerre (2001) in the

study of wake flows, on rotating disks by Davies & Carpenter (2001); Pier (2002)

and rotating sphere by Garrett (2002), can also be extended for rotating spheroids.
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We can also include the generalization of such stability analysis over other ax-

isymmetric bodies of revolution like the convex and concave paraboloids, ovals,

cylinders and tori etc. We believe these bodies can be modeled in a similar way to

the rotating spheroids by choosing some appropriate three dimensional orthogonal

coordinate system.
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Appendix A

3D Navier-Stoke’s and Continuity

Equations

In this appendix we present the incompressible 3D Navier-Stoke’s and continu-

ity equations in two distinct three dimensional coordinate systems that were not

shown in the main text of this thesis. In Appendix A.1 we present the derivation

of the Navier-Stoke’s and continuity equations in 3D general orthogonal curvilinear

coordinates. These full 3D Navier-Stoke’s and continuity equations in curvilinear

coordinates are transformed separately into prolate spheroidal and oblate spheroidal

coordinate systems shown in Appendix A.1.1 & Appendix A.1.2 respectively.

A.1 3D General Orthogonal Coordinates

The Navier Stoke’s equations for fluid flow in the absence of external forces can

be written as,

∂~V

∂t
+

(
~V · ~∇

)
~V = −1

ρ
~∇P + ν∇2~V (A.1)
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Where ~V is the velocity, ρ density and ν the kinematic viscosity of the fluid. Using

the following vector identities,

(
~V · ~∇)

~V = −~V × (
~∇× ~V

)
+ ~∇(1

2
V 2

)

And ∇2~V = ~∇(
~∇ · ~V )− ~∇× (

~∇× ~V
)

The Equation (A.1) takes the following form,

∂~V

∂t
− ~V × (

~∇× ~V
)

+ ~∇(1

2
V 2

)
= −1

ρ
~∇P + ν

[
~∇(

~∇ · ~V )− ~∇× ~Ω
]

(A.2)

Where ~Ω = ∇ × ~V is the vorticity. Let (x1, x2, x3) be the general orthogonal

curvilinear coordinates and ~V = u1 ê1 + u2 ê2 + u3 ê3 Where ê1, ê2, ê3 are the unit

vectors in the direction of increasing x1, x2 and x3 respectively.

The components of a gradient are

( 1

h1

∂

∂x1

,
1

h2

∂

∂x2

,
1

h3

∂

∂x3

)

Where the quantities h1 , h2 , h3 are called the scale factors. Using the gradient

and divergence of vector ~V we can write the components of ~∇(
~∇ · ~V )

as follows,

1

h1

∂

∂x1

(
1

h1h2h3

( ∂

∂x1

(h2h3u1) +
∂

∂x2

(h3h1u2) +
∂

∂x3

(h1h2u3)
))

(A.3)

1

h2

∂

∂x2

(
1

h1h2h3

( ∂

∂x1

(h2h3u1) +
∂

∂x2

(h3h1u2) +
∂

∂x3

(h1h2u3)
))

(A.4)

1

h3

∂

∂x3

(
1

h1h2h3

( ∂

∂x1

(h2h3u1) +
∂

∂x2

(h3h1u2) +
∂

∂x3

(h1h2u3)
))

(A.5)

~Ω = ~∇× ~V =
1

h1h2h3

∣∣∣∣∣∣∣∣∣∣∣

h1e1 h2e2 h3e3

∂
∂x1

∂
∂x2

∂
∂x3

h1u1 h2u2 h3u3

∣∣∣∣∣∣∣∣∣∣∣
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So the components of ~Ω can be written as

ξ1 =
1

h2h3

(
∂

∂x2

(h3u3)− ∂

∂x3

(h2u2)

)
(A.6)

ξ2 =
1

h3h1

(
∂

∂x3

(h1u1)− ∂

∂x1

(h3u3)

)
(A.7)

ξ3 =
1

h1h2

(
∂

∂x1

(h2u2)− ∂

∂x2

(h1u1)

)
(A.8)

The components of the vector product ~V × ~Ω are

~V × ~Ω =
(
u2ξ3 − u3ξ2 , u3ξ1 − u1ξ3 , u1ξ2 − u2ξ1

)
(A.9)

The components of ~∇(1
2
V 2) (after simplification) are

1

h1

(
u1

∂u1

∂x1

+ u2
∂u2

∂x1

+ u3
∂u3

∂x1

)
(A.10)

1

h2

(
u1

∂u1

∂x2

+ u2
∂u2

∂x2

+ u3
∂u3

∂x2

)
(A.11)

1

h3

(
u1

∂u1

∂x3

+ u2
∂u2

∂x3

+ u3
∂u3

∂x3

)
(A.12)

The components of −~V × ~Ω + ~∇(1
2
V 2) (after simplification) are

u1

h1

∂u1

∂x1

+
u2

h2

∂u1

∂x2

+
u3

h3

∂u1

∂x3

+
u1u2

h1h2

∂h1

∂x2

− u2
2

h1h2

∂h2

∂x1

+
u1u3

h3h1

∂h1

∂x3

− u2
3

h3h1

∂h3

∂x1

(A.13)
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∂u2
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+
u2

h2

∂u2

∂x2

+
u3

h3

∂u2

∂x3

+
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h2h1

∂h2
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− u2
1

h1h2

∂h1

∂x2

− u2
3

h2h3

∂h3

∂x2

+
u2u3

h2h3

∂h2

∂x3

(A.14)

u1

h1

∂u3

∂x1
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u2

h2

∂u3

∂x2

+
u3

h3

∂u3

∂x3

− u2
1

h3h1

∂h1

∂x3

+
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∂h3

∂x1

+
u3u2

h2h3

∂h3

∂x2

− u2
2

h2h3

∂h2

∂x3

(A.15)

The components of ~∇× ~Ω , are the following,

1

h2h3

(
∂(h3ξ3)

∂x2

− ∂(h2ξ2)

∂x3

)
(A.16)

1

h1h3

(
∂(h1ξ1)

∂x3

− ∂(h3ξ3)

∂x1

)
(A.17)

1

h1h2

(
∂(h2ξ2)

∂x1

− ∂(h1ξ1)

∂x2

)
(A.18)
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Substituting equations (A.3)–(A.18) in equation (A.2) we write the full Navier

Stoke’s equations explicitly in general orthogonal curvilinear coordinates as

x1 component:

∂u1

∂t
+

u1

h1

∂u1

∂x1

+
u2

h2

∂u1

∂x2

+
u3

h3

∂u1

∂x3

+
u1u2

h1h2

∂h1

∂x2

− u2
2

h1h2

∂h2

∂x1

+
u1u3

h3h1

∂h1

∂x3

− u2
3

h3h1

∂h3

∂x1

= − 1

ρh1

∂P

∂x1

+ ν

[
1

h1

∂

∂x1

(
1

h1h2h3

( ∂

∂x1

(h2h3u1)

+
∂

∂x2

(h3h1u2) +
∂

∂x3

(h1h2u3)
))

− 1

h2h3

(
∂(h3ξ3)

∂x2

− ∂(h2ξ2)

∂x3

)]
(A.19)

x2 component:

∂u2

∂t
+

u1

h1

∂u2

∂x1

+
u2

h2

∂u2

∂x2

+
u3

h3

∂u2

∂x3

+
u2u1

h2h1

∂h2

∂x1

− u2
1

h1h2

∂h1

∂x2

− u2
3

h2h3

∂h3

∂x2

+
u2u3

h2h3

∂h2

∂x3

= − 1

ρh2

∂P

∂x2

+ ν

[
1

h2

∂

∂x2

(
1

h1h2h3

( ∂

∂x1

(h2h3u1)

+
∂

∂x2

(h3h1u2) +
∂

∂x3

(h1h2u3)
))

− 1

h1h3

(
∂(h1ξ1)

∂x3

− ∂(h3ξ3)

∂x1

)]
(A.20)

x3 component:

∂u3

∂t
+

u1

h1

∂u3

∂x1

+
u2

h2

∂u3

∂x2

+
u3

h3

∂u3

∂x3

− u2
1

h3h1

∂h1

∂x3

+
u3u1

h3h1

∂h3

∂x1

+
u3u2

h2h3

∂h3

∂x2

− u2
2

h2h3

∂h2

∂x3

= − 1

ρh3

∂P

∂x3

+ ν

[
1

h3

∂

∂x3

(
1

h1h2h3

( ∂

∂x1

(h2h3u1)

+
∂

∂x2

(h3h1u2) +
∂

∂x3

(h1h2u3)
))

− 1

h1h2

(
∂(h2ξ2)

∂x1

− ∂(h1ξ1)

∂x2

)]
(A.21)

For incompressible flow the continuity equation in general orthogonal curvilinear

coordinates becomes,

1

h1h2h3

( ∂

∂x1

(h2h3u1) +
∂

∂x2

(h3h1u2) +
∂

∂x3

(h1h2u3)
)

= 0 (A.22)

Now that the 3D Navier-Stoke’s and continuity equations are available in general

orthogonal coordinates, we can easily transform these into any other physical 3D

orthogonal coordinate system.
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A.1.1 Prolate spheroidal Coordinate System

In this section we show the Navier-Stoke’s and continuity equations in prolate

spheroidal coordinates. The prolate spheroidal coordinate system has been shown

in §2.1. We transform the general orthogonal coordinates presented in §A.1 into

prolate spheroidal coordinates and using (A.19)–(A.22) we obtain the continuity

and Navier-Stoke’s equations in prolate spheroidal coordinates. Where the scale

factors were derived as follows ,

hη? =

√
η?2 − d?2 cos2 θ

η?2 − d?2 , (A.23)

hθ =

√
η?2 − d?2 cos2 θ , (A.24)

hφ =

√
η?2 − d?2 sin θ , (A.25)

The continuity equation is,

(
d?2 cos θ sin θ

(η?2 − d?2 cos2 θ)3/2
+

cot θ√
η?2 − d?2 cos2 θ

)
U? +

1√
η?2 − d?2 sin θ

∂V ?

∂φ

+
1√

η?2 − d?2 cos2 θ

∂U?

∂θ
+

(
η?

√
η?2 − d?2

(η?2 − d?2 cos2 θ)3/2
+

η?

√
η?2 − d?2 cos2 θ

√
η?2 − d?2

)
W ? +

√
η?2 − d?2

η?2 − d?2 cos2 θ

∂W ?

∂η?
= 0 (A.26)

The θ component of the Navier Stokes equations in Prolate Spheroidal coordi-

nates is written as ,

∂U?

∂t?
+

U?

√
η?2 − d?2 cos2 θ

∂U?

∂θ
+

V ?

√
η?2 − d?2 sin θ

∂U?

∂φ

+
W ?

√
η?2 − d?2

√
η?2 − d?2 cos2 θ

∂U?

∂η?
− V ?2 cot θ√

η?2 − d?2 cos2 θ

+
U?W ?η?

√
η?2 − d?2

(η?2 − d?2 cos2 θ)3/2
− W ?2d?2 cos θ sin θ

(η?2 − d?2 cos2 θ)3/2
=
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− 1

ρ?
√

η?2 − d?2 cos2 θ

∂P ?

∂θ
+ ν?

[
(η?2 − d?2)

(η?2 − d?2 cos2 θ)

∂2U?

∂η?2

+
1

(η?2 − d?2 cos2 θ)

∂2U?

∂θ2
+

csc2 θ

(η?2 − d?2)

∂2U?

∂φ2

+
2η?

(η?2 − d?2 cos2 θ)

∂U?

∂η?
− 2d?2

√
η?2 − d?2 sin θ cos θ

(η?2 − d?2 cos2 θ)2

∂W ?

∂η?

+
cot θ

(η?2 − d?2 cos2 θ)

∂U?

∂θ
+

2 η?
√

η?2 − d?2

(η?2 − d?2 cos2 θ)2

∂W ?

∂θ

− 2 csc θ cot θ√
η?2 − d?2

√
η?2 − d?2 cos2 θ

∂V ?

∂φ
+

{
3 η?2 − d?2(1 + sin2 θ)

(η?2 − d?2 cos2 θ)2

− 3 η?2(η?2 − d?2)

(η?2 − d?2 cos2 θ)3
− 3 d?4 sin2 θ cos2 θ

(η?2 − d?2 cos2 θ)3

− csc2 θ

(η?2 − d?2 cos2 θ)

}
U? − 2 d?2η? sin θ cos θ√

η?2 − d?2(η?2 − d?2 cos2 θ)2
W ?

]
(A.27)

The φ–component of Navier-Stoke’s equations is written as ,

∂V ?

∂t?
+

U?

√
η?2 − d?2 cos2 θ

∂V ?

∂θ
+

V ? csc θ√
η?2 − d?2

∂V ?

∂φ

+
W ?

√
η?2 − d?2

√
η?2 − d?2 cos2 θ

∂V ?

∂η?
+

U?V ? cot θ√
η?2 − d?2 cos2 θ

+
η?V ?W ?

√
η?2 − d?2 cos2 θ

√
η?2 − d?2

= − csc θ

ρ?
√

η?2 − d?2

∂P ?

∂φ

+ ν?

[
(η?2 − d?2)

(η?2 − d?2 cos2 θ)

∂2V ?

∂η?2
+

2η?

(η?2 − d?2 cos2 θ)

∂V ?

∂η?

+
1

(η?2 − d?2 cos2 θ)

∂2V ?

∂θ2
+

csc2 θ

(η?2 − d?2)

∂2V ?

∂φ2

+
cot θ

(η?2 − d?2 cos2 θ)

∂V ?

∂θ
+

(
1

(η?2 − d?2 cos2 θ)

− csc2 θ

(η?2 − d?2 cos2 θ)
− η?2

(η?2 − d?2 cos2 θ)(η?2 − d?2)

)
V ?

+
2 csc θ cot θ√

η?2 − d?2
√

η?2 − d?2 cos2 θ

∂U?

∂φ

+
2η? csc θ

(η?2 − d?2)
√

η?2 − d?2 cos2 θ

∂W ?

∂φ

]
(A.28)

The η?–component of Navier-Stokes equations in prolate spheroidal coordinates is
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written as ,

∂W ?

∂t?
+

U?

√
η?2 − d?2 cos2 θ

∂W ?

∂θ
+

V ? csc θ√
η?2 − d?2

∂W ?

∂φ

+

√
η?2 − d?2

√
η?2 − d?2 cos2 θ

W ? ∂W ?

∂η?
− η?

√
η?2 − d?2

(η?2 − d?2 cos2 θ)3/2
U?2

+
d?2 cos θ sin θ

(η?2 − d?2 cos2 θ)3/2
W ?U? − η?V ?2

√
η?2 − d?2

√
η?2 − d?2 cos2 θ

= −
√

η?2 − d?2

ρ?
√

η?2 − d?2 cos2 θ

∂P ?

∂η?
+ ν?

[(
η?2 − d?2

η?2 − d?2 cos2 θ

)
∂2W ?

∂η?2

+
2η?

(η?2 − d?2 cos2 θ)

∂W ?

∂η?
+

1

(η?2 − d?2 cos2 θ)

∂2W ?

∂θ2

+
cot θ

(η?2 − d?2 cos2 θ)

∂W ?

∂θ
+

csc2 θ

(η?2 − d?2)

∂2W ?

∂φ2

+
2d?2

√
η?2 − d?2 cos θ sin θ

(η?2 − d?2 cos2 θ)2

∂U?

∂η?
− 2η?

√
η?2 − d?2

(η?2 − d?2 cos2 θ)2

∂U?

∂θ

− 2η? csc θ

(η?2 − d?2)
√

η?2 − d?2 cos2 θ

∂V ?

∂φ
+

{
1

(η?2 − d?2 cos2 θ)

− η?2

(η?2 − d?2)(η?2 − d?2 cos2 θ)
+

(η?2 − d?2)

(η?2 − d?2 cos2 θ)2

− 3η?2(η?2 − d?2)

(η?2 − d?2 cos2 θ)3
− d?2(3 sin2 θ − 2)

(η?2 − d?2 cos2 θ)2

− 3d?4 sin2 θ cos2 θ

(η?2 − d?2 cos2 θ)3

}
W ? − 2η?

√
η?2 − d?2 cot θ

(η?2 − d?2 cos2 θ)2
U?

]
(A.29)

A.1.2 Oblate Spheroidal Coordinates System

The oblate spheroidal coordinate system is shown in §5.1. We transform the

general orthogonal coordinates into oblate spheroidal coordinates. Using (A.19)–

(A.22) we obtain the continiuty and Navier-Stoke’s equations in oblate spheroidal

coordinates shown here. The scale factors were derived as follows,

hη? =

√
η?2 − d?2 sin2 θ

η?2 − d?2 , (A.30)
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hθ =

√
η?2 − d?2 sin2 θ , (A.31)

hφ = η? sin θ , (A.32)

The continuity equation for incompressible fluid flow in oblate spheroidal coor-

dinates is ,

(
− d?2 cos θ sin θ

(η?2 − d?2 sin2 θ)3/2
+

cot θ√
η?2 − d?2 sin2 θ

)
U? +

csc θ

η?

∂V ?

∂φ

+
1√

η?2 − d?2 sin2 θ

∂U?

∂θ
+

(
η?

√
η?2 − d?2

(η?2 − d?2 sin2 θ)3/2

+

√
η?2 − d?2

η?
√

η?2 − d?2 sin2 θ

)
W ? +

√
η?2 − d?2

η?2 − d?2 sin2 θ

∂W ?

∂η?
= 0 (A.33)

The θ component of the Navier Stokes equations in Oblate Spheroidal coordinates

is written as below ,

∂U?

∂t?
+

U?

√
η?2 − d?2 sin2 θ

∂U?

∂θ
+

V ? csc θ

η?

∂U?

∂φ
+

W ?
√

η?2 − d?2

√
η?2 − d?2 sin2 θ

∂U?

∂η?

− V ?2 cot θ√
η?2 − d?2 sin2 θ

+
U?W ?η?

√
η?2 − d?2

(η?2 − d?2 sin2 θ)3/2
+

W ?2d?2 cos θ sin θ

(η?2 − d?2 sin2 θ)3/2

= − 1

ρ?
√

η?2 − d?2 sin2 θ

∂P ?

∂θ
+ ν?

[
(η?2 − d?2)

(η?2 − d?2 sin2 θ)

∂2U?

∂η?2

+
1

(η?2 − d?2 sin2 θ)

∂2U?

∂θ2
+

csc2 θ

η?2

∂2U?

∂φ2
+

2η?2 − d?2 sin2 θ

η?(η?2 − d?2 sin2 θ)

∂U?

∂η?

+
2d?2

√
η?2 − d?2 sin θ cos θ

(η?2 − d?2 sin2 θ)2

∂W ?

∂η?
+

cot θ

(η?2 − d?2 sin2 θ)

∂U?

∂θ

+
2
√

η?2 − d?2

η?(η?2 − d?2 sin2 θ)

∂W ?

∂θ
− 2 csc θ cot θ

η?
√

η?2 − d?2 sin2 θ

∂V ?

∂φ

+

(−η?2 + 2d?2 sin2 θ − 2d?2 sin4 θ
)

sin2 θ
(
η?2 − d?2 sin2 θ

)2 U?

+
2d?2 sin θ cos θ

√
η?2 − d?2

η?(η?2 − d?2 sin2 θ)2
W ?

]
(A.34)
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The φ–component of Navier-Stoke’s equations is written as ,

∂V ?

∂t?
+

U?

√
η?2 − d?2 sin2 θ

∂V ?

∂θ
+

V ? csc θ

η?

∂V ?

∂φ

+
W ?

√
η?2 − d?2

√
η?2 − d?2 sin2 θ

∂V ?

∂η?
+

U?V ? cot θ√
η?2 − d?2 sin2 θ

+

√
η?2 − d?2V ?W ?

η?
√

η?2 − d?2 sin2 θ
= −csc θ

ρ?η?

∂P ?

∂φ

+ ν?

[
(η?2 − d?2)

(η?2 − d?2 sin2 θ)

∂2V ?

∂η?2
+

(
2η?2 − d?2

)

η?(η?2 − d?2 sin2 θ)

∂V ?

∂η?

+
1

(η?2 − d?2 sin2 θ)

∂2V ?

∂θ2
+

csc2 θ

η?2

∂2V ?

∂φ2

+
cot θ

(η?2 − d?2 sin2 θ)

∂V ?

∂θ
−

(
η?2 − 2d?2 sin2 θ

)

η?2 sin2 θ
(
η?2 − d?2 sin2 θ

)V ?

+
2 csc θ cot θ

η?
√

η?2 − d?2 sin2 θ

∂U?

∂φ

+
csc θ

(
2η?2 − d?2 sin2 θ

) √
η?2 − d?2

η?2
(
η?2 − d?2 sin2 θ

)3/2

∂W ?

∂φ

]
(A.35)

The η?–component of Navier-Stokes equations in Oblate spheroidal coordinates

is ,

∂W ?

∂t?
+

U?

√
η?2 − d?2 sin2 θ

∂W ?

∂θ
+

V ? csc θ

η?

∂W ?

∂φ

+

√
η?2 − d?2

√
η?2 − d?2 sin2 θ

W ? ∂W ?

∂η?
− η?

√
η?2 − d?2

(η?2 − d?2 sin2 θ)3/2
U?2

− d?2 cos θ sin θ

(η?2 − d?2 sin2 θ)3/2
W ?U? −

√
η?2 − d?2V ?2

η?
√

η?2 − d?2 sin2 θ

= −
√

η?2 − d?2

ρ?
√

η?2 − d?2 sin2 θ

∂P ?

∂η?
+ ν?

[(
η?2 − d?2

η?2 − d?2 sin2 θ

)
∂2W ?

∂η?2

+
2η?2 − d?2

η?(η?2 − d?2 sin2 θ)

∂W ?

∂η?
+

1

(η?2 − d?2 sin2 θ)

∂2W ?

∂θ2

+
cot θ

(η?2 − d?2 sin2 θ)

∂W ?

∂θ
+

csc2 θ

η?2

∂2W ?

∂φ2

− 2d?2
√

η?2 − d?2 cos θ sin θ

(η?2 − d?2 sin2 θ)2

∂U?

∂η?
− 2η?

√
η?2 − d?2

(η?2 − d?2 sin2 θ)2

∂U?

∂θ
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− 2
√

η?2 − d?2 csc θ

η?2
√

η?2 − d?2 sin2 θ

∂V ?

∂φ
+

{−2η?6 + 4η?4d?2
(
4− sin2 θ

)

η?2
(
η?2 − d?2 sin2 θ

)3

+
−2η?2d?4 sin2 θ + d?4sin4 θ − (

2 cos θ − sin2 θ
)
η?4d?2

η?2
(
η?2 − d?2 sin2 θ

)3

+
sin2 θ (2 cos2 θ − 2 cos θ + 1) η?2d?2

η?2
(
η?2 − d?2 sin2 θ

)3

}
W ? − 2η?

√
η?2 − d?2 cot θ

(η?2 − d?2 sin2 θ)2
U?

]
(A.36)



Appendix B

Series solution and comparisons of

flow profiles of the laminar

boundary-layer of prolate spheroid

This Appendix is related to Chapter 2 of this thesis. In Appendix B.1 we present

the series solution for the laminar boundary layer equations of the rotating prolate

spheroids. Values of quantities F ′
n(0), G′

n(0), Hn(∞) for n=1,3,5,7 are presented in

Appendix B.2. In Appendix B.3 comparison of flow profiles due to the numerical

and series solutions are shown at various latitudes and eccentricities.

134
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B.1 Details of the series solution for the prolate

family

F 2
1 + H1F

′
1 −G2

1 = F ′′
1 (B.1)

4F1F3 + H1F
′
3 + H3F

′
1 − 2G1G3+

(
1

3
− e2

2(1− e2)

)
G2

1 +
e2

2(1− e2)

(
F 2

1 + H1F
′
1

)
= F ′′

3 (B.2)

6F1F5 + 3F 2
3 + H1F

′
5 + H3F

′
3 + H5F

′
1 − 2G1G5−

G2
3 +

(
2

3
− e2

(1− e2)

)
G1G3 +

(
1

45
+

e2(8− 5e2)

24(1− e2)2

)
G2

1−

e2(4− e2)

24(1− e2)2

(
F 2

1 + H1F
′
1

)
+

e2

2(1− e2)
(4F1F3 + H1F

′
3 + H3F

′
1) = F ′′

5 (B.3)

8F1F7 + 8F3F5 + H1F
′
7 + H3F

′
5 + H5F

′
3 + H7F

′
1−

2G1G7 − 2G3G5 +

( −e2

2(1− e2)
+

1

3

)
G2

3+

(
2

3
− e2

1− e2

)
G1G5 +

(
2

45
+

(8− 5e2)e2

12(1− e2)2

)
G1G3+

(
2

945
− e2(16− 2e2 + e4)

240(1− e2)3

)
G2

1+

e2(16 + 28e2 + e4)

720(1− e2)3

(
F 2

1 + H1F
′
1

)−
e2(4− e2)

24(1− e2)2

(
4F1F3 + H1F

′
3 + H3F

′
1

)
+

e2

2(1− e2)

(
6F1F5 + 3F 2

3 + H1F
′
5 + H3F

′
3 + H5F

′
1

)
= F ′′

7 (B.4)
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2F1G1 + H1G
′
1 = G′′

1 (B.5)

4F1G3 + 2F3G1 + H1G
′
3 + H3G

′
1+(

e2

1− e2
− 1

3

)
F1G1 +

e2

2(1− e2)
H1G

′
1 = G′′

3 (B.6)

6F1G5 + 4F3G3 + 2F5G1 + H1G
′
5 + H3G

′
3 + H5G

′
1+(

2e2

(1− e2)
− 1

3

)
F1G3 +

(
e2

(1− e2)
− 1

3

)
F3G1−

(
e2(2− e2)

4(1− e2)2
+

1

45

)
F1G1 +

e2

2(1− e2)
(H3G

′
1 + H1G

′
3)−

e2(4− e2)

(24(1− e2)2)
H1G

′
1 = G′′

5 (B.7)

8F1G7 + 6F3G5 + 4F5G3 + 2F7G1 + H1G
′
7 + H3G

′
5+

H5G
′
3 + H7G

′
1 +

(
3e2

1− e2
− 1

3

)
F1G5+

(
2e2

1− e2
− 1

3

)
F3G3 +

(
e2

1− e2
− 1

3

)
F5G1−

(
e2(5− 2e2)

6(1− e2)2
+

1

45

)
F1G3 −

(
e2(2− e2)

4(1− e2)2
+

1

45

)
F3G1+

(
e2(32 + 11e2 + 2e4)

360(1− e2)3
− 2

945

)
F1G1+

e2

2(1− e2)
(H1G

′
5 + H5G

′
1) +

(
e2(16 + 28e2 + e4)

720(1− e2)3

)
H1G

′
1 +

e2

2(1− e2)
H3G

′
3−

e2(4− e2)

24(1− e2)2
(H3G

′
1 + H1G

′
3) = G′′

7 (B.8)
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2F1 + H ′
1 = 0 (B.9)

4F3 + H ′
3 +

(
e2

1− e2
− 1

3

)
F1 = 0 (B.10)

6F5 + H ′
5 −

(
e2(2 + e2)

3(1− e2)2
+

1

45

)
F1 +

(
e2

1− e2
− 1

3

)
F3 = 0 (B.11)

8F7 + H ′
7 +

(
e2(2 + 11e2 + 2e4)

15(1− e2)3
− 2

945

)
F1−

(
e2(2 + e2)

3(1− e2)2
+

1

45

)
F3 +

(
e2

1− e2
− 1

3

)
F5 = 0 (B.12)

B.2 Values of quantities in the series solution for

prolate spheroids

e n Fn(0; e) F ′
n(0; e) Gn(0; e) G′

n(0; e) Hn(∞; e)

0.0 1 0.00000 0.51023 1.00000 -0.61592 -0.88447

3 0.00000 -0.22129 -0.16667 0.24764 0.16074

5 0.00000 0.02071 0.00833 -0.02569 0.00084

7 0.00000 -0.00189 -0.00020 0.00181 0.00085

e n Fn(0; e) F ′
n(0; e) Gn(0; e) G′

n(0; e) Hn(∞; e)

0.1 1 0.00000 0.51023 1.00000 -0.61592 -0.88447

3 0.00000 -0.22009 -0.16667 0.24600 0.16236

5 0.00000 0.01979 0.00833 -0.02447 0.00007

7 0.00000 -0.00160 -0.00020 0.00147 0.00103
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e n Fn(0; e) F ′
n(0; e) Gn(0; e) G′

n(0; e) Hn(∞; e)

0.2 1 0.00000 0.51023 1.00000 -0.61592 -0.88447

3 0.00000 -0.21633 -0.16667 0.24085 0.16743

5 0.00000 0.01684 0.00833 -0.02057 -0.00243

7 0.00000 -0.00064 -0.00020 0.00031 0.00168

e n Fn(0; e) F ′
n(0; e) Gn(0; e) G′

n(0; e) Hn(∞; e)

0.3 1 0.00000 0.51023 1.00000 -0.61592 -0.88447

3 0.00000 -0.20953 -0.16667 0.23153 0.17663

5 0.00000 0.01126 0.00833 -0.01318 -0.00737

7 0.00000 0.00138 -0.00020 -0.00219 0.00313

e n Fn(0; e) F ′
n(0; e) Gn(0; e) G′

n(0; e) Hn(∞; e)

0.4 1 0.00000 0.51023 1.00000 -0.61592 -0.88447

3 0.00000 -0.19864 -0.16667 0.21660 0.19135

5 0.00000 0.00175 0.00833 -0.00048 -0.01630

7 0.00000 0.00537 -0.00020 -0.00735 0.00633

e n Fn(0; e) F ′
n(0; e) Gn(0; e) G′

n(0; e) Hn(∞; e)

0.5 1 0.00000 0.51023 1.00000 -0.61592 -0.88447

3 0.00000 -0.18166 -0.16667 0.19332 0.21431

5 0.00000 -0.01455 0.00833 0.02147 -0.03278

7 0.00000 0.01373 -0.00020 -0.01858 0.01392
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e n Fn(0; e) F ′
n(0; e) Gn(0; e) G′

n(0; e) Hn(∞; e)

0.6 1 0.00000 0.51023 1.00000 -0.61592 -0.88447

3 0.00000 -0.15442 -0.16667 0.15597 0.25114

5 0.00000 -0.04445 0.00833 0.06211 -0.06573

7 0.00000 0.03360 -0.00020 -0.04619 0.03436

e n Fn(0; e) F ′
n(0; e) Gn(0; e) G′

n(0; e) Hn(∞; e)

0.7 1 0.00000 0.51023 1.00000 -0.61592 -0.88447

3 0.00000 -0.10708 -0.16667 0.09107 0.31516

5 0.00000 -0.10737 0.00833 0.14869 -0.14204

7 0.00000 0.09208 -0.00020 -0.12947 0.10254

B.3 Comparison of profiles due to numerical and

series solutions for prolate spheroids
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Figure B.1: Comparison of the numerical (solid line) and series solutions (cross

points) at θ = 20◦, 40◦ 60◦ for e = 0.3.
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Figure B.2: Comparison of the numerical (solid line) and series solutions (cross

points) at θ = 20◦, 40◦, 60◦ for e = 0.5.
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Figure B.3: Comparison of the numerical (solid line) and series solutions (cross

points) at θ = 20◦, 40◦, 60◦ for e = 0.6.
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Figure B.4: Comparison of the numerical (solid line) and series solutions (cross

points) at θ = 10◦, 50◦, 70◦ for e = 0.6.



Appendix C

Dimensional perturbation

equations and miscellaneous

neutral curves of prolate spheroid

In this Appendix we present the dimensional perturbation equations of the

boundary-layer over prolate spheroids in Appendix C.1. In Appendix C.2 miscella-

neous neutral curves of convective instability are presented in (RS, n)- and (RS, ε)-

planes. Critical Reynolds numbers at each latitude and each value of e are shown in

Appendix C.3. Finally, related to Chapter 4, some miscellaneous neutral curves and

miscellaneous curves of growth rates for prolate spheroids are shown in Appendix

C.4.

142
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C.1 Dimensional perturbation equations of rotat-

ing prolate spheroids

√
η?2 − d?2

√
η?2 − d?2 cos2 θ

dw?

dη?
+

(
η?

√
η?2 − d?2

(η?2 − d?2 cos2 θ)3/2

+
η?

√
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√
η?2 − d?2
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w? +
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d?2 sin θ cos θ
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C.2 The nuetral curves of convective instability

for rotating prolate spheroids in terms of spin

Reynolds numbers
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Figure C.1: Neutral curves in (RS , n)- and (RS , ε)-planes at latitude 10◦ for e = 0(–), 0.1

(-.), 0.3(−−), 0.6 (· · ·) & 0.7 (-.)
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Figure C.2: Neutral curves in (RS , n)- and (RS , ε)-planes at latitude 20◦ for e = 0(–), 0.3

(-.) & 0.7 (· · ·)
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Figure C.3: Neutral curves in (RS , n)- and (RS , ε)-planes at latitude 30◦ for e = 0(–), 0.3

(-.) & 0.7 (· · ·)
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Figure C.4: Neutral curves in (RS , n)- and (RS , ε)-planes at latitude 40◦ for e = 0(–), 0.3

(-.) & 0.7 (· · ·)
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Figure C.5: Neutral curves in (RS , n)- and (RS , ε)-planes at latitude 50◦ for e = 0(–), 0.3

(-.) & 0.7 (· · ·)
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Figure C.6: Neutral curves in (RS , n)- and (RS , ε)-planes at latitude 60◦ for e = 0(–), 0.1

(-.), 0.3(−−), 0.6 (· · ·) & 0.7 (-.)
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Figure C.7: Neutral curves in (RS , n)- and (RS , ε)-planes at latitude 70◦ for e = 0(–), 0.3

(-.) & 0.7 (· · ·)

C.3 Critical Reynolds numbers for prolate spheroids

e θ RI RII RSI RSII

0.0 10 1585.3 2432.5 2.51× 106 5.92× 106

0.0 20 768.8 1144.3 5.91× 105 1.31× 106

0.0 30 492.9 711.2 2.43× 105 5.06× 105

0.0 40 350.1 484.2 1.23× 105 2.34× 105

0.0 50 258.3 334.5 6.67× 104 1.12× 105

0.0 60 188.0 215.0 3.53× 104 4.62× 104

0.0 70 - 91.4 - 8.35× 103

Table C.1: The critical Reynolds numbers R and RS for the onset of stationary

(c = 1) crossflow (type I) and streamline curvature (type II) modes of convective

instability for e = 0.0, - indicates that a crossflow lobe is not seen.
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e θ RI RII RSI RSII

0.1 10 1585.0 2431.4 2.54× 106 5.97× 106

0.1 20 768.4 1143.2 5.96× 105 1.32× 106

0.1 30 492.5 710.1 2.45× 105 5.09× 105

0.1 40 349.6 482.9 1.23× 105 2.35× 105

0.1 50 257.5 332.4 6.70× 104 1.12× 105

0.1 60 187.6 214.5 3.55× 104 4.65× 104

0.1 70 - 89.9 - 8.16× 103

Table C.2: The critical Reynolds numbers R and RS for the onset of stationary

(c = 1) crossflow (type I) and streamline curvature (type II) modes of convective

instability for e = 0.1, - indicates that a crossflow lobe is not seen.

e θ RI RII RSI RSII

0.2 10 1584.1 2429.4 2.61× 106 6.15× 106

0.2 20 767.2 1140.0 6.13× 105 1.35× 106

0.2 30 491.1 706.3 2.51× 105 5.20× 105

0.2 40 348.0 478.7 1.26× 105 2.39× 105

0.2 50 256.0 328.7 6.83× 104 1.13× 105

0.2 60 185.8 210.0 3.60× 104 4.59× 104

0.2 70 - 85.2 - 7.56× 103

Table C.3: The critical Reynolds numbers R and RS for the onset of stationary

(c = 1) crossflow (type I) and streamline curvature (type II) modes of convective

instability for e = 0.2, - indicates that a crossflow lobe is not seen.
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e θ RI RII RSI RSII

0.3 10 1582.6 2424.8 2.75× 106 6.46× 106

0.3 20 765.1 1134.4 6.43× 105 1.41× 106

0.3 30 488.5 699.6 2.62× 105 5.38× 105

0.3 40 345.1 471.3 1.31× 105 2.44× 105

0.3 50 252.9 320.9 7.03× 104 1.13× 105

0.3 60 182.7 202.2 3.67× 104 4.49× 104

0.3 70 - 77.3 - 6.56× 103

Table C.4: The critical Reynolds numbers R and RS for the onset of stationary

(c = 1) crossflow (type I) and streamline curvature (type II) modes of convective

instability for e = 0.3, - indicates that a crossflow lobe is not seen.

e θ RI RII RSI RSII

0.4 10 1580.2 2418.0 2.97× 106 6.96× 106

0.4 20 761.8 1125.5 6.91× 105 1.51× 106

0.4 30 484.5 689.3 2.79× 105 5.66× 105

0.4 40 340.7 460.0 1.38× 105 2.52× 105

0.4 50 248.3 309.4 7.34× 104 1.14× 105

0.4 60 177.8 190.5 3.77× 104 4.32× 104

0.4 70 - 66.1 - 5.20× 103

Table C.5: The critical Reynolds numbers R and RS for the onset of stationary

(c = 1) crossflow (type I) and streamline curvature (type II) modes of convective

instability for e = 0.4, - indicates that a crossflow lobe is not seen.
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e θ RI RII RSI RSII

0.5 10 1576.6 2407.8 3.31× 106 7.73× 106

0.5 20 756.7 1112.1 7.63× 105 1.65× 106

0.5 30 473.8 658.5 2.99× 105 5.78× 105

0.5 40 334.1 443.7 1.49× 105 2.62× 105

0.5 50 241.4 292.9 7.77× 104 1.14× 105

0.5 60 170.7 174.0 3.89× 104 4.04× 104

0.5 70 - 52.5 - 3.68× 103

Table C.6: The critical Reynolds numbers R and RS for the onset of stationary

(c = 1) crossflow (type I) and streamline curvature (type II) modes of convective

instability for e = 0.5, - indicates that a crossflow lobe is not seen.

e θ RI RII RSI RSII

0.6 10 1570.8 2391.9 3.86× 106 8.94× 106

0.6 20 749.0 1092.0 8.77× 105 1.86× 106

0.6 30 469.5 651.2 3.44× 105 6.63× 105

0.6 40 324.5 420.3 1.64× 105 2.76× 105

0.6 50 231.7 269.8 8.38× 104 1.14× 105

0.6 60 160.2 152.0 4.01× 104 3.61× 104

0.6 70 - 38.7 - 2.34× 103

Table C.7: The critical Reynolds numbers R and RS for the onset of stationary

(c = 1) crossflow (type I) and streamline curvature (type II) modes of convective

instability for e = 0.6, - indicates that a crossflow lobe is not seen.
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e θ RI RII RSI RSII

0.7 10 1561.8 2366.9 4.78× 106 1.10× 107

0.7 20 736.7 1059.9 1.06× 106 2.20× 106

0.7 30 455.3 616.4 4.06× 105 7.45× 105

0.7 40 309.6 400.0 1.88× 105 3.14× 105

0.7 50 216.8 247.0 9.21× 104 1.20× 105

0.7 60 - 119.4 - 2.79× 104

0.7 70 - 27.4 - 1.47× 103

Table C.8: The critical Reynolds numbers R and RS for the onset of stationary

(c = 1) crossflow (type I) and streamline curvature (type II) modes of convective

instability for e = 0.7, - indicates that a crossflow lobe is not seen.

C.4 Miscellaneous neutral curves and growth rates

of prolate spheroids

Here we show the neutral curves and growth rates for traveling disturbances at

various latitudes and various values of eccentricity of prolate spheroid, which are

related to Chapter 4.
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Figure C.8: Neutral curves for traveling disturbances with c=0.7 (· · ·), 0.8 (-.), 0.9

(−−), 1.0 (–) at θ = 10◦ for e = 0.6.
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Figure C.9: Neutral curves for traveling disturbances with c=0.7 (· · ·), 0.8 (-.), 0.9

(−−), 1.0 (–) at θ = 60◦ for e = 0.6.
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Figure C.10: Linear convective growth rates for travelling-mode disturbances with

c = 0.7–1 for θ = 10◦, e = 0.6.
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Figure C.11: Linear convective growth rates for travelling-mode disturbances with

c = 0.7–1 for θ = 60◦, e = 0.6.



Appendix D

Series solution and comparisons of

flow profiles of the laminar

boundary-layer of oblate spheroid

This Appendix is related to Chapter 5. In Appendix D.1 we present the series

solution to the laminar boundary layer equations of rotating oblate spheroid. Values

of quantities F ′
n(0), G′

n(0), Hn(∞) for n=1,3,5,7 are presented in Appendix D.2. In

Appendix D.3 comparison of flow profiles due to the numerical and series solutions

are shown at various latitudes and eccentricities.
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D.1 Details of the series solution for the oblate

family

F 2
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√
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8F7 +
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D.2 Values of quantities in the series solution for

oblate spheroids

e n Fn(0; e) F ′
n(0; e) Gn(0; e) G′

n(0; e) Hn(∞; e)

0.0 1 0.00000 0.51023 1.00000 -0.61592 -0.88447

3 0.00000 -0.22129 -0.16667 0.24764 0.16074

5 0.00000 0.02071 0.00833 -0.02569 0.00084

7 0.00000 -0.00189 -0.00020 0.00181 0.00085

e n Fn(0; e) F ′
n(0; e) Gn(0; e) G′

n(0; e) Hn(∞; e)

0.1 1 0.00000 0.51280 1.00000 -0.61902 -0.88447

3 0.00000 -0.22363 -0.16667 0.25050 0.15892

5 0.00000 0.02173 0.00833 -0.02702 0.00166

7 0.00000 -0.00217 -0.00020 0.00218 0.00071
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e n Fn(0; e) F ′
n(0; e) Gn(0; e) G′

n(0; e) Hn(∞; e)

0.2 1 0.00000 0.52075 1.00000 -0.62862 -0.88447

3 0.00000 -0.23084 -0.16667 0.25927 0.15339

5 0.00000 0.02481 0.00833 -0.03104 0.00406

7 0.00000 -0.00296 -0.00020 0.00321 0.00035

e n Fn(0; e) F ′
n(0; e) Gn(0; e) G′

n(0; e) Hn(∞; e)

0.3 1 0.00000 0.53487 1.00000 -0.64566 -0.88447

3 0.00000 -0.24354 -0.16667 0.27461 0.14391

5 0.00000 0.03001 0.00833 -0.03777 0.00787

7 0.00000 -0.00415 -0.00020 0.00474 -0.00004

e n Fn(0; e) F ′
n(0; e) Gn(0; e) G′

n(0; e) Hn(∞; e)

0.4 1 0.00000 0.55671 1.00000 -0.67203 -0.88447

3 0.00000 -0.26298 -0.16667 0.29785 0.13004

5 0.00000 0.03745 0.00833 -0.04731 0.01285

7 0.00000 -0.00557 -0.00020 0.00652 -0.00026

e n Fn(0; e) F ′
n(0; e) Gn(0; e) G′

n(0; e) Hn(∞; e)

0.5 1 0.00000 0.58917 1.00000 -0.71121 -0.88447

3 0.00000 -0.29140 -0.16667 0.33138 0.11111

5 0.00000 0.04743 0.00833 -0.05991 0.01868

7 0.00000 -0.00700 -0.00020 0.00824 -0.00008



Appendix D: Series solutions and miscellaneous curves for oblate spheroids 162

e n Fn(0; e) F ′
n(0; e) Gn(0; e) G′

n(0; e) Hn(∞; e)

0.6 1 0.00000 0.63779 1.00000 -0.76990 -0.88447

3 0.00000 -0.33311 -0.16667 0.37978 0.08612

5 0.00000 0.06059 0.00833 -0.07611 0.02508

7 0.00000 -0.00828 -0.00020 0.00962 0.00061

e n Fn(0; e) F ′
n(0; e) Gn(0; e) G′

n(0; e) Hn(∞; e)

0.7 1 0.00000 0.71447 1.00000 -0.86246 -0.88447

3 0.00000 -0.39715 -0.16667 0.45267 0.05355

5 0.00000 0.07847 0.00833 -0.09736 0.03181

7 0.00000 -0.00933 -0.00020 0.01057 0.00169

e n Fn(0; e) F ′
n(0; e) Gn(0; e) G′

n(0; e) Hn(∞; e)

0.8 1 0.00000 0.85038 1.00000 -1.02658 -0.89006

3 0.00000 -0.50695 -0.16667 0.57491 0.03294

5 0.00000 0.10557 0.00833 -0.12790 0.07658

7 0.00000 -0.01050 -0.00020 0.01149 -0.07727

D.3 Comparison of profiles due to numerical and

series solutions for oblate spheroids
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Figure D.1: Comparison of the numerical (solid line) and series solutions (cross

points) at θ = 10◦, 30◦ 50◦ for e = 0.5.
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Figure D.2: Comparison of the numerical (solid line) and series solutions (cross

points) at θ = 10◦, 30◦ 50◦ for e = 0.6.
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Figure D.3: Comparison of the numerical (solid line) and series solutions (cross

points) at θ = 10◦, 30◦ 50◦ for e = 0.7.

0 0.1 0.2
0

5

10

15

20

U

η

θ=60°

0 0.1 0.2
0

5

10

15

20

U

η

θ=70°

0 0.1 0.2
0

5

10

15

20

U

η

θ=80°

0 0.5 1
0

5

10

15

20

V

η

0 0.5 1
0

5

10

15

20

V

η

0 0.5 1
0

5

10

15

20

V

η

−1 −0.5 0
0

5

10

15

20

W

η

−1 −0.5 0 0.5
0

5

10

15

20

W

η

−1 −0.5 0 0.5
0

5

10

15

20

W

η

Figure D.4: Comparison of the numerical (solid line) and series solutions (cross

points) at θ = 60◦, 70◦ 80◦ for e = 0.1.
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Figure D.5: Comparison of the numerical (solid line) and series solutions (cross

points) at θ = 60◦, 70◦ 80◦ for e = 0.6.
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Figure D.6: Comparison of the numerical (solid line) and series solutions (cross

points) at θ = 60◦, 70◦ 80◦ for e = 0.7.



Appendix E

Dimensional perturbation

equations and miscellaneous

neutral curves of oblate spheroid

In this Appendix we present the dimensional perturbation equations of the

boundary-layer over oblate spheroids in E.1. In Appendix E.2 critical Reynolds

numbers at all latitudes and each value of e are shown. In Appendix E.3 miscella-

neous neutral curves of convective instability for oblate spheroids, are presented in

(RS, n)- and (RS, ε)-planes. Comparisons of neutral curves of both types of spheroids

are shown in Appendix E.4.
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E.1 Dimensional perturbation equations of rotat-

ing oblate spheroids

Dimensional perturbed continuity equation is,

√
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√
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The θ–component of the dimensional perturbation equations is,
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The φ–component of the dimensional perturbation equations is,
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The η?–component of the dimensional perturbation equations is,
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E.2 Critical Reynolds numbers for oblate spheroids

e θ ReI ReII RSI RSII

0.0 10 1585.3 2432.5 2.51× 106 5.92× 106

0.0 20 768.8 1144.3 5.91× 105 1.31× 106

0.0 30 492.9 711.2 2.43× 105 5.06× 105

0.0 40 350.1 484.2 1.23× 105 2.34× 105

0.0 50 258.3 334.5 6.67× 104 1.12× 105

0.0 60 188.0 215.0 3.53× 104 4.62× 104

0.0 70 - 91.4 - 8.35× 103

Table E.1: The critical Reynolds numbers Re and RS for the onset of stationary

(c = 1) crossflow (type I) and streamline curvature (type II) modes of convective

instability for e = 0.0, - indicates that a crossflow lobe is not seen.
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e θ ReI ReII RSI RSII

0.1 10 1585.5 2432.65 2.51× 106 5.92× 106

0.1 20 769.04 1145.0 5.91× 105 1.31× 106

0.1 30 493.34 712.4 2.43× 105 5.08× 105

0.1 40 350.61 485.56 1.23× 105 2.36× 105

0.1 50 258.8 336.02 6.70× 104 1.13× 105

0.1 60 188.57 216.52 3.56× 104 4.69× 104

0.1 70 - 92.95 - 8.64× 103

Table E.2: The critical Reynolds numbers Re and RS for the onset of stationary

(c = 1) crossflow (type I) and streamline curvature (type II) modes of convective

instability for e = 0.1, - indicates that a crossflow lobe is not seen.

e θ ReI ReII RSI RSII

0.2 10 1586.2 2434.25 2.52× 106 5.93× 106

0.2 20 770.12 1147.66 5.93× 105 1.32× 106

0.2 30 494.64 716.0 2.45× 105 5.13× 105

0.2 40 352.09 489.72 1.24× 105 2.10× 105

0.2 50 260.38 340.5 6.77× 104 1.16× 105

0.2 60 190.25 221.14 3.62× 104 4.89× 104

0.2 70 - 97.8 - 9.56× 103

Table E.3: The critical Reynolds numbers Re and RS for the onset of stationary

(c = 1) crossflow (type I) and streamline curvature (type II) modes of convective

instability for e = 0.2, - indicates that a crossflow lobe is not seen.
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e θ ReI ReII RSI RSII

0.3 10 1587.26 2436.85 2.52× 106 5.94× 106

0.3 20 771.8 1151.98 5.96× 105 1.33× 106

0.3 30 496.82 721.94 2.47× 105 5.21× 105

0.3 40 354.63 496.86 1.26× 105 2.47× 105

0.3 50 263.12 348.28 6.92× 104 1.21× 105

0.3 60 193.13 229.3 3.73× 104 5.26× 104

0.3 70 - 106.32 - 1.13× 104

Table E.4: The critical Reynolds numbers Re and RS for the onset of stationary

(c = 1) crossflow (type I) and streamline curvature (type II) modes of convective

instability for e = 0.3, - indicates that a crossflow lobe is not seen.

e θ ReI ReII RSI RSII

0.4 10 1588.68 2440.0 2.52× 106 5.95× 106

0.4 20 774.12 1157.9 6.0× 105 1.34× 106

0.4 30 499.9 730.44 2.50× 105 5.34× 105

0.4 40 358.27 507.14 1.28× 105 2.57× 105

0.4 50 267.14 359.84 7.14× 104 1.29× 105

0.4 60 197.31 241.4 3.89× 104 5.83× 104

0.4 70 - 119.23 - 1.42× 104

Table E.5: The critical Reynolds numbers Re and RS for the onset of stationary

(c = 1) crossflow (type I) and streamline curvature (type II) modes of convective

instability for e = 0.4, - indicates that a crossflow lobe is not seen.
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e θ ReI ReII RSI RSII

0.5 10 1590.21 2443.25 2.53× 106 5.97× 106

0.5 20 777.06 1165.26 6.04× 105 1.36× 106

0.5 30 503.96 741.64 2.54× 105 5.5× 105

0.5 40 363.13 521.1 1.32× 105 2.72× 105

0.5 50 272.58 375.84 7.43× 104 1.41× 105

0.5 60 203.08 258.7 4.12× 104 6.69× 104

0.5 70 - - - -

Table E.6: The critical Reynolds numbers Re and RS for the onset of stationary

(c = 1) crossflow (type I) and streamline curvature (type II) modes of convective

instability for e = 0.5, - indicates that a crossflow lobe is not seen.

e θ ReI ReII RSI RSII

0.6 10 1591.5 2445.6 2.53× 106 5.98× 106

0.6 20 780.48 1173.46 6.09× 105 1.86× 106

0.6 30 508.98 755.46 2.59× 105 5.71× 105

0.6 40 369.43 539.38 1.64× 105 2.91× 105

0.6 50 279.75 397.52 7.83× 104 1.58× 105

0.6 60 210.82 283.23 4.44× 104 8.02× 104

0.6 70 146.2 164.25 2.14× 104 2.70× 104

Table E.7: The critical Reynolds numbers Re and RS for the onset of stationary

(c = 1) crossflow (type I) and streamline curvature (type II) modes of convective

instability for e = 0.6, - indicates that a crossflow lobe is not seen.
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e θ ReI ReII RSI RSII

0.7 10 1591.51 2444.5 2.53× 106 5.98× 106

0.7 20 783.9 1181.04 6.14× 105 1.39× 106

0.7 30 514.9 771.66 2.65× 105 5.95× 105

0.7 40 377.27 562.58 1.42× 105 3.16× 105

0.7 50 289.12 427.1 8.36× 104 1.83× 105

0.7 60 221.14 317.8 4.89× 104 1.01× 105

0.7 70 157.25 203.38 2.47× 104 4.14× 104

Table E.8: The critical Reynolds numbers Re and RS for the onset of stationary

(c = 1) crossflow (type I) and streamline curvature (type II) modes of convective

instability for e = 0.7, - indicates that a crossflow lobe is not seen.

e θ ReI ReII RSI RSII

0.8 10 1586.9 2430.5 2.52× 106 5.91× 106

0.8 20 785.85 1182.64 6.18× 105 1.41× 106

0.8 30 521.08 787.92 2.72× 105 6.21× 105

0.8 40 386.75 591.04 1.50× 105 3.49× 105

0.8 50 301.33 467.5 9.08× 104 2.19× 105

0.8 60 235.25 370.54 5.53× 104 2.37× 105

0.8 70 172.09 266.81 2.96× 104 7.12× 104

0.8 80 - 95.7 2.96× 104 9.16× 103

Table E.9: The critical Reynolds numbers Re and RS for the onset of stationary

(c = 1) crossflow (type I) and streamline curvature (type II) modes of convective

instability for e = 0.8, - indicates that a crossflow lobe is not seen.
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Figure E.1: Neutral curves in (RS , n)- and (RS , ε)-planes at latitude 10◦ for e = 0 (–),

0.3 (−−), 0.6 (-.), 0.7 (. . .) & 0.8 (...)

E.3 The neutral curves of convective instability

for rotating oblate spheroids in terms of spin

Reynolds numbers
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Figure E.2: Neutral curves in (RS , n)- and (RS , ε)-planes at latitude 20◦ for e = 0 (–),

0.3 (−−), 0.6 (-.), 0.8 (...)
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Figure E.3: Neutral curves in (RS , n)- and (RS , ε)-planes at latitude 30◦ for e = 0 (–),

0.3 (−−), 0.6 (-.), 0.8 (...)
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Figure E.4: Neutral curves in (RS , n)- and (RS , ε)-planes at latitude 40◦ for e = 0 (–),

0.3 (−−), 0.6 (-.), 0.8 (...)
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Figure E.5: Neutral curves in (RS , n)- and (RS , ε)-planes at latitude 50◦ for e = 0 (–),

0.3 (−−), 0.6 (-.), 0.8 (...)
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Figure E.6: Neutral curves in (RS , n)- and (RS , ε)-planes at latitude 60◦ for e = 0 (–),

0.3 (−−), 0.6 (-.), 0.7 (. . .) & 0.8 (...)
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Figure E.7: Neutral curves in (RS , n)- and (RS , ε)-planes at latitude 70◦ for e = 0 (–),

0.3 (−−), 0.6 (-.), 0.8 (...)
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E.4 Neutral curves for the prolate spheroids and

oblate spheroids in the same plane
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Figure E.8: Neutral curves in the (Re, α)-plane at latitude 10◦ for prolate spheroids

at e = 0 (–), 0.3 (-.) & 0.7 (−−) and oblate spheroids at e = 0.3 (· · ·) & 0.7 (-x).
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Figure E.9: Neutral curves in the (Re, α)-plane at latitude 20◦ for prolate spheroids

at e = 0 (–), 0.3 (-.) & 0.7 (−−) and oblate spheroids at e = 0.3 (· · ·) & 0.8 (-x).
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Figure E.10: Neutral curves in the (Re, α)-plane at latitude 40◦ for prolate spheroids

at e = 0 (–), 0.3 (-.) & 0.7 (−−) and oblate spheroids at e = 0.3 (· · ·) & 0.8 (-x).
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Figure E.11: Neutral curves in the (Re, α)-plane at latitude 50◦ for prolate spheroids

at e = 0 (–), 0.3 (-.) & 0.7 (−−) and oblate spheroids at e = 0.3 (· · ·) & 0.8 (-x).
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Figure E.12: Neutral curves in the (Re, α)-plane at latitude 60◦ for prolate spheroids

at e = 0 (–), 0.3 (-.) & 0.7 (−−) and oblate spheroids at e = 0.3 (· · ·) & 0.7 (-x).
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