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Dynamic responses, GPS positions 
and environmental conditions of 
two light rail vehicles in Pittsburgh
Jingxiao Liu1, Siheng Chen2,4, George Lederman1,5, David B. Kramer3, Hae Young Noh1,2, 
Jacobo Bielak1, James H. Garrett Jr.1, Jelena Kovačević2,6 & Mario Bergés   1

We present DR-Train, the first long-term open-access dataset recording dynamic responses from 
in-service light rail vehicles. Specifically, the dataset contains measurements from multiple sensor 
channels mounted on two in-service light rail vehicles that run on a 42.2-km light rail network in the 
city of Pittsburgh, Pennsylvania. This dataset provides dynamic responses of in-service trains via 
vibration data collected by accelerometers, which enables a low-cost way of monitoring rail tracks 
more frequently. Such an approach will result in more reliable and economical ways to monitor rail 
infrastructure. The dataset also includes corresponding GPS positions of the trains, environmental 
conditions (including temperature, wind, weather, and precipitation), and track maintenance logs. The 
data, which is stored in a MAT-file format, can be conveniently loaded for various potential uses, such as 
validating anomaly detection and data fusion as well as investigating environmental influences on train 
responses.

Background & Summary
The private freight rail industry in the U.S. makes $9.7 billion capital investment in maintaining the network, 
which is comprised of almost 140,000 miles of track and over 100,000 bridges in 20151. However, in 2017, the 
Federal Railroad Administration still reported 11,699 train accidents/incidents including 1,223 derailments and 
470 track-caused accidents/incidents in the nation2. To ensure safety and reduce maintenance cost, it is necessary 
to develop low-cost and reliable techniques to monitor the status of railroad networks continuously, especially 
track geometries. In practice, two traditional approaches are usually adopted to inspect track infrastructure: (1) 
visual inspection and (2) inspection using a dedicated track geometry car. Visual inspection is neither relia-
ble nor convenient. While inspection using a dedicated track geometry car can provide accurate track geome-
try data, it requires interruptions of regular train operations, and each inspection session has a more expensive 
cost than visual inspection. Due to its high cost and interruptions, it is difficult to conduct frequent inspections 
using a track-geometry car. In recent years, researchers have proposed many indirect track inspection methods 
using sensors, such as accelerometers and GPS, installed on in-service trains for track geometry monitoring and 
change detection3–11 since it can be more reliable than visual inspection and costs less than inspection using a 
track-geometry car. Also, sensors installed on in-service trains can provide continuous monitoring of the track 
without affecting regular operations.

We monitored Pittsburgh’s light rail network from sensors placed on passenger trains, as a more economical 
monitoring approach than either visual inspection or inspection with dedicated track vehicles. Over time, we 
learned how the trains respond to each section of track and use a data-driven approach to detect changes to the 
track condition relative to its historical baseline. We instrumented one train in Fall 2013, and a second train in 
Summer 2015. We have been continuously collecting data on the trains’ position using GPS and their dynamic 
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responses using accelerometers; in addition, our dataset includes environmental data as the trains were running 
on the track and the track maintenance logs from the light-rail operator.

Although there are some acceleration datasets for structure vibration testing12, human activity recognition13, 
senior fall detection14 and gait recognition15, at the time of writing, the DR-Train dataset is the only one to include 
multi-channel and high-frequency acceleration signals and GPS positions of light rail vehicles. The data were 
recorded from two light rail vehicles for four years with a variety of influential factors. This could be a benchmark 
dataset for comparing different vibration-based damage diagnosis algorithms. As a validation of our dataset, 
we have been able to detect changes in the tracks, which correspond to known maintenance activities. Besides 
detecting those changes, another usage of this dataset is for developing or validating data fusion methods. Data 
fusion methods integrate multiple data sources, such as multiple sensor channels on multiple light rail vehicles, to 
produce more consistent, accurate, and useful information than that provided by any individual data source. Our 
group has proposed a data fusion approach that integrates multiple accelerometers and GPS data sources from the 
same or different vehicles11. The DR-Train dataset has many other potential usages. For example, environmental 
factors of each service run are logged in the dataset; researchers can reuse the dataset to investigate influences of 
the weather and temperature on the dynamic response of the light rail vehicles.

In addition, there are many potential multi-disciplinary and interdisciplinary utilizations of the DR-train 
dataset. For instance, the vehicle is becoming a cyber-physical system that has more functions beyond a machine 
transporting people and goods. The light rail network can be considered as an urban sensing platform, and the 
DR-train provides a dataset that can be used for other applications, such as

•	 using mobile sensing to understand and monitor urban climate16;
•	 providing information of the light rail network for improving urban mobility17 and evaluating infrastructure 

resilience18;
•	 protecting and enhancing the infrastructure for ensuring railroad safety9,19;
•	 analyzing dynamic response of in-service LRVs for studying driver behavior characterization19.

Methods
We use a data management system to collect and process dynamic responses and GPS positions of two passenger 
vehicles. We first introduce our monitoring target, the Pittsburgh Light Rail system, and our monitoring carrier, 
light rail vehicles in the following subsection.

The Pittsburgh Light Rail and instrumented Light Rail Vehicles.  The Pittsburgh Light Rail, called 
the ‘T’ lines, is a 42.2-km light rail network in Pittsburgh, Pennsylvania. This network is owned and operated by 
the Port Authority of Allegheny County (PAAC). It has 53 stations and around 28,000 daily ridership. The rail 
system, including imbedded street running track, direct fixation track and ballasted track, in this network uses 
the Pennsylvania Trolley gauge rail whose track gauge is 1,588 mm. Also, the network contains bridges, viaducts, 
and tunnels, and is exposed to variable environmental conditions. For example, the temperature we observed 
ranges from −20 °C to 35 °C. The variety of influential factors makes it a viable test-bed.

A light rail vehicle (LRV) is a standardized vehicle for U.S. cities. LRVs of the Pittsburgh’s light rail network 
have two models: Siemens SD-400 LRVs were built from 1985 to 1987 and assigned fleet numbers 4201 to 4255 
after a mid-life overhaul by Construcciones y Auxiliar de Ferrocarriles S.A. (CAF) between 2004 and 2008. CAF 
also provided new LRVs which were built from 2004 to 2005 and assigned fleet numbers 4301 to 4328. Those 
LRVs are supplied by a 650 voltage direct current electrification system. We installed accelerometers and GPS 
antennas on LRVs 4306 and 4313. Each LRV has two motor trucks at opposite ends and a non-powered center 
truck below the articulation with a total length of 25.81 m, empty weight of 45 metric tons, total passenger capac-
ity of 264 and a maximum speed of 80 km/h. The LRVs are typically run coupled together as two car trains during 
rush hour service.

Data management system.  Our data management system consists of four key modules (as shown in 
Fig. 1): Sensing module, data-acquisition module, data-storage module, and data-processing module.

Sensing module.  Figure 2 shows our instrumentations of two LRVs (fleet number 4306 and 4313). In 2013, 
we instrumented the LRV 4306 by placing two uni-axial accelerometers inside the cabin of the train (VibraMetrics 
510220) and a tri-axial accelerometer (PCB 354C0321) on the central wheel truck. The central wheel truck, or the 
central bogie, is a chassis attached to a vehicle and carrying wheelsets with a suspension system. Since it is not 
powered, the electrical noise is minimized. However, sensing system on the central wheel truck has higher instal-
lation and maintenance costs than the system inside the cabin. For the second LRV instrumented (fleet number 
4313) in 2015, we placed more sensors, including two uni-axial accelerometers (VibraMetrics 5102) and two 
tri-axial accelerometers (PCB 354C03) inside the train, for improving the system. To collect the position data, 
we placed a low-cost BU-353 GPS22 antenna on the LRV 4306 and 4313. The GPS antenna in the LRV 4313 was 
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Fig. 1  Proposed data-management system.
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installed within the interurban light enclosure for having a view of the sky. Tables 1 and 2 show important speci-
fications of those sensors.

Data-acquisition and data-storage module.  For data acquisition, we connected National Instruments 
USB-powered data acquisition hardware to a computer. Our data acquisition system samples acceleration signals 
at 1.6KHz and GPS position at 1 Hz and logs the data to an external hard drive. We download the data manually 
from the onboard computers to our local computer every two weeks, because we are not allowed to install wireless 
devices on LRVs. We use National Instruments LabVIEW23 to control the hardware and acquire acceleration data.

Data-processing module.  Before analyzing the collected data, it is necessary to segment it by geographical 
region. There are two reasons: first, we want to have the LRVs travel along the same path in each particular region; 
second, the GPS signal will be lost in tunnels, and it is difficult to determine the location of excitations. The rail 
network is divided into eight regions to ensure continuous GPS trace in each region. Figure 3 shows the GPS trace 
of several passes and the associated track regions.

(a)

(b)

Fig. 2  Data collection system of LRV 4306 and LRV 4313. For each subplot, top left picture shows the external 
view of the LRV. Bottom left figure shows a schematic of the sensor locations on the LRV, and the inside view of 
the train and one highlighted uni-axle accelerometer are shown in the right hand side pictures. (Figures from 
paper11 are reused here with license).

Type Model
No. of 
axles Sensitivity

Amplitude 
range

Resonant 
Frequency

Piezoelectric Accelerometers

Vibra Metrics 
5102 1 500 mV/g 

(±5%) ±10 g 2.5 kHz

PCB 354C03 3 500 mV/g 
(±10%) ±50 g ≥12 kHz

Table 1.  Operating specifications of accelerometers.

Model
Number of 
channels Sensitivity

Update 
rate Accuracy

BU-353 48 −163 dBm 1 Hz <2.5 m

Table 2.  Operating specifications of GPS receivers.
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The next step in processing the GPS data is to register it to a ground truth of the track position because the 
measurement error from collected GPS data could cause misalignment among different passes. PAAC provided 
us the foot by foot GPS position data, which allowed us to achieve this registration. We first utilized the iterative 
closest point (ICP)24 algorithm to eliminate the global mismatch of the GPS data by minimizing the difference 
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Fig. 3  An example of the GPS trace of several passes through the ‘T’ lines and the associated track regions used 
for analysis.

Fig. 4  The lefthand and righthand figures show GPS traces of 40 different outbound passes in the 5th track 
region before and after registration using ICP, respectively.
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between every two GPS point clouds. Figure 4 show the GPS traces of 40 different outbound runs in the 5th track 
region before and after registration using ICP, respectively. For the local mismatch, the one-nearest neighbor 
algorithm is applied to register GPS position data of different runs to the nearest point of the ground truth GPS.

We also present environmental conditions and maintenance schedules during this monitoring period in the 
following sections.

Environmental conditions.  Environmental conditions, including temperature, wind, weather, and pre-
cipitation, vary significantly when we collect the data. It is not only because all the sensors are sensitive to the 
operating temperature, but also steel rail expands as it heats up. To record the environmental conditions, we used 
the time stamp and the trains’ GPS position to query environmental conditions from a weather data provider 
called Forecast.io when we were processing the collected data. This weather data provider gathered hour-by-hour 
environmental observation from tens of thousands of stations worldwide including the PAAC rail service system 
territory.

Maintenance schedules.  Because we were not allowed to conduct an experiment on the track, we had to 
wait for changes made by PAAC’s track maintenance. PAAC provides us with track allocation reports, which are 
stored in the DR-Train dataset as well. Those reports allow us to calibrate our data collection system and validate 
our track monitoring approaches.

Known issues. 

•	  Even after GPS registration using ICP and one-nearest neighbor algorithms, GPS position uncertainties, 
which cause misalignments of accelerations in the spatial domain, still exist. This is because the GPS receiver 
has a 2.5-meter accuracy on average and has variable accuracy levels at different locations. The misalignments 
can be illustrated by a 20% classification error reduction for track change detection before and after alignment 
and post-processing as presented in the work of Lederman et al.10. In the paper, Lederman et al. enforced 
sparsity of track profile bumps to overcome the position uncertainty from GPS error. The location of sparse 
bumps is used to align accelerations, and the height of sparse bumps is used as a measure of the track height 
and indicates changes in the rail track.

•	 We found that the train’s ventilation system is a source of noise. On a warm day, the air conditioner turns on, 
and there is higher energy at 30 Hz. Whereas on a cold day, the air conditioner turns off, so we observed less 
energy at 30 Hz. The signal energy at 30 Hz does not depend on the train speed or the track roughness.

•	 Individual sensors or sensor channels can be malfunctioning. Also, the likelihood of any sensor malfunction-
ing increases with increasing number of sensors. To address this problem, our group has developed a data 
fusion approach11. The approach helps to combine raw data (or features extracted from raw data) that is col-
lected from different sensors and from multiple trains for producing more reliable and accurate information 
than that provided by any individual sensor channel. Specifically, it first approximately aligns acceleration 
signals of different sensor channels by calculating cross correlations and then applies an adaptive Kalman 
filter that weighs acceleration data according to its estimated reliability.

Data Records
From 2013 to 2016, we collected acceleration and GPS position data with corresponding environmental condi-
tions and maintenance logs. The DR-Train dataset includes 31 months of data from LRV 4306 and 11 months 
of data from LRV 4313. Table 3 shows the number of passes collected from the eight geographical regions men-
tioned in the Method section. ‘Inbound’ means that the LRV goes from South to North, and ‘outbound’ means the 
opposite direction. In some regions, the number of outbound passes is larger than that of inbound passes because, 
as the train emerges from the tunnel, there is a delay before the GPS can get a position lock.

All the data details and directories are stored in ‘pass’ MATLAB objects in ‘\data_files\LRV4306’ and ‘\
data_files\LRV4313’ folders. The ‘pass’ object is defined in the MATLAB class function ‘pass.m’. Properties and 
Methods of the ‘pass’ class are described in Table 4. For LRV 4306, there are 30,096 ‘pass’ objects stored in the file 
‘\data_files\LRV4306\obj_dict.mat’. LRV 4306 has five acceleration channels (property ‘sensor’), corresponding 

Region

LRV 4306 LRV 4313

Inbound Outbound Inbound Outbound Total

1 226 363 51 82 722

2 569 577 138 136 1420

3 579 567 135 131 1412

4 288 292 33 34 647

5 317 317 102 96 832

6 440 425 116 110 1091

7 356 342 85 80 863

8 180 182 65 63 490

Total 2955 3065 725 732 7477

Table 3.  Number of passes collected from LRVs 4306 and 4313 through the eight geographical regions.
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to the two uni-axial accelerometers inside the train cabin and the three channels of the tri-axial accelerometer 
on the wheel truck. For LRV 4313, there are 18,929 ‘pass’ objects stored in the file ‘\data_files\LRV4313\obj_dict.
mat’. LRV 4313 has 8 acceleration channels (property ‘sensor’), corresponding to the two uni-axial accelerometers 
and two tri-axial accelerometers inside the train cabin. The raw acceleration and GPS position data are stored in 
‘acceleration_data’ and ‘gps_data’ folders. These data can be retrieved from files into the MATLAB/Octave work-
space by loading acceleration filenames (property ‘acc_raw’) and GPS filenames (property ‘gps_raw’). Each raw 
acceleration file only has a one-column MATLAB matrix in double-precision type, which is the logged temporal 
acceleration data of one single channel during one service run. Each raw GPS file has a five-column MATLAB 
matrix in double-precision type, corresponding to the longitude, latitude, altitude, velocity and time stamp during 
one service run. The time stamp is a serial date number that represents the whole and fractional number of days 
from a fixed, preset date, January 0, 0000, in the proleptic ISO calendar.

Weekly maintenance schedule sheets from Light Rail System, PAAC are stored in ‘\data_files\track_mainte-
nance_logs’ folder. Those files provide information on what was happening on the rail network. Typically, the only 
work, which matters for this research, is done by the ‘Way Department’ that maintains the tracks.

This dataset is available from the Zenodo repository (https://doi.org/10.5281/zenodo.1432702)26.

Name Description

Properties

acc_al address where aligned accelerometer data is stored

acc_raw address where accelerometer data is stored

acc_samp accelerometer sampling rate (Hz)

count this is the indice of the pass in terms of all passes

date date in UTC time

date date string in local time

daten property date in ‘datenum’ format

datenl property datal in ‘datenum’ format

direction ‘inbound’ our ‘outbound’

gps_al address where aligned GPS is stored

gps_raw address where GPS is stored

gps_samp gps sampling rate (Hz)

region region on the map where the signal comes from

sensor number of sensor channel

summary weather summary text at time of pass

summary8 weather summary text 8 hours prior to pass

temp temperature at the time of the pass

temp8 temperature 8 hours prior to pass

train number of the train

Methods

addlistener Add listener for event.

addprop Add dynamic property to MATLAB object.

coor show the coordinate system for the selected data

date_bounds
This function takes an array of passes, as well as lower and upper bounds 
for the dates (as strings), then plots the data that falls between the two 
speci_ed date strings. Note this outputs the dates selected.

delete Delete a handle object.

eq == (EQ) Test handle equality.

findobj Find objects matching speci_ed conditions.

findprop Find property of MATLAB handle object.

ge >= (GE) Greater than or equal relation for handles.

gt > (GT) Greater than relation for handles.

isvalid Test handle validity.

le <= (LE) Less than or equal relation for handles.

listener Add listener for event without binding the listener to the source object.

lt <(LT) Less than relation for handles.

ne =(NE) Not equal relation for handles.

notify Notify listeners of event.

plot_both Plot the data in time and frequency domain

plot_freq Plot the data in the frequency domain

plot_gps Plot the GPS trace on a map

plot_time Plot the data in the time domain

scatter Plot energy of the signal at the GPS points

Table 4.  Properties and methods of the ‘pass’ class.
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Technical Validation
We validated the technical quality of the presented dataset from three perspectives. First, we consider a series 
of possible failure situations for the process of data collection and justify why we can rule them out; second, we 
consider a series of basic requirements that a high-quality dataset should satisfy and validate that the presented 
dataset satisfies all the requirements; third, a series of works have shown that changes to the tracks can be success-
fully detected based on the presented dataset.

Data collection failures.  We consider the possible failure situations (missing data or corrupted data) as 
follows.

•	 The installed accelerometers fail to sense acceleration signals;
•	 The data-acquisition system fails to transfer acceleration signals to the installed computer;
•	 The installed computer fails to store the acceleration signals on the local disk;
•	 The data-processing system fails to organize acceleration signals correspondingly in the database.

Data visualization is an efficient way to rule out the first and the second failure situations. We added chart 
blocks in our LabVIEW implementation to visualize the collected acceleration signals instantaneously. We also 
plotted the collected data on our local computer. Figure 5 shows 27 properly collected spatial-domain accelera-
tion samples of accelerometer channel 5 in geographical region 5 (outbound direction) during May 2014. In the 
supplementary documentation, we also present spatial-domain acceleration signals of accelerometer channel 5 
of LRV 4306 in other geographical regions (outbound direction) during the year of 2015. By checking the size 
of logged data directly, we can rule out the third failure situation. Also, for this dataset, we rule out the top three 
failures by checking whether signals are sampled continuously with a constant sampling rate in the time domain. 
Specifically, we first ensure that there are no Null values in the collected signals and check whether the calculated 
duration (divide the total number of samples by the sampling rate) is equal to the measured duration (last times-
tamp minus the first timestamp). To rule out the fourth failure situation, we have to download the data back to 
our local computer and validate the technical quality of them after data processing. The following section intro-
duces two basic requirements of a high-quality dataset and their validations.

Basic requirements.  We consider the basic requirements that a high-quality dataset should satisfy.

•	 R1: The acceleration signals collected from the same accelerometer channel should be consistent across trials 
during a period, such as one day, one week or one month. Since the acceleration signal of each trial reflects 
the roughness of the same track, the overall profiles of acceleration signals should be similar across trials. 
Otherwise, this dataset is problematic;

•	 R2: The acceleration signals should be correlated with the GPS positions. As a discrete-space signal, the accel-
eration signal of each trial is associated with the position of the track. For example, amplitude of the accelera-
tion signal around the train station should be low. Otherwise, this dataset is problematic;

Figure 6 shows time periods (days) when sensors on LRVs 4306 and 4313 were recording. Blue lines indicate 
recording days, and white gaps indicate recording gaps in the dataset. The recording gaps are caused by one of 
three reasons: (1) Sometimes, the data-storage module runs out of space before downloading the data, and we are 
not allowed to install wireless sensors on the LRV in order to avoid interference between signals from our system 
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Fig. 5  Visualizing acceleration samples in the spatial domain. We visualize the 27 acceleration passes of 
accelerometer channel five in region five during May 2014. Each horizontal line shows one vehicle acceleration 
record at different track positions in the selected region.
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and those of train control & communication systems; (2) The data management system may not restart automat-
ically after restarting the light rail vehicles, although we have programmed it to do that; (3) The light rail vehicles 
were not in service because of maintenance, inspection and repair.

Validation of R1.  To prove the consistency of acceleration signals from the same accelerometer channel, we 
use the two-sample Kolmogorov-Smirnov test (K-S test)27. The two-sample K-S test is a general nonparametric 
method for comparing two samples. It quantifies a distance between the empirical distribution functions of two 
samples. The Kolmogorov-Smirnov statistic is

= −∣ ∣D F x F xsup ( ) ( ) ,n m
x

n m, 1, 2,

where F1,n and F2,m are the empirical distribution functions of the two samples, respectively, and sup is the supre-
mum function. The null hypothesis that the samples are drawn from the same distribution is rejected at level α if

α>
+D c n m
nm

( ) ,n m,

where n and m are the sizes of the two samples respectively, and for 5% and 1% rejection levels, c(α) is equal to 
1.36 and 1.63, respectively.

The null hypothesis of our test is that the acceleration signals from the same sensor channel in the same time 
period and the same geographical region are drawn from the same distribution. The boxplot (Fig. 7) shows a 
result of this test for LRV 4306. We first resample the time-domain signal in the spatial domain and randomly 
sample 1,000 acceleration amplitudes from each trail of the same sensor channel of LRV 4306 during May 2014 in 
region five. LRV 4306 ran 27 outbound trails during May 2014 in region five. We then calculate the K-S statistics 
of each pair of acceleration samples. For the tri-axle accelerometer installed on the central wheel truck (less elec-
trical noise), the tests of the three channels are not rejected, both at 5% significance level and at 1% significance 
level. However, the two uni-axle accelerometers installed in the cabin are rejected at 5% significance level, but not 
rejected at 1% significance level.

Validation of R2.  Because the trains were moving with different speeds, it is difficult to prove that every single 
acceleration and GPS position are correlated in the time domain. However, we can prove the geographical align-
ment of acceleration signals and GPS positions with the information of train stations. When arriving at a train 
station, the LRV stays stationary and idles. We assume that amplitude of the idling accelerations would be lower 

Fig. 6  The top and bottom figures show time periods when sensors on LRV 4306 and LRV 4313 were recording, 
respectively. Blue lines indicate days when accelerometers and GPS were recording. The causes of recording gaps 
are explained in section Basic requirements.
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than the traveling accelerations due to the excitation of the tracks. Figure 8 shows two examples of acceleration 
and position data in Region 5. There are five stations in Region 5: Memorial Station (MS), Killarney Station (KS), 
South Bank Station (SS), Denise Station (DS), and Bon Air Station (BS). We can observe that the amplitude of the 
acceleration signal is small when the LRV was at stations, and the mileage stays the same at stations.

Publications based on the presented dataset.  Papers9–11,28 using the data described here have been 
published. Lederman et al. used the collected dataset to detect changes in the tracks, including changes in the 
tracks due to repair and changes in track geometry due to tamping, by applying implicit and explicit models. The 
implicit model first extracts different features from the raw acceleration signals and then performs change detec-
tion with some common methods, including cumulative sum chart control (CUSUM)29, generalized likelihood 
ratio (GLR)29 and Haar filter30. The explicit model solves for the parameters of the train’s main suspension by 
enforcing sparsity in modeling the train system and learns where in the tracks the train is most excited by enforc-
ing sparsity in the track profile. Lederman et al.11 also proposed a data fusion approach for enabling data-driven 
rail-infrastructure monitoring from multiple in-service trains using the implicit model of the tracks.

Usage Notes
The data is provided in a MAT-file format with query files, and therefore it is convenient to load it in MATLAB. 
The script file (\code\main_script.m) calls the function (\code\load_processing.m) for loading and processing 
data and returns ‘pass’ objects, acceleration signals, and GPS positions. The ReadMe file provides more informa-
tion about the usage of the DR-Train dataset.
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Fig. 7  A result of the two-sample K-S test. For LRV 4306, there are 27 outbound trails during May 2014 in 
region five. We randomly sample 1,000 acceleration amplitudes from each trail and calculate the K-S statistics 
of each pair of samples. If the statistic is above the red line, the null hypothesis that two samples are drawn from 
the same distribution is rejected at level 5%. If the statistic is above the black line, the null hypothesis is rejected 
at level 1%.
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Fig. 8  Two examples of acceleration and position data in region five. When the LRV was at those five stations: 
Memorial Station (MS), Killarney Station (KS), South Bank Station (SS), Denise Station (DS), and Bon Air 
Station (BS), the amplitude of the acceleration signal is small, and mileage stays the same.
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Code Availability
The code used to register GPS positions via ICP can be downloaded from MathWorks’ file exchange25. The script 
and function used to load and process the data files can be downloaded from the  Zenodo repository (https://doi.
org/10.5281/zenodo.1432702)26. The codes have been tested using MATLAB 2017 on a typical personal computer 
and can run using different MATLAB versions and computers.
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