

PATH PLANNING FOR UNMANNED AERIAL VEHICLES

USING VISIBILITY LINE-BASED METHODS

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Rosli bin Omar

Control and Instrumentation Research Group

Department of Engineering

University of Leicester

March 2011

Abstract

PATH PLANNING FOR UNMANNED AERIAL VEHICLE USING

VISIBILITY LINE-BASED METHOD

Rosli bin Omar

This thesis concerns the development of path planning algorithms for unmanned aerial

vehicles (UAVs) to avoid obstacles in two- (2D) and three-dimensional (3D) urban

environments based on the visibility graph (VG) method. As VG uses all nodes

(vertices) in the environments, it is computationally expensive. The proposed 2D path

planning algorithms, on the contrary, select a relatively smaller number of vertices

using the so-called base line (BL), thus they are computationally efficient. The

computational efficiency of the proposed algorithms is further improved by limiting

the BL’s length, which results in an even smaller number of vertices. Simulation

results have proven that the proposed 2D path planning algorithms are much faster in

comparison with the VG and hence are suitable for real time path planning

applications. While vertices can be explicitly defined in 2D environments using VG, it

is difficult to determine them in 3D as they are infinite in number at each obstacle’s

border edge. This issue is tackled by using the so-called plane rotation approach in the

proposed 3D path planning algorithms where the vertices are the intersection points

between a plane rotated by certain angles and obstacles edges. In order to ensure that

the 3D path planning algorithms are computationally efficient, the proposed 2D path

planning algorithms are applied into them. In addition, a software package using

Matlab for 2D and 3D path planning has also been developed. The package is designed

to be easy to use as well as user-friendly with step-by-step instructions.

i

Acknowledgements

First of all, thanks to Allah for the blessing and opportunity for me to successfully

complete my studies. I would like to express my deepest gratitude to my thesis advisor

Professor Da-Wei Gu for his continued guidance and support. His drive and

enthusiasm for research is captivating, and he was able to continuously motivate me

throughout this research. His insight and knowledge in the subject matter were

invaluable to my success. I must also express my gratitude to the sponsors of this

research effort namely The Ministry of Higher Education (MOHE) of Malaysia and

Universiti Tun Hussein Onn Malaysia (UTHM). Their support is gratefully

acknowledged. I would also like to thank my peers in the Control Systems Research

laboratory including Dr. Halim Alwi, Naeem Khan, Mangal Kothari, Bharani Chandra,

Dr Sajjad Fekri, Dr. Andrade Emmanuel and Dr. Georgios Kladis. All of them could

be counted on to provide necessary insight into the research at hand. Special

acknowledgement goes to my wife, Zaharah Mohamed Nor. She has given me

unconditional support throughout my studies. Last but not least I would like to express

my special thanks to my parents and family for their prayers and support.

ii

Contents

Acknowledgements i

1 Introduction ... 1

1.1 Motivation .. 1

1.2 Autonomy in UAV ... 3

1.3 Path Planning Overview and Issues ... 5

1.3.1 Criteria of Path Planning ... 6

1.3.2 Path Planning Steps ... 6

1.3.3 C-space Representation ... 7

1.3.4 Graph Search Algorithms ... 8

1.3.5 Real Time and Off-line Path Planning .. 9

1.4 Assumptions and Problem Statement ... 9

1.5 Thesis Contributions .. 10

1.6 Thesis Structure .. 11

2 Path Planning .. 13

2.1 Introduction .. 13

2.2 Workspace Representation ... 15

2.2.1 Configuration space .. 15

2.2.2 C-Space Representation Techniques ... 18

2.2.3 Visibility Line ... 19

2.3 Graph Search Algorithms ... 23

2.3.1 Depth-first Search ... 23

iii

2.3.2 Breadth-first Search .. 24

2.3.3 Dijkstra’s Algorithm ... 25

2.3.4 Best-first Search .. 28

2.3.5 A*Algorithm ... 30

2.4 Path Planning Using Direct Optimisation Methods 32

2.5 Real-Time Path Planning ... 32

2.6 Path Planning in 3D Environment .. 33

2.7 Conclusion .. 35

3 2D Path Planning Using Visibility Line-Based Methods 37

3.1 Introduction .. 37

3.2 Visibility Line (VL) ... 39

3.2.1 Definitions and Algorithm .. 39

3.2.2 Path Planning Using VL ... 39

3.2.3 Advantages and Drawbacks of VL ... 41

3.3 Core Algorithm .. 43

3.3.1 The Idea of Core ... 44

3.3.2 Path Planning Using Core ... 45

3.4 BLOVL Algorithm ... 51

3.4.1 The Idea of BLOVL .. 51

3.4.2 Path Planning Using BLOVL ... 53

3.5 Performance Comparisons of VL and BLOVL .. 57

3.6 BLOVL Path .. 62

3.7 Safety Margin ... 65

3.8 BLOVL for Real Time Path Planning .. 67

3.9 Improvement to BLOVL .. 71

iv

3.10 Conclusion .. 74

4 3D Visibility Line Based Path Planning .. 76

4.1 Introduction .. 76

4.2 Direct Applications of BLOVL 2D Path Planning Algorithm in 3D

Environment .. 77

4.2.1 pstart and ptarget With Identical Altitude .. 77

4.2.2 pstart and ptarget With Different Altitudes ... 80

4.2.3 Find a Path on a Vertical Plane ... 83

4.3 Path on the Base Plane ... 85

4.3.1 Creating a Base Plane ... 85

4.3.2 Finding Intersection Points ... 88

4.3.3 Finding a 3D Path on the Base Plane .. 91

4.4 BLOVL 3D Algorithms ... 94

4.4.1 Rotating a Base Plane ... 97

4.4.2 3D Path Planning Using BLOVL3D2... 100

4.4.3 BLOVL3D2 Performances ... 109

4.5 Conclusion .. 116

5 Software Packages for Path Planning ... 117

5.1 Introduction .. 117

5.2 The GUIs Aims .. 118

5.3 The GUIs Features ... 118

5.4 Path Planning using 2D GUI .. 119

5.4.1 Operating the 2D GUI ... 119

5.4.2 Real-Time Path Planning Using the GUI .. 127

5.5 Path Planning Using 3D GUI ... 131

v

5.5.1 Operating the 3D GUI ... 131

5.6 Conclusion .. 138

6 Conclusions and Future Work ... 140

6.1 Conclusions .. 140

6.1.1 Path Planning in 2D environments ... 140

6.1.2 Path Planning in 3D environments ... 141

6.1.3 Path Planning Package for 2D and 3D environments 142

6.2 Future work .. 143

References ... 144

vi

List of Figures

Figure 1.1: Pathfinder UAV used for environmental research. 1

Figure 1.2: A UAV, RQ-1 predator is equipped with missiles 2

Figure 1.3: UAV autonomy levels and trend (adapted from [33]) 4

Figure 2. 1: A circular vehicle is transformed into a point in C-space 16

Figure 2.2: A scenario represented in (a) original form (b) configuration space. The

darker rectangles in (a) are those with actual dimensions while in (b) are those

enlarged according to the size of vehicle A. The white areas are the free space. 17

Figure 2.3: Path planning representation techniques categories 18

Figure 2.4: A path planned by VL method ... 19

Figure 2.5: A summary of path planning methods based on VG 22

Figure 2.6: Graph search algorithms ... 23

Figure 2.7: Depth-first search (adapted from [12]) ... 24

Figure 2.8: Breadth-First search (adapted from [12]) ... 25

Figure 2.9: Dijkstra’s algorithm illustration ... 27

Figure 2.10: Illustration of Best-first search algorithm. ... 29

Figure 2.11: Illustration of A* algorithm .. 31

Figure 3.1: The algorithm to construct VL set .. 39

Figure 3.2: A randomly generated scenario for path planning 40

Figure 3.3: The network of visibility line ... 40

file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706268
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706269
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706270
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706272
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706273
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706273
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706273
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706274
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706275
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706276
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706277
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706278
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706279
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706280
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706281
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706282
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706283
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706284
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706285

vii

Figure 3.4: The path planned using Visibility line and Dijkstra’s algorithm 41

Figure 3.5: A scenario with 2 rectangular obstacles ... 42

Figure 3.6: The numbers of obstacles in C-space increase the number of segments in

VL ... 43

Figure 3.7: The process of Core ... 44

Figure 3.8: The base line (dashed red) that is used to identify the obstacles for path

planning ... 46

Figure 3.9: The network created by Core ... 48

Figure 3.10: The planned path by Core .. 48

Figure 3.11: BLOVL algorithm. ... 51

Figure 3.12: BLOVL Algorithm ... 52

Figure 3.13: The paths generated by Core and BLOVL ... 54

Figure 3.14: The final path calculated by BLOVL. .. 55

Figure 3.15: Path planning complex and structured scenario 56

Figure 3.16: The resultant paths calculated by (a) BLOVL, (b) VL 56

Figure 3.17: A scenario with increased number of obstacles 57

Figure 3.18: A path generated by BLOVL ... 58

Figure 3.19: A path generated by VL ... 58

Figure 3.20: Computation time of VL from different number of obstacles 59

Figure 3.21: Computation time of BLOVL from different number of obstacles 60

Figure 3.22: Comparison of VL’s and BLOVL’s computation time in log scale 60

Figure 3.23: Paths lengths of VL and BLOVL in environments with different number

of obstacles. ... 61

Figure 3.24: A scenario for path planning. ... 62

Figure 3.25: The paths planned by BLOVL (black) and VL (magenta) 63

file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706286
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706287
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706288
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706288
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706289
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706290
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706290
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706291
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706292
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706293
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706294
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706295
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706296
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706297
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706298
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706299
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706300
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706301
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706302
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706303
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706304
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706305
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706305
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706306
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706307

viii

Figure 3.26: BLOVL updates the path as the path planning progresses. 63

Figure 3.27: BLOVL updates the path as the path planning progresses. 64

Figure 3.28: The paths planned by BLOVL (black) and VL (magenta) 64

Figure 3.29: A piece-wise linear segments path in the worst case scenario 65

Figure 3.30: The enlarged obstacle with safety margin .. 66

Figure 3.31: The obstacles with safety margin. .. 66

Figure 3.32: A path with safety margin generated by BLOVL 67

Figure 3.33: The scenario in which a real-time path planning will take place. 68

Figure 3.34: BLOVL for real time path planning ... 69

Figure 3.35: The resultant path using BLOVL with a pop-up obstacle 70

Figure 3.36: BL identifies the obstacles to be used by BLOVL. 71

Figure 3.37: BL with limited range identifies the obstacles to be used by BLOVL 72

Figure 3.38: Computation time comparison between BLOVL and BLOVL with

limited range ... 73

Figure 3.39: Paths lengths comparison between BLOVL and BLOVL with limited

range .. 74

Figure 4.1: A 3D environment with a 3D obstacle, in which the starting and target

points have an equal altitude; (a) top view, (b) side view, (c) 3D view. 78

Figure 4.2: The visibility lines network; (a) top view, (b) side view, (c) 3D view. 79

Figure 4.3: The 2D path (solid magenta lines) in 3D scenario; (a) top view, (b) 3D

view. .. 79

Figure 4.4: A 3D environment with a 3D obstacle. (a) top view, (b) side view, (c) 3D

view. .. 80

file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706308
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706309
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706310
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706311
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706312
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706313
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706314
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706315
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706316
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706317
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706318
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706319
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706320
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706320
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706321
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706321
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706322
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706322
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706323
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706324
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706324
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706325
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706325

ix

Figure 4.5: A horizontal path connecting the starting point and the project point ppt,

which is represented by the red triangle. (a) side view, (b) 3D view. 81

Figure 4.6: A path that has been planned in a 3D environment. (a) side view, (b) 3D

view. .. 81

Figure 4.7: A vertical path connecting pstart and pps (red triangle). (a) side view, (b) 3D

view. .. 82

Figure 4.8: A path (solid magenta lines) that has been planned in a 3D environment.

(a) side view, (b) 3D view. .. 82

Figure 4.9: The vertical plane in which the green dots are the intersection points. 83

Figure 4.10: A 3D path found the vertical plane; (a) top view, b) side view, (c) 3D

view. .. 84

Figure 4.11: BasePlane algorithm .. 85

Figure 4.12: The illustration of . (a) top view, (b) side view. 86

Figure 4.13: The Px’y’ustart generated by the BasePlane algorithm. (a) top view, (b) 3D

view ... 87

Figure 4.14: The orientation  is the angle between the the Y-axis of Pxyustart and the

BL3D of Px’y’ustart. .. 87

Figure 4.15: The FindIntersection algorithm. ... 89

Figure 4.16: A line-plane intersection found using the FindIntersection algorithm. ... 90

Figure 4.17: The borders’ edges of a 3D obstacle intersect with a plane. 91

Figure 4.18: The BLOVL3D1 algorithm .. 91

Figure 4.19: A scenario with two 3D obstacles with a plane; (a) top view, (b) 3D view.

 ... 92

Figure 4.20: The transformed local plane (Px’y’ustart) and the intersection points shown

by the red dots. .. 93

file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706326
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706326
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706327
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706327
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706328
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706328
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706329
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706329
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706330
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706331
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706331
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706332
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706333
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706334
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706334
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706335
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706335
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706336
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706337
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706338
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706339
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706340
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706340
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706341
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706341

x

Figure 4.21: The visibility lines network is represented by the cyan lines. 94

Figure 4.22: The path (magenta lines) on the plane found using Dijkstra’s algorithm.94

Figure 4.23: The BLOVL3D2 algorithm .. 95

Figure 4.24: The BLOVL3D2 process .. 96

Figure 4.25: The Rotate3D algorithm ... 98

Figure 4.26: A local plane Px’y’ustart to be rotated by 30 degrees about BL3D. 99

Figure 4.27: The plane in Fig. 4.16 is rotated about the BL3D line. 99

Figure 4.28: A 3D scenario with 35 obstacles. (a) top view, (b) 3D view. 100

Figure 4.29: The Px’y’ustart plane generated by BasePlane. (a) top view, (b) 3D view

 ... 101

Figure 4.30: The nodes (red dots) obtained by the FindIntersection algorithm and the

visibility lines network (cyan lines) generated by the BLOVL3D1; (a) top view, (b) 3D

view. .. 101

Figure 4.31: A path on Px’y’ustart represented by the magenta segments found by

BLOVL3D1; (a) top view, (b) 3D view. ... 102

Figure 4.32: The plane is rotated by 15 degree. .. 103

Figure 4.33: The nodes and visibility lines network of the plane rotated by 15 degree.

 ... 103

Figure 4.34: The shortest path on plane rotated by 15 degrees................................... 103

Figure 4.35: The plane rotated at {0:15:165) degrees to find a 3D path from ustart to

utarget. ... 104

Figure 4.36: The path obtained by BLOVL3D2 in the first iteration. (a) top view, (b)

3D view. .. 105

Figure 4.37: The plane generated by BasePlane from the second waypoint of the

previous shortest path to ptarget (a) top view, (b) 3D view. .. 106

file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706342
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706343
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706345
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706346
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706347
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706348
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706349
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706350
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706350
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706351
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706351
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706351
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706352
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706352
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706353
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706354
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706354
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706355
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706356
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706356
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706357
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706357
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706358
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706358

xi

Figure 4.38: The nodes, the visibility lines network and the path at 0 rotation angle of

second repetition (a) top view, (b) 3D view. .. 106

Figure 4.39: The path obtained by BLOVL3D2 in the second iteration. (a) top view,

(b) 3D view. .. 107

Figure 4.40: The resulted path (solid magenta line) planned by BLOVL3D2. 108

Figure 4.41: The scenario used to examine the performance of BLOVL3D2 using

different sets of rotational angles. (a) top view, (b) 3D view. 109

Figure 4.42: The path (solid magenta lines) planned by BLOVL3D2 using {0} degree

rotation angles. (a) top view, (b) 3D view. ... 110

Figure 4.43: The path (solid magenta lines) planned by BLOVL3D2 using {0,90}

degrees rotation angles. (a) top view, (b) 3D view. .. 110

Figure 4.44: The path (solid magenta lines) planned by BLOVL3D2 using {0:60:120}

degrees rotation angles. (a) top view, (b) 3D view. .. 111

Figure 4.45: The path (solid magenta lines) planned by BLOVL3D2 using {0:30:150}

degrees of rotation angles. (a) top view, (b) 3D view. .. 112

Figure 4.46: The path (solid magenta lines) planned by BLOVL3D2 using {0:15:165}

degrees rotation angles. (a) top view, (b) 3D view. .. 112

Figure 4.47: The simulations results of BLOVL3D2 using different number of rotation

angles in 100 random scenarios, each with 50 cuboids obstacles; (a) path lengths,

(b) computation time ... 113

Figure 4.48: A scenario with 25 cuboids obstacles. (a) top view, (b) 3D view. 114

Figure 4.49: A scenario with 50 cuboids obstacles; (a) top view, (b) 3D view. 115

Figure 4.50: A scenario with 75 cuboids obstacles; (a) top view, (b) 3D view. 115

Figure 4.51: The results of the BLOVL3D2 simulations using different number of

obstacles; (a) paths lengths, (b) computation time. ... 116

file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706359
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706359
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706360
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706360
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706361
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706362
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706362
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706363
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706363
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706364
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706364
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706365
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706365
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706366
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706366
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706367
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706367
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706368
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706368
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706368
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706369
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706370
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706371
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706372
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706372

xii

Figure 5.1: The objects used in the GUI ... 118

Figure 5.2: The GUI for 2D path planning using the proposed algorithms 120

Figure 5.3: The STEP 1 of the 2D package .. 121

Figure 5.4: A warning window asking user to enter the range correctly. 121

Figure 5.5: A scenario of 500x500 units with 50 obstacles has been set. 122

Figure 5.6: A complete scenario with the area of 500x500 units, 50 obstacles, a

starting point and target point. .. 123

Figure 5.7: Necessary parameters are required to plan a 2D collision-free path. 124

Figure 5.8: The planned path shown in red, satisfying the kinematic constraints 124

Figure 5.9: The visibility lines are shown from the starting point 125

Figure 5.10: The visibility lines are shown from the second waypoint 125

Figure 5.11: The traces of the planned path. ... 126

Figure 5.12: The information of the planned path. ... 127

Figure 5.13: The scenario that is used to demonstrate the real-time path planning. ... 128

Figure 5.14: The globally optimal path. .. 128

Figure 5.15: The UAV is traversing the planned path. ... 129

Figure 5.16: The UAV detects the pop-up obstacle. ... 129

Figure 5.17: The new path is re-planned when the pop-up obstacle is detected......... 130

Figure 5.18: The UAV traverses the re-planned collision-free path. 130

Figure 5.19: The UAV successfully reaches at the target point. 131

Figure 5.20: A GUI for 3D path planning using the proposed algorithms 132

Figure 5.21: The STEP 1 of the 3D package. ... 132

Figure 5.22: The 3D scenario with 75 obstacles ... 133

file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706373
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706374
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706375
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706376
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706377
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706378
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706378
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706379
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706380
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706381
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706382
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706383
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706384
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706385
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706386
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706387
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706388
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706389
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706390
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706391
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706392
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706393
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706394

xiii

Figure 5.23: The complete 3D scenario with 75 obstacles, starting point (blue triangle)

and target point (square magenta) ... 134

Figure 5.24: Necessary parameters are required to plan a 3D collision-free path. 134

Figure 5.25: The 3D path planned by BLOVL3D1 algorithm. 135

Figure 5.26: The 3D path planned by BLOVL3D2 algorithm. 135

Figure 5.27: The planes generated by BLOVL3D1 are seen from top view 136

Figure 5.28: The planes generated by BLOVL3D1 are in 3D view. 136

Figure 5.29: The planes generated by BLOVL3D2 are viewed from top 137

Figure 5.30: The planes generated by BLOVL3D2 are viewed in 3D. 137

Figure 5.31: The Results frame showing the information about the planned path. 138

file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706395
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706395
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706396
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706397
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706398
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706399
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706400
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706401
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706402
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706403

xiv

List of Tables

Table 2.1: The recorded costs of Dijkstra’s algorithm for Fig. 2.8. 28

Table 3.1: Nodes arrangement .. 45

Table 3.2: The list of nodes ... 47

Table 3.3: The matrix of cost, CM ... 49

Table 3.4: The simplified CM .. 50

Table 3.5: The waypoints generated by Core ... 50

Table 3.6: The waypoints generated by BLOVL .. 55

Table 3.7: Comparison of VL’s and BLOVL’s computation time 61

Table 4.1: Waypoints generated by BLOVL3D1 at 0 degree. 102

Table 4.2: The waypoints generated by BLOVL at 15 degrees rotation angle. 104

Table 4.3: The waypoints generated by BLOVL3D2 in the first iteration. 105

Table 4.4: The waypoints generated by BLOVL3D2 in the second iteration at 0

rotation angle. ... 107

Table 4.5: The waypoints generated by BLOVL3D2 in the second iteration at 150

rotation angle. ... 108

Table 4.6: The waypoints of the path shown in Fig. 4.40 generated by BLOVL3D2.

 ... 108

Table 4.7: The sets of angles used in the simulation. ... 109

Table 4.8: The average of path lengths and computation time using sets of rotation

angles. ... 113

file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706405
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706406
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706407
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706408
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706409
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706410
file:///C:/Users/user/Desktop/Thesis%20Corrected%2006012011/Thesis%20-%20%2007012012%20Rosli.docx%23_Toc313706411

1

Figure 1.1: Pathfinder UAV used for environmental research.

Chapter 1

Introduction

1.1 Motivation

Unmanned Aerial Vehicles (UAVs) are a vital means of performing hazardous

missions in adversarial environments without endangering human life. They have been

used for peaceful purposes in civilian applications such as weather forecasting,

environmental research, search and rescue missions, observation during wildfire

incidents and traffic control [3]. Fig. 1.1 illustrates a Pathfinder UAV used for

environmental research. On the other hand, UAVs have also been used for warfare

such as carrying out aerial reconnaissance and surveillance over the opponent’s area or

attacking strategic facilities in enemy territory. Fig. 1.2 shows an RQ-1 predator which

is armed with missiles for combat purposes [1].

2

Since UAV requires no human pilot, there is no loss to human life if it crashes or gets

attacked during a mission. Besides, UAV also reduce operating costs because it does

not require a highly trained pilot onboard as a manned aircraft does. The latter is cost-

ineffective often caused by expensive investment needed as part of the pilot’s training

to cover advanced facilities such as buildings, flight simulators and support equipment

including instrumentation, the cockpit and ejection systems. Therefore UAVs are by

far the best way forward. In addition, with no human pilot, a UAV can be designed to

achieve higher gravitational forces i.e. 50g [2], which results in relatively higher

manoeuvrability (a human can sustain up to only 9g). A UAV with higher

manoeuvrability may have better performance such as faster speed, smaller minimum

turning radius and larger maximum roll angle and hold a higher probability of

escaping from enemy’s missile attack.

However, many current UAVs still involve a human-in-the-loop to oversee and control

the UAVs’ operation [4, 31]. This in turn requires a communication link through radio

signals between the human operator and the UAV to transmit/receive the

command/sensory signals over a frequency spectrum, which is often limited.

Furthermore, the radio signal is vulnerable and might be jammed by opponents. In the

event of a lost or interrupted signal, as the UAV is dependent on human operators’

decisions, it would not be able to execute a mission as desired and to some extent, it

Figure 1.2: A UAV, RQ-1 predator is equipped with missiles

3

may crash. Thus, the dependency on human instructions through a communication link

needs to be minimised or eliminated if possible. This requires the UAV to have the

capability of making its own decisions based on the current state and circumstances of

its surrounding environments. The capability of doing so will greatly enhance the

autonomy of UAVs.

1.2 Autonomy in UAV

Current technologies are capable of operating a UAV in a relatively structured and

known environment. However, in a dynamic environment where uncertainties exist

such as obstacles that might pop-up during a mission, the technologies are insufficient

due to the UAV’s inability to make decisions by itself [32]. This requires a new

concept called autonomy.

Autonomy means the capability of a UAV to make its own decision based on the

information presently available captured by sensors, and potentially covers the whole

range of the vehicle’s operations with minimal human intervention [5]. Autonomy

increases system efficiency because all decisions are executed onboard except for

critical decisions such as launching a missile that have to be made by humans [30]. A

UAV with autonomy would be able to execute a mission in environments with

uncertainties. Furthermore, with autonomy, the UAV can perform a long duration

mission, which is beyond the capability of human (operators). Autonomy covers the

following areas [6]:

i. sensor fusion

ii. communications

iii. path planning

iv. trajectory generation

v. task allocation and scheduling

vi. cooperative tactics

Additionally, as introduced in [33], there are ten UAV autonomy levels known as

Autonomous Control Level (ACL). The ACL and trends in UAV autonomy are

illustrated in Fig. 1.3. The concept of ACL as a metric to describe the autonomy in

4

UAVs is widely accepted [31]. Readers are referred to [33] for a detailed description

of ACL.

However, autonomy technology is still in its early stage, fairly undeveloped [5] and is

the bottleneck for UAV development in the future [6]. The RQ-1 Predator as shown in

Fig. 1.1 for example, at present, can perform up to only level 3 of ACL.

The list of autonomy areas included previously, as well as the ACL (Fig. 1.3), have

shown that onboard path planning and re-planning, which deals with traversing a

vehicle through obstacles is one of the keys components of autonomy.

Research on UAV autonomy including path planning have progressed steadily since

the beginning of this century. For example, [31] has designed and conceptually

developed a simple UAV path planning mission that is used to reduce the UAV’s

dependency on human operators, and hence increases the UAV’s autonomy level. The

so-called Mission Management System (MMS) has been designed, developed and

flight-tested in [31]. From sensory data, MMS makes decisions and issues high level

commands which are then executed by the Flight Control Systems (FCS).

Figure 1.3: UAV autonomy levels and trend (adapted from [33])

5

As path planning plays an important role in enhancing UAV’s autonomy level, it has

to be considered in the design of a UAV.

1.3 Path Planning Overview and Issues

From a technical perspective, path planning is a problem of determining a path for a

vehicle in a properly defined environment from a starting point to a target point such

that the vehicle is free from collisions with surrounding obstacles and its planned

motion satisfies the vehicle’s physical/kinematic constraints [25]. In a report by [12],

path planning is associated with a number of terms as follows:

 Motion planning

This term is frequently associated with manipulator robotics. It involves

deliberative high level and low level planning of a way to move a robotic

manipulator.

 Trajectory planning

It is about planning the next movement of a robot. Trajectory planning is

similar to motion planning.

 Navigation

It is a very general term which has several meanings. In general it means

“getting there from here”. It is also part of path planning, motion planning,

obstacle avoidance and localisation.

 Global path planning

The planning is done prior to vehicle movement. It uses the information from

the surrounding world to reach a target point from a starting point. As the

information contains global data, the process is slow, but the planned path may

be optimal.

6

 Local navigation

It is a process of avoiding obstacles by using only acquired data of the current

surrounding environment. It is also a process of ensuring the vehicle’s stability

and safety and runs in real time using a reactive path planning approach.

1.3.1 Criteria of Path Planning

Path planning related problems have been extensively investigated and solved by

many researchers [7-10], mostly focusing on ground robotics and manipulators.

Important criteria for path planning that are commonly taken into account are the

computational time, path length and completeness. A path planning algorithm with

less computational time is vital in real time application, which is desirable in dynamic

environments. The generated optimal path in terms of path length by a path planning

technique will minimise UAV flight time and hence prolongs the UAV’s endurance

and life cycle, minimises fuel/energy consumption and reduces exposure to possible

risks. On the other hand, a path planning approach satisfies the completeness criterion

if it is able to find a path if one exists.

However, sometimes, there are trade-offs between such criteria. For example, a path

planning method has to disregard the path’s optimality in order to increase the

computational efficiency. It means that finding a slightly longer path with less

computational time may be preferable. On the other hand, higher computational

complexity is necessary if an optimal path is required for some reasons. These criteria

have to be considered before any path planning technique/algorithm design process

takes place.

1.3.2 Path Planning Steps

Typically, path planning of a vehicle A consists of two phases. The first phase is

called the pre-processing phase in which nodes and edges (lines) are built in the

environment/workspace W with A and obstacles O. In this phase, it is common to

apply the concept of a configuration space (C-space) to represent A and O in W [9,

12]. In C-space, the vehicle’s size is reduced to a point, and accordingly the obstacles’

sizes are enlarged according to the size of A. Next, representation techniques are used

7

to generate maps of graphs. Each technique differs in the way it defines the nodes and

edges.

The second phase of path planning is termed the query phase in which a search for a

path from a starting point to a target point is performed using (graph) search

algorithms.

However there are path planning methods that can find solutions without graph search

algorithm such as Mixed Integer Linear Programming (MILP) [4, 105, 116-117] and

Evolutionary Algorithm (EA) [118-120].

1.3.3 C-space Representation

In path planning for an object, there are a number of methods that are commonly used

to represent the environment including potential field (PF) [21-24], cell decomposition

(CD) [13-16] and roadmap (RM) [17-20], to name a few. A PF represents the

environment by modelling the object as a particle, moving under the influence of

potential fields throughout the C-space. The field’s magnitude at a particular point in

C-space is determined by the fields generated by starting point pstart, target point ptarget

and the obstacles O in the C-space. The pstart and O are repulsive surfaces (which

generate repulsive forces), while the ptarget is the attractive pole which generates

attractive forces [21]. The path is then calculated based on the resulting potential fields

from a point with the highest magnitude of the resultant potential field, i.e. pstart, to a

point with the minimum potential, i.e. ptarget. The PF has several advantages such as

the planning process is done as the vehicle moves and thus is suitable for real time

application and the generated path is also smooth. However, conventional PF methods

suffer from local minima causing the vehicle to become stuck before it reaches ptarget,

hence it might not satisfy the completeness criterion.

CD-based are among the most popular methods to represent the environment

especially for outdoor scenarios [12] as it is the most straightforward technique [29].

This is due to the fact that the cells can represent anything such as free space or

obstacles. The first step in CD is to divide the C-space into simple, connected regions

termed cells [35]. The cells are regions that might be square, rectangular or polygonal

in shape. They are discrete, non-overlapping but adjacent to each other. If the cell

8

contains obstacle (or part of obstacle), it is marked as occupied, otherwise it is marked

as obstacle free. A connectivity graph is then constructed and a graph search algorithm

is used to find a path throughout the cells from the starting point to the target point. In

order to increase the quality of the path, the size of the cells has to be made smaller,

which in turn increases the grid’s resolution, and hence computational time. In the

literature, there are several variants of CD. These include Approximate Cell

Decomposition, Adaptive Cell Decomposition and Exact Cell Decomposition.

Path planning using RM-based methods on the other hand represent the environment

by constructing graphs or maps from sets of nodes and edges. Path planning methods

which are specific cases of RM are Voronoi diagrams (VD) and Visibility Graphs

(VG). The nodes and edges to build a roadmap are defined differently for each

method. VD defines nodes that are equidistant from all the points’ surrounding

obstacles. The paths generated from a graph by VD are relatively highly safe due to

the fact that the edges of the paths are positioned as far as possible from the obstacles.

However, the paths are inefficient [12] and not optimal in terms of path length. On the

other hand, VG uses the vertices of the obstacles including the starting and target

points in the C-space as the nodes. A VG (or visibility lines, VL) network is then

formed by connecting pairs of mutually-visible nodes by a set of lines E. A pair of

mutually-visible nodes means that those nodes can be linked by a line/edge that

does not intersect with any edge of obstacles in the C-space. Additionally, there is a

cost associated with each E, possibly in terms of Euclidean distance. One advantage of

VL is the capability of finding a path with the shortest length if one exists. A standard

VL’s computational complexity is O(N
3
) to find a path in a C-space with N nodes

therefore VL is computationally intractable in the C-space with many obstacles.

1.3.4 Graph Search Algorithms

It has previously been stated that the second step of path planning is to calculate a path

using (graph) search algorithms. Two basic search algorithms are Breadth-First Search

(BFS) and Depth-First Search (DFS). BFS searches paths in a systematic way which

guarantees that the first solution found will utilise the smallest number of iterations

[34]. Like BFS, DFS is also systematic but it focuses on one direction and completely

misses large portions of the C-space as the number of iterations become very large.

9

Both BFS and DFS need to consider every node in the graph in calculating the best

possible path [12], hence generating a path might take a relatively long time for a large

environment with a large number of nodes. In order to address this issue, there are a

variety of search algorithms such as Dijkstra’s and A* (pronounced A-star) algorithms

[12] which consider only a subset of the nodes. Dijkstra’s algorithm generates the

shortest path by considering the costs from the current node to the starting point. A*

on the other hand calculates a path based on the costs from current node to both

starting and target points.

1.3.5 Real Time and Off-line Path Planning

A path planner is called real time if it incrementally finds and modifies a path in the

course of the UAV’s flight. A sensor is used to detect any obstacles with locations that

are on the collision course of the UAV path. If the sensor detects obstacles, the

information is fed to the path planner, and subsequently, a collision-free path is

planned. On the other hand, a path planner is termed offline if it plans the path before

the flight starts. The path, which is normally optimal, is constructed based on the data

of the environment acquired either by satellite, surveillance or other means.

1.4 Assumptions and Problem Statement

A path planning problem for a UAV in a two-dimensional (2D or) or three-

dimensional (3D or) environment through stationary polygonal obstacles,

 (or), from a designated starting point pstart to

the target point ptarget have been considered in this thesis. It is assumed that the

environment is a well-built urban area and are hard, rectangle-shaped obstacles

(buildings). It is also assumed that the knowledge of the entire or part of the

environment such as the geometries, dimensions and locations of are known a-priori

either from surveillance, satellite data or other means. The resultant path has to be

collision-free and consists of waypoints , which is defined by

positions (or in) where . Note that and

 are the pstart and ptarget, respectively. Two consecutive waypoints are connected by

piece-wise linear segments from pstart to ptarget.

10

Once the UAV starts its mission by traversing along the planned 2D path, the

environment may change where pop-up and/or the previously unknown obstacles

might appear on the path. The UAV is assumed to be equipped with sensors of limited

range to collect information about the environment such as pop-up and/or the

previously unknown obstacles. Using the collected information from the sensors, a

new path has to be re-planned in real-time to avoid any collision with the surrounding

obstacles.

1.5 Thesis Contributions

In order to address the problems that have been stated in the previous section, several

solutions that are the contributions of the thesis are proposed.

The first contribution is the development of a set of algorithms for 2D path planning.

The outcome of the proposed algorithms is an optimal, collision-free path with a fixed

altitude. The proposed algorithms are based on the Visibility Line (VL) method and

Dijkstra’s algorithm. Contrary to the VL approach
1
, the proposed algorithms find paths

by reducing the number of obstacles (as well as nodes (vertices) and edges), which

lowers the computation time and is therefore suitable for a real time path planning

application. It is emphasised that the VL approach and Dijkstra’s algorithm are chosen

because they are guaranteed to produce optimal path, if one exists [12]. An optimal

path, within the context of this thesis, means the path that has the least distance from

pstart to ptarget. It is also worth emphasising that the proposed 2D algorithms possess the

aforementioned criteria of path planning and may capable of finding a globally

optimal path if the knowledge of the environment is fully and accurately known. The

algorithms are also computationally efficient as the number of obstacles that are used

for path calculation is relatively small. On the other hand, the proposed algorithms

hold the completeness criterion as it will generate a path, if one exists.

The second contribution of the thesis is the development of a set of path planning

algorithms in 3D environments which are based on the proposed 2D ones. Unlike 2D,

the proposed 3D path planning algorithms consider the heights of obstacles in the

environments as well as the altitudes of pstart and ptarget. They apply the concept of

planes rotation, in which the nodes, which are used to find 3D paths, can be identified

1
 VL (with Dijkstra’s algorithm) uses the entire obstacles in the environment to find an optimal path.

11

efficiently from the intersections between the rotated planes and 3D obstacles edges.

Hence the proposed 3D algorithms solve the problem of conventional VL methods, in

which determining the nodes of 3D obstacles are difficult. The proposed algorithms

hold the completeness criterion.

Additionally, a couple of Graphical User Interfaces (GUIs) to realise the 2D and 3D

algorithms have also been developed. The GUIs are designed to be user-friendly,

equipped with step-by-step instructions to guide the user. Using the GUIs for path

planning either in a 2D or 3D environment, a random or particular scenario can be

generated. The pstart and ptarget can also be located at any points in a provided axis. A

collision-free path is then found at the click of a button. The necessary information of

the planned paths is also displayed in the GUIs.

1.6 Thesis Structure

This thesis is structured in the following manner:

Chapter 2 presents an extensive literature survey of visibility graph (or visibility line)

and graph search algorithms. It begins with defining path planning, and then

discussing the importance of path planning and its criteria. An introduction to VL and

related research are presented. Also, several established graph search algorithms are

briefly explained. The chapter also briefly discusses real-time path planning and path

planning in 3D environments.

Chapter 3 discusses the proposed path planning algorithms in 2D environments based

on the VL method and Dijkstra’s algorithm. The chapter also demonstrates the

application of the algorithms to real-time path planning. The safety margin is also

introduced for a collision-free path. Also, the improvement of the proposed 2D path

planning algorithms is highlighted.

Chapter 4 discusses the proposed 3D path planning algorithms. The concept of

rotational planes that are utilised by the algorithms is explained. This chapter also

shows the simulations to evaluate the effect of the number of obstacles and rotation

angles to computation time and path length.

12

Chapter 5 presents the Graphical User Interfaces (GUIs) for path planning in 2D and

3D environments. Guidelines on how to use the GUIs are also provided.

Chapter 6 provides conclusions based on the work in this thesis. This chapter also

presents possible areas of future research to extend the work developed.

13

Chapter 2

Path Planning

2.1 Introduction

One of the open issues in the development of autonomous vehicles such as Unmanned

Aerial Vehicles (UAVs) is path planning. In its most general form, the path planning

problem for an autonomous vehicle A in an Euclidean space W can be stated in the

following way [45]: Given an initial starting point pstart, a target point ptarget and a set

of obstacles O whose geometry is known to A, determine if there exists a continuous

obstacle-avoiding motion for A from pstart to ptarget. If one exists, construct the path for

such a motion. Note that W is called the workspace, represented as , with N=2 or 3

for 2D and 3D, respectively.

Path planning is necessary for autonomous vehicle to find a safe route to be traversed

from pstart to ptarget. Research on path planning in environments with polygonal

obstacles have been around since the beginning of mobile robots. As such, many path

planning techniques, which are categorised under geometric-based, grid-based or

potential field, to name just a few, have been documented in ground robotics and

manipulators systems [23, 38, 51-57]. Nevertheless path planning for Unmanned

Aerial Vehicles (UAVs) have also applied such techniques.

Most existing path planning methods involve a two-step process to generate collision-

free paths. The first step is to represent W either in a two- (2D) or three-dimensional

(3D) space with a graph or map. This step is called the pre-processing phase. The next

step is the query phase, in which the pstart and ptarget are incorporated into the graph or

map. Then a path is calculated through the represented environment using a (graph)

14

search algorithm. However there are several path planning methods that don’t require

the graph search algorithms to find paths such as Mixed Integer Linear Programming

(MILP) [4, 105, 116-117] and Evolutionary Algorithm (EA) [118-120].

It is important to have a path planning method/algorithm that calculates a safe path in

the shortest time possible so that it can be applied in real-time in order to deal with

changes in an environment. In a changing environment, a previously unknown or pop-

up obstacle might be encountered by a UAV through its onboard sensors during a

mission. Quick path re-planning by the UAV’s path planner to find an alternative safe

path in real-time is important in order to successfully accomplish a given mission.

A good path planning method/algorithm must not only provide a safe path, it also has

to be able to find the shortest path. The shortest path is crucial in order to minimise

travel time, saves energy/fuel, lower the possible traverse risks exposure and prolong

the vehicle life cycle.

However, practically, UAVs fly in a 3D environment. Thus representing the

environment in 2D for path planning leads to a path that has constant altitude, which

might not optimal. A UAV that flies with constant altitude undoubtedly has the

advantage of saving the vehicle’s fuel. Instead of ascending, the vehicle would only

need to change its heading either to the left or right to avoid obstacles. Ascending

consumes extra energy/fuel in order to increase the UAV’s thrust level as the UAV has

to defy the gravitational force. However, as the real environment is in 3D, it is crucial

for a path planning algorithm to be able to generate 3D paths in such an environment

because unlike 2D path, a path in 3D has a variable altitude. Such a path may be

shorter in distance, which may consume less fuel, less risk and has a longer life cycle

than that of a 2D path.

In this chapter, path planning aspects in general are discussed starting with the

introduction of the configuration space (C-space) followed by a discussion on the path

planning technique using visibility graph (or visibility line (VL)) in W. Then several

existing graph search algorithms are discussed. Prior to the conclusion of the chapter, a

review of the planning techniques in real time as well as in a 3D environment will be

discussed.

15

2.2 Workspace Representation

The representation of the environment is generally the first phase of the path planning

process which involves recognising objects/obstacles in the environment and

identifying free space to manoeuvre. In this phase, a map or graph is created

considering the configuration of the vehicle and the obstacles. Note that a

configuration of an object is defined as a position specification of all points of this

object relative to a fixed reference frame [14]. Path planning through polygonal

obstacles has led to the development of the configuration space (C-space) concept,

which allows the specification of the obstacles and the vehicle positions.

In a C-space, there are a number of techniques that can be used to represent the

environment (including the vehicle and obstacles). This section focuses on the

description of C-space and reviews the workspace representation using the so-called

visibility line (VL).

2.2.1 Configuration space

Configuration space (C-space) is the common concept behind most path planning

methods to represent the workspace W. C-space (Q) is the space of all possible

specifications of a vehicle A and obstacles region O in W (W = in 2D and W

= in 3D). In path planning, C-space is used to ensure that A doesn’t intersect O in

W. The C-space concept is widely used in path planning problems as it is a key

construction and formalism for path planning and it also provides a uniform

framework that allows the comparison and evaluations of different algorithms [12, 29].

One way to represent the configuration of A is to define its centre point q = (x,y)

relative to some fixed coordinate frame [41]. If the radius r (or a distance from the

furthest point to the centre) of A is known, it is possible to determine the set of points

occupied by A from the configuration, q. If the notation V(q) represent the set of

points, then

 222)'()'()','(),(ryyxxyxyxV 

16

(a) (b) (c)

Vehicle

O

Workspace

Q
free

Qoi

Figure 2. 1: A circular vehicle is transformed into a point in C-space

The above notation shows that, it is sufficient for x and y to completely specify the

configuration of A. In C-space with an obstacle region O = {o1, o2,…,op}, the set of

configuration of obstacle region at which A will intersect Oi is defined as

Qoi = {qQ | V(q)  oi≠0}

Conversely, the free configuration space in which the vehicle will traverse is

Qfree = Q\(i Qoi)

In order to illustrate how the configuration space is created, consider the circular

vehicle and an obstacle oi in a W as shown in Fig. 2.1(a). By sliding the vehicle

around the obstacle as well as the boundary of W, the obstacle configuration Qoi is

constructed and shown in Fig. 2.1(b). Meanwhile the vehicle transformed into a point

in the C-space where the shaded area represents Qoi while white region represents

Qfree is shown in Fig. 2.1(c) wherein C-space reduces the problem of finding a

collision-free path of A in W to that of a point in Qfree.

In Fig. 2.1 (c), the corners of the obstacle are supposed to be curvy; however they are

made sharp as most of path planning representations techniques use nodes to find

paths.

17

Figure 2.2: A scenario represented in (a) original form (b) configuration space. The

darker rectangles in (a) are those with actual dimensions while in (b) are those

enlarged according to the size of vehicle A. The white areas are the free space.

To demonstrate how to create a C-space from W for a scenario, which contains a

number of obstacles, consider Fig. 2.2 (a) whose obstacles are in their actual sizes. The

C-space of the scenario is then created based on the size of A and illustrated in Fig.

2.2(b). Having the C-space defined, now the problem of finding a path from the Start

to the Goal points as illustrated in Fig. 2.2 (a) is reduced to that of a point in the Qfree

as shown in Fig. 2.2 (b).

Start

Goal

A
Start

Goal

(a) (b)

18

2.2.2 C-Space Representation Techniques

After applying the C-space concept to the environment, the next step is to represent

the C-space. There are three categories of representation techniques including

roadmaps, cell-composition and potential fields. Most path planning methods fall

under one of those categories. Fig. 2.3 below shows the categorised C-space

representation techniques.

Potential Fields

(PF)

Representation techniques

Cell Decomposition

(CD)

Roadmap (RM)

Approximate

Exact

Adaptive

Quad-tree

Framed quad-tree

Visibility Line (VL)

Voronoi Diagram (VD)

Probabilistic RM

Rapidly-exploring

Randomised Tree (RRT)

Figure 2.3: Path planning representation techniques categories

19

2.2.3 Visibility Line

A visibility graph or visibility line (VL) is one of the methods in representing a C-

space. It was first proposed by Lozano-Perez and Wesley [9] for path planning in the

environments with polyhedral obstacles. Ever since then, researchers [7, 74, 94, 112]

have used this method, with some variations, for path planning. The VL of a 2D

configuration space which consists of a set of polygonal obstacles O is defined as a

network , constructed from sets of vertices/nodes and edges . The VL

network is an undirected graph in which an edge is a linear segment connecting

a pair of mutually visible nodes, , where i≠ j. In addition, the edges of the

obstacles are also edges of the VL network. Two nodes are mutually visible if the edge

connecting both nodes not intersects any edge of . consists of all the corners of the

obstacles including the starting point and the target point. A path resulted from the VL

is the combination of several edges connecting the starting point pstart and target point

ptarget. An example of a VL application for path planning is shown in Fig. 2.4. The path

is represented by the solid bold lines.

Figure 2.4: A path planned by VL method

Start

Goal

20

2.2.3.1 Related Works Using Visibility Line

The VL method was pioneered by Nilsson [7] for the Shakey Robot project where the

graph is created based on planar map called the grid model. The method has been

developed since then through studies on the problem of path planning either for

ground robots or UAVs through polygonal obstacles [8-10, 68, 56, 70, 71, 72, 43, 47,

72, 74, 94, 112]. Thompson [8] used VL to create a roadmap, and then applied a

search algorithm to find an optimal path for a point robot. In 1979, Lozano-Perez and

Wesley [9] proposed an algorithm based on VL to solve the problem of finding

shortest path for a polyhedral object moving from start to goal points through

polygonal obstacles considering its (the object’s) dimension. Another work based on

VL was undertaken by Tokuta [10] who presented a VGRAPH method that

incorporates a starting point and a target point of a robot into the roadmap of a two-

dimensional workspace. An algorithm called A VGRAPH Point Incorporation

Algorithm (VPIA) was used to incorporate a point in free-space into a roadmap and

divided the free space around an obstacle node into an ordered set of areas. A search

algorithm was used to determine the containment that implied visibility of the point

from the vertex.

Oomen et al. [68] used VL to find a solution of autonomous mobile robot path

planning in an unexplored obstacles environment. In the proposed solution, the VL

was constructed incrementally. A learning element was incorporated in order to

construct the VL. Additionally, a sensor with limited range was used to learn

information about the obstacles in the environment. However, the generated path was

sub-optimal due to the unavailability of complete information about the environment.

Like [68], Rao [56] proposed a general framework of robot navigation that could be

applied to any situation involving mobile robots or manipulators where a suitable

navigation course could be found using the so-called Restricted Visibility Graph

(RVG) in an unknown environment. Two algorithms concerning local (Lnav) and

global (Gnav) navigation were proposed. The framework of the proposed algorithms

laid a foundation on which navigation systems for mobile robots can be built.

Louchene et.al [70] presented a strategy for global path planning in a known

environment for an Automated Guided Vehicle (AGV) using a VL representation. The

proposed strategy consisted of two parts. The first partitions the free working space

21

according to obstacles models. The second calculates a set of points within the free

working space based on the dimensions of the mobile robot.

Many researchers have concentrated on reducing the computational effort required to

create the VL network as it is computationally expensive in obstacle-rich

environments. Reduced computation time is useful for real-time application. Wooden

& Egerstedt [72] derived a significantly reduced roadmap for unstructured polygonal

environments suitable for real-time path planning application of outdoor robots. The

method called Oriented Visibility Graph (OVG), attached an onboard stereo-based

sensor to the robot to detect the obstacles and created the polygonised maps to support

the use of the planner. In order to improve the performance over runs, the graphs were

saved between runs and dynamic update rules were carried out. Also, the algorithm

that was proposed Tokuta [10], as explained above, is suitable to be applied in real

time path planning as the VPIA runs in parallel which reduces the computation time.

Another real time path planning research project based on VL was done by Huang and

Chung [74]. They proposed a method called Dynamic Visibility Graph (DVG), which

was claimed to be fast for constructing a reduced roadmap through polygonal

obstacles within an active region. DVG enormously decreases the computation time

for reconstructing the map and hence is suitable for real time path-planning for single

and multiple autonomous vehicles. However, it is difficult to define the area of active

region. Other methods for reducing the complexity of VL were proposed by [75, 111].

Both methods were claimed to have low computation loads. Omar and Gu [112]

proposed a path planning method, which is based on VL, called Base Line Oriented

Visibility Line (BLOVL) to find paths in short time by reducing the numbers of

obstacles during the paths calculation. BLOVL was proven through simulations to

have paths that are identical to those of conventional VL most of the times.

In addition, since VL results in the shortest path, VL’s application in not limited to

path planning only, but also extends to Field Programmable Gate Arrays (FPGAs)

design [50] and geographic routing [57].

This thesis is the extension of the work of [112] as the proposed method has been

proven to be fast in producing optimal path in obstacle-rich environments.

22

As a conclusion, the aforementioned methods that are based on VL are summarised in

Fig 2.5.

Figure 2.5: A summary of the path planning methods based on VG

VL-based methods

DVG RVG VPIA OVG

Advantages:

- The algorithm is fast.

- The obstacles’ geometry is changed

incrementally to reduce the number

of edges in the graph.

Drawbacks:

- The path is not optimal due to only

two edges for each obstacle are used

in the algorithm which are not

sufficient.

Advantages:

- The algorithm is fast.

- The graph is dynamic as it is changed

as the starting and target points are

moved.

Drawbacks:

- As the visibility lines do not connect

all visible pairs of vertices, the

resulting path is not optimal.

Advantages:

- The number of visibility lines,

which are confined in the so-called

active region, is minimal.

Drawbacks:

- Difficult to determine the area of

active region.

Advantages:

- The path is optimal as

conventional visibility graph is

used.

Drawbacks:

- The computation time is high.

23

2.3 Graph Search Algorithms

Graph search is the second step for path planning after an environment has been

represented by a particular method. Graph search algorithms have received

considerable attention in the past and are important in path planning. In general, graph

search algorithms determine whether a path exists from pstart to ptarget by evaluating

certain nodes/states. If no path exists, they will report failure. Several major search

algorithms are shown in Fig. 2.6 [12] and a number of them are briefly presented in

this thesis.

2.3.1 Depth-first Search

In Depth-first search (DFS), the deepest node is expanded first as shown in Fig. 2.7. It

moves toward the goal as quickly as possible, searching on a path until a dead end is

found. As it searches one path through a branch prior to another search at the other

path, DFS could miss large portions of the workspace [12,34]. DFS can be applied for

finding a path among many possible paths.

Figure 2.6: Graph search algorithms

Heuristic Search

Graph Search Algorithms

Depth-first Search

Breadth-first

Search

Uniform Cost

Trulla

Dijkstra’s Algorithm

Best-first Search

A*

Iterative Deepening

24

However, DFS is an uninformed search, which means it does not use the cost function

to decide which direction to go and how far the distance from the current node to the

target point is.

2.3.2 Breadth-first Search

The Breadth-first algorithm (BFS) was introduced in 1957 by Moore [73]. In BFS

algorithm the shallowest node is expanded first searching all the one-step down nodes

of the path prior to the next step taking place as shown in Fig. 2.8 [12]. This makes

BFS a systematic search algorithm. However, like DFS, BFS is an uninformed search.

BFS finds the shortest path on its first run. It is suitable when there are a small number

of solutions which use a relatively short number of steps [12].

Start A

B D C

E G F H

 Goal

Step 1: Explore paths A B

(Goal not found)

Step 2: Explore paths A B E

(Goal not found) A B F

Step 3: Explore paths A C

(Goal not found)

Step 4 : Explore paths A C G

(Goal not found)

Step 5 : Explore paths A C G Goal

(Goal found)

In the event of tie, the left node is chosen

first. Figure 2.7: Depth-first search (adapted from [12])

25

Figure 2.8: Breadth-First search (adapted from [12])

Start A

B D C

E G F H

 Goal

Step 1: Explore paths A B

(Goal not found) A C

 A D

Step 2: Explore paths A B E

(Goal not found) A B F

 A C G

 A D H

Step 3 : Explore paths A C G Goal

(Goal found)

In the event of tie, the left node is chosen

first.

2.3.3 Dijkstra’s Algorithm

Dijkstra’s algorithm was invented by a Dutch computer scientist, Edsger Dijkstra in

1959 [97]. It is used to find the shortest path based on costs of traversal from pstart to

all points in a graph. Dijkstra’a algorithm is complete if a solution exists. It measures

the distance of node n which is denoted by g(n) with respect to the starting node in the

graph. The cost at the node is non-negative and stored in a priority queue. For example

a node n that is stored in priority queue has the cost of

 f(n)=g(n)

f(n) is also called the backward cost or cost-to-come. The cost is calculated

incrementally during the algorithm execution. As the cost is non-negative, the cost is

monotonically increased. For example, if the next node to n is n’, and the distance

between them is l(n, n’), the cost-to come is updated to

f(n’)=f(n)+ l(n, n’)=g(n’)

Because l(n, n’) is non-negative, f(n’) is thus greater than f(n).

26

The algorithm naturally begins at a pstart and extends outward within the graph, until

all nodes are visited. As a result, Dijkstra’s algorithm is a systematic search algorithm.

In order to establish the steps in Dijkstra’a algorithm, let d(p) be the distance from a

source node x to a node p; and let l(p,q) be the cost between adjacent/neighbouring

nodes p and q. The steps of Dijkstra’s algorithm are then as follows:

 Step1: Set the priority queue, PQ={x}. For each node p not in PQ, set d(p) =

l(x,p). For all nodes that are not adjacent to x, set their values to infinity.

 Step 2: At each subsequent step, find a node q that is not in PQ where d(q) is

minimum. Then add q in PQ and set the parent of q to p. Subsequently

update d(p) for all the remaining nodes which are not in PQ by finding its

minimum cost using

Step 2 is done recursively until node q is the target point.

In order to illustrate how Dijkstra’s algorithm works, consider a scenario in Fig. 2.9(a)

in which a path has to be found from source node A to goal node E. As Dijkstra’s

algorithm starts at node A hence the node is put in the priority queue PQ as shown in

Fig. 2.9(b). The adjacent nodes to node A are nodes B, C and D which are shown in

amber. It is found that node B has the least cost-to-come i.e. 5. Node B is then stored

in PQ. Node B’s neighbours are nodes C, D and E as shown in Fig. 2.9(c). Of the three

nodes, D has the least cost from node A i.e. 8 thus D is kept in PQ as shown in Fig.

2.9(d). Node D is then expanded to its adjacent nodes i.e. node E. At this point there

are two remaining nodes that have not been visited yet i.e. C and E. It is found that of

the two remaining nodes, node C has the least cost i.e. 9, from source node A. hence C

is put in PQ as shown in Fig. 2.9(e). The last node E is then examined and placed in

PQ with the parents of D and A. As E is the goal node, its parents are backtracked. The

path via node D (also called waypoint) with the lowest cost i.e. 10 is then found and is

shown in darker arrows as illustrated in Fig. 2.9(f). Table 2.1 records the priority

queue PQ and costs of d(p) at each iteration.

27

Figure 2.9: Dijkstra’s algorithm illustration

(a)

A/0

B/

C/

D/

E/

8

9

8

5

5

4

8

2

(b)

8

9

8

5

5

4

8

2

D/8

B/5

C/9

(c)

E/13

8

9

8

5

5

4

8

2

D/8

B/5

C/9

(d)

8

9

8

5

5

4

8

2

B/5

D/8

C/9

E/

E/13

(e)

8

9

8

5

5

4

8

2

E/10

D/8

C/9

 B/5

A/0

A/0 A/0

A/0

(f)

8

9

8

5

5

4

8

2

E/10

D/8

C/9

 B/5

A/0

28

Table 2.1: The recorded costs of Dijkstra’s algorithm for Fig. 2.8.

Iteration PQ d(B) d(C) d(D) d(E) Parents

1 {A} 5 9 8  -

2 {A,B} 5 9 8 13 {A}

3 {A,B,D} 5 9 8 13 {A}

4 {A,B,D,C} 5 9 8 13 {A}

5 {A,B,D,C,E} 5 9 8 13 {A,D}

2.3.4 Best-first Search

Best-first search falls under the class of heuristic search algorithm, which uses the

distance from a current node with respect to the target point in order to find a path in a

graph. Heuristic is used for making a guess for such a distance. The heuristic distance

f(n) from a node n to target point is defined by

f(n) = h(n)

The resulting path in a graph using Best-first search is determined by comparing a

heuristic cost of the current node with the costs of all the other nodes. The node which

has the least cost is then expanded to the neighbouring nodes until the target point is

met.

There is no guarantee that Best-first search algorithm will find the shortest path

because it by passes some branches in the search tree. Nevertheless, it performs much

less searching than Dijkstra’s algorithm.

Like Dijkstra’s algorithm, Best-first search uses a priority queue that stores the list of

nodes. The start node is normally the first node that is stored in the priority queue. As

the node is then expanded, all the adjacent nodes that are directly connected to the

node are then stored into the priority queue, arranged by their corresponding total

heuristic cost. The least cost adjacent node is then expanded next and its neighbours

that are not in the queue are added. The process is repeated until the target point is

found. The illustration on how Best-first algorithm is used in finding a path in a graph

is shown in Fig. 2.10. In the figure the starting point is labelled with A and target point

is labelled with E. Fig. 2.10(b) shows that as Best-first search begins at node A, the

node is stored in priority queue. The neighbouring nodes that directly linked to node A

are nodes B, C and D which are shown in amber. It is clear that node D has the least

29

heuristic cost (2), while both nodes B and C have 8 as their heuristic costs. Node D is

then expanded and linked to its adjacent node i.e. E, as shown in Fig. 2.10(c). As node

E is the target point, its heuristic cost is 0. The path with the lowest heuristic cost is

then found and shown in darker arrows as illustrated in Fig. 2.10(d). It is apparent that,

as Best-first search uses heuristics, it visits lesser nodes than that of the Dijkstra’s

algorithm.

(a)

A/0

B/

C/

D/

E/0

8

9

8

5

5

4

8

2

(b)

8

9

8

5

5

4

8

2

D/2

B/8

C/8

(c)

E/0

8

9

8

5

5

4

8

2

D/2

B/8

C/8

(d)

8

9

8

5

5

4

8

2

B/8

D/2

C/8

E/0

E/0

A

A A

Figure 2.10: Illustration of Best-first search algorithm.

30

2.3.5 A*Algorithm

Another heuristic search method is A* (pronounced A star) that was pioneered by Hart

[96] in 1968. It is a search algorithm that is used to find a solution to a path planning

problem. Like Dijkstra’s algorithm, the A* search algorithm is systematic and using a

backward cost function g(n) from a source node to a current node n. In addition, it uses

a forward cost function, called heuristic h(n), which is an estimate of the cost from the

node (n) to the goal node. As a result, the total cost function at the current node n can

be expressed as follows:

f(n) = h(n) + g(n)

Normally the heuristic value is a straight line distance from the current node to the

goal ignoring obstacles in between [12]. However, there is no way to estimate the true

heuristic value in advance [34]. The heuristic function reduces the total number of

states/nodes need to be explored by A*.

As both forward and backward costs are used, it therefore combines the Best-first

search and Dijkstra’s algorithm. If the backward (g(n)) cost is dominant, A* tends to

be Dijkstra's algorithm and the result is the shortest path from the source node to the

goal, but the search process takes longer. This situation is called admissible heuristic

which means the estimated distance h(n) between node n and the source node does not

underestimate the true distance from the node to the goal. In the extreme case, A*

becomes Dijkstra’s Algorithm if the heuristic value h(n) is zero. On the other hand if

the forward cost or heuristic weighting is dominant, A* tends to be like the Best-first

search, producing a shortest path is not guaranteed, although the path is produced

faster. A* becomes -first search if the backward cost is zero.

Like Dijkstra’s algorithm, A* has a priority queue that stores the list of nodes. The

start node is typically the first node to be stored in the priority queue. The node is then

expanded and all the adjacent nodes that are directly connected to the start node are

then stored into the priority queue, sorted by their corresponding total cost. The

adjacent node with the least cost is then expanded next and its neighbours that are not

in the queue are added. The process is repeated until the target point is in the queue.

31

An example of how A* is used in path finding is depicted in a scenario as shown Fig.

2.11 in which the starting point is node A while the target point is node E. In Fig. 2.11

(b), A* begins at node A hence the node is put in priority queue. The adjacent nodes

that directly connected to node A are nodes B, C and D which are in amber. From the

figure, node D has backward cost g(D) of 8 and 2 forward cost h(D) which makes the

total cost of f(D) is 10, while nodes B and C have f(B) and f(C) of 13 and 17,

respectively. Node D is then expanded and its only neighbour is node E as shown in

Fig. 2.11(c). The path with the lowest cost i.e. 10 is then found and shown in darker

arrows as illustrated in Fig. 2.11(d).

(a)

A/0

B/

C/

D/

E/

8

9

8

5

5

4

8

2

(b)

8

9

8

5

5

4

8

2

D/10

B/13

C/17

(c)

E/10

8

9

8

5

5

4

8

2

D/10

B/13

C/17

(d)

8

9

8

5

5

4

8

2

B/13

D/10

C/17

E/

E/10

A

A A

Figure 2.11: Illustration of A* algorithm

32

A*is complete if a solution exists, provided that the time and memory are unlimited. It

will find the target point if it can be possibly found in the map or graph. In an optimal

sense, A* is guaranteed to produce a path with the least cost from a starting point to a

target point if the heuristic value is admissible, which means smaller than the actual

value.

2.4 Path Planning Using Direct Optimisation Methods

As previously mentioned, there are methods that do not require the graph search

algorithm to find paths such as Mixed Integer Linear Programming (MILP) and

Evolutionary Algorithm (EA).

MILP is capable of producing optimal solutions by expressing linear constraints upon

a mixture of continuous and integer variables. This involves the discrete decisions in

the optimisation process, which gives some flexibility in the mission problems that are

to be solved. MILP is also proven to be efficient in finding solution multiple vehicles

path planning problem [105].

EA, on the other hand, finds a path by creating the initial generation of a population at

the beginning. This is done by encoding a set of randomly selected feasible solutions.

The fitness of each individual of the population is evaluated according to several

factors and constraints. Then a set of selected individuals are appointed as parents for

the next generation. The final step is to generate the offspring individuals by

duplicating a parent with a mutation or combining two parents by crossover [120]. The

above process is repeated until the last generation’s individual with best fitness is

decoded as the optimal solution.

2.5 Real-Time Path Planning

Practically, a UAV operates in an environment that may change over time. For

example, an obstacle might pop-up in the environment while the UAV is traversing a

planned path. These situation requires a path planning algorithm to quickly re-plan a

safe path in real-time. Thus the ability to plan a path in real-time is an important factor

that has to be considered before designing a path planning algorithm in dynamic

environments.

33

In order to do so, such an algorithm must be able to adapt to any change in the

environment. Thus, for path planning in real time, onboard sensors are very important

as the sensors will gather and update all the obstacles’ data, which needs to be

supplied to the algorithm which is embedded into the UAV’s onboard processors. The

algorithm will re-plan a path if the sensors detect pop-up obstacles that lie on the

planned path.

The issue of real-time path planning has been addressed by many researchers such as

[21, 72, 74, 75, 52, 107, 112]. Some of this work have been discussed in sub-section

2.2.3.1. Omar and Gu [112] proposed two algorithms called Core and Base Line

Oriented Visibility Line (BLOVL), for UAV path planning in real-time. The

algorithms were claimed to generate a relatively fast collision-free path as small

number of obstacles were considered during the path calculation. As such the proposed

algorithms are suitable for real-time path planning. In [74] the so-called fast Dynamic

Visibility Graph (DVG) method was proposed for constructing a reduced roadmap

among convex polygonal obstacles. DVG was claimed to decrease the computation

time of reconstructing the roadmap, and as such it is suitable for real time path-

planning for single or multiple autonomous vehicles.

Another example of work in real-time path planning was undertaken by Jason et.al

[75]. They use the Essential Visibility Graph (EVG) global motion planner so that a

realistic, static environment could be modelled in two dimensions. EVG offers a

significant reduction in data storage requirements and complexity thus it is suitable for

real time path planning.

2.6 Path Planning in 3D Environment

Most of the path planning methods are mainly developed for finding paths for ground

robots and hence the paths are in 2D where the altitude is assumed to be constant.

However for UAVs, which flies in a 3D environment, it is crucial to have a 3D path

planning algorithm that is capable of generating a 3D path for the UAV. This is

because such a path with the altitude is taken into account, might be shorter than the

2D path that is planned in 3D environment.

34

Path planning in a 3D environment, to produce 3D paths, has been studied for many

years and includes those that are based on approaches such as VL [71, 94, 95, 112],

Potential Fields [22, 93] and Voronoi diagrams [20]. Kitamura et al. [22] proposed a

method for finding a collision-free path and orientation for a vehicle in a dynamic 3D

environment using an octree as a means to represent every object in the environment.

In this method, the path of a vehicle from its starting position to the given goal with

arbitrary motion in a 3D environment is searched using the potential field method.

Mojtaba and Ghodsi [94] tried to find a new way to define a geometric structure in 3D

space based on VL. This method easily defines a new structure called 3D VG to

extend the 2D graph to 3D scenes. It runs in and this method could be

computed in an acceptable time. Chung and Saridis [95] proposed the extended

Vgraph algorithm (EVA) to reduce the computation time by using the recursive

compensation algorithm (RCA). RCA is used to find the collision-free shortest path in

a 3D environment without increasing the Vgraph complexity. It was proven that the

EVA can save memory space and the path planning time as well. Omar and Gu [112]

introduced a set of 3D path planning algorithms based on VL method. The concept of

a rotational plane, on which the VL is created, has also been proposed. The 3D path is

obtained after the plane has been rotated at specified angles.

K. Jiang et al. [71] proposed a method for the shortest 3D path planning in the

presence of polygonal obstacles based on the visibility graph approach. In order to

identify the edge sequence which the shortest path may pass across in the three

dimensional VL, a collineation was introduced. Then the sub-optimal path was

calculated using the so-called principle of minimum potential energy. The process of

finding the path was done recursively. However, the drawback of the proposed method

was that the processing time is polynomially related to the number of vertices or

nodes.

Broz [93] proposed a hybrid and real-time path planning technique that can be used in

3D applications for a set of agents. It works in known, partially known or unknown

environments based on Potential Field method. Two separate maps of the same size

are used to represent the environment. The obstacles map represents danger weights

while threats map represents potential fields of all located and observed threats in the

space. The algorithm keeps a mesh that was “widespread over each map” and all

35

available paths were defined. The changes in both maps and the behaviour of all

agents were continuously adapted. The whole algorithm was based on real-time

development of the adaptive mesh. Sud et.al [20] presented a novel approach for

efficient path planning and navigation of multiple virtual agents in complex dynamic

using Multi-agent Navigation Graph (MaNG). The MaNG was used to perform route

planning and proximity computations for each agent in real time. The algorithm is

used for real-time multi-agent planning in pursuit evasion, terrain exploration, and

crowd simulation scenarios consisting of hundreds of moving agents, each with an

individual goal.

2.7 Conclusion

In this chapter, an overview of path planning was made, including a discussion

regarding the workspace W representation and graph search algorithms. In addition, a

brief discussion on real-time and path planning in three-dimensional (3D) has been put

forward.

Most path planning methods have two steps in order to find collision-free paths. The

first step involves the representation of the W based on the configuration space (C-

Space) of an environment. The C-space is the space of all possible specifications of a

vehicle A and an obstacle region O in W. The second step deals with the calculation

of a collision-free path using a graph search algorithm.

Nevertheless there are several path planning methods that don’t require the

aforementioned steps in order to find solutions such as Mixed Integer Linear

Programming and Evolutionary Algorithm.

Popular C-space representation techniques are cell decomposition, roadmaps and

potential fields. Under roadmaps, there are several methods, which are widely used for

path planning namely, Visibility Graphs (or Visibility Lines), Voronoi Diagrams and

Rapidly-exploring Random Tree (RRT). On the other hand, there are a number of

graph search algorithms available in the literature such as Breadth-first search, Depth-

first search, Best-first search, Dijkstra’s algorithm and A* (pronounced A-star). A*

will produce an optimal solution if the heuristic value is admissible i.e. less than the

36

actual value. Dijkstra’s algorithm on the other hand guarantees that the resulting path

is the shortest if one exists.

One important factor of any path planning algorithm is the ability to find a path in real

time. Planning in real time is useful if there are changes in the environment in which

the path planning will take place. The ability to re-plan in a short time will guarantee

that the UAV will successfully avoid any pop-up obstacles and accomplish a particular

mission.

As UAVs fly in 3D environments, traversing a 2D path with constant altitude is

inappropriate as this may cause the UAVs to fly along a longer distance path. Hence

planning 3D paths is necessary as the path may have a shorter distance hence saving

the UAV’s fuel/energy, increasing its endurance, prolonging its life cycle and

minimising its exposure to risk.

37

Chapter 3

2D Path Planning Using Visibility

Line-Based Methods

3.1 Introduction

One of the criteria of path planning is to produce an optimal (shortest) path that links a

starting point pstart and a target point ptarget. An Unmanned Aerial Vehicle (UAV) that

is being deployed to accomplish a mission traversing along such path will gain the

following advantages:

i. minimal traversal duration

ii. low fuel/energy consumption.

iii. longer life cycle.

iv. minimal exposure to risk.

Planning in real-time in response to any changes in the environment is also a criterion

of path planning in addition to producing a path if one exists i.e. complete. These three

criteria and the trade–offs between them have to be considered before a path planning

algorithm is designed.

One of the path planning approaches that is capable of producing shortest path is

Visibility Line (VL) method if it is coupled with Dijkstra’s algorithm. Moreover VL is

also complete in the sense that a path will be found if the path is available. For these

reasons, VL method and Dijkstra’s algorithm have been chosen for path planning of

38

UAV in this thesis. A* search algorithm is not considered because, if it is combined

with VL method, the path it produces may not be optimal. The reason being, it is

difficult to calculate the heuristic of A* as there is no way to measure the cost of a

straight lines that connect nodes to the target point ptarget in an environment where the

lines pass through obstacles. In addition, if the heuristic cost is not admissible i.e.

higher than the real cost, the resultant path might not be optimal in terms of the path

length.

Although VL satisfies two of the path planning criteria i.e. it produces the shortest

path and is complete, its computation time increases significantly with the increase of

numbers of obstacles in the environment as will be demonstrated later. This implies

that the more obstacles which appear in the C-space, the much longer time it needs to

find a path. As a result, VL in its original form is not suitable to be applied in real time

path planning applications in obstacle-rich or dynamic environments.

In order to address the above-mentioned issue, two algorithms based on VL have been

proposed in this thesis. The proposed algorithms are capable of finding paths in real-

time while retaining the advantages of the VL, although sometimes the paths are not

the shortest. The first algorithm is called Core while the second one is termed Base

Line Oriented Visibility Line (BLOVL). The algorithm is called Core because it is the

fundamental algorithm and repeatedly called to find a path connecting a (current)

starting and target points.

Core is used to find an initial path that is optimal using the minimal number of

obstacles but the path might not collision-free. BLOVL which contains Core on the

other hand will find a complete, safe path from pstart to ptarget based on local obstacles

in iterative manner. As Core is embedded in BLOVL, the proposed algorithm is then

called BLOVL. Since BLOVL uses sets of local obstacles, they are relatively faster

than the original VL as will be shown later. However the final resultant path might be

near-optimal in rare cases.

This chapter explains the idea of the proposed algorithms, Core and BLOVL, and an

overview of VL is presented in Section 3.2. Subsequently, an example of path

planning using VL is demonstrated followed by an in-depth discussion on the Core

and BLOVL algorithms. Examples of path planning using both proposed algorithms

39

Figure 3.1: The algorithm to construct VL set

are demonstrated next. Performance comparisons with respect to the computation time

and paths lengths between VL and BLOVL from several randomly generated scenarios

is given prior to the conclusion section.

3.2 Visibility Line (VL)

3.2.1 Definitions and Algorithm

The VL of a two-dimensional C-space is defined as a network/roadmap G(V,E), which

is constructed from sets of vertices/nodes (V) and edges (E). Each edge e ∈ E is a

linear segment connecting a pair of “mutually-visible” vertices, vi, vj ∈ V where i≠ j. V

consists of all the corners of the obstacles including pstart and ptarget. Fig. 3.1 shows the

algorithm to construct the VL set:

Input: pstart, ptarget, polygonal obstacles.

Output: Visibility Lines, VL set.

1: for every pair of nodes, vi, vj where i≠ j

2: for every obstacle e

3: if segment (vi, vj) intersect e

4: go to (1)

5: end if

6: end for

7: Insert edge(vi, vj) into VL set

8: end for

3.2.2 Path Planning Using VL

In order to demonstrate how VL works, a scenario consisting of 15 rectangular

obstacles where their sizes and positions are randomly generated together with pstart

and ptarget is considered as per depicted in Fig. 3.2. Note that the blue triangle

represents the starting point and the magenta square denotes the target point. First a

40

VL network is created according to the definition and algorithm as mentioned in the

previous sub-section. The resultant network is illustrated in Fig. 3.3. By utilising

Dijkstra’s algorithm then, a shortest path is found and it is shown in Fig. 3.4. It takes

0.50 seconds to generate the path on a computer with 2.4GHz processor and 2GB

RAM.

Figure 3.2: A randomly generated scenario for path planning

Figure 3.3: The network of visibility line

41

3.2.3 Advantages and Drawbacks of VL

One of the benefits of VL is the computed path, which consists of a set of waypoints,

has the shortest length, if it is coupled with Dijkstra’s algorithm. To have a clearer idea

on what waypoints are, consider its definition below:

Definition 1. Waypoints, W is defined as a sequence of points wi {i=0,…,n} of least

number, starting from pstart i.e. w0 to ptarget i.e. wn. A piece-wise linear path is formed if

linear segments connect wi to wi+1.

Note that a path is the shortest if it waypoints is a set of nodes of obstacles found using

a graph search algorithm. As VL waypoints (not including the starting and target

points) are always at certain nodes of obstacles, it is capable of producing a shortest

path in terms of Euclidean distance. Consider the following lemma:

Lemma 1. A necessary condition for a path to have minimum Euclidean distance from

pstart to ptarget in a C-space is that all of its waypoints W are the nodes of obstacles O.

Figure 3.4: The path planned using Visibility line and Dijkstra’s algorithm

42

Proof. Suppose that a set of waypoints that consists of a series of points which are not

the nodes of the obstacles in C-space. Let B be the first such point in the series. A and

C are the points immediately before and after B, respectively. B will not be on the

straight line AC, because otherwise B should not be a waypoint. Without loss of

generality, consider a path AB + BC formed by points (A, B, C) as shown in Fig. 3.5. If

there is no obstacle between A and C, then C should be the next waypoint after A.

Also consider points F and G in the series. The following arguments can be observed

from Fig. 3.5:

 AB+BC = AB+BF+FG+GC > (AD+DF)+FG+GC = AD+(DF+FG)+GC >

AD+(DE+EG)+GC = AD+DE+(EG+GC) > AD+DE+EC

The above arguments show that the path AD+DE+EC formed by points (A, D, E, C),

where A, D and E are the nodes of the obstacles, is shorter than the paths which

contain points that are in the series.

Besides producing shortest paths, VL is also complete, which means that it always

yield a path if one exists. This property is important as it will ensure that the UAV will

accomplish a mission in a scenario where generating a path is possible.

One the other hand, VL has a major disadvantage; it is computationally expensive in

an obstacle-rich C-space. For VL, the segments s that connect pairs of mutually-visible

nodes has the maximum number of

Figure 3.5: A scenario with 2 rectangular obstacles

A

B

C

D E

F

G

43

Figure 3.6: The numbers of obstacles in C-space increase the number of segments

in VL

where n is the number of obstacles, each with 4 nodes. For instance, if there are two

disjoint rectangular obstacles in the C-space, the maximum number of segments is 45.

Consequently, with 200 obstacles in the C-space, 321201 segments are needed to build

the VL. In order to have a better insight into the relationship between the numbers of

obstacles and segments, see Fig. 3.6 in which the obstacles’ numbers are increased

from 1 to 200. The figure shows that the number of segments of VL network increases

significantly with respect to the number of rectangular obstacles. As the number of

segments is directly related to the amount of computation time, thus the computation

time will also be high in obstacle-rich environments. This prevents VL to be used for

real time path planning in such environments.

3.3 Core Algorithm

One major disadvantage of VL method is its computation time substantially increases

as the number of obstacles grows. In order to address this problem, an algorithm has

been designed named Core. Core can generate a path relatively quickly and is suitable

for real time path planning applications in dynamic and obstacle rich environments.

44

This is due to the fact that a narrow region towards the ptarget is considered in the

algorithm, hence a smaller set of obstacles and vertices are used during the path

calculation.

3.3.1 The Idea of Core

Core in a nutshell is used to construct a partial VL network from a specific region of

the C-space. It then finds a path from pstart to ptarget using Dijkstra’s algorithm. Core’s

algorithm is shown in Algorithm 1 and its process is illustrated in Fig. 3.7. The

partial VL network is constructed based on the obstacles that are determined by the so-

called base line (BL), which is simply a line that connects pstart and ptarget. BL allows

Core to use a smaller set of obstacles, OCore rather than the entire obstacles (O) as used

by VL. This makes Core insensitive to the number of obstacles in the environment.

Algorithm 1: Core

1: Create a base line (BL) from starting point, ustart to target point, utarget.

2: Construct a set of nodes, NS from each node of each obstacle that lies

on the BL and their extensions including ustart and utarget.

3: Create a cost matrix, CM from NS.

4: Find local path, U(u0,…,um) from CM using Dijkstra’s algorithm

where u0 = ustart and um=utarget.

Referring to Algorithm 1, step 1 of Core is to create a BL from a starting point ustart to

a target point utarget. The purpose of BL is to determine the obstacles that will be

utilised in the path calculation. In order to determine the OCore, BL first identifies the

obstacles that lie along it. Then the obstacles, OExt that overlaps with each obstacle in

OBL are recognised. As a result, the obstacles that will be used by Core in the path

calculation is OCore = OBL  OExt.

Figure 3.7: The process of Core

U = { u0, u1,…, um }

Core Algorithm

(Core)

{ustart, utarget}

45

In the next step of Core, a set of nodes NS is constructed based on OCore, ustart and

utarget. In this work, the nodes of NS are arranged as shown in Table 3.1
2
.

Node

number
Nodes

Obstacles

Number

1 Starting point, pstart Nil

2 Target point, ptarget Nil

3 Lower left side 1

4 Upper right side 1

5 Upper left side 1

6 Lower right side 1

7 Lower left side 2

8 Upper right side 2

9 Upper left side 2

10 Lower right side 2

Subsequently, in step 3 of Core, a cost matrix CM is determined from NS. CM is a

structured database that contains the indexes and Euclidean lengths of inter-visible

nodes pairs and the obstacles numbers, which the nodes belong to. The length will be

set to infinity if a pair of nodes in NS is not mutually-visible. Finally Core finds the

path using Dijkstra’s algorithm from the constructed network.

3.3.2 Path Planning Using Core

In order to demonstrate how Core algorithm works, consider the previous scenario as

shown in Fig. 3.2. By step 1 of Core, a set of obstacles OBL that lie along the BL is

first identified as shown in Fig. 3.8. It is clear from the figure that the obstacles with

numbers 14, 15 and 9 are the members of OBL. Then a set of obstacles, OExt that

overlaps with each obstacle in OBL is recognised. This means OExt consists of obstacles

{8,11}. The OCore that have been identified by BL then consists of obstacles {14, 15, 9,

2
 In the table it is assumed that there are two disjoint rectangle obstacles i.e. o1 and o2 that lie on BL.

Table 3.1: Nodes arrangement

46

8, 11} as shown in Fig. 3.8. Notice that in the figure, BL is represented by the dashed

red line and OCore are outlined in red.

Then NS is identified and is shown in Table 3.2. The node number in NS is arranged in

the brackets of the first column of the table. Then Core generates CM from NS. The

generated CM is shown in Table 3.3. By removing the infinity costs and since VL is

non-directed graph, CM as in Table 3.3 can be simplified into the arrangement as

shown in Table 3.4. The pairs of nodes that are not infinity in Table 3.4 will then be

used to construct a VL network. The resultant VL network using Core is illustrated in

Fig. 3.9. Finally Core finds a path using Dijkstra’s algorithm based on CM and it is

depicted in Fig. 3.10. The waypoints of the path are shown in Table 3.5. It is

noticeable that the waypoints w1, w2 and w3 correspond to nodes 17, 21 and 10,

respectively.

Figure 3.8: The base line (dashed red) that is used to identify the obstacles for path

planning

47

NS Nodes Obstacles Number

1 Starting point, pstart Nil

2 Target point, ptarget Nil

31(3) Lower left side 8

32(4) Upper right side 8

33(5) Upper left side 8

34(6) Lower right side 8

35(7) Lower left side 9

36(8) Upper right side 9

37(9) Upper left side 9

38(10) Lower right side 9

43(11) Lower left side 11

44(12) Upper right side 11

45(13) Upper left side 11

46(14) Lower right side 11

55(15) Lower left side 14

56(16) Upper right side 14

57(17) Upper left side 14

58(18) Lower right side 14

59(19) Lower left side 15

60(20) Upper right side 15

61(21) Upper left side 15

62(22) Lower right side 16

Note that Core finds the path in 0.016 seconds on a computer equipped with 2.4GHz

processor, 2GB RAM. The computation time is faster compared to that of VL by over

30 times. However, as can be seen from Fig. 3.10, the path that has been planned by

Core is not collision-free as some segments of the path intersecting the edges of

obstacles 17 and 20. These obstacles have not been included during the path

calculation because they are not on the BL or overlapped with the obstacles on BL. In

Table 3.2: The list of nodes

48

the next section, this problem will be addressed by introducing another algorithm

called Base Line Oriented Visibility Line (BLOVL).

Figure 3.10: The planned path by Core

Figure 3.9: The network created by Core

49

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1

             27.0  47.4 57.0    

2 

     11.3 34.0 25.3            

3  

                  

4   

 27.0     74.4   99.0  16.6   77.7  111.8 

5    

                

6    27.0 

    94.4   114.8    14.1 101.6  137.3 

7      

 16.0 25.0  131.5  158.8      125.3 139.6 

8  11.3     

25.0 16.0            

9  34.0     16.0 25.0

  145.9  173.7      137.4 150.6 

10  25.3   25.0 16.0 

 144.6  169.8      143.4 159.3 

11    74.4  94.4    

  30.0  80.6 107.7  22.7   

12       131.5  145.9 144.6 

 30.0      35.4  

13            

        

14    99.0  114.8 158.8  173.7 169.8 30.0 30.0 

 107.7 136.0     

15 27.0             

 38.0 30.0    

16    16.6       80.6   107.7 

30.0  79.2  109.8 

17 47.4          107.7   136.0 38.0 30.0

 102.3  127.5 

18 57.0     14.1         30.0  

   

19    77.7  101.6     22.7     79.2 102.3 

 38.0 

20     125.3  137.4 143.4  35.4     

20.0 

21    111.8  137.3 139.6  150.6 159.3      109.8 127.5  38.0 20.0



22 

Table 3.3: The matrix of cost, CM

50

Nodes pair Cost Nodes pair Cost

1 15 27.0185 9 12 145.9075

1 17 47.4342 9 14 173.6923

1 18 57.0088 9 20 137.4373

2 8 11.3137 9 21 150.6287

2 9 33.9559 10 12 144.6167

2 10 25.2982 10 14 169.8058

4 6 27 10 20 143.4015

4 11 74.411 10 21 159.2608

4 14 98.9798 11 14 30

4 16 16.6433 11 16 80.6226

4 19 77.6981 11 17 107.7033

4 21 111.79 11 19 22.6716

6 11 94.4034 12 14 30

6 14 114.7693 12 20 35.3553

6 18 14.1421 14 16 107.7033

6 19 101.6366 14 17 136.0147

6 21 137.2662 15 17 38

7 9 16 15 18 30

7 10 25 16 17 30

7 12 131.4876 16 19 79.2086

7 14 158.7734 16 21 109.7725

7 20 125.2557 17 19 102.3426

7 21 139.603 17 21 127.4755

8 9 25 19 21 38

8 10 16 20 21 20

Waypoints (U) x y

u0 0 0

u1 27 39

u2 112 134

u3 242 226

u4 250 250

Table 3.4: The simplified CM

Table 3.5: The waypoints generated by Core

51

Figure 3.11: BLOVL algorithm.

3.4 BLOVL Algorithm

The previous section has demonstrated that the resultant path by Core is not collision-

free as several segments of the path intersect with a number of obstacles’ edges in the

C-space. In order to overcome such a problem, BLOVL, which steps are stated in

Algorithm 2 as shown in Fig. 3.11, has been designed. Fig. 3.12 shows the process of

BLOVL in flow chart. Core is part of BLOVL which will be called repeatedly to find

a local path from one waypoint to ptarget or next waypoint until the global target point

is reached. BLOVL is complete as it will keep finding a path sequentially by checking

a set of obstacles at each sequence until all obstacles have been checked. However

BLOVL will stop finding a path once one is found.

3.4.1 The Idea of BLOVL

The general idea of BLOVL is to plan a local path using Core and further repeatedly

calculate a collision-free path between two consecutive waypoints, considering the

obstacles in-between of those two waypoints. These are done until the target point is

reached. The number of repetitions depends on the complexity of the environments.

Less number of obstacles requires Core to be called in less time and vice-versa.

Algorithm 2: BLOVL(pstart, ptarget)

1 set j = 0 and wj = pstart

2 while wj ≠ ptarget do

3 set ustart = wj and utarget = ptarget

4 call [m,U]=Core(ustart, utarget)

5 If m = 1 then

6 set wj+1=u1

7 else

8 set ustart = u0; utarget = u1

9 goto line 4

10 end if

10 UAV flies from wj to wj+1

12 set j = j+1

13 end while

52

In particular, the BLOVL algorithm starts with setting the first waypoint index j to 0.

Then, the current waypoint wj is assigned to the global starting point, pstart.

Subsequently, wj is compared with the global target point ptarget. If wj is the ptarget,

BLOVL will then be stopped as the target point has been reached. Otherwise, the local

starting point ustart and utarget are set to wj and ptarget, respectively. Notice that ustart and

utarget are the inputs of Core as BL will connect these two points. Core is then called to

calculate a local path U, which contains a series of waypoints {u0, u1, . . . , um} and

might not be collision-free as previously demonstrated. Note that m represents the

number of segments in the path. The smallest possible segment m produced by Core is

1, when the resultant local path is U = {u0, u1}. If the segment m > 1, it indicates that

there are more than 2 waypoints between ustart and utarget. Thus in the next repetition of

BLOVL, utarget will be assigned to a new location, u1, with ustart retains its location to

u0. Core is called again to find a local path between ustart and utarget. If there is no

obstacle between ustart and utarget i.e. m = 1, the next waypoint wj+1 is set to u1 and the

Figure 3.12: BLOVL Algorithm

U={u0, u1, . . . , um}

Y

N

j=0 ; wj= pstart

wj=ptarget?

ustart=wj ; utarget=ptarget

call [m,U]=Core(ustart, utarget)

START

m=1?

ustart=u0

 utarget=u1

Y

N

j=j+1

STOP

wj+1=u1

53

index j is increased by 1 accordingly. The ustart and utarget to be fed into Core in the

next repetition of BLOVL are the u1 and ptarget, respectively. The above process will be

repeated until wj is the ptarget.

3.4.2 Path Planning Using BLOVL

In order to demonstrate the BLOVL, consider the previous scenario as shown in Fig.

3.2. After providing all the necessary parameters, BLOVL will then call the Core

algorithm to plan an initial path. The input of Core is the pstart and ptarget. The resultant

path, U containing waypoints {u0, u1, u2, u3, u4} is shown in Fig. 3.10. According to

lines 5 and 6 of BLOVL algorithm, since U has more than two waypoints i.e. the

number of line segments m=4, Core will be called again. The local starting point is set

to u0 and local target point is u1. A local path between u0 and u1 will then be worked

out again by Core. This action is shown in Fig. 3.13(a). As m>1, this indicates that

there is obstacle between u0 and u1. Next Core is called again with different starting

and target points where the starting point is u1 of U while target point is the global

target point, ptarget. ptarget is fed into Core because it will ensure that the path is always

the shortest one from the current starting point. The above steps are done

incrementally until the target point is reached. The path at each repetition is shown in

Figs. 3.13(a-f) where green triangles denote the starting points while yellow squares

represent the target points. Fig. 3.14 depicts the complete path that has been planned

by BLOVL using the scenario as shown in Fig. 3.2. The path is calculated in 0.18

seconds using the same computer as mentioned above. Table 3.6 shows the waypoints

of the path.

54

Figure 3.13: The paths generated by Core and BLOVL

(a) (b)

(e) (f)

(c) (d)

55

Waypoints (W) x y

w0 0 0

w1 27 39

w2 112 134

w3 182 183

w4 242 226

w5 244 234

w6 250 250

In terms of completeness, BLOVL is guaranteed to find a path if one exists. Consider a

complex and structured scenario as illustrated in Fig. 3.15. BLOVL successfully

calculates the path as shown in Fig. 3.16(a) with a length of 317.43 units in 0.047

seconds. On the other hand VL method consumes 0.35 seconds to compute the path, as

depicted in Fig. 3.16(b), which is identical to that of BLOVL.

Figure 3.14: The final path calculated by BLOVL.

Table 3.6: The waypoints generated by BLOVL

56

Figure 3.15: Path planning complex and structured scenario

Figure 3.16: The resultant paths calculated by (a) BLOVL, (b) VL

(a) (b)

57

3.5 Performance Comparisons of VL and BLOVL

This section compares the performance between VL and BLOVL in terms of the

computation time and resultant paths lengths. As previously mentioned, one

disadvantage of VL method is that the computation time is related to the number of

obstacles. A large number of obstacles in C-space causes much longer time for the VL

to find a path. For example, using the scenario as depicted in Fig. 3.2, the computation

time to find the path as shown in Fig. 3.4 is 0.50 seconds on a personal computer with

2.4 GHz processor, 2GB RAM. Using the same scenario, BLOVL takes only 0.18

seconds to generate the path as shown in Fig. 3.14. BLOVL is more than twice faster

than VL for path planning with 20 obstacles
3
 in that particular scenario. In order to

gain a better insight of the performance of the two methods i.e. VL and BLOVL,

consider a scenario with an increased number of obstacles as depicted in Fig. 3.17.

BLOVL finds the path as shown in Fig. 3.18 in 0.26 seconds, while VL takes 2.30

seconds to generate the path as illustrated in Fig. 3.19. VL is over 8 times slower than

BLOVL with both methods produce identical paths.

3
 However, the computation time of BLOVL depends on the obstacles on the base line and their

extension as well as their size. Larger obstacles will have more extensions, and at one level, the

obstacles that are considered for path calculation are the entire obstacles in the C-space. As for VL, the

computation time is solely related to the number of the whole obstacles in the C-space and it is almost

constant for each number of obstacles.

Figure 3.17: A scenario with increased number of obstacles

58

Figure 3.18: A path generated by BLOVL

Figure 3.19: A path generated by VL

59

Figure 3.20: Computation time of VL from different number of obstacles

Increasing the numbers of obstacles will definitely increase the computation time of

both VL and BLOVL. In order to see the performances of VL and BLOVL in

scenarios with different numbers of obstacles, simulations using 10, 20, 30, 50, 100,

150, 200 and 300 obstacles were performed. Each number of obstacles was randomly

simulated 200 times to ensure the reliability of the finding. The simulated computation

time of VL are shown in Fig. 3.20 while the computation time of BLOVL are shown

in Fig. 3.21. To have a clearer insight of the performance of both methods, a log scale

graph as shown in Fig. 3.22 is presented. It is apparent from the figure that, as the

number of obstacles increases, VL’s computation time also raise significantly.

Table 3.7 compares the average computation time of both VL and BLOVL with

respect to the number of obstacles. Column three of the table lists how many times

BLOVL is faster in average than VL for each obstacle number. The table proves that

BLOVL is significantly faster than VL in finding paths. The main reason why BLOVL

is faster than the conventional VL is BLOVL generates less number of visibility lines

during the paths calculation. For example, in an environment with 300 obstacles, VL

generates 721,801 visibility lines while BLOVL produces only 15,238.

60

Figure 3.21: Computation time of BLOVL from different number of obstacles

Figure 3.22: Comparison of VL’s and BLOVL’s computation time in log scale

61

Figure 3.23: Paths lengths of VL and BLOVL in environments with different number of

obstacles.

Table 3.7: Comparison of VL and BLOVL computation time

Obstacle

Numbers

Average computation time (s) Ratio of BLOVL/VL

computation time VL BLOVL

10 0.0904 0.0035 25.7655

20 0.4306 0.0092 47.0597

30 1.1286 0.0147 76.9581

50 3.7887 0.0367 103.3613

100 18.4947 0.1565 118.2110

150 44.5318 0.4119 108.1152

200 80.0284 0.9187 87.1121

300 177.2581 3.3795 52.4508

On the other hand, the paths lengths resulting from the simulations are depicted in Fig.

3.23. It is clear from the figure that a number of paths generated by BLOVL are

slightly longer than VL especially in scenarios with higher number of obstacles. This

happens because BLOVL considers local path between two consecutive waypoints of

the previously planned path to ensure that there is no obstacles between the two

waypoints. The next section will illustrate this situation.

62

Figure 3.24: A scenario for path planning.

3.6 BLOVL Path

It has been shown in the previous section that BLOVL sometimes produces slightly

longer paths compared to the conventional VL, especially in obstacle-rich

environments. In order to get an idea why BLOVL produces a longer path, consider

the scenario as shown in Fig. 3.24, in which a path is to be planned from pstart to ptarget

using both BLOVL algorithm and VL method. Note that the grey rectangles are the

obstacles. The resultant paths are shown in Fig. 3.25 where the red and black lines are

the paths that have been planned by VL and the first repetition of BLOVL,

respectively. In the figure, the dashed black line represents the base line (BL), and the

red-outlined rectangles are the obstacles that have been identified by the BL or OCore.

At this point, the path by BLOVL is shorter than that of VL as it disregards a large

number of obstacles in the scenario. However, the path is not collision-free. BLOVL

then checks the collision between two consecutive waypoints i.e. u0 and u1. It is found

that there is an obstacle that has not been considered during the previous repetition. A

new path is then planned by Core of BLOVL and is shown in Fig. 3.26.

pstart

ptarget

63

Figure 3.25: The paths planned by BLOVL (black) and VL (magenta)

Figure 3.26: BLOVL updates the path as the path planning progresses.

u1

u2

u0

ptarget

pstart

u0

u1

u2

pstart

ptarget

64

Figure 3.27: BLOVL updates the path as the path planning progresses.

BLOVL keeps checking the planned path to ensure that there is no collision between

two consecutive waypoints as shown in Figs. 3.27 and 3.28. As a result, BLOVL plans

longer path, compared to the one that is planned by VL.

u0

u1

u2 ptarget

pstart

u0

u1

u2

ptarget

pstart

Figure 3.28: The paths planned by BLOVL (black) and VL (magenta)

65

Figure 3.29: A piece-wise linear segments path in the worst case scenario

Planned path

2

3

1

X

Y

Obstacles

Start point

Target point

3.7 Safety Margin

VL and BLOVL produce paths which contain waypoints that pass through obstacles’

nodes. This is highly unsafe and will lead to collisions between the vehicle and

obstacles. One way to avoid such a collision is to extend the size of the obstacles by a

certain margin before the path is planned. The margin is called the clearance or safety

margin, MS. The safety margin is important for the UAV to be able to traverse the

planned path safely without hitting any obstacle throughout the entire C-space, until it

reaches the target point. In calculating MS, the kinematic/physical constraints of the

UAV such as maximum roll angle () and minimum turning radius Rmin have to be

considered. The relationship between minimum Rmin and of a UAV can be

defined as follow [122]:

where V is the vehicle’s velocity. In order to ensure that the path is safe for the UAV

so that it can traverse through the obstacles’ nodes, MS is determined based on a worst

case scenario. For VL-based methods in C-space with rectangle obstacles (as stated in

Section 1.4), the worst case scenario that can happen when two consecutive segments

of a path is made of two consecutive edges of the obstacle, which has the angle of 90

degree as shown in Fig. 3.29. Note that in the figure, the red lines are the planned path.

Ms is then calculated as follows:

The enlarged obstacle by MS and the resultant path are shown in Fig. 3.30.

66

Figure 3.30: The enlarged obstacle with safety margin

In order to demonstrate the implementation of the safety margin in a path planning

process, consider a randomly generated scenario with 20 obstacles as shown in Fig.

3.31. The grey rectangles are the enlarged obstacles after a Ms is applied. The UAV’s

speed and maximum roll angle are set to 50km/h (or 16.67m/s) and 50 degrees,

respectively. Rmin and MS are then 28.32 and 11.73 units, respectively. The planned

path using the BLOVL algorithm applying the safety margin is depicted in Fig. 3.32.

2

Rmin

Ms

X

Y

Enlarged

Obstacles

Figure 3.31: The obstacles with safety margin.

67

As has been demonstrated, the safety margin clearly changes the path from semi

collision-free to fully collision-free, considering the vehicle’s physical constraints.

3.8 BLOVL for Real Time Path Planning

In the previously demonstrated path planning process using BLOVL, it was assumed

that all the obstacles data were known either from satellite data, surveillance

information or other means beforehand. However, in certain situations, not all the data

are available. Some obstacles might appear suddenly (pop-up) on the UAV path. Such

occurrences require path re-planning in real time in order to avoid a collision between

the UAV and the pop-up obstacles.

Assuming that the UAV is equipped with on-board sensors which can sense and

measure the pop-up obstacles’ locations, geometry and sizes accurately, BLOVL is

capable of finding a collision-free path in such an occasion in real time as the planning

considers a small set of obstacles and are executed sequentially from one waypoint to

the next one until the target point is reached. It means that, if there is a pop-up obstacle

between two consecutive waypoints, the algorithm will find a new path, considering

local obstacles, which enables the realisation of real-time path planning.

Figure 3.32: A path with safety margin generated by BLOVL

68

Figure 3.33: The scenario in which a real-time path planning will take place.

In order to demonstrate a real-time path planning using BLOVL, consider the scenario

as shown in Fig. 3.33. The obstacles that are known prior to path planning are shown

in black. The grey areas surrounding the obstacles are the safety margins. The sensor

range is assumed to be 50 units. There will be a random pop-up obstacle during the

flight. It is also assumed that the obstacle pop-ups outside the sensor range to give the

UAV enough time to re-plan a new path and a sufficient distance to manoeuvre to

avoid the pop-up obstacle.

The BLOVL real-time path planning starts with calculating an initial path using Core

as shown (in magenta) in Fig. 3.34(a). Note that in the figure, blue triangle represents

the starting point while the magenta square denotes the target point. The path is

currently unsafe because one segment of the path intersects with interior of an

obstacle. However, the path will be later re-planned as the UAV approaches the

collision area.

Fig. 3.34(b) illustrates the UAV has started the mission traversing along the planned

path going to the first waypoint. The green-dotted semi-circle in the figure represents

the UAV’s sensor range. As the UAV reaches the first waypoint as shown in Fig.

3.34(c), BLOVL examines the feasibility of traversal between the current waypoint

and the next one. In this example, the segment connecting the current waypoint is

69

Figure 3.34: BLOVL for real time path planning

obstructed by an obstacle, requiring the path to be re-planned. The resulting re-planned

path is shown in Fig. 3.34(d). The UAV is then traversing the path to the next

waypoint. However, after a while, there is a pop-up obstacle (shown in yellow) on the

current path. When the UAV’s sensor detects the obstacle, BLOVL starts to re-plan a

new path as depicted in Fig. 3.34(e). The above steps are repeated and are depicted in

Figs. 3.34 (f-h). The UAV follows the path avoiding the pop-up obstacle until it

reaches at the target point as illustrated in Fig. 3.35.

(c) (d)

(g) (h)

(a) (b)

70

Figure 3.34: BLOVL for real time path planning (contd).

Figure 3.35: The resultant path using BLOVL with a pop-up obstacle.

(e) (f)

(g) (h)

71

Figure 3.36: BL identifies the obstacles to be used by BLOVL.

3.9 Improvement to BLOVL

As has been demonstrated in Section 3.5, BLOVL is relatively faster in comparison

with VL in planning a path. This is due to the fact that BLOVL uses a relatively less

number of obstacles during the path calculation. In order to further accelerate the

BLOVL’s computation time, an improvement to BLOVL is proposed in this section.

It has been previously emphasised that BLOVL uses a base line (BL) that connects the

pstart to ptarget in order to identify a set obstacles for path calculation. In a large

environment with many obstacles, the BL might identify a high number of obstacles,

which results in a much longer time to generate a collision-free path. This situation is

illustrated in Fig. 3.36. In this particular scenario, BL identifies 17 obstacles that will

be in considered in path planning. Although the BL uses a significantly lower number

of obstacles in comparison with that of the VL, its computation time might still be

high which may hinder BLOVL in carrying out a path planning in real-time.

72

Figure 3.37: BL with limited range identifies the obstacles to be used by BLOVL

In order to address this issue, BLOVL with limited range of BL is proposed. The

approach is then called BLOVL with limited range. BLOVL with limited range will

further reduce the number of obstacles used for path planning which results in reduced

computation time. Using BLOVL with limited, only the obstacles that are within the

limit of the BL’s range are identified and used for path calculation. For example, using

the identical scenario as in Fig. 3.36, a limited BL with a length of 300 units identifies

only 3 obstacles, which are shown in red in Fig. 3.37. This number is much less than

the number of obstacles identified by normal BLOVL. This in turn reduces the overall

computation time.

In order to demonstrate the efficacy of the BLOVL with limited range, simulations

using several numbers of obstacles i.e. 50,100,150,200,250 and 300 were performed.

Each number of obstacles was generated 100 times randomly. The size of the

environment of each scenario was set to units. The starting and the

target point were fixed to and , respectively. Fig. 3.38 shows the

scatter plot of the computation time of BLOVL and BLOVL with limited range,

respectively.

73

Figure 3.38: Computation time comparison between BLOVL and BLOVL with

limited range

It is transparent that, as the number of obstacles increases, the differences in the

average (of computation time) between those two approaches also increase. The figure

clearly proves that BLOVL with limited range considerably outperforms the BLOVL

in terms of computation time.

On the other hand, Fig. 3.39 illustrates the scatter plot of the average paths lengths of

BLOVL and BLOVL with limited range, respectively. Although BLOVL with limited

range uses relatively lesser number of obstacles, it still produces paths with similar

lengths to those of normal BLOVL.

Thus, it is concluded that the proposed BLOVL with limited range has better

performance in terms of computation time in an environment with higher number of

obstacles compared to that of BLOVL. Although its computation time are significantly

reduces, the lengths of the planned paths by BLOVL with limited range are quite

identical to the normal VL

74

Figure 3.39: Paths lengths comparison between BLOVL and BLOVL with limited

range

3.10 Conclusion

Visibility Line (VL) is a path planning method that is capable of producing optimal

path if one exists. However, the VL method is computationally expensive when there

are many obstacles in the environments. As a result, VL is not suitable to be applied in

real time, in obstacle-rich and dynamic environments.

This chapter has proposed algorithms for 2D path planning based on the VL method.

The proposed algorithms are capable of addressing the drawback of VL as they plan

collision-free paths in computationally tractable manner.

The first proposed algorithm, Core is used to find a path from a set of obstacles that

are determined by the so-called base line (BL). BL is a segment that connects the

starting point and the target point. All obstacles that lie on BL and their extension are

the set of obstacles that will be used for path planning. As the set contains a relatively

small number of obstacles, the path is quickly calculated.

75

However the path planned by Core might not collision-free, hence the algorithm called

the Base Line Oriented Visibility Line (BLOVL) has been designed. BLOVL runs

sequentially by checking visibility between two consecutive waypoints of a planned

path. If those two waypoints are obstructed by obstacles, a new path will be re-planned

avoiding the blocking obstacles. This process is done repetitively until the target point

is reached.

Through simulations, BLOVL has been proven to generate a path relatively faster than

VL. Although BLOVL uses less number of obstacles during a path planning process,

the length of generated paths are similar to VL’s. To ensure the completeness of the

algorithm, BLOVL will keep finding a path until at one level in which all obstacles are

used for the path calculation.

Furthermore BLOVL is capable of re-planning a new path if there is pop-up obstacle,

which lies on a UAV’s current path. BLOVL is also designed to perform a path

planning task in real-time.

To further improve the performance of BLOVL in terms of computation time, BLOVL

with limited range has been introduced. The idea behind this approach is to use a

limited range of base line so that a smaller number of obstacles are considered for path

calculation.

76

Chapter 4

3D Visibility Line Based Path Planning

4.1 Introduction

In the previous chapter, a visibility line (VL)- based path planning algorithm called

Base Line Oriented Visibility Line (BLOVL) have been developed and demonstrated.

The algorithm efficiently produces a 2D path in a 2D environment (X-Y plane) with

fast planning time by minimising computational loads.

In this chapter, a set of three-dimensional (3D) path planning algorithms are proposed.

The algorithms utilise the so-called rotational plane approach to find 3D paths.

Besides, as BLOVL is fast in finding a path, the proposed algorithms are based on it.

This chapter is arranged as follows. Path plannings in a 3D scenario applying the Base

Line Oriented Visibility Line (BLOVL) are presented in the following section. Later, a

couple of algorithms called BasePlane, FindIntersection are introduced and

demonstrated. Next the BLOVL3D1 algorithm is introduced and elaborated, followed

by a demonstration of finding a 3D path on a plane using the BasePlane,

FindIntersection and BLOVL3D1 algorithms. The following section proposes the

BLOVL3D2 algorithm that combines the BasePlane, FindIntersection BLOVL3D1

algorithms, and show an example of BLOVL3D2 calculating a 3D path in a 3D

scenario. Simulations of paths planning using the proposed algorithms with different

number of rotation angles and obstacles are carried out prior to conclusion.

77

4.2 Direct Applications of BLOVL 2D Path Planning

Algorithm in 3D Environment

As introduced in Chapter 2, the visibility line (VL) method considers all nodes of

obstacles in a 2D environment to find a 2D path. For 2D obstacles, the nodes are the

corners of the obstacles.

In a 3D environment with a set of 3D obstacles, a VL based method may not be able to

find a 3D path due to the infinite number of nodes along each border’s edge of the

obstacles. A border’s edge is defined as a line that separates two adjacent faces of an

object. For example, if a 3D obstacle was modelled as a cuboid which has 6 faces,

there were 12 borders’ edges that separated such faces.

However, it is possible to find a path in a 3D scenario using BLOVL if a starting point

pstart has an equal altitude with that of a target point ptarget. In a scenario where the

pstart altitude is not identical to the altitude of ptarget, a path can be found if a project

point of the starting point, pps or the project point of the target point, ppt is first defined.

A project point pps/ppt is the (x,y) coordinate of pstart/ptarget that is raised or lowered to

the altitude of ptarget/pstart. Using the project point, a path from pstart and ptarget can be

calculated using BLOVL in two ways. The first one begins with defining a project

point ppt, followed by calculating a horizontal path from pstart to ppt. To complete the

path planning process, a vertical path connecting ppt and ptarget is worked out. The

second way of finding a path from pstart to ptarget with different altitude starts with

defining a project point pps. Subsequently, a vertical path connecting ptarget and Pps is

identified. Then a path from Pps to ptarget is calculated to complete the path planning

process. On the other hand, the 2D path planning approach can be applied to find a

path on a vertical plane as will be demonstrated later.

4.2.1 pstart and ptarget With Identical Altitude

A scenario in which pstart has an equal altitude with the ptarget’s is shown in Fig. 4.1.

Note that in Fig. 4.1 and afterwards, the blue triangles denote pstart while the magenta

squares represent ptarget.

78

As pstart and ptarget have an equal altitude, the 2D path planning algorithm can be

applied to find a path using BLOVL. Briefly, the first step is to define a set of nodes

whose altitudes are set to the height of pstart and ptarget. Then a visibility lines network

is created from the nodes set as shown in Fig. 4.2. The nodes are represented by the

green dots. Finally, Dijkstra’s algorithm is used to find a 2D path as illustrated in Fig.

4.3.

 Figure 4.1: A 3D environment with a 3D obstacle, in which the starting and target

points have an equal altitude; (a) top view, (b) side view, (c) 3D view.

(a) (b)

(c)

79

Figure 4.3: The 2D path (solid magenta lines) in 3D scenario; (a) top view, (b) 3D

view.

Figure 4.2: The visibility lines network; (a) top view, (b) side view, (c) 3D view.

(a) (b)

(c)

(a) (b)

80

4.2.2 pstart and ptarget With Different Altitudes

Consider a 3D environment with an obstacle as illustrated in Fig. 4.4, in which the

starting point and target point have different altitudes.

Figure 4.4: A 3D environment with a 3D obstacle. (a) top view, (b) side view, (c) 3D

view.

(a) (b)

(c)

81

To find a path in such an environment using the project point, consider the following

cases:

Case 1

In this case, a project point ppt with respect to ptarget is first identified. Using BLOVL, a

path from pstart to ppt is then calculated using BLOVL. The path is shown in Fig. 4.5.

To complete the path planning process, ppt is then connected to ptarget. The complete

path is shown in Fig. 4.6.

Figure 4.6: A path that has been planned in a 3D environment. (a) side view, (b) 3D

view.

(a) (b)

Figure 4.5: A horizontal path connecting the starting point and the project point ppt, which

is represented by the red triangle. (a) side view, (b) 3D view.

(a) (b)

82

Case 2

This case is the dual of the previous case, in which a project point pps with respect to

pstart is first defined. Then a vertical path connecting the starting point to pps is found as

illustrated in Fig. 4.7. The subsequent step is to find a path from pps to ptarget. The

complete path is shown in Fig 4.8.

Figure 4.8: A path (solid magenta lines) that has been planned in a 3D environment.

(a) side view, (b) 3D view.

(a) (b)

Figure 4.7: A vertical path connecting pstart and pps (red triangle). (a) side view, (b) 3D

view.

(a) (b)

83

Figure 4.9: The vertical plane in which the green dots are the intersection points.

(a) top view, (b) side view, (c) 3D view.

4.2.3 Find a Path on a Vertical Plane

The methods demonstrated in sub-sections 4.2.1-4.2.3 are quite straight forward in

finding the 2D paths in the 3D environments. However, the paths are not feasible for a

fixed-wing UAV as they consist of vertical segments. This sub-section will

demonstrate how a 3D path is calculated on a vertical plane which results in a path

with no vertical segments.

Consider the 3D scenario as shown in Fig. 4.4. A vertical plane is first created where

the range of the plane is set to be between the starting point and the target point. The

nodes used to create a VL network are subsequently determined from the intersections

between the plane and the obstacle borders’ edges. The resulting nodes are represented

by the green dots in Fig. 4.9. Finally Dijkstra’s algorithm is applied to find a path as

depicted in Fig. 4.10.

(a) (b)

(c)

84

Figure 4.10: A 3D path found the vertical plane; (a) top view, b) side view, (c) 3D view.

(a) (b)

(c)

85

4.3 Path on the Base Plane

The vertical plane, as has been briefly explained in the previous section, is efficient in

determining a set of nodes, which are the intersections points between the plane and

the borders’ edges the 3D obstacle. The resulting nodes from the intersection between

the plane and the obstacle are then used to create a VL network and, subsequently, a

3D path can be found from the network.

This section will further explain and demonstrate how a base plane is created and

rotated at an arbitrary angle, and how the intersection points are determined. It also

demonstrates a path planning process on the base plane.

4.3.1 Creating a Base Plane

In order to create a base plane, an algorithm called BasePlane is developed. The

BasePlane algorithm, consists of three steps, is shown in Fig. 4.11.

Algorithm: BasePlane

1. Create a base line, BL3D that connects ustart and utarget. Find the pitch angle ,

which is formed by the BL3D and the global horizontal (X-Y) plane, Pxyustart.

2. Define a local plane Px’y’ustart, formed by the BL3D and BL3D. The BL3D

is on Pxyustart, orthogonal to BL3D and passes ustart.

3. Define a local coordinate system on Px’y’ustart with e ustart as the origin,

BL3D as the X-axis and BL3D as the Y-axis of the Px’y’ustart.

The BasePlane algorithm starts with creating a 3D base line, BL3D ranging from a

current starting point, with coordinates

 to a target point,

 with coordinates

 . Unlike the base line (BL) of the

Core algorithm, BL3D of BasePlane considers the altitudes of ustart and utarget.

Figure 4.11: The BasePlane algorithm

86

Then a pitch angle, , which is the angle between BL3D and the global horizontal plane

(X-Y axis), Pxyustart can be found from the following equation:

 is illustrated in Fig. 4.12(b). It is zero if the starting point and the target point have

an equal altitude.  is important for a coordinate transformation of a local plane that

will be shown later.

Next, a line perpendicular to BL3D and intersects ustart called the BL⊥3D is defined,

followed by the definition of a local plane called Px′y’ustart in which the BL3D and

BL⊥3D are the local X- and Y-axes, respectively. The Px′y’ustart resulted from the

BasePlane algorithm is illustrated in Fig. 4.13. Note that the ustart is the origin of the

Px′y’ustart.

In order to define the local coordinate system of Px′y′ustart with respect to the Y-axis of

Pxyustart, the orientation (heading angle) of the BL3D has to be known and can be

calculated using

Figure 4.12: The illustration of . (a) top view, (b) side view.

(a)

ustart

utarget

X

Y

(b)

ustart

utarget
Z

Parallel to x- y plane



X/Y

(4.1)

87

 is illustrated in Fig. 4.14.

BL⊥3D

Px’y’ustart



Pxyustart

BL3D

Figure 4.14: The orientation  is the angle between the the Y-axis of Pxyustart and the

BL3D of Px’y’ustart.

Figure 4.13: The Px’y’ustart generated by the BasePlane algorithm. (a) top view, (b) 3D

view

(a) (b)

BL⊥3D

Px’y’ustart

Pxyustart

BL3D

(4.2)

Pxyustart

Px’y’ustart BL⊥3D

BL3D

88

The coordinate transformation for Px′y′ustart is then performed using the following

steps:

1. Rotate the plane by - about the Z-axis of the translated using the

matrix transformation R1 below:

where

2. Rotate the M1 by - about the X-axis of the global plane using the following the

matrix transformation R2:

where

As a result, the relationship between the coordinates of ′ ′ and the ones of

 can be established from

 ′ ′

4.3.2 Finding Intersection Points

A VL-based path planning method requires a set of nodes to be defined prior to a path

calculation. In a 2D path planning using VL-based method, the nodes are simply the

corners of obstacles whose altitudes are ignored, and hence the nodes are finite in

number. Unlike the 2D path planning, the number of nodes in a 3D path planning is

infinite because 3D obstacles heights are taken into account. Thus the corners of such

obstacle cannot be used for determining the nodes. In this thesis, it is proposed that the

nodes are the intersection points between a plane and the 3D obstacles.

(4.3)

(4.5)

(4.7)

(4.6)

(4.4)

89

Figure 4.15: The FindIntersection algorithm.

In this subsection, the FindIntersection algorithm whose purpose is to find those

intersection points or nodes is introduced. The algorithm is shown in Fig. 4.15.

The FindIntersection algorithm first transforms the coordinates of each obstacle with

respect to Px’y’ustart. The transformed coordinates of the obstacles is obtained

using

where are the coordinates of the obstacles with respect to the global plane.

The next step of FindIntersection is to find pairs of borders edges of within the

environment, which has a range of [Xmin Xmax Ymin Ymax]. Each pair of border edge is a

line segment that starts from pa and ends at pb.

Algorithm: FindIntersection

1. Transform the obstacles coordinates according to Px’y’ustart.

2. Identify all borders’ edges of obstacles. Each edge consists of a pair of

nodes,
 and

 where is the total number of the borders’

edges.

3. Divide the local plane (Px’y’ustart) into two triangles. Each triangle is

formed by three nodes, p1, p2 and p3, which are determined based on the

range of the plane.

4. Find the intersection point
 between each triangle and edge i from

where

(4.9)

(4.10)

(4.8)

90

Figure 4.16: A line-plane intersection found using the FindIntersection algorithm.

Px’y’ustart is then divided into two triangles each consists of three nodes p1, p2 and p3.

These nodes are determined from the range of the plane, [X’min X’max Y’min Y’max]. Note

that the coordinate [X’min Y’min] is the origin of Px’y’ustart. The parameters r and s as

stated in equation (4.10) indicate that the intersection point is on the line between pa

and pb if .

The illustration of a line-plane intersection is shown in Fig. 4.16, in which the red dot

is the intersection point between the Px’y’ustart and the solid upright line. Note that the

plane has been rotated at an arbitrary angle. Also note that the line can be one of the

obstacles borders’ edges. Readers are referred to [121] to find a further explanation

about the line-plane intersection.

In a real scenario, however, a 3D obstacle consists of several borders’ edges (lines).

For instance, a cuboid obstacle has eight (not including the edges at the base).

Applying the FindIntersection algorithm in a scenario with a cuboid obstacle, the

intersection points between Px’y’ustart and the obstacle borders’ edges can be

determined and are shown in Fig. 4.17. The intersection points are represented by the

red dots.

Px’y’ustart
BL⊥3D

BL3D

[X’min Y’min]

[X’max Y’max]

91

Figure 4.17: The borders’ edges of a 3D obstacle intersect with a plane.

Figure 4.18: The BLOVL3D1 algorithm

4.3.3 Finding a 3D Path on the Base Plane

This sub-section demonstrates a 3D path planning on the base plane that has been

created by the BasePlane algorithm. Additionally, in order to ensure that the path on

the plane, another algorithm called BLOVL3D1 is proposed. BLOVL3D1, which is

based on BLOVL, is shown in Fig. 4.18. Note that the FindIntersection algorithm is

embedded in BLOVL3D1 to ensure that the intersection points are only calculated

between the base plane and certain obstacles to accelerate the computation time.

 Algorithm: BLOVL3D1(ustart, utarget)

1 set j = 0 and wj = ustart

2 while wj ≠ ptarget do

3 set vstart = wj and vtarget = utarget

4 Find the obstacles that lie on BL3D and their extension.

5 Call FindIntersection to define a set of nodes, Ns3D.

6 Create a cost matrix, Cm3D from Ns3D.

7 Find a 3D path V={v0,…,vm} from Cm3D using Dijkstra’s algorithm.

8 If m = 1 then

9 set wj+1=v1

10 else

11 set vstart = v0; vtarget = v1

12 goto line 4

13 end if

14 set j = j+1

15 end while

Px’y’ustart
BL⊥3D

BL3D

[X’min Y’min]

[X’max Y’max]

92

Like BLOVL, the main idea of BLOVL3D1 is to perform a path planning process on a

plane iteratively on a plane. It means that, while the target point has not been reached,

the algorithm will keep planning a path on the plane. To ensure that the algorithms

possess the completeness criterion, at each repetition, the starting point is updated to

the second waypoint of the previously planned path until the starting point is the target

point. By this way, it is guaranteed that the algorithm is able to find a path if one

exists.

In order to reduce the computation time, the path finding process of BLOVL3D1

considers only the obstacles that lie on the base line BL3D and their extension. Note

that BL3D is a line that connects pstart and ptarget. Unlike BL of BLOVL, BL3D considers

the altitudes of pstart and ptarget.

Furthermore, m, which is the number of segments between two consecutive waypoints,

plays an important role in determining whether a planned path is collision-free or not.

A value of m that larger than one indicates that the path between two consecutive

waypoints is being blocked. In this case, a collision-free path has to be calculated.

To demonstrate the BLOVL3D1 algorithm in finding a path on a plane, consider an

environment with a pair of 3D cuboids obstacles as illustrated in Fig. 4.19. The plane

Px’y’ustart that has been created by BasePlane with an arbitrary angle, on which a path

will be calculated, is also shown in the figure.

Figure 4.19: A scenario with two 3D obstacles with a plane; (a) top view, (b) 3D

view.

(a) (b)

93

Figure 4.20: The transformed local plane (Px’y’ustart) and the intersection points shown by the

red dots.

The BLOVL3D1 algorithm first determines the obstacles that lie on BL3D and their

extensions. It then calls the FindIntersection algorithm to find the intersection points

between the plane and obstacle borders’ edges.

The FindIntersection algorithm first transforms the obstacles coordinate system with

respect to the Px’y’ustart, and subsequently, determines the intersection points, Ns3D

between the plane and the obstacles borders’ edges. The transformed local plane, the

obstacles and the intersections points are depicted in Fig. 4.20. In the figure, the shape

of the obstacles has been sheared as it is projected orthogonally towards the plane.

Note that a convex-shaped obstacle will remain convex after a projection is performed.

Now the path planning problem has been reduced from planning in a 3D environment

into in a 2D one i.e. on the Px’y’ustart. Following the next step of BLOVL3D1, a cost

matrix, Cm3D is then created based on Ns3D. The visibility lines network on the plane

can now be created from Cm3D using the VL algorithm. The network is illustrated in

Fig. 4.21. Dijkstra’s algorithm is then applied to calculate a path on the plane. The

resulting path, which is in magenta, is depicted in Fig. 4.22.

94

Figure 4.21: The visibility lines network is represented by the cyan lines.

Figure 4.22: The path (magenta lines) on the plane found using Dijkstra’s algorithm.

4.4 BLOVL 3D Algorithms

The BasePlane and the FindIntersection algorithms that have been proposed and

demonstrated in the previous section are necessary to create a plane, Px’y’ustart and

find intersection points between Px’y’ustart and obstacles, respectively. To find a path

on the plane from the intersection point, the BLOVL3D1 algorithm has been proposed.

95

In this section, a 3D path planning algorithm that combines and governs the

aforementioned algorithms is proposed. The proposed 3D path planning algorithm is

called BLOVL3D2 and is shown in Fig. 4.23. The process of BLOVL3D2 is depicted

in Fig. 4.24.

The algorithm starts with initialising the necessary parameters i.e. k = 0, Psk = pstart and

i = 0. Ps is the global path consisting of waypoints, which is updated during the path

planning process. The final value of k determines the number of waypoints in Ps. i

represents the index of rotation angles and  is the vector that contains b rotation

angles.

Algorithm: BLOVL3D2

1: Set k=0, Psk=pstart and i=0

2: Define the rotational angle vector, ={1,…,b}

3: while Psk ≠ ptarget do

4:

ustart= Psk; utarget=ptarget

5:

call BasePlane to generate a local plane Px'y'ustart

6:

while i ≠ b+1 do

8:

call BLOVL3D1

9:

Save waypoints W
αi

 into W
α

10:

Increase i by 1.

11:

Rotate P x'y'ustart by αi degree using Rotate3D.

12:

end while

13:

Compare all paths in W
α
 and find the shortest, Ws. Ws={ws0,…wsn}

14

Transform Ws with respect to the global coordinate system.

15:

Increase k by 1 and update Psk =ws1. Set i to 0.

16: end while

Figure 4.23: The BLOVL3D2 algorithm

96

Figure 4.24: The BLOVL3D2 process

Yes

No

Psk = ptarget?

START

STOP

Define the rotational angles

={1,…,b}

k = 0; Psk = pstart; i = 0.

Call BasePlane.

Save =

 in

ii www  ,,, 10  .

i = b+1?

i=i+1.

Compare all W and find the shortest

path, Ws where Ws = {ws0, ws1,…, wsn}.

k = k+1; Psk = ws1; i = 0.

Call

Rotate3D

ustart = Psk; utarget = ptarget

No

Yes

Call BLOVL3D1.

Transform ws1with respect to the global

coordinate system.

97

In the next step of BLOVL3D2, Psk is compared with ptarget. If Psk is equal to ptarget,

the path planning process is stopped. Otherwise, Psk is set to ustart while utarget is set to

ptarget. Note that the ustart and utarget are the necessary inputs for BLOVL3D1 that is

embedded in the algorithm.

After all the necessary parameters have been initialised, BLOVL3D2 calls the

BasePlane algorithm to generate a local plane, ′ ′

 ranging from ustart to utarget.

At this point, if the index i does not exceed b, the BLOVL3D1 algorithm will carry on

finding a path on ′ ′

. The resulting waypoints W
i

 are then saved in W


.

Subsequently, i is increased by 1 and ′ ′

 is rotated by i using the Rotate3D

algorithm. The Rotate3D algorithm will be introduced and demonstrated in the

following sub-section. BLOVL3D1 is called again to find a path W
i

 on the rotated

 ′ ′

. At each rotation of ′ ′

, the resulting W
i

 calculated by

BLOVL3D1 is saved in W

. After ′ ′

 has been rotated by all the angles, the

waypoints with the shortest path, Ws are then selected from W

. Ws consists of

waypoints ws0, ws1, ..., wsn where n+1 is the number of waypoints in Ws.

Next, k and Psk are updated to k+1 and the second waypoint of Ws, i.e. ws1,

respectively. Consequently ustart is set to Psk and utarget is to ptarget. The next iteration is

then started, in which a path is calculated on a new ′ ′

 ranged from ustart to

utarget. The above steps are kept repeated until Psk is ptarget to meet the completeness

criterion.

4.4.1 Rotating a Base Plane

Finding a 3D path on Px’y’ustart solves the problem of path planning in 3D

environment with 3D obstacles. However, the path on Px’y’ustart may not be the

shortest, especially in an obstacle-rich environment. In such an environment, a shorter

path may results if the path goes over the obstacles. This in turn needs the plane to be

rotated. An example of a path planning with a plane rotated at 90 degrees (and hence

the plane is vertical) was demonstrated in Section 4.2.3. Thus in this section, the

Rotate3D algorithm is introduced and demonstrated. The purpose of this algorithm is

to rotate a base plane at a particular angle. The algorithm is shown in Fig. 4.25.

98

Algorithm: Rotate3D

1. Rotate the plane Px’y’ustart by  degree about BL3D.

2. Define the coordinate transformation of the Px’y’ustart plane with respect

to the global plane.

According to Rotate3D, it first rotates the Px′y′ustart plane by  degree about the BL3D

axis and the plane coordinate is then transformed accordingly. Note that  is an angle

between 0 and 180 degrees. The transformation is done based on the rotation angle ,

the orientation or heading angle  and the pitch angle  of Px’y’ustart. ( and  have

been defined in Section 4.3.1). The plane rotation and subsequently its coordinate

transformation of Px’y’ustart are performed and updated using the aforementioned steps

with an additional one,

 ′ ′

where

The relationship between the rotated plane ′ ′ and the global one is

therefore

 ′ ′

 ′ ′

To demonstrate how a rotation of a base plane is performed, consider the base plane

that has been created using the BasePlane algorithm as illustrated in Fig. 4.26. In the

figure, the blue triangle represents the starting point while the magenta square is the

target. The plane will be rotated by 30 degrees about the BL3D line. The resulting

rotated plane is shown in Fig. 4.27.

Figure 4.25: The Rotate3D algorithm

(4.11)

(4.12)

99

Figure 4.27: The plane in Fig. 4.16 is rotated about the BL3D line.

Note that the BL3D is chosen as the axis of rotation of the plane because this will guide

the path towards the target point in order to reduce the path length.

Figure 4.26: A local plane Px’y’ustart to be rotated by 30 degrees about BL3D.

Px’y’ustart

BL3D

BL⊥3D

Px’y’ustart
BL⊥3D

BL3D

100

4.4.2 3D Path Planning Using BLOVL3D2

To demonstrate the 3D path planning using BLOVL3D2, consider a scenario with 35

randomly generated cuboids obstacles as shown in Fig. 4.28. The range of the scenario

is and the coordinate of pstart is set to (20,20,130) while the ptarget is

(380,380,160).

The rotational angle vector is assumed to be  =

{0,15,30,45,60,75,90,105,120,135,150,165}. Notice that no angle greater than 180

degrees is being used because, a plane that is rotated by i degree is identical to a

plane rotated by i + 180.

In order to find a 3D path using the BLOVL3D2 algorithm, a number of iterations

have to be performed until the current starting point is the target point.

In the first iteration, a plane Px'y'ustart is first generated between ustart to utarget using the

BasePlane algorithm. The plane is shown in Fig. 4.29 from two different viewpoints.

Figure 4.28: A 3D scenario with 35 obstacles. (a) top view, (b) 3D view.

(a) (b)

101

The BLOVL3D1 algorithm is then called to find a set of nodes, Ns3D which are the

intersection points between the plane and the obstacles borders’ edges through the

FindIntersection algorithm. From Ns3D, a visibility lines network is created. The nodes

and the visibility lines network are shown in Fig. 4.30. Note that the red dots in Fig.

4.30 represent the Ns3D and the VL network is represented by the cyan lines.

Subsequently BLOVL3D1 finds an optimal path on the plane, W
i

 (where i=0 at this

point) containing a set of waypoints. The path, which is represented by the solid

magenta lines, is illustrated in Fig. 4.31. W
0

, which has been transformed into the

global plane coordinate system is listed in Table 4.1.

Figure 4.29: The Px’y’ustart plane generated by BasePlane. (a) top view, (b) 3D view

(a) (b)

Figure 4.30: The nodes (red dots) obtained by the FindIntersection algorithm and the

visibility lines network (cyan lines) generated by the BLOVL3D1; (a) top view, (b) 3D

view.

 (a) (b)

102

Table 4.1: Waypoints generated by BLOVL3D1 at 0 degree.

 X Y Z

 20.00 20.00 130.00

 81.23 70.77 134.67

 91.77 123.23 137.29

 143.77 191.23 142.29

 254.23 269.77 150.17

 291.77 343.23 154.79

 318.77 364.23 156.79

 380.00 380.00 160.00

The next step of BLOVL3D2 is to update the index i to 1, and subsequently rotate the

plane by 1 = 15 degrees using Rotate3D as illustrated in Fig. 4.32. BLOVL3D1 is

again applied to determine a set of nodes from the intersection between the obstacles

borders’ edges and the rotated plane and subsequently generates a visibility lines

network as illustrated in Fig. 4.33. BLOVL3D1 then calculates a shortest path on the

plane, W
1

 as shown in Fig. 4.34. The waypoints of the path, which have been

transformed according to the global plane coordinate system, are recorded in Table 4.2

Figure 4.31: A path on Px’y’ustart represented by the magenta segments found by

BLOVL3D1; (a) top view, (b) 3D view.

 (a) (b)

103

Figure 4.32: The plane is rotated by 15 degree.

Figure 4.34: The shortest path on plane rotated by 15 degrees.

Figure 4.33: The nodes and visibility lines network of the plane rotated by 15 degree.

104

Table 4.2: The waypoints generated by BLOVL at 15 degrees rotation angle.

 X Y Z

 20.00 20.00 130.00

 80.10 71.90 136.22

 92.90 122.10 131.75

 144.90 190.10 133.71

 253.10 270.90 146.79

 292.90 342.10 145.45

 304.90 356.10 146.16

 319.90 363.10 148.59

 380.00 380.00 160.00

In the current iteration, the above-mentioned steps are kept repeated until the plane is

rotated by all the pre-defined angles as shown by Fig. 4.35. As a result, the shortest

path, Ws = {ws0,…, ws1,…, wsn } is found when the plane is rotated by 150 degrees.

The path is illustrated in Fig. 4.36 and its waypoints, which have been transformed

into the global coordinate system, are listed in Table 4.3.

Figure 4.35: The plane rotated at {0:15:165) degrees to find a 3D path from ustart to utarget.

105

Table 4.3: The waypoints generated by BLOVL3D2 in the first iteration.

 X Y Z

 20.00 20.00 130.00

 42.90 85.26 151.00

 304.90 356.10 175.84

 319.90 363.10 175.38

 380.00 380.00 160.00

In the next iteration, the necessary parameters have to be updated and re-initialised.

The value of k is updated to k+1 (in this example k now becomes 1) and accordingly,

Ps1 is set to the second point of the previous shortest path i.e. ws1. As listed in Table

4.3, ws1 = (42.90, 85.26, 151.00). Concurrently, ustart is set to Ps1 and utarget is to ptarget.

Also i is re-initialised to 0. A new plane ranging from the new ustart to ptarget is then

generated by BasePlane. The plane is shown in Fig. 4.37.

Figure 4.36: The path obtained by BLOVL3D2 in the first iteration. (a) top view, (b) 3D

view.

(a)
(b)

106

Subsequently, Ns3D, which is a set of nodes, resulted from the intersection points

between the plane and the obstacles borders’ edges is determined. This is followed by

creating a VL network and finding a path on the plane using BLOVL3D1. The Ns3D,

the visibility lines network and the path on the plane are depicted in Fig. 4.38 while

the path waypoints are recorded in Table 4.4.

Figure 4.37: The plane generated by BasePlane from the second waypoint of the

previous shortest path to ptarget (a) top view, (b) 3D view.

(a) (b)

Figure 4.38: The nodes, the visibility lines network and the path at 0 rotation angle of

second repetition (a) top view, (b) 3D view.

(a) (b)

107

Table 4.4: The waypoints generated by BLOVL3D2 in the second iteration at 0

rotation angle.

 X Y Z

 42.90 85.27 151.00

 144.90 191.23 153.95

 253.10 269.77 156.65

 292.90 343.23 158.18

 304.90 356.10 158.55

 319.90 363.10 158.87

 380.00 380.00 160.00

In the next steps of BLOVL3D2, the plane is rotated by all the angles contained in ,

where at each rotation a path is calculated and is saved in W
α
, followed by the

determination of the shortest path from W
α
. In this iteration, the path on the plane

rotated by 150 degrees is the shortest with a length of 458.47 units. The path is

illustrated in Fig. 4.39 and its waypoints are listed in Table 4.5.

Figure 4.39: The path obtained by BLOVL3D2 in the second iteration. (a) top view, (b) 3D

view.

(a)
(b)

108

Table 4.5: The waypoints generated by BLOVL3D2 in the second iteration at 150

rotation angle.

 X Y Z

 42.90 85.27 151.00

 304.90 356.10 176.70

 319.90 363.10 174.36

 380.00 380.00 160.00

The above processes are further executed until Psk is the ptarget. The resulting path is

shown in Fig. 4.40 and the waypoints of the path, Ps are recorded in Table 4.6.

Table 4.6: The waypoints of the path shown in Fig. 4.40 generated by BLOVL3D2.

Ps X Y Z

 20.00 20.00 130.00

 42.90 85.27 151.00

 304.90 356.10 176.70

 319.90 363.10 173.22

 380.00 380.00 160.00

Figure 4.40: The resulted path (solid magenta line) planned by BLOVL3D2.

(a) top view, (b) side view, (c) 3D view.

(a) (b)

109

4.4.3 BLOVL3D2 Performances

In this section, the performance of BLOVL3D2 algorithm using different number of

rotation angles and obstacles in terms path lengths and computation time are presented

and examined.

4.4.3.1 Different Numbers of Rotation Angles

In order to examine the performance of BLOVL3D2 using several numbers of rotation

angles, consider a scenario as shown in Fig. 4.41. The range of the scenario is set to

 and consists of 50 cuboids obstacles. The coordinate of pstart is set to

(0,0,140) whereas ptarget is (420,420,155). There are six sets of rotation angles that will

be used for path calculation as listed in Table 4.7.

Table 4.7: The sets of angles used in the simulation.

Set Rotation angles

1 {0}

2 {0:90 }

3 {0:60:120}

4 {0:45:135}

5 {0:30:150}

6 {0:15:165}

Figure 4.41: The scenario used to examine the performance of BLOVL3D2 using

different sets of rotational angles. (a) top view, (b) 3D view.

(a) (b)

110

Using the first set of rotation angle, which contains only one angle, i.e. 0 degree, the

path found by BLOV3D2 is shown in Fig. 4.42. The path has a length of 597.38 units

and is calculated in 0.43 seconds.

The second set of the rotation angles, which contains 0 and 90 degrees, produces a

path with a length of 596.57, which is shorter than the previous one. The path, which

is depicted in Fig 4.43, is calculated in 0.65 seconds.

Figure 4.42: The path (solid magenta lines) planned by BLOVL3D2 using {0} degree

rotation angles. (a) top view, (b) 3D view.

(a) (b)

Figure 4.43: The path (solid magenta lines) planned by BLOVL3D2 using {0,90}

degrees rotation angles. (a) top view, (b) 3D view.

(a) (b)

111

Consequently, using the third set of the rotation angles, which consists of 0, 60 and

120 degrees, BLOVL3D2 calculates the path as shown in Fig 4.44 in 1.01 seconds.

The path length is 596.94 units.

BLOVL3D2 with the rotation angles of {0:45:135}, which are contained in the fourth

set, plans a path that is identical with that of the second set as shown in Fig. 4.43.

However, using this set of rotation angles, the computation time is slightly increased to

1.09 seconds.

The next set of rotation angles, which consists of {0:30:150} degrees, results in a path

as shown in Fig. 4.45. The path length is 595.84 units and it is calculated in 1.65

seconds.

Finally, the sixth set of the rotation angles produces a path with a length of 595.51

units as illustrated in Fig. 4.46. The time taken to calculate the path was 3.05 seconds.

Through the simulations, it can be observed that, as the number of rotation angles is

increased, the resulting paths are getting shorter.

Figure 4.44: The path (solid magenta lines) planned by BLOVL3D2 using {0:60:120}

degrees rotation angles. (a) top view, (b) 3D view.

(a) (b)

112

In order to have a better idea on the effect of the number of rotation angles,

simulations using 100 random scenarios have been performed. Each scenario

contained 50 cuboids obstacles and its range was fixed to . The minimum

dimension () of each cuboids obstacle was while the

maximum was . The pstart and ptarget were positioned at (0, 0) and

(420,420), respectively. The minimum heights of pstart and ptarget were set at 130 and

140 units, while the maximum of those were 160 and 170, respectively. In each

Figure 4.45: The path (solid magenta lines) planned by BLOVL3D2 using {0:30:150}

degrees of rotation angles. (a) top view, (b) 3D view.

(a) (b)

Figure 4.46: The path (solid magenta lines) planned by BLOVL3D2 using {0:15:165}

degrees rotation angles. (a) top view, (b) 3D view.

(a) (b)

113

scenario, the sets of rotation angles as listed in Table 4.7 were utilised to find 3D

paths. The resulting maximum, minimum and average paths lengths and computation

time are plotted in Fig. 4.47(a) and Fig. 4.47(b), respectively. To have their exact

values, the average path lengths and computation time for each set of rotation angles

are recorded in Table 4.8.

Table 4.8: The average of path lengths and computation time using sets of rotation

angles.

 Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Ave. path lengths (units) 598.28 597.98 597.63 597.47 597.47 597.35

Ave. computation time (s) 0.98 1.09 2.61 2.94 4.66 9.76

As can be seen from Fig. 4.47(a), a higher number of rotation angles used in the

BLOVL3D2 leads to a shorter path length at the expense of computation time. As

there is a trade-off between path length and computation time, the selection of the

number of rotation angles has to be made based on the type of mission i.e. off-line or

real-time. If an off-line path planning is required, the number of rotation angles has to

be large to ensure the resulting path, which is planned prior to the mission, is as

shortest as possible. On the other hand, the number of rotation angles should be

minimal for a mission that requires real-time path planning so that a 3D path can be

calculated in a relatively short time.

Figure 4.47: The simulations results of BLOVL3D2 using different number of rotation

angles in 100 random scenarios, each with 50 cuboids obstacles; (a) path lengths,

(b) computation time.

(a) (b)

114

4.4.3.2 Different Numbers of Obstacles

In order to measure the performance of BLOVL3D2 using different number of

obstacles, scenarios containing 25, 50 and 75 cuboids obstacles have been used for

simulations. As a matter of fact, the number of obstacles affects the density or ratio of

the occupied space by the obstacles to the C-space area. Generally, a higher density

scenario results in a longer computation time and a longer path. The selection of

different obstacles numbers as stated above ensures that the performance of the

proposed algorithm in terms of path length and computation time is informative.

In the simulations, each number of obstacles was generated in 100 random scenarios,

thus, as three numbers of obstacles were used, there were 300 scenarios in total. The

obstacles minimum dimension was set to [1515100] and their

maximum was [3040200]. Each scenario covers an area of 420 by 420 units in X-

and Y- axis, respectively. The starting point, pstart coordinate was fixed to (0,0) while

the target point ptarget was (420,420). The heights of the starting point were randomly

varied between 130 to 160 units and the target point heights were between 140 to 170

units. The rotation angles were set to {0:45:135}.

Figs. 4.48-4.50 illustrate the first three scenarios of the simulations with 25, 50, 75

cuboids obstacles, respectively. Note that the scenario as shown in Fig. 4.48 had the

lowest density while the one shown in Fig. 4.50 possessed the highest.

Figure 4.48: A scenario with 25 cuboids obstacles. (a) top view, (b) 3D view.

(a) (b)

115

The minimum, average and maximum path lengths and computation time in 100

random scenarios for each number of obstacles are shown in Fig. 4.51(a) and 4.51(b),

respectively. From the figures, it is clear that the average path lengths and computation

time are proportional to the numbers of obstacles.

Figure 4.49: A scenario with 50 cuboids obstacles; (a) top view, (b) 3D view.

(a) (b)

Figure 4.50: A scenario with 75 cuboids obstacles; (a) top view, (b) 3D view.

(a) (b)

116

4.5 Conclusion

In this chapter, a set path planning algorithm in 3D environments has been introduced

and demonstrated. The proposed algorithms are based on the base line oriented

visibility lines (BLOVL) algorithm, which has been introduced in Chapter 3. The

proposed 3D path planning algorithm, called BLOVL3D2, uses rotational planes on

which visibility lines (VL) networks are created in order to find 3D paths.

To see the effect of the numbers of rotation angles in BLOVL3D2, six sets of rotation

angles have been used in the simulations. The results of the simulations have shown

that despite BLOVL3D2 consumes longer computation time, a higher number of

rotational angles leads to a relatively better 3D path in terms of path’s length.

In addition, simulations to evaluate the effect of number of obstacles have also been

performed. In the simulations, there were 300 random scenarios with 25, 50 and 75

obstacles. Each number of obstacles was generated in 100 scenarios. From the results

of the simulations, it is concluded that the BLOVL3D2 algorithm takes a longer time

to plan a path in an environment with a higher number of obstacles. The relationship

between the number of obstacles and the average computation time is slightly non-

linear as illustrated by Fig. 4,51(b). In terms of path lengths, BLOVL3D2 plans longer

path in environments with higher number of obstacles, however, the relationship

between the number of obstacles and the average path lengths is slightly non-linear.

Figure 4.51: The results of the BLOVL3D2 simulations using different number of

obstacles; (a) paths lengths, (b) computation time.

(a) (b)

117

Chapter 5

Software Packages for Path Planning

5.1 Introduction

At the University of Leicester, there is a path planning software package that has been

developed that serves two purposes; first, it validates the effectiveness of the proposed

algorithms visually. Second, it implements and presents the algorithms in an intuitive

way. The software package, which has been developed using Matlab consists of two

Graphical User Interfaces (GUIs), each with its own aim. The first GUI is used to

execute the BLOVL algorithm, while the second executes the BLOVL3D1 and

BLOVL3D2 algorithms. The former and the latter GUIs are referred to as 2D GUI and

3D GUI, respectively in this chapter.

Finding a collision-free path using a path planning algorithm normally requires several

inputs such as the number of obstacles, dimensions and position, a starting point, a

target point and the vehicle’s speed and kinematic constraints. The inputs have to be

keyed-in according to a certain logical order. For example the starting and target

points cannot be located before all the obstacles data (locations and dimensions) are

made available, otherwise they might be in the obstacle region, causing the path

planning to be incomplete. On the other hand, the path planning process cannot be

executed if any of the required input is not supplied. The developed software package

is designed to address this issue as the path planning process is implemented

systematically and in user-friendly manner. Before explaining the software packages

further, it is useful that the important objects as shown in Fig. 5.1 that have been used

in the GUIs are introduced.

118

Figure 5.1: The objects used in the GUI

This chapter is arranged as follows. The aims of the GUIs and their functionalities are

introduced first in order to demonstrate the way in which the 2D GUI is carried out

based on the proposed algorithms to find a 2D path in a random scenario. Then, a real-

time 2D path planning is shown using the 2D GUI. Additionally, the 3D path planning

processes using the 3D GUI is demonstrated in order to find 3D paths through the

applications of both the BLOVL3D1 and BLOVL3D2 algorithms.

5.2 The GUIs Aims

The 2D GUI is used to visually demonstrate the real time path planning based on the

BLOVL algorithm. This is useful as it demonstrates the basic idea of the proposed

algorithm in dealing with pop-up obstacles. On the other hand, the 3D GUI

implements both the BLOVL3D1 and BLOVL3D2 algorithms, demonstrating the

concept of rotational planes in finding 3D collision-free paths for different starting and

target points altitudes.

5.3 The GUIs Features

The 2D and 3D GUIs are designed in such a way that their user will be able to operate

them with minimal guidance and practice. Additionally, both GUIs come with step-by-

step instructions located at the top of the GUIs. As the GUIs commence and progress

throughout the path planning process, the instructions will guide the user to perform

the next action after a particular step has been undertaken.

119

In a user-friendliness sense, all objects in the GUIs as shown in Fig. 5.1 are arranged

to follow a chronological order and with some objects disabled, so that further

progress can only be made after particular buttons are pressed or a certain parameters

are keyed-in. Moreover, most of the objects are grouped into a number of frames,

located at the left hand side of the GUI for convenience purposes and as check points

to ensure that necessary inputs/parameters are keyed-in for the path planning process.

Using the 2D GUI, the movement of the UAV traversing the planned 2D path is

visually animated. It displays the UAV’s traversal along the planned collision-free

path towards the target point. If pop-up obstacles are detected on the UAV’s path by

the UAV’s sensor, the proposed algorithms through the 2D GUI will calculate a new

collision-free path. The UAV will then traverse the newly planned path and repeat the

previous step if pop-up obstacles are detected, until it reaches the target point. This

feature allows the real time path planning process can be viewed. Furthermore, there is

an option that allows the user to view the traces of a path throughout a path planning

session. As the proposed algorithms are executed sequentially, there might be several

traces of the optimal paths from the starting point/waypoints to the target point. This

feature applies to both 2D and 3D GUIs.

In relation to the 3D GUI, the rotational plane displayed in the provided axis is shown

sequentially, provided that particular check boxes are properly ticked. These features

are useful to check the validity of the proposed algorithms’ execution.

5.4 Path Planning using 2D GUI

The developed 2D GUI for path planning in 2D is shown in Fig. 5.2. It finds a

collision-free path with fixed altitude, based on the proposed 2D path planning

algorithms. In this GUI, the starting point pstart, target point ptarget, obstacles and the

resultant path are assumed to be at the same heights. They are all displayed in the

provided axis, which is situated at the right hand side of the GUI.

5.4.1 Operating the 2D GUI

The GUI is designed to be user-friendly; the user will be guided throughout a path

planning session by a series of instruction located in the Instructions box at the top of

120

the GUI. Once the GUI is launched as shown in Fig. 5.2, the user is asked by the

Instructions box to do the following:

Welcome to the path planning package by the University of Leicester. To begin, go to

STEP 1 and set the range of search space.

STEP 1 consists of several sub-steps as shown in Fig. 5.3. The main purpose of STEP

1 is to provide the environment, in which the path planning in 2D will take place with

the necessary parameters.

Figure 5.2: The GUI for 2D path planning using the proposed algorithms

121

As instructed, the range of the search space has to be set by either selecting the Default

or by manual entry the Manual radio-button in the Search Range (units) option. If the

range entered is not as in the required format, a warning window as shown in Fig. 5.4

will pop-up and suggests the correct format. Assuming that the area of C-space is

500x500 units, the range is then manually set to [0 500 0 500].

Then the GUI through the Instructions box shows the following:

Now enter the number of obstacles or load the nodelist in STEP1.

The obstacles’ number has to be keyed-in in the provided editable box. Otherwise a

file that contains a node set needs to be supplied. The node set can be imported from a

file that contains previously saved data by pressing the LoadNodelists pushbutton.

Figure 5.3: The STEP 1 of the 2D package

Figure 5.4: A warning window asking user to enter the range correctly.

122

For demonstration purposes, 50 obstacles are assumed in the search space, hence 50 is

keyed-in in the box and the SHOW pushbutton is then pressed. Now, a scenario with

50 obstacles in a search space of 500x500 has been generated and displayed in the

provided axis as shown in Fig. 5.5. The obstacles in the search space can be added by

pressing the Add Obstacles pop-up menu. The dimension of the added obstacles can be

adjusted using the mouse to match with the real obstacles size in the real world.

Then the starting point pstart has to be located by pressing a pushbutton called Starting

Point. It can be located anywhere within the range of the search space. As soon as the

pstart is located, the pushbutton for locating the target point, which is named Target

Point is enabled. As long as the pstart is not located in the search space, the Target

Point button is kept deactivated. The ptarget location then needs to be specified in the

search space using the mouse. Suppose the pstart and ptarget are located at (50, 100), and

(250, 450), respectively. Fig. 5.6 shows the GUI with the generated scenario after

STEP 1 has been completed.

Figure 5.5: A scenario of 500x500 units with 50 obstacles has been set.

123

Figure 5.6: A complete scenario with the area of 500x500 units, 50 obstacles, a

starting point and target point.

The next step is to key-in the necessary parameters for path planning, considering the

UAV’s kinematic constraints such as the vehicle’s speed and maximum bank angle.

All these are grouped in the STEP 2 – Path Planning frame and shown in Fig. 5.7.

After all the required parameters are keyed-in, a path can be generated using the

proposed algorithms by pressing the REAL-TIME PATH PLANNING pushbutton. The

GUI will then display the path for a UAV with 50 km/h speed and 50 degree bank

angle in the provided axis as illustrated in Fig. 5.8.

In order to display the visibility lines created by the algorithms, the Show VL check

box as shown in Fig. 5.7 has to be ticked. The visibility lines of the previous scenario,

generated from the pstart and the second waypoint to ptarget are shown in Fig. 5.9 and

Fig. 5.10, respectively. Displaying the visibility lines is useful because it reflects the

number of obstacles involved in the path calculation.

124

Figure 5.8: The planned path shown in red, satisfying the kinematic constraints

Figure 5.7: Necessary parameters are required to plan a 2D collision-free path.

125

Figure 5.9: The visibility lines are shown from the starting point

Figure 5.10: The visibility lines are shown from the second waypoint

126

Figure 5.11: The traces of the planned path.

In addition, by ticking the Trace check box in STEP 2, the trace of the planned path

from each waypoint will be displayed as depicted in Fig. 5.11. The solid red line is the

final path, while the dashed red line refers to the path that is planned previously (in

this case, it is from the starting point).

Another feature of the GUI is that it displays all the important information about the

planned path in the Results box located at the lower left part of the GUI as depicted in

Fig. 5.12. The displayed information represents the current position of the UAV, the

number of the considered obstacles that have been used to calculate the path, the total

path length and the computation time. Additionally, the node list of the current

scenario can be saved to be used in the future.

The specific area of the search space can be zoomed-in to display a clearer view of the

selected area. This is done by pressing the Zoom In push button, which is located at the

GUI’s top right. Finally, a new session can be started by pressing the New Session

pushbutton which is situated at the left bottom area of the GUI. The same afore-

mentioned procedures have to be followed to find a collision-free path in 2D.

127

5.4.2 Real-Time Path Planning Using the GUI

Demonstrating a path planning process in real-time using the proposed algorithms is

one of purposes of the developed 2D GUI. The GUI is capable of displaying the

planning and re-planning processes in a scenario with pop-up obstacles. A new path,

which is locally optimal is planned when the UAV’s sensors detect the pop-up

obstacles.

Consider a scenario as shown in Fig. 5.13 in which pop-up obstacles will appear

during the UAV’s traversal. The scenario consists of 75 a priori defined obstacles with

pstart and ptarget located at (100,100) and (600,700), respectively. The UAV’s speed is

assumed to be 50 km/h and its maximum bank angle is 50 degrees. Fig. 5.14 shows a

globally optimal path (dotted red line) planned, based on the information provided.

The UAV traversing the planned path is animated in the GUI as shown in Fig. 5.15.

The dotted green semi-circle is the UAV’s sensor coverage with limited range. As the

UAV traverses the path, four previously unknown obstacles pop-up and one of them is

on the UAV’s path. At this moment, the path planner does not take any action as the

obstacle is yet to be detected by the onboard sensors. As the obstacles are detected as

illustrated by Fig. 5.16, the UAV will quickly re-plan a new path as depicted in Fig.

5.17 based on the proposed 2D path planning algorithms. The path is not collision-free

since the algorithm considers only the obstacles on the base line and their extensions

in re-planning the path at this moment. The path is again re-planned as soon as the

sensors detect more pop-up obstacles on the UAV’s path. This situation is illustrated

in Fig. 5.18. The UAV carries on the flight until it reaches at the target point, ptarget as

shown in Fig. 5.19.

Figure 5.12: The information of the planned path.

128

Figure 5.13: The scenario that is used to demonstrate the real-time path planning.

Figure 5.14: The globally optimal path.

129

Figure 5.15: The UAV is traversing the planned path.

Figure 5.16: The UAV detects the pop-up obstacle.

130

Figure 5.17: The new path is re-planned when the pop-up obstacle is detected.

Figure 5.18: The UAV traverses the re-planned collision-free path.

131

Figure 5.19: The UAV successfully reaches at the target point.

5.5 Path Planning Using 3D GUI

The 3D GUI is shown in Fig. 5.20. The package executes the proposed 3D path

planning algorithms to find a 3D path in a given scenario. Unlike 2D GUI, the 3D GUI

takes into account the altitudes of the obstacles, the starting point pstart and target point

ptarget during the path calculation process.

5.5.1 Operating the 3D GUI

The way to operate the 3D software package is similar to that of the 2D GUI. First the

area of the search space has to be defined. In STEP 1 of 3D GUI, unlike in the 2D

package, the search space consists of six values i.e. [xstart xend ystart yend zstart zend], as the

range in the z-axis is included. STEP 1 of 3D GUI is shown in Fig. 5.21.

Next, the number of obstacles in the provided box needs to be inputted. Pressing the

SHOW button will display the obstacles, whose dimensions and positions are

randomly generated. There is also an option to load a set of nodes from a file. An

example of a scenario covering the area of 500x500x200 with 75 obstacles is shown in

132

Figure 5.20: A GUI for 3D path planning using the proposed algorithms

Figure 5.21: The STEP 1 of the 3D package.

Fig. 5.22. More obstacles which are available in several shapes can be added by

pressing the Add Obstacles pop-up menu. The size of the added obstacles can be

adjusted according to the real obstacles’ sizes in real world using the mouse.

133

Figure 5.22: The 3D scenario with 75 obstacles

After that, the altitudes and locations of pstart and ptarget must be defined. An example

of a complete scenario is shown in Fig. 5.23. In the scenario the locations of the pstart

and ptarget are assumed to be at coordinates (20,20,170) and (400,500,150),

respectively. The third values in the coordinates refer to the altitudes of the starting

and target points.

In the next step of the 3D GUI, called STEP 2, more information should be supplied to

the GUI, such as the algorithms to be used (either BLOVL3D1 or BLOVL3D2) and

the rotation angles. STEP 2 of the package is shown in Fig. 5.24. For the BLOVL3D1

algorithm, the rotation angles are not required as they are fixed to 0 and 90 degrees.

After all the necessary parameters are supplied in STEP 2, the PLAN button is pressed

to find a 3D path. The paths that are planned by the BLOVL3D1 and BLOVL3D2

algorithms through the 3D GUI are shown in Figs. 5.25 and 5.26, respectively. Note

that for BLOVL3D2, the plane rotation angles are set to {0,30,60,90,120,150}

degrees.

134

Figure 5.23: The complete 3D scenario with 75 obstacles, starting point (blue

triangle) and target point (square magenta)

The plane can be displayed in the axis by ticking the Show planes check box as shown

in Fig. 5.24. The plane is shown sequentially if the StepByStep checkbox is also ticked.

Using the same scenario, the planes for BLOVL3D1, which is seen from the top and in

3D views, are depicted in Fig. 5.27 and Fig. 5.28, respectively. On the other hand, the

planes generated by BLOVL3D2, viewed from top and in 3D are illustrated in Figs.

5.29 and 5.30, respectively.

Figure 5.24: Necessary parameters are required to plan a 3D collision-free path.

135

Figure 5.25: The 3D path planned by BLOVL3D1 algorithm.

Figure 5.26: The 3D path planned by BLOVL3D2 algorithm.

136

Figure 5.27: The planes generated by BLOVL3D1 are seen from top view

Figure 5.28: The planes generated by BLOVL3D1 are in 3D view.

137

Figure 5.29: The planes generated by BLOVL3D2 are viewed from top

Figure 5.30: The planes generated by BLOVL3D2 are viewed in 3D.

138

The results of the planned path such as the path length and its computation time can be

seen in a frame called Results, which is located at the lower left part of the GUI as

shown in Fig. 5.31. The scenario can also be saved to be used in the future.

In addition, a specific area of the search space can be zoomed-in so that the selected

area can be seen more clearly. This is done by pressing the Zoom In button, located at

the GUI’s top right. A new 3D path planning session can be started by pressing the

New Session button which is situated at the left bottom of the GUI, and the same afore-

mentioned procedures have to be performed in order to find a 3D collision-free path.

5.6 Conclusion

The software package that has been developed at the University of Leicester consists

of two Graphical User Interfaces (GUIs), which are called 2D GUI and 3D GUI. Both

GUIs make the path finding based on the Visibility Graph method in 2D or 3D

scenarios, respectively easier as the path planning process is done systematically.

The purposes of the software package are to validate the effectiveness of the proposed

algorithms visually and to realise and present the proposed algorithms in an intuitive

way as the package was designed to be user-friendly. Furthermore, the GUIs can be

operated with minimal guidance and practice, equipped with step-by-step instructions,

which are located at the top of the GUIs.

The 2D GUI can be used for real time path planning in 2D using the proposed 2D path

planning algorithms i.e. BLOVL. One can also use the 3D GUI that has been

specifically designed to plan 3D paths in 3D scenarios. The 3D GUI combines both the

3D algorithms i.e. BLOVL3D1 and BLOVL3D2.

Figure 5.31: The Results frame showing the information about the planned path.

139

The relevant information about the planned path such as path length and processing

time can be seen in the GUIs. In addition, the scenarios, which were used to generate

collision-free path can be saved for future use.

140

Chapter 6

Conclusions and Future Work

Briefly, path planning involves a problem of finding a safe path from a starting point

to a target point. There are three criteria for path planning; computational efficiency,

path optimality and completeness.

These criteria have to be considered before any path planning method/algorithm is

designed. A path planning method which is computationally efficient is capable of

planning in real-time in dynamic environments while a path planning method that

produces an optimal path can save the vehicle’s fuel, reduce the potential risks and

prolong the vehicle’s life cycle. On the other hand, a path planning method that holds

the completeness criterion will find a path if one exists.

This chapter discusses the works that have been undertaken in this thesis on path

planning, considering the above-mentioned criteria. The next section discusses and

concludes the developed path planning algorithms including the path planning

software package. The last section proposes possible extensions of the work that have

been developed in this thesis.

6.1 Conclusions

6.1.1 Path Planning in 2D environments

Two path planning algorithms in two-dimensional (2D) environments have been

proposed in Chapter 3. The first algorithm, Core is used to find a path through a set of

obstacles in the environment represented by the configuration space (C-space). A base

line (BL), which is defined in the Core algorithm, is a line segment that connects the

141

starting point pstart and target point ptarget. Its purpose is to determine a set of obstacles

O
Core

 that will be used for path calculation. As O
Core

 contains a relatively small number

of obstacles, the visibility lines (VL) network can be built in a relatively short time.

Core then plans a path based on the VL network using Dijkstra’s algorithm. Core,

however, produces a path that might not be collision-free. Thus another algorithm

called Base Line Oriented Visibility Line (BLOVL) has been proposed. As a matter of

fact, Core is a part of BLOVL, which runs iteratively. BLOVL checks the visibility

between two consecutive waypoints i.e. the local starting point (ustart) and the next

waypoint (utarget), of the previously planned path, at each iteration. Core will be called

if those two waypoints are blocked by obstacles. This procedure guarantees that the

resulting path is collision-free. In order to further accelerate BLOVL’s computation

time, base line (BL) with limited range has been introduced.

Simulation results showed that BLOVL is computationally efficient in generating a

collision-free path, suitable for a real-time path planning. Additionally the planned

paths were similar with those of the VL method. On the other hand the proposed

algorithms also hold the completeness criterion as the path planning runs iteratively

until the target point is reached.

6.1.2 Path Planning in 3D environments

Path planning in a 3D environment is necessary to ensure that the path has a shorter

distance in comparison with a 2D path. This in turn saves the UAV’s fuel/energy,

increases its endurance, prolongs its life cycle and minimises the exposure to possible

risks.

A 3D path planning algorithm i.e. BLOVL3D2, which are based on BLOVL

algorithm, have been proposed in Chapter 4 using rotational plane approach. Several

sub-algorithms including BasePlane, Rotate3D, FindIntersection and BLOVL3D1

have also been proposed. BasePlane is used to create a local base plane on which a

visibility lines network will be built and consequently a path will be planned. On the

other hand, Rotate3D rotates the local plane at predefined angles. FindIntersection

calculates the intersection points between a rotated plane and obstacles while the

BLOVL3D1 algorithm finds a path on the rotated local plane.

142

BLOVL3D2, which combines BasePlane, Rotate3D, FindIntersection and

BLOVL3D1, has been simulated using different numbers of rotation angles and

obstacles in random scenarios. The results of the simulations have shown that a higher

number of rotation angles leads to a relatively better 3D path in terms of path’s length.

Also, the simulations show that the BLOVL3D2 algorithm takes longer time to plan a

path in environment with higher number of obstacles. The relationship between the

number of obstacles and the average computation time is slightly non-linear. In terms

of path lengths, BLOVL3D2 plans longer path in environments with higher number of

obstacles.

6.1.3 Path Planning Package for 2D and 3D environments

A path planning software package that has been developed at the University of

Leicester using Matlab has been introduced and demonstrated in Chapter 5. The

purpose of the package is to check the validity of the proposed algorithms visually and

to implement and present the proposed algorithms in an intuitive way.

There are two Graphical User Interfaces (GUIs) in the package, in which the first GUI

is used to execute the BLOVL algorithm, while the second executes the BLOVL3D2.

In developing the package, several features have been incorporated into the GUIs as

follows:

 step-by-step instruction, which is located at the top of the GUIs, is provided.

 all objects in the GUIs such as editable boxes, push buttons etc. are arranged in a

chronological order.

 most of the objects are grouped into a number of frames, which are located at the

left hand side of the GUI. Putting them in one area makes them easy to be seen

and handled.

 the movement of the UAV is visually animated in 2D GUI.

 there is an option that allows the user to view the traces of a path throughout a

path planning session.

 Regarding the 3D GUI, the rotational plane can be displayed in the provided

axis.

 related information about the planned path such as the path length and the

processing time are displayed.

143

 the scenarios can be saved for future use.

6.2 Future work

This section briefly addresses the proposed future work to extend the current study.

The BLOVL and BLOVL3D2 algorithms that have been explained in Chapters 3 and

4, respectively, assume that the obstacles’ sizes and positions in the C-space are

known accurately. Future work should consider uncertainties in the obstacles’ sizes

and positions. As VL-based methods produce waypoints that pass through the

obstacles nodes, considering uncertainties would guarantee the resultant paths are in

the free region of C-space.

Also, the proposed algorithms assume that all obstacles are static. However, in the real

scenario, obstacles might move from one place to another. Hence it is worth

considering moving obstacles in designing a path planning algorithm in the future.

Additionally, the proposed 2D and 3D path planning algorithms only consider a single

UAV. Missions executed by multiple UAVs achieve better and faster results; therefore

this would be an ideal area of development in future.

Also there were no path smoothing and path tracking included in the proposed

algorithms. As the paths are formed by piece-wise linear segments which have abrupt

heading changes near waypoints, the UAV might not be able to traverse such paths. In

order to overcome that drawback, path smoothing or path tracking would be another

topic to explore for future work.

Finally there was no consideration in the ascending/descending angle of the path in the

BLOVL3D2 algorithm. Thus, it is hoped that future work would take this aspect into

account by incorporating angle restrictions based on the kinematics constraints of a

particular UAV.

144

References

[1] http://www.richard-seaman.com

/Aircraft/AirShows/Nellis2006/Highlights/Predator2006.jpg

[2] W. A. Kamal. Safe trajectory planning techniques for autonomous air vehicles.

PhD Thesis, 2005.

[3] http://www.theregister.co.uk/2006/08/30/uav_project

[4] J. S. Bellingham, M. Tillerson, A. G. Richards and J. P. How. Multi-Task

Allocation and Path Planning for Cooperating UAVs. In Proceedings of Conference

on Cooperative Control and Optimization, 2001.

[5] R. Frampton, UAV autonomy, In MOD Codex Journal, Issue 1 Summer, 2008,

[Online]

www.science.mod.uk/codex/Issue1/Journals/documents/Issue1_2Journals_UAV_auto

nomy.pdf .

[6] http://www.theuav.com/

[7] Nilsson, N.J. A mobile automaton: An application of artificial intelligence

techniques. In Proceedings of International Joint Conference on Artificial Intelligence,

pages 509-520, 1969.

[8] Thompson,A.M., The navigation of the JPL robot. In Proceedings of the 5th

International Joint Conference on Artificial Intelligence, pages 749- 57, 1977.

[9] T. Lozano- Perez and M. A. Wesley, An algorithm for planning collision-free paths

among polyhedral obstacles, Contmum. ACM, 22, pages 560-570, 1979.

[10] A. Tokuta. Extending the VGRAPH algorithm for robot path planning. In

International Conference in Central Europe on Computer Graphics and Visualization.

1998.

[11] A. Louchene, N. E. Bouguechal, A. Dahmani, S. Yahiaoui, and S. Merrouchi.

Automated guided vehicle path planning without obstacles expansion. In Proceedings

http://www.richard-seaman.com/
http://www.theregister.co.uk/2006/08/30/uav_project
http://www.theuav.com/
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=5844

145

of the IEEE International Conference on Control Applications, pages 1333-1337,

1998.

[12] J. Giesbrecht and Defence R&D Canada. Path planning for unmanned ground

vehicles. Technical Memorandum DRDC Suffield TM 2004-272, 2004.

[13] R. Brooks and T. L.-Perez. A subdivision algorithm in configuration space for

findpath with rotation. In Proceedings of the 8th International Conference on AI,

pages 799-806, 1983.

[14] D. Zhu and J. Latombe. Constraint reformulation in hierarchical path planning. In

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 1918-1923, 1995.

[15]. H. Samet. An overview of quadtrees, octrees and related hierarchical data

structures. NATO ASI Series, F40, pages 187-260. 1988.

[16]. H. N. T. Naniwa and S. Arimoto. A quadtree-based path-planning algorithm for a

mobile robot. In Robotic Systems, pages 668-681, 1990.

[17] D. M. Coleman and J. T. Wunderlich. O3: An optimal and opportunistic path

planner (with obstacle avoidance) using voronoi polygons. In IEEE International

Workshop on Advanced Motion Control, pages 371-376. 2008

[18] Y. Qu, Q. Pan and J. Yan. Flight path planning of UAV based on heuristically

search and genetic algorithms. In Proceedings of the 31st Annual Conference of

Industrial Electronics Society of IEEE, pages 45-49, 2005.

[19] Q. Xiao, X. Gao, X. Fu and H. Wang. New local path re-planning algorithm for

unmanned combat air vehicle. In Proceedings of the 6th World Congress on Intelligent

Control and Automation, pages 4033-4037, 2006.

[20] A. Sud, E. Andersen, S. Curtis, M. C. Lin, and D. Manocha. Real-time path

planning in dynamic virtual environments using multi-agent navigation graphs. In

IEEE Transactions On Visualization And Computer Graphics, pages 526-538, 2008.

[21] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In

Proceedings of the IEEE International Conference on Robotics and Automation, pages

500-505, 1985.

146

[22] Y. Kitamura, T. Tanaka, F. Kishino and M. Yachida. 3-D Path planning in a

dynamic environment using an octree and an artificial potential field. In Proceedings

of the IEEE International Conference on Intelligent Robots and Systems, pages 474-

481, 1995.

[23] K. H. Yong and N. Ahuja. A potential field approach to path planning. In IEEE

Transactions on Robotics and Automation, pages 23-32, 1992.

[24] A. Poty, M. Melchior and A. Oustaloup. Dynamic path planning for mobile

robots using fractional potential field. In First International Symposium on Control,

Communications and Signal Processing, pages 557-561, 2004.

[25] I. Hasircioglu, H. R. Topcuoglu and M. Ermis. 3-D path planning for the

navigation of unmanned aerial vehicles by using evolutionary algorithms. In

Proceedings of the Conference on Genetic and Evolutionary Computation, pages

1499-1506, 2008.

[26] P. B Sujit and R. Beard. Multiple UAV path planning using anytime algorithms.

In American Control Conference, pages 2978-2983, 2009.

[27] Y. Kuwata and J. How. Three dimensional receding horizon control for UAVs. In

Proceedings of the AIAA Guidance, Navigation and Control Conference, 2004.

[28] N. Vandapel, J. Kuffner and O. Amidi. Planning 3-D path networks in

unstructured environments. In Proceedings of the IEEE International Conference on

Robotics and Automation, pages 4624-4629, 2005.

[29] G. Dudek and M. Jenkin. Computational principles of mobile robotics.

Cambridge University Press, Cambridge, UK, 2000.

[30] F. Mitch, Z. Tu, L. Stephens and G. Prickett. Towards true UAV autonomy. In

Proceedings of the IEEE International Conference on Information, Decision and

Control, pages 170-175, 2007.

[31] S. Karim, C. Heinze, and S. Dunn. Agent-based mission management for a UAV.

In Proceedings of the IEEE International Conference on Intelligent Sensors, Sensor

Networks & Information Processing, pages 481-486, 2004.

147

[32] C. Hai. A survey of autonomous control for UAV. In Proceedings of the IEEE

International Conference on Artificial Intelligence and Computational Intelligence,

pages 267-271. 2009.

[33] S. Eric. Evolution of a UAV autonomy classification taxonomy. In Proceedings

of the IEEE International Conference on Aerospace, 2007.

[34] S. M. LaValle. Planning Algorithms, Cambridge University Press, 2006.

[35] S. J. Russell and P. Norvig. Artificial intelligence: A modern approach, 2
nd

Edition, Prentice Hall, Upper Saddle River, N.J., 2003.

[36] K. Yang and S. Sukkarieh. An enhanced optimization approach for generating

smooth robot trajectories in the presence of obstacles. In Proceedings of the 1995

IEEE European Chinese Automation Conference, pages 263–268, 2008.

[37] J. Zhang and A. Knoll. Real time continuous curvature path planning of UAVs in

cluttered environments. In Proceedings of the 5th IEEE International Symposium on

Mechatronics and its Applications, pages 1-6. 2008.

[38] S. Aydin and H. Temeltas. A novel approach to smooth trajectory planning of

mobile robot. In IEEE International Workshop on Advanced Motion Control, pages

472–477, 2008.

[39] H. K. Sung and R. Bhattacharya. Multi-layer approach for motion planning in

obstacle rich environments. In Conference and Exhibit of AIAA Guidance, Navigation

and Control, 2007.

[40] M. Shanmugavel, A. Tsourdos, B. White and R. Z Bikowski. Co-operative path

planning of multiple UAVs using dubin paths with clothoid arcs. In Control

Engineering Practice, Elsevier, 2009.

[41] H. Choset, G. Kantor, W. Burgard, L. Kavraki and S. Thrun. Principles of robot

motion: Theory, algorithms, and implementations, The MIT Press, 2005.

[42] R. Siegwart and I. R. Nourbakhsh. Introduction to autonomous mobile robots,

Bradford Company, Scituate, MA, USA, 2004.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5375738
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5375738

148

[43] A. B. Doyle. Algorithm and computational techniques for robot path planning.

PhD Thesis, 1995.

 [44] B. Faverjon. Object level programming using an octree in the configuration space

of a manipulator. In Proceedings of the IEEE International Conference on Robotics

and Automation San Francisco, pages 1406-1412, 1986.

[45] J- C. Latombe. Robot motion planning, Kluwer Academic Publisher, 1991.

[46] H. Samet. Neighbor finding techniques for images represented by quadtrees. In

Computer Graphics and Image Processing, pages 35-57, 1982.

[47] J. Kim and D. Kim. Visibility graph path planning using a quadtree, In

Proceedings of The 9th POSTECH-KYUTECH Joint Workshop On Neuroinformation,

pages 37-38, 2009.

[48] D. Chen, R. Szczerba, and J. Uhran. Planning conditional shortest paths through

an unknown environment: A framed-quadtree approach. In Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 33-38,

1995.

[49] Y. Alex, S. Anthony, S. Singh and B. L. Barry. Framed-quadtree path planning

for mobile robots operating in sparse environments. In Proceedings, IEEE Conference

on Robotics and Automation, 1998.

[50] T. K. Priva and K. Sridharan. An efficient algorithm to construct reduced

visibility graph and its FPGA implementation. In Proceedings of I7th International

Conference on VLSI Design, pages 1057-1062, 2004.

[51] Y. Wang, G. S. Chirikjian. A new potential field method for robot path planning.

In Proceedings of the IEEE International Conference on Robotics and Automation,

pages 977-982, 2000.

[52] D. Chen, L. Zhan, X. Chen, Mobile robot path planning based on behaviour

information potential field in unknown environments. In Proceedings of the IEEE

International Conference on Robotics and Biomimetics, pages 683–687, 2004.

149

[53] D. Parsons and J. Canny. A motion planner for multiple mobile robots. In

Proceedings of the IEEE International Conference on Robotics and Automation, pages

8-13, 1990.

[54] M. Jun and R. D’Andrea. Path planning for unmanned aerial vehicles in uncertain

and adversarial environments, cooperative control: Models, applications and

algorithms, Kluwer, 2002.

[55] T. Arney. An efficient solution to autonomous path planning by approximate cell

decomposition. In Proceedings of the IEEE International Conference on Information

and Automation for Sustainability, pages 88-93, 2007.

[56] N. S. V. Rao. Algorithmic framework for learned robot navigation in unknown

terrains. In Journal of Computer, 22(6), pages 37-43, 1989.

[57] T. Guang, M. Bertier and A-M Kermarrec. Visibility graph-based shortest-path

geographic routing in sensor networks. In Proceeding of the IEEE International

Conference on Computer Communications, pages 1719-1727, 2009.

[58] S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning. TR

98-11, Computer Science Dept., Iowa State University, October 1998.

[59] J. T. Schwartz and M. Sharir. A survey of motion planning and related Geometric

algorithms. Artificial Intelligence, MIT Press, pages 157-169, 1988.

[60] S. Akishita, T. Hisanobu and S. Kawamura. Fast path planning available for

moving obstacle avoidance by use of laplace potential. In Proceedings of the IEEE

International Conference on Intelligent Robots and Systems, pages 673-678, 1993.

[61] F. Lingelbach. Path planning using probabilistic cell decomposition. In

Proceedings of the IEEE International Conference on Robotics and Automation, pages

467-472, 2004.

[62] L. Zhang, J. Y. Kim and D. Manocha. A hybrid approach for complete motion

planning. In Proceedings of the 2007 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 7-14, 2007.

150

[63] J. O. Kim and P. K. Khosla. Real-time obstacles avoidance using harmonic

potential functions. IEEE Transactions on Robotics and Automation, 8(3), pages 338-

349, 1992.

[64] S. A. Bortoff. Path planning for UAVs. In Proceedings of the American Control

Conference Chicago Illinois, pages 364-368, 2000.

[65] S. Garrido, L. Moreno, M. Abderrahim and F. Martin. Path planning for mobile

robot navigation using voronoi diagram and fast marching. In Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2376-

2381, 2006.

[66] P. Khosla and R. Volpe. Superquadratic artificial potentials for obstacle

avoidance and approach. In Proceedings of the IEEE Conference on Robotics and

Automation,1988.

[67] L. E Kavraki, P. Svestka, J-C. Latombe and M. H. Overmars. Probabilistic

roadmaps for path planning in high-dimensional configuration spaces. In IEEE

Transactions on Robotics and Automation, 12(4) pages 566-580, 1996.

[68] B. J. Oommen, S. Iyengar, N. S. V. Rao and R. L. Kashyap. Robot navigation in

unknown terrains using learned visibility graphs. Part I: The disjoint convex obstacle

case. In IEEE Journal of Robotics and Automation, RA-3(6), pages 672-681, 1987.

[69] C. Godsil and G. Royle. Algebraic Graph Theory, Springer, 2001.

[70] A. Louchene, N-E. Bouguechal, A. Dahmani, S. Yahiaoui and S. Merrouchi.

Automated guided vehicle path planning without obstacles expansion, In Proceedings

of the IEEE International Conference on Control Applications, pages 1333-1337,

1998,

[71] K. Jiang, L .D. Seneviratne and S.W. E. Earle. Finding the 3D shortest path with

visibility graph and minimum potential energy. In Proceedings of the IEE/RSJ

International Conference on Intelligent Robots and Systems, pages 679-684, 1993.

[72] D. Wooden and M. Egerstedt. Oriented visibility graphs: low-complexity

planning in real-time environments. In Proceedings of the IEEE International

Conference on Robotics and Automation, pages 2354-2359, 2006.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=70
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4058334
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4058334
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=70

151

[73] E. F. Moore. The shortest path through a maze. Proceedings of an International

Symposium on the Theory of Switching. Cambridge: Harvard University Press,

pages 285-292, 1957.

[74] H. P. Huang and S. Y. Chung. Dynamic visibility graph for path planning. In

Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 2813-2818, 2004.

[75] J.A Janet, R. C. Luo and M. G. Kay. The essential visibility graph: An approach

to global motion planning for autonomous mobile robots. In Proceedings of the IEEE

International Conference on Robotics and Automation, pages 1958-1963, 1995.

[76] G. Song, S. Thomas and N. M. Amato. A general framework for PRM motion

planning. In Proceedings of the IEEE International Conference on Robotics &

Automation, pages 4445-4450, 2003.

[77] K. Belghith, F. Kabanza, Hartman and R. Nkambou. Anytime dynamic path-

planning with flexible probabilistic roadmaps. In Proceedings of the IEEE

International Conference on Robotics and Automation, pages 2372-2377, 2006.

[78] E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, and L. E. Kavraki. Sampling-

based roadmap of trees for parallel motion planning, In IEEE Transactions on

Robotics, 21(4), pages 597-608, 2005.

[79] T. Siméon, J-P. Laumond and C. Nissoux. Visibility-based probabilistic roadmaps

for motion planning. In Advanced Robotics 14(6). Pages 477-494, 2000.

[80] P. O. Pettersson and P. Doherty. Probabilistic roadmap based path planning for an

autonomous unmanned aerial vehicle. In Proceedings of the Workshop on Connecting

Planning and Theory with Practice. 14th International Conference on Automated

Planning and Scheduling, 2004.

[81] Y. Tian, L. Yan, G. Y. Park, S. H. Yang, Y. S. Kim and S. R. Lee, C-Y. Lee.

Application of RRT-based local path planning algorithm in unknown environment. In

International Symposium on Computational Intelligence in Robotics and Automation,

pages 456-460, 2007.

152

[82] J. Kim and J. P. Ostrowski. Motion planning of aerial robot using rapidly-

exploring random trees with dynamic constraints. In Proceedings of the IEEE

International Conference on Robotics &Automation, pages 2200-2205, 2003.

[83] N. A. Melchior and R. Simmons. Particle RRT for path planning with uncertainty.

In Proceedings of the IEEE International Conference on Robotics and Automation,

pages 1617-1624. 2007.

[84] S. Kamio and H. Iba. Random sampling algorithm for multi-agent cooperation

planning. In Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 1265-1270, 2005.

[85] R. Pepy and A. Lambert. Safe Path Planning in an Uncertain-Configuration Space

using RRT. In Proceedings of the 2006 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 5376-5381, 2006.

[86] M. Shao and J. Y. Lee. Development of autonomous navigation method for non-

holonomic mobile robots based on the generalized voronoi diagram. In Proceedings of

the IEEE International Conference on Control Automation and Systems, pages 309-

313, 2010.

[87] Q. Zhang and X. Wang. Global path planning method in uncertain environment.

In Proceedings of the IEEE International Conference on Control Applications, pages

2725-2730, 2006.

[88] P. Bhattacharya and M. L. Gavilova. Voronoi diagram in optimal path planning.

In Proceedings of the IEEE International Symposium on Voronoi Diagrams in Science

and Engineering, pages 38-47, 2007.

[89] R. Wein, J. P. Van and D. Halperin. The visibility-voronoi complex and its

application. In Computational Geometry: Theory Applications 36(1), pages 66-87,

2007.

[90] R. Daily and D. M. Bevly. Harmonic potential field path planning for high speed

vehicles. In American Control Conference, pages, 4609-4614, 2008.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5656240
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5656240

153

[91] T. Ishida. Real-time search for autonomous agents and multiagent systems. In

Autonomous Agents and Multi-Agent Systems. Kluwer Academic Publishers, pages

139-167, 1998.

[92] D. Glavaski, M. Volf and M. Bonkovic. Robot motion planning using exact cell

decomposition and potential field methods. In Proceedings of the WSEAS

International Conference on Simulation, Modelling and Optimization, pages 126-131,

2009.

[93] P. Broz. Path planning in combined 3D grid and graph environment. In

Proceedings of the 10th Central European Seminar on Computer Graphics, 2006.

[94] M. N. Bygi and M. Ghodsi, 3D visibility graph. In 12th CSI Computer

Conference, 2006.

[95] C. H. Chung and G. N Saridis. Path planning for an intelligent robot by the

extended VGraph algorithm. In Proceedings of the IEEE International Symposium on

Intelligent Control, pages 544-549, 1989.

[96] P. Hart. A formal basis for the heuristic determination of minimum cost paths. In

IEEE Transactions on Systems Science and Cybernetics, pages 100-107, 1968.

[97] E. W. Dijkstra. A note on two problems in connexion with graphs. In Numerische

Mathematik 1, pages 269-271, 1959.

[98] R. J Szczerba, D. Z. Chen and K. S. Klenk. Minimum turns/shortest path

problems: A framed-subspace approach. In Proceedings of the IEEE International

Conference on Systems, Man, and Cybernetics, pages 398-403, 1997.

[99] J. L. Latombe. Motion planning: A journey of robots, molecules, digital actors,

and other artefacts. In International Journal of Robotics Research, 18(11), pages

1119-1128, 1999.

[100] K. G. Joll, R. S. Kumar and R. Vijayakumar. A Bezier curve based path

planning in a multi-agent robot soccer system without violating the acceleration limits.

In Elsevier Journal of Robotics and Autonomous Systems, 57(2009), pages 23–33,

2009.

154

[101] K. Yang and S. Sukkarieh. An analytical continuous-curvature path-smoothing

algorithm. In IEEE Transactions on Robotic, 26(3), pages 561-568, 2010.

[102] T. Kito, J. Ota, R. Katsuku, T. Mizuta, T. Arai, T. Ueyama and T. Nishiyama.

Smooth path planning by using visibility graph-like method. In Proceedings of the

IEEE International Conference on Robotics and Automation, pages 3770-3775, 2003

[103] G. Yang and V. Kapila. Optimal path planning for unmanned air vehicles with

kinematic and tactical constraints. In Proceedings of the IEEE Conference on Decision

and Control, pages 1301-1306, 2002.

[104] E. P. Anderson, R. W. Beard and T. W. McLain. Real-time dynamic trajectory

smoothing for unmanned air vehicles. In IEEE Transactions on Control Systems

Technology, 13(3), pages 471-477, 2005.

[105] A. Richards and J. P. How. Aircraft Trajectory Planning with Collision

Avoidance Using Mixed Integer Linear Programming. In Proceedings of the American

Control Conference, pages 1936-1941, 2002.

[106] L. Labakhua. Smooth trajectory planning for fully automated passengers

vehicles–spline and clothoid based methods and its simulation. In Proceedings of the

International Conference on Informatics in Control, Automation and Robotics

(ICINCO), pages 89-96, 2006.

[107] K. Yang and S. Sukkarieh. Planning continuous curvature paths for UAVs

amongst obstacles. In Proceedings of the Australasian Conference on Robotics and

Automation (ACRA), 2008.

[108] J-W. Choi, R. E. Curry and G. H. Elkaim. Continuous curvature path generation

Based on bezier curve for autonomous vehicles. In IAENG International Journal of

Applied Mathematics 40(2), 2010.

[109]. R. H. Bartels, J. C. Beatty and B. A. Barsky. An introduction to splines for use

in computer graphics and geometry modeling. M. Kaufmann Publishers, 1987.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8860
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8437
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=87
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=87

155

[110] M. Bak, N. K Poulsen and O. Ravn. Path following mobile robot in the presence

of velocity constraints. In Technical Report, Informatics and Mathematical Modelling,

Technical University of Denmark, Richard Petersens Plads, Building 321, DK-2800

Kgs. Lyngby, 2001.

[111] R. Omar and D-W Gu. Visibility line based methods for UAV path planning. In

Proceedings of the International Conference on Control, Automation and Systems

(ICCAS-SICE), pages 3176-3181, 2009.

[112] R. Omar and D.-W. Gu. 3D path planning for unmanned aerial vehicles using

visibility line based method. In Proceedings of the International Control on

Informatics in Control, Automation and Robotics, pages 80-85, 2010.

[113] M. Kothari, I. Postlethwaite and D.-W. Gu. Multi-UAV path planning in

obstacle rich environments using rapidly-exploring random trees. In Proceedings of

the IEEE Conference on Decision and Control, held jointly with the 28th Chinese

Control Conference, pages 3069-3074, 2009.

[114] P. Zarchan. Tactical and strategic missile guidance.In Progress in Astronautics

and Aeronautics (4
th

 Ed.), 176, AIAA, 2002.

[115] Y. Baba and H. Takano. Robust flight trajectory tracking control using fuzzy

logic. In Proceedings of the 8th ISDG&A, Maastricht, pages 68–75, 1998.

[116] A. G. Richards, J. P. How, T. Schouwenaars and E. Feron. Plume avoidance

maneuver planning using mixed integer linear programming. In Proceedings of

Conference of AIAA Guidance, Navigation and Control, 2001.

[117]Y. Kuwata and J. P. How. Robust cooperative decentralized trajectory

optimization using receding horizon MILP. In Proceedings of American Control

Conference, pages 522-527, 2007.

[118] I. K. Nikolos, N. C. Tsourveloudis and K. P. Valavanis. Evolutionary algorithm

based off-line path planner for UAV navigation. Automatika Journal, 42(2001) 3-4,

pages 143-150, 2001.

 [119] D. Jia. Parallel evolutionary algorithms for UAV path planning. In Proceedings

of the AIAA 1
st
 Intelligent Systems Technical Conference, 2004.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5379695
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5379695

156

[120] Y. Dadi, Z. Lei, R. Rong and X. Xiaofeng. A new evolutionary algorithm for the

shortest path planning on curved surface. In Proceedings of IEEE Conference on

Computer-Aided Industrial Design and Conceptual Design, pages 1-4, 2007.

[121] J. O’Rourke. Computational geometry in C (2
nd

 Edition). Cambridge University

Press, 1998.

[122] A. C. Kermode. Mechanics of flights (10
th

 Edition). Prentice Hall, 1996.

