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Abstract 

PATH PLANNING FOR UNMANNED AERIAL VEHICLE USING 

VISIBILITY LINE-BASED METHOD 
 

Rosli bin Omar 

This thesis concerns the development of path planning algorithms for unmanned aerial 

vehicles (UAVs) to avoid obstacles in two- (2D) and three-dimensional (3D) urban 

environments based on the visibility graph (VG) method. As VG uses all nodes 

(vertices) in the environments, it is computationally expensive. The proposed 2D path 

planning algorithms, on the contrary, select a relatively smaller number of vertices 

using the so-called base line (BL), thus they are computationally efficient. The 

computational efficiency of the proposed algorithms is further improved by limiting 

the BL’s length, which results in an even smaller number of vertices. Simulation 

results have proven that the proposed 2D path planning algorithms are much faster in 

comparison with the VG and hence are suitable for real time path planning 

applications. While vertices can be explicitly defined in 2D environments using VG, it 

is difficult to determine them in 3D as they are infinite in number at each obstacle’s 

border edge. This issue is tackled by using the so-called plane rotation approach in the 

proposed 3D path planning algorithms where the vertices are the intersection points 

between a plane rotated by certain angles and obstacles edges. In order to ensure that 

the 3D path planning algorithms are computationally efficient, the proposed 2D path 

planning algorithms are applied into them. In addition, a software package using 

Matlab for 2D and 3D path planning has also been developed. The package is designed 

to be easy to use as well as user-friendly with step-by-step instructions. 
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Figure 1.1: Pathfinder UAV used for environmental research. 

 

 

 

 

 

 

Chapter 1 

 

Introduction 

 

1.1 Motivation 

Unmanned Aerial Vehicles (UAVs) are a vital means of performing hazardous 

missions in adversarial environments without endangering human life. They have been 

used for peaceful purposes in civilian applications such as weather forecasting, 

environmental research, search and rescue missions, observation during wildfire 

incidents and traffic control [3]. Fig. 1.1 illustrates a Pathfinder UAV used for 

environmental research. On the other hand, UAVs have also been used for warfare 

such as carrying out aerial reconnaissance and surveillance over the opponent’s area or 

attacking strategic facilities in enemy territory. Fig. 1.2 shows an RQ-1 predator which 

is armed with missiles for combat purposes [1].  
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Since UAV requires no human pilot, there is no loss to human life if it crashes or gets 

attacked during a mission. Besides, UAV also reduce operating costs because it does 

not require a highly trained pilot onboard as a manned aircraft does. The latter is cost-

ineffective often caused by expensive investment needed as part of the pilot’s training 

to cover advanced facilities such as buildings, flight simulators and support equipment 

including instrumentation, the cockpit and ejection systems. Therefore UAVs are by 

far the best way forward. In addition, with no human pilot, a UAV can be designed to 

achieve higher gravitational forces i.e. 50g [2], which results in relatively higher 

manoeuvrability (a human can sustain up to only 9g). A UAV with higher 

manoeuvrability may have better performance such as faster speed, smaller minimum 

turning radius and larger maximum roll angle and hold a higher probability of 

escaping from enemy’s missile attack. 

However, many current UAVs still involve a human-in-the-loop to oversee and control 

the UAVs’ operation [4, 31]. This in turn requires a communication link through radio 

signals between the human operator and the UAV to transmit/receive the 

command/sensory signals over a frequency spectrum, which is often limited. 

Furthermore, the radio signal is vulnerable and might be jammed by opponents. In the 

event of a lost or interrupted signal, as the UAV is dependent on human operators’ 

decisions, it would not be able to execute a mission as desired and to some extent, it 

Figure 1.2: A UAV, RQ-1 predator is equipped with missiles 
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may crash. Thus, the dependency on human instructions through a communication link 

needs to be minimised or eliminated if possible. This requires the UAV to have the 

capability of making its own decisions based on the current state and circumstances of 

its surrounding environments. The capability of doing so will greatly enhance the 

autonomy of UAVs.  

1.2 Autonomy in UAV 

Current technologies are capable of operating a UAV in a relatively structured and 

known environment. However, in a dynamic environment where uncertainties exist 

such as obstacles that might pop-up during a mission, the technologies are insufficient 

due to the UAV’s inability to make decisions by itself [32]. This requires a new 

concept called autonomy.  

Autonomy means the capability of a UAV to make its own decision based on the 

information presently available captured by sensors, and potentially covers the whole 

range of the vehicle’s operations with minimal human intervention [5]. Autonomy 

increases system efficiency because all decisions are executed onboard except for 

critical decisions such as launching a missile that have to be made by humans [30]. A 

UAV with autonomy would be able to execute a mission in environments with 

uncertainties. Furthermore, with autonomy, the UAV can perform a long duration 

mission, which is beyond the capability of human (operators). Autonomy covers the 

following areas [6]:  

i. sensor fusion 

ii. communications 

iii. path planning 

iv. trajectory generation 

v. task allocation and scheduling  

vi. cooperative tactics 

 

Additionally, as introduced in [33], there are ten UAV autonomy levels known as 

Autonomous Control Level (ACL). The ACL and trends in UAV autonomy are 

illustrated in Fig. 1.3.  The concept of ACL as a metric to describe the autonomy in 
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UAVs is widely accepted [31]. Readers are referred to [33] for a detailed description 

of ACL. 

However, autonomy technology is still in its early stage, fairly undeveloped [5] and is 

the bottleneck for UAV development in the future [6]. The RQ-1 Predator as shown in 

Fig. 1.1 for example, at present, can perform up to only level 3 of ACL.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The list of autonomy areas included previously, as well as the ACL (Fig. 1.3), have 

shown that onboard path planning and re-planning, which deals with traversing a 

vehicle through obstacles is one of the keys components of autonomy.  

Research on UAV autonomy including path planning have progressed steadily since 

the beginning of this century. For example, [31] has designed and conceptually 

developed a simple UAV path planning mission that is used to reduce the UAV’s 

dependency on human operators, and hence increases the UAV’s autonomy level. The 

so-called Mission Management System (MMS) has been designed, developed and 

flight-tested in [31]. From sensory data, MMS makes decisions and issues high level 

commands which are then executed by the Flight Control Systems (FCS).  

Figure 1.3: UAV autonomy levels and trend (adapted from [33]) 
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As path planning plays an important role in enhancing UAV’s autonomy level, it has 

to be considered in the design of a UAV.   

1.3 Path Planning Overview and Issues 

From a technical perspective, path planning is a problem of determining a path for a 

vehicle in a properly defined environment from a starting point to a target point such 

that the vehicle is free from collisions with surrounding obstacles and its planned 

motion satisfies the vehicle’s physical/kinematic constraints [25]. In a report by [12], 

path planning is associated with a number of terms as follows: 

 

 Motion planning 

This term is frequently associated with manipulator robotics. It involves 

deliberative high level and low level planning of a way to move a robotic 

manipulator.   

 

 Trajectory planning 

It is about planning the next movement of a robot. Trajectory planning is 

similar to motion planning. 

 

 Navigation 

It is a very general term which has several meanings. In general it means 

“getting there from here”. It is also part of path planning, motion planning, 

obstacle avoidance and localisation. 

 

 Global path planning 

The planning is done prior to vehicle movement. It uses the information from 

the surrounding world to reach a target point from a starting point. As the 

information contains global data, the process is slow, but the planned path may 

be optimal.  
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 Local navigation 

It is a process of avoiding obstacles by using only acquired data of the current 

surrounding environment. It is also a process of ensuring the vehicle’s stability 

and safety and runs in real time using a reactive path planning approach. 

 

1.3.1 Criteria of Path Planning 

Path planning related problems have been extensively investigated and solved by 

many researchers [7-10], mostly focusing on ground robotics and manipulators. 

Important criteria for path planning that are commonly taken into account are the 

computational time, path length and completeness. A path planning algorithm with 

less computational time is vital in real time application, which is desirable in dynamic 

environments. The generated optimal path in terms of path length by a path planning 

technique will minimise UAV flight time and hence prolongs the UAV’s endurance 

and life cycle, minimises fuel/energy consumption and reduces exposure to possible 

risks. On the other hand, a path planning approach satisfies the completeness criterion 

if it is able to find a path if one exists.  

However, sometimes, there are trade-offs between such criteria. For example, a path 

planning method has to disregard the path’s optimality in order to increase the 

computational efficiency. It means that finding a slightly longer path with less 

computational time may be preferable. On the other hand, higher computational 

complexity is necessary if an optimal path is required for some reasons. These criteria 

have to be considered before any path planning technique/algorithm design process 

takes place.  

1.3.2 Path Planning Steps 

Typically, path planning of a vehicle A consists of two phases. The first phase is 

called the pre-processing phase in which nodes and edges (lines) are built in the 

environment/workspace W with A and obstacles O. In this phase, it is common to 

apply the concept of a configuration space (C-space) to represent A and O in W [9, 

12]. In C-space, the vehicle’s size is reduced to a point, and accordingly the obstacles’ 

sizes are enlarged according to the size of A. Next, representation techniques are used 
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to generate maps of graphs. Each technique differs in the way it defines the nodes and 

edges.  

The second phase of path planning is termed the query phase in which a search for a 

path from a starting point to a target point is performed using (graph) search 

algorithms.  

However there are path planning methods that can find solutions without graph search 

algorithm such as Mixed Integer Linear Programming (MILP) [4, 105, 116-117] and 

Evolutionary Algorithm (EA) [118-120].  

1.3.3 C-space Representation 

In path planning for an object, there are a number of methods that are commonly used 

to represent the environment including potential field (PF) [21-24], cell decomposition 

(CD) [13-16] and roadmap (RM) [17-20], to name a few. A PF represents the 

environment by modelling the object as a particle, moving under the influence of 

potential fields throughout the C-space. The field’s magnitude at a particular point in 

C-space is determined by the fields generated by starting point pstart, target point ptarget 

and the obstacles O in the C-space. The pstart and O are repulsive surfaces (which 

generate repulsive forces), while the ptarget is the attractive pole which generates 

attractive forces [21]. The path is then calculated based on the resulting potential fields 

from a point with the highest magnitude of the resultant potential field, i.e. pstart, to a 

point with the minimum potential, i.e. ptarget. The PF has several advantages such as 

the planning process is done as the vehicle moves and thus is suitable for real time 

application and the generated path is also smooth. However, conventional PF methods 

suffer from local minima causing the vehicle to become stuck before it reaches ptarget, 

hence it might not satisfy the completeness criterion.  

CD-based are among the most popular methods to represent the environment 

especially for outdoor scenarios [12] as it is the most straightforward technique [29]. 

This is due to the fact that the cells can represent anything such as free space or 

obstacles. The first step in CD is to divide the C-space into simple, connected regions 

termed cells [35]. The cells are regions that might be square, rectangular or polygonal 

in shape. They are discrete, non-overlapping but adjacent to each other. If the cell 
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contains obstacle (or part of obstacle), it is marked as occupied, otherwise it is marked 

as obstacle free. A connectivity graph is then constructed and a graph search algorithm 

is used to find a path throughout the cells from the starting point to the target point. In 

order to increase the quality of the path, the size of the cells has to be made smaller, 

which in turn increases the grid’s resolution, and hence computational time. In the 

literature, there are several variants of CD. These include Approximate Cell 

Decomposition, Adaptive Cell Decomposition and Exact Cell Decomposition.  

Path planning using RM-based methods on the other hand represent the environment 

by constructing graphs or maps from sets of nodes and edges. Path planning methods 

which are specific cases of RM are Voronoi diagrams (VD) and Visibility Graphs 

(VG). The nodes and edges to build a roadmap are defined differently for each 

method. VD defines nodes that are equidistant from all the points’ surrounding 

obstacles. The paths generated from a graph by VD are relatively highly safe due to 

the fact that the edges of the paths are positioned as far as possible from the obstacles. 

However, the paths are inefficient [12] and not optimal in terms of path length. On the 

other hand, VG uses the vertices of the obstacles including the starting and target 

points in the C-space as the nodes. A VG (or visibility lines, VL) network is then 

formed by connecting pairs of mutually-visible nodes by a set of lines E. A pair of 

mutually-visible nodes means that those nodes can be linked by a line/edge     that 

does not intersect with any edge of obstacles in the C-space. Additionally, there is a 

cost associated with each E, possibly in terms of Euclidean distance. One advantage of 

VL is the capability of finding a path with the shortest length if one exists. A standard 

VL’s computational complexity is O(N
3
) to find a path in a C-space with N nodes 

therefore VL is computationally intractable in the C-space with many obstacles. 

1.3.4 Graph Search Algorithms 

It has previously been stated that the second step of path planning is to calculate a path 

using (graph) search algorithms. Two basic search algorithms are Breadth-First Search 

(BFS) and Depth-First Search (DFS). BFS searches paths in a systematic way which 

guarantees that the first solution found will utilise the smallest number of iterations 

[34]. Like BFS, DFS is also systematic but it focuses on one direction and completely 

misses large portions of the C-space as the number of iterations become very large. 
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Both BFS and DFS need to consider every node in the graph in calculating the best 

possible path [12], hence generating a path might take a relatively long time for a large 

environment with a large number of nodes. In order to address this issue, there are a 

variety of search algorithms such as Dijkstra’s and A* (pronounced A-star) algorithms 

[12] which consider only a subset of the nodes. Dijkstra’s algorithm generates the 

shortest path by considering the costs from the current node to the starting point. A* 

on the other hand calculates a path based on the costs from current node to both 

starting and target points. 

1.3.5 Real Time and Off-line Path Planning 

A path planner is called real time if it incrementally finds and modifies a path in the 

course of the UAV’s flight. A sensor is used to detect any obstacles with locations that 

are on the collision course of the UAV path. If the sensor detects obstacles, the 

information is fed to the path planner, and subsequently, a collision-free path is 

planned. On the other hand, a path planner is termed offline if it plans the path before 

the flight starts. The path, which is normally optimal, is constructed based on the data 

of the environment acquired either by satellite, surveillance or other means. 

1.4 Assumptions and Problem Statement 

A path planning problem for a UAV in a two-dimensional (2D or   ) or three-

dimensional (3D or   ) environment through stationary polygonal obstacles,   

             (or               ), from a designated starting point pstart to 

the target point ptarget have been considered in this thesis. It is assumed that the 

environment is a well-built urban area and   are hard, rectangle-shaped obstacles 

(buildings). It is also assumed that the knowledge of the entire or part of the 

environment such as the geometries, dimensions and locations of   are known a-priori 

either from surveillance, satellite data or other means. The resultant path has to be 

collision-free and consists of waypoints           , which is defined by 

positions            (or               in   ) where      . Note that    and 

   are the pstart and ptarget, respectively. Two consecutive waypoints are connected by 

piece-wise linear segments from pstart to ptarget. 
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Once the UAV starts its mission by traversing along the planned 2D path, the 

environment may change where pop-up and/or the previously unknown obstacles 

might appear on the path. The UAV is assumed to be equipped with sensors of limited 

range to collect information about the environment such as pop-up and/or the 

previously unknown obstacles. Using the collected information from the sensors, a 

new path has to be re-planned in real-time to avoid any collision with the surrounding 

obstacles.  

1.5 Thesis Contributions 

In order to address the problems that have been stated in the previous section, several 

solutions that are the contributions of the thesis are proposed.  

The first contribution is the development of a set of algorithms for 2D path planning. 

The outcome of the proposed algorithms is an optimal, collision-free path with a fixed 

altitude. The proposed algorithms are based on the Visibility Line (VL) method and 

Dijkstra’s algorithm. Contrary to the VL approach
1
, the proposed algorithms find paths 

by reducing the number of obstacles (as well as nodes (vertices) and edges), which 

lowers the computation time and is therefore suitable for a real time path planning 

application. It is emphasised that the VL approach and Dijkstra’s algorithm are chosen 

because they are guaranteed to produce optimal path, if one exists [12]. An optimal 

path, within the context of this thesis, means the path that has the least distance from 

pstart to ptarget. It is also worth emphasising that the proposed 2D algorithms possess the 

aforementioned criteria of path planning and may capable of finding a globally 

optimal path if the knowledge of the environment is fully and accurately known. The 

algorithms are also computationally efficient as the number of obstacles that are used 

for path calculation is relatively small. On the other hand, the proposed algorithms 

hold the completeness criterion as it will generate a path, if one exists. 

The second contribution of the thesis is the development of a set of path planning 

algorithms in 3D environments which are based on the proposed 2D ones. Unlike 2D, 

the proposed 3D path planning algorithms consider the heights of obstacles in the 

environments as well as the altitudes of pstart and ptarget. They apply the concept of 

planes rotation, in which the nodes, which are used to find 3D paths, can be identified 

                                                           
1
 VL (with Dijkstra’s algorithm)  uses the entire obstacles in the environment to find an optimal path. 
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efficiently from the intersections between the rotated planes and 3D obstacles edges. 

Hence the proposed 3D algorithms solve the problem of conventional VL methods, in 

which determining the nodes of 3D obstacles are difficult. The proposed algorithms 

hold the completeness criterion. 

Additionally, a couple of Graphical User Interfaces (GUIs) to realise the 2D and 3D 

algorithms have also been developed. The GUIs are designed to be user-friendly, 

equipped with step-by-step instructions to guide the user. Using the GUIs for path 

planning either in a 2D or 3D environment, a random or particular scenario can be 

generated. The pstart and ptarget can also be located at any points in a provided axis.  A 

collision-free path is then found at the click of a button. The necessary information of 

the planned paths is also displayed in the GUIs. 

1.6 Thesis Structure 

This thesis is structured in the following manner: 

Chapter 2 presents an extensive literature survey of visibility graph (or visibility line) 

and graph search algorithms. It begins with defining path planning, and then 

discussing the importance of path planning and its criteria. An introduction to VL and 

related research are presented. Also, several established graph search algorithms are 

briefly explained. The chapter also briefly discusses real-time path planning and path 

planning in 3D environments. 

Chapter 3 discusses the proposed path planning algorithms in 2D environments based 

on the VL method and Dijkstra’s algorithm. The chapter also demonstrates the 

application of the algorithms to real-time path planning. The safety margin is also 

introduced for a collision-free path. Also, the improvement of the proposed 2D path 

planning algorithms is highlighted. 

Chapter 4 discusses the proposed 3D path planning algorithms. The concept of 

rotational planes that are utilised by the algorithms is explained. This chapter also 

shows the simulations to evaluate the effect of the number of obstacles and rotation 

angles to computation time and path length. 
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Chapter 5 presents the Graphical User Interfaces (GUIs) for path planning in 2D and 

3D environments. Guidelines on how to use the GUIs are also provided. 

Chapter 6 provides conclusions based on the work in this thesis. This chapter also 

presents possible areas of future research to extend the work developed.   
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Chapter 2 

 

Path Planning 

 
2.1 Introduction 

One of the open issues in the development of autonomous vehicles such as Unmanned 

Aerial Vehicles (UAVs) is path planning. In its most general form, the path planning 

problem for an autonomous vehicle A in an Euclidean space W can be stated in the 

following way [45]: Given an initial starting point pstart, a target point ptarget and a set 

of obstacles O whose geometry is known to A, determine if there exists a continuous 

obstacle-avoiding motion for A from pstart to ptarget. If one exists, construct the path for 

such a motion. Note that W is called the workspace, represented as   , with N=2 or 3 

for 2D and 3D, respectively. 

Path planning is necessary for autonomous vehicle to find a safe route to be traversed 

from pstart to ptarget. Research on path planning in environments with polygonal 

obstacles have been around since the beginning of mobile robots. As such, many path 

planning techniques, which are categorised under geometric-based, grid-based or 

potential field, to name just a few, have been documented in ground robotics and 

manipulators systems [23, 38, 51-57]. Nevertheless path planning for Unmanned 

Aerial Vehicles (UAVs) have also applied such techniques.   

Most existing path planning methods involve a two-step process to generate collision-

free paths. The first step is to represent W either in a two- (2D) or three-dimensional 

(3D) space with a graph or map. This step is called the pre-processing phase. The next 

step is the query phase, in which the pstart and ptarget are incorporated into the graph or 

map. Then a path is calculated through the represented environment using a (graph) 
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search algorithm. However there are several path planning methods that don’t require 

the graph search algorithms to find paths such as Mixed Integer Linear Programming 

(MILP) [4, 105, 116-117] and Evolutionary Algorithm (EA) [118-120]. 

It is important to have a path planning method/algorithm that calculates a safe path in 

the shortest time possible so that it can be applied in real-time in order to deal with 

changes in an environment. In a changing environment, a previously unknown or pop-

up obstacle might be encountered by a UAV through its onboard sensors during a 

mission. Quick path re-planning by the UAV’s path planner to find an alternative safe 

path in real-time is important in order to successfully accomplish a given mission. 

A good path planning method/algorithm must not only provide a safe path, it also has 

to be able to find the shortest path. The shortest path is crucial in order to minimise 

travel time, saves energy/fuel, lower the possible traverse risks exposure and prolong 

the vehicle life cycle.  

However, practically, UAVs fly in a 3D environment. Thus representing the 

environment in 2D for path planning leads to a path that has constant altitude, which 

might not optimal. A UAV that flies with constant altitude undoubtedly has the 

advantage of saving the vehicle’s fuel. Instead of ascending, the vehicle would only 

need to change its heading either to the left or right to avoid obstacles. Ascending 

consumes extra energy/fuel in order to increase the UAV’s thrust level as the UAV has 

to defy the gravitational force. However, as the real environment is in 3D, it is crucial 

for a path planning algorithm to be able to generate 3D paths in such an environment 

because unlike 2D path, a path in 3D has a variable altitude. Such a path may be 

shorter in distance, which may consume less fuel, less risk and has a longer life cycle 

than that of a 2D path.  

In this chapter, path planning aspects in general are discussed starting with the 

introduction of the configuration space (C-space) followed by a discussion on the path 

planning technique using visibility graph (or visibility line (VL)) in W. Then several 

existing graph search algorithms are discussed. Prior to the conclusion of the chapter, a 

review of the planning techniques in real time as well as in a 3D environment will be 

discussed. 
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2.2 Workspace Representation 

The representation of the environment is generally the first phase of the path planning 

process which involves recognising objects/obstacles in the environment and 

identifying free space to manoeuvre. In this phase, a map or graph is created 

considering the configuration of the vehicle and the obstacles. Note that a 

configuration of an object is defined as a position specification of all points of this 

object relative to a fixed reference frame [14]. Path planning through polygonal 

obstacles has led to the development of the configuration space (C-space) concept, 

which allows the specification of the obstacles and the vehicle positions.  

In a C-space, there are a number of techniques that can be used to represent the 

environment (including the vehicle and obstacles). This section focuses on the 

description of C-space and reviews the workspace representation using the so-called 

visibility line (VL).  

2.2.1 Configuration space 

Configuration space (C-space) is the common concept behind most path planning 

methods to represent the workspace W. C-space (Q) is the space of all possible 

specifications of a vehicle A and obstacles region O in W (W =    in 2D and W 

=    in 3D). In path planning, C-space is used to ensure that A doesn’t intersect O in 

W. The C-space concept is widely used in path planning problems as it is a key 

construction and formalism for path planning and it also provides a uniform 

framework that allows the comparison and evaluations of different algorithms [12, 29]. 

One way to represent the configuration of A is to define its centre point q = (x,y) 

relative to some fixed coordinate frame [41]. If the radius r (or a distance from the 

furthest point to the centre) of A is known, it is possible to determine the set of points 

occupied by A from the configuration, q. If the notation V(q) represent the set of 

points, then 

 222 )'()'()','(),( ryyxxyxyxV   
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(a) (b) (c) 

Vehicle 

O 

Workspace 

Q
free 

Qoi 

Figure 2. 1: A circular vehicle is transformed into a point in C-space 

The above notation shows that, it is sufficient for x and y to completely specify the 

configuration of A. In C-space with an obstacle region O = {o1, o2,…,op}, the set of 

configuration of obstacle region at which A will intersect Oi is defined as  

Qoi = {qQ | V(q)  oi≠0} 

Conversely, the free configuration space in which the vehicle will traverse is  

Qfree = Q\(i Qoi) 

In order to illustrate how the configuration space is created, consider the circular 

vehicle and an obstacle oi in a W as shown in Fig. 2.1(a). By sliding the vehicle 

around the obstacle as well as the boundary of W, the obstacle configuration Qoi is 

constructed and shown in Fig. 2.1(b). Meanwhile the vehicle transformed into a point 

in the C-space where the shaded area represents Qoi while white region represents 

Qfree is shown in Fig. 2.1(c) wherein C-space reduces the problem of finding a 

collision-free path of A in W to that of a point in Qfree.  

 

In Fig. 2.1 (c), the corners of the obstacle are supposed to be curvy; however they are 

made sharp as most of path planning representations techniques use nodes to find 

paths.  
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Figure 2.2: A scenario represented in (a) original form (b) configuration space. The 

darker rectangles in (a) are those with actual dimensions while in (b) are those 

enlarged according to the size of vehicle A. The white areas are the free space. 

To demonstrate how to create a C-space from W for a scenario, which contains a 

number of obstacles, consider Fig. 2.2 (a) whose obstacles are in their actual sizes. The 

C-space of the scenario is then created based on the size of A and illustrated in Fig. 

2.2(b).  Having the C-space defined, now the problem of finding a path from the Start 

to the Goal points as illustrated in Fig. 2.2 (a) is reduced to that of a point in the Qfree 

as shown in Fig. 2.2 (b).  
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2.2.2 C-Space Representation Techniques 

After applying the C-space concept to the environment, the next step is to represent 

the C-space. There are three categories of representation techniques including 

roadmaps, cell-composition and potential fields. Most path planning methods fall 

under one of those categories. Fig. 2.3 below shows the categorised C-space 

representation techniques.  

 

 

 

 

 

Potential Fields 

(PF) 

 

Representation techniques 

 

Cell Decomposition 

(CD) 
 

Roadmap (RM) 
 

Approximate 

 

Exact 

 

Adaptive 

 

Quad-tree 
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Visibility Line (VL) 

Voronoi Diagram (VD) 

Probabilistic RM 

Rapidly-exploring 

Randomised Tree (RRT) 

 

 

Figure 2.3: Path planning representation techniques categories 
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2.2.3 Visibility Line 

A visibility graph or visibility line (VL) is one of the methods in representing a C-

space. It was first proposed by Lozano-Perez and Wesley [9] for path planning in the 

environments with polyhedral obstacles. Ever since then, researchers [7, 74, 94, 112] 

have used this method, with some variations, for path planning. The VL of a 2D 

configuration space which consists of a set of polygonal obstacles O is defined as a 

network       , constructed from sets of vertices/nodes   and edges  . The VL 

network is an undirected graph in which an edge     is a linear segment connecting 

a pair of mutually visible nodes,   ,      where i≠ j. In addition, the edges of the 

obstacles are also edges of the VL network. Two nodes are mutually visible if the edge 

connecting both nodes not intersects any edge of  .   consists of all the corners of the 

obstacles including the starting point and the target point. A path resulted from the VL 

is the combination of several edges connecting the starting point pstart and target point 

ptarget. An example of a VL application for path planning is shown in Fig. 2.4. The path 

is represented by the solid bold lines. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: A path planned by VL method 

Start 

Goal 



20 
 

2.2.3.1 Related Works Using Visibility Line 

The VL method was pioneered by Nilsson [7] for the Shakey Robot project where the 

graph is created based on planar map called the grid model. The method has been 

developed since then through studies on the problem of path planning either for 

ground robots or UAVs through polygonal obstacles [8-10, 68, 56, 70, 71, 72, 43, 47, 

72, 74, 94, 112]. Thompson [8] used VL to create a roadmap, and then applied a 

search algorithm to find an optimal path for a point robot. In 1979, Lozano-Perez and 

Wesley [9] proposed an algorithm based on VL to solve the problem of finding 

shortest path for a polyhedral object moving from start to goal points through 

polygonal obstacles considering its (the object’s) dimension. Another work based on 

VL was undertaken by Tokuta [10] who presented a VGRAPH method that 

incorporates a starting point and a target point of a robot into the roadmap of a two-

dimensional workspace. An algorithm called A VGRAPH Point Incorporation 

Algorithm (VPIA) was used to incorporate a point in free-space into a roadmap and 

divided the free space around an obstacle node into an ordered set of areas. A search 

algorithm was used to determine the containment that implied visibility of the point 

from the vertex.  

Oomen et al. [68] used VL to find a solution of autonomous mobile robot path 

planning in an unexplored obstacles environment. In the proposed solution, the VL 

was constructed incrementally. A learning element was incorporated in order to 

construct the VL. Additionally, a sensor with limited range was used to learn 

information about the obstacles in the environment. However, the generated path was 

sub-optimal due to the unavailability of complete information about the environment. 

Like [68], Rao [56] proposed a general framework of robot navigation that could be 

applied to any situation involving mobile robots or manipulators where a suitable 

navigation course could be found using the so-called Restricted Visibility Graph 

(RVG) in an unknown environment. Two algorithms concerning local (Lnav) and 

global (Gnav) navigation were proposed. The framework of the proposed algorithms 

laid a foundation on which navigation systems for mobile robots can be built. 

Louchene et.al [70] presented a strategy for global path planning in a known 

environment for an Automated Guided Vehicle (AGV) using a VL representation. The 

proposed strategy consisted of two parts. The first partitions the free working space 
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according to obstacles models. The second calculates a set of points within the free 

working space based on the dimensions of the mobile robot.  

Many researchers have concentrated on reducing the computational effort required to 

create the VL network as it is computationally expensive in obstacle-rich 

environments. Reduced computation time is useful for real-time application. Wooden 

& Egerstedt [72] derived a significantly reduced roadmap for unstructured polygonal 

environments suitable for real-time path planning application of outdoor robots. The 

method called Oriented Visibility Graph (OVG), attached an onboard stereo-based 

sensor to the robot to detect the obstacles and created the polygonised maps to support 

the use of the planner.  In order to improve the performance over runs, the graphs were 

saved between runs and dynamic update rules were carried out. Also, the algorithm 

that was proposed Tokuta [10], as explained above, is suitable to be applied in real 

time path planning as the VPIA runs in parallel which reduces the computation time. 

Another real time path planning research project based on VL was done by Huang and 

Chung [74]. They proposed a method called Dynamic Visibility Graph (DVG), which 

was claimed to be fast for constructing a reduced roadmap through polygonal 

obstacles within an active region. DVG enormously decreases the computation time 

for reconstructing the map and hence is suitable for real time path-planning for single 

and multiple autonomous vehicles. However, it is difficult to define the area of active 

region. Other methods for reducing the complexity of VL were proposed by [75, 111]. 

Both methods were claimed to have low computation loads. Omar and Gu [112] 

proposed a path planning method, which is based on VL, called Base Line Oriented 

Visibility Line (BLOVL) to find paths in short time by reducing the numbers of 

obstacles during the paths calculation. BLOVL was proven through simulations to 

have paths that are identical to those of conventional VL most of the times.   

In addition, since VL results in the shortest path, VL’s application in not limited to 

path planning only, but also extends to Field Programmable Gate Arrays (FPGAs) 

design [50] and geographic routing [57].   

This thesis is the extension of the work of [112] as the proposed method has been 

proven to be fast in producing optimal path in obstacle-rich environments.  
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As a conclusion, the aforementioned methods that are based on VL are summarised in 

Fig 2.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: A summary of the path planning methods based on VG 

 

VL-based methods 
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Advantages: 

- The algorithm is fast. 

- The obstacles’ geometry is changed 

incrementally to reduce the number 

of edges in the graph. 

Drawbacks: 

- The path is not optimal due to only 

two edges for each obstacle are used 

in the algorithm which are not 

sufficient. 

 

Advantages: 

- The algorithm is fast. 

- The graph is dynamic as it is changed 

as the starting and target points are 

moved. 

Drawbacks: 

- As the visibility lines do not connect 

all visible pairs of vertices, the 

resulting path is not optimal.  

 

Advantages: 

- The number of visibility lines, 

which are confined in the so-called 

active region, is minimal. 

 

Drawbacks: 

- Difficult to determine the area of 

active region. 

 

 

Advantages: 

- The path is optimal as 

conventional visibility graph is 

used. 

 

Drawbacks: 

- The computation time is high. 
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2.3 Graph Search Algorithms 

Graph search is the second step for path planning after an environment has been 

represented by a particular method. Graph search algorithms have received 

considerable attention in the past and are important in path planning. In general, graph 

search algorithms determine whether a path exists from pstart to ptarget by evaluating 

certain nodes/states. If no path exists, they will report failure. Several major search 

algorithms are shown in Fig. 2.6 [12] and a number of them are briefly presented in 

this thesis. 

 

2.3.1 Depth-first Search  

In Depth-first search (DFS), the deepest node is expanded first as shown in Fig. 2.7. It 

moves toward the goal as quickly as possible, searching on a path until a dead end is 

found. As it searches one path through a branch prior to another search at the other 

path, DFS could miss large portions of the workspace [12,34]. DFS can be applied for 

finding a path among many possible paths. 

Figure 2.6: Graph search algorithms 
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However, DFS is an uninformed search, which means it does not use the cost function 

to decide which direction to go and how far the distance from the current node to the 

target point is.  

 

2.3.2 Breadth-first Search 

The Breadth-first algorithm (BFS) was introduced in 1957 by Moore [73]. In BFS 

algorithm the shallowest node is expanded first searching all the one-step down nodes 

of the path prior to the next step taking place as shown in Fig. 2.8 [12]. This makes 

BFS a systematic search algorithm. However, like DFS, BFS is an uninformed search. 

BFS finds the shortest path on its first run. It is suitable when there are a small number 

of solutions which use a relatively short number of steps [12]. 

 

 

Start A 

B D C 

E G F H 

 Goal 

Step 1: Explore paths  A    B 

(Goal not found) 

 

Step 2: Explore paths  A     B     E 

(Goal not found)         A      B     F 

 

Step 3: Explore paths  A     C 

(Goal not found) 

 

Step 4 : Explore paths  A     C     G 

(Goal not found) 

 

Step 5 : Explore paths  A     C     G      Goal 

(Goal found) 

 

In the event of tie, the left node is chosen 

first. Figure 2.7: Depth-first search (adapted from [12]) 
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Figure 2.8: Breadth-First search (adapted from [12]) 
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Step 3 : Explore paths  A     C     G      Goal 

(Goal found) 

 

In the event of tie, the left node is chosen 

first. 

 

2.3.3 Dijkstra’s Algorithm 

Dijkstra’s algorithm was invented by a Dutch computer scientist, Edsger Dijkstra in 

1959 [97]. It is used to find the shortest path based on costs of traversal from pstart to 

all points in a graph. Dijkstra’a algorithm is complete if a solution exists. It measures 

the distance of node n which is denoted by g(n) with respect to the starting node in the 

graph. The cost at the node is non-negative and stored in a priority queue. For example 

a node n that is stored in priority queue has the cost of 

 f(n)=g(n) 

f(n) is also called the backward cost or cost-to-come. The cost is calculated 

incrementally during the algorithm execution. As the cost is non-negative, the cost is 

monotonically increased. For example, if the next node to n is n’, and the distance 

between them is l(n, n’), the cost-to come is updated to 

f(n’)=f(n)+ l(n, n’)=g(n’) 

Because l(n, n’) is non-negative, f(n’) is thus greater than f(n).  
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The algorithm naturally begins at a pstart and extends outward within the graph, until 

all nodes are visited. As a result, Dijkstra’s algorithm is a systematic search algorithm.  

In order to establish the steps in Dijkstra’a algorithm, let d(p) be the distance from a 

source node x to a node p; and let l(p,q) be the cost between adjacent/neighbouring 

nodes p and q. The steps of Dijkstra’s algorithm are then as follows: 

 Step1: Set the priority queue, PQ={x}. For each node p not in PQ, set d(p) = 

l(x,p). For all nodes that are not adjacent to x, set their values to infinity.  

 

 Step 2: At each subsequent step, find a node q that is not in PQ where d(q) is 

minimum. Then add q in PQ and set the parent of q to p. Subsequently 

update d(p) for all the remaining nodes which are not in PQ by finding its 

minimum cost using 

                            

 

Step 2 is done recursively until node q is the target point.  

 

In order to illustrate how Dijkstra’s algorithm works, consider a scenario in Fig. 2.9(a) 

in which a path has to be found from source node A to goal node E. As Dijkstra’s 

algorithm starts at node A hence the node is put in the priority queue PQ as shown in 

Fig. 2.9(b). The adjacent nodes to node A are nodes B, C and D which are shown in 

amber. It is found that node B has the least cost-to-come i.e. 5. Node B is then stored 

in PQ. Node B’s neighbours are nodes C, D and E as shown in Fig. 2.9(c). Of the three 

nodes, D has the least cost from node A i.e. 8 thus D is kept in PQ as shown in Fig. 

2.9(d). Node D is then expanded to its adjacent nodes i.e. node E. At this point there 

are two remaining nodes that have not been visited yet i.e. C and E. It is found that of 

the two remaining nodes, node C has the least cost i.e. 9, from source node A. hence C 

is put in PQ as shown in Fig. 2.9(e). The last node E is then examined and placed in 

PQ with the parents of D and A. As E is the goal node, its parents are backtracked. The 

path via node D (also called waypoint) with the lowest cost i.e. 10 is then found and is 

shown in darker arrows as illustrated in Fig. 2.9(f). Table 2.1 records the priority 

queue PQ and costs of d(p) at each iteration. 
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Figure 2.9: Dijkstra’s algorithm illustration 
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Table 2.1: The recorded costs of Dijkstra’s algorithm for Fig. 2.8. 

Iteration PQ d(B) d(C) d(D) d(E) Parents 

1 {A} 5 9 8  - 

2 {A,B} 5 9 8 13 {A} 

3 {A,B,D} 5 9 8 13 {A} 

4 {A,B,D,C} 5 9 8 13 {A} 

5 {A,B,D,C,E} 5 9 8 13 {A,D} 

 

2.3.4 Best-first Search 

Best-first search falls under the class of heuristic search algorithm, which uses the 

distance from a current node with respect to the target point in order to find a path in a 

graph. Heuristic is used for making a guess for such a distance. The heuristic distance 

f(n) from a node n to target point is defined by 

f(n) = h(n) 

The resulting path in a graph using Best-first search is determined by comparing a 

heuristic cost of the current node with the costs of all the other nodes. The node which 

has the least cost is then expanded to the neighbouring nodes until the target point is 

met.  

There is no guarantee that Best-first search algorithm will find the shortest path 

because it by passes some branches in the search tree. Nevertheless, it performs much 

less searching than Dijkstra’s algorithm. 

Like Dijkstra’s algorithm, Best-first search uses a priority queue that stores the list of 

nodes. The start node is normally the first node that is stored in the priority queue. As 

the node is then expanded, all the adjacent nodes that are directly connected to the 

node are then stored into the priority queue, arranged by their corresponding total 

heuristic cost. The least cost adjacent node is then expanded next and its neighbours 

that are not in the queue are added. The process is repeated until the target point is 

found. The illustration on how Best-first algorithm is used in finding a path in a graph 

is shown in Fig. 2.10. In the figure the starting point is labelled with A and target point 

is labelled with E. Fig. 2.10(b) shows that as Best-first search begins at node A, the 

node is stored in priority queue. The neighbouring nodes that directly linked to node A 

are nodes B, C and D which are shown in amber. It is clear that node D has the least 
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heuristic cost (2), while both nodes B and C have 8 as their heuristic costs. Node D is 

then expanded and linked to its adjacent node i.e. E, as shown in Fig. 2.10(c). As node 

E is the target point, its heuristic cost is 0. The path with the lowest heuristic cost is 

then found and shown in darker arrows as illustrated in Fig. 2.10(d). It is apparent that, 

as Best-first search uses heuristics, it visits lesser nodes than that of the Dijkstra’s 

algorithm. 
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Figure 2.10: Illustration of Best-first search algorithm. 
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2.3.5 A*Algorithm 

Another heuristic search method is A* (pronounced A star) that was pioneered by Hart 

[96] in 1968. It is a search algorithm that is used to find a solution to a path planning 

problem. Like Dijkstra’s algorithm, the A* search algorithm is systematic and using a 

backward cost function g(n) from a source node to a current node n. In addition, it uses 

a forward cost function, called heuristic h(n), which is an estimate of the cost from the 

node (n) to the goal node. As a result, the total cost function at the current node n can 

be expressed as follows:  

f(n) = h(n) + g(n) 

Normally the heuristic value is a straight line distance from the current node to the 

goal ignoring obstacles in between [12]. However, there is no way to estimate the true 

heuristic value in advance [34]. The heuristic function reduces the total number of 

states/nodes need to be explored by A*. 

As both forward and backward costs are used, it therefore combines the Best-first 

search and Dijkstra’s algorithm. If the backward (g(n)) cost is dominant, A* tends to 

be Dijkstra's algorithm and the result is the shortest path from the source node to the 

goal, but the search process takes longer. This situation is called admissible heuristic 

which means the estimated distance h(n) between node n and the source node does not 

underestimate the true distance from the node to the goal. In the extreme case, A* 

becomes Dijkstra’s Algorithm if the heuristic value h(n) is zero. On the other hand if 

the forward cost or heuristic weighting is dominant, A* tends to be like the Best-first 

search, producing a shortest path is not guaranteed, although the path is produced 

faster. A* becomes -first search if the backward cost is zero. 

Like Dijkstra’s algorithm, A* has a priority queue that stores the list of nodes. The 

start node is typically the first node to be stored in the priority queue. The node is then 

expanded and all the adjacent nodes that are directly connected to the start node are 

then stored into the priority queue, sorted by their corresponding total cost. The 

adjacent node with the least cost is then expanded next and its neighbours that are not 

in the queue are added. The process is repeated until the target point is in the queue.  
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An example of how A* is used in path finding is depicted in a scenario as shown Fig. 

2.11 in which the starting point is node A while the target point is node E. In Fig. 2.11 

(b), A* begins at node A hence the node is put in priority queue. The adjacent nodes 

that directly connected to node A are nodes B, C and D which are in amber. From the 

figure, node D has backward cost g(D) of 8 and 2 forward cost h(D) which makes the 

total cost of f(D) is 10, while nodes B and C have f(B) and f(C) of 13 and 17, 

respectively. Node D is then expanded and its only neighbour is node E as shown in 

Fig. 2.11(c). The path with the lowest cost i.e. 10 is then found and shown in darker 

arrows as illustrated in Fig. 2.11(d).  
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Figure 2.11: Illustration of A* algorithm 
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A*is complete if a solution exists, provided that the time and memory are unlimited. It 

will find the target point if it can be possibly found in the map or graph. In an optimal 

sense, A* is guaranteed to produce a path with the least cost from a starting point to a 

target point if the heuristic value is admissible, which means smaller than the actual 

value.  

2.4 Path Planning Using Direct Optimisation Methods 

As previously mentioned, there are methods that do not require the graph search 

algorithm to find paths such as Mixed Integer Linear Programming (MILP) and 

Evolutionary Algorithm (EA). 

MILP is capable of producing optimal solutions by expressing linear constraints upon 

a mixture of continuous and integer variables. This involves the discrete decisions in 

the optimisation process, which gives some flexibility in the mission problems that are 

to be solved. MILP is also proven to be efficient in finding solution multiple vehicles 

path planning problem [105]. 

EA, on the other hand, finds a path by creating the initial generation of a population at 

the beginning. This is done by encoding a set of randomly selected feasible solutions. 

The fitness of each individual of the population is evaluated according to several 

factors and constraints. Then a set of selected individuals are appointed as parents for 

the next generation. The final step is to generate the offspring individuals by 

duplicating a parent with a mutation or combining two parents by crossover [120]. The 

above process is repeated until the last generation’s individual with best fitness is 

decoded as the optimal solution. 

2.5 Real-Time Path Planning 

Practically, a UAV operates in an environment that may change over time. For 

example, an obstacle might pop-up in the environment while the UAV is traversing a 

planned path. These situation requires a path planning algorithm to quickly re-plan a 

safe path in real-time. Thus the ability to plan a path in real-time is an important factor 

that has to be considered before designing a path planning algorithm in dynamic 

environments.  
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In order to do so, such an algorithm must be able to adapt to any change in the 

environment. Thus, for path planning in real time, onboard sensors are very important 

as the sensors will gather and update all the obstacles’ data, which needs to be 

supplied to the algorithm which is embedded into the UAV’s onboard processors. The 

algorithm will re-plan a path if the sensors detect pop-up obstacles that lie on the 

planned path.  

The issue of real-time path planning has been addressed by many researchers such as 

[21, 72, 74, 75, 52, 107, 112]. Some of this work have been discussed in sub-section 

2.2.3.1. Omar and Gu [112] proposed two algorithms called Core and Base Line 

Oriented Visibility Line (BLOVL), for UAV path planning in real-time. The 

algorithms were claimed to generate a relatively fast collision-free path as small 

number of obstacles were considered during the path calculation. As such the proposed 

algorithms are suitable for real-time path planning. In [74] the so-called fast Dynamic 

Visibility Graph (DVG) method was proposed for constructing a reduced roadmap 

among convex polygonal obstacles. DVG was claimed to decrease the computation 

time of reconstructing the roadmap, and as such it is suitable for real time path-

planning for single or multiple autonomous vehicles. 

Another example of work in real-time path planning was undertaken by Jason et.al 

[75]. They use the Essential Visibility Graph (EVG) global motion planner so that a 

realistic, static environment could be modelled in two dimensions. EVG offers a 

significant reduction in data storage requirements and complexity thus it is suitable for 

real time path planning. 

2.6 Path Planning in 3D Environment 

Most of the path planning methods are mainly developed for finding paths for ground 

robots and hence the paths are in 2D where the altitude is assumed to be constant. 

However for UAVs, which flies in a 3D environment, it is crucial to have a 3D path 

planning algorithm that is capable of generating a 3D path for the UAV. This is 

because such a path with the altitude is taken into account, might be shorter than the 

2D path that is planned in 3D environment.  
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Path planning in a 3D environment, to produce 3D paths, has been studied for many 

years and includes those that are based on approaches such as VL [71, 94, 95, 112], 

Potential Fields [22, 93] and Voronoi diagrams [20]. Kitamura et al. [22] proposed a 

method for finding a collision-free path and orientation for a vehicle in a dynamic 3D 

environment using an octree as a means to represent every object in the environment. 

In this method, the path of a vehicle from its starting position to the given goal with 

arbitrary motion in a 3D environment is searched using the potential field method. 

Mojtaba and Ghodsi [94] tried to find a new way to define a geometric structure in 3D 

space based on VL. This method easily defines a new structure called 3D VG to 

extend the 2D graph to 3D scenes. It runs in             and this method could be 

computed in an acceptable time. Chung and Saridis [95] proposed the extended 

Vgraph algorithm (EVA) to reduce the computation time by using the recursive 

compensation algorithm (RCA). RCA is used to find the collision-free shortest path in 

a 3D environment without increasing the Vgraph complexity. It was proven that the 

EVA can save memory space and the path planning time as well. Omar and Gu [112] 

introduced a set of 3D path planning algorithms based on VL method. The concept of 

a rotational plane, on which the VL is created, has also been proposed. The 3D path is 

obtained after the plane has been rotated at specified angles.  

K. Jiang et al. [71] proposed a method for the shortest 3D path planning in the 

presence of polygonal obstacles based on the visibility graph approach. In order to 

identify the edge sequence which the shortest path may pass across in the three 

dimensional VL, a collineation was introduced. Then the sub-optimal path was 

calculated using the so-called principle of minimum potential energy. The process of 

finding the path was done recursively. However, the drawback of the proposed method 

was that the processing time is polynomially related to the number of vertices or 

nodes.  

Broz [93] proposed a hybrid and real-time path planning technique that can be used in 

3D applications for a set of agents.  It works in known, partially known or unknown 

environments based on Potential Field method. Two separate maps of the same size 

are used to represent the environment. The obstacles map represents danger weights 

while threats map represents potential fields of all located and observed threats in the 

space. The algorithm keeps a mesh that was “widespread over each map” and all 
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available paths were defined. The changes in both maps and the behaviour of all 

agents were continuously adapted. The whole algorithm was based on real-time 

development of the adaptive mesh. Sud et.al [20] presented a novel approach for 

efficient path planning and navigation of multiple virtual agents in complex dynamic 

using Multi-agent Navigation Graph (MaNG). The MaNG was used to perform route 

planning and proximity computations for each agent in real time. The algorithm is 

used for real-time multi-agent planning in pursuit evasion, terrain exploration, and 

crowd simulation scenarios consisting of hundreds of moving agents, each with an 

individual goal.  

2.7 Conclusion 

In this chapter, an overview of path planning was made, including a discussion 

regarding the workspace W representation and graph search algorithms.  In addition, a 

brief discussion on real-time and path planning in three-dimensional (3D) has been put 

forward.  

Most path planning methods have two steps in order to find collision-free paths. The 

first step involves the representation of the W based on the configuration space (C-

Space) of an environment. The C-space is the space of all possible specifications of a 

vehicle A and an obstacle region O in W. The second step deals with the calculation 

of a collision-free path using a graph search algorithm.  

Nevertheless there are several path planning methods that don’t require the 

aforementioned steps in order to find solutions such as Mixed Integer Linear 

Programming and Evolutionary Algorithm.  

Popular C-space representation techniques are cell decomposition, roadmaps and 

potential fields. Under roadmaps, there are several methods, which are widely used for 

path planning namely, Visibility Graphs (or Visibility Lines), Voronoi Diagrams and 

Rapidly-exploring Random Tree (RRT). On the other hand, there are a number of 

graph search algorithms available in the literature such as Breadth-first search, Depth-

first search, Best-first search, Dijkstra’s algorithm and A* (pronounced A-star). A* 

will produce an optimal solution if the heuristic value is admissible i.e. less than the 
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actual value. Dijkstra’s algorithm on the other hand guarantees that the resulting path 

is the shortest if one exists. 

One important factor of any path planning algorithm is the ability to find a path in real 

time. Planning in real time is useful if there are changes in the environment in which 

the path planning will take place. The ability to re-plan in a short time will guarantee 

that the UAV will successfully avoid any pop-up obstacles and accomplish a particular 

mission.  

As UAVs fly in 3D environments, traversing a 2D path with constant altitude is 

inappropriate as this may cause the UAVs to fly along a longer distance path. Hence 

planning 3D paths is necessary as the path may have a shorter distance hence saving 

the UAV’s fuel/energy, increasing its endurance, prolonging its life cycle and 

minimising its exposure to risk. 
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Chapter 3 

 

2D Path Planning Using Visibility 

Line-Based Methods 

 

3.1 Introduction 
 

One of the criteria of path planning is to produce an optimal (shortest) path that links a 

starting point pstart and a target point ptarget. An Unmanned Aerial Vehicle (UAV) that 

is being deployed to accomplish a mission traversing along such path will gain the 

following advantages:  

i. minimal traversal duration 

ii. low fuel/energy consumption. 

iii. longer life cycle. 

iv. minimal exposure to risk.  

Planning in real-time in response to any changes in the environment is also a criterion 

of path planning in addition to producing a path if one exists i.e. complete. These three 

criteria and the trade–offs between them have to be considered before a path planning 

algorithm is designed. 

One of the path planning approaches that is capable of producing shortest path is 

Visibility Line (VL) method if it is coupled with Dijkstra’s algorithm. Moreover VL is 

also complete in the sense that a path will be found if the path is available. For these 

reasons, VL method and Dijkstra’s algorithm have been chosen for path planning of 
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UAV in this thesis. A* search algorithm is not considered because, if it is combined 

with VL method, the path it produces may not be optimal. The reason being, it is 

difficult to calculate the heuristic of A* as there is no way to measure the cost of a 

straight lines that connect nodes to the target point ptarget in an environment where the 

lines pass through obstacles. In addition, if the heuristic cost is not admissible i.e. 

higher than the real cost, the resultant path might not be optimal in terms of the path 

length.  

Although VL satisfies two of the path planning criteria i.e. it produces the shortest 

path and is complete, its computation time increases significantly with the increase of 

numbers of obstacles in the environment as will be demonstrated later. This implies 

that the more obstacles which appear in the C-space, the much longer time it needs to 

find a path. As a result, VL in its original form is not suitable to be applied in real time 

path planning applications in obstacle-rich or dynamic environments.  

In order to address the above-mentioned issue, two algorithms based on VL have been 

proposed in this thesis. The proposed algorithms are capable of finding paths in real-

time while retaining the advantages of the VL, although sometimes the paths are not 

the shortest. The first algorithm is called Core while the second one is termed Base 

Line Oriented Visibility Line (BLOVL). The algorithm is called Core because it is the 

fundamental algorithm and repeatedly called to find a path connecting a (current) 

starting and target points.   

Core is used to find an initial path that is optimal using the minimal number of 

obstacles but the path might not collision-free. BLOVL which contains Core on the 

other hand will find a complete, safe path from pstart to ptarget based on local obstacles 

in iterative manner. As Core is embedded in BLOVL, the proposed algorithm is then 

called BLOVL. Since BLOVL uses sets of local obstacles, they are relatively faster 

than the original VL as will be shown later. However the final resultant path might be 

near-optimal in rare cases. 

This chapter explains the idea of the proposed algorithms, Core and BLOVL, and an 

overview of VL is presented in Section 3.2. Subsequently, an example of path 

planning using VL is demonstrated followed by an in-depth discussion on the Core 

and BLOVL algorithms. Examples of path planning using both proposed algorithms 
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Figure 3.1: The algorithm to construct VL set 

are demonstrated next. Performance comparisons with respect to the computation time 

and paths lengths between VL and BLOVL from several randomly generated scenarios 

is given prior to the conclusion section. 

3.2 Visibility Line (VL) 

3.2.1 Definitions and Algorithm 

The VL of a two-dimensional C-space is defined as a network/roadmap G(V,E), which 

is  constructed from  sets of vertices/nodes (V ) and edges (E). Each edge e ∈ E is a 

linear segment connecting a pair of “mutually-visible” vertices, vi, vj ∈ V where i≠ j. V 

consists of all the corners of the obstacles including pstart and ptarget. Fig. 3.1 shows the 

algorithm to construct the VL set: 

Input: pstart, ptarget, polygonal obstacles. 

Output: Visibility Lines, VL set. 

1: for every pair of nodes, vi, vj where i≠ j 

2:   for every obstacle e 

3:    if segment (vi, vj) intersect e 

4:     go to (1) 

5:   end if 

6:   end for 

7:   Insert edge(vi, vj) into VL set 

8: end for 

 

 

 

 

3.2.2 Path Planning Using VL 

In order to demonstrate how VL works, a scenario consisting of 15 rectangular 

obstacles where their sizes and positions are randomly generated together with pstart 

and ptarget is considered as per depicted in Fig. 3.2. Note that the blue triangle 

represents the starting point and the magenta square denotes the target point. First a 
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VL network is created according to the definition and algorithm as mentioned in the 

previous sub-section. The resultant network is illustrated in Fig. 3.3. By utilising 

Dijkstra’s algorithm then, a shortest path is found and it is shown in Fig. 3.4. It takes 

0.50 seconds to generate the path on a computer with 2.4GHz processor and 2GB 

RAM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: A randomly generated scenario for path planning 

Figure 3.3: The network of visibility line 
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3.2.3 Advantages and Drawbacks of VL 

One of the benefits of VL is the computed path, which consists of a set of waypoints, 

has the shortest length, if it is coupled with Dijkstra’s algorithm. To have a clearer idea 

on what waypoints are, consider its definition below: 

Definition 1. Waypoints, W is defined as a sequence of points wi {i=0,…,n} of least 

number, starting from pstart i.e. w0 to ptarget i.e. wn. A piece-wise linear path is formed if 

linear segments connect wi to wi+1. 

 

Note that a path is the shortest if it waypoints is a set of nodes of obstacles found using 

a graph search algorithm. As VL waypoints (not including the starting and target 

points) are always at certain nodes of obstacles, it is capable of producing a shortest 

path in terms of Euclidean distance. Consider the following lemma: 

 

Lemma 1. A necessary condition for a path to have minimum Euclidean distance from 

pstart to ptarget in a C-space is that all of its waypoints W are the nodes of obstacles O.  

 

Figure 3.4: The path planned using Visibility line and Dijkstra’s algorithm 
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Proof. Suppose that a set of waypoints that consists of a series of points which are not 

the nodes of the obstacles in C-space. Let B be the first such point in the series. A and 

C are the points immediately before and after B, respectively. B will not be on the 

straight line AC, because otherwise B should not be a waypoint. Without loss of 

generality, consider a path AB + BC formed by points (A, B, C) as shown in Fig. 3.5. If 

there is no obstacle between A and C, then C should be the next waypoint after A.  

Also consider points F and G in the series. The following arguments can be observed 

from Fig. 3.5: 

 AB+BC = AB+BF+FG+GC > (AD+DF)+FG+GC = AD+(DF+FG)+GC >     

AD+(DE+EG)+GC = AD+DE+(EG+GC) > AD+DE+EC 

The above arguments show that the path AD+DE+EC formed by points (A, D, E, C), 

where A, D and E are the nodes of the obstacles, is shorter than the paths which 

contain points that are in the series.  

 

Besides producing shortest paths, VL is also complete, which means that it always 

yield a path if one exists. This property is important as it will ensure that the UAV will 

accomplish a mission in a scenario where generating a path is possible. 

One the other hand, VL has a major disadvantage; it is computationally expensive in 

an obstacle-rich C-space. For VL, the segments s that connect pairs of mutually-visible 

nodes has the maximum number of 

Figure 3.5: A scenario with 2 rectangular obstacles  

A 

B 

C 

D E 

F 

G 
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Figure 3.6: The numbers of obstacles in C-space increase the number of segments 

in VL 

        
         

where n is the number of obstacles, each with 4 nodes. For instance, if there are two 

disjoint rectangular obstacles in the C-space, the maximum number of segments is 45. 

Consequently, with 200 obstacles in the C-space, 321201 segments are needed to build 

the VL. In order to have a better insight into the relationship between the numbers of 

obstacles and segments, see Fig. 3.6 in which the obstacles’ numbers are increased 

from 1 to 200. The figure shows that the number of segments of VL network increases 

significantly with respect to the number of rectangular obstacles. As the number of 

segments is directly related to the amount of computation time, thus the computation 

time will also be high in obstacle-rich environments. This prevents VL to be used for 

real time path planning in such environments.  

 

 

 

 

 

 

 

 

 

 

 

3.3 Core Algorithm 

One major disadvantage of VL method is its computation time substantially increases 

as the number of obstacles grows. In order to address this problem, an algorithm has 

been designed named Core. Core can generate a path relatively quickly and is suitable 

for real time path planning applications in dynamic and obstacle rich environments. 
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This is due to the fact that a narrow region towards the ptarget is considered in the 

algorithm, hence a smaller set of obstacles and vertices are used during the path 

calculation. 

3.3.1 The Idea of Core 

Core in a nutshell is used to construct a partial VL network from a specific region of 

the C-space. It then finds a path from pstart to ptarget using Dijkstra’s algorithm. Core’s 

algorithm is shown in Algorithm 1 and its process is illustrated in Fig. 3.7.  The 

partial VL network is constructed based on the obstacles that are determined by the so-

called base line (BL), which is simply a line that connects pstart and ptarget. BL allows 

Core to use a smaller set of obstacles, OCore rather than the entire obstacles (O) as used 

by VL. This makes Core insensitive to the number of obstacles in the environment. 

Algorithm 1: Core 

1: Create a base line (BL) from starting point, ustart to target point, utarget. 

2: Construct a set of nodes, NS from each node of each obstacle that lies 

on the BL and their extensions including ustart and utarget. 

3: Create a cost matrix, CM from NS. 

4: Find local path, U(u0,…,um) from CM using Dijkstra’s algorithm 

where u0 = ustart and um=utarget. 

 

 

 

 

 

 

 

Referring to Algorithm 1, step 1 of Core is to create a BL from a starting point ustart to 

a target point utarget. The purpose of BL is to determine the obstacles that will be 

utilised in the path calculation. In order to determine the OCore, BL first identifies the 

obstacles that lie along it. Then the obstacles, OExt that overlaps with each obstacle in 

OBL are recognised. As a result, the obstacles that will be used by Core in the path 

calculation is OCore = OBL  OExt. 

Figure 3.7: The process of Core 

U = { u0, u1,…, um } 

 

 

 

Core Algorithm 

(Core) 

 

{ustart, utarget} 
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In the next step of Core, a set of nodes NS is constructed based on OCore, ustart and 

utarget. In this work, the nodes of NS are arranged as shown in Table 3.1
2
.  

 

Node 

number 
Nodes 

Obstacles 

Number 

1 Starting point, pstart Nil 

2 Target point, ptarget Nil 

3 Lower left side  1 

4 Upper right side  1 

5 Upper left side  1 

6 Lower right side  1 

7 Lower left side  2 

8 Upper right side  2 

9 Upper left side  2 

10 Lower right side  2 

 

Subsequently, in step 3 of Core, a cost matrix CM is determined from NS. CM is a 

structured database that contains the indexes and Euclidean lengths of inter-visible 

nodes pairs and the obstacles numbers, which the nodes belong to. The length will be 

set to infinity if a pair of nodes in NS is not mutually-visible. Finally Core finds the 

path using Dijkstra’s algorithm from the constructed network. 

3.3.2 Path Planning Using Core 

In order to demonstrate how Core algorithm works, consider the previous scenario as 

shown in Fig. 3.2. By step 1 of Core, a set of obstacles OBL that lie along the BL is 

first identified as shown in Fig. 3.8. It is clear from the figure that the obstacles with 

numbers 14, 15 and 9 are the members of OBL. Then a set of obstacles, OExt that 

overlaps with each obstacle in OBL is recognised. This means OExt consists of obstacles 

{8,11}. The OCore that have been identified by BL then consists of obstacles {14, 15, 9, 

                                                           
2
 In the table it is assumed that there are two disjoint rectangle obstacles i.e. o1 and o2 that lie on BL.  

Table 3.1: Nodes arrangement 



46 
 

8, 11} as shown in Fig. 3.8. Notice that in the figure, BL is represented by the dashed 

red line and OCore are outlined in red. 

 

 

 

 

 

 

 

 

 

 

 

Then NS is identified and is shown in Table 3.2. The node number in NS is arranged in 

the brackets of the first column of the table. Then Core generates CM from NS. The 

generated CM is shown in Table 3.3. By removing the infinity costs and since VL is 

non-directed graph, CM as in Table 3.3 can be simplified into the arrangement as 

shown in Table 3.4. The pairs of nodes that are not infinity in Table 3.4 will then be 

used to construct a VL network. The resultant VL network using Core is illustrated in 

Fig. 3.9. Finally Core finds a path using Dijkstra’s algorithm based on CM and it is 

depicted in Fig. 3.10. The waypoints of the path are shown in Table 3.5. It is 

noticeable that the waypoints w1, w2 and w3 correspond to nodes 17, 21 and 10, 

respectively. 

 

 

 

Figure 3.8: The base line (dashed red) that is used to identify the obstacles for path 

planning 
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NS Nodes Obstacles Number 

1 Starting point, pstart Nil 

2 Target point, ptarget Nil 

31(3) Lower left side  8 

32(4) Upper right side  8 

33(5) Upper left side  8 

34(6) Lower right side  8 

35(7) Lower left side  9 

36(8) Upper right side  9 

37(9) Upper left side  9 

38(10) Lower right side  9 

43(11) Lower left side  11 

44(12) Upper right side  11 

45(13) Upper left side  11 

46(14) Lower right side  11 

55(15) Lower left side  14 

56(16) Upper right side  14 

57(17) Upper left side  14 

58(18) Lower right side  14 

59(19) Lower left side  15 

60(20) Upper right side  15 

61(21) Upper left side  15 

62(22) Lower right side  16 

 

Note that Core finds the path in 0.016 seconds on a computer equipped with 2.4GHz 

processor, 2GB RAM. The computation time is faster compared to that of VL by over 

30 times. However, as can be seen from Fig. 3.10, the path that has been planned by 

Core is not collision-free as some segments of the path intersecting the edges of 

obstacles 17 and 20. These obstacles have not been included during the path 

calculation because they are not on the BL or overlapped with the obstacles on BL. In 

Table 3.2: The list of nodes 
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the next section, this problem will be addressed by introducing another algorithm 

called Base Line Oriented Visibility Line (BLOVL). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: The planned path by Core 

Figure 3.9: The network created by Core 
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  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1 

 

             27.0  47.4 57.0     

2  
 

     11.3 34.0 25.3             

3   
 

                   

4    
 

 27.0     74.4   99.0  16.6   77.7  111.8  

5     
 

                   

6    27.0  
 

    94.4   114.8    14.1 101.6  137.3  

7       
 

 16.0 25.0  131.5  158.8      125.3 139.6  

8  11.3      
 

25.0 16.0               

9  34.0     16.0 25.0 

 
  145.9  173.7      137.4 150.6  

10  25.3     25.0 16.0  
 

 144.6  169.8      143.4 159.3  

11    74.4  94.4     
 

  30.0  80.6 107.7  22.7     

12       131.5  145.9 144.6  
 

 30.0      35.4   

13             
 

         

14    99.0  114.8 158.8  173.7 169.8 30.0 30.0  
 

 107.7 136.0      

15 27.0              
 

 38.0 30.0     

16    16.6       80.6   107.7  
 

30.0  79.2  109.8  

17 47.4          107.7   136.0 38.0 30.0 

 
 102.3  127.5  

18 57.0     14.1         30.0   
 

    

19    77.7  101.6     22.7     79.2 102.3  
 

 38.0  

20       125.3  137.4 143.4  35.4        
 

20.0  

21    111.8  137.3 139.6  150.6 159.3      109.8 127.5  38.0 20.0 

 
 

22                      
  

 

 

  

Table 3.3: The matrix of cost, CM 
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Nodes pair Cost  Nodes pair Cost 

1 15 27.0185  9 12 145.9075 

1 17 47.4342  9 14 173.6923 

1 18 57.0088  9 20 137.4373 

2 8 11.3137  9 21 150.6287 

2 9 33.9559  10 12 144.6167 

2 10 25.2982  10 14 169.8058 

4 6 27  10 20 143.4015 

4 11 74.411  10 21 159.2608 

4 14 98.9798  11 14 30 

4 16 16.6433  11 16 80.6226 

4 19 77.6981  11 17 107.7033 

4 21 111.79  11 19 22.6716 

6 11 94.4034  12 14 30 

6 14 114.7693  12 20 35.3553 

6 18 14.1421  14 16 107.7033 

6 19 101.6366  14 17 136.0147 

6 21 137.2662  15 17 38 

7 9 16  15 18 30 

7 10 25  16 17 30 

7 12 131.4876  16 19 79.2086 

7 14 158.7734  16 21 109.7725 

7 20 125.2557  17 19 102.3426 

7 21 139.603  17 21 127.4755 

8 9 25  19 21 38 

8 10 16  20 21 20 

 

 

 

 

Waypoints (U) x y 

u0 0 0 

u1 27 39 

u2 112 134 

u3 242 226 

u4 250 250 

 

 

 

 

Table 3.4: The simplified CM 

Table 3.5: The waypoints generated by Core 
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Figure 3.11: BLOVL algorithm. 

3.4 BLOVL Algorithm 

The previous section has demonstrated that the resultant path by Core is not collision-

free as several segments of the path intersect with a number of obstacles’ edges in the 

C-space. In order to overcome such a problem, BLOVL, which steps are stated in 

Algorithm 2 as shown in Fig. 3.11, has been designed. Fig. 3.12 shows the process of 

BLOVL in flow chart. Core is part of BLOVL which will be called repeatedly to find 

a local path from one waypoint to ptarget or next waypoint until the global target point 

is reached. BLOVL is complete as it will keep finding a path sequentially by checking 

a set of obstacles at each sequence until all obstacles have been checked. However 

BLOVL will stop finding a path once one is found. 

3.4.1 The Idea of BLOVL 

The general idea of BLOVL is to plan a local path using Core and further repeatedly 

calculate a collision-free path between two consecutive waypoints, considering the 

obstacles in-between of those two waypoints. These are done until the target point is 

reached. The number of repetitions depends on the complexity of the environments. 

Less number of obstacles requires Core to be called in less time and vice-versa. 

Algorithm 2: BLOVL(pstart, ptarget) 

1 set j = 0 and wj = pstart 

2 while wj ≠ ptarget do 

3  set ustart = wj and utarget = ptarget 

4  call [m,U]=Core(ustart, utarget) 

5  If m = 1 then 

6   set wj+1=u1 

7  else 

8   set ustart = u0; utarget = u1 

9   goto line 4 

10  end if 

10  UAV flies from wj to wj+1 

12  set j = j+1 

13 end while 
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In particular, the BLOVL algorithm starts with setting the first waypoint index j to 0. 

Then, the current waypoint wj is assigned to the global starting point, pstart. 

Subsequently, wj is compared with the global target point ptarget. If wj is the ptarget, 

BLOVL will then be stopped as the target point has been reached. Otherwise, the local 

starting point ustart and utarget are set to wj and ptarget, respectively. Notice that ustart and 

utarget are the inputs of Core as BL will connect these two points. Core is then called to 

calculate a local path U, which contains a series of waypoints {u0, u1, . . . , um} and 

might not be collision-free as previously demonstrated. Note that m represents the 

number of segments in the path. The smallest possible segment m produced by Core is 

1, when the resultant local path is U = {u0, u1}. If the segment m > 1, it indicates that 

there are more than 2 waypoints between ustart and utarget. Thus in the next repetition of 

BLOVL, utarget will be assigned to a new location, u1, with ustart retains its location to 

u0. Core is called again to find a local path between ustart and utarget. If there is no 

obstacle between ustart and utarget i.e. m = 1, the next waypoint wj+1 is set to u1 and the 

Figure 3.12: BLOVL Algorithm 

U={u0, u1, . . . , um} 

Y 

N 

j=0 ; wj= pstart 

 

wj=ptarget? 

ustart=wj ;  utarget=ptarget 

 

call [m,U]=Core(ustart, utarget) 

START 

m=1? 

 

 

ustart=u0  

 utarget=u1 

Y 

N 

j=j+1 

 

 

STOP 

wj+1=u1  
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index j is increased by 1 accordingly. The ustart and utarget to be fed into Core in the 

next repetition of BLOVL are the u1 and ptarget, respectively. The above process will be 

repeated until wj is the ptarget.  

3.4.2 Path Planning Using BLOVL 

In order to demonstrate the BLOVL, consider the previous scenario as shown in Fig. 

3.2. After providing all the necessary parameters, BLOVL will then call the Core 

algorithm to plan an initial path. The input of Core is the pstart and ptarget. The resultant 

path, U containing waypoints {u0, u1, u2, u3, u4} is shown in Fig. 3.10. According to 

lines 5 and 6 of BLOVL algorithm, since U has more than two waypoints i.e. the 

number of line segments m=4, Core will be called again. The local starting point is set 

to u0 and local target point is u1. A local path between u0 and u1 will then be worked 

out again by Core. This action is shown in Fig. 3.13(a). As m>1, this indicates that 

there is obstacle between u0 and u1. Next Core is called again with different starting 

and target points where the starting point is u1 of U while target point is the global 

target point, ptarget. ptarget is fed into Core because it will ensure that the path is always 

the shortest one from the current starting point. The above steps are done 

incrementally until the target point is reached. The path at each repetition is shown in 

Figs. 3.13(a-f) where green triangles denote the starting points while yellow squares 

represent the target points. Fig. 3.14 depicts the complete path that has been planned 

by BLOVL using the scenario as shown in Fig. 3.2. The path is calculated in 0.18 

seconds using the same computer as mentioned above. Table 3.6 shows the waypoints 

of the path. 
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Figure 3.13: The paths generated by Core and BLOVL 

(a) (b) 

(e) (f) 

(c) (d) 
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Waypoints (W) x y 

w0 0 0 

w1 27 39 

w2 112 134 

w3 182 183 

w4 242 226 

w5 244 234 

w6 250 250 

 

 

In terms of completeness, BLOVL is guaranteed to find a path if one exists. Consider a 

complex and structured scenario as illustrated in Fig. 3.15. BLOVL successfully 

calculates the path as shown in Fig. 3.16(a) with a length of 317.43 units in 0.047 

seconds. On the other hand VL method consumes 0.35 seconds to compute the path, as 

depicted in Fig. 3.16(b), which is identical to that of BLOVL. 

 

 

 

Figure 3.14: The final path calculated by BLOVL. 

Table 3.6: The waypoints generated by BLOVL 
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Figure 3.15: Path planning complex and structured scenario 

Figure 3.16: The resultant paths calculated by (a) BLOVL, (b) VL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 
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3.5 Performance Comparisons of VL and BLOVL 

This section compares the performance between VL and BLOVL in terms of the 

computation time and resultant paths lengths. As previously mentioned, one 

disadvantage of VL method is that the computation time is related to the number of 

obstacles. A large number of obstacles in C-space causes much longer time for the VL 

to find a path. For example, using the scenario as depicted in Fig. 3.2, the computation 

time to find the path as shown in Fig. 3.4 is 0.50 seconds on a personal computer with 

2.4 GHz processor, 2GB RAM. Using the same scenario, BLOVL takes only 0.18 

seconds to generate the path as shown in Fig. 3.14. BLOVL is more than twice faster 

than VL for path planning with 20 obstacles
3
 in that particular scenario. In order to 

gain a better insight of the performance of the two methods i.e. VL and BLOVL, 

consider a scenario with an increased number of obstacles as depicted in Fig. 3.17. 

BLOVL finds the path as shown in Fig. 3.18 in 0.26 seconds, while VL takes 2.30 

seconds to generate the path as illustrated in Fig. 3.19.  VL is over 8 times slower than 

BLOVL with both methods produce identical paths. 

 

 

 

 

 

 

 

 

 

 

 

                                                           
3
 However, the computation time of BLOVL depends on the obstacles on the base line and their 

extension as well as their size. Larger obstacles will have more extensions, and at one level, the 

obstacles that are considered for path calculation are the entire obstacles in the C-space. As for VL, the 

computation time is solely related to the number of the whole obstacles in the C-space and it is almost 

constant for each number of obstacles. 

Figure 3.17: A scenario with increased number of obstacles 
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Figure 3.18: A path generated by BLOVL 

Figure 3.19: A path generated by VL 
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Figure 3.20: Computation time of VL from different number of obstacles 

Increasing the numbers of obstacles will definitely increase the computation time of 

both VL and BLOVL. In order to see the performances of VL and BLOVL in 

scenarios with different numbers of obstacles, simulations using 10, 20, 30, 50, 100, 

150, 200 and 300 obstacles were performed. Each number of obstacles was randomly 

simulated 200 times to ensure the reliability of the finding. The simulated computation 

time of VL are shown in Fig. 3.20 while the computation time of BLOVL are shown 

in Fig. 3.21. To have a clearer insight of the performance of both methods, a log scale 

graph as shown in Fig. 3.22 is presented. It is apparent from the figure that, as the 

number of obstacles increases, VL’s computation time also raise significantly.  

Table 3.7 compares the average computation time of both VL and BLOVL with 

respect to the number of obstacles. Column three of the table lists how many times 

BLOVL is faster in average than VL for each obstacle number. The table proves that 

BLOVL is significantly faster than VL in finding paths. The main reason why BLOVL 

is faster than the conventional VL is BLOVL generates less number of visibility lines 

during the paths calculation. For example, in an environment with 300 obstacles, VL 

generates 721,801 visibility lines while BLOVL produces only 15,238.  
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Figure 3.21: Computation time of BLOVL from different number of obstacles 

Figure 3.22: Comparison of VL’s and BLOVL’s computation time in log scale 
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Figure 3.23: Paths lengths of VL and BLOVL in environments with different number of 

obstacles. 

Table 3.7: Comparison of VL and BLOVL computation time 
 

 

Obstacle  

Numbers 

Average computation time (s) Ratio of BLOVL/VL 

computation time VL BLOVL 

10 0.0904 0.0035 25.7655 

20 0.4306 0.0092 47.0597 

30 1.1286 0.0147 76.9581 

50 3.7887 0.0367 103.3613 

100 18.4947 0.1565 118.2110 

150 44.5318 0.4119 108.1152 

200 80.0284 0.9187 87.1121 

300 177.2581 3.3795 52.4508 

 

 

On the other hand, the paths lengths resulting from the simulations are depicted in Fig. 

3.23. It is clear from the figure that a number of paths generated by BLOVL are 

slightly longer than VL especially in scenarios with higher number of obstacles. This 

happens because BLOVL considers local path between two consecutive waypoints of 

the previously planned path to ensure that there is no obstacles between the two 

waypoints. The next section will illustrate this situation.  
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Figure 3.24: A scenario for path planning. 

3.6 BLOVL Path 

It has been shown in the previous section that BLOVL sometimes produces slightly 

longer paths compared to the conventional VL, especially in obstacle-rich 

environments. In order to get an idea why BLOVL produces a longer path, consider 

the scenario as shown in Fig. 3.24, in which a path is to be planned from pstart to ptarget 

using both BLOVL algorithm and VL method. Note that the grey rectangles are the 

obstacles. The resultant paths are shown in Fig. 3.25 where the red and black lines are 

the paths that have been planned by VL and the first repetition of BLOVL, 

respectively. In the figure, the dashed black line represents the base line (BL), and the 

red-outlined rectangles are the obstacles that have been identified by the BL or OCore. 

At this point, the path by BLOVL is shorter than that of VL as it disregards a large 

number of obstacles in the scenario. However, the path is not collision-free. BLOVL 

then checks the collision between two consecutive waypoints i.e. u0 and u1. It is found 

that there is an obstacle that has not been considered during the previous repetition. A 

new path is then planned by Core of BLOVL and is shown in Fig. 3.26. 
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Figure 3.25: The paths planned by BLOVL (black) and VL (magenta) 

Figure 3.26: BLOVL updates the path as the path planning progresses. 
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Figure 3.27: BLOVL updates the path as the path planning progresses. 

BLOVL keeps checking the planned path to ensure that there is no collision between 

two consecutive waypoints as shown in Figs. 3.27 and 3.28. As a result, BLOVL plans 

longer path, compared to the one that is planned by VL.  
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Figure 3.28: The paths planned by BLOVL (black) and VL (magenta) 
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Figure 3.29: A piece-wise linear segments path in the worst case scenario 

Planned path 
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3.7 Safety Margin 

VL and BLOVL produce paths which contain waypoints that pass through obstacles’ 

nodes. This is highly unsafe and will lead to collisions between the vehicle and 

obstacles. One way to avoid such a collision is to extend the size of the obstacles by a 

certain margin before the path is planned. The margin is called the clearance or safety 

margin, MS. The safety margin is important for the UAV to be able to traverse the 

planned path safely without hitting any obstacle throughout the entire C-space, until it 

reaches the target point. In calculating MS, the kinematic/physical constraints of the 

UAV such as maximum roll angle (    ) and minimum turning radius Rmin have to be 

considered. The relationship between minimum Rmin and      of a UAV can be 

defined as follow [122]: 

     
  

           
 

where V is the vehicle’s velocity. In order to ensure that the path is safe for the UAV 

so that it can traverse through the obstacles’ nodes, MS is determined based on a worst 

case scenario. For VL-based methods in C-space with rectangle obstacles (as stated in 

Section 1.4), the worst case scenario that can happen when two consecutive segments 

of a path is made of two consecutive edges of the obstacle, which has the angle of 90 

degree as shown in Fig. 3.29. Note that in the figure, the red lines are the planned path. 

Ms is then calculated as follows: 

                

The enlarged obstacle by MS and the resultant path are shown in Fig. 3.30. 
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Figure 3.30: The enlarged obstacle with safety margin 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to demonstrate the implementation of the safety margin in a path planning 

process, consider a randomly generated scenario with 20 obstacles as shown in Fig. 

3.31. The grey rectangles are the enlarged obstacles after a Ms is applied. The UAV’s 

speed and maximum roll angle are set to 50km/h (or 16.67m/s) and 50 degrees, 

respectively. Rmin and MS are then 28.32 and 11.73 units, respectively. The planned 

path using the BLOVL algorithm applying the safety margin is depicted in Fig. 3.32.  
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Figure 3.31: The obstacles with safety margin. 
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As has been demonstrated, the safety margin clearly changes the path from semi 

collision-free to fully collision-free, considering the vehicle’s physical constraints. 

 

3.8 BLOVL for Real Time Path Planning 

In the previously demonstrated path planning process using BLOVL, it was assumed 

that all the obstacles data were known either from satellite data, surveillance 

information or other means beforehand. However, in certain situations, not all the data 

are available. Some obstacles might appear suddenly (pop-up) on the UAV path. Such 

occurrences require path re-planning in real time in order to avoid a collision between 

the UAV and the pop-up obstacles.  

Assuming that the UAV is equipped with on-board sensors which can sense and 

measure the pop-up obstacles’ locations, geometry and sizes accurately, BLOVL is 

capable of finding a collision-free path in such an occasion in real time as the planning 

considers a small set of obstacles and are executed sequentially from one waypoint to 

the next one until the target point is reached. It means that, if there is a pop-up obstacle 

between two consecutive waypoints, the algorithm will find a new path, considering 

local obstacles, which enables the realisation of real-time path planning.  

Figure 3.32: A path with safety margin generated by BLOVL 
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Figure 3.33: The scenario in which a real-time path planning will take place. 

In order to demonstrate a real-time path planning using BLOVL, consider the scenario 

as shown in Fig. 3.33. The obstacles that are known prior to path planning are shown 

in black. The grey areas surrounding the obstacles are the safety margins. The sensor 

range is assumed to be 50 units. There will be a random pop-up obstacle during the 

flight. It is also assumed that the obstacle pop-ups outside the sensor range to give the 

UAV enough time to re-plan a new path and a sufficient distance to manoeuvre to 

avoid the pop-up obstacle.  

 

 

 

 

 

 

 

 

 

 

The BLOVL real-time path planning starts with calculating an initial path using Core 

as shown (in magenta) in Fig. 3.34(a). Note that in the figure, blue triangle represents 

the starting point while the magenta square denotes the target point. The path is 

currently unsafe because one segment of the path intersects with interior of an 

obstacle. However, the path will be later re-planned as the UAV approaches the 

collision area.  

Fig. 3.34(b) illustrates the UAV has started the mission traversing along the planned 

path going to the first waypoint. The green-dotted semi-circle in the figure represents 

the UAV’s sensor range. As the UAV reaches the first waypoint as shown in Fig. 

3.34(c), BLOVL examines the feasibility of traversal between the current waypoint 

and the next one. In this example, the segment connecting the current waypoint is 
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Figure 3.34: BLOVL for real time path planning 

obstructed by an obstacle, requiring the path to be re-planned. The resulting re-planned 

path is shown in Fig. 3.34(d). The UAV is then traversing the path to the next 

waypoint. However, after a while, there is a pop-up obstacle (shown in yellow) on the 

current path. When the UAV’s sensor detects the obstacle, BLOVL starts to re-plan a 

new path as depicted in Fig. 3.34(e). The above steps are repeated and are depicted in 

Figs. 3.34 (f-h). The UAV follows the path avoiding the pop-up obstacle until it 

reaches at the target point as illustrated in Fig. 3.35.  
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Figure 3.34: BLOVL for real time path planning (contd). 

Figure 3.35: The resultant path using BLOVL with a pop-up obstacle. 

(e) (f) 

(g) (h) 
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Figure 3.36: BL identifies the obstacles to be used by BLOVL. 

3.9 Improvement to BLOVL 

As has been demonstrated in Section 3.5, BLOVL is relatively faster in comparison 

with VL in planning a path. This is due to the fact that BLOVL uses a relatively less 

number of obstacles during the path calculation. In order to further accelerate the 

BLOVL’s computation time, an improvement to BLOVL is proposed in this section. 

It has been previously emphasised that BLOVL uses a base line (BL) that connects the 

pstart to ptarget in order to identify a set obstacles for path calculation. In a large 

environment with many obstacles, the BL might identify a high number of obstacles, 

which results in a much longer time to generate a collision-free path. This situation is 

illustrated in Fig. 3.36. In this particular scenario, BL identifies 17 obstacles that will 

be in considered in path planning. Although the BL uses a significantly lower number 

of obstacles in comparison with that of the VL, its computation time might still be 

high which may hinder BLOVL in carrying out a path planning in real-time.  
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Figure 3.37:  BL with limited range identifies the obstacles to be used by BLOVL 

In order to address this issue, BLOVL with limited range of BL is proposed. The 

approach is then called BLOVL with limited range. BLOVL with limited range will 

further reduce the number of obstacles used for path planning which results in reduced 

computation time. Using BLOVL with limited, only the obstacles that are within the 

limit of the BL’s range are identified and used for path calculation. For example, using 

the identical scenario as in Fig. 3.36, a limited BL with a length of 300 units identifies 

only 3 obstacles, which are shown in red in Fig. 3.37. This number is much less than 

the number of obstacles identified by normal BLOVL. This in turn reduces the overall 

computation time.  

 

 

 

 

 

 

 

 

 

 

In order to demonstrate the efficacy of the BLOVL with limited range, simulations 

using several numbers of obstacles i.e. 50,100,150,200,250 and 300 were performed. 

Each number of obstacles was generated 100 times randomly. The size of the 

environment of each scenario was set to             units. The starting and the 

target point were fixed to       and            , respectively. Fig. 3.38 shows the 

scatter plot of the computation time of BLOVL and BLOVL with limited range, 

respectively.  
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Figure 3.38:  Computation time comparison between BLOVL and BLOVL with 

limited range 

 

It is transparent that, as the number of obstacles increases, the differences in the 

average (of computation time) between those two approaches also increase. The figure 

clearly proves that BLOVL with limited range considerably outperforms the BLOVL 

in terms of computation time. 

On the other hand, Fig. 3.39 illustrates the scatter plot of the average paths lengths of 

BLOVL and BLOVL with limited range, respectively. Although BLOVL with limited 

range uses relatively lesser number of obstacles, it still produces paths with similar 

lengths to those of normal BLOVL.  

Thus, it is concluded that the proposed BLOVL with limited range has better 

performance in terms of computation time in an environment with higher number of 

obstacles compared to that of BLOVL. Although its computation time are significantly 

reduces, the lengths of the planned paths by BLOVL with limited range are quite 

identical to the normal VL 
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Figure 3.39:  Paths lengths comparison between BLOVL and BLOVL with limited 

range 

 

3.10  Conclusion 

Visibility Line (VL) is a path planning method that is capable of producing optimal 

path if one exists. However, the VL method is computationally expensive when there 

are many obstacles in the environments. As a result, VL is not suitable to be applied in 

real time, in obstacle-rich and dynamic environments.  

This chapter has proposed algorithms for 2D path planning based on the VL method. 

The proposed algorithms are capable of addressing the drawback of VL as they plan 

collision-free paths in computationally tractable manner.  

The first proposed algorithm, Core is used to find a path from a set of obstacles that 

are determined by the so-called base line (BL). BL is a segment that connects the 

starting point and the target point. All obstacles that lie on BL and their extension are 

the set of obstacles that will be used for path planning. As the set contains a relatively 

small number of obstacles, the path is quickly calculated.  
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However the path planned by Core might not collision-free, hence the algorithm called 

the Base Line Oriented Visibility Line (BLOVL) has been designed. BLOVL runs 

sequentially by checking visibility between two consecutive waypoints of a planned 

path. If those two waypoints are obstructed by obstacles, a new path will be re-planned 

avoiding the blocking obstacles. This process is done repetitively until the target point 

is reached.  

Through simulations, BLOVL has been proven to generate a path relatively faster than 

VL. Although BLOVL uses less number of obstacles during a path planning process, 

the length of generated paths are similar to VL’s. To ensure the completeness of the 

algorithm, BLOVL will keep finding a path until at one level in which all obstacles are 

used for the path calculation.  

Furthermore BLOVL is capable of re-planning a new path if there is pop-up obstacle, 

which lies on a UAV’s current path. BLOVL is also designed to perform a path 

planning task in real-time. 

To further improve the performance of BLOVL in terms of computation time, BLOVL 

with limited range has been introduced. The idea behind this approach is to use a 

limited range of base line so that a smaller number of obstacles are considered for path 

calculation. 
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Chapter 4 

 

3D Visibility Line Based Path Planning 

 

4.1 Introduction 

In the previous chapter, a visibility line (VL)- based path planning algorithm called 

Base Line Oriented Visibility Line (BLOVL) have been developed and demonstrated. 

The algorithm efficiently produces a 2D path in a 2D environment (X-Y plane) with 

fast planning time by minimising computational loads.  

In this chapter, a set of three-dimensional (3D) path planning algorithms are proposed. 

The algorithms utilise the so-called rotational plane approach to find 3D paths. 

Besides, as BLOVL is fast in finding a path, the proposed algorithms are based on it.   

This chapter is arranged as follows. Path plannings in a 3D scenario applying the Base 

Line Oriented Visibility Line (BLOVL) are presented in the following section. Later, a 

couple of algorithms called BasePlane, FindIntersection are introduced and 

demonstrated. Next the BLOVL3D1 algorithm is introduced and elaborated, followed 

by a demonstration of finding a 3D path on a plane using the BasePlane, 

FindIntersection and BLOVL3D1 algorithms. The following section proposes the 

BLOVL3D2 algorithm that combines the BasePlane, FindIntersection BLOVL3D1 

algorithms, and show an example of BLOVL3D2 calculating a 3D path in a 3D 

scenario. Simulations of paths planning using the proposed algorithms with different 

number of rotation angles and obstacles are carried out prior to conclusion. 
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4.2 Direct Applications of BLOVL 2D Path Planning 

Algorithm in 3D Environment 

As introduced in Chapter 2, the visibility line (VL) method considers all nodes of 

obstacles in a 2D environment to find a 2D path. For 2D obstacles, the nodes are the 

corners of the obstacles.  

In a 3D environment with a set of 3D obstacles, a VL based method may not be able to 

find a 3D path due to the infinite number of nodes along each border’s edge of the 

obstacles. A border’s edge is defined as a line that separates two adjacent faces of an 

object. For example, if a 3D obstacle was modelled as a cuboid which has 6 faces, 

there were 12 borders’ edges that separated such faces.  

However, it is possible to find a path in a 3D scenario using BLOVL if a starting point 

pstart has an equal altitude with that of a target point ptarget.  In a scenario where the 

pstart altitude is not identical to the altitude of ptarget, a path can be found if a project 

point of the starting point, pps or the project point of the target point, ppt is first defined. 

A project point pps/ppt is the (x,y) coordinate of pstart/ptarget that is raised or lowered to 

the altitude of ptarget/pstart. Using the project point, a path from pstart and ptarget can be 

calculated using BLOVL in two ways. The first one begins with defining a project 

point ppt, followed by calculating a horizontal path from pstart to ppt. To complete the 

path planning process, a vertical path connecting ppt and ptarget is worked out. The 

second way of finding a path from pstart to ptarget with different altitude starts with 

defining a project point pps. Subsequently, a vertical path connecting ptarget and Pps is 

identified. Then a path from Pps to ptarget is calculated to complete the path planning 

process. On the other hand, the 2D path planning approach can be applied to find a 

path on a vertical plane as will be demonstrated later. 

 

4.2.1 pstart and ptarget With Identical  Altitude 

A scenario in which pstart has an equal altitude with the ptarget’s is shown in Fig. 4.1. 

Note that in Fig. 4.1 and afterwards, the blue triangles denote pstart while the magenta 

squares represent ptarget.  
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As pstart and ptarget have an equal altitude, the 2D path planning algorithm can be 

applied to find a path using BLOVL. Briefly, the first step is to define a set of nodes 

whose altitudes are set to the height of pstart and ptarget. Then a visibility lines network 

is created from the nodes set as shown in Fig. 4.2. The nodes are represented by the 

green dots. Finally, Dijkstra’s algorithm is used to find a 2D path as illustrated in Fig. 

4.3.  

 

 

 

 

 

 

 

 

 

 

 Figure 4.1: A 3D environment with a 3D obstacle, in which the starting and target 

points have an equal altitude; (a) top view, (b) side view, (c) 3D view. 

(a) (b) 

(c) 
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Figure 4.3: The 2D path (solid magenta lines) in 3D scenario; (a) top view, (b) 3D 

view. 

 

Figure 4.2: The visibility lines network; (a) top view, (b) side view, (c) 3D view. 

(a) (b) 

(c) 

(a) (b) 
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4.2.2 pstart and ptarget With Different Altitudes 

Consider a 3D environment with an obstacle as illustrated in Fig. 4.4, in which the 

starting point and target point have different altitudes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: A 3D environment with a 3D obstacle. (a) top view, (b) side view, (c) 3D 

view. 

(a) (b) 

(c) 
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To find a path in such an environment using the project point, consider the following 

cases: 

Case 1 

In this case, a project point ppt with respect to ptarget is first identified. Using BLOVL, a 

path from pstart to ppt is then calculated using BLOVL. The path is shown in Fig. 4.5. 

To complete the path planning process, ppt is then connected to ptarget. The complete 

path is shown in Fig. 4.6. 

 

 

 

 

 

 

Figure 4.6: A path that has been planned in a 3D environment. (a) side view, (b) 3D 

view. 

(a) (b) 

Figure 4.5: A horizontal path connecting the starting point and the project point ppt, which 

is represented by the red triangle. (a) side view, (b) 3D view. 

(a) (b) 
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Case 2 

This case is the dual of the previous case, in which a project point pps with respect to 

pstart is first defined. Then a vertical path connecting the starting point to pps is found as 

illustrated in Fig. 4.7. The subsequent step is to find a path from pps to ptarget. The 

complete path is shown in Fig 4.8. 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: A path (solid magenta lines) that has been planned in a 3D environment. 

(a) side view, (b) 3D view. 

(a) (b) 

Figure 4.7: A vertical path connecting pstart and pps (red triangle). (a) side view, (b) 3D 

view. 

(a) (b) 
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Figure 4.9: The vertical plane in which the green dots are the intersection points. 

(a) top view, (b) side view, (c) 3D view. 

4.2.3 Find a Path on a Vertical Plane 

The methods demonstrated in sub-sections 4.2.1-4.2.3 are quite straight forward in 

finding the 2D paths in the 3D environments. However, the paths are not feasible for a 

fixed-wing UAV as they consist of vertical segments. This sub-section will 

demonstrate how a 3D path is calculated on a vertical plane which results in a path 

with no vertical segments. 

Consider the 3D scenario as shown in Fig. 4.4. A vertical plane is first created where 

the range of the plane is set to be between the starting point and the target point. The 

nodes used to create a VL network are subsequently determined from the intersections 

between the plane and the obstacle borders’ edges. The resulting nodes are represented 

by the green dots in Fig. 4.9. Finally Dijkstra’s algorithm is applied to find a path as 

depicted in Fig. 4.10.  

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

(c) 



84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: A 3D path found the vertical plane; (a) top view, b) side view, (c) 3D view. 

(a) (b) 

(c) 
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4.3 Path on the Base Plane 

The vertical plane, as has been briefly explained in the previous section, is efficient in 

determining a set of nodes, which are the intersections points between the plane and 

the borders’ edges the 3D obstacle. The resulting nodes from the intersection between 

the plane and the obstacle are then used to create a VL network and, subsequently, a 

3D path can be found from the network.   

This section will further explain and demonstrate how a base plane is created and 

rotated at an arbitrary angle, and how the intersection points are determined. It also 

demonstrates a path planning process on the base plane. 

 

4.3.1 Creating a Base Plane 

In order to create a base plane, an algorithm called BasePlane is developed. The 

BasePlane algorithm, consists of three steps, is shown in Fig. 4.11.  

 

Algorithm: BasePlane 

1. Create a base line, BL3D that connects ustart and utarget. Find the pitch angle , 

which is formed by the BL3D and the global horizontal (X-Y) plane, Pxyustart. 

2. Define a local plane Px’y’ustart, formed by the BL3D and BL3D. The BL3D 

is on Pxyustart, orthogonal to BL3D and passes ustart.  

3. Define a local coordinate system on Px’y’ustart with e ustart as the origin, 

BL3D as the X-axis and BL3D as the Y-axis of the Px’y’ustart.  

 

The BasePlane algorithm starts with creating a 3D base line, BL3D ranging from a 

current starting point,        with coordinates        
        

 
       

   to a target point, 

        with coordinates         
         

 
        

  . Unlike the base line (BL) of the 

Core algorithm, BL3D of BasePlane considers the altitudes of ustart and utarget. 

Figure 4.11: The BasePlane algorithm 
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Then a pitch angle, , which is the angle between BL3D and the global horizontal plane 

(X-Y axis), Pxyustart can be found from the following equation: 

 

         
        

        
  

         
 

       
 

 
 
         

        
  

 
  

 

 is illustrated in Fig. 4.12(b). It is zero if the starting point and the target point have 

an equal altitude.  is important for a coordinate transformation of a local plane that 

will be shown later.  

 

 

 

 

 

 

 

 

Next, a line perpendicular to BL3D and intersects ustart called the BL⊥3D is defined, 

followed by the definition of a local plane called Px′y’ustart in which the BL3D and 

BL⊥3D are the local X- and Y-axes, respectively. The Px′y’ustart resulted from the 

BasePlane algorithm is illustrated in Fig. 4.13. Note that the ustart is the origin of the 

Px′y’ustart.  

In order to define the local coordinate system of Px′y′ustart with respect to the Y-axis of 

Pxyustart, the orientation   (heading angle) of the BL3D has to be known and can be 

calculated using 

Figure 4.12: The illustration of . (a) top view, (b) side view. 

(a)    

ustart 

utarget 

X 

Y 

(b)  

ustart 

utarget 
Z 

Parallel to x- y plane 

 

X/Y 

(4.1) 
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 is illustrated in Fig. 4.14.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BL⊥3D 

Px’y’ustart 

 

Pxyustart  

 

BL3D  

Figure 4.14: The orientation  is the angle between the the Y-axis of Pxyustart and the 

BL3D of Px’y’ustart. 

Figure 4.13: The Px’y’ustart generated by the BasePlane algorithm. (a) top view, (b) 3D 

view 

(a)  (b)  

BL⊥3D 

Px’y’ustart 

Pxyustart  

 

BL3D  

(4.2) 

Pxyustart 

Px’y’ustart BL⊥3D 

BL3D  
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The coordinate transformation for Px′y′ustart is then performed using the following 

steps: 

1. Rotate the plane by - about the Z-axis of the translated           using the 

matrix transformation R1 below:  

                        

where  

    
                 
                  

   

  

2. Rotate the M1 by - about the X-axis of the global plane using the following the 

matrix transformation R2: 

         

where  

    

   
                
                

  

 

As a result, the relationship between the coordinates of   ′ ′       and the ones of 

          can be established from 

 

  ′ ′                                 

 

4.3.2 Finding Intersection Points 

A VL-based path planning method requires a set of nodes to be defined prior to a path 

calculation. In a 2D path planning using VL-based method, the nodes are simply the 

corners of obstacles whose altitudes are ignored, and hence the nodes are finite in 

number. Unlike the 2D path planning, the number of nodes in a 3D path planning is 

infinite because 3D obstacles heights are taken into account. Thus the corners of such 

obstacle cannot be used for determining the nodes. In this thesis, it is proposed that the 

nodes are the intersection points between a plane and the 3D obstacles.  

 

(4.3) 

(4.5) 

(4.7) 

(4.6) 

(4.4) 
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Figure 4.15: The FindIntersection algorithm. 

In this subsection, the FindIntersection algorithm whose purpose is to find those 

intersection points or nodes is introduced. The algorithm is shown in Fig. 4.15. 

The FindIntersection algorithm first transforms the coordinates of each obstacle with 

respect to Px’y’ustart. The transformed coordinates    of the obstacles is obtained 

using 

                    

 

where   are the coordinates of the obstacles with respect to the global plane. 

The next step of FindIntersection is to find pairs of borders edges of    within the 

environment, which has a range of [Xmin Xmax Ymin Ymax]. Each pair of border edge is a 

line segment that starts from pa and ends at pb.  

 

Algorithm: FindIntersection 

1. Transform the obstacles coordinates according to Px’y’ustart.  

2. Identify all borders’ edges of obstacles. Each edge consists of a pair of 

nodes,    
 and    

 where          is the total number of the borders’ 

edges. 

3. Divide the local plane (Px’y’ustart) into two triangles. Each triangle is 

formed by three nodes, p1, p2 and p3, which are determined based on the 

range of the plane. 

4. Find the intersection point      
 between each triangle and edge i from 

     
    

      
   

   

where 

 
 
 
 
   

    
     

   
    

   
    

    
     

   
    

   
    

    
     

   
      

    

 

  

 

    
    

    
    

    
    

  

 

 

 

(4.9) 

(4.10) 

(4.8) 



90 

 

Figure 4.16: A line-plane intersection found using the FindIntersection algorithm. 

Px’y’ustart is then divided into two triangles each consists of three nodes p1, p2 and p3. 

These nodes are determined from the range of the plane, [X’min X’max Y’min Y’max]. Note 

that the coordinate [X’min Y’min] is the origin of Px’y’ustart. The parameters r and s as 

stated in equation (4.10) indicate that the intersection point is on the line between pa 

and pb if      .  

The illustration of a line-plane intersection is shown in Fig. 4.16, in which the red dot 

is the intersection point between the Px’y’ustart and the solid upright line. Note that the 

plane has been rotated at an arbitrary angle. Also note that the line can be one of the 

obstacles borders’ edges. Readers are referred to [121] to find a further explanation 

about the line-plane intersection. 

 

 

 

 

 

 

 

 

In a real scenario, however, a 3D obstacle consists of several borders’ edges (lines). 

For instance, a cuboid obstacle has eight (not including the edges at the base). 

Applying the FindIntersection algorithm in a scenario with a cuboid obstacle, the 

intersection points between Px’y’ustart and the obstacle borders’ edges can be 

determined and are shown in Fig. 4.17. The intersection points are represented by the 

red dots. 

 

Px’y’ustart 
BL⊥3D 

 

BL3D 

 

[X’min Y’min] 

[X’max Y’max] 
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Figure 4.17: The borders’ edges of a 3D obstacle intersect with a plane. 

Figure 4.18: The BLOVL3D1 algorithm 

 

 

 

 

 

4.3.3 Finding a 3D Path on the Base Plane 

This sub-section demonstrates a 3D path planning on the base plane that has been 

created by the BasePlane algorithm. Additionally, in order to ensure that the path on 

the plane, another algorithm called BLOVL3D1 is proposed. BLOVL3D1, which is 

based on BLOVL, is shown in Fig.  4.18. Note that the FindIntersection algorithm is 

embedded in BLOVL3D1 to ensure that the intersection points are only calculated 

between the base plane and certain obstacles to accelerate the computation time. 

 Algorithm: BLOVL3D1(ustart, utarget) 

1 set j = 0 and wj = ustart 

2 while wj ≠ ptarget do 

3  set vstart = wj and vtarget = utarget 

4  Find the obstacles that lie on BL3D and their extension. 

5  Call FindIntersection to define a set of nodes, Ns3D. 

6  Create a cost matrix, Cm3D from Ns3D. 

7  Find a 3D path V={v0,…,vm} from Cm3D using Dijkstra’s algorithm. 

8  If m = 1 then 

9   set wj+1=v1 

10  else 

11   set vstart = v0; vtarget = v1 

12   goto line 4 

13  end if 

14  set j = j+1 

15 end while 

 

Px’y’ustart 
BL⊥3D 

 

BL3D 

 

[X’min Y’min] 

[X’max Y’max] 
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Like BLOVL, the main idea of BLOVL3D1 is to perform a path planning process on a 

plane iteratively on a plane. It means that, while the target point has not been reached, 

the algorithm will keep planning a path on the plane. To ensure that the algorithms 

possess the completeness criterion, at each repetition, the starting point is updated to 

the second waypoint of the previously planned path until the starting point is the target 

point. By this way, it is guaranteed that the algorithm is able to find a path if one 

exists.  

In order to reduce the computation time, the path finding process of BLOVL3D1 

considers only the obstacles that lie on the base line BL3D and their extension. Note 

that BL3D is a line that connects pstart and ptarget. Unlike BL of BLOVL, BL3D considers 

the altitudes of pstart and ptarget.  

Furthermore, m, which is the number of segments between two consecutive waypoints, 

plays an important role in determining whether a planned path is collision-free or not. 

A value of m that larger than one indicates that the path between two consecutive 

waypoints is being blocked. In this case, a collision-free path has to be calculated. 

To demonstrate the BLOVL3D1 algorithm in finding a path on a plane, consider an 

environment with a pair of 3D cuboids obstacles as illustrated in Fig. 4.19. The plane 

Px’y’ustart that has been created by BasePlane with an arbitrary angle, on which a path 

will be calculated, is also shown in the figure. 

 

 

 

Figure 4.19: A scenario with two 3D obstacles with a plane; (a) top view, (b) 3D 

view. 

(a) (b) 
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Figure 4.20: The transformed local plane (Px’y’ustart) and the intersection points shown by the 

red dots. 

The BLOVL3D1 algorithm first determines the obstacles that lie on BL3D and their 

extensions. It then calls the FindIntersection algorithm to find the intersection points 

between the plane and obstacle borders’ edges.  

The FindIntersection algorithm first transforms the obstacles coordinate system with 

respect to the Px’y’ustart, and subsequently, determines the intersection points, Ns3D 

between the plane and the obstacles borders’ edges. The transformed local plane, the 

obstacles and the intersections points are depicted in Fig. 4.20. In the figure, the shape 

of the obstacles has been sheared as it is projected orthogonally towards the plane. 

Note that a convex-shaped obstacle will remain convex after a projection is performed.  

Now the path planning problem has been reduced from planning in a 3D environment 

into in a 2D one i.e. on the Px’y’ustart. Following the next step of BLOVL3D1, a cost 

matrix, Cm3D is then created based on Ns3D. The visibility lines network on the plane 

can now be created from Cm3D using the VL algorithm. The network is illustrated in 

Fig. 4.21. Dijkstra’s algorithm is then applied to calculate a path on the plane. The 

resulting path, which is in magenta, is depicted in Fig. 4.22. 
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Figure 4.21: The visibility lines network is represented by the cyan lines. 

Figure 4.22: The path (magenta lines) on the plane found using Dijkstra’s algorithm.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

4.4 BLOVL 3D Algorithms 

The BasePlane and the FindIntersection algorithms that have been proposed and 

demonstrated in the previous section are necessary to create a plane, Px’y’ustart and 

find intersection points between Px’y’ustart and obstacles, respectively. To find a path 

on the plane from the intersection point, the BLOVL3D1 algorithm has been proposed.    
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In this section, a 3D path planning algorithm that combines and governs the 

aforementioned algorithms is proposed. The proposed 3D path planning algorithm is 

called BLOVL3D2 and is shown in Fig. 4.23. The process of BLOVL3D2 is depicted 

in Fig. 4.24. 

The algorithm starts with initialising the necessary parameters i.e. k = 0, Psk = pstart and 

i = 0. Ps is the global path consisting of waypoints, which is updated during the path 

planning process. The final value of k determines the number of waypoints in Ps. i 

represents the index of rotation angles and  is the vector that contains b rotation 

angles.  

 

Algorithm: BLOVL3D2 

1:  Set k=0, Psk=pstart and i=0  

2:  Define the rotational angle vector, ={1,…,b}  

3:  while Psk ≠ ptarget do  

4:  

 

ustart= Psk; utarget=ptarget  

5:  

 

call BasePlane to generate a local plane Px'y'ustart  

6:  

 

while i ≠ b+1 do  

8: 

  

call BLOVL3D1 

9:  

  

Save waypoints W
αi

 into W
α
 

10:  

  

Increase i by 1.  

11:  

  

Rotate P x'y'ustart by αi degree using Rotate3D.  

12:  

 

end while  

13:  

 

Compare all paths in W
α
 and find the shortest, Ws. Ws={ws0,…wsn}  

14 

 

Transform Ws with respect to the global coordinate system.  

15:  

 

Increase k by 1 and update Psk =ws1. Set i to 0.  

16:  end while  

 

Figure 4.23: The BLOVL3D2 algorithm 
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Figure 4.24: The BLOVL3D2 process 
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In the next step of BLOVL3D2, Psk is compared with ptarget. If Psk is equal to ptarget, 

the path planning process is stopped. Otherwise, Psk is set to ustart while utarget is set to 

ptarget. Note that the ustart and utarget are the necessary inputs for BLOVL3D1 that is 

embedded in the algorithm.  

After all the necessary parameters have been initialised, BLOVL3D2 calls the 

BasePlane algorithm to generate a local plane,   ′ ′
      

 ranging from ustart to utarget. 

At this point, if the index i does not exceed b, the BLOVL3D1 algorithm will carry on 

finding a path on   ′ ′
      

. The resulting waypoints W
i

 are then saved in W


.  

Subsequently, i is increased by 1 and   ′ ′
      

 is rotated by i using the Rotate3D 

algorithm. The Rotate3D algorithm will be introduced and demonstrated in the 

following sub-section. BLOVL3D1 is called again to find a path W
i

 on the rotated 

  ′ ′
      

. At each rotation of   ′ ′
      

, the resulting W
i

 calculated by 

BLOVL3D1 is saved in W

. After   ′ ′

      
 has been rotated by all the angles, the 

waypoints with the shortest path, Ws are then selected from W

. Ws consists of 

waypoints ws0, ws1, ..., wsn where n+1 is the number of waypoints in Ws. 

Next, k and Psk are updated to k+1 and the second waypoint of Ws, i.e. ws1, 

respectively. Consequently ustart is set to Psk and utarget is to ptarget. The next iteration is 

then started, in which a path is calculated on a new   ′ ′
      

 ranged from ustart to 

utarget. The above steps are kept repeated until Psk is ptarget to meet the completeness 

criterion. 

4.4.1 Rotating a Base Plane 

Finding a 3D path on Px’y’ustart solves the problem of path planning in 3D 

environment with 3D obstacles. However, the path on Px’y’ustart may not be the 

shortest, especially in an obstacle-rich environment. In such an environment, a shorter 

path may results if the path goes over the obstacles. This in turn needs the plane to be 

rotated. An example of a path planning with a plane rotated at 90 degrees (and hence 

the plane is vertical) was demonstrated in Section 4.2.3. Thus in this section, the 

Rotate3D algorithm is introduced and demonstrated. The purpose of this algorithm is 

to rotate a base plane at a particular angle. The algorithm is shown in Fig. 4.25.  
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Algorithm: Rotate3D 

1. Rotate the plane Px’y’ustart by  degree about BL3D. 

2. Define the coordinate transformation of the Px’y’ustart plane with respect 

to the global plane. 

 

 

According to Rotate3D, it first rotates the Px′y′ustart plane by  degree about the BL3D 

axis and the plane coordinate is then transformed accordingly. Note that  is an angle 

between 0 and 180 degrees. The transformation is done based on the rotation angle , 

the orientation or heading angle  and the pitch angle  of Px’y’ustart. ( and  have 

been defined in Section 4.3.1). The plane rotation and subsequently its coordinate 

transformation of Px’y’ustart are performed and updated using the aforementioned steps 

with an additional one,  

       ′ ′       

where 

    
               

   
             

  

 

The relationship between the rotated plane   ′ ′       and the global one           is 

therefore 

  ′ ′
      

             ′ ′               

 

To demonstrate how a rotation of a base plane is performed, consider the base plane 

that has been created using the BasePlane algorithm as illustrated in Fig. 4.26. In the 

figure, the blue triangle represents the starting point while the magenta square is the 

target. The plane will be rotated by 30 degrees about the BL3D line. The resulting 

rotated plane is shown in Fig. 4.27.  

Figure 4.25: The Rotate3D algorithm 

 

(4.11) 

(4.12) 
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Figure 4.27: The plane in Fig. 4.16 is rotated about the BL3D line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that the BL3D is chosen as the axis of rotation of the plane because this will guide 

the path towards the target point in order to reduce the path length. 

 

 

 

Figure 4.26: A local plane Px’y’ustart  to be rotated by 30 degrees about BL3D. 

 

Px’y’ustart 

BL3D 

BL⊥3D 

 

Px’y’ustart 
BL⊥3D 

 

BL3D 
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4.4.2 3D Path Planning Using BLOVL3D2 

To demonstrate the 3D path planning using BLOVL3D2, consider a scenario with 35 

randomly generated cuboids obstacles as shown in Fig. 4.28. The range of the scenario 

is           and the coordinate of pstart is set to (20,20,130) while the ptarget is 

(380,380,160).  

The rotational angle vector is assumed to be  = 

{0,15,30,45,60,75,90,105,120,135,150,165}. Notice that no angle greater than 180 

degrees is being used because, a plane that is rotated by i degree is identical to a 

plane rotated by i + 180.  

In order to find a 3D path using the BLOVL3D2 algorithm, a number of iterations 

have to be performed until the current starting point is the target point.  

In the first iteration, a plane Px'y'ustart is first generated between ustart to utarget using the 

BasePlane algorithm. The plane is shown in Fig. 4.29 from two different viewpoints.  

 

 

 

 

 

 

Figure 4.28: A 3D scenario with 35 obstacles. (a) top view, (b) 3D view. 

(a) (b) 
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The BLOVL3D1 algorithm is then called to find a set of nodes, Ns3D which are the 

intersection points between the plane and the obstacles borders’ edges through the 

FindIntersection algorithm. From Ns3D, a visibility lines network is created. The nodes 

and the visibility lines network are shown in Fig. 4.30. Note that the red dots in Fig. 

4.30 represent the Ns3D and the VL network is represented by the cyan lines. 

Subsequently BLOVL3D1 finds an optimal path on the plane, W
i

 (where i=0 at this 

point) containing a set of waypoints. The path, which is represented by the solid 

magenta lines, is illustrated in Fig. 4.31. W
0

, which has been transformed into the 

global plane coordinate system is listed in Table 4.1.  

 

 

 

 

 

Figure 4.29: The Px’y’ustart plane generated by BasePlane. (a) top view, (b) 3D view 

(a) (b) 

Figure 4.30: The nodes (red dots) obtained by the FindIntersection algorithm and the 

visibility lines network (cyan lines) generated by the BLOVL3D1; (a) top view, (b) 3D 

view. 

 (a) (b) 
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Table 4.1: Waypoints generated by BLOVL3D1 at 0 degree. 

    X Y Z 

  
   20.00 20.00 130.00 

  
   81.23 70.77 134.67 

  
   91.77 123.23 137.29 

  
   143.77 191.23 142.29 

  
   254.23 269.77 150.17 

  
   291.77 343.23 154.79 

  
   318.77 364.23 156.79 

  
   380.00 380.00 160.00 

 

 

The next step of BLOVL3D2 is to update the index i to 1, and subsequently rotate the 

plane by 1 = 15 degrees using Rotate3D as illustrated in Fig. 4.32. BLOVL3D1 is 

again applied to determine a set of nodes from the intersection between the obstacles 

borders’ edges and the rotated plane and subsequently generates a visibility lines 

network as illustrated in Fig. 4.33. BLOVL3D1 then calculates a shortest path on the 

plane, W
1

 as shown in Fig. 4.34. The waypoints of the path, which have been 

transformed according to the global plane coordinate system, are recorded in Table 4.2 

 

Figure 4.31: A path on Px’y’ustart represented by the magenta segments found by 

BLOVL3D1; (a) top view, (b) 3D view. 

 (a) (b) 
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Figure 4.32: The plane is rotated by 15 degree. 

 

Figure 4.34: The shortest path on plane rotated by 15 degrees. 

 

Figure 4.33: The nodes and visibility lines network of the plane rotated by 15 degree. 
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Table 4.2: The waypoints generated by BLOVL at 15 degrees rotation angle. 

    X Y Z 

  
   20.00 20.00 130.00 

  
   80.10 71.90 136.22 

  
   92.90 122.10 131.75 

  
   144.90 190.10 133.71 

  
   253.10 270.90 146.79 

  
   292.90 342.10 145.45 

  
   304.90 356.10 146.16 

  
   319.90 363.10 148.59 

  
   380.00 380.00 160.00 

 

 

In the current iteration, the above-mentioned steps are kept repeated until the plane is 

rotated by all the pre-defined angles as shown by Fig. 4.35. As a result, the shortest 

path, Ws = {ws0,…, ws1,…, wsn } is found when the plane is rotated by 150 degrees. 

The path is illustrated in Fig. 4.36 and its waypoints, which have been transformed 

into the global coordinate system, are listed in Table 4.3.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.35: The plane rotated at {0:15:165) degrees to find a 3D path from ustart to utarget. 
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Table 4.3: The waypoints generated by BLOVL3D2 in the first iteration. 

   X Y Z 

    20.00 20.00 130.00 

    42.90 85.26 151.00 

    304.90 356.10 175.84 

    319.90 363.10 175.38 

    380.00 380.00 160.00 

 

 

 

 

 

In the next iteration, the necessary parameters have to be updated and re-initialised. 

The value of k is updated to k+1 (in this example k now becomes 1) and accordingly, 

Ps1 is set to the second point of the previous shortest path i.e. ws1. As listed in Table 

4.3, ws1 = (42.90, 85.26, 151.00). Concurrently, ustart is set to Ps1 and utarget is to ptarget. 

Also i is re-initialised to 0. A new plane ranging from the new ustart to ptarget is then 

generated by BasePlane. The plane is shown in Fig. 4.37. 

Figure 4.36: The path obtained by BLOVL3D2 in the first iteration. (a) top view, (b) 3D 

view. 

(a) 
(b) 
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Subsequently, Ns3D, which is a set of nodes, resulted from the intersection points 

between the plane and the obstacles borders’ edges is determined. This is followed by 

creating a VL network and finding a path on the plane using BLOVL3D1. The Ns3D, 

the visibility lines network and the path on the plane are depicted in Fig. 4.38 while 

the path waypoints are recorded in Table 4.4. 

 

 

 

 

Figure 4.37: The plane generated by BasePlane from the second waypoint of the 

previous shortest path to ptarget (a) top view, (b) 3D view. 

 

(a) (b) 

Figure 4.38: The nodes, the visibility lines network and the path at 0 rotation angle of 

second repetition (a) top view, (b) 3D view. 

 

(a) (b) 
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Table 4.4: The waypoints generated by BLOVL3D2 in the second iteration at 0 

rotation angle. 

    X Y Z 

  
   42.90 85.27 151.00 

  
   144.90 191.23 153.95 

  
   253.10 269.77 156.65 

  
   292.90 343.23 158.18 

  
   304.90 356.10 158.55 

  
   319.90 363.10 158.87 

  
   380.00 380.00 160.00 

 

In the next steps of BLOVL3D2, the plane is rotated by all the angles contained in , 

where at each rotation a path is calculated and is saved in W
α
, followed by the 

determination of the shortest path from W
α
. In this iteration, the path on the plane 

rotated by 150 degrees is the shortest with a length of 458.47 units. The path is 

illustrated in Fig. 4.39 and its waypoints are listed in Table 4.5. 

 

 

 

Figure 4.39: The path obtained by BLOVL3D2 in the second iteration. (a) top view, (b) 3D 

view. 

(a) 
(b) 
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Table 4.5: The waypoints generated by BLOVL3D2 in the second iteration at 150 

rotation angle.  

   X Y Z 

    42.90 85.27 151.00 

    304.90 356.10 176.70 

    319.90 363.10 174.36 

    380.00 380.00 160.00 

 

The above processes are further executed until Psk is the ptarget. The resulting path is 

shown in Fig. 4.40 and the waypoints of the path, Ps are recorded in Table 4.6. 

 

 

Table 4.6: The waypoints of the path shown in Fig. 4.40 generated by BLOVL3D2. 

Ps X Y Z 

    20.00 20.00 130.00 

    42.90 85.27 151.00 

    304.90 356.10 176.70 

    319.90 363.10 173.22 

    380.00 380.00 160.00 

 

Figure 4.40: The resulted path (solid magenta line) planned by BLOVL3D2.  

(a) top view, (b) side view, (c) 3D view. 

 

(a) (b) 
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4.4.3 BLOVL3D2 Performances 

In this section, the performance of BLOVL3D2 algorithm using different number of 

rotation angles and obstacles in terms path lengths and computation time are presented 

and examined.  

4.4.3.1 Different Numbers of Rotation Angles 

In order to examine the performance of BLOVL3D2 using several numbers of rotation 

angles, consider a scenario as shown in Fig. 4.41. The range of the scenario is set to 

          and consists of 50 cuboids obstacles. The coordinate of pstart is set to 

(0,0,140) whereas ptarget is (420,420,155). There are six sets of rotation angles that will 

be used for path calculation as listed in Table 4.7. 

 

 

Table 4.7: The sets of angles used in the simulation. 

Set Rotation angles 

1 {0} 

2 {0:90 } 

3 {0:60:120} 

4 {0:45:135} 

5 {0:30:150} 

6 {0:15:165} 

Figure 4.41: The scenario used to examine the performance of BLOVL3D2 using 

different sets of rotational angles. (a) top view, (b) 3D view. 

 

(a) (b) 
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Using the first set of rotation angle, which contains only one angle, i.e. 0 degree, the 

path found by BLOV3D2 is shown in Fig. 4.42. The path has a length of  597.38 units 

and is calculated in 0.43 seconds. 

 

 

 

The second set of the rotation angles, which contains 0 and 90 degrees, produces a 

path with a length of 596.57, which is shorter than the previous one.  The path, which 

is depicted in Fig 4.43, is calculated in 0.65 seconds. 

 

 

 

Figure 4.42: The path (solid magenta lines) planned by BLOVL3D2 using {0} degree 

rotation angles. (a) top view, (b) 3D view. 

 

(a) (b) 

Figure 4.43: The path (solid magenta lines) planned by BLOVL3D2 using {0,90} 

degrees rotation angles. (a) top view, (b) 3D view. 

 

(a) (b) 
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Consequently, using the third set of the rotation angles, which consists of 0, 60 and 

120 degrees, BLOVL3D2 calculates the path as shown in Fig 4.44 in 1.01 seconds. 

The path length is 596.94 units.  

 

 

 

BLOVL3D2 with the rotation angles of {0:45:135}, which are contained in the fourth 

set, plans a path that is identical with that of the second set as shown in Fig. 4.43. 

However, using this set of rotation angles, the computation time is slightly increased to 

1.09 seconds. 

The next set of rotation angles, which consists of {0:30:150} degrees, results in a path 

as shown in Fig. 4.45. The path length is 595.84 units and it is calculated in 1.65 

seconds.  

Finally, the sixth set of the rotation angles produces a path with a length of 595.51 

units as illustrated in Fig. 4.46. The time taken to calculate the path was 3.05 seconds. 

Through the simulations, it can be observed that, as the number of rotation angles is 

increased, the resulting paths are getting shorter. 

 

 

 

Figure 4.44: The path (solid magenta lines) planned by BLOVL3D2 using {0:60:120} 

degrees rotation angles. (a) top view, (b) 3D view. 

 

(a) (b) 
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In order to have a better idea on the effect of the number of rotation angles, 

simulations using 100 random scenarios have been performed. Each scenario 

contained 50 cuboids obstacles and its range was fixed to          . The minimum 

dimension (       ) of each cuboids obstacle was             while the 

maximum was            . The pstart and ptarget were positioned at (0, 0) and 

(420,420), respectively. The minimum heights of pstart and ptarget were set at 130 and 

140 units, while the maximum of those were 160 and 170, respectively. In each 

Figure 4.45: The path (solid magenta lines) planned by BLOVL3D2 using {0:30:150} 

degrees of rotation angles. (a) top view, (b) 3D view. 

 

(a) (b) 

Figure 4.46: The path (solid magenta lines) planned by BLOVL3D2 using {0:15:165} 

degrees rotation angles. (a) top view, (b) 3D view. 

 

(a) (b) 
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scenario, the sets of rotation angles as listed in Table 4.7 were utilised to find 3D 

paths. The resulting maximum, minimum and average paths lengths and computation 

time are plotted in Fig. 4.47(a) and Fig. 4.47(b), respectively. To have their exact 

values, the average path lengths and computation time for each set of rotation angles 

are recorded in Table 4.8.  

 

 

 

Table 4.8: The average of path lengths and computation time using sets of rotation 

angles. 

 Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 

Ave. path lengths (units) 598.28 597.98 597.63 597.47 597.47   597.35 

Ave. computation time (s) 0.98 1.09 2.61 2.94 4.66 9.76 

         

As can be seen from Fig. 4.47(a), a higher number of rotation angles used in the 

BLOVL3D2 leads to a shorter path length at the expense of computation time. As 

there is a trade-off between path length and computation time, the selection of the 

number of rotation angles has to be made based on the type of mission i.e. off-line or 

real-time. If an off-line path planning is required, the number of rotation angles has to 

be large to ensure the resulting path, which is planned prior to the mission, is as 

shortest as possible. On the other hand, the number of rotation angles should be 

minimal for a mission that requires real-time path planning so that a 3D path can be 

calculated in a relatively short time. 

Figure 4.47: The simulations results of BLOVL3D2 using different number of rotation 

angles in 100 random scenarios, each with 50 cuboids obstacles; (a) path lengths,      

(b) computation time. 

 

(a) (b) 
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4.4.3.2 Different Numbers of Obstacles 

In order to measure the performance of BLOVL3D2 using different number of 

obstacles, scenarios containing 25, 50 and 75 cuboids obstacles have been used for 

simulations. As a matter of fact, the number of obstacles affects the density or ratio of 

the occupied space by the obstacles to the C-space area. Generally, a higher density 

scenario results in a longer computation time and a longer path. The selection of 

different obstacles numbers as stated above ensures that the performance of the 

proposed algorithm in terms of path length and computation time is informative. 

In the simulations, each number of obstacles was generated in 100 random scenarios, 

thus, as three numbers of obstacles were used, there were 300 scenarios in total. The 

obstacles minimum dimension         was set to [1515100] and their 

maximum was [3040200]. Each scenario covers an area of 420 by 420 units in X- 

and Y- axis, respectively. The starting point, pstart coordinate was fixed to (0,0) while 

the target point ptarget was (420,420). The heights of the starting point were randomly 

varied between 130 to 160 units and the target point heights were between 140 to 170 

units. The rotation angles were set to {0:45:135}.  

Figs. 4.48-4.50 illustrate the first three scenarios of the simulations with 25, 50, 75 

cuboids obstacles, respectively. Note that the scenario as shown in Fig. 4.48 had the 

lowest density while the one shown in Fig. 4.50 possessed the highest. 

 

 

Figure 4.48: A scenario with 25 cuboids obstacles. (a) top view, (b) 3D view. 

 

(a) (b) 
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The minimum, average and maximum path lengths and computation time in 100 

random scenarios for each number of obstacles are shown in Fig. 4.51(a) and 4.51(b), 

respectively. From the figures, it is clear that the average path lengths and computation 

time are proportional to the numbers of obstacles.  

 

Figure 4.49: A scenario with 50 cuboids obstacles; (a) top view, (b) 3D view. 

 

(a) (b) 

Figure 4.50: A scenario with 75 cuboids obstacles; (a) top view, (b) 3D view. 

 

(a) (b) 
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4.5 Conclusion 

In this chapter, a set path planning algorithm in 3D environments has been introduced 

and demonstrated. The proposed algorithms are based on the base line oriented 

visibility lines (BLOVL) algorithm, which has been introduced in Chapter 3. The 

proposed 3D path planning algorithm, called BLOVL3D2, uses rotational planes on 

which visibility lines (VL) networks are created in order to find 3D paths.  

To see the effect of the numbers of rotation angles in BLOVL3D2, six sets of rotation 

angles have been used in the simulations. The results of the simulations have shown 

that despite BLOVL3D2 consumes longer computation time, a higher number of 

rotational angles leads to a relatively better 3D path in terms of path’s length. 

In addition, simulations to evaluate the effect of number of obstacles have also been 

performed. In the simulations, there were 300 random scenarios with 25, 50 and 75 

obstacles. Each number of obstacles was generated in 100 scenarios. From the results 

of the simulations, it is concluded that the BLOVL3D2 algorithm takes a longer time 

to plan a path in an environment with a higher number of obstacles. The relationship 

between the number of obstacles and the average computation time is slightly non-

linear as illustrated by Fig. 4,51(b). In terms of path lengths, BLOVL3D2 plans longer 

path in environments with higher number of obstacles, however, the relationship 

between the number of obstacles and the average path lengths is slightly non-linear.  

Figure 4.51: The results of the BLOVL3D2 simulations using different number of 

obstacles; (a) paths lengths, (b) computation time. 

 

(a) (b) 
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Chapter 5 

 

Software Packages for Path Planning 

 

5.1 Introduction 

At the University of Leicester, there is a path planning software package that has been 

developed that serves two purposes; first, it validates the effectiveness of the proposed 

algorithms visually. Second, it implements and presents the algorithms in an intuitive 

way. The software package, which has been developed using Matlab consists of two 

Graphical User Interfaces (GUIs), each with its own aim. The first GUI is used to 

execute the BLOVL algorithm, while the second executes the BLOVL3D1 and 

BLOVL3D2 algorithms. The former and the latter GUIs are referred to as 2D GUI and 

3D GUI, respectively in this chapter. 

Finding a collision-free path using a path planning algorithm normally requires several 

inputs such as the number of obstacles, dimensions and position, a starting point, a 

target point and the vehicle’s speed and kinematic constraints. The inputs have to be 

keyed-in according to a certain logical order. For example the starting and target 

points cannot be located before all the obstacles data (locations and dimensions) are 

made available, otherwise they might be in the obstacle region, causing the path 

planning to be incomplete. On the other hand, the path planning process cannot be 

executed if any of the required input is not supplied. The developed software package 

is designed to address this issue as the path planning process is implemented 

systematically and in user-friendly manner. Before explaining the software packages 

further, it is useful that the important objects as shown in Fig. 5.1 that have been used 

in the GUIs are introduced. 
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Figure 5.1: The objects used in the GUI 

 

 

 

 

 

 

 

 

 

 

This chapter is arranged as follows. The aims of the GUIs and their functionalities are 

introduced first in order to demonstrate the way in which the 2D GUI is carried out 

based on the proposed algorithms to find a 2D path in a random scenario. Then, a real-

time 2D path planning is shown using the 2D GUI. Additionally, the 3D path planning 

processes using the 3D GUI is demonstrated in order to find 3D paths through the 

applications of both the BLOVL3D1 and BLOVL3D2 algorithms. 

5.2 The GUIs Aims 

The 2D GUI is used to visually demonstrate the real time path planning based on the 

BLOVL algorithm. This is useful as it demonstrates the basic idea of the proposed 

algorithm in dealing with pop-up obstacles. On the other hand, the 3D GUI 

implements both the BLOVL3D1 and BLOVL3D2 algorithms, demonstrating the 

concept of rotational planes in finding 3D collision-free paths for different starting and 

target points altitudes.  

5.3 The GUIs Features 

The 2D and 3D GUIs are designed in such a way that their user will be able to operate 

them with minimal guidance and practice. Additionally, both GUIs come with step-by-

step instructions located at the top of the GUIs. As the GUIs commence and progress 

throughout the path planning process, the instructions will guide the user to perform 

the next action after a particular step has been undertaken.  
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In a user-friendliness sense, all objects in the GUIs as shown in Fig. 5.1 are arranged 

to follow a chronological order and with some objects disabled, so that further 

progress can only be made after particular buttons are pressed or a certain parameters 

are keyed-in. Moreover, most of the objects are grouped into a number of frames, 

located at the left hand side of the GUI for convenience purposes and as check points 

to ensure that necessary inputs/parameters are keyed-in for the path planning process.  

Using the 2D GUI, the movement of the UAV traversing the planned 2D path is 

visually animated. It displays the UAV’s traversal along the planned collision-free 

path towards the target point. If pop-up obstacles are detected on the UAV’s path by 

the UAV’s sensor, the proposed algorithms through the 2D GUI will calculate a new 

collision-free path. The UAV will then traverse the newly planned path and repeat the 

previous step if pop-up obstacles are detected, until it reaches the target point. This 

feature allows the real time path planning process can be viewed. Furthermore, there is 

an option that allows the user to view the traces of a path throughout a path planning 

session. As the proposed algorithms are executed sequentially, there might be several 

traces of the optimal paths from the starting point/waypoints to the target point. This 

feature applies to both 2D and 3D GUIs. 

In relation to the 3D GUI, the rotational plane displayed in the provided axis is shown 

sequentially, provided that particular check boxes are properly ticked. These features 

are useful to check the validity of the proposed algorithms’ execution. 

5.4 Path Planning using 2D GUI  

The developed 2D GUI for path planning in 2D is shown in Fig. 5.2. It finds a 

collision-free path with fixed altitude, based on the proposed 2D path planning 

algorithms. In this GUI, the starting point pstart, target point ptarget, obstacles and the 

resultant path are assumed to be at the same heights. They are all displayed in the 

provided axis, which is situated at the right hand side of the GUI.  

5.4.1 Operating the 2D GUI 

The GUI is designed to be user-friendly; the user will be guided throughout a path 

planning session by a series of instruction located in the Instructions box at the top of 
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the GUI. Once the GUI is launched as shown in Fig. 5.2, the user is asked by the 

Instructions box to do the following: 

Welcome to the path planning package by the University of Leicester. To begin, go to 

STEP 1 and set the range of search space. 

STEP 1 consists of several sub-steps as shown in Fig. 5.3. The main purpose of STEP 

1 is to provide the environment, in which the path planning in 2D will take place with 

the necessary parameters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: The GUI for 2D path planning using the proposed algorithms 
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As instructed, the range of the search space has to be set by either selecting the Default 

or by manual entry the Manual radio-button in the Search Range (units) option. If the 

range entered is not as in the required format, a warning window as shown in Fig. 5.4 

will pop-up and suggests the correct format. Assuming that the area of C-space is 

500x500 units, the range is then manually set to [0 500 0 500]. 

 

 

 

 

 

Then the GUI through the Instructions box shows the following: 

Now enter the number of obstacles or load the nodelist in STEP1. 

The obstacles’ number has to be keyed-in in the provided editable box. Otherwise a 

file that contains a node set needs to be supplied. The node set can be imported from a 

file that contains previously saved data by pressing the LoadNodelists pushbutton.  

 

Figure 5.3: The STEP 1 of the 2D package 

Figure 5.4: A warning window asking user to enter the range correctly. 
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For demonstration purposes, 50 obstacles are assumed in the search space, hence 50 is 

keyed-in in the box and the SHOW pushbutton is then pressed. Now, a scenario with 

50 obstacles in a search space of 500x500 has been generated and displayed in the 

provided axis as shown in Fig. 5.5. The obstacles in the search space can be added by 

pressing the Add Obstacles pop-up menu. The dimension of the added obstacles can be 

adjusted using the mouse to match with the real obstacles size in the real world.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then the starting point pstart has to be located by pressing a pushbutton called Starting 

Point. It can be located anywhere within the range of the search space. As soon as the 

pstart is located, the pushbutton for locating the target point, which is named Target 

Point is enabled. As long as the pstart is not located in the search space, the Target 

Point button is kept deactivated. The ptarget location then needs to be specified in the 

search space using the mouse. Suppose the pstart  and ptarget are located at (50, 100), and 

(250, 450), respectively. Fig. 5.6 shows the GUI with the generated scenario after 

STEP 1 has been completed. 

Figure 5.5: A scenario of 500x500 units with 50 obstacles has been set. 
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Figure 5.6: A complete scenario with the area of 500x500 units, 50 obstacles, a 

starting point and target point. 

The next step is to key-in the necessary parameters for path planning, considering the 

UAV’s kinematic constraints such as the vehicle’s speed and maximum bank angle. 

All these are grouped in the STEP 2 – Path Planning frame and shown in Fig. 5.7. 

After all the required parameters are keyed-in, a path can be generated using the 

proposed algorithms by pressing the REAL-TIME PATH PLANNING pushbutton. The 

GUI will then display the path for a UAV with 50 km/h speed and 50 degree bank 

angle in the provided axis as illustrated in Fig. 5.8.  

In order to display the visibility lines created by the algorithms, the Show VL check 

box as shown in Fig. 5.7 has to be ticked. The visibility lines of the previous scenario, 

generated from the pstart and the second waypoint to ptarget are shown in Fig. 5.9 and 

Fig. 5.10, respectively. Displaying the visibility lines is useful because it reflects the 

number of obstacles involved in the path calculation. 
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Figure 5.8: The planned path shown in red, satisfying the kinematic constraints 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Necessary parameters are required to plan a 2D collision-free path. 
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Figure 5.9: The visibility lines are shown from the starting point 

Figure 5.10: The visibility lines are shown from the second waypoint 
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Figure 5.11: The traces of the planned path. 

In addition, by ticking the Trace check box in STEP 2, the trace of the planned path 

from each waypoint will be displayed as depicted in Fig. 5.11. The solid red line is the 

final path, while the dashed red line refers to the path that is planned previously (in 

this case, it is from the starting point). 

Another feature of the GUI is that it displays all the important information about the 

planned path in the Results box located at the lower left part of the GUI as depicted in 

Fig. 5.12. The displayed information represents the current position of the UAV, the 

number of the considered obstacles that have been used to calculate the path, the total 

path length and the computation time.  Additionally, the node list of the current 

scenario can be saved to be used in the future.  

The specific area of the search space can be zoomed-in to display a clearer view of the 

selected area. This is done by pressing the Zoom In push button, which is located at the 

GUI’s top right. Finally, a new session can be started by pressing the New Session 

pushbutton which is situated at the left bottom area of the GUI. The same afore-

mentioned procedures have to be followed to find a collision-free path in 2D. 
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5.4.2 Real-Time Path Planning Using the GUI 

Demonstrating a path planning process in real-time using the proposed algorithms is 

one of purposes of the developed 2D GUI. The GUI is capable of displaying the 

planning and re-planning processes in a scenario with pop-up obstacles. A new path, 

which is locally optimal is planned when the UAV’s sensors detect the pop-up 

obstacles.  

Consider a scenario as shown in Fig. 5.13 in which pop-up obstacles will appear 

during the UAV’s traversal. The scenario consists of 75 a priori defined obstacles with 

pstart and ptarget located at (100,100) and (600,700), respectively. The UAV’s speed is 

assumed to be 50 km/h and its maximum bank angle is 50 degrees. Fig. 5.14 shows a 

globally optimal path (dotted red line) planned, based on the information provided. 

The UAV traversing the planned path is animated in the GUI as shown in Fig. 5.15. 

The dotted green semi-circle is the UAV’s sensor coverage with limited range. As the 

UAV traverses the path, four previously unknown obstacles pop-up and one of them is 

on the UAV’s path. At this moment, the path planner does not take any action as the 

obstacle is yet to be detected by the onboard sensors. As the obstacles are detected as 

illustrated by Fig. 5.16, the UAV will quickly re-plan a new path as depicted in Fig. 

5.17 based on the proposed 2D path planning algorithms. The path is not collision-free 

since the algorithm considers only the obstacles on the base line and their extensions 

in re-planning the path at this moment. The path is again re-planned as soon as the 

sensors detect more pop-up obstacles on the UAV’s path. This situation is illustrated 

in Fig. 5.18. The UAV carries on the flight until it reaches at the target point, ptarget as 

shown in Fig. 5.19.  

Figure 5.12: The information of the planned path. 



128 

 

Figure 5.13: The scenario that is used to demonstrate the real-time path planning. 

Figure 5.14: The globally optimal path. 
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Figure 5.15: The UAV is traversing the planned path. 

Figure 5.16: The UAV detects the pop-up obstacle. 
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Figure 5.17: The new path is re-planned when the pop-up obstacle is detected. 

Figure 5.18: The UAV traverses the re-planned collision-free path. 
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Figure 5.19: The UAV successfully reaches at the target point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.5 Path Planning Using 3D GUI 

The 3D GUI is shown in Fig. 5.20. The package executes the proposed 3D path 

planning algorithms to find a 3D path in a given scenario. Unlike 2D GUI, the 3D GUI 

takes into account the altitudes of the obstacles, the starting point pstart and target point 

ptarget during the path calculation process.  

5.5.1 Operating the 3D GUI 

The way to operate the 3D software package is similar to that of the 2D GUI. First the 

area of the search space has to be defined. In STEP 1 of 3D GUI, unlike in the 2D 

package, the search space consists of six values i.e. [xstart xend ystart yend  zstart zend], as the 

range in the z-axis is included. STEP 1 of 3D GUI is shown in Fig. 5.21. 

Next, the number of obstacles in the provided box needs to be inputted. Pressing the 

SHOW button will display the obstacles, whose dimensions and positions are 

randomly generated. There is also an option to load a set of nodes from a file. An 

example of a scenario covering the area of 500x500x200 with 75 obstacles is shown in 
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Figure 5.20: A GUI for 3D path planning using the proposed algorithms 

Figure 5.21: The STEP 1 of the 3D package. 

Fig. 5.22. More obstacles which are available in several shapes can be added by 

pressing the Add Obstacles pop-up menu. The size of the added obstacles can be 

adjusted according to the real obstacles’ sizes in real world using the mouse.   
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Figure 5.22: The 3D scenario with 75 obstacles 

After that, the altitudes and locations of pstart and ptarget must be defined. An example 

of a complete scenario is shown in Fig. 5.23. In the scenario the locations of the pstart 

and ptarget are assumed to be at coordinates (20,20,170) and (400,500,150), 

respectively. The third values in the coordinates refer to the altitudes of the starting 

and target points. 

In the next step of the 3D GUI, called STEP 2, more information should be supplied to 

the GUI, such as the algorithms to be used (either BLOVL3D1 or BLOVL3D2) and 

the rotation angles. STEP 2 of the package is shown in Fig. 5.24. For the BLOVL3D1 

algorithm, the rotation angles are not required as they are fixed to 0 and 90 degrees. 

After all the necessary parameters are supplied in STEP 2, the PLAN button is pressed 

to find a 3D path. The paths that are planned by the BLOVL3D1 and BLOVL3D2 

algorithms through the 3D GUI are shown in Figs. 5.25 and 5.26, respectively.  Note 

that for BLOVL3D2, the plane rotation angles are set to {0,30,60,90,120,150} 

degrees. 
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Figure 5.23: The complete 3D scenario with 75 obstacles, starting point (blue 

triangle)  and target point (square magenta) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The plane can be displayed in the axis by ticking the Show planes check box as shown 

in Fig. 5.24. The plane is shown sequentially if the StepByStep checkbox is also ticked. 

Using the same scenario, the planes for BLOVL3D1, which is seen from the top and in 

3D views, are depicted in Fig. 5.27 and Fig. 5.28, respectively. On the other hand, the 

planes generated by BLOVL3D2, viewed from top and in 3D are illustrated in Figs. 

5.29 and 5.30, respectively. 

Figure 5.24: Necessary parameters are required to plan a 3D collision-free path. 
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Figure 5.25: The 3D path planned by BLOVL3D1 algorithm. 

Figure 5.26: The 3D path planned by BLOVL3D2 algorithm. 
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Figure 5.27: The planes generated by BLOVL3D1 are seen from top view 

Figure 5.28: The planes generated by BLOVL3D1 are in 3D view. 
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Figure 5.29: The planes generated by BLOVL3D2 are viewed from top 

Figure 5.30: The planes generated by BLOVL3D2 are viewed in 3D. 
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The results of the planned path such as the path length and its computation time can be 

seen in a frame called Results, which is located at the lower left part of the GUI as 

shown in Fig. 5.31. The scenario can also be saved to be used in the future. 

 

 

 

 

 

In addition, a specific area of the search space can be zoomed-in so that the selected 

area can be seen more clearly. This is done by pressing the Zoom In button, located at 

the GUI’s top right. A new 3D path planning session can be started by pressing the 

New Session button which is situated at the left bottom of the GUI, and the same afore-

mentioned procedures have to be performed in order to find a 3D collision-free path. 

5.6 Conclusion 

The software package that has been developed at the University of Leicester consists 

of two Graphical User Interfaces (GUIs), which are called 2D GUI and 3D GUI. Both 

GUIs make the path finding based on the Visibility Graph method in 2D or 3D 

scenarios, respectively easier as the path planning process is done systematically.  

The purposes of the software package are to validate the effectiveness of the proposed 

algorithms visually and to realise and present the proposed algorithms in an intuitive 

way as the package was designed to be user-friendly. Furthermore, the GUIs can be 

operated with minimal guidance and practice, equipped with step-by-step instructions, 

which are located at the top of the GUIs.  

The 2D GUI can be used for real time path planning in 2D using the proposed 2D path 

planning algorithms i.e. BLOVL. One can also use the 3D GUI that has been 

specifically designed to plan 3D paths in 3D scenarios. The 3D GUI combines both the 

3D algorithms i.e. BLOVL3D1 and BLOVL3D2.  

Figure 5.31: The Results frame showing the information about the planned path. 
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The relevant information about the planned path such as path length and processing 

time can be seen in the GUIs. In addition, the scenarios, which were used to generate 

collision-free path can be saved for future use. 
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Chapter 6 

 

Conclusions and Future Work 

Briefly, path planning involves a problem of finding a safe path from a starting point 

to a target point. There are three criteria for path planning; computational efficiency, 

path optimality and completeness.  

These criteria have to be considered before any path planning method/algorithm is 

designed. A path planning method which is computationally efficient is capable of 

planning in real-time in dynamic environments while a path planning method that 

produces an optimal path can save the vehicle’s fuel, reduce the potential risks and 

prolong the vehicle’s life cycle. On the other hand, a path planning method that holds 

the completeness criterion will find a path if one exists. 

This chapter discusses the works that have been undertaken in this thesis on path 

planning, considering the above-mentioned criteria. The next section discusses and 

concludes the developed path planning algorithms including the path planning 

software package. The last section proposes possible extensions of the work that have 

been developed in this thesis. 

 

6.1 Conclusions 

6.1.1 Path Planning in 2D environments 

Two path planning algorithms in two-dimensional (2D) environments have been 

proposed in Chapter 3. The first algorithm, Core is used to find a path through a set of 

obstacles in the environment represented by the configuration space (C-space). A base 

line (BL), which is defined in the Core algorithm, is a line segment that connects the 
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starting point pstart and target point ptarget. Its purpose is to determine a set of obstacles 

O
Core

 that will be used for path calculation. As O
Core

 contains a relatively small number 

of obstacles, the visibility lines (VL) network can be built in a relatively short time.  

Core then plans a path based on the VL network using Dijkstra’s algorithm. Core, 

however, produces a path that might not be collision-free. Thus another algorithm 

called Base Line Oriented Visibility Line (BLOVL) has been proposed. As a matter of 

fact, Core is a part of BLOVL, which runs iteratively. BLOVL checks the visibility 

between two consecutive waypoints i.e. the local starting point (ustart) and the next 

waypoint (utarget), of the previously planned path, at each iteration. Core will be called 

if those two waypoints are blocked by obstacles. This procedure guarantees that the 

resulting path is collision-free. In order to further accelerate BLOVL’s computation 

time, base line (BL) with limited range has been introduced.  

Simulation results showed that BLOVL is computationally efficient in generating a 

collision-free path, suitable for a real-time path planning. Additionally the planned 

paths were similar with those of the VL method. On the other hand the proposed 

algorithms also hold the completeness criterion as the path planning runs iteratively 

until the target point is reached.   

 

6.1.2 Path Planning in 3D environments 

Path planning in a 3D environment is necessary to ensure that the path has a shorter 

distance in comparison with a 2D path. This in turn saves the UAV’s fuel/energy, 

increases its endurance, prolongs its life cycle and minimises the exposure to possible 

risks.  

A 3D path planning algorithm i.e. BLOVL3D2, which are based on BLOVL 

algorithm, have been proposed in Chapter 4 using rotational plane approach. Several 

sub-algorithms including BasePlane, Rotate3D, FindIntersection and BLOVL3D1 

have also been proposed. BasePlane is used to create a local base plane on which a 

visibility lines network will be built and consequently a path will be planned. On the 

other hand, Rotate3D rotates the local plane at predefined angles. FindIntersection 

calculates the intersection points between a rotated plane and obstacles while the 

BLOVL3D1 algorithm finds a path on the rotated local plane.   
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BLOVL3D2, which combines BasePlane, Rotate3D, FindIntersection and 

BLOVL3D1, has been simulated using different numbers of rotation angles and 

obstacles in random scenarios. The results of the simulations have shown that a higher 

number of rotation angles leads to a relatively better 3D path in terms of path’s length. 

Also, the simulations show that the BLOVL3D2 algorithm takes longer time to plan a 

path in environment with higher number of obstacles. The relationship between the 

number of obstacles and the average computation time is slightly non-linear. In terms 

of path lengths, BLOVL3D2 plans longer path in environments with higher number of 

obstacles. 

6.1.3 Path Planning Package for 2D and 3D environments 

A path planning software package that has been developed at the University of 

Leicester using Matlab has been introduced and demonstrated in Chapter 5. The 

purpose of the package is to check the validity of the proposed algorithms visually and 

to implement and present the proposed algorithms in an intuitive way.  

There are two Graphical User Interfaces (GUIs) in the package, in which the first GUI 

is used to execute the BLOVL algorithm, while the second executes the BLOVL3D2. 

In developing the package, several features have been incorporated into the GUIs as 

follows: 

 step-by-step instruction, which is located at the top of the GUIs, is provided.  

 all objects in the GUIs such as editable boxes, push buttons etc. are arranged in a 

chronological order.  

 most of the objects are grouped into a number of frames, which are located at the 

left hand side of the GUI. Putting them in one area makes them easy to be seen 

and handled.  

 the movement of the UAV is visually animated in 2D GUI.  

 there is an option that allows the user to view the traces of a path throughout a 

path planning session.  

 Regarding the 3D GUI, the rotational plane can be displayed in the provided 

axis.  

 related information about the planned path such as the path length and the 

processing time are displayed. 
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 the scenarios can be saved for future use. 

6.2 Future work 

This section briefly addresses the proposed future work to extend the current study. 

The BLOVL and BLOVL3D2 algorithms that have been explained in Chapters 3 and 

4, respectively, assume that the obstacles’ sizes and positions in the C-space are 

known accurately. Future work should consider uncertainties in the obstacles’ sizes 

and positions. As VL-based methods produce waypoints that pass through the 

obstacles nodes, considering uncertainties would guarantee the resultant paths are in 

the free region of C-space.  

Also, the proposed algorithms assume that all obstacles are static. However, in the real 

scenario, obstacles might move from one place to another. Hence it is worth 

considering moving obstacles in designing a path planning algorithm in the future.  

Additionally, the proposed 2D and 3D path planning algorithms only consider a single 

UAV. Missions executed by multiple UAVs achieve better and faster results; therefore 

this would be an ideal area of development in future. 

Also there were no path smoothing and path tracking included in the proposed 

algorithms. As the paths are formed by piece-wise linear segments which have abrupt 

heading changes near waypoints, the UAV might not be able to traverse such paths. In 

order to overcome that drawback, path smoothing or path tracking would be another 

topic to explore for future work.  

Finally there was no consideration in the ascending/descending angle of the path in the 

BLOVL3D2 algorithm. Thus, it is hoped that future work would take this aspect into 

account by incorporating angle restrictions based on the kinematics constraints of a 

particular UAV. 
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