
VOML: VIRTUAL ORGANIZATION MODELLING LANGUAGE

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Noor Jehan Rajper

Department of Computer Science

University of Leicester

June 2012

Abstract

Virtual organizations (VOs) and their breeding environments are an emerging
approach for developing systems as a consortium of autonomous entities formed
to share costs and resources, better respond to opportunities, achieve shorter
time-to-market and exploit fast changing market opportunities. VOs cater for
those demands by incorporating reconfigurations making VOs highly resilient
and agile by design. Reconfiguration of systems is an active research area. Many
policy and specification languages have been dedicated for the purpose. How-
ever, all these approaches consider reconfiguration of a system as somewhat iso-
lated from its business and operational model; it is usually assumed that the latter
two remain unaffected through such reconfigurations and the reconfiguration is
usually limited to dynamic binding of components the system consists of. How-
ever the demands of VO reconfiguration go beyond dynamic binding and reach
the level where it becomes crucial to keep changing the organizational structure
(process model) of the system as well, which leads to changes of the operational/-
functional model. This continuous reconfiguration of the operational model em-
phasizes the need of a modelling language that allows specification and validation
of such systems.
This thesis approaches the problem of formal specification of VOs through the
Virtual Organization Modelling Language (VOML) framework. The core of this
framework are three languages each capturing a specific aspect. The first lan-
guage named Virtual Organization Structural modelling language (VO-S), fo-
cuses on structural aspects and many of the characteristics particular to VOs
such as relationship between the members expressed in domain terminology. The
second language named VO Reconfiguration (VO-R for short), permits different
reconfigurations on the structure of the VO. This language is an extension of
APPEL for the domain of VOs. The third language named VO Operational mod-
elling language (VO-O) describes the operational model of a VO in more details.
This language is an adaptation and extension of the Sensoria Reference Mod-
elling Language for service oriented architecture (SRML).
Our framework models VOs using the VO-S and the VO-R which are at a high
level of abstraction and independent of a specific computational model. Map-
ping rules provide guidelines to generate operational models, thus ensuring that
the two models conform to each other.
The usability and applicability of of VOML is validated through two cases stud-
ies one of which offers travel itineraries as a VO service and is a running example.
The other case study is an adaptation of a case study on developing a chemical
plant from [14].

i

Declaration

The content of this submission was undertaken in the Department of Computer Sci-

ence, University of Leicester, and supervised by Dr. Stephan Reiff-Marganiec during

the period of registration. I hereby declare that the materials of this submission have

not previously been published for a degree or diploma at any other university or insti-

tute. All the materials submitted is the result of my own research except as cited in the

references.

Research work presented in some sections has been previously published, in particu-

lar:

• Some parts of the Chapter 3 (describing the overall VOML framework), basic

concepts of VOs that shape the VO-Structural modelling language (Chapter 4)

and overview of the VO-O modelling language (Chapter 5 and the Section 2.2.1)

has been published in [12].

• The VO-Structural modelling language (Chapter 4) and the VO-R modelling

language (Chapter 6) have been published in [58].

Noor Jehan Rajper

Leicester, June 2012

ii

Acknowledgements

My list of acknowledgements can not begin other than the almighty ALLAH without

Whose guidance and His given strength and will power I would not have been able to

complete my PhD.

After ALLAH’s support I have a long list of people who helped me and provided me

with valuable support during the course of this PhD.

I am very fortunate to have been guided by many great mentors from my early school-

ing to PhD level studies. My mentors during early years of schooling at Agha Taj

Muhammad High School, Hyderabad, Pakistan, gave me the strong foundations which

helped me towards becoming an independent thinker and researcher. These founda-

tions were brushed up and brought to forefront from dormancy by my esteemed super-

visor, Dr. Stephan Reiff-Marganiec, for whom I fall short of words when it comes to

express my deep gratitude. He not only provided me with the valuable input during the

course of PhD but at many times believed in my work when I had lost hope myself.

I consider myself fortunate to have undergone PhD studies at University of Leices-

ter, which provides a second supervisor to all the PhD students. Many thanks to my

second supervisor José Fiadeiro, whose many years experience has a major share in

shaping up my PhD work.

I have no words to express my gratitude for my parents who have always been with

me through thick and thin and have always been my source of inspiration. Their pride

and belief in me proved to be my source of strength and kept me going when I felt I

could not do it any more.

My beloved family, husband Rizwan, and children (Hania and Arham) are probably

the ones who have given the most sacrifices for me to complete my PhD. My husband

was always there to support and encourage me when I was stuck in my PhD. My chil-

dren made me forget the stress of my PhD and brought sheer joy on my face whenever

I looked at them and strengthened my resolve to complete the PhD. It would not have

been possible to complete my PhD had I not have my family’s unconditional and end-

less love and understanding.

iii

Last but not the least many thanks to friends and fellows at the University of Leicester

for their help and valuable suggestions .

iv

Contents

Abstract i

Declaration i

Acknowledgements iii

1 Introduction 1

1.1 Context and Research Challenges 1

1.2 Criteria for Modelling Languages in the Domain of VOs 5

1.3 Overview of the Approach . 6

1.4 Aims and Objectives . 7

1.4.1 Aims . 7

1.4.2 Objectives . 8

1.4.3 Questions . 9

1.5 Thesis Statement . 9

1.6 Main Contributions . 10

1.7 Thesis Organization and Summary 11

2 Background 13

2.1 Virtual Organizations and their Breeding Environments 13

2.1.1 Virtual Breeding Environment 14

2.1.2 The Life Cycle Model . 15

2.1.3 VO Classification . 16

v

2.1.3.1 ARCON Reference Model 17

2.2 Business Process Modelling . 19

2.2.1 SRML: SENSORIA Reference Modelling Language 19

2.2.1.1 Interaction . 20

2.2.1.2 The Business and Layer Protocols 21

2.2.1.3 Business Role . 23

2.2.1.4 Wires . 24

2.2.1.5 Configuration Policies 25

2.3 Reconfiguration Mechanisms . 26

2.3.1 APPEL . 27

2.4 Related Work . 28

2.4.1 Modelling Approaches . 28

2.4.1.1 Dynamic Coalitions 28

2.4.1.2 Research Supporting Replication or Composition of

Entities . 30

2.4.1.3 ASSL: Autonomic System Specification Language . 32

2.5 Summary . 33

3 The VOML Framework 35

3.1 Representation Levels of VOML . 36

3.1.1 Formal Model of the VOML Framework 37

3.1.2 The VOML Modelling Languages 38

3.1.3 Rationale Behind the VOML Framework 39

3.2 Basic VOML Modelling Elements 42

3.3 The VOML Framework in the Context of the VO Life Cycle 45

3.4 Case Study . 47

3.4.1 Running Example: TravelBK VO 47

3.4.2 Evaluation Example: ChemicalPD VO 49

3.5 Glossary . 50

3.6 Summary . 51

vi

4 VO-S: VO-Structural Modelling Language 52

4.1 VO-S Modelling Constructs . 52

4.1.1 Process . 53

4.1.2 Task Specification . 54

4.1.3 Task Types . 56

4.1.4 The Structure of Task . 59

4.1.4.1 TaskScope Attributes 59

4.1.4.2 ConfScope Attributes 61

4.1.5 Competency . 62

4.1.6 Business Functionality . 62

4.1.7 VBEassets . 64

4.1.8 Data-Flow . 65

4.1.9 Members . 66

4.1.9.1 VOcoordinator . 67

4.1.9.2 Customer . 68

4.2 Summary . 69

5 VO-O Language & Mapping Methodology 70

5.1 Virtual Organization-Operational Modelling Language : VO-O 70

5.1.1 Changes to the SRML . 72

5.2 Methodology to Map VO-S to VO-O 73

5.2.1 Methodology . 74

5.2.2 Step 1: The Rules for DataTypes 75

5.2.3 Step 2: The Rules for Generating VO-O Business and Layer

Protocol from VO-S Task and VBEasset Specification 76

5.2.3.1 Part 1 . 78

5.2.3.2 Part 2: Rules for Generating Interactions Part . . 80

5.2.3.3 Part 3: Rules for Behaviour Part of Business Pro-

tocol . 83

5.2.4 Step 3: Business Protocol Rules for the Customer 84

vii

5.2.4.1 The Behaviour generation guidelines for business

protocols representing customer of a VO 86

5.2.5 Step 4: Adjusting Supporting Tasks in VO-S Process Description 87

5.2.6 Step 5: Rules for Component and ExtEntity Triggers 87

5.2.7 Step 6: Interactions Part Generation of Business Role (Or-

chestrator) . 88

5.2.7.1 Guidelines for Generation of Interactions Part of

Business Role . 89

5.2.8 Step 7: Generating Business Role Transition Skeletons 90

5.2.9 Step 8: Orchestration Part of Business Role 93

5.2.9.1 State Chart Generation 93

5.2.10 Step 9: Wire and Interaction Protocol Generation Rules 95

5.2.10.1 Wire Generation Rules 96

5.3 Summary . 97

6 VO-R: VO-Reconfiguration Modelling Language 98

6.1 Reconfiguration Events . 99

6.2 Conditions . 101

6.3 Actions . 102

6.4 The TravelBK Case Study . 105

6.4.1 Scenario 1: More hotel beds are needed than the current provider

can provide . 105

6.4.2 Scenario 2: Further means of transport are needed 106

6.4.3 Scenario 3: One of the hotel partners has had a fire and had to

withdraw their commitment 107

6.5 Summary . 108

7 Formal Syntax and Semantics of VOML 111

7.1 xtext . 111

7.2 VOML Syntax . 112

viii

7.2.1 VOSmodel . 113

7.3 Task Specification . 114

7.3.1 VORmodel . 116

7.3.2 VOOmodel . 117

7.4 Semantics . 118

7.5 Summary . 119

8 Evaluation and Discussion 120

8.1 Chemical Process Development Case Study 120

8.1.1 Task Structure of the ChemicalPD 121

8.1.2 Membership Types of ChemicalPD 124

8.1.2.1 Company Acquisition and Coordination Difficulties 126

8.1.3 Dynamic Nature of ChemicalPD 127

8.1.3.1 Goal Modification 127

8.2 Assessment of Framework According to Criteria 134

8.2.1 Handling of Failure . 135

8.3 Comparison with the ARCON Reference Model 137

8.4 Evaluating the VOML Framework with Respect to Questions set out

at the Start . 139

8.5 Summary . 141

9 Conclusion 143

9.1 Concluding Remarks . 143

9.2 Future Work . 144

Appendices 148

A TravelBK : A travel itinerary offering VO 148

B ChemicalPD : A Chemical plant developing VO 152

C VOML Syntax 159

ix

List of Figures

2.1 A SRML Business Protocol . 22

2.2 Local state of Orchestrator . 23

2.3 A Transition in SRML . 24

2.4 A SRML wire . 25

2.5 A Interaction Protocol . 25

3.1 The Overview of the VOML framework 39

3.2 VO Reconfiguration . 40

3.3 The VisitLondon VBE with two VOs: TravelBK and OlympicUpdate . 48

4.1 VO-S Process Description . 54

4.2 AtomicTask description in VO-S . 56

4.3 A ReplicableTask description in VO-S 57

4.4 A ComposableTask description in VO-S 58

4.5 Competency description in VO-S . 62

4.6 A Business Functionality description in VO-S 64

4.7 A VO-S description of VBEresource 65

4.8 Description of Data-flow . 65

4.9 A Partner and an Associate description in VO-S language 67

5.1 VO-S and VO-O relationship . 71

5.2 Relationship between Task/VBEasset and Business/Layer protocols . 77

5.3 A Business Functionality in VO-S and its corresponding VO-O trans-

formation . 82

x

5.4 VO-O Business Protocol Behaviour 83

5.5 A Wire in VO-O language . 96

6.1 TravelBK VO after applying Rules from Scenario 1 109

6.2 TravelBK VO before and after applying rules from Scenario 2 110

7.1 Semantic integration of VO-S, VO-R and VO-O at conceptual level . . 119

8.1 The structure of the Chemical Development Project at the end of Phase

1 of original case study . 123

8.2 EquipmentProvision Task before and after capability change 129

8.3 FullScalePlantConstruction Task before and after Replication 142

xi

List of Tables

4.1 Main VO-S modelling constructs . 53

4.2 Possible values for the performedBy attribute 59

xii

Chapter 1

Introduction

This section introduces the context and research challenges of our thesis, presents

aims, objectives and research questions, sets a thesis statement, highlights the contri-

bution of the thesis and outlines its structure.

1.1 Context and Research Challenges

Ever-changing business demands and market turbulence demand of organizations to

continuously and quickly adapt in order to remain competitive. This quite often re-

quires new skills and resources which many organizations fail to have at their disposal.

The most affected are small and medium organizations (SMEs). Hence it has become

necessity in the existing highly dynamic market for the organizations to collaborate

and coordinate with other autonomous (some times competing) organizations to make

up for the skills and resources or capacity they lack to respond better to a business

opportunity or even take the modest share from large organizations.

Virtual Organization (VO) is a concept that has emerged as the consequence; generally

understood as a temporary alliance of autonomous entities (organizations, individuals,

etc) that strategically share skills and resources supported by computer networks, to

achieve some benefit not possible otherwise [28, 40, 19]. A VO is a dynamic orga-

nization that is formed according to the needs and opportunities of the market and

1

remains operational as long as these opportunities persist; once the opportunity ends,

the organization dismantles itself.

Some of examples of virtual organizations are:

• To compete in business environment where opportunities are predominantly

captured by large organizations, small and medium (SME) organizations come

together to appear as a single large organization to increase profitability or to

compensate for the missing skills.

• Incident management, disaster rescuing processes and emergency response teams,

where it is necessary to immediately coordinate activities of a large number of

entities such as fire brigades, army, volunteers, police, hospitals, local govern-

ment, non-governmental organizations.

A VO achieves these attributes by allowing companies to seek complementaries that

allow them to participate in competitive business opportunities and new markets, by

creating partnerships to achieve its goals (tasks) or to achieve critical mass and appear

in the market with a larger “apparent size”. They can also achieve cost and effective-

ness by sharing responsibilities between members if one member is either incapable

to do it alone or will take longer.

All these attributes shape the composition of a VO in terms of who is assigned to

what responsibility (task), how different tasks of a VO are shared between its mem-

bers, which member is contributing how much of its resources, what the relationship

between the members is, etc. To understand and describe this complex composition

of VOs we need to model them first. Though there are many existing modelling lan-

guages which could be used to specify VOs, none of them completely and naturally

satisfy the demands of VOs. The benefits of having a specification language specifi-

cally geared towards a particular domain are manifold and advocated in the literature.

Key benefits are: first of all modelling languages abstract away unnecessary details of

implementation; secondly it helps to work directly with notions and concepts of the

domain at hand; thirdly having precise models allows for various analysis to be con-

ducted on the blueprint of a VO (rather then developing a fully-fledged running VO).

2

The significance of having a modelling language for VOs has not gone unnoticed

by the research community. For example at the more conceptual end of the spec-

trum there has been a dedicated effort by the European Commission Sixth Framework

Programme Project (ECOLEAD) to understand the field in depth. The result of this

effort is an abstract reference model called ARCON (Abstract Reference model for

Collaborative Networks) [23], which is intended as a generic conceptual model that

synthesizes and formalizes the base concepts of the domain. However, this reference

model is generic and is not intended to be directly applicable to concrete cases.

Whereas, on the more concrete end of the spectrum, modelling of VOs for differ-

ent sort of analysis, guarantees or properties is also gaining momentum. At this level

VOs are modelled in already established generic formal modelling languages with tool

support for analysis. One such example is [44] which has resulted from the GOLD

project [3]. The limitation of such languages is that they require fluency in the chosen

notation by the stakeholder (domain experts) in order to model the system.

Developing a modelling framework which on the one hand models VOs using termi-

nology familiar to the stakeholders but on the other hand is formal and paves the way

for different sorts of analysis is one research challenge. We provide a modelling lan-

guage which uses the concepts developed in the ARCON but offers a more concrete

realization thus being a step towards rigorous analysis.

While the composition of a VO is determined by the need to associate the most suit-

able set of capabilities contributed by the distinct organizations, a VO is expected to

be flexible in its composition and structure so that it can reorganize itself by adding or

expelling some members or by dynamically re-assigning tasks to its members; in par-

ticular by sharing a task across members or decomposing a complex task into smaller

more specialized subtasks. These trends require organizations to be agile, that is for

them to have “the ability to recognize, rapidly react and cope with the unpredictable

changes in the environment, with the smooth adaptation of its structure to the new

current reality” [21]. But, the prevailing system engineering approaches represent-

ing such organizations with “fixed organizational structures” obstruct such agility and

3

resilience [1, 53, 54, 55]. A VO is derived by the business opportunity; hence any

aspect of it might need to be changed in order to keep the VO goal aligned with the

business opportunity. This not only affects its membership but may also be reflected

in its structural organization which forms a challenge for modelling VOs. Our mod-

elling framework does not only describes different aspects of the VO but also provides

provisions to account for this flexibility.

While developing modelling languages for specific domains, two aspects of the system

are mostly ignored or abstracted away: (a) the application aspect of the system i.e the

actual goal or service (specification of business functionality) offered by the system,

and (b) the coordination and communication model close to the underlying execution

environment. The reason behind this abstraction (in our opinion) is that it is usually

assumed that the business specification model (including coordination and commu-

nication model) are not affected by the domain level reorganization of the system.

However any restructuring (reconfiguration) which adds something new, modifies or

deletes something from the system does change the coordination and communication

model representing the business aspect. Consider a scenario in which a VO demands

a certain level of resource stock for some task; at the domain level (abstract level) of

modelling it is just a matter of adding more than one member using a construct equiv-

alent to an Add operation. What is usually left untouched is that at the operational

level it is not just the matter of a simple Add operation. The implications are that now

more than one member needs to be communicated with, which implies addition of

some coordination, communication and possible computation operations and a possi-

ble increase in the number of components or other concrete entities representing the

elements of the underlying execution paradigm.

Such complexities in the more concrete operational models are usually left out and

provisions for such changes is specified at more abstract level. This approach, nonethe-

less plays a key role in understanding and describing systems in the early stages of

system development. However, the picture remains incomplete without describing the

affects of reconfigurations on the operational and communication model of the system

4

which is closet to the actual implementation of the system.

Many specification and policy languages exists that model systems in a specific do-

main and their reorganization (reconfiguration); all of these approaches to the best of

our knowledge consider the modelling of a system some what isolated from its un-

derlying coordination and communication model. Hence, looking at the effects of

reconfiguration on business and coordination and communication model is another

challenge. Our modelling framework addresses this by mapping concepts defined at

the domain level to the concepts defined at operational level. This helps to identify

what part of operational level gets affected by any reconfiguration done on its corre-

sponding part at the domain level and how it gets affected.

In summary, we are putting forward a framework for modelling VOs at the structural

level, catering for their reconfigurations and allowing to express affects on business

and coordination models. In this thesis; we put forward a novel framework targeted

towards VOs which addresses all of the above research challenges.

1.2 Criteria for Modelling Languages in the Domain of

VOs

From the previous section, we can extract a number of criteria that a modelling lan-

guage attempting to be useful for VBE and VO domain must posses. These criteria

also help us in identifying the limitations and strengths of our research by comparing it

with others’ efforts based on the criteria laid out here. The selection and evaluation of

the two case studies that are explored in this thesis are justified against these criteria,

too.

A VO modelling language should be able to to satisfy the following criteria:

C1. Expressibility: Representing domain concepts as modelling language constructs.

C2. Ability of the language to evolve the model.

C3. Represent changing association of members with VBEs and VOs. Some mem-

5

bers remain part of a VO from its inception to dissolution, while others keep

changing quite frequently.

C4. Capture the concept of collaboration by:

1. Allowing more than one member to carry out a particular task.

2. Sub-dividing a task into more than one tasks and assigning each subtask to

be performed by individual member.

C5. Define different kinds of relationships between members for example member

cooperating or competing over a task.

C6. Adapt the goal of a VO to meet changing business circumstances.

C7. Resist VOs failing to operate or failing to provide the promised service as long

as possible such as by proving provisions which allow VOs to operate with

degraded performance .

C8. Preserve the autonomy of members. Members should be responsible for man-

aging their resources while sharing them in VO with others.

C9. Free from fixed “organizational structure” i.e able to modify the operational

model.

1.3 Overview of the Approach

To address all the research challenges presented in Section 1.1 and the criteria de-

scribed in Section 1.2 we have developed a framework called Virtual Organization

Modelling Language framework. The framework addresses the above research chal-

lenges by developing three modelling languages each focusing on one of the chal-

lenges. The framework is then evaluated against the above criteria in Chapters 6 and

8.

The first language called Virtual Organization Structural (VO-S) modelling language

6

is concerned with describing the structural aspect of virtual organizations (Chapter 4).

It describes how the VO is currently organized, mainly in terms of tasks, competen-

cies, members and relationships between the members. The second research challenge

which is about catering to the agility demands of VOs is approached through another

modelling language called Virtual Organization Reconfiguration (VO-R) modelling

language (Chapter 6), which incorporates reconfiguration aspect for VOs by a dedi-

cated set of generic events, conditions and actions which apply to any VO irrespective

of its application. The third aspect which focuses on the business functionality and

coordination and communication model, is addressed through a third dedicated lan-

guage (Chapter 5). The framework also links the three languages together as follows:

The language used for reconfiguration uses constructs defined in the VO-S language

which describes the structural aspects of VO using domain terminology; the events,

conditions and actions of the reconfiguration related language is also defined in terms

of constructs of the structure defining language. The link between the structure defin-

ing and operational aspect defining language is created through a set of mapping rules

(Chapter 5). These mappings also help in checking the consistency between structural

and operational models of the VO.

1.4 Aims and Objectives

The overall aim of this work is to provide a framework for modelling VBEs and VOs

whose agility demands may also affect its operational model. It is useful to identify

the particular problems that we need to overcome.

1.4.1 Aims

Define a modelling framework for VOs that:

1. Offer domain concepts as “first class” entities.

This aim includes the provision of domain concepts the domain experts relate

7

naturally and intuitively to and at the level of abstraction which is comprehensi-

ble to different stakeholders of domain without any technological expertise.

2. Allows to express the structure of VOs independent from its operational aspects.

This aim includes provision of modelling constructs which are able to describe

basic structural composition of VOs such as the members of VOs, the responsi-

bilities assigned to them, the relationships between members, etc irrespective of

the underlying execution environment.

3. Provides Return on Modelling Efforts (RoME).

This aim includes provision of reconfiguration constructs for the VO models,

impact of reconfigurations both at structural and operational level and lending

models for formal analysis.

4. Ensures developing correct by construction operational models from structural

(domain) model.

This includes provision of rules which correctly transform a structural model

into corresponding operational model.

1.4.2 Objectives

We have developed a framework targeting the above aims that address a number of

concrete objectives. In particular the framework shall:

1. Be general and able to describe different kinds of VOs.

2. Be platform and technology neutral.

3. Be able to adapt VOs with changing circumstances.

4. Be simple by separating concerns and keeping the structural, dynamic and op-

erational aspects separate.

5. Be able to generate the operational model from the structural model.

To address these objectives we need to answer following questions.

8

1.4.3 Questions

1. How general is the specification language in terms of the VO domain, i.e. does it

cover all the domain where VOs occur (e.g business, social, governance)? What

sort of VOs can be modelled with it?

2. How is the agility required by VOs offered through the VOML framework?

3. What is the effect of reconfiguration on the operational model, that is when does

the operational model need to be changed?

4. Does the reconfigurations require abandoning the running instances?

5. How are reconfigurations checked to make sure that they do not put the VO into

inconsistent state with respect to VOs’ structural specification.

All the questions are revisited in the Section 8.4 to validate which of these questions

the VOML framework is able to answer and how.

1.5 Thesis Statement

The features associated with VOs demand radical changes in the style we model, de-

sign and develop systems. Needs such as re-organizing VOs by adding/expelling some

members, sharing or dividing a task between members or by dynamically reassigning

tasks or roles to its members have profound implication on the systems’ operational

aspect as well. Current modelling languages hardly address these issues, especially

considering the impact such changes can have on the operational model. In particu-

lar, there is no common modelling language for specifying VOs that allows to specify

VOs and their reconfigurations at the abstraction level of domain experts, while also

reflecting the effect of such reconfiguration on the operational model and at the same

time being formal enough to allow analysis to be carried out.

It is our ultimate intent to provide a framework in which domain users are able to de-

scribe and understand the system specification in terms of their domain terminology

9

and the IT community can derive a complete operational model from the former. Thus,

it is our ultimate goal to build and impose a VO modelling language (VOML) generic

and expressive enough for modelling a variety of VOs. With VOML we are aiming at

the formal modelling, reconfiguration and generating operational model of VOs.

1.6 Main Contributions

This thesis introduces VOML, a novel framework for modelling VOs. The main con-

tributions are:

1. Three different modelling languages are developed each capturing different as-

pect of VO.

(a) Virtual Organization-Structural modelling language (VO-S) focuses on

structural aspects and many of the characteristics particular to VOs such

as different relationships that can exist between members of the VOs, their

competencies, what tasks they are assigned etc.

(b) Virtual Organization-Reconfiguration language permitting to reorganize

the structure of VO through reconfigurations. This language is an exten-

sion of APPEL for the domain of VOs. In particular, it provides generic set

of events, conditions and actions which can apply to every VO application.

(c) Virtual Organization-Operational modelling language (VO-O) describes

operational model of VO in more details. This language is an adaptation

and extension of Sensoria Reference Modelling Language for service ori-

ented architecture.

2. Mapping rules from VO-S to VO-O which generate a partial VO-O specification

from VO-S specification. These rules also act as conformance verifier of VO-O

model to their corresponding VO-S models.

3. Validate the generality of the VOML framework by specifying two characteris-

tically different VOs:

10

(a) Travel booking VO.

(b) VO for developing chemical plants.

1.7 Thesis Organization and Summary

This chapter explained the purpose of the dissertation - a framework for modelling vir-

tual organization. We explained the research challenges addressed in this dissertation

which are: (a) provide a modelling language which offers constructs which different

stakeholders of the VO easily relate to, (b) out of those constructs a concrete opera-

tional model of VO can be generated which cover the business aspect of the VO, and

(c) offer provisions which allow to reorganize the VO structure to cater to the agility

demands of the VOs. We listed research aims, objective and questions relating to them.

Furthermore, we set of the criteria against which the developed modelling languages

are evaluated in the subsequent chapters. We also provided clear thesis statement and

research contributions.

The reminder of this dissertation is organized as follow:

• In Chapter 2, we give a detailed account of research background. Specifically we

are going to discuss in detail the SRML language, which we have adapted and

adjusted for the specifying operational aspects of VOs. The ARCON reference

model is also introduces in this chapter which provides guideline on developing

concrete models for different types of VOs and VBEs. We are also going to

discuss related work there.

• In Chapter 3, we introduce VOML framework in detail.

• In Chapter 4, we discuss in detail the VO-S modelling language.

• In Chapter 5, We discuss the adjustments made to the SRML to adapt it as

our VO-O modelling language. Furthermore, we specify mapping rules which

generate VO-O specification from a given VO-S specification.

11

• In Chapter 6, we introduce VO-R modelling language and model and reconfig-

ure a VO offering travel itineraries.

• In Chapter 7, we discuss the formal syntax of the three languages which is de-

scribed using the xtext [4] language. Semantic integration of the languages is

also discussed at the conceptual level.

• In Chapter 8, we evaluate our framework against another case study which de-

velops chemical plants. We also evaluate VO-S language against ARCON ref-

erence model. Furthermore, we also evaluate our framework with respects to

questions and the criteria described earlier in this chapter.

• In Chapter 9, we provide a concluding discussion, discuss future research direc-

tions.

12

Chapter 2

Background

In this chapter we introduce the background of the field of virtual organizations and

their breeding environments, SRML and APPEL languages, aimed at helping in un-

derstanding our research context and the VOML framework.

2.1 Virtual Organizations and their Breeding Environ-

ments

Virtual organization (VO) is a new and emerging discipline which manifest itself in a

large variety of forms, including collaborative networks, virtual enterprises, dynamic

supply chains, professional virtual communities, collaborative virtual laboratories, ex-

tended enterprises etc. The main reason for these different manifestations is that so far

there is no consolidated definition for this paradigm. Scores of different terms are used

in the literature that either refer to the same concepts or its different perspectives [18].

Rapid development of information and communication technologies have opened new

ways of doing business and socializing never possible before. The facilities offered

by this technological development have raised new challenges for business, societal

and and scientific worlds as well. These challenges are forcing entities (organiza-

tions or otherwise) to seek complementaries and join efforts that allow them to better

participate in challenging and competitive environments, expand businesses and enter

13

new markets, compete against business giants by collective size and capacity of the

partners. The concept of rapidly finding a set of complementary partners and quickly

configuring them into a virtual organization that best addresses the business opportu-

nity and challenges faced in the turbulent markets has raised considerable expectations

in both business and other non-business contexts [26, 18]. A large variety of VOs have

emerged as a result covering a wide domain spectrum. Some examples of VOs in the

business sector can be found in [67]. [16] is one example in the domain of professional

communities [8, 53] are example of VOs offering services. Other examples include

[57]. The Grid-based technologies have also gained momentum due to their incorpo-

ration of the VO concept as a basic service provision mechanism [40, 38, 39].

A VO is a timely creation of a temporary alliance of geographically and tempo-

rally dispersed organizations/individuals that collaborate and share their resources to

achieve some benefit not possible otherwise, with the possibility of partners being un-

familiar [28, 40, 19]. In the optimal scenario, this alliance shall help reduce production

time, lower production costs and provide a better exploitation of market opportunities,

among other potential benefits.

2.1.1 Virtual Breeding Environment

Although VOs offer many potential and tempting advantages such as their capability

to be created quickly and on time to capture the business opportunity or to change

swiftly to react to environmental changes, VOs alone are not able to offer such advan-

tages. Finding the right partners and establishing necessary conditions for starting the

collaboration process are costly and time consuming activities and inhibit the desired

agility. Besides, companies are reluctant to open up their resources to possibly un-

known partners of VOs due to a lack of trust. Beside being reluctant to trust strangers

there is a very good chance that even when different entities do decide to trust and

collaborate, interoperability and integration of different organizations is difficult [26].

14

This issue is addressed by the ECOLEAD project in the form of Virtual Breeding En-

vironments [2, 17].

All organizations or individuals interested in forming a virtual alliance create a per-

manent alliance called a Virtual Breeding Environment (VBE). The VBE serves the

purpose of taking all the measures necessary for timely creation of temporary collab-

oration, such as resolving different infrastructure integration issues of the member or-

ganizations, standardizing data interoperability mechanisms, setting trust and security

policies for member organizations, etc. The VBE forms the Breeding Environment

for Virtual Organizations. When an opportunity arises, suitable partners are chosen

quickly from among the VBE members to form a temporary alliance called Virtual

Organization (VO) and when the objective is accomplished the VO is either disman-

tled or re-structured to provide new functionality. This way of VO creation within a

breeding environment has the advantage of agility; finding partners, negotiating col-

laboration terms and conditions, and resolving heterogeneity issues from infrastructure

to information are more efficient. Organizations serving a purpose similar to VBE can

be seen in many real world scenarios with many different names such as chambers of

commerces, VO clusters, enterprise networks [59] etc,.

2.1.2 The Life Cycle Model

The life cycle [23] of the VBEs consists of three main stages: creation, operation and

dissolution. The meaning of these stages is obvious from their names. In the creation

phase a VBE is formed, its members are selected, the basic infrastructure and other

facilities are laid down for the support and management VBE itself. VBE members,

competency profile and other working principles are set up. The operation phase of

VBE predominantly consists of creation and dissolution of VOs as per business op-

portunities and environmental changes. The VBE also keeps evolving itself by joining

and leaving of its members and updating its competency profile, hence some research

considers another stage called evolution stage. The dissolution phase rarely occur in

the VBE where a VBE terminates its existence. Usually instead of dissolution a VBE

15

goes through a Metamorphism stage where its general form and or purpose can evolve.

This stage may involve the transfer of collected knowledge/information, as well as the

members to a third party.

A VO exists and dismantles during the operation phase of the VBE. Most of the lit-

erature also suggest similar life cycle stages for the VO i.e. VO creation, operation,

evolution and dissolution stages with similar meaning as for VBEs. However, since

a VO exists to capture a particular business opportunity and dismantles when the op-

portunity is served or no longer exists, a VO hardly under goes metamorphism phase.

Rather, a different VO is created to capture new business opportunity. Hence, a VO

usually does not undergo the metamorphism phase. During the evolution phase a VO

undergoes some changes that slightly modify the goal or the approach to achieve the

goal is changed in some way; be this change in membership, structure or the com-

petencies of the VO. These changes could be triggered as a result of changes in the

market dynamics. However, the initial goal which prompted the creation of VO still

remains the same.

2.1.3 VO Classification

A VO can be classified in many different ways according to the its different charac-

teristics. Just as there is no universally accepted terminology or definition of base

concepts for the field of VOs and VBEs, similarly, there is no universally agreed upon

classification of VOs and VBEs. However, the most common classification character-

istics are [7, 18]:

• Duration

VOs can be short term (if made for a single business opportunity and dissolve

at the end of such process), or long term (lasting for an indefinite number of

business processes or for a specific time span).

• Coordination

VOs can have many different coordination structures, such as flat/democratic al-

16

liance (all cooperating nodes work on equal basis maintaining their autonomy,

but joining in their core competencies), star-like (there is a dominant company

surrounded by relatively fixed networks of suppliers) or Tree/Federation (hav-

ing formed some kind of common coordination structure by realizing common

management of resources and skills).

• Configuration flexibility

VOs can be characterized by the flexibility of partners ability to dynamically

join/leave the VO. Those VOs that do not offer such flexibility are called fixed

or static VOs and those that do are termed dynamic VOs.

Beside these general classification, we can find a through classification of VOs and

VBEs and their different manifestations in [23, 24]. This classification captures subtle

differences and similarities between them. The main similarity between them is that

they all are created to offer a product/service through collaboration of their members.

Hence all these forms are put under the umbrella of collaborative networks.

2.1.3.1 ARCON Reference Model

ARCON (A Reference model for Collaborative Networks) is a generic abstract model

for understanding the basic concepts and main elements of any organization(s) show-

ing some features of VOs or VBEs collectively referred to as Collaborative Network

Organizations (CNOs) [2, 25, 20, 56]. It is developed in the ECOLEAD project [2]. It

is intended as a guide to facilitate the derivation of focused model for various manifes-

tations of VOs or VBEs pertaining to specific execution environment [24]. The AR-

CON reference model has attempted to consolidate different concepts developed for

VBEs and VOs in different domains, in particular business-oriented view, technology-

oriented view and to some extent style-oriented view which focuses on the social con-

cepts such as culture, values, norms, principals, trust, etc. The ARCON framework is

divided into three perspectives: Life cycle stages perspective addresses diversity and

evolution of different VOs and VBEs during their life cycle which is same as given in

Section 2.1.2. Environmental characteristics perspective is divided into two parts: (a)

17

the environment internal to the VOs and VBEs (Endogenous characteristics) and (b)

the environment external to the VBEs and VOs (Exogenous interactions). Internal en-

vironment refers to elements such as VBE participants, VOs, resources used by VBE

and VO, processes and operations such as member registration, competency manage-

ment, governance rules, roles in VBE and VOs, etc. Endogenous elements are divided

into four dimensions as follows:

• Structural dimension: This dimension refers to those entities which constitute

the VBEs and VOs such as participants, relationships among the participants,

the role and tasks performed by the participants, topological organization of

VBEs and VOs, etcetera.

• Componential dimension: Consists of elements that are used and managed by

the other elements of the VBEs and VOs such as different types of resources

such as human, software, hardware, knowledge, etc.

• Functional dimension: Functional dimension refers to different processes and

operations performed in CNOs to manage different aspects of CNOs.

• Behavioural dimension: Addresses different principles, policies, norms, cul-

ture, etc that drive or constrain the behaviour of VBEs and VOs members.

External characteristics refers to the concepts such as how VBE is viewed by elements

external to it and how those elements interact (operations) with the VBE. It consists

of (a) market dimension which relates to interaction with both the customers and com-

petitors of CNOs, (b) support dimension refers to services provided by third parties

which help different aspects and elements of CNOs, (c) societal dimension refers to

the impact that CNOs has on the society such as the impact on the environment, etc.

Third perspective called Modelling intent explore different intents for modelling VBEs

and VOs ranging from general representation models (called general representation

layer) to specific models which are more detailed than general models (called specific

modelling layer) and the models which are developed for specific execution environ-

ments called implementation modelling layer.

18

2.2 Business Process Modelling

Business process modelling languages describe the behaviour of a system with high-

est level of details such that the system can almost readily be executed on underlying

execution environment. They describe the behaviour of a system into concrete oper-

ations and may also describe absolute orchestration between those operations. There

are many process modelling languages but the most prevalent are activity diagrams of

UML (Unified Modelling Languages) [32], BPMN (Business Process Modelling No-

tation) [13] and BPML (Business Process Modelling Languages). We, however have

adapted Sensoria Reference Modelling Language (SRML) as our modelling language

focusing on operational aspects of the VOs. The reason behind this decision is SRML’s

underlying mathematical basis and its support for different quantitative and qualitative

analysis. The other reason for this decision is that components in SRML are business

reflective i.e. they focus on the business functionality offered by the component and

this is exactly what we want to represent at the operational level of the VOML models.

2.2.1 SRML: SENSORIA Reference Modelling Language

SRML [35] is defined under the umbrella of the SENSORIA project to operate at the

higher level of abstraction of ”business” or ”domain” architectures.

Service and Activity are main modelling elements of the SRML; they are called mod-

ules in the SRML. A service that needs to be published and discovered when a request

from external entities (other services) comes in, is modelled through service module

of SRML. The activity modules are used to model applications that are developed to

satisfy specific business requirements of a given business organizations. The activity

modules are local to the given business organization.

In each case, the modules are composed of one or more components connected through

wires. These components are classified as following:

• Requires-interfaces: Specify services, that are provided by external parties to

the module themselves.

19

• Uses-interfaces: Specify resources used by the modules.

• Provides-interface: Possessed only by service modules; it describes the service

that is offered by the service module. Each service module can at most have one

provides interface.

• Serves-interface: Equivalent of provides-interface in activity modules.

• Internal components: Components other than requires, provides, uses, and serves

are called internal components or simply components of the modules.

A Components is specified in terms of Business role; provides and requires interfaces

are specified in terms of Business protocols; whereas, serves and uses interfaces spec-

ified in terms of Layer protocols. Wires on the other hand are specified in terms of

Interaction protocols.

2.2.1.1 Interaction

Interactions are the basic means of communication between different components of

the modules. SRML distinguishes between following types of interactions:

• Asynchronous and Conversational interactions: These interactions are called

conversational as the party initiating the interaction expects a reply but does not

blocks until the reply is received. In SRML, these interactions exchange many

events between the communicating parties, but we only consider two events in

our work (a) interaction֠ - the event of initiating interaction, and (b) interac-

tion� - the reply-event of interaction. The following interaction types in this

category are described from the point of view of the party in which they are

defined:

– r&s : This interaction is initiated by the co-party.

– s&r : This interaction is initiated by the party.

20

• Asynchronous and non-conversational interactions: These interaction are called

non-conversational as the party initiating the interaction does not expect any

reply from the co-party and asynchronous because the party does not blocks

until the reply. The following two interaction types fall under this category:

– rcv : In this interaction the co-party initiates the interaction.

– snd : In this interaction the party initiates the interaction.

• Synchronous interactions : Synchronous interactions are those interactions where

the party synchronises with the co-party i.e. blocks until the co-party replies or

completes. The following interaction types fall in this category:

– ask : The party synchronises with the co-party to obtain data.

– rpl : The party synchronises with the co-party to transmit data.

– tll : The party requests the co-party to perform an operation.

– prf : The party performs an operation.

2.2.1.2 The Business and Layer Protocols

In SRML, Business protocol types the requires- and provides- interfaces of a SRML

module. It consists of a set of interactions called signature and a set of properties

called behaviour. The signature lists the set of interaction the party, represented by the

business protocol can engage in; while the behaviour, using these interactions specify

either, what is required from the external services that need to be procured (in the case

of requires-interface) or what is offered by the service orchestrated by the module

(in the case of provides-interfaces. For instance, the service TravelBK specifies the

following behaviour that it expects from a FlightAgent, given in figure 2.1 :

The first property specifies that the FlightAgent is ready to engage in lockFlight

interaction (from its signature). The second property specifies that after receiving the

commitment to the flight booking offer, the flight agent becomes ready to engage in

the revoking of the offer from the customer until it is not already the day of departure.

21

Figure 2.1: A SRML Business Protocol

A property in SRML is defined using following patterns whose semantics have been

defined in terms of formulas of the temporal logic UCTL [62]. The following are

most commonly used patterns in SRML.

• initiallyEnabled e: The behaviour of any protocol always starts with this sen-

tence pattern. The property implies that the event e is enabled in the initial state

and remains so until it is executed.

• a enables e: This pattern implies that the event e can only be executed after the

event a holds .

• a ensures e: This patterns implies that the event e can only be published after

the event a holds.

The Layer protocol on the other hand types the serves- and uses- interfaces of a

SRML module. Like business protocol, a layer protocol consists of a signature and

behaviour part. However, the interactions used in a layer protocol are usually syn-

chronous and blocking as opposed to asynchronous interactions of business protocol.

22

2.2.1.3 Business Role

Business roles type the components (internal) of the SRML modules. Like protocols,

the business role consists of set of interactions called signature; unlike protocols a

business role describes how the interactions are orchestrated using states and transi-

tions. The states model the control, defined in terms of a state chart as shown in the

Figure 2.2.

The control flow is represented through a special variable (s in the Figure 2.2), which

Figure 2.2: Local state of Orchestrator

basically describes the way the component (orchestrator) reacts to triggers (described

below). The other state variables are used for storing data required during different

stages of the orchestration.

The actions performed by component are represented through transitions as shown in

Figure 2.3. A transition has an optional name and a number of possible features as

follow:

• The triggeredBy feature represents the trigger which enables the transition to

be executed.

• The guardedBy feature denotes the guard which is a condition that identifies the

states in which the transition can occur. The transition is not executed even if

the triggering event of the transition holds, unless the guard holds as well.

• The effects feature describes one or more sentences that specify the effects of

the transition on the local state and other local variables i.e. a given state or

local variable var, changes its state/value to var’ to denote the state that the

23

Figure 2.3: A Transition in SRML

component moves to after the transition or the changed value the local variable

gets as a result of some computation.

• The sends specifies the events that are published during the execution of the

transition.

2.2.1.4 Wires

The specification of wires in SRML consists of rows as shown in the Figure 5.5. Each

row is typed with what is called a connector. A connector coordinates an interac-

tion (and its parameters) between two parties joined through the wire. The main

ingredients of connector are two roles (A and B) and an interaction protocol. The

interaction protocol describes the coordination behaviour between the roles, which in

turn are mapped to the actual parties’ interactions. The semantics of the coordination

behaviour (i.e. how the interactions are coordinated) of the interaction protocol is

provided through a collection of sentences called interaction glue.

As an example, consider the following protocol used in the wire that connects two

parties. This is a straight protocol that connects two entities over two conversational

interactions that have two ֠ -parameters and one� -parameter. The property S1 ≡ R1

24

Figure 2.4: A SRML wire

Figure 2.5: A Interaction Protocol

establishes that the events associated with each interaction are the same, for example

that S1֠ is the same as R1֠ .

2.2.1.5 Configuration Policies

SRML deals with the issues such as processes of discovery, selection and instantia-

tion of services with what are called Configuration policies. Furthermore, the policies

which address issues relate to the service instantiation such as the initialisation of ser-

vice components and the triggering of the discovery of required services by policies

called internal configuration policies. These policies are denoted by the symbol

in diagrammatic representation of the modules. The discovery, negotiation and selec-

tion of external service that need to be procured by the module are the issues that are

25

addressed by the external configuration policies. The external configuration policy is

represented by the symbol in the diagrammatic representation of the module

and it lists a set of variables that establish a service level agreement (SLA) during ne-

gotiation, and a set of constraints that are taken into account during the discovery and

selection of external parties. The approach taken by SRML for service level agreement

is based on constraint sanctification and optimization framework of [10].

2.3 Reconfiguration Mechanisms

Policy languages are used for defining policies for different purposes from access con-

trol, distributed systems, to security and management of distributed systems. They are

used to modify the behaviour of the system [49]. They describe information specify-

ing the user requirements, preferences and constraints [41]. Some examples of policy

languages are Ponder [29], KAoS [63], Rei [45], XACML, and WSPL. Each of these

languages addresses a specific aspect(s) of a specific domain. Though any of these

languages could be used for those aspects of virtual organizations which are common

between virtual and other traditional business domains; there are certain aspect which

are particular to (or at least become more paramount in) the domain of VO. One such

example can be policies for evolution. This need is convincing enough to look for

policy description which directly addresses VO needs. Having a policy description

which directly addresses the main notions of VO, complements and enhances the ex-

pressiveness of the modelling language for Virtual Organization.

While policies provide a feasible approach towards reconfiguration, a special policy

language is required which provides explicit constructs suitable for the domain of

VO reconfigurations. Typically a policy language can be completely domain specific

or a more generic ECA (event-condition-action) based language can be adapted to

new domains by providing appropriate actions, triggers and conditions. It is the lat-

ter approach that we follow by adapting the APPEL (Adaptable Programmable Policy

Environment Language) as our reconfiguration language [48].

26

2.3.1 APPEL

The APPEL (Adaptable and Programmable Policy Environment and Language) had

been developed with a clear separation of domain and core language. APPEL has a

style closer to natural language as it was aimed at use by non-technical end users,

rather than for developers or system administrators, something which should benefit

the users of VO modelling languages. APPEL was originally aimed at call control, but

has since been specialised for domains such as sensor networks, elderly care, and now

VOs. The Policy rules are the basic building block of APPEL. To group more than one

policy rule in a single policy a number of operators (sequential, parallel, guarded and

unguarded choice) are offered. A policy rule is a variant of an ECA rule, consisting

of an optional trigger, an optional condition, and an action. The applicability of a

rule depends on whether its trigger has occurred (if one is defined) and whether its

conditions are satisfied. A condition expresses properties of the state and the trigger

parameters (in some domains it is natural to have triggers with parameters, such as

the to and from in a call request). and, or and not operators are provided to combine

more than one condition, with the operators having the expected meaning. Actions

have an effect on the system to which the policies are applied. Several operators are

available to compose actions: and leads to the execution of both actions in either

order, andthen specifies that the first action precedes the second in any execution, or

specifies that either one of the actions should be taken, and orelse that is like or but

prescribes that the first option is preferred. Triggers and actions are domain specific

atoms. Conditions are either domain specific or a more generic (e.g. time) predicates.

The core of APPEL has been given a formal semantics in [50].

A typical APPEL policy looks as follows:

policy policy-name appliesTo task-id/member-id/VO-id

when optional trigger(s)

if optional condition(s)

do action(s)

27

The specialization of APPEL to Virtual organisations forms the Virtual Organisa-

tions Reconfiguration language VO-R. For VO-R we have added a number of triggers,

conditions and actions specific to VOs. We also adapted the meaning of the localisa-

tion: appliesTo allows to ‘locate’ the elements of the VO, on which the given policy

applies. The values for appliesTo can be a VO task or its membership, in our case.

In distributed settings this would allow to specify the location of a policy, for VOs this

allows to express which task (or tasks) a policy applies to.

2.4 Related Work

We have argued in the thesis statement (Section 1.5), there is no general modelling lan-

guage for specifying VOs using domain terminology. Although some research focus

on formalizing VO model in order to carry out different sort of analysis or to anal-

ysis different properties of VOs using already existing formal languages and tools.

Whereas, some researches have focused on providing technology oriented solutions

[55] and some research efforts have focused on providing general reference models for

the VBEs and VOs. However, the approach taken to address the research challenges

set up in the Section 1.1 helps to justify our research in terms of above mentioned and

some other work which we are going to present in this section.

2.4.1 Modelling Approaches

Number of ad-hoc attempts for modelling VOs and VBEs exists in the literature. Some

are limited to preliminary modelling of VO concepts [52, 51], while some have put

dedicated amount of effort in this direction [23, 24, 14, 44, 30].

2.4.1.1 Dynamic Coalitions

This work has been motivated by work within the GOLD [3] project, which seeks

to build an architecture to facilitate the creation and maintenance of Virtual Organisa-

tions within the Chemical Engineering sector [27]. In this work a VO is modelled

28

as dynamic coalition using the Vienna Development Method (VDM) specification

language [37, 36]. It defines a VO consisting of choices made in five orthogonal

dimensions including membership, information representation, provenance, time and

trust [44]. This work is mainly interested in the flow of information around models

of coalitions (VOs) [14]. For example, identifying states of formal models in which

information has reached the wrong actor (one who is not supposed to get the con-

cerned information), or where information has not reached the right actor (one who

is supposed to get the concerned information). These models are analysed to identify

these states. In each dimension, information is distinguish between the one which is

related to the the material traded between agents in a coalition (which we refer to as

business functionality) and the one about the agents, coalitions or information itself so

called meta-information, such as the age of a piece of information, or the identity of a

coalition. Each dimension corresponds to a form of meta-information and the models

make that meta-information explicit. In each model, consideration of the invariants,

preconditions etc. leads to alternative models representing design choices. The result

of this analysis is a suite of models that deal with individual dimensions and present

the coalition architect with a range of design alternatives, allowing a particular archi-

tecture to be placed within the space of coalitions.

Being a formal model different kinds of analysis and verification are possible. Our

work differs in the sense that it tries to develop a modelling language with the level of

abstraction raised to a point where it is possible to directly support notions and con-

cepts that are paramount in the domain of VO such as a VO consisting of different

permanent and transient members and resources being utilized, the relationship be-

tween the members.

The focus of the dynamic coalition is the meta-information and the information re-

lated to the business functionality is abstracted away to support the architect in de-

signing coalition structures while the focus of the VOML is the information related

to the business functionality and developing business applications using VO termi-

nology. Dynamic coalitions model VOs using languages well know for the analysis

29

purpose and supported by tools for such analysis. The trade-off made for such anal-

ysis is that domain concepts are either ignored or defined using the terminology of

the language being used for analysis. Mapping is used to make the analogy between

domain concepts and the constructs available in the underlying language used. The

VOML framework complements such efforts by making domain concepts available as

language constructs.

2.4.1.2 Research Supporting Replication or Composition of Entities

The provision of constructs in a language that allow sharing a task between more than

one entity or decomposing a task into sub tasks is, to the best of our knowledge a

novel construct in the VOML framework. However, the concept itself can be traced in

other work weather implicitly or otherwise. In particular, we are going to discuss two

research efforts which justify the VOML’s such constructs in the area of VO.

• MetaSelf Architecture: The MetaSelf attempts to design distributed systems

that can dynamically adapt in a predictable way to react to unexpected events

by self-organizing and self-adapting [31, 60]. The Metaself attempts to add

resilience to systems that reside in dynamically changing environment, where

the components required by the system arrive, depart or get modified during

the course of systems’ existence. To ensure that such systems would respect

key properties during the dynamic evolution, MetaSelf provides the solution in

the form of system architecture with architectural patterns called dynamic re-

silience mechanisms (DRMs). The DRMs use run-time information to maintain

resilience through adaptation, e.g. by dynamically composing a satisfactory ser-

vice from lower-specification components. This allows the systems to evolve

dynamically to offer a continued, if necessary (predictably) degraded, service

using the resources available at the time the negative event is detected.

DRMs rely on the availability at run-time of resilience metadata information

about system components, sufficient to govern decision-making about dynamic

reconfiguration. The metadata is used to guide reconfiguration in accordance

30

with resilience policies (e.g. to increase the number of alternate services if avail-

ability starts to decline). A run-time environment acquires, maintains and pub-

lishes metadata. Hence, this approach allows making dependability-maintaining

adaptations at run-time.We can relate to this work in two ways: first it validates

our concept of sharing a task between more than one member or dividing a task

into sub tasks such that their emergent behaviour conforms to the original de-

scription of the task. Second, rather than proving a fixed predefined solution

the Meta-self system can react differently to the same problem using resilience

policies; we are able to do the same using the VO-R language.

However, the VOML framework goes a step further by providing a modelling

language with built-in constructs for such task distribution. Furthermore, it also

reflects the affect of such evolution on the underlying models of the VO (VO-S

and VO-O).

• Conoise-G: The CONOISE-G (Constraint Oriented Negotiation in an Open In-

formation Services Environment for the Grid) project focuses on providing a

technology-oriented solution for formation of reliable and scalable virtual or-

ganizations in a dynamic, open and competitive environment [1]. It provides

agent-based infrastructure to support robust and resilient VO creation, operation,

evolution and dissolution [55, 53, 54, 61]. In the Conoise-G architecture a VO

consists of set of autonomous agents, each with some capabilities and resources,

who have come together for obtaining potential benefits. When the business

context changes, the VO either disbands or rearrange itself to better fit the new

circumstances. It is this rearrangement that we are interested in. For example

a service which demands 50 minutes per month of Entertainment (video clips)

than this service demands can be provided by two service providers if a single

provider can not satisfy the number of minutes of video clips [55, 53, 54, 61].

This corresponds to replication of task based on capacity (minutes) in our work.

Our work aims at developing a reconfigurable modelling language rather then

providing a platform and technology specific solution. Another difference is

31

that their reconfiguration is limited to dynamically replacing one member with

another having similar behaviour and capabilities whereas we also allow shar-

ing a task between members with each contributing either part of the capacity

required or different capabilities required for the task.

2.4.1.3 ASSL: Autonomic System Specification Language

The ASSL is dedicated to the development of self-managing autonomic computing

[64, 65]. It offers a formal specification framework for specification and code gen-

eration of autonomic system [46, 47]. The ASSL specification model consists of

multi-tier specification of autonomic systems. These tiers decompose an AS into two

levels: first into levels of functional abstraction and second into functionally related

sub-tiers [46, 47]. The first level decomposes the system into further three tiers:

• Autonomic System (AS): The AS tier defines the global perspective of an auto-

nomic system in terms of system rules, architecture, actions, events and metrics

which must be achieved by the constituent elements (AEs) of the AS.

• AS Interaction Protocol (ASIP): The ASIP defines the global communication

protocol between AEs (autonomic elements).

• Autonomic Element (AE): The AEs are individual computing elements which

form the overall AS. These interacting set of individuals are defined with their

own behaviour, which must be synchronized with rules from the global AS per-

spective.

The second level further decomposes the above three tiers consisting of elements rel-

evant at each tier, for example the AS tier consists of service level objective, self-

managing properties, AS architecture, actions, events and metrics. From ASSL speci-

fication the JAVA code is generated.

The VOML framework follows same style of specifying systems i.e first a VO is de-

fined in terms of domain defined abstract languages (VO-S and VO-R) and from that

specification an implementation oriented code is generated. However, unlike ASSL’s

32

approach of providing a specific language code, at the implementation level, we de-

fine our VO in another modelling languages which is neutral to any technology, but

detailed enough to be readily used by the underlying execution environment. The lan-

guage used for implementation level description is adaptation of SRML, which having

an underlying mathematical background opens ways for performing analysis and ver-

ifying different properties.

The other deviation that we see in ASSL and our framework is that ASSL specifica-

tion style abstract away from the functionality offered by resources they are managing.

This in our understanding, implies that an assumption is made in ASSL framework

that the behaviour of the managed resources does not change and neither does a re-

source get replaced by two or more resources whose collective behaviour corresponds

to the behaviour of replaced resources; ASSL also does not account for the behaviour

that gets affected due the structural changes made through policies by the ASSL. The

agility and flexibility demands of VOs and VBEs on the other hand compels us to con-

sider the behaviour of the entities (resources or other wise) as first class entity. When

any entity is unable to provide the behaviour required for some reason than VO should

be flexible to replace it with two or more entities whose collective behaviour satis-

fies the behaviour of the replaced entities. This replacement consequently changes the

structure of the VO and eventually the operational structure of the VO (at the VO-O

level) as well. Hence, the VOML framework considers both the VO specification in

terms of VO concepts, its reconfiguration and the reconfiguration affects on the under-

lying entities.

2.5 Summary

This Chapter described in detail the background literature of VOs. It also explained

the SRML language which has been adapted and extended by the VOML framework

for VO-O language. The APPEL policy language is also introduced in this chapter

which has been extended for the VO-R language.

33

In addition the VOML framework was compared with a few literature that could be

related to the approach taken in the VOML framework.

34

Chapter 3

The VOML Framework

This chapter attempts to help the reader understand the VOML framework in detail.

The VOML framework defines different levels of representation of VBEs, VOs and

their activities. The focus of this thesis however, has been virtual organizations, but,

since a VBE represents the organizational context in which the creation and operation

of VOs takes place different aspects of VOs are described in terms of different levels of

VBE representation. Hence, this chapter first introduces relevant aspects of the VBE

level and then building on that, it describes different aspects of VOs.

In synopsis, VOML supports the definition of a structural and behavioural model of

a fixed VBE based on three different levels of representation: the persistent, busi-

ness configuration and state configuration levels. A VO is described at the business

and state configuration levels. Each level focuses on specific aspects of a VO us-

ing different modelling languages namely the VO-Structural, VO-Reconfiguration and

VO-Operational modelling language.

Moreover, we also introduce our two case studies here, one of which is going to be

used through out the remaining chapters to elaborate on different segments of our re-

search work and the other one will be used for the evaluation of the research work.

Parts of this chapter have been published in [12].

35

3.1 Representation Levels of VOML

The VOML framework consists of a number of languages addressing different levels

of representations. Over these levels VOML, captures different aspects of VOs and

VBEs using modelling languages specifically developed to capture the desired level

of details at that level. These levels are not ‘architectural layers’: they do not contain

entities that interact with entities in other layers. Rather, they represent a hierarchy of

representations at a fixed time.

• At Level (1) persistent functionalities of the VBE are described such as its cur-

rent partners, assets (resources and supporting tasks), competencies and gover-

nance policies. This level is invariant, i.e. it provides a representation of those

aspects of a VBE that will not change. Focus of our research has been on mod-

elling different aspects of VOs therefore, we have not modelled persistent level

using any modelling language, it seems plausible that the VO-S language can be

used to model persistent level.

• At the level (2) the transient functionalities of the VOs that are offered by the

VBE at a specific moment in time are defined, what we call a business config-

uration of the VBE; this level captures the way a VBE is logically organised

at that time in terms of VOs and VBEtasks. It is at this level that we define

the structural aspects of the VOs using the VO-S modelling language and any

changes (reconfigurations) induced in the VO structural model through the VO-

R modelling language. The model describing structural aspects of VO is called

Structural model.

• At level (3), the ensemble of ‘components’ (instances) connected through ‘wires’

that, at that time, deliver the services offered by the VOs present in the business

configuration, what we call a state configuration are defined. The state config-

uration represents the actual ‘physical’ instances of the VOs that are currently

operational, i.e. which specific services are currently being provided within the

36

VBE. ‘Real’ entities are only represented in state configurations: the other lev-

els deal only with types of entities.

The components and wires representing VOs focus on the coordination and

communication aspect and how their particular organization realizes the ser-

vice promised by the VO. The language used for the description of components

and wires is called VO-O modelling language and the model describing VOs in

terms of components and wires is called operational model.

3.1.1 Formal Model of the VOML Framework

More specifically, the three levels of representation are modelled as follows:

– Persistent Level

A VBE consists of (1) a collection of resources; (2) a consortium of (per-

sistent) partners; (3) a number of policies constraining the way resources

can be shared and the partners agree to do business together, including

rules for the consortium to expand for establishing specific VOs; and (4)

a number of supporting tasks (VBEtask) that operate processes (manage-

ment or otherwise) that serve the roles enacted within the VBE. These

constituent elements are invariant, i.e. they are present in every business

configuration of the VBE.

– Business Configuration Level

The current business configuration of a VBE, is understood as (1) the col-

lection of additional (non-permanent) members, that we call associates

and external entities (ExtEntities), and resources that are part of the VBE;

(2) the tasks (VBEtasks) that support the roles of the new partners and

their resources; (3) the VOs that the VBE currently supports; and (4) the

policies that apply to their instantiation and their coordination at any given

time. VBE support tasks and VOs may rely on complementary, transient

partners (which we call ‘associates’) that join the VBE to provide specific

37

business services and remain in the VBE only while those services are

required. Associates can be fixed at VO-creation time either at the dis-

cretion of customer or when a VBE does not have a suitable partner for a

VO, while ExtEntities are discovered on the fly when needed, subject to

service-level agreements, in order to be able to accommodate the needs of

specific clients.

– State Configuration Level

The current state configuration of a VBE consists of ‘components’, con-

nected through ‘wires’, that jointly operate the VBEtasks and the services

offered by the VOs that are running in the current state. These components

include the shared resources of the VBE as well as those that are brought

into the VBE by the associates and external entities. The topology of the

configuration (the way components are wired together) reflects the poli-

cies established at the level of the current business configuration. At this

level, one can determine levels of resource consumption or properties of a

number of other parameters, including measures of quality of service.

3.1.2 The VOML Modelling Languages

The business configuration level and state configuration level, each comes with

dedicated languages suited for the level of details that matter there. These lan-

guages are discussed in detail in the coming chapters, but very briefly, at the

business configuration level we focus on the structure of the VOs at the highest

level of abstraction using domain terminology. At the level below i.e. at the

state configuration level we focus on the operational model of the VO providing

sufficient details to realize the VO with respective to an underlying execution

environment. The VO-R language triggers changes mostly at the VO-S model

level, but some aspects could apply directly at the VO-O level. Clearly changes

at the VO-S level impact upon the VO-O model.

38

Figure 3.1: The Overview of the VOML framework

To clarify the relationship between different languages, we are going to describe

the general description of architecture and process that shows how different

models and languages relate to each other.

Very briefly, structural models present the general structure of the VO; these are

mapped into operational models. The operational models are quite close to re-

spective execution frameworks (such as agent based systems or service oriented

systems) and can be mapped to these. The execution framework is monitored

and any changes are reported back to the model levels where policies are acti-

vated to refine the VOs and ensure that they remain competitive. Reconfigura-

tion rules are checked for consistency and furthermore any VO-model should be

correct by construction (that is it should be a true refinement of the respective

structural model) however this is further ensured by consistency checks. Figure

3.1 depicts this overview in a graphical manner.

3.1.3 Rationale Behind the VOML Framework

This different levels of representation enable us to focus on different dimen-

sions of VOs at each level individually. For example at the business level we

talk about the concepts which are specific to VOs irrespective of the functional-

ity VOs offer. This dimension is captured through the VO-Structural Language

(VO-S). At this level we are also able to talk about the adaptability needs of VOs

in general; we cover this dimension through our VO-Reconfiguration Language

39

(VO-R). At the state configuration level we focus on the business functionality

offered by any VOs, in sufficient detail to allow for ready execution. We have

developed VO-Operational Language (VO-O) for describing this business func-

tionality.

Models at the state configuration level are derived from the information available

in the VO-S models. One particular structural configuration of the VO-S model

gives way to a set of its operational (instance level) configurations. Changing the

structural model through reconfiguration might invalidate some or all of differ-

ent operational configurations possible from the previous structural model and

allow for new set of valid operational configurations. This situation is shown in

Fig 3.2.

Figure 3.2: VO Reconfiguration

This particular organization of VOML framework also resolves the issue of fixed

organizational structure and only looking at systems either at a very abstract

level (with the highest level of reconfiguration flexibility) or a very concrete

level (having a fixed organizational structure thus making any changes in the

structure very difficult), but missing out the whole picture. This issue was dis-

cussed in detail in Chapter 1. This problem is resolved by the VOML frame-

work; it gives us different levels to describe two different (but related) aspects

of the same system (VO) using dedicated languages fit for the purpose. Further-

more, it provides the level of flexibility needed by the VO domain to get away

40

with the limitation of fixed organizational structure (operational model). This

has two fold effects: (1) we are able to address most of the agility and flexibility

demands of VO by incorporating reconfiguration changes at the abstract level

(VO-S), then (2) using mapping rules, we are able to make the required changes

at the concrete level (VO-O). Part of the importance of distinguishing between

these three levels is that we can account for two different kinds of change (as-

suming that the VBE level is invariant as we do not model the creation of VBEs)

at the structural and operational level respectively:

– Changes in the business configuration reflect the creation or deletion of

VBEtasks or VOs. Creating a new VO may involve identifying associates

external entities or the criteria that will need to be observed for discovering

such external entities on the fly, depending on the nature of the customers

that procure the service (in which case each VO instance may involve dif-

ferent associates and external entities). Deleting a VO requires that the

current state configuration is in a quiescent state relative to that VO, i.e.

that none of the services offered by the VO is currently active. Changes at

this level are triggered by external business concerns.

– Changes to the state configuration result from the launching of (instances

of) VBE tasks or of services provided by one of the VOs present in the

business configuration, which dynamically adds (or removes) components

or wires to (from) the current state configuration. Changes at this level are

triggered by the actions performed by or through the components and the

communications exchanged through the wires that connect them.

Given the way levels are organised, these changes take place in different ‘time-

bands’ in the sense of [15], i.e. the levels induce different granularities of time:

the state-configuration changes take place within a fixed business configuration,

meaning that business configurations induce a coarser time scale.

41

3.2 Basic VOML Modelling Elements

In this section we describe the basic elements the VBE comprises of. Each VBE con-

sists of a number of participants, competencies, VBEassets (VBEtasks and VBEre-

sources), VOs and policies concerning VBE’s different aspects.

• Participants: Each VBE is a coalition of participants which could range from

individuals to organizations. These participants are willing to cooperate by

forming VOs. A participant in a VBE and consequently in a VO can be ei-

ther a Partner, an Associate or an ExtEntity.

A Partner is assumed to be a permanent member of the VBE. A partner is in

the VBE because they are willing to cooperate in different VOs whenever an

opportunity arises which requires their capabilities. It may be involved in more

than one VO at any time and might be sitting idle at other times.

An Associate on the other hand is one who has not joined the VBE before hand;

rather it has been invited into the VBE because either its capabilities are re-

quired by one or more VOs/VBEtasks or it has been specifically demanded by

the customer of the VO. An associate’s participation in the VBE is bound to

the duration in which its capabilities are required. When its capabilities are no

longer required an associate has to leave the VBE (unless invited by the VBE

itself to become a partner).

Provision of partners and associates to VOs is the responsibility of the VBE.

However, a VO can opt for a member from the open universe as well. A mem-

ber of a VO from the open universe is termed ExtEntity in the model. Inclusion

of an ExtEntity is acknowledgement of the fact that sometimes it is beneficial to

choose members as per the customer demands or business goal of the VO. The

customer only specifies its preferences rather than actually providing the mem-

ber (in which case the member would be termed an associate). For example the

flight booking agent of the TRavelBK case study is discovered dynamically in

order to maximize the customer satisfaction.

Associates and partners are chosen for VOs at its creation whereas ExtEntities

42

are discovered dynamically from the open universe.

Distinguishing between partners, associates and external entities allows to not

only identify permanent and transient members but also allows VBE to impose

different constraint on them. For example a VBE can impose a governance rule

that no associate is allowed to perform managerial task or there could be a rule

in VBE that says if a particular VO task require a capability which is not listed

in VBE competency list then an external entity could be hired.

• VOs: The VBE offers its services to the outside world through the creation of

the VOs, it is the only offering made available for the VBE customers and hence

the focal point of the VBE. A VO consists of a set of tasks that the members of

the VO need to perform which leads to the satisfaction of the goal the VO is cre-

ated to achieve. The managements aspects of the VO itself such as its creation,

deletion, modification in structure, goal or membership, or any other aspect is

managed by a special partner of the VO, called the coordinator of the VO. A VO

also gets support from the VBE either by exploiting VBE’s assets (VBEasset)

such as its resources (VBEresources) or supporting tasks (VBEtasks). In the

subsequent chapters the modelling languages for the description of VOs (and

VBEs) are going to be discussed in detail.

• Special Roles: Following are two special roles that exists in VOML framework:

– VOcoordinator: Every VO has one VOcoordinator who transforms the

identified business opportunity into the goal that the VO has to achieve.

The VOcoordinator is responsible for coming up with the plan to satisfy

the goal, identify the skills, capabilities and resources needed to achieve

it and selects the members for the VO. It is the VOcoordinator who steers

the VO with several exclusive rights, such as changing the membership

of the VO or modifying its goals (i.e., end products or services offered).

In VOML the VOcoordinator consolidates several distinct organizational

roles, such as broker, planner and coordinator.

43

– VBEmanager: A VBEmanager is responsible for the management of the

whole VBE. A VBEmanager is responsible for the creation, dissolution

and updating VBE’s competency lists, inviting or expelling members of the

VBE and developing and code of conduct for VBE members, VO creation,

VO termination and other aspects.

• Competency: A competency in a VBE mainly addresses the capabilities and ca-

pacities of the member entities [34, 9]. Members are chosen for a VO based on

their competencies. A Capability refers to the ability of an entity (organization

or otherwise) to manage and exploit its resources [33]. Whereas, capacity refers

to dynamically changing properties of the capability i.e availability of resources

used by the capability [34]. Hence, a competency is a catalogue of capabilities

and capacities of VBE participants in a particular domain. A VBE usually has

an associated list of commonly used capabilities in that particular domain. A

member of the VBE must possess one of the capabilities mentioned in that list

to become a member of the VBE. There might be a member available for a ca-

pability in the VBE or not at any particular time. If there is no member offering

a particular competency required by some VO, and the capability is listed in the

competency list of the VBE, then the member for that capability is included in

the VBE as an associate if required in the business configuration.

• VBEasset: VBEasset consists of collection of resources and support tasks that

are offered by the VBE to its participants and VOs to carry out different jobs

and for the management of VBE itself. These assets are internal to the VBE and

not accessible by entities outside the VBE. It consists of:

– VBEresource: A VBEresource is one of the assets of the VBE that it

offers to different VOs and Participants.

– VBEtask: The VBEtask refers to processes that support the administration

of the VBE, management of its resources and participant, roles of new

participants and resources, etc. A VBEtask might also be created only

44

to cater for the needs of a specific VO as well. The difference between

VBEtask and VO is that VBEtasks are not available to the outside world

and they only serve the VBE, its members or VOs. Whereas, a VO offers

its services to the outside world and to provide that service a VO might use

some of the VBEtasks.

• Policies & Constraints: Policies and constraints at the VBE level define the

governance rules of the VBE. These policies lay down rules such as expected

behaviour from the VBE members, rules for joining or leaving the VBE, penal-

ties for violating the policies, etcetera. These policies and constraints also shape

the kind of VOs or different relationship that can exists between members of

the VBE or VOs, such a no two VOs in the VBE offer same product or ser-

vice, implying a VBE without competition. Some policies might establish that a

member can not be part of more than a certain number of VOs to ensure fairness

to all its members.

3.3 The VOML Framework in the Context of the VO

Life Cycle

Having provided an overview of our framework, we will now place this into the context

of the different VO life cycle phases showing which parts are supported by languages

from the framework, and how.

A VO inception starts at the business configuration model relying on functionalities

and resources offered by a VBE available at persistent level. A VO is created when a

VO coordinator identities a potential for a new business opportunity that falls under

the niche domain in which the VBE operates. The identification process of business

opportunity for VO creation is beyond the scope of this framework. However, the

process for new VO creation is initiated by a VO coordinator when he sees an oppor-

tunity or it can be brought to him by external entity (future customer) with specific

45

demands. The VO coordinator can be any member of the VBE or the VBE might have

set certain criteria for a VBE member to enact the role of VO coordinator through its

policies and constraints. From the business opportunity the VO coordinator identifies

the basic building blocks of new VO being created and describes these using the VO-S

modelling language. This description specifies the required competencies, capabili-

ties, abstract process description, members roles and relationships, and VBE assets

required from VBE. A VO coordinator also selects partners and associates from the

VBE for specific tasks of the VO.

A VO coordinator is a stakeholder of the business domain and does not necessar-

ily possess skills to describe the concrete operational model which could actually be

executed to satisfy the business opportunity. Hence, the structural model acts as a re-

quirements specification and blue print for the operational model using the mapping

rules provided in the Chapter 5. Using the VO-S model and mapping rules as guide-

lines an operational model is developed by the stakeholders in the IT community. This

operational model is defined using the VO-O language and is quite close to respective

execution frameworks (such as agent based systems or service oriented systems) and

hence can be readily mapped to these. The operational model is defined at the state

configuration level; each VO customer is bound and served by creating a new instance

of VO-O model. External entities (member type) are also discovered from an open

universe (outside the VBE) and bound to each specific VO-O instance. The termina-

tion of a VO-O instance occurs when the customer bound to that instance has been

served and all the VBE assets consumed by that instance are released and external

entities also leave. The termination of a VO-O instance does not imply dissolution of

the VO itself; a VO is dissolved by the termination of the VO-S model which would

be a business decision taken by the VO Coordinator according to rules and regulations

of the VBE. A VBE advertises the services offered through its VOs available at the

business configuration level. A VO exists as long as its VO-S model exists at the busi-

ness configuration level. A VO serves a customer through a VO-O instance at the state

configuration level and this instance ceases to exists when the customer is served.

46

A VO is evolved by reconfiguring it structural and operational models. The reasons

for reconfiguration range from optimization of the VO, re-aligning the goal of the VO

to address a change in the business opportunity or market circumstances, to avoiding

the VO failing in providing its goal. All these reasons of reconfigurations are defined

from the perspective of the business domain, and hence it is the responsibility of the

VO coordinator to describe the situations where a VO needs to reconfigure and what

course of action needs to be taken. For this purpose the language for reconfigura-

tion (VO-R) is at the same level of abstraction as VO-S. During the life-time of the

VOs the execution framework is monitored and any changes are reported back to the

model levels where policies are activated to refine the VOs and ensure that they remain

competitive. The changes made to the VO-S model affect the VO-O model in such a

way that new instances will be following the new model, while any existing running

instance will remain untouched.

3.4 Case Study

In this section we introduce the two case studies which are going to be used to explain

the modelling constructs of the different languages and to demonstrate their effec-

tiveness at capturing different features of the VOs. In this section we also justify the

selection of these two case studies by exploring the different circumstances these VOs

go through from creation to dissolution with respect to the criteria mentioned in the

Section 1.2.

3.4.1 Running Example: TravelBK VO

Consider a VBE named VisitLondon (Figure 3.3) which offers different leisure and

entertainment services to its customers, who are usually tourist. The current members

(partners or associates) of the VBE are: a group of hotels, a car rental company, dif-

ferent travelling companies taking tourists in and out of London, telecommunication

47

Figure 3.3: The VisitLondon VBE with two VOs: TravelBK and OlympicUpdate

providers, entertainment service providers, and a guided-tour provider for London.

This VBE has spawned a number of VOs, each representing a specific business

service offered by the VBE to its customers. Of particular interest for this section is

a virtual organization called TravelBK, an overview of this VO is depicted in Fig. 3.3.

The goal of this VO is to provide travel itineraries for its customers and it is a com-

pendium of three tasks: (1) The TourGuide task provides guided tours for the city;

currently this task is performed by a partner called TourAg. (2) The HotelBooking

task provides accommodation for the customers; it is currently performed by another

partner called AccomProviderX. (3) The TransportProvision task books flight tickets

for the customers which is performed by members whose involvement depends on cus-

tomer preferences and hence they are specified as an ExtEntity (external entity). This

VO uses a database UsrDB (a VBEresource) which provides customers’ card details.

TourAg, AccomProviderX and UsrDB are persistent and hence they remain unchanged

for any instance of the VO.

48

This case study fits well with the criteria described in Section 1.2 on many accounts. It

is a compendium of different services which do not fall into the same area of business

and thus it is highly unlikely that a single entity (organization or otherwise) can offer

all these services. This case study also provides a match for a variety of types of in-

volvement of members. As it is impractical from a business perspective to keep chang-

ing the hotel (physical resource) or tour guides (human resource) quite frequently, the

organizations tend to keep long-term relationships with members performing these

tasks. Whereas the air travel needs to be customized as per customer criteria (cheap

flight, particular airline, customer proximity). Hence, such services are not provided

by a fixed business organization but selected on demand according to customer crite-

ria. Hence, some members are relatively permanent and some are transient.

The reminder of the criteria is discussed in the section 6.4 through different scenarios

when TravelBK VO has to go through different reconfigurations to face the influx of

tourist for the London 2012 Olympic.

3.4.2 Evaluation Example: ChemicalPD VO

The second case study is a VBE named ChemicalVBE, which offers different services

related to the field of chemical Industry. One of the VOs currently operating in this

VBE refurbishes the existing chemical plants and if feasible, updates their batch pro-

cessing process to a more current continuous operation process. The tasks involved in

the VO are: PreliminaryAnalysis which analyses the details of the chemical reactions

involved in the process, assessing the reaction kinetics and investigating if the conver-

sion is feasible. The task PilotPlantDesign designs the new architecture of the plant.

The buildPilotPlant task is responsible for building and operating the pilot plant to

identify suitable modes of operation, potential problems with start-up and shutdown,

etc. Finally, if everything goes right BuildProcessPlant the task builds the full-scale

plant.

In addition to the above tasks there are a number of other (supporting) tasks such as

providing different equipment needed or providing catalysts currently used by the re-

49

action processes. Besides the criteria described in Section 3.4.1 also observed in this

VO, the other criterion that is likely to be encountered is the change in the goal of

the VO. Its goal can change from refurbishing an old chemical plant to building a

new plant from scratch and changing from a batch processing plant to a continuous

one. These changes might affect the members, competencies and tasks. All these and

further changes that this VO goes thorough are discussed in detail in Chapter 5.

3.5 Glossary

We briefly introduce and explain a number of terms used in the thesis that are widely

used throughout the thesis and put the VOML into context. These terms will add

towards understanding VOML framework.

• Structural model: Refers to the abstract description of constituent parts of a

VO using domain terminology. This model only specifies what needs to be

achieved in terms of end business goal, but not how to achieve it.

• Operational model: Focuses more on fine gain details of interactions taking

place between different constituents described in the structural model and how

those interaction are coordinated. This model is also typed with the business

level aim of the VO in more details. Therefore, throughout this thesis the terms

coordination and communication model are also used to refer to operational

model.

• Reconfiguration: Reconfiguration of a VO-S implies a change of value in any

of the attributes of tasks specification, modification of the capability list of a task

or membership replacement. At the operational level however the reconfigura-

tion mostly is reflected by termination of one VO-O instance and creating a new

VO-O instance in place. This is because changes at the operational level (VO-O

level) usually affect the coordination and communication model which repre-

sents specific layout of different components and coordination links between

50

them; at this level reconfiguration does not merely imply a change in attribute

values. Discovery and binding of ExtEntity is the only exception, where re-

configuration is done on the running instances of a VO-O as the VO-O model

anticipates that beforehand.

3.6 Summary

This chapter explained in detail the approach behind the VOML framework; a novel

framework that we have developed for modelling Virtual Organisations (VOs). It pro-

vides different levels of representation for VBEs and VOs. At each level different as-

pects of VOs are captured using different modelling languages offered in the VOML

framework.

This chapter also describes the pragmatic aspect of VOML methodology where VO

life cycle model is described in details (from VOML perspective), different roles and

activities involving the use of models (VO-S, VO-O and VO-R) during different stages

is also described in detail.

Furthermore, this chapter also introduced the glossary of terms and two case studies;

one of the case study is going to be used as running example in the rest of the chapters

and other is going to used in the evaluation of the framework in Chapter 8.

51

Chapter 4

VO-S: VO-Structural Modelling

Language

This chapter explains the Virtual Organization-Structural (VO-S) modelling language

in detail and demonstrates how to model a system in terms of VO specific features

using the VO-S modelling language.

VO-S defines the basic structural (computation-independent) model of the VO in terms

of the domain concepts.

4.1 VO-S Modelling Constructs

The main modelling elements of VO-S are: process, tasks, competencies, members,

resources and reconfiguration policies. These elements define the essential structure

of the VO and provide the basis for its operational models. All of these are described

in detail in the rest of the chapter. Specifically a VO-S model consists of the elements

shown in table 4.1 with details explained in the respective sections.

52

Table 4.1: Main VO-S modelling constructs
Element Section
Process 4.1.1
Tasks (AtomicTask, ComposableTask, ReplicableTask) 4.1.2
Competency (Capability, Capacity) 4.1.5
Members (Partner, Associate, ExtEntity, VOcoordinator,
Customer)

4.1.9

VBEassets (VBEresource, VBEtask) 4.1.7
Data-Flow 4.1.8
Reconfiguration Policies & Constraints 6

4.1.1 Process

Figure 4.1 represents the description of the workflow which leads to meet the goal of

the VO (requirements of the customer) at the highest level of abstraction. It specifies

all the tasks that collectively lead to the realization of the business goal and the control

flow between the tasks.

The Process description lists only those tasks that directly contribute to achieving the

goals of the VO. These tasks however might rely on other supporting tasks to carry

out the assigned responsibilities. These supporting tasks do not appear in the process

description; rather each task lists in its supportedBy attribute all the supporting tasks

it relies upon.

The following elements briefly describe the contents of the Process specification:

• useAsset: This element points to VBE provided resources or processes. From

the VO’s view point they are persistent and always available.

• leadsTo: This keyword refers to the control flow of the process. It has two iden-

tifiers one at left and one at the right. The identifier can be a VO task or VBE-

asset. Semantically, it implies that after the completion of the task or VBEasset

at left-hand side the control moves to the task or VBEasset at the right-hand side.

• satisfyTask(s)(): The arguments for these elements can only be tasks, as the

53

name suggests. Semantically satisfyTasks implies that the exact control flow

between the tasks that are the arguments of this element can be parallel or se-

quential at the VO-O level.

satisfyTask() on the other hand, takes only one argument as input and is used

when the exact sequence is mandatory between different tasks and VBEassets.

Figure 4.1: VO-S Process Description

4.1.2 Task Specification

Task specification is the focal point of the VO-S modelling language. It not only

describes the activities needed to satisfy the goal of the VO, but its description also

captures the VO specific features. The different types of task in VO-S allow sharing of

responsibilities between members by either dividing a task into subtasks or assigning

more than one member to a task. The task specification also captures different kind of

relationships that exist between members of a VO. It allows to impose restrictions on

the way a VO can get restructured through reconfiguration. The competency needed

to carry out the task is also part of the task description. As the VOcoordinator looks

for VBE member’s competencies to select the right partners for a new VO [33], the

task description also shapes the member selection criteria. The type of membership

the VO is going to have is also part of the task description.

A task in VO-S is divided into two parts, structural and business level, respectively

called Structure and Business Functionality. The Structure specifies the VO-

specific features irrespective of the business functionality offered (excluding the com-

54

petency description) and directly or indirectly shapes the VO’s different aspects such

as the topology of the VO, kind of relationships between different members of the VO,

possible valid (re-) configurations at a specific moment in time, resilience and agility

of the VO (by task division and replication), etc.

The Structure is further divided into three parts namely Competency, TaskScope

and ConfScope. The TaskScope lists those attributes which define the basic struc-

ture of the VO. Any reconfigurations which induce changes in this part corresponds to

changing the structure of the task. For example making an atomic task a replicable one

has huge consequence on the structure of the VO. The Confscope on the other hand,

describes the current state of the VO with respect to the TaskScope attributes (struc-

ture of VO). For example, if the TaskScope says that the maximum number of mem-

bers a particular task can be divided into is say three, then the ConfScope describes

currently how many members are actually performing this task. The TaskScope also

puts a check on the kind of reconfigurations the VO can currently go into, keeping the

TaskScope attributes unchanged. The range of values that the ConfScope attributes can

have are restricted by the values the attributes of TaskScope currently have. Consider

the example of the allowedMembers attribute in the TaskScope category. The value

of this attribute specifies the maximum number of participants a particular task can be

shared/divided between. The task is performed by one participant in one configura-

tion, two in another configuration, up to the value specified in the allowedMembers

attribute in some other configuration. The curentMembers attribute of ConfScope

keeps track of exactly how many participants are involved in the configuration at that

particular moment in time.

The Competency list the capabilities and capacities each task expects from its mem-

ber(s) so that the task could be carried out. Hence, the competency part dictates which

member is eligible to join the VO and who is not, but also what the capacity of the

members should be, in addition to having the right capability.

The Business Functionality related data are defined in the detail in the Section 4.1.6).

55

4.1.3 Task Types

Three types of tasks are useful for modelling VOs; and each can be defined in the

language.

• AtomicTask: By making a task an AtomicTask it is implied that this task must

be performed by only one participant. Any configuration of the VO which asso-

ciates more than one participants for this task is considered invalid. The type of

the task however can be changed through policies.

Figure 4.2: AtomicTask description in VO-S

• ReplicableTask: A replicable task is one for which it is permissible to add more

than one member if need be. For example if there are two members who both are

eligible to carry out the replicable task, but both of them fall short of the amount

of resources required (specified through the capacity attribute); collectively

however they can overcome that hurdle, then it is permissible to involve both for

that task. Note that both the members are equally capable of carrying out the task

individually; it is the amount (capacity) of resources required which forces them

56

to cooperate. Also worth mentioning is that the capacity shortage is not the only

reason for which the task can be replicated. There can be many functional/non-

functional criteria defined by coordinator which prefer replication of task over

single members executing them. For example a single member available charges

more to the VO than the two members collectively. In this situation it might be

beneficial to replicate the task.

Figure 4.3: A ReplicableTask description in VO-S

• ComposableTask: Like ReplicableTask, a ComposableTask is one for which

there can be more than one member if need be; but here the criteria is the capa-

bility of the members and not the capacity. Here the task is actually divided into

two or more different subtasks and each subtask can be performed by different

57

VO members.

It is not always the case that a member falls short of capacity only; sometimes

the members also fall short of the capabilities required by the task especially

when there are many capabilities. In this case the task is decomposed into sub-

tasks each having a subset of the original capabilities. This makes the number

of capabilities required to carry out each subtask smaller which increases the

probability of finding a member who possesses all the capabilities necessary to

carry out the task.

Figure 4.4: A ComposableTask description in VO-S

58

4.1.4 The Structure of Task

As mentioned in Section 4.1.2 The Structure specifies the VO-specific features irre-

spective of the business functionality offered (excluding the competency description)

and directly or indirectly shapes the VO’s different aspects. In this section we explain

the Structure in detail.

4.1.4.1 TaskScope Attributes

The following attributes constitute a TaskScope part:

• performedBy: This attribute dictates what type of member is permitted to per-

form the task. The values this attribute can have are given in the Table 4.2. Out

of these values, Partner, Associate and ExtEntity are discussed in detail in

section 4.1.9. The value VBEparticipant implies that under all circumstances

the involved participant must be a member of the VBE. No one external to VBE

can perform the task under consideration; noPreference implies that it does

not matter to the VO at hands if the participant undertaking the task is a member

of the VBE or not.

Table 4.2: Possible values for the performedBy attribute
Value Explaination
Partner Must be performed by a member who is a permanent mem-

ber of VBE; under no circumstances it could be violated.
Associate Same as Partner but here the member must either be provided

on the discretion of the customer of the VO or invited into the
VBE temporarily by the VBE itself when the VBE falls short
of one of its competencies.

ExtEntity The member be discovered from outside VBE and this mem-
ber keeps changing with each VO instance.

VBEparticipant Only Partner or Associate can be used here.
noPreference No preferences implies any member can perform this task,

be it a Partner, Associate or an ExtEntity.

• allowedMembers: It fixes the upper bound for the maximum number of partic-

ipants a task can be shared between. This attribute is not part of atomic tasks.

59

• relationship: If a task is shared by more than one participant then this attribute

specifies the type of relationship that exist between these participants. This

attribute applies to RepicableTasks only and can have the value competition

or cooperation as follows:

– cooperation: If the relationship between the two members of the same

task is defined as cooperation, it means they both are required for the

task to satisfy its goal. An example of this could be the task of supplying

the catalyst for the ChemicalVO example. If the quantity demanded by the

customer is 500Kg, and each member is committed to provide 250Kg then

the customer’s demand is satisfied by providing 250Kg from one member

and 250Kg from the other member. There is no competition between both

the members.

– competition (comp-type, comp-attribute): Considering the same

example now if the customer demands just 250Kg of catalyst then both

members are able to satisfy the demands. If the relationship is set to value

competition(lowest, cost) then both members will bid for that business op-

portunity. Criteria over which bidding is performed is specified in the low-

est and cost i.e the bidder (member) with the lowest cost offer will be

selected for that particular instance of VO. Note that the comp-attribute

(cost in this case) must be part of the business functionally of the task.

• currentSubTasks: This attribute lists the names of subtasks any task is divided

into at any particular moment in time.

• subTask-Flow: This attribute applies to ComposableTasks only; when new

(sub)tasks appear the workflow between those subtasks needs to be identified so

that their (subtasks’) execution leads to the realization of the ComposableTask.

This value lists the subtasks’ names in the order in which they need to be carried

out or in the case of subtasks having alternative capabilities, only one is chosen

60

based on some criteria. For example Figure 4.4 list the situation when customer

decides out of those subtask which subtask is going to serve the customer.

4.1.4.2 ConfScope Attributes

The following attributes constitute a ConfScope part:

• currentMembers: If the task is replicable or composable than it is possible

to have a different number of participants involved in the task during different

stages of the VO lifespan. The currentMembers attribute keeps track of the

numbers of participants currently involved in the task.

• currentState: The currentState attribute keeps track of the current type of

the tasks. It is not obligatory for a replicable or composable task to always

involve more than one participants for such tasks. Replicability or composability

is the facility that those tasks can benefit from if it is not possible for the task to

be performed by single member for some reason.

A ReplicableTask can be in one of the following states at any given time:

– atomic: This state implies that currently the given replicable task is not in

replicated state and only one member is solely responsible for carrying out

the whole task.

– replicated: This state implies that currently the given task is being shared

between more than one member.

Similarly, a ComposableTask can be in one of the following states at any given

time:

– atomic: This state implies that currently the given task is not divided into

subtasks and only one member is solely responsible for carrying out the

whole task.

– decomposed: This state implies that currently the given task is being shared

between more than one member and each member is carrying out one of

61

the subtasks of the ComposableTask.

4.1.5 Competency

A Competency is the combination of capability as the potential ability to perform a

certain task, and the capacity as the availability of resources [22]. A task in VO-S

specifies all the capabilities needed for the satisfaction of the functionality offered by

the task and their capacity.

The competency not only helps the VO in deciding which members shall be part of

the VO, but also in assigning different tasks to specific members. It also helps in

identifying whether the VO is operational or not and whether some task (hence, VO)

is deficit in some of the capacities or capabilities.

Figure 4.5: Competency description in VO-S

4.1.6 Business Functionality

The Business Functionality plays a major role in producing the operational (VO-

O) model of the VO; it lists all the data items required to satisfy the goal of the task. It

consists of two events: request and reply. The request event consists of all the data

items that the task is going to need from the VO (other members) during its execution;

whereas the reply event consists of all the data items that a task is supposed to return.

62

Further to the above, the data in each event category falls into one of the two groups:

those which are prefixed with one of the capabilities of the task and those which are

not. The capability prefixed data items represents those data items that are part of

Business Functionality as long as that capability is part of the task, once the

capability is replaced all the data items associated with that capability are removed

from the Business Functionality. This division helps in identifying an individual

Business Functionality for each subtask when the task needs to be decomposed

as follow:

• A task is decomposed into subtasks each one having at least one unique capa-

bility inherited from the original task. This unique capability distinguishes one

subtask from another.

• A subtask inherits only those capability prefixed data items from its parent task’s

Business Functionality to its own Business Functionality, when the

capability is also inherited by the subtask.

• All the data items not prefixed with any capability are inherited by all the sub-

tasks.

It also helps in not associating a data item to any subtask which does not need them.

If a particular data item is required by all the subtasks then it is not prefixed with

any capability. However, if the data is related to a particular capability then it is

prefixed with the capability name. This way, if any capability is part of more than

one subtask then the Business Functionality for all subtasks contains that data

item. The Figure 4.6 lists the Business Functionality of the TransportProvision

task. This task has two capability-prefixed data items. One is called fconf, which

represents a receipt for booking a flight; it is prefixed with the capability byAir. The

other capability-prefixed data item is sconf, which is the receipt for ferry booking; this

data item is prefixed with the capability bySea. When the TransportProvision task

is divided into two subtasks, one which books the flight and the other which books

63

Figure 4.6: A Business Functionality description in VO-S

the ferry; it is clear that fconf must be part of the flight booking subtask and sconf

be part of the ferry booking subtask. Both of the data items are useless for the other

subtask, so they must not be part of their Business Functionality. This is achieved

by associating the data item fconf with the byAir capability and the sConf with the

bySea capability. When specifying subtasks, it is also specified which capabilities

the subtasks consists of; this way only data required by a subtask is identified. This

concept has the added advantage of getting the flexibility of describing at run-time

the number of subtasks a composable task can be divided into, rather than fixing the

number and structure of subtasks at design time.

4.1.7 VBEassets

Besides tasks that are carried out by its members, a VO might need other basic re-

sources and processes that are offered by the VBE; these are called VBEassets. As

explained in Chapter 3 a VO has two types of VBEassets at its disposal: VBEresource

and VBEtask. What is special about VBEassets is that they are always considered

available for the VO to use without inviting any member for it to the VO. Unlike tasks,

they do not have Structure part because VO does not put any specific constraints (de-

mands) as it does on tasks; these are availed by VOs the way they are. The Figure 4.7

lists the VO-S description for a VBEasset called UserDatabase which is a database

resource.

64

Figure 4.7: A VO-S description of VBEresource

4.1.8 Data-Flow

The Data-Flow specifies the flow of data between different tasks. The data flow

specifies for each task, VBEasset and the customer from where do they get values

for their request data items; it also specifies for each reply data items where do

their values gets dessimate to. This helps in associating a link between data items of

different VO entities (task, VBEassets and customer). It also helps in realizing and

verifying concrete orchestrations and transitions in the operational model.

Figure 4.8: Description of Data-flow

Figure 4.8 lists the Data-Flow of the TravelBK VO.

• =⇒ :- This operator takes either a single parameter at the left-hand side or an

expression which evaluates to a single value. At the right hand side it takes one

or more parameters. If there are more than one parameter at the left hand side

65

then they are always enclosed in a function which returns a single value. This

operator assigns the single value at the left-hand side to each parameter on the

right hand side. The following sentence from the Figure 4.8 assigns the value

possessed by out data item of Customer to checkin, out and start data items of

HotelBooking, TransportProvision and GuideProvision respectively.

Customer.out =⇒ (HotelBooking.checkin, TransportProvision.out, GuideProvi-

sion.start)

• ⇐= :- This operator assigns a single value to the left-hand side operand. At

the right-hand side if there are more than one data items then there is always an

associated function with them which evaluate a single value from the right-hand

side data items and assigns that to left-hand side data item. The default function

is the sum(), which sums up all right-hand side data items; the Customer.amount

in the Figure 4.8 is the example. In this figure the total cost the customer of the

VO has to pay for the service offered by the VO is accumulation of the amount

that all the members of the VO charges for their respective services. Following

are some other functions:

1. largest() :- Returns largest value

2. smallest() :- Returns smallest value

3. sum() Adds up all the values

4.1.9 Members

The Members section of the VO-S model specifies the current members of the VO and

the tasks these members are currently performing. In VO-S the Members section is

divided into three further sections, one is called Partners section which as the name

suggests list the current partners of the VO, and the other section is called Associates

representing the current associates of the VO. Whereas, the ExtEntities list the cur-

rent temporary members discovered from outside the VO and VBE.

The specification of each of these members comprises of two parts as follows:

66

• performsTask: This part lists the names of the tasks currently being performed

by the member.

• competency: This part represent the capabilities that the member possesses and

the amount of capacity shared by the member for the particular capability.

The Figure 4.9(a) lists the VO-S specification for a partner called AccomProvider1

who currently performs only one task of TravelBK VO, named HotelBooking. The

total number of rooms it provides is 500 which represents the capacity of the capa-

bility roomReservation. Whereas, the Figure 4.9(b) lists the VO-S specification for

an associate called TourAg who currently performs only one task of TravelBK VO as

well, which is GuideProvision. The capability this associate possesses is guidingTour

and offers 250 guides to the VO in terms of capacity share.

(a) A VO-S Partner Specification (b) A VO-S Associate Specification

Figure 4.9: A Partner and an Associate description in VO-S language

The classification of partners, associates and external entities is already discussed

in detail in Section 3.2. In the following paragraph we discuss the other members of

the VO.

4.1.9.1 VOcoordinator

Creation of new VO begins when one of the partners of the VBE identifying a business

opportunity decides to pursue it by forming a VO. It decides the process required to

satisfy the business opportunity and the competencies and VBE resources; it selects

members for the VO from the VBE participants. The role of VOcoordinator is distinct

67

from other members of the VO in having exclusive privileges, such as changing the

membership of the VO, modifying its goals (i.e, end products) or terminating a VO.

As such, it consolidates several distinct organizational roles, such as broker, planner

and coordinator [26, 9].

The VOcoordinator contributes towards the achievement of the VO goal by supervis-

ing the progress of the tasks and members; rather than performing one of the tasks that

contribute towards the purpose of the VO. Following this the behaviour of coordinator

is not specified in the VO specification. The operations available to the VOcoordinator

are the reconfiguration actions. However, at the structural level it is necessary to know

that one exists and ‘who’ it is; hence it is listed in the Members part of the VO-S model;

the only information available at the VO-S level is the VOcoordinator’s identity.

4.1.9.2 Customer

A Customer is an entity outside the VO and usually outside the VBE as well that ap-

proaches the virtual organization to acquire a product/service offered by a VO. In the

VO-S model there is no description of the customer; however, just like VOcoodinator

it is assumed to exists when an instance of VO is created. A customer exists at the

VO-O level only.

The type of membership characterizes the members’ role and their type of participa-

tion (long-term or short-term) in the VO. Part of importance of this characterization is

that now different set of policies can be applied to different sort of actors (members),

for example ExtEntities can not be assigned any duties which are considered critical

and such duties can only be assigned to partners are associates who have signed such

contracts with the VBE. We distinguish three types of actors for carrying out the VO

tasks: partners, associates and external entities; demand for partners and associates

have been laid out in [23] whereas, need for external entities have been inspired by

service-oriented paradigm.

68

4.2 Summary

In this chapter we introduced the VO-S modelling language in detail. We described

the syntax and semantics of the main elements of the VO-S; elaborated the explanation

with the help of specification snapshots from the TravelBK case study.

69

Chapter 5

VO-O Language & Mapping

Methodology

While structural aspects of a VO (described using VO-S) are very abstract; its op-

erational model is very concrete and quite close to respective execution frameworks

(such as agent based system or service oriented system). We have dedicated a separate

language for the operational model description which is named the VO-Operational

(VO-O) language. The VO-O is inspired by and adapted from the SRML.

In this chapter we highlight the differences and adaptations made to the SRML for it

to suit modelling of VOs and their breeding environments. Later on, this chapter lays

down the guidelines which help map a VO-S description to its corresponding VO-O

description.

5.1 Virtual Organization-Operational Modelling Lan-

guage : VO-O

While VO-S is focused on covering structural features of the VOs, VO-O is focused

on presenting a concrete operational view of VOs. The operational details of the VOs

are derived from the information available at the structural (VO-S) level. Most of the

derivation can be done automatically however, some parts of the VO-O need to be

70

provided through manual refinement. A VO-O module derived through manual re-

finement only (i.e no part of the VO-O is derived automatically) has the advantage

that it can be more flexible than the automatic one, in terms of division of request

and reply parts of the Business Functionality. Each part can be divided into a

number of operations (interactions) rather than a single operation that is gained from

a direct mapping of the corresponding part at the VO-S level. It is worth mention-

ing that a VO-O module is mostly driven from information available in the Business

Functionality part of the VO-S model. However, the Structure part of the VO-S

model does influence the VO-O module to some extent, which will be made clear later

on.

The main elements of VO-O are: module, Business Protocol(s), Layer Protocol(s),

Business Role and Configuration Policies, which are described in detail in the remain-

der of this chapter.

Figure 5.1: VO-S and VO-O relationship

The Figure 5.1 shows how the elements of a VO-S model relate to a VO-O module.

A Business protocol is derived form the business functionality of the corresponding

task. All the VBEassets at the VO-S level give rise to corresponding layer protocols

in the VO-O module. VO-S Process description, interactions of all business and layer

protocols (representing tasks and VBEassets of VO-S model) and the Data-Flow of

the VO-S help drive concrete orchestration between different components of VO-O

represented through business role of the VO.

71

5.1.1 Changes to the SRML

As VO-O is based on the SRML; it shares a common core in syntax and semantics.

However, there are some key differences as follow:

• The main modelling primitive offered by the VO-O is called a module, with

two specializations - VBEtask and VO modules. The rationale behind SRML’s

adaptation of modules can be easily reflected in the VBE, as there are some

applications, processes and resources that support not only management of the

VBE but also aid the VO life cycle. The VOs themselves are for the public

which corresponds to a service module in the SRML, whereas we have replaced

it with VO module. The activity module has been replaced by VBEtask module.

For the rationale and further details [11] can be looked at.

• In the SRML all the members (service providers) are transient in the sense that

each time a new instance is triggered (that is when new customer request comes

in) all the members are discovered and bound to the instance; once the instance

has served its goal all the members’ association are terminated as well. For

VOs we considers two types of members (1) those whose membership with the

VO lives beyond single instantiation, that is persistent members; and (2) those

whose membership is only limited to a single instantiation, that is transient ones.

• In the VO-O partners and associates sit at the ‘top-end’ of the module, but their

behaviour is defined using a Business Protocol; SRML uses a Layer Protocol

for ‘top-end’ entities. The reason for using business protocols rather than layer

protocols is that layer protocols either represent passive entities such as those

that are acted upon by other entities or entities which are served by the module

(serves-interface); whereas business protocols represents entities whose nature

of relationship with the VO (considering VOs as an individual entity) is of mu-

tual interest, that is the entities (represented through business protocol) have

joined the VO and offer their service(s) to the VO and in return they gain some

benefit from the VO as well, be it financial or otherwise. Besides, such entities

72

can leave VO any time they want or can be expelled by the VO as well. This

kind of behaviour is represented by business protocols in the SRML; hence, this

adaptation has been made.

• In the SRML entities at the ‘bottom-end’ of a module represent resources only,

whereas, in VO-O bottom layer represents both VBE provided resources (VBEre-

sources) as well as supporting tasks (VBEtasks) that exists in VBE, outside the

VO.

• In VO-O partners and associates are assumed to be already available and hence

the external configuration policies of the SRML for members are not part of the

business protocol.

• In the SRML conversational interactions consists of five events (request, reply,

commit, cancel and revoke events) whereas; VO-O has only request and reply

events as VO members are obliged to provide what they have promised (part of

the member definition) and hence there is no need for negotiation.

5.2 Methodology to Map VO-S to VO-O

In this section we describe in detail the methodology to map a VO-S description to its

corresponding VO-O description. The mapping methodology consists of guidelines

following which a VO-O description can be derived out of the VO-S description. We

refer to these guidelines as mapping rules as they have the potential to be formalized

and eventually help lead to the automation of the whole process of generating a VO-O

model out of a VO-S description. As the aim of these guidelines is to be formalized

enough to be transformed into mapping rules with the automation in mind, hence in

this chapter mapping rules are also presented with that perspective in mind.

73

5.2.1 Methodology

The mapping rules which transform a VO-S description into a corresponding VO-O

description follow a step-by-step methodology that needs to be respected to ensure

a correct and consistent VO-O module conforming to the VO-S model description.

For example step 6 of the methodology (given below), which refers to generating

interactions part of a business role, can not be applied until all the business protocols

and layer protocols have already been derived (in steps 2 and 3).

The rules apply to modules with only one component (internal) and respect the SRML

constraint that all the communication is mediated through an orchestrator component.

The following steps need to be followed for derivation of a consistent and conformant

VO-O module from a VO-S model. These steps are explained in detail in Section 5.2.2

to Section 5.2.10.

Step 1: Copy data sorts from VO-S to VO-O.

Step 2: Generate Business Protocols for all the VO-S tasks (including supporting

ones) and Layer Protocols for VBEassets.

Step 3: Generate the Business Protocol for Customer.

Step 4: Adjust supporting tasks at their respective positions in the Process descrip-

tion of the VO-S.

Step 5: Generate initiation condition (and termination condition when no refinement

applied) for components and initiation triggers for external entities.

Step 6: Generate the Interactions part of Business Role.

Step 7: Generate Transitions skeletons of Business Role.

Step 8: Generate Orchestration part of Business Role.

Step 9: Generate wires and Interaction protocols.

74

Rest of the details such as external configuration policies (SLAs) and body of tran-

sitions for the VO are added in through refinement.

In the subsequent sections we are going to lay down the the rules which help transform

a VO-S model into a corresponding VO-O module. The rules described transform a

VO-S specification into a basic VO-O module description. By basic VO-O module

specification we mean that business functionalities of all the tasks and VBEassets are

transformed into business and layer protocols with only one interaction each. Busi-

ness role (representing orchestrator), wires and initiation and termination conditions

of orchestrator, initiation triggers for external entities (ExtEntities), state chart etc are

also derived similarly (which can later be formalized into automated transformation

rules, provided no refinement is done on any part of the VO-O module).

These rules also help us in proving the conformance between the two models.

5.2.2 Step 1: The Rules for DataTypes

The data types at the VO-O level represent the set of all the unique data types of each

Business Functionality’s data items at the VO-S level. For example there are

two data items called out and in in TransportProvision task of TravelBK VO whose

data type is date. The HotelBooking and GuideProvision tasks each have two data

items with same data type having names out and in (for the HotelBooking task) and

start and end (for the GuideProvision task). Since all six of these data items have

the same data type (date), in the DataTypes section of the VO-O module, there is

going to be included only one data sort date. This implies that some of the data items

in the TravelBK VO module have date as their data type. This is summarized in the

following rules (guidelines):

1. Represent all the data items in the VO-S model having the same data type by a

single corresponding data type in the DataTypes section of the VO-O module.

2. Each data item must have the same data type in the VO-O module that it had in

the VO-S model.

75

The above rules cover step one of the methodology.

5.2.3 Step 2: The Rules for Generating VO-O Business and Layer

Protocol from VO-S Task and VBEasset Specification

The VO-O business protocols and layer protocols are derived from the Business

Functionality part of the VO-S tasks and VBEassets respectively. However, the

Structure part of the VO-S description also effects the business protocol descrip-

tion, especially when tasks are replicable or composable.

The Business Functionality of the tasks and VBEassets in the VO-S language is

divided into two events, request and reply. The order of both the parts does not

affect their meaning i.e request means all the information (data items) required by

the task/VBEasset to be carried out i.e. incoming data items and, reply means all the

information (data items) returned by the task as a result of its completion i.e. outgoing

data items.

Each request and reply parts gets transformed into different VO-O interaction types

based on the business protocol, layer protocol or business role. Hence, it is worth

mentioning the relationship that exists between VO-S request and reply data items

and the corresponding VO-O interaction types.

The request data items of VO-S become:

• Data items associated with reply event (�) of s&r interaction type.

• Data items associated with instantiation event (֠) of r&s interaction type.

• Data items associated with rcv interaction type.

• Input data items to ask/rpl interaction type.

• Input data items to tll/prf interaction type.

All of these data items are considered incoming data items of the respective interaction

type.

The reply data items of VO-S become:

76

• Data items associated with instantiation event (֠) of s&r interaction type.

• Data items associated with reply event (�) of r&s interaction type.

• Data items associated with snd interaction type.

• Data items returned by the ask/rpl interaction type.

• Data item returned by tll/prf interaction type.

All of these data items are considered outgoing data items of the respective interaction

type.

To aid the reader understand the relationship between the VO-S tasks/VBEassests and

the corresponding VO-O business/layer protocols, we first give an overview of the

overall protocol or layer generation from the corresponding tasks or VBEassets.

For the purpose of mapping rules (guidelines), we have divided (conceptually) a VO-S

task/VBEasset and the VO-O business/layer protocol into three parts, as shown in the

Figure 5.2. Part (1): Name of the VO-S task (its type) and VBEasset gets transformed

into VO-O business and layer protocol. Part (2): From request and reply parts

of the Business Functionality, Interactions part of business or layer protocol

gets generated. Part (3): Once the interactions are generated, the Behaviour part of

business or layer protocol is generated through refinement. There is no one to one

mapping between Behaviour part of VO-O protocols and corresponding VO-S tasks

or VBEassets specification; no information is available at the VO-S level which helps

towards generating the Behaviour part of the business or layer protocol. The Rules

(guidelines) for generation of Behavior part are described in Section 5.2.3.3.

Figure 5.2: Relationship between Task/VBEasset and Business/Layer protocols

77

5.2.3.1 Part 1

1. AtomicTask task-id→ Business Protocol task-id is

i.e. A VO-S AtomicTask with task-id is syntactically written to Business

Protocol task-id in VO-O module. An additional is keyword is appended

at the end.

2. A ReplicableTask can be in two states, atomic or replicated; when in

atomic state, the business protocol for a replicable task appears similar to atomic

task’s business protocol. However, in replicated state there exists separate

business protocols corresponding to the number of members among which the

replicated task is replicated (shared) at that time (i.e value of currentMembers

attribute). At the VO-O level two or more business protocols each having an

Interactions part consisting of the same set of request and reply data items

are said to represent a replicable task at the VO-S level (in replicated state).

(a) ReplicableTask Task-id→ Business Protocol task-id is

if and only if task-id.currentState = atomic

A ReplicableTask with the currentState set to replicated has n business pro-

tocols with n equal to the number of currentMembers.

3. A ComposableTask can be in two states, atomic or decomposed. In atomic

state Business Protocol for composable task is no different from an atomic

task’s business protocol. However, there does not exists any Business Protocol

corresponding to a ComposableTask when in atomic state. Rather, there exists

unique business protocols for each of the subtasks, the composable task cur-

rently consists of. Two rules, given below describe this:

(a) ComposableTask task-id→ Business Protocol task-id is

if and only if task-id.currentState = atomic

78

(b) ComposableTask task-id→ No business protocol exists.

Rules for Generating VO-O Business Protocol for subtasks of a Compos-

ableTask: A subtask does not have its own Business Functionality part.

It inherits the Business Functionality part from its parent task (the Com-

posableTask the subtask is part of) based on what competencies the subtask has

inherited from the the parent task. In VO-S every data item is either prefixed

with some capability or not. The data items that are prefixed with some capabil-

ity exists in the business functionality of the task as long as the capability is part

of the task. If the capability is deleted (through VO-R reconfiguration rules) the

data item is deleted from the Business Functionality of the task as well.

Every subtask inherits all the request data item from its parent’s request data

items, that are not prefixed with any capability. Out of capability-prefixed data

items, the subtask inherits only those data items whose capability (prefixed) is

part of competencies of the subtask as well. Same applies to the request event

of the subtasks as well. Given below are the rules which state the above:

4. For ComposableTasks in composed state:

(a) Each subtask’s request event consists of all non-prefixed data items from

request event of the corresponding ComposableTask and all prefixed

request data items whose prefix matches subtasks’ capability.

(b) Each subtask’s reply consists of all non-prefixed reply data items of the

corresponding ComposableTask and all prefixed reply data items whose

prefix matches subtasks’ capability.

Once the Business Functionality part of each subtask has been identified,

the subtask obeys all the mapping rules that apply to AtomicTasks.

79

5.2.3.2 Part 2: Rules for Generating Interactions Part

All the interactions of a business or layer protocol are derived from request and

reply parts of the task’s Business Functionality. These events can be divided

into more than one interaction through refinement. Automated generation of Interactions

part however, transforms the request and reply parts of VO-S into either one conver-

sational interaction in the case of business protocol or a single synchronous interaction

in the case of layer protocol.

Whether this transformation is done through automated or manual refinement, the fol-

lowing conditions must not be violated.

1. All the request data items must become incoming data items of a business or

layer protocol.

2. All the reply data items must become outgoing data items of a business or

layer protocol.

For the automated transformation from VO-S to VO-O the whole Business Functionality

is replaced by one conversational interaction (s&r for customer or r&s for other mem-

bers) at the VO-O level and each part (request and reply) of it in turn becomes event

of the corresponding interaction at the VO-O level.

Example: Automation Rules to Generate Interactions part of a Business

Protocol from VO-S Task: The mapping rules given below describe the Interactions

part of business protocol for VO members (other than coordinator or customer) gener-

ated automatically from the Business Functionality of a VO-S task specification.

1. Place the word Interactions at the beginning (which symbolizes what follows

next is interaction(s) of the business protocol).

2. Make the name of the interaction start with the name of the task (the interaction

is part of), followed by hyphen symbol, and finally, append the word “interac-

tion”.

80

Interactions

task-id-interaction

3. Make r&s the default type of the interaction of business protocol representing a

task.

r&s task-id-interaction

4. Make all the request data items of task’s Business Functionality, incom-

ing data items of the VO-O interaction, by appending֠ symbol before these data

items.

r&s task-id-interaction

֠ VO-S request data items

5. Make all the reply data items of task’s Business Functionality, outgoing

data items of the VO-O interaction, by appending � symbol before these data

items.

r&s task-id-interaction

֠ VO-S request data items

� VO-S reply data items

6. In the case of a business protocol representing a ReplicapleTask, add an ap-

pendix at the end of interaction name; the value of appendix of the interaction(s)

is same as the value of appendix attached to the Business Protocol itself (the

interaction is part of).

The Figure 5.3(a) represents the Business Functionality in terms of VO-

S task and the Figure 5.3(b) represents the same business functionality after

getting transformed into Interactions part of a VO-O Business Protocol. In

81

(a) A VO-S Business Functionality (b) A Business Protocol’s Signature part

Figure 5.3: A Business Functionality in VO-S and its corresponding VO-O transfor-
mation

this example, the transformation has been done manually so the default name of

interaction has been replaced with lockflight.

Example: Automation Rules to Generate Interactions part of a Layer Pro-

tocol from a VBEasset Specification: The mapping rules given below describe

the layer protocol for the VBEassets part of VO generated automatically from the

Business Functionality of a VO-S VBEasset specification.

1. Place the word Interactions at the beginning (which symbolizes what follows

next is interaction(s) of a layer protocol).

2. Make the name of the interaction start with the name of the VBEasset (the in-

teraction is part of), followed by hyphen symbol, and finally, append the word

“interaction”.

Interactions

VBEasset-id -interaction

3. Make ask/rpl the type of the interaction of layer protocol representing a VBE-

asset.

Interactions

ask/rpl VBEasset-id-interaction.

4. Make data types of all the request data items of VBEasset’s Business Functionality,

incoming parameters of the VO-O interaction, putting them between small brack-

ets “()” and appending it to the name of the interaction.

82

Figure 5.4: VO-O Business Protocol Behaviour

Interactions

ask/rpl VBEasset-id-interaction(data types of VO-S requestdata items)

5. Make the data types of all the reply data items of VBEasset’s Business Functionality,

outgoing parameters of the VO-O interaction and append them at the end of in-

coming parameters of the interaction. To separate the incoming parameters from

outgoing put a colon (:) between incoming and outgoing parameters.

Interactions

ask/rpl VBEasset-id-interactiondatatypeso fVO−Srequestdataitems:data types

of VO-S reply data items.

5.2.3.3 Part 3: Rules for Behaviour Part of Business Protocol

The behaviour part consists of one or more sentences with constructs derived from

temporal logic. The first sentence of the behaviour always starts with a initiallyEn-

abled construct. The interaction and its associated event type (incoming or outgoing)

followed by the initiallyEnabled construct becomes the first point of communication

with the member (who the business protocol represents) by the outside world (the

orchestrator component in our case). The rest of the sentences start with the interac-

tion and event-type which ended the previous sentence. This situation can be seen in

Figure 5.4 where the second sentence starts with lockFlight֠ ?, which is what the

previous sentence ends with.

Example: Automation rules to generate Behaviour of Business Protocol from

VO-S Task specification:

83

1. Append a “?” (representing action of receiving an interaction) at the end of the

instantiation event (֠) of the (first and) only interaction of a business proto-

col (unless business protocol is defined through manual refinement) and make it

proceeded by initiallyEnabled.

initiallyEnabled interaction-id֠ ?

2. On the next line (second sentence) place the keyword enables. Make enables

proceeded by the interaction and its event which ended the previous sentence.

Make enables followed by the reply event (�) of the (first) and only interac-

tion and append “!” at the end of the interaction.

initiallyEnabled interaction-id֠ ?

interaction-id֠ ? enables interaction-id� !

A composable task in an atomic state follows the rules of business protocol generation

for atomic tasks; whereas in the decomposed state it is each of the subtasks that follows

the rules of business protocol generation for atomic tasks.

5.2.4 Step 3: Business Protocol Rules for the Customer

In the VO-S model, there is no separate specification block for the customer of a

VO like the rest of the members (through task specification) of a VO. A business

protocol is mainly generated from the Structure part of a VO-S task specification,

therefore we need to identify the Structure part for the customer first. This information

is extracted from the Data-Flow part of the VO-S specification. In the the Data-Flow

block, all the data items prefixed with the Customer becomes part of the Structure

of a customer. The following rules, further separate the data items of the customer into

incoming and outgoing events:

1. The data items associated with operator become part of incoming-event of

the Customer’s Structure block.

84

2. The data items associated with operator become part of outgoing-event of

the Customer’s Structure block.

3. The data type for these items becomes the data types of the items at the other

side of the operator (all the data items at the other side of operator have same

data type).

Once the Structure part of customer figured out, then the business protocol for cus-

tomer follows the same rules (for the generation of its interaction and behaviour part)

as defined for the other business protocols except that a customer’s business protocol

can not be replicated or decomposed.

Example: Automation rules to generate Interactions of Customer’s Busi-

ness Protocol from VO-S Data-Flow: Mapping rules given below describe the

Interactions part of business protocol for VO customer generated automatically

from the Business Functionality identified from the Data-Flow part of the VO-S

specification. The rules as follow:

1. Place the word Interactions at the beginning (which symbolizes that what

follows next is interaction(s) of the business protocol).

2. Start the name of the interaction with the word Customer, followed by hyphen

symbol, and finally, appending the word “interaction”.

Interactions

Customer-interaction

3. Make s&r the type of the only interaction of the business protocol representing

the customer.

Interactions

s&r Customer-interaction

4. Make all the reply data items of the customer’s Business Functionality,

outgoing data items of the VO-O interaction, by appending ֠ symbol before

85

these data items.

Interactions

s&r Customer-interaction

֠ VO-S reply data items

5. Make all the request data items of customer’s Business Functionality, in-

coming data items of the VO-O interaction, by appending� symbol before these

data items.

Interactions

s&r Customer-interaction

֠ VO-S reply data items

� VO-S request data items

The next paragraph describes the rules which generate the behaviour part of the

customer’s business protocol.

5.2.4.1 The Behaviour generation guidelines for business protocols represent-

ing customer of a VO

The guidelines and rules for generating behaviour part of the Customer’s business pro-

tocol are same as described in the Section 5.2.3.3; only difference is that first sentence

of behaviour represents publishing of the one of interactions (in automation case the

only interaction) by appending the “!” symbol.

Example: Automation rules to generate Behaviour of Customer’s Business

Protocol:

1. Append a “!” (representing action of publishing an interaction) at the end of the

instantiation event (֠) of the (first and) only interaction of a business protocol

(unless business protocol defined through manual refinement) and proceed it by

initiallyEnabled.

initiallyEnabled interaction-id֠ !

86

2. On the next line (second sentence) place the keyword ensures. Proceed ensures

with the interaction and its event which ended the previous sentence. Follow

ensures by the reply event (�) of the (first) and only interaction and append

“?” at the end of the interaction.

initiallyEnabled interaction-id֠ !

interaction-id֠ ! ensures interaction-id� ?

5.2.5 Step 4: Adjusting Supporting Tasks in VO-S Process De-

scription

If a task in the VO-S process description depends on some supporting task (s), then

the supporting task must be carried out first before the main task, so that the main task

gets all the required data needed by it to carry out the assigned responsibility.

Rules for adjusting the Process specification:

In the VO-S Process description append satifyTask(sup task-id) before satifyTask(

dep task-id).

where :

sup task-id = is a supporting task in the context of VO-S modelling language;

dep task-id = is a main task in the context of VO-S modelling language;

sup task-id is listed in the supportedBy attribute of the dep task-id.

If a VO-S task depends on more than one supporting tasks then satifyTasks con-

struct is used instead of satifyTask.

5.2.6 Step 5: Rules for Component and ExtEntity Triggers

The components (internal to module) are associated with initiation state and termi-

nation state(s) , whereas ExtEntities (requires-interfaces in the SRML terminology)

are associated with initiation triggers. In the VO-O, the partners and associates do

not have triggers; at the VO-O level they are already available. Only ExtEntity and

87

(internal) components have triggers as in the SRML.

The following rules imply their automatic (or manual) generation from the VO-S de-

scription.

1. Make the start state of state chart, Initiation state of the component (orchestra-

tor).

intcomponent-id init: s=start state of state chart

2. Make the last state of state chart, termination state of the component (orches-

trator). The last state of state chart is described in the Section 5.2.9

3. The Initiation trigger for an ExtEntity can be either publishing of their first in-

teraction (associated with initiallyEnabled) or some other interaction event

outside the ExtEntity protocol. Automatic generation always considers the first

interaction of the ExtEntity itself, hence the value of trigger is always default.

If a value other than the default is needed it is put in manually.

Automatic generation:

intExtEntity-id trigger : default

5.2.7 Step 6: Interactions Part Generation of Business Role

(Orchestrator)

The component typed with Business Role is the most complex component of the VO-O

module. A Business Role consists of three parts:

• The Interactions part lists all the interactions belonging to the orchestrator.

The rules for generating these interactions are given in section 5.2.7.1.

• The Orchestration part lists all the local variables in use by the orchestrator and

one variable representing the state chart of the VO (Module) with enumerated

list of all the values that the variable can possess.

88

• The Transitions part specifies how the VO-O module represented as a state ma-

chine moves form one state to another, the events which gets published or in-

voked during each state, and the piece of work (computations) it performs dur-

ing that state. The description of all this is specified through separate transition

blocks. Each transition block represents the activities of a state (s).

The next three sections specify the rules which generate these parts (partially)

dictated by the details specified at the VO-S level. The rest of the details are added

manually.

5.2.7.1 Guidelines for Generation of Interactions Part of Business Role

The Interactions part of the orchestrator is extracted from all the Business Protocols

and Layer Protocols of the VO-O module. Hence, the Business role generation can

only takes place once all the business protocols and layer protocols have already been

generated from VO-S tasks and VBEassets. The reason behind this is that, basically

a business role’s interaction part is the accumulation of all the interactions’ duals de-

fined in any business or layer protocols. More specifically:

For each interaction declared in any business protocol (VO-S Tasks and Customer) or

layer protocol (VO-S VBEasset) description, there exists its dual interaction declared

at the orchestrator side.

By dual, we mean the complementary event of an interaction, form the the pair of

each interaction type. For example if the type of interaction is s&r then its dual is r&s

with rest of the parameters (data items and their types) being the same at both sides.

The Guidelines (Rules) for Generation of Interactions part of orchestrator

1. Copy all the interactions from all business and layer protocols to the Interactions

part of Business Role.

89

2. Change the type of every Business Role interaction to its complementary/dual

interaction.

5.2.8 Step 7: Generating Business Role Transition Skeletons

Transitions are generated from the perspective of the orchestrator. In the case of re-

finement done on business or layer protocols the automated transitions generation is

limited to the generation of its skeleton with only information about the triggering

event of the transition. If the business and layer protocol generation is done by au-

tomated transformation (having one interaction per protocol), in this case things get

simpler and the concrete control flow can be easily identified from the VO-S process

description. In such case, the transition part can also include what goes in the effects

and sends part of the transition. However, if any computation needs to be done at some

stage such as comparing the service charges by two members, then this kind of com-

putation is always done manually through refinement. The rules that help generating

transitions (whether automated or manual) are as follow:

1. Generate one transition skeleton per interaction of Business Role where, the

type of interaction is either r&s or rcv. The triggeredBy value of these transi-

tions becomes the instantiation event of that interaction against which the tran-

sition is created (i.e. append ֠ symbol to the interaction name and assign it

to triggerdBy attribute). For example if there is an interaction defined in or-

chestrator as r&s bookTrip than the transition dealing with this interaction is

triggered by processing of s&r bookTrip֠ (which belongs to one of the business

protocols of the module).

2. Generate one transition skeleton per interaction of Business Role where, the

type of interaction is s&r. The triggeredBy value of these transitions becomes

the reply event of that interaction against which the transition is created (i.e.

append� symbol to the interaction name and assign it to triggerdBy attribute).

For example, if there is an interaction in the orchestrator called s&r bookTrip,

90

then there is going to be a transition in the orchestrator that is triggered by

receiving of bookTrip� .

3. No separate transition (skeleton) is generated for interactions of the orchestrator

which are initiated by the orchestrator itself (i.e s&r, snd, ask, tll).

4. All the interactions of type s&r and snd of orchestrator are attached to the sends

part of one of the transitions of the orchestrator as follows:

(a) If all the business and layer protocols consists of one interaction only then

the attachment is done in accordance with the control flow identified in the

Section 5.2.5.

For example if following is described in the VO-S Process element:

...satisyTask(taskA) leadsTo satisfyTask(taskB)...

Then there is a transition in the orchestrator component which is trig-

gered by the processing of the reply event (�) of the only interaction of

Business Protocol representing taskA. In the sends part of this tran-

sition, the instantiation event (֠) of the only interaction of Business

Protocol representing the taskB is attached.

transition

triggeredBy: taskA-interaction�

guardedBy :

effects:

sends: taskB-interaction֠

If the business and layer protocols consist of more than one interaction, this

implies that those protocols are generated manually through refinement. Hence,

the control flow is much more complex. Therefore, in such cases the attachment

to the sends part needs to be done manually as well. Care still must be taken

that the abstract control flow (VO-S Process specification) is not violated. A

91

VO-O module is not valid if any of the orchestrator side outgoing interactions

are left without associating them to sends part of any of the transitions.

5. Synchronous interactions do not get any corresponding transition either; they

are called in the effects part of some transition as follows:

(a) If all the business and layer protocols consists of one interaction only then

the attachment is done in accordance with the control flow identified in

the Section 5.2.5. That is the synchronous interaction of the layer protocol

representing the VBEasset is attached to the effects part of that tran-

sition which is triggered by the reply event (�) of the interaction of the

Business Protocol representing the task which was executed before the

control flow transferred to the VBEasset in question.

...satifyTask(taskA) leadsTo useAsset(assetA)

useAsset(assetA) leadsTo satifyTask(taskB)

Above excerpt of VO-S Process description leads to following transition:

transition

triggeredBy: taskA-interaction�

guardedBy :

effects: var = assetA-interaction(values for incoming

data items):values for outgoing data items

...

sends: taskB-interaction֠

In the case of business and layer protocols generated manually (through refine-

ment), the control flow is much more complex. Therefore, the attachment is

done manually. However, this manual attachment must still follow the abstract

control flow.

92

5.2.9 Step 8: Orchestration Part of Business Role

The orchestration part of business role consists of local variables and a special vari-

able representing the state chart of the orchestrator (provides an abstract view of the

component). The rules are as follow :

• For the return types of each synchronous interaction (i.e the output data types

associated with ask/rpl and tll/prf interactions) corresponding number of local

variables are created with their data types matching the data types of output data

items of synchronous interactions.

5.2.9.1 State Chart Generation

The values for state variable representing state chart of a VO represent the control

flow of the transitions which is derived from information available in the Process

description of VO-S specification and additional refinement done on the business and

layer protocols, if any.

If all the business protocols and layer protocols of the VO-O module consists of only

one interaction, then a basic state chart can be generated automatically through the

rules given below. To describes these rules let us represent variable representing state

chart as S and each state as Sn where n is a natural number.

The other thing to remember here is that each transition is guarded by one state and

the execution of transition moves the S to some next state based on the information

available at the VO-S Process description. The rules are as follow:

1. If n is the number of transitions then generate n+1 states for the state chart.

2. The transition whose triggeredBy value represents the receiving (“!”) of (by

orchestrator) the initiation event of business protocol representing the customer

of VO is always considered first transition (the orchestrator engages in). There-

fore, make S1 the guardedBy value of this transition. Update the value of the

state variable (Si) to next state (second state in this case i.e S2) in the effects

part of the same transition. In the sends part publish the initiation event of

93

the interaction of that business protocol that appears first in the VO-S Process

specification. Skip any VBEasset if it comes in the way.

3. Make the trigger for the next transition, the receiving of reply event of busi-

ness protocol whose instantiation event was published in the previous transition.

The value of of the guardedBy for this transition is the state that the state vari-

able was moved to in the effects part of the previous transition (i.e S2 in this

case). Changes the value of state variable to next state (i.e S3 in this case) in the

effects part of this transition and for the sends part do the same as done for

the sends part of previous transition.

4. Keep repeating step 4 for rest of the transitions as per the business protocols

of tasks according to the tasks’ position in the VO-S Process (i.e on first come

first serve basis) until the transition which represents the receiving of reply event

of business protocol for the task which is the last task in the VO-S Process

description. In the effects part of that transition move the the state variable S

to the its last state which is always Sn+1 and in the sends part, publish the reply

event of that interaction which represents the business protocol of the customer.

5. If there is a VBEasset described in the VO-S Process description, then attach

the interaction of layer protocol (representing that VBEasset) in the effects

part of the transition as per the position of the VBEasset in the VO-S Process

description in the following ways:

(a) If the VBEasset appears as the first element in the VO-S Process descrip-

tion then attach the layer protocol for the VBEasset in the effects part of

the first transition i.e one that represents the receiving of instantiation

event of customer business protocol by the orchestrator.

(b) If the VBEasset appears at a position in VO-S Process description other

than the first, then attach the layer protocol for the VBEasset in the effects

part of the transition that represents the receiving of reply event of the

business protocol of the task at appears before the VBEasset element in

94

the VO-S Process description. In the sends part of the same transition

publish the instantiation event of the business protocol that represents the

task that appears after the VBEasset in the VO-S Process description or

the publishing of reply event of the customer’s business protocol if the

VBEasset appears last in the Process description.

5.2.10 Step 9: Wire and Interaction Protocol Generation Rules

Before describing the rules which generate the wire, let us first review the structure of

wires in general.

A wire looks like a table with five columns and n rows, where n corresponds to the

number of interactions in a business or layer protocol and business roles. The Figure

5.5 represents a wire. Each row of a wire corresponds to a connector. Out of the first

and last columns of the table, one describes the signature of one of the interactions of

either the business or layer protocol and the other column describes one of the inter-

actions of business role. The Second column describes the RoleA of the interaction

protocol in the context of connector. Similarly, the fourth column describes the RoleB

of the interaction protocol in the context of connector. The roles (RoleA and RoleB) of

the connector describes the general signature which the interaction of the node (busi-

ness or layer protocol) being attached to must have i.e each interaction of specific

protocol or business role is the instantiation of the role associated with it. The mid-

dle (3rd) column identifies the interaction protocol which establishes a relationship

between two parties (RoleA and RoleB).

A wire generated by default between two parties in the VO-O is always of type

Straight which in the case of asynchronous interactions synchronises the events of

the two interactions and in the case of synchronous interaction synchronizes the oper-

ations of both the parties.

95

Figure 5.5: A Wire in VO-O language

5.2.10.1 Wire Generation Rules

1. Generate n wires where n represents total business and layer protocols of a VO-

O module. Name each wire Wn, where n is a numeric identifier for each wire.

2. Connect one business or layer protocol with the orchestrator (business role) per

wire.

3. Fill left most column of each row with one of the interactions of chosen business

or layer protocol and right hand side with one of the dual interactions of business

role with respect to business or layer protocol interactions at the left hand side

(or vice versa).

4. Map data items of every interaction of both parties to each other.

5. Generate the signature of a straight protocol in the middle column with respect

to data items of interactions; a straight protocol consists of two parts: I which

lists the data types of those data items that are provided by one party and re-

ceived by another and part O lists the data types of those data items that are

returned by one party to another in response to data items sent in the I part. O

part follows I part, which is prefixed with Straight.

Further constraints can be specified for the wires manually, such as, encryption etcetera.

96

The interaction protocol consists of two parts; first part list the two roles RoleA

and RoleB which list the data types of incoming and outgoing data items; the second

part (coordination) synchronizes the interaction of both the roles’ data types with each

other.

5.3 Summary

In this chapter we first gave an overview of how the elements of VO-S modelling lan-

guages gets mapped to elements of the VO-O modelling language. We then described

the adaptations made to the SRML for specifying the operational aspects of a VO.

Finally, we described the guidelines using which a VO-S specification can be trans-

formed into a basic VO-O specification. We also provided some examples showing

transformation of some aspect of VO-S specification into corresponding VO-O spec-

ification. Where possible, we also described in the case of further refinement what

constraints need to be followed such that the VO-O specification does not violate its

corresponding VO-S specification. The details which could not be generated from the

information available at the VO-S specification must be added in through manual re-

finement such as the external configuration policies and any computation done in the

effects part of the transitions.

97

Chapter 6

VO-R: VO-Reconfiguration Modelling

Language

In this chapter, we define the VO-R (VO-Reconfiguration) modelling language, which

provides VOs with the ability to adapt to changing circumstances by reconfiguring the

structure. VO-R offers a set of events, conditions and actions that can be exploited by

any VO belonging to any domain. The VO-R is an extension of the APPEL policy lan-

guage for the domain of VOs. The APPEL is an ECA (Event, Condition and Action)

based policy language, detailed syntax of which is defined in the Section 2.3.1. The

basic building block in APPEL is Policy rule which consists of an optional event, an

optional condition, and an action. For a policy to get activated the event (if any) asso-

ciated with it must be occur and the condition (if defined) must aslo be true. Actions

affect the system to which the policies are applied.

How the set of ECAs defined in the VO-R language affect at the VO-S and the VO-R

specification is described in detail in the Section 7.4. A typical APPEL policy looks as

follows:

policy policy-name appliesTo task-id/member-id/VO-id

when optional trigger(s)

if optional condition(s)

98

do action(s)

The Virtual Organisations-Reconfiguration language (VO-R) is the specialization

of APPEL to Virtual organisations. For VO-R we have added a number of events, con-

ditions and actions specific to VOs. These events, conditions and actions are described

in the reminder of this chapter.

6.1 Reconfiguration Events

This section explains the events which are part of VO-R language.

1. EVENT: memberWithoutAnyJob (member-id)

Semantics: This event occurs when the performsTask attribute of the member

is empty. This event occurs when either, (a) any member of a VO who has

previously been assigned a task, now has no task assigned to it or, (b) it also

occurs when a member remains without any task assigned to it for a certain

duration of time, even when the member has not been assigned any task since

the member joined the VO. The member-id is the name of the member to whom

this triggers applies.

2. EVENT: MemberLeft(member-id)

Semantic: This event occurs when the member member-id has left VO. It might

occur as an indication to successful completion of RemoveMember action. The

member-id is the name of the member who has left the VO.

3. EVENT: CapacityDeficit (task-id, capability-id)

Semantics: The VO has all the required capabilities to carry out the task in

question (task-id), but the member(s) assigned to the task task-id lacks the ca-

pacity required by the task. The task-id is the task which lacks the capacity and

the capability-id points to the capability which the task is deficit in.

99

4. EVENT: CapabilityDeficiency(task-id, capability-id)

The VO lacks a required capability, capability-id concerning a certain task taks-

id. Unlike a capacity deficit, a capability deficit means that the task can not be

conducted.

5. EVENT: TaskWithoutAnyMember (task-id)

Semantics: The task task-id can not be carried out because no member has been

assigned to it currently.

6. EVENT: MemeberJoined (member-id)

Semantics: A new member member-id has joined the VO; no task has been

assigned to the member yet.

7. EVENT: NoMemberWithAllCapabilitiesFound (task-id)

Semantics: While looking for a member, no member was found who could

provide all the capabilities required by the task-id.

8. EVENT: NoMemberWithRequiredCapcityFound (task-id, [capability-id list])

Semantics: Though some member has been found that can satisfy all the capa-

bilities required by the task task-id but, even that member can not provide the

required capacity demanded by certain capabilities listed in the [capability-id

list].

9. EVENT: MemberTaskMismatch (member-id, task-id)

Semantics: If the member member-id assigned to task task-id provides a dif-

ferent set of capabilities than that needed by the task, this event occurs. This

event can occurs when one or more capabilities of the task have been replaced

by equivalent capabilities, but the already assigned member (whose competency

matched the previous competency of the task) cannot provide the new equiva-

lent capabilities. Another situation when it occurs is in replicable tasks where

the maximum number of members has already been assigned and the task is be-

ing carried out as well but might still be deficit in some capacity (i.e. the task

100

is being carried out with degraded performance); in this case the assignment of

additional member to the task to cover the capacity deficit would fail. The event

points to the actual cause. The task-id represent the task where this situation has

occurred and the member-id to the culprit member.

10. EVENT: MoreMembersAssignedThanPermissible (task-id)

Semantics: The task-id to which this event applies has been assigned more

members than permitted by the allowedMembers attribute of the task or in the

case of atomic tasks more than one member is assigned to the atomic task.

11. EVENT: MemberRoleMismatch (member-id, task-id)

Semantics: This event occurs when the member member-id, being assigned to

the task task-id does not fits the demand specified through the task’s performedBy

attribute or when the value of performedBy attribute has been changed through

the VO-R action changeRole.

6.2 Conditions

This section explains the conditions available in the VO-R language.

1. isTaskAtomic (task-id)

Semantics: This condition is true if the type of the task-id is AtomicTask, false

otherwise.

2. isTaskReplicable (task-id)

Semantics: This condition is true if the type of the task-id is replicable, false

otherwise.

3. isTaskComposable (task-id)

Semantics: This condition is true if the type of the task-id is composable, false

otherwise.

101

4. isTaskWithoutAnyMember(task-id)

Semantics: This condition is true if the task-id task has not been assigned any

member, false otherwise.

5. isMemberWithoutAnyJob(member-id)

Semantics: This conditions verifies that if the concerned member (member-id)

has been assigned atleast one task or no task has been assigned to the member.

6. isCapabEquivalent(newCapa-id, oldCapab-id)

Semantics: This condition compares the newCapab-id with the oldCapab-id

and returns true if both the capabilities are equivalent, false in other case.

6.3 Actions

In this section we are going to explain the basic actions that are needed by any VO, to

enact adaptations.

1. RemoveMember (member-id)

Semantic: The membership of the member in question (member-id) ends as the

consequence of this actions’ execution.

2. AddNewMember (member-id)

Semantic: A new member member-id becomes part of the VO; however, the

member has not been assigned to any task of the VO yet.

3. AddAltrCapab (task-id, currCapab-id, equivCapab-id, criteria)

Semantic: This action adds an equivalent capability with respect to an already

present capability in the respective task. Capabilities are considered equivalent

if they perform the same task but by using different means, for example the act

of travelling could be achieved in many ways: by air, by road or by sea. The

alternative capabilities become part of different sub tasks and at the VO-O level

only one of these sub tasks is selected as per the criteria. The task-id represents

102

the task (ComposableTask) to which this action applies, currCapab-id is the

capability already part of the task-id and equivCapab-id is the new equivalent

capability being added as an alternative capability to the task-id.

4. DeleteAltrCapab (task-id, equivCapab-id)

Semantic: This action deletes an equivalent capability from the task only if there

is more than one capability which is equivalent to some other activity in the task.

5. ReplaceCapability (task-id, currentCapab, newCapab)

Semantic: One of the equivalent capabilities of the task is replaced by any of

the capabilities which are considered equivalent to the capability which is being

replaced. The currCapab is the capability being replaced and the newCapab is

the capability is which replacing the previous one. The task-id is the name of

the task to which this action applies. The ReplaceCapability only replaces

one capability with another one only if the two capabilities are equivalent.

6. AssignTask (task-id, member-id)

Semantic: Assigns member member-id to the task-id.

7. UnAssignTask(task-id, member-id)

Semantic: This action undoes the effects of the AssingTask action by removing

the member member-id member from the task task-id.

8. MakeTaskComposable (task-id, [subtask list & the corresponding capabilities])

Semantic: This action decomposes the task into two or more subtasks. The task-

id is the task being decomposed and the second parameter is the list of subtasks

and their corresponding capabilities into which the task-id is going to be divided

into.

9. MakeTaskReplicable (task-id, maxMembers, relation)

Semantic: This action changes the type of a task so that it can be shared by more

than one member. The resulting type is ReplicableTask. The maxMembers

parameter represents the maximum number of members the task is permitted

103

to be shared between and the relation represents the relationship between these

members (e.g. whether they are in competition or not).

10. MakeTaskAtomic (task-id)

Semantic: This action changes the type of the task to AtomicTask so that, the

task can be conducted by only one member, hence forbidding its sharing or

decomposition. The task-id is the task being made atomic.

11. ChangeRelationship (ReplicableTask-id, relation)

Semantic: This action only applies to replicable tasks where there is more than

one member sharing the responsibility of conducting the task. The relation at-

tribute shows whether all the members cooperate with each other or they are in

competition with each other.

12. changeRole (task-id, new-role)

Semantic: This action changes the type (partner, associate and external entity) of

member permitted to perform the task by changing the value of the performedBy

attribute.

13. changeAllowedMembers(task-id, allowedMembVal)

Semantic: This action changes the number of members permitted to carry out

a replicable or composable task task-id. The task-id is the task to which this

action applies and allowMembVal is the value that is going to be assigned to the

allowedMembers attribute of the task.

14. searchMember(task-id)

Semantic: This actions looks for a new member outside the VO whose compe-

tency matches the competency required by the task-id.

15. changeCapacity (task-id, capability-id, value)

Semantic: This action updates the capacity value of the task-id. The capability-

id is the capability whose resource’s capacity is being updated.

104

6.4 The TravelBK Case Study

In this section we are going to show how VO-R reconfigurations effect the VO-S

specification using some examples. For each example, we will present a scenario,

show the reconfiguration rule(s) and describe the effects. We will also evaluate the

scenarios against the criteria mentioned in Section 1.2 to identify the strengths and

limitations of the VOML framework.

We consider the TravelBK case study introduced in Chapter 1. The Appendix A lists

the full specification of TravelBK.

The VBE management has decided that TravelBK has a big role to play during the

Olympics but needs to adapt to cope with the demands.

6.4.1 Scenario 1: More hotel beds are needed than the current

provider can provide

The Olympics 2012 will bring an influx of people to London; these will all stay

for a few days and hence will require accommodation. The current accommodation

provider - that is the member responsible for the HotelProvision task - has a rather

limited capacity, which is suitable for normal operation. A search for new members

to provide accommodation shows that no member can individually meet the expected

demand, but each provider could contribute to the demand and overall it could be met.

The current configuration specified HotelProvision as an atomic task, i.e. one that

can only be offered by one member. A decision is made to specify the following

reconfiguration policy which in turn will change the specification to cope with larger

demand by making HotelProvision a replicable task.

policy MoreBeds appliesTo HotelProvision

when NoMemberWithRequiredCapacityFound (HotelProvision)

do MakeTaskReplicable(HotelProvision, 3, [competition, cheapest])

Figure 6.1 show the respective part of the specification that will change when the

rule is applied to the model presented earlier. Note in particular that the task is now

105

replicable, allowing to be split between up to 3 members. Also, the members will be

in competition with each other, that is the cheapest one having remaining capacity will

be given priority in allocations. This scenario satisfies the criterion C4, by defining

the task to be shared by more than one member and criterion C5 by describing the

relationship between the members performing the HotelProvision task as competitors.

6.4.2 Scenario 2: Further means of transport are needed

Currently by air is the only means of transportation to bring tourists in and out of

London – that is the current VO expects people to come by flying in. This is shown in

the figure 6.2(a). The increase of people wishing to travel to London will put a strain

on airlines and hence alternative means of transportation could allow to increasing the

profit. It is hence decided to add diversity to the business by adding more options for

the transportation task. This is achieved by a rule allowing the addition of equivalent

capabilities as an alternative to by air – for example by sea. It is seen as equivalent

because it offers a solution to the same task (namely transportation).

The following policy encapsulates the required change. Note that it performs two

actions: one to add the alternative capability and the other to change the type of the

task to ComposableTask so that both alternatives are available to instances of the VO.

Hence, this scenario satisfies the criteria C6 and C4 respectively. Adding an equivalent

capability also leads to the addition of a new member in the VO hence, addressing the

requirements expressed by the criteria C4 and C5.

policy MoreTransportMeans appliesTo TransportProvision

do

AddAlternateCapability (TransportProvision, byAir, bySea,

customerPref)

andthen

MakeTaskComposable (TransportProvision, [[flightBooking, byAir],

[freightBooking, bySea]])

106

Figure 6.2(b) shows the resulting parts of the specification. Observe in particular

that a new capacity has been added and then that the task type has changed. In addition,

in the reply part of the business functionality, we now have an additional data item and

in the dataflow there are changes to reflect that the data item is needed. Clearly in a

specific running instances of the VO-O only one of the alternatives would occur.

Note that in this scenario we have not added a new task, but rather expended the

scope of an existing one. This means that the overall purpose of the VO is maintained,

but it has reacted to a new opportunity and adapted to a changing environment.

6.4.3 Scenario 3: One of the hotel partners has had a fire and had

to withdraw their commitment

Sadly one of the hotels had a fire and cannot provide the promised accommodation.

This is a kind of contract violation in the eyes of the VBE – clearly in business cases

this happens and the VO is prepared to react to it as it has the following rule (this rule

assumes that memberX is only involved in HotelProvision):

policy MemberQuits appliesTo memberX

do UnAssignTask(memberX, HotelProvision)

andthen

RemoveMember(MemberX)

This rule has two actions in a sequence, the second is only executed if the former is

successful. Before a member can be removed the tasks assigned to that member need

to be removed from him and then the member can be removed from the VO.

The application of the rule above might lead to a follow-on problem, namely that of

a capacity or capability deficit. This situation is captured by further rules that describe

how the VO should behave if such a deficit occurs (note that these rules can also handle

the situation where due to increased demand more capacity is required).

policy MoreCapacityNeeded appliesTo HotelProvision

107

when CapacityDefecit (HotelProvision)

if isTaskReplicable (HotelProvision)

do

searchMember (HotelProvision)

andthen

AddMember (memberX)

andthen

AssignTask(HotelProvision, memberX)

The last rule describes the process the VO should enact when a capacity deficit

problem is encountered. It first checks the condition whether the task is replicable.

It adds one more member to the task if the condition is satisfied. By doing so this

scenario has satisfied the criterion C7 by preventing the VO from failing in the event

of capacity deficit that occurred as a result of one member leaving the VO. This sce-

narios also shows the flexibility of framework to react to possible VO failure which

could have occurred as a result of contract violation.

6.5 Summary

In this chapter, we first introduced the basic set of events, conditions and actions that

we believe cover the core re-configuration demands of a VO, no matter which appli-

cation domain the VO operates. However, there is potential to expand this core set of

events, conditions and actions.

Then we validated some of these ECAs against different scenarios of our TravelBK

case study to see if these ECAs satisfy the adaptation demands of TravelBK VO.

108

VO-Smodel TravelBK

 ...

ReplicableTask HotelBooking

STRUCTURE
 TaskScope
 {
 performedBy: VBEParticipant
 allowedMembers : 3
 relationship : competition (cheapest)
 }
 ConfScope
 {
 currentState : replicated
 currentMemebrs : 2
 }
Competency
 {
 Capability roomReservation
 {
 resource rooms
 capacity {totalRooms : 500}
 }
 }

BUSINESS FUNCTIONALITY
 Request:
 from, to : location; out, in : date; name : usrdata
 Reply :
 roomReservation.hconf : hcode; amount : moneyValue
 ...

Members

Partners

 Partner AccomProvider1
 {
 performsTask : {HotelBooking}
 competency {roomReservation.room.totalRooms : 350}
 }

 Partner GrandHO
 {
 performsTask : {HotelBooking}
 competency {roomReservation.room.totalRooms :250}
 }

 ...

Figure 6.1: TravelBK VO after applying
Rules from Scenario 1

109

VO-Smodel TravelBK

 ...

AtomicTask TransportProvision

STRUCTUURE
 TaskScope
 {
 performedBy : ExtEntity
 supportedBy : UsrDB
 }
 ConfScope
 { }
Competency
 {
 Capability byAir
 {
 resource : plane
 capacity { flightsPerDay : 30}
 }
 Capability bySea
 {
 resource : freights
 capacity { freightsPerDay : 20}
 }
 }

BUSINESS FUNCTIONALITY
 Request:
 from, to: location; out,in: date; traveller: usrdata
 Reply:
 byAir.fcong: fcode; bySea.sconf : scode ; amount : money; bank-id
 …

DATA FLOW

 …
Customer.fconf ⇇= TransportProvision.fconf
Customer.fconf ⇇= TransportProvision.sconf

 ...

(a) TravelBK VO before applying scenario 2 rules

VO-Smodel TravelBK

 ...
ComposableTask TransportProvision

STRUCTUURE
 TaskScope
 {
 performedBy : ExtEntity
 supportedBy : UsrDB
 allowedMembers : 3
 subTaskFlow : choice(customerChosen)
 }
 ConfScope
 {
 currentState : atomic
 currentMemebrs: 1
 }
Competency
 {
 Capability byAir
 {
 resource : planes
 capacity { flightsPerDay : 30}
 }
 Capability bySea
 {
 resource : freights
 capacity { freightsPerDay : 15 }
 }
 }
AtomicTask FlighttBooking
{
 STRUCURE
 TaskScope
 {
 competencies : {byAir}
 }
 ConfScope
 { }
}
AtomicTask FreightBooking
{
 STRUCURE
 TaskScope
 {
 competencies : {bySea}
 }
 ConfScope
 { }
}
STRUCTURE
 Request:
 from, to: location; out,in: date; traveller: usrdata
 Reply:
 byAir.fcong: fcode; bySea.sconf; amount : money; bank-id
 ...

(b) TravelBK VO after applying scenario 2 rules

Figure 6.2: TravelBK VO before and after applying rules from Scenario 2

110

Chapter 7

Formal Syntax and Semantics of

VOML

Formally defined syntax and semantics provide the basis for VOs and VBEs modelled

in the VOML framework to be formally analysed. Formal syntax of the languages that

are part of the VOML framework is defined using xtext [4]. This chapter provides a

detailed account of the syntax of the three languages in the VOML – VO-S, VO-O and

VO-R – and discusses their syntactic integration. It also discusses the semantics of the

three languages, their integration.

7.1 xtext

Formal syntactic definition of languages can be provided through a number of mecha-

nisms – typically these are referred to as grammars. Traditionally BNF (Backus Naur

Form) and variants thereof have been used to describe syntax; we use xtext in this

work. ”xtext is a framework for development of programming languages and domain

specific languages. It covers all aspects of a complete language infrastructure, from

parsers, over linker, compiler or interpreter to fully-blown top-notch Eclipse IDE in-

tegration” [4]. Thus xtext could provide a natural avenue to build tool support in the

eclipse framework for our languages; actually SRML of which we have drawn inspi-

111

ration has a formal syntax in xtext and this has allowed for a fast development of the

SRML toolset.

7.2 VOML Syntax

In this section we describe the formal syntax of the three languages which form part

of VOML framework. The grammar is formally specified using xtext. The complete

grammar is provided in the Appendix C; this section discuses the overall structure and

organization of the grammar.

Given below is the entry rule for VOML framework:

1 Voml :

2 (vosModel = VOSmodel)

3 (vooModel = VOOmodel)

4 (vorModel = VORmodel)

5 ” d a t a t y p e s ” (d a t a t y p e s += DataTypes) + ;

6 DataTypes :

7 ” s o r t s ” (d a t a t y p e += DataType) ∗

8 i n t e r v a l += I n t e r v a l ∗ ;

9 DataType : name = SortName ;

10 SortName : name = ID ;

11 I n t e r v a l : ” [” i n i t i a l V a l = INT ” . . ” f i n a l v a l u e =INT ”] ” ;

The Voml entry rule consists of single VOSmodel element, single VOOmodel ele-

ment and single VORmodel element, each representing respectively the VO-S, VO-O

and VO-R modelling languages. In the VOML infrastructure these three languages

can be syntactically linked to each other based on the concept of name referencing

[66] and inheritance. The xtext framework at the moment supports inheritance of only

one other domain. Due to lack of developed infrastructure and inheritance limitation

of xtext the syntax of the three languages of VOML is developed as one large mod-

elling language.

112

The Voml rule also specifies one or more DataType elements. These elements are

actually part of VO-S and VO-O models and hence should be described in the respec-

tive rules. However, since all the languages are described as part of one language the

DataTypes rule has been moved to entry rule. This way redundantly describing the

data types in the respective languages has been avoided. The DataTypes rule itself

consists of zero or more DataType elements and zero or more Interval elements.

The DataType rule allows to define user defined data types. The xtext has built-in

support for a numeric data type INT and a string data type STRING. The Interval

data type is mainly used by the VO-R models.

7.2.1 VOSmodel

VOSmodel: The VO-S modelling language starts with VOSmodel rule. This rule starts

with keyword VO-Smodel and the name of the VO. The VOSmodel zero of more texttt-

DataTypes elements, zero or Tasks elements and VBEasset elements, exactly one

Process, Taskspecification, AssetSpecification, DataDlow and Members

elements. The Taskspecification and AssetSpecification describe the com-

plete specification of tasks and VBE assets mentioned in the Tasks and VBEasset

elements of the VOSmodel rule.

1 VOSmodel :

2 ”VO−Smodel ” name = ID

3 ” d a t a t y p e s ” (d a t a t y p e s += DataTypes) ∗

4 ” t a s k s ” (t a s k s += Tasks) ∗

5 ” vbe ” ” a s s e t s ” (v b e A s s e t s += VBEasset) ∗

6 ” p r o c e s s ” (p r o c e s s = P r o c e s s)

7 t a s k S p e c i f i c a t i o n = T a s k S p e c i f i c a t i o n

8 a s s e t S p e c i f i c a t i o n = A s s e t S p e c i f i c a t i o n

9 ” da t a−f low ” da taF low = DataFlow

10 ” members ” (members = Members) ;

113

7.3 Task Specification

The atomic, replicable and composable tasks are defined as generalization of an ab-

stract rule TaskType. Given below is the description of atomic, replicable and com-

posable tasks with the rules AtomicTask, ReplicableTask and ComposalbeTask.

All these rules begin with keywords respective to tasks followed by the name of the

tasks, which is actually reference to another rule Tasks. The Tasks rule lists names

of all the tasks part of VO. The referencing provides consistency check by linking

the task names described at the start of the VO-S model with their specification later

in the specification. All three rules consists of one element representing structure

part of task specification (with names rule names Structure, RepStructure and

CompStructure for atomic, replicable and composable tasks respectively) and one

element for business functionality part with the rule name BusinessFunctionality.

The rule representing the structure part of the respective task types in turn comprises of

three elements, one for TaskScope part (with rule names TaskScope, TaskScopeForRep

and TaskScopeForComp for Structure, RepStructure and CompStructure re-

spectively), ConfScope and Competency. The RepStrucutre in addition contains

one more optional element for subtasks of composable tasks.

1 TaskType : AtomicTask | R e p l i c a b l e T a s k | ComposableTask ;

2 AtomicTask : ” a to mi c ” ” t a s k ” name = [Tasks]

3 (s t r u c t u r e = S t r u c t u r e)

4 ” b u s i n e s s ” ” f u n c t i o n a l i t y ” (b u s i n e s s F u c =

B u s i n e s s F u n c t i o n a l i t y) ;

5 S t r u c t u r e : ” s t r u c t u r e ” (t a s k S c o p e = TaskScope)

6 ” confScope ” ”{” (confScope = ConfScope) ”}”

7 ” competency ” ”{” (competency = Competency) ”}” ;

8 . . .

9 R e p l i c a b l e T a s k : ” r e p l i c a b l e ” ” t a s k ” name = [Tasks]

10 (r e p S t r u c t u r e = R e p S t r u c t u r e)

11 ” b u s i n e s s ” ” f u n c t i o n a l i t y ” (b u s i n e s s F u c =

B u s i n e s s F u n c t i o n a l i t y) ;

114

12 R e p S t r u c t u r e : ” s t r u c t u r e ” (repTaskScope = TaskScopeForRep)

13 ” confScope ” ”{” (confScope = ConfScope) ”}”

14 ” competency ” ”{” (competency = Competency) ”}” ;

15 . . .

16 ComposableTask : ” composable ” ” t a s k ” name = [Tasks]

17 (c o m p S t r u c t u r e = CompSt ruc tu re)

18 ” b u s i n e s s ” ” f u n c t i o n a l i t y ” (b u s i n e s s F u c =

B u s i n e s s F u n c t i o n a l i t y) ;

19 CompSt ruc tu re : ” s t r u c t u r e ” (t a s k S c o p e = TaskScopeForComp)

20 ” confScope ” ”{” (confScope = ConfScope) ”}”

21 ” competency ” ”{” (competency = Competency) ”}”

22 (subTasks = S u b T a s k S p e c i f i c a t i o n) ? ;

The description of different task types in the VO-S language differs in having some

of the attributes different in the TaskScope part while most of the attributes are com-

mon in all the TaskScope part. Hence in the syntax we have defined one rule named

TaskScopeAttribute which list all possible attributes that can be in any of the task

types. The rules AtomicTaskScopeAttribute, RepTaskScopeAttribute and the

CompTaskScopeAttribute each return TaskScopeAttribute rule customized for

their individual type. The rule AtomicTaskScopeAttribute represents all the at-

tributes part of an atomic task’s taskscope from the rule TaskScopeAttribute, the

RepTaskScopeAttribute for replicable tasks and the CompTaskScopeAttribute

for composable tasks from TaskScopeAttribute rule.

1 TaskScope : ” t a s k S c o p e ” ”{” (t a s k S c o p e A t t r +=

A t o m i c T a s k S c o p e A t t r i b u t e) ∗ ”} ” ;

2 T a s k S c o p e A t t r i b u t e : Suppor tedBy | PerformedBy | S u p p o r t s T a s k |

AllowedMembers | R e l a t i o n s h i p | SubTaskFlow | subTasks =

C u r r e n t S u b T a s k s ;

3 A t o m i c T a s k S c o p e A t t r i b u t e r e t u r n s T a s k S c o p e A t t r i b u t e : Suppor tedBy |

PerformedBy | S u p p o r t s T a s k ;

4 TaskScopeForRep : ” t a s k s c o p e ” ”{” (r e p T a s k S c o p e A t t r +=

R e p T a s k S c o p e A t t r i b u t e) ∗ ”} ” ;

115

5 R e p T a s k S c o p e A t t r i b u t e r e t u r n s T a s k S c o p e A t t r i b u t e : AllowedMembers |

PerformedBy | Suppor tedBy | S u p p o r t s T a s k | R e l a t i o n s h i p ;

6 TaskScopeForComp : ” t a s k S c o p e ” ”{” (comTaskScopeAt t r +=

CompTaskScopeAt t r ibu te) ∗ ”} ” ;

7 CompTaskScopeAt t r ibu te r e t u r n s T a s k S c o p e A t t r i b u t e : SubTaskFlow |

S u p p o r t s T a s k | PerformedBy | Suppor tedBy | AllowedMembers |

s u b t a s k L i s t = C u r r e n t S u b T a s k s ;

7.3.1 VORmodel

The VORmodel rule consists of zero or more PolicyRuleGroup elements besides the

name of the VORmodel. The PolicyRuleGroup in turn consists of one or more poli-

cies (represented by PolicyRule) grouped by policyGrouping operator (represented

by PolicyOpr). The PolicyRule in turn consists of optional Location, optional

Triggers, optional Conditions and one Actions elements. The VO-R model is

linked to VO-S model by referencing to members, tasks and capabilities defined in

VO-S models as can be seen by the MemberWithoutAnyJob rule which is referring to

members. The complete specification of VORmodel is given in appendix C.

1 VORmodel :

2 ”VO−R” name=ID

3 (p o l i c y R u l e G r o u p += Po l i cyRu leGroup) ∗ ;

4 Po l i cyRu leGroup : p o l i c y R u l e += P o l i c y R u l e (p o l i c y O p r +=

P o l i c y O p r p o l i c y R u l e += P o l i c y R u l e) ∗ ;

5 P o l i c y R u l e : (” p o l i c y ” pol icyName=ID) ?

6 (” a p p l i e s T o ” (l o c a t i o n = L o c a t i o n) ∗) ?

7 (” when” (t r i g g e r s = T r i g g e r s)) ?

8 (” i f ” (c o n d i t i o n s = C o n d i t i o n s)) ?

9 ” do ” (a c t i o n s = A c t i o n s) ;

10 L o c a t i o n : name = [Random] ; . . .

11 MemberWithoutAnyJob : ” memberWithoutAnyJob ” ” (” memberId =[Members] ”)

” ;

116

7.3.2 VOOmodel

The VOOmodel rule represents partial syntax for the VO-O modelling language. The

VOOmodel rule consists of VOmodule and Specification elements out of which

VOmodule specify the components, whereas the specification (business role, protocols,

wire protocol, etc) of components defined through the Specification rule. Both

parts of the VO-O module (i.e the components and respective specification) are then

liked as shown in line 12 of the listing below by referring to BusinessProtocol rule

in the RequiresInterface rule.

1 VOOmodel :

2 (module = VOmodule) ?

3 (” s p e c i f i c a t i o n ” (s p e c i f i c a t i o n s += S p e c i f i c a t i o n) +) ? ;

4

5 VOmodule : ” s e r v i c e ” name=ID ” i s ”

6 (” components ” (components += Component) ∗) ?

7 (” r e q u i r e s ” (r e q u i r e s += R e q u i r e s I n t e r f a c e) ∗) ?

8 (” p r o v i d e s ” p r o v i d e s += P r o v i d e s I n t e r f a c e) ?

9 (” u s e s ” (u s e s += U s e s I n t e r f a c e) ∗) ?

10 (” w i r e s ” (w i r e s += Wire)) ? ;

11 . . .

12 R e q u i r e s I n t e r f a c e : ” r e q u i r e s I n t e r f a c e ” name=ID ” : ” b u s i n e s s P r o t o c o l

=[B u s i n e s s P r o t o c o l]

It is worth mentioning here that the VO-S and VO-R are linked to each other through

the VO-R language syntax making references to members, tasks, VBE assets and the

VO itself but same does not apply to the VO-S and VO-O parts. The reason behind this

is that VO-R policies directly work on the VO-S constituents, hence it must know the

exact names whereas VO-S constituents might not be mapped to VO-O components on

a one to one basis such as replicable task is represented by more than one components

when in replicated state and with exactly one components when in atomic state. This

situation gets even complicated for composable tasks when they have been decom-

posed into subtasks. The exact link (mapping) between VO-S constituent and VO-O

constituent each named uniquely is actually created through these mapping rules.

117

7.4 Semantics

We aim to define the semantics of the VOML in future. Here we review briefly the

semantics of the APPEL and the SRML on which the VO-R and the VO-S languages

build by extension and adaptation. From the perspective of the VOML framework we

also discuss the semantics of the new extensions to the languages, and discuss how the

languages may be linked.

The VO-S language defines the basic structure of a VO. It does not cover behavioural

aspects of the VOs while in operation (execution) and serving a customer. This be-

haviour is represented at the VO-O level in the form of interactions and the order of

interaction execution.

The SRML provides mathematical semantics for modelling business logic of services.

The business protocol constructs are defined over the UCTL [62] and the interactions

in the SRML are captured by a model of computation. For detailed description of

mathematical model of the SRML see [6]. Whereas, the APPEL has been given for-

mal semantics based on the δDSTL(x) [50]. The VO-O semantics is a subset of the

SRML semantics and semantics of the VO-R is adapted from APPEL. In the VO-O

language all the partners and associates of a VO are represented through serves com-

ponents. Therefore, the VOML distinguishes from the SRML by associating business

protocols with serves components and allowing more than one serves components in

the VO module which is adapted from service module in the SRML.

Besides, the VO-O does not allow external configuration policies for the business pro-

tocols associated with serves components as partners and associates (serves compo-

nents) in the VO-O are not discovered at run-time (VO-O instances) rather, they are

already chosen from the VBE at the VO-S level. Other difference is that the conversa-

tional interactions are limited to request and reply events.

The semantic integration of these languages is the aim of future work but conceptually

there is no overlap between the three languages as each language represents different

aspects of a VO. More specifically, the APPEL defines a transformation relation on

the VO-S model at design time and at run-time for VO-O models. Activation of poli-

118

cies ends in modification to the VO-S models and the VO-O instances. Similarly, the

VO-S defines design time transformational relation on the VO-O models. Each time

a change is made in the VO-S model it is propagated to the VO-O model and new in-

stances of the VO-O then reflect these changes. The Figure 7.1 describes the semantic

integration of the VOML framework at conceptual level.

Figure 7.1: Semantic integration of VO-S, VO-R and VO-O at conceptual level

7.5 Summary

In this section we described the syntax of the the VOML sub languages. Furthermore,

we also lay down the conceptually the methodology that we intend to use in future to

give formal semantics to the sub languages and the issues that could raised due to such

integration.

119

Chapter 8

Evaluation and Discussion

In the course of this work, we have so far shown the example of TravelBK VO. We

will now apply the VOML to specify a ChemicalPD (Chemical Plant Development)

VO to show that VOML lends itself well to model virtual organizations of different

complexity and different nature.

This chapter presents our work towards modelling structural and reconfiguration as-

pect of ChemicalPD using the VO-S and VO-R languages respectively. The full VO-S

description of ChemPD VO is shown in the Appendix B. The ChemPD model in its

initial configuration (where all tasks are atomic) is shown in the Appendix B.

8.1 Chemical Process Development Case Study

To assess the practicality of VOML, we have adapted a case study which is based on

actual chemical process development (CDP), conducted as part of the GOLD project

[5, 27, 14, 3]. As the goals of the GOLD project are focused on providing a SOA

based middleware for VOs, access control policies and analysing different properties

of the dynamic coalitions (VOs); we only focus on the aspects of this case study that

fall into structural and reconfiguration scope. Thus, we extracted the required details

only from the publications and technical reports available.

120

Consider a VBE named ChemicalVBE which offers different services related to

the field of the Chemical industry. One of the VOs currently operating in this VBE

is called ChemicalPD which serves existing batch processing plants (that produce a

widely-used chemical) which are approaching the end of their serviceable life. Chem-

icalPD comes into play when the owner(s) of the plant decide to phase out/sell the

existing plant and build a new chemical plant in place that produces the same chem-

ical. In doing so ChemicalPD also helps in converting the plant from batch to more

modern continuous operations if possible. The basic project plant in the original case

study is divided into following four phases:

• First phase consists of preliminary laboratory level investigation to determine

whether conversion from batch to continuous operation is feasible or not. Dur-

ing this phase preliminary trial of downstream processing separation methods is

also performed to investigate its compatibility with the continuous operation.

• Based on the results of phase 1, a design for the pilot plant is built during second

phase.

• In third phase a small-scale model pilot plant is build to identify suitable modes

of operation, potential problems with start up shut-down, etc.

• In the final phase, full scale production plan is built.

8.1.1 Task Structure of the ChemicalPD

In order to aid the reader in understanding the task and membership specification of

ChemicalPD, VO we have borrowed the Figure 8.1 showing the structure of the chem-

ical development project at the end of phase 1 from [5]. In this figure the box labelled

RE represents the member performing the laboratory-level preliminary investigation

(phase one). The Laboratory and Simulation labelled boxes show the services that

the RE must provide to the VO. The Eau de cham box represents the owner and de-

cision maker of the project at each stage. PP represents the member responsible for

121

the design of pilot plant and the two EV boxes represent the equipment suppliers of

the VO. Solid lines between boxes represent those members who remain relatively

fixed during different phases of the VO whereas, dashed lines represent those mem-

bers whose membership might change as the project evolve and unanticipated circum-

stances might demands changes the in the project plan. For example the EV might

change from one providing filtration technology products to one providing alternative

centrifuge technology.

The ChemicalPD VO-S model specification consists of four main tasks; each corre-

sponds to one of the phases mentioned above. In particular, the PreliminaryAnalysis

task corresponds to phase one of the original case study (performed by RE). The Lab-

oratory and Simulation boxes of the figure in turn correspond to VO-S notion of ca-

pabilities that the member performing the PreliminaryAnalysis task must posses. The

PlantDesign task corresponds to the phase two, PilotPlantBuilding&Operation and

FullScalePlantConstruction corresponds to phase three and four respectively.

The Eau de Chem corresponds to the customer of the ChemicalPD in our case. Simi-

larly, PP and and two EVs correspond to the tasks PlantDesign and EquipmentProvi-

sion in ChemicalPD. The solid arrows in this figure represent the relationships which

remain relatively fixed and the dashed arrow represent the more uncertain ones. The

above mentioned tasks depend on a number of other (supporting) tasks, such as pro-

viding different off-the-shelf process equipment according to supplied specifications,

supplying custom-built equipment not available from the off-the-shelf vendors and

providing catalyst currently used by the reaction processes. These tasks are consid-

ered supporting tasks by the ChemicalPD as their role is limited to supplying the

material/equipment. The CatalystProvision task provides the catalyst required to the

ChemicalPD. In the ChemicalPD model of the case study we have only considered

one kind of equipment provider named EquipmentProvision, performing both the off-

the-shelf and custom-built equipment, as these are fairly identical.

It is worth reminding the reader here that in VO-S the tasks that appear under the

umbrella of Process description are considered main tasks and those that do not are

122

Figure 8.1: The structure of the Chemical Development Project at the end of Phase 1
of original case study

123

considered supporting tasks. VO-S does not explicitly tag the tasks with any construct.

However, a main task specify the supporting tasks, it depends through its supportedBy

attribute. By doing so, we have attempted to keep the vocabulary of the VO-S lan-

guage as minimal as possible.

The significance of these different tasks is that we are able to differentiate between

the core tasks carrying out some part of the goal (of VO) and those tasks that do not

directly form part of the goal. This differentiation may play a key role in assigning

different types of members to different tasks; which eventually provides the flexibility

to specify different policies for members carrying out those tasks. One such policy

could be to try to keep the members performing the main tasks in VO as longer as

possible. Whereas, for the members of supporting tasks the VO might afford to have

selfish policies which benefit the VO but not the supporting tasks’ members and the

VO might change those members as many times as it wants. Hence, we are able to

differentiate the significance of different tasks and later associate different policies

according to the importance of respective tasks in the VO using VOML.

8.1.2 Membership Types of ChemicalPD

In this section we are going to describe the membership structure of the ChemicalPD

VO and will try to justify the rationale behind this structure in particular and types

of membership identified in VOML in general using the concepts developed at the

beginning of the case study and as depicted by the figure 8.1.

1. The members for the main tasks (PreliminaryAnalysis, PilotPlantDesign, Build-

PilotPlant and BuildFullscalePlant) have been chosen to be of type partner. The

competency requirements for these tasks are mainly the same for different type

of chemical plants. The solid lines in the Figure 8.1 also indicate to it. Besides,

it allows VBE to create multiple (instances of) ChemicalPD VO quickly, as

many of its aspects (in this case members for all the main tasks) are going to be

same for each instantiation of ChemicalPD. Another benefit of having persistent

124

members is that with time the ChemicalPD is going to grow more efficient as its

persistent members and coordinator keep learning from its past experiences.

2. The catalyst used in the chemical reactions (for the production of the chemical)

plays a vital role. The chemistry of the reaction and the separation method both

get effected by the properties of the catalyst. However, the goal of ChemicalPD

itself is not associated with catalyst itself; the catalyst is required by the tasks

satisfying the VO goal. Hence the task of catalyst provision (CatalystProvision)

is included in the ChemicalVO as a supporting task. Since every chemical plant

has its own specific catalyst supplier with long term relations and contract and

the catalyst also varies as per the chemistry used by the chemical plant, this im-

plies that catalyst and its supplier varies from one chemical plant development

to another (different ChemicalPD instances) so it can not be the partner of the

ChemicalPD. However, the catalyst provider is also not eligible to be considered

an external entity as external entity is discovered from the outer open universe

(of VBE), but the customer of the ChemicalPD wants a catalyst supplier with

whom the customer already has ties and once the plant is operational, the same

catalyst supplier is going to supply the catalyst. These restrictions (by the VBE)

and requirements (by the customer) make the member supplying catalyst eligi-

ble to be an associate who comes from outside the VBE but not from the open

universe, rather on customer’s recommendation.

3. The equipment providers (both vendors and manufactures) lend very well to be

external entities, as they keep changing from chemical plant to chemical plant

and this equipment might not be required once the plant is operational

The above membership types clearly satisfies one of the characteristics highlighted

by the original case study and that is the relationships between VO members are of dif-

ferent types, some are relatively fixed and some are more uncertain. Our framework

provides concrete constructs to represent different types of relationships between the

members. The GOLD architecture does highlight these differences but at the archi-

125

tecture level both of relationship types have been implemented with services which in

our opinion do not clearly differentiate between them.

8.1.2.1 Company Acquisition and Coordination Difficulties

During the course of chemical plant development in the original case study, one of the

events that occurred was that the Eau de Chem company became involved in the com-

pany acquisition having the consequence of an additional reporting structure put in

place across new organizational boundaries. Many more companies and management

groups became involved. Another difficulty faced by Eau de Cham was that they were

involved in many more projects at the same time. The resources needed to maintain

all the projects with agility, the management efforts required to coordinate the various

members and projects and effective communication between different members turned

out to be major difficulties faced by most chemical companies.

All of these difficulties prove the fact that having a VO alone is not the solution as sug-

gested by most of the research on the VOs. There needs to be a more stable network

dedicated to the coordination, management and quick creation of different projects,

where each project (VO in our case) is managed by its own coordinator. The name

used for such a structure is called VBE in the VOML framework. On contrary to the

path taken in the original case study where Eau de Chem is managing many projects

and formed different teams for each project in a single VO, we have created two struc-

tures one named ChemicalVBE where Eau de Chem is a stakeholder and each project

of Chem de Chem now becomes an individual VO. Now, the Eau de Chem has its

defined set of responsibilities and the management and coordination responsibilities

of each VO are managed by the VO’s own coordinator. Having the VBE in place now

allows Eau de Chem to exploit its experience and expand its business by allowing the

offer of services to the outside world in the form VOs.

126

8.1.3 Dynamic Nature of ChemicalPD

The chemical process development life-cycle is highly dynamic as unanticipated changes

may occur at any time with consequence ranging from structure to competencies and

membership. It is crucial that ChemicalPD remains agile and flexible to face both

anticipated (through risk analysis) and unanticipated changes.

8.1.3.1 Goal Modification

In this section we have merged two of the original case study’s scenarios under the

umbrella of goal modification as, both of the scenarios call for similar changes. Before

going to describe these scenarios, it is worth recalling that in our work we call the

changes in capabilities as the modification to the goal. The goal modification does

not radically alter the goal rather the path to achieve the (high level) goal has been

modified in some way.

Scenario 1: Conversion not feasible One of the reasons forcing changes in the VO

is when for some reason the upgrade from batch operation technology to more

modern continuous operation is not possible. The chemical reaction(s) involved

during the process may not be compatible with the process being operated in a

continuous fashion.

Consequence: This leads to modifying the goal set in the beginning by now

focusing on a batch design, with a possible view to upgrading the existing plant.

The VOML accommodates for this modification through two changes in the

ChemicalPD (1) changing the capabilities of the EquipmentProvision task of

vendors and manufactures to suit the demands of batch processing plants, and

(2) by changing the membership of the ChemicalPD for vendors and equipment

to match the new capabilities.

Scenario 2: Downstream processing problems While upgrading from batch pro-

cess to continuous process, the new operating conditions unexpectedly affect

the downstream recovery of the catalyst. One such problem reported in the

127

original case study occurred during phase one (PreliminaryAnalysis) when the

chemistry required for continuous operation turned out to be suitable but, the

filtration technology proved to be problematic for the downstream separation of

the catalyst. A new separation method using centrifuge technology was there-

fore initiated with a different equipment supplier.

consequence: This involves (1) change in the capabilities of the equipment

provider from one having capability to provide filtration technology equipment

to one offering centrifuge technology and, (2) a modification to the VO structure

through the replacement of a specialist equipment provider by a new one.

Both of the above scenarios require the same set of reconfigurations in VOML,

we are presenting here the reconfigurations and their effects on the ChemicalPD

model using the downstream processing problem. The downstream processing

problem effects the EquipmentProvision task by changing its capability from

FiltrationEquipmentProvider to ContinuousEquipmentProvider. This change

is reflected through the changeSeparationTech policy. The relinquishTask and

changeVOmembership policies unassigns the current member assigned to the

task and then expels it from the ChemicalPD, if it is not required elsewhere.

The policies are given below:

policy changeSeprationTech appliesTo EquipmentProvision

if isCapabEquivalent (ContinuousEquipmentProvider, FiltrationEquipment-

Provider)

do ReplaceCapability (EquipmentProvision, FiltrationEquipmentProvider,

ContinuousEquipmentProvider)

policy relinquishTask appliesTo EquipmentProvision

when MemberTaskMismatch (EV1, EquipmentProvision)

do UnAssignTask (EquipmentProvision, EV1)

policy changeVOmembership appliesTo EV1

128

when MemberWithoutAnyJob (EV1)

do RemoveMember(EV1)

(a) EquipmentProvision task before capability change (b) EquipmentProvision Task after capability change

Figure 8.2: EquipmentProvision Task before and after capability change

The policy changeSeprationTech replaces the FiltrationEquipmentProvider ca-

pability with its equivalent capability, the ContinuousEquipmentProvider, only

if the two capabilities are considered equivalent (in the VBE Competency de-

scription). This constraint is verified through the isCapabEquivalent condi-

tion of the VO-R languages. Note that, the task of providing equipment still

remains the same, just the kind of equipment has been altered in some way.

This situation however, can lead to a mismatch between the capabilities re-

quired by the task from its member and the member currently assigned to it,

as the member still possess the the FiltrationEquipmentProvider capability. The

policy relinquishTask takes care of this situation. This policy gets triggered

when the event MemberTaskMismath gets fired and takes back the responsibil-

ity of the EquipmentProvision task from the current members (EV1). The policy

129

changeVOmembership eventually expels the EV1 from the ChemicalPD.

Scenario 3: External Event The chemistry and reaction process depends heavily on

a particular catalyst. As this catalyst is a naturally occurring substance and its

properties vary considerably with the geographical location where it is found.

The supplier of the catalyst ceased to operate during the course of plant devel-

opment. The quest for a new catalyst supplier was complicated by the fact that

the catalyst supplied by the new supplier has to be compatible to the original

one, that is it must have similar properties.

consequence: Many catalyst sources temporarily joined the ChemicalPD VO

and phase one (PreliminaryAnalysis) chemistry (reaction processes) was restarted

to ensure that the catalyst was an adequate replacement. This process continued

until an appropriate supplier was found that worked well with the selected oper-

ations method (continuous method). One instance mentioned in the case study

is that a new catalyst supplier’s catalyst worked well with the old batch plant but

not in continuous operation laboratory trials. Hence, the supplier had to leave

the ChemicalPD and a new supplier was looked for.

Considering this example, the changes that the VO-S model has to undergo to

account for the above situation are as follow:

In the VO-S specification the catalyst supplier is an associate because it is rec-

ommended by the customer of the VO (Eau de Chem in this case), but when

new catalyst sources are tried, the customer might not have any ties with them.

Hence, in this case the customer might not be able to suggest new supplier

sources. This leads to looking for adequate suppliers from the open universe,

making them temporary members of the VO, investigating if the catalyst sup-

plied by the new supplier is adequate choice and based on the result, expelling

the temporary member or continue working with it. This situation of temporary

membership is dealt naturally by the VOML’s ExtEntity type of membership

i.e. they are invited into ChemicalVO as external entities rather than associate

and once an appropriate supplier is found it’s membership is turned from ex-

130

ternal entities to associate again and continues its support in the next stages of

the ChemicalVO. In short, we need to make provision for the following kind of

changes:

1. Change of membership type from associate to external entity. This change

is covered by the membersRoleUpdate policy. This policy gets activated

as the result of triggering of the event MemberLeft.

2. Invite external entity. This change is achieved through the findNewCat-

alystSource policy, which first searches for the new catalyst source, then

adds it to ChemicalVO and finally assigns the new member to the Catalyst-

Provison task through SearchMember, AddNewMember and AssignTask

actions respectively. memberFound is a special keyword referencing the

name of the member identity who had been returned by the searchMember

action.

3. Expel external entity (if not suitable) or, change type from ExtEntity to

Associate (if suitable).

policy membersRoleUpdate appliesTo CatalystProvision

when MemberLeft(CP)

do changeRole (CatalystProvision, ExtEntity) policy findNewCatalystSource

appliesTo CatalystProvision

do SearchMember (CatalystProvision)

andThen AddMember(memberFound)

andThen AssignTask(CatalystProvision, memberFound)

policy newCatalystSourceNotSuitable appliesTo CatalystProvision

do UnAssignTask(CatalystProvision, tempMem-id)

andThen RemoveMember(tempMem-id)

131

policy newCatalystSourceSuitable appliesTo CatalystProvision

do ChangeRole (CatalystProvision, Associate)

Scenario 4: The Need for Additional outsourcing of Specialist Services As the chem-

ical plant development progressed, unanticipated changes kept occurring from

time to time, most of which required the previous tasks to be performed again,

which in turn lead to the delay in the completion of project. The potential cost

for missed opportunity was therefore very great, especially at the end of the

project when the full scale plant needed to be built. The solution found for this

problem was to increase the labour and expedite the plant construction. How-

ever, the contractor did not have the required amount of labour. Hence the need

for additional contractors and one more contractor was added to the VO. Col-

lectively the existing and additional contractor could finish the project in the

specified time. This kind of situation can also be seen in the figure 8.1 where

there are two equipment providers (labelled as EV).

Consequence The provision for sharing a task between more than one mem-

ber when the members lack the capacity is to replicate the task specification

and this is acheived through changing the type of the task to ReplicalbeTask.

Given below are the policies which account for both of the mentioned changes

and the VO-S excerpt for the task FullScalePlantConstruction which can now

be replicated between more than one member is given in the Figure 8.3. The

expediatePlantConstruction policy increase the total labour to 1000 which trig-

gers the event CapacityDeficit which in turn is handled by addMoreLabour

policy by making the task replicable.

policy expediatePlantConstuction appliesTo FullScalePlantConstruction

do ChangeCapacity(FullScalePlantConstruction, FullPlantBuildingCapabil-

ity.labour, 1000)

policy addMoreLabour appliesTo FullScalePlantConstruction

when CapacityDeficit(FullScalePlantConstruction)

132

do MakeTaskReplicable(FullScalePlantConstruction, 2, cooperation)

Scenario 5: Division of Responsibility This scenarios covers the case widely quoted

in VO literature as one of the reasons and benefit of VO approach. The issue

is when different organizations having specific capabilities want to expand their

business by forming synergies with other organizations by creating Virtual or-

ganizations (or even VOs within VOs). We have approach this problem by al-

lowing a task to be subdivided into smaller tasks and then each subtask can be

assigned to different members. This situation occurs in the ChemicalPD when

the member performing the preliminary analysis leaves the VO and no members

can be found who satisfy all the capabilities of the PreliminaryAnalysis task.

This situation of not being successful in finding a single member with all capa-

bilities is triggered by the event NoMemberWithAllCapabilitiesFound used

in the policy createSubTasks below. The decision is made to divide the task into

two sub tasks, one task performing the laboratory experiments with the capa-

bility LaboratoryService and other one with the capability SimulationService.

These are respectively called LabExpTask and SimExpTask and are represented

in the action MakeTaskComposable. Since the criteria parameter is omitted

from the action which specifies the relationship between the subtasks, the de-

fault relation between the two subtask is of type cooperation. The cooperation

relation between subtasks imply that any sub task can be carried out first or both

subtasks can be performed parallely in terms of control flow at the operational

model (VO-O) level.

policy createSubTasks appliesTo PreliminaryAnalysis

when NoMemberWithRequiredCapabilityFound

do MakeTaskComposable(PreliminaryAnalysis, [[LabExpTask,LaboratoryService

], [SimExpTask, SimulationService]])

133

8.2 Assessment of Framework According to Criteria

The criterion C1 which is about expressibility of the language in terms of domain

concepts as constructs is evaluated in general (without referring to specific parts of

specific case study) in the Section 8.3 below. The criterion C2 is shown through dif-

ferent policies that reconfigure the VO model either at structural level or at operational

level. The criterion C3 is shown through scenario 1 and scenario 3. In scenario 1 the

goal of the VO is modified by requiring different set of capabilities for Equipment-

Provison task and the respectively the competencies of the member carrying out the

task. This Scenario also satisfies the criterion C6. Scenario 3, in particular shows the

ability of the languages to change the association of member from one member type

to another and the concept of adding temporary member of a VO whose membership

is circumstantial.

The autonomy of members (C8) is preserved by interface style communication

where all the required details are provided to the member (through tasks) rather then

directly performing actions on the associated resources and the members provide back

the outcome of carrying out the task.

The criterion C9 is accomplished by keeping the structural model and operational

model separate. The Mapping rules guide changes to the operational model whenever

any change occurs in the structural model that requires the operational model to un-

dergo some changes so that the operational model reflects the structure existing at the

VO-S level.

The criterion C4 can be observed in the scenario 4 where replication and sub-division

of tasks occurs. The criterion C5 is achieved by the relationship attribute of TaskScope

part. The criterion C7 points to the situations where a VO can fail and how can such

situations be addressed in the VOML framework. In the next section we discuss some

of the situations which can lead to the failure of VO in accomplishing its goal or failing

to perform.

134

8.2.1 Handling of Failure

The very concept of VOs was coined to cope with failure such as by seeking business

partners with complementary competencies when one organizations fails to achieve a

business opportunity, dedicating more resources (physical, human skills and others) to

expedite the progress, evolving structurally as well as operationally to align itself to

changing business environments, etc. Though VOs by their very nature are resilient

to many failures and resist them as long as possible, there still are situations when

eventually VOs might fail. In this section we are going to discuss the most common

causes of VO failure, which one of those failure are handled by VOML framework

and how. We will also consider the limitations of the VOML framework with respect

to failures. Given below are most frequent causes of the failure:

1. Contract violation: Contract violation occurs when the any members of the VO

fails to provide the promised service in any way such as by providing resources

less in quantity then actually promised, by poor quality of service, by failing to

provide on time, etc. The VOML framework does not specifically specify the

repercussions of contract violations. However, some policies in VO-R might be

a consequence of how some of the contract violations are dealt at the VBE man-

agement level. Hence, the VOML framework can specify the situations through

VO-R policies both at VBE level and VO level that describe how to recover

from contract violations. The contract violations are not captured through VO-S

and VO-O levels though and their resolution is at the discretion of VBE and VO

management as well.

2. Unforeseen external event: Unforeseen events were described in detail through-

out the chapter on the ChemicalPD case study. We have also shown through the

case study the weaknesses and strengths of handling such events. Even though

the VOML framework does not provide provisions to explicitly specify such

situations we have shown through different scenarios that VOML can handle

most of those failures quite naturally. An example is when the supplier of the

135

major catalyst provider ceases to operate suddenly and the VO has to look for

new members and until it is decided that the new catalyst is fit for the chemistry

the member providing that catalyst is included in the VO as temporary and once

the decision is taken only then the catalyst provider’s membership is changed to

permanent one by making it associate of the VO. The only limitation in this case

is that the policy describing the event and what to do in such event must be de-

scribed in advance. So while the VOML framework is rich enough to deal with

many different failures, it is the vision and sharpness of management people in

the business domain that matters more. The more visionary the management is

the more unforeseen situations can be described in advance and the more robust

and resilient the VO becomes.

3. ICT infrastructure failure: Problems in communication links, such as broken

communication lines or delays in communication lines might fail VOs by satis-

fying the VO goal when the circumstances of business environment has changed

and the business opportunity has already been lost.

4. Fixed organizational structures: A VO needs to continuously reconfigure it-

self to keep aligned with the changing business environment. An operational

model satisfying the VO goal with close to execution environment level details

is by virtue limited in its capability to adapt. By far the most easily made re-

configuration on such model is dynamic discovery and binding of components

at run-time. The environments for which VOs are appropriate require far more

flexibility then that. Hence, a VO can fail if it is not flexible enough to reconfig-

ure itself. The VOML framework provides a solution to this problem by keep-

ing the structural aspect of the VO separate from the operational aspect. The

structural aspect is abstract enough to allow for far more flexibility in changing

different aspects of VO description, and then using mapping guidelines to de-

rive concrete operational description of VOs. This way, a VO defined through

the VOML framework provides more flexibility to change different aspects of

the VO description at different levels of abstraction leading to more robust and

136

resilient VOs.

8.3 Comparison with the ARCON Reference Model

In this section we evaluate the VOML framework with respect to the ARCON ref-

erence model introduced in Section 2.1.3.1. ARCON is a reference model which

provides basic elements any manifestation of VOs or VBEs (termed CNOs in AR-

CON) possesses. This reference model explores the CNOs in detail and attempt to

provide abstract models that capture the most fundamental concepts that CNOs pos-

sess. Hence, evaluating the VOML framework in the light of ARCON reference model

would help better understand the VOML framework.

The overview of the ARCON reference model is described in the Section 2.1.3.1. In

this section we are going to compare and contrast the VOML framework with respect

to different aspects of the ARCON as following:

Life cycle stages: The life cycle stages of CNOs consists of creation, operation, evo-

lution, metamorphism and dissolution. The VOML framework covers, operation

and evolution stages of VO life cycle using different modelling languages and by

modifying goal of the VO by changing the capabilities of the tasks. Metamor-

phism is captured by abandoning current VO and creating new VO. Creation

and dissolution stages of life cycle are not currently captured by the VOML

framework.

Environmental characteristics: Environmental characteristics perspective is further

divided into two parts: (a) the environment internal to the VOs and VBES (En-

dogenous characteristics) and (b) the environment external to the VBEs and

VOs (Exogenous interactions). Our works falls under the Endogenous charac-

teristics of the second perspective, which in turn consists of four dimension as

follow:

137

Structural dimension addresses the composition of the VBEs and VOs. It con-

sists of participants, relationships among them and the tasks performed by

the participants. These characteristics are captured through VO-Structural

(VO-S) language.

Componential dimension focuses on tangible/intangible elements of VBEs and

VOs such as resources (human, software, hardware) or conceptual resources

such as knowledge. The VOML framework provides competency, capabil-

ity and VBEasset constructs to capture physical aspects of the resources.

Intangible resources such as skills possessed by humans can be captured

by capability construct of the VO-S.

Functional dimension addresses base functions/operations available and time

sequenced flow of executable operations related to different phases of the

life cycle. The VOML framework allows abstract control flow constructs

in VO-S in the form of Process elements and relationship between repli-

cable tasks and subtask flow between subtasks of a composable task. Then,

at the VO-O level, a concrete process is defined from these elements with

an exact sequence of operations.

Behaviour dimension addresses the principles, policies, and governance rules

that drive or constrain the behaviour of VBEs and VOs members. So far

VOML does not provide such policies except for the evolution and recon-

figuration of VOs through VO-R language.

VOML has not attempted to capture the Exogenous Interactions which consist

of Market, Support, Societal and Constituency dimensions because to the most

part these interactions refer to elements with respect to VBEs which is the focus

of this PhD. However, the aspect such as interaction with the customers of VOs

are covered at the state configuration level through VO-O language.

Modelling intent This perspective is divided into three layers: (a) General represen-

tation layer this layer includes the most general concepts common to different

138

manifestations of VBEs and VOs, irrespective of the domain. We captures such

modelling concepts by proving constructs general to all domain through VO-S

modelling language such as different types of tasks, competency specification,

etcetera and VO-R languages which allows any sort of VOs can be reconfigured

by identifying basic events, conditions and actions applying to all domain irre-

spective of particular application.

(b) Specific modelling layer includes more detailed models focused on different

manifestations of VOs such as their topology. VOML develops concrete models

using VO-S and it indirectly defines the topology using the Process elements of

the VO-S languages and the relationship that exists between replicated or com-

posable tasks. The topology in our framework is based in the information flow

in VO rather the control and management structure put into place.

(c) The Implementation Modelling layer represents models of concrete VBEs

and VOs. VOML have dedicated VO-O modelling language for the purpose.

In General VOML is able to capture most of the basic elements defined in the ARCON

reference model especially with respect to VOs (and its different manifestations) with

enough details.However, we can not claim that VOML realizes each and every aspect

of the ARCON model.

8.4 Evaluating the VOML Framework with Respect to

Questions set out at the Start

One of the questions that we started out (in Section 1.4.3) was to know the generality of

the modelling languages developed in the VOML framework. We have modelled two

case studies using VOML framework; one case study (travel itineraries) is commonly

found in literature and used as proof of concepts, another case study is an adaptation

is of a real world situation which is about construction of a chemical plant [14]. Based

on the confidence gained from modelling these two case studies we are hopeful that

139

the framework is generic enough to model different application domains of VOs.

The other two questions that we needed answer to was concerning the agility demands

of VOs and getting away with the fixed organization structure of the systems (VOs).

The VOML framework has approached these issues in two: (a) firstly a dedicated

language has been developed which reconfigures the VOs specified in VOML frame-

work, (b) secondly, the level of agility required by VOs demands that the VOs should

be able to structurally change themselves altogether to cope with the new realities of

the business environment they are operating in. In this regards the constructs has been

made available in the VO-S language (that define the structure of the VOs) which are

capable to me modified having the impact on the structure of the VOs model; these

structural changes however, do not change the business aspect of the VO (i.e the ser-

vice(s) offered). These constructs are the provisions for the tasks to be changed from

being performed by one member only to multiple members, decomposing a task into

smaller manageable tasks, changing topology by changing the relationship between

VO members, etc.

Most of the reconfigurations are applied to the VO-S models from which VO-O mod-

els are generated whose instances execute to serve the business purpose of the VOs.

The reconfigurations applied to VO-S models only affect the new instances of the VO-

O models. No reconfigurations that can change the structure of the VOs are applied

while any VO-O instance is running. However, the reconfigurations that only make

changes to the VO-O instances only are applied to the individual instances and their

affect does not persist beyond the VO-O instance on which these reconfigurations were

applied. This reconfiguration only applies to the joining and leaving of external enti-

ties.

140

8.5 Summary

In this chapter we attempted to evaluate the VOML framework and its corresponding

modelling languages for a more realistic case study of chemical plant development.

The original case study worked as requirements that the service based middleware

must exhibit to cope with dynamic and complex nature of VOs. We captured differ-

ent complexities and flexibilities demanded of VOs mentioned explicitly or implicitly

and than tried to come up with VOML based solution to it or modelling them through

VOML’s modelling languages.

Furthermore, we evaluated the VOML framework with ARCON reference model is

provides basic elements that any manifestation of VOs and VBEs exhibit. Comparing

it with ARCON further strengthens the VOML framework.

We also evaluated the framework with the criteria identified in the Section 1.2 in the

context of the case study and identified the strengths and weaknesses of the frame-

work. We also discussed how the failures are handled in the framework.

We concluded the chapter by revisited the questions raised in the beginning and looked

examined whether the framework has been successful in answering those questions

and how has that questions approached by the VOML framework.

141

(a) FullScalePlantConstruction Task before Replication

(b) FullScalePlantConstruction Task after Replication

Figure 8.3: FullScalePlantConstruction Task before and after Replication

142

Chapter 9

Conclusion

In this chapter, we conclude the thesis by having some concluding remarks and pre-

senting further extensions to our work.

9.1 Concluding Remarks

In this dissertation, we put forth the VOML - a new framework for modelling VOs.

The VOML is a compendium of sub languages each focusing on a particular dimen-

sion of VOs at a particular level of its representation. Through these sub languages and

different levels of representations the VOML exposes an incremental approach where

domain level details are defined using terminology familiar to different stakeholders of

the VOs and the VBEs. The domain level description (modelling) is raised to highest

level of abstraction which describes basic characteristics of the VOs and the VBEs.

This description exists at the business configuration level of the representation. At the

state configuration level of the representation, operational models of VOs are defined

from the information available in the domain level description.

We have defined three novel languages for the VOs, 1) the VO-S (VO-Structural)

modelling language for modelling structural aspects of a VO, 2) the VO-O (VO-

Operational) modelling language for describing operational aspects of a VO, and 3) the

VO-R (VO-Reconfiguration) language concerned with reconfigurations at the struc-

143

tural and operational level. The VO-R aids provisions to the VOML framework to

cater to the agility and flexibility demands of the VOs. It defines a set of events, con-

ditions and actions (ECAs) which apply to all the VOs irrespective of the application.

These ECAs enable a VO to reconfigure itself in face of unpredictable events and

changes in the business environment. The VO-R is an extension of the APPEL policy

language which has built in support to be extended to different domains.

The VOML framework also provides guidelines (mapping rules) to establish a link be-

tween the structural (VO-S) and the operational (VO-O) models of a VO. Using these

guidelines an operational model of a VO is derived from the VO-Specification.

In this work, the VOML was applied to two case studies to validate its applicability.

One of the case studies was used as running example and offered travel itineraries as a

VO service (called the TravelBK VO). The other case study is an adaptation of a case

study carried out in a realistic setting which is about developing a chemical plant [14].

To the best of our knowledge, the VOML is currently the only solution which 1) spec-

ifies the VOs using domain terminology, 2) reconfigures the VOs to cope with the

dynamically changing circumstances, 3) generates operational model closer to under-

lying execution environment, and 4) shows the affects of structural reconfiguration on

the operational model. Although other attempts at modelling VOs exists, their focus

is on analysis of different characteristics of VOs or providing formal models. The

VOML complements those aspects by providing languages which can be used to de-

scribe the application (business) side of the VOs.

The VOML framework is generic and can accommodate most of the manifestations of

VOs.

9.2 Future Work

This section puts forward a few ideas for extending the work presented in this thesis.

Currently the VOML framework does not provide any tool support for transform-

144

ing a VO-S model into its corresponding VO-O description and a tool to verify that a

VO-O model would be desirable. This will require the formalization of mapping rules

(that are currently in the form of guidelines) for the purpose of automation. We should

also need to define the formal operational semantics of the languages as well for that

purpose.

The other avenue worth exploring is semantic integration of the sub languages based

on the ideas mentioned in the Chapter 7. The VOML framework is capable of mod-

elling structural aspects of VBEs; the suitability of VO-S for describing the behavioural

aspects of VBEs such as creation and deletion of VOs, inviting and expelling mem-

bers from VBE is another direction worth investigating. More precisely, investigating

in detail to examine weather the VBE can be treated just like a VO or there needs to be

special considerations for modelling VBEs. In this PhD, we have described policies

related to reconfiguration of VOs. Future work should be concerned with describing

different management and governance policies of the VBE; such as describing poli-

cies which trigger to VBE that a certain VO is not profitable and hence should be

dismantled, or indicating and constraining the use of VBEassets by a VO over a cer-

tain threshold. Extensions to VO-R to express different governance rules of VBEs is

another aspect we are planning to explore in future. Another future direction we are

intending to follow is to provide formalism describing architectural evolution of VBE

to account for the evolution of VBE business configurations. Example of which can be

formalising the effect on the structure of VBE after some evolution such as creation of

new VOs, their termination or modification. From a formal point of view, the different

level of VBE representation are graphs whose nodes are component specifications and

the edges (wires) are connectors. Component specifications provide either interfaces

for members and resources to be involved in tasks and services offered through VOs,

or orchestrations of those services, or requirements for external services, or proper-

ties offered to customers of VOs. Choosing graphs as formal models allow us to use

techniques that have been proposed for formalising architectural aspects of system

structure and evolution (eg, [43]) in order to account for such evolutions.

145

As formalisms for specification, we are using those put forward for service-oriented

modelling in the SENSORIA project. Together with the graph-based representation

of business configurations, these formalisms can be used for inferring emergent prop-

erties of VOs. Model-checking techniques have been used for verifying properties

offered by services, which we plan to extend to VOs. The proposed formal model

also supports forms of quantitative analysis using the stochastic analyser PEPA [42],

which we intend to extend to VOs.Another aspect of future work is performing some

performance modelling based on variants of VO-S models, but considering how cer-

tain VO-R rules will allow for the system to be better adaptable to cope with changes.

This could lead to a set of rules that are useful to have in the repertoire of any VO.

146

Appendices

147

Appendix A

TravelBK : A travel itinerary offering

VO

148

VO-Smodel TravelBK

 ...
AtomicTask TransportProvision

STRUCTUURE
TaskScope
 {
 performedBy : ExtEntity
 }
ConfScope
 { … }
Competency
{
 Capability byAir
 {
 resource : plane
 capacity {flightsPerDay : 30}
 }
}

BUSINESS FUNCTIONALITY
Request:
 from, to: location
 out,in: date
 traveller: usrdata
Reply:
 flightBooking.fcong: fcode
 amount : money; bank-id

AtomicTask HotelBooking

STRUCTURE
TaskScope
{
performedBy: Partner
}
ConfScope
 {
 }
Competency
 {
 capability roomReservation
 {
 resource: rooms
 capacity
 {totalRooms : 500}
 }
 }

BUSINESS FUNCTIONALITY
Request:
 from, to:location
 out, in:date
 name : usrdata

Reply :
 roomReservation.hconf : hcode
 amount : moneyValue

AtomicTask GuideProvision

STRUCTURE
TaskScope
 {
 performedBy: VBEParticipant
 }
ConfScope
 { ... }

 Competecy
 {
 capability guidingTour
 {
 resource: guide
 capacity
 {totalGuides : 250}
 }
 }

BUSINESS FUNCTIONALITY
 {
 Request :
 start, end: date
 name : usrdata
 Reply :
 amonut: moneyValue
 guidingTour.gInfo : guideInfo
 }

DATA FLOW
Customer.from =⇉ TransportProvision.from
Customer.to =⇉ TransportProvision.to
Customer.out =⇉ HotelBooking.checkin, TransportProvision.out,
GuideProvision.start
Customer.in =⇉ HotelBooking.checkout, TransportProvision.in, GuideProvision.end
usrDB.usrdetails =⇉ (TransportProvision.traveller
Customer.amount ⇇= HotelBooking.amount, TransportProvision.amount,
GuideProvision.amount, VO.amount
Customer.hconf ⇇= HotelBooking.hcong
Customer.fconf ⇇= TransportProvision.fconf
Customer.gInfo ⇇= GuideProvision.gInfo

Members
Partners

Partner AccomProvider1
 {
 performsTask : {HotelBooking}
 competency {roomReservation.room.totalRooms : 500}
 }
Associates

Associate TourAg
 {
 performsTask : {GuideProvision}
 competency
 { guidingTour.guide.totalGuides : 250 }
 }

Appendix B

ChemicalPD : A Chemical plant

developing VO

152

VO-Smodel ChemicalPD

Tasks

PreliminaryAnalysis
PlantDesign
PilotPlantBuilding&Operation
FullScalePlantConstruction
VendorEquipProvision
ManfEquipProvision
CatalystProvision

Process
 {
 satistifyTask (PreliminaryAnalysis) leadsTo satistifyTask (
PlantDesign)

 satistifyTask (PlantDesign) leadsTo satistifyTask
(PilotPlantBuilding&Operation)

 satistifyTask (PilotPlantBuilding&Operation) leadsTo
 satistifyTask
(FullScalePlantConstruction)
 }

ComposableTask PreliminaryAnalysis

STRUCTURE
TaskScope
 {
 performedBy: Partner
 allowedMembers : 2
 allowedSubtasks : 2
 currentSubTasks : noSubTasks
 subTask-Flow : none
 supportedBy : EquipmentProvision, CatalystProvision
 }
ConfScope
 {
 currentMembers : 1
 currentState: atomic

 }
Competency
 {
Capability LaboratoryService
 resource xEquipment
 capacity {
 simulExp : 8
 }

Capability SimulationService
 resource simSoftware,
 capacity {
 handleData : 40 TeraByte
 }
 }
BUSINESS FUNCTIONALITY

{
Request :
 reactionDetails
 catalystProperties
 sepTechnology
Reply :
 LaboratoryService.feasibilityReport ,
 LaboratoryService.sepTrialReport
 SimulationService.
 KineticMoel
}

AtomicTask PlantDesign

STRUCTURE
TaskScope
 {
 performedBy : Partner
 supportedBy : EquipmentProvision, PreliminaryAnalysis
 }
ConfScope
 {
 ...
 }

Competency
{
 Capability ChemicalPlantArcitectingService
 {
 resource plantArcitects
 capacity totalArcitects :15
 }
}

BUSINESS FUNCTIONALITY
{
Request :
 kineticMoel
 equipSpec
 probDescription
Reply :
 plantDesign
}

AtomicTask : PilotPlantBuilding&Operation

STRUCTURE
TaskScope
 {

 supportedBy : EquipmentProvision, CatalystProvision,
 PlantDesign
 }
ConfScope
 {

 }
Competency
 {

 Capability PilotPlantBuildingCapability

 {
 resource labour
 capacity {totalLabour :100}
 }

 Capability OpearitonAnalysisCapability
 {
 resource : operatoinalAnalyser
 capacity {analysisResults : n days }
 }
 }

BUSINESS FUNCTIONALITY
{
Request :
 plantDesign : esgnDemands,
 sepEquip : sepEquip-id,
 processDetails : prcDetails,
Reply :
 PilotPlantBuilt : bool ,
 operationalDataAnalysisReport
}

AtomicTask : FullScalePlantConstruction

STRUCTURE
TaskScope
 {
 performedBy: Partner
 supportedBy: EquipmentProvision, PlantDesign
 }
ConfScope
 {
 ...
 }

Competency
{
 Capability FullPlantBuildingCapability
 {
 resource labour
 capacity {totalLabour :500}
 }
}
BUSINESS FUNCTIONALITY
{
Request :
 plantDesign : esingDetails,
 sepEquip : sepEquip-id
Reply :
 fullScalePlantReady : bool
}

AtomicTask EquipmentProvision

STRUCTURE
TaskScope
 {
 performedBy : ExtEntity

 }
ConfScope
 {
 ...
 }

Competency
 {
 Capability FiltrationEquipmentProvier
 {
 resource FiltrationEquipment
 capacity
 { quantity : 2000 }
 }

 }

BUSINESS FUNCTIONALITY
{
Request :
 equipSpec : specDocType
 equipQuantity : Quantity
Reply :
 equipDetails : specDoc
 quantConf : bool
}

AtomicTask CatalystProvision

STRUCTURE
TaskScope
 {
 performedBy : ExtEntity
 supportsTask :
 }
ConfScope
 {
 ...
 }
 Competency
 {
 Capability calatystXprovision
 {
 resource catalystX
 capacity {quantity : 500KG}
 }
 }

BUSINESS FUNCTIONALLITY
{
Request :
 ctlstQuantity : Quantity
Reply :
 confirmation : bool
}

Members

Partners

VOCoordinator chemCoor

Partner REC
 {
 PerformsTask : PreliminaryAnalysis
Competency
 {
 LaboratoryService.simulExp : 8
 SimulationService.handleData : 40 TeraByte OR licence : 60
 }
 }

Partner PPD
 {
 PerformsTask : PlantDesign
 Competency
 {
 ChemicalPlantArcitectingService.arcitecureDelivery : x-days
 }
 }

Associates

Associate TC
 {
 PerformsTask : PilotPlantBuilding&Operation,
 FullScalePlantConstruction
Competency
 {
 PilotPlantBuildingCapability.constructionTime : x days
 OpearitonAnalysisCapability.analysisResults : n days
 FullPlantBuildingCapability.constructionTime : x days
 }
 }
 }

AtomicTask EquipmentProvision

STRUCTURE
TaskScope
 {
 performedBy : ExtEntity
 }
ConfScope
 {
 ...

 }

Competency
 {
 Capability ContinuousEquipmentProvier
 {
 resource ContinuousEquipment
 capacity
 { quantity : 2000 }
 }
 }

Appendix C

VOML Syntax

1 grammar org . x t e x t . example . mydsl . Voml3 wi th org . e c l i p s e . x t e x t . common .

T e r m i n a l s

2

3 g e n e r a t e voml3 ” h t t p : / / www. x t e x t . o rg / example / mydsl / Voml3”

4

5 / / P r o j e c t : voml3

6 / / l a n g : Voml3

7 / / e x t : voml

8 Voml :

9 (vosModel = VOSmodel)

10 (vooModel = VOOmodel)

11 (vorModel = VORmodel)

12 ” d a t a t y p e s ” (d a t a t y p e s += DataTypes) ∗ ;

13 DataTypes :

14 ” s o r t s ” (d a t a t y p e += DataType) ∗

15 i n t e r v a l += I n t e r v a l ∗ ;

16

17 DataType : name = SortName ;

18 SortName : name = ID ;

19 I n t e r v a l : ” [” i n i t i a l V a l = INT ” . . ” f i n a l v a l u e =INT ”] ” ;

20

21

22 VOSmodel :

159

23

24 ”VO−Smodel ” name = ID

25 ” t a s k s ” (t a s k s += Tasks) ∗

26 ” vbe ” ” a s s e t s ” (v b e A s s e t s += VBEasset) ∗

27 ” p r o c e s s ” (p r o c e s s = P r o c e s s)

28 t a s k S p e c i f i c a t i o n = T a s k S p e c i f i c a t i o n

29 a s s e t S p e c i f i c a t i o n = A s s e t S p e c i f i c a t i o n

30 ” da t a−f low ” da taF low = DataFlow

31 ” members ” (members = Members) ;

32

33 Tasks : name = ID ;

34 VBEasset : name = ID ;

35

36 P r o c e s s : ”{” p r o c e s s S t a t e m e n t s += P r o c e s s S t a t e m e n t + ”}” ;

37

38 P r o c e s s S t a t e m e n t : p r o c e s s O p e r n a d += P r o c e s s O p e r n a d ” l e a d s T o ”

p r o c e s s O p e r n a d += P r o c e s s O p e r n a d ;

39

40 P r o c e s s O p e r n a d : S i n g l e S a t i s f y T a s k | M u l t i p l S a t i s f y T a s k | UseAsse t ;

41

42 S i n g l e S a t i s f y T a s k : ” s a t i s f y T a s k ” ” (” t a s k = [Tasks] ”) ” ;

43 M u l t i p l S a t i s f y T a s k : ” s a t i s f y T a s k s ” ” (” t a s k += [Tasks] (” , ” t a s k +=

[Tasks]) + ”) ” ;

44 UseAsse t : ” u s e A s s e t ” ” (” a s s e t s += [VBEasset] (” , ” a s s e t s += [

VBEasset]) ∗ ”) ” ;

45

46

47 /∗ ∗∗∗ ∗ /

48 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Task S p e c i f i c a t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

49 /∗ ∗∗ ∗ /

50 T a s k S p e c i f i c a t i o n : (t a s k s S p e c += TaskType) ∗ ;

51

52 TaskType : AtomicTask | R e p l i c a b l e T a s k | ComposableTask ;

53 AtomicTask : ” a to mi c ” ” t a s k ” name = [Tasks]

54 (s t r u c t u r e = S t r u c t u r e)

160

55 ” b u s i n e s s ” ” f u n c t i o n a l i t y ” (b u s i n e s s F u c =

B u s i n e s s F u n c t i o n a l i t y)

56 ;

57 S t r u c t u r e : ” s t r u c t u r e ” (t a s k S c o p e = TaskScope)

58 ” confScope ” ”{” (confScope = ConfScope) ”}”

59 ” competency ” ”{” (competency = Competency) ”}” ;

60

61 /∗ ∗∗ ∗ /

62 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ TaskScope A t t r i b u t e s D e f i n i t i o n ∗∗∗∗∗∗∗ ∗ /

63 /∗ ∗∗∗ ∗ /

64 TaskScope : ” t a s k S c o p e ” ”{” (t a s k S c o p e A t t r +=

A t o m i c T a s k S c o p e A t t r i b u t e) ∗ ”} ” ;

65 T a s k S c o p e A t t r i b u t e : Suppor tedBy | PerformedBy | S u p p o r t s T a s k |

AllowedMembers | R e l a t i o n s h i p | SubTaskFlow | subTasks =

C u r r e n t S u b T a s k s ;

66 A t o m i c T a s k S c o p e A t t r i b u t e r e t u r n s T a s k S c o p e A t t r i b u t e : Suppor tedBy |

PerformedBy | S u p p o r t s T a s k ;

67 Suppor tedBy : ” suppor t edBy ” ” : ” taskName = [Tasks] ;

68 S u p p o r t s T a s k : ” s u p p o r t s T a s k ” ” : ” taskName = [Tasks] ;

69 R e l a t i o n s h i p : ” r e l a t i o n s h i p ” ” : ” r e l a t i o n = R e l a t i o n ;

70 enum R e l a t i o n : c o o p e r a t i o n = ” c o o p e r a t i o n ” | C o m p e t i t i o n |

c u s t C h o s e n = ” cus tomerChosen ” ;

71

72 C o m p e t i t i o n : ” c o m p e t i t i o n ” ” (” comType = Compe t i t i onType compAtt r =

C o m p e t i t i o n V a r i a b l e ”) ” ;

73 enum Compe t i t i onType : l o w e s t = ” l o w e s t ” | h i g h e s t = ” h i g h e s t ” |

q u i c k e s t = ” q u i c k e s t ” | f c f s = ” f i r s t C o m e F i r s t S e r v e ” ;

74 C o m p e t i t i o n V a r i a b l e : name = ID ;

75 AllowedMembers : ” al lowedMemebrs ” ” : ” t o t a l M e m b e r s = INT ;

76 PerformedBy : ” performedBy ” ” : ” name = MemberType ;

77 enum MemberType : p a r t n e r = ” p a r t n e r ” | a s s o c i a t e = ” a s s o c i a t e ” |

e x t E n t i t y = ” e x t E n t i t y ” | v b e P a r t i c i p a n t = ” v b e P a r t i c i p a n t ” |

n o P r e f = ” n o P r e f e r e n c e ” ;

78 SubTaskFlow : C o m p e t i t i o n ;

79 enum C u r r e n t S u b T a s k s : noSubTasks = ” noSubTasks ” | CurSubTaskL i s t ;

161

80 CurSubTaskL i s t : subTaskName += SubTaskName (” , ” subTaskName +=

SubTaskName) + ;

81 SubTaskName : name = ID ;

82 /∗ ∗∗ ∗ /

83 /∗ ∗∗∗∗∗ TaskScope A t t r i b u t e s f o r R e p l i c a b l e T a s k D e f i n i t i o n ∗∗∗∗∗∗ /

84 /∗ ∗∗∗ /

85

86 TaskScopeForRep : ” t a s k s c o p e ” ”{”

87 (r e p T a s k S c o p e A t t r +=

R e p T a s k S c o p e A t t r i b u t e) ∗

88 ”} ” ;

89 R e p T a s k S c o p e A t t r i b u t e r e t u r n s T a s k S c o p e A t t r i b u t e : AllowedMembers |

PerformedBy | Suppor tedBy | S u p p o r t s T a s k | R e l a t i o n s h i p ;

90

91 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗88∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

92 /∗ ∗∗∗∗ TaskScope A t t r i b u t e s f o r ComposalbeTask D e f i n i t i o n ∗∗∗∗∗∗∗

∗ /

93 /∗ ∗∗∗

∗ /

94

95

96 TaskScopeForComp : ” t a s k S c o p e ” ”{”

97 (comTaskScopeAt t r += CompTaskScopeAt t r ibu te

) ∗ ”} ” ;

98 CompTaskScopeAt t r ibu te r e t u r n s T a s k S c o p e A t t r i b u t e : SubTaskFlow |

S u p p o r t s T a s k | PerformedBy | Suppor tedBy | AllowedMembers |

s u b t a s k L i s t = C u r r e n t S u b T a s k s ;

99

100 /∗ ∗∗∗ ∗ /

101 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ R e p l i c a b l e T a s k D e f i n i t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

102 /∗ ∗∗∗ ∗ /

103

104 R e p l i c a b l e T a s k : ” r e p l i c a b l e ” ” t a s k ” name = [Tasks]

105 (r e p S t r u c t u r e = R e p S t r u c t u r e)

162

106 ” b u s i n e s s ” ” f u n c t i o n a l i t y ” (b u s i n e s s F u c =

B u s i n e s s F u n c t i o n a l i t y) ;

107

108 R e p S t r u c t u r e : ” s t r u c t u r e ” (repTaskScope = TaskScopeForRep)

109 ” confScope ” ”{” (confScope = ConfScope) ”}”

110 ” competency ” ”{” (competency = Competency) ”}” ;

111

112

113 /∗

∗∗∗

∗ /

114 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ R e p l i c a b l e T a s k D e f i n i t i o n

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

115 /∗

∗∗∗

∗ /

116

117 ComposableTask : ” composable ” ” t a s k ” name = [Tasks]

118 (c o m p S t r u c t u r e = CompSt ruc tu re)

119 ” b u s i n e s s ” ” f u n c t i o n a l i t y ” (b u s i n e s s F u c =

B u s i n e s s F u n c t i o n a l i t y)

120

121 ;

122 CompSt ruc tu re : ” s t r u c t u r e ” (t a s k S c o p e = TaskScopeForComp)

123 ” confScope ” ”{” (confScope = ConfScope) ”}”

124 ” competency ” ”{” (competency = Competency) ”}”

125 (subTasks = S u b T a s k S p e c i f i c a t i o n) ?

126 ;

127 S u b T a s k S p e c i f i c a t i o n : (subTasks += SubTask) + ;

128 SubTask : ” a t om ic ” ” t a s k ” name = [SubTaskName] ”{” ” c o m p e t e n c i e s ” ” : ”

”{” (subTaskCompe tenc ie s = SubTaskCompetenc ies) ”}” ”} ” ;

129 SubTaskCompetenc ies : subTaskCompetency += [C a p a b i l i t y] (” , ”

subTaskCompetency += [C a p a b i l i t y]) ∗ ;

130

131

163

132 /∗ ∗∗ ∗ /

133 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ConfScope A t t r i b u t e s D e f i n i t i o n ∗∗∗∗∗ ∗ /

134 /∗ ∗∗∗

∗ /

135

136 ConfScope : CurrentMemebrs | c u r r S t a t e = C u r r e n t S t a t e ;

137 CurrentMemebrs : ” cu r ren tMemebrs ” ” : ” currentMembs = INT ;

138 enum C u r r e n t S t a t e : a t o m i c S t a t e = ” a t o m i c S t a t e ” | r e p l i c a t e d S t a t e =

” r e p l i c a t e d S t a t e ” | composedS ta t e = ” composedS ta t e ” ;

139

140 /∗ ∗∗∗ ∗ /

141 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Competency D e f i n i t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

142 /∗ ∗∗ ∗ /

143

144 Competency : (c a p a b i l i t i e s += C a p a b i l i t y) ∗ ;

145 C a p a b i l i t y : ”{” ” c a p a b i l i t y ” name = ID

146 ” r e s o u r c e ” ” : ” c a p a b i l i t y R e s o u r c e = C a p a b i l i t y R e s o u r c e

147 ” c a p a c i l i t y ” ”{” capac i tyName = ID ” : ” c a p a c i t y T y p e =

INT ”}”

148 ”}”

149 ;

150 C a p a b i l i t y R e s o u r c e : name = ID ;

151

152 B u s i n e s s F u n c t i o n a l i t y : r e q u e s t = R e q u e s t P a r t r e p l y = R e p l y P a r t ;

153 R e q u e s t P a r t : ” r e q u e s t ” ” : ” (r e q u e s t D a t a I t e m += R e q u e s t D a t a I t e m s) ∗ ;

154 R e p l y P a r t : ” r e p l y ” ” : ” (r e p l y D a t a I t e m += R e p l y D a t a I t e m s) ∗ ;

155 R e q u e s t D a t a I t e m s : (c a p I d =[C a p a b i l i t y] ” . ”) ? va r i ab l eName = ID ” : ”

t y p e = [DataType] ;

156 R e p l y D a t a I t e m s : va r i ab l eName = ID ” : ” t y p e = [DataType] ;

157

158

159 /∗ ∗∗ ∗ /

160 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Data−Flow D e f i n i t i o n ∗∗∗∗∗∗∗∗∗ ∗ /

161 /∗ ∗∗∗ ∗ /

162

164

163 DataFlow : d a t a F l o w S t m t s += D a ta F l owS ta t eme n t ∗ ;

164 Da taF low Sta t em en t : l e f t O p e r a n d = Operand o p e r a t o r = Da taFo lowOpera to r

r i g h t O p e r a n d += Operand ;

165 DataFo lowOpera to r : ForwardArrowOpr | BackArrowOpr ;

166 ForwardArrowOpr : opr = ”==>”;

167 BackArrowOpr : opr = ”<==” ;

168

169 Operand : operandName=ID ;

170

171 /∗ ∗∗ ∗ /

172 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Member D e f i n i t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

173 /∗ ∗∗ ∗ /

174

175 Members : ” p a r t n e r s ” (p a r t n e r += P a r t n e r) ∗

176 ” a s s o c i a t e s ” (a s s o c i a t e s += A s s o c i a t e) ∗

177 ” VOcoord ina to r ” (c o o r d i n a t o r = VOcoord ina to r) ;

178

179 P a r t n e r : ” p a r t n e r ” name = ID

180 ” p e r f o r m s T a s k ” (p e r f o r m s T a s k += MemberPer fo rmsTaskLis t) ∗

181 ” competency ” ”{” c o m p e t e n c y L i s t += MemberCompetencyList ”}”

182 ;

183

184

185 A s s o c i a t e : ” a s s o c i a t e ” name = ID

186 ” p e r f o r m s T a s k ” (p e r f o r m s T a s k += MemberPer fo rmsTaskLis t) ∗

187 ” competency ” ”{” c o m p e t e n c y L i s t += MemberCompetencyList ”}”

188 ;

189 VOcoord ina to r : coo rd ina to rName = ID ;

190 MemberPer fo rmsTaskLis t : ”{” tasksPermedByMember =

TasksPerformedByMember ”}” ;

191 MemberCompetencyList : ”{ ” contrComp += MemberContr ibutedCompetency

(” , ” contrComp += MemberContr ibutedCompetency) ∗ ”}” ; / / name=ID ;

192

193 TasksPerformedByMember : taskName+= [Tasks] (” , ” taskName+= [Tasks]) ;

165

194 MemberContr ibutedCompetency : compName = [C a p a b i l i t y] ” : ” v a l u e = INT

;

195

196 /∗ ∗∗∗ ∗ /

197 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ VBEasset D e f i n i t i o n ∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

198 /∗ ∗∗ ∗ /

199

200 A s s e t S p e c i f i c a t i o n : (a s s e t T y p e s += Asse tType) ∗ ;

201 Asse tType : VBEresource | VBEtask ;

202

203

204 VBEresource : ” vbe ” ” r e s o u r c e ” name = [VBEasset]

205 ” b u s i n e s s ” ” f u n c t i o n a l i t y ” (b u s i n e s s F u c =

B u s i n e s s F u n c t i o n a l i t y) ;

206

207 VBEtask : ” vbe ” ” t a s k ” name = [VBEasset]

208 ” b u s i n e s s ” ” f u n c t i o n a l i t y ” (b u s i n e s s F u c =

B u s i n e s s F u n c t i o n a l i t y) ;

209

210 /∗ ∗∗∗ ∗ /

211 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ VO−R D e f i n i t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

212 /∗ ∗∗∗ ∗ /

213

214 VORmodel :

215 ”VO−R” name=ID

216 (p o l i c y R u l e G r o u p += Po l i cyRu leGroup) ∗ ;

217

218 Random : Member | Task | VO;

219 Member : name =[Members] ;

220 Task : name = [Tasks] ;

221 VO: name =ID ;

222

223 Po l i cyRu leGroup : p o l i c y R u l e += P o l i c y R u l e (p o l i c y O p r += P o l i c y O p r

p o l i c y R u l e += P o l i c y R u l e) ∗ ;

224 P o l i c y O p r : Guarded | UnGuarded | P a r a l l e l | S e q u e n t i a l ;

166

225 Guarded : ” g ” ” (” c o n d i t i o n += C o n d i t i o n s ”) ” ;

226 UnGuarded : unguarded = ” u ” ;

227 P a r a l l e l : p a r a l l e l = ” p a r ” ;

228 S e q u e n t i a l : seq = ” seq ” ;

229

230 P o l i c y R u l e : (” p o l i c y ” pol icyName=ID) ?

231 (” a p p l i e s T o ” (l o c a t i o n = L o c a t i o n) ∗) ?

232 (” when” (t r i g g e r s = T r i g g e r s)) ?

233 (” i f ” (c o n d i t i o n s = C o n d i t i o n s)) ?

234 ” do ” (a c t i o n s = A c t i o n s) ;

235

236 L o c a t i o n : name = [Random] ; T r i g g e r s : t r i g g e r += VORTrigger (” o r ”

t r i g g e r += VORTrigger) ? ;

237 C o n d i t i o n s : c o n d i t i o n O p e r a n d W r a p p e r += Cond i t ionOperandWrapper (

condOpr += C o n d i t i o n O p r c o n d i t i o n O p e r a n d W r a p p e r +=

Cond i t ionOperandWrapper) ∗ ;

238 Condi t ionOperandWrapper : (n o t C o n d i t i o n ?= ” n o t ”) ? c o n d i t i o n +=

C o n d i t i o n ;

239 A c t i o n s : a c t i o n += A c t io n (a c t i o n O p r += Act ionOpr a c t i o n += Ac t i on)

∗ ;

240

241 VORTrigger :

242 MemberWithoutAnyJob

243 | MemberLeft

244 | C a p a c i t y D e f i c i t

245 | C a p a b i l i t y D e f i c i e n c y

246 | TaskWithoutAnyMemebr

247 | NoMemebrWi thAl lCapab i l i t i e sFound

248 | MemberJoined

249 | NoMemberWithRequiredCapaci tyFound

250 | MemberTaskMismatch

251 | MoreMembersAss ignedThanPermiss ib le

252 | MemberRoleMismatch ;

253

254

167

255 MemberWithoutAnyJob : ” memberWithoutAnyJob ” ” (” memberId =[Members] ”)

” ;

256 MemberLeft : ” memberLeft ” ” (” memberId = [Members] ”) ” ;

257 C a p a c i t y D e f i c i t : ” C a p a c i t y D e f i c i t ” ” (” t a s k I d = [Tasks] ” , ”

c a p a c i t y I d = ID ”) ” ;

258 C a p a b i l i t y D e f i c i e n c y : ” C a p a b i l i t y D e f i c i e n c y ” ” (” t a s k I d = [Tasks]

” , ” c a p a b i l i t y I d = [C a p a b i l i t y] ”) ” ;

259 TaskWithoutAnyMemebr : ” TaskWithoutAnyMember ” ” (” t a s k I d = [Tasks] ”)

” ;

260 NoMemebrWi thAl lCapab i l i t i e sFound : ” NoMemebrWi thAl lCapab i l i t i e sFound

” ” (” t a s k I d = [Tasks] ”) ” ;

261 MemberJoined : ” MemberJoined ” ” (” memberIDId = [Members] ”) ” ; / / n r :

262 NoMemberWithRequiredCapaci tyFound : ”

NoMemberWithRequiredCapaci tyFound ” ” (” t a s k I d = [Tasks] ” , ” ” [”

c a p a b i l i t y L i s t = ID ”] ” ”) ” ;

263 MemberTaskMismatch : ” MemberTaskMismatch ” ” (” memberID = [Members]

” , ” t a s k I d = [Tasks] ”) ” ;

264 MoreMembersAss ignedThanPermiss ib le : ”

MoreMembersAss ignedThanPermiss ib le ” ” (” t a s k I d = [Tasks] ”) ” ;

265 MemberRoleMismatch : ” MemberRoleMismatch ” ” (” memberId =[Members] ” , ”

t a s k I d = [Tasks] ”) ” ;

266

267 /∗ ∗∗∗ ∗ /

268 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ CONDITIONS ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

269 /∗ ∗∗ ∗ /

270

271 C o n d i t i o n : name = Condit ionName ;

272 enum C o n d i t i o n O p r : and = ” and ” | or = ” or ” | n o t = ” n o t ” ;

273 Condit ionName :

274 I sTaskAtomic

275 | I sTaskComposab le

276 | I s T a s k R e p l i c a b e

277 | IsTaskWithoutAnyMember

278 | IsMemberWithoutAnyJob ;

279

168

280 I sTaskAtomic : ” I sTaskAtomic ” ” (” t a s k I d = [Tasks] ”) ” ;

281 I sTaskComposab le : ” I sTaskComposab le ” ” (” t a s k I d = [Tasks] ”) ” ;

282 I s T a s k R e p l i c a b e : ” I s T a s k R e p l i c a b e ” ” (” t a s k I d = [Tasks] ”) ” ;

283 IsTaskWithoutAnyMember : ” IsTaskWithoutAnyMember ” ” (” t a s k I d = [

Tasks] ”) ” ;

284 IsMemberWithoutAnyJob : ” IsMemberWithoutAnyJob ” ” (” t a s k I d = [Tasks

] ”) ” ;

285

286 /∗ ∗∗∗ ∗ /

287 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ACTIONS ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

288 /∗ ∗∗ ∗ /

289

290 Ac t i on : name = ActionName ;

291 enum Act ionOpr : and = ” and ” | or = ” or ” | n o t t h e n = ” a n d t h e n ” |

o r e l s e =” o r e l s e ” ;

292 ActionName :

293 RemoveMember

294 | AddNewMember

295 | AddAltrCapab

296 | D e l e t e A l t r C a p a b

297 | R e p l a c e C a p a b i l i t y

298 | Ass ignTask

299 | UnAssignTask

300 | MakeTaskComposable

301 | MakeTaskRep l i cab le

302 | MakeTaskAtomic

303 | C h a n g e R e l a t i o n s h i p

304 | ChangeRole

305 | ChangeAllowedMembers

306 | SearchMember

307 | ChangeCapac i ty ;

308

309 RemoveMember : ” RemoveMember” ” (” memberId = [Members] ”) ” ;

310 AddNewMember : ” AddNewMember” ” (” memberId = [Members] ”) ” ;

169

311 AddAltrCapab : ” AddAltrCapab ” ” (” t a s k I d = [Tasks] ” , ”

c u r r e n t C a p a b I d =[C a p a b i l i t y] ” , ” equ ivCapabId =ID ” , ”

c r i t e r i a = ID ”) ” ;

312 D e l e t e A l t r C a p a b : ” D e l e t e A l t r C a p a b ” ” (” t a s k I d = [Tasks] ” , ”

equ ivCapabId =[C a p a b i l i t y] ”) ” ;

313 R e p l a c e C a p a b i l i t y : ” R e p l a c e C a p a b i l i t y ” ” (” t a s k I d = [Tasks]

” , ” c u r r e n t C a p a b I d =[C a p a b i l i t y] ” , ” newCapabId=ID ”) ” ;

314 Ass ignTask : ” Ass ignTask ” ” (” t a s k I d = [Tasks] ” , ” memberId =

[Members] ”) ” ;

315 UnAssignTask : ” UnAssignTask ” ” (” t a s k I d = [Tasks] ” , ”

memberId = [Members] ”) ” ;

316 MakeTaskComposable : ” MakeTaskComposable ” ” (” t a s k I d = [Tasks]

” , ” ” [” subTasksAndCor respond ingCapabs = ID ”] ” ”) ” ;

317 MakeTaskRep l i cab le : ” MakeTaskRep l i cab le ” ” (” t a s k I d = [Tasks]

” , ” maxMembers = INT ” , ” r e l a t i o n = ID ”) ” ;

318 MakeTaskAtomic : ” MakeTaskAtomic ” ” (” t a s k I d = [Tasks] ”) ” ;

319 C h a n g e R e l a t i o n s h i p : ” C h a n g e R e l a t i o n s h i p ” ” (” r e p l i c a b l e T a s k I d

= [Tasks] ” , ” r e l a t i o n = ID ”) ” ;

320 ChangeRole : ” ChangeRole ” ” (” t a s k I d = [Tasks] ” , ” newRole =

ID ”) ” ;

321 ChangeAllowedMembers : ” ChangeAllowedMembers ” ” (” t a s k I d = [

Tasks] ” , ” al lowedMemberVal = INT ”) ” ;

322 SearchMember : ” SearchMember ” ” (” t a s k I d = [Tasks] ”) ” ;

323 ChangeCapac i ty : ” ChangeCapac i ty ” ” (” t a s k I d = [Tasks] ” , ”

c a p a b I d = [C a p a b i l i t y] ” , ” v a l u e =INT ”) ” ;

324

325 /∗ ∗∗∗ ∗ /

326 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ VO−O D e f i n i t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

327 /∗ ∗∗∗ ∗ /

328

329 VOOmodel :

330 (module = VOmodule) ?

331 (” s p e c i f i c a t i o n ” (s p e c i f i c a t i o n s += S p e c i f i c a t i o n) +) ? ;

332

333 VOmodule : ” s e r v i c e ” name=ID ” i s ”

170

334 (” components ” (components += Component) ∗) ?

335 (” r e q u i r e s ” (r e q u i r e s += R e q u i r e s I n t e r f a c e) ∗) ?

336 (” p r o v i d e s ” p r o v i d e s += P r o v i d e s I n t e r f a c e) ?

337 (” u s e s ” (u s e s += U s e s I n t e r f a c e) ∗) ?

338 (” w i r e s ” (w i r e s += Wire)) ?

339 ;

340

341 ModuleNode : Component | E x t e r n a l I n t e r f a c e | L a y e r I n t e r f a c e ;

342

343 Component : name=ID ” : ” b u s i n e s s R o l e = [B u s i n e s s R o l e]

344 ”{” (i n t e r n a l C o n f i g u r a t i o n P o l i c y += I n t e r n a l C o n f i g u r a t i o n P o l i c y) ∗

”} ” ;

345

346 I n t e r n a l C o n f i g u r a t i o n P o l i c y : i n t e r n a l C o n f i g u r a t i o n P o l i c y N a m e =[

Component] ” [” expType = C o m p o n e n t I n t e r n a l C o n f i g u r a t i o n P o l i c y ”] ”

” : ” i n t e r n a l C o n f i g u r a t i o n P o l i c y g u a r d = S t a t e F o r m u l a ;

347 enum C o m p o n e n t I n t e r n a l C o n f i g u r a t i o n P o l i c y : i n i t = ” i n i t ” | t e rm = ”

te rm ” ;

348

349 E x t e r n a l I n t e r f a c e : R e q u i r e s I n t e r f a c e | P r o v i d e s I n t e r f a c e ;

350 R e q u i r e s I n t e r f a c e : ” r e q u i r e s I n t e r f a c e ” name=ID ” : ” b u s i n e s s P r o t o c o l

=[B u s i n e s s P r o t o c o l]

351 ”{”

352 (i n t e r n a l C o n f i g u r a t i o n P o l i c y N a m e = ID ” [” ” t r i g g e r ” ”] ” ” : ”

i n t e r n a l C o n f i g u r a t i o n P o l i c y G u a r d = Modu leTr igge r) ?

353 ”}”

354 ;

355 ModuleTr igge r : ope rand += ModuleTerm (o p e r a n t o r += B i n a r y O p e r a t o r

ope rand += ModuleTerm) ;

356 ModuleTerm : D e f a u l t | M o d u l e I n t e r a c t i o n R e f | Term |

Paran thes i zedModu leTe rm ;

357 D e f a u l t : d e f a u l t = ” d e f a u l t ” ;

358 Paran thes i zedModu leTe rm : ” (” t a r g e t = ModuleTerm ”) ” ;

359 M o d u l e I n t e r a c t i o n R e f : name =[ModuleNode] ” . ” te rm = MTerm ;

360 MTerm : Term | i n t e r a c t N a m e = [A S y n c I n t e r a c t i o n] ; / /

171

361

362 P r o v i d e s I n t e r f a c e : ” p r o v i d e s I n t e r f a c e ” name=ID ” : ”

b u s i n e s s P r o t o c o l =[B u s i n e s s P r o t o c o l] ;

363 L a y e r I n t e r f a c e : U s e s I n t e r f a c e | S e r v e s I n t e r f a c e ;

364 U s e s I n t e r f a c e : ” u s e s I n t e r f a c e ” name=ID ” : ” l a y e r P r o t o c o l = [

L a y e r P r o t o c o l] ;

365 S e r v e s I n t e r f a c e : ” s e r v e s I n t e r f a c e ” name=ID ” : ” b u s i n e s s P r o t o c o l =[

B u s i n e s s P r o t o c o l] ;

366

367 /∗ ∗∗ ∗ /

368 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ SPECIFICATION ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

369 /∗ ∗∗ ∗ /

370

371 S p e c i f i c a t i o n : N o d e S p e c i f i c a t i o n | I n t e r a c t i o n P r o t o c o l ;

372 N o d e S p e c i f i c a t i o n : B u s i n e s s R o l e | B u s i n e s s P r o t o c o l | L a y e r P r o t o c o l ;

373

374 B u s i n e s s P r o t o c o l : ” b u s i n e s s ” ” p r o t o c o l ” name=ID ” i s ”

375 ” p a r a m e t e r s ” (prm += P a r L i s t) ∗

376 ” i n t e r a c t i o n ” (i n t e r a c t i o n s += I n t e r a c t i o n) ∗

377 ” b e h a v i o u r ” (b e h a v i o u r = Behav iou r) ? ;

378 P a r L i s t : name = ID ” : ” t y p e =[SortName] ;

379 /∗ ∗∗ ∗ /

380 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ INTERACTION DEFINITION ∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

381 /∗ ∗∗ ∗ /

382

383 I n t e r a c t i o n : A S y n c I n t e r a c t i o n | S y n c I n t e r a c t i o n ;

384

385 A S y n c I n t e r a c t i o n : C o n v I n t e r a c t i o n | N o n C o n v I n t e r a c t i o n ;

386

387 C o n v I n t e r a c t i o n : c o n v I n t r T y p e = C o n v I n t e r a c t i o n T y p e name = ID

/ / (” [” v a l = INT ”] ”) ?

388 (convIn te rEven tAndParam +=

C o n v I n t e r a c t i o n E v e n t A n d P a r a m) ∗ ;

389

172

390 N o n C o n v I n t e r a c t i o n : nonConvnInrType = N o n C o n v I n t e r a c t i o n T y p e name =

ID / / (” [” v a l = INT ”] ”) ?

391 (nonConvInterEventAndParam +=

NonConvIn te rac t ionEven tAndParam) ∗ ;

392

393 C o n v I n t e r a c t i o n E v e n t A n d P a r a m :

394 c o n v I n t e r E v e n t T y p e = C o n v I n t e r a c t i o n E v e n t T y p e

395 p a r a m e t e r s += P a r a m e t e r (” , ” p a r a m e t e r s += P a r a m e t e r)

∗ ;

396

397 NonConvIn te rac t ionEven tAndParam :

398 n o n c o n v I n t e r E v e n t T y p e =

N o n C o n v I n t e r a c t i o n E v e n t T y p e

399 p a r a m e t e r s += P a r a m e t e r (” , ” p a r a m e t e r s += P a r a m e t e r)

∗ ;

400

401 P a r a m e t e r : name = ID ” : ” t y p e = [SortName] ;

402 I n t e r a c t i o n T y p e : A S y n c I n t e r a c t i o n T y p e | sync =

S y n c I n t e r a c t i o n T y p e ;

403

404 A S y n c I n t e r a c t i o n T y p e : conv = C o n v I n t e r a c t i o n T y p e | nonConv =

N o n C o n v I n t e r a c t i o n T y p e ;

405 enum C o n v I n t e r a c t i o n T y p e : r a n d s = ” r&s ” | s a n d r = ” s&r ” ;

406 enum N o n C o n v I n t e r a c t i o n T y p e : snd = ” snd ” | r c v = ” r c v ” ;

407 enum S y n c I n t e r a c t i o n T y p e : ask = ” ask ” | r p l = ” r p l ” | t l l = ” t l l ” |

p r f = ” p r f ” ;

408

409 A S y n c I n t e r a c t i o n E v e n t T y p e : c o n v I n t r E v e n t T y p e =

C o n v I n t e r a c t i o n E v e n t T y p e | nonConvIn t rEven tType =

N o n C o n v I n t e r a c t i o n E v e n t T y p e ;

410 enum C o n v I n t e r a c t i o n E v e n t T y p e : r e q u e s t = ” C r e q u e s t ” | r e p l y = ”

r e p l y ” ;

411

412 enum N o n C o n v I n t e r a c t i o n E v e n t T y p e : r e q = ” n o n C r e q u e s t ” ;

413 S y n c I n t e r a c t i o n :

173

414 s y n c I n t r T y p e = S y n c I n t e r a c t i o n T y p e name = ID

415 s y n c I n p u t I n t e r a c t i o n P a r a m +=

S y n c I n p u t I n t e r a c t i o n P a r a m ∗

416 (s y n c O u t p u t I n t e r a c t i o n P a r a m +=

S y n c O u t p u t I n t e r a c t i o n P a r a m ∗) ? ;

417

418 S y n c I n p u t I n t e r a c t i o n P a r a m : ” (” (p a r a m e t e r s += P a r a m e t e r (” , ”

p a r a m e t e r s += P a r a m e t e r) ∗) ? ”) ” ;

419 S y n c O u t p u t I n t e r a c t i o n P a r a m : ” : ” p a r a m e t e r s += P a r a m e t e r (” , ”

p a r a m e t e r s += P a r a m e t e r) ∗ ;

420

421 /∗ ∗∗∗ ∗ /

422 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ BEHAVIOUR DEFINITION ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

423 /∗ ∗∗∗ ∗ /

424

425 Behav iou r : i n t i a l l y E n a b l e d S t a t e m e n t = I n i t i a l l y E n a b l e d

426 (o t h e r S t a t e m e n t s += B e h a v i o u r S t a t e m e n t) ∗ ;

427

428 I n i t i a l l y E n a b l e d : ” i n i t a l l y E n a b l e d ” i n i t E n a b l e d E v e n t = P r o c e s s E v e n t

;

429

430 / / Event : i n t e r a c t N a m e = [A S y n c I n t e r a c t i o n] (” [” v a l = INT ”] ”) ?

” [” i n t e r a c t i o n E v e n t = A S y n c I n t e r a c t i o n E v e n t T y p e ”] ” ;

431 Event : i n t e r a c t N a m e = [A S y n c I n t e r a c t i o n] ” [” i n t e r a c t i o n E v e n t =

A S y n c I n t e r a c t i o n E v e n t T y p e ”] ” ;

432 PEvent : P r o c e s s E v e n t | P u b l i s h E v e n t ;

433

434 P r o c e s s E v e n t : e v e n t = Event ” ? ” ;

435 P u b l i s h E v e n t : e v e n t = Event ” ! ” ;

436 B e h a v i o u r S t a t e m e n t : Enab le | Ensure ;

437 Enab le : e n a b l e S u b j e c t = Behav iourFormula ” e n a b l e s ” e n a b l e O b j e c t =

P r o c e s s E v e n t ;

438 Ensure : e n s u r e S u b j e c t = Behav iourFormula ” e n s u r e ” e n a b l e O b j e c t =

P u b l i s h E v e n t ;

174

439 Behav iourFormula : ope rand += BehaviourWrapper (o p e r a t o r +=

B i n a r y O p e r a t o r ope rand += BehaviourWrapper) ∗ ;

440 BehaviourWrapper : (n e g a t i v e ?= Una ryOpe ra to r) ? (” (”) ? ope rand +=

BehaviourTerm (”) ”) ? ;

441 BehaviourTerm : Term | Loca lVar | SlaVar | envrFunc = EnvrFunc |

I n t e r a c t i o n P a r a m e t e r | PEvent ;

442 P a r a n t h e s i z e d B e h T e r m : ” (” t a r g e t = Behav iourFormula ”) ” ;

443 I n t e r a c t i o n P a r a m e t e r : name= [I n t e r a c t i o n] ” . ” p a r a m e t e r =

I n t e r a c t i o n P a r a m ;

444 I n t e r a c t i o n P a r a m : d e f = D e f a u l t P a r a m | DefinedParam ;

445 DefinedParam : paramName =[P a r L i s t] ;

446 enum D e f a u l t P a r a m : r e p l y P a r a m = ” Reply ” ;

447 Term :

448 S t r i n g C o n s t a n t | I n t e g e r C o n s t a n t | boo l = BooleanAtom ;

449 enum BooleanAtom : t r u e = ” t r u e ” | f a l s e = ” f a l s e ” ;

450 I n t e g e r C o n s t a n t : name=INT ;

451 S t r i n g C o n s t a n t : name=STRING ;

452 Loca lVar : name = ID ” : ” t y p e = [SortName] ;

453 enum EnvrFunc : todayParam = ” t o d a y ” | nowParam = ”now” ;

454 SlaVar : name = ID ” [” i n i t i a l V a l =INT ” . . ” f i n a l V a l =INT ”] ” ;

455

456 /∗ ∗∗∗ ∗ /

457 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗ OPERATOR DEFINITION ∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

458 /∗ ∗∗ ∗ /

459

460 O p e r a t o r : B i n a r y O p e r a t o r | unaryOpr = Una ryOpe ra to r ;

461 B i n a r y O p e r a t o r : ar thmOpr = ArthmOpr | cmprOpr = CmprOpr | c n t r l O p r

= C n t r l O p r ;

462 enum ArthmOpr : a d d i t i o n = ”+” | s u b t r a c t i o n = ”−” | m u l t i p l i c a t i o n

= ”∗” | d i v i s i o n = ” / ” | power = ” ˆ ” ;

463 enum CmprOpr : e q u a l s = ”==” | n o t e q u a l s = ” !=” | l e s s T h a n = ”<” |

moreThan = ”>” | l e s s T h a n o r e q u a l = ”<=”| m o r e T h a n o r e q u a l =”>=”

;

464 enum C n t r l O p r : c o n j u n c t i o n =”&” | d i s j u n c t i o n = ” | ” ;

175

465 enum UnaryOpe ra to r : n o t b o o l e a n = ” ! ” | n e g a t i v e n u m = ” unary−

minus ” ;

466

467 /∗ ∗∗ ∗ /

468 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ LAYER PROTOCOL ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

469 /∗ ∗∗∗ ∗ /

470 L a y e r P r o t o c o l : ” l a y e r ” ” p r o t o c o l ” name=ID ” i s ”

471 ” p a r a m e t e r s ” (prm += P a r L i s t) ∗

472 ” i n t e r a c t i o n ” (i n t e r a c t i o n s += I n t e r a c t i o n) ∗

473 ” b e h a v i o u r ” (b e h a v i o u r = Behav iou r) ? ;

474 /∗ ∗∗∗ ∗ /

475 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ BUSINESS ROLE ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

476 /∗ ∗∗ ∗ /

477

478 B u s i n e s s R o l e : ” b u s i n e s s ” ” r o l e ” name=ID ” i s ”

479 ” i n t e r a c t i o n ” (i n t e r a c t i o n s += I n t e r a c t i o n) ∗

480 (” o r c h e s t r a t i o n ” o r c h e s t r a t i o n = O r c h e s t r a t i o n) ? ;

481

482 L o c a l V a r D e f i n i t i o n :

483 v a r += Loca lVar (” , ” v a r += Loca lVar) ∗ ;

484

485 S t a t e M a c h i n e : name = ID ” : ” ” [” s t a t e L I t e r a l V a l u e =

S t a t e L i t e r a l V a l u e s ”] ” ;

486 S t a t e L i t e r a l V a l u e s : s t a t e L i t e r a l += S t a t e L i t e r a l + ;

487 S t a t e L i t e r a l : name = ID ;

488 S l a V a r i a b l e : name=ID ” : ” t y p e = I n t e r v a l ;

489 VariableName : name = ID ;

490 O r c h e s t r a t i o n :

491 (” l o c a l ” (s t a t e M a c h i n = S t a t e M a c h i n e l o c a l V a r = L o c a l V a r D e f i n i t i o n)

∗) ?

492 (” s l a ” ” v a r i a b l e ” (s l a V a r i a b l e s += S l a V a r i a b l e) ∗) ?

493 (t r a n s i t i o n s += T r a n s i t i o n) ∗ ;

494 / / T r a n s i t i o n : ” t r a n s i t i o n ” name = ID (” [” v a l = INT ”] ”) ? ” i s ”

495 T r a n s i t i o n : ” t r a n s i t i o n ” name = ID ” i s ”

496 ” t r i g g e r e d B y ” (t r i g g e r = T r i g g e r) ?

176

497 ” guardedBy ” (gua rd = S t a t e F o r m u l a)

498 ” e f f e c t s ” (e f f e c t s = E f f e c t)

499 ” s e n d s ” (s e n d s = Send) ? ;

500 T r i g g e r : Event | SF ;

501 SF : (p a r a m e t e r += S t a t e F o r m u l a ” i n d e n t ”) ∗ p a r a m e t e r +=

S t a t e F o r m u l a ;

502

503 /∗∗∗ /

504 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ S t a t e F o r m u l a ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

505 /∗ ∗∗∗ /

506 S t a t e F o r m u l a : ope rnad += OperandWrapper (o p e r a t o r +=

B i n a r y O p e r a t o r ope rand += OperandWrapper) ∗ ;

507 OperandWrapper : ope rand = Bas icOperand ;

508 Bas icOperand : envFunc = EnvrFunc | L o c a l V a r i a b l e | Term |

I n t e r a c t i o n P a r a m e t e r ;

509 L o c a l V a r i a b l e : v a r = [Loca lVar] ;

510

511 /∗∗∗ /

512 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ EFFECT p a r t ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

513 /∗ ∗∗∗ /

514

515 E f f e c t : (e s f += ESF ” i n d e n t ”) ∗ e s f += ESF ;

516 ESF : (p a r a m e t e r s += ESFElement ” i m p l i e s ”) ∗ p a r a m e t e r s +=

ESFElement ;

517 ESFElement : (ope rand += EFFOperandWrapper o p e r a t o r +=

B i n a r y O p e r a t o r) ∗ ope rand += EFFOperandWrapper ;

518 EFFOperandWrapper : (n e g a t i v e ?= Una ryOpe ra to r) ? ope rand = ETerm ;

519 ETerm : Term | ETermSpot | Event | SyncEvent | Loca lVar ;

520 SyncEvent : ” s y c I n t e r ” s y n c I n t e r = [S y n c I n t e r a c t i o n] ” (” (a r g s =

S y n c I n t r A r g u m e n t L i s t) ? ”) ” ;

521 S y n c I n t r A r g u m e n t L i s t : p a r a m e t e r s += Argument (” , ” p a r a m e t e r s +=

Argument) ∗ ;

522 Argument : name = [S y n c I n p u t I n t e r a c t i o n P a r a m] ;

523 ETermSpot :

524 ” p o s t ” ” (” l o c a l V a r = [Loca lVar] ”) ” ;

177

525

526 /∗∗∗ /

527 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ SENDS p a r t ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

528 Send : s s f += SE (” i n d e n t ” s s f += SE) ∗ ;

529 SE : (p a r a m e t e r L e f t = SSFElement ” i m p l i e s ”) ? r i g h t = SSF ;

530 SSF : Event | P r o p e r t y A s s i g n m e n t | P o s t A s s i g n m e n t ;

531 P r o p e r t y A s s i g n m e n t : e termL = I n t e r a c t i o n P a r a m e t e r ”=” etermR =

ETerm ;

532 P o s t A s s i g n m e n t : p o s t = ETermSpot ”=” sync = SyncEvent ;

533 SSFElement : ESendFormula ;

534 ESendFormula : ope rand += ESFTerm (o p e r a t o r += B i n a r y O p e r a t o r

ope rand += ESFTerm) ;

535 ESFTerm : ETerm | E P a r a t h e s i z e d F o r m u l a ;

536 E P a r a t h e s i z e d F o r m u l a : ” (” t a r g e t = ESendFormula ”) ” ;

537

538 /∗

∗∗∗ /

539 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Wire DEFINITION

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

540 /∗

∗∗ /

541

542 Wire : name=ID ”{”

543 ” nodeA ” wireRoleA = [ModuleNode]

544 ” nodeB ” wireRoleB = [ModuleNode]

545 (c o n n e c t o r s += Connec to r) ∗

546 ”}” ;

547

548 Connec to r : ” c o n n e c t o r ” ”{”

549 ” a t t a chmen tA ” ”{” a t t a c h m e n t I n t e r a c t i o n = [I n t e r a c t i o n]

550 ”=>”

551 a t t a c h m e n t A I P I n t e r a c t i o n = [I P I n t e r a c t i o n]

178

552 (a t t a c hm en t AP ara me t e r Map p i ngs +=

A t t a c h m e n t A I n t e r a c t i o n P a r a m e t e r M a p p i n g) ∗

553 ”}”

554 ” a t t a c h m e n t B ” ”{” a t t a c h m e n t I n t e r a c t i o n = [I n t e r a c t i o n]

555 ”=>”

556 a t t a c h m e n t B I P I n t e r a c t i o n = [I P I n t e r a c t i o n]

557 (a t t a c h m e n t B P a r a m e t e r M a p p i n g s +=

A t t a c h m e n t B I n t e r a c t i o n P a r a m e t e r M a p p i n g) ∗

558 ”}”

559 ” i n t e r a c t i o n p r o t o c o l ” i p = [I n t e r a c t i o n P r o t o c o l]

560 ”}” ;

561 A t t a c h m e n t A I n t e r a c t i o n P a r a m e t e r M a p p i n g :

562 i n t e r a c t i o n P a r a m e t e r = [I n t e r a c t i o n P a r a m e t e r] ”=>”

i p I n t e r a c t i o n P a r a m e t e r = [I P I n t e r a c t i o n P a r a m e t e r] ;

563

564 A t t a c h m e n t B I n t e r a c t i o n P a r a m e t e r M a p p i n g :

565 i n t e r a c t i o n P a r a m e t e r = [I n t e r a c t i o n P a r a m e t e r] ”=>”

i p I n t e r a c t i o n P a r a m e t e r = [I P I n t e r a c t i o n P a r a m e t e r] ;

566

567

568 /∗

∗∗∗ /

569 /∗ ∗∗∗∗∗∗∗∗∗∗ INTERACTION PROTOCOL DEFINITION

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

570 /∗

∗∗ /

571

572 I n t e r a c t i o n P r o t o c o l : ” i n t e r a c t i o n p r o t o c o l ” name = ID ” i s ”

573 (” ro l eA ” i n t e r a c t i o n R o l e A = I P I n t e r a c t i o n) ?

574 (” r o l e B ” i n t e r a c t i o n R o l e B = I P I n t e r a c t i o n) ?

575 ” c o o r d i n a t i o n ” ? ;

576

577 I P I n t e r a c t i o n : i n t e r a c t i o n T y p e = I n t e r a c t i o n T y p e name = ID

179

578 (c o n n e c t o r P a r a m e t e r s += I P I n t e r a c t i o n P a r a m e t e r (” , ”

c o n n e c t o r P a r a m e t e r s += I P I n t e r a c t i o n P a r a m e t e r) ∗) ? ;

579 I P I n t e r a c t i o n P a r a m e t e r : (r e t u r n T y p e ?= ” r e t u r n ”) ?

580 (i n t e r a c t i o n E v e n t T y p e = C o n v I n t e r a c t i o n E v e n t T y p e) ?

581 name = ID ” : ” i p I n t e r a c t i o n P a r a m e t e r = [SortName] ;

180

Bibliography

[1] Conoise, http://www.conoise.org visited on: 2008.

[2] Ecolead, http://ecolead.vtt.fi, visited on 22/19/39.

[3] GOLD Project http://www.neresc.ac.uk/projects/gold/projectdescription.html

visited on: 8/9/2011.

[4] Xtext http://www.eclipse.org/xtext/ visited on: 2012.

[5] A. Wright A. Conlin, H. Hiden. A chemical process development case study as a

source of requirements for the GOLD project. Technical Report No. CS-TR-968,

School of Computing Science, University of Newcastle upon Tyne, June 2006.

[6] J. Abreua. Modelling Business Conversations in Service Component Architec-

tures. PhD thesis, University of Leicester, July 2009.

[7] Hamideh Afsarmanesh and Luis M. Camarinha-Matos. Federated information

management for cooperative virtual organizations. In Abdelkader Hameurlain

and A Tjoa, editors, Database and Expert Systems Applications, volume 1308

of Lecture Notes in Computer Science, pages 561–572. Springer Berlin / Heidel-

berg, 1997.

[8] Hamideh Afsarmanesh and Luis M. Camarinha-Matos. Future Smart-

Organizations: A Virtual Tourism Enterprise. In WISE, pages 456–461, 2000.

[9] Hamideh Afsarmanesh and Luis M. Camarinha-Matos. A framework for man-

agement of virtual organization breeding environments. In Luis M. Camarinha-

181

Matos, Hamideh Afsarmanesh, and Angel Ortiz, editors, Collaborative Networks

and Their Breeding Environments, volume 186 of IFIP International Federation

for Information Processing, pages 35–48. Springer Boston, 2005.

[10] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based con-

straint satisfaction and optimization. JOURNAL OF THE ACM, 44(2):201–236,

1997.

[11] Laura Bocchi, José Luiz Fiadeiro, and Antónia Lopes. A Use-Case Driven Ap-

proach to Formal Service-Oriented Modelling. In Tiziana Margaria and Bern-

hard Steffen, editors, Leveraging Applications of Formal Methods, Verification

and Validation, volume 17 of Communications in Computer and Information

Science, pages 155–169. Springer Berlin Heidelberg, 2009.

[12] Laura Bocchi, José Luiz Fiadeiro, Noor Rajper, and Stephan Reiff-Marganiec.

Structure and behaviour of virtual organisation breeding environments. In FAVO,

pages 26–40, 2009.

[13] P. Briol. BPMN, the Business Process Modeling Notation Pocket Handbook.

LULU PR, 2008.

[14] J.W. Bryans, J.S. Fitzgerald, C.B. Jones, and I. Mozolevsky. Formal modelling

of dynamic coalitions, with an application in chemical engineering. In Second

International Symposium on Leveraging Applications of Formal Methods, Veri-

fication and Validation, pages 91–98, Nov. 2006.

[15] Alan Burns and Gordon Baxter. Time bands in systems structure. In Denis

Besnard, Cristina Gacek, and Cliff B. Jones, editors, Structure for Dependability:

Computer-Based Systems from an Interdisciplinary Perspective, pages 74–88.

Springer London, 2006.

[16] Luis M. Camarinha-Matos and H. Afsarmanesh. Design of a virtual community

infrastructure for elderly care. In Collaborative Business Ecosystems and Virtual

Enterprises, pages 439–450. Kluwer Academic Publishers, 2002.

182

[17] Luis M. Camarinha-Matos and H. Afsarmanesh. Creation of Virtual Organiza-

tions in a breeding environment. In Fundamental Approaches to Software Engi-

neering, May, 2006.

[18] Luis M. Camarinha-Matos, H. Afsarmanesh, C. Garita, and C. Lima. Towards an

architecture for virtual enterprises. Journal of Intelligent Manufacturing, 9:189–

199, 1998.

[19] Luis M. Camarinha-Matos, H. Afsarmanesh, and M. Ollus. Virtual Organiza-

tions Systems and Practices. Springer, 2005.

[20] Luis M. Camarinha-Matos, H. Afsarmanesh, and M. Ollus. Ecolead And CNO

Base Concepts. In Luis M. Camarinha-Matos, Hamideh Afsarmanesh, and Mar-

tin Ollus, editors, Methods and Tools for Collaborative Networked Organiza-

tions, pages 3–32. Springer US, 2008.

[21] Luis M. Camarinha-Matos, H. Afsarmanesh, and RJ Rabelo. Infrastructure de-

velopments for agilevirtual enterprises. International Journal of Computer Inte-

grated Manufacturing, page 235 254, 2003.

[22] Luis M. Camarinha-Matos and Hamideh Afsarmanesh. Collaborative networks:

a new scientific discipline. Journal of Intelligent Manufacturing, 16:439–452,

2005.

[23] Luis M. Camarinha-Matos and Hamideh Afsarmanesh. The ARCON model-

ing framework. In Collaborative Networks: Reference Modeling, pages 67–82.

Springer US, 2008.

[24] Luis M. Camarinha-Matos, Hamideh Afsarmanesh, Nathalie Galeano, and Ar-

turo Molina. Collaborative networked organizations - concepts and practice in

manufacturing enterprises. Computers and Industrial Engineering, 57(1):46 –

60, 2009.

183

[25] Luis M. Camarinha-Matos, Hamideh Afsarmanesh, and Martin Ollus. Ecolead:

A Holistic Approach to Creation and Management of Dynamic Virtual Organi-

zations. In Luis M. Camarinha-Matos, Hamideh Afsarmanesh, and Angel Or-

tiz, editors, Collaborative Networks and Their Breeding Environments, volume

186 of IFIP International Federation for Information Processing, pages 3–16.

Springer Boston, 2005.

[26] Luis M. Camarinha-Matos, Ivan Silveri, Hamideh Afsarmanesh, and Ana Inês

Oliveira. Towards a framework for creation of dynamic virtual organisations. In

in Camarinha-Matos, Luis M. et al. (Eds.) Sixth IFIP Working Conference on

Virtual Enterprises PRO-VE 2005, pages 26–28. Springer, 2005.

[27] Adrian Conlin, Nick Cook, Hugo Hiden, Panos Periorellis, and Rob Smith. Gold

architecture document. Technical Report CS-TR-923, School of Computing Sci-

ence, University of Newcastle upon Tyne, July 2005.

[28] J. Cummings, T. Finholt, I. Foster, and C. Kesselman. Beyond being there: A

blueprint for advancing the design, development, and evaluation of Virtual Orga-

nizations . Technical report, Final Report from Workshops on Building Effective

Virtual Organizaions, 2008.

[29] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The

Ponder Policy Specification Language. In LECTURE NOTES IN COMPUTER

SCIENCE, pages 18–38. Springer-Verlag, 2001.

[30] Alessandro D’Atri and Amihai Motro. Virtue: a formal model of virtual en-

terprises for information markets. Journal of Intelligent Information Systems,

30:33–53, 2008.

[31] Giovanna Di Marzo Serugendo, John Fitzgerald, Alexander Romanovsky, and

Nicolas Guelfi. A metadata-based architectural model for dynamically resilient

systems. In SAC ’07: Proceedings of the 2007 ACM symposium on Applied

computing, pages 566–572, New York, NY, USA, 2007. ACM.

184

[32] H.E. Eriksson and M. Penker. Business modeling with UML: business patterns

at work. Omg Series. John Wiley & Sons, 2000.

[33] Ekaterina Ermilova and Hamideh Afsarmanesh. Competency and Profiling Man-

agement in Virtual Organization Breeding Environments. In Network-Centric

Collaboration and Supporting Frameworks, volume 224 of IFIP International

Federation for Information Processing, pages 131–142. Springer Boston, 2006.

[34] Ekaterina Ermilova and Hamideh Afsarmanesh. Modeling and management

of profiles and competencies in VBEs. Journal of Intelligent Manufacturing,

18:561–586, 2007.

[35] J. L. Fiadeiro, A. Lopes, and L. Bocchi. A formal approach to service component

architecture. In Services and Formal Methods, Third International Workshop,

pages 193–213. Springer, 2006.

[36] John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee, Nico Plat, and Marcel Ver-

hoef. Validated Designs For Object-oriented Systems. Springer-Verlag TELOS,

Santa Clara, CA, USA, 2005.

[37] John S. Fitzgerald, Peter Gorm Larsen, and Marcel Verhoef. Vienna development

method. In Benjamin W. Wah, editor, Wiley Encyclopedia of Computer Science

and Engineering. John Wiley & Sons, Inc., 2008.

[38] Ian Foster, C Kesselman, J Nick, and S Tuecke. The Physiology of the Grid: An

Open Grid Services Architecture for Distributed Systems Integration. Open Grid

Service Infrastructure WG Global Grid Forum, 22, 2002.

[39] Ian Foster and Carl Kesselman. The Grid 2: Blueprint for a New Computing

Infrastructure. Morgan Kaufmann, November 2003.

[40] Ian T. Foster. The Anatomy of the Grid: Enabling Scalable Virtual Organiza-

tions. In Proceedings of the 7th International Euro-Par Conference Manchester

185

on Parallel Processing, Euro-Par ’01, pages 1–4, London, UK, 2001. Springer-

Verlag.

[41] Stephen Gorton and Stephan Reiff-Marganiec. Policy Support for Business-

oriented Web Service Management. In Proceedings of the Fourth Latin American

Web Congress, pages 199–202, Washington, DC, USA, 2006. IEEE Computer

Society.

[42] Jane Hillston. A compositional approach to performance modelling. Cambridge

University Press, New York, NY, USA, 1996.

[43] Dan Hirsch and Ugo Montanari. Two Graph-Based Techniques for Software

Architecture Reconfiguration. Electr. Notes Theor. Comput. Sci., 51:177–190,

2001.

[44] C. B. Jones J. W. Bryans, J. S. Fitzgerald and I. Mozolevsky. Dimensions of

dynamic coalitions. Technical Report No. CS-TR-963, School of Computing

Science, University of Newcastle upon Tyne, May 2006.

[45] Lalana Kagal, Tim Finin, and Anupam Joshi. A policy based approach to secu-

rity for the semantic web. In Dieter Fensel, Katia Sycara, and John Mylopoulos,

editors, The Semantic Web - ISWC 2003, volume 2870 of Lecture Notes in Com-

puter Science, pages 402–418. Springer Berlin / Heidelberg, 2003.

[46] Jeffrey O. Kephart. Research challenges of autonomic computing. In Proceed-

ings of the 27th international conference on Software engineering, ICSE ’05,

pages 15–22, New York, NY, USA, 2005. ACM.

[47] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.

Computer, 36:41–50, January 2003.

[48] K.J. Turner L. Blair, S. Reiff-Marganiec. Appel: The accent policy environmen-

t/language. Technical Report CSM-164. 2005.

186

[49] E.C. Lupu and M. Sloman. Conflicts in policy-based distributed systems man-

agement. IEEE Transactions on Software Engineering, 25(6):852–869, Nov/Dec

1999.

[50] Carlo Montangero, Stephan Reiff-Marganiec, and Laura Semini. Logic-based

Conflict Detection for Distributed Policies. Fundam. Inf., 89:511–538, Decem-

ber 2008.

[51] Mohammad Reza Nami and Seyed Naser Hashemi. Investigating a new for-

mal model for autonomous virtual organisation using RAISE method. IJNVO,

7(6):505–513, 2010.

[52] Mohammad Reza Nami, Mohsen Sharifi, and Abbas Malekpour. A Preliminary

Formal Specification of Virtual Organization Creation with RAISE Specification

Language. In Proceedings of the 5th ACIS International Conference on Software

Engineering Research, Management & Applications, SERA ’07, pages 227–232,

Washington, DC, USA, 2007. IEEE Computer Society.

[53] D Nguyen, S Thompson, J Patel, L Teacy, N Jennings, M Luck, V Dang,

S Chalmers, N Oren, T Norman, A Preece, P Gray, G Shercliff, P Stockreisser,

J Shao, W Gray, and N Fiddian. Delivering services by building and running vir-

tual organisations. BT Technology Journal, 24:141–152, 2006. 10.1007/s10550-

006-0029-6.

[54] T. J. Norman, A. Preece, N. R. Jennings, M. Luck, V. D. Dang, T. D. Nguyen,

V. Deora, J. Shao, W. A. Gray, and N. J. Fiddian. Agent-based Formation of

Virtual Organisations. Knowledge Based Systems, 17:2004, 2004.

[55] Jigar Patel, W. T. Luke Teacy, Nicholas R. Jennings, Michael Luck, Stuart

Chalmers, Nir Oren, Timothy J. Norman, Alun Preece, Peter M. D. Gray, Gareth

Shercliff, Patrick J. Stockreisser, Jianhua Shao, W. Alex Gray, Nick J. Fiddian,

and Simon Thompson. Agent-based virtual organisations for the Grid. In Pro-

ceedings of the fourth international joint conference on Autonomous agents and

187

multiagent systems, AAMAS ’05, pages 1151–1152, New York, NY, USA, 2005.

ACM.

[56] Ricardo Rabelo, Sergio Gusmeroli, Cristina Arana, and Thierry Nagellen. The

ecolead ict infrastructure for collaborative networked organizations. In Network-

Centric Collaboration and Supporting Frameworks, volume 224 of IFIP Interna-

tional Federation for Information Processing, pages 451–460. Springer Boston,

2006.

[57] Ricardo J. Rabelo, Luis M. Camarinha-Matos, and Rolando V. Vallejos. Agent-

based brokerage for virtual enterprise creation in the moulds industry. In Pro-

ceedings of the IFIP TC5/WG5.3 Second IFIP Working Conference on Infras-

tructures for Virtual Organizations: Managing Cooperation in Virtual Organi-

zations and Electronic Busimess towards Smart Organizations: E-Business and

Virtual Enterprises: Managing Business-to-Business Cooperation, pages 281–

290, Deventer, The Netherlands, The Netherlands, 2000. Kluwer, B.V.

[58] Stephan Reiff-Marganiec and Noor Rajper. Modelling virtual organisations:

Structure and reconfigurations. In PRO-VE, pages 297–305, 2011.

[59] Burak Sari, Tayyar Sen, and S. Kilic. Formation of dynamic virtual enterprises

and enterprise networks. The International Journal of Advanced Manufacturing

Technology, 34:1246–1262, 2007.

[60] Giovanna Di Marzo Serugendo, John S. Fitzgerald, and Alexander Romanovsky.

MetaSelf: an architecture and a development method for dependable self-* sys-

tems. In Sung Y. Shin, Sascha Ossowski, Michael Schumacher, Mathew J.

Palakal, and Chih-Cheng Hung, editors, SAC, pages 457–461. ACM, 2010.

[61] Jianhua Shao, W Alex Gray, Nick J Fiddian, Vikas Deora, Gareth Shercliff,

Patrick J Stockreisser, Timothy J Norman, Alun Preece, Peter M D Gray, Stuart

Chalmers, Nir Oren, Nicholas R Jennings, Michael Luck, Viet D Dang, Thuc D

188

Nguyen, Jigar Patel, W T Luke Teacy, and Simon Thompson. Supporting for-

mation and operation of virtual organisations in a grid environment. In THE UK

E-SCIENCE ALL HANDS MEETING 2004, pages 376–383, 2004.

[62] Maurice ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti. An action/state-

based model-checking approach for the analysis of communication protocols for

service-oriented applications. In Stefan Leue and Pedro Merino, editors, For-

mal Methods for Industrial Critical Systems, volume 4916 of Lecture Notes in

Computer Science, pages 133–148. Springer Berlin / Heidelberg, 2008.

[63] Andrzej Uszok, Jeffrey Bradshaw, and Renia Jeffers. Kaos: A policy and domain

services framework for grid computing and semantic web services. In Christian

Jensen, Stefan Poslad, and Theo Dimitrakos, editors, Trust Management, vol-

ume 2995 of Lecture Notes in Computer Science, pages 16–26. Springer Berlin /

Heidelberg, 2004.

[64] Emil Vassev and Joey Paquet. Assl - autonomic system specification language. In

Proceedings of the 31st IEEE Software Engineering Workshop, SEW ’07, pages

300–309, Washington, DC, USA, 2007. IEEE Computer Society.

[65] Emil Iordanov Vassev. Towards a framework for specification and code gener-

ation of automatic systems. PhD thesis, Concordia University, Montreal, P.Q.,

Canada, Canada, 2008.

[66] Jos Warmer. A model driven software factory using domain specific languages.

In Proceedings of the 3rd European conference on Model driven architecture-

foundations and applications, ECMDA-FA’07, pages 194–203, Berlin, Heidel-

berg, 2007. Springer-Verlag.

[67] Maciej Witczyski and Adam Pawlak. Virtual organizations in the electronics

sector. In Luis M. Camarinha-Matos, Hamideh Afsarmanesh, and Martin Ollus,

editors, Virtual Organizations, pages 221–232. Springer US, 2005.

189

