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Abstract—This paper is concerned with the challenge of
reorganising a software system into modules that both obey
sound design principles and are sensible to domain experts.
The problem has given rise to several unsupervised automated
approaches that use techniques such as clustering and Formal
Concept Analysis. Although results are often partially correct,
they usually require refinement to enable the developer to
integrate domain knowledge. This paper presents the SUMO
algorithm, an approach that is complementary to existing
techniques and enables the maintainer to refine their results.
The algorithm is guaranteed to eventually yield a result that is
satisfactory to the maintainer, and the evaluation on a diverse
range of systems shows that this occurs with a reasonably low
amount of effort.
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I. INTRODUCTION

The problem of software modularisation is well estab-
lished. The arrangement of software entities (e.g. classes or
files) may be unsuitable either from a comprehension stand-
point, or for technical reasons [1]. This has to be addressed
by reorganising them into a more suitable configuration (i.e.
remodularising them), which can be performed as part of
maintenance.

Identifying a suitable modularisation is a challenging,
time-consuming process. It should obey good design prin-
ciples (e.g. minimal coupling and maximal cohesion)but
these should also be balanced against the fact that the final
modules should make sense to the developer or maintainer.
For example, a pair of elements might not be particularly
interdependent from a source code point of view, yet might
still belong into the same module because they serve a
similar functional purpose. Conversely, a pair of elements
might contain numerous interdependencies in the source
code, but could nonetheless belong in different modules (e.g.
a unit that makes extensive use of a general utility class).

Manually remodularising a system is challenging because
for any nontrivial system there is a vast number of possible
module configurations. Assessing every possible configu-
ration individually in terms of design heuristics and their
suitability with respect to the domain is generally intractable.
Instead, the pragmatic developer can at best refactor the

system in a piecemeal fashion, using individual localised
refactorings within the time constraints available.

Several researchers have attempted to address the problem
by developing fully automated remodularisation approaches.
These tend to employ ‘unsupervised’ Machine Learning
techniques such as clustering and Formal Concept Analysis
(FCA). Both approaches ultimately use certain indicators in
the system to assign elements into appropriate groups. Previ-
ous approaches have selected indicators to be file names [2],
the connectivity of the files [3] or other features [4], [5],
[6], [7], [8]. They are unsupervised in the sense that there
is no (or at best very limited) means to externally guide the
process to improve the final outcome.

The rationale for this work is captured by an observation
by Glorie et al. [9]. In their work on applying the most
popular software clustering approach (Bunch [3]) alongside
an FCA-based approach in an industrial context (Philips
Medical Systems), they observed that these unsupervised
clustering approaches tended to produce results that were
“‘non-acceptable’ for the domain experts”. The key finding
was that, whilst several modules were (largely) sensible,
many others were nonsensical. Some clusters were too large,
some were too small, some simply did not make sense
because they joined together elements that were completely
unrelated. Furthermore, they noted that there was no prac-
tical means to refine the results (i.e. by splitting a specific
clustering), whilst ensuring that other desirable features (i.e.
clusterings that are known to be correct) are maintained.
Often a new solution is produced that is not necessarily an
improvement; although it incorporates the refinement added
by the user, it can also lose lots of the features that the user
would have liked to have kept.

This paper introduces a supervised remodularisation tech-
nique (SUMO). Starting from an initial modularisation
(which may be the current modules in the software system,
or a modularisation proposed by existing modularisation
tools), it iteratively enables this modularisation to be refined
by incorporating domain information from the software
developer. This information can either be positive or neg-
ative. The developer might know for example that “Classes
XMLParser and AbstractParser belong together, but



neither should be in the same module as DataV isualizer.”.
SUMO will iteratively incorporate this knowledge, formulate
new (improved) modularisations that obey these constraints,
and invite the developer to add further refinements, until the
developer is content (i.e. cannot find any further corrections).

The contributions of this paper are as follows:
• A set-theoretical characterisation of the remodularisa-

tion search problem, which clearly illustrates its ex-
pense (Section II).

• The constraint-based supervised remodularisation algo-
rithm (SUMO) that complements existing unsupervised
approaches (Section III-B).

• An analysis of the worst-case performance of the algo-
rithm, and proof that it will produce an ideal result in
polynomial time (Section III-C).

• An evaluation with respect to a diverse set of software
systems, indicating that the approach tends to require a
reasonably low amount of input to converge at a result
that is ideal (to the developer) (Section IV).

II. BACKGROUND

This section discusses the search space of the software
(re-)modularisation problem. The purpose is twofold; firstly,
it illustrates the sheer scale of the remodularisation challenge
and the difficulty faced by automated and semi-automated
techniques. Secondly, it presents a simple lattice-based rep-
resentation of the search space. Besides illustrating the scale
of the problem, it also provides a rationale for the approach
presented in this paper, along with several basic definitions
that will be used in Section III to describe the SUMO
technique.

The problem of software modularisation can be thought of
in set-theoretical terms. Given a set of software modules M ,
the task is to identify suitable groupings of these modules.
Such a set of groupings is referred to as a set partition.

Definition 1. A partition of a set M defines a set of n groups
{S1, . . . , Sn} such that

⋃
{S1, . . . , Sn} = M , where 1 ≤

n ≤ |M |.

For a given set of software elements, the search space
consists of their possible partitions. For a set of size n the
number of partitions (known as the Bell number of n) grows
steeply. To illustrate, for n = 4 (i.e. four classes) the number
of partitions is 15, for n = 5 the number is 52, and for n = 6
the number is 203. If we consider the modularisation of a
moderately sized system with 200 classes, the Bell number
(i.e. the number of possible partitions) is approximately
6.247 ∗ 10276.

There is an intrinsic partial order that governs the possible
partitions. Intuitively, a solution that includes all of the
elements in one big module is more general (or coarser) than
a solution that divides the same elements into subgroups.
This partition refinement relation forms a partition lattice
over the possible solutions, and is defined as follows.

Figure 1. Example of a partition lattice for four elements (a, b, c, and d).
Each node represents a different partitioning.

Definition 2. In a partition lattice, the most general element
> denotes the partition where all of the elements belong to
a single set, and the most specific element ⊥ denotes the
partition where each element belongs in its own set. The
rest of the partitions are ordered according to the partition
refinement relation �. For any pair of partitions P1 and P2,
P1 � P2 if for every set a ∈ P1, there exists b ∈ P2 such
that a ⊆ b.

Finding a suitable software modularisation can be inter-
preted as trying to find a suitable node in the partition lattice.
For our SUMO approach however, the developer is able
to supply some constraints about which pairs of elements
belong together (Rel+) and which pairs do not (Rel−).
Thus, the challenge is to find a node in the lattice that is
consistent with these.

Definition 3. A partition of M is consistent with Rel+

and Rel− if for every relation (i, j) ∈ Rel+, there exists
a module m ∈ M such that {i, j} ⊆ m. Conversely, for
every relation (k, l) ∈ Rel− there should exist no module
n ∈M , where {k, l} ⊆ n.

Figure 1 illustrates the partition lattice for four elements
(a, b, c, and d). It illustrates how, for a given relationship
between a pair of elements, the number of solutions that
conform to it constitute a relatively small proportion of the
search space. This is the rationale for the SUMO approach. It
shows that providing a relatively small amount of knowledge
in the form of relations Rel+ and Rel− and focussing



only on solutions that are consistent with these can lead
to a substantial reduction in the search space. For example,
for Rel+ = {(a, b)} and Rel− = {(a, d)}, only three of
the fifteen possible solutions are consistent (highlighted in
dashed rectangles in Figure 1).

In Machine Learning terminology, the sub-lattice of solu-
tions that are consistent with the input data (in our case Rel+

and Rel−) is referred to as a version space [10]. Since we
will draw upon this concept to define the success criteria for
our approach, a more formal definition is provided below.

Definition 4. In intuitive terms a version space
V S(Rel+, Rel−) represents the subset of solutions
that conform to Rel+ and Rel−. It can be defined
in terms of two boundary sets of solutions: the set
of most general (or coarse) solutions V SG and
the set of most specific solutions V SS . Formally,
V SG = {p|(∀q ∈ V S(Rel+, Rel−))q � p}. Similarly,
V SS = {p|(∀q ∈ V S(Rel+, Rel−))p � q}. The lattice
of solutions in between V SG and V SS represents those
solutions that can be obtained by merging modules in V SS

or splitting modules V SG in such a way that remains
consistent with Rel+ and Rel−.

The next section presents a technique that takes advantage
of the search space. It will show how these sets of relation-
ships can be acquired from the user’s domain knowledge in
an interactive fashion and how this knowledge can be used
to refine the results produced by tools such as Bunch.

III. SUPERVISED REMODULARISATION

The SUMO (Supervised Remodularisation) algorithm
provides a process within which it becomes possible to
iteratively feed domain knowledge into the remodularisation
process. It uses constraint solving, and is guaranteed to
eventually produce a result that will satisfy the user (in
the sense that they will find no modules that need to be
reconfigured). Although it does not rely upon clustering
techniques, it can benefit from them in the sense that outputs
from existing tools can be used as starting points for further
refinement.

The SUMO algorithm works by presenting hypothesised
modularisations to the user, who will agree with some rela-
tions, and disagree with others. The developer’s corrections
can be integrated into the modularisation process, in turn
leading to a new modularisation, which can again be refined.
This forms a ‘virtuous cycle’ of conjectures and refutations
[11], where each new hypothesis results in further correc-
tions, gradually aggregating the requisite domain knowledge
(in the form of constraints) that is required to produce a
modularisation that the developer is satisfied with.

This section provides a basic overview of the algorithm,
followed by a more in-depth analysis of the constraint-
solving part that identifies the hypothesis modularisations.

Input: Mod
Data: Rel−,Rel+,solved,H ,NewPos,NewNeg
Uses: solve(X,Y ), identifyCorrections(X)
Result: H
Rel+ ← ∅;1
Rel− ← ∅;2
solved← false;3
H ←Mod;4
while (¬solved) do5

(NewPos,NewNeg)← identifyCorrections(H);6
if (NewPos ∪NewNeg = ∅) then7

solved← true;8
else9

Rel+ ← Rel+ ∪NewPos;10
Rel− ← Rel− ∪NewNeg;11
H ← solve(Rel+, Rel−);12

end13
end14

return H15
Algorithm 1: SUMO algorithm

This is followed by an analysis of the worst-case perfor-
mance of the algorithm, and finally with a brief overview of
our proof-of-concept implementation.

A. SUMO Algorithm

The SUMO algorithm is presented in Algorithm 1. It takes
as input an existing partition of the system Mod – this
might be the current directory structure of the system, or
a modularisation proposed by existing tools such as Bunch
[3]. It uses the two (initially empty) sets Rel+ and Rel− to
store pairs of elements (mi,mj) that respectively should or
should not belong together. The process essentially consists
of a loop that presents a hypothesis partition H to the user
(the identifyCorrections function). If they can identify
no corrections the process terminates. If corrections are
identified, they are added to Rel+ and Rel− (depending on
whether they are positive or negative). The solve function
then produces a new partition that is consistent with these
augmented constraints. The identifyCorrections function
is briefly described below. The solve function is given a
more detailed treatment in Section III-B.

The identifyCorrections function requires little elab-
oration. The current modularisation is presented to the
user, who has the option of selecting any relations that
they agree with, and any that are clearly incorrect. One
accessible approach would be to present the modularisation
in a graphical format, so that the user could visually inspect
and select individual relations or entire modules and tag
them as correct or incorrect. The function should also enable
positive or negative relations that were selected in previous
iterations to be highlighted as such, to prevent the mistaken
introduction of inconsistent relations.



B. Software Modularisation as a Constraint Satisfaction
Problem

The solve function in the SUMO algorithm has the
challenge of producing a partition of software modules that
is consistent with the relations in Rel+ and Rel−. This is
essentially a constraint satisfaction problem and can, as such,
be solved by existing solvers.

Given a set of elements E = {e0, . . . , en}, their possible
modules can be represented as a number N = [1 : n]. The
challenge is to find a set of assignments (i.e. a partition)
p : E → N, where each element in E is mapped to a
value denoting its module. The constraints on the possible
mappings of p are contained within Rel+ and Rel−. Rel+

is a set of pairs of elements, where the presence of a pair
(ei, ej) implies that p(ei) = p(ej). Similarly, the presence
of a pair (ei, ej) in Rel− implies that p(ei) 6= p(ej).

As a trivial example, suppose three elements E =
{XMLParser,DataV isualizer,AbstractParser}, with
Rel+ = {(XMLParser,AbstractParser)}
and Rel− = {(XMLParser,DataV isualizer),
(AbstractParser,DataV isualizer)} are to be clustered.
In terms of a constraint program (using the above encoding)
this might look as follows:

XMLParser = [1:3]
AbstractParser = [1:3]
DataVisualizer = [1:3]
XMLParser == AbstractParser
XMLParser != DataVisualizer
AbstractParser != DataVisualizer

As output, a constraint solver will either provide
an assignment for the elements that is consistent with
Rel+ and Rel−. For example, XMLParser = 1,
AbstractParser = 1, DataV isualizer = 2. Alternatively,
it will return an error message stating that the problem
cannot be solved. The latter situation can arise from the
fact that the developer has provided inconsistent constraints
(though this can be mitigated by the IdentifyCorrections
function as discussed above).

As mentioned in Section II, the possible range of par-
titions forms a sub-lattice of the partition lattice, known
as the version space [10]. The version space concept is
useful because it provides a means to define when the
iterative modularisation process converges, i.e. when it is
no longer possible for IdentifyCorrections to yield any
further corrections. Every time a relation is added to Rel+ or
Rel−, the version space contracts. Over multiple iterations
possible modularisations are added to and removed from
V SS and V SG, as they gradually move closer together in
the lattice. Once V SS = V SG (the most specific set of
solutions and most general set of solutions are the same),
the process has converged [10], in the sense that no further
information can be added that will change the contents of
the modules. This represents the ultimate success criterion

for SUMO - where it has sufficient information to definitely
define a single set of modules 1.

C. Worst Case Running Time

What is the maximum number of constraints that will need
to be added to Rel+ and Rel− to guarantee convergence?
Before providing an empirical answer to assess performance
for realistic software systems, we first consider the theoret-
ical worst case.

Theorem 1. For a system with n elements, the number of
relations that are required to ensure convergence is bounded
by O(n(n−1)

2 ).

Informal Proof: We presume no initial knowledge
about the system, so Rel+ = ∅ and Rel− = ∅. Further-
more, we presume that the identifyCorrections function
only provides negative feedback (relations stating that two
elements do not belong in the same module). These are of
the least value to the constraint solver, since inequalities are
non-transitive and are much less effective at reducing the
search space than positive relations. For every iteration, we
assume that the function solve(Rel+, Rel−) always selects
an unsatisfactory solution where possible (which will nec-
essarily require a further input by identifyCorrections).

Given the above setting, we choose the solution that
requires the largest number of negative inputs to definitively
characterise, which is most specific solution in the lattice
where each element belongs to its own module. To converge
in this setting, identifyCorrections will thus be required
to explicitly return the negative relationship between every
distinct pair of elements. Characterising the number of
elements in Rel− for this scenario will therefore give us
the general worst-case.

The number of relationships between different elements in
a set is relatively straightforward to count. For example, the
elements in Rel− for a system with 6 elements (a,b,c,d,e,f)
would be:

(a,b) (a,c) (a,d) (a,e) (a,f)
(b,c) (b,d) (b,e) (b,f)
(c,d) (c,e) (c,f)
(d,e) (d,f)
(e,f)

The above set of relations can be counted as 5+4+3+2+1
(adding up the number of relations in each row). This is
the triangular number of 5, which is calculated as 5 ∗ (5 +
1)/2 = 15. In other words, the worst case for n elements is
calculated as the triangular number of n− 1, which can be
rewritten for n as n(n−1)

2 .
Clearly this is a pathological scenario and, as will be

shown in the Evaluation in Section IV, under more real-

1The version space may contain lots of solutions when it has converged,
as there will be multiple solutions to a set of constraints that correspond
in practice to a single modularisation.



istic assumptions the performance tends to be much more
favourable. However, this limit is nonetheless interesting
because it provides an insight into the value of this approach.
Although there is a combinatorial explosion in the number
of possible modularisations for n elements, these all arise
from the configuration of a much smaller number of pair-
wise relationships. It is this observation that is exploited in
this paper; by constraining certain interrelationships between
software elements, the number of possible modularisations
of these elements is reduced by several orders of magnitude.

As discussed in Section II, for n elements the number of
possible partitions is the Bell number of n. Processing these
modularisations individually rapidly becomes intractable.
However, this is not necessarily the case when considering
the sets of modularisations in terms of the relationships
between elements. For a system of 200 classes, although
there may be 6.247 ∗ 10276 possible partitions, using the
above limit, the number of interrelationships between classes
that would need to be specified to guarantee an exact solution
is bounded by the (relatively much smaller number of)
200∗199

2 = 19900 interrelations between the classes.

D. Implementation

To evaluate the approach, a small proof-of-concept im-
plementation has been constructed in Java. Initial module
configurations are supplied in the form of textual SIL files
– produced by Bunch that define the clusters and their
members. These may either be provided by tools such as
Bunch, or be simply encodings of the current software
modules. The solve function is implemented with the Choco
constraint solving library [12].

IV. EVALUATION

This evaluation seeks to assess the performance of SUMO
in its intended usage context – starting from an initial
module configuration and refining this to match the devel-
oper’s intuitive preferences. The performance of SUMO is
measured in terms of (1) the number of iterations required to
converge, and (2) the quality of the proposed configuration
at each iteration. The feedback provided by the user is
simulated, and the target is a synthesised variant of the
existing modularisation of the system.

The research questions this evaluation answers are thus:
RQ1 How much effort is required to produce a satisfac-

tory modularisation from an initial starting point
generated by Bunch?

RQ2 What is the relationship between the effort and the
improvement obtained?

RQ3 How does the approach scale with respect to the
size of the software system?

A. Method

Figure 2 summarises the experiment methodology. The
basic process is to synthesise a starting modularisation and

1: MDG and modularisation extraction

2: Mutation (LimSim)

3: Clustering

4: Refinement

JAR File

Dependency Finder

MDG Modularisation

JRET

Mutant MDGs Mutant Modularisations

Bunch

Select Counterexamples

Bunch Modularisations

SUMO

Converged?

Responses

No

Results

Yes

Figure 2. Data flow for the experiments; rounded edges indicate processes
and the sheet icon indicates data - doubled icons signify plurality.

a target (using LimSim [13] and Bunch [3] respectively). The
target modularisation is used to identify random constraints
between elements (simulating the human user), which are
fed to SUMO over a number of iterations until the process
converges and no further corrections can be identified. The
detailed steps are elaborated below.

1) MDG and Modularisation Extraction: The purpose of
this step is to produce a reference modularisation and a
dependency graph for Bunch. The reference modularisation
represents an ideal target that the software maintainer would
be most satisfied with and is generated from the package
structure of the case study. The module dependency graph
serves as input to Bunch, which produces the starting point



for the SUMO algorithm.
2) Mutation: In order to ensure statistical validity, and to

avoid the possible bias introduced by using one authoritative
modularisation, multiple MDGs and corresponding modu-
larisations are required. 30 pairs of MDG and correspond-
ing reference modularisation are produced by adopting the
method espoused by the LimSim clustering evaluator [13],
which mutates the original MDG and modularisation. This
produces 30 representative variants (the figure of 30 was
chosen to mitigate sampling bias).

3) Clustering: Each variant MDG is clustered using
Bunch [3]. Because this process involves a high degree of
stochasticity due to the use of a hill climber, this is also
repeated 30 times, again to reduce bias. This results in a
total of 900 starting points for each case study. Bunch was
chosen because of its popularity and its extensive use in
empirical studies on clustering benchmarks [14], [13].

4) Refinement with SUMO: The purpose of this step
is to apply the SUMO algorithm, and in the process to
simulate the responses that would be provided by the human
user (i.e. the identifyCorrections function). To enable
the automated application to the large base of 900 subject
systems, the responses have to be simulated. Accordingly,
relations between elements that either confirm or contradict a
given hypothesis are selected at random from the reference
modularisation produced in step 2. The number of inputs
for a given iteration is selected at random from a Poisson
distribution with a mean of 5. This mean was selected on the
premise that, given any clustering, it would seem reasonable
for a developer to be able to pick out 5 correct/incorrect
relations. The long tail of the Poisson distribution accounts
for situations where the clustering is either so correct, or
so incorrect, that it is trivial to identify large numbers of
correct/incorrect relations.

B. Measurement
At each SUMO iteration step, the MoJo difference [15]

between a solution from SUMO and the mutant reference
modularisation is recorded. MoJo calculates the difference
between two modularisations for a system in terms of the
number of modifications that must be made to one to
transform it into the other.

The effort required by the developer is measured in
the number of iterations SUMO requires. In other words,
the number of user-interaction steps it took before SUMO
produced a solution. It is important to note that (as discussed
above) each interaction step elicits multiple units of feedback
from the user. Although the number of individual units of
feedback were recorded as well, since these were strongly
correlated with the number of interaction steps, the results
are presented purely with respect to the latter.

C. Subject Systems
The experiments were conducted on 5 diverse open source

Java software systems. Table I summarises the case studies

used in the experiment. The SLoC metric is taken as the
current project size as reported by Ohloh, an open source
project metrics tracker2. The “Component Used” column
identifies which part of the system was used in cases where
the product comprises multiple JAR files. Each case study
was run through the procedure described in Section IV-A.

D. Results

1) RQ1: Effort Required for Convergence: Table II sum-
marises the number of iterations required for convergence. It
shows that the mean number of iterations taken to converge
varied significantly between each case study, ranging from
19.34 at the lowest to 223.76 at the highest. As will be
discussed with respect to scalability (RQ3) there are several
factors that play a role, especially the number of modules
in the target configuration, and the quality of the initial set
of modules (as produced by Bunch).

2) RQ2: Improvement Versus Effort: To provide an intu-
ition of the increase in accuracy for each iteration, Figure 3
shows 10 randomly selected runs of the SUMO algorithm for
each case study. A sample is used to reduce the visual noise.
Each line tracks the quality improvement at each iteration
step. The quality metric is calculated at each step by taking
a solution from SUMO and calculating the MoJo distance
between it and the reference modularisation. This is then
mapped to a percentage using the formula percentage =
100(currentMoJo− startMoJo)/startMoJo.

The lines firstly illustrate that the difference in quality
between iterations does not necessarily increase monoton-
ically. Although there is a cumulative improvement, it is
often possible for the quality to decrease from one step
to the next. This is in part due to chance on the part of
the constraint solver; it might happen to pick a solution
that, despite fulfilling the additional constraints, happens to
be worse overall than the previous solution. However, over
multiple iterations the quality will tend to increase, simply
because the accumulated constraints will gradually reduce
the search space to such an extent that such errors become
less of a possibility.

For two of the case studies (zxing and wiquery), there
is an apparent point of dimishing returns. Beyond a certain
point further individual iterations contribute relatively little
to the quality of the hypothesis. For the zxing example this
is particularly apparent. Within the first 100 iterations there
is a quality improvement of around 80-90%, but it takes a
further 70-100 iterations to eventually converge.

Finally, there is a degree of variance in performance
between different runs of SUMO, a trend that applies to
a greater or lesser extent to all of the case studies. For
example, for the collections case study, the best performing
trajectory converges at just over 60 iterations, and increases
much more steeply from the start than the others. On the

2http://ohloh.net/

http://ohloh.net/
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Figure 3. Percentage improvement for a random sample of 10 SUMO runs for each case study; vertical dashed lines indicate convergence for each run.



Name Description Version Size (SLoC) Component Used
Collections Apache Commons Collections library, consisting of

classes that implement various data structures
3.2.1 151,727 commons-collections-3.2.1.jar

epubcheck Java tool that validates ebooks in the epub file format. 3.0-b4 17,477 epubcheck-3.0b4.jar
JDOM Java XML parsing library 1.0 10,972 jdom-1.0.jar
Wiquery Library to integrate the jQuery JavaScript library with

the Wicket Java web framework
1.5-M1 79,267 wiquery-1.5-M1.jar

ZXing Java barcode scanning library. 2.1-SNAPSHOT 161,063 core.jar

Table I
CASE STUDIES USED IN THE EXPERIMENTS

Case Study Mutant MDG Size: Reference Start Iterations to Percentile:
modularisaton: MoJo 25% 50% 75% 100%

Min Max Mean St.Dev No Modules Mean Mean St.Dev Mean St.Dev Mean St.Dev Mean St.Dev
collections 453 523 492.57 14.96 12 73.38 29.12 4.93 43.99 7.17 62.93 8.92 86.47 12.58
epubcheck 138 191 159.13 12.92 13 35.43 16.10 4.06 27.16 6.44 42.99 10.52 62.61 13.13
jdom 124 183 146.57 12.68 7 9.91 8.04 3.44 12.48 4.35 16.62 5.80 19.34 6.48
wiquery 314 401 365.63 17.16 29 60.69 35.45 8.05 64.72 11.32 101.82 19.79 223.76 26.25
zxing 262 327 294.30 18.04 37 44.92 37.66 10.40 59.35 12.78 83.93 15.88 179.99 25.68

Table II
SIZES OF THE MUTANT MDGS GENERATED FROM EACH STUDY AND THE NUMBER OF STEPS REQUIRED TO REACH EACH PERCENTILE OF CLOSENESS

TO THE TARGET MDG

other hand, in the wiquery example, the worst perform-
ing trajectory fluctuates more extensively, and consistently
under-performs the others. In general, trajectories that start
off well tend to carry on performing well and converge
earlier, whereas trajectories that start off poorly tend to take
longer to converge, and don’t improve as rapidly.

This clearly indicates that the choice of feedback to
SUMO plays an important role. Different relations provided
by the user can be much more capable of shaping and
restricting the search space than others. For example, if the
user states in the first iteration that five elements belong
together, this would be a much stronger and more valuable
statement than the fact that they do not belong with five
other elements. As shown in the results, providing useful
feedback early on means that subsequent solutions are more
accurate, and enable the user to provide more informative
feedback about other aspects of the partitioning, which
has the cumulative effect of leading to a stronger overall
improvement.

3) RQ3: Scalability: There are two key factors that
affect the scalability of SUMO: the number of clusters in
the target modularisation, and the quality of the starting
modularisation.

The mean number of clusters in the target modularisation
is presented in Table II. It shows that zxing and wiquery
have a larger number of target modules than the others. The
increased number of iterations for these systems is reflected
in the scatter plot in Figure 4. Irrespective of the quality of
the clustering score, these two systems require a much larger
number of iterations to converge than the others. Indeed, the
Pearson correlation between the number of clusters in the
target and the number of iterations required is r = 0.906.

However, the plot also makes it evident that there is a
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Figure 4. Scatterplot of the number of iterations taken and the initial
quality of each modularisation

further factor at play. The clusters tend to adopt a shape
that is skewed diagonally from the lower left to the upper
right. This indicates a clear relationship between the starting
quality of the modularisation (i.e. the Bunch result) and
the number of iterations required. This is intuitive; a more
accurate initial modularisation simply means that fewer



corrections need to be factored in by SUMO.

E. Threats to Validity

There are several factors in the experiment that constitute
threats to validity. The key factors are discussed below.

The constraint solver could bias the results: Given a
set of constraints, there is usually more than one possible
solution in the version space. The choice of solution is
clearly significant, as this forms the basis for the provision of
subsequent constraints. It is possible that certain strategies
that a constraint solver might adopt (e.g. to try to always
provide the most general solution) would in turn bias the
selection of constraints by the user. It is possible that
more suitable constraint solvers might exist, or that better
heuristics could be adopted to select solutions – investigating
these is a part of our ongoing work.

The use of Bunch to produce a starting point could bias
the results: The Bunch tool is used to generate the starting
points for SUMO. Its search based approach means that there
is an inherent variance in the quality of its output. To allay
the risk that this will affect the validity of the results, Bunch
and SUMO are executed 30 times on the same MDG.

The automated responses might not accurately repre-
sent those chosen by a human user: The simulated user
responses could be unrealistic in terms of (1) the volume
of constraints, (2) the choice of specific constraints, and (3)
the ratio of positive to negative constraints. The number of
constraints are chosen according to the Poisson distribution
at a mean of 5, specific constraints are chosen in a quasi-
random fashion, and the ratio of positive to negative con-
straints is not controlled at all. There is a strong argument
that, ultimately, a human user with the ability to resort
to their domain knowledge and intuition is likely to make
much better choices, and to select much larger numbers of
constraints if necessary. This is a factor that we are currently
investigating in more extensive experimental studies.

The subject systems, the synthesised starting MDGs,
and target modularisations may not be representative of
general software systems: The evaluation uses just five
software systems from which to derive its conclusions. This
sample is too small to argue that it is representative – that
the performance profile of SUMO on these systems would
be similar in any other software system. Furthermore, these
systems are not used as-is, but are used as input to the Lim-
Sim methodology, which uses mutation to generate a larger
population of starting systems and target modularisations.
Given the random nature of the mutants (they are selected
and applied at random), there is the additional danger that
the result ends up being unrealistic. For example, applying
a large number of mutations to a particular MDG might
cumulatively dilute what was an initially well-defined mod-
ular structure, thus artificially making the outcome harder to
modularise.

It is important to bear this threat in mind when interpreting
the results; these cannot be used to draw reliable conclusions
about the performance of SUMO with respect to general
software systems. However, this was not the point; the re-
search questions assess facets of the performance of SUMO
that apply to any system; the relations between number of
iterations required, the quality of the initial modularisation
and the intricacy of the target modularisation. In this re-
spect, the selection of the case study systems, coupled with
LimSim, provides a comprehensive range of subject systems
that are reasonably diverse, and which provide us with
statistically justified insights. The question of how SUMO
performs in a more realistic context, with respect to a larger
range of software systems, is being addressed in ongoing
work.

V. RELATED WORK

Supervised software remodularisation: Modularisation
as “software renovation” has been previously applied with a
semi-interactive step that allows the user to re-run a search-
based algorithm until it produces a satisfactory result [16].
This differs from the interactive approach applied by SUMO
in that the user’s positive or negative responses are only used
to rerun the whole algorithm, which gradually accumulate a
body of information about the underlying system as is the
case in this work.

Bunch is equipped with methods designed to improve the
quality of the clustering, including detection of libraries and
omnipresent files; these serve a purpose of cutting down
the search space and focusing it only on the modules that
are likely to be relevent. “User driven” clustering is also
available in Bunch, however this is non-interactive and only
captures positive examples. For example, it is only possible
for the user to express that a and b should be together, but
not that a and c should not be together. Efforts to improve
on the performance of Bunch have mainly been focused on
the search technique itself [17], [18] in order to maximise
fitness.

Constraint acquisition: The process used in this paper
to build a set of constraints is related to the work by
Bessiere et al. on query-driven constraint acquisition [19].
Their CONACQ approach addresses a similar problem, in
the sense that they are attempting to reason with a constraint
solver about an incomplete system of constraints, and seek
further input from a human user. However, whereas they
formulate specific constraints as queries to the user, the
approach used here presents the user with a full hypothesis
solution (the modularisation of the system), and asks them
for counter-examples. In Machine Learning terminology,
whereas they pose ‘membership-queries’ (requiring a simple
‘yes’ or ‘no’ as an answer), the approach proposed here
uses ‘equivalence queries’ [20], requiring the user to provide
at least one counter-example. There would certainly be
scope for the use of membership queries in this work (i.e.



do modules x and y belong together?). However, in the
software maintenance usage scenario, where the maintainer
does not necessarily have the patience to answer what could
be thousands of questions, it seems more practical to rely
on their intuition to select those counter examples that seem
most obvious.

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented a semi-automated framework
that is guaranteed to produce modularisations that are sat-
isfactory to the user. It shows how existing modularisations
(whether extant in the software or proposed by other tools)
can be refined in a systematic fashion.

The evaluation on a small but diverse selection of real
software packages indicates that there is a consistent increase
in the quality of the results as more input from the developer
is provided. The principal factor affecting the effort required
from the user is the number of modules in the target output;
a more intricate target requires more input. However this
is also affected by the quality of the starting point. If
the initial modularisation is of a low quality, more effort
will be required again. However, in any case the use of
SUMO (even for a small number of iterations) is likely to
lead to significant improvements in the final modularisation.
This clearly addresses weaknesses in existing unsupervised
techniques, as described by Glorie et al. [9], where there
is a desire to refine modularisations by feeding-in domain
knowledge.

Future work will expand the evaluation to a larger set
of case studies, and involve human subjects to provide
constraints. This will follow the development of the current
proof-of-concept implementation into an interactive tool.

Although the current identifyCorrections function will
reject a constraint that is inconsistent with the existing
set of constraints, this makes the possibly questionable
assumption that the user is always consistent. Future work
will attempt instead to incorporate their confidence, to allow
such conflicts to be resolved or tolerated with the help of
fuzzy logic.
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