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Abstract. We develop a new method for pricing options on
discretely sampled arithmetic average in exponential Lévy
models. The main idea is the reduction to a backward in-
duction procedure for the difference Wn between the Asian
option with averaging over n sampling periods and the price
of the European option with maturity one period. This al-
lows for an efficient truncation of the state space. At each
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CHAPTER 1

Introduction

An Asian option is an option whose terminal payoff depends on the

average values of the underlying asset during some period of the option’s

lifetime. Thus, an Asian option is path-dependent. Asian-style derivatives

constitute an important family of derivative securities with a wide vari-

ety of applications in financial markets. There are a number of economic

reasons to write a contract with the an averaging feature. For example,

in the foreign exchange market, Asian options allow one to reduce risk of

exchange risk fluctuations, and such an option is typically cheaper than

European options. Another reason is that the price manipulation be-

comes more difficult, even in the thinly traded asset market near option’s

maturity.

There are Asian options both of the European-style and the American-

style, the averaging can be either arithmetic or geometric, and the sam-

pling can be either continuous or discrete. The payoffs of continuously

sampled arithmetic average Asian options are of the form

1

T − T0

∫ T

T0

wuSudu,

where wt are weights; if the sampling is discrete, the payoffs are of the

form

1

N + 1

N∑

j=0

wTjSTj ,

where 0 ≤ T0 < T1 . . . < TN = T are the sampling dates. It is easy to see

that the joint distribution of the arithmetic average is quite complicated

1
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to characterize analytically, and derivation of efficient explicit formulas

for prices of Asian option is very involved, with some exceptions.

1. Pricing in the exponential BM model

In the exponential Brownian motion model (Black-Scholes model),

pricing of the continuously sampled geometric average options is easy

and quite straightforward (and the same holds in Lévy models and a

number of other popular models). However, in the same exponential

Brownian motion model, pricing the arithmetic average Asians options

is far from trivial. In early studies of continuously sampled Asian option,

such options were approximated by the geometric average Asian options.

This approach significantly underprices the option (see the discussion in

Musiela and Rutkowski [56] and the references therein). To overcome

this deficiency, a number of authors have suggested various analytical

approximations for the distribution of the arithmetic average. For exam-

ple, Turnbull and Wakeman [62] use the lognormal approximation with

matched first and second moments, Milevsky and Posner [55] use the re-

ciprocal gamma approximation. The problem with approximations of this

sort is that no reliable error estimates are available.

One of the most celebrated analytical tools is to use the Laplace trans-

form of the Asian option price, introduced by Geman and Yor [38]. Later,

the approach has been extensively studied, for example, by Fu et al. [35],

Carr and Schröder [24, 25], Shaw [59]. Linetsky [45] takes a new di-

rection, and derives analytical formulas using spectral expansion for the

value of the continuously sampled arithmetic Asian option.

While the methods above are tailored to continuously sampled Asian

option, other popular numerical approaches, such as the PDE-approach
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(see, e.g., Večeř [63, 64], Rogers and Shi [57], Alziary et al. [5], An-

dreasen [6], Lipton [46], Zhang [66, 67], Dewynne and Shaw [31] and

the bibliography therein) and the Monte Carlo method (MC) (see, e.g.,

Kemna and Vorst [39], Boyle et al. [19]) can be applied to both continu-

ously and discretely sampled Asian options.

For the discretely sampled Asian options, another approach is to nu-

merically evaluate the density of the sum of random variables as the con-

volution of individual densities. The second step of this method involves

numerical integration of the option’s payoff function with respect to this

density function. The method is initiated by Carverhill and Clewlow

[26], who rely on the use of the fast Fourier transform to evaluate the

joint probability density function.

The pricing of Asian option in the Black-Scholes model has been dealt

with by a host of researchers, and the list of papers above is by no means

complete.

2. Pricing in exponential Lévy models

Lévy models provide a better fit to empirical asset price distributions

that typically have fatter tails than Gaussian ones, and can reproduce

volatility smile phenomena in option prices. For an introduction to appli-

cations of these models applied to finance, we refer the reader to S. Bo-

yarchenko and Levendorskĭi [17] and Cont and Tankov [30]. Pricing the

continuously sampled geometric average options in exponential Lévy mod-

els is easy and quite straightforward (see S.Boyarchenko and Levendorskĭi

[17]) but pricing of arithmetic Asians presents serious mathematical and

computational difficulties.

For continuously sampled Asian options, Bayraktar and Xing [8] de-

rive analytical formulas which can be realized numerically fairly fast and
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accurately. Cai and Kou [20] obtain a closed-form solution for the double-

Laplace transform of Asian options under hyper-exponential jump diffu-

sion model, and suggest a numerical procedure for the realization of this

closed form solution. The variant of the PDE-approach due to Večeř

[63, 64] was extended to processes with jumps by Večeř and Xu [65].

For discretely sampled Asian options, Benhamou [9], Fusai and Meucci

[36] enhance the method of approximating the joint probability density

function of [26], and price Asians under Lévy processes. Since the transi-

tion density function of a Lévy process is generally unknown in the closed

form, the accuracy of this approach crucially rely on the accuracy on an

approximation of the transition density function. Černý and Kyriakou

[27] reduce the pricing problem to a sequence of European options in the

one-factor model, and use trapezoidal rule as the numerical realization

of the (inverse) Fourier transform to approximate the prices of European

options. More recently, Chen et al. [28, 29] developed a Monte Carlo

algorithm for simulating Lévy processes, based on calculation of the pdf

using the Fourier inversion, and applied this algorithm to pricing dis-

cretely sampled Asian option. In Albrecher et al. [1, 2, 3, 4], Lemmens

et al. [42], pricing bounds for Asian options under Lévy processes are

derived and hedging strategies analyzed.

3. General structure of our method

In the present thesis, we consider discretely averaged Asian options.

As Černý and Kyriakou [27], we first reduce the pricing problem to a se-

ries of pricing of European options. However, the efficiency of an approach

of this kind strongly depends on the type of the constructed sequence of

European options, and the efficiency of the pricing the European options
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which inevitably have rather complicated payoffs. Therefore, it is nec-

essary to employ additional tricks to enhance the accuracy and speed of

calculations, and an efficient control of several sources of errors is of the

paramount importance.

We use the reduction to a series of European options, whose terminal

payoffs vanish at −∞ and on [0,∞). Given the error tolerance, we choose

x1 < xM < 0, and, for each option, replace the payoff on (−∞, x1] with the

leading term of asymptotics, which is of the form c · ex, c ∈ R. This trick

is efficient, and |x1| can be chosen moderately large in absolute value. On

[xM , 0], we set the payoff to 0. On [x1, xM ], we approximate the payoff by

a piece-wise polynomial function or use splines. We derive the bounds for

the partial truncation and interpolation errors. The derivation is fairly

non-trivial due to a rather complicated structure of the payoff. These

bounds are used to give recommendations for the choice of the parameters

of our numerical scheme.

At each step of the induction procedure, after the modification of the

payoff have been made, we can calculate the price of the European option

explicitly using the Fourier inversion. We rewrite the resulting formula

as a sum of products of the values of the payoff function at the points of

the chosen uniform grid, and values of two auxiliary functions, at points

of a grid of the form ℓ∆, −M ≤ ℓ ≤ M . These two functions are the

same at each step of the backward induction procedure (in the case of

higher order interpolation, more than two functions are needed). The

sum can be represented as two terms plus a discrete convolution, which

can be realized very fast using the fast convolution algorithm (this idea

goes back to Eydeland [32]). The values of the auxiliary functions can

be calculated only once (and stored); various realizations of the inverse
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Fourier transform can be used for this purpose. We use the simplified

trapezoid rule, which is very efficient if the integrand is analytic in a

strip, and allows for an efficient error control. The reason is that the

disretization error of the infinite trapezoid rule decays exponentially as

the mesh approaches 0 if the integrand is an analytic function in a strip

around the line of integration. Crucial to this analysis are the fundamental

properties of the Whittaker cardinal series (Sinc expansion) for functions

that are analytic in a strip, introduced to finance in Feng and Linetsky

[34]. The conformal change of variables introduced in S. Boyarchenko and

Levendorskĭi [18] (parabolic iFT method) allows one to greatly increase

the rate of the decay of the integrand at infinity, and decrease the number

of terms in the simplified trapezoid rule and the CPU time.

4. Organization of the thesis

In Chapter 2, we explain the main idea and outline the steps of our

method. Error estimates and recommendations for the choices of the pa-

rameters of the scheme given the error tolerance are derived in Chapters 3

and 4. In Chapter 5, we present an explicit algorithm, and produce numer-

ical examples to illustrate the relative performance of different methods.

Chapter 6 concludes. In Appendix A, we give an overview of necessary

facts of the theory of Lévy processes, and remind to the reader the general

pricing formulas for the options of the European type. Technical details

are relegated to Appendix B and Appendix C. Several possible directions

in which our method can be developed further are outlined in Appendix D.



CHAPTER 2

Pricing Asian calls and puts

1. Option specification and the general scheme of calculation

We assume that the riskless rate r ≥ 0 is constant, the market is

arbitrage free, the underlying asset pays no dividends, and, under an

equivalent martingale measure (EMM) Q chosen for pricing, the spot price

process for the underlying is an exponential of a Lévy processX: St = eXt .

Let

A(T ; {STj}
N
j=0) =

1

N + 1

N∑

j=0

STj

be the arithmetic average of the asset price, where the dates (0 =)T0 <

T1 < · · · < TN(= T ) are specified in the contract. The terminal payoffs

of the Asian put and call options with strike K and maturity date T are

G(K,T ; {STj}
N
j=0) = (K − A(T ; {STj}

N
j=0))+

and

G(K,T ; {STj}
N
j=0) = (A(T ; {STj}

N
j=0)−K)+,

respectively; and the time-0 price of the corresponding option is given by

V(K,T ;S0; {Tj}
N
j=0) = e−rTE

[
G(K,T ; {STj}

N
j=0) | S0

]
, (2.1)

where E is the expectation operation under Q, and S0 is the current spot

price of the underlying. We will consider the pricing of the Asian put

option; pricing the Asian call option can be reduced to pricing the Asian

7
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put option via the put-call parity:

Vc(K,T ; {STj}
N
j=0) = e−rT

(
E
[
A(T ; {STj}

N
j=0) | S0

]
−K

)

+V(K,T ;S0; {Tj}
N
j=0), (2.2)

where V is the price of the Asian put option. The first term on the RHS is

the weighted sum of S0 and the moment generating functions of XTj |X0,

j = 1, 2, . . . , N , hence, it can be easily calculated. It remains to calculate

the price of the Asian put option.

Rewrite the terminal payoffs of the Asian put option G as

G(K,T ; {STj}
N
j=0) =

1

N + 1

(
(N + 1)K − S0 −

N∑

j=1

STj

)

+

.

If (N + 1)K − S0 ≤ 0, then G(K,T ; {STj}
N
j=0) = 0, and the time-0 price

of the option is 0. Below, we assume that

(N + 1)K − S0 > 0,

and set

x = lnS0 − ln((N + 1)K − S0).

Assuming further that the sampling dates are equally spaced: Tj =

j∆̄, where ∆̄ = T/N , and taking into account that X is a Lévy process,

we rewrite (2.1) as

V(K,T ;S0; {Tj}
N
j=0) =

e−rT

N + 1
((N + 1)K − S0)+VN(x), (2.3)

where

Vn(x) = Ex
[
(1− eX∆̄ − · · · − eXn∆̄)+

]
, n = 1, 2, . . . , N (2.4)
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Figure 1. Typical curves of (1−ex)+ ·Vn(x− ln(1−ex)+).
KoBoL parameters: ν = 0.2, c+ = c− = 1.1136, λ+ = 3,
λ− = −10, µ ≈ 0.30403. Asian put option parameters:
r = 0.04, T = 1, S = 100, N = 12 (∆̄ = T/N).

and Ext [·] = E[· | Xt = x]. Using the law of iterated expectations, we

obtain

Vn(x) = Ex
[
(1− eX∆̄)+ · E

X∆̄

∆̄

[(
1− eX2∆̄−ln(1−eX∆̄ )+

− · · · − eXn∆̄−ln(1−eX∆̄ )+
)
+

]]

= Ex
[
(1− eX∆̄)+ · Vn−1

(
X∆̄ − ln(1− eX∆̄)+

)]
. (2.5)

In Figure 1, we illustrate how the curve (1 − ex)+ · Vn(x − ln(1 − ex)+)

behaves.

To reduce the truncation error in the state space, we introduce

Wn(x) = Vn(x)− V1(x).

For n = 1, W1(x) ≡ 0; for n = 2,

W2(x) = Ex[(1− eX∆̄)+ · (V1(X∆̄ − ln(1− eX∆̄)+)− 1)]; (2.6)
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and for n = 2, 3, . . . , N − 1,

Wn+1(x) = Ex[(1− eX∆̄)+ ·Wn(X∆̄ − ln(1− eX∆̄)+)] +W2(x). (2.7)

Introduce

f1(x) = (1− ex)+ · (V1(x− ln(1− ex)+)− 1), (2.8)

and, for n = 2, 3, . . . , N − 1, define

fn(x) = (1− ex)+ ·Wn(x− ln(1− ex)+). (2.9)

Formally, the calculation of the option price using (2.6) and (2.7) is

quite straightforward:

1. calculate V1(x) = Ex[(1− eX∆̄)+] (at the points of the chosen grid);

2. approximate f1 in (2.8) with piece-wise polynomials on [x1, xM ] and

by an exponential function on (−∞, x1], substitute the result into

(2.6) and calculate W2;

3. in the cycle w.r.t n = 2, . . . , N − 1, approximate fn in (2.9) by

piece-wise polynomials on [x1, xM ] and by an exponential function

on (−∞, x1], substitute into (2.7) and calculate Wn+1;

4. calculate VN(y) = WN(y)+V1(y) at y = lnS0− ln((N +1)S0−K),

and then the option value using (2.3).

At each step of calculation, there are several numerical parameters we

need to choose, namely,

• mesh ∆ and truncation parameters x1, xM in the state space

domain, which define the x-grid; and

• line of integration ω, mesh ζ and truncation parameter Λ in the

frequency domain, which define the dual grid.
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(For a detailed numerical algorithm, see Chapter 5 Section 1.) Since V1

is the price of the put option with strike 1, maturity ∆̄, in the model

with zero riskless rate, V1 can be easily calculated using the Fourier trans-

form technique (see S. Boyarchenko and Levendorskĭi [18] for the review).

Since the Fourier transform of the piece-wise polynomial interpolant is a

rational function, which can be easily calculated, Wn can be calculated al-

most as easily as V1, but it is non-trivial to take the several errors involved

into account accurately, and derive sufficiently simple and accurate rec-

ommendations for the choice of the parameters of the numerical scheme.

In the remaining part of this chapter, we list the main formulas of

the numerical scheme; the derivation of error bounds, recommendations

for the choice of the parameters of the numerical scheme, and proofs are

relegated to the following chapters.

Remark 2.1. A more efficient approach is to use

Wn(x) = Vn(x)− Vn−1(x)

for n ≥ 2. Then, W2 is as in (2.6), and for n = 2, 3, . . . , N − 1,

Vn(x) = Vn−1(x)−Wn(x)

Wn+1(x) = Ex[(1− eX∆̄)+ ·Wn(X∆̄ − ln(1− eX∆̄)+)].

Since this approach produce the exact same result for the choice of the

truncation parameters given in Chapter 3 Section 1, we will use the defi-

nition Wn = Vn − V1.

2. Classes of processes

We recall that every Lévy process X = {Xt}t≥0 has a characteristic

exponent, which is a continuous function ψ : R −→ C satisfying ψ(0) = 0
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and

E
[
eiξXt

]
= e−tψ(ξ) ∀ ξ ∈ R, t ≥ 0;

and, conversely, the law of a Lévy process is uniquely determined by

its characteristic exponent ([58, Theorem 7.10, Proposition 2.5]). (See

Appendix A for an overview of necessary facts of the theory of Lévy

processes.)

Let λ− < −1 < 0 < λ+. We assume that ψ(ξ) of X is of the form

ψ(ξ) = −iµξ + ψ0(ξ),

where ψ0(ξ) admits the analytic continuation into the complex plane with

the cuts i(−∞, λ−] and i[λ+,+∞), and has the following asymptotics as

ρ→ +∞: for any φ ∈ (−π/2, π/2), ω+ ∈ (λ−, λ+),

ψ0(iω+ + eiφρ) ∼ d0+e
iφνρν(1 +O(ρ−1)) (2.10)

∂ρReψ
0(iω+ + eiφρ) ∼ νd0+ cos(φν)ρν−1(1 + o(1)) (2.11)

where d0+ > 0. These properties are valid for wide classes of processes

used in the theoretical and empirical studies of financial markets. See

M. Boyarchenko et al. [11], Levendorskĭi [43].

Examples 2.2. a) The main example is KoBoL (see S. Boyarchenko

and Levendorskĭi [15, 16, 17]) of order ν ∈ (0, 2), ν 6= 1, with the char-

acteristic exponent

ψ0(ξ) = Γ(−ν)[c+(λ+
ν− (λ++ iξ)ν)+ c−((−λ−)

ν− (−λ−− iξ)ν)], (2.12)
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where c± > 0, λ− < 0 < λ+. In this thesis, we will make explicit calcula-

tions in the almost symmetric case

c+ = c− = c,

which is also known as CGMYmodel (see Carr et al. [21]). It is easily seen

that, in this case, (2.10)–(2.11) hold with d0+ = −2cΓ(−ν) cos(νπ/2) > 0.

b) Normal Inverse Gaussian processes (NIG) constructed by Barndorff-

Nielsen [7] satisfy (2.10)–(2.11) with ν = 1 and d0+ = δ, where δ is the

intensity parameter of NIG. Almost all processes of β-class (Kuznetsov

[41]) satisfy (2.10) as well.

c) VG model introduced to finance by Madan and co-authors [53, 52,

51]

ψ0(ξ) = c[ln(λ+ + iξ)− lnλ+ + ln(−λ− − iξ)− ln(−λ−)] (2.13)

(we use this non-standard parametrization of VG model to make an anal-

ogy with KoBoL more transparent), hence, ψ0(ξ) stabilizes to 2c ln |ξ| at

infinity. This implies that the option price is rather irregular unless ∆̄ is

fairly large. In the result, the justification of even the piece-wise linear

interpolation is possible only for sufficiently large ∆̄, and a higher order in-

terpolation is, essentially, impossible in the sense that it will lead to large

discretization errors. If (2.10) holds with ν > 0, the option price is of class

C∞; however, for small ν and/or ∆̄ the derivatives can be too large, and,

therefore, a higher order interpolation has a larger interpolation error.

Remark 2.3. In (2.10)–(2.11), we only need the asymptotics for φ ∈

(−π/2, π/2), since for any φ ∈ (−π,−π/2) ∪ (π/2, π),

ψ0(ρeiφ) = ψ0(ρeiφ′), φ′ ∈ (−π/2, π/2).
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Explicitly, let a := Re(ρeiφ) < 0, b := Im(ρeiφ) ∈ R \ {0}, the following

identities holds:

e−tψ(a+ib) = e−tψ(a+ib) = E[ei(a+ib)Xt ]

= E[ei(a+ib)Xt ]

= E[ei(−a+ib)Xt ] = e−tψ(−a+ib), t ≥ 0

therefore, ψ(a+ ib) = ψ(−a+ ib), and

ψ0(ρeiφ) = ψ0(a+ ib) = ψ0(−a+ ib) = ψ0(ρeiφ
′

),

where φ′ ∈ (−π/2, π/2).

3. Calculation of V1: flat iFT method

In this section, we calculate V1(x) = Ex[(1− eX∆̄)+] by using the flat

iFT method. Take ω ∈ (0, λ+), expand G(x) = (1− ex)+ into the Fourier

integral

G(x) = (2π)−1

∫

Im ξ=ω

eixξĜ(ξ)dξ (2.14)

where Ĝ is the Fourier transform of G:

Ĝ(ξ) =

∫ 0

−∞

e−ixξ(1− ex)dx = −
1

ξ(ξ + i)
, (2.15)

and substitute (2.14) into V1(x) = Ex[G(X∆̄)]. Since Reψ(ξ) is uniformly

bounded from below on any horizontal line inside the strip of analytic-

ity Im ξ ∈ (λ−, λ+) of ψ(ξ), we can apply Fubini’s theorem, and, using

Ex[eiξX∆̄ ] = eixξ−∆̄ψ(ξ), obtain

V1(x) =
1

2π

∫

Im ξ=ω

eixξ−∆̄ψ(ξ)Ĝ(ξ)dξ. (2.16)
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By making the change the variable ξ = iω + η, we obtain

V1(x) =
1

2π

∫

R

eix(iω+η)−∆̄ψ(iω+η)Ĝ(iω + η)dη. (2.17)

Taking into account that, for real η and ω,

• eix(iω+η) = eix(iω−η);

• Ĝ(iω + η) = Ĝ(iω − η);

• in particular, the characteristic function of a real-valued random

variable, hence the characteristic exponent ψ, enjoy the same

property:

e−∆̄ψ(iω+η) = E [ei(iω+η)X∆̄ ]

= E

[
ei(iω+η)X∆̄

]

= E[ei(iω−η)X∆̄ ] = e−∆̄ψ(iω−η).

Applying the above properties to (2.17), we obtain

V1(x) =
1

2π

(∫ 0

−∞

+

∫ ∞

0

)
eix(iω+η)−∆̄ψ(iω+η)Ĝ(iω + η)dη

=
1

2π

∫ ∞

0

(
eix(iω−η)−∆̄ψ(iω−η)Ĝ(iω − η)

+eix(iω+η)−∆̄ψ(iω+η)Ĝ(iω + η)
)
dη

=
1

2π

∫ ∞

0

(
eix(iω+η)−∆̄ψ(iω+η)Ĝ(iω + η)

+eix(iω+η)−∆̄ψ(iω+η)Ĝ(iω + η)
)
dη

=
1

π
Re

[∫ ∞

0

eix(iω+η)−∆̄ψ(iω+η)Ĝ(iω + η)dη

]
. (2.18)

If ν, the order of the process, and/or ∆̄, the interval between the

sampling dates, are not small, then the integral (2.16) can be calculated

very fast with the absolute error of order 10−7–10−8 using the simplified
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trapezoid rule

V1(x) ≈ −
ζ

π
Re

[
Mc∑

j=1

eixξj−∆̄ψ(ξj)

ξj(ξj + i)
(1− δj1/2)

]
, (2.19)

where δjk is Kronecker’s delta, ξj = iω + ζ(j − 1), j = 1, 2, . . . ,Mc, are

uniformly spaced points on the line of integration with a moderately large

number of points Mc. If, in addition, the values V1(xk) are needed at

points of an equally spaced grid xj = x1+(j− 1)∆, j = 1, 2, . . . ,M , then

the iFFT can be used to increase the speed of calculations.

Remarks 2.4. a) Equation (2.16) holds not only for ω ∈ (0, λ+), for

example, by setting ω ∈ (λ−,−1), we obtain the price of the standard

European call option with the same strike and expiry date.

b) For V1 in (2.16), the integrand has simple poles at −i and 0, and is

analytic in the strips Im ξ ∈ (λ−,−1), Im ξ ∈ (−1, 0) and Im ξ ∈ (0, λ+).

It follows from Theorem 4.1 that the wider the strip of analyticity is, the

smaller the discretization error can be made by an appropriate choice of

the line of integration inside the strip. Therefore, if the three strips above

are of sizably different widths, it is advantageous to choose the widest

strip. We can move from one strip to another using the residue theorem.

If we push the line of integration in (2.16) down and cross the pole at

zero but remain above the second pole, we obtain

V1(x) = 1− (2π)−1

∫

Im ξ=ω

eixξ−∆̄ψ(ξ)

ξ(ξ + i)
dξ, (2.20)

for any ω ∈ (−1, 0). This is advantageous if λ+ < 1 and −λ− − 1 < 1.

If −λ− − 1 > max{λ+, 1}, we push the line of integration further down,

thereby re-deriving the put-call parity relation

V1(x) = 1− ex−∆̄ψ(−i) − (2π)−1

∫

Im ξ=ω

eixξ−∆̄ψ(ξ)

ξ(ξ + i)
dξ, (2.21)
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with ω ∈ (λ−,−1).

A shift of this sort is especially useful if x′ := x+ µ∆̄ is negative and

large in absolute value as it is quite often the case in the lower part of the

x-grid.

c) If ν and/or ∆̄ are small then the integrand decays very slowly

at infinity, and too many terms may be needed to satisfy the desired

error tolerance. In these cases, the preliminary conformal deformation

of the contour of integration in (2.16) with the subsequent change of the

variables (parabolic iFT) can be used to greatly decrease the number of

terms in the simplified trapezoid rule (see Chapter 4 and S. Boyarchenko

and Levendorskĭi [18]).

d) An alternative is the refined version of iFFT, which reduces the

calculation of the sum in (2.19) to application of several copies of iFFT

(see M. Boyarchenko and Levendorskĭi [12, 13]), but if the integrand

decays very slowly then parabolic iFT becomes indispensable.

4. Calculation of Wn+1, n = 1, 2, . . . , N − 1

4.1. Partial truncation of fn. Let fn, n = 1, 2, . . . , N − 1 be as

in (2.8) and (2.9). The intervals of integration in (2.6) and (2.7) will be

truncated from above at a point xM < 0, equivalently, fn will be set to 0.

On (−∞, x1], we replace each integrand in (2.6) and (2.7) with the leading

term of the asymptotics as x→ −∞. The bounds of the partial truncation

errors and recommendations for the choice of x1 and xM (given the desired

error tolerance ǫ at each step) will be given in Chapter 3 Section 1. The

starting point is the following lemma.

Lemma 2.5. Let X be a Lévy process, whose characteristic exponent

is analytic in a strip Im ξ ∈ (λ−, λ+) around the real axis. Then, for



4. CALCULATION OF Wn+1, n = 1, 2, . . . , N − 1 18

n = 2, . . . , N , and any ω ∈ (λ−, 0], as x→ −∞,

f1(x) = −ex−∆̄ψ(−i) +O(e−ωx−∆̄ψ(iω)) (2.22)

fn(x) = cne
x +O(e−ωx−∆̄ψ(iω)), n = 2, 3, . . . , N (2.23)

where

cn = −e−2∆̄ψ(−i) ·
1− e(1−n)∆̄ψ(−i)

1− e−∆̄ψ(−i)
. (2.24)

For the proof, see Appendix B. Note that (2.22) and (2.23) are useful

only if we take ω ∈ (λ−,−1).

4.2. Payoff modification in the state space. When we calculate

Wn+1, we assume that fn(xj), j = 1, 2, . . . ,M, have been calculated. We

set uM = 0, u1 = cne
x1 , where c1 = −e−∆̄ψ(−i), and cn is given by (2.24)

if n ≥ 2, use uj = fn(xj), j = 2, 3, . . . ,M − 1, and approximate fn by the

function u defined by:

(1) u(x) = cne
x, x ≤ x1;

(2) u(x) = 0, xM ≤ x <∞; and

(3)

u(x) = uj +
uj+1 − uj

∆
(x− xj), xj ≤ x ≤ xj+1,

for j = 2, 3, . . . ,M − 1.

The last part defines the piece-wise linear interpolation on [x1, xM ]. For

the interpolation procedures of higher order and spline approximations,

see Appendix C.



4. CALCULATION OF Wn+1, n = 1, 2, . . . , N − 1 19

The Fourier transform û is easy to calculate. Fix ω ∈ (0, λ+). For ξ

on the line Im ξ = ω,

û(ξ) = cne
x1 · Ûtr(ξ)− u1 · e

−ix1ξÛM(ξ)

+(1/∆)
M∑

j=1

uj · e
−ixjξÛ(ξ), (2.25)

where

Ûtr(ξ) = (1− iξ)−1e−iξx1 ,

ÛM(ξ) = (iξ∆)−2
(
eiξ∆ − iξ∆− 1

)
,

Û(ξ) = (iξ)−2
(
eiξ∆ + e−iξ∆ − 2

)
.

Applying u1 = cne
x1 and rearranging the first two terms in (2.25), we

obtain

û(ξ) = −u1 · e
−ix1ξ

(
Ĝ(ξ) + Û1(ξ)/∆

)

+(1/∆)
M∑

j=1

uj · e
−ixjξÛ(ξ), (2.26)

where Ĝ is as in (2.15), and

Û1(ξ) = (iξ)−2
(
eiξ∆ − 1

)
.

For an integer s ≥ 2, define

Vs(x) =
1

2π

∫

Im ξ=ω

eixξ−∆̄ψ(ξ)

(iξ)s
dξ. (2.27)

(when the piece-wise linear interpolation is used, only V2 will be needed;

Vs, s > 2, appear if an interpolation procedure of a higher order is used).
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Using (2.27) and (2.26), we obtain

Ex [u(X∆̄)]

= (2π)−1

∫

Im ξ=ω

eixξ−∆̄ψ(ξ)û(ξ)dξ

= −u1 ·

(
V1(x− x1) +

V2(x− x0)− V2(x− x1)

∆

)

+
M∑

j=1

uj ·
V2(x− xj−1)− 2V2(x− xj) + V2(x− xj+1)

∆
, (2.28)

where x0 = x1 −∆ and xM+1 = x1 +∆.

Functions Vs can be calculated similarly to V1:

Vs(x) ≈
ζ

π
Re

[
Mc∑

j=1

eixξj−∆̄ψ(ξj)

(iξj)s
(1− δj1/2)

]
, (2.29)

where δjk is Kronecker’s delta, ξj = iω + ζ(j − 1), j = 1, 2, . . . ,Mc, are

uniformly spaced points on the line of integration with a moderately large

number of points Mc. For the analysis of the impact of the errors of the

calculation of V2 on the errors of the numerical realization of (2.28), and

recommendations for the choice of ω and mesh, see Chapter 4.

The following remark is similar to the one in Remarks 2.4.

Remark 2.6. The integrand in (2.27) has a pole of order s at zero,

and is analytic in the strips Im ξ ∈ (λ−, 0) and Im ξ ∈ (0, λ+). It follows

from Theorem 4.1 that the wider the strip of analyticity is, the smaller

the discretization error can be made by an appropriate choice of the line

of integration inside the strip. Therefore, if the two strips above are of

sizably different widths, it is advantageous to choose the widest strip. We

can move from one strip to another using the residue theorem.
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If we push the line of integration in (2.27) down and cross the pole,

we obtain

Vs(x) = −
i1−s

(s− 1)!

ds−1

dξs−1
eix

′ξ−∆̄ψ0(ξ)

∣∣∣∣
ξ=0

+
1

2π

∫

Im ξ=ω

eixξ−∆̄ψ(ξ)

(iξ)s
dξ, (2.30)

for any ω ∈ (λ−, 0).

4.3. Efficient realizations of (2.28). At each step of backward in-

duction, we use (2.28) to calculate values of

Ey[fn(X∆̄)] ≈ Ey[u(X∆̄)]

at points y = yk := xk − ln(1− exk)+, k = 1, 2, . . . ,M , as follows:

1. extend the grid (xj)
M
j=1 to (xj)

M1
j=1, where M1 ≥ M is the minimal

integer such that xM1 ≥ xM − ln(1− exM )+;

2. calculate V1(ℓ∆) for ℓ = 0, 1, . . . ,M1 − 1, and V2(ℓ∆) for −M1 ≤

ℓ ≤M1 using flat iFT and (refined) iFFT or parabolic iFT;

3. calculate Exk [u(X∆̄)], k = 1, 2, . . . ,M1, using (2.28) and fast con-

volution;

4. calculate Eyj [u(X∆̄)], j = 1, 2, . . . ,M, using an appropriate inter-

polation procedure.

The interpolation error at Step 4 admits a bound similar to the bound for

the error of interpolation of fn by u on (x1, xM) (see Chapter 3 Section 3),

therefore, if we use the same interpolation procedure in both cases, we can

take the second error into account by multiplying the bound for the first

interpolation error by 2.



CHAPTER 3

Calculation and errors in the state space

1. Partial truncation error

Lemma 3.1. We have

‖Wn‖L∞ ≤ 1, n = 2, 3, . . . (3.1)

Proof. Since 0 < (1− ex1)+ ≤ 1 for all x1, we have

0 < V1(x) = Ex[(1− eX∆̄)+] < 1 for all x.

Similarly, for n ≥ 2, applying

Vn(x) = Ex
[
(1− eX∆̄ − · · · − eXn∆̄)+

]

and using the inequality

0 < (1− ex1 − · · · − exn)+ ≤ (1− ex1)+ ≤ 1,

we obtain

0 < Vn(x) < V1(x) < 1.

Therefore,

−1 < −V1(x) < Vn(x)− V1(x) < 0.

Using the definition: Wn = Vn − V1, we obtain (3.1). �

Lemma 3.2. Let X be a Lévy process, whose characteristic exponent

is analytic in a strip Im ξ ∈ (λ−, λ+) around the real axis, and fn be as in

22
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(2.9). Then, for n = 2, 3, . . . , N , and any ω ∈ [0, λ+), we have

|fn(x)| ≤ e−∆̄ψ(iω)(−x)1+ω(1 + o(1)) as x ↑ 0. (3.2)

Proof. Wn are expectations of functions that are bounded by 1 and

vanish above 0. Hence, for any ω ∈ [0, λ+),

|Wn(x)| ≤ Ex[ (−∞,0)(X∆̄)] ≤ Ex[e−ωX∆̄ ] = e−ωx−∆̄ψ(iω).

Let y = x − ln(1 − ex), where x < 0. As x ↑ 0, y → +∞, therefore, for

x ∈ (−∞, 0):

|fn(x)| = |(1− ex)+Wn(x− ln(1− ex)+)| ≤ e−∆̄ψ(iω)−ωx(1− ex)1+ω.

It remains to apply the Taylor formula to (1− ex) around x = 0. �

To calculate Wn+1 using (2.7), we need values of Wn and W2. When

we use an interpolation procedure to approximate fn(x) in (2.8)–(2.9),

we need values of the latter function on (−∞, 0). We truncate fn(x) at

x = xM < 0, where xM is found from the condition |fn(x)| ≤ ǫ, for all

x ∈ (xM , 0), and ǫ > 0 is the error tolerance. Let ǫ1 be the truncation

error at each step, and set ǫ = ǫ1/2. Using (3.2), we find an approximate

recommendation

xM = −
(
ǫ · e∆̄·ψ(iω+)

)1/(1+ω+)

, (3.3)

where ω+ ∈ (0, λ+). If λ+ is not very large, and ψ(iλ+) < ∞ as it is the

case with KoBoL and NIG, then we can use (3.3) with ω+ = λ+. If λ+

is not large and X is VG, or if λ+ is very large, we can take ω+ so that

∆̄ψ(iω+) = 0.1 ln ǫ, and set

xM = −ǫ1.1/(1+ω+). (3.4)
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On the strength of Lemma 2.5, we choose the lowest point x1 ≤ lnS0 −

ln((N + 1)K − S0) of the grid so that, for all x ∈ [x1, xM1 ],

C · Ex
[
e−ω−X∆̄−∆̄ψ(iω−)

(−∞,x1)(X∆̄)
]
≤ ǫ,

where C is the constant in the O-terms in (2.22) and (2.23). Clearly, we

can find x1 from

x1 = (ln(ǫ/C) + ∆̄ψ(iω−))/(−ω−).

The constant C is unknown. If ǫ is very small, then ln(ǫ/C) ≈ ln ǫ, and

we can use an approximate recommendation

x1 = (1.1 ln ǫ+ ∆̄ψ(iω−))/(−ω−). (3.5)

If X is KoBoL or NIG and λ− is not very large, then we may use (3.5)

with ω− = λ−/2. Otherwise, we can take ω− so that ∆̄ψ(iω−) = 0.1 ln ǫ.

Since

|Ex[u(X∆̄)]| ≤ ‖u‖L∞ ,

the total truncation error is bounded by the sum of truncation errors at

each step of backward induction. If ǫtr is the error tolerance for the total

truncation error, and N is the number of steps, we choose ǫ1 = ǫtr/(N−1).

When we derive estimates for the other types of errors at the current

step, we may assume that there is no truncation at all. Similarly, we may

assume that the calculation of the expectation that serves as an input at

the next induction step contains no truncation error. The same argument

will be used below to account for the impact of the other sources of errors.

In the nutshell, each error estimate can be derived as if there have been

no errors before.
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2. Interpolation: preliminary error estimates

Denote by p∆̄ the transition density of X. In Appendix B, we prove

Lemma 3.3. a) Let X satisfy (2.10) and (2.11).

Then, ∀ s ∈ Z+, the following approximate bound holds

‖p
(s)

∆̄
‖L1 ≤

2Γ(s/ν)

(d0+)
s/νπνD(s)

∆̄−s/ν , (3.6)

where

D(s) = sup
φ∈(0,min{π/2,π/(2ν)}

(cos(φν))s/ν cos(φ− π/2).

b) Let X be a VG, and let s ∈ Z+, s < 2c∆̄, where c > 0 is the

constant in (2.13).

Then the following approximate bound holds

‖p
(s)

∆̄
‖L1 ≤

2

π cos(φ− π/2)(2c∆̄− s)
. (3.7)

Lemma 3.3 gives a simple approximate upper bound for ‖p
(s)

∆̄
‖L1 in

the cases of KoBoL and VG models. For NIG, one can derive an estimate

similar to the one for KoBoL.

If (2.10) holds with ν > 0, the option price is of class C∞; however,

for small ν and/or ∆̄ the derivatives can be too large, and therefore, a

higher order interpolation will have a larger interpolation error. In the

VG model, the option price is rather irregular unless ∆̄ is fairly large. In

the result, the justification of even the piece-wise linear interpolation used

in the backward induction procedure is possible only for sufficiently large

∆̄, and a higher order interpolation is, essentially, impossible in the sense

that it will lead to large discretization errors.

Let fn be as in (2.8)–(2.9). In Appendix B, we prove
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Lemma 3.4. For any integer n ≥ 1 and s ≥ 2 such that ‖p
(s−1)

∆̄
‖L1 <

∞,

∣∣f (s)
n (x)

∣∣ ≤ 1 + (2(n+ δn1)− 3)

(
s+

s∑

j=2

(
s

j

)
‖p

(j−1)

∆̄
‖L1

)
(3.8)

In the case of the piece-wise linear interpolation, we need the simplest

case of bound (3.8): for any n ≥ 1,

∣∣f (2)
n (x)

∣∣ ≤ 1 + (2(n+ δn1)− 3)(‖p′∆̄‖L1 + 2) (3.9)

3. Interpolation error

A grid ~x on [x1, xM ] is chosen to interpolate functions fn; the integral

over (−∞, x1] is calculated replacing fn(x) with cne
x, where cn is given

by (2.24) (this is the leading term of asymptotics in (2.22) (resp., (2.23))

if n = 1 (resp., if n ≥ 2)). We use a uniformly spaced grid

xj = xl + (j − 1)∆, j = 1, 2, . . . ,M,

where ∆ = (xM − x1)/(M − 1). Assuming that a polynomial or spline

interpolation procedure fn;app of order s is chosen, with the error estimate

of the form

‖fn − fn;app‖L∞ ≤ Cs‖f
(s+1)
n ‖L∞∆s+1, (3.10)

where Cs is a universal constant1, we need to derive an estimate for the

norm of the derivative on the RHS. Lemma 3.4 provides simple approxi-

mate upper bounds (3.8) for ‖f
(s+1)
n ‖L∞ , hence, for the discretization er-

ror. For instance, in the case of the piece-wise linear interpolation, using

the error estimate (3.10) and the bounds (3.9), we find that the total sum

1Recall that in the case of the piece-wise linear interpolation, C2 = 1/8, in the cases
of cubic interpolation and cubic splines, C4 = 1/24, and, in the case of cubic Hermite
splines, C4 = 1/384
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of interpolation errors at all steps of the backward induction procedure,

errint, admits an approximate upper bound via

errint ≤
1

8
∆2

(
(3 + ‖p′∆̄‖L1) ·N +

N∑

n=2

(1 + (2n− 3)(‖p′∆̄‖L1 + 2))

)
.

(3.11)

By simplifying the RHS, we have

errint ≤
1

8
∆2
(
(2N2 + 1) + (N2 −N + 1)‖p′∆̄‖L1

)
.

For a process of order ν > 0, applying (3.6), we obtain

errint ≤
1

8
∆2

(
(2N2 + 1) + (N2 −N + 1)

2Γ(1/ν)

(d0+)
1/νπνD(1)

∆̄−1/ν

)
,

where

D(1) = sup
φ∈(0,min{π/2,π/(2ν)}

(cos(φν))1/ν cos(φ− π/2).

Similarly, one can obtain an error bound for the case of VG model.

Let ǫint be the error tolerance allocated for the total interpolation er-

ror. Lemmas 3.4 and 3.3 taken together allow us to choose ∆ as a function

of ǫint, ∆̄, parameters of the process, and s, the order of the interpolation

procedure. We choose s with the maximal ∆ = ∆s; if several ∆s are

rather close, we choose the interpolation procedure with the smallest s.

If one uses an interpolation procedure to obtain values of V1 and Wn

at points

x = yk := xk − ln(1− exk)+, k = 1, 2, . . . ,M

(see Step 4 in Chapter 2 Section 4.3), one needs to take into account the

errors of this interpolation. Suppose that a polynomial or spline inter-

polation procedure V1;app and Wn;app of order s is chosen, with the error
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estimates similar to (3.10)

‖V1 − V1;app‖L∞ ≤ Cs‖V
(s+1)
1 ‖L∞∆s+1 (3.12)

‖Wn −Wn;app‖L∞ ≤ Cs‖W
(s+1)
n ‖L∞∆s+1. (3.13)

We will prove in Lemma B.3, that the constants in the RHSs of (3.12)

and (3.13) are smaller than the constant in the bound in (3.10), hence,

it suffices to choose the interpolation scheme and ∆ as above, for ǫint/2

instead of ǫint.



CHAPTER 4

Calculation and errors in the dual space

In this chapter, we consider the case of the piece-wise linear interpola-

tion, and analyze the impact of errors of calculation of values of V1 and V2

on the error of Wn calculated using (2.28). (The interpolation procedures

of higher order can be analyzed similarly — see Appendix C.) We need

to satisfy a rather large error tolerance for two sequences (of values of V1

and V2/∆) in L∞-norm when a very small factor u1 is present and a fairly

small error tolerance in L1-norm of the sequence of values of V2/∆. In

both cases, it is unnecessary to calculate the values with high accuracy

near x′ = 0, where it is especially difficult to satisfy a small error tolerance

(see S. Boyarchenko and Levendorskĭi [18]).

1. General estimates

Let ǫc > 0 be the desired error tolerance for the error induced by

calculation of V1 and V2 at each step. Denote by ǫ(V, y) the absolute

errors of the calculation of function V = V1, Vs using flat iFT or parabolic

iFT. Then the absolute error of the calculation of Ex[u(X∆̄)] using (2.28)

is bounded by

|u1| · max
0≤ℓ≤M1−1

ǫ(V1, ℓ∆)

+|u1| · (2/∆) max
0≤ℓ≤M1

ǫ(V2, ℓ∆)

+(4/∆) · max
1≤k≤M

∑

ℓ

|uk| · ǫ(V2, (k − ℓ)∆). (4.1)

29
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Since |u1| is small, we can make the first two term in (4.1) very small using

a dual grid of a fairly large mesh ζ and rather small number of points Mc.

For small ∆, the third term admits a fairly accurate bound via the L1-

norm of ǫ(V2, ·) times the L∞-norm of u. The latter being bounded by 1,

it suffices to satisfy the bounds

max
0≤ℓ≤M1−1

ǫ(V1, ℓ∆) ≤ 0.05 · ǫc/|u1| (4.2)

max
0≤ℓ≤M1

ǫ(V2, ℓ∆) ≤ 0.05 ·∆ · ǫc/(2|u1|) (4.3)

‖ǫ(V2, ·)‖L1 < 0.9 ·∆ · ǫc/4. (4.4)

Note that if ∆̄ and ν are not very small, and (4.4) is satisfied, then,

typically, (4.2) and (4.3) are satisfied as well.

The error ǫ(V, ·), V = V1,Vs consists of the discretization and trun-

cation errors, which are denoted by ǫd(V, ·) and ǫtr(V, ·), respectively. In

the remaining part of the chapter, we follow the study of Boyarchenko

and Levendorskĭi [18]. First, we derive error bounds ǫd(V, ·), ǫtr(V, ·),

and ‖ǫ(V2, ·)‖L1 of the flat iFT method. These bounds are used to derive

fairly accurate prescriptions for numerical parameters. Next, we apply

parabolic iFT method to the calculation of V1 and Vs, and derive their

error bounds and choice of numerical parameters.

We try to keep this chapter of the thesis as self-contained as possi-

ble. All the necessary definitions, facts and key ideas are summarized in

Section 2.1 and 3.3. For more detailed exposition, see [18].

2. Flat iFT: error analysis

2.1. Preliminary.

2.1.1. Discretization error. As Feng and Linetsky [34], Boyarchenko

and Levendorskĭi [18], we start with Stenger’s therem [60, Theorem 3.2.1],
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which we reformulate in accordance with our system of notation. Let

D(µ−, µ+) := {ξ | Im ξ ∈ (µ−, µ+)}

be the strip in the complex plane. Let H1(D(µ−, µ+)) denote the Hardy

space of functions g satisfying

(1) for ξ ∈ D(µ−, µ+), g(ξ) is analytic;

(2) ∫ µ+

µ−

|g(η + iω)|dω → 0 as η → ±∞;

(3) the Hardy norm is finite:

‖g‖D(µ−,µ+) := lim
ω↑µ+

∫

R

|g(η + iω)|dη + lim
ω↓µ−

∫

R

|g(η + iω)|dη <∞. (4.5)

Take ω ∈ (µ−, µ+). We are interested in the error of the replacement of

the integral

V =

∫

Im ξ=ω

g(ξ)dξ

with the infinite sum:

ζ ·
∑

l∈Z

g(ξl),

where ξl = lζ + iω, l ∈ Z, ζ > 0. Denote by ǫd(V ;ω, ζ) the error

ǫd(V ;ω, ζ) =

∫

Im ξ=ω

g(ξ)dξ − ζ ·
∑

l∈Z

g(ξl).

For ω ∈ (µ−, µ+), set

d(ω) = min{ω − µ−, µ+ − ω}.

The discretization error ǫd admits an upper bound via
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Theorem 4.1. [60, Theorem 3.2.1]

|ǫd(V ;ω, ζ)| ≤
e−2πd(ω)/ζ

1− e−2πd(ω)/ζ
‖g‖D(µ−,µ+).

To derive fairly accurate prescriptions for an almost optimal choice of

ζ for a given error tolerance, one needs to estimate the Hardy norm and

apply the following corollary.

Corollary 4.2. [18, Corollary 2.2] Let the error tolerance ǫ > 0 for

the discretization error be small so that ǫg := ǫ/‖g‖D(µ−,µ+) < 1. If

ζ ≤ 2πd(ω)/ ln(1 + 1/ǫg), (4.6)

then ǫd(V ;ω, ζ) ≤ ǫ.

We first consider the case of V1. Apply Theorem 4.1 with g(ξ) the

integrand in (2.16) multiplied by (2π)−1:

g(ξ) = −(2π)−1 e
ixξ−∆̄ψ(ξ)

ξ(ξ + i)
.

Function g is analytic in the strips

• [µ−, µ+] ⊂ (0, λ+),

• [µ−, µ+] ⊂ (−1, 0),

• [µ−, µ+] ⊂ (λ−,−1).

Using the notation of ǫd, we can write the error of the replacement of the

exact option price (2.16) with the infinite sum:

ǫd(V1;ω, ζ) =

∫

Im ξ=ω

g(ξ)dξ − ζ ·
∑

l∈Z

g(ξl),

where ξl = lζ + iω, l ∈ Z, ζ > 0; and, for ω ∈ (µ−, µ+).
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Proposition 4.3. [18, Proposition 2.3] For any [µ−, µ+] ⊂ (0, λ+),

or [µ−, µ+] ⊂ (−1, 0), or [µ−, µ+] ⊂ (−λ−,−1), the error ǫd admits an

upper bound via

|ǫd(V1;ω, ζ)| ≤
e−2πd(ω)/ζ

1− e−2πd(ω)/ζ
‖g‖D(µ−,µ+), (4.7)

where ω ∈ (µ−, µ+), d(ω) = min{ω − µ−, µ+ − ω}. Moreover, the Hardy

norm ‖g‖D(µ−,µ+) given by (4.5) admits an estimate via

a) For any [µ−, µ+] ⊂ (0, λ+) or [µ−, µ+] ⊂ (−1, 0), ‖g‖D(µ−,µ+) admits

an estimate via

‖g‖D(µ−,µ+) ≤
∑

γ={µ−,µ+}

e−γx−∆̄ψ(iγ)

2|γ|
.

b) For any [µ−, µ+] ⊂ (λ−,−1), ‖g‖D(µ−,µ+) admits an estimate via

‖g‖D(µ−,µ+) ≤
∑

γ={µ−,µ+}

e−γx−∆̄ψ(iγ)

2| − γ − 1|
.

(Note that the result is slightly different from the one in [18] due to

the typo in the latter result.)

Below, we consider the error control of the numerical scheme for Vs

with s ≥ 2. Denote by gs(ξ) the integrand in (2.27) multiplied by (2π)−1:

gs(ξ) =
1

2π

eiξx−∆̄ψ(ξ)

(iξ)s
.

Function gs is analytic in two strips Im ξ ∈ (0, λ+) and Im ξ ∈ (λ−, 0)

(note the slight difference with the case of the function g above). We take

0 < µ− < ω < µ+ < λ+; if we push the line of integration below the real

line, we will have to consider λ− < µ− < ω < µ+ < 0.
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Setting ξl = lζ + iω, l ∈ Z, ζ > 0, and replacing the integral in (2.27)

with infinite sum, we obtain

Vs(x) ≈ ζ ·
∑

l∈Z

gs(ξl). (4.8)

The discretization error

ǫd(Vs;ω, ζ) =

∫

Im ξ=ω

gs(ξ)dξ − ζ ·
∑

l∈Z

gs(ξl)

admits the following bound.

Proposition 4.4. For any [µ−, µ+] ⊂ (0, λ+) or [µ−, µ+] ⊂ (λ−, 0),

the error of the replacement of the exact integral (2.27) with the infinite

sum (4.8) admits an upper bound via

|ǫd(Vs;ω, ζ)| ≤
e−2πd(ω)/ζ

1− e−2πd(ω)/ζ
‖gs‖D(µ−,µ+), (4.9)

where ω ∈ (µ−, µ+), d(ω) = min{ω − µ−, µ+ − ω}. Moreover, the Hardy

norm ‖gs‖D(µ−,µ+) given by (4.5) admits an estimate via

‖gs‖D(µ−,µ+) ≤
∑

γ={µ−,µ+}

e−γx−∆̄ψ(iγ)

π|γ|s−1
·Ds, (4.10)

where

Ds =





π
2

if s = 2

1 if s = 3

π
2
× 1

2
× 3

4
× · · · × s−3

s−2
if s = 4, 6, . . .

2
3
× 4

5
× · · · × s−3

s−2
if s = 5, 7, . . .

(4.11)

Proof. (4.9) follows from Theorem 4.1. To estimate ‖gs‖D(µ−,µ+), we

consider

I =

∫

R

|gs(η + iω)|dη =
e−ωx

2π

∫

R

|e−∆̄ψ(η+iω)| · |i(η + iω)|−sdη.



2. FLAT IFT: ERROR ANALYSIS 35

Since

∣∣∣e−∆̄ψ(η+iω)
∣∣∣ =

∣∣E[ei(η+iω)X∆̄ ]
∣∣ ≤ E

[∣∣ei(η+iω)X∆̄
∣∣] = E[e−ωX∆̄ ]

= e−∆̄ψ(iω),

and |η + iω|−s = (η2 + ω2)−s/2,

I ≤ π−1e−ωx−∆̄ψ(iω)

∫ ∞

0

(η2 + ω2)−s/2dη.

The change of variables η 7→ ω · tan θ transforms the integral into

|ω|1−s
∫ π/2

0

(cos θ)s−2dθ,

and the statement of the proposition follows. �

2.1.2. Truncation error. The integrand in the Fourier inversion for-

mula which defines V1 decays at infinity as the integrand in the formula

for V2, therefore, it suffices to consider the truncation error of the infi-

nite sum in the formula for Vs, s ≥ 2. Making the change of variable

ξ 7→ η + iω, we rewrite (2.27) as

Vs(x) =

∫

R

gs(η + iω)dη =
e−ωx

2π

∫

R

eiηx−∆̄ψ(η+iω)

(i(η + iω))s
dη. (4.12)

If ζ is small, the truncation error of the replacement of the infinite sum

(4.8) with the finite sum:

ζ ·
∑

l∈Z

gs(ξl)− ζ ·

Mc∑

−Mc

gs(ξl)

approximately equals to the truncation error of the replacement of the

improper integral in (4.12) with the definite integral:

∫

R

gs(η + iω)dη −

∫ Λ

−Λ

gs(η + iω)dη,
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where Λ ≈Mcζ. Denote by ǫtr the error of this replacement.

Proposition 4.5. In the case of KoBoL of order ν ∈ (0, 2), ν 6= 1,

|ǫtr(x; Λ)| ≤
e−ω(x+µ∆̄)

πν
· C2 · (∆̄C∞)(s−1)/ν

∫ ∞

A

e−tt(1−s)/ν−1dt, (4.13)

where A = A(Λ) := ∆̄C∞Λν,

C2 = exp(−∆̄cΓ(−ν)(λ+
ν + (−λ−)

ν)),

C∞ = C∞(Λ) := −cΓ(−ν) Re
{
(−i)ν + iν + ν(λ+i

ν−1 − λ−(−i)
ν−1)/Λ

}
.

Proof. It is sufficient to show that

|ǫtr(x; Λ)| ≤
e−ω(x+µ∆̄)

π

∫ ∞

Λ

|e−∆̄ψ0(η+iω)|η−sdη,

where ψ0(ξ) := ψ(ξ) + iµξ. As Λ → +∞,

|e−∆̄ψ0(η+iω)| ≤ C2(1 + o(1))e−∆̄C∞|η|ν .

Therefore, we have an approximate upper bound

|ǫtr(x; Λ)| ≤ π−1e−ω(x+µ∆̄)C2

∫ ∞

Λ

e−∆̄C∞ηνη−sdη.

Making the change of variable: ∆̄C∞η
ν 7→ t, we obtain the bound (4.13).

�

Note that the integral

∫ ∞

x

e−tta−1dt

is the upper incomplete gamma function (if a > 0) or an exponential

integral (if a = 0) or reducible to the upper incomplete gamma function

via integration by parts (if a < 0).
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2.2. Choice of ω, ζ,Mc. We consider the case when both |λ−| and

λ+ are not small. To calculate V1, we take ω ∈ (0, λ+) if x
′ = x+µ∆̄ ≥ 0;

otherwise, we push the line of integration down, and use (2.21) with ω ∈

(λ−,−1). Similarly, when calculating Vs, we take ω ∈ (0, λ+) if x′ ≥ 0;

otherwise, we use (2.30) with ω ∈ (λ−, 0).

Given a small desired error tolerance ǫ > 0 for the discretization

error, we choose ω and ζ using Corollary 4.2 and Proposition 4.4. If

‖gs‖D(µ−,µ+)/ǫ≫ 1, it suffices to choose

ζ = 2πd(ω)/(ln(‖gs‖D(µ−,µ+))− ln ǫ). (4.14)

We choose (µ−, µ+) and ω ∈ (µ−, µ+) to maximize the RHS in (4.14).

First, set ω = (µ+ − µ−)/2, then d(ω) = (µ+ − µ−)/2. Next, simplifying

the bound (4.10),

‖gs‖D(µ−,µ+) ≤ 2 · max
γ={µ−,µ+}

e−γx−∆̄ψ(iγ)

π|γ|s−1
·Ds,

where Ds is the constant as in (4.11), we find that

ζ = 2π · d(ω) ·

(
ln(2π−1Ds/ǫ) + min

γ=µ±

(
−γx− ∆̄ψ(iγ) + (1− s) ln |γ|

))−1

implies (4.14). Finally, for a small error tolerance, we can simplify the

choice following the prescription in [18]. Set ǫ1 = ǫπ/(2Ds).

(I) If x′ = x+ µ∆̄ ≥ 0, then

1. if −0.1 · ln ǫ1 ≥ −∆̄ψ0(iλ+ − 0) + (1 − s) lnλ+ or ν < 1, set

µ+ = λ+, otherwise, find µ+ as the unique positive solution

of equation −0.1 · ln ǫ1 = −∆̄ψ0(iµ+) + (1− s) lnµ+;

2. set ω+ = µ+/2, and ζ+ = −πµ+/(1.1 ln ǫ).

(II) If x′ < 0, then, for the calculation of V1(x) (resp., Vs(x)),
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1. if −0.1 · ln ǫ1 ≥ −∆̄ψ0(iλ−+0)+(1−s) ln(−λ−) or ν < 1, set

µ− = λ−, otherwise, find µ− as the unique positive solution

of equation −0.1 · ln ǫ = −∆̄ψ0(iµ−) + (1− s) ln(−µ−);

2. set ω− = (µ− − 1)/2 (resp., ω− = µ−/2), and ζ− = π(−µ− −

1)/(1.1 ln ǫ) (resp., ζ− = πµ−/(1.1 ln ǫ)).

For the choice of Mc for x′ ≥ 0 (resp., x′ < 0), one can first apply

(4.13) to find Λ, then use ζ above to choose the positive integer Mc such

that Mcζ ≥ Λ.

2.3. Error estimate of ‖ǫ(V2, ·)‖L1 and choices of ω, ζ,Mc. Con-

sider the case when flat iFT method is used to calculate V2(x
′) (x′ =

x+ µ∆̄). Denote by ǫd(V2, x
′) and ǫtr(V2, x

′) the discretization and trun-

cation errors of the calculation of V2(x
′). Since

‖ǫ(V2, ·)‖L1 = ‖ǫd(V2, ·)‖L1 + ‖ǫtr(V2, ·)‖L1 ,

it suffices to consider each term on the RHS above separately.

Let

Ld(γ, µ−, µ+) =
e−2πd(ω)/ζ

1− e−2πd(ω)/ζ
·
e−∆̄ψ(iγ)

π|γ|
·D2, (4.15)

where ω, d(ω) and D2 are as in Proposition 4.4, and Lt denote the RHS

in the upper bounds (4.13) when x = x′ − µ∆̄ = −µ∆̄.

Lemma 4.6.

∆ · ‖ǫd(V2, ·)‖L1 ≤
∑

γ={µ−−,µ
−
+}

|γ−|
−1Ld(γ−, µ

−
−, µ

−
+)

+
∑

γ={µ+−,µ
+
+}

|γ+|
−1Ld(γ+, µ

+
−, µ

+
+) (4.16)

∆ · ‖ǫtr(V2, ·)‖L1 ≤ |ω−|
−1Lt + |ω+|

−1Lt, (4.17)

where [µ−
−, µ

−
+] ⊂ (λ−, 0), [µ

+
−, µ

+
−] ⊂ (0, λ+), ω− ∈ (λ−, 0), ω+ ∈ (0, λ+).
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Proof. Since

‖ǫd(V2, ·)‖L1 = ‖ǫd(V2 (−∞,0), ·)‖L1 + ‖ǫd(V2 [0,∞), ·)‖L1

‖ǫtr(V2, ·)‖L1 = ‖ǫtr(V2 (−∞,0), ·)‖L1 + ‖ǫtr(V2 [0,∞), ·)‖L1 ,

it suffices to consider each term on the RHS above separately.

When calculating V2, assume that we take the line of integration ω+ ∈

[µ+
−, µ

+
−] ⊂ (0, λ+) if x

′ ≥ 0; otherwise, we use (2.30) with ω− ∈ [µ−
−, µ

−
+] ⊂

(λ−, 0).

We consider only the case x′ ≥ 0, the case x′ ≤ 0 are proved similarly.

By Proposition 4.4, the discretization error admits an bound via

|ǫd(V2 [0,∞), x
′)| ≤

∑

γ={µ+−,µ
+
+}

e−γ+x
′

· Ld(γ+, µ
+
−, µ

+
+),

where Ld(γ+, µ
+
−, µ

+
+) is as in (4.15). If ω+, µ

+
−, µ

+
+ are fixed, then,

|ǫd(V2 [0,∞), x
′)| has the largest upper bounds at x′ = 0. It follows that

∆ · ‖ǫd(V2 [0,∞), ·)‖L1 ≤
∑

γ={µ+−,µ
+
+}

∫ +∞

0

e−γ+x
′

Ld(γ+, µ
+
−, µ

+
+)dx

′

≤
∑

γ={µ+−,µ
+
+}

Ld(γ+, µ
+
−, µ

+
+) · |γ+|

−1.

To derive bound for ‖ǫtr(V2 [0,∞), ·)‖L1 , we use Proposition 4.5. The

truncation error admits an bound via

|ǫtr(V2 [0,∞), x
′)| ≤ e−ω+x′ · Lt,

where Lt is the upper bounds (4.13) when x = x′−µ∆̄ = −µ∆̄. Integrat-

ing e−ω+x′ w.r.t. x′, we obtain

∆ · ‖ǫd(V2 [0,∞), ·)‖L1 ≤ |ω+|
−1 · Lt.
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�

Using (4.16), together with (4.4), a trivial modification of the prescrip-

tion in Section 2.2 gives the choices of ω, ζ. Set ǫ1 = 0.9·∆2 ·ǫc/4·π/(2D2).

(I) If x′ = x+ µ∆̄ ≥ 0, then

1. if −0.1·ln ǫ1 ≥ −∆̄ψ0(iλ+−0)−s lnλ+ or ν < 1, set µ+ = λ+,

otherwise, find µ+ as the unique positive solution of equation

−0.1 · ln ǫ = −∆̄ψ0(iµ+)− s lnµ+;

2. set ω+ = µ+/2, and ζ+ = −πµ+/(1.1 ln ǫ).

(II) If x′ < 0, then

1. if −0.1 · ln ǫ1 ≥ −∆̄ψ0(iλ− + 0) − s ln(−λ−) or ν < 1, set

µ− = λ−, otherwise, find µ− as the unique positive solution

of equation −0.1 · ln ǫ = −∆̄ψ0(iµ−)− s ln(−µ−);

2. set ω− = µ−/2, and ζ− = πµ−/(1.1 ln ǫ).

For the choice of Mc for x
′ ≥ 0 (resp., x′ < 0), one first multiply the

RHS of (4.13) by |ω+|
−1 (resp., |ω−|

−1) and set to be ǫ1; next, find Λ;

then, use ζ above to choose the positive integer Mc such that Mcζ ≥ Λ.

3. Parabolic iFT: formulas and error analysis

In this section, we first consider the conformal change of variable in

(2.16) and (2.27). For the case of KoBoL model, we derive the asymptotics

of the integrand. These asymptotics can be used to

• justify the transformation,

• compare the rate of decay of the integrand at infinity with the

one in flat iFT method, and,

• derive bound for the truncation error.

3.1. General remarks. Parabolic iFT method allows us to obtain

an integral with a better rate of convergence. For example, for V1 in
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(2.16), as |η| → +∞ along the lines Im η ∈ (0, λ+), the integrand in the

parabolic iFT method decays as

|η|−1−α · eA·x
′|η|α+B·∆̄|η|αν

, A, B < 0,

while the integrand in the flat iFT method decays as

|ξ|−2 · ex
′|η|−∆̄|ξ|ν

for ξ in the same strip. (See Section 3.2.)

The faster convergence of the resulting integrand in the parabolic iFT

method amount to a spectacular improvement, especially for processes of

order ν < 1 (finite variation case) and close to maturity. One can decrease

the number of terms in the simplified trapezoid rule by 10–100 times.

3.2. Main formulas. We have to evaluate V1 in (2.16) and V2 in

(2.27). If ν or ∆̄ are very small, as it may be the case, and if the calcu-

lations must be very accurate (error tolerance of order 10−9 and smaller),

as it is necessary if the number of sampling dates is large, then accurate

calculations using (2.19) and (2.29) (flat iFT) become extremely difficult

because Mc of order of dozens of million may be needed. Both problems

can be solved if we make an appropriate conformal deformation of the con-

tour of integration in (2.16) (resp., (2.27)) with the following conformal

change of variable to greatly increase the rate of decay of the integrand

and decrease the number of terms in the simplified trapezoid rule.

First, we take α ∈ [1, α0), where α0 > 1 depends on x′ and the order

of the process, and, will be given while we derive the asymptotics of the

resulting integrand. The method is labeled parabolic iFT of order α. Next,

the process of the transformation depend on the following cases.
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Figure 1. Typical curves of χ+
α (η) = iλ+ − iλ+

1−α(λ+ +
iη)α, η ∈ iω + R (ω ∈ (0, λ+)).

3.2.1. Transformation of (2.16): case x′ = x + µ∆̄ ≥ 0. Let ω ∈

(0, λ+), η
′ ∈ R, and η = iω + η′. We make the change of variable

ξ = χ+
α (η) = iλ+ − iλ+

1−α(λ+ + iη)α, η ∈ iω + R;

in the result, we obtain

V1(x) = −(2π)−1

∫

Im η=ω

eix
′χ+

α (η)−∆̄ψ0(χ+
α (η))

χ+
α (η)(χ

+
α (η) + i)

α

(
λ+ + iη

λ+

)α−1

dη, (4.18)

where ψ0(ξ) = iµξ + ψ(ξ).

The conformal change of variable is equivalent to the conformal de-

formation of the contour of integration with the subsequent change of the

variables. Figure 3.2.1 illustrates that the typical curves of the contour

χ+
α with different values of α.

If α ∈ (1, 2), the image is the following obtuse angle

{iλ+ + z | z 6= 0, arg z 6∈ [π/2− π(1− α/2), π/2 + π(1− α/2)]}.



3. PARABOLIC IFT: FORMULAS AND ERROR ANALYSIS 43

For α = 2, the image is the complex plane with the cut i[λ+,+∞]. For

α ∈ [2, α0), the contour belongs to an appropriate Riemann surface. One

can use the explicit parametrization ξ = χ+
α (η) with η = iω+ η′ in (4.18),

if we define

(
λ+ + iχ+

α (η)
)ν

= eν ln(λ++iχ+
α (η))

(
−λ− − iχ+

α (η)
)ν

= eν ln(−λ−−iχ+
α (η)).

Then, for each α ∈ [1, α0), the integrand in (4.18) admits the analytic

continuation w.r.t. η into the strip Im η ∈ (0, λ+).

To ensure the integrand in (4.18) is of class L1 on the line Im η = ω,

we justify the transformation by deriving the asymptotic behavior of each

factor of the integrand in (4.18) as η′ := Re η → ±∞ along the line

Im η = ω:

(I) ∣∣∣∣∣
1

χ+
α (η) · (χ

+
α (η) + i)

α ·

(
λ+ + iη

λ+

)α−1
∣∣∣∣∣ ,

(II)
∣∣∣eix′χ

+
α (η)
∣∣∣ = eRe(ix′χ+

α (η)),

(III)
∣∣∣e−∆̄ψ0(χ+

α (η))
∣∣∣ = e−∆̄·Re(ψ0(χ+

α (η))).

(I). For s ≥ 2, and as η′ → ±∞, we have (χ+
α (η) + i) ∼ χ+

α (η), and

∣∣χ+
α (η)

∣∣−s ∼ λ+
−(1−α)sρ−αs (4.19)

∣∣αλ+1−α(λ+ + iη)α−1
∣∣ ∼ αλ+

1−αρα−1, (4.20)

where

ρ =
√
(λ+ − ω)2 + η′2. (4.21)
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Therefore, for α ≥ 1, the factor

∣∣∣∣∣
1

χ+
α (η) · (χ

+
α (η) + i)

α ·

(
λ+ + iη

λ+

)α−1
∣∣∣∣∣ ∼ αλ+

α−1ρ−α−1, (4.22)

that is, decays as ρ−α−1 at infinity. It remains to consider the exponent

factor in (4.18).

(II). For x′ ≥ 0, we have

Re
(
ix′χ+

α (η)
)

= Re
(
ix′(iλ+ − iλ+

1−α(λ+ + iη)α)
)

= −x′λ+ + x′λ+
1−αRe(λ+ − ω + iη′)α

= −x′λ+ + x′λ+
1−αRe

(
ραeiαφ

)

= −x′λ+ + x′λ+
1−αρα cos(αφ),

where ρ is as in (4.21), and

φ = arctan

(
η′

λ+ − ω

)
. (4.23)

Therefore, as η′ → ±∞,

Re
(
ix′χ+

α (η)
)
∼ −x′λ+ + x′λ+

1−αρα cos(±απ/2). (4.24)

If α ∈ (1, 3), cos(±απ/2) < 0, and Re (ix′χ+
α (η)) → −∞.

(III). For a KoBoL process of order ν ∈ (0, 2), ν 6= 1, by (2.12) (c =

c+ = c−), ψ
0(χ+

α (η)) can be written explicitly as

ψ0(χ+
α (η)) = cΓ(−ν)

[
λ+

ν + ψ0
+(η) + (−λ−)

ν + ψ0
−(η)

]
, (4.25)
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where

ψ0
+(η) = −(λ+ + i(iλ+ − iλ+

1−α(λ+ + iη)α))ν

= −λ+
(1−α)ν(λ+ + iη)αν

= −λ+
(1−α)ν · eαν ln(λ++iη)

ψ0
−(η) = −(−λ− − i(iλ+ − iλ+

1−α(λ+ + iη)α))ν

= −
(
−λ− + λ+ − λ+

1−α(λ+ + iη)α
)ν

= −
(
−λ− + λ+ − λ+

1−α · eα ln(λ++iη)
)ν
.

We have λ− < 0, 0 < ω < λ+, therefore, it can be shown that for any

α ∈ [1, 4), curve

R ∋ η′ 7→ −λ− + λ+ − λ+
1−α · eα ln(λ++iη) ∈ C

does not cross (−∞, 0], and (4.25) is well-defined. We can write the terms

Re
(
−∆̄cΓ(−ν)ψ0

±(η)
)
in the form

Re
(
−∆̄cΓ(−ν)ψ0

+(η)
)

= ∆̄cΓ(−ν)λ+
(1−α)ν Re

(
ρανeiανφ

)

= ∆̄cΓ(−ν)λ+
(1−α)νραν cos(ανφ)

and

Re
(
−∆̄cΓ(−ν)ψ0

−(η)
)

= ∆̄cΓ(−ν)λ+
(1−α)νραν Re

(
a− eiαφ

)ν

= ∆̄cΓ(−ν)λ+
(1−α)νραν Re

(
a+ ei(αφ+π)

)ν
,

where ρ and φ are as in (4.21) and (4.23), respectively, and

a =
−λ− + λ+

λ+
1−αρα

.
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As η′ → ±∞, we have ρ→ ∞, φ→ ±π/2, a→ 0, therefore,

−∆̄Re
(
ψ0(χ+

α (η))
)

∼ −∆̄cΓ(−ν)[λ+
ν + (−λ−)

ν ]

+∆̄cΓ(−ν)λ+
(1−α)νραν

×(cos(ανπ/2) + cos(ανπ/2 + νπ)),

applying the trigonometric identity

cos θ + cosϑ = 2 cos

(
θ + ϑ

2

)
cos

(
θ − ϑ

2

)
,

and obtain

−∆̄Re
(
ψ0(χ+

α (η))
)

∼ −∆̄cΓ(−ν)[λ+
ν + (−λ−)

ν ]

+∆̄cΓ(−ν)λ+
(1−α)νραν2 cos(νπ/2) cos((1− α)νπ/2). (4.26)

For ν ∈ (0, 2), ν 6= 1, product Γ(−ν) cos(νπ/2) < 0, should we wish that

−∆̄Re
(
ψ0(χ+

α (η))
)
→ −∞, as η′ → ±∞,

we must have cos((1− α)νπ/2) > 0, equivalently,

(1− α)νπ/2 > −π/2, for α ≥ 1.

Thus, 1 < α < min{4, 1 + 1/ν}.

If ν > 1, the latter condition implies that α < 2, hence, the real part

of both terms in the exponent in the pricing formula (4.18) tend to −∞

as η′ → ±∞. If ν ∈ [0+, 1), it is possible that 1 + 1/ν < α < 3; the the

real part of the first term tends to −∞, as ρα (see (4.24)), and the second

term tends to +∞ as ραν (see (4.26)). The real part of the sum tends to
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−∞ but the behavior can be rather irregular. Hence, in these cases, we

would use α < min{3, 1 + 1/ν}, as it was recommended in [18].

We conclude from the asymptotics (4.22), (4.24) and (4.26) that the

integrand in (4.18) decays as

ρ−1−α · eA·|η|
α+B·∆̄ραν

, A, B < 0,

or equivalently,

|η|−1−α · eA·x
′|η|α+B·∆̄|η|αν

, A, B < 0,

as |η| → +∞ along the lines Im η ∈ (0, λ+). The rate of decay is generally

faster than the one in the flat iFT method

|ξ|−2 · ex
′|η|−∆̄|ξ|ν

with ξ in the same strip Im ξ ∈ (0, λ+). The asymptotics can be easily

derived from the asymptotic of ψ0 (2.10) and the integrand of (2.16):

−
1

2π
·
eixξ−∆̄ψ(ξ)

ξ(ξ + i)
.

3.2.2. Transformation of (2.16): case x′ = x+ µ∆̄ < 0. First, we use

put-call parity, then, take ω ∈ (−λ−,−1) and make the change of the

variable

ξ = χ−
α (η) = iλ− + i(−λ− − 1)1−α(−λ− − iη)α, η ∈ iω + R;

in the result, we obtain

V1(x) = 1− ex−∆̄ψ(−i) + V c
1 (x),
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Figure 2. Typical curves of χ−
α (η) = iλ− + i(−λ− −

1)1−α(−λ− − iη)α, η ∈ iω + R (ω ∈ (λ−,−1)).

where

V c
1 (x) = −(2π)−1

∫

Im η=ω

eix
′χ−

α (η)−∆̄ψ0(χ−
α (η))

χ−
α (η)(χ

−
α (η) + i)

α

(
−λ− − iη

−λ− − 1

)α−1

dη.

(4.27)

The conformal change of variable is equivalent to the conformal de-

formation of the contour of integration with the subsequent change of the

variables. Figure 3.2.2 illustrates that the typical curves of the contour

χ+
α with different values of α.

If α ∈ (1, 2), the image is the following obtuse angle

{iλ− + z | z 6= 0, arg z 6∈ [−π/2− π(1− α/2),−π/2 + π(1− α/2)]}.

For α = 2, the image is the complex plane with the cut i(−∞, λ−]. For

α ∈ [2, α0) the contour belongs to an appropriate Riemann surface. One

can use the explicit parametrization ξ = χ−
α (η) with η = iω+ η′ in (4.27),
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if we define

(
λ+ + iχ+

α (η)
)ν

= eν ln(λ++iχ+
α (η))

(
−λ− − iχ−

α (η)
)ν

= eν ln(−λ−−iχ−
α (η))

Then, for each α ∈ [1, α0), the integrand in (4.27) admits the analytic

continuation w.r.t. η into the strip Im η ∈ (λ−,−1).

To ensure the integrand in (4.27) is of class L1 on the line Im η = ω,

the justification of the transformation can be made similarly to the case

x′ ≥ 0, we list the key formulas, and leave the detailed derivation to the

reader.

Let

ρ =
√

(−λ− + ω)2 + η′2, φ = arctan

(
−η′

−λ− + ω

)
.

For α ≥ 1, as η′ → ±∞, the factor of the integrand in (4.27)

∣∣∣∣∣
1

χ−
α (η) · (χ

−
α (η) + i)

α ·

(
−λ− − iη

−λ− − 1

)α−1
∣∣∣∣∣ ∼ α(−λ−−1)α−1ρ−α−1, (4.28)

that is, decays as ρ−α−1 at infinity. For x′ ≤ 0,

Re
(
ix′χ−

α (η)
)
∼ −x′λ− − x′(−λ− − 1)1−αρα cos(±απ/2) (4.29)

as η′ → ±∞. If α ∈ (1, 3), then, cos(±απ/2) < 0, and Re (ix′χ−
α (η)) →

−∞. For a KoBoL process of order ν ∈ (0, 2), ν 6= 1,

− ∆̄Re
(
ψ0(χ−

α (η))
)

∼ −∆̄cΓ(−ν)[λ+
ν + (−λ−)

ν ]

+∆̄cΓ(−ν)(−λ− − 1)(1−α)νραν

×2 cos(νπ/2) cos((1− α)νπ/2). (4.30)
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as η′ → ±∞. We have Γ(−ν) cos(νπ/2) < 0, therefore, if 1 < α <

min{4, 1 + 1/ν}, cos((1− α)νπ/2) > 0, and

−∆̄Re
(
ψ0(χ−

α (η))
)
→ −∞, as η′ → ±∞.

Finally, we would use α < min{3, 1 + 1/ν} if ν ∈ [0+, 1), as it was

recommended in [18].

3.2.3. Value of α0. We conclude that the integrand in (4.18) (resp.,

(4.27)) is of class L1 on the line Im η = ω, uniformly in α ∈ [1, α0), where

α0 > 1 depends on x′ and the order of the process:

• if x′ > 0 (resp., x′ < 0) and ν ∈ [0+, 1), then α0 = min{3, 1 +

1/ν};

• if x′ = 0 and ν ∈ [0+, 1), then α0 = min{4, 1 + 1/ν};

• if x′ ≥ 0 (resp., x′ ≤ 0) and ν ∈ [1, 2], then α0 = 1 + 1/ν.

Therefore, (4.18) and (4.27) can be applied for any α ∈ [1, α0). The error

estimates and recommendations discussed later are valid for these α.

3.2.4. Numerical realization. If x′ ≥ 0, by using (4.18), and taking

into account that, for real η′ and ω ∈ (0, λ+),

• i(iω + η′) = i(iω − η′),

• iχ+
α (iω + η′) = iχ+

α (iω − η′)

• ψ0(χ+
α (iω + η′)) = ψ0(χ+

α (iω − η′)),

and, similarly to (2.18), we obtain

V1(x) = −
1

π
Re

[∫ iω+∞

iω

eix
′χ+

α (η)−∆̄ψ0(χ+
α (η))

χ+
α (η)(χ

+
α (η) + i)

α

(
λ+ + iη

λ+

)α−1

dη

]
. (4.31)

We calculate the integrals in (4.31) using the simplified trapezoid rule:

V1(x) ≈ −
ζ

π
Re

Mc∑

j=1

eix
′χ+

α (ηj)−∆̄ψ0(χ+
α (ηj))

χ+
α (ηj)(χ

+
α (ηj) + i)

α

(
λ+ + iηj
λ+

)α−1

(1− δj1/2),

(4.32)
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where δjk is Kronecker’s delta, ηj = iω + (j − 1)ζ, j = 1, 2, . . . ,Mc, and

ω is chosen appropriately. Similarly, if x′ < 0, by using Vcs in (4.27) and

taking into account that, for real η′ and ω ∈ (λ−,−1),

• i(iω + η′) = i(iω − η′),

• iχ−
α (iω + η′) = iχ−

α (iω − η′)

• ψ0(χ−
α (iω + η′)) = ψ0(χ−

α (iω − η′)),

we obtain

V c
1 (x) = −

1

π
Re

[∫ iω+∞

iω

eix
′χ−

α (η)−∆̄ψ0(χ−
α (η))

χ−
α (η)(χ

−
α (η) + i)

α

(
−λ− − iη

−λ− − 1

)α−1

dη

]
.

(4.33)

The simplified trapezoid rule reads

V c
1 (x) ≈ −

ζ

π
Re

Mc∑

j=1

eix
′χ−

α (ηj)−∆̄ψ0(χ−
α (ηj))

χ−
α (ηj)(χ

−
α (ηj) + i)

α

(
−λ− − iηj
−λ− − 1

)α−1

(1− δj1/2).

(4.34)

The method allows one to satisfy the error tolerance of order 10−10 quite

easily unless x′ = 0, ∆̄ and ν are very close to 0.

3.2.5. Transformation of (2.27). First, we take α ∈ (1, α0), where

α0 is specified in Section 3.2.3. Next, if x′ = x + µ∆̄ ≥ 0, we choose

ω ∈ (0, λ+), and let η = iω + R. By making the change of the variable

ξ = χ+
α (η) = iλ+ − iλ+

1−α(λ+ + iη)α, η ∈ iω + R,

we obtain

Vs(x) = (2π)−1

∫

Im η=ω

eix
′χ+

α (η)−∆̄ψ0(χ+
α (η))

(iχ+
α (η))

s α

(
λ+ + iη

λ+

)α−1

dη. (4.35)

If x′ ≤ 0, we push the line of integration in (2.27) down. In the process

of the transformation, the contour crosses the pole at ξ = 0, which is of
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order s. Using the residue theorem, we obtain

Vs(x
′) = −

i1−s

(s− 1)!

ds−1

dξs−1
eix

′ξ−∆̄ψ0(ξ)

∣∣∣∣
ξ=0

+ Vcs(x
′),

where

Vcs(x
′) = (2π)−1

∫

Im η=ω

eix
′ξ−∆̄ψ0(ξ)

(iξ)s
dξ, ω ∈ (λ−, 0).

We choose ω ∈ (λ−, 0), and let η = iω +R. By making the change of the

variable

ξ = χ−
α (η) = iλ− + i(−λ−)

1−α(−λ− − iη)α, η ∈ iω + R,

we obtain

Vcs(x) = (2π)−1

∫

Im η=ω

eix
′χ−

α (η)−∆̄ψ0(χ−
α (η))

(iχ−
α (η))

s α

(
−λ− − iη

−λ−

)α−1

dη. (4.36)

Formulas (4.35) and (4.36) can be calculated similarly to V1 in (4.18)

and V c
1 in (4.27). First, we reduce the integral in (4.35) (resp., (4.36)) to

an integral over iω +R+, ω ∈ (0, λ+) (resp., ω ∈ (λ−, 0)), and then apply

trapezoid rule:

Vs(x
′) ≈

ζ

π
Re

Mc∑

j=1

eix
′χ+

α (ηj)−∆̄ψ0(χ+
α (ηj))

iχ+
α (ηj)

α

(
λ+ + iηj
λ+

)α−1

(1− δj1/2)

Vcs(x
′) ≈

ζ

π
Re

Mc∑

j=1

eix
′χ−

α (ηj)−∆̄ψ0(χ−
α (ηj))

iχ−
α (ηj)

α

(
−λ− − iηj

−λ−

)α−1

(1− δj1/2),

where δjk is Kronecker’s delta, ηj = iω+(j− 1)ζ, j = 1, 2, . . . ,Mc, and ω

is chosen appropriately.

3.3. Errors: preliminary.

3.3.1. Discretization error. In the flat iFT method in Section 2.1, we

defined the strip Im ξ ∈ [µ−, µ+] ⊂ (0, λ+] in order to find the line of

integration Im ξ = (µ− + µ+)/2 and constant d = (µ+ − µ−)/2, which
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is needed to estimate the discretization error and find a sufficiently fine

mesh ζ. Typically, µ− is close to 0, hence, we use µ− = 0 as a fairly good

approximation. In the parabolic iFT methods, the key idea to define the

strip Im η ∈ [σ−, σ+] is to select the strip has the same intersection with

the imaginary axis as [µ−, µ+]. Observe that the domain of analyticity

outside the imaginary axis extends to infinity as Im ξ → ±∞, hence, one

can expect that the main contribution to the discretization error comes

from the bottleneck between the two cuts.

Explicitly, for the case of V1 in (4.18), in [18], the authors find σ± such

that χ+
α (iσ±) = iµ±, set ω = (σ− + σ+)/2, d = (σ+ − σ−)/2, and use ω to

define the line of integration Im η = ω. We can find σ± solving equation

λ+ − µ±

λ+
=

(
λ+ − σ±
λ+

)α
,

equivalently,

λ+ − σ±
λ+

=

(
λ+ − µ±

λ+

)1/α

,

and, finally,

σ± = λ+ − λ+

(
λ+ − µ±

λ+

)1/α

.

We conclude that

d+ =
λ+
2

[(
λ+ − µ−

λ+

)1/α

−

(
λ+ − µ+

λ+

)1/α
]
, (4.37)

ω+ = λ+ −
λ+
2

[(
λ+ − µ−

λ+

)1/α

+

(
λ+ − µ+

λ+

)1/α
]
; (4.38)

Similarly, for the case of V c
1 in (4.27), we have

d− = −
(λ− + 1)

2

[(
−λ− + µ+

−λ− − 1

)1/α

−

(
−λ− + µ−

−λ− − 1

)1/α
]
, (4.39)

ω− = λ− −
(λ− + 1)

2

[(
−λ− + µ+

−λ− − 1

)1/α

+

(
−λ− + µ−

−λ− − 1

)1/α
]
.(4.40)
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The choice of ω and the constant d for the calculation of Vs in (4.35)

and Vcs in (4.36) are chosen in the same fashion. For Vs, ω and d are the

same as in (4.37) and (4.38), respectively. For Vcs , we have

d− = −
(λ− + 1)

2

[(
−λ− + µ+

−λ−

)1/α

−

(
−λ− + µ−

−λ−

)1/α
]
, (4.41)

ω− = λ− −
(λ− + 1)

2

[(
−λ− + µ+

−λ−

)1/α

+

(
−λ− + µ−

−λ−

)1/α
]
.(4.42)

3.3.2. Truncation error. We consider the case of KoBoL of order ν ∈

(0, 2), ν 6= 1. The upper bounds for the truncation error and a procedure

for the choice of Λ =Mcζ are given in Propositions 5.2 and 5.8 in [18]. We

reformulate the proposition in accordance with our asymptotics derived

in Section 3.2.

Proposition 4.7. [18, Proposition 5.2] Let ν ∈ (0, 2), ν 6= 1, and

assume that either x′ > 0 and α ∈ [1,min{1 + 1/ν, 3}), or x′ = 0 and

α ∈ [1,min{1 + 1/ν, 4}). Then

a) As ρ := |λ+ + iη| → +∞, the integrand in (4.18) is bounded in

modulus by

(2π)−1αλ+
α−1ρ−1−α · e−x

′λ++A·x′ρα+B·∆̄ραν−c∆̄Γ(−ν)(λ+
ν+(−λ−)ν)

where

A = λ+
1−α · cos(απ/2) < 0, (4.43)

B = 2cΓ(−ν)λ+
(1−α)ν cos(νπ/2) · cos(ν(α− 1)π/2) < 0. (4.44)

b) Given an error tolerance ǫ for the truncation error, Λ = Mcζ can

be chosen as a number, which satisfies

eA·x
′Λα+B·∆̄Λαν

Λα
< ǫπλ+

1−αec∆̄Γ(−ν)(λ+
ν+(−λ−)ν)+x′λ+ . (4.45)
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(This recommendation is applicable only in the region of sufficiently large

Λ, where the LHS is monotone or very close to a monotone function.)

Proof. a) We use the asymptotics: (4.22), (4.24) and (4.26).

b) For a decreasing positive function f , it is evident that,

∫ ∞

Λ

f(x) · αx−1−αdx ≤ f(Λ)

∫ ∞

Λ

αx−1−αdx = f(Λ) · Λ−α.

�

Proposition 4.8. [18, Proposition 5.8] Let ν ∈ (0, 2), ν 6= 1, and

assume that either x′ < 0 and α ∈ [1,min{1 + 1/ν, 3}), or x′ = 0 and

α ∈ [1,min{1 + 1/ν, 4}). Then

a) As ρ := | − λ− − iη| → +∞, the integrand in (4.27) is bounded in

modulus by

(2π)−1α(−λ− − 1)α−1ρ−1−α · e−x
′λ−−A·x′ρα+B·∆̄ραν−c∆̄Γ(−ν)(λ+

ν+(−λ−)ν)

where

A = (−λ− − 1)1−α · cos(απ/2) < 0,

B = 2cΓ(−ν)(−λ− − 1)(1−α)ν cos(νπ/2) · cos(ν(α− 1)π/2) < 0.

b) Given an error tolerance ǫ for the truncation error, Λ = Mcζ can

be chosen as a number, which satisfies

e−A·x
′Λα+B·∆̄Λαν

Λα
< ǫπ(−λ− − 1)1−αec∆̄Γ(−ν)(λ+

ν+(−λ−)ν)+x′λ− . (4.46)

(This recommendation is applicable only in the region of sufficiently large

Λ, where the LHS is monotone or very close to a monotone function.)

Proof. a) We use the asymptotics: (4.28), (4.29) and (4.30).
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b) For a decreasing positive function f , it is evident that,

∫ ∞

Λ

f(x) · αx−1−αdx ≤ f(Λ)

∫ ∞

Λ

αx−1−αdx = f(Λ) · Λ−α.

�

Below, we consider the error control of the numerical scheme of Vs.

The upper bounds for the truncation error and a procedure for the choice

of Λ = Mcζ are given in the following propositions, which are analogues

of Proposition 5.2 and 5.8 in [18].

Proposition 4.9. Let ν ∈ (0, 2), ν 6= 1, and assume that either x′ > 0

and α ∈ [1,min{1+1/ν, 3}), or x′ = 0 and α ∈ [1,min{1+1/ν, 4}). Then

a) As ρ := |λ+ + iη| → +∞, the integrand in (4.35) is bounded in

modulus by

(2π)−1αλ+
(α−1)(s−1)|ρ|−α(s−1)−1 · e−x

′λ++A·x′ρα+B·∆̄ραν−c∆̄Γ(−ν)(λ+
ν+(−λ−)ν)

where A and B are as in (4.43) and (4.44), respectively.

b) Given an error tolerance ǫ for the truncation error, Λ = Mcζ can

be chosen as a number, which satisfies

eA·x
′Λα+B·∆̄Λαν

(s− 1)Λα(s−1)
< ǫπλ+

−(α−1)(s−1)ec∆̄Γ(−ν)(λ+
ν+(−λ−)ν). (4.47)

(This recommendation is applicable only in the region of sufficiently large

Λ, where the LHS is monotone or very close to a monotone function.)

Proof. a) In Section 3.2, we derived the asymptotics of the factors

of the integrand in (4.35) as η′ := Re η → ±∞ along the line Im η = ω.

Here we summarize the results.
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For s ≥ 2, on the strength of (4.19) and (4.20), we have

∣∣∣∣∣
1

(iχ+
α (η))

s
α

(
λ+ + iη

λ+

)α−1
∣∣∣∣∣ ∼ αλ+

(α−1)(s−1)ρ−α(s−1)−1,

where ρ := |λ+ + iη|. If α ≥ 1, the factor decays as ρ−α(s−1)−1 at infinity.

The remaining exponent factor is showed on (4.24) and (4.26).

b) For a decreasing positive function f , it is evident that,

∫ ∞

Λ

f(x) · α · x−α(s−1)−1dx ≤
f(Λ)

(s− 1)Λα
.

�

Proposition 4.10. Let ν ∈ (0, 2), ν 6= 1, and assume that either

x′ < 0 and α ∈ [1,min{1+1/ν, 3}), or x′ = 0 and α ∈ [1,min{1+1/ν, 4}).

Then

a) As ρ := | − λ− − iη| → +∞, the integrand in (4.36) is bounded in

modulus by

(2π)−1α(−λ−)
(α−1)(s−1)ρ−α(s−1)−1e−x

′λ−−A·x′ρα+B·∆̄ραν−c∆̄Γ(−ν)(λ+
ν+(−λ−)ν)

where

A = cos(απ/2)(−λ−)
1−α < 0 (4.48)

B = 2cΓ(−ν)(−λ−)
(1−α)ν cos(νπ/2) cos(ν(α− 1)π/2) < 0. (4.49)

b) Given an error tolerance ǫ for the truncation error, Λ = Mcζ can

be chosen as a number, which satisfies

e−x
′A(Λ)Λα+∆̄B(Λ)Λαν

(s− 1)Λ(s−1)α
< ǫπ(−λ−)

1−αec∆̄Γ(−ν)(λ+
ν+(−λ−)ν). (4.50)

(This recommendation is applicable only in the region of sufficiently large

Λ, where the LHS is monotone or very close to a monotone function.)
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Proof. We consider the conformal mapping:

χ−
α (η) = iλ− + i(−λ−)

1−α(−λ− − iη)α,

where ω ∈ (λ−,−1) and η ∈ iω + R.

a) For s ≥ 2, as η′ := Re η → ±∞ along the line Im η = ω, we have

∣∣χ−
α (η)

∣∣−s ∼ (−λ−)
−(1−α)sρ−αs

∣∣α(−λ−)1−α(−λ− − iη)α−1
∣∣ ∼ α(λ−)

1−αρα−1,

where ρ := | − λ− − iη|, and hence,

∣∣∣∣∣
1

(iχ−
α (η))

s
α

(
−λ− − iη

−λ−

)α−1
∣∣∣∣∣ ∼ α(−λ−)

(α−1)(s−1)ρ−α(s−1)−1.

If α ≥ 1, the factor decays as ρ−α(s−1)−1 at infinity. The asymptotics of

the remaining exponent factor in (4.36) are similar to (4.29) and (4.30),

and are derived as follows. For x′ ≤ 0,

Re
(
ix′χ−

α (η)
)
∼ −x′λ− − x′(−λ−)

1−αρα cos(απ/2)

as η′ → ±∞. If α ∈ (1, 3), then, cos(απ/2) < 0, and Re (ix′χ−
α (η)) →

−∞. For a KoBoL process of order ν ∈ (0, 2), ν 6= 1,

−∆̄Re
(
ψ0(χ−

α (η))
)

∼ −∆̄cΓ(−ν)[λ+
ν + (−λ−)

ν ]

+∆̄cΓ(−ν)(−λ−)
(1−α)νραν

×2 cos(νπ/2) cos((1− α)νπ/2).

as η′ → ±∞. We have Γ(−ν) cos(νπ/2) < 0, therefore, if 1 < α <

min{4, 1 + 1/ν}, cos((1− α)νπ/2) > 0, and

−∆̄Re
(
ψ0(χ−

α (η))
)
→ −∞, as η′ → ±∞.
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b) For a decreasing positive function f , it is evident that,

∫ ∞

Λ

f(x) · α · x−α(s−1)−1dx ≤
f(Λ)

(s− 1)Λα
.

�

3.4. Choice of ω, ζ,Mc. One may use the same length and mesh

of the η-grid in order to apply the vectorization procedure in MATLAB.

Since the discretization error decays exponentially, we expect that the

C++ implementation with the x′-dependent truncation parameter will

be more efficient.

We follow the prescription in [18], and set ǫ1 = ǫπ/(2Ds), where Ds

is as in (4.11).

(I) If x′ = x+ µ∆̄ ≥ 0, then, for the calculation of V1(x) and Vs(x),

1. if −0.1 · ln ǫ1 ≥ −∆̄ψ0(iλ+ − 0) + (1 − s) lnλ+ or ν < 1, set

µ+ = λ+, otherwise, find µ+ as the unique positive solution

of equation −0.1 · ln ǫ = −∆̄ψ0(iµ+) + (1− s) lnµ+;

2. set µ− = 0, and d+ and ω+ as in (4.37) and (4.38), respec-

tively;

3. set ζ+ = −πd+/(1.1 ln ǫ).

(II) If x′ < 0, then for the calculation of V1(x) (resp., Vs(x)),

1. if −0.1 · ln ǫ1 ≥ −∆̄ψ0(iλ−+0)+(1−s) ln(−λ−) or ν < 1, set

µ− = λ−, otherwise, find µ+ as the unique positive solution

of equation −0.1 · ln ǫ = −∆̄ψ0(iµ−) + (1− s) ln(−µ−);

2. set µ+ = −1 (resp., µ+ = 0), and d− and ω− as in (4.39)

(resp., (4.41)) and (4.40) (resp., (4.42));

3. set ζ− = −πd−/(1.1 ln ǫ).
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For the choice of Mc for x′ ≥ 0 (resp., x′ < 0), one can first apply

(4.45) (resp., (4.46), (4.47) and (4.50)) to find Λ, then use ζ above to

choose the positive integer Mc such that Mcζ ≥ Λ.

3.5. Error estimate of ‖ǫ(V2, ·)‖L1 and choices of ω, ζ,Mc. Con-

sider the case when parabolic iFT method is used to calculate V2(x
′)

(x′ = x + µ∆̄). By analogy with [18], we use the same bound for

‖ǫd(V2, ·)‖L1 as for flat iFT. One can derive the Hardy norm of the in-

tegrand in (4.35) and (4.36), hence, derive accurate error estimate for the

discretization and truncation error. However, in our case, we only need

simple recommendation for the choice of ω, ζ and Λ. Using (4.16), to-

gether with (4.4), a trivial modification of the algorithm in Section 3.4

gives the choices of ω, ζ. Set ǫ1 = 0.9 ·∆2 · ǫc/4 · π/(2D2).

(I) If x′ = x+ µ∆̄ ≥ 0, then

1. if −0.1·ln ǫ1 ≥ −∆̄ψ0(iλ+−0)−s lnλ+ or ν < 1, set µ+ = λ+,

otherwise, find µ+ as the unique positive solution of equation

−0.1 · ln ǫ = −∆̄ψ0(iµ+)− s lnµ+;

2. set µ− = 0, and d+ and ω+ as in (4.37) and (4.38), respec-

tively;

3. set ζ+ = πd+/(1.1 ln ǫ);

(II) If x′ < 0, then

1. if −0.1 · ln ǫ1 ≥ −∆̄ψ0(iλ− + 0) − s ln(−λ−) or ν < 1, set

µ− = λ−, otherwise, find µ− as the unique positive solution

of equation −0.1 · ln ǫ = −∆̄ψ0(iµ−)− s ln(−µ−);

2. set ω+ = 0, and d− and ω− as in (4.41) and (4.42), respec-

tively;

3. set ζ− = πd−/(1.1 ln ǫ).
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Let

L+
t =

B+e
∆̄Λαν

+

(s− 1)Λ
(s−1)α
+

·
e−c∆̄Γ(−ν)(λ+

ν+(−λ−)ν)

πλ+
1−α (4.51)

L−
t =

eB−∆̄Λαν
−

(s− 1)Λ
(s−1)α
−

·
e−c∆̄Γ(−ν)(λ+

ν+(−λ−)ν)

π(−λ−)1−α
(4.52)

where B+ and B− are as in (4.44) and (4.49), respectively.

Lemma 4.11.

‖ǫtr(V2, ·)‖L1 ≤ |A+Λ
α
+|

−1 · L+
t + |A−Λ

α
−|

−1 · L−
t ,

where A+ and A− is as in (4.43) and (4.48).

Proof. Since

‖ǫtr(V2, ·)‖L1 = ‖ǫtr(V2 (−∞,0), ·)‖L1 + ‖ǫtr(V2 [0,∞), ·)‖L1 ,

it suffices to consider each term on the RHS above separately. We con-

sider only the case x′ ≥ 0, the case x′ ≤ 0 are proved similarly. By

Proposition 4.9, the truncation error admits an bound via

|ǫtr(V2 [0,∞), x
′)| ≤ ex

′A+(Λ+)Λ+α · L+
t ,

where A+ and L+
t are as in (4.43) and (4.51). Integrating ex

′A+(Λ+)Λ+α

w.r.t. x′, we obtain

‖ǫtr(V2 [0,∞), ·)‖L1 ≤ |A+(Λ+)Λ
α
+|

−1 · L+
t .

�
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Using the above lemma, we find Λ± such that

eA+x′Λα
++B+∆̄Λαν

+

A+(s− 1)Λsα+
< ǫ1πλ+

1−αec∆̄Γ(−ν)(λ+
ν+(−λ−)ν)

e−A−x′Λα
−+B−∆̄Λαν

−

A−(s− 1)Λsα−
< ǫ1π(−λ−)

1−αec∆̄Γ(−ν)(λ+
ν+(−λ−)ν),

where ǫ1 = 0.9 ·∆2 · ǫc/4 ·π/(2D2). Positive integer Mc can be found from

M±
c ζ

± ≥ Λ±.



CHAPTER 5

Numerical algorithm and examples

1. Algorithm

We present an explicit algorithm for computing the prices of Asian put

and call option. The parabolic iFT method with the choice of numerical

parameters described in Chapter 4 Section 3.2 and 3.4 can be used to

replace the flat iFT and (refined) FFT method.

The inputs are the spot price S0, the strike K, the maturity date T ,

the number of equally spaced sampling dates N+1, the interest rate r, the

parameters of the process, and the error tolerance ǫ. If (N+1)K−S0 ≤ 0,

then the price of the Asian put option is 0. In the algorithm below, we

assume (N + 1)K − S0 > 0, and let V1 and V2 be as in (2.16) and (2.27),

respectively.

Step I. Choose the error tolerances ǫtr, ǫint and ǫc that will control,

respectively, the truncation error, interpolation error, and the impact of

the errors of calculation of values of functions V2 and V1.

Let h = e−rT ((N + 1)K − S0)/(N + 1), and set ǫtr = ǫtr/h, ǫint =

ǫint/h and ǫc = ǫc/h as the error tolerance for the calculation of VN . Set

∆̄ = T/N .

Step II. Set ǫ1 = ǫtr/(N−1). Using (3.4) and (3.5), find x1 < xM < 0

so that the errors of the truncation above xM and partial truncation below

x1 do not exceed ǫ1.

63
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Step III. Choose the order of the interpolation procedure, which (ap-

proximately) maximizes mesh ∆ of the grid in the state space given ǫint/2

(recall that we do the interpolation at each step twice), ∆̄ and parameters

of the process. Below, we assume that the piece-wise linear interpolation

is used. One can choose ∆ so that the RHS of (3.11) does not exceed

ǫint/2.

Step IV. Choose a smallest integerM such that (M−1)∆ > xM−x1,

and re-define x1 = xM − (M − 1)∆. Choose a smallest integer M1 such

that (M1 − 1)∆ > xM − ln(1− eXM ), and construct grids:

~x = (xj)
M1
j=1, ~y = (yj)

M
j=1, and ~z = (zℓ)

M1
ℓ=−M1

,

where

xj = x1 + (j − 1)∆, yj = xj − ln(1− exj), and zℓ = ℓ∆.

Step V. Set ǫ1 = ǫc/N . Calculate ~Vx ≈ V1(~x) using flat iFT and

(refined) iFFT with error tolerance ǫ1. See Chapter (4) Section 2.2 for

the choice of ξ-grid in the frequency domain.

Use piece-wise linear interpolation to find values: ~Vy ≈ V1(~y), then

store these values. After that, set ~u = (1 − e~x)( ~Vy − 1), and re-set u1 =

ex1−∆̄ψ(−i) and uM = 0.

Step VI. Calculate and store arrays ~V1 ≈ V1((zl)
M1−1
l=0 ) and ~V2 ≈

V2(~z) using flat iFT and (refined) iFFT with error tolerance 0.1 · ǫ1/|u1|

and 0.9 · ∆2 · ǫ1/4. See Chapter 4 Section 2.2 for the choice of ξ-grid in

the frequency domain.

Step VII. Calculate ~U ≈ W2(~x) using (2.28) and fast convolution

algorithm. The inputs are ~u, ~V1, and ~V2. Let ~W = ~U .
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Step VIII. In the cycle w.r.t. n = 2, 3, . . . , N − 1,

• calculate and store array ~Vy ≈ Wn(~y) using ~W as the input and

applying the piece-wise linear interpolation procedure;

• set ~u := (1 − e~x) ~Vy and re-set u1 = cne
x1 and uM = 0, where cn

is given by (2.24);

• calculate ~W ≈ Wn+1(~x) using (2.28), inputs: ~u, ~V2 and ~V1, and

fast convolution algorithm;

• set ~W = ~W + ~U .

Step IX. Set ~VN = ~W + ~Vx. Calculate VN(x) at x = ln(S0/(S0 −

(N + 1)K)) using ~VN , piecewise linear interpolation procedure, and then

the Asian put option value using (2.3) and the Asian call option value

using (2.2).

2. Numerical examples

The results presented below were performed in MATLAB R© 7.11.0

(R2010b), on a laptop with characteristics Intel R© Celeron R© Processor

T1600 (1MB Cache, 1.66GHz, 667MHz FSB), under the Genuine Win-

dows Vista
TM

Home Basic with Service Pack 2 (32-bit) operating system.

In all the examples, the benchmark prices are calculated using our

method with very long and fine grid, both in the state space and the

frequency domain. The set of numerical parameters guarantee a small

error not larger than 10−10.

2.1. KoBoL: example taken from [36]. In this subsection , we

compare the performance of our algorithm with the performance of MC

method and the method developed by Fusai and Meucci [36], for calcu-

lating the prices of discretely monitored Asian call options. As in [36],

we assume that under a chosen EMM, the log-spot price, Xt = lnSt,
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of the underlying follows a KoBoL process (see (2.12)) with parameters

ν = 1.2945, c = 0.0244, λ+ = 0.0765, and λ− = −7.5515. Assume the in-

terest rate is r = 0.0367, which allows us to find the remaining parameter

µ ≈ 0.138736 from the EMM condition r + ψ(−i) = 0 (where ψ(ξ) is the

characteristic exponent of {Xt}). The process is of infinite variation since

order ν = 1.2945 ≥ 1.

We calculate the prices of a discretely sampled Asian call option on

the stock St = eXt , with spot price S0 = 100, maturity date T = 1 year

and the number of sampling dates N = 12, 50 and 250, respectively.

The results of our calculation are summarized in Table 1. The numer-

ical parameters of our algorithm are specified in the caption to the table.

(We use the acronym “MC”, “LX(f)” and “FM” to label the results ob-

tained using our method (implemented with flat (refined) iFFT) and the

method in [36].)

It is well known that the convergence of the MC estimator is very slow,

therefore, we used 500, 000 paths. For simulating trajectories of KoBoL

processes, we implemented the code1 of Poirot and Tankov [50]. It is also

well known that for processes of infinite variation, the accuracy of the

results significantly affected by the simulation bias arise from truncating

the small jumps, therefore, we truncate the jump with size less than 1×

10−9. From the table, we observe that MC produce results with relative

error of order up to 10−3.

For our results in column “LX(f)”, we fix a moderately small mesh

in the frequency domain, and change the mesh in the state space to see

the change of the relative error. Due to the Nyquist relation M∆ζ = 2π,

halving ∆ increases the length of the grid in the frequency domain. One

1The code is available at http://www.math.jussieu.fr/~tankov/.

http://www.math.jussieu.fr/~tankov/
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can see that our method produce more accurate results than the method of

“MC” and “FM”, and faster. The initial length of the grid in the frequency

domain depends on the number N of the sampling dates, therefore, we

have to choose different M2 in the refined FFT algorithm for different

N . The reason is that as N increases, a longer grid is needed to ensure

that the truncation error in the frequency domain is small. We observe

that as ∆ is halved, the error decreases by a factor of 10 and more. The

exception is the case K = 110, ∆̄ = 1/50 and ∆ ≈ 0.027781, when the

error decreases by a factor of 2. This is due to the fact that the truncation

error in the frequency domain is rather large.

2.2. KoBoL: the examples taken from [27]. In this subsection ,

we compare the performance of our algorithm with the performance of the

method developed by Černý and Kyriakou [27]. We use three parameter

sets for KoBoL model (see (2.12)) considered in [27]:

A: c = 0.2703, λ− = −54.82, λ+ = 17.56,

ν = 0.8, µ ≈ 0.17753 (m2 ≈ 0.01)

B: c = 0.6509, λ− = −18.27, λ+ = 5.853,

ν = 0.8, µ ≈ 0.42432 (m2 ≈ 0.09)

C: c = 0.9795, λ− = −10.96, λ+ = 3.512,

ν = 0.8, µ ≈ 0.63587 (m2 ≈ 0.25)

where m2 is the second central moment of the KoBoL process. (Parame-

ters µ are obtained from the EMM condition r + ψ(−i) = 0, where ψ(ξ)

is the characteristic exponent of {Xt}.) We list m2 in order to facilitate

the comparison with the Brownian motion model.
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For these parameter sets, we calculate the prices of a discretely sam-

pled Asian call option on the stock St = eXt , with spot price S0 = 100,

maturity date T = 1 year and the number of sampling dates N = 50;

the riskless rate r = 0.04. The results are summarized in Table 4. The

numerical parameters of our algorithm are specified in the caption to the

table. (We use the acronym “LX” and “CK” to label the results obtained

using our method and the method in [27], respectively.) We observe that

the prices increase as m2 increases as it is to be expected.

Our method takes much less CPU time than CK method to achieve

the same level of accuracy. The CPU time in [27] was recorded on a

relatively better computer than ours: Dell Latitude 620 Intel R© Core
TM

2

Duo Processor T7200 (4MB Cache, 2.00 GHz, 667 MHz FSB) and 2 GB

RAM with MATLAB c© R15.

For these sets of model and option parameters, the implementation

of our approach with flat (refined) iFFT is faster than parabolic iFT.

However, if we consider processes of small ν and/or ∆̄, the advantage of

parabolic version is significant.

2.3. KoBoL: example with small ν. In this subsection, we com-

pare the performance of flat (refined) iFFT with the performance of para-

bolic iFT. We take a KoBoL process with parameters ν = 0.2, c = 1.1136,

λ+ = 3, λ− = −10 from [18]. Assume the interest rate is r = 0.04, which

allows us to find the remaining parameter µ ≈ 0.30403 from the EMM

condition r + ψ(−i) = 0. The process is of finite variation since order

ν = 0.2 ≤ 1.

For these parameter sets, we calculate the prices of a discretely sam-

pled Asian call option on the stock St = eXt , with spot price S0 = 100,

maturity date T = 1 year and the number of sampling dates N = 12.
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The results are summarized in Table 7. The numerical parameters of our

algorithm are specified in the caption to the table. (We use the acronym

“LX(f)” and “LX(p)” to label the results obtained using flat (refined)

iFFT and parabolic iFT, respectively.)

For this process, even in the case with ∆̄ is not small, parabolic iFT

perform much better than flat (refined) iFFT.

2.4. BM. In this subsection, we compare the performance of our

method with the performance of the method developed in [36] and [27],

for pricing discretely monitored Asian call option under the Brownian

motion. The results are summarized in Table 8 and 11.

Since the probability density function of the increment behaves fairly

regularly and has very thin tails, one does not need the FFT algorithm

to enhance the efficiency and use a uniform grid. We first reduce the

expectation (2.4) to the integration on the real line:

Vn+1(y) =

∫ 0

−∞

(1− ez)Vn(z − ln(1− ez))p(z − y)dz, (5.1)

where p is the normal probability density of the increments X∆̄ with

the mean2 µ∆̄ and variance σ2∆̄, and then, use Gaussian quadrature to

evaluate the integral at y = x− ln(1− ex).

From our results, one can observe that Gaussian quadrature converge

to the benchmark price very fast.

2The drift µ is determined by EMM condition: µ = r − σ2/2.
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Table 1. Prices of Asian call options in the KoBoL model. Example 1: comparison with the results of Monte
Carlo method (MC), Fusai and Meucci [36] (FM).

A: N = 12 (∆̄ = T/N = 1/12)

K Benchmark
MC LX(f) FM

rel.err. s.d.
∆ ≈ M =

0.027958 0.013979 0.0069894 10000 5000 1000
90 12.7066281 1.0E-03 0.01171 -4.4E-06 -3.1E-07 -2.0E-08 -3.0E-05 -2.9E-05 -8.3E-05
100 5.0349805 3.3E-03 0.00863 1.3E-05 1.3E-06 8.8E-08 -1.2E-05 -2.4E-05 3.0E-04
110 1.0211530 7.5E-03 0.00453 1.1E-04 3.0E-06 2.9E-07 -2.9E-06 -5.2E-05 9.7E-04

CPU (sec.) 0.18532 0.33182 0.63647 N/A

Column 2 contains the benchmark prices obtained using our method. Column labeled “MC” contain the relative difference between the benchmark prices and the results
obtained using Monte Carlo method. Column labeled “LX(f)” contain the relative difference between the benchmark prices and the results obtained using our method.
Column labeled “FM” contains the relative difference between the benchmark prices and the results obtained using the method of Fusai and Meucci [36]. The results are
taken from the tables in op. cit..

The example is taken from [36].
Asian call option parameters: r = 0.0367, T = 1, S = 100, N (number of sampling dates).
KoBoL parameters: ν = 1.2945, c = 0.0244, λ+ = 0.0765, λ− = −7.5515, µ ≈ 0.138736.

Numerical parameters for benchmark prices: enhancement — cubic spline, x1 = −15, xM = −0.0001, ∆ ≈ 0.0002, ω+ = λ+/2, ω− = −2, ζ1 ≈ 0.008 (M3 = 32), and

Λ± ≈ 28766.5 (=M2 · 2π/∆, M2 = 1).

Numerical parameters of LX(f): enhancement — cubic spline, x1 = −8, xM = −0.0001, ω+ = λ+/2, ω− = −2, ζ1 ≈ 0.045 (M3 = 8), and Λ± =M2 · 2π/∆, M2 = 2.

Numerical parameters for MC: number of trajectories — 5× 105, truncation parameter — 1× 10−9, simulator for KoBoL — Tankov’s code
(http://www.math.jussieu.fr/~tankov/).

M — the number of points in M -point Gaussian quadrature;
Λ+ (Λ−) — the length of the truncated line of integration in upper (lower) half-plane of the frequency domain.

http://www.math.jussieu.fr/~tankov/
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Table 2. Prices of Asian call options in the KoBoL model. Example 1: comparison with the results of Monte
Carlo method (MC), Fusai and Meucci [36] (FM).

B: N = 50 (∆̄ = T/N = 1/50)

K Benchmark
MC LX(f) FM

rel.err. s.d.
∆ ≈ M =

0.027781 0.013979 0.0069894 10000 5000 1000
90 12.7400351 -9.9E-04 0.01176 -1.3E-05 -1.2E-06 -9.4E-08 -1.2E-04 -1.2E-04 2.3E-05
100 5.0761189 -1.1E-03 0.00867 8.5E-05 7.1E-06 2.8E-07 -8.3E-05 -6.9E-05 -7.6E-04
110 1.0467955 -2.4E-03 0.00457 5.3E-05 2.6E-05 1.1E-06 -5.3E-05 -1.0E-04 2.6E-03

CPU (sec.) 0.42915 0.86946 1.6236 N/A

Column 2 contains the benchmark prices obtained using our method. Column labeled “MC” contain the relative difference between the benchmark prices and the results
obtained using Monte Carlo method. Column labeled “LX(f)” contain the relative difference between the benchmark prices and the results obtained using our method.
Column labeled “FM” contains the relative difference between the benchmark prices and the results obtained using the method of Fusai and Meucci [36]. The results are
taken from the tables in op. cit..

The example is taken from [36].
Asian call option parameters: r = 0.0367, T = 1, S = 100, N (number of sampling dates).
KoBoL parameters: ν = 1.2945, c = 0.0244, λ+ = 0.0765, λ− = −7.5515, µ ≈ 0.138736.

Numerical parameters for benchmark prices: enhancement — cubic spline, x1 = −15, xM = −0.0001, ∆ ≈ 0.0002, ω+ = λ+/2, ω− = −2, ζ1 ≈ 0.008 (M3 = 32), and

Λ± ≈ 28766.5 (=M2 · 2π/∆, M2 = 1).

Numerical parameters LX(f): enhancement — cubic spline, x1 = −8, xM = −0.0001, ω+ = λ+/2, ω− = −2, ζ1 ≈ 0.045 (M3 = 8), and Λ± =M2 · 2π/∆ M2 = 4.

Numerical parameters for MC: number of trajectories — 5× 105, truncation parameter — 1× 10−9, simulator for KoBoL — Tankov’s code
(http://www.math.jussieu.fr/~tankov/).

M — the number of points in M -point Gaussian quadrature;
Λ+ (Λ−) — the length of the truncated line of integration in upper (lower) half-plane of the frequency domain.

http://www.math.jussieu.fr/~tankov/
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Table 3. Prices of Asian call options in the KoBoL model. Example 1: comparison with the results of Monte
Carlo method (MC), Fusai and Meucci [36] (FM).

C: N = 250 (∆̄ = T/N = 1/250)

K Benchmark
MC LX(f) FM

rel.err. s.d.
∆ ≈ M =

0.013868 0.0069342 0.0034671 10000 5000 1000
90 12.7491229 -1.4E-03 0.01178 -2.8E-05 -3.9E-07 -3.6E-08 -1.4E-04 -1.7E-03

N/A100 5.0874701 -2.8E-03 0.00870 -4.0E-05 2.3E-06 1.1E-07 -1.0E-04 -1.6E-03
110 1.0539774 -4.1E-03 0.00461 -1.5E-04 6.9E-06 4.8E-07 -8.3E-05 -1.4E-03

CPU (sec.) 1.9053 3.9343 8.1125 N/A

Column 2 contains the benchmark prices obtained using our method. Column labeled “MC” contain the relative difference between the benchmark prices and the results
obtained using Monte Carlo method. Column labeled “LX(f)” contain the relative difference between the benchmark prices and the results obtained using our method.
Column labeled “FM” contains the relative difference between the benchmark prices and the results obtained using the method of Fusai and Meucci [36]. The results are
taken from the tables in op. cit..

The example is taken from [36].
Asian call option parameters: r = 0.0367, T = 1, S = 100, N (number of sampling dates).
KoBoL parameters: ν = 1.2945, c = 0.0244, λ+ = 0.0765, λ− = −7.5515, µ ≈ 0.138736.

Numerical parameters for benchmark prices: enhancement — cubic spline, x1 = −15, xM = −0.0001, ∆ ≈ 0.0002, ω+ = λ+/2, ω− = −2, ζ1 ≈ 0.008 (M3 = 32), and

Λ± ≈ 28766.5 (=M2 · 2π/∆, M2 = 1).

Numerical parameters LX(f): enhancement — cubic spline, x1 = −8, xM = −0.0001, ω+ = λ+/2, ω− = −2, ζ1 ≈ 0.045 (M3 = 8), and Λ± =M2 · 2π/∆, M2 = 4.

Numerical parameters for MC: number of trajectories — 5× 105, truncation parameter — 1× 10−9, simulator for KoBoL — Tankov’s code
(http://www.math.jussieu.fr/~tankov/).

M — the number of points in M -point Gaussian quadrature;
Λ+ (Λ−) — the length of the truncated line of integration in upper (lower) half-plane of the frequency domain.

http://www.math.jussieu.fr/~tankov/
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Table 4. Prices of Asian call options in the KoBoL model. Example 2: comparison with the results of Černý
and Kyriakou [27] (CK).

A: c = 0.2703, λ− = −54.82, λ+ = 17.56, ν = 0.8, µ ≈ 0.17753 (m2 ≈ 0.01)

K Benchmark
LX(f) LX(p)

CK∆ ≈ ∆ ≈
0.013898 0.0069492 0.0034746 0.013898 0.0069492 0.0034746

90 11.6398812 -2.9E-06 -1.9E-07 -2.7E-09 -2.9E-06 -1.9E-07 -2.8E-09 -1.0E-07
100 3.3245835 3.9E-05 1.6E-06 1.4E-07 3.9E-05 1.6E-06 1.4E-07 -1.1E-06
110 0.1578768 -1.4E-03 -6.7E-05 -4.3E-06 -1.4E-03 -6.7E-05 -4.3E-06 -4.3E-05

CPU (sec.) 0.43966 0.61824 1.1756 0.78197 1.5812 3.8461 8.5*

Column 2 contains the benchmark prices obtained using our method. Columns labeled “LX(f)” and “LX(p)” contain the relative difference between the benchmark prices

and the results obtained using our method, implemented with flat (refined) iFFT and parabolic iFT, respectively. Column labeled “CK” contains the relative difference

between the benchmark prices and the results obtained using the method of Černý and Kyriakou [27]. The results are the same with our benchmark prices, they are

taken from the tables in op. cit..

The calculations of “LX(f)” and “LX(p)” presented were performed in MATLAB c© 7.11.0 (R2010b), on a laptop with characteristics IntelR© CeleronR© Processor T1600

(1MB Cache, 1.66GHz, 667MHz FSB) and 1 GB RAM, under the Genuine Windows Vista
TM

Home Basic with Service Pack 2 (32-bit) operating system. The

calculation of “CK” presented were performed in MATLAB c© R15, on a Dell Latitude 620 IntelR© Core
TM

2 Duo Processor T7200 (4MB Cache, 2.00 GHz, 667 MHz
FSB) and 2 GB RAM.

The example is taken from [27].
Asian call option parameters: r = 0.04, T = 1, S = 100, N = 50 (number of sampling dates), ∆̄ = T/N = 0.02.

Numerical parameters for benchmark prices: enhancement — cubic spline, x1 = −15, xM = −0.0001, ∆ ≈ 0.0002, ω+ = min{λ+/2, 2}, ω− = max{−2, (λ− − 1)/2},

ζ1 ≈ 0.008 (M3 = 32), and Λ± ≈ 28933 (=M2 · 2π/∆, M2 = 1).

Numerical parameters of LX(f) & LX(p): enhancement — cubic spline, x1 = −7.6025, xM = −0.000046, parameters of the numerical scheme in the dual space is chosen
using the recommendations in the thesis with ǫ = 10−12.

Λ+ (Λ−) — the length of the truncated line of integration in upper (lower) half-plane of the frequency domain. m2 — the second central moment of the KoBoL process.
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Table 5. Prices of Asian call options in the KoBoL model. Example 2: comparison with the results of Černý
and Kyriakou [27] (CK).

B: c = 0.6509, λ− = −18.27, λ+ = 5.853, ν = 0.8, µ ≈ 0.42432 (m2 ≈ 0.09)

K Benchmark
LX(f) LX(p)

CK∆ ≈ ∆ ≈
0.027896 0.013948 0.006974 0.027896 0.013948 0.006974

90 13.7016037 7.1E-07 1.1E-07 2.1E-08 7.1E-07 1.1E-07 2.1E-08 -2.7E-07
100 7.3474239 1.8E-05 1.6E-06 9.3E-08 1.8E-05 1.6E-06 9.3E-08 -5.2E-07
110 3.2830822 4.7E-05 3.9E-06 2.2E-07 4.7E-05 3.9E-06 2.2E-07 -6.6E-07

CPU (sec.) 0.27935 0.36186 0.62633 0.55654 1.0373 2.3099 4.1*

Column 2 contains the benchmark prices obtained using our method. Columns labeled “LX(f)” and “LX(p)” contain the relative difference between the benchmark prices

and the results obtained using our method, implemented with flat (refined) iFFT and parabolic iFT, respectively. Column labeled “CK” contains the relative difference

between the benchmark prices and the results obtained using the method of Černý and Kyriakou [27]. The results are the same with our benchmark prices, they are

taken from the tables in op. cit..

The calculations of “LX(f)” and “LX(p)” presented were performed in MATLAB c© 7.11.0 (R2010b), on a laptop with characteristics IntelR© CeleronR© Processor T1600

(1MB Cache, 1.66GHz, 667MHz FSB) and 1 GB RAM, under the Genuine Windows Vista
TM

Home Basic with Service Pack 2 (32-bit) operating system. The

calculation of “CK” presented were performed in MATLAB c© R15, on a Dell Latitude 620 IntelR© Core
TM

2 Duo Processor T7200 (4MB Cache, 2.00 GHz, 667 MHz
FSB) and 2 GB RAM.

The example is taken from [27].
Asian call option parameters: r = 0.04, T = 1, S = 100, N = 50 (number of sampling dates), ∆̄ = T/N = 0.02.

Numerical parameters for benchmark prices: enhancement — cubic spline, x1 = −15, xM = −0.0001, ∆ ≈ 0.0002, ω+ = min{λ+/2, 2}, ω− = max{−2, (λ− − 1)/2},

ζ1 ≈ 0.008 (M3 = 32), and Λ± ≈ 28933 (=M2 · 2π/∆, M2 = 1).

Numerical parameters of LX(f) & LX(p): enhancement — cubic spline, x1 = −7.6156, xM = −0.000046, parameters of the numerical scheme in the dual space is chosen
using the recommendations in the thesis with ǫ = 10−12.

Λ+ (Λ−) — the length of the truncated line of integration in upper (lower) half-plane of the frequency domain. m2 — the second central moment of the KoBoL process.
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Table 6. Prices of Asian call options in the KoBoL model. Example 2: comparison with the results of Černý
and Kyriakou [27] (CK).

C: c = 0.9795, λ− = −10.96, λ+ = 3.512, ν = 0.8, µ ≈ 0.63587 (m2 ≈ 0.25)

K Benchmark
LX(f) LX(p)

CK∆ ≈ ∆ ≈
0.027981 0.013991 0.0069953 0.027981 0.013991 0.0069953

90 16.7683558 8.0E-07 8.4E-08 1.0E-08 8.0E-07 8.4E-08 1.1E-08 -3.5E-07
100 11.2442404 2.7E-06 2.5E-07 2.0E-08 2.7E-06 2.5E-07 2.0E-08 -3.9E-08
110 7.1762405 4.6E-06 4.1E-07 2.9E-08 4.6E-06 4.1E-07 3.0E-08 -7.2E-08

CPU (sec.) 0.28205 0.43715 0.67224 0.68402 1.2826 2.6453 2.1*

Column 2 contains the benchmark prices obtained using our method. Columns labeled “LX(f)” and “LX(p)” contain the relative difference between the benchmark prices

and the results obtained using our method, implemented with flat (refined) iFFT and parabolic iFT, respectively. Column labeled “CK” contains the relative difference

between the benchmark prices and the results obtained using the method of Černý and Kyriakou [27]. The results are the same with our benchmark prices, they are

taken from the tables in op. cit..

The calculations of “LX(f)” and “LX(p)” presented were performed in MATLAB c© 7.11.0 (R2010b), on a laptop with characteristics IntelR© CeleronR© Processor T1600

(1MB Cache, 1.66GHz, 667MHz FSB) and 1 GB RAM, under the Genuine Windows Vista
TM

Home Basic with Service Pack 2 (32-bit) operating system. The

calculation of “CK” presented were performed in MATLAB c© R15, on a Dell Latitude 620 IntelR© Core
TM

2 Duo Processor T7200 (4MB Cache, 2.00 GHz, 667 MHz
FSB) and 2 GB RAM.

The example is taken from [27].
Asian call option parameters: r = 0.04, T = 1, S = 100, N = 50 (number of sampling dates), ∆̄ = T/N = 0.02.

Numerical parameters for benchmark prices: enhancement — cubic spline, x1 = −15, xM = −0.0001, ∆ ≈ 0.0002, ω+ = min{λ+/2, 2}, ω− = max{−2, (λ− − 1)/2},

ζ1 ≈ 0.008 (M3 = 32), and Λ± ≈ 28933 (=M2 · 2π/∆, M2 = 1).

Numerical parameters of LX(f) & LX(p): enhancement — cubic spline, x1 = −7.8067, xM = −0.000019, parameters of the numerical scheme in the dual space is chosen
using the recommendations in the thesis with ǫ = 10−12.

Λ+ (Λ−) — the length of the truncated line of integration in upper (lower) half-plane of the frequency domain. m2 — the second central moment of the KoBoL process.
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Table 7. Prices of Asian call options in the KoBoL model. Example 3: flat (refined) iFFT vs. parabolic iFT.

c = 1.1136, λ− = −10, λ+ = 3, ν = 0.2, µ ≈ 0.30403 (m2 ≈ 0.16)

K Benchmark
LX(f) LX(p)
∆ ≈ ∆ ≈

0.02836 0.014118 0.007059 0.02836 0.014118 0.007059
90 14.7955309. -2.9E-06 -2.1E-07 1.9E-08 -2.9E-06 -2.1E-07 1.9E-08
100 8.2812183. -9.6E-06 -7.8E-07 3.5E-08 -9.6E-06 -7.8E-07 3.5E-08
110 3.7180942. -2.0E-05 -1.7E-06 1.5E-07 -2.0E-05 -1.8E-06 1.5E-07

CPU (sec.) 27.2752 27.77 27.8486 0.38203 0.79295 1.6773

Column 2 contains the benchmark prices obtained using our method. Columns labeled “LX(f)” and “LX(p)” contain the relative difference between the benchmark prices
and the results obtained using our method, implemented with flat (refined) iFFT and parabolic iFT, respectively.

The example is taken from [18].
Asian call option parameters: r = 0.04, T = 1, S = 100, N = 12 (number of sampling dates), ∆̄ = T/N = 1/12.

Numerical parameters for benchmark prices: enhancement — cubic spline, x1 = −15, xM = −0.0001, ∆ ≈ 0.0004, ω+ = min{λ+/2, 2}, ω− = max{−2, (λ− − 1)/2},

ζ1 ≈ 0.16935 (M3 = 2), and Λ± ≈ 455732 (=M2 · 2π/∆, M2 = 32).

Numerical parameters of LX(f) & LX(p): enhancement — cubic spline, x1 = −7.186, xM = −0.00001, parameters of the numerical scheme in the dual space is chosen
using the recommendations in the thesis with ǫ = 10−10.

Λ+ (Λ−) — the length of the truncated line of integration in upper (lower) half-plane of the frequency domain. m2 — the second central moment of the KoBoL process.
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Table 8. Prices of Asian call options under BM. Example 1: comparison with the results of Fusai and Meucci
[36] (FM).

A: N = 12 (∆̄ = T/N = 1/12)

K Benchmark
LX FM

A = 4.0236 (u, l) = N/A
M=58 M=114 M=226 M=1000 M=5000 M=10000

90 11.90491575 -2.5E-03 -1.0E-08 0.0E+00 -5.3E-05 5.4E-06 4.6E-06
100 4.88196162 3.8E-03 -1.9E-07 -2.0E-15 5.8E-06 3.2E-05 2.8E-05
110 1.36303795 2.9E-01 -1.9E-07 0.0E+00 4.9E-04 7.5E-05 7.5E-05

CPU (sec.) 0.002395 0.005547 0.015265 N/A

Column 2 contains the benchmark prices obtained using our method with the numerical parameters as follows. Column labeled “LX” contain the relative difference
between the benchmark prices and the results obtained using our method. Column labeled “FM” contains the relative difference between the benchmark prices and the
results obtained using the method of Fusai and Meucci [36]. The results are taken from the tables in op. cit..

The example is taken from [36].

Asian call option parameters: r = 0.0367, T = 1, S = 100, N — number of sampling dates.
BM parameters: σ = .17801, µ ≈ 0.020856.

Numerical parameters for benchmark prices: A = 15.6327, M = 3604.

A — truncation parameter;
M — the number of points in M -point Gaussian quadrature.
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Table 9. Prices of Asian call options under BM. Example 1: comparison with the results of Fusai and Meucci
[36] (FM).

B: N = 50 (∆̄ = T/N = 1/50)

K Benchmark
LX FM

A = 5.7548 (u, l) = N/A
M=332 M=662 M=1322 M=1000 M=5000 M=10000

90 11.93293820 -2.4E-09 0.0E+00 0.0E+00 3.8E-05 4.3E-06 6.5E-04
100 4.93720281 9.5E-08 1.8E-14 -2.2E-14 -1.9E-05 3.6E-05 3.1E-03
110 1.40251551 1.1E-06 6.4E-14 -1.5E-13 -3.7E-04 7.5E-05 7.8E-03

CPU (sec.) 0.040542 0.173280 0.616170 N/A

Column 2 contains the benchmark prices obtained using our method with the numerical parameters as follows. Column labeled “LX” contain the relative difference
between the benchmark prices and the results obtained using our method. Column labeled “FM” contains the relative difference between the benchmark prices and the
results obtained using the method of Fusai and Meucci [36]. The results are taken from the tables in op. cit..

The example is taken from [36].

Asian call option parameters: r = 0.0367, T = 1, S = 100, N — number of sampling dates.
BM parameters: σ = .17801, µ ≈ 0.020856.

Numerical parameters for benchmark prices: A = 11.4577, M = 5288.

A — truncation parameter;
M — the number of points in M -point Gaussian quadrature.
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Table 10. Prices of Asian call options under BM. Example 1: comparison with the results of Fusai and
Meucci [36] (FM).

C: N = 250 (∆̄ = T/N = 1/250)

K Benchmark
LX FM

A = 9.1847 (u, l) = N/A
M=1060 M=2120 M=4240 M=1000 M=5000 M=10000

90 11.94056316 -5.5E-06 8.5E-15 0.0E+00 6.8E-05 1.1E-05 9.8E-06
100 4.95215688 -1.0E-04 6.3E-14 -4.4E-14 -5.5E-04 4.7E-05 3.5E-05
110 1.41336703 -1.2E-03 5.2E-13 1.5E-13 -3.3E-04 9.4E-05 1.0E-04

CPU (sec.) 0.93958 3.6859 14.7639 N/A

Column 2 contains the benchmark prices obtained using our method with the numerical parameters as follows. Column labeled “LX” contain the relative difference
between the benchmark prices and the results obtained using our method. Column labeled “FM” contains the relative difference between the benchmark prices and the
results obtained using the method of Fusai and Meucci [36]. The results are taken from the tables in op. cit..

The example is taken from [36].

Asian call option parameters: r = 0.0367, T = 1, S = 100, N — number of sampling dates.
BM parameters: σ = .17801, µ ≈ 0.020856.

Numerical parameters for benchmark prices: A = 18.363, M = 16954.

A — truncation parameter;
M — the number of points in M -point Gaussian quadrature.



2. NUMERICAL EXAMPLES 80

Table 11. Prices of Asian call options under BM. Example
2: comparison with the results of Černý and Kyriakou [27]
(CK).

A: σ = 0.1, µ ≈ 0.035

K Benchmark
LX CK

A = 5.5479
M=320 M=638 M=1274

90 11.58113414 7.5E-06 -3.2E-12 0.0E+00 -3.6E-07
100 3.33861712 1.6E-02 -1.1E-10 -2.1E-14 -2.1E-06
110 0.27375877 1.2E+00 1.8E-09 -1.2E-12 -3.2E-05

CPU (sec.) 0.036130 0.158800 0.581260 1∗

B: σ = 0.3, µ ≈ −0.005

K Benchmark
LX CK

A = 6.3072
M=182 M=364 M=728

90 13.66981573 -1.8E-05 -7.3E-15 0.0E+00 -4.2E-07
100 7.69859896 -1.2E-04 -3.6E-14 -2.5E-15 -1.2E-06
110 3.89639940 -5.6E-04 -1.1E-13 -2.3E-14 -2.4E-06

CPU (sec.) 0.014509 0.055880 0.231310 0.3∗

C: σ = 0.5, µ ≈ −0.085

K Benchmark
LX CK

A = 8.0298
M=116 M=230 M=458

90 17.19239284 5.2E-03 1.0E-13 1.2E-14 -1.7E-07
100 12.09153558 1.3E-02 2.2E-13 2.5E-14 -4.6E-07
110 8.31441256 3.0E-02 4.0E-13 5.1E-14 -3.1E-07

CPU (sec.) 0.007235 0.021060 0.101140 0.3∗

Column 2 contains the benchmark prices obtained using our method with the numerical parameters

as follows. Column labeled “LX” contain the relative difference between the benchmark prices and
the results obtained using our method. For the method of Černý and Kyriakou [27], the results are
taken from the tables in op. cit. and are the same as our benchmark prices.

The calculations of “LX” presented were performed in MATLAB c© 7.11.0 (R2010b), on a laptop
with characteristics IntelR© CeleronR© Processor T1600 (1MB Cache, 1.66GHz, 667MHz FSB) and 1

GB RAM, under the Genuine Windows VistaTMHome Basic with Service Pack 2 (32-bit) operating
system. The calculation of “CK” presented were performed in MATLAB c© R15, on a Dell Latitude

620 IntelR© Core
TM

2 Duo Processor T7200 (4MB Cache, 2.00 GHz, 667 MHz FSB) and 2 GB RAM.
Asian call option parameters: r = 0.0367, T = 1, S = 100, N = 50 (number of sampling dates).

(The example is taken from [27].)

Numerical parameters for benchmark prices: Panel A: A = 11.0353, M = 5092, Panel B:
A = 11.4577, M = 5288. Panel C: A = 11.4577, M = 5288.

A — truncation parameter;
M — the number of points in M -point Gaussian quadrature.
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Conclusion

We introduced a new method for pricing discretely sample Asian op-

tions, and suggest efficient numerical realization. We calculated prices of

call options for several sets of parameters in the KoBoL and Brownian

motion models, and demonstrated that our method are both more accu-

rate and efficient than the method developed by Fusai and Meucci [36],

and the method developed by Černý and Kyriakou [27].

By comparison with the implementation of the method developed in

[36] and [27], not only is our approach faster, but it is also inherently

more accurate. The complete disentanglement of the dual grids that we

achieved allows one to simultaneously and independently control the er-

rors arise from truncating and discretizing the log-price domain, and the

errors of numerical Fourier inversion. We derive bounds for all sources

of errors, with prescriptions for parameter choices according to a desired

error tolerance.

For the sets of model parameters in [36] and [27], with the imple-

mentation of flat (refined) iFFT, our approach allows one to achieve the

absolute error of 10−8 within 1 seconds; and with the implementation of

parabolic iFT, our approach needs 2 seconds. However, if the order of

the process and/or the interval between two sampling dates are small,

parabolic iFT is significant faster than flat (refined) iFFT, which is due

to the fact that the integrand of the Fourier inversion in flat iFT decays

very slowly at infinity, and too many terms may be needed to satisfy the
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desired error tolerance, while the conformal deformation of the contour of

integration with the subsequent change of the variables (parabolic iFT)

can be used to greatly decrease the number of terms in the simplified

trapezoid rule. In general, parabolic iFT is much faster than flat iFT for

point-wise calculation. Since flat iFT allows one to use (refined) iFFT

algorithm, if the order of the process and/or the interval between two

sampling dates are not small, flat (refined) iFFT is faster than parabolic

iFT.



APPENDIX A

Pricing European options under Lévy process

1. Lévy processes: general definitions and basic facts

For an exposition of the general theory of Lévy processes and their

applications to pricing derivative securities, we refer the reader to [10, 58]

and [17, 30, 61], respectively.

Definition A.1. A one-dimensional Lévy process on a probability

space (Ω,F ,P) is a collection X = {Xt}t≥0 of R-valued random variables

on Ω satisfying the following properties:

(1) Given an integer n ≥ 1 and a collection of times 0 ≤ t0 < t1 <

· · · < tn, the random variables Xt0 , Xt1 −Xt0 , . . . Xtn −Xtn−1 are

independent.

(2) X0 = 0 almost surely.

(3) For any t ≥ 0, the distribution of Xs+1 − Xs is independent of

s ≥ 0.

(4) Stochastic continuity: given t ≥ 0 and ǫ > 0, we have

lim
s→t

P [|Xs −Xt| > ǫ] = 0.

(5) There exists a subset Ω0 ⊂ Ω such that P[Ω0] = 1 and for every

ω ∈ Ω0, the trajectory t 7→ Xt(ω) is right continuous in t ≥ 0,

and has left limits for all t > 0.

Poisson process is an example of a pure jump Lévy processes.

83
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Definition A.2. A stochastic process X on R is a Poisson process

with parameter λ > 0 if it is a Lévy process and, for t > 0, Xt has Poisson

distribution with mean λt:

µt{k} =
e−λt(λt)k

k!
for k = 0, 1, 2, . . . ,

and µt(B) = 0 for any B containing no nonnegative integer.

The Poisson process and Brownian motion are fundamental examples

of Lévy processes. They can be thought of as building blocks of Lévy

processes because every Lévy process is a superposition of a Brownian

motion and a (infinite) number of independent Poisson processes. The

Brownian motion is the only subclass of Lévy processes with continuous

sample paths. Sample paths of any other Lévy process exhibit jumps.

The primary tool in the analysis of distributions of Lévy processes is

characteristic functions of distribution. We give definitions, properties,

and examples of characteristic function.

Definition A.3. Denote by P̂X the characteristic function of the dis-

tribution PX of a random variable X on R. P̂X admits the representation

P̂X(ξ) =

∫

R

eixξPX(x)dx.

Proposition A.4. [58, Proposition 2.5] Let P1, P2 be distribution on

R. If P̂1(ξ) = P̂2(ξ) for ξ ∈ R, then P1 = P2.

The characteristic function of the distribution of the Lévy process Xt

admits the representation

E
[
eiξXt

]
= e−tψ(ξ), ξ ∈ R, t ≥ 0. (A.1)
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The function ψ is called the characteristic exponent of X. It characterizes

X in the sense that two Lévy processes without the same characteristic

exponent have the same probability distribution PXt
, for each t (see [58,

Theorem 7.10]).

Example A.5. a) LetX be the BM with drift µ and volatility σ. Then

the characteristic function of X is given by (A.1) with the characteristic

exponent

ψ(ξ) =
σ2

2
ξ2 − iµξ.

b) Let X be the Poisson process with intensity λ. Then the charac-

teristic function of X is given by (A.1) with the characteristic exponent

ψ(ξ) = λ(1− eiξ).

The Lévy-Khintchine formula below describes all possible characteris-

tic exponents, hence, all Lévy processes.

Theorem A.6. a) Let X be a Lévy process on R. Then its character-

istic exponent admits the representation

ψ(ξ) =
σ2

2
ξ2 − ibξ +

∫

R\0

(
1 + iξx [−1,1](x)− eixξ

)
F (dx), (A.2)

where σ ≥ 0, b ∈ R, and F is a measure on R \ 0 satisfying

∫

R\0

min{|x|2, 1}F (dx) <∞. (A.3)

b) The representation (A.2) is unique.

c) Conversely, if σ ≥ 0, b ∈ R, and F is a measure on R satisfying

(A.3), then there exists a Lévy process X defined by (A.1) and (A.2).

The triplet (σ, F, b) is called the generating triplet. The Lévy measure,

F , can be interpreted as follows: the expected number of jumps per unit of
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time from 0 into a measurable set U ⊂ R\{0} equals
∫
U
F (dx). The term

ixξ [−1,1](x) in (A.2) is needed to ensure the convergence of the integral,

and hence other functions can be used instead of c(x) := [−1,1](x), for

instance, c(x) = 1/(1 + |x|2); the σ and F are independent of the choice

of c but b does depend on the choice.

Example A.7. If σ = 0 and

F (dx) = c(x/|x|) · |x|−ν−1dx,

where ν ∈ (0, 2) and c is a non-negative function, then X is a stable Lévy

process of index ν.

Classes of Lévy process can be constructed in different ways. For ex-

ample, Hyperbolic processes are obtained by constructing a probability

distribution and showing that is infinitely divisible. KoBoL family can

be constructed by taking appropriate Lévy measures and making explic-

itly calculations in (A.2). Once characteristic exponents of some Lévy

processes are constructed, one can extend the list by using subordination

and linear transformation. In the remaining part of this section, we de-

scribe several families of Lévy process, which is widely used in finance,

and remind to the reader the general pricing formulas for the options of

the European type.

2. Classes of Lévy processes of exponential type

To the best of our knowledge, Lévy process were first introduced to

finance by Mandelbrot [54] in 1963. Since then a variety of models based

on Lévy processes have been proposed as models for asset prices and tested

on empirical data. One of the principle motivations for departing from

Gaussian models in finance has been to take into account some of the
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observed empirical properties of asset returns which disagree with these

models. (See the review of literature in [17, 30].)

Mandelbrot [54] used stable Lévy processes of index ν to model the

stock dynamics (see Example A.7). Stable distributions model well the

behavior of real stocks and indices in the center of distribution of returns.

However, the tails of stable distributions are too fat: polynomially decay-

ing, whereas many empirical studies suggest that the tails decay exponen-

tially. Even more importantly, one cannot use the stable Lévy processes

in exponential Lévy models because the expectation of the stock price

E[eXt ] = ∞, which makes the model unsuitable for consistent pricing.

One can preserve the behavior typical for distributions of stable Lévy

processes in the central part, but make tails decay exponentially at in-

finity. These distributions occupy the middle ground between Gaussian

distribution, with super-exponentially decaying tail, and stable distribu-

tions, with heavy polynomially decaying tails. The resulting classes of

processes are called Lévy processes of exponential type.

Some examples of Lévy processes that are commonly used in empirical

studies of financial markets are listed in Chapter 2 Section 2. These

examples are given in terms of characteristic exponent. In the thesis,

we can use the characteristic exponent, without referring to the initial

definition. Below, we give definitions of several class of Lévy processes in

terms of the Lévy measure. The flexibility of choice of the Lévy measure

allows us to calibrate the model to market prices of options and reproduce

statistical features that have motivated their use, for example, implied

volatility skews/smiles.

Definition A.8. [17, Definition 3.1] A Lévy process X is called a

KoBoL process of order ν < 2, if it is a purely discontinuous Lévy process
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with the Lévy measure of the form

F (dx) = c+e
λ−xx−ν−1

(0,+∞)(x)dx+ c−e
λ+x|x|−ν−1

(−∞,0)(x)dx,

where c± > 0, and λ− < 0 < λ+. Constants λ+ and λ− are called the

steepness parameters of the process.

If ν < 0, then density F (dx) ∈ L1. For example, the following special

case ν = −1 is very convenient for computations and simulations.

Definition A.9. A double exponential jump-diffusion model is a Lévy

process with the generating triplet (σ, F, b), where σ 6= 0 and the Lévy

measure is given by

F (dx) = c+e
λ−x

(0,+∞)(x)dx+ c−e
λ+x

(−∞,0)(x)dx.

The double exponential jump-diffusion model was introduced to fi-

nance by Kou [40], and independently, by Lipton [47].

With ν = 0 and σ = 0, we obtain the Variance Gamma Process (VGP),

which was introduced to Finance by Madan and co-authors [53, 52, 51].

Definition A.10. A Variance Gamma Process is a pure jump process

with the Lévy density of the form

F (dx) = c+e
λ−xx−1

(0,+∞)(x)dx+ c−e
λ+x|x|−1

(−∞,0)(x)dx.

The standard definition of a VGP is by subordination of a Brownian

motion: Xt = YZt
, where Yt is a Brownian motion, and Zt is a stochoastic

process with non-decreasing trajectories (subordinator). In Finance, a

subordinator is interpreted as business time [37].
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3. Pricing European options under Lévy processes

We consider a model frictionless market consisting of a riskless bond

yielding the riskless rate of return r, and a stock, which is modeled as an

exponential Lévy process St = eXt , under a chosen equivalent martingale

measure (EMM) Q. We assume that an EMM Q has been fixed once and

for all, and all expectation operators appearing in this text will be with

respect to this measure. The characteristic exponent ψ of X is also under

this Q.

If the stock does not pay dividends, then St must be a martingale

under Q. In terms of the characteristic exponent of the log-price process

X, the EMM-condition can be written as follows:

r + ψ(−i) = 0, (A.4)

where we implicitly assume that ψ(ξ) admits the analytic continuation

into the closed strip −1 ≤ Im ξ ≤ 0 (if this is not the case, then E[St] = ∞

for all t > 0, i.e., the process {St} cannot be priced; we exclude this

situation from our consideration). If the stock pays dividends at constant

rate δ, then (A.4) must be replaced with the EMM condition becomes

r + ψ(−i) = δ. (A.5)

Let V (t, x) be the price of the European option with maturity T and

payoff G(XT ), at time t and Xt = x. We assume that, under a risk-neutral

measure Q chosen for pricing of options on the underlying stock or index,

X is a Lévy process of exponential type [λ−, λ+], with the characteristic

exponent ψ(ξ). Assume that, for some ω ∈ (λ−, λ+), function Gω(x) :=
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eωxG(x) belongs to L1(R). Then V (T, x) is finite, and

V (t, x) = E
[
e−r(T−t)G(XT ) | Xt = x

]
(A.6)

We decompose G into the Fourier integral

G(x) = (2π)−1

∫

Im ξ=ω

eixξĜ(ξ)dξ, (A.7)

substitute (A.7) into the pricing formula (A.6) and change the order of

integration. The result is

V (t, x) = (2π)−1

∫

Im ξ=ω

eixξ−τ(r+ψ(ξ))Ĝ(ξ)dξ, (A.8)

where τ = T − t > 0. Note that the Fubini theorem is applicable for

standard payoffs. Indeed, for digital options, the Fourier transform Ĝ(ξ)

of the payoff decays as |ξ|−1 as ξ → ∞, and for puts and calls, Ĝ(ξ)

decays as |ξ|−2. Furthermore, for a regular Lévy process of exponential

type, of order ν > 0 (see Chapter 2 Section 2 for the definition), there

exists c = c(ω) > 0 and R such that

Reψ(ξ) > c|ξ|ν , (A.9)

for ξ s.t. Im ξ = ω, |ξ| > R. Therefore, the exponential function under

the integral sign decays at infinity faster than |ξ|−N , for any N . For VG

model, this function decays as |ξ|−cτ , where c, τ > 0. In both cases, the

integrand decays faster than |ξ|−1−ǫ, for some ǫ > 0.

Examples A.11. a) Consider a European call option with the strike

price K and expiry date T . The terminal payoff is

G(X(T )) = (eX(T ) −K)+,
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and the integral in (A.7) is well-defined for ξ in the half-plane Im ξ < −1.

Hence, we assume that λ− < −1 (one can also treat the case λ− = −1

but this will lead to additional unnecessary technical complications), and

derive, for any ω ∈ (λ−,−1),

Vcall(t, x) = −
K

2π

∫

Im ξ=ω

ei(x+µτ)ξ−τ(r+ψ
0(ξ))

(ξ + i)ξ
dξ. (A.10)

b) For the put option with the same strike and expiry date, the ter-

minal payoff is

G(X(T )) = (K − eX(T ))+,

and the integral in (A.7) is well-defined for ξ in the half-plane Im ξ > 0.

Hence, we assume that λ+ > 0 (one can also treat the case λ+ = 0 but

this will lead to additional unnecessary technical complications). Take

any ω′ ∈ (0, λ+); then

Vput(t, x) = −
K

2π

∫

Im ξ=ω′

ei(x+µτ)ξ−τ(r+ψ
0(ξ))

(ξ + i)ξ
dξ. (A.11)

c) For the digital call option with the strike price K and expiry date

T , the terminal payoff is

G(X(T )) = [lnK,∞)(X(T )).

The integral in (A.7) is well-defined for ξ in the half-plane Im ξ < 0.

Hence, we assume that λ− < 0 (one can also treat the case λ− = 0 but

this will lead to additional unnecessary technical complications). Take

any ω ∈ (λ−, 0); then

Vd.call(t, x) =
1

2π

∫

Im ξ=ω

ei(x+µτ)ξ−τ(r+ψ
0(ξ))

iξ
dξ. (A.12)
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Notice that the pricing formula above is a special case of a general

formula (A.8). In the case of digitals, the Fourier transform of the payoff

decays slowly, which leads to additional computational difficulties.

The standard approach to the numerical calculation of Fourier trans-

forms is trapezoid rule. The approach was first applied with the FFT

to pricing European options by Carr and Madan [22], produces prices

at many points fairly fast, but may lead to sizable computational errors,

and the setup in which one uses these techniques is not flexible enough

to allow one to control these errors. This observation was made for the

first time in Section 12.3 of [17] in the context of pricing of European op-

tions, and a new fast accurate method, integration along the cut method

(IAC method), for pricing OTM European options was suggested. Later,

deficiencies of iFT techniques were analyzed in a number of papers, for

example, [49, 48, 14, 23, 33, 12, 13, 44], and various improvements

of iFT techniques were suggested. However, certain important points

are not addressed and sufficiently accurate general recommendations for

an approximately optimal choice of parameters of numerical schemes are

missing. More recently, Boyarchenko and Levendorskĭi [18] review sev-

eral variations of iFT in applications to pricing European options, analyze

relations among these variations and derive general estimates for the dis-

cretization and truncation errors of the trapezoid rule, which can be used

to choose an (approximately) optimal mesh and number of terms in the

trapezoid rule. More importantly, a simple conformal map is used to de-

form the contour of integration so that the integrands in (A.10)–(A.12)

decays very fast along the contour.



APPENDIX B

Technicalities

1. Proof of Lemma 2.5

We have

V1(x)− 1 = Ex
[
−eX∆̄ + (eX∆̄ − 1)+

]

= −ex−∆̄ψ(−i) + Ex
[
e−ωX∆̄eωX∆̄(eX∆̄ − 1)+

]

≤ −ex−∆̄ψ(−i) + sup
y∈R

{eωy(ey − 1)+} · e
−ωx−∆̄ψ(iω)

for any ω ∈ (λ−,−1), and we obtain

f1(x) = (1− ex)+(V1(x− ln(1− ex)+)− 1) (B.1)

≤ −ex−∆̄ψ(−i)
(−∞,0)(x)

+(1− ex)+ sup
y∈R

{eωy(ey − 1)+} · e
−ωx+ω ln(1−ex)+−∆̄ψ(iω)

= −ex−∆̄ψ(−i)
(−∞,0)(x)

+ sup
y∈R

{eωy(ey − 1)+} · e
−ωx−∆̄ψ(iω) · (1− ex)1+ω+ .

As x→ −∞, (1− ex)1+ω+ → 1, therefore,

f1(x) = −ex−∆̄ψ(−i) +O(e−ωx−∆̄ψ(iω)), x→ −∞. (B.2)

To derive similar bounds for W2, first, choose A > 0, by applying the

definition: W2(x) = Ex [f1(X∆̄)], where f1 is as in (B.1), we have

W2(x) = Ex
[
f1(X∆̄) (−∞,−A)(X∆̄)

]
+ Ex

[
f1(X∆̄) [−A,+∞)(X∆̄)

]
.

93



1. PROOF OF LEMMA 2.5 94

Substitute (B.2) in the first term above, we find

W2(x) = Ex
[
−eX∆̄−∆̄ψ(−i)

(−∞,−A)(X∆̄)
]

+O
(
e−ωX∆̄−∆̄ψ(iω)

(−∞,−A)(X∆̄)
)

+Ex
[
f1(X∆̄) [−A,+∞)(X∆̄)

]

= Ex
[
−eX∆̄−∆̄ψ(−i)

]
+O

(
Ex
[
e−ωX∆̄−∆̄ψ(iω)

(−∞,−A)(X∆̄)
])

+Ex
[
eX∆̄−∆̄ψ(−i)

[−A,+∞) + f1(X∆̄) [−A,+∞)(X∆̄)
]

= −ex−2∆̄ψ(−i) +O
(
e−ωx−∆̄ψ(iω)

)
, (B.3)

where ω ∈ (λ−,−1). By the same arguments above as in the derivation

of (B.2),

f2(x) = (1− ex)+ ·W2(x− ln(1− ex)+)

= −ex−2∆̄ψ(−i)
(−∞,0)(x) +O

(
e−ωx−∆̄ψ(iω) · (1− ex)1+ω+

)
.

As x→ −∞, (1− ex)1+ω+ → 1, therefore,

f2(x) = −ex−∆̄ψ(−i) +O(e−ωx−∆̄ψ(iω)), x→ −∞.

Therefore, (2.23) holds for n = 2.

By induction, using the recurrence relation of Wn

Wn+1(x) = Ex[(1− eX∆̄)+Wn(X∆̄ − ln(1− eX∆̄)+)] +W2(x),

for n = 3, 4, . . ., the same argument above shows that

Wn(x) = cne
x +O(e−ωx−ψ(iω)), (B.4)



2. PROOF OF LEMMA 3.3 95

where c1 = 0 and cn+1 = (cn− e
−∆̄ψ(−i))e−∆̄ψ(−i), n ≥ 2. Set a = e−∆̄ψ(−i).

We easily find

cn = −(an + · · ·+ a2) = −e−2∆̄ψ(−i)1− e(1−n)∆̄ψ(−i)

1− e−∆̄ψ(−i)
.

Equation

fn(x) = cne
x +O(e−ωx−∆̄ψ(iω)), x→ −∞,

follows from (B.3) and (B.4).

2. Proof of Lemma 3.3

Since the transition operator is translation-invariant, we may assume

that µ = 0 and ψ = ψ0. If X is the process of order ν > 0 or VG and

∆̄ is large enough, we can use Fubini’s theorem to justify the following

equality

p
(s)

∆̄
(x) = (2π)−1

∫

Im ξ=ω

e−ixξ−∆̄ψ0(ξ)(−iξ)sdξ, (B.5)

for any ω ∈ (λ−, λ+). We can use different ω depending on the sign of

x. If x < 0, we use ω = ω+ ∈ (0, λ+), and if x ≥ 0, then we take

ω = ω− ∈ (λ−, 0). Next, we take φ ∈ (0,min{π/2, π/(2ν)}), and introduce

two contours

L+
ω+,φ

= iω+ + (eiφR+ ∪ ei(π−φ)R+)

and

L−
ω−,φ

= iω− + (e−iφR+ ∪ ei(−π+φ)R+).

For x < 0 (resp., x ≥ 0), we deform the contour of integration in (B.5)

into L+
ω+,φ

(resp., L−
ω−,φ

). Since

‖p(s)‖L1 = ‖p(s) (−∞,0)‖L1 + ‖p(s) (0,+∞)‖L1 ,
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it suffices to consider each term on the RHS above separately. The esti-

mates being similar, we consider the first term. For x < 0, we have

p
(s)

∆̄
(x) =

1

π
Re

∫

L+
ω+,φ

e−ixξ−∆̄ψ0(ξ)(−iξ)sdξ.

Changing the variable ξ = iω+ + eiφρ, ρ > 0, we obtain

|p
(s)

∆̄
(x)| ≤

1

π

∫ +∞

0

e(ω++cos(φ−π/2)ρ)x−∆̄Reψ0(iω++eiφρ)|iω+ + eiφρ|sdρ

=
1

π

∫ +∞

0

e(ω++cos(φ−π/2)ρ)x−∆̄Reψ0(iω++eiφρ)

×((ω+ + cosφ · ρ)2 + (sinφ · ρ)2)s/2dρ.

Since ω+ > 0 and cos(φ − π/2) > 0, we can integrate over the half-line

x < 0 and obtain

‖p
(s)

∆̄ (−∞,0)‖L1

≤
1

π

∫ +∞

0

e−Re ∆̄ψ0(iω++eiφρ)

ω+ + cos(φ− π/2)ρ

×((ω+ + cosφ · ρ)2) + (sinφ · ρ)2)s/2dρ. (B.6)

For simplicity, we assume that as ρ→ +∞, for any φ ∈ (−π/2, π/2),

ψ0(iω+ + eiφρ) ∼ d0+e
iφνρν(1 +O(ρ−1)) (B.7)

∂ρReψ
0(iω+ + eiφρ) ∼ νd0+ cos(φν)ρν−1(1 + o(1)) (B.8)

where d0+ > 0; otherwise, in the following considerations, we need to

impose an additional condition on φ:

(Re d0+e
iφν) > 0,

and replace d0+ cos(φν) with Re(d0+e
iφν). Then, using (B.8), we conclude

that there exists C > 0 such that Reψ0(iω+ + eiφρ) is monotone on
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(C,+∞). One can easily verify that C is fairly moderate for typical

parameters of processes under consideration. Hence, if s ≤ 3, which are

of interest to us, and ω+ is not too small (since we have the freedom of

the choice of ω+ ∈ (0, λ+), the essential condition is λ+ > 0 is not too

small), we can replace the integral in (B.6) with the integral over (C,+∞).

Making the change of variables y = ∆̄Reψ0(iω++eiφρ), and taking (B.7)

and (B.8) into account, we obtain

ρ =

(
y

∆̄d0+ cos(φν)

)1/ν

(1 +O(y−1/ν))

dρ

dy
∼ ν−1(∆̄d0+ cos(φν)))−1/νy1/ν−1

and

((ω+ + cosφ · ρ)2 + (sinφ · ρ)2)s/2

ω+ + cos(φ− π/2)ρ

∼
ρs−1

cos(φ− π/2)

∼ (cos(φ− π/2))−1(∆̄d0+ cos(φν)))(1−s)/νy(s−1)/ν .

Substituting into (B.6), we derive an approximate bound

‖p
(s)

∆̄ x<0‖L1 ≤
(∆̄d0+)

−s/ν

πνD(s, φ)

∫ +∞

Cν∆̄d0+ cos(φν)

e−yys/ν−1dρ, (B.9)

where

D(s, φ) = (cos(φν))s/ν cos(φ− π/2).

Denote by D(s) the supremum of D(s, φ) over φ ∈ (0,min{π/2, π/(2ν)}).

Then, using (B.9) and the same bound for ‖p
(s)

∆̄ x>0‖L1 , we obtain (3.6).

For VG, assuming that s < 2c∆̄, where c is the intensity parameter in

ψ0(ξ) = c[ln(λ+ + iξ)− lnλ+ + ln(−λ− − iξ)− ln(−λ−)],



3. PROOF OF LEMMA 3.4 98

we deduce from (B.9) an approximate bound:

‖p
(s)

∆̄
‖L1 ≤

2

π cos(φ− π/2)

∫ +∞

C

ρ−2c∆̄+s−1dρ

≤
2

π cos(φ− π/2)(2c∆̄− s)
.

3. Proof of Lemma 3.4

We first estimate the first derivative of Vn and Wn, n = 1, 2, . . ..

Lemma B.1. For all x and n = 1, 2, . . .,

|V ′
n(x)| ≤ n, (B.10)

|W ′
n+1(x)| ≤ 2n− 1. (B.11)

Proof. Since 0 ≤ (1 − ex1 − · · · − exn)+ ≤ (1 − ex1)+ ≤ 1, we have

0 ≤ Vn(x) ≤ V1(x) ≤ 1 for all x. Moreover, Wn = Vn − V1, we have

− 1 ≤ Wn(x) ≤ 0 for all x. (B.12)

We consider classes of Lévy processes X = {Xt}t≥0, which satisfy

(ACT)-condition, that is, the transition measure PXt
are absolutely con-

tinuous for all t > 0. This implies, in particular, that if g is continuous

and g′ is measurable and bounded, then

d

dx
Ex[g(X∆̄)] = Ex[g′(X∆̄)]. (B.13)

Applying (B.13) with g(x) = (1 − ex)+, we find −1 ≤ V ′
1(x) ≤ 0 for

all x. For n = 1, 2, . . ., let Gn(x) = (1 − ex)+ · Vn(x − ln(1 − ex)+). We

find that

G′
n(x) = −ex (−∞,0)(x)Vn(x− ln(1− ex)+) + V ′

n(x− ln(1− ex)+),
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therefore, −2 ≤ G′
1(x) ≤ 0. By definition (2.5):

Vn(x) = Ex
[
(1− eX∆̄)+Vn−1

(
X∆̄ − ln(1− eX∆̄)+

)]
,

we have

−2 ≤ V ′
2(x) ≤ 0.

By induction, for n = 3, 4, . . ., we easily find that

−n ≤ G′
n−1(x) ≤ 0 and − n ≤ V ′

n(x) ≤ 0, for all x.

Therefore, (B.10) holds.

Next, let f1 be as in (2.8):

f1(x) = (1− ex)+ · (V1(x− ln(1− ex)+)− 1),

then

f ′
1(x) = ex (−∞,0)(x)(V1(x− ln(1− ex)+)− 1) + V ′

1(x− ln(1− ex)+).

From (B.12) and (B.10), we find

−1 ≤ f ′
1(x) ≤ 1.

Applying (B.13) with g(x) = f1(x) and using the definition of W2 =

Ex[f1(X∆̄)], we prove (B.11) for |W ′
2(x)| ≤ 1. For n = 2, 3, . . ., let

fn(x) = (1− ex)+ ·Wn(x− ln(1− ex)+).

then

f ′
n(x) = −ex (−∞,0)(x)Wn(x− ln(1− ex)+) +W ′

n(x− ln(1− ex)+).
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Using |W ′
2(x)| ≤ 1 and (B.12), we find

−1 ≤ f ′
2(x) ≤ 2.

Applying (B.13) with g(x) = f2(x) to

W ′
n+1(x) =

d

dx
Ex [fn(X∆̄)] +W ′

2(x),

we obtain (B.11) with n = 2. By induction, for n = 3, 4, . . .,

−n+ 1 ≤ f ′
n ≤ 2n− 2, and − n ≤ W ′

n+1 ≤ 2n− 1.

�

The bounds for the derivatives in Lemma B.1 are simple, convenient,

and, if the number of the sampling dates is not too large, the constants in

the bounds are moderate. However, even if we use the piece-wise linear in-

terpolation, we need estimates for the second derivatives of V1 and Wn. If

we use the piece-wise cubic interpolation or cubic splines, we need bounds

for the derivatives of order 4. We can derive bounds for the derivatives of

V1 and Wn of order s + 1 > 1 in terms of the L1-norm of the derivatives

p
(s)

∆̄
of the transition kernel.

Lemma B.2. Let g be continuous with a measurable bounded deriva-

tive. Then ∣∣∣∣
ds+1

dxs+1
Ex[g(X∆̄)]

∣∣∣∣ ≤ ‖p
(s)

∆̄
‖L1 · ‖g

′‖L∞ . (B.14)
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Proof. For processes under consideration, the transition kernel is

infinitely differentiable on R, with the exception of 0 for VG, therefore,

∣∣∣∣
ds+1

dxs+1
Ex[g(X∆̄)]

∣∣∣∣ =
∣∣∣∣
ds

dxs
Ex[g′(X∆̄)]

∣∣∣∣

=

∣∣∣∣
∫

R

p
(s)

∆̄
(y − x)(−1)sg′(y)dy

∣∣∣∣

≤

∫

R

|p
(s)

∆̄
(y − x)| · |g′(y)|dy

≤ ‖g′‖L∞

∫

R

|p
(s)

∆̄
(y − x)|dy = ‖p

(s)

∆̄
‖L1 · ‖g

′‖L∞ .

�

Lemma B.3. For all s such that ‖p
(s)

∆̄
‖L1 <∞, and all n ≥ 1,

‖V (s+1)
n (x)‖L∞ ≤ n · ‖p

(s)

∆̄
‖L1 (B.15)

‖W
(s+1)
n+1 (x)‖L∞ ≤ (2n− 1) · ‖p

(s)

∆̄
‖L1 . (B.16)

Proof. By applying Lemma B.2, and (B.10) in Lemma B.1, we ob-

tain (B.15). Similarly, (B.16) follows from (B.11). �

Lemma B.4. Let s ≥ 1 be an integer and g be s−1 times continuously

differentiable on (−∞, 0), with the derivative of order s measurable and

bounded. Then, for s = 1, 2, 3, 4,

∣∣∣∣
ds

dxs
(1− ex)+g(x− ln(1− ex)+)

∣∣∣∣ ≤
s∑

j=0

(
s

j

)
‖g(j)‖L∞ . (B.17)

Proof. Let x < 0. Change the variable y = x− ln(1− ex). Then we

have the following sequence of equivalent equalities

1− ex = (1 + ey)−1,
dy

dx
= (1− ex)−1 = 1 + ey,
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and therefore,

d

dx
(1− ex) · g(x− ln(1− ex)) =

dy

dx

d

dy
(1 + ey)−1 · g(y)

= u(y) · g(y) + g′(y),

where u(y) = −ey/(1 + ey). Direct calculations show that

ds

dxs
(1− ex)g(x− ln(1− ex)) =

s∑

j=0

fjs(y)g
(j)(y),

where fjs are rational functions of e
y, and satisfies fjs(y) → 0 as y → −∞,

|fjs(y)| →
(
s
j

)
as y → +∞, and, at points of local minima of |fjs| (if such

points exist), |fjs(y)| <
(
s
j

)
(since we consider s ≤ 4, the verification can

be easily done on the case-by-case basis). Hence, (B.17) holds. �

By applying Lemma B.4 to g = V1 and g = Wn and taking into account

Lemma B.3, we obtain Lemma 3.4.



APPENDIX C

Interpolation of higher order: cubic spline

We want to evaluate the action of Fourier transform to a measurable

function f on R:

(Fx→ξf)(ξ) =

∫

R

e−iξxf(x)dx. (C.1)

Given the function eIm ξ·xf(x) ∈ L1(R), the right hand side of (C.1) con-

verge absolutely. Typically, the function f has a kink or point of discon-

tinuity, in such cases, it is advantageous to take into account this kink,

and consider two sets of piecewise smooth polynomial approximation.

In the evaluation of (C.1), both for a smoother approximation and

for a more efficient approximation, one has to go to piecewise polynomial

approximations with higher order pieces. In this section, we describe the

scheme for the piecewise cubic spline interpolation.

We assume that we are given the values of f on a uniformly spaced

grid ~x = (xk)
M
k=1, where xk = x1 + (k − 1)∆ and ∆ > 0 is fixed. Write

uk = f(xk) for all k. If f(x) has a kink x = h, we choose a grid such that

xh = h; then we interpolate f on [x1, xh] and [xh, xM ]. For simplicity,

below, we assume that f is smooth on [x1, xM ]

First, we choose the interpolant u to f to consist of cubic pieces:

u(x) = Sk(x) = ak + bkx+ ckx
2 + dkx

3, x ∈ [xk, xk+1], k ≥ 0. (C.2)
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The coefficients ak, bk, ck and dk are determined from the following con-

tinuity conditions:

Sk(xk) = uk Sk(xk+1) = uk+1

S ′
k(xk+1) = S ′

k+1(xk+1) S ′′
k (xk+1) = S ′′

k+1(xk+1)

and two initial conditions:

S ′
1(x1) = s′1, S ′

M(xM) = s′M .

Let us write

S ′
k(xk) = s′k, k = 1, . . . ,M.

Next, we replace the function f(x) that appears in the integrand in

(C.1) with the cubic spline functions we just described. This replaces

(Fx→ξf)(ξ) with a sum of integrals of the form

∫ xk+1

xk

e−iξx(ak + bkx+ ckx
2 + dkx

3)dx, 1 ≤ k ≤M.

A direct calculation ultimately leads to the following approximation:

(Fx→ξf)(ξ) ≈ e−iξx1
(
∆u1Û1(ξ) + ∆2s′1Û

d
1 (ξ)

)

+e−iξxM
(
∆uM ÛM(ξ) + ∆2s′M Ûd

M

)
,

+
M−1∑

k=2

e−iξxk
(
∆ukÛ(ξ) + ∆2s′kÛ

d(ξ)
)

(C.3)

where

Û1(ξ) = (iξ∆)−4
(
12− 6(iξ∆) + (iξ∆)3 − 12e−iξ∆ − 6(iξ∆)e−iξ∆

)

ÛM(ξ) = (iξ∆)−4
(
12 + 6(iξ∆)− (iξ∆)3 − 12eiξ∆ + 6(iξ∆)eiξ∆

)
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Ûd
1 (ξ) = (iξ∆)−4

(
6− 4(iξ∆) + (iξ∆)2 − 6e−iξ∆ − 2(iξ∆)e−iξ∆

)

Ûd
M(ξ) = (iξ∆)−4

(
−6− 4(iξ∆)− (iξ∆)2 + 6eiξ∆ − 2(iξ∆)eiξ∆

)

Û(ξ) = Û1(ξ) + ÛM(ξ)

Ûd(ξ) = Ûd
1 (ξ) + Ûd

M(ξ).

By providing the slops at the end points, the slopes s′k, k = 2, . . . ,M − 1

can be obtained by solving a tridiagonal linear system of equations:

s′k−1 + 4s′k + s′k+1 = 3(−uk−1 + uk+1)/∆, 2 ≤ k ≤M − 1.

Following the setup in Chapter 2 Section 4.2, we set uM = 0, u1 =

cne
x1 , where c1 = −e−∆̄ψ(−i), and cn is given by (2.24) if n ≥ 2, uj =

fn(xj), j = 2, 3, . . . ,M −1, and approximate fn by the function u defined

by:

(1) u(x) = cne
x, x ≤ x1;

(2) u(x) = 0, xM ≤ x <∞; and

(3) use cubic spline (C.2) with s′M = 0, xj ≤ x ≤ xj+1, j =

2, 3, . . . ,M − 1.

Using (C.3), we obtain an analogue of (2.28):

Ex [u(X∆̄)] = U1(x) + U(x) + Ud
1 (x) + Ud(x),

where

U1(x) = −u1

(
V1(x− x1) + 12 ·

V4(x− x1)− V4(x− x0)

∆3

+6 ·
V3(x− x1)− V3(x− x0)

∆2

)
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U(x) =
M∑

j=1

uj

(
−12 ·

V4(x− xj−1)− 2V4(x− xj) + V4(x− xj+1)

∆3

+6 ·
V3(x− xj−1)− V3(x− xj+1)

∆2

)

Ud
1 (x) = −s′1

(
6 ·

−V4(x− x1) + V4(x− x0)

∆2

−2 ·
2V3(x− x1) + V3(x− x0)

∆
− V2(x− x1)

)

Ud(x) =
M∑

j=1

s′j

(
6 ·

V4(x− xj−1)− V4(x− xj+1)

∆2

−2 ·
V3(x− xj−1) + 4V3(x− xj) + V3(x− xj+1)

∆

)
,

x0 = x1 −∆ and xM+1 = x1 +∆, V1 is as in (2.16), and Vs is as in (2.27).



APPENDIX D

Alternative calculations

We outline several possible directions in which the method of Chap-

ter 2 can be developed further. In the following setup, since (i)FFT and

fast convolution algorithm are not applicable, and parabolic iFT is more

efficient and accurate than flat iFT for point-wise calculation, we would

recommend to use parabolic iFT when the calculations in the dual space

are needed. For the choice of parameters of parabolic iFT, see Chapter 4

Section 3.4.

1. Approach 1

In (2.6)–(2.7), we have to evaluate V1 in (2.16) and Wn in (2.28) at

points of the form yk := xk − ln(1 − exk)+, where xk are points of an

equally spaced grid. By taking into account this feature, we re-arrange

the algorithm in Chapter 2 Section 4.3 as follows:

1. calculate V1 (ℓ∆− ln(1− exℓ+1)) for ℓ = 0, 1, . . . ,M − 1, and V2 on

a M ×M matrix, with the entries (i, j) = (1 − i)∆ − ln(1 − exj),

using parabolic iFT;

2. calculate Eyk [u(X∆̄)], k = 1, 2, . . . ,M1, using (2.28) and matrix

multiplication.
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Moreover, one can work with non-uniformly spaced grid of xk = x1 +
∑k−1

j=1 ∆j. Then, (2.28) becomes

Ex [u(X∆̄)] = −u1 ·

(
V1(x− x1) +

V2(x− x1)− V2(x− x2)

∆1

)

+
M−1∑

j=2

uj ·

(
V2(x− xj−1)− V2(x− xj)

∆j−1

−
V2(x− xj)− V2(x− xj+1)

∆j

)
, (D.1)

where V2 is as in (2.27).

2. Approach 2

First, write the expectations (2.6) and (2.7) as the integrations on the

real line:

W2(y) =

∫ 0

−∞

f1(z)p(z − y)dz, (D.2)

and, for n ≥ 2,

Wn+1(y) =

∫ 0

−∞

fn(z)p(z − y)dz +W2(y), (D.3)

where f1 and fn are as in (2.8) and (2.9), respectively, and p is the the

probability density of the increments X∆̄. Then, any standard quadrature

can be used to evaluate the truncated integral at y = z − ln(1 − ez)+,

provided one can calculate fn and p on chosen grids.

Explicitly, the integrals are calculated as follows. First, as in Chap-

ter 2, we truncate the intervals of integrations in (D.2) and (D.3) from

above at a point zM < 0, and use a partial truncation from below, that

is, on (−∞, z1], we replace fn(z) with cne
z, where c1 = −e−∆̄ψ(−i), and

cn is given by (2.24) if n ≥ 2. Next, we choose a quadrature, construct a

grid of points ~z in [z1, zM ], and evaluate fn on ~z. Set ~y = ~z − ln(1− e~z),

and use parabolic iFT to accurately evaluate p(zi−yj). Finally, apply the
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quadrature to approximate the integral:

Wn+1(yj) ≈ cne
z1V (yj− z1)+

M∑

ℓ=1

fn(zℓ) ·p(zℓ−yj) ·wℓ+W2(yj) · (1− δn1),

where wℓ are the weight of the chosen quadrature, and

V (x) = (2π)−1

∫

Im ξ=ω

eixξ−∆̄ψ(ξ)

(1− iξ)
dξ, (D.4)

ω ∈ (0, λ+) if x
′ = x+ µ∆̄ ≥ 0, and ω ∈ (λ−,−1) otherwise.

This scheme is especially useful in cases when the probability density

function of the increment behave relatively regular and its tail is relatively

thin (for numerical examples, see Chapter 5 Section 2.4).

2.1. Algorithm. The following algorithm calculates VN(γ).

1. Choose truncation parameters z1 and zM .

2. Choose a quadrature method, and construct grids: ~z = (zj)
M
j=1, and

set ~y = ~z − ln(1− exp(~z)).

3. Calculate ~V1 ≈ V1(~y); and set ~W1 = ~V1 − 1.

4. Calculate ~V ≈ V (~y − z1), where V is as in (D.4); and for j =

1, . . . ,M , calculate p(~z − yj).

5. Calculate V1,γ ≈ V1(γ), Vγ ≈ V (γ − z1) and p(~z − γ).

6. In the cycle w.r.t k = 1, 2, . . . , N − 2,

• If k = 1, set ck = −e−∆̄ψ(−i); otherwise, ck is as in (2.24).

• calculate

~Wk+1 = cne
z1 ~V +

M∑

ℓ=1

(1− ezℓ) ·Wk(yℓ) · p(zℓ − ~y) · wℓ,

where wℓ are the weight of the chosen quadrature;
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• for k = 1, store ~U = ~W2 and

Wγ =
M∑

ℓ=1

(1− ezℓ) ·Wk(yℓ) · p(zℓ − γ) · wℓ;

• for k = 2, 3, . . . , N − 2, set ~Wk+1 = ~Wk+1 + ~U .

7. Let cN−1 be as in (2.24), and calculate

VN(γ) ≈ cN−1e
z1Vγ +

M∑

ℓ=1

(1− ezℓ) ·WN−1(yℓ) · p(zℓ − γ)wℓ + ~Wγ + V1,γ .
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touch digital options in Lévy-driven models, International Journal Theoretical and

Applied Finance, Vol. 12, No. 8 (2009), pp. 1125–1170.
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cesses and discrete Asian options pricing, Proceedings of the 2011 Winter Simu-

lation Conference, S. Jain, R.R. Creasey, J. Himmelspach, K.P. White and M. Fu

(Eds.), IEEE Press, New Jersey (2011), pp. 444–456.

[29] Z. Chen, L. Feng and X. Lin, Simulation of Lévy processes from their character-
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[44] S. Levendorskĭi and J. Xie, Fast pricing and calculation of sensitivities of out-

of-the-money European options under Lévy processes, Journal of Computational
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