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Abstract

Lattice Boltzmann methods are a fully discrete model and numerical method for

simulating fluid dynamics, historically they have been developed as a continuation

of lattice gas systems. Another route to a lattice Boltzmann system is a discrete

approximation to the Boltzmann equation. An analysis of lattice Boltzmann systems

is usually performed from one of these directions.

In this thesis the lattice Boltzmann method is presented ab initio as a fully

discrete system in its own right. Using the Invariant Manifold hypothesis the mi-

croscopic and macroscopic fluid dynamics arising from such a model are found. In

particular this analysis represents a validation for lattice Boltzmann methods far

from equilibrium.

Far from equilibrium, at high Reynolds or Mach numbers, lattice Boltzmann

methods can exhibit stability problems. In this work a conditional stability the-

orem for lattice Boltzmann methods is established. Furthermore several practical

numerical techniques for stabilizing lattice Boltzmann schemes are tested.
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Chapter 1

Introduction

The most common approach to solving a fluid dynamics problem is to attempt a di-

rect numerical simulation of a discrete approximation to the Navier-Stokes equations

[4]. The Navier-Stokes equations are simply given by conservation laws applied to a

continuum. Such a description of a fluid may, although being a convenient model, be

considered somehow non-physical. A model more related to reality is to specifically

recognise that a fluid is composed of a large number of individual particles moving

and interacting with each other through a potential energy. Such an intuitive and

physical model is unfortunately far too expensive to implement for almost all fluid

dynamics problems.

Lattice Boltzmann algorithms have been developed as a discrete algorithm used

to approximate fluid dynamics. In such algorithms the dynamics of a statistical

distribution of particles is simulated, rather than either the direct solution of macro-

scopic equations or a microscopic molecular dynamics type simulation of individual

particles. The usual model hierarchy with respect to macro vs microscopic dynamics

is Navier-Stokes, Boltzmann Equation, Molecular Dynamics. The lattice Boltzmann

method takes the place of the Boltzmann equation for a A lattice Boltzmann system

is computationally practical to use while retaining some of the physical intuitive-
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ness of the molecular dynamics type simulations. A more straight forward handling

of inter-species reactions and boundary conditions can be a boon in certain fluid

dynamics problems, for example in complex fluids. [66]

A lattice Boltzmann algorithm can be arrived at from a number of directions.

Historically one motivation is as a development of a lattice gas automata system

[14, 23, 35], for a review see [51]. Such a system could operate on the same discrete

velocity principle as a lattice Boltzmann system. On each edge of the lattice there

is a binary option of whether a particle exists or does not. These particles advect

along these edges to nodes where the edges intersect. At that point a probabilistic

collision operation is applied and the particles leave the node along newly selected

edges. It can be shown that the emergent macroscopic dynamics of such a system

are the Navier-Stokes equations (with some appropriate assumptions).

Such a system can be viewed as a rather coarse approximation to a molecular

dynamics simulation. A great advantage is that the number of degrees in the freedom

is dramatically reduced. For a direct molecular dynamcis simulation of a fluid then

the number of degrees of freedom would be of the order of Avagadro’s constant, which

is impractically high for todays computers. Another benefit of such an algorithm is

that it is extremely local, during each time step each node is only concerned with the

usually small number of edges connecting it to its neighbours. This makes such an

algorithm rather easy to parallelize, simply be assigning a subdomain of the system

to each processor. However such an approach also has its negatives. In particular,

although the desired macroscopic dynamics may be achieved theoretically, due to

the binary nature of the ‘fluid’ the results may be noisy. One way to arrive at

lattice Boltzmann type system then, is to remove the condition that the particle

populations moving along each edge must be binary. Allowing a floating point value

for particles along these edges implies a density of particles. With an appropriate

modification of the collision operation one arrives at a lattice Boltzmann system.
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Another, perhaps more modern, derivation of a lattice Boltzmann system is

as a direct discretization of Boltzmann’s kinetic transport equation (Eq 2.1) See

e.g. [34, 60, 62]. The transport equation, along with some inseparable attendant

concepts (entropy and the Maxwellian distribution) represents the foundation of

non-equilibrium statistical mechanics. It gives the time evolution for a one particle

statistical distribution function of particles. Most importantly pairwise interactions

between particles are not considered. Rather, through the assumption of ‘molecu-

lar chaos’, collisions between particles are modelled as a local increase in entropy

towards the equilibrium distribution.

Although any discrete time approximation qualitatively changes the nature of the

system in comparison with the fully continuous Boltzmann transport equation, one

idea remains key. The notion of the local equilibrium (the Maxwell distribution in a

continuous space system) defines the system. Supposed collisions between particles

introduce entropy, or dissipation, which drives the system towards the equilibrium

locally and the equilibrium can be defined as the fixed point of the collisions, the

position of maximum entropy.

In a continuous time system the equilibrium can be considered as a particular

branch of the dynamics, which represents the limit where local production of entropy

is maximized. Analogously in the discrete time system, a chain of states, each

element of which is locally at equilibrium, represents a branch of the discrete time

dynamics.

An analysis of the continuous time system is usually based on a separation of

the dynamics into fast/slow components. In particular the collision time scale τ

is assumed to be small and may then be used in a Chapman-Enskog [13] expan-

sion. The rate of attraction towards the local equilibrium is inversely proportional

to the amount of dissipation produced in the system. Therefore this rate is usually

selected to model a fluid at a particular viscosity and therefore Reynolds num-
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ber. An alternative method for closing the microscopic system is given by Grad’s

approximation[1, 31, 60]. Here an approximation to the Boltzmann equation is made

by expanding the distribution function in terms of Hermite polynomials in veloc-

ity space. The coefficients of these polynomials are directly related to observable

macroscopic fluid variables.

In the discrete time system collisions occur instantaneously every ε units of time.

On this basis the collision parameter τ is not a time scale, it still however controls

the amount of dissipation produced in the system and thereby the local contraction

to equilibrium. Altogether then the amount of dissipation in a discrete time system

depends on both parameters ε and τ , which respectively control the frequency and

magnitude of the injections of dissipation into the system.

The introduction of a second parameter into the system may complicate a com-

plete asymptotic analysis of the dynamics, as different cases based on the relative

sizes of these parameters should be compared.

Lattice Boltzmann methods are often applied for fluids where the real physical

time scale τ is indeed small, but with relatively large time steps. In such systems

the meaning of the parameter τ must be lost and the Chapman-Enskog analysis of

the continuous system cannot be called on. This suggests that a proper analysis of

the discrete time system is best performed using asymptotics in the small difference

parameter ε only.

An analysis of the microscopic dynamics of a single relaxation time lattice Boltz-

mann system represents the first chapter of this work. This analysis is based on

asymptotic expansions of the small parameter ε, combined with an application of

the invariance equation. The invariance equation is the key tool used in this work

to calculate the microscopic lattice Boltzmann dynamics.

The state of any lattice Boltzmann system cannot be completely described by

the state of its corresponding macroscopic variables. There is at least one (and
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frequently more than one) degree of freedom in the system which controls dissipation.

An equivalent statement is that the dimension of the space which the statistical

distribution functions operate in as at least one more than the dimension of the

space of the macroscopic variables.

The invariance manifold hypothesis tells us that using the change of macroscopics

due to free flight of particles between collision operations gives a unique chain of

states in this higher dimensional space. This chain of states belong to the invariant

manifold which can in principle be calculated up to an arbitrary finite order.

The zero order approximation to the dynamics is given by a chain of local equi-

librium states. The form of the higher order corrections are presented. These are

necessary to calculate the macroscopic dynamics up to the same order. They depend

on the space derivatives of the distribution function and the derivatives of the local

equilibrium along the macroscopic moments, as well as the parameter τ . In this

work the microscopic dynamics of the single relaxation time system are calculated

up to the second order.

Under some hypotheses about the magnitude of these derivatives then the size of

these corrections are bounded. In that case we can make some statements regarding

the proximity of the dynamics to equilibrium chain.

The macroscopic dynamics of a lattice Boltzmann system are also given by an

infinite order expansion in the small parameter ε. A usual selection of the equilibrium

gives the Euler equations at the zero order. At the first order a Navier-Stokes type

correction appears. Here there may arise some additional error terms due to the

necessary finite velocity approximation used to produce a discrete algorithm. In

particular this occurs if the velocity set is not sufficiently large to accurately match

the third order moments of the Maxwellian. If the velocity set is large enough

to calculate these moments accurately the Navier-Stokes viscous stress is produced

exactly [65]. Higher order macroscopic dynamics which are not calculated in this
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work are dependent on the higher order moments of the equilibrium.

In the microscopic dynamics a stable branch of the dynamics is given by a chain of

states all at local equilibrium. When a lattice Boltzmann system becomes unstable

we can consider that the problem is that we are too far from this stable branch

and that we should return nearer to it. An obvious problem is that the rate of

progress toward the equilibrium is used to control the production of dissipation and

therefore Reynolds number and viscosity. This means that any modification of the

dissipation made to improve stability should be carefully made so as not to affect

the hydrodynamic dissipation, at least on average.

In variance with the continuous Boltzmann transport equation, the usual equi-

librium of a fully discrete lattice Boltzmann method does not respect a H-theorem

[67, 68]. It has been suggested that a discrete H-theorem and corresponding equi-

librium could be introduced to benefit lattice Boltzmann systems [7, 41, 38, 42].

In a stability context a discrete H-theorem provides a Lyapunov function for the

collision operation. The usual relaxation type collision operations can easily shown

to be linearly stable, however in some circumstances H-stability may be a stronger

requirement.

Another idea on how to stabilize a lattice Boltzmann system is simply to manu-

facture additional dissipation in the parts of the domain furthest from equilibrium,

this has been termed ‘entropic limiting’ [8, 9, 10]. Other more general types of filter-

ing, including directly filtering the macroscopic moments have also been proposed

[57]. Such methods may be considered as a particular example of general flux limiter

schemes for fluid dynamics [44].

In fact in a lattice Boltzmann system many instabilities arise from extremely

localized singularities and shockwaves, a feature of linear second-order difference

schemes [32]. These produce non-physical dispersive oscillations which then propa-

gate and threaten the stability of the system. To prevent nonphysical oscillations,
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most upwind schemes employ limiters that reduce the spatial accuracy to first order

through shock waves. A mixed-order scheme may be defined as a numerical method

where the formal order of the truncation error varies either spatially, for example,

at a shock wave, or for different terms in the governing equations, for example,

third-order convection with second-order diffusion [58].

It may be sufficient to target the source of any oscillations and suppress them

before they pollute the system. Such a suppression would be achieved by imple-

menting a lower order scheme locally. In an implementation of entropic filtering the

size of the non-equilibrium component of the dynamics is measured in some way.

Should it exceed some pre-defined threshold then additional entropy is injected in

order to return nearer to equilibrium. Due to this threshold the percentage of the

domain where extra entropy may be injected is rather small and should not affect

low viscosity hydrodynamics on average.

One more technique used to stabilize lattice Boltzmann methods is termed Mul-

tiple Relaxation Time (MRT) lattice Boltzmann [18, 16, 20, 21, 46, 47]. In many

velocity systems used in lattice Boltzmann systems symmetry requires a higher num-

ber of velocities than strictly required to recover the Navier-Stokes equations. This

leads to a number of ‘spare’ degrees of freedom in the system, in the standard single

relaxation time lattice Boltzmann systems these are not exploited. MRT lattice

Boltzmann uses these degrees of freedom to modify dissipation at different orders of

the dynamics. Hence the higher order components of the dynamics can be smoothed

without compromising the Navier-Stokes component of the macroscopics.

In the last part of this work some more details about these enhancements are

made and finally they are put to some numerical tests.
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Chapter 2

Microscopic Equations for

Discrete Time Boltzmann Systems

2.1 Continuous and Discrete Time Systems

Lattice Boltzmann Systems are discrete systems used to solve fluid dynamics and

more [62]. For fluids, such systems can be derived as a discretization of the Boltz-

mann Equation

∂tf + v · ∂xf = Q(f) (2.1)

where f ≡ f(x,v, t) is a one particle distribution function over space and velocity

space at time t, The operator.Q(f) represents the interaction between particles,

sometimes called a collision operation. A particular example of the interaction Q(f)

is the Bhatnagar-Gross-Krook[6, 15] operator

Q(f) = −1

τ
(f − f eq). (2.2)

8



The BGK operation represents a relaxation towards the local equilibrium f eq with

rate 1/τ . The distribution f eq is given by the Maxwell Boltzmann distribution,

f eq =
ρ

(2πT )D/2
exp

(−(v − u)2

2T

)

. (2.3)

The macroscopic quantities are available as integrals over velocity space of the dis-

tribution function,

ρ =

∫

f dv,

ρu =

∫

fv dv,

ρu2 + ρT =

∫

fv2 dv.

(2.4)

In the standard presentation[34, 62] a quadrature approximation to these inte-

grals is the first ingredient to discretize this system. The second is a time integration

along the discrete velocities given by the quadrature. The scalar field of the pop-

ulation function (over space, vector space and time) becomes a sequence of vector

fields (over space) in time fi(x, nt ε), nt ∈ Z, where the elements of the vector each

correspond with an element of the quadrature. Explicitly the macroscopic moments

are given by,

ρ =
n
∑

i=1

fi,

ρu =
n
∑

i=1

fivi,

ρu2 + T =
n
∑

i=1

fiv
2
i .

(2.5)

The complete discrete scheme is given by

fi(x + εvi, t+ ε) = fi + ω(fi − f eq
i ) (2.6)
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where ε is the time step. For this system a discrete equilibrium must be used, one

way to find a discrete equilibrium is simply to evaluate a second order Mach number

expansion of the Maxwellian distribution at each quadrature node. The second

order expansion is taken in order to guarantee the exact zero order hydrodynamics

(the Euler equations). In the collision operation there is a new notation ω for the

relaxation rate. This indicates that this parameter has a qualitatively different effect

in the discrete system from the continuous one.

In the continuous time system the parameter 1/τ is a true rate, in the discrete

time system the relaxations occur every ε units of time, the parameter ω rather

controls the magnitude of the relaxation. The introduction of a second parameter,

the time step, complicates the analysis of discrete time systems. In the continuous

time system the parameter τ can be assumed small and an asymptotic expansion of

the dynamics around the equilibrium can be made. In the discrete time system the

introduction of a second small parameter (the time step) complicates this and the

relative size of these two parameters is important. If the time step ε is significantly

larger than the physical time scale τ those microscopic dynamics cannot hope to

be captured. Because of this the Chapman-Enskog procedure using τ cannot be

called on. An asymptotic analysis of the microscopic and macroscopic dynamics

with respect to the parameter ε only represents the first part of this thesis.

2.2 Discrete Space and the Lattice Boltzmann Al-

gorithm

The path to a fully discrete system is completed by an appropriate choice of quadra-

ture. The set of all quadrature nodes is denoted V = {v1, . . . ,vn}. This set can be

chosen such that it defines a discrete subgroup of space L called the lattice. This
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definition if given by the automorphism

L + εV = L. (2.7)

If the quadrature is chosen such that Eq. 2.7 holds, then the space discretization is

exact. Of course for some domain geometries this exact discretization is not possible,

in that case it becomes necessary to perform an interpolation onto the lattice. This

introduces an additional error. Normally an interpolation of at least second order

is chosen, in order to match the order of the error in the hydrodynamic part of the

system.

Although Eq. 2.6 represents the most computationally efficient implementation

of the algorithm, a different implementation is possibly more instructive. This in-

volves separating the algorithm into two superposed components, advection and

relaxation. In this work the 7→ notation is used in the sense of computer memory,

that is during a step in the algorithm the information in the memory on the left side

of the 7→ is mapped onto the information on the right side. Advection is the linear

and non-local component of the algorithm,

fi(x) 7→ fi(x + εvi). (2.8)

Relaxation is the non-linear and local component of the algorithm,

fi 7→ fi + ω(f eq
i − fi). (2.9)

The non-linearity of relaxation may not be obvious, it is contained within the non-

linear dependence of the local equilibrium on the macroscopic moments. Later in

this work more general forms of the relaxation operation will be considered. To

allow for this generality the collision operation can just be denoted F , using this the
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complete lattice Boltzmann algorithm can be written as the superposition,

fi(x) 7→ fi(x − εvi) 7→ F (fi(x − εvi)). (2.10)

This separation of the lattice Boltzmann algorithm into two superposed operations

will be used in the analysis of the dynamics of the system.

As mentioned previously the analysis in this work is based on the discrete time

algorithm, the time step is denoted ε hence our sequence of LBM states exists at

the time points given by the discrete subgroup εZ ⊂ R. All of our asymptotic

expansions will be taken in ε which is assumed small.

We require that the domain for our algorithm is a smooth finite dimensional

manifold which we call X, usually this will be Euclidean space. The eponymous

lattice L ⊂ X is a subset of discrete points.

In this section the general form for the microscopic dynamics of a discrete time

Boltzmann system are given. In this analysis we use gothic notation for fields and

bold for vectors. The discrete velocity system is given by the vector field of distribu-

tion functions f, the ith component of this, a scalar field corresponding to a single

element of the discrete velocity set would be fi or the complete vector at a particular

point in space is f(x). In the case where it is useful to use a generic vector of values of

the distribution function the notation f is used. There is also a corresponding vector

field of macroscopic moments M and based on these macroscopic moments a vector

field of local equilibrium values f
eq
M also exists which is defined pointwise through the

moments from f using the operator m, M = m(f). The local equilibrium may also

be called the quasi-equilibrium. In order to make this analysis some assumptions

about the relaxation operation and the smoothness of these vector fields needs to

be made.

We assume that collisions are stable, and for any admissible initial state f it-
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erations F p(f) converge to a unique equilibrium point f eq exponentially fast and

uniformly:

‖F p(f) − f eq
m(f)‖ < C exp(−λp)‖f − f eq

m(f)‖, (2.11)

where the Lyapunov exponent λ > 0 and pre-factor C > 0 are the same for all

admissible f . In the limit ε = 0 there is no free flight, the field of macroscopic

variables M does not change, and the field of distributions f converges to the local

equilibrium field f
eq
M by repeated application of the collision operation independently

at every point in space. Since each collision occurs instantaneously, the superposed

collisions become a projection onto the local equilibrium in zero time.

In order to discuss small ε > 0 it is necessary to evaluate the change of macro-

scopic variables in free flight during time step ε.To find the qth order in ε term of

the non-equilibrium density function of a discrete velocity system, there are two

assumptions:

• The derivatives of order q or less of f along the vectors vi exist and are uni-

formly bounded.

• The derivatives of order q or less of f
eq
M with respect to the field of macroscopic

moments M exist and are uniformly bounded.

Our expression for the manifold will be of the form of an aysmptotic expansion

in the small parameter ε,

f = f
(0)
M + εf

(1)
M + ε2f

(2)
M + o(ε2). (2.12)

Our first goal is to find a prescription for this f
(1)
M term. The zero order term of

this is simply given by the quasi-equilibrium distributions, that is f
(0)
M ≡ f

eq
M. For

the first order term we will take expansions of the distribution functions in terms of

time and of macroscopic moments and equate them. That is for each order in ε we
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can take the effect of a complete LBM step (advection and collision) and match the

effect on the distribution function to that of taking the Taylor approximation of the

distribution functions through the macroscopic moments up to the same order. In

other words we match the dynamics of the microscopic and macroscopic scales on

an order by order basis.

2.3 The Invariance Equation

The procedure we use is due to the invariant manifold hypothesis. Coupled steps of

advection and collision form a chain of states of the population function belonging to

a manifold. Since the number of discrete velocities used is normally larger than the

number of macroscopic moments, there are an infinite number of possible population

distributions which can give rise to the same configuration of macroscopic moments,

however only one of these distributions exists on the manifold. We use a Taylor

approximation to the manifold and match it with a single coupled step to find the

components, at different orders of the time step, of the distribution function.

If we consider f to be the field of population distributions on the manifold with

corresponding field of macroscopic moments M then in a continuous time system

this invariance property can be defined as

∂tf = ∂Mf · ∂tM. (2.13)

Here the derivative ∂M indicates the derivative through the field of macroscopic

moments M, which the field of distributions on the manifold f is parameterized

by. Altogether the rate of change of the population function is equal to the rate

of change of the macroscopic moments multiplied by the change of the populations

with respect to the macroscopic moments. The discrete time analogy of this is given
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by,

f′M = fM′ . (2.14)

where the prime notates the next time step, therefore the left hand side of this

equation can be given by Eq. 2.10.

2.4 The expansion of the distribution function fol-

lowing a step in the LBM chain

The first ingredient for the time step expansion is the Taylor series of the advection

operation up to the required order in ε. For the first order we have

f(x − εv) = f(x) − εv · ∂xf(x) + o(ε). (2.15)

Combining this with (2.12) we have to the first order,

f(x − εv) = f
(0)
M(x) − εv · ∂xf

(0)
M(x) + εf

(1)
M(x) + o(ε). (2.16)

Applying a collision operation gives the complete, composite discrete time step,

f′ = F
(

f
(0)
M − εv · ∂xf

(0)
M + εf

(1)
M + o(ε)

)

. (2.17)

The second ingredient is to use a linearised version of the collision operation, this is

sufficient to get the first order populations correctly. To understand these derivatives

we recall that any admissable F is completely local in X. We can therefore think

of F as a vector of n functionals (1 per distribution function), each mapping from

the vector of n local values of the distribution functions to a single component of a

new vector of values. Since the scalar field underlying the distribution functions is
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usually R or R
+ these functionals are usually quite simple. For a lattice Boltzmann

method the collision operation takes place instantaneously in time and the field of

macroscopic moments is fixed. For the purposes of this linearization then we consider

the macroscopic moments to be constants rather than functions of the distribution

functions. For a diagonal relaxation type collision then the only non-zero derivative

is the first derivative with the index matching the functional itself and this derivative

is a scalar.

Here the linearisation is made about the equilibrium corresponding to the pop-

ulations to be collided,

f 7→ f eq
m(f) + (DfF )

f
eq
m(f)

(

f − f eq
m(f)

)

. (2.18)

Due to the linearity we can move the error term in Eq 2.17 outside the collision

altogether. The linearisation is then made about the equilibrium defined by the

macroscopic moments of the first order advected populations

M′

1 = m
(

f
(0)
M − εv · ∂xf

(0)
M

)

= f +m
(

−εv · ∂xf
(0)
M

)

, (2.19)

Finally then for the first order approximation to the next step through the time step

expansion we have,

f′M = f
eq
M′

1
+ (DfF )

f
eq

M′

1

(

f
(0)
M + εf

(1)
M − εv · ∂xf

(0)
M − f

eq
M′

1

)

+ o(ε). (2.20)
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2.5 The expansion of the invariance equation fol-

lowing a time step

With the expansion of the left hand of (2.14) complete we consider the right hand

side. Here we find the Taylor expansion of the invariant manifold up to the linear

term so,

fM′ = f + (∂Mf) ·m (−εv · ∂xf) + o(ε). (2.21)

Substituting (2.12) into (2.21) we have

fM′ = f
(0)
M + εf

(1)
M + (∂Mf(0))M ·m

(

−εv · ∂xf
(0)
M

)

+ o(ε). (2.22)

We can now equate (2.20) and (2.22) for a first order approximation to (2.14),

f
eq
M′

1
+ (DfF )

f
eq

M′

1

(

f
(0)
M + εf

(1)
M − εv · ∂xf

(0)
M − f

eq
M′

1

)

= f
(0)
M + εf

(1)
M + (∂Mf

(0)
M) ·m

(

−εv · ∂xf
(0)
M

)

. (2.23)

Of course in a similar style to (2.21),

f
eq
M′

1
= f

(0)
M + (∂Mf(0))M ·m

(

−εv · ∂xf
(0)
M

)

. (2.24)

Substituting back into (2.23) we have

(DfF )
f
eq

f′1

(

εf
(1)
M − εv · ∂xf

(0)
M − (∂Mf

(0)
M) ·m

(

−εv · ∂xf
(0)
M

))

= εf
(1)
M (2.25)

This equation forms the prototype to find f
(1)
M for different possible collision oper-

ations. It implicitly gives the first order approximation to the invariance equation

(2.14). It depends on the choice of the velocity set, the quasiequilibrium and the

17



collision integral.

2.6 Example First Order Invariant Manifolds

We consider two possible examples of collisions. The first example is the simple

Ehrenfest step [22, 27],

F (f) = f eq
m(f) (2.26)

we immediately have,

(DfF )
feq (f) = 0. (2.27)

Substituting back into (2.25),

f
(1)
M = 0. (2.28)

This of course expected since using Ehrenfests steps for the collisions we should

expect to return at every time step to the quasi-equilibrium manifold.

The second example of a collision operator is the BGK collision [6],

F (f) = f + ω
(

f eq
m(f) − f

)

. (2.29)

Differentiating we have

(DfF )
f
eq
m(f)

(f) = (1 − ω) f (2.30)

Substituting this into (2.25),

(1 − ω) ·
(

εf
(1)
M − εv · ∂xf

(0)
M − (∂Mf

(0)
M) ·m

(

−εv · ∂xf
(0)
M

))

= εf
(1)
M. (2.31)

We can multiply out (2.31) and solve for, f
(1)
M .

ω

1 − ω
f
(1)
M =

(

−v · ∂xf
(0)
M

)

− (∂Mf
(0)
M) ·m

(

−v · ∂xf
(0)
M

)

(2.32)
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Figure 2.1 graphically demonstrates the f
(1)
M for the BGK collision type. In particular

for this example there is a critical parameter value at ω = 1. For ω = 1 we recover

the Ehrenfest step, for ω > 1 we have the normal BGK over-relaxation where both

of the coupled steps of advection and collision cross the quasiequilibrium manifold,

one in each direction.

Figure 2.1: Graphical representation of the f
(1)
M for the BGK collision. Adding the

f
(1)
M term to the quasiequilibrium manifold gives the invariant manifold to first order

in ε. In particular the collision parameter ω is critical, for ω > 1 the direction of
the f

(1)
M term is inverted and consequently the invariant manifold is below (in the

sense of this illustration) the quasiequilibrium. Therefore at each step the advection
operation crosses the quasiequilibrium and the collision returns below it.

2.7 Second Order Manifolds and an Example

The next goal is to find an equation analagous to (2.25) for the second order term of

the invariant manifold. During the next section we use a linear collision operation,

in this case the linearised collision we use produces the exact same result as the

original collision. We restart the procedure using second order expansions where
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appropriate, the first of these is the Taylor expansion of the advected populations,

f(x − εv) = f(x) − εv · ∂xf(x) +
ε2

2
v · ∂x (v · ∂xf(x)) + o(ε2). (2.33)

The second order population expansion is also used,

f = f
(0)
M + εf

(1)
M + ε2f

(2)
M + o(ε2). (2.34)

Altogether the second order expansion of the advected populations is,

f(x − εv) = f
(0)
M(x) − εv · ∂xf

(0)
M(x) +

ε2

2
v · ∂x

(

v · ∂xf
(0)
M(x)

)

+ εf
(1)
M(x) − ε2v · ∂xf

(1)
M(x) + ε2f

(2)
M(x) + o(ε2). (2.35)

We define M′

2 as the macroscopic moments of the post advection populations to

second order,

M′

2 = m

(

f
(0)
M − εv · ∂xf

(0)
M +

ε2

2
v · ∂x

(

v · ∂xf
(0)
M

)

− ε2v · ∂xf
(1)
M

)

, (2.36)

It will be convenient to introduce notation for the change in macroscopic moments

following the advection operation, we denote this quantity ∆M ,

∆M = m (f(x − εv) − f(x)) . (2.37)

The second order approximation to this ∆M2 is the difference between the macro-

scopic moments of the post and pre advection populations to second order,

∆M2 = m

(

−εv · ∂xf
(0)
M +

ε2

2
v · ∂x

(

v · ∂xf
(0)
M

)

− ε2v · ∂xf
(1)
M

)

= M′

2 − M. (2.38)
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We use the linearized collision integral in replacement of the original collision oper-

ation,

f ′M = f
eq
M′

2
+ (DfF )

f
eq

M′

2

(

f
(0)
M − εv · ∂xf

(0)
M +

ε2

2
v · ∂x

(

v · ∂xf
(0)
M

)

+ εf
(1)
M − ε2v · ∂xf

(1)
M + ε2f(2) − f

eq
M′

2

)

+ o(ε2). (2.39)

For the right hand side of (2.14) we use a second order approximation to the invariant

manifold,

fM′ = f + ∆M2 · ∂Mf +
1

2
∆M2 · ∂M(∆M2 · ∂Mf) + o((∆M2)

2). (2.40)

Substituting (2.34) and (2.38) into (2.40) we have

fM′ = f
(0)
M + εf

(1)
M + ε2f

(2)
M +m

(

− εv · ∂xf
(0)
M +

ε2

2
v · ∂x

(

v · ∂xf
(0)
M

)

− ε2v · ∂xf
(1)
M

)

· ∂Mf
(0)
M

+
1

2
m
(

−εv · ∂xf
(0)
M

)

· ∂M

(

m
(

−εv · ∂xf
(0)
M

)

· ∂Mf
(0)
M

)

+ εm
(

−εv · ∂xf
(0)
M

)

· ∂Mf
(1)
M + o(ε2).

(2.41)

With the expansions of both sides complete we can equate(2.39) and (2.41),

f
eq
M′

2
+ (DfF )

f
eq

M′

2

(

f
(0)
M − εv · ∂xf

(0)
M +

ε2

2
v · ∂x

(

v · ∂xf
(0)
M

)

+ εf
(1)
M

− ε2v · ∂xf
(1)
M + ε2f

(2)
M − f

eq
M′

2

)

= f
(0)
M + εf

(1)
M + ε2f

(2)
M

+m

(

−εv · ∂xf
(0)
M +

ε2

2
v · ∂x

(

v · ∂xf
(0)
M

)

− ε2v · ∂xf
(1)
M

)

· ∂Mf
(0)
M

+
1

2
m
(

−εv · ∂xf
(0)
M

)

· ∂M

(

m
(

−εv · ∂xf
(0)
M

)

· ∂Mf
(0)
M

)

+ εm
(

−εv · ∂xf
(0)
M

)

· ∂Mf
(1)
M

(2.42)
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Analagously to the first order case we note that,

f
eq
M′

2
=f

(0)
M +m

(

− εv · ∂xf
(0)
M +

ε2

2
v · ∂x

(

v · ∂xf
(0)
M

)

−

ε2v · ∂xf
(1)
M

)

· ∂Mf
(0)
M

+m
(

−εv · ∂xf
(0)
M

)

· ∂M

(

m
(

−εv · ∂xf
(0)
M

)

· ∂Mf
(0)
M

)

.

(2.43)

Substituting this back into (2.42) we have the final prototype for f(2) which this time

is given implicitly,

(DfF )
f
eq

M′

2

(

− εv · ∂xf
(0)
M +

ε2

2
v · ∂x

(

v · ∂xf
(0)
M

)

+ εf
(1)
M − ε2v · ∂xf

(1)
M + ε2f

(2)
M

−m

(

−εv · ∂xf
(0)
M +

ε2

2
v · ∂x

(

v · ∂xf
(0)
M

)

− ε2v · ∂xf
(1)
M

)

· ∂Mf
(0)
M

− 1

2
m
(

−εv · ∂xf
(0)
M

)

· ∂M

(

m
(

−εv · ∂xf
(0)
M

)

· ∂Mf
(0)
M

)

)

= εf
(1)
M + ε2f

(2)
M + εm

(

−εv · ∂xf
(0)
M

)

· ∂Mf
(1)
M. (2.44)

We return to the BGK collision for a specific example of an f
(2)
M term. (2.44) becomes,

(1 − ω)

(

− εv · ∂xf
(0)
M +

ε2

2
v · ∂x

(

v · ∂xf
(0)
M

)

+ εf
(1)
M − ε2v · ∂xf

(1)
M + ε2f

(2)
M

−m

(

−εv · ∂xf
(0)
M +

ε2

2
v · ∂x

(

v · ∂xf
(0)
M

)

− ε2v · ∂xf
(1)
M

)

· ∂Mf
(0)
M

− 1

2
m
(

−εv · ∂xf
(0)
M

)

· ∂M

(

m
(

−εv · ∂xf
(0)
M

)

· ∂Mf
(0)
M

)

)

= εf
(1)
M + ε2f

(2)
M + εm

(

−εv · ∂xf
(0)
M

)

· ∂Mf
(1)
M (2.45)
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. Rearranging and equating terms with ε order 2 gives us,

ω

1 − ω
f
(2)
M =

1

2
v · ∂x

(

v · ∂xf
(0)
M

)

− v · ∂xf
(1)
M

−m

(

1

2
v · ∂x

(

v · ∂xf
(0)
M

)

− v · ∂xf
(1)
M

)

· ∂xf
(0)
M

− 1

2
m
(

−v · ∂xf
(0)
M

)

· ∂M

(

m
(

−v · ∂xf
(0)
M

)

· ∂Mf
(0)
M

)

− 1

1 − ω
m
(

−v · ∂xf
(0)
M

)

· ∂Mf
(1)
M.

(2.46)

We will not use these populations in the examples of macroscopic dynamics which

we calculate in the next chapter. For the Navier-Stokes dynamics the first order

populations are sufficient. We expect that this second order part should give rise to

macroscopic dynamics equating to the Burnett equations in a continuous velocity

system, with some additional error terms due to the quadrature approximation to

the Maxwellian distribution.

2.8 Conditional Stability of Lattice Boltzmann

Methods

Usually when a finite difference scheme is used to solve a differential equation the

solution is not exact. The error term generally includes an infinite number of higher

order derivatives multiplied with increasing powers of the finite difference parameter

(or stepsize) often denoted h. If these higher order derivatives become unbounded

then the convergence of the finite difference scheme under decreasing h may be

compromised. We can illustrate this with the example of the commonly used forward

Euler scheme for a time dependent variable u,

d

dt
u(t) ≈ u(t+ h) − u(t)

h
. (2.47)
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In fact the exact difference scheme calculates,

u(t+ h) − u(t)

h
=

d

dt
u(t) +

n
∑

i=2

hi−1

i!

di

dti
u(t) +

hn

(n+ 1)!

dn+1

dtn+1
u(t+ ah), a ∈ (0, 1).

(2.48)

If the derivatives in the spurious terms on the right hand side are unbounded then no

matter how small h is chosen, the solution calculated by this difference scheme will

‘blow up’. If, however, the first n + 1 derivatives are bounded, then we can always

make the nth order in h component of the error arbitrarily small by decreasing h, we

can then say that the difference scheme is conditionally stable up to the nth order

in h.

We are interested in order by order conditional stability theorems for lattice

Boltzmann methods, which we prove inductively. For a first order theorem corre-

sponding to the base case we have the following requirements.

Before we state our theorem we create some extra notation. We define an oper-

ator to perform advection

adv(f(x)) = f(x − εv), (2.49)

and another operator giving us the 1st order Taylor approximation to advection,

adv1(f) = f − εv · ∂xf (2.50)

For a distribution function f with corresponding field of macroscopic moments

M = m(f) we can call g
(n)
M the nth order ‘jet’ of the invariant manifold. If it ex-

ists it satisfies the invariance equation up to the nth order. That is the difference

between an LBM time step of a distribution on the jet parameterized by macro-

scopic moments M, and the distribution on the jet parameterized by the change in
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macroscopic moments in that time step is o(εn),

(

g
(n)
M

)′

− g
(n)

m
(

adv
(

g
(n)
M

)) = o(εn). (2.51)

The necessary derivatives required for the existence of the jet willThe jet may be

written as an asymptotic expansion,

g
(n)
M =

n
∑

i=0

εnf
(i)
M, (2.52)

where f
(0)
M = f

eq
M.

We would also like to project a distribution function onto its nth order jet given

in Eq 2.52. By definition for the starting distribution we know that this is,

projn(f) = g
(n)
M . (2.53)

The projection onto the equilibrium is given by proj0.

Assumption (1). We have a linear operator A used in a relaxation type collision,

F (f) = f eq + A(f − f eq) (2.54)

Applications of this operator decrease the norm of a population function,

||Af || < r||f || 0 ≤ r < 1. (2.55)

This assumption is just linear stability of the collision operation.

Assumption (21). If the local equilibrium f
eq
M exists and is uniformly bounded then

so are the derivatives ∂Mf
eq
M. If the macroscopic moments exist and are bounded

then this assumption is guaranteed by a sensible choice of equilibrium.
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Hypothesis (1). For a time interval t ∈ [0, T ], the distribution f and its first space

derivatives ∂xf exist and are uniformly bounded. This hypothesis guarantees the

macroscopic moments also exist and are bounded hence Assumption 2.8 holds.

Theorem (Base Case). For a distribution function f with corresponding field of

macroscopic moments M = m(f) under Assumptions 1, 21 then for the time interval

where Hypothesis 1 holds there exists a ball of radius εB(1), where B(1) is a constant,

around the equilibrium. The interior of this ball forms an absorbing set, that is

if the norm of the nonequilibrium populations is bigger than this radius, that is

||f − f
eq
M|| > εB(1), then in a time step this norm decreases by a coefficient α which

satisfies the inequality r < α < 1, where α does not depend on ε.

We can say that the condition for first order stability of a lattice Boltzmann

method satisfying Assumptions 1, 2 is that Hypothesis 1 holds.

Proof. We begin with a distribution function f with field of macroscopic moments

M = m(f), which has a non-equilibrium part d(1) = f − f
eq
M. We are interested in

the size of this deviation following a time step
∣

∣

∣

∣

∣

∣d(1)′
∣

∣

∣

∣

∣

∣ = ||f′ − proj0 (f′)||.

We take an LBM step of f,

f′ = proj0(adv(f)) + A(adv(f) − proj0(adv(f))), (2.56)

we would like to calculate the distance from this distribution to its equilibrium

projection,

d(1)′ = f′ − proj0(adv(f)). (2.57)

To bound the norm of this we begin by comparing an LBM step of both f and

f
eq
M, the step from the equilibrium is given,

f
eq
M

′ = proj0 (adv (feq
M)) + A (adv (feq

M) − proj0 (adv (feq
M))) (2.58)
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If Hypothesis 1 holds then the difference of these is bounded, ,

∣

∣

∣

∣f′ − f
eq
M

′
∣

∣

∣

∣ ≤ (1 + r) ||proj0(adv(f)) − proj0(adv(feq
M))||

+ r ||adv1(f) − adv1(f
eq
M)|| + o(ε)

≤ (1 + r)εC
(1)
1 + r

(

∣

∣

∣

∣d(1)
∣

∣

∣

∣+ εC
(1)
2

)

(2.59)

where C
(1)
1 , C

(1)
2 are some constants based on the magnitude of the derivatives.

We next take the difference between the LBM step of the equilibrium and its

projection back onto the equilibrium manifold, by Equation 2.51,

∣

∣

∣

∣f
eq
M

′ − proj0(adv(feq
M))

∣

∣

∣

∣ ≤ εC
(1)
3 (2.60)

Finally we re-use the difference between the projections onto the equilibrium

manifold of both adv(f)) and adv(feq
M), again under Hypothesis 1 and the Invariance

equation this difference is bounded

||proj0(adv(feq
M)) − proj0(adv(f))|| ≤ εC

(1)
1 . (2.61)

Following some rearrangement, using Equations 2.59, 2.60, 2.61 we arrive at,

∣

∣

∣

∣

∣

∣d
(1)′
∣

∣

∣

∣

∣

∣ ≤
(

r
∣

∣

∣

∣d(1)
∣

∣

∣

∣+ ε(2 + r)C
(1)
1

)

+ rεC
(1)
2 + εC

(1)
3 . (2.62)

We are now interested in the circumstances under which this distance is less than

d(1), that is we look for a value α < 1 such that,

(

r
∣

∣

∣

∣d(1)
∣

∣

∣

∣+ ε(2 + r)C
(1)
1

)

+ rεC
(1)
2 + εC

(1)
3 < α

∣

∣

∣

∣d(1)
∣

∣

∣

∣ . (2.63)
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After some trivial rearrangement,

∣

∣

∣

∣d(1)
∣

∣

∣

∣ >
ε

α− r

(

(2 + r)C
(1)
1 + rC

(1)
2 + C

(1)
3

)

. (2.64)

Therefore εB(1) is given by the right side of Equation 2.64 and we can choose any α

satisfying r < α < 1.

This theorem may be generalized to a statement about conditional stability up

to an arbitrary order in ε, a proof can be built inductively. Some more general

assumptions and hypotheses are required.

Assumption (2n+1). If the local equilibrium f
eq
M exists and is uniformly bounded

then so are the derivatives derivatives ∂Mψ
f
eq
M where |ψ| ≤ n+1. If the macroscopic

moments exist and are bounded then this assumption is guaranteed by a sensible

choice of equilibrium.

Hypothesis (1n+1). For a time interval t ∈ [0, T ], the distribution f and its space

derivatives ∂xβ
f where |β| ≤ n+ 1 exist and are uniformly bounded. This hypothesis

guarantees the macroscopic moments also exist and are bounded hence Assumption

2.8 holds.

Theorem (Induction Step). If for a distribution function f with corresponding field

of macroscopic moments M = m(f) there exists a constant B(n) such that ||f −

g
(n−1)
M || < εnB(n), then under Assumption 2n+1 and where Hypothesis 1n+1 holds

there exists a ball of radius εn+1B(n+1) around the jet g
(n)
M . The interior of this

ball forms an absorbing set, that is if the norm of the nonequilibrium populations

is bigger than this radius, that is ||f − g
(n)
M || > εn+1B(n+1), then in a time step this

norm decreases by a coefficient α which satisfies the inequality r < α < 1, where α

does not depend on ε.
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We can say that the condition for n + 1th order stability of a lattice Boltzmann

method satisfying Assumptions 1, 2n+1 is that Hypothesis 1n+1 holds.

Proof. We begin with a distribution function f with corresponding field of macro-

scopic moments M = m(f), the distribution function is within a ball of radius εnB(n)

around the n− 1 order jet (||f − g
(n−1)
M || < εnB(n)).

The distribution function has an error term from the nth order jet d(n+1) = f −

g
(n)
M . We are interested in the size of this deviation following a time step

∣

∣

∣

∣

∣

∣
d(n+1)′

∣

∣

∣

∣

∣

∣
=

||f′ − projn (f′)||.

We again use LBM step of f from Equation 2.56, we would like to calculate the

distance from this distribution to its projection onto the nth order jet

d(n+1)′ = f′ − projn(adv(f))). (2.65)

To bound the norm of this we compare f′ with an LBM step of g
(n)
M ,

g
(n)
M

′

= proj0

(

adv
(

g
(n)
M

))

+ A
(

adv
(

g
(n)
M

)

− proj0

(

adv
(

g
(n)
M

)))

(2.66)

If Hypothesis 1 holds then the difference of these is bounded at the n+1th order,

∣

∣

∣

∣

∣

∣
f′ − g

(n)
M

′
∣

∣

∣

∣

∣

∣
≤ (1 + r)

∣

∣

∣

∣

∣

∣
proj0(adv(f)) − proj0

(

adv
(

g
(n)
M

))∣

∣

∣

∣

∣

∣

+ r
∣

∣

∣

∣

∣

∣adv1(f) − adv1

(

g
(n)
M

)∣

∣

∣

∣

∣

∣+ o(εn+1)

≤ (1 + r)εn+1C
(n+1)
1 + r

(

∣

∣

∣

∣d(n+1)
∣

∣

∣

∣+ εn+1C
(n+1)
2

)

(2.67)

where C
(n+1)
1 , C

(n+1)
2 are some constants based on the magnitude of the derivatives.

We next take the difference between the LBM step of the equilibrium and its

projection back onto the nth order jet of the manifold, by Equation 2.51 this pro-

jection represents the nth order component of the post LBM step dynamics, so the
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remainder is order n+ 1,

∣

∣

∣

∣

∣

∣g
(n)
M

′ − projn

(

adv
(

g
(n)
M

))∣

∣

∣

∣

∣

∣ ≤ εn+1C
(n+1)
3 (2.68)

Finally we use the difference between the projections onto the nth order jet of

both adv(f) and adv(g
(n)
M ), again under Hypothesis 11 and the Invariance equation

this difference is bounded at the n+ 1th order

∣

∣

∣

∣

∣

∣
projn

(

adv
(

g
(n)
M

))

− projn(adv(f))
∣

∣

∣

∣

∣

∣
≤ εC

(n+1)
4 . (2.69)

In the arbitrary order system this is a new constant C
(n+1)
4 , in the base case where

n = 0 this was not necessary.

Following some rearrangement, using Equations 2.67, 2.68, 2.69 we arrive at,

∣

∣

∣

∣

∣

∣d
(n+1)′

∣

∣

∣

∣

∣

∣ ≤ (1+r)εn+1C
(n+1)
1 +r

(

∣

∣

∣

∣d(n+1)
∣

∣

∣

∣+ εn+1C
(n+1)
2

)

+rεn+1C
(n+1)
3 +εn+1C

(n+1)
4 .

(2.70)

We are now interested in the circumstances under which this distance is less than

d(n+1), that is we look for a value α < 1 such that,

(1+r)εn+1C
(n+1)
1 +r

(

∣

∣

∣

∣d(n+1)
∣

∣

∣

∣+ εn+1C
(n+1)
2

)

+rεn+1C
(n+1)
3 +εn+1C

(n+1)
4 < α

∣

∣

∣

∣d(n+1)
∣

∣

∣

∣ .

(2.71)

After some trivial rearrangement,

∣

∣

∣

∣d(n+1)
∣

∣

∣

∣ >
εn+1

α− r

(

(1 + r)C
(n+1)
1 + rC

(n+1)
2 + C

(n+1)
3 + C

(n+1)
4

)

. (2.72)

Therefore εn+1B(n+1) is given by the right side of Equation 2.72. We can choose α

subject to the inequality r < α < 1.
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Chapter 3

Macroscopic Equations

In this section we are concerned with deriving equations for the macroscopic dy-

namics arising from several different example lattices. We expect that the lattice

parameter ε should partly govern these dynamics and that the 1st order macroscopic

dynamics should be governed by the 1st order population functions.

In order to find these dynamics we project the microscopic flow (advection) up

to the required order, following one time step, onto the invariant manifold up to the

same order [28, 30].

We can immediately perform a Taylor expansion in time on the macroscopic

dynamics,

M′ = M + ε∂tM + o(ε) (3.1)

We expect that the final model should be given in terms of a time derivative of the

macroscopic moments, we write this in a power series in terms of ε,

∂tM = Ψ(0) + εΨ(1) + o(ε) (3.2)
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Combining these two we have

M′ = M + εΨ(0) + o(ε) (3.3)

Equating (2.19) and (3.3) we have

Ψ(0) = m
(

−v · ∂xf
(0)
M

)

(3.4)

The corresponding second order approximation of the macroscopic moments in time

is

M′ = M + ε(Ψ(0) + εΨ(1)) +
ε2

2
∂tΨ

(0) + o(ε2) (3.5)

Equating terms on the second order of ε we have,

m

(

1

2
v · ∂x

(

v · ∂xf
(0)
M

)

)

+m
(

−v · ∂xf
(1)
M

)

= Ψ(1) +
1

2
∂tΨ

(0) (3.6)

or

Ψ(1) = m

(

1

2
v · ∂x

(

v · ∂xf
(0)
M

)

)

+m
(

−v · ∂xf
(1)
M

)

− 1

2
∂tΨ

(0) (3.7)

Later we will calculate the final term of this equation by the chain rule, for a system

with only one conserved moment this would be written,

∂tΨ
(0) =

(

∂ρΨ
(0)
)

(∂tρ). (3.8)

To get the dynamics at the proper order we would use the zero order component

of the time derivative of ρ. In the usual Chapman-Enskog analysis of Boltzmann

equation this might be signified by explicitly introducing time derivative operators

at different orders of ε. In this work we don’t introduce any extra notation and just

say that where these time derivatives are given they should be taken to the correct
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order of ε.

The macroscopic dynamics of the continuous velocity, discrete time system could

be written in nearly the same format. The vector field f would be replaced by a

scalar field f which would also be over the continuous velocity space, the moment

operator m would take a continuous form (integrals rather than the quadrature). In

the next two sections we calculate some example, equivalent, discrete and continuous

systems, in order to compare them.

3.1 Discrete Velocity Examples

We will now demonstrate the exact first order dynamics of a popular choice of

lattice scheme in one and two dimensions. The athermal schemes we consider are

typically described in shorthand by the dimension within which they operate and

the number of velocities used to form the lattice in the form DmQn, where m and n

are integers representing the number of dimensions and velocities respectively. The

general quasi-equilibrium for these systems, including the two examples we use can

be written in a general form,

f eq
i = Wiρ

(

1 +
vi · u
c2s

+
(vi · u)2

2c4s
− u2

2c2s

)

. (3.9)

This equilibrium defines an athermal system where the temperature is fixed. To

complete the definition of the discrete system requires only the selection of a velocity

set and some accompanying weights Wα.

3.1.1 An athermal three velocity lattice (D1Q3)

Our 1-D example lattice is one of the most common, the athermal 1-D lattice with 3

velocities. In this example the velocity vectors are {−1, 0, 1} and the speed of sound
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cs = 1/
√

3 . The equilbrium populations are derived from the general formula

for athermal quasi-equilibria in any dimension where the additional parameters the

weights Wi are
{

1
6
, 2

3
, 1

6

}

.

For this case the populations are,

1

6

{

ρ(1 − 3u+ 3u2), 4ρ

(

1 − 3u2

2

)

, ρ(1 + 3u+ 3u2)

}

. (3.10)

For this lattice with unit distances we note that v4 = v2, v1 = v3 etc. We calculate

the two components of Ψ(0) using the formulas for the macroscopic moments. We

have for the density derivative,

Ψ
(0)
1 = −

∑

i

vi∂xf
(0)
i = −∂x

∑

i

vif
(0)
i = −∂xρu, (3.11)

and for the momentum derivative

Ψ
(0)
2 = −

∑

i

v2
i ∂xf

(0)
i = −∂x

∑

i

v2
i f

(0)
i = −∂x

(ρ

3
+ ρu2

)

, (3.12)

Now we examine the individual macroscopic moments of the first order part in the

case of the one dimensional lattice, as before we begin with the density,

Ψ
(1)
1 =

1

2

∑

i

v2
i ∂x2f

(0)
i −

∑

i

vi∂xf
(1)
i − 1

2
∂tΨ

(0)
1 . (3.13)

The second term here is the space derivative of the momentum of the f
(1)
M which

equals zero due to all macroscopic moments of non equilibrium components being

zero and the first term can be calculated immediately from the quasi-equilibrium.

Therefore,

Ψ
(1)
1 =

1

2
∂x2

(ρ

3
+ ρu2

)

− 1

2
∂tΨ

(0)
1 . (3.14)
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The time derivative of Ψ
(0)
1 can be calculated by the chain rule,

∂tΨ
(0)
1 =

(

∂ρΨ
(0)
1

)

(∂tρ) +
(

∂ρuΨ
(0)
1

)

(∂tρu) − ∂xΨ
(0)
2 = ∂x2

(ρ

3
+ ρu2

)

(3.15)

Substituting this back in we have,

Ψ
(1)
1 =

1

2
∂x2

(

ρ

3
+

(ρu)2

ρ

)

− 1

2
∂x2

(ρ

3
+ ρu2

)

= 0. (3.16)

For the momentum moment we have

Ψ
(1)
2 =

1

2

∑

i

v3
i ∂x2f

(0)
i −

∑

i

v2
i ∂xf

(1)
i − 1

2
∂tΨ

(0)
2 . (3.17)

Recalling that that v3 = v1 we can simplify the first term so,

1

2

∑

i

v3
i ∂x2f

(0)
i =

1

2

∑

i

vi∂x2f
(0)
i =

1

2
∂x2ρu. (3.18)

For the second term we need to calculate the f
(1)
i terms. To do this we need to

specify a collision type, we use the BGK collision described above (2.32).

ω

1 − ω
f(1) = ∂x

(

2u∂xρ+
(

−2 − 3u2
)

∂xρu+ 6u∂xρu
2 ,

− u
∂x

ρ
+

(

1 +
3

2
u2

)

∂xρu− 3u∂xρu
2,

2u∂xρ+ (−2 − 3u2)∂xρu+ 6u∂xρu
2
)

. (3.19)

This gives then

∑

i

v2
i ∂xf

(1)
i =

1 − ω

ω
∂x

(

2

3
u∂xρ+

(

−2

3
− u2

)

∂xρu+ 2u∂xρu
2

)

. (3.20)
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Again using the chain rule,

∂tΨ
(0)
2 =

(

∂ρΨ
(0)
2

)

(∂tρ) +
(

∂ρuΨ
(0)
2

)

(∂tρu) = −∂x

(

1

3
− u2

)

Ψ
(0)
1 − ∂x2uΨ

(0)
2

= ∂x

(

2

3
u∂xρ+

(

1

3
− u2

)

∂xρu+ 2u∂xρu
2

)

. (3.21)

Substituting this all back in we have,

Ψ
(1)
2 =

(

ω − 1

ω
− 1

2

)

∂x

(

2

3
u∂xρ+

(

−2

3
− u2

)

∂xρu+ 2u∂xρu
2

)

=
ω − 2

2ω
∂x

(

2

3
u∂xρ+

(

−2

3
− u2

)

∂xρu+ 2u∂xρu
2

)

=
ω − 2

2ω
∂x

(

u3∂xρ+ ρ

(

3u2 − 2

3

)

∂xu

)

. (3.22)

The moment gradients are then to first order in ε,

∂tρ = −∂xρu

∂tρu = −∂x

(

1

3
ρ+ ρu2

)

− ε
2 − ω

2ω
∂x

(

u3∂xρ+ ρ

(

3u2 − 2

3

)

∂xu)

) (3.23)

3.1.2 An athermal five velocity lattice (D1Q5)

To increase the speed of sound more velocities can be added, we consider using

the velocity set (−2,−1, 0, 1, 2) and corresponding weights
(

1
12
, 2

12
, 6

12
, 2

12
, 1

12

)

giving

equilibrium populations

1

12

{

ρ

(

1 − 2u+
3u2

2

)

, 2ρ(1 − u), 6ρ

(

1 − u2

2

)

, 2ρ(1 + u), ρ

(

1 + 2u+
3u2

2

)}

(3.24)

On this lattice the speed of sound is cs = 1. The first order density moment remain

the same as the three velocity 1-D lattice, the momentum density term is very
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similar,

Ψ
(0)
2 = −

∑

i

v2
i ∂xf

(0)
i = −∂x

∑

i

v2
i f

(0)
i = −∂x

(

ρ+ ρu2
)

, (3.25)

In the case of the second order macroscopic moments the density moment is again

0 by exactly the same argument, for the momentum density we have

Ψ
(1)
2 =

1

2

∑

i

v3
i ∂x2f

(0)
i −

∑

i

vi∂xf
(1)
i − 1

2
∂tΨ

(0)
2 (3.26)

For the first term we have
∑

i

v3
i ∂x2f

(0)
i = 3∂x2ρu (3.27)

For the second term we calculate the first order populations

ω

1 − ω
f
(1)
f = ∂x

(

3u∂xρ+

(

−3 − 3

2
u2

)

∂xρu+ (1 + 3u)∂xρu
2,−2∂xρu

2

− u∂xρ+

(

1 +
1

2
u2

)

∂xρu− u∂xρu
2, 2∂xρu

2,

3u∂xρ+

(

−3 − 3

2
u2

)

∂xρu+ (−1 + 3u)∂xρu
2

)

(3.28)

and thereby the term

∑

i

v2
i ∂xf

(1)
i =

1 − ω

ω
∂x

(

2u∂xρ+ (−2 − u2)∂xρu+ 2u∂xρu
2
)

(3.29)

Again using the chain rule,

∂tΨ
(0)
2 =

(

∂ρΨ
(0)
2

)

(∂tρ) +
(

∂ρuΨ
(0)
2

)

(∂tρu) = −∂x(1 − u2)Ψ
(0)
1 − ∂x2uΨ

(0)
2

= ∂x

(

2u∂xρ+ (1 − u2)∂xρu+ 2u∂xρu
2
)

(3.30)
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Substituting this back in we have,

Ψ
(1)
2 =

(

ω − 1

ω
− 1

2

)

∂x

(

2u∂xρ+ (1 − u2)∂xρu+ 2u∂xρu
2
)

=
ω − 2

2ω
∂x

(

2u∂xρ+ (−2 − u2)∂xρu+ 2u∂xρu
2
)

=
ω − 2

2ω
∂x

(

u3∂xρ+ ρ
(

3u2 − 2
)

∂xu
)

. (3.31)

For the 5 velocity lattice we have then the moment gradients

∂tρ = −∂xρu+ o(ε)

∂tρu = −∂x

(

ρ+ ρu2
)

− ε
2 − ω

2ω
∂x

(

u3∂xρ+ ρ
(

3u2 − 2
)

∂xu
)

+ o(ε)
(3.32)

3.1.3 An athermal nine velocity model (D2Q9)

The 2-D example we consider is a popular 2d lattice consisting of 9 different veloc-

ities. If we identify v1 as the horizontal component of a vector and v2 the vertical

component then the set of velocities is

v1 = (0, 1, 0,−1, 0, 1,−1,−1, 1)

v2 = (0, 0, 1, 0,−1, 1, 1,−1,−1).

(3.33)

The equilibrium is then given by the polynomial formula (3.9) with corresponding

weights

wi =

{

4

9
,
1

9
,
1

9
,
1

9
,
1

9
,

1

36
,

1

36
,

1

36
,

1

36

}

(3.34)

As before we calculate the components of Ψ(0) using the formulas for the macro-

scopic moments although this time we have two momentum density momentums for
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the two dimensions. We have for the density derivative,

Ψ
(0)
1 =

∑

i

(

−vi · ∂xf
(0)
i

)

= −∂x1

∑

i

vi,1f
(0)
i − ∂x2

∑

i

vi,2f
(0)
i

= −∂x1ρu1 − ∂x2ρu2,

(3.35)

for the first momentum derivative

Ψ
(0)
2 =

∑

i

vi,1

(

−vi · ∂xf
(0)
i

)

= −∂x1

∑

i

v2
i,1f

(0)
i − ∂x2

∑

i

vi,1vi,2f
(0)
i

= −∂x1

(

1

3
ρ+ ρu2

1

)

− ∂x2ρu1u2,

(3.36)

and for the second momentum derivative

Ψ
(0)
3 =

∑

i

vi,2

(

−vi · ∂xf
(0)
i

)

= −∂x1

∑

i

vi,1vi,2f
(0)
i − ∂x2

∑

i

v2
i,2f

(0)
i

= −∂x1ρu1u2 − ∂x2

(

1

3
ρ+ ρu2

2

)

.

(3.37)

The first order density moment is given by,

Ψ
(1)
1 =

1

2

∑

i

(

vi · ∂x

(

vi · ∂xf
(0)
i

))

+
∑

i

(

−vi · ∂xf
(1)
i

)

− 1

2
∂tΨ

(0)
1 . (3.38)

Again we observe that the second term is the space gradient multiplied with the

momentum densities of the first order populations and hence is zero, for the first
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term we have

∑

i

(

vi · ∂x

(

vi · ∂xf
(0)
i

))

=
∑

i

(

∂x2
1
v2

i,1f
(0)
i + 2∂x1x2vi,1vi,2f

(0)
i + ∂x2

2
v2

i,2f
(0)
i

)

= ∂x2
1

(

1

3
ρ+ ρu2

1

)

+ 2∂x1x2ρu1u2 + ∂x2
2

(

1

3
ρ+ ρu2

2

)

, (3.39)

and for the third term

∂tΨ
(0)
1 =

(

∂ρΨ
(0)
1

)

(∂tρ)+
(

∂ρu1Ψ
(0)
1

)

(∂tρu1)+
(

∂ρu2Ψ
(0)
1

)

(∂tρu2) = −∂x1Ψ
(0)
2 −∂x2Ψ

(0)
3

= −∂x1

(

−∂x1

(

1

3
ρ+ ρu2

1

)

− ∂x2ρu1u2

)

− ∂x2

(

−∂x1ρu1u2 − ∂x2

(

1

3
ρ+ ρu2

2

))

. (3.40)

hence subtracting these we have Ψ
(1)
1 = 0.

For the first second order momentum density we have

Ψ
(1)
2 =

1

2

∑

i

vi,1

(

vi · ∂x

(

vi · ∂xf
(0)
i

))

+
∑

i

vi,1

(

−vi · ∂xf
(1)
i

)

− 1

2
∂tΨ

(0)
2 . (3.41)

Examining each term in turn more closely we have for the first term

∑

i

vi,1

(

vi · ∂x

(

vi · ∂xf
(0)
i

))

=
∑

i

vi,1

(

∂x2
1
v2

i,1f
(0)
i + 2∂x1x2vi,1vi,2f

(0)
i + ∂x2

2
(vi,2)

2f
(0)
i

)

= ∂x1

(

ρ∂x1u1 + u1∂x1ρ+
1

3
ρ∂x2u2 +

1

3
u2∂x2ρ

)

+ ∂x2

(

1

3
ρ∂x1u2 +

1

3
u2∂x1ρ+

1

3
ρ∂x2u1 +

1

3
u1∂x2ρ

)

. (3.42)

The first order populations are given in Appendix A, these give us for the second
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term

∑

i

vi,1

(

−vi · ∂xf
(1)
i

)

= −
∑

i

vi,1

(

∂x1vi,1f
(1)
i + ∂x2vi,2f

(1)
i

)

=
ω − 1

ω

(

∂x1

(

u3
1∂x1ρ+ u2

1u2∂x2ρ+

(

3ρu2
1 −

2

3
ρ

)

∂x1u1

+2ρu1u2∂x2u1 + ρu2
1∂x2u2

)

+ ∂x2

(

u2
1u2∂x1ρ+ u1u

2
2∂x2ρ+ 2ρu1u2∂x1u1 + 2ρu1u2∂x2u2

+

(

ρu2
2 −

1

3
ρ

)

∂x2u1 +

(

ρu2
1 −

1

3
ρ

)

∂x1u2

))

.

(3.43)

and for the third term

∂tΨ
(0)
2 =

(

∂ρΨ
(0)
2

)

(∂tρ) +
(

∂ρu1Ψ
(0)
2

)

(∂tρu1) +
(

∂ρu2Ψ
(0)
2

)

(∂tρu2)

=

(

∂

∂x1

(

−1

3
u2 + u2

1

)

+ ∂x2u1u2

)

Ψ
(0)
1

+ (−2∂x1u1 − ∂x2u2) Ψ
(0)
2 − ∂x2u1Ψ

(0)
3

= ∂x1

(

(

u1 + u3
1

)

∂x1ρ+

(

1

3
u2 + u2

1u2

)

∂x2ρ

+

(

1

3
ρ+ 3ρu2

1

)

∂x1u1 +

(

1

3
ρ+ ρu2

1

)

∂x2u2 + 2ρu1u2∂x2u1

)

+ ∂x2

((

1

3
u2 + u2

1u2

)

∂x1ρ+

(

1

3
u1 + u1u

2
2

)

∂x2ρ

+2ρu1u2∂x1u1 + ρu2
2∂x2u1 + ρu2

1∂x1u2 + 2ρu1u2∂x2u2

)

.

(3.44)

Combining all three terms we have,

Ψ
(1)
2 =

(

ω − 1

ω
− 1

2

)(

∂x1

(

u3
1∂x1ρ+ u2

1u2∂x2ρ+

(

3ρu2
1 −

2

3
ρ

)

∂x1u1

+2ρu1u2∂x2u1 + ρu2
1∂x2u2

)

+ ∂x2

(

u2
1u2∂x1ρ+ u1u

2
2∂x2ρ+ 2ρu1u2∂x1u1 + 2ρu1u2∂x2u2

+

(

ρu2
2 −

1

3
ρ

)

∂x2u1 +

(

ρu2
1 −

1

3
ρ

)

∂x1u2

))

(3.45)

The final macroscopic equations for this particular lattice and quasiequilibrium then
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are to first order

∂tρ = −∂xρu

∂tρu1 = −∂x1

(ρ

3
+ ρu2

1

)

− ∂x2ρu1u2

− ε
2 − ω

2ω

(

∂x1

(

u3
1∂x1ρ+ u2

1u2∂x2ρ+

(

3ρu2
1 −

2

3
ρ

)

∂x1u1

+2ρu1u2∂x2u1 + ρu2
1∂x2u2

)

+ ∂x2

(

u2
1u2∂x1ρ+ u1u

2
2∂x2ρ+ 2ρu1u2∂x1u1 + 2ρu1u2∂x2u2

+

(

ρu2
2 −

1

3
ρ

)

∂x2u1 +

(

ρu2
1 −

1

3
ρ

)

∂x1u2

))

(3.46)

The second momentum density is available easily through symmetry. With some

care this can be rearranged to a more readable form

∂tρ = −∂xρu

∂tρu1 = −∂x1

(ρ

3
+ ρu2

1

)

− ∂x2ρu1u2

+ ε

(

2 − ω

2ω

)(

∂x1

(

2

3
ρ∂x1u1 − ∂xρu

2
1u

)

+ ∂x2

(

1

3
ρ (∂x1u2 + ∂x2u1) − ∂xρu1u2u

))

.

(3.47)

Evidently the errors are third order in the Mach number as the expansion of the

Maxwellian was taken to second order.

3.2 Continuous Velocity Examples

In this section the macroscopic moments approximated by the LBM chain in a

continuous velocity system are calculated. We select two examples, chosen to match

the previous discrete velocity schemes. The methodology is exactly the same as

in the discrete velocity system with the calculation of the macroscopic moments

replaced by the integral and the vector field of distributions replaced by a scalar
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field over the continuous velocity space.

3.2.1 The athermal 1-D model

The first continuous velocity model we will examine is one chosen to match the zero

order dynamics of the discrete model studied in section 3.1.1, the one dimensional

system with the three discrete velocities {−1, 0, 1}. The continuous population

function acting as the quasi-equilibrium is a specific case of the Maxwell distribution

where the temperature is fixed, in this case to 1/3.

f (0) = ρ

√

3

2π
exp

(

−3

2
(v − u)2

)

(3.48)

With such a system the macroscopic variables are calculated as integrals rather than

the sums in the discrete case.

∫

∞

−∞

f(0)dv = ρ

∫

∞

−∞

vf(0)dv = ρu

∫

∞

−∞

v2f(0)dv =
1

3
ρ+ ρu2

(3.49)

Clearly this matches the macroscopic moments retrieved in the discrete velocity

case. Due to this we can, analagously to the discrete case, immediately write down

the zero order macroscopic dynamics following equation 3.4.

Ψ
(1)
0 = −

∫

∞

∞

v
(

∂xf
(0)
)

dv = −∂x

∫

∞

∞

vf(0)dv = −∂xρu (3.50)

Ψ
(2)
0 = −

∫

∞

∞

v2
(

∂xf
(0)
)

dv = −∂x

∫

∞

∞

v2f(0)dv = −∂x

(

1

3
ρ+ ρu2

)

(3.51)

In order to calculate the first order macroscopic moments we expect that we shall

require the first order continuous populations. These are also derived exactly as in
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the discrete case with the replacement of the sum, by the integral, in the calculation

of the macroscopic moments. Since we replicate the discrete case the collision we

select is again the BGK collision and we derive the first order populations from

equation 2.32.

ω

1 − ω
f(1) = ρ

√

3

2π
exp

(

−3

2
(v − u)2

)

·
(

1 − 3v2 + 6vu− 3u2
)

· (∂xu) (3.52)

Again we calculate the first order macroscopic moments from the template given by

equation 3.7

Ψ
(1)
1 =

1

2

∫

∞

∞

v2
(

∂x2f(0)
)

dv −
∫

∞

∞

v
(

∂xf
(1)
)

dv − 1

2
∂tΨ

(0)
1 (3.53)

Exactly as the discrete case the second term here is the space derivative of the

momentum of the f (1) which equals zero due to all macroscopic moments of non

equilibrium components being zero and the first term can be calculated immediately

from the quasi-equilibrium therefore,

Ψ
(1)
1 =

1

2
∂x2

(ρ

3
+ ρu2

)

− 1

2
∂tΨ

(0)
1 . (3.54)

Again the time derivative of Ψ(0) can be calculated by the chain rule,

∂tΨ
(0)
1 =

(

∂ρΨ
(0)
1

)

(∂tρ) +
(

∂ρuΨ
(0)
1

)

(∂tρu) = −∂xΨ
(0)
2 = ∂x2

(ρ

3
+ ρu2

)

(3.55)

Substituting we have,

Ψ
(1)
1 =

1

2
∂x2

(ρ

3
+ ρu2

)

− 1

2
∂x2

(ρ

3
+ ρu2

)

= 0. (3.56)
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For the continuous velocity momentum moment we have

Ψ
(1)
2 =

1

2

∫

∞

∞

v3
(

∂x2f(0)
)

dv −
∫

∞

∞

v2
(

∂xf
(1)
)

dv − 1

2
∂tΨ

(0)
2 (3.57)

Rearranging and performing the first two integrals gives us

Ψ
(1)
2 =

1

2
∂x2

(

ρu+ ρu3
)

− ∂x

(

−2

3
ρ (∂xu)

)

− 1

2
∂tΨ

(0)
2 (3.58)

Again using the chain rule, this term is exactly as in the discrete case,

∂tΨ
(0)
2

(

∂ρ∂Ψ
(0)
2

)

(∂tρ) +
(

∂ρuΨ
(0)
2

)

(∂tρu) = −∂x

(

1

3
− u2

)

Ψ
(0)
1 − ∂x2uΨ

(0)
2

= ∂x

(

2

3
u∂xρ+

(

1

3
− u2

)

∂xρu+ 2u∂xρu
2

)

(3.59)

Substituting this all back in we have,

Ψ
(1)
2 =

(

ω − 1

ω
− 1

2

)

∂x

(

−2

3
ρ∂xu

)

=
ω − 2

2ω
∂x

(

−2

3
ρ∂xu

)

. (3.60)

The moment gradients are then, for the continuous velocity system, to first order in

ε,

∂tρ = −∂xρu+ o(ε)

∂tρu = −∂x

(

1

3
ρ+ ρu2

)

− ε
2 − ω

2ω
∂x

(

−2

3
ρ∂xu

)

+ o(ε)
(3.61)

We immediately observe that several of the dissipative terms that appeared in the

discrete velocity system do not occur when we use continuous velocities

45



3.2.2 The athermal 2D model

The next continuous velocity model we examine is the widely used athermal 2d

model. Again we use a specific choice of the Maxwellian distribution which matches

the zero order macroscopic moments given by the discrete velocity set.

f (0) = ρ
3

2π
exp

(

−3

2
(v − u)2

)

(3.62)

Again macroscopic variables are calculated by integrals over velocity space

∫

R2

f(0)dv = ρ

∫

R2

v1f
(0)dv = ρu1

∫

R2

v2f
(0)dv = ρu2

∫

R2

v2f(0)dv =
2

3
ρ+ ρu2

(3.63)

Again we calculate the zero order macroscopic moments,

Ψ
(0)
1 =

∫

R2

−v · ∂xf
(0)dv

= −∂x1

∫

R2

v1f
(0)dv − ∂x2

∫

R2

v2f
(0)dv

= −∂x1ρu1 − ∂x2ρu2

(3.64)

and for the first momentum derivative

Ψ
(0)
2 =

∫

R2

v1

(

−v · ∂xf
(0)
)

dv

= −∂x1

∫

R2

v2
1f

(0)dv − ∂x2

∫

R2

v1v2f
(0)dv

= −∂x1

(

1

3
ρ+ ρu2

1

)

− ∂x2ρu1u2

(3.65)
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for the second momentum derivative

Ψ
(0)
3 =

∫

R2

v2

(

−v · ∂xf
(0)
)

dv

= −∂x1

∫

R2

v1v2f
(0)dv − ∂x2

∫

R2

v2
2f

(0)dv

= −∂x1ρu1u2 − ∂x2

(

1

3
ρ+ ρu2

2

)

(3.66)

We again calculate the first order populations following equation 2.32.

ω

1 − ω
f(1) =

ρ
3

2π
exp

(

−3

2

(

(v1 − u1)
2 + (v2 − u2)

2
)

)

·
((

1 − 3v2
1 + 6v1u1 − 3u2

1

)

∂x1u1

+ (−3v1v2 + 3v1u2 + 3v2u1 − 3u1u2) ∂x2u1

+ (−3v1v2 + 3v1u2 + 3v2u1 − 3u1u2) ∂x1u2

+
(

1 − 3v2
2 + 6v2u2 − 3u2

2

)

∂x2u2

)

(3.67)

The first order density moment is given by,

Ψ
(1)
1 =

1

2

∫

R2

v · ∂x

(

v · ∂xf
(0)
)

dv −
∫

R2

v · ∂xf
(1)dv − 1

2
∂tΨ

(0)
1 (3.68)

Performing the integrals of the first two terms we note that the second term is again

zero therefore

Ψ
(1)
1 =

1

2
∂x2

1

(

1

3
ρ+ ρu2

1

)

+ ∂x1x2ρu1u2 +
1

2
∂x2

2

(

1

3
ρ+ ρu2

2

)

− 1

2
∂tΨ

(0)
1 (3.69)
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and exactly as in the discrete velocity system we have for the third term

∂tΨ
(0)
1 =

(

∂ρΨ
(0)
1

)

(∂tρ) +
(

∂ρu1Ψ
(0)
1

)

(∂tρu1) +
(

∂ρu2Ψ
(0)
1

)

(∂tρu2)

= − ∂x1Ψ
(0)
2 − ∂x2Ψ

(0)
3

= − ∂x1

(

−∂x1

(

1

3
ρ+ ρu2

1

)

− ∂x2ρu1u2

)

− ∂x2

(

−∂x1ρu1u2 − ∂x2

(

1

3
ρ+ ρu2

2

))

(3.70)

hence subtracting these we have Ψ
(1)
1 = 0.

For the first second order momentum density we have

Ψ
(1)
2 =

1

2

∫

R2

v1

(

v · ∂x

(

v · ∂xf
(0)
))

dv +

∫

R2

v1

(

−v · ∂xf
(1)
)

dv − 1

2
∂tΨ

(0)
2 (3.71)

Again performing the integrations from the first two terms we have

Ψ
(1)
2 =

1

2

(

∂x2
1

(

ρu3
1 + ρu1

)

+ ∂x1x2

(

1

3
ρu2 + ρu2

1u2

)

+
∂2

∂x2

(

1

3
ρu1 + ρu1u

2
2

))

+
ω − 1

2ω

(

∂x1

(

−2

3
ρ∂x1u1

)

−∂x2

(

−1

3
ρ (∂x1u2 + ∂x2u1)

))

− 1

2
∂tΨ

(0)
2

(3.72)
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and for the third term

∂tΨ
(0)
2 =

(

∂ρΨ
(0)
2

)

(∂tρ) +
(

∂ρu1Ψ
(0)
2

)

(∂tρu1) +
(

∂ρu2Ψ
(0)
2

)

(∂tρu2)

=

(

∂

∂x1

(

−1

3
u2 + u2

1

)

+ ∂x2u1u2

)

Ψ
(0)
1

+ (−2∂x1u1 − ∂x2u2) Ψ
(0)
2 − ∂x2u1Ψ

(0)
3

= ∂x1

(

(

u1 + u3
1

)

∂x1ρ+

(

1

3
u2 + u2

1u2

)

∂x2ρ

+

(

1

3
ρ+ 3ρu2

1

)

∂x1u1 +

(

1

3
ρ+ ρu2

1

)

∂x2u2 + 2ρu1u2∂x2u1

)

+ ∂x2

((

1

3
u2 + u2

1u2

)

∂x1ρ+

(

1

3
u1 + u1u

2
2

)

∂x2ρ+ 2ρu1u2∂x1u1

+ ρu2
2∂x2u1 + ρu2

1∂x1u2 + 2ρu1u2∂x2u2

)

(3.73)

Combining all three terms we have

Ψ
(1)
2 =

(

ω − 1

ω
− 1

2

)(

∂x1

(

−2

3
ρ∂x1u1

)

−∂x2

(

−1

3
ρ (∂x1u2 + ∂x2u1)

))

(3.74)

The final macroscopic equations for this particular lattice and quasiequilibrium then

are

∂tρ = −∂xρu

∂tρu1 = −∂x1

(ρ

3
+ ρu2

1

)

− ∂x2ρu1u2

− ε
2 − ω

2ω

(

∂x1

(

−2

3
ρ∂x1u1

)

− ∂x2

(

−1

3
ρ (∂x1u2 + ∂x2u1)

))

(3.75)

and again the second momentum density can be found by reflection. Once again

many of the dissipative terms vanish in the continuous velocity system.
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3.3 Macroscopic Stability

In the previous sections we have demonstrated the discrete velocity systems studied

do not recover the exact macroscopic dissipative dynamics of the continuous system.

We are now concerned with the stability of the discrete dynamics under a short

wave perturbation. In each example we are concerned with the stability of the

linear part of the dynamics (as calculated above) only. We should reinforce that this

linear macroscopic stability is not equivalent to stability of the complete microscopic

dynamics.

3.3.1 The D1Q3 model

We consider perturbations by a Fourier mode around a constant flow, that is we

write

ρ = ρ0 + Aei(λt+κx)

u = u0 +Bei(λt+κx)

(3.76)

We combine this with a composite coefficient for the first order part

ν = ε
2 − ω

2ω
(3.77)

Substituting these into the macroscopic equations and with some rearrangement for

the u term we have

Aλ = −ρ0Bκ− u0Aκ

Bλ = − 1

3ρ0

Aκ− u0Bκ− ν

(

u3
0

ρ0

Aiκ2 +

(

3u2
0 −

2

3

)

Biκ2

) (3.78)
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We take eigenvalues of the matrix







−u0κ −ρ0κ

− 1
3ρ0
κ− ν

u3
0

ρ0
iκ2 −u0κ− ν

(

3u2
0 − 2

3

)

iκ2






(3.79)

which give us two values for λ

λ = κ

(

−u0 −
3

2
νu2

0iκ+
1

3
νiκ±

√

νu3
0iκ− 9

4
ν2u4

0κ
2 + ν2u2

0κ
2 − 1

9
ν2κ2 +

1

3

)

(3.80)

In order for the manifold to remain bounded in time we investigate parameters which

give =(λ) ≥ 0. We begin by checking aymptotics of two parameters, for large κ we

have

λ = νκ2

(

−3

2
u2

0i+
1

3
i±
√

−
(

3

2
u2

0 +
1

3

)

)

= 0, νκ2

(

−3u2
0 +

2

3

)

i

(3.81)

and for large u0

λ = κ

(

−3

2
νu2

0iκ±
√

−9

4
ν2u4

0κ
2

)

= 0,−3νu2
0iκ

2

(3.82)

We can see from this that for non-zero κ the first condition that should be satisfied

for stability is u2
0 < 2/9, for large u0 it is necessary for κ to equal 0. Additionally,

stability is absolutely contingent on the composite coefficient ν being positive, this

is the dual condition that time steps are positive and that relaxation parameter of

the collision ω is in the interval 0 ≤ ω ≤ 2 (repeated steps of the collision integral in

isolation go towards the quasiequilibrium). In the case that either ν is negative or

that u0 is outside the given region, the magnitude of the Fourier perturbation will
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grow exponentially causing a rapid divergence from the constant flow.

We can confirm these results numerically by plotting the contours of the two

eigenvalues equal to zero. In fact in Figure(3.1) we additionally plot contours below

zero to show the decay from stability.
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−0.5

0

0.5

1

1.5

u0

κ

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 3.1: The first two figures show stability for each of the two eigenvalues in the
D1Q3 system with ν = 1, the third figure plots the minimum of the two. Contours
are plotted at =(λ) = (−0.3,−0.2,−0.1, 0), the yellow region and its boundary
indicate the stable region and, the other colours, the decay from stability.

3.3.2 The D1Q5 model

The stability of the D1Q5 system can be calculated in exactly the same way, subsi-

tuting the same Fourier perturbation into the macroscopic equations we have,

Aλ = −ρ0Bκ− u0Aκ,

Bλ = − 1

ρ0

Aκ− u0Bκ− ν

(

u3
0

ρ0

Aiκ2 +
(

3u2
0 − 2

)

Biκ2

)

.
(3.83)

We take eigenvalues of the matrix







−u0κ −ρ0κ

− 1
ρ0

− ν
u3
0

ρ0
iκ2 −u0κ− ν (3u2

0 − 2) iκ2






(3.84)
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in this case the two values for λ are

λ = κ

(

−u0 −
3

2
νu2

0iκ+ νiκ±
√

νu3
0iκ− 9

4
ν2u4

0κ
2 + 3ν2u2

0κ
2 − ν2κ2 + 1

)

(3.85)

Again we investigate parameters which give =(λ) ≥ 0. We begin by checking aymp-

totics of two parameters, for large κ we have

λ = νκ2

(

−3

2
u2

0i+ i±
√

−
(

3

2
u2

0 + 1

)

)

= 0, νκ2
(

−3u2
0 + 2

)

i

(3.86)

and for large u0

λ = κ

(

−3

2
νu2

0iκ±
√

−9

4
ν2u4

0κ
2

)

= 0,−3νu2
0iκ

2

(3.87)

We can see this time that for non-zero κ the condition that should be satisfied for

stability is u2
0 < 2/3, that is that u0 can be much larger while retaining stablility.

Again we can confirm this numerically by plotting the contours of the two eigenvalues

equal to zero, in the same format, in Figure(3.2).

3.3.3 The D2Q9 model

We extend the stability analysis from the one dimensional case with a perturbation

in the additional space direction. The perturbed system is given by,

ρ = ρ0 + Aei(λt+κ1x1+κ2x2)

u1 = u10 +B1e
i(λt+κ1x1+κ2x2)

u2 = u20 +B2e
i(λt+κ1x1+κ2x2)

(3.88)
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Figure 3.2: The first two figures show stability for each of the two eigenvalues in the
D1Q5 system with ν = 1, the third figure plots the minimum of the two.Contours are
plotted at =(λ) = (−0.3,−0.2,−0.1, 0), the yellow region and its boundary indicate
the stable region and, the other colours, the decay from stability.

In this case we investigate the short wave asymptotics as |κ1|, |κ2| → ∞. The

eigenvalues of the system under such conditions are

λ1,2 =

(

1

3
− 3

2
u1

2
0

)

iνκ2
1 +

(

1

3
− 3

2
u2

2
0

)

iνκ2
2 − 3iνu10u20κ1κ2

±
√

−
((

1

3
− 3

2
u1

2
0

)

νκ2
1 +

(

1

3
− 3

2
u2

2
0

)

νκ2
2 − 3νu10u20κ1κ2

)

,

λ3 =

(

1

3
− u1

2
0

)

iνκ2
1 +

(

1

3
− u2

2
0

)

iνκ2
2 − 2iνu10u20κ1κ2.

(3.89)

In the 1-D examples all terms were in even powers of κ whereas in this case there

are cross terms in the product κ1κ2. Because of this it is necessary to consider the

different permutations of signs for these terms. Since the condition that the third

eigenvalue imposes is weaker than that of the the first two, which are equivalent, it

is sufficient to find the region of stability using just one of these. Again assuming

that the coefficient ν is positive, the region is given by parameters satisfying the two

conditions.

(

1

3
− 3

2
u1

2
0

)

+

(

1

3
− 3

2
u2

2
0

)

− 3u10u20 ≥ 0

(

1

3
− 3

2
u1

2
0

)

+

(

1

3
− 3

2
u2

2
0

)

+ 3u10u20 ≥ 0

(3.90)
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The plot of the region generated by these inequalities is given in Figure 3.6. Similarly

to the one dimensional examaple, in the event that ν is negative or the constant

flow speed moves outside this region, the magnitude of the Fourier perturbation will

increase exponentially in time.

Again for specific parameters the stability can be calculated numerically. In the

first case examine the case where κ2, u20 = 0. Figure (3.3) shows the stability plot

for the three eigenvalues and their minimum, in this case we see that while the

eigenvalues are different from their counterparts in the 1-D system, the stability

region is exactly the same. In Figure (3.4) we vary κ2 and u20 to see what affect
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Figure 3.3: The first three figures show stability for each of the three eigenvalues
in the athermal D2Q9 system with parameters ν = 1, u2 = 0, κ2 = 0, the fourth
figure plots the minimum of them. In each case the contours are plotted at λ =
(−0.3,−0.2,−0.1, 0) therefore the yellow region and its boundary describe the stable
area.

this has on the stability region. For a more complete picture we plot u10 against κ2

and again plot the stability region. In Figure (3.5) we vary κ1 and u20 across the

different plots.
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Figure 3.4: Stability regions for the athermal D2Q9 system. Contours are plotted
at =(λ) = (−0.3,−0.2,−0.1, 0), the yellow region and its boundary indicate the
stable region and, the other colours, the decay from stability. The parameters
are ν = 1 and additionally a) κ2 = −0.1, u20 = −0.5;b) κ2 = −0.1, u20 = 0;c)
κ2 = −0.1, u20 = 0.5; d) κ2 = 0, u20 = −0.5; e) κ2 = 0, u20 = 0; f) κ2 = 0, u20 = 0.5;
g) κ2 = 0.1, u20 = −0.5;h) κ2 = 0.1, u20 = 0;i) κ2 = 0.1, u20 = 0.5.
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Figure 3.5: Stability regions for the athermal D2Q9 system. Contours are plotted
at =(λ) = (−0.3,−0.2,−0.1, 0), the yellow region and its boundary indicate the
stable region and, the other colours, the decay from stability. The parameters
are ν = 1 and additionally a) κ1 = −0.1, u20 = −0.5;b) κ1 = −0.1, u20 = 0;c)
κ1 = −0.1, u20 = 0.5; d) κ1 = 0, u20 = −0.5; e) κ1 = 0, u20 = 0; f) κ1 = 0, u20 = 0.5;
g) κ1 = 0.1, u20 = −0.5;h) κ1 = 0.1, u20 = 0;i) κ1 = 0.1, u20 = 0.5.
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Figure 3.6: Stability regions for the athermal D2Q9 system. Contours are plotted at
=(λ) = (−0.3,−0.2,−0.1, 0), the yellow region and its boundary indicate the stable
region and, the other colours, the decay from stability. The parameters are ν = 1
and |κ1|, |κ2| → ∞.
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3.4 Constructed Examples

A constructed thermal four velocity lattice

As an example of a lattice with a thermal moment we select the velocities (−2,−1, 1, 2).

Here our macroscopic moments will be the usual athermal moments plus an energy

density moment.
∑

i

v2
i f

(0)
i = ρE (3.91)

In order to find a condition for every degree of freedom in the system we find a

fourth condition by matching the fourth order moment of the continuous Maxwellian

distribution. We add the condition that heat flux should be zero outside advection

∑

i

(vi − u)3f
(0)
i = 0. (3.92)

These four conditions together specify a unique quasi-equilibrium by the solution of

the system
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(3.93)

The resulting quasi-equilibrium is given by the population vector

1

12
ρ
(

−2ρ+ ρ+ 2ρE + 2ρu3 − 3ρuE, 8ρ− 8ρu− 2ρE − 4ρu3 + 6ρuE,

8ρ+ 8ρu− 2ρE + 4ρu3 − 6ρuE,−2ρ− ρu+ 2ρE − 2ρu3 + 3ρuE
)

(3.94)
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We are now interested again in the zero order terms of the moment expansion. We

have for the density derivative,

Ψ
(0)
1 = −

∑

i

vi∂xf
(0)
i = −∂x

∑

i

vif
(0)
i = −∂xρu, (3.95)

for the momentum derivative

Ψ
(0)
2 = −

∑

i

v2
i ∂xf

(0)
i = −∂x

∑

i

Wαv
3
i f

(0)
i = −∂xρE, (3.96)

and this time for the energy derivative

Ψ
(0)
3 = −∂x

∑

i

v3
i f

(0)
i = −∂x

(

−2ρu3 + 3ρuE
)

(3.97)

We next calculate the first order terms, beginning with the density.

Ψ
(1)
1 =

1

2

∑

i

v2
i ∂x2f

(0)
i −

∑

i

vi∂xf
(1)
i − 1

2
∂tΨ

(0)
1 (3.98)

The first term is calculated directly and again the second term is the space derivative

of the momentum density of the f
(1)
M .

Ψ
(1)
1 =

1

2
∂x2ρE − 1

2
∂tΨ

(0)
1 . (3.99)

The time derivative of Ψ(0) can be calculated by the chain rule,

∂tΨ
(0)
1 =

(

∂ρΨ
(0)
1

)

(∂tρ) +
(

∂ρuΨ
(0)
1

)

(∂tρu) +
(

∂ρEΨ
(0)
1

)

(∂tρE)

= −∂xΨ
(0)
2 = ∂x2ρE (3.100)
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Substituting this back in we have,

Ψ
(1)
1 =

1

2
∂x2ρE − 1

2
∂x2ρE = 0. (3.101)

For the momentum moment we have

Ψ
(1)
2 =

1

2

∑

i

v3
i ∂x2f

(0)
i −

∑

i

v2
i ∂xf

(1)
i − 1

2
∂tΨ

(0)
2 (3.102)

The first term can be calculated directly from the equilibrium populations, the

second term is equivalent to the second order (thermal) moment used and is therefore

equal to zero giving,

Ψ
(1)
2 =

1

2
∂x2

(

−2ρu3 + 3ρuE
)

− 1

2
∂tΨ

(0)
2 . (3.103)

For the time derivative of Ψ
(0)
2 we have,

∂tΨ
(0)
2 =

(

∂ρΨ
(0)
2

)

(∂tρ) +
(

∂ρuΨ
(0)
2

)

(∂tρu) +
(

∂ρEΨ
(0)
2

)

(∂tρE)

= −∂xΨ
(0)
3 = ∂x2

(

−2ρu3 + 3ρuE
)

. (3.104)

Substituting this in and evaluating we have then,

Ψ
(1)
2 =

1

2
∂x2

(

−2ρu3 + 3ρuE
)

− 1

2
∂x2

(

−2ρu3 + 3ρuE
)

= 0. (3.105)

For the energy moment we have,

Ψ
(1)
3 =

1

2

∑

i

v4
i f

(0)
i −

∑

i

∂xv
3
i f

(1)
i − 1

2
∂tΨ

(0)
3 . (3.106)
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The first term can be calculated directly from the equilibrium populations and gives

us,

∂x2

∑

i

v4
i f

(0)
i = ∂x2 (−4ρ+ 5ρE) . (3.107)

In order to calculate the second term we need the first order populations, these are

given by,

ω

1 − ω
f
(1)
M =

1

12

(

−4∂xρ+
(

−4u3 + 3uE
)

∂xρu+
(

5 + 6u2 − 3E
)

∂xρ

+ 6u∂xρu
3 − 9u∂xρuE8∂xρ+

(

8u3 − 6uE
)

∂xρu

+
(

−10 − 12u2 + 6E
)

∂xρE − 12u∂xρu
3 + 18u∂xρuE

− 8∂xρ+
(

−8u3 + 6uE
)

∂xρu+
(

10 + 12u2 − 6E
)

∂xρE

+ 12u∂xρu
3 − 18u∂xρuE4∂xρ+

(

4u3 − 3uE
)

∂xρu

+
(

−5 − 6u2 + 3E
)

∂xρE − 6u∂xρu
3 + 9u∂xρuE

)

.

(3.108)

Using these populations we have,

∂x

∑

i

v3
i f

(1)
i = ∂x

(

4∂xρ+
(

4u3 − 3uE
)

∂xρu

+
(

−5 − 6u2 + 3E
)

∂xρE − 6u∂xρu
3 + 9u∂xρuE

)

. (3.109)

For the time derivative of Ψ
(0)
3 we have,

∂tΨ
(0)
3 =

(

∂ρΨ
(0)
3

)

(∂tρ) +
(

∂ρuΨ
(0)
3

)

(∂tρu) +
(

∂ρEΨ
(0)
3

)

(∂tρE)

=
(

−4∂xu
3 + 3∂xuE

)

Ψ
(0)
1 +

(

6∂xu
2 − 3∂xE

)

Ψ
(0)
2 − 3∂xuΨ

(0)
3

= ∂x

((

4u3 − 3uE
)

∂xρu+
(

−6u2 + 3E
)

∂xρE − 6u∂xρu
3 + 9u∂xρuE

)

.

(3.110)

61



Combining the three terms gives us,

Ψ
(1)
3 =

(

ω − 1

ω
− 1

2

)

∂x

(

4∂xρ+
(

4u3 − 3uE
)

∂xρu

+
(

−5 − 6u2 + 3E
)

∂xρE − 6u∂xρu
3 + 9u∂xρuE

)

=
ω − 2

2ω
∂x

(

4∂xρ+
(

4u3 − 3uE
)

∂xρu

+
(

−5 − 6u2 + 3E
)

∂xρE − 6u∂xρu
3 + 9u∂xρuE

)

=
ω − 2

2ω
∂x

((

4 − 5E − 2u4 + 3E2
)

∂xρ

+
(

−14ρu3 + 6ρuE
)

∂xu+
(

−5ρ+ 3ρu2 + 3ρE
)

∂xE
)

.

(3.111)

The complete moment gradients to first order are then,

∂tρ = −∂xρu+ o(ε)

∂tρu = −∂xρE + o(ε)

∂tρE = −∂x

(

−2ρu3 + 3ρuE
)

− ε
2 − ω

2ω
∂x

((

4 − 5E − 2u4 + 3E2
)

∂xρ

+
(

−14ρu3 + 6ρuE
)

∂xu+
(

−5ρ+ 3ρu2 + 3ρE
)

∂xE
)

.

(3.112)

We see that for one dimensional system which conserves energy density then there

is no viscosity.

3.4.1 A constructed thermal example with 8 velocities

We now construct a 2D thermal example, for the velocity set we select the 8 non-zero

velocities of the D2Q9 lattice. Similarly to the 1D case we add a thermal moment

for a total of 4, for four more conditions to equal the number of velocities we again
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zero other high order terms. Explicitly these 5 conditions are given by

∑

i

v2
i f

(0)
i = ρE,

∑

i

(vi − u)2f
(0)
i = 0,

∑

i

(vi,1 − u1)(vi,2 − u2)f
(0)
i = 0,

∑

i

(

(vi,1 − u1)
2 − (vi,2 − u2)

2
)

(vi,1 − u1)f
(0)
i = 0,

∑

i

(

(vi,1 − u1)
2 − (vi,2 − u2)

2
)

(vi,2 − u2)f
(0)
i = 0.

(3.113)

For brevity the populations generated by these conditions are listed in appendix

B.1, they are again used to calculate the zero order macroscopic moments

Ψ
(0)
1 =

∑

i

(

−vi · ∂xf
(0)
i

)

= −∂x1

∑

i

vi,1f
(0)
i − ∂x2

∑

i

vi,2f
(0)
i

= −∂x1ρu1 − ∂x2ρu2

(3.114)

for the first momentum derivative

Ψ
(0)
2 =

∑

i

vi,1

(

−vi · ∂xf
(0)
i

)

= −∂x1

∑

i

v2
i,1f

(0)
i − ∂x2

∑

i

vi,1vi,2f
(0)
i

= −1

2
∂x1

(

ρE + ρu2
1 − ρu2

2

)

− ∂x2ρu1u2

(3.115)
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for the second momentum derivative

Ψ
(0)
3 =

∑

i

vi,2

(

−vi · ∂xf
(0)
i

)

= −∂x1

∑

i

vi,1vi,2f
(0)
i − ∂x2

∑

i

v2
i,2f

(0)
i

= −∂x1ρu1u2 −
1

2
∂x2

(

ρE − ρu2
1 + ρu2

2

)

(3.116)

and finally for the energy derivative

Ψ
(0)
4 =

∑

i

v2
i

(

−vi · ∂xf
(0)
i

)

= −∂x1

∑

i

v2
i vi,1f

(0)
i − ∂x2

∑

i

v2
i vi,2f

(0)
i

= −∂x1ρu1

(

2E − u2
1 − u2

2

)

− ∂x2ρu2

(

2E − u2
1 − u2

2

)

(3.117)

For the first order macroscopic moments we begin as usual with the density,

Ψ
(1)
1 =

1

2

∑

i

(

vi · ∂x

(

vi · ∂xf
(0)
i

))

+
∑

i

(

−vi · ∂xf
(1)
i

)

− 1

2
∂tΨ

(0)
1 (3.118)

Again we observe that the second term is the space gradient multiplied with the

momentum densities of the first order populations and hence is zero, for the first

term we have

∑

i

(

vi · ∂x

(

vi · ∂xf
(0)
i

))

=
∑

i

(

∂x2
1
v2

i,1f
(0)
i + 2∂x1x2vi,1vi,2f

(0)
i + ∂x2

2
v2

i,2f
(0)
i

)

=
1

2
∂x2

1

(

ρE + ρu2
1 − ρu2

2

)

+ 2∂x1x2ρu1u2 +
1

2
∂x2

2

(

ρE − ρu2
1 + ρu2

2

)

(3.119)
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and for the third term

∂tΨ
(0)
1 =

(

∂ρΨ
(0)
1

)

(∂tρ)+
(

∂ρu1Ψ
(0)
1

)

(∂tρu1)+
(

∂ρu2Ψ
(0)
1

)

(∂tρu2)+
(

∂ρEΨ
(0)
1

)

(∂tρE)

= −∂x1Ψ
(0)
2 − ∂x2Ψ

(0)
3 = −∂x1

(

−1

2
∂x1

(

ρE + ρu2
1 − ρu2

2

)

− ∂x2ρu1u2

)

− ∂x2

(

−∂x1ρu1u2 −
1

2
∂x2

(

ρE − ρu2
1 + ρu2

2

)

)

(3.120)

hence subtracting these we have Ψ
(1)
1 = 0. For the first second order momentum

density we have

Ψ
(1)
2 =

1

2

∑

i

vi,1

(

vi · ∂x

(

vi · ∂xf
(0)
i

))

+
∑

i

vi,1

(

−vi · ∂xf
(1)
i

)

− 1

2
∂tΨ

(0)
2 (3.121)

Examining each term in turn more closely we have for the first term

∑

i

vi,1

(

vi · ∂x

(

vi · ∂xf
(0)
i

))

=
∑

i

vi,1

(

∂x2
1
(vi,1)

2f
(0)
i + 2∂x1x2vi,1vi,2f

(0)
i + ∂x2

2
(vi,2)

2f
(0)
i

)

= ∂x1

(

ρ∂x1u1 + u1∂x1ρ+
(

−u2 − u2
1 − u3

2 + 2u2E
)

∂x2ρ

− 2ρu1u2∂x2u1 +
(

−ρ− ρu2
1 − 3ρu2

2 + 2ρE
)

∂x2u2

+2ρu2∂x2E)

+ ∂x2

((

−u2 − u2
1u2 − u3

2 + 2u2E
)

∂x1ρ− 2ρu1u2∂x1u1

+
(

−ρ− ρu2
1 − 3ρu2

2 + 2ρE
)

∂x1u1 + 2ρu2∂x1E

+
(

−u1 − u3
1 − u1u

2
2 + 2u1E

)

∂x2ρ

+
(

−ρ− 3ρu2
1 − ρu2

2 + 2ρE
)

∂x2u1

−2ρu1u2∂x2u2 + 2ρu1∂x2E)

(3.122)
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The first order populations for this lattice have up to 90 terms, examples of these

are given in Appendix B.2, they give us for the second term

∑

i

vi,1

(

−vi · ∂xf
(1)
)

= −
∑

i

vi,1

(

∂x1vi,1f
(1)
i + ∂x2vi,2f

(1)
M

)

=
ω − 1

ω

(

∂x1

((

−u1 −
1

2
u3

1 −
3

2
u1u

2
2 +

3

2
u1E

)

∂x1ρ

+

(

u2 +
3

2
u2

1u2 +
1

2
u3

2 −
3

2
u2E

)

∂x2ρ

+
(

−ρ− ρu2
1 − ρu2

2 + ρE
)

∂x1u1

+ 3ρu1u2∂x2u1 − 3ρu1u2∂x1u2

+
(

ρ+ ρu2
1 + ρu2

2 − ρE
)

∂x2u2

+
3

2
ρu1∂x1E − 3

2
ρu2∂x2E

)

+ ∂x2

((

u2 +
3

2
u2

1u2 +
1

2
u3

2 −
3

2
u2E

)

∂x1ρ

+

(

u1 +
1

2
u3

1 +
3

2
u1u

2
2 −

3

2
u1E

)

∂x2ρ

+ 3ρu1u2∂x1u1 +
(

ρ+ 2ρu2
1 + 2ρu2

2 − 2ρE
)

∂x2u1

+
(

ρ+ 2ρu2
1 + 2ρu2

2 − 2ρE
)
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and for the third term
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Combining all three terms we have
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Finally for the first order energy density we have
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We have for the first term
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Again using the first order populations gives us for the second term
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and for the third term
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Combining all three terms we have
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The final macroscopic equations for this system up to first order are then
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Again the second momentum density derivative is just the reflection of the first.
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3.5 Macroscopic Stability of Constructed Exam-

ples

We are now concerned with the stability of the discrete dynamics of the constructed

examples under a short wave perturbation. Again we are concerned with the stabil-

ity of the linear part of the dynamics only. Also we again reinforce that this linear

macroscopic stability is not equivalent to stability of the complete microscopic dy-

namics.

3.5.1 The Thermal 1D System

Again we perform a stability analysis using the same perturbation for the energy,

ρ = ρ0 + Aei(λt+κx)

u = u0 +Bei(λt+κx)

E = E0 + Cei(λt+κx)

(3.132)

Substituting these perturbations into the macroscopic system we find an order 3

matrix analogously to the two moment case. The characteristic polynomial of the

system in λ is

λ3 +
(

3u0κ− 5iνκ2 + 3iνu2
0κ

2 + 3iνκ2E0

)

λ2

+
(

6u2
0κ

2 − 3E0κ
2 + 14iνu3

0κ
3 − 6iνu0E0κ

3
)

λ

+ 4u3
0κ

3 + 4iνκ4 + 12iνu4
0κ

4 − 9iνu2
0E0κ

4 − 3u0E0κ
3 (3.133)

In this case the stability region for the limit of large κ is simply calculated numer-

ically. The graph of this stability region is given in Figure 3.9. For some other

parameter values we can also plot the stability numerically, these are given in Fig-
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ures 3.7,3.8. We can speculate a little on the causes of the shape shown in Figure
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Figure 3.7: Regions of stability for the thermal 1D system. Contours are plotted at
=(λ) = (−0.3,−0.2,−0.1, 0), therefore the yellow region and its boundary indicate
the stable region and, the other colours, the decay from stability. The parameters
for the plots are ν = 1 and additionally a) E0 = 0;b) E0 = 0.5;c) E0 = 1; d)
E0 = 1.5; e) E0 = 2; f) E0 = 2.5; g) E0 = 3.

3.9. The two main sources of instability are possibly down to negative diffusivity for

larger mach numbers on the u0 axis versus sound speeds which the discrete velocity

system cannot support on the E0 axis.
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Figure 3.8: Regions of stability for the thermal 1D system. Contours are plotted at
=(λ) = (−0.3,−0.2,−0.1, 0), therefore the yellow region and its boundary indicate
the stable region and, the other colours, the decay from stability. The parameters
for the plots are ν = 1 and additionally a) u0 = −1.5;b) u0 = −1;c) u0 = −0.5; d)
u0 = 0; e) u0 = 0.5; f) u0 = 1; g) u0 = 1.5.
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Figure 3.9: Regions of stability for the thermal 1D system. Contours are plotted at
=(λ) = (−0.3,−0.2,−0.1, 0), therefore the yellow region and its boundary indicate
the stable region and, the other colours, the decay from stability. The parameters
are ν = 1 and κ→ ∞.
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3.6 The Thermal 2D system

We again extend the stability analysis with the addition of a perturbation from

constant energy.

ρ = ρ0 + Aei(λt+κ1x1+κ2x2)

u1 = u10 +B1e
i(λt+κ1x1+κ2x2)

u2 = u20 +B2e
i(λt+κ1x1+κ2x2)

E = E0 + Cei(λt+κ1x1+κ2x2)

(3.134)

In Figure (3.10) we vary κ2 and u20 with a fixed energy level to see what affect this

has on the stability region. For this example we find that an energy level of 0.75 is in

the centre of the most stable region. In Figure (3.11) we vary κ1 and u20 across the
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Figure 3.10: Stability regions for the thermal 8 velocity 2D system. Contours are
plotted at =(λ) = (−0.3,−0.2,−0.1, 0), the yellow region and its boundary indicate
the stable region and, the other colours, the decay from stability. The parameters
are E0 = 0.75, ν = 1 and additionally a) κ2 = −0.1, u20 = −0.5;b) κ2 = −0.1, u20 =
0;c) κ2 = −0.1, u20 = 0.5; d) κ2 = 0, u20 = −0.5; e) κ2 = 0, u20 = 0; f) κ2 =
0, u20 = 0.5; g) κ2 = 0.1, u20 = −0.5;h) κ2 = 0.1, u20 = 0;i) κ2 = 0.1, u20 = 0.5.
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different plots. We also plot the effects of varying the energy constant E0. Finally
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Figure 3.11: Stability regions for the thermal 8 velocity 2D system. Contours are
plotted at =(λ) = (−0.3,−0.2,−0.1, 0), the yellow region and its boundary indicate
the stable region and, the other colours, the decay from stability. The parameters
are E0 = 0.75, ν = 1 and additionally a) κ1 = −0.1, u20 = −0.5;b) κ1 = −0.1, u20 =
0;c) κ1 = −0.1, u20 = 0.5; d) κ1 = 0, u20 = −0.5; e) κ1 = 0, u20 = 0; f) κ1 =
0, u20 = 0.5; g) κ1 = 0.1, u20 = −0.5;h) κ1 = 0.1, u20 = 0;i) κ1 = 0.1, u20 = 0.5.

we again plot the short wave asymptotics of the system with varying energy levels.

Figure 3.13 along with Figure 3.12 indicates that there is an energy interval where

the first order manifold is stable at zero velocity. Below E0 = 0.5 there exists no

stable region in the limit of |κ1|, |κ2| being large, above E0 = 1 such regions exist

but they do not include the zero velocity region of parameter space.
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Figure 3.12: Stability regions for the thermal 8 velocity 2D system. Contours are
plotted at =(λ) = (−0.3,−0.2,−0.1, 0), the yellow region and its boundary indicate
the stable region and, the other colours, the decay from stability. The parameters are
u10 = 0, ν = 1 and additionally a) κ2 = −0.1, u20 = −0.5;b) κ2 = −0.1, u20 = 0;c)
κ2 = −0.1, u20 = 0.5; d) κ2 = 0, u20 = −0.5; e) κ2 = 0, u20 = 0; f) κ2 = 0, u20 = 0.5;
g) κ2 = 0.1, u20 = −0.5;h) κ2 = 0.1, u20 = 0;i) κ2 = 0.1, u20 = 0.5.
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Figure 3.13: Stability regions for the thermal 8 velocity 2D system. Contours are
plotted at =(λ) = (−0.3,−0.2,−0.1, 0), the yellow region and its boundary indicate
the stable region and, the other colours, the decay from stability. The parameters are
large κ1, κ2 and additionally a) E0 = 0.5;b) E0 = 0.55;c) E0 = 0.6; d) E0 = 0.65;
e) E0 = 0.7; f) E0 = 0.75; g) E0 = 0.8;h) E0 = 0.85;i) E0 = 0.9;j) E0 = 0.95;k)
E0 = 1;l) E0 = 1.05.
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Chapter 4

Generalizations of BGK

In order to improve the stability of lattice Boltzmann methods, some generalizations

of the BGK collision operation have been proposed. In this section a brief description

of these enhancements is made.

4.1 ELBM

In the continuous case the Maxwellian distribution maximizes entropy, as measured

by the Boltzmann H function. In the context of lattice Boltzmann methods a

discrete form of the H-theorem has been suggested as a way to introduce thermo-

dynamic control to the system [7, 41, 42].

From this perspective the goal is to find an equilibrium state equivalent to the

Maxwellian in the continuum which will similarly maximize entropy. Before the

equilibrium can be found an appropriate H function must be known for a given

lattice. These functions have been constructed in a lattice dependent fashion in

[38], and H = −S with S from (4.2) is an example of a H function constructed in

this way.

One way to implement an ELBM is as a variation on the LBGK, known as

82



the ELBGK [2]. The BGK operation 2.9 has its single coefficient ω replaced by a

composite coefficicent αβ,

fi 7→ fi + αβ(f eq
i − fi). (4.1)

In this case β is used to manipulate the viscosity and α is varied to ensure a

constant entropy condition according to the discrete H-theorem. In general the

entropy function is based upon the lattice and cannot always be found explicitly.

However for some examples such as the simple one dimensional lattice with velocities

v = (−c, 0, c) and corresponding populations f = (f−, f0, f+) an explicit Boltzmann

style entropy function is known [38]:

S(f) = −f− log(f−) − f0 log(f0/4) − f+ log(f+). (4.2)

With knowledge of such a function α is found as the non-trivial root of the entropic

involution equation,

S(f) = S(f + α(f eq − f)), (4.3)

finding this root may be called ‘performing the involution’. The trivial root α = 0

returns the entropy value of the original populations. ELBGK then finds the non-

trivial α such that (4.3) holds. This version of the BGK collision one calls entropic

BGK (or EBGK) collision. A solution of (4.3) must be found at every time step and

lattice site. Entropic equilibria (also derived from the H-theorem) are always used

for ELBGK.

The definition of ELBM for a given entropy equation (4.3) is incomplete. First of

all, it is possible that the non-trivial solution does not exist. Moreover, for most of

the known entropies (like the perfect entropy [38]) there always exist such f that the

equation (4.3) for the ELBM collision has no non-trivial solutions. These f should
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be sufficiently far from equilibrium. For completeness, every user of ELBM should

define collisions when the non-trivial root of (4.3) does not exist. We know two rules

for this situation:

1. The most radical approach gives the the Ehrenfest rule [8, 22, 29, 27]: ”if the

solution does not exist then go to equilibrium”, i.e. if the solution does not

exists then take α = 1.

2. The most gentle solution gives the ”positivity rule” [10, 50, 64, 59]: to take

the maximal value of α that guarantees fi + α(f eq
i − fi) ≥ 0 for all i.

In general, the Ehrenfest rule prescribes to send the most non-equilibrium sites

to equilibrium and the positivity rule is applied for any LBM as a recommendation

to substitute the non-positive vectors f by the closest non-negative on the interval of

the straight line [f , f eq] that connects f to equilibrium. These rules give the examples

of the pointwise LBM limiter and we discuss them separately.

It is possible demonstrate the population function values where the involution

cannot be performed for some simple examples. We study the entropic involution in

the distribution simplex Σ given by
∑

fi = const > 0, fi ≥ 0. We demonstrate for

some simple examples that the simplex of distributions can be split into two subsets

A and B: in the set A the entropic involution exists, and for distributions from the

set B equation (4.3) has no non-trivial solutions.

These examples uses the standard 1-D lattice with the discrete entropy function

given in Eq 4.2. The first example is an LBM with only one conserved moment in

collision, namely density. The equilibrium is f eq
− = ρ

6
, f eq

0 = 2ρ
3
, f eq

+ = ρ
6
.

In Fig. 4.1, the simplex Σ of positive populations with a fixed density ρ = 1

is the triangle given by the intersection of three half-planes, f+ > 0, f− > 0, and

1−f+ −f− > 0. Within that region we plot several entropy level contours S(f) = c

and the unique equilibrium point. The region is divided into the parts where the
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Figure 4.1: The simplex Σ is given by the white background. (1) Populations relax
through the equilibrium given by the single point to an equal entropy point, if
possible. The boundary of this possibility is given. (2) The regions A (the entropic
involution is possible) and B (the involution is impossible) as subsets of the simplex
divided by this boundary are presented.
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Figure 4.2: The simplex Σ is given by the white background. (1) Populations relax
through the their corresponding equilibrium point along the line given by constant
u to an equal entropy point, if possible. The boundary of this possibility is given.
(2) The regions A and B separated by this boundary are presented.
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entropic involution is possible (around the equilibrium) and where it is impossible.

A more common use of lattice Boltzmann involves a second fixed moment, mo-

mentum. The entropic equilibria used by the ELBGK are available explicitly as the

maximum of the entropy function (4.2),

f eq
∓ =

ρ

6
(∓3u− 1 + 2

√
1+3u2), f e

0 =
2ρ

3
(2 −

√
1+3u2). (4.4)

In this case the dimension of the equilibrium is one greater. In Fig. 4.2 all relaxation

occurs parallel to the lines of constant u. The region where entropic involution is

possible is again given.

In each experiment the region is discretized into many individual points. For

each point a value for α is attempted to be found. The method used is simply to

begin with a guess of α = 1 and then add increments of 10−3 until a solution of

Eq. 4.3 occurs, or the edge of the positivity domain is reached. This method would

be inappropriate to use in a usual ELBM, due to the very large computational

cost, but it is very robust and hence useful for this experiment with many higly

non-equilibrium distributions. Another approach (with the same result) implies

calculation of the entropic involution for all the boundary points where it exists. In

this method we draw a straight line l through a boundary point f and the equilibrium

and find the intersection l ∩ Σ which consists of all points on l with non-negative

coordinates. One end of this interval is f , another end is also a boundary point, f ′.

The entropic involution for f exists if and only if S(f)′ ≤ S(f). After we check this

inequality, we can solve Eq. (4.3). The images of these involutions form the border

that separates sets A and B (see Figs).

Another source for additional dissipation in the ELBM may be the numerical

method used for the solution of (4.3). For the full description of ELBM we have to

select a numerical method for this equation. This method has to have an uniform
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accuracy in the wide range of parameters, for all possible deviation from equilibrium

(distribution of these deviations has “heavy tails” [10]).

In order to investigate the stabilization properties of ELBGK it is therefore

necessary to craft a numerical method capable of finding the non-trivial root in

(4.3). In this section we fix the population vectors f and f eq, and are concerned only

with this root finding algorithm. We recast (4.3) as a function of α only:

Sf (α) = S(f + α(f eq − f)) − S(f). (4.5)

In this setting we attempt to find the non-trivial root r of (4.5) such that Sf (r) = 0.

It should be noted that as we search for r numerically we should always take care

that the approximation we use is less than r itself. An upper approximation could

result in negative entropy production. A simple algorithm for finding the roots of

a concave function, based on local quadratic approximations to the target function,

has cubic convergence order. Assume that we are operating in a neighbourhood

r ∈ N , in which S ′
f is negative (as well of course S ′′

f is negative). At each iteration

the new estimate for r is the greater root of the parabola P , the second order Taylor

polynomial at the current estimate. Analogously to the case for Newton iteration,

the constant in the estimate is the ratio of third and first derivatives in the interval

of iteration:

|(r − αn+1)| ≤ C|αn − r|3,

where C = 1
6
supa∈N |S ′′′

f (a)|
/

infb∈N |S ′
f (b)| ,

where αn is the evaluation of r on the nth iteration.

We use a Newton step to estimate the accuracy of the method at each iteration:
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because of the concavity of S

|αn − r| .
∣

∣Sf (αn)/S ′

f (αn)
∣

∣ . (4.6)

In fact we use a convergence criteria based not solely on α but on α||f eq − f ||, this

has the intuitive appeal that in the case where the populations are close to the local

equilibrium, then non equilibrium entropy,

∆S = S(f eq) − S(f), (4.7)

will be small and a very precise estimate of α is unnecessary. We have some freedom

in the choice of the norm used and we select between the standard L1 norm and the

entropic norm. The entropic norm is defined as

||f eq − f ||feq = −((f eq − f), D2S
∣

∣

feq (f eq − f)),

where D2S|
feq is the second differential of entropy at point f eq, and (x, y) is the

standard scalar product.

The final root finding algorithm then is beginning with the LBGK estimate

x0 = 2 to iterate using the roots of successive parabolas. We stop the method at

the point,

|αn − r| · ||f eq − f || < ε. (4.8)

To ensure that we use an estimate that is less than the root, at the point where

the method has converged we check the sign of Sf (αn). If Sf (αn) > 0 then we have

achieved a lower estimate, if Sf (αn) < 0 we correct the estimate to the other side of
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the root with a double length Newton step,

αn = αn − 2
Sf (αn)

S ′
f (αn)

. (4.9)

At each time step before we begin root finding we eliminate all sites with ∆S <

10−15. For these sites we make a simple LBGK step. At such sites we find that

round off error in the calculation of Sf by solution of equation (4.3) can result in

the root of the parabola becoming imaginary. In such cases a mirror image given by

LBGK is effectively indistinct from the exact ELBGK collision. Using this criteria,

in the numerical examples given in this work the case where the non-trivial root of

the entropy parabola does not exist was not encountered.

4.2 Entropic Limiting

The single relaxation time limiters reviewed in this section [10] vary the size but

not shape of the non-equilibrium dynamics on a pointwise basis. They may be

implemented as a post process to the collision operation as an additional contraction

towards equilibrium,

f 7→ f eq + λ(f − f eq), 0 ≤ λ < 1. (4.10)

Just as the BGK collision cannot alter the macroscopic moments (as m(f) = m(f eq))

so neither can a limiter of this form.

An easily understandable introduction to this concept is the idea of a postivity

filter[9, 50, 59, 64]. If we understand the population function to physically represent

the density of particles moving with a certain velocity then we should expect that

these densities should be non-negative. If a collision operation produces a negative

value of a population function then the distribution should return in the direction
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of the equilibrium until all population values become non-negative. In the context

of Eq 4.10 this entails finding the greatest value of λ such that the map produces

non-negative populations.

Another logic for the use of a filter of this type is not to manage the signs of

the populations but simply their distance from equilibrium. Obviously there are

a number of reasonable choices for a metric to use for this distance. In this work

the one used is the non-equilibrium entropy (Eq. 4.7). Where the non-equilibrium

entropy is large, above a certain threshold, then an entropic limiter can be applied.

One option is to equilibrate the populations using an Ehrenfest’s Step[22, 29, 8].

In the setting of Eq 4.10 this corresponds to setting λ = 0. We can also choose λ

dynamically.

The prescription for ‘Median Filtering’ is given in [10]. First for a given site x

we calculate the value of ∆S(x), and call this value ∆Sx. If the value of ∆Sx is

above the thresholds, we find the median value of ∆S in some local neighbourhood

surrounding x including itself, calling this value ∆Smed. Now the post process Eq.

4.7 is applied with λ selected by
√

∆Smed/∆Sx. A standard choice of the local

neighbourhood are the sites linked directly with the site to be filtered by a discrete

velocity.

Most lattice Boltzmann models, which we consider to be defined by the choice

of velocity set and local equilibrium, are not entropic and hence do not have an

entropy function [67, 68]. In such a situation the Kullback relative entropy function

[43],

SK(f) =
∑

i

fi ln

(

fi

f eq
i

)

, (4.11)

may be used to complete the definition of ∆S.
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4.3 MRT

Multiple Relaxation Times (MRT) has been proposed as a generalization from the

BGK collision operation[18, 16, 19, 20, 21, 46, 47], where the additional degrees of

freedom arising from a symmetric velocity set are exploited to introduce varying

levels of dissipation on different modes of the system. This class of techniques can

include methods which do not self identify as MRT but exhibit the same idea of

exploiting extra degrees of freedom in the system [17, 25, 36, 40, 45, 54, 55]. Usually

this involves a change of basis for the collision operation, the change of basis matrix

can be denoted M . In this new basis a diagonal relaxation matrix Ω can be used to

relax the different modes independently before the change of basis is reverted, we

define the composite matrix A = M−1ΩM and the MRT collision operation,

f 7→ f + A(f eq − f). (4.12)

The choice of which basis M is ‘best’ is not obvious. Several components of

the basis are necessary, in particular the macroscopic moments should form a part

of the basis. The next components of the basis should be chosen to implement

the viscous stress in the Navier Stokes equations. The most interesting selection is

the completion of the basis following this, corresponding to the post Navier-Stokes

quantities.

To consider a choice of basis it is instructive to imagine the collision operation

as a reduction in the non-equilibrium volume of a system. If for example we have a

9 velocity system with 3 conserved macroscopic moments then this non-equilibrium

volume is 6-dimensional. For the single relaxation time BGK operation this volume

shrinks uniformly along any axis passing through the equilibrium. MRT allows us

the possibility to shrink this volume independently along different axes, the choice

of the MRT basis is equivalent to the choice of these axes. If the higher order modes
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are equilibrated at every time step then that component of the volume is removed

entirely during any collision. When we are concerned with dynamically shrinking

this volume however the choice of basis becomes especially important. We would

like to choose a basis which will target the non-physical oscillations in the system.

One way to make use of the extra degrees of freedom is to take a different

approach from Eq 4.12. Rather than using a different collision operator, a different

equilibrium can be built [36, 40, 45, 54, 55]. The new equilibrium contains extra

terms which in the macroscopic equations give rise to the Navier-Stokes viscous

stress terms. With the use of such an equilibrium the collision operation can chosen

to simply go to equilibrium each time step. Although the literature around these

methods does not describe it as such, using an LBM of this type corresponds to

deleting the component of the post Navier-Stokes dynamics which is spanned by the

velocity set.

Our computational examples will be calculated on the D2Q9 lattice, usually with

the standard polynomial equilibrium, the dynamics of which were explored earlier

in Section 3.1.3,

f eq
i = wiρ

(

1 + 3vi · u +
9

2
(vi · u)2 − 3

2
u2

)

, (4.13)

wi =

{

4

9
,
1

9
,
1

9
,
1

9
,
1

9
,

1

36
,

1

36
,

1

36
,

1

36

}

. (4.14)

In one later test we use ELBM, in that case we use an entropic equilibrium which

is simply the product of two 1D entropic equilibria (Eq 4.4). For convenience we

repeat the horizontal and vertical components of the velocity set here,

vx1 = (0, 1, 0,−1, 0, 1,−1,−1, 1)

vx2 = (0, 0, 1, 0,−1, 1, 1,−1,−1).

(4.15)

92



4.3.1 Lallemand and Luo’s MRT

One choice of basis which has been suggested is an `2 orthogonal extension of the

macroscopic moments made by cross powers of the velocity set [20, 21, 46, 47].

This basis is chosen to represent specific macroscopic quantities and in our ve-

locity system is as follows,

M1 =





















































1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 −2 0 2 1 1 −1 1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1





















































(4.16)

As an alternative we could complete the basis simply using higher powers of the

velocity vectors, the basis would be 1, vx, vy, v
2
x + v2

y, v
2
x − v2

y , vxvy, v
2
xvy, vxv

2
y , v

2
xv

2
y, in
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our velocity system then this change of basis matrix is as follows,

M2 =





















































1 1 1 1 1 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 1 1 1 1 2 2 2 2

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1

0 0 0 0 0 1 −1 −1 1

0 0 0 0 0 1 1 −1 −1

0 0 0 0 0 1 1 1 1





















































(4.17)

Once in moment space we can apply a diagonal relaxation matrix Ω1 to the

populations and then the inverse moment transformation matrix M−1
1 to switch

back into population space, altogether A1 = M−1
1 Ω1M1. If we use the standard

athermal polynomial equilibria then three entries on the diagonal of Ω1 are actually

not important as the macroscopic moments will be automatically conserved since

m(f) = m(f eq), for simplicity we set them equal to 0 or 1 to reduce the complexity

of the terms in the collision matrix. There are 6 more parameters on the diagonal

matrix Ω which we can set. Three of these correspond to second order moments, one

each is required for shear and bulk viscosity which are called se and sν respectively

and one for isotropy. Two correspond to third order moments, one gives a relaxation

rate sq and again one is needed for isotropy. Finally one is used to give a relaxation

rate sε for the single fourth order moment. We have then in total four relaxation
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parameters which appear on the diagonal matrix in the following form:

Ω1 =





















































1 0 0 0 0 0 0 0 0

0 se 0 0 0 0 0 0 0

0 0 sε 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 sq 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 sq 0 0

0 0 0 0 0 0 0 sν 0

0 0 0 0 0 0 0 0 sν





















































. (4.18)

Apart from the parameter sν which is used to control shear viscosity, in an incom-

pressible system the other properties can be varied to improve accuracy and stability.

In particular, there exists a variant of MRT known as TRT (two relaxation time) [25]

where the relaxation rates se, sε are made equal to sν . In a system with boundaries

the final rate is calculated sq = 8(2 − sν)/(8 − sν), this is done, in particular, to

regulate numerical slip on the boundaries of the system so that it no longer depends

upon the relaxation time sν .

We should say that in some of the literature regarding MRT the equilibrium is

actually built in moment space, that is the collision operation would be written,

F (f) = f +M−1
1 Ω1(m

eq −M1f). (4.19)

This could be done to increase efficiency, depending on the implementation, however

each moment equilibrium meq has an equivalent population space equilibrium f eq =

M−1
1 meq, so the results of implementing either system should be the same up to

rounding error.
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We can also conceive of using an MRT type collision as a limiter, that is to

apply it only on a small number of points on the lattice where non equilibrium

entropy passes a certain threshold. This answers a criticism of the single relaxation

time limiters that they fail to preserve dissipation on physical modes. As well as

using the standard MRT form given above we can build an MRT limiter using the

alternative change of basis matrix M2.

The limiter in this case is based on the idea of sending every mode except shear

viscosity directly to equilibrium again the complete relaxation matrix is given by

A2 = M−1
2 Ω2M2 where,

Ω2 =





















































1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 sν 0 0 0 0

0 0 0 0 0 sν 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1





















































. (4.20)

This could be considered a very aggressive form of the MRT which maximizes reg-

ularization on every mode except shear viscosity and may not be appropriate for

general use in a system, especially as the assumption of almost incompressibility

is sometimes not adhered to and hence bulk viscosity is not small. Nevertheless

it has been applied as a system-wide collision operation [45], in such a context it

has also been called ‘regularised collisions’[48]. The advantage of using the different

change of basis matrix is that the complete collision matrix A2 is relatively sparse

with just twenty-four off diagonal elements and hence is easy to implement and not
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too expensive to compute with. We call this limiter the Aggressive MRT or AMRT

limiter.

4.3.2 Dellar’s MRT

Another choice is to use the basis used by Dellar[16] which has the alternative

property of being orthogonal in the weighted inner product given by the quadrature

weights. To define the basis completely a supplementary vector is used,

g = (1,−2,−2,−2,−2, 4, 4, 4, 4) , (4.21)

this may be expressed in terms of the velocity set,

gi = 1 − 15

2
|vi|2 +

9

2
|vi|4. (4.22)

Altogether then the change of basis matrix can be given by a matrix consisting of

the 9 following rows, where just in this instance I represents a row of ones, all vector

multiplications are implied elementwise,

M =
[

I; vx1 ; vx2 ; v
2
x1

− I/3; v2
x2

− I/3; vx1vx2 ; gvx1 ; gvx2 ; g
]

. (4.23)

The first three modes in this basis correspond to the conserved macroscopic moments

and no relaxation is performed on these modes. In principle the other modes can be

modified separately. In practice we use the same relaxation coefficient for the next

three modes which together control bulk and shear viscosity. The next two modes

are denoted J and could be modified to improve stability or give isotropy at the

third order, in fact for these modes we just follow Dellar and use the same rate as

the hydrodynamic modes. Our use of MRT then is limited to varying the relaxation

rate of the final mode consisting of even order components, this mode is denoted N .
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In fact for a numerical implementation it is not necessary to explicitly form the

complete change of basis operation. Again following Dellar, as the macroscopic mo-

ments are calculated we also calculate the non-hydrodynamic mode we are interested

in modifying,

N =
n
∑

i=1

gifi. (4.24)

After that the MRT lattice Boltzmann can be implemented,

fi(x + εvi, t+ ε) = fi(x, t) +ω(f eq
i (x, t)− fi(x, t))− (ωN −ω)wigiN(x, t)/4. (4.25)

Altogether then, in this version of the MRT we have just two relaxation rate

parameters, the standard rate ω used to control viscosity and a further parameter

separately controlling the relaxation of the ghost mode ωN . Evidently in the case

ω = ωN this system reduces to the standard BGK collision operation.

A popular choice of rate for the ghost mode is to equilibrate it be setting ωN =

1 and for the rest of this work doing so will be referred to as the ‘standard’ or

‘usual’ DMRT (Dellar MRT) operation. Since the equilibrium of this mode is zero

this corresponds to deleting this component of the dynamics. This could be the

most effective choice of parameter in terms of stability, however it may not be

without penalty. Despite being orthogonal in the collision this mode is coupled to

the hydrodynamics by means of the advection operation. In terms of the macroscopic

dynamics this rate affects dissipation at a post Navier-Stokes level.

We are interested in implementing a median filter for the separate modes of the

MRT collision operation. In an MRT setting our post-processing operation is given

by,

fi 7→ f eq
i + δ(fi − f eq

i ) + (δN − δ)wigiN/4. (4.26)

Evidently in the case δ = δN this reduces to the single relaxation time limiter.
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In this setting we have two parameters we may wish to manipulate, δ and δN ,

and there are a few ideas we can present as to how to utilize them;

1. We can use the standard BGK collision across the system, set δ = 1 and

dynamically choose δN . This corresponds to not filtering the Navier-Stokes

level modes at all, we attempt to locally trim out the oscillations in the ghost

mode N . This is a weaker operation than using a full MRT (which would

be equivalent to setting δN = 0 everywhere) but we hope it will be nearly as

effective while adding less dissipation.

2. We can use the full MRT collision everywhere and dynamically choose δ. This

corresponds to equilibrating the ghost mode N and trimming out oscillations

in the other dynamics. This is a stronger operation than the usual MRT and

might be appropriate for use at Reynolds numbers where the standard MRT

fails to stabilize the system. It also adds dissipation on the hydrodynamic and

J moments.

3. We can use the BGK collision everywhere and dynamically and separately

choose both δ and δN . The rationale for doing so is that we filter all the

modes as in the single relaxation time setting, but due to the extra freedom

in parameters we can treat separate modes independently. Therefore if oscil-

lations appearing in different modes can be targetted for deletion separately,

without adding undue dissipation on all modes.

As δN controls the dissipation on a single mode it is relatively straightforward

to create a strategy to select a value for it. We simply take the ratio of absolute

value of the mode to the median absolute value of its neighbours, δN = |N |/|N |med

where |N |med is the median of the absolute values of N locally. It is also simple to

select which sites to apply the filter at, we simply take the sites where |N | is above

a certain threshold.
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Selecting a relaxation for the combined remaining nodes is not so obvious as again

there are a number of reasonable choices. We use the quadratic approximation to the

non-equilibrium entropy of the populations with the contribution due to N moment

stripped out, we can define an auxiliary set of populations,

f ∗

i = fi − wigiN/4. (4.27)

Then the non-equilibrium entropy of this component of the dynamics is

∆S∗ = −
∑

i

(f ∗

i − f eq
i )2 /f eq

i . (4.28)

So the coefficient δ may be calculated as δ =
√

∆S∗
med/∆S

∗where again ∆S∗
med

is the median value of ∆S∗ locally.

Due to the differing methods for calculating the post processing coefficients δ

and δN , as well as the relative size of the modes, it is not appropriate to use the

same threshold for selecting filtering sites. A separate threshold should be chosen

for each, which selects a small proportion of the sites for filtering.
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Chapter 5

Numerical Experiments

In this chapter details of some numerical experiments are given where the effectivenes

of the generalizations of LBM in improving stability are tested.

5.1 1D Shock Tube

A standard experiment for the testing of LBMs is the one-dimensional shock tube

problem. The lattice velocities used are v = (−1, 0, 1), so that space shifts of the

velocities give lattice sites separated by the unit distance. 800 lattice sites are used

and are initialized with the density distribution

ρ(x) =











1, 1 ≤ x ≤ 400,

0.5, 401 ≤ x ≤ 800.

Initially all velocities are set to zero. We compare the ELBGK equipped with the

parabola based root finding algorithm using the entropic norm with the standard

LBGK method using both standard polynomial and entropic equilibria. The poly-
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nomial equilibria are given in [62, 5]:

f eq
− =

ρ

6

(

1 − 3u+ 3u2
)

, f eq
0 =

2ρ

3

(

1 − 3u2

2

)

,

f eq
+ =

ρ

6

(

1 + 3u+ 3u2
)

.

The entropic equilibria also used by the ELBGK are available explicitly as the

maximum of the entropy function (4.2),

f eq
− =

ρ

6
(−3u− 1 + 2

√
1+3u2), f eq

0 =
2ρ

3
(2 −

√
1+3u2),

f eq
+ =

ρ

6
(3u− 1 + 2

√
1+3u2).

Now following the prescription fromm Sec. 4.1 the governing equations for the

simulation are

f−(x, t+1)=f−(x+1, t)+αβ(f eq
− (x+1, t)−f−(x+1, t)),

f0(x, t+1)=f0(x, t)+αβ(f eq
0 (x, t) − f0(x, t)),

f+(x, t+1)=f+(x−1, t)+αβ(f eq
+ (x−1, t)−f+(x−1, t)).

From this experiment we observe no benefit in terms of regularization in using the

ELBGK rather than the standard LBGK method (Fig. 5.1). In both the medium

and low viscosity regimes ELBGK does not supress the spurious oscillations found in

the standard LBGK method. The observation is in full agreement with the Tadmor

and Zhong [63] experiments for schemes with precise entropy balance.

We also consider regularizing the LBGK method using median filtering at a

single point. We follow the prescription detailed in Section 4.2. First, at each

time step, we locate the single lattice site x with the maximum value of ∆S. That

single site is post processed using the median filter. For this experiment the discrete

equilibrium used is the entropic one, hence the standard entropy function is used
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Figure 5.1: Density profile of the simulation of the shock tube problem following
400 time steps using (a) LBGK with polynomial equilibria [ν = (1/3) · 10−1]; (b)
LBGK with entropic equilibria [ν = (1/3) · 10−1]; (c) ELBGK [ν = (1/3) · 10−1]; (d)
LBGK with polynomial equilibria [ν = 10−9]; (e) LBGK with entropic equilibria
[ν = 10−9]; (f) ELBGK [ν = 10−9].

and the Kullback relative entropy function is not needed.

We observe that filtering a single point at each time step still results in a signif-

icant amount of regularization (Fig. 5.2).

We also examine in each case the lattice site where the filtering is applied. The

zero position is defined as the rightmost lattice site with ∆S > 0 at each time step

and the position of the filtering is measured relative to this site. The occurrences

at each relative position are then summed over the experiment. We can see (Fig.

5.3) that the majority of filtering takes place on the shock. However, in the low

viscosity case, we observe that at a small number of time steps the filtered site

moves significantly ‘behind’ the shockwave.
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Figure 5.2: Density profile of the simulation of the shock tube problem following 400
time steps using (a) LBGK with entropic equilibria and one point median filtering
[ν = (1/3) ·10−1]; (b) LBGK with entropic equilibria and one point median filtering
[ν = 10−9].
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Figure 5.3: Distribution of median filtering sites relative to the position of the shock
following 400 time steps using (a) LBGK with entropic equilibria and one point
median filtering [ν = (1/3) ·10−1]; (b) LBGK with entropic equilibria and one point
median filtering [ν = 10−9].
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5.2 2D Lid Driven Cavity

Our next 2D example is the benchmark 2D lid driven cavity. This benchmark

has already been used for the study lattice Boltzmann methods[1, 37], including in

particular for the comparison of collision operations[52]. In this case this is a square

system of side length 129. Bounce back boundary conditions are used and the

top boundary imposes a constant velocity of uwall = 0.1. For a variety of Reynolds

numbers we run experiments for up to 10000000 time steps and check which methods

have remained stable up until that time step.

The bounce-back boundary conditions for a moving top wall may be implemented

by [52],

fi = fj − 2wiρ
vi,1uwall

c2s
, i = {4, 7, 8}, j = {2, 5, 6} (5.1)

The methods which we test are the standard BGK system, the BGK system equipped

with Ehrenfest steps, the BGK system equipped with the MRT limiter, the TRT

system, a Lallemand and Luo (L&L) MRT system with the TRT relaxation rate for

the third order moment and the other rates se = 1.64, sε = 1.54 and finally an MRT

system which we call L&L MRT1 with the rates sq = 1.9se = 1.64, sε = 1.54 [46]. In

each case of the system equipped with limiters the maximum number of sites where

the limiter is used is 9.

All methods are equipped with the standard 2nd order compressible quasi-

equilibrium, which is available as the product of the 1D equilibria (Eq 5.1).

Additionally we measure Enstrophy E in each system over time. Enstrophy is

calculated as the sum of vorticity squared across the system, normalized by the

number of lattice sites. The vorticity and the stream function are both calculated

with second order central differences in lattice units. This statistic is useful as

vorticity is theoretically only dissipated due to shear viscosity, at the same time

in the lid driven system vorticity is produced by the moving boundary. For these
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systems E becomes constant as the vorticity field becomes steady. The value of this

constant indicates where the balance between dissipation and production of vorticity

is found. The lower the final value of E the more dissipation produced in the system.
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Figure 5.4: Contour plots of stream functions of A: BGK, B: BGK + Ehrenfest
Steps, C: BGK + MRT Limiter, D: TRT, E: L&L MRT, F: L&L MRT1 following
10000000 time steps at Re1000 (negative regions in dashed lines).
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Figure 5.5: Enstrophy in the Re1000 systems during the final 2 · 105 time steps

All of these systems are stable for Re1000, the contour plots of the final state
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are given in Figure 5.4 and there appears only small differences. We calculate the

average enstrophy in each system and plot it as a function of time in Figure 5.5. We

can see that in the different systems that enstrophy and hence dissipation varies.

Compared with the BGK system all the other systems except L&L MRT1 exhibit

a lower level of enstrophy indicating a higher rate of dissipation. For L&L MRT1

the fixed relaxation rate of the third order mode is actually less dissipative than the

BGK relaxation rate for this Reynolds number, hence the increased enstrophy. An

artifact of using the pointwise filtering techniques is that they introduce small scale

local oscillations in the modes that they regularize, therefore the system seems not

to be asymptotically stable. This might be remedied by increasing the threshold of

∆S below which no regularization is performed. Nevertheless in these experiments

after sufficient time the enstrophy values remain within a small enough boundary

for the results to be useful.
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Figure 5.6: Contour plots of stream functions of A: BGK + Ehrenfest Steps, B:
BGK + AMRT Limiter, C: TRT, D: L&L MRT1,following 10000000 time steps at
Re2500 (negative regions in dashed lines).
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Figure 5.7: Enstrophy in the Re2500 systems during the final 2 · 105 time steps

The next Reynolds number we choose is Re2500. Only 4 of the original 6 systems

complete the full number of time steps for this Reynolds number, the contour plots

of the final stream functions are given in Figure 5.6. Of the systems which did not

complete the simulation it should be said that the L&L MRT system survived a few

10s of thousands of time steps while the BGK system diverged almost immediately,

indicating that it does provide stability benefits which are not apparent at the coarse

granularity of Reynolds numbers used in this study. O

Again we check the enstrophy of the systems and give the results for the final

timesteps in Figure 5.7. Due to the failure of the BGK system to complete this

simulation there is no ”standard” result to compare the improved methods with.

The surviving methods maintain their relative positions with respect to enstrophy

production.

For the theoretical Reynolds number of 5000 only two systems remain, their

streamfunction plots are given in Figure 5.8. At this Reynolds number the upper left

vortex has appeared in the Ehrenfest limited simulation, however a new discrepancy

has arisen. The lower right corner exhibits a very low level of streaming.

In Figure 5.9 the enstrophy during the final parts of the simulation is given. We

note that for the first time the L&L MRT1 system produces less enstrophy (is more

dissipative) than the BGK system with Ehrenfest limiter.
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Figure 5.8: Contour plots of stream functions of A: BGK + Ehrenfest Steps, B: L&L
MRT1,following 10000000 time steps at Re2500 (negative regions in dashed lines).
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Figure 5.9: Enstrophy in the Re5000 systems during the final 2 · 105 time steps
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Figure 5.10: Contour plots of stream functions of A: Re7500 and B: Re10000 BGK
+ Ehrenfest systems,following 10000000 time steps at Re5000 (negative regions in
dashed lines).
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Figure 5.11: Enstrophy in the Re7500 and Re10000 BGK + Ehrenfest systems
during the final 2 · 105 time steps

For the final two Reynolds numbers we use, 7500 and 10000, only the BGK

system with the Ehrenfest limiter completes the simulation. The corresponding

streamfunction plots are given in Figure 5.10 and they exhibit multiple vortices in

the corners of the domain.

The enstrophy plots are given in Figure 5.11, as the theoretical Reynolds number

increases so does the level of enstrophy.

5.2.1 First Hopf Bifurcation

As we have seen the moving lid boundary condition drives the formation of vortices,

which for low Reynolds numbers form a steady state and, for high Reynolds numbers,

periodic or chaotic results. This transition begins with a Hopf bifurcation where the

steady state evolves into a periodic flow, and localizing this bifurcation will be our

goal in this section. This offers an alternative method of measuring dissipation in the

system, the more artificial dissipation is produced, the higher the Reynolds number

at which the bifurcation is observed.

In this study we use diffusive boundary conditions [3, 12]. The essence of the

condition is that populations reaching a boundary are reflected, proportional to
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equilibrium, such that mass-balance (in the bulk) and detail-balance are achieved.

The boundary condition coincides with “bounce-back” in each corner of the cavity.

To illustrate, immediately following the advection of populations consider the

situation of a wall, aligned with the lattice, moving with tangential velocity uwall

and with inward normal in the down direction. The implementation of the diffusive

Maxwell boundary condition at a boundary site x on this wall consists of the update

fi = γf eq
i (uwall), i = 4, 7, 8, (5.2)

with

γ =
f2 + f5x+ f6

f eq
4 (uwall) + f eq

7 (uwall) + f eq
8 (uwall)

. (5.3)

The reason for the selection of this boundary condition vs the standard ‘bounce-

back’ condition, is that this choice results in reduced noise in the populations func-

tions and therefore the macroscopic moments. When using the bounce-back bound-

ary conditions this noise makes the transition from a steady to a periodic flow

difficult to detect.

A survey of available literature reveals that the precise value of Re at which the

first Hopf bifurcation occurs is somewhat contentious, with most current studies

(all of which are for incompressible flow) ranging from around Re = 7400–8500

[11, 53, 56]. Here, we do not intend to give a precise value, rather we will be content

to approximately localise the first bifurcation and by doing so measure the relative

amount of dissipation produced by different systems.

To localise the first bifurcation we take the following algorithmic approach. The

initial uniform fluid density profile is ρ = 1.0 and the velocity of the lid is uwall = 1/10

(in lattice units). We use 101 interior lattice points in each direction for the domain.

We then record the velocity data at a single control point with coordinates (6, 18)

(relative to the upper left corner) and run the simulation for 5000L/u0 time steps.
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We denote the final 0.1% of the time series given by this signal by usig.

For this test we switch from using the L&L MRT to the DMRT. The relaxation

parameters chosen for the L&L MRT are predicated on the use of bounce-back

boundary conditions, which are not appropriate for use in this test. Since the

varying boundary conditions also affect the stability of the systems, even for the

standard BGK collision operation, the stability results from the previous section are

not directly comparable with the results in this section. To be specific the use of

these diffusive boundary conditions usually increases stability.

In this problem the standard BGK system becomes unsteady before the first bi-

furcation occurs, at approximately Re2500. For our next benchmark test we examine

the bifurcation in the standard DMRT system.
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Figure 5.12: Mean filtered usig for the DMRT at a) Re7400, b) Re7600, c) Re7800,
d) Re8000

In Figure 5.12 the emergence of a periodic state in the standard DMRT system

is observed. Again we do not precisely locate the bifurcation, only noting that

it appears to emerge between a steady state solution at Re7400 and a periodic

solution at Re7600. We should note that any additional dissipation produced by

this operation has an extremely limited effect as the first bifurcation is detected in

the expected region.

The next benchmark is the BGK system with the single relaxation time Median

Filter. In Figure 5.13 we see that this system similarly seems to pick a bifurcation

between Re7400 and Re7600, although the form of that bifurcation is somewhat
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Figure 5.13: Mean filtered usig for the BGK system equipped with the single relax-
ation time median filter at a) Re7400, b) Re7600, c) Re7800, d) Re8000

different and the system is subject to some noise due to the non-constant application

of the limiter.

The final benchmark is the test of the ELBM system. In this experiment the

system becomes unsteady before the first bifurcation at approximately Re6700.

The next test involves filtering only the N moment as discussed previously. In

this case we set a threshold of 10−2 for sites where the filter is applied. Inparticular

we make two tests where we observe the following:

• In a test where the relaxation rate δN is selected dynamically the system

becomes unsteady before the first bifurcation at approximately Re3800. In this

instance approximately 23 lattice sites per time step are selected for filtering.

• In a test where the relaxation rate δN is always chosen as zero the system

becomes unsteady before the first bifurcation at approximately Re4700. In this

instance approximately 20 lattice sites per time step are selected for filtering.

Altogether we observe that applying an MRT operation in this manner is consider-

ably less effective at stabilizing the system than the standard method of applying it

uniformly everywhere in the system.

Although ELBM and these MRT-filtered systems become unsteady before the

first bifurcation the systems do complete the requested number of time steps (they

do not ‘blow up’) but in fact complete the simulation up to higher values of Reynolds
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Figure 5.14: Steam function of a) Full MRT, b) BGK equipped with the single
relaxation time median filter c) BGK with MRT Limiter with δN dyanmically chosen,
d) ELBM at the final time step of the Re7000 simulations (negative regions in dashed
lines)

numbers . Nevertheless the results of these simulations are not useful as can be seen

in Figure 5.14. The form of the stream function varies significantly from the standard

DMRT and median filtered BGK systems which reproduce the proper form of the

stream function.
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Figure 5.15: Steam function of a)BGK, b) Full DMRT, c) BGK equipped with the
single relaxation time median filter, d) ELBM at the final time step of the Re5000
simulations (negative regions in dashed lines)

The other side of the coin is that although simulations may not be completely

steady before the bifurcation, the results may be quite good. In Figure 5.15 the

stream functions are given for all the benchmark tests at Re5000. For this Reynolds

number BGK is unsteady (having non-zero disturbance energy), nevertheless the

stream function is rather close to the steady solutions given by the three primary
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stabilizing techniques. We presume that in this case the disturbances in the pure

BGK systems consist of minor fluctuations which average out in time. This explains

the good results for vortex centres for BGK at this Reynolds number and grid

resolution given elsewhere[10].
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Figure 5.16: Mean filtered usig for the full MRT system equipped with the median
filter as a post-processor at a) Re7400, b) Re7600, c) Re7800, d) Re8000

The next test represents using the full MRT everywhere and applying the Median

Filter as a post-processor. We can see from Figure 5.16 that although this system

also picks out the first bifurcation, it does so at a larger Reynolds.

The final techniques to test are the combinations of filtering both parameters δ

and δN . We try two options, in both for the Navier-Stokes part we use the Median

Filtering where ∆S∗ is above the threshold. For the N component in the first

option we dynamically choose δN , in the second option we just set δN = 0, where

the magnitude of N exceeds the threshold.

In Figures 5.17, 5.18 we see the systems with the median-filter Navier Stokes

dynamics as well as the median filtered/ selectively equilibrated ghost mode respec-

tively. In these systems we see the bifurcation develop into a very noisy phase before

seeming to return to a more structured dynamic.

To further examine the relative positions of the bifurcations in the systems we

measure the mean squared deviation of usig from its own average in that time, this
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Figure 5.17: Mean filtered usig for the BGK system with the Navier-Stokes modes
and ghost mode median filters as a post-processor at a) Re7400, b) Re7600, c)
Re7800, d) Re8000
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Figure 5.18: Mean filtered usig for the BGK system with the Navier-Stokes modes
and ghost mode selectively equilibrated as a post-processor at a) Re7400, b) Re7600,
c) Re7800, d) Re8000

gives the ‘disturbance energy’ of the signal,

E = ‖(usig − usig)‖2
2 . (5.4)

Since the transition between steady and periodic flow in the lid-driven cavity is

known to belong to the class of standard Hopf bifurcations we are assured that

E ∝ Re [24].

In Figure 5.19 we plot E as a function of Reynolds number, including the results

of the benchmark tests. The emergence of the first bifurcation in the systems shown

in Figures 5.12, 5.13,5.16, 5.17, 5.18 can also be observed here. From this figure we

can see that the standard MRT as well as the two limiters which filter the modes
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Figure 5.19: Disturbance energy (Eq. 5.4) in the systems with collision operations
a)Full DMRT b)BGK with single relaxation time Median Filtering c)BGK with
Median Filtering the Navier-Stokes and ghost modes independently d) BGK with
Median Filtering the Navier-Stokes modes and selectively equilibrating the ghost
mode e) Full DMRT with Median Filtering the Navier-Stokes modes; at Re10000
to Re100000 ; at Re1000 to Re10000

independently produce marginally less dissipation.
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Figure 5.20: Disturbance energy (Eq. 5.4) in the systems with collision operations
a)Full DMRT b)BGK with single relaxation time Median Filtering c)BGK with
Median Filtering the Navier-Stokes and ghost modes independently d) BGK with
Median Filtering the Navier-Stokes modes and selectively equilibrating the ghost
mode e) Full DMRT with Median Filtering the Navier-Stokes modes; at Re10000
to Re100000

In Figure 5.20 we extend the range of Reynolds numbers up to 100000. The scope

of energy exhibited by the systems diverges apart perhaps from the full DMRT and

the full DMRT with Median Filter which stay relatively close together until the full

DMRT becomes unstable at approximately Re44000.
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Chapter 6

Conclusions

In the analysis of the continuous Boltzmann equation, the Chapman-Enskog proce-

dure is known to reproduce the Navier-Stokes equations[33, 39, 62] at the first order.

This is achieved by a perturbation by a small parameter, the Knudsen number. At

higher orders which were not discussed here the Burnett equations arise.

The discrete Boltzmann schemes studied here are defined by the requirement

that the Euler equations are recovered at the zero order. In common with the

continuous scheme, dissipative terms arise at the first order, however in the discrete

case there appear additional viscous terms. In parallel with Goodman and Lax[26]

we view the additional dissipative part of the fluid as a direct consequence of the

discrete scheme used. In this work we have used the idea of invariant manifolds[30] to

calculate the macroscopic dynamics arising from discrete time Boltzmann schemes.

This technique is based on an expansion in a different small parameter, the time

step ε. Dynamics at the zero and first orders again correspond to the conservative

and dissipative parts of a fluid respectively. Although in this work we calculate these

dynamics up to the first order only, the methodology can be extended to calculate

higher orders. Under some hypotheses about the smoothness of the distribution

function we prove conditional stability of these expansions up to some finite order.
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To compute a solution to the Boltzmann system it is also necessary to discretize

velocity space. We have calculated the exact macroscopic dynamics up to first order

of common discrete velocity schemes, and their continuous counterparts. Although

the dynamics of these two schemes match at the zero order, in the discrete velocity

case additional erroneous terms arise at the first order. Such errors might be ex-

pected due to the way the quasi-equilibria in the discrete case are defined. If we view

the discrete velocity summation as a quadrature approximation to the continuous

velocity integral, then we should expect an error of integration. At the zero order

we find no such error. This is due to an equilibrium being constructed specifically

that the zero order moments are calculated exactly. This equilibrium consists of

merely the second order Taylor expansion of the continuous equilibrium about the

zero momentum position. It should, perhaps then, be no surprise that the dissipa-

tive dynamics in the discrete system approach those of the continuous system only

in the limit of momentum going to zero, and that the error terms are third order.

We perform a stability analysis of the linear part of the macroscopic dynamics

of the discrete velocity schemes under a short wave perturbation. In common with

other authors using similar Fourier techniques [59, 61], and with our own earlier

assumptions, we find that two lattice parameters are critical for stability. These are

the time step ε which must be positive, and the relaxation parameter ω, which must

be chosen for non-zero flow speed in the interval (−1, 1). We also analytically and

graphically give the permissible range of macroscopic quantities for stability. For

the athermal systems study the density ρ can be any value, whereas the momentum

u should be within an area centered around the zero point. The exact shape of this

region is determined by the choice of velocity discretization.

Some enhancements of the standard single relaxation time BGK collision opera-

tion have been presented. Particular implementations of these have been tested to

find their comparitive benefits.
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Our first numerical test involves implementing ELBM and the median filter and

testing them on the standard 1D shock tube benchmark. We present three main

conclusions from this study. Firstly we do not find any evidence that maintaining

the proper balance of entropy regularizes spurious oscillations the Lattice Boltzmann

method. For ELBGK we confirm the conclusions of Lax [26] and Levermore with Liu

[49] that dispersive oscillations are unavoidable in numerical simulation of shocks.

Secondly, in order to clean up the parasitic dispersive oscillations in the Lattice

Boltzmann method it is effective to filter the entropy in some way, so as to reduce

the extremely-localised incidents of high non-equilibrium entropy; see [10], other

(nonlocal) algorithms of filtering were proposed recently [57].

Finally for the 1D shock tube, one only needs to filter the entropy at one point

per time step (usually very local to the shock), even at very low viscosity, in order

to effectively eliminate the post-shock oscillation. The entropy filtering for non-

entropic equilibria is possible [10] with use of the Kullback–Leibler distance from

current distribution to equilibrium (the relative entropy).

In the 2D lid driven cavity test we observe that implementing TRT[25] or the

L&L MRT[46] with certain relaxation rates can improve stability. The increase

in stability from using TRT can be attributed to the correction of the numerical

slip on the boundary, as well as modifying dissipation. What is the best set of

parameters to choose for MRT is not a closed question. The parameters used in this

work are those originally proposed by Lallemand and Luo [46]. Certain choices of

relaxation parameters may improve stability while qualitatively changing the flow,

so parameter choices should be justified theoretically, or alternatively the results of

simulations should be somehow validated. Nevertheless the parameters used in this

work exhibit an improvement in stability over the standard BGK system.

Modifying the relaxation rates of the different modes changes the production of

dissipation of different components at different orders of the dynamics. The higher
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order dynamics of lattice Boltzmann methods include higher order space derivatives

of the distribution functions. MRT could exhibit the very nice property that where

these derivatives are near to zero that MRT has little effect, while where these

derivatives are large (near shocks and oscillations) that additional dissipation could

be added, regularizing the system.

Using entropic limiters explicitly adds dissipation locally[10]. The Ehrenfest

steps succeed to stabilize the system at Reynolds numbers where other tested meth-

ods fail, at the cost of the smoothness of the flow. We also implemented an entropic

limiter using MRT technology called AMRT, which maximises dissipation on all

non-shear modes. This also succeeded in stabilizing the system to a degree, however

the amount of dissipation added is less than an Ehrenfest step and hence it is less

effective. The particular advantage of a limiter of this type over the Ehrenfest step

is that it can preserve the correct production of dissipation on physical modes across

the system. Other MRT type limiters can easily be invented by simply varying the

relaxation parameters.

As previously mentioned there have been more filtering operations proposed[57].

These have a similar idea of local (but not pointwise) filtering of lattice Boltzmann

simulations. A greater variety of variables to filter have been examined, for ex-

ample the macroscopic fields can be filtered rather than the mesoscopic population

functions.

We can use the Enstrophy statistic to measure effective dissipation in the sys-

tem. The results from the lid-driven cavity experiment indicate that increased total

dissipation does not necessarily increase stability. The increase in dissipation needs

to be targeted onto specific parts of the domain or specific modes of the dynamics

to be effective

If we use some non-standard boundary conditions we can measure dissipation

in a slightly different way, by the location of the first Hopf Bifurcation. The first
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observation is that in both the DMRT and Median Filtered simulations the first

bifurcation is detected in the expected range. We should not say that the bifurcation

appears at the proper value, as we do not have a precise expectation of what it should

be. Rather we can just say that both techniques add a minor and comparable

amount of dissipation into the system, while improving the stability relative to the

BGK system.

The other primary technique outlined in this work, ELBGK, stabilized the sys-

tem up to a higher Reynolds number than the basic LBGK system, however not

enough to reach the first bifurcation. On the basis of this test this technique cannot

be recommended as a stabilizer for lattice Boltzmann systems as it not only performs

worse, but is significantly more computationally expensive than an application of

MRT or Median Filtering, due to the requirement to solve Eq 4.5 at every lattice

site and time step.

The experiments which only filtered the ghost mode N were also not stable up to

the first bifurcation. While it may be interesting that such minor modifications to

the BGK system (altering only the post Navier-Stokes dynamics at a small number

of sites) provides a stability increase by Re1000-2000, on the basis of this test this

limiter cannot be recommended very strongly. The reasons being that the standard

DMRT is considerably more effective, exhibits a reasonable value for the first bifur-

cation (and hence adds little dissipative error) and doesn’t bear the computational

overhead of applying a post-processing operation in addition to evaluating the field

N at each time step.

The combination of the full DMRT and the Median Filter as a post process

introduces an additional quantity of dissipation which delays the onset of the first

bifurcation, as might be expected as the combination of two smoothing techniques.

The systems we tested which attempted to filter the modes independently also

stabilize the system, picking a reasonable value of the Reynolds number for the first
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bifurcation but with some additional noise in the dynamics.

According to Figure 5.19 the systems which pick the bifurcation at the lowest

value of Re are the Full DMRT system and the two systems which filter the modes

independently. All the results will be affected by the particular choice of the thresh-

olds used to select the sites where filtering is applied. Fewer applications of any

filter would be expected to move the bifurcation to a lower Reynolds number. No

investigation was made in this work into varying these thresholds, they were simply

chosen via some initial tests as values which selected a very small proportion of

lattice sites.

We also observe that in the realm of higher Reynolds numbers (Figure 5.20)

that the energy of the systems at the monitoring point diverges. Another method

of validation should be used at these lower viscosities to realize which technique is

most accurate in this regime.

Altogether we have observed that two existing techniques for stabilizing lattice

Boltzmann methods by generalizing the BGK collision operation succeed in picking

the first Hopf Birfucation at a reasonable value of the Reynolds number. Of course

these two operations can be combined to produce even more artificial dissipation

and hence move the bifurcation to a greater value of the Reynolds number. This

is obviously undesirable but such a procedure may be useful at very low viscosities

to produce a stable system. ELBGK performs more poorly, providing less stability

benefits while being more computationally expensive. The newly created limiters,

which filter the modes independently, also pick a reasonable of the Reynolds number

for the first bifurcation. A fuller investigation into the effects of altering the threshold

parameters needs to be made to see if this perfomance can be further improved. The

fact that the ‘parent’ methods of these limiters, namely MRT and Median Filtering,

perform so well, indicates that any performance gains from using a limiter of this

type will be fairly marginal.
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Finally we should note that the stability of lattice Boltzmann systems depends

on more than one parameter. In all these numerical tests the Reynolds number

was modified by altering the rate of production of shear viscosity. In particular,

for the lid driven cavity the Reynolds number could be varied by altering the lid

speed, which was fixed at 0.1 in all of these simulations. Since the different modes

of the dynamics include varying powers of velocity, this would affect the stability of

the system in a different manner to simply changing the shear viscosity coefficient.

In such systems the relative improvements offered by these methods over the BGK

system could be different.
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Appendix A

First order populations for the

D2Q9 lattice with standard

polynomial quasi-equilibria
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1

36
(2u1∂x1ρ+ 2u2∂x2ρ− 3u1∂x2ρ− 3u2∂x1ρ

+
(

−2 − 3u2
1 + 9u1u2 − 3u2

2

)

∂x1ρu1

+
(

−2 − 3u2
1 + 9u1u2 − 3u2

2

)

∂x2ρu2

+ 3∂x1ρu2 + 3∂x2ρu1 − 3∂x1ρu
2
2 + 3∂x2ρu

2
1

+ (6u1 − 9u2) ∂x1ρu
2
1 + (−9u1 + 6u2) ∂x2ρu

2
2

+ (6 − 9u1 + 6u2) ∂x1ρu1u2

+ (−6 − 9u1 + 6u2) ∂x2ρu1u2)
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Appendix B

Populations for the constructed

2D thermal example

B.1 Zero order populations for the 8 velocity lat-

tice with a thermal moment

f 1...8,(0) =
1

4
ρ
(

2 + 4u1 + u2
1 − u2

2 − E + 2u3
1 + 2u1u

2
2 − 4u1E

)

,

1

4
ρ
(

2 + 4u2 − u2
1 + u2

2 − E + 2u2
1u2 + 2u3

2 − 4u2E
)

,

1

4
ρ
(

2 − 4u1 + u2
1 − u2

2 − E − 2u3
1 − 2u1u

2
2 + 4u1E

)

,

1

4
ρ
(

2 − 4u2 − u2
1 + u2

2 − E − 2u2
1u2 − 2u3

2 + 4u2E
)

,

1

4
ρ
(

−1 − u1 − u2 + u1u2 + E − u3
1 − u2

1u2 − u1u
2
2 − u3

2 + 2u1E + 2u2E
)

,

1

4
ρ
(

−1 + u1 − u2 − u1u2 + E + u3
1 − u2

1u2 + u1u
2
2 − u3

2 − 2u1E + 2u2E
)

,

1

4
ρ
(

−1 + u1 + u2 + u1u2 + E + u3
1 + u2

1u2 + u1u
2
2 + u3

2 − 2u1E − 2u2E
)

,

1

4
ρ
(

−1 − u1 + u2 − u1u2 + E − u3
1 + u2

1u2 − u1u
2
2 + u3

2 + 2u1E − 2u2E
)
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B.2 Example first order populations for the 8 ve-

locity lattice with a thermal moment

ω

1 − ω
f 1,(1) =

1

4

(

−2 − 2u1 − u2
2 + u2

1 + 3E − 3u1u
2
2 − u3

1 + 3u1E − u4
2 + 2u2

1u
2
2

+3u4
1 − 3u2

1E + 3u2
2E − 2E2

)

∂x1ρ

+
1

4

(

2u2 + 4u1u2 + 3u2
1u2 + u3

2 − 3u2E + 4u3
1u2 + 4u1u

3
2 − 6u1u2E

)

∂x2ρ

+
1

4
ρ
(

−2 + 2u1 − 2u2
1 − 2u2

2 + 2E − 8u1E + 14u3
1 + 6u1u

2
2

)

∂x1u1

+
1

4
ρ
(

4u2 + 6u1u2 + 10u2
1u2 + u3

2 − 4u2E
)

∂x2u1

+
1

4
ρ
(

−2u2 − 6u1u2 + 6u2
1u2 − 2u3

2 + 4u2E
)

∂x1u2

+
1

4
ρ
(

2 + 4u1 + 2u2
1 + 2u2

2 − 2E + 6u3
1 + 14u1u

2
2 − 8u1E

)

∂x2u2

+
1

4
ρ
(

3 + 3u1 − 5u2
1 + u2

2 − 2E
)

∂x1E +
1

4
ρ (−3u2 − 6u1u2) ∂x2E
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ω

1 − ω
f 5,(1) =

1

4

(

2 + 2u2 − u2
1 − 4u1u2 + u2

2 − 3E + 3u2u
2
1 + u3

2 − 3u2E − 3u4
1 − 4u3

1u2

−2u2
1u2 − 4u1u

3
2 + u4

2 + 3u2
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)
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+
1

4

(

2 + 2u1 + u2
1 − 4u1u2 − u2

2 − 3E + u3
1 + 3u1u

2
2 − 3u1E + u4

1 − 4u3
1u2

−2u2
1u

2
2 − 4u1u

3
2 − 3u4

2 − 3u2
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2E + 2E2
)
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+
1

4
ρ
(

−2ρu1 − 4ρu2 − 14ρu3
1 − 14ρu2

1u2 − 6ρu1u
2
2 − 6ρu3

2

+8ρu1E + 8ρu2E) ∂x1u1

+
1

4
ρ
(

2ρ+ 2ρu1 − 4ρu2 + 4ρu2
1 − 4ρE + 4ρu2

2 + 2ρu3
1

−10ρu2
1u2 − 6ρu1u

2
2 − 2ρu3

2 − 4ρu1E + 4ρu2E
)
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+
1

4
ρ
(

2ρ− 4ρu1 + 2ρu2 + 4ρu2
1 + 4ρu2

2 − 4ρE − 2ρu3
1

−6ρu2
1u2 − 10ρu1u

2
2 + 2ρu3

2 + 4ρu1E − 4ρu2E
)

∂x1u2

+
1

4
ρ
(

−4ρu1 − 2ρu2 − 6ρu3
1 − 6ρu2

1u2 − 14ρu1u
2
2 − 14ρu3

2

+8ρu1E + 8ρu2E) ∂x2u2

+
1

4
ρ
(

−3ρ− 3ρu2 + 5ρu2
1 + 6ρu1u2 − ρu2

2 + 2ρE
)

∂x1E

+
1

4
ρ
(

−3ρ− 3ρu1 − ρu2
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2 + 2ρE
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