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ABSTRACT 

THE RANDOMIZED MULTIPLE BASELINE EXPERIMENTAL DESIGN: ITS 
POWER AND A CLINICAL APPLICATION TO THE COGNITIVE 
MODIFICATION OF DELUSIONS. 

The dissertation describes the first reported application of a small-N experimental design, 
the randomized baseline experimental design across subjects and behaviours. It is applied 
to a small scale clinical psychological experiment on the cognitive modification of 
delusional ideation in four people with a diagnosis of schizophrenia. The data were 
analysed by a form of randomization test which does not depend on the classical 
parametric assumptions. The randomization test based on random data permutation gave 
statistically significant results for the effect of the independent variable (cognitive 
modification of delusions) on two dependent variables (strength of conviction, and 
preoccupation) but not on a third dependent variable, amount of distress. Estimates of 
effect size are provided based on Cohen's d and on the Common Language Effect Size. 
It presents data on the statistical power of the procedure derived from Monte Carlo 
power analysis. It provides reviews of the concept of statistical power in applied 
psychological research, of the concept of effect size, of the use of cognitive modification 
of delusional ideation and of randomization tests. The results support the feasibility of 
small-N clinical experiments using the randomized baseline experimental design, 
analysing the data graphically and by use of randomization tests and designing 
experiments with the aid of Monte Carlo power analysis. 
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INTRODUCTION 

This thesis is written in accordance with the principles of the scientist-practitioner 

model in clinical psychology. Barlow, Hayes and Nelson (1984) describe three roles for 

the clinical psychologist working with this model: 

"In the first role, the practitioner is a consumer of new research findings from 

research centers, usually new assessment or treatment techniques that he or she will put 

into practice. In the second role, the practitioner is an evaluator of his or her own 

interventions using empirical methods that would increase accountability. The third role 

describes the practitioner as researcher, producing new data from his or her own setting 

and reporting these data to the scientific community. " 

Although large scale randomised controlled trials (RCTs) and conventional 

parametric statistical analyses have an important role in this context, the clinical 

psychology practitioner whose working context precludes the conducting of large scale 

RCTs has access to a range of small scale experimental designs that make it feasible to 

fulfil the second and third roles noted above. For such a practitioner, small scale research 

designs may have greater applicability than large scale RCTs. 

One problem with small scale designs is that at present their statistical base is weak. 

Analysis of the data has often been solely by means of graphical data analysis (GDA) 

which carries difficulties in interpretation. The application of conventional parametric 

statistical methods in this context has been controversial. The concensus is arguably that 

they are not applicable because of unacceptable violations of the classical parametric 

assumptions. This thesis proposes a possible solution, in the form of a new type of 

experimental design that allows the data to be analysed statistically by the use of 

randomization tests (Edgington, 1995) that do not rely on the classical parametric 

assumptions. 



The thesis is concerned with the concept of statistical power as applied to a small 

scale experimental design known as the randomized multiple baseline experimental 

design, when the data resulting from the application of the design are analysed using 

randomization statistics. 

The randomized multiple baseline design was reported by Marascuilo and Busk 

(1988), who presented hypothetical data from an earlier paper by Wampold and 

Worsham (1986), with which they illustrated the potential use of the design together 

with a form of randomization test which they advocated as appropriate for its statistical 

analysis. There appear to be no reports heretofore of actual implementations of the 

design. 

Attention is drawn to the neglect of the concept of statistical power in applied psychological 

research (Cohen, 1988). There are no reported data on the power of the experimental design 

used in the thesis. In order to address this problem, a series of Monte Carlo computer 

simulations is described which provides data on the power of the procedure under a range of 

experimentally plausible parameters. 

The randomized multiple baseline design, together with the analysis using a randomization 

test, is implemented in a small scale clinical experiment on the cognitive modification of 

delusional ideas in four people to whom is attributed a diagnosis of schizophrenia. 

OVERVIEW 

Chapter 1 introduces the concept of statistical power, reviews the problem of its neglect in 

the applied psychology literature, points to the problems deriving from low power and makes 

recommendations on increasing power. It defines the concept of effect size, which is integral to 

the power concept. 



Chapter 2 reviews single-case and small-n experimental designs. It suggests a taxonomy 

of such designs, examines the problem of generalization and considers the question of 

graphical versus statistical data analysis with an analysis of the problem of autocorrelation. 

Chapter 3 introduces randomization tests. It defines them and gives a numerical example. 

It considers the question of random versus systematic data permutation, describes 

randomization test computer programs and considers randomization tests for multiple baseline 

designs. 

Chapter 4 gives an historical review and critique of cognitive behaviour therapy applied to 

delusional ideation. It describes a clinical experiment on the modification of delusional ideation 

and the analysis of the resulting data by a randomization test. 

Chapter 5 addresses the power of randomization tests applied to randomized multiple 

baseline designs. It provides tables and graphs derived from computer simulations showing 

statistical power under a range of experimental parameters. 
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CHAPTER 1. STATISTICAL POWER 

"What behavioral scientist would view with equanimity the question of the probability 

that his investigation would lead to statistically significant results, i. e., its power? " 

Cohen, (1969, p. vii) 

1.1 INTRODUCTION 

The power of a statistical test is the probability that it will correctly reject the null 

hypothesis (Rossi, 1990; Siegel and Castellan, 1988; Snedecor and Cochran (1989). 

Power is the complement of beta, the probability of committing a Type II error, i. e. the 

probability of accepting a false null hypothesis. 

Cohen (1962) drew attention to the neglect of the concept of power in the applied 

psychology literature and illustrated it by a power review of the 1960 volume of the 

Journal of Abnormal and Social Psychology. He found the mean power to detect 

medium effect sizes to be 0.48, with a significance level (alpha) = 0.05, two-tailed 

(effect size will be discussed in Section 1.2 below). Thus the chance of obtaining a 

significant result approximated that of tossing a head with a fair coin. He attributed this 

disregard of power to the inaccessibility of a then meager and mathematically difficult 

literature and attempted to solve the problem with his power handbook "Statistical 

Power Analysis for the Behavioral Sciences" (SPABS) (Cohen, 1969; 1988). This was 

intended to make the problem accessible, requiring as background only an introductory 

psychological statistics course that included significance testing. 

The exposition was verbal-intuitive rather than mathematical and was assisted by 

worked examples from across the spectrum of behavioural science. Further sources of 

information on statistical power aimed at non-technical readers have become available in 

recent years, e. g. Kraemer and Thiemann (1987) and Lipsey (1990). Several computer 



programs are now available for the determination of power and sample size 

requirements. These have been reviewed by Goldstein (1989) and by Onghena (1994). 

This has apparently not led to an increased use of the power concept in applied 

behavioural science. Sedlmeier and Gigerenzer (1989) reported a power review of the 

1984 volume of the Journal of Abnormal Psychology, 24 years after Cohen's review, 

titled "Do studies of statistical power have an effect on the power of studies? ". They 

found the answer to be "No". Neither their study nor those they cited (apart from fields 

in which large sample sizes are common, for example sociology and market research) 

showed any improvement in power. Cohen (1992) commented "Thus, a quarter century 

has brought no increase in the probability of obtaining a significant result. ". Similar 

results were obtained by Rossi (1990) in a power review of 6,155 statistical tests in 221 

journal articles published in the 1982 volumes of the Journal of Abnormal Psychology, 

Journal of Consulting and Clinical Psychology, and Journal of Personality and Social 

Psychology. Cohen (1969) recommended that researchers design their studies so that 

there is at least an 80% chance of detecting the effect under investigation. In this respect 

the results of Rossi's (1990) survey are discouraging. The average statistical power 

exceeded 0.80 only for large effects, and more than a third (35%) of all studies were 

unable to attain this level of power even for large effects. More than 75% of all studies in 

the survey failed to achieve power of 0.80 for medium sized effects, and almost half of 

the studies did not even have a 50% chance of detecting effects of this size. More than 

90% of the surveyed studies had less than one chance in three of detecting a small 

effect. 

Hallahan and Rosenthal (1996) observe that failure to consider power in planning 

and interpreting empirical studies often leads to the drawing of erroneous conclusions, 

both by overlooking important effects and by prematurely abandoning promising avenues 

of investigation. Researchers risk wasting time and resources on research that is unlikely 

to detect an effect that exists, and may mistakenly interpret a non-significant result to 
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imply that the null hypothesis is true, regardless of a sample's ability to detect an existing 

non-null effect. 

Hallahan and Rosenthal (1996) give an hypothetical illustration as follows. A 

researcher testing a new treatment randomly assigns N= 20 Ss each to a treatment 

group and to a comparison group. The treatment group shows a 0.4 standard deviation 

improvement over the comparison group, but the t test (p = 0.225, two-tailed) fails by 

the critical 0.05 criterion. He infers that "the difference between treatment and control 

was not more than would be expected by chance if the groups were identical", and 

regrets the time spent testing a treatment that "provides no additional benefit". 

However, the statistical power of at test with alpha = 0.05, two-tailed , and N= 20 

in each condition to detect a difference of 0.4 standard deviations is only 0.23, with a 

corresponding probability of committing a type II error equal to (1 - 0.23) = 0.77 (from 

Cohen's (1988) power tables). Thus if the treatment actually did produce a 0.4 standard 

deviation gain, fewer than 1/4 experiments with this sample size would yield a 

significant result at the 0.05 level, two-tailed. He had planned a study with little chance 

of obtaining a significant result, had wrongly concluded that the treatment provided no 

additional benefit, and had been discouraged from pursuing a promising line of research. 

Kazdin and Bass (1989) analysed the power of comparative psychotherapy outcome 

studies. They found adequate statistical power for treatment versus no-treatment studies, 

but relatively marginal power for treatment versus treatment and treatment versus active 

control comparisons. They suggested that the frequently obtained result of no treatment 

differences in psychotherapy outcome research may well be due to inadequate statistical 

power. This is an important result given the large amount of effort that has been invested 

in this field. 

In the above discussion the concept of effect size (hereafter referred to as ES) was 
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referred to without elaboration. ES is addressed in the following section. 

1.2 THE CONCEPT OF EFFECT SIZE (ES) 

Cohen (1992) suggests that researchers find specifying the ES the most difficult part 

of power analysis, partly due to the "low level of consciousness of the magnitude of 

phenomena that characterizes much of psychology". In the Neyman-Pearson approach to 

statistical inference (see Section 1.4 below) an alternative hypothesis Hi is counterpoised 

against the null hypothesis H. O. ES is defined as the degree to which Ho is false, i. e. the 

discrepancy between Ho and Hi. The various statistical tests have their own ES indices, 

all of which are scale free and continuous, ranging upwards from zero, and in all cases 

the Ho is that ES=0. 

For example, with the Pearson r, ES is simply the population r, so Ho posits that 

r=0. As a further example, for testing the significance of the departure of a population 

proportion p from 0.5, the ES index is g= (p - 0.5), so the Ho is that g=0. For the 

tests of the significance of the difference between independent means, correlation 

coefficients, and proportions, the Ha is that the difference is zero. Cohen (1992) gives 

for each of the tests the definition of its ES index. For the case of the difference between 

two independent means ma and mb, the ES index is defined as 

d= (ma - mb) /S, (1) 

where s is the within-population standard deviation. 

In order to convey the meaning of a given ES index, Cohen (1992) suggests that it is 

necessary to have some idea of its scale. He proposes, as conventions or operational 

definitions : small, medium and large values for each, that are at least approximately 

consistent across the different ES indices. He suggests (Cohen, 1988, p. 13) that' "Small 

" effect sizes must not be so small that seeking them amidst the inevitable operation of 

measurement and experimental bias and lack of fidelity is a bootless task, yet not so large 



as to make them fairly perceptible to the naked observational eye... In contrast, large 

effects must not be defined as so large that their quest by statistical methods is wholly a 

labor of supererogation, or to use Tukey's delightful term "statistical sanctification"... On 

the other side, it cannot be defined so as to encroach on a reasonable range of values 

called medium. ' His intention is that medium ES should represent an effect likely to be 

visible to the naked eye of a careful observer, and states that it has been noted in ES 

surveys that it approximates the average size of observed effects in various fields. He set 

small ES to be noticeably smaller than medium but not so small a distance as to be 

trivial, and set large ES to be the same distance above medium as small was below it. 

Although the definitions were set subjectively, he states that with some early minor 

adjustments these conventions have been effectively fixed since the 1977 edition of 

SPABS and have come into general use. The ES index for the t test of the difference 

between independent means is d, the difference expressed in units of (i. e. divided by) the 

within-population standard deviation (Equation 1). For this test, the H0 is that d=0; 

and the small, medium and large ESs (or His) are d= 
. 
20,. 50 and . 

80. 

Thus, an operationally defined medium difference between means is half a standard 

deviation, and as a concrete example, for IQ scores with a population standard deviation 

of 15, a medium difference between means is 7.5 IQ points. Cohen (1988, pp. 26-27) 

states that, approximately: small ES is the size of the difference in mean height between 

15- and 16- year old girls; a medium ES is the corresponding difference between 14- and 

18- year old girls; and a large ES is the corresponding difference between 13- and 18- 

year old girls. 

Lipsey (1990) considered 102 meta-analyses of treatment effectiveness research 

(mainly in education). He defined the lower 33% of positive mean ESs as "small", the 

middle 34% as "medium" and the upper 33% as "large". The median ESs for these 

ranges were 0.15,0.45 and 0.90, approximately congruent with Cohen's suggested 

convention. 
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1.2.1 A COMMON LANGUAGE EFFECT SIZE STATISTIC (CL) 

McGraw and Wong (1992) argue that Cohen's ES measure is not usable by someone 

untutored in statistics, as it is not readily translated into the everyday language used for 

discussing probabilities. They propose a "common language effect size statistic" (CL) 

that expresses the probability that a score sampled from one distribution will be greater 

than a score sampled from another distribution. CL is easily calculated from sample 

means and variances. They reviewed other approaches such as Rosenthal and Rubin's 

(1982) binomial effect size display, which will not be further examined here. 

Bjorgvinsson and Kerr (1995) suggest that CL can be a useful tool for both 

statisticians and non-statisticians in judging the true importance of research findings. 

They give the hypothetical example of a study in which Ss were randomly assigned to 

groups receiving either a placebo or a drug and were later measured on an outcome 

variable, giving a CL ES indicator of 0.93. This means that 93 times in 100 aS randomly 

sampled from the drug group would score higher than aS randomly sampled from the 

control group. These authors showed that CL can be translated easily into Cohen's d and 

vice versa. Cohen's ds of 0.2,0.5 and 0.8 (small, medium and large ESs) correspond to 

CL ESs of 0.55,0.64 and 0.71 respectively. 

1.2.2. ESTIMATING EFFECT SIZE 

In practice the most uncertain part of power analysis involves specifying the 

expected ES prior to conducting a study. Hallahan and Rosenthal (1996) give 

recommendations as follows: 

1. Consult existing research. Previous research in a given field of investigation may 

provide a reasonable estimate of the size of the ES that would be expectd in a planned 
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study. Simple meta-analytic procedures (Rosenthal, 1991) could be used to find the 

average ES in previous studies. 

2. Rely on preliminary data. Pilot research, in addition to providing an opportunity to 

test and fine-tune experimental procedures, generates data useful in estimating the ES 

that would be observed in a larger study. 

3. Subjective estimation. In the absence of pilot data and previous studies, an educated 

guess might be appropriate. The value of such a guess is questionable but it may be an 

enviable situation to be planning a study for which there is no prior information to 

estimate the size of the ES. The resulting data may be valuable as the first information 

about the ES of a potentially interesting phenomenon. 

4. Cohen's advice. Cohen's (e. g. 1988) suggested benchmarks of small, medium and 

large ESs may be useful in estimating the expected ES for a planned study. In cases 

where there is no previous information on which to base an estimate, he suggests that it 

might be reasonable to expect a small effect because in the absence of previous work the 

phenomenon of interest is probably not under good experimental control, nor are the 

available measuring instruments likely to be precise. 

5. Cost-benefit analysis. An "implementation threshold-ES", or the degree of 

effectiveness at which an intervention's anticipated benefits would justify its 

implementation cost, could be determined. This would ensure that a planned study had 

sufficient power to detect the minimum ES considered important. 

1.3 THE POWER FUNCTION 

The major determinants of power are (1) the significance level alpha; (2) the sample 

size n; (3) the effect size (ES). Onghena (1994) defined the power function of a 

statistical test as the statistical power as a function of ES, for a given alpha and sample 

size. He noted that in this context power is usually defined irrespective of the truth of the 

null hypothesis, and thus in broader terms the power is the probability of rejecting the 

null hypothesis. He further stated that within this broader definition, power is still the 
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complement of beta, if the null hypothesis is false. If the null hypothesis is true, power is 

the probability of committing a Type I error, i. e., the probability of rejecting a true null 

hypothesis, which should not be larger than the significance level alpha (Lehmann, 1986; 

Silvey, 1975). 

Onghena (1994) stated that the relationships between the four parameters (power, 

alpha, ES and n) could be conceptualized in four dimensions. He presented one two- 

dimensional representation and two three-dimensional representations regarding the 

independent-samples t-test, as examples. These three representations are shown below as 

Figures 1.1,1.2 and 1.3 (reproduced with permission). 

Figure 1.1 (from Onghena, 1994) shows three power functions of independent 

samples t-tests with alpha = 0.05 and equal sample sizes nl = n2 = 5, under the classical 

assumptions of normality, homogeneity of variance, and independence. Onghena notes 

that for the two-tailed test, power increases as the absolute value of the ES increases. 

For the upper-tailed test, power increases as the ES increases, i. e., as the mean of the 

first population increases relative to the mean of the second population. For the lower- 

tailed test, power increases as the mean of the second population increases relative to the 

mean of the first population. For both two-tailed and one-tailed tests, power equals alpha 

if ES is zero. For the one-tailed tests, the probability of committing a Type I error is 

smaller than or equal to alpha if the ES is compatible with the composite null hypothesis. 

Figure 1.2 shows the power of the two-tailed t-test as a function of ES and of nl (= 

n2) with alpha = 0.05, under the classical parametric assumptions. Onghena (1994) notes 

that the "power valley" becomes narrower as n increases. The power functions become 

steeper for larger sample sizes; or, for a fixed ES, power is an increasing function of the 

sample size. The minimum power of the surface is 0.05 for an ES of zero for all sample 

sizes because this is the fixed alpha level. 
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Figure 1.1. Power functions of the 1- and 2- tailed independent samples t tests with 
alpha = 0.05 and nl = n2 =5 under the classical parametric assumptions. The dotted 
curve shows the power function of the 1- tailed t test with the critical region in the 
upper tail. The barred curve shows the power function of the 1- tailed t test with the 
critical region in the lower tail. From Onghena (1994). Used with permission. 
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Figure 1.2. Power of the 2- tailed t test with alpha =0.05 as a function of the effect size 
(EFFECT) and the number of observations (NUMBER, nl = n2) under the classical 
parametric assumptions. From Onghena (1994). Used with permission. 



14 

Figure 1.3. Power of the 2- tailed t test with sample sizes of ni = n2 = 20 as a 
function of the effect size (EFFECT) and the significance level (ALPHA) under 
the classical parametric assumptions. From Onghena (1994). Used with 
permission. 
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Figure 1.3 shows the power of the two-tailed t-test as a function of ES and of alpha 

for nl = n2 = 20, under the classical parametric assumptions. For a fixed n and for each 

ES, power is an increasing function of alpha. Onghena (1994) states that this "power 

slide" illustrates the inverse relationship between the probability of Type I errors and the 

probability of Type II errors. 

1.4 THE HISTORICAL BACKGROUND OF POWER 

The history of the way in which significance testing was adopted in the psychological 

field throws light on why psychological researchers have seemed to pay less attention to 

power and Type II error relative to the null hypothesis and Type I error. According to 

Gigerenzer and Murray (1987), significance testing came into wide use in psychology 

during what they termed the "inference revolution" that occurred between 1940 and 

1955. There were at that time strong and often vitriolic differences among statisticians 

about the kind of inferences that could be made from significance tests (Cowles, 1989). 

Gigerenzer and Murray (1987) describe Sir Ronald Fisher's dispute with Jerzy Neyman 

and Egon Pearson concerning significance testing and the null hypothesis, which was 

central to the concept of power. In essence, Fisher's approach to significance testing 

(e. g. 1955,1956) focussed on testing a null hypothesis whereas the Neyman-Pearson 

approach (1933) specified both null and alternative hypotheses. 

Hallahan and Rosenthal (1966) note that the concepts of power and Type II error 

are central to Neyman-Pearson but not to Fisher, but that Fisher's views had wider 

dissemination among psychologists through Snedecor's (1937) influential "Statistical 

Methods". Psychology ignored the substantial incompatibilities between the two 

approaches, and assimilated some of Neyman and Pearson's ideas with Fisher's to create 

a seemingly coherent, seemingly uncontroversial "... single, hybrid theory of which 
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neither Fisher nor, certainly, Neyman and Pearson would have approved" (Gigerenzer 

and Murray, 1987, p. 21). Hallahan and Rosenthal (1966) state that although the 

statistical texts that psychologists used at that time may have mentioned some Neyman- 

Pearson concepts, e. g. Type II error, they did not attribute these concepts to their 

founders, nor mention the controversies surrounding them. Thus the way in which 

psychologists have been taught to analyse data may have given prominence to null 

hypothesis testing and the avoidance of Type I error at the expense of power analysis 

and the avoidance of Type II error. This imbalance seems to be reflected in the 

asymmetry between the probability of Type I and Type II errors in psychological 

research. 

1.5 IMPLICATIONS OF POWER SURVEY RESULTS 

Rossi (1990) discussed the implications of low power in psychological research for 

small, medium and large effect sizes. 

1. The case of small effect sizes. Power for small effects was very low (0.17) in his 

survey. It might be argued that the power of psychological research could not be this 

low, given that a large proportion of published studies report statistically significant 

results. However, not only does low power suggest that there may be a large number of 

Type II errors, but it also suggests the possibility of a proliferation of Type I errors in 

the research literature. With effect size equal to zero, in the long run significant results 

will occur at a rate of 5% if alpha is 0.05. Assuming an editorial bias favouring 

statistically significant results, disproportionately more significant than non-significant 

results will be published. Because the population effect size is zero in this case, all the 

published significant results will be Type I errors, despite a Type I error rate of 5%. 

Although the above case is contrived, the case with power greater than alpha but still 

low is not much better. When power is low, the probability of rejecting a true null 
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hypothesis may be only slightly smaller than the probability of rejecting the null 

hypothesis when the alternative is true. That is, the ratio of Type I errors to power may 

be uncomfortably large, indicating that a substantial proportion of all significant results 

may be due to false rejections of true null hypotheses. Rossi (1990) states that on the 

basis of his survey, this ratio is 0.05 : 0.17, suggesting one Type I error for 

approximately every three valid rejections of the null hypothesis, for a "true" Type I 

error rate of about 0.23. He argues that in this way, low power undermines the 

confidence that can be placed even in statistically significant results, and that this may 

well be the legacy of low statistical power for small effects. 

2. The case of medium effect sizes. In Rossi's (1990) survey the power to detect 

medium effect sizes was 0.57. While the problem of increased Type I errors in the 

published literature is less serious here than in the case of small effect sizes, he argues 

that a different kind of problem arises when power is marginal, i. e., in the general vicinity 

of 0.50. An inconsistent pattern of results may be obtained in which some studies yield 

significant results while others do not. Such a pattern of results may be especially 

troublesome for research that is directed at a specific problem area and often results in 

failure to replicate an experimental finding. Rossi (1990) gives the example of the 

literature on the spontaneous recovery of verbal associations. His analysis suggested 

that the sample sizes of studies in this area were inadequate to ensure detection of the 

effect in most studies but were sufficient to guarantee some statistically significant 

results, and he suggests that it is easy to see how the controversy over the existence of 

the effect was generated under these circumstances. He states that current texts regard 

spontaneous recovery as ephemeral, and that the issue was never resolved so much as it 

was abandoned. He suggests that this may exemplify the legacy of marginal levels of 

statistical power for medium effects. 

3. The case of large effect sizes. Rossi's (1990) survey suggests that if effect sizes 

in psychological research are large, then power will be somewhat greater than 0.80. He 
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argues however that it is doubtful that average effect sizes in psychology are large, 

especially for applied research conducted outside the laboratory. He cites surveys 

suggesting average effect sizes approximating Cohen's (1977) definition of medium 

effects, and states that informal observations of the effect sizes reported in published 

meta-analyses are consistent with this view. 

1.6 INCREASING POWER 

Given the parameters of sample size, alpha and ES, it is a simple matter to determine 

the power of a study, e. g. from Cohen's (1988) power tables. An obvious way to 

increase power is to increase the sample size, but this is merely one of several ways to 

increase power. Hallahan and Rosenthal (1996) observe that in some cases it may not be 

possible to increase sample sizes because Ss are rare, difficult to recruit or expensive. In 

such cases researchers are constrained to work with a small number of Ss, but can 

achieve reasonable levels of power by other means. Hallahan and Rosenthal suggest ten 

procedures for increasing power, as follows: 

Design 

1. Increase sample sizes 

2. Administer stronger treatments 

3. Avoid restriction of range for dependent variables 

4. Standardize experimental procedures 

5. Use more reliable measuring instruments 

6. Use more homogeneous subject populations 

7. Use blocking variables 

8. Use repeated measures designs (the ultimate blocking variable) 

Analysis 

9. Use focussed contrasts rather than omnibus tests 

Cumulation 

10. Combine results of individual studies. 
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The power of a study will be affected by any action that has implications for any of 

the three parameters. Setting alpha to a less stringent level is one possibility. This is 

referred to as "alpha amelioration" by Rossi (1990) and as "alpha leniency" by Hallahan 

and Rosenthal (1996). However, this may not be realistic in a world that holds p<0.05 

in such high regard. More useful would be steps that increase the observed ES.. 

Such steps can be seen in terms of the factors that determine ES: (a) the extent to 

which observations differ as a function of an experimental variable, or the "signal"; and 

(b) the amount of error variance against which the effect is compared, or the "noise". 

The ES "d" (formula 1) illustrates this relationship. The numerator, ma - mb, represents 

the variability between experimental conditions, and the denominator, s, represents the 

variability among observations within experimental conditions. Anything that increases 

between-condition variability, e. g. a stronger experimental manipulation, will increase ES 

and thereby power. Also it is important to avoid restriction of range. For example, the 

size of the correlation between exercise and heart rate would probably be smaller in a 

sample of elite marathon runners than in the general population. 

Anything that reduces within-condition variability will increase ES and thereby 

power. Examples would be efforts to standardize experimental procedures, and the use 

of more reliable measuring instruments 

Between-subject differences are a further source of within-condition variability. One 

way to reduce subject variance is to use a relatively homogeneous subject population. 

Another is to use blocking variables, i. e., variables other than the primary independent 

variable that are also related to the dependent variable. The use of blocking variables 

increases ES because variance in the dependent variable that is due to the blocking 

variables is effectively removed from the within-condition variance. Of especial relevance 

to the present study is Hallahan and Rosenthal's (1996) observation that "Repeated 
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measures designs are especially powerful because they employ 'the ultimate blocking 

variable' - the individual S. ". 

"Student" (1931) offered an early exemplification of the potential to improve power 

through research design. He argued that an experiment comparing the height and weight 

of children who received raw or pasteurized milk, with about 5000 children in each 

condition, could have achieved the same level of power with only 50 sets of identical 

twins, with one twin being assigned to each condition. This dramatic increase in power 

would have been achieved because the amount of variance in the height and weight of 

two identical twins is so much less than that between two randomly chosen children. 

The present study provides a similar demonstration of the potential to improve 

power through research design. It will show that the use of a particular experimental 

design, provisionally called the "randomized baseline across subjects design" offers a 

large gain in power in comparison to the conventional randomized controlled trial 

methodology for measuring treatment intervention effects. 

1.7 THE COUNTERNULL HYPOTHESIS 

An overemphasis on significance testing at the expense of useful information about 

the size of effects can lead to two common inference errors (Hallahan and Rosenthal, 

1996): (a) interpreting failure to reject the null hypothesis to mean the null is true or that 

there is no effect; and (b) not distinguishing the statistical significance of a result from its 

scientific importance. It is good practice to compute and report ES estimates for any 

effect that is tested, and to provide confidence intervals for effects (Loftus, 1991,1993). 

Rosenthal and Rubin (1994) propose the counternull statistic as a way to avoid inference 

errors of the above kind. 

For a given obtained ES, the counternull value of an effect size is the non-null 
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magnitude of the ES that is supported by just the same amount of evidence as supports 

the null value of the ES. For example, if a sample ES were d=0.30, with p=0.20, then 

only 1 time in 5 would a sample have an ES as large as d=0.30 if it were drawn from a 

larger population where d=0.00. With p so far from conventional significance, many 

researchers would conclude that the null was true. However, the counternull specifies 

the equally likely alternative: a sample ES as small as d=0.30 would be observed only 1 

time in 5 from a population where d=0.60. That is, the counternull illustrates that 

populations with d=0.00 and d=0.60 are equally likely to produce a sample ES d= 

0.30. The counternull is easy to compute. For symmetrically distributed ES statistics 

(e. g. d), the counternull is simply twice the observed ES minus the null ES: 

ES(counternull) = 2ES(obtained) - ES(null) (2) 

Hallahan and Rosenthal (1996) argue that use of the counternull avoids the errors 

referred to above. The first error is avoided because the counternull illustrates that it is 

equally likely that the true population ES is larger than the observed ES as that it is zero, 

and it avoids the Second error because even if the value of the counternull is too small to 

be scientifically important we will be less tempted to conclude that a result is important 

merely becauxit is significant. 



22 

CHAPTER 2. SINGLE-CASE AND SMALL-N EXPERIMENTAL DESIGNS 

2.1 DEFINITION 

A single-case experimental design is an experimental design in which one entity is 

observed repeatedly during a certain period under different levels of, at least, one 

independent variable (Barlow and Hersen, 1984; Kazdin, 1982; Kratochwill and Levin 

1992; Onghena, 1994). Essential components of this definition (Onghena, 1994) are (1) 

that only one subject is concerned (single-case) and (2) that there is a manipulation of 

the independent variable(s) (experimental design). Implications of these components are 

(3) that the subject is exposed to all levels of the independent variable (within-subject 

design) and (4) that there are repeated measures or observations (longitudinal or time- 

series design). 

Several other terms have been used more or less synonymously with "single-case 

designs", including: N=1 experiments (Davidson and Costello, 1969; Dukes, 1965; 

Edgington, 1967), N-of-1 randomized controlled trials (Guyatt et al., 1990a, 1990b), 

idiographic designs (Jones, 1971), intrasubject replication designs (Gentile, Roden and 

Klein, 1972), intensive designs (Chassan, 1979), and interrupted time-series designs 

(Cook and Campbell, 1979). 

Onghena (1994) states that the aim of a single-case experiment is to find evidence 

for a causal effect of the independent variable on the dependent variable for the subject 

under investigation. The focus is therefore on the internal validity of the study (Campbell 

and Stanley, 1966). In order to maximize the internal validity, the manipulation of the 

independent variable should be unequivocal, eliminating or controlling any other 

covariables, and the repeated observations should be sensitive, reliable and valid 

measurements (Barlow, Hayes and Nelson, 1984). The magnitude of the effect can be 

assessed by comparing the difference in response under the different conditions to the 

within-subject variability (within conditions) in the repeated measurements (Barlow and 
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Hersen, 1984; Kazdin, 1982). 

2.2 GENERALIZATION 

The results obtained with a single-case experimental design are usually difficult to 

generalize beyond the single subject who is the focus of the investigation (Onghena, 

1994). In order to examine the external validity of the results, single-case designs have to 

be replicated (Campbell and Stanley, 1966; Cook and Campbell, 1979). Onghena 

distinguishes 3 types of replication strategies: direct replication, systematic replication, 

and clinical replication. Direct replication is the replication of the experiment with 

another subject. Systematic replication is the replication of the experiment under 

different circumstances (a different experimenter, setting, time of day, etc). Clinical 

replication is the administration by the same practitioner of a treatment package 

containing two or more treatment procedures to a series of clients presenting similar 

combinations of multiple behavioural and emotional problems (Barlow, Hayes and 

Nelson, 1984; Barlow and Hersen, 1984; Sidman, 1960). 

In contradistinction to single-case experimental designs, in group experimental 

designs the focus is simultaneously on the internal and the external validity. The 

magnitude of the effect is assessed by comparing the differences in responses under the 

different conditions to between-subject variability (within conditions). Caution is 

however necessary in justifying the external validity of group designs by an inferential 

argument based on a random sampling assumption. Edgington (1966,1973,1986,1987) 

commented on the infrequent use of and the limited relevance of random samples in 

experimentation. Edgington (1966,1995) argued that with nonrandom samples, 

generalization is only possible on nonstatistical, logical grounds. For example, in a 

clinical context the suitability of a treatment for a given patient can be assessed from the 

similarity of this patient to other patients for whom it was beneficial (Barlow, Hayes and 

Nelson, 1984; Barlow and Hersen, 1984). Therefore the external validity of a group 
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experimental design is in principle not different from the external validity of replicated 

single-case experimental designs. 

Applications of single-case experimental designs have been frequent in the evaluation 

of treatment effects in clinical psychology (e. g. Kazdin, 1992) and in neuropsychological 

rehabilitation (Wilson, 1987,1991). From a theoretical standpoint, single-case 

experimental designs have been seen as most compatible with behaviourist and operant 

conditioning paradigms, and so their application has been most prominent in behaviour 

therapy (Barlow and Hersen, 1984). They have recently been applied in clinical 

experiments on the cognitive modification of delusions (Chadwick and Lowe, 1990), 

which will be addressed in Chapter 4. 

2.3 A TAXONOMY OF SINGLE-CASE EXPERIMENTAL DESIGNS 

Onghena (1994) states that there are three major types of sigle-case experimental 

designs: phase designs; alternation designs; and multiple baseline designs. In a phase 

design, comparisons are made within a time-series. In an alternation design, comparisons 

are made between time-series for the different levels of the independent variable. In a 

multiple baseline design, comparisons are made both within the time-series and between 

the different baselines. 

2.3.1 PHASE DESIGNS 

In phase designs, the entire sequence of repeated measurements is divided into 

treatment phases and several consecutive measurements are taken in each treatment 

phase. The most basic phase design is the AB design, in which repeated measurements 

are taken under control conditions in the first phase (baseline or A phase), and under 

experimental conditions in the second phase (treatment or B phase). 
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In the field of behaviour therapy, the necessity of randomization in phase designs has 

not generally been recognized (Edgington, 1992, p. 134). Having noted that 

conventional experimental designs are pre-planned with respect to assignment of 

treatments, Kazdin (1982, p. 263) stressed that this is not so for single-subject behaviour 

therapy designs: "In single-subject designs, many crucial decisions about the design can 

be made only as the data are collected. Decisions such as how long baseline data should 

be collected and when to present or withdraw experimental conditions are made during 

the investigation itself. " 

This approach has been referred to as "response-guided experimentation" 

(Edgington, 1983) because the experimental conditions are adjusted on the basis of 

responses the subject makes during the experiment. Honig (1966) provides a quotation 

from Skinner highlighting Skinner's advocacy of response-guided experimentation: "A 

prior design in which variables are distributed, for example, in a Latin square, may be a 

severe handicap. When effects on behavior can be immediately observed, it is most 

efficient to explore relevant variables by manipulating them in an improvised and rapidly 

changing design. " 

Edgington (1992) notes that although Skinner's second sentence above seems 

plausible enough, it should be noted that it begins with "When", not "Because", and that 

randomized designs and statistical tests are employed in experimental research precisely 

because "effects on behavior" of a manipulated treatment usually cannot be "immediately 

observed". Changes in the dependent variable may not be treatment effects at all. 

Edgington (1992) states that response-guided experimentation is incompatible with 

randomization and thus provides no basis for statistical tests. Randomization controls for 

unknown as well as known sources of confounding, whereas arguments that a research 

procedure involving nonrandom manipulation is not biased can concern only known 

sources. In order to strengthen the internal validity of the experiments, Edgington 
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(1995) proposed phase designs with a predetermined number of measurement times and 

a randomized phase change. 

With the A and B phases as primary units, many variations on the basic phase design 

are possible, such as ABA or withdrawal designs, ABAB designs and so on. With the 

addition of other treatments many more variations are possible, such as the ABABACA 

design and others (Barlow and Hersen, 1984). Such elaborations of the basic AB phase 

design will not be further explored here. Onghena (1994) provides data on the power of 

randomization tests applied to AB designs, which is generally low. 

2.3.2 ALTERNATION DESIGNS 

In alternation designs, the treatments are alternated more rapidly and more 

frequently than in phase designs, and the "phases" of an alternation design contain only 

one measurement time, such that the notation ABAABBAB is used to denote an 

alternation design with 8 treatment times and 2 levels of the independent variable. 

Onghena (1994) provides data on the power of alternation designs. They will not be 

further considered here. 

2.3.3 MULTIPLE BASELINE DESIGNS 

The defining characteristic of multiple baseline designs is that different "targets" are 

measured simultaneously and the intervention is applied sequentially across targets 

(Barlow and Hersen, 1984). In behaviour modification experiments, the targets may be 

different subjects, the same subject in different settings, or different target behaviours of 

the same subject. This results in, respectively, multiple baseline across subjects, multiple 

baseline across settings, and multiple baseline across behaviours designs. 

Onghena (1994) notes that multiple baseline across subjects designs do not conform 
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to the definition of a single-case design as given above (Section 2.1). They are discussed 

in the texts on single-case experimental designs because they originated out of the single- 

case tradition and because they are structurally equivalent to the single-case multiple 

baseline designs (across settings or across behaviours). 

Because of the simultaneous examination of the subjects, multiple baseline across 

subject designs are not merely replicated phase designs. This simultaneity allows for a 

better control of historical confounding factors. If, for example, an intervention is 

applied to one of the baselines and produces a change in it, while little or no change is 

observed in the other baselines, it is less likely that other simultaneous events were 

responsible for the observed change than if this change were observed in an isolated AB 

design. It is also because of this factor that the graphical analysis of the results obtained 

from a multiple baseline design consists of both between- and within- baseline 

comparisons (Hayes, 1981). 

It is argued here that in principle there is no logical reason to prevent the application 

of a multiple baseline design across both subjects and across behaviours. The clinical 

experiment to be described in Chapter 4 presents such a design, in which 4 subjects are 

measured on a combined total of 8 behaviours. 

2.4 FORMS OF ANALYSIS IN SINGLE-CASE RESEARCH 

The application of statistical methods in single-case (N = 1) research has been 

controversial. In order to overcome objections to the application of such methods, 

randomization tests (see Chapter 3) have been recommended for N=1 and small-sample 

(N > 1) studies by Edgington (1967,1969a, 1975a, 1975b, 1980b, 1980c, 1992,1995, 

1996), by Kratochwill and Levin (1980), and by Levin, Marascuilo and Hubert (1978). 

In particular, randomization tests have been recommended as a supplement to the visual 

inspection of graphical data (Edgington, 1967; Gorsuch, 1983; Jones, Vaught and 
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Weinrott, 1977; Wolery and Billingsley, 1982). In addition, randomization tests have 

been developed further by Wampold and Worsham (1986) and by Marascuilo and Busk 

(1988) to allow for the combination of data from replicated designs that still preserves 

the individual differences of the single-case design. The purpose of combining data from 

replicated designs is to gain statistical power for rejecting the null hypothesis of no 

treatment effects. 

However, visual inspection (referred to as Graphical Data Analysis or GDA by 

Onghena (1994) has been recommended as the preferred method for evaluating single- 

case data (Barlow and Hersen, 1985; Parsonson and Baer, 1992; Sidman, 1960). GDA is 

the most commonly used method to determine single-case intervention effects. Busk and 

Marascuilo (1992) report a review of all the articles published in the Journal of Applied 

Behavior Analysis during 1988. All of the articles using single-case research designs 

used GDA as the means of data analysis. Statistical methods were however used in the 

analysis of between-group designs reported in the same journal. Kratochwill and Brody 

(1978) surveyed four behaviour modification journals (Behavior Therapy, Behaviour 

Research and Therapy, Journal of Applied Behavior Analysis, and Journal of Behavior 

Therapy and Experimental Psychiatry). The percentage of all experimental research 

studies using statistical inference ranged from 18% to 69%. Designs classified as single- 

case studies that used statistical procedures ranged from 4% to 9%. The results of the 

above two studies support the view that GDA is the predominant method for analysing 

single-case data. 

Wampold and Furlong (1981b) showed that the reliability of GDA was low. Subjects 

trained in GDA ignored small intervention effects that could be detected by examining 

the relative individual-subject variation in the data that is the object of randomization 

tests. 

Further controversy has surrounded the question of the appropriateness of 
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parametric statistical procedures in this context. Barlow and Hersen (1984) argued that 

serial dependency and autocorrelation in N=I studies invalidated parametric procedures 

such as t tests and one-way analysis of variance. Counter to this, Kazdin (1984) and 

Huitema (1985) have recommended the use of parametric procedures under an 

assumption of no autocorrelation in N =1 designs. This recommendaton has been 

challenged by Busk and Marascuilo (1988), Jones, Weinrott and Vaught, (1978), Suen 

and Ary (1987) and by Toothaker, Banz, Noble, Camp and Davis (1983). 

Kazdin (1984) suggested that t and F tests should be preceded by a test of serial 

dependency, and that parametric procedures would be justified if the tests were not 

statistically significant. However, showing that an autocorrelation is not statistically 

significant does not prove that an autocorrelation does not exist (Busk and Marascuilo, 

1988). Following the discussion of statistical power in Chapter 1, this is an example of 

the problems associated with low statistical power. Busk and Marascuilo (1992) state 

that often the number of observations is too small to determine whether there exists an 

autocorrelation. In other words, most tests in this context lack statistical power to detect 

an existing autocorrelation. 

2.4.1 GRAPHICAL DATA ANALYSIS (GDA) IN THE ANALYSIS OF N =1 

DATA 

In GDA, the researcher is required to look for changes in levels of behaviour or 

changes in trend in behaviour across an experimental phase change. In practice however 

it is difficult to detect even pronounced changes reliably (de Prospero and Cohen, 1979; 

Furlong and Wampold, 1981,1982; Jones, Weinrott and Vaught, 1978; Wampold and 

Furlong, 1981b). The study by Wampold and Furlong (1981b) showed that visual 

inspection has low reliability. Different raters come to different conclusions. A group of 

graduate students who were trainee counsellors and who had completed a seminar in N 

=1 research were compared with a group of graduate students who had had training in 
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multivariate statistical analysis. The first group, trained in identifying pronounced 

changes, "appeared to use a scaling heuristic in which they attended to large changes in a 

time series regardless of the relative variation" (p. 79) and ignored small intervention 

effects that subjects trained in statistics identified more readily. The results were 

confirmed by a further study (Furlong and Wampold, 1982). The use of judgemental aids 

or alternative graphing techniques was suggested by Knapp (1983) and by Bailey (1984) 

in order to improve ratings based on GDA. They found, however, that GDA was 

unreliable even with these additional aids. Busk and Marascuilo (1992) stated the need 

for procedures that can consistently detect the changes in levels of behaviour and or in 

trends of behaviour if they are real. They suggest that one solution is to supplement 

GDA with the application of randomization tests to measures of central tendency for 

changes in levels of behaviour and to measures of slope for changes in trends of 

behaviour. 

2.4.2 THE PROBLEM OF AUTOCORRELATION IN N=1 RESEARCH 

Busk and Marascuilo (1992) state that there are two issues involving autocorrelation 

in N=1 research. The first is the effects of the presence of autocorrelations on statistical 

procedures requiring independence, which they state have been recognized. The second 

and more controversial issue centres on the question of the existence of autocorrelation 

or serial dependency in N=1 data. In N=1 research the existence of autocorrelation is 

debated. One view, exemplified by Huitema (1985) is that empirical analyses of N=1 

data have found little or no autocorrelation. The opposed position is that repeated 

measures on the same individual through time usually are not independent. Busk and 

Marascuilo (1992) state that there are two aspects of the measurement in N=1 research 

that affect serial dependency: 1) the behaviour itself, and 2) the way that the behaviour is 

assessed. They note that the practice of having serial measurements made by the same 

observer may introduce structure into the data and hence serial dependency. 
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Two factors must be considered when trying to measure the magnitude of serial 

dependency: 1) the precision of the estimate of the coefficient, and 2) the power of the 

statistical test to determine whether the coefficient is significantly different from zero. 

Both factors are related to the size of the sample of behaviour. With a small sample, the 

sample correlation will be quite variable. Busk and Marascuilo illustrate this situation by 

referring to the data reported by Holtzman (1963) on three functions over 245 

successive days on a single schizophrenic patient. The Series A measurements comprised 

100 daily observations of : (1) creatinine in the urine; (2) perceptual speed; (3) word 

association relatedness score. The 100 observations on the three functions can be 

considered an adequate measurement of the behaviour so that any serial dependency in 

the three functions would be estimated with precision. The time series for creatinine 

showed a rapid fluctuation together with an undulating trend. The correlogram showed 

that the serial correlation fell off sharply in four lags to a trivial value, indicating a small 

degree of serial correlation. The correlogram for perceptual speed fell off very gradually 

and continued in a downward trend in the negative direction, indicating a serial 

correlation. The correlogram for word association relatedness score showed essentially 

no association. The serial correlations or lags on autocorrelation were: (1) for creatinine 

0.60; (2) for perceptual speed 0.75; (3) for word association reletedness, 0.25. The first 

two were statistically significant and the third was not. Estimates of the lag one 

autocorrelation based on the first 6,10,15,30, and 50 observations were made for each 

of the three functions. For creatinine the values were 0.22,0.30,0.38,0.36, and 0.69 

respectively. For perceptual speed the values were -0.17,0.04,0.54,0.57, and 0.69 

respectively. For word association relatedness score the values were -0.19, -0.19,0.12, 

0.31, and 0.38 respectively. The estimates of the lag one autocorrelations for each of the 

time series based on 100 observations varied widely from those obtained from each of 

the sample sizes considered. Confidence intervals constructed for each of the functions 

and each of the estimates covered the autocorrelations based on the 100-observation 

series, showing that the estimates were not out of range of the original time series. In 

this example, decisions about the magnitude of the autocorrelations therefore varied with 
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sample size. The data suggested that trying to infer the "true" or underlying magnitude 

of autocorrelation is questionable with sample sizes less than 50. 

It has been noted above that the statistical power to detect a non-zero 

autocorrelation is dependent on the size of the time-series. For the function with the 

non-zero autocorrelation estimate of 0.25, all but the estimate based on 50 observations 

were nonsignificant. These tests are consistent with the 100-observation series 

nonsignificant result. For the other two functions with statistically significant 

auto correlations, those estimates based on samples of sizes 6 and 10 failed to reject the 

null hypothesis, indicating lack of power. For the perceptual speed function, the 

autocorrelation based on the sample size of 15 also failed to reject the null hypothesis. 

The magnitude of the serial dependency for these two functions was indicative of strong 

dependency. 

The above example provides evidence that serial dependency does exist in 

behavioural data, that trying to detect it using small samples may result in failure because 

of low power, and lack of precision leading to erroneous conclusions. 

The sample sizes referred to above, i. e. sizes of 6,10,15,30 and 50, were chosen to 

represent typical sizes of behaviour samples based on the results of Busk and Marascuilo 

(1988), who analysed data from 44 studies from the Journal of Applied Behaviour 

Analysis from 1975 to 1985. In 101 baseline phases, 47% were from samples of size 6 to 

15,38% were from samples of size 15 to 30, and 15% were from samples of size 30 or 

more. The following sample sizes from the intervention phase were found: 43%, for 6 to 

15; 30% for 15 to 30; and 27% for 30 or more. 

Busk and Marascuilo (1988) computed lag one autocorrelations for the data from 

the 44 studies. There was a total of 248 independent data sets. Of these, 101 were for 

baseline phases, 125 were for intervention phases, and 22 were for phases beyond the 
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intervention. They found that many of the N=1 studies were based on data in which the 

autocorrelations were greater than zero. In particular, 80% of the autocorrelations were 

in the range 0.10 to 0.49 for phases of size 5 to 18 observations. Also, 40% of the 

baseline sets of data yielded autocorrelations greater than 0.25, and in the intervention 

phases this rose to 59%. Busk and Marascuilo (1988) stated that statistical tests 

requiring the assumption of independence performed on data from these studies would 

have an inflated Type I error. 

It has been noted above that N =1 studies are often based on samples of behaviour 

for which the test for identifying a nonzero autocorrelation as statistically significant has 

very low power. There is a further problem concerning the points at which observations 

are made. Busk and Marascuilo (1988) and Holtzman (1963) noted that data 

observations may be too far apart in time of measurement to detect the autocorrelated 

nature of the data. Or (see above) the behaviour may have serial dependency but based 

on few observations, it is not possible precisely to estimate the true dependency. 

Sharpley (1988) stated that "The process of testing to determine if the level of 

autocorrelation present in a data series is significant, and then deciding on the basis of 

the presence or not of a significant autocorrelation whether traditional statistical 

procedures can be used to test for effects, is unwise, as well as not in keeping with the 

methodological rigour which requires that data analysis procedures are stipulated prior 

to data collection. " 

Because of the difficulty in empirically estimating autocorrelations in behavioural 

data, it is recommended that N=1 researchers analyse their data in the absence of 

assumptions about serial independence. Parametric tests have been proposed as an 

alternative to GDA (Gentile, Roden and Klein, 1972; Huitema, 1985). Parametric tests 

can be invalidated by the existence of autocorrelation (Philips, 1983; Scheffe, 1959; 

Toothaker, Banz, Noble, Camp and Davis, 1983). Autocorrelation poses two problems 

for parametric tests: (1) because the errors are not independent, the statistical test 
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overestimates the number of independent sources of information (Kazdin, 1976), and (2) 

positive autocorrelation can spuriously decrease the error variance and thereby create a 

liberal bias, whereas negative autocorrelation can spuriously increase error variance and 

thereby create a negative bias (Phillips, 1983). The latter author showed that serially 

correlated errors affect ANOVA designs in N=1 research. Toothaker et al. (1983) 

showed that even traditional ANOVA F tests modified to allow for autocorrelation have 

inflated Type I errors in the presence of autocorrelation. Sharpley (1988) showed that at 

test can be inflated by 110% when the autocorrelation is only 0.10, and by as much as 

435% when the autocorrelation is 0.90. Scheffe (1959) stated that lack of serial 

independence was the most difficult departure from assumptions with which to deal, in 

the context of ANOVA. Scheffe (1959) showed that an autocorrelation of 0.30 

increased the risk of a Type I error from 0.05 to 0.12; that even with an autocorrelation 

as low as 0.20, the risk of a Type I error is doubled from 0.05 to 0.10; and that as the 

autocorrelation increases, the risk of a Type I error increases rapidly. 

Busk and Marascuilo (1992) recommend that N=1 data should be analysed using 

time-series methods or randomization tests. In the randomization tests used in this 

dissertation, analysis is based on the treatment of the phase periods as the units of 

analysis and not the original observation periods. The individual observations are 

averaged, and this value is used to represent the typical performance in that phase. 

Marascuilo and Busk (1988) state that averaging helps alleviate the problems of 

autocorrelated measures associated with single-subject designs. 
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CHAPTER 3. RANDOMIZATION TESTS 

3.1 DEFINITION 

"A randomization test is a permutation test based on randomization (random 

assignment) to test a null hypothesis about treatment effects in a randomized 

experiment. " (Edgington, 1995, p. 1). 

"A randomization test is defined as a statistical test whose validity is based on the 

random assignment of units to treatments. " (Onghena, 1994, p. 27). 

The concept of randomization tests stems from the work of Fisher (1935/1966), 

Pitman (1937a, 1937b, 1937c), and of Welch (1937). It was further developed by 

Kempthorne (1952,1955), and by Edgington (1964,1966,1969a, 1969b, 1987b). 

Onghena (1994) stated that randomization tests only became feasible with the availability 

of computers and the development of Monte Carlo randomization tests by Dwass 

(1957) and by Hope (1968). 

The test is performed in the following way (Edgington, 1995). A test statistic is 

computed for the experimental data, then the data are permuted (divided or rearranged) 

repeatedly and the test statistic is computed for each of the resulting data permutations. 

Those data permutations, including the one representing the obtained results, constitute 

the reference set for determining significance. The proportion of data permutations in 

the reference set that have test statistic values greater than or equal to (or, for certain 

test statistics, less than or equal to) the value for the experimentally obtained results is 

the p-value (significance or probability value). For example, if the proportion is 0.02, the 

p-value is 0.02, and the results are significant at alpha = 0.05 but not at alpha = 0.01. For 

example (Marascuilo and Busk, 1988) in a single-subject AB design with na and nb 

observations, a test statistic can be the difference in the means, d= ma - mb. This 
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criterion d is computed for all possible assignments of na observations to the A phase 

and nb to the B phase until the entire distribution of d is found. From this distribution, 

the significance probability can be found by counting the number of outcomes that equal 

or exceed the observed d and dividing by the number of all possible assignments. 

Edgington (1995) notes that determining significance on the basis of a distribution of 

test statistics generated by permuting the data is characteristic of all permutation tests, 

but that it is when the basis for permuting the data is random assignment that a 

permutation test is called a randomization test. 

Edgington's above (1995) definition is broad enough to include procedures called 

randomization tests that depend on random sampling in addition to randomization. He 

states however that the modern conceptualization of a randomization test is a 

permutation test that is based on randomization alone, where it does not matter how the 

sample is selected. This is the concept of randomization tests used in this dissertation. 

3.1.1. A NUMERICAL EXAMPLE 

This example is from Edgington (1995). Suppose an experimenter wishes to 

compare the effectiveness of treatments A and B on reaction time. He expects A to give 

longer reaction times. Because the requirements of the experimental task are complex he 

carefully selects 10 suitable subjects. He randomly assigns 5 to each of the treatments 

and runs the experiment. He conducts an independent t-test, and the t value obtained for 

the data is 3.450. He is reluctant to determine the significance of t by using t tables 

because of his method of selecting subjects. Therefore he opts to derive a theoretical 

distribution oft which does not require the assumption of random sampling. He divides 

the 10 reaction times in every possible way between treatments A and B with the 

restriction that each treatment must have 5 reaction times. There are 252 permutations 

of this kind. For each of the 252 data permutations, t is computed. Ten of the 252 
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permutations yield at value as large as 3.450, so the p value is 10/252, or about 0.04. 

Therefore the results are significant at the 0.05 level. 

The logic of this procedure is as follows. The null hypothesis Ho is that the reaction 

time for every subject is independent of the treatment assignment. The random 

assignment of subjects to treatments allowed 252 equally probable ways in which the 

subjects could be assigned. If Ha is true, a subject's reaction time would have been the 

same if the subject had been assigned to the alternative treatment. Given the random 

assignment of subjects in conjunction with Ho, there are 252 equally probable ways in 

which the 10 reaction times could have been divided between the two treatments. If Ho 

is true, how likely would it be that the random assignment performed in the experiment 

would yield one of the 10 largest values in the distribution of 252 values? The obtained 

answer is about 0.04. 

3.2 EQUIVALENT TEST STATISTICS 

The above example employed the t test. In practice, if data permutations for t tests 

are ranked from high to low with respect to t, they will always be found to be ranked 

from high to low with respect to the difference between means ma - mb. Therefore, the 

proportion of the data permutations with as large a value oft as the obtained value is the 

same as the proportion with as large a value of ma - mb as the obtained value. Thus t and 

ma - ml, are two different test statistics which give the same p value for a randomization 

test. Therefore one could use the simpler test statistic ma - mb to determine significance. 

Two test statistics which must give the same p value for a randomization test are 

defined as "equivalent test statistics" (Edgington, 1995). It can save time to compute a 

simpler, equivalent test statistic to t, F, r or some other conventional statistic for every 

data permutation rather than to determine the significance value for the more complex 

one. Edgington (1995) proposes that two test statistics are equivalent if and only if they 
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are perfectly monotonically correlated over all data permutations in the set. Expressed in 

terms of correlation, there will be a perfect positive or negative rank correlation between 

the values of the two test statistics over the set of data permutations used for 

determining significance. 

3.3 THE RANDOMIZATION TEST NULL HYPOTHESIS 

The null hypothesis for a randomization test is that the measurement for each person 

or other unit that is randomly assigned will be the same under one assignment to 

treatments as under any alternative assignment that could have resulted from the random 

assignment procedure. Thus, when the null hypothesis for the randomization test, which 

is the hypothesis of no differential treatment effect, is true, random assignment of 

subjects to treatments randomly divides the measurements among the treatments. Each 

data permutation in the reference set, which functions as a randomization test 

"significance table", represents the results that would have been obtained for a particular 

assignment if the null hypothesis is true. To take an example from the statistical 

literature, Fisher (1935/1966) used the Lady Tasting Tea experiment to introduce the 

principles of statistical inference. (This is usually referred to as an hypothetical 

experiment. However Onghena (1994) cites sources providing evidence that it was 

actually carried out on one Muriel Bishop, a student of algae at Rothamstead who was 

offended at being offered a cup of tea into which milk had been poured before the tea. 

The actual results are unknown. ). 

The experiment was a test to determine whether a lady could tell by taste whether 

tea was added to milk or milk was added to tea. Eight cups were poured, four in each 

manner. They were presented to the lady in random order. She was told in advance that 

four cups were being poured in each way and that she was to decide in which way each 

cup was poured. In the hypothetical experiment the lady correctly identified all eight 

cups. There are 8! / 4! 4! = 70 ways in which eight cups can be ordered with respect to 
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"tea first" or "milk first" when four cups are prepared in each way. Fisher computed the 

probability of correctly identifying all eight cups, by chance, as 1/ 70 because that is the 

probability of randomly assigning the cups in an order that would correctly match the 

statements "tea first" and "milk first" that, under the null hypothesis, the lady would 

make at the specified times, regardless of the cup she tasted. The null hypothesis tested 

is that the lady's response ("tea first" or "milk first") at each tasting time is independent 

of the assignment of cups to tasting times. In other words, that the lady's response is the 

same at each treatment time as it would have been at that time if the cup had been mixed 

in the other way. 

3.4 VALIDITY CRITERIA FOR RANDOMIZATION TESTS 

Detailed discussions of the validity of randomization tests are given by Edgington 

(1980c; 1995) and by Levin, Marascuilo and Hubert (1978). Edgington (1980c) 

specified three rules for the valid use of randomization tests: 1) There must be random 

assignment of treatment times to treatments; 2) the distribution of test statistic values 

must be based on data divisions that are appropriate for the type of random assignment 

used; and 3) the test statistic value for a data division must be computed in the same way 

as it would be computed if that data division represented the obtained results. (p. 246) 

Edgington (1995) states that the use of a randomization test does not guarantee 

validity. It is valid only if it it properly conducted. He states that in light of the numerous 

test statistics and random assignment procedures that can be used with randomization 

tests, it is essential for the experimenter to know basic rules for the valid execution of 

such a test. Before dealing with the validity of randomization test procedures, Edgington 

(1995) specifies a criterion of validity for statistical testing procedures in general. Within 

the decision-theory model of hypothesis testing, which requires a level of significance to 

be set in advance of the research, he suggests the criterion: 
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Decision-theory validity criterion. 

A statistical testing procedure is valid if the probability of a Type I error (rejecting Ha 

when true) is no greater than alpha, the level of significance, for any alpha. 

For example, the practice of determining significance of a one-tailed test in accord with 

the obtained, rather than the predicted, direction of difference between the means is an 

invalid procedure because the probability of rejecting Ho when it is true is greater than 

alpha. This criterion, implicit in most discussions of the validity of statistical testing 

procedures, is expressed in terms associated with the decision-theory model: "rejection, " 

"type I error, " and "alpha". This might create the impression that only within the 

Neyman-Pearson decision-theory framework of hypothesis testing can one have a valid 

test. Edgington (1995) notes that restriction of validity to situations with a fixed level of 

significance may be suitable for quality control in industry, but not necessarily for 

scientific experimentation: that interest in pre-set levels of significance is not universal; 

and that for those experimenters who are interested in using the smallness of a p-value as 

an indication of the strength of evidence against Ha (an interpretation of p-values 

inconsistent with the decision-theory approach), a more general validity criterion is 

required. He suggests the following operationally equivalent validity criterion that does 

not use decision-theory terminology: 

General validity criterion. 

A statistical testing procedure is valid if, under the null hypothesis, the probability of an 

exact probability or significance value as small as p is no greater than p, for any p. 

For example, under the null hypothesis the probability of obtaining a significance value 

(p-value) as small as 0.05 must be no greater than 0.05, obtaining one as small as 0.03 

must be no greater than 0.03, and so on. 
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The two criteria of validity are equivalent. For any procedure they lead to the same 

conclusion regarding validity. The general validity criterion can be used by experimenters 

interested in the decision-theory approach. It is useful also to experimenters who do not 

set levels of significance in advance but instead use the smallness of the p-value as an 

indication of the strength of the evidence against Ho. Such experimenters may report 

their results as significant at the smallest conventional alpha level permitted by their 

results. 

3.5 RANDOM VERSUS SYSTEMATIC DATA PERMUTATION 

There are two basic methods of permuting data to compute significance using a 

randomization test. Onghena (1994) showed that there is considerable lack of agreement 

on the nomenclature, which has not been standardized. Onghena (1994) refers to the two 

methods as "exhaustive" and "non-exhaustive". This dissertation will adhere to the usage 

of Edgington (1995), who refers to the two methods as "systematic data permutation" 

and "random data permutation". In systematic data permutation, data are permuted 

systematically (nonrandomly) in determining significance. This is usually done when the 

number of permutations is small enough to make it practicable. 

Random data permutation uses a random sample of all possible data permutations to 

determine significance. It serves the same function as systematic data permutation with a 

substantial reduction in the number of permutations that need to be considered. Instead 

of requiring millions or billions of data permutations, as would be required for the 

systematic data permutation method for many applications of randomization tests (as 

exemplified by this dissertation, in which the clinical experiment reported in Chapter 4 

has 108 possible permutations), the random data permutation method may be effective 

with as few as 1,000 data permutations (Edgington, 1995). 
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Should an experimenter decide that the resources needed to deal with all data 

permutations in the relevant set are too great to be practical, he could use the random 

permutation method as follows. He performs 999 random data permutations, which is 

equivalent to selecting 999 data permutations at random from the set that would be used 

with the systematic method. Under Ho, the data permutation representing the obtained 

results is also selected randomly from the same set. So, given the truth of Ho, we have 

1,000 data permutations that have been selected randomly from the same set, one of 

which represents the obtained results. Significance is determined as the proportion of the 

1,000 test statistic values that are as large as the obtained value. The demonstration that 

this is a valid procedure for determining significance is as follows (Edgington, 1995). 

Under Ha the obtained test statistic value (like the 999 associated with the 999 data 

permutations selected at random) can be regarded as randomly selected from the set of 

all possible test statistic values, so that we have 1,000 randomly selected values, one of 

which is the obtained value. If all 1,000 test statistic values were different values, so that 

they could be ranked from low to high with no ties, under Ha the probability would be 1 

/ 1000, or 0.00 1, that the obtained test statistic value would have any specified rank from 

1 to 1,000. So the probability that the obtained test statistic value would be the largest of 

the 1,000 would be 0.001. If some values were identical, the probability could be less 

than 0.001, but not greater. Given the possibility of ties, the probability is no greater than 

0.001 that the obtained test statistic value would be larger than all of the other 999 

values. Similarly, the probability is no larger than 0.002 that it would be one of the two 

largest of the 1,000 values, and so on. In general, when Ho is true, the probability of 

getting a p-value as small as p is no greater than p, and so the method is valid. 

A randomization test using the random data permutation method, although 

employing only a sample of the possible data permutations, is therefore valid. When Ho 

is true, the probability of rejecting it at any alpha level is no greater than alpha. If 

however Ho is false and there is an actual treatment effect, random data permutation is 

less powerful than systematic data permutation based on the entire set of possible 
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assignments. Increasing the number of data permutations used with the random data 

permutation method increases the power of a randomization test employing random data 

permutation. Edgington (1995) states that using (e. g. ) 1,000 data permutations does not 

give the power provided by several thousand, but that the power is still substantial. He 

states for example that the probability is 0.99 that an obtained test statistic value that 

would be judged significant at alpha = 0.01, using systematic data permutation, will be 

given a p-value no greater than 0.018 by random data permutation with 1,000 random 

permutations: and that the probability is 0.99 that an obtained test statistic value that 

would be found significant at alpha = 0.05, from systematic data permutation, will be 

given a p-value no greater than 0.066 by random data permutation using 1,000 data 

permutations. 

3.6 RANDOMIZATION TEST COMPUTER PROGRAMS. 

The amount of computation required for randomization tests made them impractical 

before the advent of computers. The number of data permutations can be large even for 

relatively small samples, if systematic data permutation is employed. For example, the 

small scale clinical experiment described in Chapter 4 generates 108 data permutations. 

Many programs for both systematic and random data permutation methods are available 

for personal computers. Some, for example Edgington's package of programs called 

RANDIBM, are available free on the internet. This and other packages of randomization 

programs with details of how to obtain them are discussed in an Appendix in Edgington 

(1995). 

Because the available programs did not meet the requirements of the present 

dissertation, special programs relevant to its requirements were written by the author, 

using QBasic (Perry, 1993) and following the principles described by Edgington (1995). 

The computer programs used in this dissertation for random data permutation permit the 

specification of the number of data permutations to be performed. If n permutations are 
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specified then the programs will treat the obtained results as the first data permutation 

and randomly permute the data an additional n-1 times. 

Edgington (1995) stated that all computer programs for randomization tests must 

specify the performance of the following operations: 

1. Compute an obtained test statistic value, which is the value for the experimental 

results. 

2. Systematically or randomly permute the data. 

3. Compare the test statistic value for each data permutation. 

4. Compute the significance or probability value. The probability value is the proportion 

of the test statistic values, including the obtained value, that are as large as (or, where 

appropriate, as small as) the obtained statistic value. 

Figure 3.1 shows a flow chart for randomization test computer programs. 
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INPUT 

COMPUTE TEST STATISTIC 

NO 
TEST STATISTIC VALUE 

GREATER THAN OR EQUAL 
TO OBTAINED TEST 
STATISTIC VALUE? 

YES 

ADD 1 TO NGE COUNTER 

LAST DATA NO 

PERMUTATION? 
ýPEýMUTE DATA 

YES 

DIVIDE NGE COUNTER TOTAL BY 
NPERM TO GET PROBABILITY 

OUTPUT 

Figure 3.1. Flow chart for randomization test. From Edington (1995). Used with 
permission. 
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3.7 RANDOMIZATION TESTS FOR MULTIPLE BASELINE DESIGNS 

The traditional, nonrandomised multiple baseline experiment is a replicated AB 

design (Edgington, 1992). The separate baselines may be data sequences for different 

subjects, for different behaviours within the same subject, or as in the clinical experiment 

reported in Chapter 4, a combination of the above. Treatments are introduced at 

different times for the different baselines in order to reveal associations between 

intervention and baseline changes. 

It is not necessary to have more than one AB baseline to ensure validity when 

intervention for that baseline is randomized (Edgington, 1992). However, a randomized 

multiple baseline design can be used to increase the power of AB designs when it is not 

practical to employ long baselines. This is the logic behind the clinical experiment in 

Chapter 4. There are many ways in which the AB experiment can be replicated to 

provide multiple baselines and randomization tests for those multiple baselines. Two 

such ways are further considered here; the Wampold and Worsham (1986) test and the 

Marascuilo and Busk (1988) test. 

3.7.1 THE WAMPOLD AND WORSHAM TEST 

Wampold and Worsham (1986) developed a randomization test for a randomized 

multiple baseline design that is similar to a conventional, nonrandomized multiple 

baseline design. Their design, for which they provided hypothetical data, comprised 4 

baselines, one for each of 4 subjects. Within each baseline there were 13 possible 

intervention times. They used only the between baseline feature to develop a 

randomization test for the multiple baseline design. They fixed the intervention times for 

the different baselines and then randomly determined which subject takes the earliest 

intervention, which the next, and so on. They determined a one-tailed test statistic as 

follows: subtract the mean of the control (pre-experimental or "baseline") measurements 
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from the mean of the experimental measurements for each baseline and then sum those 

differences between means over all 4 baselines. This test statistic for the obtained data is 

then compared to a randomization distribution consisting of test statistics computed for 

all possible orders in which the subjects could have been subjected to treatment. With 4 

subjects there are 4! = 24 possible orders. In their hypothetical experiment the 

directional randomization test showed that the obtained test statistic was the highest of 

the 24, giving a p-value of 1/ 24 = 0.042. (Revusky (1967) followed this procedure but 

applied it to the ranked data, and Wolery and Billingsley (1982) combined Revusky's 

method with the split-middle technique). 

3.7.2 THE MARASCUILO AND BUSK TEST 

Marascuilo and Busk (1988) noted that the randomization test of Wampold and 

Worsham has low power because of the restricted randomization possibilities. They 

proposed an increase in power by determining the intervention points at random instead 

of fixing them in advance. This also has the effect of randomly selecting the order in 

which the subjects are subjected to the treatment. The control over historical sources of 

confounding is obtained by randomization within a baseline, and the randomization 

distribution is obtained not only by locating the intervention point of a baseline in the 

other baselines, but also by locating all possible intervention points in a baseline. To 

illustrate the greater power of this approach, they assumed that Wampold and 

Worsham's hypothetical data had been generated by this experimental design. They 

proposed as a test statistic the difference between the tneans for the A and the B phase 

summed over all the 4 baselines. The p-value of this statistic can be derived by 

comparing it to the reference distribution of this statistic. With 13 possible intervention 

points in each of 4 baselines, there are 134 = 28,561 possible data permutations. Six of 

the data permutations gave a test statistic value as great as or greater than the obtained 

test statistic, giving a p-value of 6/ 28,561 = 0.002. (These data were used to test the 

program marbus. 3 presented at Appendix 5). Note that the p-value is considerably 
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smaller than that obtained by the Wampold and Worsham procedure above. The 

Marascuilo and Busk procedure is that which is utilised in the clinical experiment 

described in Chapter 4 

3.7.3 MARASCUILO AND BUSK IN SINGLE-SUBJECT APPLICATIONS 

The above randomization tests of Wampold and Worsham (1986) and Marascuilo 

and Busk (1988) were described as tests of multiple baselines, replicated over subjects. 

In both papers there was reference to the relevance of their procedures to single-subject 

multiple baseline designs. Wampold and Worsham considered their procedure applicable 

to both types of design, shown by their reference to "randomly selecting the order in 

which the subjects, behaviors, or situations are subjected to the treatment". Conversely, 

Marascuilo and Busk considered that correlations between behaviours within a subject 

would tend to render their own procedure inappropriate for single-subject designs: 

"One might be tempted to use the proposed methods with multiple baseline designs 

across behaviors. In most cases, the application cannot be justified because of the 

correlations that exist between the measures of different behaviors made at the same 

time (p. 23). " 

There are two ways in which behaviours in single-subject multiple baselines are likely 

to be correlated: (1) behaviours covary in the absence of treatment interventions, and (2) 

a treatment intervention affects more than one behaviour. 

Edgington (1992) addressed this problem. He argued that the correlation between 

behaviours causes difficulty in interpreting significant results, but that the validity of the 

test is unaffected and that the procedure is valid for application to multiple baseline data 

from correlated behaviours within a subject. The null hypothesis is that the data for all 

baselines are the same as they would have been under any possible alternative treatment 
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intervention. Therefore, if the null hypothesis is rejected, the alternative hypothesis that 

is accepted is that treatment intervention had an effect on one or more of the baselines. 

The procedure does not, however, permit the inference of which baseline or baselines 

were affected. That is, the procedure can be validly applied to single-subject designs with 

correlated behaviours, but the statistical inference that can be drawn from significant 

results is not very specific. The implication is simply that somewhere within the 

configuration of baselines, at least one of the treatment interventions affected at least one 

of the behaviours. This can still be useful. Adapting an argument by Edgington (1992, p. 

153) to the present concern, suppose that the intervention for each baseline were a 

cognitive approach and that the dependent variable were a measure of strength of 

conviction in a delusional idea. Then, even if we could not infer which belief responded 

to the intervention, it might be very useful to have evidence that delusional conviction 

was influenced by the cognitive intervention, especially if that subject had not previously 

been known to be responsive in this way. 

Two types of correlation were considered: (1) covariation of behaviours in the 

absence of treatment intervention, and (2) the effect of treatment intervention on more 

than one bahaviour. In either case, a high correlation between behaviours makes the 

randomization test less powerful (less likely to detect treatment effects that exist). 

Edgington (1992) argues that when behaviours covary greatly in the absence of 

treatment, it is difficult to detect treatment effects that may be small relative to other 

variation. When there are correlated responses to a single intervention, that is if an 

intervention on one baseline tends to affect other baselines as well, causing data shifts 

before or after interventions on those baselines, there may be difficulty in detecting 

intervention effects. Edgington (1992) argues that these problems may be minimized by 

selecting interventions likely to have large effects relative to variation in the baseline and 

by selecting interventions and behaviours to ensure that the intervention for a baseline 

will primarily affect the behaviour for that baseline rather than the behaviour for other 

baselines. He states that the procedure can therefore be employed with designs that 
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minimize the effects of correlated behaviours and correlated effects on behaviours of a 

baseline intervention in order to make the test sensitive, despite the fact that it is valid 

even when those effects are not minimized. The above concerns are relevant to the 

clinical experiment of Chapter 4, though covariations of the kind described above did not 

appear to present a significant problem. 
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CHAPTER 4. COGNITIVE BEHAVIOUR THERAPY APPLIED TO 

PSYCHOTIC DELUSIONS 

4.1 HISTORICAL REVIEW 

Beck (1952) first reported the application of cognitive therapy in schizophrenia. He 

encouraged a person with chronic schizophrenia to examine the appearance and 

behaviour of alleged FBI agents who were visiting his shop, to test his belief that these 

people had him under surveillance. He was able to narrow down his list of 50 "suspects" 

to 2-3 possibilities, and stated that he felt he would soon be able to "eliminate them 

completely". The delusion proved modifiable even though it had been present for 7 

years. Hole, Rush and Beck (1979) commented "The combination of tracing the 

antecedents of the delusion, and helping the patient to test his conclusions systematically, 

helped him to recognize and to gradually do away with the irrational and rigid belief 

system. ". 

Shapiro and Ravenette (1959) reported a preliminary experiment on paranoid 

delusions in a single case, in which they attempted to scale the intensity of delusional 

beliefs using Shapiro's (1961) Personal Questionnaire (PQ) technique. 

Watts, Powell and Austin (1973) reported the attempted modification of paranoid 

beliefs in paranoid schizophrenia. They noted that confrontation of such beliefs could 

result in "psychological reactance", whereby the target beliefs could become more firmly 

held or even more extreme. They suggested 4 ways to minimize psychological reactance: 

1. Target less strongly held beliefs first, unless specific themes bind beliefs together. 

2. Avoid direct confrontation, asking the subject merely to consider the facts and 

arguments discussed with him, and to entertain possible alternative beliefs. 

3. Centre discussion not on the belief itself, but on the subject's evidence for it. 
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4. Encourage the subject to voice the arguments against his own beliefs, even if quite 

direct questioning is needed to achieve this. 

They showed that belief modification with graded re-exposure to avoided social 

circumstances was successful in reducing the intensity of the beliefs. 

Milton, Patwa and Hafner (1978) reported a small-scale study which suggested the 

efficacy of belief modification through verbal intervention in a proportion of persistently 

deluded patients. 

Hole, Rush and Beck (1979) encouraged 8 delusional inpatients to discuss the nature 

of their delusional beliefs and the evidence supporting them. These authors defined 4 

dimensions for measuring delusions: 

1. Conviction. 

2. Accommodation (the degree to which a delusion could be modified by external events 

or incongruities). 

3. Pervasiveness (the percentage of the day spent ruminating about delusional concerns, 

seeking delusional goals, or interpreting experience in terms of delusional systems). 

4. Encapsulation (the extent to which a decrease in pervasiveness could occur without an 

associated decrement in conviction). 

These authors found that half the patients showed no change; the remaining half 

showed reduced pervasiveness, and half of these also showed reduced conviction. They 

concluded: "We suggest that delusions may function in much the same way as other 

beliefs and convictions. Delusions may differ from other beliefs only quantitatively with 

respect to how easily they can be modified by external events. ". 

Brett-Jones, Garety and Hemsley (1987) studied 9 hospitalized schizophrenic patients, 
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seen weekly soon after admission. They measured 3 key components of recovery from 

delusions: strength of conviction in the belief, preoccupation with the belief (that is the 

amount of time spent thinking about the belief); and the degree to which the belief 

interfered with the person's daily life. Their results supported a multi-dimensional view of 

delusions. 7 of the 9 subjects showed fluctuating scores on conviction and 

preoccupation, with decreases in conviction tending to precede decreases in 

preoccupation. Correlations between conviction and preoccupation and conviction and 

interference, for the group as a whole, were not significant (although this may have been 

due to low power as the sample size was small) suggesting that these components are 

orthogonal dimensions. 

Chadwick and Lowe (1990) reported further evidence for a multi-dimensional view of 

delusions. Six patients who had held fixed delusional beliefs for 2 or more years were 

monitored before, during and after 2 psychological interventions; a structured verbal 

challenge and reality testing. The data for individual clients showed a high degree of 

desynchrony between conviction, preoccupation and anxiety caused by thinking about 

the beliefs as the delusions receded. 

There has been a modest number of studies reporting attempts to weaken delusions 

using cognitive techniques, with generally favourable results (Alford, 1986; Alford and 

Beck, 1994; Beck, 1952; Chadwick and Lowe, 1990; Chadwick, Lowe, Home and 

Higson, 1994; Fowler and Morley, 1989; Garety, Kuipers, Fowler, Chamberlain and 

Dunn, 1994; Kingdon and Turkington, 1991; Kingdon and Turkington, 1994; Kingdon, 

Turkington and John, 1994; Hartman and Cashman, 1983; Himadi and Kaiser, 1992; 

Hole, Rush and Beck, 1979; Johnson, Ross and Mastria, 1977; Lowe and Chadwick, 

1990; Milton, Patwa and Hafner, 1978). 

Recently reviews and treatment manuals have been published (Birchwood and Tamer, 

1994; Chadwick, Birchwood and Trower, 1996; Fowler, Garety and Kuipers, 1995); 
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Kingdon and Turkington, 1994). 

4.2 CRITIQUE OF CBT APPLIED TO DELUSIONS 

Bouchard, Vallieres, Roy and Maziade (1996) reported a critical analysis of cognitive 

restructuring in the treatment of psychotic symptoms in schizophrenia. They considered 

3 elements in evaluating each study: (a) if subjects are reliably diagnosed with 

schizophrenia with chronic course and severe impairment; (b) if psychotic symptoms are 

adequately measured; and (c) if designs are methodologically sound. They found that 

schizophrenia was not reliably diagnosed and that severity was low to moderate. 

Assessment of psychotic symptoms was satisfactory, but assessment of generalization to 

other areas was limited. They found that only 5 studies possessed reliable design and 

were performed with schizophrenia subjects, and that these studies suggested that 

cognitive restructuring was effective to reduce or eliminate hallucinations or delusions in 

schizophrenia patients. 

When evaluating methodology and research design in the studies they examined, 

Bouchard et al. (1996) noted that intrasubject designs can provide a powerful 

experimental methodology to infer the effectiveness of an intervention if they are 

rigorously applied. Among the important issues with this methodology were the presence 

of continuous assessment as well as a baseline that is sufficiently long and stable before 

introduction of the intervention. On the other hand, group designs offered many 

advantages but they also required more subjects and some level of complexity to be 

reliable, e. g. the presence of a control condition. 

Bouchard et al. found that 3 of the 12 studies using an intrasubject design did not 

incorporate any baseline, and one study used only one observation as a baseline. Follow- 

up information was not provided in 5 studies. Many of the intrasubject designs were not 

very sophisticated, but the following 5 studies were considered to have utilized more 
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rigorous approaches: Alford (1986); Chadwick and Birchwood (1994) (this study was 

concerned with hallucinations rather than delusions); Chadwick and Lowe (1994); 

Fowler and Morley (1989); and Himadi and Kaiser (1992). 

Bouchard et al. recommended that the results of the studies by Hole, Rush and Beck 

(1979) and by Watts, Powell and Austin (1973) should be "interpreted with extreme 

caution" due to the absence of any baseline and almost no follow-up. They argue that the 

two group-design studies by Kingdon and Turkington (1991) and by Milton, Patwa and 

Hafner (1977) should also be considered with the same extreme caution due to the 

absence of any control condition. They considered the group-design study by Garety et 

al. (1994) to have been "very well conducted", although assignment to each condition 

was not random. 

Bouchard et al. considered the outcome of cognitive restructuring in the reviewed 

studies. In general, they found that cognitive restructuring led to a decrease on the 

measures that were specific to hallucinations or delusions. Treatment of hallucinations 

was generally less successful than that of delusions. Important methodological 

considerations restricted the number of studies that could be used to reliably assess 

outcome. A number of studies were considered to have been rigorous and to have been 

performed with subjects who were diagnosed with schizophrenia according to "valid 

diagnostic criteria" (sic): Alford (1986), Chadwick and Birchwood (1994), Chadwick's 

set of studies on delusions (Chadwick and Lowe, 1990,1994; Chadwick et al., 1994; 

Lowe and Chadwick, 1990); Gayety et al. (1994), and Himadi and Kaiser (1992). One 

further study could be considered rigorous but was not performed with schizophrenia 

subjects (Fowler and Morley, 1989). 

However, Bouchard et al. stated that before discarding too rapidly the studies they 

considered less rigorous, it was essential to recognize that they often represented 

pioneering work that had helped the field to progress. In this context they cited the work 
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by Alford, Fleece and Rothblum (1982), Hartman and Cashman (1983), Hole, Rush and 

Beck (1979), Milton, Patwa and Hafner (1977) and Watts, Powell and Austin (1973). 

Although Bouchard et al. examined studies concerned with both hallucinations and 

delusions, attention will be focussed here solely on delusions. Bouchard et al. found that 

when considering all the rigorous studies addressing delusions, there was a substantial 

reduction in conviction, except for one subject who relapsed at follow-up (Alford et al., 

1982) and one subject who developed a new delusional belief (Lowe and Chadwick, 

1990). They also found a fairly important and positive effect of the intervention on 

secondary measures such as Scale for the Assessment of Positive Symptoms scores, 

anxiety or depression. They concluded that in 3 of the 4 rigorous studies on delusions, 

(Alford, 1986; Chadwick and Lowe, 1994; Himadi and Kaiser, 1992) cognitive 

restructuring led to a reduction or an elimination of delusions in 12 of the 14 subjects. In 

the fourth study (Garety et al., 1994), results indicated a reduction in conviction and 

acting on delusions that was significantly greater than in the waiting list control group. 

Recently the efficacy of cognitive behaviour therapy for people with treatment 

resistant delusions and voices has been demonstrated by large randomized controlled 

trials, which were reviewed by Fowler, Garety and Kuipers (1998). Published data are 

presently available only for the trial conducted by Kuipers et al. (1997). Data from two 

further large RCTs have been reported at conference (Tamer, 1997; Kingdon, 1997). 

Fowler et al. (1998) conclude that the evidence from RCTs provides strong support for 

the use of cognitive-behavioural therapies with people who present with distressing 

delusions and voices. 

Bouchard et al. stated that "it is important to recall that despite the complexity of any 

intrasubject design, one major limitation is the frequent use of visual inspection, rather 

than statistical analysis. ". This problem has been addressed in Chapter 2, above. They 

noted that visual inspection is not a reliable technique, citing in support Matyas and 
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Greenwood (1990). To illustrate the point, they used Crosbie's (1993) ITSA (interrupted 

time-series analysis) program to perform brief time-series analysis of data from 

Chadwick and Lowe's (1990) paper for subject number 6 in their Figure 2. Visual 

inspection of the data on preoccupation with the delusional belief in this subject 

suggested a reduction which was, however, found to be nonsignificant with ITSA. 

Bouchard et al. concluded that "Subsequent research should therefore rely more on 

statistical methods such as time-series analysis wherever possible. ". 

The conclusion that research should rely more on statistical methods is in line with the 

arguments of Chapter 2, above. ITSA (Crosbie, 1993) represents one possible form of 

statistical analysis, which Crosbie claims has adequate statistical power. The use of 

interrupted time-series analysis alone does not guarantee acceptable experimental design, 

and it can only be recommended in conjunction with such an acceptable design if it is to 

be use to detect intervention effects. In addition it is not clear how data from more than 

one subject can be combined in order to evaluate statistical significance. Because of the 

above and the necessity to include an element of randomization in an experimental as 

opposed to a "quasi-experimental" design (Campbell and Stanley, 1966), the use of n= 

few experimental designs that allow of analysis by randomization tests (see Chapter 3 

above) is recommended for small scale clinical research in this field. 

The following clinical experiment exemplifies the use of such a design, the randomized 

multiple baseline design. This is the first reported use of such a design, though the theory 

has been developed by Marascuilo and Busk (1988). It is essentially a development of 

the multiple baseline design such as that employed in the study by Chadwick and Lowe 

(1990) referred to above. The data in the Chadwick and Lowe (1990) study relied on 

visual inspection of the graphed data without any attempt at statistical evaluation. The 

randomized baseline design also allows of statistical analysis using randomization tests 

(see Chapter 3). 
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4.3 A CLINICAL EXPERIMENT ON DELUSIONAL IDEATION 

4.3.1 SUBJECTS. 

The subjects were four white British men who were living in a medium-to-low 

security tertiary intensive therapy psychiatric unit to which they had each been referred 

from conventional psychiatric wards because their behaviour had been difficult to 

manage. All had held one or more delusional beliefs for at least two years and all held a 

diagnosis of schizophrenia by their responsible consultant psychiatrist. All were on 

stable medication regimes which were not significantly changed during the course of the 

study. They were aged between 29 and 43, with a mean age of 36. In all cases the 

duration of the illness was more than 10 years. 

Subject 1 "Tom" (all names are disguised to protect anonymity) was 43. His 

diagnosis was schizophrenia, paranoid type, 295.30 (DSM-IV, American Psychiatric 

Association, 1994). His medication comprised: Lofepramine 70mg tds; Procyclidine 5mg 

bd; Lorazepam 2mg IM (PRN). He had for many years held delusional beliefs about 

sinister groups, usually of foreign origin, who were trying to subvert Great Britain. At 

the time of the study two beliefs were prominent, both concerning trains. He strongly 

believed: (Toml) that local trains he observed were shunting large amounts of gold 

bullion around the country and (Tom 2) that trains were carrying "Soviet" troops. 

Subject 2 "Bill" was 39. His diagnosis was schizophrenia, catatonic type, 295.20 

(DSM-IV, American Psychiatric Association, 1994). His medication comprised: 

Triflouperazine 15mg bd; Carbamazepine 400mg tds; Cyproterone Acetate 50mg bd; 

Fluphenazine Decanoate 100mg IM every 2 weeks. He had a Wechsler Verbal IQ of 82, 

Performance IQ of 100 and Full Scale IQ of 89. He believed (Bill 1) that the number 

"666" had been tattooed onto the back of his head when a child, by a dentist. He thought 

that this must be the case, else how explain the bad luck that had in his view followed 
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him throughout his life? 

Subject 3 "Pete" was 29. He had a diagnosis of schizophrenia, paranoid type, 295.30 

(DSM-IV, American Psychiatric Association, 1994). His medication comprised: 

Dothiepin 100mg nocte; Propanalol 20mg tds; Procyclidine 5mg bd; Fluphenazine 

Decanoate 37.5mg IM every 3 weeks. He held two beliefs of a paranoid nature: (Petel) 

that ward staff were poisoning his three-weekly Fluphenazine Decanoate injection and 

(Pete 2) that staff or fellow patients were deliberately contaminating his meals. 

Subject 4 "Ken" was 32. He had a diagnosis of schizophrenia, paranoid type, 295.30 

(DSM-IV, American Psychiatric Association, 1994). His Wechsler Verbal IQ was 

reported as 65. The Performance IQ was recorded as 72. There was no record of the 

Full Scale IQ. His medication comprised: Fluphenazine Decanoate 50mg weekly; 

procyclidine 5mg tds; Respiridone 4mg daily. He held three delusional beliefs: (Ken l) 

that he was a member of the SAS; (Ken 2) that he was being pursued by the IRA; (Ken 

3) that he could summon assistance at need by using a special Whitehall telephone 

number. 

4.3.2 METHOD 

Measurement of the dependent variable. 

Strength of conviction of beliefs was measured by a modified version of Mulhall's 

(1976,1978) Personal Questionnaire Rapid Scaling Technigae(PQRST) (Cliffe, 

Possamai and Mulhall, 1995). This yields scores ranging from 0 (zero strength of 

conviction) to 9 (maximum strength of conviction). This instrument was used because it 

was found by Cliffe, Possamai and Mulhall(1995) to be much easier to employ with this 

type of client than traditional Personal Questionnaire methods as described in the 

pioneering work of Brett-Jones, Garety and Hemsley (1987) and of Garety (1985, 
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1992). It is easy and quick to administer. Administration follows the instructions in the 

PQRST Manual (Mulhall, 1978) and scoring is simply by the template provided. Each 

belief can be assessed in about two minutes. It is idiographic and allows clients to 

express their beliefs in their own words. Reliability of the results can be assessed by 

reference to the internal consistency of the answers. It provides an even coverage over 

the entire continuum and therefore lacks response bias. Measurement of the strength of 

conviction took place at the end of each session. 

In line with the study by Chadwick and Lowe (1990), two further aspects of the 

subjects' delusional experience were measured; preoccupation (defined as the percentage 

of time spent thinking about the belief) and the amount of distress or anxiety caused by 

the belief.. These were both measured using the original unmodified version of Mulhall's 

(1978) Personal Questionnaire Rapid Scaling Technique. In both cases the measures 

were retrospective, applying to the week before the assessment. 

Measures were taken at the beginning of each session. 

Experimental design. 

A randomized multiple baseline design (Wampold and Worsham, 1986; Marascuilo 

and Busk, 1988) was used. For each delusional belief, 19 sessions were allocated. The 

first 5 sessions were unconditionally reserved as baseline sessions. Treatment could not 

begin later than session 15, to guarantee a minimum of 5 sessions available for 

treatment. A random session number between 6 and 15 was selected. Thus for each 

belief there were 10 possible session numbers that could be designated for the start of 

the treatment condition. With 8 beliefs, and 10 possible random intervention points for 

each belief, there are 108 possible ways in which the 8 random intervention points could 

have been assigned. The actual session numbers that were randomly generated by 

computer were as follows: Tom 1 (7); Tom 2 (15); Bill 1 (11); Pete 1 (6); Pete 2 (14); 

Ken 1 (6); Ken 2 (10); Ken 3 (15). 



61 

The experimental effect was defined as the difference between the mean score in the 

baseline phase and the treatment phase, summed over the 8 beliefs. Statistical analysis 

was performed by a non-exhaustive randomization test with 105 data permutations. 

Because previous work in this field (e. g. Chadwick and Lowe, 1990) had suggested 

relatively large experimental effects (based on visual inspection of the data as the Effect 

Sizes were not computed), the significance level alpha was set at p<0.01. 

4.3.3. RESULTS 

Table 4.1 and Figures 4.1 
. a, 4.1 

.b and 4.1. c show the strength of conviction in the 8 

delusional beliefs over the 19 sessions, for the baseline phase and the treatment phase, 

and at follow-up at 1,3 and 6 months. Figure 4.2 shows the same data with the order of 

the graphs presented so that the intervention points are in sequence. For 7 of the 8 

beliefs, conviction score was a maximum 9 throughout the baseline phase. For one belief 

(Tom 2) the conviction score varied between 8 and 9 during the baseline phase. 

Figures 4.3. a, 4.3. b and 4.3. c show the PQRST preoccupation (PREO) and distress 

(DIST) scores associated with the 8 delusional beliefs over the 19 sessions, for the 

baseline phase and the treatment phase, and at follow-up at 1,3 and 6 months. Figure 

4.4 shows the same data with the order of the graphs presented so that the intervention 

points are in sequence. The effect of the therapeutic intervention on each of the beliefs 

will be described for each Subject. 

The treatment procedures used followed those outlined by Fowler et al (1998) 
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Figure 4.1 a 

Strength of conviction in delusional beliefs over sessions 1 to 19 and at follow up of 
im, 3m and 6m. Conviction score is from modified PQRST. Vertical lines separate 
baseline from treatment sessions. 
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Figure 4.1b 

Strength of conviction in delusional beliefs over sessions i to 19 and at follow up of 
im, 3m and 6m. Conviction score is from modified PQRST. Vertical lines separate 
baseline from treatment sessions. 
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Strength of conviction in delusional beliefs over sessions 1 to 19 and at follow up of 
lm, 3m and 6m. Conviction score is from modified PQRST. Vertical lines separate 
baseline from treatment sessions. 
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the introduction of the treatment intervention appear I session later than in Figure 4.2. 
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Figure 4.3. b. 

PQRST scores for preoccupation (PREO) and distress (DIST) in the time since the 
preceding session. Because the measures are retrospective, the vertical lines marking 
the introduction of the treatment intervention appear I session later than in Figure 4.2. 
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Data from Figures 4.3. a, 4.3. b. and 4.3. c. arranged in order of intervention point. 
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"Tom"'s first belief was that trains that he observed were carrying gold bullion for 

some sinister purpose connected with subversive groups attempting to undermine Great 

Britain. No attempt was made to challenge this belief during the baseline phase, during 

which strength of conviction was measured and rapport established. Treatment began in 

session 7, using cognitive behavioural techniques described in the contemporary 

literature. The belief was not directly challenged, but he was asked to reflect on why he 

held the belief, what evidence there was to support it, and its likelihood in light of other 

knowledge he had about the world. There was no shift from maximum conviction for the 

first two treatment sessions, followed by a fluctuating strength of conviction reducing to 

zero. At one month follow-up, conviction had risen to maximum once more but fell to a 

score of I at later follow-ups. He now tended to believe that goods trains were 

transporting ordinary commercial goods for commercial reasons rather than bullion for 

sinister purposes. Preoccupation scores were at middle to high values during baseline, 

with evidence of a slight fall during treatment. The score rose at first follow-up before 

settling to medium level. Distress scores declined during the treatment phase before 

returning to medium value at follow-up. 

For the second delusion concerning trains carrying "Soviet" troops, treatment 

commenced in session 15 using similar techniques. He was asked to look at the trains 

closely for evidence for or against his belief and was engaged in discussion of world 

events such as the collapse of the former Soviet Union which might be relevant. Strength 

of conviction remained at maximum (9) after the first treatment session and then 

fluctuated around middling levels of conviction. He was able to entertain doubts but not 

to give up the belief entirely. Conviction returned to near baseline level at 1 month 

follow-up and then returned to intermediate values. It is noteworthy that although the 

two beliefs were rather similar, involving trains, change in strength of conviction of the 

second belief occurred only when it was directly addressed. There was no evidence of a 

collateral effect on the second belief following treatment of the first. There was no 

apparent trend in preoccupation or distress scores during the 19 sessions and followVp, 
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except that distress had decreased at 3m and 6m follow-up. 

"Bill" believed the number "666" was tattooed on the back of his head. He had held 

this belief for many years. Strength of conviction was maximal throughout the baseline 

period, but during one session he volunteered that if he could examine the back of his 

head and see that the number was not there he would cease to believe it. Treatment 

began in session 11 when this test was performed using two mirrors. When the number 

was not seen, strength of conviction immediately fell to zero where it remained for all 

succeeding sessions and follow-up sessions. He was able to discuss other possible 

reasons to which he could attribute the course of his life. Scores for preoccupation and 

distress appeared to be on a downward trend during baseline, which continued until both 

scores reached zero at session 18 and remained there through follow-up. 

"Pete" had beliefs about staff contaminating his depot injection and poisoning his 

food. In discussion he volunteered that if he were able to observe nursing staff 

unwrapping the injection kit he might be less sure they were contaminating it. Baseline 

sessions were planned leading up to the next depot injection when the test was 

performed in session 6, the previously randomly determined intervention point. Strength 

of conviction immediately fell to zero. In later sessions it fluctuated about middling 

values before returning to zero. First follow-up showed a return to a medium value and 

the later follow-ups showed a return to zero. Preoccupation scores were at maximum 

during baseline and thereafter alternated between medium values and zero. Distress 

scores were at a medium level during baseline and thereafter closely followed the 

preoccupation scores. 

In connection with the second delusional belief he had similarly agreed that he might 

be less convinced that his food were being poisoned if he could observe it from the point 

of delivery from the catering van to the point of consumption. This intervention was 

performed at session 14, the randomly determined intervention point. Strength of 
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conviction immediately fell to medium and low values, returning to moderately high 

values at follow-up. Again it is noteworthy that despite the apparent similarity of the two 

beliefs there was no evidence of a collateral effect on the second belief following 

treatment of the first. That is, there was no change in strength of conviction in the 

second belief following successful intervention with the first. Preoccupation scores were 

at maximum to middle values during baseline, falling to zero during treatment. There 

was a return to middle value at lm follow-up followed by return to zero. Distress scores 

were at medium levels during baseline but fell to zero at session 18 where they remained. 

"Ken"'s first belief was that he was a member of the SAS. Treatment intervention 

was randomly allocated to session 6. In discussion it emerged that he had met an actor at 

a fan-club function, who had acted the role of an SAS soldier in films, and had become a 

member of the fan-club. In discussion he began to tease out reality from delusional 

fantasy, was encouraged to explore the question whether membership of the fan-club 

really implied membership of the SAS, and was able to show some uncertainty about the 

belief. Strength of conviction fluctuated below maximum, tailing off to zero. There was a 

rise to maximum at first follow-up and then a return to zero. Scores for preoccupation 

showed a sharp drop following treatment intervention. Despite some fluctuation, there 

was no overlap with baseline scores. Distress scores for this delusion were at zero 

throughout. 

The second belief was that he was being pursued by the IRA. He thought that this was 

because his family had service connections. Session 10 was the randomly determined 

intervention point. There was no shift in strength of conviction following the first 

treatment session. Thereafter he began to understand that his connection with the 

military was tenuous and unlikely to be of interest to the IRA. Strength of conviction 

remained at high levels for several sessions before falling. At the follow-ups it fluctuated 

from low to high to low. Preoccupation and distress were both relatively high for this 

delusion, which is understandable because he thought his life was in danger. The pattern 
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was similar to that for strength of conviction. Scores for preoccupation and distress 

remained at relatively high levels for several sessions following treatment intervention 

before falling to low levels by session 18. They rose at 3m follow-up and returned to 

zero at 6m follow-up. 

The third belief was that he had access to a special telephone number in Whitehall 

through which he could summon assistance. Strength of conviction remained at the 

maximum level of 9 throughout, and treatment intervention commencing in session 15 

had no effect. It had been noted that he had attempted to make telephone calls from the 

ward to the local Military Police when in an agitated condition but he would not discuss 

whether this was what he meant by the "special number". The distress score for this 

delusion was at zero throughout, probably because the delusional idea was reassuring 

and beneficial to self-esteem. There was no discernible trend in preoccupation scores, 

which varied about low to medium values throughout. 

Statistical analysis of the conviction score data 

1. The randomization test 

Over all 8 beliefs, the mean score for strength of conviction in the baseline phase was 

8.87. The mean score in the treatment phase was 3.03. The experimental effect (not to 

be confused with the Effect Size which was computed separately, see below), defined as 

the difference between the mean score in the baseline phase and the treatment phase, 

summed over the 8 beliefs, was 43.22. In order to compute the statistical significance for 

the overall experiment, a randomization test was performed. With 108 possible ways of 

allocating intervention points across the 8 beliefs with 10 possible intervention points per 

belief, the computation time to perform a complete, exhaustive analysis would have been 

too great. A non-exhaustive randomization test was performed with 105 permutations, 

using a computer program written by this author using the guidance of Edgington 
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(1995). The program marbus5. bas is presented at appendix (3). The test statistic was 

the difference between the mean score in the baseline phase and the treatment phase, 

summed over the 8 beliefs. In 303 of the 105 permutations an "effect" as large as or 

greater than the obtained effect of 43.22 was obtained. The probability was therefore 

303/105, or approximately 0.003. Insofar as this probability was less than the 

predetermined significance level alpha = 0.01, the null hypothesis was rejected. 

2. The Cohen Effect Size 

Over all 8 beliefs, the mean score for strength of conviction in the baseline phase was 

8.87, in the treatment phase 3.03. The difference between the means was (8.87 - 3.03) _ 

5.84. The standard deviation of the pooled data was 3.86. From Equation 1, the Effect 

Size was computed as (5.84 / 3.86) = 1.51. 

3. The Common Language Effect Size 

The CL ES was computed, following McGraw and Wong (1992) and Bjorgvinsson 

and Kerr (1995) as 0.95. Thus 95 times in 100, a score randomly sampled from the 

baseline data would exceed a score randomly sampled from the treatment data (see 

Chapter 1). 

Statistical analysis of the preoccupation data 

1. The randomization test 

Over all 8 beliefs, the mean score for preoccupation in the baseline phase was 5.52. 

The mean score in the treatment phase was 2.71. The experimental effect (not to be 

confused with the Effect Size which was computed separately, see below), defined as the 

difference between the mean score in the baseline phase and the treatment phase, 
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summed over the 8 beliefs, was 25.82. The non-exhaustive randomization test identical 

to that employed in analysis of the conviction score data was computed. The test statistic 

was the difference between the mean score in the baseline phase and the treatment phase, 

summed over the 8 beliefs. In 156 of the 105 permutations an "effect" as large as or 

greater than the obtained effect of 25.82 was obtained. The probability was therefore 

156 / 105, or 0.00156. Insofar as this probability was less than the predetermined 

significance level alpha = 0.01, the null hypothesis was rejected. 

2. The Cohen Effect Size 

Over all 8 beliefs, the mean score for preoccupation in the baseline phase was 5.52, in 

the treatment phase 2.71. The difference between the means was (5.52 - 2.71) = 2.81. 

The standard deviation of the pooled data was 2.86. From Equation 1, the Effect Size 

was computed as (2.81 / 2.86) = 0.98. 

3. The Common Language Effect Size. 

The CL ES was computed, following McGraw and Wong (1992) and Bjorgvinsson and 

Kerr (1995) as 0.79. Thus 79 times in 100, a score randomly sampled from the baseline 

data would exceed a score randomly sampled from the treatment data. 

Statistical analysis of the distress data. 

1. The randomization test 

Over all 8 beliefs, the mean score for distress in the baseline phase was 3.67. The 

mean score in the treatment phase was 1.88. The experimental effect (not to be confused 

with the Effect Size which was computed separately, see below), defined as the 

difference between the mean score in the baseline phase and the treatment phase, 
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summed over the 8 beliefs, was 14.35. The non-exhaustive randomization test identical 

to that employed in analysis of the conviction and the preoccupation data was 

performed.. The test statistic was the difference between the mean score in the baseline 

phase and the treatment phase, summed over the 8 beliefs. In 58,874 of the 105 

permutations an "effect" as large as or greater than the obtained effect of 14.35 was 

obtained. The probability was therefore 58,874 / 105 
, or approximately 0.59. Insofar as 

this was greater than the predetermined significance level alpha, the null hypothesis was 

not rejected. 

2. The Cohen Effect Size 

Over all 8 beliefs, the mean score for distress in the baseline phase was 3.67, in the 

treatment phase 1.88. The difference between the means was (3.67 - 1.88) = 1.79. The 

standard deviationof the pooled data was 2.84. From Equation 1, the Effect Size was 

computed as (1.79 / 2.84) = 0.63. 

3. The Common Language Effect Size 

The CL ES was computed, following McGraw and Wong (1992) and Bjorgvinsson 

and Kerr (1995) as 0.68. Thus 68 times in 100, a score randomly sampled from the 

baseline data would exceed a score randomly sampled from the treatment data. 

4.4 DISCUSSION 

This experiment represents a successful attempt at the implementation of the 

randomized multiple baseline experimental design which from a literature search appears 

not to have been previously applied. A randomization test showed a statistically 

significant effect of treatment intervention for the main dependent variable, strength of 

conviction and for the secondary dependent variable, preoccupation, but not for the third 
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independent variable, distress. In terms of both Cohen's ES and of the Common 

Language ES, the effect size was greatest for the conviction data, smaller for the 

preoccupation data and least for the distress data. 

Although the ES was greater (1.51) for the conviction data than for the preoccupation 

data (0.98), the randomization test gave a higher degree of statistical significance for the 

preoccupation data (0.00156) than for the conviction data (0.00303). This suggests that 

the effect of treatment intervention, although not as great, was slightly more clearly 

defined in the case of the preocupation data. This seems to be supported by visual 

examination and comparison of the data in Figures 4.2 and 4.4 although such analysis is 

problematical (see Chapter 2). This finding highlights the need to employ an appropriate 

statistical analysis in conjunction with purely graphical data analysis in small-n research 

of this type. 

This small scale experiment complies with 2 of the main recommendations made by 

Bouchard et al. (1996) for work on cognitive restructuring in schizophrenia. They 

suggested that the use of sophisticated belief scales such as the Personal Scaling 

Technique (Brett-Jones et al., 1987 ; Shapiro, 1961) is an important asset in such 

studies. Mulhall's (1978) PQRST and its development by Cliffe, Possamai and Mulhall 

(1995), both of which were used here to measure the independent variables, are scales of 

this type. Bouchard et al. were also concerned with the adequacy of experimental design 

in such studies. The randomized multiple baseline design used here is a powerful 

extension of the conventional multiple baseline design giving even greater control for 

historical effects and allowing statistical evaluation by randomization tests 

The statistical power of the randomized baseline design will be examined in the following 

Chapter. 
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CHAPTER 5. THE POWER OF RANDOMIZATION TESTS APPLIED TO 

RANDOMIZED MULTIPLE BASELINE DESIGNS. 

"Why, she doth hang on him, as if increase of appetite had grown by what it fed on. " 

(Shakespeare on exponential growth - Hamlet. Italics added. ) 

5.1. INTRODUCTION 

The power of conventional parametric statistical tests has received considerable 

attention (see Chapter 1). Similarly, the power of rank tests relative to their parametric 

counterparts has been investigated. There has however been until recently little 

examination of the power of randomization tests for N=1 or N= few experiments that 

lack large N counterparts (Edgington, 1995). Thus, Onghena (1994) points out that in 

none of the handbooks on applied power analysis are tables or formulae provided to 

calculate the power of randomization tests (see e. g. Cohen, 1988; Kraemer and 

Thiemann, 1987; Lipsey, 1990), and that on the other hand, none of the handbooks on 

randomization tests give advice on how to choose the number of observations that are 

assigned to each treatment on the basis of power considerations (e. g. Edgington, 1987; 

Manly, 1991; Noreen, 1989). 

Onghena (1994) suggests a possible reason for the above. With a randomization test, 

no assumptions are made about a population distribution, and the test is applied to the 

data at hand. On the other hand, an a priori power analysis without assumptions about 

the responses one can expect, is intrinsically impossible. Therefore, in order to compute 

an a priori power analysis, additional assumptions have to be invoked, and some 

randomization testers may be reluctant to do this. Onghena argues however that power 

analysis is the only statistical tool available for deciding on the number of observations 

when designing experiments, so that the invocation of additional assumptions can be 

worthwhile, as long as it is recalled that the validity of the power calculations depends 
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on the validity of the additional assumptions. 

Onghena (1994) discussed N=1 randomization tests and provided detailed 

information on the power of two types of design, AB designs and alternating 

treatments designs. His Monte Carlo simulations demonstrated that power was relatively 

low for these designs. He showed that approximately N= 500 observations are required 

for an AB randomization test, and that approximately N= 50 observations are required 

for an alternating treatments design, to reach the conventional power level of 0.80 with 

alpha = 0.05, even for large effects (d = 0.80). These figures are in marked contrast to 

the number of observations usually reported in single-case designs. Thus Huitema (1985) 

found a mean and median number of observations of approximately 7.9 and 5.5 

respectively, contained in initial baselines of 881 single-case designs published in the 

Journal of Applied Behavior Analysis. The modal number of observations in the baseline 

was 3 to 4, the number of observations contained in the other phases was even smaller, 

and the number of phases was rarely larger than 5. Similarly, Center, Skiba and Casey 

(1985) found a mean number of observations to be approximately N= 43 in 105 single- 

case designs published in Behavior Therapy, Journal of Abnormal Child Psychology, and 

Psychology in the Schools. Taken together, these two reviews emphasise the prevalence 

of low statistical power in single-case research. The undesirable effects of this were 

discussed in Chapter 1. 

In the main clinical experiment reported in Chapter 4, use was made of an 

experimental design suggested by Marascuilo and Busk (1988), modified to encompass 

multiple baselines across behaviours within the same individual. Although there are no 

reported data in the literature on the power of such designs, it was considered likely that 

reasonable power would be available, for the following reason. Where i represents the 

number of possible intervention points for a given subject (or behaviour), and k 

represents the number of subjects (or behaviours), there are ik possible data 

permutations. The number of possible data permutations therefore grows rapidly and 
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exponentially as more subjects (or behaviours) are added. Given i= 10, when k=1 there 

are 10 possible data permutations. When k=2 there are 100, with k=3 there are 1,000 

and so on. In the experiment in Chapter 4, with i= 10 and k=8, the number of possible 

data permutations was 108. 

Because no data have been reported on the power of these designs based on 

replications of the randomized baseline design for treatment intervention, it was 

necessary to perform Monte Carlo simulations (Manly, 1991; Noreen, 1989; Onghena, 

1994) in order to generate at least approximate estimates of power. 

It has already been emphasised that randomization tests in the present context are 

computer intensive. Monte Carlo simulations are themselves computer intensive. The 

task was therefore one of applying computer intensive simulations to computer intensive 

tests. Onghena (1994) referred to this situation as "computer-intensive raised to the 

square because the power estimation is derived through an iteration of an iterative test 

procedure". 

For the purpose of the present dissertation, to keep the task within reasonable 

bounds it was necessary to be restrictive. There are many possible forms that a 

randomized baseline experiment could take. One parameter is the restriction on the 

minimum number of baseline sessions and treatment sessions that are stipulated. In the 

simulations reported here this number was five in both cases. Thus the assumption in all 

the simulations is that treatment intervention cannot be randomly allocated to any session 

number less than six. Similarly, where n is the total number of sessions available, 

treatment intervention cannot be randomly allocated to any session number less than (n - 

4). For example in the experiment of Chapter 4 there were 19 sessions, so treatment 

intervention could be randomly allocated among sessions 6 to 15. Restrictions such as 

these affect statistical power (Onghena, 1994), so it is not possible to generalise the 

obtained results to experimental situations with different parameters. The software 
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reported here can be readily modified for other parameters to allow the necessary further 

simulations to be performed. 

Section 3.7.2 above considered the Marascuilo and Busk (1988) randomization test 

for a randomized multiple baseline experimental design. Marascuilo and Busk also 

proposed in their paper the use of a normal approximation to their randomization test, 

the use of which would greatly reduce the amount of computation required. Onghena 

(1994) argued that "although their normal approximation has some value for quick 

computations, it is imposible to assess the accuracy of the approximation in a particular 

research situation. Therefore, the application of exact randomization tests using fast 

algorithms is to be preferred to using approximations. " 

The position adopted here, contrary to Onghena's above argument, is that in some 

circumstances it may not be "impossible" to assess the accuracy of the approximation. If 

it can be shown that the normal approximation of Marascuilo and Busk (1988) is a 

sufficiently good approximation to the exact randomization test, the greatly reduced 

amount of computation required for an a priori power analysis might render the project 

feasible. Data will be presented below which, it is argued, show that the approximation is 

close enough for the purpose. 

5.2. THE COMPUTER SIMULATIONS FOR POWER ANALYSIS 

The basic procedure here is the computer simulation of a multiple baseline experiment 

with given parameters. This is repeated, or iterated, many times (e. g. 1,000). For each 

iteration, a determination is made on whether the randomization test has yielded a statistically 

significant result at a given significance level alpha (alphas 0.05,0.01,0.001 are reported on 

here). Power for the experiment with the given parameters is obtained simply by dividing the 

number of iterations in which statistical significance was found at a given alpha level, by the 

total number of iterations. For example, a simulated experiment with 10 baselines, an ES of 
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0.5 and 20 possible intervention points, might give a significant result at alpha = 0.05 in 739 

out of the total of 1,000 iterations. The power is then computed as 739/1000, or 0.739. 

The simulated experiments depend on the generation of normally distributed random data 

with a defined mean and standard deviation. In all of the computer programs presented in the 

Appendix, when such data needed to be called up it was generated by the algorithm contained 

in the program sim2. bas (Appendix 1). This algorithm involves the consultation of normal curve 

tables. Appendix 2 shows the normal curve DATA that was READ by each of the programs. 

The programs were written in QBasic (Perry, 1993) and were executed on an NEC Versa 

2000C laptop computer running at 75 MHz. It was necessary to demonstrate that this algorithm 

generated data to specification, i. e. normally distributed data with a defined mean and standard 

deviation. Tests showed that the data generated did conform to the specification. For example, 

Figure 5.1 shows the observed and the expected frequencies of 10,000 numbers generated by 

the program sim2. bas with a specified mean of 100 and standard deviation of 2.5. The 

observed and the expected frequencies were the same to a good approximation and the chi- 

square was not significant. 

The principle of the simulations can be demonstrated by reference to a single hypothetical 

baseline. Firstly, the intervention point is selected at random from the defined range of possible 

intervention points. For example, with 19 sessions and a stipulated minimum of 5 baseline and 

5 treatment sessions, possible intervention points are sessions 6 to 15. Suppose the randomly 

selected intervention point to be session 10. In that case, sessions 1 to 9 will be baseline 

sessions and sessions 10 to 19 will be treatment sessions. 

Normally distributed, randomly generated data with a defined mean and standard deviation are 

assigned to each of the 9 baseline sessions. Normally distributed, randomly generated data 

with a different mean, reflecting the treatment Effect Size, but with the same standard 

deviation, are assigned to each of the 10 treatment sessions. In the reported simulations here, 

the mean for the baseline data was defined as 100. The standard deviation for the baseline 

and the treatment data was defined as 5. The mean for the treatment data was selected to 
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reflect the Effect Size. For example, if the chosen Effect Size were 2. the mean for the 

treatment data would be 90, that is, 100 minus 2 standard deviations (from Equation 1). The 

process is repeated for all of the baselines in the simulated experiment with the given 

parameters. Once the data have been generated for all of the baselines required for a 

simulated experiment with the given parameters, statistical significance is computed using 

either a non-exhaustive randomization test (see Chapter 3) similar to that used in the clinical 

experiment in Chapter 4, with 100 iterations, (program marsim3. bas, Appendix 4) or the normal 

approximation of Marascuilo and Busk (program normdis2. bas, Appendix 5). 

5.2.1 RANDOMIZATION TEST VERSUS NORMAL APPROXIMATION 

It was noted above that computation could be greatly reduced in these simulations if it 

could be shown that the normal approximation provided a sufficiently close approximation to 

the results obtained from the non-exhaustive randomization test. Simulations were computed 

to enable a comparison to be made. 

Simulations were computed with number of baselines from 2 to 8 in even numbers, and 

with number of possible intervention points from 6 to 20 in even numbers. Four sets of 

simulations were computed, with parameters as follows: (1) alpha = 0.05, ES = 0.5; (2) alpha = 

0.05, ES = 0.8; (3) alpha = 0.01, ES = 0.5; and (4) alpha = 0.01, ES = 0.8. 

Simulations were computed with only 100 iterations for the non-exhaustive randomization 

test because of the great amount of computing time that wold be required for 1,000 iterations. 

Because computation is much quicker for the normal approximation it was possible to compute 

at 1,000 iterations. Tables 5.1 to 5.4, and Figures 5.2 to 5.5 show the results of these 

simulations. In each of Figures 5.2 to 5.5, there are 4 pairs of curves. In each pair, the front 

curve shows data from the non-exhaustive randomization test with 100 iterations, while the 

rear curve shows data from the normal approximation with 1,000 iterations. 
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Two points arise from Figures 5.2 to 5.5. Firstly, the front curve of each pair shows greater 

variability than the rear curve. The rear curves tend to be smoother. It is probable that this is 

due to the smaller number of iterations (100) computed for the randomization test than for the 

normal approximation (1,000). Secondly, allowing for the greater variability, the front and the 

rear curves are congruent to a rough approximation. This was considered to be reasonable 

evidence to justify the use of the normal approximation in the further, more detailed computer 

power analysis simulations. There is a trade-off between the ability to compute more iterations 

(1,000) with the normal approximation, and the "approximateness" of the approximation. The 

more detailed simulations below were therefore computed using the normal approximation 

method, by the program normdis2. bas (Appendix 5). It should be emphasised that the validity 

of these simulations depends on the validity of the assumption of relatively close 

approximation of the two procedures. 

5.2.2. RESULTS OF THE POWER ANALYSIS SIMULATIONS 

Power analysis simulations were computed using the program normdis2. bas as described 

above. Simulated experiments were computed with the number of baselines ranging from 2 to 

10, and number of possible intervention points ranging from 6 to 20 in even numbers. Effect 

sizes ranged from 0.2 to 2.0 in increments of 0.3. Three levels of the significance level alpha 

were examined: alpha = 0.05; 0.01; and 0.001. 

Tables 5.5 to 5.11, and Figures 5.6 to 5.14 show the results of the simulations. The tables 

and figures allow the approximate determination of the power of a projected multiple baseline 

study which is to be analysed by a randomization test of the type used here and described by 

Marascuilo and Busk(1988). For example, consider a projected experiment similar to that 

reported in Chapter 4, with 8 baselines and 10 possible intervention points in each baseline. 

Suppose there were grounds to expect an effect size of 0.8, based for example on a meta- 

analysis of previously reported studies in the field. Figure 5.12 shows the expected power of 

the experiment to be approximately 0.8 for alpha = 0.05. This would be considered a 
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reasonable power in Cohen's terms (see Chapter 1). There is an approximately 80% chance of 

detecting an effect of this size with this projected experiment. Projected power can be read 

from the tables, with interpolation where necessary, for number of baselines ranging from 2 to 

10, and number of possible intervention points from 6 to 20. Should the projected power of a 

planned experiment be regarded as too low, the tables can be consulted to determine the 

number of baselines and the number of intervention points required for adequate power for a 

given effect size. 

The type of experimental design used here, a combination of randomized multiple baseline 

design and statistical analysis by a randomization test, appears to be an efficient design in 

terms of the number of subjects required. In the hypothetical experiment referred to in the 

paragraph above, assume that the 8 baselines represented 8 subjects each of whom was 

measured on a single behaviour. How many subjects would be needed in a group design to 

detect a similar effect (ES = 0.80) at alpha = 0.05 between two independent sample means, 

with a power of 0.80? Cohen (1992) shows the number to be 26 in each group. Thus the 

experimental design and statistical analysis used in the present study achieves approximately 

the same power with 8 baselines, as a group study employing 52 subjects. This is an example 

of the recommended (Section 1.6) use of repeated measures designs to increase power. 
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Number of intervention ints 
Baselines 6 8 10 12 14 16 18 20 
2 11 15 09 14 15 25 21 17 

09 15 16 16 16 19 21 23 
4 28 26 36 38 32 34 34 38 

18 21 28 28 32 36 39 41 
6 32 32 29 41 46 51 48 51 

25 34 38 41 42 50 51 54 
8 36 40 45 48 53 67 64 70 

30 41 46 50 56 60 60 65 

Table 5.1 Power at alpha = 0.05, ES = 0.5, as a function of number of baselines and 
number of intervention points. Data are from MARSIM3. BAS (upper entry) with 100 
iterations, 100 data permutations; NORMDIS2. BAS (lower entry) with 1,000 
iterations. Decimal points omitted. See Figure 5.2. 

Number of intervention ints 
Baselines 6 8 10 12 14 16 18 20 
2 22 28 31 31 34 38 42 42 

15 21 23 27 32 34 37 42 
4 33 49 42 63 62 65 62 75 

28 42 47 51 58 65 68 72 
6 57 55 68 78 75 79 84 86 

45 58 66 73 76 81 85 87 
8 67 74 75 83 85 88 82 90 

59 70 79 84 88 91 93 95 

Table 5.2 Power at alpha = 0.05, ES = 0.8, as a function of number of baselines and 
number of intervention points. Data are from MARSIM3. BAS (upper entry) with 100 
iterations, 100 data permutations; NORMDIS2. BAS (lower entry) with 1,000 
iterations. Decimal points omitted. See Figure 5.3. 
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Numb er of inte rvention points 
Baselines 6 8 10 12 14 16 18 20 
2 01 01 02 02 04 04 04 05 

00 02 02 02 04 03 05 05 
4 06 09 16 14 14 14 13 16 

02 05 06 07 09 11 12 15 
6 09 17 07 16 19 21 20 26 

04 10 12 13 14 20 22 26 
g 08 15 16 18 24 28 32 36 

08 14 17 21 22 28 31 34 

Table 5.3 Power at alpha = 0.01, ES = 0.5, as a function of number of baselines and 
number of intervention points. Data are from MARSIM3. BAS (upper entry) with 100 
iterations, 100 data permutations; NORMDIS2. BAS (lower entry) with 1,000 
iterations. Decimal points omitted. See Figure 5.4. 

Number of intervention ints 
Baselines 6 8 10 12 14 16 18 20 
2 01 04 09 11 07 06 10 19 

01 03 04 05 07 07 08 11 
4 08 17 11 28 33 32 30 39 

05 11 13 18 24 29 31 33 
6 22 21 34 50 42 46 54 55 

12 24 30 37 44 51 54 58 
g 36 32 53 52 55 70 71 70 

22 37 47 55 61 69 73 76 

Table 5.4 Power at alpha = 0.01, ES = 0.8, as a function of number of baselines and 
number of intervention points. Data are from MARSIM3. BAS (upper entry) with 100 
iterations, 100 data permutations; NORMDIS2. BAS (lower entry) with 1,000 
iterations. Decimal points omitted. See Figure 5.5. 
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Figure 5.2. Power at alpha = 0.05, ES = 0.5, as a function of number of baselines and 
number of intervention points. Data for baselines numbered 2a - 8a are from 
MARSIM3. BAS with 100 iterations. Data for baselines numbered 2b - 8b are from 
NORMDIS2. BAS with 1,000 iterations. See Table 5.1. 
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Figure 5.3. Power at alpha = 0.05, ES = 0.8, as a function of number of baselines and 
number of intervention points. Data for baselines numbered 2a - 8a are from 
MARSIM3. BAS with 100 iterations. Data for baselines numbered 2b - 8b are from 
NORMDIS2. BAS with 1,000 iterations. See Table 5.2. 
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Figure 5.4. Power at alpha = 0.01, ES = 0.5, as a function of number of baselines and 
number of intervention points. Data for baselines numbered 2a - 8a are from 
MARSIM3. BAS with 100 iterations. Data for baselines numbered 2b - 8b are from 
NORMDIS2. BAS with 1,000 iterations. See Table 5.3. 
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Figure 5.5. Power at alpha = 0.01, ES = 0.8, as a function of number of baselines and 
number of intervention points. Data for baselines numbered 2a - 8a are from 
MARSIM3. BAS with 100 iterations. Data for baselines numbered 2b - 8b are from 
NORMDIS2. BAS with 1,000 iterations. See Table 5.4. 
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Number of intervention points 

Baselines 6 8 10 12 14 16 18 20 

059 063 080 075 084 074 103 085 
2 004 002 007 007 007 012 018 016 

000 000 000 000 000 001 001 001 
072 076 087 083 097 105 129 103 

3 004 007 007 014 022 018 025 016 
000 000 000 000 000 001 000 001 
088 099 097 104 113 112 143 101 

4 016 012 015 020 024 022 031 022 
000 000 001 000 000 000 002 000 
089 114 118 112 145 127 155 122 

5 016 014 020 020 030 030 033 029 
001 001 000 000 002 002 003 002 
099 116 114 133 143 149 158 151 

6 014 016 023 026 040 037 040 033 
002 001 001 002 001 003 005 001 
114 126 119 149 148 168 174 169 

7 015 015 034 034 038 038 048 039 
000 001 001 002 002 007 007 004 
107 130 124 144 162 176 182 194 

8 015 017 036 037 039 045 050 047 
000 001 003 001 005 011 006 006 
119 139 138 160 173 174 206 205 

9 023 021 042 044 048 056 064 057 
001 000 004 004 003 008 004 008 
119 152 142 172 185 192 218 207 

10 025 019 045 045 049 057 072 062 
000 001 006 003 002 009 008 008 

Table 5.5. Power with ES = 0.2, at alpha = 0.05 (upper entry), 0.01 (middle entry), 
0.001 (lower entry) as a function of number of baselines and number of intervention 

points. Data are from NORMDIS2. BAS with 1,000 iterations. Decimal points 
omitted. 
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Number of intervention points 

Baselines 6 8 10 12 14 16 18 20 

088 149 159 163 163 189 206 232 
2 000 016 019 022 036 034 050 052 

000 000 000 001 001 003 002 004 
135 186 225 231 245 283 278 326 

3 010 034 045 048 049 055 096 087 
000 001 005 001 001 006 006 010 
176 210 278 281 318 363 386 408 

4 021 049 059 066 089 112 124 148 
001 001 006 007 006 014 021 017 
200 269 330 346 385 425 433 487 

5 030 068 084 089 116 149 185 185 
002 002 014 008 012 024 024 031 
253 337 382 415 422 502 510 542 

6 043 096 120 128 145 196 221 260 
004 004 013 017 024 029 033 036 
283 376 425 459 497 560 564 591 

7 055 116 137 174 174 238 254 301 
004 008 020 027 033 040 051 065 
304 414 458 499 564 605 599 647 

8 079 140 175 207 221 283 306 342 
006 011 032 032 045 054 080 096 
345 436 502 563 603 652 652 709 

9 093 159 197 228 267 332 367 395 
007 020 041 043 059 071 106 116 
374 479 546 607 637 699 706 739 

10 120 186 241 289 310 388 413 453 
009 030 049 056 070 092 128 147 

Table 5.6. Power with ES = 0.5, at alpha = 0.05 (upper entry), 0.01 (middle entry), 
0.001 (lower entry) as a function of number of baselines and number of intervention 

points. Data are from NORMDIS2. BAS with 1,000 iterations. Decimal points 
omitted. 
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Number of intervention points 

Baselines 6 8 10 12 14 16 18 20 

149 214 226 275 322 339 375 420 
2 006 029 045 046 069 069 084 112 

000 000 000 004 008 006 005 008 
227 321 354 410 460 510 563 563 

3 027 064 077 108 153 174 175 219 
000 003 005 008 017 016 016 024 
278 417 469 514 582 646 680 721 

4 049 107 133 180 240 286 315 333 
001 007 013 021 035 041 044 058 
370 498 578 633 681 756 775 793 

5 084 162 219 277 320 389 438 461 
005 014 023 038 068 079 086 124 
448 578 660 727 764 810 847 870 

6 122 237 301 371 442 506 543 582 
008 027 044 065 106 140 167 207 
528 654 732 781 834 872 890 908 

7 160 304 384 445 530 611 655 676 
010 047 072 115 159 201 259 283 
589 701 789 837 876 911 930 953 

8 223 375 473 550 612 688 732 759 
023 070 108 173 236 273 350 375 
635 756 833 891 909 945 953 968 

9 264 432 526 621 676 765 804 832 
036 099 159 226 294 361 454 471 
681 799 872 914 932 954 974 984 

10 329 477 594 675 733 817 852 880 
049 137 208 293 373 453 511 577 

Table 5.7. Power with ES = 0.8, at alpha = 0.05 (upper entry), 0.01 (middle entry), 
0.001 (lower entry) as a function of number of baselines and number of intervention 

points. Data are from NORMDIS2. BAS with 1,000 iterations. Decimal points 
omitted. 
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Number of intervention points 

Baselines 6 8 10 12 14 16 18 20 

247 317 382 420 499 531 555 590 
2 010 036 065 097 136 144 142 191 

000 000 001 005 011 012 009 032 
408 492 584 626 682 714 777 808 

3 066 118 167 222 315 318 348 409 
000 001 011 021 040 036 056 086 
518 634 716 778 816 854 895 915 

4 124 219 312 405 479 492 553 599 
001 014 034 047 101 111 145 180 
596 736 808 875 890 919 949 961 

5 226 341 432 545 622 677 729 761 
007 031 071 120 182 216 265 337 
698 811 889 927 945 967 976 982 

6 301 449 567 671 737 800 839 973 
028 066 135 229 292 338 407 499 
774 888 924 957 967 985 986 997 

7 379 568 665 784 830 875 920 928 
060 132 211 341 424 488 561 644 
831 917 952 983 984 988 992 998 

8 485 668 775 854 910 943 954 962 
094 191 306 442 558 624 704 765 
879 941 968 987 992 995 999 999 

9 570 750 841 913 930 953 980 983 
150 287 416 559 665 734 803 846 
917 966 982 993 997 999 999 1000 

10 647 794 890 942 959 976 987 993 
203 388 528 642 968 814 872 898 

Table 5.8. Power with ES = 1.1, at alpha = 0.05 (upper entry), 0.01 (middle entry), 
0.001 (lower entry) as a function of number of baselines and number of intervention 

points. Data are from NORMDIS2. BAS with 1,000 iterations. Decimal points 
omitted. 
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Number of intervention points 

Baselines 6 8 10 12 14 16 18 20 

318 422 501 592 658 695 695 751 
2 016 065 096 138 199 221 267 288 

000 001 001 010 013 023 032 028 
530 658 729 806 860 890 897 936 

3 089 190 262 378 457 498 521 597 
000 007 017 036 061 081 118 123 
684 810 862 930 970 969 975 977 

4 208 380 483 606 688 730 772 818 
009 034 060 106 193 221 264 310 
800 902 935 975 985 992 997 991 

5 335 570 668 783 856 875 914 937 
021 098 161 249 361 418 472 532 
858 941 974 993 994 999 999 998 

6 499 716 800 891 935 946 962 975 
067 191 317 444 561 618 689 734 
911 977 992 999 997 1000 1000 999 

7 608 807 891 950 977 978 982 991 
128 337 482 618 731 789 836 868 
957 987 993 1000 1000 1000 999 1000 

8 712 885 938 982 992 996 996 997 
224 445 598 758 844 890 917 942 
965 993 998 1000 1000 1000 1000 1000 

9 792 933 967 992 993 997 999 1000 
335 563 745 853 918 944 961 972 
980 997 998 1000 1000 1000 1000 1000 

10 845 960 985 995 998 998 1000 1000 
420 678 826 929 960 976 981 988 

Table 5.9. Power with ES = 1.4, at alpha = 0.05 (upper entry), 0.01 (middle entry), 
0.001 (lower entry) as a function of number of baselines and number of intervention 

points. Data are from NORMDIS2. BAS with 1,000 iterations. Decimal points 
omitted. 
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Number of intervention points 

Baselines 6 8 10 12 14 16 18 20 

437 590 664 698 751 814 837 878 
2 017 095 143 223 239 319 313 402 

000 000 004 013 018 034 039 049 
690 812 882 913 949 964 973 981 

3 145 284 404 506 555 675 684 770 
000 008 027 065 102 142 151 195 
832 932 967 982 992 991 997 999 

4 336 550 687 763 823 880 911 947 
010 056 111 203 290 348 386 477 
926 979 992 994 997 999 1000 1000 

5 535 766 851 923 935 962 972 991 
040 170 295 423 507 610 666 756 
952 990 999 998 1000 1000 1000 1000 

6 711 894 933 968 985 992 995 999 
134 316 505 660 749 826 858 928 
981 996 999 1000 1000 1000 1000 1000 

7 836 957 983 993 999 998 999 1000 
284 526 698 823 886 933 944 980 
987 1000 1000 1000 1000 1000 1000 1000 

8 904 979 996 997 1000 1000 999 1000 
411 705 836 913 950 972 988 993 
994 1000 1000 1000 1000 1000 1000 1000 

9 948 991 999 1000 1000 1000 1000 1000 
570 832 836 968 985 997 992 998 
1000 1000 1000 1000 1000 1000 1000 1000 

10 972 996 1000 1000 1000 1000 1000 1000 
695 905 972 990 998 999 998 999 

Table 5.10 Power with ES = 1.7, at alpha = 0.05 (upper entry), 0.01 (middle entry), 
0.001 (lower entry) as a function of number of baselines and number of intervention 

points. Data are from NORMDIS2. BAS with 1,000 iterations. Decimal points 
omitted. 
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Number of intervention points 

Baselines 6 8 10 12 14 16 18 20 

501 652 756 833 853 902 927 930 
2 027 101 178 233 322 366 382 458 

000 001 002 006 017 027 034 054 
796 894 948 970 982 990 995 995 

3 188 393 533 646 696 763 801 856 
000 010 030 080 132 168 190 258 
916 981 991 997 999 999 999 999 

4 443 695 810 877 924 964 968 978 
014 084 160 288 391 484 513 592 
974 994 999 1000 1000 1000 1000 1000 

5 691 870 936 971 991 995 994 998 
081 282 411 580 692 782 813 870 
993 997 1000 999 1000 1000 1000 1000 

6 841 955 978 992 1000 1000 999 1000 
224 507 693 820 885 929 947 965 
997 1000 1000 1000 1000 1000 1000 1000 

7 935 987 997 999 1000 1000 1000 1000 
425 706 853 927 966 985 983 995 
999 1000 1000 1000 1000 1000 1000 1000 

8 975 995 998 1000 1000 1000 1000 1000 
620 865 936 981 996 999 999 1000 
1000 1000 1000 1000 1000 1000 1000 1000 

9 983 999 1000 1000 1000 1000 1000 1000 
759 943 975 995 1000 1000 1000 1000 
1000 1000 1000 1000 1000 1000 1000 1000 

10 993 1000 1000 1000 1000 1000 1000 1000 
875 975 993 1000 1000 1000 1000 1000 

Table 5.11. Power with ES = 2.0, at alpha = 0.05 (upper entry), 0.01 (middle 

entry), 0.001 (lower entry) as a function of number of baselines and number of 
intervention points. Data are from NORMDIS2. BAS with 1,000 iterations. Decimal 

points omitted. 
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Figure 5.6. Power with 2 baselines at alpha = 0.05, as a function of effect size (ES) 
and number of intervention points. Data are from NORMDIS2. BAS with 1,000 
iterations. 



102 

--t- ES = 0.2 

ES=0.5 

-ý- ES = 0.8 

ES= 1.1 

-ýc-- ES = 1.4 

t ES = 1.7 

+ ES = 2.0 

Figure 5.7. Power with 3 baselines at alpha = 0.05, as a function of effect size (ES) 
and number of intervention points. Data are from NORMDIS2. BAS with 1,000 
iterations. 
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Figure 5.8. Power with 4 baselines at alpha = 0.05, as a function of effect size (ES) 
and number of intervention points. Data are from NORMDIS2. BAS with 1,000 
iterations. 

8 10 12 14 16 18 20 

Number of intervention points 



104 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

Power 

0.4 

0.3 

02 

0.1 

0.0 - 
6 

tES=0.2 

ES-0.5 

ES=0.8 

1 ES=I. 1 

-t-ES=1.4 

-. --ES=1.7 

+ES=2.0 

Figure 5.9. Power with 5 baselines at alpha = 0.05, as a function of effect size (ES) 
and number of intervention points. Data are from NORMDIS2. BAS with 1,000 
iterations. 
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Figure 5.10. Power with 6 baselines at alpha = 0.05, as a function of effect size (ES) 
and number of intervention points. Data are from NORMDIS2. BAS with 1,000 
iterations. 
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Figure 5.11. Power with 7 baselines at alpha = 0.05, as a function of effect size (ES) 

and number of intervention points. Data are from NORMDIS2. BAS with 1,000 
iterations. 
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Figure 5.12. Power with 8 baselines at alpha = 0.05, as a function of effect size (ES) 
and number of intervention points. Data are from NORMDIS2. BAS with 1,000 
iterations. 
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Figure 5.13. Power with 9 baselines at alpha = 0.05, as a function of effect size (ES) 
and number of intervention points. Data are from NORMDIS2. BAS with 1,000 
iterations. 
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CONCLUSION 

This research offers a solution to the problem of closing the gap between the 

statistical analysis of single-case experimental designs on the one hand, and large scale 

group designs on the other. As far as single-case designs are concerned, Onghena (1994) 

concluded that: "Cumulating knowledge by means of consecutive single-case 

experiments, analyzing the individual data graphically and by means of randomization 

tests, analyzing the data of several individuals by means of nonparametric meta-analysis, 

and designing the experiments using Monte Carlo power analysis, all appear to be 

promising in narrowing the scientist-practitioner gap. " The present work extends this 

general approach to experimental designs applicable to small numbers of subjects (with n> 1). 

The dissertation has reported the application of a previously unreported experimental 

design, the randomized multiple baseline dsign, in a small scale clinical experiment combining 

features of both across-subject and across-behaviours designs. It has demonstrated the 

feasibility of applying a form of randomization test to the resulting data. 

Data were reported on the power of the type of experimental design and statistical analysis 

employed, derived from Monte Carlo power analysis. 

Emphasis was placed on the concepts of power and of effect size. In terms of effect size, 

Cohen effect sizes of 1.51,0.98, and 0.63 were obtained in the three dependent variables. The 

first two effect sizes would be considered large in terms of Cohen's (1988) proposals in which 

he suggests that an effect size of 0.80 be defined as "large". In the wider context however, 

Matyas and Greenwood (1990) found in their survey of 182 baselines published in JABA that 

the median effect size obtained from 100 AB panels with n >= 10 was 9.2, the 25th percentile 

was 4.9 and the 75th was 17.1. Thus an effect size of 1 was well below the 25th percentile. The 

great discrepancy between the magnitude of effect sizes found in such work and by contrast in 

work in areas such as that reported on in the present clinical experiment, may help to explain 
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the enthusiasm of operant workers for reliance on graphical data analysis. 

The randomized multiple baseline experimental design, with analysis based on a 

combination of graphical data analysis and randomization statistics, together with the design of 

experiments using Monte Carlo power analysis, is commended as a useful addition to the 

armoury of experimental designs for small scale applied clinical psychological research. 
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'APPENDIX 1 

'sim2. bas 
'generates random normally distributed data 

CLS : DIM ctr(200): DIM norm(310): DIM zedd(310) 

FOR i=1 TO 308 
READ norm(i) 

NEXT i 

FOR i=1 TO 308 
READ zedd(i) 

NEXT i 

FOR i=1 TO 200 
ctr(i) =0 

NEXT i 

RANDOMIZE TIMER. 
PRINT "input mean": INPUT m 
PRINT "input standard deviation": INPUT s 

FOR i=1 TO 10000 

x= RND : IF x>. 5 THEN x=1-x 

FOR enn =1 TO 308 
IF norm(enn) >= x THEN z= zedd(enn): EXIT FOR 

NEXT enn 

sign = RND 
sc = INT(z * s) 
IF sign > .5 THEN y=m+ sc ELSE y=m- sc 

FOR j=0 TO 200 
IF y=j THEN ctr(j) = ctr(j) +1 

NEXT j 

NEXT i 

FOR j= 90 TO 110 
LPRINT j; ctr(j) 

NEXT j 

'normal curve DATA are READ as in Appendix 2 
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'APPENDIX 2 

'Percentage of scores under the Normal Curve from 0 to z 

'Percentage of scores 

DATA . 0040,. 0080,. 0120,. 0160,. 0199,. 0239,. 0279,. 0319,. 0359 
DATA . 0398,. 0438,. 0478,. 0517,. 0557,. 0596,. 0636,. 0675,. 0714,. 0754 
DATA . 0793,. 0832,. 0871,. 0910,. 0948,. 0987,. 1026,. 1064,. 1103,. 1141 
DATA . 1179,. 1217,. 1255,. 1293,. 1331,. 1368,. 1406,. 1443,. 148,. 1517 
DATA . 1554,. 1591,. 1628,. 1664,. 17,. 1736,. 1772,. 1808,. 1844,. 1879 
DATA . 1915,. 195,. 1985,. 2019,. 2054,. 2088,. 2123,. 2157,. 219,. 2224 
DATA . 2258,. 2291,. 2324,. 2357,. 2389,. 2422,. 2454,. 2486,. 2518,. 2549 
DATA . 258,. 2612,. 2642,. 2673,. 2704,. 2734,. 2764,. 2794,. 2823,. 2852 
DATA . 2881,. 291,. 2939,. 2967,. 2996,. 3023,. 3051,. 3078,. 3106,. 3133 
DATA . 3159,. 3180,. 3212,. 3238,. 3264,. 3289,. 3315,. 334,. 3365,. 3389 
DATA . 3413,. 3438,. 3461,. 3485,. 3508,. 3531,. 3554,. 3577,. 3599,. 3621 
DATA . 3643,. 3665,. 3686,. 3708,. 3729,. 3749,. 3770,. 379,. 381,. 383 
DATA . 3849,. 3869,. 3888,. 3907,. 3925,. 3944,. 3962,. 398,. 3997,. 4015 
DATA . 4032,. 4049,. 4066,. 4082,. 4099,. 4115,. 4131,. 4147,. 4162,. 4177 
DATA . 4192,. 4207,. 4222,. 4236,. 4251,. 4265,. 4279,. 4292,. 4306,. 4319 
DATA . 4332,. 4345,. 4357,. 437,. 4382,. 4394,. 4406,. 4418,. 4429,. 4441 
DATA . 4452,. 4463,. 4474,. 4484,. 4495,. 4505,. 4515,. 4525,. 45351.4545 
DATA . 4554,. 4564,. 4573,. 4582,. 4591,. 4599,. 4608,. 4616,. 4625,. 4633 
DATA . 4641,. 4649,. 4656,. 4664,. 4671,. 4678,. 4686,. 4693,. 4699,. 4706 
DATA . 4713,. 4719,. 4726,. 4732,. 4738,. 4744,. 475,. 4756,. 4761,. 4767 
DATA . 4772,. 4778,. 4783,. 4788,. 4793,. 4798,. 4803,. 4808,. 4812,. 4817 DATA . 4821,. 4826,. 483,. 4834,. 4838,. 4842,. 4846,. 485,. 4854,. 4857 DATA . 4861,. 4864,. 4868,. 4871,. 4875,. 4878,. 4881,. 4884,. 4887,. 489 DATA . 4893,. 4896,. 4898,. 4901,. 4904,. 4906,. 4909,. 4911,. 4913,. 4916 DATA . 4918,. 492,. 4922,. 4925,. 4927,. 4929,. 4931,. 4932,. 4934,. 4936 DATA . 4938,. 494,. 4941,. 4943,. 4945,. 4946,. 4948,. 4949,. 4951,. 4952 DATA . 4953,. 4955,. 4956,. 4957,. 4959,. 496,. 4961,. 4962,. 4963,. 4964 DATA . 4965,. 4966,. 4967,. 4968,. 4969,. 4970,. 4971,. 4972,. 4973,. 4974 DATA . 4975,. 4976,. 4977,. 4978,. 4979,. 498,. 4981,. 4982,. 4983,. 4984 DATA . 4985,. 4986,. 49865,. 4988,. 4989,. 499,. 49903,. 4991,. 4992,. 4993 DATA . 49931, . 4994,4995,. 4996,. 4997,. 4998,. 49984,. 49993,. 5 

'z score 

DATA . 01, . 02, . 03, . 04, . 05, . 06, . 07, . 08, . 09 
DATA . 1, . 11, . 12, . 13, . 14, . 15, . 16, . 17, . 18, . 19 
DATA . 2, . 21, . 22, . 23, . 24, . 25, . 26, . 27, . 28, . 29 
DATA . 3, . 31, . 32, . 33, . 34, . 35, . 36, . 37, . 38, . 39 
DATA . 4, . 41, . 42, . 43, . 44, . 45, . 46, . 47, . 48, . 49 DATA . 5, . 51, . 52, . 53, . 54, . 55, . 56, . 57, . 58, . 59 
DATA . 6, . 61, . 62, . 63, . 64, . 65, . 66, . 67, . 68, . 69 
DATA . 7, . 71, . 72, . 73, . 74, . 75, . 76, . 77, . 78, . 79 DATA . 8, . 81, . 82, . 83, . 84, . 85, . 86, . 87, . 88, . 89 DATA . 9, . 91, . 92, . 93, . 94, . 95, . 96, . 97, . 98, . 99 
DATA 1,1.01,1.02,1.03,1.04,1.05,1.06,1.07,1.08,1.09 
DATA 1.1,1.11,1.12,1.13,1.14,1.15,1.16,1.17,1.18,1.19 
DATA 1.2,1.21,1.22,1.23,1.24,1.25,1.26,1.27,1.28,1.29 
DATA 1.3,1.31,1.32,1.33,1.34,1.35,1.36,1.37,1.38,1.39 
DATA 1.4,1.41,1.42,1.43,1.44,1.45,1.46,1.47,1.48,1.49 
DATA 1.5,1.51,1.52,1.53,1.54,1.55,1.56,1.57,1.58,1.59 
DATA 1.6,1.61,1.62,1.63,1.64,1.65,1.66,1.67,1.68,1.69 
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DATA 1.7, 1.71, 1.72, 1.73, 1.74, 1.75, 1.76, 1.77, 1.78, 1.79 
DATA 1.8, 1.81, 1.82, 1.83, 1.84, 1.85, 1.86, 1.87, 1.88, 1.89 
DATA 1.9, 1.91, 1.92, 1.93, 1.94, 1.95, 1.96, 1.97, 1.98, 1.99 
DATA 2,2. 01,2. 02,2 . 03,2 . 04,2.05,2.06,2. 07,2.08,2.09 
DATA 2.1, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19 
DATA 2.2, 2.21, 2.22, 2.23, 2.24, 2.25, 2.26, 2.27, 2.28, 2.29 
DATA 2.3, 2.31, 2.32, 2.33, 2.34, 2.35, 2.36, 2.37, 2.38, 2.39 
DATA 2.4, 2.41, 2.42, 2.43, 2.44, 2.45, 2.46, 2.47, 2.48, 2.49 
DATA 2.5, 2.5],, 2.52, 2.53, 2.54, 2.55, 2.56, 2.57, 2.58, 2.59 
DATA 2.6, 2.61, 2.62, 2.63, 2.64, 2.65, 2.66, 2.67, 2.68, 2.69 
DATA 2.7, 2.71, 2.72, 2.73, 2.74, 2.75, 2.76, 2.77, 2.78, 2.79 
DATA 2.8, 2.82, 2.83, 2.85, 2.86, 2.88, 2.89, 2.91, 2.93, 2.94 
DATA 2.96, 2.98, 3,3 . 03,3 . 05,3.08,3 . 1,3.11,3.14,3.18 
DATA 3.2, 3.22, 3.3, 3.33, 3.4,3.5,3.6,3.8, 4 
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' APPENDIX 3 

'filename marbus5. bas 
'Marascuilo & Busk for s subjects 
'random data permutation 

PRINT "How many baselines? ": INPUT s 
PRINT "How many data points per row? ": INPUT number 
PRINT "How many random samples? ": INPUT nsample 
PRINT "How many possible intervention points? ": INPUT ip 
PRINT "Minimum data points per phase? ": INPUT q: min =q+1 

CLS : nge = 0: nse = 0: effect =0 
DIM array(s, number): RANDOMIZE TIMER 

FOR i=i TO s 
sb(i) = 0: nb(i) = 0: st(i) = 0: nt(i) =0 

NEXT i 

FOR i=1 TO s 
FOR j=i TO number 

READ atray(i, j) 
NEXT j 

NEXT i 

' input actual intervention points 

FOR i=1 TO s 
PRINT "Intervention point "; i; "? " : INPUT v(i ) 

NEXT i 

'compute obtained effect 

FORT=1TOs 
FOR j=1 TO number 

x= array(i, j) 
IF j< v(i) THEN sb(i) = sb(i) + x: nb(i) = nb(i) +1 
IF j >= v(i) THEN st(i) = st(i) + x: nt(i) = nt(i) +1 

NEXT j 
NEXT i 

FOR i=i TO s 
bmean(i) = sb(i) / nb(i): tmean(i) = st(i) / nt(i) 
d(i) = bmean(i) - tmean(i): effect = effect + d(i) 

NEXT i 

PRINT "effect = "; effect 

FOR i=1 TO s 
sb(i) = 0: st(i) = 0: nb(i) = 0: nt(i) =0 

NEXT i 

nge =1 
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'randomly permute data (nsample - 1) times 

FOR enn =1 TO (nsample - 1) 

RANDOMIZE TIMER: diff =0 

FOR i=i TO s 
v(i) = (INT(RND * ip) + min) 

NEXT i 

FOR i=i TO s 
FOR j=1 TO number 

x= array(i, j) 
IF j< v(i) THEN sb(i) = sb(i) + x: nb(i) = nb(i) +1 
IF j >= v(i) THEN st(i) = st(i) + x: nt(i) = nt(i) +1 

NEXT j 
NEXT i 

FOR i=1 TO s 
bmean(i) = sb(i) / nb(i): tmean(i) = st(i) / nt(i) 
d(i) = bmean(i) - tmean(i): diff = Jiff + d(i) 

NEXT i 

IF diff >= effect THEN nge = nge +1 ELSE nse = nse +1 

FOR i=i TO s 
sb(i) = 0: st(i) = 0: nb(i) = 0: nt(i) =0 

NEXT i 

PRINT enn 

NEXT enn 

'print probability 

PRINT "nge = "; nge; " nse = "; nse; "p= 11; nge / nsample 

DATA 9,9,9,9,9,0,0,0,1,0,5,5,5,6,0,0,0,0,0 

DATA 9,9,9,9,9,5,8,5,0,6,0,0,0,0,0,0,0,0,0 

DATA 9,9,9,9,9,9,9,9,6,8,8,5,1,3,1,0,0,0,0 

DATA 9,9,9,9,9,9,9,9,9,9,8,8,5,9,8,8,0,1,0 

DATA 9,9,9,9,9,9,9,9,9,9,0,0,0,0,0,0,0,0,0 

DATA 9º9,9,9º9º9,9,9,9,9,9,9,9º5,1,0,0,1,1 

DATA 9,9,8,9,8,8,8,8,8,8,8,9,8,8,8,4,4,5,4 

DATA 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9 
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'APPENDIX 4 

'MARSIM3. BAS 
'simulates Marascuilo & Busk for up to 12 baselines 
'minimum of 5 baseline points, 5 treatment points 

CLS : DIM norm(310), zedd(310) 
DIM sb(16), st(16), nb(16), nt(16) 
nge = 0: nse = 0: effect =0 
s05 = 0: ns05 = 0: sOl = 0: ns01 =0 

'read normal distribution 

FOR i=1 TO 308: READ norm(i): NEXT i 
FOR i=i TO 308: READ zedd(i): NEXT i 

m= 100: s=5: size = .8 
DIM array(12,40): DIM v(16) 

FOR baselines =2 TO 8 

RANDOMIZE TIMER 
FOR i=1 TO baselines 

sb(i) = 0: nb(i) = 0: st(i) = 0: nt(i) =0 
NEXT i 

FOR intpoints =6 TO 2 STEP 2 

number = (5 + intpoints + 4): last = (number - 4) 

FOR iteration =1 TO 100: effect =0 

'generate random intervention point for all baselines 

FOR i=1 TO baselines 
v(i) = (INT(RND * (last - 5) + 1) + 5) 

NEXT i 

'generate random data 

mb = m: mt =m- (size * s) 
FOR i=i TO baselines 

FOR j=1 TO number 
IF j< v(i) THEN av = mb ELSE av = mt 
x=END: IF x> .5 THEN x=1-x 
FOR enn =i TO 308 

IF norm(enn) >= x THEN z= zedd(enn): EXIT FOR 
NEXT enn 
sign = RND 
sc = INT(z * s) 
IF sign > .5 THEN y= av + sc ELSE y= av - sc 
array(i, j) =y 

NEXT j 
NEXT i 
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'compute effect = basemean - treatmean 

FOR i=1 TO baselines 
FOR j=1 TO number 

x= array(i, j) 
IF j< v(i) THEN sb(i) = sb(i) + x: nb(i) = nb(i) +1 
IF j >= v(i) THEN st(i) = st(i) + x: nt(i) = nt(i) +i 

NEXT j 
NEXT i 

FOR i=1 TO baselines 
bmean(i) = sb(i) / nb(i): tmean(i) = st(i) j nt(i) 
d(i) = bmean(i) - tmean(i): effect = effect + d(i) 

NEXT i 

FOR i=1 TO baselines 
sb(i) = 0: nb(i) = 0: st(i) = 0: nt(i) =0 

NEXT i 

nge =i 

FOR perm =1 TO 100 
diff =0 

'generate new random intervention points 

FOR i=1 TO baselines 
v(i) = (INT(RND * (last - 5) + 1) + 5) 

NEXT i 

'compute diff for each data permutation 

FOR i=1 TO baselines 
FOR j=i TO number 

x= array(i, j) 
IF j< v(i) THEN sb(i) = sb(i) + x: nb(i) = nb(i) +i 
IF 3 >= v(i) THEN st(i) = st(i) + x: nt(i) = nt(i) +i 

NEXT j 
NEXT i 

FOR i=1 TO baselines 
bmean(i) = sb(i) j nb(i): tmean(i) = st(i) / nt(i) d(i) = bmean(i) - tmean(i): diff = diff + d(i) 

NEXT i 

FOR i=1 TO baselines 
sb(i) = 0: st(i) = 0: nb(i) = 0: nt(i) =0 

NEXT i 

IF diff >= effect THEN nge = nge +i ELSE nse = nse +1 

NEXT perm 
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'print results 

p= nge / (nge + nse) 
PRINT "nge = "; nge; " nse = "; nse 
PRINT "p = "; p 
nge = 0: nse =0 
IF p< . 05 THEN s05 = s05 +1 ELSE ns05 = ns05 +1 
IF p< . 01 THEN sO1 = sO1 +1 ELSE nsO1 = nsOl +i 
PRINT "size = "; size; " iteration = "; iteration 
PRINT 

NEXT iteration 

LPRINT "marsim3. bas effect size = "; size 
LPRINT "baselines = "; baselines; "intpoints = "; intpoints 
LPRINT "powerO5 = "; s05 / (s05 + nsO5) 
LPRINT "power0l = "; sOl / (sOl + ns0l) 
s05 = 0: ns05 = 0: sOl = 0: nsOl =0 
LPRINT 

NEXT intpoints 

NEXT baselines 

'normal curve DATA are READ as in Appendix 2 
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'APPENDIX 5 

'normdis2. bas 
'Marascuilo & Busk normal distribution method 
'for up to 10 "baselines" 

CLS : DIM a(40): DIM norm(310): DIM zedd(310): DIM df(40) 
DIM d(10); DIM ed(10): DIM vard(10): DIM statz(10) 
DIM t(10): DIM et(10): DIM vart(10) 
sb = 0: st = 0: nb = 0: nt =0 

FOR i= I TO 308 
READ norm(i) 

NEXT i 

FOR i= i TO 308 
READ zedd(i) 

NEXT i 

'm = mean, s= standard deviation, size = effect size 
m= 100: s=5 

FOR intpoints =6 TO 20 STEP 2 

RANDOMIZE TIMER 
number = (5 + intpoints + 4) 
first = 6: last = (number - 4) 

FOR size = .2 TO 2 STEP .3 

FOR i=i TO 10 

s05(i) = 0: sOl(i) = 0: sOOl(i) =0 NEXT i 

FOR iteration =1 TO 1000 

PRINT "size = "; size; " iteration = "; iteration 
PRINT "intpoints = "; intpoints 
PRINT 
d=0: ed = 0: yard =0 

FOR baselines =1 TO 10 

'compute random intervention point 

inta = (INT(RND * (last - 5) + 1) + 5) 

'generate simulated data 

ma = m: mb =m- (s * size) 

FOR j=1 TO number 
IF j< inta THEN av = ma ELSE av = mb 
x= RND : IF x>. 5 THEN x=1-x 
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FOR enn =1 TO 308 
IF norm(enn) >= x THEN z= zedd(enn): EXIT FOR 

NEXT enn 
sign = RND 
sc = INT(z * s) 
IF sign >= .5 THEN y= av + sc ELSE y= av - sc 
a(j) =y 

NEXT j 

'compute effect = basemean - treatmean 

sb = 0: st = 0: nb = 0: nt =0 
FOR j=i TO number 

IF j< inta THEN sb = sb + a(j): nb = nb +1 
IF j >= inta THEN st = st + a(j): nt = nt +1 

NEXT j 
hmean = sb / nb: tmean = st / nt 
effect = bmean - tmean 
d(baselines) = effect 
sb=0: st=0: nb=0: nt=0: bmean=0: tmean=0 

'compute diff for all data permutations 

FOR e= first TO last 
FOR j=1 TO number 

IF j <eTHEN sb=sb+a(j); nb=nb+ 1 
IF j >= e THEN st = st +a (j) : nt = nt +i 

NEXT j 
bmean = sb / nb: tmean = st / nt 
diff = bmean - tmean: df(e) = diff 
sb=0: st=0: nb=0: nt=0 

NEXT e 

'compute mean of differences 

x=O 
FOR e= first TO last 

x=x+df(e) 
NEXT e 
ed(baselines) = (x / intpoints) 

'compute variance of differences 

g=0 
FOR e= first TO last 

w= df(e) - (x / intpoints): r=w^2 
g=g+r 

NEXT e 
h= intpoints -1 
x= (g / h) 
vard(baselines) =x 

NEXT baselines 

t= d(1): et = ed(1): vart = vard(1) 
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FOR i=2 TO 10 
t=t+d(i) 
et = et + ed(i) 
vart = vart + vard(I) 
statz(i) = (t - et) / (SQR(vart)) 

NEXT i 

FOR i=1 TO 10 
IF statz(i) > 1.645 THEN s05(i) = s05(i) +1 
IF statz(i) > 2.325 THEN s01(i) = sOl(i) +1 
IF statz(i) > 3.08 THEN s001(i) = s001(i) +i 

NEXT i 

NEXT iteration 

FOR i=1 TO 10 
LPRINT "intpoints = "; intpoints; "size size 
LPRINT "baselines = "; i 
LPRINT "power at p< . 05 = 11; s05(i) 
LPRINT "power at p< . 01 = "; s0l(i) 
LPRINT "power at p< . 001 s001(i) 
LPRINT 

NEXT i 

NEXT size 

NEXT intpoints 

'normal curve DATA are READ as in Appendix 2 
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'Appendix 6 

'filename marbus3. bas 
'Marascuilo & Busk for 4 subjects 
'systematic data permutation 
'this program contains DATA from Wampold & Worsham (1986) 

CLS : nge = 0: nse = 0: effect = 0: s=4: DIM v(10) 

PRINT "How many data points per row? ": INPUT number 
PRINT "First possible intervention point? ": INPUT first 
PRINT "Last possible intervention point": INPUT last 

FOR i=i TO s 
PRINT "Actual intervention point "; i: INPUT v(i) 

NEXT i 

DIM array(s, number) 

FOR i=1 TO s 
FOR j=i TO number 

READ array(i, j) 
NEXT j 

NEXT i 

FOR i=i TO s 
sb(i) = 0: nb(i) = 0: st(i) = 0: nt(i) =0 

NEXT i 

'compute effect for actual intervention points 

FOR i=1 TO s 
FOR j=1 TO number 

x= array(i, j) 
IF j< v(i) THEN sb(i) = sb(i) + x: nb(i) = nb(i) +1 
IF j >= v(i) THEN st(i) = st(i) + x: nt(i) = nt(i) +1 

NEXT j 
NEXT i 

FOR i=1 TO s 
bmean(i) = sb(i) / nb(i): tmean(i) = st(i) / nt(i) 
d(i) = bmean(i) - tmean(i): effect = effect + d(i) 

NEXT i 

PRINT "effect = 11; effect 

FOR i=i TO s 
sb(i) = 0: st(i) = 0: nb(i) = 0: nt(i) =0 

NEXT i 

'systematically permute the data 
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FOR a= first TO last 
FOR b= first TO last 

FOR c= first TO last 
FOR d= first TO last 

v(1) = a: v(2) = b: v(3) = c: v(4) = d: diff =0 

FOR i=1 TO s 
FOR j=i TO number 

x= array(i, j) 
IF j< v(i) THEN sb(i) = sb(i) + x: nb(i) = nb(i) +1 
IF j >= v(i) THEN st(i) = st(i) + x: nt(i) = nt(i) +1 

NEXT j 
NEXT i 

FOR i=i TO s 
bmean(i) = sb(i) / nb(i); tmean(i) = st(i) / nt(i) 
d(i) = bmean(i) - tmean(i): diff = diff + d(i) 

NEXT i 

IF diff >= effect THEN nge = nge +1 ELSE nse = nse +1 

FOR i=1 TO s 
sb(i) = 0: nb(i) = 0: st(i) = 0: nt(i) =0 

NEXT i 

NEXT d 
NEXT c 

NEXT b 
NEXT a 

PRINT "nge = 11; nge 
PRINT "nse= "; nse 
PRINT "Probability = nge/(nge+nse) = "; nge / (nge + nse) 

DATA 8,7,6,7,4,5,6,5,4,4,5,2,4,3,4,5,4,3,2,2 
DATA 6,7,8,7,5,7,6,8,6,5,4,4,4,3,2,5,3,4,3,6 
DATA 5,5,4,6,4,5,6,7,4,5,6,5,2,3,2,4,1,0,2,3 
DATA 8,6,7,7,8,5,7,8,7,6,7,8,5,6,8,8,6,4,4,5 


