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Abstract

Linear Prediction Approaches to Compensation of Missing Measurements in
Kalman Filtering

Naeem Khan

Kalman filter relies heavily on perfect knowledge of sensor readings, used to compute the
minimum mean square error estimate of the system state. However in reality, unavailability of
output data might occur due to factors including sensor faults and failures, confined memory
spaces of buffer registers and congestion of communication channels. Therefore investigations on
the effectiveness of Kalman filtering in the case of imperfect data have, since the last decade, been
an interesting yet challenging research topic. The prevailed methodology employed in the state
estimation for imperfect data is the open loop estimation wherein the measurement update step
is skipped during data loss time. This method has several shortcomings such as high divergence
rate, not regaining its steady states after the data is resumed, etc.

This thesis proposes a novel approach, which is found efficient for both stationary and non-
stationary processes, for the above scenario, based on linear prediction schemes. Utilising the
concept of linear prediction, the missing data (output signal) is reconstructed through modified
linear prediction schemes. This signal is then employed in Kalman filtering at the measure-
ment update step. To reduce the computational cost in the large matrix inversions, a modified
Levinson-Durbin algorithm is employed. It is shown that the proposed scheme offers promising
results in the event of loss of observations and exhibits the general properties of conventional
Kalman filters. To demonstrate the effectiveness of the proposed scheme, a rigid body spacecraft
case study subject to measurement loss has been considered.
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Chapter 1

Introduction

1.1 Background and Motivation

In 1940s, Norbert Wiener [112] investigated the minimum variance estimation problem which

was restricted to stationary scalar signals and noises. The solution obtained by his invention

was not recursive and needed storing of the entire past observed data. In 1960, R. E. Kalman

presented the landmark theory of Kalman filtering as an alternative option of formulating the

minimum mean square error (MMSE) filtering problem using state space methods [18]. Kalman

filter generalises Wiener filter in terms of; a) accommodating vector signals and noises which

might not be stationary; b) the solution in general is recursive (it can be seen in later chapters),

hence it eliminates the necessity of storing the entire past data [61]. Researchers from various

fields were quick to investigate the application of Kalman filter specially in the field of naviga-

tion. It has found to be a very efficient practical solution to a number of problems which were

previously intractable using conventional method like Wiener filter [9].

Generally speaking, state estimation of a dynamical system deals with recovering requested in-

formation from available noisy output data. It is one of the fundamental and significant problem

in control and signal processing applications [15]. Kalman filter is one of the best known tools

for the state estimation problems of linear time invariant (LTI) systems [21], [4]. The main idea

behind Kalman filter algorithm for a dynamical model is to calculate the covariance and gain

matrices of the filter. With the help of these matrices, the updated state of the dynamical system

is recursively computed from the previous estimate and new input data signals.

Despite many advantages of Kalman filtering algorithm, it however heavily depends on the

knowledge of plant dynamics, information of unmeasured stochastic inputs (noise signals), and

measured data. In many practical applications, however, these assumptions could be violated.

For instance, the intermittent measurement loss, temporary sensor faults and failures, limited

bandwidth of communication channels, confined memory space, congestion of a network and

1



2 1.1 Background and Motivation

many other factors may lead to imperfect measurement data and unwelcome situations. These

unpredicted events could make a conventional Kalman filter prone to failure, in producing the

“correct” (or acceptable) estimation of states.

The research reported in this thesis started when performing an experiment on ‘Configurable

Systems Engineering Research Tool’ (ConSERT) robots at Loughborough University at Systems

Engineering Innovation Centre (SEIC) laboratory. During the experiment, while implementa-

tion of a consensus algorithm took place on ConSERT robots 1 when the sensor of one robot got

failed and it has to take help from it’s neighbour robots, in order to update its own co-ordinates

and adjust its position compared to the combined target. That scenario triggered a question on

how much a robot’s sensor can rely on its previous data to predict its current position.

A literature survey was showing that abundant work has been available where insufficient

data is considered in the process of state estimation taking different names such as intermit-

tent observations [10, 99], sensor fault [96], incomplete information [5, 72], loss of data pack-

ets [3, 32, 34, 42, 88, 89, 114, 119], loss of information [92], lossy network [20, 90], loss of observa-

tions [8,68,86,102,116]. The main theme mentioned in the above references, is that the process

of prediction is termed as (state) estimation due to the unavailability of output data. This tech-

nique is known as Open-Loop Estimation (OLE) or Open-Loop Kalman filtering [88]. Despite

being a fast algorithm and comparatively simpler structure in the event of loss of data, OLE

suffers from a few of limitations, namely: 1) in the presence of an adequate loss of data (in

the time index), OLE diverges at much faster rate; 2) after the data starts resuming back into

the system, huge oscillations and sharp spike(s) can be observed in order to obtain the steady

state value; and 3) not regaining its steady state (state and covariance) values after the loss is

recovered. Open-Loop estimation takes theoretically infinite time to retrieve the steady state

values [53].

Hence in this thesis a novel state estimation methodology is proposed in which linear prediction

theory is utilised to reconstruct missing data, integration with the process of Kalman filtering.

A number of approaches are introduced that can be employed when observations of interest are

not available for certain amount of time. Emphasis is made on derivations of the proposed tech-

niques to provide measurement update step for estimation when measurement is not available.

The related characteristic properties of the proposed approaches are explored along with the

comparison to the existing OLE approach. The proposed algorithm is implemented on two case

studies, namely a mass-spring-damper system and a rigid body spacecraft model.

1The results have been published in [81] and [57].



3 1.2 Thesis Contributions and Structure

1.2 Thesis Contributions and Structure

1.2.1 Contributions

The main contributions of the thesis are outlined as follows:

1. Reconstruction of missing data through constraint linear prediction methods. In the rou-

tine procedure of linear prediction, linear prediction coefficients (weights assigned to the

previous data samples) are computed based on arbitrary number of previous data samples.

However, in practice this conventional approach is found computationally expensive. To

overcome this drawback, several constraint-based approaches are proposed (Chapter 4) in

order to limit the previous data samples, required to reconstruct the missing data, [53,55],

2. Introduction of the concept of sliding window (Chapter 4), which consequently generates

optimal results in terms of minimum mean square errors, [53],

3. Employment of optimally reconstructed signal in the process of state estimation. In this

way, the linear prediction theory is integrated with the well-known state estimator – the

Kalman filter, which generates the compensated Kalman filtering schemes, (Chapter 4),

4. The performance of compensated Kalman filter is investigated in terms of various param-

eters (Chapter 5). These parameters are compared with 1) the existing method of state

estimation meant for missing data and 2) the conventional Kalman filter in order to provide

complete insight to the proposed compensated Kalman filter schemes, (Chapter 5), [54],

5. The conventional schemes of reproducing the missing data (auto-covariance and autocor-

relation) take much longer due to various factors. This shortcoming has been overcome

by modifying and implementing the Levinson-Durbin algorithm. Comparison analysis in

terms of state estimation error and time computation is performed through simulations,

(Chapter 5),

6. In order to explore various unforseen limitations, the proposed compensated Kalman filter-

ing algorithm is implemented on a rigid body spacecraft system subjected to intermittent

data loss, (Chapter 6) [52].



4 1.2 Thesis Contributions and Structure

1.2.2 Thesis Structure

The thesis is organised as follows:

Chapter 2 is dedicated to the preliminaries, definitions and basic concepts of state estimation

and linear prediction theory which are found useful in understanding the existing and proposed

state estimation techniques in the event of loss of output data. In addition, the methodology of

basic standard Kalman filtering technique along with associated characteristic properties will be

discussed.

In Chapter 3, the problem of data loss in Kalman filtering algorithm, the most extensively used

solution – the Open-Loop Kalman filter and a brief overview of a few other techniques are de-

scribed.

The modified linear prediction coefficients strategy for reconstructing missing data is discussed in

Chapter 4 on the ground of a straightforward derivation of the proposed compensated Kalman fil-

tering techniques (given the name of Compensated Closed Loop Kalman filter (CCLKF) scheme).

Various topologies of the proposed algorithm based on the window of data samples to reconstruct

the modified signal, are also defined.

Theoretical characteristics of the proposed schemes are presented in Chapter 5 to include the

implementation of CCLKF on a case study of a mass-spring-damper (MSD) system which is sub-

jected to loss of observations. It presents a discussion on the characteristic properties of state

estimation in a generalised way and are not restricted to the considered mass-spring-damper

example. A comprehensive comparison in terms of quality of estimation, computational demand

and error analysis between the existing Open-Loop estimation and the proposed CCLKF ap-

proaches is presented.

Chapters 6 is an application chapter which would start with the modelling of a rigid body space-

craft system in Modified Rodrigues Parameter (MRP) and is followed by the implementation of

proposed algorithm. It also discusses the design of a Lyapunov stability based controller used

for stabilisation purposes of the spacecraft system. The properties described in Chapter 5 are

verified in simulation results, in terms of applicability and the performance of both, the existing

and proposed approaches.

Chapter 7 concludes the work in this thesis, with proposals for the future perspectives.

A few appendices can be found towards the end of this thesis. They are briefly meant for:

• useful theories related to the existing Levinson-Durbin algorithm, which will assist the
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proposed modified version of constraint Levinson-Durbin algorithm, (Appendix A),

• linearisation of the rigid body spacecraft model using Modified Rodrigues Parameters (Ap-

pendix B),

• computing linear prediction coefficients through the auto-covariance method for a non-

stationary process is presented in details (Appendix C).

A graphical view of the thesis plan is shown in Figure 1.1 below.

Introduction

State Estimation

Imperfect Data
Kalman Filtering with

Design of Compensated

Kalman Filters

Characteristics of A Case Study

Conclusions and

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5 Chapter 6

Chapter 7

Future work

Compensated Kalman Filters

Figure 1.1: Thesis structure



Chapter 2

State Estimation

2.1 Introduction

Filtering is a technique to extract information from noise contaminated observations. If the

signal and noise spectra are essentially non-overlapping, the design of a filter that allows the

desired signal to pass while unwanted noise attenuating would be a possibility. The resulting

filter would be either low pass, band pass/stop or high pass. However, when the noise and in-

formation signals are overlapped in spectrum, then the design of a filter to completely separate

the two signals would not be possible. In such a situation the information is retrieved through

estimations, smoothing or prediction. It will be useful to recall these procedures which are often

used in retrieving of information. In simple words, filtering is the recovering of information e.g.

s(t) from noisy data say z(t) at time t, using measurements up till time t [4]. Smoothing, on

the other hand recovers information about s(t) with the help of measurements later than time t,

i.e. z(t+ λ) for some λ > 0. It can be called a delay in producing the information about s(t) as

compared to filtering operation. Another important concept is prediction, defined as the fore-

casting of information processing. In prediction, the information about s(t+ λ) for some λ > 0

is forecasted based on measurement up till time t. In a more concise way the three methods are

summarised in the following statement [82]:

An estimate of a state x(t) at time [t + τ ], is x̂(t + τ) using the observed data {z(s), s ∈ [0, t]}
where the time argument t may belong to discrete set {t0 = 0, t1, t2, ...}. This estimate is required

to be optimal with respect to least square estimation (LSE). For

• τ = 0, the process is called filtering;

• τ < 0, the process is called smoothing;

• τ > 0, the process is called prediction.

State estimation has long been an active research subject in the control area because of its

6
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significance in understanding system behaviour and the design of control schemes. For example

[98],

• state of an unstable system is estimated in order to implement a state feedback controller,

• winding current is estimated in order to control direction and speed of a DC motor,

• attitude is estimated to control the angular position and velocity of a satellite,

• sugar level is estimated to evaluate the health of a patient,

• economic growth of a product is estimated to prepare future strategy, and so on.

A few celebrated techniques for state estimation are Kalman filtering (and all its categories),

particle filtering, H∞ filtering [22], etc.

This chapter is organised as follows: Section 2.2 provides some basic definitions which help un-

derstanding of the proposed algorithms in the subsequent chapters. Based on this preliminary

work, a simple structure of an unbiased estimator is presented in Section 2.3. A detailed descrip-

tion of standard discrete time Kalman filter algorithm is presented in Section 2.4 along with the

list of areas where it is successfully implemented. The asymptotic stability related with Kalman

filter is mentioned in Section 2.5.

2.2 Definitions

It is necessary to present some basic definitions as the introduction on random variables and their

statistical properties such as mean, variance, correlation and distribution of random processes.

The description is provided in a concise manner, the details can be found in [4,14,21,32,46,98,

107].

Random Variable

In probability, a random variable is a variable whose value is not known. The possible values of

a random variable might represent the possible outcomes of a yet-to-be-performed experiment

[21]. A random variable (or a random signal) cannot be characterised by a simple, well-defined

mathematical equation and its future values cannot be precisely predicted. However, the use of

probability and statistical properties (e.g. mean and variance) is recommended to analyse the

behavior of a random variable. If event E is a possible outcome of a random experiment then

the probability of this event can be denoted by p(E) and generally all possible outcomes of a
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random experiment represented by Ej, (if finite) ∀ j = 1, 2, ...n, follow

0 ≤ p(Ej) ≤ 1 &
n∑
j=1

p(Ej) = 1 (2.1)

The probability density function of a continuous random variable (RV) x, is a function which is

summed to obtain the probability that the variable takes a value in a given interval. It is defined

as

f(x) =
dF (x)

dx
(2.2)

where F (x) is the cumulative distribution function. 1 The probability density function satisfies

F (∞) =

∫ ∞

−∞
f(x)dx = 1 (2.4)

Similarly, for a discrete random variable (RV), probability distribution (or probability function)

is a list of probabilities associated with each of its possible value, i.e.

p(xi) = P [X = xi] (2.5)

The probability distribution satisfies criteria defined in (2.1).

Mean

The expected or mean value of a random variable (RV) indicates the average or central value

of that random variable. The mean value gives a general impression about an RV instead of

complete details of its probability distribution (discrete RV) or probability density function

(continuous RV). Two random variables with different distribution (or density function) might

have the same mean values, hence only the mean value does not reveal complete information of

a random variable. If X is a continuous RV with probability density function f(x), the expected

or mean value can be represented as

µ = E[X] :=

∫ ∞

−∞
xf(x)dx (2.6)

Similarly, if X is a discrete RV with possible values xi where i = {1, 2, 3..., n} and its probability

1The cumulative distribution function gives the probability that the random variable X satisfies the followings:

F (x) = p(X < x) ∀ −∞ < x <∞ (2.3)
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p(xi) is denoted as P (X = xi), then the mean or expected value can be defined as

µ = E[X] :=
∑

xiP (X = xi) (2.7)

where the elements are summed over all values of the random variable X.

Variance

The variance of a random variable shows how widely the values of that RV are likely to be. The

larger the variance, the more scattered the observations about its mean value. In other words,

variance shows the concentration of distribution about the mean value of that RV. Variance of

continuous RV x, denoted by σ2 or V (x) is defined as

σ2 = V (x) :=

∫ ∞

−∞
(x− E(x))2f(x)dx (2.8)

The square root of the variance of a random variable is known as standard deviation (σ).

If the random variable X is discrete then the variance can be defined as

V ar[X] = E[(X − µ)2]

= E[X2 − 2µX + µ2]

= E[X2]− 2µE[X] + µ2

= E[X2]− µ2

= E[X2]− E[X]2 (2.9)

The variance and standard deviation of a random variable are always non-negative.

Correlation and Correlation Coefficient

In statistics, correlation shows how strongly two or more variables are related to one other.

Linear correlation (also known as Pearson’s correlation) determines the extend to which two

variables are linearly related (or proportional) to each other.

Correlation coefficient denoted by ρ is a number. It indicates the degree to which two variables
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X and Y are linearly related. The correlation coefficient can be expressed as

ρX,Y =
Cov(X, Y )

σXσY

=
E[(X − µX)(Y − µY )]

σXσY

=
E[(X − E(X))(Y − E(Y ))]√

E(X2)− E2(X)
√
E(Y 2)− E2(Y )

=
E(XY )− E(X)E(Y )√

E(X2)− E2(X)
√
E(X2)− E2(Y )

(2.10)

If the two variables are independent then ρ = 0 and if one variable (say Y ) is a linear function

of the other (X), then ρ = [1,−1]. An important note made here is this that correlation (or

correlation coefficient) measures linear relationship only. However, it is possible that there exist

a strong non-linear relationship between two variables while ρ = 0. A scattered diagram can give

some information about any relationship between two variables. Also, the correlation coefficient

does not show the influence of one variable on the other.

Autocorrelation

Autocorrelation is also some times called as lagged or serial correlation. It is the correlation of

a signal with itself [79]. It indicates the similarity between observations as a function of time

separation between them. In other words, autocorrelation of a random process describes the

correlation between the values of the same process at different points in time. Therefore, if z is

a process with mean µ and variance σ2 then autocorrelation γ(t,m) at two different time instants

t and m can be defined as

γ(t,m) :=
E[(zt − µt)(zm − µm)]

σtσm
(2.11)

If the variance of this process has some value (not equal to zero) then γm is well defined between

the range of 1 and −1. If zt is a second order stationary process (sometimes called wide-sense

stationary of WSS process), i.e. mean and variance are time independent, than autocorrelation

only depends on the time-distance between the pair of values. Therefore, if

τ := t−m (2.12)

The last equation can be re-written as follows:

γτ =
E[(zt − µ)(zt+τ − µ)]

σ2
= γ−τ (2.13)

Autocorrelation helps in finding repeating patterns, such as periodic signals or fundamental

frequency of a signal which cannot be determined due to some unwanted factors like noise. A
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positive autocorrelation value indicates some sort of tendency for a system to remain in the same

state from one time instant to another. For example, the likelihood of tomorrow being rainy is

higher if today is rainy than if today is dry [11]. Autocorrelation will be further discussed and

utilised in Section 4.2.

Normal Distribution

The normal distribution (also known as Gaussian distribution) is a very important class of

statistical distribution. This type of distribution is symmetric about the mean value and has a

bell-shaped density curve with a single peak. Truly speaking, any normal distribution can be

fully specified by two quantities: the mean µ (or m), where the peak of the density lies, and the

standard deviation σ, which indicates the spreading distribution. In other words, if a real valued

random variable X is normally distributed with mean m and variance σ2 ≥ 0, then it can be

written as

X ∼ N(m,σ2) (2.14)

i.e. the random variable X is normally distributed with mean m and variance σ2. The normal

probability density function of a scalar value can be shown analytically to be

f(x) =
1

σ
√
2π
e[−

(x−m)2

2σ2 ] (2.15)

The integral of the above function (which corresponds to the area under the curve) is unity.

Sketch of a typical normal distribution is shown in Figure 2.1 for σ = 4 and m = 13.
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Figure 2.1: Normal probability density function (Figure adopted from [21]).

The probability that a normal distributed function lies outside ±2σ is approximately 0.05 [21].

Standard normal distribution is defined with mean m = 0 and standard deviation σ = 1.
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Therefore, from Equation (2.15), a standard normal distribution can be written as

f(x) =
1√
2π
e[−

x2

2
] (2.16)

The results of normal distribution (2.15) can be extended to two and more than two random

variables (bivariate and multivariate normal distribution) as below:

f(x1, x2) =
1

σ1σ2
√

1− ρ2
e

[
−

x21
σ2
1

−2ρ
x1x2
σ1σ2

+
x22
σ2
2

2(1−ρ2)

]
(2.17)

where ρ is the correlation between the two random variables x1 and x2. Similarly

f(x1, x2, ..., xn) =
1

(2π)n/2|P |1/2
e[−

(x−m)T P−1(x−m)

2σ2 ] (2.18)

where m := E[x] and P := E[(x − m)(x − m)T ] are the mean and covariance of the vector x

respectively.

Random Process

A random or stochastic process is a process whose behaviour is not completely predictable. A

random process can be characterised by statistical properties. Due to randomness of random

variables, the average values from a collection of signals rather than one individual signal, are

usually studied [21]. Therefore, a random process {X(t), t ∈ T} is a family of random variables

where the index set T might be discrete (T = {0, 1, 2...}) or continuous (T = [0,∞)). For a

discrete time system, the word random sequence is the preferred terminology to use instead of

random process. Daily life examples of random processes are stock index in Leicester Wholesale

fruit market and hourly rainfall at city center etc.

Stationary Process

Stationarity is the quality in which statistical properties of a process do not change with

time [106]. In other words, the probability density function (continuous case) or the proba-

bility distribution (discrete case) of a stationary random variable X1 is independent of time t.

Wherever the distribution is seen for some segment, the dynamics remain the same. This means

that it does not matter when in time one observes the process.

Definition 1:

A process {Xt, t ∈ Rn} (where n is a positive integer) is said to be a weak-sense stationary

(WSS) process if

• E[X2] <∞ ∀ t ∈ Rn,
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• E[Xt] = µt = µ, and

• Cov(Xt, Xm) = E[(Xt − µt)(Xm − µm)] = σ2(t,m) = σ2(t−m)

In other words one can say that a weak-sense stationary process must have finite variance, con-

stant mean (first moment) and the second moment should only depend on (t−m) and not on t

or m [104].

Definition 2:

A process {Xt, t ∈ R} is strictly stationary process if all its higher-order moments are independent

of time, i.e.

p(Xt1 ≤ x1, Xt2 ≤ x2, ...., Xtn ≤ xn) = F (xt1, xt2, ...., xtn)

= F (xh+t1, xh+t2, ...., xh+tn)

= p(Xh+t1 ≤ x1, Xh+t2 ≤ x2, ...., Xh+tn ≤ xn)

(2.19)

for any time shift t and h. Most statistical prediction methods are based on the assumption that

the time series can be considered approximately stationary.

Gaussian Random Variable and Vector

A random variable X will be Gaussian variable (synonymously called normal random variable)

if its probability density function fX(x) follows

fX(x) =
1

σ
√
2π
e[−

(x−m)2

2σ2 ] (2.20)

where m = µ = E[X] and σ = E[(X−m)2] > 0 are the mean and variance values of the random

variable X, respectively [78]. For Gaussian random variables, a very common notation can be

observed in literature, as

X ∼ N(m,σ2) (2.21)

Similarly, if X is a vector of n-random variables and X has a nonsingular covariance matrix,

then X will be a Gaussian (or normal) random vector if and only if its probability density is of

the form

fX(x) =
1

(2π)n/2|P |1/2
e[−

(x−m)T P−1(x−m)

2σ2 ] (2.22)

where m = E[X] and P = E[(X −m)(X −m)T ] are the mean and covariance of the vector X
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respectively. The frequently encountered notation for a Gaussian random vector is

X ∼ N(m,P ) (2.23)

A standard normal variable Z is defined for µ = 0 and σ = 1, i.e.

Z ∼ N(0, 1) (2.24)

The probability density function for a standard normal variable implies

fZ(z) =
1√
2π
e−

(z)2

2 (2.25)

Gaussian or normal distribution is a frequently encountered assumption in many control and

communication problems. This is because of its simple bell-shaped structure which requires less

information (mean and variance) to store, receive and transmit.

White Noise

White noise is a random signal (or process) in which the power spectrum is distributed uniformly

over all the frequency components in the full infinite range. This is purely a theoretical concept

because if a signal has the same power at all components frequency, this is equivalent to a signal

whose total power is infinite and therefore impossible to generate such a signal . However in

practice, for finite frequency range “white” signal with a flat spectrum can be easily assumed.

Mathematically, a random signal v is a white signal if and only if it possesses the following two

properties:

mv = E(v) = 0

Rv = E(vvT ) = σ2I (2.26)

A continuous white noise process w, holds the same properties as:

mw(t) = E(w(t)) = 0

Qw(t1, t2) = E(w(t1)w(t2)
T ) =

S

2
δ(t1 − t2) (2.27)

i.e. it has zero mean and infinite power at zero time shift.

Often, when data (or measurement) is corrupted by some unwanted (noise) signal, the infor-

mation inside the data is obtained by filtering or applying prediction (or estimation). A simple
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optimal estimator would be the one which bears the minimum prediction or estimation error,

e.g. least square estimator.

Least Square Estimation

Linear least square estimation is an estimating method for unknown parameters in a linear

regression model aiming to minimise the sum of the square of errors. Consider an unknown state

vector x is related to the data or observation vector z as follows:

z = Hx+ v (2.28)

where v is the sensor noise. The variables are shown without any subscripts for simplicity with

the aiming an estimate x̂ that minimises the estimated measurement error ε := z − Hx̂. The

estimation error can be characterised in terms of Euclidean vector norm |ε|, alternately – to

minimise the scalar cost function J , where

J = (z −Hx̂)T (z −Hx̂) (2.29)

To minimise this scalar cost function, standard minimisation procedure is carried out as:

∂J

∂x̂
= 0 (2.30)

Substituting the value of J in Equation (2.30), and after a little algebra leads to

HTHx̂ = HT z (2.31)

Equation (2.31) is sometimes called normal equation for the least square problem [32]. It can

solved as

x̂ = (HTH)−1HT z (2.32)

provided the (HTH) is nonsingular. This product is known as Gramian matrix i.e. G = HTH

A few properties associated with random variables and processes namely mean, variance, corre-

lation, correlation coefficient and distribution have been discussed in the preceding section. In

the following section, the basis of the minimum variance estimator is uncovered.

2.3 A Classical Unbiased State Estimator

In statistics, bias of an estimator is the difference of estimated value and the actual value of the

parameter (or state) being estimated. This difference is called estimation error. An unbiased
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estimator is one which yields zero estimation error while estimating the parameter or state of a

system. It is difficult to design a completely unbiased estimator but to start with, it is assumed

that the estimated value is equal to the actual value. This section is initialised with the standard

state space realisation model of a discrete time linear system.

2.3.1 Discrete Case

Consider a discrete time LTI system

xk+1 = Axk +Buk +Gwk (2.33)

zk = Cxk +Duk + vk (2.34)

Unbiased state estimator would be the one which gives zero mean error as the time step k

approaches to infinity. Assuming the proposed structure of the discrete time estimator design is

x̂k+1 = Adx̂k +Bduk +Kdzk, (2.35)

where the subscript ‘d’ denotes discrete time system. Kd is the gain matrix of the designed

estimator. The two noise sequences ‘wk’ and ‘vk’ are assumed to be zero mean, uncorrelated,

Gaussian white noise signals. The corresponding error generated by the estimated state is

ek+1 = xk+1 − x̂k+1

= Axk +Buk +Gwk − Adx̂k −Bduk −Kdzk

= Axk +Buk +Gwk − Adx̂k −Bduk −Kd(Cxk +Duk + vk)

= (A−KdC)xk − Adx̂k + (B −Bd −KdD)uk +Gwk −Kdvk

= (A−KdC)ek + (A−KdC − Ad)x̂k + (B −Bd −KdD)uk +Gwk −Kdvk

(2.36)

The expected value of the error signal will be

E[ek+1] = (A−KdC)E[ek] + (A−KdC − Ad)︸ ︷︷ ︸E[xk] + (B −Bd −KdD)︸ ︷︷ ︸E[uk] (2.37)

For the above unbiased state estimator, the mean of the estimated error tends to be zero as

the time step k tends to infinity,( i.e. limk→∞E[ek] = 0 ∀ uk ∀ E[x̂k] when Ad = A − KdC,

Bd = B−KdD and (A−KdC) is stable. Therefore, substituting the values of Ad and Bd in the

proposed estimator (2.35) would result in,

x̂k+1 = (A−KdC)x̂k + (B −KdD)uk +Kdzk (2.38)
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or

x̂k+1 = Ax̂k +Buk +Kd(zk − Cx̂k −Duk) (2.39)

This is the discrete time general state estimator which results in zero error state estimation.

Based on the concept of this unbiased state estimator, the theory of Kalman filter and its brief

historical background is discussed in the following section.

2.4 Kalman Filtering

This section presents the basic, necessary and sufficient studies related to state estimation in

the process of Kalman filtering to establish the proposed work of this thesis. The earlier sec-

tions were aimed at the foundation for Kalman filtering and the later chapters are written for

innovative algorithms based on the concept presented in this chapter. It will be discussed that

Kalman filter (KF) heavily depends on the output measurement data (in fact the true estimation

is based on this information) which leads to unpleasant scenarios of the utilisation of KF if this

information is not available.

In early 1940’s Kolmogorov and Wiener discussed the problem of linear least square estimation

for a stochastic process [46]. Kolmogorov formulated the filter design problem using statistical

and frequency-domain characteristics. However their results are based while considering station-

ary processes with infinite or semi infinite observation interval. R.E. Kalman [47], presented the

design of now well-known Kalman filter, which is presently in extensive use. Kalman filtering is

an on-line recursive method adopted to estimate the state of a system with noise contaminated

observations. Broadly speaking, in Kalman filtering there are two steps undertaken throughout

the estimation process, one is the time update step (also known as a priori estimate or predic-

tion) and the other is the measurement update (also known as a posteriori estimate or filtering

update). KF’s principle thus vigorously depends on measurement data.

KF is one the best tools available, providing optimal state estimation with minimum mean square

error based on some information on system model and assumptions on uncertainties (noise). In

simple words, a steady state constant gain KF is a recursive algorithm that is utilised to estimate

the state variables of a linear time invariant (LTI) system, subject to stochastic noises, based

on certain noise contaminated output variables [107]. Its simple structure and straightforward

design methodology made it popular almost in every field of research, reflected in increasing

application area. Thousands of research papers have been written about KF and its numerous

applications such as navigation, tracking, power control, estimator and controller design in de-

fence and industry etc. Table 2.4 gives a short summary of the application area in which KF

has been excessively implemented.
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No. Application References

1 Vehicle navigation [40], [50], [1]
2 DC motors [120], [91]
3 Aircraft system [60], [117], [105]
4 Chemical process [66], [13], [43]
5 Camera calibration [71], [12]
6 Fault detection, isolation and accommodation [44], [80], [39], [38]
7 Uncertain systems [28], [118], [93]
8 Integrated fault detection [124]
9 Spacecraft attitude estimation [64], [56], [86]
10 Object visualisation [7], [108], [115]
11 Human body tracking [26], [121]
12 Embedded systems [97]
13 Power generation and quality [25], [30], [74]
14 Underwater vehicles [63], [111]
15 Internet applications [45], [90]
16 Chaotic synchronisation [62]
17 Miscellaneous applications [32] [21], [98], [15], [65]

Table 2.1: Kalman filter applications

Theoretically KF is an estimator for the instantaneous state of a linear dynamic system per-

turbed by white noise. With a few mathematical and stochastic process concepts, KF can be

easily implemented in very sophisticated designs as KF is statistically ‘optimal ’ with respect to

quadratic function of estimation error. Numerous applications can be found for KF in control

of dynamic systems such as continuous manufacturing process, aircraft, ships or even attitude

of a spacecraft system. It is quite often not possible or required to measure every variable that

one wants to control and KF is found a better tool to infer such information from noisy mea-

surements. In addition, KF is found a convenient and worthy solution for other areas beyond

control, including prices of traded commodities and the flow of rivers during flood [32].

Rapid evolution in the digital control technology has made it possible to design very complicated

controllers at a very low cost with less computational time. The increasing demand of digital

computers has also altered the control system design options [107]. In general, digital control

systems have many advantages over analog control systems including the following:

• low cost, weight and power consumption;

• high accuracy and reliability;

• ease of making software and design changes.

The majority of state estimation tools and control algorithms are implemented in digital elec-

tronics, and that is why researchers are normally concerned with eventual implementation [98].
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These facts have brought us towards more emphasis on discrete time systems.

For this reason, this section is aimed at describing the basic Kalman filtering technique for

discrete LTI systems. Attempts have been made to describe related features in the process

of Kalman filtering such as estimated state, error covariance, Kalman filter gain, and residual

vector. Asymptotic stability of the Algebraic Riccati Equation (ARE) associated with KF is

also discussed in Section 2.5.

2.4.1 Design of A Discrete-time Kalman Filter

Assuming the discrete time system, for which state variables represented by the vector x, are

governed by the equation

xk+1 = Axk +Buk + ξk (2.40)

where x ∈ Rn, An×n is the transition matrix, u ∈ Rm the deterministic input, Bn×m the control

matrix and ξ the process noise which is assumed to be a Gaussian, zero mean white noise. The

process noise ξ can be characterised as

ξk ∼ N(0, Qk) (2.41)

in other words,

E[ξk] = 0 & E[ξkξ
T
k ] = Qk (2.42)

The output observation equation is

zk = Hxk + θk (2.43)

in which z ∈ Rl is the measurement vector, H ∈ Rl×n the output matrix and θk the measurement

noise which is assumed as Gaussian, zero mean whit noise. i.e.

θk ∼ N(0, Rk) (2.44)

or

E[θk] = 0 & E[θkθ
T
k ] = Rk (2.45)

The statistical properties of matrix R can be obtained from the statistical properties of the

measurement devices and sensors. Suppose the measurement vector z constitutes l variables

of interest, i.e. z = (z1, z2, ......zl)
T . If m := E[z] and σ2 := E[(z − m)(z − m)T ] are mean

and variance of the measured signal, then the general form of the probability density of the

measurement will be
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p(Z) =
1

2πσ
exp[−1

2

(z −m)(z −m)T

σ2
] (2.46)

or

p(z1, z2, .....zn) =
1

(2π)n/2
√
| R |

exp[−1

2
(z −m)TR−1(z −m)] (2.47)

m is the mean of the distribution. In the above equation R is the covariance matrix and can be

found from

R =


r11 r12 · · · r1l

r21 r22 · · · r2l
...

...
. . .

...

rl1 rl2 · · · rll

 (2.48)

where rij = E[(zi −mi)(zj −mj)] = σiσj.

2.4.2 Optimal State Estimation

To better understand state estimation through KF, discrete time Kalman filtering can be broken

down into two steps: a priori state estimation and a posteriori state estimation [123].

The a priori state estimation of the system (2.40) at time step k is represented by xk+1|k
2 and

a priori error covariance of this estimate is denoted by Pk+1|k. The a priori or time update step

is solely based on system model as it is calculated before incorporating measurements, i.e.

xk+1|k = Axk|k +Buk (2.49)

The a priori error will be

ek+1|k = xk+1|k − xk+1

= Axk|k +Buk − Axk −Buk − ξk
= Aek|k − ξk (2.50)

In a Gaussian process with zero mean and uncorrelated properties of the process noise, Equation

(2.50) will lead to the a priori error covariance matrix defined as

Pk+1|k := E[ek+1|ke
T
k+1|k]

= APk|kA
T +Qk (2.51)

KF is aimed at designing a recursive estimator in order to minimise the error in the state

estimation [73]. Since the state and measurements are partly determined by stochastic process

2The subscript {l +m|m} represents the prediction of l +m entity at time step m.
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(ξk and θk), the variables x and z are assumed jointly Gaussian, hence it is sufficient to seek the

update of the a priori state estimation and covariance based on observation zk [21] i.e.

xk+1|k+1 = K̀k+1xk+1|k +Kk+1zk+1 (2.52)

In the above equation the measurement is utilised to refine the a priori estimate. Thats why it

is also called measurement update state estimation at time instant k + 1.

2.4.3 Optimisation Problem

The two gain matrices K̀k+1 and Kk+1 have to be determined optimally so that the estimate

carries minimum error. The a posteriori estimate error is

ek+1|k+1 = xk+1|k+1 − xk+1 (2.53)

From Equation (2.50), it can be deduced

xk+1|k = ek+1|k + xk+1 (2.54)

Substituting Equation (2.52) in (2.53), the following result can be obtained;

ek+1|k+1 = [K̀k+1xk+1|k +Kk+1zk+1]− xk+1

= K̀k+1xk+1|k +KkHxk+1 +Kk+1θk+1 − xk+1

= [K̀k+1(ek+1|k + xk+1)] +Kk+1Hxk+1 +Kk+1θk+1 − xk+1

= [K̀k+1 +Kk+1H − I]xk+1 +Kk+1θk+1 + K̀k+1ek+1|k (2.55)

With the assumptions of unbiased estimation and zero mean white noise sequences, it can be

written that E[e] = 0 and E[θk] = 0, therefore the expectation of (2.55) would result in

E[ek+1|k+1] = E[(K̀k+1 +Kk+1H − I)xk+1] (2.56)

The a posteriori state estimation error E[ek+1|k+1] = 0 if

K̀k+1 +Kk+1H − I = 0

or

K̀k+1 = I −Kk+1H (2.57)
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Substituting this value in Equation (2.52) will generate

xk+1|k+1 = [I −Kk+1H]xk+1|k +Kk+1zk+1

= xk+1|k +Kk+1[zk+1 −Hxk+1|k]︸ ︷︷ ︸
correction−term

(2.58)

whereKk+1 is the Kalman filter gain matrix, which provides weight to the correction term [21,32]

in Equation (2.58). The correction term depends on the term (zk+1−Hxk+1|k) which is known as

residual or innovation vector. It will be shown at later stages thatKk+1 itself depends on residual

covariance. It is worth mentioning that as the measurement error covariance R approaches zero,

the actual measurement zk is trusted more and more, and the predicted measurement (Hxk−1)

is credited less and less [109]. On the other hand, if the a priori (or predicted) estimate error

covariance (Pk+1|k) approaches zero (in other words if measurement noise covariance matrix R

increases), the belief in actual measurement (zk) decreases while confidence on predicted mea-

surement (Hxk−1) increases.

The a posteriori error covariance matrix can be calculated as,

Pk+1|k+1 = E[ek+1|k+1e
T
k+1|k+1]

= E[(xk+1|k+1 − xk+1)(xk+1|k+1 − xk+1)
T ]

= E[{xk+1|k − xk+1 +Kk+1(Hxk+1 + θk+1 −Hxk+1|k)}

{xk+1|k − xk+1 +Kk+1(Hxk+1 + θk+1 −Hxk+1|k)}T ]

= E[{ek+1|k +Kk+1(θk+1 −Hek+1|k)}{ek+1|k +Kk+1(θk+1 −Hek+1|k)}T ]

= E[{(I −Kk+1H)ek+1|k +Kk+1θk+1}{eTk+1|k(I −Kk+1H)T + θTk+1K
T
k+1}]

= (I −Kk+1H)Pk+1|k(I −Kk+1H)T +Kk+1Rk+1K
T
k+1 (2.59)

This is the Riccati equation for the discrete time KF. For optimal value of Kalman filter gain K,

which will provide minimum mean square error, define a cost function for the discrete time KF;

J = E[eTk+1|k+1ek+1|k+1] (2.60)

This is equivalent to say that

J = trace
(
E[ek+1|k+1e

T
k+1|k+1]

)
= trace(Pk+1|k+1)

= trace[(I −Kk+1H)Pk+1|k(I −Kk+1H)T +Kk+1Rk+1K
T
k+1] (2.61)
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Minimising the cost function with respect to Kk+1 as follows:

∂J

∂Kk+1

= −2(I −Kk+1H)Pk+1|kH
T + 2Kk+1Rk+1 = 0 (2.62)

therefore

Kk+1Rk+1 = Pk+1|kH
T −Kk+1HPk+1|kH

T

Kk+1Rk+1 +Kk+1HPk+1|kH
T = Pk+1|kH

T

Kk+1(HPk+1|kH
T +Rk+1) = Pk+1|kH

T

Kk+1 = Pk+1|kH
T (HPk+1|kH

T +Rk+1)
−1 (2.63)

substitute this value in Equation (2.59) would result in

Pk+1|k+1 = (Pk+1|k − Pk+1|kH
T (HPk+1|kH

T +Rk+1)
−1︸ ︷︷ ︸HPk+1|k)

= (I −Kk+1H)Pk+1|k (2.64)

In Equation (2.63), the factor (HPk+1|kH
T +Rk+1) is known as covariance matrix of residual or

innovation vector and is denoted by S. i.e.

Sk+1 = HPk+1|kH
T +Rk+1 (2.65)

The actual residual vector can be found out from equation

rk+1 = zk+1 −Hxk+1|k (2.66)

Equations (2.65) and (2.66) can be interpreted as: the elements of the rk+1 can be compared

with the standard deviation obtained by taking square root of diagonal elements of Sk+1 [4]. In

order to achieve the correct solution for the problem, the computed residual should be increased

to maximum of two standard deviation [85].

Equations (2.49),(2.51),(2.58), (2.63), and (2.64) completely describe the structure of standard

discrete time Kalman filter [4,21,98]. In Figure 2.2 and Algorithm 1, the complete procedure of

state estimation in Kalman filtering is summarised.

Note: There are various mathematically equivalent formats which are frequently encountered

in the analysis of KF design. The detail of which can be found in [21], [4] and [98]. The

following equation, appeared in numerous articles, is of great interest to the author from stability
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Plant Dynamics

Output Dynamics

Assumptions

State Prediction

Error Covariance Prediction

Residual Calculation

Kalman filter Gain

Measurement updated state

Measurement update error covariance

xk+1 = Axk +Buk + ξk

zk = Hxk + θk

E[x0] = x̂0, E[(x0 − x̂0)(x0 − x̂0)
T ] = P0

ξk ∼ N(0, Qk), θk ∼ N(0, Rk)

xk+1|k = Axk|k +Buk

Pk+1|k = APk|kA
T + Qk

rk+1 = zk+1 −Hxk+1|k

Kk+1 = Pk+1|kH
T (HPk+1|kH

T +Rk+1)
−1

xk+1|k+1 = xk+1|k +Kk+1(rk+1)

Pk+1|k+1 = (I −Kk+1H)Pk+1|k

Figure 2.2: Recursive behaviour of conventional Kalman filter.

Algorithm 1 : Discrete-Time Kalman filtering

1: Initialise x0|0, u0, ξ0, θ0, P0|0 and k = 0.
2: Prediction cycle:
xk+1|k = Axk|k +Buk ; State estimation
Pk+1|k = APk|kA

T +Qk ; Error covariance
3: Sensed measurements: zk+1 = Hxk+1 + θk+1

4: Calculate the innovation (or residual) vector: rk+1 = zk+1 −Hxk+1|k
5: Calculate the innovation covariance matrix: Sk+1 = HPk+1|kH

T +Rk+1

6: Calculate Kalman filter gain matrix: Kk+1 = Pk+1|kH
TS−1

k+1

7: Update cycle:
xk+1|k+1 = xk+1|k +Kk+1rk+1; State estimation
Pk+1|k+1 = (I −Kk+1H)Pk+1|k; Error covariance

8: Time-step is updated k = (k + 1).
9: Return to step (2).

perspectives. Substitute Equation (2.64) into (2.51) would result in

Pk+1|k = A
(
Pk|k−1 − Pk|k−1H

T (HPk|k−1H
T +Rk)

−1HPk|k−1

)
AT +Qk

= APk|k−1A
T − APk|k−1H

T (HPk|k−1H
T +Rk)

−1HPk|k−1A
T +Qk (2.67)

This equation is known as Discrete Algebraic Riccati Equation (DARE). It will be analysed

for conventional Kalman filtering and for data loss case to explore the conditions requiring for

asymptotic stability of the designed filter.

2.4.4 Numerical Example for A Discrete-time LTI System

In this subsection a simple discrete time LTI system adopted from [98] is simulated to estimate

state and covariance using standard discrete time Kalman filtering scheme, discussed in the

previous section. Several characteristics such as estimated error, Kalman filter gain and residual

vector are investigated to show the performance of standard KF. A simple LTI system with
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Figure 2.3: Structure of basic discrete time Kalman filter.

dynamics is as follows:

xk+1 = Axk +Buk + ξk

zk = Hxk + θk (2.68)

where ξk and θk are assumed to be of zero mean, white noise and uncorrelated with any other

signal or itself at other time step. The aim is to model a vehicle (UAV) running on a straight

line. Two states are associated with this vehicle: its position p and velocity v. For simplicity, the

input u of the system is assumed as the commanded acceleration and only one state is observed

(measurement) at the output which is position p of the vehicle. If the acceleration is variable,

then the velocity can be obtained by equation

uk =
vk+1 − vk

dt
vk+1 = vk + dtuk (2.69)

Sampling frequency is assumed to be 10 Hz, hence the discrete time step dt = 0.1s. The complete

state equation is constructed as[
pk+1

vk+1

]
=

[
1 dt

0 1

][
pk

vk

]
+

[
dt2

2

dt

]
uk +

[
p̃k

ṽk

]

=

[
1 0.1

0 1

][
pk

vk

]
+

[
0.005

0.1

]
uk +

[
p̃k

ṽk

]
(2.70)
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where xk =

[
pk

vk

]
is the state vector and ξk =

[
p̃k

ṽk

]
is the process noise vector. The output

equation is described as

zk =
[
1 0

] [ pk

vk

]
+ θk (2.71)

with θk as sensor noise element associated with the single observed state pk. The plant distur-

bance and sensor noise dynamics are characterised as

E
[
ξk
]
= 0, E

[
ξkξ

T
l

]
= Qδkl, Q = I2×2

E
[
θk
]
= 0, E

[
θkθ

T
l

]
= 100δkl (2.72)

The output sensor noise level is assumed to be quite high relative to process noise. This is to

highlight the efficiency of KF – the results obtained indicate the level of efficiency of KF in

relation to how good a state estimation it is in comparison with noise contaminated/corrupted

observations.

2.4.5 Simulation Results

The above mentioned system is simulated according to Algorithm 1. Some of the candidate

results are shown and discussed below.

Figure 2.4 shows the performance of standard KF in the index of two estimated states – the

position of the vehicle and its speed. It can be observed that, comparative to the actual noisy

measurements, the estimated states (or filtered response) intelligently track the original states.
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Figure 2.4: Estimations of (a) state 1 – x̂1 and (b) state 2 – x̂2.
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This well-grounded realisation of KF results in errors in the two estimated states, which can be

viewed in Figure 2.5.
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Figure 2.5: Absolute errors for the estimated (a) state 1 – x̂1 and (b) state 2 – x̂2.

Other indices which offer interesting results are residual vector (here a scalar) and output noise,

which are shown in Figure 2.6. The more the two graphs resemble each other, the better esti-

mation is, i.e. in a perfect state estimation, the residual measurement value would yield nothing

but the output noise. Therefore, these parameters need to be explored in order to gain an insight

to KF’s performance with respect to the quality of state estimation.
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Figure 2.6: Residual observation signal and sensor noise.

In order to measure the time constraint for steady state value, the trajectory of Kalman filter
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gain elements and its predicted and updated error covariance matrices need to be analysed.

From Equations (2.63) and (2.64), it can be concluded that the two parameters follow the same

pattern as illustrated in Figure 2.7.
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Figure 2.7: (a) Kalman filter gain components and (b) Traces of Predicted (a priori) & Updated
(a posteriori) error covariance matrices.

2.5 Asymptotic Stability Associated with Kalman filter-

ing

It is important to note that stability is not guaranteed for every optimal design of Kalman filter.

The design to be an optimal and the error covariance P to be bounded, the key requirements are

complete observability, controllability and symmetric, bounded Q, R and bounded A matrices [4].

From both practical and theocratical perspectives, KF design is required to be stable. Recalling

the discrete ARE (2.67),

Pk+1|k = APk|k−1A
T − APk|k−1H

T (HPk|k−1H
T +Rk)

−1HPk|k−1A
T +Qk (2.73)

If ARE has a constant solution say P̄ for constant Q and R matrices, then the designed filter is

time invariant, i.e.

P̄ = AP̄AT − AP̄HT (HP̄HT +R)−1HP̄AT +Q (2.74)

with frozen Kalman filter gain as

K = P̄HT (HP̄HT +R)−1 (2.75)

Equations (2.74) and (2.75) are sometimes known as steady state Riccati equation and steady
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state Kalman filter gain. Similarly, if a system under consideration is an unforced discrete time

linear system, the following result could be achieved:

xk+1|k+1 = [A−KH]xk+1|k +Kzk+1 (2.76)

if (A−KH) fulfill |λj(A−KH)| < 1 where λj are the eigenvalues of closed loop matrix (A−KH),

then the design filter is asymptotically stable [4].

Two reasons behind the drive of a time-invariant design and asymptotically stable filter are:

1. provided the designed filter is time-invariant and asymptotically stable, for any selection

of initial condition on error covariance matrix (i.e. for any nonnegative symmetric initial

condition P0), the result lim
k→∞

Pk+1|k = P̄ can be easily obtained [4].

2. with the conditions of time-invariant and asymptotic stability, the filter can be easily

replaced by a steady state Kalman filter for a little performance compromise but reducing

considerable computational efforts and memory requirements. The reason being, in steady

state KF, the error covariance matrix or Kalman filter gain is not computed in real time,

rather they are computed off-line [98].

Theorem 1 [4]

Consider a time invariant asymptotically stable designed KF for the system described in (2.40)

and (2.43) with initial conditions m := E[x0] and P0 := [(x0 − x0|0)(x0 − x0|0)T ], then the esti-

mated state x̂ → 0 and algebraic Riccati equation (2.67) converges to a constant solution P̄ as

time step k →∞.

Proof

Since the a priori state estimate at time step k − 1 is

xk|k−1 = AE[xk] (2.77)

Using chain rule it can be written as

xk|k−1 = AkE[x0] = Akm (2.78)

provided |λi(A)| < 1 – due to asymptotic stability, x̂k = xk|k−1 → 0 as time step k → ∞. The

second part of the theorem can be deduced in the similar way. The a priori error covariance at
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time step k − 1 would result in

Pk|k−1 = E[ek|k−1e
T
k|k−1]

= AkP0(A
k)T +

k−1∑
j=0

AkQ(Ak)T (2.79)

Hence with the condition k → ∞, Pk → P̄ =
k−1∑
j=0

Ak−1Q(Ak−1)T , which completes the proof.

The details of such analysis can be found in several text books e.g. [4, 21, 98] etc. Similarly, the

unique solution, associated with the ARE in Kalman filtering can be found through the following

theorem.

Theorem 2 The ARE has unique positive semidefinite solution P∞ if and only if the following

conditions are held:

1. (A,H) is detectable

2. (A-KH,G) is stabilisable 3

Proof :

The proof can be seen in the first part of Theorem 23, [98].

2.6 Summary

State estimation plays an important role in most of the areas of engineering and science and,

without doubt, is vital in many physical systems where direct measurement of a system’s state

is either not available or available but corrupted by some random variable such as noise. For this

reason, it was considered useful to present a few characteristics of random variable. This chap-

ter starts with standard definitions related to a random variable. Thereafter, the basic notion

of an unbiased state estimator for a discrete time system has been discussed. Based on these

definitions and the general unbiased state estimator, a thorough description of Kalman filtering

is presented. Attempts have been made to present all related theory associated with Kalman

filter. Attention has been paid to describe the necessary conditions, required for the asymptotic

stability of the ARE related to Kalman filter. The effectiveness of Kalman filter is shown by

simulating a simple discrete time system.

During the description of Kalman filter, it is seen that Kalman filter depends heavily on certain

parameters including the plant output data or measurements. In the events where the output

data is subjected to random loss, the effectiveness of Kalman filter needs to be investigated. The

3GGT = Q



31 2.6 Summary

next chapter is aimed at describing the performance of Kalman filter is such situations. Various

diagnosing techniques, existing remedies to handle loss of observation in Kalman filtering and

their associated properties are intended to be discussed in the following chapter.



Chapter 3

Kalman Filtering with Imperfect Data

3.1 Problem of Imperfect Data

This chapter is aimed at the analysis of state estimation through KF algorithm in distributed

control system settings where different components of a control system communicate over a

wireless network. A common phenomenon can be seen in Fig. 3.1, where plant, sensors and

controllers are physically located at different locations and require a communication network to

exchange (or transfer) critical information for system control [88]. Due to its fully mobile op-

eration, fast deployment and flexible installation, wireless sensor networks (WSN) plays a vital

role in distributed control applications. However, its use is restricted due to inevitable dilemma

of data loss caused by limited spectrum of a channel, time varying channel gains, interference,

congestions, limited bandwidth of buffer registers, collision, transmission errors, and many other

deficits.

As mentioned in the previous chapter, Kalman filter (KF) depends on system dynamics, in-

formation of the unknown noise signals and timely received measurement signals. Hence any

absence of the above may lead to adverse conditions and risking failure to the estimation tech-

Sensor

Actuator/plantController
Sensor

Sensor

Figure 3.1: Wireless sensor network (Figure adopted from [88]).
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Figure 3.2: State – 1 estimation through conventional Kalman filter with data loss between
(160-190) ms.
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Figure 3.3: Absolute error in estimated state – 1 using conventional Kalman filtering with data
loss between (160-190) ms.

nique. Among these, KF heavily relies on output measurement data – in fact it can be called an

integral requirement for the complete and successful estimation. Figures 3.2 and 3.3 respectively

show the state estimation and its corresponding error for the system discussed in Chapter 2, Sec-

tion 2.4, subjected to a loss of observation of 30 ms. It is evident that estimation without any

measurement will diverge swiftly if no cure is performed. Consequence of this could be severe if

estimated states are to be used in a feedback control loop. Hence, emphasising KF’s vulnerabil-

ity to provide state estimation under such circumstances requires careful and non-trivial analysis.

One of the major contributors causing loss of data is the inefficient utilisation of communication

bandwidth channel. For this reason, Goodwin [31] and his coworkers presented a generalised

predictive control in order to minimise the bandwidth utilisation of a communication channel,
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which otherwise would lead to output data loss (packet drop). A communication constraint

has been imposed to restrict all data transmitted in both links (from sensor to controller and

from controller to actuator). In simple words, data is categorised in several quantised levels

and one level of data is transmitted at a time. However, due to quantisation, the associated

model becomes nonlinear, for which a suboptimal scheme based on nonlinear moving horizon

optimisation is proposed.

3.2 Data Loss Detection

As mentioned previously, there are several factors which cause the output data loss. One of the

major reasons behind the loss of observations is sensor faults and failures. Therefore, it should

be interesting to state a few fault diagnosing techniques. In this regards, several researchers

have contributed including [76, 77, 113]. Willsky et al. [113] have presented a thorough survey

for abrupt changes (mainly failures) in stochastic systems such as failure-sensitive filters, voting

systems, jump process formulations, innovations-based detection systems which may cause loss

of observations. Another approach to detect data loss through fault diagnostic analysis is a

generalised observer scheme.

3.2.1 Generalised Observer Scheme

A wide range of fault detection logics are available for data loss detection [77], [76]. For instant,

Instrument Fault Detection (IFD) proposed in [16] and [17], sensor fault detection, Actuator

Fault Detection (AFD) and Component Fault Detection (CFD) schemes are thoroughly discussed

by Patton et al. [77]. The basic notion of an observer with output detection logic circuit is shown

in Figures 3.4 and 3.5 1.

1

2
...

m

SINGLE

OBSERVER H0

DETECTION

LOGIC

yI
u

yiI

Figure 3.4: A simple observers scheme (Figure adopted from [77]).

In the IFD subsystems (Figure 3.5), there are m observers, one for each of the instruments to be

monitored. Such designs are called Dedicated Observer Schemes (DOS) because each observer

is specially designed to operate on a single instrument signal. Dedicated scheme is an important

form of Generalised Observer Schemes (GOS) based on analytical redundancy technique. Such

basic and simple design offers versatile features for generalisation. Importantly saying, the

performance of DOS is limited by several factors such as [77]

1In the figures, UIFDO stands for Unknown Input Fault Detection Observer.
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Figure 3.5: A dedicated observer scheme (Figure adopted from [77]).

1. uncertainty in the plant dynamics,

2. plant might have input commands other than simple step functions or harmonic oscillations.

In such case, the plant may manoeuvre outside the limits for which the IFD system has

been designed.

3. IFD schemes are based on theoretical assumptions which may be violated when imple-

mented practically.

The Generalised Observer Scheme (GOS) has been successfully implemented for AFD, IFD and

CFD [77]. For example, a single fault at a time, in one of the m sensors of a system is to

be detected with the help of Unknown Input Observer Scheme (UIOS) [77]. This is achieved

through Generalised Observer Schemes proposed by [27] and shown in Figures 3.6 and 3.7. In

this scheme the ith observer (i = 1, 2, ....m) is driven by all the measurement data except the ith

measurement. This is because, yi is assumed to be imperfect due to sensor fault or failure and

hence does not contain any information.

In some sensitive applications such as nuclear power plants, approaches to FDI based on the

concept of analytical redundancy are limited for two reasons [58]:

• analytical redundancy based approaches are less familiar to engineers than traditional

manual methods,

• analytical redundancy based approaches involve considerable expenditure in time and

money (due to requiring many diagnostic and remedical actions) together with possible

loss of power generation. In addition, false alarms and shutdowns would lead to costly

consequences.
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Figure 3.6: GOS for AFD (Figure adopted from [77]).
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Figure 3.7: GOS for IFD (Figure adopted from [77]).

To avoid analytical redundancy techniques including GOS (e.g. a bank of Kalman filters [35],

[60], [59], [117]), a single estimator (e.g. Kalman filter) is employed for output data loss (it is

deliberately called as Loss Of OBservations or LOOB in this research) in the process of state es-

timation. State estimation under data loss scenarios has remained an interesting and challenging

research topic during the last three decades, see [3, 6, 22, 42, 49, 88, 94, 99, 102, 116]. Researchers

are taking keen interest in investigating the alternative consequences caused by LOOB in the

process of Kalman filtering.
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However, most of the researchers are interested in running Kalman filter in an Open-Loop fash-

ion in the event of LOOB, as can be viewed from the above cited articles and references therein.

KF predicts the states of the system only and no update is performed whenever output data is

unavailable (packet loss time instant) due to any reason, i.e. sensitivity matrix H = 0, [32]. In

other words, in the Open-Loop based estimation algorithm, prediction is referred to as estima-

tion. More specifically, prediction is based on system model and processed as a state estimation

without being updated by observations due to the unavailability of the observed data. Nonethe-

less, this approach may diverge in practice in the presence of sufficiently long data loss duration.

In order to grasp a clear idea, Open-Loop Kalman filter methodology, its associated proper-

ties and the drawbacks of employing Open-Loop Kalman filtering in the state estimation are

presented in the following section. In addition, a brief literature review related to Open-Loop

estimation and another technique known as Zero Order Hold are presented towards the end of

this chapter.

3.3 Existing Solutions for Data Loss in Kalman Filtering

It was mentioned before that blind estimation through Kalman filter eventually leads to diver-

gence in the event of data loss. Several approaches to handle LOOB have been proposed in

various literature including this section. Discussions on the methodology, properties and associ-

ated drawbacks of the most effective technique known as the Open-Loop Estimation algorithm

are to follow.

3.3.1 Open-Loop Kalman Filter

In literature, Open-Loop Kalman filtering scheme, or simply Open-Loop Estimation (OLE) is

an estimation technique in which the measurement residual is ignored by forcing the Kalman

filter gain matrix Kk to a zero matrix, i.e. no update step is performed. In other words in OLE

algorithm, a prediction problem is identical to a filtering problem. In practice, OLE has been

shown to be a straightforward and rapid approach to accommodate system missing data. A

simple graphical representation of Open-Loop Kalman filtering is shown Fig 3.8. Whenever the

output data (measurement or observation) is diagnosed to be lost due to any reason, the two

switches (S1 and S2) behave open. In other words, no data arrives at filter, no Kalman filter

gain is calculated and hence no update for state and covariance is performed. Hence only predic-

tion is performed as it is not possible to obtain observational update, due to loss of measurement.

In OLE scheme, the five fundamental equations borrowed from the conventional Kalman filtering

procedure, discussed in Section 2.4 are as follows:
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Figure 3.8: Open-Loop Kalman filter

The a priori step

oxk+1|k = Aoxk|k +Buk (3.1)

oPk+1|k = AoPk|kA
T +Qk (3.2)

The leading subscript ‘o’ denotes the Open-Loop Estimation scheme. It is important to note

that predicted state and covariance matrix are not affected directly by the LOOB, rather they

are influenced in the time update step.

The residual calculation step

The “compensated measurement” is represented as 2

ozk+1 = Hoxk+1|k

Kalman filter gain

This will cause the residual vector to be zero (2-norm) and consequently 3

oKk+1 = 0 (3.3)

2The actual observation vector is modelled as zk+1 = Hxk+1 + vk+1
3i.e. Kalman filter gain matrix is a zero matrix.
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The a posteriori step

It means no correction can be made to the prediction step quantities (state and error covariance).

From Equations (2.58) and (2.64), it can be concluded that

oxk+1|k+1 = oxk+1|k (3.4)

oPk+1|k+1 = oPk+1|k (3.5)

Clearly, in the OLKF scheme, the a posteriori state estimation and error covariance strictly

follow the a priori state estimation and error covariance, respectively.

3.3.2 Properties of the Open-Loop Kalman Filter

In this section, two important features related to the Open-Loop Kalman filtering technique are

discussed.

First, Kalman filter gain (Kk) indicates the weight, which is integrated into the predicted state

estimation and covariance matrix required at time step k. The more the predicted observation

vector (ẑk = Hx̂k|k−1) agrees with that of the actual observation vector (zk = Hxk + vk), the

more credence should be attributed to the predicted step (both predicted state estimation and

predicted state covariance). In contrary, the less prediction step conforms to the actual state,

a little recommendation should be assigned to the predicted step. Towards this end, in OLKF

approach, since the predicted observations are virtually taken as actual measurements, no correc-

tion is made and hence the Kalman filter gain is kept zero during the loss of measurement period.

The second feature is that, if the sensor noise covariance R, is large enough, this would cause

the Kalman filter gain to be smaller to emphasise that Kalman filter could rely less on the

measurements. Therefore, in those situations where a huge measurement noise is imposed into

the system, this approach could be a suitable option for measurement update step. These features

can be observed from Equations (2.58),(2.63), and (2.64). Therefore the update step quantities

follow the predicted step quantities;

oxk+1|k+1 ← oxk+1|k

oPk+1|k+1 ← oPk+1|k (3.6)

Therefore, it could be concluded that in cases where (a) estimated observation vector is almost

equal to actual measurements or (b) sensor noise intensity is sufficiently large,

oKk ≈ 0 (3.7)
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In simple words, Kalman filter gain calculation step is ignored. Hence

oxk+1|k+1 = oxk+1|k

oPk+1|k+1 = oPk+1|k (3.8)

In addition, there are numerous properties associated with OLKF technique which have been

explored by many researchers which are briefly discussed in the following subsection.

3.3.3 A Literature Review for Open-Loop Kalman Filter

It is neither possible nor desirable to comprehend all the related works with the Open-Loop esti-

mation used for loss of observations in control, communication and wireless networked systems.

Therefore, in this section a very brief summary associated with data loss in the Kalman filtering

is presented. Many researchers have employed and investigated this technique in various fashions

since four decades and the research is still in progress.

Perhaps, Nahi [73] was the first who explored and discussed the insufficient data in the process

of filtering in late 60’s by elaborating a very common scenario. For a generalised state estimation

baed on minimum mean error, he discussed two cases; the first one can be called as randomly

single sample data loss and the other as a complete sequence of data loss. i.e.

• Case 1:

zk = γkHxk + θk (3.9)

where ‘k’ is a single time step, and

• Case 2:

zk = γkHxk + θk ∀ k = 1, 2, ..... (3.10)

where ‘k’ is a time sequence. The random variable γk is defined as

γk :=

{
1; with probability pk

0; with probability 1− pk
(3.11)

For both of these cases, minimum mean square estimators are computed.

Observations from different sensors are treated collectively in [99] and [92], in contrast to Liu et

al. [68], where different sensor readings are treated individually. In simple words observations
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may be fully received, partially received or fully lost. In both of these works, lower and upper

bounds of the threshold values with respect to the loss, have been provided. Figure 3.9 and

subsequent equations easily describe the problem considered in [68].

Plant
Kalman

Controller

FilterS1

S2

Figure 3.9: Partial observation loss

zi,k = γi,kHi,kxk + θi,k ∀ k = 1, 2, ..... (3.12)

where the sensor noise is characterised as

p(θi,k) ∼

{
N (0, Rii) if γi,k=1

N (0, σ2
i I) if γi,k=0

(3.13)

with σ →∞. The work in [68] is similar to [99], where various threshold values are theoretically

determined for different cases.

Another interesting concept revealed by some researchers is the so-called sojourn times (denoted

by α∗ and β∗) in the event of data loss e.g. [42], [41], [116], [114] etc. Sojourn times are the

consecutive time sequences during which the data is available and then is not. They are described

as follows:

α1 = inf{k : k ≥ 1, γk = 0} β1 = inf{k : k ≥ α1, γk = 1},

α2 = inf{k : k ≥ β1, γk = 0} β2 = inf{k : k ≥ α2, γk = 1},
...

αk = inf{k : k ≥ βk−1, γk = 0} βk = inf{k : k ≥ αk, γk = 1} (3.14)

The sojourn times are defined as

α∗
k = αk − βk−1 & β∗

k = βk − αk (3.15)

The concept of sojourn times is shown in Figure 3.10 where l1 ≥ 1 and l2 ≥ 1. In [41] and [42],

upper bound for the peak error covariance matrix is investigated in terms of these two time
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indices for an unstable scalar model.

i i+ l1 i+ l2
αj αj+1βj
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Figure 3.10: Sojourn times

Micheli in [70] has considered a time delay in the data arrival which may also be translated as

lost or inaccurate measured data. In addition, he has consider random sampling for the data

loss which is a resembling technique to the ZOH technique discussed below. In [88] and [89], the

system is assumed to be subjected to both LOOB and delay of observation at the same time.

All these works have suggested switching to an Open-Loop estimator when there is a LOOB and

back to the Closed-Loop estimator when observation is arrived at the measurement channels.

This consequently aims at designing an estimator which is strongly time-varying and stochastic

in nature.

In [99], the authors have discussed the convergence of ARE in the event of loss of data for Open-

Loop Kalman filtering. The authors have discussed stability effects of the state estimation and

have shown a threshold limit for data loss, above which the expected value of error covariance

becomes unbounded as the time goes to infinity. They have considered the arrival of observation

data as time independent i.e. for the whose simulation period γk is independent of time. On the

other hand, authors in [92] have considered somewhat similar study but from different prospec-

tives; by defining an information gain πg =
No. of data packets recieved

No. of step
. A Kalman filter estimator

has been designed which has been found stable theoretically, for any positive value of πg. Some

other research work will be discussed shortly, after highlighting a few notable shortcomings of

the OLKF scheme.

Besides these characteristic properties, there are a few drawbacks associated with Open-Loop

Kalman filtering technique which are mentioned in the following subsection.

3.3.4 Shortcomings of the Open-Loop Kalman Filter

Despite of fast estimation technique and simpler structure, there are a few drawbacks associated

with the OLKF approach in the event of loss of observation which are briefly discussed below.

1. In practice, Open-Loop Kalman filtering (or OLE) scheme may diverge in the presence of

adequate data loss. In other words, the error covariance is likely to exceed the error limits
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very quickly, if such upper and lower bounds of error covariance are provided [68].4

2. Another shortcoming of the Open-Loop estimation technique is that when the system

measurement (observation) is resumed after the loss period, sharp spikes phenomenon

and/or oscillation in the estimated parameters can be observed. This is because Open-

Loop Kalman filter gain is set to zero when data loss occurs. But, when observation is

repossessed (after the recovery of fault/failure, for example), the filter gain surges to a

high value (–quite higher than nominal value), oscillates and then attains the steady state

value in order to compensate the impact of data loss [54]. This, consequently resulting in

sudden peaks to reach the normal trajectories of the estimated parameters, which is an

undesirable behaviour in the state estimation process.

3. Another important shortcoming associated with OLKF approach is that its steady state

values (state and covariance) after the loss is recovered are not regained. It takes theoreti-

cally infinite time to retrieve the steady state values. The reason behind this deficit is the

recursive behaviour of KF, i.e. the predicted quantities are employed at the filtering step

and the filtering quantities are adopted at the prediction step. Therefore, once at any step

efficiency of estimation is decreased, its effect will be transferred at the next step and so

on.

3.3.5 Zero Order Hold Technique

Due to several shortcomings, most recently, some researchers [19,22,24,94,95] (and the references

therein) have attempted to avoid the Open-Loop estimation by some techniques. One of the

major differences of such recent techniques is that, the researchers have considered the loss of

observations as well as loss of inputs. This is similar to a combined sensor and actuator faults.

In [22], [94] and [24] the authors have reconstructed the loss input and output signal by auto-

regressive models. The main idea behind this technique is shown in Figure 3.11. However there

are certain limitation associated with this technique too, i.e.

• the most recent data sample of the signal, needs to be stored during the whole estimation

process5,

• constantly employing one measurement sample at measurement update may not provide

an optimal solution for an adequate data (input and output) loss,

• this technique requires strict correlation among the signal data samples [95], [24],

• this technique results in random sampling [70],

4For the critical limits of the LOOB in OLE scheme, which will provide bounded error covariance matrices,
authors in [99] have provided a detailed discussion.

5The reason this point is declared as a drawback is that, in Kalman filtering, once any data sample is utilised
at measurement update step, it is discarded. No storing of data is required in the process of Kalman filtering.
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• if the input signal changes during the data loss time, this may further invalidate the scheme.

Initialization
(x0, ξ0, θ0)
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Check for γi,k
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γi,k = 1

Yes No

Use uk & yk Use uk−1 & yk−1

Measurement
update step

Figure 3.11: Zero Order Hold estimation

The method described in the above references is quite simple, and is known as Zero Order Hold

(ZOH) technique. In this technique, the last data sample (both for input and output) is required

to be stored and updated throughout the operation. This is summarised in the flow-chart dia-

gram 3.11. In the diagram, the random variables γi,k := {γ1,k, γ2,k} are for input data sample

and for output data sample.

In the process of compensated optimal state estimation, however, the ZOH technique is briefly

introduced in [55] besides other simple techniques in the event of loss of observation data. It is

necessary to mention that, employing ZOH technique drives the time varying Kalman filter to

a steady state Kalman filter during the data loss time. This is because, using the last sensor

readings would result in the the last residual, and hence the last covariance and Kalman filter

gain matrices at measurement update step. In order to avoid random sampling and stochas-

tic behaviour of the designed KF, involved in ZOH technique as discussed in [70], a number

of approaches have been proposed in [55] to compensate loss of observations in the process of

state estimation. These approaches are indirectly linked to linear prediction theory, for which a

detailed discussion will be provided in the following chapter.

3.4 Summary

In this chapter, the problem of missing measurements has been considered in the process of

Kalman filtering. Several factors causing the adverse condition of data loss are reported in
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the literature. Among these, sensor faults/failures and limited bandwidth of a communication

channel are notable and therefore briefly discussed in this chapter. Generalised observer scheme

based on analytical redundancy technique, usually employed to detect instrument fault is cited

for interesting readers.

The findings being that Kalman filter heavily depends on measurement data, which has led it to

an improper solution for state estimation in situations of missing or imperfect data. Researchers

have attempted to handle state estimation in such events of loss of observations by proposing a

few techniques. The most distinguished method, known as Open-Loop Kalman filtering, predicts

during the loss of observation time period and processes the predicted parameters without any

update. Though this technique is quite simple and fast but is found an unhealthy solution for

a reasonable data loss duration. Bearing in mind the design structure and related shortcomings

of Open-Loop Kalman filtering algorithm, another solution named Zero Order Hold (ZOH) has

been offered by some researchers to deal with the LOOB. Though ZOH technique has overcome

majority of the limitations associated with OLKF technique, the method suffers from other

drawbacks. Therefore, it is an essential requirement for more accurate and reliable estimation

algorithms in the event of LOOB.

How much of the missing measurements can be reproduced through some techniques and how

much Kalman filter can sustain with this reproduced data is a very challenging problem. In

the following chapter, a novel state estimation technique based on Kalman filtering is presented,

where observations are not available for measurement update step. The missing data is thereby

generated through linear prediction theory. In other words, in doing so the two concepts of

Kalman filtering and linear prediction for the intermittent observations will be combined.



Chapter 4

Design of Compensated Kalman Filters

4.1 Introduction

Kalman filter (KF) is an important tool of retrieving information (state) from noisy measure-

ments when direct access to the system’s information is either not possible or accessible but of

no use. KF predicts the states of a system (a priori step) and thereafter updates those states

with the help of noisy measurements (a posteriori step). This is called one complete iteration.

However, in the absence of noisy measurements, it would not be possible to generate an opti-

mal estimation of the system’s states. To overcome this issue, the prevailed scheme known as

Open-Loop Kalman filtering predicts the system’s state and processes it without any update

to the next iteration. However this scheme cannot produce a bounded estimation error when

the observations are lost for an adequate time period. A few other flaws associated with Open-

Loop Kalman filtering have been briefly discussed in the previous chapter. Consequently urgent

calls are required to propose for some compensated estimation approaches with the aim of pro-

ducing acceptable state estimation with bounded error in the presence of reasonable data loss [3].

This chapter plans to propose those estimation approaches to tackle loss of observations effi-

ciently. Keeping in mind the basic structure of discrete time KF, a straightforward procedure

has been taken place to design compensated Kalman filtering approaches. In the event of loss

of observations (LOOB), observation signal is reconstructed through linear prediction schemes.

Therefore, it is considered important and necessary to discuss linear prediction theory.

This chapter is organised as follows: Section 4.2 is dedicated to a brief discussion on linear

prediction (LP) theory, its related categories, and various possible modes involved in the linear

prediction process. The routine methods of linear prediction could not decide the number of

previous data samples. For this reason, the current methods of LP are modified by providing an

upper bound on the number of data samples employed in Section 4.3. In this section, the lossy

observation signal is reconstructed through external linear prediction technique. Two straight-

46
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forward algorithms are proposed to decide the optimal value of order of the linear prediction

filter. Based on different reconstructed signals, compensated Kalman filtering schemes are de-

signed in Section 4.4. The complete structure of Kalman filter in the event of LOOB and the

compensated signal at measurement update step are analysed at the time of occurrence of LOOB

and after the observation is resumed. Some features related to those combinations are presented

too in order to highlight their suitability.

4.2 Linear Prediction Theory

Linear prediction (LP) is in fact a system identification process where signal is reconstructed

from its previous signal samples [69]. In other words, linear prediction is a mathematical and

optimisation tool for estimating the future values of a signal based on previous values (and

sometimes inputs as well). The theory of linear prediction has been widely used in a variety of

engineering applications [103]. Its diverse area of applications can be found in data forecasting,

speech coding, video coding, speech recognition, signal restoration, model-based spectral anal-

ysis, model-based interpolation and impulse/step input detection [106]. The future values of a

signal can be reconstructed by adopting the external linear prediction approach based on the

following assumptions [14]:

1. the signal has correlation between its samples and

2. the signal’s statistical properties vary slowly with time.

In the following subsection an overview of linear prediction theory, its key topologies and the

models wherein LP is implemented will be briefly discussed.

4.2.1 Topologies of Linear Prediction schemes

Linear Prediction itself can be termed as a system identification problem, where the parameters

of an auto-regressive series are estimated within the series itself [36], [84], i.e.

z̄k =

p∑
j=1

αjzk−j +
N∑
i=0

biuk−i (4.1)

where z̄k is the signal to be predicted through linear prediction scheme, αj are the weights as-

signed to the previous observations (known as Linear Prediction Coefficients or LPC), bj are the

weights assigned to previous input signal values uk−j. Linear prediction (LP) method can be done

in forward and backward directions, sometimes called as External and Internal linear prediction,

respectively. External and internal linear prediction techniques are shown in Figures 4.1 and 4.2.
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zk−p zk+mzk+1zk−2 zkzk−1

window for prediction of ẑk

window for prediction of ẑk+1

window for prediction of ẑk+m

zk−mzk−p+m

Figure 4.1: Selection of window for External Linear Prediction (for the case m < p).

In Figure 4.1, the data samples zk+l where l = {1, 2, ...m} are predicted through a window,

consists of p previous data samples. In this case, the data is truly predicted in the future.

zk−2p zkzk−1zk−2zk−3zk−pzk−p−1

window for prediction of ẑk

window for prediction of ẑk−1

window for prediction of ẑk−p

Figure 4.2: Selection of window for Internal Linear Prediction (for the case m = p).

In Figure 4.2, the data samples zk−l where l = {1, 2, ...p} are predicted using previous p data

samples. This methods is in fact model identification problem [14]. Linear prediction can be

performed through least square error (in case of deterministic process), mean square error and

maximum a posteriori (MAP) (for random processes) methods [36,106].

Figure 4.3 describes all possible methods related to linear prediction schemes.

Computing the weights or linear prediction coefficients through linear prediction (LP) schemes

can be performed using various models [83]. These models can be derived based on different

combinations of previous input and output data samples.

• Auto-regressive (AR) Model

If N = 0 ⇒ bi = b0 then (4.1) reduces to

z̄k =

p∑
j=1

αjzk−j + b0uk (4.2)

This is called an All-Pole filter because its transfer function in z-plane would be

H(z) =
b0

1 +

p∑
j=1

αjz
−j

(4.3)
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Figure 4.3: Linear prediction techniques.

• Moving Average (MA) Model

When the prediction solely depends on input and no previous observation is utilised i.e.

p = 0 ⇒ αj = 0, hence (4.1) reduces to

z̄k =

p∑
j=1

bjuk−j (4.4)

This is known as finite impulse response (FIR) model.

• Auto-Regressive Moving Average (ARMA) Model

The ARMA model is formed where both input and observations are involved in the pre-

diction process i.e. when both N and p have some real positive values as per illustrated

below:

z̄k =

p∑
j=1

αjzk−j +
N∑
j=1

bjuk−j (4.5)

The AR model has received more attention than other models due to its

• simple structure,

• independency from input signal [75],

• convenience because some physical applications like speech processing (an acoustic tube

model for speech production) can be easily modeled [36],
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• speed and efficiency embedded in its algorithm in calculating linear prediction coefficients

(LPC) [36],

For these reasons, AR model is considered in this thesis. Though there are certain limitations

while employing AR model in linear prediction which will be highlighted in the subsequent

sections. The necessary and sufficient details of computing LPC in AR-mode, would be discussed

in following subsection.

4.2.2 Autoregressive Model

Linear prediction coefficients (also known as linear predictive coding) of a random process re-

quires a model called autoregressive (AR) model [104]. A random process is said to be autore-

gressive process if it can be generated using the following recursive equation:

zt = c+

p∑
j=1

αjzt−j + vt (4.6)

where αj = [α1, α2, ....αp] are the parameters of the AR model, c is a constant, vt is a noise signal

and p is the window size – also known as Linear Prediction filter (LPF) order. If input to the

system is a white noise signal, than the model is termed as an all-pole Infinite Impulse Response

(IIR) filter. The constant c can be omitted for simplicity.

The optimal values of αj are computed through auto-correlation function using Yule-Walker

equation, which is

γm =

p∑
j=1

αjγm−j + σ2δm (4.7)

where δm is kroncker delta. It is characterised as follows:

δm =

{
1 if m = 0

0 otherwise
(4.8)

Equation (4.7) is obtained by multiplying both sides of (4.6) by zt−m and then taking the

expectation. i.e.

E[ztzt−m] = E

[ p∑
j=1

αjzt−jzt−m

]
+ E

[
vtzt−m

]
(4.9)

Equation (4.9) is in fact a set of p linear equations with p unknowns αj = {α1, α2, ...αp} and

is known as Normal Equations. Throughout this thesis solving normal equations by routine

methodology would mean LP through autocorrelation method.
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Conventionally, various ways have been adopted to solve the system of Normal Equations, in

common use are the covariance formulation (details in Appendix C) which is an appropriate

solution for a non-stationary process and the autocorrelation formulation which is used for a

stationary process.

4.2.3 Linear Prediction Coefficients through Autocorrelation Method

Consider a random signal z(k) is to be predicted, given its p past values; it is done as

z̄(k) =

p∑
j=1

αjz(k − j) (4.10)

The following measures are taken to find the optimal values of αj. The error generated by this

compensated observation vector would be

e(k) = z(k)− z̄(k) (4.11)

where z(k) is the actual observation vector. The cost function consists of mean square prediction

error as;

J = E[e2(k)] = E
[
{z(k)−

p∑
j=1

αjz(k − j)}2
]

(4.12)

The optimal values of linear prediction coefficients (LPC) can be calculated by equating the

partial derivatives of the cost function J with respect to αi to zero, i.e.

∂J

∂αi
= 2E

{[
z(k)−

p∑
j=1

αiz(k − j)
]
z(k − i)

}
= 0 (4.13)
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or

E[z(k)z(k − i)]− E
[
z(k − i)

p∑
j=1

αiz(k − j)
]

= 0

E[z(k)z(k − i)]−
p∑
j=1

αiE{z(k − i)z(k − j)} = 0

E[z(k)z(k − i)]−
p∑
j=1

αiE{z[(k + j)− i]z[(k + j)− j]} = 0 (∴ k = k + j)

E[z(k)z(k − i)]−
p∑
j=1

αiE{z[k − (i− j)]z(k)} = 0

E[z(k)z(k − i)]−
p∑
j=1

αiE
{
z(k)z[k − (i− j)]

}
= 0

rγ(i)−
p∑
j=1

αiRz[i, j] = 0

p∑
j=1

αiRz[i, j] = rγ(i) (4.14)

or

Rz · Aα = rγ (4.15)

The optimal values of the linear prediction coefficients can be calculated as

Aα = R−1
z rγ (4.16)

where Rz is p× p Hermitian matrix of autocorrelations, and is composed of

Rz =


R[0] R[1] · · · R[p− 1]

R[1] R[0] · · · R[p− 2]
...

...
. . . · · ·

R[p− 1] R[p− 2] · · · R[0]

 , (4.17)

rγ is the column vector as

rγ =


R[1]

R[2]
...

R[p]

 (4.18)
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and

Aα =


α1

α2

...

αp

 (4.19)

is the LPC array. Generally fixed window is employed for calculating LPC in the linear prediction

process. However sliding window is introduced in order to utilise more information in the signal

reconstruction. By sliding window it means that, for every data sample to be reconstructed

through LPC schemes, an independent window composed of p samples is chosen. This window

is drifted in forward (External LP) or backward (Internal LP) directions as the number of data

to be predicted, increases. With regards to the sliding window concept (shown in Figure 4.4)

for the reconstruction of p data samples, a signal through the internal linear prediction scheme

requires window size of n = 2p.

z1z2
zk−m−p zk−m−1

z2p

window for autocorrelation

zk−m

z1z2
zk−m−p zk−m−1

z2p zk−m

Figure 4.4: Sliding window concept for calculating mth data sample through autocorrelation
method.

4.2.4 Linear Prediction Coefficients through Auto-covariance Method

Stationary process is quite simple and less computational due to its time independency property.

In real world applications, however non-stationary processes can be frequently encountered for

which the statistical properties such as mean and covariance are time-dependent. In such cases,

the linear prediction coefficients should be calculated through auto-covariance method instead of

the usual autocorrelation method. In this work, main emphasis has been considered on stationary

processes and therefore the details theory, concepts and calculations for non-stationary processes

through auto-covariance method, are avoided in order to focus on the main course of the work.

A brief summary of linear prediction coefficients through auto-covariance method is, however,

included in Appendix C for the interested readers. The detailed description can be found in

many text books like [14,83,84]. The final shape of the end results are as follows:
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α1

α2

...

αp


︸ ︷︷ ︸

Aα

=


R[1, 1] R[1, 2] · · · R[1, p]

R[2, 1] R[2, 2] · · · R[2, p]
...

...
. . . · · ·

R[p, 1] R[p, 2] · · · R[p, p]


−1

︸ ︷︷ ︸
Rz


R[0, 1]

R[0, 2]
...

R[0, p]


︸ ︷︷ ︸

rγ

(4.20)

where R[m,n] := E
[
zTk−mzk−n

]
, Aα, Rz and rγ in Equation 4.20, using auto-covariance method

are derived in Appendix C.

Autocorrelation (or auto-covariance) matrix Rz has to be inverted at every step of calculation

while computing LPC through Normal Equations. Computing LPC through autocorrelation (or

auto-covariance) involves O(p3) multiplies and additions and inversion of p×p matrix [103]. Con-

sequently, more computational efforts need to be undertaken for an adequate value of p (linear

prediction filter order). In order to overcome this issue, Levinson-Durbin, Leorux-Gueguen and

Schur algorithms are adopted resulting in much lesser computational time. Due to simplicity,

Levinson-Durbin algorithm is selected to test the computational time for the same prediction

quality. Utilising Levinson-Durbin method for calculating linear prediction coefficients reduces

the computational effort from O(p3) to O(p2), [103].

4.2.5 Levinson-Durbin Algorithm

Levinson-Durbin algorithm (LDA) reduces the computational time by exploiting the Toeplitz

symmetry property inherent in the autocorrelation matrix [83]. Due to its simple structure and

straightforward computations, LDA is implemented in this thesis to reconstruct the lost infor-

mation (missing measurements) and is integrated with the process of Kalman filtering. The

conventional LDA is summarised below.

Levinson-Durbin algorithm is an alternative for matrix inversion found in Yule-Walker Equations

(4.7). Similar to the Normal Equations, LDA is a recursive prediction method where parameters

of an autoregressive series are predicted with less computational efforts. The basic idea of this

algorithm is to calculate the solution of (i+1)th predictor from the ith order predictor’s solution.

The process is repeated until some assigned upper limit has been reached. Each recursion solves

the ith pole-problem, finding the solution that minimises the mean-square error for each order

predictor, by updating the lower order solution [103]. The LDA algorithm is described in the

following steps:
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1. Initialising the order of linear predictor filter as

α0
0 = 0;

J0 = R[0] (4.21)

i.e. initial coefficients computed for zero-order of linear prediction filter are zero and the

mean square prediction error is the first element of autocorrelation window i.e. R[0].

2. Hypothetical coefficients, also known as Reflection-Coefficients are computed as

κi =
1

J i−1

[
r(i) +

i−1∑
j=1

αi−1
j R[i− j]

]
(4.22)

3. Using reflection coefficients, the updated linear prediction coefficients are calculated as

αii = κi

αij = αi−1
j − κiαi−1

i−j (4.23)

where 1 ≤ j ≤ i − 1, and the most recent reflection coefficient by ith order predictor (κi)

is utilised to update the coefficients computed through (i− 1)th order filter coefficients.

4. The minimum mean square error for the ith predictor is updated as

J i = (1− κ2i )J i−1 (4.24)

This step is exercised to monitor the accuracy of the prediction by calculating the mean

square error.

5. Step-2 to step-4 are repeated for i = 1, 2, ..., p. At pth step, the final version of the linear

prediction coefficients is shown as follows:

aT = αpj , ∀ 1 ≤ j ≤ p (4.25)

The transfer function based on these LPC is given by

H(z) =
A

1−
p∑
j=1

αjz
−1

(4.26)

The detailed theory associated with Levinson-Durbin algorithm has been presented in Ap-

pendix A. There are two important features associated with the Levinson-Durbin algorithm [103]



56 4.3 Modified Linear Prediction Coefficients

which are stated below:

1. The mean square prediction error is always greater than zero due to the inability to compute

for a perfect prediction i.e.

J i = (1− κ2i )J i−1 > 0

⇒ (1− κ2i ) = J i/J−1 > 0

⇒ κ2i < 1

⇒ |κi| < 1 (4.27)

i.e. the magnitude of reflection coefficients is less than unity [14].

2. From the first feature, (|κi| < 1), the poles of the transfer function (4.26) are inside the

unit circle. Therefore, the roots of the pth polynomial lie inside the unit circle and thus is

minimum-phase [103].

4.3 Modified Linear Prediction Coefficients

In the routine methodologies of computing linear prediction coefficients or weights (wether auto-

correlation or auto-covariance), there is no clear or distinct way to decide the number of previous

measurement samples [14, 83]. These weights are emphasised due to the fact that they define

the contributions of previous observations made for reconstructing the missing data – which can

be viewed from the data autocorrelation standpoint [84]. From the fundamental structure of

computing LPC, this is computationally costly issue and non-optimal. For this reason, certain

constraints are introduced in this section, in order to compute LPC optimally by defining Linear

Prediction filter Order (LPFO). The process of computing linear prediction coefficients (LPC)

is summarised as follows:

The error generated by the proposed observation vector is

ez(k) = z̄k − zk (4.28)

The residual based cost function is defined as

Jk := E
[
ez(k)

T ez(k)
]

(4.29)
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The optimal values of the LPC, αj are computed by minimising the above cost function, Jk, i.e.

∂Jk
∂αi

=
∂

∂αi
E
[
ez(k)

T ez(k)
]

= E
[∂(ez(k)T ez(k))

∂αi

]
= E

[∂Jk
∂z̄k

∂z̄k
∂αi

]
(4.30)

Taking the derivatives of Equations (4.10) and (4.29) and substituting in Equation (4.30). i.e.

∂Jk
∂z̄k

= 2E
[
ez(k)

T
]
= 2E

[
z̄k − zk

]T
(4.31)

Differentiating z̄k with respect to αi will result in

∂z̄k
∂αi

= zk−i (4.32)

In order to minimise the cost function Jk, from Equation (4.30),

∂Jk
∂αi

= 0 (4.33)

From Equation (4.30) through Equation (4.32),

2E
[(
z̄k − zk

)T]
zk−i = 0

E
[
z̄Tk zk−i

]
− E

[
zTk zk−i

]
= 0

Substituting the value of z̄k from Equation (4.10), will result in

p∑
j=1

αjE
[
zTk−jzk−i

]
= E[zTk zk−i] (4.34)

which can be simplified as

RzAα = rγ (4.35)

or

Aα = R−1
z · rγ (4.36)
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where

Rz =



R[0] R[1] R[2] · · · R[p− 1]

R[1] R[0] R[1] · · · R[p− 2]

R[2] R[1] R[0] · · · R[p− 3]
...

...
...

. . .
...

R[p− 1] R[p− 2] R[p− 3] · · · R[0]


(4.37)

is the autocorrelation matrix,

Aα =
[
α1 α2 α3 · · · αp

]T
(4.38)

is the linear prediction coefficients array and

rγ =
[
R[1] R[2] R[3] · · · R[p]

]T
(4.39)

is the modified autocorrelation array (vector) with

E
[
zTk−jzk−i

]
=

{
R[0], if j = i

R
[
|j − i|

]
, if j ̸= i

(4.40)

The optimal values of LPC are obtained by solving Equation (4.36). It is worth noticing that the

complexity of linear prediction filter (LPF) is directly related to Equation (4.36) which depends

on the size of matrix Rz, in other words the order of LPF. The higher order of an LPF does not

necessarily reflect the optimal reconstruction of a signal [14], therefore has led to the discussion

on the ‘optimal order’ of the LPF below.

4.3.1 Order of Linear Prediction Filter

The selection process of the order of an LPF is important to achieve the optimal reconstruction,

and hence optimal estimation of the signals. In order to obtain optimal values for LPF orders,

the applications of straightforward approaches are found better than the others. The following

assumption needs to be considered for that purpose:

Assumption: p ≤ Tst/Tsm where Tsm is the sampling time, Tst is the starting time of loss of

observations (LOOB), and p is the order of LPF.

This assumption in fact indicates that the number of previous observation samples, utilised in

the reconstruction of missing measurements is limited by the starting time of LOOB and the

sampling frequency. This assumption indicates an additional importance for the selection of an

appropriate LPF’s order (see Algorithm 3).
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Assuming the starting time instant of LOOB to be at time t = k. Having the measurement

updated step known at time instant k − 1, two methods are proposed which are aimed at

yielding an optimal order of the LPF. The first method is summarised in Algorithm 2.

Algorithm 2 : Selection of the LP filter order (first method)

1: Compute em(k − 1) = max (ei), where ei = xi − x̂i ∀ i = {1, 2, . . . k − 1}.
2: Initialisation j = 1, Compute Rz and rγ;
3: Recursion: j = 2 . . . p
4: Obtain z̄ through Equation (4.10)

Calculate measurement updated state estimation cx̂k based on this compensated
observations
Compute ej(k) = xk − cx̂k.

5: Check Is ej(k) ≤ em(k − 1)
Yes n←− j : Order of the LP filter
Else j ←− j + 1

6: Repeat Step 4

Algorithm 2 reconstructs the data signal which will not produce error higher than the maximum

error limit in the normal procedure of without any data loss. On successful implementation,

Algorithm 2 can be called an ideal proposition as it does not permit any influence of LOOB

to the process of state estimation. Nevertheless, alternative approaches might be proposed to

tackle the problem of order of the selection process.

In real time processing, however Algorithms 2 may be found saturated i.e. the constraint men-

tioned in the algorithm may not be fulfilled during the whole recursion process. In other words,

non of the combination of previous samples may generate error, less than the maximum error

generated by the normal case (without any data loss). Therefore, to avoid this dilemma, Al-

gorithm 3 assures results in all circumstances. To summarise, Algorithms 2 is a better choice

from efficiency point of view – it provides lesser error with smaller computational time but its

implementation is uncertain. On the other hand, Algorithm 3 provides inevitable results but is

computationally expensive.

4.4 Compensated State Estimation Algorithms

In the event of LOOB, conventional KF (CKF) and OLKF schemes may be found inappropriate

solutions to use for optimal state estimation problem. The reason being is that false measurement

update step is achieved in CKF as opposed to OLKF, whereby no measurement update is

performed during the data loss period. This issue has been discussed in Chapter 3. Therefore

in this section, the observation vector reproduced through modified external linear prediction

scheme (Section 4.3), is utilised in the process of Kalman filtering for the systems subjected

to LOOB. Based on various combinations, a number of modified linear prediction coefficient
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Algorithm 3 : Selection of the LP filter order (second method)

1: Initialisation j = 1, Compute Rz and rγ through Equations (4.40)
2:

2: Recursion j = 2, 3, . . .M ≤ Tst/Tsm (LPFO)

2.1 Calculate LPC

2.2 Calculate compensated observation signal z̄k|αj
γ

2.3 Calculate compensated state estimation cx̂
j
k based on this signal

2.4 Calculate compensated state estimation error ēj = xk − cx̂
j
k

3: Trace ϵth = min(ēj), whereas ēj ∈ {ē2, ē3, . . . ēM}
4: Select z̄j which results in ϵth
5: Decide p← j i.e. LPFO.

(MLPC) techniques are introduced, which are discussed below.

Approach I: Zero-Order Hold (ZOH)

Perhaps the easiest way to perform measurement update step is to hold the last sensor reading

all the time. Whenever, LOOB is diagnosed (Section 3.2), this holding observation value can be

employed to obtain updated state and covariance values. If the LPF parameters are provided as

p = 1 and α = 1, hence the compensated observation vector is retranslated as

z̄k = zk−1 = Hxk−1 + θk−1

= Hx̄k + θ̄k (4.41)

In literature, the above scheme is known as the Zero-Order Hold (ZOH) technique [67], [86], [53]

and [22] due to the fact that the last observation is held to provide the measurement update step

for the predicted state and error covariance. The ZOH method may be considered an effective

approach for systems with sufficiently slow measurement samples, which may be considered

stationary for a few sampling times and hence the last sensor reading can be locked (such as

ship dynamics and commercial airplanes). However, this scheme might fail in reconstruction of

the given signal if the sampling frequency of the sensors’ measurements is high. In other words,

if some nonlinearities are involved in the output data then the last previous data sample may

not bear fruitful results for an adequate data loss (such as jet fighters, UAVs and spacecraft

systems).
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Approach II: First-Order Hold (FOH)

If the order of LPF p = 2 and αi = [α1, α2], this would result in

z̄k = α1zk−1 + α2zk−2 (4.42)

The scheme is known as First-Order Hold (FOH) approach which is divided into two subclasses

as discussed below.

• Mean (or Average) Based Approach (MBA)

If α1 = α2 = 0.5 i.e. the two weights are set equal, therefore

z̄k =
zk−1 + zk−2

2
= Hx̄k + θ̄k (4.43)

where x̄k = xk−1+xk−2

2
and θ̄k = θk−1+θk−2

2
. It can be seen in the above approach, com-

putation of the modified linear prediction coefficients (MLPC) is not required in relation

to the linear prediction system. On the other hand, an MLPC for the two sensor read-

ings are achieved as a vital consideration to obtain performance boost as discussed in the

subsequent subclass.

• MLPC Type-I: Diverse Weighted Observations

In the Mean Based Approach (MBA), two observations are weighed identically which

may not always indicate a favourable solution. Alternatively, a different weighing scheme

assigned to the two sensor readings (zk−1 and zk−2) can be considered which is referred to

as MLPC Type-I method. 1

From the autocorrelation standpoint of view [84], the far most data can impart less in the linear

prediction as compared to closer data, i.e. the more one depart from signal at time step k,

the less correlation can be found, hence nearer sensor readings should be credited more than

comparatively far measurements, i.e.

z̄k = α1zk−1 + α2zk−2

= Hx̄k + θ̄k (4.44)

where x̄k = α1xk−1 + α2xk−2 and θ̄k = α1θk−1 + α2θk−2. In this approach, the theory of linear

prediction (LP) is integrated with the weights imposed to the previous measurements.

1The reason this type is separated from MBA approach and given the name MLPC Type-I is that, in this
approach Linear Prediction algorithms 2 or 3 can be implemented to compute α1 and α2. Contrary to MBA
approach where α1 = α2 = 0.5 i.e. equal weights are assigned to the two previous sensor readings.
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Approach III: Trend-Based Algorithm

In some case studies, it might be noticed that observation vector contains a characteristic com-

ponents like the trend, the periodic or seasonal component etc., in the received data [48]. In

such cases, the estimation would not be affected by LOOB to a high extent. This is because, by

finding the trend, the lost information can be easily recovered. These trends may vary from time

to time and from a system to another [48]. Consider a simple trend between the data samples

as

z̄k = zk−1 + [zk−1 − zk−2] (4.45)

or

z̄k = Hxk−1 + θk−1 + [Hxk−1 + θk−1 −Hxk−2 − θk−2]

= Hxk−1 + θk−1 + [H∆xk−1
+∆θk−1

]

= H(xk−1 +∆xk−1
) + (θk−1 +∆θk−1

)

= Hx̄k + θ̄k (4.46)

where ∆xk−1
= xk−1 − xk−2 and ∆θk−1

= θk−1 − θk−2, x̄k = xk−1 +∆xk−1
and θ̄k = θk−1 +∆θk−1

.

Equation (4.45) can be deduced by substituting the LPFO p = 2, α1 = 2 and α2 = −1 in

Equation (4.10). Hence, the theory of linear prediction is not applicable to this approach and

therefore is a trivial technique.

Approach IV: Moving Average Approach

For p ≥ 2, the approach is termed as Moving Average (MA) approach in which every measure-

ment is associated with an equal weight. Therefore, measurement equation is written as

z̄k =
1

n

p∑
j=1

zk−j

= H
1

n

p∑
j=1

xk−j +
1

n

p∑
j=1

θk−j

= Hx̄k + θ̄k (4.47)

where x̄k =
1

n

p∑
j=1

xk−j and θ̄k =
1
n

p∑
j=1

θk−j.

Approach V: MLPC Type-II

For the moving average approach, however, the theory of MLPC cannot be implemented, likewise

with that of the MBA approach. This scheme has been found efficient for simple first order

systems [54,55]. However, all previous data should not be treated identically if order of the system
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increases. In other words, different weights should be assigned based upon their contributions

on the predicted (future) estimations. The proposed observation signal is rewritten as

z̄k =

p∑
j=1

αjzk−j (4.48)

where the values of αj are computed through Equation (4.36) and p is order of the LP filter.

Equations (4.41) to (4.47) except Equation (4.45), are written in a unique way, i.e.

z̄k = Hx̄k + θ̄k,

which will assist in deriving the compensated Kalman filter scheme in a generalised framework.

This particular form of observation vector would generate the following residual covariance ma-

trix:

S̄k := E[ēzkē
T
zk] = H 3cPkH

T + R̄k, (4.49)

where ēzk = z̄k − ẑk, R̄k = E[θ̄kθ̄
T
k ] and 3cPk|k−1

def
= E

[
cek|k−1(cek|k−1)

T
]
= E

[
(x̄k − xk|k−1)(x̄k −

xk|k−1)
T
]
are respectively residual error vector, residual error covariance matrix and affected

state error covariance matrix in case of LOOB. By employing the compensated observation

vector in Kalman filter during LOOB, it should be interesting to observe the behaviour of

various properties of the standard Kalman filter. It is necessary to inspect the attributes of the

proposed Compensated Closed Loop KF and compare them with those of standard KF without

any data loss. In the following section, the above proposed observation vector is employed at

measurement update step when a system is subjected to intermittent observations. Compensated

Kalman filter gain and the corresponding error covariance matrices are derived in an apparent

approach.

4.4.1 Compensated Closed Loop Kalman Filter Gain and Error Co-

variance Matrices

In this section a straightforward procedure is performed to address the Compensated Closed

Loop Kalman filtering (CCLKF) algorithm in order to obtain an optimal gain matrix in the

event of loss of observations. Attempts have been made to show that the CCLKF guarantees a

minimum error covariance. Consider the predicted state vector as

xk|k−1 = Axk−1|k−1 +Buk−1 (4.50)
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with a corresponding state error vector as

ek|k−1 = Aek−1|k−1 + ξk−1 (4.51)

and the error covariance matrix as

Pk|k−1 = E[ek|k−1e
T
k|k−1] = APk−1|k−1A

T +Qk−1 (4.52)

The unavailability of observation will in fact lead to consider a measurement reconstruction ap-

proach based on Equation (4.10). The results are intended to obtain in a generalised framework,

therefore

z̄k = Hx̄k + θ̄k (4.53)

This would result in a posteriori state estimate as

cxk|k = xk|k−1 + cKk(z̄k −Hxk|k−1) (4.54)

where z̄k depends upon the approach employed and cKk is the compensated Kalman filter gain

matrix. The a posteriori estimation error is as follows:

cek|k = xk − cxk|k

= xk − xk|k−1 − cKk[z̄k −Hxk|k−1]

= ek|k−1 − cKk[Hx̄k + θ̄k −Hxk|k−1]

= ek|k−1 − cKkHcek|k−1 + cKkθ̄k (4.55)

It is important to note that the error signals ek|k−1 and cek|k−1 are different but are assumed to

be correlated. The a posteriori error covariance can be obtained as

cPk|k = E[(cek|k)(cek|k)
T ] (4.56)

The following result can be easily obtained by substituting Equation (4.55) in Equation (4.56)

and taking the expectation operation;

cPk|k = 1cPk|k−1 − 2cPk|k−1H
T
cK

T
k − cKkH2cPk|k−1 + cKk(H3cPk|k−1H

T + R̄k)cK
T
k

(4.57)
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where

1cPk|k−1
def
= E

[
ek|k−1e

T
k|k−1

]
2cPk|k−1

def
= E

[
ek|k−1(cek|k−1)

T
]

3cPk|k−1
def
= E

[
cek|k−1(cek|k−1)

T
]

(4.58)

are different a priori error covariance matrices caused by LOOB. No matter how long the plant

output data is lost, a posteriori error covariance will constitute these three types of error covari-

ance matrices. To obtain an optimal Kalman filter gain, define a cost function as

Jk := E[(cek|k)
T
cek|k] (4.59)

which is equivalent to

Jk = trace
{
E[cek|k(cek|k)

T ]
}

= trace(cPk|k) (4.60)

Substituting Equation (4.57), Equation (4.60) can be minimised with respect to cKk,

∂Jk
∂cKk

= 0− 22cPk|k−1H
T + 2cKkH3cPk|k−1H

T + 2cKkR̄k = 0 (4.61)

which results in

cKk = 2cPk|k−1H
T (H3cPk|k−1H

T + R̄k)
−1 (4.62)

Substituting this value in Equation (4.57), the final update error covariance matrix adopts the

following structure

cPk|k = 1cPk|k−1 − 2cPk|k−1H
T (H3cPk|k−1H

T + R̄k)
−1H2cPk|k−1 (4.63)

These are the optimal Kalman filter gain and its corresponding error covariance matrix for the

first sampling time of data loss occurrence. If LOOB is continued, the general structure of the

compensated Kalman filter gain and updated error covariance would be as follows:

cKk+l = 2cPk+l|k+l−1H
T (H3cPk+l|k+l−1H

T + R̄k+l)
−1 (4.64)

and

cPk+l|k+l = 1cPk+l|k+l−1 − 2cPk+l|k+l−1H
T (H3cPk+l|k+l−1H

T + R̄k+l)
−1H2cPk+l|k+l−1

(4.65)

where l = {1, 2, 3....m} corresponds to the data loss steps.
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It is necessary to specify that due to data loss, the above equations of the gain and error covari-

ance matrices cannot be further simplified, contrary to conventional Kalman filter, (Equations

(2.63) and (2.64)) . In other words, these equations will always have three different types of

error covariance matrices within the LOOB duration as

E
[
ek+l|k+l−1e

T
k+l|k+l−1

]
= 1cPk+l|k+l−1

E
[
ek+l|k+l−1(cek+l|k+l−1)

T
]
= 2cPk+l|k+l−1

E
[
(cek+l|k+l−1)(cek+l|k+l−1)

T
]
= 3cPk+l|k+l−1

It is also worthwhile to discuss the behaviour of Kalman filter after the observation is resumed.

It is assumed that the loss of observation has occurred between time steps k and k +m− 1, for

some positive value of m. Therefore, the predicted state estimation at time step k +m − 1 is

calculated as

cxk+m|k+m−1 = Acxk+m−1|k+m−1 +Buk+m−1 (4.66)

The state estimation error generated from the predicted state will be

cek+m|k+m−1 = Acek+m−1|k+m−1 + ξk+m−1, (4.67)

and predicted error covariance for such state prediction is

cPk+m|k+m−1 = AcPk+m−1|k+m−1A
T +Qk+m−1 (4.68)

Due to the availability of actual data, the measurement update state will be 2

cxk+m|k+m = cxk+m|k+m−1 + cKk+m(zk+m −Hcxk+m|k+m−1), (4.69)

with the predicted state error as

cek+m|k+m = xk+m − cxk+m|k+m−1 − cKk+m(zk+m −Hcxk+m|k+m−1)

= cek+m|k+m−1 − cKk+m(Hcek+m|k+m−1 + θk+m). (4.70)

This shows that only one error element appears in the measurement updated step. Therefore,

the proposed filtering scheme makes the limits of conventional KF once the observations are

available. If a cost function is emanated from the same course, an optimal value for the Kalman

2The reason why the leading subscript ‘c’ still appears while observations are now available is, because theo-
retically it takes infinite time to recover the effect of data loss. However, in practice it may take a few samples
to bring the estimation back to the standard estimation trajectory. To avoid confusion, index ‘c’ can be omitted
from the state and covariance equations.



67 4.4 Compensated State Estimation Algorithms

filter gain, which guarantees the minimum estimation error, will be

cKk+m = cPk+m|k+m−1H
T
(
HcPk+m|k+m−1H

T +Rk+m

)−1
, (4.71)

with the consequent error covariance matrix of

cPk+m|k+m = cPk+m|k+m−1 − cKk+mHcPk+m|k+m−1

=
(
I − cKk+mH

)
cPk+m|k+m−1, (4.72)

where Rk+m is the actual measurement noise covariance matrix.

Hence, the proposed compensated observation scheme bears similar trends for the Kalman filter

gain and error covariance matrices in the event of LOOB. It will then bring the above two ma-

trices to the same structures once the sensed measurements are available again. For a discrete

time LTI system, subjected to a random data loss, the proposed approach is summarised in a

concise manner in Algorithm 4.

In the following subsection, a few related characteristic properties of the proposed approaches

are summarised.

4.4.2 Properties of the Proposed Compensated Estimation Ap-

proaches

It will be interesting to highlight some of the features associated with the proposed compensated

estimation approaches, discussed in the previous subsection.

In Approach I (ZOH), a sensor reading is utilised repeatedly to extract information whenever

LOOB occurs. This approach has been successfully implemented in the event of loss of data

e.g. [22, 37, 54, 55]. Using ZOH approach, the last measurement sample and hence the same

Kalman filter gain and error covariance matrices are held throughout the data loss period. In

simple words, using this scheme the Kalman filter performs like steady state Kalman filter. The

only requirement of this method is that, the most recent sensor reading must be stored all the

times. It should be noted that conventional Kalman filter does not require any observation to

store after utilising it at measurement update step – as can be viewed in Algorithm 1, Chapter 3.

The reason why two measurement readings would be useful in estimating the state of a system

(Approaches II and III) is because it is not necessary that the output data signal zk exhibits

“markov property”, therefore zk−1 and zk−2 may convey more information jointly about zk than

zk−1 alone [4]. In Approach III, previous two observations are considered according to their
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Algorithm 4 : Closed Loop Estimation algorithm using MLPC

1: It is assumed that loss of observation occurs at time step k. In other words zk is not available
and everything is as normal upto time step k − 1. Therefore, the predicted state estimation
at time step k − 1 is calculated as

xk|k−1 = Axk−1|k−1 +Buk−1,

2: The state estimation error generated from the predicted state will be

ek|k−1 = Aek−1|k−1 + ξk−1,

and predicted error covariance for such state prediction is

Pk|k−1 = APk−1|k−1A
T +Qk−1

3: Initialisation of the compensated case be,

cxk|k−1 = xk|k−1

cek|k−1 = ek|k−1

cPk|k−1 = Pk|k−1

cKk−1 = Kk−1

(4.73)

4: Due to the unavailability of actual data, the measurement update state will be

cxk|k = cxk|k−1 + cKk(z̄k −Hcxk|k−1),

where

cKk = cPk|k−1H
T
(
HcPk|k−1H

T +Rk

)−1
,

with the consequent error covariance matrix of

cPk|k = cPk|k−1 − cKkHcPk|k−1

=
(
I − cKkH

)
cPk|k−1,

where Rk is the actual measurement noise covariance matrix.
5: Time-step is updated.
6: Return to Prediction step with xk|k = cxk|k and Pk|k = cPk|k and definitions of (4.73).

relative distances in correlation frame of reference, i.e. nearer measurements are represented by

a higher correlation as compared to those of far measurements. Employing Approaches II and

III for compensation of loss-of-observations will require the last (recent) two sensor readings to

be stored all the times.

In Approaches IV and V, the span of utilising previous observations is extended to benefit the

situations where data is lost for a longer duration of time. However, this approach is more ex-
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Algorithm 5 : Proposed CCLKF Algorithm

1: Recursion: k = {0, 1, 2, .....}
2: Compute Predicted Quantities: xk+1|k and Pk+1|k
3: Check: Status of ηk+1

if ηk+1 = 1
Run Conventional Kalman filter (Algorithm 1; Chapter 2) to obtain Filtered Quantities
(xk+1|k+1 and Pk+1|k+1).

Else
Jump to Closed Loop Estimator (Algorithm 4) to obtain Compensated Filtered Quantities
(cxk+1|k+1 and cPk+1|k+1).

end
4: Time-step is updated
5: Return to Prediction step;

pensive as it requires sufficiently large storage for holding the previous observations. In addition,

employing more measurement data in order to compute linear prediction coefficients causes more

computational efforts. However, in short-period of loss of data scenarios, Approach IV and V

are found effective [55].

It is important to mention that all these approaches are based on the assumption that noise

signals are Gaussian in nature.

4.5 Summary

In this chapter, an innovative solution for a common but important issue of state estimation un-

der data loss is presented. Conventional Kalman filter does not offer optimal and bounded-error

state estimation due to its profound dependency on the measurements. Researchers have pro-

posed schemes such as Open-Loop Estimation to tackle such problems. However, under adequate

period of loss of observations, such schemes fail to produce bounded errors and hence optimal

state estimation. In this chapter, a novel method is presented, in which the lost observation is

reproduced through linear prediction techniques, given the name of modified linear prediction

coefficients or MLPC algorithms. The conventional methods of linear prediction theory do not

offer a distinct way to decide the number of data samples used in computing linear prediction

coefficients (LPC). For this reason, some constraint based approaches are presented which opti-

mally decide the number of data samples employed in calculating LPC.

Through a straightforward methodology, the compensated Kalman filter gain and the associated

a posteriori error covariance matrices are derived. It has been found that the Compensated

Closed-Loop KF (CCLKF) approach employed, for state estimation in the event of LOOB yields

some extra elements in the optimal Kalman filter gain and error covariance matrices. However,
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these extra elements vanish once the observation is resumed. The chapter is ended up by some

useful discussion on the characteristic properties of the proposed approaches.

To conclude, mathematical description of an innovative Kalman filter is addressed in this chapter

when a compensated observation signal is used at measurement update step in the event when

actual observation is not available. In the next chapter, the proposed compensated estimation

scheme (CCLKF) is tested by simulating a simple case study example of mass-spring-damper

(MSD) system. It is intended to compare the performances of the two schemes (the existing

Open-Loop Kalman filter and the proposed CCLKF) with respect to conventional Kalman filter

(CKF) algorithm without any data loss. All the performance revealing parameters such as

estimated state, Kalman filter gain, error analysis, residual vector and error covariance matrices

shall be presented. Computational analysis for the two state estimators will also be explored

with respect to CKF.



Chapter 5

Characteristics of the Compensated

Kalman Filter

5.1 Introduction

It has been discussed that loss of output data is a non-trivial issue in the majority of control

and communication systems. More attention has been made to the estimation methods, where

measurement plays an integral role in retrieving the system information (states). However those

systems may suffer from data loss due to several factors discussed in the previous chapters. Ex-

isting compensated estimation tools such as Open-Loop Kalman filtering produce poorer results

when data is not available for a reasonable time. To generate improved state estimation re-

sults, compensated Kalman filtering techniques have been presented thoroughly in the previous

chapter based on linear prediction theory. The conventional linear prediction schemes have cer-

tain limitations which were overcome by imposing a few constraints on the number of previous

data sample employed. Certain characteristic properties related to the proposed approaches are

described which assist in selecting a proposed approach. Mathematical formulations for the pro-

posed design have been derived for both the commence of data loss and after the data is resumed.

In order to explore the behaviour of these approaches in the process of state estimation, a Mass-

Spring-Damper (MSD) system studied in [23], is first tested in terms of various parameters for

the conventional KF. The proposed Compensated Closed Loop Kalman filtering (CCLKF) ap-

proach is then analysed in terms of a list of properties. The main emphasis in this chapter is on

the comparison of the two approaches – Open-Loop Kalman filtering (OLKF) and the proposed

CCLKF in the event of loss of data.

This chapter is organised as follows: In Section 5.2, a simple second order mass-spring-damper

(MSD) system is described. The proposed CCLKF algorithm is implemented on MSD system to

explore various characteristics in Section 5.3. Also included is a thorough comparison between

71
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the existing OLKF approach and the proposed CCLKF scheme in terms of update state and

covariance estimations, Kalman filter gains, error analysis and computational analysis. The

performance of the proposed CCLKF is explored for various orders of linear prediction filter.

The associated shortcomings of the proposed CCLKF scheme are briefly mentioned in Section 5.4.

5.2 Mass-Spring-Damper System

In this section the description of a simple second order mechanical system namely a mass-spring-

damper (MSD) system is demonstrated. Such systems are common control experimental devices

frequently encountered in many technical laboratories.

5.2.1 System Dynamics

The two-degree-of-freedom (2DOF) mass-spring-damper system is depicted in Figure 5.1. The

Figure 5.1: Two cart mass-spring-damper system

dynamics of such a system can be described by two 2nd-order differential equations, by Newton’s

Second Law,

miẍi + biẋi + kixi = ui ∀ i = {1, 2} (5.1)

where xi are the displacements of the two masses from the equilibrium points and ui = Fi are

the forces acting on the masses, with mi being the masses, bi the damper constants and ki the

spring constants. An equivalent block diagram in terms of electrical network is shown in Figure

5.2. Applying Kirchhoff’s circuit laws (in other words superposition theorem) would result in

the following equations. For simplicity the time-dependency (subscript – t) is omitted. 1

u−m1ẍ1 − k1(x1 − x2)− b1(ẋ1 − ẋ2) = 0

m2ẍ2 − k1x1 − b1ẋ1 + (k1 + k2)x2 + (b1 + b2)x2 − ξ = 0 (5.2)

where ξ is the plant disturbance associated with the speed of mass m2. The two equations can

be further simplified as ————–

1u1 = u is the only applied force, while u2 = ξ is the noise source.
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ξm1 m2
b2

u

k1

b1

k2

x2x1

Figure 5.2: Equivalent electrical circuit diagram

m1ẍ1 = −k1x1 + k1x2 − b1ẋ1 + b1ẋ2 + u

m2ẍ2 = k1x1 − (k1 + k2)x2 + b1ẋ1 − (b1 + b2)ẋ2 + ξ (5.3)

or

ẍ1 = − k1
m1

x1 +
k1
m1

x2 −
b1
m1

ẋ1 +
b1
m1

ẋ2 +
u

m1

ẍ2 =
k1
m2

x1 −
(k1 + k2)

m2

x2 +
b1
m2

ẋ1 −
(b1 + b2)

m2

ẋ2 +
ξ

m2

(5.4)

The state space model of the system would be as follows:

ẋ(t) = Ax(t) +Bu(t) + Lξ(t) (5.5)

where the state vector is defined as

xT (t) = [ x1(t) x2(t) ẋ1(t) ẋ2(t) ] (5.6)

with

A =


0 0 1 0

0 0 0 1

− k1
m1

k1
m1

− b1
m1

b1
m1

k1
m2

−k1+k2
m1

b1
m2

− b1+b2
m2

 (5.7)

BT = [ 0 0 1
m1

0 ] (5.8)

and

LT = [ 0 0 0 1
m2

] (5.9)
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The output dynamics can be described as

z(t) = Hx(t) + θ(t) (5.10)

Only one state is measured i.e. the displacement of mass m2. Therefore, the output matrix can

be described as

H = [ 0 1 0 0 ] (5.11)

5.2.2 Application of Mass-Spring-Damper System

The mass-spring-damper is a simple but practical application for state estimation, such as a robot

arm (m1) when lifting an object (m2). This application is considered in this work because it is

a simple “physical” system yet intuitively provides reasonable meaning of a real application [33].

For example, in a 2-D robot arm, the position of mass m2 is a critical information which is

normally read by a laser or sonic sensor. However, it may happen that an obstacle stays in front

of the sensor and blocks the measurements temporarily. Similarly in automotive manufacturing

processes a short-period of data loss is easy to imagine.

5.3 Simulation Results

For simulation purpose, the known parameters are selected as m1 = m2 = 1, k1 = 1, k2 = 0.15

and b1 = b2 = 0.1 and sampling frequency Ts = 1ms, [23]. Substituting these known values, the

matrices will be as follows:

A =


0 0 1 0

0 0 0 1

−1 1 −0.1 0.1

0.1 −1.15 0.1 −0.2

 (5.12)

and

BT = [ 0 0 1 0 ] (5.13)

LT = [ 0 0 0 1 ] (5.14)

The two noise signals considered are characterised as

E
[
ξ(t)

]
= 0, E

[
ξ(t)ξ(τ)

]
= Ξδ(t− τ), Ξ = 1 (5.15)
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E
[
θ(t)

]
= 0, E

[
θ(t)θ(τ)

]
= 10−6δ(t− τ) (5.16)

For the purpose of this study, continuous-time dynamics of the MSD system are transformed to

an appropriate discrete-time model using the sampling time of Ts = 0.001 s. In the simulation

results, all four states are highlighted to show the performance of CCLKF and OLKF during

LOOB period.

5.3.1 Updated State Estimation

In the first set of simulation results, performance of the conventional Kalman filter (CKF) is

tested in normal operation. This has been achieved by assuming that there is no observation

loss. The results of the normal operation are shown in Figures 5.3 and 5.4. Figure 5.3 shows the

single noisy output measurement (zk, position of mass m2) along with its actual state, x2, and

the associated state estimation, x̂2. As expected in the failure-free case (normal operation), the

conventional discrete-time Kalman filter is able to successfully estimate the position of mass m2

within the provided simulation range.
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Figure 5.3: Estimation of state 2 without any LOOB.

In Figure 5.4 the three remaining states (namely, x1, position of mass m1; x3, velocity of mass

m1; and x4, velocity of mass m2) are illustrated together with their associated state estimations.

It can be seen from Figure 5.4 that, in normal operational mode, CKF is working perfectly, as

all other states (which were not observed at the output of the system) are estimated reasonably

well. It is worth noticing that, as expected, the effect of the plant disturbance is more severe on

the velocity of mass m2 than in other states - this can be seen by some sort of juggling in the

results of state 4, x4, as depicted in Figure 5.4.
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Figure 5.4: Estimations of (a) state 1, x1 (b) state 3, x3 and (c) state 4, x4 – without any LOOB.

Secondly a typical set of simulation results is obtained for MSD system subject to the fault-

induced measurements. The results of the proposed method (CCLKF) are compared with those

of Open-Loop Kalman filtering technique. The loss of observation caused by any abnormal factor

(such as temporary sensor fault or transmission channel failure) is assumed to occur between

1.30−1.85 sec. The maximum allowable order of the LP filter p is 40 in Algorithm 3, Chapter 4.

Figures 5.5 – 5.8 show the state estimation results. Each figure has two parts; the first part

shows the whole simulation period while in the second part of the figure, the loss of observation

interval is highlighted in order to depict clearly the performance of the proposed CCLKF scheme

over the existing OLKF approach. These figures express that the proposed CCLKF methodology

has the ability of estimating the desirable outcomes (all four states (x1(t)− x4(t)) of the system
accurately in the event of measurement loss.
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Figure 5.5: Estimation of state x1 by OLKF, CCLKF and CKF (without any data loss).
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Figure 5.6: Estimation of state x2 by OLKF, CCLKF and CKF (without any data loss).
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Figure 5.7: Estimation of state x3 by OLKF, CCLKF and CKF (without any data loss).

5.3.2 State Estimation Error

Figures 5.9 and 5.10 illustrate the superiority of the CCLKF over the OLKF by manifesting the

error analysis for the measured and unmeasured states. The error analysis is mainly highlighted

for the measured state. It can be seen that during the LOOB, the state estimation error using

the OLKF approach exceeds abruptly. On the other hand, the error generated by the proposed

CCLKF approach is significantly small and hence it is less influenced. In fact this is one of the

major achievements which can be experienced when applying CCLKF scheme.
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Figure 5.8: Estimation of state x4 by OLKF, CCLKF and CKF (without any data loss).
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Figure 5.9: Estimation error of state x2.

5.3.3 Kalman Filter Gain

The simulation results for the Kalman filter gain computed based on the OLKF and the proposed

CCLKF approaches are shown in Figure 5.11. In the event of LOOB, the gain’s elements are

forced to zero until LOOB is recovered in OLKF approach. It is also worthwhile to stress that at

the time of switching from Open-Loop Estimator back to normal (conventional) Kalman filtering,

there are undesirable excessive oscillations in the gain’s elements to help hold the system’s state

swiftly. Kalman filter gains using the proposed method are fairly smooth on comparison. Due to

the gains being calculated online, it can be seen that when the LOOB occurs, the compensated

Kalman filter gains are very close to those of original system. This will turn out that the

proposed design based on CCLKF could successfully predict the state estimation of the original

system even if an adequate period of loss of observation has occurred. Clearly, such an optimal

compensated filter will provide minimum error for the estimation vector.
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Figure 5.10: Estimation error of states x1, x3 and x4
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Figure 5.11: Comparison of Kalman filter gain’s elements

5.3.4 Error Covariance

In this section error covariance analysis is explored for the two approaches (CCLKF and OLKF),

as shown in Figure 5.12. As no update step is performed in OLKF approach, the update error

covariance diverges abruptly from its normal trajectory. It is likely to happen that the error

covariance would exceed the error bounds swiftly. On the other hand, the proposed CCLKF

technique keeps error covariance bounded for a much longer time and hence keeps the design

filter stable for longer in the event of loss of observation.

This feature is highlighted by providing error covariance for various orders of linear predictor

filter (LPFO) in CCLKF approach. For a low LPFO, the divergence (deviation from the normal
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trajectory) rate is normally higher as compared to large LPFO. However for any LPFO, the

results are much better than those of OLE scheme. It is important to mention at this point

that after a certain limit of LPFO any further decrease in the expected value of the error (and

hence error covariance) is not feasible. Some theoretical discussion on the convergence of the

error covariance in the event of LOOB has been provided in the subsequent section.
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Figure 5.12: Traces of error covariance matrices of OLE and CCLKF

5.3.5 Computation Analysis

There are certain disadvantages for the proposed estimation techniques. The major issue associ-

ated with the proposed CCLKF scheme is its computational time. It is fairly easy to deduce that

as the number of observation samples increases in the external linear prediction scheme in order

to reconstruct the missing data, the computational time for its corresponding state estimation

increases.

An overview of computational time analysis for various LPFO has been shown in Table 5.1.

These results are obtained using a desktop computer running MATLAB, under Microsoft Win-

dows Vista with 2.0GHz Intel Core 2 Dual processor with 2GB RAM. It was mentioned that

a higher order of Linear Predictor filter order does not mean an optimal reconstruction of lost

signal [14], and hence does not guarantee an optimal state estimation. This statement can be

verified from Table 5.1, which is obtained for 0.55 s data-loss. In fact, for a particular LPFO,

the error gets saturated and any further increase in the LPFO does not bear fruitful results in

the estimation error. Some of the graphical representative results are shown in Figure 5.14.

With 0.55 s data-loss duration, the OLKF approach takes 2.3436 s in order to compute the four

state estimations. On the other hand, the conventional Kalman filter (CKF) takes 2.5330 s in
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No. LPFO Error 1 Error 2 Error 3 Error 4 Comp. Time (sec)

CKF Error → 0.4297 0.4520 0.4150 1.6061 3.7366
OLE Error → 1.1157 0.7002 1.1597 1.8181 2.9984

1 10 1.7405 0.8043 1.5178 1.7721 5.1498
2 20 0.6678 0.4843 0.6965 1.6256 7.4886
3 30 0.6582 0.4752 0.6063 1.6225 10.7856
4 40 0.5489 0.4630 0.5091 1.6183 16.5492
5 50 0.5257 0.4611 0.4717 1.6186 23.2230
6 60 0.4920 0.4585 0.4794 1.5984 33.5825
7 70 0.4282 0.4553 0.4180 1.5946 44.4685
8 80 0.4319 0.4518 0.4236 1.6057 61.1164

Table 5.1: Computation analysis for conventional Kalman filter (without any data loss), Open-
Loop Kalman filter and proposed CCLKF
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Figure 5.13: Analysis of (a) computational time and (b) corresponding error for various LPFO

normal operation (without any data loss) for the same simulation period. The reason OLKF’s

computational time is less than CKF approach is because during LOOB time, OLKF scheme

only computes predicted quantities (state and error covariance) and no update is performed.

5.3.6 Levinson-Durbin Algorithm Results

Computing LPC through autocorrelation or auto-covariance involves O(p3) multiplications and

additions and an inversion of a p × p matrix [103]. Consequently, more computational efforts

need to be undertaken for an adequate LPF order. In Chapter 4, it has been mentioned that the

computational effects due to the inversion of large autocorrelation matrices in the routine pro-

cesses can be reduced by a few techniques. Out of these, the Levinson-Durbin algorithm (LDA)

was briefly studied. In the conventional LDA, there is no distinct way to decide the upper limit

of the linear prediction filter’s order, which in turn is not very efficient in terms of the reduction
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of computation time. Therefore, a constraint has been introduced to limit the order of LPF in

processing the existing Levinson-Durbin algorithm. Of course, this is an open problem and quite

a few constraints can be introduced to limit/decide the order of LPF. A simple Constraint LDA

(CLDA) is summarised below. 2

Algorithm 6 : Constraint Levinson Durbin Algorithm (CLDA)

1: Initialisation l = 0; E0 = Rγ[0]

2: Set a threshold estimated error value of eth
def
= ē, where ē = max(ei) ∈ {e1, e2, . . . , ek−1}

3: Recursion l = {1, 2, 3....p} LPF order

3.1 Compute Reflection Coefficients as κl =
1

El−1

[
Rγ[l] +

p−1∑
j=1

al−1
j Rγ[l − j]

]
3.2 Calculate LPCs for lth order predictor as

all = −κl
alj = al−1

j − κlal−1
l−j ∀ j = {1, 2, . . . , l − 1}

3.3 a) Calculate z̄l(k) based on the available LPC.
b) Calculate the x̂l based on z̄l(k)
c) Compute error signal el for this x̂l
d) Is el ≤ eth,

Yes; stop the process and p← l
The resultant linear prediction coefficients are aj = a

(p)
j ,

where j = {1, 2, . . . , p}
Else Compute minimum mean square prediction error associated with
the last pth predictor by El = El−1(1− κ2l ),
Update l← l + 1 and
Repeat Step 3.1

4: Return

This time data loss is introduced at another point to observe the flexibility and hence the per-

formance of the proposed algorithm. Missing data has occurred between 2.3 - 2.8 s (for 0.5

seconds). The time consumed by OLKF is 2.4128 seconds to accommodate such a data loss.

On the other hand, conventional Kalman filter (without any data loss) takes 2.4512 seconds to

complete the whole simulation process. The computational time for various orders of LPF in

CCLKF approach while employing the constraint Levinson-Durbin algorithm (CLDA) is shown

in Table 5.2. Performance of the CLDA is more prominent for higher order of Linear Prediction

filter (LPFO). This is because, the routine procedure to solve the Normal Equations involves

large autocorrelation matrices inversions (of the order LPFO × LPFO), which is computation-

ally cumbersome specially for higher orders of LPF.

2It is assumed that this algorithm is implemented at time step k
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LPFO Compt. time (NE) Compt. time (CLDA)

10 5.1498 3.9012
20 7.4886 4.4582
30 10.7856 6.0426
40 16.5492 7.9714
50 23.2230 10.1721
60 33.5825 12.0896
70 44.4685 15.0436
80 61.1164 18.5693

Table 5.2: Computation analysis in seconds for Normal Equation (Autocorrelation) and Con-
straint Levinson-Durbin algorithm

The performance of the proposed CCLKF approach based on CLDA is tested by employing

the mass-spring-damper (MSD) system, for a 0.5 s data loss (from 2.3 - 2.8 seconds). The

CLDA has been tested for various orders of linear prediction filter ranging from 10 – 80 and the

corresponding results are shown in Figures 5.14 – 5.16. Among these, the best results in terms

of least square estimation error, are observed for LPFO = 40. Thereafter by increasing the order

of LPF, the error is found saturated.
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Figure 5.14: Estimation of state x1 of MSD system using CLDA for various LPFO.

In Figures 5.17 and 5.18, the performance of CCLKF using CLDA is compared with that of

CCLKF based on Normal Equations scheme. From the two figures and Table 5.2, it can be ob-

served that almost for the same quality of estimation, the computational time can be reasonably

reduced by using constraint Levinson-Durbin algorithm.
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Figure 5.15: Enlarge view of the Fig 5.14.
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Figure 5.16: Combined picture the Figures 5.14 & 5.15

5.4 Shortcomings of the Proposed CCLKF

The proposed CCLKF approach could be considered a useful estimation algorithm for many

challenging engineering applications suffering from loss of measurements. However,

• The main drawback of CCLKF is its computational burden which requires a very fast

processor even if the order of LPF (p) is adequate. Achieving the desired performance of

the CCLKF demands a considerable time in order to compute the compensated observa-

tional signal. Depending on system dynamics, order of LP filter and various other factors,

computational time varies. However, having the hope that new technologies will bring suf-

ficiently fast processors in future, this drawback could pale into insignificance when using

CCLKF.

• Second drawback associated with CCLKF approach, which in fact is related to the above
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Figure 5.17: Estimation of state x1 by NE and CLDA for LPFO = 30
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Figure 5.18: Estimation of state x1 by NE and CLDA for LPFO = 40

issue, is hardware limitation due to large requirement to store previous observations (es-

pecially it is true for multi-input multi-output plants). At every data loss time instant,

p-number of observations need to be retreated at the computation of compensated obser-

vation, which leads to the need of a buffer register that could store and update these p

data samples.

• Third drawback associated with the proposed approach is that the repossessing of the

steady state values (Subsection 3.3.4) are not fully attained in the CCLKF. However, this

shortcoming has been improved by reducing the difference between the steady state and

estimated values. Deviation from steady state covariance is related with convergence and

asymptotic stability issues which will be thoroughly studied in the subsequent section.

• The compensated Kalman filtering algorithms are proposed based on Auto-regressive model

where only output data (measurements) are considered in calculating the linear prediction
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coefficients. It does not take into account the control input (which ultimately would lead to

ARMAmodel instead of autoregressive model) in order to simplify the matter. However, by

doing so might weaken the proposed algorithms if the control signal has significant changes

during the data loss period. This feature has explicit relationship with the assumption of

slowly time varying characteristics of the process, made in Chapter 4.

5.5 Summary

In order to tackle loss of observation in state estimation, compensated Kalman filtering schemes

have been proposed in Chapter 4. It was necessary to investigate various features resulting

from implementation of the proposed approach to an appropriate example such as mass-spring-

damper subjected to loss of observations. In this chapter, the performance of the proposed

CCLKF scheme has been analysed in terms of various parameters e.g. estimated state and co-

variance, corresponding state estimation error, Kalman filter gain, etc. Attempts have been made

to show these properties in a generalised framework beyond the considered mass-spring-damper

system. As expected, the conventional autocorrelation method of solving Normal Equations has

been found computationally expensive due to the inversion of large-dimension matrices at ev-

ery instant of LOOB. This deficit has been overcome and the required computation efforts are

reduced by modifying the existing Levinson-Durbin algorithm. The modified Levinson-Durbin

algorithm has been found more effective for higher orders of linear prediction filter.

In the next chapter, the two compensated estimation schemes are implemented to estimate the

attitude of a rigid body spacecraft system, subjected to loss of measurements. This case study

example has been considered to explore the practical limitations of the two schemes.



Chapter 6

Compensated Estimation and Control

of a Rigid Body Spacecraft

6.1 Introduction

Previous chapters have thoroughly presented an important problem of control and communica-

tion systems where the observations are subjected to random loss. This issue is possibly caused

by various factors including intermittent sensor faults, temporary channel failures, congestion of

network systems and limited memory of buffer registers. It has been found that, if problems arise

in the process of state estimation where the output data plays an important role in retrieving

system’s information (states), the results would be catastrophic. In order to cope with such

critical environment, compensated state estimation techniques have been proposed, based on

modified linear prediction theory in Chapter 4. A simple mass-spring-damper (MSD) example

was simulated to show some of the candidate results with comparison of the existing approach

(Open-Loop Estimation) in Chapter 5 along with the discussion on the proposed CCLKF algo-

rithm’s characteristics.

In this chapter, the span of utilisation of the proposed algorithm is extended to a rigid body

spacecraft system. Spacecraft technology is one of the emerging research field, which depends on

the ground based data as one of the integral forms of communication. For a successful comple-

tion of a spacecraft mission, it relies on smooth arrival of sensor data. Any interruption in the

arrival of data would effect the performance of the spacecraft attitude control system. Hence,

in situations of intermittent observations, the proposed compensated close loop Kalman filtering

algorithm is implemented to a rigid body spacecraft system in this chapter.

This chapter is organised as follows: Section 6.2 provides discussion on the nonlinear plant and

output dynamics of a rigid body spacecraft model. Due to wide range of rotation, the plant and

output dynamics are represented in modified Rodrigues parameterisations. The nonlinear plant

87
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Figure 6.1: Nonlinear spacecraft attitude model

and output dynamics are linearised on nonzero operating points which are computed through

Levenberg-Marquardt iterative method. The original continuous-time model has been discretised

for simulation purposes. The original plant is unstable, therefore for stabilisation purposes, a

Lyapunov based controller is presented in Section 6.3. In Section 6.4, the proposed CCLKF

approach is recapitulated in a concise manner. Simulation studies based on various performance

indices of a rigid spacecraft model subject to observation loss are illustrated through a numerical

example in Section 6.5.

6.2 Spacecraft Dynamics

In literature, development of spacecraft model using quaternion representations has been driven

by several factors such as

• linear treatment to prediction equations [51],

• avoidance of gimbal lock situation [64], and

• avoidance of involvement of any trigonometric function unlike Euler angles analysis.

However quaternion parameterisations suffer from the unit norm constraint [101]. To avoid that,

Modified Roderigues Parameters (MRP) representation is employed to test the performance of

CCLKF approach.

The plant dynamics of a spacecraft system are normally described while considering Kinematic

equations only, (see [29,56,64,122]). However in this work, the spacecraft system is modelled as

a rigid body and its attitude model is described by two set of equations namely “Euler equations

of rotational dynamics” and “Kinematic equations”, as follows:
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6.2.1 Plant Dynamics using Modified Rodrigues Parameterisations

In this section, the nonlinear spacecraft model is presented in Modified Rodrigues Parameters

(MRP) representations. The reason for carrying out this slightly complex parametrisation tech-

nique (MRP) is, to avoid the shortcomings associated with the quaternion parameters. Both

kinematic and dynamics equations are employed to construct the nonlinear model of the rigid

body spacecraft system.

The Kinematic equations in terms of MRP are defined as

σ̇
def
= T (σ)ω, (6.1)

where σ3×1 is the modified Rodrigues parameter vector,

T (σ) =
1

2

[(
1− σTσ

2

)
I3×3 + S(σ) + σσT

]
, (6.2)

and ω3×1 is the noisy angular velocity vector which is defined as

ω
def
=

 ω1

ω2

ω3

 =

 ω1 − ν1
ω2 − ν2
ω3 − ν3

 , (6.3)

where νi are bias elements caused by the rate gyros. The bias elements are assumed to possess

Gaussian property with zero mean, i.e.

νi ∼ N(0,Υ) (6.4)

where Υ is the bias variance, and S(σ) := σ × σT . Euler equations of rotational dynamics are

shown as

Jω̇ = −S(ω)Jω + τ (6.5)

The inertia matrix J3×3 is defined as

J
def
=

 J11 J12 J13

J21 J22 J23

J31 J32 J33

 ⇒ J−1 ≡

 a b c

d e f

g h i

 (6.6)

ie. J is considered to be invertible. In Equation (6.5), τ3×1 is the control input and S(ω) = ω×ωT

is the skew symmetric matrix.
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Linearisation

The linearised plant dynamics for the rigid body spacecraft system using MRP representations

are obtained using Equations (6.1) and (6.5), which result in

ẋ = Ax+Bu+Gξ (6.7)

where x = [σ ω]T , u = τ and ξ are state vector, control input vector and noise vector respectively.

The linearised Jacobian matrices A,B and G are computed in Appendix B.

6.2.2 Spacecraft Output Dynamics

The spacecraft attitude parameters can be measured using a combination of reference sensors

such as a sun sensor, star sensor or earth sensor, and inertial reference systems [110]. The latter

measure the rates of rotation about each axis, and the integration of the rate of rotation would

give the attitude, because they are working on a numerical integration. Such sensors however

drift over time, hence the need for the reference sensors to act as a calibration arises. At least

two reference sensors are required to give the three axis position. Some sensors give better

accuracy than others and one needs to select based on the requirements of the mission and

payload. Having Euler angles at the input model and MRP parameters at the output model, a

precise relationship is required to be established between the two distinct representations.

There are two approaches to achieve output linearised model in terms of MRP; the first indirect

approach which derives the desire relationship from Euler angles to quaternion and thereafter

from quaternion to MRP, and the second is direct approach where the output is directly obtained

by equating the two Direction Cosine Matrices (DCM) of Euler angles and MRP. The former

approach requires massive calculations to derive the desired model plus the loss of performance

during the two conversions and therefore the output linearised model is derived using the direct

approach. For the same operating points, both direct and indirect models are expected to

generate nearly similar results.

The two DCM in terms of MRP and Euler angles representations, of sequence 3-2-1 are shown

in the following equations, [87].

DCMσ =
1

(1 + σ2)2 4(σ2
1 − σ2

2 − σ2
3) + (1− σ2)2 8σ1σ2 + 4σ3(1− σ2) 8σ1σ3 − 4σ2(1− σ2)

8σ2σ1 − 4σ3(1− σ2) 4(−σ2
1 + σ2

2 − σ2
3) + (1− σ2)2 8σ2σ3 + 4σ1(1− σ2)

8σ3σ1 + 4σ2(1− σ2) 8σ3σ2 − 4σ1(1− σ2) 4(−σ2
1 − σ2

2 + σ2
3) + (1− σ2)2


(6.8)
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DCMe =

 cos θ cosψ cos θ sinψ − sin θ

sinϕ sin θ cosψ − cosϕ sinψ sinϕ sin θ sinψ + cosϕ cosψ sinϕ cos θ

cosϕ sin θ cosψ + sinϕ sinψ cosϕ sin θ sinψ − sinϕ cosψ cosϕ cos θ

 (6.9)

In this case, the conversion deals with the nonlinear trigonometric functions. In general format,

one can write as:

z(t) = h(x(t)) + υ(t) (6.10)

In order to obtain the linearised model, the output Jacobian matrix is obtained as 1

z = Cx+ v =


∂ϕ
∂σ1

∂ϕ
∂σ2

∂ϕ
∂σ3

∂θ
∂σ1

∂θ
∂σ2

∂θ
∂σ3

03×3

∂ψ
∂σ1

∂ψ
∂σ2

∂ψ
∂σ3





σ1

σ2

σ3

ω1

ω2

ω3


+ v (6.11)

In order to obtain the output linearised model, the following procedure has been taken place.

6.2.3 Linearised Output Model

Considering the direct method, the two Direction Cosine matrices (DCM) associated with Euler

parameters and MRP are compared element-wise, in order to compute the linearised output

model of the rigid body spacecraft system.

ϕ-Differentiations

To obtain the derivatives of ϕ with respect to σi, the same procedure is followed: Comparing

the last element in the two DCMs

cosϕ cos θ = DCM [3, 3] =
4(−σ2

1 − σ2
2 + σ2

3) + (1− σ2)2

(1 + σ2)2
(6.12)

Differentiating it with respect to σ1, would result in

− sinϕ cos θ
∂ϕ

∂σ1
=

∂

∂σ1

[4(−σ2
1 − σ2

2 + σ2
3) + (1− σ2)2

(1 + σ2)2

]
︸ ︷︷ ︸

N1

(6.13)

1The subscript ‘t’ is dropped for simplicity.
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or

∂ϕ

∂σ1
=

N1

− sinϕ cos θ
=

N1

−DCM [2, 3]

=
−(1 + σ2)2

8σ2σ3 + 4σ1(1− σ2)
N1 (6.14)

where

N1 =
∂

∂σ1

[4(−σ2
1 − σ2

2 + σ2
3) + (1− σ2)2

(1 + σ2)2

]
(6.15)

Apply quotient rule to compute the right hand side of Equation 6.15, i.e.

N1 =
v1u̇1 − u1v̇1

v21

where

u1 = 4(−σ2
1 − σ2

2 + σ2
3) + (1− σ2)2,

v1 = (1 + σ2)2,

u̇1 =
∂u1
∂σ1

= −8σ1 + 2(1− σ2)(−2σ1) = −4σ1(3− σ2)

v̇1 = 2(1 + σ2)2σ1 = 4σ1(1 + σ2)

therefore

N1 =
(1 + σ2)2[−4σ1(3− σ2)]− [4(−σ2

1 − σ2
2 + σ2

3) + (1− σ2)2]4σ1(1 + σ2)

(1 + σ2)4

=
4σ1(1 + σ2)

(1 + σ2)4

[
− (1 + σ2)(3− σ2)− 4(−σ2

1 − σ2
2 + σ2

3)− (1− σ2)2
]

=
−4σ1

(1 + σ2)3

[
(1 + σ2)(3− σ2) + 4(−σ2

1 − σ2
2 + σ2

3) + (1− σ2)2
]

(6.16)

Substitute this value in (6.14) will result in

∂ϕ

∂σ1
=

−(1 + σ2)2

8σ2σ3 + 4σ1(1− σ2)

−4σ1
(1 + σ2)3

[
(1 + σ2)(3− σ2) + 4(−σ2

1 − σ2
2 + σ2

3) + (1− σ2)2
]

=
4σ1

[
(1 + σ2)(3− σ2) + 4(−σ2

1 − σ2
2 + σ2

3) + (1− σ2)2
][

8σ2σ3 + 4σ1(1− σ2)
]
(1 + σ2)

=
4σ1

[
4− 4π

][
8σ2σ3 + 4σ1(1− σ2)

]
(1 + σ2)

= H1σ1
[
1− π

]
(6.17)

where π = −(σ2
1 + σ2

2 − σ2
3) and H1 =

16[
8σ2σ3+4σ1(1−σ2)

]
(1+σ2)
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In the similar way, the remaining two ϕ-differentiation are computed.

∂ϕ

∂σ2
= H1

[
σ2{1− π}

]
(6.18)

∂ϕ

∂σ3
= H1

[
− σ3{σ2 + π}

]
(6.19)

θ-Differentiations

Comparing the element-[1,3] of the both DCMs

− sin θ = DCM [1, 3] =
8σ1σ3 − 4σ2(1− σ2)

(1 + σ2)2
(6.20)

differentiating with respect to θ

− cos θ
∂θ

∂σ1
=

∂

∂σ1

[8σ1σ3 − 4σ2(1− σ2)

(1 + σ2)2

]
︸ ︷︷ ︸

N2

∂θ

∂σ1
=

N2

− cos θ
(6.21)

N2 is computed as follows:

N2 =
∂

∂σ1

[8σ1σ3 − 4σ2(1− σ2)

(1 + σ2)2

]
(6.22)

Applying the quotient rule as before: N2 =
v2u̇2−u2v̇2

v22
, where

u2 = 8σ1σ3 − 4σ2(1− σ2)

v2 = v1 = (1 + σ2)2

u̇2 = 8σ3 + 8σ1σ2

v̇2 = v̇1 = 4σ1(1 + σ2)

N2 =
(1 + σ2)2(8σ1σ2 + 8σ3)− [8σ1σ3 − 4σ2(1− σ2)]4σ1(1 + σ2)

(1 + σ2)4

=
8

(1 + σ2)3
[
(1 + σ2)(σ1σ2 + σ3)− 2σ1[2σ1σ3 − σ2(1− σ2)]

]
(6.23)
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Also from the DCM of Euler angle, it can be found easily that

cos θ =
√
DCM [2, 3]2 +DCM [3, 3]2

=

√√√√√[8σ2σ3 + 4σ1(1− σ2)

(1 + σ2)2

]2
+
[4( −π︷ ︸︸ ︷
−σ2

1 − σ2
2 + σ2

3) + (1− σ2)2

(1 + σ2)2

]2
=

1

(1 + σ2)2

√[
8σ2σ3 + 4σ1(1− σ2)

]2
+
[
− 4π + (1− σ2)2

]2
(6.24)

Substituting the values of N2 from (6.23) and cos θ from (6.24) into (6.21), will result in

∂θ

∂σ1
=

8
(1+σ2)3

[
(1 + σ2)(σ1σ2 + σ3)− 2σ1[2σ1σ3 − σ2(1− σ2)]

]
1

(1+σ2)2

√[
8σ2σ3 + 4σ1(1− σ2)

]2
+
[
− 4π + (1− σ2)2

]2
=

8
[
(1 + σ2)(σ1σ2 + σ3)− 2σ1[2σ1σ3 − σ2(1− σ2)]

]
(1 + σ2)

√[
8σ2σ3 + 4σ1(1− σ2)

]2
+
[
− 4π + (1− σ2)2

]2
=

8σ3
[
(3− σ2)σ1 + (1− 4σ2

1)]
]

(1 + σ2)
√[

8σ2σ3 + 4σ1(1− σ2)
]2

+
[
− 4π + (1− σ2)2

]2
= H2

[
2σ3

[
(3− σ2)σ1 + (1− 4σ2

1)]
]

(6.25)

where

H2 =
4

(1 + σ2)
√[

8σ2σ3 + 4σ1(1− σ2)
]2

+
[
− 4π + (1− σ2)2

]2 (6.26)

In the same way, the other two elements of θ are computed.

∂θ

∂σ2
= H2

[
2{σ2σ3(3− σ2) + 2σ1(1 + σ2 − 4σ2

3)}
]

(6.27)

∂θ

∂σ3
= H2

[
σ4 + 6σ2 − 2σ2σ2

2 − 8σ1σ2σ3 − 1
]

(6.28)

ψ-Differentiations

To obtain the ψ differentiating elements, the element DCM[1,1] of both Euler and MRP param-

eterisations is selected and differentiated with respect to three σ elements, as follows:

cos θ cosψ =
4(σ2

1 − σ2
2 − σ2

3) + (1− σ2)2

(1 + σ2)2
(6.29)
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Differentiating with respect to σ1,

− cos θ sinψ
∂ψ

∂σ1
=

∂

∂σ1

(4(σ2
1 − σ2

2 − σ2
3) + (1− σ2)2

(1 + σ2)2

)
︸ ︷︷ ︸

N3

∂ψ

∂σ1
=

N3

− cos θ sinψ

=
−N3

DCM [1, 2]
(6.30)

To compute N3 using quotient rule, this time

u3 = 4(σ2
1 − σ2

2 − σ2
3) + (1− σ2)2

v3 = (1 + σ2)2

u̇3 = 4σ1(1 + σ2)

v̇3 = 4σ1(1 + σ2)

therefore

N3 =
(1 + σ2)24σ1(1 + σ2)− [4(σ2

1 − σ2
2 − σ2

3) + (1− σ2)2]4σ1(1 + σ2)

(1 + σ2)4

=
4σ1

(1 + σ2)3
[
(1 + σ2)2 − {4(σ2

1 − σ2
2 − σ2

3) + (1− σ2)2}
]

(6.31)

Substituting the above value of N3 and DCM[1,2] in (6.30) would generate

∂ψ

∂σ1
= −

4σ1
(1+σ2)3

[
(1 + σ2)2 − {4(σ2

1 − σ2
2 − σ2

3) + (1− σ2)2}
]

1
(1+σ2)2

[8σ1σ2 + 4σ3(1− σ2)]

=
4σ1

[
(1 + σ2)2 − {4(σ2

1 − σ2
2 − σ2

3) + (1− σ2)2}
]

(1 + σ2)[8σ1σ2 + 4σ3(1− σ2)]

= H3

[
2σ1

{
(σ4 + 1) + 2(σ2 − 2σ2

1)
}]

(6.32)

where

H3 =
4

(1 + σ2)[8σ1σ2 + 4σ3(1− σ2)
(6.33)

In the same the other two elements of the ψ are computed,

∂ψ

∂σ2
= H3

(
− 2σ2

[
1 + 2(2σ2

1 − σ2)
])

(6.34)

∂ψ

∂σ3
= H3

(
− 2σ3

[
1 + 2(2σ2

1 − σ2)
])

(6.35)
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With the help of these nine partial derivatives elements ( ∂ϕ
∂σi

, ∂θ
∂σi

, ∂ψ
∂σi

), the output linearised

model can be constructed.

6.3 Control Scheme Design

It is worthwhile to mention that in this work more emphasis has been made to obtain bounded

error state (attitude) estimation of the spacecraft system in the event of measurement loss and

not the control problem. However, for the sake of being able to obtain estimation results, a

control system design is provided.

In the conventional design methods for the spacecraft systems, controllers use two parameters

namely, angular velocity and attitude parameter – see e.g. [100] and [101]. However, an output

feedback control law proposed in [2], has been considered here to stabilise the plant where it is

assumed that σ̇ and ω are not accessible to measure. The employed control scheme consists of

two loops, an inner loop and an outer loop. The inner loop has a transfer function and the outer

loop has a unity feedback path. The control law is summarised as follows:

τ = T (σ)T [Spσ̃(t)− σ∗(t)], (6.36)

where T (σ) has been defined in Equation (6.1), τ is the control input and

Sp = diag(sp1, sp2, sp3),

σ̃ = σd(t)− σ̂(t),

σ∗(t) = Nσ(t), with

N = diag
(
sd1

α1s

s+ α1

, sd2
α2s

s+ α2

, sd1
α3s

s+ α3

) (6.37)

The positive definite matrices (Sp, N), in the control scheme are the design parameters. The

candidate Lyapunov function is

V (σ∗, σ̇, σ̃) =
1

2

(
σ̇TH∗σ̇ + σ̃TSpσ̃ + σ∗T{αSd}−1σ∗) (6.38)

where H∗ and Sd are defined as

H∗ := (T (σ)−1)TJT (σ)−1 &

Sd := diag(sd1, sd2, sd3) (6.39)
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The time derivative of this Lyapunov function is found as

V̇ = −σ̇Tσ∗ + σ∗T{αSd}−1(Sdασ̇ − ασ∗)

= −σ∗TS−1
d σ∗ (6.40)

The selection of gain elements (spi, sdi and αi) to stabilise the nonlinear plant could be any

positive values as far as the convergence is concerned. The detailed discussion on the asymptotic

stability associated with the proposed control law can be found in [2]. In the subsequent section,

the two algorithms – the Open-Loop Kalman filtering (OLKF) and the Compensated Closed

Loop Kalman filtering (CCLKF) techniques are applied along with the conventional Kalman

filtering (without any data loss) scheme.

PlantSp T T
σd(t)

σ̃(t)

σ∗(t)

τ σ(t)
+ - + -

N

Figure 6.2: Attitude stabilisation using output feedback control

6.4 Compensated Kalman Filter - CCLKF

In this section the CCLKF approach, proposed in Chapter 4 is revised in a concise manner.

Assuming the LOOB is detected at time step = t. The proposed CCLKF scheme employed, is

summarised in the following way.

• Prediction cycle: The predicted state and covariance matrix at time step (t− 1) will be,

xt+1|t = Axt|t +But,

Pt+1|t = APt|tA
T +Qt, (6.41)

where Qt := E[ξtξTt ] is the process error covariance matrix.

• Observation vector

zt = γt
(
Hxt

)
+ θt, (6.42)

with γt characterised as follows:

γt =

{
1; if No LOOB

0; otherwise
(6.43)
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• Check for an observation loss:

if γt = 1 → No LOOB has occurred.

⇒ Run a conventional Kalman filter [21],

if γt = 0 → An abnormal condition is detected (LOOB case)

⇒ The actual observation is not available to which the prediction step is updated.

⇒ Run the compensated Kalman filter, which is summarised below.

• Obtain the LPFO i.e. p through constraint-based algorithms (Chapter 4)

• Compute the autocorrelation matrix Rγ as

Rγ =



Rγ[0] Rγ [1] Rγ[2] · · · Rγ[n− 1]

Rγ[1] Rγ [0] Rγ[1] · · · Rγ[n− 2]

Rγ[2] Rγ [1] Rγ[0] · · · Rγ[n− 3]
...

...
...

. . .
...

Rγ[n− 1] Rγ[n− 2] Rγ[n− 3] · · · Rγ[0]


, (6.44)

and the modified autocorrelation array rγ as

rγ =
[
rγ[1] rγ[2] rγ[3] · · · rγ[n]

]T
(6.45)

where

E
[
z(t− i)T z(t− j)

]
=

{
Rγ[0], if i = j

Rγ

[
|i− j|

]
, if i ̸= j

rγ[j] = E
[
z(t)T z(t− j)

]
(6.46)

• Compute the Linear Prediction Coefficients (LPC) as

Aα = [αj]
T = R−1

γ · rγ (6.47)

• Calculate the compensated measurement vector as

z̄t =

p∑
j=1

αjz(t− j) ≡ Hx̄t + θ̄t (6.48)

• Obtain the compensated residual vector as z̄t − ẑt.

• Calculate the compensated Kalman filter gain cKt = cPt|t−1H
T
(
HcPt|t−1H

T +Rt)
−1.
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CKF/CCLKFSp T T

N

Sensor LOOBτ z

ẑ

x̂
τr

+ - Plant Model Detection+ -

Figure 6.3: Compensated attitude estimation block diagram

• Measurement update step will proceed as:

cxt|t = cxt|t−1 + cKt

[
z̄t −Hcxt|t−1

]
cPt|t = cPt|t−1 − cKtHcPt|t−1 (6.49)

• Return to Step 1 (prediction cycle).

2

6.5 Numerical Example

In this section, the two compensated state estimation techniques (OLKF and CCLKF) are ap-

plied to the rigid spacecraft model which is subjected to loss of measurements. The drawbacks

of the OLKF approach along with the added advantages of the CCLKF scheme are illustrated

through extensive simulations. Several typical simulation results are shown in this section in-

cluding attitude estimation, angular velocity estimation, control effort and absolute error for the

two techniques.

6.5.1 Spacecraft Model

The continuous spacecraft model is discretized according to Nyquist–Shannon sampling theo-

rem. The non-zero equilibrium points in Equations (6.1) and (6.5) are computed off-line through

Levenberg-Marguardt iterative least-square scheme. The plant model is linearised using Jaco-

bian linearisation at these operating points to conclude the state space model – Appendix B

provides more details on this matter.

2As mentioned in Chapter 4, at the very first moment of LOOB, the following inilisations are taken into
account after the prediction step

cxk|k−1 = xk|k−1

cek|k−1 = ek|k−1

cPk|k−1 = Pk|k−1

cKk−1 = Kk−1

.
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The mathematical description of the linearised spacecraft attitude model is described by the

following state space model:

xt+1 = Axt +But +Gξt

zt = Hxt +Dut + θt (6.50)

Jacobian Matrices for MRP representations :

where

A =



−0.0160 0.0621 0.3567 0.2151 0.2087 −0.0133
−0.0621 −0.0160 0.1462 −0.2010 0.2010 −0.0962
−0.3567 −0.1462 −0.0160 −0.0580 0.0779 0.2247

0 0 0 0.0465 0.0661 0.0234

0 0 0 −0.0435 0.0163 −0.1275
0 0 0 −0.1921 0.0274 −0.0628



BT =

 0 0 0 0.0503 −0.0033 −0.0027
0 0 0 −0.0033 0.0595 −0.0054
0 0 0 −0.0027 −0.0054 0.0673



GT =

 −0.2151 0.2010 0.0580 −0.0465 0.0435 0.1921

−0.2087 −0.2010 −0.0779 −0.0661 −0.0163 −0.0274
0.0133 0.0962 −0.2247 −0.0234 0.1275 0.0628



H =

 2.7069 −2.7731 0.3026 0 0 0

2.6196 2.5571 −1.1132 0 0 0

1.1156 −0.2864 2.6252 0 0 0

 ; D = 03×3;

The initial state vector is assumed as x0 =
[
0.2 0.2 0.2 −0.3 −0.4 0.2

]T
. The operating

points computed through Levenberg-Marguardt method are found at u = [0.1284 0.5767 0.9365]T ;

σ = [0.1741 0.0447 − 0.4097]T ; ω = [0.4779 − 0.4779 0.2287]T .

The gain parameters are selected through simulink optimisation tool as follows: Sp=80; Sd = 95;

α = 45;

The plant noise covariance matrix and measurement noise covariance matrix are respectively
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given as

Q = diag{0.01, 0.01, 0.01, 0.01, 0.01, 0.01}

R = diag{0.05, 0.05, 0.05}

Some representative simulation results using MRP representations are shown for the above lin-

earised spacecraft model in the following subsection.

6.5.2 Simulation Results

In this section, a typical set of simulation results is provided for the rigid body spacecraft model

discussed in the earlier sections subject to an induced loss of measurements. Simulation results

are achieved in Matlab/Simulink environment using zero-order hold scheme with a sampling

time of Ts = 10 ms.

The results for the proposed method (CCLKF) and existing Open-Loop approach (OLKF) are

compared with those of the conventional Kalman filter (CKF) without any data loss. The loss of

observation has been assumed to occur due to the sensor fault (or transmission channel failure)

and remains for 15 s. After such a failure, the measurement reading is resumed. It is worthwhile

to emphasis that duration of loss of observation (LOOB) is small enough to assure that the

CCLKF is capable of reconstructing such data loss accurately. Nonetheless, such data losses

could occur intermittently as it is the case in real-world applications.

Results of Modified Rodrigues Attitude Parameters

Figures 6.4 – 6.6 show the nominal state estimation results and illustrate the performance of

the two approaches in terms of attitude parameters estimation (σ1 – σ3) with loss of observation

(LOOB) occurred at all three channels. In this set of simulations, the LOOB is assumed to

occur at time t = 30 s. From Figures 6.4 – 6.6, it can be seen that results produced by the

OLKF diverge immediately from the nominal steady-state values during the loss of observation.

In contrary, the proposed CCLKF approach is comparatively stable and does not deviate signif-

icantly in the event of data loss from the failure-free dynamic model. After the data is resumed,

effectively less oscillations can be found in the simulation results for CCLKF approach than

OLKF approach. From the three figures, it can be easily observed that the proposed CCLKF

scheme significantly outperforms the OLKF approach.

It is also worthwhile to mention that deviation from the steady-state (or nominal value) is

dependant on the length of the data loss period (failure duration).
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Figure 6.4: Simulation results of σ1(t). Loss of output data has been considered from time t = 30 s to
t = 45 s. Thereafter, the observation is resumed.
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Figure 6.5: Simulation results of σ2(t). Loss of output data has been considered from t = 30 to t = 45 s.
After that the observation is resumed.
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Figure 6.6: Simulation results of σ3(t). Loss of output data has been considered from t = 30 to t = 45 s.
After that the observation is resumed.

Angular Velocity Results

In addition to attitude parameters, there are three states of angular velocities associated with the

rigid body spacecraft model under investigation. Figures 6.7 – 6.9 show the distinctions of the two
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approaches in the event of LOOB as an index of angular velocity. It can be seen from these figures

that, the unavailability of observation causes OLKF approach to be a poor solution for state

estimation in the event of data loss. It is important to realise that there are abrupt changes and

chattering, in the angular velocity estimation results of the OLKF approach. Nonetheless, the

compensation-based measurement update cycle in the CCLKF approach provides considerable

improvement in the angular velocity estimation results.
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Figure 6.7: Simulation results of angular velocity ω1(t). Loss of output data has been considered from
t = 30 to t = 45 s only.
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Figure 6.8: Simulation results of angular velocity ω2(t). Loss of output data has been considered from
t = 30 to t = 45 s only.

Control Effort Results

Another important concept considered is the control signal input which poses significant perfor-

mance impacts. Due to the recursive behaviour of Kalman filter and output feedback control

system, the effects of loss of observation transverses to the input parameters too as of the MRP

entities and angular velocities. During the failure period, large overshoots were always observed

when OLKF technique is applied in comparison to the CCLKF approach as evidenced in Figures

6.10 – 6.12.



104 6.5 Numerical Example

0 10 20 30 40 50 60 70 80 90 100
−5

0

5

10

15

20

25

30

35

40

Time (Seconds)

ω
3 (

ra
d/

se
c)

 

 
Normal Kalman filter
Open Loop Kalman Filter
Closed Loop Kalman Filter

Figure 6.9: Simulation results of angular velocity ω3(t). Loss of output data has been considered from
t = 30 to t = 45 s only.
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Figure 6.10: Control signal of τ1 associated with output feedback controller.
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Figure 6.11: Control signal of τ2 associated with output feedback controller.

Error Analysis Results

Another important characteristic property showing the efficiency of the proposed closed loop

Kalman filtering approach compared to that of the OLKF approach is the integrated error

generated, i.e. A reference input - plant filtered output. Most importantly, less chattering and
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Figure 6.12: Control signal of τ3 associated with output feedback controller.

disruption can be tracked in case of using CCLKF approach compared to those of the OLKF

technique as shown in Figures 6.13 – 6.15.
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Figure 6.13: Error in output channel 1.
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Figure 6.14: Error in output channel 2.
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Figure 6.15: Error in output channel 3.

6.6 Summary

State estimation plays an important role in the attitude control of spacecraft systems. That’s

why, in this chapter, attitude estimation and control are considered for a rigid spacecraft model

which is subjected to output measurement loss. The plant dynamics of the rigid body spacecraft

system are obtained while utilising both kinematic and dynamics models. The output model is

achieved in the modified Rodrigues parameterisations.

Conventional Kalman filter could fail in providing bounded attitude estimation error in the

event of loss of measurement because of the unavailability of measurements at the a posteriori

step. In order to handle this issue, two compensated estimation techniques known as Open-

Loop Kalman filtering (OLKF) and compensated close loop Kalman filtering (CCLKF) schemes

are implemented to the rigid spacecraft model, subjected to output data loss. The proposed

(CCLKF) approach was successfully applied to the linearised model of the rigid body spacecraft

to generate some promising results in such adverse conditions. The simulation results were

compared with those of available Open-Loop Kalman filter estimation approach along with the

conventional KF without any data loss. Simulation results based on MRP representations are

shown for various performance indices. Various properties were illustrated and discussed through

a numerical example. These results give comprehensive comparison between the two OLKF and

CCLKF approaches from which the performances can be easily analysed.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, innovative Kalman filtering techniques are presented, which are found very efficient

and vigorous towards loss of output data. The problem of loss of output data or observation

can be frequently encountered in many control and communication systems. Such issue may be

caused by many undesirable factors such as temporary faults and failures, congestion of commu-

nication channels, limited space of buffer registers, transmission error, limited spectrum, time

varying channel gains, interference. The application of conventional Kalman filter requires the

knowledge of plant dynamics, information of unmeasured stochastic inputs, and measured data.

For example, in Kalman filtering technique, the state of a system is predicted through system’s

dynamics information and input signal and thereby updated through measurement (output)

data. Hence, in the absence of any of these information, conventional Kalman filter would not

be able to generate correct (bounded error) state estimation.

The prevailed remedy for such problem has remained the Open-Loop Kalman filtering (OLKF)

approach. In OLKF technique, the state of a system is predicted only during the data loss time

interval and is processed to the next time instant without any update. In other words, in OLKF

scheme, the prediction phenomenon is considered as filtering. OLKF is a fast and simple way

of handling loss of data in the state estimation. In practice, this technique takes even lesser

time for computation than any other solution. However, a number of displeasing factors have

made OLKF technique an improper solution for loss of data in the Kalman filtering. Some of

the factors are listed as follows:

• Inability of OLKF scheme to produce optimal estimation. The estimation error and hence

error covariance could easily exceed the upper bounds provided for a system. In other

words, this technique is found very sensitive to the loss of data in terms of divergence. It

is important to mention that the performance of OLKF is much better than conventional

KF subjected to data loss which does not take into account any remedy towards data loss.
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The reason being is that CKF considers false residual (rk = 0 − Hx̂k) calculation in the

event of data loss instead of actual residual (rk = zk−Hx̂k) due to the unavailability of the

measurement data, consequently results in a huge estimation error in a very short interval.

• The severity of oscillations and chattering. This problem can be observed at the start

and/or end of data loss times. The possible reason behind this problem is the sudden

cease of the update-cycle (when the data loss starts) and immediate start of the update-

cycle (when the data is resumed after the loss). Therefore, depending upon the system

dynamics, large oscillations can be observed at the start and/or end times of data loss.

• KF is a recursive state estimation method i.e. the update step is performed on the predicted

quantities (state and covariance) and the prediction step is based on the updated quantities.

Hence, any deficit at one step would affect the state and covariance at the other step. The

recursive behaviour of the Kalman filter is shown in Figure 7.1. Due to this property,

OLKF technique could not attain the steady state values when the observation is resumed

after data loss. In fact, theoretically it takes infinite time to achieve steady state (stable)

values.

Time-step
update

Measurement
update step

step
Prediction

Figure 7.1: Recursive behaviour of Kalman filter

Open-Loop Kalman filtering scheme, also known as Open-Loop estimation is thoroughly studied

in Chapter 3. A few associated features with OLKF technique are also summarised to aid with

the selection of this approach in the event of data loss. Another way to perform the measurement

update step in Kalman filtering in the event of data loss is to record the last sensor reading all

the time. The technique is known as Zero Order Hold. Chapter 3 is ended by an overview for

Zero Order Hold technique.

The primary objective of this thesis is to overcome the shortcomings associated with OLKF tech-

nique and provide efficient estimation performance in the event of data loss. Towards this end,

linear prediction techniques are employed to construct a signal from its previous data samples.

Two types of linear prediction techniques are in common use; internal (or backward) linear pre-

diction and external (or forward) linear prediction techniques. Internal linear prediction method
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is a system identification problem whereby given signal coefficients are computed through auto-

correlation theory. On the other hand, external linear prediction theory is purely a prediction

concept. Therefore, loss of observation can be tackled with external linear prediction technique

with some suitable amendments.

In Chapter 4, the data loss has been reconstructed through the external linear prediction tech-

nique. Conventionally, there is no distinct method to decide the number of previous data samples

which could optimally reproduce the lost observations. For this purpose, several effective algo-

rithms are presented. In addition solving linear prediction schemes in the routine methodology

involves inversion of huge matrices which dimensions depend on the order of linear prediction

filter. The higher the order of linear prediction filter, the more computational time it would take.

In order to handle this problem, the Levinson-Durbin algorithm, as opposed to Leorux-Gueguen

and Schur algorithms, has been adopted due to its simpler structure and distinct methodology

in the thesis.

The compensated observation signal has been utilised to reformulate the conventional Kalman

filter in Chapter 4. Straightforward procedure has been adopted to obtain the optimal Kalman

filter gain and error covariance matrices using compensated observation signal. Different topolo-

gies are briefly introduced on the ground of various compensated signal’s contributions. During

the data loss time period, gain and error covariance matrices have extra terms caused by loss

of observations. However, once the actual observation signal is resumed, the structures of these

matrices are reduced to the normal ones as is the case of conventional KF. Related discussion

including features and shortcomings with the proposed schemes have been described.

Having an adequate derivations of Kalman filter design while employing compensated obser-

vational signal at measurement update step, it was necessary to test the properties of this

compensated KF (CCLKF) design in the situation of data loss. For this purpose, Chapter 5

has been approached with the theoretical implementation of the CCLKF algorithm on a mass-

spring-damper case study. Through this test, majority of the possible characteristic properties

associated with KF are explored in terms of CCLKF approach such as update state estimation

and error covariance, Kalman filter gain and residual analysis. In order to investigate the ef-

ficiency, the properties explored for CCLKF approach are compared with those of Open-Loop

KF approach. Computational analysis for the CCLKF has been carried out for two scenario;

first when computing linear prediction coefficients through routine methodology using autocor-

relation matrix technique and secondly employing Levinson-Durbin algorithm. The former is

found very expensive in terms of computational time while the latter is computationally efficient

particularly for higher orders of linear prediction filter.

One of the widely used application area of Kalman filtering is spacecraft technology. Attitude
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estimation in spacecraft system involves sensors such as rate gyros and accelerometers which

upon any fault or failure would cause unavailability of output data. This might lead to ad-

verse situations in attitude estimation and control. For this reason, attitude estimation for a

rigid body spacecraft system in the event of output data loss in Modified Rodrigues Parameters

representations has been considered in Chapter 6. The plant dynamics are obtained through

Euler equations of rotational dynamics and Kinematic equations. The output dynamic model is

obtained through sensor in terms of Euler angles. Due to a number of associated shortcomings,

Euler parameters are converted into Modified Rodrigues Parameterisations (MRP). The conver-

sion of output model from Euler angles to MRP representations has been achieved by equating

the two DCM associated with Euler angles and MRP representations.

The nonlinear rigid body spacecraft system is linearised on nonzero operating points. The orig-

inal system is unstable, therefore for stabilisation, a Lyapunov based control law has been anal-

ysed. Simulation results are described for various indeces such as attitude parameters, angular

velocity, control input and error signal. These results have shown the proposed compensated KF

approach in the event of data loss significantly outperforms the existing Open-Loop KF approach.

There are some drawbacks associated with the proposed compensated close loop Kalman filtering

approaches, which are mentioned below:

• The main drawback allied with the proposed scheme is its computational time. This is

because, during data loss time, previously stored data is recalled and optimal linear pre-

diction coefficients are calculated for these data samples through some techniques (e.g.

autocorrelation method), which in turn requires extra time while computing state estima-

tions. The computational time is directly related to the number of data samples recalled

(order of linear prediction filter) for reconstructing this compensated observations signal.

However, by employing some techniques such as Levinson-Durbin algorithm, this issue has

been tackled to some extent.

• The second problem of the CCLKF approach is its hardware requirement to store previous

observations (especially for multi-input multi-output systems). At every data loss time in-

stant, p-number of data samples need to be retreated in order to calculate the compensated

observation, which leads to a need of buffer register that could store and update these p

data samples. ‘p’ is the order of linear prediction filter.

• The third drawback associated with the proposed approaches is that the repossessing of

steady state values (estimated state and error covariance) is not fully attained. However,

this shortcoming is much improved in comparison with the Open-Loop KF approach.

• The proposed schemes consider auto-regressive model (i.e. previous observation data) when
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computing the linear prediction coefficients (LPC), i.e.

z̄k =

p∑
j=1

αjzk−j (7.1)

It does not take into account the control input (i.e. ARMA process) in order to simplify

the matter.

z̄k =

p∑
j=1

αjzk−j +
N∑
i=0

biuk−i (7.2)

However, this might invalidate the proposed approaches if the control signals have abrupt

changes during the data loss period. This feature can be explicitly related to the assumption

of slowly time varying characteristics of the process made in Chapter 4 in the derivation

of LPC.

There will always be a trade-off between the listed shortcomings and the related advantages of

the proposed CCLKF approach depend upon various factors such as amount of data loss, the

nature of system under considerations and the value of computational efforts. For example,

the above mentioned additional requirements can be compromised for a complex and bulky

spacecraft system in order to achieve a successful completion of a mission in the event of loss of

measurements, caused by any undesirable conditions.

7.2 Future Work

Five tasks have been proposed for future work of this thesis. The brief discussion of these tasks

is as follows:

Linear state estimation tools have been adopted to analyse the linear time invariant systems.

In future, nonlinear state estimation techniques such as Extended-Kalman filter (EKF) and Un-

scented Kalman filter (UKF) are intended to be applied, with the latter being the latest addition

to the techniques and would best suit nonlinear systems. Through some more mathematical ex-

pressions, the compensated Kalman filtering schemes are intended to be derived in terms of EKF

and UKF structures. The implementation of EKF is expected to be an easy task due to its great

resemblance with the conventional Kalman filter, implemented in Chapters 5 and 6.

Insufficient data on nonlinear models of a rigid body spacecraft and Uninhabited Autonomous

Vehicles (UAV) systems are planned to be looked into. In a networked system, where various

UAV agents perform to a combined task, loss of data will be considered and nonlinear state

estimation techniques will be employed.
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Linear parameter varying (LPV) systems are emerging research area in many practical appli-

cations. It is also an intention to extend the work of this thesis to LPV systems. In order

to achieve this goal, initially a straightforward Kalman filtering scheme will be designed for a

simple LPV system with bounded parameter variations. Thereafter, the proposed compensated

estimation technique will be modified to cope an LPV application with an induced fault or failure.

Likewise the successful implementation of Constraint Levinson-Durbin algorithm to reduce com-

putational burdensome of the proposed CCLKF approach, other existing methods of Leroux-

Geuguen [14] and Schür algorithms [83] are required to be amended and updated accordingly

to verify and improve the efficiency of the proposed algorithms. This task is expected to give

justification of employing any scheme to reduce the computational efforts.

It is also intended to perform some quantitative analysis for the stability of the CCLKF al-

gorithm with given loss period (in time index) and estimation (upper/lower) error bounds. It

should be interesting to establish some relationship between the amount of data loss and a given

error bounds.

By all means, various unforseen and practical implications related to implementation of the

proposed algorithms need to be explored.



Appendix A

Theory of Levinson-Durbin Algorithm

This appendix is meant for providing sufficient details of Levinson-Durbin Algorithm (LDA). Theory

for LDA can be found in plenty of text books such as [14,83,84].

A simple autoregressive (AR) process can be represented as:

zt =

p∑
j=1

αjzt−j + vt (A-1)

where αj = [α1, α2, ....αp] are the parameters of the AR model, vt is a noise signal and p is the window

size. The optimal values of αi are computed through auto-correlation function using Yule-Walker

equation, which is

Rm =

p∑
j=1

αjRm−j + σ2δm (A-2)

where δm is kroncker delta. It is characterised as follows:

δm =

{
1 if m = 0

0 otherwise
(A-3)

Equation (A-2) is obtained by multiplying both sides of (A-1) by zt−m and then taking the expectation.

i.e.

E[ztzt−m] = E

[ p∑
j=1

αjzt−jzt−m

]
+ E

[
vtzt−m

]
(A-4)

Equation (A-4) is in-fact a set of p linear equations with p unknowns αj = {α1, α2, ...αp} and is known

as Normal Equations. Equation (A-2) for m = 0 can be written as

113



114

Jm = R[0]−
p∑
j=1

αjR[j]

= R[0] + aRγ (A-5)

where Jm = σ2, a = −{α1, α2, . . . , αp} and RT
γ =

{
R[1], R[2], . . . , R[p]

}
.

From the theory of linear prediction, to compute linear prediction coefficients through Normal Equa-

tions, differentiating Equation (A-4) with respect to αj the following equation can be deduced

(Equation-4.15):

rγ = −aRz

rγ + aRz = 0 (A-6)

where

Rz =


R[0] R[1] · · · R[p− 1]

R[1] R[0] · · · R[p− 2]
...

...
. . . · · ·

R[p− 1] R[p− 2] · · · R[0]

 (A-7)

is p× p autocorrelation matrix, and

rγ = E[zTk zk−i] (A-8)

is autocorrelation array for i = {1, 2, . . . , p}.

Augmenting Equations (A-5) and (A-6) would result in

[
R[0] RT

γ

rγ Rz

][
1

a

]
=

[
Jm

0

]
(A-9)

The extended version of Equation (A-9) without any subscript would be


R[0] R[1] · · · R[p]

R[1] R[0] · · · R[p− 1]
...

...
. . .

...

R[p] R[p− 1] · · · R[0]




1

a1
...

ap

 =


Jm

0
...

0

 (A-10)

Keeping in mind that the aim is to compute the optimal values of the LPC, provided the autocorrelation

values of R[l] with l = {0, 1, 2, . . . , p} and J is the minimum mean square error. Levinson-Durbin
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algorithm (LDA), finds the solution to the pth order predictor from the (p − 1)th order predictor. In

simple words, LDA is an iterative-recursive algorithm where initially, solution of zero-order predictor

is computed, which is then utilised to find the solution of the first order predictor. This procedure is

performed as follows:

Zero Order Predictor (LPFO = 0)

Initialising

R[0] = J0 (A-11)

This equation can be achieved from (A-5) with zero lag which in fact is the variance of the signal it

self. Equation (A-11) can be extended with some modifications as[
R[0] R[1]

R[1] R[0]

][
1

0

]
=

[
J0

∆0

]
(A-12)

Equation (A-12) can be obtained from equation (A-10) by substituting a1 = 0. However, this substi-

tution violates the optimal condition of computing LPC, hence to compensate the effect, an additional

term ∆0 is introduced. The following result can be inferred from Equation (A-12);

∆0 = R[1] (A-13)

From the property of Toeplitz matrix, the above equation can be written as[
R[0] R[1]

R[1] R[0]

][
0

1

]
=

[
∆0

J0

]
(A-14)

First Order Predictor (LPFO = 1)

The next step of LDA takes the values, computed in the zero order predictor as follows:[
R[0] R[1]

R[1] R[0]

]
︸ ︷︷ ︸

Rz [1]

[
1

a
(1)
1

]
=

[
J1

0

]
(A-15)

where a
(1)
1 is the LPC computed through first order LDA, and J1 represents the minimum mean square

error for first order predictor. To calculate these two unknowns (a
(1)
1 and J1), considering, the solution

of the form [
1

a
(1)
1

]
=

[
1

0

]
− κ1

[
0

1

]
(A-16)
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where κ1 is a constant and known as reflection coefficient. Multiplying both sides with the correlation

matrix Rz[1] would result in[
R[0] R[1]

R[1] R[0]

][
1

a
(1)
1

]
=

[
R[0] R[1]

R[1] R[0]

][
1

0

]
− κ1

[
R[0] R[1]

R[1] R[0]

][
0

1

]
(A-17)

From Equations (A-12), (A-14) and (A-15)

[
J1

0

]
=

[
J0

∆0

]
− κ1

[
∆0

J0

]
(A-18)

which implies

0 = ∆0 − κ1J0 (A-19)

or

κ1 =
∆0

J0
=

R[1]

J0
=

R[1]

R[0]
(A-20)

From Equation (A-16), the first LPC can be achieved as:

a
(1)
1 = −κ1 (A-21)

The cost function for the first order of the LPF is updated from Equation (A-18) as:

J1 = J0 − κ1∆0

= J0 − κ1(κ1J0)

= J0 − κ21J0

= J0(1− κ21) (A-22)

Equation A-12 is extended as: R[0] R[1] R[2]

R[1] R[0] R[1]

R[2] R[1] R[0]


 1

a
(1)
1

0

 =

 J1

0

∆1

 (A-23)

where ∆1 is included for compensation purpose, which can be found as

∆1 = R[2] + a
(1)
1 R[1] (A-24)
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Through the property of Toeplitz matrix, Equation (A-23) can be written as R[0] R[1] R[2]

R[1] R[0] R[1]

R[2] R[1] R[0]


 0

a
(1)
1

1

 =

 ∆1

0

J1

 (A-25)

Second Order Predictor (LPFO = 2)

Following the previous footsteps, the extended version of first order predictor will be R[0] R[1] R[2]

R[1] R[0] R[1]

R[2] R[1] R[0]


︸ ︷︷ ︸

Rz [2]

 1

a
(2)
1

a
(2)
2

 =

 J2

0

0

 (A-26)

a
(2)
1 , a

(2)
2 and J2 are unknowns in the above equation. Assuming, a proposed solution of the form

 1

a
(2)
1

a
(2)
2

 =

 1

a
(1)
1

0

− κ2

 0

a
(1)
1

1

 (A-27)

where κ2 is the reflection coefficient for 2nd order LPF. Multiplying the above equation with Rz[2] and

the simplifying would result in

 J2

0

0

 =

 J1

0

∆1

− κ2

 ∆1

0

J1

 (A-28)

From Equations (A-24) and (A-28), the second reflection coefficient can be deduced as

κ2 =
1

J1
(R[2] + a

(1)
1 R[1]) (κ2 =

∆1

J1
) (A-29)

From Equation (A-27)

a
(2)
2 = −κ2

a
(2)
1 = a

(1)
1 − κ2a

(1)
1 (A-30)

The cost function is obtained for the next step as (from Equations (A-28) and (A-29))

J2 = J1(1− κ22) (A-31)
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Third Order Predictor (LPFO = 3)

For the purpose of summarising the results in a concise manner, only the final results are shown for the

3rd order of LPF as the derivation is straightforward.

κ3 =
1

J2
(R[3] + a

(2)
1 R[2] + a

(2)
2 R[1]) (A-32)

with

a
(3)
3 = −κ3

a
(3)
2 = a

(2)
2 − κ3a

(2)
1

a
(3)
1 = a

(2)
1 − κ3a

(2)
2 (A-33)

and

J3 = J2(1− κ23) (A-34)

In conventional Levinson-Durbin method, this process is repeated till the final assigned order for Linear

prediction filter is reached. The summary of this approach is described below in Algorithm 7.

Algorithm 7 : Levinson Durbin Algorithm (LDA)

1: Initialisation l = 0; J0 = R[0]
2: Recursion l = {1, 2, 3....p} order of LPF

3.1 Compute Reflection Coefficients as κl =
1

Jl−1

[
R[l] +

p−1∑
j=1

al−1
j R[l − j]

]
3.2 Calculate LPCs for lth order predictor as

all = −κl
alj = al−1

j − κlal−1
l−j ∀ j = {1, 2, . . . , l − 1}

3.3 Is l = p,
Yes; Stop Computation of LPC

Process all ∀ l = {1, 2, ....p}
No; Compute cost function associated with the last lth predictor by Jl = Jl−1(1− κ2l )

Update l← l + 1 repeat Step 3.1

3: The resultant linear prediction coefficients are aj = a
(p)
j where j = {1, 2, . . . , p}



Appendix B

Linearisation of A Rigid Body

Spacecraft Model in Modified

Rodrigues Parameterisations

The kinematic equations in Modified Rodrigues parameterisations are as follows:

σ̇
def
= T (σ)ω (B-1)

where σ3×1 is the modified rodrigous parameter vector,

T (σ) =
1

2

[(
1− σTσ

2

)
I3×3 + S(σ) + σσT

]
(B-2)

The dynamic equation is as follows:

Jω̇ = −S(ω)Jω + τ (B-3)

Expanding Equations (B-1) and (B-3) will result in

f1
def
= σ̇1 =

1

4

[
ω1(1 + σ2

1 − σ2
2 − σ2

3)
]
+

1

2
[ω2(σ1σ2 − σ3)] +

1

2
[ω3(σ1σ3 + σ2)] (B-4)

f2
def
= σ̇2 =

1

2
[ω1(σ1σ2 + σ3)] +

1

4

[
ω2(1− σ2

1 + σ2
2 − σ2

3)
]
+

1

2
[ω3(σ2σ3 − σ1)] (B-5)

f3
def
= σ̇3 =

1

2
[ω1(σ1σ3 − σ2)] +

1

2
[ω2(σ2σ3 + σ1)] +

1

4

[
ω3(1− σ2

1 − σ2
2 + σ2

3)
]

(B-6)
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f4
def
= ω̇1 = a[ω3(J21ω1 + J22ω2 + J23ω3)− ω2(J31ω1 + J32ω2 + J33ω3)]

−b[ω3(J11ω1 + J12ω2 + J13ω3) + ω1(J31ω1 + J32ω2 + J33ω3)]

+c[ω2(J11ω1 + J12ω2 + J13ω3)− ω1(J21ω1 + J22ω2 + J23ω3)]

+aτ1 + bτ2 + cτ3 (B-7)

f5
def
= ω̇2 = d[ω3(J21ω1 + J22ω2 + J23ω3)− ω2(J31ω1 + J32ω2 + J33ω3)]

−e[ω3(J11ω1 + J12ω2 + J13ω3) + ω1(J31ω1 + J32ω2 + J33ω3)]

+f [ω2(J11ω1 + J12ω2 + J13ω3)− ω1(J21ω1 + J22ω2 + J23ω3)]

+dτ1 + eτ2 + fτ3 (B-8)

f6
def
= ω̇3 = g[ω3(J21ω1 + J22ω2 + J23ω3)− ω2(J31ω1 + J32ω2 + J33ω3)]

−h[ω3(J11ω1 + J12ω2 + J13ω3) + ω1(J31ω1 + J32ω2 + J33ω3)]

+i[ω2(J11ω1 + J12ω2 + J13ω3)− ω1(J21ω1 + J22ω2 + J23ω3)]

+gτ1 + hτ2 + iτ3 (B-9)

A =



∂f1
∂σ1

∂f1
∂σ2

∂f1
∂σ3

∂f1
∂ω1

∂f1
∂ω2

∂f1
∂ω3

∂f2
∂σ1

∂f2
∂σ2

∂f2
∂σ3

∂f2
∂ω1

∂f2
∂ω2

∂f2
∂ω3

∂f3
∂σ1

∂f3
∂σ2

∂f3
∂σ3

∂f3
∂ω1

∂f3
∂ω2

∂f3
∂ω3

∂f4
∂σ1

∂f4
∂σ2

∂f4
∂σ3

∂f4
∂ω1

∂f4
∂ω2

∂f4
∂ω3

∂f5
∂σ1

∂f5
∂σ2

∂f5
∂σ3

∂f5
∂ω1

∂f5
∂ω2

∂f5
∂ω3

∂f6
∂σ1

∂f6
∂σ2

∂f6
∂σ3

∂f6
∂ω1

∂f6
∂ω2

∂f6
∂ω3



(B-10)
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B =



∂f1
∂τ1

∂f1
∂τ2

∂f1
∂τ3

∂f2
∂τ1

∂f2
∂τ2

∂f2
∂τ3

∂f3
∂τ1

∂f3
∂τ2

∂f3
∂τ3

∂f4
∂τ1

∂f4
∂τ2

∂f4
∂τ3

∂f5
∂τ1

∂f5
∂τ2

∂f5
∂τ3

∂f6
∂τ1

∂f6
∂τ2

∂f6
∂τ3



(B-11)

G =



∂f1
∂ν1

∂f0Q
∂ν2

∂f0Q
∂ν3

∂f2
∂ν1

∂f1Q
∂ν2

∂f1Q
∂ν3

∂f3
∂ν1

∂f2Q
∂ν2

∂f2Q
∂ν3

∂f4
∂ν1

∂f3Q
∂ν2

∂f3Q
∂ν3

∂f5
∂ν1

∂f4Q
∂ν2

∂f4Q
∂ν3

∂f6
∂ν1

∂f5Q
∂ν2

∂f5Q
∂ν3



(B-12)

Each element of the Jacobian matrix A, B and G are computed as follows:

∂f1
∂σ1

= 0.5(ω1σ1 + ω2σ2 + ω3σ3)− 0.5(ν1σ1 + ν2σ2 + ν3σ3)

∂f1
∂σ2

= 0.5(−ω1σ2 + ω2σ1 + ω3) + 0.5(ν1σ2 − ν2σ1 − ν3)

∂f1
∂σ3

= 0.5(−ω1σ3 − ω2 + ω3σ1) + 0.5(ν1σ3 + ν2 − ν3σ1)

∂f1
∂ω1

= 0.25(1 + σ2
1 − σ2

2 − σ2
3) = −

∂f1
∂ν1

∂f1
∂ω2

= 0.5(σ1σ2 − σ3) = −
∂f1
∂ν2

∂f1
∂ω3

= 0.5(σ1σ3 + σ2) = −
∂f1
∂ν2

(B-13)
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∂f2
∂σ1

= 0.5(ω1σ2 − ω2σ1 − ω3) + 0.5(−ν1σ2 + ν2σ1 + ν3)

∂f2
∂σ2

= 0.5(ω1σ1 + ω2σ2 + ω3σ3)− 0.5(ν1σ1 + ν2σ2 + ν3σ3)

∂f2
∂σ3

= 0.5(ω1 − ω2σ3 + ω3σ2) + 0.5(−ν1 + ν2σ3 − ν3σ2)

∂f2
∂ω1

= 0.5(σ1σ2 + σ3) = −
∂f2
∂ν1

∂f2
∂ω2

= 0.25(1− σ2
1 + σ2

2 − σ2
3) = −

∂f2
∂ν2

∂f2
∂ω3

= 0.5(σ2σ3 − σ1) = −
∂f2
∂ν3

(B-14)

∂f3
∂σ1

= 0.5(ω1σ3 + ω2 − ω3σ1) + 0.5(−ν1σ3 − ν2 + ν3σ1)

∂f3
∂σ2

= 0.5(−ω1 + ω2σ3 − ω3σ2) + 0.5(ν1 − ν2σ3 + ν3σ2)

∂f3
∂σ3

= 0.5(ω1σ1 + ω2σ2 + ω3σ3)− 0.5(ν1σ1 + ν2σ2 + ν3σ3)

∂f3
∂ω1

= 0.5(σ3σ1 − σ2) = −
∂f3
∂ν1

∂f3
∂ω2

= 0.5(σ3σ2 + σ1) = −
∂f3
∂ν2

∂f3
∂ω3

= 0.25(1− σ2
1 − σ2

2 + σ2
3) = −

∂f3
∂ν3

(B-15)

The partial derivatives of function fi, where {i = 4, 5, 6} with respect to σj , ωj and νj , ∀ j = {1, 2, 3}
are calculated as i.e.

∂fi
∂σj

= 0

∂fi
∂ωj

=
∂fiQ
∂ωj

= −∂fi
∂νj

(B-16)

Similarly

∂fj
∂τj

= 0 (B-17)

and
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∂f4
∂τ1

= a,
∂f4
∂τ2

= b,
∂f4
∂τ3

= c,
∂f5
∂τ1

= d,

∂f5
∂τ2

= e,
∂f5
∂τ3

= f,
∂f5
∂τ1

= g,
∂f5
∂τ2

= h,

∂f5
∂τ3

= i

(B-18)

Substituting the above partial derivations in Equations (B-10), (B-11) and (B-12), the required Jacobian

matrices A, B and G can be obtained.



Appendix C

Linear Prediction Coefficients through

Auto-covariance Method

It is not necessary that the process under consideration would be a stationary one for which the mean

and variance of the process are constants. In practice, non-stationary processes where the constant

mean and variance conditions might be violated, can frequently encountered into the systems. In those

cases, the linear prediction can be carried out as follows:

The correlation coefficients R[m] is given as

R[m, 0] =
Cm
C0

(C-1)

with auto-covariance defined as

Cm =
1

n−m

n−m∑
j=1

(yj − ȳ)(ym+j − ȳ) (C-2)

where ‘n‘ is the order of the LPC filter, (or in other words, at maximum n-previous observations can

be considered for prediction purposes). Although, conventionally one should write yj+m but since j is

a variable and in the later stages j will expand the notation of ym+j is preferred. In the above equation

ȳ =
1

n

n∑
j=1

yj (C-3)

which means

nȳ =

n∑
j=1

yj (C-4)
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The above covariance matrix can be expanded as

Cm =
1

n−m

n−m∑
j=1

yjym+j︸ ︷︷ ︸
B1

+
1

n−m

n−m∑
j=1

(−yj ȳ − ȳym+j)︸ ︷︷ ︸
B2

+
1

n−m

n−m∑
j=1

ȳ2︸ ︷︷ ︸
B3

= B1 +B2 +B3 (C-5)

where

B1 =
1

n−m

n−m∑
j=1

{yjym+j} (C-6)

B2 =
1

n−m

n−m∑
j=1

[−yj ȳ − ȳym+j ] (C-7)

and

B3 =
1

n−m

n−m∑
j=1

[ȳ2] (C-8)

Solving B2 and B3 only.

B2 =
−ȳ

n−m

n−m∑
j=1

[yj + ym+j ]

=
−ȳ

n−m
[y1 + y2 + y3 + · · · ym︸ ︷︷ ︸

S1

+ym+1 · · · yn−m−1 + yn−m

+ym+1 + ym+2 · · ·+ yn−m+1 + yn−m+2 · · · yn−1 + yn︸ ︷︷ ︸
S2

]

= − ȳ

n−m
[S1 + S3 + S2] (C-9)

where

S1 =
m∑
j=1

yj (C-10)

S2 =

n∑
j=n−m+1

yj (C-11)

S3 = 2
n−m∑
j=m+1

yj (C-12)
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To compute the value of S3 in terms of ȳ, S1 and S2, look at the expanded version of equation (C-4)

nȳ = y1 + y2 + · · · yk−1 + ym︸ ︷︷ ︸
S1

+ ym+1 + · · ·+ yn−m︸ ︷︷ ︸
S3/2

+ yn−m+1 + · · · yn︸ ︷︷ ︸
S2

= S1 + S3/2 + S2 (C-13)

Or

S3 = 2(nȳ − S1 − S2) (C-14)

Substituting the value of q in (C-9) yields

B2 = − ȳ

n−m
[S1 + 2(nȳ − S1 − S2) + S2]

= − ȳ

n−m
[2nȳ − (S1 + S2)]

=
−2nȳ2

n−m
+

ȳ

n−m
(S1 + S2) (C-15)

In the similar way

B3 =
1

n−m

n−m∑
j=1

ȳ2 = ȳ2 (C-16)

Substituting the value of B1, B2 and B3 in equation (C-5) will result in

Cm =
1

n−m

n−m∑
j=1

yjym+j +
1

n−m
[ȳ(S1 + S2)]−

1

n−m
(2nȳ2) + ȳ2

=
1

n−m

n−m∑
j=1

yjym+j +
1

n−m

[
ȳ(S1 + S2) + (n−m− 2n)ȳ2

]

=
1

n−m

n−m∑
j=1

yjym+j +
1

n−m

[
ȳ(S1 + S2) + (−m− n)ȳ2

]

=
1

n−m

n−m∑
j=1

yjym+j +
1

n−m

[
ȳ(S1 + S2)− (n+m)ȳ2

]
(C-17)

To go into more details, substituting the observation value

yj = Cxj + vj (E[yj ] = Dj) (C-18)
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Substituting the value of yj and ȳ as follows:

Cm =
1

n−m

n−m∑
t=1

(Dj + vj)(Dm+j + vm+j)︸ ︷︷ ︸
T1

+
1

n(n−m)

n∑
j=1

(Dj + vj)(S1 + S2)︸ ︷︷ ︸
T2

− n+m

n−m
[
1

n

n∑
j=1

(Dj + vj)]
2

︸ ︷︷ ︸
T3

(C-19)

T1 =
1

n−m

n−m∑
j=1

(Dj + vj)(Dm+j + vm+j)

=
1

n−m

n−m∑
j=1

(DjDm+j) +
1

n−m

n−m∑
j=1

(vjvm+j) +
1

n−m

n−m∑
j=1

(Djvm+j) +
1

n−m

n−m∑
j=1

(Dm+jvj)︸ ︷︷ ︸
A1=0

=
1

n−m

n−m∑
j=1

(DjDm+j) +
1

n−m

n−m∑
j=1

(vjvm+j) (C-20)

and

T2 =
1

n(n−m)

n∑
j=1

(Dj + vj)(S1 + S2)

=
1

n−m
D̄(S1 + S2) (C-21)

where

1

n

n∑
j=1

vj = v̄ = 0

1

n

n∑
j=1

Dj = D̄
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Equation (C-21) is simplified by substituting the values of S1 and S2;

T2 =
1

n−m
D̄[(

m∑
j=1

yj) + (

n∑
j=n−m+1

yj)]

=
1

n−m
D̄[(

m∑
j=1

(Dj + vj)) + (

n∑
j=n−m+1

(Dj + vj))]

=
1

n−m
[D̄(DI +

m∑
j=1

vj) + D̄(DF +
n∑

j=n−m+1

vj)]

=
1

n−m
[D̄(DI +DF )] +A2 (C-22)

where

A2 =
D̄

n−m
[
m∑
j=1

vj +
n∑

j=n−m+1

vj ] (C-23)

And finally

T3 = −n+m

n−m
[
1

n

n∑
j=1

(Dj + vj)]
2

= −n+m

n−m
D̄2 (C-24)

Equation (C-22) is further simplified by substituting the values of DI and DF . Recall the substitutions

D̄ = 1
n

n∑
j=1

Dj ; DI =
m∑
j=1

Dj and DF =
n∑

j=n−m+1

Dj . Therefore,

nD̄ =

n∑
j=1

Dj

= D1 +D2 + · · ·+Dm︸ ︷︷ ︸
DI

+Dm+1 + · · ·Dn−m +Dn−m+1 + · · ·+Dn︸ ︷︷ ︸
n∑

j=m+1

Dj = (n−m)D̄M

(C-25)

where

D̄M =
1

n−m

n∑
j=m+1

Dj (C-26)

Therefore,

nD̄ = DI + (n−m)D̄M

DI = nD̄ − (n−m)D̄M (C-27)
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In the same way,

nD̄ = D1 +D2 + · · ·+Dm +Dm+1 + · · ·Dn−m︸ ︷︷ ︸
n−m∑
j=1

Dj = (n−m)D̄m

+Dn−m+1 + · · ·+Dn︸ ︷︷ ︸
DF

(C-28)

where

D̄m =
1

n−m

n−m∑
j=1

Dj (C-29)

nD̄ = (n−m)D̄m +DF

DF = nD̄ − (n−m)D̄m (C-30)

Considering A2 to be very small, substituting the values of DI and DF in Equations (C-22) and (C-24)

results in

T3 + T2 = −n+m

n−m
D̄2 +

1

n−m
D̄[DI +DF ]

1

n−m
[−(n+m)D̄2 + D̄(DF +DI)] =

=
1

n−m
[−(n+m)D̄2 + D̄

{
nD̄ − (n−m)D̄M + nD̄ − (n−m)D̄m

}
]

=
1

n−m
[−(n+m)D̄2 + D̄

{
2nD̄ − (n−m)(D̄m + D̄M )

}
]

=
1

n−m
[−nD̄2 −mD̄2 + 2nD̄2 − D̄(n−m)(D̄m + D̄M )]

=
1

n−m
[nD̄2 −mD̄2 − D̄(n−m)(D̄m + D̄M )]

=
1

n−m
[(n−m)D̄2 − D̄(n−m)(D̄m + D̄M )]

=
n−m

n−m
[D̄2 − D̄D̄m − D̄D̄M ]

= D̄2 − D̄D̄m − D̄D̄M (C-31)

substituting T1, T2 + T3 in Equation (C-19) yields

Cm =
1

n−m

n−m∑
j=1

(DjDm+j) +

n−m∑
j=1

vjvm+j + D̄2 − D̄D̄m − D̄D̄M (C-32)
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or

Cm =

︷ ︸︸ ︷
1

n−m

n−m∑
j=1

DjDm+j − D̄mD̄M +D̄mD̄M +

︷ ︸︸ ︷
1

n−m

n−m∑
j=1

vjvm+j

+ D̄2 − D̄D̄m − D̄D̄M

= Cov(DjDm+j) + Cov(vj) + (D̄ − D̄m)(D̄ − D̄M ) (C-33)

C0 is calculated as

C0 =
1

n

n∑
j=1

(yj − ȳ)(yj − ȳ)

=
1

n
[

n∑
j=1

(yj)
2 − 2

n∑
j=1

(yj ȳ) +

n∑
j=1

(ȳ)]

=
1

n

n∑
j=1

(yj)
2 − 2ȳ

n

n∑
j=1

(yj) + ȳ2

=
1

n

n∑
j=1

(yj)
2 − 2ȳ2 + ȳ2

=
1

n

n∑
j=1

(yj)
2 − ȳ2 (C-34)

Substitute the value of yj = Dj + vj , with v̄ = 0 generates

C0 =
1

n

n∑
j=1

(Dj + vj)
2 − D̄2

=
1

n

n∑
j=1

(D2
j + v2j + 2Djvj)− D̄2

=
1

n

n∑
j=1

(D2
j ) +

1

n

n∑
j=1

(vj)
2 − D̄2

=
1

n

n∑
j=1

(D2
j )− D̄2

︸ ︷︷ ︸+
1

n

n∑
j=1

(vj)
2

︸ ︷︷ ︸
= var(D) + var(v) (C-35)

Therefore, the correlation elements can be computed by substituting Equations (C-33) and (C-35) in

Equation (C-1) as follows:

R[m, 0] =
Cm
C0

=
Cov(DjDm+j) + Cov(vj) + (D̄ − D̄m)(D̄ − D̄M )

var(D) + var(v)
(C-36)

where the var(D) = 1
N

N∑
i=1

(Di)
2 − D̄2 and var(v) = 1

n

n∑
j=1

(vj)
2 ∀ i.
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The auto-covariance matrix Rγ and auto-covariance array rγ are constructed as

Rz =


R[1, 1] R[1, 2] · · · R[1, p]

R[2, 1] R[2, 2] · · · R[2, p]
...

...
. . . · · ·

R[p, 1] R[p, 2] · · · R[p, p]

 (C-37)

The linear prediction coefficients Aα are derived through

Aα = (R−1
z )rγ (C-38)

The compensated signal is calculated with the help of these computed LPC by the Equation

z̄k =

n∑
j=1

αjzk−j (C-39)
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[61] V. Kodrić, editor. Kalman Filter. Intech, India, 2010.

[62] A. Kurian. Performance analysis of filtering based chaotic synchronization and development of

chaotic digital communication schemes. PhD thesis, National University of Singapore, 2006.

[63] M. B. Larsen, editor. Synthetic Long Baseline Navigation of Underwater Vechicles. Proceeding

of Oceans, 2000.

[64] E. J. Lefferts, F. L. Markley, and M. D. Shuster. Kalman Filtering for Spacecraft Attitude

Estimation. AIAA Journal of Guidance, Control and Dynamics, 5(5):417 – 429, September-

October 1982.

[65] C. T. Leondes. Theory and Application of Kalman Filtering. Technical Editing and Reproduction

Ltd, London, 1970.

[66] R. Li and J. H. Olson. Fault Detection and Diagnosis in a Closed-Loop Nonlinear Distillation Pro-

cess: Application of Extended Kalman Filters. Ind. Engineering of Chemical Research, 30(5):898

– 908, 1991.

[67] B. G. Liptak. Process Control and Optimization. Instrument Engineering’s Handbook. Taylor &

Francis, fourth edition, 2006.

[68] X. Liu and A. Goldsmith. Kalman Filtering with Partial Observation Loss. In 43rd IEEE Con-

ference on Decision and Control, pages 4180 – 4186, December 2004.

[69] J. Makhoul. Linear Prediction: A Tutorial Review. Proceedings of the IEEE, 63(5):561 – 580,

April 1975.

[70] M. Micheli. Random Sampling of a Continuous Time Stochastic Dynamical System: Analysis,

State Estimation and Applications. Master’s thesis, School of Engineering, Barkeley, 2001.

[71] F. M. Mirzaei and S. I. Roumeliotis. A Kalman Filter-Based Algorithm for IMU-Camera Cal-

ibration: Observability Analysis and Performance Evaluation. IEEE Transactions on Robotics,

24(5):1143 – 1156, October 2008.

[72] K. Mizukami and V. Tews. State Estimation in a pursuit-evasion-game with incomplete

information-exchange, volume 22 of Lecture Notes, pages 241 – 250. Springer, 1980.

[73] N. E. Nahi. Optimal Recursive Estimation with Uncertain Observation. IEEE transactions on

Information Theory, IT-15(4), July 1969.



137 BIBLIOGRAPHY

[74] J. G. Nielsen, M. Newman, H. Nielsen, and F. Blaabjerg. Control and testing of a Dynamic

Voltage Restorer (DVR) at medium voltage level. IEEE Transactions on Power Electronics,

19(3):806 – 813, May 2004.

[75] T. Parsons. Voice and Speech Processing. McGraw-Hill, 1987.

[76] R. Patton and J. Chen. Robust Model Based Fault Diagnosis for Dynamic Systems. Kluwer, 1999.

[77] R. Patton, P. Frank, and R. Clark. Fault Diagnosis in Dynamic Systems Theory and Applications.

Prentice Hall, 1989.

[78] J. Peyton Z. Peebles. Probability, Random Variables and Random Signal Principles. McGraw-Hill,

Inc, second edition, 1987.

[79] C. L. Phillips, J. M. Parr, and E. A. Riskin. Signals, Systems and Transforms. Prentice Hall,

New Jersey, second edition, 1999.

[80] F. N. Pirmoradi, F. Sassani, and C. W. de Silva. Fault Detection and Diagnosis in a Spacecraft

Attitude Determination System. ACTA ASTRONAUTICA, 65:710 – 729, April 2009.

[81] I. Postlethwaite, D. Gu, Y. Kim, K. Natesan, M. Kothari, N. Khan, and R. Omar. A Robust

Fault-Tolerant Tracking Scheme. In Realising Network Enable Capability, volume RNEC08, UK,

2008.

[82] A. S. Poznyak. Advance Mathematical Tools for Automatic Control Engineers, volume 2: Stochas-

tic Techniques. Elsevier, 2009.

[83] J. G. Proakis and D. G. Manolakis. Digital Signal Processing: Principles, Algorithms and Appli-

cations. Prentice Hall International Inc., third edition, 1996.

[84] L. Rabiner and B.-H. Juang. Fundamentals of Speech Recognition. Prentice Hall International,

Inc., 1993.

[85] J. Raol, G. Girija, and J. Singh. Modelling and Parameter Estimation of Dynamics Systems. 65.

The Institution of Electrical Engineers
”
IEE Control Engineering, 2004.

[86] H. Rehbindera and X. Hub. Drift-free Attitude Estimation for Accelerated Rigid Bodies. Auto-

matica, 40:653 – 659, 2004.

[87] H. Schaub and J. L. Junkins. Analytical Mechanics of Space Systems. AIAA Education Series.

American Institute of Aeronautics and Astronautics, Inc., 2003.

[88] L. Schenato. Kalman Filtering for Network Control System with Random Delay and Packet Loss.

In Conference of Mathematical Theory of Networks and Systems (MTNS 06), Japan, July 2006.

[89] L. Schenato. Optimal Estimation in Networked Control Systems Subject to Random Delay and

Packet Drop. IEEE Transactions of Automatic Control, 53(5):1311 – 1316, June 2008.



138 BIBLIOGRAPHY

[90] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. S. Sastry. Foundation of Control

and Estimation Over Lossy Network. Proceeding of The IEEE, 95(1):163 – 187, January 2007.

[91] C. Shah. Sensorless Control of Stepper Motor using Kalman filter. Master’s thesis, Cleveland

State University, May 2000.

[92] L. Shi, M. Epstein, A. Tiwari, and R. M. Murray. Estimation with Information Loss: Asymptotic

Analysis and Error Bounds. In 44th IEEE Conference on Decision and Control, pages 1215 –

1221, Spain, December 2005.

[93] P. Shi, E.-K. Boukas, and R. K. Agarwal. Kalman filtering for Continuous-Time Uncertain Sys-

tems with Markovian Jumping Parameters. IEEE Transactions on Automatic Control, 44(8):1592

– 1597, July 1999.

[94] Y. Shi and H. Fang. Kalman filter-based identification for systems with randomly missing mea-

surements in a network environment. International Journal of Control, 83(3):538 – 551, November

2009.

[95] Y. Shi, H. Fang, and M. Yan. Kalman filter-based adaptive control for networked systems with un-

known parameters and randomly missing outputs. International Journal of Robust and Nonlinear

Control, 19:1976 – 1992, November 2009.

[96] S. Simani, C. Fantuzzi, and R. J. Patton. Model Based Fault Diagnosis in Dynamic Systems

Using Identification Techniques. Advances in Industrial Control. Springer, 2003.

[97] D. Simon. Kalman Filtering. Embedded Systems Programming, 14(6):72 – 79, 2001.

[98] D. Simon. Optimal State Estimation Kalman, H∞ and Nonlinear Approaches. John Wiley and

Sons, Inc., 2006.

[99] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordon, and S. S. Sastry. Kalman

Filtering with Intermittent Observations. IEEE Transections on Automatic Control, 49(9):1453

– 1464, September 2004.

[100] J. J. E. Slotine and M. D. Benedetto. Hamiltonian Adaptive Control of Spacecraft. IEEE

Transactions on Automatic Control, 35(7):848 – 852, July 1990.

[101] J.-J. E. Slotine and W. Li. Applied Nonlinear Control. Prentice Hall, 1991.

[102] S. C. Smith and P. Seiler. Estimation with Lossy Measurements: Jump Estimation for Jump

Systems. IEEE Transactions on Automatic Control, 48(12):2163 – 2171, December 2003.

[103] F. Q. Thomas. Discrete time Speech Signal Processing; Principles and Practice. Prentice Hall

Signal Processing Series. Prentice Hall, Massachusetts Institute of Technology, Lincoln Lab, 2002.

[104] P. P. Vaidyanathan. The Theory of Linear Prediction. Morgan and Claypool Publishers, 2008.

[105] J. Valasek and W. Chen. Observer/Kalman Filter Identification for Online System Identification

of Aircraft. Journal of Guidance, Control and Dynamics, 26(2):347 – 353, March-April 2003.



139 BIBLIOGRAPHY

[106] S. V. Vaseghi. Advanced Digital Signal Processing and Noise Reduction. John Wiley & Sons, Inc.,

third edition, 2001.

[107] W. S. Veline, editor. The Control Handbook, volume I. Jaico Publishing House, CRC Press, 1999.

[108] F. B. Vidal and A. Casanova. Window-Matching Technique with Kalman Filtering for an Im-

proved Object Visual Tracking. In Proceedings of the IEEE Conference on Automation Science

and Engineering, pages 829 – 834, USA, 2007.

[109] G. Welch and G. Bishop. An Introduction to the Kalman Filter. ACM, Inc., SIGGRAPH, 2001.

[110] J. R. Wertz, editor. Spacecraft Attitude Determination and Control. Kluwer Academic Publishers,

1990.

[111] L. L. Whitcomb. Underwater robotics: Out of the research laboratory and into the filed. In

Proceedings of IEEE International Conference on Robotics and Automation, pages 709 – 716, San

Francisco, April 2000.

[112] N. Wiener. Extrapolation, Interpolation and Smoothing of Stationary Time Series. The Technol-

ogy Press and Wiley and Sons, Inc., New York, 1st edition, 1949.

[113] A. S. Willsky. A Survey of Design Methods for Failure Detection in Dynamic Systems. Automatica,

12:601 – 611, 1976.

[114] N. Xiao and L. Xie. Peak Covariance Stability of Kalman Filter with Bounded Markovian Packet

Losses. In The 7th World Congress on Intelligent and Automation, China, June 2008.

[115] E. R. B. Xiaoping Yun, Mariano Lizarraga and R. B. McMGhee. An Improved Quaternion

Based Kalman Filter for Real Time Tracking of Rigid Body Orientation. In Proceedings of

the IEEE/RSJ, International Conference on Intelligent Robots and Systems, pages 1074 – 1079,

October 2003.

[116] L. Xie and L. Xie. Peak Covariance Stability of a Random Riccati Equation Arising From Kalman

FilteringWith Observation Losses. Journal System Science and Complexity, 20:262 – 279, January

2007.

[117] W. Xue, Y.-Q. Guo, and X.-D. Zhang. Application of a bank of Kalman filters and a Robust

Kalman Filter for Aircraft Engine Sensor/Actuator Fault Diagnosis. International Journal of

Innovative Computing, Information and Control, 4(12):3161 – 3168, December 2008.

[118] F. Yang, Z. Wang, and Y. S. Hung. Robust Kalman filtering for Discrete Time-varying Uncertain

Systems with Multiplicative Noises. IEEE Transactions on Automatic Control, 47(7):1179 – 1883,

July 2002.

[119] M. Yang, Y.-W. Wang, Y.-H. Huang, and Z.-H. Guan. Stability and Synchronization of Complex

Dynamical Network with Random Packet Losses. In IEEE Multi-Conference on Systems and

Control, pages 1488 – 1492, Japan, September 2010.



140 BIBLIOGRAPHY

[120] S. K. Yang. An experiment of state estimation for predictive maintenance using Kalman filter on

a DC motor. Reliability Engineering & System Safety, 75:103 – 111, August 2002.

[121] A. Yilmaz, X. li, and M. Shah. Contour-Based Object Tracking with Occlusion Handling in

Video Acquired Using Mobile Cameras. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 26(11):1531 – 1536, 2004.

[122] X. Yun, C. Aparicio, E. R. Bachmann, and R. B. McGhee. Implementation and Experimental

Results of a Quaternion Based Kalman Filter for Human Body Motion Tracking. In Proceeding of

IEEE, Internation Conference on Robotics and Automation, pages 317 – 322. Spain, April 2005.

[123] P. Zarchan. Fundamentals of Kalman Filtering - A Practical Approach, volume 208. AIAA, 2005.

[124] Y. Zhang and J. Jiang. Design of Integrated Fault Detection, Diagnosis and Reconfigurable

Control Systems. In 38th IEEE Conference on Decision and Control, pages 3587 – 3592, December

1999.


