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abstract

Programmable logic construction kit for massive qualitative analysis
of neuronal networks with an application to machine olfaction,

RUBEN GUERRERO-RIVERA

In this thesis, a construction kit for the implementation of neuronal networks
on Field Programmable Gate Arrays (FPGA) is presented. The utility of this
technology for the implementation of neuronal networks becomes apparent when
we show that is possible to perform hyper-real time operation, a feature which
allows neuronal networks designers to analyse in great detail the dynamics of their
networks through the means of a comprehensive behavioural analysis.

Additionally, the construction kit presented here is used to implement a bi-
ologically inspired version of the mammalian olfactory bulb based on previous
work by T. C. Pearce et al. (2005). The results we obtain show that tasks such as
identification, classification and segmentation of odours are successfully performed
by the olfactory bulb model. We illustrate the practical utility of the model by
including experiments using real odour information.

Finally, a comprehensive behavioural analysis is performed by means of a
massive exploration of the characteristics of the response of the model as it was
subjected to different conditions of certain parameters. Results show that as the
stimulating input approaches the trained input (target odour), the response tends
to reach an attractor. This comprehensive analysis, made it possible to observe
the effects of the training on the model response.
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Chapter 1

Introduction

1.1 Research problem and justification.

Over the years, a variety of techniques for modelling neuronal networks have been

developed (Wijekoon & Dudek, 2008; Balzera, Takahashia, Ohtaa, & Kyuma,

1991; Nabet, Darling, & Pinter, 1992). As the necessity for implementing larger

networks increases (Siwei & Zhen, 1998; Nakamura, Sawai, & Sugiyama, 1992;

Kazuki, Yoshihiro, & Sei, 1990), current implementation approaches present se-

rious limitations. For instance the hardware requirements needed to process the

information utilized and generated by the model become more significant (An-

donie, Chronopoulos, Grosu, & Galmeanu, 2005). Additionally, the insufficient

speed of existing approaches results in considerable processing time and hence

longer waiting periods until results become available. There is thus a need for

new approaches to the implementation of neural network-based applications. We

1
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therefore ask the following questions:

• Can we implement neuronal networks using existing technologies so that

hyper real-time performance can be achieved?

• If so, would such an approach also result in benefits for the analysis of neu-

ronal networks?

Answering these questions favourably would put us in a position to offer a better

way to design, develop and implement (relatively) complex neuronal networks.

In this thesis, we first prove that is possible to come up with a programmable

logic construction kit for neuronal modelling which offers hyper real-time perfor-

mance, flexibility and re-usability. Next we are interested in using this kit to

both solve an existing open problem and demonstrate its advantages over other

technologies.

For a suitable example application for the proposed construction kit for neu-

ronal modelling, we turn to the field of the bioengineering. More precisely, the

selected application involves the olfactory sense. Apart from allowing us to en-

joy and distinguish odours, this sense also helps us take critical decisions such

as avoiding dangerous environments (due to the presence of toxic substances), or

classifying odours based on their molecular structure and concentrations. Addi-

tionally, risky activities such as the search for drugs or explosives unavoidably rely

on the detection of substances. It is therefore of great interest to develop a device

capable of carrying out the duties of the olfactory sense (detection and classifi-
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cation) without human intervention. Leaving the humans out of risky activities

(such as the ones mentioned above) would considerably reduce unnecessary expo-

sure to potentially dangerous situations. For these reasons, we choose a simplified

model of the olfactory bulb (the central part of the olfactory sense) as an example

application using our construction kit for neuronal modelling.

If successful, our olfactory bulb model could in principle be used in a variety

of applications. Among these we can mention:

• Safety: Gas detection (Kish et al., 2005).

• Food industry: Bacteria detection (Alocilja, Ritchie, & Grooms, 2003), coffee

classification (Pardo & Sberveglieri, 2002).

• Military: Explosives detection (King, Horine, Daly, & Smith, 2004).

• Wine and beer industry: Identifying and classifying wines according to chem-

ical concentrations (Lozano et al., 2006; Rodriguez-Mendez et al., 2004), and

monitoring the flavour of beers (Pearce, Gardner, Friel, Bartlett, & Blair,

1993).

The example application presented in this thesis builds upon previous research

done in the Bioengineering Laboratory of the University of Leicester by Dr. Tim C.

Pearce and Dr. Carlo Fulvi-Mari (Pearce et al., 2005), whose simplified model of

the olfactory bulb is implemented using the construction kit for neuronal modelling

described here.
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We should stress that it is important not only to be able to effectively de-

tect and classify odours, but equally to perform it in real time, meaning that

odour identification should be accomplished within the first seconds after it was

initially detected. This is where the FPGA stands out from other integrated cir-

cuits: due to its inherent capability for parallel processing circuits, it permits the

implementation of systems at high speeds.

Finally, we will show that a comprehensive behavioural analysis of the model,

only possible due to the hyper real-time performance of the neuron model, can be

used to gain a better understanding of the dynamics of the circuit.

1.2 Outline of the thesis

Chapter 2 reviews the foundations of the neuron. The morphology of a neuron

is revised here, and some important concepts such as reversal potentials and ion

channels are introduced. The Hodgkin-Huxley and Integrate and Fire models are

reviewed. Finally, a description of the olfactory bulb is given in this chapter.

Chapter 3 details the programmable logic construction kit for neuronal mod-

elling developed in this investigation. We show how the simplest of the linear

ODE (ordinary differential equation) solvers can be used to formulate an ex-

act calculation of the Integrate and Fire model and the synapse model. The

synapse and soma models are discussed separately and a Register Transfer Level

(RTL) description of the implementation is given. Both models are combined to
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form the overall model of a neuron, the main processing element of the olfactory

bulb. Other topics such as axonal delays and Spike-Timing Dependant Plasticity

(STDP) are tackled here.

Chapter 4 introduces the olfactory bulb model starting from the connection of

the neurons to proceed to show some results which include a comparison between

the model response and its respective exact solution. The Hebbian learning algo-

rithm is also reviewed here, as well as the integration of the model with external

devices (PC), which forms the basis for subsequent experiments. This chapter

finishes by showing an odour classification experiment, in which the ability of the

model to distinguish between two odours becomes apparent.

Chapter 5 presents an application of the olfactory bulb model using real odour

information obtained in Tufts university (USA). Specifically, this chapter provides

solutions to an identification problem and a classification task. The capabilities

of the olfactory bulb model to 1) detect a target odour and 2) discriminate odours

are demonstrated with real data.

Chapter 6 exemplifies the most important advantage of the construction kit

presented in chapter 3: the ability to perform a comprehensive analysis of the

behaviour of the network under study. This feature is demonstrated by a broad

behavioural analysis of the olfactory bulb which is carried out by investigating of

the effects of 1) the input on the olfactory bulb and 2) the synaptic weights on

the response of the model. This chapter is perhaps the most important one in
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the thesis, since the advantages of the proposed model over other approaches are

evidenced by the two experiments presented here. Finally, chapter 7 concludes

the thesis.



Chapter 2

Foundations

2.1 The basic neuron

A neuron in its more general form is made up of a dendritic tree (with synapses

that act as input terminals), a soma (cell body) and an axon (output terminal).

Synapses are where an axon from a presynaptic neuron connects with the dendrite

of a postsynaptic neuron (Figure 2.1), however, there is no physical connection

between them, there is rather a very small gap called the synaptic cleft (Kandel,

Schwartz, & Jessel, 2000). Once a spike is generated in the presynaptic neuron,

this travels along its axon, and when the action potential reaches the ends of the

axon, a chemical process gives rise to a release of a neurotransmitter which trav-

els toward the dendritic terminal, passing across the synaptic cleft. On the other

side, at the dendrite of the postsynaptic neuron, a group of receptors detects the

presence of the neurotransmitter, activating special channels which permit the

7
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influx and efflux of ions contained in the surroundings of the neurons and within

the plasma membrane of the cell. This causes a synaptic current which results

in a change in the membrane potential. Multiple occurrences of action potentials

could increase the membrane potential in such a way that if it exceeds a threshold

value (threshold potential) the postsynaptic neuron fires, emitting a spike which

travels to further neurons (McCormick, 1998). This results in the membrane po-

tential resetting to a certain level of voltage called the after-hyperpolarization

potential. After an action potential is generated, there is a period where the neu-

ron is not able to emit any spike, which is known as ”absolute refractory period”.

This is followed by the ”‘relative refractory period”’ during which although it is

not impossible to emit another spike, it requires large input for the neuron to

fire an action potential (Levitan & Kaczmarek, 1997). In the nervous system,

thousands of neurons are interconnected forming a complex network, all of them

communicated by mean of spikes governed by the same dynamics (Dayhoff, 1990).

2.1.1 Reversal Potential

A neuron is surrounded by a semi-permeable plasma membrane which isolates the

internal part of the cell from the external environment. The neuron is enclosed

by this membrane, which contains protein pumps and channels, determining the

electronic and chemical properties of the cell by means of influx and efflux of ions.

Internally, the neuron contains ions of several chemicals at different concentrations

than the existing in the surrounding extracellular fluid of the neuron (Figure 2.2),
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Synapse

Synapses

Dendrites

Dendrites

Axon

Axon

Soma

Figure 2.1: Neuron elements. Sketch of the different elements of a neuron, dendrites are joined
to the soma while axons leave from the soma toward other dendrites. Connections between
dendrites and axons form a synapse (dotted circles), adapted from Gerstner & Kistler, 2002.

on the outside, sodium, calcium and chloride exist in much higher concentrations,

by contrast, potassium ions have higher concentrations on the inside (McCormick,

1998).

From electrical theory, we know that wherever a charge movement is present,

a voltage difference is caused. This voltage is called the ”Nernst potential” and is

calculated by the formula (Hille, 2001)

∆u =
kT

q
ln

[S]o
[S]i

, (2.1)

where k is the Boltzmann constant, T the temperature, q is the static charge of

the considered ion, and, [S]o and [S]i the ionic concentration outside and inside

the membrane respectively.

At equilibrium, the Nernst potential (reversal potential in the context of the
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Figure 2.2: The internal part of the neuron contains more potassium ions than the surrounding
fluid. Conversely, sodium ions are more common in the surrounding fluid than within the
neuron. Besides sodium and potassium, other ionic concentrations (not shown) are present on
the neuron, and together they form up the electrochemical properties of the neuron.

neuron) due to sodium ions is around 62 mV regarding the surrounding liquid.

In the same way, the reversal potential of the potassium is around −103 mV, at

body temperature (37◦C). When the voltage difference is either above or below

the reversal potential, then an ionic flux is induced to counteract this situation

(McCormick, 1998).

Apart from sodium and potassium, there are more different types of ions

around the neuron. Altogether, they contribute to settle the membrane potential

between −60 mV and −75 mV, consequently, pumps and channels actively trans-

port ions from (to) the neuron to (from) the surrounding liquid. The membrane

potential at equilibrium is called ”resting potential” and is an important value in

modelling neurons (Hille, 2001).
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2.1.2 Ion channels

The neuron can be seen as being controlled by a set of input and output currents,

that runs through the many channels of the neuron. Several types of channels

have been identified in neurons, and each type has special characteristics that

control the ionic flux into/from the neuron. The most common types of channels

used in neural modelling are: sodium channels (Na+), potassium channels (K+)

and calcium channels (Ca+). Channels are a very important part of the neuron

because they are responsible of many special characteristics of the neuron such as

postinhibitory rebound and adaptation.

2.1.2.1 Sodium channels

Apart from the sodium channel described by (Hodgkin & Huxley, 1952d) there

is a persistent sodium current found in neurons from the mammalian CNS. This

non-inactivating sub-threshold sodium current (INaP ) is activated about −10 mV

to the transient sodium current, where few voltage-gated channels are activated,

and neuron input resistance is high. INaP adds to synaptic current, increasing

effectiveness of digital depolarizing synaptic activity (Crill, 1996).

2.1.2.2 Potassium Channels

Voltage and ion-gated ion channels determine how the synaptic currents are in-

tegrated into a pattern of action potentials. Potassium channels are very diverse

and control aspects of membrane excitability such as the delay in spiking response



12

to sustained synaptic input, the frequency of action potentials and the degree of

accommodation within a burst (Kuenzi & Dale, 1998). The rapidly inactivating

outward current (IA) is a type of potassium current. Depolarizing voltages from

-90 mV elicits a low threshold inactivating outward current IA, as well as a higher

threshold current, which is composed of non-inactivating and slowly inactivating

components. The latter typically with bi-exponential decay (Banks, Haberly, &

Jackson, 1996).

2.1.2.3 Calcium channels

Voltage-dependent calcium channels play a dual role in the CNS, they couple

electrical activity to calcium influx, and they contribute to membrane properties

that determine the precise nature of excitability in different cell types (Talley et

al., 1999). Several different voltage-gated calcium channels have been described

in neurons. Biophysical criteria effectively separate low-voltage-activated (LVA)

from high-voltage-activated (HVA) calcium currents (Talley et al., 1999).

LVA calcium currents activate at hyper-polarizing potentials and inactivate

rapidly relative to HVA currents (Lorenzon & Foehring, 1995). LVA channels

can be activated by small depolarizations of the plasma membrane, as they are

rapidly inactivated, they are also called T-type channels, where T stands for tran-

sient (Perez-Reyes, 2003). Functional roles for T currents include generation of

low-threshold spikes that lead to burst firing, promotion of intrinsic oscillatory be-

haviour, boosting of calcium entry and synaptic potentiation (Huguenard, 1996).
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HVA calcium channels are slowly inactivated (τ ≈ 2000 ms), thus, HVA

Ca2+ channels are also called L-type channels, where L stands for long lasting

(Perez-Reyes, 2003). L-type calcium channels activation is potentiated by strong

depolarizations (Kammermeier & Jones, 1997). Activation of L-type Ca2+ chan-

nels plays a role in the increased firing rate in some type of neurons (Filosa &

Putnam, 2003).

In many neurons, the activation of voltage-gated calcium channels during the

action potential leads to a prolonged after-hyperpolarization (AHP) lasting several

seconds. the AHP causes spike frequency adaptation and is a major determinant

of cell excitability (Martinez-Pinna, Davies, & McLachlan, 2000). Long lasting

AHPs are attributed to the activation of a calcium-dependent potassium current

channel (Constanti & Sim, 1987).

2.1.3 Synapses

Information flows from one neuron to the next at specialized points of contact

known as synapses, which provide a unidirectional flow of information from the

presynaptic to the postsynaptic neuron (Stevens & Zhu, 2003).

Synapses come in two different types, chemical and electrical, which, chemical

are by far the most abundant. These use a chemical neurotransmitter that is

released to the postsynaptic receptors that either open an ion channel or activate

a G-protein coupled receptor (Gibson & Connors, 2003). Synaptic communication

between neurons involves conversion of a presynaptic electrical signal (the action



14

potential), into a chemical signal (the neurotransmitter) and then back into an

electrical signal (the postsynaptic potential) (Nicoll, Frerking, & Schmitz, 2000).

According with the reversal potential, synapses with reversal potential less

than the threshold for action potential generation are called inhibitory, while those

with reversal potentials above the action potential threshold are called excitatory

(Dayan & Abbott, 2001). Synaptic currents generated by an action potential are

given by (Tan, Zhang, Merzenich, & Schreiner, 2003).

Isyn(t) = gsyn(t)[u(t) − Esyn], (2.2)

where gsyn(t) is a time dependent function of the synapse conductance, Esyn is

the reversal potential of the synapse which value depends on the type of synapse,

u(t) is the membrane potential and Isyn(t) is the current induced by a presynaptic

spike.

2.1.3.1 Excitatory synapses

Glutamate is the main excitatory neurotransmitter in the mammalian CNS, and

mediates neurotransmission across most excitatory synapses (Kemp & McKernan,

2002). Glutamate usually acts on two distinct classes of receptors, a non-N-

methyl-D-aspartate receptor (non-NMDA) and NMDA receptors (Edmods, Gibb,

& Colquhoun, 1995).

Channels activated by NMDA are controlled by both the presence of amino
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acid and a voltage-dependent channel which is blocked by concentrations of mag-

nesium ions [Mg2+] (Jahr & Stevens, 1990a). Magnesium concentrations inhibit

the activation of the channels at hyper polarized potentials in such a way that

channels are completely closed below −80 mV, however, at higher membrane po-

tentials, channels start to conduct. The voltage-dependent gating properties of

NMDA-receptor channels are given by (Jahr & Stevens, 1990b)

g∞(u, [Mg2+]o) =
1

1 + eαu[Mg2+]o
β

, (2.3)

where α = 0.062 mV, β = 3.57 mM and [Mg2+]o is the extracellular concentration

in mM.

The NMDA synaptic currents are modelled by a conductance function con-

sisting of three terms: the maximal conductance ḡNMDA, the time course of the

current following the activation of the synapse and the voltage-dependence of the

magnesium block [Mg2+]o (Gabbiani, Midtgaard, & Knopfel, 1994). The conduc-

tance function is given by

gNMDA(t) = ḡNMDA1.358(e
−

(t−t(f))
τdecay − e

−
(t−t(f))

τrise )g∞, (2.4)

with τrise = 3 ms and τdecay = 40 ms.

On the other side, non-NMDA receptors show a faster response than NMDA

receptors (Silver, Traynelis, & Cullcandy, 1992). Non-NMDA receptors can be fur-

ther subdivided into AMPA receptors and Kainate receptors (Frerking, Malenka,
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& Nicoll, 1998), which, AMPA receptors are the most generalized type of non-

NMDA receptors. synaptic currents caused by AMPA receptors are modelled by

(Gabbiani et al., 1994)

gAMPA(t) = ḡAMPA1.273(e
−

(t−t(f))
τdecay − e

−
(t−t(f))

τrise ), (2.5)

with τrise = 0.09 ms and τdecay = 1.5 ms.

2.1.3.2 Inhibitory synapses

γ-Aminobutyric acid (GABA), which is synthesized from glutamic acid (Awapara,

Landua, Fuerst, & Seale, 1950) constitutes the primary inhibitory neurotransmit-

ter in the CNS (Graham & Kado, 2003). GABA acts on two pharmacologically dis-

tinct types of receptors, GABAA and GABAB (Jensen, & Mody, 2001). Activation

of GABAA receptors by synaptically released GABA increases membrane chloride

conductance, producing an early inhibitory postsynaptic potential (IPSP). In con-

trast, GABAB receptors increases membrane potassium conductance producing a

late IPSP (Mott, Xie, Wilson, Swartzwelder, & Lewis, 1993).

The alpha function kte−
t
τ is often used as a standard model for the conduc-

tance response of GABAA and GABAB receptors to synaptic inputs (Bernard, Ge,

Stockley, Willis, & Wheal, 1994), however exponential decays and beta functions

are also used to model inhibitory conductances (Gerstner & Kistler, 2002b), &
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Kistler, 2002 according with the models

gsyn(t) =
∑

f

ḡsyne
−

(t−t(f))
τ , (2.6)

where ḡsyn is the maximum conductance, and

gsyn(t) =
∑

f

(ḡfaste
−

(t−t(f))
τfast + ḡslowe

−
(t−t(f))

τslow ), (2.7)

whose conductance is made up of a fast and a slow component.

2.1.4 Neuron models

There are many different models used to reproduce the behaviour of a neuron,

some of them treat with great detail several dynamics of the neuron, while others

gather the most relevant characteristics of the neuronal behaviour and these are

reflected in the model. Among the most popular neuron models are the Hodgkin-

Huxley neuron model and the integrate and fire model.

2.1.4.1 Hodgkin-Huxley model

The Hodgkin-Huxley model originates from the experiments carried out on the

giant axon of a squid ((Hodgkin & Huxley, 1952b), (Hodgkin & Huxley, 1952a),

(Hodgkin & Huxley, 1952c), (Hodgkin & Huxley, 1952d)). Three different cur-

rents were identified by Hodgkin-Huxley: a sodium, a potassium and a leaky cur-

rent made up of chloride and other ions ((Hodgkin & Huxley, 1952b), (Hodgkin
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& Huxley, 1952c)). The results obtained show that the electrical behaviour of

the membrane can be represented by the electrical network shown in Figure 2.3

((Hodgkin & Huxley, 1952d)).

I

C RL RNa RK

EL ENa EK

IL INa IK

E

Figure 2.3: Equivalent electric diagram of the Hodgkin-Huxley model. The semi-permeable
characteristic of the membrane is characterized by a capacitance (C), the voltage dependent
sodium and potassium channels are represented by a variable resistance, while the leakage is
represented as a constant resistance. Reversal potentials are characterized by batteries (Hodgkin
& Huxley, 1952d).

The capacitance arises from the semi-permeable membrane surrounding the

neuron. The two variable resistors correspond to the voltage dependent sodium

and potassium channels. The batteries are equivalent to the reversal potentials

and finally the fixed resistor corresponds to the leakage channel. Currents can

be carried through the membrane either by changing the value of the membrane

potential or by inducing an ionic current into the network (Hodgkin & Huxley,

1952d). Ionic currents come from the difference in ionic concentration at the

neuron, and by the potential difference across the membrane, thus, current is zero

at equilibrium potential, which is when the membrane potential is equal to the
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resting potential (Hodgkin & Huxley, 1952b). Ionic currents are defined in terms

of conductances given by (Hodgkin & Huxley, 1952a)

gx =
Ix

[u(t) − Ex]
, (2.8)

where Ix is the ionic current, and Ex is the resting potential of the x ion. A

formal assumption used to describe sodium and potassium variable conductances

are (Hodgkin & Huxley, 1952d)

gNa = ḡNam
3h, (2.9)

gk = ḡkn
4, (2.10)

where gNa and gK are the variable conductances of the channels. Typical values

are defined in Table 2.1 (Gerstner & Kistler, 2002b), m and n are the activation

variables for the sodium and potassium respectively, and h is the inactivation

variable for the sodium given by (Hodgkin & Huxley, 1952d)

m′ = αm(u)(1 − m) − βm(u)m,

n′ = αn(u)(1 − n) − βn(u)n, (2.11)

h′ = αh(u)(1 − h) − βh(u)h,
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x Ex (mV ) gx

(

mS/cm2
)

Na 50.0 120.0

K −77.0 36.0

L −54.4 0.3

Table 2.1: Typical values of reversal potentials and conductances in the Hodgkin-Huxley model
(Gerstner, & Kistler, 2002).

m, n and h represent the ionic concentration in a certain place (e.g. inside the

neuron), while (1 − n) represents the ionic concentration somewhere else (e.g.

outside the neuron). αx determines the rate of ion transfer from outside to inside,

while βx represents the ion transfer in the opposite direction (Hodgkin & Huxley,

1952d). αx and βx are defined in Table 2.2 (Gerstner & Kistler, 2002b).

x αx(u(t)/mV ) βx(u(t)/mV )

n (0.1−0.01u(t))

(e(1−0.1u(t))
−1)

0.125e−
−u(t)

80

m (2.5−0.1u(t))

(e(2.5−0.1u(t))
−1)

4e−
−u(t)

18

h 0.07e−
−u(t)

20
1

(e(3−0.1u(t))+1)

Table 2.2: Definition of the functions αx and βx found by Hodgkin-Huxley to fit the dynamics
of their model with the data (Gerstner, & Kistler, 2002).

Analysing the equivalent circuit (Figure 2.3), when a current is induced in

the circuit, from the Kirchoff’s law for currents we have that
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I(t) = Icap(t) +
∑

j

Ij(t). (2.12)

The current of the capacitor can be substituted by

Icap(t) = C
du

dt
. (2.13)

Rearranging the equation (2.12):

C
du

dt
= −

∑

j

Ij(t) + I(t), (2.14)

where C accounts for the membrane capacitance; u for the membrane capacitance

and
∑

j Ij for the sum of all the ionic currents of the neuron. Rewriting the

equation using the formulas given for ionic currents, the Hodgkin-Huxley model

becomes

C
du

dt
= −[gNam

3h(u(t)−ENa)+ gKn4(u(t)−EK)+ gL(u(t)−EL)]+ I(t), (2.15)

here, ENa, EK and EL are the resting potentials of the sodium, potassium and

the leakage channel, their values are given in the Table 2.1.

The Hodgkin-Huxley model accounts for several characteristics of the neuron,

therefore constitutes a detailed neuron model of the giant axon of the squid, and

is widely used in modelling neurons.
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2.1.4.2 Integrate and fire model

The integrate and fire model is the simplest neuron model which mimics certain

properties of a neuron (Feng & Brown, 2004). Consequently, they are easier to

understand and analyse. In the integrate and fire model, the membrane potential

starts from the resting state, rising or lowering according with the synaptic input,

when the voltage reaches a certain threshold ϑ, the neuron fires an action potential

and resets the membrane voltage to the resting state (Koch, Mo, & Softky, 2003).

In its simplest form, an integrate and fire neuron i consists of a resistor R in

parallel to a capacitor C driven by an external current Ii (Figure 2.4). the voltage

ui across the capacitor is interpreted as the membrane potential. The voltage

scale is chosen so that ui = 0 is the resting potential. The membrane potential ui

in between action potentials is given by (Gerstner & Kistler, 2002a),

τm

dui(t)

dt
= −u(t) + RIi(t), (2.16)

where τm = RC is the time constant of the membrane. Networks combining in-

tegrate and fire neurons with synaptic plasticity carry out powerful computations

that are not easily solved using traditional approaches (Spruston & Kath, 2004).

In this model, the active properties of the neural membrane responsible for

spike generation are not explicitly taken into account, only the passive membrane

properties are incorporated in the equation (Hansel, Mato, Meunier, & Neltner,

1998). A variant of the integrate and fire model based on Hodgkin-Huxley model
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I(t)

ϑ

(Dendritic
Current)

δ(t - t    )(f )
j

Figure 2.4: Schematic diagram of the integrate and fire model. The integrate and fire model
(dotted square) receives dendritic current from the synapse (An exponential decay in this case),
which is integrated by the RC circuit; the resulting membrane potential is compared against
a threshold potential (ϑ), whenever the membrane potential is below the threshold potential,
the integration should continue, once the membrane potential exceeds the threshold, a spike is
generated and the membrane voltage is reset to the resting potential (adapted from Gerstner)
.

equations captures conductances changes due to action potentials, which has a

determinant influence on electro-physiological behaviour (Destexhe, 1997).

2.1.5 Learning algorithms

Changes in the synaptic connections between neurons are widely believed to con-

tribute to memory storage, and the activity dependent development of neural

networks. These changes could occur through correlation-based, or Hebbian plas-

ticity (Rossum, Bi, & Turrigiano, 2000). Unless changes in synaptic strength

across multiple synapses are coordinated appropriately, the level of activity in a

neural circuit can grow or shrink in an uncontrolled manner (Abbott & Nelson,

2000), & Nelson, 2000.
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Hebbian learning rules rely on two critical mechanisms, activity dependent

synaptic modification according to Hebbian rules, and a mechanism that forces

synapses to compete with one another so that when some synapses to a given post-

synaptic neuron are strengthened, others are weakened (Song, Miller, & Abbott,

2000).

2.1.5.1 Hebbian learning

The Hebbian learning algorithm employs a rate-based Hebbian rule to train a

network, in such a way that the activity of the pre-synaptic and post-synaptic

cells serves as a base for the calculation of the new weights in the network. As a

consequence, the new weights should increase the activity of some neurons while

inhibiting the activity of others. The calculation of the new weights under the

Hebbian learning algorithm is based on the firing rates of each cell.

The firing rate is defined by a temporal average. The mean firing rate v of a

cell, is the number of spikes nsp(T ) fired by that cell, and which occur in the time

T (Gerstner & Kistler, 2002b), this is given by the equation

v =
nsp(T )

T
, (2.17)

where the mean firing rate is expressed in Hz.

Dr.Hebb’s description of the fundamental principle of learning (Hebb, 1949)

states that correlation between the firings of pre and postsynaptic neurons drive
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changes in the transmission efficacy (Maass & Bishop, 1999). The activity of

a given neuron i is measured by means of its firing rate vi, which is related to

the membrane potential ui by a nonlinear monotonically increasing function g

(Gerstner & Kistler, 2002a) is:

vi = g(ui). (2.18)

The Hebbian learning rule use firing rates of both the postsynaptic cell and the

presynaptic cell to calculate the amount of change of the synaptic weight. The

synaptic change is obtained by the equation (Gerstner & Kistler, 2002a):

d

dt
wij = c · vi · vj, (2.19)

where vi and vj are the firing rates of the postsynaptic and presynaptic cells

respectively, c is a parameter which in order to adhere to the Hebbian learning

rule has to satisfy c > 0.

2.1.5.2 Spike-Timing-Dependent Plasticity (STDP)

Spike-timing-dependent plasticity (STDP) is a learning model which forces

synapses to compete with each other for control of the timing of postsynaptic

action potentials, and this, by itself, can lead to competitive Hebbian synaptic

modification (Song & Abbott, 2001). STDP relies on the spike-timing from both

presynaptic and postsynaptic cells to calculate the extent of change of the synap-

tic strength of the postsynaptic cell. In STDP, the firing order is also important
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since it determines the sign of the synaptic change. That is, the spike-timing de-

fines the amount of change of the synaptic strength, whereas, the order of spiking

between pre and postsynaptic cells determines if the synaptic change should be

added (rewarded) or substracted (punished).

The amount of synaptic modification F (∆t) is calculated according to the

following equations (Song et al., 2000)

F (∆t) = A+e
∆
τ+ if∆t < 0, (2.20)

or

F (∆t) = −A−e
−∆
τ
− if∆t ≥ 0, (2.21)

where A+ and A− determine the maximum amount of synaptic modification. τ+

and τ− determine the ranges of pre to post synaptic interspike intervals over which

synaptic strengthening and weakening occur.

In addition to STDP, there are other learning algorithms based on Hebbian

plasticity such as synaptic scaling, synaptic redistribution (Abbott & Nelson,

2000), & Nelson, 2000), asymmetric Hebbian plasticity (Gutig, Aharonov, Rotter,

& Sompolinsky, 2003), and the method proposed by (Soto-Trevino, Thoroughman,

Marder, & Abbott, 2001), where the regulation of synaptic inhibition plays an

important role.
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2.2 The olfactory bulb

Enjoying a nice meal, perceiving the delicate smell of a perfume or differentiat-

ing between an orange and coffee would not be possible without the olfactory

sense. Smelling is not just a sense to enjoy life more, but could also be the differ-

ence between life or death, hence the importance of being able to decode odour

information.

2.2.1 Olfactory bulb background

The olfactory coding starts at the olfactory epithelium (Cang & Isaacson, 2003),

which is a patch of about 5 cm2 located above and behind the nose (Figure 2.5).

Dendrites of the olfactory sensor neurons (also known as olfactory receptor neurons

- ORNs) extend to the surface of the olfactory epithelium (Belluscio, Lodovichi,

Feinstein, Mombaerts, & Katz, 2002). There, several cilia (5 - 20) protrude and are

bathed by a mucosa which creates a favourable environment for odour molecules

to bind special receptors to the cilia of the ORNs (Kandel et al., 2000). Each

ORN expresses a single type of odorant receptor (Uchida, Takahashi, Tanifuji,

& Mori, 2000; Usrey, 2002), as depicted in Figure 2.6, where different colours

represent different types of ORNs. The olfactory bulb receives the odour molecule

information through axons of the sensory neurons (Mori, Nagao, & Yoshihara,

1999).

Axons of ORNs converge into spherical structures called glomeruli (see Fig-
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bulb

Olfactory

epithelium

Figure 2.5: Location of the olfactory epithelium and the olfactory bulb in humans.
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ure 2.6); each glomerulus contains axons of ORNs expressing the same odorant

receptor (Friedrich, 2006). Odour stimulation results in activation of patterns of

glomeruli distributed across the surface of the main olfactory bulb (Schoppa &

Urban, 2003). In the glomerulus, axons from ORNs synapse with dendrites of

mitral and tufted cells (Kosaka & Kosaka, 2004), see Figure 2.7. In addition,

periglomerular neurons form dendrodendritic inhibitory synapse onto mitral and

tufted cells (Mizrahi & Katz, 2003). Mitral cell axons convey olfactory input to

higher brain centres such as the piriform cortex (Isaacson & Strowbridge, 1998),

where information is thought to be decoded (Kandel et al., 2000). The excitability

of mitral and tufted cells determines the ease with which olfactory sensor infor-

mation is conveyed from the receptor cells to the cortex (Smith & Jahr, 2002).

Olfactory bulb

Mucosa

ORN

Olfactory
epithelium

Cribiform
plate

Glomerulus

Mitral/Tufted
cells

Cilia

To lateral olfactory tract

Figure 2.6: Schematic representation of the mammalian olfactory bulb.

Mitral cells also receive inhibitory input from local interneurons, the granule
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M/T cell

M/T cell

Granule cell

ORN's axons

Glomerulus

Periglomerular

cell

Figure 2.7: Synaptic connections of ORNs onto mitral/tufted cells and dendrodendritic connec-
tions between periglomerular cells.

cells (Segev, 1999). Granule cells are axonless inhibitory interneurons that pro-

vide the main source of interaction between the principal excitatory neurons of the

bulb, the mitral and tufted cells (Egger, Svoboda, & Mainen, 2003). Therefore,

the activity of mitral and tufted cells is regulated by dendrodendritic synaptic

contacts with periglomerular cells and granule cells. Periglomerular cell dendrites

mostly mediate interactions between cells affiliated with the same glomerulus (in-

traglomerular interactions), whereas granule cells mostly mediate interactions be-

tween mitral and tufted cells projecting to many different glomeruli (interglomeru-

lar interactions), (Schoppa & Urban, 2003).

The unusual synaptic arrangement found in the olfactory bulb causes differ-

ent types of responses between granule cells and mitral cells. Mitral dendrites

synaptically excite granule dendrites, and granule dendrites then synaptically in-

hibit mitral dendrites (self-inhibition), as well as inhibiting other mitral and tufted
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cells (lateral inhibition), (Segev, 1999). In addition, when mitral and tufted cells

activate a granule cell strongly enough to emit an action potential, it propagates

through the dendritic tree, causing widespread lateral inhibition (global inhibi-

tion), (Egger et al., 2003). A critical role of the dendrodendritic lateral inhibition

of mitral cells by granule cells is to enhance contrast between the activity of

mitral cells transmitting information about different odour stimuli (odour dis-

crimination). In addition, changes in the efficacy of the dendrodendritic recipro-

cal excitatory-inhibitory synapses between mitral cells and granule cells mediates

odour memory (Shepherd & Greer, 1998).

As it was seen, the olfactory bulb is a complex system that is made up of a

large number of neurons and interconnections, which play different roles in the

odour coding. In this section, the most important characteristics of the olfac-

tory bulb have been enumerated. This information should lay the basis for later

chapters, where an implementation of a simplified model of the olfactory bulb is

presented.



Chapter 3

The programmable construction

kit

3.1 Introduction

Numerical simulation of large scale networks of spiking neurons and real-time

neuromorphic system implementation require distributed computing (Morrison,

Mehring, Geisel, Aertsen, & Diesmann, 2005). Existing general purpose micro-

processors, although extremely versatile, rely largely on serial processing of data,

which severely limits their computational throughput. This serial dependence

comes about through centralized arithmetic resources (such as ALU or FPU)

which are restricted to one or a small number of concurrent operations. This class

of numerical simulation problem, due to its inherent parallelism, is challenging

for single-core processor architectures, rendering real-time operation impossible

32
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for all but the simplest of neural systems. The fact that cluster computing ap-

proaches are so successful in speeding up neuronal simulations demonstrates this

serial bottleneck in computation. Clearly then, single-core microprocessor based

neural simulators offer flexibility but are limited by serial processing constraints.

Fully customized hardware (such as analog VLSI), on the other hand, po-

tentially offers high computational power at the expense of flexibility and design

iteration times. Consequently there is a need for a rapid prototyping platform for

neuronal models which is extremely fast with similar flexibility to general purpose

microprocessors. Field-programmable hardware (in the forms of FPGA gate or

FPAA analog arrays) is an ideal technology to fulfil these requirements, since de-

vices are fast (up to 1 GHz. clock speeds), can be reprogrammed in milliseconds,

and offer vast numbers of individual circuit elements which are inherently parallel

in nature and may be configured arbitrarily.

Programmable logic promises to deliver computational speeds approaching

that of custom silicon solutions whilst providing a flexible substrate for numerical

simulation. Delivering on this promise, however, requires that field-programmable

neuronal element circuit designs exploit the inherent parallelism of both the prob-

lem domain and target technology. Without this fine-grained parallelism this

approach cannot compete in terms of processing performance with single-core mi-

croprocessors, in the form of pipelined and RISC architectures optimized for serial

computation. Hence, to achieve the necessary performance in programmable logic
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requires deploying robust, extremely low-complexity neuron element designs which

are inherently self-contained (i.e. no shared resources) and operate independently

and in parallel. Furthermore, to achieve efficient operation one should consider

only single clock cycle iteration solutions (i.e. one clock cycle equals one numerical

iteration) without sacrificing numerical performance. Multi-cycle architectures of

neuronal models have been previously discussed (Graas, Brown, & Lee, 2004).

Single-cycle architectures have independently been investigated by (Weinstein &

Lee, 2006).

FPGAs are digital integrated circuits (IC), which internally contain config-

urable blocks of logic, as well as programmable inter-block connections (Xilinx,

2002). Such devices can be configured in an arbitrary fashion to perform a variety

of signal and data processing tasks. As a first step in the implementation, designs

must satisfy specific criteria to guarantee a functional circuit, which is free from

logical errors. Generally designs are specified in a hardware description language

(HDL), such as VHDL or Verilog, although schematic level entry is also possible.

The HDL program must then be synthesized, which implies a process of mini-

mization and optimization, which ends in the conversion of the sequential coded

description into a collection of parallel registers (memory storage) and Boolean

relationships. The gate-level functions obtained from this synthesis process, are

then mapped onto the physical layer of the device, which means assigning the

logical design to available chip resources, depending upon the chosen target de-
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vice. From this process a map file is created, which defines the placing of the logic

onto the physical device, as well as the routing of the signals between logic ele-

ments (so-called place and route). Finally a ”bitstream” is created, which is a file

containing the information to internally configure the FPGA device (see (Xilinx,

2003), and (Maxfield, 2004)). Design tools to aid the FPGA synthesis process are

developing rapidly.

Here we present a set of reduced complexity programmable logic designs for

exponential decay and alpha/beta-function synapse with spike time dependent

plasticity (STDP) learning, as well as integrate-and-fire soma complete with ax-

onal delays. Together these designs form a neuronal modelling kit, simulating all

the major components commonly used in neuronal modelling of large-scale net-

works. The designs are of sufficiently low complexity to be realizable in massive

numbers on a single FPGA device through multiplexing, yet feature single clock

cycle numerical iteration.

We begin by making mathematical comparisons between forward-Euler (FE)

and exact integration (EI) numerical iteration schemes in the case of linear ODE

solvers. We show that this comparison leads to a surprisingly simple solution for

implementing neuronal elements with exact numerical properties. By simulating

and evaluating these designs, we demonstrate FPGAs as a viable technology for

large-scale spiking neuron model implementation. The designs are finally tested

against numerical and analytical results, verifying exact integration behaviour.



36

3.2 Numerical considerations

Neuronal dynamics are commonly modelled in digital hardware using numerical

methods for solving ODEs. The simplest scheme for numerical simulation of

dynamical system behaviour is the FE approach. For an initial value problem

(IVP) of the form

ẏ(t) = f(y, t), y(0) = y0, (3.1)

a first order (linear) approximation to its solution is given by the FE approxima-

tion (Lambert, 1973)

ỹk+1 = ỹk + ∆f(yk, tk), (3.2)

which is an iteration scheme that begins from an initial value (y0), where k is an

integer defining the iteration number (k = 0, 1, · · · ), and ∆ is the fixed step size,

in part determining the accuracy of the approximation. In general, this numerical

integration scheme has a truncation error of order O(∆2). More sophisticated

iteration schemes can be used that reduce the single step error (such as Runge-

Kutta), but these require greater computational effort and hence more complex

implementations.

In this context, considering an homogeneous first-order ODE of the form

ẏ(t) = ay(t), y(0) = y0, (3.3)
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we can approximate its solution by applying the FE method as follows

ỹk+1 = ỹk(1 + ∆a), ỹ(0) = y0. (3.4)

As an alternative, there is an exact way to perform digital simulation of general

linear time invariant systems, which is described by (Rotter & Diesmann, 1999).

In order to obtain an EI solution of equation 3.3, we make use of this method,

yielding the following expression

yk+1 = e∆ayk, y(0) = y0. (3.5)

In general, both methods will yield different values. However, in order to find

a relation between the FE and the EI method for the linear ODE case, we make

use of the parameter a, which determines the time constant of the system as the

relational parameter. Let us now define ã and a as the factors determining the

time constants for the FE and EI solutions, respectively. If both iteration schemes

begin from the same initial value y0, then clearly they will give identical results if

the following condition is met

1 + ∆ã = e∆a. (3.6)

To satisfy this condition, we must first solve for ã and then substitute this value

into equation 3.4 instead of a. Hence for first order linear time invariant dynamical
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systems, such as we consider here, the FE solution is simply a time-scaled version

of the exact solution, which can be corrected by adopting the ã parameter in

equation 3.4. In the following circuit implementations we will exploit this fact to

derive extremely low complexity circuit designs capable of implementing an EI of

common neuronal modeling components.

3.3 Neuron model

We first consider the two main neuronal elements – a synapse model which re-

produces postsynaptic dendritic current dynamics resulting from a presynaptic

action potential, and a soma model which integrates these currents over time to

generate a membrane potential. We describe the implementation of both models

in turn, providing the numerical details upon which they are based, as well as

their optimized programmable logic circuit implementations.

3.3.1 Synapse model

3.3.1.1 Exponential decay synapse model

One of the most common methods to model dendritic currents generated by a

synapse in response to a spike train, is through an exponential decay over multiple

spike inputs occurring at times (t1, t2, . . . , tj, . . . tl) to give the dendritic current

I(t) = w
l

∑

j=1

H(t − tj)e
−

(t−tj)

τe , (3.7)
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where H(•) is the Heaviside function, w is the synaptic efficacy (weight) which

determines the current increment in response to the arrival of each presynaptic

action potential and τe the time constant of the exponential decay, resulting from

the arrival of each action potential.

The above equation is the solution to the first order ODE of the form

İ(t) = w

l
∑

j=1

δ(t − tj) −
1

τe

I(t). (3.8)

Which can be approximated using the forward-Euler scheme for a = − 1
τe

as

Ik+1 = wδk+1,j + Ik(1 −
∆

τe

). (3.9)

This numerical scheme may be implemented directly in programmable logic by

keeping a running accumulation of I over time by adding the current value to

itself and subtracting a fraction of Ik at each time step. When a time step occurs

in which a spike is received, the constant factor w must also be added to the

accumulated value. This scheme makes for a very simple architecture with the

exception of the multiplication involved in the fractioning process, which in its

most general form is expensive to implement in programmable logic.

The resulting register transfer level (RTL) description of the synapse which

can be directly implemented in programmable logic is shown in Figure 3.1a, as

derived from the FE iteration scheme given in equation 3.1a. The implementation

assumes that within a single clock cycle (identical to the step time ∆) only a single
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action potential may be received at the input. This is reasonable if we assume

that every synapse is connected to a single presynaptic cell, which typically has

an absolute refractory period far exceeding a single time step. n−bit integer

arithmetic may be used without loss of precision as long as we scale the circuit

weight input wB according to wB = kIw, by choosing kI such that the bit count

output of the circuit, B, extends across the integer number line {0, 1, 2, . . . , 2n−1}.

In this case the dendritic current can be recovered from the circuit output via

I(t) = B/kI . The real-time response of this circuit to a single action potential

shown in Figure 3.1b is an exponential decay, with starting value equal to the

weight of the synapse as shown in Figure 3.1c. The simulation proceeds at least

3 orders of magnitude faster than biological time, requiring a dimensionless speed

up factor kt to translate between biological time constants and those achieved

by the FPGA. The speed up factors kt are calculated based on a biological time

constant for the synapse of 5 ms for Figures 3.1 and 3.2, and a biological time

constant for the soma of 20 ms for Figures 3.3, 3.4 and 3.7.

Using the same arguments as previously, it is clear that the FE scheme de-

scribing the synaptic dynamics is equivalent to the EI solution as long as the

following corrected time constant is substituted for τe in equation 3.9

τ̃e =
∆

1 − e−
∆
τe

. (3.10)

The behavior of this circuit to the regular spike train shown in Figure 3.1d is
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Figure 3.1: Exponential decay synapse implementation. (A) RTL description of the synapse
architecture. Spiking synaptic input is represented by 0-1 logic levels, which controls the addition
of weight value at each clock cycle. Thick solid lines represent m−bit digital buses (representing
unsigned integers), thin solid line represents an individual control line. (B) A single spike event
at time t = 0 occurs at the input of the synapse. (C) An exponential decay is generated in the
circuit as response to the input. For a synapse with a current increment of 50 pA, the bit count
output, B, can be converted to synaptic current using I(t) = B/kI , where kI = 3.28 × 1014

counts A−1. (D) Spiking input at a regular firing frequency, fsp = 5 MHz., used to test the
synapse implementation. (E) Real-time synapse response to this regular spiking input for FPGA
synapse implementation. The theoretical asymptotic value of peak synaptic current is shown
by the upper dashed line. The clock frequency was set to fclk = 100 MHz giving a step time,
∆ = 10 ns, and a speed up factor kt = 1953 resulting in time constants, τ̃e = 2.56µs and weight
w = 16384 for (C) and w = 8192 for (E).
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shown in Figure 3.1e. The limiting value of peak synaptic current is compared to

the asymptotic value (dotted line), which in the case of a regular spiking input at

fixed frequency, fsp, can be shown to be

Ipeak =
w

1 − e
−

1
fspτ̃e

. (3.11)

The asymptotic peak response of the circuit is found to be within one LSB of the

theoretical value, Ipeak.

3.3.1.2 Alpha and Beta function synapse models

Alpha and beta functions are also popular physical models for synaptic dy-

namics (Jack, Noble, & Tsien, 1975); (Gerstner & Kistler, 2002a); (Tuckwell,

1988). The dendritic current generated by an alpha function synapse respond-

ing to multiple spike inputs occurring at times (t1, t2, . . . , tj, . . . tl) is described by
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alpha function

I(t) =
w

τα

l
∑

j=1

H(t − tj)(t − tj)e
−

t−tj

τα , (3.12)

where w is again the efficacy of the synapse and τα is the characteristic time

constant for the synapse.

In a beta function model, current in a postsynaptic dendrite generated in
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response to multiple presynaptic spikes occurring at times (t1, t2, . . . , tj, . . . tl) is

described by
0 5 10 15 20 25 30
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beta function

I(t) = wβ

l
∑

j=1

H(t − tj)(e
−

t−tj

τβ1 − e
−

t−tj

τβ2 ), (3.13)

where τβ1 and τβ2 , now determine the time constant of the synapse, and β is a

parameter adjusted to produce a (dimensionless) beta function with unit ampli-

tude.

Rotter and Diesmann (1999) show how a matrix exponential can be used to

describe the exact solution to greater than first-order linear ODEs (see Appendix

A), such as alpha and beta function dynamics. Due to their second-order dynam-

ics, the matrix exponential for either the alpha (equation A.2) or beta function

(equation A.3), consist of two exponential decay terms in the diagonal, and a third

off-diagonal term. This fact provides us with a simple method for implementing

either function by deploying in cascade two exponential decay elements detailed

in section 3.3.1.1.

There is, however, a non-zero off diagonal term in both matrices, which acts as

a scaling function that must ordinarily be applied when coupling both exponential

decay elements. We see that this matrix element is in fact a constant factor, and

so can be implemented by means of a multiplier in this circuit. Yet, to keep the
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design as simple as possible, this constant factor may be directly applied to the

weight of the synapse instead. Adjusting the synaptic weight in this way does not

change the dynamics of the function, but eliminates the necessity of multipliers

between exponential decay elements, resulting in a simpler circuit. Thus, the

resulting adjusted weight for the alpha function is

wadj = ∆e−
∆
τα w, (3.14)

whereas, for the beta function it is

wadj =
wτβ1τβ2

τβ1 − τβ2

(e
−

∆
τβ1 − e

−
∆

τβ2 ). (3.15)

The schematic for this class of synapse is shown in Figure 3.2a. In this case, ac-

tion potentials, acting as input, are received at the first exponential decay element

whilst the output from the second element follow alpha/beta function dynamics.

The parameter ρ, shown, will be proved to be an important parameter when the

circuit is used in combination with a soma circuit to reproduce the membrane

potential of a neuron, but is not relevant for isolated synapses and can then be

set to zero. Figure 3.2c shows an alpha function generated by this circuit as a

response to a single input spike applied at time t = 0 (Figure 3.2b). Note that we

have again adjusted each time constant according to equation 3.10 to guarantee

an EI solution.
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Figure 3.2: Alpha/beta function synapse implementation. (A) Block diagram of the implementa-
tion of an alpha/beta function generator implemented by connecting in cascade two exponential
decay synapses. When τe1

= τe2
, the function generated is an alpha function, otherwise, it is a

beta function. Each time an action potential arrives at the synapse, both the adjusted weight
and the value of ρ are added to the circuit. The parameter ρ is only used when the alpha/beta
function is fitted to a soma circuit to produce a combined neuron model, in such cases, the
value of ρ is determined using equations 3.18 and 3.19. When simply performing isolated alpha
function synapses ρ has no effect in the circuit, therefore set ρ = 0 and no value of ρ will be
added during spikes, whereas wadj is determined by equations 3.14 or 3.15 depending on the
type of synapse. (B) A single spike event at time t = 0 occurs at the input of the synapse. (C)
An alpha function is generated as real-time response to the input. A 32−bit representation was
used in the circuit with parameters clock frequency fclk = 100 MHz., step time, ∆ = 10 ns,
kt = 1953, τ̃α = 2.56µs, ρ = 0 and adjusted weight wadj = 64.
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3.3.2 Soma model

The popular integrate-and-fire model which receives synaptic input of the form

I(t) has a membrane potential, V (t), the dynamics of which are described in

between generated action potentials by

V̇ (t) = −
V (t)

τm

+
I(t)

Cm

, (3.16)

where the membrane capacitance, Cm, is a constant and τm is the characteristic

time constant for the cell. Once V (t) reaches a fixed threshold potential, Vth,

say at time t′, V (t′)− = Vth, the soma then resets to the after-hyperpolarization

potential, V (t′)+ = Vahp, and a spike is generated by the soma and integration

of the current input continues. Again, using the FE approach the solution of

equation 3.16 may be approximated as

Vk+1 = Vk(1 −
∆

τm

) +
∆

Cm

Ik, (3.17)

resulting in a similar implementation to that of the exponential decay synapse,

except that the dendritic input is added at each time step. In the next section, we

show how, again, EI can be implemented within the FE scheme if the dynamics

of I is appropriately taken into account.

The RTL description for the soma implementation, complete with spike gener-

ating mechanism is shown in Figure 3.3a. A comparator is used to detect threshold
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crossings, which gates a single flip-flop producing a 0 → 1 → 0 transition on the

axon output lasting one clock cycle. If required, a fixed input bias may be added

at each time step in order to determine the resting potential of the cell. Similar

to before, the bit count held in the soma potential register, B, is a linearly scaled

representation of the soma potential, such that V (t) = B/kV . The soma model

responding to two current pulses of different magnitudes (shown in Figure 3.3b)

is shown in Figure 3.3c.
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Figure 3.3: Integrate-and-fire soma implementation. (A) RTL description of soma architecture.
Somatic input current, I(t), after-hyperpolarization (reset) potential, Vahp, and the threshold
potential, Vth are each represented by an p−bit signed integer (thick solid lines). A fire event
(spike) is represented by a 0→1 transition on the soma output line lasting a single clock cycle.
(B) Somatic current pulses (see Rotter & Diesmann, 1999, sect. 3.2.3 for the appropriate
EI coefficient) of I = 250 and 350 bit count respectively lasting and separated by 4 µs were
used to test the soma implementation. (C) Real-time soma response to the current input for
the FPGA implementation with a speed up factor kt = 7813. For a soma with a threshold
of 20 mV above resting potential, the soma potential bit count, B, can be converted to soma
potential V (t) = B/kV , where kV = 2×106 counts V−1. A 32−bit representation was used with
parameters clock frequency fclk = 100 MHz., step time, ∆ = 10 ns, resulting in τ̃m = 2.56µs,
and Vth = 40000 which is indicated by the horizontal dashed line.
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3.3.3 Combined neuron model

We have now developed programmable logic circuits that implement EI solutions

for all the main neuronal modelling components described by equations 3.7, 3.12,

3.13 and 3.16. These synapse and soma circuits must next be combined in such

a way as to obtain an EI solution for the complete neuron model. This process is

not immediate, since unfortunately combining individual elements with EI perfor-

mance does not guarantee EI system performance when coupled together. Thus,

some important considerations must be taken into account before connecting these

components.

First we use the matrix exponential of the combined system given by (Dies-

mann, Gewaltig, Rotter, & Aertsen, 2001), as in equation B.1. In this case the

matrix exponential describes the state space representation of a combined neu-

ron comprising synapse and soma. We see from this representation that a simple

cascade connection of these components will not suffice, since there exist non-

vanishing off-diagonal elements which act as constant factors between stages, again

requiring the use of multipliers.

In order to optimize the combined neuron model for the case of alpha-function

synapse and soma, we apply a linear transformation (Appendix B), which permits

the direct cascade of synapse and soma elements without need of coupling factors.

An important consequence of this transformation, however, is the necessity to

again adjust the synaptic weight and also apply a constant addition factor (ρ) in



49

between stages according to,

wadj =
τατm∆e−

∆
τα (e−

∆
τα − e−

∆
τm )

C(τα − τm)
w, (3.18)

and

ρ =
τατm((τα − τm)∆e−

∆
τα − τατm(e−

∆
τα − e−

∆
τm ))

C(τα − τm)2
w. (3.19)

These parameters may again be calculated off line to avoid the necessity of multi-

pliers in the circuit, yielding the far simplified combined neuron circuit shown in

Figure 3.4a.
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input for the FPGA combined neuron implementation. (D) Spikes generated by the combined
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for both circuits with clock frequency fclk = 100 MHz, step time, ∆ = 10 ns and kt = 7813. For
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Using similar arguments for the exponential decay synapse and soma case

(Appendix C) we can again find an adjusted weight which results in combined EI

performance

wadj =
wτeτm

C(τe − τm)
(e−

∆
τe − e−

∆
τm ). (3.20)

Now that we have determined the conditions required to perform an exact

integration for each case, synapse and soma may now be combined to form a self-

contained, single clock cycle operation, spiking neuron implementation. Figure

3.4a shows a generalized multi synapse scheme for a single neuron. The neuron

comprises r synapses, which receive spikes from different presynaptic cells, gener-

ating dendritic currents which are summed in a single clock cycle and integrated

to produce the membrane potential of the soma. In general a greater number of

bits will be need to be deployed at the soma as compared to the synapse, since

integration of the input occurs at each time step (not just after spike arrival) and

multiple synapse inputs may be summed. In order to minimize the total number

of bits required in the soma, we can limit the maximum and minimum weights in

the synapses to avoid overloading the soma, which as we will see is also a desirable

characteristic for the learning algorithm we will consider later.

In order to demonstrate the EI performance of the combined designs, we

tested an exponential decay type synapse and soma. Input spikes were applied to

the combined neuron model as seen in Figure 3.4b which gave rise to the resulting

membrane potential shown in Figure 3.4c. We see that in this case the membrane
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potential crosses the threshold (Vth) three times, generating the same number of

spikes (Figure 3.4d).

3.3.4 Axonal Delays

Axonal delays play an important role in the dynamics of spiking neuron network

models (Crook, Ermentrout, Vanier, & Bower, 1997) and are simple to implement

in this design. In general, axonal delays will not be constant across all cells of

the network. Instead, each axon should have associated with it a particular delay

(Figure 3.5a).

When a spike occurs at a soma output, this should not be delivered instantly

to the target synapse. Rather, the action potential must be presented in some n∆

time steps after the spike occurred. In this design, axonal delays are implemented

using a ring buffer (Figure 3.5b). The spike history (up to time n∆) is stored in

the ring buffer from each soma and at each time step the nth element is trans-

mitted to the target synapse, while the current state of the soma is written to the

buffer. Ring buffers have the advantage that spike history data is automatically

overwritten as it becomes redundant.

3.3.5 Learning by STDP

There are many Hebbian (correlation) based plasticity mechanisms which can be

used for learning purposes in spiking neuron models (Abbott & Nelson, 2000);

(Gutig et al., 2003). One of the most common of these is spike timing dependent
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plasticity (STDP) proposed by (Song et al., 2000). This plasticity mechanism

relies on the difference in presynaptic and postsynaptic spike times to adjust the

strength of excitatory synapses.

As an example of how plasticity mechanisms may be conveniently combined

with the neuronal element designs for on-chip learning in real-time we have imple-

mented STDP with some synapses. Figure 3.5c shows the RTL design of the STDP

unit, which contains two exponential decay elements reused from the synapse de-

signs. The exponential decay unit situated in the upper section of the diagram

receives presynaptic spiking input, in the same way as the synapse itself. Each

time a spike is received at this exponential decay unit a value equal to the max-

imum amount of change of the synapse strength (∆W+) is added to its output,

while during latency periods this value decays exponentially according to equa-

tion 3.7. Once a spike is generated in the postsynaptic neuron, the strength of

the synapse is increased by the current value output by this exponential decay

unit. The second exponential decay unit behaves in the opposite way. That is,

the second element has as input postsynaptic action potentials that add to the

current value an amount equal to the maximum possible change of synapse weak-

ening (∆W−). When a presynaptic action potential is received, the current value

of this exponential decay unit is subtracted from the weight of the synapse. In

this way synapses compete to control the postsynaptic spike timing of the neuron.

Figure 3.5d shows the implementation of the STDP unit in the generalized neuron
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model.

The weight of the synapse is limited to the range [0,Wmax]. A requirement

for stable synaptic modification requires that ∆W+ < ∆W− < Wmax and exper-

imental results suggest that ∆W−/∆W+ = 1.05 (Song, Miller & Abbott, 2000).

The maximum weight Wmax should be chosen so as not to overload the soma.

3.4 Results

RTL designs for each neuronal component were implemented in VHDL and exe-

cuted on a PCI-based FPGA development board (model ADM-XRC-II Pro, man-

ufactured by Alpha Data Systems, UK), which hosts a Xilinx Virtex II Pro device

(product code XC2VP100-5). Numerical results were tested against the equivalent

exact numerical solution as calculated on a standard PC with Intel Pentium IV

running at a clock speed of 3.06 GHz with 1 GB of external memory, programmed

in C++. All responses shown in Figures 3.1, 3.2 and 3.3 (b, c) were compared

against their corresponding EI solution and the differences plotted in Figure 3.6

(left). In all cases the errors show a random behaviour about zero, which sug-

gests that the difference is due to round-off as a result of the finite length number

representation. This conclusion is confirmed by the histograms of the error (Fig-

ure 3.6, right) which show that in all cases the distributions closely resemble the

shape of the uniform probability density function, which is the expected behaviour

generated by a round-off process (Barnes, Tran, & Leung, 1985).
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With increasing time the response error becomes more regular as the output

of the circuits approaches zero, since the time derivative becomes very small (itself

an exponential decay). In the case of the alpha-function synapse (Figure 3.6b.),

although we see a random uniform distribution about zero of ± 0.5 bits for each

of the two stages, when combined the two errors may accumulate in the positive

direction leading to an error greater than ± 0.5 bits for a single neuron. However

the total error will never exceed ± 1 bit and is not systematic, since the asymptotic

behaviour is toward zero.

An additional experiment was carried out using a combined neuron model

comprising an alpha function synapse and a soma, which was excited by a single

spike at time (t = 0). The membrane potential was again compared against

the numerical solution given by the EI method. The error between the circuit

implementation and the EI solution shows the same behaviour as in the preceding

case, namely a uniform distribution due to the round-off process (Figure 3.6d).

To further test the numerical performance and robustness of these designs, a

combined neuron simultaneously integrating signals from five exponential decay

synapses driven by Poisson processes (Figure 3.7a) was implemented. The total

resulting synaptic current is shown in Figure 3.7b. The difference between the

membrane potential obtained by the EI scheme, and the value generated by the

circuit (Figure 3.7c), again shows a random behaviour about zero, ruling out any

systematic error in the circuit behaviour (Figure 3.7d). In this case, a total of 308



56

D
iff

er
en

ce
 (

B
it 

C
ou

nt
)

0 5 10 15 20 25

0

0.5

1.0

- 1.0

- 0.5

Time (µs)

A

0 10 20 30 40 50 60 70
Frequency

0

- 0.4

- 0.8

0.8

0.4

D
iff

er
en

ce
 (

B
it 

C
ou

nt
)

B

D
iff

er
en

ce
 (

B
it 

C
ou

nt
)

0 10 20 30 40 50

0

0.5

1.0

- 1.0

- 0.5

Time (µs)
0 20 40 60 80 100

Frequency

D
iff

er
en

ce
 (

B
it 

C
ou

nt
)

0

0.4

0.8

- 0.4

- 0.8

Exponential decay synapse

Alpha function synapse

C

0 5 10 15
�

�

�

�

�

- 0.8

- 0.4

0

0.4

0.8

Time (µs)

D
iff

er
en

ce
 (

B
it 

C
ou

nt
)

D
iff

er
en

ce
 (

B
it 

C
ou

nt
)

0 10 20 30 40 50

0.8

0.4

0.0

- 0.4

- 0.8

Frequency

Soma

D

0 500 1000 1500
�

�

�

�

�

- 0.8

- 0.4

0

0.4

0.8

Time (µs)

D
iff

er
en

ce
 (

B
it 

C
ou

nt
)

D
iff

er
en

ce
 (

B
it 

C
ou

nt
) 0.8

0.4

0.0

- 0.4

- 0.8

Frequency

Combined neuron model with alpha synapse

0 200 400 600

Figure 3.6: Differences between the numerical solution and the circuit responses. Difference over
time (left) and histograms of their corresponding error distribution (right) for (A) exponential
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combined neuron model made up of alpha function synapse and integrate-and-fire model. The
error corresponds to those responses shown in Figures 3.1-3.3 except for the combined neuron
model whose response comes from a single spike at (t = 0). The parameters of the three first
circuits are the same than the ones specified for each response, while for the combined model
the parameters are: τ̃α = 25.6 µs, τ̃m = 4.096 ms, C = 250 pF, adjusted weight wadj ≈ 0.5089
and ρ ≈ 0.2553. All errors show the same characteristics: a random behaviour about zero and
a uniformly distributed probability density function. The clock frequency was set to fclk = 100
MHz giving a time step of ∆ = 10 ns. Numerical solutions were carried out in C++ using long
double precision, using an 80 bits representation with 64 bits for the mantissa and 14 for the
exponent.
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action potentials were generated by the circuits (Figure 3.7e), exactly the same

number of spikes which were obtained through the EI scheme. Critically, there

were no differences in firing times for both the circuit and the numerical solution

– all spikes were time coincident within a single clock cycle (Figure 3.7f). This

confirms that for the purposes of simulation of integrate-and-fire neuron and expo-

nential decay based synapse dynamics this circuit produces EI performance under

realistic simulation conditions, only limited by the restricted bit length of the

representation, which is the case for any digital neuronal model implementation.

3.5 Conclusion

Designs for leaky integrate-and-fire soma and exponential/alpha/beta function

synapses with STDP learning and axonal delays are presented in this thesis which

are suitable for implementation in programmable logic. Together these designs

provide a neuronal modelling construction kit of the most popular elements which

can be deployed in arbitrary configurations for hyper real-time implementation.

This programmable logic construction kit supports the building of large and com-

plex architectures of spiking neuron networks by means of an efficient communica-

tion and multiplexing scheme of the neuronal elements. The circuits proposed here

have the advantage that they work in parallel rather than depending upon serial

computation, being capable of simulating neuronal models in hyper real-time.

The implementation we present is restricted to the class of integrate-and-
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numerical implementation and circuit response. All spikes from the circuit were exactly coin-
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wadj5 ≈ 0.077253. Whereas τ̃m = 2.56µs, for the soma, Capacitance C = 12 pF, threshold
potential, Vth = 65000. The clock frequency was set to fclk = 100 MHz, giving a step time,
∆ = 10 ns and a speed up factor, kt = 7813. Numerical solutions were carried out in C++ using
long double precision using an 80 bits representation with 64 bits out of them for the mantissa
and 14 for the exponent.
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fire models where synapses are described by time dependent currents. However,

with conductance based synapses only the differential equation for the membrane

potential is no longer linear time-invariant. Future work will need to explore

whether an implementation with exact integration (EI) for the conductances and

an approximate method for the membrane equation (e.g. FE as described in

section 2) can effectively be combined.

The circuit designs have been demonstrated to perform exact integration in a

single clock cycle and are also self-contained (no shared resources). The advantage

of single clock cycle operation is that designs may operate faster than biological

time scales (milliseconds); depending on their complexity and the extent of opti-

mization, processing speeds may be able to approach the clock frequency of the

FPGA. This hyper real-time operation provides us with the opportunity of mul-

tiplexing the physical neuron architecture to achieve far greater neuron numbers.

This is made possible since only digital spike events need to be communicated

between neurons, thereby simplifying connectivity circuitry. Thus, programmable

logic offers neuronal simulation speeds approaching those of fully custom silicon

solutions, but not at the expense of flexibility, design times, or network capacity,

since once the design process outlined in Section 1 is complete, large-scale models

may be downloaded and adapted in milliseconds.

Most importantly, by using fully parallel single clock cycle implementa-

tions this neuronal modelling approach leverages the impressive advances in pro-
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grammable logic, in terms of clock speeds and device capacities, specialized DSP

components, cost, and ongoing development of advanced design tools. FPGA ca-

pabilities and operating speeds are currently under exponential growth. Over the

past ten years capacity has increased more than 200-fold with every indication

that Moores law will continue for these devices some way into the future (Alfke &

Hitesh, 2005). This should ensure the possibility for growth of neuronal modelling

capability that is commensurate with advances in programmable logic.

We can estimate the total neuronal capacity of any given FPGA device by

calculating the amount of resources each neuronal element would require. FPGA

resources are measured in terms of slices, each of which contains the fundamen-

tal digital elements required to implement arbitrary combinational logic functions

(Xilinx, 2002). Thus, the number of slices required per neuron element limits the

total physical numbers implementable on a single device. Using a 16 bit represen-

tation for the synapse and a 32 bits representation for the soma requires a total

of 70 slices for the (exponential decay) synapse circuit and 90 slices for the soma.

Current FPGA devices exceed 50,000 slices. Therefore, it is possible to configure,

for instance, over 500 physical synapses without STDP (or 250 with STDP) and

100 physical somas, running in parallel with single clock cycle iteration.

Such an arrangement would be ideal in the case of small/medium network

designs for which we require hyper real-time operation, in order to understand

or optimize its performance in different portions of its parameter space. Over
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100,000 prototypes of the same network could be simulated in the time taken for

one iteration of the biological network it represents. Hence, programmable logic

provides a powerful technology for understanding and optimizing small/medium

spiking neuronal models.

Synapses with a common target soma often have similar time constants in the

brain. We can exploit this fact to make further gains in total synapse numbers

by using only one physical synapse and convolving the incoming spikes of many

virtual synapses. This is mathematically equivalent to implementing large num-

bers of separate synapses with identical time constants. In this way, a very large

degree of synaptic convergence can be achieved, which is particularly relevant to

cortical models.

In order to test the comparative speed performance of the FPGA implemen-

tation with a single PC we run parallel trials of the olfactory bulb model (Figure

3.8) on both PC and FPGA. The identical network was coded in C using the same

set of equations as implemented by the hardware, compiled using GNU gcc and

executed on an Intel Pentium IV 3.06 GHz with 1 GB RAM. The PC performed

10,000 numerical iterations of the network in 0.76 s without disk access. Due to

single clock cycle numerical iteration, the FPGA performed the same number of

steps on-chip in 303.03 µs, giving a speed up factor of ca. 2,500. This provides a

speed-up factor of 3-4 orders of magnitude which may be further optimized either

by improving the placement and routing of the logic of the design implementa-
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tion, or by employing a faster FPGA (for instance, Virtex IV devices offer faster

internal speeds and shorter propagation delays). In further experiments, we were

able to increase the clock frequency up to 50 MHz. In both cases, about 55% of

the FPGA resources were utilized.

We may also choose to exploit this hyper real-time operation to increase net-

work sizes through the use of a multiplexing scheme. In this case we create

virtual exponential decay units by storing and replacing the current state at each

numerical step and optionally the associated parameters such as weight, after-

hyperpolarization potential, threshold potential and/or time constant. This re-

quires storage either on or off chip, which depending upon the access time will

determine the communication overhead associated with applying a multiplexing

scheme.

FPGAs have on-chip RAM block storage which has parallel access single clock

cycle operation, which minimizes this overhead (Xilinx XC2VP125 device has 556

such blocks which may be variously configured). In principle, for this Xilinx de-

vice we can use 556, 1024 × 18-bit buffers to create between 105 − 106 virtual

exponential decay elements operating in biological time (18-bit precision). How-

ever, in practice there are two issues that must be addressed when using FPGAs

to build large-scale neuronal models that exploit such multiplexed architectures.

Firstly, at each numerical step we must store, update and replace the state of each

element. This imposes a time overhead, which is at least one additional clock cycle
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per numerical iteration step to move the data to and from on-chip memory. This

reduces the total number of virtual elements that can be operated in biological

time. Secondly, we must consider connectivity between neurons, which imposes

constraints on the scale of architectures that can be deployed on a single device.

Cortical models represent a particular challenge due to highly convergent

synaptic input, which is often thousands of synapses targeting each neuron. Since

most cortical models adopt only one or two time constants for these convergent

synapses, arriving input spikes may be convolved through only one virtual synapse

for each time constant, leading to a massive reduction in resource usage. Such

scaling issues represent an important focus of future research for implementing

FPGA neuronal models to achieve cortical model scales in real-time.



Chapter 4

The olfactory bulb model

After reviewing the theoretical foundations of the neuron and giving a brief de-

scription of the most popular neuron models, a digital model of the neuron based

on the Integrate and Fire model was designed. It was proved that such a model

was able to generate exact calculations of the IF model, resulting in the construc-

tion of exact neuronal networks.

We also went through the basis of the olfactory bulb, in which we analysed

the most important type of cells which comprises the olfactory bulb. Connec-

tions among elements as well as how each cell interact with each other were also

reviewed. Therefore, with all these elements we are in a position to implement

a biologically inspired model of the olfactory bulb. In other words, knowing the

elements of the olfactory bulb and their connections, and having the construction

kit for neuronal modelling on FPGA, we have all the elements to come up with a

simplified version of the olfactory bulb.

64
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In the last chapter, we have presented a construction kit for neuronal mod-

elling on FPGA, which was able to perform at hyper real-time. One of the most

important advantages of implementing circuits on FPGAs is that applications can

run in parallel, which allows the circuits to process more information per clock

cycle. Thus, we are in a position to implement a biologically inspired neuronal

network which would run much faster than its biological counterpart. As previ-

ously mentioned, an important goal in this research, is to implement a simplified

model of the olfactory bulb. Such a model has to keep the characteristics of detec-

tion and classification of the biological olfactory bulb. This simplified model was

based on the olfactory systems of the vertebrates and it was described in (Pearce

et al., 2005).

Figure 4.1 an schematic of the simplified model of the olfactory bulb is pre-

sented. At the input of the olfactory bulb there are 75 olfactory receptor neurons

(ORNs), which express 25 different types of odours. The ORNs are represented

in the schematic as light triangles receiving input from the sensors (shown by

irregular polygons). ORNs expressing the same type of odorant converge into a

single glomerulus (ellipses) where they make excitatory synapses (light circles)

with the mitral/tufted cells (M/T) shown as dark triangles in the schematic. The

inhibitory dendrodendritic connections of the granule cells onto the M/T cells are

represented by feedback loops coming out from the axon of the M/T cells toward

every other M/T cell via an inhibitory synapse (dark circles). This connection
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effectively represents the lateral inhibition interaction between the granule cells

onto the M/T cells. Finally, the output of the M/T cells project to the lateral

olfactory tract (LOT), where the decoding is carried out.

4.1 Implementation

This model comprised 100 integrate-and-fire somas and 675 exponential decay

synapses describing two classes of neuron in the mammalian olfactory bulb (Fig-

ure 4.1a). M/T neuron outputs in the vertebrate olfactory system are under tight

regulation through lateral inhibition, mediated by dendrodendritic interaction.

This interaction effects complex synchronous firing behaviour across the bulb out-

put that is stimulus specific, reminiscent of that observed in electro-physiological

studies (Friedrich & Laurent, 2001), (Friedrich, Habermann, & Laurent, 2004)

and demonstrated in this model (Figure 4.1b, c). Due to the similarity of synapse

time constants in this model it was possible to implement the design on a single

Virtex II Pro device (Xilinx) running at a very conservative clock speed of 33

MHz.

In order to test the comparative numerical performance of the FPGA imple-

mentation with PC technology, we tested it against its software equivalent. For

this purpose, the same network was coded in C++ using the same set of equations

as implemented by the hardware, compiled using GNU gcc and executed on an

Intel Pentium IV 3.06 GHz with 1 GB RAM. As before, the error between the
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circuit and the software implementation is within a single bit and uniformly dis-

tributed (Figure 4.1d). Spike timing analysis reveals that no incorrect translation

occurs between the FPGA and PC based solutions.

The olfactory bulb shown here is a simplified model of its biological counter-

part. Among the simplifications applied to the circuit, one that stands out is the

omission of the dendrodendritic connections between M/T cells and periglomeru-

lar cells. Nonetheless, this model effectively keeps the most relevant behaviour of

the olfactory bulb such as detection, classification and memory. The inhibitory

connections of the granule cells play a critical role for learning and detection

(Shepherd & Greer, 1998), hence feedback loops coming out from the axon of the

M/T cells toward every other M/T cell via inhibitory synapses were added to the

circuit.

4.1.1 Initial results

The olfactory bulb circuit, as shown in the Figure 4.1a was implemented on the

FPGA. For computational simplicity and to reflect biological diversity, the initial

synaptic weights were randomly selected. In addition, for testing purposes and to

show the olfactory bulb response to a simulated constant concentration exposure,

random constant inputs were applied to each input of the olfactory bulb. The

time constants for the implemented circuit were chosen according to (Rotter &

Diesmann, 1999), where τE ≈ 4 ms, τI ≈ 16 ms, and τm ≈ 10 ms. The Figure 4.2

shows the spike response from all the 25 M/T cells. At this stage, no learning
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Figure 4.1: Simplified olfactory bulb neuronal model implementation comprising 100 somas
and 675 exponential decay synapses. (A) Schematic of the olfactory bulb architecture. 25 mi-
tral/tufted (M/T) cells, represented by integrate-and-fire elements provide the main olfactory
bulb output (corresponding to the lateral olfactory tract). These cells are reciprocally connected
via exponential decay synapses, which mediate lateral inhibition in the model representing in-
hibitory coupling between M/T cells in vertebrates (open circles: excitatory synapse, closed
circles: inhibitory synapse). Excitatory input to the model is provided by olfactory receptor
neurons (ORNs) driven by population coded receptor input shown by irregular polygons. Synap-
tic input from identical ORNs are summed to represent receptor input convergence at a single
glomerulus (ellipse). (after Pearce, et al ., 2005). (B) Firing behaviour of all 25 M/T cells in the
network over time. (C) Membrane potential of a randomly selected M/T cell. (D) The error
between the exact integration numerical implementation and the circuit response for the mem-
brane potential and spike timing analysis. A 32−bit representation was used with parameters
τ̃eE

≈ 2.1 ms for the excitatory synapses, and τ̃eI
≈ 17.1 ms for the inhibitory synapses. The

adjusted weights for the excitatory synapses were fixed to wadjE
= 256.8, whereas the inhibitory

weights wadjI
were randomly chosen in a range between 1.5 and 32 inclusive. The time constants

of both the ORN and mitral cells were set to τ̃m ≈ 10.2 ms, with a Capacitance C = 250 pF, and
threshold potential, Vth = 432640 where kV = 21.6 × 106 counts V−1. For the ORNs, constant
values randomly selected in a range between 4240 and 6400, were used to represent a constant
concentration of an odour stimulus. The clock frequency was set to fclk = 33 MHz, giving a
step time, ∆ ≈ 30.3 ns and a speed up factor, kt = 3300. Numerical solutions were carried out
in C++ using long double precision using an 80 bits representation with 64 bits out of them for
the mantissa and 14 for the exponent.
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algorithm was applied to the system, so the output only reflects the response of

the untrained olfactory bulb system.

Figure 4.2 shows three different spatio-temporal relations between pairs of

cells. Neurons 10 and 14 are clearly locked in a particular identity-temporal

relation. A similar situation exists with neurons 18 and 24, whose spatio-temporal

relation is different from the early mentioned pair of neurons; and cells 4 and 13

also show a spatio-temporal relation although to a lesser extent. The rest of the

cells either do not show any relation at all, or they simply seem to spike in a

random fashion.
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Figure 4.2: Olfactory bulb response

4.2 The Hebbian learning algorithm

For training the olfactory bulb, the Hebbian learning algorithm, which uses a

rate-based Hebbian rule was performed for the circuit. As the name implies, the
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learning algorithm will train the network in such a way that the output of a

particular odour (which is being applied to the input of the olfactory bulb) serves

as a base for the calculation of the new weights of the olfactory bulb. The new

weights should increase the activity of some neurons (M/T cells) while inhibiting

the activity of others. The calculation of the new weights under the Hebbian

learning algorithm is based on the firing rates of each mitral cell.

As mentioned earlier, the Hebbian learning rule employed in the olfactory

bulb, uses the firing rates of both the postsynaptic cell and the presynaptic cell

to calculate the amount of change of the inhibitory synaptic weights. In terms of

the olfactory bulb, the firing rate of a M/T cell is considered as the postsynaptic

activity, but at the same time, as this M/T cell is connected to every other M/T

cell by inhibitory synapses, this same firing rate plays the role of the presynaptic

activity. The synaptic change is obtained by the equation (Gerstner & Kistler,

2002a):

d

dx
wij = c · vi · vj, (4.1)

where vi and vj are the firing rates of the postsynaptic and presynaptic cells

respectively (M/T cells), c is a parameter which in order to adhere to the Hebbian

learning rule has to satisfy c > 0.
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4.2.1 The indicator function

The indicator function will let us know when the olfactory bulb has reached a

particular state, which should be only reached under some specific conditions i.e.

in the presence of a target odour. The equation for the indicator function is given

by

f =
∑

αi · vi, (4.2)

where vi is the firing rate of the M/T cell i and αi is a firing rate, which is compared

to the olfactory bulb response. The responses from the M/T cells show a firing

rate related to the input of the olfactory bulb, i.e. the applied odour. During the

training process, the firing rates from M/T cells are recorded and used to train

the olfactory bulb according to equation (4.1). After the training of the olfactory

bulb and in the presence of the same odour, it is expected that the output of the

circuit tends to approach the firing rates given by the α’s. Therefore, apart from

using the recorded firing rates for training the system, we also use them as the

matching firing rates. The indicator function thus will reach a maximum when

the current firing rate of the M/T cells resembles the matching firing rate.

4.3 Olfactory bulb system integration

For the experiments, an FPGA PCI card (model ADM-XP manufactured by

Alpha-Data, UK and containing a Virtex II pro FPGA device, Xilinx Inc., USA)
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was used together with a host PC (see Fig. 4.3). Communication to/from the

PC is performed by a host program written in C++, which controls the initial

model parameters (such as weights) and FPGA sensory input in real-time. Fig.

5 shows an overall schematic of the olfactory bulb implementation. Excitatory

weights, inhibitory weights and sensory inputs are stored on the PC and sent to

the FPGA, where they are latched in individual registers (for excitatory and in-

hibitory synapses as well as ORN input). Since the PCI is a 32-bits, these values

must be sent sequentially and then appropriately distributed on-chip. To achieve

this incoming values are first stored in an internal memory RAM (BRAM) on the

device. Then applying a multiplexing scheme, each value is sent to its respective

register and access is subsequently controlled by a decoder, which enables only

one register at a time.

4.3.1 Odor representation

We tested the neuromorphic implementation by applying inputs to the OB circuit

and recording the spiking responses as well as the indicator functions correspond-

ing to learnt odours. Figure 4.4 shows the responses of the OB to the application

of a constant and arbitrary input pattern (which we term Odour A), simulating

the receptor response to a fixed concentration of a certain odour. The top row

of figures show the responses of the untrained network, which may be contrasted

with the same responses in the bottom row after the application of the Hebbian

learning algorithm to lateral inhibitory weights in the network.
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Figure 4.3: System architecture for a neuromorphic FPGA olfactory bulb implementation.
BRAM memory blocks are used both at the input and at the output to support data trans-
fer between FPGA and PC. In the initial stage, the BRAM stores and distributes the excitatory
and inhibitory weights as well as the input to the internal registers of the olfactory bulb (OB)
unit, enclosed in the dashed box. Odour identification and classification is carried out by the
OB circuit. The resulting spike response is sent to a PC where the Hebbian learning algorithm
is computed. Responses are finally stored and manipulated on a PC.
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Figures 4.4a and 4.4d show the membrane potential of one particular M/T

(#6) cell within the network. Before training, this particular cell showed largely

periodic spiking behaviour, whereas after training increased inhibition from other

M/T cells forces its own dynamics to be exclusively subthreshold. Note that the

network dynamics are periodic and largely synchronized due to lateral inhibition,

which is also present in the the biological system as indicated by the presence of

oscillations.

Figures 4.4b and 4.4e show the spiking responses of the entire network to an

arbitrary odour input pattern both before and after learning. The same indicator

function calculated for the trained and untrained network (Fig. 4.4c and f, re-

spectively) demonstrates a very large increase after training (50:1) demonstrating

that the learnt odour stimulus is able to invoke a stored attractor in the state

space of the OB model which may be exploited for classification.

4.3.2 Odour classification

In order to demonstrate the classification properties of the OB model, the same

network was subjected to a second arbitrary but constant input pattern (which

we term Odour B), representing the receptor response to a distinct odour at the

input.

Hebbian learning was then applied again to further adapt the lateral weights,

this time to the new input pattern. After training, each odour (Odour A and

Odour B) was presented sequentially and the corresponding indicator functions



75

for both learnt odours calculated over time (see Figure 4.5). We see that the

corresponding indicator function for the learnt odour is high after a short time,

whereas the other indicator function is low. When we present the second odour

the situation is the opposite, indicating that the network is able to store two

attractors corresponding to the two odours and we can read these out to classify

the odours accordingly.
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Figure 4.4: Neuronal responses and indicator functions to an arbitrary odour input pattern
’Odour A’ before and after learning in the OB model. Comparison between the untrained
network (upper graphs) and the trained network (lower graphs). Fig: a) and d). Membrane
potential of a randomly selected M/T cell (#6). Fig b) and e): spike response for the 25 M/T
cell population at the output of the circuit. Fig c) and f) Indicator function of the circuit in
response to the same stimulus, Odour A, before and after training showing a large increase in
magnitude. The time constant parameters we have used for the OB model are equivalent to the
biological values: τE = 4 ms (excitatory synapses), τI = 16 ms (inhibitory synapses), τm = 10
ms (ORNs and M/T cells), at a sampling frequency fs = 10 kHz.
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Figure 4.5: Indicator functions for the odour classification task. The same network is trained to
2 odours, A and B from which indicator functions (I.F.) are constructed. Shown is the indicator
function response for both A and B when odour A and B are presented. In each case the
indicator function for the learnt odour is far higher than that for the distracting odour. The
time constant parameters we have used for the OB model are equivalent to the biological values:
τE = 4 ms (excitatory synapses), τI = 16 ms (inhibitory synapses), τm = 10 ms (ORNs and
M/T cells), at a sampling frequency fs = 10 kHz.

4.3.3 Learning capabilities

In order to find out how many odours can be stored in the olfactory bulb, the model

was trained for several odours and their characteristics were analysed. Initially, the

olfactory bulb was trained for 5 odours, a principal component analysis was carried

out to obtain the characteristics of the trajectories for each odor. In addition, an

ANOVA test was performed to define whether the mean value among the first

principal component from all odours were different. That is, we want to reject the

following hypothesis:

H0 : µ1 = µ2 = · · · = µn (4.3)
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Total of odours F-value p-value
5 20007.5 0
6 11887.1 0
7 29194.3 0
8 2811.5 0

Table 4.1: ANOVA test results for the comparison among mean values from each principal
component from each odours. The olfactory bulb trained for 5, 6, 7 and 8 odours and the mean
value of each first principal component was compared by an ANOVA test. In all cases, the null
hypothesis was rejected in favour of the alternative hypothesis.

in favour of

Ha : µi 6= µj, (4.4)

where i 6= j and for at least two means being different.

Figure 4.6(g) shows the principal component analysis for the olfactory bulb

trained for 5, 6, 7, and 8 different odours. As it can be seen, as more odours

are added to the olfactory bulb, higher are the probabilities of the trajectories to

overlap in the space of the principal components. However, to effectively asses

the differences among mean values for each odour, the following table shows the

results from the ANOVA test conducted for the model trained for 5, 6, 7 and 8

odours.

Given the results obtained by the ANOVA test, and since all null hypothesis

were rejected in all experiments, the next step is conduct multiple comparisons

to identify those means whose value are different. The multiple comparisons were

carried out using Tukey’s procedure. Figure 4.6(g) also show the results yielded

by the multiple comparison analysis. For 5 and 6 odours, all mean values were

different, which means that the olfactory bulb should be able to effectively identify
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among these odours. However, for 7 odours, the mean value for the odour 3 turned

out to be the same as the random odour (background noise), which could result

in misidentification of the random odour as the odour 3 or conversely, a lack of

detection of the odour 3 by regarding it as a random odour. Even worse, for 8

odours, the Tukey’s procedure reveals that the mean value of odour 8 and the

random odour are the same; and the mean values of odours 3 and 4 cannot be

rejected that they are different. Therefore, the learning capabilities of the olfactory

bulb are then constrained to about 5 to 6 odours at most.
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Figure 4.6: Learning capabilities of the olfactory bulb trained to 5, 6, 7 and 8 odours.



Chapter 5

Identification and segmentation

of real data

5.1 Introduction

Having tested the construction kit for neuronal modelling by means of implement-

ing the olfactory bulb, it is now necessary to validate the olfactory bulb model

using real data. For this, we resort to an interesting experiment carried out by

researchers at the laboratory of Chemistry at Tufts University, in the USA. Part

of their experiment consisted in collecting odour information obtained by means

of specialized sensors called ’fluorescent microbeads’.

Sensor responses reflect changes in fluorescence intensity and wavelength shifts

that occur as vapours are presented to the sensor array. Many parameters (e.g.

vapour diffusion through the polymer layer, polymer type, surface-vapour inter-

80
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Type of bead Number of beads in the array
af 3
alltech 1
chirex 7
chirexpta 42
lunaphenhex 11
lunapte 12
phenoscn 3
prop 9
scxptb 383
scxptc 227
scxptf 166
sel 4
tbap 1

Table 5.1: Types of beads embedded in the microbead sensors array.

actions, pulse time, and pulse regime) contribute to the optical response resulting

in unique chemical signatures for a particular vapour-sensor combination.

Fluorescent microbead sensor arrays were developed in the laboratory of

chemistry of Tufts University. These are made up of thousands of fluorescent

sensors which detect changes in fluorescence intensity due to the presence of a

vapour. Different vapours cause different responses from the sensor array, a char-

acteristic which should allow the identification of a variety of pure vapours as well

as compounds (Bencic-Nagale & Walt, 2005). It is therefore the response from

these microbead arrays that is of particular interest to us as it contains valuable

odour information under different conditions (i.e. responses to pure or mixed

vapours under different backgrounds and concentrations). Here, we apply such

responses from several experiments to the olfactory bulb circuit to demonstrate

the identification, classification and segmentation capabilities of the model.
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5.2 Data collection

A CCD system was coupled to an optical fibre and used to record changes in

the fluorescence due to the presence of a vapour. The CCD device was able to

measure changes in the intensity caused by the vapour by passing an excitation

light through the optical fibre. The resulting responses from the microbead sensors

array were captured in a 30 frames movie (where the first five frames correspond to

the baseline, about 20 subsequent frames to the vapour pulse while the remaining

frames were obtained after the pulse was withdrawn (Bencic-Nagale, Sternfeld, &

Walt, 2006)). The microbead sensors array used in the experiment consisted of

869 beads of 13 different types (see Table 5.1).

The collected data set consisted of a total of 7 pure odours (see Table 5.2),

which shall be used later in the identification, classification and segmentation ex-

periments. In order to collect sufficient data for these experiments, each pure

odour was exposed to the sensor array 10 times. In addition, mixtures (com-

pounds) of these seven odours were also obtained and processed by the bead

sensors so their corresponding responses could be recorded. As will be shown

later, these data prove to be valuable for demonstrating the identification, clas-

sification and segmentation capabilities of the olfactory bulb. These compounds

were obtained by mixing all possible pairs of pure odours in the same proportion.

Similarly, all possible combinations of three odours were mixed in the same pro-

portion to get different compounds. This process was repeated for mixtures of 4,
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vapour key Description
A Toluene
B Methyl Salicylate
C Ethanol
D Heptane
E P-Cymene
F Cyclohexanone
G Chloroform

Table 5.2: vapours used in the laboratory of chemistry in the Tufts University for segmentation
tasks.

5, 6 and 7 odours. Unlike pure odours, which were scheduled for 10 times each in

the experiment, mixtures were scheduled to be processed by the sensors for five

times only.

It is well known that the different elements of a measuring system such as

the one described here suffer changes over the time. These changes can be caused

by several factors (which are sometimes out of the control of the experimenter).

Among some of the most common examples, we can mention:

• Natural changes on the sensitivity of the sensors due to the prolonged use

and the length of the experiment.

• Changes in the sensitivity of the recording components.

• Changes in the intensity of the sources of the system (for instance, the in-

tensity of the lights used to stimulate the sensors may also add noise to the

response).

Therefore, an additional neutral substance (bleach) was systematically sched-

uled to be processed several times during the entire experiment as a ’control run’
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Date Time Run number
14/12/05 2:13 PM 1 - 101
15/12/05 8:11 AM 102 -203
15/12/05 2:49 PM 204 - 305
19/12/05 10:00 AM 306 -406
19/12/05 1:30 PM 407 - 508
19/12/05 5:09 PM 509 - 610
20/12/05 11:00 AM 610 - 711
20/12/05 3:30 PM 712 - 817

Table 5.3: Schedule of all the runs of the entire experiment performed in the laboratory of
chemistry in the Tufts University for segmentation tasks.

to quantify the extent of change in the sensors’ response as a consequence of the

above factors. As the total experiment (which consisted of 817 runs), was carried

out over several days, control runs were scheduled each day prior to and after the

scheduled odours trials. Additional control runs were scheduled every seventh run

to gain more detailed information on the changes on the recording system. All

the pure odours and all compounds were randomly scheduled for this experiment

prior to the start of the experiment, only control runs were scheduled as previously

described. Appendix D shows the odours and compounds associated with each

run.

5.3 Quantifying changes in the responses

As previously explained, control runs were run at the beginning and at the end

of each daily recording sessions. They were intended to quantify the deviations

among responses, so that differences due to changes in the sensitivity of the sensors

can be detected. The inactivity period to which the sensors were subjected at the
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end of each day may be an additional cause of change in the response as it might

allow the different elements of the system to recover from a long period of activity.

Besides, as the lifespan of the sensors is limited because of the photo bleaching

of the dyes attached to the microbeads, a special filter (called ND filter) has to

be changed at some point during the experiment (Bencic-Nagale & Walt, 2005),

which accounts for some change in the response of the sensors. The new filter

could also be responsible for changes in the intensity of the excitation light and

thus in the responses.

As already mentioned, in addition to the first and last control runs (which

mark the beginning and end of the experiment for each day), control runs were

inserted after six consecutive trials. Figure 5.1 shows the evolution of the control

responses over the time. The first trial corresponds to the response at the bot-

tom of the plot; successive runs show an upward tendency in the baseline of the

response.

In Figure 5.1 the response is shown by frames of which a total of 30 were

obtained for each run. As the figure suggests, the stimulus is applied from the

fifth frame (however it only seems clear that the stimulus is indeed present from

the seventh frame) to about the twenty third frame.

Figure 5.1 shows that the response varies among trials as the baseline seems

to move upward from trial to trial. This could primarily be caused by the change

in the sensors as the experiment progresses. First, it is necessary to quantify the
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Figure 5.1: Response of the control experiments over the time. A total of 147 control runs were
carried out along the experiment. Control runs can identify possible deviations in the response
of the beads over the time due to the natural change in sensitivity of the sensors by the use.
Each individual response is recorded over 30 frames. Control runs use a neutral substance as
a mean to obtain a baseline reading. The first control run corresponds to the response shown
at the bottom of the plot. As the experiment progresses, the response drifts away from the
baseline. Control runs show a growing tendency in the response.
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variation of the sensors responses from trial to trial (for the entire data collection).

For this, data per control run were first sorted by bead type. Then data from each

type of bead were added together and averaged to obtain a unique or characteristic

response for that bead type. The ratio of change in response before and during

the stimulus can then be calculated using the equation

rn =
(xa − xb)

xb

(5.1)

where xa is the mean response for bead during the application of the stimulus

(from frame 7 to frame 21) and xb is the mean response prior to the application of

the stimulus (from frame 1 to frame 4). Figure 5.2 shows the change of this ratio

over the experiment for each type of bead. Most of the type of beads show an

initial decaying tendency, followed by some discontinuities (due to some recovery

of the sensors) after which, the decaying tendency is present again. The tendency

only reverses to a growing trend after the discontinuity located near run 600.

Figure 5.3 displays a view of the control responses of the bead type ’scxptb’.

Of particular interest are the ratios in the vicinity of points 300 and 600, which

show an important discrepancy from the last run. As previously explained, this

behaviour was expected due to the resting time between runs (refer to the schedule

for the experiments shown in Table 5.3). The schedule clearly explains the jump

in the response at the point 306, due to a longer resting period of 3 days between

runs. For the point 611, although the experiments were resumed the following
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Figure 5.2: Variation in the sensors response over the time. The changes in sensitivity of the
sensors over the time are calculated using equation 5.1. Changes were calculated by type of
bead and shown above. Most of the type of beads show an initial decaying tendency, followed
by some discontinuities (due to some recovery of the sensors) after which, the decaying tendency
is present again. The tendency only reverses to a growing trend after the discontinuity located
near run 600.
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date, the jump in response is explained by the ND filter (used to attenuate the

excitation light), which was changed for a new one. This change of filter was

needed to compensate for sensor photo-bleaching.
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Figure 5.3: Variation in the sensors response for the type of bead ’scxptb’ over the time. The
changes on the sensitivity of the sensors over the time are calculated by the equation 5.1.
Changes were calculated by type of bead and shown above. This type of bead show a typical
behaviour among the beads, with an initial decaying tendency, followed by some discontinuities
(due to some recovery of the sensors) after which, the decaying tendency is present again. Only
after the discontinuity located near the run 600, the tendency reverses to a growing trend.

Figure 5.3 shows a decaying tendency on the sensor response, which contin-

ues up to experiment 305. After the recovery caused by the resting period, the

response continues decaying up to the point 610, in which the filter replacement
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occurs. However after the new filter is used, the response shows a growing ten-

dency until the end of the experiment. This pattern repeats for most of the bead

types (’chirex’, ’chirexpta’, ’lunaphenhex’, ’lunapte’, ’phenoscn’, ’prop’, ’sxcptc’,

’scxptf’, ’sel’ and ’tbap’). Although the pattern is similar for most types of beads,

the scales are different. Types ’af’ and ’alltech’ unlike most types of beads, show

a continuous growing tendency.

5.4 Analysis of the odour information

A closer inspection on the experimental responses of individual odours, for all

ten experiments per odour are shown in Figures 5.4 and 5.5. Sensors presented a

strong response to the odours Ethanol, Cyclohexanone, and Chloroform, whereas

Toluene, Methyl Salicylate, Heptane and P-Cymene, seem to contain less infor-

mation. However, as shown later, they contain buried odour information which

may be useful for detection purposes.

The mean response per bead type is calculated using the formula:

x̄i,j =
1

n

∑

xi,j (5.2)

where x̄i,j is the average response of odour i and bead type j, n is the total number

of trials (10 for pure odours and 5 for compounds), and xi,j is the individual

response per experiment for odour i and bead type j. Additionally, it is of practical

importance to calculate the standard deviation of all responses. For this, we used
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the equation:

σi,j =
1

n − 1

∑

(x̄i,j − xi,j)
2, (5.3)

where σi,j is the standard deviation of odour i and bead type j.

Figures 5.6 to 5.8 show radar plots for all pure odours and some selected

mixtures. As can be seen, all responses have different characteristics for the mean

and standard deviation, which makes them susceptible to be tagged as different

odours.

Figures 5.6 to 5.8 show the mean response and the values below and above one

standard deviation by bead type for all pure odours (Figure 5.6 and Figure 5.7)

and for selected mixtures (Figure 5.8). The control data shows higher values than

odours for the mean and standard deviation by bead type. The bead of type ’af’

has a lower value for the control data than the rest of the bead types for the same

control data. Ethanol, Cyclohexanone and Chloroform show a more varied mean

response by type of bead. These responses also show higher standard deviations.

The sensor response for Ethanol has the highest variability in the type of bead

’alltech’, ’af’ and ’scxptf’. Cyclohexanone data has more variability in the beads

of type ’phenoscn’, ’lunaphenhex’ and ’scxptf’. Finally, Chloroform shows higher

variability in beads of type ’phenoscn’ ’alltech’ and ’scxptf’.

On the other hand, Toluene, Methyl Salicylate, Heptane and P-cymene show

a somewhat similar behaviour, which might complicate the identification of these

pure odours by the olfactory bulb.
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Figure 5.4: Response of the experiments to Toluene, Salicylate, Ethanol and Heptane, over time.
A total of 670 odour runs were carried out. Having 7 pure odours (table 5.2), there were 10 runs
per odour, whereas all possible combinations of mixtures for two, three, four, five, six and seven
odours were carried out 5 times each combination. A random selection of the order of the trials
was obtained. Odour runs consist of recording the intensity of a light by the sensors (beads),
which respond with a change in the readings every time an odour is applied. The first trial for
each odour corresponds to a dark blue line, whereas the last trial is indicated by the red solid
line, intermediate runs take a colour between the blue-red range. The odour stimulus is applied
by the fifth frame and remains until the 23th frame.
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Figure 5.5: Response of the experiments to P-Cymene, Cyclohexanone and Chloroform, over
time, obtained in an identical fashion to Figure 5.4.
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Figure 5.6: Radar plots of the mean response by type of bead for the odour responses (Toluene,
Salicylate and Ethanol). The radar plots show the mean value for each odour by type of bead,
as well as the value of the mean plus and minus the standard deviation. As the plots suggest,
the mean values and the standard deviations are different for each odour, indicating that they
have different characteristic from each other.
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Figure 5.7: Radar plots of the mean response by type of bead for for the odour responses
(Heptane, P-Cymene, Cyclohexanone and Chloroform) as in Figure 5.6.
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Therefore, Ethanol, Cyclohexanone and Chloroform seem to contain the most

useful information for identification purposes, since these odours show the most

unique characteristics among all the odours, whereas the rest of the pure odours

might be misidentified due to the similarity between mean values.

A different situation occurs for mixtures of Toluene with other pure odours.

The selected compounds (containing Toluene) show very unique response charac-

teristics. For instance, Toluene + Methyl Salicylate + Ethanol + Heptane has

high standard deviations for all mean values by type of bead, whereas if we add P-

cymene to the previous mixture, the overall response by type of bead is increased,

but the standard deviation is reduced. In the same way, the compound containing

all of the pure odours shows mean responses with a high degree of variability for

each type of bead. The highest standard deviation is obtained in the type of bead

’chirexpta’. Yet when the Chloroform is not present, the standard deviation with

the highest value is found in the bead type ’phenoscn’.

As is evident in figures 5.6 to 5.8, all pure odours and the selected compounds

have different characteristics. Therefore, it is reasonable to expect positive iden-

tifications by the olfactory bulb model.

5.5 Identification and categorization test

Having analysed the characteristics of the odour information data obtained in the

laboratory of Chemistry in Tufts University, we are now in a position to test the
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Figure 5.8: Radar plots of the mean response by type of bead for the selected mixtures. The
radar plots show the mean value for some mixtures and by type of bead, as in Figure 5.6.
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olfactory bulb model using real data.

From the analysis of the responses recorded with the fluorescent microbead

sensors array, we assume that based on the particular characteristics of each odour,

it should be possible for the olfactory bulb to identify each odour without any

preprocessing. The next part of this section presents two different experiments

using the data previously discussed.

The first experiment deals with the identification problem. The olfactory bulb

will be trained for a particular odour (for instance Toluene) and then different data

from the same odour will be fed to the model. Responses form several runs will

be compared, to determine whether or not the olfactory bulb was successful at

detecting the runs containing the target odour.

The second experiment will tackle a classification task. The model will be

trained for several odours simultaneously. Multiple runs of distinct odours will

show whether or not the olfactory bulb could effectively distinguish to what odour

each run belongs.

If these experiments are successful our model would be confirmed as a plau-

sible neuronal model of the olfactory bulb.

5.5.1 Identification

As discussed earlier, the data set obtained from the fluorescent microbead sensors

array system contains information of single odours as well as mixtures of two or

more types. Hence, the main concern is to prove that the olfactory bulb will be
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able to identify trials containing the target odour.

All responses from the microbead sensor array were processed in the following

fashion:

1. The ratio for each bead type was obtained according to equation 5.1.

2. Prior to being fed to the model, the data were processed by the following

equation:

r
′

n =
K

1 + e−
rn−a

b

+ c, (5.4)

where r
′

n is the ratio of change of the signal for the type of bead designated

by n, rn was obtained by the equation 5.1; K = 500, a = 0, b = 0.01, and

c = 500.

Equation 5.4 is a sigmoid function (Figure 5.9) which spreads or compresses

the data, limiting them to the range between 500 and 1000, the range in which

the olfactory bulb should be operating (more on this in chapter 6). Each run of

the data set was reduced to information from 13 different types of bead.

The olfactory bulb consists of 75 olfactory receptor neurons (ORN) at the

input. Groups of three ORNs converge to a single glomerulus. Each glomerulus

expresses the same type of odorant (Friedrich, 2006) and altogether, there are 25

glomeruli in the olfactory bulb model.

In order to fit the odour information from the 13 different types of beads of

the microbead sensors array into the 25 separate glomeruli of the olfactory bulb,

the information from one type of bead is sent to two different glomeruli. This
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Figure 5.9: Sigmoid function used for fitting data to the input of the olfactory bulb. The
parameters of this sigmoid function are: K = 500, a = 0, b = 0.01, and c = 500, limiting the
data to the range of 500 to 1000.

is however not unproblematic since an extra glomerulus is then needed to fit the

data into the olfactory bulb. As adding an extra glomerulus to the olfactory bulb

could result in changes to the model, it is preferable not to duplicate the data

of one type of bead but rather to send that particular type of bead to just one

glomerulus. Since the bead type ’tbap’ is embedded only once in the array, it has

been (arbitrarily) decided to choose this bead as the one to be connected to a

single glomerulus.

The same parameters of the olfactory bulb used in a previous experiment (see

Chapter 4) will be adopted. Hence, the time constant for the excitatory synapses

is set to τE ≈ 4 ms, for the inhibitory synapses to τI ≈ 16 ms, and for all types of

somas (ORNs and mitral cells), τm ≈ 10 ms.

To configure the olfactory bulb, the initial state of the weights of the model

were randomly chosen within a range of 96 to 192 for the inhibitory synapses and
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within a range of 1000 to 1400 for the excitatory synapses. These ranges were

selected by trial and error in order to allow most of the neurons to show some

spiking activity.

The identification experiment was carried out in two stages. First the response

of the untrained model to one odour was obtained, followed by the response from

the trained model. A comparison of the responses before and after training then

allows to observe the effect of the training on the olfactory bulb. At the end

of the experiment, we should be able to determine whether the olfactory bulb is

effectively detecting these cases where the target odour is present.

5.5.1.1 Experiment using Toluene as the target odour

For this first experiment, odours containing Toluene will be used to determine

if the olfactory bulb is correctly identifying whenever Toluene is present. As

mentioned in the section 5.2 of this chapter, a total of 10 runs were performed

for pure odours by the microbead sensors array system. In order to keep the

characteristics of the responses for all 10 trials, the average value from all the 10

runs is used as the target odour, which would represent the average response of

the sensors array to Toluene.

Figure 5.10a shows that the untrained model produces very little activity at

the output. Mitral cells 2, 3, 10, 15, 16 and 23 responded to the stimulus of

Toluene applied at the input of the olfactory bulb. A cross-correlation analysis

found synchrony among cells 2, 3, 15 and 16. Figure 5.11 show larger peaks on
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the cross-correlation plots for those cells. In the same way, mitral cells 10 and 23

obtained a high cross-correlation value, indicating synchrony between them.

In the second stage of the experiment, the olfactory bulb was trained using

the Hebbian algorithm (see Chapter 4 for more details). The average response

of Toluene was used as the target odour. A total of 100 training iterations were

carried out before the model was considered trained. Figure 5.10b shows the

response of the trained olfactory bulb to the same input used for the untrained

model. The response of the trained circuit shows a different behaviour than the

untrained response. More spiking activity is elicited at the output of the model.

Figure 5.12 shows the cross-correlation among the cells with more activity. As in

the untrained response, the same synchronized cells are present here. Additionally,

cells 1, 14 and 19 also present some synchrony. It is important to emphasize

that this synchrony is based on much more spiking activity than the untrained

response. Therefore, the learning algorithm modified the synaptic weights of the

cells originally responding to the Toluene (in the untrained model), resulting in

an enhanced response to this odour.

After training the olfactory bulb for the target odour (Toluene), we test the

model by first feeding odours in which Toluene is present and odours in which it

is not, and then comparing the outputs.

The principal component analysis shown in Figure 5.13 summarizes the exper-

imental results. Figure 5.13a shows the response for two runs containing Toluene:
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Figure 5.10: Spiking response of the olfactory bulb to a pure concentration of Toluene. a)
Spiking response of the untrained model. The response shows very little spiking activity limited
to cells 2, 3, 10, 15, 16 & 23. b) Spiking response of the trained model. Unlike the untrained
response, more spiking activity is obtained by the trained model. Cells 1, 14 and 19 now also
show spiking activity.
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Figure 5.11: Cross-correlation analysis of the spiking response of the untrained model to a
pure concentration of Toluene. The cross-correlation analysis shows some synchrony among
some cells (cells involved are indicated above each plot). Cells with a stronger cross-correlation
among them are: 2, 3, 15 and 16; and 10 - 23. Others cells show an oscillatory behaviour, such
as cells 2 -10, 2 - 23, 10 - 16 and 15 - 23.
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Figure 5.12: Cross-correlation analysis of the spiking response of the trained model to a pure
concentration of Toluene. The cross-correlation analysis show strong synchrony among some
cells (cells involved are indicated above each plot). Cells with a stronger cross-correlation among
them are: 2, 3, 6, 10, 15, 16, 19 and 23; Cells 1 and 14 show a weaker cross-correlation.
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the response belongs to the averaged runs from Toluene (black) and the response

of the olfactory bulb to the first run containing pure Toluene (blue). As can be

seen, they both follow similar trajectories. Figure 5.13b is the same experiment,

but with an added second run of pure Toluene. Again all three responses follow

similar trajectories. We then added a random input not containing Toluene to

the experiment. Figure 5.13c shows that the trajectories of the runs containing

Toluene tend to follow similar paths, whereas the random input clearly follows a

different trajectory.

In order to determine the identification capabilities of the olfactory bulb, a

linear discriminant analysis was performed using the fifth run containing Toluene

and the random odour to train the discriminant algorithm. The response produced

by the third run of Toluene was used as the odour to be classified. A total of 50000

data points were classified, from which 49729 points were adequately classified as

Toluene while 271 points were misclassified as random odour, resulting in a success

rate of 99.46%. Figure 5.13d shows the resulting classification of the data points

for this experiment. A magnified view depicts (in black) the points which were

wrongly classified as the random odour, which occurred for the first data points

of the Toluene response. This experiment proves that the olfactory bulb could

successfully identify when the target odour was present. Trajectories for runs

containing the target odour follow similar paths yielding positive classifications

by the linear discrminant analysis.
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Figure 5.13: Principal component analysis for the olfactory bulb response to a pure concentration
of Toluene. The olfactory bulb was trained for Toluene using the averaged input of all 10
responses from the beads to a pure concentration of Toluene as training input. a) PCA of the
response of the olfactory bulb to the training input (black) and the first trial of Toluene (blue).
Both trajectories follow similar paths. b) PCA of the response of the olfactory bulb to the
training input (black) and the first and second trials of Toluene (blue and red respectively).
All trajectories follow similar paths. c) PCA of the response of the olfactory bulb to the fifth
(blue) and third (red) trials of Toluene plus a random input (black). Toluene trajectories follow
similar paths, whereas the random input follows a path with a different direction. d) Plot of
the response of the model to the second run of Toluene after the linear discriminant analysis
was performed. A magnification view of the start of the trajectory is also shown. Dots in black
represent data misclassified as the random odour, whereas dots in red are the correctly classified
dots as the trained odour.
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A final identification experiment consist in testing all 10 trials containing pure

concentrations of Toluene to verify how well the olfactory bulb could identify the

presence of the target odour in each trial. As previously described, the olfactory

bulb is trained to detect Toluene by using the average response of all 10 trials

containing pure concentrations of Toluene, after which the linear discriminant

analysis algorithm is used to determine which data points from each run belong

to Toluene and and which to a different odour.

Figure 5.5.1.14a show the principal components of the response from the ol-

factory bulb to the average data of Toluene (blue trajectory). For comparison

purposes the black trajectory corresponds to the response evoked by a different

odour. Responses from each individual trial containing pure concentrations of

Toluene are shown in green. these trajectories will be classified by means of the

linear discriminant analysis algorithm.

Figure 5.5.1.14b shows the result of the classification obtained by the LDA

algorithm. As can be seen, 8 out of 10 trajectories were clearly identified as

Toluene. However, two responses failed to be classified as the target odour, being

misclassified as the different odour instead. In other words, 79.7% of the data

points (398,672 out of 500,000) were correctly identified. The success rate of

nearly 80% suggests that the olfactory bulb is a reliable model for identification

purposes.
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(b) Toluene: Linear discriminant analysis.

Figure 5.14: Toluene identification by LDA. a) Olfactory bulb response to each individual trial of
Toluene. The model was trained using the average response of Toluene (blue line) and individual
trials were used to test the response of the OB (green lines). Additionally a random odour was
added to the experiment (black lines). b) Categorization of Toluene trials by means of linear
discriminant analysis. Data classified as Toluene are shown in blue, whereas data identified as
the random odour are shown in black. A total of half a million data points were categorized as
either odour. About 80% of the points were correctly identified as Toluene, which correspond
to 8 out of 10 odours were successfully categorized, the remaining data points were misclassified
as the random odour.

5.5.1.2 An exhaustive identification experiment

In order to fully test the identification capabilities of the model, from the entire

data set one vapour is selected as the target odour whereas the rest of vapours

will serve as distractors in the identification task. First, the olfactory bulb is

trained to detect the Toluene as the target odour. Trials of pure Toluene are

used for this purpose. Trials of pure odours different to Toluene, plus compounds

containing mixtures of the various vapours (except for Toluene), will help complete

the identification experiment. It is expected that concentrations of pure Toluene

be effectively detected by the olfactory bulb, whereas the remaining odours be

ignored by the model, that is, a good separation between vapours containing and
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not containing the target odour.

Figure 5.15 shows the principal components of the response for the untrained

model. As can be seen, Toluene responses (blue) overlap with the responses

elicited by non-target odours. Prior the training, responses from vapours contain-

ing or not the target odour are treated in the same way by the olfactory bulb,

therefore no distinctions can be made between odours.

Toluene

Methyl Salicylate

Ethanol

Heptane

P-Cymene

Cyclohexanone

Chloroform

Compounds without Toluene

Figure 5.15: Principal component analysis of the response of the untrained olfactory bulb for
all pure odours and compounds. Responses from vapours of pure Toluene are mixed with the
responses evoked by other odours, covering a wide area in the three-dimensional space.

On the other hand, Figure 5.16 shows the response of the olfactory bulb after

the model was trained for Toluene. As can be seen, the learning algorithm modified

the responses of the model, by concentrating the Toluene responses in some area

and by setting apart responses belonging to different odours. However, separation

is not perfect and some responses from Toluene vapours and non-Toluene vapours
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are found in the vicinity of each other.
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Compounds without Toluene

Figure 5.16: Principal component analysis of the response of the trained olfactory bulb for all
pure odours and compounds. Responses from vapours of pure Toluene are concentrated in an
area around the centre of the principal components space. Most of the responses evoked by other
odours are set apart of the Toluene responses, however, some responses remain in the vicinity
of the responses from the target odour.

Additionally, a Multivariate analysis of variance (MANOVA) test is conducted

to determine whether or not there are differences between the Toluene responses

and the non-toluene responses. The MANOVA test is a statistical method used

for evaluating group differences across two or more dependent variables based on

one or more independent variables. For this test, odours were separated in three

groups:

1. Pure odours containing Toluene.

2. Pure odours different than Toluene.

3. Compounds not containing toluene.
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In this MANOVA test, responses from all trials grouped as above described

are compared. The null hypothesis is

Ho : µ1 = µ2 = µ3, (5.5)

where µ1, µ2, µ3 are the population means for the groups 1, 2 and 3, respectively.

The statistic used here for testing the validity of the null hypothesis is the Wilk’s

Lambda statistic (Λ), which is given by the following equation,

Λ =
|W|

|B + W|
, (5.6)

where W is the within-group sum of squares and cross-product matrix, and B is

the between-group sum of squares and cross-product matrix.

The MANOVA test was carried out for these three groups prior and after the

training. The results are summarized in Table 5.4. As the table suggests, both

prior and after the training, the three groups are perfectly differentiable. This

results from the spreading of the data for each group, yielding population means

for each group which are certainly different. Therefore, in order to effectively

measure the identification capabilities of the olfactory bulb additional tests are

necessary.

Another way to test the identification capabilities of the model is by means

of a linear discriminant analysis. Linear discriminant analysis is a statistical

method used to find the linear combination of characteristics which best separate
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Untrained Trained
P-value Wilks-Lambda P-value Wilks-Lambda
0.000 0.9518 0.000 0.9762
0.003 0.9467 0.000 0.9955

Table 5.4: P-value and Wilks-Lambda test statistics for the MANOVA test after the training of
the model (identification).

Data points correctly identified as Toluene
Before training After training Difference

54.5% 65.8% 11.3%

Table 5.5: Percentage of data correctly (and incorrectly) classified as the target odour before
and after training the model by the linear discriminant function (identification).

two or more groups of data. Linear discriminant analysis uses training data to

estimate the parameters of discriminant functions of the predictor variables. The

discriminant functions define regions in predictor space between classes, finally the

functions discriminate new data among the classes based on the predictor data.

For this analysis, random samples from the different groups were selected to form

the training set. The remaining data from the responses are categorized by the

algorithm in one of the three groups.

Prior the training process, the linear discriminant algorithm correctly classi-

fied 54.5% of the data points within their corresponding group (see Table 5.5).

However, after the training, the algorithm correctly classified 65.8% of the data

points. An increase of about 11% of the data points correctly categorized com-

pared to the same test prior the training.

As a final test, a cluster analysis of the data was carried out. Data were

grouped in clusters by applying the k-means method and using the squared Eu-

clidean distance. K-means is an iterative algorithm which solves a clustering prob-
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lem. The algorithm starts by placing k centroids (one for each cluster). Next, each

point is associated to the nearest centroid. Now, k new centroids are re-calculated

for each cluster resulting from the initial association. With the new centroids,

new clusters are obtained by associating all points to the nearest new centroid.

This process is repeated until centroids do not change location. The goal is to

minimize the following equation:

J =
k

∑

j=1

n
∑

i=1

‖xi − θj‖
2 , (5.7)

where ‖xi − θj‖
2 is the distance between a data point xi and the centroid θj.

The iterative process can be summarized as follow:

1. Randomly place k centroid into the space defined by the data points.

2. Assign each data point to the nearest centroid.

3. Recalculate the position of the k centroids.

4. Repeat steps 2 and 3 until centroids do not change location.

Data points from responses obtained by the olfactory bulb prior and after the

model was trained are used in this algorithm (k-means). It is expected that the

algorithm will cluster data points of responses from similar odours, that is, data

points from responses obtained by pure Toluene should be clustered in a single

group. Data points from responses elicited by different odours should be grouped

in different clusters.
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Data points correctly classified as Toluene Data points wrongly classified as Toluene
Before training After training Before training After training

49.5% 88.8% 3.9% 12.0%

Table 5.6: Percentage of data correctly (and incorrectly) clustered as the target odour before
and after training the model (identification).

For this experiment, a total of 8 groups were defined for the entire set of

responses, expecting data to be grouped by odours. Figure 5.17 shows how the

responses from the trained model were clustered by the k-means algorithm. The

results of the cluster analysis before and after training the model are summarized

in table 5.6. As can be seen, there is an increase in the percentage of data which

was correctly clustered as the target odour (Toluene) as a consequence of the

the training process. Initially, 49.5% of the data points from responses of pure

Toluene were correctly classified, however, after training the model, 88.8% of the

data points were correctly classified as Toluene.

On the other hand, there was also an increase in the cases of data points from

responses generated by odours other than Toluene, which were wrongly classified

as Toluene. Data points clustered as Toluene, when in fact they belong to a

different category increased from 3.9% to 12.0% as an undesirable consequence of

the training.

Based on the results, the learning algorithm has a positive effect on the ol-

factory bulb, by increasing the probability of the model to detect a target odour.

However, it also increases the probability of obtaining false positive detections.



115

Figure 5.17: Cluster analysis of the data from all pure odours plus non-Toluene mixtures. The
cluster analysis was carried out using k-means. The squared Euclidian distance was used by the
clustering algorithm. A total of 8 groups were defined for the total data set. Colours separate
differnt groups.

5.5.2 Classification

The second experiment was designed to prove that the olfactory bulb circuit can

classify odours. For this experiment, 3 odours (Ethanol, Cyclohexanone and Chlo-

roform) were used. As in the previous experiment, the runs for each odour were

averaged to obtain the characteristic sensor response for each odour.

Unlike the identification problem in which one odour was used, we have to

train the network to detect 3 different odours. The training process is therefore

carried out as follows: the first odour is applied to the circuit and its response

used as a base for the Hebbian learning algorithm. The learning algorithm should

change the synaptic inhibitory weights (based on the firing rates of the mitral cells

in response to the input) according to the equation 2.19. This process is carried



116

out for the second odour (Cyclohexanone) and the third one (Chloroform), giving

rise to new inhibitory weights after each odour is applied. This process starting

from the first odour (Ethanol) to the third odour (Chloroform) is repeated until

100 training runs have been completed, at which the point the olfactory bulb is

considered trained.

Figure 5.18a shows the principal component analysis for the responses for all 3

odours from the trained olfactory bulb. Each odour follows a trajectory that tends

to a different location in the space of the principal components. All trajectories

also show the tendency to reach an attractor, which in this case corresponds to a

limit cycle for each odour.

So far, we have shown that the responses of the olfactory bulb to different

odours follow different directions and tend to an attractor for each odour. The

next step is to verify whether inputs containing information from the same odours

will behave in similar manner. For this task, different mixtures containing the

target odours (Ethanol, Cyclohexanone and Chloroform) will be applied to the

circuit. In addition, a random input (which makes the function of an independent

odour) will also be applied. Figure 5.18b shows the PCA of this experiment. It

clearly indicates that trials containing the same type of odour tend to follow similar

trajectories. Different odours follow trajectories with more distance between them.

To verify whether the olfactory bulb is categorizing odours, a linear discrim-

inant analysis was performed. For this aim, one response out of each odour was
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used to train the algorithm. In addition, the random odour was also used for

training purposes. Figure 5.18c graphically represents the results obtained by the

discriminant analysis. The test odours were categorized by the LDA algorithm,

and coloured by resulting odour. As it can be seen, misclassification of the data

points occurred for the first points of each response, and data points were classified

as the random odour (black segments).

The remaining data points were correctly classified as the right odour, with

only a short segment of Ethanol being misclassified as Cyclohexanone. Nonethe-

less, the rest of the data points were clearly identified as Ethanol. A total of 50000

per run should be classified as Ethanol, Cyclohexanone, Chloroform or random

odour, yielding a total of 450000 data points for all 9 different trials. 98.87% of

all points were successfully categorized in their respective odour, while only 5096

points were wrongly assigned to a different odour. These results demonstrate that

the olfactory bulb can effectively categorize different odours.

5.5.3 Segmentation

So far, it has been shown that the olfactory bulb model can in most cases identify a

trained odour, hence illustrating its utility in practical situations. As a further step

in the verification of the olfactory bulb, it is desirable to verify whether the model

could be able to detect a target odour when it is buried within some background

odour information (noise), i.e. an odour compound made up of Toluene plus a

different substance which plays the role of noisy information.
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Figure 5.18: Principal component analysis for the olfactory bulb response to pure concentra-
tions of Ethanol, Cyclohexanone and Chloroform. The olfactory bulb was trained for Ethanol,
Cyclohexanone and Chloroform using as training inputs the averaged inputs of all 10 responses
from the beads to pure concentrations of those substances. a) PCA of the trained response of
the olfactory bulb to to pure concentrations of Ethanol (blue), Cyclohexanone (red) and Chlo-
roform (green). Each trajectory follow a different direction. An additional input of an unrelated
input was added (black), no training was carried out for this last input. b) PCA of the trained
response of the olfactory bulb to to pure concentrations of Ethanol (blue), Cyclohexanone (red)
and Chloroform (green). Four different trials for each concentration were used in this experi-
ment. Trajectories from the same odour follow the same direction, the unrelated input follows
a different path. As trajectories belonging to the same odour have similar directions between
them, but different directions to other odours, the olfactory bulb proves to be an efficient model
to perform classification tasks for odours. c) Plot of the response of the model to a subset of
the inputs shown in b) after the linear discriminant analysis was performed. At the start of the
trajectories, misclassified data are represented in black, which is regarded as the misclassification
of the LDA as the random odour.
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Compound Total data points Correct Wrong success (%)
Toluene + Ethanol 250000 250000 0 100.0
Toluene + Chloroform 250000 205004 44996 82.0
Toluene + Heptane 250000 200222 49778 80.0
Toluene + Cyclohexanone 250000 148951 101049 59.6
Toluene + P-Cymene 250000 148714 101286 59.5
Toluene + Methyl Salicylate 250000 70662 179338 28.3

Table 5.7: Compounds containing Toluene used for the segmentation task. Compounds are
sorted by percentage of success given by the linear discriminant analysis.

For this part of the experiment, the olfactory bulb was first trained to identify

Toluene as the target odour. As in previous phases of the experiment, a total of 100

training iterations were carried out before considering the system fully trained. For

the segmentation task, compounds containing Toluene plus an additional odour

will be used to verify whether the model is able to positively identify if the target

odour (Toluene) is present in the compound.

After the olfactory bulb has been trained for Toluene, the compounds de-

scribed in Table 5.7 will be fed to the model. Let us recall that the entire data

set consists of 5 different trials for each compound; thus for this experiment, all

compounds consisting of two substances (one being Toluene) will be used. The

response of the trained model to these compounds yielded the following results:

Figures 5.19 and 5.20 (left), show the principal component analysis of the

response of the olfactory bulb to Toluene (blue trajectory) and a random odour

different to Toluene (black trajectory). In addition, the trajectories of the re-

sponses of the model to the 5 trials of the compounds are shown in green.

Figures 5.19 and 5.20 (right), also show the classification obtained by the

linear discriminant analysis carried out to the outputs of each trial. The linear
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discriminant analysis used the response from the pure toluene trial and the re-

sponse of the different odour as a basis for the classification task. Compounds

were either classified as Toluene or as the different odour. Data points classified

as Toluene are shown in blue, whereas the other data points are shown in black.

As suggested by the Figures 5.19 and 5.20, the compound made up of Toluene

+ Ethanol was successfully identified as trials containing the target odour in all 5

runs. Compounds Toluene + Heptane and Toluene + Chloroform were successful

in 4 out of 5 trials each. With a lower percentage of success, compounds Toluene

+ P-Cymene and Toluene + Cyclohexanone were correctly classified in 3 out of

5 trials. Finally, the model failed to effectively detect Toluene in the compound

with Methyl Salicylate. Results are summarized in Table 5.7
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5.5.3.1 An exhaustive segmentation experiment

A more exhaustive segmentation experiment is presented here. For this experi-

ment, first the olfactory bulb is trained to detect a target odour (Toluene), re-

maining pure odours and compounds made of concentrations of the remaining

pure odours will serve as distractors. Compounds containing Toluene will also be

used in this experiment. The purpose is to verify if the olfactory bulb (which was

initially trained to detect Toluene) can positively detect the presence of the target

odour (Toluene) in compounds containing Toluene.

Figure 5.21 shows the principal components of the response for the untrained

model. As can be seen, Toluene responses (blue) overlap with the rest of responses.

In the same way, compounds containing a certain concentration of Toluene (or-

ange) are also spread out in the principal components space. Remaining responses

confound with the vapours containing Toluene.

Figure 5.22 shows the response of the olfactory bulb after training. As can be

seen, the responses belonging to pure Toluene after the training are concentrated in

an area around the central area of the pc1-pc2 plane. Similarly, some compounds

containing the target odour (Toluene) fall within this area, however, some of these

compounds fall far away of this area.

Additionally, a MANOVA test was conducted to determine whether or not

there are differences between the responses evoked by vapours containing pure

concentrations of Toluene, vapours of different odours, compounds containing con-
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Untrained Trained
P-value Wilks-Lambda P-value Wilks-Lambda
0.000 0.9699 0.000 0.9816
0.003 0.9911 0.030 0.9984
0.529 0.9999 0.528 0.9999

Table 5.8: P-value and Wilks-Lambda test statistics for the MANOVA test prior the training
of the model (segmentation).

centrations of Toluene and compounds without Toluene at all. For this purpose,

odours were separated in four groups:

1. Pure odours containing Toluene.

2. Compounds containing come concentration of Toluene.

3. Pure odours different than Toluene.

4. Compounds not containing toluene.

The MANOVA test was carried out for these four groups of responses for

both prior and after the training. The results obtained by the MANOVA test are

summarized in Table 5.8. Results prior and after the training process show similar

behaviour. The third p-values indicates that there are separated groups which in

fact belong to the same group. In order to identify what groups are more similar,

a dendrogram plot of the group means after the multivariate analysis of variance

is obtained. Figure 5.23 shows the dendrogram of the groups before the model is

trained. As the figure suggests, groups of compounds (regardless of the presence

of Toluene) are more similar between them.

On the other hand, Figure 5.24 shows the dendrogram of the groups after the
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model was trained. As can be seen, after the training, the groups of pure vapours

(both Toluene and non-Toluene) seem to be more similar between them than

before the training. Groups of compounds are also very similar between them.

The results obtained by MANOVA are not conclusive, therefore, additional tests

are necessary.

An alternative way to test the identification capabilities of the model is by

means of a linear discriminant analysis. Linear discriminant analysis is a statistical

method used to find the linear combination of characteristics which best separate

two or more groups of data. For this analysis, random samples from the groups

1, 3 and 4 (Pure Toluene, Non-Toluene pure odours and non-Toluene compounds

respectively) were selected to form the training set. The remaining data from the

responses (group of Toluene compounds inclusive) should be categorized by the

algorithm into one of these three groups. Ideally, the discriminant function should

also classify compounds containing Toluene within the group of pure Toluene.

Prior the training process, the linear discriminant algorithm correctly classi-

fied 41.8% of the Toluene data points within their corresponding group (Toluene).

After the training, the algorithm correctly classified 61.4% of the data points (see

Table 5.9). An increase of about 20% of the data points correctly categorized com-

pared to the same test prior the training. The learning algorithm has a positive

effect on the olfactory bulb, by increasing the probability of correct detection.

As a final test, a cluster analysis on the responses from the olfactory bulb was
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Data points correctly identified as Toluene
Before training After training Difference

41.8% 61.4% 19.6%

Table 5.9: Percentage of data correctly classified as the target odour before and after training
the model by the linear discriminant function (segmentation).

Pure Toluene points correctly identified Toluene compounds points correctly identified
Before training After training Before training After training

19.7% 49.3% 6.9% 48.0%

Table 5.10: Percentage of data correctly clustered as the target odour before and after training
the model (segmentation).

carried out. Data points (from each individual response) were grouped in clusters

by applying the k-means method and using the squared Euclidean distance. A

total of 9 groups were defined for the entire set of responses, expecting data to be

grouped by odours. Figure 5.24 shows the clusters obtained from the responses

from the olfactory bulb after the training process was carried out. The results of

the cluster analysis before and after the training are summarized in table 5.10.

As can be seen, the training increased the likelihood (percentage) of data

points to be classified in their right cluster, since before training, about 20% of

data points belonging to pure Toluene were clustered in the group of ’Toluene’,

however, after the training, this percentage rose to about 50%. In the same way,

data points belonging to a compound containing Toluene, about 7% were initially

clustered within the ’Toluene group’, however, after the training process, about

50% of these data points were correctly classified within the ’Toluene group’.
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5.5.4 Comparison with other pattern recognition methods

In order to set a benchmark for the performance of the olfactory bulb in compar-

ison with other pattern recognition methods, the results from the identification

and segmentation experiments obtained by the olfactory bulb are compared with

results obtained using two different pattern recognition methods. The selected

methods for this aim are:

1. Support Vector Machine.

2. Multilayer Perceptron.

5.5.4.1 Support Vector Machine

A Support Vector Machine (SVM) is a set of statistical tools used for classifi-

cation and regression (Vapnik, 1995). Defining the input data as two different

sets of vectors in an n-dimensional space, a Support Vector Machine solves a

quadratic optimization problem which leads to a separating hyperplane in that

space (Joachims, 1999). The SV M light software implementation of Support Vector

Machines (Joachims, 1999) was employed for the identification and segmentation

problems.

For the identification problem, the same set of inputs utilized by the olfactory

bulb are used. A random sample of 35 trials out of the total trials used in the

identification experiment (see Section 5.5.1.2 within this chapter) are selected to

train the SVM. Inputs containing Toluene were tagged as ’+1’, whereas inputs
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OB model - LDA OB model - cluster SVM Multilayer Perceptron
Identification 65.8% 88.8% 94.7% 36.4%
Segmentation 61.4% 47.9% 47.5% 29.6%

Table 5.11: Percentage of data correctly classified by the OB (LDA and cluster analysis), Support
Vector Machine and Multilayer Perceptron for the identification and segmentation experiments.

not containing Toluene were tagged as ’-1’. The rest of the trials were used to test

the classification capabilities of the method. Initially, the SVM was trained using

the set of training inputs. After the training, the remaining inputs were used to

test how many trials the SVM could correctly identify as Toluene, and how many

trials were correctly identified as non-toluene input.

The same procedure was carried out for the classification task, were a random

sample of 50 trials out of the total trials used in the classification experiment (see

Section 5.5.3.1 within this chapter) were selected to train the SVM.

The results are summarized in Table 5.11. As can be seen, the SVM was

superior in the identification task to the olfactory bulb model, since 94.7% of

the inputs were correctly classified by the SVM in comparison with 88.8% of the

data points correctly classified by the olfactory bulb using the cluster analysis.

However, in the segmentation task, the olfactory bulb model (by means of the

linear discriminant function) was able to outperform the Support Vector Machine.

5.5.4.2 Multilayer Perceptron

A Multilayer Perceptron (MLP) is an artificial neural network (ANN) model which

maps a set of inputs onto a set of outputs by means of an activation function.

A Multilayer Perceptron consists of an input layer, two or more hidden layers
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and an output layer. For this experiment, the MLP consists of 2 hidden layers.

Every neuron which makes up the MLP contains an activation function, which

either turns on or turns off the neuron, that is, the activation function determines

whether or not the neuron fires. Typically the activation function is a sigmoid

function. For this experiment, the activation function is an hyperbolic tangent

defined by the following equation:

y(uj) = tanh(uj), (5.8)

where y(uj) is the output of the network whose values can be either +1 or -1, and

uj is the weighted sum of the input synapses.

For this experiment, the software for artificial neural networks NeuralLab

version 3.1 was used. An input layer consisting of 75 inputs plus a first and

second hidden layer made up of 300 neurons each layer was constructed. The

output layer consisting of a single neuron would fire if the odour at the input is

the target odour, otherwise, the neuron should remain silent.

For the identification problem, the same set of inputs utilized by the olfactory

bulb are used. A random sample of 35 trials out of the total trials used in the

identification experiment (see Section 5.5.1.2 within this chapter) are selected to

train the MLP. Inputs containing Toluene were tagged as ’+1’, whereas inputs

not containing Toluene were tagged as ’-1’. The rest of the trials were used to test

the identification capabilities of the ANN. Initially, the MLP was trained using
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the set of training inputs. After the training, the remaining inputs were used to

test how many trials the MLP could correctly identify as Toluene, and how many

trials were correctly identified as non-toluene input.

The same procedure was carried out for the classification task, were a random

sample of 50 trials out of the total trials used in the classification experiment (see

Section 5.5.3.1 within this chapter) were selected to train the MLP.

The results are summarized in Table 5.11. As the table suggests, the olfactory

bulb model showed a better performance than the MLP for the identification and

segmentation task. The best performance for the MLP was in the case of the

identification task, where 36.4% of the inputs were correctly classified. In contrast,

the olfactory bulb emplying the linear discriminant function obtained 65.8% of the

data points correctly classified, in addition, the cluster analysis of the responses

from the olfactory bulb model could correctly classify 88.8% of the data points.

5.5.5 Conclusions

Classification and identification of odours could be difficult tasks to deal with,

yet the olfactory bulb circuit has proven to be a good choice when dealing with

these problems. More interestingly, we have shown that using real data (which

was collected in Tufts University, USA), the olfactory bulb model showed very

promising results.

The olfactory bulb was tested for three different tasks, i.e. identification,

classification and segmentation. For the identification task, the olfactory bulb
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was able to identify in most cases the presence of toluene, even when background

noise was present (see Figure 5.14). The statistical analysis proved that the effects

of the learning algorithm helped the model to increase the likelihood of correctly

identifying the presence of a target odour.

For testing the classification capabilities of the olfactory bulb model, the

model was trained for three different odours. Again, the results showed that

the olfactory bulb model could effectively perform the classification task for the

three odours, obtaining a high rate of success for all odours. All three odours were

correctly classified by the model.

As for the segmentation experiment, the olfactory bulb was trained to detect

the presence of a target odour. The model was exposed to odours not containing

the target odour as well as to odours containing different concentrations of the

target odour. This experiment turned out to be more challenging for the olfactory

bulb, however, the model showed promising results.

Finally, based on the results, the olfactory bulb model showed a rich variety

of dynamics. Such responses should still convey important information. However,

the study of the dinamics of the model are left for future experiments.
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(a) Toluene + Methyl Salicylate resp.
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(b) Toluene + Methyl Salicylate LDA
analysis.
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(c) Toluene + Ethanol response.
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(d) Toluene + Ethanol LDA analysis.
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(e) Toluene + Heptane response
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(f) Toluene + Heptane response LDA
analysis

Figure 5.19: Segmentation capabilities of the olfactory bulb. a), c) and e) Principal compo-
nent of the response of the olfactory bulb to odour compounds, all containing Toluene plus
Methyl Salicylate (5.19(a)), Ethanol (5.19(c)) and Heptane (5.19(e)). The model was trained
for Toluene, whose response is shown in blue, whereas testing compounds are all shown in green
lines. A random odour was added to the experiment (black line). b), d) and f) Linear discrimi-
nant analysis of the compounds using the trained response of Toluene as basis of the supervised
learning algorithm. Data points were re-drawn according to the resulting classification of the
data points from the linear discriminant algorithm, i.e. data points in blue correspond to points
classified as Toluene, whereas data points in black were considered as the random odour by the
discriminant algorithm.
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(b) Toluene + P-Cymene LDA analysis.
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(c) Toluene + Cyclohexanone response.
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(d) Toluene + Cyclohexanone LDA anal-
ysis.
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(e) Toluene + Chloroform response.
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(f) Toluene + Chloroform LDA analysis.

Figure 5.20: Segmentation capabilities of the olfactory bulb. a), c) and e) Principal component
of the response of the olfactory bulb to odour compounds, all containing Toluene plus P-Cymene
5.20(a), Cyclohexanone 5.20(c) and Chloroform 5.20(e). The model was trained for Toluene,
whose response is shown in blue, whereas testing compounds are all shown in green lines. A
random odour was added to the experiment (black line). b), d) and f) Linear discriminant
analysis of the compounds using the trained response of Toluene as basis of the supervised
learning algorithm. Data points were re-drawn according to the resulting classification of the
data points from the linear discriminant algorithm, i.e. data points in blue correspond to points
classified as Toluene, whereas data points in black were considered as the random odour by the
discriminant algorithm.
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Figure 5.21: Principal component analysis of the untrained olfactory bulb for all pure odours
and compounds. Responses from vapours of pure Toluene are mixed with the responses evoked
by other odours, covering a wide area in the three-dimensional space.
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Figure 5.22: Principal component analysis of the trained olfactory bulb for all pure odours and
compounds. Responses from vapours of pure Toluene are concentrated in an area surrounded
by the dotted circle. Within this area, compounds containing concentrations of Toluene are also
located, although, some responses from these compounds fall far away of this area. Similarly,
responses evoked by other odours are set apart of the Toluene responses, however, some responses
still remain in the vicinity of the responses from the target odour.



133

Toluene

compounds

Non-Toluene

compounds

Pure odors

(different)

Pure Toluene
0

0.2

0.4

0.6

0.8

1.0
L

in
k
a

g
e

 d
is

ta
n

c
e

Figure 5.23: Dendrogram plot of the group means after MANOVA for the untrained olfactory
bulb. The distances between groups of compounds (regardless of the presence of Toluene)
indicate that these groups are very similar.
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Figure 5.24: Dendrogram plot of the group means after MANOVA for the trained olfactory bulb.
The distances between groups of compounds (regardless of the presence of Toluene) indicate that
these groups are very similar. Unlike the dendrogram for the untrained case, pure odours seem
to be more similar between them, than before the training process was applied.
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Figure 5.25: Cluster analysis of the data from all pure odours plus all mixtures. The cluster
analysis was carried out using k-means in Matlab. The squared Euclidean distance was used by
the clustering algorithm. A total of 9 groups were defined for the total data set. Colours are
used to separate groups.



Chapter 6

Comprehensive behavioural

analysis of neuronal networks

The experiment presented here was designed to demonstrate the most important

feature of the construction kit for neuronal networks: the possibility of a mas-

sive parametric analysis of neuronal models. We will show that by exploiting the

inherent capabilities of the FPGA to run digital circuitry in parallel, an imple-

mented mid-scale neuronal network can be used for a comprehensive behavioural

analysis.

6.1 Setting up the model

The experiments consist in doing a full inspection of the effects that variations in

the inputs as well as in inhibitory weights have on the model’s response. For this

135
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aim, five different odours were randomly selected using the techniques previously

explained in chapter 4. From now, these inputs form the target odours. The

olfactory bulb will be trained for the target odours, and the responses around the

trained parameters (target odours and inhibitory weights) analysed.

Initially, the olfactory bulb is untrained and therefore the untrained response

of the model is obtained. Figure 6.1 shows the output of the olfactory bulb for all

five odours under untrained conditions. As can be seen, the trajectories for each

odour follow different directions in the PC space. Interestingly, the fifth odour

(yellow line) shows a much longer trajectory than the others. This is caused

by the higher spiking frequency yielded by the fifth odour, showing an increased

responsiveness of the olfactory bulb to this odour.

Next, the learning algorithm is applied to the model as follows: the first odour

is presented to the olfactory bulb and the response is used to train the network to

this odour using a Hebbian learning algorithm as in Chapter 2. This process (the

training) modifies the inhibitory weights of the model according to the activity of

each mitral cell.

The second odour is then applied to the model and the response is used to

train the circuit to this new input. The learning algorithm takes the output for

the second odour and based on the activity elicited by each mitral cell, the new in-

hibitory weights are calculated, reeplacing the old values. Therefore, the learning

algorithm is an iterative process in which weights are continously adjusted. The
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Figure 6.1: Principal component analysis for the untrained olfactory bulb. A total of 5 different
odours were used in this experiment, each one represented by a different colour. The time
constants of both the ORN and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential,
Vth = 50000. The time constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas
for the inhibitory synapses the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant
values randomly selected in a range between 500 and 1000, were used to represent a constant
concentration of each odour stimulus. The total running time in terms of biological values is
equivalent to 5 seconds at a sampling frequency of fsmp = 10 kHz, although the clock frequency
was set to fclk = 10 MHz thus each run lasted for 5 ms of the FPGA processing time.
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weights now reflect the effects of training for the first two odours. This process is

then repeated for odours three, four and five.

Every time the learning process is applied to a different odour, the inhibitory

weights change according to the activity evoked by that odour The learning is re-

inforced by repeating the Hebbian learning algorithm sequentially from the first to

the fifth odour for 100 training iterations. Once the training has been completed,

the inhibitory weights are fixed for the remainder of the experiment.

The trained response of the olfactory bulb for all five odours is then obtained.

Figure 6.2 shows the principal component analysis of the trained network for all

5 odours. As the plot suggests, in contrast with the untrained response, the

trajectories for each odour (besides quickly tending towards an attractor in the

form of a limit cycle) indicate a similar response of the olfactory bulb to each

odour. In conclusion, the training optimizes the response of the olfactory bulb,

making it more sensitive to the presence of the target odours, which directs the

response towards a characteristic limit cycle.

6.2 Comprehensive analysis of the olfactory bulb response

by scanning the input

The most powerful characteristic of the construction kit for neuronal modelling

on a FPGA, is the capability to run networks at a much higher speed, making the

massive parametric analysis of neuronal networks feasible. In other words, the
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Figure 6.2: Principal component analysis for the trained olfactory bulb. A total of 5 different
odours were used in this experiment, each one represented by a different colour.
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model can be run repeatedly under many different conditions to determine the

impact of a given parameter (such as input or synaptic weights).

To demonstrate this, the following experiment was designed: The experiment

employs the olfactory bulb circuit described in the previous section, which is

already trained for 5 odours and its purpose is to determine the effect of a changing

input on the trained model. The network already responds to five different odours,

which are represented by five distinct sets of values, corresponding to the output

delivered by the sensors to the olfactory bulb.

While investigating the effects of the input on the trained network, we are

mainly interested in input values close to the target (trained) odours which cause

the circuit to produce (or deviate from) the characteristic response of the model

to the trained odour. As these input values are not known, the task consists in

feeding the olfactory bulb with all possible input values. Their respective responses

will help us detect those critical input values which produce a turning point in

the response.

The ideal experiment should run the olfactory bulb with all possible combi-

nations of values for the 75 values which make up the input. The limiting range

of values for the input is within 500 and 1000 inclusive (as explained in earlier

chapters). A complete analysis of the effects of the input should scan the entire

range of values for each one of the 75 values of the input with a step size of 1,

since 1 is the lowest value that can be represented in integer digital logic (used
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to represent the input of the network). However, the total number of possible

combinations under these conditions comes to 50175 combinations, well beyond

our current processing means. Even when the step size is increased to 50 (which

might compromise the extent of detail of the qualitative analysis) the total num-

ber of combinations is in the order of 1175. Assuming an unrealistic processing

speed of 1 million combinations per second, the experiment would then take over

464 years to complete.

A better (and a more realistic approach) is to select a reasonable large number

of combinations which allow the analysis of the effects of the inputs on the trained

network. We therefore selected the inputs by subtracting (or adding) a percentage

of the difference between the lowest (or highest) possible value of the input and the

value of the trained odour, yielding values from below to above the trained odour

without exceeding the limit of the allowed range for the inputs. Mathematically,

the new inputs are obtained from the following equations:

Xi = xi + (xi − L)p (6.1)

Xi = xi + (U − xi)p (6.2)

where Xi is the new value for input i, while xi is the initial value based on the

trained odour, and p is a value between -1 and 1, with a step size of 0.2, denoting

the percentage of change between the lower limit of the range (L) and the trained

value (xi), or between the upper limit of the range (U) and the trained value
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(xi). For this experiment we set L = 500 and U = 1000. A total of 99 input

combinations were obtained per odour, starting with p = .98 and increasing p by

a step size of 0.02. 495 runs were needed to scan all 5 odours of this experiment.

The evolution of the behaviour of the olfactory bulb for all combinations of

inputs is shown in Appendix E. In this section, only plots displaying noticeable

behaviour are shown. As can be seen, inputs in the vicinity of the trained odour

(Figures 6.3 to 6.5) tend to reach the characteristic limit cycle of the trained

responses at a much faster speed (Figure 6.4). As the input becomes less similar

to the trained input, the limit cycle trajectories start to decline (Figures 6.6 and

6.7) passing a point where the trajectories do not reach any attractor (Figures 6.8

and 6.9), and finally show a chaotic behaviour (Figures 6.10 and 6.11).

0

20

40

0

25

50
20

10

0

10

pc1
pc2

p
c
3

Figure 6.3: PCA for the trained olfactory bulb for an input of -20% from its trained value.

The trajectories of the principal component analysis thus show a chaotic be-

haviour if the input is distant from the trained odour. As this distance decreases,

the trajectories begin to take different directions. At a certain turning point in the

vicinity of the trained odour, the trajectories start to tend towards an attractor
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Figure 6.4: PCA for the trained olfactory bulb for an input of 0% from its trained value.
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Figure 6.5: PCA for the trained olfactory bulb for an input of +20% from its trained value.
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Figure 6.6: PCA for the trained olfactory bulb for an input of -30% from its trained value.
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Figure 6.7: PCA for the trained olfactory bulb for an input of +30% from its trained value.
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Figure 6.8: PCA for the trained olfactory bulb for an input of -50% from its trained value.
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Figure 6.9: PCA for the trained olfactory bulb for an input of +50% from its trained value.
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Figure 6.10: PCA for the trained olfactory bulb for an input of -98% from its trained value.
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Figure 6.11: PCA for the trained olfactory bulb for an input of +98% from its trained value.
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in the form of a limit cycle. As the input becomes closer to the trained odour,

the trajectories of the principal component analysis tend to become increasingly

similar to the trajectories of the trained odour.

There is therefore a range of inputs similar, but not identical to the trained

odours for which the response of the circuit can be considered similar to the target

response. We have thus shown that the olfactory bulb is robust against some levels

of noise.

6.2.1 Discriminant analysis

The discriminant function analysis is a method used to classify observations into

predefined classes. For this experiment, a linear discriminant analysis to determine

if odours could be effectively categorized into their right class was carried out as

follows: Responses from five different odours for which the olfactory bulb was

trained to detect, were obtained and used to train discriminant algorithm. These

inputs form the training set for the linear discriminant algorithm. Responses from

all different inputs used for the previous experiment were then used as a test set.

Figure 6.12 shows the result of this experiment. As it suggests, input values close

to the values for which the olfactory bulb was trained were correctly classified in

most cases. Inputs whose values differ in greater extent to the target odours show

a percentage of success of about 40% and below.
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Figure 6.12: Linear discriminant analysis results for the comprehensive inputs analysis exper-
iment. The percentage of successfully classified point for each different input show that input
values in the vicinity of the odours generate responses more likely to be detected as the response
evoked by the right odour.

6.2.2 Spatio-temporal relation between the trained odour and other

responses.

A spatio-temporal analysis of the responses should provide insights into the sim-

ilarities and differences between the several responses of the olfactory bulb. Al-

though we are mainly concerned with inputs similar to the trained odours, it is

nonetheless interesting to investigate how the spatio-temporal relations change

as the inputs become increasingly different to the target odours for which the

olfactory bulb was trained.

In order to detect synchrony between responses, we first focus on the cross-

correlation analysis of the first principal component obtained by the responses

from the 5 odours that are part of this experiment, before analysing the spatio-
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temporal relations among individual mitral cells from each response. The cross-

correlation analysis was carried out starting with an input with values close to the

lower limit range of the valid inputs, and growing towards the upper limit of the

valid input range. Figure 6.13 clearly displays how the cross-correlation changes

with the input. To avoid redundancy, figure 6.13 only shows selected plots of cross-

correlation. It can be seen that, as the input gets closer to the target odours, the

similarity between responses increases. Conversely, as the distance between actual

and trained inputs increases, the responses become more different. Hence, signals

are more alike in the vicinity of the target odours (i.e. inputs within about 5%

of the target odours) and signals differ more for values farther away of the target

odours.

This behaviour is also observed in individual mitral cells. The evolution of the

cross-correlation between the responses from the same mitral cell to each different

odour are shown in the Appendix G. It is not until the inputs are within about

20% of the target inputs, that similarities among responses from mitral cells start

to become apparent. Again, as inputs approach the similarity increases and shows

some synchrony among responses. Stronger synchrony is obtained in the vicinity

of ±10%. Outside the ±20% range, responses show no similarity at all. This

pattern is consistent across odours, as suggested by the evolution of the spatio-

temporal relations depicted on the plots for each individual odour in Appendix

G.. For instance, Figure 6.14 shows the autocorrelation plots for each M/T cell.
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As the figure suggests, an oscillatory behaviour can be seen among the model

response and their lagged and lead values of the autocorrelation. This oscillations

indicate periodic spiking, which is supported by the presence of limit cycles, as

previously observed in the principal component analysis (Figure 6.4). Therefore,

the presence of the target odour causes the olfactory bulb response to fall into

an attractor (limit cycle). Moreover, this behaviour is also observed for input

values similar to the target odour, which indicates that the olfactory bulb model

is robust to noise (see Appendix G).

6.3 Comprehensive analysis of the olfactory bulb response

by scanning the inhibitory weights

Here, we present a second experiment exploiting the advantages of our construc-

tion kit for neuronal modelling over other approaches. Specifically, we carried out

a major exploration of the effects of the inhibitory weights on the behaviour of a

trained model. Since the inhibitory weights are subject to changes in the learning

algorithm used in this experiments, an analysis of the effects that the inhibitory

weights have on the response of the circuit will provide a better understanding of

the dynamics of the model.

Initially, the inhibitory weights for a new experiment are randomly selected

within a range of 0 to 192 inclusive. As already stated, this range was empirically

obtained by observing the response of the olfactory bulb to a constant input while
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Figure 6.13: Cross-correlation analysis of the principal component obtained by sweeping the
input. Plots correspond to the trained input ± 20% of the difference between the target input
and the lower/upper limit of the input range. The time constants of both the ORN and mitral
cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants of
the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odour stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure 6.14: Cross-correlation analysis for odour 4: trained input vs. 0% difference input. The
Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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varying the inhibitory weights. It was noted that for inhibitory weights within this

range (0 to 192), responses from the olfactory bulb showed a more varied as well

as more balanced behaviour. The learning algorithm modifies the weights based

on the firing rates of each presynaptic and postsynaptic cell (Maass & Bishop,

1999), making the response of the network more sensitive to the trained input. It

is therefore in the trained weights where the odour identification occurs. In order

to fully investigate the qualitative effects of the inhibitory weights on the trained

network, all the possible combinations of inhibitory weights should be applied to

the olfactory bulb.

Ideally, all possible combinations of inhibitory weights with a step size of one

should be analysed. However, as the model consists of 600 inhibitory synapses, a

total description of the inhibitory weights is impossible as it would be necessary

to process 197600 possible combinations.

It is simpler yet still effective to use the same approach as previously (see sub-

section 6.2 within this chapter). Combinations of inhibitory weights were selected

by subtracting (or adding) a percentage of the difference between the lowest (or

highest) possible value of the inhibitory weight and the value of the trained odour,

producing values from below to above the trained inhibitory weights without ex-

ceeding the limit of the allowed range for the inputs. With this reasonably large

number of combinations of inhibitory weights, an effective analysis of the effects

of the inhibitory weights on the trained network is possible. The procedure used
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to obtain the inhibitory weights utilized for this experiment is described by the

following equations:

Wi = wi + (wi − Lw)p, (6.3)

Wi = wi + (Uw − wi)p, (6.4)

where Wi is the value for the new inhibitory weight, while wi is the initial trained

inhibitory weight, and p is a value between -1 and 1 denoting the percentage of

change between the lower limit of the range for the inhibitory weights (Lw) and

the current value of the trained weight (wi), or between the upper limit of the

range (Uw) and the trained weight (wi). For this experiment, we set Lw = 0 and

Uw = 192. A total of 99 combinations of inhibitory weights were obtained per

odour, starting from p = .98 and increasing p by a step size of 0.02, 495 runs were

needed to scan all 5 odours in this experiment.

The combinations of inhibitory weights which were selected by equations 6.3

and 6.4 give rise to the evolution of the behaviour of the olfactory bulb that is

shown in Appendix F. For the sake of clarity, only figures which deliver important

information are also shown in this section. From figures 6.15 to 6.17, it can be

seen that inhibitory weights whose values are in the vicinity of the valued of the

trained weights tend to reach the characteristic limit cycle obtained by the trained

weights (Figure 6.16) at a much faster speed than other combinations. For the

rest of the combinations, the limit cycle trajectories start to decline (Figures 6.18
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and 6.19), until they reach a point in which the trajectories not longer tend to a

stable attractor (Figures 6.20 and 6.21).
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Figure 6.15: PCA for the trained olfactory bulb for an input of -10% from its trained value.
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Figure 6.16: PCA for the trained olfactory bulb for an input of 0% from its trained value.
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Figure 6.17: PCA for the trained olfactory bulb for an input of +20% from its trained value.
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Figure 6.18: PCA for the trained olfactory bulb for an input of -20% from its trained value.
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Figure 6.19: PCA for the trained olfactory bulb for an input of +30% from its trained value.
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Figure 6.20: PCA for the trained olfactory bulb for an input of -30% from its trained value.
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Figure 6.21: PCA for the trained olfactory bulb for an input of +60% from its trained value.

Therefore, for values of inhibitory weights that are distant from the trained

weights, the trajectories of the principal component analysis do not reach an

attractor, although they do take different directions. However, as the inhibitory

weights get closer to the trained weights, the responses reach a turning point at

which the trajectories start to form a limit cycle attractor. The closer the input

to the trained odour, the more alike the trajectories of the principal component

analysis are to the trajectories of the trained weights. Conversely, the more distant

the values of the weights from the trained weights, the more dissimilar the response

to the trained response. There is thus a range for the inhibitory weights close to

the trained values within which the circuit can successfully identify target odours.

6.3.1 Discriminant analysis

A linear discriminant analysis was carried out in the same fashion as in the pre-

vious section. Figure 6.22 shows the result of this experiment. As can be seen, a

perfect success rate is only obtained when weights are equal to the trained weights,
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indicating that the olfactory bulb is more sensitive to changes in the weights than

in the inputs. Trials with weights in the vicinity of the trained weights obtained

a percentage of success of about 60%, whereas inhibitory weights very different to

the trained weights ony showed a percentage of success about 40% and below.
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Figure 6.22: Linear discriminant analysis results for the comprehensive weight analysis experi-
ment. The percentage of successfully classified point for each different inhibitory weight, show
that weight values in the vicinity of the trained weights generate responses which are more likely
to be detected as the response evoked by the right set of training weights.

6.3.2 Spatio-temporal relation between responses.

A spatio-temporal analysis of the responses will provide insights into the similari-

ties and differences between the several responses of the olfactory bulb. Although

we are mainly concerned with inhibitory weights similar the trained weights, it is

nonetheless interesting to investigate how the spatio-temporal relations change as

the weights become increasingly different to the inhibitory weights for which the
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olfactory bulb was trained.

Before analysing the spatio-temporal relations among individual mitral cells

from each response, we first focus on a cross-correlation analysis of the first princi-

pal component obtained by the responses from the 5 odours which are part of this

experiment. The cross-correlation analysis was carried out starting from an input

with values closer to the lower limit range of the valid inhibitory weights, and

growing towards the upper limit of the valid weight range. Figure 6.23 clearly

displays how the cross-correlation changes as the weights change. To avoid re-

dundancy, Figure 6.23 only shows selected plots of cross-correlation, which depict

the behaviour of the cross-correlation among inhibitory weights. As the figure

suggests, as the weight values gets closer to the trained weights, the similarity of

the responses increases. Conversely, as the distance between actual and trained

weights increases, the responses become more different. Hence, signals are more

alike in the vicinity of the inhibitory weight values (i.e. weights within 5% of the

trained weights) and differ for values farther away of the trained weights.

This behaviour is also observed in individual mitral cells. The evolution of the

cross-correlation between the responses from the same Mitral cell to each different

odour are shown in the Appendix H. It is not until the weights are within about

20% of the trained values, that similarities among responses from Mitral cells start

to become apparent. Again, as weights approach the trained value the similari-

ties increases and shows some synchrony among responses. Stronger synchrony is
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obtained in the vicinity of the ±10%. Outside the ±20% range, responses show

very little if any similarity. This pattern is consistent across odours, as suggested

by the evolution of the spatio-temporal relations depicted on the plots for each

individual odour in Appendix H. For instance, Figure 6.24 shows the autocorre-

lation plots for each M/T cell. As the figure suggests, an oscillatory behaviour

can be seen among the model response and their lagged and lead values of the

autocorrelation. This oscillations indicate periodic spiking, which is supported by

the presence of limit cycles, as previously observed in the principal component

analysis (Figure 6.16). Therefore, as shown by Figure 6.24 and Figure 6.16, the

main effect of the learning algorithm on the olfactory bulb model consists in cre-

ating attractor points (limit cycles) for each learnt odour, in such a way that in

the presence of a learnt odour, the olfactory bulb generates oscillations around

an attractor point. This behaviour remains for weight values around the trained

values (see Appendix H).

6.4 Conclusions

The construction kit for neuronal models and the applications that have been pre-

sented in this document clearly illustrate some of the most important characteris-

tics of the FPGA technology when used to model neuronal networks. Perhaps the

most important characteristic of the FPGA is the capability to implement digital

neuronal networks running in parallel. This allows all the elements of a mid-size
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Figure 6.23: Cross-correlation analysis of the principal component obtained by sweeping the
inhibitory weights. Plots correspond to the trained weight ± 20% of the difference between the
trained weight value and the lower/upper limit of the weight range. The time constants of both
the ORN and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000.
The time constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory
synapses the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly
selected in a range between 500 and 1000, were used to represent a constant concentration of
each odour stimulus. The total running time in terms of biological values is equivalent to 5
seconds at a sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to
fclk = 10 MHz thus each run lasted for 5 ms of the FPGA processing time.
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Figure 6.24: Cross-correlation analysis for odour 3: trained weights vs. 0% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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neuronal network to run at each clock cycle. Thus, unlike serial processors only

one clock cycle is needed to obtain the output of the network.

A serious disadvantage of most of the technologies used for neuronal mod-

elling (including the one presented in this document) is that they have to rely on

slow storage devices such as hard drives to store the huge amounts of information

which can be generated while analysing neuronal networks. This is unfortunately

unavoidable at the moment of writing this document, and unless something ex-

traordinary happens soon, it will take a long time before a fast storing technology

becomes available to replace the existing devices.

The experiments shown in this chapter illustrate how we can take advantage

of parallel processing. A massive analysis of the behaviour of the olfactory bulb

was carried out by means of hundreds of runs for the model. The total time

consumed by each experiment was about 2.5 seconds of processing time of the

FPGA. Therefore, for comprehensive analysis of neuronal networks, the FPGA

technology is a good option as it combines high processing speed with reliability.

The construction kit presented in this document is therefore a very important tool

for this type of tasks.



Chapter 7

Conclusions

7.1 Conclusions

Neural networks have a growing number of applications in a large number of

fields. For example, in medicine, neural networks are now used in cardiopulmonary

diagnostics (Suki et al., 2003). There is also increasing research in modelling

parts of the human body by means of neural netwoks (Guo-Dong & Wei-Yan,

2008). In finance, neural networks are used to make predictions of the stock

market (Walczak, 2001) and banks use them to determine whether or not a loan

should be granted (Witkowska, 1999). Another important field in which neural

networks are also used is neuromorphic engineering, which deals with the design of

biologically inspired electronic circuits which reproduce the behaviour of biological

nervous systems. In this thesis, we have presented an interesting neuromorphic

application based on the mammalian olfactory bulb, using a novel construction

163
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kit for neuronal modelling in hyper real-time.

In chapter 3 we have detailed the design of our construction kit for neuronal

networks. We have also shown that exact calculations of the dynamics of the

Integrate and Fire model, as well as that the dynamics of the synapse can be

obtained through mathematical adjustments. We have presented circuits capable

of reproducing synaptic currents in the form of exponential decay, alpha and

beta functions. The steps required to obtain an exact calculation of the neuronal

response were detailed in this same chapter. Thus, the construction kit offers a

wide variety of basic elements which allows exact modelling of neuronal networks

with the advantage of running at hyper real-time but without the cost of large

demands of hardware.

Although there are physical limits and hardware restrictions to what is pos-

sible to implement, we have shown that there are simplification tricks that can

be used to overcome this. This has made possible to implement moderately large

neuronal networks. If larger neuronal networks are needed, a multiplexing scheme,

a multi-FPGA configuration or even a combination of them can be considered.

In order to prove the versatility and utility of the construction kit, a biologi-

cally inspired model of the olfactory bulb was implemented using several neuronal

elements that form part of the kit. A total of 675 synapses and 100 somas were

needed for the model. The output of the circuit consisted of 25 somas, mim-

icking the mitral cells in the olfactory bulb of mammals. Each mitral cell had



165

inhibitory connections to every other mitral cell, resulting in a total of 600 in-

hibitory synaptic connections. Although all synaptic currents were modelled by

exponential decays, time constants were different for excitatory synapses (4 ms)

and inhibitory connections (16 ms).

The results shown in chapter 5 indicate that even at low concentrations, the

olfactory bulb could differentiate a target odour (from which the circuit was pre-

viously trained) from a random input, corresponding to a different odour. In

the same experiment, the results showed that the olfactory bulb, was able to

effectively differentiate between odours, i.e. the model was able to perform seg-

mentation correctly in most cases. Hence, identification and segmentation tasks

were successfully tested with this experiment.

The same olfactory bulb was utilized to demonstrate a determinant charac-

teristic of the neuron model presented in this thesis: hyper real-time performance,

which gives the model an important advantage over other ways to construct neu-

ronal networks. This powerful characteristic allows comprehensive behavioural

analysis by means of massive parametric scanning as shown in chapter 6.

In conclusion, the aim of the work presented here was to develop a reliable

alternative for neuronal modelling which besides offering versatility and flexibility,

would be able to offer advantages unavailable in alternative approaches. The

construction kit presented here definitely delivers on this goal.
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7.2 Recommendations for further work

A different approach which could also give us a more in-depth insight on the

dynamics of the responses from the olfactory bulb model, is a nonlinear time

series analysis. As we have already verified the existence of limit cycles in the

response of the model, further characteristics of the output, may be explored by

analysing the properties of such limit cycles. Such properties could be helpful in

characterizing responses elicited by the presence of target odours. However, as

the analysis of such dynamics is very broad, this step is left for future work.

In addition, the results presented in this thesis also show that the field of

applications of the construction kit is very promising. A very interesting area in

which the proposed kit would be extremely useful is the field of image processing,

in which heavy data processing tasks need to be performed in real-time (Alippi,

Casagrande, Scotti, & Piuri, 2000). For example, real-time face recognition in

an airport could help enhance security by obtaining instant detection of known

suspects (Chandrasekaran, 2005). Given the hyper real-time characteristics shown

by the construction kit presented in this thesis, the kit seems to be a natural choice

for such processing tasks.
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A. Alpha and beta functions matrices exponentials

The general solution of the exact integration (EI) scheme (Rotter & Diesmann,

1999) for an nth order system of linear time invariant ODEs is described by

yk+1 = eA∆yk, y(0) = y0, (A.1)

where eA∆ is the matrix exponential of the system. The diagonal elements of

this matrix describe the step dynamics for each of the exponential decay stages

to be used as part of the solution, which can be cascaded to simulate the nth

order system. However to maintain an exact solution the remaining off-diagonal

elements must be applied as coupling factors between the cascaded stages.

A.1 Matrix exponential of the alpha function synapse.

Pα = eA∆ =









e−
∆
τα 0

∆e−
∆
τα e−

∆
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. (A.2)

A.2 Matrix exponential of the beta function synapse.

Pβ = eA∆ =
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. (A.3)
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B. Matrix exponential of the combined neuron model

based on alpha function synapse

B.1 Matrix exponential of the combined neuron model based on alpha

function synapse.

Pm = eA∆ =






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
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(B.1)

B.2 Linear transformation of the matrix exponential of the combined

neuron model based on alpha function synapse.

Here we describe a linear transformation which may be applied to the matrix

exponential in order to simplify the combined neuron circuit. The goal of this

transformation is to reduce the hardware required to implement the combined

neuron model by removing the requirement for multipliers.

First of all, for the sake of the simplicity, let us rewrite the matrix exponential

(Pm = eA∆) in a more general form as

Pm =















α 0 0

r β 0

q p γ















, (B.2)
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where α, β, and γ define the three exponential decay circuits connected in cascade

and p, q, and r are constant coupling factors, which call for the use of multipliers.

We would like to express the matrix exponential in the form















α 0 0

1 β 0

0 1 γ















, (B.3)

which means that the resulting combined neuron model circuit will be made up

of three exponential decay elements connected in cascade, but crucially, with no

multiplication factors coupling them. The best way to achieve this form without

altering the dynamics is by applying a linear transformation. We must find a linear

transformation that when applied to the matrix exponential, such as equation B.1,

yields a transformed matrix exponential of the form shown in equation B.3. The

following transformation matrix fulfils this requirement

Q =















b 0 0

f c 0

0 0 d















. (B.4)

Thus, we must now find the values of b, c, d, and f which transform equation B.1

into the form of equation B.3.

Applying this transformation matrix to the general solution (equation A.1)

gives,
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y = Qz, (B.5)

which gives rise to the linear transformation of equation A.1 given by,

zk+1 = Q−1PmQ · zk, z(0) = z0, (B.6)

where

Q−1PmQ =










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α 0 0

(− f
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α + 1

c
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β β 0

b
d
q + f

d
p c

d
p γ















. (B.7)

As was already mentioned, in order to keep simplicity in the circuit, the trans-

formed matrix exponential should be in the form of equation B.3. The following

conditions ensure that this is accomplished

−fα + br + fβ = c,

bq + fp = 0, (B.8)

cp = d.

To maintain the dynamic of the membrane potential it is required that d = 1.
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Now we can easily solve for b, c, and f , which results in

b =
−1

(β − α)q − pr
, (B.9)

c =
1

p
, (B.10)

d = 1, (B.11)

f =
q

p((β − α)q − pr)
. (B.12)

In turn, the transformed initial conditions for a single presynaptic action

potential should then be

z(0) =















1
b

we
τα

− f

bc
we
τα

0















. (B.13)

In the context of the combined circuit, the first and second row of the equation

B.13 correspond to the initial conditions of the exponential decay units (in the

same order), which produces the alpha function synapse (See Figure 2a). The

first row requires us to adjust the synaptic weight according to

wadj =
1

b

we

τα

, (B.14)

where b is defined in equation B.9, and w is the synaptic weight.
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In turn, the second row gives the initial condition that must be applied to the

second exponential decay unit of the alpha function synapse, which is carried out

by making

ρ = −
f

bc

we

τα

, (B.15)

where b, c and f are defined in equations B.9 to B.12. It is important to point out

that ρ must be non-zero in combined neuron models based on alpha/beta function

synapses, otherwise ρ = 0 and can be neglected. Furthermore, since equation A.1

describes the dynamics of the combined neuron model in between spikes, both wadj

and ρ should be added every time an action potential is received at the synapse

(see Figure 3.2a).

Finally, the soma model requires initial conditions set to zero. Meeting this

conditions will guarantee an EI of a leaky integrate-and-fire model receiving den-

dritic currents modelled by alpha functions.
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C. Exponential decay synapse based combined neuron

model matrix exponential

C.1 Matrix exponential of the combined neuron model based on ex-

ponential decay synapse.


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e−
∆
τe 0
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Trial Vapour Trial Vapour Trial Vapour Trial Vapour Trial Vapour
001 control 021 dfg 041 cdg 061 control 081 abdg
002 cdeg 022 cde 042 abcd 062 de 082 abcdfg
003 adef 023 abcdeg 043 control 063 abef 083 aef
004 adfg 024 acdg 044 ceg 064 abcdf 084 g
005 adg 025 control 045 abcefg 065 bdeg 085 control
006 de 026 e 046 abdfg 066 abcdfg 086 abf
007 control 027 cf 047 acef 067 control 087 be
008 abcef 028 abf 048 bcf 068 befg 088 bce
009 g 029 d 049 control 069 abdfg 089 befg
010 bcefg 030 abcdg 050 cf 070 f 090 aceg
011 f 031 control 051 bcdef 071 adef 091 control
012 df 032 ef 052 c 072 abdefg 092 bdg
013 control 033 abcef 053 g 073 control 093 bg
014 bdefg 034 abdg 054 bdefg 074 bcdg 094 bcd
015 acdfg 035 abcefg 055 control 075 abefg 095 f
016 bcdef 036 bcdeg 056 bcde 076 cdf 096 ade
017 bc 037 control 057 c 077 cdeg 097 control
018 cd 038 abce 058 bde 078 abcf 098 de
019 control 039 abcg 059 bcdef 079 control 099 cdefg
020 bf 040 adf 060 abcefg 080 e 100 bdg

Table D.1: Description of the vapours used for trials 1 to 100.

D List of vapors (odors) used by trial number
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Trial Vapour Trial Vapour Trial Vapour Trial Vapour Trial Vapour
101 control 121 abcdfg 141 control 161 cdfg 181 abdf
102 control 122 df 142 abdeg 162 abcefg 182 abcdeg
103 ce 123 control 143 beg 163 acfg 183 control
104 bcdeg 124 def 144 acfg 164 af 184 ade
105 control 125 cefg 145 bef 165 control 185 abd
106 g 126 acef 146 bf 166 bf 186 bcef
107 abcdg 127 afg 147 control 167 abef 187 aceg
108 eg 128 cde 148 bcdef 168 abcf 188 bde
109 dfg 129 control 149 abceg 169 a 189 control
110 acdg 130 cfg 150 ae 170 ab 190 abc
111 control 131 abef 151 cdef 171 control 191 acg
112 cef 132 acg 152 bdef 172 abefg 192 acdeg
113 aeg 133 cfg 153 control 173 def 193 abcfg
114 aef 134 acdg 154 bf 174 bfg 194 aeg
115 adg 135 control 155 df 175 ac 195 control
116 adef 136 bcde 156 c 176 adf 196 g
117 control 137 cef 157 adefg 177 control 197 afg
118 ad 138 abcde 158 df 178 acf 198 acd
119 f 139 abdg 159 control 179 acdf 199 adeg
120 aeg 140 bcefg 160 acdef 180 abeg 200 abcdef

Table D.2: Description of the vapours used for trials 101 to 200.

Trial Vapour Trial Vapour Trial Vapour Trial Vapour Trial Vapour
201 control 221 control 241 cdg 261 cdfg 281 control
202 e 222 cg 242 b 262 aefg 282 abcd
203 control 223 abcf 243 abdfg 263 control 283 bcdefg
204 control 224 bdf 244 fg 264 bef 284 cef
205 abdefg 225 aef 245 control 265 cdef 285 acdef
206 abcdf 226 aef 246 e 266 abcdg 286 dg
207 ade 227 control 247 abcdefg 267 ac 287 control
208 abce 228 ace 248 bdfg 268 ab 288 bfg
209 control 229 af 249 bdeg 269 control 289 a
210 abd 230 ce 250 abceg 270 acefg 290 cdefg
211 afg 231 abeg 251 control 271 adfg 291 bdf
212 d 232 cg 252 dg 272 df 292 abfg
213 cdefg 233 control 253 a 273 abde 293 control
214 acdg 234 abdefg 254 bcfg 274 cdeg 294 cf
215 control 235 beg 255 bcf 275 control 295 cdg
216 bdeg 236 acdfg 256 aefg 276 ace 296 abef
217 bcdf 237 efg 257 control 277 bdfg 297 acd
218 be 238 fg 258 d 278 efg 298 bcd
219 c 239 control 259 abeg 279 abd 299 control
220 acg 240 bdf 260 defg 280 e 300 bcg

Table D.3: Description of the vapours used for trials 201 to 300.
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Trial Vapour Trial Vapour Trial Vapour Trial Vapour Trial Vapour
301 abcd 321 acdeg 341 eg 361 aefg 381 cdefg
302 abceg 322 af 342 control 362 acfg 382 bdf
303 bc 323 ef 343 defg 363 befg 383 ae
304 ade 324 control 344 afg 364 g 384 control
305 control 325 adeg 345 abg 365 bcfg 385 cfg
306 control 326 adg 346 bcg 366 control 386 af
307 acdefg 327 g 347 aceg 367 f 387 adf
308 bd 328 acdf 348 control 368 a 388 acf
309 bce 329 cdfg 349 bdg 369 adg 389 abcdeg
310 d 330 control 350 be 370 abdeg 390 control
311 adeg 331 adefg 351 cdf 371 abdef 391 abceg
312 control 332 deg 352 bcdg 372 control 392 acdef
313 abcdg 333 bdefg 353 bc 373 bdef 393 abc
314 acde 334 abdef 354 control 374 abfg 394 acf
315 abdf 335 bceg 355 bfg 375 g 395 bdefg
316 cfg 336 control 356 ac 376 abcde 396 control
317 abcdef 337 def 357 abg 377 ac 397 ce
318 control 338 fg 358 abdfg 378 control 398 bcf
319 bcef 339 bg 359 acde 379 acdg 399 acde
320 efg 340 cd 360 control 380 adefg 400 beg

Table D.4: Description of the vapours used for trials 301 to 400.

Trial Vapour Trial Vapour Trial Vapour Trial Vapour Trial Vapour
401 ag 421 cdef 441 abde 461 d 481 bcdf
402 control 422 control 442 ceg 462 adef 482 control
403 e 423 abdefg 443 abcdefg 463 b 483 abcf
404 abcde 424 bcdfg 444 adefg 464 control 484 abefg
405 abd 425 b 445 e 465 abde 485 c
406 control 426 abef 446 control 466 abefg 486 adfg
407 control 427 bdfg 447 abefg 467 bcdefg 487 cde
408 ef 428 control 448 beg 468 cdg 488 control
409 abcdefg 429 bef 449 bcefg 469 ab 489 cdfg
410 control 430 bef 450 bde 470 control 490 def
411 abc 431 f 451 adfg 471 abc 491 abdef
412 acdeg 432 d 452 control 472 bce 492 adefg
413 eg 433 efg 453 abdefg 473 acdf 493 de
414 cdeg 434 control 454 abcef 474 c 494 control
415 ad 435 bcefg 455 ace 475 bg 495 abcef
416 control 436 eg 456 abe 476 control 496 abe
417 cfg 437 bg 457 beg 477 cdg 497 c
418 cf 438 bdefg 458 control 478 cg 498 cd
419 bdfg 439 cg 459 abcfg 479 bdfg 499 acd
420 aeg 440 control 460 bf 480 abcdefg 500 control

Table D.5: Description of the vapours used for trials 401 to 500.
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Trial Vapour Trial Vapour Trial Vapour Trial Vapour Trial Vapour
501 abdeg 521 abfg 541 acdfg 561 abf 581 abcg
502 aef 522 c 542 g 562 control 582 efg
503 bcdefg 523 cefg 543 cefg 563 abdf 583 aceg
504 ace 524 bef 544 control 564 acefg 584 abe
505 bdg 525 acfg 545 abe 565 bcdeg 585 bce
506 control 526 control 546 ae 566 befg 586 control
507 abde 527 abdef 547 bcde 567 bcf 587 bd
508 control 528 b 548 abcdef 568 control 588 abdeg
509 control 529 acd 549 bcd 569 ceg 589 bde
510 abg 530 acef 550 control 570 ag 590 abce
511 bdf 531 acdfg 551 bdeg 571 bcdfg 591 abdf
512 abcfg 532 control 552 cg 572 abde 592 control
513 bg 533 bcdg 553 cdefg 573 bcdeg 593 bd
514 control 534 abcef 554 bcde 574 control 594 adg
515 adfg 535 fg 555 d 575 abcdef 595 abcdeg
516 bceg 536 abce 556 control 576 abcf 596 ab
517 a 537 d 557 acdefg 577 bcefg 597 a
518 bcdefg 538 control 558 bcg 578 bfg 598 control
519 bc 539 dg 559 acdefg 579 adf 599 abcde
520 control 540 acg 560 abcdfg 580 control 600 acefg

Table D.6: Description of the vapours used for trials 501 to 600.

Trial Vapour Trial Vapour Trial Vapour Trial Vapour Trial Vapour
601 afg 621 cef 641 control 661 bcdfg 681 bcdfg
602 c 622 abfg 642 be 662 ag 682 bfg
603 ef 623 control 643 g 663 f 683 control
604 control 624 deg 644 bcd 664 e 684 acd
605 cdfg 625 abcdef 645 ceg 665 control 685 a
606 bce 626 f 646 dg 666 cef 686 dfg
607 cdeg 627 abg 647 control 667 acdf 687 abdg
608 ef 628 bdg 648 ce 668 bcdf 688 ag
609 adeg 629 control 649 abeg 669 acdeg 689 control
610 control 630 abceg 650 ac 670 af 690 acef
611 control 631 bcdg 651 def 671 control 691 dfg
612 deg 632 abcdf 652 abg 672 abdef 692 abcd
613 abcdeg 633 de 653 control 673 abcde 693 abcdg
614 bcef 634 bcd 654 b 674 bcef 694 abfg
615 cde 635 control 655 bcde 675 d 695 control
616 acefg 636 acf 656 cdf 676 bd 696 defg
617 control 637 d 657 abdf 677 control 697 abf
618 acdfg 638 eg 658 aceg 678 acdef 698 acdeg
619 abcfg 639 ab 659 control 679 abd 699 cdef
620 deg 640 a 660 cdf 680 ag 700 e

Table D.7: Description of the vapours used for trials 601 to 700.



189

Trial Vapour Trial Vapour Trial Vapour Trial Vapour Trial Vapour
701 control 721 control 741 abcefg 761 ae 781 control
702 c 722 bceg 742 ae 762 e 782 bcfg
703 abdfg 723 f 743 adf 763 control 783 cd
704 dg 724 aeg 744 cdef 764 a 784 acg
705 acdefg 725 abcdf 745 control 765 abf 785 abcfg
706 bcdeg 726 bcfg 746 ce 766 abeg 786 a
707 control 727 control 747 bcdf 767 abcg 787 control
708 acdf 728 fg 748 adef 768 acefg 788 cdefg
709 bcdef 729 abdeg 749 deg 769 control 789 be
710 cd 730 acfg 750 abdg 770 abe 790 bcdefg
711 control 731 defg 751 control 771 cefg 791 bde
712 control 732 b 752 b 772 bceg 792 dfg
713 bceg 733 control 753 b 773 aefg 793 control
714 abc 734 cefg 754 abcg 774 bcdf 794 bdef
715 control 735 ceg 755 acdef 775 control 795 acdefg
716 bcef 736 bcdfg 756 aefg 776 bdef 796 bcfg
717 acde 737 abcd 757 control 777 ade 797 bdef
718 bc 738 acf 758 cde 778 cf 798 ace
719 bdeg 739 control 759 befg 779 bcg 799 control
720 acef 740 adeg 760 ad 780 b 800 cdf

Table D.8: Description of the vapours used for trials 701 to 800.

Trial Vapour Trial Vapour Trial Vapour Trial Vapour Trial Vapour
801 ad 805 control 809 abcdefg 812 f 815 abcdf
802 bd 806 bcf 810 abcdfg 813 b 816 abcg
803 bcg 807 acde 811 control 814 ad 817 control
804 bcdg 808 abce

Table D.9: Description of the vapours used for trials 801 to 817.

E. Evolution of the PCA over the progressive scanning of

the inputs.
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Figure D.1: Evolution of the PCA over the progressive scanning of the inputs. Inputs varying
from −98% to −70%.
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Figure D.2: Evolution of the PCA over the progressive scanning of the inputs. Inputs varying
from −68% to −40%.
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Figure D.3: Evolution of the PCA over the progressive scanning of the inputs. Inputs varying
from −38% to −10%.
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Figure D.4: Evolution of the PCA over the progressive scanning of the inputs. Inputs varying
from −8% to +20%.
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Figure D.5: Evolution of the PCA over the progressive scanning of the inputs. Inputs varying
from +22% to +50%.



195

0

20

40

0

25

50
−20

−10

0

10

pc1pc2

pc
3

(a) +52%

0

20

40

0

25

50
−20

−10

0

10

pc1pc2

pc
3

(b) +54%

0

20

40

0

25

50
−20

−10

0

10

pc1pc2

pc
3

(c) +56%

0

20

40

0

25

50
−20

−10

0

10

pc1pc2

pc
3

(d) +58%

0

20

40

0

25

50
−20

−10

0

10

pc1pc2

pc
3

(e) +60%

0

20

40

0

25

50
−20

−10

0

10

pc1pc2

pc
3

(f) +62%

0

20

40

0

25

50
−20

−10

0

10

pc1pc2

pc
3

(g) +64%

0

20

40

0

25

50
−20

−10

0

10

pc1pc2

pc
3

(h) +66%

0

20

40

0

25

50
−20

−10

0

10

pc1pc2

pc
3

(i) +68%

0

20

40

0

25

50
−20

−10

0

10

pc1pc2

pc
3

(j) +70%

0

20

40

0

25

50
−20

−10

0

10

pc1pc2

pc
3

(k) +72%

0

20

40

0

25

50
−20

−10

0

10

pc1pc2

pc
3

(l) +74%

0

20

40

0

25

50
−20

−10

0

10

pc1pc2

pc
3

(m) +76%

0

20

40

0

25

50
−20

−10

0

10

pc1pc2

pc
3

(n) +78%

0

20

40

0

25

50
−20

−10

0

10

pc1pc2

pc
3

(o) +80%

Figure D.6: Evolution of the PCA over the progressive scanning of the inputs. Inputs varying
from +52% to +80%.
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Figure D.7: Evolution of the PCA over the progressive scanning of the inputs. A total of
99 different inputs were obtained to scan the model response to each input. All inputs were
calculated by the equation 6.1, hence a percentage of the difference between the trained odor
and the lower/upper limit of the allowed values for the inputs is subtracted/added to the trained
odor thus obtaining a new input. A PCA analysis of each response was carried out and shown
in Figures E. to E.. Inputs varying from −98% to +98% difference between the trained odor
and the limit for the inputs with a progression of 2% between inputs were obtained. The PCA
plots were fitted in different figures to allow a more detailed view of each subplot. A total of
5 different odors were used in this experiment, each one represented by a different color in the
following fashion: odor 1 in blue, odor 2 in red, odor 3 in green, odor 4 in light blue and odor
5 in yellow. The time constants of both the ORN and mitral cells were set to τ̃m ≈ 10 ms,
with a threshold potential, Vth = 50000. The time constants of the excitatory synapses were
set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time constants were set to τ̃I ≈ 16
ms. For the ORNs, constant values randomly selected in a range between 500 and 1000, were
used to represent a constant concentration of each odor stimulus. The total running time in
terms of biological values is equivalent to 5 seconds at a sampling frequency of fsmp = 10 kHz,
although the clock frequency was set to fclk = 10 MHz thus each run lasted for 5 ms of the
FPGA processing time.
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F. Evolution of the PCA over the progressive scanning of

the inhibitory weights.
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Figure F.1: Evolution of the PCA over the progressive scanning of the weights. Weights varying
from −98% to −64%.
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Figure F.2: Evolution of the PCA over the progressive scanning of the weights. Weights varying
from −62% to −28%.
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Figure F.3: Evolution of the PCA over the progressive scanning of the weights. Weights varying
from −26% to +8%.
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Figure F.4: Evolution of the PCA over the progressive scanning of the weights. Weights varying
from +10% to +44%.
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Figure F.5: Evolution of the PCA over the progressive scanning of the weights. Weights varying
from +46% to +80%.
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Figure F.6: Evolution of the PCA over the progressive scanning of the weights. Weights varying
from +46% to +80%.
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Figure F.7: Evolution of the PCA over the progressive scanning of the inhibitory weights. A
total of 99 different sets of inhibitory weights were obtained to scan the model response to each
odor. All weights were calculated by the equation 6.3, hence a percentage of the difference
between the trained weight and the lower/upper limit of the allowed values for the inhibitory
weights is subtracted/added to the trained odor thus obtaining a new set of weights. A PCA
analysis of each response was carried out and shown in Figures F. to F.. Inputs varying from
−98% to +98% difference between the trained weight and the limit value of the weights with
a progression of 2% between inhibitory weights were obtained. The PCA plots were fitted in
different figures to allow a more detailed view of each subplot. A total of 5 different odors were
used in this experiment, each one represented by a different color in the following fashion: odor
1 in blue, odor 2 in red, odor 3 in green, odor 4 in light blue and odor 5 in yellow. The time
constants of both the ORN and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential,
Vth = 50000. The time constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas
for the inhibitory synapses the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant
values randomly selected in a range between 500 and 1000, were used to represent a constant
concentration of each odor stimulus. The total running time in terms of biological values is
equivalent to 5 seconds at a sampling frequency of fsmp = 10 kHz, although the clock frequency
was set to fclk = 10 MHz thus each run lasted for 5 ms of the FPGA processing time.
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G. Evolution of the Cross-correlation over the progressive

scanning of the inputs.

−1

0

1

va
lu

e

−1

0

1

va
lu

e

−1

0

1

va
lu

e

−1

0

1

va
lu

e

−10 0 10
−1

0

1

(x1000)
lags

va
lu

e

−10 0 10
(x1000)

lags

−10 0 10
(x1000)

lags

−10 0 10
(x1000)

lags

−10 0 10
(x1000)

lags

Figure G.1: Cross-correlation analysis for odour 1: trained input vs. -80% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.2: Cross-correlation analysis for odour 1: trained input vs. -60% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.3: Cross-correlation analysis for odour 1: trained input vs. -40% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.4: Cross-correlation analysis for odour 1: trained input vs. -20% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.5: Cross-correlation analysis for odour 1: trained input vs. -10% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.6: Cross-correlation analysis for odour 1: trained input vs. -4% difference input. The
Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.7: Cross-correlation analysis for odour 1: trained input vs. 0% difference input. The
Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.8: Cross-correlation analysis for odour 1: trained input vs. +4% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.9: Cross-correlation analysis for odour 1: trained input vs. +10% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.10: Cross-correlation analysis for odour 1: trained input vs. +20% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.11: Cross-correlation analysis for odour 1: trained input vs. +40% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.12: Cross-correlation analysis for odour 1: trained input vs. +60% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.13: Cross-correlation analysis for odour 1: trained input vs. +80% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.14: Cross-correlation analysis for odour 2: trained input vs. -80% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.15: Cross-correlation analysis for odour 2: trained input vs. -60% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.16: Cross-correlation analysis for odour 2: trained input vs. -40% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.17: Cross-correlation analysis for odour 2: trained input vs. -20% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.18: Cross-correlation analysis for odour 2: trained input vs. -10% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.19: Cross-correlation analysis for odour 2: trained input vs. -4% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.20: Cross-correlation analysis for odour 2: trained input vs. 0% difference input. The
Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.21: Cross-correlation analysis for odour 2: trained input vs. +4% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.22: Cross-correlation analysis for odour 2: trained input vs. +10% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.



227

−1

0

1

va
lu

e

−1

0

1

va
lu

e

−1

0

1

va
lu

e

−1

0

1

va
lu

e

−10 0 10
−1

0

1

(x1000)
lags

va
lu

e

−10 0 10
(x1000)

lags

−10 0 10
(x1000)

lags

−10 0 10
(x1000)

lags

−10 0 10
(x1000)

lags

Figure G.23: Cross-correlation analysis for odour 2: trained input vs. +20% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.



228

−1

0

1

va
lu

e

−1

0

1

va
lu

e

−1

0

1

va
lu

e

−1

0

1

va
lu

e

−10 0 10
−1

0

1

(x1000)
lags

va
lu

e

−10 0 10
(x1000)

lags

−10 0 10
(x1000)

lags

−10 0 10
(x1000)

lags

−10 0 10
(x1000)

lags

Figure G.24: Cross-correlation analysis for odour 2: trained input vs. +40% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.25: Cross-correlation analysis for odour 2: trained input vs. +60% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.26: Cross-correlation analysis for odour 2: trained input vs. +80% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.27: Cross-correlation analysis for odour 3: trained input vs. -80% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.28: Cross-correlation analysis for odour 3: trained input vs. -60% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.29: Cross-correlation analysis for odour 3: trained input vs. -40% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.30: Cross-correlation analysis for odour 3: trained input vs. -20% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.31: Cross-correlation analysis for odour 3: trained input vs. -10% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.32: Cross-correlation analysis for odour 3: trained input vs. -4% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.33: Cross-correlation analysis for odour 3: trained input vs. 0% difference input. The
Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.34: Cross-correlation analysis for odour 3: trained input vs. +4% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.35: Cross-correlation analysis for odour 3: trained input vs. +10% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.36: Cross-correlation analysis for odour 3: trained input vs. +20% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.37: Cross-correlation analysis for odour 3: trained input vs. +40% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.38: Cross-correlation analysis for odour 3: trained input vs. +60% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.39: Cross-correlation analysis for odour 3: trained input vs. +80% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.40: Cross-correlation analysis for odour 4: trained input vs. -80% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.41: Cross-correlation analysis for odour 4: trained input vs. -60% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.42: Cross-correlation analysis for odour 4: trained input vs. -40% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.43: Cross-correlation analysis for odour 4: trained input vs. -20% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.44: Cross-correlation analysis for odour 4: trained input vs. -10% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.45: Cross-correlation analysis for odour 4: trained input vs. -4% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 KHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.46: Cross-correlation analysis for odour 4: trained input vs. 0% difference input. The
Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.47: Cross-correlation analysis for odour 4: trained input vs. +4% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.48: Cross-correlation analysis for odour 4: trained input vs. +10% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.49: Cross-correlation analysis for odour 4: trained input vs. +20% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.50: Cross-correlation analysis for odour 4: trained input vs. +40% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.51: Cross-correlation analysis for odour 4: trained input vs. +60% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.52: Cross-correlation analysis for odour 4: trained input vs. +80% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.53: Cross-correlation analysis for odour 5: trained input vs. -80% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.54: Cross-correlation analysis for odour 5: trained input vs. -60% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.55: Cross-correlation analysis for odour 5: trained input vs. -40% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.56: Cross-correlation analysis for odour 5: trained input vs. -20% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.57: Cross-correlation analysis for odour 5: trained input vs. -10% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.58: Cross-correlation analysis for odour 5: trained input vs. -4% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.59: Cross-correlation analysis for odour 5: trained input vs. 0% difference input. The
Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.60: Cross-correlation analysis for odour 5: trained input vs. +4% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.61: Cross-correlation analysis for odour 5: trained input vs. +10% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.62: Cross-correlation analysis for odour 5: trained input vs. +20% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.63: Cross-correlation analysis for odour 5: trained input vs. +40% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.64: Cross-correlation analysis for odour 5: trained input vs. +60% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure G.65: Cross-correlation analysis for odour 5: trained input vs. +80% difference input.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained input and the input minus a percentage of the difference between input value and the
limit range for the input. Plots are sorted from left to right and from up to down, starting from
the cross-corelation between for the first mitral cell (the first column and first row) up to the
25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for this particular input. The time constants of both the ORN and
mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time constants
of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses the time
constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected in a range
between 500 and 1000, were used to represent a constant concentration of each odor stimulus.
The total running time in terms of biological values is equivalent to 5 seconds at a sampling
frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz thus each
run lasted for 5 ms of the FPGA processing time.
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Figure H.1: Cross-correlation analysis for odour 1: trained weights vs. -80% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.2: Cross-correlation analysis for odour 1: trained weights vs. -60% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.3: Cross-correlation analysis for odour 1: trained weights vs. -40% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.4: Cross-correlation analysis for odour 1: trained weights vs. -20% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.5: Cross-correlation analysis for odour 1: trained weights vs. -10% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.6: Cross-correlation analysis for odour 1: trained weights vs. -4% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.7: Cross-correlation analysis for odour 1: trained weights vs. 0% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.8: Cross-correlation analysis for odour 1: trained weights vs. +4% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.9: Cross-correlation analysis for odour 1: trained weights vs. +10% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.10: Cross-correlation analysis for odour 1: trained weights vs. +20% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.11: Cross-correlation analysis for odour 1: trained weights vs. +40% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.12: Cross-correlation analysis for odour 1: trained weights vs. +60% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.13: Cross-correlation analysis for odour 1: trained weights vs. +80% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.14: Cross-correlation analysis for odour 2: trained weights vs. -80% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.15: Cross-correlation analysis for odour 2: trained weights vs. -60% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.16: Cross-correlation analysis for odour 2: trained weights vs. -40% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.17: Cross-correlation analysis for odour 2: trained weights vs. -20% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.



287

−1

0

1

va
lu

e

−1

0

1

va
lu

e

−1

0

1

va
lu

e

−1

0

1

va
lu

e

−10 0 10
−1

0

1

(x1000)
lags

va
lu

e

−10 0 10
(x1000)

lags

−10 0 10
(x1000)

lags

−10 0 10
(x1000)

lags

−10 0 10
(x1000)

lags

Figure H.18: Cross-correlation analysis for odour 2: trained weights vs. -10% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.19: Cross-correlation analysis for odour 2: trained weights vs. -4% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.20: Cross-correlation analysis for odour 2: trained weights vs. 0% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.21: Cross-correlation analysis for odour 2: trained weights vs. +4% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.22: Cross-correlation analysis for odour 2: trained weights vs. +10% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.23: Cross-correlation analysis for odour 2: trained weights vs. +20% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.24: Cross-correlation analysis for odour 2: trained weights vs. +40% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.25: Cross-correlation analysis for odour 2: trained weights vs. +60% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.26: Cross-correlation analysis for odour 2: trained weights vs. +80% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.27: Cross-correlation analysis for odour 3: trained weights vs. -80% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.28: Cross-correlation analysis for odour 3: trained weights vs. -60% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.29: Cross-correlation analysis for odour 3: trained weights vs. -40% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.30: Cross-correlation analysis for odour 3: trained weights vs. -20% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.31: Cross-correlation analysis for odour 3: trained weights vs. -10% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.32: Cross-correlation analysis for odour 3: trained weights vs. -4% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.33: Cross-correlation analysis for odour 3: trained weights vs. 0% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.34: Cross-correlation analysis for odour 3: trained weights vs. +4% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.35: Cross-correlation analysis for odour 3: trained weights vs. +10% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.36: Cross-correlation analysis for odour 3: trained weights vs. +20% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.37: Cross-correlation analysis for odour 3: trained weights vs. +40% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.38: Cross-correlation analysis for odour 3: trained weights vs. +60% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.39: Cross-correlation analysis for odour 3: trained weights vs. +80% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.40: Cross-correlation analysis for odour 4: trained weights vs. -80% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.41: Cross-correlation analysis for odour 4: trained weights vs. -60% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.42: Cross-correlation analysis for odour 4: trained weights vs. -40% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.43: Cross-correlation analysis for odour 4: trained weights vs. -20% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.44: Cross-correlation analysis for odour 4: trained weights vs. -10% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.45: Cross-correlation analysis for odour 4: trained weights vs. -4% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.46: Cross-correlation analysis for odour 4: trained weights vs. 0% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.47: Cross-correlation analysis for odour 4: trained weights vs. +4% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.48: Cross-correlation analysis for odour 4: trained weights vs. +10% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.49: Cross-correlation analysis for odour 4: trained weights vs. +20% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.50: Cross-correlation analysis for odour 4: trained weights vs. +40% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.51: Cross-correlation analysis for odour 4: trained weights vs. +60% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.52: Cross-correlation analysis for odour 4: trained weights vs. +80% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.53: Cross-correlation analysis for odour 5: trained weights vs. -80% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.54: Cross-correlation analysis for odour 5: trained weights vs. -60% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.55: Cross-correlation analysis for odour 5: trained weights vs. -40% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.56: Cross-correlation analysis for odour 5: trained weights vs. -20% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.57: Cross-correlation analysis for odour 5: trained weights vs. -10% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.58: Cross-correlation analysis for odour 5: trained weights vs. -4% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.59: Cross-correlation analysis for odour 5: trained weights vs. 0% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.60: Cross-correlation analysis for odour 5: trained weights vs. +4% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.61: Cross-correlation analysis for odour 5: trained weights vs. +10% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.62: Cross-correlation analysis for odour 5: trained weights vs. +20% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.63: Cross-correlation analysis for odour 5: trained weights vs. +40% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.64: Cross-correlation analysis for odour 5: trained weights vs. +60% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.
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Figure H.65: Cross-correlation analysis for odour 5: trained weights vs. +80% difference weights.
The Cross-correlation analysis was carried out between the response of the olfactory bulb of the
trained weights and the weights minus a percentage of the difference between weight values and
the limit range for the weights. Plots are sorted from left to right and from up to down, starting
from the cross-corelation between for the first mitral cell (the first column and first row) up to
the 25th mitral cell in the last column at the bottom. Plots with zero response result from Mitral
cells which remain silent for these particular weight values. The time constants of both the ORN
and mitral cells were set to τ̃m ≈ 10 ms, with a threshold potential, Vth = 50000. The time
constants of the excitatory synapses were set to τ̃E ≈ 4 ms, whereas for the inhibitory synapses
the time constants were set to τ̃I ≈ 16 ms. For the ORNs, constant values randomly selected
in a range between 500 and 1000, were used to represent a constant concentration of each odor
stimulus. The total running time in terms of biological values is equivalent to 5 seconds at a
sampling frequency of fsmp = 10 kHz. Although the clock frequency was set to fclk = 10 MHz
thus each run lasted for 5 ms of the FPGA processing time.


