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Abstract 

 

Land/atmosphere feedback processes play a significant role in determining climate 

forcing on monthly to decadal timescales. Considerable uncertainty however exists in 

land surface model representation of these processes. This investigation represents an 

innovative approach to understanding key land surface processes in African savannahs 

in the framework of the UK‘s most important land surface model – the Joint UK Land 

Environment Simulator (JULES). 

Findings from an investigation into the carbon balance of Africa for a 25-year 

period from 1982 to 2006 inclusive show that JULES estimated Africa to behave as a 

carbon sink for most of the 1980‘s and 1990‘s punctuated by three periods as a carbon 

source, which coincided with the three strongest El Niño events of the period. From 

2002 until 2006 the continent was also estimated to be a source of carbon. Overall, the 

JULES simulation suggests a weakening of the African terrestrial carbon sink during 

this period primarily caused by hot and dry conditions in savannahs. 

Applying the model further, land surface temperature (LST) displayed large 

uncertainty with respect to savannah field measurements from Kruger National Park, 

South Africa, and JULES systematically underestimated LST with respect to Earth 

Observation data continent-wide. The postulation was that a reduction in the uncertainty 

of surface-to-atmosphere heat and water fluxes could be achieved by constraining 

JULES simulations with satellite-derived LST using an Ensemble Kalman Filter. 

Findings show statistically significant reductions in root mean square errors with data 

assimilation than without; for heat flux simulations when compared with Eddy 

Covariance measurements, and surface soil moisture when compared with derivations 

from microwave scatterometers. The improved representation of LST was applied to 

map daily fuel moisture content – one of the most important wildfire determinants - 

over the mixed tree/grass landscapes of Africa, whereby values were strongly correlated 

with field measurements acquired from three savannah locations. 
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Chapter 1 

Introduction 

1.1.  Research rationale  

Currently, there is growing public and scientific concern regarding the potential impacts 

of climate change induced by increasing emissions of greenhouse gases. Quantifying 

land/climate feedbacks though is subject to great uncertainty, with inadequate 

representation in climate scenarios – this is motivating the development of better 

representations of the land surface in coupled land/climate models. However land 

surface models, which simulate the surface and subsurface processes of the terrestrial 

biosphere, show considerable uncertainty in process representation (Bombelli et al., 

2009). The motivation behind this research is both to better understand the limitations 

of these tools, and to investigate whether an improvement in the capability of a selected 

model to simulate key properties is feasible. This is carried out in the context of the 

UK‘s most important land surface scheme - the Joint UK Land Environment Simulator 

(JULES). 

The purpose of this research project is to examine firstly whether JULES is 

comparable with other land surface models in terms of carbon fluxes; and secondly, 

whether the simulation of energy and water fluxes can be improved by assimilating a 

land surface parameter retrieved from remote sensing into the model. The result is to be 

tested in respect of an important fuel determinant of the fire regime; the rationale here, 

is that biomass burning significantly contributes to the large uncertainty regarding the 

terrestrial biosphere feedback, and any potential optimisation in the derivation of fuel 

properties is a prerequisite for reducing uncertainty (van der Werf et al., 2006; Lehsten 

et al., 2009). 
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Although JULES facilitates ad hoc model development within the UK research 

community, this study offers an original approach into its evaluation - in which the 

surface energy balance and biogeochemical cycling is assessed in the context of its 

primary controls  and parameterisation over Africa. This involved participation in the 

CarboAfrica Modelling InterComparison (CAMIC) Project (Weber et al., 2009), 

including an investigation into the drivers of variability in terrestrial carbon fluxes; with 

the specific findings of this contribution relating the recent trend in continental carbon 

fluxes. A subsequent development is carried out in which a key surface energy 

component is integrated into the model by way of a data assimilation scheme with the 

purpose of eliciting an improved representation. While the precise scheme is not novel, 

this is the first known instance of its application with the JULES model. Furthermore, 

the uniqueness of the research extends to the production of a first known mapping over 

Africa, using modelling techniques, of one the most important fuel characteristics of 

wildfires. As such, the importance of this study is reflected in the potential to reduce 

uncertainty in land surface modelling in two distinct ways: firstly, to improve the 

prediction of land/atmosphere fluxes of heat and water; and secondly, to provide a key 

input for current fire models to utilise in their predictions of fire dynamics and 

emissions. 

Africa is under-represented in climate modelling research (IPCC, 2007), yet is a 

key component in the terrestrial carbon cycle (Williams et al., 2007). Most models have 

been developed and parameterised for use in northern latitudes, so the research findings 

described in this study represent a significant contribution to the emerging literature on 

land/atmosphere interactions over Africa. Indeed, this investigation represents an 

innovative approach to understanding key land surface processes in African savannahs 

in the framework of an important and well established land surface model. With current 
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political inertia, and uncertainties in climate processes causing controversy and 

hindering clear conclusions, any process to reduce these uncertainties is a timely and 

pertinent objective. 

1.2.  Land/atmosphere interactions  

Climate change, in response to increased greenhouse gases, alters the patterns of 

precipitation, temperature and humidity; affecting the growth, composition and 

distribution of vegetation, which itself influences climate since land surface processes 

regulate the land/atmosphere exchanges of heat, water, momentum and carbon. 

Numerous studies (Zeng et al., 1999; Friedlingstein et al., 2001; Los et al., 2006), 

which began with the pioneering work of Charney et al. (1975) on the link between 

African vegetation loss and drought persistence, have illustrated how land surface 

properties change in response to climatic forcing, and the role land/atmosphere 

feedback mechanisms play in determining climate. 

Vegetation change for instance, is accompanied by soil moisture change. This can 

lead to changes in evaporation and surface albedo, resulting in an eventual change in the 

precipitation regime through the soil moisture – climate feedback (Koster et al., 2004; 

Seneviratne et al., 2006; Zhang et al., 2008). Indeed, soil moisture – climate feedbacks 

can regulate climate change, increasing our ability to predict seasonal climate; the 

strength and regional significance of this important feedback though remains poorly 

understood (Zhang et al., 2008). 

Soil moisture is a characteristic which demonstrates a significant memory which 

can persist for months, with the potential to prolong and intensify incidents of pluvial 

and drought conditions (Notaro, 2008). High soil moisture will support enhanced 

evaporation, leading to an increase in atmospheric water content and eventually rainfall 

(Koster et al., 2004). Transition zones between dry and wet climates, where soil 
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moisture exerts substantial control on evaporation have been identified as regions of 

strong land/atmosphere coupling; hotspots include the northern United States, southern 

Europe, and the Sahel (Koster et al., 2004; Seneviratne et al., 2006). Figure 1.1 shows 

the land/atmosphere coupling strength from the most extensive study on soil moisture – 

climate feedbacks, the Global Land-Atmosphere Coupling Experiment (GLACE; Koster 

et al., 2004). 

 

Figure 1.1: The mean strength of land/atmosphere coupling from an ensemble of twelve atmospheric 

general circulation models participating in the Global Land-Atmosphere Coupling Experiment. The 

strength of the coupling is indicated by the scale on the right, which is a measure of the ratio between the 

ensemble mean variance and the intra-ensemble variance. The insets illustrate average coupling 

strengths for each of the twelve participating models over the outlined hotspot regions of the United 

States, the Sahel, and India. Reproduced from Koster et al. (2004). 

 

Climatic conditions influence the physiological and phenological processes in 

plants, including the uptake of carbon. Precipitation, temperature and relative humidity 

(Collatz et al., 1992), plus radiation and carbon dioxide (CO2) concentration (Hely et 

al., 2006) all govern the physiological processes related to the three photosynthetic 
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biochemical mechanisms in plants – the C3 and C4 pathways, and crassulacean acid 

metabolism (CAM) - such as stomatal conductance, the absorption of photosynthetically 

active radiation (PAR), and the associated fixation of CO2 into biomass. Stomatal 

conductance, for example, is sensitive to light and humidity, but also to the 

concentration of CO2 in the atmosphere (Collatz et al., 1992). In the transition zones 

between dry and wet climates, such as savannah landscapes of the Sahel, increasing 

atmospheric CO2 is expected to elicit a reduction in stomatal conductance, leading to a 

reduction in evapotranspiration and a more efficient use of the available soil water 

(Drake et al., 1997). 

In these transition zones in the tropics species exploiting the C4 photosynthetic 

pathway are widespread, whereas most terrestrial ecosystems, such as rainforests, are 

dominated by C3 species (Collatz et al., 1992), with CAM most common in succulents 

of arid regions (Keeley and Rundel, 2003). C4 and CAM plants both concentrate CO2 

around the enzyme ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco), which 

catalyses the main photosynthetic step. Improved water use efficiency (WUE) results 

from their higher photosynthetic capacity coupled with lower stomatal conductance 

(Collatz et al., 1992; Keeley and Rundel, 2003) which generally leads to increased 

primary production (Melillo et al., 1993). In grassland and semi-arid regions, the major 

effect of elevated atmospheric CO2 is improved efficiency; whereas over tropical forests 

increased primary production results from direct CO2 ‗fertilisation‘ in which the 

increased CO2 enhances carbon fixation by Rubisco (Nemani et al., 2003). Most of the 

increased carbon is expected to be allocated to storage tissues such as wood or roots 

(Drake et al., 1997). Although there is considerable evidence that rising atmospheric 

CO2 concentrations stimulate photosynthesis, acclimation to elevated CO2 means 
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photosynthetic capacity will reach saturation (Drake et al., 1997; Schaphoff et al., 

2006). 

Experiments such as those of Cox et al. (2000), in which climate change was 

predicted to cause a drying of the Amazon basin, and resultant forest dieback, infer that 

feedbacks in the global carbon cycle could be important to future climate change. Even 

if atmospheric greenhouse gas concentrations were stabilised, the climate system has a 

long-memory; anthropogenic warming and its impacts would continue for the 

foreseeable future (Melillo et al., 2002). Large uncertainties though remain with respect 

to our understanding of biogeochemical cycle feedbacks, which diminishes our ability 

to accurately predict climate forcing. Coupled general circulation models (GCMs), in 

which the land surface scheme forms an important component, are the tools we use for 

predicting climate change and for assessing land/atmosphere feedbacks over future 

decades and centuries. 

1.3.  Land surface modelling  

The objective of land surface models is to represent all the biophysical and 

biogeochemical processes that constitute the terrestrial biosphere. They can be defined 

as complex frameworks of mathematical expressions representing the underlying 

surface and subsurface ecosystem processes - such as photosynthesis, respiration, 

decomposition, and nutrient cycling - which explain the surface-to-atmosphere fluxes of 

heat, water and carbon (Melillo et al., 1993). They determine surface radiative 

properties, and as important components of climate models can influence atmospheric 

processes such as radiative fluxes, cloud cover, precipitation, and atmospheric 

chemistry. These coupled systems are key tools in climate science for predicting likely 

future states of the Earth system subject to anthropogenic forcing (IPCC, 2007). To 
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dynamically model the distribution of vegetation over the Earth‘s surface, land surface 

models are often coupled to dynamic global vegetation models (DGVMs). 

These components, which dynamically model vegetation cover in response to 

climatic and atmospheric changes, and can be used to understand past and future drivers 

of vegetation change, represent vegetation cover as a collection of different plant 

functional types (PFTs); each of which constitute a fraction of the total vegetative cover 

of the land. These PFTs can be characterised through key attributes of physiology, such 

as carbon metabolism; physiognomy; and phenology. In this respect, the complexity of 

species diversity can be rationalised into a few PFTs, and is a fundamental assumption 

in DGVMs; necessary intricacy is added by including factors such as soil fertility, and 

disturbance - the most important being fire and herbivory (Cramer et al., 2001). Indeed, 

in some models (Smith et al., 2001) mortality, succession, and disturbance have been 

factored in to the extent that PFTs have been grouped into age-related cohorts. 

To facilitate a balanced view of the effects of climate related changes to the land 

surface an ensemble of models are often run under a standardised modelling protocol. 

Net primary productivity (NPP) has been a conventional output (Cramer et al., 1999; 

Schloss et al., 1999; Alo and Wang, 2008) in which to compare the predictions of the 

individual models. For example, in the eight-model intercomparison by Alo and Wang 

(2008) an increase in NPP was predicted over the majority of the globe under most 

Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Sensitivity is 

generally greater under conditions where nutrient constraints are present (Cramer et al., 

1999) or where temperature and precipitation are limiting (Schloss et al., 1999). Indeed, 

over semi-arid regions an increase in CO2 resulted in an increase in NPP (Cramer et al., 

1999). However, much uncertainty exists between the different models. As such, in 

order to understand the effects of future climate change on terrestrial ecosystems, the 
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ongoing assessment of the climate sensitivity of models remains a priority. This 

provides the motivation for participation in an NPP intercomparison exercise detailed in 

chapter 2. 

There are a number of reasons for substantial variability in model predictions. Most 

revolve around their approximate representation of biophysical processes, climate 

sensitivity of key parameters, and the heterogeneity of the land surface (Schaphoff et 

al., 2006; Alton et al., 2007a). Of key significance here is the ability to accurately 

determine the surface energy balance of the land; and the estimation of land surface 

temperature (LST) is central to this premise (Kustas and Norman, 1996; Jin et al., 1997; 

Rhoads et al., 2001; Ge et al., 2008). This justifies a concerted effort to evaluate this 

key variable, and to attempt to reduce uncertainty in its quantification, as described in 

chapters 3 and 4 respectively. 

Disturbance regimes are also overlooked in many models. Herbivory is almost 

universally neglected, whereas fire has progressively been incorporated into current 

land surface schemes. However, most of these fire routines are based around prescribed 

vegetation mortality or rely on simple empirical algorithms; as a consequence, realistic 

estimates of emissions from biomass burning have not been modelled (Williams et al., 

2007; Thonicke et al., 2010). Part of the motivation for the investigation described in 

chapter 5 is to ascertain whether an optimised quantification of the surface energy 

balance could improve the derivation of one of the most important determinants of the 

fire regime. 

In summary, deficiencies in fuel estimation for disturbance modelling (van der 

Werf et al., 2006) and the variability between different models (Alo and Wang, 2008) 

compound the uncertainty in how the terrestrial biosphere may evolve in the future 
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under climate change scenarios. This encapsulates the motivation for the focus of the 

whole research project. 

1.4.  Africa 

In few places is this uncertainty greater than for Africa, which was described as a weak 

link by Williams et al. (2007) in the understanding of the global carbon cycle. Most 

research has instead been concentrated on quantification of the carbon cycle in regions 

of the world with a highly developed infrastructure such as North America and Europe. 

Yet, Africa is the second largest continent occupying about 20% of global land mass, 

with a population of nearly 15% of the global total. It is also home to wide variety of 

ecosystems which range from deserts, through arid and semi-arid mixed tree and grass 

communities, to humid tropical forests. 

With this continent remaining the least studied (IPCC, 2007), little is known about 

its carbon balance; it remains unknown whether Africa is a source or sink of carbon 

(Williams et al., 2007). Fossil fuel emissions are still relatively low – although these are 

increasing dramatically (Boden et al., 2009) - in comparison with carbon uptake and 

release from the myriad of ecosystems. These fluxes are strongly linked to climate 

fluctuations, and in recent years a concerted effort has been undertaken to quantify the 

carbon balance of the continent. Lewis et al. (2009) for example, suggested 

aboveground carbon stocks have increased in the tropical forests, but did not draw any 

conclusion as to the cause. Leading the effort though has been the CARBOAFRICA 

project, under the Sixth Framework Programme of the European Commission 

(http://www.carboafrica.net). A contribution to this research endeavour is outlined in 

chapter 2. 

Despite such efforts climate scenarios remain uncertain, most notably for the vast 

savannah landscapes (Bombelli et al., 2009). These systems cover approximately 15 

http://www.carboafrica.net/
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million km
2
, equivalent to 50% of the area of the continent. They can range from 

savannah grasslands where woody cover is widely scattered to woody savannah, 

although a precise definition in terms of the percentage of tree cover may be ambiguous. 

It is the coexistence of woody and herbaceous vegetation regulated by a distinct wet/dry 

seasonality however, which is the common characteristic classifying such systems 

(Scholes and Archer, 1997; Sankaran et al., 2005; Bucini and Hanan, 2007). Of the 

world‘s savannah biome 70% is located in Africa - with this being responsible for 

between 10% and 15% of global NPP (Ciais et al., 2009). The co-existence of trees and 

grass are a feature of these highly heterogeneous systems, in which production, 

hydrology, and nutrient cycling are primarily determined by woody cover (Sankaran et 

al., 2005), which itself is regulated by climate, anthropogenic land use, soil 

characteristics, fire, and herbivory (Sankaran et al., 2008). The latter of which 

comprises grazing and browsing by both vertebrates and invertebrates. Savannahs are 

complex elements within the global carbon cycle exhibiting strong wet and dry 

seasonality, and are particularly vulnerable to climate change (Sankaran et al., 2005). 

The seasonal responses of trees and grasses are closely linked to their structure and 

function. For example, many species of trees green-up prior to the first rainfall of the 

season, whereas grasses tend to be water limited; the principal cues for leaf flush are 

temperature, humidity, soil moisture and day length (Archibald and Scholes, 2007). 

Savannahs are also some of the most frequently burnt landscapes (Bowman et al., 

2009). 

In a recent review by Schultz et al. (2008), Africa contributed approximately 70% 

to the global burned area and almost 50% of the global fire emissions between 1960 and 

2000. Widespread burning in the savannahs (Figure 1.2) is responsible for most of the 

continent‘s biomass burning. Drivers of fire here include the presence of ignition 
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sources, the characteristics of the fuel – the amount, type, density, and moisture content 

- and the underlying weather conditions (Archibald et al., 2009) - particularly 

antecedent precipitation (Archibald et al., 2010). The majority of these fires are thought 

to be anthropogenic in origin, driven by socio-economic reasons including land 

clearance and pasture maintenance (Roy et al., 2008). To better understand the structure 

and function of these fire dominated savannah systems land surface models need to 

incorporate dynamic disturbance mechanisms which are driven by realistic 

representations of the fuel components and ignition sources. 

 

Figure 1.2: Burned area displayed according to detection date in a rainbow scale, as derived from the 

MODIS collection-5 product from July 2001 to July 2002. Reproduced from Roy et al. (2008). 
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Considering climate models have produced substantial differences in potential 

scenarios for Africa (Williams et al., 2007), the continent is an appropriate choice for 

the research discussed in this study. During the 20
th

 Century Africa experienced an 

overall warming, and in most scenarios this warming is expected to continue and 

accelerate, to between 2°C and 6°C warmer by the end of the 21
st
 Century (Hulme et al., 

2001). Since the African observation network is relatively sparse, the use of land 

surface models coupled with remotely sensed data represents the most feasible option 

for predicting the effects of climate change over this region. An evaluation, and an 

attempt to improve quantification, of the surface-to-atmosphere fluxes of heat and water 

for one of the most important land surface models, is thus an important undertaking. 

1.5.  Summary 

This thesis is divided into several self-contained chapters which describe a particular 

aspect of the research study. Taking the most important land surface model in the UK as 

an appropriate benchmark, the overall research question asks ―can land-surface 

modelling accurately simulate land/atmosphere interactions in African savannahs 

given the highly heterogeneous nature of these landscapes?‖ This can be broken 

down into more specific research questions applicable to each chapter. 

Chapter 2 focuses on analysing the behaviour of the JULES model with respect to 

other important land surface models of the European Community, in terms of the 

variability of key carbon fluxes in response to climatic and atmospheric CO2 changes. 

The methodology incorporates a standardised modelling protocol and a uniform suite of 

climate forcing data, which is a common approach in understanding such model 

sensitivity. Four research questions are posed here: 

i) Are JULES NPP estimates comparable with those of other land surface 

models? 



13 

 

ii) Which climate variables produce the strongest correlations with NPP? 

iii) Is NPP growth rate significantly related to increasing atmospheric CO2?  

iv) Is NPP variability the main driver of net ecosystem productivity 

variability? 

Following this intercomparison with respect to key carbon fluxes which was 

undertaken to ascertain model credibility, chapter 3 investigates how accurately the 

model is able to simulate the radiative properties of the land surface in terms of LST – a 

key component of the surface energy balance. This is achieved by way of an in situ 

study over a field site representative of the mixed tree/grass landscape of African 

savannahs, and a continental intercomparison with remotely sensed LST from Earth 

Observation (EO) satellites. The two research questions posed are: 

i) How accurately is LST simulated by JULES and retrieved from EO 

satellites for a mixed tree/grass landscape of Africa? 

ii) How comparable is LST simulated by JULES over continental Africa 

with respect to satellite-derived LST products? 

Having identified the uncertainties in modelling this key boundary condition 

chapter 4 focuses on analysing the behaviour of the JULES model when instantaneous 

LST observations from EO satellites are integrated into the model. The aim is to 

investigate whether a reduction in uncertainty can be achieved when modelling 

important fluxes of heat and water between the land and the atmosphere. The two 

research questions posed are: 

i) Can a reduction in the uncertainty of surface energy fluxes be achieved by 

constraining simulations of LST with observation data? 

ii) How does the assimilation of satellite-derived LST affect the 

quantification of soil moisture? 
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Chapter 5 investigates whether the model skill developed in previous chapters can 

be applied to improve the capability to model the fire regime. In this respect, the 

derivation of a first modelled dataset of one of the most important drivers of fire 

occurrence and propagation - fuel moisture content - over the mixed tree/grass 

environments of the African continent. The two research questions posed are: 

i) Can fuel moisture content be satisfactorily estimated across the savannah 

landscapes of Africa using a land surface modelling approach? 

ii) Can this approach be enhanced by utilising data assimilation of satellite-

derived LST? 

Finally, chapter 6 will summarise the key findings of the research study. Whether 

these successfully resolve the scientific questions postulated, and how they relate to the 

overarching research question will be discussed. To conclude, any limitations of this 

undertaking will be examined, and potential prospects for further research highlighted. 
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Chapter 2 

Interannual variability of terrestrial carbon fluxes for 

Africa 

All biogeochemical models are subject to inherent uncertainties in their representation 

of physical processes. A common approach in understanding such uncertainties is 

through systematic comparison of a model with similar models using a standardised 

modelling protocol and a uniform suite of climate forcing data. As such, modelling 

changes in key carbon flux variables such as NPP, in response to climatic and 

atmospheric CO2 variability, represents a pertinent objective of any intercomparison 

study. 

This chapter focuses on analysing the behaviour of the JULES land surface model, 

with respect to other important land surface models of the European Community. It will 

briefly describe the JULES model, and justify participation in the international CAMIC 

Project. Model estimates of the interannual variability in continental NPP will be 

presented, with particular emphasis on analysing the factors responsible for the patterns 

obtained. 

2.1.  Introduction 

The uptake of carbon by plants during photosynthesis is defined as gross primary 

productivity (GPP), with the respiratory loss for plant growth and maintenance defined 

as autotrophic respiration (Ra) (Randerson et al., 2002); the difference between these is 

NPP. The flux of ecosystem carbon between the land surface and the atmosphere is 

defined as net ecosystem productivity (NEP), and is a measure of whether the terrestrial 

ecosystem is acting as a source or sink of carbon. This quantity is simply NPP minus the 

respiratory loss from non-photosynthetic organisms – known as heterotrophic 
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respiration (Rh). Utilising models to understand the land/atmosphere flux of carbon and 

its variability is important for understanding carbon cycle feedbacks in the climate 

system. 

Systematic comparisons of seasonal and interannual flux measurements are a 

priority to reduce uncertainties in terrestrial carbon modelling (IPCC, 2007), with 

current land surface models showing conflicting responses in primary productivity. For 

instance, in the intercomparison between six land surface models by Cramer et al. 

(2001) estimates of global NPP differed by as much as 30%. This is considerable, given 

that annual anthropogenic carbon emissions to the atmosphere, which account for less 

than 10% of global NPP (Campbell and Norman, 1998), have had a measurable effect 

on climate during the course of the 20
th

 Century (Knorr and Heimann, 2001). Indeed, 

even 5% variability in the prediction of primary productivity over decadal timescales is 

significant in the context of the carbon cycle (Alton et al., 2007a). NPP has increased in 

recent years, particularly in tropical ecosystems, with 1982 to 1999 experiencing an 

increase of 6% in global NPP at a mean rate of 0.19 Pg Cyr
-1

 (Nemani et al., 2003), but 

with substantial interannual variability (IAV). The variability in NPP together with that 

of Rh, which is principally sensitive to temperature (Hashimoto et al., 2004), determines 

whether the terrestrial biosphere is acting as a source or sink of carbon. 

With regards to the carbon balance of the African continent; although this appears 

to be approximately neutral on a decadal scale, Africa contributes nearly half of the IAV 

in NEP on global scale (Williams et al., 2007). This large variability results primarily 

from climatic induced response in NPP, which is controlled by factors such as the El 

Niño Southern Oscillation (ENSO) - an oceanic-atmospheric phenomenon in the 

tropical Pacific – and carbon release from biomass burning (Anyamba et al., 2002; 

Hashimoto et al., 2004; Le Page et al., 2008). Indeed, tropical NPP variability is 
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dominated by El Niño events (Nemani et al., 2003), which are characterised by warmer 

than average conditions in the eastern tropical Pacific, and lead to drier than average 

conditions during the main November to February wet season in southern Africa and 

above-average rainfall in equatorial eastern Africa (Nicholson and Kim, 1997). In 

contrast, La Niña events, which are characterised by colder than average conditions in 

the eastern tropical Pacific, lead in general to the reverse conditions in eastern and 

southern Africa (Nicholson and Selato, 2000). During the three major El Niño events in 

the last two decades of the 20
th

 Century - 1982/1983, 1987/1988 and 1997/1998 - NPP 

declined globally, albeit with a 6-month lag, in conjunction with increases in global 

atmospheric CO2 growth rate; with a similar reduction in NPP being experienced in 

Africa (Nemani et al., 2003; Hashimoto et al., 2004). Moreover, the impact on the 

carbon balance during El Niño years can be further intensified, as these events are often 

associated with increased biomass burning (Hashimoto et al., 2004). 

What is more, variability in NPP to some extent drives variability in fire emissions, 

although with a lag of several months to a year (Williams et al., 2007), through the 

accumulation of fuel load. Quantifying trends in NPP is thus a prerequisite for 

understanding the carbon balance of the terrestrial biosphere; and as such, accurate 

representation of ecosystem seasonality in land surface models, including ENSO 

effects, is essential for such predictions. Different models predict considerable 

differences in future climate scenarios, due to the sensitivity in their parameterisation 

and their approximate representation of biophysical processes (Alton et al., 2007a). 

With this mind, the thorough testing of biogeochemical models with recent climate data 

is an important objective to better understand their climate sensitivity, which is crucial 

for meaningful future predictions. 
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In this study, the accuracy of NPP and NEP modelled by JULES was assessed as 

part of an international study to compare the simulations from land surface models over 

Africa. In addition to the intercomparison, the primary drivers of NPP IAV were 

investigated; and a comparison was made between this IAV and the strength of El Niño 

and La Niña events. Finally, the carbon balance of the continent over several years was 

assessed, and the principal reasons for variability are discussed. To summarise then, the 

aim of this investigation was to answer the four research questions: i) are JULES NPP 

estimates comparable with those of other land surface models; ii) which climate 

variables produce the strongest correlations with NPP; iii) is NPP growth rate 

significantly related to increasing atmospheric CO2; iv) is NPP variability the main 

driver of net ecosystem productivity variability. 

2.2.  Materials and methods 

2.2.1. CarboAfrica Modelling InterComparison (CAMIC) Project 

The CARBOAFRICA project has invested much research into a more detailed analysis 

of the carbon cycle of Africa and its drivers. For instance, a better understanding of the 

biophysical processes in selected locations across different biomes has been the result of 

a concerted effort to increase the collection and analysis of ground measurements 

(Papale et al., 2006; Kutsch et al., 2008). Unfortunately, the scarcity of these locations 

and the dearth of high quality datasets remains an obstacle to a comprehensive 

understanding of the carbon balance of the African continent. Instead, modelling studies 

offer the most feasible alternative, and as such the CAMIC Project was commissioned. 

The purpose of such an undertaking was to identify the main drivers determining 

IAV of terrestrial CO2 fluxes for Africa, with a reduction in uncertainties a stated 

priority (Weber et al., 2009). Simulations with four terrestrial biosphere models: LPJ-
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DGVM (Sitch et al., 2003), LPJ-GUESS (Smith et al., 2001), ORCHIDEE (Krinner et 

al., 2005), and JULES were performed using a uniform set of corrected climate forcing 

data following a standardised modelling protocol. The rationale behind participation in 

this venture centred on the opportunity to calibrate the parameterisation of JULES for 

Africa and to compare subsequent model output with that from similar process-based 

land surface models. 

2.2.2. Model description 

The JULES land surface model is based on MOSES (Met Office Surface Exchange 

Scheme), which was developed to calculate surface-to-atmosphere fluxes of carbon, 

water, and heat when coupled to the UK Hadley Centre‘s Unified Model. Although the 

model has been described elsewhere (Cox et al., 1999) in considerable detail, it is 

pertinent to this investigation to briefly summarise the relevant key aspects. Further 

particulars will be presented in subsequent chapters corresponding to the theme of those 

respective chapters, but here we will concentrate on an overview of the NPP derivation. 

JULES is a terrestrial grid-box model which is coupled to the TRIFFID (Top-down 

Representation of Interactive Foliage and Flora Including Dynamics) DGVM, and can 

be run at a single ‗point‘ or over a gridded surface, and features a fine temporal 

resolution of typically 30 or 60 minutes. This enforces a requirement for sufficiently 

frequent meteorological forcing data, which itself imposes a constraint on the spatial 

resolution of the available forcing data - since only coarse scale sub-daily datasets are 

currently available. The advantage though with such an approach is the capability to 

characterise the diurnal cycle. State variables are updated each time-step, though all 

biophysical parameters remain constant over the duration of any model run. For runs 

that are not single ‗points‘ the input grid is defined by the dimensions of the driving 

meteorological data; with the model grid being a subset of the input grid defined by a 
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given land mask and/or specified latitude and longitude coordinates. Output profiles for 

any number of a broad set of state variables define the output grid. 

Each grid-box is represented as a composite of nine surface fractions or ‗tiles‘. Five 

PFTs are defined: broadleaf trees, needleleaf trees, C3 grasses, C4 grasses, and shrubs; 

together with four non-vegetation types: urban, inland water, bare soil and ice. With the 

exception of ice, which cannot exist in conjunction with any other tile, any combination 

of surface types is permitted. Although a grid-box may have coordinates in space, the 

tiles have no spatial location within a grid-box. The subsurface of each grid-box is 

horizontally homogeneous within a grid-box, but is profiled into four vertical soil 

layers; with diffusive heat and water exchanges between layers (Figure 2.1) and 

prognostic soil fields updated from values for the previous time-step using the mean 

heat and water fluxes over the current time-step (Cox et al., 1999; Smith et al., 2006). 

 

Figure 2.1: Diagrammatic representation of the heat, water, and carbon fluxes between the soil layers, 

land surface, and atmosphere as modelled by JULES. Figure reproduced from 

http://www.jchmr.org/jules. 

 

TRIFFID adopts a heuristic modelling approach whereby solving the modified 

first-order Lotka-Volterra differential equations (1) and (2) determines the density of 

http://www.jchmr.org/jules
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carbon Cv and fractional cover v of the five PFTs from the competitive advantages 

between them (Hughes et al., 2006). 

 

dCv 
= (1 - λ) NPP - Λl (1) 

dt 

 

Cv 
dv 

= λ NPP v* ( 1 - Σ 
j 

cij vj ) - γv v* Cv (2) 
dt 

 

Where v* is the maximum of v and the constant 0.01, Λl is the local litterfall rate, and the 

fraction λ of NPP is dedicated to increasing v, with the remainder assigned to increasing 

Cv. The fractional coverage of each PFT i is influenced by the fractional coverage of 

each PFT j governed by each competition coefficient cij, with γv being the turnover rate. 

With regards to NPP, this is expressed in the model as one would expect: GPP 

minus Ra. Derivations of primary production and respiration are comprehensively 

described in Cox (2001), with GPP calculated as follows: 

 

GPP = 0.012 ( Ap fpar β  +  Rdc β ) (3) 

 

Where 0.012 is a constant to convert from units of mol CO2 m
-2

s
-1

 to kg C m
-2

s
-1

, Ap is 

the potential rate of net canopy photosynthesis, fpar is the fraction of photosynthetically 

active radiation, Rdc is the canopy dark respiration, and β is the soil moisture availability 

factor. Canopy photosynthesis and dark respiration are determined from scaling-up the 

leaf photosynthesis models for C3 and C4 plants, based on the work of Collatz et al. 

(1991) and Collatz et al. (1992) respectively, to the canopy scale following the approach 

of Sellers et al. (1992); which assumes both the maximum rate of carboxylation of 

Rubisco, and the mean incident PAR are proportional throughout the canopy. 
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Total Ra is a combination of maintenance respiration (Ram) and growth respiration 

(Rag), whereby Ram and Rag are expressed as: 

 

Ram  = 0.012 Rdc ( β + 
(Nr + Ns) ) (4) 

Nl 

 

Rag =  rg ( GPP – Ram ) (5) 

 

Where Nr, Ns, and Nl are the respective root, stem, and leaf nitrogen contents. Rag is 

assumed to be a fixed proportion of GPP and the plant maintenance respiration, factored 

by a growth respiration coefficient rg, which is identically set for all PFTs. 

In the JULES model a total Rh term is absent. Instead, soil respiration (Rs) 

incorporates belowground microbial respiration, and is expressed as: 

 

Rs =  κs Cs fΘ q10
0.1 (Ts  –  25)

 (6) 

 

Where κs is the specific soil respiration rate at 25°C, Cs is the soil carbon content, q10 is 

a coefficient representing the rate of change as a consequence of a 10°C rise in 

temperature, Ts is the soil temperature, and fΘ is a moisture dependent function based on 

the model of McGuire et al. (1992). Aboveground litter respiration is absent in the 

JULES model, since litterfall from the leaf, wood, and root vegetation carbon pools 

goes directly into the soil carbon pool with no litter pool existing. This rate of litterfall 

is determined by PFT-dependent parameters which remain constant over time. Only 

when the ambient temperature falls below a PFT-dependent threshold level is additional 

leaf litterfall brought about. However, a similar dependence on soil moisture availability 

is absent in the model. 
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2.2.3. Experimental setup 

Findings presented here are based on model runs at 1° × 1° spatial resolution, with a 60 

minute time-step covering the period 1982-2006. Input and output grids were defined as 

a rectangle of 77 × 76 grid-boxes, covering the region 21.0°W – 56.0°E longitude, 

37.0°S – 39.0°N latitude. In most cases, driving datasets (Table 2.1) were provided by 

the CAMIC management team to ensure, as much as possible, a uniform set of 

corrected climate forcing data. Where the requirements of JULES were unique, 

additional forcing data was acquired from the same original sources if possible. 
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Table 2.1: Minimum datasets required to drive the JULES model. 

Variable Dataset Temporal Frequency Spatial Resolution Reference 

Downward long-wave radiation 

NCEP Reanalysis II  6-hourly T62 Gaussian Kalnay et al. (1996) 

Downward short-wave radiation 

Air temperature at 2m 

Wind speed at 2m 

Surface pressure 

Specific humidity 

Precipitation 

NCEP Reanalysis II 6-hourly T62 Gaussian Kalnay et al. (1996) 

TRMM 3B43 Monthly 0.25° Kummerow et al. (1998) 

CRU TR 2.1 Monthly 0.5° Mitchell and Jones  (2005) 

Soil parameters ISLSCP I - 1.0° Sellers et al. (1986) 

Soil texture IGBP-DIS - 1.0° Tempel et al. (1996) 

Land cover classes ISLSCP II - 1.0° Loveland et al. (2001) 

C4 fraction ISLSCP II - 1.0° Still et al. (2003) 

Atmospheric CO2 Mauna Loa Record Monthly - www.esrl.noaa.gov/gmd/ccgg/trends/ 
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Meteorological forcing data was primarily acquired from the 6-hourly National 

Centers for Environmental Prediction (NCEP) Reanalysis II data sets. Although in the 

case of precipitation data, calibration following the method of Sheffield et al. (2006) 

and Williams et al. (2008) was carried out to scale the 6-hourly NCEP values to match 

the monthly Climate Research Unit (CRU) TS 2.1 values (1982-1997) (equation (7)) 

and the monthly Tropical Rainfall Measuring Mission (TRMM) 3B43 values (1998-

2006) (equation (8)). The rationale here was that bias exists between NCEP 

precipitation data and independent precipitation datasets (Fekete et al., 2004; Ichii et al., 

2005). 

 

Calibrated NCEP6hr  = 
CRUmonthly 

x  NCEP6hr (7) 
NCEPmonthly 

 

Calibrated NCEP6hr  = 
TRMMmonthly 

x  NCEP6hr (8) 
NCEPmonthly 

 

Since this study was carried out at 1.0° bilinear interpolation was used to re-grid 

the NCEP datasets, which are projected in T62 Gaussian, to the appropriate spatial 

resolution. Both CRU and TRMM precipitation data were averaged over 1.0° grid-

boxes prior to the aforementioned calibration processing. Resultant 6-hourly values 

were internally time-interpolated within JULES to the model time-step. In the absence 

of regional vegetation and non-vegetation parameters, time invariant biophysical 

parameters were set according to the Hadley Centre‘s Technical Note 24 (Cox, 2001) 

and Technical Note 30 (Essery et al., 2001). 

A land mask, supplied by the CAMIC management team, was applied to 

differentiate between the African continent and surrounding water and land-masses. 

Whether or not the model is coupled to the DGVM fractional distributions of surface 
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types are required, and in this case were determined (Table 2.2) by applying the linear 

mapping algorithm of Dunderdale et al. (1999) - which was developed for the purpose 

of  producing realistic land surface property variability - to the International Geosphere-

Biosphere Programme (IGBP) land-cover classes distribution (Figure 2.2). 

An overall grass fraction was acquired from the mapping procedure, which was 

subsequently differentiated into its C3 and C4 components through the application of the 

International Satellite Land Surface Climatology Project (ISLSCP) II dataset of C4 

fractions. For IGBP land classes composed of cropland, the corresponding percentage of 

grass PFTs in JULES were designated as agricultural land. With a modelling period of 

25 years vegetation-climate feedbacks - as a result of changes to vegetation distribution 

- were assumed to be significant, and as such land cover change was modelled through 

TRIFFID with a daily time-step; with the IGBP mapped land cover fractions 

representing the initial condition. 

The model requires nine time invariant soil parameters to be specified for each 

grid-box, with the option of differentiating each soil layer within a grid-box. Here, soil 

parameters from the ISLSCP I soil dataset - based on the work by Sellers et al. (1986) – 

was used in conjunction with soil texture, specifically sand and clay fractions, from the 

Data and Information Systems of the IGBP. These parameters were set as homogeneous 

across the four soil depths in this study.  
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Table 2.2: Mapping based on the algorithm developed by Dunderdale et al. (1999) from IGBP land cover classes to JULES surface types: Broadleaf Trees (BT); Needleleaf 

Trees (NT); C3 Grasses / C4 Grasses (Gr); Shrubs (Sh); Urban(Ur); Inland Water (IW); Bare Soil (BS); and Ice (Ic). The C3 / C4 grasses are differentiated into their 

respective components using the ISLSCP II C4 fractional coverage dataset. 

IGBP 

Code 
IGBP Name 

JULES Tile Percentages 

BT NT Gr Sh Ur IW BS Ic 

0 Water Bodies 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 

1 Evergreen Needleleaf Forest 0.0 69.3 22.2 0.0 0.0 0.0 8.5 0.0 

2 Evergreen Broadleaf Forest 85.9 0.0 7.9 0.0 0.0 0.0 6.2 0.0 

3 Deciduous Needleleaf Forest 0.0 65.3 25.6 0.0 0.0 0.0 9.1 0.0 

4 Deciduous Broadleaf Forest 62.4 0.0 15.9 3.7 0.0 0.0 18.0 0.0 

5 Mixed Forest 35.5 35.5 20.9 0.0 0.0 0.0 8.1 0.0 

6 Closed Shrublands 0.0 0.0 25.0 60.0 0.0 0.0 15.0 0.0 

7 Open Shrublands 0.9 0.0 17.8 34.2 0.0 0.0 47.1 0.0 

8 Woody Savannas 50.0 0.0 15.0 25.0 0.0 0.0 10.0 0.0 

9 Savannas 20.0 0.0 75.0 0.0 0.0 0.0 5.0 0.0 

10 Grasslands 0.0 0.0 81.7 4.9 0.0 0.0 13.4 0.0 

11 Permanent Wetlands 2.2 0.0 80.9 1.4 0.0 15.0 0.5 0.0 

12 Croplands 0.0 0.0 79.6 0.0 0.0 0.0 20.4 0.0 

13 Urban and Built-Up 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 

14 Cropland / Natural Vegetation Mosaic 2.5 2.5 80.0 5.0 0.0 0.0 10.0 0.0 

15 Snow and Ice 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 

16 Barren or Sparsely Vegetated 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 
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Figure 2.2: IGBP land-cover classes for Africa at 1.0° spatial resolution. 

 

Prior to a main run, JULES should be spun-up to equilibrate the soil conditions, 

whereby the model is forced with climate data over a set time window - called the spin-

up cycle - with this cycle repeated until equilibrium is reached in the soil thermal and 

hydrologic properties. More specifically, until the change in both soil moisture and soil 

temperature for each grid-box is less than a specified percentage between subsequent 

spin-up cycles. Although only changes in these physical properties of the soil are 

measured, this has an indirect effect on the carbon stocks. This is because both soil 

moisture and soil temperature are primary determinants of soil carbon loss through the 

process of soil respiration. This equilibrium state is used as the initial condition for the 

main run, the purpose being to limit anomalous responses at the beginning of the 

simulation. In this case, the spin-up cycle was designated as the 10-year period 1982-

1991; and this was repeated until changes in soil moisture and soil temperature between 

consecutive cycles were less than 1% for every grid-box. A single atmospheric CO2 

concentration taken as the 1982 mean value of 341.13ppmV from the Mauna Loa 

Record was set to be constant throughout the spin-up. Subsequent CO2 concentrations 
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were allowed to vary in line with the monthly atmospheric CO2 concentrations from the 

Mauna Loa Record. Mean output conditions at each hour over the 25-year modelling 

period were extracted for each grid-box into annual files for GPP, NPP, and Rs. NEP 

was derived as NPP minus Rs, where the assumption was made that Rs could act as a 

surrogate for Rh. 

2.3.  Results  

2.3.1. Primary productivity 

The highest rates of photosynthesis are concentrated in the tropical broadleaf forests of 

central Africa, with GPP values of 4000g Cm
-2

 or more (Figure 2.3). These values 

decline to the north and south as the climate becomes more arid and tree cover 

decreases. The arid zones, such as the Sahara, exhibit values close to zero. Over the 

whole continent, the mean annual rate of GPP between 1982 and 2006 was calculated at 

31.50 Pg Cyr
-1

 (Table 2.3), which is approximately one hundredfold the magnitude of 

maximum fossil fuel emissions for the continent, which increased from 0.157 to 0.291 

Pg Cyr
-1

 between 1982 and 2006 (Boden et al., 2009).  
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Figure 2.3: Mean annual GPP (g Cm
-2

) at 1.0° spatial resolution for 1982-2006 as estimated by the 

JULES model. 

 

Table 2.3: Comparison between the participating models in the CAMIC Project of mean annual 

continental GPP and NPP [IAV] in Pg Cyr
-1

. Table reproduced from Weber et al. (2009). 

Output 
CAMIC Participating Models 

JULES LPJ_DGVM LPJ_GUESS ORCHIDEE 

GPP 31.50 [0.91] 39.68 [1.73] 16.58 [1.04] 29.80 [1.20] 

NPP 12.01 [0.48] 17.28 [1.12] 9.16 [0.67] 15.38 [0.77] 

 

The value of GPP derived from JULES is dependent on the mechanics and 

parameterisation of the model, and as is clear from Table 2.3, different land surface 

schemes can produce widely varying estimations; ranging in this case from as low as 

16.58 Pg Cyr
-1

 for LPJ-GUESS to 39.68 Pg Cyr
-1

 for LPJ-DGVM; even when a 

standardised modelling protocol and as uniform a suite of climate forcing data as 

possible is used. Furthermore, photosynthesis displays a considerable IAV - in the case 

of JULES the standard deviation was calculated as 0.91 Pg Cyr
-1

 – concentrated in 

regions corresponding to the IGBP land cover classes of woody savannas and savannas 
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(Figure 2.4). It is in these regions, characterised by distinct wet and dry seasons, where 

moisture becomes limiting during sustained dry spells. It is also evident from figure 2.4 

that while the magnitude of carbon sequestered by photosynthesis varies considerably 

between the CAMIC participating models, they do share a similar distribution in the 

rate of IAV. 

 

 

 

Figure 2.4: Standardised interannual variability – which is a measure of the degree of variability in units 

of standard deviations - of modelled GPP for the four participating CAMIC models: LPJ-DGVM (a); 

ORCHIDEE (b); JULES (c); and LPJ-GUESS (d). Figure reproduced from Weber et al. (2009). 

 

Following respiratory loss for plant growth and maintenance - autotrophic 

respiration – the resultant NPP displays a similar geographical distribution, in that the 

highest values of around 1000 g Cyr
-1

 are found in the regions dominated by the IGBP 

(a) (b) 

(c) (d) 
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land cover class of evergreen broadleaf forest, declining to the regions of sparse 

vegetation; with the savannah ecosystems experiencing the strongest IAV (Figure 2.5). 

This magnitude and distribution of mean annual NPP is consistent with previous studies 

(Cramer et al., 1999; Melillo et al., 1993), with the relatively high IAV in savannahs a 

trait also observed by Williams et al. (2007). Furthermore, the mean annual continental 

NPP of 12.01 Pg Cyr
-1

 (Table 2.3) simulated by JULES is close to the average estimated 

by the ensemble of the four models participating in the CAMIC study; and is 

comparable to previously published estimates for Africa, which range between 7.0 and 

16.6 Pg Cyr
-1

 (Cramer et al., 1999; Potter, 1999; Cao et al., 2001; McGuire et al., 2001; 

Potter et al., 2003; Williams et al., 2008). 
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Figure 2.5: Modelled mean annual NPP (g Cm
-2

) at 1.0° spatial resolution for 1982-2006 as estimated by 

the JULES model (top); standardised interannual variability – in units of standard deviations - of 

modelled NPP at 1.0° spatial resolution as estimated by the JULES model (bottom). 

 

To assess the relationship between meteorological forcing data and NPP simulated 

by JULES on an annual scale, a principal component analysis (PCA) was carried out to 

extract weather patterns and gradients by reducing the dimensionality of the climate 
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forcing dataset. The array of climate variables was reduced to their principal 

components, and Pearson r correlations were calculated between the annual NPP and 

each principal component for each grid-box. As input to the PCA all six meteorological 

forcing variables were considered: air temperature, specific humidity, precipitation, 

downward short-wave radiation, downward long-wave radiation, and surface pressure 

(Table 2.4). 

Over 86% of the variability in the annual meteorological data is explained by the 

first three components of the PCA, and can be used to infer the primary driving forces 

behind the IAV of NPP in the JULES model. The first component (PC-1) is strongly 

associated with moisture availability, with high component loadings with respect to 

both precipitation and specific humidity; but it also exhibits a strong association with 

downward long-wave radiation. The second component (PC-2) is most strongly 

associated with air temperature and surface pressure, with the third component (PC-3) 

primarily associated with downward short-wave radiation. When considering the 

situation at the grid-box level (Figure 2.6), positive correlations between NPP and PC-1 

emerge over much of the continent, being strongest over savannah regions where 

moisture availability is the primary limiting factor on photosynthesis. Precipitation is 

one of the main factors responsible for PAR absorption, and the findings here are 

consistent with this, and in agreement with previous studies (Fang et al., 2001; Williams 

et al., 2008). 
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Table 2.4: Principal component analysis of the six meteorological forcing variables: air temperature (T); specific humidity (Q); precipitation (R); downward short-wave 

radiation (SW); downward long-wave radiation (LW); and surface pressure (P). 

Component Eigenvalue Variance (%) Cumulative (%) 
Component Loadings 

T Q R SW LW P 

1 2.872 47.9 47.9 0.44 0.95 0.90 -0.46 0.86 -0.15 

2 1.329 22.2 70.1 0.73 -0.04 -0.07 -0.01 -0.10 0.89 

3 0.974 16.2 86.3 0.35 -0.00 -0.01 0.85 0.24 -0.25 

4 0.384 6.4 92.7 -0.39 0.09 0.19 0.24 0.09 0.35 

5 0.307 5.1 97.8 0.07 0.03 0.35 0.07 -0.41 -0.07 

6 0.134 2.2 100.0 -0.02 0.30 -0.17 0.04 -0.12 0.00 

 

 

Figure 2.6: Pearson r correlations between modelled NPP and meteorological forcing Principal Components PC-1 (a); PC-2 (b); PC-3 (c). 

(a) (b) (c) 
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In the case of PC-2, figure 2.6 indicates a geographical differentiation in which 

strong negative correlations are manifest in the savannah systems; whereas the 

correlations are positive in the central tropical forest. A similar picture is evident for 

PC-3, whereby very strong positive correlations are associated with the equatorial 

forest, where increased cloud cover over this region adversely affects PAR availability. 

Having identified the primary climatic drivers behind the variability of NPP over 

Africa, it is pertinent to consider what the main causes of climate variability may be, 

and how these influence IAV in modelled NPP. As discussed in section 2.1 previous 

investigators have suggested ENSO to be a major driver of climate IAV particularly in 

southern Africa during the main November-February wet season. An appropriate 

approach to enable comparison between the strength of El Niño / La Niña events and 

NPP has been to represent ENSO as a multivariate index (Nemani et al., 2003). This is 

the approach that is adopted here, with modelled NPP compared with the Multivariate 

ENSO Index (MEI) devised by Wolter and Timlin (1998) (Figure 2.7). A 6-month lag 

between MEI and corresponding NPP anomaly resulted in the strongest correlation (r = 

-0.330, P<0.01; N=294). 
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Figure 2.7: Times series of mean annual continental NPP (Pg Cyr
-1

) against a Multivariate ENSO Index 

(MEI) (top); scatterplot of monthly NPP anomalies (g C m
-2

) vs.MEI (bottom). The MEI is based on six 

variables: sea-level pressure, zonal and meridional surface-wind components, sea-surface pressure, 

surface-air temperature, and cloud-cover fraction. The magnitude (positive / negative) of the MEI 

corresponds to the strength of El Niño / La Niña events respectively. 
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It is clear from figure 2.7 that strong El Niño events are associated with a decrease 

in NPP, with increasing NPP occurring in conjunction with La Niña events. This 

negative relationship between NPP and the same MEI was also reported by Nemani et 

al. (2003). The three strong El Niño events of the 25-year modelling period - 

1982/1983, 1987/1988, and 1997/1998 – correspond to reduced precipitation in some 

regions of the continent; this is particularly the case during the 1982/1983 and 

1997/1998 events, in which extreme precipitation anomalies are evident in some 

equatorial areas (Figure 2.8). In addition to these extreme events, NPP is also seen to 

have sharply decreased during 1991/1992, which was an extremely dry period in 

southern Africa (Hely et al., 2003). It may have been expected that the long-lasting La 

Niña event of 1999/2000 may have been responsible for a sharper increase in NPP than 

is apparent from figure 2.7. This may be due to the fact that extreme rainfall was limited 

to arid regions with sparse vegetation, whereas densely vegetated humid areas 

experienced very dry conditions (van der Werf et al., 2006). 
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Figure 2.8: Precipitation anomalies with respect to the mean precipitation during the 25-year modelling period 1982 to 2006 during the three major El Niño events of this 

period: 1982/1983 (a); 1987/1988 (b); 1997/1998 (c). Data is from the NCEP Reanalysis II dataset calibrated with CRU and TRMM monthly data. 

 

(a) (b) (c) 
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In addition to the ENSO phenomenon, monthly NPP growth rate simulated by the 

JULES model (Figure 2.9) was also found to be significantly related to atmospheric 

CO2 growth rate (r = 0.290, P<0.01; N=300) from the Mauna Loa Record; a finding 

consistent with Nemani et al. (2003). A primary candidate for this response in NPP 

growth rate could be the CO2 fertilisation effect - particularly in the C3 broadleaf trees 

of the tropical forest - whereas over savannah regions, where C4 grasses proliferate, 

NPP increases are mainly attributed to improved WUE (Field et al., 1995; Schaphoff et 

al., 2006). However, this correlation should be treated with caution since changes in 

NPP and Rh also change the atmospheric CO2 growth rate (Francey et al., 1995; Keeling 

et al., 1995) and may be a more reasonable explanation for the correlation. 

 

Figure 2.9: NPP growth rate anomalies modelled by JULES in relation to atmospheric CO2 growth rate 

anomalies from the Mauna Loa Record. These anomalies are calculated as the difference between yearly 

values and the mean for the 1982–2006 period respectively. 
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2.3.2. Carbon balance 

The carbon balance of each grid-box is not explicitly derived by the JULES model. NEP 

was therefore calculated from the output variables - NPP and Rs – the latter was treated 

as a surrogate for heterotrophic respiration since no aboveground litter respiration is 

present in JULES. The NEP derived for Africa in this study (Figure 2.10) displayed a 

large IAV of 0.71 Pg Cyr
-1

, with a mean terrestrial uptake of 0.14 Pg Cyr
-1

. In relation 

to published values, the modelled estimates showed considerable comparability. From 

1982 to 1995 the mean uptake was 0.37 Pg Cyr
-1

 - similar to the estimate of 0.34 Pg 

Cyr
-1

 in Cao et al. (2001). During the 1990‘s a net sink of 0.20 Pg Cyr
-1

 was predicted, 

which is of a similar magnitude to the 0.15 Pg Cyr
-1

 estimated by Ciais et al. (2009). 

Strictly speaking though, since the model used in this latter study included a simple 

parameterisation for fire, the published value was an estimate of net biome productivity 

(NBP); a quantity which includes additional loss due to episodic disturbances, such as 

fires and harvests (Schulze and Heimann, 1998). 

 

Figure 2.10: Times series of mean annual continental NEP in Pg Cyr
-1

. Positive values indicate a sink of 

carbon and negative values indicate a source. 
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It is clear from figure 2.10 that during the 1980‘s and 1990‘s the JULES model 

simulates Africa to behave as a sink of carbon for much of these two decades, 

punctuated by three distinct periods which coincide with the three strong El Niño events 

of 1982/1983, 1987/1988, and 1997/1998, where the continent acts as a source of 

carbon. These three events are associated primarily with reductions in NPP, but also 

spikes in Rs (figure 2.11). It is also apparent, that from 2002 onwards Africa exhibits a 

net release of carbon from the biosphere, averaging -0.57 Pg Cyr
-1

, with the maximum 

release occurring in 2005. 

 

Figure 2.11: Time series of mean annual continental NPP and Rs in Pg Cyr
-1

. 

 

Although not yielding a strong MEI signal, 2005 experienced both the driest and 

hottest conditions during the 25-year investigative period (Figure 2.12), particularly in 

the savannahs. With moisture availability having been identified as a primary factor 

controlling NPP, and temperature being the single best predictor of soil respiration 

(Raich and Schlesinger, 1992), it would appear logical that the NEP for 2005 of -1.24 
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Pg Cyr
-1

 would result both from the lowest annual precipitation encountered during the 

25-year period together with above average temperature. 

 

Figure 2.12: Air temperature anomalies (K) (top); and precipitation anomalies (mm) (bottom) for 2005 

with respect to the mean air temperature and precipitation respectively during the 25-year modelling 

period 1982 to 2006. Both air temperature and precipitation data is from the NCEP Reanalysis II dataset, 

with precipitation data calibrated with CRU and TRMM monthly data. 

 



44 

 

What we also observe from figure 2.11 is that IAV in NPP (0.48 Pg Cyr
-1

) is 

greater than that of Rs (0.34 Pg Cyr
-1

) in agreement with Raich et al. (2002); and over 

the modelling period an overall downward trend is discernable in NPP in contrast to an 

overall upward trend in Rs. The prime candidate responsible for this upward trend in Rs 

is an increasing trend in temperature. Indeed, this 25-year window experienced an 

overall increase in air temperature of 0.7°C, with the six years spanning 2001 to 2006 

representing six of the hottest seven years since 1982. The downward trend in NPP is 

partly a result of the lower than average values simulated since the last major El Niño 

event. The cause of this though appears more complicated with no one factor 

conclusive; and the inference being that multiple changes in climate patterns are 

responsible, such as increasing temperature in the savannah regions, and decreasing 

solar radiation over the tropical forests of central and west Africa. 

2.4.  Discussion 

NPP is a biophysical quantity with potentially far reaching influence in climate 

modelling, whereby systematic comparison of interannual fluxes between models is a 

priority in reducing terrestrial carbon cycle uncertainties (IPCC, 2007). This is the 

motivation behind participation in the CAMIC Project; and subsequent investigation 

into both the drivers of terrestrial carbon flux variability, and the attempt to simulate the 

carbon balance of the African continent during the recent past. 

The results presented here suggest both the magnitude and variability of terrestrial 

carbon fluxes simulated by the JULES land surface model are comparable both with 

other state-of-the-art land surface schemes and with published estimates from previous 

studies. In addition, the primary factors responsible for the variability between years 

have been identified. However, these findings come with a note of caution. JULES, like 

probably all land surface models, is limited by the accuracy to which it is able to 



45 

 

represent the complex physical processes that constitute the terrestrial biosphere. This 

limitation becomes more acute when attempting to imitate highly heterogeneous 

environments, such as the savannah ecosystems of Africa. 

More specifically, in the context of this investigation several limitations within the 

JULES model are evident. Firstly, the differentiation between evergreen and deciduous 

broadleaf trees is essential for the accurate modelling of Africa vegetation, whereas in 

JULES these are both assigned to a single PFT. Incidentally, of the four CAMIC 

participating models, JULES presents the most simplified PFT specification. Secondly, 

the phenological cycle is a critical component for accurately modelling carbon fluxes in 

savannah ecosystems. While environmental cues are reasonably well understood and 

implemented in temperate environments, no account of leaf senescence is made in the 

model once water availability falls below a threshold value; whereas the two LPJ 

models, and ORCHIDEE, all contain raingreen phenology. Finally, despite fire and 

grazing being important determinants of ecosystem function, particularly in African 

savannahs (Archibald et al., 2005), these disturbance regimes are a conspicuous 

omission in the model framework. In contrast, all three of the other participating models 

in the model intercomparison incorporate fire disturbance, based on Thonicke et al. 

(2001). What is more, ORCHIDEE also includes a simple parameterisation for 

herbivory. Indeed, this lack of both disturbance functionality and drought-deciduous 

phenology may be responsible for JULES exhibiting the lowest IAV in NPP of all the 

participating models. 

With regards to the CAMIC project is general, a couple of caveats must also be 

highlighted before any interpretation of the findings can be made. Firstly, despite the 

noble attempt to unify datasets, the unique requirements of each land surface model 

mean some differences in the simulations may be attributed to the different 
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requirements of the individual models. For example, in the case of JULES, an additional 

two driving datasets were mandatory for running the model: downward long-wave 

radiation; and surface pressure. Although great effort was made to ensure the same 

methodology was applied in the re-gridding process as for the common datasets, 

uncertainty is unavoidable. Secondly, the treatment of Rh by the modelling community 

is unconstrained. Both LPJ models and ORCHIDEE derive Rh as the sum of emissions 

from aboveground litter decomposition and belowground soil decomposition; whereas 

JULES does not distinguish between aboveground and belowground Rh, instead simply 

describing a microbial soil respiration quantity. Aboveground heterotrophic respiration 

by animal biomass is universally ignored by the CAMIC models, most probably 

because it is difficult to quantify in space and time. This may contribute a non-trivial 

proportion of the total heterotrophic flux in an ecosystem, and as such disregarding this 

suggests a potential over-estimation of NEP. Although absolute magnitudes of NEP 

were not published as part of the CAMIC project, derivations of IAV suggest a probable 

carbon sink with respect to Africa (Weber et al., 2009). It is therefore pertinent to 

acknowledge, that the effect of aboveground heterotrophic respiration introduces an 

explicit uncertainty on these predictions. In the case of JULES, the lack of a litter pool 

and disturbance functionality means all vegetation carbon lost from the individual PFTs 

during the process of background litterfall ends up in the soil carbon pool. If the soil 

respiration rate is inadequately parameterised an over-estimation in the build-up of soil 

carbon stocks will be simulated - the implication being that the true carbon sink of the 

continent may be lower than the estimations from JULES. 

In a post-assessment of the CAMIC project by Bombelli et al. (2009) several 

sources of uncertainty associated with the model predictions were identified, including a 

lack of validation data and different representations of the biophysical processes by the 
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individual models. Most significantly though, particularly in the case of the highly 

heterogeneous savannah ecosystems, is the way in which the land surface is generalised 

in models. This is a current limitation inherent in all climate driven land surface models 

due to the relatively coarse resolution at which spatially heterogeneous climate 

variables, such as precipitation, are available in order to meet the sub-daily 

requirements of many models. Nevertheless, the CAMIC project did find some robust 

patterns in the modelled results. As illustrated in figure 2.4, the largest IAV in GPP was 

found by all models to be present in regions covered primarily with savannah land cover 

classes. What is more, the IAV in GPP is greater than that of ecosystem respiration in 

all models (Weber et al., 2009), and thus exerts a greater influence on the net carbon 

balance. 

For the JULES model the IAV in primary production has been shown to primarily 

be driven by moisture availability, particularly in savannah ecosystems; whereas short-

wave radiation would appear to be the main factor in the central African tropical forest 

(Figure 2.6). Indeed, in the sensitivity analysis by Alton et al. (2007a) short-wave 

radiation was identified as exercising much control on JULES model output in their 

tropical forest study site. In these warm moist regions it is presence of clouds which 

limits photosynthesis by reducing the availability of PAR (Melillo et al., 1993). Climate 

variability, and hence primary production, is influenced in Africa by factors such as 

ENSO (Figure 2.7). Furthermore, NPP variability is also influenced by atmospheric 

CO2 concentrations (Figure 2.9), although the reverse cause and effect is also a 

consideration. In the tropical forests, which are principally composed of C3 plants, CO2 

fertilisation is the prime candidate for CO2 influence on NPP growth. In the semi-arid 

regions, where NPP is moisture limited, increased atmospheric CO2 is likely to lead to 

an increase in NPP as a result of a reduction in stomatal conductance which increases 
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WUE. Moreover, increasing atmospheric CO2 is likely to impact on heterotrophic 

respiration, since temperature increases associated with anthropogenic driven global 

warming influence the rates of soil respiration (Raich et al., 2002). Indeed, the 

relationship between CO2 and carbon fluxes in the context of Africa merits further 

research. Although much uncertainty exists in modelling the carbon balance of Africa, 

findings presented here suggest climatic factors such as ENSO are major drivers behind 

the IAV in the carbon fluxes of the African continent. 

2.5.  Conclusions 

The purpose of this investigation was to examine the output of the JULES 

simulations with respect to other established land surface models to identify some of the 

limitations associated with land surface modelling. With a focus on terrestrial carbon 

fluxes four research questions were posed to analyse model sensitivity and to 

understand the drivers of the carbon cycle in Africa: i) are JULES NPP estimates 

comparable with those of other land surface models; ii) which climate variables produce 

the strongest correlations with NPP; iii) is NPP growth rate significantly related to 

increasing atmospheric CO2; iv) is NPP the main driver of NEP variability. 

The estimates of NPP simulated by the JULES model were comparable both with 

the other participating CAMIC land surface models, and with previously published 

values; the largest IAV being found in the savannah regions of the continent. This 

variability can be explained primarily by moisture availability and long-wave radiation, 

with short-wave radiation important in the central tropical forest. ENSO is a major 

factor behind the climatic variability and thus NPP variability, with the growth rate in 

NPP significantly correlated with the growth rate in atmospheric CO2 concentration. 

Finally, these driving factors of NPP variability determine for the most part NEP 

variability, with temperature driven heterotrophic respiration also a significant 
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controlling factor on the net terrestrial flux of carbon between the land surface and the 

atmosphere. In conclusion, the JULES simulation suggests a weakening of the African 

terrestrial carbon sink during the recent past primarily caused by hot and dry conditions 

in savannahs. 

This study has provided an evaluation of the biophysical processes and 

parameterisation of the JULES model for Africa; and the findings offer evidence that 

the continued use of the JULES model is justified for this research. However, land 

surface models have limitations. The mathematical equations which constitute their 

processing are only able to provide a simplified representation of the infinitely complex 

workings of the land biosphere. Observations on the other hand are able to describe 

ecosystems more realistically. We would however, need a lot of field observations to 

represent every niche in every land habitat. Fortunately, EO satellites provide a feasible 

alternative source. If we could integrate the instantaneous view of the land surface from 

satellites into land surface models it is possible we could reduce modelling 

uncertainties. 
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Chapter 3 

Land surface temperature evaluation 

Before attempting to integrate a key variable from EO satellites into the model it is 

pertinent to investigate how accurately the model is able to simulate the chosen 

variable. As was highlighted earlier, land surface models have uncertainties due to their 

approximation of physical processes and parameterisation, and the heterogeneity of the 

land surface. These can be compounded when key variables are inadequately 

represented. LST is one such critical variable, as it forms an integral component in the 

surface energy budget, and its accuracy is essential to applications such as 

desertification, water stress evaluation and soil moisture-climate feedbacks. Its strong 

diurnal cycle means that if we are to contemplate integrating more accurate 

instantaneous observations into biophysical models, then we would be better served 

with sub-daily observations. EO satellites represent the most practical source over large 

geographical areas. 

This chapter analyses the ability of JULES to effectively simulate LST by way of 

in situ evaluation and a continental intercomparison study with remotely sensed LST 

from EO satellites. First, we must consider the accuracy of the most commonly used 

satellite-derived LST products. Although each product has undergone in situ validation, 

the majority of these field campaigns have been carried out over homogeneous sites, 

which are atypical of the wider landscape. It is therefore justifiable to perform a similar 

exercise over a more representative field site; in this case the mixed tree/grass landscape 

of an African savannah. Further evaluation over every unique habitat of Africa is not 

feasible; instead to strengthen this analysis a multi-temporal intercomparison between 

EO datasets and LST simulated by the model was carried out. The aim then here is to 
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consider two questions: i) how accurately is LST simulated by JULES and retrieved 

from EO satellites for a mixed tree/grass landscape of Africa; ii) how comparable is 

LST simulated by JULES over continental Africa with respect to satellite-derived LST 

products. 

3.1.  Introduction 

LST is the radiative skin temperature of the land. It is derived from solar radiation, and 

is influenced by land/atmosphere boundary conditions such as albedo and precipitation 

(Huang et al., 2008). It determines the emission of surface-to-atmosphere long-wave 

radiation (Rhoads et al., 2001), and exerts control over the partitioning of energy into 

latent heat flux (Sellers et al., 1997), sensible heat flux (Sun and Mahrt, 1995), and heat 

flux into the ground. LST is distinct from air temperature, with up to 20K differences 

possible between concurrent measurements of the same patch of dry bare soil (Byrne et 

al., 1979), and is more closely related to the physiological activities of leaves (Sims et 

al., 2008). Furthermore, it displays a strong diurnal cycle and can exhibit substantial 

non-uniformity - as much as 10K - over just a few metres of the landscape (Prata, 

1994). This rate of change of LST is sensitive to surface characteristics such as 

vegetation cover, and soil moisture. 

Being an important boundary condition it is an integral component in numerous 

applications: desertification (Sobrino and Raissouni, 2000); surface energy balance 

assessment (Pinheiro et al., 2006a); and due to its close relationship to vapour pressure 

deficit, the monitoring of vegetation water stress (Hashimoto et al., 2008). The 

importance of LST to the thermal behaviour of the surface and sub-surface of the land 

ensures it is a key variable in land surface modelling (Kustas and Norman, 1996), with 

numerous studies (Ge et al., 2008; Jin et al., 1997; Rhoads et al., 2001) using LST as a 

benchmark for model validation. Over large geographical regions remotely sensed data 
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from EO satellites offers the most practical source for model validation, since this 

overcomes the limited spatial extent of local field measurements. 

EO satellites determine LST from top-of-atmosphere (TOA) radiances at 

microwave and thermal infrared (TIR) wavelengths. Microwave retrievals can have 

substantial uncertainties due to the large range of variation in surface emissivities; 

whereas TIR retrievals are more sensitive to cloud contamination limiting the spatial 

and temporal sampling of measurements, but benefit from the peaking of the Planck 

function in the infrared. Instruments on board EO satellites which measure TOA 

radiances in the TIR apply a radiative transfer equation which combines the upwelling 

radiance emitted by the ground, the upwelling radiance emitted by the atmosphere, and 

the down-welling radiance emitted by the atmosphere and reflected by the ground. LST 

retrieval accuracy can be challenging as a result of emissivity variability and 

atmospheric effects. Surface emissivities can be highly variable owing to the 

heterogeneity of the land; a problem which is amplified in regions of high topographic 

variance and for larger viewing angles. These need to be accurately dealt with otherwise 

biases can occur in LST retrieval of several degrees (Schaadlich et al., 2001). 

Atmospheric effects can give a bias to the underlying LST if not corrected for. 

There is an atmospheric window though, where atmospheric attenuation is minimised. 

This window of high transmission is in the spectral region 8-13µm. What is more, 

according to Wien‘s Displacement Law the peak of the Earth‘s spectral radiance at an 

ambient temperature of 300K occurs at approximately 9.6µm (Lillesand and Kiefer, 

1987). Most TIR algorithms for retrieving LST thus usually operate in this 8-13μm 

spectral range (Dash et al., 2002). Even so, attenuation at these wavelengths, which is 

caused by the presence of aerosols and by water vapour absorption, can still be 

significant. The most commonly applied operational approach to resolve this is the 
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generalised split-window algorithms (Becker and Li, 1990; Wan and Dozier, 1996), 

which solve two simultaneous equations for TOA brightness temperatures for channels 

at approximately 11µm and 12µm wavelengths, based on a priori knowledge of the 

surface emissivity from land cover classification. The rationale behind this is that 

atmospheric attenuation is a function of the differential absorption at each channel 

wavelength (Trigo et al., 2008a). Both atmospheric effects and emissivity variability 

need to accounted for to avoid retrieval errors of up to 12K (Sobrino and Raissouni, 

2000; Sobrino et al., 2003). 

Surface heterogeneity ensures that the validation of remotely sensed LST is a 

challenging undertaking. As such, most validation studies have focused on sites larger 

than a satellite pixel which are topographically flat and homogeneous in terms of 

surface cover, with only limited campaigns in heterogeneous environments (Soria and 

Sobrino, 2007; Trigo et al., 2008a). In the context of Africa such homogeneous areas 

are hard to find, and are not representative of much of the continent. A relevant 

objective here then is to evaluate both model LST and satellite-derived LST in a 

heterogeneous landscape, with any such investigation also enhancing the status of 

operational remotely sensed products. 

In this study, the uncertainty of LST simulated by the JULES model was evaluated 

with respect to in situ measurements taken in a mixed tree/grass landscape, and by way 

of a multi-temporal intercomparison over Africa with three satellite-derived LST 

products: the advanced along-track scanning radiometer (AATSR), the moderate 

resolution imaging spectroradiometer (MODIS), and the spinning enhanced visible and 

infrared imager (SEVIRI). The savannah field site is described, as is the protocol 

followed for the field exercise and intercomparison. A brief account of the individual 
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remote sensing products is given, with further details of the model functionality 

presented. Where biases were found, potential causes are discussed.  

3.2.  Materials and methods  

3.2.1. Field site 

A field campaign was undertaken to validate the model and satellite-derived LST 

against in situ measurements. Work was carried out at a field site (Figure 3.1; Figure 

3.2, left) located in the 1,948,528ha Kruger National Park (KNP) in north-eastern South 

Africa from 23
rd

 July 2009 to 7
th

 August 2009. Centred on 25.10°S, 31.47°E, the field 

site is situated in the Skukuza region of the National Park, which is classified as semi-

arid savannah of tropical grassland and fine-leaved trees (Scholes et al., 2001). Since 

savannahs cover nearly 50% of the continent of Africa (Ciais et al., 2009), the choice of 

field site is appropriate. 

 

Figure 3.1: Location of the field site (labelled as burn plots) and Skukuza Flux Tower within the Kruger 

National Park in South Africa. The locations of the main rest camps are denoted, with Skukuza labelled. 
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Figure 3.2: Photographs illustrating a representative scene from the field site (left); and the Skukuza Flux 

Tower (right). 

 

Figure 3.1 also highlights the location of the Skukuza Flux Tower (Figure 3.2, 

right) at 25.02º S, 31.50º E west-southwest of Skukuza, which has been delivering Eddy 

Covariance measurements since April 2000. Meteorological measurements for driving 

JULES during the field campaign period were acquired from this flux tower (Table 3.1). 

This was deemed an appropriate source of driving data as although located at a mean 

distance of approximately 10km from the field campaign site at a bearing of 19°, the 

assumption was made that meteorological measurements acquired from here would be 

more representative than the coarse resolution values utilised for the continental 

intercomparison. 

The rationale behind the decision to undertake this exercise during the height of the 

southern African dry season was to maximise the probability of clear-sky conditions. 

Given that the field exercise was restricted to clear-sky conditions uncertainty in using 

the flux tower measurements was minimised, since one of the most spatially 

heterogeneous of the meteorological forcing variables is precipitation. 
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Table 3.1: Meteorological measurements acquired from the Skukuza Eddy Covariance Tower for driving 

the JULES model, detailing the instruments which acquire the measurements. 

Variable Instrument Output Units 

Air temperature PT1000 °C 

Precipitation Tipping bucket  mm 

Long-wave radiation Pyranometer W m
-2

 

Short-wave radiation Pyranometer W m
-2

 

Air pressure Barometric pressure sensor mb 

Relative humidity Capacity RH sensor % 

Wind speed Cup anemometer m s
-1

 

CO2 mixing ratio Infrared gas analyser µmol mol
-1

 

 

The semi-arid subtropical climate of hot rainy summers and warm dry winters in 

conjunction with the biotic and abiotic controls on the energy, water and carbon balance 

(Table 3.2) support two distinct savannah communities: broad-leafed Combretum 

savannah; and fine-leafed Acacia savannah. Within the undulating landscape the 

shallow sandy soils of the ridges are dominated by nutrient-poor Combretum savannahs, 

with the clay soils of the lower slopes dominated by nutrient-rich Acacia savannahs 

(Scholes et al., 2001). 

 

Table 3.2: Field site biophysical characteristics; descriptions from 
a
Scholes et al. (2001), 

b
Barton et al. 

(1986), and 
c
Low and Rebelo (1996). 

Feature Description 

Altitude 370m
a
 

Annual rainfall 550 ± 160mm
a
 

Geology Archaean granite rocks and gneiss of the Nelspruit suiteb
 

Topography Undulating landscape with ridge tops about 40m above the valley floor, 

and clay illuviation down the slopes to drainage lines approximately 

3km aparta
 

Vegetation Mixed lowveld bushveld
c
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3.2.2. Model dynamics 

The JULES model explicitly treats the energy exchanges between the land and the 

atmosphere for each tile; unlike single-source models, which can generate uncertainties 

as they attempt to predict surface heat fluxes from mixed soil / canopy layers (Kustas 

and Norman, 1996). LST (Tsfc) is a key factor in the surface energy balance equation of 

each tile, which is defined by Cox et al. (1999) as: 

 

SWN + LW↓ - σTsfc
4
 = H + LE + G0 (9) 

 

Where SWN is the net downward short-wave radiation derived from the surface 

albedo, LW↓ is the downward long-wave radiation, σ is the Stefan–Boltzmann constant, 

H is the sensible heat flux, LE is the latent heat flux, and G0 is the heat flux into the 

ground. The grid-box LST is an aggregation of the individual tile surface temperatures, 

in which the tile surface temperatures multiplied by their respective fractional covers 

within the grid box are summed together to generate an overall grid-box surface 

temperature. 

3.2.3. Remotely sensed LST products 

Three commonly used satellite-derived LST products from TIR retrievals were 

compared with in situ measurements and with one another as part of the continental 

intercomparison exercise: AATSR, MODIS, and SEVIRI. To my knowledge, this is the 

first attempt to validate all three of these remotely sensed LST products in a mixed 

tree/grass savannah landscape. 

The AATSR instrument on board the sun-synchronous, polar orbiting satellite 

Envisat at an altitude of approximately 800km is the latest in the along-track scanning 

radiometer (ATSR) family. Together with ATSR-1 and ATSR-2 on board the European 
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remote sensing satellites (ERS): ERS-1 and ERS-2 respectively, there is the potential 

for a long-term LST record spanning nearly 20 years. What is unique about AATSR is 

that it is able to determine TOA brightness temperatures from two distinct viewing 

perspectives: forward (approximately 55° from zenith) and nadir. While retrievals from 

both are a feature of the sea-surface temperature datasets, only the nadir view is 

processed for land surface retrievals. The 512km swath width of AATSR allows for 

global 1km pixel LST coverage every 3 days with overpasses at approximately 10:00 

local solar time; the repeat cycle is 35 days. Here, the level-2 product ATS_NR__2P 

was used, which employs a split-window algorithm based on the 11μm and 12μm 

channels to provide calibrated TOA brightness temperatures converted to LST; whereby 

regression coefficients depend on 14 land cover classes, precipitable water, and the 

fraction of vegetation cover (Prata, 1993; Prata, 1994). The cloud clearing algorithm 

uses the 1.6μm near-infrared (NIR) channel to identify cloud affected pixels, in which 

identification is attempted by applying a series of tests to the brightness temperature. 

AATSR has on board calibration with good radiometric accuracy of less than 0.1K, 

where the target accuracy for retrievals during the day is 2.5K and during the night is 

1.0K (Llewellyn-Jones et al., 2001). In the validation study by Noyes et al. (2007), the 

uncertainty during the day was approximately 1.0K. A full description of the AATSR 

LST retrieval algorithm can be found in the product user manual which is accessible 

from the Envisat web site (http://envisat.esa.int/). 

The SEVIRI instrument is the main payload on board the Meteosat Second 

Generation (MSG) geostationary satellites, which fly at an altitude of approximately 

36000km above the equator. An image is acquired every 15 minutes, with the pixel size 

a function of the viewing angle. For the African continent, this equates to pixel sizes 

between 3km and 5km. LST retrieval is a more challenging undertaking than for the 

http://envisat.esa.int/
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polar-orbiting satellites, particularly at higher latitudes, as a result of increased 

atmospheric attenuation due to higher viewing zenith angles. A generalised split-

window algorithm is used to estimate LST as a linear function of TOA brightness 

temperatures for the 10.8μm and 12μm channels, in which surface emissivity depends 

on land cover classes and the fraction of vegetation cover (Peres and DaCamara 2005; 

Trigo et al., 2008b). The LST products are generated and disseminated by the Satellite 

Application Facility on Land Surface Analysis (LandSAF). They use cloud masking 

software developed by the Nowcasting and Very Short-Range Forecasting Satellite 

Application (http://www.nwcsaf.org) to identify clear sky pixels. Validation of LST 

retrievals indicates a bias free algorithm, with increasing random errors as a response to 

increasing viewing zenith angles (Trigo et al., 2008a), in which the accuracy for most 

simulations between nadir and 50° viewing zenith angle can be potentially as low as 

1.5K (Sobrino and Romaguera, 2004). The product user manual provides a 

comprehensive description of the LST retrieval algorithm, and can be accessed from the 

LandSAF web site (http://landsaf.meteo.pt/). 

MODIS instruments are part of the payload of two sun-synchronous, near-polar 

orbiting satellites, Terra and Aqua. The large swath width of these instruments, 

2330km, enables each satellite to provide a pair of observations globally every day. 

Terra retrievals correspond to approximately 10:30 local solar time in descending mode, 

and approximately 22:30 local solar time in ascending mode; the retrieval times for 

Aqua are 01:30 and 13:30 local solar time. Here, only version-5 of the daily 1km level-3 

LST product MOD11A1 acquired from Terra was used, since meaningful 

intercomparison between Aqua retrievals and AATSR retrievals could not be achieved 

due to a mismatch in local overpass times. LST is estimated using the generalised split-

window algorithm of Wan and Dozier (1996) as a linear function of TOA brightness 

http://www.nwcsaf.org/
http://landsaf.meteo.pt/
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temperatures for bands 31 (11μm) and 32 (12μm), in which surface emissivity is 

dependent on land cover class and a linear correction for the satellite viewing angle 

(Wan et al., 2002). The cloud masking algorithm used in version-5 includes refinements 

to account for surface elevation in an attempt to minimise the significant cloud 

contamination symptomatic of earlier versions, resulting in a reported accuracy better 

than 1.0K (Wan, 2008). Full details of MODIS LST retrieval is provided in the user 

manual, which is available from http://www.icess.ucsb.edu/modis/LstUsrGuide/. 

3.2.4. In situ validation theory 

For in situ measurements made at the surface of the earth the radiative transfer equation 

can be expressed as: 

 

Bc(Tc)  = εcBc(Tsfc) + (1 – εc) Bc(Tsky) (10) 

 

Where Bc(Tc) is the measured radiance given by the Planck function for effective 

brightness temperature Tc in the radiometer channel c, Bc(Tsfc) is the emitted surface 

radiance given by the Planck function for surface temperature Tsfc in channel c, and 

Bc(Tsky) is the down-welling atmospheric radiance given by the Planck function for 

effective brightness temperature Tsky of the atmosphere; εc is the emissivity of the 

Earth‘s surface in channel c. The non-uniformity of the surface emissivity means that 

the down-welling atmospheric radiance has a small, but significant impact on LST, so 

regular radiometric measurements of this correction factor are important, particularly if 

the sky is not homogeneous. In practice, this is carried out with a radiometer facing the 

sky at approximately 53° from zenith (Kondratyev, 1969; Coll et al., 2005). 

The spatial resolution of most satellite-derived LST is low compared with the 

heterogeneity of LST on the ground, so Tsfc at the scale of a satellite pixel is the average 

http://www.icess.ucsb.edu/modis/LstUsrGuide/
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surface temperature of weighted means of the surface temperatures of the principal land 

cover scenes (Kerr et al., 1992; Soria and Sobrino, 2007): 

Tsfc  = Σ W(i)Tsfc(i) (11) 

 i 

 

Where W(i) is the weight (or fractional cover) of the respective land cover type, and 

Tsfc(i) is the surface temperature of land cover type i, with i corresponding to one of the 

principal land cover types (or endmembers) most representative of the field site. 

3.2.5. Field methodology 

In theory, the strong spatial and temporal variability of LST should impose an approach 

whereby simultaneous in situ measurements are made at every point over the surface 

encompassing a satellite pixel at the exact time of the satellite overpass. However, this 

approach is not possible in practice, and so a feasible alternative (Trigo et al., 2008a) is 

to take simultaneous in situ measurements over the principal land cover types which 

constitute the satellite pixel at the overpass time. Here, concurrent radiometric 

measurements under clear-sky conditions were made over the three principal surface 

types – bare soil, grass and tree canopy – to coincide with each satellite overpass; this 

limitation of three principal types was imposed by the number of available radiometers. 

For each overpass, three scenes on the ground were measured using three Apogee 

SI-121 infrared radiometers (labelled 1283, 1288 and 1291). Each radiometer had a 

spectral response of 8-14μm and a field-of-view (FOV) of 18°. All measurements were 

carried out within the recommended temperature range for operation of -55°C to 80°C, 

with radiometric accuracy quoted by the manufacturer as ±0.2°C between operating 

temperatures of -10°C to 65°C. The brightness temperature of each scene was measured 

with a 1-second periodicity, and every minute these measurements were averaged and 
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recorded, with the first and last average discarded to discount anomalous measurements 

at the beginning and end of the measurement window. Each radiometer was angled to 

give nadir readings and fixed to a tripod by way of a horizontal arm (Figure 3.3) to 

maximise stability. 

 

Figure 3.3: Photograph illustrating the typical field setup of an Apogee SI-121 infrared radiometer. The 

radiometer is attached to the end of the horizontal arm of the tripod, pointing towards the ground at 

nadir. 

 

Care was taken to ensure neither the tripod legs nor the operator‘s shadow 

intersected with the FOV. To measure the tree canopy, the height of the associated 

tripod was extended and the radiometer positioned over trees with a height up to 1.5m. 

Besides the explicit uncertainty of the Apogee SI-121 radiometers, the radiation seen by 

the instruments is subject to a scaling factor as the FOV-derived target footprint 

captures only 98% of the emitted radiation. Since only the mean temperature across the 

footprint is recorded, if a temperature gradient exists across the footprint then the 

scaling factor overlooks this. Before and after each overpass, measurements of down-

welling atmospheric radiance were made by angling one of the radiometers towards the 
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sky at approximately 53° from zenith. Values of εc required for equation (10) were 

obtained from the advanced spaceborne thermal emission and reflection radiometer 

(ASTER) spectral library (Baldridge et al., 2009) corresponding to the surface type of 

the measured scene (Table 3.3). 

 

Table 3.3: Emissivities in the 8-14μm spectral range corresponding to the spectral response of the 

Apogee SI-121 infrared radiometers. Endmember emissivities were obtained from the ASTER spectral 

library (Baldridge et al., 2009) for surface types representative of the measured scenes: dry grass; 

deciduous trees; and red-orange sandy soil. 

Endmember Emissivity ± σ 

Grass 0.940 ± 0.023 

Trees 0.977 ± 0.004 

Bare soil 0.941 ± 0.034 

 

During the field campaign in situ radiometric measurements for all three 

endmember classes were acquired each morning to coincide with the morning 

overpasses of AATSR and MODIS, and also every 15 minutes to coincide with SEVIRI 

retrievals. For this in situ exercise the MODIS 1km level-2 product was used, 

MOD11_L2. The overpass times for AATSR and MODIS were predicted using the 

NASA LaRC Satellite Overpass Predictor (http://www-angler.larc.nasa.gov/cgi-

bin/predict/predict.cgi). The presence of dangerous game animals enforced the 

limitation of daylight field work only, which meant that measurements of all three 

endmembers during the Terra MODIS night overpass were not possible. While two 

radiometers were mobile, one of the three radiometers was placed in the field with 

protection against animal interference for the entire duration of the campaign collecting 

diurnal measurements over a representative bare soil scene. This radiometer was 

encased in polystyrene along its shaft to prevent non-linear internal temperature 

http://www-angler.larc.nasa.gov/cgi-bin/predict/predict.cgi
http://www-angler.larc.nasa.gov/cgi-bin/predict/predict.cgi
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differences. Each day simultaneous measurements of this bare soil scene were acquired 

from all three radiometers in order to compare the calibrated measurements from each 

instrument. 

3.2.6. Supervised classification 

In order to compare the measurements acquired in the field with those obtained from 

EO satellites and simulated by the JULES model, weighted averages of the brightness 

temperatures for the three endmembers were calculated as per equation (11). The weight 

assigned to each endmember was determined, following the methodology of Soria and 

Sobrino (2007) and Trigo et al. (2008a), by means of a maximum likelihood supervised 

classification on the 4-m multispectral bands of an IKONOS image of the field site 

which were ‗pan-sharpened‘ using the 1-m panchromatic band (Figure 3.4). The 

endmember proportions for each satellite pixel (Table 3.4) were derived from 

superimposing an overstrike of the pixels (denoted as AATSR-1, AATSR-2, MODIS-1, 

MODIS-2, MODIS-3, and SEVIRI) onto the classified image (Figure 3.5). 
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Figure 3.4: False colour composite covering the field site of the IKONOS 4-m multispectral image ‘pan-

sharpened’ with the 1-m panchromatic band. An overstrike of the satellite pixels for AATSR, MODIS, and 

SEVIRI is indicated. Note that the area encompassing the SEVIRI pixel is also the area modelled by 

JULES. 

 

Table 3.4: Proportions of the three endmember classes for each satellite pixel; the endmember 

proportions for JULES were the same as for SEVIRI. Percentages were obtained as a result of a 

supervised classification of a ‘pan-sharpened’ multispectral IKONOS image covering the field site. 

Pixels 
Endmember proportions (%) 

Bare soil Trees Grass 

AATSR-1 23.48 21.36 55.16 

AATSR-2 28.20 23.20 48.60 

MODIS-1 26.57 23.17 50.26 

MODIS-2 27.01 19.56 53.43 

MODIS-3 30.12 21.68 48.20 

SEVIRI / JULES 22.21 14.28 63.51 
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Figure 3.5: Maximum likelihood supervised classification of the ‘pan-sharpened’ multispectral image. 

The three endmember classes are indicated: bare soil (brown); grass (yellow); and trees (blue). An 

overstrike of the satellite pixels for AATSR, MODIS, and SEVIRI is indicated (white polygons). 

 

The IKONOS image, which was acquired on 21
st
 April 2005 and which displays no 

detectable cloud cover, encompasses a set of experimental burn plots (EBPs) bounded 

by fire breaks. GPS measurements of the corners of the burn plots taken during the field 

campaign were compared with the geolocation of the same points in the imagery - 

which as a result were found to be good. Training sets for the supervised classification 

were created by way of a survey of the field site, in which small homogeneous areas of 

the three endmembers were identified and supported with GPS readings. On closer 

inspection the IKONOS image reveals the presence of riparian systems, whereas water 

bodies were not considered as endmembers. It should be noted though, that at the time 

of the field campaign these riverbeds were dry, and so were classified as bare soil. In 
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the case of the JULES model, land cover proportions were taken as the endmember 

proportions for the SEVIRI pixel. 

3.2.7. Model experimental setup 

As stated in section 3.2.6., to enable comparison of field measurements with model 

simulations of LST, tile percentages in the JULES model were determined from the 

proportions of the three endmembers. In practice, the proportion of bare soil 

endmember was assigned to the JULES surface type of bare soil; the grass proportion 

was assigned to the JULES surface types of C3 and C4 grasses, with the split between 

them being determined from the ISLSCP II dataset of C4 fractions; and the tree 

proportion was assigned to the JULES surface type of broadleaf trees. 

 JULES was run as a single ‗point‘ with a 30 minute time-step for the duration of 

the field campaign uncoupled from TRIFFID, as it was considered too short a time 

interval to trigger significant vegetation-climate feedbacks as a result of changes to 

vegetation distribution. Prior to the main run, the model was spun-up according to 

section 2.2.3, in which the model was forced with climate from the first 10-days of the 

field campaign repeatedly until soil moisture and soil temperature were equilibrated. 

CO2 concentrations and meteorological measurements were acquired from the Skukuza 

Eddy Covariance Tower at 30 minute intervals. In the case of downward long-wave 

radiation, the pyranometer measuring this has not been operational since 2005, and so 

bilinearly interpolated NCEP Reanalysis II data (Kalnay et al., 1996) was instead used 

for this variable. Finally, soil characteristics (Scholes et al., 2001) typical of this 

landscape were used to parameterise the subsurface of the model (Table 3.5). 
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Table 3.5: Soil parameters obtained from Scholes et al. (2001) and applied in the JULES model are 

broadly representative of the surrounding landscape, rather than being an exact parameterisation of the 

field campaign site. Field capacity is the moisture content at θ -33 kPa tension, and the wilting point is 

the water content at θ -1500 kPa tension. 

Depth 

(mm) 

Sand 

(%) 

Silt  

(%) 

Clay  

(%) 

K sat  

(μm/s) 

Field capacity 

(v/v) 

Wilting point 

(v/v) 

0–300 69 6 25 0.52 0.20 0.10 

300–600 65 3 32 0.01 0.21 0.11 

 

3.2.8. Instrument calibration 

Calibration of the three Apogee SI-121 radiometers was not carried out prior to the field 

campaign due to the unavailability of a blackbody. As such, the radiometers were set up 

in accordance with the manufacturer supplied calibration coefficients. Post-calibration 

was carried out in the Physics laboratories at the University of Leicester with the use of 

a ramping blackbody (Figure 3.6) from Leicester and thermometry courtesy of the 

Rutherford Appleton Laboratory, Oxford. 

 

   

Figure 3.6: Photographs of the ramping blackbody illustrating the radiometer pointing towards the black 

coated cavity (left), and the top-down view of the insulating structure (right). Photographs courtesy of T. 

Trent, Department of Physics and Astronomy. 
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The blackbody consisted of a copper cavity, which is painted black to enforce an 

emissivity as close to one as possible, encased within an insulated structure. This 

structure was filled with an ice and water mixture above the level of the cavity, and the 

temperature of the mixture was gradually raised with a heating element, ensuring as 

even a temperature as possible was maintained at any one moment in time throughout 

the insulated structure by continually circulating the mixture with an electric pump. 

The surface temperature of the cavity was measured with a radiometer pointing 

towards the black coated outer surface, and in situ with a platinum resistance 

thermometer (PRT), with a manufacturer quoted accuracy of ±0.01°C. A diagrammatic 

representation of the experimental setup is illustrated in figure 3.7. An experiment was 

carried out whereby the heating element raised the temperature of the mixture over a 

period of two hours. At five minute intervals the temperature of the blackbody was 

sampled from both the radiometer and the PRT. A linear regression equation was 

determined between the radiometer measurements and the PRT measurements covering 

the temperature increase. 

  

 

Figure 3.7: Diagrammatic representation of the ramping blackbody experimental setup. 
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This calibration equation was verified by repeating the experiment with the 

calibration equation applied directly to the recorded radiometric measurements. The 

whole experiment was repeated for the remaining two radiometers. Calibration 

equations (12, 13 and 14), where x is the original radiometric measurement and y is the 

calibrated measurement, were derived; figures 3.8 to 3.10 illustrate the effect of 

applying these equations to the original measurements in the context of the blackbody 

experiments. 

 

y = 0.94x + 16.88 (12) 

 

 

Figure 3.8: Time series for the calibration experiments illustrating the temperature of the blackbody as 

recorded by the platinum resistance thermometer (PRT), and radiometer 1283. The calibration line is the 

result of applying calibration equation 12 to the radiometric measurements. The error bars represent the 

radiometric accuracy of ±0.2°C for the Apogee SI-121 radiometers. 
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y = 0.90x + 28.53 (13) 

 

 

Figure 3.9: Time series for the calibration experiments illustrating the temperature of the blackbody as 

recorded by the platinum resistance thermometer (PRT), and radiometer 1288. The calibration line is the 

result of applying calibration equation 13 to the radiometric measurements. The error bars represent the 

radiometric accuracy of ±0.2°C for the Apogee SI-121 radiometers. 
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y = 0.91x + 26.28 (14) 

 

 

Figure 3.10: Time series for the calibration experiments illustrating the temperature of the blackbody as 

recorded by the platinum resistance thermometer (PRT), and radiometer 1291. The calibration line is the 

result of applying calibration equation 14 to the radiometric measurements. The error bars represent the 

radiometric accuracy of ±0.2°C for the Apogee SI-121 radiometers. 

 

Equations (12, 13 and 14) were applied to the radiometric measurements taken by 

radiometers (1283, 1288 and 1291) respectively during the field campaign. Indeed, in 

situ measurements from all three radiometers of the fixed bare soil scene following the 

application of the calibration equations were comparable - within the ±0.2°C 

manufacturer quoted accuracy of the instruments. 
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3.2.9. Intercomparison analysis 

For this exercise, much of the experimental setup of the JULES model mirrored that 

which has been described in 2.2.3. For instance, the source of each driving dataset 

remains the same as detailed in table 2.1. The principal difference here was that the 

model was only run for a single year, 2006; and the spin-up cycle was a repetition of the 

years 2001-2005. Simulated LST from JULES was compared with LST retrieved from 

AATSR, MODIS and SEVIRI during the months of March, June, September and 

December of 2006 for the whole of the African continent. These four months were 

examined to increase the likelihood of any seasonal differences between the different 

sources being brought to light. 

In order to compare LST from the different sources the retrievals from satellite 

were re-projected to a regular 1° × 1° grid, to match the JULES output, by averaging 

geo-referenced pixels within each grid-box. Clouds scatter and absorb infrared radiance, 

and so to minimise cloud contamination only satellite pixels identified as cloud-free 

having the highest quality control flags were included in the re-projection. Comparing 

different LST datasets can be challenging prospect because of the variability of LST 

over brief time periods (Pinheiro et al., 2006a). Here, intercomparison was performed at 

individual 1° grid boxes only when an AATSR overpass time intersected with a MODIS 

overpass time within a ±10 minute time window. These were compared with the closest 

15-minute SEVIRI retrieval, and the closest 30-minute JULES simulation. Monthly 

composites of the differences between the LST sources were generated from the 

aggregation of all the individual grid-box comparisons carried out during the month. 

These were categorised into ‗day‘ (approximately 07:00 - 12:00 UTC) and ‗night‘ 

(approximately 19:00 - 24:00 UTC) observation windows, as these correspond to the 

Terra MODIS orbital overpass times for Africa. 
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3.3.  Results  

3.3.1. In situ study 

Figure 3.11 shows both modelled LST and the individual satellite retrievals plotted 

against the LST observations collected in situ over a heterogeneous landscape of KNP 

during local morning between 23
rd

 July and 7
th

 August 2009. 

 

Figure 3.11: Remotely sensed and model simulated LST vs. in situ observations taken during local 

morning in the Kruger National Park, South Africa, between 23
rd

 July and 7
th

 August 2009. 

 

What is evident is that both AATSR and SEVIRI retrievals are clustered 

relatively evenly above and below the line of equality between ground observations and 

remotely sensed observations. In the case of AATSR, seven of the eight retrievals are 

within ±1.50K of the corresponding ground measurements. The biases for SEVIRI 

retrievals are slightly larger, but still range within ±3.20K of the ground observations. 

For MODIS, almost all of these retrievals display a negative bias, peaking at -5.98K, 
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when compared with field measurements for the corresponding pixels. In contrast, the 

majority of simulated LST values from JULES have a positive bias with respect to the 

corresponding ground observations. What is more, the spread of bias is the greatest of 

the four LST sources, with a maximum of 10.07K and minimum of -6.43K. 

If we consider the overall statistics of this exercise (Table 3.6), we see that the 

model displays the largest bias with respect to the ground observations, with a standard 

deviation twice as large as any of the satellite-derived LST products. Of the EO sources, 

AATSR was found to be the most accurate, with an overall mean bias of 0.26K. Such a 

small bias is consistent with previous studies comparing AATSR retrievals with ground 

observations (Coll et al., 2006; Noyes et al., 2006; Noyes et al., 2007), in which the 

mean biases found in these studies were all between ±1.0K. The root mean square error 

(RMSE) of 1.17K for AATSR is comparable with the 1.7K quoted by Soria and Sobrino 

(2007) from their validation study over heterogeneous fields in Morocco. The 

uncertainty found here of 1.21K is also within the 2.5K (Llewellyn-Jones et al., 2001) 

daytime target accuracy for retrievals. With respect to SEVIRI, the negative mean bias 

of -0.38K is smaller than found in other studies (Kabsch et al., 2008; Trigo et al., 

2008a), and the uncertainty of 1.65K is within the 2.0K target accuracy for retrievals set 

down by LandSAF. Finally, the largest mean bias and standard deviation exhibited by a 

satellite-derived LST product was that of MODIS. Although within the range (-1.8K to  

-4.0K) of numerous studies (Bosilovich, 2006; Noyes et al., 2006; Trigo et al., 2008a), 

the uncertainty of 1.67K is outside the 1.0K accuracy reported by Wan (2008), and 

emphasises the importance of ongoing evaluation of remotely sensed LST products. 
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Table 3.6: Comparison between LST from both remotely sensed products and the JULES model, and in 

situ observations taken from the field site in KNP. Bias, σ (standard deviation) and root mean square 

error (RMSE) correspond to the modelled and remotely sensed LST with respect to the in situ 

measurements corresponding to the respective pixel locations. 

Source Bias (K) σ (K) RMSE (K) 

AATSR 0.26 1.21 1.17 

MODIS -2.24 1.67 2.77 

SEVIRI -0.38 1.65 1.68 

JULES 2.48 3.69 4.41 

 

3.3.2. Intercomparison 

Figures 3.12 to 3.15 illustrate the spatial differences between each source of LST data 

and a single reference source, in this case SEVIRI, for monthly ‗day‘ composites during 

the four periods, March, June, September and December of 2006. These figures contain 

image gaps due to insufficient intersecting observations available for some grid-boxes 

to construct monthly composites. What can be discerned however, is that AATSR LST 

is most comparable with SEVIRI LST, whereas both MODIS and JULES produce LST 

with a consistent negative difference with respect to SEVIRI (and for that matter 

AATSR). This negative difference follows a different pattern for MODIS and JULES; 

and in the case of MODIS, this would seem to largest over the savannah landscapes of 

Africa. The choice of these four specific months was made to highlight any seasonal 

differences between the distinct sources of LST, and indeed some clear variations are 

apparent. For instance, MODIS retrieved lower LST, with respect to SEVIRI, over the 

northern savannahs in June, whereas during December it was over the southern 

savannahs where this difference was strongest. Furthermore, over northern Africa 

SEVIRI is retrieving the highest temperatures over much of the comparison period; 

whereas over southern Africa both AATSR and JULES retrieved slightly higher 
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temperatures during December, and over much of the comparison period AATSR 

retrieved the highest temperatures. Indeed, continent-wide the source of highest mean 

temperatures was AATSR. This finding is consistent with that of Noyes et al. (2006) in 

their study across ten sites in Europe and North Africa. They also found SEVIRI to 

systematically record higher LST than MODIS; as did Trigo et al. (2008a) in their study 

over Central Africa and the Iberian Peninsula. Again this is consistent with the findings 

presented here, with the MODIS viewing angle primarily responsible. The negative 

difference of MODIS with respect to SEVIRI increases with the size of the viewing 

angle, probably as a result of differential heating rates between sunlit and shadow 

scenes, as was postulated by Trigo et al. (2008a). SEVIRI on the other hand, observes 

predominantly sunlit scenes. 
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Figure 3.12: Mean ‘daytime’ LST (approximately 07:00 - 12:00 UTC) for March 2006 retrieved from 

SEVIRI (a) displayed in absolute units; and AATSR minus SEVIRI (b); JULES minus SEVIRI (c); and 

MODIS minus SEVIRI (d) over Africa. The monthly composites are based on temporal retrievals when 

both AATSR and MODIS overpass times coincided within a ±10 minute tolerance; with the nearest 15-

minute SEVIRI retrieval and the nearest 30-minute JULES simulation being applied. Figure reproduced 

from Ghent et al. (2010). 

  

(a) (b) 

(c) (d) 
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Figure 3.13: Mean ‘daytime’ LST (approximately 07:00 - 12:00 UTC) for June 2006 retrieved from 

SEVIRI (a) displayed in absolute units; and AATSR minus SEVIRI (b); JULES minus SEVIRI (c); and 

MODIS minus SEVIRI (d) over Africa. 

  

(a) (b) 

(c) (d) 
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Figure 3.14: Mean ‘daytime’ LST (approximately 07:00 - 12:00 UTC) for September 2006 retrieved from 

SEVIRI (a) displayed in absolute units; and AATSR minus SEVIRI (b); JULES minus SEVIRI (c); and 

MODIS minus SEVIRI (d) over Africa. 

  

(a) (b) 

(c) (d) 
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Figure 3.15: Mean ‘daytime’ LST (approximately 07:00 - 12:00 UTC) for December 2006 retrieved from 

SEVIRI (a) displayed in absolute units; and AATSR minus SEVIRI (b); JULES minus SEVIRI (c); and 

MODIS minus SEVIRI (d) over Africa. 

 

If we now consider LST modelled by JULES, it would seem from figures 3.12 to 

3.15 that the model consistently underestimates surface temperatures with respect to 

satellite-derived sources; this appears to be most pronounced over barren or sparsely 

vegetated regions, such as the Sahara. One possible cause of this difference is the way 

in which LST is aggregated across a grid-box. In JULES, grid-box LST is a linear 

combination of the individual tile surface temperatures weighted by their corresponding 

fractional covers. In any multiple-source model though, grid-box surface temperature 

should be defined as the fourth root of the aggregation of the fourth power of 

component surface temperatures multiplied by their corresponding fractional covers 

(Norman et al., 1995; Li et al., 2005). However, while this may rationalise some of the 

discrepancy in multiple tiled grid-boxes, this does not provide a satisfactory explanation 

(a) (b) 

(c) (d) 
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for the large difference observed over barren or sparsely vegetated regions, which are 

almost exclusively composed of grid-boxes with single tile components; in which case 

no tile aggregation is made. In these bare soil grid-boxes it was instead suspected, that 

the primary candidate for the model underestimation was poor soil parameterisation. 

This is a logical suspicion, since in JULES the surface temperature of bare soil is 

quantified not only from the surface energy balance equation, but also from the soil 

temperature of the topmost layer in the soil profile. 

To investigate this possibility further, the intercomparison experiment between 

JULES and the satellite-derived sources of LST was repeated under a modified soil 

parameterisation (denoted as parameterisation-B; henceforth for this exercise the 

original parameterisation will be referred to as parameterisation-A). This modified 

parameterisation encompassed the use of the ISLSCP II 1° × 1° gridded soil dataset 

(Global Soil Data Task, 2000); with soil albedo incorporated from the dataset derived 

from the MODIS global albedo product MCD43C1 by the University of Swansea 

(Houldcroft et al., 2009) for use in the JULES model. The change in model simulated 

LST is illustrated in figure 3.16. 
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Figure 3.16: Mean ‘daytime’ LST (approximately 07:00 - 12:00 UTC) over Africa for JULES 

parameterisation-B minus JULES parameterisation-A during March (a); June (b); September (c); and 

December (d) of 2006. 

 

Over much of the continent warmer signatures were obtained with 

parameterisation-B compared with parameterisation-A, particularly over the Sahara 

during June and September, and much of southern Africa during December. Mean 

continental differences between JULES and each of satellite-derived sources of LST 

(Table 3.7) substantiate this, with a reduction exhibited by parameterisation-B, 

compared with parameterisation-A, against both AATSR and SEVIRI. In the case of 

MODIS, the change from parameterisation-A to parameterisation-B has resulted in 

JULES simulating higher surface temperatures than MODIS during the ‗night‘ for each 

of the four months. 

 

  

(a) (b) 

(c) (d) 
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Table 3.7: Mean day (approximately 07:00 - 12:00 UTC) and night (approximately 19:00 - 24:00 UTC) 

differences for March, June, September and December 2006, between both parameterisation-A and 

parameterisation-B of JULES, and each of the remote sensing products over the African continent. 

Month 

JULES (parameterisation-A) - EO 

data (K) 

JULES (parameterisation-B) - EO 

data (K) 

AATSR MODIS SEVIRI AATSR MODIS SEVIRI 

 Day 

March -6.76 -1.85 -5.39 -6.42 -1.51 -5.05 

June -6.81 -2.14 -5.48 -5.13 -0.45 -3.79 

September -11.21 -5.27 -7.47 -7.94 -2.00 -4.21 

December -6.52 -2.25 -5.50 -4.83 -0.55 -3.81 

 Night 

March -3.27 -0.12 -5.45 -1.44 1.71 -3.62 

June -7.37 -2.20 -5.46 -2.55 2.62 -0.64 

September -8.49 -4.33 -7.54 -3.22 0.95 -2.27 

December -2.31 0.71 -1.15 -2.11 0.91 -0.95 

 

The spatial pattern of the reduction in differences when parameterisation-B is used 

rather than parameterisation-A is confirmed when LST is analysed for each IGBP land 

cover class (Figure 3.17) with respect to SEVIRI. It is clear that the largest differences 

for parameterisation-A were generated over barren or sparsely vegetated surfaces, 

during both ‗day‘ and ‗night‘ windows and across seasons. In most comparison periods 

these differences were reduced with the introduction of parameterisation-B, 

significantly so during June and September. In fact where negative differences existed 

for parameterisation-A, these were reduced for parameterisation-B over the majority of 

surface types, or indeed became slightly positive. Average ‗night‘ differences were 

reduced more than during the ‗day‘; due primarily to the surface being kept warm as a 

result of enhanced ground heat flux due to the increased thermal conductivity of many 

grid-cells following the re-parameterisation of the soil. Not all surface types experience 

a reduction in difference though, evergreen broadleaf forest being a notable example; 

but overall the evidence from figures 3.16 and 3.17, and from table 3.7, is that the new 
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soil parameterisation incorporated into parameterisation-B has improved the simulation 

of LST by JULES when compared with retrievals from EO satellites. 

 

Figure 3.17: Comparison of the difference between JULES and SEVIRI for both parameterisation-A 

(black bars) and parameterisation-B (white bars) of JULES categorised by IGBP land cover classes: 

evergreen broadleaf forest (2); closed shrublands (6); open shublands (7); woody savannas (8); savannas 

(9); grasslands (10); croplands (12); cropland / natural vegetation mosaic (14); and barren or sparsely 

vegetated land (16). 

 

3.4.  Discussion 

LST is an important component in the surface energy budget; and validation with field 

campaign measurements is an essential activity for ensuring the credibility both of 

remotely sensed datasets and the outputs of land surface models. Like all such 

undertakings though, the field exercise described here is subject to a number of 

uncertainties. 



86 

 

In the first place, timing was an unavoidable factor influencing the results. The 

field campaign, which was carried out over a site classified as semi-arid, was limited to 

a relatively narrow 15-day period of 2009 during the height of the southern African dry 

season. At this time of year the majority of the herbaceous layer is composed of dry 

grass. As such, different biases may result at alternative times of the year when live 

plants, which are actively transpiring, can be relatively cooler than other surface types - 

in contrast to the difference at the time of the field campaign - thus affecting LST 

averaging over a pixel. A similar case can be made for the tree canopy, which during 

the time of the field campaign consisted of a considerable percentage of drought 

deciduous trees. Indeed, the location and timing of the field campaign may have 

exacerbated the negative bias displayed by MODIS, since Wan et al. (2004) identified 

large uncertainties in the classification-based emissivities in such semi-arid regions. The 

spatial and temporal synchronicity between field measurements and remotely sensed 

measurements, for example in the precise timing of a satellite overpass or the 

geolocation accuracy of pixels, may also be a source of uncertainty. 

In addition to the uncertainties associated with field radiometry described in section 

3.2.5 intrinsic user error is inevitable - as in any field experiment - even though great 

care was taken to observe only a single surface type at nadir assisted by the use of a 

stabilising tripod. With regards to this point, measuring sunlit scenes at nadir generates 

an additional source of difference between the ground measurement and satellites - 

which do not view the surface at nadir. Indeed, recent studies have found that LST 

retrievals from satellites depend upon the angle of observation (Pinheiro et al. 2004; 

Pinheiro et al. 2006b). Since the upscaling of the three endmembers are biased towards 

sunlit scenes this could explain a proportion of the negative bias with respect to 

MODIS, and to a lesser degree SEVIRI which observes predominantly sunlit scenes. To 
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compensate for this a fourth radiometer would be required to measure the shadow scene 

beneath the tree canopy, whereby the different endmember proportions observed under 

different sun-view geometries could be estimated using a geometric projection model 

(Pinheiro et al., 2006b). 

Any methodology for upscaling from a ‗point‘ source to that of a satellite pixel is 

also subject to uncertainties owing to the various assumptions that are necessarily made. 

A first assumption is that the precise geolocation and surface area of a satellite pixel can 

be guaranteed. Second, is that for each pixel validated the same generic land cover 

classes can be reliably classified. Finally, there is the assumption that within and 

between each pixel the thermal behaviour of each land cover class remains invariant; in 

reality this is not the case. For example, a significant factor which affects the emissivity 

of a surface feature, and hence LST variability, is moisture content (Goward et al., 

2002). Substantial LST heterogeneity can permeate an area of similar land cover 

features due to microscale variations in such traits. For sites which are homogeneous 

these issues are less significant, but unfortunately such sites are atypical, and do not 

give a sufficiently realistic representation of the terrestrial environment of the Earth. 

Uncertainties aside, validation of LST with ground measurements can be a time 

consuming activity, and is geographically limited. A more feasible alternative, with a 

larger spatial and temporal consequence, is an intercomparison exercise between LST 

products retrieved from EO satellites. The intercomparison exercise carried out here 

generated, for the most part, findings which concur with previous studies (Madeira et 

al., 2005; Noyes et al., 2006; Trigo et al., 2008a). If we consider for the moment the 

three satellite-derived LST products; a number of factors may have contributed to the 

differences encountered here and indeed in these prior studies. Firstly, although the 

comparison of synchronous retrievals in space and time was given utmost attention, 
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slight differences are to be expected. For example, discrepancies in geolocation can 

affect the heterogeneity of the surface which is analysed. Likewise, the ±10 minute 

tolerance window adhered to here, although narrow, represents adequate opportunity for 

LST variability. Secondly, the land surface is viewed from a different perspective by 

each satellite sensor, with the proportion of sunlit or shadow scenes viewed being a 

factor of the viewing angle. In the case of MODIS, retrievals are systematically lower 

than both AATSR and SEVIRI; this negative difference increases with increasing 

viewing angle. Finally, there are inherent differences in the way TOA radiances are 

processed by each sensor. Examples include the accuracy of instrument calibration, the 

application of different emissivity maps, and unique cloud clearing algorithms. 

Considering this last point further, cloud contamination limits the available imagery 

ensuring intercomparison exercises remain challenging undertakings; this was 

particularly so with respect to AATSR retrievals because of the longer repeat cycle. A 

final point here, is that further investigation into any effect Saharan dust aerosols have 

on TOA radiances is merited, which may be pertinent to intercomparisons over northern 

hemisphere Africa. 

When LST simulated by the JULES model was compared with LST retrieved from 

EO satellites, large negative differences were found between JULES and satellite 

sources during both day and night. Several possible reasons for these differences could 

be considered. A tendency for satellite-derived LST products to overestimate ground-

based measurements has been reported (Trigo et al., 2008a), and although theoretically 

this could explain some of deviation, this phenomenon was not evident from the field 

campaign carried out here.  The way in which the model aggregates LST over a grid-

box was also not considered significant, as discussed in section 3.3.2. One potential 

inconsistency between EO sources and land surface modelling could be with the 
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varying assumptions applied in the algorithms for generating LST, although such 

differences are likely to be difficult to quantify. On the other hand, it has been shown 

that an alternative parameterisation of the soil conditions - including albedo - resulted in 

a reduction in the mean negative difference. Such an improvement is rational since 

surface albedo and soil moisture are key determinants of LST variability (Goward et al., 

2002). Surface albedo, for example, controls the quantity of energy absorbed by the 

surface. As for soil moisture, a dry soil surface is generally hotter and loses more 

sensible heat, whereas a wet soil surface in general has a lower surface temperature and 

loses more latent heat (Smith et al., 2006). 

3.5.  Conclusions 

This investigation has evaluated the accuracy to which a key boundary condition, LST, 

can be simulated by the JULES model. In the case of Africa, much weight is placed on 

model simulations and EO data to quantify surface-to-atmosphere heat and water fluxes, 

since the ground observation network remains relatively sparse, and as such accuracy is 

fundamental. Here, an evaluation of both model output and retrievals from EO satellites 

was carried out over a savannah landscape of South Africa. This was complemented 

with an intercomparison between each source of LST over the whole of the continent; 

and this two-pronged approach represents a unique undertaking in evaluating the 

JULES model with respect to LST. Specifically, two research questions have been 

addressed: i) how accurately is LST simulated by JULES and retrieved from EO 

satellites for a mixed tree/grass landscape of Africa; ii) how comparable is LST 

simulated by JULES over continental Africa with respect to satellite-derived LST 

products. 

The findings from the in situ exercise indicate that both AATSR and SEVIRI are 

retrieving LST over a mixed tree/grass landscape with uncertainties lower than their 
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respective target accuracies. MODIS on the other hand did not meet its target accuracy. 

As for JULES, the uncertainty derived here of 3.69K was the highest of the individual 

sources of LST, with an average overestimation with respect to in situ measurements of 

2.48K. Results from the intercomparison indicate JULES systematically underestimated 

LST with respect to AATSR and SEVIRI in particular. This was most marked over 

barren or sparsely vegetated landscapes, although a considerable reduction in this 

difference was achieved with a re-parameterisation of soil properties. Indeed, all 

subsequent research carried out with the JULES model was performed under this 

modified soil parameterisation (parameterisation-B) and will be referred to henceforth 

simply as JULES. 

The JULES model, like probably all land surface models, is limited by the accuracy 

to which the physical processes of the terrestrial biosphere can be realistically imitated. 

Improvements may be possible by integrating observation data into the model, with EO 

satellites representing the most practical source at a global or regional scale. 
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Chapter 4 

Development and validation of a LST data assimilation 

scheme 

An ongoing motivation of this study has been that JULES, like all land surface models, 

has uncertainties resulting from inappropriate parameterisation, the approximation of 

physical processes and land surface heterogeneity. As such, key variables can be 

inadequately represented. In this research, it was shown in chapter 2 that LST, which 

forms an integral component in the surface energy budget and in soil moisture-climate 

feedbacks, is simulated by the JULES model with considerable uncertainty. Having 

identified a deficiency in the simulation of this key boundary condition, the next 

appropriate step is to investigate whether the integration of instantaneous observations 

from EO satellites improves the ability of the model to accurately estimate important 

fluxes between the land and the atmosphere. This technique is known as data 

assimilation. 

This chapter focuses on analysing the behaviour of the JULES land surface model 

when remotely sensed LST observations retrieved from satellite are assimilated into the 

model. The aim here is to investigate whether a reduction in uncertainty in the ability of 

JULES to model the energy and water cycles by means of data assimilation is possible. 

Two questions will be considered when tacking this problem: i) can a reduction in the 

uncertainty of surface energy fluxes be achieved by constraining simulations of LST 

with observation data; and ii) how does the assimilation of satellite-derived LST affect 

the quantification of soil moisture. 
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4.1.  Introduction 

Large uncertainties persist in our understanding of biogeochemical cycle feedbacks. A 

sizeable portion of this uncertainty may be attributed to the quantification of 

land/atmosphere interactions within coupled climate models (Notaro, 2008), which 

diminishes our capability to accurately model climate feedbacks. Indeed, the limited 

collection of equations to represent complex biophysical processes and a tendency of 

over-parameterisation (Pipunic et al., 2008) infers a degree of uncertainty in land 

surface modelling. An increasingly exploited technique to constrain model predictions 

with observation data is data assimilation; with in situ observations, such as from the 

FLUXNET network, used in data fusion experiments (Williams et al., 2009). EO data 

represents a feasible alternative source of observations over large geographical areas, 

particularly where the in situ observation network is sparse such as in Africa. 

Data assimilation involves the adjustment of the model state with external 

measurements of a predictable uncertainty, in order to minimise the errors in the model 

predictions. The model state is updated at regular intervals when observations become 

available. The strength of the adjustment is derived from the respective weightings of 

both the model and observation uncertainties. In cases where the observation values are 

more accurate than the model estimates, for instance, the model state is adjusted in a 

way in which it more closely corresponds to the observations. 

Considerable research has focused on data assimilation into atmospheric models 

(Daley, 1991; Houtekamer and Mitchell, 2001; McNally et al., 2006; Uppala et al., 

2005), with the state-of-the-art being to directly assimilate radiances from EO satellites 

into models. Ocean/atmosphere models have also received attention (Annan et al., 

2005; Ridgwell et al., 2007), driven by the need to better understand the role of ocean 

biogeochemistry in the long-term regulation of atmospheric carbon. Only relatively 
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recently has focus switched to the land surface, with EO data being assimilated into 

hydrologic (Reichle et al., 2002; Crow and Wood, 2003) and ecosystem models 

(Williams et al., 2005; Quaife et al., 2008; Rastetter et al., 2010). 

As is the case with this investigation, particular attention has been given to the 

assimilation of satellite-derived LST to constrain surface heat flux and soil moisture 

estimations (Bosilovich et al., 2007; Huang et al., 2008; Margulis and Entekhabi, 2003). 

In a recent intercomparison (de Rosnay et al., 2009) much variation between land 

surface models was identified in the simulation of soil moisture. Optimisation, as a 

result of data assimilation, would appear a worthwhile mission, presenting an 

opportunity to improve our predictive ability of land/atmosphere fluxes of energy and 

water; the prospect being a reduction in climate feedback uncertainty. 

Numerous assimilation mechanisms exist, including the three-dimensional and 

four-dimensional variational schemes, and the Kalman Filter. The latter provides an 

optimum linear sequential solution based on a priori knowledge of model and 

observation uncertainties (Gelb, 1974). This method evolved into variants to cope with 

non-linear assimilation - the Extended Kalman Filter (EKF) – and further, to avoid the 

computationally expensive integration of the state error covariance matrix – the 

Ensemble Kalman Filter (EnKF). The EnKF first proposed by Evensen (1994) employs 

a Monte Carlo approach and is more flexible and robust in covariance modelling than 

the EKF (Reichle et al., 2002). In previous implementations, Huang et al. (2008), for 

example, assimilated LST from EO satellites resulting in a 1.0K improvement in soil 

temperature estimates. Pipunic et al. (2008) also assimilated satellite-derived LST, as 

well as latent and sensible heat observations, to manipulate surface heat flux 

predictions. A key finding was that the assimilation of higher temporal source data 

resulted in more accurate predictions. Finally, the assimilation of canopy reflectance by 
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Quaife et al. (2008) into a simple carbon pool and box model produced substantial 

improvements in the estimation of GPP. 

While much success has been achieved in assimilating observations into relatively 

simple biosphere models, few attempts, like that of Vivoy et al. (2001) who investigated 

normalised difference vegetation index (NDVI) assimilation into the ORCHIDEE 

model have looked at data assimilation into complex biophysical and biogeochemical 

models. In the case of JULES, this first study here into assimilating LST by means of 

the EnKF represents a pertinent objective, and a logical step in the ongoing evolution 

the land surface scheme which has seen improvements to the standard implementation 

in recent years (Alton et al., 2007b; Mercado et al., 2007). 

Here, the assimilation into the JULES model of LST retrieved from the SEVIRI 

instrument is presented, including a description of the assimilation methodology. The 

effect on soil moisture and surface heat fluxes were analysed, whereby the model 

simulations were compared with a satellite-derived soil moisture dataset and in situ 

measurements respectively. Finally, the implications of data assimilation on terrestrial 

feedbacks to the climate system and the implications for biogeochemical cycling are 

considered. 

4.2.  Materials and methods  

4.2.1. Model dynamics 

The surface temperature Tsfc is key to the derivation of both sensible and latent heat 

fluxes. Temperature and humidity gradients between the surface and atmospheric 

reference height z1 above the surface are used to derive the sensible heat flux (H) and 

latent heat flux (LE) respectively: 
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H = 
ρcp ( Tsfc  –  T1  - 

g 
z1 ) (15) 

ra cp 

 

LE = Ψ 
Lρ 

( qsat(Tsfc)  –  q1 ) (16) 
ra 

 

Where ρ is the surface air density, cp is the specific heat capacity of the air, L is the 

latent heat of vaporisation of water, ra is the aerodynamic resistance, g is the 

acceleration due to gravity, qsat(Tsfc) is the saturated specific humidity at surface 

temperature Tsfc, and T1 and q1 are the air temperature and specific humidity 

respectively at reference height z1. Finally, Ψ is a factor determined from the 

proportions of bare soil evaporation, canopy evaporation, sublimation from snow, and 

transpiration by vegetation; LE is thus driven by evapotranspiration (ET). 

Soil moisture, a characteristic which demonstrates a long memory, is also 

controlled by evapotranspiration, in which changes in the surface soil moisture M1 is 

incremented not only by transpiration extracted directly from the surface layer by plant 

roots, but also by the diffusive water flux flowing between layers - which consists of 

throughfall precipitation Pf, snowmelt Sm, surface runoff Ys, and the diffusive water flux 

flowing out to the layer below W1 - and is expressed in equation (17). Total unfrozen 

soil moisture content M within each layer, is given by equation (18). 

 

dM1 
= Pf + Sm – Ys – W1 – ρ (1 - fa){qsat(Tsfc)  –  q1} { 

 (1 – v) β(Θ1) 
 +  

e1 v 
} (17) 

dt ra + rss ra + rc 

 

M = ρwΔzΘu (18) 

 

Where fa is the grid-box wet canopy fraction, v is the grid-box fractional cover of 

vegetation, β(Θ1) is the soil moisture availability factor with volumetric soil moisture 

concentration Θ1 in the surface soil layer, e1 is the fraction of the transpiration extracted 
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from the surface soil layer, rss and rc are a fixed soil surface resistance and the canopy 

resistance respectively, ρw is the density of water, Δz is the depth of the soil layer, and 

Θu is the volumetric concentration of unfrozen soil moisture. W1 is expressed as: 

 

W1 = K { 
∂ψ 

+ 1 } (19) 
∂z 

 

Where K is the hydraulic conductivity and ψ is the soil water suction, assuming the 

Clapp and Hornberger (1978) dependencies. A more comprehensive picture of the soil 

hydrological and thermodynamic components of the model can be found in Cox et al. 

(1999). 

4.2.2. Data assimilation method 

Data assimilation was carried out using the EnKF, with the exact implementation 

(Ghent et al., 2009; Ghent et al., 2010; Ghent et al., in press) following the approach of 

Evensen (2003). The EnKF propagates an ensemble of states, whereby the expensive 

integration of the standard Kalman Filter is avoided, with the distribution of the 

ensemble spread determining the state error covariance matrix. For this implementation 

only LST is directly manipulated, with Xt+1 being the state vector representing LST for 

every grid-box at time t+1 and is defined as: 

 

Xt+1 = F (Xt, αt+1, β) (20) 

 

Where F is the model operator which operates on the state vector Xt at time t, the 

meteorological forcing data αt+1 at t+1, and the time-invariant biophysical parameters β. 

Here, the model operator is JULES, and the meteorological forcing variables have been 

listed in table 2.1. 
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For the initial state (t=0) following spin-up of the model, each ensemble member of 

the state vector X
a
0 is derived by adding random noise which conforms to a Gaussian 

distribution with zero mean and error covariance P0, based on knowledge of the model 

error. For the general case, at time t+1 each ensemble member of the forecast state 

vector X
f
t+1 is propagated with the addition of stochastic forcing γ to equation (20) and is 

expressed as: 

 

X
f
t+1 = F (X

a
t, αt+1, β) + γ γ ~ Ν (0, P) (21) 

 

Where X
a
t is the analysis state vector at time t, and γ conforms to a Gaussian distribution 

with zero mean and model error covariance P. 

Data assimilation performance is strongly affected by the model error, which in this 

experiment was based on the standard deviation of the bias between the simulations by 

the model and in situ measurements taken during the field campaign described in 

section 3.2. The model error was thus defined as 3.69K (Table 3.6). Each ensemble 

member of the forecast state for a grid-box is updated when observations for that grid-

box become available, by applying the update equation: 

 

X
a
 = X

f
 + K (y – HX

f
 + ε) ε ~ Ν (0, R) (22) 

 

Where K is the Kalman gain matrix, H is the observation operator relating the model 

state to the observations y; with the observations being perturbed with stochastic forcing 

ε conforming to a Gaussian distribution with zero mean and observation error 

covariance R. Here, the observation error was based on the SEVIRI LST product 

uncertainty, which was defined as 1.5K according to the study by Sobrino and 

Romaguera (2004). This definition is comparable to the observation error of 1.65K 
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measured during the field campaign described in section 3.2. The Kalman gain matrix is 

a function of the forecast model error covariance matrix P
f
, and the observation error 

covariance matrix R, and determines the correction to the forecast state vector: 

 

K = P
f 
H

T 
[ H P

f 
H

T
 + R ]

-1
 (23) 

 

The cost of solving equation (23) is a function of the number of ensemble 

members; to avoid excessive computational cost the optimum ensemble size should be 

determined. The mean of the ensemble members is a measure of the optimum estimate 

of the model state (Burgers et al., 1998; Evensen, 2003), and the variance around the 

mean can be taken as an indication of the uncertainty. Manipulations to LST (Tsfc) 

through the process of data assimilation are propagated throughout the model, affecting 

predictions of heat and water fluxes (equations (15) to (17)). 

4.2.3. Experimental setup 

For this investigation, the experimental setup of JULES mirrored for the most part that 

which has been described in section 2.2.3, with the soil properties parameterised as per 

parameterisation-B described in section 3.3.2. The model was first spun-up by repeating 

the years 2002 to 2006 inclusive until soil temperature and moisture conditions were 

equilibrated, with the resultant spun-up state saved as a file. Two separate renderings of 

the model were run for the whole of 2007: one with a 1° × 1° spatial resolution covering 

continental Africa; and ‗point‘ scale runs at specified validation locations. In both cases 

the model was run with an hourly time-step. 

This experiment involved SEVIRI observations being assimilated into both 

renderings of the JULES model. This choice of SEVIRI LST was based on the 

associated fine temporal resolution of both satellite-derived product and the model. In 
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the continent-wide case, cloud-free LST pixels from SEVIRI were averaged over each 

grid-box; whereas for the ‗point‘ cases, LST was retrieved from each pixel 

corresponding to each validation location. 

An underlying assumption of data assimilation is that the differences between the 

modelled values and observations are not biased. However, systematic biases often exist 

due to uncertainties among EO products as a result of variable observation angles, cloud 

contamination, and the bias towards cloud-free rather than all-sky conditions; but also 

due to the fact that land surface heterogeneity in models is at best parameterised. Such 

biases prevent a statistically optimal analysis (Dee and da Silva, 1998), and chapter 3 

demonstrated that systematic bias exists between the JULES model and satellite-derived 

LST, even following the re-parameterisation of the soil properties. To resolve this, the 

bias correction methodology of Reichle and Koster (2004) was applied. This involves 

model and observation cumulative distribution functions (cdfs) being equated (Figure 

4.1), and is an appropriate method, since the bias is not attributed to a one particular 

source (Drusch et al., 2005). 
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Figure 4.1: The average cumulative distribution functions (cdfs) of LST from JULES and SEVIRI, 

whereby, unscaled SEVIRI observation x are converted into scaled observations x′ using cdf matching. 

Figure reproduced from Ghent et al. (2010). 

 

In this investigation, SEVIRI LST observations (denoted by x) are converted 

into scaled LST observations (denoted by x′) by solving equation (24): 

 

cdfj(x′) = cdfs(x) (24) 

 

Where cdfj and cdfs are the JULES and SEVIRI cumulative distribution functions 

respectively. This cdf matching was performed with values covering the whole year for 

every grid-box. 
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4.2.4. Validation protocol 

To evaluate the impact of the assimilation of LST into the JULES model, soil moisture 

was compared, both with and without assimilation, against a satellite-derived dataset for 

an area of West Africa (15°W to 10°E longitude, 5°N to 20°N latitude) from 1
st
 January 

to 31
st
 May 2007. In addition, energy fluxes were compared with measurements 

retrieved from four flux towers managed by the CARBOAFRICA consortium as part of 

the FLUXNET network using the Eddy Covariance method (Baldocchi et al., 2001). 

Comparisons were made, both for open loop modelling – that is without data 

assimilation; and following the assimilation of LST, from 1
st
 October to 31

st
 December 

2007 against H and LE fluxes from: savannah/grassland at Demokeya (13.28º N, 30.48º 

E), Sudan; Miombo woodland at Mongu (15.44º S, 23.25º E), Zambia; semi-arid 

savannah at Skukuza (25.02º S, 31.50º E), South Africa; and tropical savannah at 

Tchizalamou (4.29º S, 11.66º E), the Congo (Figure 4.2). 

 

Figure 4.2: Location of the four flux towers for validation of surface energy fluxes, and the area of West 

Africa over which soil moisture is evaluated with and without data assimilation. 
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The soil moisture dataset used here is derived from radar backscattering 

coefficients, which are sensitive to surface soil water without being affected by cloud; 

and are produced from the active C-band (5.6 GHz) microwave scatterometer 

instruments on board the European Remote Sensing Satellites (ERS-1 and ERS-2). A 

surface soil moisture (SSM) dataset has been developed by the Institute of 

Photogrammetry and Remote Sensing at the Vienna University of Technology, with 

SSM ‗observations‘ in the top 5cm of the soil profile, retrieved from two separate ERS 

receiving stations: Maspalomas and Matera, applicable to this study. 

To summarise, the change detection method, which generates the SSM dataset in a 

discrete 12.5km global grid, involves scatterometer estimates being used to model the 

incidence angle dependency of the radar backscattering coefficients. These are 

normalised to a reference incidence angle of 40°, and scaled over the long-term between 

the driest and wettest observations to produce relative SSM data, which ranges from 0% 

to 100%. A full account of the method for SSM retrieval can be found in Wagner et al. 

(1999), with the soil moisture noise model (Naeimi et al., 2009) describing the 

uncertainty. 

Good agreement has been shown for the SSM dataset, both against other datasets 

of soil moisture (Wagner et al., 2003; Pellarin et al., 2006; Crow and Zhan, 2007), and 

in situ measurements (Wagner et al., 1999; Ceballos et al., 2005). For example, in 

studies over Ukrainian field sites (Wagner et al., 1999), and across a network of 20 

stations in western Spain (Ceballos et al., 2005), mean correlations in the top 100cm of 

the soil profile were found to be 0.41 and 0.75 respectively. In this latter study the 

RMSE between the scatterometer data and the average soil moisture was found to be 

2.2%. 
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4.3.  Results  

Prior to analysing the effect of data assimilation on model output, an optimum ensemble 

size was selected. Different sizes were tested, and the RMSEs were evaluated against 

MODIS LST, which acted as an independent source of LST. A considerable reduction 

in RMSE is encountered, compared with the open loop scenario, when even a small 

number of ensemble members are chosen (Figure 4.3). 

 

Figure 4.3: Comparison test of LST RMSEs with respect to MODIS LST observations following the 

assimilation of SEVIRI LST into JULES for different ensemble sizes during 2007. Figure reproduced from 

Ghent et al. (2010). 

 

As the ensemble size is increased the reduction in RMSE continues albeit at a 

decreasing rate. To test the significance of these reductions t-tests assuming equal 

variances were performed on the mean RMSEs from 50 repeated runs at ensemble sizes 

of 5, 20, 50, 100, 150 and 200. The reduction in RMSE remained statistically significant 
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at the 5% level when the ensemble size was increased up to 100 ensemble members, but 

ceased to be significant when the size was increased to 150. All subsequent experiments 

were thus carried out with an ensemble size of 100. 

With regards to applying the method over the West African study zone, mean soil 

moisture in the top 5cm of the soil profile simulated by JULES is clearly higher than 

‗observations‘ derived from the ERS scatterometers for the first five months of 2007 

(Figure 4.4). It is also evident that the updated model estimates following the 

assimilation of LST are more comparable with the ‗observations‘. 

 

Figure 4.4: Time series of mean soil moisture in the top 5cm of the soil profile over a region of West 

Africa (15°W to 10°E longitude, 5°N to 20°N latitude) from 1
st
 January – 31

st
 May 2007 for both open 

loop modelling and model simulations following LST assimilation. Surface soil moisture observations 

derived from ERS scatterometers are plotted for comparison. Figure reproduced from Ghent et al. 

(2010). 
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The change in simulated soil moisture is not homogeneous across the region, and 

figure 4.5 illustrates the spatial distribution of the differences between model estimates 

with and without data assimilation. The effect of assimilation can be quantified as a 

21.6% reduction in RMSE between the model estimates and the ERS scatterometer 

‗observations‘. The significance of this reduction was examined with t-tests assuming 

equal variances on the mean RMSEs from 50 repeated runs with and without 

assimilation. The t-statistic of 10.4 indicated that the RMSE reduction was statistically 

significant at the 99% confidence level. 

 

Figure 4.5: Mean daily soil moisture difference between open loop modelling and model simulations with 

LST assimilation in the top 5cm of the soil profile over a region of West Africa (15°W to 10°E longitude, 

5°N to 20°N latitude) from 1
st
 January – 31

st
 May 2007. Figure reproduced from Ghent et al. (2010). 

 

The updating of modelled LST following assimilation drives changes in the 

partitioning of available energy into H and LE fluxes; with H being a function of the 

difference between temperatures at the surface and the surrounding air (Rhoads et al., 

2001), and LE being a function of the influence surface temperature exerts on the 

vapour pressure deficit (Hashimoto et al., 2008). Partitioning is also influenced by 
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available soil moisture and vegetative cover, with LE exchange higher for greater 

vegetative cover (Smith et al., 2006). These fluxes are tightly coupled within the surface 

energy balance equation, whereby an increase in one is associated with a decrease in the 

other. Figures 4.6 and 4.7 illustrate the change in H, LE and ET fluxes respectively for 

both open loop modelling and following data assimilation over the same geographical 

area of West Africa during the first five months of 2007. 

 

Figure 4.6: Time series of mean sensible heat flux over a region of West Africa (15°W to 10°E longitude, 

5°N to 20°N latitude) from 1
st
 January – 31

st
 May 2007 for both open loop modelling and model 

simulations following LST assimilation. 
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Figure 4.7: Time series of mean daily latent heat flux (left axis) and mean daily evapotranspiration (right 

axis) over a region of West Africa (15°W to 10°E longitude, 5°N to 20°N latitude) from 1
st
 January – 31

st
 

May 2007 for both open loop modelling and model simulations following LST assimilation. Figure 

reproduced from Ghent et al. (2010). 

 

The impact of data assimilation has been to increase the H flux while 

simultaneously decreasing the LE flux. This is consistent with the reduction in soil 

moisture; a drier soil heats up more rapidly, since air which has a lower heat capacity 

than water occupies a greater percentage of the soil, and the drier soil loses a greater 

proportion of energy as sensible heat. In the case of LE, these changes are driven by 

changes in ET. 

Figures 4.8 and 4.9 quantify the effect of LST assimilation on the fluxes of H and 

LE respectively in comparison with Eddy Covariance measurements from the four flux 

towers at Demokeya, Mongu, Skukuza and Tchizalamou for the final three months of 
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2007, which was the only period during this year where sufficient data was available for 

all sites. It is evident that differences exist between the in situ measurements and the 

model estimations – for both open loop modelling and when LST was assimilated. 

Although the general seasonality within each time series is comparable, JULES displays 

a tendency to under-estimate sensible heat and over-estimate latent heat. However 

despite these differences, at each site and for each variable, reductions in RMSE were 

found when LST was assimilated compared with open loop modelling (Table 4.1). 

Although only the H flux at Demokeya appeared to experience a strong reduction in 

RMSE, all the reductions were found to be significant at the 95% confidence level when 

t-tests assuming equal variances were carried out on 50 repeated model runs with and 

without data assimilation. In fact, three quarters of RMSE reductions recorded in table 

4.1 were significant at the 99% confidence level. 
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Figure 4.8: Time series of mean sensible heat flux at four flux towers from 1
st
 October – 31

st
 December 

2007: Demokeya, Sudan (a); Mongu, Zambia (b); Skukuza, South Africa (c); and Tchizalamou, Congo 

(d). The time series indicate the Eddy Covariance observations together with both open loop modelling 

and model simulations following LST assimilation into JULES. 

  

(a) (b) 

(c) (d) 
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Figure 4.9: Time series of mean latent heat flux at four flux towers from 1
st
 October – 31

st
 December 

2007: Demokeya, Sudan (a); Mongu, Zambia (b); Skukuza, South Africa (c); and Tchizalamou, Congo 

(d). The time series indicate the Eddy Covariance observations together with both open loop modelling 

and model simulations following LST assimilation into JULES. 

 

  

(a) (b) 

(c) (d) 
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Table 4.1: Evaluation of model simulations of sensible (H) and latent heat (LE) fluxes with and without 

LST data assimilation from 1
st
 October to 31

st
 December 2007, with respect to 1-hourly Eddy Covariance 

measurements from four flux towers: Demokeya, Sudan; Mongu, Zambia; Skukuza, South Africa; and 

Tchizalamou, Congo. t-tests assuming equal variances were performed on the mean RMSEs from 50 

repeated runs, with the percentage reduction in RMSE given along with the t-statistic and an indication 

of significance of the one-tailed t-test (** refers to significance at the 0.99 level; * refers to significance 

at the 0.95 level). Table reproduced from Ghent et al. (2010). 

Source Variable 
Modelled 

RMSE (W m
-2

) 

Assimilated 

RMSE (W m
-2

) 

Error 

reduction (%) 
t-statistic 

Demokeya 
H 54.15 40.78 24.69 35.393** 

LE 41.07 40.31 1.85 1.993* 

Mongu 
H 41.42 40.56 2.08 2.251* 

LE 49.21 47.29 3.90 4.441** 

Skukuza 
H 30.76 28.66 6.83 5.066** 

LE 47.52 43.17 9.15 10.935** 

Tchizalamou 
H 27.18 24.26 10.74 7.620** 

LE 41.30 39.48 4.41 4.938** 

 

4.4.  Discussion 

Land surface models are able to simulate the global state of the terrestrial biosphere 

over the full diurnal cycle, yet they are limited by the accuracy in which they can 

represent the full complexity of physical processes which constitute the land surface. 

Remote sensing on the other hand is able to provide an instantaneous observation of the 

area of interest, but can be hampered by sporadic instrumentation problems, missing 

data as a result of cloud contamination for example, and is constrained by the inability 

of a single sensor to provide full diurnal coverage at a global scale. Data assimilation 

combines these alternative sources of information, balancing the uncertainty in both, in 

order to produce an optimal representation of the evolving state of the land surface. 
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The mechanism employed in this investigation was the EnKF. Over land, use of the 

EnKF is often based on covariance localisation methods, whereby the global analysis is 

sub-divided into smaller sub-domains. As described in previous implementations 

(Hamill et al., 2001; Houtekamer and Mitchell, 2001), these sub-domains are 

independently analysed based solely on local observations, and simultaneously updated 

in parallel. This technique effectively sets sampled cross-covariances between 

geographically disparate points to zero; a requirement due to the possibility of spurious 

cross-correlations, with the EnKF being subject to sampling errors which are a function 

of the ensemble size (Evensen, 2003). Indeed, for small ensemble sizes the accuracy of 

estimations has been shown to be better with covariance localisation (Reichle and 

Koster, 2003). In the case of JULES grid-cells are independent of each other, since there 

are no lateral fluxes between individual cells, and as such the sub-domains analysed 

here were the individual cells. 

The assimilation of SEVIRI LST into the JULES model from 1
st
 January to 31

st
 

May 2007 for each grid-cell of the West African study zone resulted in a mean 

reduction in soil moisture in the top 5cm of the soil profile. The upshot being, that 

simulations were more comparable with the SSM dataset derived from ERS 

scatterometers; although a note of caution when using this dataset, is that during 

retrieval azimuthal viewing geometry is not taken into account, increasing the 

possibility of biased estimates in extreme climates, such as deserts (Bartalis et al., 

2006). That said, the assimilation of LST also affected the partitioning of energy 

between H and LE fluxes, with the comparison against Eddy Covariance measurements 

from four flux towers resulting in statistically significant reductions in RMSEs (with 

data assimilation) for all site-variable combinations. 
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In general, it can be argued that these findings indicate it to be beneficial to update 

the modelled state with satellite-derived observations using a data assimilation 

mechanism, such as the EnKF. This view would be consistent with the findings from 

past assimilation studies (Huang et al., 2008; Pipunic et al., 2008). However, although 

promising, this investigation, like many of those undertaken previously, is based upon 

various assumptions. For instance, the assumptions made during the processing of EO 

products may not be consistent with those made in land surface models. Data 

assimilation is reliant on accurate prediction of observation uncertainty; biased 

observations will cause departure from the correct model state (Quaife et al., 2008). In 

this investigation perturbations appended to the observations were constrained by a 

fixed uncertainty, whereas observation errors are most likely to be spatially and 

temporally variable. Indeed, during the daytime over desert and semi-arid regions 

SEVIRI retrievals are reported (Trigo et al., 2008b) to regularly fail the 2.0K LandSAF 

accuracy target. The uncertainty to which LST can be stated is relevant to the errors in 

surface-to-atmosphere fluxes. For example, a 1.0K LST error can lead to a 10% error in 

ET (Moran and Jackson, 1991), whereas a 10% error in H can result from a 0.5K LST 

error (Brutsaert et al., 1993). Finally, a 1.0 to 3.0K error in LST can lead to errors as 

much as 100Wm
-2

 in heat fluxes (Kustas and Norman, 1996). 

For retrievals from instruments onboard polar orbiting satellites however, such as 

AATSR or MODIS, the longer duration between available observations, compared with 

the frequent retrievals from SEVIRI, suggests an alternative observation operator should 

be implemented to directly manipulate a variable with a longer temporal memory than 

LST; soil temperature for example. Certainly this is a possibility which may warrant 

future examination. The purpose of this investigation though, has been to understand 

whether a change in the heat and water fluxes between the surface and atmosphere 
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could be brought about by manipulating the surface temperature modelled by JULES. 

Having shown this, it is conscientious to consider what the implications are of applying 

the current assimilation strategy in the model. 

The West African study zone overlays a hotspot region of strong land/atmosphere 

coupling as identified by Koster et al. (2004). In the experiment presented here data 

assimilation of LST has resulted in a mean reduction in surface soil moisture over this 

region during the modelling period. If soil moisture falls below a critical value then a 

partial closing of stomata results - as a preventative measure against excessive water 

loss. Stomatal conductance, which is affected not only by the availability of moisture in 

the soil, but also the quantity of PAR (Essery et al., 2003), controls the rate of ET. Soil 

moisture anomalies can translate into precipitation anomalies through the ET rate which 

drives atmospheric water vapour pressure, thereby influencing regional climate change 

(Shukla and Mintz, 1982; Taylor et al., 2010). Coupled to the Hadley Centre Unified 

Model, the change in soil moisture modelled by the land-surface scheme could feedback 

on the precipitation regime influencing the predictions of pluvial and drought 

conditions, which in turn could affect the distribution of vegetation, surface albedo, and 

subsequent surface evaporation. 

A reduction in soil moisture, and corresponding reduction in ET, has the potential 

to impact the carbon balance of the region, since Rosenzweig (1968) postulated a 

positive relationship between ET and NPP. In section 2.3.2 it was shown that the 

interannual variability of NPP as modelled by JULES was greater than that of 

heterotrophic respiration over Africa. The implication of any decrease in NPP would be 

a corresponding decrease in NEP, thus weakening the uptake of carbon by the terrestrial 

biosphere in this region. Future climate change, driven by increased concentrations of 

greenhouse gases, is likely to enhance hydrological responses in these hotspots of strong 
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land/atmosphere coupling, although large uncertainties remain (Notaro, 2008). It is thus 

essential that such feedbacks are represented in climate models as accurately as possible 

if future climate change is to be predicted with confidence. 

4.5.  Conclusions 

The aim of this study has been to investigate whether the development of a data 

assimilation scheme for the JULES model using the EnKF is both feasible, and could 

lead to tangible improvements in the estimation of surface fluxes. Having established a 

deficiency in the simulation of LST - an integral component in the calculation of 

surface-to-atmosphere heat fluxes and particularly sensitive to surface moisture 

conditions - observations from SEVIRI were integrated into the model over the African 

continent during 2007. The intention was to address two specific questions: i) can a 

reduction in the uncertainty of surface energy fluxes be achieved by constraining 

simulations of LST with observation data; and ii) how does the assimilation of satellite-

derived LST affect the quantification of soil moisture. 

Findings indicate that by directly manipulating LST, surface energy and water 

fluxes could be constrained. Specifically, reductions in RMSEs were achieved when 

sensible and latent heat flux simulations with data assimilation were compared with 

Eddy Covariance measurements from four flux towers located across Africa, as opposed 

to open loop modelling. Over a region of West Africa, simulations of soil moisture were 

also more comparable against an independent dataset with data assimilation than 

without, suggesting soil moisture was overestimated by open loop modelling; a result 

which could have profound implications for using the JULES model to predict climate 

over this hotspot of strong land/atmosphere coupling. 

To my knowledge, this represents a first attempt at constraining the predictions of 

surface fluxes of heat and water from JULES by integrating remotely sensed values 
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with the EnKF. This is an encouraging development which warrants further research to 

investigate the assimilation of vegetation indices, or even reflectances from EO 

satellites. Indeed, the potential of expanding these developments to the JULES 

framework into an operational system should be explored. In the context of this research 

project though, the data assimilation skill acquired could be applied to constrain the 

model when addressing some scientific problem. 
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Chapter 5 

Fuel moisture content simulation over African 

savannahs 

Evidence has been presented in previous chapters to indicate that the JULES model is 

an adequate tool for modelling the physical processes of the terrestrial biosphere, and 

that model simulations can be improved by incorporating instantaneous measurements 

from satellite. One element that the current operational model framework lacks is the 

capability to model the fire regime, a key land/atmosphere feedback and an important 

control on vegetation structure and distribution. Africa is responsible for a large 

proportion of global biomass burning, but quantification is subject to considerable 

uncertainty. A significant development in this respect would be to improve the 

prediction of one of the most important drivers of fire occurrence and propagation: fuel 

moisture content (FMC). 

This chapter investigates whether the model skill developed in previous chapters 

can be applied to derive a first modelled dataset of FMC over the mixed tree/grass 

environments of the African continent. The approach taken here was to construct a 

surface dryness index to represent the moisture content of the fuel, based on the ratio of 

NDVI to LST. In this context, two specific questions will be addressed: i) can fuel 

moisture content be satisfactorily estimated across the savannah landscapes of Africa 

using a land surface modelling approach; and ii) can this approach be enhanced by 

utilising data assimilation of satellite-derived LST. 

5.1.  Introduction 

Fire is one of the most important disturbances in terrestrial ecosystems, because it is 

integral to global biogeochemical cycling and vegetation succession (Nepstad et al., 
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1999; Cochrane, 2003). In mixed tree/grass environments, such as the African 

savannahs, fire suppresses woody cover, and promotes landscape heterogeneity. As 

savannahs cross a precipitation gradient the fire regime, which experiences return 

intervals of typically one to five years, becomes the main regulator of the structure and 

composition of vegetation, maintaining woody cover below the climate potential 

(Sankaran et al., 2008). These are among some of the most frequently burnt ecosystems, 

and are major contributors to the atmosphere of trace greenhouse gas emissions and 

radiatively active aerosols, which affects atmospheric chemistry and thus climate 

(Scholes et al., 1996; Andreae and Merlet, 2001). 

Despite the importance of fire activity in the African savannahs to the global 

climate system, the conclusion from previous modelling studies (Thonicke et al., 2001; 

Lehsten et al., 2009) was that significant uncertainty was associated with fire modelling. 

One of the most sophisticated fire models is the SPread and InTensity of FIRE 

(SPITFIRE) model (Thonicke et al., 2010), which while generating encouraging 

simulations remains driven by the same simplified estimations of key fuel variables 

affecting fire ignition and propagation as identified for previous models (van der Werf 

et al., 2006; Lehsten et al., 2009). Improving fire model predictions is a prerequisite for 

reducing the uncertainty in the carbon cycle of savannah ecosystems, and indeed 

globally. What is more, the fire regime is dynamic and could experience changes in 

frequency and intensity driven by changes in climate, economy and demography 

(Hoffmann et al., 2002). It is therefore imperative that an improved ability to accurately 

understand and predict this important disturbance is a priority, to reduce uncertainties in 

climate modelling. 

FMC is considered one of the three most important drivers – together with fuel 

load and ignition source - influencing fire occurrence and propagation (Chuvieco et al., 
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2004a; Arora and Boer, 2005; Hao and Qu, 2007). However, due to the complexity of 

plant-water interactions it is difficult to quantify. Methodologies to derive FMC include 

field sampling and the calculation of meteorological danger indices (MDIs). While both 

these traditional methods have been exhaustively employed, they have disadvantages. 

The former method for example, is both labour intensive and costly, and can only 

provide measurements at a local scale (Hao and Qu, 2007). Since samples need to be 

oven-dried, real-time estimation is also not possible (Aguado et al., 2007). In the case of 

MDIs, three main problems are evident. Firstly, MDIs cannot accurately model the 

variability in soil moisture, or the drought resistance of live vegetation (Chuvieco et al., 

2004a). Secondly, they are formulated from measurements which may be acquired from 

weather stations not appropriate to the study site, resulting in interpolation errors 

(Aguado et al., 2007). Finally, since they are calibrated for use in specific 

biogeographical areas, when applied elsewhere inconsistent predictions may result 

(Aguado et al., 2007). 

In recent years an alternative approach for deriving FMC over large geographical 

regions has gained momentum, namely the use of remote sensing. Vegetation indices in 

particular have been used to determine the moisture content of live fuel (Chuvieco et 

al., 2002; Verbesselt et al., 2007). In fact, for herbaceous species good correlations have 

been found, although this could not be repeated for shrubs and trees (Chuvieco et al., 

2004b; Verbesselt et al., 2007). The use of satellite-derived vegetation indices to derive 

FMC does however have one significant drawback: they are most sensitive to changes 

in chlorophyll content, a characteristic which shows no discernible change in dry matter 

(Verbesselt et al., 2007). Indeed, Chuvieco et al. (2003) and Hao and Qu (2007) argue 

that FMC cannot be reliably retrieved from reflectance measurements alone, since dead 

material cannot be accurately estimated in this way. 
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The application of land surface modelling would enable the moisture content of 

both live and dead vegetation to be estimated, providing potentially global predictions at 

a high temporal resolution. In addition, a modelling approach has the advantage of not 

being subject to missing data limitations associated with EO retrievals, such as cloud 

cover or instrumentation problems. The approach taken here was to derive an 

aggregated FMC; whereby the absorption and evaporation which control the moisture 

content of dead elements (Verbesselt et al., 2007) can be modelled as a function of 

meteorological and soil conditions, and the moisture content of live elements can be 

represented by a surface dryness index based on the ratio between NDVI and LST. The 

rationale for the latter component is that as plants dry out the NDVI signal decreases 

since the chlorophyll content is reduced (Verbesselt et al., 2006), whereas LST 

increases as a result of a reduction in the cooling effect of evapotranspiration (Chuvieco 

et al., 2004b). Numerous studies (Sandholt et al., 2002; Chuvieco et al., 2004b; Snyder 

et al., 2006) have shown that this ratio between NDVI and LST results in statistically 

stronger correlations to FMC than either of these variables separately. 

This investigation utilises model skill developed in previous chapters to derive 

FMC over the savannah landscapes of Africa using a land surface modelling approach. 

In the JULES model, FMC was simulated as a linear function of abiotic conditions in 

combination with the ratio between remotely sensed NDVI data forced into the model 

and model simulated/assimilated LST. The precise form of this relationship was 

calibrated using in situ measurements acquired during the field campaign to KNP 

described in section 3.2. Using this relationship a map of daily FMC over the mixed 

tree/grass landscapes of Africa was produced, and these model predictions were 

validated against measurements from a data archive covering three alternative locations 

within the KNP. 
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5.2.  Materials and methods  

5.2.1. Study area 

The establishment of prescribed burning on EBPs within the KNP means the interaction 

between fire and vegetation has been continuously studied since 1954, justifying the 

choice of study area for model calibration and validation. The KNP experiences 

extended wet and dry periods, whereby annual precipitation for six to twelve 

consecutive years is either higher or lower than the long-term mean, significantly 

influencing fuel loads (van Wilgen et al., 2004). During the 1990s the burning regime of 

the park changed to allow naturally ignited fires to burn unhindered, with human ignited 

fires carefully managed; prior to this, a policy of rotational burning approximately once 

every three years in late winter or early spring had been implemented (van Wilgen et 

al., 2004). 

The EBPs are grouped together into strings, of which four are located in each of the 

four principal landscapes of the park: Mopani; Pretoriuskop; Satara; and Skukuza 

(Figure 5.1). Each landscape is characterised by different physiology, phenology and 

structure; with soils of different texture, hydrological properties, and nutrient cycling. In 

the southern most section, Pretoriuskop can be classified as Lowveld Sour Bushveld 

overlying granite geology dominated by tall Terminalia sericea trees, and experiencing 

mean annual precipitation of approximately 700-750mm. Further north, the Satara site 

can be classified as Sclerocarya birrea / Acacia nigrescens savannah overlying basalt 

geology, with mean annual precipitation of approximately 500-550mm. Finally, the 

northern most site – Mopani – is dominated by Colophospermum mopane trees also 

overlying basalt geology, with mean annual precipitation of 450-500mm (Biggs et al., 

2003; Govender et al., 2006). The Skukuza site has been described previously in table 
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3.2. Annual, biennial, or triennial burn treatments are replicated for each string within 

each group. 

 

Figure 5.1: Location of the four groups of EBPs within the KNP, each containing four strings where 

treatments are replicated. 

 

In order to calibrate the JULES model, measurements of FMC were acquired from 

the Skukuza string during the field campaign which took place from 23
rd

 July 2009 to 

7
th

 August 2009 and has been described in detail in section 3.2. This string consists of 

EBPs ranging in size from 3.62 ha to 7.63 ha with a mean of 6.01 ha (Table 5.1). An 

indication of the treatments applied to this string is also provided in table 5.1. To 

validate the model, simulations of FMC were compared against measurements from 

EBPs which constitute the strings at Mopani, Pretoriuskop, and Satara; these were 

acquired by the South African National Parks Authority (SANParks) and are stored in 

archive datasets, made available courtesy of Scientific Services, Skukuza. 
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Table 5.1: Burn schedule for the Skukuza string. The ‘burn code’ refers to the month of treatment 

together with the interannual frequency; where B1 is an annual burn, B2 is a biennial burn, and B3 is a 

triennial burn. The date of the previous burn prior to the beginning of the field campaign is given. 

Plot number Area (ha) Burn code Date of previous burn 

1 6.52 October B2 13/10/2006 

2 7.14 December B2 Accidental fire 2005 

3 7.63 February B2 27/02/2007 

4 6.75 August B2 20/08/2008 

5 6.69 April B2 12/05/2009 

6 6.50 August B1 20/08/2008 

7 6.86 Control No burn 

8 6.43 December B3 03/12/2003 

9 4.69 October B3 13/10/2006 

10 4.62 February B3 04/03/2008 

11 4.66 April B3 12/05/2009 

12 3.62 August B3 07/08/2006 

 

5.2.2. Field methodology 

During the field campaign, FMC was measured across four separate EBPs of the 

Skukuza string: plot six, plot eight, plot ten, and plot twelve (Figure 5.2) on 27
th

 July, 

30
th

 July, 2
nd

 August and 5
th

 August respectively. Each approximately rectangular EBP 

was systematically sampled by taking measurements every 50m along four transects, 

totalling 28 samples per plot. Since the herbaceous layer contributes the bulk of the fuel 

(Shea et al., 1996) within the EBPs, and as any burning consumes the grass layer and 

scorches the shrub understory but has little effect on the tree canopy (Scholes at el., 

2001), it was deemed satisfactory to simply sample the herbaceous layer of each plot. 
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Figure 5.2: Location of the four EBPs within the Skukuza string where FMC measurements were 

collected during the field campaign. 

 

Each herbaceous sample, which included both live and dead components, was a 

representative selection of all grass species within the 0.5m × 0.5m sample quadrat. 

Samples were stored in air-tight jars; both jar and content were weighed prior to drying 

to first obtain the wet weight of the samples, and then again following oven-drying at 

60°C for 48 hours to obtain the dry weight. FMC was calculated as the percentage of 

moisture over the weight of the dry matter following the methodology outlined in 

previous studies (Chuvieco et al., 2003; Aguado et al., 2007): 

 

FMC  = 100% ×  ( 
Ww + Wd ) (25) 

Wd 

 

Where Ww is the weight of the biomass prior to oven-drying, and Wd is the weight of the 

dry matter. The number of sampling events was restricted to four due to limitations 
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which included the duration of the field campaign, the required time to dry samples, and 

the limited oven space available. 

In addition to the collection of FMC measurements, at each sample point LST of 

the grass scene was measured in accordance with methodology outlined in section 3.2, 

and soil moisture was collected using a Delta-T ML2 Theta probe (Figure 5.3). The 

probe estimates the volumetric water content of the top 60mm of the soil by measuring 

the difference between the internal voltage of the probe and that reflected by the five 

rods to derive the dielectric constant of the soil. Measurements were taken every second 

and averaged every minute, with the mean taken only once the readings from the probe 

had reached equilibrium; data outside this equilibrium was discarded. 

 

Figure 5.3: Photograph illustrating the Delta-T ML2 Theta probe set up to measure soil moisture. 

 

5.2.3. Experimental setup 

For the calibration experiment, a linear regression equation was developed to describe 

the observed FMC from the most appropriate combination of the ratio between NDVI 

and LST, days since the last precipitation event, soil moisture, and meteorological 

conditions. The Akaike Information Criterion (AIC) was used as the method to accept 

or reject variables, with the model having the minimum AIC producing the best 
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goodness-of-fit. This choice of potential predictors was selected based on evidence from 

previous studies (Sandholt et al., 2002; Chuvieco et al., 2004b; Snyder et al., 2006; 

Verbesselt et al., 2007) regarding the characteristics which influence the moisture 

content of herbaceous fuel. As discussed previously, LST and soil moisture were 

measured at each sample plot, whereas the meteorological conditions were acquired 

from the Skukuza Flux Tower, described in section 3.2.1 and situated at a mean distance 

of approximately 10km from the string. For each sample, the nearest 30-minute 

snapshot to the time the sample was collected was retrieved from the flux tower. As 

illustrated in section 3.2.7, in the case of downward long-wave radiation bilinearly 

interpolated NCEP Reanalysis II data (Kalnay et al., 1996) replaced the missing data 

from the flux tower. 

Finally, the daily NDVI for the EBP sampled on that day was calculated as the 

normalised transformation of the NIR to red reflectance ratio extracted from the level-2 

daily 250m surface reflectance product MOD09GQ according to: 

 

NDVI =  
ρNIR – ρred 

(26) 
ρNIR + ρred 

 

Where ρred is the red reflectance (band 1) and ρNIR is the NIR reflectance (band 2). The 

NDVI signal for a given EBP was taken as the mean signal of all the pixels which 

overstrike the plot (see Figure 5.4) weighted by the percentage by which each respective 

pixel intersected with the plot. Although only the herbaceous layer was sampled since 

the trees typically do not burn (Scholes et al., 2001; Govender et al., 2006), this 

represents the effective FMC of the whole plot. As such, it was deemed appropriate to 

apply the NDVI signal of the entire EBP which encompasses reflectance from the tree 

canopy and bare soil endmembers in addition to the grass endmember. If cloud cover 
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prevented the retrieval of a signal on a given day then the NDVI was interpolated from 

values for previous and subsequent days. 

 

Figure 5.4: Overstrike of the MODIS 250m pixels from the surface reflectance product MOD09GQ 

(black squares) which intersect the EBPs (yellow polygons) sampled during the Skukuza field campaign. 

 

The regression equation was integrated into the JULES model to enable simulation 

of FMC over a wide geographical area. Specifically, the model was set up in the same 

vein as described in section 4.2.3 at an hourly time-step from 2001 to 2009, with and 

without SEVIRI LST assimilated into the model. In this case though, the chosen spatial 

resolution was 0.5° x 0.5°, since only a sub-region of the African continent was 

considered - the mixed tree/grass landscapes. These were reasoned to be most 

appropriate to the calibrated form of the regression equation, and included the IGBP 

land cover classes of woody savannas; savannas; grasslands; croplands; and the 

cropland/natural vegetation mosaic (Figure 5.5). As previously, the model was spun-up 

first by repeating the years 2000 to 2004 inclusive until soil temperature and moisture 

conditions were equilibrated. NDVI data was acquired from the MODIS 16-day 0.05° 
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MOD13C1 collection; this was aggregated to 0.5° and time-interpolated to provide 

daily estimates. Since LST collected during the model calibration was centred on local 

solar noon, this was the time chosen for the derivation of a daily FMC estimate in the 

regional simulation. These estimates were compared against measurements acquired 

from EBPs situated in the Mopani, Pretoriuskop and Satara landscapes of the KNP. The 

archive of field measurements made available by SANParks are inscribed with the date, 

and location, and cover all seasons and years during the 2001 to 2009 period. 

 

Figure 5.5: IGBP land-cover classes for Africa at 0.5° spatial resolution. 

 

5.3.  Results  

5.3.1. Model calibration 

To simulate FMC a multiple linear regression model was derived, whereby the AIC was 

used as the method to accept or reject variables (Table 5.2), which described the 

observed values. Potential predictors included the ratio between NDVI and LST to 

represent surface dryness, days since the last precipitation event, soil moisture, 
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downward long-wave radiation, downward short-wave radiation, air temperature, 

specific humidity, and wind speed. 

 

Table 5.2: Multiple linear regression of modelled FMC against fuel moisture predictors: NDVI / LST 

(Φ); days since previous precipitation event (DP); wind speed (WS); specific humidity (Q); downward 

short-wave radiation (SW↓); soil moisture (M); downward long-wave radiation (LW↓); and air 

temperature (TA). The model with the minimum Akaike Information Criterion (AIC) has the best 

goodness-of-fit and was selected as the calibration equation. 

Model r r
2
 RMSE Predictors AIC 

1 0.828 0.685 20.31 Φ 660.33 

2 0.882 0.777 16.99 Φ, DP 624.14 

3 0.905 0.820 15.28 Φ, DP, WS 602.96 

4 0.918 0.843 14.17 Φ, DP, WS, Q 589.34 

5 0.925 0.856 13.58 Φ, DP, WS, Q, SW↓ 581.88 

6 0.934 0.872 12.72 Φ, DP, WS, Q, SW↓, M 571.35 

7 0.934 0.872 12.72 Φ, DP, WS, Q, SW↓, M, TA 573.35 

8 0.934 0.872 12.72 Φ, DP, WS, Q, SW↓, M, TA, LW↓ 575.12 

 

This model indicates that the linear combination of a surface dryness index, soil 

moisture and climate variability is responsible for almost ninety percent of the FMC 

variance. The RMSE between the predicted FMC and in situ observations was 13.38, 

and the exact form of the calibration equation is expressed as: 

 

FMC = 42000 Φ - 0.26 DP + M - 0.10 SW↓ - 3.96 WS + 2265 Q – 11.96 (27) 

 

Where Φ is the ratio between NDVI and LST (Tsfc), DP is the number of days since a 

last precipitation event, M is the soil moisture, SW↓ is the downward shortwave 

radiation, WS is the wind speed, and Q is the specific humidity. Figure 5.6 illustrates the 

predicted FMC, using equation (27), plotted against the in situ observations collected 
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during the field campaign. Much of the observed FMC was grouped lower than 20%, 

with the highest values acquired following the rainfall event on 2
nd

 August. 

 

Figure 5.6: Predicted FMC derived from regression vs. in situ observations taken at Skukuza during the 

field campaign in the Kruger National Park, South Africa, between 23
rd

 July and 7
th

 August 2009. The 

observations were used in the development of the regression equation rather than as an independent 

validation dataset. 

 

5.3.2. Model simulation and validation 

Equation (27) was integrated into the JULES framework and FMC over the mixed 

tree/grass landscapes of Africa were henceforth simulated. Validation of the model 

simulations was performed against an archive of field measurements acquired from 

EBPs within three landscapes of KNP distinct from the Skukuza calibration site: 

Mopani, Pretoriuskop and Satara. Although exact collection times for the field 

measurements from these validation sites were not recorded, it was confirmed to be 
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around local noon (Navashni Govender, personal communication). The simulation of 

FMC by JULES was performed with and without LST data assimilation. The impact on 

one of the key predictors, soil moisture, is illustrated in figure 5.7. The estimates of 

mean soil moisture from the three validation landscapes are consistently lower, and 

display smaller amplitude, with assimilation than without. 

 

Figure 5.7: Time series of mean soil moisture during 2007 for grid-cells covering the validation 

landscapes of KNP for both open loop modelling and model simulations following LST assimilation. 

 

When LST is assimilated into the JULES model the predicted FMC shows a strong 

correlation (r = 0.826, P > 0.01; N=231) with the field measurements acquired from the 

three KNP landscapes (Figure 5.8), with a higher coefficient of determination (0.683) 

than without data assimilation (0.609). Furthermore, the RMSE for simulated FMC with 

respect to the field measurements was reduced from 33.1% to 23.3% with LST data 

assimilation compared with open loop modelling. Despite these encouraging results, 



132 

 

figure 5.8 does show a tendency for the model to over-estimate the field measurements, 

particularly for lower values of FMC; although, this over-estimation would be more 

pronounced without data assimilation due to higher soil moisture estimates in equation 

(27). 

 

Figure 5.8: Predicted FMC as simulated by the JULES model vs. in situ observations acquired from 

EBPs within three landscapes of KNP: Mopani, Pretoriuskop and Satara from 2001 to 2009 inclusive. 

The field measurements, which can be considered as independent datasets, were collected by SANParks 

and made available courtesy of Scientific Services, Skukuza. 

 

These r
2
 values are comparable with previous attempts to derive a FMC index. For 

example, in the study over central Spain by Aguado et al. (2007) values between 0.44 

and 0.57 were produced when derivation of dead FMC using MDIs were validated. In 

another study, a variety of remotely sensed vegetation and water indices were tested 

against field measurements of FMC from the same EBPs in the KNP (Verbesselt et al., 
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2007), resulting in r
2
 values which ranged between 0.25 and 0.75. While the attempt 

described in this chapter to develop a predictor for FMC has not resulted in better 

estimations in terms of r
2
 values, what it does represent is a robust technique which can 

estimate total FMC (both dead and live) unhindered by cloud conditions or satellite 

instrumentation problems, enabling a first map of daily FMC over a wide geographical 

region to be produced. 

Figure 5.9 illustrates the mean daily FMC for the four quarters of 2007, where 

daily FMC is determined at local noon. When applying the model over the northern 

hemisphere savannahs the highest values were simulated in the 3
rd

 quarter of the year, 

whereas over the southern hemisphere savannahs the highest values were simulated in 

the 1
st
 quarter. These periods correspond to the height of the wet season in the 

respective regions. Conversely, the lowest values were simulated during the height of 

the respective dry seasons – the 1
st
 quarter in the northern hemisphere, and the 3

rd
 

quarter in the southern hemisphere. 
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Figure 5.9: Mean daily FMC simulated at 0.5° over the mixed tree/grass landscapes of Africa during 

2007: 1
st
 Quarter (a); 2

nd
 Quarter (b); 3

rd
 Quarter (c); 4

th
 Quarter (d). 

5.4.  Discussion 

FMC is an important characteristic in vegetation fires. Part of the energy required to 

start a fire and to ignite adjacent fuels is used to evaporate water; hence FMC is 

inversely related to the probability of ignition and propagation (Chuvieco et al., 2002). 

Indeed, if the fuel is too moist (greater than the ‗moisture of extinction‘) the rate of 

spread of the fire front passing through the fuel bed can be reduced to zero, since all the 

energy is consumed in the process of evaporation (Thonicke et al., 2001). Fire intensity 

is also a property of a fire that is dependent on the moisture content of the fuel. This 

displays seasonality, with the most intense fires occurring late in the dry season when 

the fuel bed is at its driest and combustion is more efficient (van Wilgen et al., 2004; 

Govender et al., 2006). Flaming combustion dominates when FMC is low, with a higher 

fraction of carbon emitted as CO2; whereas when FMC is high smouldering combustion 

(a) (b) 

(c) (d) 
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dominates, and the emissions of trace gases are proportionally higher (Andreae and 

Merlet, 2001). Although the burning of savannahs is not a net source of carbon due to 

subsequent vegetation re-growth, biomass burning is a significant source of radiatively 

active aerosols and trace gases, such as methane and carbon monoxide (Andreae and 

Merlet, 2001). Reducing uncertainty is therefore an important mission, with the 

improvement in FMC prediction a crucial prerequisite. 

Fire is often neglected in land surface models, with estimates of biomass burning 

emissions thus absent (Williams et al., 2007). Where fire is included, its derivation 

often depends simply on prescribed loss rates or simple empirical algorithms. Where a 

fire model is more complex, FMC is often based on simple surrogates such as soil 

moisture (Venevsky et al., 2002; Arora and Boer, 2005). Even the latest fire models, 

such as SPITFIRE (Thonicke et al., 2010) which relies on a combination of MDI - such 

as the Nesterov Index - to derive dead FMC, and soil moisture to derive live FMC, may 

benefit from a more representative process-based approach. Previous studies (Chuvieco 

et al., 2004b; Verbesselt et al., 2007) have attempted to utilise remote sensing to 

estimate live FMC. While there is justification in this approach – since it overcomes 

many of the limitations of both field based methodology and MDIs - it fails to account 

for presence of dead fuel and is constrained by both the availability of cloud-free 

images and the operational reliability of the satellite sensor. The approach taken in this 

study minimises these limitations by overcoming the reliance on usable retrievals, while 

ensuring the capability to capture moisture content changes at a high temporal 

resolution at regional or even global scales. 

Findings indicate that the methodology developed here to derive total herbaceous 

FMC can provide a robust alternative to the use of MDIs or straightforward reliance on 

satellite-derived data; with strong correlation between modelled and in situ observations 
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when validated across numerous plots within the KNP. The landscapes of the KNP are 

classified differently in terms of biotic and abiotic controls; and since figure 5.8 

illustrates the FMC within each of these to be modelled by JULES with a similar 

predictability, the implication is that FMC over different tree/grass landscapes across 

the continent of Africa could potentially be adequately mapped on a daily basis. As a 

matter of fact, a first daily record of FMC covering the African savannahs was 

produced; the seasonal differences (Figure 5.9) would appear to be realistic and thus 

encouraging for the credibility of the methodology. What is more, the implementation 

has been seamless and it facilitates continuous derivation due to time-interpolation of 

NDVI and internal calculation of LST from the surface energy balance equation. In 

addition, this investigation has provided an appropriate case study for illustrating the 

impact of assimilating LST into the model. 

Despite these encouraging results the methodology presented here is subject to a 

number of assumptions. Firstly, the Skukuza string is considered an outlier in terms of 

the variability across the site in the texture and sodium content of the soil (Navashni 

Govender, personal communication), which are key determinants of the vegetation 

structure and composition. This choice of string however, was determined as a matter of 

logistics, as it was the most conveniently located in terms of access from the road 

network and hence the rest camp. Moreover, figure 5.8 provides evidence that the soil at 

Skukuza does not preclude a generalisation of the method. Secondly, by taking 

measurements around solar noon the inference is that maximum daily LST is a predictor 

of FMC, and thus a diurnal trajectory of the moisture content of the fuel is not a viable 

outcome. There is though validity in this assumption, since diurnal variability is 

negligible in comparison to seasonal variability (Verbesselt et al., 2007). Thirdly, the 

derivation of FMC is based on a combination of instantaneous conditions and those 
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which have exerted an influence over a longer time period, such as soil moisture. It may 

be, that a more appropriate representation of the moisture content of the fuel could have 

been achieved by only considering longer memory effects, such as the mean humidity 

and mean solar radiation since the last precipitation event for example; this could be 

worthy of future investigation. 

The final, and perhaps most fundamental, assumption relates to the scaling 

inconsistency when comparing modelled FMC with field measurements acquired from 

Mopani, Pretoriuskop and Satara. The field measurements correspond to mean FMC 

over designated EBPs, which have an average size of approximately seven hectares; the 

modelled FMC is derived for grid-boxes of 0.5°. However, neither meteorological input 

variables nor soil moisture were available at an equivalent fine spatial resolution to the 

respective burn plots. Conversely, flux tower locations across the continent could not be 

considered as potential validation sites since FMC measurements have not been 

compiled at any of these. As such, this constraint to the methodology for validating the 

modelled FMC remains a caveat to any interpretation of these findings. 

Savannahs exhibit strong wet and dry seasonality, and are some of the most 

frequently burnt ecosystems; yet considerable uncertainty exists in determining climate 

change in these environments (Williams et al., 2007). With climate scenarios predicting 

warmer and windier conditions, the implication is for an increase in drying and 

accumulation of fuel, thereby increasing fire frequency, intensity, and thus emissions 

(Hoffmann et al., 2002). Signatories to the United Nations Framework Convention on 

Climate Change (UNFCCC) are required to provide emission estimates; this underlines 

the need to develop more accurate procedures for calculating emissions from biomass 

burning. Here, an alternative method for deriving the critical fire variable – FMC - has 

been presented; with potential for interfacing this model output with a designated fire 
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model to reduce the uncertainty in modelling fire dynamics, and resultant emissions. 

Indeed, the SPITFIRE model is scheduled for inclusion in the JULES model. Although 

the timing of this is indeterminable, the possibility exists to utilise the modelling 

approach for determining FMC in this coupling. 

5.5.  Conclusions 

The purpose of this investigation was to act as a case study for examining the 

application of model skill developed previously. Specifically, a first modelled dataset of 

FMC over the mixed tree/grass environments of the African continent. FMC is a 

challenging determinant of biomass burning to quantify, being influenced by plant 

physiology and climatic conditions. This study offers a novel approach to meet this 

challenge, with two questions posed to assess its success: i) can fuel moisture content be 

satisfactorily estimated across the savannah landscapes of Africa using a land surface 

modelling approach; and ii) can this approach be enhanced by utilising data assimilation 

of satellite-derived LST. 

To summarise the findings, it has been shown that a land surface model, such as 

JULES, is capable of successfully generating a daily record of FMC over large 

geographical regions, in this case the mixed tree/grass landscapes of Africa. These 

predictions were improved, in terms of the coefficient of determination, by utilising the 

assimilation technique developed in chapter 4; and a reduction of almost thirty percent 

in RMSE between modelled and in situ values was found with data assimilation. This 

method has advantages over traditional and remote sensing methods; an important one 

is the potential for a seamless delivery of predictions from the land surface model into a 

coupled fire model. 

Although further validation may be warranted, this study provides sufficient 

evidence to suggest that biophysical modelling combined with satellite data represents a 
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viable option to adequately predict FMC over continental scales at high temporal 

resolution, and is thus a strong alternative to traditional methods. Improved fuel 

prediction can optimise the quantification of fire disturbance in the land surface models 

that play an integral role in reducing the uncertainty of the African carbon cycle and the 

associated feedbacks with the global climate system. 
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Chapter 6 

Conclusions and further work 

We are now in a position to review the gathered evidence in order to test the 

overarching research question. Conclusions will be summarised in relation to the 

scientific questions raised in each of the previous chapters, and general limitations of 

the research project will be addressed together with recommendations for further 

investigation. The contribution of this study to current scientific knowledge will also be 

reiterated. 

6.1.  Conclusions 

The findings from chapter 2, which provided an evaluation of the biophysical processes 

and parameterisation of the JULES model for Africa, confirm the credibility of the 

model in simulating land surface processes relating to the terrestrial carbon cycle of the 

continent. Specifically, in answer to the questions posed earlier: 

i) NPP magnitude, distribution, and IAV simulated by JULES were 

comparable with the other participating land surface models of the 

CAMIC project, and also with previously published estimates. 

ii) ENSO is a primary driver of climate variability in Africa, with the 

associated variability in moisture and long-wave radiation explaining, for 

the most part, NPP variability. 

iii) Monthly NPP growth rate was also significantly correlated to the growth 

rate in atmospheric CO2 concentration. Although this finding may appear 

contrary to the overall downward trend in NPP over the 25-year 

modelling period, this can be consolidated by the fact that months with 

negative CO2 anomalies are associated with larger negative NPP 
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anomalies than the contrasting situation for positive CO2 anomalies. A 

note of caution though, is that atmospheric CO2 growth rate anomalies are 

influenced by terrestrial carbon fluxes, which may be the primary cause 

of the correlation. 

iv) Large NPP variability, in comparison to Rh variability, is primarily 

responsible for variability in NEP, and although Africa has fluctuated 

between a source and sink of carbon between 1982 and 2006, in the last 

few years of this period it has consistently behaved as a source of carbon. 

In chapter 3, modelled estimates of LST were evaluated with respect to in situ 

measurements and retrievals from EO satellites. In the context of the questions posed 

earlier: 

i) JULES LST displayed the largest uncertainty with respect to the 

measurements taken at the Skukuza field site, with evidence from this 

experiment indicating that both AATSR and SEVIRI are retrieving LST 

over a mixed tree/grass landscape within their respective target 

accuracies, whereas MODIS is not. 

ii) For the continental intercomparison, findings indicate JULES LST was 

systematically underestimated with respect to AATSR and SEVIRI, 

which was most striking over barren or sparsely vegetated landscapes, 

although a re-parameterisation of its soil properties brought about a 

considerable reduction in this underestimation. 

The development of a data assimilation scheme within the JULES model, as 

described in chapter 4, provided an opportunity to assess whether surface energy and 

water fluxes could be constrained by directly manipulating LST. To satisfy the two 

questions posed: 
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i) When sensible and latent heat fluxes derived with data assimilation were 

compared with corresponding Eddy Covariance measurements acquired 

from four African flux towers, RMSEs were less than the equivalent 

obtained without data assimilation. 

ii) Simulations of soil moisture with data assimilation were more comparable 

with SSM data derived from ERS scatterometers for an area of strong 

land/atmosphere coupling in West Africa, than simulations without data 

assimilation, which implies open loop modelling was overestimating soil 

moisture in this region. 

The investigation described in chapter 5 provides satisfactory evidence to accept 

the premise that the combination of biophysical modelling and EO data represents a 

viable alternative to both traditional methods and remote sensing methods for predicting 

daily FMC at a continental scale. With respect to the two questions posed: 

i) A daily record of FMC over the mixed tree/grass landscapes of Africa 

was generated by JULES in combination with MODIS NDVI data, with 

the temporal signatures of FMC consistent with the wet and dry 

seasonality of these regions, and where values were strongly correlated 

with field measurements acquired from three independent locations in the 

KNP. 

ii) Predictions were improved with LST data assimilation than without, in 

terms of both the coefficient of determination and RMSE, with respect to 

the field measurements from the three independent locations in the KNP. 

The overall research question which asks: ―can land-surface modelling 

accurately simulate land/atmosphere interactions in African savannahs given the 

highly heterogeneous nature of these landscapes?‖ can now be answered, in the case 
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of the JULES model, with respect to the evidence described above. For instance, 

estimates of terrestrial carbon fluxes for Africa are comparable both with other land 

surface models and previously published values. In the case of LST, estimates are 

broadly comparable with both remotely sensed retrievals and in situ measurements. The 

application of a data assimilation scheme furthermore resulted in tangible improvements 

in heat fluxes and soil moisture with respect to independent data sources. 

6.2.  Contribution to knowledge  

Firstly, an insight into the recent carbon balance of the African continent has been 

disseminated, whereby a strong correlation between NPP and ENSO was calculated for 

Africa. Indeed, the trajectories of NPP and Rh offer evidence that in recent years Africa 

has been acting as a source of carbon, and current trends suggest this situation may be 

more frequent in the future. This is a strong finding even though it pertains to a single 

land surface model, albeit a well established one. The carbon balance of Africa is highly 

uncertain (Williams et al., 2007) even following the efforts of the CARBOAFRICA 

project (Bombelli et al., 2009); the findings of this study can therefore significantly 

contribute to current thinking. 

Secondly, this study offers a unique evaluation into the derivation of the surface 

energy balance as simulated by JULES, which includes a first attempt at comparing 

both model and satellite-derived LST with in situ measurements from an African 

savannah; and a first known integration of the EnKF into the JULES model, even 

though separately both model and assimilation scheme have been extensively used 

elsewhere. The principle purpose here was to better understand the dynamics of heat 

and water fluxes, and to investigate whether the integration of EO data would be 

beneficial in estimating key land/atmosphere interactions. It should not therefore be 
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viewed as a production-ready development, but does however offer the JULES 

management committee an outline for potential further development. 

Finally, the production of a first known mapping over Africa of FMC - one the 

most important fuel components – is a significant contribution to the field of fire 

modelling; since optimisation in the derivation of fuel properties is a prerequisite for 

reducing the large uncertainty in biomass burning (van der Werf et al., 2006). This 

contribution is particularly relevant if utilised in the future coupling of the JULES 

model to SPITFIRE. 

In summary, this investigation represents an innovative approach to understanding 

key land surface processes in African savannahs in the framework of an important and 

established land surface model, affording an insight into some of the challenges in 

modelling these ecosystems. Indeed, with Africa being under-represented in climate 

modelling research, the findings presented here represent a significant contribution to 

the emerging literature on land/atmosphere interactions in African savannahs. 

6.3.  Research l imitations and further work  

Numerous assumptions and limitations with this study have been discussed in detail in 

the respective chapters with recommendations for further research; but a few general 

points are worth considering with regards to land surface modelling of African 

savannahs. For instance, most models neglect any disturbance regime, particularly 

herbivory. The JULES model however, is currently being developed by a community of 

modellers, whereby TRIFFID will be replaced by an Ecosystem Demography (ED) 

DGVM which will simulate succession in the context of size and age of PFTs since the 

most recent disturbance, and the aforementioned SPITFIRE fire model will be 

incorporated into a new ED-JULES-SPITFIRE amalgamation. A worthwhile exercise 



145 

 

then would be to re-examine the findings of this study under the new model framework; 

once it is available. 

The majority of land surface models, JULES included, are limited in their 

representation of savannahs, since they are not designed to simulate horizontal 

heterogeneity beneath the woody canopies of these mixed tree/grass ecosystems. Micro-

scale variations in carbon, water and heat fluxes are known to result from strong 

between-tree gradients in surface temperature, light availability and soil moisture 

(Caylor et al., 2005). This complex array of factors determining the carbon allocation, 

hydrology, and radiative properties of savannahs can only comprehensively be modelled 

by representing fine-scale processes. Indeed, misrepresentation of these tree/grass 

dynamics in land surface models will amplify the uncertainty in simulating 

land/atmosphere interactions in these systems. 

A current restriction to fine-scale sub-daily land surface modelling is the lack of 

available fine-scale precipitation data at sufficiently high temporal resolutions. A more 

realistic representation of savannahs, and a better understanding of their contribution to 

the African carbon balance, nevertheless remains crucial to accurately determining 

whether Africa is likely to be a mean source or sink of carbon in the future; despite the 

promising findings presented here. A focus on more representative processes, which 

account for the structure, function and distribution of trees and grass in African 

savannahs, thus remains a priority. 
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