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Abstract

Naturally  occurring  grain  boundary  interfaces  greatly  influence  important 

characteristics of many materials including their  mechanical,  electrical  and magnetic 

properties.  The  atomic  structure  of  such  grain  boundaries,  while  crucial  to  their 

behaviour, are inaccessible to most experimental techniques as they are internal to the 

material. Theoretical studies are complicated by the existence of multiple structures for 

a given grain boundary. Data from an X-ray diffraction experiment is presented, along 

with  the  model  used  for  simulated  scattering  from Keating  energy minimised  grain 

boundary structures.    

The X-ray diffraction data was measured using a (2+3)-type diffractometer on 

beamline  I07  of  the  Diamond  Light  Source.  The  traditional  way  to  measure  the 

integrated intensity from an X-ray diffraction experiment is to perform a rocking scan. 

By use  of  a  large  2D area  PILATUS detector,  an  alternative  method  of  measuring 

diffraction data, where the sample remains fixed, can be implemented. A comparison of 

the  different  techniques  shows that  the  stationary  scan  improves  the  reliability  and 

shortens the measuring time by almost an order of magnitude.

The theory of crystal  truncation rod scattering is extended to account for the 

bicrystallography of the sample, which gives rise to two overlapping rods; one from 

each  crystal.  Simulated  X-ray  scattering  from  Keating  energy  minimised  grain 
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boundaries is compared with experimental data.  The simulated scattering, which has 

atomic sensitivity,  is  used  to  discriminate  between potential  structures  based on the 

statistical goodness of fit with the data.  

Finally,  a  custom  designed  diffraction  chamber  was  built  allowing  users  to 

perform lensless Fourier transform holography experiments on the branchline of I06 at 

the Diamond Light Source. Preliminary data is presented and data analysis techniques 

discussed.  Phase  retrieval  algorithms  do  not  yield  any  further  high  resolution 

reconstructions due to the noise levels of the hologram.
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Chapter 1

Introduction

1.0 Introduction

X-ray diffraction is an important tool for the study of structural properties of 

crystalline and amorphous materials on the atomic scale. One of the major advantages 

of X-ray diffraction compared with other techniques is that X-rays interact with matter 

weakly and a single scattering approach is often sufficient to analyse the diffraction 

data.  The major drawback of the low scattering cross-section is  the weak scattering 

signal, which can be overcome by the brightness (the photon flux per unit phase space 

volume) of synchrotron radiation.

Synchrotron radiation generated by relativistic electrons in circular accelerators 

is  little  more  than  60  years  old.  Third  generation  synchrotron  light  sources  use  an 

insertion device called an undulator, which  consists of a periodic structure of dipole 

magnets. The static magnetic field alternates along the length of the  undulator with a 

defined periodicity.  Electrons  traversing  the  periodic  magnet  structure  are  forced  to 

undergo oscillations and thus to radiate energy. The radiation produced in an undulator 

is very intense and concentrated in narrow energy bands in the spectrum and a large 

portion of the flux is coherent. The experiments presented in this thesis were performed 

at such a third generation synchrotron; the Diamond Light Source located at  Didcot 

(UK).

Two  diverse,  novel  X-ray  diffraction  techniques  for  probing  structure  are 

presented in this thesis. The first is bicrystal truncation rod scattering and the second is 

lensless  Fourier  transform holography.  As  well  as  high  brightness,  holography also 

requires a large coherence length of at least several microns so that each point in the 

object interferes with the reference source. This coherence length is easily obtainable 

using undulators.
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1.1 Grain Boundaries

Grain boundaries (GBs) in semiconductors have been of interest for some time 

[1-3] due to the importance of polycrystalline semiconductors in the microelectronic 

industry and the interest in micromechanical materials, in solar energy applications, and 

in nanocrystalline Si [4]. The GBs can provide preferential sites for dopants [3, 5, 6], 

and act as low energy diffusion pathways. For low-energy tilt boundaries, which usually 

retain the fourfold coordination of the bulk [1, 3], the dominant electronic effects are 

assumed  to  be  due  to  dopant  segregation  to  the  GB;  however,  intrinsic  gap  states 

localized to the GB may occur if the bonding is sufficiently distorted [2, 3, 7].  

Understanding the GBs at an atomic level is therefore crucial.  Symmetric tilt 

GBs have received extensive experimental and theoretical treatment.  Experimentally, 

high resolution transmission microscopy (HRTEM) is widely used in studying GBs [8-

11],  but  the  resolution  required  to  examine  the  atomic  structure  of  the  GB is  still 

difficult  to achieve. Theoretical studies are complicated by the existence of multiple 

structures for a given GB [2, 12-15]. First principle calculations are computationally 

very costly and classical potentials, although fast, need to be checked for their accuracy 

[2, 12-15].

In this thesis the study of X-ray scattering from the GB of a Si Σ13 bicrystal is 

presented. X-ray scattering is a powerful, non-destructive probe of surface and interface 

structures. X-rays have a large penetration depth and can access buried structures that 

are  otherwise  inaccessible  by  standard  surface  science  techniques.  Because  X-ray 

scattering  is  weak,  the  analysis  of  X-ray  diffraction  data  is  rarely  complicated  by 

multiple scattering. X-ray scattering is therefore a suitable method to study buried GBs.

1.2 Lensless Fourier Transform Holography

X-ray microscopy is is an attractive prospect for the study of many nanoscale 

systems  [16-19].  It  offers  many  advantages  over  other  methods  including  element 

specific  imaging  and the  ability  to  non-destructively image the  interior  of  complex 

structures. It  is  a promising method of imaging the magnetic structure of thin films 

when combined with X-ray magnetic circular dichroism, the polarisation dependence of 
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X-ray scattering at certain absorption edges of magnetic materials.

Direct  imaging  with  X-rays  is,  however,  usually  hindered  by familiar  phase 

problem and the lack of effective X-ray lenses. In a typical X-ray scattering experiment, 

a CCD detector measures the scattered intensity in the far-field, Fraunhofer plane but 

the phase is lost making direct inversion by a Fourier transform impossible. Various 

holographic techniques  offer  solutions to  this  loss  of  information.  Fourier  transform 

holography (FTH)  is  a  lensless  technique  in  which  X-rays  transmitted  through  the 

sample combine with a reference beam to form an interference pattern on the detector 

[20,  21].  By careful  design  of  a  sample  mask and spatial  separation  of  the  sample 

aperture and reference pinhole, a direct image can be obtained by the simple application 

of a Fourier transform to the measured scattering pattern [20, 21]. The resolution is 

limited by the size of the reference hole, typically 70 nm. Because soft x-ray holography 

is a lensless technique with no optical elements to degrade the coherence of the beam it 

ought  to  be  possible  to  obtain  much  higher  resolution  data,  even  in  principle 

approaching the X-ray wavelength. 

1.3 Thesis Overview

Chapter 2 reviews the theory of X-ray scattering, starting from first principles 

and  leads  to  the  concepts  of  crystal  truncation  rods  and  lensless  Fourier  transform 

holography. Both are interference techniques and detailed structure of the scatterers can 

be extracted. There is a discussion on the required coherence of the X-ray source, and a 

description of bicrystallography and the parameters that define it.

Chapter 3 presents the commissioning of beamline I07 of the Diamond Light 

Source  Synchrotron.  The  diffractometer,  and  alignment  procedure,  are  discussed  in 

detail. Crystal truncation rod data, from a Si bicrystal, obtained using various different 

modes are compared and assessed in terms of their practicality. 

Chapter 4 introduces the method of minimising the Keating energy of various 

grain  boundary  structures  to  determine  the  positions  of  the  atoms.  The  model  of 

bicrystal truncation rod scattering is developed and used to simulate scattering from the 

relaxed grain boundaries. The simulated bicrystal truncation rod scattering is compared 

with experimental measurements and subsequent analysis  allowed us to discriminate 
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between  potential  grain  boundary  structures  and  correctly  determine  the  buried 

structure, highlighting the success of our approach.

Chapter 5 describes several lensless Fourier transform holography experiments 

performed on beamline I06. The suitability of the beamline is discussed along with the 

preparation  of  samples.  A  custom  built  diffraction  chamber  was  designed  and 

commissioned and holograms are presented. There is also a discussion on data analysis 

techniques.

A summary of the results and conclusions are discussed in chapter 6 and future 

work is suggested.
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Chapter 2

Background Theory

2.1 Introduction

The first part of this chapter introduces the theory of x-ray diffraction, starting 

from the most simple case of scattering from an electron, leading to the concepts of 

crystal truncation rods. These ideas were used in the experiments in chapters 3 and 4 

and the subsequent data analysis.

In section 2.3 the theory behind bicrystallography is introduced. The concepts of 

grain boundaries, as well as the mechanisms that create them are discussed.

Finally there is the introduction of Fourier transform holography, which builds 

upon the basic diffraction theory, and the required coherence properties of the X-ray 

source in order to perform such an experiment. These concepts are used in chapter 5.

2.2.1 Scattering from Electrons and Atoms

This section contains a brief introduction to basic X-ray diffraction. For a more 

detailed approach the reader is directed to standard textbooks on X-ray diffraction [22, 

23]. The derivation of the scattering process is taken from [24].

The scattering of X-rays from an electron is given by the Thomson scattering 

formula. The scattered field Ee observed at distance R away from the electron at  r has 

the amplitude

E e e−i k f .r=E0 e2

mc2 R P
1
2 e−i k i . r , (2.1)

where E0 is the amplitude of the incoming wave,  kf and ki are the wavevectors of the 

scattered and incident wave respectively, and for elastic scattering |kf| = |ki| = 2π/λ where 
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λ is the wavelength. P is the polarization factor of the incoming wave and is equal to 1 if 

E0  is normal to the scattering plane and cos2θ when it is in the scattering plane. The 

scattering  angle,  θ, is  explained  in  fig.  2.1.  Using the  definition  of  the  momentum 

transfer, q = kf – ki, equation 2.1 becomes

Ee=E0 e2

mc2 R P
1
2 e i q .r . (2.2)

Now scattering  from an  atom is  considered.  The  Z electrons  are  distributed 

around the nucleus to give an atomic electron density ρ(r), The scattering from an atom 

is then

Ea=E0
e2

mc2 R
P

1
2∫r e i q .r dV , (2.3)

where the integral is over the entire volume of the atom.

2.2.2 Atomic Form Factor

The atomic scattering factor, the atomic form factor, f(q) is defined as

f q =∫r e i q .r dV , (2.4)

where the integral is over one atom. As q tends towards 0 all electrons scatter in phase 

and f(q) is simply Z.

The atomic scattering factors for all atoms have been calculated and tabulated in 

the  International  Tables  for  X-ray  crystallography  [25].  A convenient,  parametrised 

version of the atomic form factor can be given by a series of Gaussians by the following 

expansion

f q =∑
i=1

4

a i e
−bi

2 q2

16 2 
c , (2.5)
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where a, b and c are constants defined in [25]. This expansion works over the range 0 < 

q < 8π Å-1.  The value of  q in  this  scope of work does not exceed these limits  and 

equation 2.5 is used throughout. 

Figure 2.1: The scattering triangle.

2.2.3 Scattering from a Crystal Lattice

A crystal  is  a  three-dimensional  repetition  of  some  unit  of  cell  atoms.  The 

essential  features  are  illustrated  in  fig.  2.2.  Atoms,  represented  by  the  circles,  are 

repeated identically. The scheme of repetition is defined by three vectors  a1, a2 and a3, 

called  the  crystal  axes.  The  parallelopiped  defined  by  the  three  axes  a1a2a3 is  the 

smallest  volume which,  repeated,  will  make up the crystal.  This  smallest  volume is 

called the unit cell. The unit cell volume is given by va = a1 . a2 x a3.

The different atoms in the unit cell are numbered 1, 2, 3, ..., n, and the positions 

of the atoms relative to the unit cell origin are given by the vectors r1, r2, r3, ..., rn. The 

different unit cells are designated by three integers m1, m2, m3, such that the cell m1m2m3 

is the one whose origin is displaced from the crystal origin by  m1a1 +  m2a2 +  m3a3. 

Finally the position of atom n in the unit cell  m1m2m3 is given by the vector

Rm
n =m1a1m2a2m3a3rn=Rmrn . (2.6)

ki

2θ

kf

q
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Figure 2.2: Two-dimensional representation of the periodic property of a crystal.

The scattering from the lattice is calculated by first summing over all the atoms 

in the unit cell, which is given by the structure factor F(q):

F q=∑
n

f n qe
i q . rn

. (2.7)

Then each point in the lattice can be summed over to give

F crystal q=F unitcell q∑
Rm

ei q . Rm

. (2.8)

The intensity of the scattered wave is found by squaring equation 2.3:

I q=I 0
e4

m2c4 R2 P∣F q∣2
sin2 N 11 

sin2 1 
sin2 N 22 

sin2 2 
sin2 N 33 

sin2 3 
, (2.9)

where φ(1, 2, 3) = q.a(1, 2, 3)  / 2 and N(1, 2 ,3) are the extensions of the crystal in a(1, 2, 3).  I(q) 

peaks when the Laue conditions are fulfilled

q .a1=2h , q .a2=2 k and q .a3=2l , (2.10)

where h,  k and l are the Miller indices and are integers. These conditions are satisfied 

when q lies on a point in the reciprocal lattice. The reciprocal lattice is defined by a set  

of basis vectors b1, b2 and b3 and lattice points on the reciprocal lattice are given by:

a
2

a
1

r
n n

O
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G=h b1k b2l b3 . (2.11)

The Laue conditions are satisfied when q = G. The sharp peaks of the scattered intensity 

that occur at the Laue conditions are known as Bragg Peaks.

The reciprocal lattice vectors are related to the real space vectors by

b1=2
a2×a3

a1 .a2×a3
, (2.12)

b2=2
a3×a1

a1.a2×a3
, (2.13)

b3=2
a1×a2

a1 .a2×a3
. (2.14)

2.2.4 The Ewald Sphere

A very  powerful  and  useful  way of  representing  the  satisfying  of  the  Laue 

conditions is given by the Ewald sphere. The reciprocal lattice is shown in fig. 2.3. The 

direction of the incoming wave, ki, terminates on the origin, O, of the reciprocal lattice. 

A sphere of radius |ki| centred on the starting point of the incoming wave passes through 

the origin. Any reciprocal lattice points  hkl which happen to fall on the surface of the 

sphere, represents a set of planes  hkl for which the Laue conditions are satisfied. The 

direction of the outgoing wave,  kf, is from the centre of the sphere to the point  hkl. 

Although fig. 2.3. is shown in two-dimensions, the Ewald sphere construction is valid in 

three-dimensions, and the point hkl can be at any point on the surface of the sphere.

In terms of the Ewald sphere, the Laue conditions are satisfied for a set of planes 

hkl provided that the reciprocal lattice point hkl falls on the surface of the sphere.
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Figure  2.3: Two-dimensional  representation  of  the  Ewald  sphere  in  the  reciprocal 

lattice. The Laue conditions are satisfied for any set of planes whose point hkl falls on 

the surface of the sphere.

2.2.5 Crystal Truncation Rods

In the the limit of an infinite crystal, the diffraction peaks are perfect δ functions. 

However,  in materials  one is often interested in the surface of a crystal  or a buried 

interface. As a result of this the crystal is semi-infinite; it is an infinite crystal in two-

dimensions that  is  truncated at  the surface or  interface.  When finite-size effects  are 

included, the peaks are found to be broadened by an amount inversely related to the 

dimension  of  the  diffracting  region  of  the  crystal  [26].  For  crystals  with  sharp 

boundaries,  a  significant  amount  of  intensity is  always  scattered far  away from the 

Bragg peaks and is spread right across the Brillouin zone. The order of magnitude of 

this intensity is the same as that arising from a single layer of atoms.

For a crystal with infinite extensions in the directions given by q1 and q2, N1 and 

N2 become infinite and equation (2.9) is sharply peaked when the Laue conditions are 

met. The third basis vector a3 is assumed to be perpendicular to the surface spanned by 

a1 and a2. This gives the scattered intensity from a slab of crystal with thickness N3a3. 

The scattering from a semi-infinite crystal is obtained by letting N3 tend to a very large 

2θ

k
i

k
f

q
hkl

O
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but finite number:

I q =I 0
e4

m2 c4 R2 P∣F q∣2 N1
2 N 2

2 1
2sin 23 

, (2.16)

for q.a3 ≠ 2πl and where the rapid oscillations in the numerator are averaged out over the 

limit. The intensity is still peaked where the Laue condition q.a3 = 2πl is fulfilled and l is 

an integer, but because there is no translational symmetry in the direction perpendicular 

to the surface or interface, there are additional diffuse streaks connecting all the Bragg 

peaks. Close to the  Bragg peaks the intensity tails off as  1/(Δqz)2  where  Δqz  is the 

distance from the Bragg peak.

The scattering is sharp in two-dimensions but a diffuse streak perpendicular to 

the surface or interface (referred to as a “rod” of scattering) arises from the truncation of 

the crystal at the surface or interface. This rod of scattering is known as the  crystal  

truncation rod (CTR) [26]. The intensity of the CTR is approximately 105 times smaller 

than that of the Bragg peak [26].

Different  terminations  of  the crystal  surface alter  the shape of  the CTR. For 

example, if the termination is more smooth than a step-function, the intensity of the 

CTR will fall off more rapidly than 1/(Δqz)2. An example is shown in fig. 2.4 for the 

case  of  a  Pt(111)  crystal  [26].  The  dashed  line  represents  the  scattering  given  by 

equation  (2.16)  but  it  does  not  describe  the  data  very  well.  If  instead  of  a  sharp 

termination an extra layer of atoms was added on top with a fractional occupancy β (0 < 

β < 1), adding a second layer with occupancy  β2 (etc.) and equation (2.16) is modified 

to  account  for  roughness  [26];  the  modified CTR is  given by the solid  line,  which 

predicts the data very well.

A determination of a crystal structure means determining both the size and shape 

of the unit cell and the atomic positions within the unit cell. In many cases the former is  

simple in surface crystallography because the surface structure is commensurate with 

the underlying substrate.

The atomic structure within the unit cell must be determined from the structure 

factors,  since it  is  only in the structure factor  that the atomic positions appear.  The 

structure factors can be obtained from the measured CTR intensities after  geometric 
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correction factors have been applied.  The intensities are also affected by the crystal 

quality of the sample and the collimation of the incoming X-ray beam. The correction 

factors are discussed in more detail in the next chapter.    

Figure 2.4:  Crystal truncation rod of an etched Pt(111) crystal under He atmosphere. 

The  reciprocal  lattice  notation  in  the  inset  is  with  normal  bulk  Miller  indices.  The 

dashed line represents the CTR for a sharp terminated surface, whereas the solid line is 

the CTR from a rough surface. After I.K. Robinson [26].

2.3 Bicrystallography

This  thesis  is  concerned  not  with  surfaces  but  the  much  more  challenging 

problem  of  the  crystalline  interface  structure.  It  extends  the  CTR  formulation  to 

bicrystals.

For the purposes of this work the definition of a bicrystal is taken from Pond 

(1979) [27] to be two semi-infinite crystals separated by a unique plane, the interface. 

This  section  introduces  the  concept  of  the  formation  of  idealized  bicrystals,  grain 

boundary interfaces and the dislocations that lead to the formation of different grain 

boundaries. For a more detailed discussion on the formation of bicrystals and symmetry 

operations the reader is directed towards references [3, 27-31].
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2.3.1 Outline of the Crystallographic Methodology

A bicrystal  is  a  composite  object  of  two  crystals.  There  are  two  types:  a 

heterophase bicrystal, in which the component crystals do not share the same structure, 

and a homophase bicrystal, in which the component crystals have the same structure. In 

general the symmetry of the bicrystal  will  be lower than the symmetries  of the the 

component  crystals  and  this  lowering  of  symmetry  is  known as  dissymmetrization.  

However, in the case of the homophase crystal additional symmetry elements may be 

created that do not exist in the component crystals in isolation.

Pond [29] introduces a systematic method for the derivation of the symmetry of 

a interface consisting of four stages. At each stage the symmetry of the object is either 

the same or lower than the symmetry at the previous stage.

Firstly  the  notion  of  colour is  introduced.  This  distinguishes  between  the 

operations relating sites in the same crystal from those relating sites in different crystals. 

Firstly one assigns a colour to either crystal, in this case one crystal is labelled black and 

the other red.  Ordinary operations relate black sites to black sites and red sites to red, 

while  antisymmetry operations relate black sites to red and vice versa. Antisymmetry 

operations only exist in homophase bicrystals. The initial stage of dissymmetrization is 

to allow the black and red lattices to interpenetrate to form a dichromatic pattern. In the 

second stage one lattice is rotated to introduce the relative orientation of the two crystals 

that will exist in the final interface. Both ordinary and antisymmetry operations may 

exist  in  the  dichromatic  pattern.  The  space  group  of  the  dichromatic  pattern  may 

therefore contain both types of operation and such a group is called a colour group.

Up until now the interface between the crystals has still not been introduced. The 

third stage consists of sectioning the dichromatic pattern on the interface plane and to 

place one crystal lattice on one side of the section and the other crystal lattice on the 

other. This is the unrelaxed bicrystal.

The forth and final step is to introduce the grain boundary by the insertion of 

additional  material  at  the  interface  and the  interatomic  forces  are  “switched  on”  to 

minimise the energy of the bicrystal giving a relaxed structure. During the relaxation 

process there is a possibility that a rigid body translation of one crystal to the other may 

occur.  In  general  the  rigid  body  translation  has  components  both  parallel  and 
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perpendicular  to  the  interface;  the  perpendicular  component  is  called  the  interfacial 

expansion and the parallel component is known as the in-plane translation. 

2.3.2 Coincidence-Site Lattice

When the crystals are allowed to interpenetrate in the previous section they have 

complete self-coincidence. However, partial self-coincidence can occur for certain other 

rotations about an axis. Two crystal lattices related by such an angular rotation about an 

axis have certain common sites, located on a single lattice of larger cell dimensions. 

This  larger  lattice  is  known  as  the  coincidence-site  lattice  (CSL)  [32].  The 

misorientation relationship between two crystals can be given as an axis-angle pair.

The procedure for obtaining CSLs for rotations about [100] is taken from [32]. A 

lattice point is chosen as the origin and a square cell is constructed on each line joining 

the origin to a visible point, and illustrates that there are no other points on the line 

between the given lattice point and the origin. This square cell is much larger than those 

of the original unit cell and can be used to generate a CSL. The ratio of the area of the  

new unit  cell  to that of the original  lattice is  x2 +  y2,  where (x,y)  are  the Cartesian 

coordinates of the lattice point which is joined to the origin. This ratio is also equal to 

the multiplicity, Σ, of the CSL, which may be defined as the reciprocal of the density of  

common points [3]. However, the rotation of 180o around [hkl] in the cubic system gives 

rise to the following CSLs of 

=h2k 2l 2 , (2.17)

if h2+k2+l2 is odd or

=
h2k 2l 2

2
, (2.18)

if h2+k2+l2 is even.  

The CSL of a Σ13(501) grain boundary is shown in fig. 2.5. In this diagram the 

crystals have interpenetrated and the black crystal rotated with respect to the red crystal. 
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The rotation angle between the two crystals is given by θ = 2 tan-1(1/5) = 22.6o.

2.3.3 Grain Boundaries

In a real bicrystal the two lattices are not interpenetrating, but are separated by a 

grain boundary, which may require the introduction of a dislocation vector b in order to 

ensure  compatibility  at  the  interface. A grain  boundary  is  a  homophase  interface 

involving a misorientation between the adjoining crystal lattice.

A grain boundary is called a  tilt  boundary  when the axis of rotation that can 

bring the crystals into the same orientation is parallel to the boundary plane, a  twist  

boundary when the axis is perpendicular to the boundary plane, and a mixed boundary 

in other cases [1].

A boundary between two grains  A and  B of the same material, but of different 

orientation, is fully determined by the axis of rotation l, the angle of rotation θ, and the 

orientation of the plane of contact N. Whereas the axis l has the same orientation with 

respect to the lattices of A and B, the boundary plane N may have different orientations 

NA and  NB with  respect  to  these  reference  systems.  It  is  often  useful  to  give  the 

orientation of N with respect to a third lattice C, which is known as the median lattice 

[1]. This lattice is obtained from A or B by a rotation of ± θ/2 about l. This orientation 

NC  is the median plane. For a pure twist boundary NA = NB = NC.

A pure  tilt  boundary  is  symmetrical if  the  median  plane  is  a  macroscopic 

symmetry plane of the crystal which in the diamond lattice is a {100} or {110} plane.  

When the rotation axis is parallel to one or more of these symmetry planes there will be 

one or more symmetrical positions of the boundary plane [1].
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Figure 2.5: (001) projection for the Σ13 boundary in the diamond cubic structure. The 

black shapes represent the atoms of the black crystal and the red the atoms of the red 

crystal. The squares represent atoms that are in the plane of the paper, the asterisks are  

atoms that are ¼ [001]  above it, the crosses are atoms ½ [001] above it and the dots are 

atoms ¾ [001] above it.  The CSL is represented by the large square.

2.3.4 Edge Dislocations

A dislocation is  a  crystallographic  defect  or  irregularity,  within  a  crystal 

structure. Generally speaking, grain boundaries are composed of an array of dislocations 

and their properties and structure depends on the angle of rotation. The simplest type of 
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dislocation is obtained when it is imagined that a cut is made over a certain area of a 

plane perpendicular to (e.g.) an x-axis in an originally perfect lattice, and along this cut 

either a layer of atoms has been removed or inserted [33]. The insertion of the extra 

layer of atoms will cause an expansion in the lattice in the immediate vicinity of the cut  

(fig. 2.6). This type of dislocation is known as an edge dislocation. This dislocation has 

a line direction (also known as the dislocation line), which is in the plane perpendicular 

to the direction of the extra layer of atoms (the slip vector).

Figure 2.6: An illustration of a two-dimensional edge dislocation [33]. This dislocation 

has been obtained by the insertion of an extra layer of atoms along the y-axis. The line 

direction is along the x-axis. 

2.3.5 Screw dislocations

It is also possible to have dislocations with a dislocation line parallel to the slip 

vector [34]. Figure 2.7 shows a screw dislocation parallel to a cube edge in a simple 
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cubic crystal; the unit cells are shown as distorted cubes. This figure also illustrates why 

this dislocation is called screw: the crystal is not made up of parallel atomic planes one  

above the other; rather it is a single atomic plane in the form of a spiral ramp. Figure 

2.8 shows the atomic planes above and below the slip plane; the open circles represent 

atoms just above the slip plane, and the solid circles atoms just below.

Figure 2.7:  The screw dislocation. The atoms are represented by the distorted cubes. 

The crystal is a single atomic plane in the form of a spiral ramp. The Burgers vector is  

given by the blue circuit. After [35].
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Figure 2.8: Arrangement of atoms around the screw dislocation. The plane of the figure 

is  parallel  to  the  slip  plane  (the  slip  vector  is  denoted  by  the  arrow).  AD is  the 

dislocation and ABCD is the area of the slip.

2.3.6 Burgers Circuit and Vector

In order to describe a dislocation line as completely as possible it is necessary 

only to specify the position of the dislocation line within the crystal and to indicate the 

character of each segment of the line [36]. The position of any segment of a dislocation 

line can be described by a vector r, as shown in fig. 2.9.

Figure 2.9: Tangent vector t of a dislocation segment at position r. The vector t is a unit 

vector tangent to the dislocation line. Thus t = dr/dr.

D

A
B

C

r

t



Chapter 2. BACKGROUND THEORY 20

In order to describe the character of each segment of the line Burgers vectors are 

used. The Burgers vector of the edge dislocation in fig. 2.6 is shown in fig. 2.10. Two 

circuits have been drawn in this  figure.  The upper circuit is drawn around the edge 

dislocation; the lower circuit avoids the dislocation. In each circuit the same number of 

jumps from atom to atom are made up as are made down, to the left as to the right. The 

starting and finishing point are the same atom in the circuit that does not include the 

dislocation.  However,  for  the  circuit  that  includes  the  dislocation  the  starting  and 

finishing atoms are different points.  Thus there is a failure to close the circuit.  The 

Burgers vector, b, is defined to be the closure failure. The sense of the vector is from the 

finishing atom to the starting atom. The Burgers vector  is  perpendicular  to  the line 

dislocation for an edge dislocation and parallel for a screw dislocation.

Figure 2.10: Burgers circuit around an edge dislocation.

b
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2.4 Fourier Transform Holography: Conceptual

In this section the concept of Fourier transform holography and reconstruction 

techniques is introduced. For more detailed discussions the reader is directed towards 

the following text-books [37-39].

Holography is an  interference  method of recording the light waves diffracted 

from an  object  by  a  subject  illuminated  with  coherent  light.  The  diffracted  waves 

interfere with a  phase-related reference wave.  If  the waves are  highly coherent,  the 

relative  phase  between  the  object  and  reference  wave  remains  constant  in  time 

producing an observable effect on the intensity distribution of the resulting interference 

pattern. This pattern, the hologram, contains sufficient information about both the phase 

and the amplitude of the diffracted waves to permit their reconstruction.

Let o = o0exp(iφo) be the complex amplitude of the light arriving at the hologram 

plane from the object and r = r0exp(iφr) the complex amplitude from the reference wave 

at  the  hologram, where  φo  and φr are  the  phases  of  the  object  and reference  waves 

respectively and o0, r0 the amplitudes. The interference between the two waves gives the 

intensity, I, of the hologram to be

I=or o*r*=o .o*r .r*o .r*r .o* , (2.19)

where the * denotes the complex conjugate. This can be rewritten as

I=o0
2r 0

22 o0r 0 cos r−o , (2.20)

where the interference term is 2o0r0cos(φr-φo). When the object and reference points are 

in the same plane, the coordinates of the object O are (xo, 0, zo) and the coordinates of 

the reference R are (xr, 0, zo). The phase difference in equation (2.20) becomes

r−o=
−2
  xr

zo

−
xo

z o x2 . (2.21)

Differentiation of (φo  –  φr)/2π with respect to  x2, the  x  component in the plane of the 
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hologram, yields the constant fringe frequency 

=
xo−xr

zo
. (2.22)

Since the fringes are independent of  y, the fringes are vertical and uniformly spaced, 

linear fringes.

From fig. 2.11, the ratio of xr/zo = tan θr ~  θr  and xo/zo ~  θo. Equation 2.21 can be 

rewritten as

r−o=
2


o−r x2 , (2.23)

and the phase difference now only depends on the angle subtended at the hologram by 

the difference between the object and the reference. If the object and reference are an 

infinite distance away from where the hologram is formed, equation (2.23) holds true. 

The waves arriving at the hologram from point sources at infinity are plane waves. They 

are far-field pattern or Fourier transforms of the point source. Hence the linear fringe 

system of equation (2.23) can be regarded as the interference of a plane wave reference 

with the Fourier transform of the object source. Taking this into consideration equation 

(2.19) can be amended to become:

I=RR*OO*O R*RO*=∣R∣2∣O∣2O R*RO* , (2.24)

where R is the Fourier transform of r and O is the Fourier transform of o (see appendix 

A.1) . The terms |R|2 and |O|2 are the autocorrelation terms and arise from the object and 

reference  alone  whilst  the  cross-correlation  terms  OR* and  RO* arise  from  the 

interference of the object and reference waves giving rise to fringes.

Real space images are reconstructed by calculating the two dimensional Fourier 

transform of the hologram:

ℱ [ I ]=ℱ [∣R∣2]ℱ [∣O∣2]ℱ [O R*]ℱ[RO*] , (2.25)
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The real space image, Ireal, has four components

I real=r∗ro∗oo∗rr∗o , (2.26)

The cross-correlation terms give rise to identical, twin images. 

Figure 2.11: Lensless Fourier transform configuration. 

2.4.1 Conditions for Interference

If two beams are to interfere to produce a stable pattern, they must have very 

nearly the same frequency. A significant frequency difference would result in a rapidly 

varying, time dependent phase difference, which in turn would cause the interference 

terms in equations (2.20) and (2.24) to average to zero during the detection interval.

Thus far in our treatment of holography we have assumed illumination from a 

monochromatic  plane wave produced by a  point  source.  Under these conditions  the 

phase  difference  for  two fixed  points  along a ray direction  is  time independent,  or 

equivalently,  the  difference in  the phase measured at  a  single point  in  space  at  the 

beginning and end of a fixed time interval  Δt does not change with time. These are 

statements of perfect temporal coherence. Similarly, the phase difference for two fixed 
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points in a plane normal to a ray direction is time independent. This is perfect spatial  

coherence.

Light from a real physical source is never strictly monochromatic, since even the 

sharpest  spectral  line  has  a  finite  width,  so  partially  coherent  waves  are  used  to 

illuminate samples. Coherence gives a measure of the correlation between two points P1 

and P2 in the wave field.

2.4.2 Complex Degree of Coherence

The general subject of partial coherence is treated extensively in Chapter 10 of 

Born  and  Wolf  [40].  Rather  than  reproduce  proofs  of  these  results  the  necessary 

relations are summarized here as basic concepts.

Suppose as in fig. 2.12, that light waves emerge from pinholes  P1 and  P2 and 

interfere on an observation screen S. An extended partially coherent source illuminates 

the pinholes. The intensity at point Q on S is represented by equation (2.19) where o and 

r are the complex electric fields of the waves from P1 and P2 arriving at Q. It is shown 

by Born and Wolf that the time average of the interference term 

〈or*o* r 〉=2ℜ[ 〈or* 〉] , (2.27)

can be written in terms of a complex degree of coherence γ12(τ) and ℜ denotes the real 

part of the operator. γ12(τ) relates the correlation of the electric fields at P1 and P2 to the 

time  average  of  the  interference  at  Q.  Since  the  latter  is  measurable  in  terms  of 

visibility,  γ12(τ) has the merit of expressing coherence as a measurable quantity.  The 

light intensities at points  P1 and  P2 are 2<o(t)o*(t)> and  2<r(t)r*(t)> . The complex 

degree of coherence γ12(τ) is defined as the normalised coherence of o(t) and r(t) 



Chapter 2. BACKGROUND THEORY 25

12=
〈otr*t 〉

[ 〈o t o*t 〉〈r t r*t 〉 ]1/ 2

=
lim
T ∞

1
2T ∫−T

T

otr*t dt

[limT ∞

1
2T ∫−T

T

ot o*t dt lim
T∞

1
2T∫−T

T

r t r*t dt]
1 /2

, (2.28)

where T is the observation time. They then relate γ12(τ) to equation (2.27) through

2ℜ[ 〈or* 〉]=2o0 r0 ℜ[12 ]=2o0 r 0∣12∣cos12 , (2.29)

where τ is the difference in light transit time between P1 and Q compared to that from P2 

and Q, and β12 is the phase of γ12(τ). The quantity of γ12(τ) is a measure of the coherence 

between  light  at  P1 and  P2 and  encompasses  both  temporal  and  spatial  aspects. 

Substitution of equation (2.29) into equation (2.19) gives the minimum and maximum 

intensities:

I max=o0
2r0

22 o0 r 0∣12∣  when cos 12=1 (2.30)

and

I min=o0
2r0

2−2o0 r0∣12∣  when cos 12=−1 . (2.31)

Therefore the time averaged components produce different results in the case of partial 

coherence from that obtained in the case of perfect coherence. This will assert itself in 

the visibility of fringes V defined by

V =
I max−I min

I maxI min
=

2∣12∣
o0

2/r 0
21/2r 0

2/o0
21/2

.   (2.32)

When the interfering waves are of equal intensity, the absolute value of the degree of 
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coherence is equal to the observed visibility of the interference fringes.

Figure 2.12: Double aperture experiment from an extended source.

2.4.3 Spatial Coherence Requirements

In recording the hologram, both reference and object beams must have well-

defined wavefronts that are constant in time. The spatial coherence of a light field is a 

measure of the degree of phase correlation at two different points of space at a single 

time. This correlation is primarily dependent on the size of the source from which the 

light originated [40].

If a meaningful criterion is set for minimum spatial coherence, the van Cittert-

Zernike theorem can be used to estimate the maximum spatial extent of a lightsource 

suitable for forming holograms. The van Cittert- Zernike theorem formally relates the 

degree of spatial coherence to the lateral extent of a source through a Fourier transform 

relationship. The theorem will just be stated here, for a further discussion see chapter 10 

of Born and Wolf. For the case of an extended source containing mutually incoherent 

oscillators, but with a narrow spectral bandwidth  Δυ, the van Cittert-Zernike theorem 

can be expressed as follows [37]: When a small source illuminates two closely spaced  

points  located in a plane a long distance from the source,  the degree of  coherence  

between complex electric fields at two points is given by the magnitude of a normalised  
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Fourier transform of the intensity distribution of the source.

Consider the geometry shown in fig. 2.13 where a small pinhole,  S, located in 

the x'y' plane, allows only a small area of the source to pass to an xy plane a distance R 

away. The two positions  P1 and  P2 on the  xy plane have coordinates (0, 0) and (x,  y) 

respectively. Figure (2.13) describes a situation similar to that in fig. (2.12); equation 

(2.28) defining the complex degree of coherence γ12(τ) applies. For the case of τ = 0 and 

with the points P1 and P2 located as in fig. (b), γ12(0) ≡ μs(x, y) can be written as

s x , y=
∫
−∞

∞

v 0,0,t v* x , y , tdt

[∫−∞
∞

v 0,0, t v*0,0,t dt∫−∞
∞

v x , y ,t v* x , y , t dt]
1 /2 , (2.33)

where  μs is the complex degree of spatial (transverse) coherence of the apertured source 

as measured in the xy plane.

By means of the van Cittert-Zernike Theorem the degree of spatial coherence is 

expressed  as  the  magnitude  of  a  normalised  Fourier  transform  of  the  intensity 

distribution over the pinhole:

∣s x , y∣=∣∫−∞
∞

∫
−∞

∞

I x ' , y ' exp[2 i  x ' y ' ]dx ' dy '

∫
−∞

∞

∫
−∞

∞

I x ' , y ' dx ' dy ' ∣ , (2.34)

where ξ = x/λR, η = y/ λR and λ is the mean wavelength of the radiation emitted by the 

source. The validity of the theorem depends on the following assumptions:

1.The radiation  from the  source  is  quasi-monochromatic;  i.e.   λ  is  much 

greater than the deviation Δλ.

2.The separation R between the pinhole and the xy plane is much greater than 

the extent of the pinhole or the distance r.

3.The radiation inside the pinhole is spatially incoherent

4.The coherence length of the source radiation c/Δf =  λ2 /Δλ is much greater 

than the maximum difference in optical paths between either of the sampling 
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points and any point in the source. (Here f is the temporal frequency).

The assumptions are all satisfied with relative ease even when using soft X-rays from a 

synchrotron source using modest spectral filtering.

If the intensity of the source is assumed to be uniform over the circular pinhole 

of radius r0, integration of equation (2.35) yields

∣s∣=∣2 J 1r 0/
r 0/ ∣ , (2.36)

where  J1 is a Bessel function of the first order. Figure (2.14) is a plot of |μs|  versus 

πr0θ/λ. Figure 2.14 shows that |μs| decreases steadily from unity when  πr0θ/λ = 0 to zero 

when  πr0θ/λ  =  3.83.  A further  increase  in  πr0θ/λ  re-introduces  a  small  amount  of 

coherence, but the degree of spatial coherence remains smaller than 0.14. The function 

|μs| decreases steadily from unity for  πr0θ/λ = 0 to 0.88 when  πr0θ/λ = 1. A departure of 

12 percent or less from the maximum value of unity can be regarded as sufficiently 

close approximations to full coherence [40].

Figure 2.13: Geometry related to discussion of the spatial coherence of a light source.
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Figure 2.14: Degree of spatial coherence for a circular pinhole versus πr0θ/λ.
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Chapter 3

Commissioning of Beamline I07

3.1 Introduction

With the increasing availability of third-generation synchrotron facilities, surface 

X-ray  diffraction  has  become  an  important  tool  for  structural  and  morphological 

characterisation of surfaces and interfaces [1, 41, 42]. Because of the low scattering 

cross-section of X-rays, kinematical scattering theory applies and the interpretation of 

scattered X-rays is relatively straightforward. The major drawback of the low scattering 

cross-section is the weak scattering signal, which has been overcome by the brightness 

of the synchrotron radiation. 

Initial analysis using surface X-ray diffraction emphasised the in-plane projected 

structure  factor,  but  were  typically  less  sensitive  to  the  positions  of  the  atoms 

perpendicular  to  the  surface  [43];  this  was  mainly  dictated  by  the  designs  of  the 

diffractometers  and  sample  chambers  that  only  allowed  limited  perpendicular 

momentum  transfer.  However,  more  recent  diffractometers  have  extra  degrees  of 

freedom (on the detector) enabling a wide range of perpendicular momentum transfer to 

be reached and thus allowing atomic coordinates to be determined with high accuracy.

Beamline I07 at the Diamond Light Source is a high resolution X-ray diffraction 

beamline  for  investigating  the  structures  of  interfaces  and  surfaces  under  different 

environmental conditions.  The beamline has a  (2+3)-type diffractometer [44],  which 

combines  the  ideal  resolution  behaviour  of  a  z-axis  (fixed  angle  of  incidence) 

diffractometer  [45]  with  the  mechanical  simplicity  and  range  of  a  (2+2)-circle 

diffractometer.

As  of  February 2010,  the  beamline  was  operational  but  was  in  optimisation 

mode. The purpose of this chapter was to commission the diffractometer by comparing 

CTR scattering, from a Si bicrystal, obtained using the various types of rodscan and 

detectors.  After  a  brief  description  of  the  beamline,  diffractometer  and  methods  of 
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obtaining  data,  a  crystal  truncation  rod  is  presented  for  the  various  scan  types  and 

compared. Finally, any alignment issues of the diffractometer are examined.

3.2 Beamline I07

Beamline  I07,  at  the  Diamond Light  Source,  Didcot,  UK, is  a  purpose  built 

beamline for the study of interfaces and surfaces by X-ray diffraction. The X-ray source 

(fig.  3.1)  has  a  U23  undulator  capable  of  producing  highly  collimated  and  intense 

beams. After passing through the white beam slits,  the beam enters a double-crystal 

silicon monochromator; two crystals with a common, horizontal axis of rotation. The 

monochromator  tunes  the  X-ray  energy  and  focuses  the  beam  in  the  horizontal 

direction. The two mirrors after the monochromator remove unwanted harmonics and 

focusses the beam in the vertical and horizontal direction respectively.

A  (2+3)-type  diffractometer  is  mounted  on  the  beamline.  The  (2+3)-type 

diffractometer combines the ideal resolution behaviour of a  z-axis diffractometer with 

the mechanical simplicity of the (2+2)-circle diffractometer [44]. Vlieg shows in [44] 

that the z-axis and (2+2)-circle geometries can be made fully equivalent by an additional 

azimuthal degree of freedom of the detector. The (2+3)-type diffractometer (fig. 3.2) has 

five degrees of freedom: α  and ω for the sample only and  δ, γ  and  υ  for the detector 

motion. The angle of incidence is set by α, the sample azimuth by ω. The direction of 

the outgoing wavevector is determined by angles δ and γ. The beamline control software 

performs all the necessary angle calculations to enable measurements to be taken at the 

desired points in reciprocal space [47].

The diffractometer can be equipped with several detectors. The two detectors 

used in this  experiment are a Cyberstar  scintillation detector  and a PILATUS 100K 

detector.  The  Cyberstar  scintillation  detector  is  a  point  detector  and  has  several 

advantages; it has good energy resolution, low dead time, can cope with high count rates 

[48] and does not require cooling. The PILATUS detector [49, 50] is a hybrid pixel 

array detector. A hybrid pixel detector is composed of a silicon sensor, which is a two-

dimensional array of pn-diodes,  connected to an array of readout channels designed 

with  advanced CMOS technology.  The advantages  of  hybrid  pixel  detectors  can  be 

summarized  as:  “zero  noise” provided by energy threshold  capability of  the photon 
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counting electronics, a high dynamic range, allowing for simultaneous observation of 

weak scattering and high intensity diffracted peaks, high quantum efficiency and short 

readout  times.  The PILATUS area pixel  detector  operates in  single-photon counting 

mode. The parameters of the PILATUS detector are shown in table 3.1.

There are a series of attenuators that are installed behind the samples and just in 

front  of  the  detectors.  These  attenuators  are  controlled  remotely  by  the  beamline 

software.  The  beamline  software  can  be  configured  to  manipulate  the  attenuators 

automatically so that continuous scans can be made without having to pause for filter 

settings to be changed.

Samples are mounted on a hexapod that has several motor movements (fig. 3.3). 

Translational movements are along x, y and z while the rotations are given by rx, ry and 

rz.

Figure 3.1:  The X-ray source of beamline I07. The cryocooled undulator was installed 

during the summer of 2010 after the experiments had taken place. Before this a U23 

undulator was in place, and was capable of producing energies up to 20 KeV. After [46].

(a)
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Figure 3.2: Schematic of a (2+3)-circle diffractometer. This has the same geometry as 

the (2+2)-type, but with the addition of a  υ  circle for the azimuth of the detector and 

slits. After [44].
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Sensor Reverse-biased silicon diode array 
Active Area 83.8 mm x 33.5
Number of Pixels 94965
Pixel Size 0.172 mm x 0.172 mm
QE at (i) 8 KeV (ii) 15 KeV (i) 99% (ii) 55%
Readout time 2.7 ms
Frame Rate 300 Hz
Energy Range 3-30 KeV
Dynamic Range 20 bit

Table 3.1: Parameters of the PILATUS 100K detector system [51]

Figure 3.3: Motor movements of the hexapod. After [52].

3.3 Aligning the Diffractometer

In order to record a CTR we require concerted movement of at least three motor 

x

y

z

ry

rx

rz

(a)
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movements (ω,  δ and γ). The alignment procedure [52] involves positioning the entire 

diffractometer relative to the direct X-ray beam; zeroing the diffractometer movements; 

aligning  the  sample  interface;  and  accurately  obtaining  the  angles  for  the  Bragg 

reflections used to calculate the orientation matrix. The use of the PILATUS detector 

makes the alignment process different and simpler (most notably in the diffractometer 

alignment  and  obtaining  reflections  of  the  orientation  matrix)  compared  to  using 

traditional point detectors. In order to prevent beam damage to the PILATUS detector 

all filters were in place.

3.3.1 Aligning the Detector 

The first step in the alignment process was to align the detector. All angles were 

0o.  The  position  of  the  direct  beam on the  detector  was  recorded and  assigned  the 

coordinates (x1,y1). The detector was rotated around its own axis, υ, by 180o and the new 

position  of  the  beam observed;  which  had  coordinates  (x2,y2).  The  centre  of  the  υ 

rotation was at (x1+x2)/2, (y1+y2)/2. The values of  δ and γ were changed until the direct 

beam was at the centre of rotation and  δ and γ were zeroed. 

The zero of  υ was found by rotating γ so that the direct beam was close to one 

side of the area detector and the beam height recorded. The beam was moved to the 

other  side  of  the  detector.  If  the  height  remained  constant,  then  this  was  the  zero 

position  of  υ.  If  the  height changed  then  υ  was changed  and the  above  process  is 

repeated until the beam height was constant, at which point  υ was zeroed.

3.3.2 X and Y Centering

The next procedure was to centre the sample in x and y so the direct beam passed 

through  the  centre  of  the  sample.  The  sample  used  in  this  chapter  is  the  same  Si 

bicrystal studied in chapter 4. All diffractomer angles were 0o. The beam was scanned as 

the hexapod moved in x and then y. The direct beam passed through the middle of the 

sample when the beam profile was at a minimum (fig.  3.4). The hexapod was moved to 

the x and y positions of the minimum. The process for aligning z is described in chapter 

4.
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Figure 3.4: A scan across the direct beam profile for the position of the hexapod in x 

and  y.  Note  that  when  the  sample  is  centered  in  both  x and  y there  is  still  33% 

transmission through the sample at a beam energy of 22.65 KeV.  

3.3.3 Sample Angular Alignment

The rotation of the sample in  x and  y (rx and ry respectively) was aligned by 

rotating either rx or ry for a given value of ω until a peak was found; ω was then rotated 

through ± 180o and the above process repeated (fig. 3.5). In each case the value of rx and 

ry for which the peak occurred were noted and the values of  rx and  ry were centred 

accordingly between these values.  

3.3.4 Incoming Angle

Once all of the angles were aligned, the diffractometer was moved to some 2θ 

position; α was aligned simply by rotating it until a peak was measured (fig. 3.6).

(a)
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3.3.5 Obtaining Reflections for the Orientation Matrix

Diffraction  experiments  require  precise  knowledge  of  the  orientation  of  the 

crystallographic  axes  in  the  fixed  frame  of  the  diffractometer,  in  order  to  navigate 

reliably in reciprocal space [53]. This requires an orientation matrix, which is calculated 

from the motor positions for at least two well defined positions in reciprocal space [53]. 

Obtaining the diffractometer angles for Bragg reflections was relatively easy using the 

area detector. The beamline software controlling the diffractometer calculates the motor 

angles for a given Bragg Peak (hkl). The angles γ and δ are fixed but ω can be out by 

many degrees. The Bragg Peak was found by rotating  ω until the Bragg peak was seen 

on  the  area  detector.  The  position  of  the  Bragg  peak  was  found  at  the  maximum 

intensity (fig. 3.7).  

Figure 3.5: Sample angular alignment. The sample was rotated until a Bragg peak was 

located for a given  ω  value.  ω  was rotated through  ± 180o and the process repeated 

until the peak was located. The hexapod was then centred.  
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Figure 3.6: Aligning the incoming angle on a Bragg peak.

Figure 3.7: The sample was rotated until the Bragg peak was seen on the area detector. 

The position of the Bragg peak was found at the maximum intensity.

(a)
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Once  ω  was optimised, it was often seen that the Bragg peak was no longer 

centred on the area detector. The angles α, δ and γ were scanned over a small range until 

the Bragg peak was centred. The experiments were performed in  z-axis mode with a 

fixed angle of incidence of 0o.

Once  all  the  angles  were  aligned  the  Bragg  peak  can  be  added  to  a  list  of 

reflections that are used to obtain the reflection matrix. The procedure of obtaining the 

orientation matrix using the area detector is considerably faster than using the point 

detector because (i) no detector scans need to be recorded to ascertain the maximum of 

the Bragg peak and (ii) the large area detector makes it probable, using the first estimate 

for the angle settings, that the peak will be visible. By tracking the Bragg Peak as ω is 

rotated, the position of the Bragg peak can be established very rapidly.

3.4 Rocking and Constant Velocity Scans

The integrated intensity of a CTR is measured at a certain height along a rod (i.e. 

at a certain momentum transfer in the direction normal to the surface or interface). The 

integration is performed over a finite slice of the rod determined by the acceptance of 

the  detector  arrangement  which  depends  on  experimental  parameters  (see  appendix 

section A2) [24]. The integrated intensity of the rod is measured in a scan, which starts 

away from the rod at the background level, going through the peak intensity of the rod 

and ending again on the other side of the background level. The background-subtracted, 

total sum of detected photons is then a measure of the integrated intensity [24]. The scan 

is performed by rotation of the crystal around an axis normal to the scattering plane with 

the detector fixed (fig. 3.8). This scan is known as an  ω-scan. There are two types of 

this scan; the rocking scan, where the sample is rocked about its surface normal and for 

each  ω  the photons are counted for a specified time, and the constant velocity (c.v.) 

scan,  where the sample  rotates  about  its  surface  normal  at  a  constant  velocity. The 

potential benefits of the c.v. scan are that the scans are faster as there is no settling time 

of the diffractometer and it does not miss sharp peaks, however, one potential draw back 

is the peak shape may not be accurately captured.

The  rocking  and  c.v.  scans  were  performed  by  orientating  the  detector  and 

sample to fulfil the (hkl) diffraction condition and then rotating the sample around its 
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surface normal in positive and negative ω values. During the rotation the intensity was 

measured by a scintillation detector. For each rocking scan, approximately 50-200 data 

points were measured for each l height. The number of data points was dependent on the 

range and increment of ω. In order to track the diffraction feature with the detector, the 

δ and γ motors of the detector arm and the sample rotation ω must move in a concerted 

manner as a function of l [53]. The integrated intensity was obtained using the program 

ANA [54].

First a scan was read into ANA, and either a Lorentzian or Gaussian line shape 

was fitted to the data. This gives a measure of the background at the left and right of the  

peak for each scan. The peak was integrated numerically to give the integrated intensity. 

ANA saved the integrated intensity and error for each value of l. When there was a clear 

peak in the data set the background is obtained easily. However, when the signal to 

noise ratio worsens, care was taken that the peak fitting obtained a good estimate of the 

background. 

At values of l close to the Bragg peak care was taken when integrating the peak. 

As the sample rotated in  ω  the point detector measures both the CTR and the Bragg 

peak. The background in this case became curved, increasing as it approached the CTR. 

The background was incorrectly predicted when a Gaussian was fitted to it  and the 

subsequent integrated intensity was incorrect. The solution was to delete the background 

points and integrate over just the peak. The error in this measurement was then just the 

square root of the intensity.

(a)
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Figure 3.8: Rocking scan (ω-scan). The crystal was rotated about an axis normal to the 

scattering plane spanned by ki and kf. Diffraction was obtained when q is intersecting 

the Ewald sphere and  q = kf   - ki. 

3.5. Stationary Scans 

The stationary scan, so called because the sample does not need to be rotated 

about its surface normal, accepts the entire in-plane component of the rod, for a given 

height l, by use of the PILATUS detector. The integrated intensity is found by obtaining 

the signal  S;  accomplished by drawing a box that contains the entire CTR and then 

integrating over all the pixels in the region of interest (ROI) [53]. The background  B is 

obtained in the same manner. The integrated intensity is obtained by subtracting the 

background from the signal:

I=S−B , (3.1)

where B is scaled by Ns/Nb where Ns is the number of pixels in the the signal ROI and Nb 

is the number of pixels in the background ROI.  This process is illustrated in fig. 3.9. An 

advantage of the area detector is that the size and positions of the ROI are user defined, 

and if an artifact is present that contributes to the signal, the ROI of the background can 

be appropriately placed on the artifact such that the integrated intensity is not affected.  

Photon  counting  is  a  Poissonian  process  [55].  Whilst  counting  photons  the 
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variance on an observed quantity of  photons Q is the number of photons (var(Q) = Q).  

The  standard  deviation,  σ(Q),  is  the  square  root  of  the  variance.  It  follows  for  the 

integrated intensity that

var(I) = S + B . (3.2)

The relative error is the standard deviation of the integrated intensity divided by 

the integrated intensity, and is given by

Rerr=
 I 

I . (3.3)

The relative error reduces to S½ when B equal to zero. It is clear that high values of S 

and low values of B give the smallest relative error. 

3.5.1 Detector Slit Size

The slits  immediately after the sample were fully open up to this point.  The 

horizontal separation (x) was 17.935 mm and the vertical (y) 22 mm, when fully opened. 

The signal to noise ratio was investigated by varying the horizontal and vertical widths 

(fig. 3.10). The intensity of the CTR at (2.35,0,2.07) was measured for a counting time 

of  100  seconds.  The  signal  to  noise  ratio  (SNR)  is  derived  from  the  signal  and 

background, calculated in the manner presented in section 3.5, and is given by the ratio 

of the two. The SNR ratio of fig 3.10(a) is 3.669, (b) is 4.183, (c) is 4.083 and (d) is  

3.933. Changing the widths of the detector slits has little effect on the SNR. There is 

always a signal measured outside of the slit  region by the area detector;  a result  of 

scattering from the slits.

3.5.2 Beam Slit Size

Prior to this stage the slits in front of the sample were fully open. This can lead  

to an increase in the background noise from things like diffuse scattering; which can be 

(a)
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minimised by changing the distance between the beam slits.  The diffractometer was 

moved to the CTR at (2.35,0,2.07). The intensity was measured for a slit gap of 200 μm 

and then every 2 μm until the slits were fully closed (fig. 3.11). The counting time was 

kept constant at 100 seconds for each scan. The background decreases steadily with 

decreasing slit  size,  the signal behaves similarly to about 30 μm at which point the 

signal is approximately constant until the slit distance is 20 μm at which point the signal 

falls to zero rapidly. The difference between the two is approximately constant as the slit 

size decreases, but there is a clear increase at 24 μm. The slit size is kept at 24 μm 

throughout the experiment as it gives the largest intensity.

3.6 Correction Factors 

The  structure  factors,  |Fhkl|,  are  derived  from  the  integrated  intensities  by 

application of various correction factors. The correction factors are dependent on the 

diffractometer geometry and the scan type used [43, 44]. 

The integrated intensities of the rocking and c.v. scans, Iω, and stationary scan, Is, 

are given in their final forms below:

I =
0 re

2 A0
2

0 Au
2 ∣F hkl∣

2 P LC rod C areaC atten , (3.4)

I s=
0r e

2 A0
2T

Au
2 ∣F hkl∣

2 P Ls Carea Catten , (3.5)

where Φ0 is the incident flux (photon s-1 mm-2), ω0 is the rotation speed, A0 is the active 

surface area, Au is the area of the unit cell, re is the classical electron radius, T is the total 

counting time, Δγ is the angular acceptance of the detector, P is the polarisation factor, 

Lω(s) is the Lorentz factor for the rocking (stationary) scan, Crod is the correction for the 

rod interception,  Carea is the area correction and Catten is the absorption correction. The 

correction factors are discussed in more detail in the appendix (section A.2).
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Figure 3.9: This figure illustrates how the integrated intensity is obtained from the area 

detector. (a) The CTR. (b) A region of interest that encapsulates the CTR is integrated 

giving the entire signal. (c) The background is then measured from a second ROI and 

subtracted from the signal.

(a)

(b)

(c)

(a)
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Figure 3.10: The signal of the CTR at (2.35,0,2.07) and the background is calculated 

for the various detector slit sizes: (a) x =17.935 mm, y = 22 mm, (b) x =5 mm, y = 22 

mm, (c) x =3 mm, y = 22 mm and (d) x =3 mm, y = 3 mm.
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Figure 3.11: The difference between the measured signal and background as a function 

of the sample slit size.

3.7 Comparison of the Stationary and Rocking Scans

To compare the rocking and stationary rodscans two different comparisons of the 

rod along the (224) Bragg peak were performed. The first compared the signal to noise 

ratio (SNR) of the integrated intensities and structure factors obtained by the different 

scans under identical conditions.

Thirteen data points were measured along the rod. The rocking scan comprised 

of two parts; a background and a peak scan. The background scan scanned a range of ω 

1o either side of the peak, whereas the peak scan had a range of 0.05o either side. A total 

of 92 data points were measured for each point along the rod. 

The  integrated  intensities  of  the  two  modes  are  shown  in  fig.  3.12(a).  The 

integrated intensity increases at l = -4.06 as the total counting time increased from 150 

to 524 seconds. Between l = -4.12 to -4.16 there was a large increase in the integrated 

intensities for all modes. This is explained by viewing figs. 3.13 to 3.14. Figure 3.13 

shows the images obtained by the stationary scan at different  l along the rod. At  l = 

(a)
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-4.12 an artifact is present and the passage across the CTR is shown from l = -4.14 to 

-4.18. The integrated intensity increases at l= -4.16 for the stationary mode, because the 

artifact cannot be distinguished from the rod in the box subtraction method. However, 

we can conclude that the intensity is anomalously large due to the artifact and this data 

point can be deleted accordingly.

Figure 3.14 shows the peak scans of the rocking mode. At l = -4.14 the peak of 

the rod is  engulfed by that  of the artifact  and the subsequent  integrated intensity is 

incorrect. At  l = -4.16 the artifact and the rod can be distinguished and the integrated 

intensity is found by deleting the points associated with the artifact. However, this can 

only be  done in  confidence  as  we know the  larger  peak is  spurious  from the  area 

detector. The scattering from the artifact is roughly ten times more intense than the rod. 

The structure factors (fig. 3.12(b)) are found by applying the relevant correction 

factors and normalising for  counting times.  The discrepancies  between the structure 

factors  of  the  stationary  scan,  Fhkl
S,  and  the  rocking  scan,  Fhkl

ω,  are  derived  by 

calculating the R-factor:

R=∑∣Fhkl
 ∣−∣F hkl

S ∣
∑∣F hkl

 ∣ , (3.6)

this is a measurement of the agreement between the two scan types and is expressed as a 

percentage. The obtained value of  R 5.09% suggests excellent agreement between the 

rocking and stationary scans.

The statistics of each scan are shown in tables 3.2-3.3. The integrated intensities 

of the stationary mode are always approximately several orders of magnitude larger and 

the  relative  error  stays  below  5%.  The  intensity  is  much  larger  as  the  integrated 

intensities  obtained by the  rocking mode have  already been normalised to  the  total 

number of counts  Φ0  by ANA. The relative error of the rocking scan increases from 

under 7% close to the Bragg peak to over 40% far from the Bragg Peak. 

The statistical SNR is given by 

SNR= I
  I  . (3.7)
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Table 3.4 shows the SNR for the scan types and is always largest for the stationary 

mode and is approximately 2.5-3 times larger close to the Bragg peak and greater than 6 

times larger further from the peak. When the different modes have the same counting 

time; the stationary mode always has the largest signal, the smallest statistical error and 

the largest SNR even far away from the Bragg peak when the scattering from the CTR 

is weak.

The SNR of all the modes can be improved by increasing the counting time, t, 

and varies as a function of √t. For example if the counting time was increased fourfold 

the SNR would double. Generally the SNR is approximately 2.5 times larger for the 

stationary mode compared to the rocking mode, and for the two to be comparable, the 

counting  time  of  the  rocking  mode  would  have  to  be  increased  a  factor  of  6.25. 

Assuming that a typical synchrotron experiment is allocated a beam time of 7 days and 

50 points along each rod need to be measured, estimates on the total number of rods 

obtainable by each scan type can be made. If a counting time of 150 seconds is used on 

each point for the stationary mode, then an entire rod can be measured in 7500 seconds 

(2 hours and 5 minutes).

Taking the rocking mode to comprise of a background and peak scan, where the 

background and peak scans have the same characteristics mentioned earlier, and a total 

of 92 measurements taken; the total counting time at each point is  t = (92*6.25 + 58) 

seconds (where the 58 seconds is the time taken to rock the sample); measurement of an 

entire rod takes approximately 8 hours and 47 minutes. 

Assuming that the entire 7 days is spent working, then 80 rods can be measured 

with the stationary scan compared to 19 rods with the rocking scan Practically,  the 

number  of  rods  measured  is  less  than  this  for  all  modes  as  things  like  sample 

preparation and the alignment procedure of the diffractometer have not been considered.

(a)
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Figure  3.12: Comparison  between  the  measured  (a)  integrated  intensities  and  (b) 

structure factors for the stationary and rocking scans.
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Figure 3.13. Images obtained by the area detector. The l values are displayed. Note the 

artifact moving across the detector for l = -4.12 to -4.18. An anomalously large signal is 

obtained if the artifact is not corrected for. 

(a)
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Figure 3.14:  The peak scans of the rocking mode. The top hat shape of the curves 

indicates that the width is determined by the experimental resolution.
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l Time (s) S B I σ(I) Rerr (%)
-4.02 180 21597 7595.11 14001.88 170.86 1.22
-4.03 151 10208 3057.21 7150.78 115.17 1.61
-4.04 150 6766 2193.69 4572.31 94.66 2.07
-4.05 150 5134 1742.41 3391.59 82.92 2.45
-4.06 526 14438 5033.97 9404.02 139.54 1.48
-4.07 524 11126 4067.12 7058.88 123.26 1.75
-4.08 525 10519 4113.94 6405.06 120.97 1.89
-4.10 527 9594 3785.49 5808.51 115.67 1.99
-4.12 526 8147 3433.19 4713.82 107.61 2.28
-4.14 526 9067 4123.35 4943.65 114.85 2.32
-4.16 525 5640057 39378.52 5600678.48 2383.16 0.04
-4.18 151 2721 1101.40 1619.60 61.83 3.82
-4.20 150 2330 816.95 1513.05 56.10 3.71

Table 3.2: Statistics for integrated intensities obtained from area detector.

l Time(s) I σ(I) Rerr (%)
-4.02 180 8.57 0.31 3.6
-4.03 151 4.54 0.21 4.6
-4.04 150 3.25 0.18 5.5
-4.05 150 2.03 0.14 6.9
-4.06 526 7.95 0.3 3.8
-4.07 524 5.36 0.27 5.0
-4.08 525 4.31 0.25 5.8
-4.10 527 3.31 0.26 7.9
-4.12 526 2.24 0.27 12.1
-4.14 526 13.86 0.44 3.2
-4.16 525 2.44 0.3 12.3
-4.18 151 0.44 0.18 40.9
-4.20 150 0.36 0.17 47.2

Table 3.3: Statistics for integrated intensities from ω scan.

(a)
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l Area ω
-4.02 81.87 27.65
-4.03 62.18 21.62
-4.04 48.13 18.06
-4.05 40.87 14.5
-4.06 67.17 26.5
-4.07 57.39 19.85
-4.08 52.93 17.24
-4.10 50.08 12.73
-4.12 43.65 8.30
-4.18 26.13 2.44
-4.20 27.02 1.71

Table 3.4: Comparison of the SNR for the scan types.

 

In the second comparison the entire rod was measured with both scan types and 

the structure factors compared. The rod was measured from l = -4.21 to -3.75; 43 points 

were measured with the stationary mode compared to 26 with the rocking mode. The 

counting  time was  kept  at  120 seconds  for  each point  in  the  stationary mode.  The 

rocking scans comprised of a background and peak scan and the counting time at each 

point varied between 0.5 and 2 seconds depending on the SNR.

The integrated intensities and structure factors are shown in figs. 3.15 (a) and (b) 

and those obtained with the rocking mode have been normalised for time. The stationary 

mode intensities are much larger than those obtained by the rocking mode; typically 

1000 times larger; the R factor is 11.32% for the structure factors. This shows that the 

structure factors obtained by the two different modes are comparable. The statistical 

error associated with each point along the rod is smaller for the stationary mode. This is 

especially notable  further  from the  Bragg peak where  the  error  associated  with  the 

rocking mode is very large.



Chapter 3. COMISSIONING OF BEAMLINE I07 54

3.7.1 Alignment issues

Statistically, the stationary mode has the smallest relative error and largest SNR. 

However, due to misalignment issues with the diffractometer, the rod moves off the area 

detector at large distances away from the Bragg peak (i.e. as  γ tends to 0o). A direct 

result of this is that the stationary mode can not be left unattended for long periods of 

time or the user runs the risk of only measuring background. This is illustrated in fig. 

3.13. For values of l  less than -4.16 the rod rapidly moves off centre and to the left of 

the detector, hence the scans were terminated at l = -4.21.

This appears to be a fairly common problem and was observed for several rods, 

such as the (202) rod (fig. 3.16). The scan was terminated at  l = 1.61 to stop the rod 

moving off the detector. The diffractometer was realigned by rotating  ω  until the rod 

was centred and a discrepancy in ω of 0.28o  was found. A new orientation matrix was 

calculated from this point and the scan continued (fig. 3.17) upon which the rod stayed 

centred. Later investigation of the specular alignment at the (0,12,0) Bragg Peak found 

α  to be out by 0.042o. There appears to be a misalignment between the sample and 

detector arms that causes the diffractometer to gradually lose steps in α and ω; leading 

to the CTR moving off the detector. 

This misalignment can be overcome by recalculating the orientation matrix at 

the point where the rod slips off the detector. At this point the matrix is optimised at the 

ends  of  the  rod  but  realignment  needs  to  be  performed  close  to  the  Bragg  peak. 

Unfortunately this can be time consuming especially if this has to be done for every rod. 

(a)
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Figure  3.15: Comparison  between  the  measured  (a)  integrated  intensities  and  (b) 

structure factors for the stationary and rocking scans.
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Figure 3.16:  The misalignment of the diffractometer results in the rod moving across 

the area detector. The l position along the rod are displayed.

(a)
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Figure 3.17:  The continuation of the scan along the CTR once the diffractometer has 

been  realigned.  The  l position  along  the  rod  are  displayed.  The  rod  is  now 

approximately centred. The rod is extended as  l tends to zero as a larger range in  l is 

sampled close to the foot of the CTR than at higher l (see fig. A.2.2. in the appendix).
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3.7.2 Comparison of the Rocking and Constant Velocity Scans

Alignment  issues  of  the  diffractometer  prevent  large  regions  of  certain  rods 

being measured by the stationary mode. The reason behind the misalignments appear to 

be as a result of the α and ω motors losing steps further along the rod. 

The  effect  these  misalignments  had  on  the  rocking  and  c.v.  modes  was 

investigated.  The diffractometer  was  moved back to  the  (224)  Bragg peak and two 

things studied; if the peak moved off the point detector for  l < -4.21 and, if not, the 

statistics of the two modes when both scans had background and peak scans over the 

same ω range and time.

The range of the background scan was 3o and the rocking scan had a counting 

time of 1 second per point and data taken every 0.06o,  whereas the c.v.  scan had a 

rotational velocity was 0.0357osec-1 and data taken every 0.0075o. The total counting 

time of the background scan was 150 and 84 seconds for the rocking and c.v. modes 

respectively. The peak scan had a range of 0.3o, and the rocking scan had a counting 

time of 1 second per point and data measured every 0.0075o , whereas the c.v. scan had 

a rotational velocity of 0.0044osec-1 and data taken every 0.0008o. The total time of peak 

scan was 64 seconds for both modes. 

The merged background and peak scans of the rocking and c.v. modes are shown 

in figs. 3.19 and 3.20 respectively.  The scans were from  l = -4.01 to -4.31. In both 

modes the CTR is located in the middle of the background scan. Unlike the stationary 

mode, it appears that there is no danger of the CTR moving out of the detector range 

due to peak always being located within the wide range of the background scan.  

The CTR is  measured  for  values  of  l  < -4.21;  the  integrated  intensities  and 

structure factors of the two modes are shown in figs. 3.21(a) and (b) respectively. The 

integrated intensity of the rocking mode is always larger than that of c.v. mode and a 

comparison of the two shown in table 3.5. It is seen that the SNR and Rerr are similar for 

the different scan types. The SNR is generally higher for the c.v. scan apart from when 

the signal is very weak (i.e. l = -4.21, -4.26) at which point it is difficult to distinguish 

from the background. The peaks at l = -4.16 and -4.36 are very strong but are a result of 

artifacts. 

The  R-factor between the different modes was 6.13%, indicating that the two 

(a)
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modes give consistent measurements provided they are over the same range and total 

counting time.

The  accuracy  of  ω  was  investigated during  the  c.v.  scans.  The  value  of  ω 

reported  by  the  beamline  software  was  compared  directly  with  the  diffractometer 

reading  of  ω.  Typically  there  was  a  discrepancy  of  approximately  0.01o when  the 

rotational velocity was 0.0357osec-1 and 0.001o when the velocity was 0.0044osec-1; the 

discrepancy  is  larger  for  larger  velocities.  The  rotational  speed  of  this  technique 

therefore limits accuracy in ω.  

l I σ(I) Rerr (%) SNR
ω c.v. ω c.v. ω c.v. ω c.v.

-4.01 38.71 7.01 0.66 0.09 1.71 1.28 58.65 77.89
-4.06 1.77 0.30 0.14 0.02 7.91 6.67 12.64 15
-4.11 0.64 0.16 0.09 0.01 14.06 6.25 7.11 16
-4.16 13.96 2.68 0.32 0.05 2.29 1.87 43.62 53.60
-4.21 0.32 0.18 0.06 0.09 18.75 50 5.33 2
-4.26 0.30 0.04 0.06 0.01 20 25 5.00 4
-4.31 558.62 54.69 2.05 0.21 0.37 0.38 272.49 260.43
-4.36 0.71 0.15 0.1 0.01 14.1 6.67 7.10 15

Table 3.5: Statistics for the integrated intensities for the rocking and c.v. modes.
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Figure 3.19: The merged peak and background scans for the rocking scan. 

(a)
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Figure 3.20: The merged peak and background scans for the c.v. scan. 
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Figure 3.21:  Comparison of (a) the integrated intensities obtained by the rocking and 

c.v. modes and (b) the structure factors.     

(a)
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3.8 Conclusions

The  integrated  intensity  and  structure  factors  of  several  CTRs  measured  by 

stationary, rocking and constant velocity scans have been compared using a (2+3)-type 

diffractometer in z-axis mode. The differences between the structure factors are almost 

within the their respective statistical errors which validates all three measuring modes 

for crystallographic purposes.

The use of an area detector instead of a point detector in CTR measurements 

greatly  increases  the  reliability  and the  data  acquisition  rate  by almost  an  order  of 

magnitude.  This  offers  users  the  possibility  of  investigating  more  complex  systems 

within the restricted beam time available to synchrotron users.

There  are  also  several  other  advantages  of  using  the  area  detector  to  obtain 

CTRs; (i) it  has the smallest statistical error, (ii) fewer correction factors need to be 

calculated to obtain the structure factor, (iii) there is no need for sample rotation along 

each point of the CTR as the full extent of the signal is where the rod intersects the 

Ewald  sphere  and  is  measured  in  a  single  image  thereby  improving  the  counting 

statistics; the diffractometer only needs to move to the calculated angles and the entire 

image is captured, (iv) the background is obtained in the same scan as the signal, (v) 

there is no dark current contributing to the background and, perhaps most importantly, 

(vi)  artifacts  that  contribute  to  the  scattering  signal  can  easily  be  recognised  and 

accounted for and then subsequently removed from the data set.  

However,  the  intensities  of  the  stationary  scans  are  strongly  dependent  on 

misalignments, such as a poorly determined orientation matrix or diffractometer motors 

losing  steps.  The  misalignments  can  cause  the  CTR to  move  off  the  area  detector 

altogether, and as a result of this it is therefore impractical to leave an automated scan 

along the  rod left  unattended,  for  fear  of  losing  the  rod.  This  can  be  overcome by 

obtaining new orientation matrices but this can be time consuming and a nuisance to the 

user. The misalignments do not appear to affect the rocking and c.v. modes due to the 

wide range of the background scan, although the possibility that other geometries affect 

these type of scans can not be ruled out. Although the SNR is poorer for these scans, the 

structure factors obtained are comparable to that of the stationary mode, albeit with a 

larger statistical error. For these reasons both the rocking and c.v. modes are also viable 
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approaches to measuring CTRs even though there is the option of using the stationary 

mode.

Finally, only the statistical errors have been considered thus far. The systematic 

error  is  typically  5-15%  [24,  42,  53,  54,  56,  57]  and  is  estimated  by  averaging 

symmetry-equivalent  reflections.  The  systematic  errors  were  not  determined  in  this 

experiment and as a result of this, the error was set to 10% for all data points if the error  

was less than this. Once this step is taken practically all differences between the rocking 

and stationary structure factors fall within the respective experimental error bars.

(a)
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Chapter 4

X-ray Bicrystal Truncation Rod Study of a Si Σ13 

Symmetric Tilt Grain Boundary

4.1 Introduction

Polycrystalline semiconductors are used extensively in modern technology, such 

as resistors,  transistors,  capacitors,  diodes and solar cells.  Grain boundaries in these 

materials affect their physical and electrical characteristics greatly [3].  

As  a  result  of  this  grain  boundaries  have  been  studied  extensively,  both 

experimentally and theoretically. Experimentally grain boundaries are measured using 

high resolution transmission electron microscopy (HRTEM) [11, 58, 59]. However, the 

resolution required to measure the boundaries is very difficult to obtain and the results 

are often difficult to interpret. Theoretical studies are complicated by the fact that for a 

given angle there are multiple interface structures that can exist [2]. The only way to 

distinguish  between  the  boundaries  is  to  compare  grain  boundary  energy  of  the 

structures.  However,  since  experimental  observations  have  shown  different  grain 

boundaries can exist for a given angle there is more than energetics to predicting the 

correct grain boundary.

In this chapter, X-ray bicrystal truncation rod (BCTR) scattering, from a Si Σ13 

interface  is  presented.  CTR  scattering  is  commonly  used  to  determine  the  atomic 

arrangement at surfaces where interference between the Bragg rod scattering due to the 

truncated bulk crystal and the relaxed or reconstructed surface layers gives sensitivity 

on  the  atomic  scale.  Unlike  surface  X-ray  diffraction,  the  bicrystallography  of  the 

interface gives rise to two, overlapping CTRs, one from each crystal. The interface is 

buried and the large penetration of X-rays into matter is exploited, allowing the study of 

interfaces  which  are  otherwise  inaccessible  by  other  standard  surface  science 

techniques. 
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The  experimental  and  simulated  X-ray  scattering  from  a  grain  boundary  is 

highly dependent on the atomic positions. Several possible grain boundary structures are 

presented and modelled in preparation for X-ray scattering simulations. To ensure the 

atoms are in their equilibrium positions their strain energy is minimised. In the first part 

of this chapter, the Keating energy is discussed, and a model is developed to minimise 

the Keating energy of the grain boundaries. The Keating energies of the relaxed grain 

boundaries are then compared with other minimisation techniques.

In the  second half  of  the  chapter,  a  model  for  the  scattering  from the  grain 

boundary interface is presented and the simulated scattering from the grain boundaries 

is  compared  with  experimental  data  and  used  to  discriminate  between  the  grain 

boundaries.

4.2 Limitations of Current Techniques

The study of grain boundaries has been the subject of many experimental and 

theoretical studies. There are several experimental methods for characterising the grain 

boundary; the most common of which is HRTEM [60]. The principle of any interface 

observation is to observe both crystals, either side of the grain boundary. If this can be 

achieved, an interpretable two-dimensional projection of a three-dimensional crystal can 

be  obtained.  However,  the  projection  is  vary rarely easy to  interpret  directly  and a 

comparison with simulated images is often necessary (fig. 4.1). The main limitation of 

this technique is that HRTEM is a two-dimensional technique and as a result of this the 

grain boundary is averaged over the sample thickness; there is always a reduction of 

one-dimension in the available information and only two-dimensional projections can 

be obtained. There are also other limitations including the attenuation of the electron 

beam and radiation damage to the sample. As the electron beam is weakly penetrating, if 

the grain boundary is buried, then the sample has to be thinned to the extent that it is 

effectively destroyed to access it. 

Another approach is to predict the structure of the grain boundary theoretically. 

However, these studies are complicated by the fact that for a given tilt angle several 

possible grain boundary structures can exist physically. This has been shown in [59] 

where the authors have observed several possible grain boundaries for various tilt angles 
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in  both  Si  and Ge bicrystals.  The lowest  energy structures  can  be  calculated  using 

various techniques, including the tight-binding model and the Tersoff potential. Often it 

is found that several of the grain boundary structures are close in energy and that the 

energy  of  the  grain  boundary  depends  on  the  calculation  method  used  (e.g.  first 

principles versus analytic potential calculations) [2, 59]. Therefore it has been suggested 

that the energetics of the grain boundary is not the complete story in correctly predicting 

the grain boundary structure [2, 59].

Figure 4.1: Comparison between (a) the experimental and (b) simulated images of a Ge 

Σ13 (510) grain boundary. The experimental image is obtained with HRTEM. After [59]

4.3 The Si Bicrystal Sample

The silicon bicrystal used in the experimental studies presented in this thesis was 

grown by the Czochralski method [61]. In this approach, single crystals are grown by 

slowly and very slightly dipping a small, crystallographically aligned seed crystal into a 

molten pool of the same material. The seed is slowly withdrawn from the molten pool 

whereby the liquid material crystallizes at the seed. This process is shown in fig. 4.2. In 

order  to  grow  a  bicrystal  by  the  Czochralski  method  two  seed  crystals  are  used. 

Bicrystals  are  formed when two identical lattices are joined together  such that their 

orientations differ by a rotation angle  θ,  known as the tilt  angle. The growth of the 
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bicrystal is initiated from two seed crystals, and θ is determined by the orientations of 

these seeds [62]. This is illustrated in fig. 4.3. Bicrystals are then formed in the same 

manner as the single crystal above.

Figure  4.2:  The  Czochralski  method.  This  figure  illustrates  the  different  stages  of 

growth form left to right. The first step illustrates the introduction of the seed crystal, 

the second illustrates the seed being dipped into the molten pool, the third the pulling of 

the crystals and the final stage the fully formed crystal.

There  are  two  important  factors  that  affect  the  growth  of  the  bicrystal;  the 

distance between the seeds and the withdrawal speed [62, 63]. The distance between the 

two seeds is critical; for too small distances the crystals grow together too quickly and 

for too large distances the crystals take too long to grow together and polycrystals are 

obtained. The optimum distance between the two seeds is typically a few mm [62, 63]. 

The choice of the withdrawal speed is just as important. When the two single crystals 

come together to form a bicrystal, the nucleation must be precisely controlled such that 

the growth of the bicrystal starts only at one spot [62]. Typical speeds are of the order of 

mm/min [62, 63].

For the Si Σ13 bicrystal (the notation is described in section 2.3.2), the [001] 

axes  of  the  seeds  are  parallel  and  used  as  the  growth  directions.  For  Σ13  the 

disorientation  results  from  a  rotation  about  the  common  [001]  axis.  The  angle  of 

rotation is 22.6o and the boundary is (501). The bicrystal in this study is a cylinder (fig. 



Chapter 4. X-RAY BCTR STUDY OF A SI Σ13 SYMMETRIC TILT GB 69

4.4) of diameter 1.8 mm and was cut from the boule using a diamond core drill. 

Figure 4.3: The angle of rotation between the two seeds for the Σ13(510) bicrystal, after 

[63]. The tilt angle between the two seeds is 22.6o.
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Figure 4.4: Schematic illustration of the Si bicrystal sample geometry. The y direction 

is out of the plane of the paper.

4.4 Keating Energy

The elastic strain (V) of a crystal is subject to various physical requirements and 

these may be divided into two classes: the general conditions, such as rotational and 

displacement invariance, and those imposed by the symmetry of the crystal structure 

[64]. The requirement that the energy be invariant under an arbitrary displacement of 

the lattice as a whole ensures that V can depend only on the differences between nuclear 

positions,

V =V xk−x l=V xkl  , (4.1)

where xkl = xk – xl and where xk is the position of the kth nucleus after deformation [64]. 

But V must also be invariant under a rotational transformation. The xkl are not invariant 

under such a transformation; they transform as vectors. The only invariants which can 

be formed from the  xkl  are the scalar  products between them and functions  of such 

products, which leads to

V klmn=V xkl⋅xmn−Xkl⋅Xmn , (4.2)

where  Xk is  the position of the  kth  nucleus  prior to  deformation.  The final  term in 

Grain Boundary

1.8 mm z

x
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equation  (4.2)  is  included  such  that  the  strain  is  “zero”  when  the  deformation  is 

removed.

 The Keating energy could be described as a sum over a large number of  λklmn. 

However, only 3N-6 invariants are necessary to specify an arrangement of N points in 

three-dimensional space, and this is much smaller than the number of  λklmn  defined by 

equation (4.2). Keating concludes that only six scalars (fig. 4.5) are required for each 

lattice point to determine the strain energy of a bulk crystal provided the strain energy is  

dependent on nuclear positions only.

Figure  4.5:  A lattice  point  with  its  six  scalars.  Three  scalars  give  distances  to  the 

neighbouring atoms and the remaining three the angles between them. Image from [64].

Consider a diatomic structure with an A atom at the lattice point and a  B atom 

within the unit cell, Keating defined x1(l), x2(l) and x3(l) as the position vectors of the B 

atoms in neighbouring unit cells relative to the A atom of the unit cell (l) and x4(l) as the 

position vector of atom B in (l) with respect to the A atom there. This gives ten scalar 

products xm(l).xn(l) (m,n =1,2,3,4) per unit cell.

The basic unit cell of the diamond structure is a rhombohedron with two atoms 

(1 and 0 of fig. 4.6) on its major axis, which is directed along the [111] direction. Each 

B atom represented by an open circle is bonded to four A atoms represented by a filled 

circle. For instance atom 0 is bonded to atoms 1, 2, 3 and 4. This gives rise to ten scalar  

products. The strain energy in equation (4.2) is now given as 

V =1
2∑l [ 

4 a2∑
i=1

4

 x0i
2 l −3 a22 

2 a2 ∑
i , ji

4

 x0 il ⋅x0 j la22] , (4.3)

where  V is  summed over all  the primitive unit  cells.  The Keating parameters  α,  the 
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central  first-neighbour  constant,  and  β,  the  noncentral  second-neighbour  constant, 

describe  pure  bond  stretching  and  bond  bending  with  some  stretching  component 

respectively [65] The parameters  α and  β  for Si (in 103 dyn/cm) are 51.51 and 4.70 

respectively [65]. The factors 3a2 and  a2 are the bulk equilibrium value of the scalar 

products  in  equation  (4.3).  This  ensures  that  the  strain  is  at  a  minimum  for  the 

undistorted lattice. 

4.4.1 Minimisation Method

The Keating energy is found by finding the relaxed positions of the atoms in the 

bicrystal and interface. This is done by using multidimensional minimisation algorithms 

from the gnu scientific library [66]. 

The  Fletcher-Reeves  conjugate  gradient  algorithm  is  used.  The  conjugate 

gradient algorithm proceeds as a  succession of line minimizations.  The sequence of 

search directions is used to build up an approximation to the curvature of the function in 

the neighbourhood of the minimum. An initial search direction  p is chosen using the 

gradient, and line minimization is carried out in that direction. The accuracy of the line 

minimization  is  specified  by  the  parameter  tol  (which  is  specified  to  be  0.1).  The 

minimum along this line occurs when the function gradient g and the search direction p 

are orthogonal.  The line minimization terminates  when  p.g <  tol |p|  |g|.  The search 

direction is updated using the Fletcher-Reeves formula p' = g' - βg where β = -g'2/g2, and 

the  line  minimization  is  then  repeated  for  the  new  search  direction.  The  stopping 

criterion  used  is  g  <  10-3.  This  gives  a  relaxed  structure  without  an  unduly  long 

computational time.
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Figure 4.6:  The crystal model. The open and filled circles represent the atoms on the 

two different sublattices. The length of the unit cell is 4a. Image from [64].

4.5 Interface Structure

In section 4.2 there was a discussion on the fact that theoretical studies were 

complicated by the fact that several possible grain boundaries exist that are fully bonded 

and four-fold coordinated for a given tilt angle. Several such possible structures for the 

Si Σ13 symmetric tilt grain boundary are presented by Morris et al. [2] and are shown in 

fig.  4.7.  Several  of  the  structures  have  been  observed  experimentally  and  a  high 

resolution image of structure (a) is shown in fig. 4.8;  this led Morris et al., to suggest  

that the energetics alone is not enough for predicting the structure of the grain boundary. 

For  the  Σ13  {501}  symmetric  tilt  boundaries,  the  repeat  distance  along  the 

boundary is ½ √26 a0, where  a0 is the cubic lattice constant. The boundary contains a 

number  of  dislocations,  with  a  total  Burgers  vector  of  b=[100].  The  individual 

dislocations that occur are either b= ½ [110] and b = ½ [110] pairs of edge dislocations 

or  b = ½ [101] and b = ½ [101] 45o mixed dislocation pairs. Structure (e) and (f) are 

grain  boundaries  made  up  solely  of  edge  dislocations,  and  are  characterised,  in 
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projection,  by  a  set  of  fivefold  and  threefold  rings  sharing  a  vertex.  The  mixed 

dislocation core structures (structures (g) and (h)) also appear as a set of fivefold and 

threefold rings, but sharing an edge [2]. The dislocation types are illustrated in fig. 4.9, 

and all of the grain boundaries can be constructed from the three structural units. For 

example  structures  (g)  and  (h)  have  straight  arrangements  of  CACA and  AACC 

respectively. 

Figure  4.7:  Eight  possible  structures  for  the  {501}  symmetric  tilt  boundary.  The 

structures are shown in order of increasing grain boundary energy. Image taken from 

[2].
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Figure  4.8:  Z-contrast  image  of  the  Si  Σ13  symmetric  tilt  grain  boundary  from 

Chrisholm et al. [58]. This is structure (a) from fig. 4.7. The scale bar is 0.2 nm and the  

bonds have been drawn on for illustrative purposes.

Figure 4.9: The structural units that make up the grain boundary structures. From left to 

right: a perfect  crystal (unit A), pure edge dislocation (unit B) and a mixed dislocation 

(unit C). After [67].

4.5.1 Coincidence Site Lattice of the Σ13 Tilt Boundary 

The structure of the Σ13 tilt boundary is two-dimensionally periodic within the 

interface. Its unit cell is determined by the coincidence site lattice (CSL).

The method for generating the CSL for the Σ13 grain boundary is taken from 

A B C
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Sagalowicz and Clark [30]. Firstly a colour is assigned to each crystal; in this instance 

the top crystal is black and the bottom crystal red. A common origin for the crystals is 

defined and then the bottom crystal is then rotated 22.6o with respect to the top crystal. 

The two lattices are considered infinite in extent and are then allowed to interpenetrate 

creating the dichromatic pattern seen in fig. 2.4. The resultant CSL have their own space 

group, which is related to that of the original FCC Bravais lattices, but has lost some of 

the FCC symmetry elements. This CSL forms the Σ13 unit cell. It contains 26 standard 

Si diamond unit cells. The Σ13 unit cell has dimensions of a1 = ½ √26 a0, a2 = a0 and a3 

= ½ √26 a0.

4.6 Keating Energy Minimisation
 

The structures were then fully relaxed using the Keating minimisation. This was 

done using by firstly creating the two Si crystals in the manner mentioned above. The 

boundary plane was then inserted in such a way that only atoms belonging to the top 

crystal are on one side of it and atoms from the bottom crystal the other side. This gives 

the unrelaxed structure of the boundary. Finally an interfacial expansion is introduced 

between the crystals to accommodate the grain boundary. The interfacial expansion was 

typically 2-7 Å. Each Si crystal contained four Σ13 unit cells (two horizontal and two 

vertical) (fig. 4.10). This meant that the interface structure would repeat itself twice 

along the  grain  boundary.  The atomic  coordinates  of  the  interface  atoms were  then 

entered manually. To ensure correct bonding the bonds between the atoms in the bulk Si 

crystals and the interface were also entered thus giving the unrelaxed structure of the 

bicrystal.  Periodic  boundary  conditions  are  applied  to  the  structure  in  the  x and  y 

directions creating an array of the Si Σ13 bicrystal. The structures then underwent the 

Keating  minimisation  process  mentioned  above.  The  structures  were  relaxed  after 

approximately a few thousand iterations (fig. 4.11). Relaxation occurs when the Keating 

energy does not change after subsequent iterations. Due to the relatively small numbers 

of atoms (< 500) it took approximately 30 minutes to minimise each structure using a 

2.4 GHz computer.

The relaxed structures can be seen in fig. 4.12, the structural properties in table 

4.1 and the Keating parameters  in  table  4.2.  The number of  atoms in  each relaxed 
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structure range from 428 to 444 atoms. The Keating energy is found to be similar across 

all of the structures, with the lowest energy structure having an energy approximately 

10% smaller than the highest energy structure. Figure 4.12 shows the structures on a 

temperature scale. The hot (red) atoms have the most strain and the cool (blue) atoms 

have  the  least.  The  temperature  scale  is  not  absolute  and  varies  from structure  to 

structure. Figure 4.12 shows that the strain is localised at the interface and the bulk Si is 

in  its  equilibrium position  within  either  the  first  or  second  layer  of  the  bulk.  The 

structures are all fully four bonded and are physically realistic as the individual fivefold, 

fourfold and threefold rings that make up each structure are not planar and actually 

spiral along the tilt axis. 

Figure 4.10: The generated Si bicrystal. Each crystal contains four Σ13 unit cells.

z

x

y
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Figure  4.11:  Change  in  Keating  energy  during  the  minimisation  procedure  of  the 

bicrystal and interface.
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Figure  4.12:  The  possible   Σ13  interface  structures.  The  structures  are  fully  four-

coordinated and fully relaxed according to the Keating model. The atoms are colour 

coded to indicate each atoms contribution to the Keating energy with high energy atoms 

appearing hotter.

(b)

(d)

(h)

(a) (c)

(e) (f)
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Structure Number of Atoms Offset in x Offset in y Offset in z
a 444 0.03600 -0.62490 0.13600
b 436 0.01250 -1.15050 0.09500
c 428 0.01330 -0.98700 0.05602
d 428 0.00700 -0.94200 0.05370
e 432 -0.01140 -1.05050 0.07280
f 428 0.03290 -1.05750 0.05420
h 432 -0.00065 -1.13500 0.07111

Table 4.1:  The structural properties of the various grain boundaries. The number of 

atoms  for  each  structure  is  given.  The offsets  given  are  the  rigid  body translations 

between the top and bottom crystals, and are in fractions of the generated bicrystals 

(units of Å).  

Structure Bending Stretching Keating
a 577.82 18.97 596.79
b 529.09 17.63 546.72
c 582.03 21.19 603.21
d 568.66 24.37 593.02
e 526.29 28.39 554.68
f 570.41 30.71 601.12
h 549.04 27.65 576.69

Table 4.2: The Keating energies of the grain boundaries, in units of mJ/m2. The bending 

and stretching components are shown to illustrate the relative weighting of each to the 

Keating energy.

The Keating parameters  in  table  4.2 are  shown graphically in  fig.  4.13.  The 

bending parameter appears to vary weakly with the grain boundary structure, whereas 

the  stretching  term  generally  increases  as  the  grain  boundary  energy  increases.  A 

comparison of our Keating energy and the grain boundary energies obtained by Morris 

et al. is shown in fig. 4.14. It is seen that the Keating values follow very similarly to the 

Tersoff ones. This is unsurprising because the Keating energy is similar to the Tersoff 
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potential in the fact that the Tersoff potential is also comprised of bond-bending and 

stretching components. The Keating energy of all the structures are within 10% of each 

other. This tells us that Keating energy depends only weakly on the structure of the 

grain boundary when compared to the tight-binding (TB) and ab-initio energies which 

show considerable differences. The TB and ab-initio simulations found structure (a) to 

be the lowest energy grain boundary and structure (h) to be the highest energy structure. 

Interestingly, structure (a) has the most dislocation cores whereas the grain boundaries 

that are structurally similar to the bulk, with a minimal number of dislocation cores, are 

all high energy. This is clearly not the case with the Keating model, which has structure 

(b) as the lowest energy and structure (c) as the highest energy. There is a complete lack 

of correlation between the classical potentials and the first-principle calculations. This 

suggests  that  the  dislocation  cores  are  probably  not  modelled  very  well  with  the 

classical potentials due to excessive bond bending and stretching.

Another problem with calculating the grain boundary energies is that energies 

are dependent on the calculation method used. Two groups of authors [2, 59] obtained 

different energy ordering of structures (d) and (e) using different versions of the Tersoff 

potential. 

However, the energy of the structure in this scope of work is not crucial.  As 

mentioned earlier several of the structures exist physically, for example Kim et al., [11] 

have obtained high resolution images of the Si Σ13 grain boundary that has structure 

(d). Therefore there is more than energetics to correctly predicting the grain boundary 

structure. The above shows that the grain boundary energies are very similar to each 

other  when  calculated  using  the  analytical  potentials  unlike  when  the  energies  are 

calculated from first principles. The grain boundary structure is unknown and is to be 

found by simulating scattering from the grain boundary interface and comparing it with 

experimental  scattering.  The  simulated  scattering  is  dependent  on  the  atomic 

coordinates of the interface, therefore in this approach the most important thing is the 

position of the relaxed atoms. Morris et al., report that for the various methods used to 

find the energy, the position of the relaxed atoms remain the same even though the 

energies differed.
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Figure  4.13:  The  bending  and  stretching  components  of  the  Keating  minimised 

structures.
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Figure 4.14: Grain boundary energies for the different structures identified in fig. 4.7. 

The Tersoff, tight binding and ab-initio are taken from [2]

4.7 The Si Σ13 Unit Cell

To simulate X-ray scattering we start with the relaxed structures of the grain 

boundary interfaces. As the Si Σ13 unit cell is used in the Keating minimization for 

convenience it is used in the simulated scattering process. 

As well as changing the real space coordinates the Si Σ13 unit cell also changes 

the reciprocal space indices. It is important that the Σ13 Miller indices are used instead 

of those associated with the standard diamond unit cell. The relationship between the 

Σ13  Miller  indices  (H,  K,  L)  and  the  standard  ones  are  given  by  the  following 

transformations:

HKL =
1 0 −5
0 1 0
5 0 1 hkl  , (4.4)
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hkl = 1
26  1 0 5

0 26 0
−5 0 1HKL  . (4.5)

In the following discussion the term unit cell refers to the  Σ13 CSL.

4.7.1 Measured Rods

The interface structure was probed using X-ray crystal  truncation rod (CTR) 

scattering.  CTR  scattering  is  a  surface  and  interface  structural  tool  with  atomic 

sensitivity. 

The  X-ray  diffraction  experiments  were  performed  on  the  (2+3)-type 

diffractometer at the I07 beamline at the Diamond Light Source described in chapter 3. 

The  wavelength  λ  = 0.7276  Å was  chosen  because  the  X-ray  beam penetrates  the 

sample at this high energy but the quantum efficiency of the detector is also high. The 

experimental procedure is described in more detail in the previous chapter. However, 

before the experiment can begin we first need to ensure that we are scattering off the 

interface. Because the lattices of the upper  and lower crystal  are  rotated 22.6o with 

respect to the [001] direction the reciprocal lattices and the CTRs of the two are easily 

distinguishable. This is shown in fig. 4.15 for the K = 0 plane for the Σ13 unit cell. The 

coordinate  system was set  to  that  of  the  top crystal.  Firstly,  the  diffractometer  was 

rotated to the calculated angles for the (080) Bragg peak. The sample was moved out of 

the beam by moving the hexapod in the z-direction. The sample was then gradually 

moved across the beam and the peak measured using the area detector. Attenuators were 

placed in front of the detector so that the Bragg peak did not saturate and damage the 

detector. The measured intensity was zero when the sample was out of the beam and 

increased several orders of magnitude when the beam passed through the top crystal. 

When the beam moved off the top crystal and into the interface the intensity decreased 

and fell off to zero when the beam was on the bottom crystal. 

To convert from the rods in one crystal to the same rods in the other a transform 

has  to  be applied.  The transformation  to  calculate  the  Miller  indices  of  the  bottom 

crystal in terms of the coordinate system of the top crystal is given by
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h top

ltop = 1
1312 −5

5 12 hbottom

lbottom  , (4.6)

where  k has been excluded as it is the same for both crystals. The process was then 

repeated with the (20-2) Bragg peak of the bottom crystal. The intensity increased as the 

beam moved onto the bottom crystal and then decreased to zero when the beam moved 

onto  the  top  crystal.  The  position  of  the  interface  was  found  where  the  intensities 

crossed over (fig. 4.16). The position this occurs was recorded and the hexapod was 

moved to this position.

The  rods  were  obtained  by  measuring  the  scattering  perpendicular  to  the 

interface along the CTRs that extend from the Bragg peaks because of the truncation of 

the crystals at  the interface.  The intensity distribution along the rod depends on the 

detailed atomic structure of the interface. The rods were obtained by moving off a Bragg 

peak in the [501] direction. The BCTRs contain contributions from the top and bottom 

crystals as well as the interface. The transmission geometry used ensured that all three 

were illuminated by the X-ray beam at the same time.

The  experimental  data  was  collected  by  measuring  the  integrated  intensities 

obtained by stationary and ω-scans and then applying the the relevant correction factors. 

The attenuation of the beam through the sample is taken into account by applying the 

absorption correction (see appendix A.2.6). The following eight rods were measured; (-

8,0,L),  (-16,0,L),  (-4,1,L),  (16,-1,L),  (22,2,L),  (18,3,L),  (32,4,L)  and (18,5,L).  The (-

8,0,L), (-16,0,L), (-4,1,L) and (22,2,L) rods were measured using the stationary mode 

and the remainder by ω-scans.
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Figure 4.15:  The reciprocal  lattice  of  the bicrystal  in  the  K=0 plane (see appendix 

section A.3 for different K planes). The black circles belong to the reciprocal lattice of 

the top crystal and the red circles the reciprocal lattice of the bottom crystal.
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Figure 4.16: Locating the interface: the integrated intensities of the (080) Bragg peak of 

the top crystal and the (20-2) Bragg peak of the bottom crystal. The hexapod was moved 

in z until the beam moved onto either crystal.  The interface position was found where 

the intensities crossed. 

4.8 Simulated Scattering

In deriving the scattering from the proposed interface structures it is convenient 

to  calculate  the  contributions  from  the  top  and  bottom  crystals  and  the  interface 

structure  separately  before  adding  them  together  (the  three  separate  regions  are 

schematically illustrated in fig. 4.17). Thus there are three “unit cells” to consider. The 

convention used here is that the lattice parameters a1 and a2 of the interface unit cell are 

lying in the interface plane and that a3 is pointing outwards [68]. The miller index L is 

along the out-of-plane direction. 

Assuming perfect crystalline order in the top and bottom crystals, the scattering 

from these crystals can be reduced to a one-dimensional sum over all layers [69]. Using 

the kinematical approximation the scattering from the ideal bottom crystal, starting at (x, 

y, z)=(0, 0, 0), is given by:
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f bottom=∑
z=0

−∞

Fbottom e2 ilz  (4.7)

where Fbottom is the structure factor of the unit cell for the bottom crystal. Expanding the 

sum gives

1e−2 ile−4 il..e−∞ il= 1
1−e−2 il . (4.8)

By substituting equation 4.8 into equation 4.7 the following is obtained

f bottom=Fbottom
1

1−e−2il=Fbottom
e il

2 isin  l  . (4.9)

The first part of equation 4.9 is the standard form of the crystal truncation rod [26] and 

the denominator takes into account that the crystal is truncated at the interface. By using 

the relation eiθ = cos(iθ) + isin(iθ) equation 4.9 now rewritten as

f bottom=F bottom
cos  l  isin  l 

2 i sin  l 
=

F bottom

2 1− i cos  l 
sin l  . (4.10)

In a similar derivation the scattering from the top crystal, starting at (0, 0, 0), is given by

f top=
F top

2 1i cos  l 
sin l   , (4.11)

where Ftop is the structure factor of the unit cell for the top crystal, which may be related 

to that of the bottom crystal by symmetry. 

In this instance, the scattering from the interface can be written as

f interface=∑
j

f j e
2 i Hx jKy jLz j

, (4.12)
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where fj is the atomic form factor of the jth atom, (HKL) the Miller Indices and (xyz)j the 

position of the jth atom in fractional coordinates.

The total scattering is given by the coherent sum of all three contributions:

f total= f top e i q .d f bottom f interface , (4.13)

The  interference  between  the  contributions  from  the  two  crystals,  which  depends 

sensitively on the interface separation, d, arises here [69] . Figure 4.18 shows that as the 

interface expansion between the crystals increases there is an increase in the number of 

oscillations in the total scattering. This is a result of a phase difference being introduced 

due to normal shift  of the upper crystal lattice with respect to the bottom one. It is 

important to note that these terms can only be added together coherently provided the 

intensity is properly integrated [70]. The coordinates of the interface and bulk atoms 

need to defined with respect to a common origin and it is important to define the bulk 

unit cells starting directly above and below the interface unit cell. The interface can be 

chosen to extend arbitrarily deep into both crystals provided the layers directly above 

and  below the  interface  form the  bulk  unit  cells.  When  the  atoms  in  the  extended 

interface  layer  are  kept  at  their  bulk  positions  the  calculated  scattering  will  remain 

unchanged [68]. 

Figure 4.17:  Schematic of the interface layer  between two crystals.  The top crystal 

extends to infinity and the bottom crystal to minus infinity. The crystals are separated by 

a distance d. 
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The next step is to simulate the scattering from the Keating minimised relaxed 

structures. As mentioned earlier, the relaxed structures consist of a top and bottom bulk 

crystal and the interface structure. The top and bottom crystals contain four unit cells 

each.  This  entire  structure  is  considered  the  interface  for  the  sake of  the  simulated 

scattering and the scattering is described by equation 4.12. The next stage is to introduce 

another top and bottom crystal. The top crystal begins at the layer directly above where 

the interface terminates and the bottom crystal directly below. The scattering from the 

top crystal is given by equation 4.11 and the bottom crystal by equation 4.12. The total 

structure can be seen in fig. 4.19 and the individual scattering components in fig. 4.20. 

Upon  comparison  with  fig.  4.18  it  can  be  seen  from  fig.  4.20  that  the  interface 

contributes significantly to the total scattering; as the rod changes significantly due to 

the  grain  boundary  structures.  Figure  4.20  shows  that  the  interface  term oscillates 

considerably but the total scattering does not. This occurs because the majority of the 

interface described earlier is bulk like.  As a result  of this the phase of the interface 

cancels  with  that  of  the  scattering  of  the  top  and bottom crystal  leading  to  a  total 

scattering that does not oscillate. 

The  bicrystal  breaks  the  3m symmetry  of  the  diamond  cubic  structure.  The 

bicrystal itself can be considered to be produced from the single crystals by a series of 

operations, each of which involves a loss of symmetry (dissymmetrization) [30, 70]. 

The scattering is calculated as an average of two domains with opposite direction of 

symmetry. In one domain the structure spirals inwards along the tilt axis and in the other 

outwards. This is illustrated in fig. 4.21 which shows the (22,2,L) and (22,-2,L) rods 

compared  with  the  data.  These  domains  are  energetically  equivalent  but  give  very 

different rods. The (22,2,L) rod is a good fit of the data close to the Bragg peak but is 

relatively poor further up the rod, whilst the opposite is true for the (22,-2,L) rod. It is 

seen that averaging the two rods gives a much better fit of the data, implying that the 

two domains occur in the interface.
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Figure 4.18: The effect of the separation between crystals on the total scattering of the 

(-16,0,L) rod. The total scattering is the red line, the contribution from the top crystal 

the green and the bottom crystal the black. The title of each graph is the separation 

between the crystals as a percentage of one of the bulk crystals.
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Figure 4.19:  The total structure comprises of three distinct regions; two bulk like Si 

crystals separated by the grain boundary interface.

Relaxed region

Semi-infinite bulk
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Figure 4.20:  Contribution of the scattering from the top crystal (green line), bottom 

crystal (black), interface (blue) to the total scattering (red) from a relaxed structure (a).
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Figure 4.21: The total scattering for the (22,2,L) rod, (22,-2,L) rod and the average of 

the two compared with the measured data. 
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4.9 Comparison with Data

The measured  rods  compared with the simulated scattering from the various 

relaxed grain boundary structures can be seen in figs. 4.22 to 4.24. Straight away it can 

be  seen  that  the  different  relaxed  grain  boundaries  all  have  varying  successes  at 

predicting the rods. For example, there is excellent agreement between structure (a) and 

the  (-16,0,L)  rod,  but  poor  agreement  with  structure  (b)  and  several  sharp  minima 

between  L  = 0 and  L  = 20 are now present. These differences have arisen from the 

interference between the waves scattered by the different regions of the bicrystal which 

is  dependent  on  the  atomic  coordinates  of  the  grain  boundary and  can  be  seen  by 

comparing the rods from structures (c), (d) and (f). The interface expansions for these 

structures are all very similar, yet the simulated scattering is very different for all the 

rods.  This is most noticeable in between the Bragg peaks for the (-4,1,L) rod. This is as 

a result of the scattering from the interface and bulk having a similar magnitude but 

different phases for the various grain boundaries.

The simulated scattering from all the grain boundaries gives good fits for most 

rods apart from the (-8,0,L),  (-16,0,L) and (22,2,L) rods. The goodness of fit can be 

explained as the range of  L is relatively small and the rods are not far away from the 

Bragg peaks. As expected, the graphs show that the scattering from the grain boundary 

has no effect on regions very close to the Bragg peak simply because the intensity of the 

Bragg peaks are much greater. As we move further away from the Bragg peaks the 

difference between the scattering and the data set becomes much more pronounced as 

the  scattering  from  the  grain  boundary  has  similar  or  greater  magnitude  than  the 

scattering from the top and bottom crystal (this is illustrated in fig. 4.20). 

Qualitatively it is seen that structure (a) gives the best fit of the rods overall. The 

χ2 for the proposed structures (see appendix, section A.4) is given in table 4.3. Structure 

(a) has the best agreement with  χ2  = 1.43 whereas the  χ2 for the remaining structures 

varies between 4.98 to 7.79. The difference in the χ2 demonstrates the sensitivity of the 

simulated scattering to the atomic position of the interface structures and the distance 

between the Si crystals. Hence there is a clear argument that structure (a) is the interface 

structure. The χ2 of each individual rod for structure (a) is given in table 4.4. Only one 

rod has a χ2 greater than 2; the value of 3.96 for the (18,3,L) rod can be explained by the 
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discrepancies between the model and measured results close to the Bragg peak. This rod 

was obtained using an ω-scan and close to the Bragg peak we were unable to separate 

the peak from the background. As a result of this data points close to the peak have an 

intensity greater than that of the simulated scattering. 

Structure χ2

(a) 1.43
(b) 5.03
(c) 4.98
(d) 6.75
(e) 7.42
(f) 7.79
(h) 7.14

Table 4.3: A list of χ2 for each structure.

Rod χ2

(-8,0,L) 1.95
(-16,0,L) 1.5
(-4,1,L) 1.46
(16,-1,L) 1.3
(22,2,L) 0.87
(18,3,L) 3.96
(32,4,L) 0.91
(18,5,L) 1.16

Table 4.4: χ2 of each rod for structure (a).
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Figure  4.22: Comparison  of  the  measured  BCTRs  (circles)  with  the  simulated 

scattering  (red  line)  from  structure  (a).  The  Bragg  peaks  associated  with  standard 

diamond unit cell are labelled for clarity; black from the top crystal and red from the 

bottom crystal.



Chapter 4. X-RAY BCTR STUDY OF A Si Σ13 SYMMETRIC TILT GB 98

Figure 4.23: Comparison of the measured Bicrystal truncation rods with the simulated 

scattering from structures (b) (red solid line), (c) (blue dashed line) and (d) (green dot-

dashed line). 
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Figure 4.24: Comparison of the measured Bicrystal truncation rods with the simulated 

scattering from structures (e) (red solid line), (f) (blue dashed line) and (h) (green dot-

dashed line). 
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4.10 Sensitivity to the Interface Expansion

So far the simulated BCTRs have been calculated for relaxed structures. The 

interface expansion is found from this as no constraints have been applied. In order to 

determine  if  the  Keating  minimisation  found  the  correct  interface  expansion  the 

simulated scattering for  various expansions  was investigated.  After  structure (a)  has 

been relaxed, the layer of atoms that are connected to the grain boundary are moved in 

[001] and fixed in space. The atoms are moved up if they belong to the top crystal and 

down if they belong to the bottom. The net result is that there is an increase in the 

distance between the crystals from the relaxed position. The total deviations from the 

relaxed positions are; 0.1Å, 0.2Å and 0.5Å. For example, for an expansion of 0.1Å the 

atoms of the top crystal  are moved up by 0.05Å and those of the bottom down by 

0.05Å.  Once  these  layers  are  fixed  in  space,  the  interface  undergoes  the  Keating 

minimisation. This is a very quick process as the relaxed structure is used as the starting 

point. The rigid body translations and Keating energies for the different deviations are 

shown in table 4.5. The Keating energies all increase as the expansion increases; there is 

little difference in the bending component with expansion but a marked difference in the 

stretching component. The stretching component drastically increases with expansion 

and exceeds the bending term for 0.5Å. 

The simulated BCTRs are shown in figs. 4.25 to 4.27. The overall χ2 for  the 

0.1Å is 1.995, 2.294 for the 0.2Å and 3.948 for the 0.5Å datasets compared with 1.43 

for the relaxed structure. The goodness of fit decreases as the deviation from the relaxed 

position increases. The scattering from the interface changes significantly for the (16,-

1,L), (18,3,L), (32,4,L) and (18,5,L) rods as a result of the change in atomic coordinates; 

leading to poorer fits away from the Bragg peak. The interference between the crystals 

becomes more pronounced close to the Bragg peak as the phase changes with distance; 

this is observed between the peaks for the (-16,0,L) rod. The minimum between the 

peaks is to the right of the dataset at 0.2Å and to the left at 0.5Å. This demonstrates the 

sensitivity of our model to both the distance between the crystals, even for fractional Å 

changes, and the atomic coordinates of the interface. The relaxed structure gives the 

best fit of the data, meaning that provided the atoms and correct bonding is given the 

Keating minimisation finds the correct expansion.
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Distance Offset in x Offset in y Offset in z Bending Stretching Keating
Relaxed 0.036 -0.623 0.136 577.82 18.97 596.79

0.1Å 0.034 -0.634 0.136 583.23 97.28 674.39
0.2Å 0.034 -0.634 0.137 572.28 166.96 739.23
0.5Å 0.034 -1.023 0.146 602.97 648.86 1251.82

Table 4.5: The rigid body translations (as a fraction of the generated bicrystal – units of 

Å) and Keating energies (in mJ/m2) of structure a when the distance (001) between the 

crystals in increased from the relaxed position. The relaxed structure has been included 

for comparison.  
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Figure 4.25: The simulated BCTRs obtained when the interface expansion is increased 

by 0.1Å from the relaxed position.
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Figure 4.26: The simulated BCTRs obtained when the interface expansion is increased 

by 0.2Å from the relaxed position.
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Figure 4.27: The simulated BCTRs obtained when the interface expansion is increased 

by 0.5Å from the relaxed position.
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4.11 In-Plane Scans

The in-plane reflections were measured using the constant velocity mode. The 

reflections along (H, 3, 0), shown in fig. 4.28, measure only background in the majority 

of cases, but peaks are observed for H = -6, 2, 4, 6, 8, 14, 16, 18, 20 and 22. However, 

some of the scans (H = -6, 2, 22) have two peaks. The extra peaks are due to artifacts in 

the  interface,  most  likely  precipitates,  as  repeats  of  these  scans  off  the  interface 

measured only background (fig. 4.29). Upon observation with the area detector (fig. 

4.30),  the scattering is  neither  a result  of a  Bragg peak nor is  it  rod-like,  as in the 

geometry used the rod would appear as an extended streak (fig. 4.31), but, due to the 

sharpness  of  the  peaks  and pattern,  it  is  crystallographically aligned with  the  grain 

boundary. 

Attempts were made to estimate the precipitate material by considering the  d-

spacing. The spacing between planes, d, is perpendicular to the set of hkl planes, and is 

calculated from Bragg's law:

d= 
2sin  . (4.17)

The spacings in table 4.6 are presented in the order they were found rather than for 

some physically important characteristic. The d-spacings were compared to the powder 

diffraction files (PDFs) [71] and correspond to a theoretically obtained SiO diffraction 

pattern which is consistent with the precipitate material in [11, 30]. We were unable to 

fully determine the precipitate material as we have not obtained all the d-spacings; the 

d-spacings in the PDFs are systematically ordered in terms of their intensity beginning 

with the most  intense peak; as this  information is  lost  to  us it  makes the searching 

routine far more difficult. 
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(H, K)  2θ d (Å) 
-6, 1 11.88 3.52
-6, 3 24.93 1.69
2, 3 23.39 1.79
22, 3 41.22 1.03
12, 4 36.23 1.17

Table 4.6: The position in reciprocal space, 2θ angles and subsequent value of d for the 

double peaks.
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Figure 4.28: The constant velocity scans along (H30), where H is given in the figures. 

Double peaks are present at H = -6, 2 and 22.
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Figure 4.29: Comparison of the constant velocity scan at (22,3,0) when the scan is at 

the interface and for the top (black) and bottom (red) crystals. The two peaks are only 

seen at the interface.
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Figure  4.30: A repeat  measurement  of  the  (22,3,0)  in-plane  scan.  This  time  the 

stationary scan was used and ω was rotated. The area detector images correspond to the 

peaks in the ω scan.
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Figure 4.31: Rod measured by the in-plane scan.

4.12 Conclusions

Bicrystal truncation rods have been measured from a Si Σ13 symmetric tilt grain 

boundary. It is found that the BCTR data yields both information about the rigid body 

translation between the two crystals  and the atomic structure of the grain boundary 

interface.

The grain  boundary structure  is  found by simulating  scattering  from various 

interfaces. The relaxed interfaces were found by minimising the Keating energy. The 

Keating minimisation  does  not  correctly predict  the  high  and low energy structures 

obtained by Morris et al., who used the TB and ab-initio approach. However, since both 

structure (a) and (d) have been observed experimentally,  the energetics of the grain 

boundaries  do  not  provide  enough  information  to  correctly  predict  the  interface 

structure. Morris et al., showed that the energy of structure (a) is approximately 20% 

less  than that  of  structure  (d).  The simulated  scattering  is  dependent  on the  atomic 

structure of the grain boundary and for this scope of work the more important result of 

the Keating minimisation is the relaxed atomic positions of the grain boundaries.

The simulated  scattering is  different  for  each grain  boundary structure.  As a 

result of this we are able to discriminate between potential grain boundaries based on 

the goodness of fit  between the experimental  rods and the predicted ones.  We have 

found that the scattering from structure (a) clearly gives the best fit of the data.  Our 

results  agree  with  the  interface  observed  by  the  high  resolution  z-contrast  image 
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obtained by Chrisholm et al. [58], and it is the lowest energy structure found by Morris 

et al. [2]. Therefore BCTR scattering is a viable alternative to the study of interfaces 

compared  to  traditional  methods.  Our  technique  is  non-destructive  as  the  large 

penetration of X-rays into matter is exploited, the modelled grain boundaries are three-

dimensional,  and  the  measured  rods  are  sensitive  to  the  interface  structure.  This 

approach to the study of bicrystal grain boundaries therefore overcomes the traditional 

problems associated with determining the structures.

This approach can be extended to grain boundaries of different materials. For 

example  the  grain  boundary energies  found by Morris  et  al.,  for  Ge are  incredibly 

similar  and  as  a  result  of  this  many  of  these  structures  have  been  observed 

experimentally [59],  making predictions  of  the  grain boundary very difficult.  If  our 

approach is used we can model the boundary, simulate scattering and discriminate based 

on goodness of fit.
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Chapter 5

Design  and  Commissioning  of  a  Holography 

Endstation at Beamline I06.

5.1 Introduction

Lensless high resolution imaging by X-ray Fourier transform holography (FTH) 

using soft X-rays was first proposed by McNulty et al., in 1992 [72], with the ultimate 

aim to  obtain  10-20  nm resolution  in  three  dimensions  of  biological  samples.  The 

technique has recently been used to study magnetic multilayers containing cobalt [20, 

21],  where the resonant magnetic X-ray scattering (RMXS) is  a result  of the 2p-3d 

transition in transition metals. Therefore, tuneable energies provide element specificity 

and the contrast in magnetic images is provided using X-ray circular dichroism. 

Beamline I06 is a soft X-ray nanoscience beamline with circularly polarised X-

rays  and fulfils  the above requirements  to study magnetic  samples using FTH. This 

chapter details a series of experiments performed on the branchline of beamline of I06 

at the Diamond Light Source. The chapter is divided into two parts. In the first half, the 

suitability of the branchline is considered along with sample preparation. A holography 

chamber was built and commissioned. The second half of the chapter presents some 

preliminary results and some data analysis considerations. The chapter finishes with a 

new method of creating well defined masks, which could possibly overcome the current 

resolution limits of this technique.

5.2 Previous Studies: Introducing the Mask-Sample Design

Lensless FTH has been used to image magnetic nanostructures with soft X-rays 

by using an integrated mask-sample design [20, 21]. The mask-sample is fabricated by 

the use of a Si3N4 membrane on a Si support frame. On one side of the membrane a 
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thick gold film is grown and on the other side a magnetic multilayer is grown. This gold 

film needs to be opaque to X-rays at the L-edge of transition metals. The mask-sample 

is illuminated in transmission geometry and a CCD detector positioned down-stream 

from the sample to record the hologram. A focused ion beam (FIB) is used to cut a 

circular aperture out of the gold film and down to the Si3N4 membrane.  This is  the 

object aperture and defines the beam through the sample. The X-rays undergo RMXS 

and these form the object wave. Next to the object aperture a smaller circular pinhole is 

drilled all the way through the mask-sample. This smaller pinhole is the reference hole 

and the X-rays that pass through this are the reference waves. The light scattered from 

the object and reference interfere upon detection in the far-field to form a hologram (fig. 

5.1).

The in-plane reference and object holes conveniently define a lensless Fourier 

transform geometry. The object image can be easily separated and retrieved by a single 

Fourier transform of the hologram. This entire process is shown conceptually in fig. 5.2. 

In fig. 5.2 (a) a simulated mask-sample design is illuminated by a coherent light source 

and (b) shows the subsequent far-field hologram. The reconstructed image shown in fig. 

5.2 (c) is obtained by a single Fourier transform on the hologram. The bright intense 

area in the centre contains the autocorrelations of the reference and object. The cross-

correlations  of  the  object  and  reference  are  shown on opposite  sides  of  the  central 

structure. The images only differ by their orientation, otherwise they are identical and 

contain exactly the same information about the object. Detailed information about the 

object is extracted at this point.

5.2.1 Limitations of the Mask-Sample Design

The  limitations  of  the  mask-sample  approach  are  illustrated  by  simulated 

scattering in fig. 5.2. The real space image in fig. 5.2 (c) is formed where the reference 

convolutes  the  object.  The mask-sample  in  fig.  5.2  (a)  is  2000 x  2000 pixels.  The 

features on the object have a diameter of 13 pixels and the reference hole has a diameter 

of 13 pixels. The features on the reconstructed image are visible but have a reasonably 

poor resolution. The resolution of the mask-sample design is limited by the size of the 

reference hole and is illustrated by further simulations in fig. 5.3. In fig. 5.3 (a) the 
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reference  hole  has  a  diameter  of  19  pixels  and in  5.3  (b)  the  reference  hole  has  a 

diameter of 3 pixels. The features of the object in 5.3 (a) can only be faintly observed,  

whilst in 5.3 (b) the features are very sharp.

Currently the reference holes produced by the FIB are greater than 60 nm in size. 

This is for two reasons: firstly, the resolution of the FIB is approximately 50 nm and 

secondly drift in the FIB. Both these factors make it difficult to make a small,  well 

defined reference hole and ultimately limit the size of the reference hole. The resolution 

of the reconstructed images can,  in theory,  be improved by applying phase retrieval 

algorithms.

Figure 5.1:  Transmission geometry used in  lensless  FTH. The object  and reference 

waves are defined by the mask and the resultant hologram recorded on the CCD.
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Figure 5.2: The principle of lensless Fourier transform holography demonstrated with a 

simulated sample and scattering. (a) The object and the reference hole is illuminated 

with coherent light. (b) The hologram recorded in the far field. (c) The reconstructed 

image is a Fourier transform of the hologram.

Autocorrelation

Cross-correlation
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Figure 5.3: Reconstructed images from simulations using various sized reference holes: 

(a) a reference hole of diameter 19 pixels and (b) a reference hole of 3 pixels.   
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5.3 Beamline I06

Beamline I06 of the Diamond light source, delivers circularly polarised, soft X-

rays to a photoemssion electron microscope and branchline. The design of the beamline 

is shown in fig. 5.4. The branchline, the parameters of which are displayed in table 5.1, 

has a beam height of 1415 mm and a user end station can be attached onto it; allowing a 

wide range of experiments to be performed. The measurements detailed in this chapter 

were performed on the branchline, using a custom made “holography” chamber (which 

is discussed in more detail in section 5.7)

Figure 5.4: The X-ray source of beamline I06. The M6 toroid mirror is moveable and 

the beam is supplied to the branchline when the mirror is in the path of the beam. After 

[73]. 

Spot size (μm) 200 (H) x 20 (V)
Energy range (first circular harmonic)(eV) 106-1300

Resolving power (ΔE/E) 10-4 @ 400 eV

Table 5.1: Branchline Parameters.

5.3.1 Transverse Coherence Length of Beamline I06

In order to separate the cross-correlation and autocorrelation terms in equation 
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2.26 the object and reference holes in the transmission mask need a separation of  d, 

given by the following [74]

d3
2

d odr , (5.1)

where do is the diameter of the object and dr is the diameter of the reference. However, 

in order to preserve the relative phase between the object and reference the following 

needs to be true

dd od r , (5.2)

where ξ is the transverse coherence length of the X-ray beam. In previous studies do [20, 

21] is 1-1.5 μm and dr is approximately 100 nm which gives d as approximately 2.35 

μm. The transverse coherence length therefore needs to exceed 3.95 μm.

The transverse coherence properties of the branchline, and hence the ability to 

perform holography experiments, was investigated by measuring the diffraction pattern 

from a single pinhole. Fraunhofer diffraction of partially spatially coherent light by slit 

and  circular  apertures  has  been  treated  in  detail  [75-85].  To  obtain  the  far-field 

irradiance  distribution  we make  use  of  Schell's  theorem [86],  which  states  that  the 

irradiance distribution in the Fraunhofer diffraction pattern of a quasi-monochromatic 

spatially stationary aperture distribution is proportional to the Fourier transform of the 

product  of  the aperture  autocorrelation  function  and the  normalised  aperture  mutual 

intensity function. The diffraction from a circular pinhole in the far-field irradiated with 

partially coherent light is given by [83-85, 87]:

I =I 0∫
0

2

Y C  J 0kad  , (5.3)

where  I0 is the intensity at the centre of the Airy disk,  Y(ρ) is the mutual coherence 

function, C(ρ) is the autocorrelation function of the aperture, J0 is a Bessel function of 

order zero,  k is the mean wavenumber and a is the radius of the circular pinhole. The 
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variables  θ and  ρ, the normalised distance between two points over the aperture, are 

defined in fig. 5.5. Y(ρ) is a measure of the coherence of the source at the aperture and is 

given by

Y =
2 J 1


, (5.4)

 

where J1 is a Bessel function of the first order and  α is a measure of the transverse 

coherence (i.e. the number of correlation intervals contained in the aperture radius and 

is given in multiples of the aperture radius) and adjusting this varies the coherence at the 

aperture. A value of α equal to zero corresponds to perfect coherent illumination and 

when  α is infinite incoherent illumination is obtained, all other values correspond to 

partial coherence. Equation 5.4 is almost identical to the degree of spatial coherence, 

|μs|, defined by equation 2.36. The measure of coherence satisfies the condition  |μs| = 

0.88, which  is  the  maximum  departure  from  unity  for  which  the  source  can  be 

considered fully coherent [40, 88]. C(ρ) for a uniformly illuminated circular aperture is 

given by

C =[1−2 /3]−1 [21−2/3L−2− L2

−1−35 2 /31−/93/2−25/40 ]  , (5.5)

where  L =  cos-1(ρ/2),  Є = (1-  ρ2/4)1/2 and  β is  the apodization filter  parameter. The 

autocorrelation function for various β is plotted in fig. 5.6 (a) and simulated diffraction 

from a circular pinhole for various α in fig. 5.6 (b). The simulations are performed by 

integration of equation 5.3. It is seen from the simulations that as the spatial coherence 

decreases (i.e. α increases) the central area broadens, the central intensity decreases, the 

dips between the bright fringes gradually disappear and the simulated diffraction pattern 

approaches the form of incoherent limit. 

The coherence  length  was determined by comparing experimental  diffraction 

from a circular pinhole with simulated data. Both α and β were varied until there was 

sufficient agreement with the experimental data.

The  diffraction  patterns  were  measured  using  the  transmission  geometry 
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illustrated  in  fig.  5.7.   Circular  apertures,  with  diameters  of  10  and  20  μm,  were 

irradiated by a partially coherent,  quasi-monochromatic  circular  source with a  mean 

wavelength of 18.2 Å. The aperture was a distance  1m  away from an optical, out of 

vacuum CCD. The diffraction patterns were recorded by the use of an in vacuum YAG 

crystal which fluoresced in the presence of X-rays and this fluorescence was recorded. 

The exposure time of the CCD for the diffraction patterns ranged from 60-180 seconds. 

The patterns were background subtracted by taking the difference between the CCD 

images with the beam on and off for the same exposure time.  A typical  diffraction 

pattern for a 20 μm aperture is shown in fig. 5.8; it is seen that up to 13 fringes are 

visible. The intensity distributions are found by taking a radial average of the diffraction 

patterns.

Figure 5.5: The coordinate system of the partially coherent diffraction from a circular 

aperture. S1 and S2 are different points on the aperture. O1 defines the coordinate system 

of the aperture and O2 that of the far-field diffraction pattern. After [84].

ρ
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Figure 5.6:  (a)  The autocorrelation  function  for  various  values  of  β.  (b)  Simulated 

diffraction patterns for various αρ.

(a)

(b)
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Figure 5.7: Schematic experimental set-up.

Figure  5.8:  Diffraction  pattern  from  a  20  μm  circular  pinhole  displayed  on  a 

logarithmic scale.

The  coherence  length  was  obtained  by  finding  the  best  fit  between  the 

experimental diffraction patterns and the patterns calculated by equation 5.3. The values 

of  α and  β  were  varied  and equation  5.3  was  integrated  numerically.  The best  fits 
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obtained occurred when β = 0. The value of α obtained was 1.1 for the 10 μm (fig. 5.9) 

and 2.2 for 20 μm (fig. 5.10) apertures. It is observed that the calculated patterns fit the 

experimental patterns reasonably well. These values indicate that the coherence length 

of the beam is approximately 9 μm.

The measured coherence length is greater than the required 3.95 μm. As a result 

of this it is possible to perform holography experiments on the branchline of I06. 

5.4 Sample Considerations

As the branchline of I06 has the potential to perform a holography experiment, 

thoughts can now turn to the creation of the samples and the integrated mask-sample 

design. The creation of the mask-sample is taken from [21] but will also be discussed 

here.

5.4.1 Sample Holder

The Si3N4 membranes are very fragile, and any excess pressure on the Si wafer 

can cause the membrane to break. Therefore, in order to minimize this an “all in one” 

sample holder was developed. The Si3N4 membranes were placed in the recess of the 

sample holder and then held in place with silver adhesive. A SEM image of this can be 

seen in fig. 5.11. Although this meant the sample holders were one time use only, it 

meant there was no tension across the surface of the Si wafer, which is not true when 

the samples are clamped.
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Figure 5.9: Comparison between experimental data and simulation (β = 0, α = 1.1) for 

the 10 μm circular pinhole. (a) Linear plot. (b) Log plot.  

(b)

(a)(a)
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Figure 5.10: Comparison between experimental data and simulation (β = 0, α = 2.2) for 

the 20 μm circular pinhole. (a) Linear plot. (b) Log plot.  

(a)

(b)
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Figure 5.11:  SEM image of a Si3N4 membrane stuck to the sample holder with silver 

adhesive. The membrane rests in a recess and then stuck in place.

As the membranes were stuck to the sample holder, it  meant that the sample 

stages in the ultra-high vacuum (UHV) coater, FIB and holography chamber had to be 

custom made. In the middle of the recess there was a square hole of dimensions 1mm x 

1mm.  The  position  of  the  hole  corresponded  to  the  exact  dimensions  of  the  Si3N4 

membrane. The hole had several purposes: 

1. It allowed for evaporation of both the Au mask and the magnetic layer. In the 

UHV coater the top of the membrane was positioned to be directly over the 

Au evaporator. When the Au evaporation had finished the sample stage could 

be rotated through 180o and the magnetic layer deposited on the underside of 

the membrane. This would save days of time as the UHV chamber wouldn't 

have to be vented, pumped down and baked every time a magnetic layer was 

required.
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2. When  milling  the  sample  holder  would  be  bolted  onto  the  FIB's  sample 

stage. When finished milling, the sample holder could be removed from the 

sample  stage,  rotated  through  180o degrees  and  the  underside  of  the 

membrane seen.

3. Finally,  it  meant that  the sample holder could be used in the holography 

chamber. The X-rays could pass through both the membrane and the hole, 

allowing transmission geometry.

5.4.2 Silicon Nitride Membranes

The Si3N4 membranes were purchased from Silson Ltd. The membranes are 100 

nm thick and have a size of 1 mm x 1 mm. The membranes are supported by a Si wafer 

that is 200 μm thick. 

These membranes are vital to the holography experiment as transmission of X-

rays  at  the Fe  L3 edge is  approximately 75% [89].  They also form the basis  of the 

integrated mask-sample design. The Au layer is grown on one side of the membrane and 

the magnetic layer on the other side. The FIB is then used to create the mask-sample.  

5.4.3 Sample Preparation

The fundamental requirement of the mask is that it  is opaque to soft X-rays.  

Gold was chosen as it acts as an excellent attenuator to soft X-rays and it mills far more 

readily than most materials. A gold mask 1200 nm thick was evaporated onto a Si3N4 

membrane using an UHV coater. The thickness of the mask was measured by a crystal 

thickness monitor. The Au was evaporated onto the Si3N4 at a pressure of approximately 

1x10-10 mbar.  The  Au  was  placed  inside  a  ceramic  crucible  which  was  heated  by 

resistive heating by applying a current to a tungsten filament and the temperature set by 

selecting a particular current value. The deposition rates of the Au evaporator taken over 

10 minutes can be seen in table 5.2.
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I (A) Deposition Rate (Ås-1)
4.61 0.01
4.78 0.01
5.04 0.03
5.22 0.06
5.39 0.11
5.56 0.20
5.82 0.41
6.00 0.64
6.17 0.90
6.34 1.46

Table 5.2: Deposition rates of Au for various currents.

Once the Au mask was grown, the sample holder was rotated through 180o and 

the underside of the membrane faced two evaporators containing Fe and Gd. If the Fe 

and Gd are coevaporated at the right ratio, the resultant film will have random worm 

domains of approximately 100 nm in size when it is magnetized out of plane. The films 

should have the following ratio Gd0.17Fe0.83  and be 40 nm thick [90-92]. The films were 

then capped by a 10 nm thick layer of Ag to prevent oxidation. 

5.4.4 The Focussed Ion Beam Microscope

The University  of  Leicester  has  the  commercially  available  Quanta  3D dual 

beam system from FEI. Dual beam systems have both a scanning electron microscope 

(SEM) and FIB (fig. 5.12). The ion-source used is a liquid metal ion source, which 

provides the brightest and most focussed beam of all commercially available ion sources 

[93]. Ga ions are extracted from the reservoir by field emission and the typical emission 

current is approximately 2 μA. The ions are then accelerated to 30 kV and focussed on 

the sample. The beam current and diameter is controlled by a series of beam defining 

apertures. 

The size and shape of the beam intensity on the sample determines the basic 

resolution and milling precision. Generally the smaller the beam diameter, the better the 



Chapter 5. COMMISSIONING OF A HOLOGRAPHY ENDSTATION AT I06. 129

resolution and milling precision. The ultimate resolution is limited by the sputtering and 

therefore  ultimately  is  signal  dependent.  Secondary  electrons  are  generated  by 

interaction of the ion beam with the sample surface and this can obtain high resolution 

images.  The  sputtering  action  (fig.  5.13)  of  Ga  ions  enables  precise  machining  of 

samples. 

The sample stage has a eucentric point. This is the region where the electron and 

ion beams cross. At this point the electron beam field of view is the same area being 

milled by the ion beam. This allows for non-destructive imaging using the SEM and 

milling using the FIB.

Figure  5.12:  Schematic  of  a  dual-beam FIB-SEM  instrument.  The  expanded  view 

shows the interaction of the ions and electrons with the surface. After [93].
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Figure 5.13: Schematic illustration of a collision cascade generated by a 30 keV Ga ion 

incident  on  a  crystal  lattice,  showing  the  damage  created  in  the  collision  cascade 

volume, and the projected range Rp and lateral range Rl of the implanted ion. When the 

ion beam impinges on the surface it loses kinetic energy as a result of interactions with 

the surface atoms. Ion kinetic energy and momentum are transferred to the solid through 

both inelastic and elastic interactions. In inelastic interactions, ion energy is lost to the 

electrons  in  the  sample  and results  in  ionization  and the  emission  of  electrons  and 

electromagnetic  radiation  from  the  sample.  In  elastic  interactions  ion  energy  is 

transferred as translational energy to screened target atoms and can result in damage 

(displacement of sample atoms from their initial sites) and sputtering from the sample 

surface. After [93].

The sputtering described earlier  can be utilised to create specific  patterns by 

creating a path that describes the pattern. The path is described by a 4096 x 4096 matrix. 

The parameters for each x and y along the path includes the amount of time the beam 

spends  on  each  pixel  (dwell  time)  and  the  overlap  between  adjacent  pixels.  These 

parameters create a path which is repeatedly milled for the duration of the milling time. 
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The milling time is calculated by the FIB software based on the material to be milled, 

the milling depth and path size. The path is generated by using the FIB software by 

drawing simple geometric shapes.  

The  beam diameter  varies  with  beam current.  At  30  kV the  smallest  beam 

currents are 1 and 10 pA at which point the beam diameter is approximately 10 nm. The 

milling is faster for increased beam currents but this also increases the destructiveness 

of the beam, making it difficult to create well defined reference and object holes. The 

quality of the beam focus and astigmatism also has significant effect, as a well focussed, 

circular beam mills more precisely than an unfocussed beam.

5.4.5 Object holes

The object hole determines the field of view in holography and it is created by 

removing the Au mask from the Si3N4 membrane and leaving the magnetic layer intact.

The established method to do this is to use the Si3N4 membrane as contrast as it 

appears much darker than the Au and mills away approximately 10 times slower than 

the Au [21]. This allows for selective milling of the Au. 

To preserve  the  relative  phase,  the  object  was  never  larger  than  2  μm.  The 

objects were milled with a beam current of 10 pA. The majority of the Au was removed 

within 200-300 seconds.  However,  a  major experimental  concern is  the presence of 

stubborn  grains  which  were  almost  endemic  in  places.  This  is  attributable  to  the 

thickness  of  the  Au.  The  Au  masks  were  designed  to  be  thick  to  prevent  any 

transmission through them at the Fe L3 edge and our masks are typically 200-500 nm 

thicker than previously used [20, 21]. As of yet the only way to remove the stubborn 

grains is to mill smaller 100 to 400 nm circles over the grains until they eventually 

disappear (fig. 5.14). The beam current was set to 1 pA during this procedure to reduce 

the beam damage. This method is used because it prevents any excess milling of the 

nitride membrane which could damage the magnetic layer below it.    
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Figure 5.14: (a) Stubborn grains present in the object hole after 200 seconds of milling. 

(b) Removal of stubborn grains by continuously milling small circles.

5.4.6 Reference Holes

The reference holes have to be clearly defined as they limit the resolution of 

lensless FTH. The reference hole ensures that the phase is encoded in the hologram and 

an image is formed where the reference convolutes the object in real space. Therefore 

small, clearly defined reference holes are desirable. The reference needs to go all the 

way through the mask and sample.

In order to meet the above requirements the beam needs to be superbly focused. 

This is obtained in the following steps

1. Set the filter mode from “live” to “average”. This averages the image 

over several images.

2. Set the beam current to 1 or 10 pA.

3. Get a good contrast/brightness ratio.

4. Zoom  in  on  the  sample  surface  as  far  as  the  FIB  can  (this  is 

approximately x1.5 million magnification).

5. The ion beam will automatically mill material away.

6. Zoom out slightly and focus on the milled region remembering to 

correct any astigmatism of the beam.

(a) (b)
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7. Repeat this process until desired focus is obtained.

Step 6 is particularly important as the reference holes will only be circular if 

they are free from stigmatic aberrations; the circles give a measure of the astigmatism of 

the beam. When astigmatism is present the circle becomes elliptic, and the eccentricity 

depends on the level of astigmatism.

The reference holes are created in single steps. It is difficult to tell if all material 

has  been  removed  and  the  only  definitive  way to  determine  this  is  to  look  at  the 

underside of the sample. However, it can be very difficult to locate the reference hole in 

this manner, especially if the holes were below the resolution limit of the FIB and if the  

capping layer is very smooth. This was the case with our samples and the reference 

holes simply could not be located/observed. The only current method for ensuring the 

reference has gone all the way through the sample is just to continue to raster the beam 

over it. Drift poses two significant problems, the first is that it may enlarge the reference 

and finally, and more problematically, it may just cause the sputtered Au to be moved 

from one region to another. The drift was quite significant; in some cases the sample 

would move tens of nm in the space of a few minutes. This meant that the milling of the  

reference  holes  were limited  to  small  milling  times  (<60 seconds).  When drift  was 

present a higher beam current was used to ensure faster milling.

5.5 Holography Chamber.

As the branchline of I06 has sufficient coherence for lensless FTH, a diffraction 

chamber was designed to carry out such an experiment. The final design comprised of 

two 6-inch six way crosses (figs. 5.15 and 5.16 (a)). The first cross was bolted onto the 

branchline and connected to the second cross. Two linear drives were connected onto 

the first cross on opposite flanges. Each linear drive had a two axis  x-y manipulator, 

along with micrometers so the positions could be recorded. The pinholes were attached 

to one linear drive. The following circular pinhole diameters were available; 50, 20 and 

10 μm. Each pinhole was separated from the next by 4 mm in  x. The samples were 

attached to a custom built “dog-leg” that was attached to the other linear drive. This 

ensured that when both the pinholes and sample were fully wound in, the sample rested 

6.7 mm behind the pinhole in the centre of the cross (fig. 5.16 (b)). At this distance from 
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the sample the pinhole does not add to the coherence of the beam; instead it is used to 

reduce the intensity of the beam illuminating the sample. 

On the second cross,  another  linear drive,  with only vertical  movement,  was 

attached. A photodiode was attached on this linear drive. The photodiode was used for 

absolute intensity measurements. When the full beam was incident on the photodiode, a 

current of a few mA is generated. When only part of the beam is on the diode this 

current can be a few pA. In order to measure this smaller signal a current amplifier was 

used and the gain typically 1x109 or 1x1010. A beamstop was attached to the bottom of 

the photodiode, however, it was not used for the duration of the experiment. Behind the 

photodiode was a  YAG crystal  that  converted the soft  X-rays  into  visible  light.  An 

external,  out  of vacuum CCD was mounted onto the work station and recorded the 

visible light. The CCD was 12 bit, had 1376 x 1040 pixels and the pixel size was 15.9 

μm.

The beam at the branchline was 1415 mm off the ground. An aluminium plate 

was made that would bolt onto the existing workstation. This plate formed the base of 

the  chamber.  The  chamber  was  supported  on  the  plate  by the  manufacture  of  four 

aluminium supports comprised of two bases and two tops. The bases went under the 

flanges connecting the first cross to the branchline and under the flange connected to the 

fluorescent screen. Half the flange would rest in the base. Once the bases were in place 

the tops were bolted on, securing the chamber. 

The branchline was under vacuum and the chamber had to be small enough so 

that it could achieve high vacuum just by being pumped down by the existing pumps. 

The pressure inside the chamber was approximately 1x10-6 mbar after 10 minutes of 

being pumped down. The chamber also allowed for quick changing of samples. The 

beam was prevented from reaching the chamber by closing the beam shutter. The ion 

pump was closed and the branchline valved off. The linear drive holding the sample, 

would be removed from the chamber. The sample would be replaced, and the linear 

drive  reattached.  The  valve  was  reopened,  pumping  the  chamber  down.  Once  at 

sufficiently low pressure the ion pump would be turned on and the shutter reopened. 

The process of valving off the branchline to having beam again, after practice, took only 

10 minutes. 

Each  six-way cross  had a  viewpoint  on  it.  This  allowed one  to  observe  the 
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pinholes,  samples  and  diode  being  wound  in  and  out.  During  the  experiment  the 

viewpoints were covered in foil,  the lights turned off and the chamber covered with 

opaque sheets. This effectively reduced ambient light levels to zero. 

5.5.1 Alignment Process

The  beam  passed  through  the  centre  of  the  chamber.  Pinhole  and  sample 

alignment were obtained by scanning both through the beam and measuring the current 

of the photodiode. Once the pinholes were aligned, the photodiode was wound out of 

the beam and the visible light recorded by the CCD. The sample was found by setting 

the beam energy to 1000 eV which greatly increased the transmission through the mask-

sample; this transmission was recorded by the CCD. The corners of the Si3N4 membrane 

were located by moving the sample through the beam and their coordinates recorded 

(fig. 5.17). The sample was then centred on these coordinates and the photodiode was 

wound in.  The  sample was moved in very small  steps until  a maximum signal was 

recorded on the  photodiode,  this  increase in  signal  was attributed  to  an increase  in 

transmission where the object was.  
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Figure 5.15: Schematic layout of the holography chamber. The z-direction goes straight 

through  the  chamber.  The  X-rays  would  pass  through  the  pinhole  and  sample  and 

detected by the diode. 
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Figure 5.16: (a) Photograph illustrating the holography chamber. (b) Viewpoint of first 

six-way cross showing the sample resting behind the pinholes.
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Figure 5.17: Si3N4 membrane as seen by the CCD at 1000 eV. The coordinates of the 

corners were recorded. This gave a clear boundary in which the sample was present. 

5.5.2 Sampling Considerations

This section covers the resolution and the field of view (FOV) of the holographic 

reconstruction both of which are dependent on several key parameters of the chamber; 

such as the sample-detector distance and the size and number of pixels in the CCD [94- 

97].

5.5.2.1 Resolution

The maximum diffraction angle, θ (fig. 5.18), that can be recorded by a detector 

is given by

sin 
2
≈

2
= 

2 d  , (5.6)

which leads to

=
d  , (5.7)

x2, y2

x1, y1 x4, y4

x3, y3
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where d is the resolution. Considering the distance,  z, from the sample to the detector 

we get

tan 
2
≈

2
= x

2 z  , (5.8)

giving

θ= x
z  , (5.9)

where x is half the detector length. Combining equations (5.7) and (5.8) the following is 

obtained

d= z
x
=  z

N  x  , (5.10)

where N is the number of pixels in the CCD and Δx is the pixel width. In our setup λ = 

1.8 nm, z  = 180 mm, N = 1376 in the horizontal direction 1040 in the vertical, and  Δx 

= 15.9 μm. This gives a maximum observable resolution of 14.8 nm in the horizontal 

and 19.5 nm in the vertical.

5.5.2.2 Oversampling Ratio

In order to use phase retrieval algorithms successfully we first need to consider 

oversampling. Sampling the diffraction pattern more finely than the Nyquist frequency 

(the inverse of the size of the diffracting object) corresponds to surrounding the sample 

with a no density region [97]. Provided the no density region is bigger than that of the 

sample, sufficient information is recorded so that the phase can be retrieved from the 

oversampled diffraction pattern [94]. In order to determine the oversampling it is useful 

to introduce the concept of an oversampling ratio [95] which is given by 
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σ = total number of pixels
unknown valued pixel number  . (5.11)

This ratio has to exceed 2 in 1D in order to successfully retrieve the phase [95, 96]. The 

oversampling ratio in 1D is given by [96]

σ 1D=
dN
2a  , (5.12)

where a is the size of the object. Experimentally the size of a was 1 to 1.5 μm. Taking 

the largest value of a the oversampling ratio in 1D was found to be 6.79. The ratio for 

2D is just the product of the oversampling in the vertical and horizontal which gives us 

a 2D oversampling ratio of 46.12. This ratio is more than sufficient for us to use phase  

retrieval algorithms.

5.5.2.3 Field of View

The field of view  is calculated from [97] 

FOV=  z
 x . (5.13)

Using the parameters mentioned earlier, the field of view is 20.4  μm. The object size 

must be no larger than FOV / σ1D. This condition is met provided the object does not 

exceed 3 μm [97].
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Figure 5.18: Diffraction geometry. A sample of size, a, has d resolvable elements and is 

located a distance  z away from a detector. The detector is of width  x and contains  N 

pixels of size Δx. After [97].  

5.6 Fourier Transform Holography

Eight  nanostructured  masks  were  created  using  the  FIB.  Each  mask  had  a 

different  sample.  However,  only one mask-sample was successful  (illustrated in  fig. 

5.19) and this was used to commission the experiment.  The high failure rate can be 

attributed  to  the  thickness  of  the  gold.  Although  the  mask  is  opaque  to  X-rays  it 

becomes  incredibly  difficult  to  mill  through  gold  this  thick.  It  was  exceptionally 

difficult to remove all the stubborn grains and to create well defined reference holes. 

Drift of the samples in the microscope meant that we were unable to mill through all the 

layers; in the majority of cases the gold was simply moved from one region to another 

when milling. 

The Au mask was 1.2 μm thick and the transmission of X-rays through the Au 

mask was 9x10-10  of the incident 707 eV (1.75 nm) photons. The reference holes are 

approximately 100 nm in diameter and the object has a diameter of 1.2 μm. 

The holograms were recorded for the following exposure times: 1, 10, 100, 1000 

and 3600 seconds. The high exposure times were used as an attempt to measure the 

x = NΔx

Δx

θdFOV

z
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weak signal lost due to the noise level of the CCD. The hour exposure time was the 

largest permitted by the CCD software. The light transmitted through the Au mask was 

also a source of noise.

The hologram from the gold mask with the Gd0.17Fe0.83 layer can be seen in fig. 

5.20 (a). The pixels at the centre of the diffraction pattern have the highest intensities 

and have saturated the CCD. These pixels correspond to the Airy disk from the object. 

The interference fringes across the hologram are periodic and have a spacing of 1.03 

μm-1.The speckles have a mean size of 5.07 μm-1. 

The reconstructed images are obtained by performing a simple two-dimensional 

Fourier transform on the recorded holograms. The reconstructed image is shown in fig. 

5.20 (b). The reconstruction shows several things: (i) the autocorrelation of the object 

with itself, (ii) the cross-correlation of the reference and object waves, these form the 

reconstructed  image  and  (iii)  noise  in  the  form  of  concentric  rings  around  the 

autocorrelation. The cross-correlations are identical to one another, the only difference 

is that they have been rotated through 180o. The features in the object are structural 

rather  than  magnetic  because  there  was  no  difference  between  the  left  and  right 

circularly polarized light and the features we observe in the object appeared for beam 

energies off resonance (the energy range was 400-3600 eV). The reconstructions also 

show that  X-rays  could  only pass  through one  reference  holes.  The features  in  the 

reconstruction are residual islands of Au which are a direct result of the non uniformity 

in the milling process. 

Figure 5.19: A FIB image of the object with an uniformly redundant array of reference 

holes.  The X-ray beam could only pass through one of the references. 

(a)
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The features in the reconstructed images were compared with SEM images of 

the  mask  to  see  if  they  were  real  or  not  and  to  determine  the  resolution  of  the 

reconstructions.  The  comparisons  may  be  seen  in  fig.  5.21.  There  is  an  excellent 

agreement between the two images and all features observable in the reconstruction are 

real. Secondly, the reconstruction has a higher resolution than the SEM. The smallest 

features in the SEM image are approximately 60 nm in size and appear blurry, whilst 

these  features  appear  sharp  in  the  image  reconstruction.  Therefore  the  resolution 

obtained with our experimental set up is less than 60 nm. 
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Figure 5.20:  (a) Hologram obtained for a 3600 second exposure time. (b) Resultant 

reconstruction. 

(a)

(b)

(a)
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Figure 5.21: Comparison with the SEM image of the object (left image) and the cross-

correlation reconstruction (the right); the colour of this image has been inverted. The 

scale  bar  on  the  SEM  image  is  1.2  μm.  The  smallest  features  in  the  object  are 

approaching the resolution limit of the SEM as they are smaller than 100 nm.

5.7 Phase Retrieval 

The following section details our attempt at applying phase retrieval algorithms 

to the holographic data. The aim was to use the reconstructed image as a tight support in 

iterative phase retrieval. As will be demonstrated later, a tight support leads to higher 

resolution  reconstructions.  The  reconstruction  was  also  used  as  the  input  for  such 

algorithms so the algorithms started  closer to the real solution. Subsequent iterations of 

the algorithm should have improved the image resolution.

Ultimately, such attempts were unsuccessful as large regions of the hologram are 

missing due to high noise levels. In the subsequent section the sources of noise are 

discussed as well as the attempts made to reduce them. Finally the ability of the phase 

retrieval algorithm to handle noisy data is considered and applied to our data.  

5.7.1 CCD Noise and its Effect on the Reconstruction

The holograms were recorded using an out of vacuum CCD. There were two 

sources of noise; the readout noise of the CCD and the contribution of hot pixels. 

The readout  noise represents the random noise of the CCD that is  measured 

under totally dark conditions and includes all noise sources (such as dark current) that 
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are  independent  of  signal  level  [98].  For  example  dark  noise  is  intrinsic  to  all 

semiconductors  and occurs through the thermal  generation of minority carriers.  The 

readout noise therefore sets a lower limit on the exposure times for which the images 

are recorded. This is demonstrated in fig. 5.22 which shows the intensity profile of the 

simulated hologram from fig. 5.2 (b) and various readout noise. The only observable 

signal is that which exceeds the readout noise. Figures 5.22 (b) to (f) show the effect of 

noise in the simulated diffraction pattern, as a function of the maximum intensity, on the 

resultant reconstruction.  As the noise level increases the amount of weak signal lost 

increases and this has significant degradation on the reconstructions. Firstly, it becomes 

increasingly  difficult  to  see  the  smaller  features  of  the  object,  which  disappear 

completely for 1% noise, and secondly the boundary of the cross-correlations begins to 

blur and disappears for 10% noise. The increase in noise gives rise to concentric circles 

around the central autocorrelation. The radii of the rings increases with increasing noise. 

Weaker signal was measured by increasing the exposure time. The experimental 

readout noise for the differing exposure times can be seen in fig. 5.23. Typically the 

background is between 45 to 55 counts and increases along the CCD from left to right; a 

direct result of a light leak from an unknown source (fig. 5.23 (f)). This light leak was 

invisible  to  the  human  eye  and was  present  in  all  background  scans,  increasing  in 

intensity and size as the exposure time increased. The maximum intensity of the light 

leak is 120 counts for a 3600 second exposure time. Precautions were taken to remove 

this leak, such as turning off the ion pump and foiling off the viewpoints. However, we 

were unable to remove the light leak. Due to the CCD being sensitive to a broad energy 

spectrum, it appears the light source was outside the visible spectrum.

The following exposure times were used: 1, 10, 100, 1000 and 3600 seconds. 

The larger exposure times ensured that the weak signal exceeded the background noise. 

This illustrates the problems associated with using a non-cooled CCD; the noise can be 

removed from the hologram by subtraction of dark images but the weak signal is still  

lost. Unlike the PILATUS detector used in the previous chapters, CCDs have no energy 

resolution and any light source will contribute to the measured signal again leading to a 

reduced observable signal. 
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Figure  5.22: (a)  Simulated  diffraction  patterns  with  varying  background  levels  to 

illustrate  the  lost  scattering.  The  reconstructions  have  the  following  constant 

background levels, taken as a function of the maximum intensity of the hologram: (b) 

0.001%, (c) 0.01%, (d) 0.1%, (e) 1% and (f) 10%.

(b)(c) (d)(e)
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Figure 5.23: The measured CCD readout noise for (a) 1, (b) 10, (c) 100, (d) 1000 and 

(e) 3600 second exposure times.  (f) The light leak for 3600 seconds.

The second source of noise arises from so-called “hot” pixels. These appear as 

the exposure time increases. It is seen that although they appear at random locations 

across the CCD their position always remains fixed. These pixels are much brighter than 

the surrounding area. These pixels are a result of charge leakages within the CCD sensor 

chip  [98].  Although  these  pixels  are  always  present  they  are  not  visible  for  lower 

exposure times because their contribution to the noise level does not exceed the general 

readout  noise.  The hot  pixels  have  significant  degradation  on the reconstruction,  as 

(a) (b)

(c) (d)

(e) (f)
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shown in fig. 5.24. The simulated diffraction pattern has hot and “cold” pixels (where 

cold pixels are less bright than the surrounding area) and the reconstruction contains no 

information about the object.  

The hot pixels were found by convoluting the dark images with the following 

matrix:

−1 −1 −1
−1 8 −1
−1 −1 −1 . (5.14)

This would find pixels with an intensity greater (or less) than its 8 neighbouring pixels. 

The number and behaviour of the hot pixels can be seen in figs. 5.25 and 5.26. Figure 

5.25 shows pixel histograms for 3600 second backgrounds and reveals a surprisingly 

large numbers of hot pixels with intensities greater than 100 counts. Figure 5.26 shows 

the behaviour of some select hot pixels as a function of exposure time. The error bars 

represent the rms error between various background scans. The graph shows that the 

intensity of the hot pixels behave linearly with time between exceeding the background 

and saturation. The rms error for each pixel is very small, showing that the position and 

behaviour of the hot pixels are very consistent. This is verified by table 5.3 which shows 

the mean number of hot pixels and the standard deviation. 

Figure 5.24: (a) Simulated diffraction pattern with random noise added to simulate the 

bright pixels. (b) The resultant reconstruction.

(a) (b)
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Figure 5.25: Histogram of pixel counts for a 3600 second background.

Figure 5.26: Behaviour of selected bright pixels as a function of exposure time. The 

error bars represent the rms error between various background scans. 
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Exposure Time (seconds) Mean number of hot pixels Standard Deviation
1 0 0
10 5.4 1.14
100 45.17 1.94
1000 341.67 6.19
3600 429.33 5.92

Table 5.3: Number of bright pixels for each background image

The hot pixels are corrected for by replacing them with the average of their 8 

neighbours. If one of the neighbours is also a hot pixel  (which has a low probability) it  

is replaced by the average of the remaining non-hot pixels. This is a quick procedure 

and leads to minimal blurring. 

5.7.2 Airy Disk Reconstruction

A typical hologram and its reconstruction is shown in fig. 5.20 and the typical 

background is approximately 40 to 50 counts. The reconstruction has concentric rings of 

noise surrounding the autocorrelation; the intensity of which comparable to that of the 

cross  correlations.  The  rings  are  present  even  when  the  hologram  is  background 

subtracted and result from the saturation of the Airy disk. This saturation is presented in 

fig. 5.27 (f), which shows a line profile through the centre of measured holograms. The 

CCD  has  a  poor  dynamical  range  and  a  meaningful  signal  can  only  be  measured 

provided it is greater than 40-50 counts and less than 4095 counts. The background is 

approximately 1% of the maximum signal and this has significant degradation on the 

reconstruction (fig. 5.22 (e)). 

The effect of saturation is demonstrated in simulations by varying the height and 

shape of the Airy disk. Firstly the Airy disk was set to a constant value (fig. 5.28 (a)), to 

mimic the experimental data, and finally to zero (fig. 5.28 (c)), mimicking the effect of 

a (e.g.) lead beamstop used to mask the centre of the detector. In both simulations the 

rings are present and the cross correlations have poor contrast with the noise (figs. 5.28 

(b) and (d)). 

(a) (c)
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Holograms measured with the same conditions but different exposure times are 

presented in figs. 5.27 (a) to (e). As exposure time increases more of the weak signal is 

measured, but, from 100 seconds onwards, the Airy disks saturates and is completely 

saturated  for  3600  seconds.  This  leads  to  charge  overflowing,  since  a  CCD  pixel 

behaves like a bucket [98]. Once the pixel has filled up with charges generated by the 

incoming photons, the charge will overflow into neighbouring pixels. This lead to the 

Airy disk and the neighbouring speckles becoming indistinguishable as both saturate for 

3600 second exposure (figs. 5.27 (e) and (f)). 

The  reconstructed  images  are  more  detailed  with  increasing  exposure  time, 

however, the noise increases with increasing saturation of the Airy disk (fig. 5.29).  
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Figure 5.27: Measured holograms for exposure times of: (a) 1 s, (b) 10 s, (c) 100 s, (d) 

1000 s and (e) 3600 s. The horizontal line profiles through the middle of the holograms 

is shown in (f). 
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Figure 5.28: (a) Line profile of a hologram with the central peak set to a constant value 

and (b) the corresponding reconstruction. (c) Line profile of a hologram with the central 

peak set to zero and (d) the corresponding reconstruction. 

The measured holograms were subjected to a threshold, to remove the saturated 

pixels  and  were  normalised  to  exposure  time  (fig.  5.30  (a)).  The  saturated  pixels 

removed from the 3600 second exposure were replaced by those from the 1000 second 

exposure, those pixels removed from the 1000 second exposure replaced by those from 

the 100 second exposure and so on. The resulting patched hologram (fig. 5.30 (b)) has 

no  saturation  (fig.  5.30  (c))  and  enough  weak  signal  is  recorded  to  allow detailed 

reconstructions  (fig.  5.30  (d)).  The rings  are  absent  and the  cross-correlations  have 

improved  contrast  with  the  background.  However,  patching  the  hologram generates 

noise across the reconstruction. 
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This approach again demonstrates the need for a low noise, and preferably, a 

high dynamic range CCD. The cross-correlations are present for exposure times of 10 s 

and there is very little noise in the reconstructions. However, the weak scattering, and 

subsequently the detail of the reconstructed object, is lost in the background noise. If the 

readout noise is reduced to zero, then detailed reconstructions can be obtained for low 

exposure  times  and none of  the  pixels  saturate.  Random sources  of  noise could  be 

removed altogether by taking multiple images and then stacking them. If the CCD has 

poor readout noise but a high dynamical range, detailed reconstructions can be obtained 

by simply increasing the exposure time, but now the Airy disk is not saturated.    

5.7.3 Phase Retrieval Algorithms

We start  with Feinup's  [99] improvement of the Gerchberg-Saxton algorithm, 

which retrieves the phase of a measured diffraction pattern,  by a series of iterations 

between real and Fourier space and the application of constraints, from a single intensity 

measurement of the Fourier modulus of the object |F|.  This algorithm, known as the 

error-reduction algorithm, has four steps (illustrated in fig. 5.31):

1.Take the modulus of the diffraction pattern and apply a random phase. Then 

perform an inverse Fourier transform.

2.This gives an estimate of the real space object. Apply real space constraints.

3.This gives a new estimate of the object. Perform a Fourier transform.

4.This gives a new Fourier space image with a new phase which is closer to the 

true phase then the starting phase. Replace the estimate of the modulus with the 

experimentally measured modulus and repeat. 

The error-reduction algorithm can be applied to a wide range of problems in 

which partial  constraints (in the form of measured data or information  a priori) are 

known in the two domains. One simply transforms between the domains, satisfies the 

constraints before returning to the other domain. 
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Figure 5.29:  Reconstructions  corresponding to  diffraction patterns  illustrated  in  fig. 

5.27.
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Figure 5.30:  (a) Line profiles normalised to 3600 seconds. (b) Hologram combined 

from the various exposure times. (c) Line profile of the combined hologram. (d) The 

reconstruction of (b). This image has been contrast enhanced to remove the majority of 

weak noise.
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Figure 5.31: Block diagram of the error-reduction algorithm.

In the error-reduction algorithm the constraint in real space is given by 

gk1={gk ' x≠
0 x= } , (5.15)

where γ is the set of points for which g'k(x) violates the object-domain constraints . The 

iterations continue until the computed Fourier transform satisfies the Fourier-domain 

constraints  or  the  computed  image  satisfies  the  object-domain  constraints.  The 

convergence of the algorithm can be monitored by computing the mean squared error, 

which  for  a  single  intensity  measurement  is  given  by  Eok
2 =∑

x=
[ g ' k x ]

2
.  The 

normalised root mean squared (nrms) error is given by 

Eok=
∑
x=

[ g ' k x ]
2

∑
x
[g ' k x ]

2 . (5.16)

Fourier Transform |G|eiΦ

Satisfy Fourier 
Constraints

|F|eiΦInverse Fourier Transform

Fourier Transform

g'

Satisfy Real Space
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g
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However, this algorithm has slow convergence. To overcome this Feinup introduced the 

hybrid  input-output  algorithm  (HIO)  [99],  which  differs  from  the  error-reduction 

algorithm in the object domain. Now the input g(x) is no longer the best estimate of the 

object, but rather the driving function for the next output g'(x). The input g(x) does not 

necessarily  satisfy  the  object  domain  constraints  and  therefore  allows  for  different 

versions of the input function. The next input gk+1 differs from that of the error-reduction 

algorithm and is a combination of the previous input gk and output gk' so that

gk1={ gk ' x≠
gk−gk ' x=} , (5.16)

where β is a feedback parameter and is defined by Feinup to be equal to 0.9.

Phase retrieval algorithms can be applied to holography by considering the mask 

sample design shown in fig. 5.32 (a); in this instance the reference hole is larger than the 

features  in  the  object.  We  are  therefore  unable  to  observe  these  features  in  the 

reconstructed  cross-correlations  (fig.  5.32(c)).  However,  the  support  mask  can  be 

conveniently obtained from the low resolution hologram by using the method developed 

by Marchesini et al., [100]. The object must fit within the cross-correlations and so the 

first  estimate  of  the  support  is  obtained  by contouring  and  thresholding  the  cross-

correlations for a given intensity level. The support is zero everywhere outside of the 

cross-correlations. Phase retrieval algorithms are then applied, where the initial step is 

to  apply a  random phase  to  the  measured  Fourier  modulus.  The  support  mask and 

reconstructions after 100 iterations of both the error reduction and HIO algorithm are 

shown in fig. 5.33. After a few iterations of both, one of the cross-correlations begins to 

fade and eventually disappears, overcoming the twin-image problem associated with 

holography, whilst the resolution of the remaining cross-correlation improves and the 

object is recognisable. The convergence of the algorithms can be made faster, simply by 

discarding one of the cross-correlations in the support mask.   

The  slow  convergence  of  the  error-reduction  algorithm  can  be  drastically 

improved by utilising the shrink wrap algorithm [100]. This algorithm is identical to the 

error reduction and HIO algorithms apart from one crucial difference; the support mask 

is  continuously  updated.  After  n iterations  of  either  the  error-reduction  or  HIO 
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algorithm, the real space image is convolved with a Gaussian, with  σ = 3 pixels, and 

then thresholded above a certain intensity level. The convolution smooths out the noise 

in the real space image creating a well defined boundary of the support. After another n 

iterations, the real space image is again subject to a convolution, however σ is decreased 

by 1%, creating a sharper support mask. This process is repeated until a suitable level of 

convergence has been obtained.  

Figure 5.32: (a) The object and very large reference hole. (b) The simulated hologram. 

(c)  The  resultant  reconstruction.  The  light  and  dark  features  in  the  object  are 

unobservable due to the large reference hole.
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Figure 5.33: (a) The support mask obtained by thresholding the cross-correlations. (b) 

The  reconstruction  after  100  iterations  of  the  error-reduction  algorithm.  (c)  The 

reconstruction  after  100  iterations  of  the  HIO  algorithm.  (d)  A comparison  of  the 

convergence of the error reduction and HIO algorithms. The HIO algorithm converges 

much faster than the error reduction and, bar the first two iterations, improves with each 

iteration.  This  diagram illustrates  the  problem with  slow convergence  of  the  error-

reduction algorithm, which has stagnated in a local minimum after approximately 50 

iterations  
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Figure 5.34:  The combination of the shrink wrap and error reduction algorithms. The 

support is updated every 20 iterations by convolving and thresholding the real space 

image. The real space images are shown for (a) 20, (b) 40 and (c) 60 iterations of the 

error reduction algorithm.

Thus far the discussion on phase retrieval has only considered noise free data, 

which, in the case of our data, is physically unrealistic. Simulations were performed on 

noisy data,  where  the  constant  readout  noise  of  the  Fourier  modulus  is  given  as  a 

percentage of the maximum intensity of the Airy disk (fig. 5.35). For relatively low 

noise  levels,  the  reconstructed  object  after  100  iterations  of  the  HIO  algorithm  is 

instantly  recognisable.  For  intermediate  noise  levels  the  reconstructed  object  is 

recognisable but there is slight blurring of the light and dark features and for high noise 

only the envelope of the support is observed.  

The size of the support mask is crucial for the phase retrieval algorithm's ability 

to handle noisy data. So far the support is obtained from the cross-correlations that, for 

the example of a large reference hole, gives us a loose support mask. If we tighten the 

support mask by increasing amounts, eventually using the object as the support mask, 

the HIO algorithm will obtain a recognisable object even in the presence of high noise 

levels in the Fourier modulus (fig. 5.36).  The shrink wrap algorithm is superior to the 

HIO algorithm when a loose support is used [100] because it always improves upon the 

support (fig. 5.37). The noise level at which the algorithm fails [100] occurs when the 

noise in real space becomes larger than the threshold used to update the support. The 

optimum  threshold  setting  depends  on  the  noise  level  and  reconstruction  is  only 

available in parts of the object where the contrast is above the noise [100]. 

Using this knowledge, we then apply the HIO and shrink wrap algorithms to our 

data. The support masks, shown in fig. 5.38, are different for the two algorithms. The 
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support mask for the HIO algorithm is obtained directly from thresholding one of the 

cross-correlations whilst a loose support that envelopes the cross-correlation is used for 

the shrink wrap. As our data is noisy, if a tight support mask is employed with the shrink 

wrap algorithm, updating the support mask after n iterations becomes problematic; if the 

threshold level is too low then the support mask will grow in size as it begins to engulf 

the surrounding noise, if the threshold level is too high then the support mask shrinks 

rapidly and severely truncates the object  within several  updates of the support.  The 

cross  over  between  these  levels  is  very small  and  it  is  very  difficult  to  accurately 

determine, hence, a loose support is used that is continuously updated. 

The masks were obtained after the data had been background subtracted, the hot 

pixels removed and the saturated pixels patched. The real space images obtained from 

the HIO algorithm and the shrink wrap algorithm are shown in figs.  5.39 and 5.40 

respectively. In both cases the quality of the reconstructed object is relatively poor and 

only the envelope of the object is observed. After 1000 iterations of the shrink wrap 

algorithm, the support closely resembles that used in the HIO algorithm, which indicates 

some level of success. However, the small features in the object are unobservable as 

they become engulfed in the noise, of which there are two sources: the readout noise 

and the patching of the saturated pixels.  The simulations show that provided a tight 

support is used, the phase retrieval algorithms are fairly robust even in the presence of 

high  readout  noise,  suggesting  the  failure  arises  from the  patching  of  the  saturated 

pixels. Unfortunately, the patching is a necessity as the data is even noisier if the pixels 

are left saturated.

It is here that a different approach of replacing the saturated pixels is taken [97]. 

As before the data is background subtracted, the hot pixels removed and the saturated 

pixels patched. The new approach diverges after the first iteration of the algorithm; the 

amplitude of |G| is matched to that of |F| where the intensity is known i.e. outside of the 

saturated  region where  the  speckles  are.  The region where  saturation  occurs  in  the 

measured  diffraction  pattern  is  then  replaced  by the  scaled  region  of  the  estimated 

diffraction  pattern.  This  region  is  replaced  after  each  iteration,  thereby  gradually 

improving on the initial estimate. The resulting real space images obtained using the 

HIO and shrink wrap algorithms are shown in figs. 5.41 and 5.42 respectively. After 20 

iterations of the HIO algorithm the reconstruction is still noisy and details of the object 
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are unobserved; this is unsurprising as the patched regions of the measured diffraction 

pattern is still  incorrect. At 100 iterations the estimate of the saturated regions have 

improved drastically allowing the features in the object to be faintly observed and after 

1000 iterations the reconstructions are far less noisy and not only are  the features seen 

with improved resolution and contrast but also more features are observed. A similar 

observation is made with the shrink wrap algorithm; not only does the support tend to 

the size and shape of the cross-correlation but also after 1000 iterations some features of 

the object are faintly observed.     

We can draw several conclusions when applying phase retrieval algorithms to 

noisy holograms. Firstly, the cross-correlations define a convenient support mask as the 

real space object must be contained in them and after only a few iterations one of the 

cross-correlations  disappears  removing  the  twin-image  problem  associated  with 

holography. In the case of noisy data it is better to use the HIO algorithm, due to either 

excessive growth or shrinking of the support mask using the shrink wrap algorithm. 

Finally, the estimated diffraction pattern can be utilised to replace any missing regions 

of the measured diffraction pattern allowing phase retrieval to be applied to incomplete 

data sets. Alternatively, one could overcome the majority of problems, by using a low 

noise, high dynamic range CCD.     
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Figure  5.35:  The  effect  a  constant  readout  noise  has  on  the  simulated  hologram 

displayed in fig. 5.32. The support structure is identical to that in fig. 5.33 (a) apart from 

the bottom left cross-correlation has been removed. Figures (a), (b) and (c) show the 

hologram,  reconstruction  and  the  reconstruction  after  100  iterations  of  the  HIO 

algorithm respectively, for a readout noise of 0.001% the maximum intensity of the Airy 

disk. Figures (d) to (f) and (g) to (i) show the same but for 0.01% and 0.1% readout 

noise respectively.
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Figure 5.36:  The tightening of the support mask and subsequent reconstructions after 

100 iterations of the HIO algorithm for noisy a Fourier modulus (compare with figs. 

5.35(g) to (i)). The reconstructions improve in quality as the support mask is tightened 

until eventually the object (g) is used as the support mask. 
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Figure 5.37:  Image reconstruction  using the shrink  wrap algorithm. After  every 20 

iterations the support mask is obtained by thresholding the object at 25% it maximum 

intensity. The reconstruction and mask are shown after 20 ((a) and (b)), 60 ((c) and (d)) 

and 100 iterations ((e) and (f)). The algorithm is terminated after 100 iterations because 

the  support  mask  is  continually updated;  after  100  iterations  the  support  mask  has 

shrunk to such an extent that it begins to truncate the object.

Figure 5.38:  The support masks used in (a) the HIO algorithm and (b) as the initial 

support in the shrink wrap algorithm.
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Figure 5.39: The real space image obtained after (a) 20, (b) 100 and (c) 1000 iterations 

of the HIO algorithm.

Figure 5.40:  The shrink wrap algorithm, with a 15% threshold level, after (a) 20, (b) 

100 and (c) 1000 iterations.

Figure 5.41:  The real space image after (a) 20, (b) 100 and (c) 1000 iterations of the 

HIO algorithm where  the  saturated  regions  of  the  measured  diffraction  pattern  are 

replaced by the scaled regions of the estimated diffraction pattern.
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Figure 5.42:  The shrink wrap algorithm, with a 25% threshold level, after (a) 20, (b) 

100 and (c) 1000 iterations,  where the saturated regions of the measured diffraction 

pattern are replaced by the scaled regions of the estimated diffraction pattern.

5.8 Design of Apparatus to Improve Reference Hole Milling

Thus far the presented holograms have all been limited by the readout noise of 

the CCD. However, this can be overcome by using a cooled CCD with a high dynamic 

range. A more pressing issue is the high failure rate of the mask-sample. In this work, 8 

mask-samples were grown in the same manner and the masks had the same thickness. 

The reference  holes  had a  diameter  of  100 nm and were created using  the  method 

presented in [21]; the depth was set to 1.2 μm and the ion beam was rastered over each 

reference hole 20 times. This method is highly inconsistent and resulted in only one 

mask-sample being successful. Even in the successful mask-sample,  the X-ray beam 

could only pass through one reference hole (fig. 5.19).

Here a more elegant method of creating well defined, circular reference holes is 

presented. A new, sample stage for the FIB was designed and is shown in fig. 5.43. The 

new sample stage had a base and a copper plate sandwiched between two insulating 

PEEK layers. A BNC connector was bolted onto the back of the base and one of the 

PEEK layers went on the base. There is a recess in the PEEK layers that the connector 

and the copper plate will slide into. An electrical connection is made between the plate 

and the cable by a conducting silver adhesive. The next insulating PEEK layer goes on 

top of the plate, and the sample holder is bolted on, holding everything together. A BNC 

cable was attached to the connector and this was attached to a feed through plate on the 

inside of the FIB. A BNC Connector went through the middle of the plate and on the 

outside of the plate another BNC cable was connected from this to a gain amplifier 
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which in turn was connected to a multimeter.

The top PEEK layer had a hole in it corresponding to the Si3N4 window. When 

the Ga ions mill all the way through the mask-sample they impinge on the copper plate 

and generate a very small current. This current was enhanced by the gain amplifier and 

gives a measurable signal on the multimeter. 

Figure 5.43: (a) The assembled stage. (b) Exploded cross section of the sample holder 

showing the order in which it is put together. From top to bottom: sample holder, PEEK 

layer, copper collection plate, PEEK layer and the base. 

The gain was 1x109,when the ion beam milled through the mask-sample, there 

was an observable signal of a few mV. When the beam first breaks through there is a 

sharp increase in the measured signal that continues to increase whilst the beam is still 

(a)

(b)
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breaking through. The detector allowed us to determine when all of the material had 

been removed because the signal would plateau. The size of the signal depended on the 

beam current and the size of the reference hole (fig. 5.44). The beam current used for 

the different references were as follows: 0.1 nA for the 5 and 2 μm references, 50 pA for 

the 1μm and 30 pA for the 500, 200 and 100 nm reference holes. The measured signal 

increases as the reference hole diameter increases and is easily distinguishable from the 

background signal even for the 100 nm reference. The reference holes are shown in fig. 

5.45. Figure 5.45(a) shows the top of the Au film and 5.45(b) the underside of the Ag 

capping layer. The reference holes are circular and of a similar size either side of the 

mask-sample. The sample holder allows the user to explicitly know when they have 

removed all the material allowing the creation of well defined reference holes. 

Figure 5.44: The observed signal for the various diameters of reference hole. The black 

line represents the constant background of the multimeter.
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Figure 5.45: The various reference holes for (a) the top side; the diameters from left to 

right are: 5, 2, 1, 0.5, 0.2 and 0.1  μm. (b) The underside.  The reference holes were 

observable in this instance, because a large 'T' structure was milled through the entire 

structure, and the reference holes' position known in relation to this structure.
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5.10 Conclusion

The branchline at I06 is capable of performing lensless FTH. The custom built 

holography  chamber  has  several  advantages  noticeably  in  its  simplicity  and  its 

cheapness to build. The obtained holograms were limited by CCD noise and the quality 

of the sample. The CCD needs to have a high dynamic range so saturation does not 

occur. The readout noise can be reduced in future experiments by cooling an in-vacuum 

CCD.  Although,  the  data  was  affected  by  these  issues,  it  can  be  improved  by 

considering  the  methods  discussed  in  the  chapter.  Beamline  I06  now  has  a  peltier 

cooled, Princeton CCD. In follow up experiments this will be used and the next step is  

to motorise the sample, pinholes and photodiode. 

The inability of the the phase retrieval algorithms to yield better images of the 

reconstructions appears to be a result of the imperfect data, where both high and low 

frequencies are missing from our holograms. The patching of the saturated pixels is also 

a source of error. The quality of the reconstructions can be improved by scaling the 

intensities of the estimated hologram to the measured one and replacing the missing 

regions of the measured hologram with those from the estimate. The features of the 

object can be observed after approximately 100 iterations but there is no significant with 

further iterations.

The quality of the samples were greatly effected by the thickness of the gold 

mask. The thicker gold masks are better at reducing the transmission of X-rays albeit at 

the expense of an increased number of stubborn grains and severe difficulties in creating 

the reference holes. Creation of well defined reference holes is guaranteed by measuring 

the current of the ion beam. If the drift in the FIB can be overcome, then the reference 

holes will only be limited by the size of the ion beam,  which is approximately 10 nm at 

30 kV and 1 pA. This would mean that the reference hole would be a factor of five to 

ten times smaller than current methods; meaning the resolution of lensless FTH would 

be  approaching  the  diffraction  limit.  This  would  allow for  the  measurement  of  the 

magnetism of individual clusters in films instead of just domains.
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Chapter 6

Conclusions and Future Work

6.1 Summary

6.1.1 Commissioning of Beamline I07

Beamline I07 at the Diamond Light Source was commissioned by comparing the 

intensity profile of a CTR measured using various techniques under identical conditions 

on  a  (2+3)-type  diffractometer  with  z-axis  geometry.  The  three  methods  used  were 

stationary, rocking and constant velocity scans. The overall discrepancies between the 

various methods are nearly always within the corresponding statistical error bars. If the 

systematic error is included, which is typically 10-15%, then the differences all  fall 

within the error. This validates all three modes for crystallographic purposes. The use of 

an area detector instead of a point detector in X-ray diffraction experiments has greatly 

improved reliability and greatly improved the data acquisition rate by almost an order of 

magnitude. 

6.1.2 Bicrystal Truncation Rods

An X-ray scattering experiment was performed on beamline I07 at the Diamond 

Light Source. Previous studies have examined the crystallography the Si Σ13 symmetric 

tilt GB and several periodic, fully four-fold coordinated GB structures were proposed by 

Morris  et  al.  In  order  to  ensure  physically  realistic  structures  a  Keating  energy 

minimisation was performed with over 400 atoms in each simulation. Unlike the first-

principle calculations of the GBs, there is no correlation between the Keating energy 

and structure.

The  bicrystallography  of  the  Si  Σ13  symmetric  tilt  GB  gave  rise  to  two 

overlapping CTRs, one from each crystal. The CTR notation was modified to account 
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for this and a model developed for BCTRs, where the crystals were truncated at the 

interface. To model X-ray scattering from this interface three regions were considered; 

bulk like top and bottom Si crystals and an interface region. The simulated scattering 

was not only sensitive to the atomic coordinates of the GB but also on the interference 

between the contributions from the two crystals,  which depended sensitively on the 

separation between them. The potential grain boundary structures were discriminated 

against based on the statistical goodness of fit and we find that structure (a) proposed by 

Morris ., gives an outstanding agreement with the measured data, proving that this is our 

GB.  

6.1.3 Fourier Transform Holography

A custom built  diffraction  chamber  for  performing  lensless  soft  X-ray  FTH 

experiments was designed and commissioned on the branchline of beamline I06 at the 

Diamond Light Source. Our reconstructions are severely limited by the poor dynamical 

range and high noise levels of the CCD used, however the observable features have 

approximately 40 nm resolution. 

A hybrid  approach,  performed by applying phase  retrieval  algorithms  to  the 

measured FTH data,  is applied with limited success. The cross-correlation terms are 

used as a support mask and within a few iterations one of these terms disappears. We are 

unable to resolve the features of the reconstruction, which are lost due to phase retrieval 

algorithms inability to deal with high noise levels, unless the missing sections from the 

measured hologram are replaced by that of the estimated one.  

The inconsistencies  in  creating  the  reference  holes  are  overcome by using  a 

custom built sample holder that measures the time evolution of a signal that is generated 

when the ion beam impinges on a copper plate. When the signal plateaus then all of 

mask-sample has been removed. This signal could be used to create reference holes that 

are  smaller  than  the  resolution  limit  of  the  SEM  or  FIB provided  the  drift  of  the 

microscopes can be overcome.
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6.2 Future Work 

6.2.1 Soft X-ray Holographic Microscopy

Although the integrated mask-sample design is crucial for lensless FTH it has 

limited use in microscopy because the object position is fixed and only one region of the 

sample can be viewed. This limitation has been overcome by Stickler et al. [101]. Their 

approach is to separate the mask and the sample using two Si3N4 membranes, their set-

up shown in fig. 6.1. The mask is grown in much the same manner as before: a thick Au 

film is  deposited on the membrane and then the object and reference are machined 

through it using a FIB. This process has several advantages: the preparation of the mask 

is much simpler, as the object no longer needs to finish at the membrane, and the object 

position is no longer fixed and observation is possible anywhere along the sample. 

Figure 6.1: Schematic of the X-ray holographic microscopy set-up. The membrane with 

the mask support is fixed in the centre of the X-ray beam. The second membrane, which 

has the sample, is free to move in the plane perpendicular to the beam. After [101].
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6.2.2 Soft X-ray Ptychography

Despite  promising  results  obtained using phase  retrieval  algorithms there are 

limitations when applied to X-ray microscopy. To retrieve a unique set of phases most 

algorithms  require  the  object  to  be  very  small  and  of  a  finite  extent  so  that  the 

corresponding highly detailed coherent diffraction pattern can be adequately sampled by 

the detector. Therefore, obtaining a low-resolution overview of a comparably large area 

and then zooming into a region of interest – a standard procedure in microscopy- is not 

feasible [102].

Ptychography  is  an  extension  of  the  iterative  phase  retrieval  methods.  The 

experimental approach of this technique is to collect a number of Fraunhofer diffraction 

patterns, each of which comes from a different, but overlapping, region of the specimen 

which is moved laterally across the beam [103]. An aperture is placed in real space over 

an object. In the Fraunhofer diffraction plane each pattern is now convoluted with the 

Fourier transform of the aperture function. In one-dimension the aperture acts a top hat 

function, and the diffracted peaks are convoluted with sinc functions [103]. At their 

point of overlap the sinc functions add according to the complex values determined by 

the phase of the underlying diffracted beams. This method is known as ptychography. 

The pytchographic phase data is pieced together to form a large field of view and by 

using the ptychographical iterative engine [104] the object is reconstructed within a few 

iterations
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Appendix

A.1 Fourier Transformations 

A.1.1. The Fourier Transform

The Fourier transform F(k) of a one-dimensional function f(x) is given by 

F k =∫
−∞

∞

f x e−2 ikx dx=ℱ [ f x ] , (A.1.1)

where ℱdenotes the Fourier transform. The inverse Fourier transform is given by

f x =∫
−∞

∞

F k e2 ikx dk . (A.1.2)

A.1.2. The Convolution Theorem

The convolution of two functions, f(x) and g(x), where the convolution operator 

is denoted by *, is given by

f x ∗g  x=∫
−∞

∞

f x g x '−x dx . (A.1.3)

If a Fourier transform is applied, then

ℱ [ f x ∗g  x ]=F k  .G k  . (A.1.4)
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A.1.2. Auto- and Cross-Correlations
 

The correlation operator is denoted by ⋆. The cross-correlation of two functions 

is given by

f x ⋆ g x =∫
−∞

∞

f *x g x 'x dx , (A.1.5)

where  f*(x) is the complex conjugate of  f(x), or, in terms of the Fourier transform is 

given by

ℱ [ f x ⋆ g x  ]=F *k .G k  . (A.1.6)

The correlation of a function with itself, the autocorrelation, is given by

ℱ [ f x ⋆ f x ]=∣F k ∣2 . (A.1.7)

A.2 Correction Factors 

A.2.1 Differential Cross-Section

Once the integrated intensities have been measured the structure factors, |Fhkl|, 

are obtained by applying various correction factors to the integrated intensities that are 

dependent on the type of diffractometer and the scan type used [43, 44]. The correction 

factors are derived from first principles by Vlieg (1997) and are are presented by Vlieg 

(1998) for a  (2+3)-type diffractometer.  In an  ω-scan the integrated intensity can be 

measured using a sufficiently wide detector acceptance and by rocking the sample over 

the  entire  width  of  the  reflection.  The detector  opening angles  are  Δγ and Δψ  (fig. 

A.2.1). The integrated intensity of an  ω-scan is

I=
0

0
∫ d

d  d d d , (A.2.1)
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where Φ0 is the incident flux (photon s-1 mm-2), ω0 is the rotation speed and dσ/dΩ is the 

differential scattering cross-section which is given by

d 
d 

=re
2 A

Au P u q , (A.2.2)

where  A is  the active surface area,  Au  is  the area of the unit  cell,  re is  the classical 

electron radius,  P  is the polarisation factor,  u(q) is a function that describes the line 

shape of a diffraction peak (q is the momentum transfer) and is normalised in such a 

manner that integration over h and k is unity.

For  a  stationary  scan  the  detector  accepts  the  rod  over  the  entire  in-plane 

direction,  albeit  over  a  range of  l values.  It  is  assumed that  the  structure  factor  is 

approximately  constant  over  the  probed  l range.  The  integrated  intensity  for  the 

stationary scan is given by

I s=0T∫ d
d d d   (A.2.3)

where T is the counting time.
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Figure A.2.1: A schematic picture of a rocking scan. (a) The situation in real space. The 

detector has opening angles Δγ and Δψ. The surface normal  ŝ lies in the  yz  plane and 

makes an angle βin, with the z axis of the laboratory frame. A rocking scan is performed 

by a  φ rotation about  ŝ. (b) The integration volume shown in reciprocal space. After 

[43].



APPENDIX 182

A.2.2 Lorentz Factor

Since  dσ/dΩ  is  expressed  in  terms  of  q  the  angular  integration  variables  in 

(A.2.1) and (A.2.3) need to be changed into reciprocal space ones.  The geometrical 

correction  in  integration  volume  is  the  Lorentz  factor.  After  some  derivation  Vlieg 

obtains the following reciprocal space integration variables:

d d d = 3

V u  1
sinz cos z dh dk dl , (A.2.4)

and

d d = 2

Au  1
sinout

dh dk , (A.2.5)

where Vu is the volume of the unit cell and λ is the wavelength. The Lorentz factor of the 

rocking  and  stationary  scans  is  the  angle-dependent  parts  of  equations  (A.2.4)  and 

(A.2.5) respectively, and are shown below in the z-axis and (2+2)-circle geometries   

L=
1

sin22
= 1

sinz cos z
, (A.2.6)

Ls=
1

sinout
= 1

cos22sin 22
= 1

sin z
, (A.2.7).

A.2.3 Rod Interception

Vlieg assumes that Fhkl is approximately constant over the integration intervals in 

h,  k and  l. Along the  h and  k directions this is always true, since the profile is sharp 

along these directions (this is determined by u(q)). Along l the diffraction features are 

rod-like and it is necessary to restrict the experimental integration interval such that a 

meaningful  measurement  is  made.  In  (A.2.1)  the  integration  range has  the  constant 
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value  Δγ  regardless of the angular settings of the diffractometer. However, when the 

integration variables are changed there is also a change in the integration range and Δl is 

not constant. In the general case we need to evaluate exactly which range of l values is 

accepted by the detector. This is determined by calculating for which l values the (hk) 

diffraction rod cuts the detector acceptance at the values ±Δγ/2. During a rocking scan 

the (hk) rod will trace a plane so the intersection of this plane with the lines defining the 

detector aperture at  ±Δγ/2 needs to be calculated. After some lengthy derivation the 

following is obtained

 l=C rod l 0 , (A.2.8)

where  Δl0 is the l range for zero incoming and outgoing angles (fig. A.2.2) and 

C rod=cosout . (A.2.9)

There is  no correction for the interception of the rod in the stationary mode as the 

detector accepts the rod over the entire in-plane direction.

A.2.4 Area Correction

The equations for the integrated intensities contain an active surface area A. This 

area is determined by slits in the incoming beam and in front of the detector (fig A.2.3). 

The area correction is 

Carea=
cosout

sin22
=

cosout

sinz cosz
, (A.2.10)

and the illuminated area is this multiplied by s1 and s2. 
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Figure A.2.2: The effect of the outgoing angle βout in the z-axis mode on the amount of 

integrated rod. In this mode Δl = Δl0 cosγ, with Δl0 the  l range for zero incoming and 

outgoing angles. After [43].

Figure A.2.3: View of the surface plane to showing the illuminated area defined by the 

slits in the incoming and outgoing beams. After [43]
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A.2.5 Polarisation Factor 

The polarisation factor, P, assuming complete horizontal polarisation is 

P=1−sin 222 cos222=1−sin2 z . (A.2.11)

A.2.6 Absorption correction

The X-ray beam is attenuated as it passes through the sample. The sample has a 

total  thickness  of  D  (fig.  A.2.4).  Before  the  X-rays  are  scattered  they a  distance  X 

through the  bicrystal.  From the Beer-Lambert  law the  intensity of  the beam,  I,  has 

decreased by the following amount

I=exp−X  , (A.2.12)

where is μ the attenuation coefficient. The X-rays scatter from the sample at a thickness 

of D-X. The direction of the beam then changes and the length the X-rays travel before 

they exit the bicrystal is (D-X)/cosβout. The attenuation after the beam has been scattered 

is then given by

I=exp−D−X 
cosout  . (A.2.13)

The total  attenuation is  the product  of the attenuation of the beam before and after 

scattering and is integrated over the entire width of the bicrystal:

I=exp −D
cos out ∫0

D

exp− X 1− 1
cos out dX . (A.2.14)

After integrating this and after some rearrangement the absorption correction is obtained 

and is given by the following:
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Catten=

exp − D
cosout 

1− 1
cosout  [

1−exp−D1− 1
cosout ] . (A.2.15)

Figure A.2.4:  Illustration of the path (denoted by the arrows) the X-ray beam takes 

through the bicrystal before and after it is scattered.

The structure factors are extracted from the integrated intensities by using either 

equation (3.4) or (3.5) depending on the scan type used.

D

X

βout
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A.3 Reciprocal Lattices 

Figure A.3.1: Reciprocal lattice for the K = 1 plane. The black and red dots represent 

the Bragg peaks from the top and bottom crystals respectively.
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Figure A.3.2: Reciprocal lattice for the K = 2 plane.
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Figure A.3.3: Reciprocal lattice for the K = 3 plane.
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Figure A.3.4: Reciprocal lattice for the K = 4 plane
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Figure A.3.5: Reciprocal lattice for the K = 5 plane.
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A.4 Model Evaluation

The calculated scattering is given on a relative scale as the incoming flux of 

photons  I0 in  equations  (3.4)  and (3.5)  is  not  known accurately.  The quality  of  the 

proposed  scattering  can  be  evaluated  by  comparing  the  calculated  scattering  with 

observed, allowing a scale-factor to vary. This is often done by calculating  

2= 1
N− p∑L

a∣F HKL
calc∣−∣F HKL

expt ∣2

HKL
2 , (A.4.1)

where N is the number of measured points, p is the number of free parameters, σHKL the 

experimental uncertainty and  a is the scale-factor to be varied. The scale factor that 

minimises  χ2 is found by differentiating  χ2

d 2

da
= 1

N −p

∑
L

2 a∣F HKL
calc∣2−2∣F HKL

expt∣∣F HKL
calc∣

HKL
2 =0  , (A.4.2)

which after some rearranging gives

a=
∑

L
∣F HKL

expt ∣∣F HKL
calc∣

∑
L
∣F HKL

calc∣2
. (A.4.3)

Equation (A.4.1) is minimised upon insertion of equation. (A.4.3).  When  χ2  ≈ 1 the 

experimental scattering is within uncertainties equal to the calculated, and the model is 

considered satisfactory.
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