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by

Kavita Sirichand

Abstract

The term structure of interest rates describes the relationship between short- and
long-term rates and embeds the market�s expectation of future interest rates. This
has led to a large literature concerned with modelling the term structure and hence
attempting to extract this information.
This thesis is concerned with both modelling and forecasting the UK term struc-

ture, with a focus on the application of density forecasting and decision-based forecast
evaluation. We test the Expectations Hypothesis of the term structure and more gener-
ally, examine if the term structure is best described by a statistical or theory informed
model.
Interest rate forecasts are essential for policymakers and practitioners alike. Since

density forecasts provide the entire distribution about the forecast, we argue that they
are appropriate for an investor concerned with the uncertainties about future asset
returns.
We �nd economic theory to have explanatory power for the term structure and

the UK money market to be consistent with the Expectations Hypothesis. Further,
we demonstrate how density forecasting techniques can be applied to forecast asset
returns and inform portfolio allocation decisions; and how these optimal allocations
are sensitive to the forecast uncertainties about the expected future returns and the
assumptions made regarding return predictability.
Furthermore, given the importance of forecast evaluation, our results highlight the

need to judge forecasts in the decision making context for which they are ultimately
intended. That is, our �ndings advocate the use of decision-based criteria that assess
forecasts from the user�s perspective, i.e. in terms of economic value, rather than
conventional statistical measures. Under decision-based methods, we �nd that the
investor may gain in terms of wealth by assuming returns are predictable and using a
theory informed model to forecast.
In short, we �nd economic theory to be signi�cant for both modelling and forecasting

the term structure.
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Chapter 1

Introduction

The term structure of interest rates has been the subject of much research, unsurpris-

ingly, given that it embeds the market�s expectations of future interest rates. Because

of the information contained in the term structure, having an explanation of the term

structure is important for market players and provides a means to extract this informa-

tion. In turn, being able to accurately model the term structure is key for forecasting

interest rates.

This thesis contributes to this important literature by modelling and forecasting the

UK term structure at the short end. We consider the importance of economic theory for

modelling the term structure and further, examine if there is economic value to using

a theory based model to forecast the term structure. We focus on the application

of density forecasting techniques for predicting interest rates and stock returns and

the use of these forecasts for investment decision making. Typically, forecasts are

evaluated using statistical measures which ignore how the forecasts will be used and the

preferences of the user. Granger and Pesaran (1996, 2000) argue that given forecasts

are used to inform decisions, the evaluation criteria should depend on the decision

making environment. Here, we evaluate forecasts using both conventional statistical

measures and the not so frequently used decision-based methods.
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In this chapter, we begin by discussing the term structure, the importance of the in-

formation it contains, density forecasts and decision-based forecast evaluation. Section

1.1 describes the motivation of the thesis, Section 1.2 summarises the three empirical

chapters and Section 1.3 outlines the contributions this thesis makes.

The term structure of interest rates describes the relationship between the interest

rate and term to maturity of a bond, where the yield curve plots these interest rates

against their terms1. The shape of the yield curve re�ects the market�s expectation

of future interest rates, given the current market conditions. The most frequently

observed upward sloping curve, re�ects the expectation of future economic growth and

a risk of future in�ation. Given that the term structure of interest rates embodies

the market�s anticipation of future events, having an explanation of the term structure

provides a way to extract this important information, Cox, Ingersoll and Ross (1985).

As such, there is a vast literature concerned with examining the term structure.

The leading theory of the term structure is the Expectations Hypothesis (EH),

which postulates that the long term rate is a weighted average of expected future short

term rates. In their key study, Campbell and Shiller (CS, 1991) consider if the slope,

given by the spread, of the term structure has predictive power for future interest

rate changes, and if this predictive power complies with the EH. They argue that

these questions are key for forecasting interest rates and explaining yield curve shifts.

The empirical evidence in favour of the EH is found to be sensitive to the types of

interest rate data used, the time period considered, the monetary policy in operation

and the testing method employed. However, many report strong comovement between

the theoretical spread, i.e. that predicted by the EH and the actual spread, thereby

making it di¢ cult to reject a hypothesis that is economically signi�cant. Other theories

include the Market Segmentation Hypothesis and the Liquidity Preference Hypothesis.

We discuss the theories and review the empirical literature in Chapter 2.

1The term structure refers to a particular yield curve, that for zero-coupon bonds.
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In this thesis, we begin by modelling the term structure at the short end. The �rst

empirical chapter provides a time series analysis of the UK term structure of interest

rates, and further examines if the EH provides a good characterisation of the UK money

market. We then turn our attention from modelling to forecasting the term structure.

We generate density forecasts of interest rates and judge these forecasts using statistical

and decision-based forecast evaluation criteria.

Density forecasts provide every possible outcome of a chosen variable for a particular

future date, thereby giving a complete description of the uncertainty surrounding the

forecast. From this, the likelihood of a given event being realised can be computed.

This is a more useful means of presenting forecasts, since it communicates the uncer-

tainty about the forecast in a clear and coherent manner2, unlike point forecasts that

only give a single value. This method of forecasting is potentially of great use with

those including the Bank of England, JP Morgan and Reuters using density forecasts

to convey the uncertainty about their projections.

We explore this potential in the second and third empirical chapters, by examining

how an investor optimally allocates his portfolio when faced with the uncertainties about

the future asset returns. Given portfolio composition depends on both the expected

return and the associated risk of each asset, density forecasting is an appropriate way

of conveying the risk and return information of each asset. More speci�cally, by using

density forecasts of future returns to inform his decision making, the investor utilises

the entire distribution about the forecast, i.e. expected return and the uncertainty

(risk) about this expectation as captured by the variance of the forecast. The expected

return distribution of each asset can be compared to derive suggestions for an optimal

portfolio.

Further, we evaluate the forecasts using both statistical and decision-based cri-

teria. Recently leading researchers have argued in favour of decision-based forecast

2Chapter 2 provides a more detailed discussion of density forecasting and types of forecast uncer-
tainities.
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evaluation3, where forecasts are evaluated by their economic value to the user. Rather

than in terms of conventional statistical measures based on forecast errors, that do not

take into account the objectives of the user, Leitch and Tanner (1991) and Pesaran

and Skouras (2004). We argue that in this investment decision making context, it is

important to consider (a) the risk and return of the asset and (b) the investor�s feeling

about risk and how valuable the forecasts are to him. We show that density forecasting

is appropriate for (a) and decision-based forecast evaluation for (b).

1.1 Motivation of Thesis

The research conducted in this thesis is motivated by the importance of the term struc-

ture and the information it embeds. The term structure embeds information about the

market�s expectation of future events. Because of this information, having knowledge

of and being able to explain the term structure is important for market players including

(1) policy makers for the transmission of monetary policy, (2) practitioners concerned

with pricing instruments and (3) investors interested in allocating their portfolio. Our

objective is to both model and forecast the UK term structure. Chapter 3 is concerned

with modelling the term structure, which is important for all market players. Chapters

4 and 5 are concerned with forecasting the term structure and we examine this from

the perspective of an investor.

We observe a parallel between the term structure and forecasting literature. That

is, under statistical measures the EH is often rejected. However, CS argue that the

EH is economically signi�cant if the theoretical spread can explain the majority of the

variation in the actual spread. Similarly, in the forecasting literature under statistical

forecast evaluation measures, theory informed models are largely rejected in favour of

3"Quite simply, good forecasts help produce good decisions. Recognition and awareness of the
decision-making environment is the key to e¤ective...evaluation of forecasting models", Diebold (2004,
pp. 32).
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a simple no change model4. However, recent research shows that when decision-based

measures are used support for theory informed models is found, see Della Corte et al

(2008) and Garratt and Lee (2009). This observation motivates the research presented

in this thesis, where Chapter 3 tests the EH using standard statistical techniques em-

ployed by the literature and then Chapters 4 and 5 examine interest rate predictability

using both statistical and decision-based methods. That is, in Chapters 4 and 5 we

extend this notion of economic signi�cance to forecasting. We do this by considering

if the forecasts generated from a theory informed model are economically signi�cant,

i.e. if the investor is better o¤ in terms of wealth by assuming returns are predictable

and using a theory informed model to forecast. By comparing the forecasts of di¤erent

models, we are examining if the forecasts improve as we augment the information set

used to produce them. This is important, since the quality of the forecast is dependent

on the quality and quantity of information used to produce it, Diebold (2004).

The questions addressed in this thesis are:

1. Does the EH hold for this recent sample of UK data?

2. Do we �nd more support using this dataset than previous UK studies, that test

the EH using data over a period when interest rates were comparatively more

volatile?

3. Is a statistical or theory informed model best placed to describe the UK money

market? Then continuing with the comparison between statistical and theory

informed models to the forecasting stage, we consider:

4. Is an atheoretic random walk model or a model that embeds the long-run rela-

tionships implied by the EH better at forecasting the term structure? Given that

we examine the forecasts in an investment decision making context:

4For exchange rates see Abhyankar et al (2005) for a discussion. For interest rates, mixed support
is reported for the EH as will be discussed in Chapter 2, see also Carriero et al (2006) and Guidolin
and Thornton (2008).
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5. Is the investor�s allocation sensitive to the investment horizon, parameter un-

certainty and the assumption made regarding predictability? Given that both

statistical and decision-based forecast evaluation criteria are used:

6. Which model performs best?

7. Is this performance sensitive to the evaluation criteria employed?

8. Do these forecasts have an economic value?

These questions are explored using a Vector Autoregressive modelling framework,

where density forecasts of the asset returns are generated through simulation methods,

as detailed in Chapter 2. In the following section we summarise each of the empirical

chapters.

1.2 Summary of Empirical Chapters

Our �rst empirical chapter, Chapter 3, examines the time series properties of the UK

Term Structure over 1997 to 2004, using a range of models for weekly 1-, 3-, 6- and

12-month yields. The range of models embed varying degrees of economic theory. On

the one hand we consider the statistical Autoregressive and Vector Autoregressive in

Di¤erences models, which allow for no or limited interaction between the yields. On

the other hand we consider the theory informed VAR in Transformed Interest Rates

and Vector Error Correction models, that embed the long-run relationships between

the yields as implied by the EH. The aim of this chapter is, �rst to test the EH using

cointegration analysis and the VAR methodology. Second, to determine if a statistical

or theory informed model has greater explanatory power for the UK term structure at

the short end. We �nd support for the EH under both approaches, suggesting that

the EH provides a good representation of the UK money market. Further, we �nd the

theory informed models to have greater explanatory power.
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Chapter 4 moves to forecasting the UK term structure at the short end. Given in

Chapter 3 we �nd support for modelling the term structure using a theory informed

model, Chapter 4 forecasts yields using a Multivariate VAR in Transformed Interest

Rates (MVART) model, which embeds the cointegration relations implied by the EH.

In particular, we compute the optimal portfolio allocation for a buy-and-hold investor

with power utility over terminal wealth for two assets, the 1-month and the n-month

T-bill, for n = 3; 6; 12 over investment horizons of up to 2 years using weekly UK data

over 1997 to 2007. We use two models that make opposing assumptions regarding

return predictability to forecast returns. That is, the investor uses a random walk

with drift model to forecast returns and inform his allocation decisions, if he believes

returns are not predictable. However, if he believes returns are predictable he uses the

MVART model. We generate density forecasts of the returns from the two alternate

models. The aim of this chapter is �rst to consider if parameter uncertainty and

predictability in�uence how the investor allocates. Second, to see if there is economic

value to interest rate predictability, in that does the investor gain in terms of higher

wealth from assuming returns are predictable and using a theory informed model to

forecast. We �nd the allocation to be in�uenced by parameter uncertainty and the

assumption made regarding predictability. Further, some evidence of economic value

to interest rate predictability is found, suggesting that the investor may gain in terms

of wealth from assuming returns are predictable.

In Chapter 5, we use the asset allocation framework of Chapter 4 and extend it

by considering a risky asset. That is, we compute the optimal portfolio allocation

for a buy-and-hold investor with power utility over terminal wealth, for two assets

the 1-month T-bill and the FTSE All-Share Index using weekly UK data over 1997

to 2007. Here we use four models that assume varying degrees of bond and stock

return predictability to forecast returns. Such that, if returns are assumed predictable,

then key stock and term structure variables are believed to have explanatory power. We
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generate density forecasts of the returns from all models. The aim of this chapter is �rst

to examine the e¤ects of predictability and parameter uncertainty on how the investor

optimally allocates. Second, to see if there is any economic value to the investor of bond

and stock returns being predictable. We �nd that an investor who assumes returns

are predictable allocates di¤erently to one who assumes returns are not predictable.

Further, we �nd evidence of economic value to bond and stock return predictability.

Whereby, the investor gains in terms of a higher terminal wealth by assuming returns

are predictable and gains further still by modelling both returns together.

1.3 Contributions of Thesis

In this section we detail the empirical contributions this thesis makes to both the term

structure and the �nancial economics forecasting literature.

Chapter 3 presents new support for the Expectations Hypothesis of the term struc-

ture of interest rates using recent UK data over 1997 to 2004. Our results are more

supportive of the EH than previous UK studies that use data at the short end. The

interest rates post-1992, in particular after 1997 have been noticeably less volatile than

those observed in earlier decades. Such that, we argue our favourable �ndings are a

result of interest rates being su¢ ciently volatile for the EH to hold, but not too volatile

as to invalidate the EH with a constant term premium. Where the weaker support of

earlier UK studies may be due to them using pre-1997 data, when interest rates were

signi�cantly more volatile. The reduction in the volatility of interest rates observed

after 1992 could be in part due to the changes in the monetary policy regime, with

in�ation targeting being adopted in 1992 and the Bank of England being granted inde-

pendence in 1997. Or as appears more likely now, this change in the volatility was due

to the stable global economic climate observed until recently, Hall and Henry (2000)
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and King (2008)5.

Hence our �ndings for the UK imply that the volatility of the interest rates is impor-

tant for the EH. This result adds to those reported for the US, Germany and Denmark,

that suggest favourable evidence for the EH is more likely under some monetary regimes

than others, because the regime in operation has an impact on the volatility of the in-

terest rates, Mankiw and Miron (1986), Cuthbertson et al (2000b) and Christiansen et

al (2003).

Further, when modelling the term structure more generally using a range of time

series models, Chapter 3 �nds the theory informed models have greater in-sample ex-

planatory power than the statistical models. The results presented in this chapter

demonstrate the importance of economic theory in explaining the term structure.

Chapters 4 and 5 explain the importance of economic theory for forecasting asset

returns. The existing literature that examines asset return predictability, as will be

reviewed in Chapter 2, primarily focus on stock return predictability, with some recent

studies also considering exchange rate predictability. But the investigation of interest

rate predictability in the context of asset allocation, with the use of decision-based

forecast evaluation methods has largely been neglected by the empirical literature.

This is where Chapters 4 and 5 make a contribution.

The innovation of Chapter 4 is that we consider (1) predictability and parameter

uncertainty in asset allocation, (2) generate density forecasts to capture the risk as well

as the return about the asset and (3) the economic value to the investor of these return

forecasts, all in the context of interest rates. In Chapter 5, we extend earlier studies that

examine stock return predictability by allowing for predictability in bond returns too,

whereas these earlier studies assume the T-bill rate is constant, e.g. Barberis (2000).

The innovations of this chapter are that we also model bond returns, further we model

5The Governor of the Bank of England Mervyn King, describes the steady growth and low in�ation
enjoyed by the UK since 1997 until the recent downturn as the "nice decade". Nice being an acronym
for "non-in�ationary consistent expansion".
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the two returns separately and jointly, and furthermore evaluate predictability using

decision-based methods. This joint modelling framework allows for the possibility of

feedbacks between term structure and stock variables. Hence the contribution of this

chapter is that we consider (1), (2) and (3) in the context of interest rates and stock

returns.

Two key �ndings emerge from Chapters 4 and 5, �rst that the investor�s allocation

is sensitive to the investment horizon, whether he assumes returns are predictable and

to parameter uncertainty. Second, we �nd support for the predictive power of theory

informed models of interest rates and stock returns, this support is found to be sensitive

to the evaluation criteria used. In that, when the conventional root mean squared errors

(RMSE) measure is used our results correspond to those reported by the forecasting

literature, that the random walk is di¢ cult to beat. However, support for the theory

informed models is found when they are judged in terms of the terminal wealth gained

by the investor. That is, an investor gains in terms of wealth by assuming returns

are predictable and using a theory informed model to forecast returns, as opposed to

assuming they are not predictable and using a random walk model. These �ndings

are new for interest rate predictability, and fall in line with those reported by studies

examining stock and exchange rate predictability.

Our �ndings highlight the importance of using an appropriate forecast evaluation

criterion, one that re�ects the economic value of the forecasts to the user i.e. a decision-

based criterion. Here the user is an investor, he is concerned with maximising his

wealth and hence wants the forecast that will achieve this. When the forecasts are

indeed judged under a decision-based criterion, support for using a model that embeds

economic theory over a statistical model is found.

This thesis tests the EH, models and forecasts the term structure using a theory in-

formed model that embeds the cointegration implied by the EH, uses these forecasts to

derive optimal portfolio allocations and assess asset return predictability using statisti-
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cal and decision-based methods. This work brings together and contributes to the areas

of the term structure, density forecasting, asset allocation and forecast evaluation.

In summary, we �nd economic theory to have explanatory power for the term struc-

ture and the volatility of the interest rates to be important when testing the validity of

the EH. Further, this thesis demonstrates the importance of considering the distribu-

tion about the predicted returns when making allocation decisions; and the sensitivity

of these allocations to forecast uncertainties and assumptions made regarding return

predictability. Furthermore, our results highlight the importance of evaluating forecasts

in the decision making context for which they are ultimately intended.

The organisation of this thesis is as follows, Chapter 2 provides a review of the

empirical literature to which this thesis contributes and summarises the modelling and

forecasting techniques used by the empirical chapters. This is followed by the three

empirical chapters; Chapter 3 models the UK Term Structure 1997 to 2004, Chapter 4

examines interest rate predictability using decision-based forecast evaluation, Chapter

5 considers the economic value of interest rate and stock predictability and �nally

Chapter 6 concludes.
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Chapter 2

Modelling and Forecasting Interest

Rates and Other Asset Returns; An

Overview

2.1 Introduction

This thesis is concerned with modelling the UK term structure, testing the Expectations

Hypothesis of the term structure, using time series models of interest rates to forecast

and assessing the predictability of the term structure in an investment decision making

context. The aim of this chapter is to review the theories, modelling techniques and

existing literature that are relevant to the empirical chapters that follow. This chapter

broadly falls into two parts, the �rst part examines the term structure of interest rates

and the second discusses recent innovations in and the use of forecasting in �nancial

economics.

More speci�cally, the �rst part of this chapter discusses the importance of the term

structure, the UK term structure and how it has evolved over recent decades, Sections

2.2 to 2.2.1. This is followed by a summary of term structure theories, the methods
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by which they are assessed, together with a review of the empirical literature, Sections

2.2.2 to 2.2.4. We then provide a more general discussion of how interest rates can be

modelled using a range of time series models, that can all be summarised by a standard

Vector Autoregressive modelling framework in Section 2.3.

In the second part of this chapter we turn our attention from modelling the term

structure to forecasting. In particular, we describe how to generate the conventionally

used point forecasts in Section 2.4.1 and the not so frequently used density forecasts,

which provide an entire probability distribution of all possible future outcomes in Sec-

tion 2.4.2. We then review the literature concerned with forecasting interest rates

in Section 2.4.3 and lastly Section 2.4.4 considers how forecasts are evaluated, both

statistically and using decision-based methods.

2.2 Term Structure of Interest Rates: Theories and

Studies

The term structure of interest rates refers to the relationship that exists between the

interest payable on bonds of varying terms to maturity. The yield curve is an illustration

of the interest rates of these bonds plotted against their terms.

The shape of the yield curve re�ects the markets expectations of future interest rates,

it can be upward sloping, �at or downward sloping. An upward sloping yield curve

re�ects the expectation of future economic growth, together with an increase in the risk

of in�ation rising. With this risk, is the expectation of short rates increasing as the

monetary authorities try to control in�ation. Hence investors demand a premium for

longer maturities because of the uncertainty about future in�ation and the implications

for future income, this resulting in an upward curve. Generally, a positively sloped

curve is observed with longer rates being higher than short term rates, where �at or

inverted curves are less frequently observed.
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Term structure theories provide an explanation of how the yield changes with ma-

turity, these include the Expectations Hypothesis (EH), the Market Segmentation Hy-

pothesis (MSH) and the Liquidity Preference Hypothesis (LPH). The main theory is

the EH, which states that the long term rate is a weighted average of expected future

short term rates. In its pure form the EH assumes that the term premium is zero,

which implies that the investor is indi¤erent between holding one long term bond and

the equivalent in short term bonds. This pure form is applicable to the instruments

of the money market, because they are close in maturity. The LPH is considered an

o¤shoot of the pure EH, in that the long rate is composed of future short rates, but

here a premium is paid for holding the long bond. Under the MSH/Preferred Habitat

Hypothesis investors need a premium to entice them out of their preferred maturity

habitat. In this overview we focus our discussion on the EH, which given the vast

amount of empirical research that has been conducted on it, is the leading hypothesis

of the term structure. In contrast, very little attention is paid to the MSH and the

LPH by the literature, so here we provide only a brief description of each.

The term structure contains information about the market�s anticipation of future

events. Hence by having an explanation of the term structure provides a means to

extract this information and to predict how changes in the underlying variables will

a¤ect the yield curve, Cox et al (1985). The term structure and the shape of the

yield curve is important to market players including policy makers concerned with

the transmission of monetary policy, practitioners who want to know how to price

instruments and investors who want to know how to allocate their portfolio.

For policy makers the relationship between long and short rates may be of interest

if they want to in�uence real economic activity. If real activity is related to the long

rate and the central bank can manipulate the short rates, having knowledge of the

relationship between long and short rates will inform the government on how it can

in�uence real activity. For instance, if the EH accurately describes the term structure,
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then the long rate and hence real activity can be in�uenced through manipulating the

short rates in the market. Further, being able to satisfactorily describe and model the

term structure is key for forecasting interest rates, where these forecasts can be used

to inform for instance asset allocation decisions as examined here.

Much attention has been paid to the term structure by the academic literature

because of the information it embeds and the importance of this information for market

players. In the sections that follow we begin with a look at the UK term structure and

then discuss term structure theories focusing on the EH. This is followed by a review

of the empirical literature, paying particular attention to UK studies that test the EH.

2.2.1 UK Term Structure and History

Here we detail how the UK monetary policy regime changed in the 1990s, the role of

the Monetary Policy Committee, how these reforms have served to increase both trans-

parency and credibility of monetary policy in the UK and the potential implications of

these changes for interest rates.

In�ation targeting was introduced in the UK in 1992, with the Chancellor responsible

for setting interest rates. This change in the monetary policy regime followed the UK�s

exit from the Exchange Rate Mechanism. In 1997 the new Labour government granted

the Bank of England (BoE, the Bank) operational independence. This giving the BoE

the freedom to set the monetary instrument, in order to achieve the in�ation target

set for the Bank by the government, Tootell (2002). The current target is 2%. Both

the adoption of an in�ation target and the subsequent independence of the central

bank have served to increase transparency1 of monetary policy in the UK and brought

macroeconomic stability, Bean (2003) and Mariscal and Howells (2007).

1This increased transparency has come in the form of the objective of monetary policy being clear,
the MPC publishing the minutes of its meetings. And further, the Bank in its In�ation Report
presenting its forecasts of in�ation, together with an evaluation of the current economic climate,
Chadha and Nolan (2001).
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TheMonetary Policy Committee (MPC) of the BoE is responsible for setting interest

rates. As detailed in the Bank of England Act 1998 (cited in Kim et al (2008)) the

objectives of monetary policy is to maintain price stability and subject to maintaining

stability, support the governments economic policy. Economic policy includes the

governments employment and growth objectives. The Bank provides a density forecast

of in�ation up to 2 years ahead in its quarterly In�ation Report, known as the �fan chart�

as illustrated in Figure (2-1)2. "The fan chart portrays a probability distribution that

approximates to the MPC�s subjective assessment of in�ationary pressures evolving

through time, based on a central view and the risks surrounding it," this assessment is

based on judgment and statistics3, Britton et al (1998, pp. 31)4.

Figure 2-1: Bank of England�s In�ation Fan Chart August 2009

2CPI In�ation Projection based on constant nominal interest rates at 0.5%. Chart obtained from
the Bank of England�s In�ation Report August 2009.

3These forecasts assume UK short-term rates are unchanged during the forecast period, i.e. does
not consider uncertainty about interest rates.

4See for more detail on the fan chart and how it is constructed.
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The darkest region of the chart depicts the highest probability path, and contains

the point forecast. There is a 10% probability that in�ation will fall into this central

band at any given horizon. The lighter regions correspond to the paths that are

less likely. The width of the fan at a particular forecast horizon, gives with a 90%

probability, that in�ation will fall into that range of possible outcomes. The fan shape

of the chart re�ects that, the further into the future the projection is made, the greater

the uncertainty about that projection. The greater the uncertainty about the forecast,

the wider the fan. The uncertainty about the central projection may not necessarily

be symmetric5, Vickers (1998). Britton et al (1998) argue that by presenting their

forecasts of in�ation in this way, helps communicate that monetary policy decisions are

being made in an uncertain world and that the MPC does not know with certainty

what in�ation will be in the future.

If in�ation fails to meet its target by more than one percent either side, the Governor

is required to write to the Chancellor explaining why, what action will be taken, how

long this action is expected to take e¤ect and how this action meets the monetary policy

objectives of the government, Kim et al (2008). King (1997, cited in Kim et al (2008))

notes that by writing this open letter the MPC must explain in public how it intends

to react to large shocks.

The Bank�s independence "generated an immediate credibility gain as long-term

in�ation expectations fell" Bean (2003, pp. 482). Bean (2003, 2004) argues that

it has been a combination of structural reforms to labour and product markets, �rst

introduced by Thatcher�s government and later consolidated by both parties in the

1990s, together with the adoption of an in�ation target that have kept in�ation low

and stable6, and unemployment low.

From this time series plot of the o¢ cial bank rate over 1975 to 2007, Figure (2-2).

5This suggesting that it is more likely that the forecast error will be in one direction than the other,
Britton et al (1998).

6Prices have remained stable over the period 1992 to 2007, although recently prices have become
more volatile, Hammond (2009), see for a summary of the UK experience of in�ation targeting.
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Figure 2-2: UK O¢ cial Bank Rate and Spot Rate 1975 to 2007

It is apparent that post-1992 the interest rates are both lower in level7 and signi�cantly

less volatile than the rates observed during the ERM years and further back. These

changes coincide with the governments in�ation targeting regime and the reforms that

followed. By adopting an anti-in�ation stance, granting the central bank independence

and the MPC making policy decisions in a transparent way, as described above, has

led to gains in credibility. These gains may explain the relatively less volatile interest

rates.

Although the changes to how monetary policy is conducted has been credited for

7The current rate of 0.5% is the lowest observed since 1694, Hammond (2009).
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the low levels of in�ation, unemployment and interest rates enjoyed over the last 15

years or so in the UK, Hall and Henry (2000) argue that it is di¢ cult to disentangle

how much of this macroeconomic success is down to policy reforms and how much is

due to stable global economic conditions. Further, the Governor of the Bank Mervyn

King describes the steady growth and low in�ation observed in the UK since 1997 until

the recent downturn as the "nice decade" 8. This suggests that the reduction in the

volatility of interest rates may partly be explained by the anti-in�ation stance taken by

the Bank of England, but is largely due to the benevolent economic climate of the nice

decade.

The data at the short end of the UK yield curve does not stretch as far back as

the o¢ cial rate data, but from Figure (2-2) it can be seen for the data available, the

market determined 1-month spot rate follows the o¢ cial rate very closely. Such that

the o¢ cial rate can be used as an indication of how the spot rates have evolved over

the last few decades. These changes in the interest rates are relevant to us because we

use data over the period 1997 to 2007 in the empirical chapters that follow.

More precisely, the data employed in this thesis9 is o¢ cial BoE data on the Gov-

ernment liability nominal yield curve at the short end. These zero coupon yields (spot

rates) are calculated using gilt prices and General Collateral (GC) repo rates. A gilt is

a UK government coupon paying bond and is considered to be a safe investment, since

the UK government is unlikely to default. General Collateral Sale and Repurchase

agreements (GC repo) refers to the sale and repurchase of gilts, "gilt repo", this is

where gilts are used as collateral for short-term borrowing. The GC repo rate is that

for the repurchase of the gilt, which should be close to the true risk-free rate. As de-

tailed in the Bank�s data notes10, these repo contracts are actively traded for maturities

8Nice being an acronym for "non-in�ationary consistent expansion".
9More detail of the actual data used is provided in the empirical chapter itself and in the Data

Appendix.
10BoE, "Yield curve terminology and concepts, Notes on the Bank of England Yield Curves":

http://www.bankofengland.co.uk/statistics/yieldcurve/index.htm
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of up to one year and the repo rates are very similar to the yields on conventional gilts

of comparable maturity.

The GC repo agreements market began in January 1996, after March 1997 the BoE

began using gilt repos to conduct Open Market Operations, this led to GC repos be-

coming "a more satisfactory indicator of expectations of future interest rates". Prior to

March 1997 there was limited information available at the short-end of the government

curve, because the only short-term assets available were Treasury bills, "which do not

have an active secondary market and the prices of which are a¤ected by banks�liquidity

requirements", BoE notes11. This limitation of short-end data has resulted in, as we

will see, early studies examining the longer end of the UK term structure.

As can be seen from Figure (2-2) interest rates post-1992, in particular after 1997

are noticeably less volatile than the rates observed prior to the adoption of the in�ation

target and central bank independence. And it is data after these reforms, over 1997 to

2004, that we use to test the Expectations Hypothesis. Whereas, previous UK studies

that examine the EH at the short end use pre-1997 data.

2.2.2 Expectations Hypothesis

The leading theory of the term structure is the Expectations Hypothesis (EH). There

are many competing yet related hypotheses referred to as the EH, Cox et al (1985).

However, Campbell (1986) demonstrates that they can all be approximated by a linear

form of the EH. The form we refer to and describe here is that of Campbell and Shiller

(1991). We will discuss how the fundamental equations of the EH are derived in terms

of spot yields, as presented in Patterson (2000) and Cuthbertson and Nitzsche (2004).

We largely adopt the notation used by the literature, where r(n)t is the yield to ma-

turity of a n-period bond at time t; which matures in t+n. This return is continuously

11BoE FAQs: http://www.bankofengland.co.uk/statistics/yieldcurve/faq.htm#q12
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compounded and expressed as an annual rate. r(n)t+i is the yield to maturity of a n-period

bond at time t + i, that matures in n periods time at t + i + n. s
(n;m)
t = r

(n)
t � r(m)t

describes the yield spread at time t between a long n-period and a short m-period bond,

and k = n=m gives the number of "short" m periods within a "long" n period.

Consider two strategies available to an investor who wants to invest £ I for n pe-

riods at t: Strategy A invest in a long n-period bond which pays a known return of

R
(n)
t , or Strategy B a �rolling�investment in a sequence of k m-period bonds. Such

that under Strategy B, at t a m-period bond is purchased with actual return R(m)t ,

together with a �basket� of contracts in the forward market12. Contracts are made

in t for the following t + (k � 1)m periods, giving a total of k contracts with rates

R
(m)
t ; F

(m)
t+m; F

(m)
t+2m; : : : ; F

(m)
t+(k�1)m: Under this second strategy the amount invested plus

the interest earned is reinvested into the next m-period bond. Where F (m)t+j is the

m-period bond forward rate and R(m)t+j is the actual rate, it is not necessarily true that

the contracted rate will equal the prevailing actual rate. The value of the investment

V ignoring transactions costs, at the end of the investment period under each strategy

is
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where the E¢ cient Market Hypothesis implies that the expected return under both

strategies should be equal
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12In this contract the investor agrees to buy in t+m a m-period bond which matures at the end of
m periods with �xed rate F (m)t+m. This is the m-period forward rate agreed at t for t +m. Further,
he agrees to purchase another m-period bond in t + 2m that matures at the end of t + 2m; with the
forward rate F (m)t+2m �xed in the contract for this bond. In total t+(k � 1)m such purchases are made.
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taking logs, lower case referring to the log of the variable

n ln
h
1 +R

(n)
t

i
= m

n
ln
h
1 +R

(m)
t

i
+ ln

h
1 + F

(m)
t+m

i
+ :::+ ln

h
1 + F

(m)
t+(k�1)m

io
(2.4)

if rates are continuously compounded then
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From equation (2.5) the actual n-period bond yield to maturity is given by the

average of the actual m-period yield to maturity and the forward m-period rates. With

an e¢ cient market there is no expectation of a pro�t, as any pro�t will be arbitraged

away. The forward rate which describes the rate at which a future loan is made, can

be written in terms of the expected spot rate

f
(m)
t+j = Etfr

(m)
t+j g+ �

(m)
t+j (2.6)

where the m-period forward rate f (m)t+j for t + j is given by the actual anticipated rate

Et(r
(m)
t+j ) for t + j and the term premium �

(m)
t+j . A term premium may arise because

future interest rates are uncertain, hence there is a risk associated with the �xing of a

forward rate for t+ j in t. Under the Pure Expectations Hypothesis (PEH)13 this term

13The literature sometimes refers to this as the EH under risk neutrality, because the investor is
indi¤erent between investing in long term bonds or short term ones so does not require a term premium.
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premium is zero and constant under the EH. From (2.5) and (2.6)

r
(n)
t =

1

k

"
kX
i=1

Et

n
r
(m)
t+(i�1)m

o#
+ c(n;m) (2.7)

with the term premium c(n;m) = 1
k

hPk
i=1 �

(m)
t+j

i
. Equation (2.7) is known as the funda-

mental equation of the EH, this describes the long rate as a weighted average of current

and future expected short rates and a term premium, the weights are equal and sum

to one. The value of the investment in the long bond is known because it is held to

maturity, whereas the value of the investment in a sequence of short bonds is subject to

uncertainty because the future m-period rates are unknown. If short rates are antici-

pated to increase then this leads to an increase in the long rate. Hurn et al (1995) state

that the term premium summarises the e¤ects of factors other than the expectations of

future short rates, arguing that a term premium may arise due to factors like liquidity

preference and hedging behaviour14.

From equation (2.7) the second fundamental equation of the EH can be deduced

s
(n;m)
t =

k�1X
i=1

�
k � i
k

�
Et

n
�r

(m)
t+im

o
+ c(n;m) (2.8)

where the spread is a function of expected changes in the short rate over the life of the

long bond and a term premium. The m-period change is �r(m)t+im = r
(m)
t+im � r

(m)
t+(i�1)m.

A spread between the long and short rate arises if the expected changes in the short

rate over the next n periods is non-zero, or if there is a term premium. If no change in

the short rate is expected then the long rate should only di¤er from the short by the

14That is, in the long-term securities market investors are exposed to price volatility and thus a
capital risk, in which case a liquidity premium maybe paid. Further, "...income risk might discourage
investors with long-term horizons from holding shorter dated assets, suggesting hedging behaviour
could give rise to term premium..." Hurn et al (1995, pp. 420).
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term premium. If the short rate is expected to increase, then the long rate and hence

the spread will also increase, as implied by both fundamental equations of the EH,

equations (2.7) and (2.8). The assumption of expectations being formed rationally

is not necessary for (2.8) to hold, as it only requires that the assumed expectations

process generates errors that are stationary.

A "perfect foresight spread" (pfs) can be identi�ed from (2.8)

pfs
(n;m)
t =

k�1X
i=1

�
k � i
k

�
�r

(m)
t+im (2.9)

Campbell and Shiller (1991) describe this as the spread obtained if we had "perfect

foresight" about future interest rates, i.e. if we are able to predict future rates correctly

and do not need to form expectations. Substituting (2.9) into (2.8)

s
(n;m)
t = Etfpfs(n;m)t g+ c(n;m) (2.10)

If expectations are formed rationally then

r
(m)
t+im = Etfr

(m)
t+img+ "

(m)
t+im for i > 0 (2.11)

according to the Rational Expectations Hypothesis (REH) Etfr(m)t+img is an optimal

predictor of r(m)t+im. Where the expectational error "(m)t+im has an expected value zero,

can not be forecasted with information available at t and r(m)t = Etfr(m)t g for i = 0.
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Using equation (2.11)15

Etf�rmt+img = �rmt+im ��"mt+im (2.12)

substituting (2.12) into (2.8)

s
(n;m)
t =

k�1X
i=1

�
k � i
k

�
�r

(m)
t+im + '

(m)
t + c(n;m) (2.13)

From (2.13), the spread is given by observable changes in the m-period rates from

t + m to t + (k � 1)m, a weighted average of expectations errors '(m)t which are as-

sumed to be stationary and the term premium c(n;m). The term premium is assumed

to be stationary, its structure and form varies with the model of the term structure

used. The Pure Expectations Hypothesis assumes it takes a value of zero, whereas

the Expectations Hypothesis assumes it is constant but varies across maturities. The

Liquidity Preference Hypothesis implies that the term premium is constant for a given

maturity, but increases with the term to maturity and the Time Varying Hypothesis

proposes that is varies with time as well as maturity.

Assessing the Expectations Hypothesis

There are several ways to assess the validity of the EH, these include the cointegration

method, the two single equation tests that test the predictive power of the spread for

future changes in interest rates, and the VAR methodology. Each of these will now be

brie�y discussed in turn.

15Rearranging equation (2.11) gives (a) Etfr(m)t+img = r
(m)
t+im � "

(m)
t+im, lag by 1 gives (b)

Etfr(m)t+(i�1)mg = r
(m)
t+(i�1)m � "

(m)
t+(i�1)m. Equation (a) minus (b) gives Etfr(m)t+img � Etfr

(m)
t+(i�1)mg =

r
(m)
t+im � r

(m)
t+(i�1)m �

h
"
(m)
t+im � "mt+(i�1)m

i
which is equivalent to equation (2.12).
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Stationary spreads and cointegration amongst the yields Lopes and Monteiro

(2007) point out that nominal interest rates are bounded below by zero, and from a

theoretical stance it is di¢ cult to justify interest rates as being non-stationary. But

given that they are highly persistent and slowly mean reverting, this has led to many

researchers treating rates as having a unit root and using cointegration analysis.

If the yields contain a stochastic trend and the term premium is stationary, then

the RHS of equation (2.13) is a linear combination of stationary variables. Hence

from equation (2.13), a theoretical implication of the EH is that the spread must be a

stationary process. Further implications of the EH are:

1. Assuming the yields share a common stochastic trend, then there should exist

(q � 1) cointegrating vectors in a set of q non-stationary yields, as implied by

stationary bivariate spreads.

2. Each of the n-month yields are cointegrated with the m-month yield, such that

the cointegrating vector is of the form
�
1;�1; c(n;m)

�0
, with the term premium free

from restriction.

3. The PEH can be tested through the imposition of the restrictions that the premia

are zero, such that the cointegrating vector is now (1;�1; 0)0 :

These three implications can be tested using the Johansen maximum likelihood

estimation procedure, Johansen (1988, 1991) and Johansen and Juselius (1990). The

next two methods assess the EH within a single equation framework. Given that EH

implies that the spread is an optimal forecast of changes in the future interest rates,

they seek to ascertain if the spread has predictive power for future short rates and

changes in the long rate.

Spread predicting future changes in the short rate This method is concerned

with seeing if the actual spread, s(n;m)t is able to forecast the pfs(n;m)t . Some rearrange-
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ment of equation (2.13) is �rst required. Substituting (2.9) into (2.13) gives

s
(n;m)
t = pfs

(n;m)
t + '

(m)
t + c(n;m) (2.14)

assuming the term premia is constant i.e. c(n;m) = �0, then

s
(n;m)
t = �0 + �1pfs

(n;m)
t + '

(m)
t (2.15)

or

pfs
(n;m)
t = �0 + �1s

(n;m)
t + '

(m)�
t (2.16)

where the EH + REH suggests that �1 = �1 = 1
16. It maybe that the term premium,

c(n;m) is not constant, but as Patterson (2000) notes as long as it is stationary and

cannot be modelled e.g. as a function of other variables, then the bivariate regression

interpretation of equations (2.15) and (2.16) holds. The literature indicates a preference

for estimating (2.16) and testing the null hypothesis that �1 = 1 against the alternative

that �1 6= 1, as opposed to the equivalent test of �1 = 1 in equation (2.15). This is

because in equation (2.15) '(m)t and pfs(n;m)t are positively correlated17 which results

in the OLS estimator of �0 being inconsistent. Whereas in (2.16) the spread term

dated at time t has no correlation with the future expectational errors, therefore OLS

estimation yields consistent estimates.

16For example, the 12- and 6-mth spread at t should predict the sum of the future changes in the
6-month rate over the coming 6 months, Rossi (1996).
17From equation (2.11) a shock to the expectational errors "(m)t+im is translated into a shock to r

(m)
t+im.

Since pfs(n;m)t is a function of �r(m)t+im, and '
(m)
t is a function of "(m)t+im, there is a positive correlation

between them.
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Spread predicting changes in the long rate Campbell and Shiller (1991, CS)

suggest that another implication of equation (2.7) is that the spread is able to predict

changes in the long rate. Equation (2.7) states that the yield on a n-period bond at time

t is given by a weighted sum of the expected m-period bond rates over n periods, with

the addition of a predictable excess returns term. From Patterson (2000)18 equation

(2.7), omitting constants, can be manipulated to give

�
m

n�m

�
s
(n;m)
t = Et

n
r
(n�m)
t+m

o
� r(n)t (2.17)

the LHS of (2.17) is a multiple of the spread, which is given by an expected m period

change in the long n-period rate. If expectations are formed rationally then from (2.11)

Et

n
r
(n�m)
t+m

o
= r

(n�m)
t+m � "(n�m)t+m

substituting this into (2.17) and rearranging

r
(n�m)
t+m � r(n)t =

�
m

n�m

�
s
(n;m)
t + "

(m)
t+m (2.18)

this suggests that them period change in the long n-period rate should equal a multiple

of the spread with the addition of a stationary error term. Where if the n-period yield

is expected to rise over the coming m periods, then we would expect the yield on the

18In one periods time there are n � 1 periods left on the n-period bond, thus the yield on a (n-
1)-period bond is given by r(n�1)t+1 . In m periods time there are n �m periods left on the n-period

bond, hence the yield on a (n-m)-period bond is r(n�m)t+m : The m period change in the n period rate

is r(n�m)t+m � r(n)t = m period change in the long rate, where the expected m period change in the long

rate is given by Et
n
r
(n�m)
t+m

o
� r(n)t :
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n-period bond to be higher than that on a m-period bond19. Equation (2.18) can be

estimated to test the EH+REH model through the regression

r
(n�m)
t+m � r(n)t = �0 + �1

�
m

n�m

�
s
(n;m)
t + "

(m)
t+m (2.19)

where the EH + REH suggests20 that �1 = 1.

VAR Methodology The Campbell-Shiller VAR methodology tests the EH by sta-

tistically and economically assessing the deviation of the actual observed yield spread

from the theoretical spread as implied by the EH. They suggest some alternative met-

rics to assess the economic signi�cance of the EH. A more detailed discussion of the

VAR methodology is provided in Chapter 3 21, but a brief summary is given below.

If zt =
�
s
(n;m)
t ;�r

(m)
t

�0
is stationary, then there exists a bivariate Wold representa-

tion which can be approximated by a vector autoregression of order p, in companion

form

zt= Azt�1+�t (2.20)

if s(n;m)t = e10zt and �r
(m)
t = e20zt, see Campbell and Shiller (1987, 1991), then from

equation (2.8) the following VAR non-linear cross-equation restrictions are obtained

e10 � e20A
�
I � (m=n) (I �An) (I �Am)�1

�
(I �A)�1 = 0 (2.21)

19For example, the 12- and 6-month spread at t, should predict the gap between the 6-month rate 6
months ahead and the 12-month rate at t, i.e. the 6 month yield change on the 12-month bond, Rossi
(1996).
20The value of �1 in both of these regressions (2.16) and (2.19) indicates by how much the future spot

rates change for a given value of the spread at t. Where the null that �1 = 1 suggests a "one-to-one
relationship between the current spread and changes in future spot rates (unbiasedness)". The null
that �1 = 0 "indicates whether future spot rates are at least related to the current spread (information
content)", Rossi (1996, pp. 12).
21See also Campbell and Shiller (1987, 1991) and Cuthbertson et al (1996 and 2000a).
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where the theoretical spread s(n;m)�t as implied by the EH is

s
(n;m)�
t = e20A

�
I � (m=n) (I �An) (I �Am)�1

�
(I �A)�1 zt (2.22)

This theoretical spread is given by the weighted sum of the optimal forecasts of

the changes in the short rates. If the EH holds, the theoretical spread should equal

the actual, this hypothesis that s(n;m)�t = s
(n;m)
t can be formally tested by imposing and

testing the VAR parameter restrictions in equation (2.21). However, CS note that even

small deviations from this null may lead to a rejection of the EH under these formal tests

of the VAR restrictions. But Campbell and Shiller (1987) argue that this does not imply

that the EH is economically insigni�cant. In that, the EH may explain the majority of

the variation in the actual spread even though it is statistically rejected. They hence

propose some alternate metrics22 to measure the degree of comovement between the

actual and theoretical spread, to ascertain the extent to which the predictions made by

the EH are close to actual observations. These include time series plots, a measure

of the correlation between the actual and theoretical spread Corr
�
s
(n;m)�
t ; s

(n;m)
t

�
and

the ratio of their standard deviations23 �
�
s
(n;m)�
t

�
=�
�
s
(n;m)
t

�
. Both the correlation

coe¢ cient and the ratio should equal unity under the EH, if the ratio is less than unity

then the actual spread is more volatile than that predicted by the EH.

2.2.3 Other Term Structure Theories

We have thus far discussed how the fundamental equations of the EH are derived,

followed by the methods by which the EH can be assessed. This section discusses

22As stated in Cuthbertson et al (1996) these alternate metrics test the EH+REH under weakly
rational expectations.
23In the studies discussed below some authors compute the ratio of the variances, we state when

this is the case. Further, some compute the ratio of �
�
s
(n;m)
t

�
=�
�
s
(n;m)�
t

�
, in this case we report

the inverse of these ratios so that the results are comparable.

41



two alternative views of the term structure, the Liquidity Preference Hypothesis (LPH)

and the Market Segmentation Hypothesis (MSH). Since these views have not been the

subject of much empirical investigation their discussion is kept brief.

Liquidity Preference Hypothesis

As noted in Cox et al (1985) the LPH put forward by Hicks (1946) emphasises the

"risk preferences of market participants". Under the LPH there is a preference for

short term bonds, as these are less exposed to interest rate risks. Such that, a term

or liquidity premium is o¤ered for holding the longer term asset. This premium is

constant for a particular maturity n, but increases with n. This re�ects the need for

the investor to be compensated more as the term to maturity increases.

Market Segmentation Hypothesis

The MSH proposed by Culbertson (1957, cited in Cox at al (1985)) provides an alter-

native explanation of the term premium. Here investors have strong preferences for

particular maturities, choosing to trade only in their �preferred habitat�. This gives

rise to separate markets for bonds of di¤erent maturities, each with their own demand,

supply and prevailing price. These prices are not in�uenced by the prices prevailing in

other markets, if participants are reluctant to trade outside their preferred habitat24.

In this case any excess returns existing in that market will not be arbitraged away, this

giving rise to non-zero term premiums. Empirical examinations of the MSH are rare,

particularly using UK data, see Taylor (1992).

Both the LPH and the MSH discuss a preference for a maturity. The MSH is

more restrictive, assuming that the investors stick to their preferred habitat. Whereas

under the LPH, investors generally prefer short-term bonds and require compensation

for investing in longer term bonds.

24This theory assumes that bonds of close maturity are not close substitutes. Thus market conditions
in one will not a¤ect the other. Cox et al (1985) argue that this is a strong assumption to make.
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2.2.4 Empirical Studies of the Term Structure

In this section we review the empirical �ndings of the term structure literature, with a

focus on studies of the EH. Speci�cally, we consider early studies of the term structure,

UK studies of the EH, other �ndings for the EH, stylised facts and why the EH may

be rejected and lastly, other studies and recent developments.

Early Studies of the Term Structure

The origins of the EH dates back to the early works of Fisher (1930), Lutz (1940) and

Hicks (1946). The empirical literature has been concerned with examining if future

expected short rates are fundamental to determining the current long rate. Various

approaches have been taken to test the EH, including Campbell and Shiller (1991) who

test if the spread has predictive power for changes in future spot rates. And studies

by Fama (1984, 1990), Fama and Bliss (1987), Mishkin (1988) and Rossi (1996) who

examine if forward rates have predictive power for future spot rates.

As is evident from Froot�s opening statement25 "If the attractiveness of an economic

hypothesis is measured by the number of papers which statistically reject it, the expec-

tations theory of the term structure is a knockout.", the early empirical literature on

the term structure, conducted primarily using US data, rejects the EH. These studies

test if the spread can predict the direction of future short rates include Fama (1984)

who uses monthly US T-bills over 1959 to 1982, Mankiw and Summers (1984) using

quarterly data 1963 to 1983, Mankiw (1986) who considers data on Canada, UK and

Germany too; Mankiw and Miron (1986) who argue that it is more likely support for

the EH will be found under a policy of monetary targeting than one of interest rate

smoothing, Fama and Bliss (1987) and Campbell and Shiller (1987).

However, Fama (1984), Mankiw and Miron (1986), Mishkin (1988) do �nd evidence

of the spread having predictive power for future interest rates. Further, Fama and Bliss

25Froot (1989, pp. 283).
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(1987) �nd that this power, although low, increases with the forecast horizon. They

attribute this increasing predictive power to the mean-reverting behaviour of interest

rates, this implies that rates are easier to forecast in the longer run than the short.

Campbell and Shiller (1987) were the �rst to apply cointegration techniques to the

term structure. In this key paper they propose an informal way to measure the "�t" of

the model, suggesting if the EH is true then the theoretical and actual spread should be

equal. They recommend the use of time series plots, correlation coe¢ cients and ratio

of the standard deviations to gauge this �t. Although they statistically reject the EH,

given the degree of comovement between actual and theoretical spreads, they conclude

these deviations are transitory and not economically signi�cant.

In another key paper Campbell and Shiller (1991) consider US data for maturi-

ties between one month and 10 years26 over 1952 to 1987. For the regression of the

spread predicting future long rates all coe¢ cients are found to be of the wrong sign

and signi�cantly di¤erent from one. In the regression of the theoretical spread on the

actual, the coe¢ cients are signi�cantly di¤erent from one at the short end, but not the

long. So they �nd a paradox27 in that the slope incorrectly forecasts the direction of

the short term change in the long rate, but correctly forecasts the direction of the long

term change in the short rate. Under the VAR methodology the correlation is nearly

always positive and frequently quite high, and the standard deviation ratio takes a

value around one half indicating the actual spread to be excessively volatile compared

to what the EH predicts. CS suggest that this paradox might be explained by an

overreaction model of the spread. Explaining that the "long rate di¤ers from the short

rates in the direction implied by the" EH, but this long and short rate spread is larger

than "can be justi�ed by rational expectations of future short rate changes". Or put

another way, the long rate underreacts to short rates, where the long rate does not

261- , 2-, 3-, 4-, 6- and 9-months and 1-, 2-, 3-, 4-, 5- and 10-years. They de�ne the short end of the
term structure as less than 1 year and long end as more than 1 year.
27This paradox is also referred to as the puzzle by the literature.
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react to the current short by as much as the EH predicts.

Shea (1992) and Hall, Anderson and Granger (1992), like CS (1987) also use coin-

tegration. At the time these papers were published the application of Johansen�s

cointegration techniques was novel. They �nd evidence of cointegration amongst the

yields, which they suggest implies that there is single non-stationary common factor

that underlies the time series behaviour of each yield and that risk premia are station-

ary. Further, during the periods in their sample when the Fed targeted short rates,

the cointegrating vector was de�ned by the yield spread. This �nding, in support of

Mankiw and Miron (1986), suggests that the success of the EH may be sensitive to the

monetary policy regime in operation. Additionally, Lanne (1999) �nds the persistence

of spreads di¤ers between when there was a regime of interest rate targeting in the US

1952 to 1979 and that of the remaining sample 1979 to 1991. This change in persistence

during the considered sample being a potential reason for rejections of the EH in the

US.

UK Studies of the EH

Now considering studies conducted using UK data, we begin with earlier studies that use

data at the long end, followed by those who examine data at the short end. MacDonald

and Speight (1988) use quarterly data on 3-month, 5-, 10- and 20-year government

bonds during 1963 to 1987, to �nd cointegration amongst the yields, spreads Granger

cause short run changes in the T-bill rate and vice versa, variance ratios that imply

excess volatility of the actual spread relative to the theoretical and that the VAR

restrictions can not be rejected. In contrast to US studies this early examination of UK

data �nds strong support for the EH. Mills (1991) examines subperiods of quarterly

data28 over 1870 to 1988, his �ndings are consistent with MacDonald and Speight

28For the subperiods prior to 1939 the 3-month prime bank bill rate and a consol is considered.
During the post war periods the 3-month risk-free T-bill rate with a richer set of long rates, 5- and
20-year gilts and a perpetuity are used. Mills shows that the means and variances of the rates and
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(1988), with stronger support found in the post war periods. MacDonald and Speight

(1991) �nd mixed results in their multi-country29 study from 1964 to 1986, with excess

volatility of the actual spread observed for all countries, the correlation between the

actual and theoretical spread ranging between 0.77 and 0.92, and the VAR restrictions

rejected for all but the UK.

Hardouvelis (1994) considers quarterly 3-month and 10-year post war yield data up

until 1992 for the G730. He highlights the puzzle reported by the literature, where

the coe¢ cient in the regression of the long rate change on the spread is less than its

theoretical value of one or negative, the puzzle being the negative sign. Consistent

with these �ndings he reports a negative coe¢ cient for the US, UK, Germany, Japan

and Canada31. Further, he �nds the correlation ranges between 0.75 to 0.99 (0.83 for

the UK), variance ratios between 0.33 to 1.24 (0.84 for the UK), the coe¢ cient in the

regression of the theoretical spread on the actual taking values between 0.20 and 1.20

(0.83 for the UK) and the VAR restrictions are not rejected for any of the countries.

Hardouvelis �nds support for the EH for all countries except the US, where the VAR

methodology results show any departures from the EH are not economically signi�cant.

Less encouraging results for the EH are presented by Taylor (1992), who uses weekly

data on 3-month, 10-, 15- and 20-year UK government bonds, 1985 to 1989. He �nds

spreads do not Granger cause changes in short rate, evidence of actual spreads being

excessively volatile and the VAR restrictions are rejected. Further, plots of actual

and theoretical spreads indicate some comovement, but divergence between the two

is apparent. Taylor attributes this statistical rejection to economically signi�cant

departures from the model. He argues that this rejection could be due to a time

varying term premium, which he models using a GARCH model, but fails to �nd

their spreads vary quite substantially over the periods considered.
29For Belgium, Canada, Germany, UK and US.
30Canada, France, Germay, Italy, Japan, UK and US.
31Only for the US is it signi�cantly di¤erent from zero, and signi�cantly di¤erent from one for three

of these countries.
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evidence in support of this. However, he does �nd some encouraging evidence for

the Market Segmentation Hypothesis of the term structure. Taylor states that these

results suggest that the UK policy of repurchasing government debt has had the e¤ect

of inverting the yield curve over the sample he studies, more than the e¤ect government

policy had on expected future rates. That is, his �ndings imply that the MSH rather

that the EH is better able to describe the term structure over this period.

Turning our attention now to the UK studies that use data at the short end. As

discussed earlier because "short-term instruments in the UK have, until recently, been

limited to three months duration, investigation of the hypothesis at the short end of the

term structure is not possible" Mills (1991). Thus until the mid 1990s it was not pos-

sible to replicate the early US studies that use rates from the entire maturity spectrum.

Hurn et al (1995) use monthly data on the Interbank market rates32 for maturities of

1, 3, 6 and 12 months over 1975 to 1991. They �nd cointegration, with cointegrating

vector (1,-1) in almost all cases. The regression coe¢ cients of the theoretical on the ac-

tual spread are not signi�cantly di¤erent from their theoretical value in nearly all cases.

The correlations range between 0.97 to 0.99, standard deviation ratios between 0.72 to

1.11 and the VAR restrictions can not be rejected. This study �nds strong support

for the EH, more so than previous studies. The authors suggest that the VAR restric-

tions may have been rejected by previous studies that use coupon-paying bond data,

because to �nd equivalent yields on pure discount bonds these studies need to employ

approximations. Whereas their LIBOR data does not require such approximations.

Also examining data at the short end is Rossi (1996) who tests the EH using two

di¤erent monthly datasets over 1982 to 1995. He uses London Interbank middle market

rates for 1-, 3-, 6- and 12-month maturities, to compute implied forward rates i.e. n-

month maturity n-months ahead; and �tted gilt yields (zero coupon yields) 6, 12, 18

and 24 months to maturity. He examines the EH using both the spreads (from the

32London Interbank O¤er Rates, LIBOR.
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gilt yields) as in CS (1991) and forward rates (from the Interbank rates) as in Fama

(1984) to predict future short rates33. Some evidence of spread having predictive power

for both future short rates and changes in the long rate is found.

Using higher frequency weekly data Cuthbertson (1996) also considers LIBOR data

for maturities of 1-week, 1-, 3-, 6- and 12-months from 1981 to 1992. He �nds evidence

of cointegration with cointegrating vector (1,-1) in almost all cases34, except when 6-

and 12-month rates are involved. Even though there is a lack of full support for the

EH using cointegration, Cuthbertson �nds forecasts from the restricted VECM35 to be

marginally more accurate than those from the unrestricted VECM. In the regression

of the theoretical spread on the actual, the coe¢ cients are not signi�cantly di¤erent

from zero; the spreads Granger cause future short rates and there is a strong correlation

between actual and theoretical spreads. However, the variance ratios range between

0.55 and 2.70, and the VAR restrictions are rejected. Unlike Cuthbertson (1996), Hurn

et al (1995) do not reject the VAR restrictions, even though both use LIBOR data at

the short end. Hurn et al argue that this rejection may be due to Cuthbertson using

higher frequency weekly data, which is more volatile compared to their monthly data.

Cuthbertson et al (1996) also use weekly data, examining the EH with liquid short

term Certi�cate of Deposit market rates during 1975 to 1992 for 1-, 3-, 6-, 9- and 12-

month maturities. They suggest this weekly data on pure discount bonds allows them

to mimic agents forecasting procedures with greater accuracy than monthly or quarterly

data. They �nd cointegration amongst the yields, but reject the hypothesis that the

cointegrating vector is (1,-1). In the single equation regressions, the coe¢ cients are

33Rossi examines the EH using both the spread as detailed in CS (1991) and summarised above,
and forward rates as used by Fama (1984). The latter, which considers the predictive power of the
forward rates for future short rates, is an alternative approach used by the empirical term structure
literature, which we do not examine in this thesis. Here they consider the predictive power of the
forward rates, rather than the spread as in the CS approach, for future short rates.
34Further support at the short end using the cointegration method is presented in Cuthbertson et

al (1998).
35The unrestricted VECM does not have the spread restrictions imposed. But the restricted VECM

does, such that the cointegrating vector is of the form (1,-1).
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not signi�cantly di¤erent from unity and the spread is found to Granger cause changes

in the short rates in nearly all cases. There is strong correlation between actual

and theoretical spreads, the standard deviation ratios (range between 0.56 and 0.88)

indicate excess volatility of the actual spreads but do not signi�cantly di¤er from their

theoretical value. However, the VAR restrictions are rejected in almost all cases. Both

Cuthbertson and Cuthbertson et al, although formally reject the VAR restrictions, �nd

evidence to suggest that these rejections of the EH are not economically signi�cant.

Some attribute the failure of the EH to the term premium being time varying and

not constant, see Froot (1989) and Tzavalis and Wickens (1997, 1998). Cuthbertson

et al (2003) investigate this claim for the UK using long rates36. They suggest that a

time-varying (but stationary) term premium can result in a "over reaction hypothesis",

where movements in the actual spread are more volatile than the expected changes

in the future short rates. That is, actual spread movements are more volatile than

those predicted by the EH. For n = 2 to 10 years they �nd strong support for EH

with constant term premium, in particular they can not reject the VAR restrictions,

which is in sharp contrast to US �ndings. But the correlation, variance ratio and

test of the VAR restrictions indicate rejection of the EH for n = 15; 20; 25 i.e. at the

very long end, which is consistent with the term premium being time varying for these

maturities. However, the authors conclude that these time-varying term premium

e¤ects are stronger for the US.

In general, these studies of the short end of the UK term structure are more support-

ive of the EH than earlier UK studies that use lower frequency data at longer maturities.

As demonstrated by Cuthbertson et al (2003) a time-varying term premium may ex-

plain the results found from tests of the EH for UK data at the very long end. But

36They use monthly spot rates constructed by the Bank of England from coupon bonds for maturities
of 2,3,...,10 years and 15, 20 and 25 years over 1976 to 1999. To test the EH while allowing for a time
varying term premium Cuthbertson et al use a trivariate VAR composed of the spread, the change in
the short rate and the excess holding period return. The excess holding period return Is used as a
proxy for the time-varying term premium.
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the �ndings from studies using data from the short end suggest that the EH with a

constant term premium provides a satisfactory description of the UK term structure.

Other Findings for the EH

As seen from the discussion above, although the early studies that focus on the US term

structure �nd a lack of support for the EH37, more favourable results are presented for

the UK, this is also true of other countries. Engsted and Tanggaard (1994, 1995)

using data over 1976 to 1991 �nd Danish yields to be cointegrated. When analysing

the predictive power of the spread for future rates, their results show that during the

regime of monetary targeting (target money supply) over 1976 to 1985 support for the

EH is found. But during 1985 to 1991 when there was an interest rate targeting (target

short rates) regime the spread appears to lose this predictive power. These �ndings

are in line with Mankiw and Miron (1986), and further supported by Engsted (1996).

Christiansen et al (2003) examine Danish data over 1993 to 2002, to �nd that since the

ERM currency crisis of 1992 the Danish term structure has been segmented. Such that

at the short end the rates are cointegrated and the EH holds, but the EH is rejected at

the long end of the term structure.

Similarly, Cuthbertson et al (2000b) �nd during 1976 to 1993 German money mar-

kets conform closely to the EH. Like the studies above, they attribute this success of

the EH to the German rates being su¢ ciently volatile under money supply targeting,

which results in more variability of rates at the shorter end. But given the credible

anti-in�ation policy of the Bundesbank the rates are not highly volatile. They argue

that variability in expected changes in short rates is required by econometric tests of

the EH, however very large changes may increase the perceived riskiness of holding the

asset and thus invalidate the EH with a constant term premium.

Other studies include Dominguez and Novales (2000) who use Eurodeposits rates

37However, more recently Engsted and Tanggaard (1994) present some encouraging results for the
US using the cointegration method for the period 1952 to 1987.
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over 1978 to 1998 to �nd the rates are cointegrated and the cointegrating vector is of

the form (1,-1) as implied by the EH, and further the forward rate is found to have

predictive power for future interest rates. Cuthbertson and Bredin (2000) use Irish data

at the short end during 1984 to 1997, to �nd support using cointegration and the VAR

methodology. Further support for the EH is provided by Lange (1999) for Canada,

Boero and Torricelli (2002) for Germany, Konstantinou (2005) for the Polish interbank

market, Lopes and Monteiro (2007) for Portugal using short rates, Koukouritakis and

Michelis (2008) for the 10 newest EU countries. For Australia, Robinson (1998) cannot

reject the VAR restrictions, and Fang and Lee (2003) �nd the rates are cointegrated.

Drakos (2002) for the US, Germany and the UK using Eurocurrency market rates at

the short end over 1988 to 1998, Ghazali and Low (2002) for Malaysia, Cooray (2003)

for Sri Lanka, and Musti and D�Ecclesia (2008) for Italy all show the EH holds using

cointegration analysis.

It is clear from the empirical literature that the support found for the EH is sensitive

to the country considered, testing method employed, the time period examined and the

maturity of the data. Below we discuss the stylised facts that have emerged from the

empirical investigations of the EH.

Stylised Facts to Emerge from the Literature and Why the EH may be

Rejected

Some stylised facts emerge from the literature38:

� The coe¢ cient in the regression testing the predictive power of the spread for the

future change in the long rate is often reported to be negative, e.g. CS (1991)

and Hardouvelis (1994).

� Many reject the VAR cross-equation parameter restrictions, e.g. MacDonald and

38As noted in Cuthbertson et al (1996).
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Speight (1991), CS (1991), Taylor (1992), Cuthbertson (1996) and Cuthbertson

et al (1996).

� More support for the EH is found when interest rates are volatile, e.g. Mankiw

and Miron (1986), Engsted and Tanggaard (1994, 1995), Engsted (1996) and

Cuthbertson et al (2000b).

The literature o¤ers several possible reasons why the EH is rejected, these include

noise traders, time-varying term premium and over reaction of the long rate. First,

noise traders follow fads purchasing assets that are fashionable, so their decisions are

not solely theory informed. Hence, the prevailing long rate is not just a combination

of current and future short rates as suggested by the EH, but of stochastic noise too.

Secondly, the term premium is assumed constant through time in the EH model39,

however the term premium may in fact be time varying, e.g. Fama (1984), Mankiw

(1986), Campbell (1987), Froot (1989), Longsta¤ (1990), Tzavalis and Wickens (1997,

1998), Tzavalis (2003) and Cuthbertson et al (2003).

Under the over-reaction hypothesis the current long rate does move in the direction

predicted by the EH, but its movements are sluggish in comparison to those of the

current short rates. Hence, the long rate under reacts to the current short rate and

over reacts to future short rates. CS (1987, 1991) state that although the actual and

theoretical spreads move together, this overreaction results in the EH being statistically

rejected, see also Hardouvelis (1994).

Cuthbertson (1996) and Cuthbertson et al (1996) suggest that the VAR restrictions

may be rejected for the following reasons �rst, the VAR coe¢ cients may be biased if the

econometrician does not include in the information set all variables in�uencing traders�

perceptions. Thus, when forecasting future rates all available information is not being

used optimally, thereby leading to the restrictions being rejected. Second, if the VAR

39Where the Pure EH assumes the term premium is zero.
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is used to forecast then we expect agents to use "minute by minute observations" of the

spread and changes in the short rate, in which case forecasts derived from even weekly

data may be insu¢ cient to mimic such behaviour. However, the formal statistical

rejection of VAR cross-equation restrictions does not necessarily imply rejection of the

EH from an economic perspective, if there is comovement between the actual and

theoretical spreads, CS (1991).

Other Term Structure Studies and Recent Developments

Examination of the EH is merely one section of a vast term structure literature. Since

this thesis is in part concerned with the EH, we concentrate our discussion in this

area. However, in this section we touch on some of the other areas investigated by the

term structure literature, these include the predictive power of the term structure for

economic activity and regime shifts.

Many authors have examined the relationship between the term structure of interest

rates and future economic activity to �nd a strong correlation, where the term structure

possesses a leading indicator property. Two explanations are provided for this leading

indicator property of the term structure. The �rst describes how investors try to smooth

their consumption through the business cycle. That is, when a recession is anticipated

long-term assets will be bought for maturity during the downturn, hence smoothing

income. As demand for long term assets increase their price increases, inducing a

decrease in their yields and resulting in a �attening of the yield curve, this �attening

is observed to precede a recession. However, empirically this explanation is rejected.

The second is that the leading indicator property of the term structure exists because of

the monetary authorities, where through money market intervention the central bank

can control the short-term rate. As discussed above, the EH of the term structure

states that the long-term rate is given by an average of the short term rates, plus a

term premium. Thus the central bank through manipulation of the short term rate,
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can in�uence the long term rate and hence future activity. For instance through

the tightening of monetary policy the short rate increases, in turn increasing the long

term rate and preventing the economy from overheating. See Harvey (1989), Estrella

and Hardouvelis (1991), Jorion and Mishkin (1991), Plosser and Rouwenhurst (1994),

Estrella and Mishkin (1997), Bernard and Gerlach (1998), Brooks and Tsolacos (2001),

Hamilton and Kim (2002), McMillan (2002), Stock and Watson (2003), Duarte et al

(2005) and Gomez-Biscarri (2009).

The failure of the EH may be attributed to a regime change, as is for the US during

1979-1982, Hamilton (1988). Sola and Dri¢ ll (1994) �nd over pre-regime change data

for the US their results are consistent with the EH. However, only when a VAR with

regime switching is used, is the EH found to be consistent with the data when the regime

change period is included in the sample. Further evidence provided in Kugler (1996)

and Dillen (1997). Jardet (2004) tries to detect a structural break in the correlation

between the interest rate spread and future activity in 1984 for the US. He �nds that

the term structure had greater explanatory power prior to the break in 1984, which

coincides with a policy regime change of in�ation targeting. See also Brooks and Rew

(2002), Ang and Bekaert (2002), Bansal and Zhou (2002), Clarida et al (2006) and Dai

et al (2007).

Developments in the literature include using very short term data, new testing

methods for the EH and macro-�nance models of the term structure. Longsta¤ (2000)

examines the term structure at the very short end using maturities ranging from one

day to 3 months, to �nd new support for the EH, see also Brown et al (2008). Bekaert

and Hodrick (2001)40 test the EH by the conventionally used Wald tests together with

the newly developed Lagrange multiplier test. Sarno, Thornton and Valente (2007) and

Della Corte, Sarno and Thornton (2008) also implement this new testing procedure. A

growing branch of the term structure literature is that which incorporates core macro-

40Sarno et al (2007) state that this LM test was originally proposed by Campbell and Shiller (1987),
but was made operational by Bekaert and Hodrick (2001).
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economic variables, for instance as discussed in Brooks and Skinner (2000), Ang and

Piazzesi (2003), Carriero et al (2006), Ang et al (2006), Dewachter and Lyrio (2006),

Diebold et al (2006) and Rudebusch and Wu (2008).

Shea (1992) raises the questions (i) if the EH can at times be valid and at other

times be invalid? (ii) if some of the testable implications are more easily accepted than

others? and (iii) whether the theory describes only portions of the yield curve? these

questions are as relevant now as they were then. From this review of the empirical

literature that tests the EH, it can be seen that (i) the EH describes the data better

under some regimes than others e.g. Mankiw and Miron (1986), Engsted and Tanggaard

(1995), Cuthbertson et al (2000b), (ii) the testing method used is important with more

support being found for the EH using cointegration analysis and the VAR methodology

than under the single equation tests. And (iii) in the UK stronger support for the EH

is found at the short end, this is also true for Denmark see Christiansen et al (2003).

Although the evidence in favour of the EH is quite mixed using statistical criteria, many

report strong comovement between actual spread and that predicted by the EH, in this

case it is di¢ cult to reject a hypothesis that is clearly economically signi�cant.

2.3 Modelling the UK Term Structure

Earlier we speci�cally discussed the EH of the term structure, its implications and how

they can be tested using several methods including single equations and a bivariate

VAR model. In this section we discuss how yields can be modelled more generally

using a range of statistical and theory informed time series models, and show how

these models are nested within a VAR framework. The statistical models include the

Autoregressive (AR) and Vector Autoregressive Model in Di¤erences (VARD) models.

And the theory informed models, that embed the cointegration implied by the EH both

explicitly in a Vector Error Correction Model (VECM) and implicitly using spreads
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in a VAR in Transformed Interest Rates (VART) Model41. It is this last model that

the EH literature uses. This section provides the theoretical framework of these above

mentioned models, which will be used in the subsequent chapters to model the UK term

structure.

2.3.1 Autoregressive (AR) Model

If the yields are di¤erence stationary, then change in the n-period yield �r(n)t can be

modelled by a pth order AR model

�r
(n)
t = � +

pX
i=1

	i�r
(n)
t�i + ut (2.23)

where the white noise process ut � i:i:dN(0;�2); E(ut) = 0; E(u2t ) = �2 andE(utut�s) =

0 for all s 6= 0; i.e. the unobservable errors ut are independently and identically distrib-

uted random variables that are homoskedastic and serially uncorrelated. The intercept

is given by � and the coe¢ cients 	i describe the in�uence past changes in �r(n) have

on �r(n)t :

From this standard statistical AR model, we explore two di¤erent modelling ap-

proaches. The �rst is an �economic�approach, where theory informed term structure

models can be developed as given by the VART and VECMmodels; the second is a �sta-

tistical�route where the above AR model can be extended to a VARD model. Further,

we demonstrate how these models are nested within each other. A bivariate framework

is used to discuss each model, however this can easily be extended to a multivariate

one.

41Plots of the yield data used in this thesis show that none of them exhibit a trend, so the trend
terms in each of the model descriptions are not included.
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2.3.2 VAR in Transformed Interest Rates (VART) Model

If we are concerned with simultaneously modelling the short m-period yields r(m)t and

the n- and m-period spread s(n;m)t for n 6= m. Then by assuming the yields are di¤erence

stationary and that there exists a cointegrating relationship between n- and m-period

yields, such that spreads are stationary, there exists a Wold representation which can be

approximated by a Vector Autoregression (VAR) model of order p. From the following

Vector Moving Average model, bold face is used to represent a vector

0B@ s
(n;m)
t

�r
(m)
t

1CA =

0B@ r
(n)
t � r(m)t

r
(m)
t � r(m)t�1

1CA =

0B@ �1

�2

1CA+A(L)
0B@ �1t

�2t

1CA (2.24)

�1 is the mean spread and �2 is the mean change in the m-period rate. L is the

lag operator, �1t and �2t are mean zero, stationary innovations with the covariance

matrix � 42. The lag �lter A(L) directly and the covariance indirectly accounts for

the interdependent determination of the change in the m-period rate and the spread

between the n- and m-period rate. Thus the model is able to incorporate the impact

of shocks to �r(m)t and s(n;m)t directly, as well as the feedbacks that may occur from

�r
(m)
t to s(n;m)t and vice versa.

From this fundamental MA representation in which the invertibility condition holds

and assuming that the lag �lter A�1(L) can be approximated by a pth order lag poly-

42The Wold Decomposition Theorem justi�es the use of this representation, in that it states that
"every weakly stationary process and a stochastic process can be written as a sum of a determinis-
tic process and a stochastic process with a Moving Average representation, in which the process is
explained soley in terms of past and present random innovations in the vector of variables", Lee and
Shields (2000). In this case r(m)t is di¤erence stationary and the spread s(n;m)t is stationary assuming
that cointegration exists between r(n)t and r(m)t :
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nomial i.e. A�1(L) = B0+B1L+B2L
2+::+BpL

p, where B0= I2, then

0B@ s
(n;m)
t

�r
(m)
t

1CA = � +B1

0B@ s
(n;m)
t�1

�r
(m)
t�1

1CA+ :::+Bp
0B@ s

(n;m)
t�p

�r
(m)
t�p

1CA+
0B@ �1t

�2t

1CA (2.25)

where � = A�1(1)�, now �r(m)t and s(n;m)t are described by past values of �r(m)t and

s
(n;m)
t : Equation (2.25) describes what will henceforth be called the VAR in Transformed

Interest Rates (VART) model. This VART is the same as the bivariate VAR (unre-

stricted) given by equation (2.20) used in the Campbell-Shiller VAR methodology to

test the EH, above just provides a more detailed statistical description.

2.3.3 Vector Error Correction Model (VECM)

The above VART model is composed of �r(m)t and s(n;m)t which are both stationary and

can be written in levels, see Appendix 3, as follows

0B@ r
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t

r
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t

1CA = �+�1
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(n)
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r
(m)
t�1

1CA+ :::+�p+1

0B@ r
(n)
t�p�1

r
(m)
t�p�1

1CA+
0B@ "1t

"2t

1CA (2.26)

From equation (2.26) it is assumed that the VAR model only contains endogenous

I(1) variables, in a general form

zt=�+

p+1X
i=1

�izt�i+"t (2.27)

where zt is a q� 1 vector of variables, � is a q� 1 vector of intercepts and "t is a q� 1

vector of white noise errors as previously de�ned, "t � i:i:d:N(0;�). Where all the
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roots of the determinantal equation fall on and/or lie outside the unit root circle

��Ik ��1�+�2�
2+:::+�p�

p
�� = 0

Manipulation of this levels form, given by equation (2.26), yields the following

VECM representation
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where the di¤erence operator is given by � = (1� L), and noting that

�i=�
p+1X
j=i+1

�j i = 1 to p and � = I2 �
p+1X
i=1

�i (2.29)

Thus the VART model given by equation (2.25) can be written as a VECM. The

VECM allows us to capture the cointegrating relations that exist between the yields

and the error correction term
�
r
(n)
t�p�1 � r

(m)
t�p�1

�
ensures that the long and short yields

do not deviate greatly from each other in the long-run: From equation (2.28) the general

VECM representation is

�zt = �+

pX
i=1

�i�zt�i ��zt�1 + "t (2.30)

with � and �i de�ned by (2.29). Where zt is a q�1 vector of stochastic I(1) variables

in this case the yields, � is a q � 1 vector of constants, "t is a q � 1 vector of white
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noise errors where "t � i:i:d:N(0;�), �i and � are q � q matrices of coe¢ cients. The

short-run coe¢ cients contained in �i relates zt to its past values. The rank of � given

by r determines the number of stationary linear combinations of zt; where the existence

of cointegration amongst the yields implies that the long-run matrix � has reduced

rank r < q: Thus, under cointegration there exists r cointegrating vectors among the

q yields contained in the q � r matrix �, such that � = �0�. The long-run matrix of

coe¢ cients �0 is the matrix of cointegrating vectors. The (q � r) loading matrix� holds

the error-correction coe¢ cients (also known as adjustment or feedback coe¢ cients),

which determine how quickly deviations of the long-run relationships from equilibrium

feedback to the system zt, and give the weights with which each cointegrating vector

enters each �zt equation.

If zt is composed of I(0) variables then the short- and long-run e¤ects can not be

separated and shocks to the system have no long-run e¤ects, with the variables reverting

to their unconditional mean. If however, zt is composed of I(1) variables that are not

cointegrated, then all shocks have a persistent e¤ect. In this case, we have zt that is

composed of I(1) variables that theory does suggest are cointegrated. So even though

zt is non-stationary the error correction terms �
0zt�1 give the stationary relationships

that exist amongst these non-stationary variables. So shocks to the system may have

persistent e¤ects on the variables, but do not have a persistent e¤ect on the equilibrium

relations, since any e¤ect eventually dies.

When identifying the cointegrating vectors, r2 exactly identifying restrictions are

imposed on the � matrix, that is r restrictions on each of the r cointegrating relations.

However, these r2 restrictions are not su¢ cient to uniquely identify the economically

meaningful � and �: Hence further over-identifying restrictions are necessary to test

the relationships proposed by economic theory. These restrictions can be tested by

comparing the likelihood of the VECM subject to the exactly identifying restrictions
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to that of the VECM subject to a full set of restrictions43.

As previously seen if the EH is valid then there should exist r = q� 1 cointegrating

vectors, where "the cointegration space should be spanned by the columns of the matrix

such that the bivariate interest rate spreads are stationary." Christiansen et al (2003,

pp. 9). In the next chapter we test the hypothesis that the cointegrating relationship

between the n- and m-period yields has cointegrating vector (1;�1), as implied by

the EH such that spreads are stationary. If indeed a long-run relationship of this

form exists, then this justi�es the estimation of the VART model which is based on

this assumption holding. More speci�cally, we impose and test two sets of over-

identifying restrictions, in the �rst set each row corresponds to the cointegrating vector�
1;�1; c(n;m)

�
with the term premium c(n;m) free from restriction. The second set tests

the PEH which assumes the term premia are zero, such that the cointegrating vector

corresponds to (1;�1; 0).

2.3.4 VAR in Di¤erences (VARD) Model

If however, from equation (2.28) zt is I(1) and not cointegrated then � would be a null

matrix of rank 0, i.e. � = 0, where no long-run relationships are found to hold amongst

the yields in the form of a stationary spread. Then a VAR in Di¤erences model of

order p; VARD(p), is appropriate to describe the system as given by equation (2.31)

for the bivariate case and equation (2.32) for the general case
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�zt = ao +

pX
i=1

�i�zt�i + et (2.32)

43The full set comprises exact and over-identifying restrictions.
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This models simultaneously the change in the n- and m-period yields at time t

where n 6= m: Here zt is a q � 1 vector containing the n- and m-period yields: Where

ao is a q � 1 vector of intercepts and et is a q � 1 vector of white noise errors, with

et � i:i:d:N(0;�): No exogenous variables are considered in this model.

The VARD(p) model can be transformed to an AR(p) speci�cation by imposing

restrictions on �i. If n = 1; 3; 6 and 12; and j = 1; 3; 6 and 12 then for each �r(n)t

equation in the VARD(p) model set �i = 0 for all �r
(j)
t�i where j 6= n, then the change

in the n-month yield depends only on its past values.

This section describes four di¤erent types of models that can be used to model the

term structure of interest rates, both under a bivariate setup and where possible using

a general form in terms of zt 44. We demonstrate how the simple AR model can be

extended in two ways, �rst by continuing down the atheoretic path to a VARD model,

or secondly through the incorporation of economic theory to a VARTmodel. Further, it

can be shown that the equivalent representation of this VARTmodel is a VECM. Where

the VECM explicitly de�nes and tests the long-run relationships that exist between the

yields and the VART model assumes that these long-run relations hold enabling the

spread terms to be modelled directly. Lastly, if in the VECM cointegration is not

found then a VARD speci�cation is appropriate. It can be seen that both the AR and

VARD models are nested within the VECM, and the Bivariate VARD and AR models

are nested within the Multivariate VARD model.

Although these models can be viewed individually as either statistical or theory

based, it is evident some speci�cations are nested within others. This implies that

we can move from one speci�cation to another by imposing restrictions, where these

restrictions can then be tested.

44 In the next chapter n = 12; 6; 3 and m = 1, so the multivariate models contain all yields with

zt =
�
r
(12)
t ; r

(6)
t ; r

(3)
t ; r

(1)
t

�0
. The bivariate models have q = 2, with four yields this gives rise to six

possible bivariate combinations of zt.
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2.4 Recent Innovations In and the Use of Forecast-

ing in Financial Economics

The �rst part of this chapter deals with the term structure of interest rates, its theories

and a review of the empirical literature, together with a general overview of how the

term structure can be modelled using a range of time series models. We now turn

our attention to the second part of this chapter which deals with forecasting. The

area of economic forecasting is vast, so we focus our discussion on the areas of density

forecasting and decision-based forecast evaluation. Speci�cally, we describe how point

and density forecasts are generated. Followed by a review of the literature on forecast-

ing interest rates, forecast evaluation and the use of decision-based forecast evaluation

in the context of portfolio choice. We also provide a short discussion of statistical

forecast evaluation methods and combining density forecasts, but these techniques are

not applied in this thesis so their discussion is kept brief.

A forecast makes a statement about the future and is of value because it is needed in

decision making. Forecasts of economic and �nancial variables are used by governments

to inform decisions about monetary and �scal policy; private �rms to inform decisions

regarding investment and production; �nancial risk managers, investors and speculators

are interested in forecasts of asset returns including exchange rates, interest rates and

stock returns to both price assets and to evaluate risk when allocating assets.

Hence it is important to consider the context in which the forecasts will be used, the

decisions they will inform and thus the best way to determine their accuracy. Other

considerations include the type of forecast to generate; what data the information set

should contain and the modelling approach to be used. There are many methods of

forecasting including leading indicator which rely on a stable relationship between the

leading variables and the variables being led, consumer and business surveys and time

series models describing historical trends in data, Clements and Hendry (2004).
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There are generally three types of forecasts (1) a point forecast which is a single

value, (2) an interval forecast which states the probability of the future value falling

within a given interval and (3) a density forecast which gives the entire probability

distribution for the future value. Although point forecasts convey predictions in a

simple manner, as Diebold (2004) highlights all time series are subject to random

and unpredictable shocks, so even very accurate forecasts will make some error. In

which case point forecasts fail to communicate the uncertainty surrounding the forecast.

Interval forecasts however, give with a known probability determined by the forecaster,

a range of values in which the realised value of the variable is expected to fall, e.g.

there is a 90% chance that in�ation will be between 1.5 and 4.5%. Here information

about the forecast uncertainty is presented, with larger intervals suggesting greater

uncertainty about the forecast45.

A density forecast however, provides the entire probability distribution of the future

value of the variable. With this entire density we have information like the distribution,

mean and variance of the density. Density forecasts provide a clear and transparent

means to convey the uncertainty surrounding computed forecasts, conveying more in-

formation than point and interval forecasts46. These forecasts can be used to give the

likelihood of a particular event being realised as given by the estimated model, e.g. the

probability that in�ation will equal 2.5%. Moreover, density forecasting allows the

di¤erent forms of forecast uncertainty to be examined.

The uncertainty surrounding a forecast "re�ects the dispersion of possible outcomes

relative to the forecast being made" Ericsson (2004). There are two types, �rst is

predictable uncertainty "what we know that we don�t know" this includes stochastic

45From the interval forecast, the point forecast can be deduced by looking to the midpoint of the
interval. However, the interval forecast does not have to be symmetric about the point forecast, in
which case the point forecast is not necessarily mid of the interval, but in most cases it is reasonable
to assume it is, Diebold (2004).
46From the density an interval forecast for any con�dence level can be constructed. See GLPS

(2006) for a discussion of probability forecasting compared to interval forecasting.
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(future) and parameter uncertainty. The second is unpredictable uncertainty "what

we don�t know that we don�t know" including future structural changes in the economy

and misspeci�cation of the model, Clements and Hendry (2004) and Ericsson (2004).

The �rst type can be accommodated, the second is unpredictable otherwise it would

already be incorporated into the model. Stochastic uncertainty is that associated with

the e¤ect of unobserved future shocks on forecasts. Parameter uncertainty re�ects

that parameters are unknown and estimates are used to produce forecasts47. Model

uncertainty arises when the true data generating process is unknown and alternative

model speci�cations are used to generate forecasts. By computing the predictable

forecast uncertainty the expected range of possible outcomes can be deduced. Below

we discuss the methods by which we account for stochastic and parameter uncertainty

when computing density forecasts.

Although density forecasts convey the most information, point forecasts are more

widely used with con�dence intervals presenting the forecast uncertainty. Reasons

for this o¤ered by the literature include density forecasts requiring computer-intensive

techniques and point forecasts being easier to comprehend and utilise. However, for

most decision making point forecasts are insu¢ cient and density forecasts are needed,

GLPS (2006). Furthermore, the probability of joint events can not be inferred from

forecast intervals, but requires the entire joint forecast density function, which we will

discuss in more detail below. Although density forecasts analytically can be compli-

cated, we demonstrate below how this can be circumvented by computing forecasts

using stochastic simulation methods.

We have thus far described the di¤erent types of forecasts and the corresponding

forecast uncertainties. In the sections that follow we �rst describe how point forecasts

47The cumulative e¤ect of future uncertainty tends to grow with the forecast horizon, which results
in interval and density forecasts that widen with the horizon. In the case of parameter uncertainty, the
parameter estimates are subject to sampling variability, such that the parameter uncertainty decreases
as the sample size grows, see Diebold (2004).

65



are generated, then how density forecasts are computed using simulation methods when

accounting for both stochastic and parameter uncertainty. Followed by how forecasts

are evaluated, focusing our attention to decision-based evaluation methods.

2.4.1 Point Forecasts

Point forecasting is commonly discussed and used, so here we only brie�y describe how

point forecasts are generated. This is then followed by a more detailed discussion of

the less frequently used density forecasting. A Vector Autoregression (VAR) of order

p is

xt = �+

pX
i=1

Bixt�i + �t (2.33)

where xt is a (q � 1) vector of variables, Bi is a (q � q) matrix of parameters, � is a

(q � 1) vector of intercepts and �t is a (q � 1) vector containing i:i:d: serially uncorre-

lated errors with zero means and a positive de�nite covariance matrix �. The vector

xt is often considered stationary in which case each of the term structure models dis-

cussed above48, with the exception of the VECM, can be summarised by this VAR(p).

However, equation (2.33) could accommodate I(1) variables subject to restrictions on

Bi, therefore the VECM too can be summarised by this VAR(p). Hence the exact

composition of xt will depend upon the chosen model.

If we are concerned with forecasting xt, following the description given in Garratt

and Lee (2009, GL), then xt = (x1t; x2t; :::; xqt)
0 which is (q � 1) and includes at least

the variables of interest and XT = (x1;x2; :::;xT )
0 is a (q � T ) vector containing obser-

vations 1 to T of these q variables.

For xt the h-step ahead forecast is x̂T+h, where T is the last observation of the

sample and the forecast error49 is given by efT+H = xT+h � x̂T+h. An optimal forecast

48In Section 2.3, "Modelling the UK Term Structure".
49Note that �ef�denotes the forecast error, which is di¤erent to the error term �e� in the VARD

model.
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of xT+h is often de�ned as that which minimises the expected squared forecast error50

E

��
efT+H

�2�
. The conditional expectation of xT+h on all past information known at

T is an optimal forecast

x̂T+h = ET (xT+h j x1;x2; :::;xT ) = ET (xT+h j XT ) (2.34)

For a VAR(p) the optimal h-step ahead forecast is

x̂T+h = ET

�b�+ pP
i=1

B̂ix̂T+h�i + �T+h j XT

�
x̂T+h = b�+ pP

i=1

B̂ix̂T+h�i (2.35)

From equation (2.33), the maximum likelihood estimates of the model parameters are

denoted b� = �b�; B̂i; �̂�, for i = 1 to p: The model is iterated forward to produce

the point estimates of the h-step ahead forecasts, conditional on the observed data XT

and the estimated parameters b�, for h = 1; 2; :::; H; ::: Using the initial values of the
variables xT;xT�1;:::;xT�p+1 these forecasts are produced recursively.

To illustrate the chain rule of forecasting, writing this VAR(p) in companion form

zt= Azt�1+�t (2.36)

where zt = (xt; :::;xt�p+1)
0 is (qp � 1), A is a (qp � qp) matrix of coe¢ cients, ZT =

(z1; z2; :::; zT )
0 and � is (qp� 1). The chain rule of forecasting is used to obtain future

50Here we adopt the standard statistical de�nition and de�ne the loss function as being the expected
squared forecast error. However, the loss function can take a number of forms, e.g. quadratic cost
function, see Pesaran and Skouras (2004).
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values of zT . Using equations (2.34) and (2.36) the one-step, two-step and h-step ahead

forecasts are

bzT+1 = ET (zT+1jZT )

= ET (AzT+�T+1jZT ) = AzT

bzT+2 = ET (zT+2jZT )

= ET (AzT+1+�T+1jZT ) = A2zT

bzT+h = ET (zT+hjZT ) = AhzT (2.37)

These optimal h-step ahead forecasts are computed recursively. This method of fore-

casting provides a point forecast of the variable. Given the forecast is an expectation

based on the information set it is subject to error, so often an interval forecast is pre-

sented to convey the uncertainty about the forecast, e.g. an interval in which we are

95 or 99% con�dent that the forecast will lie.

2.4.2 Density Forecasts

We will now describe how density forecasts of variables of interest are generated using

stochastic simulation techniques. The estimation procedure is discussed �rst by con-

sidering how the density forecasts are calculated for given values of the parameters and

then by taking into account parameter uncertainty51. This method is not so frequently

discussed or used, so we try to provide some detail and intuition. It should be noted

that this description demonstrates one way of generating density forecasts from a spe-

ci�c model. However, density forecasts can be generated in di¤erent ways, see Britton

et al (1998) and Tay and Wallis (2004) for a discussion on how the Bank of England

and the Survey of Professional Forecasters respectively, generate theirs.

51See GLPS (2006, Chapter 7) for a discussion on model uncertainty.
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Since forecasts of the q variables in xt are required, the conditional probability den-

sity function P (XT+1;H j XT ) is of interest. This predictive density function gives the

probability density function of the forecast values of the q variables over the horizon T+1

to T + H, where XT+1;H = (xT+1;xT+2; :::;xT+H)
0 conditional on the observed values

of the q variables from 1 to T: That is to say, the probability of observing XT+1;H given

that XT has already been observed. The form the density function P (XT+1;H j XT )

takes is determined by the types of uncertainty surrounding the forecasts, as well as the

way in which the function is characterised and estimated. The forecasts are in�uenced

by various uncertainties including stochastic, parameter and model uncertainty. In

Chapters 4 and 5 we consider both parameter and stochastic uncertainty, so we concen-

trate our explanation of computing density forecasts subject to these two uncertainties

only.

A fully Bayesian approach can be taken to estimate the density function, see for

instance Kandel and Stambaugh (1996), Barberis (2000) and Abhyankar et al (2005).

This involves the construction of a posterior distribution and the use of priors for the

parameters. Alternatively Garratt, Lee, Pesaran and Shin (2003 and 2006, GLPS) and

Garratt and Lee (2009) take a classical stance on the Bayesian approach to estimating

the density function. They use approximations of certain probabilities of interest,

thereby avoiding the need for priors. Here we use this alternative approach, a detailed

discussion of which is provided in the empirical chapters.

The approach taken to estimate the density function of the forecast values when

parameter uncertainty is ignored and when it is incorporated, is as follows. From

equation (2.33), the maximum likelihood (ML) estimates of the model parameters areb� = �b�; B̂i; �̂� : In the absence of parameter uncertainty it is assumed that there is

no uncertainty about the model parameters and they are �xed at the estimated values.

With density forecasting, �rst consider stochastic uncertainty only ignoring parame-

ter uncertainty, the forecast values of the variables xT+h can be computed using stochas-
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tic simulations, this provides an estimate of the predictive density P
�
XT+1;H j XT ; b��

from

x
(er)
T+h = b�+ pP

i=1

B̂ix̂T+h�i + �
(er)
T+h (2.38)

where xT+h is the h-step ahead forecast. Further, let eR denote the total number of

replications of the above simulation, er = 1 to eR and gives the erth replication. For

current and past values of x, the actual values are used such that x(er)T+h�i = xT+h�i,

e.g. x(er)T = xT ;x
(er)
T�1 = xT�1::: for each replication. Note that density forecasts require

forecasts of the errors �T+h too.

To generate forecasts in the presence of parameter uncertainty the Monte Carlo

procedure is used, this provides an estimate of the predictive density P (XT+1;H j XT ).

First, the (in-sample) past values of xt are simulated eH times, i.e. simulate eH �histories�

of xt, t = 1; 2; :::; T; denoted x
(eh)
t ; eh = 1; 2; :::; eH 52. Where

x
(eh)
t = b�+ pP

i=1

B̂ix̂
(eh)
t�i + �

(eh)
t (2.39)

the actual realised values of xt;xt�1; :::;xt�p are used for initial values, together with

the estimated model parameters b� obtained using the actual observed data.
With the eH simulated histories for xt i.e. x

(eh)
1 ;x

(eh)
2 ; :::;x

(eh)
T such that for each

past value of x there are eH possible values, it is now possible to estimate the VAR(p)

model given by equation (2.33) eH times, yielding eH sets of ML parameter estimates

b�(eh); B̂(eh)i ; �
(eh)
t and �(

eh); one set of estimates for each Monte Carlo replication, where
i = 1; 2; :::; p.

For each Monte Carlo replication, compute h-step ahead point forecasts of xT , whereeR replications of these forecasts are generated, i.e. for each of the eH generated histories

52Note that 0er0 refers to the number of �futures�generated in the simulation, whereas 0r0 refers to the
asset return. Equally 0eh0 refers to the �histories�generated and 0h0 refers to the step ahead forecasts.
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simulate eR futures

x
(eh;er)
T+h = b�(eh) + pP

i=1

B̂
(eh)
i x̂

(eh;er)
T+h�i + �

(eh;er)
T+h (2.40)

for h = 1; 2; :::; H; er = 1; 2; :::; eR and eh = 1; 2; :::; eH. Note that h refers to the horizon,eh to the number of histories generated and S = eH � eR gives the total number of

simulations.

The error terms �(er)T+h; �(eh)t and �
(eh;er)
T+h �s can be drawn using either parametric or

non-parametric methods53. Here we utilise parametric methods, where the errors are

assumed to be i:i:d:N (0;�) serially uncorrelated white noise errors, details of the exact

procedure is provided in Appendix 7.

These simulations provide an estimate of the predictive densities P
�
XT+1;H j XT ; b��

when parameter uncertainty is ignored and P (XT+1;H j XT ) when it is considered. The

predictive density gives every possible outcome from T to T +H described as a density.

That is, at every step ahead we do not just have a point forecast, but an entire density

of all possible outcomes.

The above demonstrates how density forecasts can be computed through simulation

methods. These techniques allow probabilities of single, joint and dynamic events of

interest to be computed, that point and interval forecasting methods can not. For

simplicity we abstract from parameter uncertainty. From above xt contains q variables

of interest, e.g. zt and yt, the in�ation rate and output growth respectively. The

conditional density function of zT+1 is f (zT+1 j zT ), where an estimate of this density

in T is bfT (zT+1 j zT ) = P (zT+1 j zT ). Density forecasting considers bfT (zT+1 j zT ) for
all possible values of zT+1, with the probability density function

bFT (z) = zZ
�1

bfT (zT+1 j zT ) dzT+1 (2.41)

53See GLPS (2006, pp. 166-168) for further details.
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for all possible z. This provides an entire density of all possible outcomes for zT+1.

Whereas a probability event forecast gives the probability of a particular event e.g.

P (zT+1 < a j zT ), in�ation is below target, given by bFT (a). Similarly, forecasts for

single events concerning yt can be computed. However, if we are concerned with the

probability of joint events, e.g. P (zT+1 < a and yT+1 > b j zT ; yT ), in�ation is below

target and output growth is positive, computing this probability requires the joint

density function bfT (zT+1; yT+1 j zT ; yT ) because the two events are dependent. Solving
this analytically54 could be complex, but can be easily done using simulations55, where

the simulations account for this interdependence.

Further, dynamic events concerning multi-step ahead forecasts can be derived, for

instance P (zT+1 < a; zT+2 < a j zT ), in two successive periods in�ation is below target.

Again this probability requires a joint density, since we have two variables zT+1 and

zT+2 that are dynamically interdependent i.e. forecast of zT+2 is dependent on the

forecast of zT+1: Furthermore, we may be concerned with dynamic joint events, e.g.

P (zT+1;H < a and yT+1;H > b j zT ; yT ). It can be seen that density forecasting allows

the probability of events to be computed, where this event may concern the values of

a single variable or a set of variables, measured at a particular point in time or over a

length of time, GLPS (2006). Although analytically these events may be di¢ cult to

compute56, this can easily be circumvented using simulation methods, as demonstrated

above.

In general, density forecasting can be applied to a number of situations. The Survey

of Professional Forecasters is the longest running series of macroeconomic density fore-

54Would require
aR

�1

1R
b

bfT (zT+1; yT+1) dzT+1dyT+1 to be solved.
55For instance simulate 1000 values of zT+1 and yT+1, from this count the number of times out of

the 1000 futures that zT+1 < a and yT+1 > b. If this occurs say 300 times, then the probability of
this joint event is 0.3.
56GLPS (2006) argue that evaluating probabilty event forecasts can be complicated because of the

form of the functions, di¢ culties in choosing appropriate limits of integration or because the event
being forecast is complex.
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casts dating back to 196857, see Tay and Wallis (2004). Another well known example

is the Bank of England�s fan charts of its in�ation and GDP growth forecasts, as seen

earlier in Figure (2-1), the in�ation fan chart depicts the Bank�s predicted probabil-

ity distribution of in�ation, presenting the predictable forecast uncertainty. Further,

Garratt, Lee, Pesaran and Shin (2006, GLPS, Chapter 11) apply probability forecast-

ing techniques to their estimated macroeconomic model of the UK. Speci�cally, they

consider the events of the in�ation rate being in a target range and the economy going

into recession, illustrating that probability event forecasts provide a means of conveying

forecast uncertainty58.

Density forecasts are more common in �nance and risk management. Where in

�nance density forecasts of asset and portfolio returns are produced, these forecasts

allow the risk associated with the return to be assessed, since they present a complete

characterisation of the uncertainty surrounding these returns. This is what we are

concerned with in this thesis. More speci�cally, we generate dynamic density fore-

casts of asset returns contained in xt that are interdependent, use these forecasts to

compute expected wealth and derive optimal portfolio allocations, and then examine

the economic value of the forecasts of competing models. Speci�c details of how we

compute the density forecasts in the empirical chapters is provided in Appendix 7.

57This survey of macroeconomic forecasters was previously conducted by American Statistical As-
sociation (ASA) and the National Bureau of Economic Research (NBER), but now by the Federal
Reserve Bank of Philadelphia. They request density forecasts for in�ation and output growth, the
respondents are asked to assign forecast probabilities to predetermined intervals into which the future
value of the variable may fall, the responses are averaged such that the mean probability distribution
is reported.
58See also GLPS Chapter 7 for a detailed discussion of probability forecasting, including accounting

for future, parameter and model uncertainty.
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2.4.3 Forecasting Interest Rates

Previous research that considers the ability of theory based models to forecast interest

rates in comparison to atheoretic, purely statistical models like a naive random walk,

primarily focus on using statistical criteria to evaluate the accuracy of the forecasts.

As discussed in detail earlier in this chapter, the literature that investigates the Expec-

tations Hypothesis considers the ability of the spread to forecast future interest rates,

key papers include Campbell and Shiller (1991), Engsted and Tanggaard (1995), Eng-

sted (1996) and Roberds et al (1996). Also, if the forward rate has predictive power

for future spot rates, see Fama (1984a, 1990), Fama and Bliss (1987), Mishkin (1988)

and Rossi (1996). As seen, the literature reports mixed �ndings in favour of the EH.

More recently, Guidolin and Thornton (2008) compare the ability of the EH to predict

Treasury yields with forecasts generated by a random walk and a three factor model.

They �nd that the models including the EH model, do not produce forecast errors that

are signi�cantly smaller than those from a no change model59. They argue that this

does not invalidate the EH, but suggests that "the dominant factor in the change in the

short-term rate between now and h-months from now is news which is not forecastable."

Further, they �nd that the forecasts of short rates do not vary signi�cantly when the

risk premium is assumed constant or allowed to vary, suggesting that the failure of the

EH can not be attributed, as many propose, to the time-variation in the risk premium.

Fauvel, Paquet and Zimmermann (1999) provide a detailed survey of di¤erent meth-

ods used to forecast interest rates, these include univariate methods, multivariate sys-

tems, regime switching models and consensus forecasts. In their assessment of the

forecasting performance of these various models, they conclude that despite their sim-

plicity univariate models perform well. Further, multivariate models i.e. VAR and

VECM also perform well, while integrating short-run dynamics and long-run relation-

59This evidence of the random walk being di¢ cult to beat is further to that reported by Du¤ee
(2002) and Carriero et al (2006). See also Guidolin and Timmermann (2009) who report gains at
longer forecast horizons from using the EH model.
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ships. This conclusion is supported by Sarno, Thornton and Valente (2005) who

compare the forecasting performance of a range of time series models of the US federal

funds rate, to �nd a simple univariate model to be best and further that combining

forecasts resulted only in marginal improvements to accuracy. Bidarkota (1998) who

�nds multivariate models that embed cointegration between the nominal interest rate

and in�ation to be more accurate than univariate models of real interest rates in the

US. Dua et al (2008) also report a superiority of multivariate models using Indian in-

terest rates. A similar exercise is conducted for Canada by Deaves (1996). Vereda et

al (2008) �nd using Brazilian interest rates, that if one is concerned with forecasting in

the short run, then it is su¢ ce to use a model that incorporates past yield data only.

However, the information content in macroeconomic variables is of use when concerned

with forecasting in the long run.

Other studies examine interest rates forecasting in the context of survey and market

based forecasts, of the Taylor rule and the economic information seen by the policy

making committee of the central bank and di¤erent yield curve estimation techniques

including factor models. See Hafer et al (1992), Gosnell and Kolb (1997), Soderlind et

al (2005), Kim et al (2008), Ioannides (2003) and Diebold and Li (2006)60.

2.4.4 Forecast Evaluation Techniques and Decision Making

Forecast evaluation provides a means of judging if the estimated model provides an

accurate representation of reality and further how any given model compares with

alternative representations, Granger (2003). In what follows, we consider how forecasts

60There is a branch of the term structure literature that models interest rates using no-arbitrage
factor models (a¢ ne models) that model the level, slope and curvature of the yield curve. As stated
in De Pooter, Ravazzolo and van Dijk (2007) these models explain yields using latent factors that
can be extracted from a panel of di¤erent maturity yields. We do not provide a discussion of this
literature here, but key studies include Dai and Singleton (2000), Du¤ee (2002), Ang and Piazessi
(2003), DeWachter and Lyrio (2006) and Rudebusch and Wu (2008).
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are evaluated using both statistical61 and decision-based measures, with a review of

studies that examine asset return predictability using decision-based techniques.

Statistical Evaluation Techniques

With quantitative forecasts, a forecast error and statistical error measures including the

mean squared error (MSE) and root mean squared error (RMSE) can be calculated62.

When the aim is to compare two or more models, measures including ratios of MSEs

may be used to ascertain predictive ability, West (2006). Diebold and Mariano (1995)

propose several tests to examine the null that there is no di¤erence in the accuracy of

two competing forecasts. Stekler (1991) and Clements and Hendry (1998, Chapter 3)

review commonly used statistical forecast evaluation techniques for point forecasts, and

Christo¤ersen (1998), Clements and Hendry (1998) and Clements and Taylor (2003)

for interval forecast evaluation.

With more attention being paid to density forecasting, there is an increasing focus

on the evaluation of density forecasts. Statistical evaluation methods for univariate

forecast densities have been developed by Dawid (1984, cited in Pesaran and Skouras

(2004)) and Diebold et al (1998). Where Diebold et al (1999) propose a framework

for evaluating multivariate density forecasts63. Clements and Smith (2000) apply these

techniques to density forecasts of US output growth and unemployment produced by

linear and non-linear models64. They argue that since non-linear models may be

better at capturing the higher moments, then evaluation techniques that consider the

entire density of forecasts may be better able to discriminate between models, see also

61There is an extensive range of statistical measures of forecast accuracy, but since our focus in
this thesis is on decision-based forecast evaluation we implement only the RMSE measure. Hence we
provide only a brief review of the statistical measures used by the literature.
62Non-quantitative forecasts include trying to correctly predict changes in the business cycle. Fore-

cast evaluation here may involve comparing the number of correctly predicted turns with the number
of incorrect predictions.
63Which is a generalisation of Diebold et al�s (1998) univariate procedure.
64They �nd that although non-linear models are better able to characterise cyclical features of the

data, MSE type criteria indicate that they are not better than linear models at forecasting.
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Clements and Smith (2002).

Tay and Wallis (2004) and Corradi and Swason (2006) provide a survey of density

forecasting including model evaluation tests presented in the literature65. Further,

Hall and Mitchell (2009) discuss recent developments in density forecasting, noting

that evaluation methods either employ goodness-of-�t tests or scoring rules. The

goodness-of-�t tests are used to ascertain if the "probability integral transforms of the

forecast density with respect to the realisations of the variables are uniform or, via a

transformation, normal", Hall and Mitchell (2009). Brie�y, following the description

in Pesaran and Skouras (2004), for N consecutive pairs of the actual values and density

forecasts
n
xt+1; bft(xt+1 j 
t); t = T; T + 1; :::; T +N � 1o, Diebold et al (1998) show

under the null that the forecasts are equal to the actual value i.e. f(xt+1 j 
t) =bft(xt+1 j 
t), the N sequence of probability integral transforms

zt+1 =

Z xt+1

�1
bft(u j 
t)du t = T; T; :::; T +N � 1

is i:i:d. Uniform (0,1). Thus testing if fzt+1; t = T; T + 1; :::; T +N � 1g are i:i:d:

U(0,1) provides a means of statistically evaluating density forecasts. Further, Hall and

Mitchell state that scoring rules are speci�c loss functions that allocate a numerical

value (score) based on the density forecast and the prevailing realised value of the

variable. This provides a relative measure of forecast performance, with densities

being ranked by their score. Tests developed using scoring rules test for equal predictive

performance, with the null that the di¤erence between two or more competing densities

is zero. Discussions on statistical evaluation methods that incorporate factors like

parameter uncertainty, tests that allow for non-quadratic loss functions, forecast errors

65See Corradi and Swanson (2006, pp. 206) for a table that summarises key speci�cation tests and
model evaluation papers. It gives details of whether the test focuses on the conditional mean compared
to conditional distribution, if it is for 1-step or multi-step ahead forecasts and if it evaluates single or
multiple models.
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that are non-Gaussian, non-zero mean and serially correlated, are given in Diebold and

Lopez (1996), Mariano (2004), McCracken and West (2004), Sarno and Valente (2004),

Clements (2006) and West (2006).

Decision-Based Forecast Evaluation

This section discusses the importance and use of decision-based forecast evaluation in

economics and �nance. There is a growing empirical literature that examines pre-

dictability of asset returns and use decision-based forecast evaluation in an investment

decision making context. Since this thesis makes a contribution in this area, this

section is followed by a review of this literature.

It is important to measure the accuracy of forecasts in the context for which the

forecasts are intended. This point is asserted by Pesaran and Skouras (2004), who argue

that it is necessary to distinguish between whether the forecast is being evaluated by

the producer or user of the forecast. Typically statistical measures like the RMSE are

used, which may be su¢ cient for the producer. But for the user who is concerned

with making a pro�t and maximising utility, these statistical measures ignore how the

forecasts will be used and the preferences of the user.

Given that di¤erent decision environments have di¤erent associated loss functions,

using an economic cost function to evaluate forecasts in a decision making environment,

will re�ect that the user wants to maximise expected utility66 or the payo¤ subject

to constraints, Granger and Machina (2006). Decision-based forecast evaluation67

considers the economic value of the forecast to the user, as a means of evaluating

forecasts by incorporating an economic cost function into the decision making. In the

case of density forecasts this is where the whole distribution is used and not just the

mean.

66The user is interested in the forecast that minimises expected cost or maximises expected utility.
Where the expeced cost/utility is an estimate of actual cost/utilty computed using the predictive
density.
67We sometimes refer to decision-based measures as economic value measures.
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The importance of decision-based evaluation is highlighted in the early examination

of exchange and interest rate forecasts by Wright et al (1986). They note that using

forecast accuracy alone in evaluation may result in incorrect and costly decisions. They

state that forecasts are used to examine future outcomes of alternative plans, therefore

rather than viewing forecasting and decision making as two separate activities, a greater

integration between them is needed to make better and more pro�table decisions. Key

papers by Granger and Pesaran (1996, 2000) and Pesaran and Skouras (2004) make

important contributions to the link between forecasting and decision theory.

Decision-based forecast evaluation has been used extensively in the meteorology

forecasting literature68. In �nance, decision-based forecast evaluation has been applied

to measure the economic signi�cance of asset return predictability, this literature is

discussed below. These decision-based measures are appropriate in �nance because

the objective is clear, to make pro�t while minimising risk. However, in economics

forecast evaluation is nearly always done using statistical criteria. Pesaran and Skouras

suggest this lack of use of decision-based methods in economics may be because (1)

evaluation is considered from the producers perspective, (2) the method requires full

speci�cation of the decision environment, which they argue is usually absent from the

formulation of economic forecasting models, (3) until recently there was little to suggest

that a decision-based evaluation approach would di¤er from a statistical one and (4)

the approach can be technically di¢ cult.

Although, Granger and Pesaran (2000) describe how these methods can be applied

in macroeconomics. For instance, the Bank of England sets the nominal interest rate

using their in�ation rate forecasts, where they increase interest rates if their forecast

of in�ation is beyond a target rate. Granger and Pesaran (1996) argue that here the

Bank needs the entire predictive distribution function of the in�ation rate, not just a

point forecast. Together with a complete description of the gains/losses associated

68I.e. the study of atmospheric conditions, used to forecast the weather, see Pesaran and Skouras
for references.
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with making a correct/incorrect forecast. In this case, the cost of incorrectly forecast-

ing in�ation to exceed its target would be interest rates higher than necessary. See

Clements (2004) who uses both statistical and decision-based methods to evaluate the

Bank of England�s density forecasts of in�ation.

The statistical methods of evaluating density forecasts, as brie�y discussed in the

previous section, are general in that they are not conditioned on a particular decision

making environment. However, Pesaran and Skouras (2004) highlight the need to assess

forecasts in the relevant decision environment, suggesting that discrepancies between

the actual and forecast density may be more costly in some decision environments than

others69.

In short decision-based forecast evaluation allows both point and density forecasts

to be evaluated in the decision environment for which the forecasts are ultimately

intended. Below we review the literature that investigates predictability of asset returns

and considers decision-based forecast evaluation in investment decision making.

Asset Return Predictability and Decision-Based Forecast Evaluation

Recent evidence of predictability in asset returns has been reported by a number of

studies. This overturning the long standing view held up until the 1970s in �nancial

economics that returns are not predictable, but follow closely a random walk, Pesaran

and Timmermann (1995). Those including Campbell (1987), Fama and French (1988,

1989), Kandel and Stambaugh (1996) and Ang and Bekaert (2007) show publicly avail-

able data on business cycle related, �nancial and macroeconomic variables including the

dividend yield and term structure variables, have predictive power for stock returns.

Most of this evidence is based on studies that assess predictability and forecast

accuracy using conventional statistical criteria. These criteria are usually based on

point forecasts and some measure of the forecasts�error. However, Leitch and Tanner

69For instance risk managers may be concerned with extreme values of asset returns, whereas the
middle of the distribution is important when in�ation is of concern, Pesaran and Skouras.
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(1991) argue that given �rms use forecasts to increase pro�ts it is better to evaluate

forecasts by using a direct measure of pro�t, rather than using some unrelated statistical

measure.

Asset return predictability and decision-based forecast evaluation in the context

of stock returns is examined by those including Pesaran and Timmermann (1995).

They investigate the robustness of US stock return predictability using a range of

macroeconomic and �nancial variables, to �nd the predictive power of these variables

varies through time and predictability is higher during periods of higher volatility in the

markets, see also Marquering and Verbeek (2004). In their examination of the impact

of regime changes70 and predictability on optimal allocation Guidolin and Timmermann

(2005) �nd the optimal allocation is sensitive to what the investor believes to be the

underlying state. For instance, if the investor observes a high probability of being in

the bear state he invests little in stocks in the short run, but allocates more to stocks

in the longer run as the likelihood of moving to the normal or bull state increases.

Conventionally, estimated parameters are treated as being the true parameters and

are used to determine optimal allocation. Barberis (2000) argues that with weak

statistical evidence for predictability, it is neither correct to assume returns are not

predictable or to ignore the sizeable uncertainty surrounding the true predictive power

of the explanatory variable. Instead, parameter uncertainty should be considered when

making portfolio decisions. Klein and Bawa (1976) examine the e¤ect of parameter

uncertainty on optimal portfolio allocation, to �nd that this additional uncertainty

signi�cantly alters how the investor allocates, see also Kandel and Stambaugh (1996).

Barberis (2000) explores this further, considering how asset return predictability, the

investment horizon and parameter uncertainty a¤ect optimal portfolio choice for long

horizon investors. Earlier �ndings of Samuelson (1969) and Merton (1969) show that

70They de�ne three states, the high volatility bear state with large negative mean returns, the normal
state where returns are close to their historical mean and the bull state which has a high mean return.
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if returns are i.i.d. then an investor with power utility has an optimal allocation that is

insensitive to the investment horizon. Barberis however, demonstrates that if returns

are predictable and not i.i.d., then the investment horizon may not be irrelevant. He

uses US data for T-bills and the stock index71, to �nd that even when parameter un-

certainty is incorporated there is su¢ cient predictability of returns, such that investors

allocate signi�cantly more to stocks the longer their investment horizon. Further, those

who ignore this estimation risk over allocate to stocks.

Boudry and Gray (2003) extend Barberis by including two additional predictor

variables-term spread and the relative bill rate to predict Australian stock returns.

Stating that if an asset is important for predicting asset returns then knowledge of the

variable�s value will cause a utility maximising investor to alter her optimal allocation.

They too �nd there is enough predictability to encourage the risk-averse investor to

allocate more to stocks at longer horizons. However, when parameter uncertainty is

incorporated the investor allocates more to bonds with the horizon. They suggest that

this extra uncertainty "negates the horizon e¤ect from predictability". This latter �nd-

ing is contrary to Barberis, who �nds that parameter uncertainty reduces, not eliminates

the positive horizon e¤ects. Other studies include Xia (2001) who examines the im-

pact of learning about the stock return predictability on the optimal allocation. Noting

that uncertainty about the model�s predictive parameter introduces dynamic learning,

through which the uncertainty about predictability a¤ects the allocation. Avramov

(2002) argues that although support may be found for predictability there is still un-

certainty about the " "correct" regression speci�cation", he �nds return predictability

is weakened when model uncertainty is incorporated. Further, Brooks and Persand

(2003) assess the accuracy of a range of statistical models of key �nancial time series,

to �nd sensitivity of this accuracy to the evaluation method used.

71No predictability is de�ned as the investor assuming that stock returns are i.i.d., and predictability
as him believing that a single lagged dividend yield term has predictive power for stock returns, bond
returns are assumed constant. Predictability has the e¤ect of making stocks look less risky and
parameter uncertainty makes them look more so.
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As well as stock return predictability, several papers examine the predictability of

exchange rates and interest rates. West, Edison and Cho (1993) model exchange rate

volatility using several alternative models for the conditional variance, and examine the

out-of-sample performance of these models using both statistical and economic crite-

ria. Abhyankar, Sarno and Valente (2005, henceforth ASV) consider for an investor

allocating between domestic and foreign bonds, if the assumption of predictability al-

ters the optimal allocation and if there is economic value of exchange rate forecasts

from a monetary fundamentals model. Here forecast accuracy is determined by the

utility-based value to an investor who uses this model to optimally allocate her wealth.

ASV note the �ndings of Meese and Rogo¤ (1983) and the subsequent exchange rate

forecasting literature, that models based on monetary fundamentals can not beat the

random walk or no change models of the exchange rate when generating out-of-sample

forecasts72. ASV �nd predictability signi�cantly alters the optimal allocation and

evidence of economic value to exchange rate predictability.

Further evidence is provided by Garratt and Lee (2009, GL) who also incorporate

model uncertainty in their study of exchange rate predictability. They consider four

di¤erent exchange rate models, together with a weighted average of the four models�

density forecasts computed using Bayesian model averaging. Using statistical criteria

they �nd that a simple random walk model outperforms the theory based exchange rate

models at all investment horizons, but the model average performs best. This is largely

consistent with the earlier �ndings of Meese and Rogo¤. However like ASV, GL �nd

evidence of economic value to exchange rate predictability with the theory informed

models outperforming the random walk and the model average in terms of generating

a higher end-of-period terminal utility.

Della Corte, Sarno and Thornton (2008, DST) assess the validity of the Expecta-

tions Hypothesis of the term structure of very short-term US repo rates73, and more

72Where these �ndings are based on statistical measures of forecast accuracy.
73They implement Bekaert and Hodrick (2001) Lagrange Multiplier tests, a new testing method

83



importantly they measure the economic value of departures from the EH. In that, is

there a gain in using the unconstrained VAR over the constrained VAR, where the VAR

is constrained by the restrictions implied by the EH, see Campbell and Shiller (1991).

Like many, as discussed in the �rst part of this chapter, they reject the EH under

statistical criteria. However, they �nd favourable evidence for the EH when using an

economic value criteria. Since the gains from using the unconstrained VAR are small,

which they suggest implies that from an economic perspective, statistical rejections of

the EH in the repo market are insigni�cant.

The results reported by ASV, DST, GL and others who use decision-based forecast

evaluation techniques, illustrate that the conclusion drawn of how well theory informed

models perform in comparison to atheoretic models from a forecasting perspective, is

sensitive to the evaluation criterion used. To be exact, under statistical measures athe-

oretic models like the random walk are di¢ cult to beat, as reported in the exchange

rate and interest rate forecasting literature. But under economic value methods, en-

couraging evidence in favour of predictability, as captured by theory informed models,

is found in an investment decision making context.

In summary, the studies described in this section demonstrate the importance of

predictability, parameter and model uncertainty in asset allocation, generating density

forecasts to capture the risk and return of the asset, and the use of decision-based

forecast evaluation.

Forecast Combination

As well as evaluating the accuracy of individual forecasts, researchers may be concerned

with comparing the accuracy of alternative forecasts. Usually several forecasts for the

same variable are available, which could re�ect the di¤erences in modelling techniques

used or the information available to the forecaster. In this case, how should the

which provides a more powerful test of the EH, see DST for further details.
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information contained in these forecasts be exploited?74and further should a single best

performing forecast be identi�ed or a combination of the forecasts be used? Where

a combined forecast may be more robust to misspeci�cation biases and measurement

errors in the individual forecasts, Timmermann (2006).

Early work includes Bates and Granger (1969, cited in Newbold and Harvey (2004)),

Granger and Ramanathan (1984) and Clemen (1986, 1989). Evidence of gains in

accuracy from combining forecasts is presented by Stock and Watson (2004) using

output growth data; Kapetanios, Labhard and Price (2008) who discuss the Bank

of England�s �suite�of purely statistical models of in�ation and output growth75, and

Guidolin and Timmermann (2009) who forecast US short-term rates. Further, Diebold

and Lopez (1996), De Menezes, Bunn and Taylor (2000) and Timmermann (2006)

review alternative combining methods. Eklund and Karlsson (2007) and GLPS (2006,

pp. 158-159) discuss the Bayesian Model Averaging approach. Hall and Mitchell (2005

and 2007) consider forecast combination in the context of density forecasting, with an

application to the UK in�ation fan charts76.

2.5 Conclusion

This chapter provides a review of the term structure and �nancial economics forecasting

literature relevant to the empirical chapters that follow. Particularly, in the empirical

chapters that follow, we �rst model the UK term structure and test the Expectations

Hypothesis of the term structure. Then we use a range of time series models to forecast

and assess the predictability of asset returns in an investment decision making context.

74Newbold and Harvey (2004) argue that one of these models may be chosen, but this ignores the
possibility that the abandoned forecasts may contain useful information about the future that the
chosen forecast does not.
75The suite is one of the components of the Monetary Policy Committee�s forecast process. The

authors discuss how these forecasts are combined.
76See Hall and Mitchell (2009) for most recent developments in the area of density forecasting and

evaluation.
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The �rst part of this chapter discusses the importance of the term structure. We

begin with the UK term structure and how interest rates post the adoption of in�ation

targeting in 1992 and central bank independence in 1997, are comparatively less volatile

than before these reforms. This is followed by a summary of term structure theories,

including the main theory, the Expectations Hypothesis and the several methods by

which the EH is assessed. Together with a review of the empirical term structure

literature, focusing on studies that test the EH. Mixed support is found for the EH,

with this support being sensitive to the country, frequency and maturity of the data,

and testing method considered. We describe how interest rates can be modelled more

generally using a range of atheoretic and theory informed time series models, all of

which can be summarised by a standard Vector Autoregressive modelling framework.

The second part of this chapter is concerned with forecasting. We discuss the

types of forecasts, i.e. point, interval and density, and describe how point and density

forecasts are computed. Density forecasts provide the probability distribution of all

possible future outcomes, thus conveying the uncertainty about the forecast. They

allow the probability of events of interest to be computed, which can not be derived from

point or interval forecasts. We brie�y review the interest rate forecasting literature, who

primarily use statistical methods to evaluate the accuracy of forecasts. A comparatively

new area of research is the use of decision-based forecast evaluation, which argues that

given forecasts are used to inform decisions then forecasts should be evaluated in the

context of these decisions. We discuss how forecasts are evaluated under both statistical

and decision-based methods. Further, we review how decision-based methods have been

used by recent studies to examine the predictability of asset returns and the economic

value of this predictability.
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Chapter 3

Time Series Overview of the UK

Term Structure 1997 to 2004

Abstract

This chapter investigates the time series properties of the UK Term Structure over

1997 to 2004, through a range of statistical and theory informed models using weekly

data for 1-, 3-, 6- and 12-month yields. The models include an Autoregressive, Vector

Autoregressive in Di¤erences, VAR in Transformed Interest Rates and a Vector Error-

Correction model. This exercise demonstrates the importance of economic theory in

explaining the term structure, as the theory informed models are found to have greater

explanatory power than the atheoretic ones.

Further, we test the Expectations Hypothesis (EH) of the term structure using both

cointegration analysis and the VAR methodology. We �nd support for the EH in the

form of stationary spreads and yields sharing a common stochastic trend, such that

over-identifying restrictions on the cointegrating vectors, as implied by the EH cannot

be rejected. These results suggest that movements in the UK money market spot rates

are consistent with the Expectations Hypothesis.

Keywords: short term rates, term structure models and Expectations Hypothesis.
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3.1 Introduction

This chapter uses a comprehensive set of statistical and theory informed models to

model the UK term structure of interest rates. There are two main aims of this

investigation, �rst to test the Expectations Hypothesis (EH) of the term structure

using the cointegration and VAR methods proposed by the literature, and second to

make a comparison between the statistical and theory based models to see which is best

able to capture the term structure at the short end.

The term structure of interest rates is de�ned as the relationship between the term

to maturity and the interest rate, the yield curve plots this relationship. The term

structure embeds the market�s expectation of future interest rates and because it em-

beds this important information much research has been devoted to modelling the term

structure, as discussed in Chapter 2. Shiller (1979), Campbell and Shiller (1987, 1991

henceforth CS) reignited an interest into evaluating the theories of the term structure,

the EH with expectations being formed rationally appearing to be the leading hypothe-

sis. One branch of this literature examines if the EH can explain the slope of the yield

curve.

Being able to explain the term structure is important for the transmission mecha-

nism of monetary policy. If there exists a relationship between short and long interest

rates then by manipulating the short rate, the long rate and therefore real economic ac-

tivity can be in�uenced. Further, the yield spread may contain information on future

short rates, in�ation and economic activity. Furthermore, being able to accurately

model the term structure is important for those concerned with forecasting interest

rates.

Fundamental to the EH is that the long rate is given by a weighted sum of the

expected short rates over the maturity of the long bond, where expectations of future

short rates are formed rationally, in that actual short rates di¤er from expected only by

a random error. The implications of this view is that the spread between the long and
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short rate, is given by a weighted sum of the expected changes in the short rate over

the life of the long bond. Hence, (1) what determines the long rate is the expectations

of the future short rate at time t and (2) the di¤erence between current long and short

rate is the expectation of a change in future short rates. Two stylised facts implied by

the EH include; the ability of spread to predict future changes in the short rate, and

the ability of the spread to predict future changes in the long rate. Both of these can

be tested through single equation regressions. Chapter 2 provides a detailed discussion

of the EH, its implications, methods of assessment and empirical studies, as such we

keep the discussion in this chapter brief.

Cointegration methods provide another means by which the EH can be tested, since

"cointegration between the short- and long-term interest rates suggests that over the

long run interest rates move in tandem with each other and therefore can be used

as evidence of the expectations hypothesis" Ghazali and Low (2002). As Thornton

(2004) states a lack of cointegration amongst the yields is strong evidence against the

EH. Since if the rates are I(1) but not cointegrated, then this implies that there is no

long-run relationship amongst the rates, thus the EH can not hold.

The VAR methodology1 proposed by CS tests the EH by computing the theoretical

spread, given by forecasts of future changes in the short rate as suggested by the EH,

and testing the null that the actual and theoretical spread are equal. This null can

be tested by imposing non-linear restrictions implied by the EH, on a bivariate VAR

containing the n- and m-period spread and the change in m-period yield. However,

CS note that even small deviations from the null may lead to the VAR restrictions and

hence the EH being rejected. So they propose assessing the economic signi�cance of the

EH by calculating the theoretical spread (not via imposing restrictions on the VAR)

and comparing it to the actual spread through time series plots, standard deviation

ratios and correlation coe¢ cients. If the EH holds then there should be a high degree

1In this chapter we interchangeably use VAR approach and VAR method/methodology, both of
which refer to the same method established by Campbell and Shiller (1987, 1991).
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of comovement between the spreads and the two statistics should equal unity.

The �ndings of the empirical literature that tests the EH are sensitive to the country

considered, testing method employed, time period examined and maturity of the data.

Tests of the EH using US data generate mixed results Fama (1984a), Mankiw and

Summers (1984), CS (1991), Shea (1992), Evans and Lewis (1994), Bekaert and Hodrick

(2001) �nd that the EH is rejected for the US. Mankiw and Miron (1986) suggest that

this rejection is a "consequence of the commitment of the Federal Reserve to stabilise

interest rates resulting in random walk behaviour of the short rate". They argue

that it is more likely support for the EH will be found under a policy of monetary

targeting, than one of interest rate smoothing. This is because if a policy of interest

rate smoothing results in the short rates exhibiting random walk behaviour, then we

would expect there to be no change in the short rates, then in contrast to the EH

the spread does not have predictive power for future short rates. Kugler (1988) �nds

support for Mankiw and Miron (1986) using data for Switzerland, Germany and the

US. He �nds under money supply targeting support for the EH is found in terms of

spread having predictive power for the short rate, but this is not true when there is a

policy of interest rate stabilisation. Further, support for the US is found by Engsted

and Tanggard (1994b) and Longsta¤ (2000).

Mixed results for the UK are also observed with Mills (1991) and Taylor (1992)

rejecting the EH. But Mills (1992) and MacDonald and Speight (1988, 1991) �nd

support for the EH. Studies by Cuthbertson (1996) and Cuthbertson et al (1996) use

weekly UK data for the interbank market and certi�cate of deposit rates respectively

at the short end of the term structure. They �nd evidence of cointegration, however,

the restrictions that the cointegrating vector is (1;�1) is rejected in the certi�cate of

deposits paper, but can not be rejected in most cases in the interbank rates paper. They

�nd that actual and theoretical spreads move together, with the standard deviation

ratios and correlation coe¢ cients being quiet close to unity. They attribute these
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results partly to using higher frequency data than earlier studies and to using pure

discount bonds2. Cuthbertson et al (1998) use UK and German weekly data at the

short end from 1981 to 1992. The hypothesis of the cointegrating vector being (1;�1)

in the bilateral combinations of interest rates could not be rejected. But the joint

null that the set of q � 1 spreads form a basis for the cointegrating space is rejected

for the UK. Although Cuthbertson (1996) �nds support for the EH using the LIBOR

rates, he rejects the VAR restrictions. However, Hurn et al (1995) who also use LIBOR

rates, can not reject the VAR restrictions and �nd more support using the cointegration

method too.

The importance of interest rate volatility for the EH is highlighted by Cuthbertson

et al (2000b), further to the above mentioned early studies by Mankiw and Miron (1986)

and Kugler (1988). Cuthbertson et al �nd that the German money markets conform

closely to the EH during 1976 to 1993. They attribute this success of the EH, to

the German rates being su¢ ciently volatile under money supply targeting. But not

too volatile given the credible anti-in�ation policy of the Bundesbank. In this case

large interest rate changes are likely to only be observed in the event of pre-announced

policy changes, due to real factors like oil price rises. Given that these events are

sporadic and mostly predictable the EH will still be valid. They argue that the EH

may not hold if there is a policy of interest rate smoothing, or if the rates are highly

volatile-leading to a time-varying term premia and invalidating the EH with a constant

term premium. Stating that econometric tests of the EH require there to be variability

in expected changes in short rates. But very large changes may have the e¤ect of

increasing the perceived riskiness of holding the asset and thus invalidating the EH

because of a time-varying term premium.

Further evidence is presented in Christiansen et al (2003), who state that previous

studies of the Danish term structure, including Engsted and Tanggaard (1994a and

2Thus avoiding the need to make approximations as previous studies had.
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1995) �nd some support of the EH. But generally the EH is rejected in times when

the Danish rates have been highly volatile, due to the central banks policy of money

supply targeting or in its attempt to support the currency during the ERM currency

crisis in the early 1990s, during which large increases in the Danish rates were observed.

Generally, through cointegration, the single equation method and the VAR approach,

they �nd strong support for the EH at the short end during 1993 to 2002. In other

countries favourable evidence for the EH is found by Hardouvelis (1994), Dominguez

and Novales (2000) for Eurodeposits rates, Cuthbertson and Bredin (2000) using Irish

data and Koukouritakis and Michelis (2008) for the 10 newest EU countries.

Although the theory appears to be intuitive the evidence in support of the EH is

somewhat inconclusive, with the added complication of there being several assessment

and evaluation methods of this term structure model. However, what is evident from

the literature is that the results and conclusions drawn hinge upon the evaluation tech-

nique employed. The EH does provide a descriptive framework for the term structure of

interest rates, but there appears to be excess volatility that the model does not explain.

The literature o¤ers two possible explanations for this; noise traders and time-varying

term premium. Noise traders are those whose decisions are in�uenced by fads, such

that decisions made are not theory informed. Hence the prevailing long rate is not

just a combination of current and future short rates as suggested by the EH, but of

stochastic noise too. Secondly, the EH assumes the term premium is constant through

time3, but it could be time varying. Developments in the literature since CS include

new testing methods of the EH, modelling time-varying term premia, regime changes

and macro-�nance models of the term structure4

In this chapter we model the UK term structure at the short end and test the EH

using weekly data for 1-, 3-, 6- and 12-month zero-coupon bonds over the period 1997

3The Pure Expectations Hypothesis (PEH), assumes that the term premium is zero. Whereas the
EH assumes that it is constant for a given pair of maturities.

4See Bekaert and Hodrick (2001), Clarida et al (2006), Rudebusch and Wu (2008), Sarno et al
(2007) and Della Corte et al (2008). See Chapter 2 for more detail.

92



to 2004. More speci�cally, we model the term structure using four models that incor-

porate varying degrees of economic theory. At one end of the spectrum the atheoretic

Autoregressive (AR) model considers each yield in isolation, followed by the Vector Au-

toregressive in Di¤erences (VARD) model which allows for some interaction amongst

them. At the other end, the theory informed VAR in Transformed Interest Rates

(VART) and Vector Error Correction (VECM) models embed economic theory that

implies a long-run relationship exists between the yields, and model the dynamic rela-

tionship of the yields along the curve. The models are considered under both bivariate

and multivariate speci�cations where appropriate. We make a formal comparison of

these models to ascertain if a statistical or a theory informed model is best placed to

explain the term structure. Further, we examine how well the EH is able to capture

the UK money market using the cointegration method and the VAR approach.

Although the EH has been previously examined using UK data at the short end, as

detailed in Chapter 2, these studies utilise pre-1997 data. As such the contributions of

this chapter are empirical, we employ a more recent UK dataset, post-1997 to test the

EH and examine if more support for the EH can be found over our sample in comparison

to earlier studies. Further, we test the signi�cance of economic theory for explaining

the term structure.

We �nd the in-sample properties of the VECM and VART models suggest that

they have greater explanatory power for the term structure compared to the statistical

AR and VARD models. Further, three cointegrating relationships amongst the four

yields are found, with the restrictions that the cointegrating vector between each pair of

yields is (1;�1), as suggested by the EH, can not be rejected. Under the VAR approach,

although the Wald tests indicate a statistical rejection of the EH in almost all cases, a

divergence between the actual and theoretical spread is not apparent. We �nd evidence

to suggest the EH provides a good approximation of the long-run dynamics of the UK

yield curve at short end.
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The UK since 1992 has adopted a policy of in�ation targeting. Further, in 1997 the

Bank of England was granted independence and made responsible for monetary policy

to ensure the objective of price stability is achieved. These changes were made with the

intention of promoting transparency and giving credibility to the anti-in�ation policy5.

Interest rates since 1992 and particularly after 1997 have become considerably less

volatile compared to the levels observed in the 1970s and 80s, as discussed in Chapter

2. This reduction in the volatility could be in part due to the above changes in the

monetary policy regime. But as appears more likely now, were largely due to the stable

economic climate of the "nice" decade observed until recently, Hall and Henry (2000)

and King (2008)6.

We o¤er this reduction in the volatility of interest rates as a potential explanation

for the strong support we �nd for the EH in comparison to earlier UK studies that use

pre-1997 data. We suggest that the interest rates observed during our sample, 1997 to

2004 are su¢ ciently volatile for the EH to hold. But not too volatile, as observed in

previous decades, as to invalidate the EH with a constant term premium.

The organisation of this chapter is as follows, the EH is discussed in Section 3.2, with

a description of the term structure models to be estimated in Section 3.3. An overview

of the data, together with the results of the estimated models, a formal comparison of

these models and an analysis of the dynamic properties in Section 3.4. Results from

the VAR approach of the EH in Section 3.5 and to �nally conclude in Section 3.6.

3.2 Expectations Hypothesis of the Term Structure

Recall from Chapter 2 the EH in a linearized form, Campbell and Shiller (1991), states

that the return on a n-period zero-coupon bond r(n)t should equal the return on a rolling

5See Chapter 2 for more detail.
6Mervyn King, the Governor of the Bank of England uses the term "nice" to describe the steady

growth and low in�ation observed in the UK since 1997 until the recent slow down. Nice standing for
"non-in�ationary consistent expansion".
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investment in a sequence of k m-period bonds, plus a term/liquidity premium c(n;m) that

may vary with maturity, i.e. with n and m, but is time-invariant. Where r(m)t is the

return from a m-period bond and the integer k = n=m and n > m. This for spot yields

on zero coupon bond is the �fundamental�term structure equation

r
(n)
t =

1

k

"
kX
i=1

Et

�
r
(m)
t+(i�1)m

�#
+ c(n;m) (3.1)

The expectations operator conditional on information available at t is denoted by

Et: Thus in equation (3.1), the long rate is given by an average of the expected future

short rates plus a term premium. Further, the EH can also be formulated as

s
(n;m)
t =

k�1X
i=1

�
1� i

k

�
Et

�
�mr

(m)
t+im

�
+ c(n;m) (3.2)

this describes the spread by expected future changes in the short rate7. That is, aside

from the constant premium, the spread is a re�ection of the expected change in the

short term rates over the life of the long bond. Hence a spread arises if the short rate

is expected to change or if there is a term premium. If the yields contain a stochastic

trend, then from above, the spreads should be stationary8 if the EH holds. The validity

of the EH can be tested as follows9:

1. If the yields share a common stochastic trend, then in a set of q non-stationary

yields we should �nd (q � 1) cointegrating vectors, as implied by stationary bi-

variate spreads.

7Where the long-short yield spread is s(n;m)t = r
(n)
t �r(m)t and them period change in the one-period

rate is �mrt = rt � rt�m.
8Assuming that r(n)t is I(1) and c(n;m) is I(0), the right-hand side of equation (3.2) is stationary

and this implies that the left-hand side of equation (3.2) which gives the spread between the n- and
m-period rate should also be stationary.

9See Drakos (2002) and Christiansen et al (2003).
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2. Each of the 3-, 6- and 12-month yields are cointegrated with the 1-month yield

such that the cointegrating vector is of the form
�
1;�1; c(n;m)

�0
, with the liquid-

ity/term premium free from restriction.

3. The Pure Expectations Hypothesis states that the liquidity premium is zero, this

can be tested through the imposition of the restrictions that the premia are zero,

such that the cointegrating vector is now (1;�1; 0)0 :

Here we conduct these three tests use the Johansen maximum likelihood estimation

procedure, Johansen (1988, 1991) and Johansen and Juselius (1990). We test the EH

using cointegration techniques in a multivariate framework, rather than a bivariate as

in many studies. As highlighted in Drakos (2002, pp .42) "this is likely to produce

informational e¢ ciency gains since one would expect term structure innovations to

di¤use across the yield curve and not be con�ned to a pair of maturities."

3.2.1 VAR Methodology

Another test of the EH conducted in the literature10 examines if the spread has predic-

tive power for future interest rate changes11. This predictive power is conventionally

examined using a single equation framework, however as explained in Cuthbertson et

al (2000a) and Christiansen et al (2003), this method has some drawbacks12. Given

the shortcomings of these singles equation tests, we test the EH using the cointegration

method described above and the VAR approach. The VAR approach proposed by CS

10See CS, Cuthbertson et al (1996, 2000b) and Christiansen et al (2003).
11According to the EH with constant term premium, the spread between a n- and m-period rate

should equal (1) the weighted average of future changes in the m-period rate over n periods and (2) the
m-period change in the n-period rate. If the EH holds then the spread is a re�ection of the markets
expectation of, ignoring the term premium, (1) changes in the short rate over the life of the long bond
and (2) changes in the long rate over the life of the short bond. See Chapter 2.
12When n is large relative to m in (1) or when m is large in (2) then the "degree of time-overlap

becomes large and hence the error-terms become long moving average processes. This has the un-
fortunate implication that the Hansen (1982) and Newey and West (1987) corrections become very
unreliable." i.e. the GMM corrected covariance matrix. Further, the sample size is substantially
reduced with large n and m, such that the "order of the MA-error becomes extremely high, making "
the regression for (1) "more or less dubious". Christiansen et al (2003, all quotes taken from pp. 6).
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provides an alternative method to examine the predictive power of the spread for future

changes in the short rate. As stated in Christiansen et al (2003) the VAR model is not

plagued by the problem of time-overlapping variables (does not contain them) or with

the sample size being signi�cantly reduced as n increases, since with this approach a

well-speci�ed system can be achieved with a limited number of lags. Moreover, infer-

ence based on the VAR method is generally more reliable than that derived from the

single equation method, Hodrick (1992, cited in Christiansen et al (2003)).

From Cuthbertson et al (1996 and 2000a), if zt =
�
s
(n;m)
t ;�r

(m)
t

�0
is a vector of

stationary variables, then there exists a bivariate Wold representation which can be

approximated by a Vector Autoregression (VAR) of order p, which as a VAR(1) in

companion form is

zt= Azt�1+�t (3.3)

where zt =
�
s
(n;m)
t ;�r

(m)
t ; :::; s

(n;m)
t�p+1;�r

(m)
t�p+1

�0
is (2p � 1), A is a (2p � 2p) matrix of

coe¢ cients and � is (2p�1). Further, the (2p� 1) selection vectors e1 =(1; 0; :::; 0)0 and

e2 =(0; 1; 0; :::; 0) i.e. with unity in the �rst and second rows of e1 and e2 respectively

and zero elsewhere, such that s(n;m)t = e10zt and �r
(m)
t = e20zt. The chain rule of

forecasting is used to obtain future values of zt. Testing the EH requires forecasts of

changes in the short rate obtained by projecting zt+i on the restricted information set

Dt, where Dt � 
t gives

Et (zt+ijDt) = Aizt (3.4)

Et

�
�r

(m)
t+i jDt

�
= e20Aizt (3.5)

Cuthbertson et al (1996) refer to this as the weakly rational expectations prediction

of future �r(m)t , because the limited information set Dt is used as selected by the

econometrician and not the full information set 
t. Further, they show that the
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m-period change in the short rate can be written as the sum of m one-period changes

�mr
(m)
t+im =

imX
j=q

�r
(m)
t+j (3.6)

where q = m(i� 1) + 1, from equations (3.5) and (3.6)

Et

�
�mr

(m)
t+im

�
= e20

imX
j=q

Ajzt (3.7)

substituting equation (3.7) into (3.2) gives the theoretical spread

s
(n;m)�
t = e20

k�1X
i=1

(1� i=k)
imX
j=q

Ajzt (3.8)

which is a function of the estimated VAR parameters contained in the matrix A. From

CS (1987, 1991) the VAR non-linear restrictions as implied by the EH are

e10 � e20A
�
I � (m=n) (I �An) (I �Am)�1

�
(I �A)�1 = 0 (3.9)

where the above VAR methodology can be used as follows to compute the theoretical

spread s(n;m)�t

s
(n;m)�
t = e20A

�
I � (m=n) (I �An) (I �Am)�1

�
(I �A)�1 zt (3.10)

The EH states that the theoretical spread s(n;m)�t , is given by the weighted sum

98



of the optimal forecasts of the changes in the short rates. If the EH holds then

the theoretical spread should equal the actual. A formal test of the VAR parameter

restrictions given in equation (3.9) provides a test of the hypothesis s(n;m)�t = s
(n;m)
t ,

however as highlighted in Cuthbertson (1996) and Cuthbertson et al (2000a), CS note

that even small deviations from this null may lead to a rejection of the EH under these

formal tests of the VAR restrictions.

CS hence propose an alternative to imposing the above non-linear VAR restrictions.

They suggest computing the theoretical spread by using the VAR estimates of the A

matrix13 to generate forecasts of future changes in the short rate as in equation (3.7),

these are then substituted into equation (3.8), this theoretical spread is then compared

to the actual. The null that the EH holds implies:

1. The restrictions under (3.9) hold, such that the spread is an optimal predictor of

future changes in the short rates and the information beyond that contained in

the spread at t, should not help predict these future changes.

2. Plots of s(n;m)�t and s(n;m)t over time should move together.

3. More formally, the degree of comovement between s(n;m)�t and s(n;m)t can be mea-

sured by the standard deviation ratio SDR = �
�
s
(n;m)�
t

�
=�
�
s
(n;m)
t

�
and the

correlation coe¢ cient Corr
�
s
(n;m)�
t ; s

(n;m)
t

�
;which should both equal unity under

the EH14.

By comparing the theoretical and actual spreads as CS suggest using plots, the SDR

13See Appendix 2.
14From Cuthbertson et al (1996, footnote 10) the standard error (SE) of the SDR and the correlation

coe¢ cient are non-linear functions of the matrix A from the estimated VAR, and can be computed
using:

SE = f()0	f()

where the statistic for which the SE is being computed is denoted f(), and 	 is the GMM variance-
covariance matrix of the parameters : In the case of the SE of the SDR, f() is a matrix of the SE of
the estimated coe¢ cients/parameters . For the SE of the correlation coe¢ cient, f() is a correlation
matrix of the parameters. GMM estimation is used to compute the variance-covariance matrix of the
variables in the VAR system, corrected for heteroskedasticity and autocorrelation.
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and the correlation between them, the extent to which the predictions made by the EH

are close to actual observations can be established. The existence of a high degree of

comovement suggests that the actual spread does largely re�ect the markets perception

of future changes in the short rate.

3.3 Models of the Term Structure

In the previous section we discussed the EH and the two methods by which we will test

this hypothesis of the term structure. However, in this investigation we are also con-

cerned with modelling the term structure generally. In this section we describe a set of

atheoretic and theory informed models including an Autoregressive Model (AR), Vec-

tor Autoregressive Model in Di¤erences (VARD), VAR in Transformed Interest Rates

Model (VART) and a Vector Error Correction Model (VECM)15. Each model is dis-

cussed in Chapter 2, so here we only recall the key equations.

3.3.1 Autoregressive (AR) Model

The change in the n-month yield �r(n)t can be modelled by a pth order AR model, if

the yields are di¤erence stationary, for n = 1; 3; 6; 12

�r
(n)
t = � +

pX
i=1

	i�r
(n)
t�i + ut (3.11)

where the white noise process ut � i:i:dN(0;�2); E(ut) = 0; E(u2t ) = �2 andE(utut�s) =

0 for all s 6= 0 16, � is the intercept and 	i are the coe¢ cients that capture the in�uence

of past changes on �r(n)t :

15None of the yields exhibit a trend, so the trend terms are excluded from the models.
16The unobservable errors ut are independently and identically distributed random variables that

are homoskedastic and serially uncorrelated
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Two di¤erent modelling approaches can be explored from this standard statistical

AR model. The �rst is an �economic�approach, where theory informed term structure

models can be developed as given by the VART and VECM models; the second is

a �statistical� route where the above AR model can be extended to a VARD model.

Further, we demonstrate how the models described are nested within each other. A

bivariate framework is used to discuss each model, however this can be extended to a

multivariate one.

3.3.2 VAR in Transformed Interest Rates (VART) Model

If yields are di¤erence stationary and there exists a cointegrating relationship between

n- and m-period yields, such that spreads are stationary, then there exists a bivariate

Wold representation which can be approximated by the following VAR(p) model. Bold

face is used to represent a vector.

0B@ s
(n;m)
t

�r
(m)
t

1CA = � +B1

0B@ s
(n;m)
t�1

�r
(m)
t�1

1CA+ :::+Bp
0B@ s

(n;m)
t�p

�r
(m)
t�p

1CA+
0B@ �1t

�2t

1CA (3.12)

Equation (3.12) describes the VAR in Transformed Interest Rates (VART) model which

simultaneously models the short m-period yields and the n- and m-period spread. Here

�r
(m)
t and s(n;m)t are described by their past values, for n = 3; 6; 12 and m = 1; 3; 6,

where n 6= m.

3.3.3 Vector Error Correction Model (VECM)

The above VART model is composed of �r(m)t and s(n;m)t , which are both stationary

and can be written in levels, see Chapter 2 and Appendix 3, manipulation of this levels

form yields the following VECM representation
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�zt = �+

pX
i=1

�i�zt�i ��zt�1 + "t (3.13)

where zt is a q�1 vector of stochastic I(1) variables in this case the yields rt, � is a q�1

vector of constants, "t is a q � 1 vector of white noise errors where "t � i:i:d:N(0;�),

�i and � are q � q matrices of coe¢ cients. The rank of � given by r determines the

number of stationary linear combinations of zt. The long-run matrix � has reduced

rank r < q if the yields are cointegrated: Thus, under cointegration there exists r

cointegrating vectors among the q yields contained in the q � r matrix �, such that

� = �0�. The long-run matrix of coe¢ cients �0 contains the cointegrating vectors and

� is a q � r matrix of error-correction coe¢ cients. Under cointegration even though

zt is non-stationary, the error correction terms �
0zt�1 give the stationary relationships

that exist amongst these non-stationary variables.

On the � matrix, r2 exactly identifying restrictions are imposed, since these are

not su¢ cient to impose the complete structure suggested by the EH, the VECM is then

estimated subject to further over-identifying restrictions. We can test the hypothesis

that the cointegrating relationship between the n- and m-period yields has cointegrating

vector (1;�1), as implied by the EH such that spreads are stationary, by comparing

the likelihood of the VECM subject to the exactly identifying restrictions to that of

the VECM subject to a full set of restrictions17. If indeed a long-run relationship of

this form exists, then this justi�es the estimation of the VART model which is based

on this assumption holding.

As previously noted, if the EH is valid then there should exist r = q�1 cointegrating

vectors, whereby "the cointegration space should be spanned by the columns of the

matrix such that the bivariate interest rate spreads are stationary." Christiansen et al

(2003, pp. 9). With zt =
�
r
(12)
t ; r

(6)
t ; r

(3)
t ; r

(1)
t

�0
we test for three cointegrating relations

17The full set comprises exact and over-identifying restrictions.
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between 12-, 6- and 3-month each with the 1-month18. With the restricted matrix of

the cointegration vectors

�0 =

0BBBB@
1 0 0 �1

0 1 0 �1

0 0 1 �1

1CCCCA (3.14)

this is the �rst set of over-identifying restrictions, where each row corresponds to the

cointegrating vector
�
1;�1; c(n;m)

�
as implied by the EH and the term premium c(n;m)

is free from restriction. The second set of over-identifying restrictions test the Pure

EH (PEH), which assumes the liquidity premia are zero, where the cointegrating vector

corresponds to (1;�1; 0). The PEH could comply with our short term interest rate

data for the money markets, since the maturities of the assets are close together such

that we do not expect to observe a large premium.

As shown the VART model given by equation (3.12) can be written as a VECM,

where the VECM captures the cointegrating relations that exist between the yields and

the error correction term ensures that the long and short yields do not deviate greatly

from each other in the long-run:

3.3.4 VAR in Di¤erences (VARD) Model

From equation (3.13) if zt is I(1) and not cointegrated then � = 0, where no long-run

relationships are found to hold amongst the yields in the form of a stationary spread.

In this case a VAR in Di¤erences (VARD) model of order p is appropriate to describe

the system

�zt = ao +

pX
i=1

�i�zt�i + et (3.15)

18Con�rmation of these three cointegrating relationships exisiting, will provide support for the exis-
tence of a cointegrating relation between all other possible pairwise combinations of these yields.
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this simultaneously models the change in the n- and m-period yields at time t, where

n = 3; 6; 12, m = 1; 3; 6 and n 6= m: Here zt is a q � 1 vector containing the n- and

m-period yields, ao is a q� 1 vector of intercepts and et is a q� 1 vector of white noise

errors, with et � i:i:d:N(0;�): No exogenous variables are considered in this model.

This VARD(p) model can be transformed to an AR(p) speci�cation by imposing

restrictions on �i . If n = 1; 3; 6 and 12; and j = 1; 3; 6 and 12, by setting �i = 0 for all

�r
(j)
t�i where j 6= n in each �r

(n)
t equation in the VARD(p) model, results in the change

in the n-month yield depending only on its past values.

The above models are described for the bivariate case and where possible in a general

form in terms of zt. The vector of variables zt in the multivariate cases contain all

yields with q = 4 and zt =
�
r
(12)
t ; r

(6)
t ; r

(3)
t ; r

(1)
t

�0
. For the bivariate models q = 2 , so

the four yields give rise to six possible bivariate combinations of zt.

This section describes four di¤erent models that can be used to explain the term

structure of interest rates. As seen a simple AR model can be extended in two ways,

�rst by continuing down the atheoretic path to a VARD model, or secondly through the

incorporation of economic theory to a VART model. The VECM and VART represen-

tations are equivalent, where the VECM explicitly tests for cointegrating relationships

amongst the yields and the VART model assumes these relationships hold and uses

spreads directly. Further, it can be seen that both the AR and VARD models are

nested within the VECM, and the Bivariate VARD and AR models are nested within

the Multivariate VARD model. Although these models can be described as either

statistical or theory based, some speci�cations are nested within others, this allows

the unrestricted models to be compared to the restricted, as will be done in the next

section.
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3.4 Modelling the UK Term Structure

3.4.1 Data

Zero coupon bonds or risk free discount bonds are used in the construction of yield

curves and in empirical studies of the term structure, because it is desirable for the

instruments to di¤er only in their term to maturity. Here we use a weekly dataset, this

allows for a closer approximation of the information available to traders in comparison

to monthly or quarterly observations. UK data for maturities of 1, 3, 6, 12 months

over the period 1997 week 10 to 2005 week 18 is employed, speci�cally Wednesday

observations of the nominal government spot rates, giving a total of 427 observations

for each maturity, all yields are continuously compounded and annualised.

The data is o¢ cial Bank of England (BoE) data on the Government liability curve.

We use the reported daily data for the nominal spot rates curve at the short end,

from which we select the Wednesday observations. This nominal zero coupon yields

data is calculated using gilt prices and General Collateral (GC) repo rates. From the

BoE data notes these n-month nominal government spot interest rates refer to those

applicable today on a n-month risk-free nominal loan and by de�nition this (the nominal

government spot rate) is the yield to maturity of a nominal zero coupon bond19.

Figure 3-1 illustrates the time series characteristics of the yields. In general, all the

series appear to decline until 2003, after which an upward trend is apparent. At the

beginning of the sample the yields are around 6%, increasing quite steadily throughout

1997 and the �rst half of 1998, before a sharp decline was experienced during the latter

quarter of 1998. This decline continued into the middle of 1999 with yields averaging

4.8%, increasing until the �rst quarter of 2000 to levels just shy of 6.4% for the 6- and

12-month yields. After which the yields declined gradually until the second quarter of

19Here we use estimated yield curve data, o¢ cial data estimated by the Bank of England, see Data
Appendix for further details.
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2003, with the lowest yields of the sample period considered being observed at 3.16%

and 3.17% for the 1- and 3-month, and 3.13% and 3.11% for the 6- and 12-month yields,

respectively. This decline was followed by an upturn to levels ranging 4.26% to 4.65%

for the maturities considered.

The �rst di¤erences of the yields, r(n)t � r(n)t�1, are graphed in Figure 3-2. Each of

the series clearly exhibit mean reverting behaviour with frequent crossings of the mean,

characteristics consistent with stationary processes.

The EH suggests that there exists a long-run relationship between r(n)t and r(m)t

such that the prevailing spread is stationary. Given the four maturities considered;

namely the 1-, 3-, 6- and 12-month yields20 six yields spreads can be de�ned. If these

six spreads follow an I(0) process then this is support for the EH. From Figure 3-3 the

spreads �uctuate about the mean with reasonably frequent crossings of their respective

means. Also apparent are the persistent deviations from the mean, suggesting signi�-

cant di¤erences between the pair of yields remain. However, mean reversion is evident

and a more formal method of assessment is required. Table 3.1 provides the descriptive

statistics for the yields and spreads considered over the sample period.

3.4.2 Unit Roots

Interest rates are usually highly persistent, whereby it takes a stationary series a long

time to revert back to its mean. Hence, statistically the null of a unit root in short-term

interest rates often can not be rejected. However, from an economic stance it is di¢ cult

to "defend non-stationarity of interest rates" Verbeek (2000, pp. 263), Drakos (2002)

and Christiansen et al (2003). As such, empirical investigations di¤er in their treatment

of interest rates depending on the assumptions made regarding the order of integration.

20Recall that the long n-period bond yield is denoted r(n)t , the short m-period bond yield by r(m)t

and the spread between them s
(n;m)
t = r

(n)
t � r(m)t . With n > m and n;m = 12; 6; 3; 1: Note that the

9-month rate was excluded from the empirical analysis because we want k = n=m to take an integer
value.
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The Augmented Dickey-Fuller (ADF), Phillips Perron (PP) and Kwiatkowski, Phillips,

Schmidt and Shin (KPSS) unit root tests are employed to determine the order of inte-

gration of the yields and the spreads21. The three unit root tests are performed over the

sample period 1997 week 10 to 2005 week 18, results of which are summarised in Table

3.2 and Table 3.3. For each of the yields the null of a unit root can not be rejected

under the ADF and PP tests at the 5% level of signi�cance, equivalently the null of

stationarity is rejected under the KPSS test at the 1% level. For the di¤erenced yield

series, the null of a unit root is rejected and the null of stationarity can not be rejected

at the 1% level. Hence the 1-, 3-, 6- and 12-month rates are integrated of order one,

in that they are di¤erence stationary.

The spreads between the (n;m) month maturities for (3; 1), (6; 1), (12; 1) and (6; 3)

are found to be stationary by all three unit root tests. However, when testing the

(12; 3) and (12; 6) spreads, the null of a unit root could not be rejected at the 10% level

under the ADF or PP test, implying that these spreads are integrated of order one.

But under the KPSS test the null of stationarity could not be rejected. The failure to

reject the null of a unit root may be due to the sensitivity of the tests to the persistent

deviations from the mean. But it can be seen that the statistics produced by each of

the ADF and PP tests are close to their respective critical values, such that they fall

just short of rejecting the null of non-stationarity. Equally, from Figure 3-3 it can be

seen that mean reversion is observed by all the spreads.

21Phillips and Perron (1987) propose the PP test as an alternative to the ADF unit root test, in which
the t-statistics of the Dickey-Fuller regressions are adjusted to take account of possible autocorrelation
in the errors, as opposed to the inclusion of additional lags in the regressions with the aim of achieving
an error term absent of autocorrelation as in the ADF test. Kwiatkowski, Phillips, Schmidt and Shin
(1992) suggest that the issue of low power unit root tests can be circumvented and proposed the KPSS
test with the null hypothesis of stationarity and the alternative of a unit root. This is contrary to the
ADF and PP tests, which test the null of a unit root against the alternative of a stationary process.
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3.4.3 Estimation of the Term Structure Models

In this section we present the estimation results, compare the estimated statistical

models to the theory informed ones and evaluate their dynamic properties. We estimate

the following previously discussed models for the term structure:

� AR(p) model: for �r(n)t where n = 1; 3; 6; 12.

� VART(p) model: the bivariate model denoted BVART(n;m)(p) for each of the six

bivariate (n;m) combinations. The multivariate MVART(p) model simultane-

ously models s(12;1)t ; s
(6;1)
t ; s

(3;1)
t and �r(1)t .

� VECM(p) model: for the multivariate case where zt =
�
r
(12)
t ; r

(6)
t ; r

(3)
t ; r

(1)
t

�0
:

� VARD(p): the multivariate model MVARD(p) for zt =
�
r
(12)
t ; r

(6)
t ; r

(3)
t ; r

(1)
t

�0
and

six bivariate models BVARD(n;m)(p) for each pairwise (n;m) combination:

The models are estimated over the period 1997 week 10 to 2004 week 18, using

374 observations22. Residual serial correlation of order 9, normality of residuals and

equality of error-variances are all tested for in each regression23, these diagnostics are

presented with the estimates.

The estimated models are all of the same order p, in that they all possess the same

lag structure, see Appendix 4. With the same lag structure the models only di¤er by the

restrictions imposed on them, e.g. if � = 0 in the VECM this yields the VARD model

of the same order, this allows for tests of the restrictions to be conducted. A su¢ ciently

high order AR and unrestricted VAR model is run over the sample period, the chosen

order p is that which maximises the Akaike Information Criterion (AIC), the Schwarz

Bayesian Criterion (SBC), and the order for which the null that the restrictions are

22The remaining 53 observations are reserved for the forecasting exercises in Chapters 4 and 5, in
which the dataset is extended to include observations up to 2007 week 19.
23With the exception of the AR regressions, VAR models of various speci�cations are estimated, so

the diagnostic tests are conducted on the whole system rather than the individual regressions.
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correct can not be rejected, as given by the Likelihood Ratio Test (LRT). An AR(12)

is run for each �r(n)t , the three criteria suggest an order of 9 for the AR models of

the 1- and 3-month yields, and order 6 for the 6- and 12-month yields. Further, an

unrestricted multivariate VAR(12) in di¤erences is run to determine the order of the

underlying VAR, the AIC and LRT suggest an order of 9, and the SBC indicates 1. We

choose p = 9 as the order for all the estimated models, because with a large sample the

implications of choosing a higher order is less damaging than that of choosing a lower

one.

After the order of the underlying VAR has been determined the VECM requires

that the number of cointegrating relations are tested for using the maximum eigenvalue,

trace, SBC and AIC statistics. The outcome of these tests are often �supplemented�

with the number implied by economic theory, as results can be inconclusive and may

not coincide with theory24. Maximum likelihood is used to estimate the model subject

to the restrictions imposed, exact and over, where these restrictions are tested using the

�2 with degrees of freedom corresponding to the number of over-identifying restrictions.

Results

Table 3.4 describes the results for the simplest model estimated for the four yields;

namely the AR(9) model. The coe¢ cients are jointly found to be signi�cantly di¤erent

from zero at the 1% level for the �r(1)t ;�r
(3)
t and �r(6)t equations and at the 10% for

the �r(12)t equation, with explanatory power of the AR regressions between 1.7% and

13.2%.

From Tables 3.5 and 3.6 the simple AR framework is extended to the multivariate

VARD model, under which the explanatory power for all but the �r(12)t equation in-

creases and the coe¢ cients are jointly signi�cant for all equations at the 1% level except

24With r cointegrating vectors amongst the q variables, r2 restrictions i.e. r on each of the r
cointegrating vectors are imposed to exactly identify the long-run relationships. Once these exactly
identifying restrictions have been imposed, then further over-identifying restrictions can be imposed
to test the economic theory from which these restrictions have come.
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for the �r(12)t equation. Tables 3.7 to 3.13 show that under the bivariate speci�cation

estimated for each pairwise combination of �r(n)t , the coe¢ cients are jointly signi�cant

at the 1% level for all of the equations except for those of �r(12)t , for which the null

that the coe¢ cients are jointly no di¤erent from zero could not be rejected.

Moving to the theory informed models, a VECM of order 9 is estimated, using the

Johansen (1988) procedure, containing restricted intercepts and no trend coe¢ cients,

Tables 3.14 and 3.15. The cointegration rank statistics presented in these tables show

that under the Trace and Maximum Eigenvalue Statistics the null that r 6 2 can not

be rejected at the 5% level of signi�cance. The AIC, SBC and the Hannan-Quinn

Criteria (HQC) are maximised when r = 3; r = 0 and r = 2 respectively. Since

three cointegrating relations are expected amongst the four yields we impose r = 3,

followed by nine exactly identifying restrictions, Table 3.16. The estimates of the

Reduced Form Error Speci�cation with the exactly identifying restrictions imposed are

presented in Tables 3.6 and 3.18. For the�r(1)t ;�r
(3)
t and�r(6)t equations the estimated

coe¢ cients are found to be jointly signi�cant at the 1% level, but are not signi�cant for

the �r(12)t equation. The error correction coe¢ cients �; for each error correction term

denoted ect1t�1; ect2t�1 and ect3t�1 corresponding to the three long-run relationships

between the yields in �0zt�1, are all found to be signi�cant suggesting that the short-run

behaviour of each �rt is signi�cantly a¤ected by all three long-run relationships. The

R
2
ranges from 3 to 30%.

The VECM model is then estimated subject to two sets of over-identifying re-

strictions, Table 3.19. The �rst set tests for cointegration of each of the 3-, 6- and

12-month yields with the 1-month, such that the cointegrating vector corresponds to

(1;�1; c(n;m)). The second set tests the hypothesis that the liquidity premia are zero,

so now the cointegrating vector corresponds to (1;�1; 0). The log likelihood of the

VECM subject to exact identifying restrictions is 9645.3, and 9642.1 and 9639.1 subject

to the �rst and second set of over-identifying restrictions respectively. A Likelihood
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Ratio Test of these over-identifying restrictions yields �2 [3] = 6:55 for the �rst set and

�2 [6] = 12:53 for the second25, both of which can not be rejected at the 5% level of

signi�cance. This implies that the cointegrating relations amongst the yields are of the

form (1,-1) as suggested by the EH and further the liquidity premia are not signi�cantly

di¤erent from zero. In which case we �nd evidence in support of the Pure EH.

Con�rmation of these long-run relations amongst the yields justi�es the estimation

of the MVART(9). From Tables 3.20 and 3.21, the coe¢ cients of s(12;1)t ; s
(6;1)
t ; s

(3;1)
t and

�r
(1)
t are all found to be jointly signi�cant at the 1% level of signi�cance. With R

2

for the spread equations ranging from 83% to 93%, and that of the �r(1)t equation

being slightly lower than that obtained under the VECM speci�cation. Tables 3.22 to

3.28 show the BVART(9) model estimates for the six spread and yield combinations.

We observe a high explanatory power for the spread equations, and the explanatory

power for the �r(m)t equations are of the same magnitude as that observed under other

speci�cations.

Inspecting the diagnostics reveals the null that the residuals are normal is rejected

for almost all the estimated equations. There is also evidence of heteroskedasticity in

almost all equations apart from those of the VECM26 and further of serial correlation

under the BVARD and MVARD models. The problem of residuals being non-normal

does not undermine the parameter estimates of the models, since at the estimation stage

the Least Squares method is used which does not rely on the normality of errors. The

presence of heteroskedasticity and non-normal errors is not surprising here given that

we are using �nancial data. In our assumption of homoskedastic and normal residuals,

we follow the literature who also utilise such data. Given this evidence, the regressions

are estimated with Newey-West heteroskedastic and autocorrelation corrected errors,

and it is these corrected standard errors that are reported in the tables.

25The degrees of freedom are given by the total restrictions (in this case 12) minus the exactly
identifying restrictions (here 9).
26Generally OLS estimates in the presence of heteroskedasticity have standard errors that are too

low, this overestimates t-statistics and hence increases the chance of incorrectly rejecting the null.
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From the models estimated it is apparent that the theory informed models have

greater explanatory power than the statistical AR and VARD models. This holds

whether it be the VECM which explicitly de�nes and tests the long-run relations or

the VART models that are based on the assumption that these long-run relations hold.

Additionally, the multivariate forms of the respective models are better able to describe

the yields compared to the bivariate equivalents.

The VART speci�cation has greater explanatory power than the VECMmodel, even

though they are theoretically equivalent. This is because the variables being modelled

and the estimated equations under each are not the same. The VECM has equations

of �r(n)t , whereas the VART has equations of s(n;1)t and �r(1)t : The spreads exhibit

less volatility than the changes in yields, allowing the movements of the spreads to be

captured and modelled with greater accuracy.

3.4.4 Comparison of Models

From the estimations, the theory informed VECM and MVART models exhibit greater

explanatory power over the statistical AR and VARD models. A formal statistical

comparison between the models can be made using Wald tests. We can move from

an unrestricted speci�cation to a restricted one by imposing q restrictions, the Wald

tests then test the null that the restrictions imposed are correct. Here we compare:

(i) MVARD against AR (q = 27), (ii) MVARD against BVARD (q = 18), (iii) MVART

against AR (q = 27), (iv) MVART against BVART (q = 18) and (v) VECM against

MVARD (q = 3), where the unrestricted against the restricted model is tested.

For the change in the 1-month yield �r(1)t , there is an equation in each model with

it as the dependent variable. So in cases (i) to (v) we can move from the unrestricted

model to the restricted by imposing q restrictions and directly testing these restric-

tions. However, only a subset of the above tests are conducted for �r(3)t ;�r
(6)
t and

�r
(12)
t because some models have �r(n)t and others s(n;m)t as their dependent variable;
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so hypotheses involving the VART models are not tested. Table 3.29 summarises the

results of the Wald tests conducted. In almost all cases the restrictions are rejected.

Whereby the restrictions under the AR and BVARD models are rejected in favour of

the MVARD model, the restrictions of the AR and BVART models are rejected for the

MVART model and the restrictions of the MVARD model are rejected for the VECM.

This with the exception of �r(12)t , where the restrictions under the BVARD can not be

rejected.

In short, the restrictions under the statistical VARD and AR models are rejected in

favour of both multivariate models of the same speci�cation and the theory informed

VECM and VART models. This implying that not only are all the yields important

in explaining �r(m)t ; but so too are the long-run relations between the yields.

3.4.5 Dynamic Properties

The dynamic properties of the yields are examined using impulse responses and persis-

tence pro�les. We focus on the AR and VECM models in order to gain an insight into

the dynamic behaviour of the yields, under a statistical compared to a theory informed

speci�cation. The generalised impulse response of a one standard error variable spe-

ci�c shock in a particular equation is considered under both models. The generalised

impulse response of a one standard error variable speci�c shock on the r cointegrating

relations, together with a persistence pro�le which is the time pro�le of the e¤ect of

system wide shocks on the cointegrating relations, are considered under the VECM

speci�cation only. These dynamics are considered over horizons of up to 150 weeks.

Consider �rst the AR models that describe �r(n)t by its past values, Figure 3-4

shows the generalised impulse response of a one standard error �r(n)t variable shock

to the �r(n)t AR equation, for n = 1; 3; 6 and 12. All four yields respond to a shock

in their respective equations similarly, with an initial positive response. These shocks

have no long-run consequence for �r(n) under the AR models. Figure 3-4 also shows
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the responses in levels, considering the impact of a shock to r(n)t on r(n)t . The 12-month

rate is most responsive to a shock in its AR equation followed by the 6-, 3- and then the

1-month rate. These rates converge to a constant above their pre-shock level within 9

months of the initial shock, this constant is of similar magnitude for each yield.

Under the VECM27 framework the yields are modelled in a system which captures

any feedbacks that exist. This allowing us to not only observe the impact of a r(n)t

shock on r(n)t , but also the e¤ect of this shock on the other yields in the system and

equally the response of r(n)t to a shock in the other yields. These interactions and

feedbacks are not accommodated in the univariate AR framework. Figure 3-5 shows

the generalised impulse responses of a variable speci�c shock to di¤erent variables in

the cointegrating VAR, i.e. the response of all yields to a shock in the r(12)t ; r
(6)
t ; r

(3)
t

and r(1)t equations28. All yields respond positively to a one unit shock in the 12- and

the 6-month yields and then converge to a constant above their pre-shock level within

150 weeks. The 12-month yield responds the strongest and adjusts the quickest. The

12-month yield is the least responsive to a one unit shock to the 3-month yield and as

before all the yields converge to a higher equilibrium above zero. Each rate however,

does not respond as strongly to a unit shock in the 1-month rate and their convergence

to zero is comparatively speedier. What is clear from these impulse responses is that

feedbacks from r(n)t to r(m)t exist, where n 6= m, with the dynamics being more complex

than those under the AR model.

Figure 3-6 considers the generalised impulse response to variable speci�c shocks on

the r cointegrating relations. These shocks are imposed on the cointegrating vectors

so their impact will be transitory. CV 1; CV 2 and CV 3 refer to the three cointegrating

relations
�
r
(12)
t � r(1)t

�
;
�
r
(6)
t � r(1)t

�
and

�
r
(3)
t � r(1)t

�
respectively, which re�ects the

27The VECM with the exactly identifyig restrictions
�
1; �; c(n;m)

�
imposed on the cointegrating

vectors.
28 The impact of a shock to r(n)t on r(n)t in each case, is comparable to the univariate generalised

impulse response. Here the VECM also incorporates the impact the shock has on the other yields.
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gap between r(n)t and r(m)t given by the spread s(n;m)t . The impact on
�
r
(12)
t � r(1)t

�
from a shock to r(12)t has the e¤ect of increasing the gap between the two yields as

the response is positive. This gap then narrows to the point where the two yields are

equal 20 weeks after the shock. The spread s(12;1)t is then negative for 60 weeks before

turning positive and converging to zero within the 150 week horizon. This reaction to

a 12-month yield shock is mirrored by the other cointegrating vectors
�
r
(6)
t � r(1)t

�
and�

r
(3)
t � r(1)t

�
; where s(6;1)t and s(3;1)t are not as responsive to the shock and quicker to

adjust. The spreads�respond to a r(6)t and r(3)t shock in a similar fashion. The initial

response of the spreads to a unit shock to the 1-month rate is negative, implying that

r
(n)
t < r

(1)
t , before zero spreads at around 60 weeks, a slightly positive spread which

is then followed by convergence. In general, a shock in the 12-month yield has the

greatest a¤ect on the long-run relationships and a shock to the 1-month has the least.

Further, the s(12;1)t is the most responsive to a given shock and the s(3;1)t the least.

Figure 3-7 gives the Persistence Pro�les, which map the time pro�le of the e¤ect of

system wide shocks on the long-run relationships, i.e. the response of the spreads to a

simultaneous shock to all the yields. All three long-run relationships converge to their

respective equilibria, with the initial response of the cointegrating vectors to a system

wide shock being positive. This initial response halves within 3 months and completely

dies within two years. The s(3;1)t is the least responsive to the shocks and adjusts to its

long-run equilibrium the quickest. We would expect this spread to have the quickest

speed of convergence, since it is composed of the shortest maturities. Whereas s(12;1)t

is the most responsive to the shocks and the slowest to adjust, which again is not

surprising as it contains the 12-month yield which is the longest maturity considered.
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3.5 Results from the VAR Methodology

The VAR methodology is applied to our weekly dataset for each of the six pairs of

(n;m)29. We test the hypothesis s(n;m)�t = s
(n;m)
t as implied by the EH, �rst by esti-

mating the regression s(n;m)�t = �+�s
(n;m)
t and conductingWald tests30 of (i)H0 : � = 1

and (ii) H0 : � = 0; � = 1, where rejection of the null suggests that the spread is not an

optimal predictor of future short rate changes. Second, by examining the time series

plots of s(n;m)�t and s(n;m)t , and third by computing the SDRs and correlation coe¢ cients

which should both equal unity under the EH. The �rst test provides a statistical test

of the EH, whereas the second and third tests examine the economic validity of the EH.

From Table 3.30 the estimated values for the coe¢ cients � and � are close to zero

and one respectively. Though, both the null that � = 1 and the joint null that � = 0

and � = 1 are rejected for all pairs of (n;m) except for (3; 1) : This implies that the

spread between the 3- and 1-month is an optimal predictor of future changes in the

1-month rate, and according to the Wald test only for this pair does the EH hold.

However, the accuracy and reliability of Wald tests have been criticised31.

The SDRs are very close to unity, with excess volatility being apparent in all but

the (3; 1) case i.e. SDR<1, the null that the SDR is equal to unity is rejected for all

(n;m). There is strong correlation between the actual and theoretical spread for all

maturities and the null that the correlation coe¢ cient is unity, is rejected only for (6; 3)

at the 5% level. Further Figure 3-8 shows the high degree of comovement between the

actual and theoretical spreads, with the series moving in unison for all pairs.

As highlighted in Cuthbertson et al (2000b, footnote 10) there exists a trade-o¤

when testing the null that an estimated coe¢ cient is equal to its theoretical value.

29Where n = 3; 6; 12 and m = 1; 3; 6 and zt =
�
s
(n;m)
t ;�r

(m)
t

�0
in equation (2.20).

30It should be noted that a Wald test of the VAR cross-equation restrictions, see CS, is di¤erent to
the Wald tests conducted here, however both provide a test of the hypothesis s(n;m)�t = s

(n;m)
t .

31Bekaert et al. (1997) and Bekaert and Hodrick (2000) provide monte carlo evidence to show that
the null is grossly over-rejected when asymtotic critical values are used, because the Wald test su¤ers
from severe size distortions.
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Where an estimated coe¢ cient that is numerically close to its theoretical value, but

has a small standard error rejects the null. Whereas, an estimated coe¢ cient that is

further from its theoretical value, but has a large standard error results in non-rejection

of the null. Here our results are consistent with this, in that the estimated values are

numerically close to what the EH suggests for both the regression of s(n;m)�t on s(n;m)t

and the SDRs. However, small standard errors are observed for both, indicating a

statistical rejection of the EH in the regression of s� on s.

Rejection of the VAR restrictions is common in the literature and some explana-

tions as to why the tests under the VAR method indicate a rejection are provided, see

Cuthbertson et al (1996). First, the VAR method requires an explicit information

set chosen by the econometrician known to both him and agents, however biased VAR

coe¢ cients may be estimated if the econometrician mistakenly fails to incorporate vari-

ables in�uencing traders�perceptions, resulting in a rejection of the restrictions. The

second point raised is even if agents use the VAR method to forecast, given that new

information becomes available moment by moment one would expect this continuous

stream of information to be used, in this respect even data as frequent as weekly appears

inadequate.

However as Cuthbertson (1996, pp. 589) states these informational ine¢ ciencies

"may not be numerically important enough to cause a large discrepancy between fore-

cast movements in future rates and the optimal predictor of these movements namely,

the actual spread". CS emphasise that although upon statistical grounds the VAR

restrictions may be rejected, this does not necessarily imply rejection of the EH on eco-

nomic grounds, especially when it is apparent that the actual and theoretical spreads

exhibit a high degree of comovement. In short, the EH is economically signi�cant if the

theoretical spread can explain the majority of the variation in the actual spread. Which

it clearly does here. Although the Wald tests largely indicate a statistical rejection

of the EH, large deviations between forecasts of changes in future short rates given by
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s(n;m)�; from s(n;m) are not apparent. The time series plots of s(n;m)�t and s(n;m)t , the high

values of the correlation coe¢ cients and the point estimates of the SDRs all indicate

that the limited information set used here is able to predict the direction of change of

the future short rates. Hence in this study the EH is "economically signi�cant". Thus

with some support also being provided by the Wald test, we �nd evidence in favour of

the EH.

3.6 Conclusion

This investigation models the UK term structure for zero-coupon 1-, 3-, 6- and 12-month

bonds, using a weekly dataset over the period 1997 to 2004, through a comprehensive

set of statistical and theory based models. There are two main aims of this study, �rst

to test the EH of the term structure using both cointegration and the VAR approach,

second to ascertain if a statistical or a theory informed model is best placed to explain

the UK term structure.

All the yields are di¤erence stationary and the (n;m) spreads for (3; 1) ; (6; 1) ; (12; 1)

and (6; 3) are stationary. Although all the spreads exhibit mean reverting behaviour,

persistent deviations from their respective means are observed. The ADF and PP unit

root tests appear to be sensitive to this persistence, as the null of a unit root in the

(12; 3) and (12; 6) spreads could not be rejected at the 10% level. However, three

cointegrating relationships amongst the four yields are found, implying that a long-

run relationship exists between the n- and m-month yields and that their spread is

stationary. Furthermore, the restrictions that the cointegrating vector between each

pair of yields is (1;�1) as suggested by the EH could not be rejected, together with

evidence to suggest that the Pure EH is applicable to this dataset.

Four models that incorporate varying degrees of economic theory are estimated.

Speci�cally, an Autoregressive Model, Vector Autoregressive Model in Di¤erences, VAR
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in Transformed Interest Rates Model and a Vector Error Correction Model, each of order

9 so that a test of the model restrictions could be made. The theory informed VECM

model explicitly de�nes and tests the long-run relations. Whereas the equivalent VART

model assumes that these long-run relations hold and embeds the cointegration relations

implied by the EH. The results from the estimated models suggest that these theory

informed models have greater explanatory power for the yields than the atheoretic AR

and VARD models. We also �nd that the restrictions under the AR, VARD and

the bivariate speci�cations are rejected in favour of the multivariate theory informed

VECM and VART models, when Wald tests of the model restrictions are conducted.

This providing additional evidence of the superiority of these theory based models in

capturing the term structure.

The dynamic properties of the yields under the AR model and the VECM are exam-

ined through impulse responses and persistence pro�les, all the plots show convergence

indicating that the systems are stable. The dynamics are found to be far more complex

under the VECM, since it captures the feedbacks and interactions that exist between

the yields. Whereas the univariate framework ignores such interactions and feedbacks

by abstracting from economic theory and the in�uence of other variables.

The results from the VAR approach of the EH indicate high comovement between

the theoretical spread given by forecasts of future changes in short rates, and the actual

observed spread. We �nd both the standard deviation ratios and correlation coe¢ cients

to be close to unity. Even though the Wald test indicates a statistical rejection of the

hypothesis that s(n;m)�t = s
(n;m)
t in all cases except the spread between the 3- and 1-

month yields, a divergence between the actual and theoretical spread as measured by

the time series plots, SDRs and correlation coe¢ cients is not apparent.

The VAR method makes the strong assumption that the limited information set

selected by the econometrician captures all variables in�uencing traders�perceptions,

the literature suggest this may be a reason why the VAR restrictions are rejected.
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Although here we do not directly impose and test the VAR cross-equation restrictions,

we do derive the theoretical spread and test the hypothesis s(n;m)�t = s
(n;m)
t from the

unrestricted VAR which also makes this assumption. The cointegration test of the

EH is not subject to these restrictive assumptions, because here we test for a long-run

relationship between the yields that translates into stationary spreads as implied by the

EH. We �nd clear support for the EH using the cointegration method.

The results presented here are more supportive of the EH than that of previous

studies. This may be due to the fact that we use comparatively high frequency weekly

data for short maturities than earlier studies. In the context of the UK studies, we

�nd more support using the cointegration method, compared to Cuthbertson (1996)

and Cuthbertson et al (1996, 1998) who also use weekly data at the short end. In

particular, unlike Cuthbertson et al (1998) we �nd the joint null that the set of q � 1

spreads form a basis for the cointegrating space can not be rejected. Our SDRs are

closer to unity and correlation coe¢ cients of the same magnitude. These UK studies use

pre-1997 interest rate data during which UK interest rates were more volatile. Taking

the example of Cuthbertson et al (1996) they use data from October 1975 to October

1992, over their sample the interest rates �uctuate between 4 and 18%, compared to

our post-1997 data which varies between 3 and 7%. In 1997 the UK had a change

of government who granted independence to the central bank to add credibility to its

anti-in�ation policy. This marked the beginning of an era of comparatively lower, less

volatile interest rates for the UK.

We argue that the additional support we �nd for the EH is due to our UK data

1997 to 2004 being comparatively less volatile. With the evidence presented here

further validating earlier �ndings, that variability in expected changes in short rates is

required, su¢ ce to conduct tests of the EH, assuming a constant term premium. But

rates that are not highly volatile and unpredictable as to deem the EH with a constant

term premium invalid.
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Our �ndings imply that the volatility of the interest rates is important for the EH,

and adds to those reported by Mankiw and Miron (1986), Kugler (1988), Cuthbertson

et al (2000b) and Christiansen et al (2003) for the US, Germany and Denmark. That

is, the EH may not hold if there is a policy of interest rate smoothing or if interest

rates are highly volatile and unpredictable. We argue that the support found here for

the EH is a combination of the Bank of England�s credible anti-in�ation policy and the

benign economic conditions of the "nice decade" observed until recently.

In this chapter we model the term structure and analyse the in-sample properties of

the various models. We �nd support for the EH and for modelling the term structure

using a theory informed as opposed to a purely statistical model. Given these �ndings,

in the next chapter we take the theory informed multivariate VART model that embeds

the cointegration relations implied by the EH, and use it to generate forecasts of the

short term yields. These forecasts are then evaluated in an investment decision making

context.

To conclude, in this examination we �nd evidence in favour of the much discussed

and tested EH of the term structure. The results of the various tests of the EH are not

unanimously in favour, but on the whole supportive of the EH. Overall we may deduce

that the EH has signi�cant economic content and provides a good representation of this

short term UK data. This exercise demonstrates the importance of economic theory in

explaining the term structure, as the theory informed models are found to have greater

explanatory power than the purely statistical based ones.
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Figure 3-1: Yields 1997 to 2005
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Figure 3-2: Change in Yields
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Figure 3-3: Spread between n-month and m-month Yields (snm)
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Figure 3-4: Generalised Impulse Response to one S.E. shock in AR(p) Equation
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Figure 3-5: Generalised Impulse Response to one S.E. shock in n-month Yields (rn)

126



Figure 3-6: Generalised Impulse Response of Cointegrating Vectors (CV) to one S.E.
shock in n-month Yields (rn)
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Figure 3-7: Persistence Pro�le of the e¤ect of a System-Wide Shock on the Cointegrating
Vectors
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Figure 3-8: Actual (s) and Theoretical (s*) Spreads
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Table 3.1: Descriptive Statistics for Yields and Spreads

Variable Mean St Dev Minimum Maximum
r1t 4:984 1:136 3:160 7:167
r3t 4:969 1:129 3:169 7:176
r6t 4:964 1:111 3:131 7:148
r12t 4:995 1:064 3:111 7:018

s3;1t �0:015 0:099 �0:299 0:370

s6;1t �0:020 0:209 �0:656 0:692

s12;1t 0:011 0:373 �1:118 1:004

s6;3t �0:006 0:118 �0:357 0:322

s12;3t 0:025 0:292 �0:819 0:633

s12;6t 0:031 0:180 �0:470 0:393

Notes: Descriptive Statistics of the annualised 1-, 3-, 6- and 12-month yields (%) and their respective

spreads over the sample period 1997 week 10 to 2005 week 18.

Table 3.2: Unit Root Tests of Yields

Variable
ADF t-statistic
(lag length)

PP adj t-statistic
(bandwidth)

KPSS LM statistic
(bandwidth)

r1t �0:787
(0)

�1:027
(11)

1:884���
(16)

�r1t �19:610���
(0)

�20:777���
(11)

0:189
(11)

r3t �1:246
(4)

�1:089
(13)

1:871���
(16)

�r3t �6:499���
(3)

�18:211���
(12)

0:155
(13)

r6t �1:299
(4)

�1:141
(13)

1:877���
(16)

�r6t �7:241���
(3)

�18:864���
(12)

0:123
(13)

r12t �1:022�
(0)

�1:262
(11)

1:901���
(16)

�r12t �19:256���
(0)

�19:836���
(10)

0:088
(11)

Notes for this table are on the next page.
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Table 3.3: Unit Root Tests of Spreads

Variable s(n;m)t

ADF t-statistic
(lag length)

PP adj t-statistic
(bandwidth)

KPSS LM statistic
(bandwidth)

(3; 1) �3:959���
(1)

�4:384���
(6)

0:106
(16)

(6; 1) �2:974��
(1)

�3:202��
(7)

0:117
(16)

(12; 1) �2:700�
(0)

�2:667�
(7)

0:165
(16)

(6; 3) �2:824�
(0)

�2:767�
(6)

0:132
(16)

(12; 3) �2:433
(0)

�2:487
(7)

0:190
(16)

(12; 6) �2:476
(0)

�2:422
(6)

0:229
(16)

Critical Values

ADF Test PP Test KPSS Test
1% level �3:445 �3:445 0:739
5% level �2:868 �2:868 0:463
10% level �2:570 �2:570 0:347

Notes: The ADF test statistics are computed using ADF regressions with an intercept and �L�lagged

�rst di¤erences of the dependent variable, applied to both the levels and �rst di¤erences. The order

of augmentation in the Dickey-Fuller regressions are chosen using the Schwarz Information Criterion,

with maximum lag length of 20. The bandwidth for both the PP and KPSS test is selected using the

Newey-West (1994) method based on the Bartlett Kernel. The PP test statistics are calculated with

an intercept only in the underlying DF regressions, for both the levels and �rst di¤erences of the

variables. The statistics for each test were also computed using regressions with an intercept and

linear time trend, but the results are not signi�cantly di¤erent from those found above so are not

reported. Null Rejected at *** 1% level, ** 5% level, * 10% level of signi�cance.
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Table 3.4: AR(p) Model Estimates

Equation �r12t �r6t �r3t �r1t
�rnt�1 0:021

(0:051)
0:101�
(0:052)

0:161�
(0:058)

�0:018
(0:075)

�rnt�2 0:014
(0:044)

0:016
(0:041)

�0:010
(0:040)

�0:036
(0:052)

�rnt�3 0:038
(0:050)

0:055
(0:050)

0:0534
(0:053)

0:040
(0:053)

�rnt�4 0:089
(0:060)

0:165���
(0:053)

0:196���
(0:062)

0:143���
(0:054)

�rnt�5 0:100�
(0:058)

0:075
(0:060)

�0:002
(0:061)

0:039
(0:071)

�rnt�6 0:094�
(0:051)

0:047
(0:049)

0:106��
(0:051)

0:147��
(0:067)

�rnt�7 0:026
(0:046)

0:040
(0:053)

�0:007
(0:050)

0:016
(0:062)

�rnt�8 �0:032
(0:063)

0:001
(0:061)

0:090
(0:059)

0:010�
(0:058)

�rnt�9 0:056
(0:059)

0:075
(0:054)

0:079
(0:054)

0:114
(0:054)

inpt �0:00003
(0:00005)

�0:00002
(0:00004)

�0:00002
(0:00003)

�0:00002
(0:00004)

R
2

0:017 0:071 0:132 0:061b� 0:0009 0:0007 0:0006 0:0008
F [9; 354] 1:70� 4:10��� 7:13��� 3:63���

eqnLL 2032:01 2136:67 2203:36 2111:42
�2N 21:99��� 50:16��� 135:82��� 90:41���

�2H [9] 8:38 4:26 10:97 16:94��

�2SC [9] 5:94 8:70 8:04 6:60

Notes: Standard errors in parenthesis. The AR(9) regressions are estimated for each yield over 1997

week 10 to 2004 week 18 (364 observations), with yields expressed as changes. The regressions are

estimated with Newey-West heteroskedastic and autocorrelation corrected errors, reported above.

The R
2
, standard error of the regression (b�); F-statistic to test the joint signi�cance of the

estimated coe¢ cients and the log likelihood of the equation (LL) are presented, together with the

chi-squared statistics for Breusch-Pagan Serial Correlation test (SC) for the null of no serial

correlation at lag 9, the Jarque-Bera Test for Normality (N) for the null that the residuals are

normal; Breusch-Pagan-Godfrey test for Heteroskedasticity (H) for the null that the residuals are
homoskedastic. Null rejected at *** 1% level, ** 5% level, * 10% level of signi�cance.
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Table 3.5: Estimation of MVARD(p) Model

Equation �r12t �r6t �r3t �r1t
�r12t�1 0:225

(0:209)
0:461���
(0:158)

0:355��
(0:146)

0:243
(0:154)

�r12t�2 0:237
(0:221)

0:238
(0:165)

0:105
(0:136)

0:042
(0:156)

�r12t�3 �0:256
(0:225)

�0:181
(0:165)

�0:150
(0:141)

0:069
(0:167)

�r12t�4 0:214
(0:237)

0:183
(0:164)

0:102
(0:130)

0:204
(0:169)

�r12t�5 0:429
(0:273)

0:453���
(0:186)

0:436���
(0:146)

0:477���
(0:159)

�r12t�6 0:256
(0:243)

0:140
(0:166)

0:018
(0:139)

0:052
(0:172)

�r12t�7 �0:082
(0:218)

�0:187
(0:156)

�0:202�
(0:120)

0:039
(0:131)

�r12t�8 0:094
(0:205)

�0:071
(0:140)

�0:094
(0:108)

�0:00
(0:135)

�r12t�9 �0:198
(0:211)

�0:145
(0:157)

�0:160
(0:123)

�0:261�
(0:149)

�r6t�1 �0:801
(0:495)

�1:075���
(0:370)

�0:696��
(0:339)

�0:68�
(0:353)

�r6t�2 �0:613
(0:558)

�0:478
(0:400)

�0:123
(0:325)

�0:330
(0:382)

�r6t�3 0:719
(0:599)

0:635
(0:434)

0:552
(0:361)

�0:174
(0:410)

�r6t�4 �0:614
(0:591)

�0:446
(0:399)

�0:268
(0:311)

�0:739�
(0:409)

�r6t�5 �0:726
(0:649)

�0:699�
(0:437)

�0:731��
(0:329)

�1:07���
(0:382)

�r6t�6 �0:380
(0:547)

�0:209
(0:374)

�0:058
(0:318)

�0:443
(0:408)

�r6t�7 0:302
(0:567)

0:578
(0:395)

0:575�
(0:293)

0:026
(0:326)

�r6t�8 �0:388
(0:503)

�0:003
(0:355)

�0:022
(0:270)

�0:397
(0:327)

�r6t�9 0:736
(0:469)

0:573
(0:352)

0:537�
(0:289)

0:692��
(0:346)

�r3t�1 1:022��
(0:460)

0:982���
(0:335)

0:672��
(0:307)

1:174���
(0:337)

�r3t�2 0:597
(0:541)

0:382
(0:366)

0:115
(0:285)

0:655�
(0:348)

�r3t�3 �0:594
(0:559)

�0:612
(0:395)

�0:459
(0:318)

0:521
(0:387)

�r3t�4 0:811
(0:541)

0:561
(0:368)

0:403
(0:312)

1:090���
(0:412)

�r3t�5 0:530
(0:581)

0:335
(0:402)

0:315
(0:320)

0:721�
(0:424)

�r3t�6 0:286
(0:502)

0:165
(0:345)

0:228
(0:284)

0:938��
(0:400)

�r3t�7 �0:302
(0:544)

�0:573
(0:393)

�0:464
(0:292)

0:184
(0:314)

�r3t�8 0:443
(0:519)

0:254
(0:371)

0:354
(0:272)

0:910���
(0:302)

�r3t�9 �0:515
(0:459)

�0:357
(0:320)

�0:217
(0:250)

�0:183
(0:304)
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Table 3.6: Estimation of MVARD(p) Model (continued)

�r1t�1 �0:297�
(0:157)

�0:188
(0:114)

�0:157
(0:099)

�0:570���
(0:113)

�r1t�2 �0:237
(0:196)

�0:133
(0:133)

�0:112
(0:109)

�0:480���
(0:120)

�r1t�3 0:101
(0:186)

0:174
(0:126)

0:105
(0:110)

�0:357��
(0:161)

�r1t�4 �0:254
(0:189)

�0:113
(0:127)

�0:067
(0:107)

�0:380���
(0:144)

�r1t�5 �0:161
(0:209)

0:009
(0:144)

0:018
(0:116)

�0:240
(0:159)

�r1t�6 �0:096
(0:195)

0:007
(0:135)

�0:055
(0:106)

�0:357��
(0:147)

�r1t�7 0:052
(0:198)

0:154
(0:148)

0:063
(0:115)

�0:232�
(0:129)

�r1t�8 �0:135
(0:208)

�0:079
(0:147)

�0:130
(0:103)

�0:345���
(0:104)

�r1t�9 �0:034
(0:180)

�0:039
(0:121)

�0:049
(0:09)

�0:046
(0:115)

inpt �0:00003
(0:00005)

0:00001
(0:00004)

�0:00001
(0:00003)

�0:00002
(0:00003)

R2 0:007 0:106 0:192 0:244b� 0:0009 0:0007 0:0006 0:0007
F [36; 327] 1:07 2:20��� 3:40��� 4:26���

eqnLL 2044:6 2158:0 2230:9 2159:6
system LL 9638:86
�2N [8] 40:96���

�2H [720] 799:14��

�2SC [16] 25:57�

Notes: Standard errors in parenthesis. The MVARD(9) is estimated over 1997 week 10 to 2004 week

18 (364 observations). The regressions are estimated with Newey-West heteroskedastic and

autocorrelation corrected errors. The R
2
; standard error of the regression (b�); F-statistic to test

the joint signi�cance of the estimated coe¢ cients and the log likelihood of the equation (LL) are

presented, together with the model diagnostic tests which are all carried out on the VAR residuals.

No roots of the characteristic polynomial lie outside the unit circle, so the VAR is stable.

Chi-squared statistics presented for: (N) the VAR Residual Normality Test (orthogonalization:

residual correlation (Doornik-Hansen) this test statistic is not sensitive to the ordering or the scale of

the variables) for the null that the residuals are multivariate normal; (H) the VAR Residual
Heteroskedasticity Test (no cross terms, but the conclusion was the same when cross terms were

included) for the null that the residuals are homoskedastic, and (SC) the VAR Residual Serial

Correlation LM Test for the null of no serial correlation at lag 9. Null rejected at *** 1% level, **

5% level, * 10% level of signi�cance.
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Table 3.7: Estimation of BVARD(p) Model: n=3, m=1

Equation �r3t �r1t
�r3t�1 0:291���

(0:091)
0:547���
(0:121)

�r3t�2 0:120
(0:073)

0:205��
(0:085)

�r3t�3 0:116
(0:081)

0:321���
(0:108)

�r3t�4 0:280���
(0:094)

0:347���
(0:119)

�r3t�5 �0:014
(0:090)

�0:119
(0:125)

�r3t�6 0:193��
(0:077)

0:334���
(0:122)

�r3t�7 0:117
(0:085)

0:277���
(0:100)

�r3t�8 0:190��
(0:095)

0:285��
(0:114)

�r3t�9 0:250���
(0:094)

0:318���
(0:119)

�r1t�1 �0:154��
(0:067)

�0:437���
(0:090)

�r1t�2 �0:142
(0:078)

�0:295���
(0:076)

�r1t�3 �0:078
(0:074)

�0:281���
(0:107)

�r1t�4 �0:082
(0:072)

�0:149�
(0:089)

�r1t�5 0:006
(0:072)

�0:034
(0:093)

�r1t�6 �0:109
(0:070)

�0:162
(0:101)

�r1t�7 �0:121�
(0:071)

�0:231��
(0:094)

�r1t�8 �0:096
(0:071)

�0:149�
(0:082)

�r1t�9 �0:147��
(0:061)

�0:105
(0:082)

inpt �0:00002
(0:00003)

�0:00002
(0:00003)
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Table 3.8: Estimation of BVARD(p) Model: n=6, m=1

Equation �r6t �r1t
�r6t�1 0:093

(0:058)
0:260���
(0:072)

�r6t�2 0:041
(0:055)

0:068
(0:050)

�r3t�3 0:071
(0:052)

0:190���
(0:063)

�r6t�4 0:152��
(0:067)

0:137��
(0:068)

�r6t�5 0:072
(0:068)

�0:084
(0:076)

�r6t�6 0:069
(0:063)

0:121
(0:074)

�r6t�7 0:052
(0:061)

0:181���
(0:059)

�r6t�8 0:012
(0:079)

0:063
(0:075)

�r6t�9 0:141��
(0:063)

0:191���
(0:071)

�r1t�1 0:022
(0:050)

�0:193���
(0:071)

�r1t�2 �0:056
(0:067)

�0:151��
(0:060)

�r1t�3 �0:018
(0:059)

�0:129
(0:068)

�r1t�4 0:023
(0:068)

0:036
(0:061)

�r1t�5 0:013
(0:072)

�0:0001
(0:074)

�r1t�6 �0:022
(0:060)

0:025
(0:075)

�r1t�7 �0:039
(0:058)

�0:090
(0:068)

�r1t�8 �0:003
(0:060)

0:021
(0:060)

�r1t�9 �0:100�
(0:056)

0:039
(0:056)

inpt �0:00002
(0:00004)

�0:00002
(0:00004)
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Table 3.9: Estimation of BVARD(p) Model: n=12, m=1

Equation �r12t �r1t
�r12t�1 0:011

(0:052)
0:146���
(0:050)

�r12t�2 0:020
(0:052)

0:031
(0:034)

�r12t�3 0:042
(0:050)

0:133���
(0:042)

�r12t�4 0:076
(0:065)

0:064
(0:048)

�r12t�5 0:107�
(0:060)

0:001
(0:050)

�r12t�6 0:110�
(0:059)

0:0446
(0:054)

�r12t�7 0:029
(0:050)

0:118���
(0:037)

�r12t�8 �0:027
(0:071)

0:004
(0:049)

�r12t�9 0:089
(0:066)

0:086
(0:050)

�r1t�1 0:049
(0:058)

�0:105
(0:074)

�r1t�2 �0:054
(0:075)

�0:108��
(0:053)

�r1t�3 0:001
(0:081)

�0:051
(0:055)

�r1t�4 0:032
(0:081)

0:083
(0:056)

�r1t�5 �0:016
(0:085)

0:013
(0:072)

�r1t�6 �0:038
(0:068)

0:096
(0:069)

�r1t�7 �0:022
(0:073)

�0:016
(0:062)

�r1t�8 �0:006
(0:068)

0:090
(0:055)

�r1t�9 �0:087
(0:076)

0:111
(0:057)

inpt �0:00003
(0:00005)

�0:00001
(0:00004)
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Table 3.10: Estimation of BVARD(p) Model: n=6, m=3

Equation �r6t �r3t
�r6t�1 �0:029

(0:095)
0:116
(0:089)

�r6t�2 0:084
(0:111)

0:156�
(0:092)

�r6t�3 0:161
(0:103)

0:186��
(0:088)

�r6t�4 0:050
(0:126)

0:016
(0:105)

�r6t�5 0:133
(0:137)

0:059
(0:125)

�r6t�6 0:092
(0:115)

0:046
(0:103)

�r6t�7 0:139
(0:100)

0:166��
(0:077)

�r6t�8 �0:089
(0:145)

�0:090
(0:116)

�r6t�9 0:254��
(0:117)

0:195��
(0:088)

�r3t�1 0:200�
(0:117)

0:040
(0:110)

�r3t�2 �0:113
(0:137)

�0:192�
(0:114)

�r3t�3 �0:140
(0:132)

�0:143
(0:100)

�r3t�4 0:149
(0:151)

0:173
(0:129)

�r3t�5 �0:078
(0:167)

�0:057
(0:147)

�r3t�6 �0:034
(0:129)

0:060
(0:117)

�r3t�7 �0:155
(0:130)

�0:172�
(0:101)

�r3t�8 0:142
(0:151)

0:195
(0:128)

�r3t�9 �0:235�
(0:137)

�0:092
(0:101)

inpt �0:00002
(0:00004)

�0:00002
(0:00003)
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Table 3.11: Estimation of BVARD(p) Model: n=12, m=3

Equation �r12t �r3t
�r12t�1 �0:053

(0:067)
0:084�
(0:043)

�r12t�2 0:031
(0:073)

0:077�
(0:040)

�r12t�3 0:048
(0:068)

0:077�
(0:038)

�r12t�4 0:036
(0:080)

0:012
(0:053)

�r12t�5 0:120
(0:078)

0:078
(0:061)

�r12t�6 0:130�
(0:071)

0:017
(0:051)

�r12t�7 0:049
(0:061)

0:051
(0:036)

�r12t�8 �0:034
(0:089)

�0:054
(0:054)

�r12t�9 0:108
(0:091)

0:060
(0:046)

�r3t�1 0:192�
(0:111)

0:069
(0:076)

�r3t�2 �0:076
(0:107)

�0:111�
(0:062)

�r3t�3 �0:038
(0:126)

�0:019
(0:063)

�r3t�4 0:119
(0:119)

0:173��
(0:081)

�r3t�5 �0:069
(0:148)

�0:066
(0:094)

�r3t�6 �0:076
(0:099)

0:101
(0:070)

�r3t�7 �0:048
(0:123)

�0:038
(0:067)

�r3t�8 0:020
(0:112)

0:163��
(0:077)

�r3t�9 �0:118
(0:132)

0:051
(0:075)

inpt �0:00003
(0:00005)

�0:00001
(0:00003)
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Table 3.12: Estimation of BVARD(p) Model: n=12, m=6

Equation �r12t �r6t
�r12t�1 �0:103

(0:128)
0:055
(0:090)

�r12t�2 0:105
(0:124)

0:117
(0:088)

�r12t�3 0:030
(0:132)

0:041
(0:091)

�r12t�4 �0:015
(0:132)

�0:044
(0:109)

�r12t�5 0:219
(0:163)

0:201
(0:133)

�r12t�6 0:217
(0:132)

0:085
(0:105)

�r12t�7 0:047
(0:116)

�0:001
(0:091)

�r12t�8 �0:017
(0:138)

�0:118
(0:107)

�r12t�9 0:078
(0:164)

0:043
(0:118)

�r6t�1 0:183
(0:171)

0:036
(0:127)

�r6t�2 �0:142
(0:152)

�0:122
(0:112)

�r6t�3 0:010
(0:181)

0:015
(0:130)

�r6t�4 0:152
(0:165)

0:217
(0:136)

�r6t�5 �0:187
(0:236)

�0:161
(0:180)

�r6t�6 �0:167
(0:163)

�0:030
(0:128)

�r6t�7 �0:005
(0:179)

0:059
(0:136)

�r6t�8 �0:023
(0:163)

0:154
(0:125)

�r6t�9 �0:017
(0:208)

0:044
(0:154)

inpt �0:00003
(0:00005)

�0:00002
(0:00004)
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Table 3.13: BVARD(p) Model Diagnostics

Model �r3t ;�r
1
t �r6t ;�r

1
t �r12t ;�r

1
t �r6t ;�r

3
t �r12t ;�r

3
t �r12t ;�r

6
t

R2
0:144
0:205

0:060
0:168

0:001
0:134

0:078
0:153

0:01
0:153

0:006
0:071b� 0:0006

0:0007
0:0007
0:0007

0:0009
0:0007

0:0007
0:0006

0:0009
0:0006

0:0009
0:0007

F [18; 345]
4:41���

6:22��
2:28���

5:07���
1:022
4:133���

2:72���

4:66���
1:21
4:66���

1:11
2:55���

eqnLL
2210:7
2146:5

2139:1
2138:1

2033:8
2130:9

2142:8
2212:7

2035:5
2212:7

2034:6
2141:4

system LL 4519:1 4329:1 4181:0 4626:5 4353:8 4509:7
�2N [4] 37:85��� 25:81��� 24:24��� 24:25��� 35:73��� 44:41
�2H [108] 127:99� 141:76�� 149:15��� 133:67�� 128:19�� 125:96
�2SC [4] 7:73 8:26� 7:16 10:25�� 8:49� 7:15

Notes: Standard errors in parenthesis. A BVARD(9) is estimated over 1997 week 10 to 2004 week 18

(364 observations) for each of the six pairs of yields, the �rst number refers to the statistic obtained

for the �rnt equation and the second for the �r
m
t equation. The regressions are estimated with

Newey-West heteroskedastic and autocorrelation corrected errors. The R
2
; standard error of the

regression (b�); F-statistic to test the joint signi�cance of the estimated coe¢ cients and the log
likelihood of the equation (LL) are presented, together with the model diagnostic tests which are all

carried out on the VAR residuals. No roots of the characteristic polynomial lie outside the unit

circle, so the VAR is stable. Chi-squared statistics presented for: (N) the VAR Residual Normality

Test (orthogonalization: residual correlation (Doornik-Hansen) this test statistic is not sensitive to

the ordering or the scale of the variables) for the null that the residuals are multivariate normal; (H)

the VAR Residual Heteroskedasticity Test (no cross terms, but the conclusion was the same when

cross terms were included) for the null that the residuals are homoskedastic, and (SC) the VAR

Residual Serial Correlation LM Test for the null of no serial correlation at lag 9. Null rejected at

*** 1% level, ** 5% level, * 10% level of signi�cance.
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Table 3.14: Cointegration Tests

H0 H1 �trace Stat 95% cv �max Stat 95% cv
r = 0 r = 1 72:32�� 53:48 32:47�� 28:27
r 6 1 r = 2 39:85�� 34:87 25:20�� 22:04
r 6 2 r = 3 14:65 20:18 11:62 15:87
r 6 3 r = 4 3:03 9:16 3:03 9:16

Table 3.15: Number of Cointegrating Relations using the Model Selection Criteria

Rank Max LL AIC SBC HQC
r = 0 9610:7 9466:7 9186:1 9355:2
r = 1 9626:9 9474:9 9178:8 9357:2
r = 2 9639:5 9481:5 9173:7 9359:2
r = 3 9645:3 9483:3 9167:7 9357:9
r = 4 9646:9 9482:9 9163:3 9355:8

Notes: The underlying VAR model is of order 9 and contains restricted intercepts and no trend

coe¢ cients. The statistics refer to Johansen�s log-likelihood based trace and maximum eigenvalue

statistics together with the Akaike Information Criteria (AIC), Schwarz Bayesian Criteria (SBC) and

the Hannan-Quinn Criteria (HQC). All of which have been computed using 364 observations over

the period 1997 week 10 to 2004 week 18, to test for the number of cointegration vectors. ** Null

rejected at 5%

Table 3.16: Imposing Identifying Restrictions

Yield Vector 1 Vector 2 Vector 3
12-month 1 0 0
6-month 0 1 0
3-month 0 0 1
1-month �0:92221

(0:06505)
�0:97597
(0:032201)

�0:99432
(0:01176)

Intercept �0:00402
(0:00330)

�0:00103
(0:00164)

�0:00173
(0:00060)

Notes: Maximum Likelihood estimates subject to the exactly identifying restrictions, where the

standard errors are given in the parentheses.
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Table 3.17: Reduced Form Error Correction Speci�cation

Equation �r12t �r6t �r3t �r1t
ect1t�1 0:495���

(0:148)
0:386���
(0:115)

0:236��
(0:100)

0:256��
(0:103)

ect2t�1 �1:502���
(0:459)

�1:145���
(0:354)

�0:760��
(0:300)

�1:050���
(0:329)

ect3t�1 1:441���
(0:524)

1:160���
(0:399)

0:976���
(0:337)

1:658���
(0:384)

�r12t�1 �0:182
(0209)

0141
(0152)

0:144
(0:140)

�0:028
(0:157)

�r12t�2 �0:148
(0:200)

�0:60
(0:148)

�0:089
(0:129)

�0:224
(0:172)

�r12t�3 �0:625��
(0:262)

�0:469��
(0:193)

�0:344��
(0:160)

�0:205
(0:186)

�r12t�4 �0:136
(0:250)

�0:095
(0:195)

�0:089
(0:160)

�0:059
(0:188)

�r12t�5 0:108
(0:268)

0:201
(0:198)

0:267
(0:168)

0:247
(0:172)

�r12t�6 �0:033
(0:235)

�0:073
(0:165)

�0:103
(0:140)

�0:096
(0:154)

�r12t�7 �0:332
(0:205)

�0:366��
(0:144)

�0:298��
(0:122)

�0:085
(0:134)

�r12t�8 �0:121
(0:223)

�0233
(0:161)

�0:171
(0:134)

�0:032
(0:162)

�r12t�9 �0:344
(0:226)

�0:250
(0:163)

�0:202�
(0:122)

�0:273�
(0:50)

�r6t�1 0:367
(0:487)

�0:154
(0:362)

�0005
(0335)

0:405
(0:389)

�r6t�2 0:466
(0:527)

0:368
(0:35)

0:519
(0:340)

0:716
(0:459)

�r6t�3 1:712��
(0:667)

1:422���
(0:515)

1:169���
(0:431)

0:855�
(0487)

�r6t�4 0:312
(0:645)

0:305
(0:495)

0:330
(0:393)

0:237
(0:457)

�r6t�5 0:111
(0:675)

�0:029
(0:500)

�0:208
(0:419)

�0:221
(0:432)

�r6t�6 0:366
(0:556)

0:361
(0:404)

0:343
(0:349)

0:174
(0:369)

�r6t�7 0:933
(0:538)

1:048���
(0:380)

0:894���
(0:320)

0:528
(0:336)

�r6t�8 0:149
(0:540)

0:382
(0:401)

0:237
(0:333)

�0:130
(0:389)

�r6t�9 1:087��
(0:513)

0:829��
(0:382)

0:681��
(0:301)

�0:858��
(0:358)

�r3t�1 �0:101
(0:498)

0:017
(0:395)

�0:247
(0:369)

�0:469
(0:449)

�r3t�2 �0:408
(0:593)

�0:486
(0:449)

�0:726�
(0:373)

�0:880�
(0:480)

�r3t�3 �1:483��
(0:635)

�1:388���
(0:499)

�1:237���
(0:418)

�0:929�
(0:91)

�r3t�4 �0:006
(0:590)

0:166
(0:470)

�0:327
(0:397)

�0:242
(0:458)

�r3t�5 �0:185
(0:636)

�0:299
(0:481)

�0:319
(0:411)

�0:434
(0:471)

�r3t�6 �0:330
(0:521)

�0:377
(0:396)

�0:305
(0:340)

�0:012
(0:385)
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Table 3.18: Reduced Form Error Correction Estimates (continued)

�r3t�7 �0:807
(0:545)

�1:011��
(0:408)

�0:888���
(0:337)

�0:578�
(0:336)

�r3t�8 0:019
(0:537)

�0:129
(0:406)

0:005
(0:322)

0:400
(0:338)

�r3t�9 �0:777
(0:486)

�0:590�
(0:350)

�0:433
(0:273)

�0:535�
(0:320)

�r1t�1 0:036
(0:202)

0:135
(0:174)

0:228
(0:160)

0:181
(0:194)

�r1t�2 0:054
(0:231)

0:151
(0:180)

0:230
(0:152)

0:193
(0:174)

�r1t�3 0:350
(0:226)

0:418��
(0:178)

0:407���
(0:157)

0:248
(0:192)

�r1t�4 �0:033
(0:201)

0:103
(0:162)

0:198
(0:139)

0:141
(0:163)

�r1t�5 0:020
(0:226)

0:193
(0:170)

0:248�
(0:143)

0:208
(0:176)

�r1t�6 0:052
(0:197)

0:161
(0:150)

0:139
(0:127)

0:013
(0:149)

�r1t�7 0:171
(0:200)

0:276�
(0:155)

0:215�
(0:127)

0:054
(0:130)

�r1t�8 �0:035
(0:209)

0:025
(0:154)

�0:013
(0:115)

�0:156
(0:11)

�r1t�9 0:024
(0:179)

0:020
(0:122)

0:019
(0:097)

0:069
(0117)

R2 0:032 0:133 0:221 0:298b� 0:0009 0:0007 0:0006 0:0007
Fstat 1:31 2:47��� 3:71��� 5:05���

eqnLL 2044:3 2158:5 2232:2 2174:4
system LL 9645:9
�2N [8] 73:91���

�2H [720] 725:89
�2SC [16] 21:09

The three error correction terms are given by:

ect1t = r12t � 0:92221
(0:06505)

r1t �0:00402
(0:00330)

ect2t = r6t �0:97597
(0:032201)

r1t �0:00103
(0:00164)

ect3t = r3t �0:99432
(0:01176)

r1t�0:17300
(0:00060)

Notes: Standard errors in parenthesis. The VECM(9) contains restricted intercepts and no trend

coe¢ cients, estimated over 1997 week 10 to 2004 week 18 with Newey-West heteroskedastic and

autocorrelation corrected errors. No roots of the characteristic polynomial lie outside the unit circle,

so the VAR is stable. Chi-squared statistics presented for: (N) the VAR Residual Normality Test;

(H) the VAR Residual Heteroskedasticity Test and (SC) the VAR Residual Serial Correlation LM

Test for the null of no serial correlation at lag 9. The VECM is estimated with cointegrating vectors

subject to the exactly identifying restrictions, the coe¢ cients of the error correction terms contained

in the matrix � are given in the �rst three rows of the table. Null rejected at *** 1% level, ** 5%

level, * 10% level of signi�cance.
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Table 3.19: Testing the EH: Imposing Over-Identifying Restrictions

(a) Restriction Set 1

Yield Vector 1 Vector 2 Vector 3
12-month 1 0 0
6-month 0 1 0
3-month 0 0 1
1-month �1 �1 �1
Intercept �0:00015

(0:00091)
0:00015
(0:00041)

0:00010
(0:00014)

(b) Restriction Set 2

Yield Vector 1 Vector 2 Vector 3
12-month 1 0 0
6-month 0 1 0
3-month 0 0 1
1-month �1 �1 �1
Intercept 0 0 0

Restriction Set LR Statistics
1 6:5506
2 12:5334

Notes: The �rst set of over-identifying restrictions test for cointegration of each of the 3-, 6- and

12-month yields with the 1-month, such that the cointegrating vector corresponds to (1;�1; c). The
second set tests the hypothesis that the liquidity premia are zero, such that the cointegrating vector

corresponds to (1;�1; 0); as under the PEH. The LR test statistic is distributed as �2, the 1% and

5% critical values are 11.345 and 7.815 respectively for three degrees of freedom and for six degrees of

freedom the 1% and 5% critical values are 16.812 and 12.592 respectively. ** Null rejected at 5%.
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Table 3.20: Estimation of MVART(p) Model

Equation s12;1t s6;1t s3;1t �r1t
s12;1t�1 1:054���

(0:216)
0:289��
(0:144)

0:159
(0:099)

0:172
(0:151)

s12;1t�2 0:214
(0:259)

�0:028
(0:174)

�0:054
(0:109)

�0:153
(0:184)

s12;1t�3 �0:489�
(0:249)

�0:435��
(0:176)

�0:285���
(0:110)

0:089
(0:137)

s12;1t�4 0:337
(0:264)

0:232
(0:186)

0:115
(0:112)

0:056
(0:192)

s12;1t�5 �0:055
(0:280)

�0:009
(0:198)

0:047
(0:124)

0:294
(0:245)

s12;1t�6 0:209
(0:263)

0:075
(0:181)

�0:020
(0:118)

�0:325�
(0:178)

s12;1t�7 �0:329
(0:263)

�0:329�
(0:183)

�0:225�
(0:119)

0:055
(0:179)

s12;1t�8 0:216
(0:283)

0:124
(0:199)

0:106
(0:130)

0:051
(0:172)

s12;1t�9 0:013
(0:208)

0:156
(0:143)

0:131�
(0:094)

�0:068
(0:150)

s6;1t�1 �0:407
(0:514)

0:392
(0:337)

�0:120
(0:234)

�0:540
(0:357)

s6;1t�2 �0:186
(0:582)

0:257
(0:398)

0:247
(0:268)

0:250
(0:449)

s6;1t�3 1:102�
(0:595)

0:942��
(0:422)

0:543��
(0:266)

�0:021
(0:362)

s6;1t�4 �0:771
(0:621)

�0:520
(0:441)

�0:245
(0:278)

�0:379
(0:464)

s6;1t�5 0:234
(0:664)

0:123
(0:465)

�0:068
(0:289)

�0:471
(0:538)

s6;1t�6 �0:159
(0:614)

�0:030
(0:426)

0:122
(0:276)

0:385
(0:434)

s6;1t�7 0:235
(0:61)

0:373
(0:411)

0:231
(0:256)

0:236
(0:402)

s6;1t�8 �0:242
(0:659)

�0:099
(0:454)

�0:068
(0:298)

�0:633
(0:443)

s6;1t�9 �0:068
(0:485)

�0:383
(0:338)

�0:337
(0:232)

0:369
(0:357)

s3;1t�1 0:081
(0:467)

�0:060
(0:283)

0:525���
(0:184)

1:126���
(0:338)

s3;1t�2 0:089
(0:538)

�0:125
(0:360)

�0:095
(0:242)

�0:391
(0:393)

s3;1t�3 �1:040�
(0:570)

�0:883��
(0:406)

�0:489�
(0:255)

0:061
(0:358)

s3;1t�4 0:786
(0:606)

0:559
(0:419)

0:251
(0:266)

0:512
(0:424)

s3;1t�5 0:034
(0:607)

0:052
(0:443)

0:183
(0:288)

�0:145
(0:478)

s3;1t�6 �0:546
(0:546)

�0:468
(0:381)

�0:371
(0:256)

0:380
(0:413)

s3;1t�7 0:080
(0:514)

�0:089
(0:344)

�0:037
(0:206)

�0:4512
(0:347)
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Table 3.21: Estimation of MVART(p) Model (continued)

s3;1t�8 �0:074
(0:600)

�0:025
(0:388)

�0:024
(0:260)

0:909��
(0:441)

s3;1t�9 0:191
(0:453)

0:402
(0:325)

0:358
(0:220)

�0:543�
(0:319)

�r1t�1 0:034
(0:114)

0:053
(0:083)

0:032
(0:054)

0:089
(0:085)

�r1t�2 0:167�
(0:094)

0:171��
(0:069)

0:127���
(0:047)

�0:175���
(0:061)

�r1t�3 �0:016
(0:096)

0:015
(0:065)

0:024
(0:038)

�0:023
(0:056)

�r1t�4 0:065
(0:104)

0:080
(0:068)

0:041
(0:042)

0:066
(0:073)

�r1t�5 0:255
(0:155)

0:263��
(0:104)

0:184���
(0:059)

�0:176��
(0:078)

�r1t�6 �0:018
(0:091)

�0:003
(0:070)

�0:005
(0:047)

0:088
(0:067)

�r1t�7 0:045
(0:93)

0:028
(0:064)

�0:001
(0:040)

�0:066
(0:067)

�r1t�8 �0:069
(0:092)

�0:034
(0:059)

�0:021
(0:035)

0:090
(0:071)

�r1t�9 �0:111
(0:069)

�0:086�
(0:046)

�0:044
(0:030)

0:040
(0:052)

inpt �0:0001
(0:00007)

�0:00009�
(0:00005)

�0:00004
(0:00003)

0:000005
(0:00004)

R2 0:934 0:901 0:829 0:273b� 0:001 0:0007 0:0004 0:0007
F [36; 327] 144:42��� 93:27��� 50:02��� 4:80���

eqnLL 2028:0 2163:5 2337:9 2172:6
system LL 9659:1
�2N [8] 35:03���

�2H [720] 910:12���

�2SC [16] 18:48

Notes: Standard errors in parenthesis. A MVART(9) is estimated over 1997 week 10 to 2004 week

18 (364 observations). The regressions are estimated with Newey-West heteroskedastic and

autocorrelation corrected errors. The R
2
; standard error of the regression (b�); F-statistic to test the

joint signi�cance of the estimated coe¢ cients and the log likelihood of the equation (LL) are

presented, together with the model diagnostic tests which are all carried out on the VAR residuals.

No roots of the characteristic polynomial lie outside the unit circle, so the VAR is stable.

Chi-squared statistics presented for: (N) the VAR Residual Normality Test; (H) the VAR Residual

Heteroskedasticity Test, and (SC) the VAR Residual Serial Correlation LM Test for the null of no

serial correlation at lag 9. Null rejected at *** 1% level, ** 5% level, * 10% level of signi�cance.
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Table 3.22: Estimation of BVART(p) Model: n=3, m=1

Equation s3;1t �r1t
s3;1t�1 0:733���

(0:075)
0:570���
(0:122)

s3;1t�2 0:155�
(0:090)

�0:322��
(0:132)

s3;1t�3 �0:131
(0:084)

0:145
(0:122)

s3;1t�4 0:122
(0:076)

0:070
(0:137)

s3;1t�5 0:163
(0:119)

�0:437��
(0:175)

s3;1t�6 �0:234��
(0:108)

0:401���
(0:135)

s3;1t�7 �0:036
(0:107)

�0:011
(0:145)

s3;1t�8 0:054
(0:103)

0:028
(0:149)

s3;1t�9 0:038
(0:063)

�0:137
(0:108)

�r1t�1 0:052
(0:050)

0:067
(0:080)

�r1t�2 0:095
(0:045)

�0:144��
(0:062)

�r1t�3 0:028
(0:036)

�0:018
(0:057)

�r1t�4 0:034
(0:042)

0:119�
(0:069)

�r1t�5 0:171���
(0:061)

�0:197��
(0:083)

�r1t�6 �0:048
(0:050)

0:085
(0:074)

�r1t�7 �0:015
(0:040)

�0:032
(0:066)

�r1t�8 �0:009
(0:035)

0:075
(0:072)

�r1t�9 �0:067��
(0:028)

0:050
(0:049)

inpt �0:00001
(0:00003)

0:00001
(0:00004)
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Table 3.23: Estimation of BVART(p) Model: n=6, m=1

Equation s6;1t �r1t
s6;1t�1 0:827���

(0:063)
0:266���
(0:069)

s6;1t�2 0:131
(0:088)

�0:179��
(0:077)

s6;1t�3 �0:096
(0:070)

0:131�
(0:077)

s6;1t�4 0:124�
(0:070)

�0:027
(0:084)

s6;1t�5 0:139
(0:112)

�0:219��
(0:105)

s6;1t�6 �0:199�
(0:105)

0:178��
(0:090)

s6;1t�7 �0:083
(0:096)

0:074
(0:085)

s6;1t�8 0:072
(0:097)

�0:113
(0:089)

s6;1t�9 0:018
(0:060)

0:000
(0:072)

�r1t�1 0:075
(0:072)

0:026
(0:073)

�r1t�2 0:094
(0:059)

�0:114��
(0:057)

�r1t�3 0:024
(0:060)

0:017
(0:058)

�r1t�4 0:036
(0:067)

0:118�
(0:063)

�r1t�5 0:197�
(0:098)

�0:117�
(0:076)

�r1t�6 �0:062
(0:062)

0:093
(0:068)

�r1t�7 �0:041
(0:064)

0:034
(0:065)

�r1t�8 �0:044
(0:053)

0:044
(0:069)

�r1t�9 �0:143���
(0:046)

0:093�
(0:05)

inpt �0:00001
(0:00004)

�0:00002
(0:0004)
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Table 3.24: Estimation of BVART(p) Model: n=12, m=1

Equation s12;1t �r1t
s12;1t�1 0:863���

(0:060)
0:146���
(0:048)

s12;1t�2 0:121
(0:081)

�0:107��
(0:047)

s12;1t�3 �0:080
(0:075)

0:108��
(0:052)

s12;1t�4 0:101
(0:079)

�0:063
(0:059)

s12;1t�5 0:092
(0:103)

�0:065
(0:070)

s12;1t�6 �0:041
(0:090)

0:039
(0:064)

s12;1t�7 �0:156��
(0:073)

0:077
(0:056)

s12;1t�8 0:054
(0:086)

�0:112�
(0:057)

s12;1t�9 0:017
(0:063)

0:026
(0:048)

�r1t�1 0:040
(0:094)

0:005
(0:073)

�r1t�2 0:067
(0:081)

�0:102�
(0:054)

�r1t�3 �0:013
(0:088)

0:047
(0:059)

�r1t�4 �0:013
(0:095)

0:109�
(0:061)

�r1t�5 0:101
(0:128)

�0:019
(0:069)

�r1t�6 �0:040
(0:077)

0:106�
(0:064)

�r1t�7 �0:070
(0:086)

0:062
(0:062)

�r1t�8 �0:103
(0:080)

0:065
(0:066)

�r1t�9 �0:186���
(0:068)

0:119��
(0:057)

inpt �0:00001
(0:00005)

�0:00003
(0:00004)
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Table 3.25: Estimation of BVART(p) Model: n=6, m=3

Equation s6;3t �r3t
s6;3t�1 0:845���

(0:053)
0:149�
(0:086)

s6;3t�2 0:067
(0:070)

0:046
(0:101)

s6;3t�3 0:048
(0:063)

0:055
(0:126)

s6;3t�4 0:061
(0:065)

�0:157
(0:131)

s6;3t�5 0:038
(0:068)

0:030
(0:133)

s6;3t�6 �0:031
(0:067)

�0:020
(0:121)

s6;3t�7 �0:077
(0:065)

0:113
(0:120)

s6;3t�8 0:021
(0:075)

�0:256��
(0:122)

s6;3t�9 �0:004
(0:056)

0:139
(0:114)

�r3t�1 0:021
(0:033)

0:123��
(0:058)

�r3t�2 0:020
(0:024)

�0:049
(0:040)

�r3t�3 �0:016
(0:033)

0:018
(0:051)

�r3t�4 0:020
(0:034)

0:164���
(0:059)

�r3t�5 0:061
(0:049)

�0:020
(0:060)

�r3t�6 �0:037
(0:029)

0:084�
(0:050)

�r3t�7 0:002
(0:037)

�0:027
(0:055)

�r3t�8 �0:042
(0:031)

0:080
(0:056)

�r3t�9 �0:074��
(0:029)

0:082
(0:059)

inpt �0:000004
(0:00002)

�0:00002
(0:00003)
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Table 3.26: Estimation of BVART(p) Model: n=12, m=3

Equation s12;3t �r3t
s12;3t�1 0:861���

(0:055)
0:094��
(0:042)

s12;3t�2 0:089
(0:061)

�0:003
(0:046)

s12;3t�3 0:022
(0:071)

0:007
(0:053)

s12;3t�4 0:050
(0:074)

�0:066
(0:061)

s12;3t�5 0:017
(0:072)

0:064
(0:069)

s12;3t�6 0:069
(0:061)

�0:061
(0:061)

s12;3t�7 �0:117�
(0:053)

0:033
(0:058)

s12;3t�8 0:016
(0:066)

�0:105�
(0:058)

s12;3t�9 �0:020
(0:057)

0:074
(0:054)

�r3t�1 �0:009
(0:067)

0:123��
(0:059)

�r3t�2 0:002
(0:054)

�0:052
(0:037)

�r3t�3 �0:040
(0:069)

0:033
(0:054)

�r3t�4 �0:015
(0:073)

0:166���
(0:057)

�r3t�5 0:046
(0:10)

�0:009
(0:060)

�r3t�6 �0:052
(0:059)

0:098�
(0:049)

�r3t�7 0:0005
(0:074)

�0:005
(0:053)

�r3t�8 �0:112�
(0:068)

0:090�
(0:057)

�r3t�9 �0:114�
(0:067)

0:091�
(0:059)

inpt �0:00001
(0:00004)

�0:00003
(0:00003)
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Table 3.27: Estimation of BVART(p) Model: n=12, m=6

Equation s12;6t �r6t
s12;6t�1 0:844���

(0:063)
0:083
(0:085)

s12;6t�2 0:140��
(0:062)

0:067
(0:106)

s12;6t�3 0:004
(0:069)

�0:072
(0:107)

s12;6t�4 0:036
(0:072)

�0:090
(0:130)

s12;6t�5 �0:009
(0:069)

0:247�
(0:149)

s12;6t�6 0:111�
(0:067)

�0:111
(0:128)

s12;6t�7 �0:084
(0:055)

�0:087
(0:126)

s12;6t�8 0:046
(0:071)

�0:118
(0:138)

s12;6t�9 �0:099�
(0:057)

0:137
(0:111)

�r6t�1 �0:008
(0:033)

0:068
(0:057)

�r6t�2 �0:029
(0:030)

�0:023
(0:040)

�r6t�3 �0:012
(0:036)

0:036
(0:061)

�r6t�4 �0:030
(0:035)

0:156���
(0:056)

�r6t�5 �0:006
(0:048)

0:023
(0:071)

�r6t�6 �0:002
(0:032)

0:038
(0:053)

�r6t�7 �0:011
(0:034)

0:041
(0:064)

�r6t�8 �0:072��
(0:035)

0:020
(0:058)

�r6t�9 �0:015
(0:037)

0:077
(0:055)

inpt �0:00001
(0:00002)

�0:00005
(0:00004)
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Table 3.28: BVART(p) Model Diagnostics

Model s3;1t ;�r
1
t s6;1t ;�r

1
t s12;1t ;�r1t s6;3t ;�r

3
t s12;3t ;�r3t s12;6t ;�r6t

R
2 0:812

0:236
0:894
0:186

0:932
0:154

0:924
0:160

0:944
0:168

0:950
0:084b� 0:0004

0:0007
0:0007
0:0007

0:001
0:0007

0:0003
0:0006

0:0007
0:0006

0:0004
0:0007

F [18; 345]
88:54���

7:24���
171:21���

5:628���
276:26���

4:69���
246:14���

4:84���
344:95���

5:08���
387:66���

2:86���

eqnLL
2311:1
2153:7

2140:5
2142:2

2011:2
2135:2

2412:3
2214:0

2140:4
2215:8

2338:3
2143:9

system LL 4526:3 4333:0 4184:8 4629:5 4344:2 4513:8
�2N [4] 43:88��� 38:81��� 33:08��� 44:91��� 43:67��� 38:99���

�2H [108] 137:52�� 166:56��� 151:40��� 156:15��� 142:61�� 139:58��

�2SC [4] 4:52 6:75 4:23 7:20 5:52 2:27

Notes: Standard errors in parenthesis. A BVART(9) is estimated over 1997 week 10 to 2004 week 18

(364 observations) for each of the six pair of yields. The �rst number refers to the statistic obtained

for the sn;mt equation and the second for the �rmt equation. The regressions are estimated with

Newey-West heteroskedastic and autocorrelation corrected errors. The R
2
; standard error of the

regression (b�); F-statistic to test the joint signi�cance of the estimated coe¢ cients and the log
likelihood of the equation (LL) are presented, together with the model diagnostic tests which are all

carried out on the VAR residuals. No roots of the characteristic polynomial lie outside the unit

circle, so the VAR is stable. Chi-squared statistics presented for: (N) the VAR Residual Normality

Test; (H) the VAR Residual Heteroskedasticity Test, and (SC) the VAR Residual Serial Correlation

LM Test for the null of no serial correlation at lag 9. Null rejected at *** 1%, ** 5%, * 10% level of

signi�cance.
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Table 3.29: Wald Test of Model Restrictions

Dependent V ariable �r1t �r3t �r6t �r12t
MVARD vs AR

(q=27)
163:87���

[0:00]
86:39���
[0:00]

69:43���
[0:00]

39:97�
[0:05]

MVARD vs BVARD
(q=18)

(�r3t ;�r
1
t )

(�r6t ;�r
1
t )

(�r12t ;�r
1
t )

(�r6t ;�r
3
t )

(�r12t ;�r
3
t )

(�r12t ;�r
6
t )

61:45���
[0:00]

88:24���
[0:00]

99:09���
[0:00]

...

...

...

47:64���
[0:00]

...

...
67:37���
[0:00]

60:60���
[0:00]

...

...
51:25���
[0:00]

...
39:71���
[0:00]

...
44:71���
[0:00]

...

...
26:36�
[0:09]

...
19:72
[0:35]

30:42��
[0:03]

MVART vs AR
(q=27)

174:87���
[0:00]

::: ::: :::

MVART vs BVART
(q=18)�
s3;1t ;�r

1
t

��
s6;1t ;�r

1
t

��
s12;1t ;�r1t

�
50:94���
[0:00]

89:70���
[0:00]

101:53���
[0:00]

::: ::: :::

VECM vs MVARD
(q=3)

25:55���
[0:00]

12:49��
[0:01]

11:59��
[0:01]

12:96���
[0:00]

Notes: p-value in [:]. In the comparison of unrestricted vs restricted models q restrictions are
imposed on the unrestricted model. Above are the �2 (q) statistics for the Wald test of these
restrictions, testing the null that the restrictions imposed on the model are correct. Null rejected at

*** 1% level, ** 5% level, * 10% level of signi�cance. When a comparison between the multivariate

and bivariate speci�cation is made for a given model, the zt for the bivariate model is given in (:; :) :
In some cases it is not possible to make all comparisons for each �rnt , which are indicated by �:::�.
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Table 3.30: Testing the EH using Weakly Rational Expectations

(a) Regression s�t = �+ �st + et

Spread (n;m)
�
(s:e)

�
(s:e)

H0 : � = 1
[p� value]

H0 : � = 0; � = 1
[p� value]

(12; 6) 0:00008��
(0:00004)

0:8802���
(0:0198)

36:61
[0:00]

44:97
[0:00]

(12; 3) �0:00010�
(0:00005)

0:8743���
(0:0159)

62:66
[0:00]

71:60
[0:00]

(12; 1) �0:00006
(0:00005)

0:8638���
(0:0113)

144:55
[0:00]

144:90
[0:00]

(6; 3) 0:00005
(0:00004)

0:9030���
(0:0327)

8:81
[0:0032]

11:22
[0:00]

(6; 1) �0:00002
(0:00004)

0:9496���
(0:0169)

8:90
[0:003]

8:92
[0:01]

(3; 1) 0:00000
(0:00002)

1:0131���
(0:0168)

0:60
[0:4381]

0:61
[0:74]

(b) Standard Deviation Ratios and Correlation Coe¢ cients

Spread (n;m) SDR = �(s(n;m)�t )=�(s(n;m)t )
(s:e)

Corr(s(n;m)�t ; s
(n;m)
t )

(s:e)

(12; 6) 0:9001
(0:0001)

0:9780
(0:0247)

(12; 3) 0:8902
(0:0002)

0:9822
(0:0339)

(12; 1) 0:8727
(0:0004)

0:9898
(0:0474)

(6; 3) 0:9599
(0:0001)

0:9408
(0:0189)

(6; 1) 0:9672
(0:0001)

0:9818
(0:0252)

(3; 1) 1:0264
(0:0002)

0:9870
(0:0174)

Notes: The standard errors are given in (:) and the p-values are given in [:]: Table (a) presents the
estimated coe¢ cients for the regression s�t= �+ �st+et; together with the �

2 (q) statistic for the
Wald test of two sets of restrictions, to test (i) H0: �=1 and (ii) H0: �=0; �=1; where q=1 and 2
respectively. The regression is estimated with Newey-West heteroskedastic and autocorrelation

corrected errors. The theoretical spread s�t is computed using a VAR(9) for each bivariate (n,m)
combination over the period 1997 week 10 to 2004 week 18. Table (b) presents the Standard

Deviation Ratios (SDR) and the correlation coe¢ cients (Corr) between the actual and theoretical

spreads, both of which take a value of unity under the EH. The null that the SDR=1 is rejected for

all (n,m), the null that the correlation=1 is rejected only for (6,3) at the 5% level . Null rejected at

*** 1% level, ** 5% level, * 10% level of signi�cance.
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Chapter 4

Decision-Based Forecast Evaluation

of Interest Rate Predictability

Abstract

This chapter illustrates the importance of density forecasting in portfolio decision

making involving bonds of di¤erent maturities. The forecast performance of an atheo-

retic and a theory informed model of bond returns is evaluated. The decision making

environment is fully described for an investor seeking to optimally allocate his portfolio

between long and short Treasury Bills, over investment horizons of up to two years.

Using weekly data over 1997 to 2007 we examine the impact of parameter uncertainty

and predictability in returns on the investor�s allocation. We describe how the forecasts

are computed and used in this context. Both statistical and decision-based criteria are

used to assess the out-of-sample forecasting performance of the models. Our results

show sensitivity to the evaluation criterion used. In the context of investment decision

making under an economic value criterion, we �nd some potential gain for the investor

from assuming predictability.

Keywords: density forecasting, interest rate predictability, parameter uncertainty

and decision-based forecast evaluation.
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4.1 Introduction

Conventionally forecast accuracy is assessed using statistical measures, which are usu-

ally based on point forecasts and some measure of the forecast errors, but these measures

convey little information about the value of the forecast. Leitch and Tanner (1991)

argue that given economists believe �rms use forecasts to increase pro�ts, then it would

be more appropriate to evaluate forecast accuracy using pro�tability. Granger and

Pesaran (2000) and Pesaran and Skouras (2004) formalise this view, asserting that

forecasts are ultimately intended to assist in decision making and hence should be

evaluated in the decision making context for which they are intended.

Decision-based forecast evaluation1 is becoming increasingly popular in research.

Whereby measures like pro�t, wealth and utility are used as opposed to forecast er-

rors, to judge forecasts and compare the accuracy with which competing models make

projections. Recent research investigates predictability in asset returns and decision-

based forecast evaluation in the context of investment decision making. This includes

Pesaran and Timmermann (1995), Xia (2001), Avramov (2002), Brooks and Persand

(2003), Boudry and Gray (2003) and Marquering and Verbeek (2004), who consider

stock return predictability, the e¤ects of parameter and model uncertainty on the opti-

mal allocation and the economic value of this predictability. Further, West et al (1993)

consider the economic value of predictability in exchange rate volatility2.

However, little attention has been paid to decision-based forecast evaluation of in-

terest rates and determining if there is economic value to interest rate predictability.

This is what we seek to address here. Previous research that compare the ability of

theory based models to forecast interest rates to atheoretic models like a naive random

walk, primarily focus on using statistical criteria to evaluate the accuracy of the fore-

1We may also refer to economic value measures, these are the same as decision-based measures.
2Note that we only brie�y mention studies key to our investigation, since a detailed review of the

literature is provided by Chapter 2.
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casts3. In this chapter we consider �rst, how the allocation decisions of the investor

are in�uenced by parameter uncertainty and predictability. Second, if a utility max-

imising investor gains, in terms of higher wealth, from using a theory informed model

to forecast interest rates as opposed to a random walk model, in that we assess if there

is economic value to interest rate predictability.

When considering interest rate predictability, we turn to the dominant theory of the

term structure, the Expectations Hypothesis (EH), which links interest rates of di¤erent

maturities together. The explanatory power of the EH has be examined extensively

using various testing methods and datasets4. In Chapter 3 we model interest rates

using a set of statistical and theory informed models, to �nd past changes in the yields

and spreads to have explanatory power. Hence, in this chapter we use the previously

estimated Multivariate VAR in Transformed Interest Rates (MVART) model, which

embeds the cointegrating relations between the yields as implied by the EH, to capture

predictability. Such that, if the investor believes yields are predictable, he uses the

MVARTmodel to forecast and inform his allocation decisions. We assess the forecasting

ability of this theory based model using both statistical and decision-based measures.

The importance of parameter uncertainty in asset allocation is demonstrated by

Klein and Bawa (1976), and Kandel and Stambaugh (1996). Further, the impact

of parameter uncertainty, asset return predictability and the investment horizon on

optimal portfolio choice is examined in the key paper by Barberis (2000). He draws on

the early �ndings of Samuelson (1969) and Merton (1969), who show that if returns are

i:i:d: then an investor with power utility has an optimal allocation that is insensitive to

the investment horizon, i.e. allocation in the long-run will be the same as in the short-

run. However, Barberis �nds if returns are predictable, and not i:i:d:, then horizon

e¤ects may in fact be observed. Further, even with parameter uncertainty there is

3See Fama (1990), Hafer et al (1992), Gosnell and Kolb (1997), Fauvel et al (1999), Diebold and Li
(2006), De Pooter et al (2007) and Guidolin and Timmermann (2008).

4As seen in Chapter 2 key studies include Campbell and Shiller (1991), Taylor (1992), Cuthbertson
(1996), Cuthbertson et al (1996, 2003), Longsta¤ (2000) and Sarno et al (2007).
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su¢ cient predictability of returns, such that investors allocate signi�cantly more to

stocks the longer their investment horizon and that those who ignore this estimation risk

over allocate to stocks5. He highlights the importance of parameter uncertainty, since

the standard errors of the estimated coe¢ cients may suggest, that the true forecasting

ability of the explanatory variable is lower than the actual coe¢ cient estimate implies.

Key studies that evaluate the predictive power of theory informed models under a

decision-based criteria include Abhyankar, Sarno and Valente (2005, henceforth ASV),

who �nd exchange rate predictability to signi�cantly alter the optimal allocation and

evidence of economic value to exchange rate predictability. Whereby, the realised

terminal wealth of an investor over a 10-year horizon who uses a monetary model

to forecast the exchange rate, is higher than that of the investor who assumes no

predictability. Further evidence is provided by Garratt and Lee (2009, GL) who also

incorporate model uncertainty in their investigation6. Della Corte, Sarno and Thornton

(2008, DST) assess the validity of the EH and examine the economic value of departures

from the EH7. Under statistical criteria, like many in the literature as discussed in

Chapter 2, they reject the EH. But under economic value criteria they �nd support

for the EH.

The �ndings of ASV, DST and GL illustrate that the conclusion of how well theory

informed models perform compared to atheoretic models from a forecasting perspective,

is sensitive to the evaluation criterion used. To be precise, under statistical measures

atheoretic models like the random walk are di¢ cult to beat. But under decision-

5Barberis models returns as being i:i:d: under the assumption of no predictability, compared to a
VAR model when modelling stock returns. Under i:i:d: returns the mean and variance evolve linearly.
He discusses how the variance of the cumulative returns grow slower/faster than linearly with the
investment horizon when predictability/parameter uncertainty is considered. He demonstrates how
the allocations di¤er under the two models because the variances evolving linearly under the i:i:d: and
less than linearly under the VAR. This is examined in more detail in the Chapter 5.

6They use four di¤erent models: the E¢ cient Market Hypothesis, the Monetary Fundamental, the
Purchasing Power Parity and the Autoregressive Models to predict the exchange rate, together with a
weighted average of the four models�density forecasts computed using Bayesian Model Averaging.

7In that, is there any gain in using the unconstrained VAR over the constrained VAR, where the
VAR is constrained by the restrictions implied by the EH, see Campbell and Shiller (1991).
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based methods encouraging evidence in favour of predictability, as captured by theory

informed models, is found.

The contributions of this chapter are empirical. The studies mentioned above

that examine asset return predictability focus their attention on stock returns and

exchange rates. We consider asset return predictability and the economic value of

this predictability in the context of interest rates, and to my knowledge DST is the

only other to consider bond return predictability using a decision-based criteria. Our

work di¤ers from DST in several ways; they focus their attention on testing the EH

and seeing if there is economic value of departures from the EH. We however, use an

unrestricted VAR model, since we do not seek to test the EH in this chapter. Here

we are concerned with �rstly, our models�ability to forecast out-of-sample and provide

a statistical and decision-based assessment and secondly, we examine the e¤ects of

parameter uncertainty and predictability on optimal allocation, neither of which DST

consider.

We focus our attention on the importance of predictability and parameter uncer-

tainty in asset allocation, generating density forecasts to capture the risk as well as the

return of the asset and consider the economic value of these forecasts to the investor.

We compare, not just the optimal allocation of an investor who assumes no predictabil-

ity against one who believes returns are predictable, but see if there are signi�cant gains

to an investor in terms of wealth from assuming predictability. Our work is based on

the asset allocation framework used in Barberis, ASV and GL.

In brief, we compute the optimal portfolio allocation for a buy-and-hold investor

with power utility over terminal wealth, using weekly data for the UK during 1997 week

10 to 2007 week 19, for two assets the 1-month and the n-month T-bill for n = 3; 6; 12

months, over investment horizons of up to 2 years. The assets considered here provide

risk-free returns and only di¤er in their maturity. We consider two models that make

opposing assumptions regarding return predictability. If the investor believes returns
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are not predictable, he uses a random walk with drift model to forecast returns and

inform his allocation decisions. If however, he believes that returns are predictable he

uses the MVARTmodel. Using these two models, we examine the impact predictability

and parameter uncertainty have on how the investor optimally allocates his portfolio.

Here we do not take into account transactions costs.

Two types of uncertainty are considered here future and parameter, where future

uncertainty is that surrounding forecasts which is the result of unobserved future shocks.

Parameter uncertainty for a given model, is that "concerned with the robustness of

forecasts to the choice of parameter values" GLPS (2006, pp. 153). Initially parameter

uncertainty is ignored, such that the investor assumes that there is no uncertainty

surrounding the parameter values and takes them to be �xed at their estimated values.

However, potentially insigni�cant standard errors may imply that the true forecasting

ability of past changes in the yields and the spreads between them may be weaker than

that suggested by the coe¢ cients estimates. Hence, by accommodating parameter

uncertainty an improvement in the portfolio decision may be observed.

Both statistical and decision-based criteria are used to evaluate the out-of-sample

forecasting performance of the models, to ascertain if indeed there is economic value

to assuming that bond returns are predictable and given by the MVART model. Our

results suggest that the investor allocates di¤erently when he assumes predictability, to

an investor who assumes that returns are not predictable. Further, the results under

the statistical and decision-based criteria do not entirely coincide, with the evidence in

favour of predictability being di¤erent under each criteria. We do not �nd economic

value of predictability at all the portfolio combinations and investment horizons con-

sidered. However, under the economic value measure the random walk model is not

superior to the MVART by the margin implied by the root mean squared errors. In fact

under the economic value measure some evidence in favour of predictability is found,

suggesting that the results are sensitive to the assessment criteria used.

163



Although we recognise that it may be unrealistic to assume that an investor will

have a portfolio consisting only of T-bills, the aim here is not to propose and test

realistic allocation strategies. But the objective is to use this illustrative strategy to

ascertain the e¤ect of predictability and parameter uncertainty on allocation decisions

and further, determine if there is economic value to interest rate predictability.

As highlighted in ASV, the measure of economic value based on utility, that we

also use here, is one way to de�ne economic value but not the only way. The aim

here is to present an alternative assessment criteria i.e. decision-based, that takes into

consideration the uncertainty about the forecast and the investor�s feelings about risk

by computing utility, which the investor seeks to maximise. As opposed to solely

using a statistical measure which does not take these factors into account. Under this

decision-based criteria, we use the end-of-period terminal utility to establish if there are

gains to the investor from assuming that interest rates are explained by the MVART

model.

The setup of this paper is as follows, Section 4.2 provides details of how we model

the interest rates, the investment decision and the framework used to evaluate the

economic value of predictability, when parameter uncertainty is both ignored and ac-

counted for. Section 4.3 describes the dataset, the estimated models and provides a

statistical evaluation of the forecasting performance of each model. In Sections 4.4 and

4.5 we analyse the e¤ects of predictability and parameter uncertainty on the optimal

allocations, and judge the models�forecasting performance by comparing the realised

end-of-period wealth generated under each, respectively. Section 4.6 concludes.
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4.2 Optimal Allocation, Parameter Uncertainty and

Predictability

We examine how a utility-maximising investor allocates his portfolio between 1-month

and 3-, 6-, or 12-month T-bills, that is between a selection of short run risk-free bonds.

We consider if there are gains in utility for an investor who believes returns are pre-

dictable and employs a theory informed model to forecast interest rates, in comparison

to one who believes returns are not predictable. Here we describe the model esti-

mated when we consider predictability and that when bond return predictability is

ignored. Further, we introduce how we measure the economic value of interest rates

under parameter uncertainty and predictability.

4.2.1 Modelling the Interest Rate

As described in Chapter 2 and 3, the EH states that the return on a n-period zero

coupon bond should equal the return on a rolling investment in a sequence of k m-

period bonds8, plus a time invariant term premium/liquidity premium c(n;m)

r
(n)
t =

1

k

"
kX
i=1

Et

�
r
(m)
t+(i�1)m

�#
+ c(n;m) (4.1)

That is, the long rate is given by an average of the expected future short rates plus

a liquidity premium. Further recall

s
(n;m)
t =

k�1X
i=1

�
k � i
k

�
Et

�
�r

(m)
t+im

�
+ c(n;m) (4.2)

8Where the integer k = n=m and n > m:
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which describes the spread by expected future changes in the short rate. That is, aside

from the constant premium, the spread is a re�ection of the expected change in the

short term rates over the life of the long bond.

If the above yields contain a stochastic trend, then if the EH holds the spreads

should be stationary. That is to say, if the yields share a common stochastic trend,

then we should �nd (q � 1) cointegrating vectors, as implied by stationary bivariate

spreads, in a set of q non-stationary yields. This is one method by which the validity

of the EH is tested using a VECM framework, as discussed in the previous chapter.

Assuming that yields are di¤erence stationary and that there exists a cointegrating

relationship between n- and m-period yields, such that spreads are stationary, then

there exists a Wold representation which can be approximated by the following VAR(p)

model

xt = �+B1xt�1 +B2xt�2 + :::+Bpxt�p + �t (4.3)

where in this multivariate case q = 4 with xt =
�
s
(12;1)
t ; s

(6;1)
t ; s

(3;1)
t ;�r

(1)
t

�0
. From the

previous chapter this VAR(p) is denoted the Multivariate VAR in Transformed Interest

Rates (MVART) model. It embeds the cointegrating relations between the yields,

describing the change in the m-period rate and the spread between the n- and m-period

yields using past changes and spreads.

The previous chapter models the UK term structure using a set of statistical and

theory informed models including an Autoregressive, Vector Autoregressive in Di¤er-

ences, VAR in Transformed Interest Rates and a Vector Error-Correction model. These

are estimated under both a bivariate and a multivariate speci�cation. In brief, evidence

in favour of the EH is found in the form of stationary spreads, yields sharing a common

stochastic trend and the over-identifying restrictions on the cointegrating vectors im-

plied by the EH can not be rejected. The in-sample properties of the theory informed

VECM and MVART models suggest that they have greater explanatory power for the
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term structure, in comparison to the statistical based models. Further, the restrictions

under the bivariate models are rejected in favour of the multivariate models.

The EH can be further tested by imposing restrictions on the MVARTmodel9. Here

we do not impose such a stringent structure. But given we �nd evidence of cointegration

amongst the yields, we use the MVART model that embeds the cointegration as implied

by the EH to explain and capture the UK term structure and in turn forecast the yields.

As such, if the investor believes bill returns are predictable, he employs the MVART

model to forecast future returns.

In contrast, if however the investor believes that returns are not predictable, the

random walk with drift (RW) model is used to forecast returns. Where in the VAR

xt =
�
�r

(12)
t ;�r

(6)
t ;�r

(3)
t ;�r

(1)
t

�0
and there are no predictor variables. Hence Bi = 0

and �r(n)t = �+ �t, i.e. the returns are given by a random walk with drift.

So under the assumption of no predictability in returns the investor uses the RW

model to forecast returns. Under the assumption of predictability he uses the MVART

model to forecast returns. By modelling T-bill returns in these two ways allows us to

examine whether it is bene�cial to the investor, in terms of wealth gains, to assume that

returns are predictable as opposed to assuming they are not. Both the RW and the

MVART models are estimated when parameter uncertainty, which is the uncertainty

about the true values of the model�s parameters, is both ignored and accounted for10.

4.2.2 Investment Strategies

At time T , the investor has to choose how to allocate his wealth between investing in

m-month or n-month T-bills. Where r(n)t and r(m)t are the annualised, continuously

compounded nominal zero coupon yields on a m-month and n-month bill respectively.

9Such that the spreads are determined in accordance to the EH. That is, the restrictions impose
the EH structure on the VAR, see Campbell and Shiller (1991).
10We di¤erentiate between when the model is estimated subject to stochastic uncertainty only and

when it is estimated subject to stochastic and parameter uncertainty, by denoting them as RW and
MVART, and RWPU and MVARTPU respectively.
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The investor wishes to make the investment over the period T to T + H i.e. over

H periods, assuming a buy-and-hold strategy where once the investment is made it

remains untouched until the end of the investment horizon in T +H:

If H = n, then the investment horizon is equal to the maturity of the longest asset

considered. So the investor allocates the proportion ! of his initial wealth in a sequence

of rolling investments in m-month bills and (1� !) in a single n-month bill. However,

if H > n then the investor allocates ! in a sequence of m-month bills and (1� !) in

a sequence of n-month bills. That is, he invests ! in a sequence of s = H=m rolling

investments in short m-period bills, and (1� !) in a sequence of l = H=n in long n-

period bills. Assuming that initial wealth is WT = 1, then the cumulative return at

the end of the investment period WT+H ; is

for H > n

WT+H = !
sQ
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�
1 +R

(m)
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� 1
s
+ (1� !)
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for H = n

WT+H = !
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where 1
s

sP
i=1

�
r
(m)
T+(i�1)m

�
and 1

l

lP
i=1

�
r
(n)
T+(i�1)n

�
give the cumulative returns from a se-

quence of rolling investments in m-period and n-period T-bills over a H period hori-

zon respectively11, see Appendix 5. It can be seen that if H = n, then the return

11This data, from the BoE, is continuously compounded and annualised such that the monthly return
for an n-month bill can be obtained by dividing by 12. Since we want to compare the expected return
under each investment the annualised returns need to be scaled and are done so by the 1

s and
1
l terms.
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from the investment in the long n-period bill is known with certainty12, such that

ET

�
r
(n)
T

�
= r

(n)
T . From here on we will not explicitly state a separate equation for the

case where H = n, as setting H = n in equation (4.4) will yield the same result.

Into this decision making process risk aversion can be incorporated, using the end-of-

horizon wealth WT+H from the standard constant relative risk aversion (CRRA) power

utility function13, the utility is

� (W ) =
W 1�A

1� A (4.6)

where A is the coe¢ cient of risk aversion. The investor faces the following optimisation

problem in T

max
!
ET (� (WT+H (!)) j 
T ) (4.7)

where the investor computes the expectation above conditional upon the information

set available at T . That is, the investor maximises the expected utility with respect

to the proportion of the portfolio allocated to the investment in the m-month bills, e.g.

! = 1 suggests all is invested in the m-month, equally ! = 0 suggests all in the n-month

bills.

Assessment of the above strategy requires expectations of � (WT+H (!)) to be formed

based on the information available to the investor at T . Due to the non-linear nature

of WT+H , the point forecasts of r
(m)
T+(i�1)m and r

(n)
T+(i�1)n over the H period investment

horizon are insu¢ cient to evaluate ET (� (WT+H (!)) j 
T ) : Since point forecasts do

not convey the future uncertainty surrounding the returns, if the risk about the future

returns is of concern then the entire distribution surrounding each forecast must be

considered, see Appendix 6. Here we incorporate risk in two ways; �rstly for each

step ahead forecast of the returns calculated we compute a distribution of values which

12In this sense the long n-period return is riskless. But the return from the rolling investments
in m-period bills are risky, since future short rates are unknown. However, when H > n then the
cumulative returns from both the n- and m-period investments will contain unknown future returns.
13See Campbell and Viceira (2003, pp. 24 and 42) for details on the properties of the CRRA utility

function.
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accounts for the uncertainty surrounding the projections; secondly we consider the

investors feelings about risk through the calculation of expected utility rather than

expected wealth.

The entire joint probability distribution of the forecast values of r(m)T+(i�1)m and

r
(n)
T+(i�1)n, where i = 1 to s; or l respectively, is considered. From which the expected

utility can be calculated for each possible proportion, i.e. ! = 0 to 1; increasing by 0:01

each time. The optimal allocation is that which yields the maximum expected utility

from all possible allocations.

Fundamental to this optimisation problem is the distribution the investor employs

to evaluate this expectation. The distribution used depends upon whether the investor

assumes predictability in bill returns or not. To ascertain the in�uence of predictability

on allocation decisions a comparison between the allocations of an investor who ignores

predictability, to that of one who takes it into account can be made, this is discussed

in greater detail below.

The above investment strategy will be explored with n = 3; 6 and 12-month T-bill

rates and m = 1-month rate. Where each of the three pairwise combinations of n and

m will be examined. So over the investment horizon H; the investor will consider how

to optimally allocate when faced with the following three portfolio choices:

(1) 1-month vs 3-month under H = 3; 6; 12; 18; 24 months

(2) 1-month vs 6-month under H = 6; 12; 18; 24 months

(3) 1-month vs 12-month under H = 12; 24months

In the case where H = n there is uncertainty surrounding the future values of the

short rates only and for H > n there is uncertainty about the future long rates too.

Each of (1), (2) and (3) are considered for the levels of risk aversion A = 2; 5; 10,

with A = 10 being the highest level. We consider how (i) the assumptions regarding

predictability, (ii) whether the investor incorporates parameter uncertainty or not, (iii)
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his level of risk aversion and (iv) the length of the investment horizon, a¤ect the way in

which he allocates his portfolio. This is examined under the three di¤erent portfolio

combinations detailed above14.

4.2.3 The Probability Density Function of the Forecast Values

The approach taken to estimate the density function when parameter uncertainty is

ignored and when it is incorporated will now be discussed. The form the density

function P (XT+1;H j XT ) takes is determined by the types of uncertainty surrounding

the forecasts, as well as the way in which the function is characterised and estimated.

The estimation methods adopted by those including Kandel and Stambaugh (1996),

Barberis and ASV estimate the density function using a fully Bayesian approach. This

involves the construction of a posterior distribution and the use of priors for the para-

meters. An alternative approach takes a classical stance on the Bayesian approach to

estimating the density function, see Garratt, Lee, Pesaran and Shin (2003 and 2006,

GLPS) and GL, where the need for priors is avoided since approximations of certain

probabilities of interest are made. Here we use the second approach.

In order to evaluate each investment decision over the investment horizon, the in-

vestor needs the probability density function of the forecast values of the m- and n-

month rates. Following the description in GL, then xt = (x1t; x2t; :::; xqt)
0 is a q � 1

vector of q variables (that includes at least the variables of interest i.e. r(m)t and r(n)t ),

and XT = (x1;x2; :::;xT )
0 is a q � T vector containing the observations 1 to T of the q

variables. Since forecasts of the variables are required, the conditional probability den-

sity function P (XT+1;H j XT ) is of interest. This predictive density function gives the

14We assume here that there are 4 weeks in a month and 13 weeks in 3 months. From equation (4.4)
it would appear that the number of weeks under each of the three investment choices do not match,
e.g. if H = 12 months it appears that a rolling investment in twelve 1-month bills matures after 48
weeks and not 52 weeks like in a rolling investment in 3-, 6- or 12-month bills. This assumption is
made for ease of notation, in practice interest is accured daily and the length of time each investment
is held for are equivalent.
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probability density function of the forecast values of the q variables, over the horizon

T + 1 to T + H, where XT+1;H = (xT+1;xT+2; :::;xT+H)
0 conditional on the observed

values of the q variables from 1 to T: That is to say, the probability of observingXT+1;H

given that XT has already been observed:

The investment problem that the investor is faced with depends on whether he

considers the uncertainty surrounding the parameters. In the case where the investor

ignores parameter uncertainty and is only concerned with the uncertainty about the

future values, he calculates the expectation over the distribution of returns conditional

on the �xed parameter values b�, such that the predictive density is P �XT+1;H j XT ; b��.
So the investor�s problem to solve ignoring parameter uncertainty is

max
!

�
ET� (WT+H (!)) =

Z
� (WT+H (!)) :P

�
XT+1;H j XT ; b�� dXT+1;H

�
(4.8)

However, if the investor incorporates parameter uncertainty then the predictive density

for the returns is given by P (XT+1;H j XT ), which is conditional on the observed data

only

P (XT+1;H j XT ) =

Z
P
�
XT+1;H j XT ; b��P (� j XT ) d� (4.9)

The posterior probability of �, denoted P (� j XT ) gives the uncertainty surrounding

the parameters given the observed data. So here the investor acknowledges that � has

a distribution conditional on XT . Now the investment problem is

max
!

�
ET� (WT+H (!)) =

Z
� (WT+H (!)) :P (XT+1;H j XT ) dXT+1;H

�
(4.10)

the posterior density P (� j XT ), equation (4.9), is proportionate to the product P (�) :P (XT j �) ;

172



i.e. of the prior on � and the likelihood function15.

GLPS and GL suggest that the predictive density P (XT+1;H j XT ) can be estimated

using Monte Carlo integration techniques if meaningful priors exist. However, in the

circumstance where meaningful priors are di¢ cult to obtain, they propose the use of

approximations to the key probabilities needed to estimate the predictive density. They

make the following assumption for the posterior probability of �

� j XT

!

~N
�b�T ; T�1 bV�

�
(4.11)

where b�T is the maximum likelihood estimate of the true parameter value of � and

T�1 bV� is the asymptotic covariance matrix of the estimated parameters b�T .
The forecasts are in�uenced by various uncertainties including stochastic, parameter

and model uncertainty. In this exercise we consider both the uncertainty associated

with the model (stochastic) and that surrounding the estimated model parameters (pa-

rameter). Although we abstract from model uncertainty, we do however model interest

rates under two di¤erent assumptions. First assuming returns are not predictable as

given by the RW model and second that they are predictable as given by the MVART

model.

For these two models, using stochastic simulation techniques an estimate of the

probability density function of the forecasts can be obtained. Where these simulations

provide an estimate of the predictive densities P
�
XT+1;H j XT ; b�� in the case where

parameter uncertainty is ignored and P (XT+1;H j XT ) when it is considered. It is then

possible to evaluate ET (� (WT+H) j 
T ) for a range of portfolio weights !: In practice

� (WT+H (!)) is computed eR times for each value of !, then the mean across these eR
15Using Bayes rule, if (i) P (� j XT ) = P (� \ XT )=P (XT ) and (ii) P (XT j �) = P (XT \ �)=P (�),

rearrange (ii) and substitute into (i) P (� j XT ) =
P (�):P (XT j�)

P (XT )
. If P (XT ) is the likelihood of observing

our dataset and is equal to some �xed likelihood, then P (� j XT ) / P (�) :P (XT j �), i.e.they are equal
subject to this scalar.
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replications is calculated, from which the investor chooses the weight ! that maximises

the expected utility ET� (WT+H (!)) : Here ! takes values 0, 0.01,...,0.99,1, where

! = 0 suggests that the investor should allocate all to n-month bills. Equally ! = 1

suggests that all should be allocated to 1-month bills. Since the weight is between 0

and 1 we do not allow for short selling. Details of the estimation procedure, how the

computations are carried out and the method by which the errors are calculated16 are

provided in Appendix 7.

So here we consider four possibilities for the distribution of future returns, given

by when the investor assumes no predictability compared to predictability, both when

ignoring and then incorporating parameter uncertainty. From this how the optimal

allocations di¤er under the assumptions of predictability and parameter uncertainty,

when each of the four distributions are used to forecast returns can be observed.

4.3 Modelling the UK Treasury Bill Rates

4.3.1 Data

We employ data for UK Treasury Bills of maturities 1, 3, 6, 12 months over the period

1997 week 10 to 2007 week 19. Speci�cally, Wednesday observations of the nominal

government spot rates, giving a total of 532 observations for each maturity, all yields

are continuously compounded and annualised17.

The data is o¢ cial Bank of England (BoE) data on the Government liability curve,

we use the reported daily data for the nominal spot rates curve at the short end, from

16The errors can be drawn using either parametric or non-parametric methods, see GLPS (2006, pp.
166-168). Here parametric methods are utilised, where the errors are assumed to be i:i:d:N (0;�)
serially uncorrelated white noise errors.
17We use estimated yield curve data, o¢ cial data estimated by the BoE because actual T-bill data is

unavailable during some periods of our sample. However, when plotting the constructed data against
the T-bill data for the same maturity when it is available, little di¤erence between the two is observed.
So we are satis�ed that the data used here is a fair re�ection of what the investor would get should he
want to undertake an investment in T-bills.
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which we select the Wednesday observations. This nominal zero coupon yields data

was calculated using gilt prices and General Collateral (GC) repos rates. Zero coupon

bonds or risk free discount bonds are used in the construction of yield curves and in

empirical studies of the term structure, because it is desirable for the instruments to

di¤er only in their term to maturity. From the BoE data notes these n-month nominal

government spot interest rates refer to those applicable today, on a n-month risk-free

nominal loan and by de�nition this (the nominal government spot rate) is the yield to

maturity of a nominal zero coupon bond18.

We assume here a buy-and-hold investor, i.e. the investor holds the bond to ma-

turity19. In order to assess the various investment strategies the investor requires the

holding period returns for the bonds. Since the investor receives zero coupon payments,

the yields used here re�ect the total return from holding this asset. In which case the

zero coupon yields that we use are equivalent to the holding period returns. So here

what we refer to as returns/yields denoted r(n)t , are the holding period returns.

From the summary of this data provided in Chapter 3, the 1-, 3-, 6-, and 12-month

T-bill yields in general appear to decline until 2003, after which an upward trend is

apparent, Figure 4-1. With average yields of 4.98%, 4.97%, 4.96% and 4.99% for each

rate respectively. Further, the ADF, PP and KPSS unit root tests are employed to

determine the order of integration of each T-bill rate and the spreads between them

over the entire sample. The results indicate that the yields are di¤erence stationary,

and the (n;m) rate spreads between the (3; 1) ; (6; 1) and the (12; 1) rates are stationary.

The two models are each estimated over the period 1997 week 10 to 2004 week 18

(374 observations) and then recursively at weekly intervals through to 1997 week 10 to

2005 week 18 (427 observations), giving 54 recursions in total. For each recursion we

generate h-step ahead out-of-sample forecasts20 for h = 1; 2; :::; H; ::: and the investment

18Further details of the data is provided in the previous chapter and in the Data Appendix.
19ASV, Barberis and GL also assume a buy-and-hold investor.
20We denote the investment horizon H in months since the T-bills are denoted as n-months to
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horizons includingH = 3; 6; 12; 18 and 24months. So for the �rst recursion, we forecast

over the period 2004 week 19 to 2006 week 18 and for the last recursion 2005 week 19

to 2007 week 19. For each recursion the investor will use his generated forecasts to

determine how to allocate his portfolio optimally21. For each of the three portfolio

choices i.e. 1-month vs 3-month, 1-month vs 6-month and 1-month vs 12-month, under

eachA andH, we will have 54 allocation decisions with which to compare the allocations

and utility gains under each model, both without and with parameter uncertainty.

4.3.2 Estimation

Estimates of the RW model are given in Table 4.1. From the previous chapter, the

MVART model was estimated of order 9 the results are recalled in Tables 4.2 and 4.322.

Comparing the two models, a gain in explanatory power for the 1-month return is ob-

served when assuming returns are predictable, all coe¢ cients are jointly signi�cant at

the 1% level under the MVART model. The diagnostics show evidence of serial corre-

lation in the RWmodel, in contrast to the MVART model. The nulls that the residuals

are homoskedastic and normal are rejected under both models, which is unsurprising

given that we are using �nancial data. These results do indicate gains in terms of

explanatory power and having a model free of serial correlation when predictability is

assumed.

4.3.3 Statistical Evaluation of the Forecasting Performance

A statistical evaluation of the out-of-sample forecast performance of the two models can

be made using the root mean squared error (RMSE). Table 4.4 gives the RMSEs of the

maturity. However, the data has a weekly frequency, so when we refer to the �h-step�ahead forecasts
each �step�is a week.
21In order to evaluate the investment decision the investor does not require all of the h-step ahead

forecasts generated, only the forecasts r(m)T+(i�1)m and r(n)T+(i�1)n for i = 1 to s; or l respectively.
22Estimates of each model for the �rst recursion only are provided, to give an overall impression of

the in-sample predictability. At the forecasting stage the models are estimated recursively.
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1-, 3-, 6- and 12-month return forecasts, for forecast horizons H = 1; 3; 6; 12; 18 and 24

months for each model, both ignoring and incorporating parameter uncertainty. Table

4.5 reports the ratio of the RMSEs for each model to the benchmark model, which is

taken to be the RW model. A value of the ratio less than one indicates that the RMSE

of the model is lower than that of the benchmark.

The RMSEs of the bill return forecasts indicate that only at H = 1 for the 1-month

return does the MVART model beat the benchmark. The RW and RWPUmodels, that

make the strong assumption of returns not being predictable, outperform the theory

informed models at each horizon for the 3-, 6- and 12-month returns under this criteria.

Comparing the RW models without and with parameter uncertainty the RMSEs are

virtually the same, unsurprising since we only estimate �; whereas small di¤erences

are observed between MVART and MVARTPU. In general, the di¤erences observed in

the RMSEs amongst the models are small. These results broadly correspond to those

found in the interest rate and exchange rate forecasting literature, which in general �nd

sophisticated theory informed models are outperformed by a simple random walk.

From the ratios, it is apparent that not only do the RW and RWPU models out-

perform the MVART and MVARTPU models. But the ratio of the MVART models

to the benchmark increases with H, suggesting their forecasting ability deteriorates

relative to the RW model with the investment horizon. Generally, the RMSEs increase

up until H = 6 before decreasing, implying that they are non-monotonic. Whereby

they do not increase with H, but instead oscillate in relative value. This suggests that

both models are better at forecasting over the longer horizon, than they are over the

shorter. Although this statistical evaluation provides an indication of the forecasting

performance of the models, a clear indication of how these models perform in an invest-

ment decision making context, in terms of the economic value of the models�forecasts,

is not provided23.

23When we refer to the �RW models� and the �MVART models� this includes without and with
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4.4 Predictability & Parameter Uncertainty E¤ects

We now examine the implications for the optimal allocation when the investor assumes

either that returns are not predictable or predictable, in both cases parameter uncer-

tainty is ignored and accounted for. In the case where parameters are assumed �xed

the maximisation problem is given by equation (4.8) and under parameter uncertainty

by equation (4.10).

The models are estimated �rst over 1997 week 10 to 2004 week 18, the optimal

weights are calculated from the forecasts generated from each estimated model, this is

then repeated moving forward by one week re-calculating the expected utility to �nd

the optimal weight for this new augmented sample. This is repeated for each recursion,

such that we have results for 54 recursions over the total evaluation period 2004 week

19 to 2007 week 19. Figures 4-7 to 4-9 and the results in Table 4.6, are based on the

optimal allocation averaged over the 54 recursions for a particular A, H, model and

portfolio combination.

Figures 4-2 to 4-6 show the expected utility for each recursion, from a rolling invest-

ment in the 1-month bill given by E(U1) and n-month given by E(Un) for n = 3; 6; 12,

A = 2 and a particular H. When the investment horizon H = n then this is the actual

utility gained. We only present the plots for A = 2 because a signi�cant di¤erence in

the allocations between this and that for A = 5 and 10 is not observed, where A = 10

is the highest level of risk aversion. These plots show that the computed expected

utilities di¤er under each model for a particular H. Although generally the expected

utilities under each model are of the same magnitude and they change over the recur-

sions in a similar way for H = 3, di¤erences between the expected utilities calculated

under the RW models and the MVART models (both without and with parameter un-

certainty) emerge at H = 6; 12; 18; 24 months, these di¤erences will be re�ected in how

parameter uncertainty for each model. When analysing the results later we compare RW with MVART
�rst ignoring parameter uncertainty and then when they both incorporate it.
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the investor ultimately allocates.

Figures 4-7 to 4-9 provide an illustration of the link between the expected utilities

computed by the investor and the optimal allocation. They depict the optimal al-

location to the 1-month, 100!%, given the di¤erence in E(U) between the �all in the

n-month�and �all in the 1-month�investments, for each portfolio combination, for A = 2

under the MVART model ignoring parameter uncertainty. It can be seen that when

the di¤erence is positive, where we expect to gain a higher utility from investing �all in

the n-month�than �all in the 1-month�, the investor allocates his entire initial wealth in

the n-month and zero to the 1-month, and vice versa when the di¤erence is negative24.

The impact of the various e¤ects upon the allocations is summarised in Table 4.6.

Here under each portfolio combination, for a given A;H and model, the table gives as a

percentage the number of times out of the 54 recursions the investor allocates everything

in the 1-month bill, i.e. ! = 1. We present the results like this for two reasons, �rst

nearly all the allocation results suggest an optimal weight of ! = 0 or 1. This implying

that the investor, given the aim is to maximise expected utility, invests everything either

in the 1-month or n-month, depending on which yields the higher expected utility and

not a mix of the two bills considered. Secondly, using these percentages we can see

how the allocations di¤er under varying degrees of risk aversion, investment horizons,

assumptions of predictability and the inclusion of parameter uncertainty.

When considering how the allocations change with the level of risk aversion, they

vary by 0 to 8% amongst the three values of A considered25. In the majority of cases

the di¤erence in allocations is very small. This is arguably not surprising given that

the assets considered here belong to the same asset class, only di¤ering in their term to

maturity and are positively correlated. So even though the investor may be highly risk

24Again because a signi�cant di¤erence in allocations between the di¤erent values of A is not ob-
served, we only present the plots for A = 2. Further, we only show the plots under the MVART
model, to provide the reader with a general impression of the link between the expected utilities the
investor calculates and how he eventually allocates between the two bills.
25This exercise was also carried out with extreme degrees of risk aversion i.e. A = 20; 50; 100, the

results were not signi�cantly altered.
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averse, the opportunity for the investor to diversify out the risk here is small because

the risk is non-diversi�able.

Now comparing the allocations for di¤erent investment horizons for a particular

portfolio combination, 1-month vs n-month and particular model. Under the 1-month

vs 3-month assuming no predictability as H increases, the allocation to the 1-month

increases by up to 10%; assuming predictability the increase is bigger of up to 61%.

Under 1-month vs 6-month, assuming no predictability the allocation to the 1-month

increases by up to 10%; assuming predictability by up to 24%. Under 1-month vs 12-

month, assuming no predictability the allocation increases by 4% ignoring parameter

uncertainty, but decreases by up to 14% with parameter uncertainty; under predictabil-

ity the allocation is unchanged. In general, the allocation to the 1-month increases with

the investment horizon, where the increases are larger under predictability. Suggesting

that if the investor assumes predictability, then the allocations are more sensitive to

the investment horizon.

Here both the RW and MVART models�variances will evolve in the same way i.e.

faster than linearly26 with H, suggesting that the bills appear riskier in the longer run

than the shorter horizons for both models. Since it is not possible to rank the variances

under each model a priori, we later discuss how the actual variances of the forecasts

evolve with H here using our computed RMSEs under each model.

We now examine the e¤ect of predictability ignoring parameter uncertainty. When

comparing the RW with the MVART model the investor moves from assuming no

predictability to predictability of returns. Under predictability if the investor is better

able to capture and explain the yields i.e. in-sample R
2
is higher, then assuming that

the relationship remains stable over the forecast horizon e.g. no structural breaks,

26Appendix 8 discusses the mean and variance of returns when the returns are modelled as non-
stationary, in comparison to when they are treated as stationary, and further examine how the variance
behaves over T to T +H under both. The yields are found to be and thus modelled as non-stationary
under both the RW and MVART models. So the discussion of how the variances of the returns and
cumulative returns will evolve under a RW model in Appendix 8 is appropriate here.
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we would expect the MVART model to produce more accurate forecasts. Thus the

variance of the forecasts under the MVART would be lower than that under the RW,

hence the asset looks less risky under the MVART.

Moving from the assumption that returns are not predictable as under the RW

model, to that they are as under the MVART model, there is a gain (in-sample) in

explanatory power as can been seen by the R
2
for �r(1)t , which increases from 0% to

27%. Although only�r(1)t is directly comparable under both models, from the previous

chapter where we modelled �r(n)t for n = 1; 3; 6 and 12 months, past changes and

spreads were found to have explanatory power. So it is reasonable to expect all the

n-month bills to gain from moving from the RW to the MVART model in terms of

explanatory power. Such that it applies to all the returns that as they become more

predictable, then they become more attractive to the investor.

However, this gain in in-sample predictability is not translated into an out-of-sample

gain, as the RMSEs of the MVART model are higher than those of the RW. However,

GL note "...as shown in Clements and Hendry (2005), using RMSE as a criterion

penalises models for including variables with low associated t-values even if the model

is misspeci�ed by their exclusion", so the poor performance of the MVART model

according to the RMSE criterion, may be largely due to the fact that it is heavily

parameterised in comparison to the RW model.

In this exercise we consider two di¤erent models for forecasting T-bill returns, the

random walk model which assumes no variables are able to explain the change in the n-

month T-bill return and the MVART model which on the opposite end of the spectrum

assumes that past changes and spreads have explanatory power. So if the investor

believes that returns are not predictable, then he will use the random walk model to

forecast interest rates. Conversely, if he believes they are predictable he will use the

MVART model. Ultimately, how he allocates his portfolio is conditional on which

model he believes to be a correct representation of reality.
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The di¤erence in allocations between the RW and MVART models varies from 8

to 58%. Under 1-month vs 3-month, for all H the MVART models allocate more

to the 1-month. However, under the 1-month vs 6-month and the 1-month vs 12-

month for each H, it is the RW models that allocate more to the 1-month. For each

portfolio combination (1-month vs n-month, for n = 3, 6 and 12-month bills) both of the

assets will go from being not predictable as determined by the random walk, to being

predictable as described by the MVART, so both will gain in terms of predictability.

How the allocation di¤ers under the RW to that under the MVART, will depend on

which of the two bills gains more from the assumption of predictability.

Generally, large di¤erences are observed between the RWmodels and MVART mod-

els, suggesting that the investor who assumes that returns are not predictable will allo-

cate di¤erently to one who assumes that they are predictable. Thus the assumptions

made regarding predictability are important in determining how the investor allocates.

Looking to the e¤ect of parameter uncertainty, incorporating parameter uncertainty

increases the variance of the forecast returns at all H, so the asset looks riskier relative

to when it was modelled ignoring parameter uncertainty. If all the assets are a¤ected

by this additional form of uncertainty, how the allocation changes when parameter

uncertainty is incorporated to when it is ignored under a given model will be determined

by, for which asset the variance has increased the most.

Comparing the allocations without and with parameter uncertainty for both the

RW and the MVART models in turn, allows the impact parameter uncertainty has on

the allocation to be isolated. The impact on allocation varies by 0 to 21% under the

RW model. In the 1-month vs 3-month portfolio combination, at all H the allocation

changes by 0 to 2%; 1-month vs 6-month by 0 to 6%; 1-month vs 12-month H = 12

by 0 to 2% and up to 21% for H = 24. In most cases the allocation to the 1-month

increases under parameter uncertainty, suggesting that the 1-month looks comparatively

less risky when parameter uncertainty is incorporated than the n-month.
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Under the MVART model parameter uncertainty has more of an impact, where the

change in the allocation ranges from 0 to 17%. For each of the portfolio combinations,

for all H, in the 1-month vs 3-month the allocation changes by 0 to 6%; 1-month vs

6-month at all H by 7 to 17% and no change is observed in the 1-month vs 12-month.

Mostly the allocation to the 1-month decreases under parameter uncertainty, implying

that under the MVART model with parameter uncertainty the 1-month looks riskier.

To help explain the optimal allocations observed, we can consider how the variances

about the distribution of future predicted returns evolves over the forecast horizon27.

Here it is reasonable to suppose that the RMSEs and the variances are closely related28,

allowing us to use the RMSEs as an indication of how the variances of the forecasts

evolve. Recall Tables 4.4 and 4.5, the non-monotonic RMSEs imply that the variances

of the forecasts are also non-monotonic. They increase up until H = 6; 12 months and

then decline. Which as the following quote from Hall and Hendry (1988, pp. 256-7)

highlights may not be so surprising "Hendry (1984) has demonstrated that the standard

error need not increase monotonically, as there is a term in the formulae for the model

standard error which reaches a maximum and which then may decline.", further Hall

and Hendry mention that if this non-monotonicity (in the model standard error) is

stronger than the rest of the formulae, then the total standard error will behave in this

non-monotonic way.

Since the variance about the forecasts contracts and expands with H, the asset

will appear more risky at some horizons than at others. Further, the variances of the

di¤erent returns oscillate at di¤erent rates, otherwise the RMSE for each return would

be equal. This indicates that some n-month returns have a greater variance about

their distribution of forecasts than others. So at some horizons the 1-month bill will

27Given that the bill returns are non-stationary in levels, then as demonstrated in Appendix 8 the
variances will grow faster than linearly with H under both the RW and MVART models.
28The RMSE measures the dispersion around the actual value of a variable, whereas the variance

measures the dispersion about the mean of the distribution. If the distribution is unbiased then the
mean of the distribution equals the actual value, in which case the RMSE equals the variance of the
forecast.
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appear more risky than the n-month and at others less. Under the RW models a clear

ranking emerges with the 1-month having the largest variance and the 12-month the

smallest, for all H. Under the MVART models the variances are not only bigger for

each bill and H, but seem to oscillate more. With the 1-month looking less risky than

the n-month over the shorter horizons and then more risky over the longer horizons.

This non-monotonicity combined with the fact that the variances of the returns

expand and contract at di¤erent rates could provide an explanation for the optimal

allocations observed here. In that, earlier we saw that when computing expectations of

� (WT+H (!)), due to the non-linear nature ofWT+H the investor requires the variances

and the covariances of the forecast returns at each step ahead as well as their means.

So how the variances of the forecasts di¤er for each n-month bill over H and with

assumptions regarding predictability and parameter uncertainty, will serve to in�uence

expected utility because of the way it is calculated and thus the ultimate optimal

allocation.

4.5 Economic Value of Predictability

It is clear from the results that the allocations are sensitive to the assumptions made

regarding predictability, whether parameter uncertainty is incorporated and the invest-

ment horizon. In this investigation we also seek to ascertain if there is economic value

to interest rate predictability. The RMSE provides a statistical measure of forecast

accuracy, now we will assess forecast performance by considering the economic value

of the forecasts to the investor. An economic evaluation of the forecast performance

of each model is reported in Tables 4.7 to 4.9 under each portfolio combination for

each A and H. We compute the end-of-period wealth29 that the risk averse investor

would have achieved over 2004 week 19 to 2007 week 19, had he allocated his portfolio

29We follow ASV and GL in our measure of economic value being based on wealth, as mentioned in
ASV this is only one way to de�ne economic value.

184



as suggested by the optimal weights of each model for a particular A and H. Where

the optimal weight ! is that calculated by solving the utility maximisation problem30.

These realised wealths are averaged over 54 recursions and then ranked in descending

order, so the performance of each model can be compared.

Apart from the RW and MVART models described above, under which parameter

uncertainty is both ignored and incorporated to derive the optimal allocations, we

introduce two passive �lazy�strategies. Under the lazy strategies the investor makes no

attempt to model or predict the returns, but instead either invests (1) all in 1-month

bills (A1) or (2) all in n-month bills (An) for n = 3, 6 or 12.

The top position is mostly occupied by the lazy �all in 1-month� strategy, with

the �all in n-month�strategy coming last. However, during a large part of the forecast

horizon 2004 week 19 to 2007 week 19, over which this evaluation of the models is made,

the 1-month return was higher than the others, Figure 4-1. Looking to positions 2 to

5, under the 1-month vs 3-month the RW models perform well at H = 3; 6 and the

MVART models at H = 12; 18; 24. However, under 1-month vs 6-month and 1-month

vs 12-month the success of the RW models is apparent at all A and H.

We have considered two di¤erent forecast evaluation criteria, the RMSE which pro-

vides a statistical measure and the realised wealths which is an economic value measure

of forecast accuracy. When comparing the results under the two criteria, under the

1-month vs 3-month the RW models outperform the MVART models at all H, when

considering the RMSEs. Whereas the MVART models achieve a higher realised wealth

at H = 12; 18; 24 under the economic value measure. So the conclusions drawn under

each criteria do not entirely correspond. Under the 1-month vs 6-month and 1-month

vs 12-month both the statistical and the economic value criteria do correspond, to �nd

the RW models perform best at all H.

Also from the RMSE ratios Table 4.5, the performance of the MVART models rela-

30The forecasts produced by each model are used to determine the optimal weight. These weights
are then combined with actual/realised returns to give the realised end-of-horizon wealth.
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tive to the benchmark deteriorates as H increases. So we would expect the di¤erence

between the realised wealths of the two models to also increase as H increases to re�ect

this. But the di¤erences in the realised wealths between the RW and MVART models

are small. Further, the ratios of the realised wealths to the benchmark, Table 4.10,

are quite constant over H.

So the RMSEs suggest that the MVART models perform much worse than the

RW. But the economic value results suggest there is little di¤erence between the two

models. This implies that the forecasting errors of the MVART are larger, but when

this is translated through to realised wealths a huge di¤erence is not observed, with

the realised wealths not exhibiting such an obvious di¤erence in performance between

assumptions of no predictability and predictability.

We ignore transactions costs in this exercise. But appreciate that in the comparison

of an investment in a n-period long bond with a rolling investment in m-period bills,

the transaction costs incurred under the two alternate investments will di¤er. With

that of the rolling investment being higher. From the realised wealths in Tables 4.7 to

4.9, comparing the realised wealths of A1 with An for n = 3; 6; 12 months, compares

investing in a long bond with the rolling strategy. For all A and H in this sample

the strategy of investing all in a sequence of 1-month bills yields the highest realised

wealth. However, the di¤erences in the realised wealths between the two strategies are

very small, so any gain from adopting a rolling strategy is likely to be eradicated with

the inclusion of transactions costs.

4.6 Conclusion

Previous studies �nd that by using an alternative assessment criterion, that considers

the economic value of the forecasts e.g. using pro�ts or utility, in comparison to con-

ventional statistical methods can yield favourable results for theory informed models.
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These papers �nd evidence to support the argument made by Leitch and Tanner (1991),

Granger and Pesaran (2000) and Pesaran and Skouras (2004) that forecasts should be

judged in the decision making context for which they are intended. In our case, like

others before us, this context is that of investment decision making.

In this investigation we examine how the optimal allocations of a utility maximising

investor are a¤ected by, the assumptions he makes regarding the predictability of returns

and parameter uncertainty. If the investor believes that returns are not predictable he

uses an atheoretic random walk with drift model in his decision making. Alternatively,

if he believes they are predictable he uses the theory informed MVARTmodel. Further,

we evaluate the economic value of the out-of-sample forecasts of bill returns generated

under these two models. The investment decision is whether to invest in 1-month or n-

month bonds, this is examined in a framework that both ignores parameter uncertainty

and explicitly allows for it.

The importance of the Expectations Hypothesis is well documented in the interest

rate literature. Here given that we �nd evidence of cointegration amongst the yields

from the previous chapter, we use the MVART model that embeds the cointegration

relations implied by the EH to model the interest rates and then evaluate interest rate

predictability in this economic value framework.

The e¤ect of assuming predictability on the optimal allocation is considerable, where

the optimal weights under predictability were in some cases greatly di¤erent to those

under no predictability. The e¤ect of parameter uncertainty is small over the invest-

ment horizon considered here, even though previous studies such as Barberis (2000)

report signi�cant parameter uncertainty e¤ects these are prominent at horizons longer

than considered here.

Under the statistical evaluation criterion, the RW models outperform the MVART

models at almost all horizons when forecasting bond returns. Although evidence

of misspeci�cation at the estimation stage is found under the RW model. When
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an economic value approach is used over the sample investigated here, we �nd some

evidence that an investor seeking to optimally allocate his wealth between 1-month and

n-month UK T-bills, is better o¤ in terms of higher end-of-horizon wealth by assuming

predictability than an investor who assumes no predictability. Notably, for n = 3 at

H = 12; 18; 24. For n = 6 and 12 months under the assumption of predictability, the

realised wealths are marginally lower than those when the investor assumes returns are

not predictable.

From Clements and Hendry (2005a) as quoted in GL the RMSE criteria penalises

heavily parameterised models. Here this could be exaggerating the superior perfor-

mance of the RW model relative to the MVART under this criteria. Although the re-

alised wealths imply that in some cases there are no gains from assuming predictability

over no predictability, the realised wealths of the two models are of the same magnitude

and their ratios are very close to one. What can be deduced from these results is that

the performance of the MVART under the economic value criteria is not as poor as the

RMSEs would suggest. This evidence of disparity between the results obtained under

the two criterion suggests that the results are sensitive to the criterion used.

This exercise considers the allocation between short term bills, with the longest

maturity being 12 months and investment horizon being 24 months. We �nd for a

utility maximising investor it is not optimal to hold a mixed portfolio of 1-month and

n-month bills. As explained earlier this is largely due to the assets considered here,

risk-free T-bills, having a high positive correlation amongst them. So the opportunity

for the investor to diversify here is small, because the risk he faces is non-diversi�able

given these assets. One possible extension to this investigation is to consider a longer

investment horizon and see if parameter uncertainty has more of an impact at these

longer horizons. Another would be to expand the portfolio set to include a risky asset.

In the next chapter, we use the asset allocation framework discussed here and extend

it by considering a risky asset. We compare a risky stock, where it is possible to make a
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loss from investing, with a risk-free T-bill. Now the investor does have the opportunity

to diversify risk, so we would expect to see optimal mixed portfolios. In short, we

explore how a utility maximising investor optimally allocates his portfolio between

bonds and stocks, using a range of atheoretic and theory informed models of bond and

stock returns. We examine the impact of parameter uncertainty and predictability in

returns on how the investor allocates and if there is economic value of predictability.

In conclusion, our results highlight the importance of evaluating the forecasts using

an appropriate criterion. Here the investor is concerned with optimally allocating his

portfolio, so it is necessary to incorporate the investor�s feelings about risk and to con-

sider the distribution about the predicted returns into this decision making process. In

which case, the RMSE criterion seems somewhat inadequate for this purpose compared

to the economic value measure. In the context of investment decision making, we �nd

some evidence of economic value to interest rate predictability, such that the investor

may gain from assuming predictability.
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Figure 4-1: Nominal Spot Yields 1997 to 2007
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Figure 4-2: Expected Utility under RW and MVART Models, for H=3 and A=2
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Figure 4-3: Expected Utility under RW and MVART Models, for H=6 and A=2
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Figure 4-4: Expected Utility under RW and MVART Models, for H=12 and A=2
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Figure 4-5: Expected Utility under RW and MVART Models, for H=18 and A=2
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Figure 4-6: Expected Utility under RW and MVART Models, for H=24 and A=2
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Figure 4-7: 1-month vs 3-month Allocations under the MVART Model, for A=2
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Figure 4-8: 1-month vs 6-month Allocations under the MVART Model, for A=2
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Figure 4-9: 1-month vs 12-month Allocations under the MVART Model, for A=2
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Figure 4-10: Root Mean Squared Errors of Return
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Table 4.1: Estimation of Random Walk Model

Equation �r1t �r3t �r6t �r12t
� �0:000046

(0:000041)
�0:000043
(0:000033)

�0:000042
(0:000038)

�0:000044
(0:000049)

R2 0:000 0:000 0:000 0:000b� 0:0008 0:0006 0:0007 0:0009
eqnLL 2137:27 2219:11 2167:24 2067:53
�2N [2] 358:23��� 261:98��� 76:42��� 32:80���

�2SC [1] 0:44 20:29��� 11:20��� 0:78
�2SC [2] 0:55 21:97��� 13:05��� 1:47
�2SC [6] 20:73��� 49:08��� 33:34��� 12:87��

�2SC [12] 29:45��� 57:84��� 40:17��� 16:83
�2SC [9] 38:15���

�2SC [12] 12:34

Notes: Standard errors in parenthesis (.). The R
2
; standard error of the regression (b�) ; log

likelihood of the equation (LL) presented, together with the chi-squared statistics for Breusch-Pagan

Serial Correlation test (SC) and the Jarque-Bera Test for Normality (N). The random walk with

drift model assumes that �rnt = �+ �t for n = 1,3,6 and 12, and each is estimated over 1997 week
10 to 2004 week 18 (373 observations). Null rejected at *** 1% level, ** 5% level, * 10% level of

signi�cance.
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Table 4.2: Estimation of MVART(p) Model

Equation s12;1t s6;1t s3;1t �r1t
s12;1t�1 1:054���

(0:216)
0:289��
(0:144)

0:159
(0:099)

0:172
(0:151)

s12;1t�2 0:214
(0:259)

�0:028
(0:174)

�0:054
(0:109)

�0:153
(0:184)

s12;1t�3 �0:489�
(0:249)

�0:435��
(0:176)

�0:285���
(0:110)

0:089
(0:137)

s12;1t�4 0:337
(0:264)

0:232
(0:186)

0:115
(0:112)

0:056
(0:192)

s12;1t�5 �0:055
(0:280)

�0:009
(0:198)

0:047
(0:124)

0:294
(0:245)

s12;1t�6 0:209
(0:263)

0:075
(0:181)

�0:020
(0:118)

�0:325�
(0:178)

s12;1t�7 �0:329
(0:263)

�0:329�
(0:183)

�0:225�
(0:119)

0:055
(0:179)

s12;1t�8 0:216
(0:283)

0:124
(0:199)

0:106
(0:130)

0:051
(0:172)

s12;1t�9 0:013
(0:208)

0:156
(0:143)

0:131�
(0:094)

�0:068
(0:150)

s6;1t�1 �0:407
(0:514)

0:392
(0:337)

�0:120
(0:234)

�0:540
(0:357)

s6;1t�2 �0:186
(0:582)

0:257
(0:398)

0:247
(0:268)

0:250
(0:449)

s6;1t�3 1:102�
(0:595)

0:942��
(0:422)

0:543��
(0:266)

�0:021
(0:362)

s6;1t�4 �0:771
(0:621)

�0:520
(0:441)

�0:245
(0:278)

�0:379
(0:464)

s6;1t�5 0:234
(0:664)

0:123
(0:465)

�0:068
(0:289)

�0:471
(0:538)

s6;1t�6 �0:159
(0:614)

�0:030
(0:426)

0:122
(0:276)

0:385
(0:434)

s6;1t�7 0:235
(0:61)

0:373
(0:411)

0:231
(0:256)

0:236
(0:402)

s6;1t�8 �0:242
(0:659)

�0:099
(0:454)

�0:068
(0:298)

�0:633
(0:443)

s6;1t�9 �0:068
(0:485)

�0:383
(0:338)

�0:337
(0:232)

0:369
(0:357)

s3;1t�1 0:081
(0:467)

�0:060
(0:283)

0:525���
(0:184)

1:126���
(0:338)

s3;1t�2 0:089
(0:538)

�0:125
(0:360)

�0:095
(0:242)

�0:391
(0:393)

s3;1t�3 �1:040�
(0:570)

�0:883��
(0:406)

�0:489�
(0:255)

0:061
(0:358)

s3;1t�4 0:786
(0:606)

0:559
(0:419)

0:251
(0:266)

0:512
(0:424)

s3;1t�5 0:034
(0:607)

0:052
(0:443)

0:183
(0:288)

�0:145
(0:478)

s3;1t�6 �0:546
(0:546)

�0:468
(0:381)

�0:371
(0:256)

0:380
(0:413)

s3;1t�7 0:080
(0:514)

�0:089
(0:344)

�0:037
(0:206)

�0:4512
(0:347)
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Table 4.3: Estimation of MVART(p) Model (continued)

s3;1t�8 �0:074
(0:600)

�0:025
(0:388)

�0:024
(0:260)

0:909��
(0:441)

s3;1t�9 0:191
(0:453)

0:402
(0:325)

0:358
(0:220)

�0:543�
(0:319)

�r1t�1 0:034
(0:114)

0:053
(0:083)

0:032
(0:054)

0:089
(0:085)

�r1t�2 0:167�
(0:094)

0:171��
(0:069)

0:127���
(0:047)

�0:175���
(0:061)

�r1t�3 �0:016
(0:096)

0:015
(0:065)

0:024
(0:038)

�0:023
(0:056)

�r1t�4 0:065
(0:104)

0:080
(0:068)

0:041
(0:042)

0:066
(0:073)

�r1t�5 0:255
(0:155)

0:263��
(0:104)

0:184���
(0:059)

�0:176��
(0:078)

�r1t�6 �0:018
(0:091)

�0:003
(0:070)

�0:005
(0:047)

0:088
(0:067)

�r1t�7 0:045
(0:93)

0:028
(0:064)

�0:001
(0:040)

�0:066
(0:067)

�r1t�8 �0:069
(0:092)

�0:034
(0:059)

�0:021
(0:035)

0:090
(0:071)

�r1t�9 �0:111
(0:069)

�0:086�
(0:046)

�0:044
(0:030)

0:040
(0:052)

inpt �0:0001
(0:00007)

�0:00009�
(0:00005)

�0:00004
(0:00003)

0:000005
(0:00004)

R2 0:934 0:901 0:829 0:273b� 0:001 0:0007 0:0004 0:0007
F [36; 327] 144:42��� 93:27��� 50:02��� 4:80���

eqnLL 2028:0 2163:5 2337:9 2172:6
system LL 9659:1
�2N [8] 35:03���

�2H [720] 910:12���

�2SC [16] 18:48

Notes: Standard errors in parenthesis. A MVART(9) is estimated over 1997 week 10 to 2004 week

18 (364 observations). The regressions are estimated with Newey-West heteroskedastic and

autocorrelation corrected errors. The R
2
; standard error of the regression (b�); F-statistic to test the

joint signi�cance of the estimated coe¢ cients and the log likelihood of the equation (LL) are

presented, together with the model diagnostic tests which are all carried out on the VAR residuals.

No roots of the characteristic polynomial lie outside the unit circle, so the VAR is stable.

Chi-squared statistics presented for: (N) the VAR Residual Normality Test; (H) the VAR Residual

Heteroskedasticity Test, and (SC) the VAR Residual Serial Correlation LM Test for the null of no

serial correlation at lag 9. Null rejected at *** 1% level, ** 5% level, * 10% level of signi�cance.
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Table 4.4: Root Mean Squared Errors of Returns

(a) 1-month returns (r1t )

Model H = 1 H = 3 H = 6 H = 12 H = 18 H = 24

RW 0.000439 0.000510 0.000608 0.000560 0.000318 0.000076
MVART 0.000438 0.000519 0.000671 0.000751 0.000454 0.000184
RWPU 0.000439 0.000509 0.000607 0.000558 0.000316 0.000074
MVARTPU 0.000440 0000525 0.000683 0.000755 0.000447 0.000175

(b) 3-month returns (r3t )

Model H = 1 H = 3 H = 6 H = 12 H = 18 H = 24

RW 0.000444 0.000505 0.000595 0.000513 0.000262 0.000065
MVART 0.000447 0.000535 0.000692 0.000718 0.000404 0.000185
RWPU 0.000444 0.000504 0.000594 0.000512 0.000262 0.000065
MVARTPU 0.000450 0.000543 0.000706 0.000720 0.000397 0.0001762

(c) 6-month returns (r6t )

Model H = 1 H = 3 H = 6 H = 12 H = 18 H = 24

RW 0.000437 0.00482 0.000556 0.000444 0.000206 0.000071
MVART 0.000449 0.000538 0.000687 0.000654 0.000350 0.000199
RWPU 0.000437 0.000481 0.000554 0.000441 0.000204 0.000069
MVARTPU 0.000453 0.000547 0.000699 0.000652 0.000342 0.000191

(d) 12-month returns (r12t )

Model H = 1 H = 3 H = 6 H = 12 H = 18 H = 24

RW 0.000431 0.000451 0.000496 0.000360 0.000150 0.000119
MVART 0.000454 0.000528 0.000643 0.000536 0.000272 0.000236
RWPU 0.000432 0.000452 0.000496 0.000361 0.000151 0.000120
MVARTPU 0.000458 0.000538 0.000652 0.000530 0.000265 0.000229

Notes: The RMSEs are computed for each model for the horizons H = 1, 3, 6, 12, 18, 24 months, and

for each model as follows

rP54

i=1
(rT+H�brT+H)i

54
where rT+H is the actual monthly return i.e.

r1t ; r
3
t ; r

6
t ; r

12
t , brT+H is the forecast and the di¤erence between the two (rT+H � brT+H) is

computed for each recursion i, there are 54 weekly recursions. The RW and MVART models are

estimated subject to stochastic uncertainty only, the RWPU and MVARTPU models consider

parameter uncertainty too.
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Table 4.5: Ratio of RMSEs of Returns

(a) 1-month returns (r1t )

Model H = 1 H = 3 H = 6 H = 12 H = 18 H = 24

RW 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
MVART 0.9957 1.0175 1.1026 1.3409 1.4268 2.4348
RWPU 0.9997 0.9991 0.9982 0.9966 0.9951 0.9831
MVARTPU 1.0002 1.0297 1.1239 1.3480 1.4051 2.3168

(b) 3-month returns (r3t )

Model H = 1 H = 3 H = 6 H = 12 H = 18 H = 24

RW 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
MVART 1.0079 1.0605 1.1635 1.3995 1.5427 2.8367
RWPU 0.9998 0.9994 0.9989 0.9981 0.9981 0.9890
MVARTPU 1.0141 1.0765 1.1860 1.4021 1.5145 2.7034

(c) 6-month returns (r6t )

Model H = 1 H = 3 H = 6 H = 12 H = 18 H = 24

RW 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
MVART 1.0287 1.1166 1.2365 1.4733 1.6996 2.7928
RWPU 0.9994 0.9983 0.9969 0.9940 0.9909 0.9700
MVARTPU 1.0372 1.1366 1.2588 1.4689 1.6629 2.6872

(d) 12-month returns (r12t )

Model H = 1 H = 3 H = 6 H = 12 H = 18 H = 24

RW 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
MVART 1.0518 1.1697 1.2972 1.4897 1.8120 1.9793
RWPU 1.0002 1.0002 1.0007 1.0025 1.0081 1.0048
MVARTPU 1.0620 1.1916 1.3144 1.4733 1.7645 1.9198

Notes: The above ratios are that of the RMSE for each model to the RMSE of the RW model, which

is taken as the benchmark.
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Table 4.6: E¤ects on Allocation

Model
Strategy RW RWPU MVART MVARTPU

1 vs 3, H=3
A = 2
A = 5
A = 10

35
33
33

35
35
31

39
39
38

33
33
33

1 vs 3, H=6
A = 2
A = 5
A = 10

35
35
33

35
35
35

56
56
56

54
54
52

1 vs 3, H=12
A = 2
A = 5
A = 10

41
41
35

43
41
37

93
93
93

93
93
91

1 vs 3, H=18
A = 2
A = 5
A = 10

44
43
41

44
4
39

96
96
94

93
93
93

1 vs 3, H=24
A = 2
A = 5
A = 10

44
44
43

44
44
44

100
100
100

100
100
100

1 vs 6, H=6
A = 2
A = 5
A = 10

46
46
46

46
46
46

19
19
19

9
9
7

1 vs 6, H=12
A = 2
A = 5
A = 10

48
48
46

52
52
52

26
26
24

13
11
11

1 vs 6, H=18
A = 2
A = 5
A = 10

48
48
48

54
54
52

39
35
31

26
26
24

1 vs 6, H=24
A = 2
A = 5
A = 10

52
52
48

56
56
54

44
43
41

31
30
24

1 vs 12, H=12
A = 2
A = 5
A = 10

48
48
48

50
48
48

0
0
0

0
0
0

1 vs 12, H=24
A = 2
A = 5
A = 10

52
52
52

37
37
31

0
0
0

0
0
0

Notes: Here under each portfolio combination, for a given A,H and model, the table gives as a

percentage the number of times out of the 54 recursions the investor allocates everything to the

1-month bill.
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Table 4.7: Realised Wealth under 1-month vs 3-month Strategy

(a) under A = 2

Position H = 3 H = 6 H = 12 H = 18 H = 24

1st A1
1:046746

A1
1:046877

A1
1:04654

A1
1:046072

A1
1:046091

2nd RW
1:046740

RWPU
1:046804

MVARTPU
1:046511

MVART
1:046062

MVARTPU
1:046091

3rd RWPU
1:046740

RW
1:046796

MVART
1:046511

MVARTPU
1:046044

MVART
1:046091

4th MVART
1:046511

MVART
1:046774

RWPU
1:046432

RWPU
1:045910

RW
1:046010

5th A3
1:046509

MVARTPU
1:046769

RW
1:046431

RW
1:045910

RWPU
1:046009

6th MVARTPU
1:046505

A3
1:046649

A3
1:046252

A3
1:045755

A3
1:045967

(b) under A = 5

Position H = 3 H = 6 H = 12 H = 18 H = 24

1st A1
1:046746

A1
1:046877

A1
1:046544

A1
1:046072

A1
1:046091

2nd RW
1:046740

RWPU
1:046798

MVARTPU
1:046511

MVART
1:046062

MVARTPU
1:046091

3rd RWPU
1:046740

RW
1:046796

MVART
1:046511

MVARTPU
1:046044

MVART
1:046091

4th MVART
1:046511

MVART
1:046774

RWPU
1:046429

RWPU
1:04591

RW
1:04601

5th A3
1:046509

MVARTPU
1:046769

RW
1:046429

RW
1:045908

RWPU
1:046009

6th MVARTPU
1:046504

A3
1:046649

A3
1:046252

A3
1:045755

A3
1:045967

(c) under A = 10

Position H = 3 H = 6 H = 12 H = 18 H = 24

1st A1
1:046746

A1
1:046877

A1
1:046544

A1
1:046072

A1
1:046091

2nd RW
1:046739

RW
1:046796

MVART
1:046511

MVART
1:046059

MVARTPU
1:046091

3rd RWPU
1:046739

RWPU
1:046796

MVARTPU
1:046506

MVARTPU
1:046044

MVART
1:046091

4th MVART
1:046511

MVART
1:046774

RW
1:046423

RWPU
1:045907

RWPU
1:04601

5th A3
1:046509

MVARTPU
1:046766

RWPU
1:046423

RW
1:045905

RW
1:046009

6th MVARTPU
1:046504

A3
1:046649

A3
1:046252

A3
1:045755

A3
1:045967

Notes: See those for Table (4.9).
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Table 4.8: Realised Wealth under 1-month vs 6-month Strategy

(a) under A = 2

Position H = 6 H = 12 H = 18 H = 24
1st RW

1:047030
A1

1:046877
A1

1:046544
A1

1:046072

2nd RWPU
1:047027

RWPU
1:04638

RWPU
1:045804

RWPU
1:045836

3rd A1
1:046746

RW
1:046372

RW
1:045792

RW
1:045828

4th MVARTPU
1:046634

MVARTPU
1:046079

MVART
1:045625

MVART
1:045740

5th A6
1:046609

MVART
1:046078

MVARTPU
1:045542

MVARTPU
1:045666

6th MVART
1:046602

A6
1:046041

A6
1:045444

A6
1:045548

(b) under A = 5

Position H = 6 H = 12 H = 18 H = 24
1st RW

1:04703
A1

1:046877
A1

1:046544
A1

1:046072

2nd RWPU
1:047029

RWPU
1:046380

RWPU
1:045804

RWPU
1:045836

3rd A1
1:046746

RW
1:046372

RW
1:045788

RW
1:045828

4th MVARTPU
1:046634

MVART
1:046078

MVART
1:045610

MVART
1:045733

5th A6
1:046634

MVARTPU
1:046077

MVARTPU
1:045542

MVARTPU
1:045665

6th MVART
1:046602

A6
1:046041

A6
1:045444

A6
1:045548

(c) under A = 10

Position H = 6 H = 12 H = 18 H = 24
1st RW

1:047030
A1

1:046877
A1

1:046544
A1

1:046072

2nd RWPU
1:047030

RWPU
1:046380

RWPU
1:045805

RWPU
1:045838

3rd A1
1:046746

RW
1:046371

RW
1:045787

RW
1:045824

4th MVARTPU
1:046635

MVART
1:046078

MVART
1:045590

MVART
1:045727

5th MVART
1:046614

MVARTPU
1:046055

MVARTPU
1:045536

MVARTPU
1:045627

6th A6
1:046609

A6
1:046041

A6
1:045444

A6
1:045548

Notes: See those for Table (4.9).
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Table 4.9: Realised Wealth under 1-month vs 12-month Strategy

A = 2 A = 5 A = 10
Position H = 12 H = 24 H = 12 H = 24 H = 12 H = 24

1st RWPU
1:047033

A1
1:046072

RWPU
1:047033

A1
1:046072

RWPU
1:047029

A1
1:046072

2nd RW
1:047027

RW
1:045806

RW
1:047026

RW
1:045805

RW
1:047025

RW
1:045805

3rd A12
1:046566

RWPU
1:045629

A12
1:046566

RWPU
1:045621

A12
1:046566

RWPU
1:045595

4th MVARTPU
1:046566

MVARTPU
1:044899

MVARTPU
1:046566

MVARTPU
1:044899

MVARTPU
1:046566

MVARTPU
1:044899

5th MVART
1:046566

MVART
1:044899

MVART
1:046566

MVART
1:044899

MVART
1:046566

MVART
1:044899

6th A1
1:046746

A12
1:044889

A1
1:046746

A12
1:044889

A1
1:046746

A12
1:044889

Notes: The realised wealths above are the end-of-investment horizon wealths that the investor would

have achieved over 2004 week 19 to 2007 week 19 had he allocated according to the optimal weights

for each model, A and H. These end-of-investment horizon wealths have been averaged over the 54

recursions. The realised wealth for each model are ranked in descending order, for a particular A

and H. The tables above show how the two models, RW and MVART without and with parameter

uncertainty perform, together with the lazy strategies in terms of their achieved realised wealths.

The actual realised wealths are given below the model code. �A1�is the �all in 1-month�and �An�is

the �all in n-month�lazy strategy for n = 3, 6 and 12 months.
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Table 4.10: Ratios of Realised Wealth

(a) 1-month vs 3-month

Model H = 3 H = 6 H = 12 H = 18 H = 24

RW 1.0000 1.0000 1.0000 1.0000 1.0000
RWPU 1.0000 1.0000 1.0000 1.0000 1.0000
MVART 0.9998 1.0000 1.0001 1.0001 1.0001
MVARTPU 0.9998 1.0000 1.0001 1.0001 1.0001

(b) 1-month vs 6-month

Model H = 6 H = 12 H = 18 H = 24

RW 1.0000 1.0000 1.0000 1.0000
RWPU 1.0000 1.0000 1.0000 1.0000
MVART 0.9996 0.9997 0.9998 0.9999
MVARTPU 0.9996 0.9997 0.9998 0.9998

(c) 1-month vs 12-month

Model H = 12 H = 24

RW 1.0000 1.0000
RWPU 1.0000 0.9998
MVART 0.9996 0.9991
MVARTPU 0.9996 0.9991

Notes: Ratio of Realised Wealths under each model to that of the RW model, for A = 2 only because

the Ratios under A = 5 and 10 were not signi�cantly di¤erent.
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Chapter 5

The Economic Value of Interest

Rate and Stock Predictability

Abstract

In this chapter, we evaluate the forecast performance of a range of atheoretic and

theory informed models of bond and stock returns. The decision making environment is

fully described for an investor who would like to optimally allocate his portfolio between

bonds and stocks, over an investment horizon of up to two years. We use a weekly

dataset on UK Treasury Bill rates and the FTSE All-Share Index over the period 1997

to 2007. We examine the impact parameter uncertainty and predictability in returns

have on how the investor optimally allocates his portfolio. We describe the methods by

which the forecasts should be computed and used in this context. Both statistical and

decision-based criteria are used to evaluate the out-of-sample forecasting performance of

the models. Our results suggest that in the context of investment decision making under

an economic value criterion, the investor gains from not only assuming predictability

but by modelling the bond and stock returns together.

Keywords: density forecasting, decision-based forecast evaluation, interest rate

and stock return models, predictability and parameter uncertainty.
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5.1 Introduction

Evidence of predictability in asset returns has been reported by a number of studies

including Campbell (1987), Fama and French (1988a,b and 1989), Kandel and Stam-

baugh (1996) and Ang and Bekaert (2007). They show variables including the dividend

yield and term structure variables, have predictive power for the stock return. This

overturning the long standing view held up until the 1970s in �nancial economics, that

returns are not predictable. Most of this evidence is based on studies that assess pre-

dictability from a statistical standpoint, using measures like the signi�cance of estimated

coe¢ cients, the explanatory power of the regressors and the RMSEs of forecasts.

However, recent research argues that conventional statistical forecast evaluation

criteria, usually based on some measure of the forecasts error, may be inappropriate.

Instead, it would be more appropriate to evaluate forecast accuracy using pro�tability,

given �rms use forecasts to increase pro�ts, Leitch and Tanner (1991). Further, Granger

and Pesaran (2000) and Pesaran and Skouras (2004) argue that forecasts should be

evaluated in the decision making context for which they are intended. These studies

advocate the use of decision-based forecast evaluation1, where forecasts are judged in

terms of their economic value to the user, rather than in terms of forecast errors.

This chapter �rst examines the impact of predictability in bond and stock returns,

together with the e¤ect of parameter uncertainty upon how an investor optimally allo-

cates his portfolio. Second, we consider if there is any economic value to the investor

of bond and stock return predictability.

Authors including West, Edison and Cho (1993), Pesaran and Timmermann (1995),

Xia (2001), Brooks and Persand (2003), Avramov (2002), Boudry and Gray (2003),

and Marquering and Verbeek (2004) have previously considered the economic value of

predictability in returns within an asset allocation framework2. Barberis (2000) con-

1We may also refer to economic value measures, these are the same as decision-based measures.
2Chapter 2 provides a detailed review of the relevant literature.
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siders how asset return predictability a¤ects optimal portfolio choice for long horizon

investors, if this allocation di¤ers with the investment horizon and further the impact

on allocation when parameter uncertainty3 is incorporated4. Barberis de�nes no pre-

dictability as the investor assuming that stock returns are i.i.d. and predictability as

him believing that a single lagged dividend yield term has predictive power for stock

returns. In both cases bond returns are assumed constant. Predictability has the

e¤ect of making stocks look less risky and parameter uncertainty makes them look

more so. Barberis demonstrates that the investment horizon may not be irrelevant if

returns are predictable. Further, even with parameter uncertainty there is su¢ cient

predictability of returns, such that investors allocate signi�cantly more to stocks the

longer the horizon and that those who ignore parameter uncertainty over allocate to

stocks by a considerable amount.

Recent studies that examine the predictive power of theory informed models under a

decision-based criteria for exchange rates include Abhyankar, Sarno and Valente (2005,

henceforth ASV) and Garratt and Lee (2009, GL). Both �nd evidence of economic value

to exchange rate predictability, in that the realised terminal wealth of an investor who

assumes predictability is higher than that of the investor who assumes no predictability.

For interest rates, Della Corte, Sarno and Thornton (2008, DST) assess the validity of

the EH, to �nd that on the basis of statistical tests the EH is rejected, but from an

economic value perspective favourable support is found.

The results reported by ASV, DST and GL illustrate that the forecasting per-

formance of models can be signi�cantly di¤erent depending on whether statistical or

decision-based evaluation techniques are used. To re-iterate the point made in Chapter

4, under statistical measures atheoretic models like the randomwalk are di¢ cult to beat.

3Earlier studies by Klein and Bawa (1976), and Kandel and Stambaugh (1996) demonstrate the
importance of parameter uncertainty in asset allocation.

4He uses monthly US data for two assets: T-bills and the stock index to examine the potential
horizon e¤ects under buy-and-hold and dynamic optimal rebalancing strategies, in discrete time for
an investor with power utility over terminal wealth.
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But under economic value methods encouraging evidence in favour of predictability, as

captured by theory informed models, is found. The studies described here bring to our

attention several key factors including the importance of predictability and parameter

uncertainty in asset allocation, generating density forecasts to capture the risk as well

as the return of the asset and the economic value to the investor of these forecasts.

The contributions of this chapter are empirical. To my knowledge we are the

�rst to model both bond and stock returns, separately and jointly, and evaluate their

predictability in an asset allocation setting using economic value. Chordia et al (2005,

pp. 87) argue that "A negative information shock in stocks often causes a "�ight to

quality" as investors substitute safe assets for risky assets". Further, "when stocks

are expected to show weakness, investment funds often �ow to the perceived haven of

the bond market, with that shift usually going into reverse when, .., equities start to

strengthen." Party (2001, cited in Chorida et al (2005))5. Both of these statements

highlight the dynamic relationship that exists between bond and stock markets. This

supports the need to model them together and try to capture these interactions, i.e.

allow for the possibility that the variables of one market have explanatory power for

the variables of the other.

In brief, we compute the optimal portfolio allocation for a buy-and-hold investor

with power utility over terminal wealth using weekly UK data during 1997 week 10

to 2007 week 19 for two assets, the 1-month T-bill and the FTSE All-Share Index.

We extend the work of Barberis by allowing for the possibility of predictability in

bond returns too and further model the bond and stock returns jointly. Here under

predictability the investor assumes past values of the asset returns together with key

stock and term structure variables, like the dividend yield and interest rate spreads

have explanatory power. We consider a set of four models that assume varying degrees

of bond and stock return predictability, all under a VAR framework. We examine the

5Full reference is John Party, The Wall Street Journal, 1st August 2001, pp. C1.
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impact predictability and parameter uncertainty have on how the investor optimally

allocates his portfolio. Both statistical and decision-based criteria are used to evaluate

the out-of-sample forecasting performance of the models, to ascertain if indeed there is

economic value to bond and stock return predictability.

Our results do suggest that in the context of investment decision making under an

economic value criterion, the investor allocates di¤erently when he assumes predictabil-

ity to an investor who assumes that returns are not predictable. Moreover, he gains

from not only assuming predictability in both returns, but by modelling the bond and

stock returns jointly.

The setup of this chapter is as follows Section 5.2 details how we model the in-

terest rates and stocks, the investment decision and the framework used to evaluate

the economic value of predictability when parameter uncertainty is both ignored and

accounted for. Section 5.3 describes the dataset, the estimated models and provides

a statistical evaluation of the forecasting performance of each model. In Section 5.4

we judge the models�forecasting performance by comparing the realised end-of-period

wealth generated under each and Section 5.5 concludes.

5.2 Optimal Allocation, Parameter Uncertainty and

Predictability

We examine how a utility-maximising investor allocates his portfolio between 1-month

T-bills and the FTSE All-Share Index. That is, between the stock market and risk-free

bonds. We consider if there are gains in utility for an investor, who employs a theory

informed model to forecast interest rates and stock returns, in comparison to one who

believes that the returns are not predictable. Here we describe the models estimated

when we �rst ignore T-bill and stock return predictability and then when we consider

predictability. Further, we introduce how we measure the economic value of interest
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rates and stock returns under predictability and parameter uncertainty.

When considering the predictability in interest rates, we look to the Expectations

Hypothesis (EH) of the term structure of interest rates. The EH suggests that a n-

period long rate is given by a weighted average of current and future expected short

m-period rates over n periods, with the addition of a time invariant term premium.

Numerous tests of the EH have been carried out using various datasets and testing

methods6, with the support found for the EH being somewhat mixed.

In Chapter 3 the UK term structure was modelled by a set of statistical and theory

informed models, and tests of the EH conducted. In short, support for the EH was

found in the form of stationary spread; yields sharing a common stochastic trend, such

that over-identifying restrictions on the cointegrating vectors as implied by the EH

could not be rejected. And further support is found using Campbell and Shiller�s

(1991) VAR approach. Also, the in-sample properties of the theory informed VECM

and MVART models suggest a greater explanatory power for the term structure, in

comparison to the statistical based models.

Given the evidence of cointegration amongst the yields, we use the MVART model

that embeds the cointegration implied by the EH to explain the term structure and in

turn forecast the yields. As such, we proceed assuming that if the investor believes

bill returns are predictable he uses the MVART model to forecast future returns. We

follow previous studies including Kandel and Stambaugh (1996) and Barberis (2000),

who use the dividend yield to examine stock return predictability.

5.2.1 Modelling Interest Rates and Stocks

Let rst be the return on the FTSE All-Share Index in week t, r
(1)
t be the return on a

1-month T-bill, both returns are continuously compounded monthly returns. dyt is

6Key studies include Campbell and Shiller (1991), Taylor (1992), Cuthbertson et al (1996, 2003),
Longsta¤ (2000) and Sarno et al (2007), see Chapter 2.
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the dividend yield, the change in the 1-month T-bill rate �r(1)t = r
(1)
t � r(1)t�1 and the

spread between a n- and 1-month rate s(n;1)t = r
(n)
t � r(1)t for n = 3; 6; 12. We refer to

rst and dyt as the stock variables, and �r
(1)
t and s(n;1)t as the bond (or term structure,

TS) variables. In order to determine how the investor should optimally allocate his

portfolio he requires forecasts of r(1)t and rst : We consider four alternative models from

which the investor could derive these forecasts, generally each model can be summarised

by the following VAR(p)

xt = �+

pX
i=1

Bixt�i + �t (5.1)

where xt is a (q � 1) vector of variables, Bi is a (q � q) matrix of parameters, � is a

(q � 1) vector of intercepts and �t is assumed to be a (q � 1) vector containing i:i:d

serially uncorrelated errors with zero means and a positive de�nite covariance matrix

�. The exact composition of xt will depend upon the assumption made regarding

predictability, as detailed below.

The VAR framework enables one to examine how predictability a¤ects portfolio allo-

cation by changing the variables in the VAR. We propose four models for predicting the

returns on the T-bill and stock index, each incorporating varying degrees of predictabil-

ity: Barberis Non Predictability (BNP), Barberis Predictability (BP), Individual VARs

(IV) and the Joint VAR (JV) model.

The Barberis Non Predictability and Predictability models are named so, since they

are in the spirit of those estimated by Barberis (2000). These models assume that the

risk-free T-bill rate r(1) is constant7 and allow only for the possibility of predictability

in stock returns. Under the assumption of no predictability as in the BNP model,

there are no predictor variables in the VAR, the stock index returns are assumed to be

i:i:d: such that rst = �+ �t, i.e. a drift term plus a random error term. Hence xt = rst

and Bi = 0:

7The T-bill rate is assumed constant at the last value of the estimation sample, such that in the
�rst recursion it is �xed at its 2004 week 18 value.
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However, under the assumption of predictability as in the BP model, the dividend

yield is included in the VAR, with xt = (rst ; z
0
t)
0, zt = (z1;t; :::; zn;t)

0 and xt = �+Bzt�1+

�t. Such that zt is a vector containing explanatory variables for the stock index return,

i.e. the dividend yield. Hence the �rst equation of the VAR speci�es the expected

stock index return as a function of the dividend yield, and the second equation speci�es

the stochastic evolution of the dividend yield.

Further, it is possible to relax this assumption of a constant T-bill rate and allow for

predictability in both T-bill and stock returns, we do this in two ways. First, using the

IV model, where the predictability of T-bill and stock returns are described separately

by two VARs (IV-BOND and IV-STOCK). The form of xt for the bond returns and the

stock returns are given by x(1)t =
�
�r

(1)
t ; s

(12;1)
t ; s

(6;1)
t ; s

(3;1)
t

�0
and xst = (r

s
t ; dyt)

0 respec-

tively. Second, using the JVmodel, where the predictability of the bill and stock returns

are modelled jointly within a single system, here xt =
�
rst ; dyt;�r

(1)
t ; s

(12;1)
t ; s

(6;1)
t ; s

(3;1)
t

�0
:

By modelling the predictability of T-bill and stock returns in these two ways allows

us to test whether it is bene�cial to the investor, in terms of wealth gains, to model the

two returns jointly. In that, by allowing for interactions and feedbacks to exist between

the bond and stock market, will the investor who uses the JVmodel to generate forecasts

of the T-bill rate and the return on stocks achieve a higher wealth? Each of these four

models are estimated when the parameter uncertainty, which is the uncertainty about

the true values of the model�s parameters is both ignored and accounted for8.

In time T the buy-and-hold investor faces the problem of how to optimally allocate

his wealth over a H month investment horizon between 1-month T-bills and the FTSE

All-Share Index, where these two assets yield the continuously compounded returns r(1)T

and rsT respectively.

With an initial wealth of WT = 1 and ! being de�ned as the proportion of initial

8We di¤erentiate between when the model is estimated subject to stochastic uncertainty only, and
when it is estimated subject to stochastic and parameter uncertainty by denoting them as BNP, BP,
IV, JV and BNPPU, BPPU, IVPU, JVPU respectively.
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wealth allocated to bonds9, the end-of-horizon wealth is given by

WT+H = ! exp

�
HP
i=1

r
(1)
T+i�1

�
+ (1� !) exp

�
HP
i=1

rsT+(i�1)

�
(5.2)

Further, risk aversion can be incorporated into the investor�s decision making, by

assuming that the utility gained from the end-of-horizon wealth follows that given by

a constant relative risk-aversion (CRRA) power utility function.

�(W ) =
W 1�A

1� A (5.3)

where A is the coe¢ cient of risk aversion. The optimisation problem faced by the

investor in T is

max
!
ET f�(WT+H (!)) j 
Tg (5.4)

where the investor computes the expectation above conditional upon the information

set available at T . Fundamental to this optimisation problem is the distribution the

investor employs to evaluate this expectation. The distribution used depends upon

whether the investor assumes predictability in bond and stock returns. To ascertain the

in�uence of predictability on allocation decisions, a comparison between the allocations

of an investor who ignores predictability, to that of one who takes it into account can

be made. This will now be discussed in greater detail below.

9Under the BNP and BP models the T-bill return is assumed to be constant, such that
HP
i=1

r
(1)
T+(i�1) = H:r

(1).
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5.2.2 The Probability Density Function of the Forecast Values

In this section we discuss the approach taken to estimate the density function in the case

where parameter uncertainty is not considered and when it is. A detailed discussion of

the approach is provided in Chapter 4, here we summarise the key concepts. The form

of the density P (XT+1;H j XT ) is determined by the types of uncertainty surrounding

the forecasts, and how the function is characterised and estimated. Here we follow

the method proposed by Garratt, Lee, Pesaran and Shin (2003 and 2006, GLPS) and

GL, which takes a classical view of the Bayesian approach10 to calculating the density

function. This involves approximations of certain probabilities of interest, thereby

avoiding the need for priors.

To evaluate each investment decision over the investment horizon, the investor needs

the probability density function of the forecast values of the 1-month rate and the stock

return. Following GL, xt = (x1t; x2t; :::; xqt)
0 is a q�1 vector of q variables (including at

least r(1)t and rst ), andXT = (x1;x2; :::;xT )
0 is a q�T vector containing the observations

1 to T of the q variables. Since forecasts of the variables are required, the conditional

probability density function P (XT+1;H j XT ) is of interest, this predictive density func-

tion gives the probability density function of XT+1;H = (xT+1;xT+2; :::;xT+H)
0 condi-

tional on XT :

When the investor ignores parameter uncertainty, he calculates the expectation of

the distribution of returns conditional on the �xed parameter values b�. So the investor�s
problem to solve is

max
!

�
ET� (WT+H (!)) =

Z
� (WT+H (!)) :P

�
XT+1;H j XT ; b�� dXT+1;H

�
(5.5)

10Kandel and Stambaugh (1996), Barberis and ASV use a fully Bayesian approach to estimate
the density function, through the construction of a posterior distribution and using priors for the
parameters.
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However, if the investor incorporates parameter uncertainty then the predictive density

for the returns is conditional on the observed data only, given by

P (XT+1;H j XT ) =

Z
P
�
XT+1;H j XT ; b��P (� j XT ) d� (5.6)

The posterior probability of �, denoted P (� j XT ) gives the uncertainty about the

parameters given the observed data. Now the investor acknowledges that � has a

distribution conditional on XT . So the investor�s problem to solve under parameter

uncertainty is

max
!

�
ET� (WT+H (!)) =

Z
� (WT+H (!)) :P (XT+1;H j XT ) dXT+1;H

�
(5.7)

The posterior density P (� j XT ) in equation (5.6) is proportionate to the prior on

� and the likelihood function i.e. P (�) :P (XT j �).

GLPS and GL suggest that in the case where meaningful priors exist are di¢ cult to

obtain, approximations of key probabilities needed to estimate the predictive density

P (XT+1;H j XT ) can be used. They assume for the posterior probability of �

� j XT

!

~N
�b�T ; T�1 bV�

�
(5.8)

where b�T is the maximum likelihood estimate of the true parameter value of � and

T�1 bV� is the asymptotic covariance matrix of b�T i.e. of the estimated parameters.
In this exercise we consider stochastic and parameter uncertainty, the uncertainty

associated with the model and the estimated model parameters respectively. We appre-

ciate that interest rates and stock returns can be modelled under various assumptions,
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and thus model the two returns in four di¤erent ways: BNP, BP, IV and JV models as

described above, which can all be summarised by equation (5.1).

For each of these models, through stochastic simulation techniques, an estimate of

the probability density function of the forecasts can be computed. Given that these

simulations provide an estimate of the predictive densities P
�
XT+1;H j XT ; b�� when

parameter uncertainty is ignored and P (XT+1;H j XT ) when it is considered, it is now

possible to evaluate ET (� (WT+H) j 
T ) for a range of portfolio weights !: That is,

� (WT+H (!)) is computed eR times for each value of !: Then the mean across these eR
replications is calculated, from which the investor chooses the weight ! that maximises

the expected utility ET� (WT+H (!)) : Here ! takes values 0, 0.01,...,0.99,1, where

! = 0 suggests all should be allocated to bills, equally ! = 1 suggests that all should be

allocated to stocks. The weight is between 0 and 1, so we do not allow for short selling.

Appendix 7 provides details of the estimation procedure, how the computations are

carried out and the method by which the errors are calculated11.

5.3 Modelling the UK T-Bill Rates and the FTSE

All-Share Index

5.3.1 Data

In this study we use weekly observations on the continuously compounded monthly

returns for both the 1-month T-bill12 r(1)t and the FTSE All-Share Index13 rst , and the

dividend yield dyt for the UK. These variables together with �r(1)t ; s
(3;1)
t ; s

(6;1)
t and

11Here we use parametric methods to draw the errors, where the errors are assumed to be
i:i:d:N (0;�) serially uncorrelated white noise errors.
12As with Chapter 4, estimated yield curve data is used as opposed to actual T-bill data here,

because data was unavailable during some periods of our sample. However, as previously mentioned,
we are satis�ed that the data used here is a fair re�ection of what the investor would get, should he
want to undertake an investment in T-bills.
13We use the FTSE All-Share Index since it gives a broad portfolio of stocks.
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s
(12;1)
t are used in the analysis, refer to the Data Appendix for the de�nitions, sources

and transformations conducted. The entire sample period is from 1997 week 10 to

2007 week 19 (532 observations). Figures 5-1 and 5-2 plot the monthly stock return,

the dividend yield, the monthly bill return in levels and �rst di¤erences, and the three

spreads over the entire sample. The monthly stock return takes an average value of

0.59% compared with 0.41% for the T-bill, with a minimum and maximum of -17.72

to 15.32% and 0.26 to 0.60% respectively over the whole sample. This corresponds to

what we would expect, average returns from the stock market tend to be higher, but

there is a risk of making a loss. The return from the 1-month T-bill has a general

downward trend up until the end of 2004, before increasing until the end of the sample.

The annual dividend yield takes an average value of 2.86%, although there are some

persistent deviations, the dividend yield exhibits mean reversion. The yield di¤erence

and spreads display mean reverting behaviour which is consistent with a stationary

process.

The four models are each estimated over the period 1997 week 10 to 2004 week 18

(374 observations) and then recursively at weekly intervals through to 1997 week 10 to

2005 week 18 (427 observations), giving 54 recursions in total. For each recursion we

generate h-step ahead out-of-sample forecasts14 for h = 1; 2; :::; H; ::: and the investment

horizon H = 3; 6; 12; 18 and 24 months. So for the �rst recursion we forecast over the

period 2004 week 19 to 2006 week 18 and for the last recursion 2005 week 19 to 2007

week 19. For each recursion the investor will use his generated forecasts to determine

the optimal allocation of his portfolio. Hence in this exercise we will have 54 allocation

decisions for each A and H, with which to compare the allocations and utility gains

under each model without and with parameter uncertainty.

14We denote the investment horizon H in months since r(1)t and rst are monthly returns. However,
the data has a weekly frequency, so when we refer to the �h-step�ahead forecasts each �step�is a week.
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5.3.2 Estimation

Here we describe how we estimate the four models and present the estimated regression

results for the �rst recursion15 over 1997 week 10 to 2004 week 18. We begin by

employing the ADF, PP and KPSS unit root tests to determine the order of integration

of rst , dyt, r
(1)
t , s

(3;1)
t ; s

(6;1)
t and s(12;1)t over the entire sample period, see Table 5.1. All

three tests indicate that rst and the spreads are found to be stationary in levels and r
(1)
t

is di¤erence stationary. As for dyt the unit root tests suggest it is non-stationary, but

given the test statistics are close to their respective critical values and the series exhibits

mean reversion we treat, like in previous studies, the dividend yield as stationary.

The optimal lag length for the IV and JV models is chosen by estimating a set

of VAR(p) with p = 0; 1; :::; 12 for each model over 1997 week 10 to 2004 week 18.

The optimal lag length is that which minimises the Schwarz Information lag selection

criteria, as well as satisfying the diagnostic checks, in particular the model�s residuals

should be free of serial correlation at the 5% level. Based on this, the lag length chosen

was �ve for the IV-STOCK model, six for the IV-BOND and JV models. Tables 5.2 to

5.8 summarise the estimates with the diagnostics of the BNP, BP, IV and JV models.

Comparing the estimated BP model to the BNP model, Table 5.2 to 5.3, there is a

small gain in explanatory power by allowing for predictability in stock returns through

the inclusion of a single lagged dividend yield term. Further, all coe¢ cients in the

estimated BP model are signi�cantly di¤erent from zero. Moving from the BP to

the IV-STOCK model, Table 5.3 to 5.4, allows for past values of both rs and dy to

in�uence current values. A substantial gain in explanatory power for stock returns

is observed. All the coe¢ cients are jointly signi�cant, which suggests there are gains

from relaxing the assumptions of no and limited predictability made under the BNP and

BP models. For each equation in the IV-BOND model, Tables 5.5 and 5.6, the TS16

15Estimates of each model for the �rst recursion only are provided, to give an overall impression of
the in-sample predictability. At the forecasting stage the models are estimated recursively.
16TS is used to denote the term structure.
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variables are jointly signi�cant. The JV model, Table 5.7 and 5.8, is a generalisation

of the individual VARs, allowing for feedbacks between the two markets. In terms

of explanatory power as indicated by R
2
, the gains from modelling the two returns

together are small. However, the stock variables are jointly signi�cant in all the TS

equations, but the TS variables are jointly signi�cant in the TS equations only. This

implies that causality exists from the stock market variables to the TS variables, which

provides support in favour of modelling the two markets together.

The diagnostics are satisfactory, there is indication of some serial correlation in the

stock equations of the BNP and BP models, but we want to replicate those estimated

in Barberis. In the IV and JV models we do not have serial correlation at the 5% level

and the explanatory power of the models is quite high. Rejection of the nulls that the

regression residuals are homoskedastic and normal is not surprising given that we are

using �nancial data. But we follow the assumptions made by the literature that also

utilise such data.

5.3.3 Statistical Evaluation of the Forecasting Performance

The root mean squared error (RMSE) provides a statistical evaluation of the out-of-

sample forecasting performance of each model. Table 5.9 gives the RMSEs of the bond

and stock return forecasts, for the forecast horizons H = 1; 3; 6; 12; 18 and 24 months

for each model, without and with parameter uncertainty being considered. Table 5.10

reports the ratio of the RMSEs for each model to the benchmark model. A value of the

ratio greater than one indicates that the RMSE of the model is lower than that of the

benchmark. The benchmark taken is the BNP model which assumes r(1)t is constant

and rst = �+ �t, since it assumes no predictability a comparison can be made with the

other models which assume varying degrees of predictability.

The RMSEs for forecasts of the bond returns indicate that only at H = 1 do the JV

and JVPU models beat the benchmark. The BNP, BP, BNPPU and BPPU models
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that make the strong assumption that r(1)T+H is constant, outperform the other more

theory informed models at each horizon under this criteria. However, it can be seen

that the di¤erences in the RMSEs amongst the models are small. These results broadly

correspond to those found in the exchange rate forecasting literature, as summarised

in ASV and GL. Which in general �nd sophisticated theory informed models are

outperformed by a simple random walk.

With the stock returns, the RMSEs show that there is not a single model that

performs consistently well over all horizons. The JV and JVPU models perform the

best at H = 1; 3 and 12, whereas the BP and BPPU models perform well at H = 6; 18

and 24. These results suggest some gain in terms of forecasting performance from

incorporating predictability when modelling stock returns.

When comparing the size of the RMSEs of the two returns, there is greater variance

in the rst forecasts than the r
(1)
t forecasts. This is not surprising since stock returns

are more volatile and thus more di¢ cult to predict. In general, the RMSEs increase

up until H = 6 and 12 before decreasing. This suggests that the RMSEs for both the

returns are non-monotonic, i.e. they oscillate in relative value and do not just increase

with H. Although the RMSEs for both the returns are non-monotonic, the rates at

which the two are changing across the horizons are di¤erent. Over the shorter horizon,

the rate at which the RMSEs for r(1)t increase is smaller than the rate at which the

RMSE for rst increases. But over the longer horizon the rate at which the RMSE for

r
(1)
t decreases is greater.

This statistical evaluation provides an indication of the forecasting performance of

each model. But does not provide a clear indication of how these models perform in

an investment decision making context, i.e. in terms of the economic value of the gains

from the models�forecasts.
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5.4 Investors�Evaluation of Forecasts

We now examine the implications for optimal allocations when the returns are either

i.i.d. or predictable, where the degree of predictability is varied and parameter uncer-

tainty is both ignored and accounted for. In the case where parameters are assumed

�xed the maximisation problem is given by equation (5.5) and under parameter uncer-

tainty it is given by (5.7). Figures 5-3 to 5-7 give the optimal allocations to bonds,

100!%, at each investment horizon H = 3; 6; 12; 18; 24 months, for each model and for

the levels of risk aversion A = 2; 5 and 10; A = 10 is the highest level of risk aversion:

The models are estimated �rst over 1997 week 10 to 2004 week 18, the optimal weights

are calculated from the forecasts generated from each estimated model. Then moving

forward one week this is repeated, re-calculating expected wealth and utility to �nd the

optimal weight for this new augmented sample. This is repeated for each recursion,

giving results for 54 recursions over the total evaluation period 2004 week 19 to 2007

week 19. The plots are based on the optimal allocation averaged over the 54 recursions

for a particular A, H and model.

Figure 5-3 gives the optimal allocation under each model, when parameter uncer-

tainty is ignored, here allocations are conditional on the �xed parameter values esti-

mated. A risk aversion e¤ect is evident for all the models, where the investor allocates

more to bonds at all horizons the more risk averse he is. Further, under the BP, IV

and JV models the di¤erence in the allocation to bonds under each A increases with

H, with di¤erences of up to 65% being observed for an investor with A = 2 compared

with A = 10. This suggests that the allocation to bonds for a longer horizon investor

greatly depends on how risk averse they are.

It can be seen that the investment horizon is also important in determining how the

investor allocates. In the absence of horizon e¤ects, the short horizon investor allocates

no di¤erently than a long horizon investor. With horizon e¤ects there is a di¤erence

between the allocations of a short and long horizon investor, such that the �allocation
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curve�which we de�ne as describing for a particular A how the investor allocates over

H, has a slope. Further, this curve may have a positive or negative slope, if the slope is

positive then the investor allocates more to bonds as H increases. Here strong horizon

e¤ects are present under all models. In general, we �nd as H increases under the

BNP and BP models the investor allocates more to bonds for all A. This is true for

A = 5 and 10 under the IV model, but for A = 2 the allocation to stocks increases with

H. Equally, under the JV model for A = 10 the investor increases his allocation to

bonds with H, for A = 5 he increases the allocation to stocks over the medium horizon

before increasing the allocation to bonds in the longer horizon, whereas with A = 2 the

investor increase his allocation to stocks with H.

In short, horizon e¤ects are present. But the extent of the e¤ect the investment

horizon has on the allocation depends upon the predictability assumptions the investor

makes. That is, which model he believes to be true and his level of risk aversion.

We will now try and provide an explanation for these allocation results by �rst

considering the e¤ects of predictability (ignoring parameter uncertainty) and then the

e¤ects of parameter uncertainty.

5.4.1 E¤ect of Predictability

In this exercise we consider four di¤erent models for forecasting interest rates and stock

returns. The atheoretic BNP and BPmodels assume no predictability in regard to bond

returns. Further, the BNP model assumes no variables are able to predict the stock

return. However, the BPmodel relaxes this assumption allowing for some predictability

in stock returns. On the opposite end of the spectrum, the theory informed IV and

JV models not only assume predictability, but as in the case of the JV model allow for

the possibility of feedbacks amongst the stock and term structure variables.

These models re�ect opposing views of whether bond and stock returns are pre-

dictable, and further have a varying degree of predictability which increases as we move
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from the BNP to BP to IV to JV model. If the investor assumes no predictability then

he believes in the BNP model. Conversely, if he assumes predictability he may believe

in the BP, IV or JV model depending on the extent of the predictability assumed. Ul-

timately, how the investor allocates is determined by which model he believes to be a

true depiction of reality.

From Figure 5-3 it can be seen that the BNP model allocates the most to bonds,

followed by the BP, the IV and then the JV model at each A and H. Where the JV

model allocates the most to stocks. The di¤erence in allocation to bonds in some cases

is over 70% amongst the models, e.g. H = 24 and A = 2 the BNP model allocates 77%

more to bonds than the JV model.

Under no predictability, which is similar to assuming the stock returns follow a

random walk process, the variance of the cumulative log returns distribution �2 !1,

i.e. the variance continues to grow with the horizon. Whereas, when the return is

modelled as a stationary process, as is the case under predictability, then �2 ! long

run mean i.e. mean reversion of the variance of returns. In which case, stocks appear

less risky in the long run and are more attractive to long horizon investors, Fama and

French (1988).

Under the BNP model we �nd horizon e¤ects, where the investor allocates more to

bonds as H increases. Under the assumption that log returns are independently and

identically normally distributed (assumption of normality is not necessary for this to

hold) the mean and variance of the cumulative log returns distribution grows propor-

tionally with the investment horizon17 i.e. H� and H�2 . For the risk averse investor

with power utility function, although return per unit of variance is the same as H in-

creases, the higher return is coupled with higher risk in absolute terms and since the

17rt;t+H = rt+1 + rt+2 + ::: + rt+H =) E(rt;t+H) = E (rt+1) + E (rt+2) + ::: + E (rt+H) = H�,
where each return has the same mean (identically distributed) and returns are independent in that
one return does not contain information about the other returns. Further, var (rt;t+H) = var (rt+1)+
var (rt+2) + :::+ var (rt+H) = H�

2, where the returns are uncorrelated so there is no covariance term
and all the variances are equal (identically distributed).
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investor is risk averse he allocates less to stocks as H increases.

With predictability the investor recognises that rather than the returns being i.i.d.

they may be predictable, as is the case under the BP, IV and JV models. Now

returns are no longer independent, but the distribution of future returns is conditional

on the current and past values of the explanatory variables. In which case the mean

and the variance of the returns no longer grow linearly. Barberis highlights that under

predictability the variance of cumulative log stock returns may grow slower than linearly

with H, such that stocks appear comparatively less risky at longer horizons, resulting

in higher allocations to stocks as H increase.

With the BP model however, we �nd that it is the allocation to bonds that increases

with H. A possible explanation for this is that although we are now incorporating

predictability the gain in terms of explanatory power for stocks returns are small, R
2

increases from 0% under the BNP model to just over 2% under the BP model, so the

increase in predictability is not su¢ cient for the investor to increase his allocation to

stocks with the horizon.

The bond returns are also modelled18 under the IV and JV models. So now both

returns will be subject to future uncertainty and ultimately the optimal allocation

hinges on how risky bonds look relative to stocks. With the IV model the investor

allocates more to stocks at all horizons than the BNP and BP models, i.e. allocation

curve shifts down for all A. This can be attributed to two factors, �rstly bond returns

now look relatively more risky than they did under the BNP and BP models since the

return is no longer known with certainty. Secondly, stock predictability under the IV

model has increased dramatically, from 2% under the BP model to nearly 70%. Both

of these factors make stocks look more attractive.

Predictability increases further under the JV model, we expect an increase in the

18Note when bond returns are modelled too, the variance of cumulative log bond returns may
also grow less than linearly with H. So now bond and stock returns may both be subject to these
predictability e¤ects.
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allocation to the asset that has gained most from the increase in predictability. An

increase in the allocation to stocks at eachH in comparison to the IV model is observed.

Thus stock returns appear to have gained more from modelling the returns jointly, so

that they appear less risky and the investor is more willing to hold them. For A = 2

stock return predictability dominates as the investor increases the amount allocated to

stocks as H increases. For A = 5 stock return predictability dominates until H = 12,

then bond return predictability dominates such that the investor allocates more to

bonds. For A = 10 bond return predictability dominates as the investor increases

allocation to bonds with H.

Under the varying degrees of predictability that each model assumes, how the in-

creased predictability alters the optimal allocation depends, �rstly on which return

(bond or stock) bene�ts more from the predictability e¤ect19. Secondly, how risk averse

the investor is. As we move from the BNP to JV model the investor allocates more to

stocks at each H, so the allocation curves shifts down. This could be because the in-

vestor is able to predict stocks better as we move from the BNP to the JV model, so he

is prepared to allocate more to stocks at every horizon for each A. But most evidently

for A = 2, when moving from BNP through to JV the slope of the allocation curve

changes. For the IV and JV models the investor is prepared to allocate substantially

more to stocks at longer horizons, which could be attributed to �2 growing less than

linearly combined with the investor not being very risk averse. Whereas for A = 10

the investor is very risk averse and increases his allocation to bonds with H.

5.4.2 E¤ect of Parameter Uncertainty

Figures 5-4 to 5-7 compare the allocations under each model when parameter uncer-

tainty is ignored to that when it is considered. Incorporating parameter uncertainty

19The predictability e¤ect results in the variance of cumulative log returns to grow less than linearly,
making the asset appear less risky at longer horizons.
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has the e¤ect of increasing the variance of the distribution of cumulative returns. Fur-

ther, the variance increases faster than linearly with H in the case of i:i:d: returns,

when this additional uncertainty is accounted for. This increase in the variance serves

to make the asset seem riskier at longer horizons.

When the investor believes in the BNP model we indeed �nd that the allocation

to stocks is reduced by 0 to 2% with parameter uncertainty, the e¤ects are small over

the horizons considered. For the BP model this additional uncertainty increases the

allocation to bonds by up to 7%, with the e¤ect of parameter uncertainty decreasing

as the investor becomes more risk averse.

Under the IV and JV models the bond returns are also being modelled, such that

they too are subject to parameter uncertainty. Now bonds look riskier than they did

under the BNP and BP models, so the optimal allocation hinges on which asset is

a¤ected by parameter uncertainty more and hence the riskiness of bonds relative to

stocks.

Parameter uncertainty under the IV model has the e¤ect of increasing the allocation

to stocks by 3 to 10% in the short to medium horizon for A = 2 and 5, the increase

is smaller for A = 10, before the allocation to bonds increases in the longer horizon

to levels similar to those when parameter uncertainty is ignored. Here we �nd that

the impact of this uncertainty is di¤erent for each A, where the more risk averse the

investor is, the less willing he is to hold more stocks. Allocations emerge as being

non-monotonic over H, because the investor does not simply increase his allocation to

stocks with the horizon, but the slope of the curve actually changes over H. Over the

short to medium horizon it appears that the e¤ect of parameter uncertainty is greater

on bond returns than stock returns. That is, the variance of the cumulative stock

returns is less than that of bonds, �2rs < �
2
r1, making stocks look less risky and more

being allocated to them. But over the longer horizon the converse seems true, such

that stocks look riskier and the optimal allocation is equal to that when parameter
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uncertainty is ignored.

The e¤ect of parameter uncertainty is most apparent under the JV model, with

allocations to stocks increasing by up to 4% for A = 2, and by the same margin for

A = 5 over the short to medium horizon before the allocation to bonds increases over

the longer horizon by 9 to 13%. The changes in allocation to bonds for A = 10 over the

investment horizon are similar to those observed for A = 5, but of a smaller magnitude.

Again allocations are non-monotonic for A = 5 and 10, in that after H = 12 the

parameter uncertainty risk is less for bonds, thus making them appear more attractive.

To explain the non-monotonic allocations that arise under parameter uncertainty,

we consider how the variances about the distribution of future predicted returns evolve

over the forecast horizon. In this case it is reasonable to expect the RMSEs and the

variances to be closely related, as in Chapter 4 we use the RMSEs as an indication

of how the variances of the forecasts evolve. Recall Tables 5.9 and 5.10, the non-

monotonic RMSEs imply that the variances of the forecasts are also non-monotonic20.

This suggests that the variance about the forecasts contracts and expands with H, so

under parameter uncertainty the asset will appear more risky at some horizons than at

others. Further, the variances of the two returns oscillate at di¤erent rates, such that

the e¤ects of parameter uncertainty will be di¤erent at di¤erent H, so at some horizons

stocks will appear more risky than bonds and at others less. This non-monotonicity

combined with the fact that the variances of the two returns expand and contract at

di¤erent rates could provide an explanation for the impact of parameter uncertainty

observed here.

We can see that as the investor becomes more risk averse, he is less prepared to

allocate more to stocks when parameter uncertainty is incorporated. Further, he is

prepared to allocate more to stocks under parameter uncertainty over the short to

20Which as Hall and Hendry (1988, pp. 256-7) argue may not be so surprising, see discussion in
Chapter 4.
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medium horizon, but not at the longer horizons21.

In short, predictability has the e¤ect of making the assets appear less risky at longer

H, while parameter uncertainty makes the asset look more risky. The �nal allocation

depends on which e¤ect dominates for that asset. Additionally, since we consider two

assets-bonds and stocks, which of the two emerges as the less riskier.

The RMSE is a statistical measure of forecast accuracy, here we focus on assessing

forecast performance using the economic value to an investor. An economic evaluation

of the forecast performance of each model is reported in Tables 5.11 to 5.13 22. We

compute the end-of-period wealth that the risk averse investor would have achieved

over 2004 week 19 to 2007 week 19 had he allocated his portfolio as suggested by the

optimal weights of each model for a particular A and H. The optimal weight ! is

calculated by solving the utility maximisation problem23. These realised wealths are

averaged over 54 recursions and then ranked in descending order so the performance of

each model can be compared.

Apart from the four models described above, under which we both ignore parameter

uncertainty and incorporate it to derive the optimal allocations, we also introduce three

passive �lazy�strategies. Under the lazy strategies the investor makes no attempt to

model or predict the returns, but instead either invests (1) all in bonds (AB), (2) all in

stocks (AS) or (3) half in bonds and half in stocks (HH). The top position is always

occupied by the lazy �all in stocks�strategy. Although it should be noted that during

21Boudry and Gray (2003, BG) extend Barberis by including two additonal predictor variables-term
spread and the relative bill rate to predict Australian stock returns. Like us they too �nd "negative
horizon e¤ects", where the investor allocates more to bonds at longer horizons. This is contrary to
Barberis, who �nds that parameter uncertainty reduces not eliminates the positive horizon e¤ects.
BG argue that their model contains more predictor variables that require estimating than Barberis�,
which introduces a signi�cant degree of parameter uncertainty. Thus the perceived riskiness of stocks
grows faster than linearly with H and allocation to stocks decreases. Further, they state that this
negative horizon e¤ect may be intensi�ed by the fact that the investment is buy-and-hold, whereby
the consequence of inaccurately judging the level of predictability is more severe when the investor is
locked-in for long horizons.
22Like ASV and GL our measure of economic value is based on wealth.
23The optimal weight is determined by the forecasts from the model. These weights are then

combined with actual/realised returns to give the realised end-of-horizon wealth.
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the forecast horizon 2004 week 19 to 2007 week 19 over which this evaluation of the

models is made, the UK stock market was buoyant which explains the success of this

strategy here. Hence during times of market growth investing �all in bonds�would

yield the lowest realised wealth. Looking to positions 2 to 10, the success of the JV

models (without and with parameter uncertainty) is clear, with it occupying 2nd and

3rd place for almost all A and H. The IV models come mostly 4th and 5th, followed

by the BP models and then the BNP models.

What emerges from these results is that the success of the model in terms of prof-

itability appears to be closely related to the level of predictability the investor assumes.

Whereby the more theory informed IV and JV models consistently outperform the more

restricted BP models and the atheoretic BNP models. Broadly speaking these results

are not sensitive to the investment horizon or level of risk aversion. This provides

evidence not only in favour predictability, but of modelling the two returns jointly as

under the JV models rather than separately, when we use economic value as a means

to evaluate forecasts.

5.5 Conclusion

For a utility maximising investor, we compare how the optimal allocations di¤er under

a set of atheoretic and theory informed models, and how it di¤ers when the investor

incorporates parameter uncertainty to when he ignores it. Further, we evaluate the

economic value of the out-of-sample forecasts of bond and stock returns generated under

each of these models. The investment decision is whether to invest in bonds or stocks,

this is examined in a framework that both ignores parameter uncertainty and explicitly

allows for it.

The key innovation here is that we model both returns by using the EH to model

the interest rate and the dividend yield to model the stock returns, and then evalu-
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ate interest rate and stock predictability in an economic value framework. Under the

assumption of bond return predictability, we �rst model the bond and stock returns

separately with their predictor variables. Then secondly model the two returns jointly

with all the predictor variables. This joint modelling framework allows for the possibil-

ity of stock variables to in�uence the term structure variables and vice versa. Over the

sample investigated here we �nd evidence to suggest that an investor seeking to opti-

mally allocate his wealth between UK bonds and stocks is better o¤, in terms of higher

end-of-horizon wealth, by assuming predictability in returns and further modelling both

returns together, than an investor who assumes no predictability.

We �nd the e¤ect of predictability on the optimal allocation is considerable, where

the optimal weights under predictability of returns are in some cases greatly di¤erent

to those under no predictability. In particular, the predictability in the bond and

stock returns led to more being allocated to stocks at each horizon, and under the

IV and JV models for A = 2 the investor increases the allocation to stocks with the

horizon. These �ndings lend support to the predictive ability of the stock and term

structure models considered here, and to modelling both returns jointly. The e¤ect

of parameter uncertainty is not large over the investment horizon considered here.

Although Barberis reports signi�cant e¤ects of parameter uncertainty on the optimal

allocation these are prominent at longer horizons, he considers horizons up to 10 years.

At our comparatively shorter horizons of up to 2 years, the magnitude of the impact is

of similar proportions to those reported by Barberis.

Using a statistical evaluation criterion i.e. RMSEs, the BNP and BP models out-

perform the models that assume predictability at almost all horizons when forecasting

bond returns. However, when forecasting stocks returns there is not a single model

that outperforms the others, the JV models perform well over the shorter horizons and

the BNP and BP models over the longer horizons. In general, under this statistical

criterion the Barberis models which assume no or limited predictability forecast well.
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Conversely, when an economic value approach is used these Barberis models are the

worst performing and are outperformed by the theory based models. So we observe

that the results from the two di¤ering evaluation techniques do not entirely coincide,

where the model that achieves the lowest RMSE is not necessarily the one that will

maximise realised wealths. It is apparent from this that models and their forecasts

need to be evaluated using an appropriate criteria. Here we want to know how to

optimally allocate the portfolio, so it is necessary to incorporate the investor�s feelings

about risk and to consider the distribution about the predicted returns, in which case

the RMSE seems inadequate for this purpose.

The results show evidence of economic value to bond and stock return predictability.

As we increase the degree of predictability assumed in the model, when moving from

the BNP model right through to the JV model, there are increasing gains in terms of

economic value to the investor. Since the end-of-horizon wealth gained by the investor

who assumes bond and stock return predictability is greater, than one who assumes they

are not predictable. With the investor who assumes the highest level of predictability

here as given by the JV model, achieving the greatest end-of-horizon wealth.

To conclude we �nd further evidence to that reported by Abhyankar et al (2005),

Della Corte et al (2008), and Garratt and Lee (2009) amongst others, which highlights

the importance of having an evaluation criterion that re�ects the purpose for which the

forecasts are intended. Our results suggest that in the context of investment decision

making under an economic value criterion, the investor gains from not only assuming

predictability, but by modelling the bond and stock returns together.
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Figure 5-1: Stock Return and Dividend Yield 1997 to 2007
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Figure 5-2: Bond Return, Changes and Spreads 1997 to 2007
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Figure 5-3: E¤ect of Predictability ignoring Parameter Uncertainty
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Figure 5-4: Allocation under the BNP Model Without (solid line) and With (dotted
line) Parameter Uncertainty
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Figure 5-5: Allocation under the BP Model Without (solid line) and With (dotted line)
Parameter Uncertainty
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Figure 5-6: Allocation under the IV Model Without (solid line) and With (dotted line)
Parameter Uncertainty
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Figure 5-7: Allocation under the JV Model Without (solid line) and With (dotted line)
Parameter Uncertainty
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Table 5.1: Unit Root Tests

Variable
ADF t-statistic
(lag length)

PP adj t-statistic
(bandwidth)

KPSS LM statistic
(bandwidth)

rst �5:002
(0)

��� �9:150
(22)

��� 0:248
(9)

dyt �2:005
(1)

�2:107
(4)

0:799
(17)

���

�dyt �26:238
(0)

��� �26:189
(3)

��� 0:170
(6)

r1t �0:888
(0)

�1:184
(12)

1:568
(18)

���

�r1t �21:686
(0)

��� �23:129
(12)

��� 0:266
(12)

���

s12;1t �3:121
(0)

�� �3:141
(8)

�� 0:114
(17)

s6;1t �3:840
(0)

��� �3:639
(7)

��� 0:128
(17)

s3;1t �4:454
(1)

��� �4:700
(4)

��� 0:141
(17)

Critical Values

ADF Test PP Test KPSS Test
1% level �3:445 �3:445 0:739
5% level �2:868 �2:868 0:463
10% level �2:570 �2:570 0:347

Notes: The ADF test statistics are computed using ADF regressions with an intercept and �L�lagged

�rst di¤erences of the dependent variable. The order of augmentation in the Dickey-Fuller

regressions are chosen using the Schwarz Information Criterion, with maximum lag length of 20.

The bandwidth for both the PP and KPSS test was selected using the Newey-West (1994) method

based on the Bartlett Kernel. The PP test statistics are calculated with an intercept only in the

underlying DF regressions. Tests are performed on the entire sample 1997 week 10 to 2007 week 19.

Null rejected at *** 1% level, ** 5% level, * 10% level of signi�cance.
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Table 5.2: Estimation of Barberis No Predictability (BNP) Model

Equation rst
� 0:0026

(0:0024)

R2 0:000b� 0:0471
eqnLL 612:42
�2N [2] 40:31���

�2SC [12] 246:35���

Notes: see those for Table (5.3).

Table 5.3: Estimation of Barberis Predictability (BP) Model

Equation rst dyt

� �0:0385���
(0:0132)

0:0004�
(0:0002)

dyt�1 1:4813
(0:4666)

��� 0:9845
(0:0083)

���

R2 0:0238 0:9743b� 0:0466 0:0008
eqnLL 615:44 2118:61
�2N 53:83��� 2324:69���

�2H [1] 1:22 20:11���

�2SC [12] 240:30��� 18:70�

Notes: Standard errors in parenthesis (.). The R
2
; standard error of the regression (b�), log

likelihood of the equation (LL) presented, together with the chi-squared statistics for Breusch-Pagan

Serial Correlation test (SC), the Jarque-Bera Test for Normality (N), Breusch-Pagan-Godfrey test for

Heteroskedasticity (H). The BNP and BP models are estimated over 1997 week 10 to 2004 week 18

(364 observations), the BNP model assumes that rst = �+ �t and the BP model assumes that both
rst and dyt are determined by a single lagged dividend yield term. Both assume that r

1
t is a

constant taken at the last value in the sample i.e. 2004 week 18. Null rejected at *** 1% level, ** 5%

level, * 10% level of signi�cance.
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Table 5.4: Estimation of Individual VAR-STOCK (IV-STOCK) Model

Equation rst dyt

rst�1 0:8488���
(0:0520)

�0:0021
(0:0009)

���

rst�2 0:0969
(0:0680)

� 0:00002
(0:0011)

rst�3 0:0395
(0:0682)

0:0016
(0:0011)

�

rst�4 �0:9627
(0:0684)

��� �0:0253
(0:0011)

���

rst�5 0:6429
(0:0800)

��� 0:0174
(0:0013)

���

dyt�1 �5:2877��
(2:7871)

0:7973
(0:0464)

���

dyt�2 �4:4200
(3:0747)

� 0:0130
(0:0512)

dyt�3 2:4994
(3:0838)

�0:0089
(0:0514)

dyt�4 25:6587
(3:0723)

��� 0:6554
(0:0512)

���

dyt�5 �18:0215
(2:8277)

��� �0:4597
(0:0471)

���

inpt �0:0111
(0:0078)

� 0:00009
(0:0001)

R2 0:6835 0:9925b� 0:0267 0:0004
Fstat 80:48��� 4862:61���

eqnLL 819:78 2330:93
Excl. rs terms 118:68��� 95:82���

Excl. dy terms 4:79��� 22793:15���

�2N [4] 377:63���

�2H [60] 273:46���

�2SC [4] 9:37�

Notes: Standard errors in parenthesis (.). The R
2
; standard error of the regression (b�), log

likelihood (LL) presented with the model diagnostic tests which are all carried out on the VAR

residuals. No roots of the characteristic polynomial lie outside the unit circle, so the VAR is stable.

Chi-squared statistics presented for: (N) the VAR Residual Normality Test (orthogonalization:

residual correlation (Doornik-Hansen) this test statistic is not sensitive to the ordering or the scale of

the variables) for the null that the residuals are multivariate normal, (H) the VAR Residual

Heteroskedasticity Test (no cross terms, but the conclusion was the same when cross terms were

included), and (SC) the VAR Residual Serial Correlation LM Test. "Excl ::: terms" tests the joint
signi�cance of the excluded terms, we give the F-statistic of the Wald test of these restrictions. The

IV model for the stock returns is estimated of order 5, over 1997 week 10 to 2004 week 18 (364

observations). Null rejected at *** 1% level, ** 5% level, * 10% level of signi�cance.
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Table 5.5: Estimation of Individual VAR-BOND (IV-BOND) Model

Equation �r1t s12;1t s6;1t s3;1t
�r1t�1 0:0261

(0:0641)
0:0807
(0:0924)

0:1005
(0:0643)

� 0:0677
(0:0403)

��

�r1t�2 �0:1324
(0:0642)

�� 0:1024
(0:0926)

0:1262
(0:0644)

�� 0:0905
(0:0404)

��

�r1t�3 �0:0401
(0:0647)

0:0147
(0:0933)

0:0340
(0:0648)

0:0365
(0:0407)

�r1t�4 0:0401
(0:0647)

0:1181
(0:0932)

0:1194
(0:0648)

�� 0:0698
(0:0407)

��

�r1t�5 �0:1556
(0:0652)

��� 0:2144
(0:0940)

�� 0:2256
(0:0654)

��� 0:1635
(0:0410)

���

�r1t�6 0:0637
(0:0503)

�0:0425
(0:0724)

�0:0015
(0:0504)

�0:0056
(0:0316)

s12;1t�1 0:2036
(0:1694)

0:9127
(0:2442)

��� 0:1289
(0:1698)

0:0512
(0:1065)

s12;1t�2 �0:0399
(0:2085)

0:2616
(0:3005)

0:0256
(0:2089)

�0:0231
(0:1311)

s12;1t�3 �0:1141
(0:2099)

�0:2798
(0:3025)

�0:2414
(0:2103)

�0:1303
(0:1320)

s12;1t�4 �0:1828
(0:2102)

0:5160
(0:3029)

�� 0:3192
(0:2106)

� 0:1697
(0:1321)

�

s12;1t�5 0:6021
(0:2079)

��� �0:3520
(0:2997)

� �0:1617
(0:2084)

�0:0507
(0:1307)

s12;1t�6 �0:2516
(0:1729)

� 0:0471
(0:2491)

�0:0724
(0:1732)

�0:1011
(0:1087)

s6;1t�1 �0:6234
(0:4141)

� �0:0628
(0:5969)

0:7338
(0:4150)

�� 0:0820
(0:2604)

s6;1t�2 0:0182
(0:5081)

�0:2724
(0:7323)

0:1476
(0:5091)

0:1774
(0:3195)

s6;1t�3 0:4275
(0:5102)

0:6366
(0:7353)

0:5034
(0:5113)

0:1914
(0:3208)

s6;1t�4 0:2740
(0:510)

�1:2991
(0:7350)

�� �0:7821
(0:5111)

� �0:3879
(0:3206)

s6;1t�5 �1:4676
(0:5076)

��� 1:1729
(0:7315)

� 0:6392
(0:5086)

0:2476
(0:3191)

s6;1t�6 0:3932
(0:4273)

�0:1773
(0:6158)

0:0961
(0:4282)

0:2071
(0:2687)
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Table 5.6: Estimation of Individual VAR-BOND Model (continued)

s3;1t�1 1:1372
(0:3693)

��� �0:0945
(0:5322)

�0:2179
(0:3700)

0:4756
(0:2322)

��

s3;1t�2 �0:1628
(0:4582)

0:0026
(0:6604)

�0:1587
(0:4592)

�0:1316
(0:2881)

s12;1t�3 �0:2502
(0:4590)

�0:7137
(0:6615)

�0:5592
(0:4599)

�0:2200
(0:2886)

s3;1t�4 �0:0421
(0:4587)

1:2917
(0:6613)

�� 0:8299
(0:4598)

�� 0:4046
(0:2885)

�

s3;1t�5 0:8163
(0:4595)

�� �0:9184
(0:6623)

� �0:5250
(0:4605)

�0:1750
(0:2889)

s3;1t�6 0:2139
(0:3898)

�0:3190
(0:5617)

�0:3820
(0:3906)

�0:3364
(0:2451)

�

inpt �0:000001
(0:000004)

�0:000011
(0:000005)

�� �0:000006
(0:000004)

� �0:000002
(0:000002)

R2 0:2582 0:9353 0:9015 0:8264b� 0:0001 0:0001 0:0001 0:0000
Fstat 6:31��� 221:24��� 140:74��� 73:69���

eqnLL 3079:65 2945:51 3078:88 3249:95
Excl. �r1t terms 2:12� 1:17 1:87� 2:38��

Excl. s12;1t terms 1:78 4:03��� 0:78 0:60

Excl. s6;1t terms 1:82 0:89 1:12 0:48

Excl. s3;1t terms 1:76 1:02 0:99 1:89�

�2N [8] 55:65���

�2H [480] 730:43���

�2SC [16] 11:53

Notes: Standard errors in parenthesis (.). The R
2
; standard error of the regression (b�), log

likelihood (LL) presented with VAR residual diagnostic tests and the test of restrictions as detailed

before. No roots of the characteristic polynomial lie outside the unit circle, so the VAR is stable.

The IV model for the bond returns is estimated of order 6, over 1997 week 10 to 2004 week 18 (364

observations). Null rejected at *** 1% level, ** 5% level, * 10% level of signi�cance.
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Table 5.7: Estimation of Joint VAR (JV) Model

Equation rst dyt �r1t s12;1t s6;1t s3;1t
rst�1 0:8437

(0:0559)

��� �0:0016
(0:0009)

�� 0:00003
(0:0001)

0:00002
(0:0002)

�0:00005
(0:0001)

�0:00009
(0:0001)

rst�2 0:0955
(0:0733)

� �0:00043
(0:0012)

�0:00013
(0:0002)

0:00005
(0:0002)

0:00006
(0:0002)

0:00009
(0:0001)

rst�3 0:0280
(0:0722)

0:0009
(0:0012)

0:00019
(0:0002)

�0:0003
(0:0002)

�0:0002
(0:0002)

�0:0001
(0:0001)

rst�4 �0:9675
(0:0723)

��� �0:0253
(0:0012)

��� �0:0002
(0:0002)

� 0:0011
(0:0002)

��� 0:0007
(0:0002)

��� 0:0003
(0:0001)

���

rst�5 0:7132
(0:1187)

��� 0:0217
(0:0019)

��� 0:0002
(0:0003)

�0:0004
(0:0003)

�0:0004
(0:0002)

� �0:0002
(0:0002)

�

rst�6 �0:1010
(0:1069)

�0:0059
(0:0017)

��� �0:000087
(0:0002)

�0:00006
(0:0003)

0:000043
(0:0002)

0:00007
(0:0001)

dyt�1 �3:4884
(3:4040)

0:8663
(0:0550)

��� 0:0039
(0:0071)

0:0041
(0:0098)

0:0016
(0:0069)

0:0018
(0:0044)

dyt�2 �7:4658
(4:0558)

�� �0:0966
(0:0655)

� �0:0050
(0:0085)

0:0029
(0:0116)

0:0028
(0:0082)

�0:0009
(0:0053)

dyt�3 3:2377
(3:3330)

�0:0071
(0:0539)

0:0004
(0:0070)

�0:00001
(0:0096)

�0:0004
(0:0068)

0:0006
(0:0044)

dyt�4 24:7579
(3:3222)

��� 0:6343
(0:0537)

��� �0:0042
(0:0070)

�0:0176
(0:0095)

�� �0:0010
(0:0067)

� �0:0029
(0:0043)

dyt�5 �20:4026
(4:0628)

��� �0:5584
(0:0657)

��� 0:0068
(0:0085)

0:0055
(0:0117)

0:0049
(0:0083)

0:0023
(0:0053)

dyt�6 3:8254
(3:4294)

0:1579
(0:0554)

��� �0:0013
(0:0072)

0:0033
(0:0098)

0:0003
(0:0070)

�0:0011
(0:0045)

�r1t�1 44:3657
(31:22)

� �0:1888
(0:5045)

0:0345
(0:0653)

0:0490
(0:0895)

0:0810
(0:0634)

0:0611
(0:0407)

�r1t�2 �9:8129
(31:1126)

0:2307
(0:5028)

�0:1481
(0:0651)

�� 0:1290
(0:0892)

� 0:1449
(0:0632)

�� 0:1010
(0:0406)

���

�r1t�3 �20:7582
(31:4388)

�0:1499
(0:5080)

�0:0343
(0:0657)

0:0358
(0:0901)

0:0453
(0:0638)

0:0374
(0:0410)

�r1t�4 �0:8345
(31:2922)

0:4512
(0:5057)

0:0326
(0:0654)

0:0999
(0:0897)

0:1080
(0:0635)

�� 0:0652
(0:0408)

�

�r1t�5 5:1664
(31:4400)

0:2952
(0:5081)

�0:1546
(0:0658)

��� 0:1807
(0:0901)

�� 0:2059
(0:0638)

��� 0:1551
(0:0410)

���

�r1t�6 5:7750
(24:2492)

0:2479
(0:3919)

0:0682
(0:0507)

� �0:0697
(0:0695)

�0:0183
(0:0492)

�0:0146
(0:0316)

s12;1t�1 �45:0026
(81:7993)

0:8657
(1:3213)

0:1970
(0:1710)

0:9253
(0:2345)

��� 0:1357
(0:1660)

0:0610
(0:1067)

s12;1t�2 �48:8576
(101:310)

�1:5758
(1:6371)

�0:0487
(0:2119)

0:1956
(0:2905)

�0:0151
(0:2056)

�0:0512
(0:1321)

s12;1t�3 91:6225
(101:889)

1:1484
(1:6465)

�0:0599
(0:2131)

�0:2590
(0:2921)

�0:2352
(0:2068)

�0:1281
(0:1329)

s12;1t�4 13:1789
(101:991)

1:0135
(1:6481)

�0:2623
(0:2133)

0:5374
(0:2924)

�� 0:3419
(0:2070)

�� 0:1874
(0:1333)

�

s12;1t�5 �20:9624
(100:933)

�1:5036
(1:6310)

0:6723
(0:2111)

��� �0:3337
(0:2894)

�0:1568
(0:2049)

�0:0592
(0:1316)

s12;1t�6 �19:0208
(84:3141)

0:7271
(1:3625)

�0:3056
(0:1763)

�� 0:1620
(0:2417)

�0:0084
(0:1711)

�0:0770
(0:110)
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Table 5.8: Estimation of Joint VAR Model (continued)

s6;1t�1 88:8499
(200:813)

�3:4790
(3:2450)

�0:6127
(0:4199)

� �0:1499
(0:5758)

0:6944
(0:4076)

�� 0:0589
(0:2619)

s6;1t�2 203:8494
(247:846)

8:8052
(4:0050)

�� 0:0261
(0:5183)

�0:1192
(0:7106)

0:2311
(0:5030)

0:2267
(0:3233)

s6;1t�3 �238:2515
(248:877)

�5:2168
(4:0217)

� 0:3597
(0:5205)

0:3213
(0:7136)

0:3375
(0:5051)

0:1256
(0:3246)

s6;1t�4 �83:3880
(248:824)

�3:8379
(4:0208)

0:3672
(0:5203)

�1:0019
(0:7134)

� �0:6166
(0:5050)

�0:3113
(0:3245)

s6;1t�5 82:6709
(246:359)

6:3508
(3:9810)

� �1:5152
(0:5152)

��� 0:9559
(0:7064)

� 0:5057
(0:5000)

0:1922
(0:3213)

s6;1t�6 43:2428
(207:804)

�4:0780
(3:3580)

0:4916
(0:4346)

�0:4441
(0:5958)

�0:04545
(0:4218)

0:1585
(0:2710)

s3;1t�1 �15:1047
(180:825)

3:0517
(2:9220)

1:1146
(0:3781)

��� 0:0194
(0:5185)

�0:1664
(0:3670)

0:5014
(0:2358)

��

s3;1t�2 �343:980
(225:663)

� �9:2975
(3:6466)

��� �0:1809
(0:4719)

�0:0786
(0:6470)

�0:1952
(0:4580)

�0:1568
(0:2943)

s3;1t�3 212:502
(226:610)

4:7176
(3:6619)

� �0:1935
(0:4739)

�0:2940
(0:6497)

�0:3398
(0:4599)

�0:1431
(0:2956)

s3;1t�4 120:809
(225:803)

3:9380
(3:6488)

�0:1221
(0:4722)

0:8971
(0:6474)

� 0:6008
(0:4583)

� 0:2985
(0:2945)

s3;1t�5 �70:8071
(224:02)

�6:7076
(3:620)

�� 0:8540
(0:4685)

�� �0:7411
(0:6423)

�0:410
(0:4547)

�0:1196
(0:2922)

s3;1t�6 �44:6769
(189:193)

4:4755
(3:0572)

� 0:1246
(0:3956)

�0:0122
(0:5425)

�0:2115
(0:3840)

�0:2715
(0:2468)

inpt �0:0119
(0:0085)

� 0:00008
(0:0001)

�0:00002
(0:00002)

0:00004
(0:00002)

� 0:00002
(0:00002)

0:000003
(0:00001)

R2 0:6710 0:9926 0:2611 0:9416 0:9080 0:8298b� 0:0271 0:0004 0:00006 0:00008 0:00006 0:00004
Fstat 21:74 1360:44 4:59 165:01 101:34 50:58
eqnLL 822:51 2336:48 3086:91 2971:09 3097:89 3260:17

Excl. rst terms 82:35��� 78:10��� 1:03 4:61��� 3:99��� 2:64��

Excl. dyt terms 4:40��� 13821:12��� 0:83 1:95� 1:20 0:31
Excl. �r1t terms 0:48 0:44 2:16�� 1:18 2:9�� 3:83���

Excl. s12;1t terms 0:32 0:57 3:43��� 19:33��� 0:80 0:86

Excl. s6;1t terms 0:37 1:16 3:15��� 0:66 3:65��� 1:17

Excl. s3;1t terms 0:67 0:88 3:99��� 0:52 1:32 1:47
Excl. stock terms 56:68��� 9301:20��� 2:30�� 3:48��� 2:61��� 1:76��

Excl. bond terms 0:62 0:77 6:70��� 333:43��� 196:51��� 89:49���

�2N [12] 295:87���

�2H [1512] 2123:63���

�2SC [36] 24:42�

Notes: Standard errors in parenthesis (.). The R
2
; standard error of the regression (b�), log

likelihood (LL) presented with VAR residual diagnostic tests and the test of restrictions as detailed

before. No roots of the characteristic polynomial lie outside the unit circle, so the VAR is stable. The

JV model is estimated of order 6, over 1997 week 10 to 2004 week 18 (364 observations). Null

rejected at *** 1% level, ** 5% level, * 10% level of signi�cance.
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Table 5.9: Root Mean Squared Errors of Bond and Stock Returns

(a) Bond Returns (r1t )

Model H = 1 H = 3 H = 6 H = 12 H = 18 H = 24

BNP 3.02E-06 3.43E-06 3.98E-06 3.44E-06 1.77E-06 2.56E-07
BP 3.02E-06 3.43E-06 3.98E-06 3.44E-06 1.77E-06 2.56E-07
IV 3.04E-06 3.55E-06 4.51E-06 5.03E-06 3.05E-06 1.33E-06
JV 3.00E-06 3.44E-06 4.35E-06 4.99E-06 3.15E-06 1.46E-06
BNPPU 3.02E-06 3.43E-06 3.98E-06 3.44E-06 1.77E-06 2.56E-07
BPPU 3.02E-06 3.43E-06 3.98E-06 3.44E-06 1.77E-06 2.56E-07
IVPU 3.05E-06 3.59E-06 4.61E-06 5.07E-06 3.00E-06 1.26E-06
JVPU 3.01E-06 3.47E-06 4.43E-06 4.99E-06 3.06E-06 1.34E-06

(b) Stock Returns (rst )

Model H = 1 H = 3 H = 6 H = 12 H = 18 H = 24

BNP 0.001760 0.001599 0.002343 0.002479 0.002334 0.001431
BP 0.001607 0.001497 0.002316 0.002490 0.002316 0.001431
IV 0.001559 0.001520 0.002333 0.002482 0.002327 0.001430
JV 0.001533 0.001420 0.002368 0.002468 0.002360 0.001466
BNPPU 0.001762 0.001601 0.002340 0.002483 0.002333 0.001431
BPPU 0.001615 0.001505 0.002318 0.002485 0.002320 0.001429
IVPU 0.001504 0.001495 0.002314 0.002486 0.002327 0.001436
JVPU 0.001495 0.001411 0.002375 0.002477 0.002365 0.001470

Notes: The RMSEs are computed for each model for the horizons H = 1, 3, 6, 12, 18, 24 months as

follows

rP54

i=1
(rT+H�brT+H)i

54
where rT+H is the actual monthly return i.e. r1t and r

s
t , brT+H is the

forecast and the di¤erence between the two (rT+H � brT+H) is computed for each recursion i, where
there are 54 weekly recursions. The BNP, BP, IV and JV models are estimated subject to stochastic

uncertainty only. The BNPPU, BPPU, IVPU and JVPU models consider parameter uncertainty too.
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Table 5.10: Ratio of RMSEs of Returns

(a) Bond Returns (r1t )

Model H = 1 H = 3 H = 6 H = 12 H = 18 H = 24
BNP 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
BP 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
IV 1.0073 1.0338 1.1339 1.4635 1.7241 5.2038
JV 0.9956 1.0033 1.0927 1.4508 1.7805 5.7062
BNPPU 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
BPPU 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
IVPU 1.0111 1.0456 1.1573 1.4734 1.6958 4.9097
JVPU 0.9986 1.0125 1.1118 1.4507 1.7309 5.2440

(b) Stock Returns (rst )

Model H = 1 H = 3 H = 6 H = 12 H = 18 H = 24
BNP 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
BP 0.9129 0.9361 0.9886 1.0043 0.9924 0.9999
IV 0.8859 0.9507 0.9959 1.0011 0.9970 0.9992
JV 0.8713 0.8883 1.0107 0.9953 1.0112 1.0247
BNPPU 1.0013 1.0013 0.9986 1.0016 0.9997 0.9999
BPPU 0.9174 0.9410 0.9894 1.0023 0.9942 0.9984
IVPU 0.8543 0.9349 0.9991 1.0028 0.9971 1.0031
JVPU 0.8495 0.8826 1.0136 0.9991 1.0135 1.0270

Notes: The above ratios are that of the RMSE for each model to the RMSE of the BNP model,

which is taken as the benchmark.
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Table 5.11: Realised Wealth under each Strategy for A=2

Position H = 3 H = 6 H = 12 H = 18 H = 24

1st AS
1:039024

AS
1:090983

AS
1:198814

AS
1:303596

AS
1:402846

2nd JVPU
1:036934

JV
1:085841

JV
1:195839

JV
1:301244

JV
1:395425

3rd IVPU
1:036653

JVPU
1:080824

JVPU
1:190218

JVPU
1:288895

JVPU
1:364283

4th BPPU
1:036635

IVPU
1:078341

IV
1:179595

IV
1:279403

IV
1:359239

5th JV
1:036284

IV
1:076682

IVPU
1:168318

IVPU
1:267401

IVPU
1:330711

6th IV
1:036280

BP
1:075567

BP
1:166442

BP
1:242216

BPPU
1:280586

7th BP
1:036424

BPPU
1:073885

BPPU
1:161321

BPPU
1:234480

BP
1:280391

8th BNP
1:033901

BNP
1:06513

HH
1:122679

HH
1:186747

HH
1:248576

9th BNPPU
1:033538

BNPPU
1:059189

BNPPU
1:106594

BNPPU
1:135350

BNPPU
1:162686

10th HH
1:025256

HH
1:057076

BNP
1:106185

BNP
1:133146

BNP
1:158903

11th AB
1:011487

AB
1:023170

AB
1:046544

AB
1:069898

AB
1:094306

Notes: The realised wealths above are the end-of-investment horizon wealths that the investor would

have achieved over 2004 week 19 to 2007 week 19 had he allocated according to the optimal weights

for each model, A and H. These have been averaged over the 54 recursions. The realised wealths for

each model are ranked in descending order, for a particular A and H. The table shows how the four

models, BNP, BP, IV and JV without and with parameter uncertainty perform, together with the

lazy strategies in terms of their achieved realised wealths. The actual realised wealths are given

below the model code. The BNP, BP, IV and JV models are estimated subject to stochastic

uncertainty only. The BNPPU, BPPU, IVPU and JVPU models consider parameter uncertainty

too. The lazy strategies are �AS�is the �all in stocks�, �AB�is the �all in 1-month�and �HH�is half in

stocks and half in bonds.

253



Table 5.12: Realised Wealth under each Strategy for A=5

Position H = 3 H = 6 H = 12 H = 18 H = 24

1st AS
1:039024

AS
1:090983

AS
1:198814

AS
1:303596

AS
1:402846

2nd JVPU
1:036578

JV
1:076580

JV
1:182284

JV
1:266296

JV
1:311270

3rd JV
1:036177

JVPU
1:073879

JVPU
1:172839

JVPU
1:247169

JVPU
1:290901

4th BP
1:034746

IVPU
1:067545

IV
1:130203

IVPU
1:188850

HH
1:248576

5th IV
1:034722

IV
1:065844

IVPU
1:129411

HH
1:186747

IVPU
1:226558

6th BPPU
1:034379

BP
1:063308

HH
1:22679

IV
1:185716

IV
1:225723

7th IVPU
1:034076

BPPU
1:061854

BP
1:110021

BP
1:144193

BPPU
1:170952

8th BNP
1:031437

HH
1:057076

BPPU
1:108467

BPPU
1:143424

BP
1:169210

9th BNPPU
1:031427

BNP
1:045392

BNPPU
1:071853

BNPPU
1:096009

BNPPU
1:121266

10th HH
1:025256

BNPPU
1:044855

BNP
1:070828

BNP
1:094976

BNP
1:119881

11th AB
1:011487

AB
1:023170

AB
1:046544

AB
1:069898

AB
1:094306

Notes: See those for Table (5.11).

254



Table 5.13: Realised Wealth under each Strategy for A=10

Position H = 3 H = 6 H = 12 H = 18 H = 24

1st AS
1:039024

AS
1:090983

AS
1:198814

AS
1:303596

AS
1:402846

2nd JVPU
1:034242

JVPU
1:062446

JV
1:127786

HH
1:186747

HH

3rd JV
1:033848

JV
1:061033

JVPU
1:127539

JVPU
1:174776

JV
1:204549

4th IV
1:030925

HH
1:057076

HH
1:122670

JV
1:174361

JVPU
1:200687

5th IVPU
1:030333

IVPU
1:050169

IVPU
1:090307

IVPU
1:131481

IVPU
1:161707

6th BP
1:030233

IV
1:047795

IV
1:088793

IV
1:127939

IV
1:160499

7th BPPU
1:030059

BP
1:045415

BP
1:078158

BP
1:107021

BPPU
1:132265

8th BNP
1:025752

BPPU
1:044642

BPPU
1:077299

BPPU
1:106430

BP
1:131377

9th BNPPU
1:025671

BNP
1:034226

BNPPU
1:059303

BNPPU
1:082984

BNPPU
1:107677

10th HH
1:025256

BNPPU
1:034002

BNP
1:058743

BNP
1:082416

BNP
1:107207

11th AB
1:011487

AB
1:023170

AB
1:046544

AB
1:069898

AB
1:094306

Notes: See those for Table (5.11).
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Chapter 6

Conclusion

In this thesis we both model and forecast the UK term structure at the short end. We

model the term structure using a range of statistical and theory informed time series

models. Then we generate density forecasts from a selection of these interest rate mod-

els, that embed varying degrees of economic theory and assess the predictability of the

term structure in an investment decision making context. Both decision-based meth-

ods, that consider the economic value of the forecast to the user, as well as conventional

statistical measures are used to determine forecast accuracy.

As discussed in Chapter 2, the importance of the term structure and its main theory,

the EH is well documented. We begin by testing the EH and modelling the term

structure generally in Chapter 3, Chapters 4 and 5 are concerned with forecasting the

term structure. In Chapter 4, given that we �nd evidence of cointegration amongst the

yields from Chapter 3, we use the MVARTmodel that embeds the cointegration implied

by the EH to model the interest rates, and then evaluate interest rate predictability in a

decision-based framework. Chapter 5 extends this to include stock return predictability.

We argue that density forecasting is appropriate here for conveying the risk and return

information of each asset, where by using density forecasts of future returns the investor

utilises the entire distribution about the forecast to inform his allocation decisions.
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Further, decision-based forecast evaluation allows us to incorporate the investor�s feeling

about risk and assess the forecasts in terms of their economic value to the investor.

This chapter begins by summarising Chapters 2 to 5 in Section 6.1, Section 6.2 then

details the contributions this thesis makes to the existing empirical literature. This is

followed by a discussion of how this work can be extended in terms of future research

in Section 6.3 and �nally Section 6.4 concludes the thesis.

6.1 Summary of Chapters

Chapter 2 reviews the theories, modelling techniques, existing term structure and �-

nancial economic forecasting literature relevant to empirical Chapters 3 to 5. We �rst

discuss the importance of the term structure and how UK interest rates have evolved

over recent decades. We then summarise the main theory of the term structure, the

Expectations Hypothesis (EH) and how it is assessed. The EH postulates that the long

rate re�ects information about the market�s expectation of future short rates. The em-

pirical literature �nds mixed support for the EH, with it describing the data better

under some monetary policy regimes than others, the support being sensitive to the

testing method and the type of data employed. We describe how interest rates can be

modelled more generally, using a range of atheoretic and theory informed time series

models. The second part of Chapter 2 is concerned with forecasting, describing how

point and density forecasts can be computed and brie�y reviewing the interest rate

forecasting literature. We discuss how forecasts are evaluated statistically and using

decision-based methods, and review current studies that use decision-based methods to

examine the predictability of asset returns.

Chapter 3 investigates the time series properties of the UK Term Structure over 1997

to 2004, through a set of statistical and theory based models using weekly data for 1-, 3-,

6- and 12-month yields. The models include the atheoretic Autoregressive (AR) model
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which considers each yield separately, the Vector Autoregressive in Di¤erences (VARD)

model which allows for some interaction, the theory informed VAR in Transformed

Interest Rates (VART) and Vector Error Correction (VECM) models which embed the

long-run relationships between the yields as implied by the EH. There are two aims of

this chapter, �rst to test the EH using cointegration analysis and the VARmethodology,

and second to ascertain if a statistical or theory informed model is best placed to explain

the UK term structure at the short end.

The spreads are found to be stationary, together with cointegration amongst the

yields which implies that a long-run relationship exists between the n- and m-month

yields and their spread is stationary. Further, the restrictions suggested by the EH,

that the cointegrating vector is (1;�1) can not be rejected. The term premia are

insigni�cant, suggesting the Pure EH is applicable to this dataset. The VAR approach

which compares the theoretical spread, as predicted by the EH, to the actual indicates

a high comovement between actual and theoretical spreads. Although the Wald test

rejects the hypothesis s(n;m)�t = s
(n;m)
t in almost all cases, a divergence between the

actual and theoretical spreads measured by time series plots, standard deviation ratios

and correlation coe¢ cients is not apparent. From the four models that incorporate

varying degrees of economic theory, the in-sample properties of the VECM and VART

models suggest they have greater explanatory power for the yields compared to the AR

and VARD models. Also, the model restrictions of the AR, VARD and the bivariate

speci�cations are rejected in favour of the multivariate VECM and VART models.

To conclude, Chapter 3 �nds favourable evidence for the EH. Further, our �ndings

demonstrate the importance of economic theory in explaining the term structure, with

the theory informed models having greater explanatory power than the purely statistical

ones. Hence, we �nd evidence to suggest the EH has signi�cant economic content and

provides a good representation of the UK money market.

In Chapter 4, given we �nd support for the EH and for modelling the term struc-
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ture using a theory informed model in Chapter 3, we use the Multivariate VAR in

Transformed Interest Rates (MVART) model, which embeds the cointegration relations

implied by the EH, to forecasts yields. In particular, we compute the optimal portfolio

allocation for a buy-and-hold investor with power utility over terminal wealth, using

weekly UK data over 1997 to 2007 for two assets the 1-month and the n-month T-bill

for n = 3; 6; 12, over investment horizons of up to 2 years. We consider two mod-

els that make opposing assumptions regarding return predictability. If the investor

believes returns are not predictable, he uses a random walk with drift model to fore-

cast returns and inform his allocation decisions. However, if he believes returns are

predictable he uses the MVART model. Density forecasts of the returns are produced

from both alternative models. This chapter �rst considers how the investor�s allocation

decisions are in�uenced by parameter uncertainty and predictability. Second, if the

investor gains in terms of a higher wealth from assuming returns are predictable and

using a theory informed model to forecast, in that is there economic value to interest

rate predictability.

The e¤ect of assuming returns are predictable on the optimal allocation is consid-

erable, with the optimal weights under predictability in some cases greatly di¤ering to

those under no predictability. However, the e¤ect of parameter uncertainty is small.

Although previous studies report signi�cant parameter uncertainty e¤ects, these are

apparent at horizons longer than those considered here. Under a statistical forecast

evaluation criterion the random walk models outperform the MVART models at almost

all horizons. However, under an economic value approach we �nd that in some cases

the investor who assumes predictability is better o¤ in terms of higher terminal wealth.

In the other cases, the realised wealth under predictability is only marginally lower than

that when returns are assumed not predictable. The conclusions drawn under each cri-

terion do not entirely coincide. Under the economic value measure the random walk

model is not superior to the MVART by the margin implied by the root mean squared
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errors, and actually under this measure some evidence in favour of predictability is

found.

In short, Chapter 4 �nds the allocation decisions of an investor are in�uenced by

the assumption made regarding predictability and to a much lesser extent by parame-

ter uncertainty. Further, we �nd some evidence of economic value to interest rate

predictability, where the investor may gain from assuming predictability.

Chapter 5 uses the asset allocation framework introduced in Chapter 4 and extends it

by considering a risky asset. We compute the optimal portfolio allocation for a buy-and-

hold investor with power utility over terminal wealth using weekly UK data over 1997

to 2007, for two assets the 1-month T-bill and the FTSE All-Share Index. We consider

four models that assume varying degrees of bond and stock return predictability, where

if returns are assumed predictable then key stock and term structure variables are

believed to have explanatory power. Density forecasts of the returns are produced

from all alternative models. This chapter �rst examines the e¤ects of predictability

and parameter uncertainty on how the investor optimally allocates. Secondly, if there

is any economic value to the investor of bond and stock returns being predictable.

We �nd considerable e¤ects of predictability on the optimal allocation, with return

predictability leading to more being allocated to stocks at each horizon. This lending

support to the predictive ability of the stock and term structure models considered

here and to modelling both returns jointly. The e¤ect of parameter uncertainty is not

large over the investment horizon considered. Under the statistical forecast evaluation

criterion, generally the models that assume no and limited predictability outperform

the models that assume predictability at almost all horizons. Conversely, under the

economic value approach the theory based models perform best. The results from the

two evaluation techniques di¤er, whereby the model that achieves the lowest RMSE is

not necessarily the one that will maximise realised wealths.

To conclude, Chapter 5 �nds that the investor allocates di¤erently when he assumes
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predictability to an investor who assumes returns are not predictable. Also, we �nd

evidence of economic value to bond and stock return predictability, with the terminal

wealth gained by the investor who assumes returns are predictable being greater than

one who assumes they are not. Further, the highest wealth is achieved by the investor

who assumes the highest level of predictability and models both returns together.

6.2 Contributions of Thesis

This thesis makes empirical contributions to both the term structure literature and

the forecasting literature. In this section we describe the contributions made by each

empirical chapter.

Chapter 3 uses more recent UK data to test the EH using conventional methods;

other UK studies mostly use data prior to changes in the monetary policy. In Chapter

3 we present new support for the much discussed and researched EH. Our �ndings are

more supportive of the EH than earlier examinations, in particular previous UK studies

that also use weekly data at the short end, see Cuthbertson (1996) and Cuthbertson et

al (1996, 1998).

As discussed in Chapter 2, since adopting in�ation targeting in 1992 and the Bank of

England becoming independent in 1997, UK rates post 1992 and in particular after 1997

have become considerably less volatile compared to the rates observed prior to these

reforms. We suggest that the interest rates observed during our sample 1997 to 2004 are

su¢ ciently volatile for the EH to hold, but the rates are not too volatile as to invalidate

the EH with a constant term premium. We o¤er this as a potential explanation for the

stronger support we �nd for the EH in comparison to previous UK studies which use

pre-1997 data, when interest rates were considerably more volatile. This change in the

volatility of interest rates could in part be attributed to the Bank of England�s credible

anti-in�ation policy, but appears primarily due to the stable economic climate during
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this period described by the Governor of the Bank as the "nice decade".

Hence our �ndings for the UK add to those reported for the US, Germany and

Denmark, that suggest favourable evidence for the EH is more likely under some mon-

etary regimes than others, Mankiw and Miron (1986), Cuthbertson et al (2000b) and

Christiansen et al (2003).

The objective of Chapter 4 is to examine the predictability of interest rates using an

unrestricted VAR model that embeds the cointegration implied by the EH, and assess

predictability using both statistical and economic value measures. From Chapter 2 the

literature examining asset return predictability mainly focus their attention on stock

predictability, e.g. Marquering and Verbeek (2004) and Guidolin and Timmermann

(2005), with a few considering exchange rate predictability and the economic value of

this predictability, Abhyankar et al (2005) and Garratt and Lee (2009). However, very

little attention has been paid to decision-based forecast evaluation of interest rates and

determining if there is economic value to interest rate predictability, which is where

Chapter 4 contributes to the literature.

To my knowledge Della Corte et al (2008) is the only other to consider bond return

predictability using an economic value criteria. They focus on testing the EH and seeing

if there is economic value to departures from the EH. Whereas we do not seek to test the

EH in this chapter, so use an unrestricted VAR model. We consider the importance of

(1) predictability and parameter uncertainty in asset allocation, (2) generating density

forecasts to capture the risk as well as the return about the asset and (3) the economic

value to the investor of these interest rate forecasts. The innovation of this chapter is

considering (1), (2) and (3) in the context of interest rates.

Chapter 5 extends earlier studies that examine stock return predictability by also

allowing for the possibility of predictability in bond returns. These previous studies

ignore bond return predictability and assume the T-bill rate is constant, with some

considering if term structure variables have explanatory power, Pesaran and Timmer-
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mann (1995) and Barberis (2000). The key innovation of this chapter is that we

model the bond returns too, further we model the two returns jointly and evaluate

their predictability using economic value.

Both Chapters 4 and 5 �nd that the investor�s allocation is sensitive to the invest-

ment horizon, whether he assumes returns are predictable and to a lesser extent by

parameter uncertainty over the investment horizon considered. Further, the �ndings

of both chapters suggest that the conclusion of how well theory informed models per-

form, in terms of forecasting, is sensitive to the evaluation criteria used. In itself,

as discussed in Chapters 2, 4 and 5 this is not a new empirical �nding, but what is

new is the asset return considered. We �nd support for the predictive power of theory

informed models under a decision-based criterion using interest rates and stock returns.

Whereas previous �ndings have focused on stock and exchange rate predictability.

In this thesis we test the EH, model and forecast the term structure using a theory

informed model that embeds the cointegration implied by the EH, use these forecasts

to inform asset allocation decisions and then assess asset return predictability using

both statistical and decision-based methods. So here we draw upon, bring together

and contribute to the areas of the term structure, density forecasting and forecast

uncertainties, asset allocation and decision-based forecast evaluation.

6.3 Future Research

In Chapter 3 we �nd positive results for the EH using recent UK data. Future research

may involve examining if this support is sensitive to the frequency and maturity of the

data, and to alternative testing methods e.g. the newly developed Lagrange multiplier

test as used by Sarno et al (2007) and Della Corte et al (2008).

We model the term structure using a range of time series models which can be

summarised by the VAR framework and assess their forecasting ability using decision-
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based methods. This set can be expanded to include ARCH/GARCH models, models

that include macroeconomic variables and survey and market based forecasts. In which

case, future work may examine if predictability and further the modelling approach

chosen has economic value.

The fact that we model the term structure and stock returns using several alternative

models in Chapters 3 to 5, highlights that there is model uncertainty since the true DGP

is unknown. There is a growing body of literature that deals with forecast combination,

that considers if forecasts should be combined and if so how. Our research deals

with density forecasting and decision-based evaluation, there is potential to extend

this research into the area of forecast combination. In this case, should the investor

choose a single model to forecast and inform allocation decisions, or will some optimal

combination of the forecasts result in a higher terminal wealth.

The results presented here lend support to the use of decision-based forecast eval-

uation. We consider here one application of decision-based methods, i.e. to assess

forecasts of asset returns. But there is potentially a vast number of applications where

these methods can be applied. For instance, for a private company that relies on survey

and market based forecasts, this method may be used to determine which companies�

forecasts generate the highest pro�ts. Or when forecasting key macroeconomic vari-

ables that can be described by alternative models, decision-based methods may provide

a means of discriminating between these alternatives.

6.4 Concluding Comments

This thesis examines the UK term structure at the short end, in relation to the questions

addressed in this thesis we �nd:

1. Evidence to suggest that the EH holds for this recent sample of UK data.

2. More support using this dataset than previous UK studies, that test the EH over
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a period when interest rates were comparatively more volatile.

3. Theory informed models to be best placed to describe the UK money market.

4. Under a statistical criterion the forecasting performance of the atheoretic random

walk model is di¢ cult to beat.

5. The investor�s allocation is sensitive to the investment horizon, parameter uncer-

tainty and the assumption of predictability.

6. Under decision-based methods the theory informed models do have predictive

power and in many cases perform better than the random walk.

7. The forecast performance of the models is sensitive to the evaluation criteria used.

8. Predictability to have an economic value. Such that, by assuming returns are

predictable and using a theory informed model, the investor gains in terms of

wealth.

Our contributions to the literature are empirical. Chapter 3 presents new support

for the EH using data post of the monetary policy regime changes in the UK. We

suggest that these positive �ndings are due to interest rates being considerably less

volatile post of these changes, than pre of these changes. This reduction in the volatility

of interest rates may partly be explained by the anti-in�ation stance taken by the Bank

of England, but mostly by the stable conditions of the "nice decade". This �nding

implies that the volatility of the interest rates is important for the EH. Chapters 4 and

5 contribute to the asset return predictability and decision-based evaluation literature.

Interest rate predictability has scarcely been examined using decision-based methods,

this is addressed in Chapter 4. Further, Chapter 5 extends the stock predictability

literature by considering interest rate predictability too. Chapters 4 and 5 not only

forecast the term structure, but consider with how these forecasts are used in decision

making. As stressed in Wright et al (1986) it is important to integrate forecasting and
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decision making, and be aware of how the forecasts are to be used. As we show the

most accurate forecast in terms of statistical criteria, may not be the best in terms of

decision making.

This thesis presents new evidence of interest rate predictability. Previously, the

exchange rate, interest rate and stock return forecasting literature �nds atheoretic mod-

els, like a naive random walk, are di¢ cult to beat under statistical measures implying

that returns are not predictable. However, as discussed in Chapter 2, under decision-

based evaluation methods evidence of stock return and exchange rate predictability,

as captured by theory informed models, has been reported. We �nd support for the-

ory informed models when we evaluate forecasts in terms of their economic value to

the investor. That is, the investor gains in terms of a higher end-of-period wealth

by assuming returns are predictable and using a theory informed model to forecast.

Our �ndings, in support of the literature, illustrate that the conclusion drawn on the

forecasting performance of theory informed models compared to atheoretic models is

sensitive to the evaluation criterion used.

Statistical evaluation methods indicate that theory based models fail to satisfactorily

capture reality and that rather than painstakingly trying to model reality, we are better

o¤ just using a no change model to forecast. However, our results taken with those

presented in the literature, suggest that by using an alternative assessment criterion,

one that considers the economic value of the forecast to the user, economic theory is in

fact found to have predictive power and that this predictive power has a value.

The �ndings presented here highlight �rst, the importance of the volatility of interest

rates when testing the EH. Second, the importance of density forecasting. In this

thesis we apply density forecasting to investment decision making and illustrate (1)

the appropriateness of these forecasts compared to point forecasts and (2) although

analytically di¢ cult to compute, density forecasts can be generated using simulation

methods. Both (1) and (2) should serve to encourage greater use of density forecasts.
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Third, the importance of and the need for evaluating forecasts using an appropriate

criterion, i.e. an evaluation criterion that re�ects the purpose for which the forecasts

are ultimately intended. In our case this purpose is portfolio allocation, hence it is

necessary to incorporate into the evaluation process the investor�s feelings about risk

and the economic value of the forecasts to the investor. This is done using decision-

based methods. But statistical criteria do not take these factors into account, which

arguably may deem them inadequate for judging forecasts.

Our results advocate the use of density forecasts that provide the entire distribu-

tion about the expected future value. And further, given the importance of forecast

evaluation, the use of decision-based evaluation methods that assess forecasts from the

user�s perspective, i.e. in terms of loss and pro�ts rather than forecast errors, since

ultimately it is the user who will be using the forecast.

In short, we �nd economic theory to be important in explaining the term structure

and evidence to suggest that the UK money market is consistent with the EH. Our

�ndings demonstrate the importance of predictability and parameter uncertainty in

asset allocation, generating density forecasts to capture the risk as well as the return

of the asset, using a decision-based criterion to assess forecast accuracy and that there

is economic value to assuming returns are predictable. To conclude we �nd economic

theory to be signi�cant for both modelling and forecasting the UK term structure at

the short end.
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Appendices

.1 Data Appendix

Here we provide details of the source, de�nitions and transformations of the data.

Chapters 3 and 4

Yield data: r(n)t

� Source: Bank of England (BoE)

http://www.bankofengland.co.uk/statistics/yieldcurve/archive.htm

� De�nition: Nominal government n-month spot interest rate obtained from �UK

Nominal Spot Curve�. The curve is estimated using gilt and gilt repo rates.

� Use Wednesday observations of the annualised and continuously compounded 1-,

3-, 6- and 12-month rates, where the n-month rate r(n)t = ln
h
1 +

�
R
(n)
t =100

�i
.

� Notes on the BoE UK yield curves provides further details:

http://www.bankofengland.co.uk/statistics/yieldcurve/

notes%20on%20the%20bofe%20uk%20yield%20curvesV2.pdf
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Chapter 5

Bond data: r(n)t

� Source: BoE, see above.

� De�nition: As for Chapters 3 and 4, use the nominal government n-month spot

interest rates.

� Transformation: Use the Wednesday observations of the annualised 1-, 3-, 6- and

12-month rates R(n)t , to construct the n-month rate expressed as a monthly rate

r
(n)
t = ln

h
1 +

�
R
(n)
t =100

�i1=12
.

Stock data: rst

� Source: Datastream, mneumonic=DSR1

� De�nition: Data on FTSEAll-Share Return IndexRIt, "..the return index presents

the theoretical growth in value of a notional stock holding, the price of which is

that of the selected price index. This holding is deemed to return a daily divi-

dend, which is used to purchase new units of the stock at the current price. The

gross dividend is used: RIt = RIt�1 � PIt
PIt�1

�
�
1 + DY �f

n

�
; where RIt = return

index on day t; RIt�1 = return index on day t � 1; PIt = price index on day t;

PIt�1 = price index on day t � 1; DY = dividend yield of the price index; f =

grossing factor (normally 1) if the dividend yield is a net �gure rather than a

gross, f is used to gross up the yield; n = no of days in �nancial year (normally

260)*100. " datastream de�nition.

� Transformation: Use RIt, Wednesday observations to compute the continuously

compounded monthly return rst = ln [RIt+4=RIt].
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Dividend yield: dyt

� Source: Datastream, mneumonic=DY

� De�nition: Datastream de�nition "For sectors, dy is derived by calculating the

total dividend amount for a sector and expressing it as a percentage of the total

market value for the constituents of that sector. This provides an average of the

individual yields of the constituents weighted by the market value, dividend yield

(given by the total dividends over the value of the portfolio): DYt =
Pn
1 (Dt�Nt)Pn
1 (Pt�Nt)

�

100, where DYt = aggregate dividend yield on day t; Dt = dividend per share on

day t; Nt = no of shares in issue on day t; Pt = unadjusted share price on day t;

n = no. of constituents in index."

� Although this de�nition makes reference toDY on day t, a plot of the series shows

that the dividend yield is between 2 and 4%. The magnitudes would suggest this

is an annual measure.

� Use Wednesday observations of this series.
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.2 Computing the Theoretical Spread

Here we illustrate how the unrestricted VAR can be used to compute the theoretical

spread. Taking n = 3 and m = 1
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From equations (3.1) and (3.2)

r
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Using the chain rule of forecasting zt+1 = Azt and zt+2 = A2zt, so from equation

(3.7) the expected changes in the short rates are

Et

�
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(1)
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�
= e20Et (zt+1) = e2

0Azt
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From equation (3.8) the theoretical spread can be calculated as

s
(3;1)�
t =

�
2

3
e20A+

1

3
e20A2

�
zt

Under the EH the actual and theoretical spreads are equal, such that

e10zt =

�
2

3
e20A+

1

3
e20A2

�
zt
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.3 VART to VAR in Levels

Here we describe how the VART model can be written as a VAR in levels. The

VART is given by equation (2.25), which is composed of �r(m) and s(n;m) that are both

stationary, this can be written in levels as follows
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From equation (1) let
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thus in levels, as given by equation (2.26)
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.4 Lag Structures

Below shows the lag structures under the VARD, VECM and VART models, for p = 3:

� VARD(p) Model

where zt =
�
r
(12)
t ; r

(6)
t ; r

(3)
t ; r

(1)
t

�0

�zt = ao +

pX
i=1

�i�zt�i + �t

�zt = ao + �1�zt�1 + �2�zt�2 + �3�zt�3 + �t

�zt = ao + �1(zt�1 � zt�2) + �2(zt�2 � zt�3) + �3(zt�3 � zt�4) + �t (2)

� VECM(p)

Starting with an AR(p) where the variables in zt are in levels

zt= �+�1zt�1+�2zt�2+:::+�p+1zt�p�1+"t

if p = 3

zt=�+�1zt�1+�2zt�2+�3zt�3 +�4zt�4+"t

to this �zt�1;��2zt�1;��3zt�1;��4zt�1;��3zt�2;��4zt�2;��4zt�3;��4zt�4

zt � zt�1 = �+�1zt�1 � zt�1 +�2zt�1 ��2zt�1 +�3zt�3 � :::+ "t
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�zt = �� (Ik ��1 ��2 ��3 ��4) zt�1 ��2 (zt�1 � zt�2)

��3 (zt�1 � zt�2)��4 (zt�1 � zt�2)��3 (zt�2 � zt�3)

��4 (zt�2 � zt�3)��4 (zt�3 � zt�4) + "t

�zt = �� �zt�1 ��2�zt�1 ��3�zt�1 ��4�zt�1

��3�zt�2 ��4�zt�2 ��4�zt�3 + "t

this gives the VECM

�zt = �� �zt�1 + �1�zt�1 + �2�zt�2 + �3�zt�3 + "t

where

�1 = � (�2 +�3 +�4) ; �2 = � (�3 +�4) ; �3 = ��4

� = (Ik ��1 ��2 ��3 ��4)

�zt = �+ �1(zt�1 � zt�2) + �2(zt�2 � zt�3) + �3(zt�3 � zt�4)� �zt�1 + "t (3)
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� VART(p) (which is equivalent to the VECM)
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For all the estimated models to be comparable they must have the same lag struc-

ture, such that it is only the restrictions that are imposed on the various models that

di¤erentiates them. Hence it can be seen from equations (2), (3) and (4) that estimating

all the models of order p will yield the same lag structure.
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.5 End of Investment Period Cumulative Return

The cumulative return at the end of the investment horizon, T +H, from investing the

proportion ! and (1� !) of initial wealth WT in a sequence of rolling investments in

m-period short bills and n-period long bills, respectively is
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.6 Multivariate Normal Distribution and Expected

Utility

Here we show that the expected value of a non-linear variable is a function of both its

mean and variance1, and not solely of its mean.

If X is a (q � 1) vector of variables, such that X � N (�;�), where E (X) = � is a

vector of means with the components (E (X1) ; E (X2) ; :::; E (Xq))
0 =

�
�1; :::;�q

�0
, and

� is the (q � q) covariance matrix with variances along the diagonal and covariances

on the o¤ diagonals. The random vector X is de�ned as having a multivariate normal

distribution if and only if

c0X =c1X1 + :::+ cqXq

the above linear function is normal for all c, given that c0 = (c1; c2; :::; cq). Further, it

can be shown that from the moment generating function that the mean of the above

non-linear transformation of X is a function of both the mean and the variance of X

E (exp (t0X)) = exp

�
t0�+

1

2
t0�t

�

In terms of asset returns, ifX contains the variables that determineWT+H , i.e. r
(n)
T+h

and r(m)T+h for h = 1; :::; H, then the investor requires the variances and covariances of

these forecast variables at each step ahead as well as their means. Thus he considers the

uncertainty/risk about the return as well as the projected return itself. In essence, given

the non-linear nature of the components of WT+H decisions can not be made using the

point forecasts of rT+h only, but the entire joint probability distribution of the forecast

values of rT+h for h = 1; :::; H are required to evaluate ET (� (WT+H (!)) j 
T ).

1Reference made to notes written by Dr Gwenda Lewis, Statistics Depart-
ment, University of New England, Armidale, New South Wales, Australia,
http://turing.une.edu.au/~stat354/notes/node32.html.
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.7 Using Stochastic Simulation to compute Density

Forecasts based on the VAR Model

Here we describe how through stochastic simulation techniques an estimate of the prob-

ability density function of the forecasts can be obtained. The estimation procedure is

discussed �rstly by considering how the probability forecasts are calculated for given

values of the parameters, and then by taking into account parameter uncertainty.

These methods are used in both Chapters 4 and 5. In Chapter 4 we consider the

allocation between a n- and m-month T-bill, so require forecasts of r(n)t and r(m)t . In

Chapter 5 we consider the allocation between a 1-month bill and the Stock Index, so

require forecasts of r(1)t and rst . In this appendix we will use the general notation rt

to denote the return the investor is interested in forecasting, which is r(n)t and r(m)t in

Chapter 4, and r(1)t and rst in Chapter 5.

From equation (4.3), we can denote the maximum likelihood estimates of the model

parameters b� = �b�; B̂i; �̂�, for i = 1 to p: In the absence of parameter uncertainty,

the investor assumes there is no uncertainty about the model parameters and they are

�xed at the estimated values. Then the model is iterated forward to produce the point

estimates of the h-step ahead forecasts, conditional on the observed data XT and the

estimated parameter values b�

x̂T+h = b�+ pP
i=1

B̂ix̂T+h�i (5)

for h = 1; 2; :::; H; ::: Using the initial values of the variables xT;xT�1;:::;xT�p+1; these

forecasts are produced recursively.

First considering stochastic uncertainty only, ignoring parameter uncertainty, the

forecast values of the variables xT+h can be computed using stochastic simulations,
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providing an estimate of P
�
XT+1;H j XT ; b�� from

x
(er)
T+h = b�+ pP

i=1

B̂ix̂T+h�i + �
(er)
T+h (6)

where xT+h is the h-step ahead forecast. Given that H is the end of the investment

period the investor is concerned with forecasts from h = 1 to H, h > H step ahead

forecasts can be generated but are not required here. Further, let eR denote the total
number of replications of the above simulation, er = 1 to eR and gives the erth replication.
For current and past values of x, the actual values are used such that x(er)T+h�i = xT+h�i,
e.g. x(er)T = xT ;x

(er)
T�1 = xT�1::: for each replication.

To generate forecasts in the presence of parameter uncertainty the Monte Carlo

procedure is used. First, the (in-sample) past values of xt are simulated eH times, i.e.

simulate eH �histories�of xt, t = 1; 2; :::; T; denoted x
(eh)
t ; eh = 1; 2; :::; eH.2 Where

x
(eh)
t = b�+ pP

i=1

B̂ix̂
(eh)
t�i + �

(eh)
t (7)

the actual realised values of xt;xt�1; :::;xt�p are used for initial values, together with

the estimated model parameters b� obtained using the actual observed data.
With the eH simulated histories for xt i.e. x

(eh)
1 ;x

(eh)
2 ; :::;x

(eh)
T ; such that for each

past value of x there are eH possible values, it is now possible to estimate the VAR(p)

model given by equation (4.3) eH times, yielding eH sets of ML parameter estimates

�̂
(eh)
; B̂
(eh)
i ; �

(eh)
t and �(

eh); one set of estimates for each Monte Carlo replication, where
i = 1; 2; :::; p.

For each Monte Carlo replication, compute h-step ahead point forecasts of xT , where

2Note that 0er0 refers to the number of �futures�generated in the simulation, whereas 0r0 refers to the
asset return. Equally 0eh0 refers to the �histories�generated and 0h0 refers to the step ahead forecasts.
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eR replications of these forecasts are generated, i.e. for each of the eH generated histories

simulate eR futures

x
(eh;er)
T+h = b�(eh) + pP

i=1

B̂
(eh)
i x̂

(eh;er)
T+h�i + �

(eh;er)
T+h (8)

for h = 1; 2; :::; H; er = 1; 2; :::; eR and eh = 1; 2; :::; eH. Note that �h� refers to the

horizon and �eh�to the number of histories generated, and S = eH � eR = total number
of simulations.

The �(er)T+h; �(eh)t and �
(eh;er)
T+h �s can be drawn using either parametric or non-parametric

methods, see GLPS (2006, pp. 166-168) for further details. Here parametric methods

are utilised where the errors are assumed to be i:i:d:N (0;�) serially uncorrelated white

noise errors, see the "Simulating Errors" section below.

These simulations provide an estimate of the predictive densities P
�
XT+1;H j XT ; b��

in the case where parameter uncertainty is ignored and P (XT+1;H j XT ) when it is con-

sidered, so it is now possible to evaluate ET (� (WT+H) j 
T ) for a range of portfolio

weights !: That is, in practice � (WT+H (!)) is computed eR times for each value of !,
then the mean across these eR replications is calculated, from which the investor chooses
the weight ! that maximises the expected utility ET� (WT+H (!)). Here ! takes values

0, 0.01,0.02,...,0.99,1.

Computing the Predictive Densities

Here we describe how we compute the predictive densities using the method de-

scribed in GL and GLPS, all of the steps detailed below are conducted for each of the

models in Chapters 4 and 5. In the case where only stochastic uncertainty is considered

the predictive density is P
�
XT+1;H j XT ; b�� and where both stochastic and parameter

uncertainty are accounted for the predictive density is P (XT+1;H j XT ).

Predictive Density under Stochastic Uncertainty only

1. Using the estimated model parameters b�, forecasts of the returns are generated
r
(er)
T+h for h = 1; :::; H and er = 1; :::; eR, where eR = 50; 000.
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2. From the above forecasts, values of W (er;!)
T+H can be calculated for each replication,

with ! = 0; :::; 1 increasing in steps of 0.01. So for each value of H, we haveeR� 101 values of W (er;!)
T+H , where H = 3; 6; 12; 18 and 24 months.

3. These wealths are then used to calculate utility as given by the CRRA de�nition,

�
(er;!;A)
T+H where A = 2; 5 and 10. For the given values of !;A and H the expected

utility is given by averaging across the replications as follows

ET� (WT+H) =
1eR

eRX
er=1 �

(er;!;A)
T+H

4. Hence for a given investment horizon H and level of risk A, the investor selects

that portfolio weight which maximises expected utility.

Predictive Density under Stochastic & Parameter Uncertainty

1. Using the estimated model parameters b�; in-sample values of xT are simulated eH
times, for t = 1; :::; T and eh = 1; :::; eH.., where eR = 1000 and eH = 2000.

2. Using each of these eH �histories�of xT , estimate the model. This yields eH sets

of parameter estimates b�(eh), one for each history generated.
3. For each history compute eR replications of the h-step ahead point forecasts of xT ,
where er = 1; :::; eR:

4. Repeat steps 2-4 from the stochastic uncertainty only method above, for each

history and its corresponding set of eR simulated futures. Hence eH sets of

ET� (WT+H) are calculated for given values of !;A and H. The aim is to select

the portfolio weight that maximises ET� (WT+H) for a given investment horizon

H and level of risk A; for each history eH:
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Simulated Errors

As described by GLPS (2006, pp. 166) and Cuthbertson and Nitzsche (2004, pp.

648), the method used to generate these simulated errors is as follows:

1. Generate q� h draws from the assumed i:i:d:N (0; Iq) distribution for each eh ander. To give e(eh;er)T+h for h = 1; :::; H; er = 1; :::; eR and eh = 1; :::; eH. So for each eh ander generate eT+i as i:i:d:N (0; Iq) :
2. Calculate �

(eh;er)
T+h for i = 1; :::; h, where �

(eh;er)
T+h = e

(eh;er)
T+h :

bP(eh) and bP(eh) is the upper
triangle choleski factor of b�(eh). Further, b�(eh) = bP(eh)0bP(eh) and b�(eh) is an
estimate of � computed in the ehth replication of the Monte Carlo. In the absence
of parameter uncertainty �(er)T+h = e

(er)
T+h:

bP0, here bP is the upper triangle choleski

factor of b�:
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.8 Properties of Stationary &Non-Stationary Processes

Here the properties of when the yields, r(n)T are modelled as a non-stationary process,

e.g. as under a RandomWalk model, in comparison to when they are modelled as being

stationary, e.g. as under a Autoregressive model of order 1, AR(1) model are described.

We use rT to denote r
(n)
T for ease.

Random Walk with Drift Model (RW)

Here the bill returns are considered to be non-stationary and given by

rT= �+ rT�1+et (9)

where et � i:i:d: (0; �2), through iteration

rT+1 = �+ rT+eT+1

rT+2 = �+ rT+1+eT+2= 2�+ rT+eT+1+eT+2

) rT+H= H�+ rT+
HX
i=1

eT+i (10)

The mean and variance of returns are

ET (rT+H) = H�+ rT (11)

V ar (rT+H) = H�2 (12)

Note if it is assumed that the initial value of the series is zero, then ET (rT+H) = H� as

is often reported, see Cuthbertson and Nitzsche (2004, pp. 37). But here we assume

rT takes a value which is know at T: The cumulative returns over T to T + H, with
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its corresponding mean and variance is given by

rT;T+H = rT+rT+1+:::+ rT+H

ET (rT;T+H) = rT+ET (rT+1)+:::+ ET (rT+H)

= rT+�+ rT+:::+H�+ rT

= (1 +H) rT+(1 + 2 + :::+H)� (13)

V ar (rT;T+H) = �2+2�2+:::+H�2

= (1 + 2 + :::+H)�2 (14)

AR(1) with a Constant Model

If the returns are assumed to be stationary and are modelled as being so by an

AR(1) with a constant

rT= �+ �rT�1+eT (15)

where j � j< 1 and et � i:i:d: (0; �2) ; in lag operator form

(1� �L) rT = �+ eT

rT =

�
1

1� �L

�
(�+ eT )

rT =
�
1 + �L+ �2L2 + :::

�
(�+ eT )

rT =
�
1 + �+ �2 + :::

�
�+

�
eT + �eT�1 + �

2eT�2 + :::
�

(16)

where
�

1
1��L

�
= (1 + �L+ �2L2 + :::). Since � is a constant the lag operator has no
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e¤ect. The unconditional mean is

ET (rT )=
�
1 + �+ �2 + :::

�
� (17)

this is a geometric series that converges to �
1�� in the long run. The conditional mean

is found by taking expectations of equation (15)

ET (rT )= �+ �rT�1 (18)

the mean is conditional on past values and evolves with the series. From equation (16)

the variance is

V ar (rT ) = V ar
�
eT + �eT�1 + �

2eT�2 + :::
�

= �2+�2�2+�4�2+:::

=
�
1 + �2 + �4 + :::

�
�2 (19)

which in the long run converges to �2

1��2 : Using equation (15) and through continuous

substitution of the lagged return on the RHS, an expression for rT+H is

rT+1 = �+ �rT+eT+1

rT+2 = �+ �rT+1+eT+2= �+ ��+ �
2rT+�eT+1+eT+2

) rT+H=
�
1 + �+ �2 + :::+ �H�1

�
�+ �HrT+

HP
i=1

�H�ieT+i (20)
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From equation (20)

ET (rT+H) =
�
1 + �+ �2 + :::+ �H�1

�
�+ �HrT (21)

V ar (rT+H) =
�
1 + �2 + �4 + :::+ �2H�2

�
�2 (22)

as H �! 1 then the variance of the forecasts converges i.e. V ar (rT+H) = �2

1��2 : The

mean and variance of the cumulative returns, using equation (20) is

rT;T+H = rT+rT+1+:::+ rT+H

ET (rT;T+H) = rT+ET (rT+1)+:::+ ET (rT+H)

= rT+(�+ �rT )+:::+
�
1 + �+ :::+ �H�1

�
�+ �HrT

=
�
1 + �+ ::+ �H

�
rT

+
�
1 + (1 + �) + ::+

�
1 + �+ ::+ �H�1

��
� (23)

V ar (rT;T+H) = V ar(rT ) + V ar (rT+1)+:::+ V ar (rT+H)

= 0 + �2+
�
1 + �2

�
�2+:::+

�
1 + �2 + �4 + :::+ �2H�2

�
�2

=
�
1 +

�
1 + �2

�
+ :::+

�
1 + �2 + �4 + :::+ �2H�2

��
�2 (24)

The computed mean � and variance �2 will be di¤erent for each model, so we denote

them �RW; �
2
RW and �AR; �

2
AR for the RW and AR models respectively. Comparing

the mean of the cumulative returns under both models, from above it can be seen that

the mean of cumulative returns under the AR model grows slower than that under the

RW. Using a simple numerical example, if H = 4 and � = 0:9, the mean under the
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AR model is

�
1 + �+ :::+ �4

�
rT+

�
1 + (1 + �) + :::+

�
1 + �+ �2 + �3

��
�AR= 4:1rT+9:05�AR

RW model is

(1 +H) rT+(1 + 2 + :::+H)� = 5rT+10�RW

Now comparing how the variance of the returns evolves over T to T + H under

each model. Under the RW the variance of the returns continues to grow linearly with

H. However, the variance under the AR model is growing less than linearly. Such

that, as H �! 1 the variance under the RW = 1�2RW , but the variance under the

AR =
�2AR
1��2 i.e. it converges. This will be translated through to the variance of the

cumulative returns, with that under the AR model growing slower than the variance

under the RW, as illustrated in the table below.

V ar (rT+1) V ar (rT+2) V ar (rT+3) ::: V ar (rT+H)

RW �2RW 2�2RW 3�2RW ::: H�2RW

AR �2AR (1 + �2)�2AR (1 + �2 + �4)�2AR :::
�
1 + �2 + :::+ �2H�2

�
�2AR

Note we are not making a direct comparison between the variances under each

model (for a particular point in time or over a given investment horizon), since the

computed variances from the RW model will di¤er from those under the AR model.

We are merely highlighting how under the RW (where the returns are treated as being

non-stationary) the variance of the returns grows linearly with H. However, when the

returns are assumed to be stationary and modelled using an AR(1) the variance of the
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returns not only grow less than linearly with H, but in the long run converges to some

long-run value.

For stationary processes, the variance in the long run converges to some long-run

value, so if the yields were modelled by a stationary VAR(p) then the variance of the

returns will tend to a constant �21 in the long run. We can then de�ne

�i�
2
1 = �

2
T+i

where �i is some unknown coe¢ cient, that when multiplied by the long-run variance

gives the variance at a particular point in time T + i: In the short run the variance

about the returns may grow faster or slower than linearly depending upon the value

of �i. If �i > 1 then the variance will grow faster than linearly, if �i < 1 then the

variance will grow slower than linearly. Only in the long run, if the VAR parameters

are stationary then �i = 1, such that �2T+i = �21 i.e. the variance converges to its

long-run value. Hence, in the long run the variance under the stationary VAR model

will be less than that under the Random Walk model.

These derivations for the AR(1) model illustrate the properties of a stationary

process, for comparison with a non-stationary process such as the RW. A station-

ary VAR would require more complex conditions for the parameters to be satis�ed for

stationarity. But in the long run the variance for a stationary VAR model would also

converge to some long-run value. Consequently, in the long run the variance of the

forecast distribution also grows less than linearly.
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