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Abstract
Andrew Peden

Tilings Generated by Non-Parallel Projection Schemes

This thesis defines and investigates rational and irrational 2:1 X-projection
schemes and non-parallel projection schemes with strips at rational gradients.

Both irrational 2:1 X -projection schemes and non-parallel projection schemes
with strips at rational gradients are shown to produce tilings with infinitely
many prototiles, with the tilings produced by the second of these schemes
nonetheless shown to display a property similar to repetitivity.

Rational 2:1 X-projection schemes are shown to produce tilings with a finite
number of prototiles, with a subset of these tilings shown to be repetitive. The
points in the fundamental domain of our lattice L that correspond to translates
of these tilings are also investigated, with these points shown to be either dense
in a finite number of lines or dense in the fundamental domain. This also leads
to a proof of repetitivity in all rational 2:1 X-projection tilings and aperiodicity
in a subset of these tilings. The tiling spaces of such tilings are also investigated.

In addition, the proportions in which the prototiles in a rational 2:1 X-
projection tiling appear are also looked at, and a possible explanation of the
values observed is provided.
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1 Introduction

People have been creating tilings for thousands of years, from the wall and floor
tilings of ancient civilisations such as the Romans and Persians (see for example
[6]) to much more recent work like the drawings of M. C. Escher. These patterns
are generally periodic tilings of the plane, meaning that they consist of a finite
number of tiles arranged in a certain way within some patch, with this patch
then repeated in a regular way throughout the plane.

In this document we will be concerned with tilings that are aperiodic (see
definition 2.9), so do not consist of a single patch of tiles that repeats in a
regular way. However, the tilings that we are interested in may be repetitive (see
definition 2.10), which means that any patch of tiles in the tiling will reappear
throughout the tiling and always within some fixed distance (that depends on
the patch) of any point in the tiling. This is a property that all periodic tilings

have, but that is not necessarily shared by an aperiodic tiling.

1.1 Crystals and Quasicrystals

Aperiodic tilings and tile sets (set of tiles that will only fit together to form ape-
riodic tilings) of the plane have been studied for decades, with one-dimensional
aperiodic tilings even older, however physical analogues to these mathematical
objects were not encountered until the 1980s, when quasicrystals were discovered
(first reported in [15]).

Crystals are 3-dimensional structures in which the constituent atoms or
molecules are arranged in regular repeating pattern, and so are much like 3-
dimensional periodic tilings. The structure of a crystal can be determined by
looking at its corresponding diffraction pattern, which is produced by shining
X-rays through a thin slice of the crystal. The diffraction patterns produced by
crystals look like patterns of points with a rotational symmetry of order 2, 3, 4

or 6, with any other order of rotational symmetry impossible (see [16]).



Quasicrystals were first identified by their diffraction patterns, which were
pure point (i.e. consisting of distinct bright spots) like those of crystals, but
displayed forbidden symmetries such as 5-fold and 10-fold rotational symme-
try. The pure point diffraction patterns suggested that these substances were
“crystal-like” in the sense that they must have structures that are somewhat
regular, but the symmetries of the patterns ruled out the possibility of these
structures being periodic.

Identifying the structure of quasicrystals provided some physical motivation

for the study of aperiodic tilings.

1.2 Generating Aperiodic Tilings

There are several methods for generating tilings. We will briefly look at three
of these methods here. The third of these (the projection method) is the one
that we will be most interested in for the remainder of this document.

The first method for generating tilings is to start with a set of tiles and
impose matching rules on them so that they can only fit together in certain
ways (see for example [13]). For example, to produce a Wang tiling (see [1], [7])
we will start with a set of square tiles with the edges of each coloured in some
way and then fit them together so that matching edges have the same colour
(see figure 1.1). A similar effect can be achieved by altering the shapes of the

edges slightly so that only edges with the same colour can fit together.



Figure 1.1: An aperiodic set of 13 Wang tiles [3]

The second way to obtain tilings is by substitution (see for example [5]).
For this method we take a set of tiles and define a substitution rule for each
of them, where a single tile is replaced by a patch of one or more tiles from
our set at each iteration. We can thus start with a tile or patch of tiles and
perform the substitution to get a larger patch, then substitute again to get an
even larger patch, and so on. For example, we can create a Penrose tiling [12]
in this way (see figure 1.2). Note that Penrose tilings can also be constructed
using matching rules [11].

The final method for generating tilings that we shall mention here is the
projection method. For this method we start with some lattice in a higher
dimension, typically Z%, select some subset of the points of this lattice and then
project these points onto the space in which we want our tiling. We then form
a tiling from these points. This is examined in greater detail in the following
chapter.

In this document we will define a modification of the projection setup, where
the points selected from the higher dimensional lattice (we will be looking at
7% are those contained in two “strips” that have different gradients, and the
projection is onto a space that has a gradient independent of those of the strips.

We will see that there are several versions of this setup, giving different
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Figure 1.2: Substitution rules for the Penrose Rhombs

classes of tilings. We will then examine the different types, particularly the

tilings generated by rational 2:1 X-projection schemes.

1.3 Document Layout

As explained above, this document is largely concerned with projection tilings,
with the projection typically being from a 2-dimensional lattice onto a 1-dimensional
space.

In chapter 2 we define tiles and tilings and then projection tilings, with
particular emphasis on canonical 2:1 projections, and prove some basic results
about these tilings.

In chapter 3 we introduce non-parallel projection tilings, which are generated
by selecting lattice points from within two non-parallel strips and projecting
these onto a line with a gradient independent of either strip. These come in

three distinct types, and we provide some basic results about each of these

types.



In chapter 4 we look in greater detail at rational 2:1 X-projection tilings (one
of the three types of non-parallel projection introduced in chapter 3), examining
the positions in which we can place our two strips to obtain translates of our
tiling. We also prove that certain rational 2:1 X-projection setups will produce
aperiodic tilings.

In chapter 5 we look at the tiling spaces associated to rational 2:1 X-
projection tilings. In addition, we see that all rational 2:1 X-projection schemes
give repetitive tilings.

In chapter 6 we provide some examples of both rational and irrational 2:1
X-projection tilings and also look at the number of prototiles in a tiling pro-
duced by a rational 2:1 X-projection scheme and the proportions in which these
prototiles appear.

Finally, the conclusion provides a summary of the results obtained in this
document along with some remaining questions.

Figure 1.3 shows a more pictographic overview of the structure of this thesis,
with the solid lines indicating the connection between different sections (and the

dotted line showing a possible connection).
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Figure 1.3: A summary of the contents of this document.




2 Tiles, Tilings, Model Sets and Projection Schemes

We begin this chapter with the basic definitions involved in the study of tilings,
starting with the definitions of a tile and a tiling that we will be using throughout

this document (see for example [14]).

Definition 2.1. A set t C R*,n > 1, is called a tile if it is compact and equal
to the closure of its interior. We will also always assume that tiles are home-
omorphic to topological balls. So tiles in R are closed intervals and normally

tiles in R? will be polygons.

Definition 2.2. A tiling T of R" is a collection of tiles that,
e Pack R™, meaning that any two tiles have pairwise disjoint interiors.
e Cover R", i.e., the union of all the tiles is R".

Definition 2.3. We say that two tiles t1,t, are equivalent if one is a translate

of the other.
Definition 2.4. Equivalence class representative of tiles are called prototiles.

We will mostly be interested in tilings that have a finite set of prototiles,
which means that they are made up of only finitely many “types” of tile, however
there will be some occasions when we look at tilings with an infinite set of

prototiles.

Definition 2.5. A patch of tiles is a finite set of tiles in a tiling whose union is

connected.

2.1 Model Sets and Projection Schemes

Model sets, which are also known as cut-and-project sets (first constructed in
[2]), are sets of points that are generated by selecting certain points of a higher
dimensional lattice (through a cut-and-project scheme) and projecting these

down onto a space of smaller dimension.



Definition 2.6. A cut-and-project scheme (see for example [10]) consists of a
lattice, L, in the space R™ x R™ (i.e. a discrete subgroup of R™ x R™ that spans
R™ x R™) and projections m; : R™ x R* — R™ and 72 : R™ x R* — R™, where
w1z is injective and (L) is dense in R™.

R™ is the space in which the Model set will be generated and hence is known
as the pattern space, whereas the space R™ is called the internal space.

If we take a subset K C R™ then we denote by A(K) the point pattern in
R™ given by the projection into R of the points of L that are projected by 72
into K, i.e.

AK)={m(z) e R" :z € L,my(z) € K}.
Here we call K the acceptance domain.

Definition 2.7. A model set [9] (or cut-and-project set) is a subset I' of R”
satisfying A(W°) Cc I' ¢ A(W), for some W connected and compact in R",
W = We # (). The model set I is regular if the boundary OW = W\W?® of W

is of Lebesgue measure 0.

We will largely be concerned with 2:1 projections. That is, projections of
points from a 2-dimensional lattice onto a 1-dimensional space. In the case of
2:1 projections we have a lattice L in R? with two projections from R? onto the
axes, satisfying the above conditions, i.e., m|r is injective and w2 (L) is dense in
R.

We will usually refer to the pattern space as E with the internal space being

called E+.

Example 2.1. If we take L to be a square lattice then with K being a single
closed interval in R we will get a situation much like that illustrated in figure

2.1.



E

Figure 2.1: A 2:1 projection scheme.

In a similar way we can consider the lattice to be fived and the pattern space
(E) to be at an irrational gradient relative to the square lattice, as shown in

figure 2.2.

Figure 2.2: An alternative way of viewing the 2:1 projection scheme.



2.2 Canonical 2:1 Projection Tilings

Definition 2.8. A canonical 2:1 projection scheme is a cut-and-project scheme
as detailed above with lattice L = Z? and acceptance domain K being a closed
interval, where the width of this interval, and therefore the strip that lattice
points are projected from, is taken to be equal to the projection of a unit square
onto E+. In addition, the acceptance domain K is chosen so that the boundaries
of the strip do not intersect any points of L.

So a strip S has canonical width if the point («, 3) (for a, € R) is on the
lower boundary of the strip if and only if the point (a— 1,5+ 1) is on the upper

boundary.

Note that a canonical width strip will have width sinf + cos, where € is
the angle of the strip relative to the integer lattice, as can be seen from figure

2.3.

sin 8

1
5 cos 6

Figure 2.3: Canonical strip width.

Observe also that 8 must be an irrational multiple of 27, i.e., the strip must
have an irrational gradient. This is because a projection with rational gradient

would not result in |z being injective or my(L) being dense in E*.

Proposition 2.1. It is possible to choose an acceptance domain K so that the

boundaries of the strip K + E do not intersect any points of the lattice.

10



Proof. Choosing a strip whose boundaries do not intersect any lattice points is
equivalent to choosing a line that does not intersect any lattice points. This is
because the width of the strip is chosen so that the upper boundary line is the
translation of the lower boundary line by (—1,1). So there is a lattice point
on the lower boundary line if and only if there is a lattice point on the upper
boundary line.

So start with a line, L, in R?. Then any translate of L by a vector not
parallel to L, say by a vector parallel to L*, will not intersect L and so will
not intersect any of the lattice points on L. More generally, two translates by
non-equal vectors parallel to L' will not intersect each other and so will not
contain any of the same lattice points. However, there are uncountably many
translates of L of this type and only countably many lattice points, so therefore

there must exist translates of L that do not intersect any lattice points. O

2.2.1 Characteristics of Canonical 2:1 Projection Tilings

If we construct a canonical 2:1 projection tiling as above, then the tiling will
have certain attributes, some of which are detailed in this section.

Firstly, the “horizontal” and “vertical” widths of the strip are given by,

0
horizontal width =1 + C?S
sin @
in 0
vertical width =1 + S
cos b

as can be seen from figure 2.4.

11
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Figure 2.4: The horizontal and vertical widths of the strip.

Proposition 2.2. There are exactly two types of tile in a canonical 2:1 projec-

tion tiling with irrational gradient.

Proof. If we have a lattice point (x,y) within the strip K + E then exactly one
of the points (x,y + 1) and (« + 1,y) is contained in the strip.
If (z,y) is less than distance sin # from the lower boundary of the strip then

(z,y) is within “vertical” distance 22 and within “horizontal” distance 1 of

the lower boundary of the strip. Therefore we get that the lattice point (z,y+1)
is contained in the strip and the lattice point (z + 1,y) is not contained in the
strip.

If (x,y) is greater than distance sin @ from the lower boundary of the strip

(and therefore less than distance cos 6 from the upper boundary) then it is within

cos
sin 0

“horizontal” distance and “vertical” distance 1 of the upper boundary, and
thus the lattice point (x + 1,y) is contained in the strip and the lattice point
(x,y + 1) is not.

Note that by the choice of position of the strip you can never have a lattice

point exactly distance sin @ from the lower boundary, as this would imply that

12



the points (z + 1,y) and (z,y + 1) were on the boundaries of the strip.

So for any lattice point (z,y) within the strip exactly one of the lattice points
(z,y +1) and (z + 1,y) is also contained in the strip. Similarly, exactly one of
(x —1,y) and (z,y — 1) is contained within the strip.

We are restricting to the case where 0 < 6 < 7, so (z + 1,y) and (z,y + 1)
are both projected further along E than the projection of (z,y) and therefore
all subsequent lattice points in the strip are projected yet further along. So
the projection of any lattice point (z,y) is followed by the projection of either
(z,y +1) or (x + 1,y), meaning that there are at most two tile lengths.

Note that you will only get one length of tile if (z,y + 1) and (z + 1,y) are
projected to the same point, however this can only happen if § = 7, which is
discounted by the choice of irrational gradient of the strip.

Now, 0 <8 < 7, so

cos 6

horizontal width =1 + — >1
sin @
and
. . sin 6
vertical width =1 + >
cos

0 is irrational, so there are points arbitrarily close to the boundaries of the
strip K + E which are within the strip. Therefore for any irrational 6 satisfying
0 < 0 < % there are lattice points within the strip K + E that are within
distance sinf of the lower boundary of the strip, and there are lattice points
within distance cos @ of the upper boundary. Therefore both types of tile appear
in any canonical 2:1 projection tiling with irrational gradient.

O

So there are exactly two different lengths of tile in every 2:1 canonical pro-
jection tiling. The lengths of these two tiles are sinf and cosé as can be seen

from figure 2.5.

13



0
0 cos B

<in 0

e

Figure 2.5: The projections of horizontal and vertical steps.

Proposition 2.3. A canonical 2:1 projection tiling has two prototiles, the shorter

of which always appears flanked by two longer tiles.

Proof. We can relate the “horizontal” and “vertical” widths of the strip to the

lengths of the two tiles in the following way:

length of tile 1

horizontal width =1+ —————
orvzontatwr + length of tile 2

length of tile 2

tical width =1+ —————— .
vertieat we * length of tile 1

As already stated, the lengths of the two tiles cannot be equal when 6 # 7,

so the “horizontal” and “vertical” widths are not equal and,

length of longer tile

) idth =1
onger we + length of shorter tile

length of shorter tile

hort idth = 1
shorter wr * length of longer tile

14



If 0 < 6 < 7 then the “vertical” width is shorter and since it is strictly
less than two it is not possible to have more than two lattice points arranged
in a vertical row within the strip (recall: lattice points are distance 1 apart),
i.e., there cannot be more than one tile of length sinf in a row. Similarly, if
7 < 0 < 5 then the “horizontal” width is shorter and there cannot be more
than one tile of length cos@ in a row.

But note that for 0 < & < 7 the tile of length sin is the shorter tile, and
for 7 < 6 < 5 the tile of length cos @ is the shorter tile. So in any canonical 2:1

projection tiling you never get two shorter tiles next to each other. O

Proposition 2.4. In a canonical 2:1 projection tiling the longer of the two

prototiles appears in patches, with the number of tiles in each patch equal to

\‘ length of longer tile J or [ length of longer tile J +1.

length of shorter tile length of shorter tile

Proof. We know that the horizontal and vertical widths of the strip are given

by,

0
horizontal width =1 + C.OS
sin 6
in6
vertical width =1 + i .
cos

For 0 < @ < 7, the tile of length cos# (corresponding to a horizontal step
between lattice points) is the longer tile.

In this case, the maximum number of consecutive lattice points in a hor-

length of longer tile
length of shorter tile

izontal row within the strip is 2 + L J, because you can fit

a horizontal line of length 1 + { l?:;;,? ;f s’,‘:gfteerrtfffeJ within the strip. Also,

the smallest number of lattice points in a horizontal row in the strip must

length of longer tile P . o .
be 1+ Length of shorier file |» Pecause it is possible to position a horizontal

line of length [ lif:g’;t: oo,[ ;ngferrtgfeJ within the strip with endpoints less than

“horizontal” distance 1 from the boundaries of the strip, but this cannot be

: : : length of longer tile |
done with a horizontal line of length [length of shorier file 1.

15



The case where 7 < 6 < 3 is similar but with the tiles of length sin@

(corresponding to vertical steps) being longer and appearing in blocks.

So the longer tiles in a canonical 2:1 projection tiling come in blocks of length

1+ length of longer tile length of longer tile
length of shorter tile length of shorter tile |°

O

length of longer tile - - - length of longer tile -
Note that length of shorter tile 1s not an lnteger’ sice length of shorter tile 18

sin cos
cos 6 or sinf?

equal to and so is equal to the gradient of the strip, or 1 divided by
the gradient, which cannot be an integer by the choice of an irrational gradient.

Thus the tiling given by a projection of this kind must have two types of tile

and consist of blocks of the longer tiles of length 1 + [ llzgg‘qf: O"If :ngferrttiffeJ or

\‘ length of longer tile

Tength of shorier meJ divided by solitary tiles of shorter length.

Now we look at the proportions in which the two prototiles appear in a tiling

number of short tiles

=22 for some connected section of the tiling, and
number of long tiles ’

by considering
the limit of this sequence as the section is lengthened. This will show the

gradient, or of the line drawn from the lattice point that is projected

1
gradient’
to the start of this section of tiles to the lattice point that is projected to the

end, i.e., you get the gradient of the line shown in figure 2.6.

.././/

.

Figure 2.6: Horizontal and vertical steps in a section of the strip.

Note 2.1. If 7 < # < F then the shorter tiles will correspond to horizontal

16



1
gradient”

“steps”, so you will be measuring

As you examine longer sections of the tiling you will be looking at larger
sections of the strip, but both the endpoints are contained within the strip, so
the gradient of the line drawn between them can only differ slightly from the

gradient of the strip.

Proposition 2.5. In a canonical 2:1 projection tiling we have that,

I (number of shorter tiles) _length of shorter tile

n=oo \ number of longer tiles )~ length of longer tile

If 0 <0 < 7 then this value is the gradient of the strip.

If T <0 < 5 then this value is one over the gradient of the strip.

Proof. The situation is shown in figure 2.7, where n is the number of tiles

corresponding to horizontal steps in the section that you are examining.

sin 8
cos @

-
h=1+
e

Yn

Figure 2.7: The maximum and minimum possible gradients.

The gradient of the strip is given by,

gradient = In .
n

Then the maximum and minimum possible gradients of lines drawn between
lattice points in the strip, corresponding to the blue and red lines respectively,

are:

17



. . +h h . . h
mazimum gradient = In TR _ In + — = gradient of strip + —
n n o on n

—h h h
Yn =2 _Un _ 2 gradient of strip — — .
n non "

minimum gradient =

The value of h remains constant, so at the limit the gradient of the line must
be equal to the gradient of the strip.
Now, if 0 < 8 < 7 then the shorter tiles correspond to the vertical “steps”

and are of length sin # and therefore,

lim

n—oo

number of shorter tiles . .
= strip gradient

number of longer tiles

tan @

sin 6

cos

_length of shorter tile
~ length of longer tile

If 7 <8 < 5 then the shorter tiles correspond to the horizontal “steps” and

are of length cosé so,

. number of shorter tiles 1
lim - = - -
n—oo \ number of longer tiles strip gradient
1
" tanf

18



cos 6

sin @

__length of shorter tile

= length of longer tile

Thus, at the limit, the ratio of the number of short tiles to the number of
long tiles is equal to the ratio of their lengths.

O

There are two more characteristics of projection tilings that will be shown

below. The first of these is the aperiodicity of the tiling.

Definition 2.9. A tiling 7' of R" is said to be aperiodic if for any non-zero
vector v € R" the tiling T' 4+ v (that is, the translate of tiling T' by vector v)
does not coincide with 7'.

A tiling is said to be periodic if there is a non-zero translate of the tiling

that coincides with the original tiling.

Note that a tiling of R" could be periodic in only some directions and have no
periodicity in others. However, we will largely be concerned with 1-dimensional

tilings, for which this is not a problem.
Theorem 2.6. A tiling produced by a canonical 2:1 projection is aperiodic.

Proof. First we assume that the tiling T is periodic. Then there exists a vector
v = (v1,v2) in R? parallel to the pattern space E that maps T to itself.
So the projection of the lattice points after being translated by v is the same
as the projection of the original lattice points (i.e. both projections give T').
Consider a lattice point xp = (z,y) in the strip. Then ¢ + v is in the strip
and because the gradient is irrational it does not coincide with any other lattice

point. But there is a lattice point yo in the strip that is projected to the same

19



point as xg + v, so yo is some distance € from ¢ + v in a direction parallel to
E*. So we will write yo = x¢ + v + ¢, where ¢ is parallel to E+ and of length €.

If z; is the next lattice point to be projected onto E after zy (i.e.z; =
(x 4+ 1,y) or (z,y + 1)) then x; + v must have a corresponding lattice point y;
which is equal to yo + (1,0) if z; = (x+1,9) or yo + (0,1) if z; = (z,y + 1) and
so is the same distance (g) in the same direction (along a line parallel to E1)
from x7, 4+ v as yo is from ¢ + v. This is because the projection is onto a line
at irrational gradient, so the step between lattice points xyp and x; must be the
same as the step between yp and y; or the tiles would not be the same length.

Thus inductively, all the subsequent lattice points satisfy, y; = z; + v + €.

However, because of the irrational gradient of the strip there will be lattice
points z; arbitrarily close to the boundaries of the strip, and in particular,
within distance € of each boundary, which implies that some of the y; are located
outside the strip.

Therefore, the tiling 7" of E must be aperiodic. O

The final attribute of tilings that are produced by canonical 2:1 projections

examined in this section is that they are repetitive. This term is defined below.

Definition 2.10. A tiling T of R” is called repetitive if for any patch of tiles
P in T there is a number r > 0 such that for any point ¢ € R" there is a
translate of the patch P belonging to T" and contained in the ball B, (t) (in the

1-dimensional case this is the interval of length 2r centred at t).

So in a repetitive tiling any finite set of connected tiles will appear through-

out the tiling, never more than some distance r from any point.
Theorem 2.7. A tiling generated by a canonical 2:1 projection is repetitive.

Proof. Any patch, P, in T is a finite set of tiles whose union is connected. So
the endpoints of the tiles in P are the projections of a finite set of lattice points

{(zi,y:)} within the strip.
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Now, because of the choice of strip width (and bearing in mind that we have
restricted 6 to be between 0 and %), the lattice point (z; — 1,y; + 1) is the
same distance from the upper boundary of the strip as (z;,y;) is from the lower
boundary, and (z; + 1,y; — 1) is the same distance from the lower boundary
as (z;,y;) is from the upper boundary. This is because, by the choice of width
of the strip, if you moved the strip so that (z;,y;) was on the lower boundary
then (x; — 1,y; + 1) would be on the upper boundary and if (z;,y;) was on the
upper boundary then (z; + 1,y; — 1) would be on the lower boundary. Figure

2.8 illustrates the situation.

Figure 2.8: Proximity of lattice points to the strip boundaries.

So in particular, each of the points (z; + 1,y; — 1) and (x; — 1,y; + 1) is at
least as far from the strip as the distance from (z;, y;) to the nearest boundary.

Now, since there are only a finite number of lattice points in the set {(z;, y;)}
there will be a lattice point (x;,y;) of minimal distance from the strip bound-
aries, i.e., if (x;,y;) is distance ¢ from the closest boundary then no other lattice
point is within distance € of either boundary.

Then every time a lattice point within the strip is closer than distance 2¢ to
the boundary that is closest to (z;,y;) you will get the same configuration of
lattice points surrounding that point as are found in {(x;,y;)}, because shifting
all of the points in {(z;,y;)} by up to distance ¢ in a direction perpendicular

to the strip will not translate any of them outside the strip or move any new
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points into the strip within the confines of the patch, i.e., all points (z;,y;)
will remain within the strip and therefore all points of the form (z; + 1,y; — 1)
and (z; — 1,y; + 1) will remain outside the strip. So a copy of the patch P
will be found around any lattice point that is within distance 2¢ of the relevant
boundary.

So to show that the tiling is repetitive we have to show that given a line, L,
with irrational gradient in an integer lattice, and € > 0, there exists some r > 0
such that for any point ¢ on the line there is a lattice point within the strip of
width 2¢ and length 2r extending out from the line in one direction with ¢ at
the centre of one side. The situation is shown in figure 2.9. (Note that the strip

could also be below L).

2r

'\28

Figure 2.9: The strip of length 2r and width 2e with ¢ at the midpoint of one
side.

If z is an integer, then there will be a lattice point with first coordinate x

within this strip if the interval (L(xz), L(z) + -2;) contains an integer, where

L(z) is the y-value of the line L at x (note that -2, is the vertical width of this

cos ¢

strip and is greater than 2e because of our choice of ).
At z +n (for n € Z) the situation is similar but with the relevant interval

being (L(z) + ntan6, L(z) + 225 + ntan).

cos 6

Equivalently, we can look at the fractional parts of these intervals within the
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unit interval I. The gradient, tan @, is irrational, so the set of fractional parts
of the intervals for all integers n form an open cover of I, and this has a finite
subcover by compactness of I.

This finite subcover must have an interval corresponding to « +m with m of
maximum modulus, so taking r to correspond to m steps along in each direction
from the initial point (i.e. r = %;) will guarantee that there is a lattice point
less than 2¢ from the line and no more than distance r along the line from the
initial point.

This will work from any point on L with integer z-coordinate because start-
ing at a different x is like shifting every set in the cover by the same fixed
amount, so will still result in a cover. If we take r to correspond to m + 1 steps
then it will work for any point on L.

So therefore for any point on L there is a value r > 0 satisfying the relevant

conditions, and so the tiling is repetitive.

O

So, to sum up, a tiling generated by a 2:1 canonical projection has the

following characteristics:

e The tiling has exactly two lengths of tile, these lengths being sinf and

cosf.

e The tiling consists of “blocks” of one or more longer tiles divided up by

single short tiles.

« ” : : : length of longer tile
e The “blocks” of longer tiles contain either 1 + Llength of shorter tile | OF

length of longer tile :
IJength of shorter tile tiles.

e The limit of the ratio,

number of short tiles : number of long tiles
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is equal to the ratio

length of short tile : length of long tile .

e The tiling is aperiodic and repetitive.

2.3 N:1 Projections

As with the 2:1 projections discussed above we can also generate 1-dimensional
tilings using NN : 1 projection schemes, where we project points from an N-
dimensional lattice onto a 1-dimensional pattern space.

In a canonical N:1 projection we have an integer lattice Z”~ and a strip that
is defined by translating a unit N-cube parallel to some vector (ai,az, ...,an),
which we will take to be a unit vector.

Note that here a; # 0 for all 4, since if we had an a; being equal to 0 we
would effectively be in the N — 1 case. In fact, as with 2:1 projections, we will
restrict to the case where a; > 0 for all 4.

If a lattice point within the strip is projected onto the pattern space E then
the next lattice point to be projected onto E must be a unit step along from
the first point in one of N directions. These N possible steps give (up to) NV

possible tile lengths in the tiling produced by this projection.

Definition 2.11. A canonical N:1 projection with defining vector (a1, az, ...,an)
is said to be degenerate if we have that a; = a; for some pair i,j € {1,2,...,N}
(i #4)-

Conversely, we say that an IV:1 projection is non-degenerate if every a; is

distinct.

Proposition 2.8. Given a standard N:1 projection setup with strip defined by
unit vector (ay,as, ..., an) the lengths of the prototiles in the corresponding tiling

are a; fori € {1,...,N}.
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Proof. If we take the line through the origin that is parallel to (ai,as,-..,an),
i.e., the line t(aj,as,...,an), for t € R, then the projections of the points
(1,0,...,0), (0,1,0,...,0),..., (0,0,...,0,1) onto this line give the lengths of the
tiles from a standard N :1 projection with strip defined by the vector above.
Each of these points will be projected to the closest point on the line.

So consider the vector from the point (1,0, ...,0) to the point s(ay, as, ..., an)
on the line. This vector is equal to (sa; — 1, saz, ..., san).

Now we look at the square of the length of this vector as s varies. This is

given by:

B(s) = (a15 — 1)? + (a25)* + ... + (ans)?
=(a} +a+.. +ax)s’ —2a;5+1
=s2—2a15+1.

This will be minimised at the turning point of ¢(s),

@' (s) =25 — 2ay .

So,

P (s)=0&s=a;.

So the closest point on the line to the point (1,0, ..., 0) is the point a4 (a1, as, ..., an),

which is distance a; from the origin (since (ay,...,ay) is a unit vector).
Therefore the length of the tile corresponding to the unit step (1,0, ...,0) is

a1, and a similar argument applies to the other steps. O

As with the canonical 2:1 case we will also get the N different possible steps
between lattice points in our strip appearing in proportion to the lengths of

their projections. However, note that we may get degenerate cases where the
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terms a; for ¢ € R are not all different, resulting in two or more distinct steps
giving tiles of the same length in the tiling. Thus with this sort of setup the
tiles may not actually appear in proportion to their lengths in the tiling.

In the canonical 2:1 case, only the step corresponding to the longer tile can
appear in multiples of more than one within the strip. This is also true in the

(non-degenerate) canonical N:1 case.

Proposition 2.9. A tiling generated by a non-degenerate canonical N:1 pro-
jection scheme contains only one prototile that can appear newt to a copy of

itself.

Proof. Since in a non-degenerate N :1 projection we have that the prototiles
corresponding to different steps are all of different lengths it suffices to prove
that the strip in any such projection scheme has only one step that can appear
in multiples of more than one.

We will look at the case where a; > 0 for all 7, with all other cases being simi-
lar. Here we will look at the strip generated by translating the unit N-cube with
vertices (0,0, ...,0), (1,0, ...,0), ..., (1,1, ..., 1) along the vector (a1, as, ...,an). This
strip has all the points of the unit N-cube on its edges apart from the points
0,0,...,0) and (1,1,...,1), which are in the interior.

A point (21,72, ...,zx) € RY is contained in this strip if and only if there
exists some value pu € R such that (z1,...,xn5) + (a1, -..,an) is contained in the
unit N-cube described above.

We will assume that a; > a; for all i € {2,3,..., N}. Since (a1, ...,ay) is a
unit vector and all a; are non-zero we have also that 0 < a; < 1 for all 7.

Now, if we look at the point (—1,0, ...,0) we find that for this to be contained

in the strip we must have that there exists some p € R such that,

O<pa; —1<1
0<pax <1
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O<pany <1.

Le., all the values pa; for i € {2,3,..., N} are between 0 and 1 and pa; takes
a value between 1 and 2. However, since a; is the largest of the a; there will be
such a p. Thus the strip can contain more than one step of the type (1,0, ...,0)
consecutively.

To discover whether any other step can appear in multiples of two or more we
examine whether the points that are two steps of the form (0, ...,0,—1,0,...,0)
along from each vertex of the unit N-cube lie within the strip.

As a starting point we can immediately discount every vertex that has a 1
anywhere other than in position 4, since this would give inequality 0 < pa; +1 <
1 for some j whilst also having either 0 < pa;—2 < 1or 0 < pa;—1 < 1, requiring
1 to be both positive and negative.

Thus we look to see whether any points of the form (0, ...,0,—1,0,...,0) are
contained within the strip. For this to be the case we must have that there

exists some u € R that satisfies the following inequalities:

O<pa; —1<1

O<pa <1

O<pany <1.

However, this cannot be the case, since a; > a; (for ¢ # 1), so pa; > 1
implies that pa; > 1.
Therefore the step (1,0, ...,0) is the only one that can appear twice in a row

within the strip.
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Thus a tiling generated by a non-degenerate canonical /N:1 projection scheme
will have N prototiles appearing in proportion to their lengths with only the
longest prototile appearing in patches of more than one at any point in the

tiling.

2.4 Model Multi-sets

A variant of the projection tiling setup is the model multi-set (see for example
[8]), where multiple model sets are generated from the same cut-and-project
scheme and effectively overlaid.

This setup differs from the one that we will be investigating in the following
chapters, where the sets that we will be looking at are the overlaying of points

generated by separate cut-and-project schemes.

2.5 Tiling Spaces

One way in which we can study a tiling 7" is by constructing a space 7 of
tilings and looking at the topology of Q1 (see [14]).

We start by defining a metric on tilings, where two tilings are considered
to be close if they coincide on a large ball around the origin after some small

translate.

Definition 2.12. Given two tilings 77 and T3 of R we define the distance

between these two tilings, d(77,T%), to be equal to,

€
inf{{l}U{s :Ty + s1 =Ty + s2 0on B% with s1,s2 € R, [|s1]], ||s2]]< 5}}

where B:1 denotes the ball of radius % centred at the origin.

Note that here 7' + s is the tiling obtained by translating tiling 7" by vector

s (or equivalently moving the origin by —s).
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We can now look at the translates of a tiling and how far these are from the

original tiling in the tiling metric.

Definition 2.13. The orbit of a tiling T of R" is defined to be,

OT)={T+s:seR"}.
That is, the set of all translates of the tiling 7.

Definition 2.14. A tiling space ) is a set of tilings that is closed under trans-
lation and complete in the tiling metric. Le., if T € Q then O(T) C Q, and

every Cauchy sequence of tilings in 2 has a limit in Q.

Definition 2.15. The hull or orbit closure Q7 of a tiling T is the closure of
o(T).

The hull of a tiling T is the set of tilings that locally look like T'. A tiling

T' is in Q7 if and only if every patch of 77 is found in a translate of 7.
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3 Non-Parallel Projections

In this chapter we introduce a new type of projection setup involving the pro-
jections of lattice points from within two strips that are not parallel to each
other (and indeed with neither necessarily being parallel to the pattern space
onto which we are projecting).

A 2:1 X-projection tiling is produced by projecting the lattice points con-
tained within two canonical-width strips at different irrational gradients onto a

line. A more formal definition is given below.

Definition 3.1. A strip S at gradient ¢ in R? is defined to be K x Fy, where F,
is a line at gradient ¢ in R?, and K is a compact, closed and connected subset
of F- (i.e. a closed interval in Fj-).

Strip S is said to be of canonical width if K has length equal to the projection
of a unit square onto FqL Equivalently, when ¢ > 0, the point («, ) is on the
lower boundary of S (for , 8 € R) if and only if the point (a« — 1,3 + 1) is on

the upper boundary of S.
Definition 3.2. A 2:1 X-projection scheme consists of:
e The integer lattice L sitting in R2.

e Two strips S; and S of canonical width at gradients ¢; and ¢ respectively,

with ¢; and g satisfying,

q1,792 € Q
q1,q2 >0
@ Fq.

In addition we have that the strips are positioned so that 85; (L = § for
i=1,2.
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e A line E, known as the pattern space, at gradient p with p > 0, p # 1.

e Orthogonal projection 7 : R*> — E.

We thus get a pattern of points P = {rx(z) : z € L) (S1US2)}. From this
pattern we get a 2:1 X-projection tiling by taking the points to be the endpoints

of the tiles.

Definition 3.3. Note that 7| is not assumed to be injective, so the pattern
space E could be taken to have rational or irrational gradient. We will call a
projection a rational X-projection if E has rational gradient and an irrational

X-projection if E has irrational gradient.

As with normal projections, 2:1 X-projection schemes give sets of points in
R. We denote by 6, ¢; and ¢, the angles between the horizontal in the lattice
L and the pattern space E and strips S; and S, respectively. We then restrict
0, ¢1 and ¢ to be between 0 and 7 as with the standard projection case.

Note that changing the value of 6 does not affect the strips, and in particular
does not change the “staircase” function of “up” and “across” (left to right) steps
within each strip. Restricting 6 to be between 0 and % ensures that the second
lattice point in an “up” or “across” step will be projected further along E than
the first.

Thus the set of points P; generated by strip S; will have two possible dis-
tances between consecutive points unless # = 7 (but note that we specified
that E should not be at gradient 1, so this case does not arise), with these
distances being the lengths of the projections of a vertical unit interval and a
horizontal unit interval onto E, i.e., sinf and cosf (notice that these lengths
are independent of the gradient of S;). The order in which these two different
“steps” appear will however be the same as with normal projections because
the “staircase” function within the strip is the same.

So the pattern P; generated by strip .S; with projection onto space E will

consist of an infinite set of points with two possible distances between consecu-
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tive points and each of these distances corresponds to one of the two distances
that you get with a standard projection with strip S; where the projection is

onto a pattern space that is parallel to the strip.

Proposition 3.1. In the 2:1 X-projection scheme there must be at least one
point of the integer lattice contained in Sy () S2, and only finitely many of such

points.

Proof. S; and S both contain “staircase functions”, i.e., within each strip is
a line consisting of horizontal and vertical steps between lattice points in that
strip, and because the strips are non-parallel these lines must cross. Both the
staircase functions are subsets of a unit square grid, so their intersection must
also be a subset of this grid. If the two lines intersect at a point other than
a lattice point then they must both contain the entire unit interval in which
that point is located and must therefore intersect on the entire interval and in
particular the two lattice points at the ends of the interval.

So the staircase functions associated to the two strips must contain a common
lattice point and this lattice point must therefore be in S; [ S..

S1 and Sy are non-parallel and have fixed width, so their intersection is a
compact parallelogram in R? and therefore can contain only finitely many lattice

points. O

3.1 Rational 2:1 X-Projections

In this section we will investigate rational 2:1 X-projections. These will be
looked at in greater detail in the following chapters. We will denote by P; the
set of points that are the projections of points from the strip 5;, and the tiling
associated to P; will be called T;. The tiling that is the combination of 77 and
T, will be denoted by U.

Definition 3.4. A set of points P C R" is said to be uniformly discrete if there

exists a positive real number 7 such that Vz,y € P, |z — y| > 2r.
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Definition 3.5. A set of points P is said to be relatively dense in R"™ if there
exists a positive real number R such that every sphere of radius greater than R

contains at least one point of P in its interior.

Definition 3.6. A set of points P C R™ is a Delone set if it is uniformly discrete

and relatively dense.

The sets generated by standard cut-and-project schemes are Delone sets. As

we shall see, this is also true of the sets generated by rational 2:1 X-projections.

Lemma 3.2. In a tiling generated by a rational 2:1 X -projection scheme with
pattern space E at gradient ¢ the lengths, |t1| and |ts|, of the two prototiles ti,
to in the tilings T; are rational multiples of each other.

Furthermore, the longer of these prototiles, which we shall label to has length,

max{a,b}

ts| =
2] min{a,b}

[t1] .

Proof. The two prototiles have lengths that are equal to sinf and cosf, so
depend only on the gradient of the pattern space E. If E has rational gradient

sinf __ : :
then -7 = tanf is rational.

We label the longer of the prototiles as to, thus we get,

T a lti] a b
I<—=>-<1l=>——— ===t =t
47 b lta] b o] = Zltal
o> ool o ey
47 T R
Either way we have that,
max{a,b
o) = e}, )
min{a,b}
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Proposition 3.3. The set of points generated by a rational 2:1 X-projection
with pattern space E at gradient § is a Delone set, with the distance between
any two points of the set being an integer multiple of m |t1| (where t; is

the shorter of the two prototiles from the tilings Ty and Ts).

Proof. The set generated by this type of projection is the union of the points in

P, and P», so is the union of two sets which consist of points in E separated by

max{a,b}

min{ab] |t1]. So in each P; every point is an integer multiple

either |t1] or |t2]|=

of ; |t1]| from every other point, and P; and P> have at least one point in

D S
min{a,b
common, therefore every point in P; |J P is an integer multiple of m [t1]

from every other point in the union.

So the minimum possible distance between points is m |t1] and the
maximum possible distance between consecutive points is |t2|= % [t1].

Thus the point set is discrete and relatively dense, and therefore a Delone set.

O

Corollary 3.4. A tiling produced by a rational 2:1 X -projection scheme with

pattern space E at gradient § has at most max{a, b} prototiles.

Proof. We know that any two consecutive points in the combined set must

be separated by a distance that is an integer multiple of muﬂ and this

max{a,b}

distance cannot be more than |t2| = minlast

|t1]. Thus the tiling given by this

setup can have at most max{a, b} prototiles. O

The pattern space E has rational gradient and passes through a lattice point
(the origin), so therefore has infinitely many lattice points evenly spaced along
its length. Similarly, E+ contains infinitely many lattice points with the same
spacing as those along E.

So if we look at all the lines parallel to E+ passing through lattice points on
E then we get a square sublattice of L, this sublattice will be used extensively

in the following chapters, so we define it formally below.
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Definition 3.7. Let E be a line with rational gradient ¢, with a and b coprime
(i.e. the fraction is written in its lowest terms), passing through a point of the
lattice L = Z? which we will refer to as O.

We define the lattice A to be the sublattice of L containing the point O and

generated by the vectors (b,a) and (—a, b).

Figure 3.1: The lattice A for E at gradient %

From this point on both L and A coordinates will be used, so we will intro-

duce notation to cover this here.

Definition 3.8. Translations in L coordinates will be denoted by (z,y) as
before.

Translations in A coordinates (with A defined as above) will be denoted by
(z,y)~, where the relationship between the two types of translation is as follows.

(1,0) = (b,a)

(Oa ]-)N = (—0,, b) .
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So the traunslate (z,y)~ = (xb — ya, za + yb).

Lemma 3.5. A line I has irrational gradient relative to the lattice A if and
only if it has irrational gradient relative to the lattice L (where L and A are as

above).

Proof. Take I to run through a point of both L and A, which we will call (0, 0).
Then the fact that I has irrational gradient relative to L implies that I does
not intersect any more points of L, and therefore does not intersect any more
points of A, since A C L.

Thus I must have irrational gradient relative to A.

If I has rational gradient relative to L then I passes through the lattice point
(rm,n) (with at least one of m and n non-zero) and all integer multiples of this
point.

The lattice A is at rational gradient relative to L and is generated by the
vectors (a,b) and (—b,a). But the point (a® + b?)(m,n) = (an — bm)(—b,a) +
(am + bn)(a,b) is common to both lattices and lies on I, so I must also have

rational gradient relative to A. O
Recall the definition of repetitive as given in the previous chapter:

Definition 2.10. A tiling T of R" is called repetitive if for any patch of tiles
P in T there is a number r > 0 such that for any point ¢ € R" there is a
translate of the patch P belonging to 7' and contained in the ball B,.(t) (in the

1-dimensional case this is the interval of length 2r centred at t).

Theorem 3.6. Rational 2:1 X-projection schemes with strips S1 and Sy having
gradients that are irrational and rationally related relative to A give repetitive

tilings.

Proof. Each T; has two prototiles t; and ty, with |¢2]|>|¢t;]. The projections of
two consecutive lattice points in T; can never be more than |¢2| apart, therefore

any patch in U of diameter greater than || must contain the projections of
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lattice points from both strips. Note that there may be smaller patches in U
that contain tiles with all endpoints from the same strip, but any one of these
patches will appear as part of a larger patch containing projections of points
from both strips and will therefore reappear in the tiling whenever this larger
patch reappears. Thus it is enough to prove that any patch with tile endpoints
coming from the projections of points in both strips will appear throughout the
tiling U.

If you have a finite patch of the above type then each strip will contain a
finite set of lattice points that are projected into this patch, and thus each will
have a lattice point that is closest to one of the boundaries of the strip. We
call these points z; € S; and z2 € S, and their distances from the relevant
boundaries €; and €, respectively.

As in the proof of repetitivity of a standard 2:1 projection, whenever there
is a lattice point, y1, within 2e; of the relevant boundary of S; the patch from
Ty will appear in U and whenever there is a lattice point, y», within 25 of the
relevant boundary of Sy the patch from T4 will appear in U. So for the complete
patch to appear in U it is required that we have such lattice points y; and y»

with,

m(y1) — 7(y2) = w(z1) — m(22).

If we draw lines I; through z; parallel to S; and I» through x, parallel to
Sy then for the complete patch to reappear we need lattice points y; and yo
whose projections have the above relation, with y; being within €, of S; and y»
within €5 of Ss.

We now set € = min{ej,e2}, and also position the pattern space E so that
it runs through zo, which we shall henceforth refer to as the origin in both the
normal lattice L and the sublattice A.

In addition we will denote by (v,d) the vector between z; and z>. So we
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have,

T =£L”2+(’7,(S).

This gives a situation that looks a bit like that shown in figure 3.2.

Figure 3.2: The lines I; and I> in lattice L.

With the original patch reappearing whenever we have lattice points y; and

y2 within € of I; and I, respectively, satisfying,

m(y1) = w(y2) = w(z1) = w(x2) = 7(7,9) -

Relative to the sublattice A the situation looks a bit like that shown in figure

3.3 (at least when the gradients of S; and Sy are greater than that of E).
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Figure 3.3: The lines I; and I in lattice A.

Here the line I; runs through the point (v, d), which is a point in the lattice
L, but may not be a point of A.

Now, assume that the gradients of S; and S, are rationally related and
irrational relative to A, so gradient(S;) = Sgradient(S2) (w.l.o.g. assume |c| >
|d|). Then if the point (,8)~ € A is within ¢ of I, the point (a, §8)~ + (7,6)
will be within |§| € of I;. However, the point (a, 58)~ + (7,0) is only a lattice
point if (a, )~ is a lattice point, which only happens when 53 € Z, i.e., when
B is a multiple of d.

If we have a point (a, )~ within |ET| of I, then the point y; = (da,bf)~
is within |4l of I, and therefore within distance e. Also the point y =
(dev, £dB)~ + (v,0) = (dov, cB)~ + (7,0) is a lattice point within |£| . |¢] e =¢
of I.

Of course,

m(da,df)~ = w(da,cB)~

S0,
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m(y1) — 7(y2) = w(z1) — 7(22).

Thus for every point of A within |57| of I, there will be lattice points y; within
€ of I1 and y» within € of I> whose projections have the required relation. Since
there will be points of A within this distance of I, throughout its length this
means that the patch will repeat throughout U when S; and S, have gradients
of this form.

Note that the chosen patch will repeat in a relatively dense pattern through-
out U because the patches that you get in T, defined by having a lattice point
within the required distance of the relevant boundary of S are relatively dense
in S5. Or in other words, because T5 is repetitive.

Therefore when S7 and S have gradients that are rationally related to each
other and irrational relative to the lattice A (and positive relative to the lattice

L) then the tiling produced (U) will be repetitive.

Note that the general version of this result is proved in theorem 5.11.

3.2 Irrational 2:1 X-Projections
We now look at some of the basic properties of irrational 2:1 X-projections.

Lemma 3.7. In the irrational case the lengths, |t1| and |t2|, of the two tiles t1,

to in the tilings T; are irrational multiples of each other.

Proof. The two lengths are equal to sinf and cosf, so depend only on the

sin 6

tosp = tanf

gradient of the pattern space E. If E has irrational gradient then

is irrational. O

Lemma 3.8. There are only finitely many tiles of maximal length in a tiling

generated by an wrrational 2:1 X-projection scheme.
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Proof. Maximal tiles in the tiling can only arise when the projections onto E
of maximal steps in S; and Ss coincide. If a lattice point contained in a strip
was projected to the same point in E as a lattice point not contained in that
strip then this would imply that there were two lattice points on a line parallel
to B, which implies that £+ and hence E have rational gradient.

Hence, the only part of the tiling that could contain tiles of maximal length
is the part that corresponds to the projection of the lattice points in Sy [ Sa,
and there are only finitely many lattice points in this intersection. Therefore

there can be only finitely many tiles of maximal length in the tiling. O

Theorem 3.9. A tiling generated by an irrational 2:1 X-projection has infinitely

many prototiles (i.e., the tiling contains infinitely many different lengths of tile).

Proof. We have an irrational 2:1 X-projection with strips S; and S, at different
irrational gradients and orthogonal projection onto a pattern space E that is
also at an irrational gradient relative to the lattice.

As before, we refer to the set of points in E that are projections of points in
S; as P; and the corresponding tilings (taking these points as the endpoints of
tiles) as T;. Each of these tilings has two prototiles t; and ty with |t2]|= ¢ |¢1]
for some ¢ > 1, ¢ irrational. We will call the X-projection tiling U.

By the previous lemma, U has only finitely many tiles of maximal length
(i.e. of length |t2]). However there are infinitely many tiles of this length in
both 77 and T3. Thus there must be infinitely many maximal length tiles in
T, that are “broken up” into shorter tiles in U by having points from P» in
between their endpoints. As 7} and 7> have only finitely many common points
there must be infinitely many tiles in U that have one endpoint from each P;.

Figure 3.2 shows the situation in a part of tiling U that does not come from
the projections of points in S ] Sz.

The points at the top of the line are points in P, and the points at the

bottom are in P». The top points are |ty | apart, and since these points do
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Figure 3.4: Tiles with endpoints projected from different strips.

not coincide with any points from P, there must be at least one point from P»
between them (the points of each P; are at most |t2| apart). So for each t, tile
in T} (outside of the tiles corresponding to Si[)S2) we must get two tiles in
U that have one endpoint in each T;. These tiles are marked v; and vy in the
above diagram, and at least one of these tiles must have a length that is not
equal to |t1| because they can only have tiles of length |¢;| between them (or no
tiles) so if they both had length |¢;| this would imply that |¢2| was an integer
multiple of |¢;|. However, this is an irrational 2:1 X-projection, so t; and ¢,
have lengths that are irrational multiples of each other.

Thus there must be infinitely many tiles in U that have one endpoint in each
P; and are not of the same length as either of the prototiles in the tilings 7T5.

Let v be such a tile in U. Then v has endpoints a and b, with a € T} and
b € T5. Say a prototile with the same length as v reappears in U with endpoints
a' € Ty and b' € T5 in the same order as before (there are of course two possible
orders for the endpoints), then a’ and b’ must be translates of a and b by the

same vector, and they are points of the tilings, so:

|0,I — CL|= C1 |t1| +c2 |tz|

|b' — b= dy |t1] +d> |t2]

with C1,Ca, dl,d2 e N
But the lengths of the prototiles are irrational multiples of each other, so this

can only happen when ¢; = d; and ¢y = ds, or in other words when the tilings
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Ty and T, contain the same number of each prototile between these points.
However, 2—; and g—; have different limits, so there can only be finitely many
occurrences of tiles of length |v| with endpoints in the same order as for v (and
similarly, only finitely many when the order of the endpoints is switched).

So the tiling U contains infinitely many tiles that are not of length |¢1| or

|t2, but a tile of a given length can only appear finitely many times. Therefore

there must be infinitely many prototiles in an irrational 2:1 X-projection.

3.3 Projections with Strips at Rational Gradients

In this section we look at the tilings that are produced by projecting the lattice
points within two non-parallel strips at rational gradients onto a pattern space
at irrational gradient.

We will call the strips S; and S2 and the pattern space E. For each S;
there is a tiling 7; which is obtained by projecting the lattice points within
S; orthogonally onto E. The complete tiling (that is, the tiling of R given by
projecting the lattice points from both strips) is denoted by U. Each of the
tilings 73 has two prototiles which we will call ¢; and ¢, and these tiles have
lengths that are irrationally related due to E having irrational gradient, i.e.,

|t2|= A |t1] (with A irrational).

Lemma 3.10. T and 1> are periodic with irrationally related periods.

Proof. The strips are at rational gradients, say gradient of S; is equal to %
Then given any lattice point (z;,y;) € S; all lattice points of the form (z; +
nb;, y; + na;), for n € Z, will be in S; and will be the same distance from both
boundaries of the strip as the original point (x;,y;). So the patterns of lattice
points within the strips repeat after a fixed number of steps and therefore both
T; and T> must be periodic and consist of repeated patches with a; tiles of type

t; and b; tiles of type t».
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Thus the period of T7 is,

arltr] + by t2| = (a1 + Aby)[t1| = p

and the period of T5 is,

0,2|t1| +b2|tz| = ((lz +)\b2)|t1| =q.

Then, p = xq, for € Q = a1 + Aby = x(az + A\b2)
= a; —xay + A\(by — zb2) =0
= b —xby =0
= a; —xay =0
= by = zby and ay = zay
> ==
= gradients of S; and Sy are equal.
So the periods must be irrationally related when S; and S have different

gradients. O

Definition 3.9. For two finite non-empty sets of points X,Y C R the Hausdorff
distance dg(X,Y) is equal to inf{r ¢ R : X C Y, and Y C X,}, where

A ={z eR : |v—a| <rfor some a € A}.

Definition 3.10. Two patches P, P» € U (thought of as finite sets of points)

are said to be e-close if there exist translates )1 and Q3 of P, and P; satisfying

da(Q1,Q2) <e.

Proposition 3.11. For any patch P in U and any € > 0 the set of patches in

U that are e-close to P is relatively dense.

Proof. Assume that the patch P in U is defined by lattice points from both
strips. All patches will either be of this type or will be subpatches of such

patches, so it suffices to prove the proposition in this case.

44



Choose two lattice points z; € S; and z2 € S> that are projected into P
with their projections being distance § apart where § is less than or equal to
the shorter of the periods of 77 and T5. Then whenever there are lattice points
y1 € S1 and yo € S2 occupying the same positions within the strips (i.e. the
same distance from both edges) as x1 and x2 whose projections are within e
of being distance § apart then the patch around the projections of these points
will be e-close to P.

Ty and T5 have periods p and ¢ respectively, and these periods are irrationally
related, i.e., ¢ = rp for some irrational r. So the projections of lattice points
that occupy the same position within S; as z; can be found at distances np
from x; for all n € Z, and similarly the projections of lattice points in the same
position within Sy as z, will be at distances ng = npr from z, for all n € Z.

The fractional part of r is an irrational number 7' with 0 < r’ < 1, so the
set of fractional parts of nr for all n € Z must be a dense subset of [0,1] and
therefore for all € > 0 the set of intervals of radius £ around these points must
cover [0, 1] and so by compactness of [0, 1] there must exist a finite subcover by
intervals of this form.

Thus for all € > 0 whenever two lattice points occupying the same positions
within the strips as z; and z2 have projections that are within € of being distance
¢ apart there must be only a finite number of periods before two more lattice
points, in the same positions relative to the strips, are projected to points that
are within ¢ of being distance é apart, i.e., there must be patches that are e-close

to P throughout U, never more than a certain distance apart. O

Tilings of this type therefore have a property that is similar to repetitivity,

and could perhaps be referred to as being e-repetitive.

Corollary 3.12. Tilings of this type have infinitely many prototiles, including

prototiles of arbitrarily small length.

Proof. The strips S; and S, have at least one lattice point in their intersection
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and so for any € > 0 there will be lattice points whose projections are within

distance € of each other, and therefore tiles of length less than €. O

46



4 Rational 2:1 X-Projections: Positioning and
Translates

In this chapter we will look at rational 2:1 X-projections and the translates of
these that can be obtained by altering the positions of the two strips relative to
the lattice. The sets of points corresponding to translates that we obtain in this
way will be important in the next chapter when we come to look at the tiling
spaces associated to these tilings.

We start by recapping the definition of a rational 2:1 X-projection.

Definition 4.1. A strip S at gradient ¢ in R? is defined to be K x F, where F,
is a line at gradient ¢ in Ry, and K is a compact, closed and connected subset
of F;- (i.e. a closed interval in F-).

Strip S is said to be of canonical width if K has length equal to the projection
of a unit square onto F;- Equivalently, the point («, 8) is on the lower boundary
of S (for a, B € R) if and only if the point (a—1,5+1) is on the upper boundary
of S.

Definition 4.2. A rational 2:1 X-projection scheme consists of:
e An integer lattice L sitting in R2.

e Two strips 57 and Sz of canonical width at gradients g; and g, respectively,

with g; and go satisfying,

91,92 € Q
91,92 >0
g # 92

In addition we have that the strips are positioned so that 85; (| L = () for
i=1,2.
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e A line E, known as the pattern space, at gradient ¢ € Q, with ¢ > 0,

q # 1. We will usually write ¢ = 5, with ¢ and d assumed to be coprime.
e Projection 7 : R? — E.

Each strip S; has an associated pattern of points P; in F, with

Pl' =T (L ﬂ SZ) .
We thus get a pattern of points P = P; |J P». From this pattern we get a

rational 2:1 X-projection tiling by taking the points to be the endpoints of the

tiles.

Example 4.1. An example of a rational 2:1 X-projection setup is shown in

figure 4.1.

Figure 4.1: A rational 2:1 X-projection scheme.

Definition 4.3. Strips S; and S are non-parallel and will thus overlap. We
refer to the point at which the lower boundaries of the strips meet as the
intersection point of S; and S;. We will call this point ¢, as in the example

diagram.
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Definition 4.4. The lattice L in which we are interested is an integer lattice (as
explained above). We define the fundamental domain of L to be the unit square
with vertices (0, 0), (1,0), (0,1) and (1, 1) and all other fundamental domains to

be translates of this by integers both horizontally and vertically.

If we define the origin on E to be at position 7 (¢) then translating ¢ by a
vector of the form (n,m) with n and m integers (so moving the two strips by
integer steps both horizontally and vertically) will result in the same tiling, since
every lattice point (i, j) in the original strips will be replaced by a corresponding
lattice point (7,7) + (n,m) in the translated strips with the same projection
relative to the new origin on E.

Thus, when looking at ways in which the two strips can be positioned we
need only consider the positions of their intersection point within a fundamental

domain of L.

4.1 Intersection Point Positions

In the definition of a rational 2:1 X-projection we required that the strips be
positioned so that there are no lattice points on their boundaries, thus not every
point within the fundamental domain of L is a point at which the intersection

of the lower boundaries can be placed.

Definition 4.5. We say that a point in the fundamental domain of L is a
forbidden point if a line drawn through this point parallel to either S; or S

intersects any point of the lattice L.

If u is a forbidden point within the fundamental domain of L that leads to
a lattice point being placed on the boundary of S; then all points along the line
parallel to S; that pass through u will also be forbidden points.

So the forbidden points for ¢ within a fundamental domain of L are all the
points on two sets of infinitely many lines that pass through the fundamental

domain, one set parallel to S; and the other parallel to S;. This is all the lines
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parallel to either strip that pass through both the fundamental domain and a
point of lattice L.

For example, the set of forbidden points within the fundamental domain of
L may look a bit like those shown in figure 5.3 (though the lines will actually

be dense).

Figure 4.2: The forbidden points in the fundamental domain of L.

Claim 1. This can equivalently be thought of as just two lines passing through
the origin with gradients equal to those of the two strips that each wind round

the fundamental domain.

Proof. We will think of the fundamental domain that we are looking at as having
the origin at the bottom-left position, and refer to this fundamental domain as
F.

If we take a line parallel to S; running through F' that also passes through
some lattice point (m,n) and call this line I(,, ), then I, ) [ F' gives a line
of forbidden points in F.

A line parallel to S; passing through O has the same intersection with F' as
the line I(,, ) has with the fundamental domain that has (m,n) at its bottom-

left corner. So once this line loops round F' a certain number of times in the
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relevant direction we will get the line I(,, ) (| . Thus such a line must cover
the intersection with F' of any line defined in the same way as I(,, ), for any
lattice point (m,n).

Similarly, all intersections of F' with lines parallel to S> that pass through
lattice points must be represented by a single line parallel to Sy passing through

the origin. O

The remaining points, which form a totally disconnected subset of the fun-
damental domain, give all “allowed” intersection points for S; and S;. So every

possible positioning of the two strips is defined by one of these points.

4.2 Translate Points

As we have seen, there are infinitely many points in the fundamental domain of
L at which the intersection point ¢ can be positioned, but could some of these
alternative positions correspond to translates of the tiling?

In this section we investigate the points in the fundamental domain of L at
which we can reposition t to get translates of the original tiling, first explaining

how this works and then looking at the various cases that arise.

Lemma 4.1. We have a rational 2:1 X-projection setup with strips S1 and S2
having intersection point t as before with n(t) = O, the origin on E. We will
call the tiling produced by this setup U.

Now, assume that we also have points t1 and to on the lower boundaries of

S1 and Sy respectively satisfying,

m(t1) = m(t2)

tl = tz + (m,n)

for m,n € Z. Then the tiling U' produced by translating the strips so that they
intersect at t; and defining w(t1) = O (the origin on E) is a translate of the
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tiling U .
Proof. We first introduce/recap some notation for the proof.

e P and P, are the patterns of points corresponding to the projections of

lattice points from strips Sy and Ss respectively (with 7(¢) = O on E).

e S| and S} are the translates of strips S; and Sz so that the point ¢; is on

their lower boundaries. Note that S| = S;.

e P[ and Pj are the patterns of points corresponding to the projections of

lattice points from strips S] and S} respectively (with 7(t;) = O on E).

Using the above notation we see that,

Pl ={k+ (a,B) 1k € P, (, B) = m(t) — 7(t1)}

since S| = S1 so they contain the same lattice points and only the position of
the origin in the tiling is changed.

We also have that,

S5 =Sy + (m,n)

50,
(r,y) € S = (x+m,y+n)€S,.

So every lattice point in Ss has a corresponding lattice point in S%, and since

we know that,
w(ty) = w(te + (m,n)) = 7(tz)
we must have that,
m((z,y) + (m,n)) = 7(z,y).
Therefore, as above, we get that,
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Py ={k+(a,B) : k€ Py, (a,B) =7(t) —m(t1)}.

Since the tiling U’ comes from a combination of the sets of points P/ and
P} it must be a translate of U.

O

Figure 4.3 gives an idea of what is happening. Here ¢; and ¢» occupy cor-
responding positions in two fundamental domains of L, and if the intersection
point is taken to be at t; or ¢y then the projections of lattice points will be the

same but the origin of the tiling will be at O’ rather than O, giving a translate.

Figure 4.3: A translate point for the tiling.

So for a given X-projection setup with intersection point ¢ there may be
alternative positions for the intersection point within the fundamental domain
of L that will give translates of the original tiling.

We now briefly recap the definitions of the sublattice A and associated system

of coordinates given in the previous chapter.

Definition 3.7. Let E be a line with rational gradient &, with ¢ and d coprime
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(i.e. the fraction is written in its lowest terms), passing through a point of the
lattice L which we will refer to as O.

We define the lattice A to be the sublattice of L containing the point O and

generated by the vectors (d,¢) and (—c¢,d).

Example 4.2. When E has gradient % the sublattice A is as shown in figure

44

Figure 4.4: The sublattice A for E at gradient 3.

Definition 3.8. Translations in L coordinates are denoted by (a,b).
Translations in A coordinates (with A defined as above) are denoted by
(a,b)~, where the relationship between the two types of translation is as follows.
(1,0)~ = (d; )
(07 I)N = (_Ca d) '

So the translate (a,b). = (ad — bc, ac + bd).

As before with lattice L we will define the fundamental domain of A to be
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the unit square with vertices (0,0)~, (1,0)~,(0,1)~ and (1,1)~. Whenever we
talk about two or more fundamental domains of A they will be translates of the

fundamental domain by vectors of the form (m,n). for m,n € Z.

Definition 4.6. We will be considering the patterns of points given by project-
ing lattice points from A that are within the strips S; onto the pattern space E.

We will denote the resulting sets by PZ»A. That is,

PM = {7‘(’(7‘) T € SiﬂA} .

Lemma 4.2. If two points occupy corresponding positions in two different fun-
damental domains of A then they also occupy corresponding positions in two

different fundamental domains of L.

Proof. A is a square lattice, and for gradient of E equal to § as above we have

that,

(1,0)~ = (d, ¢)
(Oa ]-)N = (—C, d) '

So integer translations in A coordinates give integer translations in L co-
ordinates and therefore if two points occupy corresponding positions in two
fundamental domains of A then they will occupy corresponding positions in two

fundamental domains of L. O

Lemma 4.3. Two points have the same projection onto E if and only if they

are translates of each other by a vector of the form (0,k)~, for some k € R.

Proof. The projection is perpendicular to E, so two points will have the same
projection onto E if and only if they are on a line perpendicular to E, and A is

defined so that vertical lines in the A coordinates are perpendicular to £. [
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Definition 4.7. We define an intersection-point tiling to be a tiling that can

be produced by a rational 2:1 X-projection setup satisfying,

w(t) =0

where ¢ is the point of intersection of the lower boundaries of the strips and O
is the origin in the tiling (i.e. on E).

Similarly, a non-intersection-point tiling is a translate of an intersection-
point tiling that is not itself an intersection-point tiling, i.e., a tiling generated
by a rational 2:1 X-projection that is not the same as any of the tilings that can

be produced by repositioning ¢ so that w(t) = O.

Note 4.1. We have not yet proved that the set of non-intersection-point tilings

is non-empty, i.e., that not all translates of a tiling are intersection point tilings.

Proposition 4.4. A rational 2:1 X-projection has at least countably many

translates that are intersection-point tilings.

Proof. Note that we will be using A coordinates throughout this proof.

We will denote by L; and Lo the lines that form the lower boundaries of
S1 and S, respectively. These lines have irrational gradients relative to both
L and A. If the intersection point ¢ is at coordinates (a, )~ then (also in A

coordinates) the lines can be written as,

Ll = {(m,pm)N + (Oé,ﬁ),\, HEUAS ]R}
Ly ={(z,qx)~ + (a, B)~ : x € R}

with p and ¢ irrational.

Now define points ¢; and ¢y on lines L, and Lo respectively to be,

ty = (xo + a,pro + B)~
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tr = (o + @, qao + [)~ -

Then for z € Z,

t1 =1t + (O,Z)N = 7T(t1) = 7T(t2)

and also ¢; and ty occupy the same position within the fundamental domain of
A and therefore within the fundamental domain of L.

The points ¢; and to differ in such a way for all = satisfying,

pr=qr+ 2.

We also have that,

z
p—q’

Pr=qr+z S x =

So there are countably many values of x at which L; and L, occupy corre-
sponding positions within fundamental domains of A. Thus countably many
translates of the tiling must be intersection-point tilings, and these translates
are the set of integer multiples of the translate by distance ﬁ (that is, this
distance in A coordinates). O
Proposition 4.5. The points described above are the only points on the lower

boundaries of S1 and Sy that occupy corresponding positions within fundamental

domains of L and project to the same points on E.

Proof. The points described above are all pairs ¢; and ¢; on the lower boundaries

of S1 and S, respectively satisfying,

t1 =t 4+ (0,2)~

for z € Z.
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Since t; and ¢, differ by a vector of the form (0, y)~ we must also have that,

W(tl) = 7T(t2) .

Thus these must be the only pairs of points occupying corresponding posi-
tions within fundamental domains of A and having the same projections onto E.
By lemma 4.2 they must also occupy corresponding points within fundamental
domains of L.

All that remains to be shown is, for t; and ¢ in the same fundamental

domain of A satisfying,

m(t1) = w(t2)
th £t

the points ¢; and ¢ cannot occupy corresponding positions within two funda-
mental domains of L.
Assume that they do occupy corresponding positions within two fundamental

domains of L, then (in L coordinates),

t1 =tz + (a,b)

for some a,b € Z with (a,b) parallel to (—¢,d) as in the definition of A (since
projection is along this line). However, the step (a,b) must be less than an
integer multiple of the step (—c¢,d) since t; and ¢, are in the same fundamental
domain of A. But ¢ and d are coprime, so such a step does not exist.
Therefore t; and t» cannot occupy corresponding positions within two fun-

damental domains of L. O

Note 4.2. The above argument does not completely rule out the possibility

that there could be other intersection points than those listed above that give
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translates of the tiling. We also need to show that tilings that are produced by
projection onto E with the origin not below an intersection point are distinct

from intersection point tilings.

<

Lemma 4.6. For pattern space E at gradient 3, with ¢, d coprime, the shortest

(non-zero) distance between the projections of lattice points in L (along E) is

1

VETE

<

Proof. The pattern space E is at gradient 7,

and thus at angle § = arctan()

to the horizontal. So we have the situation illustrated by figure 4.5.

(0.1)

(0.0) 1 (1,0)

Figure 4.5: The lengths of the projections of horizontal and vertical steps onto
E.

Thus,

7(1,0) = cos (arctan (c%)) = \/%(%)2

o

c 1
7m(0,1) =sin (arctan (= ) | = — = .
We will refer to the line segment between (0,0) and 7(1, 0) as ¢; (this segment
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is of length |¢1]), similarly the line between (0,0) and 7(0,1) will be called t,
(and have length [t2]), so |t2|= 5 |t1], giving two different cases, specifically
¢ >d and d > ¢ (the case ¢ = d is ignored).

Case 1: ¢ > d gives |tz |>|t1| and the shortest possible distance between

projections is é |t1] (see proposition 3.3). Then we have that,

1 1 1 1
RN e A RN e ARV e

Case 2: d > c gives [t1]|>]t2] (Jt1]= ¢ [t2]) and the shortest possible distance

between projections is % |t2]. Then we have that,

1 _ 1 _ 1
o1t @e (e p VErdE

Thus the shortest possible (non-zero) distance between the projections of

1
= t2|=
C

. - . 1
points in L is JErE

O

Proposition 4.7. If U is a tiling produced by a rational 2:1 X-projection setup

with,

m(p1) = 7(p2) = O

for points p1 # p2 + (0,2)~ (z € Z) on the lower boundaries of strips S1 and
Sy respectively (where O is the origin on E) and U' is an intersection-point
tiling with intersection point t’', then U = U’ implies that t' must be on the line

parallel to E+ passing through p1 and py within the fundamental domain of L.

Proof. Let E be at gradient 7, with ¢,d € Z coprime.
We have that,

m(p1) = 7(p2)
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so p1 and po are on a line parallel to £+ (which has rational gradient).

Both p; and p, are within fundamental domains of L (possibly the same
fundamental domain, but not necessarily), and they sit on the same line parallel
to B+, which crosses fundamental domains of L in only a finite number of ways
(since it has rational gradient). Therefore p; and p» must be on one of a finite
number of lines within the fundamental domain of L.

For example, we could have the situation show in figure 4.6.

b

Figure 4.6: Points p; and p, on a line parallel to E+.

If the line through p; and p» contains a lattice point then all points of the
tilings 77 and T, must be in {ﬁ 1z € Z}, since —=—5 is the minimum
distance between projections of lattice points onto E. If ¢’ is not on a line
parallel to E+ passing through a lattice point, then all lattice points in U’ will

- z A 1 - -1 ..
be in {ﬁ +e:z€ Z} for some € < Tore e the tilings cannot coincide.

The case where the line through p; and p, does not pass through a lattice
point is similar.

Thus the tilings cannot coincide when ¢’ is not on the line through p; and

p2.
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So we have that any non-intersection point tiling must either be distinct
from all intersection point tilings or the same as an intersection point tiling
with intersection point on the line perpendicular to E through the origin.

Note that we can consider p; and ps to be within the same fundamental
domain of A, since we can translate strip S; by a vector of the form (0,7)~,
with n € Z, without changing the tiling T} given by the projection of lattice
points from the strip.

Thus we have a situation similar to that illustrated by figure 4.7, where
any intersection point tiling that coincides with the original tiling must have

intersection point on the line through p; and p,.

3] E

Figure 4.7: The line parallel to £+ through p; and p» in the fundamental domain
of A.

If we look at the tiling given by placing the intersection point at p; then we
will get a tiling that is produced by the projection of the points contained in the
strip S1 and the points contained in a new strip S}, which is the translate of strip
S so that it passes through the point p;. This new strip is a translate of the

strip S2 by some vector (0,y)~, with |y| < 1, so the two strips may overlap but
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can neither coincide nor differ by an integer amount in A. Thus the projections
of the lattice points contained within the two strips cannot be the same. In fact,
we will get a thin strip Sz () S5 where the strips S and S} intersect (or differ
by one vertically in A coordinates) and also strips S2\S5 C S» and S{\Ss C S5,

satisfying,

0

(S2\89) () (85U (85 + 0, D) U (85 + (0,-1))

0

($5\82) () (82 \J (82 + (0, D) |J (82 + (0,- 1))

where S; + (0,n)~ is the strip obtained by translating strip S; by the vector
(0,n)~. Note also that S, (]S, may be empty.

For example, we may have the situation shown in figure 4.8.

Figure 4.8: The intersection of Sy and Sj.
We have that,

{W(az) sz € S\Ss ﬂL} N {W(y) Ly € S5\S, ﬂL} =0.

This is because these strips do not contain any lattice points that are either

the same or differ by a vector of the form (0,n). (for n € Z).
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We will denote by T; the tiling associated to strip S; and by T the tiling
associated to the strip S}. So for the tiling with intersection point p; (that
is, the combination of T} and Tj) to be the same as the original tiling (the

combination of T} and T») we must have,

{W(m) .z € Sy\S) ﬂL} C {W(y) Ly €S ﬂL}

and,

{W(m) Lz € s;\SQQL} C {W(y) yeS ﬂL} .

In other words, no points are lost from the original tiling (so all lattice points
that are in S2 but not in S} must have equivalents in S;) and no extra points are
added in (so all lattice points that are in S but not in S, must have equivalents
in Sy).

Thus the strip S; must contain lattice points with the same projections as
all the lattice points in the thin strips S2\S5 and S,\S2. The case where the
intersection point is at po is similar.

In the more general case, where the intersection point is not at either p;,
we get strips S] and S} that do not coincide with S; or Sz. Then for each S;
we get a strip S; (S}, which may be empty, and strips S;\S; and S/\S;. An
argument similar to that above shows that for this altered setup to produce the

same tiling we must have that,

{ﬂ'(y) cy € S7\S1 ﬂL} C {W(I) cx €S ﬂL}

{W(y) Ly € Si\S! ﬂL} C {W(m) .z €8, ﬂL}
and also,

{W(m) .z € Sh\S, ﬂL} C {W(y) Ly eS8 ﬂL}
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{W(I) ‘xw € Sz\SéﬂL} C {W(y) ty € 5] ﬂL} i

In the general case the question is whether a canonical width strip at one
gradient can contain lattice points with the same projections as all the lattice
points contained in a strip of up to canonical width at a different gradient.
Thinking just in terms of the lattice A this would mean that any time you got
a lattice point in the thin strip there would have to be a corresponding lattice
point vertically above or below this contained in the other strip.

We will now show that this could be possible in some cases, but cannot

happen in certain other cases.

Definition 4.8. For strips S; and Sy of up to canonical width define the lines
J1 and Jy to be the lines parallel to S; and Ss respectively and positioned in

the centres of the two strips.

Note 4.3. The strips S; and S, are at different gradients and thus the lines J;
and J, will intersect. We will be thinking of the strips as sitting in the lattice

A, so we will write the intersection point as,

Jl ﬂ JQ = (CM,B)N

where a and § can be assumed to be between 0 and 1 (by choice of origin for

A).
Definition 4.9. For a strip S sitting in lattice A, define the height of S (in A)
to be the length of the interval given by S (] F where,

F={(0,y)~:y € R}.

So, the height of strip S in figure 4.9 is the length of the interval highlighted

within the strip.
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Ly

Figure 4.9: The height of strip S in A.

Theorem 4.8. If strips S1 and So are at irrational gradients g1 and g» respec-

tively (relative to A) with,

g2 = ngi

for n € Z\{0,1}, and are of heights € and § in A respectively, then when Sy has
height 6 < min{|n|e,1} we have that,

pr g P}
Proof. As above, we will denote by J; and J> the centre lines of strips S; and
Sy respectively.
These lines intersect at the point (a, §)~ and have gradients g; and g rela-
tive to A. Thus, line J; contains the points,

{(@,g1(x =) + )~ sz € R}

and J> contains the points,
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{(z, 9200 — ) + f)~ 1w € R} = {(z,ng1(r — ) + )~ : v € R}

The line J; is at irrational gradient in the lattice A and will therefore pass
arbitrarily close to points of the lattice.

If point (z,k 4+ ¢)~ is on line Jy, for z,k € Z and ¢ € R then we have that,

gz—a)+pf=k+1=2>g0(z—a)=k+.-p
=>ng(z—a)=nlk+1-p)
=>ng(z—a)+B=nk+n—(n—-1)p
= go(z—a)+ B =nk+n— (n—1)8.

Therefore J; passes through the point (z,nk + nt — (n — 1)8)~. Here the
value nk is an integer, the nt term may be arbitrarily small, and the (n — 1)8
term is some fixed shift, independent of z, k£ and ¢. Note that this final term
may be zero, since § can have value zero.

The strip S; has height € in A, so a lattice point (z, k)~ € S; can approach
(vertical) distance 5 from centre line J;.

Whilst there will not be any lattice points on the boundaries of strip Sy, by
choice of positioning of the strip, there will be lattice points approaching the

situation described by points (21, k1)~ and (22, k2)~ below,

€
91(2’1—01)+ﬁ=k1+§
€
g1(22—a)+ﬁ:k2—§

giving,
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ngl(zl—a)—l—ﬁznkl—l—%—(n—l)ﬁ

ngl(zg—a)—l—ﬁ:nh—%a—(n—l)ﬁ.

Thus at integer z-values Jo, the centre line of Ss, contains points having y-

values with fractional parts that vary between [%5F —(n—1)3] and [ % —(n—1)]

(here square brackets are used to denote fractional part) with strip S» containing
lattice points at these z-values.
This requires Sz to have height in A satisfying,
0 > min{|nle,1}.
O

Theorem 4.9. If we have strips S1 and S2 at irrational gradients g, and g

relative to A satisfying,

a
g2 = 591

fora € Z,b €N coprime and § not an integer, then if Sa has height less than

b*Tl in A we have that,

Pr ¢ PM.

Proof. As before, we denote by J; and Jy the centre lines of the strips S; and
Sy respectively, with (a, )~ the point at which these lines intersect.

Line .J; contains the points

{@g@—a)+p) zecR}

and J> contains the points,
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{(x,gg(x—a)+ﬂ)~:IE]R}:{(I,%gl(x—a)+ﬂ)N:xE]R} )

Again, in a similar way to the previous proof, if J; passes through point

(z,k+t)~ for z,k € Z and ¢ € R then we have that,

niz—a)+B8=k+1=>qak—a)=k+1-p

= 201z —a) = Z(k+1—5)
#%gl(z—a)—l—ﬁ—gkﬁ-—b—(—— )

ak a
bgl(z—a)+ﬂ—7+—b—< 7 )

:>g2(z—a)+ﬁ:a—bk+%b—<a;b)ﬂ.

Thus J, passes through the point (z, % + §t = (“T_b) B)

Now, consider the subsets of A of the form (z,by + r)~, for y,z € Z and
r € N varying between 0 and b — 1, i.e., the subsets {(z,by)~ : y,z € Z},
{(z,by+ 1)~ 1 y,z € Z}, etc.

The line J; still has an irrational gradient relative to any subset of A of this
form, and will thus pass arbitrarily close to points in each of these subsets.

If J; passes through the point (z,bk + 7 + ¢)~. then Jo passes through the
point (z,ak + 4+ 5 — (“T_b) [5’).

In the term ak + %r + %1 — (%2)p the value ak is an integer, and the
value ¢ may be arbitrarily small. Thus the fractional part of this term can
be arbitrarily close to the fractional part of §r shifted by (43> 5)3. By looking
at different values of r we get the centre line of Sy having a fractional part
arbitrarily close to the fractional part of —“T’bﬁ, % — “be ,% — anbﬁ etc. But

we also know that when J; takes any of these values the strip S must be wide
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enough to contain a lattice point (if it contains lattice points with the same
projections as every lattice point in S).
Thus we must examine the distance from an integer of the most distant of

the points in,

T a—b
_ : <r<p-— .
{b < 2 >ﬁ reNO0<r<b 1}

Of course, this will depend on 3, but we can still put a lower bound on the
value.

Now we look at the points {% reN0O<r<b-— 1}. These points are
evenly spaced between 0 and 1, and it is this set of points with some fixed
shift that we are interested in. Since the points are evenly spaced, we will
consider the shift by (“T_b)ﬁ to be of length less than 7.

1

If b is even, then % is in the set of points, as are 5 + % and % — % Thus if

B is zero we get that the furthest point from an integer is % and therefore the

strip Sy must have height at least 1 in A. Of course, § may be non-zero, but the
shift that minimises the distance of the furthest point is o5 (or —g;), resulting
in a distance of b;—bl between the most distant point and an integer. Therefore
when b is even the strip S must have height at least b’Tl in A.

If b is odd, then the points %—2% and %—1—2% arein {% reN0O<r<b- 1},
and any shift of size less than % will result in one of these points moving further
away from an integer. So as above if b is odd, the minimum distance of the most
distant point from an integer is b;—bl, and again the strip S; must have height

at least b_Tl in A.

O

As explained above, the question of whether a canonical width strip at one
gradient can contain lattice points with the same projections as all the lattice
points in a strip at a different gradient is important when deciding whether a

tiling with the origin not at the projection of the intersection point is the same
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as one where the intersection point is above the origin.

From the above results, we get the following proposition.

Proposition 4.10. If we have a rational X-projection with strips S1 and Sy at

gradients g1 and g satisfying,

a
g1 = 592

b
a

with neither § nor 2 an integer, and with Sy and Sy having heights in A of less

than % then the intersection-point tilings described in proposition 4.4 are all the

intersection-point tilings for this setup.

Proof. We have strips S; and S, with lower boundaries I; and I» passing
through points p; and p, with,
D1 7& p2 + (Oan)N

for n € Z, and

m(p1) =7(p2) = 0.

Say we have an identical tiling given by translating strips S; and S (to get

S] and S}, with corresponding lower-boundary lines I and Ij) so that,

LAL=q

with 7(q) = O.
Then as explained in the discussion following proposition 4.7, we must have

that,

{W(y) cy € S1\S1 ﬂA} C {W(I) cx €S ﬂA}
{W(y) Ly € S\S, ﬂA} C {W(m) .z €8, ﬂA}
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and also,

{W(m) ze s;\s2ﬂA} C {W(y) Ly €S ﬂA}
{ﬂ'(;v) 1w € Sg\SéﬂA} C {W(y) ty € 5] ﬂA} )

It could be the case that ¢ coincides with p; or ps, but of course not both
so at least one of S7\S; and S4\S2 must exist.
Say that S7\S; exists, then (since the heights of the strips are both less than

%, which is the lowest value I”Tl can take) by theorem 4.9 we have that,

{ﬂ'(y) (Y € S{\SlﬂA} ¢ {W(I) 1w € SgﬂA} )

Thus the tiling is indeed a non-intersection-point tiling.

O

We now look at the possible height of a canonical width strip in A. This will

depend on the gradient of the pattern space E.

Proposition 4.11. If pattern space E is at gradient ¢ with ¢ and d coprime,
and 5 not equal to n or % for n € N then a canonical width strip must have

height in A of less than %

Proof. 1f E is at gradient § then the lattice A is generated by the vectors (d, c)
and (—c¢,d).

If we have a canonical width strip S at gradient p (with p > 0) with lower
boundary passing through O, then the upper boundary of S will pass through
the point (—1,1). What we are interested in is the point at which this upper
boundary intersects the line between O and (—c, d).

For S to have height % in A we would require the upper boundary of S to

pass through the point (—£, £). Note that we have,
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and also note that we cannot have both values being equal to 1 (since E cannot
have gradient 1).

However, the upper boundary of S passes through the point (—1, 1) and has
strictly positive (finite) gradient, so cannot also pass through any point (—z,y)
for both = and y greater than or equal to 1. Thus S cannot have height as much

as%inA. O

Corollary 4.12. When we are projecting onto a pattern space E at gradient 7
with g not equal to n or % for n € N and the strips S1 and S2 have gradients

g1 and g relative to A satisfying,

a
g1 = 592

for $ not equal to m or % (m € Z), then the intersection-point tilings identified

in proposition 4.4 are all of the intersection-point tilings.
Proof. Follows from proposition 4.10 and proposition 4.11. O
This also provides us with a fundamental result about these tilings:

Corollary 4.13. Consider the tilings generated by 2:1 X-projection schemes

1

as above, i.e., with pattern space E at gradient § with $ not equal to n or -,

for n € N, and with strips S1 and Sy having gradients g1 and g, relative to A

satisfying,

a
g1 = 592

fora € Z and b € N coprime and § not equal to m or % form e Z.
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Any tiling generated in this way is aperiodic.

Proof. Take a tiling T generated in the above way.

If T is an intersection-point tiling then by the above discussion it is distinct
from all translates of T' that are non-intersection-point tilings. A similar argu-
ment to that presented in proposition 4.10 proves that it is also distinct from
all translates that are intersection-point tilings. So T must be aperiodic.

If T is a non-intersection-point tiling then there exists some translation u
so that 7'+ w is an intersection-point tiling. Then, as above, 7' 4+ u must be

aperiodic, and therefore T is aperiodic. O

4.3 Rationally Related Gradients

There are two possibilities for the relationship between the gradients of the
two strips relative to the lattice A, namely that they are either rationally or
irrationally related. That is, if we denote by p the gradient of strip S; and by
g the gradient of strip Sy (both in A coordinates) then we can have that p is
either a rational or an irrational multiple of ¢q. In this section we will look at

the first of these cases.

Definition 4.10. When we have X-projection giving tiling U with intersection
point tilings V;, i € Z, corresponding to translates of U then we will refer to the
locations of the intersection points of the setups producing the tilings V; within

fundamental domains of L or A as translate points.

So a translate point is a point at which you can reposition the intersection

of the strips in an X-projection setup to get a translate of the original tiling.

Proposition 4.14. When the gradients of the two strips are rationally related
relative to A, the translate points form dense subsets of a finite number of hor-

izontal lines in the fundamental domain of A.
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Proof. Recall from the proof of proposition 4.4 that we get a translate point of
the tiling when we have points ¢; and ¢ on the lower boundaries of strips Sy
and Sy satisfying,

t1 =1t2+ (0,2)~

for some z € Z. This happens at € R where,

pr=qr+z.

In the case where p and ¢ are rationally related we have that,

eEQ=> i
p=aq, a r=—"—
q(a—1)

but,

z

€Q.

qm:a—l

So the points of intersection appear at irrational steps along but at rational
“heights”, relative to A. Writing ﬁ as % (with «, 8 € Z coprime) we get that
the “heights” of the intersection points within the fundamental domain of A
are the fractional parts of % for z € Z. Since a and S are coprime we get 3
different values for the fractional part of %, and as we consider  values in turn
we will cycle through these 3 values of the fractional part of %

So within the fundamental domain of A the points that correspond to trans-
lates of the tiling are dense within horizontal lines at heights 0, %, 3, etc., that

is, if we put the original intersection point at the origin. O

Example 4.3. In this evample the gradients of the two strips are rationally

related relative to A, meaning that we are in the case described by proposition

4.14.
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We take the pattern space E to be at gradient % and the two strips to have
gradients relative to A of % and ﬁ, and we put the original intersection point
of the lower boundaries of the strips at the origin, thus:

z _3\/52

z
T ==.

=3

So the translate points will form dense subsets of two horizontal lines in

the fundamental domain of A, one at height 0 and the other at height %, as
illustrated by figure 4.10.

Figure 4.10: The translate points for example 4.3 in the fundamental domain
of A.

For the original tiling the intersection point t is positioned at the origin.
The next point at which the lower boundaries of the two strips occupy the same
position within the fundamental domain of A comes at distance %E along E

(in A coordinates that is). At this point the line qx is at height 5 and the

3

line px is at 35, so in the fundamental domain of A the point corresponding to

this positioning of t is at ([%], %), where square brackets are used to denote

fractional part. Thus, putting the intersection point of the strips here gives you
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32

2

relative to A, that is a translate by 326

a translate of the original tiling by 5

relative to L.

The next point is at ([33/2],0) and corresponds to double the translate along
E, and so on.

However, these points do not cover all possible translates of the tiling, only
all integer multiples of a certain translate, so there are more translates than
those corresponding to the points above.

These extra translates may not correspond to a repositioning of t within the
fundamental domain of A. Assuming that this is the case we will get a picture

of the translates that looks a bit like that shown in figure 4.11.

Figure 4.11: The line of translates of the tiling.

The ends of the lines here are identified as denoted by the numbers, though
of course the lines will actually be dense, so the set of translates will look like a
dense spiral winding round a torus.

4.4 Irrationally Related Gradients

Now we investigate the case where p and ¢ are irrationally related.

Le., p = aq for some a irrational.

77



In fact this case breaks down into two separate subcases:

L =5 €Q.

2. &g € R\Q.

These cases correspond to the gradients of L; and Lo being irrationally
related but differing by either a rational (case 1) or an irrational (case 2) amount,

relative to A.

4.4.1 Gradients Differ by a Rational Amount

Proposition 4.15. When the gradients of the two strips are irrationally related
but differ by a rational amount relative to A we have translate points that are

dense in a finite number of vertical lines in the fundamental domain of A.

Proof. In this subcase we have that p — ¢ € Q, and so,

Since z always takes a rational value, there will only be finitely many possible
fractional parts of x, and therefore only finitely many z-values for the translate
points within the fundamental domain of A.

However, the values of gz are of course irrational (being irrational multiples
of the values of x) and so the steps between consecutive values have irrational
fractional parts and you will get dense sets of translate points on finitely many

vertical lines. O

Example 4.4. In this example we look at the points corresponding to translates
of a tiling of the type described in proposition 4.15 above, where the gradients
of the two strips are irrationally related relative to A but differ by a rational

amount.
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Once again we will take the pattern space E to be at gradient %, and if the

two strips to have gradients p = /2 + % and q = /2 relative to A then:

Thus the points are contained in three vertical lines within the fundamental
domain of A, one of which passes through the original intersection point with
the other two being translates of this line by % and % of the side length of the
fundamental domain of A. So if the intersection point is on the side edge of a
fundamental domain of A then, in the fundamental domain of A, the positions

for translate points will be like those shown in figure 4.12.

Figure 4.12: The translate points for example 4.4 in the fundamental domain
of A.

In the fundamental domain of L the vertical lines above will appear as lines
perpendicular to E, that is having gradient —3. As with the previous ezample the

three lines traverse the fundamental domain of L several times giving a diagram
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that appears to contain more lines of points, as shown in figure 4.13.

- . . - . . O T T
] . . * . . . . .
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. . . - * . . . .
. * + . - Y . . .
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. . ] . + . . - -
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Figure 4.13: The translate points for example 4.4 in the fundamental domain

4.4.2 Gradients Differ by an Irrational Amount

domain of A.

Lemma 4.16. When the gradients of the two strips are irrationally related and
step along and an irrational step up from the previous one in the fundamental

differ by an irrational amount then each translate point is both an irrational

Proof. The gradients of the strips differ by an irrational amount, so p — ¢ is
irrational and therefore,

so the horizontal step from one point to the next is irrational, but also because
p = aq with a irrational we get that,
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qz z

qm:(a—l)q:a—lg(@

and so the vertical step from one point to the next is also irrational. O

Proposition 4.17. If the fractional parts of © and qx are rationally related
then all the translate points will be on a line of rational gradient within the

fundamental domain of A.

Proof. The step from one translate point to the next must be along the line that
has gradient equal to the fractional part of gz divided by the fractional part of
x, and if these values are rationally related then this line must have rational

gradient. O

Example 4.5. This ezample shows the set of translate points of a tiling gener-
ated by a rational 2:1 X -projection scheme of the type described in proposition
4.17, where the gradients of the two strips are irrationally related relative to A
and differ by an irrational amount, but the fractional parts of the horizontal an
vertical steps between consecutive translate points are rationally related.

34+ L 24+ -1
Take the gradients of Ly and Ly relative to A to be —£ and ——%

L L respec-
tively.
Le., p and q take these values.
Then,
1 1
S kA - S S
1 1 1 e
So we have that,
1 1
a—1:2 T :>(a—1)q:1 — .
+E "‘E
Therefore,
1 1
T = =14+ —



and

So the fractional parts of m and —=; are equal for all integers z and so
all intersection points of the lower boundaries that are translates of the original
intersection point appear on the line y = x within the fundamental domain of

A. Giving a diagram that looks a bit like figure 4.14.

Figure 4.14: The translate points for example 4.5 in the fundamental domain
of A.

If we once again take E to be at gradient % then if the bottom left corner
of the fundamental domain of A is situated at the origin we will have that the
top right corner is at (2,4) in the lattice L, thus the points lie on the line of

gradient 2 in the fundamental domain of L, as shown in figure 4.15.
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Figure 4.15: The translate points for example 4.5 in the fundamental domain
of L.

Example 4.6. In this example, as in example 4.5, the translate points are not
contained in either horizontal or vertical lines in the fundamental domain of A,
however this time the translate points appear in more than one line at rational
gradient in the fundamental domain.

If we have strips with gradients (relative to A) of,

p=3V2-2
g=V2

then a is equal to 3 — /2 and so is irrational. Thus gz will be irrational and

more precisely we have that,
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The fractional parts of © and qx (at z = 1) are ‘/52*1 and % respectively and

so are irrationally related (with the fractional part of gz divided by the fractional

. 2
part of © being equal to 27\5).

However, the set of points given by these values is not dense in the funda-
mental domain of A. This is because the fractional part of qr is equal to % plus

the fractional part of © when z = 1, as can be seen below.

V2-1
2

+

7

So if we take our initial point to be at (0,0) (which is on the line y = x) then

vz _ 1
2

N | =

the next point will be on the line y = © + % within the fundamental domain of
A and the next point will be back on the line y = x, etc. In this way the points
will alternate between being on these two lines within the fundamental domain

of A, giving the situation shown in figure 4.16.

Figure 4.16: Translate points for example 4.6 in the fundamental domain of A.

This example comes from another subcase where,
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lga] = cla] +r

for ¢,r € Q. Here the square brackets are used to denote the fractional parts of
x and gx.
Of course, if we allow 7 to be equal to zero then this subcase includes the

case described above where [z] and [gz] are rationally related.

Proposition 4.18. Whenever [x] and [qz] are irrational and [gz] can be ez-

pressed in the form c[z] +r for some c,r € Q this expression is unique.

Proof. Assume that [z] and [gz] are irrational and that,

lgz] = cr[z] + 11
[gz] = calz] + 12

for ¢1,¢o,71,72 € Q.

= clz] + 11 = cofr] + 12
=>alr]—elrl=ro—n
=> (-] =ra—1r.

However [z] is irrational, so ¢; — ¢y and 72 — r; must both be equal to zero.

Thus the expression is unique. O

Proposition 4.19. If we can write [qx] = c[z] + r for some ¢,r € Q (at
z = 1) then the points are contained in a finite set of lines at gradient ¢ in the

fundamental domain of A.

Proof. If we can write [gz] = c[z] + r for some ¢,r € Q (at z = 1) then as before

if we think of our original point as being at (0,0), which is on the line y = cx,
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the next point will be on the line y = cx + [r] within the fundamental domain
of A, and so on. Of course, because r is rational this results in the points being
contained in a finite set of lines at gradient ¢ within the fundamental domain of

A. O
There is now one more case that we will look at.

Proposition 4.20. If [x] and [gz] are irrationally related but [gz] cannot be
written in the form c[z]+r for c,r € Q then the translate points are not contained
in any finite set of parallel lines with rational gradients in the fundamental

domain of A.

Proof. If [gx] cannot be written in this way then writing [gz] = c¢[z] + r for any
rationally valued ¢ means that r must be irrational.

The initial point can always be considered to be positioned on a line parallel
to y = cx in the fundamental domain of A, but then the next point will be on a
line parallel to y = cx but shifted by an irrational amount (the fractional part
of r), and the lines of gradient ¢ containing all subsequent points will be shifted
by integer multiples of the same irrational amount, thus each line at gradient ¢
can contain at most one of the points.

Since any rational value of ¢ will give an irrational value for r we have that
the points cannot be contained in any finite number of parallel lines at rational

gradient in the fundamental domain of A. O

Corollary 4.21. A line drawn between any two translate points must have

wrrational gradient.

Proof. If we have an initial point that we think of as sitting on a line with
rational gradient ¢ then the next point in the sequence is sitting on a line with
gradient ¢ that is shifted by an irrational amount, and the same is true for all

subsequent points, so none of these points can be on the original line.
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Thus any line with rational gradient through any translate point must not
pass through any other point in the set, so a line drawn between two points of

the set must have irrational gradient. O

Of course, going from one translate point to another just involves taking a
number of steps, say k, and going through another k steps will give another
point on the same line that is the same translation along again. So a line drawn
between two points will have irrational gradient and will contain infinitely many

translate points evenly spaced along its length.

Lemma 4.22. Under the assumptions of proposition 4.20, for any € > 0 we

can find two translate points that are within distance € of each other.

Proof. As explained above in this case the values of  and gz are both irrational,
so the step from one point in the set to the next consists of an irrational step
along and an irrational step up. Thus the set of all z-coordinates and the set of
all y-coordinates are dense.

So fix € > 0 and choose a point in the set, say at position (zo,yo). Then
there must be infinitely many points with z-coordinates between z¢ and zo+ %,
and these points cannot all have y-coordinates that are separated by more than

% so there must be a pair of points within distance € of each other. O

Proposition 4.23. When [x] and [gz] are irrationally related but [qzr] cannot
be written in the form clx]+r for ¢,r € Q then the set of translate points forms

a dense subset of the fundamental domain of A.

Proof. For any n € N we can divide the fundamental domain of A into squares

of side % Then we can find two translate points that are within distance %
of each other and so we have a line with irrational gradient between them that
has translate points evenly spaced along its length with the gap between any

two being less than %
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As the line is at irrational gradient it will intersect all of the squares of side
% (countably many times) and because of the distance between points on the
line there must be at least one translate point within each of the little squares.
So for any n € N, when dividing the fundamental domain of A into an n by
n grid there must always be at least one point in each square, and therefore the

set of translate points is dense in the fundamental domain of A. O

So all but one of the subcases where the gradients of the two strips are
irrationally related relative to A result in sets of translation points that are
dense on a finite number of lines that have rational gradient (or are vertical).
These subcases should therefore give sets of translates that are similar to that
seen in the case where the gradients of the two strips are rationally related
relative to A.

The final subcase gives a dense set of points in the fundamental domain of
A and as such the set of translates should look quite different from the other
cases.

Note that the final case is in fact the general case, with the other cases
requiring some rational relationship between the gradients of the strips or the

steps between lattice points.
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4.5 Summary

Figure 4.17 gives a summary of the results in this section.

Gradients relative to are p and q, with p and g #rational and p = aq for

a irrational somne real mumber a. The pomts that correspond to translates are at Grepn | 2 rational

with: z z

a@l)  FTaT

— % rational
|qx is irrational [

cotresponding to p and g
differing by a rational amount

x 15 rational, g is irational. The points
form dense subsets of finitely many
vertical lines in the findamental domain of
« irrational Aand therefore of finitely many lines
perpendicular to E i the fundamental
cotresponding to domain of L.

p and g differing
by an trational
amount

%18 rrational, but gx 1s rational, so the
points form dense subsets of finttely many
horizontal lines in the fundamental domain
of Mand therefore of finttely many lines
parallel to En L.

([ ] denotes fractional part)

If[qx] = c[z] +r with ¢ rational, then r is

The points are contained in fintely many
| = and gz rrational || - - parallel lines with rational (non-zero)
[ag] =clz] +r withc, rrational  [or) gery in the fundamental domain of A
and therefore in finitely many lines that
are neither parallel nor perpendicular to

o E in the fundamental domain of L.
irrational _ _
Points form a dense subset of the )
findarnental dormain of /. =

Figure 4.17: The sets of translate points given by rational 2:1 X-projections.
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4.6 Explanation of Diagrams

In this section we will present some further explanation of the diagrams, like
those above, that are produced by rational 2:1 X-projections. In particular we
will be looking at the case where the gradients of the two strips are rationally
related to each other, relative to A.

The setup is as before, with points from integer lattice L being projected
onto pattern space E at gradient 7. We have strips S1 and Sy at gradients g
and g (relative to A).

We are looking at the case where g; and g¢» are rationally related, so we say

that,

g1 = agz

for some a € Q. We will assume that |a|> 1, and because a is rational we will

sometimes write,

Note that the above fraction is assumed to be expressed in its lowest terms,

so a; and as are coprime.

4.6.1 Gradients of Lines

As explained above, in the case where g; and go are rationally related the
translate points appear in horizontal lines in the fundamental domain of A.
Due to A being rotated relative to L these lines will have gradient equal to that
of E in the fundamental domain of L.

It is also worth noting that each line in the fundamental domain of A will
give a loop in the fundamental domain of L, and will thus look like several lines

crossing the fundamental domain.
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4.6.2 Number of Lines

The value a (the ratio of the gradients of the two strips) determines the number
of lines in the fundamental domain of A in which the translate points sit.

The following proposition explains this relationship.

Proposition 4.24. With the above setup, the translate points are contained in

|ay — as| lines in the fundamental domain of A .

Proof. As explained above, in the fundamental domain of A we have an irra-
tional horizontal step and a rational vertical step between consecutive translate
points.

The vertical step is (the fractional part of),

1
a—1"

Thus the translate points can be found in a number of lines equal to the
number of distinct fractional parts of multiples of the above term.

If we have a; — a2 = z, for some z € Z, then we get,

1 1 a2 a9

a—1 a1 a; — as z
We now look at the fractional parts of all multiples of this value to determine
the number of lines in the fundamental domain of A.
There will be |z| distinct fractional parts provided as and z are coprime.
However, they must be coprime, since a; = a2 + z and the values a; and a- are
coprime.

O

A single horizontal line in the fundamental domain of A will cross several
fundamental domains of L, and since the translate (1,0)~ is equal to the trans-
late (d,c), a line across the fundamental domain of A will give a loop around

the fundamental domain of L.
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We will now look at the number of loops containing translate points in the
fundamental domain of L. This will often be the same as the number of lines
in the fundamental domain of A, however the two numbers are not necessarily

the same, as the following results show.

Lemma 4.25. Within the fundamental domain of A there are c¢® + d* points of

L (counting the four lattice points at the corners as a single lattice point).

Proof. Due to the way that it is defined, the fundamental domain of A does not
contain any lattice points from L with the same projections (with the exceptions
of the points at the corners).

To see this, consider any lattice point (r,s) within the fundamental domain
of A. The closest points of L with the same projections as (r,s) are the points
(r—e¢,s+d) and (r + ¢, s — d). However, neither of these points lie in the same
fundamental domain of A as the point (r,s) (unless (r,s) is one of the corner
points).

Note that for similar reasons if we have a point on E that can be the pro-
jection of a lattice point of L then each fundamental domain of A above and
below that point will contain a lattice point with that projection.

Now, by lemma 4.6, the shortest distance between the projections of lattice

1

points of L is JErE Thus, by the above arguments, the fundamental domain

of A contains precisely one point of L projecting to each of the points ——2

for n varying between 0 and ¢? + d? (with these values giving the points at the

edges of the fundamental domain of A).
So we get that the fundamental domain of A contains ¢? + d* — 1 points of

L within its interior. O

Proposition 4.26. In the fundamental domain of L the points appear in a

number of loops equal to |a; — az|, provided |ay — as| and ¢® + d* are coprime.

Proof. We have |a; — az|= n evenly-spaced lines in the fundamental domain of

A. If we have one of the lines being at height zero, then the others must be at
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heights £, 2, etc. With the line at height 1 being the same as the line at height
0.

Each of these lines gives a loop in the fundamental domain of L, but the
question is whether all of these loops are distinct.

The first line (at height zero) runs through a lattice point, so if any other
lines run through lattice points then they will be overlaid in the fundamental
domain of L.

The lattice points within the fundamental domain of A are evenly spaced at
heights ﬁ, ﬁ, etc. So they sit on m = ¢® + d? evenly-spaced lines in
the fundamental domain of A, again with the line at height 1 ignored since it is
the same as the line at height 0.

When m and n are coprime only the lines at height 0 can coincide. Thus the
loop in L corresponding to the line at height 0 in A is not overlaid by any other
loop. We also cannot have two other lines of translate points giving overlaid

loops in the fundamental domain of L since the translate points are on evenly-

1

spaced lines and would need to differ in height by some multiple of o

However, since m and n are coprime this cannot happen.
The proof is similar when none of the lines of translate points is at height

zero in the fundamental domain of A. O
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L

Example 4.7. If we have E at gradient 3,

and the translate points sitting on
3 lines in the fundamental domain of A then the situation will look like those

shown in figure 4.18 (for one of the lines of translate points being at height 0).

Figure 4.18: The translate points in the fundamental domain of A, with points
of L also marked.

So here n = 3 and m = 5, and the only place that two of the lines coincide

is at height 0 in the fundamental domain of A.

Proposition 4.27. Let k € N be the highest common factor of |a; — as| and

c? + d?, then the translate points appear in a number of loops equal to,

la1 — ay|

k

in the fundamental domain of L.

Proof. Say that,
lar — az|= ak

¢ +d =pk

for some «, € N. Then the translate points appear on ak lines in the funda-
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mental domain of A and the lattice points appear on Sk lines. As before, these
lines have evenly-spaced heights in the fundamental domain of A, so a step of
(0, %)N moves you from one line running through a lattice point to another line
running through a lattice point.

The translate points sit on ak evenly-spaced lines, so if we have a line at
height O then there will be a line at height % in the fundamental domain of A
(the line a steps up from the first line) and similarly lines at heights £, 2, etc.
In a similar way there will be lines at heights %, % + %, % + % and so on, with
all of these line being overlaid in the fundamental domain of L.

Thus the n distinct lines in the fundamental domain of A will become at
most «a distinct loops in the fundamental domain of L.

Indeed, there will be exactly a distinct loops in the fundamental domain of
L because « and f are coprime (since k is the highest common factor), in a

similar way to the previous proof. O

Figure 4.19 shows the lines that are referred to in the previous results in the

case where E is at gradient é

Figure 4.19: The lines through points of L in the fundamental domain of A.

Each of these lines passes through a lattice point, and they are overlaid in

the fundamental domain of L.
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4.6.3 Size of Rotation

We have already established that the diagram corresponding to a tiling setup of
this type consists of dense sets of points on a finite number of loops at gradient
equal to F in the fundamental domain of L. We now look at the length of the
steps along the loops between these lattice points. Since we are referring to the
lines as loops we will call this step a rotation, and as explained earlier in the
chapter, this will be an irrational rotation.

So, as was mentioned earlier in this chapter, the horizontal step between

consecutive translate points is,

1
g1 — g2

in A-coordinates. Thus in the case where we have the translate points in a single
loop in the fundamental domain of L the rotation will be g12+g2 (or rather, the
fractional part of this).

When the translate points are contained in more than one loop then consec-
utive translate points will be on different loops. However, we will cycle through

all the loops in turn, so if there are k loops then the rotation on each one will

2km
g1—92"

be (the fractional part of)

4.6.4 Comparing Diagrams

Having described the diagrams produced by these tilings in some more detail
it seems natural to investigate whether two different tiling schemes will give
different diagrams. This turns out not to be the case, as the following discussion
reveals.

We will be comparing diagrams associated to two tiling schemes, as before
these will be rational 2:1 X-projections with the gradients of the two strips
rationally related relative to A.

So, we have setup 1 with characteristics,
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e Pattern space £ at gradient § (and associated lattice A).

e Strips S; and S» at gradients g; and g» respectively (relative to A).
e Gradients satisfying, g1 = ags, with a = ¢ € Q

Similarly, setup 2 consists of,

e Pattern space E' at gradient & (and associated lattice A').

e Strips S| and S}, at gradients gi and g} respectively (relative to A').
e Gradients satisfying, g] = a'g}, with o' = % e Q.

For the diagrams produced by these setups to look identical they must have
translate points on the same number of lines, at the same gradient and with the
same rotation on each line.

By the previous parts, the gradients of the lines are the same if and only if

the gradients of F and E' are the same, so we must have that,

Recall that ¢ and d (also ¢’ and d') are coprime, so in fact we must have that
c¢=c and d = d'. Note that this also means that the lattices A and A’ will be
the same.

We next look at the conditions required for the number of loops in which
the translate points sit to also be the same. If the gradients are the same then
lattices A and A’ are the same, and the setups will give the same number of

lines in the fundamental domain of A (A’) if and only if,

lay — az|=|a) — ay| .

This would of course give the same number of loops in the fundamental

domain of L. However, as we have seen above, it is possible to have different
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numbers of lines in A giving the same number of loops in L. The following
two corollaries to proposition 4.27 describe the circumstances in which this can

happen.

Corollary 4.28. If we have two tiling setups as above (specifically with E and

E' at the same gradient) having,

la; —az|=n
c+d*=m

with n and m coprime then if |a] — ab|=n or nm we get that the number of
loops containing translate points in the fundamental domain of L is the same

for both tiling setups.

Proof. This is clear when |a; — az| = |a] — a}|. When |a] — ab| = nm the result

follows from proposition 4.27. O

Corollary 4.29. If we have,

¢ +d? =Bk

lay — az| = ak

with k the highest common factor (so « and B8 coprime), then the second tiling
setup will give the same number of loops in the fundamental domain of L pro-

vided that |a} — a}y| is equal to «, ak or afk.
Proof. Again, this follows from proposition 4.27. O

All that remains now is to look at when the rotations are also the same. As

mentioned before, the horizontal step between translate points in A coordinates

1
g1—g2"

is of length Thus if both setups give the same number of lines in A we

will have the same rotation provided,
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1 1

g9 99y
We can also get rotations that differ by some integer number of full rotations

if we have,

for some z € Z.

Indeed, these results also hold when we have projection setups giving unequal
numbers of lines in A but equal numbers of loops in L. This is because we will
still cycle through all the loops in some order, so even though some of the lines

get overlaid we still need the same horizontal step between translate points.

Proposition 4.30. If we have,

, _a—1
92——a,_192

then the horizontal steps of the two tilings are equal.

Proof. The horizontal steps (and therefore the rotations if everything else is

equal) are the same if,

1 1

n-9 9-95

But since g1 = ag» and ¢} = a'g} we have that,

IR |
a—9 99

Sn—90=0—0%

& g2(a—1) = gs(a’ — 1)

a—1
o —19%

& gh =
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From the above results, we can conclude that it is possible to get two different

tiling setups producing identical diagrams. This will be true if, for example, we

have,
e FE=F'.
® |ay —az| = la; — ayl.

r__ a—1
® g = af_ng-

Example 4.8. For a specific example of when this can happen, consider the

setup where E = E' = % and we have in tiling scheme 1 that g1 = % and
g2 = ﬁi This gives us a value of 2 for a, so a1 — az| = 1.

If we have a' = %, then the number of lines of translate points in A produced
by each setup is the same, since we have that |a] — ay| = 1.

For the rotations to also be equal we must have that,

a—1
a -1

!

g2 =

g2 = 4g2 = V2.

Then of course we get,

So if you have a tiling scheme where the gradients of the strips are \/LE and
ﬁ and another where the strips have gradients V2 and %\/ﬁ they will produce
identical diagrams if the projection is onto the same pattern spaces (up to the
lines of points being translated of course).

The tilings produced by these two schemes are not the same. Figure 4.20
and figure 4.21 show patches of these two tilings. Note that here we have taken
a patch from each tiling and drawn it both horizontally and vertically along

the sides of the square, then combined to get a two dimensional diagram. The

intention is to make it easier to see differences between the tilings.
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Figure 4.20: A patch of the tiling T( 0410V 2742073 l).
17 ’ 71 '3

The third number in the caption shows the gradient of the pattern space
that we are projecting onto, the first two numbers denote the gradients of the
two strips in normal coordinates, so these will give gradients % and ﬁ mn
A-coordinates.

The patches already look quite different, but to see that these two tilings
cannot be the same we look at the gradients of the strips involved.

Strip Sy is at gradient %, which has a value between 1 and 2. Therefore
the tiling T1 associated to this strip will, due to the gradient of pattern space E
being %, have prototiles of lengths “1”7 and “3” with the longer prototiles always
appearing flanked by shorter prototiles and the shorter prototiles appearing in

blocks of length 1 or 2.

Strip S is at gradient 27+72710‘/§, which has a value between % and 1. Tiling
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Figure 4.21: A patch of the tiling T( 99+£0\/§,9+170\/§,%).
T, will therefore have the same prototiles, but with the long prototiles appearing
in blocks of length 1 or 2 and the shorter ones appearing in singles.

Since the longer tiles in T1 only appear in singles we will not get a patch of
two consecutive long tiles in the combined tiling. However, we can get patches
that consist of a long tile followed by a short tile followed by another long tile
(and indeed some of these can be seen in figure 4.20).

Looking at the other tiling we have strip S at gradient W, which has
a value between 5 and 6, and strip S} at gradient w, which is between 3
and 4. Thus in tiling T we must have at least 5 short tiles between appearances
of long tiles, and in T we must have at least 3 short tiles between long tiles.

Therefore we cannot have a “long-short-long” patch in the combined tiling.
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5 Tiling Spaces

In this chapter we will investigate the spaces associated to rational 2:1 X-
projections.

We will do this by first examining the standard 2:1 canonical case, then
looking at an intermediate one-strip non-parallel case before finally moving onto
rational 2:1 X-projections.

We start by recapping some definitions first given in chapter 2 (see also [14]).

Definition 2.12. Given two tilings U; and U, of R" we define the distance

between these two tilings, d(Uy,Us), to be equal to,

inf {1} J{e: U1+ 51 = Us + 52 0n By with 1,5, € R, [Jsu |, || < %}}

where B:1 denotes the ball of radius % centred at the origin.

Note that here U + s is the tiling obtained by translating tiling U by vector
s (or equivalently moving the origin by —s).

The metric here is defined on the set of all tilings of R™, though we will be
interested in the 1-dimensional analogue of this definition, defined on the set of
all 1-dimensional tilings (i.e., tilings of R).

With this metric two tilings will be close if they agree up to a small trans-
lation on a large ball about the origin.

We can now look at the translates of a tiling and how far these are from the

original tiling in the tiling metric.

Definition 2.13. The orbit of a tiling U of R" is defined to be,

OU)={U+s:seR"}.

That is, the set of all translates of the tiling U.
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Definition 2.14. A tiling space €2 is a set of tilings that is closed under trans-
lation and complete in the tiling metric, i.e., if U € Q then O(U) C Q, and

every Cauchy sequence of tilings in Q has a limit in Q.

Definition 2.15. The hull or orbit closure Qy of a tiling U is the closure of
o).

As above, we will be interested in tilings of R, so the closure will be in the
space of all 1-dimensional tilings.

The hull of a tiling U is the set of tilings that locally look like U. A tiling
U' is in Qu if and only if every patch of U’ is found in a translate of U.

We will of course be interested in the tiling spaces of projection tilings, in
particular rational 2:1 X-projections, therefore we may also be interested in the
space ', which is the set of all tilings given by allowed positions of intersection
points, and any other translates of these tilings, completed as with Q.

The spaces Qu and ' may not be the same in all cases. In fact, at this

point it is not clear what their relationship is.

5.1 The Canonical 2:1 Case

We will begin by examining the standard 2:1 projection case. There follows a

short recap of the canonical 2:1 projection setup (first defined in chapter 2).

Definition 2.8. A canonical 2:1 projection scheme is a cut-and-project scheme
with lattice L = Z? and acceptance domain K being a closed interval, where the
width of this interval, and therefore the strip that lattice points are projected
from, is taken to be equal to the projection of a unit square onto EL. In
addition, the acceptance domain K is chosen so that the boundaries of the strip
do not intersect any points of L.

So in a strip S of canonical width, the point («, 8) (for o, 8 € R) is on the
lower boundary of S if and only if the point (o« — 1,8 + 1) is on the upper

boundary.
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Figure 5.1: A canonical 2:1 projection scheme.

Note that the strip must have an irrational gradient. This is because a
projection with rational gradient would not result in 7|, being injective nor
would (L) be dense in E+.

As in the previous chapter with rational 2:1 X-projections, we will look at
the ways in which we can position the strip within the fundamental domain of
L and the tilings these different positions will give us (note that as in definition
4.4 when we refer to the fundamental domain of L we mean the unit square

with vertices (0,0), (1,0),(0,1) and (1,1)).

Definition 5.1. Given a canonical 2:1 projection scheme with strip S produc-
ing a tiling 7" with origin O we say that the point ¢, within the fundamental
domain of L, on the lower boundary of strip S satisfying 7 (¢) = O is the point
corresponding to tiling 7. When we talk about a strip being placed at a point
in the fundamental domain of L then this point will be the point on the lower
boundary of the strip that projects to the origin in the tiling produced by our

projection scheme.

In the definition of a canonical 2:1 projection scheme we require that the
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strip to be positioned so that its boundaries do not pass through any points of
the lattice L. Thus for a given setup there are certain points in the fundamental
domain of L at which the strip cannot be placed.

In a similar way, if we start with a tiling, with a corresponding point in the
fundamental domain of L, then we can look at the translates of this tiling, which
will be produced by effectively sliding the corresponding point along the strip.

We thus get the sets of translates and forbidden points shown in figure 5.2

in the case of a standard 2:1 projection.

\
\

Figure 5.2: The canonical 2:1 projection case.

Here, the black line shows the points at which the strip cannot be positioned,
and the red line shows the points that correspond to translates of our tiling. Note
that these lines are actually dense.

We will make a distinction between points through which the boundaries of

the strip can run and points that are forbidden.

Definition 5.2. For a given 2:1 projection setup we say that a point (z,y) in
the fundamental domain of L is singular if positioning the strip with (z,y) on
the boundary results in the boundary of the strip passing through a point of

lattice L.
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Equivalently, the point (z,y) in the fundamental domain of L is singular if

there exists a point (m,n) € L such that,

(m,n) = (z,y) +r(1,9)

for some r € R, where g is the gradient of the strip.
All other points in the fundamental domain of L (i.e. the points through
which the edges of the strip may run without intersecting a lattice point) are

called non-singular.

All the translate points of a tiling are of course non-singular, but not all
non-singular points will correspond to translates of the original tiling.

Since we only have one strip of canonical width in this setup, we only get
a single line of singular points in the fundamental domain of L, and similarly
the translates of a given tiling appear in a single line. Both of these lines are
at the gradient of the strip, which is irrational, and therefore wind round the
fundamental domain of L. Thus, as mentioned above, they appear as dense sets

of lines in the fundamental domain.

Proposition 5.1. (see [4]) There is a continuous map, f, from the tiling space

of a canonical 2:1 projection to a 2-torus satisfying,

e f is one-to-one over non-singular points.

o f is two-to-one over singular points.

From this we know that if we have a convergent sequence of non-singular
points within the fundamental domain of L with non-singular limit point x
then we get a corresponding sequence of tilings converging to the tiling that
corresponds to point z.

However, if we have two sequences of non-singular points in the fundamental

domain of L converging to the same singular point, y, but from opposite sides
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then these sequences will have different limits. This is because a strip with point
y on the lower boundary will have some lattice points, (m,n) and (m—1,n+1)
on its boundaries, therefore a sequence converging to y from one side will give
tilings containing the point 7 (m,n) but not the point w(m — 1,n + 1) after a
certain stage, resulting in w(m,n) appearing in the limit, whereas a sequence
converging to y from the other side will give a tiling at the limit that contains
w(m — 1,n+ 1) but not 7(m,n).

Thus the line of singular points in the fundamental domain of L corresponds

to a double line in the tiling space.

5.2 One-Strip Non-Parallel Projections

We will now look at the case where we have a single strip at canonical width (still
at irrational gradient) but we project onto a line at a positive, finite rational
gradient (not equal to 1). This is an intermediate step between standard 2:1
projections and rational 2:1 X-projections.

The tiling produced by changing the gradient of the pattern space (and
therefore altering the projection), but leaving the strip unchanged is combina-
torially the same as in the standard case, with the alteration to the projection
only affecting the lengths of the two prototiles.

If we have a standard 2:1 projection tiling 7' having prototiles ¢; and t»
we will get a corresponding one-strip non-parallel projection tiling 7" having
prototiles ¢] and ¢, with the origin in 7" being at the equivalent point in the
prototile corresponding to the prototile over the origin in 7. For example, if
the origin in T is at the midpoint of a ¢; tile then the origin in 7" will be at the
midpoint of a #] tile. Of course, we can also do this in the other direction to
get the standard 2:1 projection tiling corresponding to a one-strip non-parallel
projection tiling.

Thus we have a bijection between the set of tilings generated by a standard
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2:1 projection scheme and the corresponding tilings obtained by projecting onto

a line at rational gradient rather than one that is parallel to the strip.

Proposition 5.2. Two standard projection tilings T\ and T, are close in the
tiling metric if and only if their corresponding one-strip non-parallel projection

tilings T and T} are close in the tiling metric.

Proof. We have four tilings, T1, T, T and T3. The tilings 77 and T» are
made up of prototiles ¢; and ¢, and the tilings 7] and T, have prototiles ¢}
and t},. Altering the line that we are projecting onto changes the lengths of the
prototiles, and will have the effect of lengthening one and shortening the other.

So let us assume that,

1] = alt]
|t5] = B2

with @ > 1 and < 1.

Now, if 77 and T5 are within distance ¢ of each other then after some translate
of up to distance ¢ all the points within % of the origin of tilings 77 and 7%
coincide.

Thus all the corresponding points within tilings 7| and T will coincide after
some translate of distance less than ae, since the distances between points can
be scaled by at most a.

However, the radius of the patch containing these points may also vary. The
patch in tilings 7] and T3 is made up of #| and t} tiles rather than ¢; and ¢,
tiles, and therefore has a minimum possible radius of g So the tilings 77 and
T} coincide on a ball of radius g after a translate of up to ae.

Now, if 3 > L then after a translate of up to ae the tilings 7} and 7} must
coincide on a ball of radius g > é about the origin, and hence the two tilings

are within distance ae in the tiling metric.
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If 3 < L then after a translate of up to as < 7 the tilings T} and T} coincide
on a ball of radius g about the origin. Thus the two tilings are within distance
% in the tiling metric.

So if we have standard projection tilings 77 and 75 that are close in the tiling

metric then their corresponding one-strip non-parallel projection tilings 7} and

T3 must be close in the tiling metric. The proof of the converse is similar. O

From this we can see that if we have a standard 2:1 projection tiling T
then there is a homeomorphism between Q7 and Q7+, where 7" is the tiling
corresponding to 71" but with the projection onto a pattern space at some rational
gradient.

Therefore, as with the standard 2:1 projection case, we will have a continuous
map from Q7 to the 2-torus that is one-to-one on non-singular points and two-
to-one on singular points. As with the standard case, the singular points of
a one-strip non-parallel projection tiling appear in a single line at irrational
gradient winding round the fundamental domain of L. This line is the same as
for the corresponding standard 2:1 projection tiling, since forbidden points are
determined by the strip and are independent of the projection. Also, as with
the standard 2:1 projection, the line of forbidden points will be a double line in

the hull of a 2:1 one-strip non-parallel projection tiling.

5.3 Rational 2:1 X-Projections

We now move on to looking at tilings generated by rational 2:1 X-projection
schemes. The pattern of points given by such a tiling scheme is a combination
of the point patterns given by two projections of the type shown above, with
strips at different gradients but the same pattern space.

We will first recap the possible positions of the intersection point of the two
strips. That is, the points in the fundamental domain of L at which the point at

the intersection of the lower boundaries of the two strips may be positioned. As
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explained in chapter 4, for a given rational 2:1 X-projection scheme, we will get
a corresponding tiling for every allowed choice of intersection point ¢, namely
the tiling with 7 (¢) at the origin and endpoints of tiles being the projections of
the lattice points from within the two strips.

Note that the “allowed” points are the points in the fundamental domain
of L at which the intersection point can be positioned without any points of
the lattice L appearing on the boundaries of either strip. We will be using the
terms singular and non-singular to describe points in the fundamental domain

of L once again in this section.

Definition 5.3. Given a rational 2:1 X-projection scheme with strips S; and Sy
at gradients g1 and g» respectively we say that a point (z,y) in the fundamental
domain of L is singular if positioning the strips so that the intersection point of
their lower boundaries is at (z,y) results in the lower boundary of either strip
passing through a point of the lattice L.

Equivalently, the point (z,y) in the fundamental domain of L is singular if

there exists some lattice point (m,n) € L satisfying,

(man) = (Iay) + T(lagl)

or,

(man) = (Iay) +T(lag2)

for some r € R.

As with the single-strip construction, all other points in the fundamental
domain of L (i.e. all points at which the intersection point of the two strips
may be positioned without a lattice point appearing on the boundaries of either

strip) are called non-singular.

A rational 2:1 X-projection scheme is the combination of two one-strip non-
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parallel projection schemes as described in the previous section. Thus a rational
2:1 X-projection scheme with strips S; and S, will have a set of singular points
that is the union of the sets of singular points associated with the strips S;
and Ss, since a point in the fundamental domain of L is a singular point of the
X-projection scheme if it is a singular point for either S; or Ss.

Thus the set of singular points in the fundamental domain of L will look like
two lines at gradients g; and go (the gradients of the two strips) winding round
the fundamental domain. Note that since the strips have irrational gradients

this will be a pair of dense lines, as shown in figure 5.3.

Figure 5.3: The singular points in the fundamental domain of L.

In a similar way, the set of non-singular points in the fundamental domain
of L is the intersection of the sets of non-singular points associated to the strips
Sp and S». This is a dense set of points in the fundamental domain of L, so any
point in the fundamental domain can be expressed as the limit of a convergent
sequence of such points.

We will now look at sequences of non-singular points and their corresponding

tilings.

Proposition 5.3. A convergent sequence of non-singular points (for a given X -
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projection scheme) converging to a non-singular point u gives a corresponding
convergent sequence of tilings whose limit is the tiling corresponding to the point

u.

Proof. This follows from the one-strip non-parallel projection case. The se-
quence of non-singular points for the X-projection scheme gives two conver-
gent sequences of one-strip non-parallel projection tilings, converging to the
two tilings associated to the point u. Therefore the sequence of X-projection
tilings will converge to the tiling that has tiles with endpoints given by the
union of the endpoints from these two tilings. That is, the X-projection tiling

corresponding to the point u. O

Looking at the above proposition, we might expect to get a corresponding
result about convergent sequences of non-singular points with limits that are
singular. In particular, we might expect to get “double points” at some singular
points (where the placement of the intersection point results in a lattice point
appearing on the boundary of one strip but not the other) and “quadruple
points” at the other singular points (where the placement of the intersection
point results in lattice points appearing on the boundaries of both strips). That
is, we might expect points at the intersection of the black lines to have four
corresponding points in the tiling space (the space '), and points that are only
on one black line to have two corresponding points in the tiling space. However,

the situation is slightly more complicated than this.

Theorem 5.4. A singular point in the fundamental domain of L that is not at
the intersection of the lines of singular points associated to the strips S1 and S

can correspond to a single point or a double point in the tiling space.

Proof. Say that we have such a point v on the line of singular points associated
to strip S, but a non-singular point for strip S;. Thus the placement of S; at

this point results in some lattice point (m,n) appearing on the lower boundary
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of S; and the lattice point (m — 1,n + 1) appearing on the upper boundary
(since S; has canonical width).

Since v is non-singular for the strip Ss, having the lower boundary of Ss run
through this point does not result in the boundaries of Sy passing through any
points of L. So if we take any convergent sequence of points in the fundamental
domain of L with limit v then placing the strip Sy at these points will give a
corresponding sequence of tilings converging to the tiling that corresponds to
the point v. We will denote by P» the point set corresponding to this tiling (i.e.
the set of endpoints of the tiles).

As before, approaching this point from different sides will give different limits
for the sequences of tilings generated by the projection of points in translates
of the strip S;. In particular, approaching from one direction will result in the
point 7(m,n) appearing in P, (the point set at the limit of the sequence), while
the point 7(m — 1,n+ 1) will not appear in P;, and approaching from the other
direction will result in 7(m — 1,n + 1) appearing in the limit (which we will call
P/) whilst w(m,n) does not appear in P.

Now, the point set that is the limit of the corresponding sequences of X-
projection tilings is the union of the points above, so for tilings approaching
from one side we will get P, |J P> and from the other we will have P| ] P.
The strip S, may contain a lattice point with the same projection as (m,n)
or (m — 1,n + 1), or both, so the point set P> may contain the points 7 (m,n)
or m(m — 1,n + 1), or both of these. For example, if the pattern space E is
at gradient % then the points (0,0) and (—1,2) project to the same point on
E, and whilst a canonical width strip cannot have both the points (0,1) and
(—1,2) in its interior it may have both (0,0) and (0, 1), which have the same
projections as (0,1) and (—1,2).

If P, contains both w(m,n) and w(m — 1,n + 1) then P, |J P, and P} P,
will be the same, and v will only correspond to a single point in the tiling space.

Otherwise, the limits will differ, with at least one of w(m,n) and 7(m —1,n+1)
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failing to appear in one of Py |J P and P/ |J P, but appearing in the other,

resulting in v corresponding to a double point in the tiling space. O

We now look at the different cases that arise when we examine sequences
of points converging to a point that is singular for both strips in a rational 2:1
X-projection.

Here there will be four different ways in which a sequence of points might
approach such a limit point, and placing the strips S; and S with such a
point on their lower boundaries will result in lattice points (m,n) and (m —
1,n + 1) appearing on the boundaries of Si, as well as lattice points (m’,n')
and (m' — 1,n' 4+ 1) appearing on the boundaries of Sy. Figure 5.4 shows the
situation that we have, with the lower boundaries of the strips intersecting at
the singular point v. Here the different directions from which the point may be
approached by sequences of non-singular points are labeled with numbers 1, 2,

3 and 4.

.lST-l

Figure 5.4: The different directions from which a singular point can be ap-
proached.

This potentially gives four different cases, depending on which of the points
w(m,n), 7(m — 1,n+ 1), 7(m’,n') and 7(m’ — 1,n’ + 1) can be found in the
patterns P and P} that are the limits of the point patterns associated to strips

Sy and Ss respectively as we approach the point v from direction i.
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As before, approaching v from above strip S; will result in 7(m — 1,n + 1)
appearing in P; while 7(m,n) does not, with a similar result for S;. The

following tables show the points contained in each P]Z

w(m,n) | 7(m—1,n+1)
P no yes
P} yes no
P yes no
pt no yes

w(m,n) | 7(m—1,n+1)
P no yes
pP? no yes
Py yes no
P} yes no

Thus we seem to get four distinct limits and therefore a quadruple point.
However, as with the double point case above, the number of distinct limits will
depend on whether P, contains either the point w(m,n) or w(m —1,n+ 1), and

whether P; contains either w(m/,n') or 7(m' — 1,n' + 1).

Definition 5.4. We will denote by Q! the point pattern that is given by the
union of the patterns P} and P{. This is the pattern of points that form the end-
points of the tiles in the tiling at the limit of a sequence of tilings corresponding

to non-singular points converging to v.

Theorem 5.5. If the points w(m,n), #(m—1,n+1), #(m’',n') and *(m'—1,n'+
1) (as defined above) are all distinct then a point in the fundamental domain of

L that is a singular point for both tilings T; corresponds to a quadruple point in
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the tiling space if exactly one of the following, or any pair except for numbers 1

and 2 or numbers 3 and 4, holds:
1. w(m,n) € Py
2. m(m—-1n+1) € P
3. w(m',n') € P
4. m(m' —1,n"+1)e P,
5. w(m,n),71(m —1,n+1) &€ P, and w(m',n'),7(m' —1,n' +1) & P;.

In addition, we get a double point if statements 1 and 2, statements 3 and
4, or any three of the first four statements hold, and a single point if all of the

first four statements are true.

Proof. The relevant points contained in the combined limit point patterns are

shown in the following table.

m(m,n) | 7(m —1,n+1) | #(m',n') | 7(m' —1,n' +1)
Q! no yes no yes
Q? yes no no yes
Q3 yes no yes no
Q! no yes yes no

If any point from the top row of the table is contained in the other point
pattern (for example if 7(m,n) € P;) then the corresponding column can be
ignored. Ignoring either no columns or any single column results in different
limits for each Q?, as does covering any pair of columns with the exceptions of
both columns 1 and 2 or both columns 3 and 4.

Covering columns 1 and 2 or columns 3 and 4, or any three of the four
columns results in two different possible limits, and if all the points are contained

in every Q° then they will all be the same. O
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It is of course also possible that we will be in a situation where (m,n) and
(m',n") project to the same point on E (or a similar result holds for some other
pair of the relevant lattice points). The possible implications of this are explored

in the following propositions.

Proposition 5.6. If we have a point in the fundamental domain of L that is a
singular point for both constituent tilings T; and if the lattice points we get on

the lower boundaries of the strips S; satisfy,

w(m,n) = m(m',n’)
then this point corresponds to a triple point in the tiling space.

Proof. If the projections of (m,n) and (m',n') are equal then of course the
projections of (m — 1,n+ 1) and (m' — 1,n’ 4+ 1) are also equal. Thus for our
different cases we combine columns 1 and 3, and columns 2 and 4 from the table

in the proof of theorem 5.5.

w(m,n) | 7(m—1,n+1)
Q! no yes
Q> yes yes
Q? yes no
Q* yes yes

Note that none of the P]? can contain any other lattice points that project
to w(m,n) or w(m — 1,n+ 1), since this would require the strips to have greater
than canonical width. Therefore the three possible limits shown above are all
the different limits, and the point corresponds to a triple point in the tiling

space. O

The final case to be examined is when,
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m(m,n) = w(m’' — 1,n +1)

or,

a(m/,ny=n(m—-1,n+1).

Proposition 5.7. If we have a point in the fundamental domain of L that is a
stngular point for both constituent tilings T; and if this point gives lattice points
(m,n) and (m',n') on the lower boundaries of the strips S; in such a position

that,

m(m,n) = w(m’' —1,n +1)

or,

m(m/,n'y=n(m—1,n+1)

then this point can correspond to a quadruple, triple or double point in the tiling

space.

Proof. Assume that we are in the case where w(m,n) and w(m’ —1,n’' + 1) are
equal. The other case, where 7(m’,n') and 7(m — 1,n 4+ 1) are the same, is
similar.

Note that we cannot also have,

a(m',n')=7n(m—-1,n+1)

since we would then get,

a(m',n')=7n(m—-1,n+1)
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=n(m,n) +m(-1,1)

=a(m' —1,n" +1)+7n(-1,1)
=a(m',n') +7(-1,1) + 7(~1,1)
=n(m',n') +27(-1,1).

This means that (—1,1) would have to have the same projection as (0,0),
which cannot happen unless the pattern space E has gradient 1, and this case
was disallowed in the definition.

However, it is still possible that 7 (m',n’) is in P, and/or w(m — 1,n 4+ 1) is
in P,. As with the proof of the previous proposition we can combine columns

from the table in the proof of theorem 5.5 to get,

w(m,n) | m#(m—1,n+1) | x(m',n")
Q! yes yes no
Q? yes no no
Q? yes no yes
Q4 no yes yes

As before this gives four possible limits, and therefore a quadruple point,
unless w(m',n') isin P, or 7(m — 1,n + 1) is in P». If exactly one of these
conditions holds then we can ignore either column 2 or column 3 of the table
and we will have a triple point, if both hold then we ignore both of these columns

and we get a double point. O

Now, in theorem 5.4 and theorem 5.5 we found that a point that is a singular
point for one strip will give a double point and a point that is a singular point
for both strips will give a quadruple point (when the points 7 (m,n),7(m —

1,n+ 1),7(m',n") and 7(m' — 1,n’ 4+ 1) are all distinct) unless we are in the
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situation where S; contains lattice points with projections equal to w(m',n')
and w(m' — 1,n’ 4+ 1) and/or S, contains lattice points with projections equal
to w(m,n) and 7(m — 1,n + 1).

Note that when S; or S (or both) contains only one such point then we still
get double/quadruple points as normal. We will therefore now look at when it

is possible for Sy (or S2) to contain both the required points.

Proposition 5.8. If we have a one-strip non-parallel 2:1 projection onto pattern
space E, at gradient ', with a and b coprime and a,b > 1 then a canonical
width strip S with positive gradient cannot contain any pair of lattice points
with projections equal to w(m,n) and w(m — 1,n + 1) in its interior, for any

(m,n) € Z*.

Proof. We will label the points (m,n) and (m —1,n + 1) as (0,0) and (-1,1)
and assume that the point (—1,1) is contained in S. The proof will be similar
with S containing (0, 0), or any other lattice point with the relevant projection
onto E.

If S contains the point (—1,1), then it cannot also contain (0,0), since S
has canonical width. However, since the projection is onto a line at rational
gradient there will be other points of the lattice L (that is, Z2) that project to
the same point as (0,0). In fact, the set of points with the same projection as
(0,0) is {z(—b,a) : z € Z}.

Since S has positive gradient and does not contain the point (0, 0) it will also
not contain the point (b, —a). Therefore the point that we will be interested in
is (—b,a). Now we look at the two cases, namely the case where a or b is equal

to 1, and the case where a,b > 1. We examine these two cases below.

1. If a or b is equal to 1 then it is possible for S to contain both (—1,1)
and (—b,a), since (—b,a) is a point of the form (—1,a) or (—b,1), and the
strip S could have an arbitrarily large number of horizontal or vertical

steps extending from the point (—1,1) (depending on the gradient of .S).
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2. If a,b > 1 and S contains the points (—1,1) and (—b,a) then S must
contain the step (b— 1,1 —a), which is of the form (¢, —d), for both ¢ and
d greater than or equal to 1, requiring S to either have negative gradient

or greater than canonical width.

Thus when we have a pattern space E that is not at gradient n or % (for
n € N) we find that the point pattern corresponding to a canonical width strip

cannot contain both w(m,n) and 7(m—1,n+1) for any lattice point (m,n). O

From the above propositions we can conclude that when we have a rational
2:1 X-projection scheme with a pattern space E that is not at gradient k or %
(for k € N) then the singular points in the fundamental domain of L correspond
to double points in the tiling space ' if they are singular for only one of the
two strips, and quadruple points if they are singular for both strips.

Figures 5.5 and 5.6 combine all the results about singular points in the
fundamental domain of L given above. As before, we’re looking at a rational 2:1
X-projection scheme with projection onto a line E at positive rational gradient
(not equal to 1), the two strips being called S; and S, and the pattern of points
in E given by the projections of the lattice points within strip S; being denoted

by Pz

122



At least one of
T n ") and
T Gr -1 +1)

Single Point Double Point. Single Point,

P T G n™ and
T () and it least one of § T Em ’_1?3’+1)
L (n-1,1+1) TC () and E)p
c Py T (m—l,n+1) :

¢ P

Double Point.

Enotat )
gradient kor .

B gt gradient & or %

(% at gradient kor % Double Point,

Enot at 1
gradient kor 3.

v singular for 5. v singular for S

v gives Gni) on lower v gives (i ") on lower
boundary of S1. boundary of 5.

Start Singular Point v in fundarmental
domain of L.

v gives GnA) on lower
boundary of 51
and
Om’n7yon lower
boundary of 5.

See figure 5.6,
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5.4 The Space 1y

We have so far effectively been looking at the space Q' for a rational 2:1 X-
projection, by looking at all the points in the fundamental domain of L at which
the intersection point of the lower boundaries of the two strips can be placed. In
this section we will examine the hull of a rational 2:1 X-projection tiling, Q,
by looking at the points in the fundamental domain of L that correspond to
translates of a given tiling U and limits of convergent sequences of such points.

As in chapter 4, we will be referring to the translate points of our tiling U
(see definition 4.10), where a translate point for U is a point in the fundamental
domain of L at which the intersection point of the lower boundaries of the two
strips can be placed to give a translate of the original tiling.

As we also saw in chapter 4, the set of translate points for a tiling generated
by a given X-projection scheme depends on the relationship between the gradi-
ents of the two strips relative to the sublattice A (and is therefore also dependent
on the gradient of the pattern space E). Varying the relationship between the
gradients of the two strips relative to A gives several different possibilities for

the pattern of translate points (see section 4.5), which we summarise below.

1. The gradients of the two strips are rationally related relative to A.
This results in the translate points being dense in a finite number of lines
that are parallel to E (and therefore have strictly positive gradient).

2. The gradients of the two strips are irrationally related relative to A, but
differ by a rational amount.

Again, this gives sets of translate points that are dense in a finite number
of lines, however this time the lines are perpendicular to E (and therefore

have strictly negative gradients).

3. The gradients of the two strips are irrationally related relative to A and

differ by an irrational amount, but we have that,
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[gz] = cl] +r

for ¢,r € Q, where [.] denotes fractional part (see chapter 4).

Once again the translate points are dense in a finite number of parallel

lines, though the gradient of these lines in not equal to that of E.

4. The gradients of the two strips are irrationally related relative to A, differ
by an irrational amount and the quantity [gz] cannot be expressed as

clz] +r with ¢,r € Q

Here we get that the translate points are dense in the fundamental domain

of L.

We will now look at these separate cases, beginning with case 4.

5.4.1 Dense Set of Translate Points

The case where the set of translate points of our rational 2:1 X-projection tiling
U is dense in the fundamental domain of L is similar to the previous section.

Every non-singular point « in L will be the limit of some sequence of translate
points of U, and therefore the tiling corresponding to u will be a limit of some
convergent sequence of tilings that are translates of U. Thus Qg will contain
every tiling that corresponds to a non-singular point in the fundamental domain
of L.

The singular points in L will have corresponding single, double, triple or
quadruple points in ¢, as described in the previous section, since these are all
limits of translate points of U from every direction.

In addition, there should also be more translates of the tiling U that are not
represented by points in the fundamental domain of L, since the translate points
in the fundamental domain correspond to translates of U by integer multiples of

some fixed distance. This should give a line segment of translates of the tiling
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passing through each translate point (and therefore also each non-singular point)
with the end of one segment connected to the start of the segment that runs
through the next translate point. At singular points we would expect to see

potentially double, triple or quadruple line segments in the same way.

5.4.2 Translate Points Dense on Finite Set of Lines

We now look at the cases where the translate points of our tiling U are dense
on a finite set of lines in the fundamental domain of L. This covers tilings of
types 1, 2 and 3 above.

As already explained, each of the three types of tiling gives translate points
that are dense on some finite set of lines in the fundamental domain of L. Thus
any non-singular point, «, on any of these lines will be the limit of some sequence
of translates of the tiling U, and so the tiling corresponding to u will be in Q.
Non-singular points that do not lie on the lines are of course not at the limits of
any sequences of the translates that lie on the lines. However, in most cases we
have not proved that the translate points on the line are the only non-singular
points in the fundamental domain of L that correspond to translates of the
tiling. This is discussed further below.

All three types of tiling give similar sets of translate points, but there are
slight differences when we come to look at singular points on the lines on which
all these translate points lie.

A singular point on the line of translate points cannot correspond to a triple
or quadruple point, since it can only be approached from two directions (i.e.
from either direction along the line). However, such a point does not necessarily

have to be a double point.

Proposition 5.9. For a tiling U of type 2, i.e., a tiling where the gradients of
S1 and Sy are irrationally related relative to A but differ by a rational amount,

all singular points on the lines of translate points correspond to double points in
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the tiling space provided the pattern space E has gradient not equal to k or %

(for k € N).

Proof. If the projection is onto a pattern space E that is not at gradient k or
% then all points that are singular for one of the strips, and all points that
are singular for both but that result in 7w(m,n), #(m — 1,n + 1), 7(m’,n') and
m(m' — 1,n' + 1) being distinct must be double and quadruple points in Q'
respectively (see proposition 5.8).

The remaining two types of singular point are those points where,

w(m,n) = m(m',n’)

or,

m(m,n) =m(m' —1,n' +1).

However, note that for a type 2 tiling the translate points appear in lines

that are perpendicular to the pattern space E, and thus have negative gradient.

Therefore the singular points can only be approached from directions 1 or 3.

.lST-l

Figure 5.7: The directions from which a singular point can be approached.

Thus the limits are Q' and @3, and if you look at the tables in the proofs
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of propositions 5.6 and 5.7 it is clear that these limits are always distinct. O

Whilst this result will hold for all tilings of type 2, the tilings of types 1 and
3 may have translate points contained in lines that approach singular points
from directions 2 and 4 in the above diagram.

For the type 1 tilings, the translate points are always contained in lines
parallel to E, so singular points on these lines will be approached from directions
1 and 3 if g; and g, the gradients of the two strips relative to A, are either both
positive or both negative. Otherwise the singular points on the lines will be
approached from directions 2 and 4, with the results described in the following

proposition.

Proposition 5.10. If we have pattern space E not at gradient k or % (for
k € N) and a tiling of type 1 (U) with strips S1 and S at gradients g1 and go

respectively, relative to A, then:

e If g1 and gy are either both positive or both negative all the singular points

on the lines of translate points correspond to double points in Q.

e If one of g1 and g is positive and the other negative then any singular
points on the lines of translate points that are singular for both strips and

satisfy,

w(m,n) = m(m',n’)

correspond to single points in Q.

e If one of g1 and g is positive and the other negative then any singular
points on the lines of translate points that are singular for both strips and

satisfy,

m(m,n) = w(m’' —1,n +1)
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correspond to double points in Qy unless at least one of the following holds,

w(m,n) € Py

m(m' —1,n ' +1)eP,.

With a similar result for the case where,

a(m/,ny=n(m—-1,n+1).

Proof. As in the previous proposition, if the projection is onto a pattern space
E that is not at gradient k or % then all points that are singular for one of
the strips, and all points that are singular for both but that result in 7(m,n),
m(m —1,n+ 1), 7(m',n') and 7(m' — 1,n' + 1) being distinct must be double
and quadruple points in ' respectively (again, see proposition 5.8).

If g1 and g, are either both positive or both negative then all singular points
are approached by translate points from directions 1 and 3, so we are in the same
situation as we were with tilings of type 2, thus all singular points correspond
to double points in .

If one of ¢g; and g» is positive and the other is negative, then the singular
points are approached by translate points from directions 2 and 4, so we are
interested in limits Q% and Q* and the results follow from examining the tables

in the proofs of propositions 5.6 and 5.7. O

As was mentioned above, in most cases there may be more translate points
in the fundamental domain of L for a tiling U than those already given, however
in corollary 4.12 we saw that these translate points are indeed all the translate

points in the fundamental domain of L when we have a type 1 tiling with,

e Pattern space E not at gradient k or % (for k € N).
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e Strips S; and Sy at gradients ¢g; and gs, relative to A, satisfying

a
912592
for a € Z,b € N and ¢ not equal to c or £ (c € Z).

If we insist that a € N then such a tiling U will also satisfy the conditions
given in the first part of proposition 5.10 and thus all the translate points of
such a tiling can be found in a finite number of lines in the fundamental domain
of L, and all the singular points on those lines correspond to double points in
Qu.

In addition, since the translate points are only the translates of U by integer
multiples of some fixed distance there will also be lines of translates joining each
of the translate points (and indeed all non-singular points on the lines), perhaps
best thought of as being a line segment passing through each non-singular point
on the line with the ends of the segments identified in the appropriate way. The

singular points will therefore give double lines in a similar way.

5.4.3 Repetitivity Revisited

Following the results in this chapter and chapter 4 we can now prove repetitivity
in the general case, i.e., that any rational 2:1 X-projection scheme produces
repetitive tilings.

Recall that a tiling U is repetitive if any patch P in U appears throughout
U, and a copy of P can be found within some fixed distance (dependent on P)

of any point in the tiling.

Theorem 5.11. Tilings generated by rational 2:1 X -projection schemes are

repetitive.

Proof. We have a tiling U generated by a rational 2:1 X-projection scheme.

Assume that U has a corresponding point u in the fundamental domain of L.
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Note that U may not correspond to any point in the fundamental domain, but
if not it will be a small translate of a tiling corresponding to such a point.

Any patch of tiles, P, in the tiling U is contained in some larger patch, @,
about the origin, so if () appears throughout the tiling then so will P.

There exists some ¢ > 0 such that any tiling U’ within distance ¢ of U will
have the patch @ about the origin (after some small translate). Thus there
exists § > 0 such that all non-singular points within § of u will give tilings with
patch @ near the origin.

Depending on the relationship between the gradients of the two strips, we
have points corresponding to translates of U that are either dense in a finite
set of lines in the fundamental domain of L (see propositions 4.14, 4.15, 4.17
and 4.19 for the various subcases) or dense in the whole fundamental domain
(see proposition 4.23). In all cases there are countably many translates of U
corresponding to points within distance ¢ of u.

Since the step between consecutive translate points is fixed there must be
some maximum number of steps that we can have between occurrences of trans-
late points of U within distance § of u.

Thus the patch @) (and therefore also the patch P) must appear throughout

the tiling U and within some fixed distance of any point in the tiling. O
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6 Further Work

In this chapter we will look at some examples of rational 2:1 X-projection tilings
and the proportions in which the prototiles in these tilings appear. We will also
look at the proportions that we might expect in some cases, and how closely
the expected values resemble the values observed in our examples.

In the second section we will look at a few examples of tilings generated by

irrational 2:1 X-projection schemes.

6.1 Proportions of Prototiles in Rational 2:1 X-Projection
Tilings

This section contains some examples of (patches of) tilings generated by rational
2:1 X-projection schemes.

In all of the following examples the two strips have a common point on their
lower boundaries (which I have defined to be the origin) and therefore also a
common point on their upper boundaries (the point (—1,1)), with the origin
being projected onto the pattern space E whilst the point (—1,1) is not.

In the definition of a 2:1 X-projection the strips S; and S; were chosen so
that they do not have any points of L on their boundaries, so these examples do
not give full valid tilings, but since all the strips are at irrational gradients there
will only be one point on each boundary and a suitable (very small) translation
of the strips will result in a valid scheme with an identical patch to that given

by this setup.

Example 6.1. We start with the pattern space E at gradient 0.5, a setup that
gives two possible tile lengths. For simplicity we will refer to the tiles as being of
lengths 1 and 2 rather than their actual lengths of % and % Similarly, for the
other rational 2:1 X-projection examples that have more possible tile lengths we
will say that the the shortest tile has length 1 and all other tiles will be labeled

with integers showing their lengths relative to the shortest tile.
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We then take strips S1 and Sy at gradients % and ﬁi relative to the sub-
lattice A.

Figure 6.1 gives some idea of what a patch of this tiling around the origin
looks like. Here each dot represents a tile in the tiling with the scale at the left
showing the lengths of the tiles and the scale at the bottom showing where they
appear in the tiling. The origin is at the meeting point of the tiles numbered 100
and 101 in this patch, so approzimately at the centre of this diagram.

We will refer to the resulting tiling as T( L with the first two num-

J3059505)
bers representing the gradients of the two strips relative to A and the third num-
ber showing the gradient of the pattern space. Later tilings will be labeled in a

stmilar way.

2.5 A

15 A

0.5 -

0 50 100 150 200

Figure 6.1: Diagram of a patch of tiling T(L 1 1) .
2

V2'2v2’

There are 23 tiles of length 2 in this patch, so each of the points at height 2
in the diagram represents a single tile.

Changing the gradient of the pattern space to 0.6 and looking at the setup
with strips at the same gradients relative to the (now altered) sublattice A gives

the diagram shown in figure 6.2.
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Figure 6.2: Diagram of a patch of tiling T(; ) 5) .
V2'2v3'5 )

)

Once again the origin is approzimately at the centre of this diagram (the
meeting point of tiles 200 and 201).

Having the pattern space at a gradient of 0.6 (%) means that there are 5
possible tile lengths, and as can be seen from figure 6.2 all of these tile lengths
appear in the resulting tiling.

For the final example the pattern space E is at gradient 0.3, which gives 10

possible tile lengths, all of which appear in the tiling as can be seen in figure 6.3.

10 = - - L] [ ] -
0000 e ) . . o e 2300 e
8 - L o oo ”e oo oo
L L4 ] 00000 4] L 4
6 = 000 ° 000 <00 ° <00 o
«“e » [ L] 00
4 =] oo oo LI ” o o0 600
- - - L
2 =» COLCLOCTIDD =1 .
o [ = Emo o000 SCOE0S 0 Somose -
0 T T T T T T T 1
0 50 100 150 200 250 300 350 400

Figure 6.3: Diagram of a patch of tiling T(; e A) .
V2’2210 )

)
fa
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As before the origin is located approximately at the centre of this diagram

(between tiles 200 and 201).

Looking at the diagrams above it is evident that the different prototiles do
not exist in equal numbers within these patches. It is perhaps unsurprising that
there should be fewer prototiles of maximum length, particularly in the later
examples, given that these can only arise from the lining up of longer tiles from
the constituent tilings 77 and T5. And indeed in each of the above examples
the maximum length prototile appears to be the least common.

The most common prototile in the examples given above is the prototile
with the same length as the “short” tile from the tilings corresponding to the
individual strips (i.e. 1 for E at gradient 0.5 and 3 for E at gradient 0.6 or 0.3).

The following tables give some approximate ratios of numbers of prototiles
relative to the number of maximum length tiles in 100000-tile patches of the
tilings. The gradients of the strips given are those relative to A. Fixing the
gradients relative to A will still result in them varying relative to L as the
gradient of E is altered. The columns labeled “S; Approx.” and “Sy Approx.”

show the approximate gradients of the two strips relative to the lattice L.
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E at Gradient 0.5
S1 Gradient | So Gradient | S; Approx. | Sy Approx. | 1 Tiles | 2 Tiles
1 1
G NG 1.867 1.037 9.199 1
1 5
= NG 1.220 0.757 6.867 1
% % 0.973 0.640 5.673 1
1 1 1
7 + 3 7 4.306 1.867 21.022 1
1 1 1
Zz %38 1.220 0.980 7.593 1
% % — % 0.973 0.806 6.331 1
345 245
v v 11.090 5.236 63.433 1
9 1 1
0t 5 1+ ENG 10.726 5.735 96.561 1
1-1 1-2 1.793 1.055 8.922 1
1 1
7 7 1.867 1.515 11.601 1
1 1
7 7 1.220 1.083 7.925 1
% % 1.063 0.973 7.106 1

In the above examples, the first three have gradients that are rationally

related relative to A and the next three are irrationally related but differ by a

rational amount.

Recall that in chapter 4 we defined x and gz for strips at gradients p and ¢

(with p = aq for some a € R) relative to A to be,

The third set of three examples above have gradients giving values of  and

qu satisfying,
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lga] = cla] +r

for some ¢,r € Q, and for z = 1 (where the square brackets denote fractional
part).

The final three give values of z and gz that are irrationally related and have
fractional parts that cannot be expressed in the way given above. Thus there
are three examples corresponding to each of the different types of rational 2:1
X-projection given in the summary diagram in chapter 4.

Since the pattern space E is at gradient 0.5 we have that the projection of
a (0,1) step in the lattice L gives a tile of length 1 and (1,0) step gives a tile
of length 2. So we would expect the X-projection setups with strips at higher
gradients to produce tilings with a higher proportion of short tiles, and this

appears to be the case.
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E at Gradient 0.6

S, Ss 1 2 3 4 5
1 1
7 Ve 14.404 | 14.394 | 15.135 | 1.994 | 1
1 5
% Ve 9.162 9.160 10.216 | 1.998 | 1
1 = 7.511 7.517 8594 | 2.003 | 1
1 1 1
J5+3 5 48.688 | 48.688 | 42.725 | 1.960 | 1
1 1 1
N 7 — 5 | 10392 | 10.393 | 11.334 | 1.993 | 1
1 15 8.333 8.326 9.320 | 2.032 |1
345 245
S T2 | 813.787 | 812.702 | 499.170 | 1.000 | 1
9 1 1
6t 75 | L4y | 783.714 | 782.694 | 472.408 | 1.000 | 1
1-1 1-2 14.066 | 14.053 | 14.837 | 2.000 | 1
1 1
NG Ve 19.997 | 20.166 | 20.192 | 2.137 | 1
1 1
N I 11.061 | 11.041 | 11.910 | 2.011 | 1
L 1 9.611 9.609 10.570 | 2.008 | 1

The second table shows the proportions of prototiles for a pattern space at
gradient % This means that each T; has a shorter tile of length 3 and a longer

tile of length 5.
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FE at Gradient 0.3

Si Ss 1 2 3 4 5 6 7 8 9 |10
1 1
7 | 7o | 789 | 7.88 | 19.01 | 2.00 | 2.00 | 2.00 | 2.00 | 1.99 | 2.00 | 1
1 5
Z= | 1oz | 569 | 5.69 | 13.56 | 2.02 | 2.01 | 2.02 | 2.02 | 2.01 | 2.02 | 1
1 = [ 4.76 | 476 | 11.07 | 1.99 | 1.99 | 1.99 | 1.98 | 2.00 | 1.99 | 1
1 1 1
J5+5| 5 1532|1533 34.16 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 1
1 1 1
75 |75 — | 631|631 15.05 | 2.01 | 2.00 | 2.00 | 2.01 | 2.00 | 2.01 | 1
L L 15225221228 |2.00 | 200|200 | 200|200 |199 |1
34v5 | 24V5
SR | 2HV2 3433|3432 62,51 | 1.99 | 1.99 | 1.99 | 1.99 | 1.99 | 1.9 | 1
9 1 1
16 + 75|l + 5u5| 35-52| 35.52| 64.08 | 2.00 | 2.01 | 1.99 | 2.00 | 2.00 | 2.01 | 1
1-L111-21773|772|1856|1.98 | 1.99 | 1.99 | 1.97 | 1.98 | 1.98 | 1
1 1
NG 75 | 941|941 | 2212 | 201 | 2.01 | 2.00 | 2.00 | 2.00 | 2.00 | 1
1 1
= = | 657 | 6.57 | 15.69 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 1
L 1 1587|580 13.95 | 200|199 |2.00 | 1.98| 200 |1.99 |1

The third table displays the proportions of prototiles for pattern space at
gradient %. In this case the shorter tile in each T; has length 3 with the longer
tile having length 10.

The tables appear to show that generally the tiles with lengths between those

of the short tile and long tile from the tilings T; appear twice as often as the

maximum length tiles. The tilings T(ﬁﬁfiﬁ*”k and T(%+%71+ﬁ70.6>~
appear to be exceptions to this. In these two cases the number of maximum
length tiles in a patch of 100000 tiles is relatively small, so we might see a
different result with a larger patch. However, it may be that there is some sort
of relationship between the strips that is causing this discrepancy.

Also noticeable from the tables is that the tiles of lengths 1 and 2 (so tiles

with lengths less than that of the short tile from the tilings T;) appear in the
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same proportions.

The following section is an attempt at an explanation of these observations.

Note that in the later examples the observed proportions of prototiles appear
to differ considerably from the proportions we would see from a non-degenerate
canonical N : 1 projection tiling, as discussed in chapter 2. For example, a
non-degenerate 10:1 projection scheme will give tilings with 10 prototiles, but
with the longest of these appearing in the highest proportion and with no two
prototiles appearing in the same proportions, unlike what we seem to be seeing

above.

6.1.1 Possible Explanation

If we think of the X-projection tiling U as being two standard projection tilings
overlaid then thinking about the different ways in which each prototile can arise
seems to give a reasonable explanation of the above observations.

Firstly, maximal length tiles can only occur in U when ¢5 tiles from both T}

and T line up, as shown in figure 6.4.

Figure 6.4: Two maximal length tiles that are lined up.

Tiles u € U satistying |¢1 |<|u|<|t2| can only arise on the overlap of two t»
tiles, but, as we can see from figure 6.5, there are two “different” ways in which

this overlap can happen.
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Figure 6.5: Two different ways in which ¢- tiles can overlap to give u tiles.

So it would seem reasonable to expect there to be twice as many of this type
of tile in U as there are tiles of length |t2].

Tiles v € U satisfying |v|<|t1| can arise as overlaps of either ¢, tiles with
each other, t; tiles with each other or on overlaps between ¢; and ¢, tiles. In
a similar way to the u tiles, all tiles of type v should be expected to appear in
the same proportions due to arising from the same number of possible overlaps,
but these proportions should be higher than the u tiles because there are more
overlaps than for the u tiles.

Finally, the tiles in U with the same length as ¢; can often arise in yet more
ways: as the overlap of two ¢, tiles, when two ¢; tiles line up, or when a ¢; tile
from either tiling is projected “inside” a t- tile from the other. For example, if
the gradient of E is 0.3 then there are 8 different ways that a t; tile from T3

(that has length 3) can be projected into a t, tile from T5 (of length 10).
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6.1.2 Expected Proportions

We now look at the simplest case given above where the pattern space E is at
gradient 0.5, giving tilings with two prototiles. We will look at the proportions
of length 1 and 2 tiles that we might expect to find in a tiling generated by a
rational 2:1 X-projection setup where we are projecting onto a pattern space at
this gradient.

As before, we have two strips S; and Ss giving corresponding tilings 77 and
T,. Since the pattern space is at gradient 0.5 each of these tilings also has two
prototiles of lengths % and % (which, for simplicity, we will call lengths 1 and
2).

The two tilings 77 and 7> are combinatorially just standard 2:1 projection
tilings. If we have strip S; at gradient g; then by proposition 2.5 we know that

a canonical 2:1 projection tiling with g; less than 1 has,

Proportion of Short Tiles

Proportion of Long Tiles

and if g; is greater than 1 then,

Proportion of Short Tiles 1

Proportion of Long Tiles  g¢; -

However, if g; is less than one then horizontal steps between lattice points
in S; correspond to long tiles, and if g; is greater than 1 then the long tiles arise
from the projections of vertical steps. Thus in either case we have g; vertical
steps for each horizontal step.

When we take the projection to be onto a pattern space at gradient 0.5 we
get that horizontal steps give long tiles, regardless of the gradient of the strip
we are projecting from. Therefore each T; will have g; length 1 tiles for each

length 2 tile, and thus in tiling 7; we have,
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proportion of length 2 tiles =
gi+1
gi

proportion of length 1 tiles = .
gi+1

Now, to work out the proportions of 1-tiles and 2-tiles in the combined tiling
we first look at the proportions of points that are covered in each of the tilings
T;. The tiles in these tilings have lengths 1 and 2 with both tiles covering the
point on their left but the 2-tile also leaving another point not covered.

So the proportion of points that are not covered in each of the tilings 7} is:

proportion of 2-tiles

2(proportion of 2-tiles) + proportion of 1-tiles -

For tiling T; this is equal to,

1
Gitl 1

2 TR ’
gi+1 + gi+1 gi +2

Now, uncovered points in the combined tiling only arise from having uncov-
ered points in both tilings 7; lining up. Thus we might expect the proportion

of uncovered points in the combined tiling to be,

) (52)

These uncovered points in the combined tiling correspond to the 2-tiles of

course, but every 2-tile not only has an uncovered point but also a covered point
on its left edge. Thus the expected proportion of all points that are contained

in 2-tiles (on the left side or in the middle) is:

(ove) (2)

From this we get that the expected proportion of points in 1-tiles (that is,

on the left side of 1-tiles) is:
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(o) (5a)
g1+2) \g2+2

Therefore the expected proportions of each tile are given by,

proportion of points at start of 2-tiles

proportion of 2-tiles - - -
proportion of points at start of any tile

(%) ()
1= () ()

1
(1 +2)(g2+2) -1

(g1 +2)(g2+2) =2
(g1 +2)(g2+2) - 1"

proportion of 1-tiles =

So the expected relative proportion of 1-tiles is equal to (g1 + 2)(g2 +2) — 2.
We will now look at how closely the predicted values resemble the observed
proportions from the previous examples. The table below shows the predicted
proportions of 1-tiles relative to 2-tiles and the values observed in a patch of

100000 tiles of various 2:1 X -projection tilings.
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E at Gradient 0.5
S; Gradient | Sy Gradient | 1 Tiles Observed | 1 Tiles Predicted
1 1
7 a 9.199 9.744
1 5
= NG 6.867 6.877
% 3= 5.673 5.849
4 41 4 21.022 22.387
V2 ' 2 V2
1 1 1
Z v 7.593 7.596
% % — 11—0 6.331 6.344
3+5 24+/5
v T 63.433 92.721
9 1 1
=5+ NG 1+ NG 96.561 96.431
1-— % 1-— % 8.922 9.587
1 1
N 7 11.601 11.592
1 1
= 7 7.925 7.926
% % 7.106 7.108

As you can see, some of the observed values are very close to the predicted

values, whereas some display a large discrepancy.

Several of these tilings have a smaller proportion of 1-tiles than we might
expect, showing that the 2-tiles in the two component tilings 7; are lining up
more often than we might expect by chance. However, these patches are of
course from a specific tiling with strips at the corresponding gradients, i.e., the
tiling produced by the given setup, where the intersection point of the lower
boundaries of the two strips is placed at the origin. If the intersection point was
shifted so as to alter the projections of the points from strip S; along by one

step relative to the projections of the points from S then all the 2-tiles in the

patch would become 1-tiles.

The following example uses tilings produced by the projection of points
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from strips at rational gradients, and therefore gives periodic tilings, but may

illustrate what is going on in the case of rational 2:1 X-projections.

Example 6.2. Say we have strips S1 at gradient % and S at gradient % relative
to the integer lattice L, and we project onto a line at gradient %

Both strips are at rational gradients and thus produce periodic tilings. There-
fore the combined tiling will be periodic, so we can work out the proportions of
the two prototiles by simply drawing the repeating part of the tiling.

If the intersection point of the two strips is positioned so that a length 1 tile
in Ty lines up with a length 1 tile in T1 then we will have the tiling shown in

figure 6.6.

2111111 2 21 L
Figure 6.6: Position 1 for 77 and T5.

The repeating patch in this tiling is 22111111221 as marked in the diagram,
so we can immediately say that the proportion of 1-tiles relative to 2-tiles is %
(or 1.75).

However, if the position of the intersection point of S1 and Sy was altered
so that Ty and Ts lined up in o different way we could end up with a different
tiling, as shown in figure 6.7.

Here the projection of lattice points from strips at the same gradients as
before onto the same pattern space has produced o tiling with repeating patch
1111122111111, and therefore with the proportion of 1-tiles relative to 2-tiles
being equal to 3L (or 5.5).

There are 3 other ways in which Ty and T, can line up, these ways giv-
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11111 2 2 111111 e

Figure 6.7: Position 2 for 77 and T%.

ing combined tilings with repeating patches 121111112211, 111221111112 and
1111111221111 (this last one being the same as the second one).
Owver all these patches we get 1-tiles appearing 47 times and 2-tiles appearing

14 times. The expected proportion of 1-tiles relative to 2-tiles for this tiling is,

(g1 +2)(g2 +2) —2= (g) (1—7"’> o

This example suggests that our expected value is perhaps correct when we
talk about all possible tilings that can be generated by a certain setup, looking
at all the different positions at which the intersection point can be placed.

The final three tilings in the table above have sets of translate points that are
dense in the unit square (proposition 4.23), so any positioning of the intersection
point will be arbitrarily close to a position that gives a translate of the tiling.
This may explain why the proportion of 1-tiles observed in the patches of these

tilings so closely matches the expected values.

6.2 Irrational 2:1 X-Projection Examples

In this section we will look at a few examples of tilings generated by irrational
2:1 X-Projection schemes. The irrational 2:1 X-projection scheme was first
defined in chapter 3. The setup differs from the rational 2:1 X-projection setup

in that the projection is onto a pattern space at irrational gradient relative to
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the lattice.

As was proved in chapter 3, this setup gives tilings with an infinite number of
prototiles. We also proved that the prototile with length equal to the shorter of
the two prototiles ¢; appearing in the constituent tilings 7; is the only prototile

that can appear throughout the combined tiling.

Example 6.3. For the first ezample we have strip S; at gradient %, So at
gradient % and pattern space E at gradient % (here all gradients are relative
to the integer lattice L). A diagram of a large patch of this tiling is shown in
figure 6.8.

0 2000 4000 6000 8000 10000

A1)

Figure 6.8: Diagram of a patch of tiling T( )
VBV

Sk

The patch shown here is considerably larger than the patches of rational 2:1
X -projections seen earlier in the chapter. This is because of the much higher
number of prototiles that we get in patches of irrational 2:1 X -projection tilings,
meaning that a diagram of a patch of 10000 tiles, like the one shown here, will
still display some structure and not merely look like several horizontal lines.

There is what appears to be a horizontal line in this diagram at a height of
slightly more than 0.4. This is due to the large number of prototiles of length

equal to % in this tiling, which is the length of the shorter of the two prototiles
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from the constituent tilings T;. As explained before, tiles of this length can

appear throughout the tiling.

Example 6.4. We now look at a second example, where the two strips S, and
Sy are at gradients 2v/5 and \/5 respectively, with the pattern space E at gradient

% as before (see figure 77 ).

N Ry AR o S o ey ol
%0 B BN B AN BB KIS RAN L AAN

0.6 JO0" 48 890 96P%P 00 0 0800 00 00 2IKS 00 40 UTIE 45 10 %0 %P 08 00 o

0.8

2 ¥y

A IS N EEANN
St 200 f’#f?&?&ﬂ%&%}

B S ONEEANASN '*‘#*;’ ,
:, * f&*ﬂ WA "‘i‘l:ig::*f SRESAONE

LPac e B M e )

P

ANBABANGESESGE

0 2000 4000 6000 8000 10000

Figure 6.9: Diagram of a patch of tiling T(2\/g /B ;)-
VTR

There are significant gaps in this diagram, indicating that there are no tiles
with those particular lengths within the patch. The gaps correspond to tiles with
lengths greater than that of the shorter prototile from the tilings T;. Tiles with
these lengths can only arise on the overlap of longer prototiles in each of the
constituent tilings, so the gaps suggest that there are ranges of ways in which

these tiles cannot overlap in this tiling.
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It may be that the situation changes further along the tiling, but these gaps
remain on a patch of 300000 tiles, as shown by figure 6.10.

2
- J—
0.8

B:F -
L
a.5
o4

Q.3
0.2
i

0

a SO0 Logaig 150000 200000 250000 300000

Figure 6.10: Diagram of a patch of tiling T(z\/g N ;)'
Vs
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Figure 6.11 shows a patch of the tiling with S1 and S2 at the same gradients
as before, but with E altered to be at gradient T. Again, we have a tile of length
slightly greater than 0.4 appearing throughout the patch, though the actual length
has altered slightly due to the alteration to the gradient of E (this time the length

" ™
is m}.

0 2000 4000 6000 8000 10000

Figure 6.11: Diagram of a patch of tiling T(Q\/g V55)-
) 7

The diagram seems to show an “oscillating” pattern to the lengths of tiles
above the line. Again, it is possible that the previous tiling is displaying some-

thing similar but on a much larger scale.
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7 Conclusion

In this document we looked at 2:1 non-parallel projections schemes. Three dif-
ferent types of these were defined in chapter 3, namely rational 2:1 X-projection
schemes, irrational 2:1 X-projection schemes and a type of non-parallel projec-
tion scheme where the two strips have rational gradients but the projection is
onto a line at irrational gradient.

In the same chapter we saw that this final type of non-parallel projection
scheme produces tilings with infinitely many prototiles but for any chosen patch
of tiles, P, in such a tiling there will be patches that are e-close to P (definition
3.10) throughout the tiling showing that such tilings have a property that is
similar to repetitivity.

Tilings generated by irrational 2:1 X-projection schemes were also seen to
have infinitely many prototiles, and several examples of this type of tiling were
looked at in chapter 6, including one that appeared to have large “gaps” in the
set of prototile lengths observed.

The bulk of this document was concerned with the examination of tilings
generated by rational 2:1 X-projection schemes. In contrast to the other two
types of non-parallel projection tilings featured these tilings were seen to have
only a finite number of prototiles, with an upper bound for this number com-
puted on chapter 3. In the same chapter a certain class of this type of tiling
was shown to be repetitive.

In chapter 4 we looked at the points in the fundamental domain of our
lattice L that correspond to translates of a tiling generated by a rational 2:1 X-
projection scheme. The patterns of these points were found to differ depending
on the relationship between the gradients of the two strips relative to the lattice
A, a sublattice of L that depends on the gradient of the pattern space E. These
diagrams were seen to come in four distinct types, with the first three all having

translate points appearing as dense subsets of a finite number of lines in the
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fundamental domain of L and the final type having translate points forming a
dense subset of the fundamental domain.

At the end of chapter 4 we looked in greater detail at the diagrams that are
produced by rational 2:1 X-projection tilings, particularly in the case where the
gradients of the two strips are rationally related relative to A.

In chapter 5 we examined the tiling spaces associated to rational 2:1 X-
projection tilings. We started by looking at the tiling spaces of canonical 2:1
projection tilings, then proceeded to the intermediate step of one-strip non-
parallel 2:1 projection tilings, which we proved to have tiling spaces that are
homeomorphic to those of canonical 2:1 projection tilings. Then we moved on
to examine the tiling spaces of tilings generated by rational 2:1 X-projection
schemes, particularly looking at the multiple points (or lines) that arise in the
various different types. Finally we revisited the problem of repetitivity of these
tilings, showing that all tilings generated by rational 2:1 X -projections are repet-
itive.

In chapter 6 we presented some examples of rational 2:1 X-projection tilings
and looked at the proportions of prototiles in large patches of these examples.
We gave a possible explanation of the observed values and noted that the pro-
portions we predicted the prototiles to appear in most closely matched the
observed data in the case where the translate points of the tiling are dense in
the fundamental domain of L.

There are also many questions that were not answered (or not fully an-
swered). We saw that irrational 2:1 X-projection tilings have infinitely many
prototiles and could not be repetitive, but the question of whether they could
be e-repetitive (as with the non-parallel projections where we had the strips at
rational gradients) remains unanswered. We also saw “gaps” in one of the exam-
ple diagrams for this type of tiling, suggesting that there are ranges of lengths
of tiles that do not appear in the tiling, but it is not clear whether these gaps

persist throughout. If some examples really do have these “gaps” throughout,
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then what are the conditions required to give such examples?

In the case of rational 2:1 X-projections more work could be done on describ-
ing the tiling spaces, and though we proved aperiodicity in some cases there was
no general proof of this. In addition, the question of whether any of these tilings
might arise as substitutions was not addressed. Finally, one could investigate

the tilings produced by higher dimensional versions of this setup.
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