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Abstra
t Andrew PedenTilings Generated by Non-Parallel Proje
tion S
hemesThis thesis de�nes and investigates rational and irrational 2:1 X-proje
tions
hemes and non-parallel proje
tion s
hemes with strips at rational gradients.Both irrational 2:1X-proje
tion s
hemes and non-parallel proje
tion s
hemeswith strips at rational gradients are shown to produ
e tilings with in�nitelymany prototiles, with the tilings produ
ed by the se
ond of these s
hemesnonetheless shown to display a property similar to repetitivity.Rational 2:1 X-proje
tion s
hemes are shown to produ
e tilings with a �nitenumber of prototiles, with a subset of these tilings shown to be repetitive. Thepoints in the fundamental domain of our latti
e L that 
orrespond to translatesof these tilings are also investigated, with these points shown to be either densein a �nite number of lines or dense in the fundamental domain. This also leadsto a proof of repetitivity in all rational 2:1 X-proje
tion tilings and aperiodi
ityin a subset of these tilings. The tiling spa
es of su
h tilings are also investigated.In addition, the proportions in whi
h the prototiles in a rational 2:1 X-proje
tion tiling appear are also looked at, and a possible explanation of thevalues observed is provided.
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1 Introdu
tionPeople have been 
reating tilings for thousands of years, from the wall and 
oortilings of an
ient 
ivilisations su
h as the Romans and Persians (see for example[6℄) to mu
h more re
ent work like the drawings of M. C. Es
her. These patternsare generally periodi
 tilings of the plane, meaning that they 
onsist of a �nitenumber of tiles arranged in a 
ertain way within some pat
h, with this pat
hthen repeated in a regular way throughout the plane.In this do
ument we will be 
on
erned with tilings that are aperiodi
 (seede�nition 2.9), so do not 
onsist of a single pat
h of tiles that repeats in aregular way. However, the tilings that we are interested in may be repetitive (seede�nition 2.10), whi
h means that any pat
h of tiles in the tiling will reappearthroughout the tiling and always within some �xed distan
e (that depends onthe pat
h) of any point in the tiling. This is a property that all periodi
 tilingshave, but that is not ne
essarily shared by an aperiodi
 tiling.1.1 Crystals and Quasi
rystalsAperiodi
 tilings and tile sets (set of tiles that will only �t together to form ape-riodi
 tilings) of the plane have been studied for de
ades, with one-dimensionalaperiodi
 tilings even older, however physi
al analogues to these mathemati
alobje
ts were not en
ountered until the 1980s, when quasi
rystals were dis
overed(�rst reported in [15℄).Crystals are 3-dimensional stru
tures in whi
h the 
onstituent atoms ormole
ules are arranged in regular repeating pattern, and so are mu
h like 3-dimensional periodi
 tilings. The stru
ture of a 
rystal 
an be determined bylooking at its 
orresponding di�ra
tion pattern, whi
h is produ
ed by shiningX-rays through a thin sli
e of the 
rystal. The di�ra
tion patterns produ
ed by
rystals look like patterns of points with a rotational symmetry of order 2, 3, 4or 6, with any other order of rotational symmetry impossible (see [16℄).1



Quasi
rystals were �rst identi�ed by their di�ra
tion patterns, whi
h werepure point (i.e. 
onsisting of distin
t bright spots) like those of 
rystals, butdisplayed forbidden symmetries su
h as 5-fold and 10-fold rotational symme-try. The pure point di�ra
tion patterns suggested that these substan
es were\
rystal-like" in the sense that they must have stru
tures that are somewhatregular, but the symmetries of the patterns ruled out the possibility of thesestru
tures being periodi
.Identifying the stru
ture of quasi
rystals provided some physi
al motivationfor the study of aperiodi
 tilings.1.2 Generating Aperiodi
 TilingsThere are several methods for generating tilings. We will brie
y look at threeof these methods here. The third of these (the proje
tion method) is the onethat we will be most interested in for the remainder of this do
ument.The �rst method for generating tilings is to start with a set of tiles andimpose mat
hing rules on them so that they 
an only �t together in 
ertainways (see for example [13℄). For example, to produ
e a Wang tiling (see [1℄, [7℄)we will start with a set of square tiles with the edges of ea
h 
oloured in someway and then �t them together so that mat
hing edges have the same 
olour(see �gure 1.1). A similar e�e
t 
an be a
hieved by altering the shapes of theedges slightly so that only edges with the same 
olour 
an �t together.
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Figure 1.1: An aperiodi
 set of 13 Wang tiles [3℄The se
ond way to obtain tilings is by substitution (see for example [5℄).For this method we take a set of tiles and de�ne a substitution rule for ea
hof them, where a single tile is repla
ed by a pat
h of one or more tiles fromour set at ea
h iteration. We 
an thus start with a tile or pat
h of tiles andperform the substitution to get a larger pat
h, then substitute again to get aneven larger pat
h, and so on. For example, we 
an 
reate a Penrose tiling [12℄in this way (see �gure 1.2). Note that Penrose tilings 
an also be 
onstru
tedusing mat
hing rules [11℄.The �nal method for generating tilings that we shall mention here is theproje
tion method. For this method we start with some latti
e in a higherdimension, typi
ally ZN, sele
t some subset of the points of this latti
e and thenproje
t these points onto the spa
e in whi
h we want our tiling. We then forma tiling from these points. This is examined in greater detail in the following
hapter.In this do
ument we will de�ne a modi�
ation of the proje
tion setup, wherethe points sele
ted from the higher dimensional latti
e (we will be looking atZ2) are those 
ontained in two \strips" that have di�erent gradients, and theproje
tion is onto a spa
e that has a gradient independent of those of the strips.We will see that there are several versions of this setup, giving di�erent3



Figure 1.2: Substitution rules for the Penrose Rhombs
lasses of tilings. We will then examine the di�erent types, parti
ularly thetilings generated by rational 2:1 X-proje
tion s
hemes.1.3 Do
ument LayoutAs explained above, this do
ument is largely 
on
erned with proje
tion tilings,with the proje
tion typi
ally being from a 2-dimensional latti
e onto a 1-dimensionalspa
e.In 
hapter 2 we de�ne tiles and tilings and then proje
tion tilings, withparti
ular emphasis on 
anoni
al 2:1 proje
tions, and prove some basi
 resultsabout these tilings.In 
hapter 3 we introdu
e non-parallel proje
tion tilings, whi
h are generatedby sele
ting latti
e points from within two non-parallel strips and proje
tingthese onto a line with a gradient independent of either strip. These 
ome inthree distin
t types, and we provide some basi
 results about ea
h of thesetypes. 4



In 
hapter 4 we look in greater detail at rational 2:1 X-proje
tion tilings (oneof the three types of non-parallel proje
tion introdu
ed in 
hapter 3), examiningthe positions in whi
h we 
an pla
e our two strips to obtain translates of ourtiling. We also prove that 
ertain rational 2:1 X-proje
tion setups will produ
eaperiodi
 tilings.In 
hapter 5 we look at the tiling spa
es asso
iated to rational 2:1 X-proje
tion tilings. In addition, we see that all rational 2:1 X-proje
tion s
hemesgive repetitive tilings.In 
hapter 6 we provide some examples of both rational and irrational 2:1X-proje
tion tilings and also look at the number of prototiles in a tiling pro-du
ed by a rational 2:1 X-proje
tion s
heme and the proportions in whi
h theseprototiles appear.Finally, the 
on
lusion provides a summary of the results obtained in thisdo
ument along with some remaining questions.Figure 1.3 shows a more pi
tographi
 overview of the stru
ture of this thesis,with the solid lines indi
ating the 
onne
tion between di�erent se
tions (and thedotted line showing a possible 
onne
tion).
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Figure 1.3: A summary of the 
ontents of this do
ument.
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2 Tiles, Tilings, Model Sets and Proje
tion S
hemesWe begin this 
hapter with the basi
 de�nitions involved in the study of tilings,starting with the de�nitions of a tile and a tiling that we will be using throughoutthis do
ument (see for example [14℄).De�nition 2.1. A set t � Rn ; n � 1, is 
alled a tile if it is 
ompa
t and equalto the 
losure of its interior. We will also always assume that tiles are home-omorphi
 to topologi
al balls. So tiles in R are 
losed intervals and normallytiles in R2 will be polygons.De�nition 2.2. A tiling T of Rn is a 
olle
tion of tiles that,� Pa
k Rn , meaning that any two tiles have pairwise disjoint interiors.� Cover Rn , i.e., the union of all the tiles is Rn .De�nition 2.3. We say that two tiles t1; t2 are equivalent if one is a translateof the other.De�nition 2.4. Equivalen
e 
lass representative of tiles are 
alled prototiles.We will mostly be interested in tilings that have a �nite set of prototiles,whi
h means that they are made up of only �nitely many \types" of tile, howeverthere will be some o

asions when we look at tilings with an in�nite set ofprototiles.De�nition 2.5. A pat
h of tiles is a �nite set of tiles in a tiling whose union is
onne
ted.2.1 Model Sets and Proje
tion S
hemesModel sets, whi
h are also known as 
ut-and-proje
t sets (�rst 
onstru
ted in[2℄), are sets of points that are generated by sele
ting 
ertain points of a higherdimensional latti
e (through a 
ut-and-proje
t s
heme) and proje
ting thesedown onto a spa
e of smaller dimension.7



De�nition 2.6. A 
ut-and-proje
t s
heme (see for example [10℄) 
onsists of alatti
e, L, in the spa
e Rm �Rn (i.e. a dis
rete subgroup of Rm �Rn that spansRm �Rn ) and proje
tions �1 : Rm �Rn ! Rn and �2 : Rm �Rn ! Rm , where�1jL is inje
tive and �2(L) is dense in Rn .Rn is the spa
e in whi
h the Model set will be generated and hen
e is knownas the pattern spa
e, whereas the spa
e Rm is 
alled the internal spa
e.If we take a subset K � Rm then we denote by �(K) the point pattern inRn given by the proje
tion into Rn of the points of L that are proje
ted by �2into K, i.e. �(K) = f�1(x) 2 Rn : x 2 L; �2(x) 2 Kg :Here we 
all K the a

eptan
e domain.De�nition 2.7. A model set [9℄ (or 
ut-and-proje
t set) is a subset � of Rnsatisfying �(W Æ) � � � �(W ), for some W 
onne
ted and 
ompa
t in Rn ,W = W Æ 6= ;. The model set � is regular if the boundary �W = WnW Æ of Wis of Lebesgue measure 0.We will largely be 
on
erned with 2:1 proje
tions. That is, proje
tions ofpoints from a 2-dimensional latti
e onto a 1-dimensional spa
e. In the 
ase of2:1 proje
tions we have a latti
e L in R2 with two proje
tions from R2 onto theaxes, satisfying the above 
onditions, i.e., �1jL is inje
tive and �2(L) is dense inR. We will usually refer to the pattern spa
e as E with the internal spa
e being
alled E?.Example 2.1. If we take L to be a square latti
e then with K being a single
losed interval in R we will get a situation mu
h like that illustrated in �gure2.1.
8



Figure 2.1: A 2:1 proje
tion s
heme.In a similar way we 
an 
onsider the latti
e to be �xed and the pattern spa
e(E) to be at an irrational gradient relative to the square latti
e, as shown in�gure 2.2.

Figure 2.2: An alternative way of viewing the 2:1 proje
tion s
heme.
9



2.2 Canoni
al 2:1 Proje
tion TilingsDe�nition 2.8. A 
anoni
al 2:1 proje
tion s
heme is a 
ut-and-proje
t s
hemeas detailed above with latti
e L = Z2 and a

eptan
e domain K being a 
losedinterval, where the width of this interval, and therefore the strip that latti
epoints are proje
ted from, is taken to be equal to the proje
tion of a unit squareonto E?. In addition, the a

eptan
e domainK is 
hosen so that the boundariesof the strip do not interse
t any points of L.So a strip S has 
anoni
al width if the point (�; �) (for �; � 2 R) is on thelower boundary of the strip if and only if the point (��1; �+1) is on the upperboundary.Note that a 
anoni
al width strip will have width sin � + 
os �, where � isthe angle of the strip relative to the integer latti
e, as 
an be seen from �gure2.3.

Figure 2.3: Canoni
al strip width.Observe also that � must be an irrational multiple of 2�, i.e., the strip musthave an irrational gradient. This is be
ause a proje
tion with rational gradientwould not result in �1jL being inje
tive or �2(L) being dense in E?.Proposition 2.1. It is possible to 
hoose an a

eptan
e domain K so that theboundaries of the strip K +E do not interse
t any points of the latti
e.10



Proof. Choosing a strip whose boundaries do not interse
t any latti
e points isequivalent to 
hoosing a line that does not interse
t any latti
e points. This isbe
ause the width of the strip is 
hosen so that the upper boundary line is thetranslation of the lower boundary line by (�1; 1). So there is a latti
e pointon the lower boundary line if and only if there is a latti
e point on the upperboundary line.So start with a line, L, in R2 . Then any translate of L by a ve
tor notparallel to L, say by a ve
tor parallel to L?, will not interse
t L and so willnot interse
t any of the latti
e points on L. More generally, two translates bynon-equal ve
tors parallel to L? will not interse
t ea
h other and so will not
ontain any of the same latti
e points. However, there are un
ountably manytranslates of L of this type and only 
ountably many latti
e points, so thereforethere must exist translates of L that do not interse
t any latti
e points.2.2.1 Chara
teristi
s of Canoni
al 2:1 Proje
tion TilingsIf we 
onstru
t a 
anoni
al 2:1 proje
tion tiling as above, then the tiling willhave 
ertain attributes, some of whi
h are detailed in this se
tion.Firstly, the \horizontal" and \verti
al" widths of the strip are given by,horizontal width = 1 + 
os �sin �verti
al width = 1 + sin �
os �as 
an be seen from �gure 2.4.
11



Figure 2.4: The horizontal and verti
al widths of the strip.Proposition 2.2. There are exa
tly two types of tile in a 
anoni
al 2:1 proje
-tion tiling with irrational gradient.Proof. If we have a latti
e point (x; y) within the strip K +E then exa
tly oneof the points (x; y + 1) and (x + 1; y) is 
ontained in the strip.If (x; y) is less than distan
e sin � from the lower boundary of the strip then(x; y) is within \verti
al" distan
e sin �
os � and within \horizontal" distan
e 1 ofthe lower boundary of the strip. Therefore we get that the latti
e point (x; y+1)is 
ontained in the strip and the latti
e point (x + 1; y) is not 
ontained in thestrip.If (x; y) is greater than distan
e sin � from the lower boundary of the strip(and therefore less than distan
e 
os � from the upper boundary) then it is within\horizontal" distan
e 
os �sin � and \verti
al" distan
e 1 of the upper boundary, andthus the latti
e point (x + 1; y) is 
ontained in the strip and the latti
e point(x; y + 1) is not.Note that by the 
hoi
e of position of the strip you 
an never have a latti
epoint exa
tly distan
e sin � from the lower boundary, as this would imply that12



the points (x+ 1; y) and (x; y + 1) were on the boundaries of the strip.So for any latti
e point (x; y) within the strip exa
tly one of the latti
e points(x; y + 1) and (x + 1; y) is also 
ontained in the strip. Similarly, exa
tly one of(x� 1; y) and (x; y � 1) is 
ontained within the strip.We are restri
ting to the 
ase where 0 < � < �2 , so (x + 1; y) and (x; y + 1)are both proje
ted further along E than the proje
tion of (x; y) and thereforeall subsequent latti
e points in the strip are proje
ted yet further along. Sothe proje
tion of any latti
e point (x; y) is followed by the proje
tion of either(x; y + 1) or (x+ 1; y), meaning that there are at most two tile lengths.Note that you will only get one length of tile if (x; y + 1) and (x+ 1; y) areproje
ted to the same point, however this 
an only happen if � = �4 , whi
h isdis
ounted by the 
hoi
e of irrational gradient of the strip.Now, 0 < � < �2 , sohorizontal width = 1+ 
os �sin � > 1and verti
al width = 1 + sin �
os � > 1 :� is irrational, so there are points arbitrarily 
lose to the boundaries of thestrip K+E whi
h are within the strip. Therefore for any irrational � satisfying0 < � < �2 there are latti
e points within the strip K + E that are withindistan
e sin � of the lower boundary of the strip, and there are latti
e pointswithin distan
e 
os � of the upper boundary. Therefore both types of tile appearin any 
anoni
al 2:1 proje
tion tiling with irrational gradient.So there are exa
tly two di�erent lengths of tile in every 2:1 
anoni
al pro-je
tion tiling. The lengths of these two tiles are sin � and 
os � as 
an be seenfrom �gure 2.5. 13



Figure 2.5: The proje
tions of horizontal and verti
al steps.Proposition 2.3. A 
anoni
al 2:1 proje
tion tiling has two prototiles, the shorterof whi
h always appears 
anked by two longer tiles.Proof. We 
an relate the \horizontal" and \verti
al" widths of the strip to thelengths of the two tiles in the following way:horizontal width = 1 + length of tile 1length of tile 2verti
al width = 1 + length of tile 2length of tile 1 :As already stated, the lengths of the two tiles 
annot be equal when � 6= �4 ,so the \horizontal" and \verti
al" widths are not equal and,longer width = 1 + length of longer tilelength of shorter tile > 2shorter width = 1 + length of shorter tilelength of longer tile < 2 :14



If 0 < � < �4 then the \verti
al" width is shorter and sin
e it is stri
tlyless than two it is not possible to have more than two latti
e points arrangedin a verti
al row within the strip (re
all: latti
e points are distan
e 1 apart),i.e., there 
annot be more than one tile of length sin � in a row. Similarly, if�4 < � < �2 then the \horizontal" width is shorter and there 
annot be morethan one tile of length 
os � in a row.But note that for 0 < � < �4 the tile of length sin � is the shorter tile, andfor �4 < � < �2 the tile of length 
os � is the shorter tile. So in any 
anoni
al 2:1proje
tion tiling you never get two shorter tiles next to ea
h other.Proposition 2.4. In a 
anoni
al 2:1 proje
tion tiling the longer of the twoprototiles appears in pat
hes, with the number of tiles in ea
h pat
h equal toj length of longer tilelength of shorter tilek or j length of longer tilelength of shorter tilek+ 1 :Proof. We know that the horizontal and verti
al widths of the strip are givenby, horizontal width = 1 + 
os �sin �verti
al width = 1 + sin �
os � :For 0 < � < �4 , the tile of length 
os � (
orresponding to a horizontal stepbetween latti
e points) is the longer tile.In this 
ase, the maximum number of 
onse
utive latti
e points in a hor-izontal row within the strip is 2 + j length of longer tilelength of shorter tilek, be
ause you 
an �ta horizontal line of length 1 + j length of longer tilelength of shorter tilek within the strip. Also,the smallest number of latti
e points in a horizontal row in the strip mustbe 1 + j length of longer tilelength of shorter tilek, be
ause it is possible to position a horizontalline of length j length of longer tilelength of shorter tilek within the strip with endpoints less than\horizontal" distan
e 1 from the boundaries of the strip, but this 
annot bedone with a horizontal line of length j length of longer tilelength of shorter tilek� 1.15



The 
ase where �4 < � < �2 is similar but with the tiles of length sin �(
orresponding to verti
al steps) being longer and appearing in blo
ks.So the longer tiles in a 
anoni
al 2:1 proje
tion tiling 
ome in blo
ks of length1 + j length of longer tilelength of shorter tilek or j length of longer tilelength of shorter tilek.Note that length of longer tilelength of shorter tile is not an integer, sin
e length of longer tilelength of shorter tile isequal to sin �
os � or 
os �sin � , and so is equal to the gradient of the strip, or 1 divided bythe gradient, whi
h 
annot be an integer by the 
hoi
e of an irrational gradient.Thus the tiling given by a proje
tion of this kind must have two types of tileand 
onsist of blo
ks of the longer tiles of length 1 + j length of longer tilelength of shorter tilek orj length of longer tilelength of shorter tilek divided by solitary tiles of shorter length.Now we look at the proportions in whi
h the two prototiles appear in a tilingby 
onsidering number of short tilesnumber of long tiles for some 
onne
ted se
tion of the tiling, andthe limit of this sequen
e as the se
tion is lengthened. This will show thegradient, or 1gradient , of the line drawn from the latti
e point that is proje
tedto the start of this se
tion of tiles to the latti
e point that is proje
ted to theend, i.e., you get the gradient of the line shown in �gure 2.6.

Figure 2.6: Horizontal and verti
al steps in a se
tion of the strip.Note 2.1. If �4 < � < �2 then the shorter tiles will 
orrespond to horizontal16



\steps", so you will be measuring 1gradient .As you examine longer se
tions of the tiling you will be looking at largerse
tions of the strip, but both the endpoints are 
ontained within the strip, sothe gradient of the line drawn between them 
an only di�er slightly from thegradient of the strip.Proposition 2.5. In a 
anoni
al 2:1 proje
tion tiling we have that,limn!1�number of shorter tilesnumber of longer tiles � = length of shorter tilelength of longer tile :If 0 < � < �4 then this value is the gradient of the strip.If �4 < � < �2 then this value is one over the gradient of the strip.Proof. The situation is shown in �gure 2.7, where n is the number of tiles
orresponding to horizontal steps in the se
tion that you are examining.

Figure 2.7: The maximum and minimum possible gradients.The gradient of the strip is given by,gradient = ynn :Then the maximum and minimum possible gradients of lines drawn betweenlatti
e points in the strip, 
orresponding to the blue and red lines respe
tively,are: 17



maximum gradient = yn + hn = ynn + hn = gradient of strip + hn
minimum gradient = yn � hn = ynn � hn = gradient of strip � hn :The value of h remains 
onstant, so at the limit the gradient of the line mustbe equal to the gradient of the strip.Now, if 0 < � < �4 then the shorter tiles 
orrespond to the verti
al \steps"and are of length sin � and therefore,limn!1�number of shorter tilesnumber of longer tiles � = strip gradient= tan �= sin �
os �= length of shorter tilelength of longer tile :If �4 < � < �2 then the shorter tiles 
orrespond to the horizontal \steps" andare of length 
os � so,limn!1�number of shorter tilesnumber of longer tiles � = 1strip gradient= 1tan �18



= 
os �sin �= length of shorter tilelength of longer tile :Thus, at the limit, the ratio of the number of short tiles to the number oflong tiles is equal to the ratio of their lengths.There are two more 
hara
teristi
s of proje
tion tilings that will be shownbelow. The �rst of these is the aperiodi
ity of the tiling.De�nition 2.9. A tiling T of Rn is said to be aperiodi
 if for any non-zerove
tor v 2 Rn the tiling T + v (that is, the translate of tiling T by ve
tor v)does not 
oin
ide with T .A tiling is said to be periodi
 if there is a non-zero translate of the tilingthat 
oin
ides with the original tiling.Note that a tiling of Rn 
ould be periodi
 in only some dire
tions and have noperiodi
ity in others. However, we will largely be 
on
erned with 1-dimensionaltilings, for whi
h this is not a problem.Theorem 2.6. A tiling produ
ed by a 
anoni
al 2:1 proje
tion is aperiodi
.Proof. First we assume that the tiling T is periodi
. Then there exists a ve
torv = (v1; v2) in R2 parallel to the pattern spa
e E that maps T to itself.So the proje
tion of the latti
e points after being translated by v is the sameas the proje
tion of the original latti
e points (i.e. both proje
tions give T ).Consider a latti
e point x0 = (x; y) in the strip. Then x0 + v is in the stripand be
ause the gradient is irrational it does not 
oin
ide with any other latti
epoint. But there is a latti
e point y0 in the strip that is proje
ted to the same19



point as x0 + v, so y0 is some distan
e " from x0 + v in a dire
tion parallel toE?. So we will write y0 = x0+ v+ ", where " is parallel to E? and of length ".If x1 is the next latti
e point to be proje
ted onto E after x0 (i.e. x1 =(x+ 1; y) or (x; y + 1)) then x1 + v must have a 
orresponding latti
e point y1whi
h is equal to y0+(1; 0) if x1 = (x+1; y) or y0+(0; 1) if x1 = (x; y+1) andso is the same distan
e (") in the same dire
tion (along a line parallel to E?)from x1 + v as y0 is from x0 + v. This is be
ause the proje
tion is onto a lineat irrational gradient, so the step between latti
e points x0 and x1 must be thesame as the step between y0 and y1 or the tiles would not be the same length.Thus indu
tively, all the subsequent latti
e points satisfy, yi = xi + v + ".However, be
ause of the irrational gradient of the strip there will be latti
epoints xj arbitrarily 
lose to the boundaries of the strip, and in parti
ular,within distan
e " of ea
h boundary, whi
h implies that some of the yi are lo
atedoutside the strip.Therefore, the tiling T of E must be aperiodi
.The �nal attribute of tilings that are produ
ed by 
anoni
al 2:1 proje
tionsexamined in this se
tion is that they are repetitive. This term is de�ned below.De�nition 2.10. A tiling T of Rn is 
alled repetitive if for any pat
h of tilesP in T there is a number r > 0 su
h that for any point t 2 Rn there is atranslate of the pat
h P belonging to T and 
ontained in the ball Br(t) (in the1-dimensional 
ase this is the interval of length 2r 
entred at t).So in a repetitive tiling any �nite set of 
onne
ted tiles will appear through-out the tiling, never more than some distan
e r from any point.Theorem 2.7. A tiling generated by a 
anoni
al 2:1 proje
tion is repetitive.Proof. Any pat
h, P , in T is a �nite set of tiles whose union is 
onne
ted. Sothe endpoints of the tiles in P are the proje
tions of a �nite set of latti
e pointsf(xi; yi)g within the strip. 20



Now, be
ause of the 
hoi
e of strip width (and bearing in mind that we haverestri
ted � to be between 0 and �2 ), the latti
e point (xi � 1; yi + 1) is thesame distan
e from the upper boundary of the strip as (xi; yi) is from the lowerboundary, and (xi + 1; yi � 1) is the same distan
e from the lower boundaryas (xi; yi) is from the upper boundary. This is be
ause, by the 
hoi
e of widthof the strip, if you moved the strip so that (xi; yi) was on the lower boundarythen (xi � 1; yi + 1) would be on the upper boundary and if (xi; yi) was on theupper boundary then (xi + 1; yi � 1) would be on the lower boundary. Figure2.8 illustrates the situation.
Figure 2.8: Proximity of latti
e points to the strip boundaries.So in parti
ular, ea
h of the points (xi + 1; yi � 1) and (xi � 1; yi + 1) is atleast as far from the strip as the distan
e from (xi; yi) to the nearest boundary.Now, sin
e there are only a �nite number of latti
e points in the set f(xi; yi)gthere will be a latti
e point (xj ; yj) of minimal distan
e from the strip bound-aries, i.e., if (xj ; yj) is distan
e " from the 
losest boundary then no other latti
epoint is within distan
e " of either boundary.Then every time a latti
e point within the strip is 
loser than distan
e 2" tothe boundary that is 
losest to (xj ; yj) you will get the same 
on�guration oflatti
e points surrounding that point as are found in f(xi; yi)g, be
ause shiftingall of the points in f(xi; yi)g by up to distan
e " in a dire
tion perpendi
ularto the strip will not translate any of them outside the strip or move any new21



points into the strip within the 
on�nes of the pat
h, i.e., all points (xi; yi)will remain within the strip and therefore all points of the form (xi + 1; yi � 1)and (xi � 1; yi + 1) will remain outside the strip. So a 
opy of the pat
h Pwill be found around any latti
e point that is within distan
e 2" of the relevantboundary.So to show that the tiling is repetitive we have to show that given a line, L,with irrational gradient in an integer latti
e, and " > 0, there exists some r > 0su
h that for any point t on the line there is a latti
e point within the strip ofwidth 2" and length 2r extending out from the line in one dire
tion with t atthe 
entre of one side. The situation is shown in �gure 2.9. (Note that the strip
ould also be below L).

Figure 2.9: The strip of length 2r and width 2" with t at the midpoint of oneside.If x is an integer, then there will be a latti
e point with �rst 
oordinate xwithin this strip if the interval �L(x); L(x) + 2"
os � � 
ontains an integer, whereL(x) is the y-value of the line L at x (note that 2"
os � is the verti
al width of thisstrip and is greater than 2" be
ause of our 
hoi
e of �).At x + n (for n 2 Z) the situation is similar but with the relevant intervalbeing �L(x) + n tan �; L(x) + 2"
os � + n tan ��.Equivalently, we 
an look at the fra
tional parts of these intervals within the22



unit interval I . The gradient, tan �, is irrational, so the set of fra
tional partsof the intervals for all integers n form an open 
over of I , and this has a �nitesub
over by 
ompa
tness of I .This �nite sub
over must have an interval 
orresponding to x+m with m ofmaximum modulus, so taking r to 
orrespond to m steps along in ea
h dire
tionfrom the initial point (i.e. r = m
os � ) will guarantee that there is a latti
e pointless than 2" from the line and no more than distan
e r along the line from theinitial point.This will work from any point on L with integer x-
oordinate be
ause start-ing at a di�erent x is like shifting every set in the 
over by the same �xedamount, so will still result in a 
over. If we take r to 
orrespond to m+1 stepsthen it will work for any point on L.So therefore for any point on L there is a value r > 0 satisfying the relevant
onditions, and so the tiling is repetitive.So, to sum up, a tiling generated by a 2:1 
anoni
al proje
tion has thefollowing 
hara
teristi
s:� The tiling has exa
tly two lengths of tile, these lengths being sin � and
os �.� The tiling 
onsists of \blo
ks" of one or more longer tiles divided up bysingle short tiles.� The \blo
ks" of longer tiles 
ontain either 1 + j length of longer tilelength of shorter tilek orj length of longer tilelength of shorter tilek tiles.� The limit of the ratio,number of short tiles : number of long tiles23



is equal to the ratiolength of short tile : length of long tile :� The tiling is aperiodi
 and repetitive.2.3 N:1 Proje
tionsAs with the 2:1 proje
tions dis
ussed above we 
an also generate 1-dimensionaltilings using N : 1 proje
tion s
hemes, where we proje
t points from an N -dimensional latti
e onto a 1-dimensional pattern spa
e.In a 
anoni
al N :1 proje
tion we have an integer latti
e ZN and a strip thatis de�ned by translating a unit N -
ube parallel to some ve
tor (a1; a2; :::; aN ),whi
h we will take to be a unit ve
tor.Note that here ai 6= 0 for all i, sin
e if we had an ai being equal to 0 wewould e�e
tively be in the N � 1 
ase. In fa
t, as with 2:1 proje
tions, we willrestri
t to the 
ase where ai > 0 for all i.If a latti
e point within the strip is proje
ted onto the pattern spa
e E thenthe next latti
e point to be proje
ted onto E must be a unit step along fromthe �rst point in one of N dire
tions. These N possible steps give (up to) Npossible tile lengths in the tiling produ
ed by this proje
tion.De�nition 2.11. A 
anoni
alN :1 proje
tion with de�ning ve
tor (a1; a2; :::; aN )is said to be degenerate if we have that ai = aj for some pair i; j 2 f1; 2; :::; Ng(i 6= j).Conversely, we say that an N :1 proje
tion is non-degenerate if every ai isdistin
t.Proposition 2.8. Given a standard N :1 proje
tion setup with strip de�ned byunit ve
tor (a1; a2; :::; aN ) the lengths of the prototiles in the 
orresponding tilingare ai for i 2 f1; :::; Ng. 24



Proof. If we take the line through the origin that is parallel to (a1; a2; :::; aN ),i.e., the line t(a1; a2; :::; aN ), for t 2 R, then the proje
tions of the points(1; 0; :::; 0), (0; 1; 0; :::; 0),..., (0; 0; :::; 0; 1) onto this line give the lengths of thetiles from a standard N : 1 proje
tion with strip de�ned by the ve
tor above.Ea
h of these points will be proje
ted to the 
losest point on the line.So 
onsider the ve
tor from the point (1; 0; :::; 0) to the point s(a1; a2; :::; aN )on the line. This ve
tor is equal to (sa1 � 1; sa2; :::; saN ).Now we look at the square of the length of this ve
tor as s varies. This isgiven by: �(s) = (a1s� 1)2 + (a2s)2 + :::+ (aNs)2= (a21 + a22 + :::+ a2N )s2 � 2a1s+ 1= s2 � 2a1s+ 1 :This will be minimised at the turning point of �(s),�0(s) = 2s� 2a1 :So, �0(s) = 0, s = a1 :So the 
losest point on the line to the point (1; 0; :::; 0) is the point a1(a1; a2; :::; aN ),whi
h is distan
e a1 from the origin (sin
e (a1; :::; aN ) is a unit ve
tor).Therefore the length of the tile 
orresponding to the unit step (1; 0; :::; 0) isa1, and a similar argument applies to the other steps.As with the 
anoni
al 2:1 
ase we will also get the N di�erent possible stepsbetween latti
e points in our strip appearing in proportion to the lengths oftheir proje
tions. However, note that we may get degenerate 
ases where the25



terms ai for i 2 R are not all di�erent, resulting in two or more distin
t stepsgiving tiles of the same length in the tiling. Thus with this sort of setup thetiles may not a
tually appear in proportion to their lengths in the tiling.In the 
anoni
al 2:1 
ase, only the step 
orresponding to the longer tile 
anappear in multiples of more than one within the strip. This is also true in the(non-degenerate) 
anoni
al N :1 
ase.Proposition 2.9. A tiling generated by a non-degenerate 
anoni
al N :1 pro-je
tion s
heme 
ontains only one prototile that 
an appear next to a 
opy ofitself.Proof. Sin
e in a non-degenerate N : 1 proje
tion we have that the prototiles
orresponding to di�erent steps are all of di�erent lengths it suÆ
es to provethat the strip in any su
h proje
tion s
heme has only one step that 
an appearin multiples of more than one.We will look at the 
ase where ai > 0 for all i, with all other 
ases being simi-lar. Here we will look at the strip generated by translating the unit N -
ube withverti
es (0; 0; :::; 0); (1; 0; :::; 0); :::; (1; 1; :::; 1) along the ve
tor (a1; a2; :::; aN ). Thisstrip has all the points of the unit N -
ube on its edges apart from the points(0; 0; :::; 0) and (1; 1; :::; 1), whi
h are in the interior.A point (x1; x2; :::; xN ) 2 RN is 
ontained in this strip if and only if thereexists some value � 2 R su
h that (x1; :::; xN )+�(a1; :::; aN ) is 
ontained in theunit N -
ube des
ribed above.We will assume that a1 > ai for all i 2 f2; 3; :::; Ng. Sin
e (a1; :::; aN ) is aunit ve
tor and all ai are non-zero we have also that 0 < ai < 1 for all i.Now, if we look at the point (�1; 0; :::; 0) we �nd that for this to be 
ontainedin the strip we must have that there exists some � 2 R su
h that,0 < �a1 � 1 < 10 < �a2 < 126



:::0 < �aN < 1 :I.e., all the values �ai for i 2 f2; 3; :::; Ng are between 0 and 1 and �a1 takesa value between 1 and 2. However, sin
e a1 is the largest of the ai there will besu
h a �. Thus the strip 
an 
ontain more than one step of the type (1; 0; :::; 0)
onse
utively.To dis
over whether any other step 
an appear in multiples of two or more weexamine whether the points that are two steps of the form (0; :::; 0;�1; 0; :::; 0)along from ea
h vertex of the unit N -
ube lie within the strip.As a starting point we 
an immediately dis
ount every vertex that has a 1anywhere other than in position i, sin
e this would give inequality 0 < �aj+1 <1 for some j whilst also having either 0 < �ai�2 < 1 or 0 < �ai�1 < 1, requiring� to be both positive and negative.Thus we look to see whether any points of the form (0; :::; 0;�1; 0; :::; 0) are
ontained within the strip. For this to be the 
ase we must have that thereexists some � 2 R that satis�es the following inequalities:0 < �ai � 1 < 10 < �a1 < 1:::0 < �aN < 1 :However, this 
annot be the 
ase, sin
e a1 > ai (for i 6= 1), so �ai > 1implies that �a1 > 1.Therefore the step (1; 0; :::; 0) is the only one that 
an appear twi
e in a rowwithin the strip. 27



Thus a tiling generated by a non-degenerate 
anoni
alN :1 proje
tion s
hemewill have N prototiles appearing in proportion to their lengths with only thelongest prototile appearing in pat
hes of more than one at any point in thetiling.2.4 Model Multi-setsA variant of the proje
tion tiling setup is the model multi-set (see for example[8℄), where multiple model sets are generated from the same 
ut-and-proje
ts
heme and e�e
tively overlaid.This setup di�ers from the one that we will be investigating in the following
hapters, where the sets that we will be looking at are the overlaying of pointsgenerated by separate 
ut-and-proje
t s
hemes.2.5 Tiling Spa
esOne way in whi
h we 
an study a tiling T is by 
onstru
ting a spa
e 
T oftilings and looking at the topology of 
T (see [14℄).We start by de�ning a metri
 on tilings, where two tilings are 
onsideredto be 
lose if they 
oin
ide on a large ball around the origin after some smalltranslate.De�nition 2.12. Given two tilings T1 and T2 of Rn we de�ne the distan
ebetween these two tilings, d(T1; T2), to be equal to,inf nf1g[n" : T1 + s1 = T2 + s2 on B 1" with s1; s2 2 Rn ; ks1k; ks2k< "2oowhere B 1" denotes the ball of radius 1" 
entred at the origin.Note that here T + s is the tiling obtained by translating tiling T by ve
tors (or equivalently moving the origin by �s).28



We 
an now look at the translates of a tiling and how far these are from theoriginal tiling in the tiling metri
.De�nition 2.13. The orbit of a tiling T of Rn is de�ned to be,O(T ) = fT + s : s 2 Rng :That is, the set of all translates of the tiling T .De�nition 2.14. A tiling spa
e 
 is a set of tilings that is 
losed under trans-lation and 
omplete in the tiling metri
. I.e., if T 2 
 then O(T ) � 
, andevery Cau
hy sequen
e of tilings in 
 has a limit in 
.De�nition 2.15. The hull or orbit 
losure 
T of a tiling T is the 
losure ofO(T ).The hull of a tiling T is the set of tilings that lo
ally look like T . A tilingT 0 is in 
T if and only if every pat
h of T 0 is found in a translate of T .

29



3 Non-Parallel Proje
tionsIn this 
hapter we introdu
e a new type of proje
tion setup involving the pro-je
tions of latti
e points from within two strips that are not parallel to ea
hother (and indeed with neither ne
essarily being parallel to the pattern spa
eonto whi
h we are proje
ting).A 2:1 X-proje
tion tiling is produ
ed by proje
ting the latti
e points 
on-tained within two 
anoni
al-width strips at di�erent irrational gradients onto aline. A more formal de�nition is given below.De�nition 3.1. A strip S at gradient q in R2 is de�ned to be K�Fq where Fqis a line at gradient q in R2 , and K is a 
ompa
t, 
losed and 
onne
ted subsetof F?q (i.e. a 
losed interval in F?q ).Strip S is said to be of 
anoni
al width ifK has length equal to the proje
tionof a unit square onto F?q . Equivalently, when q > 0, the point (�; �) is on thelower boundary of S (for �; � 2 R) if and only if the point (� � 1; � + 1) is onthe upper boundary of S.De�nition 3.2. A 2:1 X-proje
tion s
heme 
onsists of:� The integer latti
e L sitting in R2 .� Two strips S1 and S2 of 
anoni
al width at gradients q1 and q2 respe
tively,with q1 and q2 satisfying, q1; q2 62 Qq1; q2 > 0q1 6= q2 :In addition we have that the strips are positioned so that �SiTL = ; fori = 1; 2. 30



� A line E, known as the pattern spa
e, at gradient p with p > 0, p 6= 1.� Orthogonal proje
tion � : R2 ! E.We thus get a pattern of points P = f�(x) : x 2 LT (S1SS2)g. From thispattern we get a 2:1 X-proje
tion tiling by taking the points to be the endpointsof the tiles.De�nition 3.3. Note that � jL is not assumed to be inje
tive, so the patternspa
e E 
ould be taken to have rational or irrational gradient. We will 
all aproje
tion a rational X-proje
tion if E has rational gradient and an irrationalX-proje
tion if E has irrational gradient.As with normal proje
tions, 2:1 X-proje
tion s
hemes give sets of points inR. We denote by �, �1 and �2 the angles between the horizontal in the latti
eL and the pattern spa
e E and strips S1 and S2 respe
tively. We then restri
t�, �1 and �2 to be between 0 and �2 as with the standard proje
tion 
ase.Note that 
hanging the value of � does not a�e
t the strips, and in parti
ulardoes not 
hange the \stair
ase" fun
tion of \up" and \a
ross" (left to right) stepswithin ea
h strip. Restri
ting � to be between 0 and �2 ensures that the se
ondlatti
e point in an \up" or \a
ross" step will be proje
ted further along E thanthe �rst.Thus the set of points Pi generated by strip Si will have two possible dis-tan
es between 
onse
utive points unless � = �4 (but note that we spe
i�edthat E should not be at gradient 1, so this 
ase does not arise), with thesedistan
es being the lengths of the proje
tions of a verti
al unit interval and ahorizontal unit interval onto E, i.e., sin � and 
os � (noti
e that these lengthsare independent of the gradient of Si). The order in whi
h these two di�erent\steps" appear will however be the same as with normal proje
tions be
ausethe \stair
ase" fun
tion within the strip is the same.So the pattern Pi generated by strip Si with proje
tion onto spa
e E will
onsist of an in�nite set of points with two possible distan
es between 
onse
u-31



tive points and ea
h of these distan
es 
orresponds to one of the two distan
esthat you get with a standard proje
tion with strip Si where the proje
tion isonto a pattern spa
e that is parallel to the strip.Proposition 3.1. In the 2:1 X-proje
tion s
heme there must be at least onepoint of the integer latti
e 
ontained in S1TS2, and only �nitely many of su
hpoints.Proof. S1 and S2 both 
ontain \stair
ase fun
tions", i.e., within ea
h strip isa line 
onsisting of horizontal and verti
al steps between latti
e points in thatstrip, and be
ause the strips are non-parallel these lines must 
ross. Both thestair
ase fun
tions are subsets of a unit square grid, so their interse
tion mustalso be a subset of this grid. If the two lines interse
t at a point other thana latti
e point then they must both 
ontain the entire unit interval in whi
hthat point is lo
ated and must therefore interse
t on the entire interval and inparti
ular the two latti
e points at the ends of the interval.So the stair
ase fun
tions asso
iated to the two strips must 
ontain a 
ommonlatti
e point and this latti
e point must therefore be in S1TS2.S1 and S2 are non-parallel and have �xed width, so their interse
tion is a
ompa
t parallelogram in R2 and therefore 
an 
ontain only �nitely many latti
epoints.3.1 Rational 2:1 X-Proje
tionsIn this se
tion we will investigate rational 2:1 X-proje
tions. These will belooked at in greater detail in the following 
hapters. We will denote by Pi theset of points that are the proje
tions of points from the strip Si, and the tilingasso
iated to Pi will be 
alled Ti. The tiling that is the 
ombination of T1 andT2 will be denoted by U .De�nition 3.4. A set of points P � Rn is said to be uniformly dis
rete if thereexists a positive real number r su
h that 8x; y 2 P; jx� yj � 2r.32



De�nition 3.5. A set of points P is said to be relatively dense in Rn if thereexists a positive real number R su
h that every sphere of radius greater than R
ontains at least one point of P in its interior.De�nition 3.6. A set of points P � Rn is a Delone set if it is uniformly dis
reteand relatively dense.The sets generated by standard 
ut-and-proje
t s
hemes are Delone sets. Aswe shall see, this is also true of the sets generated by rational 2:1 X-proje
tions.Lemma 3.2. In a tiling generated by a rational 2:1 X-proje
tion s
heme withpattern spa
e E at gradient ab the lengths, jt1j and jt2j, of the two prototiles t1,t2 in the tilings Ti are rational multiples of ea
h other.Furthermore, the longer of these prototiles, whi
h we shall label t2 has length,jt2j = maxfa; bgminfa; bg jt1j :Proof. The two prototiles have lengths that are equal to sin � and 
os �, sodepend only on the gradient of the pattern spa
e E. If E has rational gradientthen sin �
os � = tan � is rational.We label the longer of the prototiles as t2, thus we get,� < �4 ) ab < 1) jt1jjt2j = ab ) jt2j = ba jt1j� > �4 ) ab > 1) jt2jjt1j = ab ) jt2j = ab jt1j :Either way we have that, jt2j = maxfa; bgminfa; bg jt1j :
33



Proposition 3.3. The set of points generated by a rational 2:1 X-proje
tionwith pattern spa
e E at gradient ab is a Delone set, with the distan
e betweenany two points of the set being an integer multiple of 1minfa;bg jt1 j (where t1 isthe shorter of the two prototiles from the tilings T1 and T2).Proof. The set generated by this type of proje
tion is the union of the points inP1 and P2, so is the union of two sets whi
h 
onsist of points in E separated byeither jt1j or jt2j= maxfa;bgminfa;bg jt1j. So in ea
h Pi every point is an integer multipleof 1minfa;bg jt1j from every other point, and P1 and P2 have at least one point in
ommon, therefore every point in P1SP2 is an integer multiple of 1minfa;bg jt1jfrom every other point in the union.So the minimum possible distan
e between points is 1minfa;bg j t1 j and themaximum possible distan
e between 
onse
utive points is jt2 j= maxfa;bgminfa;bg jt1 j.Thus the point set is dis
rete and relatively dense, and therefore a Delone set.Corollary 3.4. A tiling produ
ed by a rational 2:1 X-proje
tion s
heme withpattern spa
e E at gradient ab has at most maxfa; bg prototiles.Proof. We know that any two 
onse
utive points in the 
ombined set mustbe separated by a distan
e that is an integer multiple of 1minfa;bg jt1j and thisdistan
e 
annot be more than jt2j = maxfa;bgminfa;bg jt1j. Thus the tiling given by thissetup 
an have at most maxfa; bg prototiles.The pattern spa
e E has rational gradient and passes through a latti
e point(the origin), so therefore has in�nitely many latti
e points evenly spa
ed alongits length. Similarly, E? 
ontains in�nitely many latti
e points with the samespa
ing as those along E.So if we look at all the lines parallel to E? passing through latti
e points onE then we get a square sublatti
e of L, this sublatti
e will be used extensivelyin the following 
hapters, so we de�ne it formally below.34



De�nition 3.7. Let E be a line with rational gradient ab , with a and b 
oprime(i.e. the fra
tion is written in its lowest terms), passing through a point of thelatti
e L = Z2 whi
h we will refer to as O.We de�ne the latti
e � to be the sublatti
e of L 
ontaining the point O andgenerated by the ve
tors (b; a) and (�a; b).

Figure 3.1: The latti
e � for E at gradient 12 .From this point on both L and � 
oordinates will be used, so we will intro-du
e notation to 
over this here.De�nition 3.8. Translations in L 
oordinates will be denoted by (x; y) asbefore.Translations in � 
oordinates (with � de�ned as above) will be denoted by(x; y)�, where the relationship between the two types of translation is as follows.(1; 0)� = (b; a)(0; 1)� = (�a; b) :35



So the translate (x; y)� = (xb� ya; xa+ yb).Lemma 3.5. A line I has irrational gradient relative to the latti
e � if andonly if it has irrational gradient relative to the latti
e L (where L and � are asabove).Proof. Take I to run through a point of both L and �, whi
h we will 
all (0; 0).Then the fa
t that I has irrational gradient relative to L implies that I doesnot interse
t any more points of L, and therefore does not interse
t any morepoints of �, sin
e � � L.Thus I must have irrational gradient relative to �.If I has rational gradient relative to L then I passes through the latti
e point(m;n) (with at least one of m and n non-zero) and all integer multiples of thispoint.The latti
e � is at rational gradient relative to L and is generated by theve
tors (a; b) and (�b; a). But the point (a2 + b2)(m;n) = (an � bm)(�b; a) +(am + bn)(a; b) is 
ommon to both latti
es and lies on I , so I must also haverational gradient relative to �.Re
all the de�nition of repetitive as given in the previous 
hapter:De�nition 2.10. A tiling T of Rn is 
alled repetitive if for any pat
h of tilesP in T there is a number r > 0 su
h that for any point t 2 Rn there is atranslate of the pat
h P belonging to T and 
ontained in the ball Br(t) (in the1-dimensional 
ase this is the interval of length 2r 
entred at t).Theorem 3.6. Rational 2:1 X-proje
tion s
hemes with strips S1 and S2 havinggradients that are irrational and rationally related relative to � give repetitivetilings.Proof. Ea
h Ti has two prototiles t1 and t2, with jt2 j>jt1j. The proje
tions oftwo 
onse
utive latti
e points in Ti 
an never be more than jt2j apart, thereforeany pat
h in U of diameter greater than jt2 j must 
ontain the proje
tions of36



latti
e points from both strips. Note that there may be smaller pat
hes in Uthat 
ontain tiles with all endpoints from the same strip, but any one of thesepat
hes will appear as part of a larger pat
h 
ontaining proje
tions of pointsfrom both strips and will therefore reappear in the tiling whenever this largerpat
h reappears. Thus it is enough to prove that any pat
h with tile endpoints
oming from the proje
tions of points in both strips will appear throughout thetiling U .If you have a �nite pat
h of the above type then ea
h strip will 
ontain a�nite set of latti
e points that are proje
ted into this pat
h, and thus ea
h willhave a latti
e point that is 
losest to one of the boundaries of the strip. We
all these points x1 2 S1 and x2 2 S2, and their distan
es from the relevantboundaries "1 and "2 respe
tively.As in the proof of repetitivity of a standard 2:1 proje
tion, whenever thereis a latti
e point, y1, within 2"1 of the relevant boundary of S1 the pat
h fromT1 will appear in U and whenever there is a latti
e point, y2, within 2"2 of therelevant boundary of S2 the pat
h from T2 will appear in U . So for the 
ompletepat
h to appear in U it is required that we have su
h latti
e points y1 and y2with, �(y1)� �(y2) = �(x1)� �(x2) :If we draw lines I1 through x1 parallel to S1 and I2 through x2 parallel toS2 then for the 
omplete pat
h to reappear we need latti
e points y1 and y2whose proje
tions have the above relation, with y1 being within "1 of S1 and y2within "2 of S2.We now set " = minf"1; "2g, and also position the pattern spa
e E so thatit runs through x2, whi
h we shall hen
eforth refer to as the origin in both thenormal latti
e L and the sublatti
e �.In addition we will denote by (
; Æ) the ve
tor between x1 and x2. So we37



have, x1 = x2 + (
; Æ) :This gives a situation that looks a bit like that shown in �gure 3.2.

Figure 3.2: The lines I1 and I2 in latti
e L.With the original pat
h reappearing whenever we have latti
e points y1 andy2 within " of I1 and I2 respe
tively, satisfying,�(y1)� �(y2) = �(x1)� �(x2) = �(
; Æ) :Relative to the sublatti
e � the situation looks a bit like that shown in �gure3.3 (at least when the gradients of S1 and S2 are greater than that of E).
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Figure 3.3: The lines I1 and I2 in latti
e �.Here the line I1 runs through the point (
; Æ), whi
h is a point in the latti
eL, but may not be a point of �.Now, assume that the gradients of S1 and S2 are rationally related andirrational relative to �, so gradient(S1) = 
dgradient(S2) (w.l.o.g. assume j
j >jdj). Then if the point (�; �)� 2 � is within " of I2 the point (�; 
d�)� + (
; Æ)will be within j 
d j " of I1. However, the point (�; 
d�)� + (
; Æ) is only a latti
epoint if (�; 
d�)� is a latti
e point, whi
h only happens when 
d� 2 Z, i.e., when� is a multiple of d.If we have a point (�; �)� within "j
j of I2 then the point y1 = (d�; b�)�is within jd
 j" of I2, and therefore within distan
e ". Also the point y2 =(d�; 
dd�)� + (
; Æ) = (d�; 
�)� + (
; Æ) is a latti
e point within j 
d j : jd
 j :" = "of I1.Of 
ourse, �(d�; d�)� = �(d�; 
�)�so, 39



�(y1)� �(y2) = �(x1)� �(x2) :Thus for every point of � within "j
j of I2 there will be latti
e points y1 within" of I1 and y2 within " of I2 whose proje
tions have the required relation. Sin
ethere will be points of � within this distan
e of I2 throughout its length thismeans that the pat
h will repeat throughout U when S1 and S2 have gradientsof this form.Note that the 
hosen pat
h will repeat in a relatively dense pattern through-out U be
ause the pat
hes that you get in T2 de�ned by having a latti
e pointwithin the required distan
e of the relevant boundary of S2 are relatively densein S2. Or in other words, be
ause T2 is repetitive.Therefore when S1 and S2 have gradients that are rationally related to ea
hother and irrational relative to the latti
e � (and positive relative to the latti
eL) then the tiling produ
ed (U) will be repetitive.Note that the general version of this result is proved in theorem 5.11.3.2 Irrational 2:1 X-Proje
tionsWe now look at some of the basi
 properties of irrational 2:1 X-proje
tions.Lemma 3.7. In the irrational 
ase the lengths, jt1j and jt2j, of the two tiles t1,t2 in the tilings Ti are irrational multiples of ea
h other.Proof. The two lengths are equal to sin � and 
os �, so depend only on thegradient of the pattern spa
e E. If E has irrational gradient then sin �
os � = tan �is irrational.Lemma 3.8. There are only �nitely many tiles of maximal length in a tilinggenerated by an irrational 2:1 X-proje
tion s
heme.40



Proof. Maximal tiles in the tiling 
an only arise when the proje
tions onto Eof maximal steps in S1 and S2 
oin
ide. If a latti
e point 
ontained in a stripwas proje
ted to the same point in E as a latti
e point not 
ontained in thatstrip then this would imply that there were two latti
e points on a line parallelto E?, whi
h implies that E? and hen
e E have rational gradient.Hen
e, the only part of the tiling that 
ould 
ontain tiles of maximal lengthis the part that 
orresponds to the proje
tion of the latti
e points in S1TS2,and there are only �nitely many latti
e points in this interse
tion. Thereforethere 
an be only �nitely many tiles of maximal length in the tiling.Theorem 3.9. A tiling generated by an irrational 2:1 X-proje
tion has in�nitelymany prototiles (i.e., the tiling 
ontains in�nitely many di�erent lengths of tile).Proof. We have an irrational 2:1 X-proje
tion with strips S1 and S2 at di�erentirrational gradients and orthogonal proje
tion onto a pattern spa
e E that isalso at an irrational gradient relative to the latti
e.As before, we refer to the set of points in E that are proje
tions of points inSi as Pi and the 
orresponding tilings (taking these points as the endpoints oftiles) as Ti. Ea
h of these tilings has two prototiles t1 and t2 with jt2 j= q jt1 jfor some q > 1, q irrational. We will 
all the X-proje
tion tiling U .By the previous lemma, U has only �nitely many tiles of maximal length(i.e. of length jt2 j). However there are in�nitely many tiles of this length inboth T1 and T2. Thus there must be in�nitely many maximal length tiles inT1 that are \broken up" into shorter tiles in U by having points from P2 inbetween their endpoints. As T1 and T2 have only �nitely many 
ommon pointsthere must be in�nitely many tiles in U that have one endpoint from ea
h Pi.Figure 3.2 shows the situation in a part of tiling U that does not 
ome fromthe proje
tions of points in S1TS2.The points at the top of the line are points in P1 and the points at thebottom are in P2. The top points are j t2 j apart, and sin
e these points do41



Figure 3.4: Tiles with endpoints proje
ted from di�erent strips.not 
oin
ide with any points from P2 there must be at least one point from P2between them (the points of ea
h Pi are at most jt2j apart). So for ea
h t2 tilein T1 (outside of the tiles 
orresponding to S1TS2) we must get two tiles inU that have one endpoint in ea
h Ti. These tiles are marked v1 and v2 in theabove diagram, and at least one of these tiles must have a length that is notequal to jt1j be
ause they 
an only have tiles of length jt1j between them (or notiles) so if they both had length jt1j this would imply that jt2j was an integermultiple of jt1j. However, this is an irrational 2:1 X-proje
tion, so t1 and t2have lengths that are irrational multiples of ea
h other.Thus there must be in�nitely many tiles in U that have one endpoint in ea
hPi and are not of the same length as either of the prototiles in the tilings Ti.Let v be su
h a tile in U . Then v has endpoints a and b, with a 2 T1 andb 2 T2. Say a prototile with the same length as v reappears in U with endpointsa0 2 T1 and b0 2 T2 in the same order as before (there are of 
ourse two possibleorders for the endpoints), then a0 and b0 must be translates of a and b by thesame ve
tor, and they are points of the tilings, so:ja0 � aj= 
1 jt1j +
2 jt2jjb0 � bj= d1 jt1j +d2 jt2jwith 
1; 
2; d1; d2 2 N.But the lengths of the prototiles are irrational multiples of ea
h other, so this
an only happen when 
1 = d1 and 
2 = d2, or in other words when the tilings42



T1 and T2 
ontain the same number of ea
h prototile between these points.However, 
1
2 and d1d2 have di�erent limits, so there 
an only be �nitely manyo

urren
es of tiles of length jvj with endpoints in the same order as for v (andsimilarly, only �nitely many when the order of the endpoints is swit
hed).So the tiling U 
ontains in�nitely many tiles that are not of length jt1 j orjt2j, but a tile of a given length 
an only appear �nitely many times. Thereforethere must be in�nitely many prototiles in an irrational 2:1 X-proje
tion.3.3 Proje
tions with Strips at Rational GradientsIn this se
tion we look at the tilings that are produ
ed by proje
ting the latti
epoints within two non-parallel strips at rational gradients onto a pattern spa
eat irrational gradient.We will 
all the strips S1 and S2 and the pattern spa
e E. For ea
h Sithere is a tiling Ti whi
h is obtained by proje
ting the latti
e points withinSi orthogonally onto E. The 
omplete tiling (that is, the tiling of R given byproje
ting the latti
e points from both strips) is denoted by U . Ea
h of thetilings Ti has two prototiles whi
h we will 
all t1 and t2, and these tiles havelengths that are irrationally related due to E having irrational gradient, i.e.,jt2j= � jt1j (with � irrational).Lemma 3.10. T1 and T2 are periodi
 with irrationally related periods.Proof. The strips are at rational gradients, say gradient of Si is equal to aibi .Then given any latti
e point (xi; yi) 2 Si all latti
e points of the form (xi +nbi; yi + nai), for n 2 Z, will be in Si and will be the same distan
e from bothboundaries of the strip as the original point (xi; yi). So the patterns of latti
epoints within the strips repeat after a �xed number of steps and therefore bothT1 and T2 must be periodi
 and 
onsist of repeated pat
hes with ai tiles of typet1 and bi tiles of type t2. 43



Thus the period of T1 is,a1jt1j+ b1jt2j = (a1 + �b1)jt1j = pand the period of T2 is,a2jt1j+ b2jt2j = (a2 + �b2)jt1j = q :Then, p = xq, for x 2 Q ) a1 + �b1 = x(a2 + �b2)) a1 � xa2 + �(b1 � xb2) = 0) b1 � xb2 = 0) a1 � xa2 = 0) b1 = xb2 and a1 = xa2) a1b1 = xa2xb2 = a2b2) gradients of S1 and S2 are equal.So the periods must be irrationally related when S1 and S2 have di�erentgradients.De�nition 3.9. For two �nite non-empty sets of points X;Y � R the Hausdor�distan
e dH(X;Y ) is equal to inffr 2 R : X � Yr and Y � Xrg, whereAr = fx 2 R : jx� aj � r for some a 2 Ag.De�nition 3.10. Two pat
hes P1; P2 2 U (thought of as �nite sets of points)are said to be "-
lose if there exist translates Q1 and Q2 of P1 and P2 satisfyingdH(Q1; Q2) � ".Proposition 3.11. For any pat
h P in U and any " > 0 the set of pat
hes inU that are "-
lose to P is relatively dense.Proof. Assume that the pat
h P in U is de�ned by latti
e points from bothstrips. All pat
hes will either be of this type or will be subpat
hes of su
hpat
hes, so it suÆ
es to prove the proposition in this 
ase.44



Choose two latti
e points x1 2 S1 and x2 2 S2 that are proje
ted into Pwith their proje
tions being distan
e Æ apart where Æ is less than or equal tothe shorter of the periods of T1 and T2. Then whenever there are latti
e pointsy1 2 S1 and y2 2 S2 o

upying the same positions within the strips (i.e. thesame distan
e from both edges) as x1 and x2 whose proje
tions are within "of being distan
e Æ apart then the pat
h around the proje
tions of these pointswill be "-
lose to P .T1 and T2 have periods p and q respe
tively, and these periods are irrationallyrelated, i.e., q = rp for some irrational r. So the proje
tions of latti
e pointsthat o

upy the same position within S1 as x1 
an be found at distan
es npfrom x1 for all n 2 Z, and similarly the proje
tions of latti
e points in the sameposition within S2 as x2 will be at distan
es nq = npr from x2 for all n 2 Z.The fra
tional part of r is an irrational number r0 with 0 < r0 < 1, so theset of fra
tional parts of nr for all n 2 Z must be a dense subset of [0; 1℄ andtherefore for all " > 0 the set of intervals of radius " around these points must
over [0; 1℄ and so by 
ompa
tness of [0; 1℄ there must exist a �nite sub
over byintervals of this form.Thus for all " > 0 whenever two latti
e points o

upying the same positionswithin the strips as x1 and x2 have proje
tions that are within " of being distan
eÆ apart there must be only a �nite number of periods before two more latti
epoints, in the same positions relative to the strips, are proje
ted to points thatare within " of being distan
e Æ apart, i.e., there must be pat
hes that are "-
loseto P throughout U , never more than a 
ertain distan
e apart.Tilings of this type therefore have a property that is similar to repetitivity,and 
ould perhaps be referred to as being "-repetitive.Corollary 3.12. Tilings of this type have in�nitely many prototiles, in
ludingprototiles of arbitrarily small length.Proof. The strips S1 and S2 have at least one latti
e point in their interse
tion45



and so for any " > 0 there will be latti
e points whose proje
tions are withindistan
e " of ea
h other, and therefore tiles of length less than ".
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4 Rational 2:1 X-Proje
tions: Positioning andTranslatesIn this 
hapter we will look at rational 2:1 X-proje
tions and the translates ofthese that 
an be obtained by altering the positions of the two strips relative tothe latti
e. The sets of points 
orresponding to translates that we obtain in thisway will be important in the next 
hapter when we 
ome to look at the tilingspa
es asso
iated to these tilings.We start by re
apping the de�nition of a rational 2:1 X-proje
tion.De�nition 4.1. A strip S at gradient q in R2 is de�ned to be K�Fq where Fqis a line at gradient q in R2 , and K is a 
ompa
t, 
losed and 
onne
ted subsetof F?q (i.e. a 
losed interval in F?q ).Strip S is said to be of 
anoni
al width ifK has length equal to the proje
tionof a unit square onto F?q . Equivalently, the point (�; �) is on the lower boundaryof S (for �; � 2 R) if and only if the point (��1; �+1) is on the upper boundaryof S.De�nition 4.2. A rational 2:1 X-proje
tion s
heme 
onsists of:� An integer latti
e L sitting in R2 .� Two strips S1 and S2 of 
anoni
al width at gradients g1 and g2 respe
tively,with g1 and g2 satisfying, g1; g2 62 Qg1; g2 > 0g1 6= g2 :In addition we have that the strips are positioned so that �SiTL = ; fori = 1; 2. 47



� A line E, known as the pattern spa
e, at gradient q 2 Q, with q > 0,q 6= 1. We will usually write q = 
d , with 
 and d assumed to be 
oprime.� Proje
tion � : R2 ! E.Ea
h strip Si has an asso
iated pattern of points Pi in E, withPi = � �L\Si� :We thus get a pattern of points P = P1SP2. From this pattern we get arational 2:1 X-proje
tion tiling by taking the points to be the endpoints of thetiles.Example 4.1. An example of a rational 2:1 X-proje
tion setup is shown in�gure 4.1.

Figure 4.1: A rational 2:1 X-proje
tion s
heme.De�nition 4.3. Strips S1 and S2 are non-parallel and will thus overlap. Werefer to the point at whi
h the lower boundaries of the strips meet as theinterse
tion point of S1 and S2. We will 
all this point t, as in the examplediagram. 48



De�nition 4.4. The latti
e L in whi
h we are interested is an integer latti
e (asexplained above). We de�ne the fundamental domain of L to be the unit squarewith verti
es (0; 0); (1; 0); (0; 1) and (1; 1) and all other fundamental domains tobe translates of this by integers both horizontally and verti
ally.If we de�ne the origin on E to be at position �(t) then translating t by ave
tor of the form (n;m) with n and m integers (so moving the two strips byinteger steps both horizontally and verti
ally) will result in the same tiling, sin
eevery latti
e point (i; j) in the original strips will be repla
ed by a 
orrespondinglatti
e point (i; j) + (n;m) in the translated strips with the same proje
tionrelative to the new origin on E.Thus, when looking at ways in whi
h the two strips 
an be positioned weneed only 
onsider the positions of their interse
tion point within a fundamentaldomain of L.4.1 Interse
tion Point PositionsIn the de�nition of a rational 2:1 X-proje
tion we required that the strips bepositioned so that there are no latti
e points on their boundaries, thus not everypoint within the fundamental domain of L is a point at whi
h the interse
tionof the lower boundaries 
an be pla
ed.De�nition 4.5. We say that a point in the fundamental domain of L is aforbidden point if a line drawn through this point parallel to either S1 or S2interse
ts any point of the latti
e L.If u is a forbidden point within the fundamental domain of L that leads toa latti
e point being pla
ed on the boundary of Si then all points along the lineparallel to Si that pass through u will also be forbidden points.So the forbidden points for t within a fundamental domain of L are all thepoints on two sets of in�nitely many lines that pass through the fundamentaldomain, one set parallel to S1 and the other parallel to S2. This is all the lines49



parallel to either strip that pass through both the fundamental domain and apoint of latti
e L.For example, the set of forbidden points within the fundamental domain ofL may look a bit like those shown in �gure 5.3 (though the lines will a
tuallybe dense).

Figure 4.2: The forbidden points in the fundamental domain of L.Claim 1. This 
an equivalently be thought of as just two lines passing throughthe origin with gradients equal to those of the two strips that ea
h wind roundthe fundamental domain.Proof. We will think of the fundamental domain that we are looking at as havingthe origin at the bottom-left position, and refer to this fundamental domain asF . If we take a line parallel to S1 running through F that also passes throughsome latti
e point (m;n) and 
all this line I(m;n), then I(m;n)TF gives a lineof forbidden points in F .A line parallel to S1 passing through O has the same interse
tion with F asthe line I(m;n) has with the fundamental domain that has (m;n) at its bottom-left 
orner. So on
e this line loops round F a 
ertain number of times in the50



relevant dire
tion we will get the line I(m;n)TF . Thus su
h a line must 
overthe interse
tion with F of any line de�ned in the same way as I(m;n), for anylatti
e point (m;n).Similarly, all interse
tions of F with lines parallel to S2 that pass throughlatti
e points must be represented by a single line parallel to S2 passing throughthe origin.The remaining points, whi
h form a totally dis
onne
ted subset of the fun-damental domain, give all \allowed" interse
tion points for S1 and S2. So everypossible positioning of the two strips is de�ned by one of these points.4.2 Translate PointsAs we have seen, there are in�nitely many points in the fundamental domain ofL at whi
h the interse
tion point t 
an be positioned, but 
ould some of thesealternative positions 
orrespond to translates of the tiling?In this se
tion we investigate the points in the fundamental domain of L atwhi
h we 
an reposition t to get translates of the original tiling, �rst explaininghow this works and then looking at the various 
ases that arise.Lemma 4.1. We have a rational 2:1 X-proje
tion setup with strips S1 and S2having interse
tion point t as before with �(t) = O, the origin on E. We will
all the tiling produ
ed by this setup U .Now, assume that we also have points t1 and t2 on the lower boundaries ofS1 and S2 respe
tively satisfying,�(t1) = �(t2)t1 = t2 + (m;n)for m;n 2 Z. Then the tiling U 0 produ
ed by translating the strips so that theyinterse
t at t1 and de�ning �(t1) = O (the origin on E) is a translate of the51



tiling U .Proof. We �rst introdu
e/re
ap some notation for the proof.� P1 and P2 are the patterns of points 
orresponding to the proje
tions oflatti
e points from strips S1 and S2 respe
tively (with �(t) = O on E).� S01 and S02 are the translates of strips S1 and S2 so that the point t1 is ontheir lower boundaries. Note that S01 = S1.� P 01 and P 02 are the patterns of points 
orresponding to the proje
tions oflatti
e points from strips S01 and S02 respe
tively (with �(t1) = O on E).Using the above notation we see that,P 01 = fk + (�; �) : k 2 P1; (�; �) = �(t) � �(t1)gsin
e S01 = S1 so they 
ontain the same latti
e points and only the position ofthe origin in the tiling is 
hanged.We also have that, S02 = S2 + (m;n)so, (x; y) 2 S2 ) (x+m; y + n) 2 S02 :So every latti
e point in S2 has a 
orresponding latti
e point in S02, and sin
ewe know that, �(t1) = �(t2 + (m;n)) = �(t2)we must have that, �((x; y) + (m;n)) = �(x; y) :Therefore, as above, we get that, 52



P 02 = fk + (�; �) : k 2 P2; (�; �) = �(t)� �(t1)g :Sin
e the tiling U 0 
omes from a 
ombination of the sets of points P 01 andP 02 it must be a translate of U .Figure 4.3 gives an idea of what is happening. Here t1 and t2 o

upy 
or-responding positions in two fundamental domains of L, and if the interse
tionpoint is taken to be at t1 or t2 then the proje
tions of latti
e points will be thesame but the origin of the tiling will be at O0 rather than O, giving a translate.

Figure 4.3: A translate point for the tiling.So for a given X-proje
tion setup with interse
tion point t there may bealternative positions for the interse
tion point within the fundamental domainof L that will give translates of the original tiling.We now brie
y re
ap the de�nitions of the sublatti
e � and asso
iated systemof 
oordinates given in the previous 
hapter.De�nition 3.7. Let E be a line with rational gradient 
d , with 
 and d 
oprime53



(i.e. the fra
tion is written in its lowest terms), passing through a point of thelatti
e L whi
h we will refer to as O.We de�ne the latti
e � to be the sublatti
e of L 
ontaining the point O andgenerated by the ve
tors (d; 
) and (�
; d).Example 4.2. When E has gradient 12 the sublatti
e � is as shown in �gure4.4.

Figure 4.4: The sublatti
e � for E at gradient 12 .De�nition 3.8. Translations in L 
oordinates are denoted by (a; b).Translations in � 
oordinates (with � de�ned as above) are denoted by(a; b)�, where the relationship between the two types of translation is as follows.(1; 0)� = (d; 
)(0; 1)� = (�
; d) :So the translate (a; b)� = (ad� b
; a
+ bd).As before with latti
e L we will de�ne the fundamental domain of � to be54



the unit square with verti
es (0; 0)�; (1; 0)�; (0; 1)� and (1; 1)�. Whenever wetalk about two or more fundamental domains of � they will be translates of thefundamental domain by ve
tors of the form (m;n)� for m;n 2 Z.De�nition 4.6. We will be 
onsidering the patterns of points given by proje
t-ing latti
e points from � that are within the strips Si onto the pattern spa
e E.We will denote the resulting sets by P�i . That is,P�i = n�(r) : r 2 Si\�o :Lemma 4.2. If two points o

upy 
orresponding positions in two di�erent fun-damental domains of � then they also o

upy 
orresponding positions in twodi�erent fundamental domains of L.Proof. � is a square latti
e, and for gradient of E equal to 
d as above we havethat, (1; 0)� = (d; 
)(0; 1)� = (�
; d) :So integer translations in � 
oordinates give integer translations in L 
o-ordinates and therefore if two points o

upy 
orresponding positions in twofundamental domains of � then they will o

upy 
orresponding positions in twofundamental domains of L.Lemma 4.3. Two points have the same proje
tion onto E if and only if theyare translates of ea
h other by a ve
tor of the form (0; k)�, for some k 2 R.Proof. The proje
tion is perpendi
ular to E, so two points will have the sameproje
tion onto E if and only if they are on a line perpendi
ular to E, and � isde�ned so that verti
al lines in the � 
oordinates are perpendi
ular to E.55



De�nition 4.7. We de�ne an interse
tion-point tiling to be a tiling that 
anbe produ
ed by a rational 2:1 X-proje
tion setup satisfying,�(t) = Owhere t is the point of interse
tion of the lower boundaries of the strips and Ois the origin in the tiling (i.e. on E).Similarly, a non-interse
tion-point tiling is a translate of an interse
tion-point tiling that is not itself an interse
tion-point tiling, i.e., a tiling generatedby a rational 2:1 X-proje
tion that is not the same as any of the tilings that 
anbe produ
ed by repositioning t so that �(t) = O.Note 4.1. We have not yet proved that the set of non-interse
tion-point tilingsis non-empty, i.e., that not all translates of a tiling are interse
tion point tilings.Proposition 4.4. A rational 2:1 X-proje
tion has at least 
ountably manytranslates that are interse
tion-point tilings.Proof. Note that we will be using � 
oordinates throughout this proof.We will denote by L1 and L2 the lines that form the lower boundaries ofS1 and S2 respe
tively. These lines have irrational gradients relative to bothL and �. If the interse
tion point t is at 
oordinates (�; �)� then (also in �
oordinates) the lines 
an be written as,L1 = f(x; px)� + (�; �)� : x 2 RgL2 = f(x; qx)� + (�; �)� : x 2 Rgwith p and q irrational.Now de�ne points t1 and t2 on lines L1 and L2 respe
tively to be,t1 = (x0 + �; px0 + �)�56



t2 = (x0 + �; qx0 + �)� :Then for z 2 Z, t1 = t2 + (0; z)� ) �(t1) = �(t2)and also t1 and t2 o

upy the same position within the fundamental domain of� and therefore within the fundamental domain of L.The points t1 and t2 di�er in su
h a way for all x satisfying,px = qx+ z :We also have that, px = qx+ z , x = zp� q :So there are 
ountably many values of x at whi
h L1 and L2 o

upy 
orre-sponding positions within fundamental domains of �. Thus 
ountably manytranslates of the tiling must be interse
tion-point tilings, and these translatesare the set of integer multiples of the translate by distan
e 1p�q (that is, thisdistan
e in � 
oordinates).Proposition 4.5. The points des
ribed above are the only points on the lowerboundaries of S1 and S2 that o

upy 
orresponding positions within fundamentaldomains of L and proje
t to the same points on E.Proof. The points des
ribed above are all pairs t1 and t2 on the lower boundariesof S1 and S2 respe
tively satisfying,t1 = t2 + (0; z)�for z 2 Z. 57



Sin
e t1 and t2 di�er by a ve
tor of the form (0; y)� we must also have that,�(t1) = �(t2) :Thus these must be the only pairs of points o

upying 
orresponding posi-tions within fundamental domains of � and having the same proje
tions onto E.By lemma 4.2 they must also o

upy 
orresponding points within fundamentaldomains of L.All that remains to be shown is, for t1 and t2 in the same fundamentaldomain of � satisfying, �(t1) = �(t2)t1 6= t2the points t1 and t2 
annot o

upy 
orresponding positions within two funda-mental domains of L.Assume that they do o

upy 
orresponding positions within two fundamentaldomains of L, then (in L 
oordinates),t1 = t2 + (a; b)for some a; b 2 Z with (a; b) parallel to (�
; d) as in the de�nition of � (sin
eproje
tion is along this line). However, the step (a; b) must be less than aninteger multiple of the step (�
; d) sin
e t1 and t2 are in the same fundamentaldomain of �. But 
 and d are 
oprime, so su
h a step does not exist.Therefore t1 and t2 
annot o

upy 
orresponding positions within two fun-damental domains of L.Note 4.2. The above argument does not 
ompletely rule out the possibilitythat there 
ould be other interse
tion points than those listed above that give58



translates of the tiling. We also need to show that tilings that are produ
ed byproje
tion onto E with the origin not below an interse
tion point are distin
tfrom interse
tion point tilings.Lemma 4.6. For pattern spa
e E at gradient 
d , with 
; d 
oprime, the shortest(non-zero) distan
e between the proje
tions of latti
e points in L (along E) is1p
2+d2 .Proof. The pattern spa
e E is at gradient 
d , and thus at angle � = ar
tan( 
d )to the horizontal. So we have the situation illustrated by �gure 4.5.

Figure 4.5: The lengths of the proje
tions of horizontal and verti
al steps ontoE. Thus, �(1; 0) = 
os�ar
tan� 
d�� = 1p1 + ( 
d)2�(0; 1) = sin�ar
tan� 
d�� = 
dp1 + ( 
d )2 = 1q1 + (d
 )2 :We will refer to the line segment between (0; 0) and �(1; 0) as t1 (this segment59



is of length jt1 j), similarly the line between (0; 0) and �(0; 1) will be 
alled t2(and have length jt2 j), so j t2 j= 
d jt1 j, giving two di�erent 
ases, spe
i�
ally
 > d and d > 
 (the 
ase 
 = d is ignored).Case 1: 
 > d gives j t2 j>j t1 j and the shortest possible distan
e betweenproje
tions is 1d jt1j (see proposition 3.3). Then we have that,1d jt1j= 1dp1 + ( 
d)2 = 1pd2(1 + ( 
d)2 = 1p
2 + d2 :Case 2: d > 
 gives jt1j>jt2j (jt1j= d
 jt2j) and the shortest possible distan
ebetween proje
tions is 1
 jt2j. Then we have that,1
 jt2j= 1
q1 + (d
 )2 = 1q
2(1 + (d
 )2 = 1p
2 + d2 :Thus the shortest possible (non-zero) distan
e between the proje
tions ofpoints in L is 1p
2+d2 .Proposition 4.7. If U is a tiling produ
ed by a rational 2:1 X-proje
tion setupwith, �(p1) = �(p2) = Ofor points p1 6= p2 + (0; z)� (z 2 Z) on the lower boundaries of strips S1 andS2 respe
tively (where O is the origin on E) and U 0 is an interse
tion-pointtiling with interse
tion point t0, then U = U 0 implies that t0 must be on the lineparallel to E? passing through p1 and p2 within the fundamental domain of L.Proof. Let E be at gradient 
d , with 
; d 2 Z 
oprime.We have that, �(p1) = �(p2)60



so p1 and p2 are on a line parallel to E? (whi
h has rational gradient).Both p1 and p2 are within fundamental domains of L (possibly the samefundamental domain, but not ne
essarily), and they sit on the same line parallelto E?, whi
h 
rosses fundamental domains of L in only a �nite number of ways(sin
e it has rational gradient). Therefore p1 and p2 must be on one of a �nitenumber of lines within the fundamental domain of L.For example, we 
ould have the situation show in �gure 4.6.

Figure 4.6: Points p1 and p2 on a line parallel to E?.If the line through p1 and p2 
ontains a latti
e point then all points of thetilings T1 and T2 must be in n zp
2+d2 : z 2 Zo, sin
e 1p
2+d2 is the minimumdistan
e between proje
tions of latti
e points onto E. If t0 is not on a lineparallel to E? passing through a latti
e point, then all latti
e points in U 0 willbe in n zp
2+d2 + " : z 2 Zo for some " < 1p
2+d2 , i.e., the tilings 
annot 
oin
ide.The 
ase where the line through p1 and p2 does not pass through a latti
epoint is similar.Thus the tilings 
annot 
oin
ide when t0 is not on the line through p1 andp2. 61



So we have that any non-interse
tion point tiling must either be distin
tfrom all interse
tion point tilings or the same as an interse
tion point tilingwith interse
tion point on the line perpendi
ular to E through the origin.Note that we 
an 
onsider p1 and p2 to be within the same fundamentaldomain of �, sin
e we 
an translate strip Si by a ve
tor of the form (0; n)�,with n 2 Z, without 
hanging the tiling Ti given by the proje
tion of latti
epoints from the strip.Thus we have a situation similar to that illustrated by �gure 4.7, whereany interse
tion point tiling that 
oin
ides with the original tiling must haveinterse
tion point on the line through p1 and p2.

Figure 4.7: The line parallel to E? through p1 and p2 in the fundamental domainof �.If we look at the tiling given by pla
ing the interse
tion point at p1 then wewill get a tiling that is produ
ed by the proje
tion of the points 
ontained in thestrip S1 and the points 
ontained in a new strip S02, whi
h is the translate of stripS2 so that it passes through the point p1. This new strip is a translate of thestrip S2 by some ve
tor (0; y)�, with jyj < 1, so the two strips may overlap but62




an neither 
oin
ide nor di�er by an integer amount in �. Thus the proje
tionsof the latti
e points 
ontained within the two strips 
annot be the same. In fa
t,we will get a thin strip S2TS02 where the strips S2 and S02 interse
t (or di�erby one verti
ally in � 
oordinates) and also strips S2nS02 � S2 and S02nS2 � S02,satisfying, (S2nS02)\�S02[ (S02 + (0; 1)�)[ (S02 + (0;�1)�)� = ;(S02nS2)\�S2[ (S2 + (0; 1)�)[ (S2 + (0;�1)�)� = ;where Si+(0; n)� is the strip obtained by translating strip Si by the ve
tor(0; n)�. Note also that S2TS02 may be empty.For example, we may have the situation shown in �gure 4.8.

Figure 4.8: The interse
tion of S2 and S02.We have that,n�(x) : x 2 S02nS2\Lo\n�(y) : y 2 S2nS02\Lo = ; :This is be
ause these strips do not 
ontain any latti
e points that are eitherthe same or di�er by a ve
tor of the form (0; n)� (for n 2 Z).63



We will denote by Ti the tiling asso
iated to strip Si and by T 0i the tilingasso
iated to the strip S0i. So for the tiling with interse
tion point p1 (thatis, the 
ombination of T1 and T 02) to be the same as the original tiling (the
ombination of T1 and T2) we must have,n�(x) : x 2 S2nS02\Lo � n�(y) : y 2 S1\Loand, n�(x) : x 2 S02nS2\Lo � n�(y) : y 2 S1\Lo :In other words, no points are lost from the original tiling (so all latti
e pointsthat are in S2 but not in S02 must have equivalents in S1) and no extra points areadded in (so all latti
e points that are in S02 but not in S2 must have equivalentsin S1).Thus the strip S1 must 
ontain latti
e points with the same proje
tions asall the latti
e points in the thin strips S2nS02 and S02nS2. The 
ase where theinterse
tion point is at p2 is similar.In the more general 
ase, where the interse
tion point is not at either pi,we get strips S01 and S02 that do not 
oin
ide with S1 or S2. Then for ea
h Siwe get a strip SiTS0i, whi
h may be empty, and strips SinS0i and S0inSi. Anargument similar to that above shows that for this altered setup to produ
e thesame tiling we must have that,n�(y) : y 2 S01nS1\Lo � n�(x) : x 2 S2\Lon�(y) : y 2 S1nS01\Lo � n�(x) : x 2 S02\Loand also, n�(x) : x 2 S02nS2\Lo � n�(y) : y 2 S1\Lo64



n�(x) : x 2 S2nS02\Lo � n�(y) : y 2 S01\Lo :In the general 
ase the question is whether a 
anoni
al width strip at onegradient 
an 
ontain latti
e points with the same proje
tions as all the latti
epoints 
ontained in a strip of up to 
anoni
al width at a di�erent gradient.Thinking just in terms of the latti
e � this would mean that any time you gota latti
e point in the thin strip there would have to be a 
orresponding latti
epoint verti
ally above or below this 
ontained in the other strip.We will now show that this 
ould be possible in some 
ases, but 
annothappen in 
ertain other 
ases.De�nition 4.8. For strips S1 and S2 of up to 
anoni
al width de�ne the linesJ1 and J2 to be the lines parallel to S1 and S2 respe
tively and positioned inthe 
entres of the two strips.Note 4.3. The strips S1 and S2 are at di�erent gradients and thus the lines J1and J2 will interse
t. We will be thinking of the strips as sitting in the latti
e�, so we will write the interse
tion point as,J1\ J2 = (�; �)�where � and � 
an be assumed to be between 0 and 1 (by 
hoi
e of origin for�).De�nition 4.9. For a strip S sitting in latti
e �, de�ne the height of S (in �)to be the length of the interval given by STF where,F = f(0; y)� : y 2 Rg :So, the height of strip S in �gure 4.9 is the length of the interval highlightedwithin the strip. 65



Figure 4.9: The height of strip S in �.Theorem 4.8. If strips S1 and S2 are at irrational gradients g1 and g2 respe
-tively (relative to �) with, g2 = ng1for n 2 Znf0; 1g, and are of heights " and Æ in � respe
tively, then when S2 hasheight Æ < minfjnj"; 1g we have that,P�1 6� P�2 :Proof. As above, we will denote by J1 and J2 the 
entre lines of strips S1 andS2 respe
tively.These lines interse
t at the point (�; �)� and have gradients g1 and g2 rela-tive to �. Thus, line J1 
ontains the points,f(x; g1(x� �) + �)� : x 2 Rgand J2 
ontains the points, 66



f(x; g2(x� �) + �)� : x 2 Rg = f(x; ng1(x� �) + �)� : x 2 Rg :The line J1 is at irrational gradient in the latti
e � and will therefore passarbitrarily 
lose to points of the latti
e.If point (z; k + �)� is on line J1, for z; k 2 Z and � 2 R then we have that,g1(z � �) + � = k + �) g1(z � �) = k + �� �) ng1(z � �) = n(k + �� �)) ng1(z � �) + � = nk + n�� (n� 1)�) g2(z � �) + � = nk + n�� (n� 1)� :Therefore J2 passes through the point (z; nk + n� � (n � 1)�)�. Here thevalue nk is an integer, the n� term may be arbitrarily small, and the (n � 1)�term is some �xed shift, independent of z, k and �. Note that this �nal termmay be zero, sin
e � 
an have value zero.The strip S1 has height " in �, so a latti
e point (z; k)� 2 S1 
an approa
h(verti
al) distan
e "2 from 
entre line J1.Whilst there will not be any latti
e points on the boundaries of strip S1, by
hoi
e of positioning of the strip, there will be latti
e points approa
hing thesituation des
ribed by points (z1; k1)� and (z2; k2)� below,g1(z1 � �) + � = k1 + "2g1(z2 � �) + � = k2 � "2giving, 67



ng1(z1 � �) + � = nk1 + n"2 � (n� 1)�ng1(z2 � �) + � = nk2 � n"2 � (n� 1)� :Thus at integer x-values J2, the 
entre line of S2, 
ontains points having y-values with fra
tional parts that vary between [n"2 �(n�1)�℄ and [�n"2 �(n�1)�℄(here square bra
kets are used to denote fra
tional part) with strip S2 
ontaininglatti
e points at these x-values.This requires S2 to have height in � satisfying,Æ � minfjnj"; 1g :Theorem 4.9. If we have strips S1 and S2 at irrational gradients g1 and g2relative to � satisfying, g2 = ab g1for a 2 Z, b 2 N 
oprime and ab not an integer, then if S2 has height less thanb�1b in � we have that, P�1 6� P�2 :Proof. As before, we denote by J1 and J2 the 
entre lines of the strips S1 andS2 respe
tively, with (�; �)� the point at whi
h these lines interse
t.Line J1 
ontains the pointsf(x; g1(x� �) + �)� : x 2 Rgand J2 
ontains the points, 68



f(x; g2(x � �) + �)� : x 2 Rg = n�x; ab g1(x� �) + ��� : x 2 Ro :Again, in a similar way to the previous proof, if J1 passes through point(z; k + �)� for z; k 2 Z and � 2 R then we have that,g1(z � �) + � = k + �) g1(z � �) = k + �� �) ab g1(z � �) = ab (k + �� �)) ab g1(z � �) + � = ab k + ab �� �ab � 1��) ab g1(z � �) + � = akb + ab ���a� bb ��) g2(z � �) + � = akb + ab ���a� bb �� :Thus J2 passes through the point �z; akb + ab �� �a�bb ���.Now, 
onsider the subsets of � of the form (z; by + r)�, for y; z 2 Z andr 2 N varying between 0 and b � 1, i.e., the subsets f(z; by)� : y; z 2 Zg,f(z; by+ 1)� : y; z 2 Zg, et
.The line J1 still has an irrational gradient relative to any subset of � of thisform, and will thus pass arbitrarily 
lose to points in ea
h of these subsets.If J1 passes through the point (z; bk + r + �)� then J2 passes through thepoint �z; ak + ab r + ab �� �a�bb ���.In the term ak + ab r + ab � � (a�bb )� the value ak is an integer, and thevalue ab � may be arbitrarily small. Thus the fra
tional part of this term 
anbe arbitrarily 
lose to the fra
tional part of ab r shifted by (a�bb )�. By lookingat di�erent values of r we get the 
entre line of S2 having a fra
tional partarbitrarily 
lose to the fra
tional part of �a�bb �; 1b � a�bb �; 2b � a�bb � et
. Butwe also know that when J2 takes any of these values the strip S2 must be wide69



enough to 
ontain a latti
e point (if it 
ontains latti
e points with the sameproje
tions as every latti
e point in S1).Thus we must examine the distan
e from an integer of the most distant ofthe points in, �rb ��a� bb �� : r 2 N; 0 � r � b� 1� :Of 
ourse, this will depend on �, but we 
an still put a lower bound on thevalue.Now we look at the points � rb : r 2 N; 0 � r � b� 1	. These points areevenly spa
ed between 0 and 1, and it is this set of points with some �xedshift that we are interested in. Sin
e the points are evenly spa
ed, we will
onsider the shift by (a�bb )� to be of length less than 1b .If b is even, then 12 is in the set of points, as are 12 + 1b and 12 � 1b . Thus if� is zero we get that the furthest point from an integer is 12 and therefore thestrip S2 must have height at least 1 in �. Of 
ourse, � may be non-zero, but theshift that minimises the distan
e of the furthest point is 12b (or � 12b ), resultingin a distan
e of b�12b between the most distant point and an integer. Thereforewhen b is even the strip S2 must have height at least b�1b in �.If b is odd, then the points 12� 12b and 12+ 12b are in � rb : r 2 N; 0 � r � b� 1	,and any shift of size less than 1b will result in one of these points moving furtheraway from an integer. So as above if b is odd, the minimum distan
e of the mostdistant point from an integer is b�12b , and again the strip S2 must have heightat least b�1b in �.As explained above, the question of whether a 
anoni
al width strip at onegradient 
an 
ontain latti
e points with the same proje
tions as all the latti
epoints in a strip at a di�erent gradient is important when de
iding whether atiling with the origin not at the proje
tion of the interse
tion point is the same70



as one where the interse
tion point is above the origin.From the above results, we get the following proposition.Proposition 4.10. If we have a rational X-proje
tion with strips S1 and S2 atgradients g1 and g2 satisfying, g1 = ab g2with neither ab nor ba an integer, and with S1 and S2 having heights in � of lessthan 12 then the interse
tion-point tilings des
ribed in proposition 4.4 are all theinterse
tion-point tilings for this setup.Proof. We have strips S1 and S2 with lower boundaries I1 and I2 passingthrough points p1 and p2 with,p1 6= p2 + (0; n)�for n 2 Z, and �(p1) = �(p2) = O :Say we have an identi
al tiling given by translating strips S1 and S2 (to getS01 and S02, with 
orresponding lower-boundary lines I 01 and I 02) so that,I 01\ I 02 = qwith �(q) = O.Then as explained in the dis
ussion following proposition 4.7, we must havethat, n�(y) : y 2 S01nS1\�o � n�(x) : x 2 S2\�on�(y) : y 2 S1nS01\�o � n�(x) : x 2 S02\�o71



and also, n�(x) : x 2 S02nS2\�o � n�(y) : y 2 S1\�on�(x) : x 2 S2nS02\�o � n�(y) : y 2 S01\�o :It 
ould be the 
ase that q 
oin
ides with p1 or p2, but of 
ourse not bothso at least one of S01nS1 and S02nS2 must exist.Say that S01nS1 exists, then (sin
e the heights of the strips are both less than12 , whi
h is the lowest value b�1b 
an take) by theorem 4.9 we have that,n�(y) : y 2 S01nS1\�o 6� n�(x) : x 2 S2\�o :Thus the tiling is indeed a non-interse
tion-point tiling.We now look at the possible height of a 
anoni
al width strip in �. This willdepend on the gradient of the pattern spa
e E.Proposition 4.11. If pattern spa
e E is at gradient 
d with 
 and d 
oprime,and 
d not equal to n or 1n for n 2 N then a 
anoni
al width strip must haveheight in � of less than 12 .Proof. If E is at gradient 
d then the latti
e � is generated by the ve
tors (d; 
)and (�
; d).If we have a 
anoni
al width strip S at gradient p (with p > 0) with lowerboundary passing through O, then the upper boundary of S will pass throughthe point (�1; 1). What we are interested in is the point at whi
h this upperboundary interse
ts the line between O and (�
; d).For S to have height 12 in � we would require the upper boundary of S topass through the point �� 
2 ; d2�. Note that we have,72



� 
2 � �1d2 � 1and also note that we 
annot have both values being equal to 1 (sin
e E 
annothave gradient 1).However, the upper boundary of S passes through the point (�1; 1) and hasstri
tly positive (�nite) gradient, so 
annot also pass through any point (�x; y)for both x and y greater than or equal to 1. Thus S 
annot have height as mu
has 12 in �.Corollary 4.12. When we are proje
ting onto a pattern spa
e E at gradient 
dwith 
d not equal to n or 1n for n 2 N and the strips S1 and S2 have gradientsg1 and g2 relative to � satisfying, g1 = ab g2for ab not equal to m or 1m (m 2 Z), then the interse
tion-point tilings identi�edin proposition 4.4 are all of the interse
tion-point tilings.Proof. Follows from proposition 4.10 and proposition 4.11.This also provides us with a fundamental result about these tilings:Corollary 4.13. Consider the tilings generated by 2:1 X-proje
tion s
hemesas above, i.e., with pattern spa
e E at gradient 
d with 
d not equal to n or 1n ,for n 2 N, and with strips S1 and S2 having gradients g1 and g2 relative to �satisfying, g1 = ab g2for a 2 Z and b 2 N 
oprime and ab not equal to m or 1m for m 2 Z.73



Any tiling generated in this way is aperiodi
.Proof. Take a tiling T generated in the above way.If T is an interse
tion-point tiling then by the above dis
ussion it is distin
tfrom all translates of T that are non-interse
tion-point tilings. A similar argu-ment to that presented in proposition 4.10 proves that it is also distin
t fromall translates that are interse
tion-point tilings. So T must be aperiodi
.If T is a non-interse
tion-point tiling then there exists some translation uso that T + u is an interse
tion-point tiling. Then, as above, T + u must beaperiodi
, and therefore T is aperiodi
.4.3 Rationally Related GradientsThere are two possibilities for the relationship between the gradients of thetwo strips relative to the latti
e �, namely that they are either rationally orirrationally related. That is, if we denote by p the gradient of strip S1 and byq the gradient of strip S2 (both in � 
oordinates) then we 
an have that p iseither a rational or an irrational multiple of q. In this se
tion we will look atthe �rst of these 
ases.De�nition 4.10. When we have X-proje
tion giving tiling U with interse
tionpoint tilings Vi, i 2 Z, 
orresponding to translates of U then we will refer to thelo
ations of the interse
tion points of the setups produ
ing the tilings Vi withinfundamental domains of L or � as translate points.So a translate point is a point at whi
h you 
an reposition the interse
tionof the strips in an X-proje
tion setup to get a translate of the original tiling.Proposition 4.14. When the gradients of the two strips are rationally relatedrelative to �, the translate points form dense subsets of a �nite number of hor-izontal lines in the fundamental domain of �.74



Proof. Re
all from the proof of proposition 4.4 that we get a translate point ofthe tiling when we have points t1 and t2 on the lower boundaries of strips S1and S2 satisfying, t1 = t2 + (0; z)�for some z 2 Z. This happens at x 2 R where,px = qx+ z :In the 
ase where p and q are rationally related we have that,p = aq; a 2 Q ) x = zq(a� 1)but, qx = za� 1 2 Q :So the points of interse
tion appear at irrational steps along but at rational\heights", relative to �. Writing 1a�1 as �� (with �; � 2 Z 
oprime) we get thatthe \heights" of the interse
tion points within the fundamental domain of �are the fra
tional parts of z�� for z 2 Z. Sin
e � and � are 
oprime we get �di�erent values for the fra
tional part of z�� , and as we 
onsider x values in turnwe will 
y
le through these � values of the fra
tional part of z�� .So within the fundamental domain of � the points that 
orrespond to trans-lates of the tiling are dense within horizontal lines at heights 0, 1� , 2� , et
., thatis, if we put the original interse
tion point at the origin.Example 4.3. In this example the gradients of the two strips are rationallyrelated relative to �, meaning that we are in the 
ase des
ribed by proposition4.14. 75



We take the pattern spa
e E to be at gradient 23 and the two strips to havegradients relative to � of 1p2 and 13p2 , and we put the original interse
tion pointof the lower boundaries of the strips at the origin, thus:x = z2q = 3p2z2qx = z2 :So the translate points will form dense subsets of two horizontal lines inthe fundamental domain of �, one at height 0 and the other at height 12 , asillustrated by �gure 4.10.

Figure 4.10: The translate points for example 4.3 in the fundamental domainof �.For the original tiling the interse
tion point t is positioned at the origin.The next point at whi
h the lower boundaries of the two strips o

upy the sameposition within the fundamental domain of � 
omes at distan
e 3p22 along E(in � 
oordinates that is). At this point the line qx is at height 12 and theline px is at 32 , so in the fundamental domain of � the point 
orresponding tothis positioning of t is at ([ 3p22 ℄; 12 ), where square bra
kets are used to denotefra
tional part. Thus, putting the interse
tion point of the strips here gives you76



a translate of the original tiling by 3p22 relative to �, that is a translate by 3p262relative to L.The next point is at ([3p2℄; 0) and 
orresponds to double the translate alongE, and so on.However, these points do not 
over all possible translates of the tiling, onlyall integer multiples of a 
ertain translate, so there are more translates thanthose 
orresponding to the points above.These extra translates may not 
orrespond to a repositioning of t within thefundamental domain of �. Assuming that this is the 
ase we will get a pi
tureof the translates that looks a bit like that shown in �gure 4.11.

Figure 4.11: The line of translates of the tiling.The ends of the lines here are identi�ed as denoted by the numbers, thoughof 
ourse the lines will a
tually be dense, so the set of translates will look like adense spiral winding round a torus.4.4 Irrationally Related GradientsNow we investigate the 
ase where p and q are irrationally related.I.e., p = aq for some a irrational. 77



In fa
t this 
ase breaks down into two separate sub
ases:1. z(a�1)q 2 Q :2. z(a�1)q 2 RnQ :These 
ases 
orrespond to the gradients of L1 and L2 being irrationallyrelated but di�ering by either a rational (
ase 1) or an irrational (
ase 2) amount,relative to �.4.4.1 Gradients Di�er by a Rational AmountProposition 4.15. When the gradients of the two strips are irrationally relatedbut di�er by a rational amount relative to � we have translate points that aredense in a �nite number of verti
al lines in the fundamental domain of �.Proof. In this sub
ase we have that p� q 2 Q, and so,x = zp� q 2 Q :Sin
e x always takes a rational value, there will only be �nitely many possiblefra
tional parts of x, and therefore only �nitely many x-values for the translatepoints within the fundamental domain of �.However, the values of qx are of 
ourse irrational (being irrational multiplesof the values of x) and so the steps between 
onse
utive values have irrationalfra
tional parts and you will get dense sets of translate points on �nitely manyverti
al lines.Example 4.4. In this example we look at the points 
orresponding to translatesof a tiling of the type des
ribed in proposition 4.15 above, where the gradientsof the two strips are irrationally related relative to � but di�er by a rationalamount. 78



On
e again we will take the pattern spa
e E to be at gradient 13 , and if thetwo strips to have gradients p = p2 + 34 and q = p2 relative to � then:x = zp� q = 4z3qx = 4p2z3 :Thus the points are 
ontained in three verti
al lines within the fundamentaldomain of �, one of whi
h passes through the original interse
tion point withthe other two being translates of this line by 13 and 23 of the side length of thefundamental domain of �. So if the interse
tion point is on the side edge of afundamental domain of � then, in the fundamental domain of �, the positionsfor translate points will be like those shown in �gure 4.12.

Figure 4.12: The translate points for example 4.4 in the fundamental domainof �.In the fundamental domain of L the verti
al lines above will appear as linesperpendi
ular to E, that is having gradient �3. As with the previous example thethree lines traverse the fundamental domain of L several times giving a diagram79



that appears to 
ontain more lines of points, as shown in �gure 4.13.

Figure 4.13: The translate points for example 4.4 in the fundamental domainof L.4.4.2 Gradients Di�er by an Irrational AmountLemma 4.16. When the gradients of the two strips are irrationally related anddi�er by an irrational amount then ea
h translate point is both an irrationalstep along and an irrational step up from the previous one in the fundamentaldomain of �.Proof. The gradients of the strips di�er by an irrational amount, so p � q isirrational and therefore, x = zp� q 62 Qso the horizontal step from one point to the next is irrational, but also be
ausep = aq with a irrational we get that,
80



qx = qz(a� 1)q = za� 1 62 Qand so the verti
al step from one point to the next is also irrational.Proposition 4.17. If the fra
tional parts of x and qx are rationally relatedthen all the translate points will be on a line of rational gradient within thefundamental domain of �.Proof. The step from one translate point to the next must be along the line thathas gradient equal to the fra
tional part of qx divided by the fra
tional part ofx, and if these values are rationally related then this line must have rationalgradient.Example 4.5. This example shows the set of translate points of a tiling gener-ated by a rational 2:1 X-proje
tion s
heme of the type des
ribed in proposition4.17, where the gradients of the two strips are irrationally related relative to �and di�er by an irrational amount, but the fra
tional parts of the horizontal anverti
al steps between 
onse
utive translate points are rationally related.Take the gradients of L1 and L2 relative to � to be 3+ 1p21+ 1p2 and 2+ 1p21+ 1p2 respe
-tively.I.e., p and q take these values.Then, a = pq = 3 + 1p22 + 1p2 = 2 + 1p22 + 1p2 + 12 + 1p2 = 1 + 12 + 1p2 :So we have that,a� 1 = 12 + 1p2 ) (a� 1)q = 11 + 1p2 :Therefore, x = 1(a� 1)q = 1 + 1p281



and qx = 1a� 1 = 2 + 1p2 :So the fra
tional parts of z(a�1)q and za�1 are equal for all integers z and soall interse
tion points of the lower boundaries that are translates of the originalinterse
tion point appear on the line y = x within the fundamental domain of�. Giving a diagram that looks a bit like �gure 4.14.

Figure 4.14: The translate points for example 4.5 in the fundamental domainof �.If we on
e again take E to be at gradient 13 then if the bottom left 
ornerof the fundamental domain of � is situated at the origin we will have that thetop right 
orner is at (2; 4) in the latti
e L, thus the points lie on the line ofgradient 2 in the fundamental domain of L, as shown in �gure 4.15.
82



Figure 4.15: The translate points for example 4.5 in the fundamental domainof L.Example 4.6. In this example, as in example 4.5, the translate points are not
ontained in either horizontal or verti
al lines in the fundamental domain of �,however this time the translate points appear in more than one line at rationalgradient in the fundamental domain.If we have strips with gradients (relative to �) of,p = 3p2� 2q = p2then a is equal to 3 � p2 and so is irrational. Thus qx will be irrational andmore pre
isely we have that,x = zq(a� 1) = z2(p2� 1)qx = p2zp2(2�p2) = z2�p2 :83



The fra
tional parts of x and qx (at z = 1) are p2�12 and 1p2 respe
tively andso are irrationally related (with the fra
tional part of qx divided by the fra
tionalpart of x being equal to 22�p2).However, the set of points given by these values is not dense in the funda-mental domain of �. This is be
ause the fra
tional part of qx is equal to 12 plusthe fra
tional part of x when z = 1, as 
an be seen below.p2� 12 + 12 = p22 = 1p2 :So if we take our initial point to be at (0; 0) (whi
h is on the line y = x) thenthe next point will be on the line y = x + 12 within the fundamental domain of� and the next point will be ba
k on the line y = x, et
. In this way the pointswill alternate between being on these two lines within the fundamental domainof �, giving the situation shown in �gure 4.16.

Figure 4.16: Translate points for example 4.6 in the fundamental domain of �.This example 
omes from another sub
ase where,84



[qx℄ = 
[x℄ + rfor 
; r 2 Q. Here the square bra
kets are used to denote the fra
tional parts ofx and qx.Of 
ourse, if we allow r to be equal to zero then this sub
ase in
ludes the
ase des
ribed above where [x℄ and [qx℄ are rationally related.Proposition 4.18. Whenever [x℄ and [qx℄ are irrational and [qx℄ 
an be ex-pressed in the form 
[x℄ + r for some 
; r 2 Q this expression is unique.Proof. Assume that [x℄ and [qx℄ are irrational and that,[qx℄ = 
1[x℄ + r1[qx℄ = 
2[x℄ + r2for 
1; 
2; r1; r2 2 Q. ) 
1[x℄ + r1 = 
2[x℄ + r2) 
1[x℄� 
2[x℄ = r2 � r1) (
1 � 
2)[x℄ = r2 � r1 :However [x℄ is irrational, so 
1 � 
2 and r2 � r1 must both be equal to zero.Thus the expression is unique.Proposition 4.19. If we 
an write [qx℄ = 
[x℄ + r for some 
; r 2 Q (atz = 1) then the points are 
ontained in a �nite set of lines at gradient 
 in thefundamental domain of �.Proof. If we 
an write [qx℄ = 
[x℄+ r for some 
; r 2 Q (at z = 1) then as beforeif we think of our original point as being at (0; 0), whi
h is on the line y = 
x,85



the next point will be on the line y = 
x + [r℄ within the fundamental domainof �, and so on. Of 
ourse, be
ause r is rational this results in the points being
ontained in a �nite set of lines at gradient 
 within the fundamental domain of�. There is now one more 
ase that we will look at.Proposition 4.20. If [x℄ and [qx℄ are irrationally related but [qx℄ 
annot bewritten in the form 
[x℄+r for 
; r 2 Q then the translate points are not 
ontainedin any �nite set of parallel lines with rational gradients in the fundamentaldomain of �.Proof. If [qx℄ 
annot be written in this way then writing [qx℄ = 
[x℄ + r for anyrationally valued 
 means that r must be irrational.The initial point 
an always be 
onsidered to be positioned on a line parallelto y = 
x in the fundamental domain of �, but then the next point will be on aline parallel to y = 
x but shifted by an irrational amount (the fra
tional partof r), and the lines of gradient 
 
ontaining all subsequent points will be shiftedby integer multiples of the same irrational amount, thus ea
h line at gradient 

an 
ontain at most one of the points.Sin
e any rational value of 
 will give an irrational value for r we have thatthe points 
annot be 
ontained in any �nite number of parallel lines at rationalgradient in the fundamental domain of �.Corollary 4.21. A line drawn between any two translate points must haveirrational gradient.Proof. If we have an initial point that we think of as sitting on a line withrational gradient 
 then the next point in the sequen
e is sitting on a line withgradient 
 that is shifted by an irrational amount, and the same is true for allsubsequent points, so none of these points 
an be on the original line.86



Thus any line with rational gradient through any translate point must notpass through any other point in the set, so a line drawn between two points ofthe set must have irrational gradient.Of 
ourse, going from one translate point to another just involves taking anumber of steps, say k, and going through another k steps will give anotherpoint on the same line that is the same translation along again. So a line drawnbetween two points will have irrational gradient and will 
ontain in�nitely manytranslate points evenly spa
ed along its length.Lemma 4.22. Under the assumptions of proposition 4.20, for any " > 0 we
an �nd two translate points that are within distan
e " of ea
h other.Proof. As explained above in this 
ase the values of x and qx are both irrational,so the step from one point in the set to the next 
onsists of an irrational stepalong and an irrational step up. Thus the set of all x-
oordinates and the set ofall y-
oordinates are dense.So �x " > 0 and 
hoose a point in the set, say at position (x0; y0). Thenthere must be in�nitely many points with x-
oordinates between x0 and x0+ "p2 ,and these points 
annot all have y-
oordinates that are separated by more than"p2 so there must be a pair of points within distan
e " of ea
h other.Proposition 4.23. When [x℄ and [qx℄ are irrationally related but [qx℄ 
annotbe written in the form 
[x℄+ r for 
; r 2 Q then the set of translate points formsa dense subset of the fundamental domain of �.Proof. For any n 2 N we 
an divide the fundamental domain of � into squaresof side 1n . Then we 
an �nd two translate points that are within distan
e 12nof ea
h other and so we have a line with irrational gradient between them thathas translate points evenly spa
ed along its length with the gap between anytwo being less than 12n . 87



As the line is at irrational gradient it will interse
t all of the squares of side1n (
ountably many times) and be
ause of the distan
e between points on theline there must be at least one translate point within ea
h of the little squares.So for any n 2 N, when dividing the fundamental domain of � into an n byn grid there must always be at least one point in ea
h square, and therefore theset of translate points is dense in the fundamental domain of �.So all but one of the sub
ases where the gradients of the two strips areirrationally related relative to � result in sets of translation points that aredense on a �nite number of lines that have rational gradient (or are verti
al).These sub
ases should therefore give sets of translates that are similar to thatseen in the 
ase where the gradients of the two strips are rationally relatedrelative to �.The �nal sub
ase gives a dense set of points in the fundamental domain of� and as su
h the set of translates should look quite di�erent from the other
ases.Note that the �nal 
ase is in fa
t the general 
ase, with the other 
asesrequiring some rational relationship between the gradients of the strips or thesteps between latti
e points.
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4.5 SummaryFigure 4.17 gives a summary of the results in this se
tion.

Figure 4.17: The sets of translate points given by rational 2:1 X-proje
tions.
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4.6 Explanation of DiagramsIn this se
tion we will present some further explanation of the diagrams, likethose above, that are produ
ed by rational 2:1 X-proje
tions. In parti
ular wewill be looking at the 
ase where the gradients of the two strips are rationallyrelated to ea
h other, relative to �.The setup is as before, with points from integer latti
e L being proje
tedonto pattern spa
e E at gradient 
d . We have strips S1 and S2 at gradients g1and g2 (relative to �).We are looking at the 
ase where g1 and g2 are rationally related, so we saythat, g1 = ag2for some a 2 Q. We will assume that jaj� 1, and be
ause a is rational we willsometimes write, a = a1a2 :Note that the above fra
tion is assumed to be expressed in its lowest terms,so a1 and a2 are 
oprime.4.6.1 Gradients of LinesAs explained above, in the 
ase where g1 and g2 are rationally related thetranslate points appear in horizontal lines in the fundamental domain of �.Due to � being rotated relative to L these lines will have gradient equal to thatof E in the fundamental domain of L.It is also worth noting that ea
h line in the fundamental domain of � willgive a loop in the fundamental domain of L, and will thus look like several lines
rossing the fundamental domain. 90



4.6.2 Number of LinesThe value a (the ratio of the gradients of the two strips) determines the numberof lines in the fundamental domain of � in whi
h the translate points sit.The following proposition explains this relationship.Proposition 4.24. With the above setup, the translate points are 
ontained inja1 � a2j lines in the fundamental domain of � .Proof. As explained above, in the fundamental domain of � we have an irra-tional horizontal step and a rational verti
al step between 
onse
utive translatepoints.The verti
al step is (the fra
tional part of),1a� 1 :Thus the translate points 
an be found in a number of lines equal to thenumber of distin
t fra
tional parts of multiples of the above term.If we have a1 � a2 = z, for some z 2 Z, then we get,1a� 1 = 1a1a2 � 1 = a2a1 � a2 = a2z :We now look at the fra
tional parts of all multiples of this value to determinethe number of lines in the fundamental domain of �.There will be jz j distin
t fra
tional parts provided a2 and z are 
oprime.However, they must be 
oprime, sin
e a1 = a2+ z and the values a1 and a2 are
oprime.A single horizontal line in the fundamental domain of � will 
ross severalfundamental domains of L, and sin
e the translate (1; 0)� is equal to the trans-late (d; 
), a line a
ross the fundamental domain of � will give a loop aroundthe fundamental domain of L. 91



We will now look at the number of loops 
ontaining translate points in thefundamental domain of L. This will often be the same as the number of linesin the fundamental domain of �, however the two numbers are not ne
essarilythe same, as the following results show.Lemma 4.25. Within the fundamental domain of � there are 
2+ d2 points ofL (
ounting the four latti
e points at the 
orners as a single latti
e point).Proof. Due to the way that it is de�ned, the fundamental domain of � does not
ontain any latti
e points from L with the same proje
tions (with the ex
eptionsof the points at the 
orners).To see this, 
onsider any latti
e point (r; s) within the fundamental domainof �. The 
losest points of L with the same proje
tions as (r; s) are the points(r� 
; s+ d) and (r+ 
; s� d). However, neither of these points lie in the samefundamental domain of � as the point (r; s) (unless (r; s) is one of the 
ornerpoints).Note that for similar reasons if we have a point on E that 
an be the pro-je
tion of a latti
e point of L then ea
h fundamental domain of � above andbelow that point will 
ontain a latti
e point with that proje
tion.Now, by lemma 4.6, the shortest distan
e between the proje
tions of latti
epoints of L is 1p
2+d2 . Thus, by the above arguments, the fundamental domainof � 
ontains pre
isely one point of L proje
ting to ea
h of the points np
2+d2for n varying between 0 and 
2 + d2 (with these values giving the points at theedges of the fundamental domain of �).So we get that the fundamental domain of � 
ontains 
2 + d2 � 1 points ofL within its interior.Proposition 4.26. In the fundamental domain of L the points appear in anumber of loops equal to ja1 � a2j, provided ja1 � a2j and 
2 + d2 are 
oprime.Proof. We have ja1 � a2j= n evenly-spa
ed lines in the fundamental domain of�. If we have one of the lines being at height zero, then the others must be at92



heights 1n , 2n , et
. With the line at height 1 being the same as the line at height0. Ea
h of these lines gives a loop in the fundamental domain of L, but thequestion is whether all of these loops are distin
t.The �rst line (at height zero) runs through a latti
e point, so if any otherlines run through latti
e points then they will be overlaid in the fundamentaldomain of L.The latti
e points within the fundamental domain of � are evenly spa
ed atheights 1p
2+d2 , 2p
2+d2 , et
. So they sit on m = 
2 + d2 evenly-spa
ed lines inthe fundamental domain of �, again with the line at height 1 ignored sin
e it isthe same as the line at height 0.When m and n are 
oprime only the lines at height 0 
an 
oin
ide. Thus theloop in L 
orresponding to the line at height 0 in � is not overlaid by any otherloop. We also 
annot have two other lines of translate points giving overlaidloops in the fundamental domain of L sin
e the translate points are on evenly-spa
ed lines and would need to di�er in height by some multiple of 1p
2+d2 .However, sin
e m and n are 
oprime this 
annot happen.The proof is similar when none of the lines of translate points is at heightzero in the fundamental domain of �.
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Example 4.7. If we have E at gradient 12 , and the translate points sitting on3 lines in the fundamental domain of � then the situation will look like thoseshown in �gure 4.18 (for one of the lines of translate points being at height 0).

Figure 4.18: The translate points in the fundamental domain of �, with pointsof L also marked.So here n = 3 and m = 5, and the only pla
e that two of the lines 
oin
ideis at height 0 in the fundamental domain of �.Proposition 4.27. Let k 2 N be the highest 
ommon fa
tor of ja1 � a2j and
2 + d2, then the translate points appear in a number of loops equal to,ja1 � a2jkin the fundamental domain of L.Proof. Say that, ja1 � a2j= �k
2 + d2 = �kfor some �; � 2 N. Then the translate points appear on �k lines in the funda-94



mental domain of � and the latti
e points appear on �k lines. As before, theselines have evenly-spa
ed heights in the fundamental domain of �, so a step of(0; 1k )� moves you from one line running through a latti
e point to another linerunning through a latti
e point.The translate points sit on �k evenly-spa
ed lines, so if we have a line atheight 0 then there will be a line at height 1k in the fundamental domain of �(the line � steps up from the �rst line) and similarly lines at heights 2k , 3k , et
.In a similar way there will be lines at heights 1n , 1n + 1k , 1n + 2k and so on, withall of these line being overlaid in the fundamental domain of L.Thus the n distin
t lines in the fundamental domain of � will be
ome atmost � distin
t loops in the fundamental domain of L.Indeed, there will be exa
tly � distin
t loops in the fundamental domain ofL be
ause � and � are 
oprime (sin
e k is the highest 
ommon fa
tor), in asimilar way to the previous proof.Figure 4.19 shows the lines that are referred to in the previous results in the
ase where E is at gradient 23 .

Figure 4.19: The lines through points of L in the fundamental domain of �.Ea
h of these lines passes through a latti
e point, and they are overlaid inthe fundamental domain of L. 95



4.6.3 Size of RotationWe have already established that the diagram 
orresponding to a tiling setup ofthis type 
onsists of dense sets of points on a �nite number of loops at gradientequal to E in the fundamental domain of L. We now look at the length of thesteps along the loops between these latti
e points. Sin
e we are referring to thelines as loops we will 
all this step a rotation, and as explained earlier in the
hapter, this will be an irrational rotation.So, as was mentioned earlier in this 
hapter, the horizontal step between
onse
utive translate points is, 1g1 � g2in �-
oordinates. Thus in the 
ase where we have the translate points in a singleloop in the fundamental domain of L the rotation will be 2�g1�g2 (or rather, thefra
tional part of this).When the translate points are 
ontained in more than one loop then 
onse
-utive translate points will be on di�erent loops. However, we will 
y
le throughall the loops in turn, so if there are k loops then the rotation on ea
h one willbe (the fra
tional part of) 2k�g1�g2 .4.6.4 Comparing DiagramsHaving des
ribed the diagrams produ
ed by these tilings in some more detailit seems natural to investigate whether two di�erent tiling s
hemes will givedi�erent diagrams. This turns out not to be the 
ase, as the following dis
ussionreveals.We will be 
omparing diagrams asso
iated to two tiling s
hemes, as beforethese will be rational 2:1 X-proje
tions with the gradients of the two stripsrationally related relative to �.So, we have setup 1 with 
hara
teristi
s,96



� Pattern spa
e E at gradient 
d (and asso
iated latti
e �).� Strips S1 and S2 at gradients g1 and g2 respe
tively (relative to �).� Gradients satisfying, g1 = ag2, with a = a1a2 2 Q.Similarly, setup 2 
onsists of,� Pattern spa
e E0 at gradient 
0d0 (and asso
iated latti
e �0).� Strips S01 and S02 at gradients g01 and g02 respe
tively (relative to �0).� Gradients satisfying, g01 = a0g02, with a0 = a01a02 2 Q.For the diagrams produ
ed by these setups to look identi
al they must havetranslate points on the same number of lines, at the same gradient and with thesame rotation on ea
h line.By the previous parts, the gradients of the lines are the same if and only ifthe gradients of E and E0 are the same, so we must have that,
d = 
0d0 :Re
all that 
 and d (also 
0 and d0) are 
oprime, so in fa
t we must have that
 = 
0 and d = d0. Note that this also means that the latti
es � and �0 will bethe same.We next look at the 
onditions required for the number of loops in whi
hthe translate points sit to also be the same. If the gradients are the same thenlatti
es � and �0 are the same, and the setups will give the same number oflines in the fundamental domain of � (�0) if and only if,ja1 � a2j=ja01 � a02j :This would of 
ourse give the same number of loops in the fundamentaldomain of L. However, as we have seen above, it is possible to have di�erent97



numbers of lines in � giving the same number of loops in L. The followingtwo 
orollaries to proposition 4.27 des
ribe the 
ir
umstan
es in whi
h this 
anhappen.Corollary 4.28. If we have two tiling setups as above (spe
i�
ally with E andE0 at the same gradient) having, ja1 � a2j= n
2 + d2 = mwith n and m 
oprime then if ja01 � a02 j= n or nm we get that the number ofloops 
ontaining translate points in the fundamental domain of L is the samefor both tiling setups.Proof. This is 
lear when ja1� a2j = ja01� a02j. When ja01� a02j = nm the resultfollows from proposition 4.27.Corollary 4.29. If we have, 
2 + d2 = �kja1 � a2j = �kwith k the highest 
ommon fa
tor (so � and � 
oprime), then the se
ond tilingsetup will give the same number of loops in the fundamental domain of L pro-vided that ja01 � a02j is equal to �, �k or ��k.Proof. Again, this follows from proposition 4.27.All that remains now is to look at when the rotations are also the same. Asmentioned before, the horizontal step between translate points in � 
oordinatesis of length 1g1�g2 . Thus if both setups give the same number of lines in � wewill have the same rotation provided, 98



1g1 � g2 = 1g01 � g02 :We 
an also get rotations that di�er by some integer number of full rotationsif we have, 1g1 � g2 = 1g01 � g02 + zfor some z 2 Z.Indeed, these results also hold when we have proje
tion setups giving unequalnumbers of lines in � but equal numbers of loops in L. This is be
ause we willstill 
y
le through all the loops in some order, so even though some of the linesget overlaid we still need the same horizontal step between translate points.Proposition 4.30. If we have, g02 = a� 1a0 � 1g2then the horizontal steps of the two tilings are equal.Proof. The horizontal steps (and therefore the rotations if everything else isequal) are the same if, 1g1 � g2 = 1g01 � g02 :But sin
e g1 = ag2 and g01 = a0g02 we have that,1g1 � g2 = 1g01 � g02 , g1 � g2 = g01 � g02, g2(a� 1) = g02(a0 � 1), g02 = a� 1a0 � 1g2 :99



From the above results, we 
an 
on
lude that it is possible to get two di�erenttiling setups produ
ing identi
al diagrams. This will be true if, for example, wehave,� E = E0.� ja1 � a2j = ja01 � a02j.� g02 = a�1a0�1g2.Example 4.8. For a spe
i�
 example of when this 
an happen, 
onsider thesetup where E = E0 = 13 and we have in tiling s
heme 1 that g1 = 1p2 andg2 = 12p2 . This gives us a value of 2 for a, so ja1 � a2j = 1.If we have a0 = 54 , then the number of lines of translate points in � produ
edby ea
h setup is the same, sin
e we have that ja01 � a02j = 1.For the rotations to also be equal we must have that,g02 = a� 1a0 � 1g2 = 4g2 = p2 :Then of 
ourse we get, g01 = a0g02 = 54p2 :So if you have a tiling s
heme where the gradients of the strips are 1p2 and12p2 and another where the strips have gradients p2 and 54p2 they will produ
eidenti
al diagrams if the proje
tion is onto the same pattern spa
es (up to thelines of points being translated of 
ourse).The tilings produ
ed by these two s
hemes are not the same. Figure 4.20and �gure 4.21 show pat
hes of these two tilings. Note that here we have takena pat
h from ea
h tiling and drawn it both horizontally and verti
ally alongthe sides of the square, then 
ombined to get a two dimensional diagram. Theintention is to make it easier to see di�eren
es between the tilings.100



Figure 4.20: A pat
h of the tiling T� 9+10p217 ; 27+20p271 ; 13�.The third number in the 
aption shows the gradient of the pattern spa
ethat we are proje
ting onto, the �rst two numbers denote the gradients of thetwo strips in normal 
oordinates, so these will give gradients 1p2 and 12p2 in�-
oordinates.The pat
hes already look quite di�erent, but to see that these two tilings
annot be the same we look at the gradients of the strips involved.Strip S1 is at gradient 9+10p217 , whi
h has a value between 1 and 2. Thereforethe tiling T1 asso
iated to this strip will, due to the gradient of pattern spa
e Ebeing 13 , have prototiles of lengths \1" and \3" with the longer prototiles alwaysappearing 
anked by shorter prototiles and the shorter prototiles appearing inblo
ks of length 1 or 2.Strip S2 is at gradient 27+20p271 , whi
h has a value between 12 and 1. Tiling101



Figure 4.21: A pat
h of the tiling T� 99+100p247 ; 9+10p27 ; 13�.T2 will therefore have the same prototiles, but with the long prototiles appearingin blo
ks of length 1 or 2 and the shorter ones appearing in singles.Sin
e the longer tiles in T1 only appear in singles we will not get a pat
h oftwo 
onse
utive long tiles in the 
ombined tiling. However, we 
an get pat
hesthat 
onsist of a long tile followed by a short tile followed by another long tile(and indeed some of these 
an be seen in �gure 4.20).Looking at the other tiling we have strip S01 at gradient 99+100p247 , whi
h hasa value between 5 and 6, and strip S02 at gradient 9+10p27 , whi
h is between 3and 4. Thus in tiling T 01 we must have at least 5 short tiles between appearan
esof long tiles, and in T 02 we must have at least 3 short tiles between long tiles.Therefore we 
annot have a \long-short-long" pat
h in the 
ombined tiling.102



5 Tiling Spa
esIn this 
hapter we will investigate the spa
es asso
iated to rational 2:1 X-proje
tions.We will do this by �rst examining the standard 2:1 
anoni
al 
ase, thenlooking at an intermediate one-strip non-parallel 
ase before �nally moving ontorational 2:1 X-proje
tions.We start by re
apping some de�nitions �rst given in 
hapter 2 (see also [14℄).De�nition 2.12. Given two tilings U1 and U2 of Rn we de�ne the distan
ebetween these two tilings, d(U1; U2), to be equal to,inf nf1g[n" : U1 + s1 = U2 + s2 on B 1" with s1; s2 2 Rn ; ks1k; ks2k< "2oowhere B 1" denotes the ball of radius 1" 
entred at the origin.Note that here U + s is the tiling obtained by translating tiling U by ve
tors (or equivalently moving the origin by �s).The metri
 here is de�ned on the set of all tilings of Rn , though we will beinterested in the 1-dimensional analogue of this de�nition, de�ned on the set ofall 1-dimensional tilings (i.e., tilings of R).With this metri
 two tilings will be 
lose if they agree up to a small trans-lation on a large ball about the origin.We 
an now look at the translates of a tiling and how far these are from theoriginal tiling in the tiling metri
.De�nition 2.13. The orbit of a tiling U of Rn is de�ned to be,O(U) = fU + s : s 2 Rng :That is, the set of all translates of the tiling U .103



De�nition 2.14. A tiling spa
e 
 is a set of tilings that is 
losed under trans-lation and 
omplete in the tiling metri
, i.e., if U 2 
 then O(U) � 
, andevery Cau
hy sequen
e of tilings in 
 has a limit in 
.De�nition 2.15. The hull or orbit 
losure 
U of a tiling U is the 
losure ofO(U).As above, we will be interested in tilings of R, so the 
losure will be in thespa
e of all 1-dimensional tilings.The hull of a tiling U is the set of tilings that lo
ally look like U . A tilingU 0 is in 
U if and only if every pat
h of U 0 is found in a translate of U .We will of 
ourse be interested in the tiling spa
es of proje
tion tilings, inparti
ular rational 2:1 X-proje
tions, therefore we may also be interested in thespa
e 
0, whi
h is the set of all tilings given by allowed positions of interse
tionpoints, and any other translates of these tilings, 
ompleted as with 
U .The spa
es 
U and 
0 may not be the same in all 
ases. In fa
t, at thispoint it is not 
lear what their relationship is.5.1 The Canoni
al 2:1 CaseWe will begin by examining the standard 2:1 proje
tion 
ase. There follows ashort re
ap of the 
anoni
al 2:1 proje
tion setup (�rst de�ned in 
hapter 2).De�nition 2.8. A 
anoni
al 2:1 proje
tion s
heme is a 
ut-and-proje
t s
hemewith latti
e L = Z2 and a

eptan
e domainK being a 
losed interval, where thewidth of this interval, and therefore the strip that latti
e points are proje
tedfrom, is taken to be equal to the proje
tion of a unit square onto E?. Inaddition, the a

eptan
e domain K is 
hosen so that the boundaries of the stripdo not interse
t any points of L.So in a strip S of 
anoni
al width, the point (�; �) (for �; � 2 R) is on thelower boundary of S if and only if the point (� � 1; � + 1) is on the upperboundary. 104



Figure 5.1: A 
anoni
al 2:1 proje
tion s
heme.Note that the strip must have an irrational gradient. This is be
ause aproje
tion with rational gradient would not result in �1jL being inje
tive norwould �2(L) be dense in E?.As in the previous 
hapter with rational 2:1 X-proje
tions, we will look atthe ways in whi
h we 
an position the strip within the fundamental domain ofL and the tilings these di�erent positions will give us (note that as in de�nition4.4 when we refer to the fundamental domain of L we mean the unit squarewith verti
es (0; 0); (1; 0); (0; 1) and (1; 1)).De�nition 5.1. Given a 
anoni
al 2:1 proje
tion s
heme with strip S produ
-ing a tiling T with origin O we say that the point t, within the fundamentaldomain of L, on the lower boundary of strip S satisfying �(t) = O is the point
orresponding to tiling T . When we talk about a strip being pla
ed at a pointin the fundamental domain of L then this point will be the point on the lowerboundary of the strip that proje
ts to the origin in the tiling produ
ed by ourproje
tion s
heme.In the de�nition of a 
anoni
al 2:1 proje
tion s
heme we require that the105



strip to be positioned so that its boundaries do not pass through any points ofthe latti
e L. Thus for a given setup there are 
ertain points in the fundamentaldomain of L at whi
h the strip 
annot be pla
ed.In a similar way, if we start with a tiling, with a 
orresponding point in thefundamental domain of L, then we 
an look at the translates of this tiling, whi
hwill be produ
ed by e�e
tively sliding the 
orresponding point along the strip.We thus get the sets of translates and forbidden points shown in �gure 5.2in the 
ase of a standard 2:1 proje
tion.

Figure 5.2: The 
anoni
al 2:1 proje
tion 
ase.Here, the bla
k line shows the points at whi
h the strip 
annot be positioned,and the red line shows the points that 
orrespond to translates of our tiling. Notethat these lines are a
tually dense.We will make a distin
tion between points through whi
h the boundaries ofthe strip 
an run and points that are forbidden.De�nition 5.2. For a given 2:1 proje
tion setup we say that a point (x; y) inthe fundamental domain of L is singular if positioning the strip with (x; y) onthe boundary results in the boundary of the strip passing through a point oflatti
e L. 106



Equivalently, the point (x; y) in the fundamental domain of L is singular ifthere exists a point (m;n) 2 L su
h that,(m;n) = (x; y) + r(1; g)for some r 2 R, where g is the gradient of the strip.All other points in the fundamental domain of L (i.e. the points throughwhi
h the edges of the strip may run without interse
ting a latti
e point) are
alled non-singular.All the translate points of a tiling are of 
ourse non-singular, but not allnon-singular points will 
orrespond to translates of the original tiling.Sin
e we only have one strip of 
anoni
al width in this setup, we only geta single line of singular points in the fundamental domain of L, and similarlythe translates of a given tiling appear in a single line. Both of these lines areat the gradient of the strip, whi
h is irrational, and therefore wind round thefundamental domain of L. Thus, as mentioned above, they appear as dense setsof lines in the fundamental domain.Proposition 5.1. (see [4℄) There is a 
ontinuous map, f , from the tiling spa
eof a 
anoni
al 2:1 proje
tion to a 2-torus satisfying,� f is one-to-one over non-singular points.� f is two-to-one over singular points.From this we know that if we have a 
onvergent sequen
e of non-singularpoints within the fundamental domain of L with non-singular limit point xthen we get a 
orresponding sequen
e of tilings 
onverging to the tiling that
orresponds to point x.However, if we have two sequen
es of non-singular points in the fundamentaldomain of L 
onverging to the same singular point, y, but from opposite sides107



then these sequen
es will have di�erent limits. This is be
ause a strip with pointy on the lower boundary will have some latti
e points, (m;n) and (m�1; n+1)on its boundaries, therefore a sequen
e 
onverging to y from one side will givetilings 
ontaining the point �(m;n) but not the point �(m � 1; n + 1) after a
ertain stage, resulting in �(m;n) appearing in the limit, whereas a sequen
e
onverging to y from the other side will give a tiling at the limit that 
ontains�(m� 1; n+ 1) but not �(m;n).Thus the line of singular points in the fundamental domain of L 
orrespondsto a double line in the tiling spa
e.5.2 One-Strip Non-Parallel Proje
tionsWe will now look at the 
ase where we have a single strip at 
anoni
al width (stillat irrational gradient) but we proje
t onto a line at a positive, �nite rationalgradient (not equal to 1). This is an intermediate step between standard 2:1proje
tions and rational 2:1 X-proje
tions.The tiling produ
ed by 
hanging the gradient of the pattern spa
e (andtherefore altering the proje
tion), but leaving the strip un
hanged is 
ombina-torially the same as in the standard 
ase, with the alteration to the proje
tiononly a�e
ting the lengths of the two prototiles.If we have a standard 2:1 proje
tion tiling T having prototiles t1 and t2we will get a 
orresponding one-strip non-parallel proje
tion tiling T 0 havingprototiles t01 and t02 with the origin in T 0 being at the equivalent point in theprototile 
orresponding to the prototile over the origin in T . For example, ifthe origin in T is at the midpoint of a t1 tile then the origin in T 0 will be at themidpoint of a t01 tile. Of 
ourse, we 
an also do this in the other dire
tion toget the standard 2:1 proje
tion tiling 
orresponding to a one-strip non-parallelproje
tion tiling.Thus we have a bije
tion between the set of tilings generated by a standard108



2:1 proje
tion s
heme and the 
orresponding tilings obtained by proje
ting ontoa line at rational gradient rather than one that is parallel to the strip.Proposition 5.2. Two standard proje
tion tilings T1 and T2 are 
lose in thetiling metri
 if and only if their 
orresponding one-strip non-parallel proje
tiontilings T 01 and T 02 are 
lose in the tiling metri
.Proof. We have four tilings, T1, T2, T 01 and T 02. The tilings T1 and T2 aremade up of prototiles t1 and t2 and the tilings T 01 and T 02 have prototiles t01and t02. Altering the line that we are proje
ting onto 
hanges the lengths of theprototiles, and will have the e�e
t of lengthening one and shortening the other.So let us assume that, jt01j = �jt1jjt02j = �jt2jwith � > 1 and � < 1.Now, if T1 and T2 are within distan
e " of ea
h other then after some translateof up to distan
e " all the points within 1" of the origin of tilings T1 and T2
oin
ide.Thus all the 
orresponding points within tilings T 01 and T 02 will 
oin
ide aftersome translate of distan
e less than �", sin
e the distan
es between points 
anbe s
aled by at most �.However, the radius of the pat
h 
ontaining these points may also vary. Thepat
h in tilings T 01 and T 02 is made up of t01 and t02 tiles rather than t1 and t2tiles, and therefore has a minimum possible radius of �" . So the tilings T 01 andT 02 
oin
ide on a ball of radius �" after a translate of up to �".Now, if � � 1� then after a translate of up to �" the tilings T 01 and T 02 must
oin
ide on a ball of radius �" � 1�" about the origin, and hen
e the two tilingsare within distan
e �" in the tiling metri
.109



If � < 1� then after a translate of up to �" < "� the tilings T 01 and T 02 
oin
ideon a ball of radius �" about the origin. Thus the two tilings are within distan
e"� in the tiling metri
.So if we have standard proje
tion tilings T1 and T2 that are 
lose in the tilingmetri
 then their 
orresponding one-strip non-parallel proje
tion tilings T 01 andT 02 must be 
lose in the tiling metri
. The proof of the 
onverse is similar.From this we 
an see that if we have a standard 2:1 proje
tion tiling Tthen there is a homeomorphism between 
T and 
T 0 , where T 0 is the tiling
orresponding to T but with the proje
tion onto a pattern spa
e at some rationalgradient.Therefore, as with the standard 2:1 proje
tion 
ase, we will have a 
ontinuousmap from 
T 0 to the 2-torus that is one-to-one on non-singular points and two-to-one on singular points. As with the standard 
ase, the singular points ofa one-strip non-parallel proje
tion tiling appear in a single line at irrationalgradient winding round the fundamental domain of L. This line is the same asfor the 
orresponding standard 2:1 proje
tion tiling, sin
e forbidden points aredetermined by the strip and are independent of the proje
tion. Also, as withthe standard 2:1 proje
tion, the line of forbidden points will be a double line inthe hull of a 2:1 one-strip non-parallel proje
tion tiling.5.3 Rational 2:1 X-Proje
tionsWe now move on to looking at tilings generated by rational 2:1 X-proje
tions
hemes. The pattern of points given by su
h a tiling s
heme is a 
ombinationof the point patterns given by two proje
tions of the type shown above, withstrips at di�erent gradients but the same pattern spa
e.We will �rst re
ap the possible positions of the interse
tion point of the twostrips. That is, the points in the fundamental domain of L at whi
h the point atthe interse
tion of the lower boundaries of the two strips may be positioned. As110



explained in 
hapter 4, for a given rational 2:1 X-proje
tion s
heme, we will geta 
orresponding tiling for every allowed 
hoi
e of interse
tion point t, namelythe tiling with �(t) at the origin and endpoints of tiles being the proje
tions ofthe latti
e points from within the two strips.Note that the \allowed" points are the points in the fundamental domainof L at whi
h the interse
tion point 
an be positioned without any points ofthe latti
e L appearing on the boundaries of either strip. We will be using theterms singular and non-singular to des
ribe points in the fundamental domainof L on
e again in this se
tion.De�nition 5.3. Given a rational 2:1X-proje
tion s
heme with strips S1 and S2at gradients g1 and g2 respe
tively we say that a point (x; y) in the fundamentaldomain of L is singular if positioning the strips so that the interse
tion point oftheir lower boundaries is at (x; y) results in the lower boundary of either strippassing through a point of the latti
e L.Equivalently, the point (x; y) in the fundamental domain of L is singular ifthere exists some latti
e point (m;n) 2 L satisfying,(m;n) = (x; y) + r(1; g1)or, (m;n) = (x; y) + r(1; g2)for some r 2 R.As with the single-strip 
onstru
tion, all other points in the fundamentaldomain of L (i.e. all points at whi
h the interse
tion point of the two stripsmay be positioned without a latti
e point appearing on the boundaries of eitherstrip) are 
alled non-singular.A rational 2:1 X-proje
tion s
heme is the 
ombination of two one-strip non-111



parallel proje
tion s
hemes as des
ribed in the previous se
tion. Thus a rational2:1 X-proje
tion s
heme with strips S1 and S2 will have a set of singular pointsthat is the union of the sets of singular points asso
iated with the strips S1and S2, sin
e a point in the fundamental domain of L is a singular point of theX-proje
tion s
heme if it is a singular point for either S1 or S2.Thus the set of singular points in the fundamental domain of L will look liketwo lines at gradients g1 and g2 (the gradients of the two strips) winding roundthe fundamental domain. Note that sin
e the strips have irrational gradientsthis will be a pair of dense lines, as shown in �gure 5.3.

Figure 5.3: The singular points in the fundamental domain of L.In a similar way, the set of non-singular points in the fundamental domainof L is the interse
tion of the sets of non-singular points asso
iated to the stripsS1 and S2. This is a dense set of points in the fundamental domain of L, so anypoint in the fundamental domain 
an be expressed as the limit of a 
onvergentsequen
e of su
h points.We will now look at sequen
es of non-singular points and their 
orrespondingtilings.Proposition 5.3. A 
onvergent sequen
e of non-singular points (for a given X-112



proje
tion s
heme) 
onverging to a non-singular point u gives a 
orresponding
onvergent sequen
e of tilings whose limit is the tiling 
orresponding to the pointu.Proof. This follows from the one-strip non-parallel proje
tion 
ase. The se-quen
e of non-singular points for the X-proje
tion s
heme gives two 
onver-gent sequen
es of one-strip non-parallel proje
tion tilings, 
onverging to thetwo tilings asso
iated to the point u. Therefore the sequen
e of X-proje
tiontilings will 
onverge to the tiling that has tiles with endpoints given by theunion of the endpoints from these two tilings. That is, the X-proje
tion tiling
orresponding to the point u.Looking at the above proposition, we might expe
t to get a 
orrespondingresult about 
onvergent sequen
es of non-singular points with limits that aresingular. In parti
ular, we might expe
t to get \double points" at some singularpoints (where the pla
ement of the interse
tion point results in a latti
e pointappearing on the boundary of one strip but not the other) and \quadruplepoints" at the other singular points (where the pla
ement of the interse
tionpoint results in latti
e points appearing on the boundaries of both strips). Thatis, we might expe
t points at the interse
tion of the bla
k lines to have four
orresponding points in the tiling spa
e (the spa
e 
0), and points that are onlyon one bla
k line to have two 
orresponding points in the tiling spa
e. However,the situation is slightly more 
ompli
ated than this.Theorem 5.4. A singular point in the fundamental domain of L that is not atthe interse
tion of the lines of singular points asso
iated to the strips S1 and S2
an 
orrespond to a single point or a double point in the tiling spa
e.Proof. Say that we have su
h a point v on the line of singular points asso
iatedto strip S1, but a non-singular point for strip S2. Thus the pla
ement of S1 atthis point results in some latti
e point (m;n) appearing on the lower boundary113



of S1 and the latti
e point (m � 1; n + 1) appearing on the upper boundary(sin
e S1 has 
anoni
al width).Sin
e v is non-singular for the strip S2, having the lower boundary of S2 runthrough this point does not result in the boundaries of S2 passing through anypoints of L. So if we take any 
onvergent sequen
e of points in the fundamentaldomain of L with limit v then pla
ing the strip S2 at these points will give a
orresponding sequen
e of tilings 
onverging to the tiling that 
orresponds tothe point v. We will denote by P2 the point set 
orresponding to this tiling (i.e.the set of endpoints of the tiles).As before, approa
hing this point from di�erent sides will give di�erent limitsfor the sequen
es of tilings generated by the proje
tion of points in translatesof the strip S1. In parti
ular, approa
hing from one dire
tion will result in thepoint �(m;n) appearing in P1 (the point set at the limit of the sequen
e), whilethe point �(m�1; n+1) will not appear in P1, and approa
hing from the otherdire
tion will result in �(m� 1; n+1) appearing in the limit (whi
h we will 
allP 01) whilst �(m;n) does not appear in P 01.Now, the point set that is the limit of the 
orresponding sequen
es of X-proje
tion tilings is the union of the points above, so for tilings approa
hingfrom one side we will get P1SP2 and from the other we will have P 01SP2.The strip S2 may 
ontain a latti
e point with the same proje
tion as (m;n)or (m � 1; n+ 1), or both, so the point set P2 may 
ontain the points �(m;n)or �(m � 1; n + 1), or both of these. For example, if the pattern spa
e E isat gradient 12 then the points (0; 0) and (�1; 2) proje
t to the same point onE, and whilst a 
anoni
al width strip 
annot have both the points (0; 1) and(�1; 2) in its interior it may have both (0; 0) and (0; 1), whi
h have the sameproje
tions as (0; 1) and (�1; 2).If P2 
ontains both �(m;n) and �(m � 1; n+ 1) then P1SP2 and P 01SP2will be the same, and v will only 
orrespond to a single point in the tiling spa
e.Otherwise, the limits will di�er, with at least one of �(m;n) and �(m�1; n+1)114



failing to appear in one of P1SP2 and P 01SP2 but appearing in the other,resulting in v 
orresponding to a double point in the tiling spa
e.We now look at the di�erent 
ases that arise when we examine sequen
esof points 
onverging to a point that is singular for both strips in a rational 2:1X-proje
tion.Here there will be four di�erent ways in whi
h a sequen
e of points mightapproa
h su
h a limit point, and pla
ing the strips S1 and S2 with su
h apoint on their lower boundaries will result in latti
e points (m;n) and (m �1; n + 1) appearing on the boundaries of S1, as well as latti
e points (m0; n0)and (m0 � 1; n0 + 1) appearing on the boundaries of S2. Figure 5.4 shows thesituation that we have, with the lower boundaries of the strips interse
ting atthe singular point v. Here the di�erent dire
tions from whi
h the point may beapproa
hed by sequen
es of non-singular points are labeled with numbers 1, 2,3 and 4.

Figure 5.4: The di�erent dire
tions from whi
h a singular point 
an be ap-proa
hed.This potentially gives four di�erent 
ases, depending on whi
h of the points�(m;n), �(m � 1; n + 1), �(m0; n0) and �(m0 � 1; n0 + 1) 
an be found in thepatterns P i1 and P i2 that are the limits of the point patterns asso
iated to stripsS1 and S2 respe
tively as we approa
h the point v from dire
tion i.115



As before, approa
hing v from above strip S1 will result in �(m � 1; n+ 1)appearing in P1 while �(m;n) does not, with a similar result for S2. Thefollowing tables show the points 
ontained in ea
h P ij .�(m;n) �(m� 1; n+ 1)P 11 no yesP 21 yes noP 31 yes noP 41 no yes�(m;n) �(m� 1; n+ 1)P 12 no yesP 22 no yesP 32 yes noP 42 yes noThus we seem to get four distin
t limits and therefore a quadruple point.However, as with the double point 
ase above, the number of distin
t limits willdepend on whether P2 
ontains either the point �(m;n) or �(m� 1; n+1), andwhether P1 
ontains either �(m0; n0) or �(m0 � 1; n0 + 1).De�nition 5.4. We will denote by Qi the point pattern that is given by theunion of the patterns P i1 and P i2 . This is the pattern of points that form the end-points of the tiles in the tiling at the limit of a sequen
e of tilings 
orrespondingto non-singular points 
onverging to v.Theorem 5.5. If the points �(m;n), �(m�1; n+1), �(m0; n0) and �(m0�1; n0+1) (as de�ned above) are all distin
t then a point in the fundamental domain ofL that is a singular point for both tilings Ti 
orresponds to a quadruple point in116



the tiling spa
e if exa
tly one of the following, or any pair ex
ept for numbers 1and 2 or numbers 3 and 4, holds:1. �(m;n) 2 P22. �(m� 1; n+ 1) 2 P23. �(m0; n0) 2 P14. �(m0 � 1; n0 + 1) 2 P15. �(m;n); �(m � 1; n+ 1) 62 P2 and �(m0; n0); �(m0 � 1; n0 + 1) 62 P1.In addition, we get a double point if statements 1 and 2, statements 3 and4, or any three of the �rst four statements hold, and a single point if all of the�rst four statements are true.Proof. The relevant points 
ontained in the 
ombined limit point patterns areshown in the following table.�(m;n) �(m� 1; n+ 1) �(m0; n0) �(m0 � 1; n0 + 1)Q1 no yes no yesQ2 yes no no yesQ3 yes no yes noQ4 no yes yes noIf any point from the top row of the table is 
ontained in the other pointpattern (for example if �(m;n) 2 P2) then the 
orresponding 
olumn 
an beignored. Ignoring either no 
olumns or any single 
olumn results in di�erentlimits for ea
h Qi, as does 
overing any pair of 
olumns with the ex
eptions ofboth 
olumns 1 and 2 or both 
olumns 3 and 4.Covering 
olumns 1 and 2 or 
olumns 3 and 4, or any three of the four
olumns results in two di�erent possible limits, and if all the points are 
ontainedin every Qi then they will all be the same.117



It is of 
ourse also possible that we will be in a situation where (m;n) and(m0; n0) proje
t to the same point on E (or a similar result holds for some otherpair of the relevant latti
e points). The possible impli
ations of this are exploredin the following propositions.Proposition 5.6. If we have a point in the fundamental domain of L that is asingular point for both 
onstituent tilings Ti and if the latti
e points we get onthe lower boundaries of the strips Si satisfy,�(m;n) = �(m0; n0)then this point 
orresponds to a triple point in the tiling spa
e.Proof. If the proje
tions of (m;n) and (m0; n0) are equal then of 
ourse theproje
tions of (m � 1; n+ 1) and (m0 � 1; n0 + 1) are also equal. Thus for ourdi�erent 
ases we 
ombine 
olumns 1 and 3, and 
olumns 2 and 4 from the tablein the proof of theorem 5.5. �(m;n) �(m� 1; n+ 1)Q1 no yesQ2 yes yesQ3 yes noQ4 yes yesNote that none of the P ij 
an 
ontain any other latti
e points that proje
tto �(m;n) or �(m� 1; n+1), sin
e this would require the strips to have greaterthan 
anoni
al width. Therefore the three possible limits shown above are allthe di�erent limits, and the point 
orresponds to a triple point in the tilingspa
e.The �nal 
ase to be examined is when,118



�(m;n) = �(m0 � 1; n0 + 1)or, �(m0; n0) = �(m� 1; n+ 1) :Proposition 5.7. If we have a point in the fundamental domain of L that is asingular point for both 
onstituent tilings Ti and if this point gives latti
e points(m;n) and (m0; n0) on the lower boundaries of the strips Si in su
h a positionthat, �(m;n) = �(m0 � 1; n0 + 1)or, �(m0; n0) = �(m� 1; n+ 1)then this point 
an 
orrespond to a quadruple, triple or double point in the tilingspa
e.Proof. Assume that we are in the 
ase where �(m;n) and �(m0 � 1; n0 + 1) areequal. The other 
ase, where �(m0; n0) and �(m � 1; n + 1) are the same, issimilar.Note that we 
annot also have,�(m0; n0) = �(m� 1; n+ 1)sin
e we would then get, �(m0; n0) = �(m� 1; n+ 1)119



= �(m;n) + �(�1; 1)= �(m0 � 1; n0 + 1) + �(�1; 1)= �(m0; n0) + �(�1; 1) + �(�1; 1)= �(m0; n0) + 2�(�1; 1) :This means that (�1; 1) would have to have the same proje
tion as (0; 0),whi
h 
annot happen unless the pattern spa
e E has gradient 1, and this 
asewas disallowed in the de�nition.However, it is still possible that �(m0; n0) is in P1 and/or �(m� 1; n+ 1) isin P2. As with the proof of the previous proposition we 
an 
ombine 
olumnsfrom the table in the proof of theorem 5.5 to get,�(m;n) �(m� 1; n+ 1) �(m0; n0)Q1 yes yes noQ2 yes no noQ3 yes no yesQ4 no yes yesAs before this gives four possible limits, and therefore a quadruple point,unless �(m0; n0) is in P1 or �(m � 1; n + 1) is in P2. If exa
tly one of these
onditions holds then we 
an ignore either 
olumn 2 or 
olumn 3 of the tableand we will have a triple point, if both hold then we ignore both of these 
olumnsand we get a double point.Now, in theorem 5.4 and theorem 5.5 we found that a point that is a singularpoint for one strip will give a double point and a point that is a singular pointfor both strips will give a quadruple point (when the points �(m;n); �(m �1; n + 1); �(m0; n0) and �(m0 � 1; n0 + 1) are all distin
t) unless we are in the120



situation where S1 
ontains latti
e points with proje
tions equal to �(m0; n0)and �(m0 � 1; n0 + 1) and/or S2 
ontains latti
e points with proje
tions equalto �(m;n) and �(m� 1; n+ 1).Note that when S1 or S2 (or both) 
ontains only one su
h point then we stillget double/quadruple points as normal. We will therefore now look at when itis possible for S1 (or S2) to 
ontain both the required points.Proposition 5.8. If we have a one-strip non-parallel 2:1 proje
tion onto patternspa
e E, at gradient ab , with a and b 
oprime and a; b > 1 then a 
anoni
alwidth strip S with positive gradient 
annot 
ontain any pair of latti
e pointswith proje
tions equal to �(m;n) and �(m � 1; n + 1) in its interior, for any(m;n) 2 Z2.Proof. We will label the points (m;n) and (m � 1; n + 1) as (0; 0) and (�1; 1)and assume that the point (�1; 1) is 
ontained in S. The proof will be similarwith S 
ontaining (0; 0), or any other latti
e point with the relevant proje
tiononto E.If S 
ontains the point (�1; 1), then it 
annot also 
ontain (0; 0), sin
e Shas 
anoni
al width. However, sin
e the proje
tion is onto a line at rationalgradient there will be other points of the latti
e L (that is, Z2) that proje
t tothe same point as (0; 0). In fa
t, the set of points with the same proje
tion as(0; 0) is fz(�b; a) : z 2 Zg.Sin
e S has positive gradient and does not 
ontain the point (0; 0) it will alsonot 
ontain the point (b;�a). Therefore the point that we will be interested inis (�b; a). Now we look at the two 
ases, namely the 
ase where a or b is equalto 1, and the 
ase where a; b > 1. We examine these two 
ases below.1. If a or b is equal to 1 then it is possible for S to 
ontain both (�1; 1)and (�b; a), sin
e (�b; a) is a point of the form (�1; a) or (�b; 1), and thestrip S 
ould have an arbitrarily large number of horizontal or verti
alsteps extending from the point (�1; 1) (depending on the gradient of S).121



2. If a; b > 1 and S 
ontains the points (�1; 1) and (�b; a) then S must
ontain the step (b� 1; 1�a), whi
h is of the form (
;�d), for both 
 andd greater than or equal to 1, requiring S to either have negative gradientor greater than 
anoni
al width.Thus when we have a pattern spa
e E that is not at gradient n or 1n (forn 2 N) we �nd that the point pattern 
orresponding to a 
anoni
al width strip
annot 
ontain both �(m;n) and �(m�1; n+1) for any latti
e point (m;n).From the above propositions we 
an 
on
lude that when we have a rational2:1 X-proje
tion s
heme with a pattern spa
e E that is not at gradient k or 1k(for k 2 N) then the singular points in the fundamental domain of L 
orrespondto double points in the tiling spa
e 
0 if they are singular for only one of thetwo strips, and quadruple points if they are singular for both strips.Figures 5.5 and 5.6 
ombine all the results about singular points in thefundamental domain of L given above. As before, we're looking at a rational 2:1X-proje
tion s
heme with proje
tion onto a line E at positive rational gradient(not equal to 1), the two strips being 
alled S1 and S2, and the pattern of pointsin E given by the proje
tions of the latti
e points within strip Si being denotedby Pi.
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Figure 5.5: The 
ases for points that are singular for only one of the strips.
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Figure 5.6: The 
ases for points that are singular for both strips.
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5.4 The Spa
e 
UWe have so far e�e
tively been looking at the spa
e 
0 for a rational 2:1 X-proje
tion, by looking at all the points in the fundamental domain of L at whi
hthe interse
tion point of the lower boundaries of the two strips 
an be pla
ed. Inthis se
tion we will examine the hull of a rational 2:1 X-proje
tion tiling, 
U ,by looking at the points in the fundamental domain of L that 
orrespond totranslates of a given tiling U and limits of 
onvergent sequen
es of su
h points.As in 
hapter 4, we will be referring to the translate points of our tiling U(see de�nition 4.10), where a translate point for U is a point in the fundamentaldomain of L at whi
h the interse
tion point of the lower boundaries of the twostrips 
an be pla
ed to give a translate of the original tiling.As we also saw in 
hapter 4, the set of translate points for a tiling generatedby a given X-proje
tion s
heme depends on the relationship between the gradi-ents of the two strips relative to the sublatti
e � (and is therefore also dependenton the gradient of the pattern spa
e E). Varying the relationship between thegradients of the two strips relative to � gives several di�erent possibilities forthe pattern of translate points (see se
tion 4.5), whi
h we summarise below.1. The gradients of the two strips are rationally related relative to �.This results in the translate points being dense in a �nite number of linesthat are parallel to E (and therefore have stri
tly positive gradient).2. The gradients of the two strips are irrationally related relative to �, butdi�er by a rational amount.Again, this gives sets of translate points that are dense in a �nite numberof lines, however this time the lines are perpendi
ular to E (and thereforehave stri
tly negative gradients).3. The gradients of the two strips are irrationally related relative to � anddi�er by an irrational amount, but we have that,125



[qx℄ = 
[x℄ + rfor 
; r 2 Q, where [:℄ denotes fra
tional part (see 
hapter 4).On
e again the translate points are dense in a �nite number of parallellines, though the gradient of these lines in not equal to that of E.4. The gradients of the two strips are irrationally related relative to �, di�erby an irrational amount and the quantity [qx℄ 
annot be expressed as
[x℄ + r with 
; r 2 Q.Here we get that the translate points are dense in the fundamental domainof L.We will now look at these separate 
ases, beginning with 
ase 4.5.4.1 Dense Set of Translate PointsThe 
ase where the set of translate points of our rational 2:1 X-proje
tion tilingU is dense in the fundamental domain of L is similar to the previous se
tion.Every non-singular point u in L will be the limit of some sequen
e of translatepoints of U , and therefore the tiling 
orresponding to u will be a limit of some
onvergent sequen
e of tilings that are translates of U . Thus 
U will 
ontainevery tiling that 
orresponds to a non-singular point in the fundamental domainof L.The singular points in L will have 
orresponding single, double, triple orquadruple points in 
U , as des
ribed in the previous se
tion, sin
e these are alllimits of translate points of U from every dire
tion.In addition, there should also be more translates of the tiling U that are notrepresented by points in the fundamental domain of L, sin
e the translate pointsin the fundamental domain 
orrespond to translates of U by integer multiples ofsome �xed distan
e. This should give a line segment of translates of the tiling126



passing through ea
h translate point (and therefore also ea
h non-singular point)with the end of one segment 
onne
ted to the start of the segment that runsthrough the next translate point. At singular points we would expe
t to seepotentially double, triple or quadruple line segments in the same way.5.4.2 Translate Points Dense on Finite Set of LinesWe now look at the 
ases where the translate points of our tiling U are denseon a �nite set of lines in the fundamental domain of L. This 
overs tilings oftypes 1, 2 and 3 above.As already explained, ea
h of the three types of tiling gives translate pointsthat are dense on some �nite set of lines in the fundamental domain of L. Thusany non-singular point, u, on any of these lines will be the limit of some sequen
eof translates of the tiling U , and so the tiling 
orresponding to u will be in 
U .Non-singular points that do not lie on the lines are of 
ourse not at the limits ofany sequen
es of the translates that lie on the lines. However, in most 
ases wehave not proved that the translate points on the line are the only non-singularpoints in the fundamental domain of L that 
orrespond to translates of thetiling. This is dis
ussed further below.All three types of tiling give similar sets of translate points, but there areslight di�eren
es when we 
ome to look at singular points on the lines on whi
hall these translate points lie.A singular point on the line of translate points 
annot 
orrespond to a tripleor quadruple point, sin
e it 
an only be approa
hed from two dire
tions (i.e.from either dire
tion along the line). However, su
h a point does not ne
essarilyhave to be a double point.Proposition 5.9. For a tiling U of type 2, i.e., a tiling where the gradients ofS1 and S2 are irrationally related relative to � but di�er by a rational amount,all singular points on the lines of translate points 
orrespond to double points in127



the tiling spa
e provided the pattern spa
e E has gradient not equal to k or 1k(for k 2 N).Proof. If the proje
tion is onto a pattern spa
e E that is not at gradient k or1k then all points that are singular for one of the strips, and all points thatare singular for both but that result in �(m;n), �(m � 1; n+ 1), �(m0; n0) and�(m0 � 1; n0 + 1) being distin
t must be double and quadruple points in 
0respe
tively (see proposition 5.8).The remaining two types of singular point are those points where,�(m;n) = �(m0; n0)or, �(m;n) = �(m0 � 1; n0 + 1) :However, note that for a type 2 tiling the translate points appear in linesthat are perpendi
ular to the pattern spa
e E, and thus have negative gradient.Therefore the singular points 
an only be approa
hed from dire
tions 1 or 3.

Figure 5.7: The dire
tions from whi
h a singular point 
an be approa
hed.Thus the limits are Q1 and Q3, and if you look at the tables in the proofs128



of propositions 5.6 and 5.7 it is 
lear that these limits are always distin
t.Whilst this result will hold for all tilings of type 2, the tilings of types 1 and3 may have translate points 
ontained in lines that approa
h singular pointsfrom dire
tions 2 and 4 in the above diagram.For the type 1 tilings, the translate points are always 
ontained in linesparallel to E, so singular points on these lines will be approa
hed from dire
tions1 and 3 if g1 and g2, the gradients of the two strips relative to �, are either bothpositive or both negative. Otherwise the singular points on the lines will beapproa
hed from dire
tions 2 and 4, with the results des
ribed in the followingproposition.Proposition 5.10. If we have pattern spa
e E not at gradient k or 1k (fork 2 N) and a tiling of type 1 (U) with strips S1 and S2 at gradients g1 and g2respe
tively, relative to �, then:� If g1 and g2 are either both positive or both negative all the singular pointson the lines of translate points 
orrespond to double points in 
U .� If one of g1 and g2 is positive and the other negative then any singularpoints on the lines of translate points that are singular for both strips andsatisfy, �(m;n) = �(m0; n0)
orrespond to single points in 
U .� If one of g1 and g2 is positive and the other negative then any singularpoints on the lines of translate points that are singular for both strips andsatisfy, �(m;n) = �(m0 � 1; n0 + 1)129




orrespond to double points in 
U unless at least one of the following holds,�(m;n) 2 P2�(m0 � 1; n0 + 1) 2 P1 :With a similar result for the 
ase where,�(m0; n0) = �(m� 1; n+ 1) :Proof. As in the previous proposition, if the proje
tion is onto a pattern spa
eE that is not at gradient k or 1k then all points that are singular for one ofthe strips, and all points that are singular for both but that result in �(m;n),�(m � 1; n+ 1), �(m0; n0) and �(m0 � 1; n0 + 1) being distin
t must be doubleand quadruple points in 
0 respe
tively (again, see proposition 5.8).If g1 and g2 are either both positive or both negative then all singular pointsare approa
hed by translate points from dire
tions 1 and 3, so we are in the samesituation as we were with tilings of type 2, thus all singular points 
orrespondto double points in 
U .If one of g1 and g2 is positive and the other is negative, then the singularpoints are approa
hed by translate points from dire
tions 2 and 4, so we areinterested in limits Q2 and Q4 and the results follow from examining the tablesin the proofs of propositions 5.6 and 5.7.As was mentioned above, in most 
ases there may be more translate pointsin the fundamental domain of L for a tiling U than those already given, howeverin 
orollary 4.12 we saw that these translate points are indeed all the translatepoints in the fundamental domain of L when we have a type 1 tiling with,� Pattern spa
e E not at gradient k or 1k (for k 2 N).130



� Strips S1 and S2 at gradients g1 and g2, relative to �, satisfyingg1 = ab g2for a 2 Z, b 2 N and ab not equal to 
 or 1
 (
 2 Z).If we insist that a 2 N then su
h a tiling U will also satisfy the 
onditionsgiven in the �rst part of proposition 5.10 and thus all the translate points ofsu
h a tiling 
an be found in a �nite number of lines in the fundamental domainof L, and all the singular points on those lines 
orrespond to double points in
U .In addition, sin
e the translate points are only the translates of U by integermultiples of some �xed distan
e there will also be lines of translates joining ea
hof the translate points (and indeed all non-singular points on the lines), perhapsbest thought of as being a line segment passing through ea
h non-singular pointon the line with the ends of the segments identi�ed in the appropriate way. Thesingular points will therefore give double lines in a similar way.5.4.3 Repetitivity RevisitedFollowing the results in this 
hapter and 
hapter 4 we 
an now prove repetitivityin the general 
ase, i.e., that any rational 2:1 X-proje
tion s
heme produ
esrepetitive tilings.Re
all that a tiling U is repetitive if any pat
h P in U appears throughoutU , and a 
opy of P 
an be found within some �xed distan
e (dependent on P )of any point in the tiling.Theorem 5.11. Tilings generated by rational 2:1 X-proje
tion s
hemes arerepetitive.Proof. We have a tiling U generated by a rational 2:1 X-proje
tion s
heme.Assume that U has a 
orresponding point u in the fundamental domain of L.131



Note that U may not 
orrespond to any point in the fundamental domain, butif not it will be a small translate of a tiling 
orresponding to su
h a point.Any pat
h of tiles, P , in the tiling U is 
ontained in some larger pat
h, Q,about the origin, so if Q appears throughout the tiling then so will P .There exists some " > 0 su
h that any tiling U 0 within distan
e " of U willhave the pat
h Q about the origin (after some small translate). Thus thereexists Æ > 0 su
h that all non-singular points within Æ of u will give tilings withpat
h Q near the origin.Depending on the relationship between the gradients of the two strips, wehave points 
orresponding to translates of U that are either dense in a �niteset of lines in the fundamental domain of L (see propositions 4.14, 4.15, 4.17and 4.19 for the various sub
ases) or dense in the whole fundamental domain(see proposition 4.23). In all 
ases there are 
ountably many translates of U
orresponding to points within distan
e Æ of u.Sin
e the step between 
onse
utive translate points is �xed there must besome maximum number of steps that we 
an have between o

urren
es of trans-late points of U within distan
e Æ of u.Thus the pat
h Q (and therefore also the pat
h P ) must appear throughoutthe tiling U and within some �xed distan
e of any point in the tiling.
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6 Further WorkIn this 
hapter we will look at some examples of rational 2:1 X-proje
tion tilingsand the proportions in whi
h the prototiles in these tilings appear. We will alsolook at the proportions that we might expe
t in some 
ases, and how 
loselythe expe
ted values resemble the values observed in our examples.In the se
ond se
tion we will look at a few examples of tilings generated byirrational 2:1 X-proje
tion s
hemes.6.1 Proportions of Prototiles in Rational 2:1 X-Proje
tionTilingsThis se
tion 
ontains some examples of (pat
hes of) tilings generated by rational2:1 X-proje
tion s
hemes.In all of the following examples the two strips have a 
ommon point on theirlower boundaries (whi
h I have de�ned to be the origin) and therefore also a
ommon point on their upper boundaries (the point (�1; 1)), with the originbeing proje
ted onto the pattern spa
e E whilst the point (�1; 1) is not.In the de�nition of a 2:1 X-proje
tion the strips S1 and S2 were 
hosen sothat they do not have any points of L on their boundaries, so these examples donot give full valid tilings, but sin
e all the strips are at irrational gradients therewill only be one point on ea
h boundary and a suitable (very small) translationof the strips will result in a valid s
heme with an identi
al pat
h to that givenby this setup.Example 6.1. We start with the pattern spa
e E at gradient 0:5, a setup thatgives two possible tile lengths. For simpli
ity we will refer to the tiles as being oflengths 1 and 2 rather than their a
tual lengths of 1p5 and 2p5 . Similarly, for theother rational 2:1 X-proje
tion examples that have more possible tile lengths wewill say that the the shortest tile has length 1 and all other tiles will be labeledwith integers showing their lengths relative to the shortest tile.133



We then take strips S1 and S2 at gradients 1p2 and 12p2 relative to the sub-latti
e �.Figure 6.1 gives some idea of what a pat
h of this tiling around the originlooks like. Here ea
h dot represents a tile in the tiling with the s
ale at the leftshowing the lengths of the tiles and the s
ale at the bottom showing where theyappear in the tiling. The origin is at the meeting point of the tiles numbered 100and 101 in this pat
h, so approximately at the 
entre of this diagram.We will refer to the resulting tiling as T� 1p2 ; 12p2 ;0:5�� with the �rst two num-bers representing the gradients of the two strips relative to � and the third num-ber showing the gradient of the pattern spa
e. Later tilings will be labeled in asimilar way.

Figure 6.1: Diagram of a pat
h of tiling T� 1p2 ; 12p2 ; 12�� .There are 23 tiles of length 2 in this pat
h, so ea
h of the points at height 2in the diagram represents a single tile.Changing the gradient of the pattern spa
e to 0.6 and looking at the setupwith strips at the same gradients relative to the (now altered) sublatti
e � givesthe diagram shown in �gure 6.2.
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Figure 6.2: Diagram of a pat
h of tiling T� 1p2 ; 12p2 ; 35�� .On
e again the origin is approximately at the 
entre of this diagram (themeeting point of tiles 200 and 201).Having the pattern spa
e at a gradient of 0.6 � 35� means that there are 5possible tile lengths, and as 
an be seen from �gure 6.2 all of these tile lengthsappear in the resulting tiling.For the �nal example the pattern spa
e E is at gradient 0.3, whi
h gives 10possible tile lengths, all of whi
h appear in the tiling as 
an be seen in �gure 6.3.

Figure 6.3: Diagram of a pat
h of tiling T� 1p2 ; 12p2 ; 310�� .135



As before the origin is lo
ated approximately at the 
entre of this diagram(between tiles 200 and 201).Looking at the diagrams above it is evident that the di�erent prototiles donot exist in equal numbers within these pat
hes. It is perhaps unsurprising thatthere should be fewer prototiles of maximum length, parti
ularly in the laterexamples, given that these 
an only arise from the lining up of longer tiles fromthe 
onstituent tilings T1 and T2. And indeed in ea
h of the above examplesthe maximum length prototile appears to be the least 
ommon.The most 
ommon prototile in the examples given above is the prototilewith the same length as the \short" tile from the tilings 
orresponding to theindividual strips (i.e. 1 for E at gradient 0.5 and 3 for E at gradient 0.6 or 0.3).The following tables give some approximate ratios of numbers of prototilesrelative to the number of maximum length tiles in 100000-tile pat
hes of thetilings. The gradients of the strips given are those relative to �. Fixing thegradients relative to � will still result in them varying relative to L as thegradient of E is altered. The 
olumns labeled \S1 Approx." and \S2 Approx."show the approximate gradients of the two strips relative to the latti
e L.
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E at Gradient 0.5S1 Gradient S2 Gradient S1 Approx. S2 Approx. 1 Tiles 2 Tiles1p2 12p2 1.867 1.037 9.199 11p5 512p5 1.220 0.757 6.867 11� 13� 0.973 0.640 5.673 11p2 + 12 1p2 4.306 1.867 21.022 11p5 1p5 � 18 1.220 0.980 7.593 11� 1� � 110 0.973 0.806 6.331 13+p51+p5 2+p51+p5 11.090 5.236 63.433 1910 + 1p2 1 + 12p2 10.726 5.735 96.561 11� 1� 1� 2� 1.793 1.055 8.922 11p2 1p3 1.867 1.515 11.601 11p5 1p7 1.220 1.083 7.925 11e 1� 1.063 0.973 7.106 1In the above examples, the �rst three have gradients that are rationallyrelated relative to � and the next three are irrationally related but di�er by arational amount.Re
all that in 
hapter 4 we de�ned x and qx for strips at gradients p and q(with p = aq for some a 2 R) relative to � to be,x = zq(a� 1)qx = za� 1 :The third set of three examples above have gradients giving values of x andqx satisfying, 137



[qx℄ = 
[x℄ + rfor some 
; r 2 Q, and for z = 1 (where the square bra
kets denote fra
tionalpart).The �nal three give values of x and qx that are irrationally related and havefra
tional parts that 
annot be expressed in the way given above. Thus thereare three examples 
orresponding to ea
h of the di�erent types of rational 2:1X-proje
tion given in the summary diagram in 
hapter 4.Sin
e the pattern spa
e E is at gradient 0:5 we have that the proje
tion ofa (0; 1) step in the latti
e L gives a tile of length 1 and (1; 0) step gives a tileof length 2. So we would expe
t the X-proje
tion setups with strips at highergradients to produ
e tilings with a higher proportion of short tiles, and thisappears to be the 
ase.
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E at Gradient 0.6S1 S2 1 2 3 4 51p2 12p2 14.404 14.394 15.135 1.994 11p5 512p5 9.162 9.160 10.216 1.998 11� 13� 7.511 7.517 8.594 2.003 11p2 + 12 1p2 48.688 48.688 42.725 1.960 11p5 1p5 � 18 10.392 10.393 11.334 1.993 11� 1� � 110 8.333 8.326 9.320 2.032 13+p51+p5 2+p51+p5 813.787 812.702 499.170 1.000 1910 + 1p2 1 + 12p2 783.714 782.694 472.408 1.000 11� 1� 1� 2� 14.066 14.053 14.837 2.000 11p2 1p3 19.997 20.166 20.192 2.137 11p5 1p7 11.061 11.041 11.910 2.011 11e 1� 9.611 9.609 10.570 2.008 1The se
ond table shows the proportions of prototiles for a pattern spa
e atgradient 35 . This means that ea
h Ti has a shorter tile of length 3 and a longertile of length 5.
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E at Gradient 0.3S1 S2 1 2 3 4 5 6 7 8 9 101p2 12p2 7.89 7.88 19.01 2.00 2.00 2.00 2.00 1.99 2.00 11p5 512p5 5.69 5.69 13.56 2.02 2.01 2.02 2.02 2.01 2.02 11� 13� 4.76 4.76 11.07 1.99 1.99 1.99 1.98 2.00 1.99 11p2 + 12 1p2 15.32 15.33 34.16 2.00 2.00 2.00 2.00 2.00 2.00 11p5 1p5 � 18 6.31 6.31 15.05 2.01 2.00 2.00 2.01 2.00 2.01 11� 1� � 110 5.22 5.22 12.28 2.00 2.00 2.00 2.00 2.00 1.99 13+p51+p5 2+p51+p5 34.33 34.32 62.51 1.99 1.99 1.99 1.99 1.99 1.99 1910 + 1p2 1 + 12p2 35.52 35.52 64.08 2.00 2.01 1.99 2.00 2.00 2.01 11� 1� 1� 2� 7.73 7.72 18.56 1.98 1.99 1.99 1.97 1.98 1.98 11p2 1p3 9.41 9.41 22.12 2.01 2.01 2.00 2.00 2.00 2.00 11p5 1p7 6.57 6.57 15.69 2.00 2.00 2.00 2.00 2.00 2.00 11e 1� 5.87 5.89 13.95 2.00 1.99 2.00 1.98 2.00 1.99 1The third table displays the proportions of prototiles for pattern spa
e atgradient 310 . In this 
ase the shorter tile in ea
h Ti has length 3 with the longertile having length 10.The tables appear to show that generally the tiles with lengths between thoseof the short tile and long tile from the tilings Ti appear twi
e as often as themaximum length tiles. The tilings T� 3+p51+p5 ; 2+p51+p5 ;0:6�� and T� 910+ 1p2 ;1+ 12p2 ;0:6��appear to be ex
eptions to this. In these two 
ases the number of maximumlength tiles in a pat
h of 100000 tiles is relatively small, so we might see adi�erent result with a larger pat
h. However, it may be that there is some sortof relationship between the strips that is 
ausing this dis
repan
y.Also noti
eable from the tables is that the tiles of lengths 1 and 2 (so tileswith lengths less than that of the short tile from the tilings Ti) appear in the140



same proportions.The following se
tion is an attempt at an explanation of these observations.Note that in the later examples the observed proportions of prototiles appearto di�er 
onsiderably from the proportions we would see from a non-degenerate
anoni
al N : 1 proje
tion tiling, as dis
ussed in 
hapter 2. For example, anon-degenerate 10:1 proje
tion s
heme will give tilings with 10 prototiles, butwith the longest of these appearing in the highest proportion and with no twoprototiles appearing in the same proportions, unlike what we seem to be seeingabove.6.1.1 Possible ExplanationIf we think of the X-proje
tion tiling U as being two standard proje
tion tilingsoverlaid then thinking about the di�erent ways in whi
h ea
h prototile 
an ariseseems to give a reasonable explanation of the above observations.Firstly, maximal length tiles 
an only o

ur in U when t2 tiles from both T1and T2 line up, as shown in �gure 6.4.

Figure 6.4: Two maximal length tiles that are lined up.Tiles u 2 U satisfying jt1 j<juj<jt2j 
an only arise on the overlap of two t2tiles, but, as we 
an see from �gure 6.5, there are two \di�erent" ways in whi
hthis overlap 
an happen. 141



Figure 6.5: Two di�erent ways in whi
h t2 tiles 
an overlap to give u tiles.So it would seem reasonable to expe
t there to be twi
e as many of this typeof tile in U as there are tiles of length jt2j.Tiles v 2 U satisfying jv j<jt1 j 
an arise as overlaps of either t2 tiles withea
h other, t1 tiles with ea
h other or on overlaps between t1 and t2 tiles. Ina similar way to the u tiles, all tiles of type v should be expe
ted to appear inthe same proportions due to arising from the same number of possible overlaps,but these proportions should be higher than the u tiles be
ause there are moreoverlaps than for the u tiles.Finally, the tiles in U with the same length as t1 
an often arise in yet moreways: as the overlap of two t2 tiles, when two t1 tiles line up, or when a t1 tilefrom either tiling is proje
ted \inside" a t2 tile from the other. For example, ifthe gradient of E is 0.3 then there are 8 di�erent ways that a t1 tile from T1(that has length 3) 
an be proje
ted into a t2 tile from T2 (of length 10).142



6.1.2 Expe
ted ProportionsWe now look at the simplest 
ase given above where the pattern spa
e E is atgradient 0.5, giving tilings with two prototiles. We will look at the proportionsof length 1 and 2 tiles that we might expe
t to �nd in a tiling generated by arational 2:1 X-proje
tion setup where we are proje
ting onto a pattern spa
e atthis gradient.As before, we have two strips S1 and S2 giving 
orresponding tilings T1 andT2. Sin
e the pattern spa
e is at gradient 0.5 ea
h of these tilings also has twoprototiles of lengths 1p5 and 2p5 (whi
h, for simpli
ity, we will 
all lengths 1 and2). The two tilings T1 and T2 are 
ombinatorially just standard 2:1 proje
tiontilings. If we have strip Si at gradient gi then by proposition 2.5 we know thata 
anoni
al 2:1 proje
tion tiling with gi less than 1 has,Proportion of Short TilesProportion of Long Tiles = giand if gi is greater than 1 then,Proportion of Short TilesProportion of Long Tiles = 1gi :However, if gi is less than one then horizontal steps between latti
e pointsin Si 
orrespond to long tiles, and if gi is greater than 1 then the long tiles arisefrom the proje
tions of verti
al steps. Thus in either 
ase we have gi verti
alsteps for ea
h horizontal step.When we take the proje
tion to be onto a pattern spa
e at gradient 0.5 weget that horizontal steps give long tiles, regardless of the gradient of the stripwe are proje
ting from. Therefore ea
h Ti will have gi length 1 tiles for ea
hlength 2 tile, and thus in tiling Ti we have,
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proportion of length 2 tiles = 1gi + 1proportion of length 1 tiles = gigi + 1 :Now, to work out the proportions of 1-tiles and 2-tiles in the 
ombined tilingwe �rst look at the proportions of points that are 
overed in ea
h of the tilingsTi. The tiles in these tilings have lengths 1 and 2 with both tiles 
overing thepoint on their left but the 2-tile also leaving another point not 
overed.So the proportion of points that are not 
overed in ea
h of the tilings Ti is:proportion of 2-tiles2(proportion of 2-tiles) + proportion of 1-tiles :For tiling Ti this is equal to, 1gi+12gi+1 + gigi+1 = 1gi + 2 :Now, un
overed points in the 
ombined tiling only arise from having un
ov-ered points in both tilings Ti lining up. Thus we might expe
t the proportionof un
overed points in the 
ombined tiling to be,� 1g1 + 2�� 1g2 + 2� :These un
overed points in the 
ombined tiling 
orrespond to the 2-tiles of
ourse, but every 2-tile not only has an un
overed point but also a 
overed pointon its left edge. Thus the expe
ted proportion of all points that are 
ontainedin 2-tiles (on the left side or in the middle) is:2� 1g1 + 2�� 1g2 + 2� :From this we get that the expe
ted proportion of points in 1-tiles (that is,on the left side of 1-tiles) is: 144



1� 2� 1g1 + 2�� 1g2 + 2� :Therefore the expe
ted proportions of ea
h tile are given by,proportion of 2-tiles = proportion of points at start of 2-tilesproportion of points at start of any tile= � 1g1+2�� 1g2+2�1� � 1g1+2�� 1g2+2�= 1(g1 + 2)(g2 + 2)� 1proportion of 1-tiles = (g1 + 2)(g2 + 2)� 2(g1 + 2)(g2 + 2)� 1 :So the expe
ted relative proportion of 1-tiles is equal to (g1+2)(g2+2)� 2.We will now look at how 
losely the predi
ted values resemble the observedproportions from the previous examples. The table below shows the predi
tedproportions of 1-tiles relative to 2-tiles and the values observed in a pat
h of100000 tiles of various 2:1 X-proje
tion tilings.

145



E at Gradient 0.5S1 Gradient S2 Gradient 1 Tiles Observed 1 Tiles Predi
ted1p2 12p2 9.199 9.7441p5 512p5 6.867 6.8771� 13� 5.673 5.8491p2 + 12 1p2 21.022 22.3871p5 1p5 � 18 7.593 7.5961� 1� � 110 6.331 6.3443+p51+p5 2+p51+p5 63.433 92.721910 + 1p2 1 + 12p2 96.561 96.4311� 1� 1� 2� 8.922 9.5871p2 1p3 11.601 11.5921p5 1p7 7.925 7.9261e 1� 7.106 7.108As you 
an see, some of the observed values are very 
lose to the predi
tedvalues, whereas some display a large dis
repan
y.Several of these tilings have a smaller proportion of 1-tiles than we mightexpe
t, showing that the 2-tiles in the two 
omponent tilings Ti are lining upmore often than we might expe
t by 
han
e. However, these pat
hes are of
ourse from a spe
i�
 tiling with strips at the 
orresponding gradients, i.e., thetiling produ
ed by the given setup, where the interse
tion point of the lowerboundaries of the two strips is pla
ed at the origin. If the interse
tion point wasshifted so as to alter the proje
tions of the points from strip S1 along by onestep relative to the proje
tions of the points from S2 then all the 2-tiles in thepat
h would be
ome 1-tiles.The following example uses tilings produ
ed by the proje
tion of points146



from strips at rational gradients, and therefore gives periodi
 tilings, but mayillustrate what is going on in the 
ase of rational 2:1 X-proje
tions.Example 6.2. Say we have strips S1 at gradient 12 and S2 at gradient 17 relativeto the integer latti
e L, and we proje
t onto a line at gradient 12 .Both strips are at rational gradients and thus produ
e periodi
 tilings. There-fore the 
ombined tiling will be periodi
, so we 
an work out the proportions ofthe two prototiles by simply drawing the repeating part of the tiling.If the interse
tion point of the two strips is positioned so that a length 1 tilein T2 lines up with a length 1 tile in T1 then we will have the tiling shown in�gure 6.6.
Figure 6.6: Position 1 for T1 and T2.The repeating pat
h in this tiling is 22111111221 as marked in the diagram,so we 
an immediately say that the proportion of 1-tiles relative to 2-tiles is 74(or 1.75).However, if the position of the interse
tion point of S1 and S2 was alteredso that T1 and T2 lined up in a di�erent way we 
ould end up with a di�erenttiling, as shown in �gure 6.7.Here the proje
tion of latti
e points from strips at the same gradients asbefore onto the same pattern spa
e has produ
ed a tiling with repeating pat
h1111122111111, and therefore with the proportion of 1-tiles relative to 2-tilesbeing equal to 112 (or 5.5).There are 3 other ways in whi
h T1 and T2 
an line up, these ways giv-147



Figure 6.7: Position 2 for T1 and T2.ing 
ombined tilings with repeating pat
hes 121111112211, 111221111112 and1111111221111 (this last one being the same as the se
ond one).Over all these pat
hes we get 1-tiles appearing 47 times and 2-tiles appearing14 times. The expe
ted proportion of 1-tiles relative to 2-tiles for this tiling is,(g1 + 2)(g2 + 2)� 2 = �52��157 �� 2 = 4714 :This example suggests that our expe
ted value is perhaps 
orre
t when wetalk about all possible tilings that 
an be generated by a 
ertain setup, lookingat all the di�erent positions at whi
h the interse
tion point 
an be pla
ed.The �nal three tilings in the table above have sets of translate points that aredense in the unit square (proposition 4.23), so any positioning of the interse
tionpoint will be arbitrarily 
lose to a position that gives a translate of the tiling.This may explain why the proportion of 1-tiles observed in the pat
hes of thesetilings so 
losely mat
hes the expe
ted values.6.2 Irrational 2:1 X-Proje
tion ExamplesIn this se
tion we will look at a few examples of tilings generated by irrational2:1 X-Proje
tion s
hemes. The irrational 2:1 X-proje
tion s
heme was �rstde�ned in 
hapter 3. The setup di�ers from the rational 2:1 X-proje
tion setupin that the proje
tion is onto a pattern spa
e at irrational gradient relative to148



the latti
e.As was proved in 
hapter 3, this setup gives tilings with an in�nite number ofprototiles. We also proved that the prototile with length equal to the shorter ofthe two prototiles ti appearing in the 
onstituent tilings Ti is the only prototilethat 
an appear throughout the 
ombined tiling.Example 6.3. For the �rst example we have strip S1 at gradient 1p2 , S2 atgradient 1p3 and pattern spa
e E at gradient 1p5 (here all gradients are relativeto the integer latti
e L). A diagram of a large pat
h of this tiling is shown in�gure 6.8.

Figure 6.8: Diagram of a pat
h of tiling T� 1p2 ; 1p3 ; 1p5�.The pat
h shown here is 
onsiderably larger than the pat
hes of rational 2:1X-proje
tions seen earlier in the 
hapter. This is be
ause of the mu
h highernumber of prototiles that we get in pat
hes of irrational 2:1 X-proje
tion tilings,meaning that a diagram of a pat
h of 10000 tiles, like the one shown here, willstill display some stru
ture and not merely look like several horizontal lines.There is what appears to be a horizontal line in this diagram at a height ofslightly more than 0.4. This is due to the large number of prototiles of lengthequal to 1p6 in this tiling, whi
h is the length of the shorter of the two prototiles149



from the 
onstituent tilings Ti. As explained before, tiles of this length 
anappear throughout the tiling.Example 6.4. We now look at a se
ond example, where the two strips S1 andS2 are at gradients 2p5 and p5 respe
tively, with the pattern spa
e E at gradient1p5 as before (see �gure ??).

Figure 6.9: Diagram of a pat
h of tiling T�2p5;p5; 1p5�.There are signi�
ant gaps in this diagram, indi
ating that there are no tileswith those parti
ular lengths within the pat
h. The gaps 
orrespond to tiles withlengths greater than that of the shorter prototile from the tilings Ti. Tiles withthese lengths 
an only arise on the overlap of longer prototiles in ea
h of the
onstituent tilings, so the gaps suggest that there are ranges of ways in whi
hthese tiles 
annot overlap in this tiling.
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It may be that the situation 
hanges further along the tiling, but these gapsremain on a pat
h of 300000 tiles, as shown by �gure 6.10.

Figure 6.10: Diagram of a pat
h of tiling T�2p5;p5; 1p5�.
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Figure 6.11 shows a pat
h of the tiling with S1 and S2 at the same gradientsas before, but with E altered to be at gradient �7 . Again, we have a tile of lengthslightly greater than 0.4 appearing throughout the pat
h, though the a
tual lengthhas altered slightly due to the alteration to the gradient of E (this time the lengthis �p�2+49).

Figure 6.11: Diagram of a pat
h of tiling T(2p5;p5;�7 ).The diagram seems to show an \os
illating" pattern to the lengths of tilesabove the line. Again, it is possible that the previous tiling is displaying some-thing similar but on a mu
h larger s
ale.
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7 Con
lusionIn this do
ument we looked at 2:1 non-parallel proje
tions s
hemes. Three dif-ferent types of these were de�ned in 
hapter 3, namely rational 2:1 X-proje
tions
hemes, irrational 2:1 X-proje
tion s
hemes and a type of non-parallel proje
-tion s
heme where the two strips have rational gradients but the proje
tion isonto a line at irrational gradient.In the same 
hapter we saw that this �nal type of non-parallel proje
tions
heme produ
es tilings with in�nitely many prototiles but for any 
hosen pat
hof tiles, P , in su
h a tiling there will be pat
hes that are "-
lose to P (de�nition3.10) throughout the tiling showing that su
h tilings have a property that issimilar to repetitivity.Tilings generated by irrational 2:1 X-proje
tion s
hemes were also seen tohave in�nitely many prototiles, and several examples of this type of tiling werelooked at in 
hapter 6, in
luding one that appeared to have large \gaps" in theset of prototile lengths observed.The bulk of this do
ument was 
on
erned with the examination of tilingsgenerated by rational 2:1 X-proje
tion s
hemes. In 
ontrast to the other twotypes of non-parallel proje
tion tilings featured these tilings were seen to haveonly a �nite number of prototiles, with an upper bound for this number 
om-puted on 
hapter 3. In the same 
hapter a 
ertain 
lass of this type of tilingwas shown to be repetitive.In 
hapter 4 we looked at the points in the fundamental domain of ourlatti
e L that 
orrespond to translates of a tiling generated by a rational 2:1 X-proje
tion s
heme. The patterns of these points were found to di�er dependingon the relationship between the gradients of the two strips relative to the latti
e�, a sublatti
e of L that depends on the gradient of the pattern spa
e E. Thesediagrams were seen to 
ome in four distin
t types, with the �rst three all havingtranslate points appearing as dense subsets of a �nite number of lines in the153



fundamental domain of L and the �nal type having translate points forming adense subset of the fundamental domain.At the end of 
hapter 4 we looked in greater detail at the diagrams that areprodu
ed by rational 2:1 X-proje
tion tilings, parti
ularly in the 
ase where thegradients of the two strips are rationally related relative to �.In 
hapter 5 we examined the tiling spa
es asso
iated to rational 2:1 X-proje
tion tilings. We started by looking at the tiling spa
es of 
anoni
al 2:1proje
tion tilings, then pro
eeded to the intermediate step of one-strip non-parallel 2:1 proje
tion tilings, whi
h we proved to have tiling spa
es that arehomeomorphi
 to those of 
anoni
al 2:1 proje
tion tilings. Then we moved onto examine the tiling spa
es of tilings generated by rational 2:1 X-proje
tions
hemes, parti
ularly looking at the multiple points (or lines) that arise in thevarious di�erent types. Finally we revisited the problem of repetitivity of thesetilings, showing that all tilings generated by rational 2:1X-proje
tions are repet-itive.In 
hapter 6 we presented some examples of rational 2:1 X-proje
tion tilingsand looked at the proportions of prototiles in large pat
hes of these examples.We gave a possible explanation of the observed values and noted that the pro-portions we predi
ted the prototiles to appear in most 
losely mat
hed theobserved data in the 
ase where the translate points of the tiling are dense inthe fundamental domain of L.There are also many questions that were not answered (or not fully an-swered). We saw that irrational 2:1 X-proje
tion tilings have in�nitely manyprototiles and 
ould not be repetitive, but the question of whether they 
ouldbe "-repetitive (as with the non-parallel proje
tions where we had the strips atrational gradients) remains unanswered. We also saw \gaps" in one of the exam-ple diagrams for this type of tiling, suggesting that there are ranges of lengthsof tiles that do not appear in the tiling, but it is not 
lear whether these gapspersist throughout. If some examples really do have these \gaps" throughout,154



then what are the 
onditions required to give su
h examples?In the 
ase of rational 2:1X-proje
tions more work 
ould be done on des
rib-ing the tiling spa
es, and though we proved aperiodi
ity in some 
ases there wasno general proof of this. In addition, the question of whether any of these tilingsmight arise as substitutions was not addressed. Finally, one 
ould investigatethe tilings produ
ed by higher dimensional versions of this setup.
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