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Abstrat Andrew PedenTilings Generated by Non-Parallel Projetion ShemesThis thesis de�nes and investigates rational and irrational 2:1 X-projetionshemes and non-parallel projetion shemes with strips at rational gradients.Both irrational 2:1X-projetion shemes and non-parallel projetion shemeswith strips at rational gradients are shown to produe tilings with in�nitelymany prototiles, with the tilings produed by the seond of these shemesnonetheless shown to display a property similar to repetitivity.Rational 2:1 X-projetion shemes are shown to produe tilings with a �nitenumber of prototiles, with a subset of these tilings shown to be repetitive. Thepoints in the fundamental domain of our lattie L that orrespond to translatesof these tilings are also investigated, with these points shown to be either densein a �nite number of lines or dense in the fundamental domain. This also leadsto a proof of repetitivity in all rational 2:1 X-projetion tilings and aperiodiityin a subset of these tilings. The tiling spaes of suh tilings are also investigated.In addition, the proportions in whih the prototiles in a rational 2:1 X-projetion tiling appear are also looked at, and a possible explanation of thevalues observed is provided.
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1 IntrodutionPeople have been reating tilings for thousands of years, from the wall and oortilings of anient ivilisations suh as the Romans and Persians (see for example[6℄) to muh more reent work like the drawings of M. C. Esher. These patternsare generally periodi tilings of the plane, meaning that they onsist of a �nitenumber of tiles arranged in a ertain way within some path, with this paththen repeated in a regular way throughout the plane.In this doument we will be onerned with tilings that are aperiodi (seede�nition 2.9), so do not onsist of a single path of tiles that repeats in aregular way. However, the tilings that we are interested in may be repetitive (seede�nition 2.10), whih means that any path of tiles in the tiling will reappearthroughout the tiling and always within some �xed distane (that depends onthe path) of any point in the tiling. This is a property that all periodi tilingshave, but that is not neessarily shared by an aperiodi tiling.1.1 Crystals and QuasirystalsAperiodi tilings and tile sets (set of tiles that will only �t together to form ape-riodi tilings) of the plane have been studied for deades, with one-dimensionalaperiodi tilings even older, however physial analogues to these mathematialobjets were not enountered until the 1980s, when quasirystals were disovered(�rst reported in [15℄).Crystals are 3-dimensional strutures in whih the onstituent atoms ormoleules are arranged in regular repeating pattern, and so are muh like 3-dimensional periodi tilings. The struture of a rystal an be determined bylooking at its orresponding di�ration pattern, whih is produed by shiningX-rays through a thin slie of the rystal. The di�ration patterns produed byrystals look like patterns of points with a rotational symmetry of order 2, 3, 4or 6, with any other order of rotational symmetry impossible (see [16℄).1



Quasirystals were �rst identi�ed by their di�ration patterns, whih werepure point (i.e. onsisting of distint bright spots) like those of rystals, butdisplayed forbidden symmetries suh as 5-fold and 10-fold rotational symme-try. The pure point di�ration patterns suggested that these substanes were\rystal-like" in the sense that they must have strutures that are somewhatregular, but the symmetries of the patterns ruled out the possibility of thesestrutures being periodi.Identifying the struture of quasirystals provided some physial motivationfor the study of aperiodi tilings.1.2 Generating Aperiodi TilingsThere are several methods for generating tilings. We will briey look at threeof these methods here. The third of these (the projetion method) is the onethat we will be most interested in for the remainder of this doument.The �rst method for generating tilings is to start with a set of tiles andimpose mathing rules on them so that they an only �t together in ertainways (see for example [13℄). For example, to produe a Wang tiling (see [1℄, [7℄)we will start with a set of square tiles with the edges of eah oloured in someway and then �t them together so that mathing edges have the same olour(see �gure 1.1). A similar e�et an be ahieved by altering the shapes of theedges slightly so that only edges with the same olour an �t together.
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Figure 1.1: An aperiodi set of 13 Wang tiles [3℄The seond way to obtain tilings is by substitution (see for example [5℄).For this method we take a set of tiles and de�ne a substitution rule for eahof them, where a single tile is replaed by a path of one or more tiles fromour set at eah iteration. We an thus start with a tile or path of tiles andperform the substitution to get a larger path, then substitute again to get aneven larger path, and so on. For example, we an reate a Penrose tiling [12℄in this way (see �gure 1.2). Note that Penrose tilings an also be onstrutedusing mathing rules [11℄.The �nal method for generating tilings that we shall mention here is theprojetion method. For this method we start with some lattie in a higherdimension, typially ZN, selet some subset of the points of this lattie and thenprojet these points onto the spae in whih we want our tiling. We then forma tiling from these points. This is examined in greater detail in the followinghapter.In this doument we will de�ne a modi�ation of the projetion setup, wherethe points seleted from the higher dimensional lattie (we will be looking atZ2) are those ontained in two \strips" that have di�erent gradients, and theprojetion is onto a spae that has a gradient independent of those of the strips.We will see that there are several versions of this setup, giving di�erent3



Figure 1.2: Substitution rules for the Penrose Rhombslasses of tilings. We will then examine the di�erent types, partiularly thetilings generated by rational 2:1 X-projetion shemes.1.3 Doument LayoutAs explained above, this doument is largely onerned with projetion tilings,with the projetion typially being from a 2-dimensional lattie onto a 1-dimensionalspae.In hapter 2 we de�ne tiles and tilings and then projetion tilings, withpartiular emphasis on anonial 2:1 projetions, and prove some basi resultsabout these tilings.In hapter 3 we introdue non-parallel projetion tilings, whih are generatedby seleting lattie points from within two non-parallel strips and projetingthese onto a line with a gradient independent of either strip. These ome inthree distint types, and we provide some basi results about eah of thesetypes. 4



In hapter 4 we look in greater detail at rational 2:1 X-projetion tilings (oneof the three types of non-parallel projetion introdued in hapter 3), examiningthe positions in whih we an plae our two strips to obtain translates of ourtiling. We also prove that ertain rational 2:1 X-projetion setups will produeaperiodi tilings.In hapter 5 we look at the tiling spaes assoiated to rational 2:1 X-projetion tilings. In addition, we see that all rational 2:1 X-projetion shemesgive repetitive tilings.In hapter 6 we provide some examples of both rational and irrational 2:1X-projetion tilings and also look at the number of prototiles in a tiling pro-dued by a rational 2:1 X-projetion sheme and the proportions in whih theseprototiles appear.Finally, the onlusion provides a summary of the results obtained in thisdoument along with some remaining questions.Figure 1.3 shows a more pitographi overview of the struture of this thesis,with the solid lines indiating the onnetion between di�erent setions (and thedotted line showing a possible onnetion).
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Figure 1.3: A summary of the ontents of this doument.
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2 Tiles, Tilings, Model Sets and Projetion ShemesWe begin this hapter with the basi de�nitions involved in the study of tilings,starting with the de�nitions of a tile and a tiling that we will be using throughoutthis doument (see for example [14℄).De�nition 2.1. A set t � Rn ; n � 1, is alled a tile if it is ompat and equalto the losure of its interior. We will also always assume that tiles are home-omorphi to topologial balls. So tiles in R are losed intervals and normallytiles in R2 will be polygons.De�nition 2.2. A tiling T of Rn is a olletion of tiles that,� Pak Rn , meaning that any two tiles have pairwise disjoint interiors.� Cover Rn , i.e., the union of all the tiles is Rn .De�nition 2.3. We say that two tiles t1; t2 are equivalent if one is a translateof the other.De�nition 2.4. Equivalene lass representative of tiles are alled prototiles.We will mostly be interested in tilings that have a �nite set of prototiles,whih means that they are made up of only �nitely many \types" of tile, howeverthere will be some oasions when we look at tilings with an in�nite set ofprototiles.De�nition 2.5. A path of tiles is a �nite set of tiles in a tiling whose union isonneted.2.1 Model Sets and Projetion ShemesModel sets, whih are also known as ut-and-projet sets (�rst onstruted in[2℄), are sets of points that are generated by seleting ertain points of a higherdimensional lattie (through a ut-and-projet sheme) and projeting thesedown onto a spae of smaller dimension.7



De�nition 2.6. A ut-and-projet sheme (see for example [10℄) onsists of alattie, L, in the spae Rm �Rn (i.e. a disrete subgroup of Rm �Rn that spansRm �Rn ) and projetions �1 : Rm �Rn ! Rn and �2 : Rm �Rn ! Rm , where�1jL is injetive and �2(L) is dense in Rn .Rn is the spae in whih the Model set will be generated and hene is knownas the pattern spae, whereas the spae Rm is alled the internal spae.If we take a subset K � Rm then we denote by �(K) the point pattern inRn given by the projetion into Rn of the points of L that are projeted by �2into K, i.e. �(K) = f�1(x) 2 Rn : x 2 L; �2(x) 2 Kg :Here we all K the aeptane domain.De�nition 2.7. A model set [9℄ (or ut-and-projet set) is a subset � of Rnsatisfying �(W Æ) � � � �(W ), for some W onneted and ompat in Rn ,W = W Æ 6= ;. The model set � is regular if the boundary �W = WnW Æ of Wis of Lebesgue measure 0.We will largely be onerned with 2:1 projetions. That is, projetions ofpoints from a 2-dimensional lattie onto a 1-dimensional spae. In the ase of2:1 projetions we have a lattie L in R2 with two projetions from R2 onto theaxes, satisfying the above onditions, i.e., �1jL is injetive and �2(L) is dense inR. We will usually refer to the pattern spae as E with the internal spae beingalled E?.Example 2.1. If we take L to be a square lattie then with K being a singlelosed interval in R we will get a situation muh like that illustrated in �gure2.1.
8



Figure 2.1: A 2:1 projetion sheme.In a similar way we an onsider the lattie to be �xed and the pattern spae(E) to be at an irrational gradient relative to the square lattie, as shown in�gure 2.2.

Figure 2.2: An alternative way of viewing the 2:1 projetion sheme.
9



2.2 Canonial 2:1 Projetion TilingsDe�nition 2.8. A anonial 2:1 projetion sheme is a ut-and-projet shemeas detailed above with lattie L = Z2 and aeptane domain K being a losedinterval, where the width of this interval, and therefore the strip that lattiepoints are projeted from, is taken to be equal to the projetion of a unit squareonto E?. In addition, the aeptane domainK is hosen so that the boundariesof the strip do not interset any points of L.So a strip S has anonial width if the point (�; �) (for �; � 2 R) is on thelower boundary of the strip if and only if the point (��1; �+1) is on the upperboundary.Note that a anonial width strip will have width sin � + os �, where � isthe angle of the strip relative to the integer lattie, as an be seen from �gure2.3.

Figure 2.3: Canonial strip width.Observe also that � must be an irrational multiple of 2�, i.e., the strip musthave an irrational gradient. This is beause a projetion with rational gradientwould not result in �1jL being injetive or �2(L) being dense in E?.Proposition 2.1. It is possible to hoose an aeptane domain K so that theboundaries of the strip K +E do not interset any points of the lattie.10



Proof. Choosing a strip whose boundaries do not interset any lattie points isequivalent to hoosing a line that does not interset any lattie points. This isbeause the width of the strip is hosen so that the upper boundary line is thetranslation of the lower boundary line by (�1; 1). So there is a lattie pointon the lower boundary line if and only if there is a lattie point on the upperboundary line.So start with a line, L, in R2 . Then any translate of L by a vetor notparallel to L, say by a vetor parallel to L?, will not interset L and so willnot interset any of the lattie points on L. More generally, two translates bynon-equal vetors parallel to L? will not interset eah other and so will notontain any of the same lattie points. However, there are unountably manytranslates of L of this type and only ountably many lattie points, so thereforethere must exist translates of L that do not interset any lattie points.2.2.1 Charateristis of Canonial 2:1 Projetion TilingsIf we onstrut a anonial 2:1 projetion tiling as above, then the tiling willhave ertain attributes, some of whih are detailed in this setion.Firstly, the \horizontal" and \vertial" widths of the strip are given by,horizontal width = 1 + os �sin �vertial width = 1 + sin �os �as an be seen from �gure 2.4.
11



Figure 2.4: The horizontal and vertial widths of the strip.Proposition 2.2. There are exatly two types of tile in a anonial 2:1 proje-tion tiling with irrational gradient.Proof. If we have a lattie point (x; y) within the strip K +E then exatly oneof the points (x; y + 1) and (x + 1; y) is ontained in the strip.If (x; y) is less than distane sin � from the lower boundary of the strip then(x; y) is within \vertial" distane sin �os � and within \horizontal" distane 1 ofthe lower boundary of the strip. Therefore we get that the lattie point (x; y+1)is ontained in the strip and the lattie point (x + 1; y) is not ontained in thestrip.If (x; y) is greater than distane sin � from the lower boundary of the strip(and therefore less than distane os � from the upper boundary) then it is within\horizontal" distane os �sin � and \vertial" distane 1 of the upper boundary, andthus the lattie point (x + 1; y) is ontained in the strip and the lattie point(x; y + 1) is not.Note that by the hoie of position of the strip you an never have a lattiepoint exatly distane sin � from the lower boundary, as this would imply that12



the points (x+ 1; y) and (x; y + 1) were on the boundaries of the strip.So for any lattie point (x; y) within the strip exatly one of the lattie points(x; y + 1) and (x + 1; y) is also ontained in the strip. Similarly, exatly one of(x� 1; y) and (x; y � 1) is ontained within the strip.We are restriting to the ase where 0 < � < �2 , so (x + 1; y) and (x; y + 1)are both projeted further along E than the projetion of (x; y) and thereforeall subsequent lattie points in the strip are projeted yet further along. Sothe projetion of any lattie point (x; y) is followed by the projetion of either(x; y + 1) or (x+ 1; y), meaning that there are at most two tile lengths.Note that you will only get one length of tile if (x; y + 1) and (x+ 1; y) areprojeted to the same point, however this an only happen if � = �4 , whih isdisounted by the hoie of irrational gradient of the strip.Now, 0 < � < �2 , sohorizontal width = 1+ os �sin � > 1and vertial width = 1 + sin �os � > 1 :� is irrational, so there are points arbitrarily lose to the boundaries of thestrip K+E whih are within the strip. Therefore for any irrational � satisfying0 < � < �2 there are lattie points within the strip K + E that are withindistane sin � of the lower boundary of the strip, and there are lattie pointswithin distane os � of the upper boundary. Therefore both types of tile appearin any anonial 2:1 projetion tiling with irrational gradient.So there are exatly two di�erent lengths of tile in every 2:1 anonial pro-jetion tiling. The lengths of these two tiles are sin � and os � as an be seenfrom �gure 2.5. 13



Figure 2.5: The projetions of horizontal and vertial steps.Proposition 2.3. A anonial 2:1 projetion tiling has two prototiles, the shorterof whih always appears anked by two longer tiles.Proof. We an relate the \horizontal" and \vertial" widths of the strip to thelengths of the two tiles in the following way:horizontal width = 1 + length of tile 1length of tile 2vertial width = 1 + length of tile 2length of tile 1 :As already stated, the lengths of the two tiles annot be equal when � 6= �4 ,so the \horizontal" and \vertial" widths are not equal and,longer width = 1 + length of longer tilelength of shorter tile > 2shorter width = 1 + length of shorter tilelength of longer tile < 2 :14



If 0 < � < �4 then the \vertial" width is shorter and sine it is stritlyless than two it is not possible to have more than two lattie points arrangedin a vertial row within the strip (reall: lattie points are distane 1 apart),i.e., there annot be more than one tile of length sin � in a row. Similarly, if�4 < � < �2 then the \horizontal" width is shorter and there annot be morethan one tile of length os � in a row.But note that for 0 < � < �4 the tile of length sin � is the shorter tile, andfor �4 < � < �2 the tile of length os � is the shorter tile. So in any anonial 2:1projetion tiling you never get two shorter tiles next to eah other.Proposition 2.4. In a anonial 2:1 projetion tiling the longer of the twoprototiles appears in pathes, with the number of tiles in eah path equal toj length of longer tilelength of shorter tilek or j length of longer tilelength of shorter tilek+ 1 :Proof. We know that the horizontal and vertial widths of the strip are givenby, horizontal width = 1 + os �sin �vertial width = 1 + sin �os � :For 0 < � < �4 , the tile of length os � (orresponding to a horizontal stepbetween lattie points) is the longer tile.In this ase, the maximum number of onseutive lattie points in a hor-izontal row within the strip is 2 + j length of longer tilelength of shorter tilek, beause you an �ta horizontal line of length 1 + j length of longer tilelength of shorter tilek within the strip. Also,the smallest number of lattie points in a horizontal row in the strip mustbe 1 + j length of longer tilelength of shorter tilek, beause it is possible to position a horizontalline of length j length of longer tilelength of shorter tilek within the strip with endpoints less than\horizontal" distane 1 from the boundaries of the strip, but this annot bedone with a horizontal line of length j length of longer tilelength of shorter tilek� 1.15



The ase where �4 < � < �2 is similar but with the tiles of length sin �(orresponding to vertial steps) being longer and appearing in bloks.So the longer tiles in a anonial 2:1 projetion tiling ome in bloks of length1 + j length of longer tilelength of shorter tilek or j length of longer tilelength of shorter tilek.Note that length of longer tilelength of shorter tile is not an integer, sine length of longer tilelength of shorter tile isequal to sin �os � or os �sin � , and so is equal to the gradient of the strip, or 1 divided bythe gradient, whih annot be an integer by the hoie of an irrational gradient.Thus the tiling given by a projetion of this kind must have two types of tileand onsist of bloks of the longer tiles of length 1 + j length of longer tilelength of shorter tilek orj length of longer tilelength of shorter tilek divided by solitary tiles of shorter length.Now we look at the proportions in whih the two prototiles appear in a tilingby onsidering number of short tilesnumber of long tiles for some onneted setion of the tiling, andthe limit of this sequene as the setion is lengthened. This will show thegradient, or 1gradient , of the line drawn from the lattie point that is projetedto the start of this setion of tiles to the lattie point that is projeted to theend, i.e., you get the gradient of the line shown in �gure 2.6.

Figure 2.6: Horizontal and vertial steps in a setion of the strip.Note 2.1. If �4 < � < �2 then the shorter tiles will orrespond to horizontal16



\steps", so you will be measuring 1gradient .As you examine longer setions of the tiling you will be looking at largersetions of the strip, but both the endpoints are ontained within the strip, sothe gradient of the line drawn between them an only di�er slightly from thegradient of the strip.Proposition 2.5. In a anonial 2:1 projetion tiling we have that,limn!1�number of shorter tilesnumber of longer tiles � = length of shorter tilelength of longer tile :If 0 < � < �4 then this value is the gradient of the strip.If �4 < � < �2 then this value is one over the gradient of the strip.Proof. The situation is shown in �gure 2.7, where n is the number of tilesorresponding to horizontal steps in the setion that you are examining.

Figure 2.7: The maximum and minimum possible gradients.The gradient of the strip is given by,gradient = ynn :Then the maximum and minimum possible gradients of lines drawn betweenlattie points in the strip, orresponding to the blue and red lines respetively,are: 17



maximum gradient = yn + hn = ynn + hn = gradient of strip + hn
minimum gradient = yn � hn = ynn � hn = gradient of strip � hn :The value of h remains onstant, so at the limit the gradient of the line mustbe equal to the gradient of the strip.Now, if 0 < � < �4 then the shorter tiles orrespond to the vertial \steps"and are of length sin � and therefore,limn!1�number of shorter tilesnumber of longer tiles � = strip gradient= tan �= sin �os �= length of shorter tilelength of longer tile :If �4 < � < �2 then the shorter tiles orrespond to the horizontal \steps" andare of length os � so,limn!1�number of shorter tilesnumber of longer tiles � = 1strip gradient= 1tan �18



= os �sin �= length of shorter tilelength of longer tile :Thus, at the limit, the ratio of the number of short tiles to the number oflong tiles is equal to the ratio of their lengths.There are two more harateristis of projetion tilings that will be shownbelow. The �rst of these is the aperiodiity of the tiling.De�nition 2.9. A tiling T of Rn is said to be aperiodi if for any non-zerovetor v 2 Rn the tiling T + v (that is, the translate of tiling T by vetor v)does not oinide with T .A tiling is said to be periodi if there is a non-zero translate of the tilingthat oinides with the original tiling.Note that a tiling of Rn ould be periodi in only some diretions and have noperiodiity in others. However, we will largely be onerned with 1-dimensionaltilings, for whih this is not a problem.Theorem 2.6. A tiling produed by a anonial 2:1 projetion is aperiodi.Proof. First we assume that the tiling T is periodi. Then there exists a vetorv = (v1; v2) in R2 parallel to the pattern spae E that maps T to itself.So the projetion of the lattie points after being translated by v is the sameas the projetion of the original lattie points (i.e. both projetions give T ).Consider a lattie point x0 = (x; y) in the strip. Then x0 + v is in the stripand beause the gradient is irrational it does not oinide with any other lattiepoint. But there is a lattie point y0 in the strip that is projeted to the same19



point as x0 + v, so y0 is some distane " from x0 + v in a diretion parallel toE?. So we will write y0 = x0+ v+ ", where " is parallel to E? and of length ".If x1 is the next lattie point to be projeted onto E after x0 (i.e. x1 =(x+ 1; y) or (x; y + 1)) then x1 + v must have a orresponding lattie point y1whih is equal to y0+(1; 0) if x1 = (x+1; y) or y0+(0; 1) if x1 = (x; y+1) andso is the same distane (") in the same diretion (along a line parallel to E?)from x1 + v as y0 is from x0 + v. This is beause the projetion is onto a lineat irrational gradient, so the step between lattie points x0 and x1 must be thesame as the step between y0 and y1 or the tiles would not be the same length.Thus indutively, all the subsequent lattie points satisfy, yi = xi + v + ".However, beause of the irrational gradient of the strip there will be lattiepoints xj arbitrarily lose to the boundaries of the strip, and in partiular,within distane " of eah boundary, whih implies that some of the yi are loatedoutside the strip.Therefore, the tiling T of E must be aperiodi.The �nal attribute of tilings that are produed by anonial 2:1 projetionsexamined in this setion is that they are repetitive. This term is de�ned below.De�nition 2.10. A tiling T of Rn is alled repetitive if for any path of tilesP in T there is a number r > 0 suh that for any point t 2 Rn there is atranslate of the path P belonging to T and ontained in the ball Br(t) (in the1-dimensional ase this is the interval of length 2r entred at t).So in a repetitive tiling any �nite set of onneted tiles will appear through-out the tiling, never more than some distane r from any point.Theorem 2.7. A tiling generated by a anonial 2:1 projetion is repetitive.Proof. Any path, P , in T is a �nite set of tiles whose union is onneted. Sothe endpoints of the tiles in P are the projetions of a �nite set of lattie pointsf(xi; yi)g within the strip. 20



Now, beause of the hoie of strip width (and bearing in mind that we haverestrited � to be between 0 and �2 ), the lattie point (xi � 1; yi + 1) is thesame distane from the upper boundary of the strip as (xi; yi) is from the lowerboundary, and (xi + 1; yi � 1) is the same distane from the lower boundaryas (xi; yi) is from the upper boundary. This is beause, by the hoie of widthof the strip, if you moved the strip so that (xi; yi) was on the lower boundarythen (xi � 1; yi + 1) would be on the upper boundary and if (xi; yi) was on theupper boundary then (xi + 1; yi � 1) would be on the lower boundary. Figure2.8 illustrates the situation.
Figure 2.8: Proximity of lattie points to the strip boundaries.So in partiular, eah of the points (xi + 1; yi � 1) and (xi � 1; yi + 1) is atleast as far from the strip as the distane from (xi; yi) to the nearest boundary.Now, sine there are only a �nite number of lattie points in the set f(xi; yi)gthere will be a lattie point (xj ; yj) of minimal distane from the strip bound-aries, i.e., if (xj ; yj) is distane " from the losest boundary then no other lattiepoint is within distane " of either boundary.Then every time a lattie point within the strip is loser than distane 2" tothe boundary that is losest to (xj ; yj) you will get the same on�guration oflattie points surrounding that point as are found in f(xi; yi)g, beause shiftingall of the points in f(xi; yi)g by up to distane " in a diretion perpendiularto the strip will not translate any of them outside the strip or move any new21



points into the strip within the on�nes of the path, i.e., all points (xi; yi)will remain within the strip and therefore all points of the form (xi + 1; yi � 1)and (xi � 1; yi + 1) will remain outside the strip. So a opy of the path Pwill be found around any lattie point that is within distane 2" of the relevantboundary.So to show that the tiling is repetitive we have to show that given a line, L,with irrational gradient in an integer lattie, and " > 0, there exists some r > 0suh that for any point t on the line there is a lattie point within the strip ofwidth 2" and length 2r extending out from the line in one diretion with t atthe entre of one side. The situation is shown in �gure 2.9. (Note that the stripould also be below L).

Figure 2.9: The strip of length 2r and width 2" with t at the midpoint of oneside.If x is an integer, then there will be a lattie point with �rst oordinate xwithin this strip if the interval �L(x); L(x) + 2"os � � ontains an integer, whereL(x) is the y-value of the line L at x (note that 2"os � is the vertial width of thisstrip and is greater than 2" beause of our hoie of �).At x + n (for n 2 Z) the situation is similar but with the relevant intervalbeing �L(x) + n tan �; L(x) + 2"os � + n tan ��.Equivalently, we an look at the frational parts of these intervals within the22



unit interval I . The gradient, tan �, is irrational, so the set of frational partsof the intervals for all integers n form an open over of I , and this has a �nitesubover by ompatness of I .This �nite subover must have an interval orresponding to x+m with m ofmaximum modulus, so taking r to orrespond to m steps along in eah diretionfrom the initial point (i.e. r = mos � ) will guarantee that there is a lattie pointless than 2" from the line and no more than distane r along the line from theinitial point.This will work from any point on L with integer x-oordinate beause start-ing at a di�erent x is like shifting every set in the over by the same �xedamount, so will still result in a over. If we take r to orrespond to m+1 stepsthen it will work for any point on L.So therefore for any point on L there is a value r > 0 satisfying the relevantonditions, and so the tiling is repetitive.So, to sum up, a tiling generated by a 2:1 anonial projetion has thefollowing harateristis:� The tiling has exatly two lengths of tile, these lengths being sin � andos �.� The tiling onsists of \bloks" of one or more longer tiles divided up bysingle short tiles.� The \bloks" of longer tiles ontain either 1 + j length of longer tilelength of shorter tilek orj length of longer tilelength of shorter tilek tiles.� The limit of the ratio,number of short tiles : number of long tiles23



is equal to the ratiolength of short tile : length of long tile :� The tiling is aperiodi and repetitive.2.3 N:1 ProjetionsAs with the 2:1 projetions disussed above we an also generate 1-dimensionaltilings using N : 1 projetion shemes, where we projet points from an N -dimensional lattie onto a 1-dimensional pattern spae.In a anonial N :1 projetion we have an integer lattie ZN and a strip thatis de�ned by translating a unit N -ube parallel to some vetor (a1; a2; :::; aN ),whih we will take to be a unit vetor.Note that here ai 6= 0 for all i, sine if we had an ai being equal to 0 wewould e�etively be in the N � 1 ase. In fat, as with 2:1 projetions, we willrestrit to the ase where ai > 0 for all i.If a lattie point within the strip is projeted onto the pattern spae E thenthe next lattie point to be projeted onto E must be a unit step along fromthe �rst point in one of N diretions. These N possible steps give (up to) Npossible tile lengths in the tiling produed by this projetion.De�nition 2.11. A anonialN :1 projetion with de�ning vetor (a1; a2; :::; aN )is said to be degenerate if we have that ai = aj for some pair i; j 2 f1; 2; :::; Ng(i 6= j).Conversely, we say that an N :1 projetion is non-degenerate if every ai isdistint.Proposition 2.8. Given a standard N :1 projetion setup with strip de�ned byunit vetor (a1; a2; :::; aN ) the lengths of the prototiles in the orresponding tilingare ai for i 2 f1; :::; Ng. 24



Proof. If we take the line through the origin that is parallel to (a1; a2; :::; aN ),i.e., the line t(a1; a2; :::; aN ), for t 2 R, then the projetions of the points(1; 0; :::; 0), (0; 1; 0; :::; 0),..., (0; 0; :::; 0; 1) onto this line give the lengths of thetiles from a standard N : 1 projetion with strip de�ned by the vetor above.Eah of these points will be projeted to the losest point on the line.So onsider the vetor from the point (1; 0; :::; 0) to the point s(a1; a2; :::; aN )on the line. This vetor is equal to (sa1 � 1; sa2; :::; saN ).Now we look at the square of the length of this vetor as s varies. This isgiven by: �(s) = (a1s� 1)2 + (a2s)2 + :::+ (aNs)2= (a21 + a22 + :::+ a2N )s2 � 2a1s+ 1= s2 � 2a1s+ 1 :This will be minimised at the turning point of �(s),�0(s) = 2s� 2a1 :So, �0(s) = 0, s = a1 :So the losest point on the line to the point (1; 0; :::; 0) is the point a1(a1; a2; :::; aN ),whih is distane a1 from the origin (sine (a1; :::; aN ) is a unit vetor).Therefore the length of the tile orresponding to the unit step (1; 0; :::; 0) isa1, and a similar argument applies to the other steps.As with the anonial 2:1 ase we will also get the N di�erent possible stepsbetween lattie points in our strip appearing in proportion to the lengths oftheir projetions. However, note that we may get degenerate ases where the25



terms ai for i 2 R are not all di�erent, resulting in two or more distint stepsgiving tiles of the same length in the tiling. Thus with this sort of setup thetiles may not atually appear in proportion to their lengths in the tiling.In the anonial 2:1 ase, only the step orresponding to the longer tile anappear in multiples of more than one within the strip. This is also true in the(non-degenerate) anonial N :1 ase.Proposition 2.9. A tiling generated by a non-degenerate anonial N :1 pro-jetion sheme ontains only one prototile that an appear next to a opy ofitself.Proof. Sine in a non-degenerate N : 1 projetion we have that the prototilesorresponding to di�erent steps are all of di�erent lengths it suÆes to provethat the strip in any suh projetion sheme has only one step that an appearin multiples of more than one.We will look at the ase where ai > 0 for all i, with all other ases being simi-lar. Here we will look at the strip generated by translating the unit N -ube withverties (0; 0; :::; 0); (1; 0; :::; 0); :::; (1; 1; :::; 1) along the vetor (a1; a2; :::; aN ). Thisstrip has all the points of the unit N -ube on its edges apart from the points(0; 0; :::; 0) and (1; 1; :::; 1), whih are in the interior.A point (x1; x2; :::; xN ) 2 RN is ontained in this strip if and only if thereexists some value � 2 R suh that (x1; :::; xN )+�(a1; :::; aN ) is ontained in theunit N -ube desribed above.We will assume that a1 > ai for all i 2 f2; 3; :::; Ng. Sine (a1; :::; aN ) is aunit vetor and all ai are non-zero we have also that 0 < ai < 1 for all i.Now, if we look at the point (�1; 0; :::; 0) we �nd that for this to be ontainedin the strip we must have that there exists some � 2 R suh that,0 < �a1 � 1 < 10 < �a2 < 126



:::0 < �aN < 1 :I.e., all the values �ai for i 2 f2; 3; :::; Ng are between 0 and 1 and �a1 takesa value between 1 and 2. However, sine a1 is the largest of the ai there will besuh a �. Thus the strip an ontain more than one step of the type (1; 0; :::; 0)onseutively.To disover whether any other step an appear in multiples of two or more weexamine whether the points that are two steps of the form (0; :::; 0;�1; 0; :::; 0)along from eah vertex of the unit N -ube lie within the strip.As a starting point we an immediately disount every vertex that has a 1anywhere other than in position i, sine this would give inequality 0 < �aj+1 <1 for some j whilst also having either 0 < �ai�2 < 1 or 0 < �ai�1 < 1, requiring� to be both positive and negative.Thus we look to see whether any points of the form (0; :::; 0;�1; 0; :::; 0) areontained within the strip. For this to be the ase we must have that thereexists some � 2 R that satis�es the following inequalities:0 < �ai � 1 < 10 < �a1 < 1:::0 < �aN < 1 :However, this annot be the ase, sine a1 > ai (for i 6= 1), so �ai > 1implies that �a1 > 1.Therefore the step (1; 0; :::; 0) is the only one that an appear twie in a rowwithin the strip. 27



Thus a tiling generated by a non-degenerate anonialN :1 projetion shemewill have N prototiles appearing in proportion to their lengths with only thelongest prototile appearing in pathes of more than one at any point in thetiling.2.4 Model Multi-setsA variant of the projetion tiling setup is the model multi-set (see for example[8℄), where multiple model sets are generated from the same ut-and-projetsheme and e�etively overlaid.This setup di�ers from the one that we will be investigating in the followinghapters, where the sets that we will be looking at are the overlaying of pointsgenerated by separate ut-and-projet shemes.2.5 Tiling SpaesOne way in whih we an study a tiling T is by onstruting a spae 
T oftilings and looking at the topology of 
T (see [14℄).We start by de�ning a metri on tilings, where two tilings are onsideredto be lose if they oinide on a large ball around the origin after some smalltranslate.De�nition 2.12. Given two tilings T1 and T2 of Rn we de�ne the distanebetween these two tilings, d(T1; T2), to be equal to,inf nf1g[n" : T1 + s1 = T2 + s2 on B 1" with s1; s2 2 Rn ; ks1k; ks2k< "2oowhere B 1" denotes the ball of radius 1" entred at the origin.Note that here T + s is the tiling obtained by translating tiling T by vetors (or equivalently moving the origin by �s).28



We an now look at the translates of a tiling and how far these are from theoriginal tiling in the tiling metri.De�nition 2.13. The orbit of a tiling T of Rn is de�ned to be,O(T ) = fT + s : s 2 Rng :That is, the set of all translates of the tiling T .De�nition 2.14. A tiling spae 
 is a set of tilings that is losed under trans-lation and omplete in the tiling metri. I.e., if T 2 
 then O(T ) � 
, andevery Cauhy sequene of tilings in 
 has a limit in 
.De�nition 2.15. The hull or orbit losure 
T of a tiling T is the losure ofO(T ).The hull of a tiling T is the set of tilings that loally look like T . A tilingT 0 is in 
T if and only if every path of T 0 is found in a translate of T .
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3 Non-Parallel ProjetionsIn this hapter we introdue a new type of projetion setup involving the pro-jetions of lattie points from within two strips that are not parallel to eahother (and indeed with neither neessarily being parallel to the pattern spaeonto whih we are projeting).A 2:1 X-projetion tiling is produed by projeting the lattie points on-tained within two anonial-width strips at di�erent irrational gradients onto aline. A more formal de�nition is given below.De�nition 3.1. A strip S at gradient q in R2 is de�ned to be K�Fq where Fqis a line at gradient q in R2 , and K is a ompat, losed and onneted subsetof F?q (i.e. a losed interval in F?q ).Strip S is said to be of anonial width ifK has length equal to the projetionof a unit square onto F?q . Equivalently, when q > 0, the point (�; �) is on thelower boundary of S (for �; � 2 R) if and only if the point (� � 1; � + 1) is onthe upper boundary of S.De�nition 3.2. A 2:1 X-projetion sheme onsists of:� The integer lattie L sitting in R2 .� Two strips S1 and S2 of anonial width at gradients q1 and q2 respetively,with q1 and q2 satisfying, q1; q2 62 Qq1; q2 > 0q1 6= q2 :In addition we have that the strips are positioned so that �SiTL = ; fori = 1; 2. 30



� A line E, known as the pattern spae, at gradient p with p > 0, p 6= 1.� Orthogonal projetion � : R2 ! E.We thus get a pattern of points P = f�(x) : x 2 LT (S1SS2)g. From thispattern we get a 2:1 X-projetion tiling by taking the points to be the endpointsof the tiles.De�nition 3.3. Note that � jL is not assumed to be injetive, so the patternspae E ould be taken to have rational or irrational gradient. We will all aprojetion a rational X-projetion if E has rational gradient and an irrationalX-projetion if E has irrational gradient.As with normal projetions, 2:1 X-projetion shemes give sets of points inR. We denote by �, �1 and �2 the angles between the horizontal in the lattieL and the pattern spae E and strips S1 and S2 respetively. We then restrit�, �1 and �2 to be between 0 and �2 as with the standard projetion ase.Note that hanging the value of � does not a�et the strips, and in partiulardoes not hange the \stairase" funtion of \up" and \aross" (left to right) stepswithin eah strip. Restriting � to be between 0 and �2 ensures that the seondlattie point in an \up" or \aross" step will be projeted further along E thanthe �rst.Thus the set of points Pi generated by strip Si will have two possible dis-tanes between onseutive points unless � = �4 (but note that we spei�edthat E should not be at gradient 1, so this ase does not arise), with thesedistanes being the lengths of the projetions of a vertial unit interval and ahorizontal unit interval onto E, i.e., sin � and os � (notie that these lengthsare independent of the gradient of Si). The order in whih these two di�erent\steps" appear will however be the same as with normal projetions beausethe \stairase" funtion within the strip is the same.So the pattern Pi generated by strip Si with projetion onto spae E willonsist of an in�nite set of points with two possible distanes between onseu-31



tive points and eah of these distanes orresponds to one of the two distanesthat you get with a standard projetion with strip Si where the projetion isonto a pattern spae that is parallel to the strip.Proposition 3.1. In the 2:1 X-projetion sheme there must be at least onepoint of the integer lattie ontained in S1TS2, and only �nitely many of suhpoints.Proof. S1 and S2 both ontain \stairase funtions", i.e., within eah strip isa line onsisting of horizontal and vertial steps between lattie points in thatstrip, and beause the strips are non-parallel these lines must ross. Both thestairase funtions are subsets of a unit square grid, so their intersetion mustalso be a subset of this grid. If the two lines interset at a point other thana lattie point then they must both ontain the entire unit interval in whihthat point is loated and must therefore interset on the entire interval and inpartiular the two lattie points at the ends of the interval.So the stairase funtions assoiated to the two strips must ontain a ommonlattie point and this lattie point must therefore be in S1TS2.S1 and S2 are non-parallel and have �xed width, so their intersetion is aompat parallelogram in R2 and therefore an ontain only �nitely many lattiepoints.3.1 Rational 2:1 X-ProjetionsIn this setion we will investigate rational 2:1 X-projetions. These will belooked at in greater detail in the following hapters. We will denote by Pi theset of points that are the projetions of points from the strip Si, and the tilingassoiated to Pi will be alled Ti. The tiling that is the ombination of T1 andT2 will be denoted by U .De�nition 3.4. A set of points P � Rn is said to be uniformly disrete if thereexists a positive real number r suh that 8x; y 2 P; jx� yj � 2r.32



De�nition 3.5. A set of points P is said to be relatively dense in Rn if thereexists a positive real number R suh that every sphere of radius greater than Rontains at least one point of P in its interior.De�nition 3.6. A set of points P � Rn is a Delone set if it is uniformly disreteand relatively dense.The sets generated by standard ut-and-projet shemes are Delone sets. Aswe shall see, this is also true of the sets generated by rational 2:1 X-projetions.Lemma 3.2. In a tiling generated by a rational 2:1 X-projetion sheme withpattern spae E at gradient ab the lengths, jt1j and jt2j, of the two prototiles t1,t2 in the tilings Ti are rational multiples of eah other.Furthermore, the longer of these prototiles, whih we shall label t2 has length,jt2j = maxfa; bgminfa; bg jt1j :Proof. The two prototiles have lengths that are equal to sin � and os �, sodepend only on the gradient of the pattern spae E. If E has rational gradientthen sin �os � = tan � is rational.We label the longer of the prototiles as t2, thus we get,� < �4 ) ab < 1) jt1jjt2j = ab ) jt2j = ba jt1j� > �4 ) ab > 1) jt2jjt1j = ab ) jt2j = ab jt1j :Either way we have that, jt2j = maxfa; bgminfa; bg jt1j :
33



Proposition 3.3. The set of points generated by a rational 2:1 X-projetionwith pattern spae E at gradient ab is a Delone set, with the distane betweenany two points of the set being an integer multiple of 1minfa;bg jt1 j (where t1 isthe shorter of the two prototiles from the tilings T1 and T2).Proof. The set generated by this type of projetion is the union of the points inP1 and P2, so is the union of two sets whih onsist of points in E separated byeither jt1j or jt2j= maxfa;bgminfa;bg jt1j. So in eah Pi every point is an integer multipleof 1minfa;bg jt1j from every other point, and P1 and P2 have at least one point inommon, therefore every point in P1SP2 is an integer multiple of 1minfa;bg jt1jfrom every other point in the union.So the minimum possible distane between points is 1minfa;bg j t1 j and themaximum possible distane between onseutive points is jt2 j= maxfa;bgminfa;bg jt1 j.Thus the point set is disrete and relatively dense, and therefore a Delone set.Corollary 3.4. A tiling produed by a rational 2:1 X-projetion sheme withpattern spae E at gradient ab has at most maxfa; bg prototiles.Proof. We know that any two onseutive points in the ombined set mustbe separated by a distane that is an integer multiple of 1minfa;bg jt1j and thisdistane annot be more than jt2j = maxfa;bgminfa;bg jt1j. Thus the tiling given by thissetup an have at most maxfa; bg prototiles.The pattern spae E has rational gradient and passes through a lattie point(the origin), so therefore has in�nitely many lattie points evenly spaed alongits length. Similarly, E? ontains in�nitely many lattie points with the samespaing as those along E.So if we look at all the lines parallel to E? passing through lattie points onE then we get a square sublattie of L, this sublattie will be used extensivelyin the following hapters, so we de�ne it formally below.34



De�nition 3.7. Let E be a line with rational gradient ab , with a and b oprime(i.e. the fration is written in its lowest terms), passing through a point of thelattie L = Z2 whih we will refer to as O.We de�ne the lattie � to be the sublattie of L ontaining the point O andgenerated by the vetors (b; a) and (�a; b).

Figure 3.1: The lattie � for E at gradient 12 .From this point on both L and � oordinates will be used, so we will intro-due notation to over this here.De�nition 3.8. Translations in L oordinates will be denoted by (x; y) asbefore.Translations in � oordinates (with � de�ned as above) will be denoted by(x; y)�, where the relationship between the two types of translation is as follows.(1; 0)� = (b; a)(0; 1)� = (�a; b) :35



So the translate (x; y)� = (xb� ya; xa+ yb).Lemma 3.5. A line I has irrational gradient relative to the lattie � if andonly if it has irrational gradient relative to the lattie L (where L and � are asabove).Proof. Take I to run through a point of both L and �, whih we will all (0; 0).Then the fat that I has irrational gradient relative to L implies that I doesnot interset any more points of L, and therefore does not interset any morepoints of �, sine � � L.Thus I must have irrational gradient relative to �.If I has rational gradient relative to L then I passes through the lattie point(m;n) (with at least one of m and n non-zero) and all integer multiples of thispoint.The lattie � is at rational gradient relative to L and is generated by thevetors (a; b) and (�b; a). But the point (a2 + b2)(m;n) = (an � bm)(�b; a) +(am + bn)(a; b) is ommon to both latties and lies on I , so I must also haverational gradient relative to �.Reall the de�nition of repetitive as given in the previous hapter:De�nition 2.10. A tiling T of Rn is alled repetitive if for any path of tilesP in T there is a number r > 0 suh that for any point t 2 Rn there is atranslate of the path P belonging to T and ontained in the ball Br(t) (in the1-dimensional ase this is the interval of length 2r entred at t).Theorem 3.6. Rational 2:1 X-projetion shemes with strips S1 and S2 havinggradients that are irrational and rationally related relative to � give repetitivetilings.Proof. Eah Ti has two prototiles t1 and t2, with jt2 j>jt1j. The projetions oftwo onseutive lattie points in Ti an never be more than jt2j apart, thereforeany path in U of diameter greater than jt2 j must ontain the projetions of36



lattie points from both strips. Note that there may be smaller pathes in Uthat ontain tiles with all endpoints from the same strip, but any one of thesepathes will appear as part of a larger path ontaining projetions of pointsfrom both strips and will therefore reappear in the tiling whenever this largerpath reappears. Thus it is enough to prove that any path with tile endpointsoming from the projetions of points in both strips will appear throughout thetiling U .If you have a �nite path of the above type then eah strip will ontain a�nite set of lattie points that are projeted into this path, and thus eah willhave a lattie point that is losest to one of the boundaries of the strip. Weall these points x1 2 S1 and x2 2 S2, and their distanes from the relevantboundaries "1 and "2 respetively.As in the proof of repetitivity of a standard 2:1 projetion, whenever thereis a lattie point, y1, within 2"1 of the relevant boundary of S1 the path fromT1 will appear in U and whenever there is a lattie point, y2, within 2"2 of therelevant boundary of S2 the path from T2 will appear in U . So for the ompletepath to appear in U it is required that we have suh lattie points y1 and y2with, �(y1)� �(y2) = �(x1)� �(x2) :If we draw lines I1 through x1 parallel to S1 and I2 through x2 parallel toS2 then for the omplete path to reappear we need lattie points y1 and y2whose projetions have the above relation, with y1 being within "1 of S1 and y2within "2 of S2.We now set " = minf"1; "2g, and also position the pattern spae E so thatit runs through x2, whih we shall heneforth refer to as the origin in both thenormal lattie L and the sublattie �.In addition we will denote by (; Æ) the vetor between x1 and x2. So we37



have, x1 = x2 + (; Æ) :This gives a situation that looks a bit like that shown in �gure 3.2.

Figure 3.2: The lines I1 and I2 in lattie L.With the original path reappearing whenever we have lattie points y1 andy2 within " of I1 and I2 respetively, satisfying,�(y1)� �(y2) = �(x1)� �(x2) = �(; Æ) :Relative to the sublattie � the situation looks a bit like that shown in �gure3.3 (at least when the gradients of S1 and S2 are greater than that of E).
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Figure 3.3: The lines I1 and I2 in lattie �.Here the line I1 runs through the point (; Æ), whih is a point in the lattieL, but may not be a point of �.Now, assume that the gradients of S1 and S2 are rationally related andirrational relative to �, so gradient(S1) = dgradient(S2) (w.l.o.g. assume jj >jdj). Then if the point (�; �)� 2 � is within " of I2 the point (�; d�)� + (; Æ)will be within j d j " of I1. However, the point (�; d�)� + (; Æ) is only a lattiepoint if (�; d�)� is a lattie point, whih only happens when d� 2 Z, i.e., when� is a multiple of d.If we have a point (�; �)� within "jj of I2 then the point y1 = (d�; b�)�is within jd j" of I2, and therefore within distane ". Also the point y2 =(d�; dd�)� + (; Æ) = (d�; �)� + (; Æ) is a lattie point within j d j : jd j :" = "of I1.Of ourse, �(d�; d�)� = �(d�; �)�so, 39



�(y1)� �(y2) = �(x1)� �(x2) :Thus for every point of � within "jj of I2 there will be lattie points y1 within" of I1 and y2 within " of I2 whose projetions have the required relation. Sinethere will be points of � within this distane of I2 throughout its length thismeans that the path will repeat throughout U when S1 and S2 have gradientsof this form.Note that the hosen path will repeat in a relatively dense pattern through-out U beause the pathes that you get in T2 de�ned by having a lattie pointwithin the required distane of the relevant boundary of S2 are relatively densein S2. Or in other words, beause T2 is repetitive.Therefore when S1 and S2 have gradients that are rationally related to eahother and irrational relative to the lattie � (and positive relative to the lattieL) then the tiling produed (U) will be repetitive.Note that the general version of this result is proved in theorem 5.11.3.2 Irrational 2:1 X-ProjetionsWe now look at some of the basi properties of irrational 2:1 X-projetions.Lemma 3.7. In the irrational ase the lengths, jt1j and jt2j, of the two tiles t1,t2 in the tilings Ti are irrational multiples of eah other.Proof. The two lengths are equal to sin � and os �, so depend only on thegradient of the pattern spae E. If E has irrational gradient then sin �os � = tan �is irrational.Lemma 3.8. There are only �nitely many tiles of maximal length in a tilinggenerated by an irrational 2:1 X-projetion sheme.40



Proof. Maximal tiles in the tiling an only arise when the projetions onto Eof maximal steps in S1 and S2 oinide. If a lattie point ontained in a stripwas projeted to the same point in E as a lattie point not ontained in thatstrip then this would imply that there were two lattie points on a line parallelto E?, whih implies that E? and hene E have rational gradient.Hene, the only part of the tiling that ould ontain tiles of maximal lengthis the part that orresponds to the projetion of the lattie points in S1TS2,and there are only �nitely many lattie points in this intersetion. Thereforethere an be only �nitely many tiles of maximal length in the tiling.Theorem 3.9. A tiling generated by an irrational 2:1 X-projetion has in�nitelymany prototiles (i.e., the tiling ontains in�nitely many di�erent lengths of tile).Proof. We have an irrational 2:1 X-projetion with strips S1 and S2 at di�erentirrational gradients and orthogonal projetion onto a pattern spae E that isalso at an irrational gradient relative to the lattie.As before, we refer to the set of points in E that are projetions of points inSi as Pi and the orresponding tilings (taking these points as the endpoints oftiles) as Ti. Eah of these tilings has two prototiles t1 and t2 with jt2 j= q jt1 jfor some q > 1, q irrational. We will all the X-projetion tiling U .By the previous lemma, U has only �nitely many tiles of maximal length(i.e. of length jt2 j). However there are in�nitely many tiles of this length inboth T1 and T2. Thus there must be in�nitely many maximal length tiles inT1 that are \broken up" into shorter tiles in U by having points from P2 inbetween their endpoints. As T1 and T2 have only �nitely many ommon pointsthere must be in�nitely many tiles in U that have one endpoint from eah Pi.Figure 3.2 shows the situation in a part of tiling U that does not ome fromthe projetions of points in S1TS2.The points at the top of the line are points in P1 and the points at thebottom are in P2. The top points are j t2 j apart, and sine these points do41



Figure 3.4: Tiles with endpoints projeted from di�erent strips.not oinide with any points from P2 there must be at least one point from P2between them (the points of eah Pi are at most jt2j apart). So for eah t2 tilein T1 (outside of the tiles orresponding to S1TS2) we must get two tiles inU that have one endpoint in eah Ti. These tiles are marked v1 and v2 in theabove diagram, and at least one of these tiles must have a length that is notequal to jt1j beause they an only have tiles of length jt1j between them (or notiles) so if they both had length jt1j this would imply that jt2j was an integermultiple of jt1j. However, this is an irrational 2:1 X-projetion, so t1 and t2have lengths that are irrational multiples of eah other.Thus there must be in�nitely many tiles in U that have one endpoint in eahPi and are not of the same length as either of the prototiles in the tilings Ti.Let v be suh a tile in U . Then v has endpoints a and b, with a 2 T1 andb 2 T2. Say a prototile with the same length as v reappears in U with endpointsa0 2 T1 and b0 2 T2 in the same order as before (there are of ourse two possibleorders for the endpoints), then a0 and b0 must be translates of a and b by thesame vetor, and they are points of the tilings, so:ja0 � aj= 1 jt1j +2 jt2jjb0 � bj= d1 jt1j +d2 jt2jwith 1; 2; d1; d2 2 N.But the lengths of the prototiles are irrational multiples of eah other, so thisan only happen when 1 = d1 and 2 = d2, or in other words when the tilings42



T1 and T2 ontain the same number of eah prototile between these points.However, 12 and d1d2 have di�erent limits, so there an only be �nitely manyourrenes of tiles of length jvj with endpoints in the same order as for v (andsimilarly, only �nitely many when the order of the endpoints is swithed).So the tiling U ontains in�nitely many tiles that are not of length jt1 j orjt2j, but a tile of a given length an only appear �nitely many times. Thereforethere must be in�nitely many prototiles in an irrational 2:1 X-projetion.3.3 Projetions with Strips at Rational GradientsIn this setion we look at the tilings that are produed by projeting the lattiepoints within two non-parallel strips at rational gradients onto a pattern spaeat irrational gradient.We will all the strips S1 and S2 and the pattern spae E. For eah Sithere is a tiling Ti whih is obtained by projeting the lattie points withinSi orthogonally onto E. The omplete tiling (that is, the tiling of R given byprojeting the lattie points from both strips) is denoted by U . Eah of thetilings Ti has two prototiles whih we will all t1 and t2, and these tiles havelengths that are irrationally related due to E having irrational gradient, i.e.,jt2j= � jt1j (with � irrational).Lemma 3.10. T1 and T2 are periodi with irrationally related periods.Proof. The strips are at rational gradients, say gradient of Si is equal to aibi .Then given any lattie point (xi; yi) 2 Si all lattie points of the form (xi +nbi; yi + nai), for n 2 Z, will be in Si and will be the same distane from bothboundaries of the strip as the original point (xi; yi). So the patterns of lattiepoints within the strips repeat after a �xed number of steps and therefore bothT1 and T2 must be periodi and onsist of repeated pathes with ai tiles of typet1 and bi tiles of type t2. 43



Thus the period of T1 is,a1jt1j+ b1jt2j = (a1 + �b1)jt1j = pand the period of T2 is,a2jt1j+ b2jt2j = (a2 + �b2)jt1j = q :Then, p = xq, for x 2 Q ) a1 + �b1 = x(a2 + �b2)) a1 � xa2 + �(b1 � xb2) = 0) b1 � xb2 = 0) a1 � xa2 = 0) b1 = xb2 and a1 = xa2) a1b1 = xa2xb2 = a2b2) gradients of S1 and S2 are equal.So the periods must be irrationally related when S1 and S2 have di�erentgradients.De�nition 3.9. For two �nite non-empty sets of points X;Y � R the Hausdor�distane dH(X;Y ) is equal to inffr 2 R : X � Yr and Y � Xrg, whereAr = fx 2 R : jx� aj � r for some a 2 Ag.De�nition 3.10. Two pathes P1; P2 2 U (thought of as �nite sets of points)are said to be "-lose if there exist translates Q1 and Q2 of P1 and P2 satisfyingdH(Q1; Q2) � ".Proposition 3.11. For any path P in U and any " > 0 the set of pathes inU that are "-lose to P is relatively dense.Proof. Assume that the path P in U is de�ned by lattie points from bothstrips. All pathes will either be of this type or will be subpathes of suhpathes, so it suÆes to prove the proposition in this ase.44



Choose two lattie points x1 2 S1 and x2 2 S2 that are projeted into Pwith their projetions being distane Æ apart where Æ is less than or equal tothe shorter of the periods of T1 and T2. Then whenever there are lattie pointsy1 2 S1 and y2 2 S2 oupying the same positions within the strips (i.e. thesame distane from both edges) as x1 and x2 whose projetions are within "of being distane Æ apart then the path around the projetions of these pointswill be "-lose to P .T1 and T2 have periods p and q respetively, and these periods are irrationallyrelated, i.e., q = rp for some irrational r. So the projetions of lattie pointsthat oupy the same position within S1 as x1 an be found at distanes npfrom x1 for all n 2 Z, and similarly the projetions of lattie points in the sameposition within S2 as x2 will be at distanes nq = npr from x2 for all n 2 Z.The frational part of r is an irrational number r0 with 0 < r0 < 1, so theset of frational parts of nr for all n 2 Z must be a dense subset of [0; 1℄ andtherefore for all " > 0 the set of intervals of radius " around these points mustover [0; 1℄ and so by ompatness of [0; 1℄ there must exist a �nite subover byintervals of this form.Thus for all " > 0 whenever two lattie points oupying the same positionswithin the strips as x1 and x2 have projetions that are within " of being distaneÆ apart there must be only a �nite number of periods before two more lattiepoints, in the same positions relative to the strips, are projeted to points thatare within " of being distane Æ apart, i.e., there must be pathes that are "-loseto P throughout U , never more than a ertain distane apart.Tilings of this type therefore have a property that is similar to repetitivity,and ould perhaps be referred to as being "-repetitive.Corollary 3.12. Tilings of this type have in�nitely many prototiles, inludingprototiles of arbitrarily small length.Proof. The strips S1 and S2 have at least one lattie point in their intersetion45



and so for any " > 0 there will be lattie points whose projetions are withindistane " of eah other, and therefore tiles of length less than ".
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4 Rational 2:1 X-Projetions: Positioning andTranslatesIn this hapter we will look at rational 2:1 X-projetions and the translates ofthese that an be obtained by altering the positions of the two strips relative tothe lattie. The sets of points orresponding to translates that we obtain in thisway will be important in the next hapter when we ome to look at the tilingspaes assoiated to these tilings.We start by reapping the de�nition of a rational 2:1 X-projetion.De�nition 4.1. A strip S at gradient q in R2 is de�ned to be K�Fq where Fqis a line at gradient q in R2 , and K is a ompat, losed and onneted subsetof F?q (i.e. a losed interval in F?q ).Strip S is said to be of anonial width ifK has length equal to the projetionof a unit square onto F?q . Equivalently, the point (�; �) is on the lower boundaryof S (for �; � 2 R) if and only if the point (��1; �+1) is on the upper boundaryof S.De�nition 4.2. A rational 2:1 X-projetion sheme onsists of:� An integer lattie L sitting in R2 .� Two strips S1 and S2 of anonial width at gradients g1 and g2 respetively,with g1 and g2 satisfying, g1; g2 62 Qg1; g2 > 0g1 6= g2 :In addition we have that the strips are positioned so that �SiTL = ; fori = 1; 2. 47



� A line E, known as the pattern spae, at gradient q 2 Q, with q > 0,q 6= 1. We will usually write q = d , with  and d assumed to be oprime.� Projetion � : R2 ! E.Eah strip Si has an assoiated pattern of points Pi in E, withPi = � �L\Si� :We thus get a pattern of points P = P1SP2. From this pattern we get arational 2:1 X-projetion tiling by taking the points to be the endpoints of thetiles.Example 4.1. An example of a rational 2:1 X-projetion setup is shown in�gure 4.1.

Figure 4.1: A rational 2:1 X-projetion sheme.De�nition 4.3. Strips S1 and S2 are non-parallel and will thus overlap. Werefer to the point at whih the lower boundaries of the strips meet as theintersetion point of S1 and S2. We will all this point t, as in the examplediagram. 48



De�nition 4.4. The lattie L in whih we are interested is an integer lattie (asexplained above). We de�ne the fundamental domain of L to be the unit squarewith verties (0; 0); (1; 0); (0; 1) and (1; 1) and all other fundamental domains tobe translates of this by integers both horizontally and vertially.If we de�ne the origin on E to be at position �(t) then translating t by avetor of the form (n;m) with n and m integers (so moving the two strips byinteger steps both horizontally and vertially) will result in the same tiling, sineevery lattie point (i; j) in the original strips will be replaed by a orrespondinglattie point (i; j) + (n;m) in the translated strips with the same projetionrelative to the new origin on E.Thus, when looking at ways in whih the two strips an be positioned weneed only onsider the positions of their intersetion point within a fundamentaldomain of L.4.1 Intersetion Point PositionsIn the de�nition of a rational 2:1 X-projetion we required that the strips bepositioned so that there are no lattie points on their boundaries, thus not everypoint within the fundamental domain of L is a point at whih the intersetionof the lower boundaries an be plaed.De�nition 4.5. We say that a point in the fundamental domain of L is aforbidden point if a line drawn through this point parallel to either S1 or S2intersets any point of the lattie L.If u is a forbidden point within the fundamental domain of L that leads toa lattie point being plaed on the boundary of Si then all points along the lineparallel to Si that pass through u will also be forbidden points.So the forbidden points for t within a fundamental domain of L are all thepoints on two sets of in�nitely many lines that pass through the fundamentaldomain, one set parallel to S1 and the other parallel to S2. This is all the lines49



parallel to either strip that pass through both the fundamental domain and apoint of lattie L.For example, the set of forbidden points within the fundamental domain ofL may look a bit like those shown in �gure 5.3 (though the lines will atuallybe dense).

Figure 4.2: The forbidden points in the fundamental domain of L.Claim 1. This an equivalently be thought of as just two lines passing throughthe origin with gradients equal to those of the two strips that eah wind roundthe fundamental domain.Proof. We will think of the fundamental domain that we are looking at as havingthe origin at the bottom-left position, and refer to this fundamental domain asF . If we take a line parallel to S1 running through F that also passes throughsome lattie point (m;n) and all this line I(m;n), then I(m;n)TF gives a lineof forbidden points in F .A line parallel to S1 passing through O has the same intersetion with F asthe line I(m;n) has with the fundamental domain that has (m;n) at its bottom-left orner. So one this line loops round F a ertain number of times in the50



relevant diretion we will get the line I(m;n)TF . Thus suh a line must overthe intersetion with F of any line de�ned in the same way as I(m;n), for anylattie point (m;n).Similarly, all intersetions of F with lines parallel to S2 that pass throughlattie points must be represented by a single line parallel to S2 passing throughthe origin.The remaining points, whih form a totally disonneted subset of the fun-damental domain, give all \allowed" intersetion points for S1 and S2. So everypossible positioning of the two strips is de�ned by one of these points.4.2 Translate PointsAs we have seen, there are in�nitely many points in the fundamental domain ofL at whih the intersetion point t an be positioned, but ould some of thesealternative positions orrespond to translates of the tiling?In this setion we investigate the points in the fundamental domain of L atwhih we an reposition t to get translates of the original tiling, �rst explaininghow this works and then looking at the various ases that arise.Lemma 4.1. We have a rational 2:1 X-projetion setup with strips S1 and S2having intersetion point t as before with �(t) = O, the origin on E. We willall the tiling produed by this setup U .Now, assume that we also have points t1 and t2 on the lower boundaries ofS1 and S2 respetively satisfying,�(t1) = �(t2)t1 = t2 + (m;n)for m;n 2 Z. Then the tiling U 0 produed by translating the strips so that theyinterset at t1 and de�ning �(t1) = O (the origin on E) is a translate of the51



tiling U .Proof. We �rst introdue/reap some notation for the proof.� P1 and P2 are the patterns of points orresponding to the projetions oflattie points from strips S1 and S2 respetively (with �(t) = O on E).� S01 and S02 are the translates of strips S1 and S2 so that the point t1 is ontheir lower boundaries. Note that S01 = S1.� P 01 and P 02 are the patterns of points orresponding to the projetions oflattie points from strips S01 and S02 respetively (with �(t1) = O on E).Using the above notation we see that,P 01 = fk + (�; �) : k 2 P1; (�; �) = �(t) � �(t1)gsine S01 = S1 so they ontain the same lattie points and only the position ofthe origin in the tiling is hanged.We also have that, S02 = S2 + (m;n)so, (x; y) 2 S2 ) (x+m; y + n) 2 S02 :So every lattie point in S2 has a orresponding lattie point in S02, and sinewe know that, �(t1) = �(t2 + (m;n)) = �(t2)we must have that, �((x; y) + (m;n)) = �(x; y) :Therefore, as above, we get that, 52



P 02 = fk + (�; �) : k 2 P2; (�; �) = �(t)� �(t1)g :Sine the tiling U 0 omes from a ombination of the sets of points P 01 andP 02 it must be a translate of U .Figure 4.3 gives an idea of what is happening. Here t1 and t2 oupy or-responding positions in two fundamental domains of L, and if the intersetionpoint is taken to be at t1 or t2 then the projetions of lattie points will be thesame but the origin of the tiling will be at O0 rather than O, giving a translate.

Figure 4.3: A translate point for the tiling.So for a given X-projetion setup with intersetion point t there may bealternative positions for the intersetion point within the fundamental domainof L that will give translates of the original tiling.We now briey reap the de�nitions of the sublattie � and assoiated systemof oordinates given in the previous hapter.De�nition 3.7. Let E be a line with rational gradient d , with  and d oprime53



(i.e. the fration is written in its lowest terms), passing through a point of thelattie L whih we will refer to as O.We de�ne the lattie � to be the sublattie of L ontaining the point O andgenerated by the vetors (d; ) and (�; d).Example 4.2. When E has gradient 12 the sublattie � is as shown in �gure4.4.

Figure 4.4: The sublattie � for E at gradient 12 .De�nition 3.8. Translations in L oordinates are denoted by (a; b).Translations in � oordinates (with � de�ned as above) are denoted by(a; b)�, where the relationship between the two types of translation is as follows.(1; 0)� = (d; )(0; 1)� = (�; d) :So the translate (a; b)� = (ad� b; a+ bd).As before with lattie L we will de�ne the fundamental domain of � to be54



the unit square with verties (0; 0)�; (1; 0)�; (0; 1)� and (1; 1)�. Whenever wetalk about two or more fundamental domains of � they will be translates of thefundamental domain by vetors of the form (m;n)� for m;n 2 Z.De�nition 4.6. We will be onsidering the patterns of points given by projet-ing lattie points from � that are within the strips Si onto the pattern spae E.We will denote the resulting sets by P�i . That is,P�i = n�(r) : r 2 Si\�o :Lemma 4.2. If two points oupy orresponding positions in two di�erent fun-damental domains of � then they also oupy orresponding positions in twodi�erent fundamental domains of L.Proof. � is a square lattie, and for gradient of E equal to d as above we havethat, (1; 0)� = (d; )(0; 1)� = (�; d) :So integer translations in � oordinates give integer translations in L o-ordinates and therefore if two points oupy orresponding positions in twofundamental domains of � then they will oupy orresponding positions in twofundamental domains of L.Lemma 4.3. Two points have the same projetion onto E if and only if theyare translates of eah other by a vetor of the form (0; k)�, for some k 2 R.Proof. The projetion is perpendiular to E, so two points will have the sameprojetion onto E if and only if they are on a line perpendiular to E, and � isde�ned so that vertial lines in the � oordinates are perpendiular to E.55



De�nition 4.7. We de�ne an intersetion-point tiling to be a tiling that anbe produed by a rational 2:1 X-projetion setup satisfying,�(t) = Owhere t is the point of intersetion of the lower boundaries of the strips and Ois the origin in the tiling (i.e. on E).Similarly, a non-intersetion-point tiling is a translate of an intersetion-point tiling that is not itself an intersetion-point tiling, i.e., a tiling generatedby a rational 2:1 X-projetion that is not the same as any of the tilings that anbe produed by repositioning t so that �(t) = O.Note 4.1. We have not yet proved that the set of non-intersetion-point tilingsis non-empty, i.e., that not all translates of a tiling are intersetion point tilings.Proposition 4.4. A rational 2:1 X-projetion has at least ountably manytranslates that are intersetion-point tilings.Proof. Note that we will be using � oordinates throughout this proof.We will denote by L1 and L2 the lines that form the lower boundaries ofS1 and S2 respetively. These lines have irrational gradients relative to bothL and �. If the intersetion point t is at oordinates (�; �)� then (also in �oordinates) the lines an be written as,L1 = f(x; px)� + (�; �)� : x 2 RgL2 = f(x; qx)� + (�; �)� : x 2 Rgwith p and q irrational.Now de�ne points t1 and t2 on lines L1 and L2 respetively to be,t1 = (x0 + �; px0 + �)�56



t2 = (x0 + �; qx0 + �)� :Then for z 2 Z, t1 = t2 + (0; z)� ) �(t1) = �(t2)and also t1 and t2 oupy the same position within the fundamental domain of� and therefore within the fundamental domain of L.The points t1 and t2 di�er in suh a way for all x satisfying,px = qx+ z :We also have that, px = qx+ z , x = zp� q :So there are ountably many values of x at whih L1 and L2 oupy orre-sponding positions within fundamental domains of �. Thus ountably manytranslates of the tiling must be intersetion-point tilings, and these translatesare the set of integer multiples of the translate by distane 1p�q (that is, thisdistane in � oordinates).Proposition 4.5. The points desribed above are the only points on the lowerboundaries of S1 and S2 that oupy orresponding positions within fundamentaldomains of L and projet to the same points on E.Proof. The points desribed above are all pairs t1 and t2 on the lower boundariesof S1 and S2 respetively satisfying,t1 = t2 + (0; z)�for z 2 Z. 57



Sine t1 and t2 di�er by a vetor of the form (0; y)� we must also have that,�(t1) = �(t2) :Thus these must be the only pairs of points oupying orresponding posi-tions within fundamental domains of � and having the same projetions onto E.By lemma 4.2 they must also oupy orresponding points within fundamentaldomains of L.All that remains to be shown is, for t1 and t2 in the same fundamentaldomain of � satisfying, �(t1) = �(t2)t1 6= t2the points t1 and t2 annot oupy orresponding positions within two funda-mental domains of L.Assume that they do oupy orresponding positions within two fundamentaldomains of L, then (in L oordinates),t1 = t2 + (a; b)for some a; b 2 Z with (a; b) parallel to (�; d) as in the de�nition of � (sineprojetion is along this line). However, the step (a; b) must be less than aninteger multiple of the step (�; d) sine t1 and t2 are in the same fundamentaldomain of �. But  and d are oprime, so suh a step does not exist.Therefore t1 and t2 annot oupy orresponding positions within two fun-damental domains of L.Note 4.2. The above argument does not ompletely rule out the possibilitythat there ould be other intersetion points than those listed above that give58



translates of the tiling. We also need to show that tilings that are produed byprojetion onto E with the origin not below an intersetion point are distintfrom intersetion point tilings.Lemma 4.6. For pattern spae E at gradient d , with ; d oprime, the shortest(non-zero) distane between the projetions of lattie points in L (along E) is1p2+d2 .Proof. The pattern spae E is at gradient d , and thus at angle � = artan( d )to the horizontal. So we have the situation illustrated by �gure 4.5.

Figure 4.5: The lengths of the projetions of horizontal and vertial steps ontoE. Thus, �(1; 0) = os�artan� d�� = 1p1 + ( d)2�(0; 1) = sin�artan� d�� = dp1 + ( d )2 = 1q1 + (d )2 :We will refer to the line segment between (0; 0) and �(1; 0) as t1 (this segment59



is of length jt1 j), similarly the line between (0; 0) and �(0; 1) will be alled t2(and have length jt2 j), so j t2 j= d jt1 j, giving two di�erent ases, spei�ally > d and d >  (the ase  = d is ignored).Case 1:  > d gives j t2 j>j t1 j and the shortest possible distane betweenprojetions is 1d jt1j (see proposition 3.3). Then we have that,1d jt1j= 1dp1 + ( d)2 = 1pd2(1 + ( d)2 = 1p2 + d2 :Case 2: d >  gives jt1j>jt2j (jt1j= d jt2j) and the shortest possible distanebetween projetions is 1 jt2j. Then we have that,1 jt2j= 1q1 + (d )2 = 1q2(1 + (d )2 = 1p2 + d2 :Thus the shortest possible (non-zero) distane between the projetions ofpoints in L is 1p2+d2 .Proposition 4.7. If U is a tiling produed by a rational 2:1 X-projetion setupwith, �(p1) = �(p2) = Ofor points p1 6= p2 + (0; z)� (z 2 Z) on the lower boundaries of strips S1 andS2 respetively (where O is the origin on E) and U 0 is an intersetion-pointtiling with intersetion point t0, then U = U 0 implies that t0 must be on the lineparallel to E? passing through p1 and p2 within the fundamental domain of L.Proof. Let E be at gradient d , with ; d 2 Z oprime.We have that, �(p1) = �(p2)60



so p1 and p2 are on a line parallel to E? (whih has rational gradient).Both p1 and p2 are within fundamental domains of L (possibly the samefundamental domain, but not neessarily), and they sit on the same line parallelto E?, whih rosses fundamental domains of L in only a �nite number of ways(sine it has rational gradient). Therefore p1 and p2 must be on one of a �nitenumber of lines within the fundamental domain of L.For example, we ould have the situation show in �gure 4.6.

Figure 4.6: Points p1 and p2 on a line parallel to E?.If the line through p1 and p2 ontains a lattie point then all points of thetilings T1 and T2 must be in n zp2+d2 : z 2 Zo, sine 1p2+d2 is the minimumdistane between projetions of lattie points onto E. If t0 is not on a lineparallel to E? passing through a lattie point, then all lattie points in U 0 willbe in n zp2+d2 + " : z 2 Zo for some " < 1p2+d2 , i.e., the tilings annot oinide.The ase where the line through p1 and p2 does not pass through a lattiepoint is similar.Thus the tilings annot oinide when t0 is not on the line through p1 andp2. 61



So we have that any non-intersetion point tiling must either be distintfrom all intersetion point tilings or the same as an intersetion point tilingwith intersetion point on the line perpendiular to E through the origin.Note that we an onsider p1 and p2 to be within the same fundamentaldomain of �, sine we an translate strip Si by a vetor of the form (0; n)�,with n 2 Z, without hanging the tiling Ti given by the projetion of lattiepoints from the strip.Thus we have a situation similar to that illustrated by �gure 4.7, whereany intersetion point tiling that oinides with the original tiling must haveintersetion point on the line through p1 and p2.

Figure 4.7: The line parallel to E? through p1 and p2 in the fundamental domainof �.If we look at the tiling given by plaing the intersetion point at p1 then wewill get a tiling that is produed by the projetion of the points ontained in thestrip S1 and the points ontained in a new strip S02, whih is the translate of stripS2 so that it passes through the point p1. This new strip is a translate of thestrip S2 by some vetor (0; y)�, with jyj < 1, so the two strips may overlap but62



an neither oinide nor di�er by an integer amount in �. Thus the projetionsof the lattie points ontained within the two strips annot be the same. In fat,we will get a thin strip S2TS02 where the strips S2 and S02 interset (or di�erby one vertially in � oordinates) and also strips S2nS02 � S2 and S02nS2 � S02,satisfying, (S2nS02)\�S02[ (S02 + (0; 1)�)[ (S02 + (0;�1)�)� = ;(S02nS2)\�S2[ (S2 + (0; 1)�)[ (S2 + (0;�1)�)� = ;where Si+(0; n)� is the strip obtained by translating strip Si by the vetor(0; n)�. Note also that S2TS02 may be empty.For example, we may have the situation shown in �gure 4.8.

Figure 4.8: The intersetion of S2 and S02.We have that,n�(x) : x 2 S02nS2\Lo\n�(y) : y 2 S2nS02\Lo = ; :This is beause these strips do not ontain any lattie points that are eitherthe same or di�er by a vetor of the form (0; n)� (for n 2 Z).63



We will denote by Ti the tiling assoiated to strip Si and by T 0i the tilingassoiated to the strip S0i. So for the tiling with intersetion point p1 (thatis, the ombination of T1 and T 02) to be the same as the original tiling (theombination of T1 and T2) we must have,n�(x) : x 2 S2nS02\Lo � n�(y) : y 2 S1\Loand, n�(x) : x 2 S02nS2\Lo � n�(y) : y 2 S1\Lo :In other words, no points are lost from the original tiling (so all lattie pointsthat are in S2 but not in S02 must have equivalents in S1) and no extra points areadded in (so all lattie points that are in S02 but not in S2 must have equivalentsin S1).Thus the strip S1 must ontain lattie points with the same projetions asall the lattie points in the thin strips S2nS02 and S02nS2. The ase where theintersetion point is at p2 is similar.In the more general ase, where the intersetion point is not at either pi,we get strips S01 and S02 that do not oinide with S1 or S2. Then for eah Siwe get a strip SiTS0i, whih may be empty, and strips SinS0i and S0inSi. Anargument similar to that above shows that for this altered setup to produe thesame tiling we must have that,n�(y) : y 2 S01nS1\Lo � n�(x) : x 2 S2\Lon�(y) : y 2 S1nS01\Lo � n�(x) : x 2 S02\Loand also, n�(x) : x 2 S02nS2\Lo � n�(y) : y 2 S1\Lo64



n�(x) : x 2 S2nS02\Lo � n�(y) : y 2 S01\Lo :In the general ase the question is whether a anonial width strip at onegradient an ontain lattie points with the same projetions as all the lattiepoints ontained in a strip of up to anonial width at a di�erent gradient.Thinking just in terms of the lattie � this would mean that any time you gota lattie point in the thin strip there would have to be a orresponding lattiepoint vertially above or below this ontained in the other strip.We will now show that this ould be possible in some ases, but annothappen in ertain other ases.De�nition 4.8. For strips S1 and S2 of up to anonial width de�ne the linesJ1 and J2 to be the lines parallel to S1 and S2 respetively and positioned inthe entres of the two strips.Note 4.3. The strips S1 and S2 are at di�erent gradients and thus the lines J1and J2 will interset. We will be thinking of the strips as sitting in the lattie�, so we will write the intersetion point as,J1\ J2 = (�; �)�where � and � an be assumed to be between 0 and 1 (by hoie of origin for�).De�nition 4.9. For a strip S sitting in lattie �, de�ne the height of S (in �)to be the length of the interval given by STF where,F = f(0; y)� : y 2 Rg :So, the height of strip S in �gure 4.9 is the length of the interval highlightedwithin the strip. 65



Figure 4.9: The height of strip S in �.Theorem 4.8. If strips S1 and S2 are at irrational gradients g1 and g2 respe-tively (relative to �) with, g2 = ng1for n 2 Znf0; 1g, and are of heights " and Æ in � respetively, then when S2 hasheight Æ < minfjnj"; 1g we have that,P�1 6� P�2 :Proof. As above, we will denote by J1 and J2 the entre lines of strips S1 andS2 respetively.These lines interset at the point (�; �)� and have gradients g1 and g2 rela-tive to �. Thus, line J1 ontains the points,f(x; g1(x� �) + �)� : x 2 Rgand J2 ontains the points, 66



f(x; g2(x� �) + �)� : x 2 Rg = f(x; ng1(x� �) + �)� : x 2 Rg :The line J1 is at irrational gradient in the lattie � and will therefore passarbitrarily lose to points of the lattie.If point (z; k + �)� is on line J1, for z; k 2 Z and � 2 R then we have that,g1(z � �) + � = k + �) g1(z � �) = k + �� �) ng1(z � �) = n(k + �� �)) ng1(z � �) + � = nk + n�� (n� 1)�) g2(z � �) + � = nk + n�� (n� 1)� :Therefore J2 passes through the point (z; nk + n� � (n � 1)�)�. Here thevalue nk is an integer, the n� term may be arbitrarily small, and the (n � 1)�term is some �xed shift, independent of z, k and �. Note that this �nal termmay be zero, sine � an have value zero.The strip S1 has height " in �, so a lattie point (z; k)� 2 S1 an approah(vertial) distane "2 from entre line J1.Whilst there will not be any lattie points on the boundaries of strip S1, byhoie of positioning of the strip, there will be lattie points approahing thesituation desribed by points (z1; k1)� and (z2; k2)� below,g1(z1 � �) + � = k1 + "2g1(z2 � �) + � = k2 � "2giving, 67



ng1(z1 � �) + � = nk1 + n"2 � (n� 1)�ng1(z2 � �) + � = nk2 � n"2 � (n� 1)� :Thus at integer x-values J2, the entre line of S2, ontains points having y-values with frational parts that vary between [n"2 �(n�1)�℄ and [�n"2 �(n�1)�℄(here square brakets are used to denote frational part) with strip S2 ontaininglattie points at these x-values.This requires S2 to have height in � satisfying,Æ � minfjnj"; 1g :Theorem 4.9. If we have strips S1 and S2 at irrational gradients g1 and g2relative to � satisfying, g2 = ab g1for a 2 Z, b 2 N oprime and ab not an integer, then if S2 has height less thanb�1b in � we have that, P�1 6� P�2 :Proof. As before, we denote by J1 and J2 the entre lines of the strips S1 andS2 respetively, with (�; �)� the point at whih these lines interset.Line J1 ontains the pointsf(x; g1(x� �) + �)� : x 2 Rgand J2 ontains the points, 68



f(x; g2(x � �) + �)� : x 2 Rg = n�x; ab g1(x� �) + ��� : x 2 Ro :Again, in a similar way to the previous proof, if J1 passes through point(z; k + �)� for z; k 2 Z and � 2 R then we have that,g1(z � �) + � = k + �) g1(z � �) = k + �� �) ab g1(z � �) = ab (k + �� �)) ab g1(z � �) + � = ab k + ab �� �ab � 1��) ab g1(z � �) + � = akb + ab ���a� bb ��) g2(z � �) + � = akb + ab ���a� bb �� :Thus J2 passes through the point �z; akb + ab �� �a�bb ���.Now, onsider the subsets of � of the form (z; by + r)�, for y; z 2 Z andr 2 N varying between 0 and b � 1, i.e., the subsets f(z; by)� : y; z 2 Zg,f(z; by+ 1)� : y; z 2 Zg, et.The line J1 still has an irrational gradient relative to any subset of � of thisform, and will thus pass arbitrarily lose to points in eah of these subsets.If J1 passes through the point (z; bk + r + �)� then J2 passes through thepoint �z; ak + ab r + ab �� �a�bb ���.In the term ak + ab r + ab � � (a�bb )� the value ak is an integer, and thevalue ab � may be arbitrarily small. Thus the frational part of this term anbe arbitrarily lose to the frational part of ab r shifted by (a�bb )�. By lookingat di�erent values of r we get the entre line of S2 having a frational partarbitrarily lose to the frational part of �a�bb �; 1b � a�bb �; 2b � a�bb � et. Butwe also know that when J2 takes any of these values the strip S2 must be wide69



enough to ontain a lattie point (if it ontains lattie points with the sameprojetions as every lattie point in S1).Thus we must examine the distane from an integer of the most distant ofthe points in, �rb ��a� bb �� : r 2 N; 0 � r � b� 1� :Of ourse, this will depend on �, but we an still put a lower bound on thevalue.Now we look at the points � rb : r 2 N; 0 � r � b� 1	. These points areevenly spaed between 0 and 1, and it is this set of points with some �xedshift that we are interested in. Sine the points are evenly spaed, we willonsider the shift by (a�bb )� to be of length less than 1b .If b is even, then 12 is in the set of points, as are 12 + 1b and 12 � 1b . Thus if� is zero we get that the furthest point from an integer is 12 and therefore thestrip S2 must have height at least 1 in �. Of ourse, � may be non-zero, but theshift that minimises the distane of the furthest point is 12b (or � 12b ), resultingin a distane of b�12b between the most distant point and an integer. Thereforewhen b is even the strip S2 must have height at least b�1b in �.If b is odd, then the points 12� 12b and 12+ 12b are in � rb : r 2 N; 0 � r � b� 1	,and any shift of size less than 1b will result in one of these points moving furtheraway from an integer. So as above if b is odd, the minimum distane of the mostdistant point from an integer is b�12b , and again the strip S2 must have heightat least b�1b in �.As explained above, the question of whether a anonial width strip at onegradient an ontain lattie points with the same projetions as all the lattiepoints in a strip at a di�erent gradient is important when deiding whether atiling with the origin not at the projetion of the intersetion point is the same70



as one where the intersetion point is above the origin.From the above results, we get the following proposition.Proposition 4.10. If we have a rational X-projetion with strips S1 and S2 atgradients g1 and g2 satisfying, g1 = ab g2with neither ab nor ba an integer, and with S1 and S2 having heights in � of lessthan 12 then the intersetion-point tilings desribed in proposition 4.4 are all theintersetion-point tilings for this setup.Proof. We have strips S1 and S2 with lower boundaries I1 and I2 passingthrough points p1 and p2 with,p1 6= p2 + (0; n)�for n 2 Z, and �(p1) = �(p2) = O :Say we have an idential tiling given by translating strips S1 and S2 (to getS01 and S02, with orresponding lower-boundary lines I 01 and I 02) so that,I 01\ I 02 = qwith �(q) = O.Then as explained in the disussion following proposition 4.7, we must havethat, n�(y) : y 2 S01nS1\�o � n�(x) : x 2 S2\�on�(y) : y 2 S1nS01\�o � n�(x) : x 2 S02\�o71



and also, n�(x) : x 2 S02nS2\�o � n�(y) : y 2 S1\�on�(x) : x 2 S2nS02\�o � n�(y) : y 2 S01\�o :It ould be the ase that q oinides with p1 or p2, but of ourse not bothso at least one of S01nS1 and S02nS2 must exist.Say that S01nS1 exists, then (sine the heights of the strips are both less than12 , whih is the lowest value b�1b an take) by theorem 4.9 we have that,n�(y) : y 2 S01nS1\�o 6� n�(x) : x 2 S2\�o :Thus the tiling is indeed a non-intersetion-point tiling.We now look at the possible height of a anonial width strip in �. This willdepend on the gradient of the pattern spae E.Proposition 4.11. If pattern spae E is at gradient d with  and d oprime,and d not equal to n or 1n for n 2 N then a anonial width strip must haveheight in � of less than 12 .Proof. If E is at gradient d then the lattie � is generated by the vetors (d; )and (�; d).If we have a anonial width strip S at gradient p (with p > 0) with lowerboundary passing through O, then the upper boundary of S will pass throughthe point (�1; 1). What we are interested in is the point at whih this upperboundary intersets the line between O and (�; d).For S to have height 12 in � we would require the upper boundary of S topass through the point �� 2 ; d2�. Note that we have,72



� 2 � �1d2 � 1and also note that we annot have both values being equal to 1 (sine E annothave gradient 1).However, the upper boundary of S passes through the point (�1; 1) and hasstritly positive (�nite) gradient, so annot also pass through any point (�x; y)for both x and y greater than or equal to 1. Thus S annot have height as muhas 12 in �.Corollary 4.12. When we are projeting onto a pattern spae E at gradient dwith d not equal to n or 1n for n 2 N and the strips S1 and S2 have gradientsg1 and g2 relative to � satisfying, g1 = ab g2for ab not equal to m or 1m (m 2 Z), then the intersetion-point tilings identi�edin proposition 4.4 are all of the intersetion-point tilings.Proof. Follows from proposition 4.10 and proposition 4.11.This also provides us with a fundamental result about these tilings:Corollary 4.13. Consider the tilings generated by 2:1 X-projetion shemesas above, i.e., with pattern spae E at gradient d with d not equal to n or 1n ,for n 2 N, and with strips S1 and S2 having gradients g1 and g2 relative to �satisfying, g1 = ab g2for a 2 Z and b 2 N oprime and ab not equal to m or 1m for m 2 Z.73



Any tiling generated in this way is aperiodi.Proof. Take a tiling T generated in the above way.If T is an intersetion-point tiling then by the above disussion it is distintfrom all translates of T that are non-intersetion-point tilings. A similar argu-ment to that presented in proposition 4.10 proves that it is also distint fromall translates that are intersetion-point tilings. So T must be aperiodi.If T is a non-intersetion-point tiling then there exists some translation uso that T + u is an intersetion-point tiling. Then, as above, T + u must beaperiodi, and therefore T is aperiodi.4.3 Rationally Related GradientsThere are two possibilities for the relationship between the gradients of thetwo strips relative to the lattie �, namely that they are either rationally orirrationally related. That is, if we denote by p the gradient of strip S1 and byq the gradient of strip S2 (both in � oordinates) then we an have that p iseither a rational or an irrational multiple of q. In this setion we will look atthe �rst of these ases.De�nition 4.10. When we have X-projetion giving tiling U with intersetionpoint tilings Vi, i 2 Z, orresponding to translates of U then we will refer to theloations of the intersetion points of the setups produing the tilings Vi withinfundamental domains of L or � as translate points.So a translate point is a point at whih you an reposition the intersetionof the strips in an X-projetion setup to get a translate of the original tiling.Proposition 4.14. When the gradients of the two strips are rationally relatedrelative to �, the translate points form dense subsets of a �nite number of hor-izontal lines in the fundamental domain of �.74



Proof. Reall from the proof of proposition 4.4 that we get a translate point ofthe tiling when we have points t1 and t2 on the lower boundaries of strips S1and S2 satisfying, t1 = t2 + (0; z)�for some z 2 Z. This happens at x 2 R where,px = qx+ z :In the ase where p and q are rationally related we have that,p = aq; a 2 Q ) x = zq(a� 1)but, qx = za� 1 2 Q :So the points of intersetion appear at irrational steps along but at rational\heights", relative to �. Writing 1a�1 as �� (with �; � 2 Z oprime) we get thatthe \heights" of the intersetion points within the fundamental domain of �are the frational parts of z�� for z 2 Z. Sine � and � are oprime we get �di�erent values for the frational part of z�� , and as we onsider x values in turnwe will yle through these � values of the frational part of z�� .So within the fundamental domain of � the points that orrespond to trans-lates of the tiling are dense within horizontal lines at heights 0, 1� , 2� , et., thatis, if we put the original intersetion point at the origin.Example 4.3. In this example the gradients of the two strips are rationallyrelated relative to �, meaning that we are in the ase desribed by proposition4.14. 75



We take the pattern spae E to be at gradient 23 and the two strips to havegradients relative to � of 1p2 and 13p2 , and we put the original intersetion pointof the lower boundaries of the strips at the origin, thus:x = z2q = 3p2z2qx = z2 :So the translate points will form dense subsets of two horizontal lines inthe fundamental domain of �, one at height 0 and the other at height 12 , asillustrated by �gure 4.10.

Figure 4.10: The translate points for example 4.3 in the fundamental domainof �.For the original tiling the intersetion point t is positioned at the origin.The next point at whih the lower boundaries of the two strips oupy the sameposition within the fundamental domain of � omes at distane 3p22 along E(in � oordinates that is). At this point the line qx is at height 12 and theline px is at 32 , so in the fundamental domain of � the point orresponding tothis positioning of t is at ([ 3p22 ℄; 12 ), where square brakets are used to denotefrational part. Thus, putting the intersetion point of the strips here gives you76



a translate of the original tiling by 3p22 relative to �, that is a translate by 3p262relative to L.The next point is at ([3p2℄; 0) and orresponds to double the translate alongE, and so on.However, these points do not over all possible translates of the tiling, onlyall integer multiples of a ertain translate, so there are more translates thanthose orresponding to the points above.These extra translates may not orrespond to a repositioning of t within thefundamental domain of �. Assuming that this is the ase we will get a pitureof the translates that looks a bit like that shown in �gure 4.11.

Figure 4.11: The line of translates of the tiling.The ends of the lines here are identi�ed as denoted by the numbers, thoughof ourse the lines will atually be dense, so the set of translates will look like adense spiral winding round a torus.4.4 Irrationally Related GradientsNow we investigate the ase where p and q are irrationally related.I.e., p = aq for some a irrational. 77



In fat this ase breaks down into two separate subases:1. z(a�1)q 2 Q :2. z(a�1)q 2 RnQ :These ases orrespond to the gradients of L1 and L2 being irrationallyrelated but di�ering by either a rational (ase 1) or an irrational (ase 2) amount,relative to �.4.4.1 Gradients Di�er by a Rational AmountProposition 4.15. When the gradients of the two strips are irrationally relatedbut di�er by a rational amount relative to � we have translate points that aredense in a �nite number of vertial lines in the fundamental domain of �.Proof. In this subase we have that p� q 2 Q, and so,x = zp� q 2 Q :Sine x always takes a rational value, there will only be �nitely many possiblefrational parts of x, and therefore only �nitely many x-values for the translatepoints within the fundamental domain of �.However, the values of qx are of ourse irrational (being irrational multiplesof the values of x) and so the steps between onseutive values have irrationalfrational parts and you will get dense sets of translate points on �nitely manyvertial lines.Example 4.4. In this example we look at the points orresponding to translatesof a tiling of the type desribed in proposition 4.15 above, where the gradientsof the two strips are irrationally related relative to � but di�er by a rationalamount. 78



One again we will take the pattern spae E to be at gradient 13 , and if thetwo strips to have gradients p = p2 + 34 and q = p2 relative to � then:x = zp� q = 4z3qx = 4p2z3 :Thus the points are ontained in three vertial lines within the fundamentaldomain of �, one of whih passes through the original intersetion point withthe other two being translates of this line by 13 and 23 of the side length of thefundamental domain of �. So if the intersetion point is on the side edge of afundamental domain of � then, in the fundamental domain of �, the positionsfor translate points will be like those shown in �gure 4.12.

Figure 4.12: The translate points for example 4.4 in the fundamental domainof �.In the fundamental domain of L the vertial lines above will appear as linesperpendiular to E, that is having gradient �3. As with the previous example thethree lines traverse the fundamental domain of L several times giving a diagram79



that appears to ontain more lines of points, as shown in �gure 4.13.

Figure 4.13: The translate points for example 4.4 in the fundamental domainof L.4.4.2 Gradients Di�er by an Irrational AmountLemma 4.16. When the gradients of the two strips are irrationally related anddi�er by an irrational amount then eah translate point is both an irrationalstep along and an irrational step up from the previous one in the fundamentaldomain of �.Proof. The gradients of the strips di�er by an irrational amount, so p � q isirrational and therefore, x = zp� q 62 Qso the horizontal step from one point to the next is irrational, but also beausep = aq with a irrational we get that,
80



qx = qz(a� 1)q = za� 1 62 Qand so the vertial step from one point to the next is also irrational.Proposition 4.17. If the frational parts of x and qx are rationally relatedthen all the translate points will be on a line of rational gradient within thefundamental domain of �.Proof. The step from one translate point to the next must be along the line thathas gradient equal to the frational part of qx divided by the frational part ofx, and if these values are rationally related then this line must have rationalgradient.Example 4.5. This example shows the set of translate points of a tiling gener-ated by a rational 2:1 X-projetion sheme of the type desribed in proposition4.17, where the gradients of the two strips are irrationally related relative to �and di�er by an irrational amount, but the frational parts of the horizontal anvertial steps between onseutive translate points are rationally related.Take the gradients of L1 and L2 relative to � to be 3+ 1p21+ 1p2 and 2+ 1p21+ 1p2 respe-tively.I.e., p and q take these values.Then, a = pq = 3 + 1p22 + 1p2 = 2 + 1p22 + 1p2 + 12 + 1p2 = 1 + 12 + 1p2 :So we have that,a� 1 = 12 + 1p2 ) (a� 1)q = 11 + 1p2 :Therefore, x = 1(a� 1)q = 1 + 1p281



and qx = 1a� 1 = 2 + 1p2 :So the frational parts of z(a�1)q and za�1 are equal for all integers z and soall intersetion points of the lower boundaries that are translates of the originalintersetion point appear on the line y = x within the fundamental domain of�. Giving a diagram that looks a bit like �gure 4.14.

Figure 4.14: The translate points for example 4.5 in the fundamental domainof �.If we one again take E to be at gradient 13 then if the bottom left ornerof the fundamental domain of � is situated at the origin we will have that thetop right orner is at (2; 4) in the lattie L, thus the points lie on the line ofgradient 2 in the fundamental domain of L, as shown in �gure 4.15.
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Figure 4.15: The translate points for example 4.5 in the fundamental domainof L.Example 4.6. In this example, as in example 4.5, the translate points are notontained in either horizontal or vertial lines in the fundamental domain of �,however this time the translate points appear in more than one line at rationalgradient in the fundamental domain.If we have strips with gradients (relative to �) of,p = 3p2� 2q = p2then a is equal to 3 � p2 and so is irrational. Thus qx will be irrational andmore preisely we have that,x = zq(a� 1) = z2(p2� 1)qx = p2zp2(2�p2) = z2�p2 :83



The frational parts of x and qx (at z = 1) are p2�12 and 1p2 respetively andso are irrationally related (with the frational part of qx divided by the frationalpart of x being equal to 22�p2).However, the set of points given by these values is not dense in the funda-mental domain of �. This is beause the frational part of qx is equal to 12 plusthe frational part of x when z = 1, as an be seen below.p2� 12 + 12 = p22 = 1p2 :So if we take our initial point to be at (0; 0) (whih is on the line y = x) thenthe next point will be on the line y = x + 12 within the fundamental domain of� and the next point will be bak on the line y = x, et. In this way the pointswill alternate between being on these two lines within the fundamental domainof �, giving the situation shown in �gure 4.16.

Figure 4.16: Translate points for example 4.6 in the fundamental domain of �.This example omes from another subase where,84



[qx℄ = [x℄ + rfor ; r 2 Q. Here the square brakets are used to denote the frational parts ofx and qx.Of ourse, if we allow r to be equal to zero then this subase inludes thease desribed above where [x℄ and [qx℄ are rationally related.Proposition 4.18. Whenever [x℄ and [qx℄ are irrational and [qx℄ an be ex-pressed in the form [x℄ + r for some ; r 2 Q this expression is unique.Proof. Assume that [x℄ and [qx℄ are irrational and that,[qx℄ = 1[x℄ + r1[qx℄ = 2[x℄ + r2for 1; 2; r1; r2 2 Q. ) 1[x℄ + r1 = 2[x℄ + r2) 1[x℄� 2[x℄ = r2 � r1) (1 � 2)[x℄ = r2 � r1 :However [x℄ is irrational, so 1 � 2 and r2 � r1 must both be equal to zero.Thus the expression is unique.Proposition 4.19. If we an write [qx℄ = [x℄ + r for some ; r 2 Q (atz = 1) then the points are ontained in a �nite set of lines at gradient  in thefundamental domain of �.Proof. If we an write [qx℄ = [x℄+ r for some ; r 2 Q (at z = 1) then as beforeif we think of our original point as being at (0; 0), whih is on the line y = x,85



the next point will be on the line y = x + [r℄ within the fundamental domainof �, and so on. Of ourse, beause r is rational this results in the points beingontained in a �nite set of lines at gradient  within the fundamental domain of�. There is now one more ase that we will look at.Proposition 4.20. If [x℄ and [qx℄ are irrationally related but [qx℄ annot bewritten in the form [x℄+r for ; r 2 Q then the translate points are not ontainedin any �nite set of parallel lines with rational gradients in the fundamentaldomain of �.Proof. If [qx℄ annot be written in this way then writing [qx℄ = [x℄ + r for anyrationally valued  means that r must be irrational.The initial point an always be onsidered to be positioned on a line parallelto y = x in the fundamental domain of �, but then the next point will be on aline parallel to y = x but shifted by an irrational amount (the frational partof r), and the lines of gradient  ontaining all subsequent points will be shiftedby integer multiples of the same irrational amount, thus eah line at gradient an ontain at most one of the points.Sine any rational value of  will give an irrational value for r we have thatthe points annot be ontained in any �nite number of parallel lines at rationalgradient in the fundamental domain of �.Corollary 4.21. A line drawn between any two translate points must haveirrational gradient.Proof. If we have an initial point that we think of as sitting on a line withrational gradient  then the next point in the sequene is sitting on a line withgradient  that is shifted by an irrational amount, and the same is true for allsubsequent points, so none of these points an be on the original line.86



Thus any line with rational gradient through any translate point must notpass through any other point in the set, so a line drawn between two points ofthe set must have irrational gradient.Of ourse, going from one translate point to another just involves taking anumber of steps, say k, and going through another k steps will give anotherpoint on the same line that is the same translation along again. So a line drawnbetween two points will have irrational gradient and will ontain in�nitely manytranslate points evenly spaed along its length.Lemma 4.22. Under the assumptions of proposition 4.20, for any " > 0 wean �nd two translate points that are within distane " of eah other.Proof. As explained above in this ase the values of x and qx are both irrational,so the step from one point in the set to the next onsists of an irrational stepalong and an irrational step up. Thus the set of all x-oordinates and the set ofall y-oordinates are dense.So �x " > 0 and hoose a point in the set, say at position (x0; y0). Thenthere must be in�nitely many points with x-oordinates between x0 and x0+ "p2 ,and these points annot all have y-oordinates that are separated by more than"p2 so there must be a pair of points within distane " of eah other.Proposition 4.23. When [x℄ and [qx℄ are irrationally related but [qx℄ annotbe written in the form [x℄+ r for ; r 2 Q then the set of translate points formsa dense subset of the fundamental domain of �.Proof. For any n 2 N we an divide the fundamental domain of � into squaresof side 1n . Then we an �nd two translate points that are within distane 12nof eah other and so we have a line with irrational gradient between them thathas translate points evenly spaed along its length with the gap between anytwo being less than 12n . 87



As the line is at irrational gradient it will interset all of the squares of side1n (ountably many times) and beause of the distane between points on theline there must be at least one translate point within eah of the little squares.So for any n 2 N, when dividing the fundamental domain of � into an n byn grid there must always be at least one point in eah square, and therefore theset of translate points is dense in the fundamental domain of �.So all but one of the subases where the gradients of the two strips areirrationally related relative to � result in sets of translation points that aredense on a �nite number of lines that have rational gradient (or are vertial).These subases should therefore give sets of translates that are similar to thatseen in the ase where the gradients of the two strips are rationally relatedrelative to �.The �nal subase gives a dense set of points in the fundamental domain of� and as suh the set of translates should look quite di�erent from the otherases.Note that the �nal ase is in fat the general ase, with the other asesrequiring some rational relationship between the gradients of the strips or thesteps between lattie points.
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4.5 SummaryFigure 4.17 gives a summary of the results in this setion.

Figure 4.17: The sets of translate points given by rational 2:1 X-projetions.
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4.6 Explanation of DiagramsIn this setion we will present some further explanation of the diagrams, likethose above, that are produed by rational 2:1 X-projetions. In partiular wewill be looking at the ase where the gradients of the two strips are rationallyrelated to eah other, relative to �.The setup is as before, with points from integer lattie L being projetedonto pattern spae E at gradient d . We have strips S1 and S2 at gradients g1and g2 (relative to �).We are looking at the ase where g1 and g2 are rationally related, so we saythat, g1 = ag2for some a 2 Q. We will assume that jaj� 1, and beause a is rational we willsometimes write, a = a1a2 :Note that the above fration is assumed to be expressed in its lowest terms,so a1 and a2 are oprime.4.6.1 Gradients of LinesAs explained above, in the ase where g1 and g2 are rationally related thetranslate points appear in horizontal lines in the fundamental domain of �.Due to � being rotated relative to L these lines will have gradient equal to thatof E in the fundamental domain of L.It is also worth noting that eah line in the fundamental domain of � willgive a loop in the fundamental domain of L, and will thus look like several linesrossing the fundamental domain. 90



4.6.2 Number of LinesThe value a (the ratio of the gradients of the two strips) determines the numberof lines in the fundamental domain of � in whih the translate points sit.The following proposition explains this relationship.Proposition 4.24. With the above setup, the translate points are ontained inja1 � a2j lines in the fundamental domain of � .Proof. As explained above, in the fundamental domain of � we have an irra-tional horizontal step and a rational vertial step between onseutive translatepoints.The vertial step is (the frational part of),1a� 1 :Thus the translate points an be found in a number of lines equal to thenumber of distint frational parts of multiples of the above term.If we have a1 � a2 = z, for some z 2 Z, then we get,1a� 1 = 1a1a2 � 1 = a2a1 � a2 = a2z :We now look at the frational parts of all multiples of this value to determinethe number of lines in the fundamental domain of �.There will be jz j distint frational parts provided a2 and z are oprime.However, they must be oprime, sine a1 = a2+ z and the values a1 and a2 areoprime.A single horizontal line in the fundamental domain of � will ross severalfundamental domains of L, and sine the translate (1; 0)� is equal to the trans-late (d; ), a line aross the fundamental domain of � will give a loop aroundthe fundamental domain of L. 91



We will now look at the number of loops ontaining translate points in thefundamental domain of L. This will often be the same as the number of linesin the fundamental domain of �, however the two numbers are not neessarilythe same, as the following results show.Lemma 4.25. Within the fundamental domain of � there are 2+ d2 points ofL (ounting the four lattie points at the orners as a single lattie point).Proof. Due to the way that it is de�ned, the fundamental domain of � does notontain any lattie points from L with the same projetions (with the exeptionsof the points at the orners).To see this, onsider any lattie point (r; s) within the fundamental domainof �. The losest points of L with the same projetions as (r; s) are the points(r� ; s+ d) and (r+ ; s� d). However, neither of these points lie in the samefundamental domain of � as the point (r; s) (unless (r; s) is one of the ornerpoints).Note that for similar reasons if we have a point on E that an be the pro-jetion of a lattie point of L then eah fundamental domain of � above andbelow that point will ontain a lattie point with that projetion.Now, by lemma 4.6, the shortest distane between the projetions of lattiepoints of L is 1p2+d2 . Thus, by the above arguments, the fundamental domainof � ontains preisely one point of L projeting to eah of the points np2+d2for n varying between 0 and 2 + d2 (with these values giving the points at theedges of the fundamental domain of �).So we get that the fundamental domain of � ontains 2 + d2 � 1 points ofL within its interior.Proposition 4.26. In the fundamental domain of L the points appear in anumber of loops equal to ja1 � a2j, provided ja1 � a2j and 2 + d2 are oprime.Proof. We have ja1 � a2j= n evenly-spaed lines in the fundamental domain of�. If we have one of the lines being at height zero, then the others must be at92



heights 1n , 2n , et. With the line at height 1 being the same as the line at height0. Eah of these lines gives a loop in the fundamental domain of L, but thequestion is whether all of these loops are distint.The �rst line (at height zero) runs through a lattie point, so if any otherlines run through lattie points then they will be overlaid in the fundamentaldomain of L.The lattie points within the fundamental domain of � are evenly spaed atheights 1p2+d2 , 2p2+d2 , et. So they sit on m = 2 + d2 evenly-spaed lines inthe fundamental domain of �, again with the line at height 1 ignored sine it isthe same as the line at height 0.When m and n are oprime only the lines at height 0 an oinide. Thus theloop in L orresponding to the line at height 0 in � is not overlaid by any otherloop. We also annot have two other lines of translate points giving overlaidloops in the fundamental domain of L sine the translate points are on evenly-spaed lines and would need to di�er in height by some multiple of 1p2+d2 .However, sine m and n are oprime this annot happen.The proof is similar when none of the lines of translate points is at heightzero in the fundamental domain of �.
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Example 4.7. If we have E at gradient 12 , and the translate points sitting on3 lines in the fundamental domain of � then the situation will look like thoseshown in �gure 4.18 (for one of the lines of translate points being at height 0).

Figure 4.18: The translate points in the fundamental domain of �, with pointsof L also marked.So here n = 3 and m = 5, and the only plae that two of the lines oinideis at height 0 in the fundamental domain of �.Proposition 4.27. Let k 2 N be the highest ommon fator of ja1 � a2j and2 + d2, then the translate points appear in a number of loops equal to,ja1 � a2jkin the fundamental domain of L.Proof. Say that, ja1 � a2j= �k2 + d2 = �kfor some �; � 2 N. Then the translate points appear on �k lines in the funda-94



mental domain of � and the lattie points appear on �k lines. As before, theselines have evenly-spaed heights in the fundamental domain of �, so a step of(0; 1k )� moves you from one line running through a lattie point to another linerunning through a lattie point.The translate points sit on �k evenly-spaed lines, so if we have a line atheight 0 then there will be a line at height 1k in the fundamental domain of �(the line � steps up from the �rst line) and similarly lines at heights 2k , 3k , et.In a similar way there will be lines at heights 1n , 1n + 1k , 1n + 2k and so on, withall of these line being overlaid in the fundamental domain of L.Thus the n distint lines in the fundamental domain of � will beome atmost � distint loops in the fundamental domain of L.Indeed, there will be exatly � distint loops in the fundamental domain ofL beause � and � are oprime (sine k is the highest ommon fator), in asimilar way to the previous proof.Figure 4.19 shows the lines that are referred to in the previous results in thease where E is at gradient 23 .

Figure 4.19: The lines through points of L in the fundamental domain of �.Eah of these lines passes through a lattie point, and they are overlaid inthe fundamental domain of L. 95



4.6.3 Size of RotationWe have already established that the diagram orresponding to a tiling setup ofthis type onsists of dense sets of points on a �nite number of loops at gradientequal to E in the fundamental domain of L. We now look at the length of thesteps along the loops between these lattie points. Sine we are referring to thelines as loops we will all this step a rotation, and as explained earlier in thehapter, this will be an irrational rotation.So, as was mentioned earlier in this hapter, the horizontal step betweenonseutive translate points is, 1g1 � g2in �-oordinates. Thus in the ase where we have the translate points in a singleloop in the fundamental domain of L the rotation will be 2�g1�g2 (or rather, thefrational part of this).When the translate points are ontained in more than one loop then onse-utive translate points will be on di�erent loops. However, we will yle throughall the loops in turn, so if there are k loops then the rotation on eah one willbe (the frational part of) 2k�g1�g2 .4.6.4 Comparing DiagramsHaving desribed the diagrams produed by these tilings in some more detailit seems natural to investigate whether two di�erent tiling shemes will givedi�erent diagrams. This turns out not to be the ase, as the following disussionreveals.We will be omparing diagrams assoiated to two tiling shemes, as beforethese will be rational 2:1 X-projetions with the gradients of the two stripsrationally related relative to �.So, we have setup 1 with harateristis,96



� Pattern spae E at gradient d (and assoiated lattie �).� Strips S1 and S2 at gradients g1 and g2 respetively (relative to �).� Gradients satisfying, g1 = ag2, with a = a1a2 2 Q.Similarly, setup 2 onsists of,� Pattern spae E0 at gradient 0d0 (and assoiated lattie �0).� Strips S01 and S02 at gradients g01 and g02 respetively (relative to �0).� Gradients satisfying, g01 = a0g02, with a0 = a01a02 2 Q.For the diagrams produed by these setups to look idential they must havetranslate points on the same number of lines, at the same gradient and with thesame rotation on eah line.By the previous parts, the gradients of the lines are the same if and only ifthe gradients of E and E0 are the same, so we must have that,d = 0d0 :Reall that  and d (also 0 and d0) are oprime, so in fat we must have that = 0 and d = d0. Note that this also means that the latties � and �0 will bethe same.We next look at the onditions required for the number of loops in whihthe translate points sit to also be the same. If the gradients are the same thenlatties � and �0 are the same, and the setups will give the same number oflines in the fundamental domain of � (�0) if and only if,ja1 � a2j=ja01 � a02j :This would of ourse give the same number of loops in the fundamentaldomain of L. However, as we have seen above, it is possible to have di�erent97



numbers of lines in � giving the same number of loops in L. The followingtwo orollaries to proposition 4.27 desribe the irumstanes in whih this anhappen.Corollary 4.28. If we have two tiling setups as above (spei�ally with E andE0 at the same gradient) having, ja1 � a2j= n2 + d2 = mwith n and m oprime then if ja01 � a02 j= n or nm we get that the number ofloops ontaining translate points in the fundamental domain of L is the samefor both tiling setups.Proof. This is lear when ja1� a2j = ja01� a02j. When ja01� a02j = nm the resultfollows from proposition 4.27.Corollary 4.29. If we have, 2 + d2 = �kja1 � a2j = �kwith k the highest ommon fator (so � and � oprime), then the seond tilingsetup will give the same number of loops in the fundamental domain of L pro-vided that ja01 � a02j is equal to �, �k or ��k.Proof. Again, this follows from proposition 4.27.All that remains now is to look at when the rotations are also the same. Asmentioned before, the horizontal step between translate points in � oordinatesis of length 1g1�g2 . Thus if both setups give the same number of lines in � wewill have the same rotation provided, 98



1g1 � g2 = 1g01 � g02 :We an also get rotations that di�er by some integer number of full rotationsif we have, 1g1 � g2 = 1g01 � g02 + zfor some z 2 Z.Indeed, these results also hold when we have projetion setups giving unequalnumbers of lines in � but equal numbers of loops in L. This is beause we willstill yle through all the loops in some order, so even though some of the linesget overlaid we still need the same horizontal step between translate points.Proposition 4.30. If we have, g02 = a� 1a0 � 1g2then the horizontal steps of the two tilings are equal.Proof. The horizontal steps (and therefore the rotations if everything else isequal) are the same if, 1g1 � g2 = 1g01 � g02 :But sine g1 = ag2 and g01 = a0g02 we have that,1g1 � g2 = 1g01 � g02 , g1 � g2 = g01 � g02, g2(a� 1) = g02(a0 � 1), g02 = a� 1a0 � 1g2 :99



From the above results, we an onlude that it is possible to get two di�erenttiling setups produing idential diagrams. This will be true if, for example, wehave,� E = E0.� ja1 � a2j = ja01 � a02j.� g02 = a�1a0�1g2.Example 4.8. For a spei� example of when this an happen, onsider thesetup where E = E0 = 13 and we have in tiling sheme 1 that g1 = 1p2 andg2 = 12p2 . This gives us a value of 2 for a, so ja1 � a2j = 1.If we have a0 = 54 , then the number of lines of translate points in � produedby eah setup is the same, sine we have that ja01 � a02j = 1.For the rotations to also be equal we must have that,g02 = a� 1a0 � 1g2 = 4g2 = p2 :Then of ourse we get, g01 = a0g02 = 54p2 :So if you have a tiling sheme where the gradients of the strips are 1p2 and12p2 and another where the strips have gradients p2 and 54p2 they will produeidential diagrams if the projetion is onto the same pattern spaes (up to thelines of points being translated of ourse).The tilings produed by these two shemes are not the same. Figure 4.20and �gure 4.21 show pathes of these two tilings. Note that here we have takena path from eah tiling and drawn it both horizontally and vertially alongthe sides of the square, then ombined to get a two dimensional diagram. Theintention is to make it easier to see di�erenes between the tilings.100



Figure 4.20: A path of the tiling T� 9+10p217 ; 27+20p271 ; 13�.The third number in the aption shows the gradient of the pattern spaethat we are projeting onto, the �rst two numbers denote the gradients of thetwo strips in normal oordinates, so these will give gradients 1p2 and 12p2 in�-oordinates.The pathes already look quite di�erent, but to see that these two tilingsannot be the same we look at the gradients of the strips involved.Strip S1 is at gradient 9+10p217 , whih has a value between 1 and 2. Thereforethe tiling T1 assoiated to this strip will, due to the gradient of pattern spae Ebeing 13 , have prototiles of lengths \1" and \3" with the longer prototiles alwaysappearing anked by shorter prototiles and the shorter prototiles appearing inbloks of length 1 or 2.Strip S2 is at gradient 27+20p271 , whih has a value between 12 and 1. Tiling101



Figure 4.21: A path of the tiling T� 99+100p247 ; 9+10p27 ; 13�.T2 will therefore have the same prototiles, but with the long prototiles appearingin bloks of length 1 or 2 and the shorter ones appearing in singles.Sine the longer tiles in T1 only appear in singles we will not get a path oftwo onseutive long tiles in the ombined tiling. However, we an get pathesthat onsist of a long tile followed by a short tile followed by another long tile(and indeed some of these an be seen in �gure 4.20).Looking at the other tiling we have strip S01 at gradient 99+100p247 , whih hasa value between 5 and 6, and strip S02 at gradient 9+10p27 , whih is between 3and 4. Thus in tiling T 01 we must have at least 5 short tiles between appearanesof long tiles, and in T 02 we must have at least 3 short tiles between long tiles.Therefore we annot have a \long-short-long" path in the ombined tiling.102



5 Tiling SpaesIn this hapter we will investigate the spaes assoiated to rational 2:1 X-projetions.We will do this by �rst examining the standard 2:1 anonial ase, thenlooking at an intermediate one-strip non-parallel ase before �nally moving ontorational 2:1 X-projetions.We start by reapping some de�nitions �rst given in hapter 2 (see also [14℄).De�nition 2.12. Given two tilings U1 and U2 of Rn we de�ne the distanebetween these two tilings, d(U1; U2), to be equal to,inf nf1g[n" : U1 + s1 = U2 + s2 on B 1" with s1; s2 2 Rn ; ks1k; ks2k< "2oowhere B 1" denotes the ball of radius 1" entred at the origin.Note that here U + s is the tiling obtained by translating tiling U by vetors (or equivalently moving the origin by �s).The metri here is de�ned on the set of all tilings of Rn , though we will beinterested in the 1-dimensional analogue of this de�nition, de�ned on the set ofall 1-dimensional tilings (i.e., tilings of R).With this metri two tilings will be lose if they agree up to a small trans-lation on a large ball about the origin.We an now look at the translates of a tiling and how far these are from theoriginal tiling in the tiling metri.De�nition 2.13. The orbit of a tiling U of Rn is de�ned to be,O(U) = fU + s : s 2 Rng :That is, the set of all translates of the tiling U .103



De�nition 2.14. A tiling spae 
 is a set of tilings that is losed under trans-lation and omplete in the tiling metri, i.e., if U 2 
 then O(U) � 
, andevery Cauhy sequene of tilings in 
 has a limit in 
.De�nition 2.15. The hull or orbit losure 
U of a tiling U is the losure ofO(U).As above, we will be interested in tilings of R, so the losure will be in thespae of all 1-dimensional tilings.The hull of a tiling U is the set of tilings that loally look like U . A tilingU 0 is in 
U if and only if every path of U 0 is found in a translate of U .We will of ourse be interested in the tiling spaes of projetion tilings, inpartiular rational 2:1 X-projetions, therefore we may also be interested in thespae 
0, whih is the set of all tilings given by allowed positions of intersetionpoints, and any other translates of these tilings, ompleted as with 
U .The spaes 
U and 
0 may not be the same in all ases. In fat, at thispoint it is not lear what their relationship is.5.1 The Canonial 2:1 CaseWe will begin by examining the standard 2:1 projetion ase. There follows ashort reap of the anonial 2:1 projetion setup (�rst de�ned in hapter 2).De�nition 2.8. A anonial 2:1 projetion sheme is a ut-and-projet shemewith lattie L = Z2 and aeptane domainK being a losed interval, where thewidth of this interval, and therefore the strip that lattie points are projetedfrom, is taken to be equal to the projetion of a unit square onto E?. Inaddition, the aeptane domain K is hosen so that the boundaries of the stripdo not interset any points of L.So in a strip S of anonial width, the point (�; �) (for �; � 2 R) is on thelower boundary of S if and only if the point (� � 1; � + 1) is on the upperboundary. 104



Figure 5.1: A anonial 2:1 projetion sheme.Note that the strip must have an irrational gradient. This is beause aprojetion with rational gradient would not result in �1jL being injetive norwould �2(L) be dense in E?.As in the previous hapter with rational 2:1 X-projetions, we will look atthe ways in whih we an position the strip within the fundamental domain ofL and the tilings these di�erent positions will give us (note that as in de�nition4.4 when we refer to the fundamental domain of L we mean the unit squarewith verties (0; 0); (1; 0); (0; 1) and (1; 1)).De�nition 5.1. Given a anonial 2:1 projetion sheme with strip S produ-ing a tiling T with origin O we say that the point t, within the fundamentaldomain of L, on the lower boundary of strip S satisfying �(t) = O is the pointorresponding to tiling T . When we talk about a strip being plaed at a pointin the fundamental domain of L then this point will be the point on the lowerboundary of the strip that projets to the origin in the tiling produed by ourprojetion sheme.In the de�nition of a anonial 2:1 projetion sheme we require that the105



strip to be positioned so that its boundaries do not pass through any points ofthe lattie L. Thus for a given setup there are ertain points in the fundamentaldomain of L at whih the strip annot be plaed.In a similar way, if we start with a tiling, with a orresponding point in thefundamental domain of L, then we an look at the translates of this tiling, whihwill be produed by e�etively sliding the orresponding point along the strip.We thus get the sets of translates and forbidden points shown in �gure 5.2in the ase of a standard 2:1 projetion.

Figure 5.2: The anonial 2:1 projetion ase.Here, the blak line shows the points at whih the strip annot be positioned,and the red line shows the points that orrespond to translates of our tiling. Notethat these lines are atually dense.We will make a distintion between points through whih the boundaries ofthe strip an run and points that are forbidden.De�nition 5.2. For a given 2:1 projetion setup we say that a point (x; y) inthe fundamental domain of L is singular if positioning the strip with (x; y) onthe boundary results in the boundary of the strip passing through a point oflattie L. 106



Equivalently, the point (x; y) in the fundamental domain of L is singular ifthere exists a point (m;n) 2 L suh that,(m;n) = (x; y) + r(1; g)for some r 2 R, where g is the gradient of the strip.All other points in the fundamental domain of L (i.e. the points throughwhih the edges of the strip may run without interseting a lattie point) arealled non-singular.All the translate points of a tiling are of ourse non-singular, but not allnon-singular points will orrespond to translates of the original tiling.Sine we only have one strip of anonial width in this setup, we only geta single line of singular points in the fundamental domain of L, and similarlythe translates of a given tiling appear in a single line. Both of these lines areat the gradient of the strip, whih is irrational, and therefore wind round thefundamental domain of L. Thus, as mentioned above, they appear as dense setsof lines in the fundamental domain.Proposition 5.1. (see [4℄) There is a ontinuous map, f , from the tiling spaeof a anonial 2:1 projetion to a 2-torus satisfying,� f is one-to-one over non-singular points.� f is two-to-one over singular points.From this we know that if we have a onvergent sequene of non-singularpoints within the fundamental domain of L with non-singular limit point xthen we get a orresponding sequene of tilings onverging to the tiling thatorresponds to point x.However, if we have two sequenes of non-singular points in the fundamentaldomain of L onverging to the same singular point, y, but from opposite sides107



then these sequenes will have di�erent limits. This is beause a strip with pointy on the lower boundary will have some lattie points, (m;n) and (m�1; n+1)on its boundaries, therefore a sequene onverging to y from one side will givetilings ontaining the point �(m;n) but not the point �(m � 1; n + 1) after aertain stage, resulting in �(m;n) appearing in the limit, whereas a sequeneonverging to y from the other side will give a tiling at the limit that ontains�(m� 1; n+ 1) but not �(m;n).Thus the line of singular points in the fundamental domain of L orrespondsto a double line in the tiling spae.5.2 One-Strip Non-Parallel ProjetionsWe will now look at the ase where we have a single strip at anonial width (stillat irrational gradient) but we projet onto a line at a positive, �nite rationalgradient (not equal to 1). This is an intermediate step between standard 2:1projetions and rational 2:1 X-projetions.The tiling produed by hanging the gradient of the pattern spae (andtherefore altering the projetion), but leaving the strip unhanged is ombina-torially the same as in the standard ase, with the alteration to the projetiononly a�eting the lengths of the two prototiles.If we have a standard 2:1 projetion tiling T having prototiles t1 and t2we will get a orresponding one-strip non-parallel projetion tiling T 0 havingprototiles t01 and t02 with the origin in T 0 being at the equivalent point in theprototile orresponding to the prototile over the origin in T . For example, ifthe origin in T is at the midpoint of a t1 tile then the origin in T 0 will be at themidpoint of a t01 tile. Of ourse, we an also do this in the other diretion toget the standard 2:1 projetion tiling orresponding to a one-strip non-parallelprojetion tiling.Thus we have a bijetion between the set of tilings generated by a standard108



2:1 projetion sheme and the orresponding tilings obtained by projeting ontoa line at rational gradient rather than one that is parallel to the strip.Proposition 5.2. Two standard projetion tilings T1 and T2 are lose in thetiling metri if and only if their orresponding one-strip non-parallel projetiontilings T 01 and T 02 are lose in the tiling metri.Proof. We have four tilings, T1, T2, T 01 and T 02. The tilings T1 and T2 aremade up of prototiles t1 and t2 and the tilings T 01 and T 02 have prototiles t01and t02. Altering the line that we are projeting onto hanges the lengths of theprototiles, and will have the e�et of lengthening one and shortening the other.So let us assume that, jt01j = �jt1jjt02j = �jt2jwith � > 1 and � < 1.Now, if T1 and T2 are within distane " of eah other then after some translateof up to distane " all the points within 1" of the origin of tilings T1 and T2oinide.Thus all the orresponding points within tilings T 01 and T 02 will oinide aftersome translate of distane less than �", sine the distanes between points anbe saled by at most �.However, the radius of the path ontaining these points may also vary. Thepath in tilings T 01 and T 02 is made up of t01 and t02 tiles rather than t1 and t2tiles, and therefore has a minimum possible radius of �" . So the tilings T 01 andT 02 oinide on a ball of radius �" after a translate of up to �".Now, if � � 1� then after a translate of up to �" the tilings T 01 and T 02 mustoinide on a ball of radius �" � 1�" about the origin, and hene the two tilingsare within distane �" in the tiling metri.109



If � < 1� then after a translate of up to �" < "� the tilings T 01 and T 02 oinideon a ball of radius �" about the origin. Thus the two tilings are within distane"� in the tiling metri.So if we have standard projetion tilings T1 and T2 that are lose in the tilingmetri then their orresponding one-strip non-parallel projetion tilings T 01 andT 02 must be lose in the tiling metri. The proof of the onverse is similar.From this we an see that if we have a standard 2:1 projetion tiling Tthen there is a homeomorphism between 
T and 
T 0 , where T 0 is the tilingorresponding to T but with the projetion onto a pattern spae at some rationalgradient.Therefore, as with the standard 2:1 projetion ase, we will have a ontinuousmap from 
T 0 to the 2-torus that is one-to-one on non-singular points and two-to-one on singular points. As with the standard ase, the singular points ofa one-strip non-parallel projetion tiling appear in a single line at irrationalgradient winding round the fundamental domain of L. This line is the same asfor the orresponding standard 2:1 projetion tiling, sine forbidden points aredetermined by the strip and are independent of the projetion. Also, as withthe standard 2:1 projetion, the line of forbidden points will be a double line inthe hull of a 2:1 one-strip non-parallel projetion tiling.5.3 Rational 2:1 X-ProjetionsWe now move on to looking at tilings generated by rational 2:1 X-projetionshemes. The pattern of points given by suh a tiling sheme is a ombinationof the point patterns given by two projetions of the type shown above, withstrips at di�erent gradients but the same pattern spae.We will �rst reap the possible positions of the intersetion point of the twostrips. That is, the points in the fundamental domain of L at whih the point atthe intersetion of the lower boundaries of the two strips may be positioned. As110



explained in hapter 4, for a given rational 2:1 X-projetion sheme, we will geta orresponding tiling for every allowed hoie of intersetion point t, namelythe tiling with �(t) at the origin and endpoints of tiles being the projetions ofthe lattie points from within the two strips.Note that the \allowed" points are the points in the fundamental domainof L at whih the intersetion point an be positioned without any points ofthe lattie L appearing on the boundaries of either strip. We will be using theterms singular and non-singular to desribe points in the fundamental domainof L one again in this setion.De�nition 5.3. Given a rational 2:1X-projetion sheme with strips S1 and S2at gradients g1 and g2 respetively we say that a point (x; y) in the fundamentaldomain of L is singular if positioning the strips so that the intersetion point oftheir lower boundaries is at (x; y) results in the lower boundary of either strippassing through a point of the lattie L.Equivalently, the point (x; y) in the fundamental domain of L is singular ifthere exists some lattie point (m;n) 2 L satisfying,(m;n) = (x; y) + r(1; g1)or, (m;n) = (x; y) + r(1; g2)for some r 2 R.As with the single-strip onstrution, all other points in the fundamentaldomain of L (i.e. all points at whih the intersetion point of the two stripsmay be positioned without a lattie point appearing on the boundaries of eitherstrip) are alled non-singular.A rational 2:1 X-projetion sheme is the ombination of two one-strip non-111



parallel projetion shemes as desribed in the previous setion. Thus a rational2:1 X-projetion sheme with strips S1 and S2 will have a set of singular pointsthat is the union of the sets of singular points assoiated with the strips S1and S2, sine a point in the fundamental domain of L is a singular point of theX-projetion sheme if it is a singular point for either S1 or S2.Thus the set of singular points in the fundamental domain of L will look liketwo lines at gradients g1 and g2 (the gradients of the two strips) winding roundthe fundamental domain. Note that sine the strips have irrational gradientsthis will be a pair of dense lines, as shown in �gure 5.3.

Figure 5.3: The singular points in the fundamental domain of L.In a similar way, the set of non-singular points in the fundamental domainof L is the intersetion of the sets of non-singular points assoiated to the stripsS1 and S2. This is a dense set of points in the fundamental domain of L, so anypoint in the fundamental domain an be expressed as the limit of a onvergentsequene of suh points.We will now look at sequenes of non-singular points and their orrespondingtilings.Proposition 5.3. A onvergent sequene of non-singular points (for a given X-112



projetion sheme) onverging to a non-singular point u gives a orrespondingonvergent sequene of tilings whose limit is the tiling orresponding to the pointu.Proof. This follows from the one-strip non-parallel projetion ase. The se-quene of non-singular points for the X-projetion sheme gives two onver-gent sequenes of one-strip non-parallel projetion tilings, onverging to thetwo tilings assoiated to the point u. Therefore the sequene of X-projetiontilings will onverge to the tiling that has tiles with endpoints given by theunion of the endpoints from these two tilings. That is, the X-projetion tilingorresponding to the point u.Looking at the above proposition, we might expet to get a orrespondingresult about onvergent sequenes of non-singular points with limits that aresingular. In partiular, we might expet to get \double points" at some singularpoints (where the plaement of the intersetion point results in a lattie pointappearing on the boundary of one strip but not the other) and \quadruplepoints" at the other singular points (where the plaement of the intersetionpoint results in lattie points appearing on the boundaries of both strips). Thatis, we might expet points at the intersetion of the blak lines to have fourorresponding points in the tiling spae (the spae 
0), and points that are onlyon one blak line to have two orresponding points in the tiling spae. However,the situation is slightly more ompliated than this.Theorem 5.4. A singular point in the fundamental domain of L that is not atthe intersetion of the lines of singular points assoiated to the strips S1 and S2an orrespond to a single point or a double point in the tiling spae.Proof. Say that we have suh a point v on the line of singular points assoiatedto strip S1, but a non-singular point for strip S2. Thus the plaement of S1 atthis point results in some lattie point (m;n) appearing on the lower boundary113



of S1 and the lattie point (m � 1; n + 1) appearing on the upper boundary(sine S1 has anonial width).Sine v is non-singular for the strip S2, having the lower boundary of S2 runthrough this point does not result in the boundaries of S2 passing through anypoints of L. So if we take any onvergent sequene of points in the fundamentaldomain of L with limit v then plaing the strip S2 at these points will give aorresponding sequene of tilings onverging to the tiling that orresponds tothe point v. We will denote by P2 the point set orresponding to this tiling (i.e.the set of endpoints of the tiles).As before, approahing this point from di�erent sides will give di�erent limitsfor the sequenes of tilings generated by the projetion of points in translatesof the strip S1. In partiular, approahing from one diretion will result in thepoint �(m;n) appearing in P1 (the point set at the limit of the sequene), whilethe point �(m�1; n+1) will not appear in P1, and approahing from the otherdiretion will result in �(m� 1; n+1) appearing in the limit (whih we will allP 01) whilst �(m;n) does not appear in P 01.Now, the point set that is the limit of the orresponding sequenes of X-projetion tilings is the union of the points above, so for tilings approahingfrom one side we will get P1SP2 and from the other we will have P 01SP2.The strip S2 may ontain a lattie point with the same projetion as (m;n)or (m � 1; n+ 1), or both, so the point set P2 may ontain the points �(m;n)or �(m � 1; n + 1), or both of these. For example, if the pattern spae E isat gradient 12 then the points (0; 0) and (�1; 2) projet to the same point onE, and whilst a anonial width strip annot have both the points (0; 1) and(�1; 2) in its interior it may have both (0; 0) and (0; 1), whih have the sameprojetions as (0; 1) and (�1; 2).If P2 ontains both �(m;n) and �(m � 1; n+ 1) then P1SP2 and P 01SP2will be the same, and v will only orrespond to a single point in the tiling spae.Otherwise, the limits will di�er, with at least one of �(m;n) and �(m�1; n+1)114



failing to appear in one of P1SP2 and P 01SP2 but appearing in the other,resulting in v orresponding to a double point in the tiling spae.We now look at the di�erent ases that arise when we examine sequenesof points onverging to a point that is singular for both strips in a rational 2:1X-projetion.Here there will be four di�erent ways in whih a sequene of points mightapproah suh a limit point, and plaing the strips S1 and S2 with suh apoint on their lower boundaries will result in lattie points (m;n) and (m �1; n + 1) appearing on the boundaries of S1, as well as lattie points (m0; n0)and (m0 � 1; n0 + 1) appearing on the boundaries of S2. Figure 5.4 shows thesituation that we have, with the lower boundaries of the strips interseting atthe singular point v. Here the di�erent diretions from whih the point may beapproahed by sequenes of non-singular points are labeled with numbers 1, 2,3 and 4.

Figure 5.4: The di�erent diretions from whih a singular point an be ap-proahed.This potentially gives four di�erent ases, depending on whih of the points�(m;n), �(m � 1; n + 1), �(m0; n0) and �(m0 � 1; n0 + 1) an be found in thepatterns P i1 and P i2 that are the limits of the point patterns assoiated to stripsS1 and S2 respetively as we approah the point v from diretion i.115



As before, approahing v from above strip S1 will result in �(m � 1; n+ 1)appearing in P1 while �(m;n) does not, with a similar result for S2. Thefollowing tables show the points ontained in eah P ij .�(m;n) �(m� 1; n+ 1)P 11 no yesP 21 yes noP 31 yes noP 41 no yes�(m;n) �(m� 1; n+ 1)P 12 no yesP 22 no yesP 32 yes noP 42 yes noThus we seem to get four distint limits and therefore a quadruple point.However, as with the double point ase above, the number of distint limits willdepend on whether P2 ontains either the point �(m;n) or �(m� 1; n+1), andwhether P1 ontains either �(m0; n0) or �(m0 � 1; n0 + 1).De�nition 5.4. We will denote by Qi the point pattern that is given by theunion of the patterns P i1 and P i2 . This is the pattern of points that form the end-points of the tiles in the tiling at the limit of a sequene of tilings orrespondingto non-singular points onverging to v.Theorem 5.5. If the points �(m;n), �(m�1; n+1), �(m0; n0) and �(m0�1; n0+1) (as de�ned above) are all distint then a point in the fundamental domain ofL that is a singular point for both tilings Ti orresponds to a quadruple point in116



the tiling spae if exatly one of the following, or any pair exept for numbers 1and 2 or numbers 3 and 4, holds:1. �(m;n) 2 P22. �(m� 1; n+ 1) 2 P23. �(m0; n0) 2 P14. �(m0 � 1; n0 + 1) 2 P15. �(m;n); �(m � 1; n+ 1) 62 P2 and �(m0; n0); �(m0 � 1; n0 + 1) 62 P1.In addition, we get a double point if statements 1 and 2, statements 3 and4, or any three of the �rst four statements hold, and a single point if all of the�rst four statements are true.Proof. The relevant points ontained in the ombined limit point patterns areshown in the following table.�(m;n) �(m� 1; n+ 1) �(m0; n0) �(m0 � 1; n0 + 1)Q1 no yes no yesQ2 yes no no yesQ3 yes no yes noQ4 no yes yes noIf any point from the top row of the table is ontained in the other pointpattern (for example if �(m;n) 2 P2) then the orresponding olumn an beignored. Ignoring either no olumns or any single olumn results in di�erentlimits for eah Qi, as does overing any pair of olumns with the exeptions ofboth olumns 1 and 2 or both olumns 3 and 4.Covering olumns 1 and 2 or olumns 3 and 4, or any three of the fourolumns results in two di�erent possible limits, and if all the points are ontainedin every Qi then they will all be the same.117



It is of ourse also possible that we will be in a situation where (m;n) and(m0; n0) projet to the same point on E (or a similar result holds for some otherpair of the relevant lattie points). The possible impliations of this are exploredin the following propositions.Proposition 5.6. If we have a point in the fundamental domain of L that is asingular point for both onstituent tilings Ti and if the lattie points we get onthe lower boundaries of the strips Si satisfy,�(m;n) = �(m0; n0)then this point orresponds to a triple point in the tiling spae.Proof. If the projetions of (m;n) and (m0; n0) are equal then of ourse theprojetions of (m � 1; n+ 1) and (m0 � 1; n0 + 1) are also equal. Thus for ourdi�erent ases we ombine olumns 1 and 3, and olumns 2 and 4 from the tablein the proof of theorem 5.5. �(m;n) �(m� 1; n+ 1)Q1 no yesQ2 yes yesQ3 yes noQ4 yes yesNote that none of the P ij an ontain any other lattie points that projetto �(m;n) or �(m� 1; n+1), sine this would require the strips to have greaterthan anonial width. Therefore the three possible limits shown above are allthe di�erent limits, and the point orresponds to a triple point in the tilingspae.The �nal ase to be examined is when,118



�(m;n) = �(m0 � 1; n0 + 1)or, �(m0; n0) = �(m� 1; n+ 1) :Proposition 5.7. If we have a point in the fundamental domain of L that is asingular point for both onstituent tilings Ti and if this point gives lattie points(m;n) and (m0; n0) on the lower boundaries of the strips Si in suh a positionthat, �(m;n) = �(m0 � 1; n0 + 1)or, �(m0; n0) = �(m� 1; n+ 1)then this point an orrespond to a quadruple, triple or double point in the tilingspae.Proof. Assume that we are in the ase where �(m;n) and �(m0 � 1; n0 + 1) areequal. The other ase, where �(m0; n0) and �(m � 1; n + 1) are the same, issimilar.Note that we annot also have,�(m0; n0) = �(m� 1; n+ 1)sine we would then get, �(m0; n0) = �(m� 1; n+ 1)119



= �(m;n) + �(�1; 1)= �(m0 � 1; n0 + 1) + �(�1; 1)= �(m0; n0) + �(�1; 1) + �(�1; 1)= �(m0; n0) + 2�(�1; 1) :This means that (�1; 1) would have to have the same projetion as (0; 0),whih annot happen unless the pattern spae E has gradient 1, and this asewas disallowed in the de�nition.However, it is still possible that �(m0; n0) is in P1 and/or �(m� 1; n+ 1) isin P2. As with the proof of the previous proposition we an ombine olumnsfrom the table in the proof of theorem 5.5 to get,�(m;n) �(m� 1; n+ 1) �(m0; n0)Q1 yes yes noQ2 yes no noQ3 yes no yesQ4 no yes yesAs before this gives four possible limits, and therefore a quadruple point,unless �(m0; n0) is in P1 or �(m � 1; n + 1) is in P2. If exatly one of theseonditions holds then we an ignore either olumn 2 or olumn 3 of the tableand we will have a triple point, if both hold then we ignore both of these olumnsand we get a double point.Now, in theorem 5.4 and theorem 5.5 we found that a point that is a singularpoint for one strip will give a double point and a point that is a singular pointfor both strips will give a quadruple point (when the points �(m;n); �(m �1; n + 1); �(m0; n0) and �(m0 � 1; n0 + 1) are all distint) unless we are in the120



situation where S1 ontains lattie points with projetions equal to �(m0; n0)and �(m0 � 1; n0 + 1) and/or S2 ontains lattie points with projetions equalto �(m;n) and �(m� 1; n+ 1).Note that when S1 or S2 (or both) ontains only one suh point then we stillget double/quadruple points as normal. We will therefore now look at when itis possible for S1 (or S2) to ontain both the required points.Proposition 5.8. If we have a one-strip non-parallel 2:1 projetion onto patternspae E, at gradient ab , with a and b oprime and a; b > 1 then a anonialwidth strip S with positive gradient annot ontain any pair of lattie pointswith projetions equal to �(m;n) and �(m � 1; n + 1) in its interior, for any(m;n) 2 Z2.Proof. We will label the points (m;n) and (m � 1; n + 1) as (0; 0) and (�1; 1)and assume that the point (�1; 1) is ontained in S. The proof will be similarwith S ontaining (0; 0), or any other lattie point with the relevant projetiononto E.If S ontains the point (�1; 1), then it annot also ontain (0; 0), sine Shas anonial width. However, sine the projetion is onto a line at rationalgradient there will be other points of the lattie L (that is, Z2) that projet tothe same point as (0; 0). In fat, the set of points with the same projetion as(0; 0) is fz(�b; a) : z 2 Zg.Sine S has positive gradient and does not ontain the point (0; 0) it will alsonot ontain the point (b;�a). Therefore the point that we will be interested inis (�b; a). Now we look at the two ases, namely the ase where a or b is equalto 1, and the ase where a; b > 1. We examine these two ases below.1. If a or b is equal to 1 then it is possible for S to ontain both (�1; 1)and (�b; a), sine (�b; a) is a point of the form (�1; a) or (�b; 1), and thestrip S ould have an arbitrarily large number of horizontal or vertialsteps extending from the point (�1; 1) (depending on the gradient of S).121



2. If a; b > 1 and S ontains the points (�1; 1) and (�b; a) then S mustontain the step (b� 1; 1�a), whih is of the form (;�d), for both  andd greater than or equal to 1, requiring S to either have negative gradientor greater than anonial width.Thus when we have a pattern spae E that is not at gradient n or 1n (forn 2 N) we �nd that the point pattern orresponding to a anonial width stripannot ontain both �(m;n) and �(m�1; n+1) for any lattie point (m;n).From the above propositions we an onlude that when we have a rational2:1 X-projetion sheme with a pattern spae E that is not at gradient k or 1k(for k 2 N) then the singular points in the fundamental domain of L orrespondto double points in the tiling spae 
0 if they are singular for only one of thetwo strips, and quadruple points if they are singular for both strips.Figures 5.5 and 5.6 ombine all the results about singular points in thefundamental domain of L given above. As before, we're looking at a rational 2:1X-projetion sheme with projetion onto a line E at positive rational gradient(not equal to 1), the two strips being alled S1 and S2, and the pattern of pointsin E given by the projetions of the lattie points within strip Si being denotedby Pi.
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Figure 5.5: The ases for points that are singular for only one of the strips.
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Figure 5.6: The ases for points that are singular for both strips.
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5.4 The Spae 
UWe have so far e�etively been looking at the spae 
0 for a rational 2:1 X-projetion, by looking at all the points in the fundamental domain of L at whihthe intersetion point of the lower boundaries of the two strips an be plaed. Inthis setion we will examine the hull of a rational 2:1 X-projetion tiling, 
U ,by looking at the points in the fundamental domain of L that orrespond totranslates of a given tiling U and limits of onvergent sequenes of suh points.As in hapter 4, we will be referring to the translate points of our tiling U(see de�nition 4.10), where a translate point for U is a point in the fundamentaldomain of L at whih the intersetion point of the lower boundaries of the twostrips an be plaed to give a translate of the original tiling.As we also saw in hapter 4, the set of translate points for a tiling generatedby a given X-projetion sheme depends on the relationship between the gradi-ents of the two strips relative to the sublattie � (and is therefore also dependenton the gradient of the pattern spae E). Varying the relationship between thegradients of the two strips relative to � gives several di�erent possibilities forthe pattern of translate points (see setion 4.5), whih we summarise below.1. The gradients of the two strips are rationally related relative to �.This results in the translate points being dense in a �nite number of linesthat are parallel to E (and therefore have stritly positive gradient).2. The gradients of the two strips are irrationally related relative to �, butdi�er by a rational amount.Again, this gives sets of translate points that are dense in a �nite numberof lines, however this time the lines are perpendiular to E (and thereforehave stritly negative gradients).3. The gradients of the two strips are irrationally related relative to � anddi�er by an irrational amount, but we have that,125



[qx℄ = [x℄ + rfor ; r 2 Q, where [:℄ denotes frational part (see hapter 4).One again the translate points are dense in a �nite number of parallellines, though the gradient of these lines in not equal to that of E.4. The gradients of the two strips are irrationally related relative to �, di�erby an irrational amount and the quantity [qx℄ annot be expressed as[x℄ + r with ; r 2 Q.Here we get that the translate points are dense in the fundamental domainof L.We will now look at these separate ases, beginning with ase 4.5.4.1 Dense Set of Translate PointsThe ase where the set of translate points of our rational 2:1 X-projetion tilingU is dense in the fundamental domain of L is similar to the previous setion.Every non-singular point u in L will be the limit of some sequene of translatepoints of U , and therefore the tiling orresponding to u will be a limit of someonvergent sequene of tilings that are translates of U . Thus 
U will ontainevery tiling that orresponds to a non-singular point in the fundamental domainof L.The singular points in L will have orresponding single, double, triple orquadruple points in 
U , as desribed in the previous setion, sine these are alllimits of translate points of U from every diretion.In addition, there should also be more translates of the tiling U that are notrepresented by points in the fundamental domain of L, sine the translate pointsin the fundamental domain orrespond to translates of U by integer multiples ofsome �xed distane. This should give a line segment of translates of the tiling126



passing through eah translate point (and therefore also eah non-singular point)with the end of one segment onneted to the start of the segment that runsthrough the next translate point. At singular points we would expet to seepotentially double, triple or quadruple line segments in the same way.5.4.2 Translate Points Dense on Finite Set of LinesWe now look at the ases where the translate points of our tiling U are denseon a �nite set of lines in the fundamental domain of L. This overs tilings oftypes 1, 2 and 3 above.As already explained, eah of the three types of tiling gives translate pointsthat are dense on some �nite set of lines in the fundamental domain of L. Thusany non-singular point, u, on any of these lines will be the limit of some sequeneof translates of the tiling U , and so the tiling orresponding to u will be in 
U .Non-singular points that do not lie on the lines are of ourse not at the limits ofany sequenes of the translates that lie on the lines. However, in most ases wehave not proved that the translate points on the line are the only non-singularpoints in the fundamental domain of L that orrespond to translates of thetiling. This is disussed further below.All three types of tiling give similar sets of translate points, but there areslight di�erenes when we ome to look at singular points on the lines on whihall these translate points lie.A singular point on the line of translate points annot orrespond to a tripleor quadruple point, sine it an only be approahed from two diretions (i.e.from either diretion along the line). However, suh a point does not neessarilyhave to be a double point.Proposition 5.9. For a tiling U of type 2, i.e., a tiling where the gradients ofS1 and S2 are irrationally related relative to � but di�er by a rational amount,all singular points on the lines of translate points orrespond to double points in127



the tiling spae provided the pattern spae E has gradient not equal to k or 1k(for k 2 N).Proof. If the projetion is onto a pattern spae E that is not at gradient k or1k then all points that are singular for one of the strips, and all points thatare singular for both but that result in �(m;n), �(m � 1; n+ 1), �(m0; n0) and�(m0 � 1; n0 + 1) being distint must be double and quadruple points in 
0respetively (see proposition 5.8).The remaining two types of singular point are those points where,�(m;n) = �(m0; n0)or, �(m;n) = �(m0 � 1; n0 + 1) :However, note that for a type 2 tiling the translate points appear in linesthat are perpendiular to the pattern spae E, and thus have negative gradient.Therefore the singular points an only be approahed from diretions 1 or 3.

Figure 5.7: The diretions from whih a singular point an be approahed.Thus the limits are Q1 and Q3, and if you look at the tables in the proofs128



of propositions 5.6 and 5.7 it is lear that these limits are always distint.Whilst this result will hold for all tilings of type 2, the tilings of types 1 and3 may have translate points ontained in lines that approah singular pointsfrom diretions 2 and 4 in the above diagram.For the type 1 tilings, the translate points are always ontained in linesparallel to E, so singular points on these lines will be approahed from diretions1 and 3 if g1 and g2, the gradients of the two strips relative to �, are either bothpositive or both negative. Otherwise the singular points on the lines will beapproahed from diretions 2 and 4, with the results desribed in the followingproposition.Proposition 5.10. If we have pattern spae E not at gradient k or 1k (fork 2 N) and a tiling of type 1 (U) with strips S1 and S2 at gradients g1 and g2respetively, relative to �, then:� If g1 and g2 are either both positive or both negative all the singular pointson the lines of translate points orrespond to double points in 
U .� If one of g1 and g2 is positive and the other negative then any singularpoints on the lines of translate points that are singular for both strips andsatisfy, �(m;n) = �(m0; n0)orrespond to single points in 
U .� If one of g1 and g2 is positive and the other negative then any singularpoints on the lines of translate points that are singular for both strips andsatisfy, �(m;n) = �(m0 � 1; n0 + 1)129



orrespond to double points in 
U unless at least one of the following holds,�(m;n) 2 P2�(m0 � 1; n0 + 1) 2 P1 :With a similar result for the ase where,�(m0; n0) = �(m� 1; n+ 1) :Proof. As in the previous proposition, if the projetion is onto a pattern spaeE that is not at gradient k or 1k then all points that are singular for one ofthe strips, and all points that are singular for both but that result in �(m;n),�(m � 1; n+ 1), �(m0; n0) and �(m0 � 1; n0 + 1) being distint must be doubleand quadruple points in 
0 respetively (again, see proposition 5.8).If g1 and g2 are either both positive or both negative then all singular pointsare approahed by translate points from diretions 1 and 3, so we are in the samesituation as we were with tilings of type 2, thus all singular points orrespondto double points in 
U .If one of g1 and g2 is positive and the other is negative, then the singularpoints are approahed by translate points from diretions 2 and 4, so we areinterested in limits Q2 and Q4 and the results follow from examining the tablesin the proofs of propositions 5.6 and 5.7.As was mentioned above, in most ases there may be more translate pointsin the fundamental domain of L for a tiling U than those already given, howeverin orollary 4.12 we saw that these translate points are indeed all the translatepoints in the fundamental domain of L when we have a type 1 tiling with,� Pattern spae E not at gradient k or 1k (for k 2 N).130



� Strips S1 and S2 at gradients g1 and g2, relative to �, satisfyingg1 = ab g2for a 2 Z, b 2 N and ab not equal to  or 1 ( 2 Z).If we insist that a 2 N then suh a tiling U will also satisfy the onditionsgiven in the �rst part of proposition 5.10 and thus all the translate points ofsuh a tiling an be found in a �nite number of lines in the fundamental domainof L, and all the singular points on those lines orrespond to double points in
U .In addition, sine the translate points are only the translates of U by integermultiples of some �xed distane there will also be lines of translates joining eahof the translate points (and indeed all non-singular points on the lines), perhapsbest thought of as being a line segment passing through eah non-singular pointon the line with the ends of the segments identi�ed in the appropriate way. Thesingular points will therefore give double lines in a similar way.5.4.3 Repetitivity RevisitedFollowing the results in this hapter and hapter 4 we an now prove repetitivityin the general ase, i.e., that any rational 2:1 X-projetion sheme produesrepetitive tilings.Reall that a tiling U is repetitive if any path P in U appears throughoutU , and a opy of P an be found within some �xed distane (dependent on P )of any point in the tiling.Theorem 5.11. Tilings generated by rational 2:1 X-projetion shemes arerepetitive.Proof. We have a tiling U generated by a rational 2:1 X-projetion sheme.Assume that U has a orresponding point u in the fundamental domain of L.131



Note that U may not orrespond to any point in the fundamental domain, butif not it will be a small translate of a tiling orresponding to suh a point.Any path of tiles, P , in the tiling U is ontained in some larger path, Q,about the origin, so if Q appears throughout the tiling then so will P .There exists some " > 0 suh that any tiling U 0 within distane " of U willhave the path Q about the origin (after some small translate). Thus thereexists Æ > 0 suh that all non-singular points within Æ of u will give tilings withpath Q near the origin.Depending on the relationship between the gradients of the two strips, wehave points orresponding to translates of U that are either dense in a �niteset of lines in the fundamental domain of L (see propositions 4.14, 4.15, 4.17and 4.19 for the various subases) or dense in the whole fundamental domain(see proposition 4.23). In all ases there are ountably many translates of Uorresponding to points within distane Æ of u.Sine the step between onseutive translate points is �xed there must besome maximum number of steps that we an have between ourrenes of trans-late points of U within distane Æ of u.Thus the path Q (and therefore also the path P ) must appear throughoutthe tiling U and within some �xed distane of any point in the tiling.
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6 Further WorkIn this hapter we will look at some examples of rational 2:1 X-projetion tilingsand the proportions in whih the prototiles in these tilings appear. We will alsolook at the proportions that we might expet in some ases, and how loselythe expeted values resemble the values observed in our examples.In the seond setion we will look at a few examples of tilings generated byirrational 2:1 X-projetion shemes.6.1 Proportions of Prototiles in Rational 2:1 X-ProjetionTilingsThis setion ontains some examples of (pathes of) tilings generated by rational2:1 X-projetion shemes.In all of the following examples the two strips have a ommon point on theirlower boundaries (whih I have de�ned to be the origin) and therefore also aommon point on their upper boundaries (the point (�1; 1)), with the originbeing projeted onto the pattern spae E whilst the point (�1; 1) is not.In the de�nition of a 2:1 X-projetion the strips S1 and S2 were hosen sothat they do not have any points of L on their boundaries, so these examples donot give full valid tilings, but sine all the strips are at irrational gradients therewill only be one point on eah boundary and a suitable (very small) translationof the strips will result in a valid sheme with an idential path to that givenby this setup.Example 6.1. We start with the pattern spae E at gradient 0:5, a setup thatgives two possible tile lengths. For simpliity we will refer to the tiles as being oflengths 1 and 2 rather than their atual lengths of 1p5 and 2p5 . Similarly, for theother rational 2:1 X-projetion examples that have more possible tile lengths wewill say that the the shortest tile has length 1 and all other tiles will be labeledwith integers showing their lengths relative to the shortest tile.133



We then take strips S1 and S2 at gradients 1p2 and 12p2 relative to the sub-lattie �.Figure 6.1 gives some idea of what a path of this tiling around the originlooks like. Here eah dot represents a tile in the tiling with the sale at the leftshowing the lengths of the tiles and the sale at the bottom showing where theyappear in the tiling. The origin is at the meeting point of the tiles numbered 100and 101 in this path, so approximately at the entre of this diagram.We will refer to the resulting tiling as T� 1p2 ; 12p2 ;0:5�� with the �rst two num-bers representing the gradients of the two strips relative to � and the third num-ber showing the gradient of the pattern spae. Later tilings will be labeled in asimilar way.

Figure 6.1: Diagram of a path of tiling T� 1p2 ; 12p2 ; 12�� .There are 23 tiles of length 2 in this path, so eah of the points at height 2in the diagram represents a single tile.Changing the gradient of the pattern spae to 0.6 and looking at the setupwith strips at the same gradients relative to the (now altered) sublattie � givesthe diagram shown in �gure 6.2.
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Figure 6.2: Diagram of a path of tiling T� 1p2 ; 12p2 ; 35�� .One again the origin is approximately at the entre of this diagram (themeeting point of tiles 200 and 201).Having the pattern spae at a gradient of 0.6 � 35� means that there are 5possible tile lengths, and as an be seen from �gure 6.2 all of these tile lengthsappear in the resulting tiling.For the �nal example the pattern spae E is at gradient 0.3, whih gives 10possible tile lengths, all of whih appear in the tiling as an be seen in �gure 6.3.

Figure 6.3: Diagram of a path of tiling T� 1p2 ; 12p2 ; 310�� .135



As before the origin is loated approximately at the entre of this diagram(between tiles 200 and 201).Looking at the diagrams above it is evident that the di�erent prototiles donot exist in equal numbers within these pathes. It is perhaps unsurprising thatthere should be fewer prototiles of maximum length, partiularly in the laterexamples, given that these an only arise from the lining up of longer tiles fromthe onstituent tilings T1 and T2. And indeed in eah of the above examplesthe maximum length prototile appears to be the least ommon.The most ommon prototile in the examples given above is the prototilewith the same length as the \short" tile from the tilings orresponding to theindividual strips (i.e. 1 for E at gradient 0.5 and 3 for E at gradient 0.6 or 0.3).The following tables give some approximate ratios of numbers of prototilesrelative to the number of maximum length tiles in 100000-tile pathes of thetilings. The gradients of the strips given are those relative to �. Fixing thegradients relative to � will still result in them varying relative to L as thegradient of E is altered. The olumns labeled \S1 Approx." and \S2 Approx."show the approximate gradients of the two strips relative to the lattie L.
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E at Gradient 0.5S1 Gradient S2 Gradient S1 Approx. S2 Approx. 1 Tiles 2 Tiles1p2 12p2 1.867 1.037 9.199 11p5 512p5 1.220 0.757 6.867 11� 13� 0.973 0.640 5.673 11p2 + 12 1p2 4.306 1.867 21.022 11p5 1p5 � 18 1.220 0.980 7.593 11� 1� � 110 0.973 0.806 6.331 13+p51+p5 2+p51+p5 11.090 5.236 63.433 1910 + 1p2 1 + 12p2 10.726 5.735 96.561 11� 1� 1� 2� 1.793 1.055 8.922 11p2 1p3 1.867 1.515 11.601 11p5 1p7 1.220 1.083 7.925 11e 1� 1.063 0.973 7.106 1In the above examples, the �rst three have gradients that are rationallyrelated relative to � and the next three are irrationally related but di�er by arational amount.Reall that in hapter 4 we de�ned x and qx for strips at gradients p and q(with p = aq for some a 2 R) relative to � to be,x = zq(a� 1)qx = za� 1 :The third set of three examples above have gradients giving values of x andqx satisfying, 137



[qx℄ = [x℄ + rfor some ; r 2 Q, and for z = 1 (where the square brakets denote frationalpart).The �nal three give values of x and qx that are irrationally related and havefrational parts that annot be expressed in the way given above. Thus thereare three examples orresponding to eah of the di�erent types of rational 2:1X-projetion given in the summary diagram in hapter 4.Sine the pattern spae E is at gradient 0:5 we have that the projetion ofa (0; 1) step in the lattie L gives a tile of length 1 and (1; 0) step gives a tileof length 2. So we would expet the X-projetion setups with strips at highergradients to produe tilings with a higher proportion of short tiles, and thisappears to be the ase.
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E at Gradient 0.6S1 S2 1 2 3 4 51p2 12p2 14.404 14.394 15.135 1.994 11p5 512p5 9.162 9.160 10.216 1.998 11� 13� 7.511 7.517 8.594 2.003 11p2 + 12 1p2 48.688 48.688 42.725 1.960 11p5 1p5 � 18 10.392 10.393 11.334 1.993 11� 1� � 110 8.333 8.326 9.320 2.032 13+p51+p5 2+p51+p5 813.787 812.702 499.170 1.000 1910 + 1p2 1 + 12p2 783.714 782.694 472.408 1.000 11� 1� 1� 2� 14.066 14.053 14.837 2.000 11p2 1p3 19.997 20.166 20.192 2.137 11p5 1p7 11.061 11.041 11.910 2.011 11e 1� 9.611 9.609 10.570 2.008 1The seond table shows the proportions of prototiles for a pattern spae atgradient 35 . This means that eah Ti has a shorter tile of length 3 and a longertile of length 5.
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E at Gradient 0.3S1 S2 1 2 3 4 5 6 7 8 9 101p2 12p2 7.89 7.88 19.01 2.00 2.00 2.00 2.00 1.99 2.00 11p5 512p5 5.69 5.69 13.56 2.02 2.01 2.02 2.02 2.01 2.02 11� 13� 4.76 4.76 11.07 1.99 1.99 1.99 1.98 2.00 1.99 11p2 + 12 1p2 15.32 15.33 34.16 2.00 2.00 2.00 2.00 2.00 2.00 11p5 1p5 � 18 6.31 6.31 15.05 2.01 2.00 2.00 2.01 2.00 2.01 11� 1� � 110 5.22 5.22 12.28 2.00 2.00 2.00 2.00 2.00 1.99 13+p51+p5 2+p51+p5 34.33 34.32 62.51 1.99 1.99 1.99 1.99 1.99 1.99 1910 + 1p2 1 + 12p2 35.52 35.52 64.08 2.00 2.01 1.99 2.00 2.00 2.01 11� 1� 1� 2� 7.73 7.72 18.56 1.98 1.99 1.99 1.97 1.98 1.98 11p2 1p3 9.41 9.41 22.12 2.01 2.01 2.00 2.00 2.00 2.00 11p5 1p7 6.57 6.57 15.69 2.00 2.00 2.00 2.00 2.00 2.00 11e 1� 5.87 5.89 13.95 2.00 1.99 2.00 1.98 2.00 1.99 1The third table displays the proportions of prototiles for pattern spae atgradient 310 . In this ase the shorter tile in eah Ti has length 3 with the longertile having length 10.The tables appear to show that generally the tiles with lengths between thoseof the short tile and long tile from the tilings Ti appear twie as often as themaximum length tiles. The tilings T� 3+p51+p5 ; 2+p51+p5 ;0:6�� and T� 910+ 1p2 ;1+ 12p2 ;0:6��appear to be exeptions to this. In these two ases the number of maximumlength tiles in a path of 100000 tiles is relatively small, so we might see adi�erent result with a larger path. However, it may be that there is some sortof relationship between the strips that is ausing this disrepany.Also notieable from the tables is that the tiles of lengths 1 and 2 (so tileswith lengths less than that of the short tile from the tilings Ti) appear in the140



same proportions.The following setion is an attempt at an explanation of these observations.Note that in the later examples the observed proportions of prototiles appearto di�er onsiderably from the proportions we would see from a non-degenerateanonial N : 1 projetion tiling, as disussed in hapter 2. For example, anon-degenerate 10:1 projetion sheme will give tilings with 10 prototiles, butwith the longest of these appearing in the highest proportion and with no twoprototiles appearing in the same proportions, unlike what we seem to be seeingabove.6.1.1 Possible ExplanationIf we think of the X-projetion tiling U as being two standard projetion tilingsoverlaid then thinking about the di�erent ways in whih eah prototile an ariseseems to give a reasonable explanation of the above observations.Firstly, maximal length tiles an only our in U when t2 tiles from both T1and T2 line up, as shown in �gure 6.4.

Figure 6.4: Two maximal length tiles that are lined up.Tiles u 2 U satisfying jt1 j<juj<jt2j an only arise on the overlap of two t2tiles, but, as we an see from �gure 6.5, there are two \di�erent" ways in whihthis overlap an happen. 141



Figure 6.5: Two di�erent ways in whih t2 tiles an overlap to give u tiles.So it would seem reasonable to expet there to be twie as many of this typeof tile in U as there are tiles of length jt2j.Tiles v 2 U satisfying jv j<jt1 j an arise as overlaps of either t2 tiles witheah other, t1 tiles with eah other or on overlaps between t1 and t2 tiles. Ina similar way to the u tiles, all tiles of type v should be expeted to appear inthe same proportions due to arising from the same number of possible overlaps,but these proportions should be higher than the u tiles beause there are moreoverlaps than for the u tiles.Finally, the tiles in U with the same length as t1 an often arise in yet moreways: as the overlap of two t2 tiles, when two t1 tiles line up, or when a t1 tilefrom either tiling is projeted \inside" a t2 tile from the other. For example, ifthe gradient of E is 0.3 then there are 8 di�erent ways that a t1 tile from T1(that has length 3) an be projeted into a t2 tile from T2 (of length 10).142



6.1.2 Expeted ProportionsWe now look at the simplest ase given above where the pattern spae E is atgradient 0.5, giving tilings with two prototiles. We will look at the proportionsof length 1 and 2 tiles that we might expet to �nd in a tiling generated by arational 2:1 X-projetion setup where we are projeting onto a pattern spae atthis gradient.As before, we have two strips S1 and S2 giving orresponding tilings T1 andT2. Sine the pattern spae is at gradient 0.5 eah of these tilings also has twoprototiles of lengths 1p5 and 2p5 (whih, for simpliity, we will all lengths 1 and2). The two tilings T1 and T2 are ombinatorially just standard 2:1 projetiontilings. If we have strip Si at gradient gi then by proposition 2.5 we know thata anonial 2:1 projetion tiling with gi less than 1 has,Proportion of Short TilesProportion of Long Tiles = giand if gi is greater than 1 then,Proportion of Short TilesProportion of Long Tiles = 1gi :However, if gi is less than one then horizontal steps between lattie pointsin Si orrespond to long tiles, and if gi is greater than 1 then the long tiles arisefrom the projetions of vertial steps. Thus in either ase we have gi vertialsteps for eah horizontal step.When we take the projetion to be onto a pattern spae at gradient 0.5 weget that horizontal steps give long tiles, regardless of the gradient of the stripwe are projeting from. Therefore eah Ti will have gi length 1 tiles for eahlength 2 tile, and thus in tiling Ti we have,
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proportion of length 2 tiles = 1gi + 1proportion of length 1 tiles = gigi + 1 :Now, to work out the proportions of 1-tiles and 2-tiles in the ombined tilingwe �rst look at the proportions of points that are overed in eah of the tilingsTi. The tiles in these tilings have lengths 1 and 2 with both tiles overing thepoint on their left but the 2-tile also leaving another point not overed.So the proportion of points that are not overed in eah of the tilings Ti is:proportion of 2-tiles2(proportion of 2-tiles) + proportion of 1-tiles :For tiling Ti this is equal to, 1gi+12gi+1 + gigi+1 = 1gi + 2 :Now, unovered points in the ombined tiling only arise from having unov-ered points in both tilings Ti lining up. Thus we might expet the proportionof unovered points in the ombined tiling to be,� 1g1 + 2�� 1g2 + 2� :These unovered points in the ombined tiling orrespond to the 2-tiles ofourse, but every 2-tile not only has an unovered point but also a overed pointon its left edge. Thus the expeted proportion of all points that are ontainedin 2-tiles (on the left side or in the middle) is:2� 1g1 + 2�� 1g2 + 2� :From this we get that the expeted proportion of points in 1-tiles (that is,on the left side of 1-tiles) is: 144



1� 2� 1g1 + 2�� 1g2 + 2� :Therefore the expeted proportions of eah tile are given by,proportion of 2-tiles = proportion of points at start of 2-tilesproportion of points at start of any tile= � 1g1+2�� 1g2+2�1� � 1g1+2�� 1g2+2�= 1(g1 + 2)(g2 + 2)� 1proportion of 1-tiles = (g1 + 2)(g2 + 2)� 2(g1 + 2)(g2 + 2)� 1 :So the expeted relative proportion of 1-tiles is equal to (g1+2)(g2+2)� 2.We will now look at how losely the predited values resemble the observedproportions from the previous examples. The table below shows the preditedproportions of 1-tiles relative to 2-tiles and the values observed in a path of100000 tiles of various 2:1 X-projetion tilings.
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E at Gradient 0.5S1 Gradient S2 Gradient 1 Tiles Observed 1 Tiles Predited1p2 12p2 9.199 9.7441p5 512p5 6.867 6.8771� 13� 5.673 5.8491p2 + 12 1p2 21.022 22.3871p5 1p5 � 18 7.593 7.5961� 1� � 110 6.331 6.3443+p51+p5 2+p51+p5 63.433 92.721910 + 1p2 1 + 12p2 96.561 96.4311� 1� 1� 2� 8.922 9.5871p2 1p3 11.601 11.5921p5 1p7 7.925 7.9261e 1� 7.106 7.108As you an see, some of the observed values are very lose to the preditedvalues, whereas some display a large disrepany.Several of these tilings have a smaller proportion of 1-tiles than we mightexpet, showing that the 2-tiles in the two omponent tilings Ti are lining upmore often than we might expet by hane. However, these pathes are ofourse from a spei� tiling with strips at the orresponding gradients, i.e., thetiling produed by the given setup, where the intersetion point of the lowerboundaries of the two strips is plaed at the origin. If the intersetion point wasshifted so as to alter the projetions of the points from strip S1 along by onestep relative to the projetions of the points from S2 then all the 2-tiles in thepath would beome 1-tiles.The following example uses tilings produed by the projetion of points146



from strips at rational gradients, and therefore gives periodi tilings, but mayillustrate what is going on in the ase of rational 2:1 X-projetions.Example 6.2. Say we have strips S1 at gradient 12 and S2 at gradient 17 relativeto the integer lattie L, and we projet onto a line at gradient 12 .Both strips are at rational gradients and thus produe periodi tilings. There-fore the ombined tiling will be periodi, so we an work out the proportions ofthe two prototiles by simply drawing the repeating part of the tiling.If the intersetion point of the two strips is positioned so that a length 1 tilein T2 lines up with a length 1 tile in T1 then we will have the tiling shown in�gure 6.6.
Figure 6.6: Position 1 for T1 and T2.The repeating path in this tiling is 22111111221 as marked in the diagram,so we an immediately say that the proportion of 1-tiles relative to 2-tiles is 74(or 1.75).However, if the position of the intersetion point of S1 and S2 was alteredso that T1 and T2 lined up in a di�erent way we ould end up with a di�erenttiling, as shown in �gure 6.7.Here the projetion of lattie points from strips at the same gradients asbefore onto the same pattern spae has produed a tiling with repeating path1111122111111, and therefore with the proportion of 1-tiles relative to 2-tilesbeing equal to 112 (or 5.5).There are 3 other ways in whih T1 and T2 an line up, these ways giv-147



Figure 6.7: Position 2 for T1 and T2.ing ombined tilings with repeating pathes 121111112211, 111221111112 and1111111221111 (this last one being the same as the seond one).Over all these pathes we get 1-tiles appearing 47 times and 2-tiles appearing14 times. The expeted proportion of 1-tiles relative to 2-tiles for this tiling is,(g1 + 2)(g2 + 2)� 2 = �52��157 �� 2 = 4714 :This example suggests that our expeted value is perhaps orret when wetalk about all possible tilings that an be generated by a ertain setup, lookingat all the di�erent positions at whih the intersetion point an be plaed.The �nal three tilings in the table above have sets of translate points that aredense in the unit square (proposition 4.23), so any positioning of the intersetionpoint will be arbitrarily lose to a position that gives a translate of the tiling.This may explain why the proportion of 1-tiles observed in the pathes of thesetilings so losely mathes the expeted values.6.2 Irrational 2:1 X-Projetion ExamplesIn this setion we will look at a few examples of tilings generated by irrational2:1 X-Projetion shemes. The irrational 2:1 X-projetion sheme was �rstde�ned in hapter 3. The setup di�ers from the rational 2:1 X-projetion setupin that the projetion is onto a pattern spae at irrational gradient relative to148



the lattie.As was proved in hapter 3, this setup gives tilings with an in�nite number ofprototiles. We also proved that the prototile with length equal to the shorter ofthe two prototiles ti appearing in the onstituent tilings Ti is the only prototilethat an appear throughout the ombined tiling.Example 6.3. For the �rst example we have strip S1 at gradient 1p2 , S2 atgradient 1p3 and pattern spae E at gradient 1p5 (here all gradients are relativeto the integer lattie L). A diagram of a large path of this tiling is shown in�gure 6.8.

Figure 6.8: Diagram of a path of tiling T� 1p2 ; 1p3 ; 1p5�.The path shown here is onsiderably larger than the pathes of rational 2:1X-projetions seen earlier in the hapter. This is beause of the muh highernumber of prototiles that we get in pathes of irrational 2:1 X-projetion tilings,meaning that a diagram of a path of 10000 tiles, like the one shown here, willstill display some struture and not merely look like several horizontal lines.There is what appears to be a horizontal line in this diagram at a height ofslightly more than 0.4. This is due to the large number of prototiles of lengthequal to 1p6 in this tiling, whih is the length of the shorter of the two prototiles149



from the onstituent tilings Ti. As explained before, tiles of this length anappear throughout the tiling.Example 6.4. We now look at a seond example, where the two strips S1 andS2 are at gradients 2p5 and p5 respetively, with the pattern spae E at gradient1p5 as before (see �gure ??).

Figure 6.9: Diagram of a path of tiling T�2p5;p5; 1p5�.There are signi�ant gaps in this diagram, indiating that there are no tileswith those partiular lengths within the path. The gaps orrespond to tiles withlengths greater than that of the shorter prototile from the tilings Ti. Tiles withthese lengths an only arise on the overlap of longer prototiles in eah of theonstituent tilings, so the gaps suggest that there are ranges of ways in whihthese tiles annot overlap in this tiling.
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It may be that the situation hanges further along the tiling, but these gapsremain on a path of 300000 tiles, as shown by �gure 6.10.

Figure 6.10: Diagram of a path of tiling T�2p5;p5; 1p5�.

151



Figure 6.11 shows a path of the tiling with S1 and S2 at the same gradientsas before, but with E altered to be at gradient �7 . Again, we have a tile of lengthslightly greater than 0.4 appearing throughout the path, though the atual lengthhas altered slightly due to the alteration to the gradient of E (this time the lengthis �p�2+49).

Figure 6.11: Diagram of a path of tiling T(2p5;p5;�7 ).The diagram seems to show an \osillating" pattern to the lengths of tilesabove the line. Again, it is possible that the previous tiling is displaying some-thing similar but on a muh larger sale.
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7 ConlusionIn this doument we looked at 2:1 non-parallel projetions shemes. Three dif-ferent types of these were de�ned in hapter 3, namely rational 2:1 X-projetionshemes, irrational 2:1 X-projetion shemes and a type of non-parallel proje-tion sheme where the two strips have rational gradients but the projetion isonto a line at irrational gradient.In the same hapter we saw that this �nal type of non-parallel projetionsheme produes tilings with in�nitely many prototiles but for any hosen pathof tiles, P , in suh a tiling there will be pathes that are "-lose to P (de�nition3.10) throughout the tiling showing that suh tilings have a property that issimilar to repetitivity.Tilings generated by irrational 2:1 X-projetion shemes were also seen tohave in�nitely many prototiles, and several examples of this type of tiling werelooked at in hapter 6, inluding one that appeared to have large \gaps" in theset of prototile lengths observed.The bulk of this doument was onerned with the examination of tilingsgenerated by rational 2:1 X-projetion shemes. In ontrast to the other twotypes of non-parallel projetion tilings featured these tilings were seen to haveonly a �nite number of prototiles, with an upper bound for this number om-puted on hapter 3. In the same hapter a ertain lass of this type of tilingwas shown to be repetitive.In hapter 4 we looked at the points in the fundamental domain of ourlattie L that orrespond to translates of a tiling generated by a rational 2:1 X-projetion sheme. The patterns of these points were found to di�er dependingon the relationship between the gradients of the two strips relative to the lattie�, a sublattie of L that depends on the gradient of the pattern spae E. Thesediagrams were seen to ome in four distint types, with the �rst three all havingtranslate points appearing as dense subsets of a �nite number of lines in the153



fundamental domain of L and the �nal type having translate points forming adense subset of the fundamental domain.At the end of hapter 4 we looked in greater detail at the diagrams that areprodued by rational 2:1 X-projetion tilings, partiularly in the ase where thegradients of the two strips are rationally related relative to �.In hapter 5 we examined the tiling spaes assoiated to rational 2:1 X-projetion tilings. We started by looking at the tiling spaes of anonial 2:1projetion tilings, then proeeded to the intermediate step of one-strip non-parallel 2:1 projetion tilings, whih we proved to have tiling spaes that arehomeomorphi to those of anonial 2:1 projetion tilings. Then we moved onto examine the tiling spaes of tilings generated by rational 2:1 X-projetionshemes, partiularly looking at the multiple points (or lines) that arise in thevarious di�erent types. Finally we revisited the problem of repetitivity of thesetilings, showing that all tilings generated by rational 2:1X-projetions are repet-itive.In hapter 6 we presented some examples of rational 2:1 X-projetion tilingsand looked at the proportions of prototiles in large pathes of these examples.We gave a possible explanation of the observed values and noted that the pro-portions we predited the prototiles to appear in most losely mathed theobserved data in the ase where the translate points of the tiling are dense inthe fundamental domain of L.There are also many questions that were not answered (or not fully an-swered). We saw that irrational 2:1 X-projetion tilings have in�nitely manyprototiles and ould not be repetitive, but the question of whether they ouldbe "-repetitive (as with the non-parallel projetions where we had the strips atrational gradients) remains unanswered. We also saw \gaps" in one of the exam-ple diagrams for this type of tiling, suggesting that there are ranges of lengthsof tiles that do not appear in the tiling, but it is not lear whether these gapspersist throughout. If some examples really do have these \gaps" throughout,154



then what are the onditions required to give suh examples?In the ase of rational 2:1X-projetions more work ould be done on desrib-ing the tiling spaes, and though we proved aperiodiity in some ases there wasno general proof of this. In addition, the question of whether any of these tilingsmight arise as substitutions was not addressed. Finally, one ould investigatethe tilings produed by higher dimensional versions of this setup.
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