
2019

Dr. Nick Papoulias http://parsenet.info

Veriamos Project
SSD I/O via a DSL @ Ring 0

PhaistOS DSL

Veriamos Project
SSD I/O via a DSL @ Ring 0

Motivation ??

HW / SW Mismatch
A hardware innovation invalidates the

assumptions of the software stack (kernel
or other) resulting in sub-optimal abstractions

Need for new abstractions and/or
domain specific fine-tuning

Mitigate:

Veriamos Project
SSD I/O via a DSL @ Ring 0

Motivation ??

HW / SW Mismatch

Example:

Random I/O
is expensive

Random I/O
is cheap

Can handle
thousands IOPS

Can deliver
tens of millions IOPS

Veriamos Project
SSD I/O via a DSL @ Ring 0

Motivation ??

HW / SW Mismatch

(CFQ, BFQ, Kyber)*,
Deadline, Noop ..

2014

MQ-Deadline, Noop ..
* mq-equiv still used for non-SSD

Solved IOPS bottleneck, but MQ has less scheduling
options main trade-off: throughput / latency

Veriamos Project
SSD I/O via a DSL @ Ring 0

Rel. Work

HW / SW Mismatch
See the CLyDE Project: Univ. Copenhaghen + Inria  

 https://clydeitu.wordpress.com/

Veriamos Project
SSD I/O via a DSL @ Ring 0

Problem ??

HW / SW Mismatch

Institution
Public/Private

• Needs to optimize I/O

• Does not have kernel devs on staff

• Additional risk (faults, security) of  
ad-hoc solution not acceptable

Accept unpredictable trade-off of MQ: throughput / latency,  
write your own scheduler or LightNVM solution

Brief Reminder: Deadline
• INIT
• INSERT
• HAS WORK

Events

I/O
R
W

W
R

DL lists, used as
queues: Sorted
by Arrival Time

+ RW / Deadline

RB Trees, used as
lists: Sorted /

Merged by sector

Deadl. logic

Elev. logic

...
Dispatch DL

list

• MERGE
• DISPATCH
• REMOVE
• EXIT

queuelist
fifo_time

 fifo_expire[2]
 fifo_batch

 writes_starved
 batching

 starved

Veriamos Project
SSD I/O via a DSL @ Ring 0

Architecture

PhaistOS DSL

Veriamos Project
SSD I/O via a DSL @ Ring 0

Architecture

PhaistOS DSL

Veriamos Project
SSD I/O via a DSL @ Ring 0

Architecture

PhaistOS DSL

ORIGINAL
Algo in Linux Kernel

RUNTIME (Abstract Machine for
similar class of Algorithms)

DSL

WP1

WP3

Decomposed Example
of Deadline

Generated Example
of Deadline

Type-Checker

Static-Analysis

Code-Generation

deadline.phaistos• INIT
• INSERT
• HAS WORK

Events

• MERGE
• DISPATCH
• REMOVE
• EXIT

RUNTIME (Abstract Machine for
similar class of Algorithms)

DSL

WP3

Generated Example
of Deadline

Type-Checker

Static-Analysis

Code-Generation

deadline.phaistoslist fifo_list[2]

list fifo_list[2]

• init(list)
• append(list,request)
• remove_from_current_list 

(request)
• move_to(request,request)
• next_request(list)
• is_empty(list)
• is_empty_careful(list)

List API

• init(list)
• append(list,request)
• remove_from_current_list 

(request)
• move_to(request,request)
• next_request(list)
• is_empty(list)
• is_empty_careful(list)

List API used in
Events+Helpers:

list fifo_list[2]

• init(list)
• append(list,request)
• remove_from_current_list  

(request)
• move_to(request,request)
• next_request(list)
• is_empty(list)
• is_empty_careful(list)

List API used in
Events+Helpers:

• INIT
• INSERT
• HAS WORK

Events
• MERGE
• DISPATCH
• REMOVE
• EXIT

DSL Static Analysis Goal:
Consistency of lists between API calls given the semantics of events

Our framework computes execution
paths and observes execution

events for:

NOTE

• list_id
• list_id [n]
• list_id [*]
• *

Reasoning over the
ordered events with a
small query language

given a specific execution
entry point

• execution: path list
• path: event list
• event: (list, op, in_loop)

• init(list)
• append(list,request)
• remove_from_current_list  

(request)
• move_to(request,request)
• next_request(list)
• is_empty(list)
• is_empty_careful(list)

List API used in
Events+Helpers:

• INIT
• INSERT
• HAS WORK

Events
• MERGE
• DISPATCH
• REMOVE
• EXIT

DSL Static Analysis Goal:
Consistency of lists between API calls given the semantics of events INIT

∀ l = list defined in a policy
∀ p = execution path starting

from event

Every list should be initialized
exactly once, outside of a loop.

• init(list)
• append(list,request)
• remove_from_current_list  

(request)
• move_to(request,request)
• next_request(list)
• is_empty(list)
• is_empty_careful(list)

List API used in
Events+Helpers:

• INIT
• INSERT
• HAS WORK

Events
• MERGE
• DISPATCH
• REMOVE
• EXIT

DSL Static Analysis Goal:
Consistency of lists between API calls given the semantics of events INSERT

∀ l = list defined in a policy
∀ p = execution path starting

from event

Every list should be able to be
appended exactly once and

outside of a loop. Multiple appends
of diff. lists per path are not allowed.

• init(list)
• append(list,request)
• remove_from_current_list  

(request)
• move_to(request,request)
• next_request(list)
• is_empty(list)
• is_empty_careful(list)

List API used in
Events+Helpers:

• INIT
• INSERT
• HAS WORK

Events
• MERGE
• DISPATCH
• REMOVE
• EXIT

DSL Static Analysis Goal:
Consistency of lists between API calls given the semantics of events HAS WORK

∀ l = list defined in a policy
∀ p = execution path starting

from event

Every list should be able to
be checked at least once.

• init(list)
• append(list,request)
• remove_from_current_list  

(request)
• move_to(request,request)
• next_request(list)
• is_empty(list)
• is_empty_careful(list)

List API used in
Events+Helpers:

• INIT
• INSERT
• HAS WORK

Events
• MERGE
• DISPATCH
• REMOVE
• EXIT

DSL Static Analysis Goal:
Consistency of lists between API calls given the semantics of events MERGE

∀ l = list defined in a policy
∀ p = execution path starting

from event

Every list should be able to
merge requests exactly once and
outside of a loop. Multiple merges

of diff. lists are not allowed.

• init(list)
• append(list,request)
• remove_from_current_list  

(request)
• move_to(request,request)
• next_request(list)
• is_empty(list)
• is_empty_careful(list)

List API used in
Events+Helpers:

• INIT
• INSERT
• HAS WORK

Events
• MERGE
• DISPATCH
• REMOVE
• EXIT

DSL Static Analysis Goal:
Consistency of lists between API calls given the semantics of events DISPATCH

∀ l = list defined in a policy
∀ p = execution path starting

from event

Every list should be able to
handle requests at least once and
outside of a loop. Multiple requests

from diff. lists are not allowed.

• init(list)
• append(list,request)
• remove_from_current_list  

(request)
• move_to(request,request)
• next_request(list)
• is_empty(list)
• is_empty_careful(list)

List API used in
Events+Helpers:

• INIT
• INSERT
• HAS WORK

Events
• MERGE
• DISPATCH
• REMOVE
• EXIT

DSL Static Analysis Goal:
Consistency of lists between API calls given the semantics of events REMOVE

∀ l = list defined in a policy
∀ p = execution path starting

from event

Every list should be able to
remove requests exactly once and
outside of a loop. Multiple requests

from diff. lists are not allowed.

• init(list)
• append(list,request)
• remove_from_current_list  

(request)
• move_to(request,request)
• next_request(list)
• is_empty(list)
• is_empty_careful(list)

List API used in
Events+Helpers:

• INIT
• INSERT
• HAS WORK

Events
• MERGE
• DISPATCH
• REMOVE
• EXIT

DSL Static Analysis Goal:
Consistency of lists between API calls given the semantics of events EXIT

∀ l = list defined in a policy
∀ p = execution path starting

from event

Every list should be able to
be checked at least once

upon exit.

Veriamos Project
SSD I/O via a DSL @ Ring 0

PhaistOS DSL

2019

Dr. Nick Papoulias http://parsenet.info

