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Abstract 

 

Practical and financial constraints associated with traditional field-based mapping are 

often responsible for the production of coarse-scale geological maps that lack detail and 

have inaccurately defined lithological contacts. Although remote sensing offers 

potential solutions to these constraints, conventional use of remotely sensed data is only 

effective when applied to barren terrain because just small amounts of vegetation cover 

can obscure or mask the underlying geological materials and structures. In this thesis, 

novel algorithms that utilise airborne Light Detection And Ranging (LiDAR) data and 

airborne multispectral imagery are applied to high-resolution geological mapping of 

vegetated ophiolitic rocks and sedimentary cover in the northern Troodos Range 

(Cyprus) with the aim of demonstrating their potential application to any geological 

setting. These novel algorithms involve quantification of geobotanical and 

topographical characteristics that are generally distinct for different lithological units, 

followed by automated image classification based upon these characteristics. Whilst the 

algorithms that individually exploit the geobotanical associations and the correlation 

between lithology and topography are capable of generating maps that are more detailed 

and have more accurately defined contacts than the existing geological maps of the 

study area, an integrated approach was found to significantly enhance the lithological 

mapping performance. Moreover, despite widespread vegetation cover, it is also shown 

that airborne LiDAR data and airborne multispectral imagery can be utilised to extract 

detailed and accurate structural information that is consistent with field-based data. 

Overall, the novel application of airborne spectral imagery and airborne LiDAR data 

has significant potential to aid accurate and high-resolution 1:5000-scale geological 

mapping over large areas of vegetated or non-vegetated terrain. 
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1.1 Background and rationale 

Geological maps primarily portray information about the surface materials and 

crustal structures within a given area. More often than not, geological maps are 

produced at scales of 1:25,000 or smaller and therefore lack the accuracy and detail 

required for many developmental needs of modern society. The lack of larger scale 

maps can be ultimately attributed to the way in which geological information is 

gathered. Traditionally, this information is acquired through field-based mapping 

surveys, by employing strategies such as following azimuthal traverses, cross-strike 

transects, stream sections, ridge lines, lithological contacts, or by moving between 

individual isolated outcrops (Barnes & Lisle, 2004). However, this approach can be 

time-consuming, costly and incomplete over large areas and where terrain is 

geologically complex or poorly accessible (Gad & Kusky, 2007; Grunsky et al., 2009; 

Rogge et al., 2009). As a consequence of these practical and financial constraints, 

geological maps are typically produced using limited field observations, which results 

in the production of generalised coarse-scale geological maps that lack detail and have 

inaccurately defined lithological contacts (Roy et al., 2009). 

Remote sensing products, such as aerial photographs and spectral satellite 

imagery, offer potential solutions to some of the limitations of field-based mapping 

because the data can provide more continuous and detailed information over large areas, 

thus enabling even the most inaccessible terrain to be mapped efficiently and cost-

effectively. Detailed geological interpretation of aerial photographs has long been used 

to complement field-based mapping. However, the visual discrimination and mapping 

of surface materials based on image attributes such as tone, texture and drainage 

patterns can be subjective, difficult and time-consuming (Crouvi et al., 2006). 

Moreover, whilst aerial photographs offer a perspective that is useful for mapping more 
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regional geological structures, they can be of limited use in areas with dense vegetation 

cover (Cunningham et al., 2006). 

The availability of spectral satellite imagery resulted in a paradigm shift 

regarding the application of remote sensing to geological mapping. Unlike photographs, 

multispectral (and more recently hyperspectral) sensors predominantly measure surface 

reflected solar radiation in discrete wavelength intervals (or wavebands) ranging from 

the visible to the shortwave infrared part of the electromagnetic spectrum. Lithologies 

can be discriminated and mapped using spectral satellite imagery because the 

wavebands coincide with the same wavelength region for which the reflectance spectra 

of rocks exhibit unique and diagnostic spectral information (Hunt, 1977). Accordingly, 

two basic approaches to mapping lithologies using spectral remote sensing data have 

emerged. The first approach involves generating an image within which lithological 

contacts can be visually delineated using photogeological interpretation techniques 

(Rothery, 1987). Such images are typically generated by displaying combinations of the 

waveband images or enhanced versions of these (e.g., bands ratios, principal component 

bands) through the red, green and blue channels of a computer monitor (e.g., Sultan et 

al., 1987; Gad & Kusky, 2007; Amer et al., 2010). This approach is somewhat 

subjective since it relies on manual interpretation. More efficient, more objective and 

more detailed lithological mapping requires automated computer-based classification 

procedures to divide an image into distinct spectral classes, each of which represents a 

different lithological unit (Rothery, 1987). If spectral data alone do not enable adequate 

lithological discrimination, ancillary data (e.g., topography, radar, texture) can be 

incorporated into classification procedures to augment the accuracy of the derived map 

(Hutchinson, 1982; Mather et al., 1998; Chica-Olmo & Abarca-Hernández, 2000; 

Ricchetti, 2000; Dong & Leblon, 2004). The utility of spectral satellite remote sensing 
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for geological mapping also extends to structural mapping since features such as faults 

may be expressed as lineaments in the imagery, which are defined by sharp changes in 

brightness or reflectance (Koike et al., 1998). Again, these can be extracted manually 

through visual interpretation or by employing automated mapping procedures. 

Although spectral imagery acquired by classic spaceborne sensors such as 

Landsat TM and ASTER has been greatly exploited for geological mapping purposes, 

the spatial resolution of the imagery (ca. 15–30 m) restricts the ability to generate 

accurate and high-resolution geological maps. Nevertheless, this issue can be easily 

overcome by using aircraft-mounted multi- or hyperspectral sensors, which provide 

imagery with a spatial resolution of up to an order of magnitude greater than that 

acquired by satellites. Vegetation cover, however, poses a more significant problem to 

spectral mapping approaches because as little as 10% vegetation cover (e.g., lichen, 

grass, shrubs) can obscure or mask the spectra of underlying geological substrates 

(Siegal & Goetz, 1977; Ager & Milton, 1987; Murphy & Wadge, 1994). Thus, the 

utility of spectral remote sensing data is widely considered to be critically limited to 

only the most barren terrain (Fraser & Green, 1987). However, where the effects of 

vegetation prevail, indirect spectral discrimination of lithologies may be possible if 

geobotanical relationships with the underlying substrates are realised (Paradella et al., 

1997; Leverington, 2010). Alternatively, the obscuring effects of vegetation may 

potentially be overcome through use of the active remote sensing technique of airborne 

Light Detection And Raging (LiDAR). With the capability of acquiring accurate and 

high-resolution (ca. 1–4 m) topographic data even through forest cover (Kraus & 

Pfeifer, 1998), airborne LiDAR is now established as an important tool for mapping the 

surface traces of faults in either vegetated or non-vegetated terrain (e.g., Harding & 

Berghoff, 2000; Haugerud et al., 2003; Prentice et al., 2003; Cunningham et al., 2006; 



Chapter 1: Introduction 

 

 

5 

 

Arrowsmith & Zielke, 2009). A few studies have also suggested that it may be possible 

to use airborne LiDAR to discriminate lithologies through topographic differences 

(Wallace, 2005; Wallace et al., 2006; Webster et al., 2006a, 2006b). However, the full 

potential of this approach to lithological mapping is yet to be fully realised.  

 

1.2 Aims and objectives 

The main intention of this thesis is to try to demonstrate that the application of 

remote sensing to geological mapping need not be limited to aiding the generation of 

coarse-scale maps, especially those for only the most barren regions. Rather, the aim is 

to specifically explore the novel application of airborne LiDAR data and airborne 

multispectral imagery for high-resolution geological mapping using the vegetated 

ophiolitic rocks and sedimentary cover in the northern Troodos Range, Cyprus, as a 

case study. With a focus on developing and deploying algorithms for rapid high-

resolution geological mapping, a number of objectives are identified in order to achieve 

the overall aim. These are to: 

(1) determine the capability of conventional direct spectral discrimination and 

mapping of lithologies in vegetated terrain using airborne multispectral 

imagery; 

(2) assess whether vegetative cover can be exploited to enable indirect spectral 

discrimination and mapping of lithologies through geobotanical associations;  

(3) evaluate efficacy of airborne LiDAR for overcoming the potential obscuring 

effects of vegetation to enable the discrimination and mapping of lithologies; 
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(4) investigate whether the integration of airborne multispectral imagery and 

airborne LiDAR topographic data can further enhance the lithological mapping 

capabilities;  

(5)  examine the utility of airborne LiDAR data and airborne multispectral imagery 

for detailed structural mapping. 

 

1.3 Thesis outline 

 This thesis comprises seven chapters, subsequent to this introduction. Chapter 2 

provides a geological and physiographical overview of both the island of Cyprus and 

the smaller case study area on which this project is focused. A description of the 

mineralogical compositions, topographic characteristics and associated vegetation types 

is provided for each lithological unit found within the study area. In addition, this 

chapter includes a structural overview of the investigated region. 

The datasets utilised in this study are introduced in Chapter 3, with a particular 

emphasis on discussing the concepts of airborne LiDAR and airborne multispectral 

imaging, their data specifications and the pre-processing steps applied to these datasets 

in order to prepare them for subsequent analysis. Auxiliary datasets used in algorithm 

development, and the interpretation and validation of their mapping outputs are also 

summarised. 

 Previous studies have shown that vegetation cover can critically affect the ability 

to directly map lithologies through recognition of their reflectance spectra. Chapter 4 

assesses whether this is the case for the study area by employing a conventional spectral 

mapping approach. This approach involves matching representative reflectance spectra 

for the lithological units to the airborne multispectral image pixel spectra using 

automated classification algorithms. 
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Chapter 5 investigates the use of airborne LiDAR as a potential solution for 

overcoming the obscuring effects of vegetation cover, which limits the utility of 

conventional lithological mapping approaches to only a handful of the most barren 

areas. An algorithm is presented, which utilises airborne LiDAR-derived topographic 

data to discriminate and map lithological units based on the recognition of differences in 

the topographic characteristics between units. 

The ability to exploit vegetation cover for the indirect spectral discrimination 

and mapping of lithologies through geobotanical associations is assessed in Chapter 6. 

A series of algorithms are presented which use geobotanical spectral characteristics 

extracted from the airborne multispectral imagery to map the lithologies. Furthermore, 

this chapter also presents algorithms for integrating airborne multispectral imagery and 

airborne LiDAR data to evaluate whether the geobotanical associations and 

topographical correlation can be simultaneously exploited to increase lithological 

discrimination and enhance the mapping performance. 

Alongside lithology, crustal structures are another important constituent of 

geological maps. Accordingly, the utility of airborne LiDAR data and airborne 

multispectral imagery for detailed structural mapping is investigated in Chapter 7.  

Finally, Chapter 8 presents a synthesis of the main findings of the thesis 

research and discusses the efficacy of airborne LiDAR data and airborne multispectral 

imagery for high-resolution geological mapping of vegetated ophiolitic rocks and 

sedimentary cover in the Troodos Range, Cyprus. Recommendations and unresolved 

issues arising from the research are also discussed. 

Chapters 4–7 of this thesis are written as discrete studies. This is particularly 

evident for Chapter 5 and 6 because they comprise the published articles by Grebby et 

al. (2010) and Grebby et al. (2011), respectively. Inevitably, there is some degree of 
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repetition associated with these two chapters, particularly with regard to some of the 

content of the chapters relating to the study area (Chapter 2) and datasets (Chapter 3). 

Previous work undertaken by the author in collaboration with Dr Dickson 

Cunningham and Dr Kevin Tansey helped to recognise airborne LiDAR as a potential 

tool for overcoming the obscuring effects that dense vegetation can have on geological 

mapping, specifically fault mapping. This thesis represents a significant advance on this 

earlier work and involves adopting a multi-disciplined approach to explore not only the 

efficacy of airborne LiDAR to other aspects of geological mapping (i.e., lithological 

mapping), but also that of high-resolution spectral imagery. The research undertaken 

connects directly with research activities of the Leicester LiDAR Research Unit, of 

which the author and three supervisors are members. Moreover, this thesis represents a 

significant contribution towards the British Geological Survey‘s goal of developing 

accurate and high-resolution geological mapping techniques that are both cost- and 

time-effective. 
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2.1 Cyprus 

2.1.1 General overview 

The island country of Cyprus (Fig. 2.1) is located in the northeastern corner of 

the Mediterranean Sea — 75 km south of Turkey, 105 km west of Syria, 380 km north 

of Egypt and 380 km east of Rhodes — at approximately 33° E; 35° N. It covers an area 

of approximately 9200 km
2
, making it the third largest island in the Mediterranean Sea 

after the Italian islands of Sicily and Sardinia. Cyprus has a typical Mediterranean 

climate, characterised by a hot (or warm at higher altitudes) dry season from mid-May 

to mid-September and a mild rainy season from November to mid-March. Its close 

proximity to the southwest Asian land-mass makes it one of the hottest parts of the 

Mediterranean during summer. The average annual precipitation for the island is 

approximately 500 mm, with annual totals ranging from 300 mm for inland plains to 

1100 mm for the highest altitudes of the Troodos Range (Pashiardis & Michaelides, 

2008). Cyprus receives an average of 11.5 hours of bright sunshine per day (≤ 11 hours 

per day in the mountains) during the summer months, reducing to 5.5 hours per day (~ 4 

hours per day in the mountains) in December and January (Koroneos et al., 2005).  

Situated in a tectonically complex zone, the formation of Cyprus is associated 

with the subduction of the African plate beneath the Eurasian plate during the closure of 

the Tethys Ocean (Gass & Masson-Smith, 1963; Robertson & Xenophontos, 1997). The 

present form of the island is the result of a complex combination of geological 

processes including sea-floor spreading, marine sedimentation, thrusting, uplifting and 

subaerial erosion. Structurally and topographically, Cyprus is divisible into four 

domains that form a series of roughly parallel east–west trending belts (Fig. 2.2). From 

north-to-south, these are: the Kyrenia (or Pentadaktylos) Range, the Mesaoria Plain, 

Troodos ophiolite complex and the Mamonia Complex. 
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2.1.2 Geological domains 

2.1.2.1 Kyrenia Range 

The Kyrenia or Pentadaktylos Range is a rugged, steep-sided mountain range 

that varies in altitude between 800 m and 1024 m as it curves along the northern 

coastline of the island. To the north of the range lies a thin (≤ 5 km) strip of coastal 

plain and to the south, the Mesaoria Plain. The Kyrenia Range, which is considered to 

form part of the southernmost arc of the Tauro-Dinaric Alps (Gass & Masson-Smith, 

1963), was formed through the southward thrusting of allochthonous slices of 

recrystallised limestones over younger autochthonous marine sediments of Cyprus, 

followed by continual uplift (Adamides, 1984; Robertson & Xenophontos, 1997). The 

allochthonous rocks of Triassic to Cretaceous age consist of thinly-bedded micaceous 

marbles of the Dhikomo Formation, massive to thickly bedded dolomitic limestones of 

Sykhari Formation and massive to thickly bedded marbles of the Hilarion Formation 

(Constantinou, 1972). Chalks and marls — with intercalated lavas — of the Lapithos 

Formation and sandstones, siltstones and marls of the Kythrea Formation comprise the 

primary autochthonous sedimentary units of the Kyrenia Range.  

 

2.1.2.2 Mesaoria Plain 

 The Mesaoria Plain is the area of flat low-lying land situated between the 

Kyrenia Range to the north and the Troodos Range to the south, and extending from 

Morphou Bay in the west of the island to Famagusta Bay in the east. A series of 

autochthonous sediments of Upper Miocene to Recent age constitutes the Mesaoria 

Plain. These sediments include radiolarian marls, chalks, cherts, calcareous marls and 

gypsum belonging mostly to the Athalassa and Nicosia Formations, overlain by 

Pleistocene to Holocene conglomerates, sands, silts and gravels derived through rapid 
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erosion of the Troodos ophiolite following its uplift (Adamides, 1984; Poole & 

Robertson, 1991). 

 

Fig. 2.2. Generalised map of the four geological domains of Cyprus. Digital data was provided 

by the Cyprus Geological Survey Department. 

 

2.1.2.3 Troodos ophiolite complex 

 Cyprus is dominated both topographically and geologically by the Troodos 

Range or Massif, which is situated in the centre of the island and exhibits a dome-like 

structure centred on Mt. Olympus (1952 m). The range consists of the Troodos ophiolite 

complex (Fig. 2.3), which is an uplifted slice of oceanic crust and lithospheric mantle 

that was created through sea-floor spreading (Gass, 1968; Moores & Vine, 1971). The 

ophiolite stratigraphy includes a mantle sequence comprising dunites, harzburgites and 

a serpentinite diapir exposed at the highest elevations. This mantle sequence is 

stratigraphically overlain by a largely gabbroic plutonic complex, a sheeted dyke 

complex, extrusive lavas and oceanic sediments at decreasing elevations along the 

slopes of the range (Varga & Moores, 1985). The topographic inversion of the ophiolite 

stratigraphy has been attributed to a combination of uplift and erosion (Searle, 1972); 
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the uplift possibly due to the protrusion of the serpentinite diapir (Gass & Masson-

Smith, 1963; Poole & Robertson, 1991). 

 

Fig. 2.3. Stratigraphy of the Troodos ophiolite complex and associated sedimentary cover 

sequences (after Adamides, 1984).  

 

The extrusive lavas of the ophiolite are divided into three separate units: the 

Basal Group, Upper Pillow Lavas and Lower Pillow Lavas (Robertson & Xenophontos, 

1997). The Basal Group represents a transition from the underlying sheeted dyke 

complex (100% dykes) to the overlying pillow lavas. Consisting of both dykes and 
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screens of pillow lavas, the definition of the Basal Group is somewhat subjective. In 

general, it contains at least 50% dykes, but more commonly has a dyke abundance of 

80–90% dykes (Bear, 1960). The pillow lava sequence was traditionally divided into the 

Upper Pillow Lavas and the Lower Pillow Lavas according to mineralogy, colour and 

dyke abundance (Wilson, 1959; Gass, 1960). The Lower Pillow Lavas are 

predominantly characterised by basaltic andesites, whereas the Upper Pillow Lavas are 

mainly olivine-bearing basalts. However, the Upper and Lower Pillow Lava division is 

difficult to apply in the field (Govett & Pantazis, 1971) and an unconformable or 

transitional boundary between the two lava units has led to uncertainty over this 

division (Boyle & Robertson, 1984). Furthermore, geochemical overlap between the 

two units has led to the divide being interpreted as a metamorphic discontinuity (Gass & 

Smewing, 1973; Smewing et al., 1975). Regardless of this division, the pillow lavas 

sequence is crucial to mineral exploration on Cyprus, as it hosts virtually all the 

Troodos volcanogenic massive sulphide deposits (Constantinou, 1980). 

Sedimentary rocks most closely associated with the Troodos ophiolite complex 

are of Campanian to Miocene in age and belong to the Perapedhi, Lefkara and Pakhna 

Formations. The pillow lava sequence is directly overlain by the iron and manganese-

rich sediments or umbers of the lower Perapedhi Formation. These umbers were 

precipitated from black smoker fluids before drifting, oxidising and accumulating in 

topographic lows on the sea floor (Robertson & Xenophontos, 1997). Well-bedded pink 

radiolarian shales and mudstones form the upper parts of the Perapedhi Formation. In 

the absence of the sediments of the Perapedhi Formation, the pillow lavas are 

unconformably overlain by the Lefkara Formation (Constantinou, 1972). This unit 

comprises chalks, marls and cherts representing late Cretaceous to early Miocene 

marine sedimentation (Kähler & Stow, 1998). Miocene marls, chalks, gypsum, 
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calcarenite and reef limestone constitute the overlying sedimentary units of the Pakhna 

Formation (Adamides, 1984). 

 

2.1.2.4 Mamonia complex 

 Lying adjacent to the Troodos ophiolite complex and associated sedimentary 

cover in southwestern Cyprus, the Mamonia Complex is an allochthonous unit 

(Lapierre, 1968) comprising a diverse and structurally complex assemblage of igneous, 

sedimentary and metamorphic rocks, ranging in age from Middle Triassic to Upper 

Cretaceous (Robertson & Woodcock, 1979). The origin of the Mamonia complex is the 

subject of an ongoing debate. However, a recent study suggests that it represents a 

remnant of intra-oceanic within-plate volcanism and sedimentation, which was 

tectonically emplaced onto the Troodos ophiolite complex during Maastrichtian time 

(Lapierre et al., 2007). The rocks of the Mamonia complex are divided into the 

Dhiarizos Group, Ayios Photios Group and Ayia Varvara Formation. The Dhiarizos 

Group includes Triassic pillow lavas, minor intrusives with overlying volcaniclastic 

siltstones, radiolarian mudstones and reefoidal limestone breccia (Swarbrick & 

Robertson, 1980), whereas the Ayios Photios Group is an entirely sedimentary unit that 

reflects the shallow to deep water evolution of the basin (Bailey et al., 2000). Siltstones, 

radiolarian mudstones, carbonates and quartzose sandstones are the main constituents of 

the Ayios Photios Group (Swarbrick & Robertson, 1980). The metamorphic rocks 

comprising the Ayia Varvara Formation are of greenschist and amphibole facies and 

include metavolcanics and metacherts (Robertson & Xenophontos, 1997). 
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Fig. 2.4. Simplified geological map of the Troodos ophiolite showing the location of the study 

area.  

 

2.2 The study area 

2.2.1 General overview 

 The focus of this study is a 16 km
2
 area located in the northern foothills of the 

Troodos Range, about 21 km south of Nicosia and 24 km west of Larnaca, at 33.4° E; 

35.0° N (Fig. 2.4). This area encompasses the general contact between the lava 

sequence of the Troodos ophiolite and associated Cretaceous to Miocene sedimentary 

cover, and also includes more recent cover sequences. It has topographic relief on the 

order of 200 m, with elevation ranging between 250 m and 450 m. This particular study 

area was chosen due to its complex landscape, which arises through a combination of 

variable geology, diverse topography and widespread, heterogeneous vegetation cover. 

Furthermore, because the area is only sparsely populated, the landscape is 
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predominantly natural with the exception of the disused Mathiati mine with spoil tips in 

the southwest and the small village of Agia Varvara Lefkosias in the north. Small-scale 

agricultural activity also occurs throughout the study area, but is generally confined to 

the northwest. Accordingly, the size and complexity of this study area provides an 

excellent opportunity to efficiently and rigorously evaluate the efficacy of novel and 

alternative remote sensing-based approaches to high-resolution geological mapping. 

 

Fig. 2.5. Existing geological maps of the study area at 1:31,680 and 1:250,000 scales. M — 

Mathiati mine, A — Agia Varvara Lefkosias village. Digital geology provided by the Cyprus 

Geological Survey Department. 

 

2.2.2 Geological and physiographical characteristics 

2.2.2.1 Existing geological maps 

Two existing geological maps of Cyprus cover the study area at both local and 

regional mapping scales (Fig. 2.5). The 1:31,680-scale map is the product of a mapping 

campaign undertaken in the 1950's and early 1960's, whereas the 1:250,000-scale map is 

the more recent version, revised in 1995. Regardless of scale, the two maps exhibit 

some obvious geological differences. This can be ultimately attributed to an 

amalgamation of the limited area covered during fieldwork, the subjectivity associated 

with the employed mapping techniques and some degree of ambiguity in defining some 
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of the lithological units (e.g., Upper and Lower Pillow Lavas). To avoid the ambiguity 

surrounding the validity of the divide, the pillow lavas are treated as a single unit in this 

study (Fig. 2.6).  

 

Fig. 2.6. Refined existing geological maps of the study area portraying the pillow lavas as a 

single unit. M — Mathiati mine, A — Agia Varvara Lefkosias village. Digital geology provided 

by the Cyprus Geological Survey Department.  

 

From observations made within the study area, the more recent 1:250,000-scale 

geological map (see Fig. 2.6) generally appeared to be the most accurate with regards to 

lithology. Consequently, the lithological classification portrayed by the 1:250,000-scale 

map was adopted in this study. Thus, the study area was considered to comprise four 

lithological units — alluvium–colluvium, the Lefkara Formation, pillow lavas and the 

Basal Group.  

 

2.2.2.2 Lithological units 

 Petrological and physiographical descriptions of the four lithological units found 

within the study area are provided below. Although the physiographical descriptions are 

based on observations made during this study, the petrological descriptions of the units 
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are based on those provided by Gass (1960) following geological mapping of the study 

area and the surrounding region during the mapping campaign in the 1950‘s and 1960‘s. 

 

Fig. 2.7. A selection of samples of the four lithological units found within the study area. (a) 

Basal Group, (b) pillow lavas, (c) Lefkara Formation and (d) alluvium–colluvium. Scale bar = 5 

cm. 
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Basal Group 

 As previously mentioned, the Basal Group is essentially the transitional unit 

between the underlying sheeted dyke complex and the overlying pillow lava sequence. 

With sheeted dykes forming around 90% of the total rock, it is the presence of up to 

10% pillow lava screens that distinguishes the Basal Group from the sheeted dyke 

complex. Highly sodic plagioclase is the primary constituent of both the pillow lava 

screens and intrusive rocks, which is the result of metasomatism probably associated 

with saussuritisation and uralitisation of the original plagioclase and clinopyroxenes, 

respectively (Gass, 1960). The pillow lava screens of the Basal Group are typically 

keratophyre, quartz-keratophyre rocks and greenstones, whereas the dykes are mostly 

keratophyre, quartz-keratophyre, and albite-microdiorite. The main mineral constituents 

of Basal Group rocks include quartz, albite, diopside, epidote, actinolite, chlorite, 

calcite, goethite (limonite) and magnetite. Relic hypersthene and plagioclase, belonging 

to the andesine–labradorite range, are also present. The occurrence of goethite 

(limonite) as a common alteration mineral is most likely to be responsible for the 

orange-red colour of the rocks (Fig. 2.7a). 

 Basal Group outcrops, mostly confined to the centre and southeast of the study, 

are distinguishable from pillow lava country in the field through their distinctive 

relatively high topography and steep relief (Fig. 2.8). These topographic characteristics 

probably arise because of the increased resistance to erosion in comparison to the pillow 

lavas due to the higher dyke abundance. Vegetation commonly found growing on Basal 

Group rocks can be broadly described as garrigue or maquis, predominantly comprising 

scrubby short dry grasses, short-to-medium height shrubs and scattered small trees (see 

Fig. 2.8). Green grass is also observed growing on Basal Group rocks, albeit less 
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frequently. Overall, it is estimated that up to 75% of the surface area of Basal Group 

outcrops is covered by vegetation. 

 

Fig. 2.8. Field photographs showing the physiographical characteristics of Basal Group 

outcrops in the study area.  

 

Pillow lavas 

 Irrespective of the nature or existence of a division in the sequence, there are 

essentially two pillow lava end-members. The pillow lava end-member typically found 

occurring at a lower stratigraphic level is generally andesitic to basaltic in composition. 

The main minerals of this end-member are plagioclase — both labradorite and andesine 

— diopside and magnetite. Large vesicles in the pillows are often completely or 

partially infilled by minerals such as quartz, opal, calcite, chlorite, celadonite, goethite 
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(limonite) and natrolite to form amygdales. These pillow lavas are more commonly cut 

by feeder dykes. The higher stratigraphic pillow lava end-member is characterised as 

basalts and olivine basalts, again primarily comprising plagioclase, diopside and 

magnetite, with plagioclase taking the form of labradorite. Olivine in this pillow lava 

end-member is commonly altered to calcite — which also occurs as extensive veining 

often stained pink due to the presence of disseminated hematite. Montmorillonite, 

quartz and the zeolite analcime constitute additional alteration and amygdaloidal 

minerals of this pillow lava end-member. On the whole, rocks of the pillow lava 

sequence vary in colour from grey to red-brown depending on the extent of weathering 

and alteration (Fig. 2.7b). 

 

Fig. 2.9. Field photographs showing the physiographical characteristics of the pillow lavas in 

the study area. Note that the white colouration on pillow lavas in the inset photograph is lichen 

growth. 
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Pillow lava country comprises the majority of the study area, with the exception 

of the area to the northwest. The topography associated with pillow lavas is also 

distinctive and is observed as relatively low relief, undulating and hummocky terrain in 

the field (Fig. 2.9). The undulating terrain of the pillow lava country typically exhibits a 

wavelength of 100 m and is overprinted by shorter-wavelength hummocks that 

correspond to individual stacks of pillow lavas. Pillow lava outcrops usually appear 

relatively well-exposed due to sparse scrubby dry (and less commonly green) grass and 

shrubs. However, on closer inspection, moderate-to-dense (30–75%) lichen cover is 

typically (and almost exclusively) found on pillow lavas outcrops (see Figs. 2.7b and 

2.9).  

 

Lefkara Formation 

 In the study area, the pillow lavas are directly overlain by the late Cretaceous to 

early Miocene sedimentary cover of the Lefkara Formation. Consisting of chalks, cherts 

and marls, the Lefkara Formation is essentially a calcareous unit comprised mostly of 

calcite and aragonite. It is these carbonate minerals that give the Lefakra Formation 

rocks their whitish colour (Fig. 2.7c). Specific mineral constituents of the marls in the 

study area were not identified by Gass (1960). However, illite and chlorite are generally 

observed in Lefkara Formation rocks in the Troodos ophiolite (Kähler & Stow, 1998). 

Common clay minerals such as kaolinite and montmorillonite are also likely to 

comprise the clay component of the marls. Cryptocrystalline cherts — in the form of 

chalcedony — occur along fractures and as nodules, but are most commonly found as 

bedded layers. Fractures and joints are also frequently infilled with secondary quartz. 

Iron oxide is probably responsible for the pink colouration of cherts found near the 

contact with the underlying pillow lavas. 
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Fig. 2.10. Field photographs showing the physiographical characteristics of the Lefkara 

Formation in the study area. 

 

The sediments of the Lefkara Formation drape the pillow lavas to form hilly 

undulating topography which essentially resembles that of subdued pillow lava terrain 

(Fig. 2.10). In the study area, outcrops are confined to the northeast and northwest. 

Vegetation cover found growing on the Lefkara Formation rocks could be described as 

garrigue and somewhat similar to that found growing on rocks of the Basal Group. 

However, there is a noticeably lack of trees and a somewhat greater abundance of green 

grass associated with the Lefkara Formation (see Fig. 2.10). Additionally, a relatively 

small amount of lichen cover is often observed growing on the surfaces of Lefkara 

Formation rocks. Overall, vegetation surface cover associated with the Lefkara 

Formation is on the order of 30–75%. 
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Alluvium–colluvium 

 In the study area, the alluvium–colluvium unit refers to Quaternary sediments 

that were deposited fluvially or through local erosion. This unit essentially comprises 

regoliths and, to a lesser extent, fanglomerates. The fanglomerates are of a continental 

nature, comprising a heterogeneous mixture of the igneous rocks of the Troodos 

ophiolite, and are preserved as a flat capping on only a few Lefkara Formation hills 

following uplift and erosion of the ophiolite. The fanglomerates have been weathered 

and eroded to produce fragments which vary in size from pebbles to fine grained soils. 

The most abundant material of the alluvium–colluvium unit is regolith derived from 

both the pillow lavas and Lefkara Formation. The different types of alluvial–colluvial 

cover all directly reflect their parental rock type, with fanglomerate forming red-brown 

coloured material, and the pillow lavas and Lefkara Formation producing grey and 

white–light grey material, respectively (Fig. 2.7d). Furthermore, the mineralogy of these 

different cover types should also reflect that of their parent rocks, although weathering 

processes can result in the formation of additional clay minerals or the removal of 

carbonate minerals.  

 Alluvial–colluvial cover is characterised by its distinctive flat and smooth 

topography, and is regularly found filling depression in the pillow lava terrain 

throughout the study area (Fig. 2.11). In the northwest, flat caps of fanglomerate-related 

alluvium–colluvium are locally observed overlying Lefkara Formation outcrops. The 

alluvial–colluvial cover is frequently exploited for agricultural purposes throughout the 

study area, although it is largely confined to the northwest. Accordingly, the alluvium–

colluvium unit is commonly associated with crops (e.g., cereals, olive groves) as well as 

both green and dry grasses, which can cover up to 90% of the surface area. 
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Fig. 2.11. Field photographs showing the physiographical characteristics of alluvium–colluvium 

in the study area. AC — alluvium–colluvium, PL — pillow lavas. 

 

2.2.2.3 Structural geology 

 The predominant trend of dykes in the sheeted dyke complex is north–south, 

indicating that the sea-floor spreading axis associated with the formation of the Troodos 

ophiolite was also north–south oriented (Allerton & Vine, 1991). Nonetheless, three 

proposed structural grabens were identified by Varga & Moores (1985) in the northern 

part of the ophiolite through separation of dykes into domains of consistent strike and 

dip, and interpreted as fossil axial valleys of an eastward migrating spreading centre. 

The study area is situated within the most eastward of these — the Larnaca graben (Fig. 

2.12). Faulting within the study area is confined to the exposed igneous rocks and is 
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characterised by a dominant northwest–southeast trend and a less significant north–

south trend (see Fig. 2.6). The northwest–southeast dominant fault trend is parallel to 

the interpreted spreading axis of the Larnaca graben and is therefore consistent with the 

proposed crustal extension in this region. Furthermore, the dominant dyke trend in the 

study area is parallel to this northwest–southeast faulting trend (Gass, 1960). The minor 

north–south trend is believed to correspond to a later stage of normal faulting (Gass, 

1960; Boyle & Robertson, 1984). 

 

Fig. 2.12. Generalised structural map of the Troodos ophiolite showing the location of the study 

area within the Larnaca graben. After Varga & Moores (1985). 
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This chapter describes the principal datasets — airborne LiDAR topographic 

data and airborne multispectral imagery in the form of Airborne Thematic Mapper 

imagery — along with the auxiliary datasets use to assist algorithm development, and 

interpret and validate the generated map products.  

 

3.1 Airborne Light Detection And Ranging data 

3.1.1 Background 

Airborne Light Detection And Ranging (LiDAR; also known as airborne laser 

swath mapping, ALSM or laser scanning) is an emerging active remote sensing 

technique that can be used to acquire both accurate and high-resolution (ca. 1–4 m) 

topographic data. The basic concept is relatively simple and involves the emission of 

laser pulses from an aircraft-mounted LiDAR system towards the ground surface, back 

and forth along a line typically orthogonal to the flight direction (Flood & Gutelius, 

1997; Wehr & Lohr, 1999). This scanning process is achieved by varying the scan angle 

of the emitted laser pulses using rotating, oscillating or nutating mirrors located inside 

the LiDAR system (Wehr & Lohr, 1999). For each laser pulse, the precise time interval 

between its emission and the subsequent detection of surface reflected (backscattered) 

laser energy is recorded. These round-trip time intervals, t, are then converted to 

aircraft–ground distances or ranges, R, using:   

 

2

t
cR , (3.1) 

where c is the speed of light. The position of the aircraft and its orientation at the time 

of the emission of each laser pulse is determined using a differential Global Positioning 

System (GPS) and an Inertial Navigation System (INS), respectively. Combining this 

information with the laser ranges and their corresponding scan angles then yields 
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accurate x-y-z coordinates for the origin of every laser reflection (Baltsavias, 1999a; 

Wehr & Lohr, 1999).  

The resulting LiDAR data points have typical absolute vertical accuracies on the 

order of 15 cm, absolute horizontal accuracies of less than 1 m and relative vertical 

accuracies on the order of 5 cm (Ahokas et al., 2003; Hsiao et al., 2004; McKean & 

Roering, 2004; Arnold et al., 2006; Glenn et al., 2006; Webster & Dias, 2006). Amongst 

many other factors relating to hardware performance and data processing, the absolute 

accuracy of data points is dependent on acquisition parameters such as the flying height, 

scan angle and proximity of the differential GPS base stations (Baltsavias, 1999a; 

Palamara et al., 2007). The relative vertical accuracy, however, is primarily dependent 

on adequate calibration of the system (Huising & Gomes Pereira, 1998). The density of 

points on the surface is governed by the point spacing, which is dependent on the 

scanning frequency and the aircraft flying height and speed (Baltsavias, 1999a; Wehr & 

Lohr, 1999).  

A single laser pulse emitted from a LiDAR system can encounter multiple 

objects along its travelled path, with each object reflecting a proportion of the emitted 

laser energy (Mallet & Bretar, 2009). This reflected energy and its associated intensity 

— defined as the ratio of the strength of reflected energy to that of the emitted energy 

(Song et al., 2002) — is recorded by LiDAR systems as either multiple discrete 

reflections (also referred to as returns) or as a full-waveform (Fig. 3.1). Discrete-return 

LiDAR systems, such as the one used in this study, usually record two returns for each 

laser pulse — the first and last. Over bare terrain, only a single return from the ground 

would be expected from each laser pulse (Fig. 3.1a). Over forested terrain, multiple 

returns from within the canopy would be anticipated, with the first return most likely 

corresponding to near the canopy top and the last return assumed to originate from the 
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ground (Fig. 3.1b). However, this assumption is not always true, especially in densely 

vegetated terrain where the last returns can come from within the tree canopy rather 

than the ground (e.g., Cunningham et al., 2006). Nevertheless, a number of algorithms 

have been developed to classify and separate the non-ground returns (e.g., returns from 

tree canopies, buildings) from ground returns (Kraus & Pfeifer, 1998; Axelsson, 2000; 

Haugerud & Harding, 2001; Sithole, 2001; Zhang et al., 2003). The ability to acquire 

accurate and high-resolution topographic data through dense forest cover is one of the 

primary advantages of airborne LiDAR over more conventional topographic data 

acquisition methods such as photogrammetry (Kraus & Pfeifer, 1998; Baltsavias, 

1999b). 

 

Fig. 3.1. Comparison of discrete return and full-waveform LiDAR over (a) bare terrain and (b) 

forested terrain. 

 

Once acquired, the LiDAR data points can be processed to generate a digital 

elevation model (DEM), by interpolating the x-y-z coordinates of the appropriate 

returns to a regularly-spaced grid (also known as a raster). A DEM generated from the 

first returns is generally referred to as a digital surface model (DSM), whereas a DEM 

generated from only ground returns is known as a ‗bare-earth‘ DEM or digital terrain 
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model (DTM). Although interpolation errors accompany rasterisation, LiDAR 

topographic data is more efficiently stored in the form of a DEM than in its ―raw‖ 

vector point form (Chen, 2007). Moreover, there are many algorithms that readily 

enable qualitative (e.g., generation of shaded relief images; Kennelly, 2008) and 

quantitative analysis (e.g., derivation of terrain attributes such as slope and curvature; 

Wood, 1996) of DEMs. For these reasons, high-resolution airborne LiDAR DEMs (both 

DSMs and DTMs) have been utilised for an array of earth science applications, 

including fault mapping (Harding & Berghoff, 2000; Haugerud et al., 2003; Prentice et 

al., 2003; Cunningham et al., 2006), mapping and characterisation of landslide 

morphology (McKean & Roering, 2004) and the characterisation of alluvial fan 

morphology (Staley et al., 2006; Frankel & Dolan, 2007).  

 

3.1.2 Data acquisition 

Airborne LiDAR data used in this study were acquired on the 14th of May, 2005 

by the Natural Environment Research Council Airborne Research and Survey Facility 

(NERC ARSF). The LiDAR survey was undertaken at an average flying altitude of 

2550 m above sea level, using a Dornier aircraft mounted with an Optech ALTM-3033 

LiDAR system operating with a laser wavelength of 1.064 μm, a laser pulse repetition 

rate of 33.3 kHz, a scanning frequency of 19.4 Hz and a scan angle of ± 19° either side 

of the nadir. Due to topographic relief within the surveyed area, the height of the aircraft 

above the ground ranged between 1500 and 2300 m. The entire surveyed area comprises 

nine, northwest-southeast trending, overlapping strips covering approximately 375 km
2
 

and encompassing the chosen study area (Fig. 3.2). Each strip has a swath width of 

1400–1500 m and an overlap of 20–50% between adjacent swaths. Five of these strips 

contained data for the actual study area. 
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Fig. 3.2. Generalised geological map of Cyprus showing the locations and extents of the 

airborne survey and study areas. 

 

Initial processing of the instrument data was undertaken by the Unit for 

Landscape Modelling at the University of Cambridge, UK. This involved combining the 

ranging data with the aircraft GPS and INS data to determine the 3-dimensional 

coordinates of all laser returns. The LiDAR point data were delivered as ASCII files 

containing the x–y–z coordinates and intensity of all first and last returns in the WGS84 

Universal Transverse Mercator (UTM) zone 36-North coordinate system. Information 

regarding the absolute accuracy of the point data was not provided by NERC ARSF, or 

determined as part of this study. However, airborne LiDAR data acquired using the 

ALTM-3033 system is widely reported as having an absolute vertical accuracy of ± 15 
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cm at a height of 1.2 km above the ground, one standard deviation; ± 35 cm at 3 km, 

one standard deviation; and an absolute horizontal accuracy of better than 1/2000
th

 of 

the flying height, one standard deviation (Arnold et al., 2006; Mazzarini et al., 2007). 

Accordingly, given an average flying height of 1900 m above the ground, the absolute 

vertical and horizontal accuracies of the data are expected to be on the order of 15–35 

cm and better than 95 cm, respectively — assuming adequate calibration and ground 

control. Whereas the absolute accuracy of the data is a crucial consideration for LiDAR 

applications such as flood-risk modelling (e.g., Webster et al., 2006c), the relative 

vertical accuracy is arguably of greater significance to this study. Measured as the 

standard deviation of returns from a flat surface such as that of water (Glenn et al., 

2006), the relative vertical accuracy of the data was found to be better than 8 cm. This 

was calculated using over 6300 returns from the surface of a large dam.  

 

3.1.3 Pre-processing 

3.1.3.1 Point data classification 

 The LiDAR dataset originally contained returns from both ground and non-

ground objects. Therefore, in order to generate a DTM it was first necessary to remove 

all non-ground features from the dataset. Data points were classified as either ground or 

non-ground returns using a triangulated irregular network (TIN) densification algorithm 

(Axelsson, 2000), which has been implemented in the TerraScan software 

(www.terrasolid.fi/en). This algorithm iteratively classifies returns as either ground or 

non-ground according to angle and distance thresholds applied to TIN facets. Due to the 

relatively high degree of topographic variability between some of the flight lines, the 

individual strips of data were classified separately. In each case, the classification 

parameters and thresholds were determined experimentally. The maximum terrain angle 
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and iteration distance threshold were kept constant throughout the classification process, 

at 88° and 1.40 m, respectively. The appropriate maximum building size and iteration 

angle threshold were found to be more scene-dependent. In general, the maximum 

building size and iteration angle varied from 20 m and 14° for strips dominated by 

relatively high relief, to 60 m and 6° for strips of data acquired over relatively flat 

terrain. To verify the results of the classification process, numerous cross-sections were 

extracted from each strip and inspected to ensure the point data were assigned to the 

correct return class. Wherever necessary, misclassified points were manually assigned 

to the correct class. Following classification, non-ground returns were discarded, while 

points classified as ground returns were retained for the generation of a DTM. Within 

the study area, a total of approximately 7,600,000 data points were classified as ground 

returns, corresponding to an average ground point density of 0.48 returns per m
2
. 

 

3.1.3.2 Digital terrain model (DTM) generation 

The accuracy of gridded LiDAR data products is affected by the choice of 

interpolation algorithm and raster spatial resolution (Smith et al., 2005; Palamara et al., 

2007; Bater & Coops, 2009). It is therefore important to select an appropriate algorithm 

and spatial resolution in order to avoid errors in the DTM having a significant effect on 

any subsequent quantitative (e.g., morphometric) analysis. Following a review of the 

literature, Bater & Coops (2009) concluded that no single interpolation method appears 

to be universally superior for generating LiDAR DEMs. However, the authors ascribe 

the accuracy of DEMs to the mathematical design of the interpolator and the raster 

spatial resolution, in addition to case specific factors such as the LiDAR ground return 

spacing and complexity of the terrain. Consequently, the optimal algorithm and spatial 

resolution for generating a DTM of the study area was determined by assessing 
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interpolation errors associated with 1, 2, 3, 4 and 5 m DTMs generated using a range of 

popular algorithms. The interpolation algorithms evaluated were inverse distance 

weighted, modified Shepard's, triangulation with linear interpolation, ordinary block 

kriging, cubic polynomial and nearest neighbour.  

The inverse distance weighted (IDW) algorithm calculates unknown elevations 

as weighted averages of a number of neighbouring elevations which are assigned 

decreasing weights for increasing distance from the grid node in question (Franke, 

1982). The IDW DTMs were generated using the Surfer 8.0 software package (Golden 

Software, Inc.), with a power parameter of 2 and a search radius of 20 m. Modified 

Shephard‘s is an adapted version of IDW that computes unknown elevations as 

weighted averages of elevations taken from a least squares quadratic surface which is fit 

to neighbouring points (Franke & Nielson, 1980). Again, the algorithm implemented in 

Surfer 8.0 (with a smoothing factor of 0 and search radius of 20 m) was used to generate 

the modified Shepard‘s DTMs. Triangulation with linear interpolation generates a TIN 

from known data points using Delaunay triangulation, before linearly interpolating 

between the coordinates of each Delaunay triangle to calculate elevation values for all 

enclosed grid nodes (Lee & Schachter, 1980; Guibas & Stolfi, 1985). The triangulation 

with linear interpolation algorithm in ArcMAP 9.1 (ESRI) was used to generate DTMs 

as the Surfer 8.0 version was found to be too inefficient in terms of memory and time. 

Kriging is a complex geostatistical interpolation technique that calculates elevations as a 

weighted average of neighbouring values, where the weights are determined using a 

variogram which measures the spatial continuity of the data (Clark, 1979). Unlike point 

kriging, which can produce large spikes or pits at the data points (Smith et al., 2005), 

block kriging estimates the average elevation for an area surrounding grid nodes. The 

block kriging algorithm in Surfer 8.0 was implemented with no drift, a search radius of 
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20 m and the default linear variogram model. The default variogram model was used 

because it was inefficient to compute a variogram for the LiDAR data given the large 

number of data points. Cubic polynomial interpolation determines elevations as 

weighted averages of elevations extracted from least square polynomial surface that is 

fit to neighbouring data points. This was performed using Surfer 8.0 with a search 

radius of 20 m and a power parameter of 2. Nearest neighbour interpolation is the most 

simplistic algorithm and assigns grid nodes the elevation equal to that of the nearest 

point. The nearest neighbour DTMs were also generated in Surfer 8.0 using a search 

radius of 20 m. A search radius of 20 m was selected for all algorithms as a compromise 

between maximising the number of neighbouring points surrounding each grid node 

whilst still maintaining a reasonable implementation time. 

Interpolation errors associated with each algorithm and spatial resolution were 

assessed quantitatively using statistics derived through split-sample validation (Smith et 

al., 2005). This involved the random selection and omission of approximately 9% of the 

ground return data points, while the remaining 91% were used to generate DTMs. The 

vertical errors, or residuals, between all omitted data points and their predicted values in 

the DTM were calculated as: 

 
iii APE   , (3.2) 

where Ei is the vertical error at location i, Pi is the predicted elevation in the DTM at 

location i, and Ai is the actual elevation of the omitted data point at location i. These 

vertical errors were then used to derive a set of interpolation error statistics, including 

the mean error (which indicates the magnitude and direction of any bias) and mean 

absolute error (Bater & Coops, 2009). The root mean square error conventionally used 

to assess interpolation errors was not used because it assumes — often invalidly — a 

mean error of zero (Li, 1998). The DTMs were also visually inspected for interpolation 
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artefacts (e.g., null and spurious elevations) by using shaded relief images with varying 

illumination directions and vertical exaggeration. Both the visual and quantitative 

interpolation analyses were undertaken using Surfer 8.0. 

Table 3.1. Error statistics derived from split-sample validation (n = 689,902) of DTMs 

generated using a range of interpolation algorithms and spatial resolutions. Block kriging and 

modified Shepard‘s interpolation to 1 m resolution was not performed due to their excessive 

processing times. 

Interpolation 

algorithm 

Resolution 

(m) 

Mean 

error (m) 

Mean 

|error| (m) 

SD |error| 

(m) 

Min error 

(m) 

Max 

error (m) 

IDW 

1 -0.11 0.26 0.32 -3.67 5.96 

2 -0.12 0.26 0.31 -3.66 5.85 

3 -0.12 0.26 0.32 -4.27 5.75 

4 -0.12 0.27 0.32 -3.89 5.13 

5 -0.12 0.28 0.33 -4.36 5.64 

       

Nearest 

neighbour 

1 -0.10 0.26 0.34 -5.14 7.49 

2 -0.11 0.25 0.33 -5.07 6.18 

3 -0.11 0.26 0.33 -5.45 6.66 

4 -0.11 0.26 0.33 -4.85 6.00 

5 -0.11 0.27 0.34 -5.23 5.73 

       

Cubic 

polynomial 

1 -0.11 0.23 0.40 -23.08 130.52 

2 -0.11 0.23 1.48 -3.42 1007.83 

3 -0.11 0.23 0.31 -3.43 51.59 

4 -0.11 0.24 0.75 -27.92 472.13 

5 -0.11 0.24 0.50 -7.20 237.67 

       

Block 

kriging 

1 - - - - - 

2 -0.11 0.22 0.30 -3.73 5.51 

3 -0.11 0.23 0.30 -3.35 5.38 

4 -0.11 0.24 0.30 -3.41 4.91 

5 -0.11 0.25 0.30 -3.59 4.98 

       

Triangulation 

with linear 

interpolation
  

1 0.01 0.23 0.29 -5.61 5.69 

2 0.01 0.29 0.32 -6.54 50.10 

3 0.02 0.35 0.40 -8.25 85.54 

4 0.03 0.42 0.80 -7.46 375.83 

5 0.04 0.49 0.53 -8.58 8.33 

       

Modified 

Shepard‘s 

1 - - - - - 

2 -0.11 0.23 0.34 -18.03 15.96 

3 -0.11 0.23 0.34 -33.75 16.30 

4 -0.11 0.24 0.35 -45.96 22.03 

5 -0.10 0.25 0.35 -22.30 19.02 
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The split-sample validation results (shown in Table 3.1) reveal that the 

interpolation algorithms tend to underestimate the actual elevation (mean errors ranging 

from -0.10 m to -0.12 m), with the exception of triangulation with linear interpolation 

which slightly overestimated elevation (mean errors ranging from 0.01 m to 0.04 m). 

Mean absolute errors were generally consistent between the interpolation algorithms 

and spatial resolutions (ranging from 0.23 m to 0.28 m), again with the exception of the 

triangulation with linear interpolation algorithm. With this algorithm, the mean absolute 

error increased considerably with spatial resolution, from 0.23 m at 1 m resolution to 

0.49 m at 5 m. Standard deviations of the absolute errors were also generally consistent 

between algorithms and spatial resolution. Large maximum errors observed for the 

cubic polynomial, triangulation with linear interpolation and modified Shepard‘s 

algorithms were found to correspond to spurious elevations occurring at the edges of 

data voids.    

During visual inspection, a ―ridge and trough‖ pattern was observed in all DTMs 

at the extreme edges of areas where adjacent swaths overlapped. Cross-sectional 

profiles extracted from the data strips revealed that elevation exhibited an upward 

concavity error with increasing scan angle towards the edges of swaths (Fig. 3.3). Such 

phenomenon is often referred to as ―smiley face error‖ (Lohani & Mason, 2005). This 

parabolic error has been attributed to vertical beam misalignment or systematic range 

errors (Latypov, 2005). The observed DTM artefact is produced when data acquired 

from multiple flight lines are merged and measurements acquired at large scan angles 

from one flight line differ slightly from corresponding measurements made at smaller 

scan angles from an adjacent flight line (Arrowsmith & Zielke, 2009). 
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Fig. 3.3. An example of the effects of ―smiley error‖ manifest in a subset of DTM (displayed as 

a shaded relief image) and cross-sectional profiles of adjacent LiDAR swaths 7 and 8.  

 

The effect of the ―ridge and trough‖ artefact on the quantitative interpolation 

error analysis was isolated by recalculating the split-sample error statistics using only a 

subset of residuals located outside the areas of overlap between swaths. As a result, 

mean errors were reduced to underestimations of between 0.01 m and 0.03 m for all 

interpolation algorithms except for triangulation with linear interpolation, for which the 

overestimation increased to between 0.02 m and 0.09 m (Table 3.2). Also, the choice of 

interpolation algorithm was now found to have a greater effect on mean absolute errors 

than the spatial resolution, again with the exception of triangulation with linear 

interpolation. Nevertheless, the mean absolute error showed a significant decrease in all 

cases when calculated using residuals from outside the areas of overlap. Block kriging, 

modified Shepard's and cubic polynomial interpolation resulted in the smallest mean 
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absolute errors (ranging from 0.09 m to 0.13 m for all resolutions), followed by the 

inverse distance weighted and nearest neighbour algorithms (0.15 m to 0.17 m). 

Triangulation with linear interpolation was the worst performing algorithm, with mean 

absolute error increasing from 0.12 m at 1 m resolution to 0.43 m at 5 m.  

Table. 3.2. Error statistics derived from split-sample validation results for a subset of residuals 

(n = 153,375) located outside the areas of overlap between swaths. 

Interpolation 

algorithm 

Resolution 

(m) 

Mean 

error (m) 

Mean 

|error| (m) 

SD |error| 

(m) 

Min error 

(m) 

Max 

error (m) 

IDW 

1 -0.03 0.16 0.19 -2.89 5.96 

2 -0.03 0.15 0.19 -2.87 5.85 

3 -0.03 0.16 0.19 -3.01 5.75 

4 -0.03 0.16 0.20 -3.25 4.61 

5 -0.03 0.17 0.22 -4.01 5.64 

       

Nearest 

neighbour 

1 -0.01 0.15 0.17 -3.05 4.533 

2 -0.01 0.14 0.16 -2.62 3.35 

3 -0.02 0.14 0.16 -2.43 4.14 

4 -0.02 0.15 0.17 -2.99 4.01 

5 -0.02 0.16 0.18 -3.62 4.31 

       

Cubic 

polynomial 

1 -0.02 0.11 0.49 -23.08 130.52 

2 -0.03 0.12 2.58 -2.62 1007.83 

3 -0.02 0.12 0.22 -2.65 51.59 

4 -0.02 0.12 1.22 -27.92 472.13 

5 -0.02 0.13 0.72 -7.20 237.68 

       

Block 

kriging 

1 - - - - - 

2 -0.02 0.10 0.11 -2.16 3.04 

3 -0.02 0.11 0.12 -2.23 3.14 

4 -0.01 0.12 0.14 -2.57 3.10 

5 -0.01 0.13 0.16 -2.86 3.44 

       

Triangulation 

with linear 

interpolation
 

1 0.02 0.12 0.13 -2.17 4.03 

2 0.03 0.19 0.21 -2.93 5.55 

3 0.05 0.27 0.29 -3.94 6.70 

4 0.07 0.35 0.38 -5.08 9.00 

5 0.09 0.43 0.47 -5.48 8.28 

       

Modified 

Shepard‘s 

1 - - - - - 

2 -0.01 0.09 0.15 -18.03 15.96 

3 -0.01 0.09 0.19 -33.75 16.30 

4 -0.01 0.10 0.26 -45.96 22.03 

5 -0.01 0.11 0.23 -22.30 19.02 
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As the ―ridge and trough‖ pattern was solely confined to the areas of overlap 

where the point density is greater, it was possible to almost completely eradicate this 

artefact from the DTMs using a simple point-spacing based filter prior to interpolation. 

The filter discarded the point with the highest elevation (i.e., the point most affected by 

―smiley face error‖) when multiple ground returns were present within a given radius. 

The size of the radius was chosen so that the filter only operated on data points within 

the areas of overlap (in this case a point spacing ≤ 2 m). In addition to removing this 

artefact, the filter also helps to produce a dataset with a more globally uniform point 

density by reducing the density of data points in the areas of overlap to match that of the 

remainder of the study area. 

 

Fig. 3.4. Shaded relief image of the final 4 m DTM of the study area generated using block 

kriging interpolation with prior application of the point-spacing filter.  



Chapter 3: Datasets 

 

 

44 

 

The optimal interpolation algorithm and spatial resolution for the final DTM was 

selected as that which minimised the error statistics and the appearance of interpolation 

artefacts in the DTM. Consequently, 100% of the ground returns were used to generate 

the final DTM for the study area at a spatial resolution of 4 m, by applying the point-

spacing filter prior to interpolation with the block kriging algorithm (Fig. 3.4).  

 

3.2 Airborne Thematic Mapper imagery  

3.2.1 Background 

 The Daedalus 1268 Airborne Thematic Mapper (ATM) instrument is a passive 

multispectral scanner that measures electromagnetic radiation in the visible to thermal 

infrared wavelength region of the spectrum. Specifically, utilising a configuration 

similar to that of the Landsat TM satellite, the ATM instrument records electromagnetic 

radiation in 11 fixed-wavelength spectral bands located in the visible near, short-wave 

and thermal infrared (Table 3.3). Despite the given wavelength range measured by each 

ATM waveband, scattering within the optical system or inadequate blocking filters may 

lead to radiation from outside these wavelength ranges being recorded (Clark, 1999). 

The actual recording response of a waveband as a function of wavelength is known as 

its bandpass. Knowledge of all bandpasses is crucial when high-spectral resolution data 

is re-sampled for comparison with data acquired using a different sensor with a lower 

spectral resolution. A filter function file containing the bandpasses of ATM bands 1–10 

was obtained from the NERC Field Spectroscopy Facility (Fig. 3.5). 
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Table 3.3. Wavelength positions of the 11 ATM spectral bands compared to those 

of Landsat TM. 

ATM 

waveband 

Wavelength 

(µm) 
Spectral region 

Equivalent Landsat 

TM band 

1 0.42–0.45 Ultraviolet/blue  

2 0.45–0.52 Blue 1 

3 0.52–0.60 Green 2 

4 0.60–0.62 Yellow/orange  

5 0.63–0.69 Red 3 

6 0.69–0.75 Near-infrared  

7 0.76–0.90 Near-infrared 4 

8 0.91–1.05 Near-infrared  

9 1.55–1.75 Short-wave infrared 5 

10 2.08–2.35 Short-wave infrared 7 

11 8.50–13.00 Thermal infrared 6 

 

The ATM sensor has an instantaneous field of view of 2.5 mrad, a digitised field 

of view of 90°, and scans a swath width of 938 pixels at scan rates of up to 50 Hz. The 

instrument measures the detected radiation at a radiometric resolution of 16-bit. As a 

result, pixels in each of the 11 waveband images are assigned an integer value in the 

range of 0 to 65,535 according to the intensity of the radiation recorded in that 

particular waveband. Since the ATM is a scanning sensor, the size of pixels on the 

ground (i.e., spatial resolution) is governed by the instantaneous field of view, and so 

varies according to the scan angle, the attitude of the aircraft and its height the above the 

ground. In summary, the size of pixels on the ground increases with increasing scan 

angle away from nadir and with increasing aircraft height. The locations of pixels on the 

ground are dependent on the scan angle, and position and orientation of the aircraft. 

However, due to a combination of aircraft‘s forward motion and varying attitude during 

scanning orthogonal to the flying direction, adjacent pixels in the imagery may not 

relate to adjacent areas on the ground. As a result, unprocessed ATM imagery often 

appears distorted. Nevertheless, the imagery can be geocorrected (geometrically 

rectified and geolocated) to produce a planimetric grid or raster using knowledge of the 
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scan angle, and aircraft position and orientation for all individual pixels. The geographic 

location of image pixels on the ground can be more precisely determined by also 

incorporating a DEM into the geocorrection process. 

 

Fig. 3.5. Bandpasses of ATM wavebands 1–10 obtained from the NERC Field Spectroscopy 

Facility. 

 

3.2.2 Data acquisition 

 The ATM imagery was acquired by the NERC ARSF in May, 2005, 

concomitant with the airborne LiDAR data. Seven northwest-southeast trending flight-

lines of imagery with an overlap of around 50% between adjacent strips were acquired 

for the 375 km
2
 survey area. For an average flying height of 1900 m above the ground, 

each strip has a swath width of 3800 m and an average pixel size on the order of 4–5 m. 

Five of the strips were found to contain data for the chosen study area. The strips of 

imagery were delivered as Level 1b Hierarchical Data Format (HDF) files, with 

radiometric calibration algorithms applied and aircraft navigation information 

appended. Radiometric calibration involved conversion of the raw ATM data to at-
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sensor radiance units (µW cm
-2

 sr
-1

 nm
-1

) and then subsequent scaling to 16-bit digital 

numbers (DNs) to avoid loss of numerical precision. Conversion of the raw data to at-

sensor radiance is achieved by applying gains and offsets — determining using a source 

traceable to a national standard — to the data recorded in each of the wavebands (Hill et 

al., 2010).  

 

3.2.3 Pre-processing 

 The ATM imagery was pre-processed using an approach similar to that of Hill et 

al. (2010). This involved three main steps which are described in the following 

subsections and illustrated in Fig. 3.6.  

 

3.2.3.1 Geocorrection 

 On delivery, the Level 1b HDF ATM imagery required geocorrection in order to 

geometrically rectify and geolocate the imagery to match the WGS84 UTM zone 36-

North coordinate system of the airborne LiDAR data (Fig. 3.6a). To achieve this, all 

image strips were individually geocorrected using the Linux-based AZGCORR software 

(Azimuth Systems), which was supplied with the data by the NERC ARSF. Utilising the 

appended aircraft navigation information and a 4 m DSM generated from the LiDAR 

first returns, the AZGCORR software was used to determine the geographic location of 

every pixel on the ground and then interpolate these (using the default bi-cubic 

algorithm) to generate a 4 m raster image (GeoTIFF) for each strip. Since this study is 

concerned with only reflectance data, the thermal infrared band (Band 11) was 

discarded at this stage. Band 1 was also omitted as the data are severely affected by 

atmospheric scattering (Copley & Moore, 1993). Therefore, any subsequent pre-

processing steps were only applied to ATM bands 2–10.  
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Fig. 3.6. Main pre-processing steps for the ATM imagery. (a) Level 1b image strips were (b) 

geocorrected, (c) normalised for across-track brightness differences (limb-brightening) and then 

(d) mosaicked to create a single seamless image of the survey area.  
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3.2.3.2 Across-track brightness normalisation 

 An across-track (i.e., in the scan direction, orthogonal to the flight direction) 

brightness effect known as limb-brightening was observed in all geocorrected images 

(Fig. 3.6b). This limb-brightening effect is manifest as an increase in the at-sensor 

radiance towards the edge of swaths as a result of increases in path length and variations 

in the sun–target–sensor angle (Leckie, 1987). Limb-brightening effects are greatest 

when the flying direction is perpendicular the solar azimuth. In this scenario, the 

brightening effect is asymmetric across swaths and is generally maximised in the 

backscatter direction, when the view direction is similar to that of the solar illumination 

direction (Schiefer et al., 2006). Asymmetric limb-brightening effects were observed in 

the ATM image strips because the flight lines were flown somewhat perpendicular to 

the solar azimuth. The effect of limb-brightening in each band of each strip of imagery 

was minimised using the Cross-track Illumination Correction tool in ENVI 4.3 (ITT 

Visual Information Solutions). This tool was first used to model the limb-brightening 

effect in each band by fitting a polynomial function to the average DN of pixels in the 

across-track direction, and then normalise the brightness effect in the imagery using this 

polynomial function. A multiplicative second-order polynomial correction was found to 

be optimal for minimising the limb-brightening effect in all wavebands and in all strips 

of imagery. Following this correction, pixels at the extreme edges of images were still 

found to be affected by residual limb-brightening effects. The affected pixels, generally 

comprising those within 50 pixels of the edges, were therefore cropped from each image 

strip (Fig. 3.6c).  
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3.2.3.3 Image mosaicking 

 Following the correction of limb-brightening effects, image strips were co-

registered and then mosaicked to create a single seamless image (Fig. 3.6d); both of 

these tasks were also performed within ENVI 4.3. Adjacent strips were co-registered 

through a rubber-sheet transformation (RST) using image-selected tie-points and cubic 

convolution resampling. Tie-points identified in the areas of overlap between pairs of 

images comprised targets that could be easily identified and precisely located, such as 

road intersections and corners of buildings. The image strip most centred on the study 

area was kept fixed as the reference during co-registration, whilst the two image strips 

adjacent to this central image were transformed. A systematic approach of designating 

the strip closest to the central image as reference whilst transforming that which was 

more distal was implemented to co-register the remaining strips of imagery.  

Somewhat minor spectral differences were observed in the areas of overlap 

between adjacent images prior to mosaicking. This is attributed to differences in the 

solar illumination and view angle between flight lines (Hill et al., 2010). A Colour 

Balancing procedure was therefore applied during mosaicking for the purpose of 

minimising the differences between adjacent strips. This procedure calculates gains and 

offsets from a fixed (reference) image and then uses these to adjust the DNs of an 

overlapping image, thus matching the spectral statistics between the two images. Again, 

all strips were adjusted relative to the image strip most centred on the study area.  

 

3.2.3.4 Additional pre-processing steps   

Due to an absence of atmospheric measurements and ground reflectance spectra 

and at the time of the airborne survey (and also at the time of pre-processing), rigorous 

model or empirical-based atmospheric corrections could not be reliably applied to the 
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ATM imagery. Moreover, an inspection of the DNs in the imagery suggested that first-

order atmospheric correction for effects such as haze was not necessary and, as a 

consequence, no atmospheric correction was applied at this stage in the study. As a final 

pre-processing step, the mosaicked ATM imagery was subsequently co-registered to the 

4 m LiDAR DTM using image-selected tie-points (with an estimated root mean square 

error of 1.6 pixels) and then cropped to the extent of the study area. The final pre-

processed spectral data product for the study area was 4 m ATM imagery comprising 

ATM bands 2–10 (Fig. 3.7). Any further processing steps applied to the ATM imagery 

are discussed in the relevant chapters.  

 

Fig. 3.7. ATM imagery (4 m) for the study area displayed as a true-colour red-green-blue 

composite (ATM bands 5-3-2). Note that ATM data is missing for a small patch in the north-

eastern corner of the study area. 
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3.3 Auxiliary data 

 In addition to the airborne LiDAR data and ATM multispectral imagery, a range 

of auxiliary data was also obtained in order to help augment this study. Specifically, all 

data helped to provide detailed knowledge of the study area, which was subsequently 

used to help devise and train the mapping algorithms presented here, and to analyse, 

interpret and validate their results and outputs. These auxiliary datasets are summarised 

below. 

 

3.3.1 Metadata 

A Geographical Information System (GIS) for Cyprus was obtained from the 

Cyprus Geological Survey Department (GSD). This GIS initially contained over 35 data 

layers providing a wealth of useful information, including geological information in the 

form of the existing lithological and structural maps, the locations of known mineral 

occurrences and gossans, vegetation information, and geographical information such as 

place names, roads and rivers, to name but a few. Data layers such as these were not 

only crucial in helping to train, interpret, analyse and validate the devised mapping 

algorithms, but also assisted in navigating the study area. Additional spatial data either 

obtained or derived as part of this study was also integrated in the GIS to readily enable 

the simultaneous interrogation and comparison of multiple data layers. 

 

3.3.2 QuickBird imagery 

 QuickBird satellite imagery for the study was also obtained from the GSD. 

Launched in 2001, QuickBird acquires both high-resolution panchromatic imagery and 

multispectral imagery (blue, green, red, near-infrared) from an altitude of 480 km. The 

GSD QuickBird imagery has a spatial resolution of 0.70 m and comprises three bands 
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measuring reflected solar radiation in the blue (430–545 nm), green (466–620 nm) and 

near-infrared (718–918 nm) regions of the electromagnetic spectrum. These bands can 

be combined to produce a red-green-blue (RGB) colour composite, which provides an 

extremely detailed false-colour image of the surface comparable to that of aerial 

photographs (Fig. 3.8). The QuickBird imagery therefore played an important role in 

helping to train the mapping algorithms and validate the results. 

 

Fig. 3.8. Snapshot of the QuickBird imagery displayed as a RGB (near-infrared, green, blue) 

false-colour composite. Note that highly photosynthetic vegetation (i.e., trees) appears red 

because it is highly reflective in the near-infrared region. 

 

3.3.3 Fieldwork 

 Extensive knowledge of the study area was gained during three fieldtrips. The 

primary objectives of the first reconnaissance fieldtrip in March and April, 2008 were to 

provide a geological overview of the Troodos ophiolite and help establish a detailed 

understanding of the geology and physiographic characteristics of the study area. 
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Information gained during this first fieldtrip was imperative for devising and training 

the mapping algorithms devised in this study.  

 

Fig. 3.9. Map showing rock/soil sampling locations and field-based geological mapping 

undertaken in the study area in order to guide the mapping algorithms, and assist interpretation 

and validation of the map products. Yellow dashed-line box corresponds to area shown in Fig. 

8.1 and yellow solid-line box corresponds to area shown in Fig. 8.2. 

 

Rock and soil samples of the four main lithologies in the study area were 

collected during the second fieldtrip in November and December, 2009. Numerous 

samples were collected in order to determine the representative spectral characteristics 

of each lithological unit prior to use in guiding a conventional remote sensing approach 

to lithological mapping (see Chapter 4). All sampling locations were recorded using a 

Garmin eTrex GPS (Fig. 3.9). Geological mapping was also carried out in a number of 

select locations during this fieldtrip. This involved mapping lithological contacts and 
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traverses for the purpose of acquiring information that could be used to help augment 

interpretation and validation of the results of the novel lithological mapping algorithms 

present in this thesis. Lithological contacts were mapped by following the boundary 

between two different lithologies whilst tracking the path taken with the Garmin GPS. 

The GPS sampling rate was set so that the location of the contact was mapped in 

sufficient detail to enable comparison with the generated high-resolution lithological 

maps. Similarly, the GPS was also used to map lithological contacts along traverses. 

The mapped traverses and contacts are also shown in Fig. 3.9. 

Structural measurement for a section of the study area was acquired during the 

third fieldtrip in May, 2010 for purpose of obtaining data that could be used to validate 

the structural mapping results (see Chapter 7). This involved taking strike and dip 

measurements of faults and dykes exposed along a stream transect running 

perpendicular to the main structural trend in the study area (Fig. 3.9). A rugged laptop 

installed with ArcMAP was taken on each fieldtrip to enable information (e.g., existing 

geological maps, roads) contained in the GIS to be readily accessed, and to facilitate 

preliminary assessments of the results of both field- and remote sensing-based mapping 

whilst in the field. 
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Abstract 

The reflectance spectra of rocks in the 0.35–2.50 μm wavelength region of the 

electromagnetic spectrum are unique and provide diagnostic information about their 

mineralogical and elemental composition. Numerous satellite and airborne sensors are 

designed to exploit this same wavelength region, therefore providing the means to 

directly identify rocks types through their spectral characteristics. A conventional direct 

approach to rapidly mapping lithologies with spectral imagery involves using computer-

based algorithms that automatically match image pixel spectra to representative spectra 

for the lithologies. Adopting this approach, the aim of this study is to assess the utility 

of Airborne Thematic Mapper (ATM) multispectral imagery for direct spectral 

discrimination and mapping of the north Troodos study area. Representative spectra for 

the lithologies were obtained by measuring the spectra of numerous samples in the 

laboratory using an ASD FieldSpec® Pro. These spectra were then resampled to the 

ATM bandpasses and used as reference spectra in the Spectral Angle Mapper, Matched 

Filtering and Mixture-Tuned Matched Filtering algorithms, to generate lithological 

maps by automatically matching the reference spectra to the calibrated ATM pixel 

spectra. The resulting maps had very poor overall accuracies (2.4–6.5%) and Kappa 

coefficients (≈ 0.0) due to large proportions (62–89%) of unclassified image pixels. It 

was subsequently demonstrated, both qualitatively and quantitatively, that the 

ubiquitous vegetation cover in the study area was responsible for the poor mapping 

performance. Spectral mixing analysis revealed that as little as 20% vegetation cover 

was enough to severely affect the utility of ATM imagery for direct spectral 

discrimination and mapping of the lithologies. The results of this study therefore 

reiterate the fact that conventional use of remote sensing for direct spectral mapping of 

lithologies is effective in only the world‘s most barren regions.  
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4.1 Introduction 

Reflectance spectroscopy in the visible/near-infrared (VNIR) to shortwave 

infrared (SWIR) wavelength region (i.e., 0.35–2.50 μm) provides valuable information 

on the constituent minerals of rocks (Hunt, 1977). Such diagnostic information is 

manifest in the occurrence of absorption features at specific wavelengths in the 

reflectance spectra caused by the absorption of photons of the same wavelengths. The 

corresponding quantity of energy gained through the absorption of a photon 

subsequently excites electronic or vibrational processes in specific minerals, thus 

providing mineralogical information (Rothery, 1987; Fig. 4.1). Electronic processes, 

including the transition of an electron from a lower energy level to a higher level, 

normally require more energy than vibrational processes such as the bending and 

stretching of molecular bonds. Accordingly, absorption features associated with 

electronic processes are characterised by short wavelengths and occur in the VNIR 

region of the spectrum, whereas those relating to vibrational processes are observed in 

the SWIR (Drury, 2001).  

The most predominant electronic absorption features observed in mineral spectra 

are those relating to crystal-field transitions and charge-transfer absorptions. Crystal-

field transitions occur when electrons transfer between modified energy levels that 

transpire when the defined energy levels (or orbitals) of isolated atoms and ions become 

split when placed in a crystal-field (Burns, 1970). As the splitting of the energy levels 

varies between minerals according to factors such as the valence state of the atom, its 

coordination number and the type of ligands formed, specific wavelengths of crystal-

field transitions can be useful for mineral identification (Clark, 1999). Charge-transfer 

(or inter-elemental transition) absorptions occur when absorbed energy causes an 

electron to transfer between ions, or between ions and ligands (Hunt, 1977). 
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Absorptions of this type form broad absorption bands, in the ultraviolet to visible 

region, that are typically hundreds to thousands of times stronger than crystal-field 

absorptions (Clark, 1999). Electronic absorption features most commonly observed in 

mineral spectra are due to the presence of iron. For example, electronic transitions in 

ferrous (Fe
2+

) ions in iron-bearing minerals are responsible for absorption features in the 

1.00 μm region. The precise wavelength of this absorption feature relates to the 

symmetry, lattice distortion and coordination of Fe
2+

 in specific minerals (Drury, 2001). 

In general, Fe
2+

 produces an absorption feature near 1.00–1.10 μm when in octahedral 

coordination (e.g., clinopyroxene, amphibole) or near 0.90–1.10 μm when in six-fold 

coordination for minerals such as olivine and orthopyroxene (Rothery, 1987). One of 

the most predominant charge-transfer features is a broad absorption band at 

wavelengths shorter than 0.55 μm caused by the transfer of electrons from iron to 

oxygen. This feature is typically associated with weathering products such as hydrated 

iron oxides (i.e., limonite), and gives rise to the red ‗iron-stained‘ colour associated with 

these minerals (Rothery, 1987).  

 

 

Fig. 4.1. Wavelength positions of common spectral absorption features observed in minerals 

(after Rothery, 1987). 



Chapter 4: Spectral characterisation and direct mapping of lithologies 

 

 

60 

 

As previously mentioned, energy absorbed from photons can also cause 

molecular bonds to vibrate at frequencies which are dependent on the type of bond and 

the mass of each element in the molecule (Clark, 1999). The number of normal 

vibrational modes or fundamentals for a molecule with N atoms is given as 3N-6. A 

water molecule, for example, has three fundamental vibrational modes; the symmetric 

OH-bond stretch (3.11 µm), the H-O-H bend (6.08 µm) and the asymmetric OH-bond 

stretch (2.90 µm). Molecular bonds can also excite vibrations at multiples of single 

fundamental frequencies, producing absorption bands at integer values of the 

fundamental frequencies (Hunt, 1977). These are known as overtone vibrations. When 

different fundamental or overtone vibrations combine, additional combination 

absorption bands occur at the sum of all the individual vibrational frequencies involved. 

Vibrational absorption features commonly observed in the SWIR region of mineral 

spectra are associated with molecular water, carbonate (CO3
2-

) and hydroxyl (OH
-
) ions. 

Absorption features near 1.40 μm and 1.90 μm, caused by vibration overtones of OH-

bond stretches and combinations of H-O-H bending with OH stretches, respectively, are 

diagnostic of molecular water in minerals. The two most prominent absorption features 

in the spectra of carbonate minerals occur near 2.35 μm and 2.50 μm due to 

combination and overtone vibrations of the C-O bond, respectively (Clark et al., 1990). 

The hydroxyl group — most notably found in clay minerals — has only one 

fundamental stretching mode that is found near 2.75 μm, although its precise location 

varies based on what it is bound to (Hunt, 1977). It is most commonly found bound to 

metals, producing a combination metal-OH bend and stretch absorption feature between 

2.20–2.30 μm (Clark, 1999). In general, absorptions near 2.20 μm are attributed to Al-

OH vibrations, whereas Mg-OH bonds typically produce absorptions features near 2.30 

μm (Hunt, 1997; Drury, 2001). 



Chapter 4: Spectral characterisation and direct mapping of lithologies 

 

 

61 

 

Since rocks and minerals can be directly identified based on their spectral 

characteristics, satellite and airborne imaging systems measuring the VNIR–SWIR 

wavelength region have been extensively exploited for lithological mapping purposes 

(e.g., Rowan & Mars, 2003; Rowan et al., 2004; Bedini, 2009; Roy et al., 2009; 

Haselwimmer et al., 2010). Lithological maps are rapidly generated for relatively large 

areas using automated algorithms that match image pixel spectra to reflectance spectra 

of lithologies found within the area of interest. In some cases, the representative 

reflectance spectra for the lithologies are acquired through field or laboratory 

spectroscopy (e.g., Roy et al., 2009). Of particular relevance to this study is that of van 

der Meer et al. (1997), who ascertained representative in situ SWIR (1.30–2.50 μm) 

reflectance spectra of the main lithological units of the Troodos ophiolite, Cyprus, using 

a Portable Infrared Mineral Analyzer (Fig. 4.2). Although it appears that the initial 

intention of the authors was to try to map the lithologies of their study area by directly 

comparing these spectra to Landsat TM pixel spectra, this was not possible for two main 

reasons. Firstly, the in situ reflectance measurements were difficult to directly correlate 

with Landsat TM imagery because the spectra only coincided with two of the Landsat 

TM bandpasses. Secondly, the inability to successfully calibrate the Landsat TM 

imagery to ground reflectance also meant that the in situ spectra could not be directly 

linked to the image spectra. As a consequence, mapping was performed by 

automatically matching image pixel spectra to representative spectra extracted from the 

Landsat imagery. Building on from the work of van der Meer et al. (1997), the aim of 

this study is to ascertain representative reflectance spectra for the four main North 

Troodos lithologies in the VNIR–SWIR region, and to then assess the ability to rapidly 

and directly map the lithologies of the study area by using these spectra in conjunction 

with Airborne Thematic Mapper (ATM) imagery. In contrast to the previous study by 



Chapter 4: Spectral characterisation and direct mapping of lithologies 

 

 

62 

 

van der Meer et al. (1997), the reflectance spectra acquired in this study coincide with 

nine of the ATM bandpasses whilst the 4 m spatial resolution of the ATM imagery 

potentially enables lithologies to be mapped in much more detail than is possible using 

30 m Landsat TM imagery. 

 

Fig. 4.2.  In situ SWIR (1.30–2.50 μm) reflectance spectra for rocks of the Troodos ophiolite 

relevant to this study (after van der Meer et al., 1997). 

 

4.2 Spectral characterisation of the lithological units 

Spectral reflectance measurements of rock and soil samples were acquired in the 

VNIR–SWIR (0.35–2.50 μm) wavelength region to ascertain a set of representative 

reflectance spectra and interpret the main spectral characteristics of the lithologies 

found within the study area. Subsequently, this set of representative reflectance spectra 

may then be utilised in conjunction with the ATM imagery for the direct identification 

and mapping of the spatial distribution of each of the lithological units. In this section 

the methodology employed to acquire the spectral reflectance measurements is first 
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presented, followed by a discussion of the spectral characteristics associated with each 

of the lithological units. 

 

4.2.1 Methods 

4.2.1.1 Sample collection 

 Numerous ‗fist-sized‘ rock and soil samples representative of each lithological 

unit were collected during fieldwork conducted within the study area in early 

December, 2009. For each lithology, appropriate sampling locations were identified 

using both of the existing geological maps a guide, in addition to detailed knowledge of 

the study area gained during previous fieldwork. A total of twenty sampling locations 

were selected and the geographic position of each was recorded using a hand-held 

Garmin eTrex GPS (see Chapter 3, Fig. 3.9). Wherever possible — especially for 

sampling locations situated well within relatively large areas (> 500 m
2
) of 

homogeneous surface composition — several samples were collected from within a 3 m 

radius of the recorded positions. This strategy was adopted to take local mineralogical 

variation into account, and to help establish representative spectra for sample sites 

located within the homogenous areas for use in calibrating the ATM imagery. 

 

4.2.1.2 Spectral data acquisition  

The reflectance spectra of approximately forty rock samples were acquired using 

an Analytical Spectral Devices (ASD™) FieldSpec® Pro spectroradiometer, which was 

loaned from the NERC Field Spectroscopy Facility. The ASD FieldSpec® Pro records 

reflected light within the 0.35–2.50 μm region of the electromagnetic spectrum, and can 

be used both in the field and in a laboratory. Although in situ field spectra were 

preferable for this study, the ASD FieldSpec® Pro was unavailable during the 
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December fieldtrip. Instead, the spectra were acquired using a laboratory setup during a 

loan of the instrument between January and February, 2010.  

 

Fig. 4.3. Configuration used to acquire lithological sample spectra in a laboratory with an ASD 

FieldSpec® Pro.  

 

The laboratory configuration used to acquire the rock spectra is shown in Fig. 

4.3. Spectral measurements were acquired using a foreoptic with an 18° Field of View, 

which was connected to the instrument‘s fibre optic cable via a pistol grip. A clamp 

stand was used to hold the pistol grip securely above the sample with the foreoptic 

directed to nadir. The average distance between each sample and the fibre optic sensor 

head was 15 cm, resulting in a footprint of approximately 5 cm in diameter and the 

analysis of a surface area of 18 cm
2
 for all spectral measurements. The ASD 

FieldSpec® Pro unit was connected to a laptop computer and operated using the RS
3
 

software that is supplied with the instrument. Samples were illuminated with a 500 W 

tungsten-halogen lamp mounted on an adjustable camera tripod. In order to try to ensure 

that only light reflected from the samples was detected by the spectroradiometer, black 

card was used to cover the desk and walls surrounding the setup. The ASD FieldSpec® 

Pro was left running at least 60 minutes prior to data acquisition to enable the three 
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detector arrays (one covering the VNIR region and two for the SWIR) to reach constant 

working temperatures. Failure to allow adequate time for the instrument to warm-up can 

result in significant spectral steps at wavelengths associated with the detector overlap 

regions at 1.0 μm and 1.8 μm. Similarly, the tungsten-halogen light source was switched 

on at least 30 minutes prior in order to achieve a stable illumination condition 

throughout data acquisition. Care was also taken to ensure that the entire Field of View 

was only occupied by the sample surfaces during data acquisition and that all sample 

surfaces were free from shadows cast by the foreoptic. With regards to the Field of 

View, a simple test involved placing a piece of plain white paper at the edges of 

samples, with no observed change in the reflectance spectrum indicating a Field of 

View occupied entirely by the sample. 

In total, approximately 250 reflectance spectra of fresh and weathered rock 

surfaces and soil samples were acquired using the laboratory setup. To enable a set of 

representative spectra to be derived for the lithologies, an average of six spectra were 

recorded for each individual sample. These spectra were acquired for different 

configurations of sample orientation and illumination angle (i.e., elevation angles of 

~50° and ~65°) in order to help determine a bulk rock spectrum that accounts for 

spectral variations caused by heterogeneity in both the surface mineralogy and micro-

topography. For every 3–5 sample measurements a reference spectrum was acquired 

using a calibrated Spectralon panel (NERC FSF: SRT#005). Therefore, initially each 

sample reflectance spectrum is measured relative to the Spectralon panel. 

 

4.2.1.3 Post-processing of spectra  

 All spectra were first converted from default RS
3™

 file format to ASCII format 

using the ASD ViewSpec Pro™ software, which is also pre-installed on the laptop. 
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Next, the relative reflectance spectra of the samples were converted to absolute 

reflectance using the NERC FSF White Reference Template file in Microsoft Office 

Excel 2007. Macros within the template are designed to import the absolute reflectance 

values of the calibrated Spectralon panel in ASCII format and then use this information 

to convert the sample spectra from relative to absolute reflectance. The output of the 

conversion process is the absolute reflectance of each sample between 0.35 μm and 2.50 

μm at 1 nm resolution. 

  Following conversion to absolute reflectance, all spectra were first grouped — 

where appropriate — into fresh and weathered surface spectra for each sample. Next, 

spectra relating to only completely vegetation-free (i.e., lichen-free) surfaces were 

selected, while the spectra of surfaces covered by any visible proportion of vegetation 

were discarded from further analysis during this particular stage of the study. The 

vegetation-related spectra were excluded to ensure that the observed spectral 

characteristics were only associated with the elemental and mineralogical composition 

of the lithological units. A single spectrum representative of each surface type (fresh 

and weathered) of each lithological unit was then derived by grouping and averaging the 

corresponding sets of vegetation-free spectra.  

 

4.2.1.4 Interpreting the spectra 

In order to interpret the representative spectra in terms of their mineralogy, 

laboratory spectra of minerals that are important constituents of each lithological unit 

(Table 4.1) were selected, predominantly from the United States Geological Survey 

(USGS) mineral spectral library (Clark et al., 1993), for comparison. However, 

identification of the individual constituent minerals through direct recognition of mutual 

diagnostic absorption features is somewhat difficult because the rock spectra are 
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products of the combination of all their constituent mineral spectra. In order to identify 

specific diagnostic features by their wavelength positions and shape, they must be 

isolated from other effects in the spectrum (Clark et al., 2003). An example of a 

common effect from which diagnostic features require isolation is that of wavelength-

dependent scattering; this becomes significant when the dimensions of scattering 

centres are on the order of or less than the wavelength of the incident radiation (Morris 

et al., 1982). The effect of wavelength-dependent scattering is the impartation of a slope 

to the spectrum, which modifies the appearance of absorption features by causing shifts 

in the wavelength position of their reflectance minima (Wendlandt & Hecht, 1966; 

Morris et al., 1982). In addition, weak diagnostic absorption features may become 

inconspicuous if a significant slope is imparted to the spectrum (Clark & Roush, 1984). 

The removal of such effects and consequential isolation of diagnostic absorption 

features can be achieved using a technique called continuum removal (Clark, 1981). 

Table 4.1. Important constituent minerals of the lithological units as determined in section 

2.2.2.2 based on petrological descriptions by Gass (1960). 

Lithological unit Constituent minerals 

Basal Group 

Quartz, albite, diopside, epidote, actinolite, chlorite, calcite, 

goethite (limonite), magnetite, hypersthene, andesine and 

labradorite 

Pillow Lavas 

Labradorite, andesine, diopside, magnetite, quartz, opal, 

calcite, chlorite, celadonite, goethite (limonite), natrolite, 

olivine, hematite, montmorillonite and analcime 

Lefkara Formation 
Calcite, aragonite, illite, chlorite, kaolinite, montmorillonite, 

chalcedony and quartz 

Alluvium–colluvium 

Mineralogy should reflect that of parent Lefkara Formation, 

pillow lavas and fanglomerate rock types, with minor 

variations due to weathering. 
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Continuum removal (or Hull quotient determination) is based on the concept that 

a spectrum consists of two components: individual diagnostic features and the 

"background absorption" or continuum onto which these diagnostic absorption features 

are superimposed (Clark, 1999). It is this continuum that represents the undesired 

effects (e.g., wavelength-dependent scattering) that we wish to remove from the 

reflectance spectrum. Accordingly, by defining and then removing this continuum, 

diagnostic absorption features can be isolated, thus potentially enabling the 

identification of individual constituent minerals.  

 

Fig. 4.4. Example of the continuum removal technique applied to a Basal Group reflectance 

spectrum. (a) Definition of the ―background absorption‖ or continuum of the measured 

spectrum and (b) continuum-removed spectrum enhancing weak spectral absorption features. 

 

Continua are defined by fitting a mathematical function — usually straight-line 

segments — between local reflectance maxima that typically occur on either side of 

diagnostic absorption features (Fig. 4.4a; Crowley et al., 2003). Since absorption and 

scattering processes represented by continua have a multiplicative effect on reflectance 
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spectra (Clark & Roush, 1984), the continuum is removed from a reflectance spectrum 

using (Clark et al., 2003): 

                           , (4.1) 

where O(λ) is the observed spectrum as a function of wavelength, λ, Co(λ) is the 

continuum for the observed spectrum and Oc(λ) is the continuum-removed spectrum. In 

addition to enhancing the appearance of weak diagnostic absorption features (Fig. 4.4b), 

continuum removal corrects the wavelength position of reflectance minima to the true 

centre of absorption features with consistent associated bandwidths, and reduces the 

effects of lighting geometry, as well as variations in grain size and impurity 

concentration (Clark & Roush, 1984; Clark et al., 2003; Crowley et al., 2003). 

Application of the continuum removal technique therefore enables spectral features in 

the representative spectra and mineral library spectra to be reliably compared, 

subsequently improving the capability to identify individual constituent minerals. The 

continuum removal technique and comparison with select mineral library spectra were 

undertaken using ENVI software.  

 

4.2.2 Results and discussion 

Representative reflectance spectra for the four main lithologies found within the 

study area are shown in Fig. 4.5. An initial detailed visual inspection of the igneous 

rock reflectance spectra reveals that these concur with the equivalent in situ SWIR 

(1.30–2.50 μm) measurements made by van der Meer et al. (1997) — see Fig. 4.2. 

Specifically, the ―Pillow lava A (weathered)‖ spectrum measured here matches that of 

the ―Upper Pillow Lavas‖, while the spectra for ―Pillow lava B (weathered)‖ and ―Basal 

Group (weathered)‖ closely resemble those of the ―Lower Pillow Lavas‖ and ―Basal 
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Group‖, respectively. In contrast to the work of van der Meer et al. (1997), the main 

spectral characteristics of these igneous rocks, and additionally the sedimentary units, 

are described in detail in the following sub-sections for the VNIR to SWIR (0.35–2.50 

μm) wavelength region. The continuum-removed spectra of the four lithologies utilised 

for this purpose are shown in Fig. 4.6, while mineral library laboratory reflectance 

spectra and continuum-removed spectra of their important constituent minerals are 

shown in Figs. 4.7–4.10. The wavelength positions of the main spectral absorption 

features observed in the continuum-removed spectra of the four lithological units are 

presented in Table 4.2. 

 

Table 4.2. Main spectral absorption features observed in the continuum-removed spectra. 

Lithological unit Wavelengths of spectral absorption features (μm) 

Basal Group 
0.47

F,W
, 0.55

F,W
, 0.65

F,W
, 0.92

W
, 0.99

F
, 1.10

W
, 1.41

F,W
, 

1.92
F,W

, 2.20
F
, 2.25

F
, 2.30

F,W
, 2.35

F,W
, 2.40

F
 

Pillow Lavas 

A 
0.47

F,W
, 0.55

F,W
, 0.68

F,W
, 0.97

F
, 1.16

F,W
, 1.42

F,W
, 1.46

F,W
, 

1.91
F,W

, 1.98
W

, 2.16
W

, 2.21
F,W

, 2.34
F,W

 

B 
0.48

F,W
, 0.55

F,W
, 0.67

W
, 1.00

F,W
, 1.42

F,W
, 1.91

F,W
, 2.16

W
, 

2.21
F
, 2.26

W
, 2.30

F,W
, 2.34

W
 

Lefkara Formation 
0.48

W
, 0.58

F,W
, 1.42

F,W
, 1.46

F,W
, 1.91

F,W
, 1.98

F,W
, 2.21

F,W
, 

2.25
F,W

, 2.30
F,W

, 2.34
F,W

, 2.49
F,W

 

Alluvium–

colluvium 

A 
0.48, 0.58, 0.64, 0.97, 1.16, 1.42, 1.46, 1.91, 1.98, 2.22, 2.25, 

2.30 

B 0.48, 0.58, 0.91, 1.42, 1.46, 1.91, 1.98, 2.21, 2.25 

C 0.49, 0.55, 1.01, 1.42, 1.46, 1.91, 2.21, 2.30 
 

F
 feature observed in the fresh spectrum; 

W
 feature observed in the weathered spectrum. 
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Fig. 4.5. Representative laboratory reflectance spectra of the four main lithologies from within 

the study area: (a) Basal Group, (b) pillow lavas, (c) Lefkara Formation and (d) alluvium–

colluvium. Spectra are offset vertically for clarity. 
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Fig. 4.6. Continuum-removed spectra of the four main lithologies from within the study area: 

(a) Basal Group, (b) pillow lavas, (c) Lefkara Formation and (d) alluvium–colluvium. Spectra 

are offset vertically for clarity. 
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Fig. 4.7. (a) Laboratory reflectance spectra and (b) continuum-removed spectra of important 

constituent minerals of Basal Group rocks. All mineral spectra are from Clark et al. (1993). 

Spectra are vertically offset for clarity. 

 

4.2.2.1 Basal Group 

 Rocks of the Basal Group typically display low albedo, with fresher surfaces 

exhibiting a slightly higher albedo than weathered surfaces (Fig. 4.5a). This low albedo 

is most likely due to the opaque and spectrally featureless minerals such as labradorite 

and magnetite (Fig. 4.7a), which are commonly observed in Basal Group rocks (Gass, 

1960). Numerous spectral absorption features relating to electronic processes are 

apparent in the VNIR region (Figs. 4.5a and 4.6a). For example, the mutual broad 

absorption feature at wavelengths less than 0.55 μm — which explains the orange-red 

colour of the rocks (see Chapter 2, Fig. 2.6) — corresponds to the Fe-O charge-transfer 

band associated with goethite/limonite (Rothery, 1987). A relatively weak ferric iron 

(Fe
3+

) absorption feature at approximately 0.65 μm can also be attributed to 

goethite/limonite (Fig. 4.7b; Clark et al., 2003). The presence of goethite (limonite) in 
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the Basal Group arises due to the oxidation of fine grained sulphides, such as pyrite 

(Constantinou, 1972). A weak and narrow absorption feature at 0.47 μm superimposed 

onto the broader Fe-O charge-transfer band in both the fresh and weathered Basal 

Group spectra is attributed to a Fe
3+

 crystal-field transition in epidote (Fig. 4.7b; Clark 

et al., 1990). Broad absorption features are centred near 0.90–1.00 μm in both the 

weathered and fresh rock reflectance spectra (Fig. 4.5a). However, whilst the fresh 

continuum-removed spectrum confirms this as a single feature, the weathered spectrum 

reveals that this actually comprises two separate relatively weak absorption bands, 

centred near 0.92 μm and 1.10 μm (Fig. 4.6a). Accordingly, these two features in the 

weathered spectrum may be ascribed to chlorite and its associated ferric (Fe
3+

) and 

ferrous iron (Fe
2+

) absorptions bands, respectively (Fig. 4.7b; King & Clark, 1989). In 

contrast, the single feature in the fresh spectrum may arise from the mixing of unaltered 

hypersthene and diopside, whose individual Fe
2+

 absorption features can combine to 

form a single band near that observed at 0.99 μm (Adams, 1974). 

 In addition to those features associated with electronic process in the VNIR 

region, a number of absorption features relating to vibrational processes are also 

apparent in the SWIR region of the Basal Group spectra (Figs. 4.5a and 4.6a). Of these, 

the most well-defined are those near 1.41 μm and 1.92 μm, which are due to presence of 

molecular water. Based on a comparison of the precise wavelength positions of these 

features to those of common Basal Group rock-forming minerals, it is most likely that 

this molecular water is associated with the hydration of albite (Fig. 4.7). Furthermore, 

the presence of albite is corroborated by the appearance of an Al-OH absorption feature 

near 2.20 μm in the fresh Basal Group spectrum. The prominent absorption band 

centred on 2.30 μm, and multiple weak absorption features at 2.25 μm, 2.35 μm and 

2.40 μm, are probably due to a combination of OH stretching with the Mg-OH bending 



Chapter 4: Spectral characterisation and direct mapping of lithologies 

 

 

75 

 

mode (Hunt, 1977; Rowan et al., 2004). These features indicate the presence of chlorite 

(Marsh & Mckeon, 1983). 

 

4.2.2.2 Pillow lavas 

 Two sets of pillow lavas, labelled ―Pillow lava A‖ and ―Pillow lava B‖, were 

identified based on a visual comparison of all vegetation-free pillow lava spectra (Fig. 

4.5b). Pillow lavas belonging to class ―A‖ exhibit a higher albedo than those of class 

―B‖, with weathered surfaces exhibiting a higher albedo than fresher surfaces in both 

cases. Nevertheless, both sets of pillow lavas generally have a low albedo again due to 

an abundance of labradorite and to a lesser extent, magnetite. Numerous spectral 

absorption features relating to both electronic and vibrational processes are apparent 

throughout the VNIR–SWIR region (Figs. 4.5b and 4.6b). Features associated with the 

―Pillow lava A‖ class will be discussed first, followed by a discussion of those 

associated with ―Pillow lava B‖ rocks. 

 In similarity to Basal Group rocks, both fresh and weathered ―Pillow lava A‖ 

rock surfaces exhibit a broad charge-transfer absorption feature at wavelengths less than 

0.55 μm. However, in this case the charge-transfer feature could be associated with Fe-

O in hematite (Morris et al., 1985), or a charge-transfer transition in olivine (Fig. 4.8; 

King & Ridley, 1987, and references therein). Given that it gives rise to the pink colour 

of the extensive calcite veining (Gass, 1960), hematite is most likely to be responsible 

for this charge-transfer feature. Hematite is also associated with a Fe
3+

 absorption 

feature near 0.67 μm (Clark et al., 2003). Superimposed onto the broad charge-transfer 

feature is a weak absorption near 0.47 μm, which can be ascribed to a ferrous iron (Fe
2+

) 

transition in olivine (Burns et al., 1972; King & Ridley, 1987). Concurrent with a broad 

feature particularly apparent in the fresh ―A‖ spectrum, both montmorillonite and the 
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zeolite analcime exhibit a relatively weak absorption feature centred on 0.97 μm (Fig. 

4.8). This feature is attributed to montmorillonite based on its bandwidth, and more 

specifically, the second overtone of the OH stretch (Clark et al., 1990). A degree of 

ambiguity also surrounds the origin of absorption features at 1.16 μm and 1.91 μm, as 

well as a doublet at 1.40–1.48 μm (Fig. 4.6b), which are again typical of both 

montmorillonite and analcime (Fig. 4.8). Due to their precise wavelength locations, the 

1.16 μm absorption and the doublet at 1.40–1.48 μm are most likely to be associated 

with analcime. The combination of a symmetric OH stretch, an asymmetric OH stretch 

and an H-O-H bend in bound water is responsible for the 1.16 μm feature (Hunt & 

Salisbury, 1970; Cloutis et al., 2002), whereas the 1.42 μm and weaker 1.46 μm doublet 

features are attributed to H2O stretches plus the first overtone of the H2O bend in 

absorbed and bound molecular water, respectively (Bishop et al., 1994; Cloutis et al., 

2002). The bandwidth of the absorption feature at 1.91 μm, plus an apparent weak 

absorption near 1.98 μm in the weathered spectrum, is indicative of combinations of 

stretching and bending vibrations related to bound and absorbed molecular water in 

montmorillonite (Bishop et al., 1994). An addition absorption feature at 2.21 μm in both 

the fresh and weathered spectra is characteristic of a combined Al-OH bend plus OH 

stretch also in montmorillonite (Hunt, 1977). A weak absorption near 2.16 μm exhibited 

by weathered surfaces and a stronger broad feature near 2.34 μm, common to both fresh 

and weathered surfaces, are due to respective combinations and overtones associated 

with the CO3
2-

 ion in calcite (Hunt, 1977).  

 The overall appearance of the ―Pillow Lava B‖ spectra (Figs. 4.5b and 4.6b) 

closely resemble that of the Basal Group spectra (Figs. 4.5a and 4.6a). This is 

unsurprising since the spectra are consistent with that of Lower Pillow Lavas in Fig. 4.2 

and that the distinction between the Lower Pillow Lavas and Basal Group is largely 
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based on dyke abundances (Bear, 1960). As with the Basal Group rocks, goethite 

(limonite) is responsible for the broad Fe-O charge-transfer band at wavelengths less 

than 0.55 μm in the spectra of both fresh and weathered surfaces (Fig. 4.9; Hunt, 1977). 

A weak crystal-field transition at 0.48 μm and an additional stronger ferric iron (Fe
3+

) 

transition at 0.67 μm in the weathered spectrum are also associated with 

goethite/limonite (Crowley et al., 2003). Both fresh and weathered ―Pillow lava B‖ 

spectra exhibit a broad feature centred on 1.00 μm. This is likely to be a combination 

feature of a Fe
2+

 crystal-field transition in clinopyroxene (diopside in this case) and a 

Fe
3+

 transition in goethite/limonite (Singer, 1981). The molecular water absorption 

features observed at 1.42 μm and 1.91 μm appear to have a much smaller band depth 

than those exhibited by the ―Pillow lava A‖ rocks. Since weathering enhances these 

water absorption bands (van der Meer et al., 1997), ―Pillow lava A‖ rocks probably 

exhibit a greater band depth because they have generally been exposed to more 

prolonged weathering due to their higher stratigraphic position. Opal amygdales are the 

most likely source of water in class ―B‖ pillow lava rocks, since the observed water 

bands are consistent with those linked to combinations and overtones of isolated water 

in opal (Goryniuk et al., 2004). A weak absorption feature in the weathered spectrum at 

2.16 μm appears to be linked to a combination of overtones of CO3 fundamentals in 

calcite (Hunt, 1977). Also only observed in the weathered surface spectrum is an 

absorption triplet comprised of weak features at 2.26 μm, 2.30 μm and 2.34 μm. Such 

features are characteristic of celadonite and are attributed to combinations of Al,Fe,Mg-

OH absorptions (Bishop et al., 2008). Fresher surfaces, on the other hand, exhibit an 

absorption feature at 2.21 μm with an associated feature at 2.30 μm. These features may 

be due to an Al-OH bend and OH stretch combination in dioctahedral phyllosilicates 

(Hunt & Ashley, 1979), and are possibly attributable to dioctahedral chlorite. 
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Fig. 4.8. (a) Laboratory reflectance spectra and (b) continuum-removed spectra of important 

constituent minerals of ―Pillow lava A‖ rocks. All mineral spectra are from Clark et al. (1993). 

Spectra are vertically offset for clarity. 

 

 

 

Fig. 4.9. (a) Laboratory reflectance spectra and (b) continuum-removed spectra of important 

constituent minerals of ―Pillow lava B‖ rocks. All mineral spectra are from Clark et al. (1993), 

with the exception of celadonite (Bishop et al., 2008). Spectra are vertically offset for clarity. 
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4.2.2.3 Lefkara Formation 

 In contrast to the igneous magnetite-bearing rocks of the Basal Group and pillow 

lavas, Lefkara Formation rocks exhibit a high albedo with a negligible difference 

between fresh and weathered surfaces (Fig. 4.5c). The high albedo is due to the 

predominantly carbonate nature of the rocks, in particular the presence of minerals such 

as calcite and aragonite (Fig. 4.10a).  

As with all preceding lithologies, the Lefkara Formation spectra display a drop-

off in reflectance at wavelengths less than 0.58 μm (Fig. 4.5c and 4.6c). A weak 

absorption feature is also visible at 0.48 μm in the spectra of weathered surfaces, 

although there is a very subtle hint of a similar feature in the fresh spectrum. As 

previously discussed, such features usually indicate the presence of iron. Pink cherts 

commonly observed proximal to the igneous rocks are just one potential source of this 

iron (Gass, 1960). In this case, these features are probably associated with the 

weathering of iron to form either an iron oxide or oxyhydroxide as they are more 

apparent in the spectrum of weathered surfaces. The well-defined water absorption 

features observed near 1.42 μm (doublet) and 1.92 μm (weak doublet) reflect 

considerable weathering of the Lefkara unit. Water in the SiO2 crystal structure (Hunt, 

1977) — such as that of chalcedony — could contribute to these features (Fig. 4.10b). 

However, the presence of doublets near 1.42 μm and 1.92 μm and their precise 

composite feature wavelength positions suggest that bound and absorbed molecular 

water in montmorillonite is more attributable (Bishop et al., 1994). Several weaker 

absorptions are superimposed onto a broad absorption feature observed between 2.19–

2.38 μm in both the fresh and weathered spectra. The broad feature, which has a 

reflectance minimum at 2.34 μm, together with an associated feature near 2.50 μm 

represent combination and overtone bands of the CO3 fundamentals (Clark et al., 1990) 
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and are thus attributed to minerals such as aragonite and calcite. The clay component of 

the marls in the Lefkara Formation is likely to mostly comprise common clay minerals 

such as kaolinite, illite and montmorillonite. All three of these minerals exhibit a 

common Al-OH feature at 2.21 μm (Clark et al., 1990; Bishop et al., 2008) and so the 

corresponding feature in both the fresh and weathered Lefkara Formation spectra is 

attributed to clay minerals such as these. The moderate absorption features observed at 

2.25 μm and 2.30 μm are characteristic of chlorite (Marsh & Mckeon, 1983).  

 

Fig. 4.10. (a) Laboratory reflectance spectra and (b) continuum-removed spectra of anticipated 

constituent minerals of Lefkara Formation rocks. All mineral spectra are from Clark et al. 

(1993), except aragonite which was acquired by Susan J. Gaffey with the NASA RELAB 

facility at Brown University. Spectra are vertically offset for clarity. 

 

4.2.2.4 Alluvium–colluvium 

 The three different types of alluvium–colluvium shown in Figs. 4.5d and 4.6d 

are representative of regolith material derived from the Lefkara Formation (type ―A‖), 

fanglomerate (type ―B‖) and pillow lavas (type ―C‖). Type ―A‖ alluvium–colluvium 



Chapter 4: Spectral characterisation and direct mapping of lithologies 

 

 

81 

 

exhibits a moderate albedo that considerably higher than that of the two other types, 

while that of type ―B‖ is slightly higher than that of type ―C‖.  

 As anticipated, the overall appearance of the spectrum that is representative of 

Lefkara-derived alluvium–colluvium is generally similar to that of its parental rock type 

(Figs. 4.5c and 4.6c). However, the most noticeable differences between the two are the 

significantly lower albedo of the ―Alluvium–colluvium A‖ spectrum in addition to the 

absence of the broad 2.19–2.38 μm absorption and associated feature at 2.50 μm. These 

observed spectral differences suggest that weathering processes are responsible for the 

removal of CO3 minerals during the formation of this regolith material. Therefore, the 

spectrum of the derived ―Alluvium–colluvium A‖ regolith only exhibits the Lefkara 

Formation absorption features previously attributed to the clays and iron. In comparison 

to the Lefkara Formation, additional absorption features occur at 0.64 μm, 0.97 μm and 

1.16 μm. The first of these features is attributed to the presence of iron (Clark et al., 

2003), whereas the second and third features are associated with water in clays (Hunt & 

Salisbury, 1970; Goetz et al., 1991). 

 Material of the ―Alluvium–colluvium B‖ type are continental fanglomerates that 

are generally derived from heterogeneous mixtures of the igneous rocks (Gass, 1960). 

Although this definition suggests a potentially diverse set of constituent minerals for 

this type of material, its spectrum exhibits several familiar absorption features linked to 

the presence of iron and clays. An absorption feature near 0.48 μm, superimposed onto 

a broad charge-transfer band at wavelength less than 0.58 μm, together with an 

additional absorption at 0.91 μm are typical ferric iron features of goethite (limonite). 

Bound and absorbed water in clays (e.g., montmorillonite) is probably responsible for 

absorption doublets observed near 1.42 μm and 1.92 μm. A prominent absorption near 
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2.21 μm and an addition associated weak feature near 2.25 μm resemble Al-OH 

absorptions in illite (Clark et al, 1990). 

 As previously mentioned, the regolith of ―Alluvium–colluvium C‖ is derived 

from pillow lava rocks, so it is therefore no surprise that there are considerable 

similarities in their spectra, particularly those of ―Alluvium–colluvium C‖ and ―Pillow 

lava B‖. In fact, the main absorption features present in both pillow lava spectra and 

absent from that of type ―C‖ alluvium–colluvium are those relating to combinations and 

overtones of CO3 fundamentals in calcite. The apparent absence of calcite in the 

regolith is once again likely to be a result of carbonate weathering processes. 

Consequently, the ―Alluvium–colluvium C‖ spectrum comprises absorption features 

attributed to ferric iron in goethite/limonite (0.48 μm and 0.55 μm), a mixture of ferric 

and ferrous iron in diopside and goethite/limonite respectively (1.01 μm), and both 

molecular water (1.42 μm, 1.46 μm and 1.91 μm) and Al-OH (2.21 μm and 2.30 μm) 

absorptions in dioctahedral clay minerals.  

 

4.3 Lithological mapping using ATM imagery 

 The acquisition and subsequent analysis of the representative VNIR–SWIR 

reflectance spectra in the previous section suggests that the four main lithologies found 

in the study area should be directly spectrally discernable because of differences in their 

albedo and absorption features. Accordingly, this section assesses the ability to directly 

identify and map the spatial distributions of the lithological units in the study area, by 

using their corresponding representative laboratory reflectance spectra in conjunction 

with the ATM imagery. To do this, a conventional direct mapping approach is adopted, 

which involves using the representative laboratory spectra as reference (also referred to 

as end-member) spectra for input to algorithms that can be used to rapidly generate 



Chapter 4: Spectral characterisation and direct mapping of lithologies 

 

 

83 

 

lithological maps by automatically matching ATM pixel spectra to these reference 

spectra. 

 

4.3.1 Methods 

The methodology employed here to assess the ability to directly identify and 

map the lithologies of the study area comprises three main steps: 1) data calibration, 2) 

classification and 3) an accuracy assessment. These steps are discussed in detail below. 

 

4.3.1.1 Data calibration 

 As mentioned above, the representative laboratory reflectance spectra of the 

lithologies are to be used as reference spectra for input to automated spectral matching 

algorithms. However, in order to be able to use the representative laboratory reflectance 

spectra in conjunction with the ATM imagery for lithological mapping, it is first 

necessary to ensure the compatibility of these two datasets. A two-stage approach was 

used for this purpose: 1) resampling the laboratory spectra to match the ATM 

wavebands and 2) subsequent calibration of the ATM imagery to laboratory measured 

reflectance.  

Spectral resampling was undertaken using the Spectral Library Resampling tool 

in ENVI. This tool performs multiplication-based convolution of all laboratory spectra 

to the ATM wavebands (bands 2–10) using a filter function file (obtained from NERC 

FSF), which contains the sensor response (bandpass) of each ATM waveband. The 

resulting ATM-bandpass convolved laboratory reflectance spectra for the lithological 

units are shown in Fig. 4.11. Although many of the spectral features have been lost as a 

result of resampling, some subtle differences still persist between lithologies, 

particularly in the VNIR region where the majority of ATM bands are situated.  
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Fig. 4.11. Representative laboratory reflectance spectra of the four lithologies resampled to the 

ATM bandpasses: (a) Basal Group, (b) pillow lavas, (c) Lefkara Formation and (d) alluvium–

colluvium. Spectra are offset vertically for clarity. 
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Calibration of the ATM data to laboratory measured reflectance data is crucial in 

enabling the ATM-bandpass convolved reflectance spectra (Fig. 4.11) to be used as 

reference spectra for the lithologies in automated lithological classification routines. 

Here, this calibration was achieved using the empirical line method (Roberts et al., 

1985). The empirical line method performs data calibration by exploiting the linear 

relationship that exists between digital numbers (DNs) in the imagery and the 

reflectance of a variety of ground surfaces (Baugh & Groeneveld, 2008). Specifically, 

the relationship between DNs and reflectance is given as (Ferrier & Wadge, 1996): 

                                      , (4.2) 

where DNb is the DN for a given pixel in band b, ρ(λ) is the reflectance of the surface 

within that pixel at wavelength λ of band b, Ab is the gain term for band b (accounting 

for multiplicative effects including atmospheric transmittance and instrumental gains) 

and Bb is the offset term for band b (accounting for effects including atmospheric path 

radiance and instrumental offsets).  

The empirical line calibration method is implemented separately on each ATM 

band by plotting the measured reflectance of a variety of ground materials against their 

corresponding DNs, which are extracted from the imagery. For each band, a best-fit line 

is then fit to these data points using a least squares fitting approach, with the band gain 

and offset corresponding to the gradient and intercept of this line, respectively (Ferrier 

& Wadge, 1996). These gains and offsets are then applied to the ATM imagery to 

calibrate it to laboratory measured reflectance. Although as few as two ground surfaces 

with contrasting albedos can be used to perform the calibration (e.g., Ferrier, 1995; van 

der Meer & Bakker, 1997), the relationship between radiance and reflectance is better 

characterised when more surfaces are used (Smith & Milton, 1999). Nevertheless, 
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several studies have reported accurate calibration results using only 2–4 different 

surfaces (e.g., Price et al., 1995; Smith & Milton, 1999).  

In this study, three calibration sites situated within relatively large areas of 

homogeneous surface composition were identified during the rock and soil sampling 

fieldwork. During selection of these sites, care was taken to ensure that the surfaces 

could reasonably be assumed to have essentially remained unchanged in the time 

between the ATM data acquisition and measurement of their reflectance (~4 years). The 

selected sites corresponded to three contrasting surface types: Lefkara Formation, 

predominantly bare pillow lavas and pillow lavas with well-established and extensive 

lichen growth. The laboratory reflectance of these sites was established by averaging the 

spectra of the exposed surfaces of all samples collected within the 3 m radius of their 

recorded GPS positions. These three surface spectra were subsequently convolved to the 

ATM bandpasses. Pixels corresponding to these sites were identified by overlaying their 

GPS locations on top of the ATM imagery. Due to these sites being located well within 

relatively large homogeneous areas, the single pixel spectra extracted for the precise 

sampling locations displayed negligible spectral differences to those of their 

neighbouring pixels. Therefore, since the adjacency effects were insignificant, the ATM 

pixel spectra were extracted as an average of the pixel spectra within a 2×2 pixel 

neighbourhood of each sampling location. Extracting the pixel spectra as an average of 

their neighbouring pixels helps to generate more representative spectra by minimising 

any minor noise component that may be associated with the ATM sensor (Smith & 

Milton, 1999). Empirical line calibration of the ATM imagery to laboratory reflectance 

was implemented in ENVI by pairing the ATM-convolved laboratory reflectance 

spectra of the three surfaces with their corresponding ATM pixel spectra. 
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As a robust independent test of the validity of the ATM data calibration, ATM 

pixel spectra extracted from areas corresponding to green and dry grass were compared 

with ATM-convolved laboratory reflectance spectra of generic green and dry grass from 

the USGS spectral library (Fig. 4.12). In both cases there is a remarkable similarity 

between the ATM pixel spectra and USGS laboratory spectra, signifying that the 

calibrated ATM imagery is compatible with laboratory reflectance measurements. Thus, 

the ATM-bandpass convolved laboratory reflectance spectra of the lithological units are 

now deemed suitable for use as reference spectra for the classification of the calibrated 

ATM imagery.  

 

Fig. 4.12. Comparison of empirical line calibrated ATM pixel spectra extracted from areas 

comprising green and dry grass with ATM-convolved USGS laboratory reflectance spectra of 

green and dry grass. USGS spectra are from Clark et al. (1993). Spectra are offset vertically for 

clarity. 
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4.3.1.2 Spectral classification 

 Lithological maps were generated through classification of the calibrated ATM 

imagery according to lithological reference spectra in the form of the ATM-convolved 

laboratory reflectance spectra (Fig. 4.11). Spectral classification was performed using 

three spectral matching algorithms that are popular for geological mapping applications 

and commonly embedded in remote sensing software packages (such as ENVI): 

Spectral Angle Mapper, Matched Filtering and Mixture-Tuned Matched Filtering.  

  The Spectral Angle Mapper (SAM) algorithm (Kruse et al., 1993) calculates the 

spectral similarity between a pixel spectrum and a reference spectrum as the angle 

between their vectors in a space with dimensionality equal to the number of bands. This 

‗spectral angle‘ (α) is calculated as: 

 

rt

rt1cos , (4.3) 

which can also be written as: 
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where t is the pixel spectrum, r is the reference spectrum and nb is the number of bands. 

The SAM algorithm is insensitive to gain factors related to topographic and illumination 

effects as these only alter the lengths of the vectors and not the angle between them (van 

der Meer et al., 1997).   

For each reference spectrum, the SAM algorithm calculates the spectral angle 

(in radians) for every image pixel spectrum and assigns this value to the corresponding 
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pixel in a grey-scale SAM output rule image (Kruse et al., 1993). Here, given the 

number of reference spectra, a total of 11 output rule images were generated with pixels 

in each image having a spectral angle ranging between 0 and π/2, signifying a perfect 

match to that particular reference spectrum and no match, respectively. As in van der 

Meer et al. (1997), the pixels that most closely matched each reference spectrum were 

extracted by applying a 0–0.16 rad threshold (i.e., pixels within 10% of a perfect match) 

to the corresponding output rule image. Pixels extracted from each output rule image 

were assigned a unique colour and merged to form a single image. If pixels were 

extracted from multiple output rule images (i.e., within a 10% match of multiple 

reference spectra), they were assigned to the lithological class for which they had the 

smallest spectral angle. A lithological map of the four main units was generated by 

combining classes representing both fresh and weathered surfaces and different types of 

the same lithological unit (e.g., ―Pillow Lava A‖ and ―Pillow Lava B‖).  

The Matched Filtering (MF) algorithm is an orthogonal subspace projection 

operator (Harsanyi & Chang, 1994), which is capable of identifying subpixel 

abundances of end-members through partial unmixing of image pixel spectra (Harris et 

al., 2005). The algorithm — which utilises the Minimum Noise Fraction (MNF) 

Transformation (Green et al., 1988) — first simultaneously maximises the spectral 

response of the target end-member in each image pixel whilst suppressing that of the 

interfering background materials, and then calculates an MF score by comparing the 

enhanced spectra to that of the end-member reference spectrum (Rowan et al., 2004). 

Specifically, MF scores are determined for each pixel by projecting a matched filter 

vector (reference spectrum in MNF space) onto the inverse covariance of the MNF-

transformed image data, and then normalising it to the magnitude of the reference 

spectrum so that the length of the matched filter vector corresponds to an estimate of the 
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end-member abundance, ranging from 0–100% (Mundt et al., 2007). The resulting MF 

scores are normally distributed around a mean of 0, with scores of 0 or less 

corresponding to the background materials and scores near to 1 representing a close 

match to the reference spectrum (Mundt et al., 2007; Mitchell & Glenn, 2009).  

The output of the MF algorithm is the generation of grey-scale MF score images 

for each of the 11 reference spectra. Pixels representing close matches to each reference 

spectrum were again extracted by applying a threshold to the relevant MF score images. 

In keeping with the SAM classification, the threshold for each MF score image was set 

to extract pixels representing a ≥ 90% match to each of the reference spectra, with pixels 

extracted from multiple MF score images again assigned to that for which it has the 

highest MF score. A lithological map was created by merging the colour-coded pixels 

and then combining the relevant classes as described above. 

Mixture-Tuned Matched Filtering (MTMF) is a pixel classifier that captures the 

synergism of the linear spectral mixing model and MF algorithm (Boardman, 1998).  In 

addition to generating MF score images for each reference spectrum, the MTMF 

algorithm also generates infeasibility images for each of the MF score images. Values in 

the infeasibility images indicate the plausibility of the corresponding MF scores, and 

thus pixels with a high MF score and a low infeasibility value are most likely to be 

correctly classified (Harris et al., 2006). Feasible close-matching pixels were extracted 

for each lithological end-member spectrum by thresholding based on the ratio of the MF 

score to infeasibility value (e.g., Mitchell & Glenn, 2009). Appropriate minimum ratio 

threshold values were determined for each lithological end-member by generating a 

scatter plot of MF score vs. infeasibility value and then identifying typically MF scores 

and infeasibility values for a small subset of points known to correspond to that 

particular lithology. Only pixels equal to or greater than the specified ratio threshold 
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value for each lithological end-member were extracted. Thresholding according to such 

a ratio enables pixels with MF scores (or end-member abundances) lower than those 

used as thresholds in the MF algorithm to be extracted, provided that they also have low 

infeasibility values. A lithological map was generated from the threshold images using 

the same method as described for the two previous classification routines.  

The MNF transformation, utilised by both the MF and MTMF algorithms, is a 

spectral enhancement and data compression technique (Green et al., 1988). The 

transformation is used to determine the inherent dimensionality of the data and 

segregate image noise using two PCA transformations (Boardman & Kruse, 1994). The 

result is a set of images comprising coherent eigenimages (or MNF bands) associated 

with large eigenvalues (i.e., signal-to-noise ratios) and noise-dominated eigenimages 

with small eigenvalues. Spectral enhancement and image noise segregation is 

effectively achieved by discarding the bands with small eigenvalues and selecting only 

bands with large eigenvalues. When applied to the 9 bands of the calibrated  ATM 

imagery using a shift-difference noise estimate for the entire scene, 91.6% of the 

cumulative eigenvalues for the entire dataset was explained by the first 6 (out of 9) 

MNF bands. Consequently, only the first 6 MNF bands were selected during the 

implementation of the MF and MTMF algorithms.  

 

4.3.1.3 Accuracy assessment 

The accuracy of the derived lithological maps was determined by comparing the 

true class identities of a sample of validation pixels to those assigned through 

classification. To enable this, a random stratified sampling protocol was used to select a 

sample of validation pixels from a number of regions of interest (ROIs) of unambiguous 

lithological identity. Several ROIs were carefully selected for each lithology throughout 
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the entire study area using extensive field-based knowledge and the Quickbird imagery 

in combination with the existing geological maps. A random stratified sampling 

protocol was adopted to ensure that each class was represented proportionately and to 

avoid spatial autocorrelation within the validation dataset (Chini et al., 2008; Pacifici et 

al., 2009). The numbers of validation pixels selected for each lithological class are 

shown in Table 4.3. For a discussion of the individual class validation sample sizes and 

total validation sample size see Chapter 6 (section 6.4.1). 

Table 4.3. Number of validation pixels, the equivalent area and 

the approximate proportion of the study area (PS) selected to 

represent each lithological class in the accuracy assessment. 

Lithological class  Pixels Area (m
2
) PS (%) 

Alluvium–colluvium  4087 65,392 0.40 

Basal Group  3200 51,200 0.32 

Lefkara Formation  2451 39,216 0.24 

Pillow lavas  3208 51,328 0.32 

 

 Calculated using the validation pixels, the classification accuracy for each 

lithological map was assessed by way of the overall, user‘s and producer‘s accuracies 

and the Kappa coefficient (K) derived from a confusion matrix (Congalton, 1991). The 

overall accuracy is the percentage of all validation pixels correctly classified, whereas 

the user‘s and producer‘s accuracies provide information regarding the commission and 

omission errors associated with the individual classes, respectively. Unlike the overall 

accuracy, K takes into account the possibility of agreements occurring by chance 

through a random classification (Brown et al., 1998). For example, a K = 0 indicates the 

obtained overall accuracy could be achieved through a random classification, whereas K 

< 0 and K > 0 indicate the obtained overall accuracy is less than and greater than chance 

agreement, respectively (Rosenfield & Fitzpatrick-Lins, 1986). 
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4.3.2 Results and discussion 

4.3.2.1 Lithological mapping and accuracy assessment 

The three lithological maps generated using the SAM, MF and MTMF 

classification algorithms described above are shown in Figs. 4.13a, b and c, 

respectively. The corresponding overall and individual lithological class accuracies 

associated with these maps are summarised in the confusion matrices shown in Tables 

4.4, 4.5 and 4.6.  

According to the accuracy assessment, all three algorithms generated inaccurate 

maps, with the SAM algorithm achieving the highest overall accuracy (6.5%), followed 

by MTMF (2.8%) and MF (2.4%). However, values of K ≈ 0 for all three algorithms 

indicate that these results could easily be achieved through random classifications. 

Thus, the higher overall accuracy achieved using SAM is just an artefact that arises due 

to the greater number of pixels classified using this approach, rather than a 

demonstration of its superiority over MF and MTMF. The cause of the poor overall 

classification accuracies is manifest in the individual lithological class accuracies, 

shown in the confusion matrices. Whilst partially attributable to confusion primarily 

between inherently similar lithologies, the low user‘s and producer‘s accuracies 

ultimately arise as a consequence of the vast numbers of unclassified validation pixels. 

The proportion of validation pixels left unclassified in each of the three classifications 

was found to vary between 75–95%. This is mirrored throughout the entire study area, 

with all three maps displaying large areas of unclassified pixels — particularly the MF- 

and MTMF-derived maps. The proportion of all study area pixels left unclassified 

through each of the three classifications algorithms varied between 62–89%. Only a 

negligible proportion of these unclassified pixels can be attributed to the occurrence of 

non-lithological surface materials (e.g., gossan, mine spoil, roads and buildings).  
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Fig. 4.13. (a) SAM-, (b) MF- and (c) MTMF-derived lithological maps, (d) Soil-Adjusted 

Vegetation Index (SAVI) map, and detailed views of the (e) SAVI, (f) SAM, (g) MF and (h) 

MTMF maps for the area (red box) indicated in (d). High and low SAVI values correspond to 

high and low fractional vegetation cover, respectively.   
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Table 4.4. Confusion matrix for SAM classification using the calibrated ATM imagery in 

conjunction with the ATM-convolved laboratory reflectance spectra.  

Mapped as Validation data Row 

total 

User‘s 

accuracy 

(%)  
Alluvium–

colluvium 

Basal 

Group 

Lefkara 

Formation 

Pillow 

lavas 

Unclassified 3299 2544 1969 1875 9687 – 

Alluvium–

colluvium 
589 542 393 1046 2570 22.9 

Basal Group 1 61 12 93 167 36.5 

Lefkara 

Formation 
34 2 50 52 138 36.2 

Pillow lavas 164 51 27 142 384 37.0 

Column total 4087 3200 2451 3208   

Producer‘s 

accuracy (%) 
14.4 1.9 2.0 4.4 

 
 

      

Overall accuracy = 6.5%     

K = -0.01      

 

 

Table 4.5. Confusion matrix for MF classification using the calibrated ATM imagery in 

conjunction with the ATM-convolved laboratory reflectance spectra. 

Mapped as Validation data Row 

total 

User‘s 

accuracy 

(%) 
 

Alluvium–

colluvium 

Basal 

Group 

Lefkara 

Formation 

Pillow 

lavas 

Unclassified 4006 3052 2315 2960 12333 – 

Alluvium–

colluvium 
31 0 65 21 117 26.5 

Basal Group 0 0 0 17 17 0.0 

Lefkara 

Formation 
50 84 67 0 201 33.3 

Pillow lavas 0 64 4 210 278 75.5 

Column total 4087 3200 2451 3208   

Producer‘s 

accuracy (%) 
0.8 0.0 2.7 6.5 

 
 

      

Overall accuracy = 2.4%     

K = 0.01      
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Table 4.6. Confusion matrix for MTMF classification using the calibrated ATM imagery in 

conjunction with the ATM-convolved laboratory reflectance spectra. 

Mapped as Validation data Row 

total 

User‘s 

accuracy 

(%) 
 

Alluvium–

colluvium 

Basal 

Group 

Lefkara 

Formation 

Pillow 

lavas 

Unclassified 3846 3055 2223 2104 11228 – 

Alluvium–

colluvium 
9 18 98 420 545 1.6 

Basal Group 4 9 8 381 402 2.2 

Lefkara 

Formation 
216 79 51 3 349 14.6 

Pillow lavas 12 39 71 300 422 71.1 

Column total 4087 3200 2451 3208   

Producer‘s 

accuracy (%) 
0.2 0.3 2.1 9.3 

 
 

      

Overall accuracy = 2.8%     

K = -0.01      

 

The proportion of unclassified pixels in each map can be reduced by 

significantly adjusting the thresholds to enable much weaker matching pixels to be 

assigned to lithological classes. However, as a consequence, this will undoubtedly lead 

to an increase in the confusion between classes and hence a further reduction in the 

overall mapping accuracy. Consequently, an attempt to identify the true cause of the 

vast numbers of unclassified pixels was instigated. Given that the study area is 

characterised by widespread vegetation cover and the potential effects of vegetation on 

spectral discrimination of lithologies (e.g., Siegal & Goetz, 1977; Ager & Milton, 1987; 

Fraser & Green, 1987; Murphy & Wadge, 1994), a link between unclassified pixels and 

vegetation cover was investigated. For this purpose, a Soil-Adjusted Vegetation Index 

(SAVI) Map was first derived using (Huete, 1988): 
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                                                (4.5) 

where B5 and B7 is the reflectance in the calibrated ATM bands 5 and 7, respectively, 

and L = 1.0, 0.5 or 0.25 for increasing vegetation densities. An intermediate value of L = 

0.5 was selected here to represent the overall vegetation density observed in the study 

area. The SAVI — which minimises the influence of background materials such as soil 

— was chosen as it is directly proportional to fractional vegetation cover (Leprieur et 

al., 1994) and is recommended for general-purpose vegetation studies (Rondeaux et al., 

1996).  

 The derived grey-scale SAVI map (Fig. 4.13d) varies from low values (i.e., 

close to 0), indicating a low percentage of fractional vegetation cover, to high values 

(i.e., close to 1), corresponding to a high percentage of fractional vegetation cover. 

Visually, a spatial correlation clearly exists between the occurrence of higher fractional 

vegetation cover and unclassified pixels (Figs. 4.13e, f, g and h). This relationship is 

also confirmed quantitatively for all classifiers, with both unclassified validation pixels 

(Table 4.7) and all unclassified study area pixels (Table 4.8) typically exhibiting higher 

and significantly different SAVI values than those of classified pixels (irrespective of 

whether they are correctly classified). From this, it is evident that the ability to directly 

identify the lithological units in the ATM imagery is controlled by the abundance of 

vegetation cover within each pixel.  

Table 4.7. SAVI statistics and statistical difference in SAVI between classified and 

unclassified validation pixels as determine using the unequal variance t-test. 

Classifier 
 Classified  Unclassified  

p-value 
 n mean SD  n mean SD  

SAM  3259 0.25 0.03  9687 0.36 0.07  <0.0001 

MF  613 0.23 0.04  12,333 0.33 0.08  <0.0001 

MTMF  1718 0.26 0.03  11,228 0.34 0.08  <0.0001 

       n, number of pixels; SD, standard deviation.  
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Table 4.8. SAVI statistics and statistical difference in SAVI between all classified and 

unclassified study area pixels as determine using the unequal variance t-test. 

Classifier 
 Classified  Unclassified  

p-value 
 n mean SD  n mean SD  

SAM  378,484 0.23 0.04  629,052 0.35 0.10  <0.0001 

MF  105,721 0.21 0.06  901,815 0.32 0.10  <0.0001 

MTMF  174,647 0.25 0.03  832,889 0.32 0.11  <0.0001 

       n, number of pixels; SD, standard deviation. 

 

4.3.2.2 The effects of vegetation on the spectral identification of lithologies  

 The effects of vegetation cover on the inability to directly identify and 

subsequently map lithologies using the ATM imagery can be elucidated by the 

phenomenon of spectral mixing. Spectral mixing is the mixing of materials having 

discrete spectral properties (e.g., bare rock and vegetation) within an individual pixel to 

form a composite reflectance spectrum (Kruse et al., 1993). A simple spectral mixing 

model considers the composite pixel spectrum to be a linear combination of the spectra 

of the different materials (Singer & McCord, 1979). For the example involving two 

surface cover end-members, lithological unit L and vegetation type V, this model can be 

written as:  

  (4.6) 

and 

  1XX VL   , (4.7) 

where Robs(λATM) is the observed ATM pixel reflectance spectrum, XL is the relative 

proportion of that pixel comprising surface cover type L, RL(λATM) is the ATM-

convolved reflectance spectrum of lithology L, XV is the relative proportion of that pixel 

comprising surface cover type V and RV(λATM) is the ATM-convolved reflectance 

spectrum of vegetation type V.  
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The linear spectral mixing model above can be adapted to include numerous 

end-members and, provided that the pure ATM-convolved reflectance spectra of all 

surface cover end-members are known, all ATM pixel spectra can be ―unmixed‖ to 

determine the relative pixel abundances of each end-member (e.g., Adams et al., 1989; 

van der Meer, 1996; Chabrillat et al., 2000). However, since the ASD FieldSpec® Pro 

instrument was unavailable during the sampling fieldtrip, spectra of most vegetation 

types found growing in the Troodos study area were not acquired. Instead, a semi-

qualitative and quantitative insight into the effects of vegetation on direct spectral 

identification of the lithologies in the ATM imagery was obtained by generating 

synthetic spectral mixtures (Siegal & Goetz, 1977; Ager & Milton, 1987; Murphy & 

Wadge, 1994). Synthetic composite spectra were generated by mixing — using the two 

end-member spectral mixing model described in Eqs. 4.6 and 4.7 — the ATM-

convolved spectrum of each lithology with increasing amounts (in 10% gradations) of a 

generic ATM-convolved spectrum that is representative of vegetation commonly found 

growing on that rock or soil type. The representative vegetation spectra include those of 

lichen (acquired in this study), green grass and dry grass (both from the USGS spectral 

library) — three of most abundant vegetation types within the study area. Combinations 

of lithology and vegetation type that were analysed are summarised in Table 4.9. 

Table 4.9. Combinations of lithology and vegetation type synthetically mixed in 

order to elucidate the effects of vegetation cover on spectral identification of 

lithologies in the ATM imagery. 

Lithological class  Associated vegetation types 

Basal Group (weathered)  Green grass
*
, dry grass 

Pillow lavas (A and B weathered)  Lichen, green grass
*
, dry grass 

Lefkara Formation (weathered)  Lichen
*
, green grass, dry grass 

Alluvium–colluvium (A, B and C)  Green grass, dry grass 

            * less frequently observed growing on this unit.  



Chapter 4: Spectral characterisation and direct mapping of lithologies 

 

 

100 

 

 

 

Fig. 4.14. Effect of increasing amounts of fractional green grass cover on the ATM-convolved 

spectra of the (a) Basal Group, (b) Pillow lava A, (c) Pillow lava B, (d) Lefkara Formation and 

Alluvium–colluvium (e) A, (f) B and (g) C. Spectra are offset vertically for clarity. 
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Fig. 4.15. Effect of increasing amounts of fractional dry grass cover on the ATM-convolved 

spectra of the (a) Basal Group, (b) Pillow lava A, (c) Pillow lava B, (d) Lefkara Formation and 

Alluvium–colluvium (e) A, (f) B and (g) C. Spectra are offset vertically for clarity. 
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Fig. 4.16. Effect of increasing amounts of fractional lichen cover on the ATM-convolved 

spectra of (a) Pillow lava A, (b) Pillow lava B and the (c) Lefkara Formation. Spectra are offset 

vertically for clarity. 

 

The synthetic linearly-mixed ATM-convolved composite spectra illustrating the 

effects of increasing amounts of fractional vegetation cover on the spectra of the 

different lithological classes are shown in Figs. 4.14–4.16. The effects of green grass 

cover on the spectra are pronounced for all lithologies (Fig. 4.14). With only 10% 

surface coverage, the spectral characteristics of all lithologies become obscured by the 

impartation of a characteristic green grass absorption feature at 0.62–0.66 μm (ATM 

bands 4 and 5). Thus, it is likely to be somewhat difficult to identify the underlying 

lithology through comparison with the representative bare-rock spectra for ATM image 

pixels containing as little as 10% relative green grass surface coverage. The spectra of 

low albedo lithologies, such as the Basal Group, Pillow lavas and Alluvium–colluvium 

B and C, are unrecognisably obscured by fractional green grass cover in excess of 20% 

due to a combination of the 0.62–0.66 μm absorption feature and a significant increase 

in reflectance at 0.80–0.95 μm (ATM bands 7 and 8). For 40–50% cover, the composite 

spectra of the low albedo lithologies are completely dominated by the spectrum of green 

grass. Although the higher albedo spectra of the Lefkara Formation and Alluvium–
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colluvium A are still obscured beyond recognition with fractional cover in excess of 

20%, their spectral characteristics are not completely masked until the green grass 

coverage exceeds approximately 70%.  

 Dry grass generally has a less pronounced effect on the ability to spectrally 

identify the lithologies than green grass (Fig. 4.15). Most lithologies are still identifiable 

through their spectra with fractional dry grass cover up to 30–40%, with the exception 

of the lowest albedo lithological classes — Basal Group, Pillow lava B and Alluvium–

colluvium C. These lithologies become difficult to identify when the fractional cover 

exceeds 20% because a mutual characteristic absorption feature in their spectra near 

0.95 μm (ATM band 8) becomes severely obscured. For fractional cover in excess of 

70%, the spectral characteristics of all lithologies are completely masked by those of 

dry grass. At this abundance, an increase in reflectance between 0.95–1.65 μm (ATM 

band 8–9) observed in the spectra of all lithologies is replaced by a decrease in 

reflectance, which is a distinctive feature of dry grass.  

 Lichen cover appears to have adverse effects on the spectral recognition of the 

associated lithologies (Fig. 4.16). With just 20% cover, a subtle absorption feature 

characteristic of lichen becomes imparted to the Lefkara Formation and Pillow lava A 

and B spectra near 0.65 μm (ATM band 5). For increasing fractional lichen cover, this 

feature becomes progressively more well-defined in the composite spectra of all 

lithologies, as does an increasingly steeper slope that is imparted to the spectra between 

0.65–0.95 μm (ATM bands 5–8). An additional effect of increasing lichen cover on the 

spectrum of the Lefkara Formation is a significant reduction in albedo. When fractional 

cover exceeds 50–60%, the composite spectra for all three lithological classes are 

completely dominated by lichen. 
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 To summarise, the insight into the effects of vegetation obtained through use of 

a spectral mixing model reveals that as little as 20% fractional vegetation cover can 

severely obscure the spectra of all lithologies, whilst only 50% cover can completely 

mask the spectra of the underlying lithological substrates. When these effects are 

considered together with the fact that widespread vegetation in the study area covers 

between 30–90% of the surface area, the difficulty in directly identifying and mapping 

the lithological units through their reflectance spectra is comprehensible. This is 

particularly the case for straightforward spectral matching algorithms such as SAM. 

With regards to the partial unmixing based algorithms of MF and MTMF, the difficulty 

in identifying the lithologies is likely to be due to the inability to adequately separate the 

spectral responses of the lithological end-members from that of the background. 

Considering that vegetation is both abundant and ubiquitous, this is probably due to 

vegetation spectra dominating the vast majority of ATM pixel spectra, thus severely 

obscuring or completely masking the spectral signature of the underlying lithologies. 

 

4.4 Conclusion 

 In this study, a set of representative reflectance spectra for the four main 

lithologies found within the Troodos study area was acquired by taking laboratory 

reflectance measurements of numerous samples in the 0.35–2.50 μm wavelength region 

using an ASD FieldSpec® Pro. A total of eleven representative spectra were obtained 

from the rock and soil samples collected in the field. These include the spectra of both 

fresh and weathered surfaces for each rock type, as well as those for spectrally distinct 

types of the same lithology (i.e., pillow lavas and alluvium–colluvium). With the aid of 

the continuum removal technique, the spectral characteristics associated with each 

lithological unit were then interpreted in terms of their mineralogy, by comparing the 
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precise wavelengths of electronic and vibrational absorption features to those exhibited 

by known constituent minerals. Absorption features exhibited by the lithologies were 

found to be consistent with those exhibited by their constituent minerals. 

Subsequently, the ability to directly identify and map the lithologies by using 

their representative reflectance spectra in conjunction with the ATM imagery was then 

evaluated. To achieve this, the ATM imagery was first calibrated to laboratory 

reflectance using the empirical line method and then the ATM-bandpass convolved 

laboratory reflectance spectra were used as end-members in three spectral matching 

classification algorithms — SAM, MF and MTMF. The resulting lithological maps all 

had very low overall accuracies of ≥ 7% and K ≈ 0, with between 62–89% of all study 

area pixels remaining unclassified. A correlation between unclassified pixels and higher 

SAVI values was confirmed both qualitatively and quantitatively, indicating that the 

inability to directly map the lithologies could be ascribed to the obscuring effects of the 

vegetation cover. The effects of a selection of vegetation cover types on spectral 

identification of the lithologies were therefore elucidated using a linear spectral mixing 

model. The results revealed that as little as 20% lichen, green or dry grass cover could 

severely obscure the spectra of all lithologies in the ATM imagery, whilst the spectra of 

the underlying lithological substrates can be completely masked by 50% vegetation 

cover. As vegetation cover in the study area frequently exceeds such proportions, the 

majority of ATM pixels undoubtedly exhibit the spectral characteristics of the 

vegetation, which makes the observed difficulty in performing direct spectral mapping 

of rock types comprehensible.   

In summary, the results of this study demonstrate that just small amounts of 

vegetation cover can critically affect the direct spectral identification and mapping of 

lithologies in a typical Mediterranean region, such as Cyprus. Consequently, the utility 
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of this conventional mapping approach is apparently limited to only regions essentially 

barren of vegetation, i.e., deserts, alpine areas and cold regions. Although the obscuring 

and masking effects of vegetation on hyperspectral imagery may or may not be as 

significant as those observed here for multispectral imagery, any expansion in the utility 

of remote sensing data to a broader array of environmental settings would undoubtedly 

be based on the deployment of indirect mapping approaches. For example, this could 

involve exploiting geobotanical relationships or perhaps a correlation between 

topography and lithology. 
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Abstract 

Traditional field-based lithological mapping can be a time-consuming, costly and 

challenging endeavour when large areas need to be investigated, where terrain is remote 

and difficult to access and where the geology is highly variable over short distances. 

Consequently, rock units are often mapped at coarse-scales, resulting in lithological 

maps that have generalised contacts which in many cases are inaccurately located. 

Remote sensing data, such as aerial photographs and satellite imagery are commonly 

incorporated into geological mapping programmes to obtain geological information that 

is best revealed by overhead perspectives. However, spatial and spectral limitations of 

the imagery and dense vegetation cover can limit the utility of traditional remote 

sensing products. The advent of Airborne Light Detection And Ranging (LiDAR) as a 

remote sensing tool offers the potential to provide a novel solution to these problems 

because accurate and high-resolution topographic data can be acquired in either forested 

or non-forested terrain, allowing discrimination of individual rock types that typically 

have distinct topographic characteristics. This study assesses the efficacy of airborne 

LiDAR as a tool for detailed lithological mapping in the upper section of the Troodos 

ophiolite, Cyprus. Morphometric variables (including slope, curvature and surface 

roughness) were derived from a 4 m digital terrain model in order to quantify the 

topographic characteristics of four principal lithologies found in the area. An artificial 

neural network (the Kohonen Self-Organizing Map) was then employed to classify the 

lithological units based upon these variables. The algorithm presented here was used to 

generate a detailed lithological map which defines lithological contacts much more 

accurately than the best existing geological map. In addition, a separate map of 

classification uncertainty highlights potential follow-up targets for ground-based 

verification. The results of this study demonstrate the significant potential of airborne 
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LiDAR for lithological discrimination and rapid generation of detailed lithological 

maps, as a contribution to conventional geological mapping programmes. 
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5.1 Introduction 

Geological mapping is traditionally carried out by employing field strategies that 

are best suited to a specific area, including following azimuthal traverses, cross-strike 

transects, stream sections, ridgetops, bedrock contacts, or moving between individual 

isolated outcrops (Barnes & Lisle, 2004). However, field mapping in complex and 

poorly accessible terrain can be challenging, time-consuming and costly (Gad & Kusky, 

2007; Grunsky et al., 2009; Rogge et al., 2009). As a consequence, lithologies are often 

mapped coarsely at reconnaissance (e.g., 1:250,000) or more local scales (e.g., 

1:50,000), potentially resulting in geological simplifications and inaccuracies (Roy et 

al., 2009).  

Remote sensing data including aerial photographs, and multi- and hyperspectral 

imagery are also used for lithological mapping (e.g., Drury, 1987; Rothery, 1987; Van 

der Meer et al., 1997; Rowan & Mars, 2003; Bedini, 2009; Roy et al., 2009). One of the 

primary benefits of using remote sensing data for lithological mapping is the ability to 

map areas that are poorly accessible in the field. Although high-resolution aerial 

photographs can be manually interpreted to help produce detailed lithological maps, the 

visual discrimination and mapping of surface materials can be subjective, difficult and 

time-consuming (Crouvi et al., 2006). Multi- and hyperspectral imagery can be 

automatically classified to rapidly generate lithological maps over large areas, but 

spatial and spectral limitations of the data may affect the ability to resolve small 

outcrops or discriminate units with similar spectral properties (Rowan & Mars, 2003; 

Dong & Leblon, 2004). Dense vegetation cover, such as forests, can also be a hindrance 

to both field and remote sensing mapping techniques. Whilst making field mapping 

logistically difficult, dense vegetation also obscures the ground surface and conceals 

some of the terrain attributes required for photogeological mapping. Additionally, dense 
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vegetation may also obstruct or completely mask the spectral signature of the 

underlying substrate (Carranza & Hale, 2002).  

 Airborne Light Detection And Ranging (LiDAR) is an emerging active remote 

sensing technique. It offers a potential solution for overcoming the obscuring effects 

that dense vegetation has on discrimination of ground materials, as it has the capability 

of acquiring accurate and high-resolution (ca. 1–4 m) topographic data, even through 

forest cover (Kraus & Pfeifer, 1998). This is important because individual rock and soil 

types respond differently to surface processes, such as weathering and erosion, based on 

their combined mineralogical, petrological and textural characteristics, and thus they 

typically have distinct topographic characteristics (Kühni & Pfiffner, 2001; Belt & 

Paxton, 2005). Laser reflections (or returns) from the ground can be separated from 

vegetation returns to virtually deforest the terrain, enabling the generation of digital 

terrain models (DTMs; Haugerud & Harding, 2001). The ability to identify subtle 

topographic features in high-resolution DTMs makes LiDAR an important tool for 

geosciences research in both vegetated and non-vegetated terrain. Previous geological 

applications of airborne LiDAR include fault mapping (Harding & Berghoff, 2000; 

Haugerud et al., 2003; Prentice et al., 2003; Cunningham et al., 2006), mapping and 

characterisation of landslide morphology (McKean & Roering, 2004; Glenn et al., 

2006) and the characterisation of alluvial fan morphology (Staley et al., 2006; Frankel 

& Dolan, 2007). 

 Lithological mapping using topographic data is highly dependent upon the 

recognition of differences in the topographic characteristics between lithologies. 

Despite its potential for detecting subtle topographic features in vegetated terrain, few 

studies have assessed the use of airborne LiDAR for lithological mapping. Webster et 

al. (2006a, 2006b) visually identified subtle topographic differences in a LiDAR-
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derived DTM and used these to help map three basalt flow units in Nova Scotia, 

Canada. In comparison to other sources of topographic data, only the LiDAR DTM had 

the resolution required to identify the subtle contacts between the units. Wallace (2005) 

quantitatively discriminated three distinct lithological units in the Sudbury Basin, 

Ontario, Canada, using elevation and morphometric variables of slope and plan, profile, 

minimum and maximum curvatures derived from a LiDAR DTM. Several lithological 

maps were also generated through the classification of elevation and slope using a 

number of conventional classifiers, including the Maximum Likelihood Classification 

algorithm. In the same study area, Wallace et al. (2006) used fractal dimension analysis 

to discriminate three lithological units according to differences in topographic 

roughness. These studies demonstrate the potential of airborne LiDAR for both 

qualitative and quantitative lithological discrimination and mapping in areas with 

relatively simple lithological distributions. The use of airborne LiDAR for mapping in 

more geologically complex terrain, where the spatial distribution of lithologies is more 

heterogeneous and distinction of different rock units is potentially problematic in itself, 

has not been demonstrated.  

The aim of this study is to assess the efficacy of airborne LiDAR for the detailed 

lithological mapping of a section of the Troodos ophiolite, Cyprus. Given the 

lithological heterogeneity of the study area, the intention was to develop a semi-

automated algorithm to increase the speed and objectivity of the mapping process in 

comparison to traditional field surveys and visual image interpretation. The algorithm is 

based on the identification and classification of an optimal set of morphometric 

variables that were chosen for their ability to discriminate four principal lithological 

units within the study area. The mapping performance of this algorithm is assessed 



Chapter 5: Lithological mapping using LiDAR data 

 

 

113 

 

using conventional classification accuracy statistics and is spatially revealed by 

mapping the classification uncertainty. 

 

5.2 Study area 

The Troodos ophiolite has long been recognised as an uplifted slice of oceanic 

crust and mantle that was created through sea-floor spreading (Gass, 1968; Moores & 

Vine, 1971). Forming the central region of the eastern Mediterranean island of Cyprus, 

the ophiolite displays a dome-like structure centred on Mt Olympus (1,952 m; Fig. 5.1). 

The ophiolite stratigraphy includes a mantle sequence consisting of harzburgites, 

dunites and a serpentinite diapir exposed at the highest elevations. Along the north slope 

of the range, the mantle sequence is stratigraphically overlain by a largely gabbroic 

plutonic complex, a sheeted dyke complex, extrusive lavas and oceanic sediments 

(Varga & Moores, 1985).  

 

Fig. 5.1. Location of the study area (dashed box) and simplified geology of the Troodos 

ophiolite. Digital geology was provided by the Geological Survey Department of Cyprus. 
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The study area is located on the northern flank of the Troodos ophiolite (Fig. 

5.1) and comprises a 16 km
2
 area with topographic relief on the order of 200 m. The 

area has a complex landscape in terms of geology and both natural and anthropogenic 

influences on topography. The area consists of four main lithological units — the Basal 

Group lavas and dykes, pillow lavas (Upper and Lower), Lefkara Formation chalky 

marls and alluvium–colluvium. Conventional field and photogeological mapping, 

together with some ambiguity in defining the units, is apparently responsible for some 

considerable differences between the two existing geological maps of this study area 

(Fig. 5.2). Despite having a coarser scale, the 1:250,000-scale map is the most recent 

version and considered to be the most geologically accurate.   

 

Fig. 5.2. Existing geological maps of the study area shown in Fig. 5.1. (a) 1:250,000 and (b) 

1:31,680-scale maps adapted from the digital geology provided by Geological Survey 

Department of Cyprus. M–Mathiati mine and A–Agia Varvara Lefkosias. 

 

Stratigraphically, the Basal Group is the lowest unit in the study area. This unit 

represents a transition from the underlying sheeted dyke complex (100% dykes) to the 

overlying pillow lavas. Consisted of both dykes and screens of pillow lavas, the 

definition of the Basal Group is somewhat subjective. In general it contains at least 50% 

dykes, but more commonly has a dyke abundance of 80–90% dykes (Bear, 1960). 
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Typical Basal Group outcrops can usually be identified in the field according to their 

relatively high topography and steep relief (Fig. 5.3a). 

The pillow lavas are divided into the Upper Pillow Lavas and the Lower Pillow 

Lavas according to mineralogy, colour and dyke abundance (Wilson 1959; Gass, 1960). 

However, this division is difficult to apply in the field (Govett & Pantazis, 1971) and an 

unconformable or transitional boundary between the two lava units has led to 

uncertainty over this division (Boyle & Robertson, 1984). Due to this ambiguity, the 

pillow lavas are treated as one unit in this study. In the field, pillow lava terrain is 

characterised by undulating, hummocky topography (Fig. 5.3b). Accurate mapping of 

this unit is crucial to volcanogenic massive sulphide (VMS) mineral exploration on 

Cyprus, as the Troodos VMS deposits are predominantly confined to the pillow lavas 

(Constantinou, 1980). 

 

 

Fig. 5.3. Field photographs showing the four main lithological units: (a) Basal Group, (b) 

pillow lavas, (c) quarry exposure of the Lefkara Formation overlying pillow lavas (LF and PL, 

respectively) and (d) alluvium–colluvium (AC). 
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Two types of sedimentary cover are present within the study area: the Lefkara 

Formation and alluvium–colluvium. The Lefkara Formation represents part of the early 

oceanic sedimentation that was deposited during the late Cretaceous to early Miocene 

(Kähler & Stow, 1998). This formation, which comprises marls, chalks and cherts, 

directly overlays pillow lavas to form gently rolling hills (Fig. 5.3c). Alluvium–

colluvium refers to Quaternary sediments, such as sand, silts, soils and gravels that were 

deposited fluvially or through erosion. Alluvial–colluvial cover is characterised by its 

relatively flat and smooth topography (Fig. 5.3d), which regularly fills depressions in 

pillow lava terrain. Alluvial–colluvial cover is frequently exploited for agricultural 

purposes throughout the study area.  

Major anthropogenic features are quite scarce and include the Mathiati VMS 

mine with spoil tips and the village of Agia Varvara Lefkosias in the north. Land 

disturbances due to agricultural activity are confined to alluvial–colluvial areas and 

although these occur throughout the study area, they are most commonly found in the 

north-west. The study area has a semi-arid environment and vegetation cover is 

relatively dense and widespread, resulting in only small areas of completely exposed 

rock outcrops. Vegetation cover consists of crops, patchy forests, shrubbery, grasses and 

lichen. The combination of variable geology, vegetation cover and land-use makes this 

a particularly complex area for evaluating the application of airborne LiDAR to 

lithological mapping. 

 

5.3 Airborne LiDAR data and pre-processing 

5.3.1 Data acquisition 

Airborne LiDAR data were acquired on the 14
th

 May, 2005 by the Natural 

Environment Research Council Airborne Research and Survey Facility (NERC ARSF). 
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The survey was undertaken at an average flying altitude of 2550 m above sea level, 

using a Dornier aircraft mounted with an Optech ALTM-3033 system. The aircraft–

ground distance ranged between 2100–2300 m due to topographic relief within the 

study area. Operating with a laser pulse repetition rate of 33 kHz and half-scan angle of 

±19.4° either side of nadir, approximately 7,600,000 points were acquired for the study 

area with an average point density of 0.48 m
-2

. The dataset contains point data from five 

overlapping flight lines, each with a swath width of 1400–1500 m and an overlap of 

20%–50% between adjacent swaths. 

Initial data processing was undertaken by the Unit for Landscape Modelling at 

the University of Cambridge, UK. This involved combining Global Positioning System 

(GPS) data with the aircraft orientation — recorded using an Inertial Navigation System 

(INS) — to determine the 3-dimensional coordinates of each laser return (Wehr & Lohr, 

1999). The LiDAR point data were delivered as ASCII files containing the x-y-z 

coordinates and intensity values of all first and last returns in the WGS84 Universal 

Transverse Mercator (UTM) zone 36-North coordinate system. Information regarding 

the absolute accuracy of the processed point data was not provided, however the relative 

vertical accuracy was found to be less than 8 cm as determined from the standard 

deviation of returns from a flat water surface (Glenn et al., 2006). 

 

5.3.2 Digital terrain model (DTM) generation 

The LiDAR dataset originally contained returns from both ground and non-

ground objects, such as trees and buildings. In order to generate a DTM it is necessary 

to remove all non-ground features from the dataset. Point data were classified as either 

ground or non-ground returns using a triangulated irregular network (TIN) densification 

algorithm (Axelsson, 2000), implemented in the TerraScan software 
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(www.terrasolid.fi/en). This algorithm iteratively classifies returns as either ground or 

non-ground according to angle and distance thresholds applied to TIN facets. Due to the 

relatively high degree of topographic variability within the study area, the data in 

individual flight lines were classified separately. In each case the classification 

parameters and threshold were determined experimentally. The maximum terrain angle 

and iteration distance threshold were kept constant throughout, at 88° and 1.40 m, 

respectively. The appropriate maximum building size and iteration angle threshold were 

found to be more scene-dependent. In general, the maximum building size and iteration 

angle varied from 20 m and 14° for flight lines dominated by relatively high relief, to 60 

m and 6° for flight lines acquired over relatively flat terrain. To verify the results of the 

classification process, several cross-sections were extracted from each flight line and 

inspected to ensure the point data were assigned to the correct return class. Wherever 

necessary, misclassified points were manually re-assigned to the correct class. 

Following classification, non-ground returns were discarded, while points classified as 

ground returns were used in the generation of the DTM. 

The accuracy of gridded LiDAR data products is affected by the choice of 

interpolation algorithm and spatial resolution (Smith et al., 2005; Palamara et al., 2007; 

Bater & Coops, 2009). It is therefore important to select an appropriate algorithm and 

resolution in order to avoid errors in the DTM having a significant effect on subsequent 

morphometric analysis. To determine the most appropriate algorithm and resolution, 

DTMs were generated at 1, 2, 3, 4 and 5 m resolutions using a range of popular 

interpolation algorithms. The interpolation algorithms evaluated were inverse distance 

weighted, block kriging, nearest neighbour, cubic polynomial, modified Shepard‘s and 

triangulation with linear interpolation. Interpolation errors associated with each 

algorithm and resolution were assessed quantitatively using statistics generated through 
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split-sample validation (Smith et al., 2005). This involved the random selection and 

omission of approximately 9% of the ground returns, while the remaining 91% were 

used to generate DTMs. The residuals between all omitted data points and their 

predicted values in the DTM were calculated and used to generate interpolation error 

statistics, such as the mean error (indicating the magnitude and direction of any bias) 

and mean absolute error (Bater & Coops, 2009). The DTMs were also visually 

inspected for interpolation artefacts (e.g., null and spurious elevations) using shaded 

relief images with varying illumination directions and vertical exaggeration. The DTM 

generation, along with both visual and quantitative interpolation analysis were all 

undertaken using Surfer 8.0 (Golden Software, Inc.).  

The split-sample validation results showed that all of the interpolation 

algorithms tended to underestimate the actual elevation (mean errors ranging from -0.10 

m to -0.12 m), with the exception of the triangulation with linear interpolation which 

slightly overestimated elevation (mean errors ranging from 0.01 m to 0.04 m). Mean 

absolute errors were generally consistent between the interpolation algorithms and 

spatial resolutions (ranging from 0.23 m to 0.28 m), except for the triangulation with 

linear interpolation algorithm for which mean absolute error increased significantly with 

increasing spatial resolution (from 0.23 m at 1 m resolution to 0.49 m at 5 m). 

During visual inspection, a ―ridge and trough‖ pattern was observed in all DTMs 

at the extreme edges of areas where adjacent flight lines overlap. Cross-sectional 

profiles extracted from the flight lines revealed that elevation exhibited an upward 

concavity error with increasing scan angle towards the edges of swaths — a 

phenomenon often referred to as ―smiley face error‖ (Lohani & Mason, 2005). Such 

parabolic vertical error has been attributed to vertical beam misalignment or systematic 

range errors (Latypov, 2005). The observed DTM artefact is generated when data from 
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multiple flight lines are merged and measurements from large scan angles do not 

coincide with corresponding measurements from smaller scan angles. The effect of 

―ridge and trough‖ artefact on the quantitative analysis was isolated by recalculating the 

split-sample error statistics using only a subset of residuals selected from outside the 

areas of overlap (corresponding to ~3% of the total ground returns). As a result, mean 

errors were reduced to underestimations of between 0.01 m and 0.03 m for all 

interpolation algorithms except triangulation with linear interpolation, for which the 

overestimation increased to between 0.02 m and 0.09 m. Also, the choice of 

interpolation algorithm was found to have a greater effect on mean absolute errors than 

the spatial resolution, again with the exception of triangulation with linear interpolation. 

Nevertheless, the mean absolute error showed a significant decrease in all cases when 

calculated using residuals from outside the areas of overlap. Kriging, modified 

Shepard‘s and cubic polynomial interpolation resulted in the smallest mean absolute 

errors (ranging from 0.09 m to 0.13 m for all resolutions), followed by the inverse 

distance weighted and nearest neighbour algorithms (0.15 m to 0.17 m). Triangulation 

with linear interpolation was the worst performing algorithm, with mean absolute error 

increasing from 0.12 m at 1 m resolution to 0.43 m at 5 m.  

As the ―ridge and trough‖ pattern was solely confined to the areas of overlap 

where the point density is greater, it was possible to almost completely eradicate this 

artefact from the DTMs using a simple point spacing based filter prior to interpolation. 

The filter discarded the point with the highest elevation (i.e., the point most affected by 

―smiley face error‖) when multiple ground returns were present within a given radius. 

The size of the radius was chosen so that the filter only operated on data points within 

the areas of overlap (in this case a point spacing ≤ 2 m). In addition to removing this 

artefact, the filter also generates a dataset with a globally uniform point density. The 
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most appropriate interpolation algorithm and spatial resolution for the final DTM was 

selected as that which minimised the mean and mean absolute errors, and the 

appearance of interpolation artefacts in the DTM. Consequently, 100% of the ground 

returns were used to generate the final DTM at a spatial resolution of 4 m, by applying 

the point-spacing filter prior to interpolation with the kriging algorithm. 

 

5.4 Methods       

The efficacy of airborne LiDAR topographic data for detailed lithological 

mapping is assessed using the methodological approach presented in Fig. 5.4. Following 

the generation of the DTM, the method consists of five major steps, which are discussed 

in the following section. 

 

Fig. 5.4. Flow diagram presenting the methodological approach implemented to assess the 

efficacy of airborne LiDAR for detailed lithological mapping. 

 

5.4.1 Training and validation data  

 Two independent sets of pixels were selected for the purpose of training and 

validating the results of the algorithm developed herein. Using knowledge of the study 
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area, QuickBird imagery (0.70 m resolution) and the existing geological maps, four 

training areas (i.e., regions of interest; ROIs) were carefully selected in ENVI 4.3 

(Research Systems, Inc.) to represent the four lithological classes. All pixels located 

within these four training areas were included in the training dataset. The validation 

pixels were selected using a random stratified sampling protocol to ensure that each 

class was represented proportionately and to avoid spatial autocorrelation within the 

dataset (Chini et al., 2008; Pacifici et al., 2009). To do this, several ROIs were identified 

for each lithological class in the same way as that used to identify the training areas. 

Validation pixels were then randomly sampled from these according to the total area of 

the ROIs associated with each lithological class. Table 5.1 shows the number of pixels, 

the equivalent area and the proportion of the study area selected for each lithological 

class for use in training and validation. In order to determine their effect on the mapping 

performance, it was decided not to mask-out or treat anthropogenic features as a 

separate class. 

Table 5.1. Number of pixels, the equivalent area and the proportion of the study area (PS) 

selected for each lithological class for training and validation purposes. 

Lithological class 
Training  Validation 

Pixels Area (m
2
) PS (%)  Pixels Area (m

2
) PS (%) 

Alluvium–colluvium 1712 27,392 0.17  4087 65,392 0.40 

Basal Group 1780 28,480 0.18  3200 51,200 0.32 

Lefkara Formation 2769 44,304 0.27  2451 39,216 0.24 

Pillow lavas 3095 49,520 0.31  3208 51,328 0.32 

 

5.4.2 Morphometric variables 

 The correlation between lithology and topography that is apparent in the field is 

also clearly evident in the 4 m DTM of the study area (Fig. 5.5). In order to 

automatically classify and map lithology using LiDAR data, it is first necessary to 
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numerically quantify the topographic characteristics of the lithologies using variables 

that enable adequate discrimination. After considering the observed topographic 

characteristics, seven candidate morphometric variables were derived from the DTM for 

this purpose (Table 5.2).  

 

Fig. 5.5. Shaded relief DTM of the study area displaying the distinct topographic characteristics 

of: (a) alluvium–colluvium, (b) Basal Group, (c) Lefkara Formation and (d) pillow lavas. 

 

Morphometric variables like slope, plan and profile curvature are typical 

examples of basic first and second order derivatives of elevation. These three variables 

were derived using a standard routine in ENVI 4.3, which calculates the derivatives 

from a quadratic surface fitted to elevations within a moving window (or kernel) that is 

passed over the DTM (Wood, 1996). Absolute values of plan and profile curvature were 

used to avoid an alternating pattern of convexity and concavity in highly undulating 

such as that of the pillow lavas. Morphometric variables such as these are scale-

dependent; therefore, in order to identify the most suitable scales for maximum 

lithological discrimination, each variable was derived using fifteen different moving 

window sizes ranging from 3 × 3 pixels (12 m × 12 m) to 31 × 31 pixels (124 m × 124 
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m). Moving window sizes were limited to 31 × 31 pixels as larger windows were found 

to reflect more regional-scale topographic information, rather than the local-scale 

information which is more relevant to detailed lithological discrimination. 

Table 5.2. Candidate morphometric variables for lithological discrimination. 

Morphometric variable Description 

Optimal 

moving 

window size 

(pixels) 

Slope (°) Magnitude of the steepest gradient 15 × 15 

Relief (m) Elevation range within a given area 3 × 3 

|Profile curvature| (1/m) 
Absolute value of vertical curvature 

component in aspect direction 
21 × 21 

|Plan curvature| (1/m) 
Absolute value of horizontal curvature 

component in aspect direction 
31 × 31 

Slope roughness (°) Standard deviation of slope 31 × 31 

Residual roughness (m) 
Standard deviation of residual 

topography 
3 × 3 

Hypsometric integral Elevation distribution within a given area 11 × 11 

 

Relief, hypsometric integral and the two LiDAR-derived measures of surface 

roughness were derived in Surfer 8.0. Hypsometry describes the elevation distribution 

within a given area (Strahler, 1952) and can be estimated using the hypsometric integral 

(Pike & Wilson, 1971). The hypsometric integral (HI) is calculated as: 

  (5.1) 

where hmean, hmin and hmax are the average, minimum and maximum elevations within a 

moving window, respectively. This hypsometric integral variable was also derived at 

multiple scales using the same set of fifteen moving window sizes detailed above. 

Surface roughness can be measured using the standard deviation of slope within 

a moving window (Frankel & Dolan, 2007). This variable — referred to here as slope 

roughness —was derived at multiple scales by first determining slope within a 3 × 3 

minmax

minmeanHI
hh

hh
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pixel window (i.e., 12 m × 12 m) and then calculating the standard deviation of slope 

within each of the fifteen moving windows. The second measure of surface roughness 

(known here as residual roughness) is defined as the standard deviation of residual 

topography (Cavalli et al., 2008). First, a 100 m mean DTM was created by smoothing 

the 4 m DTM using a 25 × 25 pixel moving average filter. A residual topographic 

surface was then calculated by subtracting the 100 m mean DTM from the 4 m DTM. 

Finally, the standard deviation of this residual topographic surface was calculated 

within each of the fifteen different sized moving windows. 

In general, good discrimination and classification performance relies upon 

homogeneity within classes and dissimilarity between classes (Li et al., 2009). The 

morphometric homogeneity of the lithologies can be maximised by identifying the 

optimal scale for each candidate variable. The optimal scales can be determined 

statistically by identifying the moving windows size which minimises the spread of 

morphometric data within the training areas (Prima et al., 2006). Here, using the 

standard deviation of each training area as a measure of its spread, the most suitable 

moving window size for each candidate variable was defined as that which minimised 

the average data spread within the training areas. More specifically, for each of the 

fifteen moving window sizes, the standard deviations within each of the four training 

areas were calculated and then averaged. The moving window size resulting in the 

smallest average was deemed to represent the most suitable scale for that variable. This 

procedure was applied separately to each candidate variable, thus enabling multi-scale 

topographic information to be utilised. The optimal moving window size for each 

candidate variable is shown in Table 5.2. 
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5.4.3 Variable selection 

Classification using all available variables might not necessarily produce the 

highest mapping accuracy. Some of these variables may be highly correlated, noisy, 

redundant or irrelevant (Pacifici et al., 2009). Better classification results may be 

achieved when such input variables are discarded and classification is performed using 

a smaller set of informative variables (Kavzoglu & Mather, 2002; Verikas & 

Bacauskiene, 2002). An optimal set of variables can be determined independently of the 

classification algorithm, based on statistical criteria such as class separability (the filter 

approach), or in conjunction with the chosen classifier (the wrapper approach). Despite 

using a non-parametric classifier, a filter approach was adopted as this enabled an 

exhaustive evaluation of all possible variable combinations to be conducted more 

efficiently than with a wrapper approach.  

The number of candidate variables was initially reduced by identifying and 

discarding linearly correlated and therefore redundant variables through the calculation 

of Pearson‘s Product Moment Correlation Coefficients. The optimal set of variables for 

lithological discrimination was then determined from the remaining candidates through 

class separability analysis (Dong & Leblon, 2004). To do this, the morphometric 

separability between pairs of lithological classes (i.e., training areas) was calculated for 

every combination of two or more variables using the Jeffries-Matusita (JM) distance 

(Richards, 1994). For four lithologies, there are six possible pairs of classes and 

therefore six JM distances for each combination of variables. The JM distance ranges 

from 0–2, with pairs classes being inseparable for JM distances of 0 but completely 

separable for distances close to 2. The combination of variables resulting in both the 

largest minimum and largest average JM distances is selected as the optimum for 

lithological discrimination. 
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5.4.4 Classification 

A lithological map was generated using the optimal set of morphometric 

variables as inputs to a topologically preserving artificial neural network classifier; the 

Kohonen Self-Organizing Map (SOM) (Kohonen, 1982, 2001). Artificial neural 

networks possess many advantages over conventional statistical classifiers, since they 

are non-parametric, robust in handling noisy data and can learn complex patterns (Ji, 

2000). Applications of the SOM to remote sensing data include land-use classification 

(Ji, 2000; Bagan et al., 2005; Jianwen & Bagan, 2005), lithological mapping (Mather et 

al., 1998; Bedini, 2009) and geomorphometric feature analysis (Ehsani & Quiel, 2008a, 

2008b).  

The SOM network consists of an input layer and an output layer. The input layer 

contains one neuron for each of the input variables, whereas the output layer is a two-

dimensional array of neurons. Neurons in the output layer are connected to those in the 

input layer via synaptic weights. Random synaptic weights, ranging from 0 to 1, are 

initially assigned to the output neurons. These weights are then adjusted during learning 

to best describe patterns in the input data (Mather et al., 1998). Network learning is an 

iterative process and involves two stages: unsupervised coarse tuning and supervised 

fine tuning. The SOM algorithm in IDRISI Andes was used in this study (Li & 

Eastman, 2006). 

An input vector (a pixel in morphometric space) is represented by the vector x = 

{x1, x2…, xn}, where n is the number of input variables (and input neurons) used in the 

classification. During coarse tuning, input vectors are presented to the network and in 

each case the output neuron with the minimum Euclidean distance between its weight 

vector and the input vector is selected as the winner: 
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(5.2) 

where xi(t) is the input to neuron i at iteration t and wji(t) is the synaptic weight 

connecting output neuron j to the input neuron i at iteration t. The weight vector of the 

winner and output neurons within a neighbourhood of radius γ of the winner are then 

adjusted in the direction of the input vector: 

  (5.3) 

where wji(t +1) is the adjusted weight vector and α(t) is the learning rate at iteration t. 

The weights of neurons outside the neighbourhood remain unadjusted. The learning rate 

decreases gradually during the coarse tuning stage from an initial learning rate (αmax) to 

a final learning rate (αmin) , after the total number of iterations (tmax): 

 
 (5.4) 

 Similarly, the radius of the neighbourhood also decreases steadily during the 

coarse tuning stage:  

  

(5.5) 

A large initial neighbourhood is usually chosen, resulting in widespread adjustments to 

the weight vectors of neurons in the output layer. As learning progresses, γ decreases 

until the weight of only the winning neuron is adjusted.  

 The SOM network parameters used in this study are based on experimentation 

guided using the existing literature (e.g., Ji, 2000; Jianwen & Bagan, 2005; Bedini, 

2009). An output layer consisting of 10 × 10 neurons was chosen, with αmax = 0.05, αmin 
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= 0.01 and γmax = 12. Coarse tuning was performed using all input vectors, therefore tmax 

was equal to the number of pixels in each input variable image (i.e., 1,012,841 

iterations). Prior to learning, the input variables were normalised to the range 0–1 using 

a logistic (softmax) function. This function performs a nearly linear transformation on 

most of the data whilst also acting to reduce the influence of any outliers in each 

variable (Priddy & Keller, 2005). Normalisation increases the learning efficiency and 

also ensures that the input variable with the largest range does not dominate the 

calculation of the Euclidean distances and the organisation of the output layer (Ehsani & 

Quiel, 2008a).  

 Before fine tuning commences, neurons in the output layer must be preliminarily 

labelled using input vectors with known class identities. To achieve this, pixels from the 

training areas were presented to the coarsely tuned network and in each case the output 

neuron with the closest matching weights was triggered. Output neurons were labelled 

according to the training pixel class they were triggered by most frequently — a 

procedure known as majority voting. 

 Fine tuning was performed using the type-one Learning Vector Quantization 

(LVQ1) algorithm (Kohonen, 1990). The aim of fine tuning is to improve the 

classification accuracy by defining the class boundaries in the output layer more 

precisely. Pixels within the training areas were again presented to the SOM and the 

output neuron with the minimum Euclidean distance between a training pixel and its 

weight vector was selected as the Best Matching Unit (BMU). The weights of the BMU 

were adjusted accordingly: 

                                                                     if x is correctly labelled (5.6) 

 

                                                                        if x is incorrectly labelled (5.7) 

)],t()()[()()1( cicc wtxtδtwtw
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                                               if i ≠ c (5.8) 

where wc is the weight vector of the BMU, wc(t + 1) is the adjusted BMU weight vector 

and δ(t) is a scalar gain term, which decreases with each iteration like the learning rate 

during coarse tuning. Consequently, if the class identity of a training pixel matches the 

label of its BMU, the weight vector of the BMU is adjusted in the direction of the 

training vector, but is moved away if not. Fine tuning was performed using δmax = 0.005, 

which decreases to δmin = 0.001 after 200 iterations. Output neurons were re-labelled 

following fine tuning. In order to classify lithology, all input vectors were presented 

again to the trained network and assigned the class identity of their corresponding 

BMU.  

 

5.4.5 Accuracy assessment 

 The classification accuracy was assessed by determining the overall (OA), user‘s 

(UA) and producer‘s (PA) accuracies and the Kappa coefficient (K) from a confusion 

matrix (Congalton, 1991). The OA is the percentage of validation data correctly 

classified, whereas the UA and PA detail the commission and omission errors, 

respectively. The K is considered a more reliable measure of classification accuracy 

because, unlike the OA, it takes into account the possibility of agreements occurring by 

chance in a random classification (Brown et al., 1998; Pignatti, 2009).  

In addition to the lithological map, a second map was generated to analyse the 

spatial context of classification uncertainties. To do this, the degree of commitment that 

each pixel has to its assigned lithological class was determined using the SOM 

Commitment (SOM-C) (Li & Eastman, in press). Calculated from the triggering 

proportion of classes on output neurons during labelling, SOM-C essentially provides 

),()1( twtw ii
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an indication of classification uncertainty. Values range from 0 to 1, with SOM-C 

values close to 1 indicating little uncertainty in the class identity of a pixel, whereas 

values close to 0 indicate high classification uncertainty. 

 

5.6 Results and discussion 

5.6.1 Variable selection for lithological discrimination 

 The Pearson‘s Product Moment Correlation Coefficients revealed that the relief 

variable was highly linearly correlated (r > 0.80) with both the slope and the residual 

roughness variables. Also, slope roughness showed moderate-to-high positive 

correlation (r > 0.54) with almost all candidate variables. Consequently, the relief and 

slope roughness variables were deemed to be redundant and discarded, reducing the 

number of candidate variables from seven to five.  

Minimum and average JM distances for pairs of lithological classes were 

computed for all twenty-six combinations of two or more of the five remaining 

candidate variables (Fig. 5.6). The minimum and average JM distances are generally 

smallest when separability is calculated using only pairs of variables and increases 

when additional variables are included. The slope variable appears to have the greatest 

influence on the separability, since its exclusion results in at least a 20% and 50% 

decrease in the minimum and average JM distances, respectively. In terms of the pair-

wise class separability, the Lefkara Formation and pillow lavas were consistently the 

least separable lithological units and were responsible for the minimum JM distance for 

almost all variable combinations. The lack of morphometric separabilty between these 

two units can be attributed to their stratigraphic relationship, where the Lefkara 

Formation has been deposited directly on top of the pillow lavas. This results in the 

Lefkara Formation displaying some topographic characteristics of the subdued pillow 
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lava terrain that it drapes. Conversely, the Basal Group and alluvium–colluvium were 

consistently the most separable units with JM distances typically exceeding 1.90. Such 

separability is expected due to their contrasting topographic characteristics. Large JM 

distances were also usually observed between alluvium–colluvium and both the pillow 

lavas and Lefkara Formation.  

 

Fig. 5.6. Minimum and average separability (JM distance) for combinations of the slope (s), 

absolute profile curvature (pr), absolute plan curvature (pl), residual roughness (r) and 

hypsometric integral (h) variables. 

 

The combination which includes all five remaining candidate variables is the 

optimum for lithological discrimination, as this combination resulted in both the largest 

minimum and largest average JM distances (1.20 and 1.69, respectively). Furthermore, 

this combination of variables results in the largest JM distances for all six pairs of 

classes. For this optimal combination, the Lefkara Formation and pillow lavas were the 

least separable lithologies, followed successively by the Lefkara Formation and Basal 

Group (JM distance of 1.22), pillow lavas and Basal Group (1.70) and alluvium–
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colluvium versus all other units (all with JM distances of 2.00). The relative importance 

of each variable to the separability of lithologies was evaluated by examining the 

decrease in the JM distances after each variable was removed (Table 5.3). Removing the 

slope variable produced the largest decrease in the JM distances for all six pairs of 

lithological classes and the minimum and mean JM distances. This suggests that slope 

contributes most to the separability of the lithologies in the study area. Apparently, 

absolute plan curvature is also an important variable; particularly for separating the 

morphometric characteristics of the Lefkara Formation, Basal Group and pillow lavas. 

The absolute profile curvature variable is arguably the least important as its removal 

resulted in the smallest decrease in the minimum, mean and the majority of pair-wise 

JM distances. Removing the residual roughness and hypsometric integral variables 

produced a similar decrease in all JM distances, suggesting these are of equal 

importance. This optimal set of morphometric variables — slope, absolute profile 

curvature, absolute plan curvature, residual roughness and the hypsometric integral (Fig. 

5.7) — was subsequently used in the classification stage.  

Table 5.3. The relative importance of variables to the separability of lithologies, determined by 

individually removing each variable from the pair-wise JM distance calculations. 

 JM distance 

Variable 

removed 

LF vs. 

PL 

LF vs. 

BG 

PL vs. 

BG 

LF vs. 

AC 

PL vs. 

AC 

BG vs. 

AC 
Min. Mean 

None 1.20 1.22 1.70 2.00 2.00 2.00 1.20 1.69 

Slope 0.27 0.50 0.41 1.92 1.95 1.94 0.27 1.17 

|Profile 

curvature| 
1.17 1.14 1.67 2.00 1.99 2.00 1.14 1.66 

|Plan 

curvature| 
0.81 1.02 1.59 2.00 1.99 2.00 0.81 1.57 

Residual 

roughness 
1.09 1.10 1.67 2.00 1.97 2.00 1.09 1.64 

Hypsometric 

integral 
1.05 1.13 1.65 2.00 1.99 2.00 1.05 1.64 

LF, Lefkara Formation; PL, pillow lavas; BG, Basal Group; AC, alluvium–colluvium. 
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Fig. 5.7. Optimal set of (normalised) morphometric variables selected as inputs to the SOM 

classification: (a) slope, (b) absolute profile curvature, (c) absolute plan curvature, (d) residual 

roughness and (e) hypsometric integral. 

 

5.6.2 Lithological mapping and accuracy assessment 

A lithological map displaying the four principal units and a SOM-C map, 

indicating the classification uncertainty, were generated using the LiDAR-derived 

topographic data (Fig. 5.8). Following classification, a small amount of noise in the 

classified image was reduced using a 3 × 3 mode filter.  

The accuracy of the lithological map was assessed using the validation pixels 

and the results were summarised using a confusion matrix (Table 5.4). The lithological 

map has an overall accuracy of 65.4% and a K of 0.53. Alluvium–colluvium is the best 

mapped unit with a producer‘s accuracy of 87.9% and a user‘s accuracy of 98.8%, while 

the Lefkara Formation was mapped with the least accuracy. A good producer‘s 

classification accuracy was achieved for the pillow lavas (66.8%), however more than 
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50% of all validation pixels mapped as pillow lavas actually belong to other classes. 

Only 50.4% of Basal Group validation pixels were mapped correctly, but with a 

commission error of just 29.7%. The most classification confusion occurs between the 

Lefkara Formation, pillow lavas and Basal Group, which corroborates the results of the 

separability analysis. Although the majority of this confusion can be explained by their 

stratigraphic relationships or natural deviations from the typical topographic 

characteristics of each unit, anthropogenic activity is also responsible for a significant 

component. An obvious example of this can be found proximal to Mathiati mine and 

spoil tips where the natural topographic characteristics have been destroyed, leading to 

misclassification (Fig. 5.8).  
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Fig. 5.8. (a) Lithological map of the study area generated using LiDAR-derived topographic 

data. The dashed black box indicates the spatial extent of Fig. 5.9. (b) SOM-C map depicting 

classification uncertainty. 

 



Chapter 5: Lithological mapping using LiDAR data 

 

 

137 

 

Table 5.4. Confusion matrix for SOM classification using the optimal set of morphometric 

variables. 

Mapped as Validation data Row 

total 

User‘s 

accuracy 

(%)  
Alluvium–

colluvium 

Basal 

Group 

Lefkara 

Formation 

Pillow 

lavas 

Alluvium–

colluvium 
3594 1 30 11 3636 98.8 

Basal Group 0 1614 299 383 2296 70.3 

Lefkara 

Formation 
2 816 1114 672 2604 42.8 

Pillow lavas 491 769 1008 2142 4410 48.6 

Column total 4087 3200 2451 3208   

Producer‘s 

accuracy (%) 
87.9 50.4 45.4 66.8 

 
 

      

Overall accuracy = 65.4%     

K = 0.53      

 

Through comparison with the QuickBird imagery, it is clear that the algorithm is 

capable of defining lithological contacts more accurately than the best existing 

geological map (Fig. 5.9). Furthermore, the algorithm can be used to generate a more 

detailed lithological map by identifying lithologies in areas that have not been mapped 

previously. The SOM-C map is useful for highlighting areas of uncertainty in the 

lithological map. In general, SOM-C values less than 0.75 correspond to areas with a 

high degree of classification uncertainty, as clearly illustrated by the portion of Lefkara 

Formation incorrectly classified as pillow lavas (Fig. 5.9). In this particular case, the 

confusion is related to the difficulty in detecting the ground beneath some types of low-

lying vegetation using airborne LiDAR. The class containing SOM-C values of 0–0.7 

consists solely of SOM-C values of 0. These values are due to unlabelled neurons in the 

output layer which were not triggered by any of the training pixels (Li & Eastman, in 

press). For the purpose of classification, unlabelled neurons were assigned class labels 

using a minimum distance auxiliary labelling algorithm (Li & Eastman, 2006), resulting 
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in no unclassified pixels in the lithological map. Pixels in the lithological map with 

corresponding SOM-C values of 0 do not necessarily possess a higher degree of 

uncertainty than pixels associated with larger SOM-C values. The uncertainty of pixels 

classified using the auxiliary labelling algorithm is case specific. Examples where such 

SOM-C values correspond to both correct and incorrect classification are evident 

throughout the study area and therefore each case should be considered individually. 

Frequent misclassifications occurring at the contacts between agricultural alluvium–

colluvium and upstanding Lefkara Formation outcrops are highlighted by SOM-C 

values of 0. Ploughing proximal to the contacts is responsible for pixels with atypical 

topographic characteristics, which results in them being incorrectly classified as pillow 

lavas through the auxiliary labelling algorithm.  

 

Fig. 5.9. Detailed view of the mapping performance for the area shown in Fig. 5.8. (a) 

QuickBird image, (b) lithological map generated using LiDAR-derived topographic data and (c) 

SOM-C map. The white dashed line represents the pillow lava–Lefkara Formation contact from 

the 1:250,000-scale geological map in Fig. 5.2a. 

 

The accuracy of the lithological map produced in this study is higher than the 

accuracies reported by Wallace (2005) who investigated an area with a simpler 

lithological outcrop pattern. In contrast to Wallace‘s (2005) study, our analysis involves 

a larger number of morphometric variables and a more complex classification 
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algorithm. In addition, the distribution of the pillow lavas, Basal Group and overlying 

sediments is more complex because they are separated by low-angle contacts and are 

differentially eroded. Therefore, there is no simple strike-belt pattern. Given the 

geological complexity and anthropogenic factors affecting the topography in this study 

area, we consider the results of our algorithm to be good. Additionally, the algorithm 

was implemented using minimal a priori knowledge of the spatial distribution of each 

lithological unit. However, higher mapping accuracies can be achieved using more a 

priori knowledge. Doubling the total number of training pixels (to approximately 2% of 

the total number of pixels within the study area) increases the overall accuracy to 67.3% 

and K to 0.56 when the same SOM network parameters are used. The ability to produce 

good mapping results given limited knowledge regarding the spatial distribution of units 

makes this algorithm particularly relevant to mapping relatively unexplored terrain. 

 

5.7 Conclusions 

This study assesses the efficacy of airborne LiDAR topographic data for detailed 

lithological mapping of a geologically complex area of the Troodos ophiolite, Cyprus. 

Typical topographic characteristics associated with each of the lithologies were 

recognised in a 4 m LiDAR DTM and quantified using a morphometric approach. An 

optimal set of morphometric variables for lithological discrimination were identified 

and used in conjunction with a SOM classifier to produce a lithological map. The 

resulting map achieved an overall accuracy of 65.4% and a K of 0.53, which is 

considered good given the complexity of the study area and the lack of a priori 

knowledge. The lithological map is more detailed than the best existing geological map 

and the lithological contacts are more accurately defined. The results of this study 

demonstrate the significant potential of airborne LiDAR as a tool for generating detailed 
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lithological maps over large areas of either forested or non-forested terrain, where 

conventional methods are of limited use. Furthermore, the SOM-C map highlights areas 

with high classification uncertainty, therefore providing information regarding follow-

up targets for efficient ground-based verification.  

Further studies are required to assess whether improvements in the lithological 

mapping accuracy can be made through the integration of airborne LiDAR data with 

high-resolution multispectral imagery. It is anticipated that the multispectral imagery 

will help to reduce misclassification in non-vegetated areas where the natural 

topographic characteristics of the various rock types have been destroyed by 

anthropogenic activity. 

The detailed lithological map generated in this study represents a valuable aid to 

VMS mineral exploration in the Troodos ophiolite because the mapped distribution of 

potential host rocks is now much better resolved than on previous maps. In addition, the 

efficacy of this algorithm extends to other geological settings where lithology and 

topography are positively correlated, with exciting implications beyond mineral 

exploration. In particular, the relative ease with which basement rocks and sedimentary 

cover can be discriminated at high-resolution could be useful in all terrains from open 

ground to densely forested landscapes for: 1) identifying local areas for groundwater 

extraction, 2) locating areas with enhanced agricultural potential, and 3) for general 

infrastructure planning where it is important to know construction site substrates. Thus 

the methods presented here may have widespread utility for a range of applications, 

especially in areas of mixed basement and sedimentary cover exposure.
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6. Integrating ATM 

imagery and airborne 

LiDAR data for enhanced 

lithological mapping 

 

 

 

 

This chapter is derived from: 

 

Grebby, S., Naden, J., Cunningham, D., & Tansey, K. (2011). Integrating airborne 

multispectral imagery and airborne LiDAR data for enhanced lithological mapping in 

vegetated terrain. Remote Sensing of Environment, 115, 214–226. 
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Abstract 

Practical and financial constraints associated with traditional field-based lithological 

mapping are often responsible for the generation of maps with insufficient detail and 

inaccurately located contacts. In arid areas with well exposed rocks and soils, high-

resolution multi- and hyperspectral imagery is a valuable mapping aid as lithological 

units can be readily discriminated and mapped by automatically matching image pixel 

spectra to a set of reference spectra. However, the use of spectral imagery in all but the 

most barren terrain is problematic because just small amounts of vegetation cover can 

obscure or mask the spectra of underlying geological substrates. The use of ancillary 

information may help to improve lithological discrimination, especially where 

geobotanical relationships are absent or where distinct lithologies exhibit inherent 

spectral similarity. This study assesses the efficacy of airborne multispectral imagery 

for detailed lithological mapping in a vegetated section of the Troodos ophiolite 

(Cyprus), and investigates whether the mapping performance can be enhanced through 

the integration of LiDAR-derived topographic data. In each case, a number of 

algorithms involving different combinations of input variables and classification routine 

were employed to maximise the mapping performance. Despite the potential problems 

posed by vegetation cover, geobotanical associations aided the generation of a 

lithological map — with a satisfactory overall accuracy of 65.5% and Kappa of 0.54 — 

using only spectral information. Moreover, owing to the correlation between 

topography and lithology in the study area, the integration of LiDAR-derived 

topographic variables led to significant improvements of up to 22.5% in the overall 

mapping accuracy compared to spectral-only approaches. The improvements were 

found to be considerably greater for algorithms involving classification with an artificial 

neural network (the Kohonen Self-Organizing Map) than the parametric Maximum 
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Likelihood Classifier. The results of this study demonstrate the enhanced capability of 

data integration for detailed lithological mapping in areas where spectral discrimination 

is complicated by the presence of vegetation or inherent spectral similarities.  
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6.1 Introduction 

Over large areas and where the terrain is geologically complex or poorly 

accessible, field-based lithological mapping can be time-consuming, costly and 

challenging (Gad & Kusky, 2007; Grunsky et al., 2009; Rogge et al., 2009). For these 

reasons lithological maps are typically generated using limited numbers of field and 

outcrop observations which may, as a consequence, result in some concern regarding 

the accuracy of the lithological contacts (Philip et al., 2003). Remote sensing data, such 

as aerial photographs and multi- and hyperspectral imagery, offers solutions to many of 

the restrictions associated with field-based surveys. For instance, remotely sensed data 

can provide more continuous and detailed information for large areas, thus enabling 

even the most inaccessible terrain to be mapped for only a fraction of the time and cost 

required for an equivalent field survey. 

The application of multi- and hyperspectral imagery to lithological mapping is 

well established for arid and semi-arid areas which are essentially devoid of vegetation. 

Due to the good exposure of rocks and soils, lithology can be mapped directly by 

matching image pixel spectra with the reference reflectance spectra of individual rock 

units using automated classification routines (e.g., Rowan & Mars, 2003; Harris et al., 

2005; Roy et al., 2009). However, spectral discrimination and mapping in all but the 

most barren terrain can be problematic, because just small amounts (≥ 10%) of 

vegetation cover (e.g., trees, shrubs and lichen) can obscure or completely mask the 

spectra of underlying lithologies (Siegal & Goetz, 1977; Ager & Milton, 1987; Murphy 

& Wadge, 1994).  

Where the effects of vegetation prevail, image processing techniques such as 

principal component analysis (Fraser & Green, 1987; Loughlin, 1991) and spectral 

unmixing (Bierwirth, 1990; Chabrillat et al., 2000; Zhang et al., 2005) have been 
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employed to try and separate the spectral responses of vegetation and substrate, and to 

detect rock exposures at sub-pixel resolutions. Alternatively, indirect lithological 

discrimination is possible if geobotanical relationships with the underlying substrates 

are realised (Paradella et al., 1997; Leverington, 2010). For example, Rowan et al. 

(2004) utilised subtle spectral features relating to variations in vegetation cover to map 

specific lithological units in the Mordor Complex, Australia, while Harris et al. (2005) 

used a vegetation spectral end-member as a proxy for mapping metagabbroic rocks in 

southern Baffin Island, Canada. However, if lithology and vegetation are unrelated, or if 

distinct lithologies exhibit an inherent spectral similarity regardless of vegetation cover, 

spectral data alone are often insufficient for successful discrimination (Schetselaar et al., 

2000; Dong & Leblon, 2004). In such circumstances it may be beneficial to consider 

ancillary information for the differentiation and mapping of lithological units. 

Numerous studies have assessed the ability to augment the lithological mapping 

results of spectral-only classifications by incorporating ancillary data such as 

topographic information (Hutchinson, 1982; Ricchetti, 2000), spectral-derived texture 

(Chica-Olmo & Abarca-Hernández, 2000; Li et al., 2001) and radar-derived texture 

(Mather et al., 1998; Dong & Leblon, 2004). These data are potentially useful because 

they provide information about the surface morphology, which is often found to be 

correlated with lithology through differences in the weathering and erosion 

characteristics of individual units (Mather et al., 1998; Kühni & Pfiffner, 2001; Belt & 

Paxton, 2005). Although previous studies have demonstrated the capability to improve 

lithological classification accuracies through data integration, they have been confined 

to using data with only moderate-to-coarse spatial resolutions (i.e., 12.5–30 m). The 

potential to delineate lithological contacts in finer detail and with better accuracy is 
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further enhanced by the availability of high-resolution remote sensing data (Philip et al., 

2003).  

Aircraft-mounted sensors provide remotely sensed data with a spatial resolution 

of up to an order of magnitude greater than the classic spaceborne sensors such as 

Landsat TM and ASTER. Furthermore, airborne surveys are commonly exploited for 

the concomitant acquisition of multisource data; in particular both multi- or 

hyperspectral imagery and Light Detection And Ranging (LiDAR) data. In contrast to 

passive spectral sensors, airborne LiDAR is an active remote sensing technique that has 

the capability of acquiring accurate and high-resolution (ca. 1–4 m) topographic data, 

even through forest cover (Kraus & Pfeifer, 1998). It offers a solution for overcoming 

the obscuring effects that dense vegetation has on lithological discrimination because 

laser reflections (or returns) from the ground can be separated from vegetation returns to 

virtually deforest the terrain, enabling the generation of digital terrain models (DTMs; 

Haugerud & Harding, 2001). The resulting high-resolution DTMs can then be used both 

qualitatively (Webster et al., 2006a 2006b) and quantitatively (Wallace, 2005; Wallace 

et al., 2006; Grebby et al., 2010) to reveal subtle topographic differences that reflect 

changes in lithology. Topographic data from sources other than airborne LiDAR can 

lack the spatial resolution required for delineating subtle contacts between lithological 

units (Webster et al., 2006a). Accordingly, the integration of airborne LiDAR 

topographic data with airborne multi- or hyperspectral imagery may provide a 

significant improvement of the classification results, especially in cases where there are 

no geobotanical relationships. However, the true efficacy of this approach has not yet 

been demonstrated.   

This study concerns the detailed lithological mapping of a vegetated section of 

the Troodos ophiolite, Cyprus. In a previous study for the same area, Grebby et al. 
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(2010) demonstrated the ability to discriminate and map the main lithological units to a 

respectable accuracy solely using LiDAR-derived topographic information. Despite 

this, natural and anthropogenically induced deviations from the typical topographic 

characteristics were the cause of some classification confusion between specific units. 

In an effort to identify a more optimal approach, the aims of the current study are to: (i) 

assess the efficacy of airborne multispectral imagery for detailed lithological mapping 

and (ii) utilise the results of the previous study to investigate whether the integration of 

airborne LiDAR-derived topographic data can further enhance the mapping capabilities. 

For both aims, a number of different algorithms were investigated in an attempt to 

maximise the mapping accuracy. The mapping results of the algorithms were first 

assessed individually using conventional classification accuracy statistics, before pair-

wise comparisons were made in order to establish the algorithm capable of generating 

the most accurate lithological map. 

 

6.2 Study Area 

The study area is located in the foothills on the northern flank of the Troodos 

ophiolite, Cyprus (Fig. 6.1). The Troodos ophiolite is an uplifted slice of oceanic crust 

and lithospheric mantle that was created through sea-floor spreading (Gass, 1968; 

Moores & Vine, 1971). Exhibiting a dome-like structure centred on Mt. Olympus 

(1,952 m), the ophiolite stratigraphy includes a mantle sequence comprising 

harzburgites, dunites and a serpentinite diapir exposed at the highest elevations. This 

mantle sequence is stratigraphically overlain by a largely gabbroic plutonic complex, a 

sheeted dyke complex, extrusive lavas and oceanic sediments at decreasing elevations 

along the northern slope of the range (Varga & Moores, 1985). 
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Fig. 6.1. Simplified geology of the Troodos ophiolite and existing geological maps of the study 

area (inset; M – Mathiati mine and A – Agia Varvara Lefkosias). Digital geology provided by 

the Geological Survey Department of Cyprus. 

 

The study area covers approximately 16 km
2 

of the upper section of the 

ophiolite, and comprises four main lithological units — the Basal Group lavas and 

dykes, pillow lavas (Upper and Lower), Lefkara Formation chalky marls and alluvium–

colluvium. Two published geological maps of the island cover this area at both regional 

and local mapping scales (see Fig. 6.1). The 1:31,680-scale map is the product of a 

mapping campaign undertaken in the late 1950‘s and early 1960‘s, whereas the 

1:250,000-scale map is the more recent version, revised in 1995. Regardless of scale, 

the two maps exhibit some obvious geological differences. This can be ultimately 

attributed to the limited area covered during fieldwork, the subjectivity of the employed 

mapping techniques and some degree of ambiguity in defining a number of the 

lithological units.  

Stratigraphically, the Basal Group is the lowest unit in the study area. Consisting 

of both dykes and screens of pillow lavas, this unit represents a transition from the 
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underlying sheeted dyke complex (100% dykes) to the overlying pillow lavas. An exact 

definition of the Basal Group is somewhat lacking, although it generally contains at 

least 50% dykes but with a more common dyke abundance of 80–90% (Bear, 1960). 

The pillow lavas have traditionally been divided into the Upper Pillow Lavas and the 

Lower Pillow Lavas according to mineralogy, colour and dyke abundance (Wilson 

1959; Gass, 1960). However, this division is difficult to apply in the field (Govett & 

Pantazis, 1971) and an unconformable or transitional boundary between the two lava 

units has led to some uncertainty about this division (Boyle & Robertson, 1984). For 

this reason, the pillow lavas are treated as a single unit in the current study. The pillow 

lavas are stratigraphically overlain by the chalks, marls and cherts of the Lefkara 

Formation. This unit represents late Cretaceous to early Miocene marine sedimentation 

(Kähler & Stow, 1998). The alluvium–colluvium unit refers to Quaternary sediments, 

such as sand, silts, soils and gravels, that were deposited fluvially or through hill-slope 

processes. The alluvium–colluvium is commonly found filling depressions within the 

hummocky pillow lava terrain. 

The study area contains a complex landscape due to the variable geology, both 

natural and anthropogenic influences on the topography, and vegetation cover. 

Prominent anthropogenic features include the disused Mathiati mine with spoil tips, 

Agia Varvara Lefkosias village (see Fig. 6.1) and a significant proportion of agricultural 

land which is confined to areas underlain by alluvial–colluvial materials. Vegetation is 

widespread throughout, covering between 30–90% of the surface area, therefore 

resulting in a heterogeneous surface mixture of vegetation and rock/soil (Fig. 6.2a). 

Correlation between some species of vegetation and particular lithological units is also 

apparent within this area. For example, green grasses plus a variety of crops (including 

olive groves) are predominantly associated with alluvium–colluvium (Fig. 6.2b), 



Chapter 6: Integrating ATM and LiDAR for enhanced lithological mapping 

 

 

150 

 

whereas in addition to some low scrubby vegetation, moderate-to-dense lichen cover is 

almost exclusively found growing on pillow lava outcrops (Fig. 6.2c). Conversely, some 

similarities in the types of low and medium-growth vegetation commonly found 

growing on the Lefkara Formation and Basal Group terrain are also apparent. Other 

types of mostly sporadic vegetation cover occurring throughout the study area include 

trees — ranging from isolated trees (e.g., pines and oaks) to dense thickets and copses — 

and areas covered by tall, dry grasses and other scrubland. 

 

Fig. 6.2. Field photographs of the study area showing: (a) the heterogeneous vegetation cover 

and typical vegetation types associated with (b) alluvium–colluvium and (c) the pillow lavas.  

 

6.3 Data and pre-processing 

6.3.1 Airborne multispectral imagery 

Airborne Thematic Mapper (ATM) multispectral imagery was acquired by the 

Natural Environment Research Council (NERC) Airborne Research and Survey Facility 

(ARSF) in May, 2005. The ATM imagery comprises 11 spectral bands in the 

visible/near-infrared (VNIR; Bands 1–8), short-wave infrared (SWIR; Bands 9–10) and 
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thermal infrared (TIR; Band 11). Since this study is concerned with only reflectance 

data, the TIR band (Band 11) was discarded. Band 1 was also omitted as the data are 

significantly affected by atmospheric scattering (Copley & Moore, 1993). Five 

northwest-southeast trending flight-lines of imagery were acquired over the study area 

and delivered as Level 1b Hierarchical Data Format (HDF) files, with radiometric 

calibration algorithms applied and aircraft navigation information appended. 

Radiometric calibration involved conversion of the raw ATM data to at-sensor radiance 

units and then subsequent scaling to 16-bit digital numbers (DNs). All image strips were 

individually geocorrected and re-sampled to a spatial resolution of 4 m using the 

AZGCORR software (Azimuth Systems) in conjunction with a 4 m LiDAR digital 

elevation model.  

Across-track (i.e., perpendicular to the flight direction) brightness differences 

observed in all geocorrected images were minimised through a multiplicative second-

order polynomial correction, which was applied using the Cross-track Illumination 

Correction tool in ENVI 4.3 (ITT Visual Information Solutions, 2006). Following this 

correction, image strips were co-registered with the aid of tie-points identified in pairs 

of overlapping images, and then mosaicked to create a single seamless image; both 

tasks were performed within ENVI 4.3. Colour Balancing was applied during 

mosaicking to minimise the spectral differences between overlapping images. This 

procedure calculates gains and offsets from a fixed image and then uses these to adjust 

the spectral values of an overlapping image, thus matching the spectral statistics 

between the images. Due to an absence of ground reflectance spectra and atmospheric 

measurements at the time of the airborne survey, rigorous model or empirical-based 

atmospheric corrections could not be reliably applied. Moreover, an inspection of the 

spectral values in the pre-processed imagery suggested that first-order atmospheric 
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correction for effects such as haze was not necessary and, as a consequence, no 

atmospheric correction was applied to the ATM imagery. 

 

6.3.2 Airborne LiDAR data 

At the same time as the ATM data acquisition an airborne LiDAR survey was 

also undertaken using an Optech ALTM-3033 system. It was undertaken at an average 

flying altitude of 2550 m above sea level, resulting in an aircraft–ground distance 

ranging between 2100–2300 m due to topographic relief on the order of 200 m. The 

ALTM-3033 system was operated with a laser pulse repetition rate of 33 kHz and half-

scan angle of ±19.4° either side of the nadir, resulting in the collection of approximately 

7,600,000 points for the study area with an average density of 0.48 points per m
2
. The 

dataset contains point data from five overlapping flight-lines, each with a swath width 

of 1400–1500 m and an overlap of 20%–50% between adjacent swaths. Following pre-

processing by the Unit for Landscape Modelling (ULM) at the University of 

Cambridge, UK, the LiDAR point data were delivered as ASCII files containing the x-

y-z coordinates of all first and last returns in the WGS84 Universal Transverse Mercator 

(UTM) zone 36-North coordinate system. Following delivery, the point data were 

classified as either ground or non-ground returns using a triangulated irregular network 

(TIN) densification algorithm (Axelsson, 2000). This algorithm, which is implemented 

in the TerraScan software (Terrasolid Ltd.), first establishes a set of low (ground) points 

and then iteratively classifies the remaining points as either ground or non-ground 

returns according to angle and distance thresholds applied to TIN facets. For further 

information regarding the classification process, such as the parameters and thresholds 

used and verification of the results, the reader is referred to Grebby et al. (2010). 

Following classification, non-ground returns were discarded, while those classified as 
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ground were then used to generate a DTM. As the choice of interpolation algorithm and 

spatial resolution can affect the accuracy of DTMs, an experiment was conducted in 

order to determine the most appropriate combination (Grebby et al., 2010). 

Consequently, a 4 m DTM was generated in Surfer 8.0 (Golden Software, Inc.) using a 

block kriging algorithm, since this combination resulted in the smallest interpolation 

errors. As a final step, the ATM imagery was subsequently co-registered to the 4 m 

DTM in ENVI 4.3, using an RST method with image-selected tie-points and cubic 

convolution resampling.   

 

6.4 Methods 

 The methodology employed here to assess the efficacy of ATM imagery for 

detailed lithological mapping in vegetated terrain, and to evaluate whether 

improvements can be made through the integration of LiDAR-derived topographic data, 

is outlined in Fig. 6.3. In summary, the mapping methodology consists of four main 

steps: 1) the selection of training and validation pixels, 2) derivation of the input 

variables, 3) classification, and 4) an accuracy assessment. 
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Fig. 6.3. Overview of methodological approach used to assess the efficacy of ATM imagery and 

the integration of LiDAR-derived topographic data for detailed lithological mapping. Bracketed 

acronyms (see section 6.4.2 for explanation) denote names of sets of input variables used in 

conjunction with the Maximum Likelihood Classifier (MLC) and the Kohonen Self-Organizing 

Map (SOM). 

 

6.4.1 Training and validation pixels 

 Two independent samples of pixels with known class identities were identified 

for training and validating the algorithms. The set of training pixels was used to assist 

all classifications of the full scene by helping to spectrally and topographically 

characterise the four lithological units. This set comprised pixels located within four 

representative areas (i.e., regions of interest; ROIs) with unambiguous class identities, 

which were carefully defined in the imagery using information gathered from detailed 

field surveys and 0.7 m QuickBird satellite imagery. Due to the inconsistencies between 

the existing geological maps, their use was limited at this stage to providing only a 

general lithological overview of the study area. The number of training pixels 
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representing each unit was deliberately kept to a minimum to investigate how the 

algorithms perform using only minimal a priori information about the spatial 

distribution of the lithologies. In total, the training dataset comprises less than 1% of the 

total number of pixels within the study area (Table 6.1). 

Table 6.1. Number of pixels, the equivalent area and the proportion of the study area (PS) 

selected to represent each lithological class during training and validation. 

Lithological class 
Training  Validation 

Pixels Area (m
2
) PS (%)  Pixels Area (m

2
) PS (%) 

Alluvium–colluvium 1712 27,392 0.17  4087 65,392 0.40 

Basal Group 1780 28,480 0.18  3200 51,200 0.32 

Lefkara Formation 2769 44,304 0.27  2451 39,216 0.24 

Pillow lavas 3095 49,520 0.31  3208 51,328 0.32 

 

The accuracy of a thematic map is customarily determined by comparing the 

true class identities of a sample of validation pixels to those assigned through 

classification. In order to obtain a statistically valid accuracy estimate for an entire 

mapped area from only a sample of validation pixels, an appropriate sample size is 

required (Foody, 2009). The required sample size can be determined using statistical 

sampling theory such as the normal approximation of the binomial distribution 

(Fitzpatrick-Lins, 1981): 

 
2

2

Z

E

pq
n ,     (6.1) 

where n is the sample size, Z is the critical value of the normal distribution for the two-

tailed significance level, p is the expected accuracy, q = 100–p, and E is the allowable 

error (or level of precision). If the value of p is unknown, then a ―worst case‖ (large) 

estimate of n can be found by maximising the term pq using p = 50. 



Chapter 6: Integrating ATM and LiDAR for enhanced lithological mapping 

 

 

156 

 

Although the sample size determined using the above method is suitable for 

estimating the overall accuracy of a thematic map — where pixels are either correctly or 

incorrectly classified — it does not account for the confusion that may occur between 

multiple classes (Congalton, 1991). To ensure that each class is adequately represented 

in a confusion matrix, Congalton (1991) suggests using a minimum of 50 to 100 

validation pixels per class. Alternatively, the minimum number of samples for each 

class can be determined from the multinomial distribution (Tortora, 1978; Congalton & 

Green, 1999). For a specified confidence level (α) and absolute precision (bi), the 

required number of samples, ni,, for class i can be calculated as:   

 

 

(6.2) 

where i  is the proportion of the scene covered by class i, B is the upper (α/k) × 100
th

 

percentile of the χ
2
 distribution with one degree of freedom, and k is the number of 

exhaustive and mutually exclusive classes. A total of k calculations are needed to 

determine the sample sizes for all classes, with the largest n typically chosen as the 

required sample size for all individual classes. Again, if i  is unknown, then a large 

estimate of ni can be found by assuming i  = 0.5.  

 To achieve statistically valid estimates of both the overall accuracy and 

individual class accuracies for the whole map, the validation sample must satisfy both 

the total and individual class size criteria. Therefore, in order to derive estimates of the 

overall accuracy of a map to say a precision of ±1% (E = 1) and the individual class 

accuracies to a precision of ±3% (bi = 0.03) at the 95% confidence level (α = 0.05; also 

assuming p = 50; i = 0.5), a validation sample of at least 9,604 pixels is required, with 

a minimum of 1,734 pixels in each class. To achieve this, several ROIs with 
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unambiguous class identities were defined throughout the imagery to represent each 

lithological class — again with the aid of field knowledge and QuickBird imagery. 

Validation pixels were then sampled from these ROIs using a random stratified 

sampling protocol to ensure classes were represented proportionally, and to help reduce 

bias caused by spatial autocorrelation (Chini et al., 2008; Pacifici et al., 2009). 

Consequently, a total of 12,946 validation pixels were sampled, with a minimum class 

size of 2,451 pixels. Details regarding the areal extent and the number of pixels selected 

to represent each lithological class during validation can also be found in Table 6.1. 

 

6.4.2 Derivation of variables 

6.4.2.1 Spectral variables 

 The efficacy of ATM imagery for lithological mapping in the vegetated Troodos 

study area was assessed by deriving three sets of spectral variables for use as inputs for 

classification. The first set of input variables (ATM 9) comprised the nine ATM Bands 

2–10. However, an examination of the spectral signatures for the lithologies reveals low 

separability for some units (Fig. 6.4). A combination of inherent or vegetation-induced 

spectral similarities and the considerable intra-class variability due to heterogeneous 

vegetation cover are ultimately responsible for this lack of distinction. 
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Fig. 6.4. Mean spectral signatures (±1 standard deviation) derived from training pixels for ATM 

Bands 2–10. Radiometrically calibrated radiance values are expressed as 16-bit digital numbers 

(DNs). Spectra are horizontally offset within ATM bands for clarity. 

 

In order to try and improve lithological discrimination, two image enhancement 

techniques were employed: principal component analysis (PCA) and the Minimum 

Noise Fraction (MNF) transformation. Variables derived from the application of PCA 

and the MNF transformation are frequently used as inputs to classifiers to try to enhance 

the spectral separability of classes present within the original imagery (Li & Moon, 

2004; Belluco et al., 2006; Liberti et al., 2009). A second set of spectral variables was 

therefore derived through the application of PCA to the nine ATM bands. The PCA 

technique can enhance spectral information by decorrelating the data, segregating noise 

and reducing the data dimensionality (Jensen, 2005). The outcome of PCA is a new set 

of uncorrelated variables called Principal Components (PCs), which are linear 

combinations of the original nine ATM bands. These PCs are ordered decreasingly in 

terms of the proportion of the total data variance they contain, with the higher-order PCs 

containing most of the total variance. The small proportion of the total variance 
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contained within the lower-order PCs is mostly regarded as the noise within the original 

ATM bands, and so discarding these PCs effectively segregates this noise. Following 

the PCA transformation, examination of the eigenvalues revealed that the first three PCs 

accounted for 97.5% of the total image variance (Table 6.2), while the remaining six 

PCs were deemed to contain mostly noise. Consequently, in an attempt to enhance 

lithological discrimination, only the first three PCs were selected to form the second set 

of inputs variables for classification (ATM PC). Eigenvector loadings in Table 6.2 show 

that the first PC (PC1) receives equal positive contributions from all nine ATM bands 

and therefore represents albedo information. The high positive eigenvector loadings for 

ATM Bands 7 and 8 indicate that PC2 describes the presence of vegetation, which is 

highly reflective in the near-infrared (0.76–1.05 μm). The third PC primarily describes 

the contrast between the VNIR and SWIR regions of the electromagnetic spectrum. 

Table 6.2. Eigenvalues and eigenvector loadings for the first three PCs derived from the 

application of PCA to ATM Bands 2–10. Eigenvector loadings measure the contribution of the 

original ATM bands to each PC. 

Eigenvectors PC1 PC2 PC3 

ATM 2 0.33 -0.40 -0.19 

ATM 3 0.35 -0.32 -0.20 

ATM 4 0.35 -0.26 -0.16 

ATM 5 0.36 -0.17 -0.14 

ATM 6 0.36 0.19 -0.19 

ATM 7 0.33 0.47 -0.19 

ATM 8 0.30 0.57 -0.05 

ATM 9 0.32 0.17 0.50 

ATM 10 0.29 -0.19 0.74 

    

Eigenvalues 7.25 1.00 0.53 

Variance (%) 80.56 11.10 5.84 

Cumulative variance (%) 80.56 91.66 97.50 

 

Spectral enhancement and data compression was also performed using the 

Minimum Noise Fraction (MNF) transformation (Green et al., 1988). The MNF 

transformation determines the inherent dimensionality of the data and segregates noise 
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using two PCA transformations (Boardman & Kruse, 1994). The first transformation — 

based on an estimated noise covariance matrix — decorrelates and rescales the data 

noise, while the second step comprises a PCA transformation of the noise-whitened 

data. As a result, the MNF transformation produces a set of coherent eigenimages (MNF 

bands) with correspondingly large eigenvalues (i.e., signal-to-noise ratios), and an 

accompanying set of noise-dominated images characterised by small eigenvalues. 

Accordingly, image noise can be segregated by selecting only the coherent MNF Bands. 

The MNF transformation implemented in ENVI 4.3 was applied to ATM Bands 

2–10. An estimate of the noise statistics was generated from a lithologically 

homogeneous area of alluvium–colluvium that was overlain with variable vegetation 

cover. As the spectral response of the underlying lithological substrate was considered 

to be constant in this area, it was expected that the noise would primarily relate to the 

spectral variability caused by the heterogeneous rock/vegetation surface mixture. 

Although the noise estimate considers only one lithological unit, an MNF 

transformation based on these statistics was still anticipated to produce an overall 

reduction in vegetation-related spectral variability throughout, and a consequential 

increase in lithological discrimination. Of the resulting nine MNF bands, the first four 

accounted for approximately 99% of the cumulative eigenvalues for the data (Table 

6.3). These four MNF bands were subsequently selected to comprise the third set of 

spectral variables (ATM MNF), while the remaining five noise-dominated MNF bands 

were discarded. According to the eigenvector loadings shown in Table 6.3, the four 

selected MNF bands receive their highest loadings from the ATM bands situated in the 

visible part of the spectrum (i.e., Bands 2–5). In addition, the relatively minor 

contributions of ATM Bands 7 and 8 to all four MNF bands are noteworthy.  
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Table 6.3. Eigenvalues and eigenvector loadings for the first four MNF bands derived from the 

MNF transformation of ATM Bands 2–10. Eigenvector loadings measure the contribution of the 

original ATM bands to each MNF band. 

Eigenvectors MNF1 MNF2 MNF3 MNF4 

ATM 2 0.94 0.13 0.08 0.27 

ATM 3 0.04 -0.88 0.38 0.09 

ATM 4 0.14 0.13 0.28 -0.84 

ATM 5 -0.18 0.36 0.72 0.21 

ATM 6 0.10 -0.05 -0.13 -0.21 

ATM 7 0.11 -0.04 -0.25 -0.23 

ATM 8 -0.01 0.03 0.15 -0.06 

ATM 9 -0.09 0.20 0.17 0.16 

ATM 10 0.18 -0.08 0.35 -0.22 

     

Eigenvalues 2660.43 218.50 76.66 52.54 

Proportion (%) 87.28 7.17 2.51 1.72 

Cumulative proportion (%) 87.28 94.45 96.96 98.68 

 

6.4.2.2 Integrated spectral and topographic variables 

 As the occurrence of vegetation is likely to affect the spectral discrimination and 

mapping of lithologies, ancillary topographic information was also considered. Within 

the Troodos study area, a correlation between topography and the four lithological units 

is clearly evident in the field. Grebby et al. (2010) showed it was possible to exploit this 

relationship to discriminate and map these lithologies solely using topographic 

information derived from a 4 m LiDAR DTM. Derived at their appropriate scales, the 

five morphometric variables of slope, absolute profile curvature, absolute plan 

curvature, residual roughness and the hypsometric integral were found to be optimal for 

separating the topographic characteristics of the four lithological units.  

In an attempt to improve the mapping results of the spectral-only classifications, 

these five morphometric variables were integrated with the ATM spectral imagery 

through two different approaches. The simplest approach to integrating ancillary data is 

to increase the number of variables used as inputs to the classification — a technique 

known as the ―logical channel‖ approach (Strahler et al., 1978). Accordingly, the five 



Chapter 6: Integrating ATM and LiDAR for enhanced lithological mapping 

 

 

162 

 

morphometric variables were merged with the nine ATM bands to form a first 

integrated set of fourteen input variables (ATM-Li). Multisource data can also be 

integrated using both PCA and the MNF transformation. A comparison of the two 

approaches by Mutlu et al. (2008) robustly demonstrates the superior classification 

results that are achievable using the MNF approach to multisource integration. 

Therefore, in order to try and enhance the spectral-topographic discrimination of 

lithologies while simultaneously reducing data redundancy, the MNF transformation 

was applied to the merged set of fourteen spectral and morphometric variables. As a 

result, the first five MNF bands accounted for approximately 98% of the cumulative 

eigenvalues (Table 6.4) and were subsequently selected to form the second set of 

integrated variables for classification (ATM-Li MNF). The first of these five integrated 

MNF bands (MNF1) receives its highest loading from ATM Band 2, with sizeable 

contributions also from ATM Band 5, and the absolute profile curvature and residual 

roughness variables. Both absolute profile curvature and ATM Band 5 contribute the 

most information to the second MNF band, while also contributing significantly, along 

with residual roughness, to MNF3. The fourth MNF band largely describes the contrast 

between absolute plan curvature and the hypsometric integral, whereas MNF5 receives 

high positive loadings from both of these morphometric variables. 
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Table 6.4. Eigenvalues and eigenvector loadings for the first five MNF bands derived from the 

MNF transformation of the fourteen spectral and morphometric variables. Eigenvector loadings 

measure the contribution of the original bands to each MNF band. 

Eigenvectors MNF1 MNF2 MNF3 MNF4 MNF5 

ATM 2 0.70 0.12 -0.20 -0.21 0.10 

ATM 3 0.02 -0.12 0.00 0.25 -0.01 

ATM 4 0.15 0.40 0.14 0.14 -0.36 

ATM 5 -0.36 -0.51 -0.47 -0.02 -0.15 

ATM 6 -0.07 0.02 -0.08 0.02 -0.05 

ATM 7 -0.01 -0.11 0.05 0.06 0.09 

ATM 8 0.02 0.02 0.03 -0.04 0.03 

ATM 9 -0.03 -0.17 -0.06 -0.05 0.22 

ATM 10 0.09 -0.12 0.10 -0.08 0.01 

Slope -0.06 0.10 -0.06 -0.01 -0.09 

|Profile curvature| 0.36 -0.65 0.56 0.15 -0.04 

|Plan curvature| 0.11 0.08 -0.23 0.64 0.65 

Residual roughness -0.41 0.21 0.52 0.24 0.09 

Hypsometric integral -0.16 0.04 0.21 -0.60 0.58 

      

Eigenvalues 7942.20 2422.13 1300.35 247.91 201.14 

Proportion (%) 64.47 19.66 10.55 2.01 1.63 

Cumulative proportion (%) 64.47 84.13 94.68 96.69 98.32 

 

6.4.3 Classification 

 The three sets of spectral variables and two sets of integrated spectral-

topographic variables derived above were used in conjunction with classification 

routines to generate lithological maps. With the aid of the training pixels, supervised 

classification was performed using two classifiers with contrasting properties; the 

statistical Maximum Likelihood Classifier (MLC) and a non-parametric artificial neural 

network, called the Kohonen Self-Organizing Map (SOM; Kohonen, 1982, 2001).   

 The MLC is a popular image classifier that assumes the class probability density 

functions are multivariate normal (Mather et al., 1998). Individual class probability 

density functions are first computed using the mean vectors and covariance matrices of 

the classes, which are antecedently determined from the training pixels. Using this 

information, the probabilities of an image pixel belonging to each of the classes is 
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estimated and the pixel is accordingly assigned to the class for which the probability is 

highest. Where prior knowledge of the study area is available, the MLC classification 

can also be refined using prior probabilities (Mather et al., 1998). However, since it was 

the intention to restrict the a priori knowledge to only a small number of training pixels 

in this study, the MLC was used with equal prior probabilities for each lithological 

class. 

In many cases, the utility of statistical classifiers, such as the MLC, are often 

compromised by the prevalence of complex lithological class probability density 

functions, which arise due to spatial variability in vegetation cover (Leverington, 2010). 

Furthermore, the simple multivariate normal assumption regarding class probability 

density functions is also often invalid for ancillary data (Hutchinson, 1982). Following 

this, it is apparent that artificial neural networks (NNs) are better suited to lithological 

classification because they are non-parametric, robust in handling noisy data and can 

learn complex input patterns (Ji, 2000). These advantages over conventional classifiers 

are responsible for the increasing interest in NNs, the most popular of which is the 

Multilayer Perceptron (MLP). Alternative NNs, particularly the SOM, have not been 

investigated as thoroughly as the MLP. Nevertheless, the SOM is becoming 

increasingly popular as a classifier, by demonstrating its ability to achieve promising 

results for many remote sensing applications, including land-use classification (Ji, 2000; 

Bagan et al., 2005; Jianwen & Bagan, 2005), and lithological mapping (Mather et al., 

1998; Bedini, 2009). Considering this, all input variables were additionally classified 

using the SOM algorithm implemented in IDRISI Andes (Li & Eastman, 2006), which 

is summarised below. 

A SOM network consists of two layers; an input layer containing one neuron for 

each of the input variables, and an output layer made up of a two-dimensional array of 
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neurons. Neurons in the output layer are connected to those in the input layer via 

synaptic weights. Random synaptic weights, ranging 0–1, are initially assigned and 

these are then adjusted during learning to best describe patterns in the input data 

(Mather et al., 1998). Network learning is an iterative process and involves two stages: 

unsupervised coarse tuning and supervised fine tuning. During coarse tuning, 

normalised input vectors (i.e., pixels in spectral or combined spectral-morphometric 

space) are presented to the network to determine the output neuron with the best-

matching weight vector. The weight vectors of this best-matching neuron and output 

neurons within a given neighbourhood of the winner are subsequently adjusted in the 

direction of the input vector according to the learning rate. Both the radius of the 

neighbourhood and the learning rate decrease with each iteration. Prior to fine tuning, 

input vectors with known class identities (i.e., training pixels) are used to preliminarily 

label the output neurons through a process known as majority voting. Fine tuning with 

the type-one Learning Vector Quantization (LVQ1) algorithm (Kohonen, 1990) was 

then used to define the class boundaries in the output layer more precisely. To do this, 

training pixels are again presented to the SOM and the weight vector of the best-

matching neuron is adjusted in the direction of the training vector if its label matches 

the class identity of the pixel, but moved away if not. Once trained, output neurons are 

re-labelled and then all image pixels are presented to the network and assigned the class 

identity of their best-matching output neuron. 

 For classification using the SOM, parameters such as the number of output 

neurons, initial neighbourhood radius and minimum and maximum learning rates must 

be defined. Using the existing literature as a guide (e.g., Ji, 2000; Jianwen & Bagan, 

2005; Bedini, 2009), numerous tests were conducted to determine appropriate sets of 

parameters for all SOM classifications. In each case, the appropriate parameters were 
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chosen to try and minimise the average quantisation error (average of Euclidean 

distances between input vectors and best-matching neurons) and maximise the labelling 

accuracy of training pixels. The chosen parameters for each classification are shown in 

Table 6.5. In all cases, coarse tuning was performed using all available input vectors 

(i.e., all 1,008,596 pixels), with a maximum learning rate of 0.05 and a minimum 

learning rate of 0.01. Fine tuning was performed with LVQ1 using a maximum gain 

term of 0.005 and a minimum of 0.001. 

Table 6.5. SOM network parameters. 

Input variables 

Neurons 

in output 

layer 

Initial 

neighbourhood 

radius 

Fine 

tuning 

iterations 

ATM 9 20 × 20 15.14 300 

ATM PC 15 × 15 8.07 200 

ATM MNF 25 × 25 30.00 100 

ATM-Li 25 × 25 18.00 200 

ATM-Li MNF 35 × 35 40.00 200 

 

 After classification using both the MLC and SOM, a 3 × 3 pixel majority filter 

was applied to every map. The purpose of the majority filter was to remove pixels that 

are isolated in terms of their lithological class because, as lithological units tend to form 

homogeneous areas, it is somewhat unlikely that the relatively small areal extent 

represented by these isolated pixels truly represents a different lithological unit in an 

otherwise homogeneous area (Ricchetti, 2000). 

 

6.4.4 Accuracy assessment 

For each set of input variables, the classification accuracy for the entire mapped 

area was assessed using the overall (OA), user‘s (UA) and producer‘s (PA) accuracies 

and the Kappa coefficient (K) derived from a confusion matrix (Congalton, 1991). The 
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OA is the percentage of all validation pixels correctly classified, whereas the UA and 

PA provide information regarding the commission and omission errors associated with 

the individual classes, respectively. Unlike the OA, K takes into account the possibility 

of agreements occurring by chance in a random classification (Brown et al., 1998). 

 In order to compare the two classifiers and to evaluate whether the integration of 

topographic data can improve on the spectral-only mapping results, tests for statistically 

significant differences were computed. Although this commonly involves performing a 

Z-test using the K statistics derived from two classification results (e.g., South et al., 

2004; Liberti et al., 2009), this method is inappropriate for the current study as the same 

validation pixels are used to assess the accuracies of all classifications involved in pair-

wise comparisons (Foody, 2004). For cases where the validation data are related, the 

McNemar test is more appropriate for testing the significance of any differences in 

classification accuracies (Foody, 2004; De Leeuw et al., 2006). Based upon a Chi-

squared (χ
2
) distribution, the McNemar test involves a cross-tabulation of the number of 

validation pixels correctly and incorrectly classified through two algorithms. The test is 

computed as: 

                                     , (6.3) 

where f12 is the number of validation pixels correctly classified in classification 1 but 

incorrectly classified in classification 2, and f21 is the number of pixels classified 

correctly in classification 2, but incorrectly classified in classification 1. The statistical 

significance of the difference is then determined from the resulting χ
2
 value and 

expressed as a p-value (p). 
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6.5 Results and discussion 

6.5.1 Spectral classification 

 A total of six lithological maps were generated using spectral information. 

Following initial classification, use of the majority filter helped to remove isolated 

pixels in the classified images by refining, on average, the classes of 1.5% of the total 

number of pixels in each image. As a consequence, the OA of all maps was increased 

by an average of 1.3%. All subsequent discussion concerns the lithological maps 

produced following majority filtering. A summary of the spectral-only lithological 

mapping results is shown in Table 6.6. 

Table 6.6. Results for spectral-only classification algorithms and statistical significance of 

differences between corresponding MLC and SOM classifications (p-value). 

Input variables 

MLC  SOM  

p-value OA (%) K  OA (%) K  

ATM 9 61.6 0.50  60.3 0.48  0.0010 

ATM PC 51.4 0.37  50.2 0.35  0.0007 

ATM MNF 59.3 0.46  65.5 0.54  <0.0001 

 

 

 

Fig. 6.5. Lithological maps generated using: (a) the best spectral-only algorithm (ATM MNF 

SOM) and (b) the best integrated spectral–topographic algorithm (ATM-Li MNF SOM). 

Dashed black box indicates the spatial extent of Fig. 6.7. 
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The best spectral-only result was obtained through SOM classification of the 

MNF-transformed variables (ATM MNF), which resulted in an OA of 65.5% and a K of 

0.54 (Fig. 6.5a). The result of this algorithm is comparable to the OA (65.4%) obtained 

for the same area using only LiDAR-derived topographic information (Grebby et al., 

2010). Considering the complexity of the landscape and the adverse effects that 

vegetation cover can have on the spectral discrimination of lithologies, this is deemed to 

be a good result. The worst performing algorithm was the SOM classification used in 

conjunction with the PC variables (ATM PC; OA = 50.2%, K = 0.35), resulting in 

decreases of 15% in the OA and 35% in K when compared to the ATM MNF approach. 

A similar finding was also observed for the MLC; decreases in the OA of 8% and 20% 

in K were obtained when classification was performed on the ATM PC variables in 

contrast to the ATM MNF variables. Such concomitant differences imply that the MNF 

transformation is more effective than PCA in enhancing discrimination through 

suppression of the intra-class spectral variability ascribed to the heterogeneous 

vegetation/rock surface mixtures (i.e., the predominant source noise in this case). The 

ascendancy of the MNF transformation is doubtlessly due to the ability to target the 

desired noise component in the noise estimation and then order the MNF bands in terms 

of their signal-to-noise ratio, thus enabling this noise to be reliably segregated prior to 

classification. In fact, the poor performance of both ATM PC classifications in 

comparison to the non-transformed ATM 9 results (i.e., decreases of 10% in the OA and 

~26% in K) suggests that PCA actually accentuates, rather than suppresses the 

vegetation-induced intra-class spectral variability. This is due to the inability of PCA to 

reliably identify and separate the contributions of the signal and noise-related variances 

to the total data variance contained within the higher-order PCs (Chen et al., 2003); the 

first three of which are included in the ATM PC variable set. Based on a comparison of 
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the eigenvector loadings for the PC and MNF input variables, it appears that PC2 is 

responsible for accentuating the intra-class spectral variability because it maximises the 

contrast between pixels dominated by vegetation and those dominated by the exposed 

substrate. The exclusion of PC2 should therefore help to reduce the intra-class spectral 

variability and improve the overall classification results of the PCA approach. 

With regards to classifier performance, the MLC outperforms the SOM in 

classifying two out of the three sets of spectral input variables. Although the observed 

differences in the OA between the MLC and SOM in both cases are only small (~ 1%), 

these are statistically significant nonetheless (p ≤ 0.001). Given the noisy spectral 

signatures associated with the ATM 9 variables, the success of the MLC over the SOM 

is somewhat surprising as NNs are commonly touted as being more robust in handling 

noisy data than parametric classifiers (e.g., Ji, 2000). This result may therefore indicate 

selection of sub-optimal SOM network parameters for classifications based upon these 

two sets of variables. For the lone case in which the SOM outperforms the MLC (i.e., 

the ATM MNF variables) a more significant difference of ~ 6% is obtained (p < 0.0001). 

The considerable superiority of the non-parametric SOM in this case could be 

attributable to a deviation from the multivariate class normality assumption made by the 

parametric MLC.  
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Table 6.7. Individual class accuracies for spectral-only algorithms: Producer‘s (PA) and User‘s 

(UA) accuracies for alluvium–colluvium (AC), Basal Group (BG), Lefkara Formation (LF) and 

pillow lavas (PL). 

Algorithm 

 PA (%)  UA (%) 

 AC BG LF PL  AC BG LF PL 

MLC           

ATM 9  46.5 46.0 84.3 79.0  99.6 55.4 41.8 73.7 

ATM PC  29.9 41.4 60.2 82.1  97.6 41.9 32.3 66.5 

ATM MNF  51.5 40.0 64.5 84.5  99.8 40.1 47.4 62.9 
           

SOM           

ATM 9  48.4 30.1 87.6 84.7  83.8 58.2 46.8 63.6 

ATM PC  21.5 35.6 75.5 81.8  95.7 43.6 34.7 64.2 

ATM MNF  66.0 39.1 71.1 86.8  93.5 49.6 51.8 66.8 

 

 Of the individual lithological classes, the pillow lavas were the most accurately 

mapped unit with a PA and UA frequently exceeding 80% and 60% respectively, 

regardless of the algorithm used (Table 6.7). The Lefkara Formation is also mapped 

with relatively good accuracy for all sets of input variables, but especially when 

classification is performed using the SOM (PA > 71%). Despite this, the Lefkara 

Formation is associated with considerable commission errors, ranging from 48–68% for 

all combinations of input variables and classification routine. An inspection of the error 

matrices (Appendix I) revealed that confusion with the Basal Group is largely 

responsible for the high commission errors associated with the Lefkara Formation unit. 

Since these two units are geologically very distinct, this confusion must be ascribed to 

their associations with similar vegetation types. Both the Basal Group and alluvium–

colluvium are poorly classified using both the MLC and SOM. The omission error for 

the Basal Group is consistently greater than 54%, while the commission error varies 

from 40–60% for all algorithms. Despite its close geological relationship to the pillow 

lava unit, a greater proportion of Basal Group validation pixels are incorrectly assigned 

to the Lefkara Formation; again reiterating that the spectral similarity between these 



Chapter 6: Integrating ATM and LiDAR for enhanced lithological mapping 

 

 

172 

 

distinct units must be related to their association with similar types of vegetation. 

Conversely, the occurrence of dissimilar vegetation types (i.e., shrubs vs. lichen) is 

arguably responsible for the lack of spectral confusion between the Basal Group and 

pillow lavas. With the exception of classifications based upon the ATM MNF variables, 

the PA for alluvium–colluvium never exceeds 50%, with the unit most frequently 

confused with the Lefkara Formation and the other units to a lesser extent. Some degree 

of confusion with the other units can be expected because alluvium-colluvium is a 

generic unit which includes all Quaternary sediments regardless of their parental rock 

type. Contrary to its poor PA, the alluvium–colluvium unit exhibits the highest UA for 

all algorithms, with a maximum of 99.8% for the MLC classification of the ATM MNF 

variables and a minimum of 83.8% when using the ATM 9 variables in conjunction 

with the SOM.  

 

6.5.2 Classification based on integrated spectral and topographic variables 

 The use of ancillary data for enhancing the discrimination and mapping of 

lithologies was evaluated through incorporating LiDAR-derived topographic data using 

two approaches; resulting in the generation of four lithological maps. Again, all analysis 

concerns lithological maps produced following the application of a majority filter. In 

this case, the majority filter helped refine (on average) the classes of 0.9% of the total 

number of pixels in each image, leading to increases in the OA of all maps by an 

average of 1.4%. A summary of the integrated mapping results is shown in Table 6.8 

and Table 6.9, while the statistical significance of differences between spectral and 

integrated classification accuracies can be found in Table 6.10.  
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Table 6.8. Results for integrated spectral–topographic classification algorithms and statistical 

significance of differences between corresponding MLC and SOM classifications (p-value). 

Input variables 

MLC  SOM  

p-value OA (%) K  OA (%) K  

ATM-Li 61.9 0.50  70.2 0.60  <0.0001 

ATM-Li MNF 60.8 0.49  72.7 0.63  <0.0001 

 

Table 6.9. Individual class accuracies for integrated spectral–topographic algorithms: 

Producer‘s (PA) and User‘s (UA) accuracies for alluvium–colluvium (AC), Basal Group (BG), 

Lefkara Formation (LF) and pillow lavas (PL). 

Algorithm 

 PA (%)  UA (%) 
 AC BG LF PL  AC BG LF PL 

MLC           

ATM-Li  41.6 40.4 96.2 83.2  100 87.3 40.6 67.4 

ATM-Li MNF  27.5 56.3 88.8 86.2  100 77.9 52.3 51.7 
           

SOM           

ATM-Li  75.9 44.3 78.2 82.4  93.0 76.5 58.1 59.3 

ATM-Li MNF  92.5 45.2 63.4 81.9  86.5 75.7 53.7 69.8 

 

Table 6.10. Statistical significance of differences (expressed as p-values) between spectral-only 

and integrated spectral–topographic classification algorithms. 

Classifier Spectral variables 

Spectral–topographic variables 

ATM-Li ATM-Li MNF 

MLC ATM 9 0.1875 0.0579 

ATM PC <0.0001 <0.0001 

ATM MNF <0.0001 0.0018 
    

SOM 

 

ATM 9 <0.0001 <0.0001 

ATM PC <0.0001 <0.0001 

ATM MNF <0.0001 <0.0001 

 

 Overall, the results show that the incorporation of topographic information leads 

to general improvements in the overall lithological mapping accuracy when compared 

to classifications based solely on spectral data. However, the level of improvement 

attainable is somewhat classifier dependent. Once again the highest OA was obtained 

using the SOM classifier in conjunction with MNF transformed variables (ATM-Li 
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MNF; OA = 72.7%, K = 0.63; Fig. 6.5b). This results in an OA at least 7% higher than 

— and significantly different (p < 0.0001) from — all spectral-only SOM classifications, 

with a maximum improvement of 22.5% over the ATM PC result. Highly significant 

statistical differences (p < 0.0001) were also observed between the SOM ATM-Li and all 

spectral-only SOM classifications; reflecting increases in the OA and K of at least 4.7% 

and 10%, respectively, when topographic information is incorporated. Improvements 

attainable using the MLC are somewhat varied. Compared to the best spectral-only 

MLC result (ATM 9), MLC classification with the ATM-Li variables produced an 

increase in the OA of only 0.3%, which was subsequently found not to be a statistically 

significant difference (61.6% vs. 61.9%; p = 0.1875). However, significant differences 

(p < 0.0001) were obtained in comparison to the ATM PC and ATM MNF MLC-based 

classifications, reflecting improvements of ≥ 2.6% in the OA. Classification performed 

using the MLC and ATM-Li MNF variables was less successful as this produced the 

worst classification accuracy of all the integrated approaches (OA = 60.8%, K = 0.49). 

In actual fact, this algorithm performs worse than the best MLC spectral approach 

(ATM 9). Nevertheless, the OA obtained using this algorithm is higher and the result is 

statistically different (p < 0.002) from those achieved through the two other spectral-only 

MLC approaches. Ultimately, the SOM is far superior for classification of the 

multisource data as it outperforms the MLC considerably for both sets of integrated 

variables (ATM-Li: 70.2% vs. 61.9%, p < 0.0001; ATM-Li MNF: 72.7% vs. 60.8%, p < 

0.0001). The dominancy of the NN over the parametric classifier for multisource data 

classification observed here is consistent with other published results (e.g., Arora & 

Mathur, 2001). Additionally, the SOM consistently achieves considerable 

improvements in the overall lithological mapping accuracy in comparison to sole use of 

spectral information. 
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 With regards to the individual classes, the pillow lava unit remains the most 

accurately mapped, with a PA in excess of ~ 82% for all algorithms. Good classification 

accuracies are achieved for the Lefkara Formation (PA > 63.4%), especially when 

classified using the MLC (PA > 88%). Despite this, the UA for the Lefkara Formation 

unit is relatively low, leading to commission errors ranging from 41.3–59.4%. The 

alluvium–colluvium unit is accurately mapped with algorithms based on the SOM (PA > 

75%), while excellent UA‘s (> 86%) are achieved for all algorithms. Although the 

omission errors for the Basal Group are high for all algorithms (43.7–59.6%), only 

small commission errors (< 25%) are attached to the unit. 

A summary of the effects of topographic integration on the individual class 

accuracies for the SOM algorithms is provided by Fig. 6.6. From this, it is evident that 

improvements in the lithological mapping performance that result from the addition of 

topographic information are primarily linked to substantial increases in both the PA 

associated with alluvium–colluvium and the UA of the Basal Group unit; reflecting 

decreases in the omission and commission errors of the units, respectively. Spectral-

only classifications typically produce considerable alluvium–colluvium omission errors 

because the alluvium–colluvium unit is frequently confused with the parental rock types 

from which the sedimentary unit is derived. The integration of topographic information 

help reduces this confusion and the ensuing omission errors because, unlike its spectral 

signature which is inherently similar to the parental rocks from which the unit is 

derived, the topographic characteristics associated with alluvium–colluvium are 

distinctive (Grebby et al., 2010). Likewise, the typical topography associated with the 

Basal Group is relatively disparate from the other lithological units — particularly in 

terms of slope — and so the inclusion of such information provides the additional 

discriminating power that is required to reduce the confusion largely caused by 
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vegetation-related spectral similarity with other units. Examples illustrating the 

functional benefits described above can be seen in Fig. 6.7. Although the overall 

mapping improvements obtained through incorporating topographic information are 

indisputable, ambiguous classifications occasionally occur in areas where the 

lithological units exhibit atypical topographic characteristics — mostly due to 

anthropogenic activity such as agriculture. This is also illustrated in Fig. 6.7 by the 

apparent increase in the number of Basal Group pixels proximal to the mapped Lefkara 

Formation–pillow lava contact. In this particular case the source of the atypically steep 

topography is unclear, but it is likely to be linked to underlying structures (e.g., a fault 

or dykes). 

 

Fig. 6.6. Effect of topographic integration on the Producer's and User's accuracies of individual 

units for all SOM algorithms. Alluvium–colluvium (AC), Basal Group (BG), Lefkara Formation 

(LF) and pillow lavas (PL). 
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It is also clearly evident that — despite the complexity of the landscape — both 

spectral-only and integrated SOM approaches possess the capability to define 

lithological contacts more accurately and map the units in more detail than what is 

shown on existing geological maps (Fig. 6.7). Although the best spectral-only approach 

(ATM MNF SOM) and LiDAR-derived topographic approach (Grebby et al., 2010) can 

be used to generate accurate lithological maps, the potential of data integration for 

detailed lithological mapping in this type of vegetated environment is clearly 

demonstrated through the significant improvements attainable over the sole use of either 

dataset. 

 

Fig. 6.7. Detailed illustration of the mapping performance for area shown in Fig. 6.5. (a) 

QuickBird image, and lithological maps generated using (b) the best spectral-only algorithm 

(ATM MNF SOM) and (c) the best integrated spectral–topographic algorithm (ATM-Li MNF 

SOM). 
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6.6 Conclusions 

The application of spectral remote sensing to lithological mapping can be 

hindered by the presence of just small amounts of vegetation cover, and so its use has 

been predominantly restricted to essentially barren environments. Although lithological 

mapping using geobotanical relationships and the integration of spectral and ancillary 

data are not new concepts, their use has been limited to data with only moderate-to-

coarse spatial resolutions and areas with a relative lack of ubiquitous vegetation cover. 

This study takes advantage of increasingly available high-resolution remote sensing 

data to evaluate the efficacy of airborne multispectral imagery for detailed lithological 

mapping in a complex and vegetated area of the Troodos ophiolite, Cyprus. 

Furthermore, this study also investigates whether spectral and LiDAR-derived 

topographic data can be integrated to increase lithological discrimination and enhance 

the overall mapping performance. 

Lithological mapping using only spectral imagery was somewhat hindered by a 

combination of the intra-class spectral variability caused by the heterogeneous 

vegetation cover, and by both vegetation-induced and inherent spectral similarities 

between some of the lithological units. Despite these hindrances, a lithological map 

with a satisfactory OA of 65.5% and K of 0.54 was generated through the SOM 

classification of a set of MNF-transformed spectral variables. The MNF transformation 

was effective in suppressing the intra-class spectral variability (or ―noise‖) caused by 

the variable vegetation cover, and thus generally resulted in enhanced lithological 

discrimination in comparison to PCA and non-transformed spectral variables. In fact, 

PCA accentuated the contrast between pixels dominated by the spectral response of 

vegetation and those dominated by the rock type, resulting in an adverse effect on 

discrimination. Nevertheless, regardless of the algorithm employed, distinct 
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geobotanical associations (i.e., lichen vs. shrubs) apparently aided the differentiation of 

the pillow lavas and the closely related Basal Group unit. With regards to the classifier 

performances, the MLC outperformed the SOM in two of the three sets of spectral 

variables, possibly owing to sub-optimal SOM network selections. 

Incorporating high-resolution topographic information generally resulted in 

improvements to the overall lithological mapping accuracy when compared to the 

spectral-only approaches. However, the attainable improvements are considerably 

greater for the SOM than for the MLC. This result demonstrates the SOM‘s superiority 

for multisource data classification. The most accurate lithological map is obtained using 

the SOM classifier in conjunction with the MNF-transformed spectral and topographic 

variables (OA = 72.7% and K = 0.63). This represents a minimum and maximum 

increase in the OA of 7% and 22.5%, respectively, when compared to the corresponding 

spectral-only approaches. The improvements generated by the addition of topographic 

information are primarily linked to substantial decreases in both the omission error 

associated with alluvium–colluvium and the commission error of the Basal Group unit. 

Both of these lithological units have particularly distinct topographic characteristics, 

which provide the additional discriminatory power required to separate the lithologies 

following inherent or vegetation-induced spectral similarities. Occasional lithological 

misclassifications are observed in areas where the units display atypical topographic 

characteristics due to either anthropogenic influences or natural deviations. 

The optimum spectral-only and integrated SOM approaches presented here are 

capable of producing lithological maps with more detail and more accurately defined 

contacts than the existing geological maps of the study area. Furthermore, this 

capability is demonstrated using minimal a priori knowledge regarding the spatial 

distribution of each lithological unit, which offers great promise for lithological 
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mapping in relatively unexplored terrain. Nevertheless, the efficacy of these algorithms 

can potentially be extended to any geological setting where direct spectral 

discrimination is difficult due to the presence of vegetation or inherent spectral 

similarities, and where lithology and topography are linked. It is also anticipated that the 

algorithms can be successfully applied to areas with heavier vegetation cover, provided 

that geobotanical and/or litho-topographic relationships can be recognised. In 

particularly dense vegetation cover such as forests, it may be necessary to acquire the 

LiDAR data at a high point density in order to ensure an adequate DTM can be 

generated, thus maximising the capability to identify potential litho-topographic 

relationships. 

Irrespective of the mapping capabilities of any remote sensing approach, the 

final lithological map product will always require additional refinement. This usually 

involves a laborious combination of manual computer-based image refinement and 

fieldwork to eradicate spurious classifications from the map. Further work is required to 

investigate whether this process can be automated to some extent, possibly using a rule-

based procedure which refines the class of spurious pixels according to established 

stratigraphic relationships. This could ultimately help to further increase the veracity of 

the derived map and the efficiency of follow-up fieldwork. 
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Abstract 

Besides lithological information, geological structure comprises another essential 

component of geological maps. Structural maps are traditionally produced by mapping 

features such as faults, folds, fabrics, fractures and joints in the field. However, large 

map areas and the limited ground perspective of the field geologist leads to the 

inevitability that some important geological features will not be identified. The ability to 

recognise and map both local and regional structural features using high-resolution 

remote sensing data provides an opportunity to complement field-based mapping, 

enabling the generation of more comprehensive structural maps. Nonetheless, as with 

lithological mapping, vegetation cover can adversely affect the extraction of structural 

information from remotely sensed data because it is capable of masking the appearance 

of subtle spectral and geomorphological features that correspond to geological 

structures. The objective of this study is to investigate the utility of airborne LiDAR 

data and ATM imagery for detailed structural mapping of the vegetated ophiolitic rocks 

and sedimentary cover of Troodos study area. Visual enhancement techniques were 

applied to the 4 m airborne LiDAR DTM and 4 m ATM imagery to assist the manual 

generation of lineament maps. The visual enhancement techniques included the 

generation of shaded relief images, in addition to the application of edge enhancement 

convolution filtering and morphological transformations. Despite widespread vegetation 

cover, a preliminary analysis showed that faults and dykes were recognisable in the 

airborne LiDAR DTM and ATM imagery as lineaments defined by edges. The 

predominant strike trends of lineaments in all resulting maps were found to be in 

agreement with field-based structural data, thus demonstrating the efficacy of airborne 

LiDAR data and ATM imagery for extracting detailed and accurate structural 

information to help complement field-based mapping.  
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7.1 Introduction 

In addition to identifying the variety of rock types and their distributions within 

a given area, an important objective of geological mapping is to also document the 

structural geology (Barnes & Lisle, 2004). Structural information is valuable for 

understanding the crustal architecture, studies of seismic and landslide hazards, 

engineering and the exploration of groundwater, petroleum and mineral resources 

(Moore & Waltz, 1983; Kresic, 1995; Karnieli et al., 1996; Wladis, 1999; Harris et al., 

2001; Peña & Abdelsalam, 2006; Corgne et al., 2010).  

Structural maps are traditionally produced by mapping features such as faults, 

folds, fabrics, fractures and joints in the field. Although arguably the most reliable and 

accurate maps are those produced using field mapping techniques, large map areas and 

the limited ground perspective of the field geologist leads to the inevitability that 

important geological features, including local and regional structures, will not be 

identified (Süzen & Toprak, 1998). However, the ability to recognise and map structural 

features for large areas using remote sensing data provides complementary information 

and also an opportunity to generate more comprehensive structural maps. 

Important structural features may be expressed as lineaments on remotely sensed 

imagery and DEMs (Masoud & Koike, 2006). The term lineament is defined by O'Leary 

et al. (1976) as "a mappable, simple or composite linear feature of a surface, whose 

parts are aligned in a rectilinear or slightly curvilinear relationship and which differs 

distinctly from the patterns of adjacent features and presumably reflects a subsurface 

phenomenon". In spectral imagery, lineaments are typically recognised as edges defined 

by a series of adjacent pixels at the boundary of brightness changes (Koike et al., 1998). 

Such spectral features may correspond to variations in surface composition or 

shadowing. With regards to the topographic domain, geological lineaments are typically 



Chapter 7: Structural mapping using LiDAR and ATM 

 

 

184 

 

associated with geomorphological features such as linear valleys, ridgelines, 

escarpments and slope breaks (Jordan & Schott, 2005). These features are also 

expressed as edges in DEMs, defined either by an abrupt change in elevation (slope 

break) or by an increase or decrease in elevation for a short lateral distance (valleys and 

ridgelines). 

Typically, geological lineaments are mapped manually through the visual 

interpretation and tracing of linear features that are expressed in remotely sensed 

imagery. However, this technique can be time-consuming and tedious at regional 

mapping scales, and also highly subjective and therefore irreproducible (Masoud & 

Koike, 2006). A variety of image enhancement techniques are commonly used to try to 

make the visual interpretation and mapping process more efficient and less subjective. 

Principal Component Analysis (PCA), decorrelation stretching and false-colour 

composite (FCC) images are useful techniques for exaggerating subtle colour 

differences in spectral imagery to accentuate the appearance of lineaments (Qari, 1991; 

Mountrakis et al., 1998). Shaded relief models generated from DEMs are a powerful 

tool for enhancing the appearance of lineaments in topographic data. This is because the 

illumination azimuth and inclination can be varied to help identify lineaments in all 

orientations by recognising the shadowing effects (i.e., boundaries between light and 

dark tones) caused by abrupt changes in elevation (Jordan & Schott, 2005). Other 

common visual edge enhancement techniques include the application of convolution 

filters, such as Sobel, Prewitt and Laplacian filters (Moore & Waltz, 1983; Süzen & 

Toprak, 1998; Wladis, 1999), and application of morphological operations, such as 

erosion, dilation, opening and closing (Tripathi et al., 2000; Ricchetti & Palombella, 

2005) to spectral imagery and DEMs.  
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Algorithms for the automated mapping of geological lineaments have also 

received considerable attention (Argialas & Mavrantza, 2004). Common examples 

include algorithms based on Canny edge detection (Corgne et al., 2010), the Hough 

transform (Karnieli et al., 1996; Fitton & Cox, 1998), line-tracing (Koike et al., 1995) 

and morphometric feature parameterisation (Wallace, 2005; Wallace et al., 2006). 

Although automated algorithms further increase the reproducibility, efficiency and 

objectivity of lineament mapping, there are concerns regarding their suitability for 

geological lineament detection (Parsons & Yearley, 1986). The most obvious issue 

associated with automated algorithms is the inability to differentiate lineaments of a 

geological origin from non-geological lineaments, such as roads and field boundaries. 

For reasonably sized areas, this task is arguably best performed when based on human 

perception.  

 As with lithological mapping, vegetation cover can adversely affect the 

extraction of structural information from remotely sensed data. This is because 

vegetation, especially tall dense vegetation (i.e., forests), is capable of masking the 

appearance of subtle spectral and geomorphological lineaments that correspond to 

structural features. In addition, the utility of moderate spatial resolution data acquired 

from classic spaceborne instruments (e.g., Landsat TM imagery and Shuttle Radar 

Topographic Mission DEMs) is restricted to only regional structural mapping. The 

efficacy of remote sensing for structural mapping may be enhanced through use of 

airborne LiDAR topographic data and airborne spectral imagery because they are 

acquired at a considerably higher spatial resolution and therefore permit more detailed 

mapping of geological structure. Furthermore, airborne LiDAR has the capability to 

acquire accurate and high-resolution topographic data even in forested terrain, thus 

giving it the potential to be a powerful structural mapping tool. Nevertheless, the 
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application of airborne LiDAR to structural mapping has been primarily limited to 

mapping the surface traces of regionally-significant faults in vegetated and non-

vegetated terrain through visual interpretation of shaded relief models (e.g., Harding & 

Berghoff, 2000; Haugerud et al., 2003; Prentice et al., 2003; Cunningham et al., 2006). 

The objective of this study is to investigate the utility of airborne LiDAR data 

and ATM imagery for detailed structural mapping of the vegetated ophiolitic rocks and 

sedimentary cover of Troodos study area. Owing primarily to the reliability concerns 

associated with automated algorithms, the efficacy of airborne LiDAR data and ATM 

imagery for structural mapping is evaluated by applying several visual enhancement 

techniques to the datasets to assist the manual generation of lineament maps. These 

visual enhancement techniques include the generation of shaded relief images, in 

addition to the application of edge enhancement convolution filtering and 

morphological transformations. 

 

7.2 Data 

 Data used in this study comprises both the 4 m airborne LiDAR-derived DTM 

and 4 m ATM imagery (comprising bands 2–10), which were processed as per Chapter 

3. Preliminary analysis was first undertaken to determine whether the main structural 

features present in the study area could be identified using the datasets. The two main 

types of structural features in the study area are faults and dykes (Fig 7.1). Typical 

examples of a fault and a dyke were identified during fieldwork and their locations were 

recorded using GPS (Fig. 7.2). At each location, cross-sectional profiles were extracted 

from both the LiDAR DTM and ATM imagery and subsequently inspected for evidence 

that the faults and dykes can be recognised as lineaments.  
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Fig. 7.1. Field photographs showing typical examples of structural features observed within the 

study area. (a) Set of NW-SE striking dykes intruding pillow lavas, (b) and (c) brittle fault 

zones in pillow lavas, (d) NW-SE dykes expressed in landscape, (e) and (f) upstanding dykes 

intruding pillow lavas.      
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Fig. 7.2. Shaded relief of the study area showing the locations of typical examples of a fault 

(labelled A; see Fig. 7.3) and a dyke (B; see Fig. 7.4). Red shading depicts route of transect 

walked during field validation. 

  

 The fault example is of a major fault located along a stream transect (see Fig. 

7.2), which forms a cleft that cuts both sides of a canyon that contains the stream (Fig. 

7.3a). Cross-sectional profiles extracted from the DTM and ATM imagery in the 

locality of this fault are shown in Fig. 7.3b and 7.3c, respectively. The fault can be 

clearly recognised in the DTM profile as a drop in elevation of approximately 0.5 m 

over a relatively short lateral distance of 7 m; forming a linear trough. The fault is also 

visible in the ATM imagery, albeit as a subtle decrease in brightness (or radiance) with 

edges defined by relatively abrupt differences in the brightness gradient at both 

boundaries.  
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Fig. 7.3. (a) Field photograph of the fault at location ‗A‘ in Fig. 7.2, and cross-sectional profiles 

showing the expression of this fault in (b) the LiDAR DTM and (c) ATM Band 2.  

 

 The dyke example is located upstream (southwest) from the fault example (see 

Fig. 7.2). The dyke (or potentially a set of dykes) can be seen cutting across the stream 

to form an upstanding linear ridge feature in pillow lavas on the western bank of the 

stream (Fig. 7.4a). Cross-sectional profiles extracted from the DTM and ATM imagery 

in the locality of this dyke are shown in Fig. 7.4b and 7.4c, respectively. The dyke is 

clearly recognised as a 3 m wide ridgeline in the DTM profile, bounded by abrupt 

decreases in elevation at both edges. The dyke can be also identified in the ATM 

profile, although its expression is more inconspicuous because of the narrower (~1 m) 

width of the feature. Nevertheless, the dyke is defined by boundaries caused by abrupt 

changes in the brightness gradient. Illumination conditions during ATM acquisition or 

smoothing effects during pre-processing of the imagery could be responsible for the 

narrowed appearance of the dyke in this example.   

 The results of the preliminary analysis show that both datasets are adequate for 

identifying the main structural lineaments. Following this, both the LiDAR DTM and 

ATM imagery were subjected to visual enhancement techniques to help generate 
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structural maps for the study area. However, in order to reduce the number of ATM 

bands without significant loss of the spectral information contained within the entire 

dataset, PCA was applied to the 9 ATM bands. Since an examination of the eigenvalues 

calculated during PCA revealed that the first three PCs accounted for 97.5% of the total 

data variance (Table 6.2), these three bands were selected to represent the ATM 

imagery for further analysis.  

 

Fig. 7.4. (a) Field photograph of dyke at location ‗B‘ in Fig. 7.2, and cross-sectional profiles 

showing the expression of this dyke in (b) the LiDAR DTM and (c) ATM Band 5. 

 

7.3 Methods 

The methodology employed in this study comprises three main steps: lineament 

enhancement, mapping and analysis. These steps are discussed in detail in the following 

sections.  
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7.3.1 Lineament enhancement 

7.3.1.1 Shaded relief models 

 Shaded relief models (such as that in Fig. 7.2) are shaded topographic images 

generated from DEMs by simulating the reflection of artificial light that is incident upon 

the surface from a specified inclination and azimuth. An image is generated by 

assigning shades of grey to pixels to represent reflectance values, which are commonly 

determined from a Lambertian reflection model based on the angle at which the light is 

incident upon the terrain (Masoud & Koike, 2006). The aforementioned ability to vary 

the illumination inclination and azimuth to alter the shadowing effects makes shaded 

relief models an excellent tool for indentifying lineaments in all orientations. 

Consequently, a lineament map was generated by visually interpreting a series of 

shaded relief models generated from the LiDAR DTM and illuminated at azimuth 

intervals of 45° (i.e., N, NE, E, SE, etc). At each azimuth interval, the inclination angle 

and vertical exaggeration were also systematically varied to try to ensure all potential 

lineaments were visible.  

 

7.3.1.2 False-colour composite 

 In order to help identify lineaments using the ATM imagery, a false-colour 

composite image was created by assigning the ATM PC bands 1, 2 and 3 to the red, 

green and blue channels of the monitor, respectively. Subtle variations in the spectral 

properties of the surface materials are typically enhanced in the false-colour composite 

by their representation as contrasting colours. As a consequence, lineaments are readily 

identifiable in the FCC as linear edges defined by sharp colour differences. 

Accordingly, the ATM PC FCC was visually interpreted in ENVI 4.3 to generate a 

lineament map. 
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7.3.1.3 Laplacian filtering 

Laplacian filters are a type of convolution filter commonly applied to remote 

sensing data for lineament mapping applications (Saha et al., 2002; Ali & Pirasteh, 

2004; Ricchetti & Palombella, 2005). It is a second derivative edge enhancement filter 

that operates without regard to edge orientation (i.e., it is non-directional). A Laplacian 

filter was applied to both the LiDAR DTM and each of the three ATM PC bands using a 

3 × 3 kernel with a weighting structure such as that shown in Fig. 7.5. In each case, the 

filtered image was added to the original image at a ratio of 9:1 in order to improve the 

image interpretability. Two lineament maps were subsequently generated by visually 

interpreting the greyscale edge-enhanced DTM and a FCC created from the three 

filtered ATM PC bands. 

0 -1 0 

-1 4 -1 

0 -1 0 

Fig. 7.5. Kernel weighting used in Laplacian filtering. 

 

7.3.1.4 Morphological transformation 

 As previously mentioned, mathematical morphological operations such as 

dilation, erosion, opening and closing have also been applied to enhance lineaments in 

grey-scale remotely sensed imagery. One of the most popular morphological techniques 

for edge detection is top hat transformation (e.g., Tripathi et al., 2000; Ricchetti & 

Palombella, 2005). This technique involves closing or opening operations followed by 

subtraction with the original image: 

  (7.1) 

  (7.2) 
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where f is the original image, f
B  

is the image obtained following the closing operation 

and f B  is the image obtained after the opening operation. The top hat transformation 

involving the closing operation (Eq. 7.1) is considered to yield better results for the 

extraction of structural features such as faults and fractures (Tripathi et al., 2000). 

Therefore, the transformation in Eq. 7.1 was applied to the DTM and each of the ATM 

PC bands using a kernel with a weighting of 1 assigned to all elements — to avoid 

introducing directional bias. Two lineament maps were again generated through visual 

interpretation of the transformed DTM and FCC created from the three top hat 

transformed ATM PC bands. 

 

7.3.2 Lineament mapping 

A standard approach was adopted to try to minimise the subjectivity associated 

with visual lineament mapping. This involved the generation of all lineament maps 

within the ENVI 4.3 software using the following protocol. All enhanced products were 

displayed in two image windows; one providing a regional perspective (1× zoom) and a 

second window providing more detailed view (2× zoom). In each case, the image was 

divided into sections so that each could be examined separately to help ensure that the 

entire study area was subjected to a near-uniform examination (Parsons & Yearley, 

1986). A systematic approach was then used to examine each section of the image for 

potential lineaments. Potential lineaments were inspected in order to establish their 

origin, and those interpreted to be of a geological nature were traced onscreen as line 

vectors using the overlay tool in ENVI 4.3. The same criteria were used to determine 

the length and origin of all lineaments within a single image, and wherever else 

applicable. This consistency should help to further reduce the effects of subjectivity on 
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the mapping results. Following interpretation, line vectors for each enhancement 

technique were exported as shapefiles for subsequent interrogation.   

 

7.3.3 Lineament analysis 

 Lineament maps generated using the above procedure were analysed to compare 

and evaluate the utility of the LiDAR DTM and ATM imagery for structural mapping. 

To do this, the lineament orientations and lengths were extracted from each map by 

interrogating the shapefiles in ArcMap (ArcGIS 9.2). Orientation information was 

plotted as rose diagrams, using StereoWin software, to help reveal the dominant 

structural trends exhibited within the edge-enhanced data products. In addition, various 

statistics relating to the numbers and lengths of lineament were also computed. 

Lineament density maps were also derived from the lineament maps using the Spatial 

Analyst Line Density tool in the ArcMap Arc Toolbox, with a search radius of 250 m. 

 Additionally, a field survey was undertaken to collect structural measurements 

for the purpose of providing some degree of validation of the LiDAR and ATM-derived 

lineament maps. The survey was conducted by measuring the strike and dip of faults 

and dykes encountered along the stream transect highlighted in Fig. 7.2. The stream 

transect provides excellent exposure and runs perpendicular to an apparent NW-SE 

structural trend visible in both the DTM and ATM imagery. Structural information 

within this transect was therefore deemed to reflect the dominant regional structural 

trends, thus removing the need to undertake extensive mapping of the entire study area 

for validation purposes. During the field survey, only faults extending beyond the local 

drainage were measured since minor faults were not anticipated to be detectable in the 

imagery. Field-based structural measurements were plotted on stereonets and rose 
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diagrams (again using StereoWin) to enable comparison with imagery-derived 

lineament data. 

 

7.4 Results and discussion 

7.4.1 Field-based structural data 

 Field-based measurements of the strike and dip of faults and dykes exposed 

along the 4 km transect enabled the most prominant structural trends within the study 

area to be determined. In the field, individual dykes and less abundant sets of dykes 

were predominantly observed striking NW-SE and dipping steeply towards the NE (Fig. 

7.6a). This is in agreement with other observations concerning the attitude of dykes 

which were made during mapping of the same locality (Gass, 1960). The average strike 

orientation for the 64 dykes was computed as 318° with relatively little deviation, 

although minor secondary N-S and E-W trends are apparent. The dip angle was found to 

vary between 42° and 90°, with an average dip of approximately 70°. On the other hand, 

brittle faults measured in the field do not appear to exhibit a clear dominant trend (Fig. 

7.6b). However, the majority of faults observed strike between E-W and NW-SE. Dip 

angles for the measured faults coincide with those of dykes; varying between 40–90° 

with an average in the region of 70°. The dip direction associated with the faults is also 

variable, although the majority dip NE. Orientation data for the dykes and faults were 

combined to reveal a dominant NW-SE structural trend within the study area (Fig. 

7.6c). This dominant trend concurs with the initial observation made during 

identification of a suitable field transect, and is primarily dictated by the abundance of 

NW-SE striking dykes. Minor trends striking E-W, NE-SW and approximately N-S are 

also apparent in the combined field-based structural data. 
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Fig. 7.6. Structural data obtain through field-based mapping. Stereonet plots for (a) dykes 

(n=64), (b) faults (n=16) and (c) rose diagram of dyke and fault data combined (n=80, outer 

circle=26%), with the average orientation indicated.  

 

7.4.2 LiDAR- and ATM-based lineament mapping 

 The six lineament maps that result from the visual interpretation of the edge-

enhanced LiDAR DTM and ATM products are shown in Fig. 7.7. An initial inspection 

reveals that the dominant NW-SE structural trend that is observable in the field is also 

apparent in all six lineament maps. Moreover, the overall spatial extent of the 

lineaments is similar for all six maps. The vast majority of lineaments are dykes, and are 

confined to the SE sector of the study area. Lineaments were not identified in the NW 

and the extreme NE corner of the study area. The confinement of lineaments to the SE 

is expected since this area coincides with the extent of the pillow lava and Basal Group 

units in which dykes commonly occur. Predominant alluvial–colluvial cover in the NW 

and the outcrop of Lefkara cherts, chalks and marls in the NE corner explain the lack of 

lineaments in those areas.  
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Fig. 7.7. Lineament maps generated through visual interpretation of (a) shaded relief DTM, (b) 

ATM PC FCC, (c) top hat transformed DTM, (d) top hat transformed ATM PC FCC, (e) 

Laplacian filtered DTM and (f) Laplacian filtered ATM PC FCC. 

 

 Rose diagrams produced for all six lineament maps confirm a dominant NW-SE 

trend for the study area (Fig. 7.8). This result is corroborated by the structural 

measurements collected in the field. Furthermore, the minor secondary NE-SW trend 

seen in all rose diagrams is also in agreement with the field data. A number of 

additional secondary trends are indentified using the top hat transformed DTM (Fig. 
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7.8c). Of these, the N-S and E-W trends are substantiated by the field measurements. 

Resultant average lineament orientations are fairly consistent for all maps, ranging from 

approximately 313° for the shaded relief (Fig. 7.8a) to nearly 318° for the top hat 

transformed DTM (Fig. 7.8c). These average orientations are also comparable to that 

obtained from the field-based data. Therefore, based upon comparison of the rose 

diagrams, it is evident that both the LiDAR and ATM products are useful tools for 

revealing the dominant structural trends within the study area. 

 

Fig. 7.8. Rose diagrams for lineament maps generated using (a) shaded relief DTM (15%), (b) 

ATM PC FCC (17%), (c) top hat transformed DTM (12%), (d) top hat transformed ATM PC 

FCC (12%), (e) Laplacian filtered DTM (16%) and (f) Laplacian filtered ATM PC FCC (16%). 

Average orientations are indicated. Percentages denote proportion of lineaments represented by 

outer circles in corresponding rose diagrams (see Table 7.1).  
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Despite only minor differences in the orientation information for the various 

enhancement techniques, further interrogation of the lineament maps reveals some 

notable differences relating to the number and lengths of lineaments (Table 7.1). In 

terms of the number of lineaments, a maximum of 316 were identified using the 

Laplacian filtered DTM, compared to an average of 213 for the five other techniques. 

With regards to the individual datasets, ATM-based enhancement techniques generally 

result in the identification of 15% more lineaments on average than LiDAR DTM-based 

techniques (with the exception of the Laplacian filtered DTM). One possible 

explanation for the higher number of lineaments with ATM-based techniques is that 

lineaments are typically more conspicuous in colour images than in greyscale 

representations of LiDAR elevation (DTM) products. However, this does not appear to 

be the case for the Laplacian filtered DTM, possibly due to a higher greyscale contrast 

associated with edges. 

Table 7.1. Statistics relating to the number and lengths of lineaments identified using the 

various enhancement techniques. 

Enhancement 

technique 

No. of 

lineaments 

Minimum 

length (m) 

Maximum 

length (m) 

Average 

length (m) 

Total 

length (m) 

Shaded relief 

DTM 
192 51.1 801.0 207.4 39817.5 

ATM PC FCC 227 38.2 714.7 167.5 38021.0 

Top hat DTM  199 55.2 709.2 199.5 39707.1 

Top hat ATM 

PC FCC 
210 52.5 665.4 217.0 45563.1 

Laplacian DTM 316 37.7 735.1 158.4 50059.3 

Laplacian ATM 

PC FCC 
239 53.5 868.3 174.9 41791.4 

 

Frequency distributions of lineament lengths for each enhancement technique 

are shown in Fig. 7.9. The distributions for all enhancement techniques appear 
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unimodal, and positively skewed due to a wide range of lengths with a profusion of 

lineaments with lengths between 50–400 m. In the enhanced products, The Laplacian 

filtered DTM has the greatest abundance of shorter lineaments and is responsible for 

both the shortest mapped lineament (~38 m) and the shortest average lineament length 

(158.4 m). This, together with the high number of lineaments associated with this 

technique, could suggest that larger lineaments appear segmented in the Laplacian 

filtered DTM, therefore resulting in shorter, but more numerous lineaments. However, 

evidence of lineament segmentation is not apparent in the Laplacian filtered DTM and 

the total lineament length is at least 10% longer than for any other technique, indicating 

that the additional lineaments do not simply arise through the division of lineaments that 

appear longer in other enhanced products. 

 

Fig. 7.9. Frequency distribution of lineament lengths mapped using the various enhancement 

techniques. (a) Shaded relief DTM, (b) ATM PC FCC, (c) top hat transformed DTM, (d) top 

hat transformed ATM PC FCC, (e) Laplacian filtered DTM and (f) Laplacian filtered ATM PC 

FCC. 
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Fig. 7.10. Lineament density maps derived from the lineament maps for (a) Shaded relief DTM, 

(b) ATM PC FCC, (c) top hat transformed DTM, (d) top hat transformed ATM PC FCC, (e) 

Laplacian filtered DTM and (f) Laplacian filtered ATM PC FCC. Shading represents low 

(white) to high lineament density (black). 

 

The lineament density maps shown in Fig. 7.10 reveal the spatial distribution of 

lineaments mapped using each of the enhancement techniques. As might be expected 

due partly to the similarities in the spatial extent of lineaments in all six maps, the 

ensuing lineament density maps are also visibly similar. The highest densities 
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commonly occur in the east of the study area, in pillow lavas. In a number of maps, 

smaller regions of high density can also be seen towards the NE and due S of the centre, 

again coinciding with the pillow lavas. Considering that the field data shows the vast 

majority of lineaments in the study area are dykes, and given the definitions of the Basal 

Group and pillow lava units (e.g., Bear, 1960), one might expect the highest lineament 

densities to be associated with the Basal Group. According to the above results, this is 

clearly not the case. A likely explanation for this could relate to the ability to distinguish 

dykes from their host rocks. For example, in the topographic domain the relative lack of 

lineaments (in the form of dykes) in the Basal Group could be due to uniform 

weathering and erosion of outcrops, which then leads to difficulty discerning individual 

or sets of dykes at the surface. On the other hand, the contrast in hardness between 

dykes and host pillow lava rocks results in differential erosion and weathering, thus 

giving dykes an obvious positive topographic surface expression. Spectrally, it is also 

difficult to identify dykes in the Basal Group because of a lack of spectral contrast 

between individual dykes and the dyke-dominated rocks, whereas dykes in pillow lavas 

are more readily recognisable due to better spectral contrast linked to subtle 

compositional differences and different jointing characteristics. Similarly, lineaments 

that occur as faults are also easier to trace in the pillow lavas than in the Basal Group 

(Gass, 1960). 

 Lineament density maps can also be used help to determine whether lineament 

maps with a greater number of lineaments actually contain more information than those 

with less. If there is significant correlation between any two maps with differing 

numbers of lineaments then they can essentially be regarded as equivalent, whereas 

weak correlation suggests that the two maps contain different information (Parsons & 

Yearly, 1986). The results of the correlation analysis show strong correlations between 
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all maps (Table 7.2). The Laplacian filtered ATM PC FCC and top hat transformed 

DTM maps are the most weakly correlated, while the Laplacian filtered ATM PC FCC 

and the top hat transformed ATM maps are the most correlated. Correlations between 

the map associated with the greatest number of lineaments (Laplacian filtered DTM) 

and all other maps do not fall below 0.81. This result suggests that all lineament maps 

essentially contain the same information regardless of the numbers of lineaments. Also, 

if the additional lineaments in the Laplacian filtered DTM map are related to the 

segmentation of longer lineaments then higher densities in these areas would likely 

result in low correlations between all other maps.  

Table 7.2. Correlation matrix of lineament density maps. 

 

Shaded 

relief 

DTM 

ATM 

PC 

FCC 

Top hat 

DTM 

Top hat 

ATM 

PC FCC 

Laplacian 

DTM 

Laplacian 

ATM PC 

FCC 

Shaded relief 

DTM 
–      

ATM PC FCC 0.82 –     

Top hat DTM  0.89 0.79 –    

Top hat ATM 

PC FCC 
0.87 0.87 0.83 –   

Laplacian 

DTM 
0.88 0.81 0.84 0.85 –  

Laplacian 

ATM PC FCC 
0.81 0.87 0.76 0.90 0.81 – 

 

7.4.3 Significance of structural trends and implications  

 Following the separation of the northern part of the ophiolite into domains of 

uniform dyke strike and dip, three structural grabens have been indentified and 

interpreted as fossil axial valleys of an eastward jumping spreading centre (Varga & 

Moores, 1985). From west to east, these are the Solea graben, Ayios Epiphanios (or 

Mitsero) and the Larnaca graben. The area selected in this study is situated in the 
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Larnaca graben (see Fig. 2.12). Field-based measurements show that dykes in this area 

are dipping NE, which is concurrent with the location of the study area on the western 

flank of the Larnaca graben proposed by Varga & Moores (1985). The injection of 

dykes parallel to the NW-SE trending spreading axis in an extensional setting explains 

the prevailing NW-SE trend revealed by both the field measurements and results of 

lineament mapping. An additional contribution to this dominant trend may also 

originate from normal faulting during graben development and dyke injection (Gass, 

1960). Whilst there is a slight indication of dyke-parallel faulting in the field-based data, 

the rather variable orientations of the faults recorded in the field are likely to reflect 

local deformation and possibly younger faulting subsequent to formation of the 

ophiolitic crust. The secondary N-S trend apparent in both the field data and certain 

lineament maps is consistent with a later stage of faulting previously reported in the 

vicinity of the study area (Gass, 1960; Boyle & Robertson, 1984).  

 

7.5 Conclusions 

 This study investigates the efficacy of airborne LiDAR topographic data and 

ATM imagery for assisting structural mapping of the Troodos study area. Despite 

widespread vegetation cover, a preliminary analysis showed that the main structural 

features — faults and dykes — were recognisable in both the 4 m LiDAR-derived DTM 

and ATM imagery as lineaments defined by edges. Accordingly, several different edge 

enhancement techniques were applied to the LiDAR DTM and ATM imagery to aid the 

visual identification and mapping of lineaments. The predominant strike trends of 

lineaments in all resulting maps were found to be in agreement with field-based 

structural data acquired along a stream transect, in addition to observations made by 

other workers in the vicinity. The dominant trend in the study area is orientated NW-SE 
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and corresponds to the injection of dykes and concordant faulting parallel to the 

spreading axis of the proposed Larnaca graben. To the best of the author‘s knowledge, 

this appears to be the first application of airborne LiDAR to detailed structural mapping 

of ophiolitic rocks.  

 Whilst the results of this study have direct implications for mapping ophiolite 

structure, it is anticipated that both high-resolution airborne LiDAR data and airborne 

spectral imagery can be easily be applied in similar Mediterranean regions in order to 

complement field-based structural mapping. With the capability of acquiring high-

resolution topographic data even in densely forested terrain, airborne LiDAR has the 

potential to be a valuable tool for structural mapping in any geological setting, 

irrespective of vegetation cover, provided that an adequate DTM can be generated. 

However, airborne spectral imagery is likely to be of limited use in areas where 

geological features are subtly expressed in the terrain beneath tall dense vegetation 

cover.  
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8.1 Introduction 

The aim of this thesis is to explore the novel application of airborne LiDAR data 

and airborne multispectral imagery for high-resolution geological mapping of vegetated 

ophiolitic rocks and sedimentary cover in the Troodos Range, Cyprus. A direct spectral 

approach to lithological mapping — which utilises the airborne multispectral (i.e., 

ATM) imagery — is deployed in Chapter 4 for the purpose of assessing the capability 

of a conventional remote sensing approach, and for subsequently revealing any adverse 

effects that vegetation cover may have on its performance. Novel lithological mapping 

methods utilising ATM imagery and airborne LiDAR data are explored in Chapters 5 

and 6 for use in areas where vegetation cover thwarts the deployment of conventional 

spectral mapping approaches. Additionally, the utility of airborne LiDAR data and 

ATM imagery for detailed structural mapping is investigated in Chapter 7. This chapter 

provides a synthesis of the main findings of each chapter and uses this information to 

evaluate the efficacy of ATM imagery and airborne LiDAR data for rapid, high-

resolution geological mapping of the vegetated ophiolitic rocks and sedimentary cover 

in the Troodos Range. Furthermore, the wider impact regarding the use of these datasets 

and the devised mapping algorithms will also be discussed. 

 

8.1.1 Conventional lithological mapping using airborne multispectral imagery 

 Airborne multi- or hyperspectral imagery has been recognised as a valuable tool 

for performing rapid, high-resolution lithological discrimination and mapping (e.g., 

Rowan et al., 2004; Harris et al., 2005; Roy et al., 2009). Conventionally, mapping is 

performed by matching image pixel spectra to distinct spectral signatures exhibited by 

lithologies. This approach was employed, by using representative reflectance spectra 

acquired in the laboratory in conjunction with three different spectral matching 
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algorithms (SAM, MF and MTMF), to directly map the four main lithological units in 

the Troodos study area (Chapter 4). The maps derived through this approach had very 

poor overall accuracies (2.4–6.5%) and Kappa coefficients (≈ 0.0), and it was 

demonstrated, both qualitatively and quantitatively, that ubiquitous vegetation cover in 

the study area was responsible for compromising lithological classification of large 

proportions (62–89%) of the total scene (or image) pixels. Subsequent spectral mixing 

analysis revealed that as little as 20% vegetation cover was enough to severely affect 

the utility of ATM imagery for direct spectral discrimination and mapping of the 

vegetated rocks of the Troodos study area. This figure is consistent with previous 

studies of different rock types (Siegal & Goetz, 1977; Ager & Milton, 1987; Murphy & 

Wadge, 1994) and therefore reiterates the fact that conventional use of spectral imagery 

is effective in only the world‘s most barren regions (e.g., deserts, alpine areas, cold 

regions). Although it is widely accepted that vegetation cover can obscure or mask the 

spectra of the underlying lithologies, the work presented in Chapter 4 appears to be the 

first attempt to quantitatively and qualitatively demonstrate the obscuring effects of 

vegetation at both the image-level and pixel-level.  

 

8.1.2 Novel lithological mapping using airborne multispectral and LiDAR data  

 A time- and cost-effective programme enabling the production of accurate and 

high-resolution geological maps of any part of the Earth‘s surface would be a desirable 

product for geological surveys, government agencies and resource exploration 

companies. Inevitably, such a programme would rely heavily on the exploitation of 

remote sensing data through largely automated algorithms that can rapidly map the 

spatial distribution of lithologies accurately and in great detail, thus reducing the overall 

cost of fieldwork. This concept appears to be some way off considering that 
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conventional spectral remote sensing approaches are critically limited by just small 

amounts of vegetation cover, together with the fact that the majority of the Earth‘s land 

surface is covered by a least some proportion of vegetation. Thus, the development of 

novel and alternative remote sensing-based mapping techniques that are impervious to 

the adverse effects of vegetation is both timely and essential.   

 Novel algorithms were developed in Chapters 5 and 6 for the purpose of 

exploring the use of high-resolution ATM imagery and airborne LiDAR data for 

overcoming the obscuring effect vegetation has on conventional lithological 

discrimination and mapping. These algorithms involve quantification of a characteristic 

that is distinct for each lithological unit, automated image classification based upon this 

characteristic, and an accuracy assessment of the generated maps. The characteristics 

exploited by these novel algorithms for indirect discrimination and mapping are the 

geobotanical spectral characteristics and topographic characteristics of the lithologies. 

Geobotanical spectral characteristics of the lithologies were extractable from the ATM 

imagery because the pixel spectra were generally dominated by the spectra of 

vegetation. The topographic characteristics of the four lithologies were obtainable from 

the airborne LiDAR topographic data. The accuracy statistics for maps generated using 

the novel indirect spectral (geobotanical) and topographic discrimination and mapping 

algorithms are summarised in Table 8.1. 
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Table 8.1. Lithological mapping accuracies obtained using novel algorithms in this thesis.  

Discrimination 

approach Input variables 

MLC  SOM  

p-value OA (%) K  OA (%) K  

Geobotanical ATM 9 61.6 0.50  60.3 0.48  0.0010 

 ATM PC 51.4 0.37  50.2 0.35  0.0007 

 ATM MNF 59.3 0.46  65.5 0.54  <0.0001 

         

Topographical s, pr, pl, r and h 54.4
* 

0.40
* 

 65.4 0.53  <0.0001 

         

Geobotanical–

topographical 

ATM-Li 61.9 0.50  70.2 0.60  <0.0001 

ATM-Li MNF 60.8 0.49  72.7 0.63  <0.0001 
* generated as an addendum to Chapter 5 (see Appendix II). 

The exploitation of geobotanical associations for indirect lithological 

discrimination is not a new concept; several studies have utilised vegetation types as 

proxies for specific rock units during lithological mapping using airborne hyperspectral 

imagery (e.g., Rowan et al., 2004; Harris et al., 2005). In contrast to these studies, 

vegetation cover in the Troodos study area is mostly ubiquitous and so any successful 

lithological mapping attempt here must be almost fully reliant upon characterising the 

geobotanical associations. The results obtained using the devised algorithms presented 

in Chapter 6 demonstrate the ability to exploit geobotanical associations in order to 

generate high-resolution lithological maps of satisfactory accuracy for the relatively 

complex Troodos landscape. In fact, it was revealed that the algorithms based on 

geobotanical discrimination were capable of generating lithological maps that provide 

more detail and have more accurately defined contacts than the existing 1:250,000- and 

1:31,680-scale geological maps of the study area. However, in some areas a 

combination of spectral similarity between lithologies (predominantly the Basal Group 

and Lefkara Formation) arising largely from an overlap in some types of vegetation, and 

intra-class variability — due to the heterogeneous vegetation cover (i.e., vegetation/rock 

mixtures) — appeared to hinder lithological discrimination somewhat. The algorithm 

which utilises the MNF transformation in conjunction with the SOM artificial neural 
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network classifier was found to be effective in suppressing the intra-class spectral 

variability to help improve lithological discrimination and the mapping accuracy. It is 

likely that hyperspectral imagery, with its far superior spectral resolution, could provide 

the potential for improved geobotanical characterisation of the lithologies to further 

enhance the mapping results. This may be achievable with the aid of image-derived 

vegetation indices that reveal subtle intra-species variation which is related to the type 

of underlying geological substrate. 

The ability to acquire accurate and high-resolution topographic data even in 

densely forested terrain is a key feature of airborne LiDAR. This feature provides the 

opportunity to detect subtle, but distinct topographic characteristics which reflect the 

different responses of individual lithologies to weathering and erosion. The results of 

the algorithm presented in Chapter 5 show that LiDAR-derived topographic data — 

specifically the morphometric variables of slope, absolute plan and profile curvatures, 

residual roughness and hypsometric integral — can be used to characterise lithology-

specific topographic characteristics to facilitate the generation of a map that is also 

capable of providing more detail and more accurately defined contacts than the existing 

geological maps of the study area. However, both natural and anthropogenic-induced 

deviations from the typical topographic characteristics were found to be responsible for 

some confusion between lithologies in the resulting map. This approach is therefore 

perhaps best applied in virgin or wilderness terrain which is devoid of anthropogenic 

impacts. On the other hand, improved characterisation using additional or alternative 

morphometric variables (e.g., fractal dimension) might help to reduce the confusion, 

especially that relating to natural topographic deviations. The presence of low-to-

medium height vegetation in the airborne LiDAR DTM was occasionally problematic 

because it forms artificial topography, which can subsequently result in 
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misclassification of the corresponding area. The inability to remove vegetation of this 

type from the LiDAR DTM is likely to be attributable to either the vertical resolution of 

the LiDAR system (i.e., the ability to resolve multiple returns over short vertical 

distances) or misclassification of the associated LiDAR returns prior to DTM 

generation. This issue should be surmountable using either a more modern LiDAR 

system with improved vertical resolution, full-waveform airborne LiDAR, or by 

incorporating LiDAR intensity data into the point return classification process to aid 

separation of ground and low lying non-ground returns prior to DTM generation (Hui et 

al., 2008). Despite these relatively minor drawbacks, the estimated overall lithological 

mapping accuracy achievable with the airborne LiDAR algorithm is comparable to that 

attainable through indirect spectral discrimination using the ATM imagery. Moreover, 

the application of airborne LiDAR to lithological mapping has implications that extend 

beyond the study area, because correlations between lithology and topography have 

been recognised in other parts of the world (e.g., Kühni & Pfiffner, 2001; Belt & 

Paxton, 2005).  

Integrating airborne LiDAR data and ATM imagery to simultaneously exploit 

the correlations between vegetation and lithology, and topography and lithology, was 

generally found to significantly improve the overall lithological mapping accuracy (by 

up to 22% in terms of the OA) in comparison to the individual use of either dataset. The 

result suggest that this arises because airborne LiDAR–ATM data integration is 

synergistic in the Troodos study area, with topographic information providing the 

additional discriminatory power required to separate spectrally similar lithologies (e.g., 

Basal Group and Lefkara Formation) and vice versa. Nevertheless, some classification 

ambiguity still persisted, particularly in areas where the lithological units exhibit both 

spectral similarity and atypical topographic characteristics due to either natural or 
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anthropogenic deviation. Again, the use of hyperspectral imagery or alternative 

morphometric variables could enhance the separability between lithologies, therefore 

increasing the overall lithological mapping accuracy. 

 

Fig. 8.1. Field-mapped Lefkara Formation–pillow lavas (LF-PL) and pillow lavas–alluvium-

colluvium (PL-AC) contacts overlain on top of QuickBird image (centre) and the (a) ATM 

MNF SOM, (b) LiDAR SOM and (c) Li-ATM MNF SOM maps for the area shown in Fig. 3.9. 

Accuracy of the field-mapped contacts is estimated at ± 10 m due to a combination of GPS 

accuracy and some difficulty in discerning the contacts in places. 

 

The optimal algorithms for each of the three discrimination approaches 

(geobotanical, topographical and geobotanical–topographical discrimination) are the 

ATM MNF SOM, LiDAR SOM and ATM-Li MNF SOM. According to the guidelines 
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provided by Landis & Koch (1977) for interpreting K, these algorithms can discriminate 

lithologies and map their overall spatial distributions to quite a substantial degree of 

accuracy. As previously discussed, these algorithms are capable of generating 

lithological maps that are more detailed and have more accurately defined contacts than 

the two existing geological maps of the study area. Additional comparison with field 

data allows better appreciation of the mapping capabilities. As seen in Figs. 8.1 and 8.2, 

all three algorithms have the capacity to map lithological contacts with an accuracy 

similar to that which is attainable through field-based mapping. The ATM MNF SOM 

algorithm is most effective at mapping Lefkara Formation–pillow lavas contacts, 

whereas the LiDAR SOM algorithm can readily delineate pillow lavas–alluvium-

colluvium contacts. The Li-ATM MNF SOM algorithm seems to be able to map both of 

these contacts accurately. Importantly, the intricate contacts between basement rocks 

and cover material, especially the pillow lavas or Basal Group–alluvium-colluvium 

contacts, are very accurately resolved. This is often a difficult boundary for field 

geologists to map in accurately. Overall, following a comparison with all field data, it 

evident that the three algorithms have the ability to perform high-resolution lithological 

mapping that is accurate to a scale of 1:5000. 

 In contrast to the conventional direct mapping approach deployed in Chapter 4, 

the novel algorithms devised in Chapter 5 and 6 are able to perform accurate, high-

resolution lithological mapping of the Troodos study area, despite widespread 

vegetation cover. This is significant outcome because it provides evidence contrary to 

the general view that the utility of remote sensing for lithological mapping is restricted 

to only the most barren terrain. It is anticipated that these algorithms can be used to map 

barren terrain, and that their utility can easily be extended to similar vegetated 

Mediterranean-type regions and even areas with significantly denser, ubiquitous 
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vegetation cover (e.g., temperate and possibly tropical forests), provided that 

geobotanical associations exists and/or lithology and topography are linked. Also, these 

algorithms require very limited (or even no) prior knowledge regarding the spatial 

distributions of lithologies, which makes them particularly relevant to mapping 

relatively unexplored terrain. 

 

 

Fig. 8.2. Field-mapped pillow lavas–alluvium-colluvium (PL-AC) contact overlain on top of 

QuickBird image (centre) and the (a) ATM MNF SOM, (b) LiDAR SOM and (c) Li-ATM 

MNF SOM maps for the area shown in Fig. 3.9. Accuracy of the field-mapped contact is 

estimated at ± 5 m due to a combination of GPS accuracy and some difficulty in discerning the 

contact in places. 
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8.1.3 Structural mapping using airborne multispectral and LiDAR data 

 Similarly to lithological mapping, the application of remote sensing to structural 

mapping is also restricted by vegetation cover and spatial limitations of the data. In 

comparison to that of classic spaceborne instruments, data acquired from airborne 

platforms can have a considerably higher spatial resolution which presents opportunities 

to resolve much more detailed structural information. Moreover, airborne LiDAR has 

already been established as a major tool for mapping surface traces of faults in both 

vegetated and non-vegetated terrain. However, with the exception of a recent study 

which applies airborne LiDAR to resolve bedrock structure in areas of poor exposure 

(Pavlis & Bruhn, 2011), the broader structural utility of airborne LiDAR has not been 

appreciated. The efficacy of airborne LiDAR data and ATM imagery for assisting 

structural mapping of the Troodos study area was investigated in Chapter 7 — mapping 

the structure of ophiolitic rocks appears to be a novel application of airborne LiDAR. 

The results demonstrated that airborne LiDAR data and ATM imagery can be utilised to 

extract detailed and accurate structural information that is consistent with field-based 

data. Although these results are directly relevant to structural mapping in other 

ophiolites, it is anticipated that utility of both datasets can easily be extended to diverse 

geological settings with similar vegetative cover. However, airborne LiDAR data is 

likely to be more effective than airborne spectral imagery in areas with denser 

vegetation, such as forest, provided that an adequate DTM can be generated. To achieve 

this, it may be necessary to use high laser point density in order to increase the canopy 

penetration rate and thus the number of ground returns. Although accurate and detailed 

structural mapping using a manual approach was not time-consuming in the Troodos 

study area, for larger map areas automated lineament extraction algorithms would be 

more efficient. In this context, further research is required to help differentiate between 
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lineaments of a geological origin from artificial lineaments. As established with 

lithological mapping, an integrated spectral–topographic approach could provide the 

added discriminatory power for reducing the confusion between geological and artificial 

lineaments.  

 

8.2 Recommendations and future work 

Remote sensing-based algorithms, such as those described in this thesis, will 

never completely eradicate the need for field-based geological mapping. Instead, it is 

clear that the most time- and cost-effective method of producing accurate and detailed 

geological maps is through a combination of fieldwork and remote sensing — this is 

especially true for large map areas. An ideal geological mapping programme is one that 

involves an iterative process of fieldwork and use of remote sensing-based algorithms. 

This might involve an initial fieldtrip to obtain knowledge of the study area (although 

not essential as some algorithms, such as the SOM-based ones, can be deployed 

unsupervised, i.e., without any training data), application of remote sensing mapping 

algorithms to generate what is essentially a detailed and accurate reconnaissance map, 

follow-up field validation and necessary refinement of the geological map product. 

Depending on the efficacy of the remote sensing algorithms, the geological map-making 

process can ultimately be made more efficient by significantly reducing the effort and 

cost of fieldwork.  

Irrespective of their significant potential, the algorithms devised here most 

importantly provide evidence towards the proof-of-concept that airborne LiDAR data 

and airborne spectral imagery can be individually and simultaneously utilised to aid 

accurate and high-resolution geological mapping, regardless of vegetative cover. The 

veracity of the generated lithological map products could potentially be improved 



Chapter 8: Synthesis and conclusions 

 

 

218 

 

through refinement of these novel algorithms. An obvious starting point would be to 

simply replace the airborne multispectral imagery with hyperspectral imagery. This will 

undoubtedly be useful for improving the geobotanical spectral characterisation and 

separability. Instead of relying primarily on differences in vegetation species for 

indirect lithological discrimination, properties which may be more unique to each of the 

lithologies could be derived from hyperspectral imagery in the form of vegetation 

indices. 

The classification stage of the novel lithological mapping algorithms in this 

study is performed on a per-pixel basis. For all three discrimination approaches 

(geobotanical, topographical and integrated geobotanical–topographical) the maximum 

mapping accuracy was achieved using the SOM classifier. This demonstrates the 

superiority of artificial neural networks over conventional classifiers such as the MLC 

in using minimal a priori knowledge to classify noisy and complex data — as is often 

the case with high-resolution data (Aplin, 2006; Pacifici et al., 2009). Another important 

feature of the SOM is the accompanying SOM-C map, which was shown to highlight 

areas with high classification uncertainty, therefore providing information on follow-up 

targets to allow more efficient field-based verification. Further work is required to 

assess whether the overall mapping accuracy can be improved by using the SOM 

artificial neural network to perform object-based lithological classification. Object-

based classification, which classifies homogenous groups of pixels as opposed to 

individual pixels, is often regarded as being more suitable for classifying high-

resolution data than per-pixel methods (Kressler et al., 2001). Although segmentation of 

imagery into objects usually depends on subjective trial-and-error methods, recent 

attention has focussed on making segmentation less problematic, more automated and 

more objective (Drăguţ et al., 2010). Thus, an investigation into a combined object-
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based artificial neural network classification approach to lithological mapping now 

seems more timely and appealing.  

Additional aspects that are also worthy of further investigation include 

evaluating the use of LiDAR intensity data for lithological discrimination, the 

application of these or refined mapping algorithms to other geologically diverse parts of 

the world, and the utility of the developed algorithms when applied to current (e.g., 

ASTER) and future datasets (e.g., EnMAP, TanDEM-X/TerraSAR-X). Ambitious it 

may be, but the ultimate objective is to try to develop a software toolkit which 

comprises a set of algorithms which can utilise airborne LiDAR data and hyperspectral 

imagery to perform rapid and accurate high-resolution geological mapping in any 

terrain, irrespective of vegetation cover. This toolkit should include algorithms for 

performing other important aspects of geological mapping, such as alteration mapping 

and improved geological hazard detection and mapping (e.g., faults and volcanic 

landforms). 

 

8.3 Conclusions 

This thesis explores novel applications of airborne LiDAR data and airborne 

multispectral imagery for high-resolution geological mapping of vegetated ophiolitic 

rocks and sedimentary cover in the Troodos Range, Cyprus. Overall, it has been 

demonstrated that both airborne spectral imagery and airborne LiDAR data can be 

utilised to overcome the effects of vegetation cover that critically limit the conventional 

use of remote sensing to essentially barren areas. To summarise, the main conclusions 

are: 

 Lithologies can be discriminated and mapped through geobotanical associations 

and their distinct topographic characteristics;  
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 Integration of airborne multispectral imagery and airborne LiDAR data can be 

synergistic for lithological mapping; 

 Algorithms presented here are capable of producing lithological maps with more 

detail and more accurately defined contacts than the existing geological maps of 

the study area using minimal a priori knowledge; 

 Algorithms can potentially be applied to any geological setting where direct 

spectral discrimination is difficult, provided that geobotanical associations exists 

and/or lithology and topographic are linked; 

 Airborne spectral imagery and airborne LiDAR data can be used to map detailed 

and accurate structural information that is consistent with field-based data;  

 Overall, the novel application of airborne spectral imagery and airborne LiDAR 

data have significant potential to aid rapid high-resolution geological mapping 

campaigns over large areas of vegetated or non-vegetated terrain. 
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Appendix I 

Table I.1. Confusion matrix for ATM 9 MLC. 

Mapped as Validation data Row 

total 

User‘s 

accuracy 

(%)  
Alluvium–

colluvium 

Basal 

Group 

Lefkara 

Formation 

Pillow 

lavas 

Alluvium–

colluvium 
3594 1 30 11 3636 98.8 

Basal Group 0 1614 299 383 2296 70.3 

Lefkara 

Formation 
2 816 1114 672 2604 42.8 

Pillow lavas 491 769 1008 2142 4410 48.6 

Column total 4087 3200 2451 3208   

Producer‘s 

accuracy (%) 
87.9 50.4 45.4 66.8 

 
 

      

Overall accuracy = 61.6%     

K = 0.50      

 

 

Table I.2. Confusion matrix for ATM 9 SOM. 

Mapped as Validation data Row 

total 

User‘s 

accuracy 

(%)  
Alluvium–

colluvium 

Basal 

Group 

Lefkara 

Formation 

Pillow 

lavas 

Alluvium–

colluvium 
1979 284 59 39 2361 83.8 

Basal Group 522 964 98 71 1655 58.2 

Lefkara 

Formation 
861 1268 2146 382 4657 46.8 

Pillow lavas 725 684 148 2716 4273 63.6 

Column total 4087 3200 2451 3208   

Producer‘s 

accuracy (%) 
48.4 30.1 87.6 84.7 

 
 

      

Overall accuracy = 60.3%     

K = 0.48      
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Table I.3. Confusion matrix for ATM PC MLC. 

Mapped as Validation data Row 

total 

User‘s 

accuracy 

(%)  
Alluvium–

colluvium 

Basal 

Group 

Lefkara 

Formation 

Pillow 

lavas 

Alluvium–

colluvium 
1224 0 29 1 1254 97.6 

Basal Group 747 1324 844 247 3162 41.9 

Lefkara 

Formation 
1510 1258 1476 326 4570 32.3 

Pillow lavas 606 618 102 2634 3960 66.5 

Column total 4087 3200 2451 3208   

Producer‘s 

accuracy (%) 
29.9 41.4 60.2 82.1 

 
 

      

Overall accuracy = 51.4%     

K = 0.37      

 

 

 

Table I.4. Confusion matrix for ATM PC SOM. 

Mapped as Validation data Row 

total 

User‘s 

accuracy 

(%)  
Alluvium–

colluvium 

Basal 

Group 

Lefkara 

Formation 

Pillow 

lavas 

Alluvium–

colluvium 
879 24 15 0 918 95.7 

Basal Group 693 1140 475 305 2613 43.6 

Lefkara 

Formation 
1745 1456 1850 278 5329 34.7 

Pillow lavas 770 580 111 2625 4086 64.2 

Column total 4087 3200 2451 3208   

Producer‘s 

accuracy (%) 
21.5 35.6 75.5 81.8 

 
 

      

Overall accuracy = 50.2%     

K = 0.35      
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Table I.5. Confusion matrix for ATM MNF MLC. 

Mapped as Validation data Row 

total 

User‘s 

accuracy 

(%)  
Alluvium–

colluvium 

Basal 

Group 

Lefkara 

Formation 

Pillow 

lavas 

Alluvium–

colluvium 
2103 0 4 0 2107 99.8 

Basal Group 888 1280 770 255 3193 40.1 

Lefkara 

Formation 
290 1222 1582 241 3335 47.4 

Pillow lavas 806 698 95 2712 4311 62.9 

Column total 4087 3200 2451 3208   

Producer‘s 

accuracy (%) 
51.5 40.0 64.5 84.5 

 
 

      

Overall accuracy = 59.3%     

K = 0.46      

 

 

 

Table I.6. Confusion matrix for ATM MNF SOM. 

Mapped as Validation data Row 

total 

User‘s 

accuracy 

(%)  
Alluvium–

colluvium 

Basal 

Group 

Lefkara 

Formation 

Pillow 

lavas 

Alluvium–

colluvium 
2699 155 31 0 2885 93.5 

Basal Group 638 1252 455 181 2526 49.6 

Lefkara 

Formation 
288 1093 1744 243 3368 51.8 

Pillow lavas 462 700 221 2784 4167 66.8 

Column total 4087 3200 2451 3208   

Producer‘s 

accuracy (%) 
66.0 39.1 71.1 86.8 

 
 

      

Overall accuracy = 65.5%     

K = 0.54      
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Table I.7. Confusion matrix for ATM-Li MLC. 

Mapped as Validation data Row 

total 

User‘s 

accuracy 

(%)  
Alluvium–

colluvium 

Basal 

Group 

Lefkara 

Formation 

Pillow 

lavas 

Alluvium–

colluvium 
1699 0 0 0 1699 100.0 

Basal Group 95 1294 31 63 1483 87.3 

Lefkara 

Formation 
1775 1195 2357 477 5804 40.6 

Pillow lavas 518 711 63 2668 3960 67.4 

Column total 4087 3200 2451 3208   

Producer‘s 

accuracy (%) 
41.6 40.4 96.2 83.2 

 
 

      

Overall accuracy = 61.9%     

K = 0.50      

 

 

 

Table I.8. Confusion matrix for ATM-Li SOM. 

Mapped as Validation data Row 

total 

User‘s 

accuracy 

(%)  
Alluvium–

colluvium 

Basal 

Group 

Lefkara 

Formation 

Pillow 

lavas 

Alluvium–

colluvium 
3103 110 93 31 3337 93.0 

Basal Group 27 1419 184 224 1854 76.5 

Lefkara 

Formation 
46 1025 1916 308 3295 58.1 

Pillow lavas 911 646 258 2645 4460 59.3 

Column total 4087 3200 2451 3208   

Producer‘s 

accuracy (%) 
75.9 44.3 78.2 82.4 

 
 

      

Overall accuracy = 70.2%     

K = 0.60      
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Table I.9. Confusion matrix for ATM-Li MNF MLC. 

Mapped as Validation data Row 

total 

User‘s 

accuracy 

(%)  
Alluvium–

colluvium 

Basal 

Group 

Lefkara 

Formation 

Pillow 

lavas 

Alluvium–

colluvium 
1124 0 0 0 1124 100.0 

Basal Group 129 1801 222 159 2311 77.9 

Lefkara 

Formation 
893 807 2177 285 4162 52.3 

Pillow lavas 1941 592 52 2764 5349 51.7 

Column total 4087 3200 2451 3208   

Producer‘s 

accuracy (%) 
27.5 56.3 88.8 86.2 

 
 

      

Overall accuracy = 60.8%     

K = 0.49      

 

 

 

Table I.10. Confusion matrix for ATM-Li MNF SOM. 

Mapped as Validation data Row 

total 

User‘s 

accuracy 

(%)  
Alluvium–

colluvium 

Basal 

Group 

Lefkara 

Formation 

Pillow 

lavas 

Alluvium–

colluvium 
3780 169 357 66 4372 86.5 

Basal Group 0 1446 301 163 1910 75.7 

Lefkara 

Formation 
0 991 1555 351 2897 53.7 

Pillow lavas 307 594 238 2628 3767 69.8 

Column total 4087 3200 2451 3208   

Producer‘s 

accuracy (%) 
92.5 45.2 63.4 81.9 

 
 

      

Overall accuracy = 72.7%     

K = 0.63      
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Appendix II 

 

Table II.1. Confusion matrix for LiDAR MLC. 

Mapped as Validation data Row 

total 

User‘s 

accuracy 

(%)  
Alluvium–

colluvium 

Basal 

Group 

Lefkara 

Formation 

Pillow 

lavas 

Alluvium–

colluvium 
1959 0 0 0 1959 100 

Basal Group 0 1613 243 315 2171 74.3 

Lefkara 

Formation 
73 820 1350 774 3017 44.7 

Pillow lavas 2055 767 858 2119 5799 36.5 

Column total 4087 3200 2451 3208   

Producer‘s 

accuracy (%) 
47.9 50.4 55.1 66.0 

 
 

      

Overall accuracy = 54.4%     

K = 0.40      
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