
Stochastic Modelling & Analysis of Dynamic
Human-Resource Allocation (StADy)

Thesis submitted for the degree of
Doctor of Philosophy at the University of

Leicester

by
Adwoa Dansoa Donyina

Hons. BSc.(University of Toronto 2007)
MSc Distinction (University of Leicester 2008)

Department of Computer Science
University of Leicester

April 2011



Abstract

Thesis Title: Stochastic Modelling & Analysis of Dynamic
Human-Resource Allocation (StADy)
Author’s Full name: Adwoa Dansoa Donyina

Business processes require involvement of technical components as well as
humans to achieve their objectives. However, humans are only predictable
to a degree of certainty because, while guided by policies and regulations,
they retain the freedom to ignore established procedures or positively react
to unforeseen events. Since we cannot change people, we have to be able to
recognize their unpredictable behaviour by organising processes in such a way
as to benefit from the flexibility of their actions and deal with the problems
that arise from it. Business processes tend to be a structured sequence of
events; however the assignment of humans to scheduled cases is unstructured.
Hence, it is difficult to accurately model and simulate the flexibility of human
resource allocation without considering the impact of unpredictable human
behaviour.

While business processes often have a rigid structure, determining se-
quences of actions on each individual case, there is flexibility in the selection
of cases to be processed as well as in the assignment of human resources.
However, such a flexible use of resources poses its own challenges, making
process execution difficult to model and predict.

In this thesis I propose a methodology and language to support the mod-
elling and evaluation of business process executions with flexible assignment
of human resources. The main idea is to model configurations of a business
process as graphs and use graph transformation rules in a UML-like syntax
to describe the process execution. This model allows to define conditions
to temporarily permit actors to exceed their roles in exceptional (escalated)
situations, without causing legal repercussions.

The evaluation of process execution models is supported by the use of
stochastic graph transformations, which allow the qualitative analysis of dif-
ferent organizational policies through simulation.

The methodology is presented in four stages of (1) business modelling,
(2) process execution design, (3) process encoding and (4) performance eval-
uation. A case study of a pharmacy process is used to evaluate the approach.



Author’s Declaration

I hereby declare that this submission is my own work and that is the result of
work done during the period of registration. To the best of my knowledge, it
contains no previously published material written by another person. None
of this work has been submitted for another degree at University of Leicester
or any other University.

Parts of this thesis submission appeared in the following conjoint publi-
cations, to each of which I have made substantial contributions:

1. Adwoa Donyina and Reiko Heckel. Modelling Flexible Human Resource
Allocation by Stochastic Graph Transformation. Post-Proceedings of
the Fifth International Conference on Graph Transformation - Doctoral
Symposium (ICGT-DS 2010) ECEASST Journal (1863-2122), Volume
38/2011.

2. Adwoa Donyina and Reiko Heckel. Flexible Behaviour of Human Ac-
tors in Distributed Workflows. In proceedings of the 17th Conference
on ”Communication in Distributed Systems 2011” (KiVS’11) in Kiel,
Germany (March, 8-11, 2011). As a special issue of the ECEASST
Journal (ISSN 1863-2122), Volume 37/2011, pages 134-145.

3. Adwoa Donyina and Reiko Heckel. Formal Visual Modeling of Human
Agents in Service Oriented Systems. In 2009 Fourth South-East Eu-
ropean Workshop on Formal Methods (SEEFM’09), pages 25-32, Los
Alamitos, CA, USA, 2009. IEEE Computer Society.

Parts of this thesis also appeared in the following independent publication:

1. Adwoa Donyina. Stochastic Modelling and Simulation of Dynamic Re-
source Allocation. Fifth International Conference on Graph Transfor-
mation Doctoral Symposium (ICGT-DS 2010) University of Twente,
Enschede, The Netherlands 27 September - 2 October, 2010. Graph
Transformations Lecture Notes in Computer Science, 2010, Volume
6372/2010, pages 388-390.

i



Acknowledgements

First and Foremost the author would like to thank The Lord Jesus Christ
for guiding her throughout her studies. Also, this thesis would not have
been possible without the support of many people. The author wishes to
express her gratitude to her first and second supervisors, Prof. Dr. Reiko
Heckel and Prof. Dr. José Fiadeiro who were abundantly helpful and offered
invaluable assistance, support and guidance. Deepest gratitude goes to phar-
macist/owner Georgina Donyina whose expert pharmacy domain knowledge
assisted in a realistic depiction of the project’s methodology.

Special thanks also go to her colleagues and friends for their suggestions
and editing of this work. Thank you to all the members of the Computer Sci-
ence Department, University of Leicester, United Kingdom, who became like
an extended family, by making her stay in England a home away from home.
The author wishes to express her love and gratitude to her beloved family
and friends in Canada for their understanding and endless love, through the
duration of her studies.

Figure 1: Adwoa Donyina and Her Majesty the Queen of England
Location: University of Leicester, United Kingdom

Date: 4 December 2008
Description: Presenting her MSc thesis work

ii



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 10

2 Requirements 13

2.1 Concept Requirements . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Language Requirements . . . . . . . . . . . . . . . . . . . . . 20

2.3 Methodology Requirements . . . . . . . . . . . . . . . . . . . 23

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Organisational & Process Modelling 25

3.1 Workflow Management . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Role-Based Access Control (RBAC) . . . . . . . . . . . . . . . 27

3.3 Domain-Specific Language (DSL) . . . . . . . . . . . . . . . . 29

3.4 Unified Modeling Language (UML) . . . . . . . . . . . . . . . 32

iii



CONTENTS

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Graph Transformation & Stochastic Simulation 41

4.1 Graph Transformations (GT) . . . . . . . . . . . . . . . . . . 41

4.2 Typed Attributed Graph Transformation (TAGT) . . . . . . . 45

4.3 Stochastic Graph Transformation Systems . . . . . . . . . . . 56

4.4 Stochastic Simulation . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Pharmacy Case Study 67

5.1 Business Environment . . . . . . . . . . . . . . . . . . . . . . 69

5.2 UML Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 Use-Case Diagram . . . . . . . . . . . . . . . . . . . . 72

5.2.2 Class Diagram . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.3 Activity Diagram . . . . . . . . . . . . . . . . . . . . . 78

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Configuration Modelling Language 81

6.1 Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Abstract Syntax M1-O1 and M1-O0 . . . . . . . . . . . . . . . 87

6.3 Concrete Syntax M1-O1 (Class-Level) . . . . . . . . . . . . . . 91

6.4 Concrete Syntax M1-O0 (Object-Level) . . . . . . . . . . . . . 93

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7 Transformation Modelling Language 98

7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2 Managerial-Level Rules . . . . . . . . . . . . . . . . . . . . . . 105

Adwoa Dansoa Donyina iv Thesis 2011



CONTENTS

7.2.1 Dynamic (Re)-assignment (R1.1) . . . . . . . . . . . . 105

7.2.2 Scheduling (R2.1) . . . . . . . . . . . . . . . . . . . . . 109

7.3 Support-Level Rules . . . . . . . . . . . . . . . . . . . . . . . 112

7.3.1 Escalation Handling (R2.3) . . . . . . . . . . . . . . . 112

7.3.2 Role Promotion/Demotion and Temporary Promotion

(R1.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3.3 Load Balancing (R2.4) . . . . . . . . . . . . . . . . . . 113

7.3.4 Human Error (R2.5) . . . . . . . . . . . . . . . . . . . 114

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8 Translation of Design into Simulation 117

8.1 Metamodel in VPM . . . . . . . . . . . . . . . . . . . . . . . . 118

8.2 Model in VPM . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.3 VIATRA2 Textual Syntax . . . . . . . . . . . . . . . . . . . . 123

8.3.1 Modelling Notation . . . . . . . . . . . . . . . . . . . . 124

8.3.2 Production-Level GT Rule in VIATRA2 . . . . . . . . 127

8.3.3 Managerial-Level GT Rule in VIATRA2 . . . . . . . . 130

8.3.4 Support-Level Rules in VIATRA2 . . . . . . . . . . . . 131

8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

9 Methodology 134

9.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

9.2 Preliminary Stage . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.4 Overview of Tasks and Artifacts . . . . . . . . . . . . . . . . 140

9.5 Stage 1 – Business Modelling . . . . . . . . . . . . . . . . . . 143

Adwoa Dansoa Donyina v Thesis 2011



CONTENTS

9.5.1 Business Domain (Task 1.1) . . . . . . . . . . . . . . . 144

9.5.2 Process Centric View (Task 1.2) . . . . . . . . . . . . . 146

9.6 Stage 2 – Process Execution Design . . . . . . . . . . . . . . . 147

9.6.1 Simulation Model Design (Task 2.1) . . . . . . . . . . . 147

9.6.2 StADy Hierarchy and Artifact Models (Task 2.2) . . . 148

9.6.3 Domain-Independent GT Rules in StADy notation (Task

2.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.6.4 Domain Specific GT Rules in StADy notation (Task 2.4)153

9.6.5 Probes and Observation Rules in StADy notation (Task

2.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.6.6 Start-Graph in StADy DSL (Task 2.6) . . . . . . . . . 155

9.6.7 Stochastic Graph Transformation System (Task 2.7) . . 157

9.7 Stage 3 – Process Encoding . . . . . . . . . . . . . . . . . . . 158

9.7.1 Start Graph in VIATRA2 Model Space (Task 3.1) . . . 159

9.7.2 Domain-Independent GT Rules in VIATRA2 Syntax

(Task 3.2) . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.7.3 Domain-Specific GT Rules in VIATRA2 Syntax (Task

3.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

9.7.4 Probes StADy in VIATRA2 Syntax (Task 3.4) . . . . . 161

9.7.5 Simulation Parameters (Task 3.5) . . . . . . . . . . . . 162

9.8 Stage 4 – Performance Evaluation . . . . . . . . . . . . . . . 166

9.8.1 Stochastic Simulation (Task 4.1) . . . . . . . . . . . . . 166

9.8.2 Results and Conclusions (Task 4.2) . . . . . . . . . . . 167

9.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Adwoa Dansoa Donyina vi Thesis 2011



CONTENTS

10 Illustration of Stage 1 – Business Modelling 169

10.1 Business Domain (Task 1.1) . . . . . . . . . . . . . . . . . . . 169

10.2 Process Centric View (Task 1.2) . . . . . . . . . . . . . . . . . 180

10.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

11 Illustration of Stage 2 – Process Execution Design 187

11.1 Simulation Model Design (Task 2.1) . . . . . . . . . . . . . . . 188

11.2 StADy Hierarchy and Artifact Models (Task 2.2) . . . . . . . 190

11.3 Domain-Independent GT Rules in StADy notation (Task 2.3) 193

11.4 Domain Specific GT Rules in StADy notation (Task 2.4) . . . 194

11.5 Probes and Observation Rules in StADy notation (Task 2.5) . 205

11.6 Start-Graph in StADy DSL (Task 2.6) . . . . . . . . . . . . . 207

11.7 Stochastic Graph Transformation System (Task 2.7) . . . . . . 211

11.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

12 Illustration of Stage 3 – Process Encoding 218

12.1 Start Graph in VIATRA2 Model Space (Task 3.1) . . . . . . . 219

12.2 Domain-Independent GT Rules in VIATRA2 Syntax (Task 3.2)220

12.3 Domain-Specific GT Rules in VIATRA2 Syntax (Task 3.3) . . 220

12.4 Probes StADy in VIATRA2 Syntax (Task 3.4) . . . . . . . . . 232

12.5 Simulation Parameters (Task 3.5) . . . . . . . . . . . . . . . . 234

12.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

13 Illustration of Stage 4 – Performance Evaluation 238

13.1 Stochastic Simulation (Task 4.1) . . . . . . . . . . . . . . . . . 238

13.2 Results and Conclusions (Task 4.2) . . . . . . . . . . . . . . . 239

Adwoa Dansoa Donyina vii Thesis 2011



CONTENTS

13.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

14 Analysis of Load Balancing and Escalation Handling 242

14.1 Process Execution Design . . . . . . . . . . . . . . . . . . . . 243

14.1.1 Domain-Independent GT rules in StADy DSL . . . . . 243

14.1.2 Domain-Specific GT Rules in StADy DSL . . . . . . . 243

14.1.3 Observation Rules in StADy DSL . . . . . . . . . . . . 244

14.1.4 Start Graph in StADy DSL . . . . . . . . . . . . . . . 245

14.2 Process Encoding . . . . . . . . . . . . . . . . . . . . . . . . . 246

14.2.1 Start Graph in VIATRA2 Model Space . . . . . . . . . 246

14.2.2 Observation Rules in VIATRA2 Syntax . . . . . . . . . 247

14.2.3 Simulation Parameters . . . . . . . . . . . . . . . . . . 249

14.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 250

14.3.1 Stochastic Simulations . . . . . . . . . . . . . . . . . . 250

14.3.2 Results and Conclusion . . . . . . . . . . . . . . . . . . 251

14.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

15 Evaluation 254

15.1 Role Management . . . . . . . . . . . . . . . . . . . . . . . . . 255

15.1.1 Dynamic (Re)-Assignment . . . . . . . . . . . . . . . . 255

15.1.2 Role Promotion, Demotion and Temporary Promotion 256

15.1.3 Role-Based Access Control . . . . . . . . . . . . . . . . 257

15.2 Task Management . . . . . . . . . . . . . . . . . . . . . . . . . 257

15.2.1 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 258

15.2.2 Non-Deterministic Duration of Tasks . . . . . . . . . . 258

15.2.3 Temporal Escalation Handling . . . . . . . . . . . . . . 259

Adwoa Dansoa Donyina viii Thesis 2011



CONTENTS

15.2.4 Load Balancing . . . . . . . . . . . . . . . . . . . . . . 260

15.2.5 Human Error and Unpredictability . . . . . . . . . . . 260

15.3 Language Requirements . . . . . . . . . . . . . . . . . . . . . 262

15.3.1 Visual Representation . . . . . . . . . . . . . . . . . . 262

15.3.2 Stochastic Specification of Task Selection and Duration 262

15.3.3 Flexible Specification of Unstructured Aspects . . . . . 263

15.4 Method Requirements . . . . . . . . . . . . . . . . . . . . . . 263

15.4.1 Integrate with Standard Business Modelling . . . . . . 263

15.4.2 Simulation Mechanism . . . . . . . . . . . . . . . . . . 264

15.5 Application Scenario . . . . . . . . . . . . . . . . . . . . . . . 264

15.6 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . 272

15.6.1 Correctness of GT Rules . . . . . . . . . . . . . . . . . 272

15.6.2 Impact of Start Graph Selection . . . . . . . . . . . . . 272

15.6.3 Impact of Simulation Depth . . . . . . . . . . . . . . . 275

15.6.4 Impact of Distribution Selection . . . . . . . . . . . . . 276

15.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

16 Related Work 280

16.1 Modelling Approaches . . . . . . . . . . . . . . . . . . . . . . 280

16.1.1 Problem Frames . . . . . . . . . . . . . . . . . . . . . . 281

16.1.2 Business Process Modelling Notation (BPMN) . . . . 282

16.1.3 Business Process Ontology . . . . . . . . . . . . . . . . 284

16.1.4 Agent-based Systems . . . . . . . . . . . . . . . . . . . 285

16.2 Executable Approaches . . . . . . . . . . . . . . . . . . . . . . 286

16.2.1 Web Services for Modelling Human Behaviour . . . . . 286

Adwoa Dansoa Donyina ix Thesis 2011



CONTENTS

16.2.2 Workflow Management Systems . . . . . . . . . . . . . 288

16.2.3 Resource Scheduling . . . . . . . . . . . . . . . . . . . 289

16.2.4 DYNAMITE . . . . . . . . . . . . . . . . . . . . . . . 291

16.3 Analysis Techniques . . . . . . . . . . . . . . . . . . . . . . . 292

16.3.1 Stochastic Simulations . . . . . . . . . . . . . . . . . . 292

16.3.2 ADONIS . . . . . . . . . . . . . . . . . . . . . . . . . . 293

16.3.3 Little-JIL . . . . . . . . . . . . . . . . . . . . . . . . . 294

16.3.4 Security Policy Model . . . . . . . . . . . . . . . . . . 295

16.4 Comparison to Requirements . . . . . . . . . . . . . . . . . . . 295

17 Conclusion 300

17.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . 300

17.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

17.3 Concluding Statements . . . . . . . . . . . . . . . . . . . . . . 304

A StADy GT Rule VIATRA2 Syntax Catalogue 306

A.1 Managerial-Level Rules . . . . . . . . . . . . . . . . . . . . . . 306

A.1.1 Dynamic (Re)-assignment (R1.1) . . . . . . . . . . . . 306

A.1.2 Scheduling (R2.1) . . . . . . . . . . . . . . . . . . . . . 310

A.2 Support-Level Rules . . . . . . . . . . . . . . . . . . . . . . . 313

A.2.1 Escalation Handling (R2.3) . . . . . . . . . . . . . . . 313

A.2.2 Role Promotion/Demotion and Temporary Promotion

(R1.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

A.2.3 Load Balancing (R2.4) . . . . . . . . . . . . . . . . . . 314

A.2.4 Human Error (R2.5) . . . . . . . . . . . . . . . . . . . 316

A.3 Production-Level Rules . . . . . . . . . . . . . . . . . . . . . 317

Adwoa Dansoa Donyina x Thesis 2011



CONTENTS

A.3.1 New Case Rules . . . . . . . . . . . . . . . . . . . . . . 317

A.3.2 Type Prescription Rule . . . . . . . . . . . . . . . . . . 328

A.3.3 Print Label Rule . . . . . . . . . . . . . . . . . . . . . 329

A.3.4 Fill Prescription Rule . . . . . . . . . . . . . . . . . . . 330

A.3.5 Check Rules . . . . . . . . . . . . . . . . . . . . . . . . 331

A.3.6 Counsel Rules . . . . . . . . . . . . . . . . . . . . . . . 336

A.3.7 Give Payment Rule . . . . . . . . . . . . . . . . . . . . 340

A.4 Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

A.4.1 “Exist” Patterns . . . . . . . . . . . . . . . . . . . . . 341

A.4.2 “Assigned” Patterns . . . . . . . . . . . . . . . . . . . 343

A.4.3 “Free Person” Patterns . . . . . . . . . . . . . . . . . . 345

A.4.4 “Requires” Patterns . . . . . . . . . . . . . . . . . . . 347

A.4.5 RoleInstance Presence on Case . . . . . . . . . . . . . 347

A.4.6 Time Patterns . . . . . . . . . . . . . . . . . . . . . . . 347

Adwoa Dansoa Donyina xi Thesis 2011



List of Figures

1 Adwoa Donyina and Her Majesty the Queen of England . . . ii

1.1 Chapter Dependencies . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Requirement Structure . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Feature Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 RBAC3 [57] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 DSL Modelling Concepts [74] . . . . . . . . . . . . . . . . . . 30

3.3 Logical (Ontological) Metamodel [28] . . . . . . . . . . . . . . 31

3.4 Physical (Linguistic) Metamodel [28] . . . . . . . . . . . . . . 32

3.5 Relationship Between UML and MOF . . . . . . . . . . . . . . 33

3.6 Relevant UML Diagrams . . . . . . . . . . . . . . . . . . . . . 34

3.7 Basic Class Diagram . . . . . . . . . . . . . . . . . . . . . . . 34

3.8 Association: Aggregation vs Composition . . . . . . . . . . . . 35

3.9 Object Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.10 Use-Case Diagram’s Graphical Syntax . . . . . . . . . . . . . 37

3.11 Activity Diagram’s Graphical Syntax . . . . . . . . . . . . . . 38

4.1 Type Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xii



LIST OF FIGURES

4.2 Instance Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Production (GT Rule) . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Double Pushout (dpo) . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Type Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Instance Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.7 GT Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.8 Double Pushout (dpo) . . . . . . . . . . . . . . . . . . . . . . 51

4.9 Graph Constraint Structure . . . . . . . . . . . . . . . . . . . 52

4.10 Graphical Constraint . . . . . . . . . . . . . . . . . . . . . . . 53

4.11 NAC Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.12 Negative Application Condition (NAC) . . . . . . . . . . . . . 54

4.13 GT Rule with NAC format 1 . . . . . . . . . . . . . . . . . . 54

4.14 GT Rule with NAC format 2 . . . . . . . . . . . . . . . . . . 54

4.15 Algebraic Arithmetic Constraint . . . . . . . . . . . . . . . . . 55

4.16 Normal CDF: Time it Takes to Fill a Prescription . . . . . . 59

4.17 Exponential CDF: Arrival Rate of New Pharmacy Customers 59

4.18 Timeline of scheduled rule-match pairs at t=0 . . . . . . . . . 63

4.19 Timeline of scheduled rule-match pairs at t=1.25 . . . . . . . 65

5.1 Actor Illustration . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Role Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Pictorial Version of States . . . . . . . . . . . . . . . . . . . . 71

5.4 UML Use-Case Diagram of the Pharmacy Business Process . . 73

5.5 UML Class Diagram of the Pharmacy Business Process . . . . 78

5.6 UML Activity Diagram of the Pharmacy Business Process . . 79

Adwoa Dansoa Donyina xiii Thesis 2011



LIST OF FIGURES

6.1 Linguistic Metamodeling View [5] . . . . . . . . . . . . . . . . 83

6.2 Metamodel (M2) . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3 Metamodel with mapping to E-graph . . . . . . . . . . . . . . 86

6.4 M1 level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.5 M1 abstract instance graph with mapping to E-graph . . . . . 90

6.6 Extended Use-Case Diagram (StADy Hierarchy Model) . . . . 91

6.7 Extended Class Diagram (StADy Artifact Model) . . . . . . . 92

6.8 Model at M1-O0 level . . . . . . . . . . . . . . . . . . . . . . . 97

7.1 GT Rule with Graphical Consistency Constraints Defined in

Figures 7.10, 7.11 and 7.12 . . . . . . . . . . . . . . . . . . . . 101

7.2 Domain-specific Business Level GT Rule . . . . . . . . . . . . 102

7.3 GT Rule mapped to E-graph . . . . . . . . . . . . . . . . . . 102

7.4 State Diagram of Pharmacy Business Process . . . . . . . . . 104

7.5 Distributed Event for Fill Prescription GT Rule . . . . . . . . 105

7.6 Request Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.7 Assignment Rule . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.8 Unassignment Rule . . . . . . . . . . . . . . . . . . . . . . . . 107

7.9 Defining an Assignment Policy using Negative Application

Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.10 Defining Assignment Policy using Graphical Constraint . . . . 109

7.11 Scheduling by Deadline Graphical Constraint . . . . . . . . . . 110

7.12 Scheduling by Priority Graphical Constraint . . . . . . . . . . 111

7.13 Clock Tick Rule . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.14 Trigger to Escalation Level 1 . . . . . . . . . . . . . . . . . . . 112

Adwoa Dansoa Donyina xiv Thesis 2011



LIST OF FIGURES

7.15 Temp Assign Entry Technician . . . . . . . . . . . . . . . . . . 113

7.16 Load Balancing Rule: Transfer Prescription to Another Store . 114

7.17 Skip Fill Prescription . . . . . . . . . . . . . . . . . . . . . . . 115

7.18 Backtrack Check State . . . . . . . . . . . . . . . . . . . . . . 115

8.1 VPM metamodel [72] . . . . . . . . . . . . . . . . . . . . . . . 118

8.2 Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.3 Metamodel O0 (Object-Level) Details . . . . . . . . . . . . . . 120

8.4 Model in VIATRA2 Model Space 1-3 . . . . . . . . . . . . . . 121

8.5 Model in VIATRA2 Model Space 2-3 . . . . . . . . . . . . . . 122

8.6 Model in VIATRA2 Model Space 3-3 . . . . . . . . . . . . . . 123

8.7 Domain-specific Business Level GT Rule . . . . . . . . . . . . 127

8.8 Request Person . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.9 Skip Fill Prescription . . . . . . . . . . . . . . . . . . . . . . . 131

9.1 Order of Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.2 Megamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9.3 Generic UML Use-Case Diagram . . . . . . . . . . . . . . . . 144

9.4 Generic UML Class Diagram . . . . . . . . . . . . . . . . . . . 145

9.5 Generic StADy Hierarchy Model . . . . . . . . . . . . . . . . . 149

9.6 Generic StADy Artifact Model . . . . . . . . . . . . . . . . . . 150

9.7 StoSimPars Entity . . . . . . . . . . . . . . . . . . . . . . . . 163

10.1 UML Use-Case Diagram of the Pharmacy Business Process . . 171

10.2 UML Class Diagram of the Pharmacy Business Process . . . . 172

10.3 Activity Diagram: Dispense Medication . . . . . . . . . . . . . 183

Adwoa Dansoa Donyina xv Thesis 2011



LIST OF FIGURES

10.4 Subactivity: Receive Prescription . . . . . . . . . . . . . . . . 184

10.5 Subactivity: Check Process . . . . . . . . . . . . . . . . . . . 184

10.6 Subactivity: Payment process . . . . . . . . . . . . . . . . . . 185

11.2 StADy Artifact Model . . . . . . . . . . . . . . . . . . . . . . 190

11.1 StADy Hierarchy Model . . . . . . . . . . . . . . . . . . . . . 191

11.3 Rule Name: New Walk-in Prescription . . . . . . . . . . . . . 194

11.4 Rule Name: New Refill Prescription . . . . . . . . . . . . . . . 195

11.5 Rule Name: New Same Day Prescription . . . . . . . . . . . . 195

11.6 Rule Name: New Delivery Prescription Type . . . . . . . . . . 196

11.7 Rule Name: Type Prescription . . . . . . . . . . . . . . . . . . 196

11.8 Rule Name: Print Label . . . . . . . . . . . . . . . . . . . . . 197

11.9 Rule Name: Fill Prescription . . . . . . . . . . . . . . . . . . 197

11.10 Rule Name: Successful Prescription check . . . . . . . . . . . 198

11.11 Rule Name: Unsuccessful Prescription check . . . . . . . . . 198

11.12 Rule Name: Give Payment . . . . . . . . . . . . . . . . . . . 199

11.13 Rule Name: Receive Payment . . . . . . . . . . . . . . . . . . 199

11.14 Rule Name: Counsel Patient . . . . . . . . . . . . . . . . . . 200

11.15 Abstract Representation of Print Label Rule . . . . . . . . . 204

11.16 LateCase Probe . . . . . . . . . . . . . . . . . . . . . . . . . 206

11.17 PersonAvailable Probe . . . . . . . . . . . . . . . . . . . . . . 206

11.18 Abstract Representation of PersonAvailable Probe . . . . . . 207

11.19 Start Graph for Simulation Type 1 Model . . . . . . . . . . . 208

11.20 Abstract Syntax of Start Graph . . . . . . . . . . . . . . . . 210

Adwoa Dansoa Donyina xvi Thesis 2011



LIST OF FIGURES

11.21 Dispensing used in the Dispensing Service Pilot Project (3

Phase Breakdown) [69] . . . . . . . . . . . . . . . . . . . . . . 213

12.1 Start Graph for Type 1 Simulation Model . . . . . . . . . . . 219

12.2 Standard Format 1: StADy GT Rule Structure . . . . . . . . 222

12.3 Standard Format 2: StADy GT Rule Structure . . . . . . . . 225

12.4 Standard Format 3: StADy GT Rule Structure . . . . . . . . 228

13.1 Number of Workers Idle out of 5 in Dispensary . . . . . . . . . 240

13.2 Number of Cases Completed out of the Total Received . . . . 241

14.1 SucessfulCheck on Time . . . . . . . . . . . . . . . . . . . . . 245

14.2 Start Graph for Simulation Type 2 Model . . . . . . . . . . . 246

14.3 Start Graph for Type 1 Simulation Model . . . . . . . . . . . 247

14.4 State Completion Comparison . . . . . . . . . . . . . . . . . . 252

14.5 Completion Time Comparison . . . . . . . . . . . . . . . . . . 252

15.1 Scenario Step 1: On 01/03/10 at 11:34:41 . . . . . . . . . . . 265

15.2 Scenario Step 2: On 01/03/10 at 11:35:00 . . . . . . . . . . . 266

15.3 Scenario Step 3: On 01/03/10 at 11:37:00 . . . . . . . . . . . 267

15.4 Scenario Step 4: On 01/03/10 at 11:37:30 . . . . . . . . . . . 267

15.5 Scenario Step 5: On 01/03/10 at 11:37:45 . . . . . . . . . . . 268

15.6 Scenario Step 6: On 01/03/10 at 11:38:45 . . . . . . . . . . . 269

15.7 Scenario Step 7: On 01/03/10 at 11:38:50 . . . . . . . . . . . 269

15.8 Scenario Step 8: On 01/03/10 at 11:39:15 . . . . . . . . . . . 270

15.9 Scenario Step 9: On 01/03/10 at 11:39:30 . . . . . . . . . . . 271

15.10 Start Graph for Simulation Type 2 Model . . . . . . . . . . . 273

Adwoa Dansoa Donyina xvii Thesis 2011



LIST OF FIGURES

15.11 Effect of Start Graph’s Number of Cases to State Completion

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

15.12 Start Graph with More Qualified Workers . . . . . . . . . . . 275

15.13 Simulation Depth Affect on State Completion . . . . . . . . . 276

15.14 Results for Check on Time with Different Arrival Rates . . . 278

15.15 Results for Counselling on Time with Different Arrival Rates 278

15.16 Results for Checking Prescription Late with Different Arrival

Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Adwoa Dansoa Donyina xviii Thesis 2011



List of Tables

3.1 Case Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Case Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Case Additional Exceptions . . . . . . . . . . . . . . . . . . . 37

4.1 GT Rules with Corresponding Normal Distributions . . . . . . 62

5.1 Receive Prescription Case Details . . . . . . . . . . . . . . . . 73

5.2 Case Scenario: Receive Prescription . . . . . . . . . . . . . . . 74

5.3 Case Alternative Scenario: Receive Prescription . . . . . . . . 74

5.4 Use-Case Details: Change Escalation level . . . . . . . . . . . 75

6.1 Abstract Syntax at M1-O0 vs Concrete Notation . . . . . . . . 94

6.2 Notation Part 1 of 2 . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 Notation Part 2 of 2 . . . . . . . . . . . . . . . . . . . . . . . 96

8.1 Notation-VIATRA2 Part 1 of 2 . . . . . . . . . . . . . . . . . 125

8.2 Notation-VIATRA2 Part 2 of 2 . . . . . . . . . . . . . . . . . 126

10.1 Use-Case Details: Change Escalation level . . . . . . . . . . . 173

10.2 Receive Prescription Case Details . . . . . . . . . . . . . . . . 174

xix



LIST OF TABLES

10.3 Case Scenario: Receive Prescription . . . . . . . . . . . . . . . 174

10.4 Case Alternative Scenario: Receive Prescription . . . . . . . . 174

10.5 Type Prescription Case Details . . . . . . . . . . . . . . . . . 175

10.6 Case Scenario: Type Prescription . . . . . . . . . . . . . . . . 175

10.7 Case Additional Exceptions: Type Prescription . . . . . . . . 175

10.8 Print Label Case Details . . . . . . . . . . . . . . . . . . . . . 176

10.9 Case Scenario: Print Label . . . . . . . . . . . . . . . . . . . . 176

10.10 Case Alternative Scenario: Print label . . . . . . . . . . . . . 176

10.11 Fill Prescription Case Details . . . . . . . . . . . . . . . . . . 177

10.12 Case Scenario: Fill Prescription . . . . . . . . . . . . . . . . 177

10.13 Case Alternative Scenario: Fill Prescription . . . . . . . . . . 177

10.14 Case Additional Exceptions: Fill Prescription . . . . . . . . . 177

10.15 Check Prescription Case Details . . . . . . . . . . . . . . . . 178

10.16 Case Scenario: Check Filled Prescription . . . . . . . . . . . 178

10.17 Case Alternative Scenario: Check Filled Prescription . . . . . 178

10.18 Payment Process Case Details . . . . . . . . . . . . . . . . . 179

10.19 Case Scenario: Payment Process . . . . . . . . . . . . . . . . 179

10.20 Case Alternative Scenario: Payment Process . . . . . . . . . 179

10.21 Counsel about Filled Prescription Case Details . . . . . . . . 180

10.22 Case Scenario: Counsel . . . . . . . . . . . . . . . . . . . . . 180

11.1 Versions for Answering Question 1 and 2 (Simulation Type 1) 189

11.2 Versions for Answering Question 3 (Simulation Type 2) . . . . 189

11.3 �actor�– artifact – �role� Consistency Check . . . . . . . 192

11.4 Activity Diagram Refined into GT Rules . . . . . . . . . . . . 202

Adwoa Dansoa Donyina xx Thesis 2011



LIST OF TABLES

11.5 Average Time Spent per Prescription [69] . . . . . . . . . . . 212

11.6 Estimated Average Times to Complete States . . . . . . . . . 214

11.7 Estimated Average Times for Skip Events . . . . . . . . . . . 215

11.8 Estimated Average Times for Backtrack Events . . . . . . . . 215

11.9 Estimated Average Times for Optional Features . . . . . . . . 215

11.10 GT Rule (Exponential Distribution) . . . . . . . . . . . . . . 216

11.11 Estimated Distributions of Managerial GT Rules . . . . . . . 216

12.1 Unique Procedural GT Rule String Patterns . . . . . . . . . . 221

12.2 Unique Procedural GT Rule String Patterns . . . . . . . . . . 225

12.3 Unique Procedural GT Rule String Patterns . . . . . . . . . . 227

13.1 Probability That a Prescription is Completed Late . . . . . . 239

15.1 Arrival Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

16.1 Related Work vs. Role Management (R1) Requirements . . . . 296

16.2 Related Work vs. Task Management (R2) Requirements . . . 297

16.3 Related Work vs. Language (R3) and Methodology Require-

ments (R4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Adwoa Dansoa Donyina xxi Thesis 2011



Chapter 1

Introduction

1.1 Motivation

Process management is a collection of planning, organising, and controlling

activities for the goal-oriented management of a series of administrative ac-

tivities aimed at identifying opportunities for improvement in quality, time,

cost and customer satisfaction factors [46, 35]. Decision-making is an impor-

tant aspect of process management; hence it is divided into levels depending

on the type of decision-making that is involved, such as decisions on process

design, resource planning, resource assignment and equipment control, which

occur at strategic, tactical, operational and real-time levels respectively [70].

Each of these process management levels go through the following four basic

phases to decision-making [70]:

1. Defining the problem.

2. Formulating solution(s) to the problem.

1



CHAPTER 1. INTRODUCTION

3. Assessing the different solutions.

4. Implementing the best solution.

The scope of this thesis is the strategic and operational levels of process-

modelling decisions. Strategic management decisions are process design de-

cisions that occur yearly and have large financial impact, which can remain

noticeable for years. Operational management level is concerned with re-

source assignment decisions. Phases one and two can be accomplished by

enabling business experts to describe existing and prospective business pro-

cesses precisely, using a simple graphical syntax to define the activities and

policies for the process design. The third phase can be accomplished through

business simulation, which is based on testing the modified business processes

using historical data. A simulation model is a particular type of mathemat-

ical model of a system, which provides businesses with the means to test

scheduling protocols, policies and regulations, prior to employing them in

their day-to-day operation. With the goal of increasing business productiv-

ity in mind, simulations can also help in the selection of an ideal solution due

to simulation tool’s analysis facility, which leads to phase four. Simulations

are very flexible analytical techniques, which can aid in answering a series of

questions. Simulations can provide a good insight of the process being mod-

elled through repeated execution of a process with the aid of a computer.

Since the development of a simulation model aids in process-modelling deci-

sion making, it can be used to make protocol decisions about human-resource

allocation and task management. However it is difficult to model dynamic

role allocation accurately because, in contrast to computer systems, human

Adwoa Dansoa Donyina 2 Thesis 2011



CHAPTER 1. INTRODUCTION

behaviour is only predictable to a degree of certainty. In semi-automated

business processes human actors are guided by predetermined policies and

regulations, but retain the freedom to react to unforeseen events, or dis-

regard procedures. Business processes are classified as being structured or

unstructured [40]. A structured business process is predictable routine work,

whereas an unstructured business process is unpredictable knowledge work.

While the processes themselves tend to be structured, the execution level is

not necessary structured.

BPEL4People is an extension of Web Services Business Process Execu-

tion Language (WS-BPEL) 2.0 [63] that incorporates activities performed

by people, using capabilities such as data manipulation. The authors of

BPEL4People stress in their whitepages that “the aspect of how people inter-

act with business processes must be properly modelled” [34]. The modelling

of the orchestration of people and technical components should incorporate

the various roles and responsibilities of all participants involved in the busi-

ness process properly. These models of orchestrated systems need to take into

account the non-deterministic and often non-predictable behaviour of hu-

mans. Unfortunately, methods and tools that are currently available within

software engineering are not sufficient for addressing these issues. Most for-

mal approaches that have been developed so far in software engineering focus

on technical components of a business process by modelling how software and

technical components will react to triggers issued by a software component.

However, even if humans are instructed to follow a particular protocol, they

may or may not do so in practice.

Adwoa Dansoa Donyina 3 Thesis 2011



CHAPTER 1. INTRODUCTION

1.2 Problem Statement

There should be a means to specify and analyse dynamic, static and stochas-

tic aspects of human resource re-configurations in a business process. This

specification can be used to test the benefits of the following resource allo-

cation features: scheduling policies, assignment policies, load balancing and

escalation handling. Scheduling policies provide a means for specifying the

order that a task should be allocated to a resource, whereas assignment poli-

cies can be used to determine who should be assigned to a particular role. On

the hand, load balancing can be used to reduce the businesses workload by

globally reassigning work. Additionally, escalation handling can be used for

specifying exception beyond typical assignment rules by triggering exceptions

if a task is not progressing as expected.

Current approaches such as BPMN [47], WS-HumanTask [2] and

InConcert [58] capture some aspects of human resource allocation;

however they are not intended for business users to test protocols

prior to employing them. In this thesis I propose a methodology

and language to support the modelling and evaluation of business

process with flexible assignment of human resources.

The creation of a visual modelling language and methodology will en-

capsulates these requirements outlined in Chapter 2 to model and simulate

a business process at different level of abstraction, by providing a means to

define stochastic and flexible specifications. Generic performance questions

can be defined based on the selection of model features. By formulating and

testing performance questions one could validate which feature is beneficial

Adwoa Dansoa Donyina 4 Thesis 2011



CHAPTER 1. INTRODUCTION

for the business process. Questions 1-3 below illustrate generically defined

performance questions.

1. Which scheduling method (by priority/deadline) increases the proba-

bility for a case to be completed on time? How does it affect the number

of cases completed out of the total received?

2. Does the usage of assignment policies decrease the number of idle work-

ers (not assigned to jobs) at any point in time?

3. Does escalation and/or load balancing increase the percentage of cases

that are completed within a given deadline, or reduce the time that

cases run past their deadline?

These questions can be used on any business process to detect the timeli-

ness of the service and the efficiency of task allocation. Question 1 tests the

alternative scheduling feature, such that it would require the comparison of

a model that implements scheduling by priority compared to another model

that is scheduled by deadlines. Question 2 tests the optional assignment pol-

icy feature, such that the comparison would test the absence and presence of

the feature. Similarly, Question 3 tests the optional load balancing and esca-

lation features, such that there are four unique models that could be tested

comparing the absence and presence combination for both of these features.

Adwoa Dansoa Donyina 5 Thesis 2011



CHAPTER 1. INTRODUCTION

1.3 Solutions

To solve the problem described in Section 1.1, this thesis introduces a vi-

sual modelling language which allows us to represent humans as part of

flexible workflows using a rule-based approach. In order to permit dynamic

non-deterministic decisions, a graph transformations rule-based approach is

used, such that the configurations of a business process are represented using

graphs and the changing operations to these configurations are defined using

graph transformation rules.

To capture the dynamic nature of cases, states are used to describe dis-

tinct cases within the system at some instant of time [17] (see Section 7.1).

Attribute values are used in some of the pre and post conditions of the trans-

formation rules to define the current state of a particular case. The transfor-

mation rules capture the dynamic re-configuration of the system. At the se-

mantic level, graphs are used to represent configurations and stochastic graph

transformations are used to model state changes with non-deterministic tim-

ing, such as the execution of a business action with a known average delay or

the assignment of an actor to a role. This allows us to model semi-structured

processes, where actions are not chosen using fixed control flow, but are non-

deterministically influenced by deadlines, priorities and escalation events.

At the same time the visual, rule-based approach provides an intuitive

notation for structural changes, distinguishing between domain-specific and

domain-independent rules. This enables the specification of generic alloca-

tion policies, defined using application conditions and constraints [31]. To

manage the complexity of such models the support of a dedicated language

Adwoa Dansoa Donyina 6 Thesis 2011



CHAPTER 1. INTRODUCTION

with domain-specific notation and formal support for analysis is required.

Since the operational semantics of stochastic graph transformation (GT) al-

low for simulation of workflows, a domain specific language (DSL) can be

used in a stochastic graph transformation approach for simulating different

features on workflows in dynamic commercial applications. The stochastic

simulation [68] provides analysis capabilities for service-level metrics. For

instance, it can be used to determine the probability of completing a task

within a deadline or the degree in which late cases are past the deadline.

It also enables us to compare the performance of different policies and the

effectiveness of additional features such as load balancing and/or escalation

handling.

This approach aims to effectively model human actors in business pro-

cesses, integrating a flexible rule-based approach with a rigid control flow

approach. The language syntax of the DSL is defined using a metamodel.

The metamodel is influenced by Role-Based Access Control (RBAC) [57]

models while the concrete notation extends that of UML class and use-case

diagrams. The domain-specific language incorporates features of organisa-

tional modelling [46], such as techniques to assign activities to resources in

organisational structures.

Adwoa Dansoa Donyina 7 Thesis 2011



CHAPTER 1. INTRODUCTION

1.4 Contributions

The thesis proposes a new approach for Stochastic Modelling & Analysis of

Dynamic Human-Resource Allocation (StADy)1. This approach is outlined

in a methodology which describes tasks and consistency checks required for

developers to employ StADy for quantitative analysis of scheduling protocols,

policies and regulations.

This thesis also proposes a new visual framework based on graph trans-

formation for modeling business processes where human beings are involved.

This is achieved by satisfying the requirements laid out in Chapter 2. The

newly developed StADy language is a combination of two sub languages: con-

figuration modelling language and transformation modelling language. The

StADy configuration modelling language is a domain-specific language which

consists of a metamodel, models and a graphical notation. The metamodel

includes elements such as actor, role, process, artifact, state, case, capability

and escalation. The models are extended use-case and class diagrams called

StADy’s hierarchy and artifact models, which contain additional information

in terms of access control, escalation handling and capabilities. On the other

hand, the StADy transformation modelling language is a graph transforma-

tion system which represents business process concepts and states using type

and instance graphs. The StADy metamodel is the type graph for the lan-

guage’s graph transformation system. The instance graphs are presented in

a new graphical notation, which can be used to denote things such as a per-

son’s availability or a case’s escalation level. A catalogue of GT rules which

1The StADy approach is pronounced as stad-dee

Adwoa Dansoa Donyina 8 Thesis 2011



CHAPTER 1. INTRODUCTION

capture the conceptual requirements (Section 2.1) is provided for future de-

velopers to employ. Guidelines for translating design models into simulation

models were developed.

The thesis’s core contributions include:

1. StADy methodology (Chapter 9)

(a) Business modelling stage (Section 9.5)

(b) Process execution design stage (Section 9.6)

(c) Process encoding stage (Section 9.7)

(d) Performance evaluation stage (Section 9.8)

2. StADy Language

(a) StADy configuration modelling Language(Chapter 6)

i. StADy metamodel (Section 6.1)

ii. StADy’s hierarchy and artifact models (Section 6.3)

iii. StADy graphical notation (Section 6.4)

(b) StADy transformation modelling language (Chapter 7)

i. Dynamic (re)-assignment (Section 7.2.1)

ii. Scheduling (Section 7.2.2)

iii. Escalation handling (Section 7.3.1)

iv. Role promotion/demotion and temporary promotion (Section 7.3.2)

v. Load balancing (Section 7.3.3)

vi. Human error & unpredictability (Section 7.3.4)

3. Translation of StADy design models into simulation models (Chapter 8)

Adwoa Dansoa Donyina 9 Thesis 2011



CHAPTER 1. INTRODUCTION

1.5 Outline of the Thesis

The remainder of this thesis is organized as follows:

Chapter 2 defines the concept, methodology and language requirements for

modelling and analysing business processes with human involvement.

Chapter 3 discusses background concepts for understanding the StADy

Configuration Modelling Language such as workflow management and

domain specific languages.

Chapter 4 introduces background concepts for understanding the StADy

Transformation Modelling Language such as attributed graph trans-

formation and stochastic simulation.

Chapter 5 defines a pharmacy case study which is used throughout the

thesis for illustrations and methodology evaluation.

Chapter 6 uses metamodelling to present the StADy Configuration Mod-

elling Language and demonstrates it with the pharmacy case study.

Chapter 7 defines the StADy Transformation Modelling Language.

Chapter 8 illustrates mechanisms for translating StADy designs into VIA-

TRA2 implementations.

Chapter 9 defines the StADy methodology for modelling and analysising

dynamic resource allocation.

Chapters 10–13 illustrate the stages of the methodology in detail using

the pharmacy case study.

Adwoa Dansoa Donyina 10 Thesis 2011



CHAPTER 1. INTRODUCTION

Chapter 14 illustrates an alternative execution of the methodology for test-

ing effectiveness of load balancing and escalation handling.

Chapter 15 evaluates the StADy language and methodology.

Chapter 16 presents related work in comparison of the StADy approach

and discusses why existing methods fail to satisfy the requirements.

Chapter 17 concludes the thesis with a discussion of several possibilities

for extending this thesis in the future.

The diagram in Figure 1.1 shows major dependencies in the chapters of

the thesis. An arrow from chapter ‘A’ to chapter ‘B’ means that understand-

ing chapter ‘B’ depends on some important material in chapter ‘A’. This

diagram excludes the minor dependencies. The dots at the intersection of

lines indicates merges. The conclusion does not have any major dependencies

because it is self contained.

Adwoa Dansoa Donyina 11 Thesis 2011



CHAPTER 1. INTRODUCTION

Figure 1.1: Chapter Dependencies

Adwoa Dansoa Donyina 12 Thesis 2011



Chapter 2

Requirements

A suitable language for modelling human behaviour will need to account

for a variety of requirements. These can be divided into three categories:

concept, language and methodology requirements. Figure 2.1 illustrates the

dependency relation between the categories [26]. Concepts are the basic

semantic entities that are encoded into language syntax such as cases and

actors. Language is a means for representing the concepts and supporting

the methodology, whereas the methodology defines when and how to use

the language. Each of the requirements is defined and briefly justified. Sec-

tions 2.1-2.3 outline the concept, language and methodology requirements,

respectively. These requirements are referenced throughout the thesis using a

(R#) reference index, such that the # is to their corresponding requirement

number.

13



CHAPTER 2. REQUIREMENTS

Figure 2.1: Requirement Structure

2.1 Concept Requirements

A business process (BP) is the production of a particular case (product/work-

item). Each case involves a process being performed, which consists of a

number of tasks that need to be carried out by a human or technical re-

source based on certain conditions. Resource allocation principles are based

on the objective of completing a case as quickly as possible through the or-

dering of case selection and selection of a resource to perform the case [70].

Hence, the language concept requirements have been subdivided into two

groups: features that help the selection of tasks to be performed on cases

(task management) and features that help selection of people to perform the

tasks (role management). The following concept requirements are composed

of general properties that need to be captured in the language.

1. ROLE MANAGEMENT

R1.1 Dynamic (re)-assignment

• Explanation: Tasks can be dynamically (re)assigned to peo-

ple based on their availability and capabilities. Optionally,

assignment policies can be defined. In particular, predefined

Adwoa Dansoa Donyina 14 Thesis 2011



CHAPTER 2. REQUIREMENTS

assignment protocols can be used to determine who should be

assigned to a particular role. For example, a policy to assign

the least-qualified person is illustrated as follows: if a bank

cashier role for processing withdrawal transactions is required

to be assigned and both a bank manager and a bank teller are

available then the teller should take on that role. However, in

a situation where no bank tellers available, the bank manager

is flexible enough to take on the cashier role.

• Justification: Dynamic re-assignment reflects real world needs

because in a typical workflow role assignment is constantly

changing. This requirement is of particular interest because

it directly relates to the problem being addressed in this thesis

which is the ability to model dynamic human-resource alloca-

tion accurately.

R1.2 Role promotion, demotion and temporary promotion

• Explanation: A promotion occurs once a person acquires ca-

pabilities sufficient to be assigned a new role. Demotion means

that a person loses permission to take on a particular role.

Temporary promotion occurs in response to an escalation for

a fixed period of time. This requirement reflects real world

needs because people’s positions in organisations are con-

stantly changing. For instance, a person can be promoted to

a higher position if he or she advances in their field, whereas a

person can be demoted if their performance is unsatisfactory.

Adwoa Dansoa Donyina 15 Thesis 2011



CHAPTER 2. REQUIREMENTS

On the other hand, temporary promotion is dependent on sit-

uations, such as the assistant manager temporarily covering

duties for an ill manager.

• Justification: This requirement enables role allocation to dy-

namically change within a process. This requirement is bene-

ficial to dynamic re-assignment (R1.1) because assignment is

dependent on roles (role-based) and if roles are also dynamic

then assignment will become more flexible.

R1.3 Role-based access control

• Explanation: Access control is a mechanism that grants or

revokes the right to perform activities and/or access data. In

role-based access control assignment permissions are associ-

ated with roles and users assigned to roles. Access control

can be used for an authority to specify a person’s allowable

roles and access rights to artifacts.

• Justification: This requirement is needed because role-based

access control can be used to specify which human resources

are permitted to perform certain roles and what data the hu-

man resource can access while taking on a role. The use

of role-based access control would strengthen dynamic re-

assignment (R1.1), role promotion/demotion and temporary

promotion (R1.2) specifications.

Adwoa Dansoa Donyina 16 Thesis 2011



CHAPTER 2. REQUIREMENTS

2. TASK MANAGEMENT

R2.1 Scheduling

• Explanation: Scheduling is a means of allocating resources to

tasks. The general structure of scheduling consists of a set of

tasks with dependencies and resource requirements. The out-

put of scheduling is a sequence of executions. Ordering tasks

by deadline or priority are two common scheduling policies.

Scheduling by deadline can minimise the amount of time it

takes for tasks to be completed past their deadlines, whereas

scheduling by priority could give preference to particular spe-

cial cases.

• Justification: Scheduling can be used for human resources

for assignment to tasks with the intention of optimising an

organisation’s criteria.

R2.2 Non-deterministic duration of tasks

• Explanation: The duration to complete a task varies from

person to person because it is influenced by various factors

such as the individual’s expertise, the difficulty of the task

and external factors that go beyond the scope of the business

process models. For instance, a highly trained worker is more

likely to complete a task faster then an un-trained worker.

• Justification: In order to accurately emulate unpredictable

task durations it is important for the system to take into

account of the non-deterministic time it takes for human re-

Adwoa Dansoa Donyina 17 Thesis 2011



CHAPTER 2. REQUIREMENTS

sources to complete tasks.

R2.3 Temporal escalation handling

• Explanation: Tasks can be modelled to express the expecta-

tion that the task is to be started or completed within a cer-

tain time frame. If a task is not progressing as expected then

an escalation mechanism is required [34]. Product deadlines

should trigger escalations enabling resources to be diverted to

the escalated product. Procedures should be in place specify-

ing how to handle escalations so that they comply with legal

requirements and people are allowed to react efficiently.

• Justification: Escalation handling is a mechanism for achiev-

ing flexibility in human resource allocation because it can

be used for specifying exceptions beyond typical assignment

rules.

R2.4 Load balancing

• Explanation: In a distributed setting, workflows can balance

the load between different organisations, thus increasing flex-

ibility, performance and reliability. Load balancing permits

external involvement to help reduce the businesses workload.

• Justification: Tasks can be dynamically (re)assigned glob-

ally to other sites (locations). This strategy is dynamic re-

assignment (R1.1) at a higher level.

Adwoa Dansoa Donyina 18 Thesis 2011



CHAPTER 2. REQUIREMENTS

R2.5 Human error and unpredictability

• Explanation: The human unpredictability feature should re-

flect that even if people are correctly instructed, they may or

may not perform their allocated tasks. Backtracking may be

required to eliminate human error.

• Justification: In order to capture human behaviour realisti-

cally in a business process negative aspects and their conse-

quences need to considered.

Figure 2.2: Feature Diagram

A feature diagram is used to summarize the concept requirements as

shown in Figure 2.2. A feature model [38, 75] provides a compact represen-

tation of features, whereas a feature diagram is a tree-like visual notation

of a feature model. The relationships between the parent and child features

Adwoa Dansoa Donyina 19 Thesis 2011



CHAPTER 2. REQUIREMENTS

are categorized into mandatory, optional, alternative features. The manda-

tory features, such as access control and human error, are denoted with a

black circle. The optional features, such as assignment policy and escalation

are denoted with a white circle. Sub-features deadline and priority have an

alternative (xor) relationship under the mandatory scheduling feature. The

dependency implication is denoted with the dashed arrow, which implies that

if the source feature (i.e., escalation feature) is selected then the target fea-

ture (i.e., role promotion/demotion feature) must be selected as well. Some

of the features are optional and alternative to enable the testing of distinct

protocols such as the effectiveness of an assignment policy, by comparing

simulation models with or without the feature. This feature diagram can

be used to decide optional and alternative features to test as illustrated in

Section 1.2. The concept requirements are further validated in Chapter 5.

2.2 Language Requirements

This section presents the language requirements for the development of a

domain-specific business process language. The language should be com-

posed of static, dynamic and stochastic aspects for modelling and specifying

dynamic re-configuration of resources in business processes. The language

requirements outline syntax and semantics.

Adwoa Dansoa Donyina 20 Thesis 2011



CHAPTER 2. REQUIREMENTS

3. LANGUAGE

R3.1 Visual representation

• Explanation: Visual representation is the use of diagrammatic

notation to represent the language. Business users can intu-

itively and visually understand diagrammatic notation with

minimal amount of training.

• Justification: This is important because the models being de-

veloped are intended for business experts who need to design

and validate strategies for resource allocation.

R3.2 Stochastic specification of task selection and duration

• Explanation: Stochastic models allow to represent actual or

apparent randomness of actions and their durations using

probability distribution, thus supporting the modelling of un-

predictability of humans (R2.5) and time (R2.2).

• Justification: Unpredictability of behaviour is a key feature

of processes executed by humans and needs to be taken into

account when evaluating different strategies.

R3.3 Flexible specification of unstructured aspects

• Explanation:

The language should permit dynamic non-deterministic deci-

sions. The purpose of a flexible language is to reflect people’s

spontaneous choices by providing options without a fixed or-

der i.e., a person has the option to choose the task to work

Adwoa Dansoa Donyina 21 Thesis 2011



CHAPTER 2. REQUIREMENTS

on first. It is also in contrast to classical workflow modelling

languages based on control-flow oriented or net-like diagrams.

• Justification: The control flow approach is suitable for defin-

ing structured business processes; however it is not suitable

for unstructured business process aspects such as role assign-

ment and scheduling, because in order to capture these non-

deterministic decisions the control flow approach would have

to break down into various complex exceptions. Therefore a

flexible approach is necessary for specifying a unstructured

business process. Since many processes include both struc-

tured and unstructured aspects, a control flow and a flexible

approach is required.

The static aspect of the language requirements is defined in R3.1,

because a visual representation provides a means to define con-

figurations of a process. R3.3 represents the dynamic aspect of a

business process by defining it in a flexible way. On the other hand,

R3.2 is the stochastic aspect by providing a means for analysing

quantitative properties.

Adwoa Dansoa Donyina 22 Thesis 2011



CHAPTER 2. REQUIREMENTS

2.3 Methodology Requirements

This section presents the methodology requirements which are procedures

and techniques that should be employed.

4. METHOD

R4.1 Integrate with standard business modelling

• Explanation: Integration means to use appropriate existing

models and extend them where necessary or to provide map-

pings with standard notations. Integration to existing stan-

dardized modelling notations such as Unified Modeling Lan-

guage (UML) will provide the ability to represent the model

at different levels of abstraction.

• Justification: There is a potential to reuse existing models.

The use of standard notions and methods would improve un-

derstandability and readability of the overall stochastic mod-

elling and analysis of dynamic human-resource allocation ap-

proach.

R4.2 Simulation mechanism

• Explanation: Simulation is the repeated execution of a system

with the aid of a computer. The system is represented using

a simulation model such as a stochastic simulation model.

Stochastic simulation models use random variables as inputs

and outputs estimations of the true characteristics of a sys-

tem [55]. Also simulations provide a flexible analysis tech-

Adwoa Dansoa Donyina 23 Thesis 2011



CHAPTER 2. REQUIREMENTS

nique for testing protocols prior to employing them in day to

day routine.

• Justification: Simulation is a means for analysing resource

allocation protocols on a business process. With the goal of

increasing business productivity in mind, simulation can help

in the selection of a resource allocation protocol.

2.4 Summary

This chapter introduced concept, language and methodology requirements

for modelling business processes involving humans. These requirements will

be referenced throughout the thesis using a (R#) reference index, such that

the # is to their corresponding requirement number. The next two chapters

(Chapters 3-4) will introduce relevant background information to help with

the understanding of the StADy approach.

Adwoa Dansoa Donyina 24 Thesis 2011



Chapter 3

Organisational & Process

Modelling

In order to understand the Configuration Modelling Language, definitions of

organisational and process modelling concepts are necessary. Basic notions

of workflow management, role-based access control (RBAC), domain specific

language (DSL) and unified modelling language (UML) are introduced. Each

section specifies the relevance of the corresponding background information.

This chapter concludes with a summary section that summarizes the back-

ground and locates where particular concepts are used in the thesis.

3.1 Workflow Management

Background information on workflow management is relevant for understand-

ing the configuration modelling language in Chapter 6. A business process

(BP) is defined as the production of a particular case (work-item/product/

25



CHAPTER 3. ORGANISATIONAL & PROCESS MODELLING

service). Each case involves a process being performed, which consists of a

number of tasks that need to be carried out by a resource based on con-

ditions. A process can be subdivided into three categories [70]: primary

(production), secondary (support), and tertiary (managerial). The primary

process is customer-oriented by focusing on the case. The secondary process

supports the primary process by maintaining the production. The manage-

rial process directs and coordinates the primary and secondary processes in

terms of required resources and process allocation. This classification is used

in Chapter 7.

A resource is defined as “the generic name for a person, machine or group

of persons or machines that can perform specific tasks” [70]. The performance

of a task by a resource is called an activity. Some tasks can be performed

without human involvement, whereas others require human involvement. Un-

like machines when a person is allocated a task they have the choice to accept

it. A role (function/qualification) is a group of resources with complementary

skills [70].

Resource allocation is very important to the efficiency and effectiveness

of a workflow [70]. Therefore, allocation principles are based on the objective

of completing a case as quickly as possible, through the ordering of cases and

selection of the resources performing the cases. Some of the common queuing

disciplines that can be used for ordering of cases are [70]: First-in First-out

(FIFO), Last-In First-Out (LIFO), Shortest Processing Time (SPT), Short-

est Rest-Processing Time (SRPT), and Earliest Due Date (EDD). FIFO is an

allocation rule in which cases are allocated in the order they arrived, whereas

LIFO is the opposite ordering. Queuing is influenced by temporal aspects

Adwoa Dansoa Donyina 26 Thesis 2011



CHAPTER 3. ORGANISATIONAL & PROCESS MODELLING

in SPT, SRPT and EDD methods in terms of processing time and required

completion times. The order that a case should be performed is closely as-

sociated with the selection of the resource because if the task on the case

can be carried out by more than one resource then there should be consid-

erations made for the selection [70]. The options for allocating a resource to

a case include assignment to: a specialized resource, resources that recently

fulfilled similar tasks or the least qualified person [70]. If the least qualified

permitted person is selected, this can benefit the workflow by leaving the

higher qualified person available to perform other specialized duties in the

future [70]. Such choices must be continually made during allocation of cases

to resources which is further illustrated in Section 7.2.1. It is also important

to note that, even if the workflow engine takes on an advisory role in formu-

lating allocation decisions, humans still retain the freedom to deviate from

these suggestions.

3.2 Role-Based Access Control (RBAC)

Role-Based Access Control (RBAC) is a predominant model for advanced

access control, which was formalized in 1992 by David Ferraiolo and Rick

Kuhn [23]. It is an access control mechanism that promotes central admin-

istration of an organisational specific security policy. RBAC policy bases

decisions on the functions a user is allowed to perform within an organi-

sation [23]. By 1994, various IT vendors such as IBM and Siemens began

developing products based on the RBAC model. In 1998 Ravi Sandhu intro-

duced a family of models called RBAC96, which encompasses the relationship

Adwoa Dansoa Donyina 27 Thesis 2011



CHAPTER 3. ORGANISATIONAL & PROCESS MODELLING

between four models: RBAC0, RBAC1, RBAC2 and RBAC3 [57]. In 2000

David Ferraiolo, Rick Kuhn and Ravi Sandhu unified the RBAC models to

create NIST RBAC [56] and later developed an ANSI/INCITS standard in

2004.

The StADy language metamodel (Section 6.1) is influenced by Sandhu’s

RBAC3 model, because the central notion of RBAC96 is that assignment

permissions are associated with roles and users assigned to roles. Roles rep-

resent competency, authority or responsibility to do a specific task, which

formulates the access control policy [57]. The RBAC3 model consists of

sessions/objects (S) in addition to a combination of RBAC0, RBAC1 and

RBAC2 as shown in Figure 3.1.

The base model (RBAC0) specifies the minimum requirements for a sys-

tem to fully support RBAC [57]. These minimum requirements include three

sets of entities called users (U ), roles (R), and permissions (P). RBAC1

and RBAC2 are both extensions of RBAC0 with distinct additional features.

RBAC1 adds role hierarchy (RH) feature whereas RBAC2 adds constraints to

the model. A user is defined as a human-being. A role is a job function or job

title within the organization with additional semantics regarding authority

and responsibility. Permission is defined as approval of a particular mode of

access to one or more objects in the system. Figure 3.1 shows the many-to-

many relationship between user assignment (UA) and permission assignment

(PA). Hence, a user can be a member of many roles and a role can have many

users. Similarly, a role can have many permissions and the same permission

can be assigned to many roles. Users are not directly connected to per-

missions because it weakens access control; however the placement of role

Adwoa Dansoa Donyina 28 Thesis 2011



CHAPTER 3. ORGANISATIONAL & PROCESS MODELLING

Figure 3.1: RBAC3 [57]

between user and permission provides a greater control over access configu-

ration [57]. A subject (or session) is defined as a unit of access control, and

a user may have multiple subjects active at the same time. Constraints is a

mechanism used for enforcing “acceptable” or “unacceptable” organisational

policies. The StADy metamodel relation to Sandhu’s RBAC3 model will be

further discussed in Section 6.1.

3.3 Domain-Specific Language (DSL)

This section is relevant for understanding the creation of the StADy Con-

figuration Modelling Domain Specific Language (DSL), which is introduced

in Chapter 6. A DSL is composed of various concepts, which are outlined

in Figure 3.2, such as the domain and the metamodel. The domain is the

Adwoa Dansoa Donyina 29 Thesis 2011



CHAPTER 3. ORGANISATIONAL & PROCESS MODELLING

bounded field of interest or knowledge, for example the pharmacy business

process to be discussed in Chapter 5. The metamodel is composed of the ab-

stract syntax, the concrete syntax and the static semantics of the language

which is illustrated in Sections 6.2 and 6.3, respectively. The abstract syntax

denotes the structure and grammatical rules of a language, whereas the con-

crete syntax denotes the graphical notation and the language representation

[39]. The static semantics of a language is used to validate well-formedness.

A DSL allows key aspects of a domain to be formally expressed and modelled

by using syntax and semantic constructs [74].

Figure 3.2: DSL Modelling Concepts [74]

Metamodelling is defined as “the act and science of creating metamodels,

which are qualified variants of models” [28]. A metamodel is a model that

defines the components of a conceptual model, process, or system. There are

two types of metamodels: ontological and linguistic. The ontological (or log-

ical) metamodel follows the Object Management Group (OMG) strict meta-

Adwoa Dansoa Donyina 30 Thesis 2011



CHAPTER 3. ORGANISATIONAL & PROCESS MODELLING

modelling hierarchy technique, which enforces the rule that the “instance-of”

relationship between instance (object) and type is only permissible between

a neighbouring pair of layers. The linguistic (or physical) metamodel focuses

on the alignment of the metalevels with the notion of abstraction, using the

“instance-of” relationship across and within levels [28]. Figures 3.3 and 3.4

outline the difference between these metamodeling techniques. A linguistic

metamodel is used to define the StADy configuration modelling language in

Section 6.1.

Figure 3.3: Logical (Ontological) Metamodel [28]

Adwoa Dansoa Donyina 31 Thesis 2011



CHAPTER 3. ORGANISATIONAL & PROCESS MODELLING

Figure 3.4: Physical (Linguistic) Metamodel [28]

3.4 Unified Modeling Language (UML)

The Unified Modeling Language (UML) section is important because it is

used in the first stage of the methodology (Chapter 9) and some of the

diagrams are extended by the StADy configuration modelling language in

Section 6.3.

The common meta-language of the Meta-Object Facility (MOF) [66] de-

fines all the foundational concepts required to build the Unified Modelling

Language (UML) [67], hence model elements in UML are instantiated from

model elements defined in MOF. Figure 3.5 provides a visual representation

of the relationship between the UML and MOF metamodels.

Adwoa Dansoa Donyina 32 Thesis 2011



CHAPTER 3. ORGANISATIONAL & PROCESS MODELLING

Figure 3.5: Relationship Between UML and MOF

UML is a graphical modeling language that defines a notation and a meta-

model. The UML meta-model defines the concepts of the language through

its abstract syntax. UML is a standard object modeling language controlled

by the Object Management Group (OMG). The OMG forms standards that

support interpretability in object-oriented systems [24]. UML uses various

graphical notations to create models for object-oriented analysis and design

methods [73]. UML diagrams are used for either static or dynamic modeling.

Dynamic models describe the behavior of a system, such as use-case and

activity diagrams, whereas static models describe the structural aspect of a

business process, such as class and object diagrams.

The UML diagrams relevant to this thesis are the following: class, object,

use-case and activity diagrams. Figure 3.6 shows the relevant diagrams as

a subset of the classification of UML diagram types. Class, use-case and

activity diagrams are illustrated in Section 5.2.

Adwoa Dansoa Donyina 33 Thesis 2011



CHAPTER 3. ORGANISATIONAL & PROCESS MODELLING

Figure 3.6: Relevant UML Diagrams

A class diagram describes types of objects in a system and their static re-

lationships [24]. The metamodel of a class diagram defines it to be composed

of properties and generalizations. The properties represent the structural

features of a class and are shown as the attributes and associations in the

diagram. Generalization defines inheritance between classes in a diagram.

Figure 3.7 is an example of a simple class diagram.

Figure 3.7: Basic Class Diagram

Class diagrams contain associations which are relationships between two

Adwoa Dansoa Donyina 34 Thesis 2011



CHAPTER 3. ORGANISATIONAL & PROCESS MODELLING

classes, the specialized forms are called Aggregation and Composition asso-

ciation [24]. They are distinguished by class parent–child life cycle and own-

ership relation. Aggregation is defined as the “part-of” relationship, where

all child classes are owned by the parent class (i.e. the child class that can-

not belong to another parent class); however each child class has its own life

cycle. On the other hand, composition is defined as a “has-a” relationship

and is a strong type of aggregation, where the child class does not have its

own life cycle; hence, if a parent class terminates then all its child classes will

also be terminated.

Figure 3.8: Association: Aggregation vs Composition

Figure 3.8 illustrates the notation for aggregation and composition asso-

ciations. The example department–professor aggregation relationship states

that a single professor cannot belong to multiple departments. Due to the ag-

gregation nature, if the department class is terminated, then the connecting

professor classes will not also terminate. On the other hand, the university–

department composition relationship states that the university can contain

multiple departments and a department object can only belong to one uni-

versity. Due to the composition nature if the university class is terminated,

Adwoa Dansoa Donyina 35 Thesis 2011



CHAPTER 3. ORGANISATIONAL & PROCESS MODELLING

then all its connecting departments will automatically delete.

Object diagrams denote snapshots of objects in a system at a point of

time [24]. The elements’ names are underlined and are usually in the fol-

lowing form: instance name: class name. Figure 3.9 illustrates an instance

(object diagram) of the simple class diagram defined in Figure 3.7.

Figure 3.9: Object Diagram

Use-Case Diagrams are composed of the following six modelling elements:

actors, use-cases, association, generalization, “includes” relationships and

“extends” relationships. An actor is a role that a user, external to the system,

plays in relation to the system [48]. The actor’s description may be refined

using generalization, as used in class diagrams. Figure 3.10 displays the basic

graphical syntax of a use-case diagram. Role hierarchies can be represented

in use-case diagrams. Use-case descriptions are used to specify the use-case

content, hence each use-case in the diagram is described using the templates

defined in Table 3.1 to 3.3.

Adwoa Dansoa Donyina 36 Thesis 2011



CHAPTER 3. ORGANISATIONAL & PROCESS MODELLING

Figure 3.10: Use-Case Diagram’s Graphical Syntax

Name:
Primary Actor:
Goal (of the User):
Precondition:
Postcondition (successful execution):
Trigger Event:
System (implementing it):
Participating Actor:

Table 3.1: Case Details

Step User Action
1
2
..

Table 3.2: Case Scenario

Step Condition for alternative Alternative Action
.. ..
.. ..

Table 3.3: Case Additional Exceptions

Adwoa Dansoa Donyina 37 Thesis 2011



CHAPTER 3. ORGANISATIONAL & PROCESS MODELLING

Activity Diagrams are used to describe procedural logic, business process

and work flow [24]. Partitions or swim lanes may be used to show who

carries out particular actions. Also coherent object flow can be defined by

using pins at the edge of each activity node with labels stating the type

of input and output object. Also activities can be decomposed into sub

activity diagrams which can be denoted by using a rake symbol inside the

corresponding activity. Figure 3.11 below displays some of the graphical

syntax of an activity diagram [24].

Figure 3.11: Activity Diagram’s Graphical Syntax

Adwoa Dansoa Donyina 38 Thesis 2011



CHAPTER 3. ORGANISATIONAL & PROCESS MODELLING

3.5 Summary

In this chapter, definitions for the relevant concepts of workflow management,

Role-Based Access Control (RBAC), Domain Specific Language (DSL) and

Unified Modelling Language (UML) were introduced.

The workflow management section presents relevant terms, principles,

and classifications that are used for the development of the modelling lan-

guage in Chapter 6. Some of the definitions introduced included: business

process, case, role and resource. These terms are used as elements in the

StADy configuration modelling language metamodel in Section 6.1; however

‘actor’ is used instead of ‘resource’ to place emphasis on human resources

in the model. Some of the important principles that were introduced con-

sisted of assignment options and common queuing disciplines for resource

allocation. The assignment options are further illustrated and discussed in

Section 7.2.1 in terms of assignment policies, whereas EDD queuing disci-

pline is illustrated in Section 7.2.2 for scheduling cases by deadline. This

section also describes how a business process can be subdivided into produc-

tion, support, and managerial levels. This three-level classification is used to

subdivide the StADy transformation modelling language’s GT rules, which

is further discussed in Section 7.1 and illustrated in Sections 7.2 and 7.3.

The RBAC section discusses how to model access control between users,

roles and objects, which is used in the development of the StADy language’s

metamodel. Section 6.1 describes the mapping of RBAC structures and dis-

cusses the association of individuals to permissions via roles to permissions,

which forms the basis of the metamodel (Figure 6.2).

Adwoa Dansoa Donyina 39 Thesis 2011



CHAPTER 3. ORGANISATIONAL & PROCESS MODELLING

The DSL section discussed a metamodel approach for developing domain

models. This section is relevant for understanding the creation of the newly

developed StADy DSL which will be introduced in Chapter 6. Important

metamodel distinguishing features are made to ensure that a clear under-

standing of linguistic metamodelling is provided, in order to understand the

defined linguistic metamodel in Section 6.1. This section also differentiates

between abstract and concrete syntax, which is further illustrated in Sec-

tions 6.2 and 6.3 respectively. The pharmacy business process (Chapter 5)

domain is illustrated in the configuration modelling language (Chapter 6).

The UML section shows the basic structure of existing standard mod-

elling techniques. UML is revisited in Chapter 5 to visually represent a

pharmacy business process (Section 5.2). UML class, use-case and activity

diagrams are also used in the first stage of the methodology as described in

Chapter 9.5. UML class and use-case diagrams are extended by the StADy

configuration modelling language, which is described in stage two of the

methodology (Chapter 9.6) and illustrated in Section 6.3. The next chapter

will present background information required for understanding the StADy

transformation modelling language.

Adwoa Dansoa Donyina 40 Thesis 2011



Chapter 4

Graph Transformation &

Stochastic Simulation

In order to understand the StADy Transformation Modelling Language, def-

initions of the relevant concepts are necessary. Basic notions of graph trans-

formation (GT), advanced notions of typed attributed graph transformation

(TAGT), stochastic graph transformation systems (SGTS) and stochastic

simulation are introduced. The introduction of each section specifies the rel-

evance of the corresponding background information. This chapter concludes

with a summary section that summarizes the background and locates where

particular concepts are used in the thesis.

4.1 Graph Transformations (GT)

Graph transformations (GT) [21] are used in the approach to permit dynamic

non-deterministic decisions, as described in Section 7.1 and illustrated in

41



CHAPTER 4. GRAPH TRANSFORMATION & STOCHASTIC
SIMULATION

Sections 7.2 and 7.3.

GT is a rule-based approach which represents procedural knowledge in

terms of a set of “IF-THEN” rules. These rules define preconditions and

effects of the basic activities. This form of modelling is in contrast to the

control-flow approach, which focusses on the expected ordering of events.

The rule-based models are more suitable for flexible processes because of the

inherent non-determinism in selecting a rule. The following formal definitions

appear in [21].

Definition 4.1.1. Graph (G)

A graph is a tuple G = (V,E, s, t) where V is a set of nodes (vertices), E is

a set of edges and s, t : E → V associate, respectively, a source and target

node for each edge in E.

Given graphs G1, G2 with Gi = (Vi, Ei, si, ti) for i= 1,2, a graph morphism

f : G1 → G2, f=(fV , fE) consists of two functions fV : V1 → V2 and fE :

E1 → E2 that preserve the source and target functions, i.e. fV ◦ s1 = s2 ◦ fE

and fV ◦ t1 = t2 ◦ fE.

Definition 4.1.2. Type Graph (TG) and Instance Graph (G)

A type graph is a tuple TG = (VTG, ETG, sTG, tTG) where VTG is a vertex

type alphabet and ETG is a edge type alphabet. A TG-typed instance graph

consists of a graph G and a typing morphism type : G→ TG.

Figure 4.1 illustrates a type graph, whereas Figure 4.2 is an instance graph

of the type graph. The type graph defines a basic organisational structure

consisting of people (P ), their role (R) assignments and cases (C). The

instance graph is the illustration of two people (P1,P2), P2 assigned to a role

Adwoa Dansoa Donyina 42 Thesis 2011



CHAPTER 4. GRAPH TRANSFORMATION & STOCHASTIC
SIMULATION

for a particular case whereas P1 is free. The set of all sequences of consecutive

transformation steps using rules denotes a system’s behaviour.

Figure 4.1: Type Graph

Figure 4.2: Instance Graph

Definition 4.1.3. Graph Transformation Rule (Production)

A typed graph rule p = (L
l← K

r→ R) consists of three typed graphs the

left-hand side L, the gluing graph K and the right hand side R and two

injective (typed) graph morphisms l and r. The left-hand side represents the

precondition of the rule, while the right-hand side represents the postcondition

of the rule.

Figure 4.3 illustrates a graph transformation rule which corresponds to

the type graph defined in Figure 4.1. This GT rule is for the assignment of

a person to role for a particular case.

Adwoa Dansoa Donyina 43 Thesis 2011



CHAPTER 4. GRAPH TRANSFORMATION & STOCHASTIC
SIMULATION

Figure 4.3: Production (GT Rule)

Definition 4.1.4. Graph Transformation (GT)

Assume a (typed) graph rule p = (L
l← K

r→ R) and a typed graph G with a

match m, which is a (typed) graph morphism m : L → G. A direct (typed)

graph transformation G
p,m⇒ H from typed graph G to H is given by the double

pushout diagram in Figure 4.8.

Figure 4.4: Double Pushout (dpo)

A (typed) graph transformation is a sequence of direct (typed) graph trans-

formations G0
∗⇒ Gn.

Adwoa Dansoa Donyina 44 Thesis 2011



CHAPTER 4. GRAPH TRANSFORMATION & STOCHASTIC
SIMULATION

Definition 4.1.5. Graph Transformation System (GTS)

A typed graph transformation system GTS = (TG, P, π) consists of a type

graph TG, a set of rule names P and a function π associated with each name

p ∈ P a span of injective TG-typed graph morphisms π(p) = (L
l← K

r→

R) [68].

Advanced concepts such as attributes, constraints and application condi-

tions are introduced in the next section.

4.2 Typed Attributed Graph Transformation

(TAGT)

In order to use graph transformation systems to specify and implement vi-

sual modeling techniques such as UML and StADy notation (Section 6.4),

typed attributed graph transformation systems are used. The concepts and

definitions are extended from graph transformation (Section 4.1), by allowing

node and edge attribution. The following formal definitions appear in [21].

Attributed graphs use a different kind of graph called E-graph which

extend the graph defined in Definition 4.1.1. An E-graph is a graph equipped

with an additional set of data nodes (or values) and special sets of edge

attributes and node attributes connecting, respectively, edges and nodes to

values.

Definition 4.2.1. E-Graph (EG)

An E-Graph EG = (VG, VD, EG, ENA, EEA(sourcej, targetj)j∈{G,NA,EA})) con-

sists of a set of graph nodes VG, a set of data nodes (vertices) VD, a set of

Adwoa Dansoa Donyina 45 Thesis 2011



CHAPTER 4. GRAPH TRANSFORMATION & STOCHASTIC
SIMULATION

graph edges EG, a set of node attribute edges ENA, set of edge attribute

edges EEA, a source function for graph edges sourceG : EG → VG, a tar-

get function for graph edges targetG : EG → VG, a source function for

node attribute edges sourceNA : ENA → VG, a target function for node at-

tribute edges targetNA : ENA → VD, a source function for edge attribute

edges sourceEA : EEA → VG and a target function for edge attribute edges

targetEA : EEA → VD.

Consider the E-graphs G1 and G2 with

Gk = (V k
G , V

k
D, E

k
G, E

k
NA, E

k
EA, (source

k
j , target

k
j )j∈{G,NA,EA}) for k=1,2. An

E-graph morphism f : G1 → G2 is a tuple (fVG , fVD , fEG
, fENA

, fEEA
) with

fVi : V 1
i → V 2

i and fEj
: E1

j → E2
j for i ∈ {G,D}, j ∈ {G,NA,EA} such

that f commutes with all source and target functions.

Definition 4.2.2. Attributed Graph (AG)

An attributed graph is a tuple AG = (EG,D) where EG is an E-graph and D

is an algebra with data signature DSIG = (S,OP ) such that
⊎
s∈S Ds = VD.

Intuitively, an attributed graph is an E-graph where VD is the set of all data

values available for attribution.

An attributed graph morphisms f : (EG,D) → (EG′, D′) of attributed

graphs is a pair of an E-graph morphism fEG : EG→ EG′ and a compatible

algebra homomorphism fD : D → D′.

Definition 4.2.3. Attributed Type (ATG) and Instance Graph (EG)

An attributed type graph is a an attributed graph ATG = (TG,Z), where Z

is the final DSIG-algebra. A typed attributed graph is a tuple (AG, t) with

attributed graph AG with a graph morphism t : AG→ ATG.

Adwoa Dansoa Donyina 46 Thesis 2011



CHAPTER 4. GRAPH TRANSFORMATION & STOCHASTIC
SIMULATION

Typed attributed graphs over an attributed type graph ATG form the cat-

egory AGraphATG of ATG-typed attributed graphs.

A type graph models the conceptual structure and provides types for the

instance graphs; hence well-formedness of an instance graph is determined

by checking whether it conforms to its type graph. UML class-diagram and

object-diagram notation (Section 3.4) are used to represent the type and

instance graphs, as illustrated in Figures 4.5 and 4.6, respectively. These

figures also present a mapping of E-graph elements. The type graph defines

a basic organisational structure consisting of people, their corresponding ca-

pabilities, and their role assignments. The instance graph is the illustration

of a person by the name of Bob with cashier capabilities who is assigned to

perform cashier duties on c1 case.

Adwoa Dansoa Donyina 47 Thesis 2011



CHAPTER 4. GRAPH TRANSFORMATION & STOCHASTIC
SIMULATION

Figure 4.5: Type Graph

Adwoa Dansoa Donyina 48 Thesis 2011



CHAPTER 4. GRAPH TRANSFORMATION & STOCHASTIC
SIMULATION

Figure 4.6: Instance Graph

Definition 4.2.4. Typed Attributed Graph Transformation Rule

A typed attributed graph transformation rule p = (L
l← K

r→ R) consists

of three typed attributed graphs with a common DSIG-algebra TDSIG(X), the

left-hand side L, the gluing graph K and the right hand side R, and two

injective (typed) attributed graph morphisms l and r that are identities on

the data algebra. Rule(ATG,X) is the set of all rules over an attributed type

graph with variables in X.

Figure 4.7 provides a basic example of a graph transformation rule for

the type graph (TG) defined in Figure 4.5. This example illustrates the

assignment of an available person to perform a role on a case. Both the

person and the case are located at the same pharmacy (group). Formally,

the GT rule (π(p)) in Figure 4.7 is a span of injective TG-typed morphism

Adwoa Dansoa Donyina 49 Thesis 2011



CHAPTER 4. GRAPH TRANSFORMATION & STOCHASTIC
SIMULATION

L
l← K

r→ R, but visually only L and R are shown. K is the intersection

between L and R.

Figure 4.7: GT Rule

Definition 4.2.5. Typed Attributed Graph Transformation

Assume a typed attributed graph rule p = (L
l← K

r→ R) and a typed

attributed graph G with a match m, which is a (typed) graph morphism

m : L → G. A direct typed attributed graph transformation G
p,m⇒ H from

typed attributed graph G to H is given by the double pushout diagram in

Figure 4.8 in AGraphATG.

Adwoa Dansoa Donyina 50 Thesis 2011



CHAPTER 4. GRAPH TRANSFORMATION & STOCHASTIC
SIMULATION

Figure 4.8: Double Pushout (dpo)

A (typed) attributed graph transformation is a sequence of direct (typed)

attributed graph transformations G0
∗⇒ Gn.

In addition to the basic graph transformation functionality there are var-

ious additional advanced concepts such as constraints and negative appli-

cation conditions that are illustrated in Chapter 7. A graphical constraint

can be used to define permitted or forbidden subgraphs. They are used to

formulate the condition that a graph G must (or must not) contain a certain

subgraph G′, without being connected to a GT rule. On the other hand, a

negative application condition (NAC) is defined within GT rules to forbid

the occurrence of a graph structure in the pattern matching of a rule, by

restricting the application of productions.

Definition 4.2.6. Graph Constraint for AGraphATG

An atomic graph constraint is a tuple (a,A) where a : P → C is a morphism

attributed over TDSIG(X) and A ⊆ {t1#t2|t1, t2 ∈ TDSIG(X),# ∈ {=, 6=, <

,≮,5,�}} as shown in Figure 4.9.

A morphism p : P → G satisfies (a,A) if there exists q: C → G such

that q ◦ a = p and q(t1)#q(t2) for all t1, t2 ∈ A where q(t) is the evaluation

Adwoa Dansoa Donyina 51 Thesis 2011



CHAPTER 4. GRAPH TRANSFORMATION & STOCHASTIC
SIMULATION

of term t in G’s data algebra. G satisfies (a,A) if for all P
a→ G, p satisfies

(a,A).

A boolean constraint c is a boolean expression over atomic constraints

based on the usual operations ∧,∨, 6=,→, true and false. Satisfaction of

boolean constraints is defined as usual based on the satisfaction of atomic

constraints.

Figure 4.9: Graph Constraint Structure

A positive graphical constraint is denoted with a instance graph as shown

in Figure 4.10, whereas a negative graphical constraint is denoted with a di-

agonal line across the instance graph. This example illustrates the constraint

that if a person is assigned to a RoleInstance then the person must have the

capability to perform the role.

Adwoa Dansoa Donyina 52 Thesis 2011



CHAPTER 4. GRAPH TRANSFORMATION & STOCHASTIC
SIMULATION

Figure 4.10: Graphical Constraint

Definition 4.2.7. Negative Application Condition (NAC) A nega-

tive application condition (NAC) for attributed graph rule p = (L
l← K

r→ R)

is a set of boolean constraints N of the form ¬(x,A) where x : L→ X. This

is visually represented in Figure 4.11. Satisfaction of boolean constraints

¬(x,A) is defined as in Definition 4.2.6 where p is replaced by the match m

of the rule. A match m : L → G satisfies N if m satisfies all ¬(x,A) ∈ N .

A rule p with application condition N is denoted p̂ = (P,N)

Figure 4.11: NAC Structure

Negative application condition (NAC) is visually denoted with a diagonal

line across the structure within the left-hand side of the rule as shown in

Figure 4.12. This example illustrates that a new payment artifact can be

Adwoa Dansoa Donyina 53 Thesis 2011



CHAPTER 4. GRAPH TRANSFORMATION & STOCHASTIC
SIMULATION

added to the case if there exists no payment artifact in ‘c1:case’.

Figure 4.12: Negative Application Condition (NAC)

Figure 4.14 illustrates a condensed way of denoting a GT rule with NAC

(Definition 4.2.7), which is equivalent to Figure 4.13. The notation used in

these two figures will be further discussed in Section 6.4.

Figure 4.13: GT Rule with NAC format 1

Figure 4.14: GT Rule with NAC format 2

Adwoa Dansoa Donyina 54 Thesis 2011



CHAPTER 4. GRAPH TRANSFORMATION & STOCHASTIC
SIMULATION

Figure 4.15 illustrates an arithmetic algebraic constraint, which states

that if a person is assigned to case he or she must be in the same group as

the case.

Figure 4.15: Algebraic Arithmetic Constraint

Definition 4.2.8. Typed Attributed Graph Transformation System

with Negative Application Conditions and Constraints

A typed attributed graph transformation system (TAGTS) with application

conditions and constraints is a tuple (ATG,P, π, C) where ATG is an at-

tributed type graph, P is a set of rule names, π maps rule names to ATG-

typed graph transformation rules over (ATG,X) with application conditions,

and C is a set of boolean constraints.

Given a rule p̂ = (P,N) a transformation G
p̂,m⇒ H with application con-

ditions and constraints is a transformation G
p,m⇒ H using the underlying rule

p such that m satisfies N and H satisfies C.

Adwoa Dansoa Donyina 55 Thesis 2011



CHAPTER 4. GRAPH TRANSFORMATION & STOCHASTIC
SIMULATION

4.3 Stochastic Graph Transformation Systems

Stochastic Graph Transformation Systems (SGTSs) [68] are used to asso-

ciate estimated (stochastic) time to business process tasks in stage 2 of the

methodology as described and illustrated in Section 9.6.7 and visually de-

noted in Section 7.1. SGTSs are also used in stage 4 of the methodology for

stochastic simulation as described in Section 9.8.1. SGTSs are used in the

methodology to support modelling of non-functional aspects such as perfor-

mance and reliability [68].

Stochastic time can be expressed using probability distributions because

they describe the range of possible values that a random variable can attain

and the probabilities of the occurrences of these values. SGTS (Stochastic

Graph transformation System) extends a GTS by associating a continuous

distribution function (CDF) with every rule. A continuous distribution func-

tion (CDF) identifies the probability of the value falling within a particular

interval using a probability density function (PDF) to describe the relative

likelihood [22]. The rule distribution is used to compute the time expected

to elapse (scheduled delay) prior the application of that particular rule. The

behaviour of SGTS can be described as a stochastic process over continuous

time where the application of transformation rules is dominated by contin-

uous probability distributions [30]. This is because each active rule-match

pair is associated with an independent random variable (timer) which is ran-

domly set according to a continuous probability function. The stochastic

graph transformation simulation algorithm will be further discussed in Sec-

tion 4.4.

Adwoa Dansoa Donyina 56 Thesis 2011



CHAPTER 4. GRAPH TRANSFORMATION & STOCHASTIC
SIMULATION

Therefore for a GTS to become a SGTS the GT rules defined in the GTS

will need to be associated with continuous distribution functions (CDF) such

as normal and exponential. First, the GT rules need to be categorized by

types of distribution, which can be accomplished by using distributing fitting

if sample data are available. Distributing fitting is a procedure of selecting

a statistical distribution that best fits the data set [62]. However, if sam-

ple data are not available GT rules can be categorized based on distribution

properties and theories such as the memorylessness property and the central

limit theorem. Exponential distributions are the only memoryless continuous

probability distribution, hence memorylessness is a unique categorization for

exponential distributions. The memoryless property means that the condi-

tional probability satisfies P (X > x+y|X > x) = P (X > y),∀x, y ≥ 0. This

formula means that random variable X has the property that “the future is

independent of the past”, i.e. if a light bulb has survived x units of time then

the chance that it survives a further y units of time is the same as that of a

fresh bulb surviving y units of time [7]. Exponential distributions are com-

monly used to represent the time between events that happen at a constant

average rate, interarrival times and rate of decay. For instance, if the rate

of arrivals is known, such as the time it takes before receiving a telephone

call, then the activity can be defined as an exponential distribution. On the

other hand, the central limit theorem is a means to classify a distribution as

a normal distribution. The theorem states that if the distribution is an aver-

age of many independent identically distributed random variables, then the

distribution tends towards a normal distribution [76]. The average length of

time it takes to complete an action, such as the average time to cut a persons

Adwoa Dansoa Donyina 57 Thesis 2011



CHAPTER 4. GRAPH TRANSFORMATION & STOCHASTIC
SIMULATION

hair, can be categorized as a normal distribution or a lognormal distribution,

which defines a positive normal distribution.

After categorizing the distribution, the corresponding scheduled delays

(probability values) need to be assigned for each GT rule. For instance,

the exponential distribution requires corresponding rate (λ) and average de-

lay (λ−1), whereas the lognormal distributions requires mean (µ) and vari-

ance (σ2) values. If the time it takes to fill a prescription in a pharmacy

is considered to be a normal distribution and it takes an average of 1.17

mins with a variance of 0.39583, then normal distribution can be visually

denoted in the CDF graph in Figure 4.16. On the other hand, if the ar-

rival rate of new customers to the pharmacy is every 5 minutes, the rate

is categorized as an exponential distribution and is denoted in the CDF

graph in Figure 4.17. The λ for this example is calculated as follows: λ=

(5+10+15)/3= 10, such that average represents the 5 minute interval. The

CDF graphs describes the probability that a real-valued random variable X

with a given probability distribution will be found at a value less than or

equal to x, for instance in the CDF defined in Figure 4.16 the probability

that the time it takes to fill a prescription is less than or equal to 2 mins

is 0.9 i.e. P (X ≤ 2) = F (x = 2) = 0.9. The CDF function for exponen-

tial is F (x, λ) = 1 − e−λ(X), therefore probability that X is less or equal

to 0.1 in the exponential CDF graph defined in Figure 4.17 is as follows:

P (X ≤ 0.1) = F (x = 0.2, λ = 10) = 1 − e−10(0.2)=0.864. Stochastic graph

transformation systems is further illustrated in Section 11.7.

Adwoa Dansoa Donyina 58 Thesis 2011



CHAPTER 4. GRAPH TRANSFORMATION & STOCHASTIC
SIMULATION

Figure 4.16: Normal CDF: Time it Takes to Fill a Prescription
µ=1.17 σ2=0.39583

Figure 4.17: Exponential CDF: Arrival Rate of New Pharmacy Customers
(λ−1)=1/10=0.1

Adwoa Dansoa Donyina 59 Thesis 2011



CHAPTER 4. GRAPH TRANSFORMATION & STOCHASTIC
SIMULATION

Formally, a stochastic graph transformation [68] is defined as SGTS =

(TG, P, π, F ), which consists of a graph transformation systemG = (TG, P, π)

and a function F : P → R+ → [0, 1] which associates a probability distribu-

tion function (PDF) F (p) : R+ → [0, 1] to every rule.

4.4 Stochastic Simulation

Simulations are a flexible analysis technique, which can aid in answering an-

alytical questions (Section 1.2). They provide a good insight into the system

being modelled through repeated execution of a system with the aid of a

computer. A simulation model is a particular type of mathematical model

of a system. Models can be classified as static or dynamic, deterministic or

stochastic, and discrete or continuous. Dynamic simulation models represent

systems as they change over time; whereas static simulation models represent

systems at a particular point in time. Stochastic simulation implies exper-

imenting with the model over time including sampling stochastic variants

from probability distributions [55]. A stochastic simulation model has one or

more random variables (delays) as inputs; deterministic models do not con-

tain random variables. In a stochastic simulation, the output measures must

be treated as statistical estimates of the true characteristics of the system,

because random inputs lead to random outputs [8]. Knowledge of statistics

is helpful for interpreting the simulation results.

Stochastic Simulation can be applied to SGTS with simulation tools such

as Graph-based Stochastic Simulation (GraSS) [30, 68]. GraSS is a tool

developed in Java-Eclipse that extends VIsual Automated model TRAnsfor-

Adwoa Dansoa Donyina 60 Thesis 2011



CHAPTER 4. GRAPH TRANSFORMATION & STOCHASTIC
SIMULATION

mations (VIATRA2) [72] model transformation plugin with a control based

on the SSJ library for Stochastic Simulation in Java. GraSS uses an XML file

to load the user-defined rule distributions and probe specification. Events

correspond to GT rules with matches, whereas probes are precondition pat-

terns that are used to gather statistics. Probes are similar to queries which

identify if a particular structure exists in a graph using identical pre and post

conditions in a GT rule. Hence, probes can produce statistical data by count-

ing occurrences of graph structure during a simulation run. The distribution

specification in GraSS is currently limited to lognormal and exponential dis-

tribution data. The tools results report data about average occurrences of

probe matches and rule executions. This simulation tool is used in stages

3 and 4 of the Methodology in Chapter 9. Formally, each simulation run

consists of the following steps [30]:

States (G, t, s) of the simulation are given by the current graph G, the

simulation time t, and the schedule s, a set of timed events s : E(G) → R+

with events given by E(G) = {(p,m)|p ∈ P ∧ π(p) = L ← K → R ∧ ∃m :

L→ G satisfying p’s gluing conditions and application conditions} maps all

rule matches enabled in G to their scheduled time.

1. Initially, the current graph G = G0 is the start graph, the time is set to

t = 0 and the scheduled time s(p,m) = RNF (p) for each enabled event

(p,m) is selected randomly based on p′s probability distribution.

2. For each simulation step

(a) the first event e = (p,m) is identified, i.e., such that for all events

e′, s(e) ≤ s(e′). Rule p applied at match m to the current graph

Adwoa Dansoa Donyina 61 Thesis 2011



CHAPTER 4. GRAPH TRANSFORMATION & STOCHASTIC
SIMULATION

G produces the new current graph H, i.e., G
p,m⇒ H.

(b) the simulation time is advanced to t = s(e).

(c) the new schedule s′, based on the updated set of enabled events

E(H), is defined for all (p′, n′) ∈ E(H) with π(p′) = L′ ← K ′ →

R′ and the transformation G
p,m⇒ H

The result is a (simulation) run r = (G0
p1,m1,t1⇒ · · · pn,mn,tn⇒ Gn), i.e., a

transformation sequence where steps are labelled by time stamps t1, · · ·, tn ∈

R+ with ti < ti+1 for all i ∈ {1, · · ·, n− 1}. The completion time of the run

is called ct(r) = tn.

This simulation algorithm can be illustrated given the following five GT

rules and corresponding distribution values in Table 4.1.

Rule Name Distribution
Mean Variance

ruleA 1 0.34
ruleB 2 0.50
ruleC 3 0.34
ruleD 4 0.10
ruleE 5 0.24

Table 4.1: GT Rules with Corresponding Normal Distributions

Example Simulation runs:

1. The simulation time t is set to 0.

2. The set of enabled GT rule matches is obtained from the GT engine.

• 2 matches of ruleB

• 3 matches of ruleD

Adwoa Dansoa Donyina 62 Thesis 2011



CHAPTER 4. GRAPH TRANSFORMATION & STOCHASTIC
SIMULATION

• 1 match of ruleA

3. A random number generator (RNG) assigns a scheduling time to each

active rule-match pair (event) e = (p,m), based on the probability

distribution s(e) associated with the rule.

• ruleB1 = (ruleB,m1) and s(ruleB1)= 1.50

• ruleB2 = (ruleB,m2) and s(ruleB2)= 2.06

• ruleD1 = (ruleD,m1) and s(ruleD1)= 3.10

• ruleD2 = (ruleD,m2) and s(ruleD2)= 2.80

• ruleD3 = (ruleD,m3) and s(ruleD3)= 3.05

• ruleA1 = (ruleA,m1) and s(ruleA1)= 1.25

4. A state list contains the active rule-match pairs, ordered by time as

visually represented in the timeline defined in Figure 4.18.

Figure 4.18: Timeline of scheduled rule-match pairs at t=0

5. The first event (e) is removed from the state list.

• ruleA1

6. The simulation time is increased to the time of event e (s(ruleA1)).

Adwoa Dansoa Donyina 63 Thesis 2011



CHAPTER 4. GRAPH TRANSFORMATION & STOCHASTIC
SIMULATION

• t= 1.25

7. The event e is executed by the GT engine.

• ruleA1

8. The new set of enabled GT rule matches is obtained from the GT

engine. Due to the execution of ruleA1 the matches for ruleB were

disabled; however a rule match for ruleE became enabled.

• 3 matches of ruleD

• 1 match of ruleE

9. A random number generator (RNG) assigns a scheduling time to each

active rule-match pair (event), based on the probability distribution

associated with the rule.

• ruleE1 = (ruleE,m1) and s(ruleE1)= 5.15

• ruleD1 = (ruleD,m1) and s(ruleD1)= 3.10

• ruleD2 = (ruleD,m2) and s(ruleD2)= 2.80

• ruleD3 = (ruleD,m3) and s(ruleD3)= 3.05

10. A state list contains the active rule-match pairs, ordered by time as

visually represented in the timeline defined in Figure 4.19.

• s(ruleD2)= 2.80

• s(ruleD3)= 3.05

• s(ruleD1)= 3.10

Adwoa Dansoa Donyina 64 Thesis 2011



CHAPTER 4. GRAPH TRANSFORMATION & STOCHASTIC
SIMULATION

• s(ruleE1)= 5.15

Figure 4.19: Timeline of scheduled rule-match pairs at t=1.25

11. The first event (e) is removed from the state list.

• ruleD2

12. The simulation time is increased by the time of event e (s(ruleD2)).

• t= 1.25 + 2.80 = 4.05

13. The simulation continues by following steps 1-7, using the current sim-

ulation time which was computed from time associated to the preceding

events.

4.5 Summary

In this chapter, definitions for the relevant concepts of Graph Transformation

(GT), Typed Attributed Graph Transformation (TAGT), Stochastic Graph

Transformation (SGT) and stochastic simulation were introduced.

The GT section defined and illustrated basic GT concepts, whereas the

TAGT section presented extension to GT with attributes for the nodes and

Adwoa Dansoa Donyina 65 Thesis 2011



CHAPTER 4. GRAPH TRANSFORMATION & STOCHASTIC
SIMULATION

vertices. GTs are seen throughout the thesis including: stages 2–4 of the

methodology (Chapter 11-13) and in Chapter 7.

Lastly, the stochastic graph transformation system and stochastic simu-

lation sections describe the necessary components for stochastic simulation.

SGTS is revisited in the methodology (Section 9.6.7) and in the rule-based

specification (Section 7.1). This section also introduced GraSS [30, 68], which

is the stochastic simulation tool that is used for stages 3 and 4 of the StADy

methodology (Sections 9.7 and 9.8). It is an extension of VIATRA2 [72],

hence the metamodel, models and GT rules would need to be translated into

VIATRA2 syntax, which is further discussed in Chapter 8.

Adwoa Dansoa Donyina 66 Thesis 2011



Chapter 5

Pharmacy Case Study

In order to validate the concept requirements defined in Section 2.1, a phar-

macy case study is considered. The following is a recap of the defined concept

requirements: dynamic (re)-assignment (R1.1); role promotion, demotion

and temporary promotion (R1.2); access control (R1.3); process scheduling

influenced by deadlines and priorities (R2.1); non-deterministic duration of

tasks (R2.2); temporal escalation handling (R2.3); load balancing (R2.4);

human error and unpredictability (R2.5).

The people involved in a pharmacy dispensary have different levels of

access rights depending on their qualification or role (R1.3). This process

is about dispensing medication at a pharmacy, which occurs at a dispen-

sary. Positions in the dispensary include registered pharmacists, pharmacy

students, pharmacy technicians and cashiers as illustrated in Figures 5.1

and 5.2. The dispensary also requires external involvement of customers in

the role of patients with basic access rights (R1.3). A person’s position in the

hierarchy of actors reflects their allowable role assignments (R1.1,1.2). For

67



CHAPTER 5. PHARMACY CASE STUDY

instance if a filling technician role is required to be assigned and both a reg-

istered pharmacist and a pharmacy technician are available, the technician

should take on that role (R1.1). However in a situation where no pharmacy

technicians are available, the pharmacist is flexible enough to take on the

filling technician role (R1.1).

Figure 5.1: Actor Illustration

Adwoa Dansoa Donyina 68 Thesis 2011



CHAPTER 5. PHARMACY CASE STUDY

Figure 5.2: Role Illustration

5.1 Business Environment

Workers are likely to react to emergencies by stopping their predetermined

routine schedule of work (R2.1). An example is an urgent prescription that

needs to be dispensed by a pharmacist while the current pharmacist on duty

is busy. In such a case, the urgent prescription is given priority over other

tasks (R2.1).

In a chain of pharmacy stores, the work load may vary across the different

stores because it is dependent on the number of prescription requests at par-

ticular locations. The customer has a choice to pick up the filled prescription

from the store or have it delivered to his or her home. If the pharmacy is

extremely busy and the requested prescription has been ordered for delivery,

Adwoa Dansoa Donyina 69 Thesis 2011



CHAPTER 5. PHARMACY CASE STUDY

then it can be transferred and filled by any pharmacy that is geographically

nearby. This is an example of load balancing (R2.4). However, there is a

restriction that prescriptions ordered to be picked up at a store can only be

filled at that store.

The pharmacy business process consists of the following sequence of

states: type, print, fill, check, payment and counsel, as illustrated in Fig-

ure 5.3. Each state represents the stage of that particular case in the pro-

cess. Pharmaceutical processes are safety critical and must be checked for

correctness and accuracy. Hence, each task includes error checking to ensure

that it is performed correctly. For instance, if a state is skipped, the process

will backtrack to the previous state (R2.5).

A typical process is initiated by a patient requesting a prescription to be

filled. The patient is informed of an expected finishing time, resulting in a

deadline for the case. The prescription is typed into the pharmacy database

by an entry technician and the corresponding bottle-label is printed. The

earliest due date (EDD) and priority-based scheduling protocols assist in

determining the order prescriptions get filled (R2.1). The prescription is

filled by a filling technician and checked by the dispensing pharmacist. The

pharmacy cashier receives payment from the patient and then the patient is

counselled by the dispensing pharmacist and given the filled prescription.

Adwoa Dansoa Donyina 70 Thesis 2011



CHAPTER 5. PHARMACY CASE STUDY

Figure 5.3: Pictorial Version of States

The deadlines are approximations based on the method of placing an

order and the degree of the customer’s urgency (R2.1). For instance, if a

customer decides to wait in the store, then the prescription is expected to be

finished within 15 minutes. If the customer decides to return to pick up the

prescription, then the prescription is expected to be finished within 1 hour.

If the prescription was requested online, then it is expected to be completed

within 24 hours.

Temporal exception handling (R2.3) can be triggered when the case is

approaching a deadline, has reached the deadline, or has exceeded the dead-

line. Escalations may also result in people overstepping their permissions

Adwoa Dansoa Donyina 71 Thesis 2011



CHAPTER 5. PHARMACY CASE STUDY

and being temporarily assigned to a role required to deal with the exception

(R1.2,2.3). An example is a prescription (case) which is 5 minutes past that

deadline and has an escalation defined that permits a pharmacy cashier to

temporarily take on the role as filling technician.

5.2 UML Models

This section models the case study with UML use-case, class and activity

diagrams. The illustrations show the usefulness of each of the diagrams;

however each section also points out diagram deficiencies and concludes with

possible methods of improvements.

5.2.1 Use-Case Diagram

Figure 5.4 illustrates the pharmacy business process in a UML use-case di-

agram. The diagram specifies the pharmacy dispensary system, which con-

tains various use-cases such as receive prescription and change escalation.

The corresponding use-case descriptions are shown in Tables 5.1 to 5.4. The

diagram also specifies which of the seven specified actors can perform the var-

ious use-cases. Some of the actors are related through hierarchy, hence can

inherit each other’s cases, i.e. a RegPharmacist can inherit type prescription

use-case from the Technician.

Adwoa Dansoa Donyina 72 Thesis 2011



CHAPTER 5. PHARMACY CASE STUDY

Figure 5.4: UML Use-Case Diagram of the Pharmacy Business Process

Name: Receive Prescription
Primary Actor: Worker

Goal (of the User): receive prescription and
set deadline

Precondition: prescription request
to be filled

Postcondition (successful execution): new prescription case
Trigger Event: new prescription fill request

System (implementing it): Dispensary
Participating Actor: Worker, Patient

Table 5.1: Receive Prescription Case Details

Adwoa Dansoa Donyina 73 Thesis 2011



CHAPTER 5. PHARMACY CASE STUDY

Step User Action
1 Patient brings Prescription to store
2 Worker receives prescription
3 Worker informs patient that prescription will be filled within 15 minutes

and sets completion time for 15 minutes from the current time

Table 5.2: Case Scenario: Receive Prescription

Step Condition for alternative Alternative Action
1 refill prescription ordered online Prescription is set for online refill
3 Patient plans to return later Prescription is set for future pickup

to pickup prescription and completion time is set to
1 hour from the current time

3 Patient asks for prescription to be delivered Prescription is set for delivery
and completion time is set to
15 mins from the current time

3 if the prescription is set as online refill The Worker sets the deadline to
24 hour from the current time

Table 5.3: Case Alternative Scenario: Receive Prescription

Adwoa Dansoa Donyina 74 Thesis 2011



CHAPTER 5. PHARMACY CASE STUDY

Name: Change Escalation Level
Primary Actor:

Goal (of the User): Increment Escalation
Level

Precondition: if (Prescription case deadline
is less than or equal to
5 minutes away from the deadline)
else if (Prescription case has
reached or passed the deadline)
else if (Prescription case is 5
mins or more passed the deadline)

Postcondition if (Prescription case deadline
is less than or equal to

(successful execution): 5 minutes away from the deadline )
then set Escalation level to 1
else if (Prescription case has
reached or passed the deadline)
then set Escalation level to 2
else if ( Prescription case is 5
mins or more passed the deadline)
then set Escalation level to 3

Trigger Event: case deadline approaching time
System Dispensary

(implementing it):
Participating Actor:

Table 5.4: Use-Case Details: Change Escalation level

Use-case diagrams tend to focus on the production-level aspects of a busi-

ness process such as receive prescription and fill prescription. Support and

managerial-level business aspects such as change escalation level and assign-

ment selection are difficult to represent in standard use-case diagrams. This

is because use-case’s in use-case diagrams are intended to describe sequences

of actions, yet managerial and support-level actions do not occur in a se-

quence. The receive prescription case description specifies the overall case

Adwoa Dansoa Donyina 75 Thesis 2011



CHAPTER 5. PHARMACY CASE STUDY

details (Table 5.1), case scenario (Table 5.2), and alternatives (Table 5.3).

On the other hand the change escalation level can only be presented using

a basic case description table (Table 5.4) because it is does not represent a

goal since it occurs as a support-level function as opposed to a production-

level aspect. In order to capture the functionality correctly, the pre and post

conditions in the use-case description in Table 5.4 requires a combination of

if and else conditions.

This issue can be resolved by extending use-case diagram to encode the al-

ternative and conditional details visually into the diagram using annotations.

The extension can define constraints on actors specifying conditions that will

permit them to take on particular roles such as constraints corresponding to

gained capabilities or required escalation levels. These annotations can be

used to refine actor–case relation into an actor–role–case relation as done

in RBAC [57] (Section 3.2). The extended use-case diagram is illustrated in

Section 6.3.

The StADy approach proposes to capture the written use-case descrip-

tions visually by using graph transformation rules. This approach is illus-

trated in Chapter 7: graph-transformation rules are used for defining pre and

post conditions in a visual way, by simply decomposing the description and

replacing it with three distinct graph transformation rules. Each of these

rules can be used to specify the trigger to increment the escalation level.

Graph transformation rules can provide a facility to represent both low level

management functions and business level operations.

Adwoa Dansoa Donyina 76 Thesis 2011



CHAPTER 5. PHARMACY CASE STUDY

5.2.2 Class Diagram

This section defines the pharmacy business process artifacts using an UML

class diagram. The class diagram in Figure 5.5 specifies the relations between

pharmacy artifacts, actors and products (cases). Each DispenseMedication

case can contains attributes such as enumerated type, which can be used to

distinguish different prescription types, i.e., delivery or walkin. The actors

defined in the use-case diagram (Figure 5.4) are specified using the�actor�

stereotype, such as Cashier and Technician. The can access relation is used

to specify which artifacts the actor is permitted to access, such as the Cashier

can access payment and bag artifacts. The hierarchy relationship defined in

Figure 5.4 corresponds to the access right inheritance relationship in the class

diagram in Figure 5.5; for example the pharmacist is permitted to access the

payment due to inheritance which was specified in the use-case diagram.

This direct actor–case relation is weak in terms of access control because

the actor has direct permission to access the case, whereas if a role is in

between actor and case the actor would need permission to perform the role

and the role would need permission to access the case, hence strengthening

access control. Class diagrams can be refined to increase the access control

by containing an actor–role–object relation, as done in RBAC (Section 3.2).

Hence, StADy defines an extended class diagram which lists the permitted

roles inside the corresponding artifact under the heading �role�. This is

illustrated in Section 6.3.

Adwoa Dansoa Donyina 77 Thesis 2011



CHAPTER 5. PHARMACY CASE STUDY

Figure 5.5: UML Class Diagram of the Pharmacy Business Process

5.2.3 Activity Diagram

This section defines a process centric view of the pharmacy business using a

standard UML activity diagram. The activity diagram in Figure 5.6 presents

the procedural logic of the pharmacy business process where the flow arrows

are used to specify the order in which actions occur. The sub-activity dia-

grams are later defined in Section 10.2. Swimlanes are used to specify the

actors required to perform the activities, such as Worker and RegPharma-

cist. Coherent object flows are also defined using pins on the end points of

the activity nodes such as Prescription and Case types.

Adwoa Dansoa Donyina 78 Thesis 2011



CHAPTER 5. PHARMACY CASE STUDY

Figure 5.6: UML Activity Diagram of the Pharmacy Business Process

Adwoa Dansoa Donyina 79 Thesis 2011



CHAPTER 5. PHARMACY CASE STUDY

This diagram captures the basic procedural logic of the dispensary control

flow; however it is missing managerial aspects such as role assignment. This

is due to the fact that activity diagrams were not intended for this level

of detail. Swim lanes are used to specify which actor performs which task;

however swim lanes lack detail on the actual person that is assigned to take

on that task. The activity diagram is defined from the business perspective

which focuses on the domain specific activities and omits the majority of the

managerial details such as role assignment, scheduling, and load balancing.

Non-deterministic managerial aspects are generically defined in the StADy

approach in graph transformation rules, whereas the existing control-flow be-

haviour of the domain-specific process-centric definitions can be preserved by

using states. Hence, the rule-based approach can be used to define the non-

deterministic and control-based processes. This is illustrated in Chapter 7.

5.3 Summary

This chapter introduced a pharmacy case study which will be used for il-

lustration of the StADy language (Chapters 6-7) and StADy methodology

(Chapters 10-14). The next chapter will introduce the StADy Configuration

Modelling Language.

Adwoa Dansoa Donyina 80 Thesis 2011



Chapter 6

Configuration Modelling

Language

This chapter introduces the StADy configuration modelling language, which

is a sub language of the StADy language. It is required for the process

execution design stage of the methodology which will be discussed in Chap-

ter 9. Section 6.1 introduces the configuration modelling language’s linguis-

tic metamodel (M2-level) [28]. The M2 level of the configuration modelling

language generically defines business processes in terms of various elements

including actor, role, case and artifact elements. These elements can be used

to instantiate the metamodel into various complicated business processes at

the instance (M1) level which is domain-specifically defined. For illustration

purposes the small pharmacy business domain defined in Chapter 5 is used

to define an instance of the metamodel in Section 6.2. Section 6.3 defines

the concrete representation of the class-level (M1-O1) of the abstract model.

On the other hand, Section 6.4 defines notation for representing object-level

81



CHAPTER 6. CONFIGURATION MODELLING LANGUAGE

(M1-O0) elements and defines the representation of M1-O0 representation of

the abstract model. This chapter focuses on the static aspects of the StADy

language, whereas the dynamic aspects of the language will be discussed in

Chapter 7.

6.1 Metamodel

A linguistic metamodel [28] (Section 3.3) was defined for modelling the or-

chestration between people and technical components. Figure 6.1 presents

a detailed linguistic metamodel view. This metamodel combines type and

instance-level concepts, located on opposite sides of the diagram for clarity,

and related by (ontological [28]) “instance-of” relations. Thus, instances of

this metamodel (M2) can represent both class-level (O1) and object-level

(O0) features.

Adwoa Dansoa Donyina 82 Thesis 2011



CHAPTER 6. CONFIGURATION MODELLING LANGUAGE

Figure 6.1: Linguistic Metamodeling View [5]

The linguistic [28] metamodel shown in Figure 6.2 captures the structure

of the configuration modelling language. Being a linguistic metamodel, it

combines type and instance-level concepts, located on opposite sides of the

diagram for clarity and related by the “instance-of” relationship.

Adwoa Dansoa Donyina 83 Thesis 2011



CHAPTER 6. CONFIGURATION MODELLING LANGUAGE

Figure 6.2: Metamodel (M2)

The metamodel includes elements of: Actor, Role, Process, Artifact-

Type, AttributeDeclaration, State and their corresponding ontological in-

stances of [28] (Section 3.3) Person, RoleInstance, Case, Artifact, Attribute-

Value and StateInstance. It also contains Capability and Escalation elements.

Escalation is related to exceptional Case to enable an Actor to be tempPer-

mitted (temporarily) to be assigned to a given Role. Their corresponding

levels are represented through hierarchy, whereas Capability is represented

in the actual association between Person and Capability. If the Actor is not

directly permitted to a Role he/she can obtain the Capability required. The

metamodel also contains a Clock object-level feature which is used to capture

Adwoa Dansoa Donyina 84 Thesis 2011



CHAPTER 6. CONFIGURATION MODELLING LANGUAGE

the current local date and time of the process.

The StADy Transformation Modelling language (Chapter 7) uses typed

attributed graph transformation without inheritance (Section 4.2) because

it is uses the StADy metamodel as the type graph for the GTS and it does

not have an actual inheritance relation instead it encodes an edge called

super. Inheritance is only visually represented at the concrete M1-O0 object

level (Section 6.4). Figure 6.3 shows the type graph’s (StADy metamodel’s)

mapping to E-graph elements (Definition 4.2.1).

The central notion in the metamodel is the association of individuals

to permissions via roles to permissions, which is influenced by Sandhu’s

RBAC3 [57] (Section 3.2). RBAC3’s user, role, permission elements maps

to the StADy metamodel’s person, actor and role elements respectively. A

RBAC3 user element is equivalent to StADy’s person element because it is

defined as a model of a human being. A RBAC3 role element is equivalent to

StADy’s actor element because it is defined as a job function or job title. The

RBAC3 role also has a role hierarchy relation which corresponds to StADy’s

Actor–Actor super relation. A RBAC3 permission element is equivalent to

StADy’s role element because it is defined as an approval of particular mode

access to one or more objects, such that the objects correspond to the StADy

metamodel’s ArtifactType. The RBAC3 permission assignment relation is

equivalent to the permitted actor–role relation in StADy’s metamodel. The

StADy metamodel uses a specialised version of RBAC constraints by defining

them using escalation and capability elements. The StADy metamodel thus

includes concepts of RBAC3 and extends it to include a visual representa-

tion of the interactions between people and their corresponding involvement

Adwoa Dansoa Donyina 85 Thesis 2011



CHAPTER 6. CONFIGURATION MODELLING LANGUAGE

in the tasks of a business process.

The structure of the metamodel was also influenced by Axenath et al.’s [6]

metamodels developed for business process models: organisational structure,

functional structure and resources. Similar to O1 and O0 in this metamodel,

their metamodels are also divided into two distinct sides of static and dy-

namic. The static side is the model itself, whereas the dynamic side is the

instantiation of the model. Also similar names such as Case and Process are

used in both models, such that a case is defined as an instance of a business

process.

Figure 6.3: Metamodel with mapping to E-graph

Adwoa Dansoa Donyina 86 Thesis 2011



CHAPTER 6. CONFIGURATION MODELLING LANGUAGE

6.2 Abstract Syntax M1-O1 and M1-O0

In this section, a M1 instance model is illustrated in abstract syntax using

the pharmacy domain described in Chapter 5 as an example. The M1 in-

stance model for the pharmacy domain is defined in Figure 6.4. This section

illustrates that the instantiation metamodel defined in Figure 6.2 is an ex-

ample of a pharmacy model in abstract syntax representation. The StADy

language itself is free of references to pharmacy concepts. Since the model

is an instance of a linguistic metamodel, it combines type and instance-level

concepts, located on opposite sides of the diagram for clarity and related by

the “instance-of” relationship.

The type-level elements define a dispensary as a Process containing vari-

ous ArtifactTypes such as prescription and payment. The dispensary Process

also contains various domain-specific AttributeDeclarations such as an enu-

merated case type attributes which could be enumerated to represent walkin,

delivery, refill and same day prescriptions. Each ArtifactType is associated

with various Roles that can access such as the filling technician–filled pre-

scription relation. Each Role is associated with permitted Actors such as

the entry technician–technician relation. Each Actor can inherit permissions

from other Actors with the super association such as a registered pharmacist

inheriting the permissions from a technician. Each Role is also associated

with the State they are involved in such as in payment state the process

requires a customer and a pharmacy cashier. Each of the States are associ-

ated with their corresponding preceding and succeeding States. Capability

elements are used to connect a Roles required Capability to a Person’s actual

Adwoa Dansoa Donyina 87 Thesis 2011



CHAPTER 6. CONFIGURATION MODELLING LANGUAGE

obtained Capability.

The instance-level elements are ontological instances-of the type level M1

elements and the instance-of the instance level M2 metamodel elements. The

model contains the following ontological instance relations: Actor–Person,

Process–Case, State–StateInstance, Role–RoleInstance and AttributeDecla-

ration–AttributeValue. The model also contains the following instance level

metamodel instances: Escalation, Clock and additional attributes Person.free,

Person.name, Case.startTime and Case.deadline.

The Actor–Person ontological instance relation is used to specify the

type of job position a Person acquires; for instance in Figure 6.4 Cindy is

a registered pharmacist. Each Person’s name and availability is specified;

for instance Bob is not available, whereas Cindy is available to be assigned

to a RoleInstance. Each RoleInstance has an ontological instance relation

to a Role to specify the type of Role that is associated with a Case. Each

Case represents a particular prescription case with corresponding attributes

such as start and deadline times and AttributeValues such as domain specific

attribute such as the boolean “counsel” attribute shown in Figure 6.4. Cases

also contain Artifacts such as the prescription. Each Case is associated with

a StateInstance which is an ontological relation to corresponding State, hence

represents the current State. Escalation levels are also specified and relate

the temporary permitted Role to an Actor. Figure 6.5 illustrates an instance

graph mapping to E-graph elements (Definition 4.2.1).

Adwoa Dansoa Donyina 88 Thesis 2011



CHAPTER 6. CONFIGURATION MODELLING LANGUAGE

Figure 6.4: M1 level

Adwoa Dansoa Donyina 89 Thesis 2011



CHAPTER 6. CONFIGURATION MODELLING LANGUAGE

Figure 6.5: M1 abstract instance graph with mapping to E-graph

Adwoa Dansoa Donyina 90 Thesis 2011



CHAPTER 6. CONFIGURATION MODELLING LANGUAGE

6.3 Concrete Syntax M1-O1 (Class-Level)

The M1-O1 concrete syntax instance model represents the abstract syntax

of the type-level elements of the M1 abstract syntax instance model (Sec-

tion 6.2) graphically.

Figure 6.6: Extended Use-Case Diagram (StADy Hierarchy Model)

Adwoa Dansoa Donyina 91 Thesis 2011



CHAPTER 6. CONFIGURATION MODELLING LANGUAGE

Figure 6.7: Extended Class Diagram (StADy Artifact Model)

Figures 6.6 and 6.7 illustrate the role hierarchies and artifact concepts

for the actor hierarchy (super), role association (permitted Actors, required

Capabilities, temporarily Permitted Escalation-Actor), and Process contain-

ment relations. The concrete syntax extends UML use-case diagram and

class diagram notation. Figure 6.6 illustrates how to visualise capability and

escalation constraints on Process, Actor and Role elements.

Use-cases are also used to model processes, i.e., classes of top-level busi-

ness objects in hierarchical class models such as the one in Figure 6.7. At-

tribute declarations appear in the first section of the classes, such as ‘coun-

sel:Boolean’. UML composition of classes is visually represented by the con-

tainment of classes within a process, i.e., a process is seen as a container for

lower-level business objects representing the data relevant to that process.

Other attributes such as states, start time and completion time were defined

in the metamodel level of this language.

The access control feature (R1.3) is defined in both of these models. In

Adwoa Dansoa Donyina 92 Thesis 2011



CHAPTER 6. CONFIGURATION MODELLING LANGUAGE

the role hierarchy model, UML’s actor hierarchies and allowable roles (actor

— use-case relations) are used here, such that the roles are defined at the

endpoints of the lines connected to the use-case. Actors allow multiple in-

heritance and are labelled by constraints corresponding to the capabilities or

escalation levels required for promotion. The constraints are defined in set

notation underneath the actor symbol. If at least one holds true, the actor

can take on a given role.

In the artifact model, actors in the hierarchy model were referred to un-

der the stereotyped keyword �role� used to define access rights of actors

to artifacts. If an actor is assigned to a particular role for a particular Dis-

penseMedication case instance, then the actor can access the corresponding

artifacts.

6.4 Concrete Syntax M1-O0 (Object-Level)

This section presents the StADy notation and illustrates it in an instance

model. The notation for process configurations is pictorial and represents

constraints on escalation levels, priorities, time and deadlines in states (in-

stance graphs) or state patterns (graph patterns to be matched by instance

graphs). Table 6.1 illustrates the connection between concrete syntax to

the abstract syntax at M1-O0 level. The syntax is introduced in Tables 6.2

and 6.3. The values corresponding to escalation, priority and timeline are

represented with a positive integer. If the values equal zero, then their corre-

sponding icons will not appear in the Case. The person free and person not

free notation define a short-hand notation for the Boolean attribute free in

Adwoa Dansoa Donyina 93 Thesis 2011



CHAPTER 6. CONFIGURATION MODELLING LANGUAGE

metaclass Person. The terms “internal” and “external” access right notation

(Table 6.3) are used to define if an actor can access the artifact contents of

the case. If a person’s access rights are internal, then he or she can access

some of the artifacts contained in the corresponding case, whereas external

access represents lack of access to artifacts contained in the case. Figure 6.8

is the concrete syntax representation of the M1-O0 abstract model in Fig-

ure 6.4.

Name Abstract Concrete
Request Assignment

Person Capability

Table 6.1: Abstract Syntax at M1-O0 vs Concrete Notation

Adwoa Dansoa Donyina 94 Thesis 2011



CHAPTER 6. CONFIGURATION MODELLING LANGUAGE

Name Description Notation
Escalation a Case’s escalation level

Priority a priority attribute

Timeline the startTime and

deadline attributes
Clock The current time

Person not free Person.free=false

Person free Person.free=true

Capability Person’s actual Capability

State State Metadata tagged {state=value}
value of current state

Table 6.2: Notation Part 1 of 2

Adwoa Dansoa Donyina 95 Thesis 2011



CHAPTER 6. CONFIGURATION MODELLING LANGUAGE

Internal Access Access to some of the artifacts within case

External Access Lack of access to artifacts within case

Request Assignment Request for an assignment to be made

Table 6.3: Notation Part 2 of 2

Adwoa Dansoa Donyina 96 Thesis 2011



CHAPTER 6. CONFIGURATION MODELLING LANGUAGE

Figure 6.8: Model at M1-O0 level

6.5 Summary

This chapter introduced the first sub-language of the StADy language called

StADy configuration modelling language. The configuration modelling lan-

guage is composed of a generic metamodel which can be instantiated to

various business processes, as illustrated in Sections 6.2-6.3. This chapter

also introduced the StADy notation (Section 6.4), which is used to visually

represent the business process in the StADy transformation modelling lan-

guage (Chapter 7) and stage 2 of the methodology (Chapter 11) The next

chapter will introduce StADy transformation modelling language, which is

the second sub-language of the StADy language.

Adwoa Dansoa Donyina 97 Thesis 2011



Chapter 7

Transformation Modelling

Language

This chapter defines the StADy transformation modelling language, which is

a sub language of the StADy language that focuses on the dynamic aspects of

a graph transformation (Chapter 4) rule-based process specification to per-

mit dynamic non-deterministic decisions. The graph transformation system

(GTS) uses the StADy metamodel defined in Section 6.1 as the type graph

of the GTS. The StADy transformation modelling language uses typed at-

tributed graph transformation without inheritance (Section 4.2) because the

type graph does not contain inheritance relations as discussed in Section 6.1.

The state of a business process can be represented using a graph, whereas the

configuration of the changing operations can be defined using graph transfor-

mation rules. The following sections discuss the graph transformation rules

for the GTS. Sections 7.2 and 7.3 define predefined managerial and sup-

port GT rules, which are required for task 2.3 (Section 9.6.3) and task 2.4

98



CHAPTER 7. TRANSFORMATION MODELLING LANGUAGE

(Section 9.6.4) of the methodology. The GT rules and graphical constraints

defined in Sections 7.2 and 7.3 directly correspond with the concept require-

ments (features) defined in Section 2.1. The selection of which features are

required to be modelled in the simulation will be further discussed in task

2.1 (Section 9.6.1). All of these rules of this chapter will be equipped with

probability distributions in task 2.7 (Section 9.6.7) which will control the

application of the rules during stochastic simulations.

7.1 Overview

Since a business process can be subdivided into three categories: primary

(production), secondary (support) and tertiary (managerial) [70] (Section 3.1),

the graph transformation rules are also subdivided into these three levels.

The primary rules are customer-oriented by focusing on the case, such as

the fill prescription and receive payment rules. The secondary rules support

the primary process by maintaining the production, such as the escalation

trigger and clock tick rules, which are further discussed in Section 7.3. The

managerial rules direct and coordinate the primary and secondary processes

by maintaining the organisational structure in terms of required resources

and process allocation, such as the role assignment and role request rule,

which are further discussed in Section 7.2. Each of these rules can be defined

in domain-independent or domain-specific syntax. Domain-specific actions

capture domain knowledge which is usually unique to the business process,

whereas domain-independent actions can be generically used by other busi-

ness processes.

Adwoa Dansoa Donyina 99 Thesis 2011



CHAPTER 7. TRANSFORMATION MODELLING LANGUAGE

The rule-based form of modelling is in contrast to the static control flow

approach, which represents precision in the expected ordering of events. The

control flow approach is suitable for defining static aspects in the produc-

tion level; however it is not suitable for low level dynamic managerial and

support aspects such as role assignment and scheduling, because in order

to capture these non-deterministic decisions the specifications would have to

break down into various complex exceptions. Hence, the StADy language

uses a rule-based approach in order to capture the non-deterministic nature

of the managerial and support levels and encodes control flow in the graphs

to capture the production-level aspects. As a result, the language contains

an aspect of control to define predefined routines, yet is flexible enough to

represent non-deterministic managerial decisions.

To illustrate the difference between domain-specific and domain-independent

rules, consider Figure 7.1. Sub-figure 7.1(a) illustrates a domain-specific rule

for assigning a free actor to a vacant role on a DispenseMedication case. In

most cases, this assignment is independent of the type of the actor or case,

as long as the former is qualified to fill the role on the latter. Therefore,

abstracting from the domain-specific type, a generic (domain-independent)

rule is obtained in Sub-figures 7.1(b) and 7.1(c). Sub-figure 7.1(b) defines

the domain-independent rule using the StADy concrete syntax, whereas Sub

Figure 7.1(c) denotes the domain-independent rule using abstract syntax.

Adwoa Dansoa Donyina 100 Thesis 2011



CHAPTER 7. TRANSFORMATION MODELLING LANGUAGE

(a) Domain Specific GT Rule

(b) Generic GT Rule with Concrete
Syntax

(c) Generic GT Rule with Abstract Syntax

Figure 7.1: GT Rule with Graphical Consistency Constraints Defined in
Figures 7.10, 7.11 and 7.12

Figure 7.2 illustrates the fill prescription domain specific production-level

rule which denotes that if a prescription is not filled and there is a filling tech-

nician assigned to the case instance, then the fill prescription action can be

performed. Figure 7.3 illustrates the mapping to E-graph elements (Defini-

tion 4.2.1) in graphs L R in a graph transformation rule (Definition 4.1.3).

Adwoa Dansoa Donyina 101 Thesis 2011



CHAPTER 7. TRANSFORMATION MODELLING LANGUAGE

Figure 7.2: Domain-specific Business Level GT Rule

GT Rule: Fill prescription
Pre-Condition: A prescription is not filled and there is a filling technician

assigned to the case instance.
Post-Condition: The prescription is filled.

Figure 7.3: GT Rule mapped to E-graph

Adwoa Dansoa Donyina 102 Thesis 2011



CHAPTER 7. TRANSFORMATION MODELLING LANGUAGE

Other domain specific rules which correspond to the pharmacy case study

in Chapter 5 include: type prescription, print label, and receive payment. The

state diagram [24] of a pharmacy business process is shown in Figure 7.4.

Each state represents the stage of that particular case in the process. Each

prescription case contains a state label, which corresponds to the task that

needs to be performed, with the assumption that upon completion of each

task the state label should correctly represent the state transitions. State

labels are also used to provide an external view of the case without imme-

diately checking internal contents. However, this assumption can sometimes

result in errors if the case is labelled incorrectly. Therefore, validation is

required and sometimes results in backtracking transitions, since people do

not always perform prescribed actions, skip rules are used to represent when

an employee skipped a task. For example, an employee might decide not to

fill a prescription and to pass it on to the next task, this can be represented

in a case by changing the state label of a case without changing the case’s

contents. With the assumption that the state label is correct, request rule

would be used to request a pharmacist to be assigned to the case without

checking the internal contents. After the pharmacist is assigned, then the

content is verified through pattern matching. If the case is missing a required

artifact element or contains an error, then a backtrack rule would revert the

case to its previous state. Skip and backtrack GT rules are further discussed

in Section 7.3.4.

Adwoa Dansoa Donyina 103 Thesis 2011



CHAPTER 7. TRANSFORMATION MODELLING LANGUAGE

Figure 7.4: State Diagram of Pharmacy Business Process

A stochastic graph transformation system [68] associates probability dis-

tributions to rule using general distributions. The general distributions in-

clude normal and exponential distributions. Section 4.3 discusses how to

assign probability distributions to rule pairs. The distribution parameter

can be visually denoted on the transition arrow as shown in Figure 7.5.

Attachment of distributions to rules is further discussed and illustrated in

Sections 9.6.7 and 11.7, respectively.

Adwoa Dansoa Donyina 104 Thesis 2011



CHAPTER 7. TRANSFORMATION MODELLING LANGUAGE

Figure 7.5: Distributed Event for Fill Prescription GT Rule

7.2 Managerial-Level Rules

The following section illustrates and discusses the managerial GT rules in

terms of the features defined in Figure 2.2.

7.2.1 Dynamic (Re)-assignment (R1.1)

The dynamic (re)-assignment feature requires request, assignment and unas-

signment rules. The request rule uses local state labels to determine if an

actor is required for a particular case (Figure 7.6). The assignment rule uses

the post condition of request rules to assign actors to roles (Figure 7.7). Sim-

ilarly, the unassignment (Figure 7.8) rule uses the state label to determine if

the actor has finished performing their duties.

Adwoa Dansoa Donyina 105 Thesis 2011



CHAPTER 7. TRANSFORMATION MODELLING LANGUAGE

Request Rule

Figure 7.6: Request Rule

Assignment Rule

Figure 7.7: Assignment Rule

Adwoa Dansoa Donyina 106 Thesis 2011



CHAPTER 7. TRANSFORMATION MODELLING LANGUAGE

Unassign Rule

Figure 7.8: Unassignment Rule

Assignment Policy

The assignment policy feature is incorporated into assignment transforma-

tion rules. The assignment policy specifies that the least qualified available

worker able to do the job, should be assigned. Figure 7.9, states that a reg-

istered pharmacist should only be assigned to the filling technician role, if

all technicians and trained pharmacy students are not available. Figure 7.10

defines a generic graphical constraint (Section 4.2) stating that the least

qualified available actor who is capable of performing the role, is assigned to

it.

Strategies for resource usage are usually domain-independent, although

they may vary with the type of organisation (small business, public service,

large company). Therefore role assignment and scheduling aspects are chosen

to be defined independent of the domain concepts, i.e., as direct instances of

Adwoa Dansoa Donyina 107 Thesis 2011



CHAPTER 7. TRANSFORMATION MODELLING LANGUAGE

the metamodel but not instantiating the M1 level diagrams by using a com-

bination of rules and graphical constraints. Operationally, rule application

is prohibited if the constraints are not satisfied by the derived graph, so con-

straints act as global right-sided application conditions. It greatly simplifies

the specification of rules, such as the assignment rules shown in Figure 7.1.

Figure 7.9: Defining an Assignment Policy using Negative Application Con-
ditions

Adwoa Dansoa Donyina 108 Thesis 2011



CHAPTER 7. TRANSFORMATION MODELLING LANGUAGE

Figure 7.10: Defining Assignment Policy using Graphical Constraint

7.2.2 Scheduling (R2.1)

Scheduling policies that were introduced in Section 3.1 provide the option to

schedule according various parameters such as deadlines or priorities. Hence,

order of assignment to the case can be based on an earlier deadline or a higher

priority constraint. Figure 7.9 uses negative application conditions to define

a transformation rule for assigning a filling technician to a case with the

highest priority with the assignment policy described below. Figures 7.11

and 7.12 define graphical constraint that state that there should never be

a role assigned to a case if there is a required assignment with an earlier

deadline or higher priority. Both of these graphical constraints use arithmetic

inequalities (Definition ??) to compare cases deadline or priority attribute

values, in order to ensure that the case with the closer deadline or higher

Adwoa Dansoa Donyina 109 Thesis 2011



CHAPTER 7. TRANSFORMATION MODELLING LANGUAGE

priority will be scheduled earlier. The scheduling policy is in no relation to

the scheduling in the stochastic graph transformation system simulation that

was defined in Section 4.3.

Traditionally, application conditions are used to define policies by restrict-

ing the applicability of individual rules with complex negative conditions.

Figure 7.9 demonstrates this traditional approach of defining an assignment

GT rule without defining graphical consistency constraints. This construc-

tion of application conditions from constraints has been developed in [31].

Scheduling by Deadline

Figure 7.11: Scheduling by Deadline Graphical Constraint

Adwoa Dansoa Donyina 110 Thesis 2011



CHAPTER 7. TRANSFORMATION MODELLING LANGUAGE

Scheduling by Priority

Figure 7.12: Scheduling by Priority Graphical Constraint

Clock

The model’s local clock is incremented with a clock tick rule used to provide a

model of time passing as required, for example, for checking deadlines. The

rules can access the current time through the time attribute in the Clock

node to compute deadlines or validate conditions to trigger an escalation;

hence if a case deadline has passed, the escalation level of the case should be

increased. The attachment of a normal probability distribution value will be

used to control the application of this rule, which will be further discussed

in Section 9.6.7.

Adwoa Dansoa Donyina 111 Thesis 2011



CHAPTER 7. TRANSFORMATION MODELLING LANGUAGE

Figure 7.13: Clock Tick Rule

7.3 Support-Level Rules

The following support level rules are defined using domain specific notation.

7.3.1 Escalation Handling (R2.3)

The escalation feature requires trigger and temp assignment transformation

rules. The trigger rules are used when a particular case has gone into a esca-

lated state, such as approaching a deadline (Figure 7.14). Temp assignment

rules occur only at escalated states by temporarily permitting a person to

take on a role that they are not normally allowed, as shown in Figure 7.15.

Trigger Rule

Figure 7.14: Trigger to Escalation Level 1

Adwoa Dansoa Donyina 112 Thesis 2011



CHAPTER 7. TRANSFORMATION MODELLING LANGUAGE

7.3.2 Role Promotion/Demotion and Temporary Pro-

motion (R1.2)

Temp assignment rules occur only at escalated states by temporarily per-

mitting a person to take on a role that he or she is not normally allowed to

perform.

Temp Assign Rule

Figure 7.15: Temp Assign Entry Technician

7.3.3 Load Balancing (R2.4)

The load balancing feature uses a transfer transformation rule to distribute a

prescription to another store. The transfer rule only transfers a prescription

if it is for delivery, as shown in Figure 7.16.

Adwoa Dansoa Donyina 113 Thesis 2011



CHAPTER 7. TRANSFORMATION MODELLING LANGUAGE

Transfer

Figure 7.16: Load Balancing Rule: Transfer Prescription to Another Store

7.3.4 Human Error (R2.5)

Skip and backtrack rules are used to represent the human error feature.

Since people do not always perform actions, skip rules are used to represent

when an employee skipped a task. The skip rule changes the case state label

without changing the case artifacts whereas the backtrack rule checks that

the state label is consistent with the case artifacts. An example of a skip

rule is when an employee decides not to fill a prescription and passes it on

to the next task, as shown in Figure 7.17. If the case is missing an element,

then it is backtracked into the previous state, as shown in Figure 7.18.

Adwoa Dansoa Donyina 114 Thesis 2011



CHAPTER 7. TRANSFORMATION MODELLING LANGUAGE

Skip Rule

Figure 7.17: Skip Fill Prescription

Backtrack Rule

Figure 7.18: Backtrack Check State

Adwoa Dansoa Donyina 115 Thesis 2011



CHAPTER 7. TRANSFORMATION MODELLING LANGUAGE

7.4 Summary

This chapter introduced the StADy transformation modelling language, which

is a sub language of the StADy language. The transformation modelling lan-

guage uses the configuration modelling language (Chapter 6) to define its

graph transformation system. The GT rules and graphical constraints de-

fined in this chapter are required for tasks 2.3-2.4 (Sections 9.6.3-9.6.4) of

the methodology and correspond to the features defined in the concept re-

quirements (Section 2.1). The next chapter will define a mapping from the

StADy language syntax to VIATRA2 syntax in order to perform simula-

tion using Graph-based Stochastic Simulation (GrASS) [30, 68] in task 4.1

(Section 9.8.1).

Adwoa Dansoa Donyina 116 Thesis 2011



Chapter 8

Translation of Design into

Simulation

This chapter describes how to translate StADy designs into VIATRA2 [72]

syntax for Graph-based Stochastic Simulation (GraSS) [30, 68] implementa-

tion. The encoding of StADy into VIATRA2 syntax is required in stage 3

(Chapter 12) of the methodology. Stage 3 encodes the existing StADy meta-

model (Section 6.1), models and GT rules into the VIATRA2 tool, in order

to perform stochastic simulation on the GraSS tool [30, 68] which extends

VIATRA2.

The metamodel and models are defined in VIATRA2 Model Space [72]

using the tools model space tree editor and the Visual and Precise Metamod-

elling (VPM) [71] metamodel in Figure 8.1 which are saved in a VPML file.

The VPM metamodel specifies how model element entities and relations are

defined in VPM.

117



CHAPTER 8. TRANSLATION OF DESIGN INTO SIMULATION

Figure 8.1: VPM metamodel [72]

Section 8.1 defines the StADy metamodel in the VIATRA2 model space,

whereas Section 8.2 illustrates the model defined in Section 6.2. VIATRA2

textual syntax is required for defining GT rules and probes, which are saved

in a VTML file. The mappings of StADy graphical notation and GT rules

to VIATRA2 textual syntax are illustrated in Section 8.3.

8.1 Metamodel in VPM

This section illustrates how the StADy metamodel (Figure 6.2) is repre-

sented in the VIATRA2 (VPM) Model Space [72]. Figure 8.2(a) presents

an overview of the type and instance level features. The relational and sub

entity details are presented in Figures 8.2(b) and 8.3.

Adwoa Dansoa Donyina 118 Thesis 2011



CHAPTER 8. TRANSLATION OF DESIGN INTO SIMULATION

(a) Overview (b) O1 (Type-Level) Details

Figure 8.2: Metamodel

Adwoa Dansoa Donyina 119 Thesis 2011



CHAPTER 8. TRANSLATION OF DESIGN INTO SIMULATION

(a) O0 part1 (b) O0 part2

Figure 8.3: Metamodel O0 (Object-Level) Details

8.2 Model in VPM

This section illustrates the mapping of the M1 abstract model in Figure 6.4

represented in VIATRA2 model space. Sub-figure 8.4(a) represents an overview

of the model, whereas Sub-figures 8.4(b)-8.5(b) presents the relation and en-

tity details of the model.

Adwoa Dansoa Donyina 120 Thesis 2011



CHAPTER 8. TRANSLATION OF DESIGN INTO SIMULATION

(a) Overview (b) Part 1

Figure 8.4: Model in VIATRA2 Model Space 1-3

Adwoa Dansoa Donyina 121 Thesis 2011



CHAPTER 8. TRANSLATION OF DESIGN INTO SIMULATION

(a) Part 2 (b) Part 3

Figure 8.5: Model in VIATRA2 Model Space 2-3

Adwoa Dansoa Donyina 122 Thesis 2011



CHAPTER 8. TRANSLATION OF DESIGN INTO SIMULATION

(a) Part 4 (b) Part 5

Figure 8.6: Model in VIATRA2 Model Space 3-3

8.3 VIATRA2 Textual Syntax

This section presents the mappings of StADy modelling notation to VIA-

TRA2 textual syntax and illustrates it in production-level, managerial-level

and support-level GT Rules. Details of the VIATRA2 Textual Command

Language (VTCL) can be found at [43, 72, 44]. This manual process is

required in task 3.3 (Section 9.7.3) of the methodology for encoding the

business processes domain-specific rules from StADy graphical notation into

VIATRA2 textual syntax. The VIATRA2 textual syntax representation

Adwoa Dansoa Donyina 123 Thesis 2011



CHAPTER 8. TRANSLATION OF DESIGN INTO SIMULATION

of the GT rules is required in order to perform stochastic simulation on

GraSS tool [30, 68] which extends VIATRA2. The VIATRA2 representa-

tion of the generically defined managerial-level GT rules (Section 7.2) are

available in Appendix A.1. VIATRA2 textual syntax illustrations of partial

domain-specific support-level GT rules (Section 7.3) are available in Ap-

pendix A.2, whereas domain-specific production-level GT rules are avail-

able in Appendix A.3. The managerial and support-level translation design

choices are presented in this section, whereas the production-level translation

design choices are only illustrated in this section. Task 3.3 (Section 9.7.3)

of the StADy methodology provides the developer with translation design

choices for their production-level GT rules that were defined in task 2.4 (Sec-

tion 9.6.4). Each of the GT rules that were translated from StADy designs

into VIATRA2 syntax was individually tested, by applying the rule on the

VIATRA2 transformation engine and manually verifying that the resulting

model transformed as expected.

8.3.1 Modelling Notation

This section presents a mapping of the defined graphical StADy graphical

notation (Section 6.4) to VIATRA2 textual syntax, in Tables 8.1 and 8.2.

This syntax is used to define the GT rules in Section 8.3.2 to 8.3.4.

Adwoa Dansoa Donyina 124 Thesis 2011



CHAPTER 8. TRANSLATION OF DESIGN INTO SIMULATION

StADy VIATRA2
Escalation(Level );

Case.escalations(R1 , Case , Level );

Case.priority(Priority );

Case.attr2(R1, Case , Priority );

Case.deadline(Deadline );

Case.attr1(R1, Case ,Deadline );

Case.startT ime(StartT ime );

Case.attr3(R1, Case , StartT ime );

Clock(Clock );Clock.T ime(T ime );

Clock.attr(R1, Clock , T ime );

Person(Person );Person.attr(R2 , P erson , Free );

Person.free(Free );

check(toBoolean(value(Free )) == false)

Person(Person);Person.attr(R2,Person,Free);

Person.free(Free );

check(toBoolean(value(Free )) == true)

Table 8.1: Notation-VIATRA2 Part 1 of 2

Adwoa Dansoa Donyina 125 Thesis 2011



CHAPTER 8. TRANSLATION OF DESIGN INTO SIMULATION

Capability(Capability );Person(Person );

Person.actual(R1 , P erson ,Capability )

{state=value} State(State );StateInstance(StateInstance );

Case.currentState(R6, Case,StateInstance );

typeOf(State , StateInstance );

RoleInstance(RoleInstance );Role(Role );

typeOf(Role ,RoleInstance );

Role.access(R1, Role , ArtifactType );

RoleInstance(RoleInstance )

neg find isAssign(RoleInstance );

pattern isAssign(RoleInstance ) = {

RoleInstance(RoleInstance );

Person(Person );

Case(Case );

RoleInstance.presence(R2, RoleInstance , Case );

RoleInstance.assignedTo(R1, RoleInstance , Person );

}

Table 8.2: Notation-VIATRA2 Part 2 of 2

Adwoa Dansoa Donyina 126 Thesis 2011



CHAPTER 8. TRANSLATION OF DESIGN INTO SIMULATION

8.3.2 Production-Level GT Rule in VIATRA2

The production-level GT rules are required to be encoded into VIATRA2 [72]

textual syntax in Section 9.7.3 of the methodology. Therefore, this section

illustrates the mapping of the fill prescription rule (Figure 8.7), which was

described in Section 7.1 into VIATRA2’s textual syntax.

Figure 8.7: Domain-specific Business Level GT Rule
GT Rule: Fill prescription

Pre-Condition: A prescription is not filled and there is a filling technician
assigned to the case instance.

Post-Condition: The prescription is filled.

The Rule FillPrescription GT rule, uses various patterns including:

FTassigned(Case ,RoleInstance , Role , Person ), FilledPrescriptionExist(Case ),

and LabelExist(Case ). These pattern are called from the gtRules, like

method calls in Java. The comments within the code describe the various

rule features.

Adwoa Dansoa Donyina 127 Thesis 2011



CHAPTER 8. TRANSLATION OF DESIGN INTO SIMULATION

gtrule Rule_FillPrescription() =

{
precondition pattern lhs(Case_,RoleInstance_,Role_,Person_,FilledPrescription_,

StateInstance_, NextState_,R6_) =

{
//Declarations i.e. Type(Instance)

Case(Case_);

ArtifactType(FilledPrescription_);

State(State_);

State(NextState_);

StateInstance(StateInstance_);

//Verify that ArtifactType that was matched is of FilledPrescription

check(name(FilledPrescription_)=="FilledPrescription");

//Verify that a Filling Technician is assigned to the Case

find FTassigned (Case_,RoleInstance_,Role_,Person_);

//Negative application condition

//Ensure that the prescription is not already filled

//i.e FilledPrescription Artifact is not contained in the Case

neg find FilledPrescriptionExist(Case_);

//Verify that a Label exists in the Case

find LabelExist(Case_);

//Retrieve Case’s current State

Case.currentState(R6_,Case_,StateInstance_);

//Find the next state from the current state

State.next(R7,State_,NextState_);

//Check if current state is the required state

typeOf(State_,StateInstance_);

check(name(State_)=="Fill");

}
action {

let

NewArtifact_=undef,

R1_=undef,

NewStateInstance_=undef,

R2_=undef

in seq {
//Remove Case’s old state

delete(StateInstance_);

delete(R6_);

//Change Case state to the next state

// create Class inside the Case

new(StateInstance(NewStateInstance_)in DSM.model.M1);

//create instanceOf relation with the StateInstance:State

new(instanceOf(NewStateInstance_,NextState_));

new (Case.currentState(R2_,Case_,NewStateInstance_));

//Add Filled Prescription Artifact to the Case

// create Class inside the Case

new(Artifact(NewArtifact_)in Case_);

//create instanceOf relation with the Artifact:ArtifactType

new(instanceOf(NewArtifact_,FilledPrescription_));

//create relation between Case and Artifact

Adwoa Dansoa Donyina 128 Thesis 2011



CHAPTER 8. TRANSLATION OF DESIGN INTO SIMULATION

new (Case.contains(R1_,Case_,NewArtifact_));

println("Filled Prescription added ");

}
println ("Fill Prescription for "+name(Case_)+" Case");

}
}

//FillingTechnician Assigned Pattern

pattern FTassigned (Case_,RoleInstance_,Role_,Person_) =

{
//Declarations

Person(Person_);

Case(Case_);

Role(Role_);

RoleInstance(RoleInstance_);

//Verify that role type is FillingTechnician

check (name(Role_)=="FillingTechnician");

//Verify that RoleInstance_ is of the same FillingTechnician role type

typeOf(Role_, RoleInstance_);

//Verify that this RoleInstance exists on the Case

RoleInstance.presence(Rel2, RoleInstance_, Case_);

//Verify that a person is assigned to the RoleInstance_

//i.e a person is assigned a RoleInstance_ of FillingTechnician_

//which is associated the Case_

RoleInstance.assignedTo(Rel,RoleInstance_,Person_);

}

//Case contains an instance of FilledPrescription:ArtifactType

pattern FilledPrescriptionExist(Case_)=

{
//declarations

Artifact(Artifact_);

ArtifactType(ArtifactType_);

Case(Case_);

//Verify that Case_ contains an Artifact_ of FilledPrescription type

Case.contains(Rel, Case_, Artifact_);

typeOf(ArtifactType_,Artifact_);

check (name(ArtifactType_)=="FilledPrescription");

}

//Case contains an instance of Label: ArtifactType

pattern LabelExist (Case_)=

{
//declarations

Artifact(Artifact_);

ArtifactType(ArtifactType_);

Case(Case_);

//Verify that Case_ contains an Artifact_ of Label type

Case.contains(Rel, Case_, Artifact_);

typeOf(ArtifactType_,Artifact_);

check (name(ArtifactType_)=="Label");

}

Adwoa Dansoa Donyina 129 Thesis 2011



CHAPTER 8. TRANSLATION OF DESIGN INTO SIMULATION

8.3.3 Managerial-Level GT Rule in VIATRA2

The following section illustrates the mapping between a managerial-level rule

specified in StADy and its VIATRA2 encoding. Appendix A.1 presents a

catalogue of all of the managerial rules (Section 7.2) in VIATRA2 syntax.

The request rule (Figure 8.8) that was described in Section 7.2.1 is textually

illustrated below.

Figure 8.8: Request Person

gtrule Rule_Request() =

{
precondition pattern lhs(Case_,Role_) =

{
//Declaration i.e. Type(Instance)

Case(Case_);

Role(Role_);

State(State_);

StateInstance(StateInstance_);

//Retrieve Case’s current state

Case.currentState(R6,Case_,StateInstance_);

typeOf(State_,StateInstance_);

//find Role that State requires

State.requires(R5,State_,Role_);

//ensure RoleInstance does not exist on the case

neg find RoleInstance(Case_,Role_);

}

action {
let

NewRoleInstance_=undef,

Adwoa Dansoa Donyina 130 Thesis 2011



CHAPTER 8. TRANSLATION OF DESIGN INTO SIMULATION

R1_=undef

in seq {
//Create new RoleInstance in Model

new(RoleInstance(NewRoleInstance_)in DSM.model.M1);

//Create instanceOf Relation to Role i.e. RoleInstance:Role

new(instanceOf(NewRoleInstance_,Role_));

//create relation between RoleInstance and Case

new (RoleInstance.presence(R1_,NewRoleInstance_,Case_));

println(name(Role_)+" Requested ");

}
}

}

8.3.4 Support-Level Rules in VIATRA2

The following section illustrates the mapping between a domain specific

support-level rule specified in StADy and its VIATRA2 encoding. Appendix A.2

presents a catalogue of illustrations of the support-level rules using the phar-

macy domains (Section 7.3) in VIATRA2 syntax. The skip rule (Figure 8.9),

that was described in Section 7.3.4 is textually illustrated below.

Figure 8.9: Skip Fill Prescription

gtrule SkipRule_FillPrescription() =

Adwoa Dansoa Donyina 131 Thesis 2011



CHAPTER 8. TRANSLATION OF DESIGN INTO SIMULATION

{

precondition pattern lhs(Case_, StateInstance_, NextState_,R6_) =

{
//Declarations i.e. Type(Instance)

Case(Case_);

ArtifactType(FilledPrescription_);

State(State_);

State(NextState_);

StateInstance(StateInstance_);

//Verify that ArtifactType that was matched is of FilledPrescription

check(name(FilledPrescription_)=="FilledPrescription");

//Verify that Filling Technician is assigned to the case

find FTassigned (Case_,RoleInstance_,Role_,Person_);

//Negative application condition

//Ensure that the prescription is not already filled

//i.e FilledPrescription Artifact is not contained in the Case

neg find FilledPrescriptionExist(Case_);

//Verify that a Label exists in the Case

find LabelExist(Case_);

//Retrieve Case’s current State

Case.currentState(R6_,Case_,StateInstance_);

//Find the next state from the current state

State.next(R7,State_,NextState_);

}
action {

let

NewStateInstance_=undef,

R2_=undef

in seq{
//Remove Case’s old state

delete(StateInstance_);

delete(R6_);

//Change Case state to the next state

//create Class inside the Case

new(StateInstance(NewStateInstance_)in DSM.model.M1);

//create instanceOf relation with the StateInstance:State

new(instanceOf(NewStateInstance_,NextState_));

new (Case.currentState(R2_,Case_,NewStateInstance_));

println("no Filled Prescription added ");

}
}

}

Adwoa Dansoa Donyina 132 Thesis 2011



CHAPTER 8. TRANSLATION OF DESIGN INTO SIMULATION

8.4 Summary

This chapter described how to translate StADy language syntax into VIA-

TRA2 [72] syntax for Graph-based Stochastic Simulation (GraSS) [30, 68]

implementation. The encodement of StADy into VIATRA2 syntax is rele-

vant because it is required in stage 3 (Chapter 12) of the methodology. The

next chapter will define the StADy Methodology.

Adwoa Dansoa Donyina 133 Thesis 2011



Chapter 9

Methodology

This chapter discusses the methodology needed by developers to employ the

thesis’ new stochastic modelling and analysis of dynamic human-resource

allocation (StADy) approach for testing scheduling protocols, policies and

regulations. The methodology is composed of the following four stages:

1. Business modelling

2. Process execution design

3. Process encoding

4. Performance evaluation

These stages are illustrated using the pharmacy case study (Chapter 5) in

Chapters 10 to 14.

134



CHAPTER 9. METHODOLOGY

9.1 Scope

It is worthwhile to use the approach if the workflow consists of human in-

volvement with the additional properties of role hierarchies, role allocations,

access rights and scheduling. The optional features specified in the feature

diagram (Figure 2.2) do not have to be currently employed by the business

process; however the StADy approach can be used to determine if they are

beneficial to the business process prior to employing it.

There are various businesses in the scope of the StADy approach, even

though it is currently limited to analysing the effect of assignment policies,

load balancing, escalation handling and scheduling protocols of business pro-

cesses involving humans. These business processes have common organi-

sational characteristics of dynamic (re)-assignment, RBAC, human error,

scheduling and non-deterministic duration of tasks. The StADy methodol-

ogy can be applied to the pharmacy business process discussed in Chapter 5

and various other businesses such as mining, banks, retailers, home renova-

tors and real estate businesses. The StADy methodology can be applied to

the dynamic resource allocation management aspect of mortgage processing

at a bank, because this process involves various human-involvement and is

influenced by human decisions. For instance, if a customer urgently needs

money for his or her new house and the mortgage broker that was handling

the application is ill another mortgage broker can temporary work on the

application. The StADy methodology can assist in simulating different pro-

tocols to handle such cases. On the other, the manufacturing business is out

of scope for the StADy methodology for some domains which heavily depend

Adwoa Dansoa Donyina 135 Thesis 2011



CHAPTER 9. METHODOLOGY

on machines such as the auto industry.

In conclusion businesses with tasks that require human intelligence are

in scope, where as businesses that have majority of tasks performed by com-

puters without human interface are out of scope. With the assumption that

a workflow problem has been selected within the scope, a four-stage method-

ology needs to be performed, which consist of business modelling, process

designing, process encoding and performance evaluation stage as outlined in

Section 9.3 and discussed in detail in Sections 9.5-9.8.

9.2 Preliminary Stage

Prior to employing the four stage StADy methodology, the following two

preliminary tasks are required:

Task 0.1 Selection of performance questions to answer.

Task 0.2 Detailed specification of business process in case study format.

The first preliminary task is the selection of a performance question, either

from the previously defined ones in Section 1.2 or from formulating a new

one based on a different combination of features from the feature diagram

(Figure 2.2). The mandatory features (M) include the following: dynamic

(re)-assignment, RBAC, human error, scheduling, duration of tasks. These

mandatory features can either be scheduled by deadline (MD) or by priority

(MP ). On the other hand, the optional features (O) include the following:

assignment policy (A), load balancing (L), escalation handling (E). These

optional features have 15 unique

Adwoa Dansoa Donyina 136 Thesis 2011



CHAPTER 9. METHODOLOGY

combinations=({∅}, {A}, {L}, {E}, {AL}, {AE}, {LE}, {ALE}) and since the

mandatory feature is either scheduled by deadline or priority there are 30

possible combinations of features that can be compared in performance ques-

tions. For instance comparison between for MD with {ALE} features versus

MP with {ALE} features, can be used to formulate the following performance

question: Which scheduling method is more favourable with the assignment

policy, load balancing and escalation handling combination?

The second preliminary task is for specifying the workflow in mind by case

study as illustrated in Chapter 5. It should clearly identify various actors (job

positions) and roles that can be assumed by them and specifications of users’

access rights to artifacts. This documentation should also describe existing

and potential future policies, protocols, and procedures, which should be

based on the current available model features of assignment policies, load

balancing, escalation handling and scheduling protocols.

9.3 Outline

Stage 1: Business Modelling

Task 1.1 Define business domain in terms of UML class and use-case

diagrams

Task 1.2 Create a process centric view using activity diagrams

Stage 2: Process Execution Design

Task 2.1 Simulation Model Design

Task 2.2 Extend the UML class and use-case diagrams

Adwoa Dansoa Donyina 137 Thesis 2011



CHAPTER 9. METHODOLOGY

Task 2.3 Select domain-independent GT rules in language concrete

syntax

Task 2.4 Define domain-specific GT rules in language concrete syntax

Task 2.5 Define probes and selection of rules to observe in VIATRA2

model space

Task 2.6 Define instance graph in StADy concrete syntax

Task 2.7 Select distributions for each rule

Stage 3: Process Encoding

Task 3.1 Define StADy metamodel and model in VIATRA2

Task 3.2 Select predefined managerial GT rules in VIATRA2 textual

syntax

Task 3.3 Translate domain specific GT rules in VIATRA2 textual syn-

tax

Task 3.4 Translate probes in VIATRA2

Task 3.5 Encode simulation parameters

Stage 4: Performance Evaluation

Task 4.1 Perform stochastic simulations

Task 4.2 Analyse the results and formulate conclusions

Stage 1 – Business Modelling

The business modelling stage uses standard UML use-case, class and ac-

tivity diagrams to visually represent the business process, as illustrated in

Adwoa Dansoa Donyina 138 Thesis 2011



CHAPTER 9. METHODOLOGY

Section 5.2. This stage is further discussed in Section 9.5 and illustrated in

Chapter 10.

Stage 2 – Process Execution Design

The process execution design stage extends the UML use-case and class dia-

grams to represent additional information in terms of access control, escala-

tion handling and capabilities. The StADy configuration modelling language

(Chapter 6) syntax is used to define the business process using the StADy

transformation modelling language (Chapter 7). Graph transformation rules

are used to define business process activities, whereas instance graphs are

used to represent the business process in a state of time. This stage is fur-

ther discussed in Section 9.6 and illustrated in Chapter 11.

Stage 3 – Process Encoding

The process encoding stage is required as a preparation step in order to use

Graph-based Stochastic Simulation (GraSS) tool [30, 68]. The models and

graph transformation rules defined in stage 2 will need to be defined in VIA-

TRA2 [72] because GraSS extends VIATRA2. Chapter 8 presents a detailed

translation from StADy graphical syntax to VIATRA2’s textual syntax. This

stage is further discussed in Section 9.7 and illustrated in Chapter 12.

Stage 4 – Performance Evaluation

The performance evaluation stage is for running simulations, analyzing re-

sults and producing conclusions. The simulations should compare various

Adwoa Dansoa Donyina 139 Thesis 2011



CHAPTER 9. METHODOLOGY

simulation models such as the ones informally defined in Section 9.6.1. The

results can be analyzed using a combination of graphs and tables. Conclu-

sions to the initial performance questions (Section 1.2) should be made. This

stage is further discussed in Section 9.8 and illustrated in Chapter 13.

9.4 Overview of Tasks and Artifacts

Tasks that have local, global or transitive artifact dependencies must occur

sequentially, whereas tasks that are independent can occur in parallel. A

megamodel is used to provide a global view of the relations between models

and metamodels in the StADy approach. Figure 9.1 denotes the order that

tasks must occur in, whereas Figure 9.2 shows the StADy megamodel [9]

which defines the artifact dependencies. Both of these diagrams artifact/task

elements are either unshaded, lightly shaded or darkly shaded to correspond

to UML, StADy and VIATRA2 GraSS components, respectively.

Adwoa Dansoa Donyina 140 Thesis 2011



CHAPTER 9. METHODOLOGY

Figure 9.1: Order of Tasks

Adwoa Dansoa Donyina 141 Thesis 2011



CHAPTER 9. METHODOLOGY

It is important to maintain consistency between the artifacts shown in

StADy’s megamodel (Figure 9.2). Since the megamodel provides a global

view of the relations between the artifacts, each edge implies a required

consistency relation between artifacts. The conformance relations and repre-

sentation is an essential part of this approach, hence consistency checks must

be performed at each task. Sections 9.5 to 9.8 describe each task in detail,

outline the required consistency checks and Chapters 10 to 13 illustrate how

to solve performance questions 1-2 (Section 1.2) for the pharmacy case study.

Adwoa Dansoa Donyina 142 Thesis 2011



CHAPTER 9. METHODOLOGY

Figure 9.2: Megamodel

9.5 Stage 1 – Business Modelling

This section describes the tasks in stage 1 of the StADy methodology. Each

task description generically illustrates portions of the procedure, and defines

consistency checks. The business process modelling stage uses existing mod-

elling techniques to graphically define the business process. Task 1.1 defines

Adwoa Dansoa Donyina 143 Thesis 2011



CHAPTER 9. METHODOLOGY

the business domain using use-case and class diagrams, whereas task 1.2

defines the process centric view using activity diagrams.

9.5.1 Business Domain (Task 1.1)

Task 1 requires standard UML use-case and class diagrams (Section 3.4) to

visually represent the business domain. The use-case diagram should include

the actor use-case relations in the system. Each use-case in the diagram

should have corresponding use-case description. Figure 9.3 shows a generic

use-case structure.

Figure 9.3: Generic UML Use-Case Diagram

Since a use-case is composed of various artifacts, a class diagram can

be used to show the types of artifacts that are mentioned in the use-case

descriptions. The class diagram should represent the actors defined in the

Adwoa Dansoa Donyina 144 Thesis 2011



CHAPTER 9. METHODOLOGY

use-case using the �actor� stereotype. The use of the composition asso-

ciation can help define which artifacts are composed in a particular case,

whereas navigability association can be used to identity an actor’s access

rights to an artifact. Figure 9.4 depicts the generic structure of the required

class diagram.

Figure 9.4: Generic UML Class Diagram

This task requires the following consistency checks to ensure consistency

between the use-case and class diagram.

Consistency Checks: An approach to checking consistency between

UML use-case, and class diagrams is discussed in detail by Chanda et al. [13].

• UML Class Diagram - UML Use-Case Diagram: With the assumption

that the actor stereotype is used in the class diagram, the actors defined

in the class diagram should exist in the use-case diagram.

Adwoa Dansoa Donyina 145 Thesis 2011



CHAPTER 9. METHODOLOGY

1. All of the stereotype�actors� defined in the class diagram must

be contained in the use-case diagram.

2. The class diagram should contain the artifacts mentioned in the

use-case description.

3. Additional parameters defined in the use-case description should

be defined as attributes.

9.5.2 Process Centric View (Task 1.2)

The process centric view task is used to define the control flow of the workflow

with standard UML activity diagram notation using enhanced representation

for coherent object flow, roles and sub activities (Section 3.4). Artifacts

should be specified using coherent object flow and swimlanes should specify

which actors can perform particular activities. The activity diagram can also

be decomposed using a rake symbol and corresponding sub activities.

This task requires the following consistency checks to ensure consistency

between the activity, use-case and class diagram artifacts (Section 9.4).

Consistency Check:

• UML Activity Diagram - UML Use-Case Diagram:

1. According to guidelines described by Microsoft authors in [45] the

overall workflow goal expressed in the activity diagram should be

represented in the use-cases, such that the actions of the workflow

are the use-cases.

2. The actor defined in the activity diagram’s swim lanes should

pertain to the actors defined in the use-case diagrams [13].

Adwoa Dansoa Donyina 146 Thesis 2011



CHAPTER 9. METHODOLOGY

• UML Activity Diagram - UML Class Diagram: The objects defined in

the activity diagram should correspond to types defined in the class

diagram [13].

9.6 Stage 2 – Process Execution Design

This section describes the tasks in stage 2 of the methodology. Each task

description includes consistency checks. The process execution design stage

extends the UML use-case and class diagrams that were defined in stage 1

(Section 9.5) to represent additional information in terms of access control,

escalation handling and capabilities. The StADy modelling language (Chap-

ters 6-7) is used to define the business process using a graph transformation

rule-based process specification. Graph transformation rules are used to de-

fine business process activities, whereas instance graphs are used to represent

the business process in a state of time.

9.6.1 Simulation Model Design (Task 2.1)

This task is for designing simulation models based on performance questions

such as those presented in Section 1.2. Since the performance questions are

based on the features defined in the feature diagram in Figure 2.2, each model

can be designed to incorporate particular features for comparison in order to

answer the performance questions.

This task requires the following consistency check to ensure consistency

between the simulation models and performance questions.

Adwoa Dansoa Donyina 147 Thesis 2011



CHAPTER 9. METHODOLOGY

Consistency Check:

• Simulation Models- Performance Question: The combination of the

simulation model versions should incorporate all of the features men-

tioned in the performance questions.

9.6.2 StADy Hierarchy and Artifact Models (Task 2.2)

This task extends the UML class and use-case diagrams that were defined in

task 1.1 (Section 9.5.1) to contain additional information in terms of access

control, escalation handling and capabilities. The extended use-case and class

diagrams are renamed to StADy’s hierarchy and artifact models respectively,

as shown in Figures 9.5 and 9.6, which were discussed and illustrated in

Section 6.3.

Access control aspects are added to UML use-case and class diagrams

defined in stage 1, by defining allowable roles in the use-case diagram and

specify role access rights in the class diagram. The StADy hierarchy model

defines allowable roles on the endpoints of an actor — use-case relations. In

the StADy artifact model, access rights of roles to artifacts can be specified

by listing the hierarchy model role names within the artifacts that they are

permitted to access under the stereotyped keyword �role�. If an actor is

assigned to a particular role for a particular case instance, then the actor can

access the corresponding artifacts.

The hierarchy model permits multiple inheritance amongst actors. It can

also be used to define capability and escalation constraints by defining set

notation underneath the actor symbol, such that if at least one constraint

Adwoa Dansoa Donyina 148 Thesis 2011



CHAPTER 9. METHODOLOGY

holds true, then the actor can take on a given role. Therefore, the hierar-

chy model visually expresses some additional information defined in use-case

description with multiple inheritance, constraints and allowable roles on the

endpoints of actor-case association.

Figure 9.5: Generic StADy Hierarchy Model

Adwoa Dansoa Donyina 149 Thesis 2011



CHAPTER 9. METHODOLOGY

Figure 9.6: Generic StADy Artifact Model

This task requires the following consistency checks to ensure consistency

between the StADy hierarchy model, StADy artifact model, use-case diagram

and class diagram artifacts.

Consistency Checks:

• StADy Hierarchy Model - Use-Case Diagram: The StADy Hierarchy

Model must contain the original Use-Case Diagram.

• UML Class Diagram - StADy Artifact Model:

1. Each�actor� stereotype artifact association in the original class

diagram should correspond to the refined actor–role association,

Adwoa Dansoa Donyina 150 Thesis 2011



CHAPTER 9. METHODOLOGY

by having the associated role name written under the stereotyped

keyword �role� inside artifacts in the StADy artifact model.

2. Each artifact that has a composition relation to a Case in the class

diagram, should be represented as a box inside the Case in the

Artifact Model, which is commonly used to represent containment

in DSL.

• StADy Hierarchy Model - StADy Artifact Model:

1. The artifact role access that is defined in the Artifact Model should

correspond to roles defined in the Hierarchy model.

2. The combination of both models is an instance of the O1 side of

the metamodel.

9.6.3 Domain-Independent GT Rules in StADy nota-

tion (Task 2.3)

This task selects predefined managerial GT rules from Section 7.2 in or-

der to help solve the performance questions (Section 1.2) in mind. This

task occurs in a two step process by first choosing features from the feature

diagram then selecting rules accordingly. The GT rule selection is depen-

dent on the features chosen for the simulation models designed in task 2.1

(Section 9.6.1). The selection can be accomplished because each generically

defined managerial GT rule and graphical constraint defined in Section 7.2

directly corresponds to features defined in the feature diagram in Figure 2.2.

An overview of the generic managerial GT rules and graphical constraints

Adwoa Dansoa Donyina 151 Thesis 2011



CHAPTER 9. METHODOLOGY

is as follows:

• Clock: The current date and time is captured by a Clock node. Syntac-

tically, rules can access the current time through the time attribute in

the Clock node to compute deadlines or validate conditions to trigger

an escalation; hence if a case deadline has passed, the escalation level

of the case should be increased.

– Clock Tick Rule: This increments the model’s local clock, which

is used to provide a model of time passing.

• Dynamic Assignment: The dynamic (re)-assignment feature requires

request, assignment and unassignment rules.

– Request Rule: Uses local state labels to determine if an actor is

required for a particular case.

– Assignment Rule: Uses the post condition of request rules to as-

sign actors to roles.

– Unassignment Rule: Uses the state label to determine if the actor

has finished performing his or her duties.

• Assignment Policy: predefined assignment protocols can be used to

determine who should be assigned to a particular role

– Least Qualified Assignment Policy Rule: specifies that the least

qualified available worker able to do the job, should be assigned.

• Schedule: The scheduling feature provides the option to schedule ac-

cording to deadlines or priorities. Hence, order of assignment to the

Adwoa Dansoa Donyina 152 Thesis 2011



CHAPTER 9. METHODOLOGY

case can be based on an earlier deadline or a higher priority constraint.

– Request by deadline Rule: The assignment scheduling is influ-

enced by the case’s deadline; hence the one with the earlier dead-

line would have the person requested to be assigned to it first.

– Request by priority Rule: The assignment scheduling is influenced

by the case’s priority; hence the one with the higher priority would

have the person requested to be assigned to it first.

The generic (domain-independent) GT rules and constraints are further

discussed in Section 7.2.

9.6.4 Domain Specific GT Rules in StADy notation

(Task 2.4)

This task uses the combination of StADy models created in task 2.2 (Sec-

tion 9.6.2), StADy metamodel (type graph) specified in Section 6.1 and

StADy graphical notation (Section 6.4) to define domain specific production-

level and support-level GT rules (Chapter 7).

The use-case diagram and its corresponding use-case descriptions pro-

duced in task 1.1 (Section 9.5.1) can be used to formulate the production-

level domain specific rules, such that each use-case corresponds to at least one

rule and the use-case description pre and post conditions informally describe

the contents of the rule. Also, each activity in the activity diagram defined

in task 1.2 (Section 9.5.2) corresponds to one or many non-deterministic

production-level graph transformation rules.

Adwoa Dansoa Donyina 153 Thesis 2011



CHAPTER 9. METHODOLOGY

On the other hand, the support-level rules are a modification of the pre-

defined rules defined in Section 7.3 in order to match the business domain

that is being modelled.

This task requires the following consistency checks to ensure consistency

between activity diagrams, use-case diagram, GT rules and StADy meta-

model.

Consistency Checks:

• UML Activity Diagram - GT Rules:

1. Each activity defined in the activity diagram must correspond to

one or many GT rules. If the activity corresponds to multiple GT

rules, then the preconditions of those rules must be the same.

2. The objects defined as input and output parameters of the ac-

tivity must also be present in the pre and post conditions of the

corresponding rules.

• UML Use-Case Diagram - GT Rules: Each use-case corresponds to

at least one rule and the use-case description informally describes the

contents of the pre and post conditions of the rule.

• StADy Metamodel - GT Rules: The GT Rules must be typed over the

StADy metamodel.

Adwoa Dansoa Donyina 154 Thesis 2011



CHAPTER 9. METHODOLOGY

9.6.5 Probes and Observation Rules in StADy nota-

tion (Task 2.5)

This task is required for analysing the simulation results based on applica-

tion of rule frequency or pattern matching with probes. The observed rule

frequency requires a selection of GT rules that are of particular interest to

the business expert. For instance, if the assignment GT rule application fre-

quency was observed then the average number of times assignment occurred

in a simulation run can be observed. A probe is a pattern match that cap-

tures a particular pre-condition throughout a simulation run. No actions

are performed with a probe rule; hence the post condition of the probe rule

does not have an effect on the model. Probe rules can be graphically defined

using StADy concrete syntax. This task is used to decide on tests that can

be used during the simulation to help solve the initial performance questions

(Section 1.2) by using observed rule frequency and average probe occurrence.

This task requires the following consistency checks to ensure consistency

between probes, StADy metamodel, StADy hierarchy model and artifact

model artifacts.

Consistency Check:

• StADy Metamodel - Probes and Observation Rules: The probes and

observation rules must be typed over the StADy metamodel.

9.6.6 Start-Graph in StADy DSL (Task 2.6)

This task is required for defining the initial state (start graph) of the simula-

tion model. Start graphs can be used as a basis of comparison for simulations

Adwoa Dansoa Donyina 155 Thesis 2011



CHAPTER 9. METHODOLOGY

to ensure all the simulation runs that are being compared all start from the

same initial state.

This task requires the following consistency check to ensure consistency

between the start graph and StADy metamodel.

Adwoa Dansoa Donyina 156 Thesis 2011



CHAPTER 9. METHODOLOGY

Consistency Check:

• StADy Metamodel - Start Graph: The start graph must be typed over

the StADy metamodel.

9.6.7 Stochastic Graph Transformation System (Task

2.7)

This task extends the GTS into an SGTS in preparation for stochastic simu-

lation that is performed in stage 4. The Graph-based Stochastic Simulation

(GraSS) [30, 68] tool that was selected to be used in the StADy methodology

is currently limited to exponential and lognormal distribution specification.

Therefore, each GT rule needs to be categorized into exponential or log-

normal distribution, and then associated with specified scheduling delays in

order to define the stochastic delays for each rule in GraSS [30, 68]. The

exponential distribution requires a corresponding rate, whereas the lognor-

mal distribution requires mean and variance values. These scheduled delays

should be well selected and properly researched in order to reflect realistic

simulation results, as described in Section 4.3. This task is achieved by gath-

ering stochastic data about the activities in the business process and assign-

ing distribution parameters to the domain-independent and domain-specific

rules defined in tasks 2.3-2.4 (Sections 9.6.3-9.6.4). The stochastic data comes

from quantitative research that has been either published in papers or books

or gathered from own observations. The published works should be research

projects in the same business process of interest; however if there are mi-

nor inconsistencies in the business process activity breakdown then consult

Adwoa Dansoa Donyina 157 Thesis 2011



CHAPTER 9. METHODOLOGY

a domain expert for advice of possible estimations for some of the values.

Since the correctness of data is crucial distributions that are estimated need

to be tested in a simulation run to see if they represented meaningful data

in relation to the research statistics. The impact of distribution selection is

further discussed and illustrated in Section 15.6.4.

This task requires the following consistency checks to ensure consistency

between the GT rule and distribution artifacts.

Consistency Checks:

• GT Rule- Distribution: Each defined GT Rule must have a distribution.

9.7 Stage 3 – Process Encoding

This section describes the tasks in stage 3 of the methodology. Each task

description includes consistency checks. The process-encoding stage is for

encoding the start graph from task 2.6 (Section 9.6.6), GT rules from tasks

2.3-2.4 (Section 9.6.3-9.6.4) and probes from task 2.5 (Section 9.6.5) into

the VIATRA2 tool, in order to perform stochastic simulation on Graph-

based Stochastic Simulation (GraSS) tool [30, 68] which extends VIATRA2.

Chapter 8 discussed and illustrated the mapping from StADy concrete syntax

to VIATRA2 textual syntax.

Adwoa Dansoa Donyina 158 Thesis 2011



CHAPTER 9. METHODOLOGY

9.7.1 Start Graph in VIATRA2 Model Space (Task

3.1)

This task is for defining simulation start graph from task 2.6 (Section 9.6.6)

into the VIATRA2 (VPM) Model Space [72], by using the predefined StADy

metamodel (Section 6.1). The metamodel and model data should be entered

into a VPML file using the VIATRA2 Model Space tree editor. Screen shots

of the StADy metamodel VIATRA2 representation is available in Section 8.1,

whereas screen shots of different start graphs are available in Section 8.2.

This task requires the following consistency checks to ensure consistency

between the start graph in StADy graphical syntax and start graph in VPM

Syntax.

Consistency Checks:

• Start Graph in StADy Syntax - Start Graph in VPM Syntax: The

model element entities and relations in VPM must correspond to the

entities and relations found in the abstract syntax representation of the

graphical syntax.

9.7.2 Domain-Independent GT Rules in VIATRA2 Syn-

tax (Task 3.2)

This task is for defining the selected predefined domain-independent GT

from task 2.2 (Section 9.6.3) into a VIATRA2 Textual Command Language

(VTCL) document. The textual representation of all of the managerial-level

rules (Section 7.2) is available in Appendix A.1. Section 8.3.3 illustrates the

Adwoa Dansoa Donyina 159 Thesis 2011



CHAPTER 9. METHODOLOGY

mapping between the GT rule notations.

9.7.3 Domain-Specific GT Rules in VIATRA2 Syntax

(Task 3.3)

This task is for translating the domain-specific rules that are created in task

2.4 into the VIATRA2 textual syntax [72] as discussed in Section 8.3. The

support-level GT rules are predefined in Appendix A.2 and need to be mod-

ified to match the business domain being modelled, as illustrated in Sec-

tion 8.3.4. The production-level GT rules need to be manually mapped into

VIATRA2 textual syntax, as illustrated in Section 8.3.2 and Appendix A.3.

Each production-level GT contains state data, skeleton VIATRA2 syntax

code for coding states GT rules which is available below:

//With State Type

gtrule DomainSpecificSkelton() =

{
precondition pattern lhs(Case_, StateInstance_, NextState_,R6_) =

{
Case(Case_);

State(State_);

State(NextState_);

StateInstance(StateInstance_);

Case.currentState(R6_,Case_,StateInstance_);

typeOf(State_,StateInstance_);

check(name(State_)=="<state name>");

State.next(R1,State_,NextState_);

. .

.

.

}
action {

let

NewStateInstance_=undef,

R2_=undef

in seq {

delete(StateInstance_);

delete(R6_);

new(StateInstance(NewStateInstance_)in DSM.model.M1);

new(instanceOf(NewStateInstance_,NextState_));

Adwoa Dansoa Donyina 160 Thesis 2011



CHAPTER 9. METHODOLOGY

new (Case.currentState(R2_,Case_,NewStateInstance_));

.

.

.

}

}
}

This task requires the following consistency checks to ensure consistency

between the GT rules in StADy graphical syntax and GT rules in VTML

Syntax.

Consistency Checks:

• StADy Graphical syntax- VIATRA2 textual syntax: The textual and a

graphical representation are equivalent if they generate the same ab-

stract representations of a particular model or there exist a mapping

from the graphical representation to textual representation based on

the discussion in Section 8.3.

9.7.4 Probes StADy in VIATRA2 Syntax (Task 3.4)

This task translates the probes defined in task 2.5 (Section 9.6.5) into VI-

ATRA2 textual syntax, which has similar format as GT rule in VIATRA2,

except the action (postcondition) is empty. The VIATRA2 textual syntax

was discussed in Section 8.3. The following VIATRA2 code outlines a probe

rule structure:

gtrule Probe() =

{
precondition pattern lhs() =

{
//Enter pattern to match

}
action

{
//Do nothing

Adwoa Dansoa Donyina 161 Thesis 2011



CHAPTER 9. METHODOLOGY

}
}

This task requires the following consistency checks to ensure consistency

between the probes in StADy graphical syntax and probes in VPM Syntax

(Section 9.4).

Consistency Checks:

• StADy Graphical syntax- VIATRA2 textual syntax: Probe Rules can be

represented in two types of concrete syntax, which are instances of the

same StADy metamodel; therefore the abstract syntax representation

(Section 6.2) of the model can be used to validate consistency. The

textual and graphical representation are equivalent if they generate

the same abstract representations of a pre-condition model defined in

the probe, or there exist a mapping from the graphical representation

to textual representation based on the discussion in Section 8.3.

9.7.5 Simulation Parameters (Task 3.5)

The GraSS [30, 68] tool requires initial execution and stochastic setup in ad-

dition to the VTCL and VPML files created in task 3.1-3.4 (Sections 9.7.1-

9.7.4). This section discusses task 3.5, which is for defining the simulation

parameters into the VIATRA2 model space (VPML file) and XML files.

The main control parameters are stored in the StoSimPars element of the

model space (VPML file) as illustrated in Figure 9.7. The values of the

entities within StoSimPars correspond to external simulation parameters.

The entities within StoSimPars consist of Machine, ModelPath, ioPath, ioIn-

Adwoa Dansoa Donyina 162 Thesis 2011



CHAPTER 9. METHODOLOGY

putFolder, and extInputOption values which correspond to external simula-

tion parameters. The Machine entity defines the VIATRA2 machine i.e.

BPFHA6.rules7, such that BPFHA6.vpml and rules7.vtcl are being used.

The ModelPath entity defines the relative path to the model element (defined

in task 3.1) i.e. DSM.model, such that the model is located as a subset to

the DSM entity. The ioPath defines the absolute path to the graph transfor-

mation system specifications. The ioInputFolder sets the name of the input

XML folder i.e, the Distributions folder is the subfolder of the folder defined

in ioPath. The extInputOption entity is used to determine whether the ad-

ditional parameters are to be read from the XML file or to be found already

in the model space, if the value is set to true then additional parameters can

be read.

Figure 9.7: StoSimPars Entity

The additional parameters are defined in a parameter.xml file, which

defines internal parameters such as runtime specifications. A sample param-

Adwoa Dansoa Donyina 163 Thesis 2011



CHAPTER 9. METHODOLOGY

eter.xml file is shown below:

<?xml version="1.0" encoding="UTF-8"?>

<allparameters>

<iopars>

<parameter name ="CDF_Input" value="rules6.xml" />

<parameter name ="Output_Folder" value="ioF1" />

<parameter name ="Output_Files" value="log" />

</iopars>

<runpars>

<parameter name ="Rule_Set" value="random" />

<parameter name ="Depth_Limit" value="100" />

<parameter name ="Time_Limit" value="50" />

<parameter name ="Time_Opt" value="false" />

<parameter name ="Batch_Size" value="4" />

</runpars>

<varpars>

<parameter name ="Variation_Type" value="S" />

<parameter name ="Variations" value="3" />

<parameter name ="Factor_Up_Opt" value="true" />

<parameter name ="Factor_Up_Base" value="10" />

</varpars>

<outpars>

<parameter name ="Confidence_Level" value="0.90" />

<parameter name ="Hierarchical_Aggregation" value="short" />

<parameter name ="2D_Linear_Aggregation" value="full" />

<parameter name ="Debug_Level" value="0" />

</outpars>

<expars>

<parameter name ="Feedback_Opt" value="false" />

<parameter name ="Clock_Name" value="r1.clock" />

<parameter name ="Extra_Attribute" value="" />

<parameter name ="Extra_Operator" value="" />

</expars>

</allparameters>

The distribution values defined in task 2.7 (Section 9.6.7) need to be en-

tered into an XML file which contains the stochastic input. The input values

refer to cumulative distribution functions (CDF) of the GT rules encoding

in tasks 3.2–3.3 (Sections 9.7.2–9.7.3). The GT rules that were defined in

the previous tasks are referred to as action rules (A) in the GraSS tool.

Each action rule can be categorised as observable (O) and/or sensitive (S).

If the rule is observable, then the simulator will return statistics about the

Adwoa Dansoa Donyina 164 Thesis 2011



CHAPTER 9. METHODOLOGY

rule application and delay. If the rule is sensitive, then the CDF can vary

throughout different batches. Probe (P) rules will provide statistics of the

number of rule matches at each step. The stochastic input file is composed

of the assignment of CDF to the action rules and information to define how

to use the rules with respect to transformation and probing. Below is an

extract of a stochastic input xml file. The ruleset name in the CDF file cor-

responds to the parameter defined in parameter.xml file. Each action rule

defined in the vtcl file should be assigned a CDF. If it is an exponential dis-

tribution then the structure should be similar to Rule1 and if it is lognormal

distribution then the structure should be similar to Rule2. The rule type

attribute distinguishes the type of action or probe rule i.e. AO sets the rule

as applicable observable action rule. Each probe should be defined similar to

Probe1 or Probe2. The probe definition is shown in the probeset, such that

the op corresponds to the name of a predefined probe in the vtcl file or an

operation. The operation div, sum and divsq (division square) uses probes

as arguments as illustrated in Probe2 probe.

<?xml version="1.0" encoding="UTF-8"?>

<allrules>

<ruleset name="random">

<rule name="Rule1" type="AO">

<event name="0" type="exp">

<rate value="0.01667"/>

</event>

</rule>

<rule name="Rule2" type="AO">

<event name="0" type="norm">

<mean value="1.25" />

<variance value="0.4375" />

</event>

</rule>

<probeset>

<probe name="Probe1" op="ProbeName1"> </probe>

<probe name="Probe2" op="div">

<arg name="ProbeName1" pos="2"></arg>

Adwoa Dansoa Donyina 165 Thesis 2011



CHAPTER 9. METHODOLOGY

<arg name="ProbeName2" pos="1"></arg>

</probe>

</probeset>

</ruleset>

</allrules>

This task requires the following consistency checks to ensure consistency

between the GT rule/probe distributions and encodings of their distributions.

Consistency Checks:

• GT Rule Distributions- Encodings of Distributions: All GT Rule distri-

bution parameters that were selected for a particular simulation model

version GT rules must be encoded into the stochastic input file.

• Probes- Encoding of Probes: Each probe formulated in task 3.4 should

be added to the probe definition list in the stochastic input file.

9.8 Stage 4 – Performance Evaluation

This chapter describes the tasks in stage 4 of the methodology. The performance-

evaluation stage is for running simulations, analyzing results and producing

conclusions.

9.8.1 Stochastic Simulation (Task 4.1)

This task is for running the stochastic simulation in Graph-based Stochastic

Simulation (GraSS) tool [30, 68]. Simulation experiments consist of a set of

runs, as specified by the parameters file defined in task 3.5 (Section 9.7.5). All

runs within the same batch share the same stochastic parameters, although

the user has the option to alter the parameters between different batches.

Adwoa Dansoa Donyina 166 Thesis 2011



CHAPTER 9. METHODOLOGY

A good recommendation is to run the simulation with a high max depth or

high max simulation time, in order to produce realistic results. During the

simulation run information is printed out to the Eclipse console depending

on the debug level that was set in the parameter. For instance, level 3 prints

out the internal representation, whereas level 1 only prints out the applied

rules during execution.

9.8.2 Results and Conclusions (Task 4.2)

This task is for analysing the simulation results produced from the simulation

experiment performed in task 4.1 (Section 9.8.1). The statistical data that

are obtained from the simulation runs capture information on GT (action)

rules applied and defined probe rules. The final results include the number

of matches of the probe rules and application and timing of GT rules. It

also defines correlations between pairs of rules and can group the results in

batches, slices or an experiment.

The simulation results are represented in the format specified in the pa-

rameter.xml file. If the hierarchical aggregation option was chosen then the

statistics are printed for each run, batch and experiment. The results are

presented in comma-separated values, statistics as JSS reports and covari-

ance analysis output. If the 2D-linear aggregation option was selected then

the results are aggregated for batches and slices, such that the aggregation

is used for runs of the same batch and slice is set of runs in different batches.

The final two stages involve normalizing the data and visually represent-

ing the data with bar graphs using a tool such as Microsoft Excel. This can

Adwoa Dansoa Donyina 167 Thesis 2011



CHAPTER 9. METHODOLOGY

be used to analyse the results in order to come up with final conclusions.

9.9 Summary

This chapter introduced the StADy methodology for modelling and analysing

business processes with human involvement, by defining the scope of business

problems, discussing preliminary tasks, outlining the methodology with dia-

grams of task and artifact relations and presented details of each stage. The

next five chapters will illustrate how to answer the performance questions

defined in Section 1.2 using the StADy methodology.

Adwoa Dansoa Donyina 168 Thesis 2011



Chapter 10

Illustration of Stage 1 –

Business Modelling

This chapter illustrates the tasks in stage 1 of the methodology (Chapter 9)

on the pharmacy case study defined in Chapter 5. The business process

modelling stage uses existing modelling techniques to graphically define the

business process. Task 1.1 defines the business domain using use-case and

class diagrams, whereas task 1.2 defines the process centric view using activ-

ity diagrams.

10.1 Business Domain (Task 1.1)

This section illustrates the application of task 1.1 on the pharmacy case

study (Chapter 5). The pharmacy business domain is defined in terms of

UML use-case and class diagram and the consistency between these artifacts

is be tested.

169



CHAPTER 10. ILLUSTRATION OF STAGE 1 – BUSINESS
MODELLING

As defined and described in Section 5.2, Figures 10.1 and 10.2 define the

use-case and class diagrams of the pharmacy business domain respectively.

Tables 10.1 to 10.22 present the use-case descriptions of the use-case diagram.

Consistency holds true between the use-case and class diagram because they

passed the consistency tests as follows:

1. All of the stereotype �actors� defined in the class diagram must be

contained in the use-case diagram.

• This is true because Cashier, Patient, Technician and RegPhar-

macist are actors defined in the use-case diagram.

2. The class diagram should contain the artifacts mentioned in the use-

case description.

• Prescription (Table 10.2)

• TypePrescription (Table 10.5)

• Label (Table 10.8)

• FillPrescription (Table 10.11)

• Payment (Table 10.18)

3. Additional parameters defined in the use-case description should be

defined as attributes.

• type: [Enum] {walkin,sameday,delivery,refill} (Table 10.4)

• checked: Boolean (Table 10.15)

• counsel:Boolean (Table 10.21)

Adwoa Dansoa Donyina 170 Thesis 2011



CHAPTER 10. ILLUSTRATION OF STAGE 1 – BUSINESS
MODELLING

Figure 10.1: UML Use-Case Diagram of the Pharmacy Business Process

Adwoa Dansoa Donyina 171 Thesis 2011



CHAPTER 10. ILLUSTRATION OF STAGE 1 – BUSINESS
MODELLING

Figure 10.2: UML Class Diagram of the Pharmacy Business Process

Adwoa Dansoa Donyina 172 Thesis 2011



CHAPTER 10. ILLUSTRATION OF STAGE 1 – BUSINESS
MODELLING

Change Escalation Level

Name: Change Escalation Level
Primary Actor:

Goal (of the User): Increment Escalation
Level

Precondition: if (Prescription case deadline
is less than or equal to
5 minutes away from the deadline)
else if (Prescription case has
reached or passed the deadline)
else if (Prescription case is 5
mins or more passed the deadline)

Postcondition if (Prescription case deadline
is less than or equal to

(successful execution): 5 minutes away from the deadline )
then set Escalation level to 1
else if (Prescription case has
reached or passed the deadline)
then set Escalation level to 2
else if ( Prescription case is 5
mins or more passed the deadline)
then set Escalation level to 3

Trigger Event: case deadline approaching time
System Dispensary

(implementing it):
Participating Actor:

Table 10.1: Use-Case Details: Change Escalation level

Adwoa Dansoa Donyina 173 Thesis 2011



CHAPTER 10. ILLUSTRATION OF STAGE 1 – BUSINESS
MODELLING

Receive Prescription Case Description

Name: Receive Prescription
Primary Actor: Worker

Goal (of the User): receive prescription and
set deadline

Precondition: prescription request
to be filled

Postcondition (successful execution): new prescription case
Trigger Event: new prescription fill request

System (implementing it): Dispensary
Participating Actor: Worker, Patient

Table 10.2: Receive Prescription Case Details

Step User Action
1 Patient brings Prescription to store
2 Worker receives prescription
3 Worker informs patient that prescription will be filled within 15 minutes

and sets completion time for 15 minutes from the current time

Table 10.3: Case Scenario: Receive Prescription

Step Condition for alternative Alternative Action
1 refill prescription ordered online Prescription is set for online refill
3 Patient plans to return later Prescription is set for future pickup

to pickup prescription and completion time is set to
1 hour from the current time

3 Patient asks for prescription to be delivered Prescription is set for delivery
and completion time is set to
15 mins from the current time

3 if prescription is set as online refill The Worker sets the deadline to
24 hour from the current time

Table 10.4: Case Alternative Scenario: Receive Prescription

Adwoa Dansoa Donyina 174 Thesis 2011



CHAPTER 10. ILLUSTRATION OF STAGE 1 – BUSINESS
MODELLING

Type Prescription Case Description

Name: Type Prescription
Primary Actor: Technician

Goal (of the User): type prescription and
send to printer

Precondition: prescription not
typed yet

Postcondition (successful execution): prescription typed
Trigger Event: written prescription

not in computer system
System (implementing it): Dispensary

Participating Actor: Technician

Table 10.5: Type Prescription Case Details

Step User Action
1 Technician read Prescription
2 Technician type prescription data into computer

Table 10.6: Case Scenario: Type Prescription

Step Condition for alternative Alternative Action
1 & 2 if Escalation level for the particular Cashier can temporarily take on

prescription case is 1 or higher the Entry Technician role
1 & 2 if Pharmacy Student finishes his or her Pharmacy student can take

prescription filling training on filling technician role.

Table 10.7: Case Additional Exceptions: Type Prescription

Adwoa Dansoa Donyina 175 Thesis 2011



CHAPTER 10. ILLUSTRATION OF STAGE 1 – BUSINESS
MODELLING

Print Label Case Description

Name: Print Label
Primary Actor: Printer

Goal (of the User): successful print
of prescription label

Precondition: typed prescription
without label

Postcondition (successful execution): label printed
Trigger Event: typed prescription sent

to printer
System (implementing it): Dispensary

Participating Actor: Printer

Table 10.8: Print Label Case Details

Step User Action
1 receive print job
2 Printer automatically prints label

Table 10.9: Case Scenario: Print Label

Step Condition for alternative Alternative Action
1 error requesting print job Printer request data to be resent

Table 10.10: Case Alternative Scenario: Print label

Adwoa Dansoa Donyina 176 Thesis 2011



CHAPTER 10. ILLUSTRATION OF STAGE 1 – BUSINESS
MODELLING

Fill Prescription Case Description

Name: Fill Prescription
Primary Actor: Technician

Goal (of the User): successful print
of prescription label

Precondition: prescription label exist
without filled prescription

Postcondition (successful execution): prescription filled
Trigger Event: label arrived at

filling station
System (implementing it): Dispensary

Participating Actor: Technician

Table 10.11: Fill Prescription Case Details

Step User Action
1 Technician pick label from printer
2 Technician read over label
3 Technician prepare prescription
4 Technician put prescription contents into bottle
5 Technician label bottle

Table 10.12: Case Scenario: Fill Prescription

Step Condition for alternative Alternative Action
1 label missing from printer request printer to reprint label

Table 10.13: Case Alternative Scenario: Fill Prescription

Step Condition for alternative Alternative Action
1 to 5 if Escalation level for the particular Cashier can temporarily take on

prescription case is 2 or higher the Filling Technician role
1 to 5 if Pharmacy Student finishes his Pharmacy student can take on

or her prescription filling training the filling technician role.

Table 10.14: Case Additional Exceptions: Fill Prescription

Adwoa Dansoa Donyina 177 Thesis 2011



CHAPTER 10. ILLUSTRATION OF STAGE 1 – BUSINESS
MODELLING

Check Filled Prescription Case Description

Name: Check Prescription
Primary Actor: Registered Pharmacist

Goal (of the User): checks correctness
of filled prescription and label

Precondition: prescription is filled
Postcondition (successful execution): filled prescription

has been checked
Trigger Event: filled prescription

arrived at checking station
System (implementing it): Dispensary

Participating Actor: Registered Pharmacist

Table 10.15: Check Prescription Case Details

Step User Action
1 Registered Pharmacist selects prescription case from the queue
2 Registered Pharmacist checks that label is correctly typed
3 Registered Pharmacist checks that prescription is correctly filled
4 Registered Pharmacist signs off the prescription

Table 10.16: Case Scenario: Check Filled Prescription

Step Condition for alternative Alternative Action
1 prescription is not filled sends prescription case

back to filling technician
2 label is incorrectly typed gives corrections and case

back entry technician to retype
3 prescription is incorrectly filled notes errors and sends case

refill to filling technician to refill

Table 10.17: Case Alternative Scenario: Check Filled Prescription

Adwoa Dansoa Donyina 178 Thesis 2011



CHAPTER 10. ILLUSTRATION OF STAGE 1 – BUSINESS
MODELLING

Payment Process Case Description

Name: Payment Process
Primary Actor: Cashier

Goal (of the User): recieves
prescription payment

Precondition: prescription is ready
(i.e. successfully checked))

Postcondition (successful execution): payment
received

Trigger Event: prescription ready
and patient present

System (implementing it): Dispensary
Participating Actor: Cashier, Patient

Table 10.18: Payment Process Case Details

Step User Action
1 Cashier requests payment from Customer
2 Patient gives payment

Table 10.19: Case Scenario: Payment Process

Step Condition for alternative Alternative Action
2 payment not given leaves filled prescription aside for a grace period

Table 10.20: Case Alternative Scenario: Payment Process

Adwoa Dansoa Donyina 179 Thesis 2011



CHAPTER 10. ILLUSTRATION OF STAGE 1 – BUSINESS
MODELLING

Counsel about Filled Prescription Case Description

Name: Counsel about
Filled Prescription

Primary Actor: Registered Pharmacist
Goal (of the User): counsels the

patient
Precondition: filled prescription

has been paid for
Postcondition (successful execution): filled prescription

given to patient
Trigger Event: prescription paid

and patient is present
System (implementing it): Dispensary

Participating Actor: Registered Pharmacist, Patient

Table 10.21: Counsel about Filled Prescription Case Details

Step User Action
1 Registered Pharmacist counsels patient
2 Registered Pharmacist gives filled prescription to patient
3 Patient receives prescription

Table 10.22: Case Scenario: Counsel

10.2 Process Centric View (Task 1.2)

This section illustrates the application of task 1.2 on the pharmacy case

study (Chapter 5). A process centric view of the pharmacy business process

is created by defining the control flow in terms of UML activity diagrams

(Figures 10.3-10.6).

Figure 10.3 illustrates a typical pharmacy business process. The swim

lanes are used to partition the diagram actions based on actor and system

Adwoa Dansoa Donyina 180 Thesis 2011



CHAPTER 10. ILLUSTRATION OF STAGE 1 – BUSINESS
MODELLING

roles. The pins correspond to input and output object parameters such as

Label and FilledPrescription. Actions can be decomposed into sub activities

and be denoted using the rake symbol; hence there are three sub activity

diagrams defined: Receive Prescription (Figure 10.4), Check Process (Fig-

ure 10.5) and Payment Process (Figure 10.6). Each of these activities has

input and output object parameters defined in boxes at the edge of their

border.

Below is description of activities in the activity diagram:

Receive Prescription: A customer submits a prescription to be filled

by the pharmacy. Since prescriptions can be one of four types (refill, same

day, delivery and walk-in), different actions are performed to create a new

DispenseMedication based on the prescription type, as shown in Figure 10.4.

Type into Computer: The entry technician receives the Case contain-

ing the written Prescription and types it into the pharmacy software.

Print Label: Once the TypedPrescription is received by the printer

then the Label can be printed.

Fill Prescription: When the filling technician receives the Label then

he or she can fill the prescription.

Check Prescription: The pharmacist checks the prescription for major

errors; if it is faulty he or she sends the DispenseMedication to be retyped

and refilled otherwise the FilledPrescription is passed on to the next step, as

shown in Figure 10.5.

Payment Process: The cashier requests and receives Payment from the

customer, as shown in Figure 10.6.

Counsel: The pharmacist counsels the customers and gives them the

Adwoa Dansoa Donyina 181 Thesis 2011



CHAPTER 10. ILLUSTRATION OF STAGE 1 – BUSINESS
MODELLING

completed FilledPrescription.

Adwoa Dansoa Donyina 182 Thesis 2011



CHAPTER 10. ILLUSTRATION OF STAGE 1 – BUSINESS
MODELLING

Figure 10.3: Activity Diagram: Dispense Medication

Adwoa Dansoa Donyina 183 Thesis 2011



CHAPTER 10. ILLUSTRATION OF STAGE 1 – BUSINESS
MODELLING

Figure 10.4: Subactivity: Receive Prescription

Figure 10.5: Subactivity: Check Process

Adwoa Dansoa Donyina 184 Thesis 2011



CHAPTER 10. ILLUSTRATION OF STAGE 1 – BUSINESS
MODELLING

Figure 10.6: Subactivity: Payment process

Consistency holds true between the activity, use-case and class diagrams

because they passed the consistency tests as follows:

• UML Activity Diagram - UML Use-Case Diagram:

1. According to guidelines described by Microsoft authors in [45] the

overall workflow goal expressed in the activity diagram should be

represented in the use-cases, such that the actions of the workflow

are the use-cases.

– This holds true because each activity in the main activity

diagram (Figure 10.3) corresponds to a use-case in the use-

case diagram defined in task 1.1 (Section 10.1).

2. The actor defined in the activity diagram’s swim lanes should

pertain to the actors defined in the use-case diagrams [13].

– This holds true because the following actors defined in the

activity diagram are also defined in the use-case diagram de-

Adwoa Dansoa Donyina 185 Thesis 2011



CHAPTER 10. ILLUSTRATION OF STAGE 1 – BUSINESS
MODELLING

fined in task 1.1 (Section 10.1): Worker, Printer, Technician,

RegPharmacist, and Cashier.

• UML Activity Diagram - UML Class Diagram:

1. The objects defined in the activity diagram should correspond to

types defined in the class diagram [13].

– This holds true because Prescription, DispenseMedication, Type-

dPrescription, FilledPrescription, Label and Payment types

exist in the activity diagram and the class diagram defined in

task 1.1 (Section 10.1).

10.3 Summary

This chapter illustrated the business process modelling tasks in stage 1 of the

StADy methodology (Chapter 9). This stage defines the business domain

using use-case and class diagrams and process using activity diagrams. The

next chapter (Chapter 11) will illustrate stage 2, which extends the diagrams

to contain additional information and uses them to define domain-specific

production level GT rules.

Adwoa Dansoa Donyina 186 Thesis 2011



Chapter 11

Illustration of Stage 2 –

Process Execution Design

This chapter illustrates the tasks in stage 2 of the methodology (Chapter 9)

based on the pharmacy case study defined in Chapter 5. The process exe-

cution design stage extends the UML use-case and class diagrams that were

defined in stage 1 (Chapter 10) to represent additional information in terms

of access control, escalation handling and capabilities. The StADy language

(Chapter 6-7) syntax is used to define the business process using a graph

transformation rule-based process specification. Graph transformation rules

are used to define business process activities, whereas instance graphs are

used to represent the business process in a state of time.

187



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

11.1 Simulation Model Design (Task 2.1)

This section illustrates how to design simulation models based on initial

performance questions presented in Section 1.2. These questions can be

reworded to include domain specific details. Below is a pharmacy domain

specific version of question number 3.

Question 3 Is it beneficial to temporarily permit cashier and untrained

pharmacy students to take on technician roles for prescription cases

that are approaching deadline/past deadline (escalation handling)? Is

it beneficial to transfer prescriptions to a nearby store (load balancing)?

Would these features increase the percentage of prescription cases that

are completed within a given deadline, or reduce the time that cases

run past their deadline?

Due to escalations dependency relation with the role promotion/demotion,

this feature is implicitly tested in Question #3 with escalation handling fea-

ture. With these three questions (Section 1.2) in mind this section will

explore different simulation models based on the feature model shown in

Figure 2.2.

These questions can be answered by performing simulations on the 8

unique model versions outlined in Table 11.1 and 11.2. The models in versions

1-4 compare the use of assignment policies and different types of scheduling

(Questions 1-2). On the other hand, the models in versions 5-8 focus on

the effect of load balancing and escalation (Question 3) and use scheduling

by deadline and assignment policy as default features. Therefore, two dis-

tinct simulation designs are required to capture all three of the performance

Adwoa Dansoa Donyina 188 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

questions. The simulation type 1 should capture comparisons of assignment

policies and scheduling routines, whereas simulation type 2 should capture

the effectiveness of escalation handling and load balancing. Simulation type 1

is illustrated in the stage descriptions in Chapters 10-13, whereas simulation

type 2 is discussed as a second application to the case study in Chapter 14.

The scheduling routines will be defined independently from simulation algo-

rithm defined in Section 4.4 by using the StADy transformation modelling

language (Chapter 7) to define GT rules and constraints to specify user-

defined order which was discussed in detail in Section 7.2.2.

Assignment Scheduling
Deadline Priority

No Policy Version 1 Version 2
Policy Version 3 Version 4

Table 11.1: Versions for Answering Question 1 and 2 (Simulation Type 1)

Escalation Load Balancing
Yes No

Yes Version 5 Version 6
No Version 7 Version 8

Table 11.2: Versions for Answering Question 3 (Simulation Type 2)

The results (Sections 13.2 and 14.3.2) of these questions will help to

determine the most efficient variant of the model with respect to the chosen

performance measures.

Adwoa Dansoa Donyina 189 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

11.2 StADy Hierarchy and Artifact Models

(Task 2.2)

This section illustrates the application of task 2.2 on the pharmacy case

study (Chapter 5). The UML use-case and class diagrams defined in task 1.1

(Section 10.1) are extended into StADy hierarchy model and artifact models,

respectively.

The corresponding StADy artifact model and hierarchy models defined

in Section 6.3 are extensions of the UML models defined in Section 10.1.

Figures 11.1 and 11.2 are a recap of the pharmacy business processes’s StADy

hierarchy and artifact model.

Figure 11.2: StADy Artifact Model

Consistency holds true between the StADy models and the UML models

defined in task 1.1 (Section 10.1) because they passed the following consis-

tency tests:

Adwoa Dansoa Donyina 190 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

Figure 11.1: StADy Hierarchy Model

1. The StADy Hierarchy Model must contain the original Use-Case Dia-

gram.

• This holds true because all of the originally specified actor and

use-case relations are within the hierarchy model.

2. Each �actor� stereotype artifact association in the original class di-

agram should correspond to the refined actor–role association, by hav-

ing the associated role name written under the stereotyped keyword

Adwoa Dansoa Donyina 191 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

�role� inside the artifacts in the StADy artifact model.

• The following relations are consistent in both diagrams as shown

in Table 11.3.

�actor� artifact �role�
Cashier Payment PharmacyCashier
Cashier Bag PharmacyCashier
Patient Payment Customer
Patient Prescription Customer
Patient Bag Customer
Technician Prescription EntryTechnician
Technician TypedPrescription EntryTechnician
Technician Label FillingTechnician
Technician FilledPrescription FillingTechnician
RegPharmacist DispenseMedication DispensingPharmacist

Table 11.3: �actor�– artifact – �role� Consistency Check

3. Each artifact that has composition relation to a Case in the class di-

agram, should be represented as a box inside the Case in the Artifact

Model, which is commonly used to represent containment in DSL.

• This holds true because all of the six defined artifacts are located

within the DispenseMedication case of the Artifact Model.

4. The artifact role access that is defined in the Artifact Model should

correspond to Roles defined in the Hierarchy model.

• This holds true because all of the roles listed in Table 11.3 exist

in Figure 11.1.

5. The combination of both models is an instance of the metamodel.

Adwoa Dansoa Donyina 192 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

• This relation can be validated by looking at the abstract repre-

sentation of the combined diagrams (Figure 6.4) in relation to the

metamodel (Figure 6.2).

11.3 Domain-Independent GT Rules in StADy

notation (Task 2.3)

This section illustrates the application of task 2.3 on the pharmacy case study

(Chapter 5). Predefined managerial GT rules are selected based on features

captured in the unique simulation models specified in Section 11.1.

Based on Table 11.1 simulation models versions 1-4 (Section 11.1) require

the following predefined domain independent managerial global application

conditions and GT rules from Section 7.2.

Version 1: Scheduling by deadline (Figure 7.11)

Version 2: Scheduling by priority (Figure 7.12)

Version 3: Assignment policy (Figure 7.10), scheduling by deadline (Fig-

ure 7.11)

Version 4: Assignment policy (Figure 7.10), scheduling by priority (Fig-

ure 7.12)

All of the 4 versions also require the following rules: assignment (Fig-

ure 7.7), unassignment (Figure 7.8), request (Figure 7.6) and clock (Fig-

ure 7.13).

Adwoa Dansoa Donyina 193 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

11.4 Domain Specific GT Rules in StADy no-

tation (Task 2.4)

This section illustrates the application of task 2.4 on the pharmacy case study

(Chapter 5), by defining the domain specific support-level and production-

level GT rules. The support-level rules are based on the predefined GT rules

in Section 7.3. The human error/unpredictability GT rules are required for

all of the simulation model versions. The skip GT rule (Figure 7.17) and

backtrack GT rule (Figure 7.18) can be domain specifically defined for each

state that is being modelled in the pharmacy business process. On the other

hand, the production-level GT rules are defined as follows:

Figure 11.3: Rule Name: New Walk-in Prescription
pre: Patient walks into the store with new prescription.
post: Prescription is added to new case instance with deadline set to 15 mins
from current time and the Patient takes on the role of customer and has
presence on the new case instance.

Adwoa Dansoa Donyina 194 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

Figure 11.4: Rule Name: New Refill Prescription
pre: Patient submits refill prescription request via phone or web.
post: Prescription is added to new case instance with deadline set to 24 hrs
from current time.

Figure 11.5: Rule Name: New Same Day Prescription
pre: Patient walks into the store with new prescription, but will return to
collect the filled prescription later in the day.
post: Prescription is added to new case instance with deadline set to 1 hr
from current time.

Adwoa Dansoa Donyina 195 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

Figure 11.6: Rule Name: New Delivery Prescription Type
pre: Patient submits prescription for delivery.
post: Prescription is added to new case instance with deadline set to 15
minutes from current time.

Figure 11.7: Rule Name: Type Prescription
pre: A prescription is not typed into the computer database and there is an
entry technician assigned to the case instance.
post: The prescription is typed into the computer database.

Adwoa Dansoa Donyina 196 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

Figure 11.8: Rule Name: Print Label
pre: A typed prescription does not have a bottle label.
post: The prescription label is printed.

Figure 11.9: Rule Name: Fill Prescription
pre: A prescription is not filled and there is a filling technician
assigned to the case instance.
post: The prescription is filled.

Adwoa Dansoa Donyina 197 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

Figure 11.10: Rule Name: Successful Prescription check
pre: A filled prescription has not been checked and there is a dispensing
pharmacist assigned to the case instance.
post: The successfully checked filled prescription and label are put into a
prescription bag.

Figure 11.11: Rule Name: Unsuccessful Prescription check
pre: A filled prescription has not been checked and there is a dispensing
pharmacist assigned to the case instance.
post: The unsuccessfully checked filled prescription, label, typed prescription
are removed from the case, leaving the prescription to be redone.

Adwoa Dansoa Donyina 198 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

Figure 11.12: Rule Name: Give Payment
pre: Payment not received and there is a pharmacy cashier assigned to a case
with a customer’s presence.
post: Customers handover payment.

Figure 11.13: Rule Name: Receive Payment
pre: Customer is handing over payment to a pharmacy cashier assigned to
the case.
post: Pharmacy Cashier takes payment from customer and puts it in the
cash register.

Adwoa Dansoa Donyina 199 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

Figure 11.14: Rule Name: Counsel Patient
pre: Customer has not received counseling, but the prescription is ready to
be picked up and there is a dispensing pharmacist who is assigned to case
instance with the presence of the customer.
post: Pharmacist counsels the customer.

Consistency holds true between the domain specific GT rules & activity

diagrams (Section 10.2), GT rules & use-case descriptions (Section 10.1) and

between GT rules & StADy metamodel (Section 6.1), because they passed

the following consistency tests:

1. Each activity defined in the activity diagram must correspond to one

or many GT rules. If the activity corresponds to multiple GT rules,

then the preconditions of those rules must be the same.

• This holds true as shown in Table 11.4.

2. The objects defined as input and output parameters of the activity

must also be present in the pre and post conditions of the corresponding

rules.

• This holds true as shown in Table 11.4.

Adwoa Dansoa Donyina 200 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

3. Each use-case corresponds to at least one rule and the use-case descrip-

tion informally describes the contents of the pre and post conditions of

the rule.

• This holds true as shown in Table 11.4.

4. The GT Rules must be typed over the StADy metamodel.

• As illustrated in the abstract representation (Figure 11.15) of print

label GT rule (Figure 11.8).

Integration must take place to ensure consistency between the domain

specific GT Rules and the activity diagrams [73]. Analysis of consistency

across these two models is initially explored by refining the activity diagrams

to the rules, as shown in Table 11.4. The table represents one to one corre-

spondence between activity and GT rule. Jurack et al. [37] extended refined

activity diagram of object flow, in order to produce partial rule dependencies

to formalize the semantics of object flow.

Adwoa Dansoa Donyina 201 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

Activity Use-Case Description GT Rule

New Walkin Table 10.2 newWalkin
(in:Prescription) (Figure 11.3)

(out:DispenseMedication)
New Delivery Table 10.2 newDelivery

(in:Prescription) (Figure 11.6)
(out:DispenseMedication)

New Same Day Table 10.2 newSameDay
(in:Prescription) (Figure 11.5)

(out:DispenseMedication)
New Refill Table 10.2 newRefill

(in:Prescription) (Figure 11.4)
(out:DispenseMedication)

Type into Computer Table 10.5 typePrescription
(in:DispenseMedication) (Figure 11.7)
(out:TypedPrescription)

Print Label Table 10.8 printLabel
(in:TypedPrescription) (Figure 11.8)

(out:Label)
Fill Prescription Table 10.11 fillPrescription

(in:Label) (Figure 11.9)
(out:FilledPrescription)

Unsuccessful Check Table 10.15 unsuccessfulCheck
(in:FilledPrescription) (Figure 11.11)

(out:DispenseMedication)
Successful Check Table 10.15 successfulCheck

(in:FilledPrescription) (Figure 11.10)
(out:FilledPrescription)

Give Payment Table 10.18 givePayment
(in:FilledPrescription) (Figure 11.12)

(out:Payment)
Receive Payment Table 10.18 receivePayment

(in:Payment) (Figure 11.13)
(out:FilledPrescription)

Counsel Customer Table 10.21 counsel
(in:FilledPrescription) (Figure 11.14)

Table 11.4: Activity Diagram Refined into GT Rules

Adwoa Dansoa Donyina 202 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

The following steps are required to show that a GT rule is typed over the

StADy metamodel:

1. Translate the GT rule from concrete syntax to abstract syntax as illus-

trated in Figure 11.15 for the print label GT rule defined in Figure 11.8.

2. Check that every object, attribute, and association corresponds to the

metamodel defined in Figure 6.2. The Figure 11.15 contains the StADy

metamodel elements: Process, State, ArtifactType, Artifact, Case and

StateInstance.

Adwoa Dansoa Donyina 203 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

Figure 11.15: Abstract Representation of Print Label Rule

Adwoa Dansoa Donyina 204 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

11.5 Probes and Observation Rules in StADy

notation (Task 2.5)

This section illustrates the application of task 2.5 on the pharmacy case study

(Chapter 5), by defining probes to aid in solving performance question 1-2

which were defined in Section 1.2. This task also uses versions 1-4 simulation

models that were specified in task 2.1 in Section 11.1.

Question #1: Which scheduling method (by priority/deadline) increases

the probability for a prescription to be completed on time? How does it

affect the number of cases completed out of the total received?

Two probe rules can be used to answer the first half of question 1, ‘late-

fromtotal’ and ‘lateCases’. The ‘lateFromTotal’ probe calculates the num-

bers of cases that are late from the total number received, whereas ‘lateCases’

counts the number of late cases, as shown in Figure 11.16. In order to answer

the second half of question 1, the batch rule reports need to be analyzed in

order to calculate the number of times the ‘successfulCheck’ rule was applied

in relation to the sum of the execution of the new case rules. Therefore, the

answer is gathered from the comparison of version 1-4 (number of successful

prescription checks divided by the total number of new cases received).

Adwoa Dansoa Donyina 205 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

Figure 11.16: LateCase Probe

Question #2: Does the usage of assignment policies decrease the number

of idle workers (not assigned to jobs) at any point in time?

The second question can be answered by defining a probe to count the

number of idle workers (‘PersonAvailable’ probe), then in each intermediate

simulation step the total number of idle workers are counted using the probe

defined in Figure 11.17. These data are used to determine the average number

of idle workers in a simulation. The probe rule can be used to answer question

2 by analyzing the smallest probe result in version 1-4.

Figure 11.17: PersonAvailable Probe

Consistency holds true between the probe/observation rules and StADy

metamodel (Section 6.1), because they passed the following consistency test:

Adwoa Dansoa Donyina 206 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

The probe/obervation rules must be typed over the StADy metamodel: As

illustrated in the abstract representation (Figure 11.18) of PersonAvailable

probe (Figure 11.17).

The following steps are required to show that a probe/obervation rule is

typed over the StADy metamodel:

1. Translate the probe/obervation rule from concrete syntax to abstract

syntax as illustrated in Figure 11.18 for the PersonAvailable probe

defined in Figure 11.17.

2. Check that every object, attribute, and association corresponds to the

metamodel defined in Figure 6.2. The Figure 11.18 contains the StADy

metamodel elements: Actor and Person. The Boolean free attribute in

the Person object is set to true.

Figure 11.18: Abstract Representation of PersonAvailable Probe

11.6 Start-Graph in StADy DSL (Task 2.6)

This section illustrates the application of task 2.6 on the pharmacy case

study (Chapter 5), by specifying the start graph. The initial model (start

graph) has one registered pharmacist (Cindy), three technicians (Bob, Fred,

Adwoa Dansoa Donyina 207 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

Donald), one cashier (Gina) and one active dispense medication case present.

All of the workers are currently available to take on jobs. A patient by the

name of Emily is waiting for her prescription to be filled. The current clock

time is 9:01 am on July 25th, 2010 and Emily’s prescription case arrived

earlier in the day at 8:50 am and the expected completion time was set

to the same day at 9:05 am. This start graph is visually represented in

Figure 11.19.

Figure 11.19: Start Graph for Simulation Type 1 Model

Consistency holds true between the start graph and StADy metamodel

(Section 6.1), because it passed the following consistency test:

The start graph must be typed over the StADy metamodel: As illustrated

in the abstract representation (Figure 11.20) of the simulations start graph

(Figure 11.19).

The following steps are required to show that the start graph is typed

Adwoa Dansoa Donyina 208 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

over the StADy metamodel:

1. Translate the start graph from concrete syntax to abstract syntax as

illustrated in Figure 11.20.

2. Check that every object, attribute, and association corresponds to the

metamodel defined in Figure 6.2. The Figure 11.20 contains all of the

StADy metamodel elements. This diagram is similar to the M1 abstract

model discussed in Section 6.2, except the O0 side represents the model

defined in Figure 11.19.

Adwoa Dansoa Donyina 209 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

Figure 11.20: Abstract Syntax of Start Graph

Adwoa Dansoa Donyina 210 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

11.7 Stochastic Graph Transformation Sys-

tem (Task 2.7)

This section illustrates the application of task 2.7 on the pharmacy case

study (Chapter 5), by corresponding rate, mean and variance parameters for

the GT rules specified in tasks 2.3-2.4 (Sections 11.3-11.4). The distribution

parameters are based on measured pharmacy process data from [61, 69, 60]

and discussions with Georgina Donyina, Pharmacist/Owner of a Shoppers

Drug Mart pharmacy franchise located in Canada [15].

Distribution data were gathered from a dispensing service pilot project [69],

which took place from 27 November 2005 to 4 December 2005. The sample

size of the project consisted of 29 pharmacies. The dispensing procedure was

separated into three phases. The first phase involved entry and evaluation

(checking) of the prescription. The second phase involved filling, labelling

and checking filled prescription. The third phase involved counseling the

patient. Table 11.5 displays the average time spent per prescription in each

phase, which resulted in the average total time of dispensing a prescription

to be 16 minutes and 59 seconds with a standard deviation of 8 minutes and

29 seconds.

Since the sample data from the pilot project [69] were not available the

pharmacy business process activity distributions could not be selected using

distributing fitting [62]. The pharmacy business activities were categorized

based on distinct distribution properties and theories. The activities that had

a memoryless property [7] were categorized as an exponential distribution,

whereas activities that captured the central limit theorem [76] were catego-

Adwoa Dansoa Donyina 211 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

Phases Average time (min Minimum Maximum
spent per prescription (min) (min)

Phase 1 9 min 11 sec 1 sec 34 min 12 sec
(± 5 min 37 sec)

Phase 2 4 min 37 sec 15 sec 40 min 54 sec
(± 4 min 51 sec)

Phase 3 3 min 9 sec 4 sec 14 min 10 sec
(± 2 min 34 sec)

Total 16 min 59 sec 3 min 23 sec 54 min 10 sec
(± 8 min 29 sec)

Table 11.5: Average Time Spent per Prescription [69]

rized as normal distribution as discussed in Section 4.3. The memoryless

property implies that the future of a random variable is independent of its

past such as the arrival of new prescription cases. The new prescription GT

rules in Figures 11.3-11.6 were classified as exponential distributions because

the rate of arrivals for a customer is independent to the time it takes for

the next customer to arrive. On the other hand, the central limit theorem

classifies activities as normal distributions if it is an average of independent

random variable. The remaining pharmacy business process actions (Fig-

ures 11.7-11.14) were classified as normal distributions because it generally

takes an average amount of time to complete a dispensary task.

The descriptions of the pharmacy business process in Chapter 5 were

mapped to the detailed dispensing procedure used in the pilot study (Fig-

ure 11.21). With the help from the pharmacy professional I concluded my

distribution parameter estimates as shown in Table 11.6. Each state out-

lined in Section 7.1 corresponds to an event, which is the pattern match of a

defined GT Rule.

Adwoa Dansoa Donyina 212 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

Figure 11.21: Dispensing used in the Dispensing Service Pilot Project (3
Phase Breakdown) [69]

Adwoa Dansoa Donyina 213 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

Domain Specific GT Rules

State Event Mean Variance
µ (min) σ2 (min)

Type TypePrescription GT Rule 1.25 0.4375
Print PrintPrescription GT Rule 0.26 0.024806
Fill FillPrescription GT Rule 1.17 0.395833

Check SuccessfulCheck and 2.00 0.8125
UnsuccessfulCheck GT Rule

Payment GivePayment GT Rule 0.71 0.047292
Counsel Counsel GT Rule 1.17 0.583333

Table 11.6: Estimated Average Times to Complete States

Tables 11.7 to 11.9 present the estimated average times for the following

exception events: skip, backtrack, escalation trigger and transfer (load bal-

ancing). Each of the distributions were influenced by the estimated aver-

age times to complete the states in the pharmacy business process; for in-

stance the mean of the skip events were calculated to be 0.25 factor higher

than their corresponding fulfilled action distribution defined in Table 11.6

(µskip=µfulfilled+0.25). On the other hand, the backtrack event means were

set to the same mean as the fulfilment of the state defined in Table 11.6

because the assumption is made that it will take the same amount of time

to detect an error in a case as it would take to perform the action. Similarly,

the optional load balancing and escalation handling features are partially

influenced by the other determined estimations.

Adwoa Dansoa Donyina 214 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

Event Mean Variance
µ (min) σ2 (min)

SkipTypePrescription GT Rule 1.50 0.4375
SkipPrintPrescription GT Rule 0.51 0.024806
SkipFillPrescription GT Rule 1.42 0.395833

SkipSuccessfulCheck and 2.25 0.8125
SkipUnsuccessfulCheck GT Rule

SkipGivePayment GT Rule 0.96 0.047292
SkipCounsel GT Rule 1.42 0.583333

Table 11.7: Estimated Average Times for Skip Events

Event Mean Variance
µ (min) σ2 (min)

Backtrack PrintState GT Rule 0.26 0.024806
Backtrack FillState GT Rule 1.17 0.395833
Backtrack CheckState and 2 0.8125

Backtrack PaymentState GT Rule 0.71 0.047292
Backtrack CounselState GT Rule 1.17 0.583333

Table 11.8: Estimated Average Times for Backtrack Events

Event Description Mean Variance
µ (min) σ2 (min)

DisTypePrescription Transfer Prescription 1.25 0.4375
GT Rule to another store

TempAssign GT Rules Temporarily assign 0.05 0.004537
person to a role

Trigger GT Rules Trigger change in 0.09 0.004537
escalation levels

Table 11.9: Estimated Average Times for Optional Features

The arrival of new prescription cases was categorized as an exponential

distribution, because the random arrival of prescription orders is independent

of other actions. The estimation values were influenced by data collection

from a medium-sized New Jersey Hospital pharmacy unit [60]. Their results

Adwoa Dansoa Donyina 215 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

stated that the mean arrival rate for high priority orders was 0.096, whereas

the mean arrival rate for regular orders was 0.259. After discussions with

pharmacy professionals estimations shown in Table 11.10 were decided.

Event Frequency Rate λ Mean arrival
(mins) rate λ−1

NewCase GT Rule Every 5 mins 10 0.1
NewCaseMedPriority GT Rule Every 10 mins 20 0.05
NewCaseHighPriority GT Rule Every 30 mins 60 0.01667

Table 11.10: GT Rule (Exponential Distribution)

Managerial GT Rules

Managerial Rules Mean Variance
(mins)

ClockTick 1.00 0.000055778
Request 0.09 0.004537

Unassignment 0.3125 0.048032407
Assignment 0.09 0.004537

Table 11.11: Estimated Distributions of Managerial GT Rules

The events that correspond to managerial GT rules were categorized as

lognormal distributions because an action such as assignment is dependent

on the request for assignment action. Since the domain specific actions only

represented a proportion of the total dispensing time specified by the pilot

research data in Table 11.5, the remaining dispensing time is covered by

the managerial actions as defined in Table 11.11. The distribution values

were selected using partial trial and error in order to align the results with

measured pharmacy process statistics from [61, 69, 60], because after the

Adwoa Dansoa Donyina 216 Thesis 2011



CHAPTER 11. ILLUSTRATION OF STAGE 2 – PROCESS
EXECUTION DESIGN

values were randomly selected they were evaluated to ensure they represented

meaningful data based on the statistics of these research.

Consistency holds true between the GT Rules defined in tasks 2.3-2.4

(Sections 11.3-11.4) and distribution parameters, because it passed the fol-

lowing consistency test:

Each defined GT Rule must have a distribution: This holds true because

the distribution parameters for the GT Rules are defined in Tables 11.6-11.11.

11.8 Summary

This chapter illustrated the business process execution design tasks in stage 2

of the StADy methodology (Chapter 9). This stage extended UML use-case

and class diagrams that were defined in stage 1 (Chapter 10) to represent

additional information in terms of access control, escalation handling and

capabilities. Also the StADy language (Chapter 6-7) was used to define the

business process using graph transformation. The next chapter (Chapter 12)

will illustrate how to encode the domain-specific StADy elements from this

stage into VIATRA2 syntax.

Adwoa Dansoa Donyina 217 Thesis 2011



Chapter 12

Illustration of Stage 3 –

Process Encoding

This chapter illustrates the tasks in stage 3 of the methodology (Chapter 9).

Each task includes consistency checks and a corresponding illustration based

on the pharmacy case study defined in Chapter 5. The process-encoding

stage is for encoding the start graph from task 2.6 (Section 11.6), GT rules

from tasks 2.3-2.4 (Section 11.3-11.4) and probes from task 2.5 (Section 11.5)

into the VIATRA2 tool, in order to perform stochastic simulation on Graph-

based Stochastic Simulation (GraSS) tool [30, 68] which extends VIATRA2.

Chapter 8 discussed and illustrated the mapping from StADy concrete syntax

to VIATRA2 textual syntax.

218



CHAPTER 12. ILLUSTRATION OF STAGE 3 – PROCESS ENCODING

12.1 Start Graph in VIATRA2 Model Space

(Task 3.1)

This section illustrates the application of task 3.1 on the pharmacy case

study (Chapter 5), by translating the start graph that was designed using

StADy syntax in task 2.6 (Section 11.6) into the VIATRA2 (VPM) Model

Space [72]. Figure 12.1 is a screen shot of the start graph in VPM.

(a) Part 1 (b) Part 2

Figure 12.1: Start Graph for Type 1 Simulation Model

Consistency holds true between the start graph defined in StADy syntax

(task 2.6- Section 11.6) and the start graph defined in VIATRA2 model space,

because it passed the following consistency test: The start graph in VPM

element entities and relations must correspond to the entities and relations

found in the abstract syntax representation of the graphical syntax: This

holds true because the abstract representation of the start graph shown in

Adwoa Dansoa Donyina 219 Thesis 2011



CHAPTER 12. ILLUSTRATION OF STAGE 3 – PROCESS ENCODING

Figure 11.20 is consistent with the start graph defined in the VIATRA2 model

space, i.e., each element corresponds to an object in the model.

12.2 Domain-Independent GT Rules in VIA-

TRA2 Syntax (Task 3.2)

This section illustrates the application of task 3.2 on the pharmacy case

study (Chapter 5), by inserting the required managerial GT rules from Ap-

pendix A.1 into a VTML file, as selected in task 2.3 (Section 11.3).

12.3 Domain-Specific GT Rules in VIATRA2

Syntax (Task 3.3)

This section illustrates the application of task 3.3 on the pharmacy case

study (Chapter 5), by translating the domain specific rules defined in task 2.4

(Section 11.4) into VIATRA2 textual syntax (Appendix A.3). An overview

of the defined production-level GT rules is presented.

The textual representation of production-level domain specific rules take

three standard formats. The following list categories which GT rules fit into

each of the formats.

1. Fill, print, payment, type

2. Counsel, successful check, unsuccessful check

3. New walkin/delivery/sameday/refill case

Adwoa Dansoa Donyina 220 Thesis 2011



CHAPTER 12. ILLUSTRATION OF STAGE 3 – PROCESS ENCODING

Each of the three code standard formats are defined. Since within each

subgroup they are only distinguishable from each other by their distinct

string patterns, the following <PATTERN-NAME> notation is used within

the VTML code, with a corresponding table to define the distinct string

patterns.

Standard Format 1

The following VTML code corresponds to fill, print, payment and type GT

rules defined in task 2.4 (Section 11.4). Table 12.1 outlines the string pat-

terns located in the code, whereas Figure 12.2 illustrates the consistency with

the StADy concrete notation.

<RULE>: GT rule name (String type).

<NAC-ARTIFACT>: Artifact name which do not want present (String

type).

<ARTIFACT>: Artifact name which want present (String type).

<STATE>: Current state (String type).

<RULE> <NAC-ARTIFACT> <ROLE> <ARTIFACT>
& <STATE>
Fill FilledPrescription FillingTechnician Label
(Chapter 7)
Print Label TypedPrescription
Type TypedPrescription EntryTechnician Prescription
Payment Payment PharmacyCashier

Customer

Table 12.1: Unique Procedural GT Rule String Patterns

Adwoa Dansoa Donyina 221 Thesis 2011



CHAPTER 12. ILLUSTRATION OF STAGE 3 – PROCESS ENCODING

Figure 12.2: Standard Format 1: StADy GT Rule Structure

1 gtrule Rule_<RULE>() =

{
2 precondition pattern lhs(Case_,RoleInstance_,Role_,Person_,ArtifactType_,

StateInstance_, NextState_,R6_) =

{
//Declarations i.e. Type(Instance)

3 Case(Case_);

4 ArtifactType(ArtifactType_);

5 State(State_);

6 State(NextState_);

7 StateInstance(StateInstance_);

//Verify that New ArtifactType matches

8 check(name(ArtifactType_)=="<ARTIFACT-NAC>");

//Verify that required role(s) are assigned to the Case

9 find <ROLE>assigned (Case_,RoleInstance_,Role_,Person_);

//Negative application condition

//<ARTIFACT-NAC> is not contained in the Case

10 neg find <ARTIFACT-NAC> Exist(Case_);

//Verify that <ARTIFACT> in the Case

11 find <ARTIFACT>Exist(Case_);

//Retrieve Case’s current State

12 Case.currentState(R6_,Case_,StateInstance_);

//Find the next state from the current state

13 State.next(R7,State_,NextState_);

//Check if current state is the required state

14 typeOf(State_,StateInstance_);

15 check(name(State_)=="<STATE>");

}
16 action {

Adwoa Dansoa Donyina 222 Thesis 2011



CHAPTER 12. ILLUSTRATION OF STAGE 3 – PROCESS ENCODING

17 let

18 NewArtifact_=undef,

19 R1_=undef,

20 NewStateInstance_=undef,

21 R2_=undef

22 in seq {
//Remove Case’s old state

23 delete(StateInstance_);

24 delete(R6_);

//Change Case state to the next state

// create Class inside the Case

25 new(StateInstance(NewStateInstance_)in DSM.model.M1);

//create instanceOf relation with the StateInstance:State

26 new(instanceOf(NewStateInstance_,NextState_));

27 new (Case.currentState(R2_,Case_,NewStateInstance_));

//Add Filled Prescription Artifact to the Case

// create Class inside the Case

28 new(Artifact(NewArtifact_)in Case_);

//create instanceOf relation with the Artifact:ArtifactType

29 new(instanceOf(NewArtifact_,ArtifactType_));

//create relation between Case and Artifact

30 new (Case.contains(R1_,Case_,NewArtifact_));

}

}
}

//<ROLE>Assigned Pattern

31 pattern <ROLE>assigned (Case_,RoleInstance_,Role_,Person_) =

{
//Declarations

32 Person(Person_);

33 Case(Case_);

34 Role(Role_);

35 RoleInstance(RoleInstance_);

//Verify that role type is <ROLE>

36 check (name(Role_)=="<ROLE>");

//Verify that RoleInstance_ is of the same <ROLE> role type

37 typeOf(Role_, RoleInstance_);

//Verify that this RoleInstance exists on the Case

38 RoleInstance.presence(Rel2, RoleInstance_, Case_);

//Verify that a person is assigned to the RoleInstance_

//i.e a person is assigned a RoleInstance_ of <ROLE>

//which is associated the Case_

39 RoleInstance.assignedTo(Rel,RoleInstance_,Person_);

}

//Case contains an instance of <NAC-ARTIFACT>:ArtifactType

40 pattern <NAC-ARTIFACT>Exist(Case_,Artifact_, ArtifactType_)=

{
//declarations

41 Artifact(Artifact_);

42 ArtifactType(ArtifactType_);

Adwoa Dansoa Donyina 223 Thesis 2011



CHAPTER 12. ILLUSTRATION OF STAGE 3 – PROCESS ENCODING

43 Case(Case_);

//Verify that Case_ contains an Artifact_ of <NAC-ARTIFACT> type

44 Case.contains(Rel, Case_, Artifact_);

45 typeOf(ArtifactType_,Artifact_);

46 check (name(ArtifactType_)=="<NAC-ARTIFACT>");

}

//Case contains an instance of <ARTIFACT>:ArtifactType

47 pattern <ARTIFACT>Exist (Case_)=

{
//declarations

48 Artifact(Artifact_);

49 ArtifactType(ArtifactType_);

50 Case(Case_);

//Verify that Case_ contains an Artifact_ of <ARTIFACT> type

51 Case.contains(Rel, Case_, Artifact_);

52 typeOf(ArtifactType_,Artifact_);

53 check (name(ArtifactType_)==" <ARTIFACT>");

}

Standard Format 2

The following VTML code corresponds to counsel, successful check and un-

successful check GT rules defined in task 2.4 (Section 11.4). Table 12.2

outlines the string patterns located in the code, whereas Figure 12.3 illus-

trates the consistency with the StADy concrete notation.

<RULE>: GT rule name (String type).

<ATTRIBUTEDECLARATION>: Name of AttributeDeclaration of inter-

est (String type).

<ROLE>: Role name (String type).

<STATE>: Current state (String type).

<ARTIFACT>: Artifact name which want present (String type).

Adwoa Dansoa Donyina 224 Thesis 2011



CHAPTER 12. ILLUSTRATION OF STAGE 3 – PROCESS ENCODING

<RULE> <ATTRIBUTE- <ROLE> <STATE> <ARTIFACT>
DECLARATION>

Successful- checked Dispensing- check FilledPrescription
Check Pharmacist
Unsuccessful- checked Dispensing- check FilledPrescription
Check Pharmacist TypedPrescription

Prescription
Label

Counsel counseled Dispensing- counsel FilledPrescription
Pharmacist
&Customer

Table 12.2: Unique Procedural GT Rule String Patterns

Figure 12.3: Standard Format 2: StADy GT Rule Structure

Exception for unsuccessful check; replace line 65 with the following:

//Initial state to backtrack to

check(name(NextState_)=="Type");

Exception for counsel rule; add before line 61:

//Ensure filled prescription has been checked

AttributeValue(AttributeValue2_);

neg find RequiresChecked(Case_,AttributeValue2_);

Adwoa Dansoa Donyina 225 Thesis 2011



CHAPTER 12. ILLUSTRATION OF STAGE 3 – PROCESS ENCODING

54 gtrule Rule_<RULE>() =

{
55 precondition pattern lhs(Case_,AttributeValue_,Artifact_,Artifact2_,

StateInstance_, NextState_,R6_ ) =

{
//declarations

56 Case(Case_);

57 AttributeValue(AttributeValue_);

58 State(State_);

59 State(NextState_);

60 StateInstance(StateInstance_);

//check boolean value of state attribute

61 find Requires<ATTRIBUTE-DECLARATION>(Case_,AttributeValue_);

//Verify that required role(s) are assigned to the Case

62 find <ROLE>assigned (Case_,RoleInstance_,Role_,Person_);

//Verify that <ARTIFACT> in the Case

63 find <ARTIFACT>Exist(Case_,Artifact_,ArtifactType_);

//Retrieve Case’s current State

64 Case.currentState(R6_,Case_,StateInstance_);

//Find the next state from the current state

65 State.next(R7,State_,NextState_);

//Check if current state is the required state

66 typeOf(State_,StateInstance_);

67 check(name(State_)=="<STATE>");

}
68 action {

69 let

70 NewStateInstance_=undef,

71 R2_=undef

72 in seq{
//Remove Case’s old state

73 delete(StateInstance_);

74 delete(R6_);

//Change Case state to the next state

// create Class inside the Case

75 new(StateInstance(NewStateInstance_)in DSM.model.M1);

//create instanceOf relation with the StateInstance:State

76 new(instanceOf(NewStateInstance_,NextState_));

77 new (Case.currentState(R2_,Case_,NewStateInstance_));

}

//Change attributes boolean value

78 setValue(AttributeValue_,"true");

}
}

//check if Case <ATTRIBUTE-DECLARATION>’s attribute value is false

79 pattern Requires<ATTRIBUTE-DECLARATION>(Case_, AttributeValue_)={
//declarations

80 Case(Case_);

81 AttributeValue(AttributeValue_);

82 AttributeDeclaration(AttributeDeclaration_);

Adwoa Dansoa Donyina 226 Thesis 2011



CHAPTER 12. ILLUSTRATION OF STAGE 3 – PROCESS ENCODING

//attribute value connected to the case

83 Case.has(R1,Case_,AttributeValue_);

//Check that the AttributeValue is of <ATTRIBUTE-DECLARATION> type

84 typeOf(AttributeDeclaration_,AttributeValue_);

85 check (name(AttributeDeclaration_) == "<ATTRIBUTE-DECLARATION>");

//check if the attribute value is false

86 check(value(AttributeValue_)=="false");

}

Standard Format 3

The following VTML code corresponds to new case GT rules defined in task

2.4 (Section 11.4). Table 12.3 outlines the string patterns located in the code,

whereas Figure 12.4 illustrates the consistency with the StADy concrete no-

tation.

<RULE>: GT rule name (String type).

<DIFF>: Deadline value from current time i.e. current time +<DIFF> (int

type).

<PRIORITY>: Priority value (int type).

<TYPE>: Attribute declaration value type (value=walkin,refill,sameday,delivery).

<GROUP>: Distributed group number (int type).

<RULE> <DIFF> <PRIORITY> <TYPE> <GROUP>
new walkin case 15 -1 walkin 1
new refill case 1440 -1 refill 1
new sameday case 60 -1 sameday 1
new delivery case 15 -1 delivery 1

Table 12.3: Unique Procedural GT Rule String Patterns

Various other value combination can be constructed in Table 12.3 such

as ranges in the priority level and different group locations.

Adwoa Dansoa Donyina 227 Thesis 2011



CHAPTER 12. ILLUSTRATION OF STAGE 3 – PROCESS ENCODING

Figure 12.4: Standard Format 3: StADy GT Rule Structure

//New Case with Customer

87 gtrule Rule_NewCase() =

{
88 precondition pattern lhs(State_,Process_, Prescription_,Patient_,

Customer_,Time_, Day_,Month_,Year_,Hour_,Minute_,M2_) =

{
89 State(State_);

90 Process(Process_);

91 ArtifactType(Prescription_);

92 Actor(Patient_);

93 Role(Customer_);

94 M2(M2_);

95 Clock(Clock_);

96 check(name(Prescription_)=="Prescription");

97 check(name(Patient_)=="Patient");

98 check(name(Customer_)=="Customer");

99 check(name(State_)=="Type");

100 Clock.Time(Time_);

101 Clock.attr(R1,Clock_,Time_);

102 find getTime(Time_, Day_,Month_,Year_,Hour_,Minute_);

}
103 action {
104 let

105 Case_=undef, Val1_=undef,Val2_=undef, Val3_=undef,R1=undef,R2=undef,

106 R3=undef, R4=undef, R5=undef, R6=undef, R7=undef, R8=undef, R9=undef,

107 NewArtifact_=undef, R1_=undef, Person_=undef, RoleInstance_=undef,

108 Priority_=undef, State_=undef, Free_=undef, StartTime_=undef,

109 R2_=undef, IntegerDay_= undef, R3_=undef, IntegerMonth_= undef,

110 R4_=undef, IntegerYear_= undef, R5_=undef, IntegerHour_= undef,

111 IntegerMin_= undef, R6_=undef, Deadline_=undef, R2R=undef,

112 R2_2=undef, IntegerDay2_= undef, R3_2=undef, IntegerMonth2_= undef,

113 R4_2=undef, IntegerYear2_= undef, R5_2=undef, IntegerHour2_= undef,

Adwoa Dansoa Donyina 228 Thesis 2011



CHAPTER 12. ILLUSTRATION OF STAGE 3 – PROCESS ENCODING

114 IntegerMin2_= undef, R6_2=undef, Store_=undef, R10=undef, R11=undef

115 in seq {
116 new(Case(Case_)in M2_);

117 rename(Case_,name(Case_)+"Case");

//create instanceOf relation with the Case:Process

118 new(instanceOf(Case_,Process_));

119 new(AttributeValue(Val1_)in Case_);

120 new(AttributeValue(Val2_)in Case_);

121 new(AttributeValue(Val3_)in Case_);

//create instanceOf relation with the AttributeValue:Process

122 new(instanceOf(Val1_,DSM.model.M1.Pharmacy.checked));

//create instanceOf relation with the AttributeValue:Process

123 new(instanceOf(Val2_,DSM.model.M1.Pharmacy.counsel));

//create instanceOf relation with the AttributeValue:Process

124 new(instanceOf(Val3_,DSM.model.M1.Pharmacy.type));

//connect checked, counsel and type attribute vales to Case instance

125 new(Case.has(R1,Case_,Val1_));

126 new(Case.has(R2,Case_,Val2_));

127 new(Case.has(R3,Case_,Val3_));

//initialize values

128 setValue(Val1_,"false");

129 setValue(Val2_,"false");

130 setValue(Val3_,"<TYPE>");

//set priority level for the Case

131 new(Case.priority(Priority_) in Case_);

132 new(Case.attr2(R7,Case_,Priority_));

133 setValue(Priority_,"<PRIORITY>");

//Set Case state to the initial type state

134 new(StateInstance(NewStateInstance_)in DSM.model.M1);

//create instanceOf relation with the StateInstance:State

135 new(instanceOf(NewStateInstance_,State_));

136 new (Case.currentState(R11_,Case_,NewStateInstance_));

137 new(Case.groupNo(Store_) in Case_);

138 new(Case.group(R10,Case_,Store_));

139 setValue(Store_,"<GROUP>");

//New case contains a prescription

140 new(Artifact(NewArtifact_)in Case_);

//create instanceOf relation with the Artifact:ArtifactType

141 new(instanceOf(NewArtifact_,Prescription_));

142 new (Case.contains(R1_,Case_,NewArtifact_));

//Add a person

143 new(Person(Person_)in DSM.model.M1);

144 new(instanceOf(Person_,Patient_));

145 rename(Person_,name(Person_)+"Person");

146 new (Person.free(Free_)in Person_);

147 setValue(Free_,"false");

148 new(Person.attr(R6,Person_,Free_));

//Add customer roleInstance

149 new(RoleInstance(RoleInstance_)in DSM.model.M1);

150 new(instanceOf(RoleInstance_,Customer_));

//add roleInstance to Case_

151 new(RoleInstance.presence(R4,RoleInstance_,Case_));

//assign Person_ to RoleInstance_

Adwoa Dansoa Donyina 229 Thesis 2011



CHAPTER 12. ILLUSTRATION OF STAGE 3 – PROCESS ENCODING

152 new (RoleInstance.assignedTo(R5,RoleInstance_, Person_));

//Starttime defined

153 new( Case.startTime(StartTime_) in Case_);

154 new(Case.attr3(R8,Case_,StartTime_));

155 new(Integer(IntegerDay_) in StartTime_);

156 setValue(IntegerDay_,value(Day_) );

157 new(DateTime.day(R2_,StartTime_,IntegerDay_));

158 new(Integer(IntegerMonth_) in StartTime_);

159 setValue(IntegerMonth_,value(Month_));

160 new(DateTime.month(R3_,StartTime_,IntegerMonth_));

161 new(Integer(IntegerYear_) in StartTime_);

162 setValue(IntegerYear_,value(Year_));

163 new(DateTime.year(R4_,StartTime_,IntegerYear_));

164 new(Integer(IntegerHour_) in StartTime_);

165 setValue(IntegerHour_,value(Hour_));

166 new(DateTime.hour(R5_,StartTime_,IntegerHour_));

167 new(Integer(IntegerMin_)in StartTime_);

168 setValue(IntegerMin_,value(Minute_));

169 new(DateTime.minute(R6_,StartTime_,IntegerMin_));

170 if(toInteger(value(IntegerMin_)) >=10 ) seq{
171 setValue (StartTime_, value(IntegerHour_)+":"+

value(IntegerMin_)+" "+ value(IntegerDay_)+"/"+

value(IntegerMonth_)+"/"+ value(IntegerYear_));

}
172 else seq{
173 setValue (StartTime_, value(IntegerHour_)+":0"+

value(IntegerMin_)+" "+value(IntegerDay_)+"/"+

value(IntegerMonth_)+"/"+ value(IntegerYear_));

}
//deadline defined

174 new(Case.deadline(Deadline_) in Case_);

175 new (Case.attr1(R2R, Case_,Deadline_));

176 new(Integer(IntegerDay2_) in Deadline_);

177 setValue(IntegerDay2_,toInteger(value(IntegerDay_)));

178 new(DateTime.day(R2_2,Deadline_,IntegerDay2_));

179 new(Integer(IntegerMonth2_) in Deadline_);

180 setValue(IntegerMonth2_,toInteger(value(IntegerMonth_)));

181 new(DateTime.month(R3_2,Deadline_,IntegerMonth2_));

182 new(Integer(IntegerYear2_) in Deadline_);

183 setValue(IntegerYear2_,toInteger(value(IntegerYear_)));

184 new(DateTime.year(R4_2,Deadline_,IntegerYear2_));

185 new(Integer(IntegerHour2_)in Deadline_);

186 setValue(IntegerHour2_,toInteger(value(IntegerHour_)));

187 new(Integer(IntegerMin2_) in Deadline_);

188 if((toInteger(value(IntegerMin_))+<DIFF>) < 60) seq{
189 setValue(IntegerMin2_,toInteger(value(IntegerMin_))+<DIFF>);

190 setValue(IntegerHour2_,toInteger(value(IntegerHour_)));

}
191 else if (toInteger(value(IntegerHour_))+1 < 24 ||

((toInteger(value(IntegerHour_))+1==24 &&

((toInteger(value(IntegerMin_))+<DIFF>)-60)==0 ))) seq{
192 setValue(IntegerMin2_,((toInteger(value(IntegerMin_))+<DIFF>)-60));

193 setValue(IntegerHour2_,toInteger(value(IntegerHour_))+1);

}//assumption that all months have 31 days

194 else if((toInteger(value(IntegerDay_))+1)<31) seq {
195 setValue(IntegerDay2_,toInteger(value(IntegerDay_))+1);

196 setValue(IntegerMin2_,((toInteger(value(IntegerMin_))+<DIFF>)-60));

197 setValue(IntegerHour2_,1);

Adwoa Dansoa Donyina 230 Thesis 2011



CHAPTER 12. ILLUSTRATION OF STAGE 3 – PROCESS ENCODING

}
198 else if((toInteger(value(IntegerMonth_))+1)<13) seq{
199 setValue(IntegerMonth2_,toInteger(value(IntegerMonth_))+1);

200 setValue(IntegerDay2_,1);

201 setValue(IntegerMin2_,((toInteger(value(IntegerMin_))+<DIFF>)-60));

202 setValue(IntegerHour2_,1);

}
203 else seq{
204 setValue(IntegerYear2_,toInteger(value(IntegerYear_))+1);

205 setValue(IntegerMonth2_,1);

206 setValue(IntegerDay2_,1);

207 setValue(IntegerMin2_,((toInteger(value(IntegerMin_))+<DIFF>)-60));

208 setValue(IntegerHour2_,1);

}

209 new(DateTime.hour(R5_2,Deadline_,IntegerHour2_));

210 new(DateTime.minute(R6_2,Deadline_,IntegerMin2_));

211 if(toInteger(value(IntegerMin2_)) >=10 ) seq{
212 setValue (Deadline_, value(IntegerHour2_)+":"

+value(IntegerMin2_)+" " +value(IntegerDay2_)+"/"+

value(IntegerMonth2_)+"/"+ value(IntegerYear2_));

}
213 else seq{
214 setValue (Deadline_, value(IntegerHour2_)+":0"+

value(IntegerMin2_)+" "+value(IntegerDay2_)+"/"+

value(IntegerMonth2_)+"/"+ value(IntegerYear2_));

}
215 setAggregation(R2_,true);

216 setAggregation(R3_,true);

217 setAggregation(R4_,true);

218 setAggregation(R5_,true);

219 setAggregation(R6_,true);

220 setAggregation(R2_2,true);

221 setAggregation(R3_2,true);

222 setAggregation(R4_2,true);

223 setAggregation(R5_2,true);

224 setAggregation(R6_2,true);

225 println("Case added ");

}
}

}

//Returns the current clock time

226 pattern getTime(Time_, Day_,Month_,Year_,Hour_,Minute_)={
227 Clock.Time(Time_);

228 Integer(Day_);

229 Integer(Month_);

230 Integer(Year_);

231 Integer(Hour_);

232 Integer(Minute_);

//Retrieve current time attribute values

233 DateTime.day(R2_,Time_,Day_);

234 DateTime.month(R3_,Time_,Month_);

235 DateTime.year(R4_,Time_,Year_);

236 DateTime.hour(R5_,Time_,Hour_);

237 DateTime.minute(R6_,Time_,Minute_);

}

Adwoa Dansoa Donyina 231 Thesis 2011



CHAPTER 12. ILLUSTRATION OF STAGE 3 – PROCESS ENCODING

Consistency holds true between the StADy syntax GT rules defined in

task 2.3-2.4 (Sections 11.3-11.4) and the GT rules defined in VTCL syn-

tax, because they passed the following consistency test: The GT rule textual

and a graphical representation are equivalent if they generate the same ab-

stract representations of a particular model or there exist a mapping from

the graphical representation to textual representation based on the discussion

in Section 8.3: This holds true because the mapping from the textual to

graphical represents is shown in Figures 12.2-12.4 for the 3 standard code

formats.

12.4 Probes StADy in VIATRA2 Syntax (Task

3.4)

This section illustrates the application of task 3.4 on the pharmacy case study

(Chapter 5), by translating the probes defined in task 2.5 (Section 11.5) into

VIATRA2 textual syntax. The probes for late, case and idle are as follows:

Probe Late

gtrule ProbeLate()={
precondition pattern lhs (Case_,Clock_,Time_,Deadline_,Day_,Month_,Year_,

Hour_,Minute_,Day2_,Month2_,Year2_,Hour2_,Minute2_)={
Case(Case_);

Clock(Clock_);

Clock.Time(Time_);

Case.deadline(Deadline_);

Clock.attr(R1,Clock_,Time_);

find getTime(Time_, Day_,Month_,Year_,Hour_,Minute_);

Case.attr1(R2, Case_,Deadline_);

find getEndTime(Deadline_, Day2_,Month2_,Year2_,Hour2_,Minute2_);

check ((60*toInteger(value(Hour_)) + toInteger(value(Minute_)))

< (60*toInteger(value(Hour2_)) +toInteger(value(Minute2_))));

}

Adwoa Dansoa Donyina 232 Thesis 2011



CHAPTER 12. ILLUSTRATION OF STAGE 3 – PROCESS ENCODING

action {
println("Case late");

}
}

Probe Cases

gtrule ProbeCases()={
precondition pattern lhs (Case_)= {
Case(Case_);

}
action {

println("Cases");

}
}

Probe Idle

gtrule ProbeRule_PersonAvailability()={
precondition pattern lhs(Person_,Free_) =

{
Person(Person_);

Person.free(Free_);

Person.attr(P1,Person_,Free_);

check (value(Free_)=="true");

}
action {

print ("Person is free");

}
}

Consistency holds true between the StADy syntax probe defined in task

2.5 (Section 11.5) and the probes defined in VTCL syntax, because they

passed the following consistency test: The probes in textual and a graphical

representation are equivalent if they generate the same abstract representa-

tions of a particular model or there exist a mapping from the graphical rep-

resentation to textual representation based on the discussion in Section 8.3:

This holds true because the abstract representation of the StADy probes

correspond to the VTML textual representation probes. As illustrated in

Adwoa Dansoa Donyina 233 Thesis 2011



CHAPTER 12. ILLUSTRATION OF STAGE 3 – PROCESS ENCODING

Figure 11.18 for the PersonAvailable probe it contains elements: Actor and

Person. The Boolean free attribute in the Person object is set to true, which

is equivalent to

Person.attr(P1, P erson , Free ); check(value(Free ) == ”true”); VTML

code.

12.5 Simulation Parameters (Task 3.5)

This section illustrates task 3.5. This task is for defining the simulation

parameters into the VIATRA2 model space (VPML file) and XML files.

The parameter.xml is similar to the sample parameter file defined in the

Methodology in Section 9.7.5, except for the CDF Input, Output Folder,

Depth Limit, Time Opt and Batch Size attribute values. The CDF Input

value is for specifying the four unique stochastic input files which correspond

to versions 1-4 simulation models defined in task 2.1 (Section 11.1). Similarly

the Output Folder corresponds to four unique folder names for containing the

results of four different simulation runs. All the simulation runs: Depth Limit

are set to 2500, Time Opt are set to false and Batch Size are set to 3.

The distribution values defined in task 2.7 (Section 11.7) are entered

into the stochastic input xml files. The input values refer to cumulative

distribution functions (CDF) of the required GT rules encoded in tasks 3.2–

3.3 (Sections 12.2–12.3). Below is the stochastic input file for version #3

(Scheduling by deadline and assignment policy) of the simulation models

designed in task 2.1 (Section 11.1). Each of the rules are defined as observable

actions rules, in order to gather statistical data of their applications in the

Adwoa Dansoa Donyina 234 Thesis 2011



CHAPTER 12. ILLUSTRATION OF STAGE 3 – PROCESS ENCODING

simulation run.

<?xml version="1.0" encoding="UTF-8"?>

<allrules>

<ruleset name="random">

<rule name="Rule_NewCase" type="AO">

<event name="0" type="exp">

<rate value=".1"/>

</event>

</rule>

<rule name="Rule_NewCaseMedPriority" type="AO">

<event name="0" type="exp">

<rate value="0.05"/>

</event>

</rule>

<rule name="Rule_NewCaseHighPriority" type="AO">

<event name="0" type="exp">

<rate value="0.01667"/>

</event>

</rule>

<rule name="Rule_TypePrescription" type="AO">

<event name="0" type="norm">

<mean value="1.25" />

<variance value="0.4375" />

</event>

</rule>

<rule name="SkipRule_TypePrescription" type="AO">

<event name="0" type="norm">

<mean value="1.50" />

<variance value="0.4375" />

</event>

</rule>

<rule name="Rule_Counsel" type="AO">

<event name="0" type="norm">

<mean value="1.17" />

<variance value="0.583333" />

</event>

</rule>

<rule name="SkipRule_Counsel" type="AO">

<event name="0" type="norm">

<mean value="1.42" />

<variance value="0.583333" />

</event>

</rule>

<rule name="Rule_CounselLate" type="AO">

<event name="0" type="norm">

<mean value="1.17" />

<variance value="0.583333" />

</event>

</rule>

Adwoa Dansoa Donyina 235 Thesis 2011



CHAPTER 12. ILLUSTRATION OF STAGE 3 – PROCESS ENCODING

<rule name="SkipRule_CounselLate" type="AO">

<event name="0" type="norm">

<mean value="1.42" />

<variance value="0.583333" />

</event>

</rule>

<rule name="Rule_Unassign" type="AO">

<event name="0" type="norm">

<mean value="0.3125" />

<variance value="0.048032407" />

</event>

</rule>

<rule name="Rule_AssignPolicy" type="AO">

<event name="0" type="norm">

<mean value="0.09" />

<variance value="0.004537" />

</event>

</rule>

<rule name="Rule_RequestDeadline" type="AO">

<event name="0" type="norm">

<mean value="0.09" />

<variance value="0.004537" />

</event>

</rule>

<rule name="Rule_ClockTick" type="AO">

<event name="0" type="norm">

<mean value="1.00" />

<variance value="0.000055778" />

</event>

</rule>

<rule name="BacktrackRule_PrintState" type="AO">

<event name="0" type="norm">

<mean value="0.26" />

<variance value="0.024806" />

</event>

</rule>

<rule name="ProbeRule_PersonAvailability" type="P"> </rule>

<rule name="ProbeLate" type="P"></rule>

<rule name="ProbeCases" type="P"> </rule>

<probeset>

<probe name="NumCases" op="ProbeCases"> </probe>

<probe name="PersonAvailable" op="ProbeRule_PersonAvailability"> </probe>

<probe name="LateCases" op="ProbeLate"> </probe>

<probe name="LateFromTotal" op="div">

<arg name="ProbeCases" pos="2"></arg>

<arg name="ProbeLate" pos="1"></arg>

</probe>

</probeset>

</ruleset>

</allrules>

Adwoa Dansoa Donyina 236 Thesis 2011



CHAPTER 12. ILLUSTRATION OF STAGE 3 – PROCESS ENCODING

Consistency holds true between the GT rule/probe distributions and en-

codings of their distributions, because they passed the following consistency

test:

1. All GT Rule distribution parameters that were selected for a particular

simulation model version rules must be encoded into the stochastic

input file.

• The illustrated stochastic input file for version #3 simulation

model contains the required scheduling by deadline and assign-

ment policy GT rules which corresponds toRule RequestDeadline

and Rule AssignPolicy action rules.

2. Each probe formulated in task 3.4 should be added to the probe defi-

nition list in the stochastic input file.

• ProbeLate, ProbeRule PersonAvailability, ProbeCases are de-

fined in LateCases, PersonAvailable and NumCases, respec-

tively. Also probe LateFromTotal is defined using a combination

of two of the previously defined probes with a division operation.

12.6 Summary

This chapter illustrated the business process encoding tasks in stage 3 of the

StADy methodology (Chapter 9). The start graph, GT rules and probes

that were defined in stage 2 were translated in VIATRA2 syntax in order to

perform stochastic simulation in stage 4 (Chapter 13).

Adwoa Dansoa Donyina 237 Thesis 2011



Chapter 13

Illustration of Stage 4 –

Performance Evaluation

This chapter describes and illustrates the tasks in stage 4 of the methodology

(Chapter 9). Each task includes consistency checks and a corresponding

illustration based on the pharmacy case study defined in Chapter 5. The

performance-evaluation stage is for running simulations, analyzing results

and producing conclusions.

13.1 Stochastic Simulation (Task 4.1)

This section illustrates the application of task 4.1 on the pharmacy case study

(Chapter 5), by describing the simulation experiment. The average simula-

tion runtime was 30 minutes representing 3 hours of simulated time based on

the average number of times the clock tick rule was applied (198.4125 min-

utes). The clock tick rule defined in Figure 7.13 was equipped with a normal

238



CHAPTER 13. ILLUSTRATION OF STAGE 4 – PERFORMANCE
EVALUATION

distribution in Section 11.7 to reflect average one minute increment for each

clock tick. The number of simulation steps was limited to 2500, with a batch

size of 3, and was run on four distinct versions as described in Section 11.1.

These four distinct versions were used to determine which rules and probes

should be applied in each simulation run as discussed in Sections 11.3-11.5.

Two of the cases were without specific assignment policies, with scheduling

influenced by deadlines or priorities. The other two included the effect of the

policy in addition to the choice of scheduling strategy (Section 7.2.2). The

initial model for each simulation run contained one registered pharmacist,

three technicians, one cashier and one active dispense medication case.

13.2 Results and Conclusions (Task 4.2)

This section illustrates the application of task 4.2 on the pharmacy case

study (Chapter 5), by analysing simulation results to concluding answers to

performance questions 1 and 2 (Section 1.2) based of 4 different simulation

model versions specified in Section 9.6.1.

The bar graphs below visually represent the comparison of results ob-

tained for the four versions. The probability for a prescription to be com-

pleted late is presented in Table 13.1.

Version P(Case is late)
V1 (No Policy, Deadline) 0.247
V2 (No Policy, Priority) 0.256

V3 (Policy, Deadline) 0.245
V4 (Policy, Priority) 0.244

Table 13.1: Probability That a Prescription is Completed Late

Adwoa Dansoa Donyina 239 Thesis 2011



CHAPTER 13. ILLUSTRATION OF STAGE 4 – PERFORMANCE
EVALUATION

The average number of idle workers is presented in Figure 13.1. The re-

sults indicate that assignment policies and scheduling choices have an effect

on idle workers while the influence on the probability of completing on time is

limited. Therefore an additional measure was used to determine the number

of completed cases at the end of the 3 hour period. The results are shown

in Figure 13.2 and confirm the expected tendency, i.e., that version 4 (as-

signment policy and scheduling by priority) resulted in the most favourable

results.

Figure 13.1: Number of Workers Idle out of 5 in Dispensary

Adwoa Dansoa Donyina 240 Thesis 2011



CHAPTER 13. ILLUSTRATION OF STAGE 4 – PERFORMANCE
EVALUATION

Figure 13.2: Number of Cases Completed out of the Total Received

13.3 Summary

This chapter illustrated the business performance evaluation tasks in stage

4 of the StADy methodology (Chapter 9) and illustrated them. This stage

is for performing the simulation runs and analysing results. This chapter

answered performance questions 1 and 2 (Section 1.2) for the pharmacy case

study (Chapter 5). The next chapter will answer performance question 3 by

comparing load balancing and escalation handling.

Adwoa Dansoa Donyina 241 Thesis 2011



Chapter 14

Analysis of Load Balancing and

Escalation Handling

This chapter illustrates application to the methodology (Chapter 9) for the

type 2 simulation described in Section 9.6.1, by specifically tailoring the

models to load balancing and escalation handling aspects. The type 2 sim-

ulation is required for answering question 3 of the performance questions

(Section 1.2). The chapter illustrates elements that are unique to the method-

ology application of the type 2 simulation.

The application to the following tasks are equivalent to the illustrations

of the type 1 simulation defined in Chapters 10–13:

• task 1.1 (Section 10.1)

• task 1.2 (Section 10.2)

• task 2.1 (Section 11.1)

• task 2.2 (Section 11.2)

242



CHAPTER 14. ANALYSIS OF LOAD BALANCING AND
ESCALATION HANDLING

• task 2.7 (Section 11.7)

• task 3.5 (Section 12.5)

14.1 Process Execution Design

The section presents the application on tasks 2.3–2.6 for version 5-8 simula-

tion models defined in Table 11.2.

14.1.1 Domain-Independent GT rules in StADy DSL

All of the 4 versions used require the following: assignment policy (Fig-

ure 7.10), scheduling by deadline (Figure 7.11), assignment (Figure 7.7),

unassignment (Figure 7.8), request (Figure 7.6) and clock (Figure 7.13) rules.

14.1.2 Domain-Specific GT Rules in StADy DSL

In addition to the domain specific rules defined in Section 11.4, simulation

models versions 5-8 (Section 11.1) also require the following support-level

GT rules based on Table 11.2.

Version 5: Load balancing (Section 7.3.3), escalation handling (Section 7.3.1)

Version 6: Escalation handling (Section 7.3.1)

Version 7: Load balancing (Section 7.3.3)

Version 8: N/A

Adwoa Dansoa Donyina 243 Thesis 2011



CHAPTER 14. ANALYSIS OF LOAD BALANCING AND
ESCALATION HANDLING

14.1.3 Observation Rules in StADy DSL

This section specifies the observation rules that are used in answering per-

formance question 3.

Question #3: Does escalation and/or load balancing increase the per-

centage of cases that are completed within a given deadline, or reduce the

time that cases run past their deadline?

Question 3 can be answered by analyzing the rule batch reports for ver-

sions 5-8, after normalizing them to the same time factor based on number

of executions of ‘clockTick’ rule.

The GT rules of interest are ‘SucessfulCheck’ and ‘Counsel’; however

since neither of them captures the deadline completion time ratio, additional

GT rules need to be defined with these additional conditions. In order to

define additional pre-conditions with no side effects to the simulation results

the distribution for the event should be set to the distribution values for the

original ‘SucessfulCheck’ and ‘Counsel’ GT rules. The additional precondi-

tion in these rules should determine whether the prescription was on time,

less than 5 minutes late, or more than 5 minutes late, for instance Figure 14.1

defines the SucessfulCheckOntime GT rule.

Adwoa Dansoa Donyina 244 Thesis 2011



CHAPTER 14. ANALYSIS OF LOAD BALANCING AND
ESCALATION HANDLING

Figure 14.1: SucessfulCheck on Time

14.1.4 Start Graph in StADy DSL

This section describes start graph used in the simulation models for type 2

simulation. The initial model has a set of two pharmacies. The first phar-

macy consists of one registered pharmacist (Cindy), two technicians (Bob,

Donald), one cashier (Gina), one pharmacy student (Molly) and two active

dispense medication cases. The second pharmacy consists of two registered

pharmacists (John, Sally) and one technician (Fred). Two patients (Jill,

Emily) are waiting for their prescription to be filled at store number 1. The

date is Sunday July 25th, 2010 and the current time 9:01 am. Emily’s pre-

scription case has been escalated to level 1 because the expected completion

time is 4 minutes from the current time. Jill’s prescription arrived a minute

Adwoa Dansoa Donyina 245 Thesis 2011



CHAPTER 14. ANALYSIS OF LOAD BALANCING AND
ESCALATION HANDLING

ago. This start graph is visually represented in Figure 14.2.

Figure 14.2: Start Graph for Simulation Type 2 Model

14.2 Process Encoding

The section presents the application on tasks 3.1–3.5 for version 5-8 simula-

tion models defined in Table 11.2.

14.2.1 Start Graph in VIATRA2 Model Space

The start graph that was designed using StADy syntax in Section 14.1.4 is

implemented in the VIATRA2 (VPM) Model Space [72] as shown in Fig-

ure 14.3.

Adwoa Dansoa Donyina 246 Thesis 2011



CHAPTER 14. ANALYSIS OF LOAD BALANCING AND
ESCALATION HANDLING

(a) Part 1 (b) Part 2

Figure 14.3: Start Graph for Type 1 Simulation Model

14.2.2 Observation Rules in VIATRA2 Syntax

This section defines the observation rules that were discussed in Section 14.1.3.

The new GT rules are modification to the successfulcheck and counsel GT

rule that were defined in Section 12.3.

The Rule SucessfullCheckOntime is the sucessfullcheck GT rule with the

following lines of code added to the precondition:

find getEndTime(Deadline_, Day_,Month_,Year_,Hour_,Minute_);

find getTime(Time_, Day1_,Month1_,Year1_,Hour1_,Minute1_);

check ((60*toInteger(value(Hour1_)) + toInteger(value(Minute1_)))

<=((60*toInteger(value(Hour_))) +toInteger(value(Minute_))));

The Rule SucessfullCheckLessthan5 is the sucessfullcheck GT rule with

the following lines of code added to the precondition:

Adwoa Dansoa Donyina 247 Thesis 2011



CHAPTER 14. ANALYSIS OF LOAD BALANCING AND
ESCALATION HANDLING

find getEndTime(Deadline_, Day_,Month_,Year_,Hour_,Minute_);

find getTime(Time_, Day1_,Month1_,Year1_,Hour1_,Minute1_);

check ((60*toInteger(value(Hour1_)) + toInteger(value(Minute1_)))

>((60*toInteger(value(Hour_))) +toInteger(value(Minute_))));

check ((60*toInteger(value(Hour1_)) + toInteger(value(Minute1_))-5)

<=((60*toInteger(value(Hour_))) +toInteger(value(Minute_))));

The Rule SucessfullCheckMorethan5: is the sucessfullcheck GT rule with

the following lines of code added to the precondition:

find getEndTime(Deadline_, Day_,Month_,Year_,Hour_,Minute_);

find getTime(Time_, Day1_,Month1_,Year1_,Hour1_,Minute1_);

check ((60*toInteger(value(Hour1_)) + toInteger(value(Minute1_)))

>((60*toInteger(value(Hour_))) +toInteger(value(Minute_))));

check ((60*toInteger(value(Hour1_)) + toInteger(value(Minute1_))-5)

>((60*toInteger(value(Hour_))) +toInteger(value(Minute_))));

The Rule CounselLate: is the counsel GT rule with the following lines of

code added to the precondition:

Clock(Clock_);

Clock.Time(Time_);

Case.deadline(Deadline_);

Clock.attr(R1,Clock_,Time_);

find getTime(Time_, Day_,Month_,Year_,Hour_,Minute_);

Case.attr1(R2, Case_,Deadline_);

find getEndTime(Deadline_, Day2_,Month2_,Year2_,Hour2_,Minute2_);

check ((60*toInteger(value(Hour_)) + toInteger(value(Minute_)))

< (60*toInteger(value(Hour2_)) +toInteger(value(Minute2_))));

The Rule CounselOntime: is the counsel GT rule with the following lines

of code added to the precondition:

Clock(Clock_);

Clock.Time(Time_);

Case.deadline(Deadline_);

Clock.attr(R1,Clock_,Time_);

find getTime(Time_, Day_,Month_,Year_,Hour_,Minute_);

Case.attr1(R2, Case_,Deadline_);

find getEndTime(Deadline_, Day2_,Month2_,Year2_,Hour2_,Minute2_);

check ((60*toInteger(value(Hour_)) + toInteger(value(Minute_)))

>= ((60*toInteger(value(Hour2_))) +toInteger(value(Minute2_))));

Adwoa Dansoa Donyina 248 Thesis 2011



CHAPTER 14. ANALYSIS OF LOAD BALANCING AND
ESCALATION HANDLING

14.2.3 Simulation Parameters

In addition to the simulation parameters defined in Section 12.5 the stochastic

input files will require the following parameters to encode escalation handling,

load balancing, and observation rules (Section 14.1.3).

Escalation

<rule name="TempRule_AssignEntryTechnician1" type="AO">

<event name="0" type="norm">

<mean value="0.05" />

<variance value="0.004537" />

</event>

</rule>

<rule name="Rule_trigger1" type="AO">

<event name="0" type="norm">

<mean value="0.09" />

<variance value="0.004537" />

</event>

</rule>

Load Balancing

<rule name="DisRule_TypePrescription" type="AO">

<event name="0" type="norm">

<mean value="1.25" />

<variance value="0.4375" />

</event>

</rule>

Observation Rules

<rule name="Rule_SucessfullCheckOntime" type="A">

<event name="0" type="norm">

<mean value="1.5" />

<variance value="0.8125" />

</event>

</rule>

<rule name="Rule_SucessfullCheckLessthan5" type="A">

<event name="0" type="norm">

<mean value="1.5" />

<variance value="0.8125" />

</event>

</rule>

Adwoa Dansoa Donyina 249 Thesis 2011



CHAPTER 14. ANALYSIS OF LOAD BALANCING AND
ESCALATION HANDLING

<rule name="Rule_SucessfullCheckMorethan5" type="A">

<event name="0" type="norm">

<mean value="1.5" />

<variance value="0.8125" />

</event>

</rule>

<rule name="Rule_CounselLate" type="AO">

<event name="0" type="norm">

<mean value="1.17" />

<variance value="0.583333" />

</event>

</rule>

<rule name="Rule_CounselOntime" type="AO">

<event name="0" type="norm">

<mean value="1.17" />

<variance value="0.583333" />

</event>

</rule>

14.3 Performance Evaluation

This section discusses the type 2 simulation experiment, analyses the results

and draws conclusions.

14.3.1 Stochastic Simulations

The average times for activities in the pharmacy process were defined ac-

cording to [61, 69]. Rules for creating new cases have been given exponential

distribution values while the remaining rules were defined using normal dis-

tribution values. The results represent 2.77 hours of simulated time based on

the number of times the clock tick rule was applied (166 mins). The number

of simulation steps was limited to 2500, with a batch size of 3, and was run

on four distinct versions as described in Chapter 9.

Two of the versions implemented escalation handling with three prede-

fined levels. The escalation would be triggered if the case was within 5

Adwoa Dansoa Donyina 250 Thesis 2011



CHAPTER 14. ANALYSIS OF LOAD BALANCING AND
ESCALATION HANDLING

minutes to the deadline, at the deadline or more than 5 minutes past the

deadline. At escalation level 1, pharmacy cashiers are temporarily permitted

to be assigned as entry technicians for that particular case. At escalation

level 2, pharmacy cashiers are temporarily permitted to be assigned as filling

technicians. At escalation level 3 untrained pharmacy students are temporar-

ily permitted to be assigned as filling technicians and/or entry technicians.

The other two versions implement load balancing across two pharmacies,

providing the option to transfer prescriptions to another store.

All of the four versions were tested on the same model (instance graph).

The initial model was composed of two pharmacies. The first pharmacy con-

sists of one registered pharmacist, two technicians, one cashier, one pharmacy

student and two active dispense medication cases. The second pharmacy

consists of two registered pharmacists and one technician.

14.3.2 Results and Conclusion

The bar graphs below visually represent the comparison of results obtained

for the four versions. Question #3 raised in Section 1.2 is answered as fol-

lows. The percentage of cases that completed particular states in a process

within 2.77 hours is presented in Figure 14.4. The percentage of cases that

completed the check and counsel states on time, versus the range of lateness

for the completeness of check and counsel states, is presented in Figure 14.5.

The results indicate that the addition of escalation and load balancing has

a positive influence on the probability of completing on time. This confirms

the expected tendency, i.e., that version 5 (escalation and load balancing)

Adwoa Dansoa Donyina 251 Thesis 2011



CHAPTER 14. ANALYSIS OF LOAD BALANCING AND
ESCALATION HANDLING

results in the most favourable performance.

Figure 14.4: State Completion Comparison

Figure 14.5: Completion Time Comparison

The results illustrated that a combination of escalation handling and load

balancing could improve the business process. These quantitative findings

Adwoa Dansoa Donyina 252 Thesis 2011



CHAPTER 14. ANALYSIS OF LOAD BALANCING AND
ESCALATION HANDLING

suggest various improvements that can take place in a busy pharmacy, such

as increasing staff, transferring prescriptions to the owner’s other nearby

pharmacy, and temporarily permitting people to take on higher roles as far

as permitted by law.

14.4 Summary

This chapter answered performance question 3 (Section 1.2) for the pharmacy

case study (Chapter 5), by specifically tailoring the simulation models to load

balancing and escalation handling aspects. The next chapter will provide an

evaluation (Chapter 15) of the StADy approach.

Adwoa Dansoa Donyina 253 Thesis 2011



Chapter 15

Evaluation

In this chapter, the StADy approach is evaluated based on its requirement

coverage. Since the evaluation of the StADy methodology is limited to the

case study performed (Chapters 10-14), Sections 15.1-15.4 discuss how the

requirements from Chapter 2 were implemented and how the case study pro-

vides evidence that they work. Sections 15.1 and 15.2 evaluate the StADy

language coverage of the role management and task management concept

requirements, respectively. The language requirements are evaluated against

the StADy language syntax in Section 15.3, whereas the method requirements

are evaluated against the StADy methodology in Section 15.4. Section 15.5

illustrates the requirement coverage using an application scenario. The chap-

ter is concluded with an evaluation on the possible threats to validity on the

simulation results.

254



CHAPTER 15. EVALUATION

15.1 Role Management

The following sections illustrate the occurrence of the role management con-

cept requirements in the StADy modelling approach.

15.1.1 Dynamic (Re)-Assignment

The dynamic assignment/re-assignment concept requires the ability to dy-

namically re-assign tasks to people based on their availability and capabili-

ties. A person’s availability is defined in the Person.free StADy metamodel

attribute, whereas a person’s capability corresponds to his or her job po-

sition (Actor) or acquired capabilities. The dynamic aspect occurs with

GT pattern matching during simulation runs. (Re)-assignment is based on

the following combination of GT rules: request rule, assignment rule, and

unassignment rule. If the start graph is empty then the number of applica-

tions of these rules to be relative to each other such that be requestRule ≥

assignmentRule ≥ unassignRule. This holds true for the simulation run of

simulation model version #5 (Section 11.1), because the average application

of these three rules from 3 batches was as follows: request rule=306.334;

assignment rule= 304.001 and unassignment rule=299.333. Each of these

rules use Person–RoleInstance–Case relation for representation of assign-

ment, such that RoleInstance–Case with the absence of a Person connection

denotes request for assignments. These GT rules are further discussed and

illustrated in Section 7.2.1. Assignment policies conditions can be specified

by using a combination of the Actor–Actor super relation and Person.free

attribute. If the pharmacy owner specified that if a filling technician role is

Adwoa Dansoa Donyina 255 Thesis 2011



CHAPTER 15. EVALUATION

required to be assigned and both a registered pharmacist and a pharmacy

technician are available, then the technician should take on that role. This

example corresponds to the existing predefined managerial assignment pol-

icy global application condition in Figure 7.10, hence it can be used in the

process execution design stage.

15.1.2 Role Promotion, Demotion and Temporary Pro-

motion

The role promotion/demotion and temporary promotion concept requires a

means to denote acquired capabilities and temporary permission to roles. A

person’s capabilities are associated with the Role–Capability–Person relation

in the StADy metamodel, such that if a person has the required capability

to perform a role then he or she is considered promoted. For example, if

a pharmacist student gains training to be a filling technician then he or

she can be promoted to the role of filling technician. The required capa-

bility is the training to be acquired by the person. Role demotion is rep-

resented when the Capability–Person relation is removed. Temporary pro-

motion occurs in response to an escalation, therefore the Actor–Escalation–

Role and Escalation–Case relations are used to specify which job position

(Actor) is temporarily permitted to take on a role for one or more esca-

lated cases. The number of times an escalation triggers is relative to the

number of times the escalation routine can be applied; hence application of:

(escalation trigger1) ≥ (escalation routine1), where the routine is tempo-

rary promotion in this case. For instance, in simulation model version #5’s

Adwoa Dansoa Donyina 256 Thesis 2011



CHAPTER 15. EVALUATION

3 batches of simulation runs, escalation number 1 was triggered on average

95.00 which resulted in temporarily assigning a pharmacy cashier to the en-

try technician role 26.667. Evaluation of the of escalation trigger rules is

further discussed in Section 15.2.3 and the temp assign GT rule is further

illustrated and discussed in Section 7.3.2.

15.1.3 Role-Based Access Control

The access control feature requires a means to distinguish a persons’ permit-

ted roles and access rights to artifacts. A person’s permitted role is defined

using the StADy metamodel Actor<- -Person ontological instanceOf rela-

tion and the Actor–Role relation. Also role permission can be inherited from

other Actors using the super relation. The access rights to particular arti-

facts within cases are specified using the RoleInstance–Artifact association

and Artifact–Case containment relationship. At the model level the access

rights are directly encoded into the StADy hierarchy and artifact models,

as illustrated and discussed in Section 6.3. RBAC is demonstrated in the

simulation results for performance question #2 (Section 13.2) by presenting

the impact of using assignment policies.

15.2 Task Management

The following sections illustrate the occurrence of the task management con-

cept requirements in StADy modelling approach.

Adwoa Dansoa Donyina 257 Thesis 2011



CHAPTER 15. EVALUATION

15.2.1 Scheduling

The scheduling feature requires scheduling protocols which take into account

task deadlines and/or priorities, with the prime goal to maximise throughput

and minimise the number of tasks completed past the deadline. The StADy

metamodel attributes that are used in the predefined managerial scheduling

GT rules in Section 7.2.2 are as follows: Case.priority, Case.deadline and

Clock.time. Hence, if the process is scheduled by priority, then an urgent

case is set to a high priority level in order to take preference over other

cases. Scheduling by deadline or priority were demonstrated in the simulation

results for performance question #1 (Section 13.2), which compared their

impact to the business process.

15.2.2 Non-Deterministic Duration of Tasks

The non-deterministic duration of task feature is a means for defining the

estimated time it takes for a person or technical resource to complete a task.

The estimated times it takes to complete a task is encoded into the stochastic

graph transformation system as discussed and illustrated in Sections 4.3, 7.1

and 11.7, by assigning each GT rule with normal or exponential distributions.

The non-determinism aspect of the feature is reflected in the use of GT rules.

Therefore, the GT rule will have a corresponding mean and variance values,

which are visually denoted on the GT transition arrow. For instance, the

clock tick rule is a normal distribution which occurs about every minute.

Since the StADy model only uses one local clock there is no problem with

synchronization of multiple local clocks as discussed in [30]. The clock tick

Adwoa Dansoa Donyina 258 Thesis 2011



CHAPTER 15. EVALUATION

rule increments the single clock node which behaves as a global notion of time

because it is referenced by all cases in the system. A normal distribution was

selected to reflect average one minute increment for each clock tick. The

overall simulation performance does not suffer because the clock ticks by the

minute and there is only one clock, resulting in the other business process

actions not completely being overtook by the clock tick executions.

15.2.3 Temporal Escalation Handling

The temporal escalation handling feature requires ability to escalate based

on time. There should also be a means for specifying the handling routine, in

particular it may permit people to overstep their permissions by temporarily

promoting them to a required role on an escalated case. Procedures should be

in place specifying how to handle escalations so that they comply with legal

requirements and are allowed to react efficiently. In StADy a Case’s escala-

tion level is denoted by using Escalation–Case relation and the Actor (job

position) temporary permitted Role is denoted using the Actor–Escalation–

Role relation. An escalation is influenced by the current Clock.time and

Case.deadline metamodel attributes. An escalation needs to be specified

by the business user and encoded by the developer. Escalation handling is

demonstrated in the simulation results for performance question #3 (Sec-

tion 14.3.2), which showed its impact towards a business process. If the

escalation triggers are related by degree then the number of rule application

should have a relative relation such that Trigger1 ≥ Trigger2 ≥ Trigger3.

For instance, in the 3 batch simulation runs of model #5 the average applica-

Adwoa Dansoa Donyina 259 Thesis 2011



CHAPTER 15. EVALUATION

tion of escalation rules was as follows: trigger 1=95.00; trigger 2= 93.667 and

trigger 3= 89.00. These values correspond to the expected relation. Domain

specific trigger GT rules is further illustrated in Section 7.3.1 which defines

triggers influenced by a prescription case deadline.

15.2.4 Load Balancing

The load balancing feature requires the means to dynamically assign/reassign

tasks to other locations. In order to capture this aspect the StADy meta-

model used Case.groupNo and Person.groupNo attributes to specify the lo-

cation of the cases and people involved, hence this implicitly adds another

condition to the assignment GT rules. A load balancing assignment needs to

be specified by the business user and encoded by the developer. For instance,

Section 7.3.3 illustrates a domain specific transfer (global assignment) GT

rule, which globally reassigns prescriptions during ‘type’ state if the requested

prescription has been ordered for delivery. Load balancing is demonstrated

in the simulation results for performance question #3 (Section 14.3.2), which

showed its impact towards a business process by distributing prescriptions to

another pharmacy based on the condition that they were of delivery type. In

the 3 batch simulation runs of model #5 (Section 11.1) on average 52.5% of

the prescription cases of delivery type were distributed to another pharmacy.

15.2.5 Human Error and Unpredictability

The human error and human unpredictability feature needs to reflect human

beings’ autonomous behaviour, i.e. even if people are correctly instructed,

Adwoa Dansoa Donyina 260 Thesis 2011



CHAPTER 15. EVALUATION

they may or may not perform their allocated tasks. Human error is a result

of mistakes that should be captured and removed through error detection

methods. The StADy State and StateInstance elements are used to capture

the case’s current, preceding and succeeding states. In order to reflect people

not performing tasks or creating errors in a task, skip GT rules are defined

and set to low probability distributions. These GT rules move the state into

the next state without changing any of the case’s content, while a person

is assigned to perform a role to that particular case. Hence, the person is

correctly instructed yet does not perform his or her allocated tasks. Backtrack

GT rules are defined for an error detection routine, such that the internal

content of the case will be validated and if it is not consistent with the state

label then it will be reverted to the previous state. The state diagram in

Figure 7.4 outlined the required state order of the pharmacy business process,

hence if a worker skips the type state error detections will later backtrack

the case in the print state. In the 3 batch simulation runs of model #5

(Section 11.1) application of these two rules are as follows: skip type= 33.00

and backtrack print state= 16.667. This illustrates the errors that have been

detected thus far in a simulation period. Skip and Backtrack rules are further

discussed in Section 7.3.4

Adwoa Dansoa Donyina 261 Thesis 2011



CHAPTER 15. EVALUATION

15.3 Language Requirements

This section specifies the location of the language feature requirements cov-

erage in the StADy approach.

15.3.1 Visual Representation

The visual representation feature requires that there should be a visual no-

tation to define the business process being modelled. This was accomplished

with the development of the StADy domain specific language, such that the

concrete syntax graphically describes the structure of the business process

being modelled in a pictorial form. The StADy concrete syntax is defined in

Sections 6.3 and 6.4. Chapter 11 illustrates its use in stage 2 of the method-

ology.

15.3.2 Stochastic Specification of Task Selection and

Duration

The language required a stochastic component in order to attribute time

delays or probability distributions. Therefore the stochastic graph trans-

formations approach was employed as described in Chapter 7. Task 2.7

(Section 11.7) illustrated how to select the probability distribution values,

whereas task 3.5 (Section 12.5) illustrated how to encode the probability

distribution values into the GraSS XML parameter files.

Adwoa Dansoa Donyina 262 Thesis 2011



CHAPTER 15. EVALUATION

15.3.3 Flexible Specification of Unstructured Aspects

The language achieved flexibility by using the graph transformation rule-

based approach as described in Chapter 7 and illustrated in tasks 2.3-2.4

(Sections 11.3-11.4), 3.2-3.3 (Sections 12.2-12.3). The rule-based approach

provided a means to permit dynamic non-deterministic decisions, by speci-

fying rules to define how the system’s state may change. Non-deterministic

behaviour remains in the pattern matching of the stochastic graph trans-

formation rules, even though non-determinism is partially restricted in the

stochastic simulation by the probability distributions. There is still complete

freedom in any individual choice, but statistically choices are known for large

numbers of rules.

15.4 Method Requirements

This section specifies the location of the method feature requirements cover-

age in the StADy approach.

15.4.1 Integrate with Standard Business Modelling

The language requires integration to existing standard modelling languages

such as Unified Modeling Language (UML) and Business Process Modelling

Notation (BPMN). This feature enables the ability to represent the model at

different levels of abstractions in other existing modelling languages. StADy

process execution design elements such as hierarchy model, artifact model

and the GT rules are integrated with standard UML notation in the business

Adwoa Dansoa Donyina 263 Thesis 2011



CHAPTER 15. EVALUATION

modelling element, as specified (Chapter 9) and illustrated in stages 1-2 in

the methodology (Chapters 10-11).

15.4.2 Simulation Mechanism

The language requires simulation mechanisms in order to provide a flexible

analysis technique for testing protocols prior to employing them in day to day

routine. The StADy approach uses existing Graph-based Stochastic Simu-

lation (GraSS) tool [30, 68] for running stochastic simulations, as described

(Chapter 9) and illustrated in stages 3 and 4 in the methodology (Chap-

ters 12-13). The GraSS simulation tool has been tested in a number of other

domains such as Peer to Peer (P2P) networks and biological modelling [68].

15.5 Application Scenario

The following section illustrates the concept requirements in an application

scenario using the StADy graphical syntax. A sequence of instance graphs

resulting from the application of defined GT rules (Sections 7.2, 7.3 and 11.4)

in particular dynamic reassignment, assignment polices, scheduling by prior-

ity, human error and non-deterministic time is presented.

The initial model in Figure 15.1 has one registered pharmacist (Cindy),

one cashier (Bob) and one active dispense medication case (d0) present. Both

of the workers are currently available to take on jobs. A patient by the name

of Emily is waiting for her prescription to be filled. The current clock time

is 11:34:41 am on March 1 2010 and Emily’s prescription case is a refill

prescription that arrived yesterday (28 February 2010) at 11:35 am. She

Adwoa Dansoa Donyina 264 Thesis 2011



CHAPTER 15. EVALUATION

was informed that the expected completion time was 11:35 am on 1 March

2010. Since, d0’s deadline is approaching, it is currently at escalation level

1. Also the current state of the case is check, hence a dispensing pharmacist

is required to check the filled prescription.

Figure 15.1: Scenario Step 1: On 01/03/10 at 11:34:41

Twenty seconds later (Figure 15.2) a temporal escalation is triggered

(R2.3-trigger GT rule) on d0 case, raising the escalation level to two and

temporarily permitting (R1.2) the cashier to take on the role as a filling

technician for that case. Also, Cindy is assigned (R1.1- assignment GT rule)

to check the filled prescription.

Adwoa Dansoa Donyina 265 Thesis 2011



CHAPTER 15. EVALUATION

Figure 15.2: Scenario Step 2: On 01/03/10 at 11:35:00

A few minutes later (Figure 15.3) a new high priority delivery prescription

(d1) case arrives. At the same time, as Cindy attempts to check the filled

prescription in case d0, she realizes that the case is incomplete because the

filled prescription artifact is missing. The check state backtrack rule verifies

the existence of a filled prescription artifact through pattern matching. The

check prescription GT rule would not match to a case in check state if there

exist a missing filled prescription artifact. This results in Cindy backtracking

(R2.5- backtrack GT rule) the d0 case to the fill state. Cindy leaves the d0

case aside for a filling technician to fill the prescription. Meanwhile, the

new case requires an entry technician to type the prescription as shown in

Figure 15.4.

Adwoa Dansoa Donyina 266 Thesis 2011



CHAPTER 15. EVALUATION

Figure 15.3: Scenario Step 3: On 01/03/10 at 11:37:00

Figure 15.4: Scenario Step 4: On 01/03/10 at 11:37:30

The assignment (R1.1- assignment GT rule) of the entry technician and

filling technician roles are shown in Figure 15.5. Cindy is assigned to take

on the entry technician role and Bob is assigned to take on the filling techni-

cian role, due to the predefined assignment policy (R1.1), which states that

Adwoa Dansoa Donyina 267 Thesis 2011



CHAPTER 15. EVALUATION

the least qualified available worker able to do the job should be assigned.

A minute later Cindy types d1’s prescription and sends it to the printer,

as shown in Figure 15.6. Within a few seconds Bob completes filling d0’s

prescription, also d1’s label is printed, as shown in Figure 15.7.

Figure 15.5: Scenario Step 5: On 01/03/10 at 11:37:45

Adwoa Dansoa Donyina 268 Thesis 2011



CHAPTER 15. EVALUATION

Figure 15.6: Scenario Step 6: On 01/03/10 at 11:38:45

Figure 15.7: Scenario Step 7: On 01/03/10 at 11:38:50

At 11:38:50 d0 requires a dispensing pharmacist to check the filled pre-

scription, whereas d1 requires a filling technician to fill the prescription, as

shown in Figure 15.8. Cindy is the only qualified worker that can take on

Adwoa Dansoa Donyina 269 Thesis 2011



CHAPTER 15. EVALUATION

either role. The task order decision is made based on priority level (R2.1),

therefore Cindy is assigned to take on the filling technician role on d1 because

it has a higher priority, as shown in Figure 15.9. The pharmacy business pro-

cess continues with various other tasks.

Figure 15.8: Scenario Step 8: On 01/03/10 at 11:39:15

Adwoa Dansoa Donyina 270 Thesis 2011



CHAPTER 15. EVALUATION

Figure 15.9: Scenario Step 9: On 01/03/10 at 11:39:30

This application scenario is an illustration of the StADy language, be-

cause the configuration modelling sub-language (Chapter 6) visually repre-

sented steps in the scenario and the transformation modelling sub-language

(Chapter 7) was used to transform instance graphs between the steps. The

application scenario demonstrated the usefulness of the StADy approach be-

cause it was able to describe a realistic scenario using the features (Figure 2.2)

available in StADy. The features that were illustrated included: escala-

tion handling (R2.3), temporary promotion (R1.2), dynamic (re)-assignment

(R1.1), scheduling (R2.1), human error (R2.5) and role-based access control

(R1.3). This application illustrates how the StADy language can visually

represent business processes using an easy to understand UML-like notation.

Adwoa Dansoa Donyina 271 Thesis 2011



CHAPTER 15. EVALUATION

15.6 Threats to Validity

This section discusses possible threats to the validity of the simulation results,

because possible errors and bias could arise from decisions made during the

process execution design and process encoding stage. During process execu-

tion design the start graph was chosen; whereas during the process encoding

stage simulation parameters such as simulation depth and distribution values

were chosen. Each of these artifacts can influence the simulation results. The

following sections discuss and analyse their impact towards the simulation

results.

15.6.1 Correctness of GT Rules

Even though all the GT rules were tested there is a possibility of minor

errors in the translation of the GT rules from StADy notations into VIATRA2

syntax that may impact the resulting simulation results. Section 8.3 describes

how the domain-independent GT rules that were tested, whereas task 3.3

(Section 9.7.3) of the methodology defines consistency constraints for testing

the domain-specific GT rules.

15.6.2 Impact of Start Graph Selection

This section discusses the impact of start graph selection by using the start

graph defined in the second simulation as an example. Figure 15.10 is a recap

of the start graph defined in Section 14.1.4. The initial model has a set of

two pharmacies. The first pharmacy consists of one registered pharmacist,

two technicians, one cashier, one pharmacy student and two active dispense

Adwoa Dansoa Donyina 272 Thesis 2011



CHAPTER 15. EVALUATION

medication cases. The second pharmacy consists of two registered pharma-

cists and one technician. Two patients are waiting for their prescription to

be filled at store number 1.

Figure 15.10: Start Graph for Simulation Type 2 Model

To see the effect of the number of initial cases in a start graph, an addi-

tional start graph was created with identical parameters which only varied

in the number of initial cases i.e. 201 cases opposed to 2 cases. Both simula-

tion models included escalation and load balancing features and simulation

depth was set to 2500. Figure 15.11 illustrates the proportion of cases that

completed particular states in pie charts. Since the pie charts are almost

identical, these results show that the number of initial cases has minimal

impact on the results.

Adwoa Dansoa Donyina 273 Thesis 2011



CHAPTER 15. EVALUATION

(a) 2 Cases

(b) 201 Cases

Figure 15.11: Effect of Start Graph’s Number of Cases to State Completion
Results

Next, I decided to analyze the impact of increasing qualified workers in

the start graph. Hence, the initial start graph with 2 cases was used and

modified to increase three technician qualifications to registered pharmacist.

The results in Figure 15.12 pie chart, show that the check percentage no-

Adwoa Dansoa Donyina 274 Thesis 2011



CHAPTER 15. EVALUATION

ticeably increased. This is due to the fact that the check prescription task

can only be completed by a registered pharmacist. Hence the start graph

influences the results based on the qualifications of the workers to complete

tasks. This illustrates that the StADy approach gives us the ability to see

how many staff is required in order to achieve a particular completion per-

centage in a state. For instance, in order to achieve 11% completion rate in

the check state, six pharmacists are required.

Figure 15.12: Start Graph with More Qualified Workers

15.6.3 Impact of Simulation Depth

This section discusses the impact on the selected simulation max depth value.

For all of the simulation the depth was set to 2500 in the parameter files.

Figure 15.13 illustrates the effect on case state completion if the simulation

depth is 3000 and doubled to 6000. The line graph shows that simulation

Adwoa Dansoa Donyina 275 Thesis 2011



CHAPTER 15. EVALUATION

depth only increases the percentage of cases completed in each state. The

overall trend of the results is the same, i.e. high percentage for type state

and low percentage for check state.

Figure 15.13: Simulation Depth Affect on State Completion

15.6.4 Impact of Distribution Selection

This section discusses the impact of the exponential distribution values for

case arrivals. Table 15.1 lists high and low rates that are relative to the

selected medium rate for case arrivals.

Event Rate λ (mins)
high (0.5 ∗med) med low (1.5 ∗med)

NewCase GT Rule 5 10 15
NewCaseMedPriority GT Rule 10 20 30
NewCaseHighPriority GT Rule 30 60 90

Table 15.1: Arrival Rates

Adwoa Dansoa Donyina 276 Thesis 2011



CHAPTER 15. EVALUATION

Various simulations were run to see if overall tendency ‘checked on time’,

‘counselled on time’ and ‘checked late’ was the same for the 4 simulation

models defined in simulation number 2. The results for the ‘checked on time’

feature in the graph in Figure 15.14 show that the tendency for medium and

low rates are the same; however at a high rate the results fluctuate. Therefore

for the ‘checked on time’ feature escalation is not effective when the rate of

arrivals is high; whereas it is an ideal feature when the rate of arrivals is

low or medium speed. The results for the ‘counseled on time’ feature in the

bar graph in Figure 15.15 shows that at medium speed V5 (escalation,load

balancing) and V6 (escalation) are the more favourable simulation models

for ensuring that the prescription is counseled to customer on time; however

at low speed V5 is 5x more favourable then V6 and at high speed all of the

models except V5 did not counsel their prescriptions on time. The ‘counsel

on time’ results illustrates how the distribution selection can be extremely

sensitive. The results for the ‘checked late’ feature in Figure 15.16 illustrates

a tendency that is relatively stable between the three rates, except for few

minor fluctuations reflected in the distribution selection of the three rates in

the V7 (Load Balancing) model.

Adwoa Dansoa Donyina 277 Thesis 2011



CHAPTER 15. EVALUATION

Figure 15.14: Results for Check on Time with Different Arrival Rates

Figure 15.15: Results for Counselling on Time with Different Arrival Rates

Adwoa Dansoa Donyina 278 Thesis 2011



CHAPTER 15. EVALUATION

Figure 15.16: Results for Checking Prescription Late with Different Arrival
Rates

15.7 Summary

This chapter presents an evaluation of the StADy approach by discussing

the requirement coverage, illustrating an application scenario and discussing

threats to validity. The next chapter (Chapter 16) will discuss related work

in relation to the StADy approach.

Adwoa Dansoa Donyina 279 Thesis 2011



Chapter 16

Related Work

This chapter discusses representative languages, approaches and tools that

can be used for modelling, executing and analyzing human-resource alloca-

tion. The chapter concludes with a summary of the analysis of related work

using comparison charts based on the criteria defined in the requirements

specification in Chapter 2.

16.1 Modelling Approaches

There are various modelling approaches that can be used for modelling hu-

mans in business processes which include abstract, concrete and specialized

techniques. Problem Frames [36] are good examples of an existing approach

which can be used to define a problem domain abstractly. The Business Pro-

cess Modelling Notation (BPMN) [47] is common graphical notation that can

be used to model people in business processes. Business process ontologies

such as Axenath et al.’s [6] can be used for modelling behaviour, informa-

280



CHAPTER 16. RELATED WORK

tion and organisational aspects of a business process. There are also various

other specialized techniques such as Depke et al.’s [6] technique for modelling

agent-based systems [19], which can be applied to human agents.

16.1.1 Problem Frames

The Problem Frames [36] approach developed by Michael A. Jackson provides

an abstract representation of the problem interaction for software require-

ment specification. It consists of three kinds of diagrams called: context,

problem and problem-frame diagrams (R3.1).

Context diagrams focus on customers’ needs, responsibility and scope

of authority by only displaying interfaces that are within the scope of the

customer. StADy also considers the viewpoint of the user by explicitly con-

necting the user to objects and roles that they have access rights to; however

it also displays an overview of the surroundings by connecting the interfaces

that go beyond their scope in a single model. The problem diagrams decom-

pose the problem into subproblems and rights and privileges of membership

which can be exercised with the addition of annotations. Problem-frame di-

agrams classify problems into three distinct domains: casual, biddable and

lexical. The biddable domain consists of people and their “lack of positive

predictable internal causality” [36] (R2.5), which is similar to the domain of

human actors in StADy, because both approaches emphasize the fact that

humans may be ignorant of their operations and have unpredictable actions.

The key difference is in the perspectives: StADy provides a detailed look at

the biddable domain whereas problem frame diagrams provide an overview

Adwoa Dansoa Donyina 281 Thesis 2011



CHAPTER 16. RELATED WORK

of the interaction across three different domains. A person in this domain

spontaneously causes events in a system without external stimulus, which is

similar to the StADy notion of pro-activity.

16.1.2 Business Process Modelling Notation (BPMN)

The Business Process Modelling Notation (BPMN) [47] is a DSL for pro-

cess oriented aspects of an application. Unfortunately it has little graphical

support for human-resource modelling, although it provides a representation

for roles and their corresponding responsibilities by using swimlane notation

(R3.1), which is similar to the UML syntax discussed in Section 3.4. Swim-

lanes provide a static partitioning of activities that can be used to denote a

fixed participant–activity (R1.3) relation, hence it specifies which actor can

perform particular activities by constraining the activities into a single pool.

The BPMN metamodel contains various elements which do not have a cor-

responding graphical representation such as participant, process and assign-

ment [65], whereas the StADy models graphically express them. The BPMN

participant element attributes can be used to specify details such as the par-

ticipant name pertaining to a corresponding business entity or business role.

However, this is not graphically expressed because the swimlanes exclude

this high level concept detail. Since BPMN swimlanes can only be used to

statically specify which actor can perform particular activities, BPMN does

not address the dynamic assignment of roles to individual actors, whereas the

StADy approach provides the facility to change the assignment at runtime.

On the other hand, BPMN has a visual representation (R3.1) for esca-

Adwoa Dansoa Donyina 282 Thesis 2011



CHAPTER 16. RELATED WORK

lation (R2.3) and backtracking (R2.5) through exception flows, and com-

pensation flows respectively. The exception flow denotes a flow that occurs

outside normal flow based on a specific trigger (i.e. deadline exceeded) that

redirects the flow. Compensation associations are triggered if the outcome

of an action is determined to be undesirable and it is necessary to ‘undo’ the

activity. BPMN employs escalation handling and compensation associations

in a manner comparable to the specification of the StADy approach. How-

ever, StADy approach adds the use of graph transformation rules to specify

exception triggers and specifies escalation levels to each case. On the other

hand, StADy’s backtracking error handling facilities is similar to BPMN’s

compensation association because it is used to capture undesirable outcomes

and undo the preceding activity that caused it.

BPMN provides a formal representation of the business processes. How-

ever, it is constrained by some high-level modeling techniques. Currently,

Business Process Management (BPM) engines lack the ability to follow an ad

hoc process and Business Process Diagrams (BPD) lack the graphical mech-

anisms to highlight the point of view of its participants [47]. These views

are important for BPMN users to understand the behavior of the process in

relation to the viewer (participant). Other concepts of high-level modelling

techniques that are beyond the scope of BPMN are as follows: organiza-

tional structure and resources, functional breakdowns, data and information

models, strategy, and business models [47].

Adwoa Dansoa Donyina 283 Thesis 2011



CHAPTER 16. RELATED WORK

16.1.3 Business Process Ontology

Axenath et al.’s [6] developed an ontology based on three core aspects of busi-

ness processes: behaviour, information and organisation. They created three

distinct metamodels based on the core aspects and within each metamodel,

they divided the elements into static and dynamic aspects. The static as-

pects are modelling aspects such as process and tasks, whereas the dynamic

aspects are instance concepts such as cases and resources. The behaviour

aspects define the order or partial order that tasks should be executed in.

This is accomplished in Axenath et al.’s behaviour metamodel which asso-

ciates task elements to their initial and final states. The informational aspect

defines the artifacts involved in a business process. Axenath et al.’s informa-

tion metamodel defines documents (artifacts) and associates them to tasks.

The organisational aspect defines the structure of the organisation. Axe-

nath et al.’s organisational metamodel specifies which resource can execute

particular tasks. The ontology is formalised by UML class diagrams (R4.1),

which provides a technical basis of defining the interfaces and a graphical

representation (R3.1).

On the other hand, the StADy metamodel is a single model composed

of a combination of behaviour, information and organisation core business

process aspects. Also the structure of Axenath et al.’s [6] metamodels for core

business process aspects is similar to the linguistic class–object metamodel

structure used in StADy metamodel because their metamodels are divided

into static and dynamic elements, such that class elements are similar to

static elements and object elements are similar to dynamic elements.

Adwoa Dansoa Donyina 284 Thesis 2011



CHAPTER 16. RELATED WORK

16.1.4 Agent-based Systems

Depke et al. use graph transformation systems (GTSs) (R3.3) to define

agent-based systems [19]. This is beneficial because human actors can be

categorized as a kind of autonomous agent with the capacity to regulate and

coordinate their own behaviours [50]. In general, an autonomous agent is

defined as a system situated within an environment that senses that envi-

ronment and reacts to it over time in pursuit of its own agenda [25]. In

other words agents are reactive to their environment and act in pursuit of

their own goals. Autonomous agents can be used to model a wide variety of

subjects, including software and human agents. Depke et al. [19, 18] agent-

oriented modelling technique captures autonomy (R2.5) and cooperation of

autonomous agents. Their methodology is based on various UML diagrams

(use-case, sequence, class, state) and graph transformation (R4.1) to spec-

ify agent operations in a way that is comparable to the specification of the

StADy business activities.

Some of the main behavioural characteristics of autonomous agents are

reactivity, autonomy and pro-activity [19]. Reactivity is defined as the capa-

bility to be sensitive to the environment and react to changes. Autonomy is

defined as the ability to make one’s own choices regarding the (non-)execution

of a task, leading to non-deterministic choices [19]. Pro-activity is defined as

the determination to reach a certain goal. These characteristics can positively

or negatively impact a business process. For instance, because of autonomy,

a person could refuse to perform an expected task for his or her assigned

role, resulting in another person pro-actively taking over the role in order for

Adwoa Dansoa Donyina 285 Thesis 2011



CHAPTER 16. RELATED WORK

a task to be successfully completed. Because of these shared characteristics,

modelling techniques used for software agents could also be used for human

actors. Like software agents, humans differ from standard software compo-

nents by exhibiting properties such as reactivity, autonomy and pro-activity.

While humans can be regarded as autonomous agents, the StADy approach

extends this approach by adding all of the features and performance analysis

requirements defined in Chapter 2.

16.2 Executable Approaches

Executable approaches are based on executing encoded instructions and mak-

ing decisions at run time. There are various executable approaches that cap-

ture various features of the specified requirement (Chapter 2); however the

prime focus of the thesis is simulating workflows as opposed to interacting

with workflows in real time. Hence the thesis is not intended to compete with

executable approaches, it is only interested in how they capture role and task

allocation. Examples of executable approaches that capture human-resource

allocation include: web services, workflow management systems, resource

scheduling optimization approaches and specialised software process man-

agement techniques.

16.2.1 Web Services for Modelling Human Behaviour

The first vision of the integration of humans in service-oriented environments

was presented in a joint whitepaper by IBM and SAP describing an enact-

ment of business processes “beyond the orchestration of activities exposed

Adwoa Dansoa Donyina 286 Thesis 2011



CHAPTER 16. RELATED WORK

as Web services” by incorporating “people as an additional type of partici-

pant” [34].

WS-HumanTask [2] is an extension of the WSDL [4] web service standards

which is motivated by requirements for specifying humans as part of service-

oriented systems or processes. WS-HumanTask can specify task assignment

(R1.1), recoverable errors (R2.5), and timeouts, and triggers appropriate es-

calation (R2.2) actions.

Similarly, BPEL4People [64] is an extension of WS-BPEL 2.0 [63] that

incorporates activities performed by people, using capabilities such as data

manipulation. Concepts in BPEL4People such as human tasks and notifica-

tions are inherited from the WS-HumanTask specifications, whereas generic

human roles and people assignment are extended from WS-HumanTask 1.0.

They are both broken down into three distinct types. The generic human

roles are either process initiator, process stakeholders or business administra-

tors, while people assignments can be achieved by using logical people groups,

literals or expressions. The process initiator is the person associated with

triggering the process instance at its creation time, whereas process stake-

holders are people who can influence the process instance, by performing

actions such as adding ad-hoc (R2.5) attachments [64]. The business admin-

istrator administrates the process by performing actions such as resolving

missed deadlines.

Since the XML syntax of WS-HumanTask [2] and BPEL4People [64] are

intended for execution of web services they are not suitable for domain and

business experts because they lack visual representations. The StADy lan-

guage extends concepts defined in BPEL4People and WS-HumanTask by

Adwoa Dansoa Donyina 287 Thesis 2011



CHAPTER 16. RELATED WORK

defining it as a high-level model with the addition of stochastic durations,

means for defining organisational structures, and facilities for changing the

role assignment at run time. For instance, WS-HumanTask’s escalation han-

dling protocol is used in a manner comparable to the StADy approach; how-

ever the StADy uses graph transformation rules to specify triggers and esca-

lation levels specific to each case.

16.2.2 Workflow Management Systems

A workflow management system (WfMS) [20] is an executable generic appli-

cation that supports coordination and cooperation within an organisation’s

workflow. In particular, allocation of work is accomplished through task lists

which are given to resource participants based on their availability. Once

the task is complete, the workflow software ensures that the individuals re-

sponsible for the next task are notified and receive the data they need to

execute their stage of the process. There are various existing WfMSs that

support human collaboration, such as IBM’s FlowMark [33] and Xerox XSoft

InConcert [58].

FlowMark uses scheduling information of actors and roles at runtime

(R2.1). InConcert is based on a graphical coordination model (R3.1). They

both focus on role allocation in distributed systems (R1.1,2.4) using a control

flow approach as opposed to a rule based approach.

Exception handling is applied in other WfMSs such as [12, 3]. [12] im-

plements a rule-based exception handler (R2.3,3.3) for workflow manage-

ment systems, by using directed graphs to represent the flow structures.

Adwoa Dansoa Donyina 288 Thesis 2011



CHAPTER 16. RELATED WORK

MILANO [3] is a net-theoretical modelling framework that captures aspects

of activities, roles, control flow and exception handling (R1.1,2.3) in a static

and dynamic way.

Although workflow management systems (WfMS) capture basic role allo-

cation properties they do not match StADy’s intended goal of providing busi-

nesses with the means to test scheduling protocols, policies and regulations,

prior to employing them in their day-to-day operation, because the resource

planning and resource assignment decisions are integrated with WfMS during

real time of a workflow opposed to a simulated workflow. Also the StADy

model focuses on human decisions instead of software decisions by taking

into account the non-deterministic and often non-predictable behaviour of

humans.

16.2.3 Resource Scheduling

Automated schedulers have been created to optimise resource allocation such

as ones formalized using Little-JIL [29] (Section 16.3.3) and the General

Algebraic Modeling System (GAMS) [14], which are in contrast to the StADy

approach because they are automated schedulers as opposed to the simulation

of policies influenced by human decisions.

Xiao et al. [77] use Little-JIL (R4.1) to model and simulate (R4.2) dy-

namic approaches to scheduling. Their dynamic scheduling (R2.1) approach

takes into account disruptions that might occur such as incorrect or unex-

pected process executions (R2.2), sudden arrival of urgent activities and staff

turnover. They developed optimisation strategies to determine the balance

Adwoa Dansoa Donyina 289 Thesis 2011



CHAPTER 16. RELATED WORK

between stability and utility in a process. A resource repository preserves re-

sources that are available for rescheduling based on a human-resource model

(R1.1). This human-resource model contains unique identification for the

resources and detailed information such as skill set, workload and experience

data. Xiao et al. [77] addresses many of the requirements by representing ca-

pabilities, priorities (R2.1), and constraints in a graphical syntax (R3.1), but

use this data to optimise schedules at runtime, whereas the StADy approach

selects the scheduling protocols prior to execution and simulates policies in-

fluenced by human decisions.

The issue of optimum allocation is explored and implemented using a

high-level modeling system for mathematical programming and optimization

called General Algebraic Modeling System (GAMS) in [42]. They employ

a real-time scheduling algorithm in order to ensure an acceptable quality

of service (QoS) (R2.1) to the user. The mathematical notation expresses

resources, application, services and time intervals (R2.2) for advanced reser-

vations. The mathematical formalization is in terms of constraints and ob-

jects of the function to be optimised. A stochastic service level agreement

(SLA) (R2.2), is based on information about minimum probability that a

time constraint is respected and minimum probability that a workflow is

actually available (R3.2). Konstanteli et al.’s [42] approach is used to de-

cide what the optimum allocation of the workflow to available resources are,

based on revenue gain and penalties on QoS constraints. The StADy ap-

proach is similar; however it uses human resources as opposed to processor

resources. It is also defined in a visual domain specific visual notation, hiding

the mathematical formalisation from the user.

Adwoa Dansoa Donyina 290 Thesis 2011



CHAPTER 16. RELATED WORK

There are various other resource scheduling methods in the manufactur-

ing domain [1, 16, 49, 53], however resources in manufacturing are usually

machines hence do not usually possess the same characteristics as humans.

16.2.4 DYNAMITE

Dynamic Task Nets for software process management (DYNAMITE) [32]

uses a formalism based on graphs and graph transformation rules. The DY-

NAMITE approach is intended to be used to model dynamic tasks in software

development and maintenance processes at the generic, specific and instance

modelling levels. Task nets are composed of task entities, task interfaces and

task realisations. The task entity describes the work that needs to be done,

whereas the task interface provides details on what to do in terms of input,

output, precondition, postcondition, start dates, and due dates. Task reali-

sation defines how to do the work in terms of atomic (without subtasks) or

complex (with subtasks) structures. Ordering (R2.1) of the subtasks is based

on the control-flow structure of an acyclic graph, which includes feedback re-

lations to capture error detection (R2.5). The formal specifications of this

approach is defined using PROGRES [59] graph rewriting system tool. The

task net generic model is composed by graph schema (type graph) and a set

of productions (graph transformation rules), which are defined at the meta

model level (R3.3). DYNAMITE [32] captures various StADy requirements

features; however the scope of this approach is different from StADy because

actor (re)-assignment and user-role views are only briefly discussed, whereas

the structure of task nets is emphasised.

Adwoa Dansoa Donyina 291 Thesis 2011



CHAPTER 16. RELATED WORK

16.3 Analysis Techniques

Some of the techniques that can be used for analysing human-resource allo-

cation use simulations. There are various simulation tools used in industry as

well as a number of research-oriented environments which are mostly based

on the flow-oriented style of modelling, such as ADONIS [10] and Little-

JIL [29], respectively. There are also specialised analysis models such as

Koch et al.’s security policy analysis model [41].

16.3.1 Stochastic Simulations

There are implementations of stochastic simulation based on process alge-

bra, such as the Performance Evaluation Process Algebra (PEPA) [27] and

stochastic π-calculus (Sπ) [51] (R4.2). PEPA is an algebraic language which

can be used for capturing performance information of computer systems by

building models. Sπ is an extension of π-calculus which is intended for per-

formance modelling. In both approaches activities are associated with ex-

ponential distribution in order to use a random variable to calculate the

duration (R3.2). Hence, when an activity is enabled, it will delay for a pe-

riod determined by the associated distribution. This method is similar to the

GraSS simulation algorithm (Section 4.4) used in the StADy methodology

(Section 9), however GraSS also permits activities to be associated to normal

distribution. On the hand, Semi-Markov PEPA [11] and extended stochastic

π-calculus [52] are extension of PEPA and Sπ that allow activities to be as-

sociated with general distributions, as done in GraSS. Despite the fact that

Semi-Markov PEPA and extended stochastic π-calculus use similar simula-

Adwoa Dansoa Donyina 292 Thesis 2011



CHAPTER 16. RELATED WORK

tion algorithms to schedule activities, they do not capture the majority of

the requirements outlined in Chapter 2 because they are intended for simu-

lating a broader range of processes, whereas the StADy approach focuses on

analysing resource allocation protocols on business processes.

16.3.2 ADONIS

ADONIS is an industrial simulation tool (R4.2) that is intended for com-

panies to model and simulate processes in order to reach ISO 9000 quality

standards. The ADONIS meta-model is composed of various existing mod-

elling techniques such as BPMN and UML (R4.1). Hence, it captures the

same modelling requirements discussed in Section 16.1.2 (R1.3,2.3,2.5,3.1)

with the addition of performance specification, and performance analysis.

The simulation option provides the facility for business process optimiza-

tion through various analysis techniques such as path and cycle time analy-

sis. Path analysis reconsiders process flows by testing different possibilities,

whereas cycle time analysis is based on duration estimates to calculate wait-

ing time, resting time and transport time. The ADONIS software provides

static or dynamic evaluation on ADONIS models. This modelling and sim-

ulation tool is used as a broader scope which results in it only capturing

general aspects of resource allocation (R1.1), whereas the StADy approach

specialises in resource allocation.

Adwoa Dansoa Donyina 293 Thesis 2011



CHAPTER 16. RELATED WORK

16.3.3 Little-JIL

Little-JIL is a domain-independent visual agent-coordination language for

modelling (R3.1) and simulating processes (R4.2). An agent may be human

or automated. A step is one unit of work assigned to an agent specified in

pre and post-requisites, which are written as annotations on top of the step.

Little-JIL step is similar to the GT rules defined in the StADy approach

except in Little-JIL the pre and post-requisites are written as annotations

on top of a step, whereas the pre and post conditions in StADy approach are

graphically represented in the graph transformation rules.

Little-JIL employs various features such as first-in-first-out FIFO schedul-

ing routine (R2.1), opt-out agent capability (R2.5), exception handling (R2.3)

mechanisms and deadlines (R2.1). However Little-JIL’s focus is primarily on

the process steps, with very little emphasis on human-resource allocation.

The authors in [54], proposed a resource allocation method using Little-JIL,

which incorporates timing constructs to specify the minimum and maximum

time (R2.2) required to complete a task on their process model. The Little-

JIL simulation language JSim (R4.1), has a means for specifying timing el-

ements (R2.2,3.2) based on fixed, linear range and triangle range values,

as opposed to the StADy methodology which uses normal and exponential

distributions to define task durations in GraSS. The use of distributions pro-

vides an accurate depiction of human behavior, because the time it takes to

complete a task varies depending on factors.

Adwoa Dansoa Donyina 294 Thesis 2011



CHAPTER 16. RELATED WORK

16.3.4 Security Policy Model

Graph transformation systems (GTSs) (R3.3) are used in analysis models

for security policy frameworks [41], such that the formalisms are based on

graphs and graph transformation rules.

Koch et al.’s security policy framework [41] is intended to be used for

comparing policy models, such as role-based (R1.1), lattice-based and access

control (R1.3) lists. The analysis models are formalised using graph trans-

formation systems (GTS) (R3.3). The models use GTS and a combination

of negative and positive constraints to detect inconsistencies in policies. The

StADy language also uses a similar approach to Koch et al.’s security policy

framework [41] where access control is concerned, but integrates this aspect

with other business process aspects. As opposed to comparing security pro-

tocols, it uses one standard role-based policy and focuses on being an analysis

model for comparing schedule and assignment protocols.

16.4 Comparison to Requirements

Tables 16.1 to 16.3 present an overview of the related work’s requirement

(Chapter 2) coverage. The role management concept requirement table (Ta-

ble 16.1) shows the degree of which dynamic (re)-assignment, role promo-

tion/demotion and access control are captured in the representative exam-

ples. A majority of the selected execution and analysis approaches captured

the dynamic re-assignment feature (R1.1), with the exception of Little-JIL

simulation tool, DYNAMITE and a specialised WfMS exception handler [12],

whereas the selected modelling techniques lacked the dynamic re-assignment

Adwoa Dansoa Donyina 295 Thesis 2011



CHAPTER 16. RELATED WORK

capabilities. On the other hand, none of the approaches captured the role

promotion, demotion and temporary promotion feature (R1.2). This could

be due to the fact that a majority of them tend to focus on people being

directly assigned to a task as opposed to a particular role. Also, the ac-

cess control feature (R1.3) is not captured by the execution approaches and

is only sparsely captured by some of the modelling and analysis techniques

such as BPMN and the ADONIS simulation.

Category Related Work Requirement Coverage
R1.1 R1.2 R1.3

Modelling
Problem Frames
BPMN X
Agent-based using GT [19]

Execution

WS-HumanTask & X
BPEL4People
FlowMark X
InConcert X
MILANO X
WfMS exception
handler [12]
Resource X [77]
Scheduler [77, 42]s
DYNAMITE [32]

Analysis

Stochastic
Simulations [27, 51, 11, 52]
ADONIS X X
Little-JIL
Security Policy X X
model [41]

Table 16.1: Related Work vs. Role Management (R1) Requirements

The task management concept requirement table (Table 16.2) shows the

degree of which process scheduling, non-deterministic duration of tasks, esca-

lation handling, load balancing, human error and human unpredictability are

Adwoa Dansoa Donyina 296 Thesis 2011



CHAPTER 16. RELATED WORK

captured in the representative examples. The selected modelling approaches

do not capture process scheduling (R2.1) and non-deterministic durations of

tasks (R2.2); however a subset of the execution and analysis techniques cap-

ture them such as resource schedulers [77, 42] and Little-JIL simulation tool.

All of the categories have at least one representative that supports escala-

tion handling (R2.3) such as BPMN, MILANO and Little-JIL, whereas the

load balancing (R2.4) is found in a few executional workflow management

systems. On the other hand, human error and unpredictability (R2.5) is cap-

tured in all of selected modelling approaches and a subset of the executional

and analysis approaches.

Category Related Work Requirement Coverage
R2.1 R2.2 R2.3 R2.4 R2.5

Modelling
Problem Frames X
BPMN X X
Agent-based [19] X

Execution

WS-HumanTask & X X X
BPEL4People
FlowMark X X
InConcert X
MILANO X X
WfMS exception X
handler [12]
Resource X X
Schedulers[77, 42]
DYNAMITE [32] X X

Analysis

Stochastic
Simulations [27, 51, 11, 52]
ADONIS
Little-JIL X X X X
Security Policy
Model [41]

Table 16.2: Related Work vs. Task Management (R2) Requirements

Adwoa Dansoa Donyina 297 Thesis 2011



CHAPTER 16. RELATED WORK

The language and methodology requirement table (Table 16.3) identifies

languages, which are domain specific, use flexible approach, have a visual

representation and contain stochastic elements. This table also determines

if the method was integrated with standard business modelling and if there

exist simulation mechanism in the representative methodology. Graphical

syntax (R3.1) is used in the majority of the representatives; however it is not

captured in web services and resource schedulers discussed. On the other

hand, the stochastic requirement (R3.2) is only covered in stochastic sim-

ulations [27, 51], Little-JIL and Konstanteli et al.’s resource scheduler [42].

Similarly, integration with standard business modelling techniques (R4.1)

and simulation mechanisms (R4.2) are all sparsely captured.

Adwoa Dansoa Donyina 298 Thesis 2011



CHAPTER 16. RELATED WORK

Category Related Work Requirement Coverage
R3.1 R3.2 R3.3 R4.1 R4.2

Modelling
Problem Frames X
BPMN X
Agent-based [19] X X X

Execution

WS-HumanTask &
BPEL4People
FlowMark X
InConcert X
MILANO X
WfMS exception X
handler [12]
Resource [77] X [42] X [77] X [77]
Schedulers [77, 42]
DYNAMITE [32] X

Analysis

Stochastic X X
Simulations [27, 51, 11, 52]
ADONIS X X X
Little-JIL X X X
Security Policy Model [41] X X

Table 16.3: Related Work vs. Language (R3) and Methodology Require-
ments (R4)

Since the existing approaches do not completely support all of the spec-

ified requirements, there was a need for an approach to encompass all of

the requirements in order to accurately model and simulate the dynamic

behaviour of humans in business processes while taking into account the

flexibility of human behaviour. Hence, the StADy methodology (Chapter 9),

StADy configuration modelling language (Chapter 6) and StADy transfor-

mation modelling language (Chapter 7) were developed in this thesis.

Adwoa Dansoa Donyina 299 Thesis 2011



Chapter 17

Conclusion

This chapter concludes the thesis with a summary of the contributions, a

discussion of future work and final concluding statements.

17.1 Summary of Contributions

This thesis proposed a new visual framework based on graph transformation

for modeling business processes where human beings are involved. This was

achieved, by satisfying the requirements laid out in Chapter 2 as discussed

in Chapter 15. StADy modelling language is newly developed consisting

of two sub languages called configuration modelling language and transfor-

mation modelling language. The StADy configuration modelling language

consists of a metamodel, models and a graphical notation as introduced in

Chapter 6. On the other hand the StADy transformation language used

a graph transformation rule-based approach to model dynamic role alloca-

tion by defining business concepts and configurations in terms of the type

300



CHAPTER 17. CONCLUSION

graph (StADy’s metamodel) and instance graphs respectively, as discussed

in Chapter 7. The instance graphs can be visually denoted using the StADy

graphical notation as illustrated in the application scenario in Section 15.5.

StADy’s hierarchy and artifact models extended UML’s use-case and class

diagrams to contain additional information in terms of access control, esca-

lation handling and capabilities. The thesis also defined a catalogue of GT

rules (Sections 7.2-7.3 and Appendix A) which captured the following con-

cepts: dynamic (re)-assignment (R1.1); scheduling (R2.1); escalation han-

dling (R2.3); role promotion/demotion and temporary promotion (R1.2);

human error and unpredictability (R2.5). Guidelines for translating design

models into simulation models are available in Chapter 8.

The thesis also proposed a novel methodology for stochastic modelling

and simulation of dynamic human-resource allocation as introduced in Chap-

ter 9. Chapters 10-14 illustrated the use of the StADy methodology on the

Shoppers Drug Mart Canada [15] pharmacy franchise, that uses systematic

standardized protocols for all of their pharmacies across Canada. The StADy

can benefit the pharmacy franchise by testing new protocols prior to deploy-

ing them into their nationwide stores. In addition to testing protocols, the

graphical syntax can be used to define visual models to aid in training facil-

ities for the employees.

The StADy methodology can be applied to various other businesses that

involve various people taking on different roles such as at a bank. A bank

has many job positions such as bank teller, bank manager and mortgage

brokers. Each of these positions has various particular roles within the bank.

For instance, if a bank wanted to test protocols for serving their customers

Adwoa Dansoa Donyina 301 Thesis 2011



CHAPTER 17. CONCLUSION

efficiently in a timely manner and prioritize customers by the size of their

assets, the StADy methodology priority scheduling protocol can assist in

simulating different techniques.

Even though the StADy approach is useful for businesses it unfortunately

poses limitation in terms of usability for business users because at the current

moment it requires a developer’s involvement in the process encoding stage

of the methodology. Hence, user-friendly tool support is being considered for

future development and is further discussed in Section 17.2.

17.2 Future Work

In this section, a discussion of several possibilities for extending this work

in the future is discussed. The future work includes aspects of language ex-

pansion, tool development and further quantitative validation. The language

expansion aspects are within the scope of thesis, whereas the tool develop-

ment and quantitative aspects go beyond the scope of this thesis.

Language expansions that have been considered to be added to the con-

cept requirements are aspects of: flexible work hours, malicious unexpected

actions, reaction to emergency and removal of job position. Flexible work

hours provide the opportunity to model when a person starts or ends his or

her shift and when the person is taking a break during his or her shift. The

flexible aspect of the work hours is reflected in the fact that, dependent on

the current process work load a person may end a shift early or work over-

time. This component is partially encoded into the StADy metamodel using

the Person.onDuty and Person.arrival attributes; however it has not been

Adwoa Dansoa Donyina 302 Thesis 2011



CHAPTER 17. CONCLUSION

tested. The additional feature to capture malicious unexpected action would

need to capture actions that are not expected in the business process, for in-

stance if a customer jumps the pharmacy counter and attempts to fill his or

her own prescription. Also, at the current moment the reaction to emergency

is partially captured through the use of priorities. In the future it can be

stressed strongly by permitting skipping of procedural steps. For instance, if

a customer runs into the pharmacy with a diabetic attack then procedures

should be overruled permitting any worker to quickly provide the customer

with insulin. An additional requirement that could be modelled is the aspect

of firing a worker, because at the current moment actor or job positions are

predefined and non-terminating, unlike temporary role promotion.

StADy approach is intended to help business users; however the encodings

in stage 3 of the methodology requires assistance from developers. Therefore,

the development of a user-interface intended for business users would be

ideal. The tool can visually represent the business process using the StADy

graphical syntax and hide the mathematical formalisation from the user, i.e.,

keeping abstract details in the back-end. Hence, the StADy GT rules would

need to automatically translate into the VIATRA2 syntax as opposed to

developers manually encoding it. The tool will also need to integrate with

existing VIATRA2 and GraSS tools. The development of a user-friendly tool

is an interesting new area that can be explored; however it goes beyond the

modelling and analysis thesis scope.

Stochastic simulations were used to test the hypotheses and form general

conclusions. These conclusions were validated using quantitative analysis of

numerical data gathered from a pilot project. Empirical evidence from the

Adwoa Dansoa Donyina 303 Thesis 2011



CHAPTER 17. CONCLUSION

pharmacy confirms the results of the model, but a more thorough comparison

is still outstanding. With a more complete model and systematic derivation of

distribution parameters from real-life statistics, such results could be used by

a pharmacy to increase their productivity. In the future, further evaluation

of the simulation results through quantitative analysis would be ideal by

comparing the results to observations at pharmacies that performed the exact

same protocols and then comparing the validity of the data. However, since

the pharmacy case study is only intended to illustrate the use the StADy

approach this thesis placed more emphasis on the actual approach oppose to

empirical study at a pharmacy.

17.3 Concluding Statements

This thesis proposed a visual framework based on graph transformations

(Chapters 6 and 7) for modeling business processes where human beings are

involved. With respect to other formalisms, the emphasis is placed on several

requirements (Chapter 2) that such a modeling framework has to satisfy in

order to represent faithfully and as completely as possible the interactions

with human beings. The achievement of each of these requirements by the

StADy approach was discussed in Chapter 15.

The StADy methodology consists of four stages, which were described

in Chapter 9 and illustrated in Chapters 10-14. The initial stages involve

modelling of the business processes, whereas the final stage consists of quan-

titative analysis based on stochastic graph transformation which is a useful

mechanism to answer relevant questions about the process being modelled.

Adwoa Dansoa Donyina 304 Thesis 2011



CHAPTER 17. CONCLUSION

Chapter 16 outlined the current state of the art relative to the require-

ments defined in Chapter 2 and concluded that the StADy approach can

handle dynamic changes in the processes and in particular dynamic alloca-

tion of resources better than current approaches.

The thesis presented a new innovative approach for stochastic modelling

and simulation of dynamic human-resource allocation, by using a unique

application to visual modelling and graph transformations.

Adwoa Dansoa Donyina 305 Thesis 2011



Appendix A

StADy GT Rule VIATRA2

Syntax Catalogue

A.1 Managerial-Level Rules

The following section illustrates and discusses the managerial GT rules in

terms of the features defined in Figure 2.2.

A.1.1 Dynamic (Re)-assignment (R1.1)

Request Rule

gtrule Rule_Request() =

{
precondition pattern lhs(Case_,Role_) =

{
Case(Case_);

Role(Role_);

State(State_);

StateInstance(StateInstance_);

Case.currentState(R6,Case_,StateInstance_);

typeOf(State_,StateInstance_);

State.requires(R5,State_,Role_);

306



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

neg find RoleInstance(Case_,Role_);

}

action {
let

NewRoleInstance_=undef,

R1_=undef

in seq {
new(RoleInstance(NewRoleInstance_)in DSM.model.M1);

new(instanceOf(NewRoleInstance_,Role_));

new (RoleInstance.presence(R1_,NewRoleInstance_,Case_));

println(name(Role_)+" Requested ");

}
}

}

Assignment Rule

gtrule Rule_AssignPerson() =

{
precondition pattern lhs(Case_,RoleInstance_, Person_, Free_, Role_) =

{
Case(Case_);

RoleInstance(RoleInstance_);

Person(Person_);

Actor(Actor_);

//RoleInstance is not assigned

neg find isAssign(RoleInstance_);

//Role to fill

Role(Role_);

instanceOf(RoleInstance_,Role_);

//Find qualified person

Actor.permitted(R2_,Actor_,Role_);

find freePerson(Actor_,Person_, Free_, Case_);

}
action {

println ("Person " +name(Person_ )+" is assigned to "+name(Role_)+" role");

let

R1_=undef

in seq {
new (RoleInstance.assignedTo(R1_,RoleInstance_,Person_));

setValue(Free_,"false");

println("Role assigned ");

}
}

}

Adwoa Dansoa Donyina 307 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

Unassign Rule

gtrule Rule_UnassignRole() =

{
precondition pattern lhs(Person_,Free_, R1_, RoleInstance_, Role_) =

{
Case(Case_);

Role(Role_);

State(State_);

StateInstance(StateInstance_);

RoleInstance(RoleInstance_);

Case.currentState(R6,Case_,StateInstance_);

typeOf(State_,StateInstance_);

RoleInstance.presence(R3_,RoleInstance_,Case_);

typeOf(Role_,RoleInstance_);

neg find RequiresState(State_,Role_);

Person(Person_);

Person.attr(R2_,Person_,Free_);

Person.free(Free_);

RoleInstance.assignedTo(R1_,RoleInstance_,Person_);

}
action {

println ("Person " +name(Person_ )+" is unassigned from "+name(Role_)+"");

delete (R1_);

delete(RoleInstance_);

setValue(Free_,"true");

}
}

Assignment Policy

gtrule Rule_AssignTechnician2() =

{
precondition pattern lhs(Case_,RoleInstance_, Person_, Free_, Role_) =

{
Case(Case_);

RoleInstance(RoleInstance_);

//RoleInstance is not assigned

neg find isAssign(RoleInstance_);

//Find qualified person

//Role to fill

Role(Role_);

check ((name(Role_)=="FillingTechnician") xor (name(Role_)=="EntryTechnician") );

instanceOf(RoleInstance_,Role_);

neg find freeTechnician(Person2_, Free2_, Case_);

Adwoa Dansoa Donyina 308 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

find freePharmacist(Person_, Free_, Case_);

}
action {

println ("Person " +name(Person_ )+" is assigned to a role");

let

R1_=undef

in seq {
new (RoleInstance.assignedTo(R1_,RoleInstance_,Person_));

setValue(Free_,"false");

println("Role assigned ");

}
}

}

gtrule RuleAssignPolicy()=

{
precondition pattern lhs(Case_,RoleInstance_, Person_, Free_, Role_) =

{
Case(Case_);

RoleInstance(RoleInstance_);

Person(Person_);

Actor(Actor_);

//RoleInstance is not assigned

neg find isAssign(RoleInstance_);

//Role to fill

Role(Role_);

instanceOf(RoleInstance_,Role_);

//Find qualified person

Actor.permitted(R2_,Actor_,Role_);

find freePersonPolicy(Actor_,Person_, Free_, Case_);

}
action {

println ("Person " +name(Person_ )+" is assigned to "+name(Role_)+" role");

let

R1_=undef

in seq {
new (RoleInstance.assignedTo(R1_,RoleInstance_,Person_));

setValue(Free_,"false");

println("Role assigned ");

}
}

}

Adwoa Dansoa Donyina 309 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

A.1.2 Scheduling (R2.1)

By Deadline

gtrule Rule_RequestDeadline() =

{
precondition pattern lhs(Case_,Role_) =

{
Case(Case_);

Case(Case2_);

Role(Role_);

State(State_);

StateInstance(StateInstance_);

StateInstance(StateInstance2_);

Case.currentState(R6,Case_,StateInstance_);

Case.currentState(R7,Case2_,StateInstance2_);

typeOf(State_,StateInstance_);

typeOf(State_,StateInstance2_);

State.requires(R5,State_,Role_);

neg find RoleInstance(Case_,Role_);

neg find RoleInstance(Case2_,Role_);

Case.deadline(Deadline1_);

Case.deadline(Deadline_);

Case.attr1(R1, Case_,Deadline1_);

find getEndTime(Deadline1_, Day_,Month_,Year_,Hour_,Minute_);

Case.attr1(R2, Case2_,Deadline_);

find getEndTime(Deadline_, Day2_,Month2_,Year2_,Hour2_,Minute2_);

check ((60*toInteger(value(Hour_)) + toInteger(value(Minute_)))

<((60*toInteger(value(Hour2_))) +toInteger(value(Minute2_))));

}

action {

let

NewRoleInstance_=undef,

R1_=undef

in seq {
new(RoleInstance(NewRoleInstance_)in DSM.model.M1);

new(instanceOf(NewRoleInstance_,Role_));

new (RoleInstance.presence(R1_,NewRoleInstance_,Case_));

println(name(Role_)+"Requested ");

}
}

}

Adwoa Dansoa Donyina 310 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

By Priority

gtrule Rule_RequestPriority() =

{
precondition pattern lhs(Case_,Role_) =

{

Case(Case_);

Case(Case2_);

Role(Role_);

State(State_);

StateInstance(StateInstance_);

StateInstance(StateInstance2_);

Case.currentState(R6,Case_,StateInstance_);

Case.currentState(R7,Case2_,StateInstance2_);

typeOf(State_,StateInstance_);

typeOf(State_,StateInstance2_);

State.requires(R5,State_,Role_);

neg find RoleInstance(Case_,Role_);

neg find RoleInstance(Case2_,Role_);

Case.priority(Priority_);

Case.priority(Priority2_);

Case.attr2(R1,Case_,Priority_);

Case.attr2(R2,Case2_,Priority2_);

//if Case_ higher priority then Case2_

check ( toInteger(value(Priority_))

>= toInteger(value(Priority2_)));

}
action {

let

NewRoleInstance_=undef,

R1_=undef

in seq {
new(RoleInstance(NewRoleInstance_)in DSM.model.M1);

new(instanceOf(NewRoleInstance_,Role_));

new (RoleInstance.presence(R1_,NewRoleInstance_,Case_));

println(name(Role_)+" Requested ");

}
}

}

Adwoa Dansoa Donyina 311 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

Clock Tick Rule

gtrule Rule_ClockTick() =

{
precondition pattern lhs(Time_,Day_,Month_,Year_,Hour_,Minute_) =

{
Clock(Clock_);

Clock.Time(Time_);

Clock.attr(R1,Clock_,Time_);

find getTime(Time_, Day_,Month_,Year_,Hour_,Minute_);

}
action {

seq {

//If increases min would be in same hr

if((toInteger(value(Minute_))+1) < 60) seq{
setValue(Minute_,toInteger(value(Minute_))+1);

}
//if increases hr is within same day

else if (toInteger(value(Hour_))+1 < 24 ||

((toInteger(value(Hour_))+1==24 &&

((toInteger(value(Minute_))+1)-60)==0 ))) seq{
setValue(Minute_,((toInteger(value(Minute_))+1)-60));

setValue(Hour_,toInteger(value(Hour_))+1);

}
//Check if increase day will be in same month

else if((toInteger(value(Day_))+1)<31) seq {
setValue(Day_,toInteger(value(Day_))+1);

setValue(Minute_,((toInteger(value(Minute_))+1)-60));

setValue(Hour_,1);

}//check if increasing month is within year

else if((toInteger(value(Month_))+1)<13) seq{
setValue(Month_,toInteger(value(Month_))+1);

setValue(Day_,1);

setValue(Minute_,((toInteger(value(Minute_))+1)-60));

setValue(Hour_,1);

}
//new year

else seq{
setValue(Year_,toInteger(value(Year_))+1);

setValue(Month_,1);

setValue(Day_,1);

setValue(Minute_,((toInteger(value(Minute_))+1)-60));

setValue(Hour_,1);

}
if(toInteger(value(Minute_)) >=10 ) seq{

setValue(Time_, value(Hour_)+":"+value(Minute_) +" "+

value(Day_)+"/"+ value(Month_)+"/"+ value(Year_));

}
else seq{

setValue(Time_, value(Hour_)+":0"+value(Minute_) +" "+

value(Day_)+"/"+ value(Month_)+"/"+ value(Year_));

}

}
println(" Clock tick!!");

}
}

Adwoa Dansoa Donyina 312 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

A.2 Support-Level Rules

The following support level rules are defined using domain specific notation.

A.2.1 Escalation Handling (R2.3)

Trigger Rule

gtrule Rule_trigger1() =

{
precondition pattern lhs(Case_, Level_) =

{
Case(Case_);

Escalation(Level_);

neg find Trigger1Exist (Case_);

check (name(Level_)=="level1");

Case.deadline(Deadline_);

Clock.Time(Time_);

Case.attr1(R1, Case_,Deadline_);

find getEndTime(Deadline_, Day_,Month_,Year_,Hour_,Minute_);

find getTime(Time_, Day1_,Month1_,Year1_,Hour1_,Minute1_);

check ((60*toInteger(value(Hour1_)) + toInteger(value(Minute1_)))

>=((60*toInteger(value(Hour_))) +toInteger(value(Minute_))-5));

}
action{

let

R1_=undef

in seq {
new (Case.escalations(R1_,Case_, Level_));

println("Case escalated");

}
}

}

Adwoa Dansoa Donyina 313 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

A.2.2 Role Promotion/Demotion and Temporary Pro-

motion (R1.2)

Temp Assign Rule

gtrule TempRule_AssignEntryTechnician1() =

{
precondition pattern lhs(Case_,RoleInstance_, Person_, Free_, Role_) =

{
Case(Case_);

RoleInstance(RoleInstance_);

//RoleInstance is not assigned

neg find isAssign(RoleInstance_);

//Find qualified person

//Role to fill

Role(Role_);

check (name(Role_)=="EntryTechnician") ;

instanceOf(RoleInstance_,Role_);

Escalation(Level_);

Case.escalations(R1,Case_, Level_);

check (name(Level_)=="level1");

find freeCashier(Person_, Free_, Case_);

}
action {

println ("Temp assign cashier " +name(Person_ )+"

is assigned to entrytechnician role");

let

R1_=undef

in seq {
new (RoleInstance.assignedTo(R1_,RoleInstance_,Person_));

setValue(Free_,"false");

println("Role assigned ");

}
}

}

A.2.3 Load Balancing (R2.4)

Transfer

gtrule DisRule_TypePrescription() =

{
precondition pattern lhs(Case_,RoleInstance_,Role_,Person_,

TypedPrescription_, Store_,StateInstance_, NextState_,R6_) =

{
Case(Case_);

Adwoa Dansoa Donyina 314 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

ArtifactType(TypedPrescription_);

//States

State(State_);

State(NextState_);

StateInstance(StateInstance_);

Case.currentState(R6_,Case_,StateInstance_);

typeOf(State_,StateInstance_);

check(name(State_)=="Type");

State.next(R7,State_,NextState_);

check(name(TypedPrescription_)=="TypedPrescription");

find ETassigned (Case_,RoleInstance_,Role_,Person_);

neg find TypedPrescriptionExist(Case_);

find PrescriptionExist(Case_);

AttributeValue(AttributeValue_);

Case.has(R1,Case_,AttributeValue_);

AttributeDeclaration(AttributeDeclaration_);

typeOf(AttributeDeclaration_,AttributeValue_);

check (name(AttributeDeclaration_) == "type");

check(value(AttributeValue_)=="delivery");

Case.groupNo(Store_);

Case.group(R4, Case_, Store_);

}
action {

let

NewArtifact_=undef,

R1_=undef,

NewStateInstance_=undef,

R2_=undef

in seq {
// create Class inside the Case

new(Artifact(NewArtifact_)in Case_);

//create instanceOf relation with the Artifact:ArtifactType

new(instanceOf(NewArtifact_,TypedPrescription_));

//create relation between Case and Artifact

new (Case.contains(R1_,Case_,NewArtifact_));

delete(StateInstance_);

delete(R6_);

// create Class inside the Case

new(StateInstance(NewStateInstance_)in DSM.model.M1);

//create instanceOf relation with the Artifact:ArtifactType

new(instanceOf(NewStateInstance_,NextState_));

new (Case.currentState(R2_,Case_,NewStateInstance_));

setValue(Store_,"2");

println("Typed Prescription added ");

}
println ("Type Prescription for "+name(Case_)+" Case");

}
}

Adwoa Dansoa Donyina 315 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

A.2.4 Human Error (R2.5)

Skip Rule

gtrule SkipRule_FillPrescription() =

{

precondition pattern lhs(Case_, StateInstance_, NextState_,R6_) =

{
Case(Case_);

ArtifactType(FilledPrescription_);

check(name(FilledPrescription_)=="FilledPrescription");

find FTassigned (Case_,RoleInstance_,Role_,Person_);

neg find FilledPrescriptionExist(Case_);

find LabelExist(Case_);

State(State_);

State(NextState_);

StateInstance(StateInstance_);

Case.currentState(R6_,Case_,StateInstance_);

State.next(R7,State_,NextState_);

}
action {

let

NewStateInstance_=undef,

R2_=undef

in seq{
delete(StateInstance_);

delete(R6_);

new(StateInstance(NewStateInstance_)in DSM.model.M1);

new(instanceOf(NewStateInstance_,NextState_));

new (Case.currentState(R2_,Case_,NewStateInstance_));

println("no Filled Prescription added ");

}
}

}

Backtrack Rule

gtrule BacktrackRule_checkState()=

{
precondition pattern lhs(Case_, StateInstance_, PrevState_,R6_) =

{
Case(Case_);

AttributeValue(AttributeValue_);

find RequiresChecked(Case_,AttributeValue_);

find DPassigned (Case_,RoleInstance_,Role_,Person_);

neg find FilledPrescriptionExist(Case_,Artifact_,ArtifactType_);

State(State_);

Adwoa Dansoa Donyina 316 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

State(PrevState_);

StateInstance(StateInstance_);

Case.currentState(R6_,Case_,StateInstance_);

State.previous(R7,State_,PrevState_);

}
action {

let

NewStateInstance_=undef,

R2_=undef

in seq{
delete(StateInstance_);

delete(R6_);

new(StateInstance(NewStateInstance_)in DSM.model.M1);

new(instanceOf(NewStateInstance_,PrevState_));

new (Case.currentState(R2_,Case_,NewStateInstance_));

println("error (backtrack to fill state)");

}
}

}

A.3 Production-Level Rules

A.3.1 New Case Rules

New Walkin Low Priority Case

gtrule Rule_NewCase() =

{
precondition pattern lhs(Process_, Prescription_,Patient_,Customer_,

Time_, Day_,Month_,Year_,Hour_,Minute_,M2_,State_) =

{
Process(Process_);

ArtifactType(Prescription_);

check(name(Prescription_)=="Prescription");

Actor(Patient_);

check(name(Patient_)=="Patient");

Role(Customer_);

check(name(Customer_)=="Customer");

Clock(Clock_);

Clock.Time(Time_);

Clock.attr(R1,Clock_,Time_);

find getTime(Time_, Day_,Month_,Year_,Hour_,Minute_);

M2(M2_);

State(State_);

check(name(State_)=="Type");

}

Adwoa Dansoa Donyina 317 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

action {
let

Case_=undef,

Val1_=undef,

Val2_=undef,

Val3_=undef,

R1=undef,

R2=undef,

R3=undef,

R4=undef,

R5=undef,

R6=undef,

R7=undef,

R8=undef,

R9=undef,

NewArtifact_=undef,

R1_=undef,

Person_=undef,

RoleInstance_=undef,

Priority_=undef,

State_=undef,

Free_=undef,

StartTime_=undef,

R2_=undef,

IntegerDay_= undef,

R3_=undef,

IntegerMonth_= undef,

R4_=undef,

IntegerYear_= undef,

R5_=undef,

IntegerHour_= undef,

IntegerMin_= undef,

R6_=undef,

Deadline_=undef,

R2R=undef,

R2_2=undef,

IntegerDay2_= undef,

R3_2=undef,

IntegerMonth2_= undef,

R4_2=undef,

IntegerYear2_= undef,

R5_2=undef,

IntegerHour2_= undef,

IntegerMin2_= undef,

R6_2=undef,

Store_=undef,

R10=undef,

NewStateInstance_=undef

in seq {

new(Case(Case_)in M2_);

rename(Case_,name(Case_)+"Case");

//create instanceOf relation with the Case:Process

new(instanceOf(Case_,Process_));

new(AttributeValue(Val1_)in Case_);

new(AttributeValue(Val2_)in Case_);

new(AttributeValue(Val3_)in Case_);

//create instanceOf relation with the AttributeValue:Process

new(instanceOf(Val1_,DSM.model.M1.Pharmacy.checked));

//create instanceOf relation with the AttributeValue:Process

new(instanceOf(Val2_,DSM.model.M1.Pharmacy.counsel));

//create instanceOf relation with the AttributeValue:Process

Adwoa Dansoa Donyina 318 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

new(instanceOf(Val3_,DSM.model.M1.Pharmacy.type));

new(Case.has(R1,Case_,Val1_));

new(Case.has(R2,Case_,Val2_));

new(Case.has(R3,Case_,Val3_));

setValue(Val1_,"false");

setValue(Val2_,"false");

setValue(Val3_,"walkin");

new(Case.priority(Priority_) in Case_);

new(Case.attr2(R7,Case_,Priority_));

setValue(Priority_,"-1");

new(instanceOf(NewStateInstance_,State_));

new (Case.currentState(R2_,Case_,NewStateInstance_));

new(Case.groupNo(Store_) in Case_);

new(Case.group(R10,Case_,Store_));

setValue(Store_,"1");

//New case contains a prescription

new(Artifact(NewArtifact_)in Case_);

new(instanceOf(NewArtifact_,Prescription_));

new (Case.contains(R1_,Case_,NewArtifact_));

//Add a person

new(Person(Person_)in DSM.model.M1);

new(instanceOf(Person_,Patient_));

rename(Person_,name(Person_)+"Person");

new (Person.free(Free_)in Person_);

setValue(Free_,"false");

new(Person.attr(R6,Person_,Free_));

//Add customer roleinstance

new(RoleInstance(RoleInstance_)in DSM.model.M1);

new(instanceOf(RoleInstance_,Customer_));

//add roleInstance to Case_

new(RoleInstance.presence(R4,RoleInstance_,Case_));

//assign Person_ to RoleInstance_

new (RoleInstance.assignedTo(R5,RoleInstance_, Person_));

//Starttime defined

new( Case.startTime(StartTime_) in Case_);

new(Case.attr3(R8,Case_,StartTime_));

new(Integer(IntegerDay_) in StartTime_);

setValue(IntegerDay_,value(Day_) );

new(DateTime.day(R2_,StartTime_,IntegerDay_));

new(Integer(IntegerMonth_) in StartTime_);

setValue(IntegerMonth_,value(Month_));

new(DateTime.month(R3_,StartTime_,IntegerMonth_));

new(Integer(IntegerYear_) in StartTime_);

setValue(IntegerYear_,value(Year_));

new(DateTime.year(R4_,StartTime_,IntegerYear_));

new(Integer(IntegerHour_) in StartTime_);

setValue(IntegerHour_,value(Hour_));

new(DateTime.hour(R5_,StartTime_,IntegerHour_));

new(Integer(IntegerMin_)in StartTime_);

setValue(IntegerMin_,value(Minute_));

new(DateTime.minute(R6_,StartTime_,IntegerMin_));

if(toInteger(value(IntegerMin_)) >=10 ) seq{

Adwoa Dansoa Donyina 319 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

setValue (StartTime_, value(IntegerHour_)+":"+value(IntegerMin_)+" "+

value(IntegerDay_)+"/"+ value(IntegerMonth_)+"/"+ value(IntegerYear_));

}
else seq{

setValue (StartTime_, value(IntegerHour_)+":0"+value(IntegerMin_)+" "+

value(IntegerDay_)+"/"+ value(IntegerMonth_)+"/"+ value(IntegerYear_));

}
//deadline defined

new(Case.deadline(Deadline_) in Case_);

new (Case.attr1(R2R, Case_,Deadline_));

new(Integer(IntegerDay2_) in Deadline_);

setValue(IntegerDay2_,toInteger(value(IntegerDay_)));

new(DateTime.day(R2_2,Deadline_,IntegerDay2_));

new(Integer(IntegerMonth2_) in Deadline_);

setValue(IntegerMonth2_,toInteger(value(IntegerMonth_)));

new(DateTime.month(R3_2,Deadline_,IntegerMonth2_));

new(Integer(IntegerYear2_) in Deadline_);

setValue(IntegerYear2_,toInteger(value(IntegerYear_)));

new(DateTime.year(R4_2,Deadline_,IntegerYear2_));

new(Integer(IntegerHour2_)in Deadline_);

setValue(IntegerHour2_,toInteger(value(IntegerHour_)));

new(Integer(IntegerMin2_) in Deadline_);

if((toInteger(value(IntegerMin_))+15) < 60) seq{
setValue(IntegerMin2_,toInteger(value(IntegerMin_))+15);

setValue(IntegerHour2_,toInteger(value(IntegerHour_)));

}
else if (toInteger(value(IntegerHour_))+1 < 24 ||

((toInteger(value(IntegerHour_))+1==24 &&

((toInteger(value(IntegerMin_))+15)-60)==0 ))) seq{
setValue(IntegerMin2_,((toInteger(value(IntegerMin_))+15)-60));

setValue(IntegerHour2_,toInteger(value(IntegerHour_))+1);

}//assumption that all months have 31 days

else if((toInteger(value(IntegerDay_))+1)<31) seq {
setValue(IntegerDay2_,toInteger(value(IntegerDay_))+1);

setValue(IntegerMin2_,((toInteger(value(IntegerMin_))+15)-60));

setValue(IntegerHour2_,1);

}
else if((toInteger(value(IntegerMonth_))+1)<13) seq{

setValue(IntegerMonth2_,toInteger(value(IntegerMonth_))+1);

setValue(IntegerDay2_,1);

setValue(IntegerMin2_,((toInteger(value(IntegerMin_))+15)-60));

setValue(IntegerHour2_,1);

}
else seq{

setValue(IntegerYear2_,toInteger(value(IntegerYear_))+1);

setValue(IntegerMonth2_,1);

setValue(IntegerDay2_,1);

setValue(IntegerMin2_,((toInteger(value(IntegerMin_))+15)-60));

setValue(IntegerHour2_,1);

}
new(DateTime.hour(R5_2,Deadline_,IntegerHour2_));

new(DateTime.minute(R6_2,Deadline_,IntegerMin2_));

if(toInteger(value(IntegerMin2_)) >=10 ) seq{
setValue (Deadline_, value(IntegerHour2_)+":"+value(IntegerMin2_)+" "

+value(IntegerDay2_)+"/"+ value(IntegerMonth2_)+"/"+ value(IntegerYear2_));

}
else seq{

setValue (Deadline_, value(IntegerHour2_)+":0"+value(IntegerMin2_)+" "

+value(IntegerDay2_)+"/"+ value(IntegerMonth2_)+"/"+ value(IntegerYear2_));

Adwoa Dansoa Donyina 320 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

}
setAggregation(R2_,true);

setAggregation(R3_,true);

setAggregation(R4_,true);

setAggregation(R5_,true);

setAggregation(R6_,true);

setAggregation(R2_2,true);

setAggregation(R3_2,true);

setAggregation(R4_2,true);

setAggregation(R5_2,true);

setAggregation(R6_2,true);

println("Case added ");

}
}

}

New Medium Priority Delivery Case

gtrule Rule_NewCaseMedPriority() =

{
precondition pattern lhs(Process_, Prescription_,Patient_,Customer_,

Time_, Day_,Month_,Year_,Hour_,Minute_,M2_, State_) =

{
Process(Process_);

ArtifactType(Prescription_);

check(name(Prescription_)=="Prescription");

Actor(Patient_);

check(name(Patient_)=="Patient");

Role(Customer_);

check(name(Customer_)=="Customer");

Clock(Clock_);

Clock.Time(Time_);

Clock.attr(R1,Clock_,Time_);

find getTime(Time_, Day_,Month_,Year_,Hour_,Minute_);

M2(M2_);

State(State_);

check(name(State_)=="Type");

}
action {

let

Case_=undef,

Val1_=undef,

Val2_=undef,

Val3_=undef,

R1=undef,

R2=undef,

R3=undef,

R4=undef,

R5=undef,

R6=undef,

R7=undef,

R8=undef,

NewArtifact_=undef,

R1_=undef,

Adwoa Dansoa Donyina 321 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

Person_=undef,

RoleInstance_=undef,

Priority_=undef,

Free_=undef,

StartTime_=undef,

R2_=undef,

IntegerDay_= undef,

R3_=undef,

IntegerMonth_= undef,

R4_=undef,

IntegerYear_= undef,

R5_=undef,

IntegerHour_= undef,

IntegerMin_= undef,

R6_=undef,

Deadline_=undef,

R2R=undef,

R2_2=undef,

IntegerDay2_= undef,

R3_2=undef,

IntegerMonth2_= undef,

R4_2=undef,

IntegerYear2_= undef,

R5_2=undef,

IntegerHour2_= undef,

IntegerMin2_= undef,

R6_2=undef,

State_=undef,

R9=undef,

Store_=undef,

R10=undef,

NewStateInstance_=undef

in seq {
new(Case(Case_)in M2_);

rename(Case_,name(Case_)+"Case");

//create instanceOf relation with the Case:Process

new(instanceOf(Case_,Process_));

new(AttributeValue(Val1_)in Case_);

new(AttributeValue(Val2_)in Case_);

new(AttributeValue(Val3_)in Case_);

//create instanceOf relation with the AttributeValue:Process

new(instanceOf(Val1_,DSM.model.M1.Pharmacy.checked));

//create instanceOf relation with the AttributeValue:Process

new(instanceOf(Val2_,DSM.model.M1.Pharmacy.counsel));

//create instanceOf relation with the AttributeValue:Process

new(instanceOf(Val3_,DSM.model.M1.Pharmacy.type));

new(Case.has(R1,Case_,Val1_));

new(Case.has(R2,Case_,Val2_));

new(Case.has(R3,Case_,Val3_));

setValue(Val1_,"false");

setValue(Val2_,"false");

setValue(Val3_,"delivery");

new(Case.priority(Priority_) in Case_);

new(Case.attr2(R7,Case_,Priority_));

setValue(Priority_,"1");

new(instanceOf(NewStateInstance_,State_));

new (Case.currentState(R2_,Case_,NewStateInstance_));

new(Case.groupNo(Store_) in Case_);

Adwoa Dansoa Donyina 322 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

new(Case.group(R10,Case_,Store_));

setValue(Store_,"1");

//New case contains a prescription

new(Artifact(NewArtifact_)in Case_);

new(instanceOf(NewArtifact_,Prescription_));

new (Case.contains(R1_,Case_,NewArtifact_));

//Add a person

new(Person(Person_)in DSM.model.M1);

new(instanceOf(Person_,Patient_));

rename(Person_,name(Person_)+"Person");

new (Person.free(Free_)in Person_);

setValue(Free_,"false");

new(Person.attr(R6,Person_,Free_));

//Add customer roleinstance

new(RoleInstance(RoleInstance_)in DSM.model.M1);

new(instanceOf(RoleInstance_,Customer_));

//add roleInstance to Case_

new(RoleInstance.presence(R4,RoleInstance_,Case_));

//assign Person_ to RoleInstance_

new (RoleInstance.assignedTo(R5,RoleInstance_, Person_));

//Starttime defined

new( Case.startTime(StartTime_) in Case_);

new(Case.attr3(R8,Case_,StartTime_));

new(Integer(IntegerDay_) in StartTime_);

setValue(IntegerDay_,value(Day_) );

new(DateTime.day(R2_,StartTime_,IntegerDay_));

new(Integer(IntegerMonth_) in StartTime_);

setValue(IntegerMonth_,value(Month_));

new(DateTime.month(R3_,StartTime_,IntegerMonth_));

new(Integer(IntegerYear_) in StartTime_);

setValue(IntegerYear_,value(Year_));

new(DateTime.year(R4_,StartTime_,IntegerYear_));

new(Integer(IntegerHour_) in StartTime_);

setValue(IntegerHour_,value(Hour_));

new(DateTime.hour(R5_,StartTime_,IntegerHour_));

new(Integer(IntegerMin_)in StartTime_);

setValue(IntegerMin_,value(Minute_));

new(DateTime.minute(R6_,StartTime_,IntegerMin_));

if(toInteger(value(IntegerMin_)) >=10 ) seq{
setValue (StartTime_, value(IntegerHour_)+":"+value(IntegerMin_)+" "+

value(IntegerDay_)+"/"+ value(IntegerMonth_)+"/"+ value(IntegerYear_));

}
else seq{

setValue (StartTime_, value(IntegerHour_)+":0"+value(IntegerMin_)+" "

+ value(IntegerDay_)+"/"+ value(IntegerMonth_)+"/"+ value(IntegerYear_));

}
//deadline defined

new(Case.deadline(Deadline_) in Case_);

new (Case.attr1(R2R, Case_,Deadline_));

new(Integer(IntegerDay2_) in Deadline_);

setValue(IntegerDay2_,toInteger(value(IntegerDay_)));

new(DateTime.day(R2_2,Deadline_,IntegerDay2_));

new(Integer(IntegerMonth2_) in Deadline_);

setValue(IntegerMonth2_,toInteger(value(IntegerMonth_)));

new(DateTime.month(R3_2,Deadline_,IntegerMonth2_));

Adwoa Dansoa Donyina 323 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

new(Integer(IntegerYear2_) in Deadline_);

setValue(IntegerYear2_,toInteger(value(IntegerYear_)));

new(DateTime.year(R4_2,Deadline_,IntegerYear2_));

new(Integer(IntegerHour2_)in Deadline_);

setValue(IntegerHour2_,toInteger(value(IntegerHour_)));

new(Integer(IntegerMin2_) in Deadline_);

if((toInteger(value(IntegerMin_))+15) < 60) seq{
setValue(IntegerMin2_,toInteger(value(IntegerMin_))+15);

setValue(IntegerHour2_,toInteger(value(IntegerHour_)));

}
else if (toInteger(value(IntegerHour_))+1 < 24 ||

((toInteger(value(IntegerHour_))+1==24 &&

((toInteger(value(IntegerMin_))+15)-60)==0 ))) seq{
setValue(IntegerMin2_,((toInteger(value(IntegerMin_))+15)-60));

setValue(IntegerHour2_,toInteger(value(IntegerHour_))+1);

}//assumption that all months have 31 days

else if((toInteger(value(IntegerDay_))+1)<31) seq {
setValue(IntegerDay2_,toInteger(value(IntegerDay_))+1);

setValue(IntegerMin2_,((toInteger(value(IntegerMin_))+15)-60));

setValue(IntegerHour2_,1);

}
else if((toInteger(value(IntegerMonth_))+1)<13) seq{

setValue(IntegerMonth2_,toInteger(value(IntegerMonth_))+1);

setValue(IntegerDay2_,1);

setValue(IntegerMin2_,((toInteger(value(IntegerMin_))+15)-60));

setValue(IntegerHour2_,1);

}
else seq{

setValue(IntegerYear2_,toInteger(value(IntegerYear_))+1);

setValue(IntegerMonth2_,1);

setValue(IntegerDay2_,1);

setValue(IntegerMin2_,((toInteger(value(IntegerMin_))+15)-60));

setValue(IntegerHour2_,1);

}
new(DateTime.hour(R5_2,Deadline_,IntegerHour2_));

new(DateTime.minute(R6_2,Deadline_,IntegerMin2_));

if(toInteger(value(IntegerMin2_)) >=10 ) seq{
setValue (Deadline_, value(IntegerHour2_)+":"+value(IntegerMin2_)+" "

+value(IntegerDay2_)+"/"+ value(IntegerMonth2_)+"/"+ value(IntegerYear2_));

}
else seq{

setValue (Deadline_, value(IntegerHour2_)+":0"+value(IntegerMin2_)+" "

+value(IntegerDay2_)+"/"+ value(IntegerMonth2_)+"/"+ value(IntegerYear2_));

}
println("Case added ");

}
}

}

New Walk-in High Priority Case

gtrule Rule_NewCaseHighPriority() =

{
precondition pattern lhs(Process_, Prescription_,Patient_,Customer_,Time_,

Day_,Month_,Year_,Hour_,Minute_, M2_, State_) =

{

Adwoa Dansoa Donyina 324 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

Process(Process_);

ArtifactType(Prescription_);

check(name(Prescription_)=="Prescription");

Actor(Patient_);

check(name(Patient_)=="Patient");

Role(Customer_);

check(name(Customer_)=="Customer");

Clock(Clock_);

Clock.Time(Time_);

Clock.attr(R1,Clock_,Time_);

find getTime(Time_, Day_,Month_,Year_,Hour_,Minute_);

M2(M2_);

State(State_);

check(name(State_)=="Type");

}
action {

let

Case_=undef,

Val1_=undef,

Val2_=undef,

Val3_=undef,

R1=undef,

R2=undef,

R3=undef,

R4=undef,

R5=undef,

R6=undef,

R7=undef,

R8=undef,

NewArtifact_=undef,

R1_=undef,

Person_=undef,

RoleInstance_=undef,

Priority_=undef,

Free_=undef,

StartTime_=undef,

R2_=undef,

IntegerDay_= undef,

R3_=undef,

IntegerMonth_= undef,

R4_=undef,

IntegerYear_= undef,

R5_=undef,

IntegerHour_= undef,

IntegerMin_= undef,

R6_=undef,

Deadline_=undef,

R2R=undef,

R2_2=undef,

IntegerDay2_= undef,

R3_2=undef,

IntegerMonth2_= undef,

R4_2=undef,

IntegerYear2_= undef,

R5_2=undef,

IntegerHour2_= undef,

IntegerMin2_= undef,

R6_2=undef,

State_=undef,

Adwoa Dansoa Donyina 325 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

R9=undef,

Store_=undef,

R10=undef,

NewStateInstance_=undef

in seq {
new(Case(Case_)in M2_);

rename(Case_,name(Case_)+"Case");

//create instanceOf relation with the Case:Process

new(instanceOf(Case_,Process_));

new(AttributeValue(Val1_)in Case_);

new(AttributeValue(Val2_)in Case_);

new(AttributeValue(Val3_)in Case_);

//create instanceOf relation with the AttributeValue:Process

new(instanceOf(Val1_,DSM.model.M1.Pharmacy.checked));

//create instanceOf relation with the AttributeValue:Process

new(instanceOf(Val2_,DSM.model.M1.Pharmacy.counsel));

//create instanceOf relation with the AttributeValue:Process

new(instanceOf(Val3_,DSM.model.M1.Pharmacy.type));

new(Case.has(R1,Case_,Val1_));

new(Case.has(R2,Case_,Val2_));

new(Case.has(R3,Case_,Val3_));

setValue(Val1_,"false");

setValue(Val2_,"false");

setValue(Val3_,"walkin");

new(Case.priority(Priority_) in Case_);

new(Case.attr2(R7,Case_,Priority_));

setValue(Priority_,"3");

new(instanceOf(NewStateInstance_,State_));

new (Case.currentState(R2_,Case_,NewStateInstance_));

new(Case.groupNo(Store_) in Case_);

new(Case.group(R10,Case_,Store_));

setValue(Store_,"2");

//New case contains a prescription

new(Artifact(NewArtifact_)in Case_);

new(instanceOf(NewArtifact_,Prescription_));

new (Case.contains(R1_,Case_,NewArtifact_));

//Add a person

new(Person(Person_)in DSM.model.M1);

new(instanceOf(Person_,Patient_));

rename(Person_,name(Person_)+"Person");

new (Person.free(Free_)in Person_);

setValue(Free_,"false");

new(Person.attr(R6,Person_,Free_));

//Add customer roleinstance

new(RoleInstance(RoleInstance_)in DSM.model.M1);

new(instanceOf(RoleInstance_,Customer_));

//add roleInstance to Case_

new(RoleInstance.presence(R4,RoleInstance_,Case_));

//assign Person_ to RoleInstance_

new (RoleInstance.assignedTo(R5,RoleInstance_, Person_));

//Starttime defined

new( Case.startTime(StartTime_) in Case_);

new(Case.attr3(R8,Case_,StartTime_));

Adwoa Dansoa Donyina 326 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

new(Integer(IntegerDay_) in StartTime_);

setValue(IntegerDay_,value(Day_) );

new(DateTime.day(R2_,StartTime_,IntegerDay_));

new(Integer(IntegerMonth_) in StartTime_);

setValue(IntegerMonth_,value(Month_));

new(DateTime.month(R3_,StartTime_,IntegerMonth_));

new(Integer(IntegerYear_) in StartTime_);

setValue(IntegerYear_,value(Year_));

new(DateTime.year(R4_,StartTime_,IntegerYear_));

new(Integer(IntegerHour_) in StartTime_);

setValue(IntegerHour_,value(Hour_));

new(DateTime.hour(R5_,StartTime_,IntegerHour_));

new(Integer(IntegerMin_)in StartTime_);

setValue(IntegerMin_,value(Minute_));

new(DateTime.minute(R6_,StartTime_,IntegerMin_));

if(toInteger(value(IntegerMin_)) >=10 ) seq{
setValue (StartTime_, value(IntegerHour_)+":"+value(IntegerMin_)+" "+

value(IntegerDay_)+"/"+ value(IntegerMonth_)+"/"+ value(IntegerYear_));

}
else seq{

setValue (StartTime_, value(IntegerHour_)+":0"+value(IntegerMin_)+" "+

value(IntegerDay_)+"/"+ value(IntegerMonth_)+"/"+ value(IntegerYear_));

}

//deadline defined

new(Case.deadline(Deadline_) in Case_);

new (Case.attr1(R2R, Case_,Deadline_));

new(Integer(IntegerDay2_) in Deadline_);

setValue(IntegerDay2_,toInteger(value(IntegerDay_)));

new(DateTime.day(R2_2,Deadline_,IntegerDay2_));

new(Integer(IntegerMonth2_) in Deadline_);

setValue(IntegerMonth2_,toInteger(value(IntegerMonth_)));

new(DateTime.month(R3_2,Deadline_,IntegerMonth2_));

new(Integer(IntegerYear2_) in Deadline_);

setValue(IntegerYear2_,toInteger(value(IntegerYear_)));

new(DateTime.year(R4_2,Deadline_,IntegerYear2_));

new(Integer(IntegerHour2_)in Deadline_);

setValue(IntegerHour2_,toInteger(value(IntegerHour_)));

new(Integer(IntegerMin2_) in Deadline_);

if((toInteger(value(IntegerMin_))+15) < 60) seq{
setValue(IntegerMin2_,toInteger(value(IntegerMin_))+15);

setValue(IntegerHour2_,toInteger(value(IntegerHour_)));

}
else if (toInteger(value(IntegerHour_))+1 < 24 ||

((toInteger(value(IntegerHour_))+1==24 &&

((toInteger(value(IntegerMin_))+15)-60)==0 ))) seq{
setValue(IntegerMin2_,((toInteger(value(IntegerMin_))+15)-60));

setValue(IntegerHour2_,toInteger(value(IntegerHour_))+1);

}//assumption that all months have 31 days

else if((toInteger(value(IntegerDay_))+1)<31) seq {
setValue(IntegerDay2_,toInteger(value(IntegerDay_))+1);

setValue(IntegerMin2_,((toInteger(value(IntegerMin_))+15)-60));

setValue(IntegerHour2_,1);

}
else if((toInteger(value(IntegerMonth_))+1)<13) seq{

setValue(IntegerMonth2_,toInteger(value(IntegerMonth_))+1);

setValue(IntegerDay2_,1);

setValue(IntegerMin2_,((toInteger(value(IntegerMin_))+15)-60));

setValue(IntegerHour2_,1);

}

Adwoa Dansoa Donyina 327 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

else seq{
setValue(IntegerYear2_,toInteger(value(IntegerYear_))+1);

setValue(IntegerMonth2_,1);

setValue(IntegerDay2_,1);

setValue(IntegerMin2_,((toInteger(value(IntegerMin_))+15)-60));

setValue(IntegerHour2_,1);

}
new(DateTime.hour(R5_2,Deadline_,IntegerHour2_));

new(DateTime.minute(R6_2,Deadline_,IntegerMin2_));

if(toInteger(value(IntegerMin2_)) >=10 ) seq{
setValue (Deadline_, value(IntegerHour2_)+":"+value(IntegerMin2_)+" "

+value(IntegerDay2_)+"/"+ value(IntegerMonth2_)+"/"+ value(IntegerYear2_));

}
else seq{

setValue (Deadline_, value(IntegerHour2_)+":0"+value(IntegerMin2_)+" "

+value(IntegerDay2_)+"/"+ value(IntegerMonth2_)+"/"+ value(IntegerYear2_));

}
println("Case added ");

}
}

}

A.3.2 Type Prescription Rule

gtrule Rule_TypePrescription() =

{
precondition pattern lhs(Case_,RoleInstance_,Role_,Person_,

TypedPrescription_, StateInstance_, NextState_,R6_) =

{
Case(Case_);

Role(Role_);

State(State_);

State(NextState_);

StateInstance(StateInstance_);

RoleInstance(RoleInstance_);

ArtifactType(TypedPrescription_);

Case.currentState(R6_,Case_,StateInstance_);

typeOf(State_,StateInstance_);

check(name(State_)=="Type");

State.next(R1,State_,NextState_);

check(name(TypedPrescription_)=="TypedPrescription");

find ETassigned (Case_,RoleInstance_,Role_,Person_);

neg find TypedPrescriptionExist(Case_);

find PrescriptionExist(Case_);

}
action {

let

NewArtifact_=undef,

NewStateInstance_=undef,

R1_=undef,

R2_=undef

in seq {

Adwoa Dansoa Donyina 328 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

// create Class inside the Case

new(Artifact(NewArtifact_)in Case_);

//create instanceOf relation with the Artifact:ArtifactType

new(instanceOf(NewArtifact_,TypedPrescription_));

//create relation between Case and Artifact

new (Case.contains(R1_,Case_,NewArtifact_));

delete(StateInstance_);

delete(R6_);

// create Class inside the Case

new(StateInstance(NewStateInstance_)in DSM.model.M1);

//create instanceOf relation with the Artifact:ArtifactType

new(instanceOf(NewStateInstance_,NextState_));

new (Case.currentState(R2_,Case_,NewStateInstance_));

println("Typed Prescription added ");

}
println ("Type Prescription for "+name(Case_)+" Case");

}
}

A.3.3 Print Label Rule

gtrule Rule_PrintPrescription() =

{
precondition pattern lhs(Case_, Label_, StateInstance_, NextState_,R6_) =

{
ArtifactType(Label_);

check(name(Label_)=="Label");

Case(Case_);

State(State_);

State(NextState_);

StateInstance(StateInstance_);

Case.currentState(R6_,Case_,StateInstance_);

State.next(R7,State_,NextState_);

typeOf(State_,StateInstance_);

check(name(State_)=="Print");

find TypedPrescriptionExist(Case_);

neg find LabelExist(Case_);

}
action {

let

NewArtifact_=undef,

R1_=undef,

NewStateInstance_=undef,

R2_=undef

Adwoa Dansoa Donyina 329 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

in seq {
// create Class inside the Case

new(Artifact(NewArtifact_)in Case_);

//create instanceOf relation with the Artifact:ArtifactType

new(instanceOf(NewArtifact_,Label_));

//create relation between Case and Artifact

new (Case.contains(R1_,Case_,NewArtifact_));

delete(StateInstance_);

delete(R6_);

new(StateInstance(NewStateInstance_)in DSM.model.M1);

new(instanceOf(NewStateInstance_,NextState_));

new (Case.currentState(R2_,Case_,NewStateInstance_));

println("Label printed");

}
println ("Print Prescription Label for "+name(Case_)+" Case");

}
}

A.3.4 Fill Prescription Rule

gtrule Rule_FillPrescription() =

{

precondition pattern lhs(Case_,RoleInstance_,Role_,Person_,

FilledPrescription_, StateInstance_, NextState_,R6_) =

{
Case(Case_);

ArtifactType(FilledPrescription_);

check(name(FilledPrescription_)=="FilledPrescription");

find FTassigned (Case_,RoleInstance_,Role_,Person_);

neg find FilledPrescriptionExist(Case_);

find LabelExist(Case_);

State(State_);

State(NextState_);

StateInstance(StateInstance_);

Case.currentState(R6_,Case_,StateInstance_);

State.next(R7,State_,NextState_);

}
action {

let

NewArtifact_=undef,

R1_=undef,

NewStateInstance_=undef,

R2_=undef

in seq {
delete(StateInstance_);

delete(R6_);

new(StateInstance(NewStateInstance_)in DSM.model.M1);

new(instanceOf(NewStateInstance_,NextState_));

new (Case.currentState(R2_,Case_,NewStateInstance_));

new(Artifact(NewArtifact_)in Case_);

new(instanceOf(NewArtifact_,FilledPrescription_));

Adwoa Dansoa Donyina 330 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

new (Case.contains(R1_,Case_,NewArtifact_));

println("Filled Prescription added ");

}
println ("Fill Prescription for "+name(Case_)+" Case");

}
}

A.3.5 Check Rules

Unsuccessful Check Type 1

gtrule Rule_UnsucessfullCheck() =

{
precondition pattern lhs(Case_, Artifact_, StateInstance_, NextState_,R6_) =

{
Case(Case_);

AttributeValue(AttributeValue_);

find RequiresChecked(Case_,AttributeValue_);

find DPassigned (Case_,RoleInstance_,Role_,Person_);

find FilledPrescriptionExist(Case_,Artifact_,ArtifactType_);

State(State_);

State(NextState_);

StateInstance(StateInstance_);

Case.currentState(R6_,Case_,StateInstance_);

State.next(R7,State_,NextState_);

}
action {

//removes the filledprescription

let

NewStateInstance_=undef,

R2_=undef

in seq{
delete(StateInstance_);

delete(R6_);

new(StateInstance(NewStateInstance_)in DSM.model.M1);

new(instanceOf(NewStateInstance_,NextState_));

new (Case.currentState(R2_,Case_,NewStateInstance_));

delete(Artifact_);

println("Prescription was unsuccessfully checked");

println(name(Case_)+" Case requires prescription to be refilled to be redone");

}
}

}

Adwoa Dansoa Donyina 331 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

Unsuccessful Check Type 2

gtrule Rule_UnsucessfullCheck2() =

{
precondition pattern lhs(Case_, Artifact_, Artifact2_,

Artifact3_, StateInstance_, NextState_,R6_) =

{
Case(Case_);

AttributeValue(AttributeValue_);

find RequiresChecked(Case_,AttributeValue_);

find DPassigned (Case_,RoleInstance_,Role_,Person_);

find FilledPrescriptionExist(Case_,Artifact_,ArtifactType_);

find TypedPrescriptionExist(Case_,Artifact2_,ArtifactType2_);

find LabelExist(Case_,Artifact3_,ArtifactType3_);

State(State_);

State(NextState_);

StateInstance(StateInstance_);

Case.currentState(R6_,Case_,StateInstance_);

State.next(R7,State_,NextState_);

}
action {

let

NewStateInstance_=undef,

R2_=undef

in seq{
delete(StateInstance_);

delete(R6_);

new(StateInstance(NewStateInstance_)in DSM.model.M1);

new(instanceOf(NewStateInstance_,NextState_));

new (Case.currentState(R2_,Case_,NewStateInstance_));

//removes the filledprescription, typedprescription and label

delete(Artifact_);

delete(Artifact2_);

delete(Artifact3_);

println("Prescription was unsuccessfully checked (back to type state)");

println(name(Case_)+" Case requires prescription to be completely redone");

}
}

}

Successful Check Default

gtrule Rule_SucessfullCheck() =

{
precondition pattern lhs(Case_,AttributeValue_,Bag_,Artifact_,

Artifact2_, StateInstance_, NextState_,R6_ ) =

{
Case(Case_);

AttributeValue(AttributeValue_);

ArtifactType(Bag_);

check(name(Bag_)=="Bag");

find RequiresChecked(Case_,AttributeValue_);

find DPassigned (Case_,RoleInstance_,Role_,Person_);

Adwoa Dansoa Donyina 332 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

find FilledPrescriptionExist(Case_,Artifact_,ArtifactType_);

find LabelExist (Case_,Artifact2_, ArtifactType2_);

State(State_);

State(NextState_);

StateInstance(StateInstance_);

Case.currentState(R6_,Case_,StateInstance_);

State.next(R7,State_,NextState_);

}
action {

let

NewArtifact_=undef,

R1_=undef,

NewStateInstance_=undef,

R2_=undef

in seq {
delete(StateInstance_);

delete(R6_);

new(StateInstance(NewStateInstance_)in DSM.model.M1);

new(instanceOf(NewStateInstance_,NextState_));

new (Case.currentState(R2_,Case_,NewStateInstance_));

new(Artifact(NewArtifact_)in Case_);

new(instanceOf(NewArtifact_,Bag_));

new (Artifact(Artifact_) in NewArtifact_);

new (Artifact(Artifact2_) in NewArtifact_);

new (Case.contains(R1_,Case_,NewArtifact_));

setValue(AttributeValue_,"true");

println("Prescription is checked");

println(name(Case_)+" Case requires prescription to be checked");

}
}

}

Successful Check on Time Rule

gtrule Rule_SucessfullCheckOntime() =

{

precondition pattern lhs(Case_,AttributeValue_,Artifact_,

Artifact2_, StateInstance_, NextState_,R6_) =

{
Case(Case_);

AttributeValue(AttributeValue_);

find RequiresChecked(Case_,AttributeValue_);

find DPassigned (Case_,RoleInstance_,Role_,Person_);

find FilledPrescriptionExist(Case_,Artifact_,ArtifactType_);

find LabelExist (Case_,Artifact2_, ArtifactType2_);

State(State_);

State(NextState_);

StateInstance(StateInstance_);

Adwoa Dansoa Donyina 333 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

Case.currentState(R6_,Case_,StateInstance_);

State.next(R7,State_,NextState_);

find getEndTime(Deadline_, Day_,Month_,Year_,Hour_,Minute_);

find getTime(Time_, Day1_,Month1_,Year1_,Hour1_,Minute1_);

check ((60*toInteger(value(Hour1_)) + toInteger(value(Minute1_)))

<=((60*toInteger(value(Hour_))) +toInteger(value(Minute_))));

}
action {

let

NewStateInstance_=undef,

R2_=undef

in seq{
delete(StateInstance_);

delete(R6_);

new(StateInstance(NewStateInstance_)in DSM.model.M1);

new(instanceOf(NewStateInstance_,NextState_));

new (Case.currentState(R2_,Case_,NewStateInstance_));

setValue(AttributeValue_,"true");

}
println("Prescription is checked");

println(name(Case_)+" Case requires prescription to be checked");

}
}

Successful Check Less Than 5 Minutes Late

gtrule Rule_SucessfullCheckLessthan5() =

{
precondition pattern lhs(Case_,AttributeValue_,Artifact_,

Artifact2_, StateInstance_, NextState_,R6_ ) =

{
Case(Case_);

AttributeValue(AttributeValue_);

find RequiresChecked(Case_,AttributeValue_);

find DPassigned (Case_,RoleInstance_,Role_,Person_);

find FilledPrescriptionExist(Case_,Artifact_,ArtifactType_);

find LabelExist (Case_,Artifact2_, ArtifactType2_);

State(State_);

State(NextState_);

StateInstance(StateInstance_);

Case.currentState(R6_,Case_,StateInstance_);

State.next(R7,State_,NextState_);

find getEndTime(Deadline_, Day_,Month_,Year_,Hour_,Minute_);

find getTime(Time_, Day1_,Month1_,Year1_,Hour1_,Minute1_);

check ((60*toInteger(value(Hour1_)) + toInteger(value(Minute1_))) >

((60*toInteger(value(Hour_))) +toInteger(value(Minute_))));

Adwoa Dansoa Donyina 334 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

check ((60*toInteger(value(Hour1_)) + toInteger(value(Minute1_))-5) <=

((60*toInteger(value(Hour_))) +toInteger(value(Minute_))));

}
action {

let

NewStateInstance_=undef,

R2_=undef

in seq{
delete(StateInstance_);

delete(R6_);

new(StateInstance(NewStateInstance_)in DSM.model.M1);

new(instanceOf(NewStateInstance_,NextState_));

new (Case.currentState(R2_,Case_,NewStateInstance_));

}

setValue(AttributeValue_,"true");

println("Prescription is checked");

println(name(Case_)+" Case requires prescription to be checked");

}
}

Successful Check More Than 5 Minutes Late

gtrule Rule_SucessfullCheckMorethan5() =

{
precondition pattern lhs(Case_,AttributeValue_,Artifact_,Artifact2_,

StateInstance_, NextState_,R6_ ) =

{
Case(Case_);

AttributeValue(AttributeValue_);

find RequiresChecked(Case_,AttributeValue_);

find DPassigned (Case_,RoleInstance_,Role_,Person_);

find FilledPrescriptionExist(Case_,Artifact_,ArtifactType_);

find LabelExist (Case_,Artifact2_, ArtifactType2_);

State(State_);

State(NextState_);

StateInstance(StateInstance_);

Case.currentState(R6_,Case_,StateInstance_);

State.next(R7,State_,NextState_);

find getEndTime(Deadline_, Day_,Month_,Year_,Hour_,Minute_);

find getTime(Time_, Day1_,Month1_,Year1_,Hour1_,Minute1_);

check ((60*toInteger(value(Hour1_)) + toInteger(value(Minute1_))) >

((60*toInteger(value(Hour_))) +toInteger(value(Minute_))));

check ((60*toInteger(value(Hour1_)) + toInteger(value(Minute1_))-5) >

((60*toInteger(value(Hour_))) +toInteger(value(Minute_))));

}
action {

let

Adwoa Dansoa Donyina 335 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

NewStateInstance_=undef,

R2_=undef

in seq{

delete(StateInstance_);

delete(R6_);

new(StateInstance(NewStateInstance_)in DSM.model.M1);

new(instanceOf(NewStateInstance_,NextState_));

new (Case.currentState(R2_,Case_,NewStateInstance_));

setValue(AttributeValue_,"true");

}
println("Prescription is checked");

println(name(Case_)+" Case requires prescription to be checked");

}
}

A.3.6 Counsel Rules

Default Counsel Rule

gtrule Rule_Counsel() =

{
precondition pattern lhs(Case_,AttributeValue_,

StateInstance_, NextState_,R6_) =

{
Case(Case_);

AttributeValue(AttributeValue_);

AttributeValue(AttributeValue2_);

find RequiresCounsel(Case_, AttributeValue_);

neg find RequiresChecked(Case_,AttributeValue2_);

Case.has(R4,Case_,AttributeValue_);

find DPassigned (Case_,RoleInstance_,Role_,Person_);

find CAssigned (Case_,RoleInstance2_,Role2_,Person2_);

Clock(Clock_);

Clock.Time(Time_);

Case.deadline(Deadline_);

Clock.attr(R1,Clock_,Time_);

find getTime(Time_, Day_,Month_,Year_,Hour_,Minute_);

Case.attr1(R2, Case_,Deadline_);

find getEndTime(Deadline_, Day2_,Month2_,Year2_,Hour2_,Minute2_);

State(State_);

State(NextState_);

StateInstance(StateInstance_);

Case.currentState(R6_,Case_,StateInstance_);

State.next(R7,State_,NextState_);

}
action {

let

NewStateInstance_=undef,

R2_=undef

Adwoa Dansoa Donyina 336 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

in seq {

delete(StateInstance_);

delete(R6_);

// create Class inside the Case

new(StateInstance(NewStateInstance_)in DSM.model.M1);

//create instanceOf relation with the Artifact:ArtifactType

new(instanceOf(NewStateInstance_,NextState_));

new (Case.currentState(R2_,Case_,NewStateInstance_));

setValue(AttributeValue_,"true");

println("Counselling done ");

}
println(name(Case_)+" Case requires counselling");

}

}

Counsel Late

gtrule Rule_CounselLate() =

{
precondition pattern lhs(Case_,AttributeValue_,

StateInstance_, NextState_,R6_) =

{
Case(Case_);

AttributeValue(AttributeValue_);

AttributeValue(AttributeValue2_);

find RequiresCounsel(Case_, AttributeValue_);

neg find RequiresChecked(Case_,AttributeValue2_);

Case.has(R4,Case_,AttributeValue_);

find DPassigned (Case_,RoleInstance_,Role_,Person_);

find CAssigned (Case_,RoleInstance2_,Role2_,Person2_);

Clock(Clock_);

Clock.Time(Time_);

Case.deadline(Deadline_);

Clock.attr(R1,Clock_,Time_);

find getTime(Time_, Day_,Month_,Year_,Hour_,Minute_);

Case.attr1(R2, Case_,Deadline_);

find getEndTime(Deadline_, Day2_,Month2_,Year2_,Hour2_,Minute2_);

check ((60*toInteger(value(Hour_)) + toInteger(value(Minute_)))

< (60*toInteger(value(Hour2_)) +toInteger(value(Minute2_))));

State(State_);

State(NextState_);

StateInstance(StateInstance_);

Case.currentState(R6_,Case_,StateInstance_);

State.next(R7,State_,NextState_);

}
action {

let

NewStateInstance_=undef,

R2_=undef

in seq {

Adwoa Dansoa Donyina 337 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

delete(StateInstance_);

delete(R6_);

new(StateInstance(NewStateInstance_)in DSM.model.M1);

new(instanceOf(NewStateInstance_,NextState_));

new (Case.currentState(R2_,Case_,NewStateInstance_));

setValue(AttributeValue_,"true");

println("Counselling done ");

}
println(name(Case_)+" Case requires counselling");

}

}

Counsel High Priority Case

gtrule Rule_CounselHigh() =

{
precondition pattern lhs(Case_,AttributeValue_,

StateInstance_, NextState_,R6_) =

{
Case(Case_);

AttributeValue(AttributeValue_);

AttributeValue(AttributeValue2_);

find RequiresCounsel(Case_, AttributeValue_);

neg find RequiresChecked(Case_,AttributeValue2_);

Case.has(R4,Case_,AttributeValue_);

find DPassigned (Case_,RoleInstance_,Role_,Person_);

find CAssigned (Case_,RoleInstance2_,Role2_,Person2_);

Case.priority(Priority_);

Case.attr2(R1,Case_,Priority_);

check (value(Priority_)=="3");

State(State_);

State(NextState_);

StateInstance(StateInstance_);

Case.currentState(R6_,Case_,StateInstance_);

State.next(R7,State_,NextState_);

}
action {

let

NewStateInstance_=undef,

R2_=undef

in seq {
delete(StateInstance_);

delete(R6_);

new(StateInstance(NewStateInstance_)in DSM.model.M1);

//create instanceOf relation with the Artifact:ArtifactType

new(instanceOf(NewStateInstance_,NextState_));

new (Case.currentState(R2_,Case_,NewStateInstance_));

setValue(AttributeValue_,"true");

println("Counselling done ");

Adwoa Dansoa Donyina 338 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

}
println(name(Case_)+" Case requires counselling");

}

}

Counsel Medium Priority Case

gtrule Rule_CounselMed() =

{
precondition pattern lhs(Case_,AttributeValue_,

StateInstance_, NextState_,R6_) =

{
Case(Case_);

AttributeValue(AttributeValue_);

Case.has(R4,Case_,AttributeValue_);

AttributeValue(AttributeValue2_);

find RequiresCounsel(Case_, AttributeValue_);

neg find RequiresChecked(Case_,AttributeValue2_);

find DPassigned (Case_,RoleInstance_,Role_,Person_);

find CAssigned (Case_,RoleInstance2_,Role2_,Person2_);

Case.priority(Priority_);

Case.attr2(R1,Case_,Priority_);

check (value(Priority_)=="1");

State(State_);

State(NextState_);

StateInstance(StateInstance_);

Case.currentState(R6_,Case_,StateInstance_);

State.next(R7,State_,NextState_);

}
action {

let

NewStateInstance_=undef,

R2_=undef

in seq {

delete(StateInstance_);

delete(R6_);

new(StateInstance(NewStateInstance_)in DSM.model.M1);

new(instanceOf(NewStateInstance_,NextState_));

new (Case.currentState(R2_,Case_,NewStateInstance_));

setValue(AttributeValue_,"true");

}
println("Counselling done ");

println(name(Case_)+" Case requires counselling");

}

}

Adwoa Dansoa Donyina 339 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

Counsel Low Priority Case

gtrule Rule_CounselLow() =

{
precondition pattern lhs(Case_,AttributeValue_, StateInstance_, NextState_,R6_) =

{
Case(Case_);

AttributeValue(AttributeValue_);

AttributeValue(AttributeValue2_);

find RequiresCounsel(Case_, AttributeValue_);

neg find RequiresChecked(Case_,AttributeValue2_);

Case.has(R4,Case_,AttributeValue_);

find DPassigned (Case_,RoleInstance_,Role_,Person_);

find CAssigned (Case_,RoleInstance2_,Role2_,Person2_);

Case.priority(Priority_);

Case.attr2(R1,Case_,Priority_);

check (value(Priority_)=="-1");

State(State_);

State(NextState_);

StateInstance(StateInstance_);

Case.currentState(R6_,Case_,StateInstance_);

State.next(R7,State_,NextState_);

}
action {
let

NewStateInstance_=undef,

R2_=undef

in seq {
delete(StateInstance_);

delete(R6_);

new(StateInstance(NewStateInstance_)in DSM.model.M1);

new(instanceOf(NewStateInstance_,NextState_));

new (Case.currentState(R2_,Case_,NewStateInstance_));

setValue(AttributeValue_,"true");

println("Counselling done ");

println(name(Case_)+" Case requires counselling");

}

}
}

A.3.7 Give Payment Rule

gtrule Rule_GivePayment() =

{

precondition pattern lhs(Case_,Payment_, StateInstance_, NextState_,R6_) =

{
Case(Case_);

ArtifactType(Payment_);

Adwoa Dansoa Donyina 340 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

check(name(Payment_)=="Payment");

find PCAssigned (Case_,RoleInstance_,Role_,Person_);

find CAssigned (Case_,RoleInstance2_,Role2_,Person2_);

neg find PaymentExist (Case_) ;

State(State_);

State(NextState_);

StateInstance(StateInstance_);

Case.currentState(R6_,Case_,StateInstance_);

State.next(R7,State_,NextState_);

}
action {

let

NewArtifact_=undef,

R1_=undef,

NewStateInstance_=undef,

R2_=undef

in seq {
delete(StateInstance_);

delete(R6_);

new(StateInstance(NewStateInstance_)in DSM.model.M1);

new(instanceOf(NewStateInstance_,NextState_));

new (Case.currentState(R2_,Case_,NewStateInstance_));

new(Artifact(NewArtifact_)in Case_);

new(instanceOf(NewArtifact_,Payment_));

new (Case.contains(R1_,Case_,NewArtifact_));

println("Payment received");

println(name(Case_)+" Case received payment from customer");

}
}

}

A.4 Patterns

A.4.1 “Exist” Patterns

pattern Trigger1Exist (Case_)={

Case(Case_);

Escalation(Level_);

Case.escalations(R1,Case_, Level_);

check (name(Level_)=="level1");

}

pattern Trigger2Exist (Case_)={

Case(Case_);

Adwoa Dansoa Donyina 341 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

Escalation(Level_);

Case.escalations(R1,Case_, Level_);

check (name(Level_)=="level2");

}
pattern Trigger3Exist (Case_)={

Case(Case_);

Escalation(Level_);

Case.escalations(R1,Case_, Level_);

check (name(Level_)=="level3");

}
//Case contains an instance of Payment:ArtifactType

pattern PaymentExist (Case_)={
Artifact(Artifact_);

ArtifactType(ArtifactType_);

Case(Case_);

Case.contains(Rel, Case_, Artifact_);

typeOf(ArtifactType_,Artifact_);

check (name(ArtifactType_)=="Payment");

}

//Case contains an instance of Label:ArtifactType

pattern LabelExist (Case_)={
Artifact(Artifact_);

ArtifactType(ArtifactType_);

Case(Case_);

Case.contains(Rel, Case_, Artifact_);

typeOf(ArtifactType_,Artifact_);

check (name(ArtifactType_)=="Label");

}

//Case contains an instance of Label:ArtifactType

pattern LabelExist (Case_,Artifact_, ArtifactType_)={
Artifact(Artifact_);

ArtifactType(ArtifactType_);

Case(Case_);

Case.contains(Rel, Case_, Artifact_);

typeOf(ArtifactType_,Artifact_);

check (name(ArtifactType_)=="Label");

}
//Case contains an instance of TypedPrescription:ArtifactType

pattern TypedPrescriptionExist(Case_)={
Artifact(Artifact_);

ArtifactType(ArtifactType_);

Case(Case_);

Case.contains(Rel, Case_, Artifact_);

typeOf(ArtifactType_,Artifact_);

check (name(ArtifactType_)=="TypedPrescription");

}

//Case contains an instance of TypedPrescription:ArtifactType

pattern TypedPrescriptionExist(Case_,Artifact_, ArtifactType_)={
Artifact(Artifact_);

ArtifactType(ArtifactType_);

Case(Case_);

Case.contains(Rel, Case_, Artifact_);

typeOf(ArtifactType_,Artifact_);

Adwoa Dansoa Donyina 342 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

check (name(ArtifactType_)=="TypedPrescription");

}

//Case contains an instance of Prescription:ArtifactType

pattern PrescriptionExist(Case_)={
Artifact(Artifact_);

ArtifactType(ArtifactType_);

Case(Case_);

Case.contains(Rel, Case_, Artifact_);

typeOf(ArtifactType_,Artifact_);

check (name(ArtifactType_)=="Prescription");

}

//Case contains an instance of FilledPrescription:ArtifactType

pattern FilledPrescriptionExist(Case_)={
Artifact(Artifact_);

ArtifactType(ArtifactType_);

Case(Case_);

Case.contains(Rel, Case_, Artifact_);

typeOf(ArtifactType_,Artifact_);

check (name(ArtifactType_)=="FilledPrescription");

}
//Case contains an instance of FilledPrescription:ArtifactType

pattern FilledPrescriptionExist(Case_,Artifact_, ArtifactType_)={
Artifact(Artifact_);

ArtifactType(ArtifactType_);

Case(Case_);

Case.contains(Rel, Case_, Artifact_);

typeOf(ArtifactType_,Artifact_);

check (name(ArtifactType_)=="FilledPrescription");

}

A.4.2 “Assigned” Patterns

pattern isAssign(RoleInstance_)={
RoleInstance(RoleInstance_);

Person(Person_);

Case(Case_);

RoleInstance.presence(R2,RoleInstance_,Case_);

RoleInstance.assignedTo(R1, RoleInstance_,Person_);

}
//DispensingPharmacist Assigned

pattern DPassigned (Case_,RoleInstance_,Role_,Person_) =

{
Person(Person_);

Case(Case_);

Role(Role_);

check (name(Role_)=="DispensingPharmacist");

RoleInstance(RoleInstance_);

typeOf(Role_, RoleInstance_);

RoleInstance.presence(Rel2, RoleInstance_, Case_);

RoleInstance.assignedTo(Rel,RoleInstance_,Person_);

}

Adwoa Dansoa Donyina 343 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

//EntryTechnician Assigned

pattern ETassigned (Case_,RoleInstance_,Role_,Person_) =

{
Person(Person_);

Case(Case_);

Role(Role_);

check (name(Role_)=="EntryTechnician");

RoleInstance(RoleInstance_);

typeOf(Role_, RoleInstance_);

RoleInstance.presence(Rel2, RoleInstance_, Case_);

RoleInstance.assignedTo(Rel,RoleInstance_,Person_);

}

//FillingTechnician Assigned

pattern FTassigned (Case_,RoleInstance_,Role_,Person_) =

{
Person(Person_);

Case(Case_);

Role(Role_);

check (name(Role_)=="FillingTechnician");

RoleInstance(RoleInstance_);

typeOf(Role_, RoleInstance_);

RoleInstance.presence(Rel2, RoleInstance_, Case_);

RoleInstance.assignedTo(Rel,RoleInstance_,Person_);

}
//Customer Assigned

pattern CAssigned (Case_,RoleInstance_,Role_,Person_) =

{
Person(Person_);

Case(Case_);

Role(Role_);

check (name(Role_)=="Customer");

RoleInstance(RoleInstance_);

typeOf(Role_, RoleInstance_);

RoleInstance.presence(Rel2, RoleInstance_, Case_);

RoleInstance.assignedTo(Rel,RoleInstance_,Person_);

}

//Customer Assigned

pattern CAssigned (Case_) =

{
Person(Person_);

Case(Case_);

Role(Role_);

check (name(Role_)=="Customer");

RoleInstance(RoleInstance_);

typeOf(Role_, RoleInstance_);

RoleInstance.presence(Rel2, RoleInstance_, Case_);

RoleInstance.assignedTo(Rel,RoleInstance_,Person_);

}
//PharmacyCashier Assigned

pattern PCAssigned (Case_,RoleInstance_,Role_,Person_) =

{
Person(Person_);

Case(Case_);

Role(Role_);

check (name(Role_)=="PharmacyCashier");

RoleInstance(RoleInstance_);

typeOf(Role_, RoleInstance_);

RoleInstance.presence(Rel2, RoleInstance_, Case_);

RoleInstance.assignedTo(Rel,RoleInstance_,Person_);

}

Adwoa Dansoa Donyina 344 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

pattern checkIfAssigned2 (Case_,RoleInstance_,Role_,Person_) =

{
Person(Person_);

Case(Case_);

Role(Role_);

RoleInstance(RoleInstance_);

typeOf(Role_, RoleInstance_);

RoleInstance.presence(Rel2, RoleInstance_, Case_);

RoleInstance.assignedTo(Rel,RoleInstance_,Person_);

}

A.4.3 “Free Person” Patterns

pattern freePerson(Person_, Free_)={
Person(Person_);

Person.free(Free_);

Person.attr(P1,Person_,Free_);

check (toBoolean(value(Free_)) == true);

}

pattern freePerson(Actor_,Person_, Free_, Case_)={
Case(Case_);

Person(Person_);

Person.free(Free_);

Person.attr(P1,Person_,Free_);

Actor(Actor_);

typeOf(Actor_, Person_);

check (toBoolean(value(Free_)) == true);

Person.groupNo(Store_);

Person.group(R2_,Person_,Store_);

Case.groupNo(Store2_);

Case.group(R3_,Case_,Store2_);

check (value(Store_)== value(Store2_));

}

pattern freePersonCapability(Actor_,Role_,Person_, Free_, Case_)={
Case(Case_);

Person(Person_);

Person.free(Free_);

Person.attr(P1,Person_,Free_);

Actor(Actor_);

Role(Role_);

Capability(Capability_);

Role.required(R1,Role_,Capability_);

Person.actual(R2,Person_,Capability_);

check (toBoolean(value(Free_)) == true);

Person.groupNo(Store_);

Person.group(R2_,Person_,Store_);

Case.groupNo(Store2_);

Case.group(R3_,Case_,Store2_);

check (value(Store_)== value(Store2_));

}

Adwoa Dansoa Donyina 345 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

or{
find freePerson(Actor_,Person_, Free_, Case_);

}

pattern freePersonPolicy(Actor_,Person_, Free_, Case_)={
Case(Case_);

Person(Person_);

Person.free(Free_);

Person.attr(P1,Person_,Free_);

Actor(Actor_);

typeOf(Actor_, Person_);

check (toBoolean(value(Free_)) == true);

Person.groupNo(Store_);

Person.group(R2_,Person_,Store_);

Case.groupNo(Store2_);

Case.group(R3_,Case_,Store2_);

check (value(Store_)== value(Store2_));

}
or

{
Case(Case_);

Actor(Actor2_);

Actor(Actor_);

Actor.super(R3_,Actor2_,Actor_);

find freePersonPolicy(Actor2_,Person2_, Free2_, Case_);

}

pattern freePersonCapabilityPolicy(Actor_,Role_,Person_, Free_, Case_)={
Case(Case_);

Person(Person_);

Person.free(Free_);

Person.attr(P1,Person_,Free_);

Actor(Actor_);

Role(Role_);

Capability(Capability_);

Role.required(R1,Role_,Capability_);

Person.actual(R2,Person_,Capability_);

check (toBoolean(value(Free_)) == true);

Person.groupNo(Store_);

Person.group(R2_,Person_,Store_);

Case.groupNo(Store2_);

Case.group(R3_,Case_,Store2_);

check (value(Store_)== value(Store2_));

}
or{

find freePersonPolicy(Actor_,Person_, Free_, Case_);

}

Adwoa Dansoa Donyina 346 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

A.4.4 “Requires” Patterns

pattern RequiresState(State_,Role_)={
State(State_);

Role(Role_);

State.requires(R1_,State_,Role_);

}

pattern RequiresCounsel(Case_, AttributeValue_)={
Case(Case_);

AttributeValue(AttributeValue_);

Case.has(R1,Case_,AttributeValue_);

AttributeDeclaration(AttributeDeclaration_);

typeOf(AttributeDeclaration_,AttributeValue_);

check (name(AttributeDeclaration_) == "counsel");

check(value(AttributeValue_)=="false");

}

//check if Case requires to be checked

pattern RequiresChecked(Case_, AttributeValue_)={
Case(Case_);

AttributeValue(AttributeValue_);

Case.has(R1,Case_,AttributeValue_);

AttributeDeclaration(AttributeDeclaration_);

typeOf(AttributeDeclaration_,AttributeValue_);

check (name(AttributeDeclaration_) == "checked");

check(value(AttributeValue_)=="false");

}

A.4.5 RoleInstance Presence on Case

pattern RoleInstance(Case_, Role_)={
Case(Case_);

Role(Role_);

RoleInstance(RoleInstance_);

typeOf(Role_,RoleInstance_);

RoleInstance.presence(R1,RoleInstance_,Case_);

}

A.4.6 Time Patterns

pattern getStartTime(Time_, Day_,Month_,Year_,Hour_,Minute_)={
Case.startTime(Time_);

Integer(Day_);

Integer(Month_);

Integer(Year_);

Integer(Hour_);

Integer(Minute_);

DateTime.day(R2_,Time_,Day_);

DateTime.month(R3_,Time_,Month_);

Adwoa Dansoa Donyina 347 Thesis 2011



APPENDIX A. STADY GT RULE VIATRA2 SYNTAX CATALOGUE

DateTime.year(R4_,Time_,Year_);

DateTime.hour(R5_,Time_,Hour_);

DateTime.minute(R6_,Time_,Minute_);

}

pattern getTime(Time_, Day_,Month_,Year_,Hour_,Minute_)={
Clock.Time(Time_);

Integer(Day_);

Integer(Month_);

Integer(Year_);

Integer(Hour_);

Integer(Minute_);

DateTime.day(R2_,Time_,Day_);

DateTime.month(R3_,Time_,Month_);

DateTime.year(R4_,Time_,Year_);

DateTime.hour(R5_,Time_,Hour_);

DateTime.minute(R6_,Time_,Minute_);

}

pattern getEndTime(Time_, Day_,Month_,Year_,Hour_,Minute_)={
Case.deadline(Time_);

Integer(Day_);

Integer(Month_);

Integer(Year_);

Integer(Hour_);

Integer(Minute_);

DateTime.day(R2_,Time_,Day_);

DateTime.month(R3_,Time_,Month_);

DateTime.year(R4_,Time_,Year_);

DateTime.hour(R5_,Time_,Hour_);

DateTime.minute(R6_,Time_,Minute_);

}

Adwoa Dansoa Donyina 348 Thesis 2011



Bibliography

[1] M. A. Adibi, M. Zandieh, and M. Amiri. Multi-objective scheduling of

dynamic job shop using variable neighborhood search. Expert System

Application, 37:282–287, January 2010.

[2] Adobe, BEA, Oracle, Active Endpoints, IBM, and SAP. Web service

human task (WS-HumanTask). URL: http: // incubator. apache.

org/ hise/ WS-HumanTask_ v1. pdf , (1.0), June 2007 (Accessed Oct 1

2008).

[3] Alessandra Agostini and Giorgio De Michelis. Improving flexibility of

workflow management systems. In Wil van der Aalst, Jörg Desel, and

Andreas Oberweis, editors, Business Process Management, volume 1806

of Lecture Notes in Computer Science, pages 289–342. Springer Berlin

Heidelberg, 2000.

[4] Ariba, International Business Machines Corporation, and Microsoft.

Web services description language (WSDL) 1.1. URL: http: // www.

w3. org/ TR/ wsdl , 2001 (Accessed December 1 2008).

349



BIBLIOGRAPHY

[5] Colin Atkinson and Thomas Kühne. Model-driven development: A

metamodeling foundation. IEEE Software, 20(5):36–41, September

2003.

[6] Björn Axenath, Ekkart Kindler, and Vladimir Rubin. The aspects of

business processes: An open and formalism independent ontology. Tech-

nical Report tr-ri-05-256, Computer Science Department, University of

Paderborn, 2005.

[7] Moulinath Banerjee. A note on the exponential distribu-

tion. URL: http: // www. stat. lsa. umich. edu/ ~ moulib/

note-exponential. pdf , 2007 (Accessed Feburary 27 2011).

[8] Jerry Banks, John S. Carson, Barry L. Nelson, and David M. Nicol.

Discrete-Event System Simulation. Prentice Hall, third edition, 2000.

[9] Jean Bezivin, Frederic Jouault, and Patrick Valduriez. On the Need for

Megamodels. In Proceedings of Workshop on Best Practices for Model-

Driven Software Development at the 19th Annual ACM Conference on

Object-Oriented Programming, Systems, Languages, and Applications.,

Vancouver, British Columbia, Canada, October 2004. ACM Inc.

[10] BOC-Group. ADONIS:Community Edition. URL: http: // www.

adonis-community. com/ , 2010 (Accessed September 14 2010).

[11] Jeremy T. Bradley. Semi-markov PEPA: Modelling with generally dis-

tributed actions. International Simulation Journal, 6(3-4):43–51, 2005.

Adwoa Dansoa Donyina 350 Thesis 2011



BIBLIOGRAPHY

[12] Fabio Casati, Stefano Ceri, Stefano Paraboschi, and Guiseppe Pozzi.

Specification and implementation of exceptions in workflow management

systems. ACM Trans. Database Syst., 24(3):405–451, 1999.

[13] Jayeeta Chanda, Ananya Kanjilal, Sabnam Sengupta, and Swapan

Bhattacharya. Traceability of requirements and consistency verification

of UML usecase, activity and class diagram: A formal approach. In

International Conference on Methods and Models in Computer Science,

pages 1–4. IEEE, 2009.

[14] GAMS Development Corporation. General Algebraic Modeling System

(GAMS). URL: http: // www. gams. com/ , 2010 (Accessed October 1

2010).

[15] Shoppers Drug Mart Corporation. Shoppers Drug Mart. URL: http:

// www. shoppersdrugmart. ca/ , 2011 (Accessed April 8 2011).

[16] Peter Cowling and Marcus Johansson. Using real time information for

effective dynamic scheduling. European Journal of Operational Research,

139(2):230–244, June 2002.

[17] Joel M. Crichlow. An Introduction to Distributed and Parallel Comput-

ing. Prentice Hall, 1997.

[18] Ralph Depke, Reiko Heckel, and Jochen Küster. Agent-oriented model-

ing with graph transformation. In Agent-Oriented Software Engineering:

First International Workshop, AOSE 2000 Limerick, Ireland, June 10,

2000 Revised Papers, volume 1957 of LNCS, pages 105–119, Berlin, Hei-

delberg, 2001. Springer-Verlag.

Adwoa Dansoa Donyina 351 Thesis 2011



BIBLIOGRAPHY

[19] Ralph Depke, Reiko Heckel, and Jochen Malte Küster. Formal agent-

oriented modeling with UML and graph transformation. In Sci. Com-

put. Program., volume 44, pages 229–252, Amsterdam, The Netherlands,

2002. Elsevier North-Holland, Inc.

[20] Marlon Dumas, Wil M. van der Aalst, and Arthur H.M.ter Hofstede,

editors. Process-Aware Information Systems : Bridging People and

Software through Process Technology. Wiley-Interscience, Hoboken, NJ,

2005.

[21] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Alge-

braic Graph Transformation (Monographs in Theoretical Computer Sci-

ence. An EATCS Series). Springer-Verlag New York, Inc., Secaucus,

NJ, USA, 2006.

[22] Brian Sidney Everitt. The Cambridge Dictionary of Statistics. Cam-

bridge Univ. Press, Cambridge [u.a.], third edition, 2006.

[23] David Ferraiolo and Richard Kuhn. Role-based access control. In 15th

NIST-NCSC National Computer Security Conference, pages 554–563,

1992.

[24] Martin Fowler. UML Distilled. Addison-Wesley, Boston, Massachusetts,

thrid edition, 2004.

[25] Stan Franklin and Art Graesser. Is it an agent, or just a program?:

A taxonomy for autonomous agents. In ECAI ’96: Proceedings of the

Workshop on Intelligent Agents III, Agent Theories, Architectures, and

Languages, pages 21–35, London, UK, 1997. Springer-Verlag.

Adwoa Dansoa Donyina 352 Thesis 2011



BIBLIOGRAPHY

[26] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of

Software Engineering. Prentice Hall PTR, Upper Saddle River, NJ,

USA, 2nd edition, 2002.

[27] Stephen Gilmore and Jane Hillston. The PEPA workbench: A tool

to support a process algebra-based approach to performance modelling.

In In Proceedings of the Seventh International Conference on Modelling

Techniques and Tools for Computer Performance Evaluation, number

794 in Lecture Notes in Computer Science, pages 353–368. Springer-

Verlag, 1994.

[28] Cesar Gonazalez-Perez and Brian Henderson-Sellers. Metamodelling for

Software Engineering. John Wiley & Sons Ltd., 2008.

[29] LASER Process Working Group. Little-JIL 1.5 Language Report. Tech-

nical report, Laboratory for Advanced Software Engineering Research,

University of Massachusetts, Amherst, 1997-2006.

[30] Reiko Heckel and Paolo Torrini. Stochastic modelling and simulation of

mobile systems. In Gregor Engels, Claus Lewerentz, Wilhelm Schäfer,

Andy Schürr, and Bernhard Westfechtel, editors, Graph Transforma-

tions and Model-Driven Engineering, volume 5765 of Lecture Notes in

Computer Science, pages 87–101. Springer Berlin / Heidelberg, 2010.

[31] Reiko Heckel and Annika Wagner. Ensuring consistency of conditional

graph grammars - a constructive approach. In Proc. of SEGRAGRA’95

“Graph Rewriting and Computation”, volume 2 of Electronic Notes in

Theoretical Computer Science (ENTCS), pages 118–126, 1995.

Adwoa Dansoa Donyina 353 Thesis 2011



BIBLIOGRAPHY

[32] Peter Heimann, Gregor Joeris, Carl-Arndt Krapp, and Bernhard West-

fechtel. DYNAMITE: dynamic task nets for software process manage-

ment. In ICSE ’96: Proceedings of the 18th international conference

on Software engineering, pages 331–341, Washington, DC, USA, 1996.

IEEE Computer Society.

[33] IBM. Image and Workflow Library FlowMark Design Guidelines. Num-

ber 2.3. IBM Redbooks, 1998.

[34] IBM and SAP. WS-BPEL extension for people BPEL4People. Tech-

nical report, July 2005 (Accessed date Oct 1 2008).

[35] WebFinance Inc. Business dictionary. URL: http: // www.

businessdictionary. com/ definition/ process-management.

html , 2011 (Accessed February 3 2011).

[36] Michael Jackson. Problem frames: analyzing and structuring software

development problems. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2001.

[37] Stefan Jurack, Leen Lambers, Katharina Mehner, Gabriele Taentzer,

and Gerd Wierse. Object flow definition for refined activity diagrams. In

Marsha Chechik and Martin Wirsing, editors, Fundamental Approaches

to Software Engineering, volume 5503 of Lecture Notes in Computer

Science, pages 49–63. Springer Berlin / Heidelberg, 2009.

[38] Ahmet Karatas, Halit Oguztüzün, and Ali Dogru. Global constraints

on feature models. In David Cohen, editor, Principles and Practice of

Adwoa Dansoa Donyina 354 Thesis 2011



BIBLIOGRAPHY

Constraint Programming CP 2010, volume 6308 of Lecture Notes in

Computer Science. Springer Berlin / Heidelberg, 2010.

[39] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling. John

Wiley & Sons Inc., New Jersey, 2008.

[40] Sandy Kemsley and Steve Russell. Getting started with BPM part

iv: The nature of work: Structured versus unstructured. URL: http:

// www. bpm. com/ , 2011 (Accessed March 25 2011).

[41] Manuel Koch, L.V. Mancini, and Francesco Parisi-Presicce. Graph-

based specification of access control policies. Journal of Computer and

System Sciences, 71(1):1 – 33, 2005.

[42] Kleopatra Konstanteli, Tommaso Cucinotta, and Theodora Varvarigou.

Optimum allocation of distributed service workflows with probabilis-

tic real-time guarantees. Service Oriented Computing and Applications,

pages 1–15, 2010. 10.1007/s11761-010-0068-1.

[43] OptXware Research & Development LLC. The VIATRA -

i model transformation framework pattern language specifica-

tion. URL: http: // www. eclipse. org/ gmt/ VIATRA2/ doc/

ViatraSpecification. pdf , 2006 (Accessed August 10 2010).

[44] OptXware Research & Development LLC. The VIATRA -I model

transformation framework users’ guide. URL: http: // www. eclipse.

org/ gmt/ VIATRA2/ doc/ viatratut. pdf , 2007 (Accessed August 10

2010).

Adwoa Dansoa Donyina 355 Thesis 2011



BIBLIOGRAPHY

[45] Microsoft. Developing models for software design. Visual Studio, 2010.

[46] Michael zur Muehlen. Workflow-based Process Controlling: Founda-

tion,Design, and Application of Workflow-driven Process Information

Systems. Logos Verlag Berlin, 2002.

[47] Object Managment Group (OMG). Business process modeling notation

(BPMN). Technical Report Version 1.2, January 2009.

[48] Tom Pender. UMLTM Bible. Wiley Publishing, Inc., Indianapolis, IN,

2003.

[49] Andras Pfeiffer, Botond Kadar, and Laszlo Monostori. Stability-oriented

evaluation of rescheduling strategies, by using simulation. Computers in

Industry, 58(7):630–643, September 2007.

[50] Jenny Preece. Human-Computer Interaction. Addison-Wesley, New

York, 1994.

[51] Corrado Priami. Stochastic π-calculus. The Computer Journal, 38:578–

589, 1995.

[52] Corrado Priami. Stochastic pi-calculus with general distributions. In in

Proc. of the 4th Workshop on Process Algebras and Performance Mod-

elling (PAPM ’96), CLUT, pages 41–57, 1996.

[53] Ruedee Rangsaritratsamee, William G. Ferrell, and Mary Beth Kurz.

Dynamic rescheduling that simultaneously considers efficiency and sta-

bility. Computers & Industrial Engineering, 46(1):1 – 15, 2004.

Adwoa Dansoa Donyina 356 Thesis 2011



BIBLIOGRAPHY

[54] Mohammad S. Raunak and Leon J. Osterweil. Effective resource allo-

cation for process simulation: A position paper. In 6th International

Workshop on Software Process Simulation and Modeling (ProSim), St.

Louis, MO, USA, May 2005.

[55] J. Romn Ubeda and R. Allan. Stochastic simulation and monte carlo

methods applied to the assessment of hydro-thermal generating system

operation. In TOP: An Official Journal of the Spanish Society of Statis-

tics and Operations Research, volume 2, pages 1–23. Springer Berlin /

Heidelberg.

[56] Ravi Sandhu, David Ferraiolo, and Richard Kuhn. The NIST model for

role-based access control: Towards a unified standard. In In Proceedings

of the fifth ACM workshop on Role-based access control, pages 47–63,

2000.

[57] Ravi S. Sandhu. Role-based access control. In Advances in Computers,

volume 46, pages 237–286. Academic Press, 1998.

[58] Sunil K. Sarin. Workflow and data management in inconcert. volume 0,

page 497. IEEE Computer Society, Los Alamitos, CA, USA, 1996.

[59] Andy Schürr, Andreas Winter, and Albert Zündorf. Graph grammar

engineering with PROGRES. In Wilhelm Schäfer and Pere Botella,

editors, Software Engineering ESEC ’95, volume 989 of Lecture Notes

in Computer Science, pages 219–234. Springer Berlin / Heidelberg, 1995.

Adwoa Dansoa Donyina 357 Thesis 2011



BIBLIOGRAPHY

[60] Daniel G. Shimshak, Dru Gropp Damico, and Hope D. Burden. A

priority queuing model of a hospital pharmacy unit. European Journal

of Operational Research, 7(4):350–354, 1981.

[61] Charles W. Spry and Mark A. Lawley. Evaluating hospital pharmacy

staffing and work scheduling using simulation. In WSC ’05: Proceedings

of the 37th conference on Winter simulation, pages 2256–2263. IEEE,

2005.

[62] MathWave Technologies. Mathwave: Data analysis & simulation. URL:

http: // www. mathwave. com/ , 2011 (Accessed February 3 2011).

[63] OASIS . OASIS web services business process execution language

(WSBPEL) tc. URL: http: // www. oasis-open. org/ committees/

tc_ home. php? wg_ abbrev= wsbpel , 2011 (Accessed March 3 2011).

[64] Adobe, BEA, Oracle, Active Endpoints, IBM, and SAP. WS-

BPEL Extension for People (BPEL4People),. URL: http:

// public. dhe. ibm. com/ software/ dw/ specs/ ws-bpel4people/

BPEL4People_ v1. pdf , (Version 1.0), June 2007 (Accessed Oct 2

2008).

[65] Object Managment Group (OMG). BPMN elements and at-

tributes. URL: http: // www. omg. org/ bpmn/ Documents/ BPMN_

Elements_ and_ Attributes. pdf , 2009 (Accessed March 25 2011).

[66] Object Managment Group (OMG). OMG’s MetaObject Facility

(MOF). URL: http: // www. omg. org/ mof/ , 2011 (Accessed March

15 2011).

Adwoa Dansoa Donyina 358 Thesis 2011



BIBLIOGRAPHY

[67] Object Managment Group (OMG). UML resource page. URL: http:

// www. uml. org/ , 2011 (Accessed March 5 2011).

[68] Paolo Torrini, Reiko Heckel, and István Ráth. Stochastic simulation

of graph transformation systems. In Fundamental Approaches to Soft-

ware Engineering (FASE), volume 6013 of Lecture Notes in Computer

Science, pages 154–157. Springer Berlin / Heidelberg, 2010.

[69] Illse Truter. Dispensing service research-pilot project. Pharmaciae-

Official publication of the South African Pharmacy Council, 14(1):20–

23, April 2006.

[70] Wil M. P. van der Aalst and Kees van Hee. Workflow Management:

Models, Methods, and Systems. MIT Press, 2002.

[71] Dániel Varró and András Pataricza. VPM: A visual, precise and mul-

tilevel metamodeling framework for describing mathematical domains

and UML (The Mathematics of Metamodeling is Metamodeling Mathe-

matics). Software and Systems Modeling, V2(3):187–210, October 2003.

[72] VIATRA2. VIsual Automated model TRAnsformations framework.

URL: http: // wiki. eclipse. org/ VIATRA2 , (Accessed August 5

2010).

[73] Hans Van Vliet. Software Engineering: Principles and Practice. John

Wiley & Sons ltd, Etobicoke, Ontario, 2003.

[74] Markus Völter and Thomas Stahl. Model-Driven Software Development.

Wiley & Sons, 1 edition, May 2006.

Adwoa Dansoa Donyina 359 Thesis 2011



BIBLIOGRAPHY

[75] Thomas von der Maβen and Horst Lichter. Determining the variation

degree of feature models. In Henk Obbink and Klaus Pohl, editors, Soft-

ware Product Lines, volume 3714 of Lecture Notes in Computer Science,

pages 82–88. Springer Berlin / Heidelberg, 2005.

[76] Eric W. Weisstein. Central limit theorem. URL: http: // mathworld.

wolfram. com/ CentralLimitTheorem. html , 2011 (Accessed March

10 2011). From MathWorld–A Wolfram Web Resource.

[77] Junchao Xiao, Leon J. Osterweil, Qing Wang, and Mingshu Li. Dynamic

resource scheduling in disruption-prone software development environ-

ments. In David S. Rosenblum and Gabriele Taentzer, editors, Fun-

damental Approaches to Software Engineering (FASE), volume 6013 of

Lecture Notes in Computer Science, pages 107–122. Springer, 2010.

Adwoa Dansoa Donyina 360 Thesis 2011


