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Abstract
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isomorphism classes and simplified matching rules’

Author: David Fletcher

This thesis studies several constructions to produce aperiodic tilings with particular
properties. The first chapter of this thesis gives a constructive method, exchanging
edge to edge matching rules for a small atlas of permitted patches, that can decrease
the number of prototiles needed to tile a space. We present a single prototile that
can only tile R3 aperiodically, and a pair of square prototiles that can only tile R2

aperiodically.

The thesis then details a construction that superimposes two unit square tilings
to create new aperiodic tilings. We show with this method that tiling spaces can
be constructed with any desired number of local isomorphism classes, up to (and
including) an infinite value. Hyperbolic variants are also detailed.

The final chapters of the thesis apply the concept of Toeplitz arrays to this
construction, allowing it to be iterated. This gives a general method to produce
new aperiodic tilings, from a set of unit square tilings. Infinite iterations of the
construction are then studied. We show that infinite superimpositions of periodic
tilings are describable as substitution tilings, and also that most Robinson tilings
can be constructed by infinite superimpositions of given periodic tilings. Possible
applications of the thesis are then briefly considered.
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Chapter 1

Introduction

This thesis addresses part of two major questions in the field of aperiodic tilings.

‘What is the least number of prototiles that can describe an aperiodic tiling?’

‘What new aperiodic tilings can be found, and what can we understand about their

tiling spaces?’

Of course we are not assuming that the reader understands these questions at

this point in the thesis. In order to explain these questions, and put them in their

proper context, we will briefly describe the field of aperiodic tilings and its history.

The most familiar tilings are called periodic tilings. These consist of a finite

number of tile types (or prototiles), which are placed together to form a pattern

which is invariant under n linearly independent translations, where n is the dimen-

sion of the space being tiled. This repeating pattern is called a fundamental domain

of the tiling.

A question studied early in the modern branch of tiling theory was if you were

given a finite number of prototiles (and rules on how to put them together), when

could you form a tiling of the plane from them? Mathematician and logician Hao
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Figure 1.1: Periodic tiling invariant under two translations

Wang addressed this problem in 1961. Define a set of Wang (proto)tiles as a set of

unit square tiles with coloured edges. Tiles may be placed next to each other only

if they share a full edge (no partial edges) and their adjoining edges match colours.

Wang conjectured [41] an algorithm to detect whether a given set of Wang

(proto)tiles could tile the plane. This algorithm took the set of prototiles, and

attempted to cover a disk of radius 1 using those prototiles (with no gaps or overlaps

allowed). If this was successful, the algorithm then attempted to cover a disk of

radius 2, then a disk of radius 3, and so on. If a disk of a certain radius could not

be covered, then obviously a tiling of R2 could not be created. Wang argued that

eventually one of these disks of increasing size would be large enough to contain a

fundamental domain of the prototiles, and the domain could thus be extended to

produce a tiling of the whole plane. This would imply that his algorithm would

terminate in a finite time.
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His student, Robert Berger, proved in 1966 that Wang’s algorithm was incorrect

[7], and in fact no such algorithm could exist. He did this by constructing a set of

aperiodic prototiles, which could produce a tiling which could fill the entire plane,

but could not do so with a repeating pattern. A tiling associated to such a set of

prototiles will be called an aperiodic tiling. As such, testing this set of prototiles

with Wang’s algorithm would cause the algorithm never to finish.

Note that aperiodic prototile sets are different from prototile sets that can tile

the plane without a repeating pattern, but can also tile it with a repeating pattern.

For an example take a right angled isosceles triangle. Two of these triangles can be

used to form two different unit squares, with a dividing line running down different

diagonals of the square. By flipping a coin as to which direction the diagonal should

run, you can create a nonperiodic random tiling. By choosing one of the two possible

unit squares and repeating it, you can create a periodic tiling [36].

Figure 1.2: Periodic and random tiling
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(It was also shown, in Berger’s (sadly unpublished) thesis, that Turing machines

could be translated into prototiles, with the prototiles tiling the plane if and only

if the related Turing machine never halted. This result implies that determining

whether a set of tiles could tile the plane is an uncomputable problem. See [8] for

more details on Berger’s construction.)

The aperiodic set of prototiles discovered by Berger was very complex, with

20426 prototiles. New examples were discovered over time, with Berger’s unpub-

lished thesis reducing the number of prototiles needed to 104, Raphael M. Robinson

discovering an aperiodic tiling [33] with 6 prototiles in 1971 (which will be heavily

used in this thesis), and Roger Penrose reducing the number to 2 prototiles, two

years later [31].

This led naturally to considerations about the possible existence of a single

prototile that could only tile the plane aperiodically, referred to as a monotile.

While a simple example has not been forthcoming, by relaxing requirements on the

monotile (such as being defined by shape alone, or connectedness) development has

occurred. In [39] Socolar studied a more general problem, ‘k-isohedral’ monotiles,

which would have an aperiodic monotile as a limiting case. Relaxing conditions

on edge-colouring or non-connected tiles provided partial positive results. Myers

has produced many examples of monotiles with high isohedral numbers, such as

10-isohedral polyhexagons and 6-isohedral polyominoes [29]. In 1996 Gummelt [45]

considered tiles that are allowed to overlap, and produced a decorated tile which

could force aperiodicity. Most recently in early 2010, Socolar and Taylor [40] pro-

duced a disconnected tile that could force aperiodicity.

The second chapter of this thesis is a continuation of this research theme, ex-

panding on an idea by Chaim Goodman-Strauss in [24]. The chapter considers what

happens if we allow matching rules defined by a set of allowable neighbourhoods
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around a tile. The chapter produces a single prototile that can force aperiodicity

in R3 under these new ‘atlas’ matching rules, and perhaps more interestingly gives

an algorithm that can decrease the number of prototiles needed to create a tiling

by switching to atlas matching rules (under a wide set of conditions). This chapter

covers the same material as an article published by the author, [14].

1.1 Types of aperiodic tiling

A wide variety of aperiodic tilings was needed to mature this field. Three ma-

jor methods have been created to generate aperiodic tilings; local matching rules,

projections and substitutions.

The projection method will not be used in this thesis, but for the reader’s

understanding we will give a brief example (with description) of a projection from

2 dimensions, which forms a 1 dimensional tiling. For further details and proofs see

[12] [30].

Choose a lattice Λ of points in R2, and draw a line L of irrational slope (with

respect to the lattice directions) through R2. Consider L⊥, the line orthogonal to

L. Take an compact section W of L⊥ which is the closure of its interior, and does

not contain any point from Λ in its boundary. Call W the window. There will be

a collection of points from Λ in L × W , and the points will not have a repeating

pattern, due to L having irrational slope. Thus projecting points in L×W to L, and

defining the interval between two adjacent points as a tile, will give you an aperiodic

pattern.

This method can be used to generate an aperiodic pattern of R2 by applying

a similar method to higher dimensional spaces. In higher dimensions, you cannot

define a tile as the interval between two points, thus more care has to be taken.
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Figure 1.3: Projection of L×W to L

For example consider an unit 5-cube tessellation T of R5 where the vertices of

the tessellation are the points of the lattice Z5. Choose a plane P embedded in R5

and a window W in P⊥ (the orthogonal complement to P ), such that the window

is a projection of an unit 5-cube of R5 onto P⊥ (to ensure points in P × W are

connected by 2-facets in the tessellation). Project the tessellation in P × W onto

P . The 2-facets of P ×W will be projected onto P , and form tiles of an aperiodic

tiling of R2.

The second major family of aperiodic tilings are tilings generated from a sub-

stitution rule. Let a patch of tiles be a collection of tiles, usually connected and of

finite size. Substitutions are created by choosing a set of prototiles P1 . . . Pn and an

expansion rule σ sending each prototile to a patch of tiles, as shown in figure 1.4.
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Figure 1.4: Four prototiles with their associated expansion rule.
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A tiling T is generated from a set of prototiles and an expansion rule if for every

compact patch P (T ) of T , there exists a N ∈ N such that P (T ) ⊂ σN(Pi) for some

i ∈ {1, . . . , n}. In this thesis we will be concentrating on primitive substitutions,

where there exists a N ∈ N such that P (T ) ⊂ σN(Pi) for all i ∈ {1, . . . , n}.
We will use substitution tilings as examples on which to build our constructions.

Please note that in one dimension, you can represent each tile with a letter, and the

expansion rule as a map from letters to words. Thus one dimensional tilings can be

considered as sequences. In particular we will use the concept of Toeplitz sequences

in some of our later proofs in chapters 7 and 8.

The oldest method of constructing aperiodic tilings (and the one most used in

this thesis) is that of local matching rules.

For local matching rules you construct a rule saying which tiles may be placed

next to each other. A legal tiling is one where all tiles obey the rules. For example,

the tiles used by Wang and Berger had coloured edges, and two tiles could be placed

next to each other only if the matching edges had matching colours and the edges

overlapped fully. This is equivalent to placing bumps and notches in the tiles, in the

same manner as a child’s jigsaw puzzle. Thus the matching rules can be expressed

in terms of tile shape only.

Many variations on this have occurred as mentioned earlier. Tiles have been

allowed to overlap [45], be disconnected [40], or be defined in terms of allowable

local ‘atlases’ of nearby tiles [24].

Note that there is considerable interest in tilings which can be constructed by

more than one of these methods (indeed the original paper [12] describing the pro-

jection method described its use to construct a substitution tiling). For a more

recent example, see [27].
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Figure 1.5: Wang tiles expressed as bumps and notches.

In the later chapters of this thesis (particularly the last two chapters) we will

describe a variation on the matching rule construction which lets you ‘superimpose’

two tilings with unit square tiles to create a third new tiling (with variations for Rn

available). This construction method is examined further, and links to substitution

tilings are detailed.

1.2 Tiling spaces

One of the major difficulties in this field is finding some way to classify tilings

effectively.

Consider figure 1.6 (pictures from [44]). This figure shows us four patches,

each representing a substitution tiling of the plane. The tilings represented by the

top two patches have the same prototiles and substitution rule, but one of them
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is rotationally symmetric and the other is not. The tilings that the bottom two

patches represent use different prototiles (and thus substitution rules), but there

appears to be some correlation between the local patterns in each one (and in fact,

the north-east tiling as well).

Figure 1.6: Are these four tilings different?

In fact all these tilings are locally derivable from each other; for any two tilings

T, T ′, there exists a R > 0 such that the properties of T at any point x ∈ R2 are

determined by the properties of T ′ in a ball of radius R about x. (Two tilings locally

derivable from each other are mutually locally derivable or MLD.)

As can be gathered from the above four tilings, figuring out whether tilings are

MLD is a non-trivial problem (since all possible patches must be considered, for any

given tiling).

To sidestep these issues of figuring out when tilings are locally derivable, mathe-

maticians in this field often concentrate on tiling spaces. While the precise definition
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will be given in chapter 3, definition 15, at this point the reader can consider the

tiling space of a set of prototiles P to be the set of tilings constructible from pro-

totiles in P , under a given set of matching rules. This is topologised by an associated

metric, where two tilings T1 and T2 are ε-close if they agree on a ball of radius (1
ε
)

around the origin, up to small translation (the full definition can be found in chapter

3, definition 14).

This differs slightly from the more common definition of a tiling space in the

literature, which centres around the closure of the set of all tilings which are trans-

lates of a given tiling T under a fixed metric. This version of a tiling space is also

called the (continuous) hull, and we will refer to it as such in this thesis.

The reason for our alternative definition links in with the main method of study-

ing tiling spaces; topological invariants.

Much progress has been made on finding topological invariants for substitu-

tion and projection tilings. Čech cohomology [36], C∗-algebras [21], and dynamical

spectrum have all provided useful invariants to distinguish between tilings, with un-

foreseen applications of the invariants to real-world phenomena. (See the preface of

[36] for an overview). However these invariants tend not to be applicable to local

matching rule tiling spaces, and calculating them for complex substitution tiling

spaces can be strenuous.

For this reason, weaker invariants are a valid field of research. One such invariant

is the number of ‘Local Isomorphism Classes’ of the tiling space. Two tilings are in

the same Local Isomorphism (LI) Class if a copy of each finite patch of one tiling

occurs in the other tiling and vice versa.

This invariant has been an area of study, for example in [34] and [2], but has

suffered from a relative paucity of concrete examples of tilings with more than one
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LI class. This is reflected in the common definition of tiling space (‘hull’ in this

thesis) which only detects tilings in one LI class.

Thus in this thesis we will construct a family of local matching rule tilings that

have n LI classes, for any n ∈ N. Furthermore, we will show examples of tilings

with an infinite number of LI classes, created as a precursor to our construction that

generates a third tiling by superimposing two old ones.

For the final section of our thesis, we will describe possible applications of our

work, including links to Winfree’s model of a method of creating self-assemblying

machines out of Wang tiles [46], and links to computer graphics.

1.3 Summary of chapters

Chapter 1. The introduction to the thesis, and a list of basic definitions used

throughout.

Chapter 2. This chapter gives a constructive method that can decrease the number

of prototiles needed to tile a space, in a wide variety of situations, in exchange for

more complicated matching rules.

Chapter 3. The Robinson tiling space is introduced, and a construction to produce

a new tiling space of the plane with 2 LI classes is illustrated. The construction

combines Robinson tilings and periodic tilings to produce new aperiodic tilings. The

construction can be applied to any tiling of the plane by unit square tiles (assuming

tiles meet edge-to-edge).

18



Chapter 4. The construction is generalized to produce tiling spaces with n LI classes.

In doing so we ensure that our matching rules are defined via sets of edges allowed

to touch (meeting matching rules).

Chapter 5. Examples of tiling spaces in the hyperbolic plane H2 with more than 1

LI class are described. The examples are variations on tiling spaces described in the

previous two chapters.

Chapter 6. Using the existing notion of substitution tilings, a tiling space in R

with an infinite number of LI classes is described. This is then expanded to a two

dimensional example, taking inspiration from the Chair tiling. Following this there

is a short section detailing what we can deduce about a tiling space from the number

of LI classes.

Chapter 7. We introduce the concept of Toeplitz sequences, and use it to rephrase

our construction as one of a family of superposition operations, ∩n, n ∈ N. This

allows us to consider iterations of our operations. We then proceed to show links

between properly defined limits of these operations and substitution tilings in the 1

dimensional case.

Chapter 8. We use Zd Toeplitz arrays to consider a two dimensional version of the ∩
operation. In a link back to earlier chapters, most Robinson tilings are shown to be

constructible via infinite ∩ operations applied to a pair of periodic tilings. Possible

applications of the thesis are then described.
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1.4 Basic definitions

We will give a list of basic definitions used in this thesis. These are all standard

definitions in the field, found in [36] and other sources. Further definitions will be

introduced in relevant chapters.

Definition 1 (Ball). A (closed) ball of radius r about a point x is the set Br(x) =

{y|d(x, y) ≤ r}.

Definition 2 (Wang Tiles). Wang tiles are unit square tiles with coloured edges.

A Wang prototile set is a finite set of Wang tiles. We consider tilings covering the

infinite Euclidean plane using arbitrarily many copies of the tiles in a given Wang

prototile set. Tiles are placed with their edges oriented horizontally and vertically.

The tiles may not be rotated. The tiling is legal if every pair of contiguous edges

has the same colour. [From [1] ]

Definition 3 (Prototile set). For our purposes, a prototile is defined as a labelled

nonempty compact subset of Rd which is the closure of its interior. Sometimes a

prototile is required to be connected, or to be homeomorphic to a closed ball.

In this thesis we require that prototiles have a cell complex as their boundary,

and are connected. Note that Wang tiles are prototiles by this definition, thus Wang

prototile sets are a special type of prototile set. Thus there are vertices (or 0-facets).

Similarly on the boundary of the prototile there are edges (or 1-facets), faces and

so on, up to (d− 1)-facets.

Definition 4 (Tile, patch, tiling). Let G be a group of isometries of Rd, which

includes all translations of Rd. The groups we will be using most in this thesis are

the group of translations GTr and the group of all isometries GI . We will be using

these groups to define legal isometries from prototiles to tiles.
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Define g(U) for some U ⊆ Rd and g ∈ G as the set of points p ∈ Rd such that

g−1(p) ∈ U . For a given set of prototiles P and a group of isometries G, define a

tile t as the image g(P ), for some g ∈ G, P ∈ P . A tile inherits vertices, edges and

other facets from its prototile.

A patch for P is a set of tiles with pairwise disjoint interiors and the support of

a patch is the union of its tiles. A tiling T with prototiles P is a patch with support

Rd. We shall refer to the support of a prototile P as supp(P ).

Definition 5. A tiling T is edge-to-edge if for any facets f1, f2 in the tiling, f1 ∩ f2

is either f1, f2 or ∅. This corresponds to adjacent tiles only sharing full sides with

each other.

All tilings considered in this thesis will have the edge-to-edge property.

Tilings may be required to obey additional sets of rules, termed matching rules.

Definition 6 (Matching rules). A tile t has local matching rules if you can determine

whether the tiles placement at any point p ∈ R2 in a tiling is legal by considering

the tiles in Br(p) (where r is not dependent on the point p). A tile t has meeting

matching rules if you can determine whether its placement in R2 is legal by only

considering points within ε of t, for all ε > 0.

A legal tiling is a tiling which obeys its matching rules, and where tiles meet

edge to edge. We will only consider legal tilings henceforth.

Note that matching rules are often defined on a prototile, by colouring or de-

forming edges. This corresponds to having meeting matching rules for all tiles which

are preimages of that prototile.

There are a number of distinct uses in the field of aperiodic tilings of the term

aperiodic. We shall use the following definitions, originating from [28] and in the

format of [24];
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Definition 7. A tiling T ⊂ Rd is weakly periodic if there exists an infinite cyclic

subgroup H of isometries of Rd such that HT = T (i.e. for all h ∈ H, hT = T ).

A tiling that is not weakly periodic is said to be strongly non-periodic. A set of

prototiles P which can only construct strongly non-periodic tilings, is said to be

strongly aperiodic.

A tiling T of Rd is strongly periodic if there exists a discrete subgroup H of isometries

of Rd with Rd/H compact and HT = T . A tiling that is not strongly periodic is

weakly non-periodic. A set of prototiles is weakly aperiodic if it can only construct

weakly non-periodic tilings.

Note that in two dimensions the two definitions of aperiodicity are equivalent (see

Theorem 3.7.1 in [26] for proof). Thus we refer to ‘aperiodicity’ in two dimensions,

and ‘strong aperiodicity’ in three or higher.

Finally, let us define a Delone set [44] and the related concept of a Voronoi cell

[34] .

Definition 8. A point set S in Rd is called a Delone set, if it is uniformly discrete

and relatively dense; i.e., if there are numbers R > r > 0, such that each ball of

radius r contains at most one point of S, and every ball of radius R contains at least

one point of S.

Let Λ ∈ R2 be any Delone set (or even a finite point set). The Voronoi cell of a

point x ∈ Λ is the set of points in R2 that lie at least as close to x as to any other

point of Λ.
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Chapter 2

Constructions to reduce

complexity of matching rules

This chapter will give a constructive method that can decrease the number of pro-

totiles needed to tile a space. In doing so we will exchange facet matching rules

(a type of meeting matching rule) for a matching rule defined by a small atlas of

permitted patches (which is thus only a local matching rule). We will also describe

when meeting matching rules can be expressed in terms of alterations to the shape

of a prototile. A paper based on these concepts has been published, [14].

The constructive method is illustrated with Wang tiles, and we apply our method

to present via these rules a single prototile that can only tile R3 aperiodically, and

a pair of square tiles that can only tile R2 aperiodically. This ties in with work

by Gummelt in 1996 [45], and Socolar and Taylor [40] in early 2010, to produce

prototiles that can only tile aperiodically under certain conditions (Overlapping

tiles and disconnected tiles respectively). This paper extends work by Goodman-

Strauss on ‘atlas matching rules’. In an aside in [24], Goodman-Strauss describes

how by requiring a tiling be covered by a suitable finite atlas of permitted bounded
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configurations, a domino can serve as a monotile. The aside only produced a weak

upper bound on the size of the atlas, but Goodman-Strauss postulated the bound

could be reduced considerably.

We have already defined our use of the terms prototile, tiling and (strong) ape-

riodicity (in the last section). We will now formalise the concepts of matching rules

based on colours (including a generalisation) or atlases. We will then describe a

method of altering coloured matching rules to atlas matching rules with very small

patches. If two or more of the tiles have the same shape, the number of prototiles

needed is decreased. This method can be applied to tilings in general, not just

aperiodic ones. We will restrict ourselves to connected prototiles in this chapter for

clarity, but the general method can be applied to disconnected prototiles as well.

In subsection 2.2 we use our method to construct a pair of square tiles which can

only tile R2 aperiodically, and a single cubic tile that can only tile R3 in a (strongly)

aperiodic manner. Further improvements to the method are described in subsection

2.3.

2.1 The atlas matching rule construction

For clarity we will be limiting the spaces we are tiling in this chapter to Rd for some

d ∈ N. With minor alterations the method will work in any homogeneous space (for

example hyperbolic space Hd).

In this chapter, we require that tiles meet in whole facets and that tiles are

connected. Similar ideas can be applied to tiles which are disconnected.

We will be using patches defined by the ‘1-corona’ about a tile t.

Definition 9. The ‘1-corona’ of a tile t is the set of tiles with non-empty intersection

with t (see [24]).
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As an example, see picture 2.1. This picture shows a tile t, and its 1-corona (all

blue tiles, including t itself).

Figure 2.1: A tile t, and its 1-corona

We now want to introduce the notion of ‘colouring’ a prototile’s boundary, and

hence all tiles produced from it. In this chapter we only care about the highest

dimensional parts of a boundary. Thus for 2 dimensional tiles we only care about

edges of a tile, not vertices. For 3 dimensional tiles we only care about faces, not

edges or vertices, and so on. Thus for an d dimensional tile, we will assign to each

(d − 1)-dimensional facet of the boundary of the tile an element of a given set, as

follows. Throughout this (and future) chapters, we will be using the definitions from

the previous section entitled ’basic definitions’.

Let P be a set of prototiles in Rd. Construct a function λ : {(d−1)-facets of P ∈
P} → C where C is a non-empty set. A facet x of the prototile P is c-coloured if

λ(x) = c.

25



Extend λ to facets of any given tile t = g(P ) by λt(x) = λg−1(x) for each

(n− 1)-facet x of t.

Definition 10. A coloured tiling (T, λ) of Rd satisfies the identical facet (matching)

rule if for all tiles t1, t2 λt1(x) = λt2(x) for each (d− 1)-facet x that t1 and t2 share.

This covers cases where two tiles ‘match’ if they have the same colour on the

interior of their shared boundary (for example Wang tiles, which match when they

share edges of a common colour).

We will be using a slightly more general version of this rule in the rest of this

chapter, which allows tiles to match under wider conditions, as follows.

Definition 11. A facet (matching) rule is a function on pairs of colours r : C ×
C 7→ {0, 1} such that r(x, y) = r(y, x). A coloured tiling (T, λ) satisfies the facet

(matching) rule r if for all tiles t1, t2 (where t1 6= t2),

r(λt1(x), λt2(x)) = 1

for all facets x of t1 ∩ t2.

The obvious question is when do these facet matching rules coincide with match-

ing rules defined only in terms of shape of tile boundary. As stated at the start of

the section, we are only using connected tiles which match facet-to-facet.

Let us consider the matrix corresponding to the facet matching rule r, where

aij = r(ci, cj) for some fixed enumeration of the colours which can be associated to

the tiles’ edges. Note that the matrix must be symmetric, since r(x, y) = r(y, x).

We will assume colours have been made ‘distinct’ in the sense that if for ci, cj ∈
C, r(ci, x) = r(cj, x) for all x ∈ C, then i = j. This condition is equivalent to not

having two different colours which match in precisely the same way (and could thus
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be identified together). In this matrix this corresponds to ensuring no row is a copy

of another row, by removing rows until this is not the case. Similarly we will ignore

colours which cannot match any colour, including themselves, because any tile with

such a colour on its boundary cannot occur in a tiling satisfying that facet matching

rule.

Then a matching rule r can be expressed in terms of shape of tile boundary if

and only if there is only one 1 entry in every row and column of its matrix.

We shall illustrate why this is true, starting with the two dimensional case. If

you have two tiles with a common edge meeting at vertices u, v then for a given

curved edge on one tile, there exists precisely one curved edge which meets it at

every point. Similarly in Rd, for any (d − 1)-facet on the boundary of a tile, there

exists precisely one (d−1)-facet which can meet it. Thus for any coloured boundary

facet, there is only one other colour of facet that can meet it. Thus any row or

column of the matrix must have only one non-zero entry.

Let us consider some examples.

Example 1. Consider the facet rule matrix in the following figure.

This matrix has only one entry with the value 1 in each row, thus it can be

expressed in terms of curved edges. One way of doing this would be to set c1 as a

straight edge, c2 as a edge with a protrusion out from it, and c3 as the unique edge

that can fit to it.

Example 2. Let the set of colours on a tiling be the set of cards in a normal 52

playing card deck.

Let r(ci, cj) = 1 iff ci and cj are from the same suit, or have the same face value.
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Every colour matches to a unique subset of colours, thus we do not need to remove

rows or columns from the matrix. Furthermore, each colour matches to 16 other

colours (the 13 in the same suit, and 3 other cards with the same face value).

Thus this matching rule cannot be expressed in terms of curved edges.

We describe below a way of translating from a facet matching rule to a matching

rule of the following type.

Definition 12. A tiling T satisfies an atlas (matching) rule U if there exists a finite

atlas of compact patches U ∈ U such that for every tile t ∈ T , there exists a patch

Ut about t (with t being in the strict interior of Ut) such that Ut = g(U) for some

g ∈ GTr and U ∈ U .

A 1-corona atlas rule is an atlas rule where every patch U ∈ U is the 1-corona

of some tile t.

Definition 13. A tiling T is a (P , G, λ, r)-tiling if it has a prototile set P with

allowable isometries G and colouring λ, and satisfies the facet rule r.
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A tiling T is a (X , G,U)-tiling if it has a prototile set X with allowable isometries

G, and satisfies the atlas matching rule U .

A tiling A is locally derivable from a tiling B if there exists a length R such that,

if z1, z2 ∈ Rd and A− z1 agrees with A− z2 on a ball of radius R around the origin,

then B − z1 agrees with B − z2 on a ball of radius 1 around the origin. Thus the

tile at a point z in B depends only on a finite patch around z in A. If B is locally

derivable from A and A is locally derivable from B, then A and B are said to be

mutually locally derivable (MLD) tilings. (The definition of MLD originates in [6],

but we are using the equivalent variation found in [9]).

Theorem 1. A (P , GTr, λ, r)-tiling T is MLD to a (X , GI ,U)-tiling for some 1-

corona atlas rule U and a prototile set X with |X | ≤ |P|.

Construction 1. Take P and partition it into a set of equivalence classes P =
∐Ps,

s ∈ {1, . . . , m} where Pi ∼ Pj iff supp(Pi) = supp(Pj) up to the action of an element

of GTr. For each Ps, let Ψs be the group of automorphisms of any of the prototiles

P ∈ Ps. Enumerate the elements of Ps as P s
1 , . . . , P s

r ∈ Ps.

Ideally we would now construct an injective function from Ps to ordered pairs

of P s
1 and some automorphism of P s

1 . This cannot always be done, since in some

cases |Ps| > |Ψs|. To cover this possibility, we can attempt to construct an injective

function onto (P s
1 ×Ψs)∪ (P s

2 ×Ψs). If an injective function cannot be constructed

under those conditions, we can attempt to construct an injective function onto

(P s
1 ×Ψs) ∪ (P s

2 ×Ψs) ∪ (P s
3s ×Ψs), and so on.

Formally, choose the smallest k you can so as to construct an injective function

es : Ps → {(P s
i , ψj)|1 ≤ i ≤ k, ψj ∈ Ψs}. Define Xs = {P s

1 , . . . , P s
k}.

We now have a construction taking prototiles P s
i ∈ Ps to ordered pairs of a pro-

totile from Xs and an automorphism of that prototile. Observe that Xs is a subset
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of Ps.

Proof of Theorem 1

Define a new prototile set X = X1 ∪ . . . ∪ Xm, where Xs is as just defined. Let

the set of allowable functions from the prototiles into Rd be GI , instead of GTr.

Take the set of allowable 1-coronas in the (P , GTr, λ, r)-tiling T , and replace every

tile originating from a translation of a prototile P s
a ∈ Ps with ψj(P

s
i ), with ψj and

P s
i originating from es(P

s
a ) = (P s

i , ψj). This will give you a set of 1-corona patches

of X . Use this set as the atlas rule U for X .

T has facet rules, which are intrinsic to the set of allowable first coronas (since

the set of allowable first coronas list what boundaries are allowed to meet each

other). Since our definition of X and its atlas correspond to the first coronas of tiles

in T , with P s
a replaced by gj(P

s
i ), any tiling by X is MLD to a tiling from P . Since

|Xs| ≤ |Ps| then |X | ≤ |P|. ¤

For reasons of clarity, we will give a concrete example of how to move from a

given prototile P̂ in P to its image gj(P̂
s
i ). Consider figure 2.2. At the top of the

picture we have a set of 13 prototiles, P . The first step is to group the prototiles

into sets (the Ps of the construction). A set must contain prototiles which have

the same support up to translation, but cannot have more prototiles than there are

automorphisms of that support. For example, with the rectangular tiles, there are

four automorphisms which will send a rectangle onto itself. Thus the sets containing

rectangles cannot contain more than four rectangles. (Note that the two F shapes

must be placed in different Ps sets since they do not have the same support up to

translation. In the final section of this chapter we will describe a construction which
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Figure 2.2: Applying the construction to a set of prototiles.

31



can place them in the same Ps set.)

The second step is to take one of the new collections of tiles with the same

support. In the figure we have taken one of the sets of rectangles. Then replace one

of the tiles with a new prototile Pi. For each other prototile, take Pi and apply a

different automorphisms of the support of Pi to associate an automorphism of Pi

to that prototile. Then substitute the new prototiles you have produced into the

allowable 1-coronas of P to produce a tiling with less prototiles needed.

Corollary. Take a prototile set P and partition it into a set of equivalence classes

P =
∐Ps, s ∈ {1, . . . , m} as in the previous construction. If there exists Ps such

that |Xs| < |Ps|, there exists a prototile set (with atlas rules) which tiles Rd with

less prototiles than P .

Proof. We know that |Xs| < |Ps|, thus |X | < |P|.

Remark. This method of construction produces a prototile set with cardinality
∑m

s=1d |Ps|
|Ψs|e.

Remark. P is (strongly) aperiodic iff X is (strongly) aperiodic. This is because

every tiling in X is MLD to a tiling in P , and strong aperiodicity is preserved under

MLD equivalency.

2.2 Motivating examples and aperiodicity

Example 3. For a simple illustration of the construction method, let us consider a

tiling of the plane by 13 Wang prototiles (unit squares with matching rules defined

by matching coloured edges) as given in [11, 18]. Label the Wang prototiles as

{Q1, . . . , Q13}. We can apply the above construction to get a function from {Qj}13
j=1

to {(Pi, r)|1 ≤ i ≤ 2, r ∈ D4}, where D4 is the group of symmetries of the square.
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For example, enumerate the symmetries of the square as {r1, r2, . . . , r8}. Then

such a function could send {Qj|1 ≤ j ≤ 8} to (P1, rj), and the remaining tiles

{Qj|9 ≤ j ≤ 13} to (P2, rj−8). The result is shown in diagram 2.3, for a small patch

of the tiling.

As is common with Wang tiles, the colouring of {Qj}13
j=1 is represented as actual

colours superimposed onto the tile. For diagram 2.3 we represent the change of

prototile set from {Qj}13
j=1 to {P1, P2} by adding a label to P1 and P2, which looks like

their alphabetical symbols. This label will be visually affected by the automorphisms

of P1 and P2. This is solely for the diagram, and is intended to assist the reader in

distinguishing between the various automorphisms of P1 and P2.

The top picture of the diagram shows a tiling with prototiles Q1, . . . , Q13 with

facet matching rules, and translation as an isometry group. The bottom picture

shows the resultant tiling, which uses a two element prototile set, with rotations,

reflections and translations as a isometry group.

Next we will consider a 3 dimensional example. As mentioned before, aperiod-

icity in higher dimensions is more complicated and we have to worry about weak

and strong aperiodicity. We will solve this problem by extending a known example

of a prototile set which only tiles in a strongly aperiodic manner.

Example 4. Consider Kari’s Wang cube prototiles, W [20]. This is a set of 21 unit

cube prototiles with facet matching rules, where every tiling of R3 by W is strongly

aperiodic.

Choose a unit cube prototile A.

Since the set of isometries of the cube (and thus A) is of cardinality 48, we

can choose 21 unique isometries of A, ik, 1 ≤ i ≤ 21. We use the method in

Construction 1 to replace Pk ∈ W with ik(A).
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Figure 2.3: Construction applied to a tiling with 13 prototiles.
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Thus we have an aperiodic protoset with one prototile which is MLD to Kari’s

Wang Cubes. Note that we have lost the property of matching rules being determined

on faces, and replaced them with a set of legal one corona patches (which cannot be

rotated or reflected, of course). We have also had to broaden the set of allowable

mappings of the prototiles into the tiled space, from translations to translations and

rotation/reflections.

2.3 Further improvements

Remark. The construction can be further improved, by partitioning P into equiv-

alence classes based on what prototiles have the same support up to isometry, not

just translation.

Let T be a (P , GTr, λ, r)-tiling as in Construction 1. If there is a prototile Pi ∈ P
whose support is a non-trivial isometry of another prototile Pj (where i 6= j), then

the resulting (X , GI ,U)-tiling may have less prototiles than one originating from

Construction 1. An example of this is in figure 2.2, where the two F -shape tiles

have equivalent support up to rotation.

Construction 2. Partition P =
∐Ps, s = {1, . . . , p} where Pi ∼ Pj iff supp(Pi) =

supp(Pj) up to the action of an element of GI .

Further partition Ps =
∐Ps

t , t = {1, . . . , q} where P s
a ∼ P s

b iff supp(P s
a ) =

supp(P s
b ) up to the action of an element of GTr.

This two-stage partitioning gives us a collection of equivalence classes (
∐

s,t Ps
t )

as per the first construction. Additionally we know that there exist isometries in

GI from elements of Ps
i to elements of Ps

j . Take the Ps
t with the largest cardinality

and denote it Ps
T . From the definition of Ps there exists an isometry αPiPj

such that

αPiPj
(supp(Pi)) = supp(Pj). Furthermore we know that an given isometry can only
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take elements from one set Ps
i to Ps

T (by definition of equivalence class). Thus we

can replace any prototile in Ps
t with a unique isometry of a prototile in Ps

T , since

|Ps
t | ≤ |Ps

T |.
By applying the previous construction to Ps

T , we can get a minimal uncoloured

prototile set X s that can be used to translate prototiles in Ps
T , and hence Ps, to

atlas rules.

Example 5. Take a prototile set T of equilateral triangles, as shown in figure 4.

The prototiles have two different orientations, and three (could be up to six) colours.

We partition T into T = T1, since all prototiles in T have the same support,

up to isometry. We then further partition T1 = T 1
1

∐ T 2
1 , where T 1

1 is the set of

prototiles with point upwards, and T 2
1 is the set of prototiles with point downwards.

Denote the first prototile of T 1
1 as t1. Applying the first construction to T 1

1 gives

you f(Pi ∈ P 1
1 ) = di(t1), for di ∈ D3, and f(Pi ∈ P 2

1 ) = rotπ
3
(di(t1)). While this is

sufficient to define the tiling, it has the problem that any picture of the tiling needs

to include information about the isometries used for each tile. Thus we replace t1

with a tile x with an uncoloured boundary, but with a coloured interior which is not

preserved under any non-identity element of D3.
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Figure 2.4: New and old prototile set

37



Chapter 3

Robinson tilings and Local

Isomorphism classes

We will now consider tiling spaces, and the invariant Local Isomorphism classes.

This chapter will give necessary definitions, and describe a tiling space (which is a

central example used in this thesis), which has two Local Isomorphism classes.

Our first step is to construct a metric for a set of tilings. We will use the most

common metric in the field, using the notation of [36].

Definition 14. [36] Consider a set T of tilings of Rd, and choose any two tilings

T1, T2 ∈ T without loss of generality. Define R(T1, T2) as the supremum of all radii

r such that there exist vectors x, y with |x| < 1
2r

and |y| < 1
2r

, and T1−x and T2− y

agree on Br(0), the ball of radius r about the origin.

Then define the standard (tiling) metric on S as d(T1, T2) = min{1, 1
R(T1,T2)

}.

Informally, T1 and T2 are ε-close if they agree on a ball of radius (1
ε
) around the

origin, up to small translation.
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Definition 15. Define a (P,G, λ, r)-tiling space as the set of all (P,G, λ, r)-tilings

(as defined in definition 13 in the previous chapter), under the standard metric.

This will commonly be referred to as the tiling space of a set of prototiles, implic-

itly assuming standard isometries, matching rules and colours for those prototiles.

Definition 16. The (continuous) hull of a tiling T is the closure of the set O(T ) =

{T − x|x ∈ Rd} under the standard metric. The symbol ΩT is often used for this

concept.

Note that in many papers in the field, the hull is referred to as the tiling space

of a tiling T . This is due to most tilings studied in the field only having one LI class,

in which case the two definitions are equivalent.

Note that in practice we will often refer to the prototile set and its tiling space

interchangeably.

Definition 17. [36] [2] Let T,T′ be tiling spaces, with a homeomorphism f : T 7→ T′.

Then T and T′ are MLD if there exists a radius R such that, whenever two tilings

T1, T2 ∈ T agree on a ball of radius R around x, then f(T1) and f(T2) agree on a

ball of radius 1 around x.

Note that if two tilings T , T ′ are MLD as per definition 13, then their hulls ΩT

and ΩT ′ will also be MLD (see [36] p.9 for a proof). This result does not hold true

for tiling spaces in general.

Definition 18 (Local Isomorphism classes). [23] Two tilings are locally indistin-

guishable if a copy of each patch of one tiling occurs in the other tiling and vice

versa. A Local Isomorphism Class (LI class) is an equivalence class of tilings induced

by this relationship.

More formally, define a R-patch around x in a tiling T as the set of tiles in T

with nonempty intersection with the closed ball of radius R around x (Definition
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from [44]). Then the Local Isomorphism Class of T consists of the set of all ε-patches

in T , for all ε > 0. Let us call this LI(T ).

Two tilings T1, T2 belong to the same Local Isomorphism Class (LI class) iff

LI(T1) = LI(T2).

Remark. Note that all points in the hull of a tiling T will be in the same LI class.

Thus this thesis will concentrate on tiling spaces of prototile sets. We will commonly

refer to a ‘tiling space of a prototile set P ’ as a ‘tiling space’ throughout this thesis

for brevity.

Definition 19 (Repetitivity). [44] A tiling T is repetitive if for every r > 0 there is

an R > 0 such that every patch of radius r is contained in every patch of radius R.

A tiling space is repetitive if all of the tilings within it are repetitive.

We care about Local Isomorphism classes because if a repetitive tiling space has

two tilings T1, T2 in different LI classes, then there is a minimum distance between

translations of those tilings in the metric on the tiling space. Thus if we know the

total number of LI classes in a tiling space (and the number of LI classes is finite),

we gain information about the number of connected components in the topology.

Since we currently only have limited methods ( [3] , [5] etc) of understanding tiling

spaces, this is a useful step.

Definition 20 (Robinson (Rob) tiling). The Robinson prototiles are a variant on

Wang prototiles. They consist of the unit prototiles in figure 3.1. (The prototiles

originated in [33].)

The group of isometries associated with these prototiles consist of automor-

phisms of the square, composed with any translation. The colouring associated

with these prototiles is the trivial one, with all facets mapping to 0. Thus the

matching rule associated with the prototiles will allow any two facets to be placed
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Figure 3.1: Robinson prototile set

next to each other (assuming they can fit edge-to-edge). Thus the tiling can be

expressed with matching rules which only reference the shape of tile boundary. The

prototiles can be divided into two sets, cornered and un-cornered tiles, depending

on what the prototile looks like at a corner (vertex of the original Wang tile).

We know that automorphisms of the square are allowed with these prototiles,

which can be slightly non-intuitive. Thus we will be using an alternative (and MLD)

depiction of the prototiles, as shown in figure 3.2. (This alternative depiction also

originates from [33], with the specific formatting deriving from [26].) Call the second

depiction of the Robinson prototiles the ‘arrowed’ prototiles (R). This depiction adds

a non-trivial colouring and matching rule, to simplify the shape of the prototiles.

Note that the arrows and corner marks on the prototiles are a representation of the

colouring of that prototile.
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Figure 3.2: Alternate Robinson prototile set R

The group of isometries associated with the arrowed prototiles is also the auto-

morphisms of the square composed with any translation. It is more intuitive in this

case, since a legal tile in a tiling will be an automorphism of a prototile.

The colouring and matching rules of the prototiles will be designed so that two

edges e1, e2 can be placed next to each other if every head of an arrow leading into

e1 meets up with the tail of an arrow leading from e2, and vice versa.

Additionally every vertex of the tiling must have precisely one tile with a marked

corner next to it.

We can divide the prototiles of the arrowed depiction into two sets. Cross

prototiles are those in which arrows form an L-shape in the prototile (namely the first

two tiles). Arm prototiles consist of the remaining prototiles. Note that there is a

one to one isomorphism between the prototiles in one depiction of the Robinson tiling
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and the other depiction. For this paper, if one prototile has one of the properties

cornered, un-cornered, arm or cross; we will consider its twin to have the property

as well.

One problem we will have is that the Robinson prototiles can be made into half-

plane or quarter-plane tilings of the plane. These partial tilings can be put together

to form full-plane tilings, by joining partial tilings together. These partial tilings

are joined together by ‘faultlines’. In order to define faultlines rigorously, we will

first define a coordinate set for our tiles.

Definition 21 (Tile Coordinates). Consider 0 in a unit square tiling T of R2. If

0 belongs to the interior of a prototile, label that tile with the coordinate (0, 0).

Otherwise label as (0, 0) the unique tile t s.t ∃ε > 0 such that (k, k) ∈ t for all k < ε.

Similarly assign coordinates (a, b), a, b ∈ Z to all other tiles.

Definition 22 (Bordering Tiles). Two tiles s (labelled by (s1, s2)) and t (labelled by

(t1, t2)) would then border each other iff (s1−t1, s2−t2) ∈ (1, 0), (−1, 0), (0, 1), (0,−1).

Definition 23 (Directly Above, Below, Left, Right). For a given tile s (labelled by

(s1, s2)), the tile directly above it is the tile a bordering s where (s1 − a1, s2 − a2) =

(0,−1). Similarly the tile b directly below s has (s1 − b1, s2 − b2) = (0, 1), the tile r

directly right of s corresponds to (s1 − r1, s2 − r2) = (−1, 0), and the tile l directly

left of s corresponds to (s1 − l1, s2 − l2) = (1, 0).

This rather cumbersome definition of bordering tiles has been chosen to interact

well with future constructions, where we try to superimpose two tilings onto the

same copy of R2, and we do not want our two tilings to interfere with each others’

matching rules.

Definition 24 (Faultline). A Faultline is a subset of a tiling consisting solely of

arm tiles, such that for every tile t with coordinate (t1, t2) in the subset either;
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Figure 3.3: Sample faultline
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(i) There exists an arbitrarily high number of arm tiles directly above or below

t (more precisely, with coordinates (t1, t2 + k) or (t1, t2− k),∀k ∈ N ) which are also

in the tiling.

(ii) There exists an arbitrarily high number of arm tiles directly to the right or

left of t (more precisely, with coordinates (t1 + k, t2) or (t1 − k, t2),∀k ∈ N ) which

are also in the tiling.

One valid question is whether our Robinson tilings are repetitive.

Theorem 2. All Robinson tilings without faultlines are repetitive.

Proof. We know that ∀n ∈ N there exist (2n−1)×(2n−1) square blocks with facing

cross tiles in the centres [26], which repeat horizontally and vertically with period

2n+1. If there are no faultlines in a Robinson tiling, any patch in the Robinson tiling

must be contained in one of these (2n − 1)× (2n − 1) blocks, for some n.

If there is only one faultline, then it may still be a repetitive tiling, since rows

and columns of arm tiles of arbitrary size appear in any Robinson tiling. A tiling

with a faultline is repetitive iff all the hierarchical squares line up. Figure 3.4 is an

example of a faultline which is not repetitive.

Interestingly, a tiling space allowing tilings with an infinite vertical faultline

will have an infinite number of LI classes. This is because you can shift the half-

plane of the tiling on the right side of the vertical faultline by any integer vertically.

The hierarchical squares can thus be shifted out of alignment by any amount, thus

producing tilings in an infinite number of LI classes. Thus there can be an infinite

number of LI classes. Thus any questions about LI classes will need to rule out this

kind of situation.

Theorem 3. It is not possible to have a tiling space containing Robinson tilings

which does not have Robinson tilings with faultlines.
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Figure 3.4: Faultline with hierarchical squares which do not line up correctly.
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Proof. This proof requires concepts mentioned later in the thesis, namely definition

41 and lemma 11 from the end of chapter 6.

We know that the tiling space T generated by the Robinson prototiles is FLC

(in the sense of definition 41), since there are a finite number of tiles which must

meet edge to edge. Hence by lemma 11, it is compact, hence complete. Thus if

we can find a Cauchy sequence of Robinson tilings which increases the length of a

horizontal or vertical row of arm tiles, we can prove a tiling with a faultline is in the

tiling space T (and any larger tiling space containing T ).

We know that Robinson tilings have a hierarchal structure, where four (2n−1− 1)×
(2n−1− 1) blocks form a (2n− 1)× (2n− 1) block, for all n ∈ N (See [26] for details,

and figure 3.5).

Fix n ∈ N, and consider one of these (2n− 1)× (2n− 1) blocks formed from four

subblocks (with n ≥ 3). Such a block consists of a cross tile in the exact centre of

the square block, rows of 2n−1−1 arm tiles radiating out from it in all four directions

separating four smaller (2n−1 − 1) × (2n−1 − 1) square blocks filling the rest of the

space [26]. The arrows exiting these smaller (2n−1 − 1) × (2n−1 − 1) square blocks

will all be single arrows, with the exception of arrows originating in a sub-blocks

central cross tile.

Thus the row of 2n−1 arm tiles separating two of the sub-blocks will consist of

2n−2 − 1 tiles which have a single arrow entering opposite sides of that tile, one tile

with a double-arrow entering opposite sides, and then another 2n−2 − 1 tiles with

a single arrow entering opposite sides of each tile. Thus we can have patches with

arbitrarily long strings of arm tiles of the same type. Furthermore, each string of

2n−2− 1 arm tiles will have a ‘sub-sub’ block of size (2n−2− 1)× (2n−2− 1) on each

side of it, with the central cross tile facing away from the row of arm tiles. See the

yellow patch in figure 3.5.
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Thus (due to the hierarchical nature of the Robinson tiling) we have a sequence

of patches of increasing radius, which contain previous patches as inclusions. This

lets us construct a Cauchy sequence (due to the metric on tilings being defined by

tilings being close if they agree on balls of large radius) in the tiling space which

increases the length of a row of arm tiles. Thus a tiling with a faultline is in the

tiling space T (and any larger tiling space containing T ).

In later sections we will be trying to construct tiling spaces with a given number

of LI classes. Tilings with faultlines introduce an infinite number of LI classes when

the tiling is not repetitive. Thus we will limit ourselves to only considering repetitive

tilings.

Lemma 1. Any repetitive tiling will have cornered tiles with coordinates of the

same parity.

Proof. We will use proof by contradiction. Take a patch P of radius r > 0 which

does not have this property. If our tiling is repetitive, then ∃R > r such that in any

patch of radius R, the patch P exists. Pick a patch of radius R not containing part

of a faultline. (We know such a patch must exist because a 3× 3 square must exist

within the tiling. Such a square can be extended to a 7 × 7 square, which can be

extended again to a 15 × 15 square. Inductively, (2n − 1) × (2n − 1) squares exist

for any n ∈ Z, which do not contain faultlines). [26]

Any two cornered tiles in this patch will have coordinates of the same parity,

from the construction of the Robinson tiling. Thus we have a contradiction. Thus

any repetitive tiling will have cornered tiles with coordinates of the same parity.

Remark. We can divide any repetitive tiling in the tiling space into two subsets,

the set T0 consisting of tiles with coordinates (a, b) such that (a − b) = 0 mod 2,
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Figure 3.5: Schematic indicating a patch containing a row of 2n−2 − 1 arm tiles.

49



and T1 consisting of tiles with coordinates (a, b) such that (a − b) = 1 mod 2. If

there is a cross tile in T0 (T1) then every tile in T1 (T0) is an arm tile. The set which

contains cross tiles (WLOG T0) can be further divided up.

Let

Teven = {Tiles with labels (a, b)|a, b ∈ 2N}

Todd = {Tiles with labels (a, b)|a, b ∈ 2N+ 1}

Then one of the two sets Teven, Todd will consist solely of cornered (and hence

cross) tiles, and the other a mix of uncornered cross and arm tiles.

Informally, cross tiles are restricted to a large subset of the black squares of an

chessboard tiling of the plane, with arm tiles forming all of the white squares. Of

the black squares, they are again divided into two sets, cornered and non-cornered,

depending on whether their coordinates are both even or both odd (respectively)

[17]. For an example patch of a Robinson tiling, see figure 3.6.

3.1 Octagon tilings

Consider our altered Robinson prototiles. The property of a prototile being a cross

or arm tile does not depend on any decoration of the prototile within ε of a vertex

of the prototile. Thus we can deform the square prototiles into symmetric octagon

prototiles with horizontal and vertical sides of length (1 − 2ε), and diagonal short

edges of length (
√

2ε). The matching rules of the square prototiles’s edges are

preserved on the horizontal and vertical edges of the new octagon prototiles. Denote

these prototiles as R′.

Of course these prototiles do not fully tile the plane. Let us denote the area of

the plane they do tile by Oct. (Note that the precise subset Oct ⊆ R2 may vary for
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Figure 3.6: Robinson tiling
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Figure 3.7: Function from R to R′
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different tilings in the tiling space of R′).

In order to expand this partial tiling to the whole plane, we will ‘imprint’ a

second square tiling into the gaps left between the octagons, as follows;

Definition 25 (P shrunk). Take any set of unit square prototiles P which tile the

plane. Rotate the prototiles by −π
4

(ie, 45 degrees anti-clockwise). Then scale each

of the prototiles by a factor of ε, as used when defining the octagons. The new tiles

constructed are defined as P shrunk.

We will now alter the matching rules of P shrunk so that they tile R2\Oct.

First apply coordinates to R2\Oct. Choose a square tile t of R2\Oct, and label

it (0, 0). The square tile one unit in the y-axis above (0, 0) will be labelled as (0, 1)

and the tile one unit to the right along the x-axis will be labelled as (1, 0). These

will form a basis to label all the tiles.

The matching rule between square tiles alters as shown in figure 3.8.

Explicitly, the northwest edge of a tile labelled (a, b) must be the same colour as

the south-eastern edge of the tile (a, b + 1), and the northeast edge of a tile labelled

(a, b) must match the south-western edge of the tile (a + 1, b).

This new tiling of R2\Oct is mutally locally derivable to a tiling of the plane by

the square prototiles P . Denote the prototiles with these new non-meeting matching

rules as P ′.

If we combine the prototiles P ′ with our octagon Robinson tiles R′, we can tile

the whole plane (R′ tiling Oct, P ′ tiling R2\Oct). Note that there are no matching

rules linking tiles in R′ and P ′, thus any side from R′ can abut a side from P ′. We

have to introduce an additional matching rule that no tile from P ′ can share an edge

with another tile from P ′. This will stop us tiling R2 using only tiles from P ′.

The following definition gives us a more concrete construction.
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Figure 3.8: Tiling of R2\Oct MLD to a Wang tiling.
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Definition 26 (Octagon tiling). Let A,B be sets of unit square prototiles. Let

ε ∈ (0, 0.5). Define a function fOct : A → AOct which sends an unit square prototile

a ∈ A to an unique octagon prototile aOct ∈ AOct with horizontal and vertical sides

of length (1− 2ε), and diagonal short edges of length (
√

2ε). The matching rules on

the edges of a now apply to the long edges of aOct.

Define a function fε : B → Bε which rotates an unit square prototile b ∈ B by

π
4

anticlockwise about the centre of b, then scales the rotated b with a factor of ε.

Call this new prototile bε. The matching rules on the edges of b now apply to the

corresponding edges of bε.

Define A
⋃

Oct B as the tiling space with prototile set AOct

⋃
Bε, and function

f : R2 → AOct

⋃
Bε. The first condition is that no two tiles deriving from a prototile

in Bε can share a border. This can be forced by colouring the facets f of the prototiles

in Bε, and choosing a facet matching rule r such that for any two facets fi, fj (with

associated colours ci, cj), the equation r(ci, cj) = 0 must hold. (See definition 11 in

chapter 2 for terminology).

The second matching rule is that for any tiling if you replace all tiles ti ∈
f−1(AOct) (resp. f−1(Bε)) with the corresponding square prototile, and then remove

all tiles in Bε (resp. AOct), you will get an allowable tiling of A (resp. B).

The described layout varies from most tilings present in the literature in that the

‘matching rules’ for P ′ are not meeting matching rules. If we widen our definition of

a tile to allow non-connected prototiles (like in Socolar and Taylors’s recent paper

[40]), we can produce a similar set of prototiles which do have meeting matching

rules.

In order to get this set of prototiles, start with our octagon Robinson prototiles

R′ and any set of square prototiles (which tile the plane) S. Deform a square prototile

into a prototile consisting of four right-angled triangles of length ε as pictured in
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the following figure;

Figure 3.9: Deformation of a square tile into 4 triangles of length ε

Note that the new disconnected prototiles retain the same matching rules as

S. Denote them as SDis. Clearly the set R′ ⋃ SDis can tile the plane aperiodically

(since R′ can tile Oct aperiodically, SDis can tile R2\Oct, and the matching rules of

R′ and SDis do not interfere).

Another way of having only meeting matching rules is to turn the octagon tile

into a non-connected tile by deleting a rectangle from the NW corner to the SE

corner, and from the SW corner to the NE corner. You then can use the space

removed to implement matching rules between the ‘imprinted’ tiles.
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3.2 Central Example

We have illustrated a way of superimposing two sets of square prototiles tiling the

plane (at least one aperiodically) to get a new set of prototiles which tile the plane

aperiodically. This section will describe a set of prototiles which tiles the plane

aperiodically, and has members in two Local Isomorphism Classes.

First though, we will have to prove our altered Robinson tiling R only has 1 LI

class.

Theorem 4. R has only 1 LI class.

Proof. Note that any tiling of R2 by R is determined by the direction of the non-

cornered cross tiles within it. Our altered Robinson tilings can be considered to be

constructed from 3 × 3 squares, four of which form a 7 × 7 square (with a choice

of four non-cornered cross tiles in the centre of the square). These 7 × 7 squares

themselves make up part of a 15× 15 square, and so on.

Any patch in a tiling can be contained within a particular (2n − 1) × (2n − 1)

square (denote it Sn) with a non-cornered cross tile at the centre of the square. The

only variation possible in these (2n − 1) × (2n − 1) squares is the direction of the

non-cornered cross tile.

Our Sn square is itself part of a larger Sn+1 square (in a similar way that a 3×3

square is part of a 7×7 square. This Sn+1 square is formed from four (2n−1)×(2n−1)

sub-squares, which are identical to Sn with the sole exception of the central non-

cornered cross tile. All four possible variations of central tile occur, in one of the

four subsquares. Thus any patch can be found in a (2n+1 − 1)× (2n+1 − 1) square.

Thus there is only 1 LI class for our altered Robinson tiling. For more details, see

[26].
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Next, we move on to our example of an aperiodic tiling space with 2 LI classes.

Take our Robinson prototiles, altered as above to ensure cross tiles are only on

even coordinates. Denote as R as before.

Definition 27 (A new set of unit square prototiles, Chess.). Start with two unit

square prototiles. Let one have black edges only, the other have only white edges.

Denote tiles with only black edges as black tiles, denote tiles with only white edges

as white tiles. Let the matching rule between two prototiles be that any for any line

on which two tiles meet, one edge must be black, the other white. Clearly, these

matching rules and prototiles lead to tilings similar to that of a chessboard, in that

if you label a black tile (0, 0), all tiles satisfying (a, b) s.t a+b = 2n, n ∈ N are black,

and all other tiles are white.

We then deform the Robinson prototiles R to tile Oct as explained in the last

section, forming a new set R′. We then deform Chess to tile R2\Oct via the method

used in the last section. This produces a set of prototiles Chess′. Take the union of

the prototile sets R′ and Chess′, with the additional matching rule that no tile from

Chess′ can share an edge with another tile from Chess′. Call this new prototile

set R′ ⋃
Oct Chess′. Note that R′ ⋃

Oct Chess′ tiles the plane, since R′ tiles Oct and

Chess′ tiles R2\Oct.

Since R′ tiles the plane aperiodically, and the matching rules between R′ and

Chess′ do not stop this aperiodicity, R′ ⋃
Oct Chess′ tiles the plane aperiodically.

Theorem 5. R′ ⋃
Oct Chess′ produces tilings in two Local Isomorphism Classes.

Proof. Consider any tiling T of the plane created from R′ ⋃
Oct Chess′. Choose

a cross tile of T . Label it (0, 0), and label all other octagon tiles as mentioned

previously in definition 21. We know that all cross tiles must have labels (a, b) s.t
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a + b = 2n, n ∈ N, and all tiles with labels (a, b) s.t a + b = 2n + 1, n ∈ N are arm

tiles. We also know at least one cross tile exists.

Consider the cross tile labelled with (0, 0). This tile will have a square tile of

width ε abutting its southwestern edge. Denote this square tile as Ch(0), and label

it (̂0, 0). The hat is to reduce confusion with tiles from R′. Label all other square

tiles in T , following the method in the last section. A square tile has a label (a, b)

such that a + b = 2n, n ∈ N, iff it has the same colour as Ch(0).

There are no matching rules linking prototiles in R′ and prototiles in Chess′.

Thus Ch(0) can be either black or white. If it is black, then we know that all square

tiles labelled (a, b) such that a + b = 2n, n ∈ N are also black (and no others). Thus

every (octogonal) cross tile has a black tile abutting it to the southwest. Call these

tilings ‘SW-black’ tilings.

There can also exist tilings of the plane created from R′ ⋃
Oct Chess′ where cross

tiles have a white tile abutting them to the southwest (simply shift the partial tiling

covering R2\Oct by (0, 1)). Call these tilings ‘SW-white’ tilings. Any ball Bε s.t

ε >
√

2
2

in a SW-white tiling cannot occur in a SW-black tiling, since such a ball will

cover an octagon tile and part of the square tile to its southwest.

Thus we have tilings in two distinct LI classes, produced by the prototiles

R′ ⋃ Chess′. Since R′ only has one LI class (as does Chess′), we only have 2

LI classes.

Lemma 2. R′ ⋃
Oct Chess′ contains only repetitive tilings.

Proof. Any tiling which is MLD to a repetitive tiling is itself repetitive. Consider the

R′ ⋃ Chess′ prototile set. This set produces two LI classes, one with black tiles to the

south-west of cross tiles, and one with white tiles to the south-west. Each one of these

LI classes is MLD to our altered Robinson tiling space R, by definition. As described
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earlier, we are only considering repetitive tilings in our altered Robinson tiling space.

Thus every tiling which can be produced by R′ ⋃
Oct Chess′ is repetitive.
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Chapter 4

Generalization to n LI classes

The construction of new tilings from two square tilings is not limited to Robinson

tilings and chessboard tilings. By imprinting an aperiodic set of prototiles into

another set of prototiles (for the octagons), you can produce a family of aperiodic

tilings. The number of LI classes this family belongs to depends on the correlation

between the two tilings. This appears to be a non-trivial subject to investigate. The

Robinson tilings seem to be a good starting point, having some easily understandable

long range order.

There is another unanswered question. We have sets of prototiles which have

aperiodic tilings of the plane in more than one LI class. However they need to have

either non-connected prototiles or non-meeting matching rules. Can we find a set

of prototiles which have aperiodic tilings of the plane in more than one LI class, yet

do not have non-connected prototiles or non-meeting matching rules?

For one set of prototile sets satisfying this condition, first consider our set of

octagon Robinson prototiles R′, and the area of R2 they tile, Oct. The problem

with non-meeting matching rules arises from R2\Oct being disconnected. To solve

this problem, we alter the prototiles R′ from octagons into diamonds, as in figure 4.
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Figure 4.1: Function from R′ to Diamond
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This corresponds to the special case of the octagon construction where ε = 1
2

on

the prototiles (A,B), with the condition that tiles from A cannot border at an edge

other tiles from A (and similar for tiles from B). Call this operation
⋃

.

The matching rules on the octagons can be transferred onto diamond tiles (Call

this set of prototiles RDiamond). By replacing a prototile of R′ in any tiling of Oct

with its corresponding diamond prototile, you can get a mutually locally equivalent

tiling which fills Diamond = {(a, b)|∃(x, y) ∈ Z2} s.t |a − x| + |b − y| ≤ 1
2
}. In

laymen’s terms, it tiles a regular lattice of diamonds. Unlike R2\Oct, R2\Diamond

is not disconnected.

To expand this prototile set to one that can aperiodically tile the plane in more

than one way, we need a method to transform unit square prototiles (in particular

Chess) into prototiles which can tile R2\Diamond. However R2\Diamond and

Diamond are equivalent up to translation. Thus we can transform any unit square

prototile into a diamond prototile by the same method we transformed Robinson

square prototiles into diamond Robinson prototiles. These diamond prototiles will

then tile R2\Diamond.

If we transform the set of unit square prototiles Chess into a set of diamond

prototiles ChessDiamond, and combine them with RDiamond, then we can tile the

plane aperiodically (with tilings in more than one LI class), since R′ and Chess′ can

tile the plane aperiodically (with tilings in more than one LI class).

Remark. Note that for any two unit square tilings A and B, their superposition

A
⋃

B is also a square tiling, with squares of size 1√
2
. Thus you can define a function

fsuper : Sq×Sq −→ Sq on the set of all unit square tilings. fsuper(A,B) = γ(A
⋃

B),

where γ(x, y) = (
√

2x,
√

2y). You can extend this to a function on the set of all unit

square tiling spaces.

This construction method can also be extended to form an aperiodic tiling with

63



Figure 4.2: Example tiling from a Robinson Tiling Space with 2 LI classes
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n LI classes, for n ∈ N. Starting with our set of square Robinson prototiles R′, form

a new set of prototiles nR′ as follows. Keep the old cornered tiles the same, but

swap any old non-cornered cross tiles for an array of (n − 1) × (n − 1) unit tiles

which together make up an old non-cornered cross tile. Introduce extra matching

rules on the unit tiles in the array to force them to match up only to each other.

In place of our old horizontal arm tiles, introduce an array of (n− 1)× 1 new unit

tiles, which together make up the old tile. In place of vertical arm tiles, introduce

an array of 1× (n− 1) new unit tiles which together make up the old vertical arm

tile. Figures 4.3 and 4.4 will make the tiles and matching rules clearer.

Instead of Chess, use the following set of prototiles, NChess. Start with n

identical unit square prototiles. Let a square prototile be labelled by a element of

Zn, one element to a unit square prototile. To form tilings from these prototiles, force

any adjacent tiles to match edge to edge, and for any tile t(i,j) with label l(t(i,j)), have

the matching rules l(t(i,j))− l(t(i,j−1)) = 1 mod n and l(t(i,j))− l(t(i−1,j)) = 1 mod n.

In short, if a chessboard can be considered as a square tiling labelled in 2 colours,

the above is a generalisation to n colours. See figure 4.5 for an example of the

fundamental domain of one of these tilings, 5Chess.

To get an aperiodic tiling with n LI classes, simply take nR′ and NChess and

create a new prototile set nR′ ⋃ NChess following the previous method. Tilings

produced from this prototile set will be aperiodic and will have n LI classes (since

each cornered cross tile in a given tiling will have the same prototile in NChess to

its lower left). There are n different possible prototiles which could be placed to the

lower left, thus there are at least n LI classes.

By a similar argument to the 2 LI case, these tilings are also repetitive.

Remark. It has been brought to my attention by Edmund Harriss, (joint author
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Figure 4.3: Function between prototiles of R′ and nR′
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Figure 4.4: Sample patch in R′, and its equivalent in nR′
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Figure 4.5: Fundamental Domain of 5Chess
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of [44]) that these n LI class constructions can be altered into tilings which do not

need facet matching rules by changing the prototiles and introducing new prototiles.

Thus we could define the tiling space just by the prototiles, as in figure 3.1. The

core idea is that instead of having two tiles in Diamond meeting at a point having

to obey certain matching rules, you introduce a new tile at the meeting point for

each possible matching rule. Figure 4.6 explains this more clearly;

Figure 4.6: Introducing new prototiles to avoid matching rules

This method is not possible for matching rules which are not meeting matching

rules, for obvious reasons. This rules out all but the simplest 1 dimension tilings

with this property.
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Chapter 5

Hyperbolic tilings with more than

1 LI class

In this chapter we will construct (aperiodic) hyperbolic tilings with more than 1

Local Isomorphism class. We will be using J.Kari’s method of transferring tilings

from R2 ( found in [18] and [19] ) as the inspiration for this chapter.

Consider figure 5.1. This figure shows a tiling of the upper half plane model of

the hyperbolic plane by a pentagonal prototile. Note that if you consider the figure

as a tiling of {(x, y) ∈ R2|y > 0} it consists of horizontal rows tiling the upper half

plane.

Remark. This tiling of the hyperbolic plane in figure 5.1 has the property that there

is no symmetry that would take a tile onto another tile on the same horizontal row

(since tiles in the same row have a precise pattern of tiles ‘above’ them). However

there are symmetries which change the level of tiles. Thus this tiling is weakly

aperiodic (as per definition 7).

If we introduce more matching rules to this diagram (via colouring sides in
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Figure 5.1: D2, a one prototile hyperbolic tiling with no horizontal isomorphism

a similar manner to Wang tiles, or a different method), then any new tiling we

produce will also have no horizontal symmetries. Thus if we can produce a prototile

set based on these hyperbolic pentagons, with additional matching rules stopping

vertical symmetries, then we will have an aperiodic tiling.

Definition 28 (Mother and daughter tiles). Consider a hyperbolic tiling with ‘hor-

izontal rows’ partitioning the upper half plane. A tile t in one of these rows will

have one row above it and below it (where ‘above’ and ‘below’ are defined from the

point of view of the tiling being a tiling of {(x, y) ∈ R2|y > 0}). For any particular

tile t in one of these rows, denote the bordering tile directly above t as t’s mother

and any tiles directly below t as t’s children.

Definition 29 (2 Daughter tilings). A D2 tiling is a tiling of H2, which when

illustrated in the upper half plane model has 2 Daughter tiles and 1 Mother tile for
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Figure 5.2: MLD hyperbolic tiling with alternate prototiles

each tile in the tiling, and pentagonal tiles.

For clarity in our pictures, we will use the hyperbolic tiling in figure 5.2 instead

of our pentagonal one in our pictures. The two tilings are MLD. The only relevant

difference is that examples based on this new tiling give clearer pictures.

Note that there are several variations on the basic pentagonal tiling which have

the property of barring horizontal symmetries. Instead of having a tiling based on

pentagons, base it on a tiling by hexagons. A hexagon in this tiling will have one

mother tile, and three daughter tiles. See figure 5.3 for an example. Similarly, you

can have tilings with (n + 3)-gon tiles, with one mother and N daughter tiles.

We will concentrate on the tiling of the hyperbolic plane by pentagons, for

simplicity.

Lemma 3. Each prototile set mentioned so far is repetitive.
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Figure 5.3: Hyperbolic tiling with 3 ‘daughter’ tiles to every ‘mother’ tile

Proof. Any patch p can be contained in a larger patch consisting of k rows of tiles,

with each row being directly above or below another row in the patch. More pre-

cisely, if we consider the half-plane model of the hyperbolic plane, each patch p can

be contained in a Euclidean square s(p) of height n and width m, consisting of one

mother tile (of width m when viewed in the half-plane model) and all of its daughter

tiles (up to a certain generation g(p) depending on the patch p). Any patch con-

sisting of one mother tile and all of its daughters for g(p) generations will contain

the patch p. Since the prototile in any tiling is relatively dense, this implies the

prototile set is repetitive.

Theorem 6. For each prototile set mentioned so far, the related tiling space has

tilings in only 1 LI class.

Proof. Fix any previously mentioned hyperbolic prototile set S. Every patch p is
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contained in a patch s(p) consisting of one mother tile and its daughters up to g(p)

generations. This patch s(p) occurs in all possible tilings by the prototile set S.

Theorem 7. There are prototile sets which produce weakly aperiodic hyperbolic

tilings in 2 LI classes.

Proof. In a similar manner to the Euclidean case, we will expand each vertex v of

our 2 Daughter tiling (from figure 5.1) into a set homeomorphic to a disk, dv. More

precisely, dv is a triangle or square, with vertices at the midpoints of each edge of

D2 which enters v. Note that each disk dv touches another disk dk iff v and k are

on the ends of a edge in D2. Denote the support of these tiles as V2.

Note that any tiling based on the tiles of D2 can be altered to tile H2\V2 by

changing matching rules from edges of tiles in H2 to vertices of tiles in H2\V2.

Note this will require a change of the pentagonal prototile of D2 to tile H2\V2.

We will introduce new tiles to tile V2. The new tiles introduced will have two distinct

shapes, one ‘diamond’ shape and one ‘triangle’ shape, as shown in figure 5.4.

The next step is to introduce prototiles to fill the gaps. For your prototile set,

pick one black diamond, one white diamond, one black triangle prototile and one

white triangle prototile. The matching rules will be that a tile must match to the

same colour if they are on the same level, or the different colour if on a different

level. This means that the only allowed tilings have black tiles on one row, white

tiles on the row above, then black, white and so on. There are a total of two possible

square-triangle tilings, as shown in figure 5.5. Note that grey tiles in figure 5.5 are

not in V2.

In order to get multiple LI classes, we need to be able to tell these two tilings

apart. In order to do this, we introduce additional matching rules and prototiles for

the pentagonal tiles.
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Figure 5.4: Vertices expanded to form ‘diamond’ and ‘triangle’ tiles.

Introduce two new pentagonal tiles, a ‘marker’ pentagonal tile, and a ‘trans-

porting’ pentagonal tile. We now have three types of pentagonal tiles; marker,

transporting and the original ’blank’ tiles. The marker tile can only be placed with

blank tiles below and above it, ‘transporting’ tiles to the left and right of it, and it

must be the leftmost daughter of its mother tile. A ‘transporting’ tile must have

blank tiles below and above it, ‘marked’ tiles to the left and right of it, and it must

be the rightmost daughter of its mother tile. A ‘blank’ tile cannot have blank tiles

above or below it.

When we combine the two tiles, we get the following two allowable tilings shown

in figure 5.7.

These tilings belong to different LI classes, since in the first, all ‘marker’ tiles

have black diamond tiles below it, and in the second one, all ‘marker’ tiles have

white diamond tiles below it.
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Figure 5.5: Two weakly aperiodic hyperbolic tilings of V2, in different LI classes.
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Figure 5.6: Marker (green) and transporting (arrowed) tiles

Note the ’transporting’ tiles constructed in the previous proof will be required

later for our construction of a strongly aperiodic tiling of H2. Informally they will

‘transport’ information between the ‘horizontal’ layers of the tiling.

Lemma 4. There are prototile sets which produce weakly aperiodic hyperbolic

tilings in N LI classes, for N ∈ N.

Proof. For variations with 3 LI classes or more, the necessary alteration is to change

the diamond and triangle prototiles. Instead of having 2 colours of prototile, label

the prototiles from the group Zn. A prototile labelled i must match to a tile labelled

i + 1 above it, tiles labelled i to both horizontal sides of it, and a tile labelled i− 1

directly below it, where addition is the standard operation inside Zn. Thus we have

n LI classes, distinguished by each marker tile having a diamond tile with a different

label from {1, . . . , n} below it.
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Figure 5.7: Multiple LI classes in the hyperbolic case
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While we have multiple LI classes, we still do not have strong aperiodicity. We

have several choices in how to do this.

Lemma 5. There are prototile sets which produce aperiodic hyperbolic tilings in

N LI classes, ∀N ∈ N.

Proof. The simplest route is to label each non-marker tile with a number, and then

embed a non-periodic 1D tiling into the 2D tiling vertically. In other words take

a tile, define s0 to be its label, then define s1 to be its mother’s label and s−1 to

be (one of) its daughters. (Clearly all tiles on the same row must have the same

label). Repeat this until you have an infinite sequence. That sequence must be

equivalent to an aperiodic tiling from a certain tiling space (such as Fib). Since Fib

does not have meeting matching rules, any tiling produced by this method will not

have meeting matching rules.

Remark. We believe there are prototile sets which produce aperiodic hyperbolic

tilings in N LI classes, ∀N ∈ N, which have meeting matching rules.

Sketch proof. To insure strong aperiodicity in a less trivial way, we could also use

a variation of J.Kari’s aperiodic hyperbolic tiling. Use the rows of non-marked,

non-transporting tiles to represent Kari’s representations of irrational numbers. Use

the ’transporting’ tile (with various choices as to its decoration) to transmit data

between the rows, to keep the meeting matching rules. (Note that the transporting

tile will need to pick up data from all tiles in the row below that touch it, including

those that only touch it at a vertex. Thus a matching rule only defined on edges

will not be sufficient for this proof.) Then apply Kari’s [18], [19] matching rules to

force aperiodicity.
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Chapter 6

Tilings with an infinite number of

LI classes

We have yet to consider if a repetitive aperiodic prototile set with an infinite number

of LI classes is possible. We will use the existing notion of substitution tilings in

this chapter, and will restrict ourselves to a 1-dimensional case at first (based on

the Fibonacci tiling). We then show the existence of a 2-dimensional tiling with an

infinite number of LI classes (based on the Chair tiling), and describe what we can

deduce from multiple LI classes. The format of the definitions are derived from [36].

Definition 30 (One dimensional substitutions). Pick a finite set (or alphabet) A =

{a1, . . . , an}. Elements of the alphabet are called letters. Finite sequences of letters

are called words. Denote the set of finite words from A as A∗. Define a function σ′

sending each letter to a word. For example, σ′(a) = ab, σ′(b) = ba. This function

extends to a substitution σ : A∗ 7→ A∗ which replaces every letter li in a word with

its associated word σ(li). Using the previously described function we would have

σ(aba) = σ′(a)σ′(b)σ′(a) = abbaab. The function σ′ and the substitution σ are often

referred to interchangeably in the literature.
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A primitive substitution σ (with alphabet A) is a substitution where there exists

some k ∈ N such that for every letter ai ∈ A, σk(ai) contains every letter of σ’s

alphabet at least once.

A bi-infinite word is σ-admissible if each finite sub-word can be found in σk(a1)

for some k ≥ 0.

For each letter a ∈ A, associate a prototile to that letter with the same label,

forming a prototile set PA. Given a substitution σ, a (σ-) substitution tiling is

a tiling by the prototile set PA such that the corresponding sequence of letters is

a σ-admissible word. The tiling space of the substitution, Ωσ is the set of all σ-

substitution tilings.

In higher dimensions, we cannot use the concepts of letters and words to define

a substitution, since we cannot put a simple order on points in higher dimensional

spaces. We must consider the geometry of the tiles.

Definition 31 (Higher dimensional substitutions). [36] A substitution σ is an op-

eration on a set of prototiles which replaces each tile by a cluster of tiles, with

associated rules fixing the positions of the resultant tiles in relation to each other.

These clusters are called supertiles.

The tiling space of the substitution Ωσ is the set of tilings T such that every

patch of T is found in a supertile of some order (ie, σn(P ), where P is a prototile

and n ∈ N).

Let us now move on to our central examples.

Definition 32 (Labeling unit interval tilings of R). For all tilings T of R by unit in-

terval prototiles, find the tile containing the origin 0 (if the origin is on the boundary

of two tiles, choose the one containing points in R+). Label this tile as t0. Denote

the tile k units to the right of t0 as tk, the tile k units to the left as t−k.
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Definition 33 (Fibonacci tiling space Fib). A Fibonacci tiling T is generated from

two labelled unit intervals for prototiles, 0 and 1, and a substitution rule defined

as 0 7→ 01; 1 7→ 0. The tiling space of all such sequences is denoted as Fib. The

elements of Fib thus consist of a series of labelled unit tiles {ts}∞s=−∞ spanning R.

We will then apply our idea of embedding a second tiling into a Fibonacci tiling,

as follows.

Definition 34 (A
⋃

B). A tiling T belongs to A
⋃

B if the even unit tiles {t2k}∞k=−∞

correspond to a valid tiling TEven ∈ A, and the odd unit tiles {t2k+1}∞k=−∞ also

correspond to a valid tiling TOdd ∈ B. The tilings may be the same, however later

on we will need to distinguish tiles from different tilings (ie, even and odd tiles).

Thus we will colour even unit tiles black, and odd unit tiles red. A
⋃

B will be given

the standard tiling space topology.

Every patch of a tiling T in A
⋃

B can be found in the union of two supertiles

of some order (one supertile covering black (even) tiles, one supertile covering red

(odd) tiles). Thus A
⋃

B is a minor generalization of a tiling space of a substitution.

Definition 35 (T
⋃

T+(2n+1)). Consider a tiling T
⋃

T+(2n+1) in Fib
⋃

Fib which

consists of a fixed Fibonacci tiling T ∈ Fib on the even tiles, and the same tiling

T shifted 2n + 1 units to the left, on the odd tiles. The union of these two tilings

will cover R, with the only overlaps being at points. Thus it is a valid element of

Fib
⋃

Fib.

Now consider two tilings, T
⋃

T+(2n+1) and T
⋃

T+(2m+1), where WLOG n > m

and n and m are coprime.

We aim to show that these two tilings are in different LI classes. Our first step

is to consider the patches shown in figures 6.2 and 6.3. We intend to show that the

patch in figure 6.2 can occur in T
⋃

T+(2n+1), and that the patch in figure 6.3 can

occur in T
⋃

T+(2m+1).
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Figure 6.1: T+3

Figure 6.2: Patch in T
⋃

T+(2n+1) which is not in T
⋃

T+(2m+1)
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Figure 6.3: Patch in T
⋃

T+(2m+1) which is not in T
⋃

T+(2n+1)

Lemma 6. The patch in figure 6.2 belongs to T
⋃

T+(2n+1) iff there is a patch in T

with a 1 tile n −m units to the right of a 0 tile. Similarly, the patch in figure 6.3

belongs to T
⋃

T+(2m+1) iff there is a patch in T with a 1 tile n−m units to the left

of a 0 tile.

Proof. Note that for any even (black) 0 tile t in T
⋃

T+(2n+1), the tile 2n + 1 units

to the left of t will be a 0 tile (albeit an odd, hence red one) by definition of

T
⋃

T+(2n+1).

However we need to show that the tile 2m + 1 units to the left of t can be a 1

tile to conclude that the patch in figure 6.2 belongs to T
⋃

T+(2n+1). Denote this

tile as s.

If s is a 1 tile, then the tile 2n + 1 units to the right of s must also be a 1 tile,

by definition of T
⋃

T+(2n+1). Thus the tile (2m + 1)− (2n + 1) units to the left of t
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must be a 1 tile to conclude that the figure 6.2 patch belongs to T
⋃

T+(2n+1). n is

greater than m, so we can rewrite as 2(n−m) units to the right of t. This property

corresponds to there being a patch in T with a 1 tile n −m units to the right of a

0 tile.

The condition on the figure 6.3 patch follows similarly (by swapping the roles of

n and m in the proof).

We will now prove that there is a patch in T with a 1 tile n −m units to the

(left) right of a 0 tile, for all possible values of n−m 6= 0. Note that n and m can’t

be equal, due to an earlier constraint. Thus it is enough to prove for all non-zero

integers.

Theorem 8. For all r ∈ N\{0}, for all T ∈ Fib there exists a 0 tile t0 ∈ T such

that the tile r units to the left is of type 1. Similarly, there is a 0 tile t1 ∈ T such

that the tile r units to the right is of type 1.

Proof. Assume that for all even 0 tiles, there can only be 0 tiles r units to the

left, not 1 tiles. Thus there are 0’s r.k to the left, for all k’s. Consider a segment

of a Fibonacci tiling T . The ratio of 0’s to 1’s is bounded (this comes from the

substitution rule, more precisely the eigenvalues of the matrix for the substitution

rule). Our segment (say of length s) has a certain number of 0’s. By our assumption,

the segment of length s which is r units to the left must have equal or more 0 tiles in

it. This is an ascending sequence, bounded above by r. Thus it reaches a maximum,

at a point p. Thus, to the left of the point p, we have a periodic sequence with

period r.
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Take T and construct a sequence of points in the tiling space

{T, λ1(T ), λ2(T ), . . . λn(T ), . . .},

where λk is the translation of a tiling by k to the right. The limit of this sequence

is a periodic tiling, and is in Fib. However Fib is an aperiodic tiling space and thus

contains no periodic tilings. Contradiction. Thus there must be 1 tiles r units to

the left of some even 0 tiles.

A similar argument implies that there must be 1 tiles r units to the right of

some even 0 tiles.

Of course, not all 1D aperiodic tilings have this property.

Remark. Note that we cannot only have 1 tiles r to the left of even 0 tiles in any

T ∈ Fib. If this was true, then we would have an equal (or higher) density of 1 tiles

then 0 tiles in the tiling. Arguments centred around the substitution matrix tell us

that there are (1 +
√

5)/2 times more 0’s than 1’s. Thus there are both 0 tiles and

1 tiles r units to the left of 0 tiles.

Theorem 9. T
⋃

T+(2n+1) and T
⋃

T+(2m+1) belong to different LI classes, where n

and m are coprime.

Proof. By Lemma 6 and Theorem 8 we know that the patch shown in diagram 6.2

exists somewhere in T
⋃

T+(2n+1) (for certain values of 0,1 in the unlabelled tiles).

However the above patch cannot exist in T
⋃

T+(2m+1), since in T
⋃

T+(2m+1), a

black tile must be identical to the red tile 2m + 1 units to the left of it.

Similarly the patch in figure 6.3 (with two identical tiles 2m + 1 apart, and two

different tiles 2n + 1 units apart) exists in T
⋃

T+(2m+1) but not in T
⋃

T+(2n+1).

Thus T
⋃

T+(2n+1) and T
⋃

T+(2n+1) belong to different LI classes.
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Remark. We need the even and odd unit tiles to be distinguishable for this proof

to work though. Otherwise we could effectively flip the colours in the above patch.

We would then be left with a patch which could be in either tiling, since there are

no constraints on what tiles must be (2k + 1) units to the left of a red tile.

Theorem 10. Fib
⋃

Fib has at least a countable number of LI classes.

Proof. Take the set of prime numbers, P = {p1, p2, . . . }. Any two prime numbers

pm, pn are coprime. Thus the tilings T
⋃

T+(2pm+1) and T
⋃

T+(2pn+1) belong to dif-

ferent LI classes, ∀pm, pn ∈ P . Thus we have a countably infinite string of examples

which all belong to different LI classes.

While this example is valid, the matching rules are not meeting matching rules.

For an example with meeting matching rules, we need to move to two dimensions.

At this point we will consider the ‘square chair’ tiling, which is MLD to the

standard chair tiling.

Definition 36 (Square Chair Tiling). The square chair tiling space SqCh consists

of the four prototiles (unit tiles with an arrow pointing to one of the vertices) and

the substitution rule shown in figure 6.4. Legal configurations are also shown – note

that the only allowable arrangements at the vertices are that either all arrows point

out of the vertex, one arrow goes out and three go in, or no arrows enter or leave

the vertex.

We will refer to the square chair tiling space as the chair tiling space in this

article. More precise definitions are given in [42] and [43].

Sadly I do not know of an expression of the chair tiling with local matching rules

and square prototiles (for non-square prototiles, see [25]), and must instead use the

substitution map in figure 6.4.
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Figure 6.4: Chair matching rules
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Definition 37 (CH). For any given tiling of R2 using the chair tiles and their

matching rules, we can get a MLD tiling of Diamond, in a similar way that we can

transform a Robinson tiling from R2 to Diamond. Denote the set of allowable chair

tilings of Diamond as CH.

Definition 38 (CH
⋃

CH). CH
⋃

CH is the set of tilings of R2 where any tiling

T ∈ CH
⋃

CH satisfies the following restraints;

T restricted to Diamond is some tiling Ti from CH.

T restricted to R2\Diamond is the translation of some tiling Tj from CH.

Furthermore CH
⋃

CH is a tiling space (with the prototile set as CH, with the

above additional matching rules).

Definition 39 (Ch
⋃

Chs,t). Fix some chair tiling Ch ∈ CH, which of course tiles

Diamond. Then translate this chair tiling Ch by (2(0.5)s + 0.5, 2(0.5t) + 0.5). This

will map Ch onto R2\Diamond. Note that we need to differentiate between the

prototiles for the chair tiling on Diamond and R2\Diamond, since otherwise our

proof of an infinite number of LI classes will not work, as in the 1 dimensional case.

Thus we must use two sets of prototiles, one (coloured black) for the chair tiling on

Diamond and another one (coloured red) for the chair tiling on R2\Diamond.

Call this particular tiling Ch
⋃

Chs,t.

Lemma 7. CH
⋃

CH consists of only aperiodic tilings.

Proof. There exists a forgetful function f from CH
⋃

CH to CH, by removing all

tiles in R2\Diamond, and expanding the tiles in Diamond to unit squares. Assume

CH
⋃

CH contains a periodic tiling. Then there exists a isometry g and periodic

tiling T ∈ CH
⋃

CH such that g(T ) = T . Furthermore, g(f(T )) = f(T ), since f

is forgetful. However, CH contains only aperiodic tilings. Thus by contradiction,

CH
⋃

CH must contain only aperiodic tilings.
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Figure 6.5: Prototiles for (CH
⋃

CH)local

Definition 40 ((CH
⋃

CH)local). Consider figure 6.5.

Construct (CH
⋃

CH)local from CH
⋃

CH by changing every prototile in a

tiling of CH
⋃

CH, to the prototile in figure 6.5 of the same colour, with the main

arrow pointing in the same direction, with the smaller arrows being chosen to rep-

resent the bordering tiles central arrow.

A sample patch of (CH
⋃

CH)local is shown in figure 6.6. Note that (CH
⋃

CH)local

has meeting matching rules (with the non-trivial matching rules dependent on edges

instead of vertices).

Lemma 8. There exists a homeomorphism f from (CH
⋃

CH)local to CH
⋃

CH

such that for all T ∈ (CH
⋃

CH)local, T and f(T ) are MLD.

Proof. There is a continuous map f from (CH
⋃

CH)local to CH
⋃

CH by sim-

ply forgetting all small arrows, and an continuous inverse f−1 from CH
⋃

CH to
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Figure 6.6: Part of a tiling in (CH
⋃

CH)local

(CH
⋃

CH)local defined by adding small arrows in the unique way which satisfies

matching rules. Thus f is a homeomorphism between (CH
⋃

CH)local to CH
⋃

CH.

Consider a tile t in a tiling T ∈ (CH
⋃

CH)local. The markings lost under the

homeomorphism f are uniquely determined by the 1-corona of the tile t′ in the same

position in (CH
⋃

CH). Thus t can be uniquely determined by considering a finite

ball in f(T ). Thus T is locally derivable from f(T ). Similarly, a tile t′ in f(T ) is

uniquely determined by a finite ball in T . Thus T and f(T ) are MLD.

Remark. A definition of MLD for hulls has been constructed, which implies that if

two tilings T , T ′ are MLD, their hulls ΩT , ΩT ′ are MLD. Lemma 8 would thus imply

that every hull in (CH
⋃

CH)local is MLD to a corresponding hull in CH
⋃

CH.

See page 9 of [36] for details.
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Lemma 9. Let u, v ∈ Z. Then for any black main arrowed tile t in Ch
⋃

Ch(u,0),

the tile shifted (u+0.5, 0.5) units from it will have a red arrow pointing in the same

direction, by definition. The type of tile (v + 0.5, 0.5) units from that black main

arrowed tile does not necessarily have an arrow pointing in the same direction.

Proof. To show this, assume that it does have the same direction. This would imply

that in CH, a tile (denote it t′) (v, 0) units away from a tile which looks like t would

have an arrow in the same direction, regardless of where t′ is in the tiling.

There exists a tiling in CH which has an ‘infinite chain’ of tiles which look like

t, as shown in figure 6.7. (The tiling in question is the default iterated expansion of

a prototile with an arrow pointing to the upper-right.)

Thus if t′ shares the same prototile as t, then we are allowed tilings which look

like figure 6.8.

This is because an infinite chain of tiles with all arrows pointing in the same

direction acts as a ‘faultline’ in the tiling. The arrangement of tiles on one side

of the line will have no effect on the tiling on the other side of the faultline, since

every tile with an edge bordering the infinite chain of tiles must be labelled with an

arrow pointing away from the faultline. Thus we are free to have a fixed pattern of

tiles between any two infinite chains. In other words, we can have a tiling with a

horizontal period.

This tiling has a horizontal period, which contradicts CH (and hence the general

chair tiling) being aperiodic. Since the chair tiling is aperiodic, our assumption is

false, and the type of tile (v + 0.5, 0.5) units from a black main arrowed tile does

not need to have the same direction.

We now aim to prove that CH
⋃

CH has elements in a countably infinite number
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Figure 6.7: Infinite chain
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Figure 6.8: Periodic tiling

of LI classes (This of course does not rule out the existence of a higher cardinality

of LI classes).

Theorem 11. Consider the tilings Ch
⋃

Ch(s,0) and Ch
⋃

Ch(t,0), where s > t, and

s 6= kt, ∀k ∈ N . Ch
⋃

Ch(s,0) and Ch
⋃

Ch(t,0) are in different LI classes.

Proof. This proof will be a variant on the proof that T
⋃

T+(2n+1) and T
⋃

T+(2m+1)

in the one-dimensional case are in different LI classes.

Take the following patch in Ch
⋃

Ch(s,0);

From lemma 9 we know that there exists a patch in Ch
⋃

Ch(s,0) with the fol-

lowing conditions; The patch has a black main arrowed tile at some point, at a

point (t + 0.5, 0.5) units away there will be a red arrowed tile facing in the opposite

direction, and at a point (s + 0.5, 0.5) units away there will be a red arrowed tile

pointing in the same direction.
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Figure 6.9: Patch in Ch
⋃

Ch(1,0)

Similarly in Ch
⋃

Ch(t,0) we can find a patch with a black main arrowed tile at

some point, at a point (s+0.5, 0.5) units away there will be a red arrowed tile facing

in the opposite direction, and at a point (t + 0.5, 0.5) units away there will be a red

arrowed tile pointing in the same direction.

Thus Ch
⋃

Ch(t,0) and Ch
⋃

Ch(s,0) are in different LI classes.

Lemma 10. CH
⋃

CH has elements in a countably infinite number of LI classes.

Proof. From the previous theorem we know that Ch
⋃

Ch(s,0) and Ch
⋃

Ch(t,0) are

in different LI classes, if s and t are coprime. By taking the prime numbers {pn}∞n=1,

we can construct a countably infinite string of tilings, {Ch
⋃

Ch(pi,0)|i ∈ N} which

all belong to different LI classes.

Since (CH
⋃

CH)local and CH
⋃

CH are MLD, then (CH
⋃

CH)local also has

a countably infinite number of LI classes.
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Remark. Consider Kari’s set of 13 Wang prototiles (and the related tiling space,

which we shall denote as K). We believe that the proof of an infinite number

of LI classes can be adapted to Kari’s set of prototiles. As a brief justification,

Kari’s tilings are constructed from rows of Wang tiles representing real numbers

(more precisely balanced representations). In some tilings in the tiling space, these

numbers are irrational (and thus have no horizontal period). Then the Fib
⋃

Fib

proof should be applicable to this row.

6.1 What we can deduce from multiple LI classes

First we shall show when a tiling space Ω is compact (This is a well known result

within the field).

Definition 41. A tiling has Finite Local Complexity (FLC) if it contains only finitely

many types of patches with diameter less than some given R > 0, up to translation.

A tiling has finite translation classes if there are a finite number of tile types,

up to translation. All tilings used in this thesis have finite translation classes. An

example of a tiling which does not is the pinwheel tiling [32]. As a reminder, a tiling

is edge-to-edge if any two facets in the tiling cannot partially overlap. A repetitive

tiling with finite translation classes, which matches edge-to-edge is automatically of

FLC type. All of the tilings used in this thesis match edge-to-edge and have finite

translation classes.

We may also say that a tiling ’is FLC’. This is merely a grammatical variation.

Lemma 11. If the tilings in a tiling space Ω are FLC, then Ω is compact.

Proof. Consider the discrete hull Ω0 ⊂ Ω. (The discrete hull of a tiling space is the

set of all tilings with the centre of mass of a tile over the origin).
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Let {Ti, i ∈ I} be any given infinite set of elements of Ω0 (in other words, tilings).

Look at the patches of radius 1 about the origin of these elements. Since Ω0 is FLC,

there are a finite number of possible patches of radius 1. Thus there will be (at least)

one patch of radius 1 about the origin such that an infinite subset of {Ti, i ∈ N}
contains that patch (about the origin). Renumber this infinite subset as {S1

i , i ∈ N}.
Now look at patches of radius 2. By a similar argument, there are an infinite

subset of {S1
i , i ∈ N} with one type of patch around the origin. Renumber this

new infinite subset as {S2
i , i ∈ N}, and iterate the process. Taking a sequence

{Sj
1}j∈N will give you a convergent subsequence under the standard metric. Thus

for any sequence {Ti, i ∈ N} in Ω0 we can find a convergent subsequence. Thus Ω0

is compact.

But

Ω ´ Ω0 ×DR

where DR is a disk of radius equal to the maximum possible distance between the

centres of mass of two adjacent tiles in any tiling. DR and Ω0 are compact. Ω is the

continuous image of the product of two compact spaces. Thus it is compact.

Let us consider the number of connected components of a repetitive tiling space

with n LI classes.

Theorem 12. If a repetitive tiling space Ω has exactly n LI classes, that tiling space

has n connected components. Furthermore, each LI class is a connected component.

Proof. Choose a labeling of the LI classes as {LIk}k∈{1,2,...,n}, ensuring that there

are no duplicate labels. To prove a LI class LIk is a connected component, we

need to show that Lk is connected, and that there exists an open set Uk around Lk

separating LIk from the rest of Ω.
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We will first show that for any k ∈ {1, 2, . . . , n}, LIk is connected. Our set LIk

is connected if there do not exist non-empty open sets U , V such that LIk = U ∪V ,

U ∩ V = ∅ and U ∩ V = ∅. Assume such a pair of open sets exist. Thus both U

and V are contained within LIk. Consider U , and choose some tiling x ∈ U . By

definition of open, there exists an ε-ball around x contained in U . Thus every tiling

which agrees with x on a radius of 1
ε

about the origin must be in U (due to the

metric on the tiling space Ω). Denote the patch of tiles contained in B 1
ε
(0) in x as

the patch P . Since we are dealing with tilings in an LI class, a tiling v ∈ V has that

patch P in it, centred about some point v in the tiling. Thus there exists a path in

the tiling space sending v to within ε of x, corresponding to the path sending the

point v to the origin (when considered as translations in the tiling space). This is a

contradiction with U ∩ V = ∅. Thus LIk is connected, and similarly all LI classes

in this tiling space are connected.

We will now show that the closure of a LI class is that LI class. Without loss

of generality, choose a LI class LIk and any convergent sequence {Si}∞i=1 of tilings

inside the LI class. If the limit of {Si}∞i=1 is in LIk, then the closure of LIk is LIk.

Our tiling space has a metric and is compact, thus it is complete. Thus the limit of

the sequence is in the tiling space.

Take a given patch P from S1. We know that P will be found somewhere in all

tilings in {Si}∞i=1, since the tilings are in the same LI class. We need to show it will

also appear in the limit. Consider S1. Our tiling space is repetitive, thus all tilings

are repetitive. Thus P will be within some distance r of the origin, for some r ∈ R
dependent on P .

Consider S2. P must be within distance r of the origin of S2. Otherwise there

would be some patch Br(0) in S2 which does not contain P . Since S1 and S2 are in

the same LI class, this patch would also occur in S1, which would be a contradiction
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with S1 being repetitive (with value r).

Thus P occurs within r of the origin of S2. By similar argument, P occurs

within r of the origin of Si, for all i ∈ N. Thus P also occurs (within distance r) of

the origin of the limit of {Si}∞i=1. Since we chose an arbitrary patch P , the limit of

{Si}∞i=1 is in the same LI class. Thus the closure of a LI class is that LI class.

Thus there is a finite distance between any two LI classes.

We will now show that for any LI class LIk, we can choose an open set around

LIk, separating LIk from the rest of Ω. This implies that LIk is a connected com-

ponent.

Set ε = 1
2

min {d(x, y)|x ∈ LIk, y ∈ LIs, i 6= j; i, j ∈ {1, 2, . . . , n}}. Note that we

know that ε > 0 because the tiling space is repetitive, hence FLC, hence compact.

Let Uk = {a ∈ Ω|d(a, ak) < ε for some ak ∈ LIk} =
⋃

t∈LIk
Bε(t). Therefore Uk is

open.

But Uk ∩ Us = ∅ (if k 6= s) by choice of ε. Thus Uk separates LIk from the rest

of Ω. Thus LIk is a connected component.

Thus Ω has n connected components.

Sadly, we cannot find such a simple relationship between connected components

and LI classes when there are an infinite number of LI classes. Consider the following

lemma;

Lemma 12. Consider the set S of repetitive tiling spaces which have an infinite

number of LI classes. There is no (finite) upper bound on the number of connected

components contained in a tiling space from S.

Proof. Take CH
⋃

CH which is a FLC unit square tiling with an infinite number of

LI classes. Assume CH
⋃

CH has a finite number of connected components. Con-
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sider (CH
⋃

CH)
⋃

Chess. This new tiling space doubles the number of connected

components. Thus there is no upper limit on the number of connected components

possible.

As a minor aside, we can also consider the general structure of a tiling space

of A
⋃

B = {a ∪ b|a ∈ A, b ∈ B}. A
⋃

B has strong similarities to a fibre bundle,

with B as the fibre, A as the base space and the projection map from A
⋃

B to A

being merely the inverse of the ∪ operation sending a to a ∪ b. The complication

occurs with translation. As the reader may recall we are using a metric on tilings

where two tilings are close if they agree on a large patch about the origin, or are

a small translation away from each other. However the function sending a to a ∪ b

only measures the order that tiles in b are from the origin (so that we can place

them in order into a). Consider two tilings b and b′, which are an arbitrarily small

translation d apart, but have different tiles over the origin. These tilings lead to

tilings a∪ b and a∪ b′. These two tilings are not translations of each other, and are

thus a significant distance apart when considered as points of the tiling space. See

figure 6.10. Translations on B are thus discontinuous, when considered with respect

to A ∪B.

Thus the topology of A
⋃

B is non-trivial.
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Figure 6.10: b, b′, a ∪ b and a ∪ b′
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Chapter 7

The ∩ operation: An equivalent

construction applicable in Rd

The ∪ operations used in the last chapter are limited. The 1 dimensional construc-

tion uses separate terminology from the 2 dimensional one, both are specific to a

particular way of interlacing tilings, and the constructions are unwieldy to iterate.

Thus we will introduce a variation of the ∪ operation, which we will denote as

the ∩ operation. This ∩ operation uses the concept of an array associated to a

tiling. Arrays do not interact with the shape of a tile (unlike the ∪ operation), thus

we can consider limits of ∩ operations with relative ease. The array concept also

allows us to consider alternative methods of interlacing tilings (∩n operations) with

a minor extension of the terminology, producing new tilings we could not derive

cleanly from the ∪ operation. Furthermore, when we apply a ∩n operation to an

aperiodic tiling, the resultant tiling will be aperiodic.

We will use arrays to describe both the 1 and 2 dimensional cases, using similar

terminology for both dimensions. In this chapter we will introduce the (1 dimen-

sional) ∩ operation, leaving the 2 dimensional case to the next chapter. Let us
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consider the following definition of Zd-arrays. This formulation of Zd-arrays was

first studied in [13], and extended in [10].

Definition 42 (Zd-array). A Zd-array (with alphabet Σ) is a function

Z : Zd 7→ Σ

The precise formulation of Zd-arrays we are using is new to this thesis (since

[10] uses many concepts from dynamical systems), but is equivalent to the version

found in [10].

Definition 43. Choose a set of basis vectors {v1, . . . , vd} of Rd. Define the under-

lying lattice Latt as {a1v1 + a2v2 + . . . + advd|a1, a2, . . . ∈ Z}. Define p : Zd 7→ Latt

as p(a1, a2, . . . , ad) = a1v1 + a2v2 + . . . + advd. This is clearly a bijective function.

Then the array on a lattice (Z, Latt) is the function;

Z ′ : Latt 7→ Σ such that Z ′ ◦ p = Z.

In other words, Z is the pullback of Z ′. Note that if you have an array Z and

an underlying lattice Latt, you can calculate Z ′. Similarly, if you have Z ′ you can

calculate Z. Thus we will often refer to ‘arrays on a lattice’ as ‘arrays’, when the

lattice is fixed.

@
@

@
@

@
@R?

-Latt

Zd

Σ

Z

Z ′

p

These definitions correspond to assigning an element from an alphabet Σ to

every point on a lattice embedded in Rd. The underlying lattice Latt encodes which

lattices we choose and the Zd-array encodes what elements from the alphabet get
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assigned to the particular lattice points. From now on we will use the convention

that when no underlying lattice is mentioned, we are using the integer points in Rd

for our underlying lattice.

Note that the underlying lattices form Delone sets, i.e. any lattice is relatively

dense and uniformly discrete. We can consider the Voronoi diagram of a lattice. As

a reminder, the Voronoi cell of a point p in a disconnected set A ⊂ Rd is the set of

all points x ∈ Rd such that d(x, p) = d(x,A).

Since we are using a lattice, the Voronoi cells of a lattice will be all the same

shape (a unit interval for lattices in R, a parallelogram for lattices in R2, paral-

lelepiped for lattices in R3, and so on).

Thus we can move between a tiling by unit intervals/paralleolograms/parallelepipeds

(etc) and an array on a lattice, as follows.

Remark. Tilings by unit intervals/paralleolograms/parallelepipeds (etc) can be

converted into arrays on lattices.

To do this, take such a tiling T of Rd where the origin is the centrepoint of some

tile in the tiling. Mark the centrepoint pt of each tile t. These new points will form a

lattice, namely Zd ⊂ Rd. Choose an alphabet consisting of all possible prototiles in

T . Construct an array mapping a point in Zd to the prototile that point corresponds

to. The array will thus be a map from Zd to an alphabet of all possible tile types.

Arrays can be turned into tilings by taking the Voronoi diagram of the under-

lying lattice of the array, and labelling each Voronoi cell with the corresponding

element from the array. While there exist multiple tilings that correspond to the

same underlying lattice, if we restrict ourselves to unit paralleolograms in R2 (par-

allelepipeds in R3, intervals in R, etc), there will be one unique tiling, and the shape

of the tiles will be the same as the Voronoi cells of the lattice. Thus these two

functions are invertible when restricted to unit tilings with centrepoints of tiles over
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the origin of Rd.

Note that this method can only convert tilings with the origin as a centrepoint of

some tile. This method can be extended to all tilings by allowing underlying lattices

which are offset from the origin by some vector. This chapter will not require such

tilings, so for the sake of clarity we will use our current definition.

We will limit ourselves to studying the one and two dimensional cases in this

thesis. While the two dimensional case seems more general, there are operations

applicable to the 1 dimensional case which are not applicable to the 2 dimensional

(and higher) cases.

7.1 1 dimension

The major advantage of studying the 1D case is that we can express the array as a

bi-infinite sequence, enabling us to use results applicable to sequences. Thus we will

define the ∩ operation for 1D arrays, and Toeplitz sequences, a class of examples

originating in the field of dynamical systems [16] [22].

Definition 44 (A ∩ B, the Superposition operation). Let A and B be Z-arrays,

namely A : Z 7→ Σ, B : Z 7→ Σ.

Then define A ∩B as follows;

(A ∩B)(v) =





B(n) if v = 2n,

A(n) if v = 2n− 1.

Definition 45. Define fX(A) as the function sending an array A to A ∩X, where

X is another array.

Theorem 13. If A or B is an aperiodic tiling, then A ∩B is an aperiodic tiling.
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Proof. Let us use proof by contrapositive. Assume A ∩ B is periodic. Then there

exists a period p such that (A ∩ B)(v) = (A ∩ B)(v + kp), for all k ∈ Z. If p is

a period of A ∩ B, then 2p will also be a period of A ∩ B. The elements of B are

introduced to A ∩ B at the even positions. Thus B will be periodic, of period p,

since A ∩ B is periodic with period 2p. A will also be periodic, of period 2p − 2p
2
,

which simplifies to p. Thus if A ∩B is periodic, A and B must be periodic.

7.2 Motivation

We can consider A∩B in one dimension as the overlaying, or merger of two separate

tilings. Imagine the tilings A and B as two infinite translucent physical strips with

the strip representing each tiling. The operation A ∩ B corresponds with placing

A down over the origin normally, then shifting it half a unit to the left. You then

place the strip for B down over the origin normally, effectively interlacing points

from A and B. Looking through A and B’s strips, the tiling A∩B can be read off.

Note that the distance between consecutive points needs to be scaled back up to 1

(by expanding about the origin by a factor of 2). See picture 7.1 for a schematic

motivation of how to create A ∩B from two tilings A and B.

We will now give the definition of a Toeplitz sequence. We will also define a

‘null’ array, a concept used in the field of Toeplitz sequences. Note that there are

many equivalent definitions of a Toeplitz sequence. We will use one more easily

applicable to this thesis, from the reference [16] (with a very similar format to [15]).

Definition 46. Let A be a finite set of at least two elements. Let A∗ be the set of

finite sequences, or words over A. If w ∈ A∗, let |w| denote its length. Let Ω = AZ.

If S ∈ Ω, n ∈ Z and p ≥ 1, then let
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Figure 7.1: A schematic motivation for A ∩B.

SnSn+1 . . . Sn+p−1

denote the word of length p appearing in S starting at position n. Thus Sn is the

nth letter in the sequence.

Definition 47. An element S ∈ Ω is called a periodic sequence with period p ∈ N
if St = St+p for all t ∈ Z.

Definition 48. An element S ∈ Ω is called a Toeplitz sequence if it is not a periodic

sequence, and satisfies the following condition;

∀n ∈ Z,∃p ≥ 2 such that ∀k ∈ Z, Sn+kp = Sn

Definition 49. A p-periodic part of a bi-infinite sequence S ∈ AZ is;

Perp(S) = {n ∈ Z : ∀k ∈ Z, Sn+pk = Sn}
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Remark. Consider a sequence T , which is not periodic. If every point Tk ∈ T is in

a pt-periodic part for some pt, T is a Toeplitz sequence. This is because if a point

Tn belongs to a pt-periodic part, then by definition of periodic part, Tn+kp = Tn.

Definition 50. An almost Toeplitz sequence is a sequence where all but a finite

number of points are in a periodic part.

In this chapter we will be converting certain non-periodic tilings into (almost)

Toeplitz sequences. The points not in a periodic part will be a finite word directly

to the right of the origin. We will refer to this word as the seed, for reasons which

will be apparent later.

Definition 51. A null array ∗ is the unique array with alphabet {∗}.

Regarding the ∩ operation, let us define it to be an operation that is conven-

tionally evaluated, as follows;

Definition 52. A ∩B ∩ C := ((A ∩B) ∩ C) Furthermore; A1 ∩A2 ∩ . . . ∩An+1 :=

(A1 ∩ A2 ∩ . . . ∩ An) ∩ An+1) for all n ∈ N.

Definition 53. (A ∩B)2 = A ∩B ∩ A ∩B

(fA ◦ fB)2(X) = fA ◦ fB ◦ fA ◦ fB(X) = X ∩B ∩ A ∩B ∩ A

Definition 54. If B1, B2, B3, . . . is a sequence of arrays Z 7→ Σ, say they have the

limit B : Z 7→ Σ if ∀n ∈ N ∃m such that B(x) = Bi(x) for all −n ≤ x ≤ n and

i ≥ m.

For studying infinite ∩ operations, we need to be careful when looking at the

limit.

Consider two arrays, 0 and 1, where 0(v) = 0 and 1(v) = 1 for all v ∈ Z. Now

consider the series {Xi}∞i=1 = 0, 0 ∩ 1, 0 ∩ 1 ∩ 0, . . . as shown in figure 7.2.
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Figure 7.2: The first few points of 0, 0 ∩ 1 and other arrays.
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By examining definition 44, the reader can observe that points in the even

positions of an array A ∩ B are only dependent on the array B. Thus the same

result applies for a function fB(A), since it is merely different terminology.

We will use this fact to show that no limit of the series {Xi}∞i=1 exists.

The sequence {Xi}∞i=1 = 0, 0 ∩ 1, 0 ∩ 1 ∩ 0, . . . can be rewritten as

0, f1(0), f0(f1(0)), . . . , f0(X2i+1), f1(X2(i+1)), f0(X2(i+1)+1)) . . .

More precisely, X2i = f1(X2i−1), X2i+1 = f0(X2i) and X1 = 0.

The value of even positions in X2i = f1(X2i−1) is 1. The value of even positions

in X2i+1 is 0. Thus the value of points in even positions will be different in X2i and

X2i+1, for any i ∈ N. Thus there does not exist a limit of this sequence.

Limits of ∩ operations do not (usually) exist, but we can instead use the com-

mon idea of convergent subsequences, in an attempt to get interesting results. For

example with the limit of 0 ∩ 1 ∩ 0 ∩ 1 ∩ . . . we could consider the limit of

0 ∩ 1, (0 ∩ 1)2, (0 ∩ 1)3, . . .

or

0, 0 ∩ 1 ∩ 0, (0 ∩ 1)2 ∩ 0, . . .

(These subsequences do have properly defined limits, which will be proven in a

later section). Considering different subsequences may give us different values for

a limit. Note that the work in this section implies that only superpositions of the

form A1 ∩ A2 ∩ . . . ∩ An ∩ A ∩ A ∩ A . . . could have limits when considered in the

naive way.
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7.3 A ∩n B

We will now define an operation without obvious equivalent in higher dimensions,

∩n. We will then describe the limit of a sequence of ∩n superposition operations.

Definition 55. Let A and B be one dimensional sequences (possibly derived from

tilings as described in the previous section). Define A ∩n B : Z 7→ Σ as follows;

(A ∩n B)(v) =





B( v
n+1

) if v = k(n + 1) for k ∈ Z,

A(v − b v
n+1

c) otherwise.

Theorem 14. If A or B is an aperiodic tiling, then A ∩n B is an aperiodic tiling.

Proof. Assume A ∩n B is periodic. Then there exists a period p such that (A ∩n

B)(v) = (A ∩n B)(v + kp), for all k ∈ Z. If p is a period of A ∩ B, then (n + 1)p

will also be a period of A∩n B. The elements of B are introduced to A∩B at every

(n+1)th position. Thus B will be periodic, of period p, since A∩nB is periodic with

period (n+1)p. A will also be periodic, of period (n+1)p− (n+1)p
(n+1)

, which simplifies

to np. Thus if A ∩n B is aperiodic, at least one of A or B must be aperiodic.

Intuitively you place B0 ∈ B at the origin, bumping A0 left one unit, and this

bumping all points left of the origin one unit left. You then add B1 to the right of

An, bumping tiles AN for N > n right by 1. Similarly you add B−1 to the right of

A−n, bumping tiles away from the origin to make space. You then place B2 to the

right of A2n and B−2 to the right of A−2n, and iterate for B3 and B−3, and so on.

Definition 56. Define fn
X(A) as the function sending an array A to an array A∩nX.

Remark. Note that the ∩1 operation is equivalent to the ∩ operation defined pre-

viously.
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Figure 7.3: The arrays A, B, and A ∩i B for 1 ≤ i ≤ 5

7.4 (∩A ∩B)∞

We will now consider a subset of infinite compositions of the ∩ and ∩n operations.

Note that the ∩ operation is equivalent to the operation ∩1. Thus, in the 1 dimen-

sional case, ∩n can be considered to be a more general operation. We will start with

the basic definitions, before giving illuminating examples.

Definition 57 ((∩sA ∩t B)m). Consider two sequences A and B. Let s, t, m ∈ N.

Then define (∩sA ∩t B)m as follows;

(∩sA ∩t B)m := A ∩t B ∩s A ∩t B ∩s . . . . . . ∩s A ∩t B︸ ︷︷ ︸
2m

Similarly (for sequences Ai, and integers ai ∈ N).

(∩a1A1∩a2A2 . . .∩anAn)m := A1 ∩a2 A2 . . . ∩an An ∩a1 A1 ∩a2 A2 . . . . . . ∩an−1 An−1 ∩an An︸ ︷︷ ︸
mn
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Definition 58 ((∩sA ∩t B)∞). Let A and B be sequences. Let s, t ∈ N. Then

define;

(∩sA ∩t B)∞ := lim
m→∞

(∩sA ∩t B)m

if the limit exists.

Similarly (for sequences Ai, and integers ai ∈ N),

(∩a1A1 ∩a2 A2 . . . ∩an An)∞ := lim
m→∞

(∩a1A1 ∩a2 A2 . . . ∩an An)m

if the limit exists.

We will now work towards calculating the limit of repetitively applying a series

of ∩nN operators, with different periodic arrays N . We will eventually prove that

you can create aperiodic substitution sequences by this method. To improve clarity,

we will run through a simple example (with associated proofs) first, to give the

reader some intuition into this area.

7.5 0 ∩ 1 and its limit (0 ∩ 1)∞

Recall that (0 ∩ 1)m is defined as 0 ∩ 1 ∩ 0 ∩ 1 . . . ∩ 0 ∩ 1︸ ︷︷ ︸
2m

. Similarly, (0 ∩ 1)∞ is

defined as the limit of (0 ∩ 1)m as m →∞.

We will show that (0 ∩ 1)∞ exists, and is equivalent to an aperiodic primitive

substitution tiling.

Consider the sequence of arrays ∗, f1(∗), f0 ◦ f1(∗), . . . , (f0 ◦ f1)
m(∗), f1 ◦ (f0 ◦

f1)
m(∗), . . .. Part of this sequence is shown in figure 7.4. Recall that ∗ is the null

array.
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Figure 7.4: Sequence of arrays.

As we repetitively apply the f0 ◦ f1 operation to our array it appears that larger

and larger patches of the array are independent of what the starting array was. We

will now make this rigorous.

Definition 59. Consider an array A1 ∩n2 A2 ∩n3 A3 . . . ∩nm Am. A point p in the

underlying lattice of A1∩n2 A2 . . .∩nm Am is called an undefined point if ∗∩n2 A2∩n3

A3 . . . ∩nm Am maps that point to ∗.

Thus from definition 44, any array of the form X ∩ 1 (ie f1(X)), where X is any

array, has undefined points at odd positions.

Lemma 13. Let m ∈ N0 and k ∈ N. If a point is defined in f1 ◦ (f0 ◦ f1)
m(∗), it

will be defined, and take the same value, in f1 ◦ (f0 ◦ f1)
m+k(∗).

Proof. Consider f0(X), for any array X. By the definition of the ∩ operation, we
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know that f0(X) will have defined points at positions 2s (s ∈ Z), with value 0.

(Similarly, f1(X) will have defined points with value 1 in the same positions).

Consider f1 ◦f0(X) which is equivalent to f1 applied to f0(X). By the definition

of the ∩ operation, a point at position 4s − 1 in f1 ◦ f0(X) will share the same

value as a point at position 2s in f0(X). Thus f1 ◦ f0(X) will have defined points

at positions 4s− 1 with value 0, and defined points at positions 2s with value 1.

Let us generalise to an array fi1 ◦ fi2 ◦ . . . ◦ fin(X). This array will have defined

points at positions 2ns−2n−1 +1, with value in. We will use induction on n to prove

this.

Regarding the initial case, fi1(X) has defined points at positions 2s as required

(via definition 44). For the induction step, consider fi2 ◦ fi3 ◦ . . . ◦ fin+1(X). This

will have defined points at positions 2ns − 2n−1 + 1, with value in+1, from our

assumption. Call this array Xn. From definition 44, fi1(Xn) will have a point with

value Xn(v) at position 2v − 1. Thus the set of points with value in+1 in fi1(Xn)

are {x|x ∈ 2(2ns − 2n−1 + 1) − 1, s ∈ Z}. This can be rewritten as Sn+1 = {x|x ∈
2n+1s− 2n + 1, s ∈ Z}, as required. Thus our induction holds.

Thus f1◦(f0◦f1)
m+k(∗) will define every point f1◦(f0◦f1)

m(∗) defines. This is be-

cause f1◦(f0◦f1)
m(∗) will have defined points (with associated values) in

⋃i=2m+1
i=1 Si

and f1 ◦ (f0 ◦ f1)
m+k(∗) will have defined points in

⋃i=2(m+k)+1
i=1 Si. Furthermore, the

defined points will have the same value, since the sets Sn = {2ns− 2n−1 + 1|s ∈ Z}
are disjoint for n ≥ 1, thus the value of a point is solely determined by which set Si

it is contained within.

For an explicit proof that the sets Sn are disjoint, consider Sa and Sb, for a, b ∈ N,

a 6= b. Assume WLOG that a < b. Then b = a + c, for c > 0. The sets Sa

and Sb will have non-zero intersection if there exists an integer solution to the

equation 2as− 2a−1 + 1 = 2bt− 2b−1 + 1. This can be rewritten as 2as− 2a−1 + 1 =
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2a+ct− 2a+c−1 + 1, and simplified to 2s− 1 = 2c+1t− 2c. The left hand side of this

equation can only take odd values, and the right hand side can only take even values

(since c > 0). Thus Sa and Sb are disjoint.

Theorem 15. limm→∞(0 ∩ 1)m exists.

Proof. Note that another equivalent way of writing limm→∞(0∩1)m is as limm→∞[f1◦
(f0 ◦ f1)

m−1(0)].

Consider the lattice point at position ‘1’ in any array. For any array X, the fX

operation does not change what value is assigned to this point. An array (0 ∩ 1)m

is constructed by taking a 0 array, and applying multiple f1 and f0 operations to it

in turn. Thus the lattice point at position ‘1’ in an array (0∩ 1)m will be a point of

type 0, for all m. Thus the lattice point at position ‘1’ is well-defined in the limit.

For our next step, we will show that in the limit, the only undefined point is

at position ‘1’. Call this point the seed. Consider f1(∗). The points at positions 2

and 0 are defined. On applying f0 to this array, the point at position 2 is shifted to

position 3, and the point at position 0 is shifted to position −1. Thus in f0 ◦ f1(∗),
the points two units away from the seed point are defined from f1, and the points

one unit away from the seed are now defined by f0. Every time a new fi function

is applied to the array, the patch of defined points grows by (at least) one. Thus in

the limit, every point (barring the seed point) is defined for some f1 ◦ (f0 ◦ f1)
m(0).

From the previous lemma, we know that every defined point will keep the same

value as m → ∞. Thus these lattice points are well-defined in the limit. Thus

limm→∞(0 ∩ 1)m exists.
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Theorem 16. (0 ∩ 1)∞ is an almost Toeplitz sequence, with the only undefined

point being at position ‘1’.

Proof. We will use induction to show that every defined point in (0 ∩ 1)∞ is in

some periodic part. Construct the sequence {Xi} where X1 = f1(0), X2 = f0(X1),

X2i = f0(X2i−1) and X2i+1 = f1(X2i) for i ≥ 2.

Consider the defined points of X1 = f1(0). These points occur at even positions,

and thus form a 2-periodic part, as defined in definition 49. Thus every defined point

in X1 is in some periodic part. (In fact, every point is in a periodic part).

Assume every defined point in Xn is in some periodic part. Consider Xn+1 =

fi(Xn) (where fi is either f0 or f1, based on parity of n). (Denote the points of Xn

as x′t, and the points of Xn+1 as xt, for t ∈ Z).

Any defined point in fi(Xn) will either correspond to a defined point in Xn, or

will be an even point. If it is an even point, it will be assigned a value of 1 (if n is

even) or 0 (if n is odd). Since all even points are assigned the same value, the even

point of fi(Xn) form a 2-periodic part.

Any defined point x2t−1 ∈ fi(Xn) will correspond to a point x′t in Xn. By

our assumption, the point x′t in Xn belongs to some p-periodic part, for some p.

This periodic part consists of a series of points x′t+kp with the same label (for k ∈
Z). Therefore the p-periodic part will be mapped to a 2p-periodic part in fi(Xn),

consisting of a series of points x2(t+kp)−1 with the same label. Thus any defined

point in Xn+1 belongs to some periodic part. By induction, any defined point in

Xi, for any i, must be in a periodic part. We know from the last theorem that if a

point is defined in Xi, it will have the same value in all sequences Xi+2k. Therefore

once a point is defined (and thus belongs to a periodic part), it will always belong

to a periodic part. We can therefore conclude that every defined point in the limit

(0 ∩ 1)∞ is in a periodic part.
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Remark. Any finite composition of periodic arrays under the ∩ operation will be

periodic. In particular, the sequence (0 ∩ 1)m is periodic, with period 22m−1.

As a sketch proof, let {Xk}∞k=0 be any arrays with only one letter in each alpha-

bet, possibly different for each array. (A similar proof applies for periodic arrays, but

requires more complex notation for little added clarity). Consider some sequence

F1 = fX1(X0), Fi = fXi
(Fi−1). Consider a point in X0. It will be in a 1-periodic

part. Under the fX1 operation, this 1-periodic part will be mapped to a 2-periodic

part. Any point in F1 will either be undefined (and hence in the 2-periodic part

inherited from X0), or it will be defined. If it is defined, it will be in another 2-

periodic part, this one consisting of points from X1 in even positions in the array.

Thus F1 has period 2.

Applying the fX2 operation to F1 will send the 2-periodic part representing

undefined points in F1 to a 4-periodic part in F2. The 2-periodic part representing

points first defined by fX1 will be sent to a 4-periodic part, and a new 2-periodic

part will be created for the points from X2 which have been placed in even positions

in the array F2. Thus F2 will have period 4 (the lcm of all the periodic parts).

Similarly F3 will consist of two 8-periodic parts, a 4-periodic part and a new 2-

periodic part containing values from X3. In general, Fi will contain two 2i-periodic

parts, and one 2j-periodic part for each 0 < j < i. Thus Fi will have period 2i.

(0∩ 1)m can be expressed as F2m−1 for X2k = 0, X2k+1 = 1. Thus the result follows.

Theorem 17. The sequence (0 ∩ 1)∞ is a fixed point of the substitution,

σ :0 7→ 0101

1 7→ 1101

118



More precisely σ((0 ∩ 1)∞) = (0 ∩ 1)∞.

Furthermore limm→∞((0∩1)m∩0) is also a fixed point of a substitution, namely;

σ̂ :0 7→ 0010

1 7→ 1010

More precisely σ̂(limm→∞((0 ∩ 1)m ∩ 0)) = limm→∞((0 ∩ 1)m ∩ 0).

Proof. First consider lim((0∩ 1)m ∩ 0). Note that this limit exists, since it is equiv-

alent to lim f0((0 ∩ 1)m), and lim((0 ∩ 1)m) is well defined.

We know that limm→∞((0∩1)m∩0) must be invariant under f0 ◦f1, since f0 ◦f1

is equivalent to increasing the value of m by one. From theorem 16, we know that

the point at position ‘1’ of lim((0 ∩ 1)m ∩ 0) must be of value 0, since neither f0 or

f1 can alter the value of the point at position ‘1 ’, and it is of value ‘0’ in the array

0 (the first sequence we are building the limit from). Denote the point at position

‘1’ the seed point.

Examining the proof of theorem 16, note that points defined by the first ap-

plication of f0 must be in a 2-periodic part, and points defined by the following

application of f1 will be in a (2 × 2)-periodic part. Thus we can deduce that the

highest periodic part in f0 ◦ f1(∗) is of period 4, thus f0 ◦ f1(∗) is periodic, with

period 4. Furthermore the repeating period is the word ∗ 0 1 0.

Now consider a generic sequence t = . . . t0t1t2 . . ., and what points are defined

from it under the application of f0 ◦ f1. The seed point, t1 gets sent to the word

t1 0 1 0. Via the periodicity of f0 ◦ f1(∗) we know that the point t2 is sent to the

word t2 0 1 0, which is joined on to t1’s word by concatenation. Similarly, t3’s word

is concatenated to the end of t2’s word, and so on for all ti. This is of course the
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function σ from the definition of the substitution. Since the seed point is fixed for

all m ≥ 1, the points generated from it are fixed for all m ≥ 2. Similarly, all points

generated from those points are fixed for m ≥ 3, and so on. Thus all points defined

via the application of f0 ◦ f1 are fixed in the limit.

Since every point in the underlying lattice is defined by f0◦f1(t), we can conclude

that lim((0 ∩ 1)m ∩ 0) can be generated via a substitution. Since f0 ◦ f1(lim((0 ∩
1)m ∩ 0)) = lim((0 ∩ 1)m ∩ 0), it is a fixed point of that substitution.

For (0 ∩ 1)∞ use a similar proof, using the fact that (0 ∩ 1)∞ is invariant under

f1 ◦ f0.

Remark. We now have a way of describing (0 ∩ 1)∞ as a fixed point of the substi-

tution 0 7→ 0101, 1 7→ 1101 . Unlike tiling spaces based on matching rules, there are

several methods available to calculate the cohomology of substitution tiling spaces,

which are applicable to this example (or more precisely, the tiling space of tilings

generated by the associated substitution). We will not give explicit details of a full

calculation here, since the concept is well described in papers such as [4].

Informally, we form an cellular complex L consisting of all prototiles and all

allowable transitions between prototiles (in the general case, ‘collared’ prototiles).

The tiling space can be represented as an inverse limit of the substitution map

on this complex. Thus the cohomology can be calculated from the direct limit

of the substitution map applied to the cohomology of the cellular complexes. In

this specific case, the subcomplex S formed by the allowable transitions between

prototiles is contractible, allowing for simple calculations via the exact sequence of

cohomology groups of S and L. The cohomology of this substitution’s tiling space

calculates as being equivalent to the cohomology of the Thue-Morse tiling space

(H0(σ) = Z, H1(σ) = Z⊕ Z[1
2
], H2(σ) = 0).

The cohomology of other substitutions described later on in this chapter can
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also be calculated via similar methods.

We will now generalize these proofs to arrays of the form (∩a1A1∩a2 A2∩a3 . . .∩an

An)∞, where Ai are periodic arrays.

We will also show these types of arrays are (almost) Toeplitz arrays.

7.6 (∩a1A1 ∩a2 A2 ∩a3 . . . ∩an An)∞

We can extend the proofs of lemma 13 and theorem 15 to cover the more general

case, (∩a1A1 ∩a2 A2 ∩a3 . . .∩an An)∞. To avoid excessive duplication, we will sketch

how to alter the proof to the more general case.

Theorem 18. (∩a1A1 ∩a2 A2 ∩a3 . . . ∩an An)∞ is well defined.

Sketch proof. Take σ = min{a1, . . . , aN}. Any point in an array X with position

strictly between 0 and σ is invariant under any operation ∩aiAi. Thus the first

(σ− 1) points of A1 form a ‘seed’ which is invariant, and thus the values of the seed

points are well defined in the limit.

Ignoring the seed, the first undefined point in ∩a1A1∩a2 A2∩a3 . . .∩an An cannot

be closer to the origin that position (σ + 1), since the first (σ − 1) points are in

the seed, and a new value will be inserted at position σ during every iteration of

∩a1A1 ∩a2 A2 ∩a3 . . . ∩an An, by the definition of σ.

Similarly, the first undefined point of (∩a1A1 ∩a2 A2 ∩a3 . . . ∩an An)2 cannot be

closer to the origin than σ +2, and in general the first undefined point of (∩a1A1∩a2

A2 ∩a3 . . . ∩an An)m cannot be closer than (σ + m).

(∩a1A1 ∩a2 A2 ∩a3 . . . ∩an An)m can be rewritten as;

(fan
An
◦ f

an−1

An−1
◦ . . . ◦ fa1

A1
)k((∩a1A1 . . . ∩an An)m−k
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for m > k.

Thus any defined point in (∩a1A1∩a2 A2∩a3 . . .∩an An)k will have the same value

for any (∩a1A1∩a2A2∩a3 . . .∩anAn)m for all m > k. Thus (∩a1A1∩a2A2∩a3 . . .∩anAn)∞

is well defined.

Theorem 19. If Ai are periodic arrays, then (∩a1A1 ∩a2 A2 ∩a3 . . . ∩an An)∞ is an

(almost) Toeplitz array.

Proof. Note that if Ai is a periodic array, every point in Ai is in a periodic part.

The maximum period of these periodic parts is equal to the period of the array Ai,

denoted p(Ai).

We wish to show that every defined point in (∩a1A1 ∩a2 A2 ∩a3 . . . ∩an An)m is

in a periodic part (ignoring the seed). Construct a sequence C = {c(i)}∞i=1 of arrays

where the sth term in the sequence consists of the array A1 with s fai
Ai

operations

applied to it in ascending cyclic sequence.

The first few terms of this sequence are;

c(1) = A1 ∩a2 A2.

c(2) = A1 ∩a2 A2 ∩a3 A3

c(3) = A1 ∩a2 A2 ∩a3 A3 ∩a4 A4

. . .

c(n− 1) = A1 ∩a2 . . . ∩an An

c(n) = A1 ∩a2 . . . ∩an An ∩a1 A1

c(n + 1) = A1 ∩a2 . . . ∩an An ∩a1 A1 ∩a2 A2

. . .

. . ..
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Explicitly c(s) is;

f
aj

Aj
◦ . . . ◦ fa1

A1
◦ fan

An
◦ f

an−1

An−1
◦ . . . ◦ fa1

A1
◦ . . . . . . ◦ fa2

A2
(A1)

. . .where j is such that s = (n− 1) + (k − 1)n + j, and j ≤ n.

The arrays (∩a1A1 ∩a2 A2 ∩a3 . . .∩an An)m form a subsequence of this sequence.

Thus if we can show that every defined point in any array (from C) is in a periodic

part, ignoring the seed, then we are done. We will use induction, showing that this

statement holds true for c(1), and that if the statement is true for c(s) it is true for

c(s + 1).

For the initial step of our induction, consider fa2
A2

(∗), alternatively known as

∗∩a2 A2. The points defined by fa2
A2

belong to a finite number of periodic parts, with

maximum period (a2 + 1).p(A2). Thus every defined point in fa2
A2

(A1) belongs to a

periodic part.

For our induction step, assume every defined point in the array c(s) is in a

periodic part. Without loss of generality, take any one of these periodic parts, p,

of period x. Consider f
aj+1

Aj+1
. Consider a section of c(s) of length lcm(x, aj+1). The

operation f
aj+1

Aj+1
adds a point every aj+1 units. Thus under the f

aj+1

Aj+1
operation any

section sec of length lcm(x, aj+1) is expanded to a section `sec of length

l = lcm(x, aj+1) +
lcm(x, aj+1)

aj+1

.

Furthermore, after the section of length lcm(x, aj+1) has been expanded, the

following section in c(s) of length lcm(x, aj+1) will also be expanded to a section

of length l. Via the properties of the lcm function, the positions of points from p

will be the same in `sec, the following section of length l, and all following sections

after that. Thus a x-periodic part in c(s) will be turned into a l-periodic part in
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f
an+1

An+1
(c(s)).

Thus by induction, every defined point (not in the seed) in (∩a1A1 ∩a2 A2 ∩a3

. . . ∩an An)∞ is in a periodic part. By theorem 7.2, (∩a1A1 ∩a2 A2 ∩a3 . . . ∩an An)∞

is (almost) Toeplitz.

We will now introduce a natural extension of the well-known concept of a sub-

stitution. The major change will be that the defining function of the substitution is

based on words, not letters.

Definition 60. Let A be an alphabet, A∗ be the set of finite words over A, and

W ⊂ A∗. Let A∞ be the set of bi-infinite words, and A∞w be the set of bi-infinite

words with unique decomposition into a sequence of elements from W . Let A∗w be

the set of finite words with unique decomposition into a sequence of elements from

W .

The function σ : W 7→ A∗ is a valid substitution on words if it satisfies the

following two properties; Firstly it must induce a well defined function σ∞ : A∗w 7→
A∗w. Secondly for all w ∈ W , there exists N such that |w| < |σn(w)|.

A σ-substitution tiling is an element Λ ∈ A∞w when Λ ⊂ Im(σ∞)N for all

N ∈ N.

For example a function σ defined as σ(01) = 0110 , σ(10) = 1001 would induce

a function σ∞ sending 011010 . . . to 011010011001 . . ..

Theorem 20. (∩a1A1 ∩a2 A2 ∩a3 . . . ∩an An)∞ is a fixed point of a substitution on

words.

Proof. For brevity, we will define the function fan
An
◦ f

an−1

An−1
◦ . . . ◦ fa1

A1
as F . Consider

F (∗). By the proof of theorem 19, points defined by fai
Ai

will be in a pi-periodic part,

where pi is some finite number. Thus, since we have only applied a finite number
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of fai
Ai

operations, there are a finite number of periodic parts. Thus F (∗) is periodic

(with period less than or equal to p1 · p2 · . . . · pn).

Since F (∗) is periodic, there must be a repeating sequence S of minimum length

(starting at the origin). For example, let Ki be an array with alphabet {ki}. Then

fK2 ◦ f 2
K1

(∗) would have a repeating sequence ∗ k2 ∗ k2 k1 k2.

By theorem 18, there exists a finite number of ‘seed points’ near the origin

that are unchanged by fai
Ai

, for any i ∈ N. Call the word formed by these points

w = w1w2 . . . wk. Consider the number n of undefined points in S. If |w| ≥ n,

then we can repetitively apply our function F to the first n points of w to define

the entire tiling. This is equivalent to a substitution rule sending w1 . . . wn to the

first |S| terms of F (ẁ) where ẁ = w1w2 . . . wn ∗ ∗ ∗ . . .. For our earlier example of

fK2 ◦ f 2
K1

(∗), this would give a substitution rule w1w2 7→ w1 k2 w2 k2 k1 k2.

If |w| < n then repetitively apply F to ẁ until the first n points are defined.

Then apply F to these n points as before.

Let us consider some examples, in order to improve our intuition regarding this

process.

7.7 Examples

Define X as the array where all points in the array have type X, where X can be

any fixed symbol.
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Example 6 ((∩0 ∩ 1 ∩ 2)∞).

(f2 ◦ f1 ◦ f0)(∗) = f2 ◦ f1(∗0 ∗ 0 ∗ 0 . . .)

= f2(∗101 ∗ 101 . . .)

= ∗2120212 ∗ 2120212 . . .

The repeating sequence is thus ∗2120212. Thus the substitution is xi 7→ xi2120212.

The first array in (∩0∩1∩2)∞ is the 0 array, and only the point at the origin in

0 is unaffected by f0, f1 and f2. Thus the seed of (∩0∩ 1∩ 2)∞ is the word ‘ 0’. ‘ 0’

has one point in it, which is equal to the number of unknown points in ∗2120212.

Thus 0 is our initial word, and xi 7→ xi2120212 is our substitution.

Example 7 ((∩2A∩B∩4C)∞). Define a sequence as follows: ∗̂ = ∗1∗2 . . .∗n∗n+1 . . .

Now consider f 4
C ◦ fB ◦ f 2

A(∗̂).

f 4
C ◦ fB ◦ f 2

A(∗̂) = f 4
C ◦ fB(∗1 ∗2 A ∗1 ∗2A . . .)

= f 4
C(∗1B ∗2 BAB ∗1 B ∗2 BAB . . .)

= ∗1B ∗2 BCAB ∗1 BC ∗2 BABC . . .

Therefore our substitution is:

x2n−1x2n 7→ x2n−1Bx2nBCABx2n−1BCx2nBABC

This substitution rule has two unknown points (x2n−1 and x2n), but the seed of

(∩2A∩B ∩4 C)∞ has only one point in it (namely ‘A’). Thus apply (f 4
C ◦ fB ◦ f 2

C to

the seed until the first 2 points are defined, as follows.
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f 4
C ◦ fB ◦ f 2

C(A ∗ ∗ ∗ ∗ . . .) = f 4
C ◦ fB(A ∗ A ∗ ∗A ∗ ∗A . . .)

= f 4
C(AB ∗BAB ∗B ∗ . . .)

= AB ∗BCAB ∗B . . .

Thus the seed of our substitution is AB.
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Chapter 8

The ∩ operation in two

dimensions, and its applications.

We have described the ∩ operation in one dimension. We will now extend the ∩
operation to higher dimensions. We will describe how to do this, and illustrate how

this can be used to recreate tilings from the Robinson tiling space.

Recall the definition of an Zd-array from definitions 42 and 43 in the last chapter.

We now introduce the notion of an Zd Toeplitz array. This concept was originally

introduced in [10] expanding on work done by Downarowicz in [13]. We have changed

the basic notation in this thesis, to fit with the particular notation for Toeplitz

sequences that we are using.

Definition 61 (Zd Toeplitz array). Let Σ be a finite set of at least two elements.

Let Z ⊆ Zd be a subgroup isomorphic to Zd. For a given array X : Zd 7→ Σ with

underlying lattice Zd define;

Per(x, Z, σ) = {w ∈ Zd : xw+z = σ for all z ∈ Z}, σ ∈ Σ

Per(x, Z) =
⋃

σ∈Σ Per(x, Z, σ)
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(When Per(x, Z) 6= 0 we say Z is a ‘group of periods’ of x.)

We say that x is a Zd-Toeplitz array (or simply a Toeplitz array) is it satisfies two

conditions. The first condition is that there must not be a translation vector t such

that xv+t = xv. Secondly, if for all v ∈ Zd there exists a subgroup Z ⊆ Zd isomorphic

to Zd such that v ∈ Per(x, Z).

This is a generalization of the Toeplitz sequence concept. A Toeplitz array can

be converted to a tiling of Rd (by unit hypercubes) by the same method a generic

array can be converted to a tiling.

As the reader may recall (ie figure 7.1), in the 1 dimensional case we used

overlaying infinite strips as a physical motivation behind the ∩ operation. Any

generalization to two dimensions should be roughly equivalent to taking two pictures

of tilings on overhead transparencies, overlaying them, and reading off a new tiling

from the result.

Consider the following definition.

Definition 62 (A∩B for Z2-arrays). Let A : Zd 7→ Σ and B : Zd 7→ Σ be Z2 arrays

with the standard lattice with points at integer positions.

A ∩ B is an array with alphabet Σ. The underlying lattice of the array differs

from the standard lattice, and not in an intuitive way.

Let f1 = ( 1√
2
, 1√

2
), f2 = (−1√

2
, 1√

2
).

Note that |f1| = |f2| = 1. Let LattA∩B = {a1f1 + a2f2|a1, a2 ∈ Zd} be the

underlying lattice for A ∩B.

Then define;

(A ∩B)(m,n) =





A((m−n
2

, m+n
2

)) if m + n is even,

B((m−n−1
2

, m+n−1
2

)) if m + n is odd.
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Definition 63. Let X and A be Z2 arrays. Then define gA(X) to be the function

sending X to X ∩ A.

These definitions are of the same format as the definition of A ∩ B in the one

dimensional case. It can be rephrased as follows

A point xe1 + ye2 in A is sent to the point xf1− yf2 in A∩B. A point xe1 + ye2

in B is sent to the point (x+1)f1 +yf2 in A∩B. This covers the whole of the array

A ∩B.

Definition 64. Denote an array with underlying lattice generated by the vectors

e1, e2 as a (unit) square array. Denote an array with underlying lattice generated

by the vectors f1, f2 as a diamond array.

For an intuitive construction of the (A∩B) operation, see the following remark;

Remark. Take two unit square tilings, A and B such that the origin of R2 is the

centre of a tile in both A and B. Switch to the lattice view of tilings (ie, consider the

array with underlying lattice formed by the centres of the unit square tiles). Shift B

by the vector v = (
√

2
2

,
√

2
2

). Overlap the two lattices. The vector v has been chosen

to maximize the distance between the set of tile centres of A, and the set of tile

centres from B, i.e. maximizing d(A,B). From the tile viewpoint, this corresponds

to choosing the vector v to place the centre of tiles from B at the vertices of tiles

from A.

Scale up so that d(B, A) = 1. The resultant array is no longer generated by the

standard basis of R2. We will thus change the generating vectors, to a minimum

vector between points in A and B, and a vector orthogonal to that minimum vector.

This is reflected in the non-intuitive function ‘n−m−1
2

’, and the basis vectors e1

and e2 changing to f1 and f2. See figure 8.1 for a pictorial representation of A, B

and A ∩B.
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Figure 8.1: Patches of the tilings A, B and A ∩B
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As the reader will be aware, A ∩ B has a different underlying lattice to A or

B. The corresponding tiling is not a tiling by unit squares, but by unit diamonds.

(This feature has been met before in this thesis, in figure 4.2 in chapter 4.)

If we wish to consider multiple ∩ operations, it is much more natural to consider

sequential pairs of ∩ operations.

8.1 ∩A ∩B

We already have a function gA (from definition 63) which applies an unit square

array A to some unit square array X to produce a diamond array X ∩ A.

In order to consider the limit of this gA function (and hence the ∩ function),

we must find out how to apply it to a diamond tiling. Let A and B be unit square

arrays. Let X be some unit square array.

Remark. Like in the 1D case, we will use a null array to help clarify how the (∩A∩
B) operation builds up the periodic parts of (∩A∩B)∞ through each application of

(∩A ∩ B), and to show how much of the array is uniquely defined by the repeated

application of (∩A ∩B).

In the previous section, we showed that X ∩A is a diamond array. Thus X ∩A

has different basis vectors to a unit square array. Let us see what effect naively

applying the ∩ operation to a diamond array will have.

From the previous chapter, the gB operation applied to any array X, will double

the distance of every point from the origin, (and then add points from B).

Our points in (X ∩ A) are of the form 1√
2
(a− b, a + b) for a, b ∈ Z.

Thus gB(X ∩ A) = 2(a − b, a + b) for a, b ∈ Z, which, when represented as a

tiling, is the subset shown in figure 8.2 (points from X and A are labelled as such).
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Figure 8.2: The image of X ∩ A under the ∩ operation

This is precisely half of an unit square array. Thus we need to ensure that the

points from array B fill the gaps. If B was a diamond array, this would simply be

a case of scaling B by
√

2, and shifting it by a small vector. Of course, B is not a

diamond array (though you could easily define a related ∩ operation where B is a

diamond array.

Instead we will alter how the ∩ operation will effect points from the B array, as

follows;

Definition 65 (A ∩ B, if A is a diamond array). Let A be a diamond array, with

basis vectors f1, f2. Let B be a unit square array, with standard euclidean basis

vectors e1, e2.

Then
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A ∩B(m,n) =





A((m+n
2

, −m+n
2

)) if m + n is even,

B((m+n−1
2

, −m+n+1
2

)) if m + n is odd.

The underlying lattice for A ∩B will be {n1e1 + n2e2|n1, n2 ∈ Z}.

This definition can be rephrased as follows.

A point xf1 + yf2 in A is sent to the point (x − y)e1 + (x + y)e2 in A ∩ B. A

point xe1 + ye2 in B is sent to the point (x +−y + 1)e1 + (x + y)e2 in A ∩B. This

covers the whole of the array A ∩B.

Effectively, this function takes the underlying lattice of the square array B,

rotates it anti-clockwise by π
4
, then moves the point of the lattice which was over

the origin, to the point (0, 1) ∈ Z2. The underlying lattice of A is then used to fill

in the gaps in Z2, as in figure 8.3.

Figure 8.3: (X ∩ A ∩B) (schematic)

134



Obviously the rotation effect is not ideal, but its effect can be ignored by choosing

a B tiling which has only one prototile (as we will do later).

8.2 Motivation

As motivation for the ∩ operation applied to diamond tilings, let us extrapolate

from our physical motivation with square tilings. With square tilings, we aimed to

‘overlay’ the tilings, placing the second square tiling B such that every centre of a

tile in B was as far away from the centre of tiles in A as possible. We would then

scale up this new tiling to ensure that the minimum distance between centres of tiles

was 1.

The problem we will get by applying this motivation to a diamond tiling (X∩A)

and a square tiling B is that we have to rotate B to ensure the points of B are as

far away from points of A as possible (ie, maximising d(B,A)).

We will have several choices of how much we rotate B by, namely (π
4

+ k π
2
,

k ∈ {0, 3}), just as we have several choices of how far we translate B by (any (a, b)

such that a + b is odd). We will choose −π
4

and (0, 1) in this thesis.

We have defined X ∩ A, when X is a diamond array and A a square array. We

will now define ∩A ∩B.

Definition 66. Let X be a unit square tiling. Let A and B be unit square tilings.

Then X ∩ A ∩ B is evaluated from left to right, as in the 1 dimensional case.

Similarly longer strings of ∩ operations are evaluated from left to right, for example;

X(∩A ∩B)n = (X(∩A ∩B)n−1) ∩ A) ∩B

Also, if the limit of X(∩A ∩B)n as n →∞ exists, denote it as X(∩A ∩B)∞.

We can also consider the gB operation as a function from the domain of unit

square tiling into the domain of diamond square tilings. Similar functions can be
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defined from diamond square tilings into unit square tilings (distinguishable by the

domain specified).

Definition 67. Define the function gB ◦ gA(X) as fB(X ∩ A).

Remark. Note that ∩A ∩B doubles the distance of any point (x, y) ∈ X from the

origin. This is because ∩A sends the (x, y) to
√

2(x, y), then ∩B sends
√

2(x, y) to

2(x, y). Thus in the limit of (∩A∩B)n. there will be only one tile from X remaining,

at the origin. Thus in the current form, X ∩ (A ∩ B)∞ is not quite Toeplitz, since

the origin is not defined solely by ∩A ∩ B. In later examples, we will set X = B

because of this problem, to sidestep it.

Theorem 21. If A and B are unit square arrays, (∩A ∩B)∞ is well defined.

Proof. Firstly, note that X(∩A ∩ B)n is a unit square tiling, for all n. Thus all

we need to show is that each tile t has an unique label, for all X(∩A ∩ B)n where

n > Nt, where Nt ∈ N.

Divide X ∩ A ∩ B into three sets; the origin, points (x, y) where x + y is even,

and tiles (x + y) where x + y is odd. The origin of X ∩ A ∩ B is unchanged under

the operation ∩A ∩B (being the origin of X).

The odd tiles of X ∩A∩B only depend on the tile types of B. Since any tiling

X(∩A ∩B)n can be rewritten as (X ∩ A ∩B . . . ∩B) ∩ A ∩B, these tiles are fixed

for all n ≥ 1.

Let us consider the tiles where x + y is even. The tiles in X ∩ A ∩ B where x

and y are odd are uniquely defined by A. Thus, since X(∩A∩B)n can be rewritten

as (X ∩A∩B . . .∩B)∩A∩B, this holds true for X(∩A∩B)n as well. For the tiles

where x and y are both even, recall that the gB ◦ gA function doubles the distance of

every point from the origin. We know any point (x, y) where x + y is odd, is fixed
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for n ≥ 1. Thus any point (a, b) = 2k(x, y) where x + y is odd is fixed for n ≥ 1 + k.

Call this the doubling property.

Take a point (x, y), where x and y are even. By the prime factorization theorem,

x and y can be decomposed uniquely into factors. Thus (x, y) can be rewritten as

(2qs, 2rt), where s and t are odd numbers (possibly 1), and q and r are integers.

WLOG assume q > r. Via the doubling property, we know that after r iterations

of gB ◦ gA, (2qs, 2rt) will have the same label as (2q−rs, t), which is in the fixed set

dependent on B (since 2q−rs is even, t is odd, thus 2q−rs + t is odd). If q = r,

then we have (2qs, 2rt) having the same label as (s, t), where s and t are both odd

numbers and thus fixed by A.

Thus every point in X ∩ A ∩B is fixed in the limit.

For clarification, figure 8.4 illustrates a patch of X(∩A ∩ B)∞, with colours

added to indicate which tiles are defined by which iteration of gA and gB.

8.3 Illustrative example: Robinson tilings

Let B be a tiling by blank unit tiles. Let A be the periodic tiling depicted in figure

8.5, with 4 prototiles with corner decorations. Note that the tile over the origin has

a marking with a corner in the south west of the tile.

Use B as our seed tiling. If we construct B ∩ A ∩ B, we produce the tiling

depicted in figure 8.6.

The reader may notice that this pattern bears a certain similarity to the Robin-

son tiling from earlier chapters. More precisely, the tiles from A with corner deco-

rations can be identified with cross tiles of the Robinson tiling. However only cross

tiles which are corners of 3× 3 tiles have a counterpart in B ∩ A ∩B.
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Figure 8.4: Patch of X(∩A ∩B)∞

Let us consider B(∩A ∩B)2

As the reader can see, applying gB ◦ gA again to B ∩ A ∩ B adds another layer

of corner tiles, corresponding to the cross tiles of 7 × 7 tiles. This is due to the

doubling property of the gB ◦ gA operation sending a 3 × 3 square onto a 7 × 7

square. Similarly, B(∩A ∩ B)3 will provide corner tiles corresponding to the cross

tiles for the 15× 15 squares, and in general B(∩A ∩B)n will provide the cross tiles

for all 2n × 2n squares (as well as cross tiles from smaller squares).

Since B(∩A∩B)∞ is well-defined, in the limit you get a tiling with corner tiles

corresponding to every cross tile in a Robinson tiling. Since the cross tiles encode

the positions of all 2m×2m squares (for m ∈ Z) in the Robinson tiling, this is enough

to encode the specific Robinson tiling. Thus B(∩A ∩ B)∞ is MLD to a Robinson

tiling.

To be precise, it is MLD to a Robinson tiling with four faultlines meeting at the
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Figure 8.5: A
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Figure 8.6: B(∩A ∩B)
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Figure 8.7: B(∩A ∩B)2
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origin.

8.4 Extension to other Robinson tilings

By extending our definition of gB ◦ gA, we can produce alternative Robinson tilings

when we move to the limit. Note in our previous example, the second application

of gB ◦ gA to B creates the second (red) layer of squares via the doubling property.

But what would happen if the second application of gB ◦ gA to B used a different

point as its origin? If the second application of gB ◦ gA used the blue point in figure

8.8 as its origin, then we could still have a tiling consistent with a Robinson tiling,

but the position of the 7× 7 squares will have changed. This is the key concept we

will use to cover more Robinson tilings.

First we need to define what we mean by using a different point as an origin.

Definition 68. Define (gB ◦ gA)(x,y) = t(x, y) ◦ (gB) ◦ (gA) ◦ t(−x,−y), where t(x, y)

is the translation of the plane by the vector (x, y).

(gB ◦ gA)(x,y) has a doubling property like gB ◦ gA does, but it is centred around

the point (x, y).

Let us use this new function to construct more general Robinson tilings. For a

generic Robinson tiling, consider the 3× 3 square closest to the origin. This square

will form a corner of a 7 × 7 square, which will itself form a corner of a 15 × 15

square, and so on. By choosing a vector x = (x, y) such that it is at a particular

corner of the 3× 3 square, we can choose what 7× 7 square our 3× 3 square we will

mapped to under (gB ◦ gA)x. Thus by choosing a series of xi vectors, we can get any

infinite sequence of expanding 2n − 1× 2n − 1 squares. See diagram 8.9.

Explicitly, let us consider the following definition of a tiling, dependent on a

sequence of vectors xi.
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Figure 8.8: B(∩A ∩B)2 with shifted point of expansion.
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Figure 8.9: A series of points xi, creating new layers of a Robinson tiling.

Definition 69. RobX={xi}∞i=1
= (gB ◦ gA)xn

◦ (gB ◦ gA)xn−1
◦ . . . ◦ (gB ◦ gA)x2

◦ (gB ◦
gA)x1

(B) where xi = (0 + 4mi, 0 + 4ni) for mi, ni ∈ Z

We have chosen the above condition on the values of xi to force the xi to be at

a corner of a 3× 3 square. By the doubling property, this ensures that the defining

structure of a Robinson tiling (interlocking squares) is preserved, since ∩A ∩ Bxi

will map every 2k × 2k square onto a 2k+1 × 2k+1 square (for k ≤ i), and create a

new layer of 3× 3 squares in the correct position. Furthermore, since each patch of

radius 2k about the origin is fixed after k steps, the limit exists (and is MLD to a

Robinson tiling).

We know that every tiling RobX is MLD to some Robinson tiling, but we have

not proven that every Robinson tiling is MLD to a tiling RobX, for some X. To

investigate this further, let us consider hierarchies of squares in the tiling.
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As suggested in [26], choosing a 3×3 square closest to the origin, and considering

the hierarchical sequence of squares containing it will define an infinite subset of the

plane, since the size of the 2n − 1 × 2n − 1 squares increases without bound. Of

course an infinite subset of the plane is different from the plane. We have three

possibilities, namely quadrant, half plane, or full plane.

For a choice of vectors X = {xj}j∈N, let us define four subsequences (possibly

of finite length); XNW , XNE, XSW and XSE. XNW consists of all points xj to the

northwest of the largest currently defined hierarchical square, XNE consists of all

points to the northeast, and so on. As an example, in figure 8.9, x1 would belong

to XSE, x2 and x4 would belong to XSW , and x3 would belong to XNW .

The infinite area of the plane covered by the hierarchical sequence of squares is

determined by the four subsequences. In particular, if only one of the subsequences is

of infinite length, then the hierarchical sequence of squares will cover one quadrant.

Two subsequences of infinite length next to each other (ie XSW and XSE) will cause

the hierarchical sequence of squares to cover a half-plane, and any other result will

cause the hierarchical sequence of squares to cover the whole plane.

A hierarchical sequence of squares covering the whole plane corresponds to a

Robinson tiling without any faultlines. Thus this allows us to make any Robinson

tiling without faultlines (up to a small translation to account for when the origin is

not at a corner of a 3× 3 square) by choosing our series of xi vectors appropriately.

Let us consider a case where we do not have the whole plane defined by the

hierarchical sequence of squares. This will let us determine that subset of the plane

(ie, a half plane), but we do not have free choice in determining the rest of the plane.

More precisely, this method will create Robinson tilings with single width fault-

lines along the x-axis and/or y-axis, where the tiling on opposite sides of the fault-

lines are reflections of each other, since they are both created by the same sequence
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of xi’s. (The obvious example is if all xi = (0, 0), in which case we have shown pre-

viously that a Robinson tiling with four faultlines meeting at the origin is created.)

However this construction cannot create tilings MLD to Robinson tilings with

more general faultlines, such as figure 3.3 or figure 3.4, since not all tilings with

faultlines are reflections about the faultlines.

8.5 Possible applications and avenues of inquiry

There is a current area of active research in trying to build self-assembling tiling

systems, which could model a computer or other piece of machinery. The majority

of this work centres around the Winfree model [46], which starts with unit square

tiles with decorated edges (each edge also having an integer assigned for its ‘bond

strength’), and a ‘seed’ of a finite number of connected tiles. Unlike a standard

tiling, a tile can be attached to this seed even if some of its edges do not match.

However it must have edges matching with a total bond strength equal to or above

the ‘temperature’ being studied (usually 2).

This is meant to be a basic mathematical model of a solution containing molec-

ular structures, bonding to each other via chemical bonds. We can use the concept

of 3D Winfree tiles mentioned in [47] to produce a basic method of creating discon-

nected (possible infinite) seeds, along with a new way of mass producing Winfree

structures, which may have advantages over the standard method.

Construction 3. Take a repetitive tiling by unit cubes of a unit thick slice of

R3. For our example we will use a Robinson tiling ×[0, 1], because of its strong

hierarchical structure. Call this tiling T . Introduce a set of 1× 3× 3 tiles, denoted

as WT , where the bottom of the tiles has a strong bond strength to a 3× 3 patch of

the Robinson tiling, as shown in figure 8.10;
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Figure 8.10: A tile from WT attaching itself to T

Since the Robinson tiling is repetitive, these 3× 3× 1 tiles can attach at many

spatially distant locations. Thus by varying the decorations and bond strength of

the 3 × 3 × 1 tiles on their 1 × 3 faces (labelled as h1, . . . h4 on the diagram), and

adding new cubes which do not have a bond strength to the Robinson tiling, you

can start the Winfree method with a disconnected infinite seed.

Furthermore, if the Winfree structure is stable at a higher temperature than the

strength of the WT → T bond, increasing the temperature to above the WT → T

bond strength will cause the Winfree structure to break off from the tiling T , to be

used elsewhere. The tiling T could then be used to create another Winfree structure.

As a separate point, consider the Winfree model as a basic model of a solution

of molecular structures, bonding to each other via chemical bonds. Then from

my non-specialist viewpoint, the ∩ function bears certain similarities to biological

DNA manipulation, in particular insertion of genes into a DNA strand via RNA or
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viruses. Specialists in this field may thus be able to make use of the ∩ operation.

As motivation, we have shown that the ∩ function can produce a Robinson tiling,

which could be used via the above method to mass produce Winfree structures.

Another possible use for the ∩ operation is in the field of computer graphics.

Methods to create computer graphics from Wang tilings are well studied and form

one of the most common methods of texture generation (for example [38]). Briefly,

a simple texture is placed onto each Wang prototile, and a tiling is formed from

the Wang prototiles. The eye cannot see any periodicity in the tiling, thus a con-

vincing graphic can be produced from simple textures. This method breaks down

when the graphic is approached, since the original simple textures can be seen more

clearly, and pixelation may occur. Methods to stop this problem are currently being

investigated (for example [37]).

The two dimensional ∩ function lends itself to this problem, since if you remove

the rescaling factor of the ∩ function, the size of the tiles shrinks with every iteration.

Thus by applying the ∩ function multiple times as the graphic is approached, new

tiles can be introduced, and thus pixelation should be avoided.

On a more mathematical note, the last two chapters have described operations

from limits of ∩ operations to Toeplitz sequences. Investigating whether a reverse

operation can be constructed from a subset of Toeplitz sequences to compositions

of ∩ operations would be an interesting avenue of inquiry.
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bielefeld.de/

[45] ‘Penrose tilings as coverings of congruent decagons’, P. Gummelt, Geometriae

Dedicata, Vol. 62 No. 1 / August (1996). doi:10.1007/BF00239998.

[46] ‘Algorithmic self-assembly of DNA’, E. Winfree, Ph.D. thesis, California Insti-

tute of Technology, June 1998.

[47] ‘Temperature 1 Self-Assembly: Deterministic Assembly in 3D and Probabilistic

Assembly in 2D’, M.Cook, Y.Fu and R.Schweller, Proceedings of the 22nd An-

nual ACM-SIAM Symposium on Discrete Algorithms (SODA 2011). (Viewable

on arxiv.org)

153


