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Abstract

Supermassive Black Hole Feeding

in Galactic Nuclei
by

Alexander Paul Hobbs

MA(Oxon) MSc MRes

In this thesis we present numerical and analytical models of supermassive black hole
(SMBH) feeding, via deposition of gas, in galactic nuclei. Through simulations, we consider
the environment of galactic centres, starting at sub-parsec scales within our own Milky
Way, and moving upwards in scale and outwards in generality to scales of hundreds of
parsecs in typical galaxies and finally to dark matter halos within which galaxies reside.
We find that the stellar features observed in our own Galactic centre are likely explained
by a collision between two molecular clouds at a distance of a few parsecs from the central
black hole, Sgr A∗. The amount of gas transported to small radii is large, occurring on a
timescale close to dynamical. The disordered nature of the flow leads to the formation of
a gaseous disc around Sgr A∗ that in some cases remains small-scale, undergoing complex,
time-varying evolution in its orientation. Such a disc would efficiently feed the SMBH, if
replenished from larger scales.

We develop a model for ballistic accretion onto an SMBH at the centre of a typical
galaxy, from scales of ∼ hundreds of parsecs. We invoke turbulence in the gas, assumed to
be driven by feedback from supernovae, as the means to create such a flow. The accretion
mode is again dominated, soon after the initial turbulent kick, by the dynamical timescale
for the gas in the angular momentum loss-cone, resulting in an accretion rate at or near
Eddington, >∼ 1M⊙ yr−1.

At the largest scale, we critically evaluate the current state-of-the-art prescription for
SMBH growth in cosmological simulations, finding that in general it lacks a physically
consistent basis. We propose an alternative, motivated by our analytical estimates and
numerical simulations, that is based on the free-fall time.
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1
Introduction

“Physicists like to think that all you have to do

is say, these are the conditions, now what

happens next?”

Richard Feynman
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Introduction 1.1. Prologue

1.1 Prologue

The formation, structure, and evolution of galaxies is one of the most widely studied fields

in astrophysics. Galaxies constitute the largest building blocks of the known universe, and

since the mid-eighteenth century have captivated astronomers and laypeople alike. The

philosopher Immanuel Kant was the first to reason that the faint diffuse patches of light

seen against the backdrop of stars and comets were in fact ‘island universes’, similar to our

own Milky Way but viewed at incredibly large distances; some 250 years on, we know a

great deal about these objects and their constituent elements, although a great deal more

remains to be discovered.

Their formation is thought to have occurred as a consequence of the density perturba-

tions in the early Universe. Quantum fluctuations, imprinted in the fabric of spacetime at

the Big Bang, were amplified to much larger scales by inflation (Peebles, 1993), providing

the seeds for structure formation through gravitational collapse. Baryonic matter began

to condense within dark matter overdensities, forming the first stars and protogalaxies

that re-ionized the Universe. Many of the galaxies that we now observe grew rapidly in

the early Universe through mergers and accretion of smaller mass structures.

The driving force for galaxy formation is generally accepted to be gravitational attrac-

tion from dark matter (see, e.g., Padmanabhan, 2002), but galactic evolution on smaller

scales is a far more complex process, involving (but not limited to) gas processes, feed-

back processes, star formation, and magnetic fields. Understanding how this complexity

affects the ontogenesis1 of galaxies is vital for the development of reliable, self-consistent

theoretical models. The role of galaxy formation research is to connect the large-scale

gravitational processes that form galaxies to the smaller scale, ‘gastrophysical’ processes

that determine their evolution; this is not an easy job. The picture is further complicated

by the variety of components that a galaxy can possess; over a century of observation has

revealed the presence (see, e.g., Binney and Merrifield, 1998) of thin stellar discs (with

or without spiral arms), thick stellar discs, thin gaseous discs, bars, rings, central stellar

bulges, dark matter halos, stellar clusters, and, more recently, supermassive black holes.

Some of these features are relatively passive, contributing little to the continued evolution

of the galaxy; some, however, are important drivers of this evolution that determine a

galaxy’s fate within the wider cosmology.

One such driver is the supermassive black hole (SMBH). The largest type of black hole

known, SMBHs boast a mass of the order of 106 − 109M⊙. The formation mechanism for

such extreme objects is currently under debate (for a review see Volonteri, 2010) but it

is likely that the black hole was born at a significantly lower mass - formation through

1from the greek word génesis, for birth and the present participle ont-, for existence; namely, formation

and evolution
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direct stellar collapse suggests a maximum limit2 of ∼ 100M⊙ (Madau and Rees, 2001) -

and grew through accretion of surrounding material to its eponymous size. SMBHs are

found in the nuclei of galaxies, where they are surrounded by dense gas and fast-moving

stars that allow us to infer both their presence and their mass. It is thought that most, if

not all, galaxies harbor an SMBH at their centre (Melia, 2007).

The presence of the black hole creates an exotic environment within the galactic nu-

cleus. The strong tidal shear of the SMBH’s gravity tends to rip apart gas clouds and stars

that venture too close, and anything that is unfortunate enough to pass into the event

horizon is consumed (Melia, 2003). The gaseous structures that are able to survive are

therefore very dense, and in fast rotation around the central object. Molecular clouds, the

sites of star formation in a galaxy, are generally unable to survive in this neighbourhood3,

and so the ‘normal’ star formation process (see, e.g., McKee and Ostriker, 2007a) is pre-

vented from occurring. Instead, stars are thought to form in flat, rotationally-supported

accretion discs, in which fast cooling competes against strong viscous heating processes

to fragment the discs into high-mass, short-lived stars (Nayakshin and Sunyaev, 2005;

Bonnell and Rice, 2008) that burn brightly and drive powerful stellar winds, often explod-

ing as supernovae. The inner parts of the accretion disc around the SMBH are heated

to high temperatures through intense friction, becoming ionized and generating strong

magnetic fields that may accelerate jets of material to relativistic speeds.

Galactic centres are therefore an exciting area of study. From an observational per-

spective they are incredible powerhouses of activity, often outshining the rest of the galaxy

put together (see Section 1.5). Furthermore, in many galaxies the mass of the central black

hole correlates extremely well with a number of properties of the surrounding bulge (see

Section 1.8) which implies a fundamental connection between the SMBH and the evolution

of the host galaxy. In order to understand galaxy formation we must therefore understand

galactic nuclei.

The aim of this thesis is to investigate the means by which galactic nuclei and SMBHs are

‘fed’ by material from larger scales. One of the currently unsolved problems in astronomy

and astrophysics is how SMBHs grew through accretion of gas to the masses that we

observe. It does not seem feasible, given the standard paradigms about black holes and

the manner in which they accrete matter, that SMBHs could have formed in the early

Universe, only a billion years after the Big Bang. We discuss this problem and proffer a

suggestion for a tentative solution. More generically, we discuss the modelling of galactic

centres and SMBH feeding in numerical simulations, starting first with the central parsec

2but see Volonteri et al. (2008) and Mayer et al. (2010) for an alternative viewpoint concerning seed
formation from an early phase of gaseous accretion at the centre of a forming galaxy, driven by mergers
and instabilities

3a typical molecular cloud has a mean density of 103 − 104 atoms per cubic centimeter (Williams et al.,
2000)
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of our own Galactic centre and then moving upwards in scale, investigating accretion

models in galaxies at hundreds of parsecs and finally within entire dark matter halos.

Numerical simulations provide us with the only practical means of ‘experimenting’

with the Universe. The limitations of computational resources, however, mean that it

is not possible to model all of the required physics over the full range of scales. This is

particularly true in the case of simulations on the largest, cosmological scale, which seek to

track the hiearchical formation of structure from seed perturbations in the early Universe.

Numerically modelling a cosmological volume suffers acutely from the problem of finding

a sub-resolution (or ‘sub-grid’) link between gas accretion at large (megaparsec) scales and

the eventual accretion, at small (sub-parsec) scales, on to the SMBH. At present there is a

strong dichotomy between detailed study of these small-scale regions, where the relevant

structures are often modelled using idealised geometries without establishing a definitive

model for their formation, and large-scale simulations, where gas and feedback processes

below the resolution limit are treated with simplistic prescriptions that fail to capture the

correct physical behaviour of the system. It is of vital importance that the correct physical

processes on ‘intermediate’ scales are explored, as it is these processes that will strongly

influence the mode of accretion within a galactic nucleus.

The modelling of intermediate scales is a focus of this work. Exploring the physics

of accretion at these scales will lead to the development of better, more physically self-

consistent sub-grid models that can be embedded into cosmological simulations. At the

same time, these accretion models may help to clarify the means by which SMBHs grow

and influence the evolution of their host nuclei.

The layout of this thesis is as follows. In Chapter 1 (the current chapter) we introduce the

relevant topics for galactic centres and SMBH feeding that equip the reader to place the

subsequent science chapters in their proper context. In Chapter 2 (the ‘maths’ chapter)

we outline the theoretical concepts that underpin this work. Chapter 3 describes the

computational method that was used to carry out the simulations presented in this thesis.

Chapter 4 is the first science chapter, in which we consider a progenitor model for the

stellar features in our very own galactic centre, as well as the effect of this model on

the feeding of our galaxy’s SMBH. In Chapter 5 we discuss a potential SMBH feeding

mechanism through supernova-driven turbulence at scales of ∼ 100 pc, marking a first step

towards an improved intermediate scale model for cosmological simulations. In Chapter

6 we discuss modelling SMBH feeding in these type of simulations, critically evaluating

the current state-of-the-art and suggesting ways in which it can be improved. Finally in

Chapter 7 we present our conclusions and suggest some directions for future work.
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1.2 Timescales

Physical processes in the Universe tend to occur on characteristic timescales. Knowledge

of the relevant timescales for a particular system not only helps us to simplify the analysis

of that system (for example, if a quantity changes over a timescale far longer than the

effect we are interested in, we can neglect this change and still trust that our results are

reliable) but can also shed light on the physical behaviour of that system. Here we list

some timescales that are of importance in astrophysics.

• The Hubble time, tHubble, is a timescale derived from Hubble’s law (Hubble, 1929),

which states that the velocity at which a galaxy is receding from us is proportional to

its distance. The law can be expressed mathematically by v = H0D, where v is the

velocity and D is the distance of the galaxy, and H0 is known as the Hubble constant

connecting the two. This constant has units of time−1, and so it is straightforward

to define the Hubble time as 1/H0. Physically it represents the e-folding time of the

expansion of the Universe, if H0 were to have remained constant since the big bang

(which it has not). Nonetheless, it is often used as synonymous with the age of the

Universe, a reasonable approximation since tHubble ∼ 1010 years.

• The free-fall time, tff , reflects the timescale over which a change in one part of a

body can be communicated to the rest of that body. It can be defined as the time

taken for a uniform density spherical cloud, i.e., with ρ(r) = const., to collapse, and

is given by the expression

tff =

√

3π

32Gρ
(1.1)

where G is the gravitational constant.

• The orbital time, torb, is the time for a particle at radius r to complete one circular

Keplerian orbit of an enclosed mass M . It is given by

torb = 2π

√

r3

GM
(1.2)

• The dynamical time, tdyn, is the time taken for a particle to cross a particular system

of mass M and length r. The typical velocity is assumed to be the circular velocity,

vcirc = (GM/r)1/2, so that

tdyn =
r

vcirc
=

√

r3

GM
(1.3)

which we can see is simply the orbital time without the numerical factor of 2π. The

dynamical time is also sometimes referred to as the crossing time.

• The Salpeter time, tS, is the timescale over which a compact object (be it a star,
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white dwarf, neutron star, or black hole) can grow if accretion is assumed to proceed

at the Eddington limit (see Chapter 2, Section 2.3.1). It has the form

tS =M/ṀEdd (1.4)

whereM is the mass of the object and ṀEdd is the Eddington limited accretion rate.

• The viscous time, tvisc, is a relevant quantity for accretion discs that we shall derive

in Chapter 2, Section 2.3.4. It describes the timescale over which material can be

transported through a disc under the action of viscous torques. It is given by the

expression

tvisc =
R2

ν
(1.5)

where R is the cylindrical radius and ν is the kinematic viscosity.

• The relaxation time, trelax, is a measure of the extent to which a particle is moving not

in a smooth background potential but in one that is composed of discrete elements,

namely, the other particles in the system. By mutual interactions each particle is

perturbed slightly from the path that it would follow in a smooth potential. The

relaxation time is defined as the time over which these accumulated (gravitational)

interactions, on average, alter the trajectory of an object by 45◦. This is equivalent

to saying that the average change in velocity is equal to the velocity itself. It given

via the approximate expression (Bertin, 2000):

trelax ≃
v3typ

8πG2m2n ln Λ
(1.6)

where vtyp is the typical velocity of a particle, n is the number density of parti-

cles of mass m and lnΛ is the Coulomb logarithm, given by lnΛ = ln(bmax/bmin).

bmax defines the largest impact parameter in a system, while bmin defines the small-

est. The Coulomb logarithm is therefore set by the dynamic range of a particular

system; it is interesting to notice that its logarithmic form means that even large

changes in this dynamic range make little difference to its value. For the majority

of galactic and stellar systems in the Universe it is reasonable to assume lnΛ ∼ 10

(Binney and Tremaine, 1987).

The relaxation time divides self-gravitating systems into two categories: collisionless,

when trelax ≫ the lifetime of the system, tsystem, and the mutual interactions of

the components can be approximated by a smooth potential; and collisional, when

trelax ≪ tsystem and the smoothness of the potential breaks down. Knowing which

category a region of interest falls into allows one to decide on the best way to model

that particular system.
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1.3 Our Galactic centre

In order to study SMBHs and galactic nuclei, we first turn to our own Galactic centre

(GC). The rotational centre of the Milky Way is a mere 8 kiloparsecs from our solar

system (Eisenhauer et al., 2003), with a resolution of 1 arcsecond corresponding to only

0.04 parsecs (≈ 1.2× 1017 cm), offering us an unparalleled opportunity to probe its highly

dynamic environment. As we are firmly embedded in the galactic disc, with our (optical)

view blocked by large amounts of intervening matter, we must make use of alternative

wavelengths to image the central regions. Radio waves in particular are largely unaffected

by the obscuring dust particles and so the majority of the evidence we have for the various

structures in the GC has come from images produced by radio telescopes such as the Very

Large Array (VLA) in New Mexico (Melia, 2003). Figure 1 shows such an image; the

galactic plane stretching across the sky, taken with a wavelength of λ = 1 m.

The panorama of activity is clearly seen in the centre of Figure 1.1, coinciding with

the direction of the centre of the galaxy. We can zoom in to smaller scales by using radio

waves of progressively decreasing wavelength, together with measurements in the infra-red,

X-ray, and γ-ray regions of the spectrum to resolve as much structure as possible. Many

interesting features are seen on the journey into the Galactic centre; as we progress from

scales of hundreds of light years to sub-light year regions we pass by: Sgr A East, a large

expanding shell of gas from a powerful supernova-like explosion (∼ 25 ly across); Sgr A

West4, a spiral feature of hot, ionized gas (∼ 10 ly across) surrounded by a circumnuclear

disc of shocked, molecular gas; IRS 16, a cluster of about 2 dozen OB stars5 (within the

central parsec) emitting a powerful stellar wind; IRS 7, a red giant star with a cometary

tail believed to have formed from the effect of the wind from the IRS 16 cluster; a cusp of

old stars exerting a spherical gravitational potential on the objects around it; and finally

Sgr A*, a radio source that coincides with the central SMBH, surrounded by a multitude

of fast-moving stars arranged into two disc-like structures within the central parsec6.

Even closer to Sgr A* (within the central arcsecond, i.e., < 0.04 pc) spectroscopic

observations have been made of isotropically oriented, early main-sequence B-type stars

(Ghez et al., 2003a; Eisenhauer et al., 2005) with approximate masses of M ∼ 15M⊙.

Some of these stars pass close enough to the central black hole for extremely accurate

mass determinations of the latter, and will also provide astronomers with the means to

look for general relativistic effects in the vicinity of the SMBH, perhaps for the first time

yielding a measure of a black hole’s spin.

Of course, the identification of an SMBH at the centre of the Galaxy should not be

made so lightly. Many decades of research have gone into this determination (see, e.g.

4otherwise known as the minispiral
5massive stars with T ∼ 30, 000 K
6The evidence for all this comes from a multitude of sources; for a more detailed review and primary

references the reader is referred to Melia and Falcke (2001)
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Figure 1.1: Looking towards the Galactic centre with the VLA, at a wavelength of 1 m. The galactic plane
runs diagonally through the image, showing the radio emission from hot gas and supernovae remnants.
Image courtesy of N. E. Kassim, D. S. Briggs, T. J. W. Lazio, T. N. LaRosa, J. Imamura (NRL/RSD).

————————————————————————–
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Lynden-Bell and Rees, 1971; Ghez et al., 1998; Genzel, 2010), and indeed it is of no small

importance to the science in this thesis that it is the correct one. In fact the ubiquity of

SMBHs in galactic nuclei is a underlying assumption of this work, but it is only relatively

recently that it has become a mainstream assumption. With this in mind, the next section

reviews some of the main lines of evidence for SMBHs.

1.4 Evidence for supermassive black holes (SMBHs)

The paradigm of galactic nuclei harboring SMBHs (Lynden-Bell, 1969) emerged out of

the discovery of quasars (Schmidt, 1963) and subsequent development in the theory of

accretion on to compact objects as being the only viable mechanism for powering such

phenomena (Zel’Dovich, 1964; Salpeter, 1964). Since this time the case for SMBHs has

become increasingly watertight; with the development of high-resolution instruments such

as the Hubble Space Telescope (HST) and the adaptive optics (AO) facilities of the Keck

Observatory and the Very Large Telescope (VLT) (Albrecht et al., 1998) in the last decade

we have been able to image the central regions of galaxies like never before. In this section

we discuss some of the ways in which the presence of an SMBH in a galactic nucleus can

be inferred, and list a few of the galaxies for which these techniques have been employed.

The presence of an SMBH at the centre of a galaxy will have an effect on the sur-

rounding matter. This can be seen in a variety of ways, from dynamical effects to the

high-energy radio lobes ejected by active galactic nuclei (AGN). Before embarking on a

quick tour of these ideas we must mention a small caveat: all of the evidence for SMBHs

is in actuality merely evidence of a large mass, or in some cases merely a large luminosity,

confined within a small volume; it does not provide absolute proof that what is contained

there is a black hole. Indeed, black holes are somewhat extreme objects and so invok-

ing them to explain a particular set of observations should be treated with caution. The

standard argument against the conclusion of a black hole is that the enclosed mass is in

the form of a cluster of stellar remnants (for of course, if it was a cluster of luminous

stars, we would see them). However, this model requires an unreasonably high density

of objects (Maoz, 1998); packing the required number of brown dwarfs, white dwarfs, or

neutron stars into such a small region almost certainly means that the stellar remnants

will quickly either merge into luminous high mass stars (in the case of brown dwarfs),

merge and explode as supernovae (in the case of white dwarfs), or collide and explode as

gamma-ray bursts (in the case of neutron stars).

In three cases - the nuclei of M31, NGC 4258 and our own Milky Way - the constrained

volume is small enough that such a ‘dark’ cluster of stars can be ruled out and an SMBH

seen as the only viable candidate (Kormendy, 2004; Ghez et al., 2005a). For a number

of other galaxies the case is less convincing but still strong. Moreover, the perceived link

9
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between SMBHs and AGN adds credence to this idea; as was demonstrated by Soltan

(1982), there is a clear correlation between the total mass density of supposed SMBHs

and the mass-equivalent energy density of the quasar light that fills the Universe. We will

discuss this argument further in Section 1.7.

1.4.1 Stellar vs. hydrodynamical evidence

In general, when angular resolution is low, evidence for an SMBH is stronger when it

comes from observations of gas motions. Since interstellar gas behaves as a fluid, and is

able to easily radiate away energy and cool, the random speeds of the atoms/molecules

thus tend to be small in comparison to the bulk velocity of the gas. Furthermore, the

velocity distribution function of a gas is isotropic, a consequence of the extremely small

relaxation time of a collisional system on molecular scales7. This means that for a smooth

(non-clumpy) gaseous feature we can characterise the motion of the bulk gas flow entirely

by its position, bulk velocity, density and temperature.

As we shall discuss in Chapter 2, Section 2.3.4, it is generally difficult for gas in

a spherical potential to lose its angular momentum with respect to the centre of the

galaxy/halo. A smooth gaseous structure orbiting around a large central mass therefore

tends to be flattened (as in the case of an accretion disc), particularly when the gas is

cold. By analysing the rotation curve of such a gaseous disc it is possible to tell whether

the gravitational potential is dominated by a central, massive object and infer what the

mass of this object might be, assuming of course that the gravitational forces are dominant

over gas processes such as shocks, magnetic fields, etc. In this case the rotation speed of

material in orbit of a (Keplerian) point mass potential follows a radial profile of (GM/r)1/2.

When the evidence comes from observation of stellar motions, however, it is harder to

construct a rotation curve. Unlike gas, stars cannot radiate8 their kinetic energy through

dissipative processes. Random velocities are therefore very high, and as a result a mean

velocity measurement is not a useful indicator of the presence of a central mass, unlike

in the gaseous case. The stellar velocity dispersion can tell us some information about

the enclosed mass through the virial theorem9 - for a spherical distribution of mass M

within a radius r this comes out to first order10 as σ2 ≃ GM/r - and has indeed been used

to infer the masses of central black holes across a range of scales, from globular clusters

7note that here the term ‘collisional’ refers to direct hydrodynamical encounters, rather than gravita-
tional encounters

8a quote from my advisor; we mean of course in a dynamical sense
9the virial theorem for a system of gravitationally interacting particles states that

2K + V = 0 (1.7)

where K and V are the kinetic and potential energies of the particles
10there are, in fact, more accurate methods of determining the enclosed mass; namely, by taking moments

of the Jeans equation - see Binney and Tremaine (1987)
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Figure 1.2: Adaptive optics imaging of the S-stars (left) and schematic of the orbit of S2 around Sgr
A* (right). The measurements indicated on this diagram only go up to 2002; data collected since then
completes the orbit. Figure credit: Schödel et al. (2002) and the European Southern Observatory

————————————————————————–

(Baumgardt et al., 2009) to giant galaxies (Magorrian and Ballantyne, 2001). However

this is not a particularly strong constraint, as there is some degeneracy between a central,

Keplerian mass and an extended mass distribution.

On the other hand, if individual stars near an SMBH can be resolved, and their orbits

followed (through proper motions and radial velocity measurements), then such evidence

can be very convincing, as is the case for our own Galactic centre (see, e.g., Genzel, 2010).

1.4.2 Stellar proper motions in the Milky Way

Studies of the S-stars (refer back to Section 1.3) in the Galactic centre have quite recently

provided us with almost incontrovertible proof that our Galaxy does indeed contain a

supermassive black hole. The proper motions11 of S2, a star which comes as close as 17

light-hours to Sgr A* at pericentre (Ghez et al., 2003b) have now been measured for nearly

two decades using the adaptive optics facilities of the Keck telescope (Campbell et al.,

2008). Combined with the radial velocities (Genzel et al., 1996), S2 has, as of 2008, been

observed to complete one full orbit (Gillessen et al., 2009b). As shown in Figure 1.2, this

(Keplerian) orbit is elliptical, with a period of 15.2 years, which puts the mass of the

central object12 at (4.3 ± 0.41) × 106M⊙. Moreover, the volume within which it must

11the angular change in position as seen from the centre of mass of the Solar system
12note that the error bars on this measurement originate from the uncertainty in the distance to the

Galactic centre (and therefore in converting angular changes in position to actual distances) and the

11
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Figure 1.3: Image and illustration of M31 and its core, showing the double nucleus structure and the
compact disc of blue stars in orbit of the suspected SMBH. Figure credit: in image

————————————————————————–

be contained is actually somewhat smaller than the pericentre passage of S2, as there is

another member of the S-stars cluster that passes closer; S16, which has been observed to

pass within ≃ 6 light-hours (≃ 45 A.U.) without showing any evidence of tidal disruption

or accretion (Ghez et al., 2005b). There is currently no known object that can contain

the required amount of mass within this volume, other than an SMBH.

1.4.3 Stellar rotation curve in M31

The Andromeda (M31) galaxy is the nearest galaxy of approximate Milky Way size, and

displays the somewhat unusual feature of possessing a double nucleus (as can be seen

in Figure 1.3, top right panel). The currently accepted explanation for this is that the

double nucleus is in fact a single eccentric disc of old stars, the brighter object in the image

uncertainty in our reference frame (the ‘local standard of rest’, see e.g., Coskunoglu et al. (2010)). There
is also some uncertainty in the assumption of the orbit as Keplerian (Gillessen et al., 2009a)
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corresponding to the apocentre region of the disc and the fainter object being synonymous

with the pericentre region (Tremaine, 1995). Supporting this idea is the HST discovery of

a smaller-scale cluster of hot, young stars (Chang et al., 2007) that appear to lie inside the

fainter region (which coincides with the true centre of the galaxy) the inference being that

this ‘blue’ cluster is inside the inner radius of the eccentric, ‘red’ disc. The blue cluster

has an approximate physical size of ∼ 0.2 pc.

In addition to broad emission lines implying large velocities (σ ∼ 1000 km s−1) from

random motions that are observed in the stellar spectra, this level of resolution allows us

to construct a rotation curve for the blue stars. A model consisting of a circular disc out

to a radius of 0.8 pc, inclined at ≃ 56◦ to our line-of-sight and surrounding a black hole

of 1.4× 108M⊙ is consistent with the data (Bender et al., 2005).

1.4.4 Water maser emission in NGC 4258

Molecules typically have a complex quantum structure, with a wide range of possible ex-

citation mechanisms via rotational and vibrational transitions in addition to the usual

electronic ones (Rybicki and Lightman, 1986). This makes them susceptible to ‘anoma-

lous’ over-population of excited states via radiative and collisional pumping. If a region of

molecular gas can be pumped enough to undergo a population inversion13 then the prob-

ability of stimulated emission is enhanced. This may give rise to ‘maser’ emission (akin to

a ‘laser’ but with a wavelength longer than 1 mm). However, a population inversion is a

necessary but not sufficient condition for this process; along the direction of masing there

must be reasonable velocity coherence so that Doppler shifts do not significantly perturb

the frequencies of the emitted photons and prevent them from coupling with inverted

states further down the line (Kylafis and Pavlakis, 1997).

A region that fulfills these conditions will be clearly visible as a maser ‘spot’ that

possesses a clear spectral emission line. These are often present (see, e.g., Greenhill, 2005)

in observations of accretion discs (particularly if the disc is undergoing star formation),

and by analysing the Doppler shift of the particular line at various radii the rotation curve

can be extracted, allowing a very precise determination of the central mass.

This method has been used to good effect in the nucleus of NGC 4258, a spiral galaxy

in the constellation Canes Venatici at a distance of ∼ 23 million light-years (Tonry et al.,

2001). NGC 4258 shows some evidence of AGN activity (specifically that of a Seyfert

II galaxy - refer to Section 1.5 for details on this type) but by far the most convincing

evidence for the presence of an SMBH at its centre comes from observations of maser

emission from H2O molecules in a sub-parsec accretion disc. The rotation curve of this disc

is Keplerian to within high accuracy over a radial range of 0.13− 0.26 pc (Miyoshi et al.,

13when the number of molecules in an excited state exceeds that of the number of molecules in the
ground state
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Figure 1.4: Artist’s impression (top) and cartoon (bottom) of using maser emission to determine the
rotation curve of the accretion disc in NGC4258. The left side of the disc is redshifted, implying rotation
away from us, and the right is blueshifted, implying rotation toward. By studying how the strength of
these shifts in the maser light (shown as ‘spots’ in the bottom figure) varies with radius, the rotation curve
of the disc can be constructed and the mass of the central object determined. Figure credit: John Kagaya,
NRAO.

————————————————————————–

1995; Herrnstein et al., 2005; Pastorini et al., 2007) and indicates a central black hole mass

of 3.6× 107M⊙.

1.4.5 Other evidence

• Doppler shift (and broadening) of spectral lines

We can put a constraint on an enclosed mass by analysing the broad emission lines

emanating from the central region. Spectral lines can be broadened beyond their

natural14 width, as well as beyond their thermal width15, by special relativistic and

general relativistic effects (Padmanabhan, 2000); in the former case a finite velocity

14set by the uncertainty principle, ∆E∆t = ~/2
15set by the temperature of the emitting gas through random motions of individual atoms or molecules

14
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dispersion in the emitting region results in different Doppler shifts, the cumulative

effect of which is to broaden the line profile. The extent of this broadening traces

the magnitude of the velocity of the gas in this region, and through virial arguments

this allows us to estimate the mass that is contained within the observed volume.

At higher resolution the shift in the line may also be useful. An excellent example

of using spectral lines to infer the presence of an SMBH is observations of the iron

Kα line (a transition with an energy of 6.38 keV, placing it firmly in the X-ray)

in the Seyfert I galaxy MCG-6-30-15, where a width corresponding to a velocity of

∼ 100, 000 km s−1 is seen. The line also possesses an asymmetry in the red (high

wavelength) direction of the spectrum. The best interpretation of these features is

the combined action of Doppler shifts and gravitational redshift from material in an

accretion disc around an SMBH (Fabian et al., 1995).

• Reverberation mapping of broad-line regions

When the measurements of line widths in the broad-line region are combined with

a technique known as reverberation mapping, the size of the emitting region can

also be determined (see, e.g., Peterson and Horne, 2004). This can make the differ-

ence between evidence for simply a large mass in the central region of the galaxy

(which could perhaps simply be a dark cluster of stellar remnants) and evidence for

a supermassive black hole.

The technique makes the assumption that there is continuum emission from the cen-

tral source that illuminates the broad-line region. It is the continuum photons that

are then absorbed and re-emitted as line photons from this region. This picture im-

plies a time lag between the variation of the broad-line emission and the continuum

emission that corresponds to the light-travel time across the broad-line region. Mea-

surements of this time lag can then be used to determine the size of the region. This

method is useful because it does not require extremely high angular resolution, but

it can require a large number of observations that are regularly-spaced in time over a

long period in order to map the variability of each component (Peterson and Horne,

2004).

• Stellar relaxation

Although the process of stellar relaxation in a galactic core takes place over a long

timescale, it can in fact provide us with a test for the presence of an SMBH at the

centre of a stellar cluster that is based on the radial density distribution of the stars.

This problem was first studied by Peebles (1972); Bahcall and Wolf (1976) and then

later by Lightman and Shapiro (1977) in reference to the slow, gradual diffusion of

stars inward due to repeated small-angle gravitational encounters. The initial papers

considered only the one-dimensional change in the binding energy, with respect to
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the SMBH, of the stellar distribution as a result of this process, finding that within

the SMBH’s radius of influence, GM/σ2, the equililbrium distribution reached is

that of a ρ∗ ∝ r−7/4 power law (outside this radius the stars are unbound and

the distribution is largely unaffected by the presence of the hole). The later paper

took this treatment one step further, moving to a 2D approach that took account

of the loss-cone16 effects; the authors find once again that within the black hole

sphere of influence the gradient of the density is ≃ −7/4 but flattens slightly further

towards the centre, reaching ≃ −8/5 at a radius ∼ 10 rt, where rt is the typical

radius at which stars are removed from the dynamical system by tidal disruption

or coalescence. An observation of such a density profile at the centre of a galaxy is

therefore indicative of the presence of a central condensation of mass, potentially an

SMBH. It should be noted, however, that in general the SMBH sphere of influence

must be resolved for this to be a viable method.

• Radio emission from relativistic jets

Jets are a form of highly collimated, ionized outflow (see Section 1.5.3) that (in the

case of AGN jets) travel at relativistic speeds. Such emission is observed to originate

from an extremely small region at the centre of a galaxy; the high energy and velocity

of the outflow suggest that it emerged from a deep potential well, providing evidence

for an SMBH as its progenitor.

Originally, the model for a relativistic jet employed pressure gradients (Krolik, 1999),

whereby external (dense) gas pressure confines the hot ouflowing gas into a ‘de Laval

nozzle’ through which a sonic point could be reached17 and the hot gas channelled

outwards supersonically. However, this picture would require the confining gas to be

highly pressurised and therefore either be very hot, or very dense, and cool rapidly;

the subsequent luminosity would be clearly visible. Since we do not see any evidence

of this, there must be an alternative explanation.

The favoured model is that the outflow is collimated by the twisting of magnetic field

lines that arise within the inner radii of an accretion disc around a black hole. Since

16the loss-cone for an accretion radius racc is defined in terms of the minimum specific angular momentum
that sets rpe = racc, where rpe is the pericentre of the orbit. By considering the specific orbital energy and
setting vr = 0 this is given by (Binney and Tremaine, 1987)

Jmin =

[

2

(

E +
GM

rpe

)]1/2

rpe (1.8)

where E is the specific orbital energy.
17a de Laval nozzle has a lot in common with the Bondi solution for accretion/outflow that we shall

discuss in Chapter 2, Section 2.3.2. Fluid that is passing through a constriction in the nozzle is accelerated
due to mass conservation, reaching the sound speed at the throat. Pressure decreases as the fluid is
accelerated due to the Bernoulli effect. Subsequently, the fluid is allowed to expand, decreasing the
pressure further and accelerating the fluid to supersonic velocities
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the frictional stresses at the centre of an accretion disc can be very large, the gas is

heated to high temperatures and becomes a plasma, in which the mix of accelerating

charges gives rise to strong magnetic fields. Due to the differential rotation of the

disc the field lines connecting the charged particles can become twisted, creating

a vertical column stretching above and below the disc along the axis of rotation.

The jet is driven out through these magnetic columns, reaching near-luminal speeds

(Komissarov, 2010).

The streams of plasma can often be seen extending out to Mpc scales, and will shine

through inverse Compton scattering18 and synchrotron radiation19, the latter being

the source of the strong radio emission that is associated with these structures. The

orientation of the jet is believed to be correlated with either the spin axis of the

SMBH or the angular momentum axis of the accretion disc, although the former

case cannot currently be inferred from observations.

1.5 Active galactic nuclei (AGN)

As we have seen, SMBHs can be detected in a variety of ways. It is not surprising, then,

that the ‘behaviour’ of these objects can differ. Some, like the SMBH at the centre of our

Galaxy, are dormant, merely content to exert a gravitational pull on the surrounding stars

and gas without any further interaction. Others are more attention seeking, and swallow

large quantities of material, causing them to grow in size and mass, whilst strongly influ-

encing their environment in the form of prodigious amounts of electromagnetic radiation.

These latter SMBHs are the central engines of what are termed active galactic nuclei, or

AGN, which are often so luminous that they outshine the rest of the galaxy put together.

The first documented recognition of a class of galaxies that showed unusually bright,

nuclear emission was by Carl Seyfert in 1943 (Seyfert, 1943). These objects displayed

strong emission lines (in the optical region of the spectrum) of ionized gas, specifically

hydrogen, helium, nitrogen and oxygen. The other notable property of these ‘Seyfert

galaxies’, as they became to be known, was that the emission lines showed significant

Doppler broadening, equivalent to velocities of ∼ 103 km s−1. The fact that these broad-

ened lines came from a region of very small angular (and physical) size was evidence for the

presence of a large amount of mass within this small volume, the high velocities (and no

indication of mass being expelled from the region) being due to the Keplerian-like rotation

of an accretion disc at the very centre of the galaxy.

Today, AGN are an extremely active20 area of research across a range of fields, and in

18scattering of a photon by a fast-moving electron, resulting in a gain of energy for the photon and a loss
of energy for the electron; this will occur when the radiation is cooler than the gas kinetic temperature

19synchrotron radiation occurs due to relativistic electrons spiralling around magnetic field lines
20excuse the pun
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Table 1.1: AGN types and their properties

Type Narrow lines Broad lines Radio Broad-band Variability

Seyfert I yes permitted only quiet yes yes
Seyfert II yes no quiet yes yes
LINER* yes no quiet no yes

Quasar/QSO yes yes loud/quiet yes yes
BL Lac no weak loud yes yes
OVV no yes loud yes yes

BLRG/NLRG yes yes/no loud yes/no no

∗at the time of writing, the case on LINERs belonging to the AGN club is still open
(Peterson, 1997).

particular are of interest to cosmologists, as they show strong evolutionary characteristics

over cosmic time. Quasars in particular are far more common in the early Universe, a fact

which contributed to the physical interpretation of AGN as accreting SMBHs.

1.5.1 Taxonomy of AGN

The AGN that have been discovered vary across a range of different types, characterised

by their observational properties. Here we briefly list the typical classifications and detail

some relevant information about each type. Table 1.1 summarises the important identifi-

cation characteristics of each class.

• Seyfert galaxies

Today, Seyfert galaxies are divided into two categories (Krolik, 1999). Seyfert I

galaxies are characterised by narrow emission lines from low-density ionized gas,

corresponding to vtyp ∼ 100 km s−1 and broad emission lines (permitted transitions

only) from high-density ionized gas, corresponding to vtyp up to 104 km s−1. The

fact that the broad lines show an absence of forbidden21-line emission is evidence

for the high densities, as the non-electric-dipole transitions are suppressed through

collisions.

Seyfert II galaxies are distinguished from the type Is by the fact that there is no

evidence for broad emission lines at all; only the narrow lines are present. This

suggests that the typical velocities in the nucleus are typically at the lower end of

what is expected in an AGN.

21a forbidden transition is one which cannot occur in first-order quantum mechanical perturbation theory,
in other words through the most efficient, electric dipole route. The term is misleading, however, as
such transitions can indeed take place but depend on higher-order effects (electric quadrupole, magnetic
multipoles, etc.) and have a much lower probability
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Both types also show strong emission in the infrared, ultraviolet, and particularly

the X-ray region of the spectrum. The latter is thought to arise from the hot, inner

regions of an accretion disc at the very centre of the source.

• Quasars / QSOs

The term ‘quasar’ is a shortened form of ‘quasi-stellar radio source’ and refers to

the discovery of these objects in early optical images as little more than points of

light, indistinguishable from stars except for their unusually blue optical colour and

strong emission in the radio region of the spectrum. Indeed, quasars were originally

identified by the first radio surveys of the sky in the 1960s, the first quasar to

be found was designated 3C 273 (Schmidt, 1963). The most puzzling aspect of the

spectra of these objects was the presence of broad optical emission lines at anomalous

frequencies; these were later discovered to be the Balmer-series emission lines of

hydrogen (again, see Schmidt, 1963), redshifted by an unprecedented amount that

had never before been seen (out to z = 0.15). Using Hubble’s law for the distance

put these quasars at ∼ 1.5 billion light years. This raised a further question, which

was how such a distant object could exhibit such a large brightness; 3C 273 has

B = 13.1 in apparent magnitude (Oke, 1963). Assuming the distance estimate was

correct, this implied a luminosity that was far above anything previously discovered.

What was also detected was strong time variability of the flux. This is yet another

important characteristic of these objects and applies to every waveband, in both the

continuua and the broad emission lines. Indeed, variability became one of the first

well-studied aspects of quasars (see e.g., Wachter et al., 1988). It was found that

the luminosity of the point-like sources varied on extremely short timescales, some

of the order of weeks or even days. In order for such a variation in luminosity to be

coherent, it would be necessary for each part of the emitting region to be in contact

with the other parts on a similar timescale; this led to the astounding conclusion that

a nucleus comparable in size to the Solar System was emitting at hundreds of times

the luminosity of an entire galaxy. As a result it became clear that astronomers

were dealing with a mode of power generation that was an order of magnitude more

efficient than nuclear fusion (the most efficient energy generation mechanism known

at the time, converting 0.7% of rest mass into energy). The solution to this puzzle

was to invoke accretion on to a compact object - a supermassive black hole - as the

means to power such an efficient energy source (refer to Chapter 2, Section 2.3).

Once a large enough sample of quasars was identified, their salient properties were

defined (Schmidt, 1969) as:

1. Point-like sources with radio emission

2. Strong nuclear X-ray emission
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3. Broad emission lines

4. Large redshifts

5. UV excess

6. Time-variable flux

The ‘UV excess’ refers to the comparison between a quasar spectrum, which is largely

flat across the optical/near-UV region (the U-B band according to the photometric

system; see, e.g., Binney and Merrifield, 1998), and a typical stellar spectrum, in

which the U band is in the tail of the spectral distribution (Peterson, 1997). In

fact, this property is indicative of a far more general characteristic of AGN; that of

broad-band continuum emission. In contrast to a typical galaxy, which is essentially

a composite of many stellar (blackbody) spectra and contains the majority of its

power within a single decade in frequency, an AGN spectrum is far broader and

has power distributed smoothly across multiple bands, from the optical/UV all the

way into the hard X-ray (in other words, a non-thermal spectrum). This is often

the means by which AGN are detected (Krolik, 1999), through color distinctions

between AGNs and ordinary galaxies (or stars).

After about 1970 it was realised, through the greater number of methods available in

identifying quasars, that in fact fewer than 10% of these objects possess strong radio

emission (Peterson, 1997). Thus, although the first quasars were identified on this

very basis, these actually belong to a small subset of the entire class. As a result,

the nomenclature has become somewhat confused. The correct definition for the

radio-quiet majority is ‘quasi-stellar objects’ (QSOs), with the radio-loud minority

referred to as quasars; however, the term ‘quasar’ is often used to encompass both

sets (and indeed sometimes to refer to AGN in general). Since the first detections

of these objects, quasars and QSOs have been discovered out to extremely high

redshifts, well beyond that of 3C 273. The highest redshift quasars known to date

have redshifts of z >∼ 6 (Fan et al., 2003), which means that we are observing them

when the Universe was less than a billion years old.

• Blazars

‘Blazar’ is a somewhat unofficial term (and was originally intended as a joke) de-

signed to unite the classes of BL Lac objects and OVVs (optically violent variables).

The term ‘BL Lac’ originates from the prototype of this class called BL Lacertae

(Hoffmeister, 1929). Both of these objects show extremely short timescale variations

in their luminosities, in some cases of the order of days to hours. In this respect

they are similar, but more compact, than quasars. The other defining property of

a blazar is strong radio emission. There are differences between the two classes,
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however, in that OVVs possess the broad (but not the narrow) emission lines seen

in most Seyferts, quasars, and QSOs while in the BL Lac objects these lines are very

weak and in some cases non-existent. OVVs also tend to be stronger in the radio

(Krolik, 1999).

• Radio galaxies

We refer to radio galaxies in terms of two types, broad-line radio galaxies (BLRGs)

and narrow-line radio galaxies (NLRGs). In actuality both possess narrow emission

lines, but differ on the presence of the broad lines. As their name suggests, they

are characterised by strong radio emission. In effect, BLRGs and NLRGs are the

radio-loud analogs of Type I and II Seyferts respectively. It should also be noted

that NLRGs show somewhat more extended emission (in other words they are less

point-like) than other AGN, suggesting that the nucleus does not dominate over the

rest of the galaxy to quite the same extent.

• LINERs

Low ionisation nuclear emission line regions (LINERs) are low-luminosity, Seyfert

II-like sources whose dominant emission lines result from neutral or weakly-ionized

gas (as opposed to the strongly-ionized species that is characteristic of Seyferts).

There is some controversy over whether these objects belong in the AGN class, as

LINER-like emission can also arise from star forming regions (Shields, 1992). It

should be noted that over a third of all spiral galaxies can be classified in terms of

a LINER spectrum.

1.5.2 Unification of AGN

Since the discovery of many and varied AGN, both in the local Universe and out to

high redshift, much work has gone into identifying a single, unified model that might

explain the seemingly disparate types. There is clear evidence that AGN possess an

axisymmetric rather than spherical structure, and that in the radio-loud AGN the radio

axis is aligned with the axis of symmetry (Krolik, 1999; Peterson, 1997), and so a picture

has emerged that consists of an optically thick, obscuring torus surrounding the central

accretion disc and the SMBH. The torus is large enough to obscure (partly, or otherwise)

a broad emission line region, but does not occlude a narrow emission line region which

extends considerably further out. The inner regions of the accretion disc are hot enough

to emit X-rays22, explaining the nuclear high-energy emission. Completing this picture

22thought to emerge from the hot corona of the disc through inverse Compton scattering (Stern et al.,
1995), since the standard disc equations (see Chapter 2, Section 2.3.4) suggest an effective (blackbody)
temperature of only ∼ 105 K in the optically thick midplane (Shakura and Sunyaev, 1973)
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Figure 1.5: AGN unification scheme (left) and artist’s impression of the obscuring torus, accre-
tion disc, and relativistic jet (right). Figure credit: scholarpedia.org, Chandra X-ray Observatory,
Urry and Padovani (1995)

————————————————————————–

is the possible presence of a relativistically-beamed jet along the spin axis of the central

SMBH that is the origin of the radio emission.

The unification of the various classes of AGN is achieved by positing that each class

is simply an observation along a different line of sight relative to the axisymmetry of the

torus/accretion disc system. Unification schemes are themselves divided into two types,

depending on the presence of the jet.

• Radio-quiet unification

From the differences in the (radio-quiet) Seyfert types it is clear that a scheme

whereby the type Is are seen along a largely unobstructed line-of-sight into the broad-

line region (partially face-on), and the type IIs are seen with the torus obscuring the

broad-line region (edge-on) is consistent with the observations. In this case there is

no radio jet along the spin axis, and as a result little radio emission is seen. Add

to this the radio-quiet quasars (QSOs) as viewing the central broad-line region and

accretion disc entirely face-on and all the relevant types obey the simple unification

model. LINERs, too, fit into this picture in the same manner as the Seyfert IIs (i.e.,

edge-on).

• Radio-loud unification

The radio-loud picture is similar but with the addition of the relativistic jet that

forms a collimated, narrow beam heading outwards from the centre of the AGN

along the axis of the SMBH. When the line-of-sight is directly coincident with this

jet the object that is seen is a blazar, in reality a radio-loud AGN with a completely

unobstructed view to the very central regions. The difference between the sub-types
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of the class, BL Lacs and OVVs, is then simply that the latter objects are more

powerful in terms of their flux. When seen at an angle to the jet, but still with a

clear view into the centre, these AGN appear as quasars, or as BLRGs. We can

obtain the observational characteristics of NLRGs by viewing the nucleus edge-on,

so that the broad-line region is obscured by the torus.

All of this information is summarised graphically in Figure 1.6, which divides a schematic

of the standard AGN paradigm into radio-loud and radio-quiet modes. We now take

a look at the various lines of evidence for the fueling of AGN through accretion on to

supermassive black holes.

1.5.3 Outflows from AGN

One final feature that is exhibited by some QSOs but that is in general not included

in the unified model of AGN is that of absorption troughs corresponding to particular

spectral emission lines. These troughs are located on the blue side of the emission features,

providing evidence that the absorbing material is moving towards us in the form of an

outflow. From the blueshift of the absorption trough relative to the emission line we can

infer the velocity at which the material is ejected; this can be many thousands of kilometers

per second along our line of sight, which is more than sufficient to escape the host galaxy

entirely (Everett, 2007).

Outflows from AGN consist of hot, partially-ionized23 gas that is thought to have

been accelerated by radiation pressure from the central, luminous regions of the accretion

disc around the SMBH (see, e.g., Arav et al., 1995; Arav, 1996). It is clear that the

radiation field must provide (at least some) of the momentum imparted to the wind, as

the absorption features demonstrate that energy and momentum has been removed from

the radiation on interaction with the gas.

Outflows naturally have some properties in common with jets, but are far less col-

limated, less ionized, and tend to be significantly slower. However, recent evidence has

been emerging for outflows with velocities ∼ 0.1c (e.g., Pounds et al., 2003; O’Brien et al.,

2005), suggesting that some unification is possible. Both are nonetheless feedback pro-

cesses, driven by accretion close to the SMBH but able to affect the gas on larger scales,

potentially slowing it down and halting the infall of material. Our understanding of ac-

cretion processes, jets, and outflows is therefore linked; to each other and to the evolution

of the host galaxy as a whole.

23only partially since some atoms with bound electrons must be present in order to produce spectral
lines
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Figure 1.6: An artist’s impression of the model for AGN outflows. Material falls in from large scales
within the galaxy, forming a luminous accretion disc (yellow) around the central SMBH. The radiation
from this accretion disc accelerates some of the gas out of the plane of the galaxy (typical trajectories
shown in white). The regions of the ouflowing gas along our line-of-sight (shown in blue) absorb some
of the radiation at wavelengths that correspond to the chemical composition and velocity of the outflow,
creating an absorption trough in the AGN spectrum (inset. Not shown in this graph is the corresponding
emission line which would be to the red of this trough). Figure credit: Daniel Zukowski

————————————————————————–
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1.6 The growth of SMBHs

At a fundamental level, simply powering the enormous luminosities observed in quasars

(∼ 1046 erg s−1) must require a significant amount of material to accrete on to the central

SMBH, growing it in mass. We will deal with the physics of accretion on to compact

objects in Chapter 2, Section 2.3, but for now it suffices to look at a simple estimate for

the required feeding rates of SMBHs. For matter falling into a black hole, the maxmium

energy per unit mass that can be channelled into a luminosity is the binding energy per

unit mass of the innermost stable circular orbit (ISCO). Within this orbit the matter is

accreted beyond the event horizon on the free-fall time, and thus radiates very little. For a

quick order of magnitude calculation, we consider an infalling mass m through an annulus,

for which the rate of conversion of potential energy, U = GMm/r, into radiation is given

by

L ∼ dU

dr
=
GM

r

dm

dt
(1.9)

which we write in terms of a mass accretion rate Ṁ as

L ∼ GMṀ

r
(1.10)

The ‘size’ of a black hole is essentially its event horizon, or Schwarzchild radius Rs, which

is given by (e.g., Shapiro and Teukolsky, 1983)

Rs =
2GM

c2
(1.11)

where c is the speed of light. Putting the ISCO at ∼ 5Rs, we find for the potential energy24

that

U =
GMm

5Rs
=

GMm

10GM/c2
(1.12)

and so we see that U ∼ 0.1mc2. From the form of this it is clear that the conversion

efficiency of rest mass into energy is ηacc ∼ 0.1. For powering a quasar, then, we find that

a mass accretion rate of Ṁ ∼ 2M⊙ yr−1 is needed. This is not so huge; the Eddington

limit, which defines the maximum rate of (spherically symmetric) accretion on to an object

(see Chapter 2, Section 2.3), is slightly above this for a black hole of 108M⊙. Furthermore,

if one assumes a flattened geometry rather than a spherically symmetric one, with the

majority of the radiation emitted perpendicular to the gas supply, the maximum rate

becomes higher still. However, as we shall see later in this section, there are some serious

difficulties in getting the required amount of mass close enough to the SMBH to actually

24there are of course numerical factors of a few floating around that we have ignored; the correct value
of the ISCO (derived in Chapter 2, Section 2.2.3, taking account of the orbital energy of the particle rather
than just the potential energy, and the relativistic effects
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Introduction 1.6. The growth of SMBHs

accrete at these rates.

1.6.1 SMBH growth through gas accretion

The current paradigm for SMBH growth has its roots in the Soltan (1982) argument,

which presents a convincing exposition for the proposal that SMBHs have grown primarily

through AGN activity. The treatment demonstrates that the total rest mass energy of

all known SMBHs at the centres of galaxies is consistent with the radiation energy of the

Universe if the black hole masses grew by luminous accretion.

Using quasar/QSO counts over a volume of 1 Gpc3, and integrating over the bolomet-

ric luminosity across all redshifts, the total radiant energy due to quasars/QSOs can be

found25. This puts an estimate on the total mass of their central engines by assuming that

they conversion of rest mass into radiant energy has an efficiency of ∼ 10%. This estimate

is then compared to the total observed masses of the SMBHs, allowing us to determine to

within what certainty they agree.

However, obtaining the actual masses of the SMBHs from observations is somewhat

non-trivial. Originally, Soltan (1982) employed stellar relaxation measurements; in this

case, the departure from the standard King profile that arises from steady-state solutions

of the Fokker-Planck equation26 with a finite cut-off velocity that corresponds to the

escape velocity of the cluster (King, 1966). However, this approach was flawed (Dehnen,

W., private communication). The resolution at the time was poor and the central regions

of the stellar distributions in galaxies most likely appeared as a King profile (which is

essentially a core, with a hint of an isothermal power law at the edge of the cluster) due to

the blurring of the stars. Furthermore, deviations from such a profile, even if they could

be detected, would not be a good indicator of a central mass as there is no standardised

model for the unperturbed distributions in nature. Fortunately, this approach has since

been superseded by a method that employs the Mbh − σ relation (see Section 1.8) to

extract SMBH masses from observations of velocity dispersions; this has been performed

over a large sample of ∼ 9000 nearby galaxies from the Sloan Digital Sky Survey (SDSS)

(Yu and Tremaine, 2002), and in addition to matching the total observed SMBH masses

to the total radiant energy from QSOs, these authors also compared the BH mass function

to the QSO luminosity function, finding good agreement. It should be noted of course

that this method relies on the calibration of the Mbh − σ relation, which is performed

on the local Universe by measuring SMBH masses through more direct methods such as

those described in Section 1.4; the crucial assumption is therefore that this relation holds

ubiquitously across the Universe rather than simply locally.

25we do not go into the mathematical detail here; for the full treatment the reader is directed to (Peterson,
1997)

26the Fokker-Planck equation describes the evolution of the stellar distribution function subject to an
encounter operator that takes into account the two-body relaxation process in collisional systems
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Introduction 1.7. Feeding SMBHs

From these arguments it is clear that SMBHs must assemble their mass since forma-

tion through periods of AGN activity. However, the question remains as to how the gas

accreted. Before we consider the possibilities, it is worth putting this growth into context;

how quickly should we expect the black hole to gain mass? Or, more pertinently, how

quickly do we need it to gain mass to explain the SMBHs that we see in the Universe?

1.6.2 SMBHs in the early Universe

Quasars are observed with masses up to ∼ 109M⊙ out to very high redshift, z ∼ 6

(Kurk et al., 2007). At this epoch the Universe was only about a billion years old, sug-

gesting that a ‘seed’ black hole of around a solar mass would have had to grow at an

average rate of >∼ 1M⊙ yr−1 for a sustained period of time. Unfortunately this is very

difficult to achieve, as angular momentum in the gas provides a centrifugal barrier to ac-

cretion. The magnitude of the specific angular momentum of a particle in a circular orbit

is given by J = (GMr)1/2, where M is the enclosed mass. To transfer gas on circular

orbits from kiloparsec scales (say, the solar orbit at 10 kpc, inside of which the enclosed

mass is ∼ 1011M⊙) to scales where accretion can occur (at the ISCO, ∼ 1 A.U. for a

108M⊙ black hole), all but approximately one part in 106 of the angular momentum must

be lost. This is far too high a demand on the level to which angular momentum transport

can occur, especially when it must be maintained at a high rate for ∼ 109 years.

It is of course possible that the seed black holes that formed in the early Universe

were considerably more massive than would occur today. The collapse of a hypothetical

zero-metallicity Population III star, for example, may have left a BH remnant of up to

∼ 100M⊙ (Madau and Rees, 2001), decreasing the amount that it needed to grow to reach

SMBH mass. However the very existence of these seed BHs is very uncertain, and even

with this model the required growth rate would still have been Eddington-limited27; the

limiting luminosity scales with the mass of the accretor, and so imposes a much harsher

limit in the earliest stages of the growth when the black hole was still a seed.

It is therefore crucial to the study of galaxy evolution that the growth of SMBHs is

understood. The next section outlines the main mechanisms by which this might occur.

1.7 Feeding SMBHs

The amount of gas required to create a typical SMBH, or to power the more luminous

quasars, can only have come from (significantly) larger scales. There is certainly enough

fuel within a typical spiral galaxy, ∼ 108 − 1010M⊙ in HI gas (Shlosman et al., 1989b)

to achieve this, and invoking a major merger between galaxies (particularly if they are

27this term is defined in Chapter 2, Section 2.3.1; suffice to say that the limit is on the luminosity of the
gas as it accretes so that the radiation pressure does not halt the process of accretion
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gas-rich) offers even greater quantities. It is however, far from obvious how to transport

this gas from galactic scales to feed the SMBH, particularly at the rates required.

1.7.1 Feeding through an accretion disc

Gas accreting on to what is effectively a point mass will always possess some angular

momentum, and so the natural first step is to assume that the gas was brought down to

the last stable orbit of the SMBH (refer to Chapter 2, Section 2.2) through a gaseous,

rotating ‘accretion’ disc. A detailed treatment of this is dealt with in Chapter 2, Section

2.3.4. The relevant timescale for accretion through a thin gaseous disc is known as the

viscous time, which for a standard ‘α viscosity’ (Shakura and Sunyaev, 1973) is given by

tvisc =
R2

αcsH
(1.13)

where R is the disc radius, cs is the sound speed, and H is the typical disc height, which

for a non self-gravitating disc with an angular velocity Ωk is given by H = cs/Ωk (refer

to Chapter 2, Section 2.3.4.3). AGN discs are very thin, and so the latter is found (from

detailed modelling, see e.g., Collin-Souffrin and Dumont, 1990) to be ∼ 10−3R in the non-

self-gravitating regime. The value of the dimensionless viscosity parameter α is uncertain

but for a standard accretion disc is unlikely to be larger than unity (Frank et al., 2002).

While the innermost parts of the disc (out to a few tens of Schwarzchild radii) are very

hot and likely provide the high energy emission seen in AGN, putting in a typical sound

speed28 of 105 cm s−1 (corresponding to T ∼ 100 K, assuming atomic/molecular hydrogen),

with α <∼ 1, returns a viscous time of the order of the Hubble time when the disc extends

beyond R = 10 pc. From this simple but powerful estimate it is clear that accretion

is prohibitively slow for a disc that extends to parsec scales. With the assumption of a

single-valued angular momentum vector (a disc that remains rotating in the same sense

and in the same plane) for the majority of the flow, a disc of typical mass around an

SMBH can easily grow to this size and beyond.

Invoking a higher temperature can bring tvisc down to a more reasonable value, but

simple heating and cooling arguments29 at R >∼ 1 pc preclude a temperature any higher

than T ∼ 103 K (Shlosman and Begelman, 1987).

28typical (although perhaps a little low) for an AGN disc outside ∼ 1 pc
29assuming a standard dust-to-gas ratio and a dominant quantity of H2. In the first case the interior

of the disc will be shielded from scattered AGN radiation, and in the second case the cooling will be
efficient since molecular hydrogen is able to cool through vibrational and rotational transitions down to
low temperatures
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1.7.1.1 Onset of self-gravity

At parsec scales there is a further complication. As is discussed in Chapter 2, Section

2.3.4.8, the outer parts of AGN discs that are sufficiently massive and able to efficiently

cool are likely to fragment through gravitational instability and form stars, using up the

majority of the gas. Since stars cannot transport angular momentum through viscous

processes, this deprives the SMBH of its fuel. In particular, the critical mass accretion

rate above which fragmentation occurs, i.e., when the mass being transported through a

given annulus is too large for the stabilising forces of pressure and rotation to support it

against gravity (refer to Chapter 2, Section 2.3.4.8), is given by (see, e.g., equation 2.186

or Lodato, 2007):

Ṁ ≃ 5× 10−4
( α

1.0

)

(

T

100K

)3/2

M⊙yr
−1 (1.14)

and so a disc with a mass accretion rate sufficient for fueling an AGN (Ṁ ∼ 1M⊙yr
−1)

would be unstable to self-gravity.

The radius at which self-gravity typically occurs therefore depends on the temperature

profile of the disc. Goodman (2003) considered thin, self-gravitating discs around QSOs,

where the effective temperature is determined from the balance between viscous dissipation

and radiative diffusion within the disc and is therefore ∝ R−3/4 (refer to Chapter 2, Section

2.3.4.7). With standard parameters for a QSO, and considering both the gas pressure

dominated and total pressure (gas + radiation) regimes, the author finds that the self-

gravity radius lies at Rsg = 0.01 − 0.1 pc. AGN discs are therefore not likely to extend

much beyond this.

We note too that there is observational evidence for the self-gravitating nature of an

AGN disc beyond Rsg. Rotation curves of AGN are often significantly non-Keplerian (see,

e.g., Lodato and Bertin, 2003), and the presence of disc-like stellar features in the GC and

the nucleus of M31 (Rafikov, 2009; Levin and Beloborodov, 2003; Hopkins and Quataert,

2010) at a distance that corresponds approximately to the expected self-gravity radius

lends credence to this model.

1.7.1.2 Randomly-oriented accretion episodes

Yet another issue is the dependance of the black hole spin parameter on the radiative

efficiency of accretion; a rapidly spinning BH has a smaller ISCO and subsequently is able

to release a larger amount of energy per unit mass (see Chapter 2, Section 2.2). This has

the effect of allowing the BH to reach its Eddington limit at a lower accretion rate, and as

a result, growth will be suppressed. A disc accreting on to the BH will naturally impart

angular momentum to the hole, both in magnitude and direction. To keep the spin low it

is therefore important to feed the BH with a low time-averaged angular momentum flow

(Volonteri et al., 2005).
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What we therefore seek to avoid is accretion of gas with single-valued angular mo-

mentum, as this will (a) create a disc that is too large in radius for viscous transport to

proceed quickly, (b) lead to the onset of fragmentation at large radii, and (c) ‘spin up’

the black hole and slow its growth. A possible solution to this problem lies in a form

of randomised, or ‘stochastic’, feeding through individual accretion events that have no

preferred orbital direction. In this picture the gas flow that accretes on to the SMBH is

not part of a larger, planar geometry but rather the result of a chaotic process e.g., inter-

actions and collisions between molecular clouds, large-scale turbulence, repeated merger

events, etc. This mode of accretion has been suggested by a number of authors, including

King and Pringle (2007), Nayakshin and King (2007), and Hopkins and Hernquist (2006),

and has recently been found to arise in cosmological simulations with adaptive resolution

(Levine et al., 2010).

In particular, King et al. (2008) point out that due to the tendency of AGN discs to

fragment beyond the self-gravity radius, the feeding is unlikely to be steady over cosmic

time but will instead be separated into a series of accretion episodes. The picture here is

one in which a gas disc is built up from an inflow that results from a major merger, and is

capped at the self-gravity radius, within which it viscously accretes on to the SMBH. The

timescale for the merger, and thus for the accretion from larger scales, will be orders of

magnitude longer than the viscous time at the outer edge of the disc, and so the low-mass

disc ‘empties’ on to the hole before being replenished by the merger inflow. There is no

requirement here for each of the accretion episodes to be correlated in terms of orientation,

and so they are not, providing the SMBH with stochastic, efficient growth at a low spin

parameter.

The model of randomised accretion is of particular relevance to this thesis. The work on

the Galactic centre (Chapter 4), whilst tailored to reproducing the stellar structures that

reside there from a collision between two molecular clouds, also looks at the accretion rate

on to the SMBH, with the resulting flow forming an accretion disc that rapidly changes its

angular momentum and sense of rotation. The chapter on turbulent feeding (Chapter 5)

is the directly relevant work, penning a mode of ballistic accretion on to a galactic nucleus

through the action of supersonic turbulence within the bulge.

1.7.2 Feeding through a bar instability

On larger scales, a standard paradigm often invoked for feeding the nucleus is that of the

non-axisymmetric, bar instability that arises in a galactic disc as a response to a gravi-

tational perturbation by an external body (Binney and Tremaine, 1987). Through reso-

nances30 some of the circular orbits within the disc are driven slightly eccentric, and if there

30a resonance is a regular, periodic interaction between orbiting bodies, or in this case an interaction
between an orbit within the galactic disc and the external perturber
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Figure 1.7: High resolution HST image of the barred spiral galaxy NGC 1300. Figure credit: HST
(NASA)

————————————————————————–

is a sufficient supply of surrounding material to remove angular momentum, grow more

eccentric, scattering more and more particles into their elongated, often self-intersecting

orbits as the bar rotates. In the gas component, the rotation of the bar and the orbital

intersections cause shocks and direct angular momentum cancellation, transporting some

of the gas inwards.

However, although it can assist in driving gas towards the SMBH, the stellar bar

instability cannot be the sole mechanism by which AGN are fed, for two reasons; (i) the

scales over which a galactic bar can transport gas (∼ a kpc) are far larger than the scales on

which SMBHs accrete (Shapiro and Teukolsky, 1983), and (ii) ∼ 50% of observed spiral

galaxies show bar-like features but only ∼ a few % are host to AGN (Shlosman et al.,

1989a). Nonetheless, it is an important starting point for the process of gas inflow, and

much research has been devoted to a variety of bar-driven feeding models. These models

are loosely divided into two categories, depending on the presence of an inner Lindblad

resonance (see below) inside the co-rotation radius of the bar.

1.7.2.1 Orbital resonances

In the 1960s it was proposed that the spiral structure of galaxies could be explained by

the ‘density-wave’ theory whereby the spiral arms were not composed of separate material

(and in which case would be subject to winding up as a result of the differential rotation)
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but were instead the result of stars, gas, and dust moving through a density wave that

compresses the material as it passes through, making it visible as a denser region against

the background of the rest of the galaxy (Lin and Shu, 1966). It was further proposed

that the gravitational attraction of the material as it was passing through the arms could

actually maintain the spiral pattern, provided that the latter was located between what

were termed the inner and outer Lindblad resonances (Binney and Tremaine, 1987). The

mathematical description of this is relatively straightforward; one defines the angular

velocity of the arms to be Ωp, namely the pattern speed, and the co-rotation radius (the

radius at which the stars and the arms have identical angular velocities, Ω(R) = Ωp) to be

Rc. Inside of Rc, the stars move with Ω(R) > Ωp, and outside with Ω(R) < Ωp. Physically,

then, the spiral structure rotates as a solid body, and in a reference frame that is rotating

with the spiral, the stars rotate with Ωrel = Ω(R) − Ωp. For a spiral with m arms, these

orbits close when Ωrel = ±κ/m, where κ is the epicyclic frequency31. The outer and inner

Lindblad resonances are defined as the radii at which Ω(R) = Ωp + κ/m for the OLR and

Ω(R) = Ωp−κ/m for the ILR. Within these radii the self-gravity of the stars in the spiral

arms enforces the density perturbation, causing the (skewed) elliptical orbits to move in

sync.

The ILR is of particular relevance to a barred potential. Depending on the density

profile and the value of Ωp, this can have either 0, 1, or 2 ILRs. In general the epicylic

frequency of an orbit is related to the angular velocity by a constant factor, the value of

which depends on the density profile. For a constant density (harmonic) core, for example,

orbits have κ = 2Ω(R) so the ILR is found when Ω(R) = Ωp/2. In this case however the

form of the rotation curve has a stationary point (a maximum), and if Ωp/2 lies above

this, there will be no ILRs. If Ωp/2 lies below the maximum then we will have two ILRs;

and inner (IILR) and an outer (OILR). For a cusp or a Keplerian potential where there

is no stationary point, one ILR exists.

1. With ILRs

If one or more ILRs are present, they may prevent the gas from falling all the way

in, as material within the co-rotation radius (CR) will be re-distributed into a thin

oval ring near the ILRs. However, through analogy with a damped oscillator (the

inner elliptical gas ring) subject to a periodic driving force (the stellar bar) it can be

shown that the closed gas orbits inside of the IILR incline to the major axis of the

bar in a leading sense (Wada, 1994) and so the gas tends to lose angular momentum

and fall inwards. A ring that is self-gravitating due to having accumulated a suffi-

31the epicylic frequency is the radial frequency of an eccentric orbit, given by

κ2 =
2Ω

R

d

dR

(

R2Ω
)

(1.15)

where R is the radius. It should be noted that for the special case of a Keplerian disc, κ = Ω.
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cient amount of gas will be more enlongated (Wada and Habe, 1993) and the loss

of angular momentum will occur more rapidly. If the ring is sufficiently massive it

may fragment into clumps, which can collide and lose angular momentum through

shocks or sink further in through dynamical friction.

2. Without ILRs

If ILRs are not present, the gas inside the CR is simply shocked by the leading

edge of the bar and transported inwards on a dynamical timescale, accumulating

in a circumnuclear region within ∼ 1 kpc. Transport beyond this is not efficient,

however, as in general a stellar bar potential becomes weak at ∼ a tenth of the bar

outer radius (Shlosman et al., 1990).

In each case, the material can be transported to r ∼ 100 pc on a dynamical timescale, a

fact that is consistent with the central 100 pc region of spiral galaxies often being gas-rich

(Sakamoto et al., 1999). However neither model is able to bring the gas in much further

(Wada, 2004) and the real issue for AGN feeding models is a sufficient inflow mechanism

within this radius. A model of ‘bars within bars’ has been proposed by Shlosman et al.

(1989b) for getting the gas down to ∼ 10 pc, involving a large-scale stellar bar to deposit

gas into a disc within 100 pc, which subsequently becomes unstable and forms a smaller

scale, gaseous bar, repeating the process down to smaller radii. However, gaseous bar-like

instabilities are harder to create, since gas discs possess fewer degrees of freedom than

stellar discs. This model therefore favours an inhomogenous gas disc composed primarily

of molecular clouds that behave more like stars (but necessarily still collide and shock,

leading to inward transport of gas).

The role of nested bars in enabling gas to accumulate in the centres of galaxies has

been explored as a model by a number of authors (see, e.g., Barnes and Hernquist, 1991;

Wada and Habe, 1992) and observations suggest that this is a promising scenario (see,

e.g. Colina and Wada, 2000; Maiolino et al., 2000) but in general this process is rela-

tively contrived, and in any case thought to only be effective down to tens of parsecs

(Wada and Fukuda, 2001); its relevance to the fueling of AGN is therefore not clear.

1.7.3 Feeding through a collisional stellar cluster

A final suggestion that we briefly consider is that the fuel for an SMBH might come

from the accretion of stars via the collapse of a stellar cluster, centered on the black

hole. To investigate this possibility, we draw on our definition of the relaxation time from

Section 1.2, which gives us the typical time that it takes for gravitational interactions

between the stars to significantly perturb their orbits. A system that has undergone

relaxation is said to be collisional, in that interactions between individual stars become

important. Such a system will display the bizarre property of a negative specific heat

33



Introduction 1.7. Feeding SMBHs

capacity (Lynden-Bell and Wood, 1968), whereby a loss in the overall energy of the system

leads to an increase in the random motions of the stars (a dynamical ‘heating’). This

process can be understood by the virial theorem, which says that

2K + V = 0 (1.16)

where K and V are the kinetic and potential energies respectively. For a system with N

stars of individual mass m, K = 1/2Mv2, where M = Nm and v2 is the mean-square

velocity. We can define a mean temperature, T , for the system via K = 3/2NkBT . The

total energy of the system is simply E = K + V , and so we see that K = −E, with

V = 2E. The total energy is therefore

E = −3

2
NkBT (1.17)

giving us a heat capacity for the system as

C ≡ dE

dT
= −3

2
NkB (1.18)

which is negative. A decrease in E therefore leads to an increase in the kinetic energy of the

system, with a corresponding decrease (although twice as much, thus conserving energy)

in the potential energy. This property of collisional systems32 leads to what is known the

gravothermal catastrophe, whereby a hot cluster core that loses heat (and therefore energy)

to a cooler halo through scattering processes will, through its negative specific heat, both

shrink and heat up. If the cooler halo is collisionless, it will possess a positive specific heat

capacity and therefore heat up also, but since it is in general far larger than the core this

heating will proceed at a much slower rate. The temperature gradient between the two is

driven steeper, and so the (now hotter) core will lose even more heat to its surroundings,

shrinking the core even further. A runaway process of collapse ensues; this is known as

core collapse.

In general the collapse time is considerably longer than the relaxation time; as a rule of

thumb we put tcollapse = 100 trelax (Binney and Tremaine, 1987). Putting typical numbers

(as measured by HST for a typical large galaxy) into equation 1.6 we find that for a stellar

32which is not restricted to just stellar dynamics, but is a consequence of any system described by the
virial theorem, i.e., where self-gravity between the particles is important. In fact, the stability of nuclear
burning in the cores of stars can be understood by this process. Runaway nuclear burning begins to set in
when the reaction rates become too fast for the heat to be conducted away, but through the property of
negative specific heat the increase in energy in the core leads to an expansion and a cooling which brings
the rates back into equilibrium (Binney and Tremaine, 2008)
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cluster at the centre of a galaxy

tcollapse ≃ 9.5× 1012 yr

(

vtyp

200km s−1

)3(106 pc−3

n

)(

1M⊙

m

)2

(1.19)

where we have used lnΛ = 15. It is clear then for the majority of galaxies that tcollapse

is longer than thubble, and indeed even the smallest galaxies have tcollapse ∼ 1010 yr

(Rosswog and Bruggen, 2003).

We can therefore conclude that a collisional nuclear stellar cluster is not a viable means

for feeding an SMBH at the rates required for the observed growth or AGN activity.

1.8 The SMBH/host galaxy connection

Finally in this chapter, we address a fundamental question in galaxy evolution; that of the

effect of the SMBH on the larger host system. Understanding the growth of SMBHs is

important not only to explain the observed quasars at high redshift, but also to shed light

on what appears to be a fundamental connection between the SMBH and its host spheroid.

Furthermore, the apparent co-evolution of star-forming galaxies and active galaxies lends

support to a causal relationship between nuclear activity and galactic activity.

1.8.1 Mbh − σ relation

It was discovered at the turn of the millenium (Gebhardt et al., 2000; Ferrarese and Merritt,

2000) that there is a strong empirical correlation between the stellar velocity dispersion,

σ of a galactic bulge, and the mass, Mbh, of the SMBH residing at its centre. Somewhat

unusually for observational correlations, this relationship is relatively tight, with very little

scatter (see Figure 1.8). It was clear once this was discovered that the M − σ relation

implies a connection between the formation and evolution of a galaxy bulge and the evo-

lution of the central black hole; where previously the effort involved in detecting SMBHs

was purely a numbers game, the focus after this discovery became one of understanding

the nature of the SMBH/host galaxy connection33.

It is clear too from the tightness of the relation that it cannot be motivated by galactic

formation alone, as the spread in formation mechanisms (major/minor mergers, gradual

gas accretion) would translate to a similar spread in the data points. As a result, theoret-

ical models that seek to explain M − σ invoke a feedback mechanism that can be applied

ubiquitously across a large sample of galaxies. The currently preferred picture by many

authors (see, e.g., Silk and Rees, 1998; King, 2003; Sazonov et al., 2005) is one in which

33it should be noted however that the Mbh − σ relation is subject to a selection effect, since detections
of SMBHs naturally favour those at the high mass end of the distribution; in general therefore the relation
should be viewed as more of an upper limit and there may be a population of galaxies with ‘underweight’
black holes
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Figure 1.8: The M − σ relation for dynamical mass detections of SMBHs in a large sample of galaxies.
Colors refer to Hubble type, shapes refer to detection method. The label ‘S0’ refers to lenticular galaxies.
Figure credit: Gültekin et al. (2009)

————————————————————————–
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an outflow, or wind, driven by gas accretion (and therefore in keeping with the Soltan ar-

gument) inhibits growth of the black hole above a critical mass, where the outflow sweeps

away the ambient gas. So far the most promising model (in terms of optimum fit and

minimal free parameters) appears to be that of King (2003, 2005), in which an initially

momentum-driven wind (rather than thermally-driven, since for the dense gas in the re-

gion around the SMBH the cooling time (through inverse Compton scattering) is longer

than the flow time) produced by Eddington-limited accretion and so possessing a velocity

of ∼ 0.1c (King and Pounds, 2003), sweeps up a shell of gas within an isothermal sphere

of dark matter (which has M(R) ∝ R) that expands rapidly initially. As the shell gains

mass, it slows down, eventually stalling and forming stars. Some of the gas may fall back

and supply the SMBH with more fuel, beginning the process over again. The black hole

grows (given an adequate mass supply) on the Salpeter timescale, and indeed the shell is

able to slowly expand (since it is being driven by continous accretion) on this timescale

also. The growth of the black hole is shut off, however, once the shell reaches a critical

radius Rc where the gas is no longer able to cool efficiently (this is ∼ 1 kpc; see, e.g.

King, 2003). The momentum-driven shell then becomes thermally-driven, and the extra

pressure accelerates the shell and allows it to escape the galaxy. The mass that the SMBH

has grown to by this point is given by

Mbh =
fgκ

πG2
σ4 = 1.5× 108

(

σ

200 km s−1

)4

M⊙ (1.20)

where fg is the baryon fraction, and κ is the inverse Compton scattering opacity. This

formula reproduces well the slope and normalisation of theM−σ relation (Tremaine et al.,

2002) such as is shown in Figure 1.8.

1.8.2 Mbh −Mbulge relation

There is a further correlation that connects the mass of the SMBH to the stellar mass in

the bulge. Originally penned by Magorrian et al. (1998), it has since been revised through

more accurate determinations of black hole masses by ∼ a factor of 10 in normalisation

(Häring and Rix, 2004). TheMbh−Mbulge relation has slightly more scatter thanMbh−σ,
although the correlation is still clear. The slope is slightly above unity, Mbh ∝ M1.12

bulge,

with the normalisation factor at ∼ 1/1000 (Häring and Rix, 2004). In general therefore the

bulge mass in a galaxy is expected to be about 1000 times the black hole mass. Explaining

this relationship is difficult, but we note that the King (2003, 2005) model forMσ can also

be invoked to obtain a scaling of Mbh ∼ 10−3M1.25
bulge, if the amount of mass swept up in

the shell is turned into bulge stars.
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1.8.3 The starburst-AGN connection

Certain galaxies have an unusually high amount of recent or ongoing star formation,

evidenced by either the blue optical and UV colours in their spectra, or the IR signature

of obscured UV emitting (and therefore star-forming) regions. These galaxies are termed

starburst galaxies, and are found out to z ∼ 4 (Thompson, 2005)

It can be difficult (particularly at high redshifts) to separate the signature of a starburst

from that of an AGN. In these cases a spectroscopic approach can help. Stellar atmospheres

have particular emission lines in the optical/IR corresponding to the Balmer series of

hydrogen, and neutral calcium, and in the UV corresponding to a ionized helium, silicon

and carbon (Robert et al., 1993). The star formation rate (SFR) of a starburst galaxy is

generally ∼ 10 − 100M⊙yr
−1, orders of magnitude higher than a typical gas-rich galaxy

such as the Milky Way, which has an SFR of ∼ 1M⊙yr
−1.

Triggering a starburst is generally thought to involve a perturbing event that can

concentrate a large amount of H2 in a small volume, normally ∼ a kpc. This can be

the result of supernovae explosions, but on a large scale is mostly likely due to galactic

encounters. Indeed, galaxies that have recently merged (or are in the process of merging)

show a dispropotionately high fraction of starbursts (Muxlow et al., 2006). One such

merging pair of galaxies is shown in Figure 1.9. These are local, at z ≃ 0.004. The blue

colours indicate young stellar populations, yet few supernovae have been detected in the

merging regions and so these galaxies provide strong evidence for the merger-starburst

paradigm.

Direct, head-on mergers, where the gas undergoes strong shocks and loses a large

amount of angular momentum, are naturally the easiest explanation for a strong inflow of

gas to the centre of the potential well. These may not be necessary in every case, how-

ever, as interactions with a large impact parameter can excite a bar instability (refer back

to Section 1.7.2) that transports large amounts of molecular gas inwards, giving rise to a

starburst. Indeed, observations of CO in starburst galaxies (Lo et al., 1987; Ishizuki et al.,

1990; Kawabe et al., 1991) have shown that a significant amount of star-forming gas has

large non-circular motions and is distributed in an elongated ring, lending support to this

model.

With the antecedents of starbursts so similar to the agents of AGN, it is not surprising that

there is a correlation between them: in large samples of galaxies, starbursts often coexist

with AGN activity (see, e.g., Bushouse et al., 2002; Heckman, 2004). Furthermore, the

strength of the starburst and the luminosity of the AGN are often correlated as well

(Veilleux, 2008). From a cosmological perspective, the rate at which SMBHs grew by

AGN accretion has a trend which peaks in the early Universe and falls off to the present

day, and a similar trend is seen in the star formation rate (SFR) of galaxies (Heckman,
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Introduction 1.8. The SMBH/host galaxy connection

Figure 1.9: Ground-based view of the merger of the Antennae galaxies (left) and high resolution HST
image of the burst of new star formation triggered as a result (right). The bright blue regions are newly-
formed star clusters. Figure credit: Brad Whitmore (STScl), HST (NASA)

————————————————————————–
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2004). This implies that there is a certain amount of co-evolution between star-forming

galaxies and SMBHs that cannot be ignored.

Unfortunately, the starburst-AGN connection is something of a ‘chicken and the egg’

scenario. Some theoretical models suggest that, during the process of a merger and gas

inflow, the burst of star formation came first and eventually the gas reached the SMBH to

trigger an accretion event (see, e.g., Sanders et al., 1988; Kauffmann et al., 2003). Others

maintain that the AGN activity came first and powerful outflows from the nucleus com-

pressed the gas in the galaxy, triggering gravitational instability and star formation (see,

e.g., Rees, 1989; Daly, 1990). Further to this divide there are those who have proposed

more complex models, such as the ‘first pass’ in a merger causing an initial inflow that

fuels star formation but does not reach the SMBH, with the final merging phase fuelling

the SMBH as well as a second starburst (Mihos and Hernquist, 1994), and those who in-

voke an AGN event to shut-off an ongoing starburst (Schawinski, 2010). Finally there are

those who believe the two events are in actuality decoupled, and simply coexist because

they possess similar origins (Lin et al., 1988).

The symbiotic relationship between star formation and AGN activity remains a key

question in the search for a complete picture of galaxy formation and evolution. It is one of

the questions that we address in this work; specifically, Chapter 4, in which feedback from

star formation in the bulge is invoked as a driver for supersonic turbulence that enhances

the growth of the SMBH.
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2
Theoretical background

“We live on an island surrounded by a sea of

ignorance. As our island of knowledge grows,

so does the shore of our ignorance.”

John Archibald Wheeler
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2.1 Theoretical astrophysics

The field of theoretical astrophysics seeks to understand the behaviour of the Universe

by means of theoretical models, which take account of observations of the phenomena of

interest and attempt to construct a complete picture of these phenomena in a mathemat-

ically and physically consistent manner. A theoretical model can be both predictive, in

suggesting behaviour that should be looked for, and explanatory, in providing an answer

to why an observational result is seen.

Among the tools available to a theorist, analytical models in particular are a vital

resource that can give a great deal of insight into the problem being studied. In this

chapter we outline the main analytical models and theoretical topics that are relevant to

the work published in this thesis.

2.2 Black holes

Black holes are one of the more intriguing predictions of Einstein’s 1915 theory of general

relativity, but for a long time were not accepted as mainstream in the field of theoretical

physics, despite being introduced in a conceptual fashion over a century previously. The

central paradigm to general relativity is the notion of curvature by both matter and energy

in a four-dimensional spacetime; a black hole is the most extreme example of this, with

spacetime reaching infinite curvature in the centre. Particles that orbit in the vicinity

of a black hole follow paths that increasingly depart from standard Newtonian theory as

their distance from the hole decreases, finally reaching a radius within which all possible

paths lead further into the potential well. This property of black hole applies to photons

as well as massive1 particles, making these objects truly ‘dark’ in the sense that no light

can escape.

The radius at which this occurs is known as the event horizon, which quite simply

delineates the region of spacetime that cannot communicate with (i.e., from which events

cannot affect) an outside observer. The behaviour of particles inside this radius is therefore

unknown, although Einstein’s equations predict that all of the mass accreted by the black

hole will eventually end up at an infintesimal central point known as a singularity. Such a

concept is at odds with the quantum theory of matter, however, and efforts to marry the

two theories have been a large part of theoretical physics research over the last century. A

unifying theory of quantum gravity would determine the eventual fate of matter inside a

black hole from quantum mechanical arguments, removing the need for singularities which

represent a breakdown in physical laws (Rovelli, 2000).

1i.e., possessing finite rest mass
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2.2.1 Formation of a black hole

The end state in the life-cycle of a massive star (M >∼ 20M⊙) is believed to be a black

hole (Shapiro and Teukolsky, 1983). Theoretical work on the upper limit to the mass

of a white dwarf by Chandrasekhar (1931) implied that a star with a large enough mass

would eventually collapse beyond electron degeneracy pressure, with nothing to prevent the

collapse from continuing and eventually forming a singularity. This was since superseded

by the discovery of a stable configuration at a denser state through neutron degeneracy

pressure (Oppenheimer and Volkoff, 1939), known as a neutron star. The maximum mass

of this stable state is >∼ 3M⊙ (Cameron, 1959), and so once this limit is exceeded, collapse

will inevitably lead to the formation of a black hole.

The process of gravitational collapse of a massive star can create stellar mass black

holes with M ∼ 3−10M⊙, but is not a viable mechanism for the production of intermedi-

ate (M ∼ 102−104M⊙) or supermassive black holes (M >∼ 105M⊙), unless the progenitor

star was significantly more massive than our understanding of stellar structure (and ob-

servations of the local Universe) suggests. The collapse of a hypothetical population III

star - a zero-metallicity star formed in the early Universe, believed to have a mass of

∼ 103M⊙ (Madau and Rees, 2001) - may provide a means of forming a black hole in the

intermediate mass range, but is still not sufficient to produce an SMBH. Current thinking

is therefore that black holes grew to larger masses through accretion of matter, although

it should be noted that our understanding of this topic is still somewhat lacking, since

although there is a great deal of observational evidence for stellar mass black holes and

SMBHs, so far no reliable detection of an intermediate mass black hole has been made.

2.2.2 Structure of a black hole

If collapse proceeds in an entirely spherically symmetric fashion, a Schwarzchild black

hole will be formed. The general relativistic solution for the spacetime around such a

spherical body was derived from Einstein’s field equations by Karl Schwarzchild in 1916,

although at the time the mathematical treatment was not realised to be applicable to the

external gravitational field of a black hole. This formation scenario is idealised, however,

as all bodies in the Universe tend to possess some angular momentum; the Schwarzchild

solution is therefore a limiting case. A more general solution was found later, by Kerr

(1963) for a rotating black hole.

Both of these cases can be characterised very simply, as for an uncharged black hole

only two observable (classical) parameters are required: mass and spin. The ‘no-hair’

theorem (as it was coined by J. A. Wheeler) postulates that all other information is lost

within the event horizon and cannot be extracted. For this to be the case, any higher order

multipole moments that a star possesses as it collapses into a black hole must be lost, so

that the black hole can be described entirely by a monopole (i.e., spherically symmetric).
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It is thought that this information is radiated away in the form of gravitational waves

during the last stages of collapse (Shapiro and Teukolsky, 1983).

Although it does not possess a hard surface, a black hole has a characteristic size that

is determined by its event horizon; this is located at the Schwarzchild radius, given by

rS =
2GM

c2
(2.1)

where M is the mass of the black hole, and c is the speed of light. Since this is ∝
M , low-mass black holes have a greater density2 than their more massive counterparts.

Far from the Schwarzchild radius, r ≫ rS , the gravitational field is described well by a

standard Newtonian inverse-square law; however as r → rS , general relativistic effects due

to spacetime curvature become increasingly important. For r < rS , all matter must end

up at the singularity.

In the case of a rotating, Kerr black hole, an additional boundary exists within which

the underlying spacetime is itself rotating. Matter within this horizon is unable to ‘stand

still’ and instead must possess some angular momentum. The region of spacetime within

which this occurs is known as the ergosphere, and leads to an effect known as frame-

dragging that can, through the Bardeen-Petterson effect (Bardeen and Petterson, 1975),

act to co-align or counter-align an orbiting accretion disc with the equatorial plane of the

black hole (King et al., 2005).

2.2.3 Particle dynamics in the vicinity of a black hole

The purpose of this theoretical section is to determine where accretion, namely the adding

of mass to a black hole, actually takes place. We therefore proceed to derive the radius

at which this occurs, and determine what it means for the radiative efficiency of accretion

on to a black hole, as was discussed in Chapter 1. We start by considering the dynamics

of particles in Newtonian gravity.

2.2.3.1 Newtonian approximation

In Newtonian gravity, a particle at position r moving with speed v in orbit of a body with

mass M has a specific Hamiltonian (the total energy per unit mass) of

E =
1

2

(

dr

dt

)2

+ V (r) (2.2)

2although it is unclear how relevant the term density is in this context, since all of the mass is presumed
to be located at an infintesimal point at the centre
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Figure 2.1: Effective potential (red) of a particle with specific angular momentum 1/5 of that of the
Keplerian value at r = 1 kpc, moving in the Newtonian gravitional potential (black) of a black hole with
Mbh = 108 M⊙. The lowest energy orbit (marked by a cross) is single valued for V (r) = r, corresponding
to a circle.
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where V (r) is the effective potential that takes into account the angular momentum of the

particle in addition to the potential energy:

V (r) =
J2

2r2
− GM

r
(2.3)

where J is the specific angular momentum. The effective potential of a particle moving

under Newtonian assumptions is plotted in Figure 2.1, along with the potential corre-

sponding to zero angular momentum. We can characterise the orbits of a particle with

finite angular momentum based on the solution(s) of V (r) in terms of r.

• Bound orbits have V (r) < 0. There are two solutions to V (r) = r, corresponding to

an apocentre, rap, and a pericentre, rpe, of an elliptic orbit. The exception to this is

the singular point at the bottom of the effective potential well where V/r = 0, which

defines a circular orbit where rap = rpe.

• Unbound orbits have V (r) > 0. There is only one solution to V (r) = r, corresponding

to a pericentre. These orbits are hyperbolic, and escape the system.

• Marginally bound orbits have V (r) = 0. Technically there are two solutions to

V (r) = r, but the apocentre solution is at infinity, giving a parabolic orbit. A

particle moving out on a such an orbit is said to have the minimum energy to

escape, while a particle coming in has the maximum energy to be captured.

As we can see from Figure 2.1, finite angular momentum acts as a potential barrier,

preventing a particle from reaching r = 0. This concept holds for Newtonian gravity, but

is not the case when general relativity is taken into account, as we will now see.

2.2.3.2 General relativistic approach

In general relativity the motion of a particle is modified by the fact that the energy

contributes to the gravitating mass of the system, and thus to the potential. While this is

always the case, it only produces noticeable effects once the gravitational potential energy

becomes of the order of the rest mass energy, GMm/r ∼ mc2. In this limit the Newtonian

approximation breaks down. The following analysis is based on the corresponding section

in Hobson et al. (2006), to which the reader is directed for more detail.

The Hamiltonian, or ‘energy’ equation for a particle under the influence of general

relativistic effects in a Schwarzchild geometry is given by

1

2

(

dr

dτ

)2

+
J2

2r2

(

1− 2GM

c2r

)

− GM

r
=
c2

2

(

E2

m2c4
− 1

)

(2.4)

where J is again the specific angular momentum of the particle, E is the total (non-

specific) orbital energy, and m is the rest mass. We can define an effective potential V (r)
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such that

V (r) =
J2

2r2
− GM

r
− GMJ2

c2r3
(2.5)

where we see that there is an additional term ∝ 1/r3 in comparison to the Newtonian

approximation. This term tends to zero as c→ ∞, i.e., in the non-relativistic limit.

The effective potential is plotted in Figure 2.2 for different values of the specific angular

momentum, J . The curves are similar to those for the Newtonian effective potential

(Figure 2.1) at large radii, with a minimum corresponding to a stable circular orbit, but

take an entirely different form as r → 0. We find in fact that a maximum occurs at

small radii, which corresponds to an unstable circular orbit. The extrema of the effective

potential are found at

r =
J

2GM

(

J ±
√

J2 − 12G2M2

c2

)

(2.6)

and are plotted in Figure 2.2. The red curve is the particular case of J = 2
√
3GM/c,

where there is only one solution to the above equation and therefore only one extremum.

This defines the innermost stable circular orbit, or ISCO, which is eventually reached as

the gas orbiting the central SMBH loses its angular momentum. Beyond the ISCO, no

stable orbits are found, and the gas falls in on a dynamical time, disappearing beneath rS .

Recalling our discussion in Chapter 1, Section 1.6, we are now in a position to calculate

the radiative efficiency of accretion on to a Schwarzchild black hole precisely. We require

the gravitational binding energy (the orbital energy E) that is “lost” in bringing a particle

from infinity to the ISCO; this we assume to have been radiated away (beneath the ISCO

the particle falls beyond rS too quickly to radiate further). The efficiency is the ratio of

this radiated energy to the rest mass energy mc2, namely,

ηacc =
mc2 − E

mc2
= 1− E

mc2
(2.7)

where we can obtain the last term from equation 2.4. Substituting in for r = 6GM/c2 and

J = 2
√
3GM/c, with ṙ = 0 for a circular orbit we find that

E

mc2
=

2
√
2

3
(2.8)

and so the radiative efficiency of accretion is

ηacc ≈ 1− 0.943 = 0.057 (2.9)

a figure that is slightly lower than our order of magnitude prediction in Chapter 1, but

nonetheless far higher than the efficiency of nuclear burning in a star (ηnuclear ≈ 0.007).

However, we note that so far we have only considered the ideal case of a non-rotating black
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Figure 2.2: Effective potential of a particle with J = 2
√
7GM/c (blue), J = 2

√
3GM/c (red), and J = 0

(black; a standard Newtonian potential) moving in the general relativistic potential of a black hole with
Mbh = 108 M⊙, where the axes are normalised so that rS = 1. For the two orbits with finite angular
momentum there are minima in V (r) (marked by a diagonal cross) corresponding to a (stable) circular
orbit for each, as well maxima (marked by an upright cross) that indicate unstable circular orbits. When
the two extrema coincide, as is the case for the red curve, we find the ISCO, at rISCO = 3 rS .
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hole; in reality any matter that is accreted will possess some angular momentum, which

will be imparted to the black hole and thus to the underlying spacetime. To this end we

must re-do our analysis with a Kerr, or rotating, black hole.

Once again we define the Hamiltonian for a massive particle, which in a Kerr geometry

(assuming the motion is in the equatorial plane) is given by (Kerr, 1963),

1

2

(

dr

dτ

)2

+
J2 − a2c2(k2 − 1)

2r2
− GM(J2 − ack)2

c2r3
− GM

r
=
c2

2

(

k2 − 1
)

(2.10)

where we have written k ≡ E/mc2. It is important to note that a new parameter, a (the

angular momentum per unit mass of the black hole) has been introduced; this describes

the spin of the hole, and in the limit a→ 0, we recover the Schwarzchild solution as above.

We write an effective potential V (r) as

V (r) =
J2 − a2c2(k2 − 1)

2r2
− GM(J2 − ack)2

c2r3
− GM

r
(2.11)

where we see that in the limits a→ 0 and c→ ∞ we recover the Newtonian approximation.

It should be pointed out here that it is somewhat incorrect to identify this expression as

an effective potential, since it itself depends on the orbital energy, E. Nonetheless it does

correctly describe the stability of circular orbits in the same way as above, and so we

proceed to use it here.

While the analysis follows the same route as in the Schwarzchild case, it is considerably

more involved algebraically, and so we confine it to Appendix A. The ISCO for a rotating

black hole is found from the solution to the equation

r2 − 6GMr

c2
− 3a2 ∓ 8a

(

GMr

c2

)1/2

= 0 (2.12)

where the upper sign corresponds to an orbit that is counter -rotating with respect to the

black hole spin parameter, and the lower sign to an orbit that is co-rotating. In the limit

that a→ 0 we have r2 = 6GMr/c2, giving us back the Schwarzchild ISCO. In the opposite

limit that the spin parameter takes the maximum possible value3 of a = GM/c2, we have

a quartic in
√
r, which we solve by inspection to give rISCO = 9GM/c2 for the counter-

rotating case and rISCO = GM/c2 for the co-rotating case. If we consider the radiative

efficiency of the more bound of the two (namely, for maximal spin and a co-rotating orbit),

we find that

ηacc = 1− 1√
3
≈ 0.42 (2.13)

which is far larger than the Schwarzchild value. In reality neither extreme (zero spin vs.

3according to the cosmic censorship conjectore (see, e.g., Penrose, 1973)
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maximal spin) is likely, and so the radiative efficiency of accretion will lie somewhere in

between, 0.057 < ηacc < 0.42, making our order of magnitude estimate in Chapter 1 a

reasonable one. Nonetheless, an important conclusion here is that a more rapidly rotating

black hole will possess a significantly larger conversion efficiency of rest mass to luminosity

as matter is accreted.

2.3 Accretion onto compact objects

Accretion in astrophysics refers to the release of gravitational energy by infalling matter

as it accumulates on to a central object. The amount of energy yielded from accretion is

dependant on the ‘compactness’ of the accreting object, M∗/R∗, where M∗ is the mass

of the accretor and R∗ is the radius. The gravitational energy that is released by the

accretion of a mass m on to a compact accretor is given by

∆Eacc =
GM∗m

R∗
(2.14)

where G is the gravitational constant. Putting in some typical numbers, for, say, a neutron

star - with M∗ ∼ 1M⊙ and R∗ ∼ 105 cm - can help us to see that the yield from accretion

on to a sufficiently compact object can be significantly higher than any other process of

energy generation. Nuclear fusion, for example, has an efficiency of conversion of rest mass

into energy of 0.7%, giving an energy release of ∆Eacc = 0.007mc2, where c is the speed

of light. Per unit mass, this corresponds to ≃ 6 × 1018 erg g−1. The accretion on to a

neutron star with these approximate numbers yields ≃ 1020 erg g−1, about twenty times

that of nuclear fusion. However this comparison is not so favourable for more extended

accretors. White dwarfs, on the other hand, are less compact than neutron stars (but

of similar mass), having R∗ ∼ 109 cm; accretion on to these objects loses out to nuclear

burning by factors of tens. For a main sequence star, the accretion yield is smaller still.

The efficiency of accretion in releasing energy is thus a strong function of the compactness

of the accretor, and can be very large provided the object that we are dealing with is

sufficiently dense.

The luminosity derived from accretion at a particular mass accretion rate Ṁ can be

correspondingly large. If we assume that the entirety of the kinetic energy of the infalling

matter is converted into electromagnetic radiation at the surface of the accreting object,

we find an accretion luminosity as

Lacc =
GM∗

R∗
Ṁ (2.15)

which for white dwarfs and neutron stars (assuming a typical accretion rate from close

binary systems) is of the order of 1033 erg s−1 and 1036 erg s−1. For the case of a black
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hole, however, the assumption of 100% efficiency in converting the rest mass energy into

radiation no longer holds. As we discussed in the previous section, matter is not accreting

on to a ‘hard surface’ but rather the black hole’s event horizon, or Schwarzchild radius,

within which radiation cannot escape. We therefore require an efficiency parameter, η, for

the conversion of mass accretion into luminosity. The accretion luminosity from a black

hole can then be written as

Lacc = 2η
GMbh

Rbh
Ṁ (2.16)

where, by putting Rbh = 2GM/c2, the Schwarzchild radius, we find

Lacc = ηṀc2 (2.17)

We discussed the realistic values that η is likely to take in 2.2, and found that the typical

conversion efficiency for stellar mass black holes is ≃ 10% (η ≃ 0.1). This is comparable

with the energy release for accretion on to a neutron star. It is clear then that accretion

on to black holes or neutron stars is a likely candidate for powering some of the most

luminous phenomena in the Universe, as indeed is believed to be the case; X-ray binaries4,

with L ∼ 1039 erg s−1, quasars, with L ∼ 1046 erg s−1, and gamma-ray bursts5, with

L ∼ 1052 erg s−1.

Of course, we have not taken into account the effect of the radiation on the accreting

material. At high luminosities, the momentum transferred to the infalling matter can be

significant, putting an upper limit on the accretion rate. This is known as the Eddington

limit, and is an important concept in astronomy and astrophysics, providing a means of

characterising the stability of an accreting object.

2.3.1 The Eddington limit

We can derive the Eddington limit for accretion by equating the inward gravitational

force on accreting matter to the outward radiation pressure force. Under the assumptions

of spherical symmetry, and the infalling matter being composed of ionized hydrogen (a

reasonable assumption for stellar atmospheres or accretion flows on to compact objects),

the radiation pressure force is given by

Frad =
LσT
4πr2c

(2.18)

where L is the luminosity of the accreting object, and r is the radial distance of the infalling

material from the centre of the accreting object. For an ionized gas, the radiation pressure

acts on the electrons, which is why the Thomson scattering cross-section, σT , appears in

4discussion of these systems is beyond the scope of this thesis
5as is discussion of these
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this equation6. Protons have too large a mass and their scattering cross-section is therefore

negligible. However, due to the Coulomb force, as the electrons are pushed out they drag

the protons with them, which means that the opposing gravitational force must include

the masses of both. The force due to gravity on an electron-proton pair is

Fgrav =
GM(mp +me)

r2
(2.20)

where mp, me are the mass of a proton and an electron, respectively, and M is the mass

of the accreting object. Equating these two forces yields

LEdd =
4πGMmpc

σT
(2.21)

where we have neglected the mass of the electron (me ≪ mp). At greater luminosities

than this the outward radiation pressure would exceed the gravitational attraction of the

infalling material, and accretion would be halted. The Eddington limit for luminosity thus

implies a corresponding limit on the mass accretion rate:

ṀEdd =
4πGMmp

ησT c
(2.22)

where we have employed the radiative efficiency parameter η. This particular limit allows

us to determine a timescale on which a mass can grow through accretion; if we define a

timescale τ in the usual way i.e., as an e-folding time, with an initial mass M0 our growth

is limited to

M(t) ≤M0e
t/τ (2.23)

where

τ =
ησT c

4πGmp
(2.24)

This defines the Salpeter timescale for accretion, tS = τ = M/ṀEdd, and is the typical

maximum rate than one can grow an object through accretion processes alone. We should

be careful here, however, as so far we have assumed accretion to proceed spherically

symmetrically. In fact this will not be the case in practice, as infalling material will

possess some angular momentum and most likely accrete through an accretion disc (see

Section 2.3.4). Nonetheless, our spherically symmetric picture has allowed us to derive

an important quantity - the Eddington limit, which may change a small factors with a

change in the geometry of the accretion flow but still demonstrates that an object that is

6the Thomson scattering cross-section is given by

σT =
8π

3

(

e2

mec2

)2

= 6.65× 10−25cm2 (2.19)

where e is the charge on an electron.
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at least partially stable must not be accreting (or radiating) at more than LEdd. We should

also note that there was a further assumption that was implicitly included in the above

treatment, which is that of a steady accretion flow. Our conclusion of Eddington-limited

accretion, or luminosity was valid only assuming a steady-state; the limit can of course be

exceeded by one-off events such as a sudden burst of accretion, or a supernova explosion.

Now that we have introduced the relevant concepts for accretion on to a compact

object, we must go into some more detail as to how this process actually proceeds. For

gas accretion the picture is complicated by fluid properties such as the pressure and the

sound speed; we begin by considering the simplest possible case of Bondi (or spherically

symmetric) accretion.

2.3.2 Spherically symmetric accretion

Steady, spherically symmetric accretion of gas on to a point mass M was studied by

Bondi (1952), to which the majority of this derivation is similar. We work in spherical

polar coordinates (r, θ, φ), and consider purely radial infall with velocity vr = −v, where
the negative sign indicates inward motion of material; for an outflowing wind the analysis

is the same but with vr > 0. The steady mass flux is described by the time-independant

continuity equation:

∇ · (ρv) = 1

r2
d

dr
(r2ρv) = 0 (2.25)

where ρ is the mass density. Integrating this equation gives us r2ρv = const., and when

compared with the mass flux through a spherical surface, Ṁ = 4πr2ρv, we see that this

integration constant must be Ṁ/4π. We call the mass flux the accretion rate, for an infall

given by

Ṁ = −4πr2ρv (2.26)

For our analysis we require an equation of state (EQS), which we assume to be barotropic7

and given by

P = Kργ (2.27)

where P is the pressure, andK is a constant. We shall not specify the value of the adiabatic

index, γ, until later in the derivation. Finally we relate the radial velocity profile of the

fluid to the underlying forces, via the (steady) Euler equation:

v
dv

dr
+

1

ρ

dP

dr
+
GM

r2
= 0 (2.28)

While the full solution for the variation of the fluid variables with r requires integrating this

equation (which we shall do in a moment), we can first determine an important property

7defined as where the pressure is a function only of the density
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of the flow from simple re-arrangement and substitution. We use the equation of state to

relate the pressure gradients to density gradients, namely

dP

dr
=

dP

dρ

dρ

dr
(2.29)

and
dP

dρ
= γKργ−1 (2.30)

where we can clearly see that γKργ−1 = γP/ρ. This is the definition of the sound speed,

i.e.,

c2s =
γP

ρ
(2.31)

which gives us
dP

dr
= c2s

dρ

dr
(2.32)

We can now substitute this into equation 2.28. We may also use equation 3.19 to relate

the change in density to r and v, namely

1

ρ

dρ

dr
= − 1

vr2
d

dr
(vr2) (2.33)

and putting both of these into the Euler equation gives us

v
dv

dr
− c2s
vr2

d

dr
(vr2) +

GM

r2
= 0 (2.34)

which can be re-arranged to give

1

4

(

c2s − v2
) d

dr
ln v2 =

GM

r2

[

1−
(

2c2sr

GM

)]

(2.35)

Note here that as well as v, cs will be a function of r except for in the limiting case of

an isothermal equation of state i.e., γ = 1. It can, however, clearly be seen from this

equation that the LHS becomes zero when cs(r) = v(r), defining a particular radius in the

flow that is referred to as the sonic point. If such a point exists (and indeed it does not

have to) then it will occur where the factor 1− (2c2sr/GM) reaches zero. The sonic point

is therefore defined as,

rs =
GM

2c2s(rs)
(2.36)

where c2s(rs) is the value of the sound speed at rs. We should be careful here, however, as

the LHS will also vanish in the event that

d

dr
v2 = 0 (2.37)
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Thus at r = rs there are two types of solution; those which are transonic and transition

between v2 > c2s and c2s > v2, and those that simply reach a stationary point in the Mach

number. In fact these types of solution partition yet further depending on our assumptions

for the inner and outer boundary condition; we will discuss these later when we plot the

full solutions for v and cs. We now proceed to integrate equation 2.28 to obtain Bernoulli’s

equation:
v2

2
+

∫ P

P∞

1

ρ
dP − GM

r
= constant (2.38)

where P∞ and P are the limits of the integral in terms of the pressure at infinity and the

pressure at a particular radius. Putting in boundary conditions at infinity we find the

value of the constant; assuming that v = 0, and P = P∞, ρ = ρ∞ at r = ∞, we obtain

v2

2
+

∫ P

P∞

1

ρ
dP − GM

r
= 0 (2.39)

Our pressure and density are related by the equation of state, which here we write as,

P

P∞
=

(

ρ

ρ∞

)γ

(2.40)

By converting the integral to one in terms of density, via,

dP

dρ
=
γP∞

ρ∞

(

ρ

ρ∞

)γ−1

(2.41)

we can now write equation 2.39 in a different form, namely

v2

2
+

γ

γ − 1

P∞

ρ∞

[

(

ρ

ρ∞

)γ−1

− 1

]

=
GM

r
(2.42)

where we see that this is only valid for γ > 1. In order to find the solution to this equation

we must introduce the Mach number as a variable, M = v/cs. Writing this in terms of

values at infinity we have

M =
v

c∞

(

ρ

ρ∞

)
1−γ
2

(2.43)

since c2s ≡ dP/dρ, and c2∞ = γP∞/ρ∞. From this we can obtain expressions for ρ and v

in terms of M, i.e.,

ρ = ρ∞

(

v

c∞M

) 2
γ−1

(2.44)

and

v = c∞M
(

ρ

ρ∞

)
γ−1
2

(2.45)
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which we substitute into our expression for the accretion rate (equation 2.26) to parametrise

these quantities in terms of r:

Ṁ = 4πr2ρ∞

(

1

c∞M

) 2
γ−1

v
γ+1
γ−1 (2.46)

Ṁ = 4πr2ρ∞

(

1

c∞M

) 2
γ−1

(c∞M)
γ+1
γ−1

(

ρ

ρ∞

)
γ+1
2

(2.47)

so that

v =

[

Ṁ−14πr2ρ∞

(

1

c∞M

) 2
γ−1

]

1−γ
γ+1

(2.48)

ρ =

[

Ṁ−14πr2ρ∞

(

1

c∞M

) 2
γ−1

(c∞M)
γ+1
γ−1

]
−2
γ+1

(2.49)

We substitute these expressions into equation 2.42, and note that the sound speed at

infinity is given by c∞ = γP∞/ρ∞, such that,

1

2

[

Ṁ−1r2A
]

2(1−γ)
γ+1 M

4
γ+1 +

1

γ − 1

[

Ṁ−1r2A
]

2(1−γ)
γ+1 M

2(1−γ)
γ+1 =

GM

r
+

c2∞
γ − 1

(2.50)

where A ≡ 4πρ∞(1/c∞)
2

γ−1 . Multiplying through by the common factor in square brackets

(and simplifying) allows us to separate the variables M and r:

1

2
M4/(γ+1) +

1

γ + 1
M

2(1−γ)
γ+1 = Ṁ

2(1−γ)
γ+1

[

(4πρ∞c∞r
2)

2(γ−1)
γ+1

(

1

r

GM

c2∞
+

1

γ − 1

)]

(2.51)

which takes the form of an important relation that we shall use later, namely

f(M) = Ṁ
2(1−γ)
γ+1 g(r) (2.52)

where f and g are functions of the Mach number and the radial coordinate respectively,

with

f(M) =
1

2
M

4
γ+1 +

1

γ + 1
M

2(1−γ)
γ+1 (2.53)

g(r) = (4πρ∞c∞r
2)

2(γ−1)
γ+1

(

1

r

GM

c2∞
+

1

γ − 1

)

(2.54)
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It is clear that identifying these functions is a crucial step in determining the solution for

the accretion rate, as we must now have

Ṁ =

[

f(M)

g(r)

]
γ+1

2(1−γ)

(2.55)

As we shall see when we plot the full solution, the maximum (steady) accretion rate for

our boundary conditions is attained at the stationary points of f and g. We therefore take

the derivative of each, starting with

f ′(M) =
2

γ + 1
M

3−γ
γ+1 − 1

γ + 1
M

1−3γ
γ+1 (2.56)

where the stationary point, f ′(M) = 0, is reached when M = 1. We then have

g′(r) = GM
5− 3γ

γ + 1
r

2γ−6
γ+1 − c2∞

γ + 1
r

3γ−5
γ+1 (2.57)

with the stationary point corresponding to g′(r) = 0 at r = GM(5 − 3γ)/4c2∞. Putting

these back in we obtain the extremum for each function as

fm =
γ + 1

2(γ − 1)
(2.58)

gm =

(

4πρ∞G
2M2

c3∞

)

2(γ−1)
γ+1 1

4

γ + 1

γ − 1

[

5− 3γ

4

]− 5−3γ
γ+1

(2.59)

These extrema coincide at the sonic point, M = 1 and r = rs = GM/2c2s(rs), where we

can see that the latter is true from equation 2.74, derived later. This maximum value of

Ṁ that we obtain from the ratio of the two functions at their stationary points is therefore

the transonic accretion rate, and is given by

Ṁmax =

(

4πρ∞G
2M2

c3∞

)(

1

2

)
γ+1

2(γ−1)
(

5− 3γ

4

)
5−3γ
2(1−γ)

(2.60)

It is convenient to introduce a non-dimensional parameter, λ, to describe this accretion

rate, such that λ = Ṁ/(4πρ∞G
2M2c−3

∞ ). At this juncture we consider the dependance

of this parameter on the value of γ. It is instructive to see how λ can vary between

the two extreme values of the adiabatic index, namely γ = 1 (isothermal, corresponding

to instantaneous cooling) and γ = 5/3 (adiabatic, corresponding to an infinite cooling

time). However as is often the case with extrema, these two limiting cases are somewhat

non-trivial to solve. We begin with the isothermal condition.

• Isothermal case, γ = 1
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As can be seen from equation 2.60, substituting for γ = 1 causes the solution for λ

to blow up to infinity. We therefore employ a change of variable approach and take

the limit as γ → 1. Putting α = γ − 1, our equation becomes,

λmax =

(

1

2

)
α+2
2α
(

2− 3α

4

)− 2−3α
2α

(2.61)

We seek a solution of the form,

e = lim
x→0

(1 + x)1/x (2.62)

which, as the equation suggests, returns the base of the natural logarithm in the limit

that x tends to zero. We therefore proceed to separate out the fractional exponents

in our formula, such that

λmax =

(

1

2

)1/2(1

2

)1/α [1

2
− 3α

4

]−1/α+3/2

(2.63)

Re-arranging gives,

λmax =

(

1

2

)[

1− 3α

2

]−1/α [

1− 3α

2

]3/2

(2.64)

The last square bracket in this expression does not blow up in our limit, and so we

can tentatively substitute α = 0 to obtain a value of unity. We are then left with

λmax =

(

1

2

)[

1− 3α

2

]−1/α

(2.65)

which we can modify to follow the form of equation 2.62 by taking a power of 3/2

out:

λmax =

(

1

2

)2
[

(

1− 3α

2

)− 2
3α

]3/2

(2.66)

such that via our identity we have

λmax =
1

4
e3/2 ≈ 1.12 (2.67)

• Adiabatic case, γ = 5/3

This case is simpler, with the solution obtained by noting that as γ → 5/3, the

second bracket in equation 2.60 will tend to unity faster than it tends to zero, as the

zero in the exponent is dominant over the zero inside the bracket. In the adiabatic
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case we therefore have

λmax =
1

4
= 0.25 (2.68)

The question of whether this maximum accretion rate is attained relates to particular fam-

ilies of solutions, as alluded to earlier. We can determine the run of M with r - in other

words, the full solution to the problem - by letting r vary, calculating the corresponding

values of g(r), substituting those values into f(M) via equation 2.52, and subsequently

solving for M. This latter step we perform numerically, using the Newton-Raphson algo-

rithm8. There are different solutions for different values of λ. Figure 2.3 shows a few of

these solutions for γ = 4/3.

As can be seen from the Figure, the steady-state transonic solutions (where the flow

changes from subsonic to supersonic or vice-versa at rs) correspond to λ = λmax. The

solutions that have λ < λmax are either subsonic or supersonic everywhere, while those

with λ > λmax are double-valued in M for a given r, and do not cover the full range in

radius. The latter solutions are therefore non-physical, and we disregard them. Of those

remaining we see that we have four types (Frank et al., 2002):

1. Type I: v(rs) = cs(rs), v → 0 as r → ∞ (transonic)

2. Type II: v(rs) = cs(rs), v → 0 as r → 0 (transonic)

3. Type III: v(r) < cs(rs), v → 0 in both limits, dv
dr = 0 at rs (subsonic)

4. Type IV: v(r) > cs(rs), v → ∞ in both limits, dv
dr = 0 at rs (supersonic)

The type IV solutions can be elimated by virtue of our boundary conditions; that we

require the gas to be at rest at infinity. Likewise, we can discard type II, although we note

that this corresponds to the Bondi solution for time-reversed accretion, or in other words, a

stellar wind (Parker, 1960; Lamers and Cassinelli, 1999). We are therefore left with types

I and III for spherically symmetric accretion; steady-state transonic flow and subsonic

flow respectively. We can see from Figure 2.3 that the transonic type I solution gives the

maximum possible accretion rate for steady (constant Ṁ) flow, as v is everywhere higher

than any of the type III solutions, and increasing v further would only serve to make the

flow follow one of the unphysical, double-valued solutions.

For a compact object with a surface, steady-state subsonic flow (type III) is a valid

solution. The physical interpretation of this case can be inferred from noting that as

8the Newton-Raphson algorithm, sometimes referred to as Newton’s method, finds successively better
approximations to the roots of a real-valued function by extrapolating the derivative. An initial guess,
x0, to the root of a function f(x), can be improved upon (providing that the function is reasonably
well-behaved) by taking

x1 = x0 −
f(x0)

f ′(x0)
(2.69)

and the process repeated for x1 until a root is found to a user-defined accuracy
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Figure 2.3: Mach number as a function of the dimensionless radius r/rs, where rs = GM/2c2s(rs) is the
sonic point (equation 2.36), for a spherically symmetric gas flow in the (Newtonian) gravitational field of
a point mass, with an adiabatic index of γ = 4/3. A few solutions for differing values of the dimensionless
accretion rate parameter λ are shown. The transonic solutions are shown in red, while the other lines
represent the solutions that do not pass through a sonic point.

————————————————————————–
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v → 0, the second term on the LHS in equation 2.28 (the Euler equation) dominates over

the first term, giving
1

ρ

dP

dr
≈ −GM

r2
(2.70)

which is the hydrostatic equilibrium condition, and for a polytropic EQS holds for 1 ≤
γ ≤ 5/3. The flow is therefore prevented from reaching a sonic point by ‘back pressure’

from the large density gradient that builds up as matter accumulates at the hard surface

of the star (Shapiro and Teukolsky, 1983).

In the case of a black hole, however, no hard surface exists, and only the transonic

solution is allowed. The full proof of this requires a general relativistic treatment of

the Bondi flow solutions, which is beyond the scope of this thesis; the reader is directed

to Appendix G in Shapiro and Teukolsky (1983). Type I is therefore the solution most

relevant to this thesis. The accretion rate in this case is given by

Ṁ =
4πλρ∞G

2M2

c3∞
(2.71)

where λ is given by equation 2.61. The flow is characterised by the sonic radius, rs =

GM/2c2s(rs) (equation 2.36). We can relate the sound speed at this radius to the sound

speed at infinity by re-writing equation 2.42 (the Bernoulli equation) as

v2

2
+

c2s
γ − 1

− GM

r
=

c2∞
γ − 1

(2.72)

such that at rs, where v = cs, we have

c2s(rs)

[

1

2
+

1

γ − 1
− 2

]

=
c2∞
γ − 1

(2.73)

giving us

cs(rs) = c∞

(

2

5− 3γ

)1/2

(2.74)

Likewise, we can obtain the value of ρ at rs in terms of ρ∞ through equation 2.44 and

cs ≡ dP/dρ from equation 2.41:

ρ(rs) = ρ∞

[

cs(rs)

c∞

]2/γ−1

(2.75)

It is important to point out, as can be seen from the denominator in the RHS of equation

2.74, in the limiting case of a purely adiabatic EQS with γ = 5/3, the sonic radius cannot be

defined. A purely adiabatic flow cannot therefore reach a steady-state transonic solution,

and the flow remains subsonic everywhere.
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Finally, we note that there is a second radius that characterises the accretion flow,

which can be obtained by considering the point at which the flow velocity becomes equal

to the sound speed at infinity (rather than the sound speed at r, which defines the sonic

point). This has the eponymous distinction of being known as the Bondi radius, and

can be found from equation 2.72 by noting that at large r, the flow is subsonic and all

quantities are close to their ambient values, ρ∞, c∞, and v ≈ 0. In this case equation 2.72

becomes
v2

2
=
GM

r
(2.76)

As v increases it eventually reaches c∞, and so the Bondi radius is defined as

rB =
2GM

c2∞
(2.77)

Within this radius ρ and cs begin to increase above their ambient values, and as we have

seen, eventually reach a sonic point rs. The Bondi radius is therefore the first characteristic

radius that the flow encounters as it falls from infinity, and rB > rs. The accretion rate is

often written in terms of this fiducial parameter, by

Ṁ = πλr2Bρ∞c∞ (2.78)

An alternative interpretation of the Bondi radius is that of a ratio of energies; it is ap-

proximately the point at which the gravitational potential energy becomes larger than the

thermal energy in the gas, 3/2 kT = GM/r for a monatomic gas, where k is the Boltzmann

constant and c2s = kT/µmp, with the assumption of cs ≈ c∞.

2.3.3 Bondi-Hoyle accretion

Bondi’s spherically symmetric analysis can be modified to take account of a moving accre-

tor in a stationary, uniform medium. This problem was first studied by Hoyle and Lyttleton

(1939) and Bondi and Hoyle (1944), these authors finding that when the sound speed was

negligible in comparison to the velocity of the accretor, and pressure effects could therefore

be disregarded, the accretion flow was described by

ṀBHL =
2παG2M2ρ∞

v3rel
(2.79)

where vrel is the relative velocity of the accretor with respect to the medium, and α is a

constant that is dependant on the exact geometry of the problem; in general 1 ≤ α ≤ 2.

This accretion rate is to an order of magnitude the mass flux through the capture ra-

dius at which the flow is bound to the accretor - using v2/2 = GM/rcapt we see that

Ṁ = 4πr2capt ρv ∼ ṀBHL. Bondi (1952) proposed that the latter case of negligible pres-
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sure (namely, velocity-limited accretion) and the spherically symmetric case of negligible

relative velocity (namely, temperature-limited accretion) could be combined by writing

Ṁ =
4πG2M2ρ∞

(c2∞ + v2rel)
3/2

(2.80)

thereby combining in a single formula the spherical accretion rate relating to flow at rest

far from the accretor and the accretion rate from a body moving supersonically with re-

spect to the medium; the limiting cases are recovered as vrel → 0 and c∞ → 0 respectively.

As a final note in this this section we make the important point that the Bondi/Bondi-

Hoyle picture of accretion is very idealised. In reality the mass that is accreting will not

directly hit the accretor, but instead orbit it due to non-zero angular momentum. This

is especially the case when accreting from large scales, as the accretor becomes effectively

a point mass, and in this limiting case the fraction of material with a trajectory aimed

directly at the accreting object is a ‘subset of size zero’. The Bondi/Bondi-Hoyle approach

is therefore best interpreted as a capture condition, where the mass that has reached the

relevant radius is bound to the central object and will accrete, but not immediately.

2.3.4 Accretion discs

Given then that accreting matter will tend to orbit the accreting object, we must ask how

the desired goal of accretion - namely for the mass of the infalling material to actually add

to the mass of the central star, or black hole - can take place. Since in an axisymmetric

or spherically-symmetric potential angular momentum is conserved, we must find a way

for the orbiting matter to lose its angular momentum before it can be accreted. When

the infalling material is gaseous, collisions and shocks between the various parts of the

gas can dissipate energy, causing the orbits to circularise (the lowest energy orbit for

a given angular momentum is a circle) and the action of viscous torques can transport

angular momentum outwards. In general gas can dissipate energy faster than it can lose

angular momentum9, and so in the case of a central point mass, the material spirals in

through a sequence of circular Keplerian orbits. This is known as an accretion disc. Since,

in practice, entirely radial orbits are ruled out due to finite initial angular momentum,

accretion discs are universal across a wide range of scales.

The ubiquity of accretion discs across the Universe therefore makes them an extremely

important area of study in the field of astrophysics. Here we discuss some of the important

characteristics of these flattened geometries and how they are relevant to a number of

different fields. For a detailed review the reader is directed to Lodato (2007) and references

therein.

9since angular momentum must be transported, whereas energy can be radiated
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We start by reviewing the relevant equations that determine the evolution of a gaseous

accretion disc. Much of this analysis is based on the seminal work by Shakura and Sunyaev

(1973). For the purposes of concision, we restrict our treatment to what is known as

the ‘thin disc’ approximation. Since the main theme of this thesis is AGN, a regime

characterised by very thin discs on large scales, this is not an unreasonable omission. The

thin disc approximation sets a limit on the aspect ratio of the disc, H/R ≪ 1. This

firstly allows us to vertically integrate our equations without fear of the loss of too much

information, and secondly, to make the assumption that the sound speed in the disc is very

much less than the azimuthal velocity, cs ≪ vφ. This will be shown directly in Section

2.3.4.3, but we will require it before then and so we mention it now. This is also the case

with the further assumption that the accretion timescale through a gaseous disc is long,

such that the radial velocity is very much less than both the sound speed and vφ. We

therefore have

vR ≪ cs ≪ vφ (2.81)

where the latter assumption will also be derived in Section 2.3.4.4.

2.3.4.1 Basic equations

To describe the evolution of a typical (axisymmetric) accretion disc it is convienent to

begin with the conservation of mass law; namely, the continuity equation:

∂ρ

∂t
+∇ · (ρv) = 0 (2.82)

where ρ is the density and v the velocity vector. The divergence of the velocity in cylin-

drical polar coordinates is

∇ · v =







1/R ∂/∂R

1/R ∂/∂φ

∂/∂z






·







RvR

vφ

vz






(2.83)

where R = (x2 + y2)1/2, the cylindrical radius. This gives

∇ · v =
1

R

∂

∂R
(RvR) +

1

R

∂vφ
∂φ

+
∂uz
∂z

(2.84)

where, due to axisymmetry the ∂/∂φ term is zero and from the thin disc assumption the

∂/∂z term is zero. Vertically integrating transforms ρ into Σ, the surface density, so that

the (one dimensional) continuity equation for an accretion disc becomes

∂Σ

∂t
+

1

R

∂

∂R
(RΣvR) = 0 (2.85)
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where Σ is defined as

Σ =
1

2π

∫ 2π

0

∫ ∞

−∞
ρ dzdφ (2.86)

Next we consider the equation of motion (sometimes termed the ‘momentum equation’)

in order to obtain an expression for the velocity v. For an inviscid fluid the equation of

motion is

ρ

[

∂v

∂t
+ (v · ∇)v

]

= −∇P − ρ∇Φ (2.87)

where P is the pressure and Φ the gravitational potential. Essentially this equation relates

the velocity (and acceleration) of the fluid to the forces acting upon it (the terms on

the RHS; namely, pressure gradients and gravity). This inviscid form of the momentum

equation is known as Euler’s equation. However, in the case of an accretion disc an

additional force must be added due to viscosity, resulting in the Navier-Stokes equation:

ρ

[

∂v

∂t
+ (v · ∇)v

]

= −(∇P −∇ · σ)− ρ∇Φ (2.88)

where σ is known as the stress tensor, which contains the vector component of stress, or

force per unit area, for all surface area elements i.e., in any direction. The stress tensor

in cylindrical polars is given by

σ =







σR τRφ τRz

τφR σφ τφz

τzR τzφ σz






(2.89)

where σR, σφ, σz are the normal components of stress; in other words the product of the

scalar pressure with the unit tensor. The τ components are the shear stresses. Under the

assumptions of a circular, thin accretion disc the only non-vanishing shear component is

the τRφ component10. In terms of the angular velocity, Ω = vφ/R, this component is given

by

τRφ = µR
∂Ω

∂R
(2.92)

10We can derive the form of this component by considering the velocity gradient of a shearing fluid.
In straight, parallel flow (with 1D velocity along, say, the x-direction and a velocity gradient along the
y-direction) the shear stress will be proportional to this velocity gradient, τ ∝ ∂v/∂y. We introduce a
proportionality constant, µ, which is effectively the coefficient of shear viscosity such that

τ = µ
∂v

∂y
(2.90)

Generalising to circular flow, we have the same situation but this time the velocity direction is along
Ω = vφ/R and our velocity gradient is radial. We therefore have the Rφ component of the stress tensor in
cylindrical coordinates (Hupfer et al., 2006) as

τRφ = µR
∂

∂R

(vφ
R

)

(2.91)
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where µ is an effective dynamic viscosity (often denoted with µ). Recall that in the

case of the continuity equation, we were able to reduce the general three-dimensional

form (equation 2.82) to that of a one (spatial) dimensional dependance of Σ(r, t). Here,

however, our equation 2.88 (the Navier-Stokes equation) so far contains contributions from

the radial, vertical, and azimuthal directions and so we now proceed to address of each

these separately.

2.3.4.2 Radial disc components

To write our Navier-Stokes (N-S) equation in radial components we start with the LHS,

where the first term (the time derivative) is straightforward but the second term requires

some working; we start with the vector identity (in cylindrical polar coordinates)

(A · ∇)B =







AR
∂BR
∂R +

Aφ

R
∂BR
∂φ +Az

∂BR
∂z − AφBφ

R

AR
∂Bφ

∂R +
Aφ

R
∂Bφ

∂φ +Az
∂Bφ

∂z +
AφBR

R

AR
∂Bz
∂R +

Aφ

R
∂Bz
∂φ +Az

∂Bz
∂z






(2.93)

The radial component of the (v · ∇)v term is therefore

[(v · ∇)v]R = vR
∂vR
∂R

+
vφ
R

∂vR
∂φ

+ vz
∂vR
∂z

−
v2φ
R

(2.94)

where, as we recall from our thin disc assumption, we can put vR ≈ 0 and vz ≈ 0. The

LHS of the radial N-S equation then simply becomes −v2φ/R.
We now examine the RHS. The divergence of the stress tensor term vanishes since

the viscous stress here is only in the shear component, which is orthogonal to the radial

direction. We start then with the pressure gradient term, 1/ρ ∇P , the radial component

of which is 1/ρ ∂P/∂R. In the case of a barotropic equation of state we can introduce the

sound speed as

c2s =
dP

dρ
(2.95)

so our pressure gradient term becomes

1

ρ

∂P

∂R
=
c2s
ρ

∂ρ

∂R
. (2.96)

Since we have from our thin disc assumption that cs ≪ vφ, this term is therefore negligible

w.r.t the LHS term, and we can ignore it11. On the RHS we therefore only have the gravity

11although it is more accurate to say that it this term appears as second order. In fact in making the thin
disc assumption of negligible pressure, it is easy to miss an important physical process within an accretion
disc; that of migration of solid bodies. This process is of particular interest in the field of planet formation.
In we leave the pressure term in the radial equation of motion, and introduce a power law dependance on
density e.g., ρ ∝ R−q, we find that the rotation curve vφ is non-circular, due to a small correction to the
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derivative left, and our radial equation of motion becomes

v2φ
R

≃ ∂Φ

∂R
(2.99)

from which, if the form of the gravitational force is known, the angular velocity can be

easily derived. When the gravity is dominated by a central massive compact object, we

can re-arrange to get the familiar Keplerian form

vφ ≡ Ω =

(

GM

R3

)1/2

(2.100)

where M is the mass of the central object.

2.3.4.3 Vertical disc components

Since the velocity in the vertical direction is negligible, and the viscous force relates only

to τrφ stress, we need only consider the pressure and gravitational forces in deriving an

equilibrium structure for an accretion disc. We start then with the hydrostatic equilibrium

condition:
1

ρ

∂P

∂z
= −∂Φ

∂z
(2.101)

for which we must consider two different cases; self-gravitating, when the gravity provided

by the disc is comparable to that of the central object, and non self-gravitating, when it

is not. We shall first consider the latter.

Non self-gravitating

Here we need only treat the gravitational potential of the central object, which has an

angular separation θ from a given radius R in the plane of the disc and height z above the

disc plane. The length of the position vector to such a point is denoted r. Our derivative

circular case that scales with the sound speed. Namely,

vφ = vcirc

[

1− q

(

cs
vcirc

)2
]1/2

(2.97)

where vcirc is the perfectly Keplerian orbital velocity,

vcirc =

(

R
∂Φ

∂R

)1/2

(2.98)

Pressure effects therefore become more important, and the thin disc approximation breaks down, as the
sound speed increases in comparison to vcirc, i.e., when the disc is hot. This is a fairly obvious conclusion,
but an important one. If solid bodies are present in a region of the disc where pressure effects are non-
negligible, their dynamics will be entirely Keplerian and a small velocity drift will be introduced with
respect to the gas. Such a velocity difference can give rise to a drag force that causes the solids to radially
migrate inwards (Lodato, 2007)
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w.r.t. z becomes
∂Φ

∂z
=
GM

r2
sin θ =

GM

r2
z

r
(2.102)

For small z, r ≈ R, so
∂Φ

∂z
≃ GM

R2

z

R
(2.103)

Hydrostatic equilibrium therefore becomes

c2s
ρ

∂ρ

∂z
= −GMz

R3
(2.104)

where we have used the fact that c2s = ∂P/∂ρ. Solving this equation for ρ(z) we find

ln ρ = − GM

2c2sR
3
z2 + const. (2.105)

which can be written, after defining a central (midplane) density ρ0 when z = 0, as

ρ(z) = ρ0 exp

(

−GMz2

2c2sR
3

)

(2.106)

This expression has the form of a Gaussian. We can write it in terms of a vertical scale-

height, H:

ρ(z) = ρ0 exp

(

− z2

2H2

)

(2.107)

where H = cs(R
3/GM)1/2 = cs/Ωk, where Ωk is the Keplerian angular frequency. At this

point we define the aspect ratio of the disc, which is given by

H

R
=
cs
vk

(2.108)

where vk is the Keplerian circular velocity. For a thin disc we have H/R ≪ 1, so that

cs ≪ vk (our assumption in Section 2.3.4). For the thin disc approximation, therefore, the

local Keplerian velocity i.e., the disc rotation speed, is highly supersonic.

Self-gravitating

The procedure here is initially the same. We start with hydrostatic equilibrium, but now

we must consider the contribution to the gravity from the disc itself. We do this via

Poisson’s equation in the vertical direction:

∂2Φ

∂z2
= 4πGρ (2.109)

68



Theoretical background 2.3. Accretion onto compact objects

so that
∂

∂z

(

c2s
ρ

∂ρ

∂z

)

= −4πGρ (2.110)

Integrating gives us an integral over ρ with z, which if we denote by a quantity σ allows

us to construct a 2nd-order ordinary differential equation (ODE):

c2s
∂2σ

∂z2
= −4πG

∂σ

∂z
σ (2.111)

which we solve by substituting a solution for σ of the form σ = a tanh bz. The derivatives

are therefore ∂σ/∂z = ab sech2bz and ∂2σ/∂z2 = 2ab2 sech2bz tanh bz. Putting these in

we get

2ab2 sech2bz tanh bz = −4πG

c2s
ab sech2bz a tanh bz (2.112)

where the hyperbolic terms on the left- and right-hand sides cancel leaving

b = −2πG

c2s
a (2.113)

Our solution for σ is therefore

σ = a tanh

[(

−2πG

c2s
a

)

z

]

(2.114)

so that we recover ρ(z) as the expression

ρ = −2πG

c2s
a2 sech2

[(

−2πG

c2s
a

)

z

]

(2.115)

As before, when z = 0 we have a midplane density of ρ0:

ρ0 = −2πGa2

c2s
(2.116)

We also define a surface density, Σ, such that

Σ =

∫ ∞

0
ρdz =

[

a tanh

(

−2πG

c2s
az

)]∞

0

= a (2.117)

This allows us to write the vertical density profile in the self-gravitating case as

ρ(z) = ρ0 sech
2
( z

H

)

(2.118)
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where the scaleheight is now H = Σ/ρ0. This profile is therefore not Gaussian, but is

instead an inverse hyperbolic function. The disc thickness, H, is given by

H =
c2s

2πGΣ
(2.119)

which relates the surface density Σ to the midplane density ρ0 by Σ = ρ0H.

We can calculate how massive the disc has to be to change become self-gravitating

by simply equating the contributions to the gravitational potential from the disc and the

central object. Thus we have GMz/R3 = GMdisc/R
2 and putting z = H to account for

the entire disc we find
Mdisc

M
≃ H

R
(2.120)

for a central object of mass M . For a thin disc (H/R ≪ 1) we can therefore see that the

ratio of masses Mdisc/M can in fact be ≪ 1 i.e., a low-mass disc for the vertical structure

of the disc to be significantly affected by the disc’s contribution to the gravity.

It is instructive here to consider another means of comparing the non self-gravitating

and self-gravitating cases, namely to consider the ratio of the disc heights. Recall that we

had Hnsg = cs/ΩK and Hsg = c2s/πGΣ. The ratio is

Hsg

Hnsg
=
csΩK

πGΣ
(2.121)

where the right-hand side in this equation is a useful quantity (for a Keplerian disc) that

we will discuss in more detail later in this Section. It is known as the Toomre parameter,

denoted by Q, and it describes the threshold for the onset of gravitational instability in

an accretion disc. Indeed, we can see here that the disc becomes self-gravitating when

csΩK

πGΣ
∼ 1 (2.122)

in other words, when Q ∼ 1.

2.3.4.4 Azimuthal disc components

We now come to the last (but certainly not least!) component of our N-S equation. We

have chosen to address the azimuthal treatment last because it naturally leads on to a

discussion about the form of the viscosity in an accretion disc, which is an entire sub-topic

in itself.

Since we intend to link the result of this Section with our vertically-integrated con-

tinuity equation for a disc (equation 2.85), it is convienient to begin by considering a
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vertically-integrated form of the N-S equation:

Σ

[

∂v

∂t
+ (v · ∇)v

]

= −(∇P −∇ ·T)− Σ∇Φ (2.123)

where here we have introduced T, the vertical integral of the stress tensor. Once again,

in a circular shearing flow, only the Rφ component is relevant. We had,

τRφ = µR
dΩ

dR
(2.124)

therefore we now put

TRφ = νΣR
dΩ

dR
(2.125)

where we define a vertically integrated kinematic12 viscosity such that

νΣ =

∫ ∞

−∞
µ dz (2.126)

The divergence of a tensor in cylindrical polar coordinates is given by

∇ ·T =







1
R

∂
∂R(RTRR) +

1
R

∂
∂φ(TφR) +

∂TzR
∂z − 1

RTφφ
1
R

∂
∂R(RTRφ) +

1
R

∂
∂φ(Tφφ) +

∂Tzφ

∂z + 1
RTφR

1
R

∂
∂R(RTRz) +

1
R

∂
∂φ(Tφz) +

∂Tzz
∂z






(2.127)

where we are interested in the azimuthal component and eliminate all terms except in Rφ

to give

(∇ ·T)φ =
1

R2

∂

∂R

(

R2TRφ

)

(2.128)

We now take the azimuthal component of equation 2.123, by considering the vector identity

introduced in equation 2.93. From this we obtain the φ-component of the (v · ∇)v term,

giving us

Σ
∂vφ
∂t

+

[

ΣvR
∂vφ
∂R

+Σ
vφ
R

∂vφ
∂φ

+Σvz
∂vφ
∂z

+Σ
vφvR
R

]

(2.129)

= −1

ρ

c2s
R

∂ρ

∂φ
− 1

R2

∂

∂R

(

R2νΣR
dΩ

dR

)

− ρ
∂Φ

∂φ
(2.130)

where due to the assumption of axisymmetry in the potential we can eliminate the relevant

terms to leave

Σ

(

∂vφ
∂t

+ vR
∂vφ
∂R

+
vRvφ
R

)

=
1

R2

∂

∂R

(

R2νΣR
dΩ

dR

)

(2.131)

Multiplying through by R and writing vR = ∂R/∂t allows us to simplify via the product

12note that in a local (non-integrated) sense, dynamic viscosity µ and kinematic viscosity ν are related
by µ = ρν
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rule:

Σ

(

∂

∂t
Rvφ + vR

∂

∂R
Rvφ

)

=
1

R

∂

∂R

(

R2νΣR
dΩ

dR

)

(2.132)

By putting vφ = RΩ, where Ω is the Keplerian angular velocity, we can see that we have

in fact an expression in terms of the specific orbital angular momentum, J = R2Ω, such

that

Σ

(

∂

∂t
J + vR

∂J

∂R

)

=
1

R

∂

∂R

(

R3νΣ
dΩ

dR

)

(2.133)

The LHS here is simply the convective derivative of the angular momentum, with the

first term denoting the (Eulerian) temporal rate of change of J for an annulus and the

second term representing the spatial rate of change of J due to its radial advection. If

these terms are exactly balanced then there will be no radial evolution of the angular

momentum in a disc; the fact that there is a term on the RHS indicates this is not so.

In fact this (viscous) term demonstrates a transport of angular momentum with a radial

velocity vR. It is important to note here that the sign of dΩ/dR determines the direction

in which the angular momentum is transported; for Keperian rotation dΩ/dR is negative

and so an inward transport of mass (vR negative) requires an outward transport of angular

momentum (∂J/∂R positive), as one would expect for matter to accrete. We note too that

in the case of solid body rotation (Ω = const.) the viscous term vanishes and there is no

transport of angular momentum or material through the disc.

If we now assume a steady-state condition, the time derivative term disappears and

we are left with

ΣvR
∂J

∂R
=

1

R

∂

∂R

(

R3νΣ
dΩ

dR

)

(2.134)

From this we can write down an expression for the radial velocity vR, providing us with

the rate at which material is transported through the disc due to viscous torques:

vR =
1

RΣ

∂

∂R

(

R3νΣ
dΩ

dR

)(

∂J

∂R

)−1

(2.135)

This concludes our treatment of the cylindrical components of the N-S equation, subject

to the assumption of a thin, highly supersonic accretion disc. Each component provided us

with some useful information on the properties of such a disc; from the radial component

we determined the rotation profile of the disc subject to the assumption of negligible disc

self-gravity; from the vertical component we derived the density profile along z and defined

the disc scaleheight; and from the azimuthal component we have found a link between the

mass accretion rate and the radial rate of change of the viscous torque.
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2.3.4.5 Evolution of the surface density

We are now in a position to derive a governing equation for the surface density of an

accretion disc. We substitute for vR in the continuity equation (equation 2.85), giving us

∂Σ

∂t
+

1

R

∂

∂R

[

∂

∂R

(

R3νΣ
dΩ

dR

)(

∂J

∂R

)−1
]

= 0 (2.136)

For a Keplerian disc we have Ω = (GM/R3)1/2 and J = (GMR)1/2, and so we are left

with
∂Σ

∂t
=

3

R

∂

∂R

[

R1/2 ∂

∂R

(

ΣνR1/2
)

]

(2.137)

which, providing that Ω and ν are independant of Σ, has the form of a diffusion equation13.

In the case that the viscosity is constant with radius, it is possible to construct an analytical

solution to this equation via Bessel functions, although this lies beyond the scope of this

thesis; the reader is directed to Lodato (2007), Frank et al. (2002), or Pringle (1981) for a

full treatment. If the viscosity depends upon R, however, the diffusion equation must in

general be solved numerically14.

2.3.4.6 Accretion disc viscosity

Equation 2.137 therefore describes the time evolution of the surface density of an accretion

disc subject to a shearing viscosity ν. We can obtain a characteristic timescale for this

evolution by reducing the derivatives in this equation to quotients, effectively deriving an

e-folding time. This gives us the ‘viscous timescale’, defined as

tvisc =
R2

ν
(2.139)

This timescale can tell us some important information about the nature of the viscosity

in an accretion disc. Writing down the Reynolds number, which is essentially the ratio of

the viscous and dynamical times for a given flow, we have

Re =
tvisc
tdyn

=
R2Ω

ν
(2.140)

13i.e., of the form,
∂ρ(r, t)

∂t
=

∂

∂r

[

D(ρ, r)
∂

∂r
ρ(r, t)

]

(2.138)

in 1D along the r vector, where ρ(r, t) is the density of the diffusing material at r at time t, and D is a
diffusion coefficient.

14although it should be noted that analytic solutions for the specific case of ν ∝ Rγ exist; see
Lynden-Bell and Pringle (1974)
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This dimensionless number characterises two regimes in a fluid flow; laminar, where the

viscous forces are important and the Reynolds number is low, and turbulent, where dy-

namical (inertial) forces dominate. If we were to assume that the viscosity in an accretion

disc comes from the standard molecular viscosity, νmolecular = λcollcs, where λcoll is the

collisional mean free path between molecules and cs is the sound speed (the typical random

velocity of the molecules), we find

νmolecular =
1

nσcoll
cs =

µmp

ρσcoll
cs =

2µmp

Σσcoll
csH (2.141)

where σcoll is the cross-sectional area for collision and we have used the fact that for an

accretion disc, ρ = Σ/2H where H is the disc height. Using this viscosity in the Reynolds

number we have
tvisc
tdyn

=

(

Σσcoll
2µmp

)(

H

R

)−2

(2.142)

Let us now put some typical numbers into this equation; for a protostellar disc we assume

a surface density of Σ ≈ 10 g cm−2 with a radius of R ≈ 50 A.U. and a thickness of

H/R ≈ 0.1. The cross-section of a hydrogen molecule is ∼ 10−16 cm2. Our ratio of

viscous to dynamical times thus becomes

tvisc
tdyn

≃ 1011 (2.143)

which, when we put in the dynamical timescale at such a radius, namely ∼ a few years,

returns a viscous time that is longer than tHubble. If we assume that accretion discs provide

a significant component of the accretion on to a compact object (refer back to Section 2.3)

then it is clear from this comparison that the corresponding mass accretion rate through

a disc cannot be due to molecular viscosity alone.

The precise form of the viscosity that operates in an accretion disc is as yet unknown.

However, a likely candidate can be readily inferred from noting that the Reynolds number

of an accretion disc (the ratio of the viscous to the dynamical times that we have just

found) is extremely large, implying strong turbulent flow. Invoking a turbulent viscosity is

therefore a logical next step, as the typical lengthscale for turbulence would be many orders

of magnitude larger than the mean free path for molecular collisions. We should be careful

here, however, as in a standard, non self-gravitating disc, there appears to be no intrinsic

instability that would drive turbulent behaviour. The Rayleigh stability criterion, which

describes the onset of exponentially diverging wave modes in an axisymmetric, rotating

flow (the derivation of which is similar to our approach for the gravitational instabilities

in Section 2.3.4.8) requires
d

dR

(

R2Ω
)

< 0 (2.144)
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for instability. For a Keplerian disc the specific angular momentm, R2Ω, is an increasing

function of radius (∝ R1/2) so its derivative is positive and the flow is stable. The origin

of the turbulence is therefore unknown, and is not likely to be purely hydrodynamic in

nature. Promising suggestions include the action of strong magnetic fields in the disc,

leading to a magneto-rotational instability (MRI) - (see, e.g., Balbus and Hawley, 1991),

and the driving of subsonic turbulence by feedback from massive star formation in the disc

(Kawakatu and Wada, 2008; Chen et al., 2009). It is also possible that the viscosity is not

entirely due to turbulence; a possible candidate is a form of stable angular momentum

transport as a result of the onset of disc self-gravity, which provided the disc can be main-

tained above the fragmentation limit (see Section 2.3.4.8) can drive a non-axisymmetric

perturbation in the form of a spiral arm than can transport mass inwards and angu-

lar momentum outwards, as required (Gammie, 2001; Rice et al., 2005; Lodato and Rice,

2004).

Unfortunately, we cannot say for sure what the magnitude or characterisation of the

viscosity will be. Instead, we invoke what is effectively a ‘parameterisation of our igno-

rance’ whereby a dimensionless parameter α is assumed to encapsulate everything that we

do not know about the form of the viscosity. What we do know (or at least it is reasonable

to assume) is that the resulting stress tensor should scale with the vertically-integrated

pressure, TRφ ∼ Σc2s. Our dimensionless parameter α is then invoked as a proportional-

ity factor between the two. From dimensional arguments, and substituting in the (non

self-gravitating) disc scaleheight, H = cs/ΩK , we find that this implies a viscosity of the

form

ν = αcsH (2.145)

We can offer some constraints on this unknown α quantity by making a parallel with the

viscosity of kinetic theory, namely that the turbulent viscosity will have an approximate

magnitude given by

ν ∼ vturblturb (2.146)

where vturb is a typical turbulent velocity and lturb is the lengthscale of the largest turbulent

eddies. In the latter case we have an upper limit of the disc thickness, H. For the

turbulent velocity we note that supersonic turbulence would decay relatively quickly due

to disspation via shocks, and so it is likely that the turbulence here is subsonic. The

characteristic random velocity that we need to consider is thus bounded at vturb
<∼ cs.

Taken together, these upper limits imply that α < 1.

2.3.4.7 Steady-state solutions

Under the assumption of a steady-state, the ∂/∂t term in the mass conservation equation

(2.85) disappears and we integrate to obtain RΣvR = const. This constant is the vertically-
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integrated mass flux through a cylindrical radius R:

Ṁ = −2πRvRΣ (2.147)

where the 2π emerges from the disc geometry. Substituting for vR from equation 2.135

gives us

Ṁ = − 2π

(R2Ω)′
∂

∂R

(

R3νΣΩ′
)

(2.148)

where the primes denote a derivative w.r.t. R. We can do the same with the angular mo-

mentum conservation equation (2.133), substituting in for the constant Ṁ from equation

2.147 to obtain

ṀR2Ω = −2πνΣR3Ω′ + const. (2.149)

where the constant of integration can be determined by the inner boundary condition. For

this we assume that as material accretes on to the central object the torque vanishes (along

with the radial derivative of the angular velocity, Ω′ = 0) at a radius Racc. Physically

this might correspond to the surface of the accreting object, if one exists. Our integration

constant is then ṀR2
accΩacc = Ṁ(GMRacc)

1/2. Noting also that for Keplerian rotation,

RΩ′ = −3Ω/2, we can re-arrange to get

νΣ =
Ṁ

3π

(

1−
√

Racc

R

)

(2.150)

where we see that for R ≫ Racc, or for Racc = 0, the steady-state mass accretion rate

through the disc is

Ṁ = 3πνΣ (2.151)

and so we note that the surface density of a steady-state disc is purely a function of the

viscosity, Σ ∝ ν−1.

We are now in a position to derive the temperature profile of the disc, subject to the

assumption that the energy flux is provided by the viscous dissipation rate. We recall from

Section 2.3.4.4 that the relevant component of the stress tensor between shearing layers

was TRφ, given by equation 2.125. The (vertically-integrated) viscous torque is defined by

G(R) =

∫ 2π

0
R2TRφ dφ (2.152)

which over a circular boundary becomes

G(R) = 2πR2νΣRΩ′ (2.153)
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The torque provides a rate of work that can be seen dimensionally to be

Ẇ = GΩ′dR (2.154)

over a radial width dR. Over an area (based on the two plane faces of a thin disc) given

by 4πR dR, we can write the viscous disspation as

D(R) =
GΩ′

4πR
=

1

2
νΣ(RΩ′)2 (2.155)

where we note that for solid body rotation this dissipation term vanishes. Comparing now

with equation 2.150 we see that this can be written as

D(R) =
3GMṀ

8πR3

(

1−
√

Racc

R

)

(2.156)

The temperature is determined by first assuming that the energy flux through the disc as

a result of dissipation is radiative, and further assuming that this radiation cannot escape

directly i.e., that the disc is optically thick and can be approximated as a blackbody. In

this case we can equate the viscous dissipation to the blackbody flux, D(R) = σT 4
eff , where

σ is the Stefan-Boltzmann constant, giving an effective temperature profile of

Teff(R) =

[

3GMṀ

8σπR3

(

1−
√

Racc

R

)]1/4

(2.157)

which will reflect the profile in Tc, the midplane temperature of the disc, if we have

assume that variation of T in z is negligible i.e., the disc is thin and is dominated by

Tc. In reality there will be a temperature gradient in the z-direction, ∂T/∂z, which will

determine the radiative flux within the disc together with the opacity, κ. However the

vertical temperature structure of the disc is not of interest to us here, and so we do not

go into any detail on this part of the analysis. What we do concern ourselves with here is

the profile for Teff , which we can see for R≫ Racc reduces to

Teff = Tacc

(

R

Racc

)−3/4

(2.158)

where we have defined the temperature at the inner edge of the disc as

Tacc =

(

3GMṀ

8σπR3
acc

)1/4

(2.159)

For a radiative disc with an optical depth τ = ρHκR the effective and midplane tempera-
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tures are related by (Goodman, 2003):

T 4
c =

3κRΣ

16
T 4
eff (2.160)

where κR is the Rosseland mean opacity, a frequency-averaged quantity comprised of

contributions from photon absorption and photon scattering. The former is determined

from Kramers’ law for bound-free and free-free transitions (Frank et al., 2002)

κabs ≃ 5× 1024 ρT−7/2
c cm2g−1 (2.161)

and the latter from Thomson scattering15, which has a mean value (Shapiro and Teukolsky,

1983) of

κscatt ≃ 0.40 cm2g−1 (2.162)

such that the Rosseland mean opacity satisfies

1

κR
=

1

κabs
+

1

κscatt
(2.163)

where the above absorption and scattering opacities tend to kick in at >∼ 103 K and >∼ 105

K respectively. The reader is referred to Figure 9a in Bell and Lin (1994) for the standard

opacity dependance on temperature in these regimes. We note that in the very outer parts

of AGN accretion discs (R >∼ 100 pc), the temperature is likely to be <∼ 100 K and the

opacity will be dominated by dust, with κ ∝ T 2 (for more detail and the fiducial opacity

plot in this temperature range the reader is directed to Thompson et al., 2005).

Finally in this section, we note that the radiative flux through the disc necessarily

provides a radiation pressure which should, if we are to be self-consistent, be factored into

our equation of state (which we have previously assumed to depend barotropically only

on the gas pressure). We write the total pressure as (Frank et al., 2002)

P =
ρkTc
µmp

+
4σT 4

c

3c
(2.164)

where the first term describes the gas pressure and the second term is due to the radiation

pressure. By substituting in for expressions from equations 2.151, 2.157, 2.160, and 2.145

(or by use of the full Shakura-Sunyaev disc solutions in e.g., Shakura and Sunyaev, 1973;

Frank et al., 2002) we can obtain a ratio between the two terms as

Prad

Pgas
≃ 6× 10−2 α1/10

(

Ṁ

0.5M⊙yr−1

)7/20
(

M

108M⊙

)1/8( R

0.01 pc

)−3/8

f7/5 (2.165)

15scattering of a photon by a free electron
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where f4 = 1− (Racc/R)
1/2. For the gas composition we have assumed atomic hydrogen

with µ = 1, and for the accretion radius we have taken the ISCO for the black hole,

Racc
<∼ 6GM/c2. The fiducial accretion here corresponds to just below the critical Ṁ for

self-gravity (refer to equations 1.14 and 2.186) at T = 104K. Although this tempera-

ture would be higher in the very inner parts of a disc, we note that if the SMBH is fed

through a steady-state disc that extends beyond 0.01 pc (where T is likely to be <∼ 104

K), the accretion rate cannot be much above this otherwise gravitational instability and

fragmentation would set in at these scales. We discuss these concepts in the next section.

With these parameters then it is interesting to see at what radius radiation pressure

dominates over gas pressure; we set Prad/Pgas ≥ 1 and obtain

R <∼ 2× 10−4 f7/5 pc (2.166)

which, when contrasted with the ISCO at R ≃ 2× 10−5, demonstrates that a thin, steady

accretion disc, fed from scales of ∼ 0.01 pc, will remain gas pressure dominated for the

majority of the flow.

2.3.4.8 Gravitational instability and fragmentation

The secular evolution of an accretion disc due to the action of viscosity can be somewhat

complicated by the onset of gravitational instabilities when the disc becomes sufficiently

massive. In this section we discuss the role of gravitational instability in driving fragmen-

tation.

Jeans instability

In the simplest case, the Jeans instability (Jeans, 1902) occurs when the pressure support

of an arbitrary mass of gas is not sufficient to overcome its own internal gravitational

attraction, leading the region to collapse. We can perform a brief analysis by considering

a uniform, static region that is infinite in extent, with density ρ0 and constant pressure

P0. The relevant equations are 2.82 and 2.87; namely, mass conservation and momentum

conservation respectively16. We consider a (linear) perturbation to the fluid variables,

taking P = P0 + ∆P , ρ = ρ0 + ∆ρ, with a change in velocity ∆v. The change to the

gravitational potential is introduced via Φ = Φ0 +∆Φ. Conservation of mass becomes

∂(∆ρ)

∂t
+ ρ0∇ · (∆v) = 0 (2.167)

16in actuality these equations are not consistent with the assumption of a uniform density, uniformly
pressured, static medium. By equation 2.87 the potential Φ0 in this case must be a constant, which of
course it is not as ρ0 is non-zero. Nonetheless, we shall continue to perpetuate what is termed the Jeans

swindle as it provides a simple derivation that is accurate enough for our purposes. The reader is referred
to Kiessling (1999) for more details and a mathematically rigorous approach
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since ρ0 is a constant, and retained only first-order perturbation terms. Similarly, conser-

vation of momentum becomes

∂(∆v)

∂t
= −c2s

∇(∆ρ)

ρ0
−∇(∆Φ) (2.168)

where we have used a barotropic EQS such that c2s = dP/dρ. The perturbed density and

potential are related via Poisson’s equation

∇2(∆Φ) = 4πG∆ρ (2.169)

We consider a wave-like form for the perturbation, and write

∆ρ = ρ1e
i(k·r−ωt) (2.170)

∆v1 = vei(k·r−ωt) (2.171)

∆Φ = Φ1e
i(k·r−ωt) (2.172)

where k(r) is the wavevector, r the position vector, and ω is the angular frequency of the

wave. Terms subscripted with 1 are constants. Conservation of mass is now

− ρ1ω + ρ0k · v1 = 0 (2.173)

and conservation of momentum simplifies to

− ρ0ωv1 = −c2sρ1k− ρ0Φ1k (2.174)

with Poisson’s equation now written as

− k2Φ1 = 4πGρ1 (2.175)

where k2 ≡ |k|2. Eliminating v1 using equations 2.173 and 2.174, and substituting for Φ1

in equation 2.175, gives us a dispersion relation for the perturbed system:

ω2 = k2c2s − 4πGρ0 (2.176)

which is simply the standard dispersion relation for sound waves modified by the presence

of gravity. For wavelike behaviour we require ω2 ≥ 0, and so we can define a critical

wavenumber for instability (exponential decay or growth) that is

k2 =
4πGρ0
c2s

(2.177)
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and similarly, a critical wavelength, via λ = 2π/k, above which instability sets in:

λJ =
cs
√
π√

Gρ0
(2.178)

where λJ is known as the Jeans length. The intuitive interpretation of this result is that

the maximum stable wavelength is the maximum size of the region across which a pressure

wave can propagate, at speed cs, to counteract the speed of gravitational collapse, which

proceeds on a free-fall time, 1/
√
Gρ0.

We can define a critical mass at which this instability sets in, by considering a sphere

of diameter λJ such that

MJ =

(

4π

3

)

ρ

(

λJ
2

)

=
(π

6

) c3s
G3/2ρ1/2

(2.179)

which is known as the Jeans mass. This quantity is of no small importance to the field

of star formation, since it defines the maximum mass of gas that can be contained within

a molecular cloud before the region undergoes collapse, the progenitor of protostellar

evolution.

Toomre instability

Regions where pressure support provides the only stabilising force against gravity will

behave in the manner just described, but in galactic nuclei star formation often occurs

in a disc, where rotational support plays a role. In this case we require an alternative

dispersion relation, namely

ω2 = κ2 − 2πG|k|Σ+ k2c2s (2.180)

where κ is the epicyclic frequency and Σ is the vertically integrated surface density. This,

again, is the standard dispersion relation for sound waves, but this time modified both by

self-gravity (in a flattened geometry) and rotation. The perturbation considered is radial,

across an axisymmetric disc. The derivation of this equation is beyond the scope of this

thesis, but for a detailed treatment the reader is directed to Pringle and King (2003) or,

for a fuller treatment including non-axisymmetric spiral perturbations, to Cossins (2010b).

Once again we require ω2 > 0 for stability, which yields a criterion on |k| such that

πGΣ

c2s

(

1−
√

1− c2sκ
2

π2G2Σ2

)

≤ |k| ≤ πGΣ

c2s

(

1 +

√

1− c2sκ
2

π2G2Σ2

)

(2.181)

While stable modes will always exist outside of this range, for unstable modes to exist

we require that the roots to the quadratic are real (and so part of the curve passes below

the ω2 = 0 axis - see Figure 2.4). This puts a constraint on the term in the square root,
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namely that
csκ

πGΣ
≤ 1 (2.182)

If this is not satisfied, there will be no unstable modes and the disc will not collapse. This

defines the Toomre parameter (Toomre, 1964), denoted by Q, which is a test for stability

of a disc:

Q =
csκ

πGΣ
(2.183)

For Q above unity, the disc is stable, and for Q below unity it is unstable to collapse

(within a certain wavenumber range) and subsequent fragmentation. For a Keplerian disc

we can set κ = Ωk. For disc undergoing gravitational instability we can determine the

most unstable wavelength from the minimum in the dispersion relation (see Figure 2.4)

which turns out to be

k0 =
πGΣ

c2s
(2.184)

where we recall from equation 2.119 that this is of the order of the self-gravitating disc

thickness, k0 ∼ 1/Hsg.

The Toomre stability criterion has been verified by numerical simulations (see, e.g.,

Boley et al., 2007; Forgan and Rice, 2009) and is a fundamental concept in the study of

self-gravitating discs. We should note, of course, that it derives from an idealised picture

in which perturbations are entirely axisymmetric and the disc is razor thin (i.e., with

unphysical zero thickness). Finite thickness effects and non-axisymmetric disturbances

such as low-order mode spiral arms can decrease and increase Q respectively17; therefore,

the criterion is best viewed as approximate.

Self-regulation at Q ∼ 1

The Toomre parameter can be understood intuitively in terms of the stabilising quantities

cs and Ω (in the case of a Keplerian disc) and the destabilising effect of self-gravity,

provided through GΣ. Naturally, a colder and more massive disc will be more likely to

fragment. However in reality the picture is more complicated. A disc that is cooling down

(via radiative losses) from Q≫ 1 will become unstable to non-axisymmetric perturbations

before actually fragmenting, and the spiral density waves that are excited will act to heat

and stabilise the disc (Paczyński, 1978; Lodato and Rice, 2004) through compressions and

weak shocks (Cossins et al., 2009). Under the right conditions, the disc will therefore enter

into a period of self-regulation, maintaining Q close to unity.

It is reasonable to assume that full onset of gravitational instability vs. self-regulation

will depend strongly on the ratio of the cooling time to the timescale over which the heating

occurs; the latter is 1/Ωp, where Ωp is the pattern speed of the spiral wave. This is related

to the angular frequency and mode number of the spiral by ω = mΩp. As discussed above,

17for a review see Toomre (1964) and Cossins (2010b)
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Figure 2.4: Dispersion relation for linear axisymmetric perturbations in a thin disc (equation 2.180),
showing unstable modes (shaded area), and stable, wave-like modes (non-shaded area). Blue symbols
correspond to the roots of the dispersion relation, and the red symbol is the most unstable wavelength,
which is the order of the disc thickness H. For unstable modes to be present (along with stable modes),
roots must exist, requiring the Toomre parameter to be less than unity.

————————————————————————–

83



Theoretical background 2.3. Accretion onto compact objects

the most unstable wavelength occurs at k0, which from equation 2.180 gives Ωp ∼ Ω,

and so the heating timescale is approximately the dynamical timescale, tdyn. This was

originally shown by Gammie (2001), who found that for tcool ≪ tdyn, i.e., Ωtcool ≪ 1, the

disc cannot self-regulate and instead undergoes the Jeans instability and fragments, whilst

for Ωtcool
>∼ 1 the disc settles into a marginally stable state of gravitoturbulence (Rafikov,

2009) with Q ∼ 1.

In fact the constraint on Ωtcool for fragmentation has since been revised upwards via

simulations; in the same paper as the order of magnitude argument, Gammie (2001)

considered 2D shearing sheet simulations and found a refined criteron of Ωtcool
<∼ 3 for

fragmentation, while Rice et al. (2005) found Ωtcool
<∼ 6 for a 3D disc with Σ ∝ R−1.

Cossins et al. (2009) found an intermediate case of Ωtcool
<∼ 4.5 for a 3D disc with Σ ∝

R−3/2. All of these authors used a simple parameterisation of the cooling time such that

Ωtcool = β, with a term
du

dt

∣

∣

∣

∣

cool

= − u

tcool
(2.185)

added to the energy equation, where β is a constant. Cossins et al. (2010) extended this

analysis of the fragmentation boundary to a temperature- and opacity-dependant regime

for protoplanetary discs, finding that the effective value of β can vary from ∼ unity up to

∼ several tens.

Fragmentation boundary

For a disc that can cool efficiently, reaching Q <∼ 1 is therefore expected to lead to frag-

mentation. As the disc grows in mass, the point at which this occurs is a function of the

accretion rate through the disc. For an α-disc we can use equation 2.151, a viscosity of

αcsH and the self-gravitating scaleheight (equation 2.119) to derive

Ṁcrit =
3αc3s
2G

(2.186)

for the critical accretion rate at which gravitational instability sets in. Below this the disc

is stable, but above this it is likely to undergo fragmentation (again, provided that it is

efficiently cooled and is not able to maintain the Q ∼ 1 steady-state).
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3
Numerical methods

“A common mistake that people make

when trying to design something

completely foolproof is to underestimate

the ingenuity of complete fools.”

Douglas Adams
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3.1 Numerical astrophysics

Theoretical studies of astrophysical phenomena before the advent of computers were lim-

ited to analytical and, at best, semi-analytical methods, restricting the range of physical

systems and behaviours that could be explored. Many systems in the universe do not ex-

hibit the required steady-state behaviour to be sufficiently modelled by analytical formulae,

and so numerical methods must be employed to follow their time evolution. Computational

modelling in an astrophysical context seeks to follow the interactions between objects (be

they celestial bodies, or simply particles in a gas) in order to infer their dynamics. This is

done through simulation, evolving the system one step at a time whilst preserving as far

as possible the accuracy and the self-consistency of the method.

Naturally, the inclusion of correct physical laws into such a simulation is essential, but

the scope is often limited by computational resources. As a result, many models prioritise

the most relevant areas of physics for inclusion and leave out the rest; as well as allowing

the simulation to run in a reasonable time this can often simplify the study of individual

processes and help to determine the contribution that they make to the wider picture.

An example of one such method is an N -body simulation, in which the behaviour of an

astrophysical system subject only to gravity is explored through the computation of the

relevant forces on each particle.

N -body codes are widely used in the fields of stellar dynamics and cosmology, and

can provide an accurate description of the system when hydrodynamical effects are not

important (such as in the modelling of dark matter). If a sufficient quantity of gas is

present, however, the model must incorporate additional physics to cater for the extra

complexity. The inclusion of gas dynamics is often essential to the design of an astrophys-

ical simulation, as much of the observable Universe has been shaped by fluid processes

where pressure effects and dissipation are important.

There are two main types of hydrodynamical simulation, which determine the be-

haviour of the system either from a static or comoving1 point of view:

• Eulerian codes solve for the equations of hydrodynamics via a grid that is overlaid on

the spatial domain. The (Eulerian) derivatives of the motion are calculated at each

grid point, and the physical variables (e.g., pressure, density, etc.) are evolved for

each cell. The grid itself can either be fixed or made to adaptively refine in particular

regions of interest. Grid codes offer excellent treatment of flow discontinuities (e.g.,

shocks) and have seen much development in the field of computational fluid dynamics

over the last 50 years2.

• Lagrangian codes work within the framework of an N-body approach. The calcula-

1the term comoving here refers to moving with the fluid, rather than the expansion of space.
2for a review see the ENZO code paper by O’Shea et al. (2004)
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tion here is placed squarely on the ‘bodies’ in the flow. The bodies themselves are

very rarely individual particles3 - note that this is particularly true for an astrophys-

ical system - but rather Monte-Carlo representations of the continuous distribution

function of the particles (see Section 3.2 for more details). This method is gridless,

inherently adaptive, and can be constructed to explicitly conserve momentum, mak-

ing it a powerful tool for modelling non-axisymmetric phenomena where the dynamic

range is large and substantial variation in resolution is required.

The difference between these two approaches lies in the calculation of time derivatives. In

the Eulerian case these are determined at a fixed point in space, while in the Lagrangian

picture they are evaluated in a frame of reference that is attached to a moving fluid

element. The relationship between the Eulerian time derivative ∂/∂t and the Lagrangian

time derivative D/Dt operators is given by

D

Dt
=

∂

∂t
+ v · ∇ (3.1)

where v = v(x, t) is the flow velocity from an Eulerian perspective, namely

v =
∂x

∂t
(3.2)

for the position vector x of a fluid element. The choice of approach depends on the system

in question, and in general no single method is suited to all problems. For the purposes

of the research presented in this thesis, we favour the Lagrangian viewpoint, as it adapts

well to the asymmetries and dynamic ranges contained within our numerical models (cf.

Chapters 4 & 5). Even within a particular approach, however, there exist a large variety

of different codes available for modelling astrophysical systems. The applicability of some

of these codes, both grid-based and particle-based methods, to particular astrophysical

problems has been reviewed by Frenk et al. (1999) and Tasker et al. (2008).

In this chapter we outline one particular Lagrangian method, known as smoothed

particle hydrodynamics (SPH). We start with an introduction to the method, proceed

to derive the relevant equations, and discuss some specifics of its implementation as a

numerical scheme for astrophysical flows. The rest of the chapter is divided into a section

on gravitational algorithms (for both SPH and N -body), a discussion of time integration

methods, and finally an outline of the specific (SPH + gravity) code that was used for the

simulations presented in this thesis.

3i.e., baryons, leptons, etc.
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3.2 Smoothed particle hydrodynamics (SPH)

The SPH method was developed by Lucy (1977); Gingold and Monaghan (1977) as an

alternative to grid-based finite difference schemes that were not sufficient to simulate

the internal dynamics of non-spherical stars. There has been much development of the

method since its conception and it is now a robust simulation technique that is widely

used in cosmology and astrophysics, as well as fluid dynamics in general. In this section we

give a brief outline of the method; for further details see the review by Monaghan (1992).

Whilst grid-based codes seek to discretise space, Lagrangian codes such as SPH seek

to discretise mass. As the name suggests, the SPH method is built on the principle of a

smooth, or continuous, fluid, the properties of which are calculated by interpolating over

a set of disordered points (fluid elements) that move with the flow. These elements are

deemed ‘particles’, and possess a spatial distance known as the smoothing length. The

form of this smoothing is set by an interpolating kernel which acts over a distance equal to

the smoothing length. The requirements for the kernel are that it integrates to unity over

all space and shrinks to a delta function in the limit that the smoothing length goes to

zero. Mathematically, we can express a scalar function defined over an arbitrary volume

V by the integral

f(r) =

∫

V
f(r′) δ(r− r′) dr′ (3.3)

where r′ is a dummy variable. Approximating this by an integral interpolant (assuming a

symmetric kernel; see Section 3.2.1) our expression becomes

f(r) =

∫

f(r′)W (r− r′, h) dr′ +O(h2) (3.4)

where h is the smoothing length, andW is the interpolating kernel satisfying the conditions

already mentioned, namely
∫

W (r− r′, h) dr′ = 1 (3.5)

and

lim
h→0

W (r− r′, h) = δ(r− r′) (3.6)

Evaluating f(r) numerically over a number of discrete points, the integral turns into a

sum. If we have N points distributed over our spatial domain such that

n(r) =
N
∑

j=1

δ(r− rj) (3.7)

and we consider that

n(r) =
ρ(rj)

mj
(3.8)
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where ρ is the density and m the mass, our function f(r) becomes

f(r) ≈
N
∑

j=1

mj

ρ(rj)
f(rj)W (r− rj , h) (3.9)

Equation 3.9 can then be used to compute approximations for the various physical prop-

erties of the fluid, by means of choosing f(r) to represent a physical quantity, such as

density:

ρ(r) =
N
∑

j=1

mjW (r− rj , h) (3.10)

Vector quantities of the fluid properties (such as the gradient) can also be obtained, in a

similar way. The SPH formalism therefore allows a convenient way of smoothing the hy-

drodynamical properties of each particle over the kernel to obtain a continuous distribution

throughout the fluid.

The SPH method is of course an approximation to the behaviour of a real fluid, and

errors arise both through (a) representing each particle by means of a smoothing kernel

and (b) interpolating over a finite set of points i.e., moving from a integral interpolant

to that of a summation. To quantify these errors we can use a Taylor series expansion,

namely,

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · · (3.11)

for a function f(x) that is infinitely differentiable in the neighbourhood of a. For the error

introduced by convolving f(r) with a particular kernel we expand the integral form of the

function, which in 1D is

f(r′) = f(r) +
df

dr

∫

(r′ − r)W (r) dr′ +
1

2

d2f

dr2

∫

(r′ − r)2W (r) dr′ +O[(r′ − r)3] (3.12)

where r ≡ |r′−r|. In 3D this has the same form but is performed over all three coordinate

directions (see e.g., Price, 2005). The kernel error shrinks as the smoothing length, h,

decreases, as r will similarly decrease (see Section 3.2.1).

The error in the summation interpolant can be quantified by expanding our vector

quantity f(r) from equation 3.9 around ri:

f(r) = f(ri)
∑

j

mj

ρ(rj)
Wij +∇f(ri) ·

∑

j

mj

ρ(rj)
(rj − ri)Wij +O[(rj − ri)

2] (3.13)

whereWij ≡W (ri−rj , h). There is therefore an error even if only the first term is present

(for example, in the case of a constant function), as the discretisation does not guarantee
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that the sum over the neighbours is unity i.e., that

∑

j

mj

ρ(rj)
Wij = 1 (3.14)

where we see that this error relates to the smoothness of the particle distribution inside

the kernel; as we have mentioned, the SPH approximation is built on the premise that

the fluid is smooth and infinitely differentiable everywhere, and breaks down otherwise.

Incorporating a greater number of neighbours within the smoothing kernel can ameliorate

this discretisation error to some degree.

It can be shown (see, e.g., Price, 2005; Cossins, 2010a) that similar errors arise in

the derivatives of the relevant functions, and can be reduced in the same way; namely,

by decreasing the smoothing length, and increasing the neighbour number. For values

of Nneigh within certain ranges, however, it can be shown that the particle distribution

is unstable to wave-like perturbations (Read et al., 2010) and can undergo ‘clumping’

instabilities (for longitudinal waves) and ‘banding’ instabilities (for transverse waves) that

exacerbate the smoothness error through undersampling of the kernel. It is therefore

important to use a neighbour number that ensures stability.

3.2.1 Choice of smoothing kernel

Aside from the requirement of satisfying equations 3.5 and 3.6, the kernel can be chosen

to minimise the error introduced by the SPH approximation. If the kernel is an even

function of the spatial vector, r − r′, the odd terms in equation 3.12 reduce to zero and

the Taylor approximation becomes O(h2), since in principle |r− r′| is always less than the

smoothing radius. This is physically equivalent to requiring that the kernel be a function

of the magnitude of the spatial vector and not the direction. In three dimensions, a kernel

of this form can be written:

W (r, h) =
1

π3/2h3
f
( r

h

)

(3.15)

where r ≡ |r− r′|. A simple example of such a kernel is a Gaussian, given by:

W (r, h) =
1

π3/2h3
e−(r/h)2 (3.16)

which has the advantages of being smooth i.e., differentiable, and having good stability4.

However, the disadvantage of this kernel is that its support is infinite, meaning that the

summation is performed over the entire computational domain and becomes O(N2) in

terms of cost. This is not a desirable property, as the relative contribution to the sum

from neighbouring particles decreases sharply with increasing distance. It is better to

4in that its first derivative is also smooth
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employ a kernel with compact support and reduce the calculation to close neighbours.

This leads to a significant reduction in the cost of the kernel summation, which ends up

as O(nN) for n neighbours.

A good choice for a kernel is therefore one which possesses a similar shape to a Gaussian

but has compact support. The most commonly used type is based on a cubic spline

(Monaghan and Lattanzio, 1985), which is of the form

W (r, h) =
1

πh3



















1− 3
2(

r
h)

2 + 3
4(

r
h)

3, 0 ≤ r
h ≤ 1,

1
4(2− r

h)
3, 1 < r

h ≤ 2,

0, r
h > 2

(3.17)

which satisfies the normalisation condition and the requirement that the kernel reduce

to a delta function in the zero limit, as well as having continuous first derivatives. The

(compact) support of this kernel is 2h.

3.2.2 ‘Gather’ vs. ‘scatter’ approach

The SPH interpolation for a vector quantity, i.e.

ρ(ri) =
N
∑

j=1

mjW (|ri − rj |, h) (3.18)

can be interpreted in two different ways:

1. The gather interpretation treats the neighbours of particle i as point mass particles

that reside within the smoothing kernel of i; essentially those j particles whose

centres fall within the kernel are ‘gathered’ by particle i into the local average (left-

hand plot in Figure 3.1). The summation therefore employs W (|ri − rj |, hi).

2. The scatter interpretation treats i as a point mass and considers the contributions

from the j smoothing kernels at that point i.e. the smoothing volumes of j ‘scatter’

on to location ri (right-hand plot in Figure 3.1). The summation here uses W (|ri −
rj |, hj).

For constant smoothing lengths i.e. hi = hj these two interpretations are equivalent, but

if adaptive smoothing lengths are used they are not. In the latter case an average of the

smoothing length must therefore be taken to ensure that Newton’s 3rd law is not violated;

this will be discussed in Section 3.2.4.
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Figure 3.1: The gather (left) and scatter (right) approaches to the SPH interpolation process.

————————————————————————–

3.2.3 Fluid equations

In this section we detail the basic fluid equations that are used in the SPH formalism.

They are constructed directly from conservation laws, making SPH a first-order fully

conservative method in the absence of dissipative processes.

3.2.3.1 Conservation of mass

For a fluid we can write the continuity equation as

∂ρ

∂t
+∇ · (ρv) = 0 (3.19)

where v is the particle velocity. We can see that this equation is satisfied by the SPH

density estimate (equation 3.10), which we write as,

ρi =
∑

j

mjWij (3.20)

where ρi ≡ ρ(r), i.e. the estimate is evaluated at particle i. Taking the Lagrangian time

derivative, namely,
Dρi
Dt

=
∂ρi
∂t

+ v · ∇iρi (3.21)

where ∇i ≡ ∂/∂ri, we have

Dρi
Dt

=
∂ρi
∂t

+
∑

j

mj(vi − vj) · ∇iWij (3.22)
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If we convert from the summation form to continuum form, using equations 3.4 and 3.9,

we end up with

Dρ

Dt
= v · ∇ρ−∇ · (ρv) (3.23)

= −ρ(∇ · v) (3.24)

which is simply the Lagrangian form of equation 3.19. The SPH density estimate is

therefore a discrete form of the continuity equation, demonstrating that the SPH method

explicitly conserves mass.

3.2.3.2 Conservation of momentum

To derive the momentum equation we start with the Lagrangian:

L = T − U (3.25)

where we are ignoring the gravitational potential and considering only the kinetic energy T

and the internal energy U. For a fluid with density ρ evaluated over a volume this becomes

L =

∫

(
1

2
ρv2 − ρu) dV (3.26)

where u is the specific internal energy. Discretising this over the SPH particle neighbours,

we get

L =
∑

j

mj

(

1

2
v2j − uj

)

(3.27)

where the volume element ρdV has been replaced by the SPH particle mass m. To obtain

the equation of motion of a particle we find the extremum5 of L by employing the Euler-

Lagrange equation over the coordinates (r,v):

∂L

∂ri
− d

dt

(

∂L

∂vi

)

= 0 (3.28)

The derivative with respect to the velocity comes out as simply

∂L

∂vi
= mivi (3.29)

5since in the absence of external influences the particle’s trajectory will be the one corresponding to
the minimum energy
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whilst the derivative with respect to the position is given by

∂L

∂ri
=
∑

j

∂uj
∂ρj

· ∂ρj
∂ri

(3.30)

The first law of thermodynamics states that:

dU = dQ− dW (3.31)

= TdS − PdV (3.32)

where S is the entropy and P is the pressure. Making the assumption that the fluid is

dissipationless i.e., isentropic, we have

dU |s = −PdV (3.33)

and the specific internal energy comes out as

u = −PV
m

= −P
ρ

(3.34)

giving us
∂uj
∂ρj

∣

∣

∣

∣

s

=
P

ρ2j
(3.35)

We can obtain the other derivative by substituting in for ρ from equation 3.20,

∂ρj
∂ri

=
∂

∂ri

∑

k

mkWjk (3.36)

where we have an additional subscript k that refers to the neighbours of particle j. This

subscript is necessary for evaluating a derivative of particle j with respect to a quantity

defined on particle i; since i is fixed, a third reference point is needed as a dummy subscript

to maintain generality. We can employ the Kronecker delta function to relate the k

particles to i and j, namely:

δij =







1, j = i

0, otherwise
(3.37)

This allows us to take the derivative of Wjk with respect to ri:

∂ρj
∂ri

=
∑

k

mk∇iWjk(δji − δki) (3.38)
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through simple vector addition. The first term in equation 3.28 can therefore be written

as
∂L

∂ri
=
∑

j

mj
Pj

ρ2j

∑

k

mk∇iWjk(δji − δki) (3.39)

Using the fact that Wjkδji =Wik at j = i, and Wjkδki =Wji at k = i, we can say

∂L

∂ri
=
∑

k

mi
Pi

ρ2i
mk∇iWik −

∑

j

mj
Pj

ρ2j
mi∇iWji (3.40)

In this instance i is fixed but both j and k are independant dummy indices, and are

therefore interchangeable. We can thus set j ≡ k, and, together with the fact that the

kernel gradient is anti-symmetric i.e. ∇iWij = −∇iWji, we can obtain the expression

∂L

∂ri
= mi

∑

j

mj

(

Pi

ρ2i
+
Pj

ρ2j

)

∇iWij (3.41)

The Euler-Lagrange equation (3.28) has now become

mi

∑

j

mj

(

Pi

ρ2i
+
Pj

ρ2j

)

∇iWij −
d

dt
(mivi) = 0 (3.42)

so our equation of motion for the acceleration of particle i is given by

dvi

dt
= −

∑

j

mj

(

Pi

ρ2i
+
Pj

ρ2j

)

∇iWij (3.43)

for an isentropic fluid i.e. in the absence of dissipation. This equation can be used to

demonstrate both conservation of momentum and conservation of angular momentum; for

the former, since the kernel is anti-symmetric the equation of motion contributes an equal

and opposite amount of momentum to particle i than it contributes to particle j, namely

dvj/dt = −dvi/dt and momentum is thus manifestly conserved (pair-wise). To see the

latter we require a little more working, and so we compute the time derivative of J , the

total angular momentum, as

dJ

dt
=
∑

i

mi

(

ri ×
dvi

dt

)

(3.44)

=
∑

i

∑

j

mimj

(

Pi

ρ2i
+
Pj

ρ2j

)

(ri ×∇iWij) (3.45)

The time derivative of J is a sum over all particles and is therefore independant of both i

and j. These function as interchangeable dummy indices, allowing us to set the previous
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expression equal to its equivalent with the indices reversed i.e.

dJ

dt
=
∑

j

∑

i

mjmi

(

Pj

ρ2j
+
Pi

ρ2i

)

(rj ×∇jWji) (3.46)

Due to the anti-symmetry of the kernel gradient, this further implies

dJ

dt
= −

∑

i

∑

j

mimj

(

Pi

ρ2i
+
Pj

ρ2j

)

(ri ×∇iWij) (3.47)

which is the negative of the expression in equation 3.45. For this to be the case, the time

derivative of J must be zero, implying that the total angular momentum must remain

constant for the duration of the SPH simulation.

3.2.3.3 Conservation of energy

There are a number of ways in which the energetic properties of an SPH particle can be

evolved. Depending on the problem at hand, one may choose to integrate the specific

internal energy, the specific entropy, or the specific total energy. Here we discuss the

latter method. For a review on the relative merits of the internal energy and entropy

formulations the reader is directed to (Springel and Hernquist, 2002).

Integrating the specific total energy naturally implies total energy conservation. We

construct the Hamiltonian,

H =
∑

i

piq̇i − L (3.48)

where (q, p) are generalised coordinates for the position and momentum respectively, and

L is the Lagrangian. We can write the momentum in terms of the derivative of L with

respect to the velocity,

pi =
∂L

∂vi
(3.49)

and using the expression for the Lagrangian as

L =
∑

j

mj

(

1

2
v2
j − uj

)

(3.50)

the total energy becomes

Ei =
∑

i

mi

(

1

2
v2
i − ui

)

(3.51)

Taking the time derivative:

dEi

dt
=
∑

i

mi

(

vi
dvi

dt
+

dui
dt

)

(3.52)
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We have already calculated the acceleration term i.e., equation 3.43, and we can obtain

the derivative of the internal energy from equations 3.34 and 3.22:

dui
dt

=
Pi

ρ2i

dρi
dt

(3.53)

=
Pi

ρ2i

∑

j

mj(vi − vj) · ∇iWij (3.54)

Substituting these derivatives in, we have

dEi

dt
=
∑

i

∑

j

mimj

(

Pi

ρ2i
vj +

Pj

ρ2j
vi

)

· ∇iWij (3.55)

where as per our discussion of angular momentum conservation in Section 3.2.3.2, we

note that a sum over all particles allows us to reverse the indices and through the anti-

symmetry set the above expression equal to its negative. We therefore see that dEi/dt = 0

and so total energy is manifestly conserved in the absence of dissipation. Finally, for the

derivative of the specific total energy we simply remove the summation over i and the

mass of particle i from the expression, giving

dei
dt

=
∑

j

mj

(

Pi

ρ2i
vj +

Pj

ρ2j
vi

)

· ∇iWij (3.56)

3.2.3.4 Equation of state

The continuity equation (3.19), momentum equation (3.43) and energy equation (3.56)

together make up the transport equations for a non-gravitating fluid at constant entropy.

This system of equations must be closed by an equation of state (EQS), which relates the

pressure P to the density ρ. For an ideal gas this is

Pi = (γ − 1)uiρi (3.57)

where γ is the adiabatic index and ui is the internal energy.

3.2.4 Adaptive smoothing lengths

The conservation equations discussed in Section 3.2.3 were derived assuming a fixed value

of the smoothing length, h, i.e. one that is constant in space6. The true Lagrangian nature

of SPH however is not realised unless the smoothing length is allowed to vary, achieving

high resolution in regions of high density. These adaptive smoothing lengths are normally

chosen to maintain a nearly fixed number of neighbours (Attwood et al., 2007). However,

6although not necessarily in time
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neither the gather nor scatter formulations (see Section 3.2.2) are symmetric in i and j

and so spatially varying smoothing lengths can violate the conservation of momentum and

energy. It is possible to symmetrize the dynamical equations by taking an average of the

smoothing kernels (Hernquist and Katz, 1989), namely,

Wij =
1

2
[Wij(hi) +Wij(hj)] (3.58)

Unfortunately, this does not completely solve the problem since taking the spatial deriva-

tive of the kernel when adaptive smoothing lengths are employed necessarily generates an

extra term in ∇h, i.e.
∇Wij = ∇Wij |h +

∂

∂h
Wij∇h (3.59)

which, whilst generally neglected (Nelson and Papaloizou, 1994), can become important

if the smoothing length varies on scales less than h itself.

3.2.4.1 Fully conservative formulation

A fully conservative formulation of SPH can be derived using a variational approach

(Springel and Hernquist, 2002). This derivation takes the ∇h terms into account by en-

suring that h is defined such that a fixed mass is contained within the kernel volume,

namely
4π

3
h3i ρi = Nsphmsph (3.60)

where Nsph is the number of neighbours and msph is the particle mass. This above expres-

sion acts as a constraint on the Lagrangian, which we extremise in a similar manner to the

derivation of the momentum equation in Section 3.2.3. We write the Lagrangian in terms of

an entropic function A(s) and assuming an ideal gas equation of state, namely P = A(s)ργ .

The latter choice allows us to evolve the entropy, rather than the internal energy or the

total energy (see Section 3.2.3.3). This is the choice made in Springel and Hernquist

(2002) and indeed in GADGET (Springel, 2005) as it ensures conservation of entropy

and appears to function better (in a standard SPH formulation) than the internal energy

equation, particularly at sharp density contrasts7. We therefore write the Lagrangian as,

L(q, q̇) =
1

2

∑

j

mjv
2
j −

1

γ − 1

∑

j

mjAjρ
γ−1
j (3.61)

where q = (ri, hi) is our independant variable, and Aj ≡ A(sj). We require the extremum

of equation 3.61 subject to the constraint 3.60, for which we use the Euler-Lagrange

7note however that there does not appear to be any reason why a conservative internal energy formu-
lation would be any worse than its entropy equivalent, at least that the author knows of
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equation together with the method of Lagrange multipliers:

d

dt

∂L

∂q̇i

− ∂L

∂qi

=
∑

j

λj
∂g(qj)

∂qj

(3.62)

where g(qj) is the constraining function. We first take the derivatives with respect to hi,

which reduces the equation to:

∑

i

miAiρ
γ−2
i

∂ρi
∂hi

−
∑

i

λi

(

4πρih
2
i +

4π

3
h3i
∂ρi
∂hi

)

= 0 (3.63)

where we have used the fact that ∂hj/∂hi = 1 at i = j but zero otherwise. Re-arranging

for λi we find

λi =
3

4π

mi

h3i

Pi

ρ2i

[

1 +
3ρi
hi

∂hi
∂ρi

]−1

(3.64)

where we have substituted in for Pi from the equation of state. We now take the derivatives

of equation 3.62 with respect to ri, with the expression for λi that we have just calculated,

giving us:

mi
dvi

dt
= − 1

γ − 1

∂

∂ri

∑

j

mjAjρ
γ−1
j +

∑

j

Pj

ρ2j

[

1 +
3ρj
hj

∂hj
∂ρj

]−1 ∂ρj
∂ri

(3.65)

since ρj is independant of vi and vj is independant of ri. Simplifying we get

mi
dvi

dt
= −

∑

j

mj
Pj

ρ2j

[

1 +
hj
3ρj

∂ρj
∂hj

]−1

∇iρj (3.66)

From equation 3.38 we can see that

∇iρj = mi∇iWij(hj) + δij
∑

k

mk∇iWki(hi) (3.67)

This yields the expression for the acceleration as

dvi

dt
= −

N
∑

j=1

mj

[

fi
Pi

ρ2i
∇iWij(hi) + fj

Pj

ρ2j
∇iWij(hj)

]

(3.68)

for a non-gravitating flow. The coefficients fi, fj arise as a direct result of the spatially

varying smoothing length, and are given by:

fi =

[

1 +
hi
3ρi

∂ρi
∂hi

]−1

(3.69)
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For total energy conservation we obtain the expression for the internal energy with adaptive

smoothing lengths as
dui
dt

= fi
Pi

ρ2i

∑

j

mjvij · ∇iWij(hi) (3.70)

3.2.5 Dissipation and shock capturing

The SPH equations derived so far relate to an inviscid and isentropic fluid, free of dis-

sipation. In reality, however, this is not a good approximation to astrophysical flows of

ideal gases, in which viscous processes on a molecular scale readily generate entropy and

heat, converting ordered kinetic energy into random kinetic energy. This is particularly

the case at shocks, where properties of the flow change very rapidly over the mean free

path of a gas particle. In a numerical scheme that does not resolve this scale, entropy must

be generated artifically. Moreover, shocks appear discontinuous, and must be broadened

over a smoothing length for pressure changes to be resolved, as well as to prevent large

errors in the numerical scheme. Both requirements are dealt with by the introduction of

an artificial viscosity that allows for dissipation in shocks and ensures that shock fronts

are spread out on a scale large enough to be properly resolved. At the same time, this

helps to prevent unphysical inter-particle penetration in high Mach number collisions.

3.2.5.1 Artificial viscosity

The force due to the artificial viscosity is added as an extra term in the momentum and

energy equations; for example, equation 3.68 becomes

dvi
dt

= −
N
∑

j=1

mj

[

fi
Pi

ρ2i
∇iWij(hi) + fj

Pj

ρ2j
∇iWij(hj)

]

−
N
∑

j=1

mjΠij∇iW ij (3.71)

which, for conservation of the total energy as per Section 3.2.3.3, equation 3.54 becomes

dui
dt

=
Pi

ρ2i

∑

j

mjvij · ∇iWij +
∑

j

mjΠijvi∇iW ij (3.72)

where W ij is the arithmetic average of the kernels Wij(hi) and Wij(hj), and Πij is the

artificial viscosity. The standard form of the latter is that of Monaghan (1992), which is

given by:

Πij =







(αµijcij + βµ2ij)/ρij , vij · rij < 0

0, vij · rij ≥ 0
(3.73)
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where

µij =
hijvij · rij

r2ij + 0.01h2ij
(3.74)

where hij is the arithmetic average of the smoothing length i.e., hij = (hi + hj)/2, cij is

the average sound speed, and ρij is the average density, while α and β are free parameters.

Dimensionally, both terms in Πij have the form v2/ρ with v as a characteristic velocity;

this is based on the fact that the force in the momentum equation (eqs. 3.43 and 3.68) is

∝ P/ρ2, and through the equation of state P ∝ c2sρ. In particular, we see that the form of

µ is based on the velocity divergence, which gives a measure of the expansion or contraction

of the fluid at a given point. To first order, |∇ · vij | ≈ |vij |/|rij | = |vij · rij |/|rij |2. In

addition, the viscosity should be proportional to the typical length scale, h, and includes

a (small) perturbation term in the denominator to ensure stability as rij → 0.

The terms prefixed by α and β have different properties. The former is linear in

µ and includes the average sound speed as a characteristic velocity of the flow. It is

derived from the linear viscous stress tensor in the Navier-Stokes equation (see, e.g.,

Landau and Lifshitz, 1959; Meglicki et al., 1993) and has the advantage of providing sta-

ble and correct behaviour8 in weak shocks, i.e., M <∼ 5 (Monaghan, 1985), but is often not

sufficient in strong shocks to prevent inter-particle penetration (Lattanzio et al., 1985).

In contrast, the quadratic term in µ (von Neumann and Richtmyer, 1950) performs far

better in strong shocks but decays too rapidly in weak shocks, giving rise to numerical

‘post-shock oscillations’ (Rosswog, 2009). Using the two in conjuction has been shown to

produce good results in the majority of cases (Monaghan, 1989) when the coefficients are

set to α = 1 and β = 2α.

Finally, we note that the negative vij · rij constraint ensures that the viscosity only

acts on approaching particle pairs. In such a situation, therefore, the viscosity functions

as an excess pressure force with Pvisc ≃ 1
2ρ

2
ijΠij .

3.3 Gravity solvers

One of the four fundamental forces of nature, gravity drives structure formation on cosmo-

logical scales, and is therefore a important ingredient of any self-consistent astrophysical

8in this case correct behaviour refers to the satisfaction of the pre- and post-shock fluid variables
at scales larger than the smoothed shock front, as set by the Rankine-Hugoniot conditions (see, e.g.,
Clarke and Carswell, 2003), namely

ρ1v1 = ρ2v2 (3.75)

ρ1v
2
1 + P1 = ρ2v

2
2 + P2 (3.76)

1

2
v21 + u1 +

P1

ρ1
=

1

2
v22 + u2 +

P2

ρ2
(3.77)

where u = 1/(γ−1)P/ρ is the internal energy of the gas and the subscripts 1 & 2 refer to pre- & post-shock
regions respectively
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simulation. Correctly following the evolution of a group of celestial bodies subject to

the laws of gravitation is known as the N -body problem, and was first presented in a

mathematical form in Isacc Newton’s Principia (Newton, 1999) in 1687.

Unfortunately, analytical solutions to the N -body problem only exist for N ≤ 3

(Sundman, 1913) and so for larger values of N the equations must be solved numerically.

3.3.1 Force calculation

The basic requirement for a gravity solver is to obtain the forces on each particle at a given

timestep, based on the underlying gravitational potential of the particle distribution. The

latter is given by Poisson’s equation for an arbitrary (smooth) density distribution ρ:

∇2φ = 4πGρ (3.78)

There are a number of ways to do this, depending on the relative importance of the

accuracy of the algorithm compared to the speed of computation.

3.3.1.1 Direct summation O(N2)

The simplest and most accurate approach to solving the N -body problem is numerical

integration. The force experienced by a particle i from N − 1 other particles j (assuming

Newtonian gravity) is found from

mir̈i = G
N
∑

i 6=j

mimj
ri − rj
|ri − rj |3

(3.79)

This algorithm is slow, becoming prohibitively expensive for large numbers of particles

due to its scaling as O(N2). Originally the only method available for computing the

gravitational force on a particle, it has since been superseeded by more efficient meth-

ods that either (a) utilise multipole expansions of ensembles of particles or (b) map the

spatial distribution on to a regular grid. Its usage has endured far longer than would

have been expected against these faster algorithms, however, due to the development of

specialised hardware for pair-wise interactions that scale as r−2 (Hut and Makino, 1999).

This technology is known as GRAPE (GRAvity PipE), and remains competitive with

other methods up to N ∼ 100, 000.

3.3.1.2 Particle-mesh O(N logN)

One approach that is efficient for large numbers of particles, and easy to implement, is

the particle-mesh (PM) method, which maps the underlying density distribution of the

particles on to a regularly-spaced grid, or mesh. Two sets of interpolations are used: the
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Figure 3.2: Recursive subdivision of a quad-tree

————————————————————————–

particle masses are interpolated on to the mesh, the Poisson equation is then solved on the

mesh, and the forces at the vertices are interpolated back to the particles. The presence of

the regular mesh allows for the use of a Fourier transform, solving for the Poisson equation

in the frequency domain. In fact, the motivation behind the PM method was largely based

on the development of the Fast Fourier Transform (FFT) which scales in complexity as

O(N logN). The PM method therefore scales in a similar manner.

In cases where sub-mesh resolution is required, such as in non-uniform distributions

with strong density contrasts, the PM method can be optionally combined with a lo-

cal direct summation approach to yield the particle-particle particle-mesh (P3M) method

(Hockney and Eastwood, 1981). For hydrodynamical simulations, the PM and P3M algo-

rithms are well-suited to Eulerian grid-based codes.

3.3.1.3 Tree algorithm O(N logN)

The most popular choice for a gravity solver is that of a tree algorithm. This method makes

use of the fact that the precise form of the mass distribution becomes less important

with increasing distance. The potential of remote groups of particles can therefore be

approximated to reasonable accuracy by low-order multipole expansions.

The algorithm employs the multipole expansion hierarchically over the spatial domain,

grouping the particles by partitioning it into a series of cubes, or nodes (Barnes and Hut,

1989). The root node encompasses the full mass distribution, and is repeatedly subdi-

vided into ‘daughter’ nodes down to ‘leaf’ nodes that mark the end of the tree structure.

There are a number of different types of tree that can be used; Figure 3.2 depicts the

subdivision of the spatial domain for a quad-tree which recursively partitions each node

into four quadrants. The forces can then be calculated by starting at the root node and

considering each of the daughter nodes in turn until the multipole expansion of the node

in question provides an accurate enough partial force, subject to a prescribed accuracy

parameter. This process is known as ‘walking’ the tree. The complexity of this method
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Figure 3.3: Constructing the tree, starting at the root node, subject to a constraint of one particle per
leaf node. Once this constraint is reached the ‘leaves’ are identified (grey boxes) and the tree is ready to
be walked to determine the force on each particle.

————————————————————————–

scales as O(N logN).

The procedure for a tree algorithm is as follows:

1. The initial step is to construct the tree, which is done by inserting the particles one-

by-one and then walking the tree once subject to a constraint that identifies when

a leaf node has been reached. The standard constraint is to require that each leaf

node contains only one particle, an example of which is shown in Figure 3.3. During

this process, information about each node is stored; for the lowest order multipole

moment (i.e. monopole) this comprises just the mass of the particles contained

within the node, the centre of mass of the node and the side length of the cell9.

2. Once the tree has been constructed, we return to the root node and walk the tree

again for each particle, subject to an ‘opening’ criterion that determines whether

a node must be expanded into its daughter nodes or whether the force from the

particles in the node can be approximated by a single force from the centre of mass.

An example of this step is shown in Figure 3.4.

3. After the force on a particular particle has been computed, the tree is reset and

walked again for the next particle. The cell opening criterion can be adjusted for

accuracy and/or speed as required.

For hydrodynamics, the tree can also be used to find the neighbours of the SPH particles

(Hernquist and Katz, 1989). A spherical search region is defined around the particle in

question, with radius hi, and the tree is walked with an opening criterion that determines

whether there is any geometric overlap between a node and the search region. In this way

the tree functions as a nearest-neighbour finding algorithm.

9note that going to higher order will increase the number of variables that need to be stored.
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Figure 3.4: Walking the tree subject to an opening criterion. The particle shown in red is the reference
particle, and the distance to the centre of mass of the node outlined in red is calculated. In this case the
criterion is not satisfied and the node is ‘accepted’ rather than opened, the force from the particles in the
node being replaced by a single monopole force acting from the centre of mass.

————————————————————————–

3.3.1.4 falcON O(N)

The force solver falcON (force algorithm with complexity O(N)) is currently the fastest

gravity solver for astrophysical simulations. It employs the fast multipole method (FMM),

which performs a multipole expansion of the spatial Green’s function10 and applies it

hierarchally via a tree.

Rather than evaluating the force on a particle-by-particle basis, falcON groups close

particles into cells and exploits the similarity in the force from a distant cell upon these

particles (Dehnen, 2002). This results in a substantial speed up of the force calculation

over standard tree-based methods.

3.3.2 Gravitational softening

It has already been mentioned (§3.2) that for hydrodynamical simulations employing a

Lagrangian approach, particles are represented by smoothing kernels that mediate the

hydrodynamical forces across the particle distribution. However, this method can (and

should) also be applied to the gravitational interaction, and indeed for a pure N -body

simulation a ‘softening’ length is used to smooth out the gravitational force between bodies.

This is essential for two reasons; firstly, to avoid divergence in the force at small separations

due to the infinite potential well that a point particle would represent, and secondly,

because the ‘particles’ themselves are usually randomly sampled elements of an underlying

10A Green’s function solves a partial differential equation over a continuous distribution e.g. ∇2φ = 4πGρ
by representing it with the underlying distribution of delta functions, making it akin to performing a Fourier
analysis. For the solution to Poisson’s equation, the Green’s function is found from

φ(ri) = −
∑

j 6=i

mjg(ri − rj) (3.80)

so here we have g(ri − rj) = G/|ri − rj |, where G is the gravitational constant.
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distribution function, encompassing hundreds, if not thousands, of actual bodies11.

The use of gravitational softening can also help to prevent unphysical two-body inter-

actions (such as those that might form binaries), effectively ensuring that the potential

felt by an individual particle from all the other particles is smooth and that the system is

collisionless. The specific implementation of the softening is often model-dependant, but

for N-body simulations a standard choice is a Plummer sphere, which is a density profile

designed to fit observations of globular clusters (Plummer, 1911). The force in this case

is softened according to

Fi = −Gmimj

r2ij + ǫ2i
r̂ij (3.81)

for particle i, where ǫ is the softening length. When combined with an SPH code, however,

a sensible choice is to use a softening law that is identical to the smoothing kernel (cf.

equation 3.17). This has an advantage over a Plummer model in that the gravity reduces to

Newtonian outside 2ǫ, whereas in the Plummer case the force converges much more slowly

to this value. It also allows for identical resolutions in both the gravitational and hydro-

dynamical calculations, provided that an ǫ = h condition is enforced (Bate and Burkert,

1997).

3.4 Time integration

The implementation of a numerical simulation requires that we solve the relevant equations

of motion and evolve the system forward in time. Whether our code is purely gravitational,

or includes hydrodynamics, the overall behaviour of the particles is governed by a set

of coupled first-order differential equations. Integrating these equations must be done

numerically (cf. Section 3.3) and the accuracy to which the integration can be performed

varies over the different numerical algorithms available. As with any such method, we seek

a balance between accuracy and efficiency, which in general translates into a fine-tuning

of the timestepping criteria for an integrator of a given order.

3.4.1 Euler method

The basic concept of numerical integration is best presented via the Euler method, which

determines an approximate solution to an initial value problem evolved forward in time

via a linear approximation. Namely, for the initial value of a function x(t0) = x0, and the

time derivative ẋ = f(x(t), t) the first step of the Euler algorithm will be

x1 = x0 + f(x0, t0)∆t (3.82)

11this estimate assumes a stellar dynamical simulation; for dark matter or indeed gas each body can
represent many, many more orders of magnitude in actual particles!
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Figure 3.5: Schematic of the leapfrog algorithm over 3 timesteps.
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where ∆t is the timestep. This process is repeated for each step of the integration; ob-

taining the n+ 1th value from the nth value is performed via

xn+1 = xn + f(xn, tn)∆t (3.83)

Euler integration is an explicit method, meaning that the state of the system at a later

time is calculated entirely from the current state. It is also first-order, in that only the

first derivative term in the Taylor expansion of x is used. For the purposes of a dynamical

system, it is generally considered to be a poor choice, both due to its low-order and the

fact that it is notoriously unstable12.

It is possible however to construct an implicit solver for Euler integration known as the

‘backward’ Euler method. In this case the state of the system at a later time appears more

than once in the calculation, requiring that an equation be solved (either analytically, or

numerically via a root finding algorithm if no analytical solution exists) to obtain xn+1,

namely

xn+1 + f(xn+1, tn+1)∆t = xn (3.84)

A typical choice for a root finding algorithm is that of Newton-Raphson. Whilst the back-

ward Euler method clearly requires extra effort per timestep (namely, finding a solution to

the above equation) it nonetheless displays far better stability that its explicit counterpart,

allowing a larger timestep to be used without the error becoming unbounded.

3.4.2 Leapfrog integrators

A popular integration scheme for astrophysical simulations is that of the leapfrog (LF)

method. This is a second-order algorithm that treats the positions and their derivatives

(i.e., velocities) as offset from each other by half a timestep. The system is evolved as per

12the definition of numerical instability is that small approximation errors are magnified, rather than
damped, as the algorithm attempts to converge to a solution.
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the equations

xn+1 = xn + vn+1/2∆t (3.85)

vn+1/2 = vn−1/2 + an∆t (3.86)

where v ≡ ẋ, and a ≡ ẍ. Note that the acceleration is calculated from the potential,

an = −∇φn. Equation 3.85 is referred to as a ‘drift’ step, while equation 3.86 is known as

a ‘kick’ step. The leapfrog gets its name from the way in which the velocities, evaluated

at half timesteps, are always ‘leaping’ over the positions, which are evaluated at whole

timesteps. A graphical representation is shown in Figure 3.5. Should the velocity at an

integer timestep be needed, it can be calculated via

vn =
vn+1/2 + vn−1/2

2
(3.87)

In practice the algorithm is constructed in such a way as to evaluate all quantities at the

same point in time. This is useful in preserving the Hamiltonian structure of the system,

namely, obtaining the time-evolution operators for Hkin and Hpot at the same timestep,

where

H = Hkin +Hpot (3.88)

is the Hamiltonian. There are two main ways to do this, depending on the order in which

the steps are performed:

3.4.2.1 Drift-Kick-Drift (DKD)

The DKD leapfrog integrator starts by evaluating the position at half a timestep forward

from the initial position. This is calculated from the initial velocity, so the particle has

been ‘drifted’ but not yet ‘kicked’. The kick step then evolves the velocity forward a

whole timestep, from the acceleration calculated at the intermediate half timestep. It

should be noted that since the acceleration depends only on the position (via ∇φ), it

must be evaluated at the same point in time. Finally the particle is again drifted for the

remaining half timestep, using the new value of the velocity. The sequence is therefore:

xn+1/2 = xn + vn
∆t

2
,

vn+1 = vn + an+1/2∆t,

xn+1 = xn+1/2 + vn+1
∆t

2
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3.4.2.2 Kick-Drift-Kick (KDK)

Put simply, the KDK integrator is the reverse of the one above. The velocity is evaluated at

half timesteps (so in this sense it is similar to Figure 3.5), first using the initial acceleration

(the first ‘kick’) and then later using the acceleration at the subsequent integer timestep

(the last ‘kick’). The drift step in the middle is essentially equation 3.85 but advanced for

only half a timestep. The steps are:

vn+1/2 = vn + an
∆t

2
,

xn+1 = xn + vn+1/2
∆t

2
,

vn+1 = vn+1/2 + an+1
∆t

2

Note that for a fixed timestep across the spatial domain, the DKD and KDK integrators

are equivalent. Each contains a sequence of Hamiltonian operations, with the drift steps

corresponding to Hkin and the kick steps corresponding to Hpot.

It has already been mentioned that the Leapfrog algorithm is second-order and there-

fore a more accurate choice than the Euler method. It is also manifestly more stable,

retaining full stability for oscillatory behaviour (such as a closed orbit) provided that

∆t ≤ 1/ω, where ω is the angular frequency of the oscillation. It should be noted too that

the Leapfrog displays excellent energy conserving properties, a consequence of each step

being a canonical transformation13. This type of integrator is known as symplectic. It is

this property which makes the Leapfrog the standard choice for dynamical models, often

over higher-order methods which, whilst technically more accurate, suffer from energy

drift over the course of the simulation.

3.4.3 Timestepping

So far our discussion of integration methods has assumed a timestep that can vary in time

but is spatially fixed across the entire computational domain. However, this can severely

limit either the accuracy or the speed of an algorithm. In general, the timestepping

13A canonical transformation in Hamiltonian dynamics is a change of coordinates that preserves the
form of Hamilton’s equations, which are given by

ṗ = −∂H

∂q

q̇ =
∂H

∂p

where H is the Hamiltonian and (q,p) are the generalised coordinates of position and momentum respec-
tively.
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Figure 3.6: Individual timestep scheme, assuming the force evaluation (designated by black squares)
occurs on an integer timestep i.e., as per KDK. Note that drift operations are always performed on
timesteps of ∆tmin.
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criterion for a particle takes a Galilean invariant form, namely

∆t ∝
(

ǫ

|a|

)1/2

(3.89)

where ǫ is the softening length. Note that for SPH timestepping this would be replaced

by h, the smoothing length. We need to limit this value of ∆t, however, for reasons of

numerical stability. This concept has been mentioned in the previous section; here we

refer to it again in terms of an upper bound on the allowed timestep. For a simulation

with a resolvable spatial distance of ∆x, we require for stability that

∆t <
∆x

cs
(3.90)

where cs is the sound speed, but more generically should be thought of as the speed of

information propagation in the medium of interest. Note that for a dry, i.e., N -body

simulation this would refer to the velocity v in the wave equation, ∂2u/∂t2 = v2∇2u, with

u ≡ u(x1, x2, x3, ..., xn, t). Intuitively this corresponds to the requirement that the numer-

ical speed of information propagation does not exceed the physical one. Equation 3.90 is

known as the Courant-Friedrichs-Lewy condition (or Courant condition for short), and is

a necessary but not sufficient criterion for numerical stability in an explicit integration

method.

3.4.3.1 Adaptive timesteps

From equation 3.89 we can see that if the model possesses a finite dynamic range then

the desired timesteps will vary spatially as well as temporally. We are then left with a

choice of allowing the system to evolve either on (a) the longest timestep, (b) the shortest
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timestep, or (c) adaptive timesteps. The first option will compromise accuracy, while the

second will be a waste of computational resources. Naturally for a simulation in which

all the physical timescales are roughly the same, the first two options are largely identical

and do not constitute a major deficiency in the method. However, if a system contains a

large range of dynamical times we must choose option (c).

Assigning individual timesteps to particles can speed up a simulation significantly

whilst still retaining reasonable integration accuracy. However, in the case of a symplectic

algorithm such as the Leapfrog, there is a price. An individual timestep scheme requires

that the force evaluation (the ‘kick’ step) be performed at different times for different

particles. Unfortunately, the corresponding part of the Hamiltonian,Hpot, is not separable,

since the potential of each particle depends on the position of every other particle. Using

individual timesteps therefore introduces a perturbation to the Hamiltonian nature of the

system, compromising its stability and conservation properties.

From a practical perspective, an adaptive timestep scheme is implemented in a block

format, grouping particles together in timestep bins rather than using a complete spec-

trum. This goes some way to retaining an approximate symplectic form. Typically the

blocks are defined over n levels in powers of 2, such that

∆tn = 2n∆tmin (3.91)

where ∆tmin is the smallest required timestep. The drift operations are performed on

this minimum timestep for every particle, while the kicks occur less frequently for those

particles in a higher block. Figure 3.6 displays a typical block timestepping procedure.

An additional side-effect of individual timesteps is that the DKD and KDK algorithms

are no longer equivalent. While they still require the same amount of computational effort,

the error in the energy calculation grows four times as fast for the DKD than it does for

the KDK case. This can be understood by a simple argument: while the kick operation

depends explicitly on the force calculation (which is now time asymmetric) it is the drift

step where the error will be manifest, as the positions are advanced based on the kicked

velocities. The DKD scheme therefore has twice the error of the KDK variant, and since

Hkin ∝ v2, the energy drift is increased by a factor of four.

3.5 GADGET

In this final section we detail the main features of the code used for the simulations pre-

sented in this thesis. GADGET (GAlaxies with Dark matter and Gas intEracT) was

developed as a cosmological N-body/SPH code designed to cater for both self-gravitating

collisionless fluids as well as for collisional gas. It was created at the Max-Planck-Institute

for Astrophysics by Volker Springel, and the first public version of the code was released
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in 2000 (Springel et al., 2001). The code is designed to run on massively parallel com-

puters with distributed memory, but can also be run in serial on a single processor. In

2005 a second public version, GADGET-2, was released, which marked a nearly complete

rewrite of the first version to include updated core algorithms, better communication and

integration methods, and much additional physics (Springel, 2005). The outline in this

section refers mostly to generic GADGET methods although some details pertain soley to

GADGET-2.

3.5.1 Collisionless dynamics

Dark matter and stars are both modelled in GADGET as collisionless fluids, the equations

of which i.e. the collisionless Boltzmann equation coupled to the Poisson equation, are

solved with the N -body method. The approach is therefore one of following the dynamics

of the particles under their own self-gravity, and since the code is designed largely for

cosmological simulations, the Hamiltonian describing the dynamics includes a scale factor

term, a(t):

H =
∑

i

p2
i

2mia(t)2
+

1

2

∑

ij

mimjφ(xi − xj)

a(t)
(3.92)

This scale factor can be set to unity in order to simplify to Newtonian space; this is usually

the case for non-cosmological simulations e.g. galactic scales or less.

We recall that an important aspect of the N -body approach in this case is the use of

softening in the gravitational potential at small separations between particles. The choice

of softening length is important to reduce the large-angle scattering in two-body collisions

whilst avoiding too much of a bias towards the softened forces. GADGET computes

the single particle density distribution function by convolving the Dirac δ-function with

a normalised softening kernel, W (r); this spline-based kernel is identical in form to the

smoothing equivalent employed in the SPH part of the code, and is described by

W (r, ǫ) =
8

πǫ3



















1− 6( rǫ )
2 + 6( rǫ )

3, 0 ≤ r
ǫ ≤ 1

2 ,

2(1− r
ǫ )

3, 1
2 <

r
ǫ ≤ 1,

0, r
ǫ > 1

(3.93)

where ǫ is the gravitational softening length14.

14note that there is a difference in the notation here with respect to the standard cubic spline kernel,
in that GADGET defines the softening (smoothing) to drop to zero at a distance of ǫ (h), not 2ǫ (2h) as
equation 3.17 and the majority of the literature suggests.
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3.5.2 Hydrodynamics

GADGET models the dynamics of gas with SPH, employing a ‘gather’ approach with an

equivalent smoothing kernel W (r, h) to that of equation 3.93. The equation of state is set

to that of an ideal gas (equation 3.57) where γ, the adiabatic index, is typically taken as

γ = 5/3, its monatomic value. The thermodynamics of each fluid element is defined in

terms of an entropic function A(s), where s is the entropy per unit mass (cf. §3.2.4). The
pressure of an SPH particle in terms of this entropic function is therefore given by

Pi = Aiρ
γ
i (3.94)

This treatment allows the fully conservative formulation of SPH (again see Section 3.2.4)

to be used. The smoothing lengths in GADGET are therefore fully adaptive, selected such

that the kernel volume contains a fixed mass for the estimated density (equation 3.60),

and the equation of motion for each SPH particle is given by equation 3.68.

Shocks in GADGET are resolved via an artificial viscosity, with a viscous acceleration

term given by:

dvi
dt

∣

∣

∣

∣

visc

= −
N
∑

j=1

mjΠij∇iW ij (3.95)

where W ij is the arithmetic average of the kernels Wij(hi) and Wij(hj). The artificial

viscosity is parameterised by Πij , as per Section 3.2.5. There are two types of viscosity

available for the code, the first being the Monaghan (1992) form (equation 3.73). The

second is an upgraded method for GADGET-2, and follows a signal velocity vsigij approach

(Monaghan, 1997), where

vsigij = ci + cj − 3wij (3.96)

and wij is the projection of the relative velocity for approaching pairs, namely

wij =







vij · rij/|rij |, vij · rij < 0,

0, otherwise
(3.97)

The viscosity is then given by

Πij = −α
2

vsigij

ρij
(3.98)

The difference between the two methods lies in the hij/rij factor, which in the Monaghan

(1992) form can make the viscous force diverge for small particle pair separations. For

the signal velocity approach therefore, simulations have found that the occurrence of large

viscous accelerations is reduced and the time integration is more stable. However, the

latter method has also been found to give unpredictable angular momentum transport
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Figure 3.7: Two steps in the subdivision of an oct-tree

————————————————————————–

through gaseous discs (Alexander, R., private communication) and so the choice of the

viscosity prescription depends on the problem. In Chapter 4 we use the signal velocity

approach since we have an extremely high Mach number initial shock, whereas in Chapter

5 we are interested in SMBH growth due to angular momentum transport and so we

employ the Monaghan (1992) form.

3.5.3 Self-gravity

GADGET uses a tree algorithm to evaluate gravitational forces between particles (see

Section 3.3), in the form of a geometric oct-tree for 3D simulations (Figure 3.7). The

algorithm uses a hierarchical multipole expansion for the spatial domain, partitioning

it into a series of cubes, or nodes, as per Barnes & Hut (Barnes and Hut, 1986). The

root node encompasses the full mass distribution, and is repeatedly subdivided into eight

‘daughter’ nodes down to ‘leaf’ nodes that contain single particles. The forces are then

calculated in the usual way by ‘walking’ the tree.

For the upgraded GADGET-2, the tree approximates the partial force from unopened

nodes using monopole moments, for ease of construction and low cost in terms of memory

requirements. For processors with sufficient cache volume this can lead to a substantial

speed-up of the algorithm, since access to the main (slow) memory block can be largely

avoided. The node opening criterion in GADGET-2 is set as per

GM

r2

(

l

r

)

≤ α|a| (3.99)

where M is the mass of the node, r is the distance of the node from the particle in

question, and l is the node extension (i.e., length). α is a tolerance parameter on the total

acceleration a obtained from the previous timestep. The tolerance parameter controls the

size of the force error at the expense of computational resources.

A optional upgrade to GADGET-2 from the original version is that of a hybrid

tree/particle-mesh method known as TreePM. This treats the long-range and short-range
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contributions to the gravitational potential separately, splitting them in Fourier space via

φk = φlongk + φshortk . The long-range part is solved for using a mesh-based FFT, while

the short-range force is computed in real space via a tree. This method can deliver high

accuracy in the long-range force while retaining reasonable efficiency.

3.5.4 Time evolution

Simulations with GADGET are evolved using a Leapfrog algorithm with adaptive timesteps

that employs a kick-drift-kick strategy. For collisionless particles the timestep is set via

the criterion

∆tgrav = min

[

∆tmax,

(

2ηǫ

|a|

)1/2
]

(3.100)

where η is an accuracy parameter. The maximum allowed timestep, ∆tmax, is simply set

to a small fraction of the dynamical time of the particular system being modelled.

For gas particles, an SPH scheme can only be formulated in terms of a Hamiltonian

provided that there are no sources of entropy. In this case fully-reversible hydrodynamics

can be achieved in a timestepping scheme by including a thermal energy term in the

Hamiltonian,

H = Hkin +Hpot +Htherm (3.101)

with

Htherm =
1

γ − 1

∑

i

miAiρ
γ−1
i (3.102)

and treating the kinematics of the SPH particles in a similar way to that of the collisionless

particles. However, most hydrodynamical simulations will develop shocks, and so the

SPH method is in practice always irreversible. The long-term integration properties of

Hamiltonian systems are therefore not as relevant here.

For GADGET-2 the hydrodynamical timestep (assuming the signal velocity approach

to the viscosity) takes a Courant-like form of

∆thydi =
τcouranthi

maxj(ci + cj − 3wij)
(3.103)

where the maximum in the denominator is determined over the neighbours j of particle

i. τcourant is the Courant factor, which takes the range (0, 1]. A value of τcourant ≈ 0.3 is

recommended by Monaghan (1989) for good results.
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4
The formation of stellar discs in the Galactic centre

via cloud-cloud collisions

“Life is pretty simple: You do some stuff.

Most fails. Some works. You do more of

what works. If it works big, others quickly

copy it. Then you do something else. The

trick is the doing something else.”

Leonardo da Vinci
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4.1 Introduction

Over 10 years’ worth of data on stellar proper motions in the Galactic centre have shown

the presence of a population of young, massive stars (with age <∼ 10 Myr, M ∼ 30 −
120M⊙) that are close enough to the supermassive black hole (SMBH) to be within its

gravitational sphere of influence (Paumard et al., 2006). Formation scenarios initially

considered one of two possible methods; either the stars were formed in situ in a massive,

self-gravitating accretion disc around the black hole (Levin and Beloborodov, 2003), or

are the result of a massive star cluster spiralling in via dynamical friction and losing

some of its population to the overpowering gravity of Sgr A* (Gerhard, 2001). There has

since been observational evidence in favour of the in situ scenario (Paumard et al., 2006;

Nayakshin and Sunyaev, 2005), the alternative spiral-in model being all but ruled out on

the basis of (i) the apparent lack of young, low-mass stars outside the ∼ 0.5 parsec region

(Paumard et al., 2006; Bartko, 2010) which would be expected from tidal stripping of the

cluster (Levin et al., 2005) (ii) the fact that the cluster would either have to be extremely

dense to inspiral through dynamical friction in the required time (Kim and Morris, 2003),

or be bound by an intermediate-mass black hole1 (Kim et al., 2004) and (iii) the presence

of a significant warp in the observed stellar disc(s), a feature that would be very difficult

to achieve with an infalling cluster since the stars would not have had long enough to warp

to such a degree by differential precession (Bartko et al., 2009).

Attention has therefore turned to the specifics of both the formation and structure

of the stars in the Galactic centre. A number of observations (see, e.g., Paumard et al.,

2006; Bartko et al., 2008) point to the presence of two distinct counter-rotating OB stellar

populations, co-eval 6 million years ago (to within ∼ 1 million years), distributed on scales

of∼ 0.04−0.5 parsecs (Levin and Beloborodov, 2003) with a large angle of orientation with

respect to each other, and possessing a top-heavy initial mass function (IMF) (Nayakshin,

2006; Alexander et al., 2006). In addition, there is evidence that the clockwise rotating

stars form a well defined, relatively circular disc/ring (Lu et al., 2006), born out of a

massive, self-gravitating accretion disc of gas. The required mass of this disc has been

constrained to at least 104M⊙ (Nayakshin and Cuadra, 2005). What is not yet confirmed

is the nature of the second, counter-clockwise population of stars; whether it is another

ring similar to the first, or is part of a larger stellar population with more isotropic orbits

(Lu et al., 2006). The important features of this second structure are (i) that it is more

diffuse, and thicker than the clockwise disc (ii) that it is located further out at ∼ 0.15 pc

and (iii) that the orbits of the stars are significantly more eccentric, with e ∼ 0.8. The

origin of this feature is therefore less clear than the clockwise-rotating stellar population,

for the self-gravitating accretion disc scenario implies more circular orbits for stars formed

1there is currently no definitive evidence for the existence of intermediate-mass black holes (IMBHs;
mass range: ∼ 103 − 105 M⊙) and so a mechanism invoking them is generally viewed with skepticism
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Figure 4.1: The young stars seen in the central parsec of the Galactic centre. Image courtesy of
Keck/UCLA Galactic Centre Group.

————————————————————————–

there (Nayakshin and Cuadra, 2005). Since the two populations are co-eval, however, it

seems likely that they were formed by a single progenitor event.

As well as the massive OB stars discussed above, we also see two more distinct col-

lections of stars whose formation is still very much the subject of debate. Firstly the

star cluster, IRS13E, which contains both massive young stars and some lighter ones -

observations of its dynamics seem to place it in the more eccentric, counter-clockwise disc,

and it appears to be internally gravitationally bound despite the fact that its total visible

mass is not sufficient for this to occur. Possible explanations have included the theory

that there may be an intermediate mass black hole (IMBH) at the centre of the cluster

(Gürkan and Rasio, 2005). Secondly, within the inner arcsecond i.e. < 0.04 pc (inside of

the OB star distribution) spectroscopic observations have been made of isotropically ori-

ented, early main-sequence B-type stars (Ghez et al., 2003a; Eisenhauer et al., 2005) with

approximate masses ofM ∼ 15M⊙. Since gravitational instabilities of a massive accretion

disc are not expected to form stars any closer in than the 1 arcsecond edge (see Chapter 1,

Section 1.7.1.1), the in situ formation scenario is not favoured for these (so-called) S-stars.

The explanation for these features (as well as many others) is crucial to constructing

a consistent model of stellar populations in the Galactic centre both in terms of forma-

tion and evolution. There are many ideas currently being banded around the scientific

community but a great deal is still not known to any acceptable precision. One impor-

tant aspect to the model is the progenitor of the stellar populations. The in situ model

has, so far, not addressed in detail the origin of the gaseous discs where the stars were
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born, although similar discs are believed to exist in AGN and quasars. Indeed, sub-parsec,

massive gaseous discs are often invoked as means of feeding SMBHs’ immense appetite

for gaseous fuel (e.g. Frank et al., 2002). Sgr A∗, however, is currently not a member of

the AGN club, let alone the even more powerful and elitist quasar community. Indeed,

Sgr A∗ bolometric luminosity is around ∼ 10−9 of its Eddington limit (e.g., Narayan, 2002;

Baganoff et al., 2003). The amount of ionized gas currently present in the inner parsec is

estimated at perhaps a mere hundred solar masses (Paumard et al., 2004), and there are

also tight observational constraints (Falcke and Melia, 1997; Cuadra et al., 2003) on the

presence of an optically thin disc on smaller scales (say 0.01 pc or less).

We believe that the requisite gaseous discs could not have been assembled by viscous

transport of angular momentum as is expected to be the case in other systems with planar

geometries (Shakura and Sunyaev, 1973; Frank et al., 2002). The viscous timescale of

a thin, marginally self-gravitating disc can be estimated as tvisc = (Mbh/Mdisc)
2(αΩ)−1,

whereMbh ≈ 3.5×106M⊙ andMdisc are masses of the blackhole and the disc, respectively,

and Ω is the Keplerian angular frequency (refer to Chapter 2, Section 2.3.4.6). For α = 0.1

and Mdisc ≈ 104M⊙ (reasons for this choice of mass are discussed in Nayakshin et al.

(2006)), tvisc ∼ 3× 107 years at r = 0.03 pc, the inner edge of the discs (Paumard et al.,

2006), and 109 years at 0.3 pc. These times are very long compared with the age of the

stellar systems. In fact, the gaseous discs would have to evolve even faster as the two stellar

systems are co-eval within one million years (Paumard et al., 2006). Moreover, had the

original gaseous disc(s) extended to larger radii than the visible stellar population(s) they

would have been susceptible to fragmentation through self-gravity and we would expect

to observe additional stellar populations further out.

It is therefore not clear how the required mass of gas came to reside within the inner

parsec in the first place. The one-off star formation event appears to be best explained

by a one-off deposition of gas within the central parsec. There are several ways in which

this could have happened. A giant molecular cloud (GMC) with a sub-parsec impact

parameter (in relation to Sgr A∗) could have self-collided and become partially bound to

the central parsec (e.g., Nayakshin and Cuadra, 2005). Alternatively, a GMC could have

struck the circumnuclear disc (CND) located a few parsecs away from Sgr A∗, and then

created gas streams that settled into the central parsec.

It is very hard to estimate the probability of a cloud-cloud collision in the central part

of the Galaxy. Hasegawa et al. (1994) estimated the rate of GMC collisions as one per 20

Myrs in the central 100 pc, but the estimate is uncertain by at least an order of magni-

tude in either direction due to the lack of knowledge about the size distribution of GMCs.

However, there is observational evidence that GMCs can be put on orbits significantly

different from the simple circular orbits seen in the inner Galaxy. Stolte et al. (2008)

recently measured the proper motions of the Arches star cluster. This cluster is ∼ 2.5
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million years old and has a mass in excess of 104M⊙ (e.g., Figer, 2004). It is presently

about 30 pc away from Sgr A∗ in projection. Its orbit must be strongly non-circular as its

3D velocity is over 200 km s−1 in the region where the circular velocity is only ∼ 110 km

sec−1. Therefore, this suggests that massive GMCs can be on highly non-circular orbits.

It does not seem implausible that one of these clouds would pass within a few parsecs of

Sgr A∗.

In this Chapter we explore such a one-off collision event in a very simple setup (see Section

6.4.1). We allow two massive, uniform and spherical clouds on significantly different orbits

to collide with each other one parsec away from Sgr A∗. The resulting gas dynamics, in

particular the way in which gas settles into the inner parsec, is the focus of our effort

here. We find that the collision forms streams of gas with varying angular momentum,

both in magnitude and direction. Parts of these streams collide and coalesce to form a

disc, and the remaining parts form one or more orbiting filaments. As the gas cools, it

becomes self-gravitating and stars are born, usually in both the disc and the filaments.

This overall picture is discussed in Section 4.4. A reader mainly interested in a comparison

between the simulations and observations may find Sections 4.4.2.3, 4.4.4 and 4.5 most

relevant2. In Section 4.5.1.1 we argue that our simulation results suggest that the location

of the original impact was somewhat further away from Sgr A∗ than we assumed here,

e.g., perhaps a few parsecs.

4.2 Numerical setup

The numerical approach that we used is after Nayakshin et al. (2007) with only slight

modifications. To perform the simulations, we employ GADGET-2, a smoothed particle

hydrodynamic (SPH)/N-body code (Springel, 2005). The Newtonian N-body gravitational

interactions of particles in the code are calculated via a tree algorithm, while an artificial

viscosity is used to resolve shocks in the gas.

4.2.1 Cooling prescription

Gas cools according to du/dt = −u/tcool(r), where the cooling time depends on radius as

tcool(r) = βtdyn(r) (4.1)

where tdyn = 1/Ω and Ω = (GMbh/r
3)1/2, the Keplerian angular velocity, where β is a

dimensionless number (refer to Chapter 2, Section 2.3.4.8). This approach is motivated

by simulations of marginally stable self-gravitating gaseous discs, where β is expected to

2for movies of the simulations the reader is directed to http://www.astro.le.ac.uk/~aph11/movies.html
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be of the order of a few (Gammie, 2001; Rice et al., 2005). In the problem at hand, β

would most likely be much smaller during the collision phase of the clouds as gas can

heat up to high temperatures (see Section 4.5), but it could be much larger than unity

when gas cools into a geometrically thin disc or a thin filament. In the framework of our

simplified approach, and given numerical limitations, we only consider two values for β.

The β = 1 tests approximate the situation when cooling is inefficient, whereas β = 0.3

cases correspond to ‘rapid’ cooling.

4.2.2 Gravitational potential

Gas moves in the gravitational potential of Sgr A∗, modelled as a motionless point mass

with Mbh = 3.5 × 106M⊙ (Reid et al., 1999) at the origin of the coordinate system, and

a much older relaxed isotropic stellar cusp. For the latter component we use the stellar

density profile derived from near-IR adaptive optics imaging by Genzel et al. (2003):

ρ∗(r)

ρ∗0
=







(

r
rcusp

)−1.4
, r < rcusp

(

r
rcusp

)−2
, r ≥ rcusp

(4.2)

where rcusp = 10 arcseconds (≈ 0.4 pc), and ρ∗0 = 1.2 × 106M⊙pc
−3. Note that the

enclosed stellar cusp mass is approximately 6 × 105M⊙ at r = rcusp and equals Sgr A∗

mass at R ∼ 1.6 pc. We do not include the gravitational potential of the putative stellar

mass black hole cluster around Sgr A∗ e.g., (Morris, 1993; Miralda-Escudé and Gould,

2000), as at present its existence and exact properties are highly uncertain (Freitag et al.,

2006; Schödel et al., 2007; Deegan and Nayakshin, 2007).

We derive the full expression for the gravitational potential in Appendix B. We note

that the SMBH radius of influence, as defined by Fbh ≥ Fstellar, where Fstellar is the force

exerted by the stellar cusp mass enclosed, is naturally where Mbh ≥ Mstellar, at 1.6 pc.

We can therefore see that Sgr A∗ dominates the gravitational potential for the entirety of

our computational domain ( <∼ 1 pc).

4.2.3 Star formation and SMBH accretion using sink particles

As gaseous haloes collapse under their own gravity, it becomes increasingly difficult to

follow the time evolution of the simulation due to the high densities that are achieved.

The power of adaptive smoothing lengths is a weakness in this case, with h becoming infin-

tesimally small and the hydrodynamical timesteps following suit. The standard approach

to circumvent this problem is to introduce N-body particles, known as ‘sink particles’,

wherever the gas reaches an arbitrarily-specified density threshold.

Star formation and accretion in SPH is traditionally modelled in this way, via the sink

particle formalism (Bate et al., 1995). Gravitationally contracted gas haloes are replaced
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by collisionless sink particles of same mass, which can accrete gas particles either stochas-

tically from the neighbours of the sink, or via an accretion radius racc. The gas particles

accreted are then removed from the simulation, and in order to be conservative, their mass

and momentum is added to the sink.

We follow this recipe both for star formation in our simulations as well as for the central

SMBH. The latter is modelled as a sink particle at r = (0, 0, 0), and accretes gas particles

that fall within an accretion radius of racc ∼ 0.1 arcseconds (exact values vary between

different cooling parameters, see Section 4.3). This is significantly smaller than the inner

radius of the observed ‘disc’ population of young massive stars, i.e., ∼ 1′′ (Paumard et al.,

2006). The mass of the gas particles accreted is added to Sgr A∗ but their momentum

is not, the black hole being held fixed at the origin to eliminate any unwanted numerical

effects that might be caused by its motion3. We note that, although this breaks overall

momentum conservation, since the SMBH mass is many orders of magnitude larger than

the gas (refer to Section 4.3), this should not compromise the reliability of the simulation.

To model star formation, we introduce new sink particles when the gas density exceeds

a threshold value. The choice of this threshold value is dependant on the factors affecting

the collapse of a gaseous halo. Firstly, we require that the region of interest has reached the

Jeans mass, at which point gravity dominates over pressure forces and collapse can start

to occur (see Chapter 2, Section 2.3.4.8). This consideration becomes more complex when

dealing with numerical simulations, however, as the concept of a minimum resolvable mass

enters into play. In an N-body sense, this is simply that of a single SPH particle; however

when dealing with pressure forces and self-gravity the situation is somewhat different.

Bate and Burkert (1997) discuss the concept of mass resolution in relation to marginally

self-gravitating gas clumps, and point out that when the Jeans length becomes comparable

to the smoothing length, the code has reached its limit of mass resolution, as the relevant

forces governing the collapse of the clump are significantly altered by numerical details.

The minimum mass resolution must therefore be somewhat higher than the number of

particles contained within a Jeans length. Navarro and White (1993) found that, when

modelling the collapse of a gas cloud, reasonable results were obtained when the cloud was

comprised of ∼ 100 SPH particles. Since a standard value for the number of neighbours is

Nneigh ≈ 50, as indeed it is in our code, Bate and Burkert (1997) suggested a rule of thumb

of 2Nneigh within a Jeans length for reliable collapse resolution. With this approach our

minimum mass resolution is 1.6M⊙, while an individual SPH particle in our simulations

has a mass of 0.02M⊙.

3as a result the overall gravitational potential is ‘nailed down’ since the stellar cusp is at all times
centered on the SMBH. We note that while there is some physical justification for a fixed SMBH, in that
since we do not include a ‘live’ halo the process of dynamical friction that would act to suppress the SMBHs
motion away from the bottom of the potential well is not modelled, the main motivation for keeping the
black hole fixed is to avoid any numerical instabilities that might arise as a result of the sink particle
oscillating about the origin (for a different but related numerical issue see Section 4.4.3.1)
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The Jeans mass criterion can be turned into a constraint on the density, by using the

minimum resolvable mass. This marks the point at which collapse can be trusted to be

physical, rather than dominated by numerical effects. To resolve collapse we therefore

require that

ρJ
<∼
(

3

4π

)(

5NAkBT

2Gµ

)3( Ntot

2Nneigh

1

Mtot

)2

(4.3)

where NA is Avagadro’s number, kB is the Boltzmann constant, µ is the mean molecular

weight, Ntot is the total number of particles in the simulation and Mtot is the total mass.

Above this limit, we can no longer follow Jeans collapse as an entirely physical process,

and we are (relatively) justified in replacing the gas particle with a sink.

However, this is not the whole picture. In the case of the GC, the environment is quite

different to that of a ‘standard’ galactic molecular cloud, and the dominant requirement

for star formation is overcoming the tidal shear density in the potential of Sgr A∗. We

derive the expression for this in Appendix C, finding that

ρBH =
3MBH

πr3
(4.4)

where r is the distance from the central black hole. Below this density the gas would be

sheared out due to the potential of the SMBH and therefore be unable to form stars. To

a certain extent this shearing occurs self-consistently within the simulation; indeed, the

behaviour of the two clouds after the collision is evidence of this. However, since we do

not resolve the gas down to its atomic composition, but rather at a resolution lower limit

of ∼ 1.6M⊙, we could easily imagine a scenario where a single SPH particle (which cannot

itself be sheared) reaches the Jeans density for collapse but is not above the tidal density.

In this case turning the particle into a sink would be extremely artificial, as in reality the

gas within it would be subject to strong tidal forces that would prevent the star formation

process.

We therefore require a combination of the Jeans constraint and the tidal constraint

in order to model sink particle creation in our simulations. We chose a relatively simple

approach to this, based on that used in Nayakshin et al. (2007), which we acknowledge

does not capture the full physics of the problem but nonetheless should ensure that the

global properties of the stars formed are reasonably reliable. We introduce sink particles

when the gas density exceeds

ρcrit = ρ0 +AcolρBH (4.5)

where ρ0 = 1.67×10−12 g cm−3, and Acol = 50 (these values are based on tests performed

in Nayakshin et al. (2007), which found that the results are not sensitive to the exact

values of ρ0 and Acol, provided they are sufficiently large). The ρ0 quantity is essentially

our Jeans constraint, albeit one that is fixed (note from equation 4.3 that ρJ is a function
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of temperature). It corresponds to the ρJ limit for gas at T ≃ 3600 K. In general the

temperature over the majority of our computational domain is somewhat higher, ∼ 104

K. On its own, then, in these hotter regions this constraint would lead to the formation

of sink particles before collapse reached the point where numerical effects began to play a

role. However, we have in addition the tidal constraint, which dominates over ρ0 within ∼
a few arcseconds, i.e., where the majority of the circular disc stars form (refer to Section

4.4.2). The factor of 50 is to ensure that once the tidal limit is reached, collapse has a

chance to get underway before a sink is introduced.

The full details of our sink particle approach are necessarily somewhat different to that

of the standard prescription in molecular clouds. Numerical simulations of the ‘normal’

process of star formation have shown (Larson, 1969; Masunaga et al., 1998) that as gas

haloes on the scale of typical molecular clouds collapse, the first quasi-hydrostatic object

to form has a characteristic size of ∼ 5 A.U. = 7.5 × 1013 cm. This is known as a first

core. Through self-gravity and optically thick (blackbody) cooling, the core decreases in

size while also accreting mass from the surrounding envelope that is continuing to infall.

When the mass of the first core reaches ∼ 0.1M⊙, H2 dissociation occurs, along with the

ionisation of H, due to compressional heating. At this point the core is able to cool much

more effectively through optically thin processes (refer to Appendix D) and collapses to a

higher density and smaller size (Silk, 1977). A diagram of this process is shown in Figure

4.2.

In this picture, the timescale for the formation of a first core and its collapse to stellar

densities is short, ∼ 103 yrs, proceeding on approximately the cooling time. This is far

shorter than the free-fall times, tff ∼ 1/(Gρ)1/2, of typical molecular clouds in a galaxy.

The creation of these first collapsed objects is therefore effectively instantaneous in a

normal star-forming environment. In addition, the sizes of the first cores are far smaller

than the typical cloud size of ∼ 1018 cm. As a result, simulations of star formation in

molecular clouds needs not consider the lifetime nor the physical size of a first core.

For star formation around Sgr A∗, however, the picture is different. Since the gas is

far hotter than a standard GMC, the Jeans density limit is significantly higher. We can

therefore assume that the initial stages of collapse are similar to normal star formation,

but starting from higher gas densities. Since the local free-fall time is ∝ ρ−1/2, we find

that at the distance where the young, OB stars surrounding Sgr A∗ are located ( <∼ 0.5 pc),

this timescale is short (≈ 102 − 103 yrs for ρ/mp ≈ 108 − 1012 cm−3, the typical density

range for a self-gravitating AGN disc). In fact, even at the minimum (tidal) star-forming

density in the potential of Sgr A∗, the local tff for the cloud is ∼ tdyn for the system4. It

4since in a potential dominated by a point mass, putting ρtidal = 3M/2πr3 into tff ≃ 1/(Gρ)1/2 yields

tff ≃ 1

(Gρtidal)1/2
=

(

2πr3

3GM

)1/2

≃
(

r3

GM

)1/2

= Ω−1 (4.6)
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Figure 4.2: Gas cloud collapsing to form a first core.

————————————————————————–

is therefore clear that the free-fall time of the collapsing cloud is comparable to or shorter

than the cooling time, and thus the formation time, of the first core.

This means that we must treat first cores, or protostars, as having a finite lifetime.

Furthermore, rather than being essentially point masses with respect to the larger gas

halo, in this case the protostars are only an order of magnitude smaller than the typical

scaleheight for the disc, H ∼ 1015 cm, and should therefore be modelled as having finite

size. This means, in turn, that we must consider the possibility of a first core merging

with a fully-fledged sink particle, or indeed another protostar.

In all of our simulations we therefore employ two different types of sink particles for

star formation, distinguishing between first cores and stars. We briefly summarise the

implementation of each type below.

• First core (protostar) particles

Once the gas reaches ρcrit., an SPH particle is turned into a first core with an

initial mass equal to mSPH. The geometric size of the first core is rcore = 1014 cm.

Physically, first cores represent massive gaseous clumps that have not yet collapsed

to stellar densities, and thus have finite sizes. First cores are assumed to merge

with each other if they pass within a distance |r1 − r2| < 2fmrcore, where fm is a

gravitational focusing parameter set to unity. First cores can also grow by accretion

of SPH particles, up to a mass of 0.1M⊙.

• Star particles

Once the first core grows (either by mergers or by accretion, or both) beyond a mass

of 0.1M⊙, it is designated a ‘star particle’. These have zero geometrical size; in
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other words they are treated as point masses. As such they cannot merge, but may

accrete first cores if |r1 − r2| < 2fmrcore, once again. Stars can grow to arbitrarily

large masses by accretion of first cores or accretion of SPH particles.

The accretion of gas particles by stars and protostars differs from that of accretion on to

the SMBH. Rather than employing an accretion radius approach, it is calculated using the

Bondi-Hoyle formalism (refer to Chapter 2, Section 2.3.2), with the accretion rate given

by,

Ṁ = 4πρ
(GM)2

(∆v2 + c2s)
3/2

(4.7)

where M is the mass of the sink particle, ρ is the ambient gas density, cs is the sound

speed, and ∆v is the relative velocity between the gas and the accreting particle. The

accretion rate is capped at the Eddington accretion rate:

ṀEdd =
4πmpr∗c

σT
. (4.8)

Note that this expression depends only on the size of the object, r∗. For first cores,

r∗ = rcore, which yields a very high accretion rate limit of almost a solar mass per year

for rcore = 1014 cm. Since stars in our simulations do not have a physical size, we use the

observational results of Demircan and Kahraman (1991); Gorda and Svechnikov (1998) to

relate the size of a star to its mass, namely

r

R⊙
= 1.09

(

M

M⊙

)0.969

for M < 1.52M⊙, (4.9)

r

R⊙
= 1.29

(

M

M⊙

)0.6035

for M > 1.52M⊙. (4.10)

For r = R⊙, this yields an Eddington accretion rate limit of ∼ 5 × 10−4M⊙ year−1.

The actual gas particles that are then accreted by the sink particle are chosen from its

neighbours via the stochastic SPH method of Springel (2005). The mass and momentum

of the SPH particles accreted are added to that of the respective sink particle.

We should acknowledge here that this plausible star formation prescription cannot

possibly reproduce the full complexity of the star formation process in nature. Therefore,

the stellar mass function obtained in our simulations cannot be trusted in detail. However,

our focus is on the dynamics of gas as it settles into a disc or a filamentary structure.

When star formation does occur, the gas temperature is very much smaller than the virial

temperature5 in the simulated region ( >∼ 106 K). Gas orbits thus determine the resulting

5the virial temperature in a gravitational potential Φ is found from

kBTvirial ≃ µmp Φ (4.11)

where kB is the Boltzmann constant, µ is the mean molecular weight, and mp is the mass of a proton
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stellar orbits which we compare to the observed ones. We believe that this important

aspect of our simulations is reliably modelled.

The set of units used in our simulations is Mu = 3.5× 106M⊙, the mass of Sgr A∗(e.g.

(Schödel et al., 2002)), ru = 1.2 × 1017 cm ≈ 0.04 pc, equal to 1” when viewed from

the ≈ 8 kpc distance to the GC, and tu = 1/Ω(ru), the dynamical time evaluated at ru,

approximately 60 years.

4.3 Initial conditions

Simulations were performed for a set of initial conditions, all of which comprise a collision

between two gas clouds at the edge of the inner parsec of the GC. 2,625,000 SPH particles

were used in each simulation. The specific parameters for each run, labeled S1 to S6, can be

found in Table 4.1. Each cloud is spherically symmetric and of uniform density, containing

less than 1% of the mass of Sgr A∗. The composition of the clouds is mostly molecular

hydrogen, with the mean molecular weight set to µ = 2.46. The initial temperature of

the clouds is set to 20K. A more complex model could have included a turbulent velocity

and density field, but for practical purposes we limit ourselves to a smaller set of input

parameters for this study.

We define the primary to be the larger cloud, with a radius of R1 = 0.2 pc and M1 =

3.4×104M⊙, whilst the secondary has a radius of R2 = 0.172 pc with M2 = 2.6×104M⊙.

The initial positions of the cloud centres are the same for all the simulations, and are

r1 = (25, 0, 0) and r2 = (22, 6, 7), in dimensionless units. In all the tests the absolute

velocity of cloud 1 is of the order of the Keplerian velocity at that radius. Orbits in a

cusped potential cannot be solved for analytically and so a numerical method is required

to calculate the eccentricity. We consider the effective potential for a Newtonian orbit

(refer to Chapter 2, Section 2.2.3.1), namely,

V (R) =
l2

2R2
− Φ(R) (4.12)

where l is the specific angular momentum, and Φ(R) is the potential energy. The latter can

be obtained either from Poisson’s equation (see Chapter 3, equation 3.78) or by summing

the contribution from spherical shells at all radii; we show the latter method in Appendix

B. Since the effective potential is equivalent to the orbital energy at a purely tangential

velocity vector, the resulting expression for equation 4.12 is equated with the specific

orbital energy to solve for the pericentre and apocentre positions. The roots of this equality

must be computed numerically, for which we employ the Newton-Raphson algorithm.
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2r  = 0.95 pc

Sgr A*

r  = 1 pc1

1

2M  = 3.4 x 10  M4
sun

M  = 2.6 x 10  M4
sun

Figure 4.3: Schematic of the initial conditions for simulation S1, showing the initial orbits of the clouds.
The parts that do not collide are sheared out along these orbits, forming streams at approximately the
orientation given in this diagram (see Figures 4.4 and 4.5).

————————————————————————–
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Table 4.1: Initial conditions of the simulations presented in the chapter. The meaning of the symbols
in the Table are: β is the cooling parameter, r2, v2 are the initial positions and velocity vectors of the
secondary cloud, respectively; r2,pe and r2,ap are the pericentres and the apocentres of the secondary’s
orbit; e is the eccentricity; θ is the angle between the orbital planes of the clouds, and b is the impact
parameter.

ID β r2 v2 |v1 − v2| r2,pe r2,ap e2 θ (◦) b

S1 1 (22,6,7) (0,-0.11,-0.21) 0.37 13.5 28.2 0.35 116 3.8
S2 1 (22,6,7) (0,-0.21,-0.11) 0.42 13.8 27.9 0.34 151 6.8
S3 0.3 (22,6,7) (0,-0.11,-0.21) 0.37 13.5 28.2 0.35 116 3.8
S4 0.3 (22,6,7) (0,-0.21,-0.11) 0.42 13.8 27.9 0.34 151 6.8
S5 1 (22,6,7) (0.16,-0.11,-0.21) 0.41 21.5 33.4 0.22 120 2.4
S6 1 (22,6,7) (0.16,-0.21,-0.11) 0.45 21.2 33.7 0.23 147 5.3

Orbital eccentricity is then defined via

1 + e

1− e
=
rap
rpe

(4.13)

where rap and rpe are the pericenter and the apocenter of the orbit. Hyperbolic eccen-

tricities are capped at 1. In the (BH + stellar) potential that we use here (see equation

4.2.2), the orbit of cloud 1 is therefore slightly eccentric, with pericentre and apocentre

of 12.9 and 25 respectively, a velocity vector of (0, 0.2, 0), and an eccentricity e = 0.32.

The initial orbit trajectory of the second cloud is varied between the tests to cover a small

range of possibilities. The parameters for this trajectory in terms of pericentre, apocentre

and eccentricity are given in Table 4.1. Note that both clouds are bound to the central

parsec. The collision itself is highly supersonic, with a Mach number of ∼ 500.

We run tests with cooling parameter β = 1 and β = 0.3 (see equation 4.1). These

values are low enough so that fragmentation would occur if and when regions of the gas

became self-gravitating (Gammie, 2001; Rice et al., 2005). Since the faster cooling runs

were expected to require on average shorter timesteps the SMBH accretion radius for

β = 0.3 was set to Racc = 0.33 whilst for β = 1 a smaller value of Racc = 0.06 was used.

4.4 Results

4.4.1 Gas dynamics

4.4.1.1 Bulk dynamics

In this section we briefly describe the main characteristics of the bulk gas dynamics. In

all our simulations, the clouds undergo an off-centre collision at t ∼ 10 (≈ 600 years).

• As the cooling time is longer than the collision time, tcoll ∼ (R1+R2)/(|v1−v2|), the
postshocked gas heats up significantly and hence initially expands somewhat. This
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thermal expansion modifies velocities of the different parts of the clouds by giving

gas thermal velocity ‘kicks’. The net result is a distribution of gas velocities that is

much broader than the one would get if the two clouds simply got stuck together,

i.e., if the collision were inelastic.

• As the total mass of the clouds is only about a percent of Sgr A∗ mass, the post-

collision cloud is easily sheared by the tidal field of Sgr A∗. The collision and the

resulting mixing of the clouds leads to angular momentum cancellation of some

parts of the gas. Regions of gas that acquire smaller angular momentum infall to

the respective circularisation radius on the local dynamical time. A small scale

disc around the black hole is thus formed on this timescale. Regions of the clouds

that did not directly participate in the collision are affected less and retain more of

their initial angular momentum. These regions are sheared, then cool and result in

filaments of length comparable to the initial sizes of the clouds’ orbits.

• As time progresses, parts of the filaments collide with each other or with the inner

disc if the pericentres of their orbits are small enough. The small scale disc gains

mass in an asymmetric non-planar manner. The disc becomes warped and begins

to change its orientation with time. Eventually, a sizable fraction of the gaseous

mass makes it into the inner few arcseconds. As the mass of the disc increases, it

circularises, cools and gradually becomes gravitationally unstable.

Figure 4.4 presents four snapshots of simulation S1 showing gas column density and po-

sitions of the stars viewed from the line of sight θ = 0◦. The initial mass deposition into

the central few arcseconds forms a small-scale disc that changes its orientation by about

30◦ with time, stabilising by t ∼ 300. As a result of the small impact parameter of the

collision, the secondary cloud is largely destroyed and does not collapse into a coherent fil-

ament. Instead, the diffuse gas left over from the impact gradually accretes on to the disc

that forms around the black hole, growing it in mass and radius. The inner disc therefore

ends up extending out to ∼ 10′′. The gas left over from the primary cloud collapses into

a filament which orbits at a larger radius, separate from the disc.

The simulation S2 is set up identical to S1 except for the initial velocity of the secondary

cloud (refer to Table 4.1). There are two important differences: (1) the angle between the

orbital plane of the two clouds is greater, θ ∼ 150◦, and (2) the collision between the

clouds is more grazing as the impact parameter b is greater. As a result of (2), a smaller

fraction of the clouds’ mass is involved in a bodily collision in S2 than S1, and so the

clouds in the former will survive the initial collision better. Indeed, comparing the S1 and

S2 simulations in Figure 4.5, one sees that in the latter simulation most of the secondary

cloud does indeed survive the collision. This cloud forms a clockwise stream which was

largely absent in simulation S1.
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Figure 4.4: Gas surface density and stellar locations for snapshots from simulation S1 taken at times
t = 0, 100, 250, and 1000, left to right and top to bottom, respectively. Sgr A∗ is located at (0,0), and the
line of sight is along the z direction.

————————————————————————–

On the other hand, the parts of the clouds involved in the direct collision experience

a stronger shock in S2 than they do in S1. Indeed, in S2 the velocity vectors are almost

directly opposing. Thus, despite the larger impact parameter, the stronger angular mo-

mentum cancellation in S2 creates an inner r < 1 disc as massive as that in S1. However,
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Figure 4.5: Projected gas densities and stellar positions for simulations S1 (left) and S2 (right) at
t = 1250. Note the survival of the secondary stream in S2.

————————————————————————–

the ‘mid-range’ disc, e.g., the disc at r ∼ 5, is far less pronounced in S2 than in S1.

The evolution and the structure of the inner gaseous disc is different in S2 from its S1

counterpart. In both simulations the angular momentum of gas infalling on to the discs

evolves with time, and hence both discs undergo what we term ‘midplane rotation’ (refer

to Section 4.4.3.2). However, the infalling gas seems to be more intermittent in S2 than in

S1, possessing a larger range of angular momentum. While in S1 the accreting gas largely

adds to the existing disc, creating one large warped disc, in S2 the infalling gas causes

enhanced midplane rotation, and to later times (t ∼ 400), actually creates a second disc

around the first at a different orientation. Figure 4.6 compares the inner discs of S1 and

S2 in the process of forming.

To show the effect of the faster cooling, Figure 4.7 contrasts gas surface density plots

of simulations S1 and S3 at time t = 150. The bulk dynamics of S3 are the same as in

S1, but apart from the innermost few arcseconds, maximum gas densities are higher in

S3 than they are in S1. This is natural as faster cooling gas can be compressed to higher

densities through gravity and shocks. For the same reason, the filaments are much better

defined in S3 than they are in S1. A similar comparison is of course true for S2 and S4.

Simulation S5 is distinct from all the rest due to its small impact parameter, b, between

the gas clouds (see 4.1). As a result of this fact and the relatively large value of β, a higher

degree of mixing is achieved. Figure 4.8 shows a snapshot from this simulation, showing
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Figure 4.6: Projected gas density for the inner two arcseconds, showing stars as well. Left: Simulation
S1 at t = 1000; Right: Simulation S2 at t = 400.
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Figure 4.7: Comparison of projected gas density for simulation S1 (left panel, β = 1) and S3 (right
panel, β = 0.3) at t = 150. Note that filamentary structures are better defined in S3 than they are in S1.
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Figure 4.8: Left: projected gas density for S5 at t = 2696, showing stars. Note that the stellar populations
all possess similar eccentricities and thickness. Right: projected gas density for S6 at t = 664, at a slightly
larger perspective than previous images. The overall gas dynamics are very similar to S2. At the time
of writing the simulation has not yet progressed far enough for the filaments to collapse into stars. The
two projections together are an indication of the range of behaviour that can be obtained from the cloud
collision and the resulting flow with very little change to the parameters.
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both gas and stars. Compared with all the other runs, the accretion disc extends out to

as much as r ∼ 20 and represents a very coherent disc with little warping. Outer gas

filaments do not form due to complete mixing of the original gas clouds.

Simulation S6 is again different in that it possesses the largest collision velocity of all

the simulations, whilst retaining a cooling parameter of β = 1. One therefore expects

the resulting thermal expansion of the clouds to significantly modify the velocities of the

particles and encourage mixing. However, since the impact parameter is relatively large,

this simulation actually has more in common with S2 that with S5, particularly in the

inner parts where the gas forms into a double disc structure. The only major difference

between these two simulations is that in S6 the secondary cloud has an orbit that is further

out than its S2 counterpart, meaning the spatial scale of the secondary filament is shifted

outwards. Figure 4.8 shows a snapshot from S6.

4.4.1.2 Redistribution of angular momentum

It is useful to analyse the re-distribution of the gas as a result of the collision in terms

of orbital parameters, namely, angular momentum and eccentricity. Gas with specific

angular momentum l = |r × v| circularises at the circularisation radius, rc, given by the
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Figure 4.9: The distribution of SPH particles over the circularisation radius of their orbits for S1. The
black, magenta, blue and red curves corresponds to times t = 0, 25, 50, 500, respectively. As the result of
angular momentum cancellation due to shocks, particles “leak” to small radii, establishing there a disc
that eventually forms stars.
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relation

l2 = GM(rc)rc , (4.14)

where M(r) is the total enclosed mass within radius r. Figure 4.9 shows the distribution

of gas particles over the circularisation radius of their orbits as a histogram for several

snapshots. At time t = 0, the distribution is highly peaked around the clouds’ initial

positions. Due to the collision, however, a tail to small rc appears in the distribution very

quickly. This is not due to viscous angular momentum transport, as in thin accretion discs,

but is rather due to cancellation of oppositely directed angular momentum components in

shocks. Some of the gas particles aquire particularly small angular momenta and hence fall

to small radial separations from Sgr A∗ on nearly radial orbits. Particles with rc < racc are

in general accreted by Sgr A∗ in our formalism (unless their orbit is changed by interactions

before they make it inside racc). Particles with rc > racc settle into a thin rotationally

supported disc, or into sheared out filaments (the remains of the clouds). Note that due

to a complicated geometry, some SPH particles pass through shocks several times before

reaching their final destination (i.e., the disc).

Figure 4.10 shows the profiles of orbital eccentricity defined on radial shells plotted for

several snapshots. These profiles again show that soon after the collision the inner part

of the computational domain is dominated by gas on plunging (high eccentricity) orbits.

At later times finite net angular momentum of gas and shocks force the gas to circularise.

It is notable that gas circularises faster at smaller radii, which is naturally expected as

the orbital time is shortest there. Therefore, at the end of the simulation, nearly circular

gaseous orbits are established in the innermost few arcseconds, whereas highly eccentric

ones dominate at larger radii.

The structures that are formed in the simulation can also be identified by the orienta-

tion of the angular momentum vector of a particle’s orbit, L. We define two angles, θ and

φ, so that Lz = L cos θ, where Lz is the z-component of L, and tanφ = Ly/Lx. We then

plot the values of these angles for individual SPH particles and stars in the Aitoff projec-

tion. As the number of SPH particles is too large to show each particle, we show only a

fixed fraction of these, randomly chosen from the total number. This procedure keeps the

resulting maps reasonably clear while also preserving the shape of the distribution.

The result is shown in Figure 4.11 for a selection of times. At t = 0 all the gas particles

are concentrated in the two clouds, with the finite spread in the distribution arising as

a result of all the particles within a cloud having the same velocity, whilst possessing

a finite spread in positions about the centre. The difference in the orientations of the

two clouds is almost 120◦ (see Table 4.1). By t = 100, the clouds have collided and the

gas particles have experienced ‘kicks’ in different directions, filling the entire range in θ.

The φ values are restricted to a range about +90◦ and −90◦. Note that the dominant

structure formed in these angular coordinates forms a plane Lx ≈ 0 in L-space. This can
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Figure 4.10: Gas eccentricity defined on radial shells as a function of the shell’s radius at different times.
Black, blue and red curves corresponding to time t = 50, 100 and 250. Note that initially only gas on
near-plunging high eccentricity orbits arrives in the innermost region, but with time gas circularises to
e ≪ 1.
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Figure 4.11: Angular momentum direction in terms of the azimuthal, θ, and the polar, φ, angles. The
frames are shown at t = 0, 100, 250, 1000. Gas particles are colour-coded; r ≤ 1′′ (red), r ≤ 5′′ (orange),
r > 5′′ (blue).

————————————————————————–
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be understood by noting that gas particles experience the collision close to the x-axis, i.e.,

where y/x ≈ z/x ≈ 0. Therefore, the x-component of the resulting angular momentum,

Lx = yvz − zvy is very small compared to L.

The plots are colour-coded to show the behaviour of the gas in the inner arcsecond

(red), the inner 5 arcseconds (orange), and outside the inner 5 arcseconds (blue). Whilst

the distribution just after the collision is fairly spread out for all the three regions, we

note a clear difference at later times. In particular, the innermost disc settles into a region

which sits in between the two clouds’ original positions. It is also the least spread out

structure, apparently defining a thin disc which is only slightly warped by t = 1000. The

innermost disc orientation does evolve with time, however, since matter infall on the disc

continues throughout the simulation. The gas coloured in orange demonstrates a greater

extent of warping, and the region outside cannot even be classified into a single structure,

as Figure 4.4 shows. Nevertheless, it is clear that the inner and outer gas distributions are

similarly oriented with respect to each other, with the majority of the outer gas angular

momentum distributed in θ and φ between the initial values of the clouds.

Differences between S1 and S2 can be noted by looking at the respective histogram

plots of circularisation radius (Figure 4.9 and Figure 4.12 respectively). A tail to small rc

appears faster in S2, by t = 25 rather than t = 50 in S1. The distribution of gas in S2

by t = 500 shows three individual peaks corresponding to the three populations; the inner

disc (r ≤ 0.5), the mid-range disc (0.5 ≤ r ≤ 2), and streams (10 ≤ r ≤ 20). This is in

contrast to the more even distribution of S1.

4.4.2 Star formation

4.4.2.1 Star formation histories

Stars in S1 form in both the disc and the primary filament. The two populations are fairly

co-eval, forming in the primary filament, at a radius of r ∼ 25, by t ∼ 900 and in the disc

by t ∼ 950. Both populations initially consist entirely of low-mass stars (∼ 0.1 − 1M⊙),

but high-mass stars (M ∼ 100M⊙) soon appear in the disc, by t = 1100. As time goes

on, both the inner (disc) and outer (filament) stellar populations increase in number. The

outer population mass function remains dominated by low-mass stars whilst the inner

population mass function becomes top-heavy. Of course, as noted in Section 4.2, the mass

spectrum of stars formed depends on several physical parameters (e.g., see Nayakshin et al.

(2007)) that are modelled only to a first approximation here. Furthermore, we have no star

formation feedback implemented in our models. We would expect the mass spectrum of

our models to change significantly if the proper cooling and feedback physics was included.

Stars form earlier in S2 than in S1, and they form in the disc first, by t = 400. The

preferential sites of star formation in the disc appear to be dense concentric ring structures

(see Figure 4.6) and we discuss these in more detail in Section 4.4.3. Owing to both the
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Figure 4.12: The distribution of SPH particles over circularisation radius for simulation S2. The curves
are for times t = 0, 25, 50, 500.
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Figure 4.13: Angular momentum orientations for SPH particles (grey) and stars (colour) in simulations
S1 (left) and S2 (right) at t = 1250.

————————————————————————–
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primary and secondary clouds forming into filaments in S2, as well as those filaments

containing a larger amount of mass than in S1, there is a far greater amount of star

formation at large radii in S2 than in S1 at the same time. This can be seen in Figure 4.5.

The stars formed in the filaments are all low mass (0.1 − 1M⊙) and show a tendency to

form into clusters; this effect we discuss in more detail in Section 4.4.2.2.

Star formation occurs earlier in S3 than it does in S1. In particular, first stars appear

at t = 150 in S3 and only at t ≈ 1000 in S1. This is expected since faster cooling facilitates

faster gravitational collapse. The S2 to S4 comparison is less extreme but still significant,

with stars forming in S2 by t = 400 and in S4 by t = 100. In both β = 0.3 runs the

initial sites of star formation were the orbiting gas streams, with disc populations forming

slightly later, t = 350 (S3) and t = 180 (S4).

The clearly defined concentric ring structures of the S1 and S2 discs were also seen

in S3 and S4, although they did not provide the sites of star formation in this case,

as fragmentation into sink particles occurred a long time before the rings have formed.

In terms of the stellar mass spectra all the stars formed in S3 and S4 are low mass

(∼ 0.1− 1M⊙), both in the stream populations and in the disc. Again, this is naturally a

consequence of a fast cooling time (Nayakshin, 2006; Shlosman et al., 1989a). Comparing

S3 and S4 themselves yields some interesting results. Figure 4.14 contrasts S3 and S4 in

terms of projected density and Figure 4.15 in terms of angular momentum of the stellar

orbits. Once again, a larger impact parameter in S4 compared to that in S3 (see Table 4.1),

allows part of the second (smaller) cloud to survive as a filament. There are therefore two

filaments present rather than one. Star formation again occurs in both filaments which

leads to a much more dynamically diverse stellar population than in test S3.

4.4.2.2 Clustered star formation

Figure 4.15 shows the orientation of angular momentum of gas and star particles in S3

and S4. Amid obvious similarities with runs S1 and S2 (Figure 4.13), one notices extended

linear structures, ‘filaments’ or ‘arms’ in Figure 4.15 for S3 and especially for S4. These

structures, extended in velocity space, are in fact produced by the most compact features

in coordinate space – the star clusters. These clusters are seen visually in Figure 4.14. The

velocity dispersions of the stars in these very dense clusters is high; some are comparable

to the orbital velocities of the clusters themselves. For example, in the right panel of

Figure 4.15, the two longest continuous filaments, separated by 180◦ in φ, are produced by

the densest and most massive cluster located at z ≈ 0, x ≈ −4, y ≈ −28 in the right panel

of Figure 4.14. Due to its location close to the y-axis, the y-component of the angular

momentum of any star that belongs to the cluster satisfies ly = −xvz+zvx ≈ 0. Therefore,

the cluster’s stars form an incomplete plane ly ≈ 0 in angular momentum space, producing

the two (actually one) very long ‘filament’ in the right panel of Figure 4.15. This cluster
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Figure 4.14: Projected gas density for simulations S3 (left) and S4 (right) at time t = 360, showing the
locations of the stars. These plots are the equivalent visualisations of the Aitoff projection plots below.

————————————————————————–

Figure 4.15: Angular momentum distribution of individual gas particles (grey) and stars (colour) in
simulation S3 (left) and S4 (right) at time t = 360. Extended stellar structures in these plots, such as
concentrations and linear features, actually corresponds to extremely compact ‘star clusters’. In the case
of the most extended linear feature (right-hand plot), velocity dispersion inside the clusters is comparable
to the orbital velocity of the cluster.

————————————————————————–
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is the remnant of the primary cloud, and its mass is ∼ 3000 solar masses.

In fact most of the stars in simulations S3 and S4 belong to a cluster. This clustered

mode of star formation in the fast-cooling runs is due to the gas collapsing promptly

and thus forming very massive dense gas halos. The mass function that we find for the

outer stellar population(s) is therefore likely to be a result of our particular star formation

treatment. We note that in such a dense environment, any feedback from star formation

activity, such as radiation or outflows, would not have been able to escape easily and would

therefore have heated the surrounding gas, suppressing further fragmentation. Rather then

than multiple low-mass stars in a cluster we would perhaps have seen fewer, higher mass

stars formed. Indeed this effect of feedback has been documented a number of times in

the literature (Nayakshin, 2006; Krumholz and Bonnell, 2007). We expect also that our

results for star formation would change if the colliding clouds had net rotation (spin)

before the collision, or if they had a turbulent structure, providing some stability against

collapse.

4.4.2.3 Radial distribution of stars

Interestingly, the most robust result from all of the six runs completed is the fact that

distribution of stellar mass in an annulus, dM∗ = Σ∗(R) 2πRdR, versus radius roughly

follows the law

Σ∗(R) ∝
1

R2
. (4.15)

We show these distributions for runs S1, S2, S3 and S5 (all the simulations that have

progressed far enough to transform a significant fraction of the gas into stars). To facilitate

comparison with observational data, we use the projected radius instead of the proper

3D radius, which is not directly known in observations of young stars in the GC (e.g.,

Genzel et al., 2003). As the viewing angle of the stellar system modelled here is arbitrary,

we chose to plot the distributions along the three axes of the simulations, so that R =
√

x2 + y2 for the black symbols, R =
√

y2 + z2 for the red symbols, and R =
√
x2 + z2

for the blue symbols. The lines in the figure show R−2 (dotted) and R−3/5 (dashed) power

laws. The latter corresponds to that predicted by non self-gravitating standard accretion

disc theory (refer to Chapter 2, Section 2.3.4).

This result is remarkable given very large differences in the 3D arrangments of the

stellar structures in our simulations. The 1/R2 law is in good agreement with the observed

distribution of ‘disc’ stars (Paumard et al., 2006). We have not been able to attribute a

simple anaytical explanation to this scaling, other than to suggest that cancellations of

angular momenta in shocks appears to be very efficient in driving gas to smaller radii.

We did however examine the distribution of the gas for a given N-body velocity profile

emerging from the initial cloud collision, and attempted to fit the resulting circularisation

radius rc distribution to our result for Σ∗(R). The thermal expansion of our clouds as they

143



Cloud collisions in the Galactic centre 4.4. Results

0.1 1.0 10.0 100.0
r

0.1

1.0

10.0

100.0

1000.0

10000.0

Σ 
st

ar
s[

M
su

n/
ar

cs
ec

2 ]

0.1 1.0 10.0 100.0
r

0.1

1.0

10.0

100.0

1000.0

10000.0

Σ 
st

ar
s[

M
su

n/
ar

cs
ec

2 ]

0.1 1.0 10.0 100.0
r

0.1

1.0

10.0

100.0

1000.0

10000.0

Σ 
st

ar
s[

M
su

n/
ar

cs
ec

2 ]

0.1 1.0 10.0 100.0
r

0.1

1.0

10.0

100.0

1000.0

10000.0

Σ 
st

ar
s[

M
su

n/
ar

cs
ec

2 ]

Figure 4.16: Stellar surface density, Σ∗, versus projected radius, for runs S1 (top left, at t = 1955),
S2 (top right, at t = 2243), S3 (bottom left, at t = 1396) and S5 (bottom right, at t = 2696). Different
colours show the three different orientations, along z, x and y axes (black, red, and blue respectively).
Power laws are overlaid for R−2 (dotted) and R−3/5 (dashed). All four plots correspond to the maximum
time to which each simulation has been run.
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collide can be modelled to a first approximation as an isotropic, delta-function velocity

profile, which for small values of rc yields a slope of Σ ∝ R−1. Introducing a gaussian

velocity profile into the isotropic distribution, centered about low velocities, acts to steepen

this slope closer to the desired R−2. Beyond this simple N-body model, shocks and small-

scale collisions elsewhere in the simulation will drive gas deeper into the potential well,

increasing the slope even further. It would be interesting to explore a larger parameter

space to quantify the robustness of these results.

4.4.3 Inner disc

4.4.3.1 Ring instability

Interestingly, in all of our simulations we discovered that the disc surface density exhibits

eccentric rings in the inner parts. Star formation occurs preferentially in these rings (see

Figure 4.6) in the slower cooling runs. The inner discs in runs S1-S6 are eccentric, warped,

with a radial gradient in these properties, and evolving under the influence of a continuous

but variable infall of material from larger radii. The rings therefore appear to form as a

result of wave motion that propagates radially generating a series of regularly spaced

overdensities in the form of rings that are enhanced through gas cooling. So far we have

been unable to reproduce the effect in cleaner purpose-designed simulations. In particular,

we ran simulations with eccentric and circular, flat and warped discs, but found no ring

structures. Similarly, Nayakshin et al. (2007) did not encounter rings in their simulations

of initially circular self-gravitating discs.

The most likely origin of this instability is reflection of waves at our inner boundary

condition; namely, the accretion radius around Sgr A*. By analogy with wavelike phe-

nomena in other fields (such as optics), a wavelike disturbance moving through the disc

will suffer partial reflection at the accretion boundary, as it marks a step change in the

equivalent ‘refractive index’ of the medium through which the wave is travelling. Reflected

waves will then set up an interference pattern with any incoming waves, creating a series

of high- and low-density regions (Alexander, R., private communication). We have tested

this hypothesis by altering the size of the accretion radius; with a smaller racc the ring

structures were far less marked, and did not propagate as far, while with a larger racc

the instability was even stronger. This suggests that it is indeed our inner boundary con-

dition that is the cause of the problem. The strength of the instability, and our failure

to reproduce it in purpose-designed tests, is the result of the strongly perturbing nature

of the inflow that supplies the disc with material, and the lack of such behaviour in the

cleaner, test discs. We note, somewhat fortunately, that when star formation does occur

in these rings it does so, in general, with r < 1′′, a region in which stars would not be

expected to form in standard accretion disc theory (refer to Chapter 2, Section 2.3.4) as it

lies within the self-gravity radius. We therefore do not take any notice of star formation
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in this region.

4.4.3.2 Midplane rotation

Simulation S4 is also interesting in that the inner disc undergoes complex evolution in

angular momentum space. Due to the more grazing nature of the collision compared to

S3, the inner disc feeding is more intermittent in its distribution of angular momentum.

The newly arriving gas tweaks the disc orientation significantly. This is clearly seen in

Figure 4.17, where the stellar disc remembers the ‘old’ orientation of the gaseous disc in

which the stars were born, whereas the gaseous disc evolves to quite a different orientation.

The possibility of this effect taking place was suggested, based on analytical arguments,

by Nayakshin and Cuadra (2005). These authors found that stars will not follow disc

midplane changes if these occur faster than the ‘critical rotation time’, which we briefly

derive now. Firstly, we assume that the typical timescale for ‘midplane rotation’ of a disc

is set by the mass condensation rate, Ṁc, such that

trot ∼
Mdisc

Ṁc

(4.16)

where Mdisc is the mass of the disc. As the gas disc rotates perpendicular to the orbital

rotation, and begins to separate from the stars, the characteristic relative velocity between

the stars and the gas is ∼ vK/trot, where vK is the Keplerian velocity. This defines an

effective ‘rotation acceleration’, given by

arot =
vK
trot

(4.17)

We must also consider the gravitational attraction between the disc and a star that has

been left behind. Assuming the disc to be an infinite plane, this is given by

apl = 2πGΣ (4.18)

It is clear that we obtain the critical timescale for rotation when the ‘rotation acceleration’

of the turning disc midplane is equal to the gravitational acceleration between the star and

the disc, namely apl = arot. The centrifugal acceleration of a star in a circular Keplerian

orbit of cylindrical radius R around the central black hole is

ac =
v2K
R

= apl
Mbh

2Mdisc
(4.19)

since Mdisc = πR2Σ. For critical rotation we therefore have

arot =
2Mdisc

Mbh

v2K
R

(4.20)
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Figure 4.17: The inner 1.5 arcseconds of the simulation S4 at t = 180 (left panel)and t = 260 (right
panel). Note that stars born in the gaseous disc at the earlier time kept their orbital orientation whereas
the gaseous disc has evolved due to deposition of new matter from larger radii.

————————————————————————–

yielding a timescale of

tcrit = trot =
Mbh

2Mdisc

R

vK
=

Mbh

2Mdisc
tdyn (4.21)

which is estimated to be about 500 in our code units for the disc in Figure 4.17. Our

simulations are thus consistent with these predictions as the disc orientation changed on

a timescale of just t = 80 in code units.

As a result of a several star forming events in gaseous discs of different orientations,

the inner stellar disc in S4 is very much different from that found in the run S2, and even

more so for S1. In the latter cases, when cooling is more gradual (i.e. β = 1), the inner

disc is fed in a steady-state manner. The S2 disc does show significant rotation out of

the plane, but stars only form once it has settled into a stable orientation. Hence the

resulting distribution of stars is that of a geometrically thin disc (see Figure 4.13). Such

a distribution is broadly consistent with the observed orbits of young massive stars in

the clockwise disc (Paumard et al., 2006). Due to gaseous disc midplane changes coupled

with quicker fragmentation, the resulting stellar disc in S4 is much thicker, with H/R ∼ 1.

Simulation S4 thus fails to account for the most prominent feature of the observational

data.
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Figure 4.18: The time evolution of the accreted mass on to the central black hole (solid line) and the
corresponding accretion rate (dotted line) compared to the Eddington limit for Sgr A* (dotted red line), for
simulations S1 (top left), S2 (top right), S3 (bottom left), and S4 (bottom right). Note that the variations
in the accretion rate that lie below the Eddington limit should not be trusted in detail since for Ṁ < ṀEdd

typically only <∼ 10 particles are accreted per orbit.

————————————————————————–

4.4.4 Feeding Sgr A*

Figure 4.18 shows the mass accretion rate for the central black hole for simulations S1-S4.

Formally, the Figure indicates that our simulations provide a sustained super-Eddington

accretion rate (for Sgr A∗ the Eddington rate is ∼ 0.03M⊙ yr−1), in some cases for over

104 yrs. However, it must be remembered that we do not resolve the gas dynamics inside

the accretion radius. We expect that material will form a disc there, and accretion will

proceed viscously. The viscous time scale, tvisc, depends on the temperature in the disc

midplane and the viscosity parameter, α (Shakura and Sunyaev, 1973). The midplane

temperature in the inner arcsecond is ∼ 103 K in both the standard (non self-gravitating,

e.g. Nayakshin and Cuadra (2005)) and the self-gravitating regimes (Nayakshin, 2006),
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yielding H/R ∼ 0.01. Hence, the viscous time is

tvisc = 6× 106 years α−1
0.1

[

R

100H

]2

R3/2 , (4.22)

where α0.1 = α/10 and R is in our code units (one arcsecond). With these fiducial numbers,

the viscous time scale coincides with the age of the young massive stars in the GC (e.g.,

Krabbe et al., 1995; Paumard et al., 2006). As α is highly uncertain, we shall consider the

two extreme cases. If tvisc ≪ a few million years (e.g., if α = 0.1, tvisc ≈ 106 years at 0.3”),

we expect that gas would have mainly accreted on to Sgr A∗ by now. This accretion rate

would be a significant fraction of the Eddington accretion rate. Standard disc accretion

would then generate as much as 2 × 1056 erg Macc,3 of radiative energy, where Macc,3 is

the gas mass accreted by Sgr A∗ in units of 103M⊙. A similar amount of energy could

have been released as energetic outflows. There is currently no evidence for such a bright

and relatively recent accretion activity of Sgr A∗.

In the opposite limit, i.e., if α ≪ 0.1, and tvisc
>∼ a few million years, the gaseous

disc should still be there as self-consistent modelling predicts that stars should not be

forming within R = 0.3′′ − 1′′ (Nayakshin, 2006; Levin, 2006). There are however very

strong observational constraints on the absense of such a disc in the inner arcsecond of

our Galaxy (e.g., Falcke and Melia, 1997; Narayan, 2002; Cuadra et al., 2003). Therefore,

our simulations seem to over-predict the amount of gaseous material deposited in the

inner ∼ 0.3′′. We take this as an indication that a better model would perhaps involve

a gaseous cloud of a larger geometric size, thus shifting all spatial scales outwards (see

further discussion of this in Section 4.5).

4.4.5 Summary of results

In terms of the final distribution of gas and resulting stellar populations, our results can

be divided into two main categories.

1. For those runs with a relatively small impact parameter, namely S1, S3 and S5, the

initially small-scale disc around the black hole grows by steady accumulation of gas

to extend out to r ∼ 15′′. As a result, more than one stellar population is seen in the

disc. In addition to the ubiquitous stars in the inner few arcseconds, a ‘mid-range’

population is seen, at r ∼ 5 − 8′′. Populations in the filaments vary: in S1, only

the primary filament forms a stellar population, as the secondary has accreted on

to the disc by the time stars begin to form; in S3, although the gas dynamics are

the same, the secondary filament forms stars before it can accrete, resulting in two

filamentary populations; and in S5, due to the small impact parameter a single large

disc is created, resulting in three disc stellar populations all at a similar orientation.

149



Cloud collisions in the Galactic centre 4.4. Results

2. For the runs with a larger impact parameter, namely S2, S4 and S6, the small-scale

disc grows very little over the course of the simulation, staying within a radius of

a few arcseconds. The feeding of the disc is far from steady, generating enhanced

midplane rotation, which, coupled with star formation (particularly in the case of

faster cooling, e.g., S4) results in geometrically thick stellar populations. Both the

primary and secondary filaments survive, and each form stellar populations inclined

at a large angle to each other.

The other results of our simulations, presented roughly in the order of their commonality

to the six runs, are the following. Firstly, the formation of a nearly circular, gaseous disc

in the inner region of the computational domain is common to all runs, as is the ensuing

formation of stars on similar near-circular orbits. This is natural as the dynamical time

in the innermost disc is only ∼ 60 r3/2 years. On the scale of the inner disc, r ∼ 1,

the disc makes tens to hundreds of revolutions during the simulation, allowing for near

circularisation of the gaseous orbits. Conversely, the outer gaseous stream becomes self-

gravitating much faster than it could circularise (or even become an eccentric disc), and

hence orbits of stars in that region are more eccentric. This division on inner near-

circular and outer eccentric orbits is in broad agreement with the properties of the observed

orbits (Paumard et al., 2006). One discrepancy however is the eccentricity of the counter-

clockwise feature of the observations compared to the outer stellar populations as seen in

our model; the former is believed to possess a value of e ∼ 0.6 − 0.8 whilst the latter we

find is only e ∼ 0.2− 0.4. We believe that simulations that use a strongly eccentric initial

orbit for one of the clouds should be able to match the observations more closely.

Secondly, we found that the radial distribution of stellar mass closely follows the ob-

served Σ∗ ∝ 1/R2 profile of the disc stellar populations (Paumard et al., 2006). This was

observed for all the simulations, although we expect these results would change if the

colliding clouds moved in similar directions, significantly reducing the angular momentum

cancellation in the shock and the thermal ‘kick’ velocity due to the shock. Of course, this

latter setup would prevent the formation of stellar populations at a large angle of inclina-

tion with respect to each other (one of the most prominent features of the observational

data), so it is reasonable that we have not tested this possibility in our model.

For the same initial configurations, simulations with a comparatively long cooling time

parameter, β = 1, lead to kinematically less dispersed stellar populations than those

with faster cooling (i.e., β = 0.3). As a result, the longer the cooling time, the more

closely the resulting stellar system can be fit by planar systems in velocity space. The

innermost stellar disc is then reminiscent of the observed clockwise thin stellar system

(Paumard et al., 2006) in terms of stellar orbits. Rapid cooling produces clumpier gas

flows that lead to significant gaseous disc orientation changes during the simulations.

Rapidly cooling gas flows naturally form less coherent discs; such geometrically thick
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systems are incompatible with the observations. Interestingly though, with the chosen

initial conditions, faster cooling promotes survival of the gaseous streams corresponding

to the orbits of the original clouds. These streams fragment and form stars mainly in a

clustered mode, although this might be expected to depend on the details of the radiation

feedback from young stars, which is not modelled in this set of simulations. Our slower

cooling runs produce inner and outer stellar systems that are inclined to each other by

only about 40◦, which is much smaller than the observed angle of ∼ 110◦ between the discs

(Paumard et al., 2006). This is a natural consequence of angular momentum conservation

in ‘well-mixed’ gas flow – the disc orientation in our model will always lie in-between the

positions of the initial clouds in angular momentum space.

Finally, another robust result of our simulations is that all of the gaseous and ensuing

stellar discs are significantly warped, by between 30◦ to 60◦ measured from the inner to

the outer radii. Interestingly, the most recent analysis of the observations reveals strong

warps in the clockwise disc system (Bartko et al., 2009).

4.5 Discussion

4.5.1 Comparison to the Galactic centre

There are a number of aspects of our simulations that show promise in re-creating the

observed properties of the GC in terms of bulk dynamics. The in situ accretion disc

model suffers from two major difficulties (Paumard et al., 2006); namely, the presence of

a massive stellar cluster (IRS13E) and a highly eccentric outer stellar population, and the

presence of two co-eval discs inclined at a large angle to each other. In the latter case,

the assumption that each disc was formed from a different cloud infall event requires that

two such events occurred within ≃ 1 Myr, which is quite unlikely. Our model, although

simplistic, manages to account for each of these difficulties. We see the formation of a

dense, massive stellar cluster, in the outer eccentric gaseous filament, and this filament

forms stars that follow the eccentric orbits of the gas. We also form two distinct stellar

populations from a single progenitor event, with these populations inclined at an angle

to each other. It does appear, however, due to angular momentum conservation, that it

is quite difficult to reproduce the large angle of inclination seen in the GC, as the inner

population’s orientation is formed from the combination of the initial angular momentum

vectors of the clouds whilst the outer populations correspond to the individual clouds’

angular momenta. The maximum angle that can be achieved between the inner disc and

an outer filament in our model is therefore approximately half of the initial angle between

the clouds’ velocities for a collision of equal mass bodies.

Although the bulk dynamics of our simulations are reasonably matched to GC obser-

vations, we do not manage to reproduce the specific properties of the observed stars and
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their orbits in detail. However, there are important hints on a plausible scenario for the

formation of these stars. The observed well defined, flat, geometrically thin and almost

circular inner stellar system is best created via a gentle, slow accumulation of gas. Several

independent major gas deposition events lead to a disc that is too warped, and/or ‘mixed

up’ systems consisting of several stellar rings or discs co-existing at the similar radii. To

avoid this happening, the inner disc must be created on time scale longer than the critical

rotation time, which is estimated at tcr ∼ few ×104 years. The deposition of gas in the

inner disc takes place on the longest of two timescales: the cooling time tcool and the

collision time, tcoll ∼ rcl/vcl, where rcl and vcl are the cloud’s size and velocity magnitude.

4.5.1.1 Estimate of the cooling time during the cloud collision

Let us first estimate realistically the clouds’ cooling time as they collide. For this we must

analyse the processes occuring during the collision.

1. Clouds moving at ∼ a few hundred km s−1 (namely, a highly supersonic velocity)

would shock, reaching a temperature of up to a few million K. This value can be

obtained from applying the Rankine-Hugoniot shock conditions (refer to Chapter 3,

Section 3.2.5), with the assumption that the equation of state is adiabatic, γ = 5/3.

This puts a limit on the ratio between the pre- and post-shock densities, ρ2/ρ1 ≃ 4.

Using the 2nd shock condition (equation 3.76) we find

P2 = P1 +
3

4
ρ1v

2
1 (4.23)

where subscripts 1 & 2 refer to pre- and post-shock regions respectively. Putting

in the relevant values for the quantities (in particular the initial cloud density of

≈ 6.7× 1017 g cm−3), we find the post-shock temperature from

T2 =
µmpP2

kBρ2
≈ 1.4× 106K (4.24)

2. This shock temperature is above the typical ionisation threshold for H (∼ 104 K),

ensuring that the gas is ionized and optically thin. The gas will therefore cool

through Bremsstrahlung (free-free) emission, the cooling function for which we derive

in Appendix D. This results in a cooling time of

tcool =
3nkBT

Λn2T 1/2
(4.25)

where n is the number density in the gas (for our clouds this is n ≈ 4 × 107 cm−3)

and

Λ =

(

q6

m2
ec

3

)(

mekB
~2

)1/2

(4.26)
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where q is the charge on an electron, me the mass of an electron, and ~ is Planck’s

constant. Putting the relevant quantities in yields tcool ≃ 5.8 × 107 s, 3-4 orders of

magnitude shorter than the dynamical time at the position of the cloud collision,

tdyn ≃ 2.6 × 1011 s. This is in contrast to the simulations in our model, where

tcool ∼ tdyn.

3. The Bremsstrahlung emission will be in the form of soft X-rays (Erad ≃ 2.9× 10−10

erg s−1 ≃ 200 eV) which have energy far higher than the photoionisation energy

for hydrogen (13.6 eV). The X-rays thus photoionise the cloud, making the domi-

nant source of opacity that of bound-free absorption. The cross-section, above the

ionisation threshold, scales with frequency as

σ(ν) = σbf

(

ν

νthresh

)−3

(4.27)

where νthresh is the threshold frequency of 3×1015 Hz (corresponding to a wavelength

of 91.2 nm), and for hydrogen σbf ≈ 10−17 cm2 (Rybicki and Lightman, 1986). For

soft X-rays with ν ∼ 1017 Hz, we find a cross-section of σ ≈ 2.7 × 10−22 cm2. For

the clouds to be Compton-thick to the irradiating X-rays, therefore, we require a

number density along the line of sight greater than or equal to 1/σ. To an order of

magnitude, this is Σ ∼ ρ rcloud ≃ 2.4 × 1025 cm−2. We can see therefore that the

X-rays will be fully absorbed within the clouds.

4. Although X-rays are photoionising, the high density necessarily results in recombi-

nation of any free electrons, and the dominant effect will be heating of the cloud.

The heated parts of the cloud, will, in turn, radiate as a blackbody. We can get the

effective temperature of this radiation, assuming the cloud is optically thick, from

the luminosity per surface area via the standard Stefan-Boltzmann law:

L = 4πr2σT 4
eff (4.28)

The luminosity we assume to derive from the kinetic energy of the collision, Ekin =

1/2 m(∆v)2 ≃ 1052 erg, over a collision time of rcloud/∆v ≃ 1010 s. This comes out

as ≃ 1042 erg s−1, giving Teff ≃ 500 K. From Wien’s law, the peak wavelength of the

emission from a blackbody at this temperature is ≃ 6µm.

5. Finally, then, we must determine the clouds’ optical depth to radiation with λ ≃
6µm. We note that the energy is not high enough for photoionisation, and so we

must consider bound-bound opacities, and for realistic molecular clouds, dust and

metal opacities also. For this we turn to the Bell and Lin (1994) opacity graph, from

which we read off the dust opacity (the dominant one at low temperatures since the
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cloud will be mostly H2) as κ ≃ 2 cm2 g−1. Converting this into an optical depth,

dτ ∼ κρ rcloud, we find that τ ≃ 80, i.e., very large. This means that the cloud will

radiate as a blackbody, with a rate of flux per unit area according to F = σT 4. This

last estimate puts tcool at least 2 orders of magnitude shorter than the dynamical

time.

We conclude then that the cooling time during the collision is unlikely to exceed the

required tcr unless we accept an unrealistically low mean gas density in the original cloud

(say, 10 hydrogen atoms per cm3, which is implausibly low for the inner parsecs of the

Galaxy). We are thus left with the only option to require the collision itself be more

prolonged than tcr. Estimating the velocity of the cloud at vcl ∼ 150 km sec−1, which

is of order of circular velocities in the inner Galaxy outside the inner parsec, we find

tcoll = rcl/vcl ∼ (104 yrs) rcl,pc, where rcl,pc is the size of the cloud in parsecs. We hence

require the cloud to be larger than a few parsecs to satisfy tcoll
>∼ tcr. Note that this size

is not necessarily the original size of the cloud if the cloud gets tidally disrupted before it

makes the impact. In the latter case we can take rcl to be the radial distance to the centre

of the Galaxy at which the tidal disruption took place. Finally, the location of the collision

should not be too far from the central parsec, or else too much angular momentum would

have to be lost to deposit a significant amount of gas at ∼ 0.1 pc region. Taking these

constraints together, we believe that the most realistic scenario would be a giant molecular

cloud (GMC) of the order of a few parsec in size striking the circumnuclear disc (CND)

at the distance of a few parsec from Sgr A∗.

Another argument going in the same direction comes from a comparison of the radial

distribution of gas and stars in our simulations with the observed stellar distribution

(Paumard et al., 2006). The former is too compact, i.e., all of our simulations deposited

too much mass within the inner arcsecond. In addition, if that was indeed the case 6

million years ago, then Sgr A∗ would have received a significant amount of fuel, enough

to become at least a bright AGN. Given the long viscous times in the inner arcsecond,

Sgr A∗ could actually continue to accrete this fuel now. However, it is well known that

there is no geometrically thin and optically thick disc inside the inner arcsecond of Sgr A∗

(Falcke and Melia, 1997; Narayan, 2002; Cuadra et al., 2003). Eliminating the gaseous

disc by star formation is not an option as there are not enough massive young stars

observed there.

4.5.2 Alternative models

There are a number of authors who have considered similar models to the one that we

use here. Bonnell and Rice (2008) have performed simulations of an infalling turbulent

molecular cloud on a sub-parsec impact parameter with respect to the SMBH. Both found

that the cloud became tidally disrupted and formed an eccentric disc around the black
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hole. This disc later fragmented into stars with a top-heavy IMF, in agreement with

Nayakshin et al. (2007). In addition, they found that the stellar orbits retain the eccen-

tricity of the disc, which is more circular in its inner parts, with the eccentricity increasing

with radius. This of course is in agreement with our results for the small-scale disc in our

simulations.

Another paper, Wardle and Yusef-Zadeh (2008), used analytical arguments to suggest

that a viable progenitor for the stellar discs is the radial passage of a large-scale molecular

cloud, such as the 50 km s−1 GMC (Armstrong and Barrett, 1985), which temporarily

engulfs the SMBH, leaving behind some of its material to settle into a bound disc of gas.

Their argument stems from the idea that the capture of gas by the black hole is aided by

gravitational focusing of the passing cloud, such that regions of gas passing on opposite

sides of Sgr A* would have orbital angular momenta that would be largely equal and

opposite. Any collision between them would therefore act to directly cancel their angular

momentum. This model may be useful in explaining not only the observed stellar discs

within the inner parsec but also the CND further out at ∼ 10 pc.

Our approach uses similar principles to these authors, but is set apart by the fact that

we model a collision of two clouds of gas, rather than one, and that the collision is off-

centre. This allows us to achieve both an inner and an outer stellar population, where the

inner is more circular and the outer more eccentric, in agreement with observations. The

one cloud scenario is attractive both qualitatively and quantitatively as an explanation

for the origin of the clockwise stellar disc, but we note that the young, massive stars that

do not kinematically belong to the clockwise disc account for no less than ∼ 50% of the

overall stellar population. Whether the majority of these stars form the second disc or

not, their velocity vectors differ from the clockwise disc by up to a few hundred km s−1

(which is of the order of the circular velocity at these distances). The velocity dispersion

even in a very compact GMC, with a mass of, say, 3×104M⊙, and size of 1 parsec, is only

∼ 10 km s−1. Thus the only way to create the observed kinematically distinct population

of stars would be to postulate the existence of two or more streams (filaments) inside

the cloud that pass on opposite sides of Sgr A∗ and do not get completely mixed before

forming stars. Given our numerical experiments in this paper, this may be a plausible

scenario if the cooling time is short, β <∼ 1. What is interesting in this picture is that the

massive stars of the counter-clockwise population would then have to form very quickly,

i.e., on a dynamical timescale, or else gaseous orbits would be mixed. The rotation period

scales approximately as Trot = 3000 (R/5′′)3/2 years, so this is quite fast indeed.

It should also be noted that recent N-body simulations conducted by Cuadra et al.

(2008); Alexander et al. (2007) imply that it would have been very difficult for the high

eccentricities and inclinations of the dynamically hotter counter-clockwise feature to have

been formed from a flat, cold disc via scattering processes. A single disc progenitor for both
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GC stellar features is therefore largely ruled out. In contrast, in the case of the collision

of two clouds as considered here, it is almost too easy to obtain an inner near-circular disc

and a kinematically diverse stellar population farther out. We therefore favour a model

where a GMC collided with a pre-existing cloud or structure, such as a massive larger-scale

disc, e.g., similar to the observed CND.

4.5.3 Convergence tests

Finally, we must ensure that the results of our simulations are not dominated by numerical

effects. The role of an artificial viscosity, while essential for the treatment of shocks, can

cause unwanted dissipation and/or angular momentum transport that may modify the

behaviour of the gas flow and invalidate our findings. To this end, we have performed

convergence tests on both the artificial viscosity parameter, α, and the resolution (the

number of SPH particles) of the simulation. Both of these relate to the transport of

the gas through the computational domain, which is of particular relevance to forming

the required disc-like structures and feeding the central SMBH. A converged result is an

indication that our conclusions are not motivated by numerical artifacts but are instead

based on physical principles.

As can be seen in Figure 4.19, we find excellent convergence in both cases for the

radial density profile, the radial mass profile, and the radial mass enclosed profile of the

gas. Likewise, the visualisations (not shown here) of the various structures look very

similar when changing these parameters. There are some minor differences in the very

innermost part of the computational domain, namely r < 0.5 − 1′′, but this region is

largely unimportant for our conclusions.

4.6 Conclusion

In this Chapter we have presented several simulations of cloud-cloud collisions aimed at

reproducing gas flows that form gaseous disc(s) and stellar populations in the central

parsec of our Galaxy. We found the gas cooling time and the impact parameter of the

collision to influence the outcome significantly. Comparison of the simulations with the

observed data for the young stars in the GC suggests that the inner gaseous disc must

have been assembled in a gentle way, i.e., on time scales longer than 104 years, which is

much longer than the local dynamical time. These results agree with previous analytical

arguments (Nayakshin and Cuadra, 2005) and arguments based on specific models for the

top-heavy IMF in the GC (Nayakshin, 2006). This could occur if either the cooling time

of the flow (after the collision) was long, or the duration of the collision that resulted

in the deposition of the gas into the inner parsec was longer than 104 years. Analytical

estimates suggest that the latter possibility is far more likely, and hence we suggest that
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Figure 4.19: Convergence tests on the value of the artificial viscosity parameter, α (left-hand side) and
resolution (right-hand side) for simulation S1. The plots are: density defined on radial shells (top), mass
defined on radial shells (middle) and mass enclosed defined on radial shells (bottom). For the viscosity
parameter the lines correspond to α = 0.67 (blue), α = 2 (black) and α = 6 (red). In the resolution plots
the lines correspond to Nsph = 875, 000 (blue), Nsph = 2, 625, 000 (black) and Nsph = 5, 250, 000 (red).
We note that although the latter variation is quite a large range in Nsph, it is a relatively small range in

spatial resolution (which scales approximately as N
1/3
sph ). Unfortunately, computational limitations prevent

us from increasing this range, but we are nonetheless confident that the convergence is good enough to
demonstrate the reliability of the results.

————————————————————————–
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the initial cloud size or the location of the collision was at least a few parsecs, i.e., larger

than that of our initial conditions. We arrive at the same conclusions also from looking

at the deposition of material into the inner arcsecond (as discussed in Section 4.4.4).

We find that the transport of gas down the potential gradient of the gravitational po-

tential (dominated by Sgr A∗) proceeds both dynamically, through cancellation of angular

momentum as the clouds collide, and later viscously6, once the disc(s) form. However,

even to later times the accretion rate on to Sgr A∗(actually the accretion radius) is at or

near its Eddington limit. This appears to be a consequence of a highly disordered flow,

with the hot gas left over from the cloud collision cooling, self-colliding, and generally

continuing to infall on to the inner region in a non-axisymmetric, time-varying manner. It

is notable that the accretion rate is significantly higher for a sustained period of time in

those simulations where a small-scale, time-varying disc formed around the SMBH (e.g.,

S2, S4) rather than a large, planar disc (e.g., S1, S3, S5), as it is precisely this mode of

‘stochastic’ accretion that we proffer as a potential solution to the AGN feeding problem

(refer to Chapter 1, Section 1.7.1.2 and references therein).

A significant factor in creating this complex flow is the thermal velocity ‘kick’ that the

gas receives as the clouds collide, and more fundamentally the fact that the heat gained

from the initial collision is retained in the gas for some time, allowing it to remain diffuse

and occupy a large volume fraction of the computational domain for ∼ 104 yrs. It is at

this point that we should be cautious. As we estimated in Section 4.5.1.1, the cooling time

for the clouds as they collide and shock should realistically be a few orders of magnitude

shorter than the dynamical time; this is counter to the numerical setup of our simulations,

which necessarily cool on a dynamical time. From a purely hydrodynamical perspective,

therefore, we might expect a far more structured flow than is seen, earlier star formation,

and perhaps a lower accretion rate. On the other hand, our considerations of the cooling

time completely neglect the action of magnetic fields, which would most likely be present

in the pre-collision clouds (Levin, Y., private communication). If the radiative cooling

time is short, then the shock is essentially isothermal, and we can expect the gas to be

compressed by a few orders of magnitude for our typical conditions. A frozen-in mag-

netic field would then be amplified by similar factors, and magnetic pressure by four to

six orders of magnitude. This might present another form of energy and strong pressure

support against gravitational collapse, helping to keep the post-collision gas flow diffuse

to late times.

In the next Chapter we move to the general environment of a galactic centre, focusing

on the feeding of the central black hole from scales significantly further out than we have

dealt with here. It is important to note that some aspects of our colliding clouds model are

6it should be noted here that since there is no physical viscosity in the simulation this term really refers
to numerical transport of angular momentum through the artificial viscosity
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relevant to the model we consider next, as we stay with the theme of dynamical, disordered

accretion that results from an initial ‘kick’ imparted to the gas distribution.
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5
Feeding SMBHs through supersonic turbulence and

ballistic accretion

“You! Cake or death?

Errr...cake please.

Very well! Give him cake!”

Eddie Izzard
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5.1 Introduction

The growth of supermassive black holes (SMBHs) at the centre of galaxy bulges is known

to be correlated with observable properties of the host spheroid. The best established

correlations are between the SMBH mass, Mbh, and the velocity dispersion, σ, i.e., the

Mbh−σ relation (Gebhardt et al., 2000; Ferrarese and Merritt, 2000), and theMbh−Mbulge

relation (Magorrian et al., 1998; Häring and Rix, 2004), where Mbulge is the stellar mass

of the bulge. Understanding the formation and growth mechanisms of SMBHs is therefore

believed to be important in determining the evolution of the larger host systems.

High luminosities of high redshift quasars at z ∼ 6 (when the age of the Universe was

∼ 1 Gyr) suggest SMBH masses of up to ∼ 109M⊙ (Kurk et al., 2007), implying accretion

on to the black holes close to or even above the Eddington limit (King and Pringle, 2007)

for up to ∼ 1 Gyr. Such a strong inflow is most likely the result of major mergers

between galaxies, which have been shown via hydrodynamical simulations to drive gas

inward through gravitational tidal fields (e.g., Barnes and Hernquist, 1991). Simulations

have also shown that galaxy mergers within large dark matter halos at z ∼ 14 may be

able to drive gas in to the centre of the galaxy at a sufficient rate to grow a seed BH

of 104M⊙ to an SMBH of 109M⊙ in the required time i.e., by z ∼ 6 (Li et al., 2007).

Recent cosmological simulations of dark matter halos that include gas physics and black

hole feedback processes are able to build up the required mass by z = 6 via extended

Eddington-limited accretion (e.g., Sijacki et al., 2009).

However, an ab-initio treatment of all the relevant physical processes (gravity, star

formation, magneto-hydrodynamics, radiative feedback etc.) over the full range of scales

required is still beyond current numerical capabilities. Therefore, little is known about the

mechanism(s) that connect the large-scale flow (∼ kpc) to the small-scale accretion flow in

the immediate vicinity of the SMBH ( <∼ 1 pc). Current cosmological simulations require

sub-resolution prescriptions to encapsulate the accretion process (e.g., Springel et al., 2005;

Booth and Schaye, 2009; Sijacki et al., 2009). These models commonly use Bondi-Hoyle

accretion (Hoyle and Lyttleton, 1939; Bondi and Hoyle, 1944; Bondi, 1952), corrected up-

wards by orders of magnitude when the resolution limitations cause an under-prediction of

the desired SMBH growth rate. Recently, DeBuhr et al. (2009) performed hydrodynami-

cal simulations of major galaxy mergers, employing a sub-grid model for viscous angular

momentum transport to dictate the accretion rate, the results of which suggest that the

Bondi-Hoyle prescription actually over-predicts accretion on to the SMBH by up to two

orders of magnitude. The applicability of the Bondi-Hoyle solution to the SMBH accretion

rate is therefore not clear.

Looking at the problem from the other end, where the dynamical and viscous timescales

are short compared with cosmological timescales, it is expected that geometrically thin and

optically thick accretion discs (Shakura and Sunyaev, 1973) form due to a non-negligible
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amount of angular momentum in the gas. While it is possible to study such discs at a far

higher resolution and with more physics, the approach is obviously limited by the fact that

the disc is commonly assumed to just exist a priori. How these discs operate on ∼ pc scales

is also not clear as the discs are susceptible to self-gravity and hence may collapse into

stars (Paczyński, 1978; Kolykhalov and Sunyaev, 1980; Collin and Zahn, 1999; Goodman,

2003; Nayakshin and Cuadra, 2005).

There is thus a genuine gap between these two scales and approaches. The purpose

of this Chapter is to try to bridge this gap to some degree with the help of numerical

hydrodynamical simulations of gas accreting on to a SMBH that is immersed into a static,

spherical bulge potential. In particular, we study the ‘intermediate-scale’ flow, from the

inner 100 parsecs of a galactic bulge (just below the resolution limit for some of the better-

resolved cosmological simulations) to the inner parsec, where the gas would be expected to

settle into a rotationally-supported feature. Instead of assuming the presence of the disc,

we allow it to form self-consistently from the larger scale flow. For simplicity of analysis of

the results, we start with a spherically-symmetric shell of gas of constant density, where

the gas is isothermal throughout the simulation. The first non-trivial element in our study

is the rotation of the shell, which should force the gas to settle into a rotating disc.

While this turns out to be an interesting system in itself, forming a narrow ring rather

than a disc, we feel motivated to consider a more complex initial velocity field in the shell.

First of all, cosmological simulations show the presence of cold streams (e.g., Dekel et al.,

2009) immersed in a hotter, lower density medium. These complex gas features must

propagate to smaller scales in the bulge as well. Secondly, the abundance of gas required

to fuel the SMBH should also fuel star formation in the host. Massive stars deposit

large amounts of energy and momentum in the surrounding gas (Leitherer et al., 1992),

which is probably one of the dominant sources of turbulence in the interstellar medium

(e.g., McKee and Ostriker, 1977; Mac Low and Klessen, 2004). In general, where we can

observe it, it is evident that turbulence is ubiquitous in astrophysical flows over a wide

range of scales and systems (for a review see e.g., Elmegreen and Scalo, 2004). Strong

supersonic turbulence is a key ingredient in all modern simulations of star formation (e.g.,

Krumholz and Bonnell, 2007; Bate, 2009).

Therefore, we must expect that far from the SMBH, while the specific angular mo-

mentum of gas, l, is too large for it to be captured by the SMBH within the central parsec

(or less), the dispersion in l is also large. It is not unreasonable to expect that there will

be some gas counter-rotating with respect to the mean rotation of the flow. To test the

importance of these ideas for accretion of gas on to SMBHs, we draw on the machinery

developed for turbulent flows in the star formation field by adding a turbulent velocity

spectrum to the gas in the initial shell. By varying the normalisation of the turbulent

velocities we essentially control the dispersion in the initial gas velocities.
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We find that the role of the turbulence and in general any disordered supersonic velocity

field is two-fold. First of all, it broadens the distribution of specific angular momentum,

setting some gas on lower angular momentum orbits. Secondly, as is well known (e.g.,

McKee and Ostriker, 2007b), turbulence creates convergent flows that compresses gas to

high densities. We find that the dynamics of such regions can be described reasonably

well by a ‘ballistic’ approximation in which hydrodynamical drag and shocks are of minor

importance for the high density ‘bullets’ moving through the lower density background

fluid.

These two effects increase the accretion rate on to the SMBH by up to several orders of

magnitude, largely alleviating the angular momentum barrier problem. Note that several

authors have already suggested that star formation feedback and supersonic turbulence

inside accretion discs can promote SMBH accretion by amplifying angular momentum

transfer (Collin and Zahn, 2008; Kawakatu and Wada, 2008; Chen et al., 2009). An as-

trophysical conclusion from our simulations is that star formation in the host can actually

promote AGN accretion.

The chapter is arranged as follows. In Section 5.2 we outline the computational method

used, and in Section 5.3 we discuss our initial conditions. Section 5.4 presents an overview

of the gas dynamics. Sections 5.5 & 5.6 present the results1 for the no turbulence and

turbulent cases, respectively, and Section 5.7 details the fate of the gas that makes it

inside the accretion radius. Sections 5.8 & 5.9 comprise our discussion and conclusion

respectively.

5.2 Computational method

For the simulations we use the three-dimensional SPH/N-body code GADGET-3, an up-

dated version of the code presented in Springel (2005). Smoothing lengths in the gas are

fully adaptive down to a minimum smoothing length of 2.8 × 10−2 pc, which is much

smaller than the scales that we resolve in the simulation. The code employs the conserva-

tive formulation of SPH as outlined in Springel and Hernquist (2002), with the smoothing

lengths defined to ensure a fixed mass within the smoothing kernel, for Nneigh = 40. Each

simulation below starts withNSPH ∼ 4×106 particles, with an individual SPH particle pos-

sessing a fixed mass of msph ≈ 12M⊙. The Monaghan-Balsara form of artificial viscosity

is employed (Monaghan and Gingold, 1983; Balsara, 1995) with α = 1 and β = 2α.

The calculations are performed in a static isothermal potential with a central constant

density core to avoid divergence in the gravitational force at small radii. We also include

the black hole as a static Keplerian potential. The mass enclosed within radius r in this

1for movies of the simulations the reader is directed to http://www.astro.le.ac.uk/~aph11/movies.html
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model is:

M(r) = Mbh +







Mcore(r/rcore)
3 , r < rcore

Ma(r/a), r ≥ rcore ,
(5.1)

where Mbh = 108M⊙, Ma = 1010M⊙, a = 1 kpc, and rcore = 20 pc and Mcore =

2×108M⊙. The one dimensional velocity dispersion in the isothermal part of this potential

is σ = (GMa/2a)
1/2 = 147 km s−1.

As we concentrate on the hydrodynamics of gas accreting on the SMBH, we make two

simplifying assumptions which avoid further non-trivial physics (to be explored in our fu-

ture work). First, the position of the SMBH is held fixed during the simulations here. This

is a reasonable approximation as all of our initial conditions are either exactly spherically

or azimuthally symmetric, or have these symmetries when averaged over the entire simu-

lation volume (e.g., turbulence is assumed to be isotropic in this case). Allowing the black

hole to move self-consistently would require relaxing the static potential assumption2. Sec-

ondly, gravitational forces between the particles are switched off to avoid complications

that might arise from gas self-gravity. While this could be viewed as a shortcoming of our

work, we believe that inclusion of self-gravity, ensuing star formation and stellar feedback

would only strengthen our results and conclusions. The gravitational contraction of gas

clouds would create even higher density contrasts and thus make ballistic trajectories even

more likely. Star formation feedback would drive its own turbulence and hence amplify

the effects of the turbulence that we seed.

One further simplification is that the gas is isothermal, at T = 103 K, throughout the

entirety of the simulations. This is a fair assumption as cooling times are short for the

high densities we are considering. Accretion of gas on to the SMBH is modelled with the

‘accretion radius’ approach; particles that come within an accretion radius of racc = 1 pc

are removed from the simulation and we track the total mass as well as each component of

the net angular momentum vector of the accreted particles. This contrasts with the Bondi-

Hoyle accretion formulations that are frequently used in cosmological simulations (e.g.,

Sijacki et al., 2009; Booth and Schaye, 2009). We believe the accretion radius approach,

frequently used in the star formation field (e.g., Bate et al., 1995), is essential for the

problem at hand as it prevents unphysical accretion of SPH particles with too large an

angular momentum, whereas the Bondi-Hoyle formulation does not.

The units of length, mass, time and velocity used in the simulations are, respectively,

ru = 3.08 × 1021 cm (1 kpc), Mu = 2 × 1043 g (1010M⊙), tu = tdyn(ru) ≈ 5 Myr, and

vu = (GMa/a)
1/2 = 208 km s−1.

2we note of course that, similarly to Chapter 4, this ‘nailing-down’ of the potential means that momen-
tum is no longer conserved exactly; nonetheless this effect is unlikely to be significant as the accretion is
dominated by infall from the outer radii of the shell over a single dynamical time
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5.3 Initial conditions

The starting condition for all our simulations is that of a uniform density, spherically

symmetric gaseous shell centered on the black hole. The initial parameters for each run

are given in Table 5.1. The inner and outer radii of the shell are rin = 0.03 and rout = 0.1

kpc, respectively, for most of the simulations. In principle, one can expect the outer

radius of the shell to be much larger in a realistic bulge, with an effective radius of a

few kiloparsecs, but we are forced to limit the dynamic range of the simulations due to

computational resources. Furthermore, we believe we understand how our results scale

with the outer radius of the shell (see Section 5.6.2.4), and hence the dynamic range

limitation does not actually influence our conclusions. All simulations were performed

with 4, 075, 686 SPH particles.

The total mass of the shell is Msh = 5.1×107M⊙. To minimise initial inhomogeneities

we cut the shell from a relaxed, glass-like configuration. The initial velocity field is com-

posed of two parts: net rotation and a seeded turbulent spectrum. The net rotation is

described by the azimuthal velocity component, vφ = vrot, where vrot is a parameter of

the simulation (see Table 5.1). In all our runs, vrot is below the circular velocity at the

shell radii, meaning that our initial conditions are not in equilibrium. We stress that this

is deliberate, as our investigation here is the formation of a disc from infalling gas, rather

than from already rotationally-supported gas.

The turbulent spectrum introduced into the velocity field is best interpreted as a

kinetic energy ‘kick’ to the gas that is assumed to arise from the action of star formation

feedback processes (i.e., stellar winds, supernovae). The amount of energy injection is

varied between the runs but is tailored to the energy input from typical supernovae rates

in starburst galaxies. One can perform a quick order of magnitude calculation to confirm

this; taking our fiducial value of vturb = 200 km s−1 in a gaseous shell of ∼ 108M⊙

the kinetic energy of the seeded turbulence is ∼ 1055 ergs, over a lifetime of ∼ 1 Myr

(approximately the time for which each simulation is run). Assuming the energy of a

single supernova to be ∼ 1051 ergs (Padmanabhan, 2001), this yields a SNe rate of ∼ 0.01

yr−1. This value is a few orders of magnitude above the observed SNe rate in the Milky

Way (see, e.g., Cappellaro, 2003) but is towards the lower end of rates found in starburst

galaxies (see, e.g., Mattila and Meikle, 2001).
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Table 5.1: Initial conditions for each simulation. The ratio with re-

spect to the gravitational potential energy gives an indication of how

well supported the shell is against the external potential through virial

motions: (Eturb + Etherm)/|Egrav| >∼ 1/2 for a virialised shell. rcirc here

refers to the initial value of circularisation radius for each of the particles,

calculated in the region of the potential that they start in, based solely

on the rotation velocity. Macc is the accreted mass taken at t = 0.2 in

code units.

ID rin rout vrot vturb
Eturb+Etherm
<|Egrav|>

< rcirc > racc Macc(M⊙)

S00 0.03 0.1 0.0 0.0 6× 10−5 0.0 0.001 5.01× 107

S01 0.03 0.1 0.0 0.1 0.001 0.0 0.001 5.01× 107

S02 0.03 0.1 0.0 0.2 0.004 0.0 0.001 4.90× 107

S03 0.03 0.1 0.0 0.3 0.009 0.0 0.001 4.81× 107

S04 0.03 0.1 0.0 0.5 0.026 0.0 0.001 4.49× 107

S05 0.03 0.1 0.0 1.0 0.103 0.0 0.001 3.53× 107

S06 0.03 0.1 0.0 1.5 0.231 0.0 0.001 1.72× 107

S07 0.03 0.1 0.0 2.0 0.410 0.0 0.001 8.40× 106

S10 0.03 0.1 0.1 0.0 6× 10−5 0.004 0.001 5.86× 106

S11 0.03 0.1 0.1 0.1 0.001 0.004 0.001 8.01× 106

S12 0.03 0.1 0.1 0.2 0.004 0.004 0.001 9.38× 106

S13 0.03 0.1 0.1 0.3 0.009 0.004 0.001 1.23× 107

S14 0.03 0.1 0.1 0.5 0.026 0.004 0.001 1.03× 107

S15 0.03 0.1 0.1 1.0 0.103 0.004 0.001 5.29× 106

S16 0.03 0.1 0.1 1.5 0.231 0.004 0.001 4.36× 106

S17 0.03 0.1 0.1 2.0 0.410 0.004 0.001 3.40× 106

S20 0.03 0.1 0.2 0.0 6× 10−5 0.011 0.001 2.67× 104

S21 0.03 0.1 0.2 0.1 0.001 0.011 0.001 4.16× 105

S22 0.03 0.1 0.2 0.2 0.004 0.011 0.001 2.04× 106

S23 0.03 0.1 0.2 0.3 0.009 0.011 0.001 2.90× 106

S24 0.03 0.1 0.2 0.5 0.026 0.011 0.001 2.87× 106

S25 0.03 0.1 0.2 1.0 0.103 0.011 0.001 2.37× 106

S26 0.03 0.1 0.2 1.5 0.231 0.011 0.001 2.04× 106

S27 0.03 0.1 0.2 2.0 0.410 0.011 0.001 1.58× 106

S30 0.03 0.1 0.3 0.0 6× 10−5 0.019 0.001 9.35× 102

S31 0.03 0.1 0.3 0.1 0.001 0.019 0.001 9.69× 103

Continued on next page
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Table 5.1 – continued from previous page

ID rin rout vrot vturb
Eturb+Etherm
<|Egrav|>

< rcirc > racc Macc(M⊙)

S32 0.03 0.1 0.3 0.2 0.004 0.019 0.001 3.67× 105

S33 0.03 0.1 0.3 0.3 0.009 0.019 0.001 1.12× 106

S34 0.03 0.1 0.3 0.5 0.026 0.019 0.001 1.63× 106

S35 0.03 0.1 0.3 1.0 0.103 0.019 0.001 1.40× 106

S36 0.03 0.1 0.3 1.5 0.231 0.019 0.001 1.25× 106

S37 0.03 0.1 0.3 2.0 0.410 0.019 0.001 1.48× 106

S40 0.03 0.1 0.4 0.0 6× 10−5 0.026 0.001 6.21× 102

S41 0.03 0.1 0.4 0.1 0.001 0.026 0.001 3.15× 103

S42 0.03 0.1 0.4 0.2 0.004 0.026 0.001 1.78× 104

S43 0.03 0.1 0.4 0.3 0.009 0.026 0.001 3.21× 105

S44 0.03 0.1 0.4 0.5 0.026 0.026 0.001 1.20× 106

S45 0.03 0.1 0.4 1.0 0.103 0.026 0.001 9.93× 105

S46 0.03 0.1 0.4 1.5 0.231 0.026 0.001 8.98× 105

S47 0.03 0.1 0.4 2.0 0.410 0.026 0.001 9.47× 105

S50 0.03 0.1 0.5 0.0 6× 10−5 0.034 0.001 4.08× 102

S51 0.03 0.1 0.5 0.1 0.001 0.034 0.001 1.41× 103

S52 0.03 0.1 0.5 0.2 0.004 0.034 0.001 6.10× 103

S53 0.03 0.1 0.5 0.3 0.009 0.034 0.001 3.78× 104

S54 0.03 0.1 0.5 0.5 0.026 0.034 0.001 5.63× 105

S55 0.03 0.1 0.5 1.0 0.103 0.034 0.001 8.75× 105

S56 0.03 0.1 0.5 1.5 0.231 0.034 0.001 6.58× 105

S57 0.03 0.1 0.5 2.0 0.410 0.034 0.001 6.89× 105

S60 0.015 0.05 0.3 1.0 0.091 0.008 0.001 4.43× 106

S61 0.06 0.2 0.3 1.0 0.119 0.041 0.001 5.23× 105

S70 0.03 0.1 0.3 1.0 0.103 0.019 0.002 2.36× 106

S71 0.03 0.1 0.3 1.0 0.103 0.019 0.003 3.45× 106

S72 0.03 0.1 0.3 1.0 0.103 0.019 0.004 4.77× 106

S73 0.03 0.1 0.3 1.0 0.103 0.019 0.005 6.07× 106
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5.3.1 Turbulent velocity field

Our approach to setting up the turbulent velocity field follows that of Dubinski, Narayan

& Phillips (1995). We assume a Kolmogorov power spectrum (Kolmogorov, 1941) that is

based on statistically isotropic, incompressible turbulence. Such a spectrum has a steep

power law dependance for the energy E in the turbulent wavenumber k ≡ |k|, namely

Ev(k) ∼ k−5/3 (5.2)

where the dominant wavelength in the velocity field v is the largest, stirring scale on which

the turbulence is driven. We can obtain a power spectrum by noting that the energy in

a particular wavenumber is the power integrated over a spherical surface in k-space, such

that

Ev(k) = 4πk2 Pv(k) (5.3)

The assoicated Kolmogorov power spectrum Pv(k) ∼ |v|2 is therefore

Pv(k) ∼ k−11/3, (5.4)

The key assumption here is that the velocity field is homogeneous and incompressible, and

so we can define v in terms of a vector potential A such that v = ∇×A. Zero divergence

is a defining property of a vector field constructed from a vector potential, as

∇ · (∇×A) = 0 (5.5)

by the rules of vector calculus. We construct the vector potential in Fourier space as a

Gaussian random field ; in other words, independant, statistical realisations of a multi-

variate Gaussian distribution3 . The amplitudes and components of Ak at each point in

k-space i.e., at each value of (kx, ky, kz) are drawn from a Rayleigh distribution4 with a

variance given by < |Ak|2 > and a phase that is uniformly distributed between 0 and 2π.

Ak is related to the velocity field by v = ∇×A, which in Fourier space becomes

vk = ik ×Ak (5.8)

3the probability density function (PDF) of a Gaussian, or normal distribution for an independant
variable x follows

f(x) =
1√
2πσ2

e
−

(x−µ)2

2σ2 (5.6)

where µ is the mean and σ is the standard deviation
4the Rayleigh PDF is given by

f(x) =
x

σ2
e−x2/2σ2

(5.7)

and relates to a multivariate Gaussian in an absolute value sense; we require both a real amplitude X and
a complex amplitude Y to describe the distribution, where each are normally distributed with a mean of
zero. In this case |Z| =

√
X2 + Y 2 will have the form of a Rayleigh distribution
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such that

|vk|2 = −k2|Ak|2 (5.9)

and we therefore find that, for |v|2 ∼ k−11/3 we have

PA(k) ∼ k−17/3. (5.10)

This is a steep power-law, implying that the variance in |A| will diverge sharply as k

decreases, and so we introduce a small scale cut-off kmin. Equation 5.10 can then be

written as

< |Ak|2 >= C(k2 + k2min)
−17/6, (5.11)

where C is a constant that sets the normalisation of the velocities. For our purposes we

set it equal to unity and normalise the velocity field once the statistical realisation has

been generated. Physically, the small scale cut-off kmin can be interpreted as the scale

Rmax ≃ k−1
min i.e., the likely driving scale of the turbulence.

We therefore obtain the Fourier components of the velocity field by taking the curl

of Ak in k-space as per equation 5.8. Finally we take the Fourier transform of this

to obtain the velocity field in real space. We use a periodic cubic grid of dimension 2563

when generating the statistical realisation of the velocity field and employ an interpolation

scheme based on a cubic spline (see, e.g., Chapter 3, Section 3.2.1) in three dimensions to

estimate the components of the velocity field at the position of each SPH particle.

5.4 Overview of gas dynamics and main results

Before we embark on a quantitative study of the simulation results, we present several

snapshots from the simulations that illustrate graphically the nature of the gas flow. In

particular, here we discuss the overall gas dynamics for two simulations that typify the

extremes of behavior that we find - S30 and S35 (refer to Table 5.1). Both simulations

have an initial rotation velocity vrot = 0.3 which results in a mean circularisation radius of

rcirc = 0.019 (see Section 5.5.1). Simulation S30 has no imposed turbulence. Simulation

S35 has turbulence characterised by vturb = 1, where vturb is the mean turbulent velocity

in the imposed distribution, implying that gas turbulent motions are of the order of the

velocity dispersion in the bulge.

5.4.1 A shell with no initial turbulence

Our no turbulence initial condition acts as a base comparison for the simulations with

seeded turbulence. Figure 5.1 shows the gas column density and the velocity field in the

angle-slice projection for the simulation S30 at t = 0.06. For projection along the z-axis,
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the gas column density is calculated by

Σ(x, y) =

∫ z(x,y)

−z(x,y)
ρ(x, y)dz , (5.12)

where the limits of the integration are given by z(x, y) = R tan ζ, and R = (x2 + y2)1/2.

The angle ζ is chosen to be tan ζ = 1/5 for Figures 5.1 and 5.3. This projection method

is convenient as it permits an unobscured view into the central regions where the black

hole resides.

Figure 5.1 shows the gas flow at an early time, both an edge-on (the left hand side panel

of the figure) as well as a top-down projection of the shell (the right panel). Due to non-

zero angular momentum, gas in the shell is quickly pushed aside from the axis of symmetry,

opening a cylindrical cavity. Initially gas falls closer to the centre of the potential than its

circularisation radius, a consequence of highly eccentric orbits. As gas moves inside rcirc,

centrifugal force exceeds gravitational force. Interaction with neighboring gas streams

results in ‘radial’ shocks in the xy-plane. A further set of shocks occurs due to gas

initially moving supersonically in the vertical direction. As the gas from above the z = 0

plane collides with the gas falling in from below the plane, the particles are shocked and

accumulate at z = 0 due to symmetry, forming a disc. These two sets of shocks mix gas

with different angular momentum. We shall discuss this interesting effect in greater detail

below.

The overall dynamics of the simulation are thus relatively simple: angular momentum

conservation and symmetry dictate the formation of a geometrically thin disc in the plane

of symmetry of the shell. Accretion of gas on to the SMBH would be expected to proceed

in an accretion disc mode, if at all – realistic models show that star formation timescales

are much shorter than viscous times, depleting the disc of gas before it can feed the SMBH

(e.g., Goodman, 2003; Nayakshin and Cuadra, 2005; Nayakshin et al., 2007).

We note that our particular choice of velocity field, namely a constant azimuthal

velocity, when combined with a spherical shell, could be viewed as a somewhat peculiar

initial condition. As we have mentioned, the constant vφ condition means that the polar

regions of the shell are quickly evacuated, the gas here spiralling outward in cylindrical

radius to encounter gas falling in with different angular momenta, and mixing with the

latter. In fact what we are modelling here is the simplest case of a flow that undergoes an

angular momentum re-distribution shock. We shall go into more detail on the consequences

of this in Section 5.5, but for now we make the point that such a flow is likely to occur

when gas is accreting in a stochastic fashion from large scales, perhaps as the result of

a merger. The strong mixing of the gas with different angular momenta is exactly the

situation that we wish to explore here, and so we have implemented what is essentially

a symmetric case of this mixing process. We acknowledge that the spherical setup is
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Figure 5.1: Edge-on angle-slice projection (see Section 5.4.1) of the gas flow at time t = 0.06 in the
simulation S30 (left) and top-down projection (right). The gas falls in on eccentric orbits, giving rise to a
radial shock that propagates outwards as the disc forms.

————————————————————————–

idealised, but it is also the best starting point from which to embark on a laboratory of

tests where the turbulence and rotation is varied.

5.4.2 A shell with initial turbulence

The flow of gas in this case is far more complicated than in the case just considered. We

first show in Figure 5.2 the full slice projection of the simulation volume, e.g., we use

here x(z, y) = rout = 0.1 (refer to equation 5.12). The most outstanding features of the

figure are the long dense filaments that form due to convergent turbulent velocity flows.

The density contrast between the filaments and surrounding gas is over two orders of

magnitude by this time.

Figure 5.3 shows both the y-axis and z-axis projections of this simulation at the same

time as Figure 5.1 did for the no initial turbulence case, namely t = 0.06 . Clearly,

some of the filaments seen at the earlier time in Figure 5.2 survive and actually penetrate

into the innermost region There are now density contrasts of as much as three orders of

magnitude in regions that were completely uniform in simulation S30. We shall see that

this distinction is a crucial one for the dynamics of the gas and SMBH feeding.
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Figure 5.2: Projected gas column density and velocity field in simulation S35 at time t = 0.02, before
gas has had a chance to accrete on the SMBH. Note the formation of multiple thin and dense filaments
due to convergent, turbulent velocity flows.

————————————————————————–
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Figure 5.3: Edge-on angle-slice projection of the gas flow at time t = 0.06 in the simulation S35 (left)
and top-down projection (right). The velocity field appears far more isotropic that in Figure 5.1, although
an imprint of the imposed net rotation can still be seen.

————————————————————————–

5.4.3 Turbulence and accretion

Figure 5.4 shows the mass accreted by the black hole versus time in the simulations S30–

S37, e.g., the same rotation velocity (and thus angular momentum) but different levels of

initial turbulence. This demonstrates the main result of our study. The accretion rate

on to the SMBH strongly correlates with the strength of the imposed turbulence. The

accretion rate increases rapidly with increasing vturb while vturb ≪ vrot, but then saturates

at an approximately constant level for vturb
>∼ vrot. The main qualitative explanation of

the simulations is that turbulence decreases the degree to which gas with different angular

momentum mixes, and creates gas streams with small angular momentum. In particular:

• At low vturb ≪ vrot, an increase in the turbulent velocity leads to greater variations

in the density fluctuations that are created by the turbulent velocity flows before gas

circularises (refer to Figure 5.2). Greater density contrasts decrease the amount of

angular momentum mixing, resulting in a disc rather than a narrow ring. The inner

edge of the disc lies closer to the accretion radius of the simulations and hence feeds

the SMBH more efficiently.

• At vturb ∼ vrot, random initial velocity fields set some gas on orbits with a vanishingly

small angular momentum compared with the mean in the shell. The turbulent ‘kick
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Figure 5.4: Accretion rate versus time for simulations S30–S37. Linestyles correspond to vturb = 0 (black
solid), vturb = 0.1 (black dotted), vturb = 0.2 (black dashed), vturb = 0.3 (black dot-dashed), vturb = 0.5
(brown dot-dot-dash), vturb = 1.0 (red dashed), vturb = 1.5 (pink dotted) and vturb = 2.0 (blue dashed) in
code units. All runs used vrot = 0.3. This plot exemplifies the main result of the chapter: the accretion
rate on the black hole strongly increases with increasing levels of turbulence when rotation is present (see
Section 5.4.3).

————————————————————————–

velocity’ in this case almost cancels the mean rotation for these regions. Since these

regions move against the mean flow, they are also those that get strongly compressed.

Reaching high densities, they continue to move on nearly ballistic trajectories, im-

pacting the innermost region on randomly oriented orbits. Accretion in this regime

is ‘chaotic’ (King and Pringle, 2007) rather than large-scale disc-dominated.

We shall spend the rest of the chapter investigating these results in more depth, suggesting

and testing analytical explanations for the observed trends.
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5.5 Without turbulence: why ‘laminar’ accretion is so low

5.5.1 Analytical estimates based on circularisation of gas

We shall now argue that the accretion rate of the simulation S30 (the one with rotation

velocity vrot = 0.3 and no initial turbulence), is surprisingly low compared with a straight-

forward and seemingly natural theoretical estimate. Let us start by estimating the fraction

of gas that should be accreted by the SMBH in our simulations. The specific angular mo-

mentum of gas determines how close to the SMBH it circularises. For a circular orbit, the

component of specific angular momentum out of the plane is given by l = [GM(r)r]1/2.

Using equation 5.1, one can obtain a general solution for the circularisation radius, rcirc,

for a given value this specific angular momentum component. We give it in two extremes.

If rcirc ≪ rcore, the point-mass Keplerian value applies:

rcirc =
l2

GMbh
. (5.13)

In the opposite case, rcirc > rcore, we have

rcirc =

[

al2

GMa
+
M2

bha
2

4M2
a

]1/2

− Mbha

2Ma
, (5.14)

which simplifies to rcirc ≈ l[a/GMa]
1/2 for rcirc ≫ rcore, when the second and the last

terms on the right hand side of the equation are small.

We now make the simplest possible assumption here by suggesting that gas settles into

a disc and that the distribution of gas in the disc follows the distribution of gas over the

circularisation radius initially, at time t = 0. Essentially, we assume that the lx and the

ly components of the initial angular momentum cancel out due to symmetry whereas the

lz component is conserved without any exchange with neighbouring cells.

To estimate the fraction of gas that will end up inside the accretion radius racc ≪
rcore, we first note it is equation 5.13 that should be used for the circularisation radius

of gas with a given z-projection of specific angular momentum, lz. The requirement

lz ≤ lacc = (GMbhracc)
1/2 singles out a cylinder with cross sectional radius of R1 =

√

x2 + y2 < lacc/vrot. The intersection of this cylinder with the shell rin ≤ r ≤ rout has

approximate volume 2πR2
1(rout − rin). For the shell the fraction of the volume that can

be accreted is then given by the ratio of this volume to the total volume of the shell,

(4π/3)(r3out − r3in) ∼ (4π/3)r3out:

facc ∼
3GMbhracc(rout − rin)

2v2rotr
3
out

. (5.15)

For example, for rout = 0.1, rin = 0.03 and vrot = 0.1 this gives facc = 0.1, and at vrot = 0.3
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we have facc ≈ 10−2 (note that G = 1 in code units).

The latter analytical estimate yields accreted mass faccMshell ≈ 5 × 105M⊙, whereas

Figure 5.4 shows that the actually measured value to late times is ∼ 103M⊙. The analyt-

ical estimate thus significantly over predicts the amount of accretion.

5.5.2 Shock mixing of gas: ring formation and end to accretion

Figure 5.5 explains why our simple analytical theory did not work. Here we plot the

distribution of gas in simulation S30 over the z-component of the angular momentum

vector of particles, lz, at three different times. The initial distribution is spread over a

broad range of values, with a small but non neglibible fraction of gas having lz < lacc ≈
0.003, e.g., the angular momentum of the circular orbit at rin. In our analytical estimate we

assumed that this gas accretes on to the black hole. However, this is not what happens.

The distribution of angular momentum at the later time, t = 0.2, shows strong radial

mixing of gas with different angular momentum. The angular momentum distribution

narrows due to shocks and eventually becomes a highly peaked Gaussian-like ring.

Note that the deficit of gas in the innermost r <∼ 0.01 region in the second curve in

Figure 5.5 is caused not by the SMBH accretion but by the shocks described above. Low

angular momentum gas shocks and mixes with high angular momentum material before

it has a chance to travel into the SMBH capture region, r ≤ rin. The mixing continues to

late times and the peak in the angular momentum distribution actually moves outwards.

This is to be expected as the gas that fell in earlier has a smaller angular momentum and

is in the path of eccentric orbits of gas falling in from greater distances.

We believe this strong mixing of different angular momentum orbits is quite a general

result of initially ‘laminar’ flows. Such flows thus initially form rings rather than discs.

While our simulations deliberately omit gas self-gravity and hence star formation (refer to

Section 6.4), previous theoretical work shows that the fate of the material is then decided

by whether the viscous time of the ring is shorter than the star formation consumption

time scale. Most authors agree that large-scale gas discs form stars more readily than they

accrete (Goodman, 2003; Nayakshin et al., 2007). This would suggest that ‘laminar’ shells

with a finite angular momentum would form stars more readily than feed the SMBH.

5.6 Accretion with seeded turbulence: why is it efficient?

5.6.1 Analytical expectations

5.6.1.1 Weak turbulence

First we consider the case of the turbulent velocity fields with vturb ≪ vrot. Figure 5.5

shows the distribution of gas over the angular momentum for three different times in
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Figure 5.5: Top: the distribution of gas in the simulation S30 over the z-component of the angular
momentum at three different times: t = 0.0, t = 0.1, t = 0.2 for solid, long dashed and dashed curves
respectively. Note how the angular momentum distribution becomes narrower with time (through the
action of shocks). Middle: same as top but for simulation S31, with an initial turbulent velocity vturb = 0.1.
There is a greater fraction of small angular material in this simulation initially, and more of it gets retained
in the ‘tail’ to small lz, e.g., the inner disc, at late times. Bottom: same as top and middle but for simulation
S32. The features noted in the middle plot are even more pronounced here.

————————————————————————–
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the simulations S31 and S32, respectively. As in Figure 5.5 for the no initial turbulence

run S30, the initial angular momentum distribution is broader than those at later times.

The small angular momentum tail of the initial angular momentum distribution is more

pronounced for S31 and especially for S32 compared with S30, which helps to explain the

higher accretion rates measured in these simulations.

The main effect, however, is the reduction in the shock mixing of gas. Consider a ‘small’

angular momentum part of the distribution; to be definitive, at lz ∼ 0.01. This part of

the distribution disappears at later times in simulation S30, being completely assimilated

into the peak region. In contrast, in simulations S31 and S32 this part of the distribution

is only reduced by a factor of 2-3 compared with the initial curves. Apparently, the initial

turbulent velocity flows create density contrasts that then propagate to smaller scales.

The dynamics of a dense region are different from that of a low density region, leading to

a larger spread in the angular momentum distribution at later times. This increases the

amount of gas captured by the inner boundary condition.

5.6.1.2 Strong turbulence: ballistic accretion

Now we consider the case when vturb
>∼ vrot. As we have seen, the turbulent accretion rate

is far larger in our simulations than that for the ‘initially laminar’ runs. We have also seen

that differential and chaotic velocity flows form strong density enhancements consistent

with well known results from star formation studies (e.g., McKee and Ostriker, 2007b).

High density regions could in principle propagate through the mean density gas without

much hydrodynamical drag, as long as their column densities are much higher than that

of the surrounding gas. In this case we can approximate gas motion as ballistic and use

the usual loss cone argument (e.g., page 406 in Shapiro and Teukolsky, 1983) for black

hole accretion.

For a direct comparison to the simulation results, we consider a thin ∆r ≪ r shell

of gas that has angular momentum l ∼ rvrot, and calculate the fraction of gaseous mass

that has angular momentum small enough to be captured within racc. In doing so we

assume that the energy and angular momentum of gas are both conserved as the orbits

are approximately ballistic. The initial specific gas energy, E, is small compared with the

gravitational binding energy at r ∼ racc, therefore we can set E ≈ 0. An orbit that just

reaches our inner boundary condition at racc has radial velocity vr(racc) = 0. This yields

the maximum specific angular momentum of gas that could still be accreted:

l2max = 2GMbhracc . (5.16)

The case of a shell that rotates slowly compared with the local circular speed, i.e., vrot ≪
vc = [GMenc(r)/r]

1/2, is most interesting, since the shell could not rotate faster than the
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circular speed or else the centrifugal forces would exceed gravity; similarly if it rotates

at the circular speed then it is rotationally supported and would most likely form a disc

rather than a spherical shell.

Assuming a monochromatic distribution

As a starting point for this estimate, we approximate the distribution of gas velocities in

the shell with the turbulent velocity spectrum by a monochromatic distribution v = vturb

randomly and isotropically distributed in directions in the frame rotating with rotation

velocity vrot. We emphasise here that this is a simple assumption, but a sensible one, as on

average one would expect the turbulent velocity field to have an isotropic character. We

relate vturb to the mean velocity amplitude in the initial turbulent velocity distribution.

In the simplest case vrot = 0, the fraction of solid angle that yields angular momentum

smaller than lmax is approximately l2max/4(rvturb)
2. Therefore, the fraction of mass that

could end up inside the accretion radius is

∆M

Msh
=
GMbhracc
2v2turbr

2
, (5.17)

where Msh is the mass of the shell. However, this approach neglects the rotation of the

shell. For a non-zero rotation velocity the loss-cone approach is valid only for vturb ≥ vrot,

and equation 5.17 must be modified to take account of the orbital motion. We therefore

proceed to do so. Our derivation here is initially similar to Loeb (2004), but taken to

second order when applying the small-angle approximation.

We start by considering the axis of zero angular momentum material for an isotropic,

monochromatic distribution at a point in orbit of the central black hole. This is defined

by

vrot − vturb cosα = 0 (5.18)

where α is complementary to the angle between this axis and r, as shown in Figure 5.6.

We consider a small perturbation in angle about this axis, given by δ, which defines the

opening angle of the loss-cone:

vrot − vturb cos(α± δ) =
lmax

r
(5.19)

We expand this to second-order in the limit that δ ≪ α, giving us

vturb
δ2

2
cosα+ vturb δ sinα =

lmax

r
(5.20)
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Figure 5.6: Schematic geometry of an isotropic (in the rest frame of the rotating shell) wind, an analogy
for the effect of turbulence on the loss-cone. The shell rotates with velocity vrot and the central axis of the
loss-cone is defined in terms of the angle α. A perturbation, δ, on either side of this central axis defines
the opening angle of the loss-cone.

————————————————————————–
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where cosα = vrot/vturb. We therefore find for the loss-cone opening angle the expression:

δ =

(

2lmax

rvrot
+
v2turb sin

2 α

v2rot

)1/2

− vturb sinα

vrot
(5.21)

For an isotropic distribution in the rest frame of the orbiting body, the fraction of the

solid angle that will be accreted can be calculated via

Ωlc =
∆Ω

Ω
≈ πδ2

4π
(5.22)

In this case, at a given vrot, our second-order approximation for the loss-cone solid angle

is

Ωlc =

[

(

lmax

2rvrot
+ ξ

)1/2

− ξ1/2

]2

(5.23)

where ξ = (v2turb−v2rot)/4v2rot. We can express this in the limit of two extremes, depending

on the relative strength of the turbulence with respect to the rotation:

i) the case when vturb ≫ vrot:

Ωlc ≈
[

(

lmax

2rvrot
+
v2turb
4v2rot

)1/2

− vturb
2vrot

]2

(5.24)

ii) when vturb ≈ vrot:

Ωlc ≈
lmax

2rvrot
(5.25)

Assuming a Maxwellian distribution

The treatment we have presented so far is not the whole picture, as we have assumed

a monochromatic distribution for the turbulence. In reality this is not the case. The

turbulent velocity distribution over all three normally distributed components has the

form of a Maxwellian5 profile (this is true for the initial distribution as well as that of the

high density regions that form). We find that the distribution can therefore be fitted (to

within ∼ 10% error) by the expression:

f(v) =
4

v3turbπ
1/2

v2e−(v/vturb)
2

(5.26)

5since for normally distributed variables kx, ky, kz the form of |k| =
√

k2
x + k2

y + k2
z is a Maxwell-

Boltzmann distribution
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To obtain the fraction of particles in the loss-cone (Nlc ≡ ∆N/Ntot) we therefore need to

integrate this expression over the relevant solid angle:

Nlc =

∫ ∞

0
Ωlcf(v)dv (5.27)

were we should use equation 5.23 for the loss-cone solid angle, but replacing ξ with ξv =

(v2 − v2rot)/4v
2
rot. Unfortunately, performing the integration in this case is non-trivial and

must be done numerically. Luckily, we can obtain a good analytical approximation by

noting that the modified equation 5.23 is a maximum when v = vrot, and falls off sharply

with increasing v. The majority of the accretion will therefore occur in the region of the

distribution where v ≈ vrot and so we can use equation 5.25 in the integral instead, giving

us:

Nlc =

∫ vrot+∆v

vrot−∆v

2lmax

rvrotv3turbπ
1/2

v2e−(v/vturb)
2
dv (5.28)

where our limits are a perturbation either side of vrot, the size of which we choose to be

∆v = vrot/4
6. Performing the integral yields

Nlc =
lmax

2rvrot
· ψ +

3lmax

4rvturbπ1/2
· ϕ (5.29)

where

ψ ≡ erf

(

5vrot
4vturb

)

− erf

(

3vrot
4vturb

)

ϕ ≡ e−9v2rot/16v
2
turb − e−25v2rot/16v

2
turb

For a thick shell we should generalise equation 5.29 by using the density weighted average

of r over the shell, 〈r〉. For an initially constant density profile used in our simulations

and rout ≈ 3rin, we have 〈r〉 ≈ 2rout/3, and hence

∆M

Mshell
=

3(GMbhracc)
1/2

2
√
2routvrot

· ψ +
9(GMbhracc)

1/2

4
√
2rvturbπ1/2

· ϕ (5.30)

As before, we can analyse this equation in various limits:

i) when vturb ≫ vrot:

∆M

Mshell
≈ (2GMbhracc)

1/2

routvturb

(

1 +
v2rot
v2turb

)

(5.31)

ii) when vturb ≈ vrot:

∆M

Mshell
≈ (GMbhracc)

1/2

2routvrot
(5.32)

6it should be noted that this choice is somewhat arbitrary but our derivation here is of course approxi-
mate
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iii) when vturb ≪ vrot:

∆M

Mshell
≈ 9(GMbhracc)

1/2

4
√
2routvturbπ1/2

· ϕ (5.33)

where in all of the above we have dropped numerical factors of approximately unity.

5.6.2 Detailed analysis of results

Our ballistic approximation to the accretion rate yielded a result that depends on several

parameters of the simulations, e.g., the ‘accretion’ radius racc, the turbulent velocity vturb,

the rotation velocity vrot and the dimensions of the shell. We shall now look at simulations

covering a range in the space of these parameters to discuss specific trends and determine

whether the simulations support our simple analytical theory.

5.6.2.1 No net angular momentum case

Figure 5.7 shows the accreted mass (left panel) and the accretion rate (right panel) as

functions of time for simulations S00 – S07 (see Table 1). The rotation velocity for these

runs is set to zero, and the turbulent velocity parameter vt is varied from 0 (solid curve)

to 2 (blue short dashed).

The situation is rather simple for these runs. For turbulent velocity parameters much

smaller than unity, the flow hardly deviates from that of a freely falling shell with a

negligible pressure. Due to the constant density profile in our initial shell, this naturally

leads to the accretion rate increasing as Ṁ ∝ t2 (see the dotted power law in the right

panel of Figure 5.7) starting from the free fall time of the inner shell to that of the outer

shell. This can be understood by noting that

Ṁgas(r) ∼
Mgas(r)

tff
(5.34)

where tff = (3π/32Gρ)1/2 is the free-fall time, and ρ = ρ(r) here is the density profile

of the background potential. In the outer parts this is isothermal, with ρ(r) ∝ r−2. We

therefore have tff ∝ r, and using Mgas(r) ∝ r3, we find Ṁ(r) ∝ r2, and thus Ṁ(t) ∝ t2.

As turbulence increases to vturb
>∼ 1, however, two effects are noteworthy. Firstly, the

accretion episode starts earlier and also finishes later. This is naturally due to the spread

in the initial radial velocities of the turbulent gas, with some regions starting to fall in

with negative velocities, and hence arriving at the SMBH earlier, and others doing the

opposite. There is also a significant reduction in the accretion rate at the highest values

of turbulence. We believe this is due to the same effects already discussed in Section

5.4.3. Convergent turbulent flows create high density regions with a large range of angular

momentum. These regions do not mix as readily as mean density regions and thus retain

their angular momentum for longer. This reduces the amount of gas accreted. However

183



Feeding SMBHs through supersonic turbulence 5.6. Efficient accretion with turbulence

0.1
time [5 Myr]

104

105

106

107

108
ac

cr
et

ed
 m

as
s 

[M
su

n]

0.1
time [5 Myr]

0.01

0.10

1.00

10.00

100.00

ac
cr

et
io

n 
ra

te
 [M

su
n 

yr
-1
]

Figure 5.7: Accreted mass vs. time (left) and accretion rate vs. time (right) for a velocity field that
contains no net rotation (vrot = 0). The different lines represent different strengths of the mean turbulent
velocity, vturb: 0 (black solid), 0.1 (black dotted), 0.2 (black dashed), 0.3 (black dot-dashed), 0.5 (brown
dot-dot-dash), 1.0 (red dashed), 1.5 (pink dotted), and 2.0 (blue dashed). Analytical line (thick red dashed)
displays a Ṁ ∝ t2 slope.

————————————————————————–

we note that in this rather unrealistic set up (zero net angular momentum) gas accretion

is still very efficient, with ∼ 20− 100% of the shell being accreted by time t = 0.2.

5.6.2.2 The highest rotation velocity case

In the other extreme, Figure 5.8 shows the accreted mass (left panel) and the accretion

rate (right panel) for the simulations S50 – S57, where the rotation velocity is set to the

maximum explored in the paper, e.g., vrot = 0.5. The range of the turbulent velocity

parameter and the respective curve coding are the same as in Figure 5.7.

Comparing Figures 5.8 and 5.7, it is obvious that rotation significantly decreases the

amount of gas accreted, and the accretion rate. The reduction is most severe in the case

of vturb = 0, by about 5 orders of magnitude. The role of turbulence in simulations S50

– S57, as suggested in Section 5.4.3, is to increase the accretion rate. This occurs by

enhancement of the angular momentum distribution into the low angular momentum end,

and also by weakening the efficiency of shock mixing of the gas.

5.6.2.3 Rotation and turbulence parameter space

We combine the results of all our numerical experiments from S00 to S57 in Table 5.1

by considering a single characteristic – the accreted gas mass at time t = 0.2 in code

units. All of these runs have the same initial geometrical arrangement of gas and a fixed

accretion radius racc = 10−3 but differ in the strengths of the initial turbulent and rotation

velocities.
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Figure 5.8: Accreted mass vs. time (left) and accretion rate vs. time (right) for a velocity field that
contains high net rotation (vrot = 0.5). Linestyles are as per Figure 5.7.

————————————————————————–

The results are displayed in two ways. Figure 5.9 shows the accreted mass versus

rotation velocity, vrot. The simulations with the same level of mean turbulent velocity,

vturb, are connected by the different lines. In particular, the solid black curve shows the

results for vturb = 0, and the dashed blue curve shows the results for vturb = 2. It is clear

that increased rotation velocity, and thus net angular momentum, always reduces the

accreted mass, for any value of the turbulence parameter. This is in a general agreement

with analytical expectations explored in Section 5.6.1.2.

Together with the simulation results, we plot the predicted maximum accreted mass

(equation 5.32), which shows excellent agreement with the maximum delineated by the

levels of turbulence at saturation. The analytical fit here is described specifically by

∆M

Mshell
= min

[

(GMbhracc)
1/2

2routvrot
, 1

]

(5.35)

since the maximum fraction that can be accreted is unity and for vrot = 0 we would expect

the entire shell to have accreted by late times.

The increased level of turbulence acts to decrease the accretion rate in the case of

very small rotation velocity vrot ≈ 0 but increase the accretion rate at higher rotation

velocities (albeit up to saturation). This is not contradictory at all, however - the effect of

turbulence in all cases is to spread the initial angular momentum distribution and prevent

it from rapidly mixing into a single peak. In the case of no initial rotation this reduces

the accretion rate by moving gas from zero to finite angular momentum orbits, whereas

in the case of ‘large’ initial net angular momentum the accretion rate is increased as some

gas is moved to low angular momentum orbits.
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Figure 5.9: The accreted mass trend with rotation velocity, plotted for different levels of turbulence
at t = 0.2 (left, linestyles as per Figure 5.7) and the accreted mass trend with mean turbulent velocity,
plotted for different levels of rotation - vrot = 0.0 (solid), 0.1 (dotted), 0.2 (dashed), 0.3 (dot-dash), 0.4
(dot-dot-dash) and 0.5 (long dashed) - at t = 0.2 (right).
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5.6.2.4 Accretion and the size of the shell

Equation 5.30 predicts that the fraction of accreted mass should be inversely proportional

to the shell’s size, which we characterise by rout. To test this prediction we repeated

the simulation S35 with a scaled-up version, rout = 0.2, rin = 0.06 and a scaled-down,

rout = 0.05, rin = 0.015 shell (see runs S60 and S61 in Table 1). To be definitive, we

compare the accreted gas mass at the dynamical time at the outer radius of the shell, which

corresponds to just after the initial peak in the accretion rate. This is approximately the

time at which we would expect the ballistic mode to come to an end and a disc-dominated

accretion mode to begin. The results are plotted in Figure 5.10 (left panel) as a function

of rout.

5.6.2.5 Trend with accretion radius

The accretion radius is a ‘nuisance’ parameter of our study in the sense that it is introduced

only to allow the simulations to run in a reasonable time. For physical reasons it would be

desirable to make racc as small as possible. Therefore it is important to test whether the

suggested analytical scaling of the results indeed holds. With this in mind, we repeated

same simulation S35 for 5 different values of racc, spanning a range in racc from 0.001 to

0.005. The accreted mass from these simulations is shown in Figure 5.10 (right panel).

The red dotted power-law gives the analytical prediction. Although similar, it is somewhat

less steep than the simulation results.
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Figure 5.10: Scaling of accreted mass with rout (left) and racc (right) for simulations with vrot = 0.3
and vturb = 1.0. Symbols correspond to the dynamical time at the outer radius of the shell i.e., t = 0.05,
t = 0.1, t = 0.2 (left) and t = 0.1 (right). Error bars are somewhat arbitrary, as it is not clear when the
main ballistic mode of accretion ends - here they denote ±t/3. Normalised analytical fits are equation 5.30
(red), the actual fit that would be expected for the simulation parameters, and equation 5.32 (green), the
maximum accretion expected at saturation.
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5.6.2.6 Visualisation of the circumnuclear disc

We now take a look at the gaseous disc that forms to later times in our simulations.

Figure 5.11 compares the surface density projected along the z-axis for simulations S30

(left) and S35 (right) in the inner r = 0.04 region. Figure 5.12 shows the same for these

two snapshots but projected along the y-axis. As was already clear from Figure 5.5, the

gas forms a narrow ring in simulation S30. This occurs due to efficient mixing of material

with different angular momentum. This mixing is both radial (the ring is narrower) and

vertical (the ring is vertically less extended).

In contrast, in the simulation S35, turbulence creates a broad distribution of angular

momentum which does not mix so well. Mixing in the vertical direction is actually rea-

sonably efficient, as the disc is thin and lies close to the xy-plane (see the right panel in

Figure 5.12). However, the radial mixing is not so strong and the disc radial structure is

very extended in S35 compared with S30.

5.6.2.7 Radial structure of the disc

Our analytical theory also makes a prediction for the surface density of the disc in the

innermost part. Indeed, the mass captured by the inner boundary of radius racc scales as

Mcapt ∝ r
1/2
acc . This mass would likely sit in a rotationally supported disc of roughly R ∼

racc size. The surface density in the disc should then behave as Σ ∝Mcapt(r)/R
2 ∝ R−3/2.

This analytical prediction (red power-law) is compared to the simulation results in
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Figure 5.11: Face-on projection of the disc that forms by t = 0.418 with no turbulence (left) and mean
vturb = 1.0 (right). The initial rotation velocity for both was vrot = 0.3.
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Figure 5.12: Slices of the CND (using tan ζ = 2/5) formed with no turbulence and with mean vturb = 1.0,
both for vrot = 0.3 at t=0.418
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Figure 5.13 which shows the surface density defined on radial shells for all the different

levels of turbulence for vrot = 0.5. While the region beyound r ∼ 0.01 shows separate

rings and highly variable surface density profiles for different simulations, the disc inside

the region r ∼ 0.01 has a similar radial surface density profile for all simulations with

vturb
>∼ 0.5. The agreement between simulations and theory is quite reasonable in that

region except for runs with a small turbulent velocity vturb < vrot. For these simulations

the ballistic approximation is not appropriate and the gas does not penetrate into the

r < 0.01 region. At radii larger than 0.01 the surface density distribution is dominated

by the interactions with the bulk of the initial shell as it continues to fall in. The ballistic

approximation is of a limited use here because gas settling in the disc to late times (i)

went through many collisions/interactions and hence the orbits are not ballistic; and (ii)

has a relatively large angular momentum, so the small angle approximation we made in

Section 5.5.1 is violated.

The observed Σ ∝ R−3/2 dependence in the inner disc is another piece of simple but

convincing evidence that the ballistic accretion approximation that we made in Section

5.6.1.2 is a reasonable one for the innermost region of the flow.

5.6.2.8 Vertical structure

Figure 5.12 shows edge-on projections of the disc for S30 (no turbulence) and S35 (initial

mean turbulent velocity vturb = 1). It is clear that the vertical stucture of the disc is

actually rather complex, especially beyond the r ∼ 0.02 region. This is intuitively to be

expected as the dynamical time is longest at larger radii, and therefore circularisation and

decay of vertical velocity dispersion in the disc should take longer here. We can further

quantify this by assuming that the vertical velocity dispersion is pumped at the rate at

which the matter is brought in. Generation of momentum due to turbulence is therefore be

described by ṗturb ∼ Σ̇vff(rout), where vff is the free-fall velocity and we have assumed that

the generation of turbulence is dominated by infall from the radius where the majority of

the mass resides i.e., rout. These motions decay on the local dynamical time. Assuming a

steady-state we have

Σ̇vff(rout) =
Σσvert
tdyn

(5.36)

where σvert is the vertical velocity dispersion in the disc, generated through turbulence.

Re-arranging we have
Σ̇tdyn
Σ

=
σvert

vff(rout)
(5.37)

We use again the fact that the change in the surface density of the disc is dominated by

infall from rout, putting

Σ̇ ∼ Σ

tff(rout)
(5.38)
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Figure 5.13: Azimuthally-averaged surface density versus radius for runs S50-S57 at time t = 0.418.
Coloured curves correspond to simulations with different levels of mean turbulent velocity, as in Figure
5.7. The red line above the curves shows the theoretically expected (un-normalised) power law Σ ∝ r−3/2.
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where tff is the free-fall velocity. This gives

σvert ∼ vff(rout)
tdyn

tff(rout)
(5.39)

In the outer parts of the disc, the potential is isothermal, so that M(r) ∝ r. Thus we have

tdyn ∝ r, and tff ∝ r. Writing vff(rout) = vcirc(rout) ≡ vout we see that σvert ∝ voutR/rout.

Therefore, the expected disc aspect ratio in the outer parts is

H

R
=
σvert
vcirc

∝ R

rout
∝ R (5.40)

since in an isothermal potential, vcirc = (GM(r)/r)1/2 ∝ const. We have thus defined a

dynamical, azimuthally-averaged disc scaleheight for the circumnuclear disc that forms

by using the projection of the velocity dispersion along the ‘vertical’ direction for each

annulus i.e., the mean angular momentum vector in each case. In cylindrical radius R we

set,

H2 =
R3σ2vert(R)

GMenc(r)
(5.41)

where Menc(r) is the enclosed mass at r, σvert(R) is the ‘vertical’ velocity dispersion at

R. Figure 5.14 plots ratios of H/R as functions of radius for simulations S50-S57. The

solid line is for simulation S50, for which no initial turbulence is present. It is notable

that the disc formed by the flow in this case is geometrically much thinner than in all

the cases S51-S57. Among the turbulent cases, the general trend in H/R is exactly as

predicted above. The large scatter is explained by a strong time dependence: the disc is

being stirred by strong waves that would eventually act to circularise the disc.

In the region inside r = 0.01, however, the observed H/R dependence is flat while the

analytical expectation has M(r) ∝ const. and therefore H/R ∝ R3/2. We note that the

vertical disc scaleheight is much larger than the SPH smoothing length, implying that the

result inside r = 0.01 is not due to under resolving that region. We believe that the larger

than expected aspect ratio is due to dynamical heating of the inner disc by the waves

already noted at larger radii. Indeed, the inner disc is far less massive than the outer one,

and any waves present in the outer region have to either dissipate or get reflected in this

region.

5.7 Accretion inside the capture radius

While we cannot resolve the hydrodynamics of gas within the accretion radius, racc (1

parsec for most of the simulations presented here), we can track both the mass and the

angular momentum of the particles that are captured. We can therefore calculate the mean

angular momentum of the gas that settled inside racc. If the disc viscous time is comparable
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Figure 5.14: Dependence of vertical disc thickness, H/R, versus radius, for all levels of turbulence, with
vrot = 0.5 (S50-S57), at time t=0.418. Line styles of the curves are the same as in Figure 5.7. The red line
above the curves shows the theoretically expected result, for the (un-normalised) slope H/R ∝ R.
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Figure 5.15: Plots of the accreted angular momentum direction in the Aitoff projection. Both plots are
with vrot = 0.3, with no turbulence (left) and vturb = 2.0 (right). Crosses mark every 0.001 in code time
units. Note that the title of “SMBH spin direction” refers to the spin orientation that the SMBH would
have if it had accreted all of the gas within the capture radius; in reality this is of course not the case.

————————————————————————–

or longer than the duration of our simulations, which is likely (e.g., Nayakshin and Cuadra,

2005), then the direction of the mean angular momentum of the gas captured within racc

region is related to that of the sub-parsec disc. Note that in principle the disc can be

warped and then its structure is more complex (Lodato et al 2009).

Figure 5.15 shows the evolution of the direction of the mean specific angular momen-

tum for the gas particles accreted inside racc in the simulation S30 (left panel, no initial

turbulence) and S37 (right panel, vturb = 2). The latter simulation is initialised with the

highest levels of turbulence we considered in this paper, and therefore the effects of disc

plane rotation are the strongest. The ‘north pole’ in the diagram corresponds to a specific

angular momentum vector oriented along the z-axis. Clearly, there is negligible deviation

from that direction for the ‘laminar’ simulation S30, as expected. For the simulation S37,

however, there is a complicated time evolution of the innermost disc direction. At one

point the disc appears to be completely counter-aligned to the mean angular momentum

of the shell.

The accretion disc ‘plane wandering’ at r <∼ racc should also be seen in the larger scale

flow of gas. Figure 5.16 shows the innermost r = 0.005 region for the simulation S37 at

time t = 0.072. We can clearly see here that the disc in the immediate vicinity of racc is

also strongly displaced in terms of direction from the nominally expected one. One should

also note the flows of gas along directions roughly orthogonal to the disc plane. These

flows must have very different orientations of angular momentum, and it is these that

cause the plane of the ‘sub-grid disc’ to execute the non-trivial path seen in Figure 5.15.
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Figure 5.16: Projected gas density and velocity field for simulation S37, the innermost r = 0.005 region,
for t = 0.072. Note how strongly the disc is misaligned with the xy-plane. At later times the misalignment
decreases as more material accumulates into the disc.
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5.8 Discussion

5.8.1 Summary of the results

We have studied the hydrodynamics of an initially uniform rotating gaseous shell, seeded

with an initial turbulent velocity spectrum as it falls into the inner part of a spherically

symmetric static potential. Particular attention was paid to the amount of gas that made

it inside the accretion radius, racc.

In the control runs without initial turbulence, gas settles into a nearly circular rota-

tionally supported ring (see Figures 5.5, 5.11, 5.12). This was somewhat of a surprise.

Intuitively we expected a wide (∆R >∼ R) disc, as the initial distribution of angular mo-

mentum is broad (Figure 5.5). Furthermore, only a few hundred solar masses of gas were

accreted, compared with the ∼ 5 × 105M⊙ expected on the basis of a simple circularisa-

tion radius argument (see Section 5.5.1). In hindsight, both of these effects are caused by

the effective mixing of gas by the shocks. Low angular momentum gas mixes with high

angular momentum gas before the former reaches the capture radius r = racc. The inner

edge of the ring is therefore a significant distance from the accretion radius. In the con-

text of AGN accretion, such a ring would likely be strongly gravitationally unstable and

form stars rather than feed the SMBH (e.g., Goodman, 2003; Nayakshin et al., 2007). In

contrast, runs in which the initial shell was seeded with turbulence show qualitatively and

quantitatively different results. The most significant of these is that the accretion rates

are higher by up to 3-4 orders of magnitude compared with the simulations that had no

initial turbulence imposed. This is particularly striking since the net angular momentum

of these simulations is the same.

It is obvious that turbulence broadens the angular momentum distribution, setting

some gas on low angular momentum orbits. A less trivial conclusion from our numerical

results is that turbulence also prevents the efficient gas mixing pointed out above. Phys-

ically, high density regions are created by supersonic turbulent convergent flows. These

regions can then travel nearly ballistically through the average density gas. Some of this

gas is able to reach the accretion radius, increasing the SMBH accretion rate compared

with runs without turbulence. This parameter space trend lasts until the initial mean tur-

bulent velocity becomes greater than the net rotation velocity, at which point the accretion

trend saturates and begins to slowly decrease as turbulence is increased further.

The development of high density regions in supersonic turbulence is by now a clas-

sical result from a number of papers (for reviews see e.g., Elmegreen and Scalo, 2004;

McKee and Ostriker, 2007b). There is also a body of work that highlights the complicated

dynamics of shocks in the multi-phase interstellar medium. For example, Bonnell et al.

(2006); Dobbs (2008) suggest that shocks in a multi-phase medium generate (or rather

preserve) differential motions, allowing the high density regions to slip through the shocks.
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These effects are similar in nature to the ballistic behavior of high density clumps found in

our simulations. Schartmann et al. (2009) simulated young nuclear star clusters injecting

the energy into the surrounding gas via supernovae and winds. As in our study it was

found that high density streams form. Those with small angular momentum feed the small

scale ‘torus’. These results, and earlier results by Cuadra et al. (2006) for stellar winds in

the central parsec of the Milky Way also support the viability of a ‘ballistic’ AGN feeding

mode.

We have attempted to build a simple analytical theory that would predict the ac-

cretion rate for our capture inner boundary condition. We first calculated the accretion

rate in the ballistic approximation assuming that gas in the shell receives monochromatic

velocity kicks v = vturb in random directions in the frame rotating with velocity vrot.

This ‘monochromatic’ theory predicts that gas capture rate (fraction) is the highest at

vturb ≈ vrot. We then took into account in an approximate way the corrections associated

with the fact that the real turbulent velocity distribution function is not monochromatic.

The fraction of gas accreted within racc calculated in this way turned out to describe

our numerical results well. Furthermore, the theory predicted that the inner disc surface

density should have a power-law scaling: Σ(R) ∝ R−3/2, which is indeed born out by the

simulations.

The approximate agreement of theory and simulations in this paper implies that we

can use our results for systems of astrophysical interest by an appropriate rescaling of

parameters, which we attempt to do in the next section.

5.8.2 Can quasars and AGN be fed by ballistic accretion?

The most serious challenge to theories of quasar and AGN feeding is gravitational instabil-

ity of these discs and the ensuing fragmentation of discs into stars (e.g., Paczyński, 1978;

Kolykhalov and Sunyaev, 1980; Collin and Zahn, 1999; Goodman, 2003; Nayakshin et al.,

2007). Observations (e.g., Paumard et al., 2006; Bartko et al., 2009) and numerical sim-

ulations (Bonnell and Rice, 2008; Hobbs and Nayakshin, 2009) suggests that this pro-

cess operated in the central 0.5 pc of the Milky Way, creating young stars and prob-

ably leaving the resident SMBH – Sgr A∗ – without gaseous fuel to shine now (e.g.,

Levin and Beloborodov, 2003; Nayakshin and Cuadra, 2005).

One obvious way in which the self-gravity ‘catastrophe’ of AGN discs can be avoided

is to deposit the gas at small enough radii (e.g., King and Pringle, 2007). Namely, one

can show that gaseous discs are hot enough to avoid gravitational fragmentation within

the self-gravity radius, Rsg, which is of the order of 0.01− 0.1 pc depending on the SMBH

mass and some of the disc parameters (see Goodman, 2003). Inclusion of feedback from

star formation allows the disc to survive and yet maintain an interesting accretion rate on

the SMBH out to a few times larger radii (Pedes and Nayakshin, in preparation).
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We shall now try to estimate the plausibility of such a small radius gas deposition in

the context of the ‘ballistic’ gas deposition model we have developed. To this end we shall

use the approximate scalings for the fraction of gas accreted from a rotating turbulent shell

derived in this paper in Section 5.6.1.2. The size of the shell, rout, enters this estimate

directly. Existence of the Mbh −Mbulge relation implies (e.g., Häring and Rix, 2004) that

the SMBH must be fed by gas located roughly the size of the bulge away from the SMBH

(King, 2003, 2005), or else it is difficult to see why the quoted feedback link must exist

(Nayakshin and Power, 2009). We estimate that the effective radius of the bulge, rb, is

about 2.5 kpc for a velocity dispersion σ = 150 km sec−1 (see Nayakshin et al., 2009). If

the rotation velocity at rb is a small fraction of σ, say vrot = 50 km s−1, then the fraction

of the gas that can be accreted from a turbulent shell is

δmax ≈ 0.001GM
1/2
8

(

racc
0.2 pc

)1/2(2.5 kpc

rout

)(

50 km s−1

vrot

)

(5.42)

where M8 = Mbh/10
8M⊙. Here we have used equation 5.32, assuming that the mean

turbulent velocity is of the order of the rotation velocity, which is our maximum in the

accretion trend (although it should be noted that going to stronger turbulence does not

decrease the accreted mass by much - see Section 5.6.2). The Mbh −Mbulge relation here

gives the stellar mass in the bulge as ∼ 500Mbh, and if we assume that ∼ a half of the

bulge gas was used up in star formation (McGaugh et al., 2009), we find that the action of

supernova feedback in the context of our model yields an accreted mass of ∼ 5× 107M⊙.

This accretion would take place over roughly the dynamical time at the outer edge of the

bulge, giving us an accretion rate ∼ a few M⊙ yr−1. In this simple estimate, then, the

SMBH is indeed able to grow as massive as the observations require, assuming that our

ballistic accretion mode can be sustained for the required time. Future work should test

these ideas more directly, with ‘turbulence’ driven directly by feedback from star formation

in the bulge, where the bulge gas distribution has been derived from initial conditions in

the gas on larger scales, e.g., the virial radius of the host dark matter halo.

5.8.3 A positive feedback link of star formation to AGN activity?

Observations show that starburst and AGN activity are correlated in a number of ways

(e.g., Cid Fernandes et al., 2001; González Delgado et al., 2001; Farrah et al., 2003). One

might think that this is entirely natural, as both phenomena require a source of gas to

be present. However, star formation on kiloparsec scales does not have to be casually

connected with SMBH activity. As an example of this, consider a case when the angular

momentum of the gas is large, so that a kiloparsec-scale disc is formed. If star formation in

this disc simply consumes the gas then there is nothing left to feed the SMBH. This is what

may have happened on smaller scales in the central parsec of our Galaxy ∼ 6 million years
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ago (Nayakshin and Cuadra, 2005; Nayakshin et al., 2007). Naturally, if such a process

can rob the SMBH of fuel at parsec scales then the situation becomes even worse once we

reach a kiloparsec.

The opposite situation is also possible because the SMBH mass is a small fraction

of the bulge mass. It is not implausible to have a sub-parsec scale, non self-gravitating

accretion disc that could feed a moderately bright AGN for a long (106 − 107 years, say)

time. The amount of gas involved in this could be 105 − 107M⊙, i.e., miniscule by galaxy

standards. Why such activity should always be connected with a powerful starburst is not

clear.

However, the inclusion of star formation feedback could alter this picture. For ex-

ample, within a kiloparsec-scale disc, feedback from stellar winds and supernovae gives

velocity kicks to the surrounding gas. For a standard IMF, the total momentum in super-

nova shells and winds from massive stars, integrated over their lifetime, is about ǫ∗M∗c,

where ǫ ≈ 10−3, and M∗ is the total mass of the stellar population (Leitherer et al., 1992;

Thompson et al., 2005). If this momentum is absorbed by gas with mass Mg then the av-

erage kick velocity for the gas is vkick = (M∗/Mg)ǫc, or ∼ 300 km s−1 forM∗ ∼Mg. There

is thus certainly enough momentum input to make the gas highly turbulent. The cancella-

tion of oppositely directed momentum results in a reduction in this estimate. However, we

have discussed here only the momentum input; including supernova kinetic energy could

act to increase the above value (e.g., Dekel and Silk, 1986).

As we have shown in this Chapter, the effect of such feedback is likely to result in

some small angular momentum clouds or streams that may feed the SMBH. A important

feature of our model is therefore a correlation of starburst activity with SMBH activity,

with the latter being somewhat offset in time more often than not (it is also possible to

activate an AGN earlier if there is some low angular momentum gas in the initial shell).

Further detailed physics-based modeling of AGN feeding, feedback, and star formation, as

well as comparisons to observations should shed light on the mode of quasar feeding, and

also on the mode of bulge formation.

5.8.4 Cosmological cold stream SMBH feeding?

We have employed turbulent initial conditions as a simple and mathematically convenient

way to introduce strong disordered differential motions in the gas for controlled numerical

experiments in AGN feeding. We expect realistic galaxies to be always in the ‘turbulent’

regime in the above sense because the gas contracting on to a dark matter halo is unlikely

to be of uniform density or possess a uniform velocity field. In fact, large-scale numerical

simulations of galaxy formation show cold gas streams that penetrate the shock-heated

media of massive dark matter haloes (Dekel et al., 2009). This is physically similar to the

ballistic motion of gas we observed in our simulations. While it is very unlikely that these
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very large-scale streams (∼ hundreds of kiloparsecs) would be sufficiently well aimed to

actually feed the SMBH, collisions of several of such streams in the centre of a galaxy

would pump very strong differential motions and lead to some gas being set on small

angular momentum orbits. We therefore speculate that cold large-scale gas streams may

promote AGN feeding by providing energy input to turbulence/differential motions on

galactic scales.

5.8.5 Convergence tests

A great deal of the behaviour that we find in our simulations is the result of turbulent

motions creating dense, shocked gas. It is natural to conclude, therefore, the the artificial

viscosity parameter, α, is of particular importance here. In order to demonstrate that

numerical effects associated with α are negligible, we present convergence tests on this

parameter. The result can be seen for the accreted mass in Figure 5.17 for fiducial values

of mean turbulent velocity, vturb = 0.0 and vturb = 1.0, and rotation velocity, vrot = 0.3.

It is clear that the accretion we find in our simulations is reliable and not subject to

numerical viscous effects, particularly at high turbulence. At zero turbulence there are

small deviations, but we note that at such low accretion rates it is almost possible to see

the signature of individual particles on the plot, and so even minor differences will tend

to appear significant.

5.9 Conclusions

The classical challenge to AGN feeding is the large angular momentum of gas expected

to result in circularised discs of ∼ kpc scales (e.g., Shlosman, Frank & Begelman 1989).

Transporting gas from these scales is extremely difficult due to long viscous times and the

rapid consumption of gas in star formation (e.g., Goodman, 2003; Nayakshin et al., 2007).

Here we pointed out that turbulence in the bulge, e.g., driven by supernova explosions, may

be a way to overcome the AGN feeding debacle by setting some gas on ballistic orbits. To

test these ideas, we have performed simulations of hydrodynamical gas flow with angular

momentum, initially distributed in a spherical shell, in the static spherical potential of a

bulge with a central SMBH. The duration of our simulations is a few dynamical times of

the shell, allowing us to study the formation of an accretion disc and the capture of gas

within a small inner boundary region. For all values of the rotation velocity, the shell was

not in equilibrium with the background potential. This was done deliberately, as the goal

of this project was to study the formation of a disc from an infalling gas distribution from

first principles.

We found that angular momentum mixing in the runs without initial turbulence is very

effective, resulting in an initial ring rather than an extended disc. Further evolution of
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Figure 5.17: Convergence tests on the accreted mass through a boundary at r = 0.003, for the value
of the artificial viscosity parameter, α. The accretion was tracked at 3× the SMBH accretion radius to
avoid numerical artifacts in the estimated accretion due to the inner vaccuum boundary condition. Solid
linestyles correspond to zero turbulence, while dashed linestyles refer to an initial mean turbulent velocity
of vturb = 1.0 in code units. Values are: α = 1.0 (black), α = 0.7 (red), α = 0.5 (magenta), α = 0.2
(blue), α = 0.1 (green). The amount of gas accreted by the SMBH shows excellent convergence at high
turbulence, and at zero turbulence shows good convergence by the time the fiducial value (used for the
rest of the simulations) of α = 1.0 is reached.
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the ring depends on whether it can transfer angular momentum quickly enough and avoid

completely collapsing into stars. If star formation consumes the ring quickly then such

rings are a dead end as far as SMBH feeding is concerned. Turbulent motions in the shell

overcome the angular momentum mixing problem by creating high density regions that

can travel nearly ballistically, retaining their initial angular momentum. Provided there

is enough gas with small angular momentum the SMBH can be fed much more efficiently

than in the ‘laminar’ regime. The main conclusion here is that the star formation in the

bulge may not simply deplete the gas (hence depriving the SMBH of its fuel) but may

actually promote SMBH accretion by creating turbulent flows.

We note that turbulence in this particular project is simply a mathematically conve-

nient formalism to introduce strong disordered differential motions in the gas. We expect

that realistic galaxies are always in the turbulent regime because the state of the gas

on large scales is unlikely to be that of uniform density and angular momentum. Fur-

ther work with self-consistently driven turbulence from star formation and realistic initial

(large-scale) boundary conditions is needed to establish the relevance of the ‘ballistic’ ac-

cretion mode to feeding the SMBH, although our research suggests that it is indeed a

promising model.

There is a wider context to the work presented in this Chapter, beyond the specifics of

SMBH feeding; namely, the modelling of an ‘intermediate scale’ between the standard cos-

mological simulations and the small-scale sub-parsec disc simulations such as we presented

in Chapter 4. The presence of the strong correlations between the bulge and SMBH prop-

erties (refer to Chapter 1, Section 1.8) makes it a priority that we study the connection

between the formation of a galaxy from large scales and the evolution of the galaxy and

growth of the SMBH. The intermediate scale is likely to be extremely important in reg-

ulating this evolution, as it will contain large amounts of star-forming gas that can drive

energy and momentum to smaller (and larger) scales. Furthermore, it is the only way that

one can hope to develop a physically self-consistent model of AGN feeding and growth

that can be employed in a cosmological simulation. In the next Chapter we discuss why

this is needed; what is currently the state-of-the-art is somewhat lacking in this area and

it is vital that it be improved. Cosmological simulations are the driving force behind our

understanding of structure formation, galaxy evolution, and the expansion of the Universe

since its inception, as well as one of the best ways to constrain the nature of dark matter

short of resorting to particle physics. Their reliability is therefore paramount to our field.
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On the modelling of accretion on to SMBHs

“The trouble with having an open mind, of

course, is that people will insist on coming

along and trying to put things in it.”

Terry Pratchett
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6.1 Introduction

Over the last decade, compelling observational evidence has revealed that many galaxies

in the local Universe harbour SMBHs with masses 106 <∼Mbh/M⊙
<∼ 109 in their centres.

During the same period, surveys of the distant Universe have uncovered the existence of

quasars at z ∼ 6, when the Universe was less than a 1/10th of its current age; this implies

that the component SMBHs had already assembled their mass by this time (see, e.g.,

Fan et al., 2006).

Our understanding of the physics that dictates the growth of SMBHs is incomplete.

Black holes grow by accreting low angular momentum material from their surround-

ings, yet the character of the accretion flow on to an SMBH is governed by physical

processes as diverse as galaxy mergers (e.g., Hopkins and Quataert, 2009), turbulence in-

duced by stellar feedback (e.g., Chapter 5) and black hole accretion-driven outflows (e.g.,

Nayakshin and Power, 2010). Black hole growth is routinely modelled in galaxy formation

simulations (see, e.g., Springel et al., 2005) and the importance of SMBHs in shaping the

properties of galaxies is now well established (see, e.g., Croton et al., 2006; Bower et al.,

2006). The majority of galaxy formation simulations published in the literature incorpo-

rate what we term the ‘Bondi-Hoyle model’ for black hole growth (see, e.g., Springel et al.,

2005), which derives from the work of Bondi and Hoyle (1944) and Bondi (1952). This

model assumes the simplest possible accretion flow, where the gas is at rest at infinity and

accretes steadily on to a black hole, subject only to the (Newtonian) gravity of the latter,

which is modelled as a point mass (refer to Chapter 2, Section 2.3.2).

Simulations that model the idealised physical problem as it is set out in Bondi and Hoyle

(1944) and Bondi (1952) produce results that are in good agreement with the analytical

solution (Ruffert, 1994). In galaxy formation simulations, gas is expected to have non-

zero angular momentum that provides a natural barrier to accretion on to the SMBH

(Power et al., 2010). Gas settles into a disc whose dimensions are set by the angular mo-

mentum of the accretion flow, and only the material with the very lowest specific angular

momentum can accrete, as the viscous timescale for gas to be transported through the

disc may already be comparable to the age of the Universe at r ∼ 1 pc (refer to Chapter

2, Section 2.3.4.6).

In this Chapter we suspend, for the moment, our disbelief that gaseous infall can

proceed entirely radially from large scales. We consider spherically symmetric accretion

flows (i.e., zero angular momentum) on to an SMBH embedded in the potential of a massive

dark matter halo. This is an example of a situation where we might expect the Bondi

(1952) formula to provide a reasonable estimate of the accretion rate on to the SMBH. We

argue that, in fact, the Bondi (1952) formula, designed for accretion on to isolated black

holes, can only be applied to accretion on to astrophysical SMBHs, i.e., those embedded

in massive dark matter halos, if the gas in the latter is in or near hydrostatic equilibrium.
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It is only in this case that one of the key assumptions of Bondi (1952) – the gas being

at rest at infinity – is satisfied (‘infinity’ in this case meaning outside the Bondi radius

- see Section 6.2.1). This is not what is expected in gas-rich epochs when SMBHs can

grow efficiently. High density of gas implies efficient gas cooling; when the temperature of

the gas falls below the virial one for the halo the gas cannot be in hydrostatic balance, as

the halo potential must impose an inflow of gas on distances much larger than the Bondi

radius. The accretion of gas on to the SMBH in this case is influenced by the properties

of the host.

To demonstrate the validity of this point, we design and perform idealised spherically

symmetric simulations in which gas is assumed to be isothermal for simplicity. We find that

the Bondi-Hoyle accretion rate estimate, ṀBondi, can be orders of magnitude off the true

Ṁbh. Worse yet, the factor by which it is off is a strong function of the temperature. At the

same time, a free-fall accretion rate estimate comes out as a fairly accurate alternative

for these tests. Therefore, we suggest that a better approach would be to employ an

interpolative formula between the Bondi (1952) solution and the free-fall estimate.

The layout of this Chapter is as follows. In Section 6.2 we show analytically that in

large-scale simulations of cosmological volumes the Bondi-Hoyle approach is invalid, and

in Section 6.3 we present some numerical tests of this hypothesis. Finally in Section 6.4

we discuss our conclusions.

6.2 Analytical arguments

6.2.1 Classical Bondi-Hoyle accretion

We first recap the main assumptions underpinning the classical Bondi and Hoyle (1944);

Bondi (1952) papers. These are nicely summarised in the first sentence of Bondi (1952)’s

abstract: “The special accretion problem is investigated in which the motion is steady and

spherically symmetrical, the gas being at rest at infinity”. We have italicised the part of

the sentence that bears the most importance for us here. While the presence or absence

of vorticity and/or angular momentum in the gas has been pointed out by a long list of

authors as a key determinant of the accretion process (e.g., Krumholz et al., 2005), the

importance of the ‘being at rest at infinity’ condition is the key focus of this Chapter,

however, and for the time being we accept1 the assumptions of zero angular momentum

and spherically symmetric infall.

Physically, gas can be at rest at infinity only when it is not subject to any forces.

The only external force acting on the gas in the restricted Bondi and Hoyle (1944); Bondi

(1952) problem, i.e., the gravitational force, is due to the black hole. Self-gravity of the

1somewhat warily, and recognising that this entirely idealised picture should be viewed as instructive

rather than realistic
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gas is neglected. The ‘infinity’ is a region at a large enough distance that the gravitational

potential of the SMBH is negligible with the internal energy of the gas. This is quantified

by defining the Bondi (or the capture) radius,

rB =
2GMbh

c2∞
(6.1)

where Mbh is the mass of the central object and c∞ is the sound speed of the gas far from

the hole. The Bondi radius divides the flow into two distinct regions (Frank et al., 2002).

Far from rB, gas is hardly aware of the existence of the black hole, and the flow is very

subsonic. The pressure and density of a subsonic flow are approximately constant, and so

we can set ρ(r) ≈ ρ∞ at r ≫ rB.

Inside the capture radius, on the other hand, ρ(r) begins to increase above the ambient

value, and the flow eventually reaches a sonic point where |vr| = c∞, within which it

plunges essentially at free-fall. The sonic point is found from rs = GMbh/2c
2
s (rs), where

cs(rs) is the sound speed at rs. This local quantity is related to the sound speed at infinity

via cs(rs) = c∞(2/(5− 3Γ))1/2 where Γ is the polytropic index of the gas that relates the

gas pressure and density by P = KρΓ, with K a positive constant.

Applying the Bondi-Hoyle formalism to black hole growth assumes that the accretion

rate on to the SMBH is set by the accretion rate through the Bondi radius, given by

Ṁbh = πλ(Γ)r2Bρ∞c∞ =
4πλ(Γ)G2M2

bhρ∞
c3∞

(6.2)

where λ(Γ) contains all the corrections arising due to the finite pressure gradient force in

the problem. This function varies relatively weakly, i.e., between 1.12 for Γ = 1 and 0.25

for Γ = 5/3. For the remainder of this paper our fiducial assumption is a soft equation of

state i.e., Γ ≈ 1.

6.2.2 When is Bondi-Hoyle accretion applicable?

The Bondi-Hoyle formalism has been widely adopted for a a ‘sub-grid’ prescription for

the accretion rate on to the SMBH in large-scale cosmological simulations. The argument

seems to be that while one cannot usually resolve the scales of the Bondi radius for the

black hole, one can at least use the smallest resolved scales to approximately determine

the value of the gas density and the sound speed ‘at infinity’ for use in the Bondi formula.

Indeed, the smallest resolvable scales are usually about a fraction of a kiloparsec, whereas

the Bondi radius is of the order of a few to a few tens of parsecs.

Unfortunately, for the Bondi (1952) solution to be applicable, we still need to make sure

that the gas being at rest at infinity assumption is satisfied. In cosmological simulations

black holes are immersed in stellar bulges and dark matter haloes that are typically ∼ 103
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to 104 times more massive than the SMBH. If gas in the halo (or bulge) is as hot as the

halo virial temperature, it will be in hydrostatic balance. It seems that in this situation,

which is common for low luminosity SMBHs in giant elliptical galaxies where the gas is

rather tenuos and hot since the cooling time is long (Churazov et al., 2005), the Bondi-

Hoyle solution should be a good approximation. However, in the epoch when SMBHs

grow rapidly, their hosts are very gas rich. Higher density gas is likely to cool much faster

and hence the gas is likely to be much cooler than the virial temperature. In this case

the gas is not able to support its own weight, and must collapse to the centre, where it

feeds the SMBH and forms stars. Therefore, we expect a radial inflow of gas to the centre

rather than hydrostatic balance ‘far’ from the SMBH. As a first step, it is clear that the

Bondi-Hoyle formalism must be modified in the presence of an external potential. Ricotti

(2007) has demonstrated how this should be done for the specific case of the growth of

primordial black holes in a dark matter halo with a power-law density profile.

More fundamentally, however, even the meaning of the Bondi radius loses its utility

in this situation. As explained earlier, for the isolated SMBH problem, rB delineates the

region outside which the potential of the hole starts to become greater than the internal

energy of the gas. For an SMBH plus host halo system, one should introduce a modified

Bondi radius,

r̃B =
2GMh

c2∞
(6.3)

that takes into account the total mass of the halo,Mh. In order for gas to accrete efficiently

on a dark matter halo from larger scales, its temperature must be at most comparable with

the virial temperature of the halo (White and Frenk, 1991). Thus, we set c∞
<∼ GMh/rh,

where rh is the virial radius of the halo, giving us a modified Bondi radius of r̃B
>∼ 2rh.

We can see from this that the gravitational potential energy starts to dominate over the

internal energy of the infalling gas before the latter has even reached the edge of the halo.

The standard rB is therefore meaningless in this case.

Figure 6.1 illustrates this point graphically, by comparing the potential energy of gas

as a function of radius for a variety of halo profiles with c2s/2, assuming the virial gas

temperature at rh. These profiles are described in Section 6.3. The cosmology we have

assumed for the halos is λCDM with Ωm = 0.27, Ωλ = 0.73 and a virial overdensity

parameter of ∆ = 200 at a redshift of z = 2 (although we note that our conclusions are

unchanged for a wide range in z, from the early Universe to the present day).

The ∝ 1/r potential due to the SMBH of mass Mbh = 108M⊙ in this Figure is

shown with the dash-triple-dot power law. The traditional Bondi (or capture) radius is at

r = 0.002, where the SMBH potential crosses the c2s/2 line. For all the halos considered,

the potential energy of the host makes a significant contribution at all radii except those

within the very inner parts of the halo (Figure 6.1). The host potential can exceed the

gas internal energy by a large factor everywhere outside the SMBH radius of influence.
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Therefore, if we assume the gas has a relatively soft equation of state and accretes on to

the halo at or below Tvirial(rh), where rh is the halo truncation radius, the character of

the inflow becomes supersonic inside the halo instead of being stationary at infinity. In

Section 6.3 we quantify this by calculating the sonic point for isothermal gas flows at or

below the virial temperature for all of the halo mass profiles considered. We show that

for typical dark matter halos the sonic point is reached while still at very large distances

from the central black hole.

From Figure 6.1 it can also be seen that for hotter gas, the classical rB estimate

becomes more accurate, as the potential energy of the (halo + SMBH) system starts to

asymptote to the SMBH solution and no longer dominates over the value of c2s/2. If the

gas thermal energy is comparable to that of the potential energy we naturally expect near

hydrostatic equilibrium to be maintained and in this case the Bondi-Hoyle formalism is

applicable.

6.3 The sonic point

In order to demonstrate quantitatively our findings so far, namely, the character of the

spherically symmetric infall at large radii on to an SMBH embedded in a background

potential, we consider the sonic point for gas infalling on to a dark matter halo. For an

isothermal gas flow, determining the sonic point for an extended mass distribution reduces

to the problem of finding a solution to the equality r = GM(r)/2c2s (r), with M(r) as the

mass enclosed within radius r (see, e.g., Frank et al., 2002). Assuming an isothermal

equation of state for the moment and putting c∞ = cvirial we find that for gas accreting

from outside rh the sonic radius should be rh/2. Since this is within the halo, we must also

take account of how the mass profile varies once inside rh. For a given profile we therefore

proceed to solve (numerically, with a root finding algorithm) for the sonic point, and plot

its location versus gas temperature in Figure 6.2. We also consider the effect of varying

the adiabatic index on the solution.

6.3.0.1 Power law profile

We consider first the simple case of an extended halo with a power-law density profile

given by

ρ(r) = ρh

(

r

rh

)−q

(6.4)

where ρh is the dark matter overdensity at the truncation radius. For the sonic point we

require the enclosed mass, which we obtain by integrating equation 6.4 over the spherical
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Figure 6.1: Plot of potential energies for a selection of dark matter halo profiles (some realistic, some
instructive) modified by a central SMBH, compared to the thermal energy of the gas at the virial temper-
ature at the halo virial radius. The potential due to the central SMBH by itself is also plotted (‘BH’ in the
figure key). The classical Bondi radius for three different values of temperature are indicated as crosses to
demonstrate how the standard Bondi-Hoyle approach becomes more accurate at higher T . The modified
Bondi radius for the fiducial Tvir is denoted by a rhombus, demonstrating that at this temperature the
potential energies are dominant for the entirety of the halo.

————————————————————————–
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volume within radius r, giving us,

M(r) =Mh

(

r

rh

)3−q

(6.5)

so that rs = 21/(2−q) rh for gas at Tvir(rh) and Γ = 1. We note that for the isothermal

sphere, rs cannot be defined once inside the halo, as the mass enclosed falls ∝ r.

Figure 6.2 shows how the sonic point varies for q = 3 (solid black line) as T is decreased

below our fiducial (but upper limit) assumption of Tvir(rh). As we can see, rs quickly

reaches rh in this case. A dotted black line indicates the solution for q = 4, demonstrating

how the sonic point is reached faster for a steeper mass profile once inside the halo.

In the context of cosmological modelling, we now consider some more realistic profiles

for dark matter halos, such as would be found in a large-scale simulation. In each case we

solve for the sonic point of gas accreting on to the halo and plot the solution for a range

of temperatures in Figure 6.2.

6.3.0.2 NFW profile

The Navarro, Frenk and White (NFW) profile (Navarro et al., 1996) has been found to

provide a good description of the average mass profiles of dark matter haloes in dynamical

equilibrium in cosmological N-body simulations. The mass enclosed within the NFW

profile can be conveniently expressed in the form

M(r) = 4πρ0a
3

[

ln
(

1 +
r

a

)

− r

a(r + a)

]

(6.6)

where a is the scale radius of the halo and ρ0 is a characteristic density. Note that the

scale radius a depends on the concentration c = rh/a of the halo, where 5 ≤ c ≤ 15 for

halos of mass 1014 − 1010M⊙ (see, e.g., Bullock et al., 2001).

6.3.0.3 Hernquist profile

The Hernquist profile (Hernquist, 1990) is a convenient analytical model for the mass

distribution in elliptical galaxies and bulges that follow the R1/4 law of de Vaucouleurs

(1948). It behaves similarly to the NFW profile at small radii (ρ ∝ r−1) but drops off

more rapidly at large radii (ρ ∝ r−4); this has led to its use generating initial conditions

for simulations of galaxy mergers (e.g. Springel et al., 2005). The Hernquist mass profile

can be expressed as

M(r) = 4πρ0a

[

r2

2(1 + r/a)2

]

(6.7)
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6.3.0.4 Jaffe profile

The Jaffe cusp (Jaffe, 1983) is one of a family of spherical density profiles (which include

the Hernquist profile, above) that are characterised by an exponent γ (Dehnen, 1993). For

the Jaffe profile we have γ = 2. The mass enclosed goes as

M(r) = 4πρ0a
3

(

r

r + a

)

(6.8)

This profile is motivated by observed luminosity profiles of galaxy bulges and is a rea-

sonable model for the inner regions of galaxies and those that have recently undergone a

major merger (Milosavljevic and Merritt, 2001).

Referring now to Figure 6.2, we can see that the isothermal solution for the sonic point is

in all cases a significant fraction of the halo radius at T = Tvir(rh). Indeed, one only has to

decrease the temperature of the gas by ∼ 30% from this fiducial value for the sonic radius

to become greater than the halo radius itself. This means that for gas accreting (in a

spherically-symmetric fashion) on to a dark matter halo, at or near the virial temperature

for the virial radius, the infall must quickly tend to a free-fall solution once inside the halo.

Of course, we acknowledge that gas accreting on to a virial overdensity in a spherically-

symmetric fashion is unlikely to possess a purely isothermal equation of state. Indeed, ac-

cretion in the ‘hot phase’ may follow a nearly adiabatic trajectory (Kereš et al., 2005). In

this case rs cannot be defined, with the gas accreting subsonically down to the black hole.

This of course is an extreme case and for a flow that has a mixture of cold and hot phases

the adiabatic index will lie somewhere in between the two limits. We therefore plot the

full range of Γ against the solution for the sonic point in Figure 6.3. We do this for what

is arguably the most realistic halo profile of those we have discussed so far, namely the

NFW profile. We display curves for differing fractions of the virial temperature, noting

that although a harder equation of state might reduce the effectiveness of our conclu-

sions, slightly decreasing the initial temperature below that of Tvirial(rh) greatly assists

the gas in reaching rs while still at large distances from the galaxy at the centre of the halo.

In the interest of completeness we now demonstrate numerically the form of the radial

infall in a realistic background potential within a galaxy. We choose a dynamic range

that lies inside the sonic point (as would always be the case for efficiently cooled gas at

these scales, as we have shown) in order to highlight why the standard Bondi estimate is

inaccurate in this case.
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Figure 6.2: Plots of the sonic radius, scaled in units of rh, for a variety of halo profiles, assuming a halo
of 1011 M⊙. All of the profiles intersect the T = Tvir(rh) axis at a radius that lies within the halo but still
at large distances from the black hole, and certainly well outside the resident galaxy. This demonstrates
that for the majority of the infall within the halo, a spherically symmetric, radially infalling accretion flow
with a soft equation of state will be travelling supersonically unless some form of external heating process
takes place (or perhaps heating from AGN feedback or star formation, although we note that the latter
processes would generally only operate well within the galaxy itself.)

————————————————————————–
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Figure 6.3: Plots of how the sonic radius varies with the adiabatic index, for a halo with an NFW profile
at different initial temperatures as fractions of Tvir. It is clear that although moving to a harder equation
of state can have a strong effect on the sonic radius for T ≃ Tvir, reducing it significantly and allowing the
flow to remain subsonic for far longer, even a small decrease in the temperature of the flow below Tvir as
it accretes on to the halo can completely counteract this effect. Naturally as Γ → 5/3, rsonic → 0.

————————————————————————–
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6.4 Numerical tests

To perform the simulations we employ the three-dimensional SPH code GADGET-3, as

per Chapter 4 and as described in Chapter 3, Section 3.5. The gas is evolved in a static

external potential which includes a point mass black hole at the centre. The computational

domain extends from a kiloparsec down to an ‘accretion radius’ around the black hole at

racc = 1 pc, and we remove the particles that come within this distance of the SMBH. We

use adaptive SPH smoothing lengths down to a minimum of 2.8 × 10−2 pc, and employ

the Monaghan-Balsara form of artificial viscosity (Gingold and Monaghan, 1983; Balsara,

1995) with α = 1 and β = 2α.

For the external potential in our model we use a Jaffe cusp as per equation 6.8 but with

a core at the centre of our computational domain to prevent divergence in the gravitational

force to very small radii. The radius of the core, rc, corresponds to approximately the

dynamical influence radius of the SMBH. With this (modified) potential the mass enclosed

within radius r is given by:

M(r) = Mbh +







Mc

(

r
rc

)3
, r < rc

Mc +Ma

(

1
rc+a − 1

r+a

)

, r ≥ rc ,
(6.9)

where Mc = 2 × 108M⊙, Ma = 1011M⊙, rc = 20 pc, and a = 10 kpc. The mass of the

SMBH is set to Mbh = 108M⊙. For simplicity, the gas is kept isothermal throughout the

entirety of the simulation and self-gravity is turned off.

6.4.1 Initial conditions

The starting condition for our simulations is that of a uniform density, spherically sym-

metric thick gaseous shell centered on the black hole. The inner and outer radii of the

shell are rin = 0.1 kpc and rout = 1 kpc, respectively, with Mshell = 108M⊙. The tem-

perature of the gas is varied between tests, ranging from 103 K to 105 K. To minimise

initial inhomogeneities we cut the shell from a relaxed, glass-like configuration. The gas

is initially at rest, and allowed to infall within our static potential. After a time of the

order of the dynamical time at the outer edge of the shell, a steady-state is reached and it

is at this time that we make our comparisons between the various accretion rates in the

next section.

6.4.2 Results

We define a radius-dependent, ‘measured’ accretion rate on radial shells as Ṁ(r) =

4πr2ρ vr, where vr is the radial velocity of the gas on the shell r. Since the majority

of the flow has been allowed to settle into an approximate steady state, this function is
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largely constant with radius, and is thus the same as the time-averaged accretion rate

measured at the black hole. We denote the average value of this function with the long

dashed red curve in Figure 6.4. The solid, the dotted and the dashed curves in this Figure

show the Bondi-Hoyle estimate for the accretion rate as a function of radius for three

different values of gas temperature. The interpretation of the curves is as follows: in a

cosmological isothermal simulation, where the smallest resolved scale is distance r from

the black hole, one would would probably find the Bondi-Hoyle estimate to be similar to

that shown by the curves in the figure. Clearly, therefore, the Bondi-Hoyle estimate is

very inaccurate for these isothermal simulations. At intermediate temperatures, e.g., 105

K, the formula in the inner parts results in a significant overestimate of the accretion rate

and an overestimate at large radii.

6.4.2.1 Free-fall rate

A simple but physically well motivated alternative to the Bondi-Hoyle formula for cold

spherically symmetric flows is a free-fall rate estimate,

Ṁff(r) =
Mgas,enc(r)

tff(r)
, (6.10)

where Mgas,enc is the enclosed gas mass within radius r, and tff = (r3/2GM(r))1/2 is the

free fall time. As the enclosed gas mass may be expensive to evaluate in a numerical

simulation, one can try to approximate the enclosed gas mass in the above equation as

(4π/3)r3ρgas(r), so that

Ṁff(r) ∼
4πr3ρgas(r)

3tff(r)
(6.11)

Both of the above estimates provide a much better match to the accretion rate in our

numerical tests than the Bondi-Hoyle approach, as Figure 6.4 shows. The estimate that

includes the enclosed gas mass appears to be the better of the two. It should be noted

too that since the free-fall estimates have no dependance on cs, the profiles are converged

regardless of the temperature.

6.5 Discussion and future work

We have argued that the Bondi-Hoyle formalism is directly applicable to SMBH accretion

only if the accreting gas is fully adiabatic, which is the case when the cooling time is long.

One expects that in this case the gas is in an approximate hydrostatic balance within the

halo, thus satisfying the important explicit assumption of Bondi (1952) that gas is station-

ary at infinity. This may possibly be the case in giant, gas-poor elliptical galaxies, where

the gas is rather tenuos and hot (Churazov et al., 2005). However, in the most interesting
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Figure 6.4: The mass flux (average steady-state value) from the simulations through each radius (red)
i.e., Ṁ(r), together with the Bondi-Hoyle estimate as per Equation 6.2 and the free-fall estimate as per
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phase of SMBH and galaxy buildup, when the halo is likely to be awash with gas to feed

both the SMBH and star formation, the cooling time is expected to be short, and gas may

cool much below the virial temperature. Hydrostatic balance is then impossible for gas

in the halo; it is necessarily in free fall. We have run a series of simple numerical tests

to explore this limit, allowing a thick, spherical shell of gas to accrete on to an SMBH at

the centre of a background halo potential. These tests showed that a free fall accretion

rate estimate is indeed considerably more accurate than the Bondi-Hoyle formalism in

this case. What is most concerning is that the error of the latter strongly depends on

the gas temperature (and therefore the cooling function) and cannot be ‘predicted’. The

Bondi-Hoyle accretion formalism may thus be wrong by significant (and unknown) factors

in either direction. The error may well depend on the galaxy mass and type systematically.

We must conclude that predictions based on the Bondi-Hoyle approach are unlikely to be

robust.

The pertinent question then is how to rectify this situation. A potential solution is to use

the ‘accretion disc particle’ method proposed by Power et al. (2010) and related to the

‘sink particle’ method of Bate et al. (1995). One introduces a reasonably small accretion

radius as a region around the SMBH within which gas is accreted on the black hole. The

advantage of this is that gas supported by its angular momentum at distances greater

than the accretion radius forms a disc rather than being forced to accrete on the SMBH

unphysically. One then introduces a sub-grid prescription for an accretion (AGN) disc at

radii smaller than the accretion radius to treat processes such as viscous transport and

star formation in AGN discs (see, e.g., Nayakshin et al., 2007).

The latter method works best at reasonably high particle numbers within the simulated

galaxies. At poorer resolution one may still require a yet simpler method. What we

desire is a Bondi-Hoyle style approach, that can yield a single number (or perhaps a

set of numbers) for the accretion rate down to scales of the order of the SMBH capture

radius, but after which point the accretion disc particle method can take over. Such an

approach could be achieved by developing an interpolation formula between the near-

hydrostatic balance/Bondi-Hoyle rate and the efficiently cooled/free-fall rate. The input

for the accretion disc particle would therefore no longer be a physical boundary but rather

the value(s) obtained from this formula.
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7
Discussion and conclusion

“If we knew what it was we were doing, it

would not be called research, would it?”

Albert Einstein
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Discussion and conclusion 7.1. Summary

This thesis has examined the feeding of supermassive black holes (SMBHs) in galactic

centres. We have summarised the relevant theoretical topics for this work (Chapter 1)

and derived the appropriate mathematical constructs (Chapter 2). We have presented in

some detail the numerical approach that we have used to run the simulations and construct

our models in Chapter 3. The science goals have been described in Chapters 4, 5, & 6,

where we consider first the formation of the young stellar populations in our own Galactic

centre and the character of the accretion flow from a cloud-cloud collision; second, a novel

mode of AGN feeding driven by turbulence at scales of hundreds of parsecs; and third, an

investigation into the validity of the accretion rate prescription for large scale, cosmological

simulations. In the remainder of the current chapter we summarise each of the science

chapters in more detail, discuss the bigger picture, and finally offer suggestions for future

work.

7.1 Summary

In Chapter 4 we have studied the environment of our own Galactic centre using numerical

simulations. Young, massive stars in the central parsec of our Galaxy are best explained

by star formation within at least one, and possibly two, massive self-gravitating gaseous

discs. We have explored the possibility that the observed population of young stars could

have originated from a large angle collision of two massive gaseous clouds at r ≃ 1 pc from

Sgr A∗. In all of the simulations that we performed for this model, the post-collision gas

flow forms an inner, nearly circular gaseous disc and one or two eccentric outer filaments,

consistent with the geometry of the observed stellar features. Furthermore, the radial

stellar mass distribution that we obtain is very steep, Σ∗ ∝ r−2, again consistent with the

observations. All of our simulations produce discs that are warped by between 30◦ and 60◦,

in accordance with the most recent observations. The three-dimensional velocity structure

of the stellar distribution is sensitive to initial conditions (e.g., the impact parameter of

the clouds) and the value of the cooling parameter. For example, the runs in which the

inner disc is fed intermittently with material possessing fluctuating angular momentum

result in multiple stellar discs with different orbital orientations, contradicting the observed

data. In all cases the amount of gas accreted at our inner boundary is large, enough to

allow Sgr A∗to radiate near its Eddington limit for over ∼ 105 yrs. This suggests that

a refined model would consist of physically larger clouds (or a cloud and a disc such as

the circumnuclear disc) colliding at a distance of a few parsecs rather than 1 parsec as we

have assumed in our simulations.

In Chapter 5 we have generalised our picture to that of the inner 100 parsecs of a

typical (gas-rich) galaxy bulge. We have examined specifically the gas accretion rate on

to the SMBH at the centre of a galaxy from these scales. We point out that, while the
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mean angular momentum of gas in the bulge is very likely to be large, the deviations from

the mean can also be significant. Indeed, cosmological simulations show that velocity

and angular momentum fields of gas flows on to galaxies are very complex. Furthermore,

inside bulges the gas velocity distribution can be further randomised by the perturbations

due to feedback from star formation. We perform hydrodynamical simulations of gaseous

rotating shells infalling on to an SMBH, attempting to quantify the importance of velocity

dispersion in the gas at relatively large distances from the black hole. We implement this

dispersion by means of a supersonic turbulent velocity spectrum. We find that, while in

the purely rotating case the circularisation process leads to efficient mixing of gas with

different angular momentum, resulting in a low accretion rate, the inclusion of turbulence

increases this accretion rate by up to several orders of magnitude. We show that this

can be understood based on the notion of ‘ballistic’ accretion, whereby dense filaments,

created by convergent turbulent flows, travel through the ambient gas largely unaffected

by hydrodynamical drag. This prevents the efficient gas mixing that was found in the

simulations without turbulence, and allows a fraction of gas to impact the innermost

boundary of the simulations directly. Using the ballistic approximation, we derive a simple

analytical formula that captures the numerical results to within a factor of a few. Rescaling

our results to astrophysical bulges, we argue that this ‘ballistic’ mode of accretion could

provide the SMBHs with a sufficient supply of fuel without the need to channel the gas

via large-scale discs or bars. We therefore argue that star formation in bulges can be a

strong catalyst for SMBH accretion.

Finally, in Chapter 6 we critically evaluate the modelling of accretion on to SMBHs

in cosmological simulations. This is frequently dealt with, sub-grid, by a Bondi-Hoyle

prescription. We examine this approach analytically and numerically, and argue that it

is adequate only for hot, virialised gas with zero angular momentum. Gas with a sub-

virial temperature, on the other hand, would likely be in a state of free-fall long before it

reaches the black hole. Our numerical tests demonstrate that in this regime the Bondi-

Hoyle formalism can be erroneous by orders of magnitude in either direction. Not only it

is inaccurate, but it may also impose unphysical trends in the results by being wrong by

different factors for different halo masses. We propose that future numerical simulations of

SMBH growth should either modify the prescription to include the free-fall regime and/or

employ the ‘accretion disc particle’ method whereby only gas with low angular momentum

is accreted (Power et al., 2010).

The work that we have presented in this thesis has been tailored to numerical and analyti-

cal modelling of galactic centres; specifically, to the feeding of the central SMBH via infall

of gas from larger scales. A core theme of the models discussed in Chapters 4 & 5 has

been feeding through a disordered flow that arises due to an initial ‘kick’ from an event

that deposits energy and momentum in the surrounding gas. In Chapter 4 this took the
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form of a collision between two gas clouds, where the resulting kick was a thermal one;

as a result the gas puffed up and remained diffuse to late times, ensuring an extended,

disordered flow on to the central forming accretion disc as the diffuse gas self-collided and

cooled. This gave rise to an effect noted by King and Pringle (2007), where the SMBH is

fed through a small-scale disc that has no preferred orientation with respect to the host

galaxy. In Chapter 5 the kick to the gas was momentum-driven, due to our isothermal as-

sumption, and created dense clumps with low angular momenta that were able to travel to

the centre of the computational domain without being affected by hydrodynamical drag.

In this case too, the disc stayed small, and although it had a dominant angular momentum

vector, the inner parts were significantly warped and subject to strong waves propagating

through the disc as matter continued to fall on to it. In both instances we therefore avoid

the creation of a large disc at a single orientation, which as we discussed in Chapter 1,

Section 1.7.1.2, is highly undesirable if we are to maintain a large (∼ 1M⊙ yr−1) accretion

rate on to the SMBH. Indeed, in our numerical models the amount of gas accreted by the

black hole was sufficient for bright AGN activity for the duration of the simulations. We

therefore favour this ‘stochastic’ mode of feeding as the means by which to grow SMBHs

to the sizes that are observed (Mbh ∼ 109M⊙ by z ∼ 6).

We find, in all of our models, that the inclusion of gas and stellar processes in galactic

centres is of direct relevance to the feeding and growth of the central SMBH. Currently,

standard paradigms for accretion do not allow rates fast enough to grow seed black holes in

the early Universe to the masses of SMBHs that we observe in AGN. Central to this issue

is the oft-quoted need for ‘sensible’, planar geometries and orientations; such assumptions

necessarily lead to a large, thin, parsec scale disc through which transport of gas takes

longer than the current age of the Universe, or a black hole that has been ‘spun-up’

to maximal with a radiative efficiency so high that its Eddington limit is reached at

disappointingly low accretion rates. Fundamentally, the problem lies in the fact that the

gas supply from large (galactic) scales must be transported some 10 orders of magnitude

in scale to reach the actual accretion radius (not the numerical ones that we have used

in our simulations, but the physical, last stable orbit one) of the SMBH. We really are

therefore faced with (to use a popular analogy from the AGN community) figuring out

how to feed a ‘baby’ with a ‘giant spoon1’.

We argue that this feeding must be processed by events occurring on the intermediate

scale of a galaxy; say within a few hundreds of parsecs or less. These processes, of which

momentum feedback from star formation is the particular example we have explored in

this work, break up the gas into ‘morsels’ that are put on to low angular momentum orbits

by collisions and shocks, sending them close enough to the black hole to be captured and

accreted in a reasonable timeframe. In this way, the fuel does not have to wait its turn at

1giant is an understatement
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large radii for all of the material inside of its radius to be accreted before it can join in;

rather it can be ‘kicked’ right into the centre of the galaxy, arriving there on a dynamical

time rather than a viscous one. The central black hole, in turn, does not continually

swallow gas at the same orientation and orbital sense, resisting further accretion through

efficient feedback, but instead devours each morsel that is sent its way.

To a certain degree, the idea that star formation can aid accretion on to the SMBH

in this way runs counter to accepted wisdom, which tends to view the formation of stars

as more of a death sentence for the progenitor gas. Furthermore, in order to fully explain

the means by which SMBH growth to the observed masses occurred, we require this

reprocessing the gaseous fuel to occur repeatedly, as a one-off event will merely produce

a period of bright AGN activity for a short time, most likely of the order of the free-fall

time from the appropriate radius. Our model therefore favours gas-rich surroundings and

‘eager’ star formation, so that feedback from supernovae have a chance to create a large

dispersion in the velocity distribution before the majority of the gas is used up, and a way

to replenish the gas supply from larger scales; in other words, a major merger of gas-rich

galaxies. This may make it difficult for our model to be verified observationally, as it is

hardly a surprising conclusion that gas-rich mergers should give rise to a period of strong

AGN activity and SMBH growth. Further self-consistent modelling and the inclusion of

feedback into our simulations may help to constrain this picture and the possible supporting

trends that should be looked for in large observational AGN surveys.

7.2 Future work

There are a number of areas for the projects outlined in this thesis which warrant follow-up

work. Firstly, it would be interesting to verify the prediction that we made in Chapter

4, namely that a better model for the formation of the stellar discs in the Galactic centre

is one where the cloud collision occurs further out, for example within the circumnuclear

discs a few parsecs away from the SMBH. Secondly, the project presented in Chapter 5

on turbulent, ballistic feeding of AGN is really only a first step in modelling the interme-

diate scale flow within a galaxy, in order to develop a physically self-consistent sub-grid

prescription for AGN feeding that can be embedded into a cosmological simulation (where

resolution is poor at galactic scales). This work is ongoing. The next step will be to

take input from a cosmological simulation that can resolve down to kiloparsec scales as

the outer boundary condition for our velocity field; currently the initial setup is very ide-

alised. Finally, the critical evaluation of the Bondi-Hoyle sub-grid model for large-scale

simulations (Chapter 6) would be improved considerably if we were to determine an ap-

propriate interpolative formula that reproduced both the near hydrostatic equilibrium and

free-fall regimes consistently. All of these extensions are planned, along with the coupling
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of the accretion model that we develop to an AGN feedback model that can further shed

light on the symbiotic relationship between the SMBH and the host galaxy.

There is also room for improvement and extension in our numerical method. There

has recently been substantial development of the SPH method (Cullen and Dehnen, 2010;

Read et al., 2010) that would likely be very relevant to the work presented in this the-

sis. In particular, Cullen and Dehnen (2010) have devised an artificial viscosity scheme

that only switches on in shocks, rather than being fixed for all particles for the entirety

of the simulation. This brings SPH simulations into a new era; one of a fully physically

consistent treatment of hydrodynamics (and, in theory, one that would perform far better

in convergence tests that determine the contribution from numerical effects through the

viscosity). The effect that this improved method would have on our simulations, and our

results, is not clear. Almost certainly, it would lower significantly the numerical, viscous

accretion rates through disc geometries that we find, although as we have mentioned in

Chapters 4 & 5, this is generally not the dominant mode of angular momentum transport

in our models. Collisions (such as between the two clouds in Chapter 4) and shocked

regions due to turbulence (such as in Chapter 5) tend to put gas on plunging orbits and

the accretion therefore proceeds dynamically. Nonetheless, it is an important priority for

our future work on these models that the ‘Cullen-Dehnen’ switch be implemented in our

code and the simulations re-run. Likewise, Read et al. (2010) has developed a method

for SPH (termed ‘optimised smoothed particle hydrodynamics’, or OSPH) that is able to

handle mixing in multiphase flow, something which traditional SPH falls down on (see,

e.g., Agertz et al., 2007) due to entropies being discretely advected with the flow. The

upshot here is that fluid instabilities, such as the Kelvin-Helmholtz instability (see, e.g.,

Gerwin, 1968) and the Rayleigh-Taylor instability (see, e.g., Chandrasekhar, 1961) can

now be modelled self-consistently in an SPH simulation. This tends to have the effect of

mixing fluid of different phases (i.e., densities) when they encounter each other, and in

particular, shearing out dense clumps that would otherwise have formed. On the face of it

this sounds somewhat disastrous for the work we present in Chapter 5, but in fact prelimi-

nary investigations (the fiducial turbulent feeding simulations run with OSPH) show little

difference (aside from some aesthetics) in both the accretion rate on to the SMBH and

the character of the flow. This is almost certainly because we have imposed an isothermal

assumption on these simulations, as when the temperatures (and thus sound speeds) are

identical this effect is reduced. It may also be because any enhanced mixing causes the ex-

tended turbulent filaments to break up more readily into dense clumps, counteracting the

enhanced tendency for the dense clumps to be sheared out, or because the overdensities

we find in these simulations are sufficiently above the ambient for surface instabilities to

be negligible. Nonetheless, further tests on our models using this optimised method need

to be done, and the results analysed and compared to standard SPH.
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In conclusion of this thesis, we suggest that while the feeding of SMBHs remains an open

problem (in terms of the required growth rate to match observations of black hole masses

and AGN luminosities) the model that has been presented here is a promising one. The

stochastic mode of feeding that we have developed constitutes an important step forward,

and the concept that we have introduced - that of a ‘reprocessing’ of the gas inflow by

feedback from star formation - will hopefully form the basis for an answer to the question

of how AGN at the centres of galaxies are fed.
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Stability of particle orbits in Kerr spacetime

Note: this derivation is taken from Hobson et al. (2006), Chapter 13, Sections 13-14.

The effective potential for a particle with rest mass m moving in the equatorial plane of

a Kerr black hole with spin parameter a is given by

V (r) =
J2 − a2c2(k2 − 1)

2r2
− GM(J2 − ack)2

c2r3
− GM

r
(A.1)

For the extrema we require dV (r)/dr = 0. It is easiest to work in terms of a variable

u = 1/r, which when substituted into equation A.1 returns

V (u) =
u2

2

[

J2 − a2c2(k2 − 1)
]

− µu3(J − ack)2 − µuc2 (A.2)

where we have put µ ≡ GM/c2. We equate this to the LHS of equation 2.10, so that

u2

2

[

J2 − a2c2(k2 − 1)
]

− µu3(J − ack)2 − µuc2 =
c2

2

(

k2 − 1
)

(A.3)

and differentiate with respect to u, giving us

u
[

J2 − a2c2(k2 − 1)
]

− 3µu2(J − ack)2 − µc2 = 0 (A.4)

We now introduce another variable to simplify the algebra, putting x = J − ack. The two

equations above become

u2

2

[

x2 + 2ackx+ a2c2
]

− µu3x2 − µuc2 =
c2

2

(

k2 − 1
)

(A.5)

u
[

x2 + 2ackx+ a2c2
]

− 3µu2x2 − µc2 = 0 (A.6)

We take u× (A.6)− (A.5), giving us

x2u2 + 2ackxu2 + a2c2u2 − 4µx2u3 = c2(1− k2) (A.7)

and we also re-arrange equation A.6 to get

2ackxu = x2u(3µu− 1)− c2(a2u− µ) (A.8)

which we substitute into equation A.7 to return

c2k2 = c2(1− µu) + µx2u3 (A.9)
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If we now eliminate k between equations A.9 and A.8 we obtain a quadratic in x2:

u2
[

(3µu− 1)2 − 4a2µu3
]

x4−2c2u
[

(3µu− 1)(a2u− µ)− 2µa2(µu− 1)
]

x2+c4(a2u−µ)2 = 0

(A.10)

for which the roots are given by

x2 =
c2(a

√
u±√

µ)2

u(1− 3µu∓ 2a
√

µu3
(A.11)

where to solve for x we must consider both signs of the subsequent square root. These

determine whether the orbit is stable (−ve square root) or unstable (+ve square root). In

the case of the former, we have

x = − c(a
√
u±√

µ)

[u(1− 3µu∓ 2a
√

µu3)]1/2
(A.12)

which we substitute into equation A.9 to obtain

k =
1− 2µu∓ a

√

µu3

(1− 3µu∓ 2a
√

µu3)1/2
(A.13)

and noting that J = x+ ack we have

J = ∓ c
√
µ(1 + a2u2 ± 2a

√

µu3)
√
u(1− 3µu∓ 2a

√

µu3)1/2
(A.14)

We now consider a circular orbit of marginal stability, as similar to the Schwarzchild

case the value of the ISCO will be at the corresponding radius. For this we require

d2V (r)/dr2 = 0, and therefore with our substituted variables that d2V (u)/du2 = 0, since

d2V

dr2
=

d2V

du2

(

du

dr

)2

+
dV

du

d2u

dr2
= u3

(

u
d2V

du2
+ 2

dV

du

)

= 0 (A.15)

Differenting equation A.6, which as we recall was the first derivative of V with respect to

u, and using x = J − ack, we have

J2 − a2c2(k2 − 1)− 6µx2u = 0 (A.16)

where we substitute for expressions for x, k, and J from equations A.12, A.13, A.14

respectively, and finally put back in that u = 1/r, so that

r2 − 6µr − 3a2 ∓ 8a
√
µr = 0 (A.17)

the solution to which is the radius of the ISCO.
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Derivation of gravitational potential for cloud collisions in the GC

The gravitational potential of an arbitrary (spherically symmetric) mass distribution ρ(r)

can be calculated from the enclosed mass by integrating the force contributions from each

shell of radius dr between the limits of the distribution (Binney and Tremaine, 2008). For

the stellar cusp + BH distribution used in Chapter 4, Section 4.2.2, the potential inside

rc ≡ rcusp is given by

Φ (r < rc) =

∫ rc

r

GM(r < rc)

r2
dr +

∫ ∞

rc

GM(r ≥ rc)

r2
dr (B.1)

where for the stellar cusp the density goes as

ρ∗(r)

ρ∗0
=







(

r
rc

)−1.4
, r < rc

(

r
rc

)−2
, r ≥ rc

(B.2)

The mass enclosed for each region is therefore

M(r < rc) =

∫ r

0
4πr2ρ0

(

r

rc

)−1.4

dr +Mbh (B.3)

M(r ≥ rc) =

∫ r

rc

4πr2ρ0

(

r

rc

)−2

dr +Mc +Mbh (B.4)

where Mc is the mass contained with rc. We substitute the enclosed masses into equation

B.1 to obtain

Φ (r < rc) =

∫ rc

r

5πGρ0r
1.4
c r1.6

2r2
+
GMbh

r2
dr +

∫ ∞

rc

4πGρ0r
2
c

r
− 3πGρ0r

3
c

2r2
+
GMbh

r2
dr

Performing the integration yields

Φ (r < rc) =

[

25

6
πGρ0r

1.4
c r0.6

]rc

r

−
[

GMbh

r

]rc

r

+
[

4πGρ0r
2
c ln r

]∞

rc
+

[

3πGρ0r
3
c

2r

]∞

rc

− [GMbhr]
∞
rc

giving us the full expression for Φ at small r as

Φ (r < rc) =
25

6
πGρ0r

1.4
c r0.6 − 25

6
πGρ0r

2
c + 4πGρ0r

2
c ln rc +

3

2
πGρ0r

2
c −

GMbh

r
(B.5)

where we have reversed the signs in order to consider the specific potential energy, and

have dropped arbitrary constants that → ∞.
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For the potential outside rc we require

Φ (r ≥ rc) =

∫ ∞

r

GM(r ≥ rc)

r2
dr =

∫ ∞

r

4πGρ0r
2
c

r
− 3πGρ0r

3
c

2r
+
GMbh

r2
dr

which on integrating gives

Φ (r ≥ rc) =
[

4πGρ0r
2
c ln r

]∞

r
+

[

3πGρ0r
3
c

2r

]∞

r

−
[

GMbh

r

]∞

r

such that the specific potential energy at large r is

Φ (r ≥ rc) = 4πGρ0r
2
c ln r +

3πGρ0r
3
c

2r
− GMbh

r
(B.6)

where once again we have dropped arbitrary constants.
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Derivation of tidal shear density for a BH

R 0

M bh

M cloud

mm

r0

Figure C.1: Supporting diagram (not to scale) for the derivation of the tidal shear density limit for a
gas cloud in the gravitational potential of a Keplerian point mass.

————————————————————————–

We consider a cloud of gas, of mass Mcloud, moving in the (Newtonian) gravitational

potential of a black hole with mass Mbh. As can be seen in Figure C.1, mass elements m

on the nearest and farthest sides of the cloud, with respect to the black hole (BH), are

located at a distance R0 ± r0 respectively. The gravitational force on these elements from

the BH is

Fg =
GMbhm

(R0 ± ro)2
(C.1)

which can be written in a different way as

Fg =
GMbhm

R2
0

1

(1± r0/R0)2
(C.2)

Expanding this in a Taylor series we find

Fg =
GMbhm

R2
0

[

1∓ 2r0
R0

± 6r20
R2

0

+ · · ·
]

(C.3)

where we make the assumption that the size of the cloud, r0 is small in comparison to

the distance from the BH, namely r0 ≪ R0. This allows us to ignore terms quadratic in

r0/R0 and above. The gravitational force is therefore given by

Fg =
GMbhm

R2
0

∓ 2GMbhmr0
R3

0

(C.4)

where the first term on the RHS is simply the standard gravitational force exerted by the

BH on a mass m, while the second term represents the first-order tidal force correction.
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This is

Ftidal =
2GMbhmr0

R3
0

(C.5)

To obtain the density at which the cloud begins to be sheared by the BH’s gravity, we

equate this to the gravitational self-binding energy of the cloud, namely

2GMbhmr0
R3

0

=
GMcloudm

r20
(C.6)

so that we find

Mcloud =
2Mbhr

3
0

R3
0

(C.7)

Relating this to density via Mcloud = 4/3πr30 ρtidal, we see that

ρtidal =
3Mbh

πR3
0

(C.8)
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Derivation of Bremsstrahlung cooling function

We consider a scattering event between and electron of mass me and a proton of mass

mp, with an impact parameter b and relative velocity v. The electron will be accelerated

by the proton by an amount a = q2/meb for a time t = b/v, where q is the charge on

each, assumed to be equal. The energy radiated during the encounter is given by Larmor’s

formula:

E ≃
(

q2a2

c3

)(

b

v

)

(D.1)

where c is the speed of light. On average, the impact parameter in terms of the number

density of ions in the plasma can be approximated by b ≈ n
−1/3
i , and to find the total

energy radiated per unit volume we multiply by the number density of electrons, ne, giving

us

Etot ≃
q6nine
c3m2

ev
(D.2)

For a plasma in thermal equilibrium we can assume a Maxwell-Boltzmann distribution

with speeds given by

v =

(

kBT

me

)1/2

(D.3)

Therefore we have

Etot =

(

q6

m2
ec

3

)(

me

kBT

)1/2

neni (D.4)

Of course, not all electrons have the same energy, and the photons that are radiated will

therefore also possess an energy range. The typical energy of an electron in our plasma is

kBT , and each collision lasts for a time ∆t ∼ b/v, so there will be very little radiation at

frequencies greater than 1/∆t, i.e., ω <∼ (v/b).

As a result the Bremssrahlung spectrum is flat for 0 < ω <∼ kBT/~ (since E =

~ω <∼ kBT ) and falls rapidly for ω >∼ kBT/~. An electron with typical energy kBT cannot

emit photons with frequency significantly higher than kBT/~. The total energy radiated

must then be found by integrating over the frequency range 0 < ω <∼ kBT/~:

Erad =

∫

kBT

~

0

(

q6

m2
ec

3

)(

me

kBT

)1/2

neni dω (D.5)

=

(

q6

m2
ec

3

)(

mekBT

~2

)1/2

neni (D.6)

per unit volume, per unit time. We therefore arrive at the conclusion that for Bremsstrahlung

radiation from a plasma with number density n and temperature T , the energy emitted

goes as

Ebrem. ∝ n2T 1/2 (D.7)
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MNRAS 363, L91

Cid Fernandes, R., Heckman, T., Schmitt, H., González Delgado, R. M., and Storchi-
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