
Improving the performance and reliability of systems

which employ the ’CONTROLLER AREA NETWORK’ protocol

through low-level changes to the controller implementation

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Imran Sheikh

Embedded Systems Research Group

Department of Engineering

University of Leicester

Leicester, UK.

JANUARY 2011

Abstract

The CAN (Controller Area Network) protocol provides one of the cost-effective meth-

ods to network current generations of distributed embedded systems. Although it is

a robust protocol with short messages and simple priorities, it is largely thought

of as only being suitable for soft real-time, event-triggered systems. Safety critical

applications require highly predictable behaviour with strict bounds on worst-case

message transmission times; the next-generation mechatronic systems also requires a

high level of information throughput. In its current form, CAN lacks most of these

requirements principally due to its medium access scheme and physical-layer design.

This thesis presents a frame work which aims to enhance the capabilities of CAN,

in order to push the boundaries of the protocol’s current operation. In particular,

the main research question to be addressed is the exploration of the extent to which

low-level modifications can enhance CAN suitability for use in the next generation

of critical systems. In order to answer this question, it is first necessary to develop

a flexible and robust platform to implement these modifications using a novel facil-

ity made up from custom soft-core CAN controllers. This novel facility was then

employed to implement and experimentally investigate three small but conceptually

significant protocol modifications as follows:

Increasing the effective data rate from 1 to 10 Mbps whilst doubling the effective

payload from 8 to 16 bytes; Reduction of unwanted transmission jitter by compen-

sating for bit stuffing; Enabling a windowed transmission scheme to provide optimal

trade-off’s between transmission reliability and real-time behaviour in noisy environ-

ments.

The thesis describes the results obtained from these experiments and summarizes

the main pros and cons that appear. The thesis then concludes with observation that

the modified CAN protocol may be suitable for use with certain classes, of the next

generation time-critical distributed embedded systems.

i

Dedication

To My Late Parents

May Allah rest there soul in peace

ii

Acknowledgements

All praises to the Almighty ’ALLAH’ who is the most beneficent who has given me

the strength to achieve what I have in my life and whatever I will in future.

The work presented in this thesis would not have been possible without the help of

my supervisors Michael Short and Michael Pont. Michael’s thank for believing in me,

you have always supported my ideas and work, and inspired me throughout the last

four years.

Also, I must thank my colleagues at ESL and TTE systems, especially Dr Ayman

Gendy for listening patiently and giving me some inspirational ideas.

Specially i would also like to thanks Dr K.M. Yahya and Dr Tariq Jadoon who have

always acted as my mentor and provided with every support in my carrier.

I would also like to thank NWFP UET Peshawar, Higher Education Commission and

people of Pakistan for funding my PhD studies, it is a such a great honour to represent

my country who although been in dire financial crisis have funded my studies.

Finally I would like to thanks, my wife Sana, my beautiful and lovely three daughters

Sara, Areesha and Momina who have extended their love and cooperation in achieving

this goal. I cant forget here my Mother and Father whom I miss dearly on this day,

when i am so near to achieve my doctorate for which they had worked so hard in

their life time. I also want to thanks my three sister and brother Zeeshan for their

support to continue my studies during the tough time, when we lost both of our dear

parents.

My home, Leicester Imran Sheikh

August 12, 2010.

iii

Related Publications and

Contributions

A number of papers were published during the course of the work described in this

thesis. Please note that the contents of some of these papers have been adapted for

presentation in this thesis:(in reverse chronological order):

1. Imran, S. and Short, M.J. (2010), Conformance Testing of Soft-Core CAN

Controllers: A Low-Cost And Practical Approach, In: J.A. Cetto et al.

(Eds), Informatics in Control, Automation and Robotics: Lecture Notes in

Electrical Engineering, Vol. 85, Part 2, pp. 129-141, Springer-Verlag, Berlin,

ISBN: 978-3-642-19729-1, 2011.

2. Short, M.J. and Imran, S.(2010), Computing Optimal Window sizes to en-

force dependable communications in time-triggered Controller Area

Networks, Proceedings of the 9th International workshop on Real time Net-

works RTN 2010, Brussels, Belgium, 6th July, 2010.

3. Imran, S., Short, M.J. and Hanif, M. (2010), Improving information through-

put and transmission predictability in Controller Area Networks, Pro-

ceedings of IEEE Symposium on Industrial Electronics, ISIE 2010, Bari, Italy,

pp. 1736-1741,,July 4-7, 2010. A revised version of this paper has been recom-

mended for the special section of IEEE Transaction on Industrial Electronics

and has been submitted for review with the title Analysis of an Enhanced

Protocol Controller for Next-Generation CAN Networks.

4. Imran, S., Short, M.J. and Yahya, K.M. (2010), Analysis of Overclocked

Controller Area Network, Proceedings of the 7th IEEE International Con-

ference on Networked Sensing Systems (INSS 2010), Kassel, Germany, June 15

- 18, 2010, pp. 37-40, Published by IEEE Industrial Electronics Society, ISBN

978-1-4244-7910-8

5. Short, M.J. and Imran, S. (2010), Dual-rate overclocking in CAN net-

works: a soft-core controller prototype, Proceedings of the 7th IEEE

International Conference on Networked Sensing Systems (INSS 2010), Kassel,

iv

Germany, June 15 - 18, 2010, pp. 314-317, Published by IEEE Industrial Elec-

tronics Society, ISBN 978-1-4244-7910-8.

6. Imran, S. and Short, M.J. (2010), Employing Integrated Logic Analy-

sers and Virtual I/Os to Verify Soft Core Protocol Implementations,

IAENG International Journal of Computer Science, Vol. 37(1), pp. 36-49.

7. Imran, S. and Short, M.J. (2009), A Low Cost and Flexible Approach to

CAN Conformance Testing, Proceedings of the 6th International Conference

on Informatics in Control, Automation and Robotics, Intelligent Control Sys-

tems and Optimization, ICINCO 2009, Milan, Italy, July 2-5, 2009, INSTICC

Press 2009, ISBN 978-989-8111-99-9.

8. Imran, S., Short, M.J. and Athaide, K.F. (2009), Using Virtual I/O for

CAN Bit Timing Conformance Tests, Proceedings of the World Congress

on Engineering, WCE 2009, London, U.K, July 1 - 3, 2009, Vol. 1, pp. 480-485,

ISBN: 978-988-17012-5-1. (Best Student Paper Award).

9. Imran, S. and Short, M.J. (2009), Improving Information Throughput in

CAN Networks: Implementing a Dual Speed Approach,Proceedings

of the 8th International workshop on Real time Networks, RTN 2009, Dublin

,Ireland, June, 2009.

10. Imran, S., Short, M. and Pont, M.J. (2008), Hardware implementation of a

shared-clock scheduling protocol for CAN: A pilot study, in Proceedings

of the 4th UK Embedded Forum (September 2008, Southampton, UK), pp.72-

78. ISBN 978-0-8634-1949-2. ISSN 0537-9989.

Techical Report

1. I. Sheikh and M. Short. CAN conformance testing-A new approach

Technical Report, Tech-Report ESL-09-01, ESL, Engineering Department,

University of Leicester, Feb 2009.

This technical report include the details of all the conformance tests performed on

the CAN IP core during this research work.

v

Contributions

This next section summarizes the main contributions of the author of this thesis, in the

papers listed above. The number in brackets represents the percentage contribution

of the author in each case.

Conformance Testing

Paper 1 (75%), 6 (80%), 7 (80%) and 8 (85%) are principally adopted for Chapter 5

on CAN conformance testing.

Paper 1: This paper is an extension of the paper 8 (conference paper) to a book

chapter.

Paper 6: This paper is an extension of the paper 7 (conference paper) to a journal

paper.

The ideas contained within these works were conceived by the thesis author, with

appropriate guidance and suggestions from the supervisor. Formation of the Confor-

mance test bench, running of the tests and documentation were all done by the thesis

author. In paper 7 the third author helped in the installation of the Xilinx tools for

the running of the tests.

Overclocking

Paper 4 (65%), 5 (45%) and 9 (70%) are adopted in the Chapter 6 on CAN over-

clocking. The basis of this work is an idea published in previous works by Cena &

Valenzo, However the idea has never been implemented or experimentally evaluated

before.

Paper 9: The implementation was carried out on the CAN IP Core exclusively by

the author of this thesis. The experimentation and the case studies presented in this

paper is principally the work of the author, with appropriate reviews provided by the

supervisor.

Paper 4: This paper is related to the analysis of Overclocking (which was implemented

and published before in paper 9). The idea and implementation of the experimental

analysis is done by the author of the thesis, given in section III, A of the paper.

The section III, B is adapted from the 2nd author’s previous work, the mathematical

adaptation as Equation 6 and 7 in the paper is a combined work by the 1st and 2nd

author.

vi

Paper 5: The implementation and experiment done in section III of this paper is

contributed by the author of the thesis.

Jitterless Communication

Paper 3 (80%) has been adapted for Chapter 7 on Jitterless communication. The

work was conceived following detailed discussions with the supervisor.

The thesis author carried out the implementation exclusively on the CAN IP core,

all the case studies and analysis has been done by the author of the thesis. The 3rd

author of the paper assisted with the timer configuration of the ARM board used in

the experiment for the case study presented in section 7.3 of the thesis and section

IV of the paper. The paper and work was done in the guidance and suggestion of the

supervisor.

Windowed Transmission

Paper 2 (30%) is adapted for the work shown in Chapter 8 and 9.

The idea of this work and the ideas contained in section 8.4.3. are principally the

work of the first author of paper 2. The contributions of the thesis author to this

work is to assist in the solution for the main theorem given in section 8.4.2. Section

8.5, 8.7 and 8.8, which covers the implementation of the idea on the IP Core (in its

entirety), and the setting up of the experiment and presenting the results and analysis

is contributed by the author of the thesis.

The work shown in Chapter 9 is now under review for a publication in IEEE TIE

(70%), this is an enhanced version of paper 3 containing the main results of the case

study. All the implementation, compilation of results and analysis has been done by

the thesis author, under the guidance of the supervisor.

CAN Test Bench

Paper 10 (80%) has been partially (only section 2) adapted in Chapter 3 of this work.

The section 2 of this paper discussed an early implementation of the CAN IP core,

early versions of the HDL coding, the setup of the test bench and execution of the

experiments is principally the work of the author. The author 2 and 3 (supervisor’s)

provided appropriate guidance and review on the paper.

vii

Contents

Abstract i

Dedication ii

Acknowledgements iii

Related Publications and Contributions iv

1 Introduction 11

1.1 Problem Formulation . 14

1.2 Main Research Question . 18

1.3 Thesis Contribution . 18

1.4 Thesis Structure . 19

2 Current Approach: Predictable and Time-Triggered Communica-
tions 22

2.1 Time Triggered Communication in Field buses 23

2.1.1 Enhancements in CAN to support TT communications 27

2.2 Jitter in Transmission Times . 31

2.3 Throughput Limitations . 35

2.4 Protocol Conformance Testing . 38

2.4.1 CAN Conformance Testing . 38

3 Controller Area Network 42

3.1 Protocol . 43

3.1.1 Frame Format . 43

3.1.2 Arbitration in CAN Bus . 45

3.1.3 Message Filtering . 47

1

2

3.1.4 Error Detection and Confinement 48

3.1.5 Physical Signalling . 50

4 CAN Test Bench 52

4.1 CAN IP Core . 53

4.1.1 Bus Interface Logic . 54

4.1.2 CAN Configuration Registers 56

4.1.3 Bit Stream Processor (BSP) 56

4.1.4 Bit Timing Logic (BTL) . 66

4.2 CAN Test Bench hardware . 68

4.3 Design Flow and Analysis . 73

4.4 A Simple Two Node Test Network . 79

4.4.1 Message Transmission . 80

4.4.2 Message Reception . 81

4.5 Conclusion . 82

5 CAN Conformance Testing 83

5.1 Conformance Testing of Protocols Implemented on IP Cores 84

5.1.1 Conformance Testing Standards 85

5.1.2 Proposed Environment . 87

5.2 Test Bed . 89

5.2.1 Hardware . 93

5.2.2 Software . 93

5.2.3 Use of Virtual I/O . 94

5.3 ISO 16845: CAN Conformance Standard 96

5.3.1 Frame Types . 96

3

5.3.2 Test Classes . 96

5.4 Test Cases . 97

5.4.1 Test Set up . 98

5.4.2 Non-Synchronisation after a Dominant Bit Transmission . . . 99

5.4.3 TEC Non-Increment on 13 bit Long Overload Flag 101

5.4.4 Error Flag Longer than 6 Bits 103

5.4.5 MAC Overload Generation during Intermission Field 106

5.4.6 Frame Acceptance after Passive Error Frame Transmission . . 108

5.4.7 Identifier and Number of Data Test in Standard Format (Both

Transmission and Reception) 110

5.4.8 Form Error . 111

5.5 Comparative Study . 112

5.6 Test Coverage . 114

5.6.1 Selection of Tests . 115

5.6.2 Edge Test Cases . 116

5.6.3 Use of Standard CAN Controllers 117

5.6.4 Extended Testing . 118

5.7 Conclusion . 119

6 Overclocking in Controller Area Network: Higher Information Through-
put 120

6.1 Problem Formulation . 121

6.1.1 Propagation Delay between Two CAN Nodes. 122

6.2 Solution Outline . 123

6.3 Overclocking . 125

6.4 Modified CAN Controller Development 126

4

6.4.1 Issues Setting up the Test Bench 127

6.4.2 Basic Transmission and Reception of Overclocked Messages . . 128

6.4.3 Arbitration . 130

6.4.4 Error Signalling . 132

6.5 Analysis . 134

6.5.1 Experimental Evaluation . 134

6.5.2 Analytical Analysis . 135

6.6 Case Studies . 138

6.6.1 Transmission Failure Rates . 140

6.7 Discussion and Conclusion . 143

7 Jitterless Communication in CAN Networks 145

7.1 Bit Stuffing cause of Transmission Jitter 145

7.2 Fixed Length Messages to Reduce Jitter 146

7.3 Case Study . 148

7.4 Conclusion . 152

8 Predictable Windowed Transmission 153

8.1 Problem Formulation . 154

8.2 Related Work . 155

8.2.1 Time-Triggered CAN Communications 155

8.2.2 Fault-Tolerant CAN communications 156

8.3 Solution Outline . 158

8.4 Proposed Windowed Transmission Scheme 158

8.4.1 Basic Concept . 159

8.4.2 Computing the Optimal Window Sizes 161

5

8.4.3 Optimal Window Sizing Algorithm 162

8.4.4 Algorithm Analysis . 163

8.4.5 Illustrative Example . 164

8.4.6 Bursty Links . 165

8.5 Implementation Issues . 166

8.5.1 Software-Based Solution . 166

8.5.2 Hardware-Based Solution . 167

8.6 Simulation Study . 169

8.7 Experimental Study . 170

8.7.1 Experimental Configuration 170

8.7.2 Results . 172

8.8 Discussion and Conclusion . 173

9 Case Study 175

9.1 Modifications to the Test Bench . 175

9.1.1 Running a Static Schedule on Standard CAN Network 176

9.1.2 Windowed Transmission with Overclocking 177

9.1.3 Windowed Transmission with Fixed Length Messages 177

9.1.4 Windowed Transmission with Fixed Length and Overclocked

Messages . 178

9.2 Discussion and Analysis . 178

10 Discussion & Conclusion 182

10.1 Reasons and Motivation of the Thesis work 182

10.2 Review of the Contributions . 183

10.2.1 Findings of the Literature Review 183

6

10.2.2 CAN Protocol in Silicon IP Core 184

10.2.3 CAN Conformance Testing . 184

10.2.4 Overclocking: A solution to Increase Transmission Speeds . . 185

10.2.5 Jitterless Communication . 187

10.2.6 Optimal Size Windows for Time-Triggered Communication . . 188

10.2.7 A Comprehensive Case Study 189

10.3 Practical Adoption of the Modified Controller: A Realistic Proposal? 190

10.4 Critical Analysis of the Modifications 192

10.5 Modified CAN vs other embedded Protocols 193

10.6 Future Research . 194

10.7 Summary of Results . 198

A Formation of Test bench and Design Analysis 199

A.1 Interface Code . 199

A.2 Issues related to the Test Bench . 204

A.3 Device Utilization . 208

A.4 Static Timing Analysis . 209

A.5 User Constraints File . 211

Bibliography 212

List of Tables

3.1 ISO CAN Standards [Cor02] . 43

3.2 Typical bus lengths for different CAN transmission rates 51

4.1 CAN registers and their functions . 56

5.1 Statistics of CAN conformance tests 114

6.1 Measured BER and calculated noise level for CAN @ 1 Mbps 142

7.1 Statistics from the case study . 150

8.1 Computing the optimal window size for example 1 165

8.2 Reductions in bits required for transmission 170

8.3 Static schedule running on the CAN nodes 172

9.1 Statistics of the Fault duration . 176

9.2 Statistics for message transmission 180

10.1 Comparison of modified CAN with other protocols-I 193

10.2 Comparison of modified CAN with other protocols-II 194

A.1 CAN IP device statistics (Balanced) 208

A.2 CAN IP device statistics (Timing Optimization) 208

A.3 CAN IP device statistics (After Floor planning) 209

7

List of Figures

1.1 Nominal CAN bit segments. (This image have been used with permis-

sion from CiA [CIA]) . 14

1.2 Bit stuffing. 16

2.1 Software bit stuffing . 32

3.1 CAN frame format (a) Standard (b) Extended 43

3.2 Physical signals on a CAN differential bus 46

3.3 Arbitration in CAN network. (This image have been used with per-

mission from CiA [CIA]) . 47

4.1 CAN block diagram . 54

4.2 Multiplexed bus timing . 55

4.3 CAN message state machine . 57

4.4 CAN error state machine . 59

4.5 (a)15 bit LFBSR block (b) CRC RTL schematic 60

4.6 RTL schematic of filtering block . 63

4.7 Dual Message filtering, adapted from [SJA00] 64

4.8 Xilinx 8x8 RAM [Xil08] . 66

4.9 Synchronisation on dominant edges(Code listing). 67

4.10 CAN IP core pin diagram . 69

4.11 Knjn board block diagram . 70

4.12 An overview of the CAN test bench 71

4.13 An IP core design flow . 74

8

9

4.14 CAN message transmission . 81

4.15 CAN message reception . 81

5.1 ISO 9646-1 test plan architecture. 86

5.2 Chipscope architecture. 88

5.3 Conformance test bed. 90

5.4 ISO 16845 Test Coverage [ISOa] . 95

5.5 Chipscope snapshot for bit timing class. 99

5.6 Chipscope snapshot at LT for error counter management. 102

5.7 Chipscope snapshot at IUT for error counter management. 102

5.8 Chipscope snapshot at IUT, active error frame management class. . . 104

5.9 Chipscope snapshot at LT, active error frame management class. . . . 105

5.10 Chipscope snapshot, overload frame management class. 107

5.11 Chipscope snapshot, frame acceptance after passive error frame trans-

mission. 109

5.12 Chipscope snapshot for valid frame format test 110

5.13 Chipscope snapshot for EOF form error 111

6.1 (a) set up of a CAN controller oscillator (b) bit time pre-scaling . . . 121

6.2 Propagation delay between two CAN nodes. 122

6.3 CAN frame format showing M and S zone. 124

6.4 Overclocking implementation transmitter node 129

6.5 Overclocking implementation receiver node 130

6.6 Arbitration in overclocking CAN . 131

6.7 Error signalling and switch back in overclocked CAN 132

10

6.8 Normal and overclocked transmission times 135

6.9 CAN bit stuffing . 137

6.10 Transmission times variations with (a) bit stuffing (b) variable over-

clocking factors . 138

6.11 CAN NRZ unipolar pulse train . 142

7.1 Chipscope snapshot of enhanced CAN transmitter 147

7.2 Average vs ideal transmission times 149

7.3 Worst case vs best case transmission times 151

8.1 TDMA structure with inter-slot spacing 154

8.2 Basic concept of a windowed transmission 159

8.3 Conditions required for a successful outcome at the jth step 162

8.4 Successful windowed transmission with a fault 168

8.5 Unsuccessful windowed transmission with faults 168

8.6 Test bench employed in the experiments. 171

9.1 Average message drops per second . 178

9.2 Standard deviation of message drops from the mean 179

10.1 A mixed network with standard and modified CAN Controllers. . . . 195

10.2 TDMA schedule for a mixed network, using ”listen only mode”. . . . 196

Chapter 1

Introduction

Embedded electronics have been an integral part of modern electro-mechanical sys-

tems and the last quarter of the century has seen a tremendous growth in this field.

The use of electronics as a replacement of conventional hydraulic and mechanical sys-

tems has seen an enormous growth in recent years. The use of embedded processors

is now an integral part of the automobile and aircraft industry.

With the varying complexity of computing requirements in these applications, the

embedded systems do not remain confined to a single computer or node. In some cases

the overall system is itself distributed in to several nodes hence requiring separate

computing units at each node. For data exchange in a communication network,

these distributed processors need to be linked. Just as a LAN connects general

purpose computers [Fli83], the control network made of these embedded processors

are connected through a communication protocol designed specifically for distributed

embedded systems.

The design of a communication protocol for distributed embedded systems re-

quires certain key questions to be answered. The general requirement of a typical

communication protocol design are the topology, bit rate, arbitration scheme and

length of the network. Certain requirements, although are part of other data net-

works but have stricter benchmarks when an embedded communication protocol is

designed. Some of these requirements have been listed in [Par07] and [UK93].

1. The protocol’s predictability to transmit a message in a given time or worst

11

12

case response time.

2. Does the protocol support time triggered or event triggered messages or both?

3. What are the error confinement and correction methods? Unlike other net-

works, some embedded applications have zero tolerance in case of an error or

unsuccessful transmission.

4. The sequencing and synchronisation of data messages is therefore required to

make an interrelated logical sequence.

5. One of the major requirements of an embedded network protocol is to support

periodic and short messages, in contrast to, computer communication where the

trend of the data traffic is mostly aperiodic and spasmodic.

6. With the expansion of the internet and high speed data networks, modern

embedded communication protocols must be robust enough to communicate

and keep in pace with these protocols, as a typical factory communication setup

is made of diverse communication mediums and protocols [RTE07].

The motivation of this work is to study and improve one of the widely used em-

bedded protocol, known as Controller Area Network (CAN). Controller Area Network

[11893] has been the most widely used protocol in embedded networks. Since its ad-

vent in the early 1980’s CAN has been a huge success especially in event triggered

applications, and is still being used in large numbers. (An estimated 800 million CAN

chips are to be sold in 2010 [CiA06].) CAN has been used in different applications

but its most popular utilisation has been in automobiles where it is used in body

electronics (SAE Class B) and in industrial applications without any strict timing

13

requirements. Some of the features of the CAN protocol which make it a popular

choice for embedded networks are discussed below:

1. It is a serial bus multi-master communication protocol, which broadcasts to all

the participating nodes.

2. It has a non-destructive bit wise CSMA/CA medium access scheme.

3. It uses NRZ encoding for representing the information at the physical layer.

4. Shorter messages with low overheads.

5. Acknowledgement based guaranteed message delivery.

6. Automatic re-transmission of failed messages and also messages which have lost

arbitration.

7. Effective error detection and confinement scheme at the physical and data layers;

distinction between intermittent and permanent failures.

8. Priorities in transmission can be set by using the low binary ID’s for the nodes

to be given priority.

9. At the physical layer, CAN uses a differential wire high-speed network system

that can reach a throughput of up to 1 M bits/sec.

10. Formal ISO standards are available for the protocol specification and its con-

formance hence making it a popular choice for manufacturer’s.

14

Figure 1.1: Nominal CAN bit segments. (This image have been used with permission
from CiA [CIA])

1.1 Problem Formulation

CAN provides features which meet the requirements of a distributed communication

protocol and priority-based transmission, with an excellent error confinement mech-

anism, but it fails mainly to provide features such as time-triggered communications

or supporting hard real-time systems.

Recently, much work has been done towards improving CAN to adapt for real-

time applications; rather an enhanced version of CAN for time-triggered applications

has been developed known as TTCAN [LH02] which adds an extra session layer to

the already existing CAN physical and data link layer specification. There will be

a detailed look at the working of the TTCAN and other protocols in the coming

chapters, but the focus, here is on the limited capability of CAN to attain higher

speeds and also its limited capacity to support time-triggered applications.

1. CAN is a serial bus protocol, hence multiple nodes may compete to get access

to the channel at the same time. The CAN bus contention scheme is based on

15

a non-destructive bit wise arbitration scheme using simultaneous transmit and

receive mechanisms to check for the bit level (a 0 is represented by a dominant

level and a ’1’ by recessive) prevailing on the bus. During arbitration, when

more than one node is competing to access the bus, if any of the transmitted

bit is recessive and it receives a dominant bit, then the node seizes to transmit

and changes to receiver mode. Hence a lower identifier means a high priority

and the node with the highest priority will win the arbitration. The nodes

which lost the arbitration then wait for the current transmission to finish and

will then attempt again to access the bus. The advantage of the non-destructive

arbitration which is CSMA/CA based, is that at least one CAN node is always

successful to gain access to the bus. This is unlike the CSMA/CDMAC protocol

[TBW95], in which the intended transmitters listen for the carrier on the bus

and then try to transmit. In the case of simultaneous transmissions a collision

occurs and the transmission is seized for a random amount of time.

The use of a non-destructive bitwise arbitration scheme brings some inherent

flaws which limits the maximum data rate and length of the CAN bus. Ac-

cording to CAN specifications the bit time is divided into four segments; the

Synchronisation Segment, the Propagation Delay Segment, Phase Segment 1,

and Phase Segment 2 as shown in Figure 1.1. The sampling point lies between

the two phase segments. The sampling point is used to detect the edges so as

to synchronise between the sending and receiving nodes. This limits achieving

higher transmission rates on the CAN bus, as the bit time needs to be short-

ened for higher bit rates. A shorter bit time limits the bus length due to longer

propagation delay. This is an active area of interest to overcome this limitation.

16

Figure 1.2: Bit stuffing.

2. The encoding scheme used by CAN for bit interpretation is NRZ-L which is a

unipolar line encoding scheme where the voltage level remains the same through-

out the bit duration. This uses the bandwidth efficiently in comparison to differ-

ential encoding schemes like Manchester encoding, which needs almost double

the bandwidth to represent the same number of bits [Sta07]. Also NRZ- L

constant bit level fulfils the requirements of the CAN protocol. The major

drawback related to NRZ-L is of DC component and lack of synchronization

capability [Sta07]. Also NRZ-L constant bit level fulfils the requirements of the

CAN protocol.The major draw back related to NRZ-L is of a lack of synchro-

nization capability [Sta07]. To counter this problem, bit stuffing is a method

used with NRZ-L to overcome the loss of synchronisation. CAN standard spec-

ifies that if there are more than five bits with the same polarity then the sixth

bit should be of opposite polarity. This is known as a stuffed bit denoted by ’s’

in Figure 1.2. At the receiver end this stuffed bit is removed from the received

message. Bit stuffing can introduce a jitter of up to 24 bit time (worst case).

This can cause severe problems when designing fixed priority scheduling in hard

17

real-time systems [TBW95], this problem needs to be addressed and a solution

to increase the predictability of CAN message transmission times is required.

3. CAN message identifiers determine the priority a message gets on the CAN bus.

A lower identifier message gets a higher priority than other messages. Although

this ensures fixed priorities to the messages it may cause unfair assignment

of bus time to the lower message identifier. Even in the case of networks,

where it has been tried, transmission volumes should be distributed evenly or

time scheduled so nodes do not have to arbitrate for the bus access [TBW95]-

[DBBL07]. Induction of any error (especially burst errors of longer duration)

in the transmission will introduce retransmissions which will disturb all the

calculated worst case transmission times and will also introduce a knock-on

effect on the message delivery times. In this scenario messages with high priority

which might be running time-critical applications will not be able to access the

CAN bus and the message delivery is delayed so much that it becomes useless

to transmit those particular messages. This is an interesting area of research

for us which has been worked on by several researchers, but will be looking at

the very simplest of ideas to introduce time guarantees in message delivery over

CAN networks.

4. Conformance of any implementation of a protocol to its standards is necessary

for the verification of this implementation. CAN is a protocol with functionality

distributed in multiple layers especially on the data link and physical layers.

The existing ISO standards [ISOa] provides a conformance specifications for

the data link layer. The existing conformance methods are used for industrial-

level manufacturing and not only have a quite complex procedure but are quite

18

expensive to conduct. Research is required on developing a robust, inexpensive

and simple technique to perform conformance testing of CAN protocol without

the use of complex hardware and test benches.

1.2 Main Research Question

The main research question to be addressed in this thesis is as follows. Given the

inherent problems that have been identified with the CAN protocol, what is the

extent to which low-level modifications of the protocol itself, implemented at the

hardware level, can enhance its suitability for use in the next generation of critical

systems? How close will such a modified protocol be to the original CAN protocol,

and what advantages and disadvantages will it have over related (and perhaps newer)

protocols? An exploration of these concepts, forms the main focus for the remainder

of this thesis.

1.3 Thesis Contribution

The contributions of this thesis are listed as follows:

• Develop a IP core implementation of the Controller Area Network using a Hard-

ware Descriptive Language HDL, to explore the extent of the modifications and

enhancements that is achievable on this facility.

• Explore the conformance testing issues as they arise after the protocol level

implementation is done; this is to provide sanctity to the IP core to the given

standards.

19

• Perform an in-depth investigation to identify the existing limitation of the stan-

dard CAN protocol or the modifications already proposed.

• Explore the extent to which the IP core solutions can be used to implement any

enhancements which are required to make the Controller Area Network more

viable for time triggered and predictable communication.

• To experimentally evaluate the proposed enhancements

• To compare and contrast the existing and proposed approaches.

1.4 Thesis Structure

The thesis is divided into 11 chapters; the first chapter provides the introduction and

motivation behind this thesis and a brief description about the contribution of this

work. An outline of the remaining chapters is as follows.

Chapter 2: Current approach: predictable and time-triggered communi-

cations

This chapter will review the current trends and works done in the field of embedded

protocols, especially with the point of view of predictable and time-triggered commu-

nications.

Chapter 3: Controller Area Network

This chapter will look briefly on the history of CAN, and also summarises the stan-

dard CAN protocol specifications.

Chapter 4: CAN Test Bench

This chapter discusses the formation of the design, synthesis and implementation of

the CAN IP core on the FPGA and also a simple two node CAN test bed for testing

20

of the CAN based network.

Chapter 5: CAN conformance testing

This chapter takes the discussion from the previous chapter one step forward by elabo-

rating the need for conformance testing of the CAN soft core developed. This chapter

also features a new scheme to practise conformance testing for the CAN protocol. A

few of the conformance tests conducted using this scheme are also mentioned.

Chapter 6: Overclocking to increase throughput

Chapter 6 discusses the implementation of an idea to increase the information through-

put of the CAN protocol by using dual rate transmission scheme where few of the

CAN fields are over clocked during a CAN frame transmission.

Chapter 7: Jitterless communication in CAN Networks

This chapter will discuss the theory and implementation behind removing the unpre-

dictability of a CAN message transmission times by using a uniform size messages by

introducing a new field in the CAN frame.

Chapter 8: Windowed transmission in CAN networks

Chapter 8 is about a windowed transmission scheme for CAN networks; this specifi-

cally deals with time bound periodic messages which needs to be received in a given

time window and not outside it. Few additions to the protocol are also introduced,

to deal with the time bound messages.

Chapter 9: Case Study

Chapter 9 features a case study about all the implementations proposed in the pre-

vious chapters.

Chapter 10: Discussion and Conclusion

This chapter will feature the final discussion of the goals mentioned and achieved in

21

this work and the improvements achieved from the proposed work in previous chap-

ters. This chapter also presents the conclusion of this work and proposed further

work.

Chapter 2

Current Approach: Predictable
and Time-Triggered

Communications

In about two decades, extensive work and effort has changed distributive computing

from a mere research topic into a working technology. The use of distributed systems

is growing at a rapid pace. The concept of distributed computing has grown into a

gigantic area of interest, applications such as command and control, automotive sec-

tors, industrial process linkages and robotics, where specifically embedded distributed

computing is at high volumes.

Field buses [IS] are low-cost network infrastructures, used to connect embedded

devices. The major goal of these field buses is to interconnect sensors and actuators

and information transmission with optimal utilisation of resources such as cabling

and mechanical infrastructures. Field bus protocols provide two types of communi-

cation: i) asynchronous and ii) synchronous. Since these protocols handle real-time

information, they should be able to provide some form of determinism in network op-

eration [Ruf02], which is necessary to ensure the real-time properties of the system.

However, most of them do exhibit serious shortcomings with regard to: resource allo-

cation, for example, the bus access to provide timely communication; the provision of

high bandwidth for rapid communication; the provision of predictable communication

with known message transmission times; the provision of reliable and quick testing

22

23

procedures to verify the implementation of these protocols. The availability of such

services is particularly related to highly dependable, fault-tolerant and more robust

distributed systems. The technique to provide these services is not an easy task but

it requires solving a comprehensive set of non-trivial problems.

As discussed in the introduction chapter, we have analysed that the CAN is the

prime field bus protocol has almost all the shortcomings or limitations in providing the

services as discussed in the last paragraph. In this chapter, review of some of the field

bus protocols like TTP, and FlexRay is presented. The focus will be to study their

capabilities to provide the services, discussed above, and the modifications done to

the CAN protocol is also reviewed, as this is the principal research area. Additionally

a brief literature review of CAN conformance testing is given, since CAN conformance

testing has been a substantial part of this work.

Therefore, this chapter is organised as follows: in section 2.1, an analysis of the

traditional designs used in the embedded protocols which provide time-triggered com-

munication. A review of determinism in message transmission delays is presented in

section 2.2; section 2.3 discusses the effective through-put and data rates attained

by the embedded protocols; section 2.4 will consider previous techniques related to

conformance testing of protocols, especially CAN.

2.1 Time Triggered Communication in Field buses

In a real-time, control/automation system, messages are either sporadic i.e. event-

triggered or periodic i.e. time-triggered. For a periodic message to be sent from a

node monitoring a continuous process (engine revolution), a fixed time slot and an

a priori schedule are required to accommodate these messages. Also, their messages

24

usually contain known data fields which contain the state of the system. Any message

which can occur at any unknown instance in time with random data set/contents is

an event- triggered message; for example, a brake press in an automotive system is a

sporadic event and can happen at any time [Jam04].

In this section, there will be a detailed look at the work done to support time-

triggered communication in embedded networks. Two of the most current and robust

time-triggered protocols will be discussed first; as these protocols are capturing the

market from the CAN or its derivatives. The major focus of this work is to develop

CAN for time-triggered and predictable communication, so a review is also presented

of the previous work done to enhance CAN for time-triggered communication. The

protocol level changes, which provide a complete solution, are discussed in this chap-

ter. CAN modifications at the application level or based on a single parameter to

support time-triggered communication have also been discussed in the relevant chap-

ters.

One of the main protocols,to support time-triggered operation is TTP [KG93],

which is developed by Professor Herman Kopetz of the Vienna University of Tech-

nology. This work was then adapted by the Time Triggered Technology Company

together with several alliances. TTP is generally used in the automobiles and air-

crafts, although it has several versions, only TTP/C (C stands for SAE class C) which

supports time-triggered communications is discussed.

TTA [MH92] is the design principle of TTP, and uses the TDMA medium access

method. Time is divided into different slots, and allocated to the smallest replaceable

units (SRUs) [Kar02]. A replaceable unit is an electronic module that is the smallest

unit that is replaceable in case of a fault. It is connected to the TTP/C network, and

25

it can only access the bus for transmission in a time slot exclusively allocated for it.

A sequence of SRU slots forms a TDMA round, it uses MFM (Modified frequency

modulation) [KB03] for data encoding which supports bit synchronisation. Several

TDMA rounds are executed repeatedly, and is called a cluster cycle. The cluster

cycle is repeated throughout the life of the system. The TDMA slots are available

universally to all the nodes, and message replication is performed using redundant

channels, this increases the reliability of the system. The speed attained by TTP is

larger than the conventional CAN. TTP can achieve higher speeds depending upon

the medium of propagation; the average transmission speed is 2 Mbps. TTP uses

static table-based scheduling, in this case the communication requirements are fixed

in the pre-run time, and a specific schedule runs a timely exchange of messages.

Notice that the communication requirements cannot be changed by the application

at run time [APF02].

Another major protocol which is also used in high volume and is also designed

to provide time-triggered communications is FlexRay [Fle04]. FlexRay originated

from the formation of a group/consortium whose initial task was to plan a exhaustive

technical analysis of the protocols existent at that time to be used in the car industry,

for example CAN, TTP/C, TTCAN e.t.c. The group came out with the following

concerns related to these protocols: The available bandwidth for e.g. 500 kbps will

not support future applications and also the non-availability of redundant channels,

global time base and bus guardians in TTCAN and CAN networks. Although TTP/C

provides a solution for most of the above mentioned concerns it has no flexibility for

asynchronous transmissions or multiple slots for a single node in its TDMA cycle.

The other concerning matter was that the contents of the TTP frame were found to

26

be too small.

The major enhancement in FlexRay is that the time of a message round is di-

vided into static and dynamic segments. In the static segment only messages already

scheduled can be sent. A message where the time is crucial to the operation (such

as orders to the braking system) is sent in this segment. The dynamic segment is for

occasional burst transmissions, diagnostic information and adhoc messages in gen-

eral. The dynamic part is limited both in time and bandwidth consumption. The

FlexRay system has support for both synchronous and asynchronous frame transfer

by dividing the time into these two segments. The time is externally synchronised

using a fault tolerant time synchronisation algorithm at every node. FlexRay uses a

TDMA scheme for accessing the communications channel, during a static segment.

A bus guardian is used to prevent nodes from accessing the bus, in the time slots not

assigned to it. The bus guardian is supposed to keep track of the valid access times

and only allow traffic to be sent at those times. A bus guardian may only block the

traffic on one channel; hence two bus guardians must be used when a node wants to

use both channels; a 10 Mbps of speeds is attained in FlexRay.

The major disadvantage of the FlexRay protocol is complexity. As the infrastruc-

ture is difficult to implement with a large protocol stack, small embedded processors

with 8 bit architecture and 512 code space would never consider FlexRay as an op-

tion. The cost to implement is quite high as compared to other field buses. History

dictates that for the most part, committee designed protocols and stacks end up

being caught up in self-serving financial entities. For that matter, if you want the

official CAN specification now you also need to pay for it compared to a product

27

with data sheets developed by a single company (In the past, Bosch and CAN). An-

other disadvantage of the FlexRay protocol, is the necessity of the start-up procedure

and non-reconfigurability during the runtime [War09]; also the missing support for a

simple configuration of a network cycle is a bottleneck of this protocol [FA09].

FlexRay is also considered as a combination of features from byte-flight, a protocol

developed by BMW [GBP00]. The byte-flight protocol is based on synchronous and

asynchronous methods. It ensures a deterministic transmission delay for a known

number of high priority messages and the efficient use of transmission bandwidth for

less prioritised messages. This protocol is quite flexible in that if required it can work

in fully synchronous or asynchronous mode. The transmission rate is quite high i.e.

10 Mbps.

2.1.1 Enhancements in CAN to support TT communications

The major work on CAN to support time-triggered communication is TTCAN [LH02].

Time Triggered CAN (TTCAN) provides higher layer functionality above the CAN

protocol, as the standard CAN protocol [11893] is limited to the physical and data

layers. TTCAN was designed to provide time-triggered functionality to the CAN

protocol by synchronising the communication between different CAN nodes. TTCAN

provides a global time-base so the messages can be sent on a given time-line. In CAN

the nodes arbitrate to gain access to the physical media while TTCAN synchronised

communication provides predictable access to the medium. Another basic feature of

the TTCAN is that the worst case transmission times can be calculated off-line as

they are not affected by the temporal conditions on the network.

To achieve synchronous scheduling in a distributed system, all activities are on a

28

common time base. All TTCAN nodes hold a counter, that is updated once every

NTU time. TTCAN implements this time-triggered architecture and the communi-

cation schedule is calculated a priori to the system start. TTCAN uses TDMA access

method for sending or receiving messages [Kar02]. The Time-Division Multiple Ac-

cess (TDMA) bandwidth allocation scheme divides the time domain into smaller time

slots, or time windows. In a TDMA cycle one or more of these slots are assigned to

a participating node on the network to access the shared medium. In the case of

TTCAN this TDMA cycle in which each node is given a time slot/s to transmit is

called a basic cycle(BC). Each basic cycle starts with a reference message and finishes

with the start of the next reference message. Several basic cycles are combined to

make a matrix cycle. All basic cycles are the same size in the time domain, but may

differ in construction. When a matrix cycle is ended the transmission scheme starts

again by repeating the matrix cycle.

This can be further explained by the presence of three different types of time

windows in TTCAN which make flexible time scheduling possible. (i) Exclusive time

windows: these windows are assigned to the periodic messages, only one message

is assigned per time window. (ii) Arbitrating time windows: this is a time window

to send sporadic messages and can be assigned to node in demand. (iii) Free time

windows: these are for future expansion.

TTCAN is deterministic (compared to CAN), since the limit of the (worst case)

time behaviour can be determined in advance due to its pre-determined time slots

[AG]. Higher bandwidth utilisation up till 60-70 % [QPFM05] can be achieved using

TTCAN while CAN bandwidth utilisation is limited to a maximum of 35 % as the

latency behaviour will be indefinite for higher bus loads.

29

From the above comparison it can be seen that apart from a few problems which

are related with CAN still exists in TTCAN; although it claims to be highly time

based, it does not allow retransmissions in case of failures or errors. In high EMI

environments such as industrial setup or engines/ignition noise can induce high BER’s

in the range of 10−7 to 10−11 [FOFF04]; also in some extreme cases, BERs as high as

10−3 have been reported for vehicles operating in close proximity to sources of large

electromagnetic disturbances [GN04], although an accurate level of EM interference

cannot be predicted specially in vehicle networks. This high EMI causes loss of

valuable bandwidth and critical messages can be delayed to the next time slot. If

the message that is delayed is a safety-critical message, then the transmission error

can compromise the safety of the system in TTCAN [AM05]. According to some

authors [BBRN04, NP03, FOFF04] the effort to make CAN suitable for safety-critical

applications, is not successful in TTCAN. In fact, according to these authors, the

standard CAN is more robust than TTCAN. Also the physical layer has not been

addressed therefore there is no improvement in the level of jitter due to bit stuffing

which is the same as in CAN, and also in the time domain it fails the fail silent

assumption without a bus guardian.

Another piece of work done on CAN to counter its inherent drawbacks is FlexCAN

[PF04] which claims to be a combination of FlexRay and CAN; this is a time-triggered

system over CAN, with an extension for safety-critical systems. FlexCAN utilises a

synchronisation message to control the communication cycle sent by a primary node.

The other nodes synchronise on this message and then run their local task. Also it has

an embedded protocol, safeCAN, to enhance the fault tolerant features. The major

problem with this architecture is scalability and also large values of jitter around 187

30

µsec in message transmission as shown by the authors of FlexCAN [PP07].

Several software and hardware based clock synchronisation scheme’s have also

been developed which include the shared clock algorithm [APSP07] to synchronise

clocks on the network with the use of time-triggered ticks which are propagated on

the network. It is a simple implementation with no additional hardware. This is

advantageous in the case of time-triggered applications but has lot of overhead in

the case of keeping alive messages send at regular intervals known as tick intervals.

Another recent effort to design a hardware based clock synchronisation scheme for

CAN networks; it uses an orthogonal [RNRP08] clocking scheme to the rest of the

system. This implementation again addresses only a single problem associated with

CAN networks, this is useful to work with another suitable application that supports

TDMA based communication over CAN.

The FTT-CAN [APF02] protocol combines both event and time-triggered systems

into a single repeated elementary cycle (EC). Each EC is triggered by the master, by

sending a specific message. In response to this message, nodes required to transmit

in the synchronous window send their traffic; message collisions are handled by the

built-in arbitration mechanism of CAN. In the synchronous window, event- triggered

messages can be sent as required. This protocol also allows on-line modification of

the time-triggered schedule to meet varying traffic conditions in the network. The

protocol was implemented in software but it will require a co-processor which is based

on FPGA to have an effective implementation [MAF05]. Another problem is that the

synchronous window which is dedicated for time-triggered operation of the nodes

arbitrates using the CSMA/BA. Although the transmission schedule is sent in the

trigger message of the EC there is a possibility that nodes with lower priorities will

31

not be able to transmit. FTT-CAN is also vulnerable to a single point of failure in

case the master holding the traffic scheduler, hence no more trigger messages with

elementary cycle schedule can be transmitted. This can be overcome by replication

as stated in [RNRP+04]

CANELy is an enhanced software layer over CAN to provide node failure detection

and group communication [RVA03]. Although clock synchronisation (with precision

at the tens of microsecond level) is employed for these services [MP10], the system does

not directly support time-triggered communication. However it has been proposed

that this feature may be built on top of the enhanced layer as a system-level service.

The modifications of the CAN protocol discussed in this section, are not suitable

for bandwidth-demanding automotive and other applications without attaining higher

speeds [CV06].

2.2 Jitter in Transmission Times

There has been a lot of research focus on adapting CPU scheduling and feasibility

analysis techniques to create systems which provably deliver all messages in a timely

fashion in CAN networks. As with CPU scheduling, these topics can be broadly

divided into two sub-categories; those based on static (table-driven) techniques, and

those based on dynamic (non-idling) techniques.

In a statically-scheduled system, all message transmissions are created off-line

and stored in some form of table (a ”message map”) that each node makes use of to

control the instants in time that messages are allowed to be transmitted. In order

to be employed successfully, each node must have accurate knowledge of the release

time and the transmission times.

32

Figure 2.1: Software bit stuffing

Much work has been done and several techniques have been used to minimise the

release jitter in embedded control messages. But as discussed, one of the other phe-

nomena which can disturb the computation of the static schedule is the transmission

time jitter which is a common factor in embedded protocols. The presence of such

jitter can have a harmful impact on the performance of many distributed embedded

systems, particularly those involving period sampling and/or data generation (e.g.

data acquisition, data playback and control systems) [Tr98]. In [DS95], it was dis-

cussed that in any data acquisition tasks jitter rates of greater than or equal to 10%

of the task period can introduce errors which are so significant that any subsequent

translation of this signal can be considered either as an error or as useless information.

Similarly, [Jer77] has discussed the serious impact of jitter on applications such as

spectrum analysis and filtering. There are several factors which can effect the trans-

mission jitter such as the bus access time, error conditions and synchronisation issues,

but we will discuss another problem specially encountered by CAN due to the use of

the NRZ coding scheme. CAN uses a ”Non Return to Zero” (NRZ) coding technique.

Since there is no synchronisation signalling involved in NRZ a drift in the receiver’s

33

clock can occur when a long sequence of identical bits has been transmitted; this

can result in message corruption. To avoid the possibility of this scenario, the CAN

communication protocol at the physical level uses a bit-stuffing mechanism which

operates as follows: after five consecutive identical bits have been transmitted in a

given frame, the sending node adds, an additional bit, of the opposite polarity. When

five or more consecutive bits of the same polarity are to be transmitted, a ”stuff” bit

of the opposite polarity is inserted by the transmitting hardware, and subsequently

removed by the receiver hardware. Six consecutive bits of the same type 111111 or

000000 are considered as an error else an error or overload frame is signalled.

Although this mechanism is effectively transparent to the application software,

a side-effect is that it causes the total CAN frame length i.e. the number of bits

actually transmitted to become (in part) a complex function of the data contents.

For example, for a CAN 2.0A message with an 11-bit identifier and 8-bytes of data,

the minimum and maximum message lengths are 111 and 135 bits respectively. This

translates to a possible variation in transmission time (”jitter”) of approximately

22% of the total message length. It has previously been argued that the bit-stuffing

inducement of message transmission jitter at these levels can lead to detrimental

behaviour, even in statically-scheduled real-time systems ([NHN02, NSP05, NPS09]).

Additionally, since message jitter is cumulative for successively transmitted frames,

in non-idling priority driven systems, low priority messages can suffer from largely

unacceptable jitter magnitudes.

Several software-based protocols to help ameliorate this phenomenon have previ-

ously been proposed. Nolte and colleagues ([NHN02, NHNP01]) described a simple

34

scheme based on applying an XOR mask to the transmitted data, which is subse-

quently re-applied by the receivers to recover the original frame. Although the original

results seemed to indicate a measurable reduction in jitter, it was subsequently argued

by [NSP05] that this effect was somewhat illusory, and results of a similar positive

nature cannot be guaranteed for arbitrary datasets. Nahas [NP05] also showed that if

the transmission data is screened on-line, such that an XOR mask can be selectively

applied on a byte-by-byte basis, then a 20% reduction of jitter can be observed in the

general case. However this comes with a penalty of increased software complexity in

the embedded system nodes, and a slight penalty in terms of information throughput

(a payload byte must be reserved to hold XOR encoding information).

In a subsequent paper, [NPS09] introduced a further technique known as Software

Bit Stuffing (SBS). This technique applies a high-level bit-stuffing algorithm prior to

data transmission, such that stuff bits are inserted by the application itself, therefore

reducing the levels of hardware-induced stuff bits. The principle of SBS is shown in

Figure 2.1. It was found that the technique further reduces the expected levels of jitter

by 40%, but again this is at the expense of further increased software complexity and

a greater penalty in terms of information throughput (2 payload bytes must now be

reserved to hold XOR information). Although both techniques are successful in jitter

reduction, for many applications a 25% (or even 12.5%) reduction in the available

information throughput capacity of the CAN network along with increased CPU

and memory overheads in each node - will be unacceptable.

Another off-line method to control bit-stuffing has been presented in [PKS07],

where the identifier fields and DLC field are selected manually and XORed to make

an explicit data set not to allow any combination such that more than four similar

35

polarity bits occurs continuously. A major drawback of this scheme is, of course,

the assumption that most CAN control messages are two to four bytes while no

mechanism to counter stuffing in data and the CRC field which in most cases greater

than 50% is provided.

2.3 Throughput Limitations

LAN’s are high speed networks with mostly indeterministic traffic requiring large

amount of data to be transmitted over lengths ranging from a few metres to hundred of

kilometres, hence the dynamics and design of LAN protocols are entirely different from

the field bus communication, which have entirely different application requirements.

One of the major contrast between the field bus protocols is its low data rate/packet

size when compared to LAN technologies. The field bus protocols require time and

delivery determinism as the mandatory requirement for the design of these protocols.

FlexRay is an example which can transmit up to 10 Mbps. If we compare with

CAN which can attain a maximum speed of 1 Mbps, FlexRay has a high bandwidth

and low transmission times, hence making it suitable for time-triggered communica-

tions. Even in the case of transmission failures it will take almost less time to recover

and resend a message as compared to a normal CAN message without a failure. One

of the major reasons for the high speeds attained by FlexRay is the lack of an arbitra-

tion mechanism which is quite a critical issue in the case of CAN speed limitations.

As explained earlier all the CAN nodes have to be in consensus related to bit level;

it is necessary that propagation delays on the shared medium be negligible with re-

spect to the bit time [Bos91] . Although if we look at the physical level FlexRay also

employs differential NRZ encoding as similar to CAN with a difference of start/stop

36

bits which keep the nodes in synchronisation; also in the middle there is a byte start

sequence to further improve the synchronisation between the nodes.

Previously enhancements have been proposed and implemented in CAN to in-

crease the speed of CAN communication. FastCAN [CV00] suggests a dual channel

approach to enhance the speed; the network topology of FastCAN consists of two

unidirectional physical channels, here indicated as forward (FC) and reverse (RC)

channels. FC is used by the nodes for frame transmission and, in particular, to carry

out the arbitration phase. RC, instead, is used to receive frames and to collect the

receive status information of the different nodes (i.e. error or overload conditions and

acknowledgement bits). Each node is provided with two distinct input ports [forward

receive (FRX) and reverse receive (RRX)] and two output ports [forward transmit

(FTX) and reverse transmit (RTX)]. Neighbouring nodes are connected by means of

two point-to-point unidirectional links, so that the FTX (respectively, RTX) port of

a node is connected to the FRX (respectively, RRX) port of the next adjacent node

in the network.

The medium access scheme used by FastCAN is very similar to the conventional

CAN protocol except that the non-negligible propagation delays involved in this case

is taken into account. A node can start transmitting a frame as soon as the forward

channel is idle, by detecting a signal on the FRX channel. In comparison to CAN it

can send messages at a maximum speed of 16 Mbps with a network length of 150 m.

The major disadvantage of this protocol enhancement is the complete change of the

CAN infrastructure, hence not just the application layer changes have to be made,

but a complete change of physical and data layers is required.

In an another work Cena et al. in a short communication [CV99] floated an

37

interesting idea to use different transmission speeds for the different fields of a CAN

message. A mechanism of overclocking was proposed to increase data rates in those

fields of the CAN frame in which only a single node is transmitting. This idea was only

suggested and but was not implemented as it requires a physical layer modification of

the CAN controller. Ziermann et al. [ZT09] took the basic idea from this technique

to implement overclocking to increase the data rate in CAN networks. However this

implementation described in [ZT09] differs in several key aspects. Firstly, the S-zone

over clocking factor must be restricted to an integer power-of-two multiple of the basic

CAN rate. Secondly, although the implementation claims to be backward compatible,

the behaviour of the error logic and CRC calculation is not described; brief details of

the discrepancies in this implementation are presented:

1. In case of bit errors in any of the additional inserted bit, how will the traditional

and overclocked CAN nodes behave? At the moment it seems there is no error

management logic involved.

2. The CRC calculation is not explicitly explained; it is not clear whether two

separate CRC calculations for the normal and over clocked data fields are carried

out, or if the same CRC field is transmitted for both the cases. In the latter

case the CRC field will not be a true representation of the over clocked data

field, leaving the majority of the over clocked data susceptible to undetected

errors.

3. There is no analysis presented to determine the behaviour of BER, due to

overclocking. In this work effect of BER on overclocking is discussed in detail

in chapter 6.

38

2.4 Protocol Conformance Testing

As with any complex digital system, the testing of a soft core design can be a complex

and costly process [Bot98]; if the core also contains a communication protocol imple-

mentation, then conformance testing of the said protocol also becomes a requirement;

this may complicate matters further. According to a recent survey by Lai, a confor-

mance test method must be evaluated using three principles [Lai02]. Firstly, the IUT

(implementation under test) behaviour must be comparable to the precise protocol

definition; secondly a comprehensive test suite must be present covering all the as-

pects of protocol functionality. Finally, a test system which provides a controlled

and reproducible environment for test implementation is required. The techniques to

conduct conformance testing of CAN protocol is reviewed in the next section.

2.4.1 CAN Conformance Testing

CAN controllers and transceivers have been implemented at the silicon level, either

by dedicated ICs or as on-chip peripherals of embedded devices; many such CAN

controllers are widely available, e.g. [SJA00, Mic03]. In practice, as with most

other silicon-based protocol implementations, the implementation of CAN confor-

mance testers has been done using dedicated hardware and specially written analysis

software, which is a practical approach when testing and verifying conformance prior

to high-volume IC manufacture. ISO has developed a standard CAN conformance

testing document [ISOa], and any device that wishes to claim CAN conformance is

required to demonstrate that the test cases outlined in the standard have been per-

formed and passed without problems. The ISO document not only specifies different

types of tests that must be performed for conformance testing, but also specifies a

39

TP architecture based on the ISO 9646-1.

One of the earliest CAN prototype controllers was named DBCAN [KRWG96].

This implementation was tested using a logic analyser and a pattern generator circuit.

As there was no standard for conformance testing at the time the prototype was

developed, a commercial basic (as opposed to full) CAN controller was used as a

benchmark for verification. A major disadvantage of this scheme was the use of

external interface modules to visualise the state of different DBCAN registers, and

the testing procedure was somewhat limited in the number of signal channels that

could be simultaneously analysed. Since this is a requirement needed in the case of

ISO standard conformance testing, the ability to visualise the state of large numbers

of CAN registers simultaneously is a prerequisite, such a setup is limited in this

respect.

A slightly different verification technique was reported by [NDK+05]. Their tech-

nique employed custom design boards with 8051 micro controllers and SJA1000 CAN

controllers, but this method involved the design of specialised interface hardware and

boards to assist with the testing plan. Specialised verification architecture for testing

automotive protocols (including CAN) at both the module and the chip level was

proposed by [ZCD+06]. Again, this work requires a specially designed CAN verifi-

cation component as part of the silicon, while the selection and implementation of

actual test sequences, along with the selection of a suitable means of monitoring bus

signals, is left open for the tester.

A hardware emulation technique was used to verify a CAN soft core in [WBTMG96];

firstly, the synthesised net list is downloaded into a hardware emulator. This emu-

lator is configured by a PC and the communication between the two is carried via a

40

specially designed interface card connected to the EISA bus; this emulator is also con-

nected to two commercially available CAN chips. The drawback with this technique

is that again, customised hardware along with software especially written to carry

out the conformance testing is required. Additionally, to emulate the bus failures and

potential error conditions on the bus, a manual technique of connecting the CAN bus

to the output of individual nodes is employed, which lacks efficiency and is not robust

enough to cover all the scenarios given within ISO DIS 16845.

With respect to soft core CAN implementations, the CAN e-Verification (CANeVC)

test bench has previously been described [eVC05]. This commercial test facility re-

quires a CAN specification core to be embedded in the netlist; this core then runs

specific tests to verify the behaviour of the CAN soft core. Again, this technique in-

volves time consuming development of a test bench using an expensive commercially

available verification IP; additionally, compatibility issues often arise when using CAN

implementations other than the proprietary implementation [BACM03], and only a

limited number of programmable logic devices are supported. Another implemen-

tation to conduct CAN conformance testing has been proposed in [LCZS09]; this

approach also uses the normal setup of a PC and a logic analyser with a limited

number of signals at hand to monitor the testing.

A very recent and good method to conduct CAN testing has been proposed in

[Nov09], although this technique is not specifically designed considering the ISO-16845

standard but can be used for CAN conformance testing with suitable modifications.

This technique uses three IP functions: the CAN controller, a CAN test trigger and

a CAN generator to control the bit timing and sequence of frames. This is a highly

automated technique with large number of inputs variation, but the drawback is that

41

it needs an embedded PCI FPGA board to implement all the CAN IPs, hence this

has limitations on the number of test units connected, the portability of the test suite

and the length of the CAN bus.

Finally, several experimental implementations (such as that reported by [FOFF04])

to measure single parameters - such as CAN bit errors - rather than perform com-

plete conformance testing have been described in the literature. Such implementations

have typically used complex and non-trivial means, requiring customised hardware

and software. In summary then, it can be observed that, to date specialised hardware

and / or software has been required to assist with CAN testing plans.

Chapter 3

Controller Area Network

This chapter is dedicated to the CANs protocol specification and describes the back-

ground and history of CAN progress over the last 25 years. At the start of the 1980s,

communication between embedded nodes was set up based on UARTs, but this was

unable to support multi master, secure and high bit rate communication. In 1983 R.

Bosch GmbH decided to develop a communication protocol to be used in their auto-

mobiles which should meet the real time requirements for its distributed embedded

network. As the growth and popularity increased ISO had to start the standardi-

sation of CAN. For the first time in 1987 a CAN integrated circuit prototype was

introduced by Intel (82526), while in 1991 the current CAN 2.0 specification was

released and Mercedes S series with five controllers communicating at 500 kbps was

marketed. In 1995 CAN2.0B standard with high-speed communication and 29 bit

identifiers was released. In 1999-2000 the time-triggered version of TTCAN began

to develop and was introduced in industries in the mid of 2001. Many application

layer protocols such as CANOpen, CAL, CAN Kingdom, Device net and J 1939 have

also emerged to support the physical and data link layer functionality of the CAN

protocol. An average of 10 to 15 CAN nodes are being used in the 65 to 67 million

vehicles produced in 2008, which easily demonstrates the market volume which CAN

has captured since its beginning [Par07]. Description of the CAN specifications is

given in the next few sections.

42

43

Standard Identifier
Low-Speed ISO 11519 11 bit
CAN 2.0A ISO 11898 (1993) 11-bit
CAN 2.0B ISO 11898 (1995) 29-bit

Table 3.1: ISO CAN Standards [Cor02]

SOF
 ID[10:0]

RT
R

ID
E
 r0

 DLC
 Data (0....8 bytes)
 CRC

AC
K

DE
LI

M

DE
LI

M

IFS
EOF

SOF
 ID[10:0]

RT
R

ID
E
 r0

 DLC
 Data (0....8 bytes)
 CRC

AC
K

DE
LI

M

DE
LI

M

IFS
EOF
ID[28:11]
 r1

SR
R

(a) Standard Frame

(b) Extended Frame

Figure 3.1: CAN frame format (a) Standard (b) Extended

3.1 Protocol

The Controller Area Network (CAN) is a serial bus protocol, which supports to

inter-connects sensors, actuators, and other information processing nodes in real-

time systems. In this section, a detailed description of the CAN is given, which

includes the message formats, bus arbitration scheme, CRC calculation, bit-stuffing

and error-handling mechanisms. The different ISO standards describing the three

CAN configurations is given in Table 3.1.

3.1.1 Frame Format

The CAN specification [11893] explains the frame format. CAN supports four message

types/frames. i) Data frame, ii) Remote frame, iii) Error frame and (iv) Overload

frame.

44

CAN data frames works in two modes and the frame format varies for these two

modes, i) Standard CAN and ii) Extended CAN. The meaning of the bit fields of

Figure 3.1 (a) are:

• SOF: the starting dominant bit of a CAN frame is called SOF, the receiver

node’s synchronise with the transmitter on this dominant edge, this is called

hard-synchronisation.

• Identifier: the 11 bit CAN standard identifier is used to set the priority of a

CAN node on the complete network, a node with lowest identifier will have

priority on all other nodes.

• RTR: when any node requires any information the rtr bit is set to dominant,

normally this bit is recessive for normal data frame. The identifier of the remote

frame determines the intendant node.

• IDE: a dominant IDE bit shows that the message sent has no extended identifier

field.

• r0: reserved bit (for possible use by future standard amendment).

• DLC: the 4-bit data length code (DLC) contains the number of bytes of data

being transmitted.

• Data: 8 byte data can be transmitted in this field.

• CRC: CRC check of 15 bit is attached in this field.

• ACK: acknowledgement field is two bit, the acknowledgement bit is recessive

and the delimiter is over written by the receiver’s, if they receive the message

45

successfully.

• EOF: this is a 7 bit recessive End of Frame field, to correctly process the received

message.

• IFS: inter-frame space is 3 recessive bit field and is always inserted between two

frames whether data, error, overload or remote frame.

As shown in Figure 3.1 (b), the extended CAN message is the same as the Standard

message with the addition of:

• SRR: the SRR bit is a replacement to the the RTR bit of the standard frame,

in an extended frame.

• IDE: a recessive ide bit indicates that this message frame has got 29 bit identifier.

• r1: an additional reserve bit in extended frame.

Another type of frame is remote frame. A recessive RTR bit indicates a remote

frame, which has no date. The sole purpose of remote frame is to request data from

another node represented by the identifier of the remote frame.

Another type of message frame is error frame, which is a special message is trans-

mitted when a node detects an error in a message, the details of error message frame

is discussed in the section for error detection and confinement.

3.1.2 Arbitration in CAN Bus

Arbitration is a mechanism to solve the bus access problems. Whenever the CAN

bus is free, any node can start to transmit a message. There is a possibility that

more than one node can start to transmit simultaneously; this conflict is resolved

46

Figure 3.2: Physical signals on a CAN differential bus

by bit-wise arbitration using each nodes unique identifier. During the arbitration

phase, each transmitting node transmits the identifier bit and compares it with the

level on the bus. If these levels are equal, the node continues to transmit. If the

node receives a dominant level, though it has transmitted a recessive level then it

lose the arbitration and becomes a receiver. At the end of the arbitration field, only

one transmitter is able to access the bus. The arbitration process for three nodes is

shown in Figure 3.3.

In this case all three nodes start to transmit their sof signal together. Arbitration

process starts after that and all three nodes keep on transmitting their identifiers till

the time any node receives a dominant level. Although it has sent a recessive level,

therefore according to Figure 3.3, node 1 loses the arbitration first and later node

2 also loses the arbitration, hence only node 3 remains a transmitter and all other

nodes are turned to receivers.

Since all the CAN nodes connected to the bus receive every bit of the transmission,

47

Figure 3.3: Arbitration in CAN network. (This image have been used with permission
from CiA [CIA])

there is no concept of a destination addressing, rather the receivers themselves have

a filtering mechanism to either accept or discard a message. Message arbitration

and physical AND nature of CAN bus is one the causes of speed limitations and

unpredictable transmission times. This topic is discussed in length in later parts of

the thesis.

3.1.3 Message Filtering

The CAN Protocol employs a filtering mechanism to distinguish between wanted and

unwanted messages. This is accomplished through the use of acceptance code and

acceptance masking. The acceptance code and acceptance mask work hand-in-hand

48

to determine which messages are accepted. Message filtering is applied to the whole

identifier. A node can optionally implement mask registers that specify which bits

in the identifier are examined with the filter. Identifier acceptance registers define

the acceptance patterns of the standard or extended identifier. Any of the bits in

the acceptance identifier can be marked ’dont care’ in the acceptance mask registers.

A message is accepted only if its associated identifier matches one of the identifier

filters. The identifier acceptance filter can be programmed in different modes for

the CAN IP core, four 8-bit wide acceptance code registers (ACR0, ACR1, ACR2

and ACR3) and acceptance mask registers (AMR0, AMR1, AMR2 and AMR3) are

available for a versatile filtering of messages. It operates in one of the three modes:

Two 32-bit identifier acceptance filters; four 16-bit identifier acceptance filters; eight

8-bit identifier acceptance filters.

3.1.4 Error Detection and Confinement

Error detection and error confinement are the highlights of the CAN protocol. Error

detection in CAN is very robust, because the CAN bus is monitored for all times by

all the connected nodes. Hence the probability of missing an error is really small in

CAN networks. There are five type of errors defined in CAN:

• Bit errors are easily detectable in CAN due to continuous monitoring, a bit

error is one in which the level monitored on the bus is different from the level

transmitted. The bit errors are disabled for identifier and acknowledgement

delimiter fields.

• if a stuff bit is not detected after 5 consecutive bits, then this is classified as a

stuff error (error, overload frames and intermission field are exceptions).

49

• CRC error: if the calculated CRC on the receiver does not match to the attached

CRC check of a transmitted message then this is a CRC error.

• When a different bit pattern of a fixed format data or error frame is detected,

this is taken as a form error (e.g. an end of frame is always a 7 bit recessive

signal, if a different format is received then an error is signalled).

• In case of a synchronisation failure and unsuccessful reception of a message, the

receiver does not send a dominant acknowledgement delimiter; this is taken as

an acknowledgement error.

Whenever a node detects an error it starts to transmit an error frame and it does

not limit to a previous transmitter, but all the receiver nodes will also signal in case

to keep the synchronisation and also to signal any node which has missed the error

condition. In comparison to other network protocols, the error recovery mechanism

of CAN is quite robust and faulty messages are retransmitted in a short time. This

mechanism has certain drawbacks in case of timely message reception applications

where continuous errors on the bus will lead to large number of re-transmissions,

hence a particular node can occupy the bus for a longer time.

Apart from error signalling CAN also implements an error confinement mecha-

nism, this is implemented using different error counters which increments or decre-

ments with unsuccessful and successful transmissions/reception simultaneously. Thresh-

old values are set to move the node into different states:

• Error Active: if any of the transmit or receiver error counter is less than a

passive error state, this allows the node to transmit and receive as well.

• Error Passive: if any of the transmit or receiver error counter is greater than

50

the error passive threshold and less than the bus off value, the node unit will

wait before initiating a further transmission.

• Bus off: if the error counters are equal to a bus off threshold than the bus is off

and will seize to transmit.

3.1.5 Physical Signalling

The physical signalling of the CAN protocol is of importance as it not only specifies the

actual bit transmission on the bus but also distinguishes CAN as CSMA/Collision

avoidance mode of medium access. A complete CAN system comprises of a CAN

controller and a transceiver. Connection to the physical layer is made through a

line transceiver such as [Phi96b]. The CAN signalling is differential which increases

immunity to noise and fault tolerance.

Balanced differential signalling reduces the effect of noise on the transmitted bit

levels, as the bits are not determined by a single level but a difference of two levels

hence not only providing a medium redundancy but a margin level to detect any

distortion of the original transmitted levels. Also balanced differential signalling

means that the current in each wire flows in a different direction to keep the noise

levels low. The use of the High-Speed ISO 11898 Standard specifications are given for

a maximum data rate of 1 M bps for a bus length of 40 m with maximum 30 nodes

on the CAN bus. Typical bus lengths for different CAN transmission rates are given

in Table 3.2.

The communication cable is either a shielded or unshielded twisted-pair with 120-

Ω characteristic impedance. The two signal lines of the bus, CAN H and CAN L

(Figure 3.2), is normally in recessive state, and are biased to 2.5 V. The dominant

51

Bit Rate (kbps) Bus Length (m) Nominal Bit time µsec
1000 40 1
500 100 2
250 250 4
125 500 8
62.5 1000 20

Table 3.2: Typical bus lengths for different CAN transmission rates

state on the bus switches the CAN H, 1 V higher to 3.5 V, and switches CAN L 1

V down to 1.5 V, creating a 2-V differential signal. This explains the major protocol

components of CAN. The next chapter discusses the set up of a CAN test bench and

will discuss some other aspects/specifications of the CAN protocol.

This explains major protocol components of CAN. The next chapter discusses

about the set up of CAN test bench and other aspects/specifications of the CAN

protocol.

Chapter 4

CAN Test Bench

The aim of this thesis is to propose and implement enhancements in the existing CAN

protocol to provide higher speeds and reliable communication. This chapter describes

and discusses the design of a flexible CAN IP core, which is a key requirement if the

aims stated above are to be achieved. In addition, the set up of a test bench based

upon this developed CAN IP core, with details of a simple case study undertaken to

verify the basic functionality of the core, is described.

The CAN protocol is a well established standard and is available in hard wired

Integrated Circuits(IC). These ICs are available as stand-alone chips [SJA00, Mic03]

1 which can be used as discrete components in CAN network designs. Alternately,

CAN controller circuits are also commonly available as on the chip peripherals of

micro controller or DSP cores [Phi04, TMS97]. These off the shelf CAN controllers

are made under the CAN specification and comply with the conformance testing

standard. Although these CAN controllers are relatively easy to use when setting up

CAN networks, they lack the flexibility to allow any modifications or enhancements

to be made to the CAN protocol at the hardware level.

The set up of the test bench based on the CAN IP Core described in this chapter

provides for a very flexible and novel experimental platform. This platform can be

1A comprehensive guide on CAN standalone and on chip controllers can be found at
http://www.kvaser.com/en/about-can/can-controllers-and-transceivers/71.html

52

53

used to implement, to test and to verify any modifications to the existing CAN pro-

tocol under tightly controlled conditions. The changes to the protocol were necessary

to make the intent of this project realisable. There was a need to find a flexible and

robust solution, which allows not only modifications at the protocol layer but also

supports field tests with the help of standard interfaces. A cost-effective answer to all

these requirements was to have the protocol implemented in the form of a silicon IP

core, which is robust, flexible and easily modifiable. This core can be implemented on

a re-programmable device such as a CPLD or FPGA. Hence the formation of the CAN

IP core provides us with a basis to experiment and implement the proposed changes.

The evolution of the CAN IP core will be discussed in the succeeding sections of this

chapter.

4.1 CAN IP Core

The CAN IP core was implemented in Verilog [Ver06] HDL(Hardware Descriptive

Language). Two CAN standard documents [11893, Bos91] were used as the main

source of reference for this implementation. Verilog was chosen as the implementation

Hardware Description Language (HDL) due to its C-like structure which is fairly

straightforward in comparison to other languages such as VHDL [Smi96].

Figure 4.1 shows the basic components of the CAN IP core. This section will

discuss each of the main functional blocks. These functional blocks are as standard,

and can be found in many of the commercially available CAN controllers [SJA00,

Mic03]. The blocks have also been discussed in great length by Farsi et al. in their

book [FRB99]. The developed IP core was made to be as close a match as possible

to a typical silicon implementation, and appears to host CPU as a number of special

54

Figure 4.1: CAN block diagram

function registers accessed via a simple bus interface. The following sections present a

detailed description of the principal functional blocks making up the CAN controller.

4.1.1 Bus Interface Logic

The bus interface logic interprets commands from the host controller and produces

relevant addressing, data input of the CAN registers and reads back information to

the host processor.

55

Figure 4.2: Multiplexed bus timing

The bus interface logic acts as the principal interface between the host processor

and the CAN controller. Its main duties include the interpretation of commands from

the host controller, decoding of addresses and handling data transfers to and from

the CAN registers. Two different versions of this silicon IP core were designed. In the

first instance a simple multiplexed bus and secondly a fully-featured Serial Peripheral

Interface (SPI) logic interface. For clarity of presentation, the thesis will consider

only the simple multiplexed bus version which is as shown in Figure 4.1.

The ALE (Address Latch Enable) signal is used to multiplex both address and

data on the bus. When data are to be transferred from the host controller to the

CAN silicon IP core, the required address is first latched with the ALE signal set

high. Data is then written on the multiplexed bus by setting the WR (write) signal

high. When data is to be read from the silicon IP core, again the required address is

first written on the multiplexed bus with the ALE signal held high. Once the address

is latched, the RD signal is set high and the data is placed on the bus by the core,

and read by the host controller. The timing diagram of these sequences of operations

56

Register Name Function size (bytes) Status
Mode Setting between normal and configuration modes 1 WR only
Command Transmit request and release receive buffer 1 WR only
Status Transmit , Receive and Error status is stored in this register 1 RD only
Interrupt Transmit, Receive and Error interrupts are stored 1 RD only
Acceptance code Stores the Filtering code for message identifiers 1 to 4 WR & RD
Acceptance Mask Stores the And mask for Filtering 1 to 4 WR & RD
Timing Register Stores the value of Baud rate pre scalar 1 WR only
Segment Registers Store the bit timing segment values 1 WR only
Transmit Buffer Transmit data and identifier are stored 11 to 13 WR only
Receive Buffer Received message is stored in this buffer 11 to 13 RD Only
Error Capture Type of Error and direction of error 1 RD only
Tx Error Counter Transmit error count 1 RD & WR
Rx Error Counter Receive error count 1 RD & WR

Table 4.1: CAN registers and their functions

is depicted in Figure 4.2.

4.1.2 CAN Configuration Registers

This functional block contains the configuration and data registers of the CAN IP

core. The registers contain configuration information, which the host CPU can use

to set up the configuration and run-time operation (the sending and receiving of mes-

sages) of the CAN network. The registers declared in this functional block include

those employed for command, status, timing, error and transmit/receive operations.

Bus interface logic explained in the previous section drives the address translation

logic and appropriate signals to read and write data from and to the host controller.

The registers are either updated synchronously or asynchronously, according to their

configuration and the CAN specification requirements. Table 4.1 lists all of the con-

figuration registers inside the CAN IP core and their functions.

4.1.3 Bit Stream Processor (BSP)

The BSP is the sequencing logic and main state machine which controls the data

stream between the transmit buffer, message buffers and the bitwise signals appearing

on the CAN-bus itself (via the transceivers). This implementation of the CAN IP

57

Figure 4.3: CAN message state machine

core follows the reception/transmission state machine according to the CAN bus

frame fields as given in Figure 4.3. Section 3.1.1 defines these states in detail. The

BSP also contains the required logic and state machines to perform error detection,

arbitration, bit stuffing and error handling on the CAN-bus. The next sub-sections

discuss the main elements of the BSP functionality in more detail.

Bit Stuffing and De-stuffing

This block performs bit stuffing according to the CAN specification [Bos91], i.e. pre-

venting the transmission of more than five bits of similar polarity in a data or a remote

frame. When such a situation is detected in the master bit stream, a bit of opposite

58

polarity is automatically inserted (stuffed) to break the sequence, in order to keep

the CAN nodes synchronised, as CAN uses NRZ encoding for data communication.

The implementation of bit stuffing in the CAN IP core is done on the complete

frame. First of all, the fields from the Identifier to the CRC field are serialised and are

then checked for stuffing. Where applicable, stuffed bits are appended to the message

in the appropriate places and it is then considered to be ready for transmission. On

the receiver side, the bits are serially checked for the stuffed bit, and where detected

they are removed. The process to remove stuffed bits is called bit de-stuffing. The

stuffed message is first stored in a temporary register before de-stuffing. Bit de-

stuffing starts with the CRC state. From this temporary register, the message is

shifted serially to another register de stuff reg. Once a stuff bit is detected, this bit is

overwritten by the next incoming bit. Once complete, the de-stuffed message is then

forwarded to the message filtering module for further processing.

Error Logic

The Error Logic block is responsible for the error confinement of the transfer-layer

modules. In the silicon IP core, the error logic module is a dedicated part of the BSP.

The BSP detects the errors and in turn increments the error counters in accordance

with the rules set out in the CAN specification. There are separate registers for

transmission and reception error counters (TEC and REC). The counters help the

CAN controller to switch between the different error states (discussed in chapter 3),

according to the state diagram shown in Figure 4.4. The error passive and bus off

states are a measure for the error confinement. Once a transmit error count is greater

than 255, the bus goes into off state. The error status is also updated in the error

59

Figure 4.4: CAN error state machine

status register and can be read by the host controller. As shown in the Figure 4.10

’interrupt’ signal can be used to interrupt the host controller in case of an error or

change in error state, such as bus off. The host controller can send a 0 count to the

TEC, to switch the CAN node from bus off to active error state.

CRC Block

The Cyclic Redundancy Check (CRC) is a common method of detecting errors in

a block of data [RG88], which operates by appending some additional (redundant)

information to the data being protected. This redundant information is then used to

calculate the integrity of the received data by the receiver. A generator polynomial is

employed by the transmitter to create the redundant information, and this operates

by dividing the message by a specified shift polynomial, with the remainder appended

to the original data frame as the CRC. At the receiver side, the same procedure is

60

Figure 4.5: (a)15 bit LFBSR block (b) CRC RTL schematic

applied on the received data and compared with the calculated CRC value. In CAN, a

message is accepted if and only two values match, otherwise an error flag is generated

to inform the transmitter of an error condition. No error recovery is attempted. CAN

employs a 15 bit CRC code, which is generated by the following shift polynomial:

G(x) = 1 +X3 +X4 +X7 +X8 +X10 +X14 +X15

The CRC check is a logical process which can be implemented by a dividing circuit,

this can be realised by an XOR gate and a shift register. A Linear Feed Back Shift

Register (LFBSR), is mainly used for implementing a dividing circuit. A LFBSR has

two main parts: serial data is shifted with feedback from the output, using a given

function. A 15 bit LFBSR block is shown in Figure 4.5(a). When calculating the

CRC, the input to the shift registers (which is given by the polynomial generator)

are XORed with the output of the last shift register. The RTL schematic of the CRC

calculation for the CAN silicon IP core is given in Figure 4.5(a). When calculating

61

the CRC, the input to the shift registers (which is given by the polynomial generator)

are XORed with the output of the last shift register. The RTL schematic of the CRC

calculation for the CAN silicon IP core is given in the Figure 4.5(b). A verilog code

listing of the CRC implementation is given below:

assign calc_crc = lbfs_q;

// Shifting and XOR operation using the Generated polynomial G(X)

lbsf_q [0] = lbfs_q[14]^data_in;

lbfs_c(1) = lbfs_q(0);

lbfs_c(2) = lbfs_q(1);

lbfs_c(3) = lbfs_q(2) ^ lbfs_q(14) ^ data_in;

lbfs_c(4) = lbfs_q(3) ^ lbfs_q(14) ^ data_in;

lbfs_c(5) = lbfs_q(4);

lbfs_c(6) = lbfs_q(5);

lbfs_c(7) = lbfs_q(6) ^ lbfs_q(14) ^ data_in;

lbfs_c(8) = lbfs_q(7) ^ lbfs_q(14) ^ data_in;

lbfs_c(9) = lbfs_q(8);

lbfs_c(10) = lbfs_q(9) ^ lbfs_q(14) ^ data_in;

lbfs_c(11) = lbfs_q(10);

lbfs_c(12) = lbfs_q(11);

lbfs_c(13) = lbfs_q(12);

lbfs_c(14) = lbfs_q(13) ^ lbfs_q(14) ^ data_in;

always @ (posedge clock)

begin

62

if(crc_start)

lbfs_q <= 15’h7FFF; // initialize the lbfs_q register

else if (crc_en)

lbfs_q <= lbfs_c; // store the calculated crc in a the lbfs_q register

end

The CRC used in CAN protocol is of type ARQ (Auto Retransmit Request) [RG88].

When a CRC error is detected, a retransmission request is automatically forwarded to

the transmitter using the error frame. CRC is used in data communication networks

because of its capability to detect burst errors. A n bit CRC check is capable of

detecting all burst errors that effect odd no of bits, all burst errors of n−1 bits and a

high probability of detecting all burst errors of length more than n [Sta07]. CAN uses

CRC-15, which is capable of detecting patterns of 1, 2 and 3 bit errors and detecting

burst errors of 14 or more bits.

Message Filtering block

CAN bus is a shared medium, and all the bus activity is monitored by all the nodes

connected on the bus. A message transmitted is received by all, but in most situations

it is not necessary that every received message is of interest to every participating

CAN node, and therefore some messages need not be forwarded to the application

layer. The message identifier not only signifies the priority of a message, but also

indicates its data contents. A filter block at each node is used to decide which of

the received messages is of interest, and should be buffered and forwarded to the

application layer. The CAN filter block performs the message filtering, and consists

of match and mask filter registers. The messages are filtered by the combination of

63

Figure 4.6: RTL schematic of filtering block

match and mask registers. The mask registers specify which bits in the identifiers are

to be examined, and following this masking, only those bits of the identifiers which

match with one of the match registers, are retained.

The filtering process evaluates the following binary expression when accepting a

message. The equation given below is for a nth bit of the filter:

FilterPass(n) = ((NOT (id(n)XOR(FAcc(n)))or(NOT (FMask(n))))

where

id(n)= nth bit of the identifier.

64

Figure 4.7: Dual Message filtering, adapted from [SJA00]

FACC(n) = nth bit of the filter match.

FMASK(n) = nth bit of the filter mask.

All the Filterpass(n) bits)(for all n) are then ANDed together to complete the

filtering process. Figure 4.6 is a schematic of the RTL implementation of the CAN

IP Filtering block. The CAN filtering process supports three different configurations.

These filtering modes use the four 8-bit wide Acceptance Code Registers (ACR0,

ACR1, ACR2 and ACR3) and Acceptance Mask Registers (AMR0, AMR1, AMR2

and AMR3) in different combinations to make the message filtering. It operates in

one of the three modes:

1. A Single 32 filter for a standard identifier: 11 bit identifier and 2 data bytes

have to pass the combination of filters.

2. A Single 32 filter for an extended identifier: 29 bit identifier and RTR bit have

65

to pass the combination of filters.

3. Two 16 bit filters: The filtering process is elaborated in the Figure 4.7. The

received message is passed through both the 16 bit filters, and if it passes any

of the filters, the message is accepted.

Message FIFO

When a message has been received error-free and accepted by the filter, they are

stored in the message FIFO. The purpose of this FIFO is to buffer messages in order

of receipt, such that they can be read by the host controller asynchronously i.e. as the

controller is still handling the receipt or transmission of other messages. In the CAN

IP core, the implemented FIFO length is 128 bytes. This can be used to store up to 9

extended CAN messages. Note that the FIFO can potentially be extended arbitrarily

and that the size is only effectively bounded by the available RAM. The CAN IP core

uses Xilinx 8 x 8 RAM to implement the FIFO. Figure 4.8 shows the block diagram

of this storage device. The code listing to follow shows the initialisation of the RAM

module.

RAMB4_S8_S8 FIFO

(

.DOA(data_out), // data out from FIFO

.ADDRA({2’h0, wr_pointer}),

/* wr_pointer is 7 bits to support 128 addressing locations */

.CLKA(clk),

.DIA(data_in), // One byte data in

.ENA(1’b1), // Only RAM in system, enable = 1

66

Figure 4.8: Xilinx 8x8 RAM [Xil08]

.RSTA(1’b0),

.WEA(wr & (~fifo_full)),//Write enable, to write data if FIFO not full

);

4.1.4 Bit Timing Logic (BTL)

The BTL is employed to convert the logical output of the BSP into the logical and

temporal (sub-bit) stream required of the CAN-bus, and vice-versa. This block is

the last and direct interface between CAN controller and transceiver. The node

synchronises to the message bit stream on dominant edges at the start of a message

(hard synchronisation), and intermittent resynchronisation takes place on dominant

edge transmissions during the reception of the message. The hard synchronisation and

resynchronisation identifies dominant edges and then synchronises the node to the rest

of the CAN nodes, with the bit stuffing mechanism ensuring that resynchronisation

occurs at regular intervals. Verilog code listing to handle recessive-to-dominant edge

is given below:

The highlighted code shows the phase segment starts immediately in case of hard

67

assign hard_synchronize = (idle_state | ifs_state)&(~RXCAN)& sampled_bit;

assign resynchronize = (~idle_state) & (~ifs_state) & (~RXCAN) & sampled_bit;

// phase_seg starts as soon as there is a dominant edge, synchronization window is skipped.

// synchronization or hard synchronization

assign phase_seg = (resynchronize_q | hard_synchronize) | sync_seg));

Figure 4.9: Synchronisation on dominant edges(Code listing).

or resynchronisation, which will synchronise the receiving node to the transmitting

node. The BTL also provides programmable phase and propagation segments. As

discussed further in chapter 6, these segments provide compensation for the propaga-

tion delay and any phase shifts occurring in the physically distributed network. The

CAN bus is sampled once a bit time, at the so-called sample point which lies at the

intersection of the two programmable phase segments. The calculation of bit timing

parameters is vital for the working of the CAN network. An example calculating

these parameters is given below.

Example of Bit Time Calculation

Calculation of CAN Bit time parameters for the following system constraints:

Bit rate = 1 M bit per second and Bus length = 20 m

Bus propagation delay = 5× 10−9m/s.

Physical Interface (PCA82C250)[Phi96b] transmitter plus receiver propagation delay

= 150ns.

MCU oscillator frequency = 48 MHz (Clock Frequency of FX2 on the KNJN board).

68

1. Total Physical Delay = 2× (propagationdelay + transceiverdelay)

2× (20× 5 + 150)× 10−9 = 500 ns.

2. Assuming baud rate pre-scalar as 2.

The CAN clock = 48
2
= 24Mhz.

Time Quanta = 1
24×10−6 = 41.66ns

No of time Quanta in one CAN bit time = Round up(CAN Transmission Rate

/Time Quanta).

= Round up(1000
41.66

) = 24.

3. Time Quanta assigned to propagation delay = 500 / 41.66 = 12 TQ.

1 TQ is assigned to synchronisation window.

No of remaining TQ = 24-(12+1) = 11.

4. Since the sampling point is the intersection of the phase segment 1 and phase

segment 2.

A good sample point is 66% of the CAN Bit time.

For a total of 24 TQ, 66% is 16, hence

Phase Segment 1 = (16-13)=3 TQ.

Phase Segment 2 = 24-16 = 8 TQ.

4.2 CAN Test Bench hardware

The functionality of the CAN IP core described in the previous sections closely re-

sembles the most common industrial CAN controllers currently available on the open

market, such as the MCP2515 and the SJA1000 [SJA00, Mic03]. There have pre-

viously been CAN IP core implementations, principally for research or educational

69

Figure 4.10: CAN IP core pin diagram

purposes such as [OAF05]. This implementation had a simple parallel interface to the

host controller. Figure 4.10 shows the pin diagram of the CAN IP core. Multiplexed

address, data and control signals are connected to the host controller. The RXCAN

and TXCAN pins connect the ’rx’ and ’tx’ pins of the CAN transceiver. The CAN

status register is connected to the LED pins; this helps to demonstrate the CAN

internal status.

As discussed earlier, the RTL design of the CAN IP core is written in Verilog, and

as such the design is platform independent. This puts no specific requirements on the

use of a particular hardware for implementation. In this work, Xilinx FPGAs were

principally employed for implementation purposes [Xil08]. This choice of platform

was somewhat arbitrary, but Xilinx has a high device availability and widespread

acceptance, coupled with good tool support from both the manufacturer and many

third parties. This section describes the hardware and software used to create a

test bench based around the developed CAN IP core. The CAN IP core requires 15

70

Figure 4.11: Knjn board block diagram

pins to connect the data/address and control signals to the host controller, and some

additional pins are used to connect to either the CAN transceiver or to the indicator

LEDs as shown in Figure 4.10. A customised solution will fit the requirements of a

relatively large pin count, ideally an off-the-shelf board which features an integrated

micro-controller and FPGA with appropriately interconnected I/O. If such a device

were available, this would solve two issues i.e. there would be no need for external

wiring; and both the devices could be driven by a single clock source to remove

synchronisation issues. Such a customised solution was available in the form of Knjn

development boards [fpg09]. The detail of this board and other hardware used is

given in Figure 4.11 and is explained below.

1. The board consists of an integrated Xilinx Xc3s500e FPGA and an LPC2138

ARM7 [ARM05] micro controller. The Xc3s500e is a 0.5 million gate FPGA

chip with enough gate count to store the CAN bit map. Table A.1 states the

device utilisation. The CAN IP bit map requires only 20% of the device total

71

Figure 4.12: An overview of the CAN test bench

resources.

2. The Knjn board is clocked by the usb-2 controller [fpg09] and the source can be

configured to work at 12, 24 and 48 MHz. An external oscillator with a DIL-8

package can also be soldered to the board.

3. The board has an openocd usb interface for programming and debugging. A

JTAG interface is also provided, which is essential for running of the Chipscope

[Xil07].

4. The board also has an Ethernet, SPI and I2C interface for faster communica-

tions.

72

5. The USB interface can be used to power the board, or alternatively a 3.3 or 5

volt external power supply can be employed.

6. An ARM7 LPC2138 micro controller is integrated on the board. The ARM

is programmed using the JTAG port over usb, employing an openocd server

communicating via a telnet session.

7. A 24 MHz external oscillator clocks the ARM processor. 19 of the port 0 pins

are internally connected to the FPGA but need to be configured using the pin

assignment tool of the FPGA. These pins are also available to be connected to

external signals (e.g. transcievers) if required.

The software tools used for the building of the CAN test bench is described, briefly,

below:

1. Xilinx 9.1 toolset generated the net list and routed map, to be downloaded to

the Xilinx FPGA.

2. The ARM GNU C toolchain was used to compile and generate the executable

for the LPC2138 microcontroller.

3. The Eclipse IDE was used to debug the ARM microcontroller software using

the JTAG over USB.

4. The KEIL vision IDE was used to compile software to be downloaded to any

accompanying development boards as required for the experiments, for example

an MCB2100 [KEI06] and Olimex LPC2129 ARM7-based boards.

The basic structure of the CAN test bench is given in Figure 4.12. FPGA is pro-

grammed with the CAN bit map. A JTAG interface is used for downloading and

73

debugging the design. An ARM LPC238 processor is used as a host controller for the

CAN IP core. The Phillips PCA82c250 high speed CAN transceiver [EE96] was used

in this design for handling the physical transmission and reception on the physical

CAN bus. The transceivers are inter-connected using a standard twisted pair cable

with a standard termination of 120 Ω.

4.3 Design Flow and Analysis

In this section the design flow of implementing CAN IP core is discussed, and analysis

of resources and timing is presented. A typical IP core design flow is shown in Figure

4.13, a brief description of each section is given below.

Design Start

The specifications are translated into HDL coding; for the CAN IP core this was a

translation from the CAN standard document [11893, Bos91] and coding it in Verilog.

The basic function block and their implementation in Verilog have been presented in

the section 4.2. Next an overview on the feasibility of Verilog HDL for the design of

CAN IP core is presented:

1. All the functional blocks had been implemented and are realizable in Verilog;

the Verilog coding provides flexibility and simpler design technique. Each of

the functional units is defined as a separate Verilog module, this also provide

an easy interface for the inter-module communications.

2. The register and wire sizes are parametrizable, hence a single definition of a

block of code can be re-used for several implementations; this was helpful when

74

Design start

RTL Design

Design Complete

DFT

Timing Analysis

Gate-Level

simulation

Synthesis

Floor plan

Placement Cells

Clock tree

synthesis

Routing

Layout

DRC

LVS

Place & Route

Physical

Verification

Figure 4.13: An IP core design flow

designing configuration registers for the CAN IP core. The configuration register

size varies from a single bit to 8 bits; by using parameters no separate definition

was required for each instance of these registers.

3. State machines are used extensively when implementing transmit and receive

logic inside the CAN IP core. Verilog provides simple ’always’ and ’case’ blocks

to implement the state machines.

4. In VHDL, use of design libraries are extensive, this provides a large collection

75

of custom built code for implementation of architecture, packages and configu-

rations. In Verilog, there is no concept of libraries but synthesizable modules

are made available by the FPGA vendor’s for designs such as ROM, RAM’s,

DSP and mathematical functions. In the CAN IP core design the Xilinx RAM

has been used to implement the message fifo.

The details of few of the issues encountered during the writing of the HDL code and

set up of the test bench are listed in Appendix A.2.

Synthesis

Synthesis translates the HDL code into Register Transfer Level (RTL) model. The

RTL model produces a net list using the synthesis tool. This model demonstrates

transfer of data between the registers and combinational logic, and also specifies the

components used such as memory and macro cells. In the synthesis step the design

goals and strategies is also specified; design can be set to optimize on the basis of

area, power or timing. When a design is set to optimize on the basis of a certain

parameter the FPGA synthesis tool will try to put in a higher effort to achieve the

design constraints. Since the CAN IP core design does not have any specific area

or power requirement, the synthesis was optimized for better timing. The design

is further optimized for higher speed using effective Floor planning shown in the

respective section.

The statistics for the device utilization with a balanced and time optimized ap-

proach is given in Table A.1 and A.2. From the tables, this is evident that there is

not a significant difference in resource utilization; a maximum of 1% of gate count

has increased. However, the advantage of using the timing optimization is that the

76

timing constraints given in next section are easily met.

User Defined Constraints

The user constraint file for the CAN IP core design is given in Appendix A.5, there

were three major constraints for this design.

1. The knjn board has I/O pins which are shared between the LPC2138 and the

FPGA. The interface signals have to be connected on these shared pins to avoid

any external wiring. Pin P0.2 to P0.19 and P0.23 of the ARM processor is

connected to the FPGA. The CAN IP core has 8 bit address/data and 4 control

signals to connect with the ARM processor. Therefore 12 of these signals have

been connected together on the shared pins given in the user constraint file.

2. The next constraint was to connect all the input signals to the input-only pins

on the FPGA for optimal performance and better isolation. The ’RXCAN’

and ’read’ signals are connected to the input-only pins, since there were no

additional input-only pins available on the inter-connected pins, hence input

signals such as write enable and chip select are connected to the bi-directional

I/O pins. The pin assignment tool then specifies these pins as connected to the

input signals.

3. The power supplied to the ARM I/O pins is 3.3 V ± 10 % [Phi04], to keep

it compatible with the FPGA pins, 3.3 LVCMOS I/O standard is used for the

CAN IP interface signals.

4. The clock signal to the FPGA is provided by the FX2 usb-clock; this clock can

be configured to run at 12, 24 and 48 MHz. For this design 48 MHz clock speed

77

is used and the timing constraints has been selected in accordance with this

clock. The reason to select 48 MHz is faster operation and realizable divisor

values (baud rate pre-scalar) for CAN bit rates greater than 1 Mbps. To bind

the FX2 clock to produce an exact 48 MHz, a 20.833 ns clock period and a

50% duty cycle is used as a timing constraint. The maximum clock-to-setup

path1 delay observed is 17.263 ns, this allows a maximum clock frequency of

57.927 MHz. The value used for this design is 48 MHz which is inside the

maximum limit. Alternate options such as multiple clock sources and clock

area partitioning are available to achieve higher frequency operations for this

design. The use of 48 MHz clock achieves all the required constraints, hence an

alternate clocking mechanism would only increase the complexity of the design.

The complete static timing analysis is attached in Appendix A.4.

Floor Planning and Physical synthesis

Floor planning is the process of placing the similar structures close together to increase

on the performance and reducing the area. If the structures lie close together then

the path delays decrease and timing constraints are relaxed. The area of the FPGA

used in this design Xc3s500E is divided into the four equally sliced blocks. With the

auto routing option the design is equally divided into the four clocks named as X0Y0,

X0Y1, X1Y0 and X1Y1. The DCM unit which provides the clocking to the design is

placed in the X1Y1 unit, since by default the design is scattered around all of those

4 blocks, hence there were large clock skews and path delays between sequential and

1A clock-to-setup path is a path starting at the Q output of a flip-flop or latch and ending at an
input to another flip-flop, latch, or RAM, where that pin has a setup requirement before a clocking
signal [xil].

78

combinational units. Floor planning is used to create 4 new physical (P) blocks for

synthesis; each P block holds one of the 4 main functional units of the CAN IP core.

The main units as discussed previously are the BSP, BTL , the configuration register

block and the clock module. The size of each P block was estimated using the device

utilization statistics which is generated by the Xilinx synthesis tool. These new P

Blocks are then placed near the DCM unit and to each other, there was reduction in

the path delays and the clock delays. With auto routing the setup to clock delay was

17.263 ns and maximum possible clock speed is 57.927 MHz, with manual routing

as discussed above the minimum setup to clock delay is reduced to 16.686 ns and a

maximum possible clock speed increased to 59.284 MHz.

After floor planning and physical synthesis, a new estimate of the resource util-

isation was carried out. The overall slice usage reduced from 1062 to 901, only the

use of 4 input LUT’s are increased by 1%. The details in the Table A.3 indicate this

improvement in resource utilisation.

Bit Generation

The Bit generation is a process to generate the final bit stream file to be downloaded

to the FPGA. The Bit generation takes a fully routed NCD (native circuit definition)

file to generate a bit map. The configuration used in the CAN IP core design was

to generate a bit file and a PROM file (Xc3s500E has a 4 MB of boot ROM). The

bit file is used to map the FPGA which is a volatile memory, the PROM file resides

in the FPGA ROM, which is copied back after a new power cycle. Chipscope logic

core only works if the Read back and reconfiguration is allowed, this option is also

enabled when generating the bit stream. The bit stream is downloaded to the FPGA

79

using either the IMPACT tool provided by Xilinx or the FPGA conf tool provided

with the Knjn board. The size of the CAN IP bit stream file is 278 KB.

In this section the design flow for the development of CAN IP core was presented;

the statistics given in Appendix A shows the feasibility of the design. All the con-

straints related to Area, I/O block and timing closure have been met; it is also shown

that by using the different design tools the IP core has been optimized for performance

with minimal compromise on the size of the design.

4.4 A Simple Two Node Test Network

Once the CAN implementation on the RTL was completed, it was required to run a

simple communication test using the CAN IP core. A test bench with two nodes based

on the CAN IP core was configured, to verify normal CAN message transmission

and reception. Although comprehensive testing and conformance of the CAN IP

core is discussed in the next chapter, a straightforward test demonstrates the basic

functioning of the CAN IP core. Before a description of the transmission test and its

procedure is given, a brief description of Chipscope is presented:

Chipscope

Chipscope [Xil07] is an integrated logic analyser, which can be configured inside an

FPGA as an additional core to the main implementation. This core is connected to

the Chipscope user interface running on a PC via a JTAG interface. Internal signals

can be connected from the implementation module to a Chipscope core, similar to

connecting signals between two HDL modules. A Chipscope core is added after the

synthesis step and only the synthesized components or nets are available for logic

80

analysis.

A Chipscope snapshot presents the status of the signals over a sample length.

These samples can be taken randomly or with a trigger condition. Different markers

are used to signify status of different signals at a specific point in time. Marker T,

always shows the trigger instance, while marker X and O are used to calculate the

difference between any two events on the snapshot.

4.4.1 Message Transmission

Before a message is transmitted, the CAN IP core needs to be properly configured with

appropriate bit timing and message filtering information. Appropriate configuration

information needs to be written by the host controller into the corresponding CAN

registers. For this purpose, an 8 byte message with random data and identifier values

was selected with message filtering disabled, i.e. messages with any possible identifiers

will be accepted and placed in the receive FIFO on the receiving node. Bit timing

information for transmission speed of 1 M bps was written into the Bit timing register.

Once the message has been successfully transferred to the transmit buffer of the

transmit CAN controller, the transmit request bit of the CAN command register is

set to initiate message transmission on the bus. A code listing written for the host

controller to configure the CAN IP core is given in function CAN Init() in Appendix

A.1.

Figure 4.14 shows a Chipscope [Xil07] snapshot illustrating the successful trans-

mission of the message. When a message is transferred to the transmit buffer from

the host controller, then a transmit request is set to instruct the controller to attempt

transmission. The CAN controller will arbitrate for the bus access, if the bus is free.

81

Figure 4.14: CAN message transmission

Figure 4.15: CAN message reception

Since this is a two-node network, with one node being in receiver mode, the con-

troller does not have to arbitrate for the CAN bus access. The RXCAN and TXCAN

signals specify the message being transmitted and simultaneously received to verify

the correctness of the message. The message transmit success indicates a successful

transmission of the message.

4.4.2 Message Reception

Similar to a transmitter, the node which is to receive the message must be properly

configured to receive the message and notify the host controller of the reception of

the message. The host controller may then run an appropriate routine to retrieve the

message from the receive buffer FIFO. In this case, the host controller configures the

CAN controller receiver interrupt to be enabled, such that after a successful reception

82

of a message the host controller will be interrupted. Once all messages are read, the

host controller then sets the release receive buffer signal. This will initialise the receive

FIFO for further reception of CAN messages.

Figure 4.15 shows the successful reception of the message. The RXCAN signal is

recessive in idle mode. A dominant bit indicates the start of a CAN frame. The BTL

then synchronises the controller to the bit stream and all the frame fields are received.

Rx Success signal indicates the successful reception of the message. Once the message

identifier goes through the filtering process, the message is stored in the buffer. The

Receive Interrupt indicates the host controller of a received message, which is then

read and processed.

4.5 Conclusion

This chapter has discussed the evolution of the basic CAN IP core and a flexible

test bench to allow experimentation. The CAN IP core was built in the following

steps: i) firstly the specification understanding from CAN documents, ii) a HDL code

translation of the CAN specifications, iii) synthesis and implementation on a FPGA

chip and iv) setting up of a basic test bench to experiment.

A detailed discussion of the different functional blocks of the CAN IP core, and

issues related to its implementation, was presented. Although the results of a simple

initial functional test of the IP core were described, its functional verification to the

CAN specifications is clearly required [Bos91]. This is the topic of the next chapter,

and a new strategy for CAN conformance testing where FPGA devices are employed

will be presented.

Chapter 5

CAN Conformance Testing

Conformance testing is an integral part of any protocol development. Conformance

testing verifies the behaviour and capabilities of a protocol implementation against

the requirements and ideal behaviours as set out in the relevant standard. Tradi-

tionally, the implementation of protocol conformance testers has somewhat been a

proprietary activity, employing dedicated hardware and analysis software especially

written for the protocol and device under test. This is clearly a practical approach

when testing and verifying device conformance prior to high-volume IC manufacture.

However, recent years have seen resurgence and increased interest in the use of pro-

tocol implementations achieved by the use of programmable hardware devices such

as FPGAs.

By their very nature, such soft core implementations are often needed in one-off

developments; these implementations may even add additional or custom functional-

ity to existing protocols. In these circumstances, cost and availability reasons often

dictate that it is not practical for developers to use traditional conformance testing

equipment.

When a protocol is implemented in an IP core, it is independent of any specific

technology. This is still necessary to test its functionality against the relevant stan-

dards. The IP core is implemented using an HDL which in many aspects resembles a

traditional programming language. For this reason, many of the features of traditional

approaches to conformance testing become redundant.

83

84

The motivation of this work was to find a flexible and cheaper technique as a

replacement to the traditional ones. Many complex designs, some consisting of mul-

tiprocessor clusters, DSPs and communication protocols, have been implemented as

IP core on programmable devices. There has been successful implementation of both

real-time and non-real time communication protocols in IP core. Examples of non-

real time protocols are Ethernet IP core [Raj06]. Embedded and real-time protocols

such as Controller Area Network Enhanced Layer (CANELy) [PRA06] and Flex Ray

[Gmb07] had also been successfully implemented.

5.1 Conformance Testing of Protocols Implemented

on IP Cores

The test and verification of a IP core as either an individual entity - or as a system

level entity - in a SoC design is clearly of paramount importance in complex elec-

tronic systems. However, protocol conformance testing requires that both the logic

and functionality of a candidate design are verified. Chapter 2 has discussed some

general approaches to conduct test and verification of CAN protocol implementations

on standard (silicon-based). ISO has not only developed CAN conformance testing

standard [ISOa] but also provides documentation for setting up a test architecture

[ISOb]. The next few sections will look into the recommendations of setting up a test

plan and whether this can be employed to conduct CAN conformance testing.

85

5.1.1 Conformance Testing Standards

A standard conformance test suite is typically employed to indicate anomalies in a

given protocol implementation. The test suite execution procedure to an Implemen-

tation Under Test (IUT) is not unique and varies depending on the suite in question.

For example, IEEE 1802.3 [IEE94] provides documents outlining the conformance

testing standards of a well know protocol suite IEEE 802 [IEE] for LAN (Local Area

Network) communication. However, these documents do not specify a unique ap-

proach to conduct these tests; it is up to the tester to adopt any such method of

convenience to perform these conformance tests under a guideline.

ISO 9646-1 [ISOb] is one such guideline, which states a layered approach to test a

protocol. The ISO 9646-1 Test Plan (TP) is flexible to the layer under test, i.e. the

same TP can be used to validate different layers. A same TP for a physical- layer

testing (such as transceiver functionality or interface standards) can also be adopted

to verify the LLC/MAC functionality of a communication protocol. The adaptability

of the TP depends upon the use of both appropriate hardware and software. The

TP outlined in this standard is shown in Figure 5.1, and indicates that the tester

is divided into two testing blocks, a supervisor and an Implementation under Test

(IUT).

1. Implementation under test(IUT): IUT module which is to be verified, this im-

plementation can be in form of a IP core, a software module or any hardware

component.

2. The first component is the Lower Tester (LT) which provides the test pattern

generation and analysis.

86

Figure 5.1: ISO 9646-1 test plan architecture.

3. The Upper Tester (UT), has the software to configure and control the IUT.

The Upper Tester (UT) is typically a host processor or a programmable device of

some kind, also provides coordination to run the tests between the LT and the IUT

[10B01]. The UT receives stimulus from the LT, and generates messages to be passed

on to the IUT. The IUT then processes these messages, and both the UT and LT

components monitor its behaviour for consistency with the protocol under test. The

test supervisor verifies the results; if the result is satisfactory, the test is considered

passed and proceeds to the following conformance test.

It should be noted that the CAN testing procedures include coverage of common

error conditions, valid frame and bit timing tests. Most tests are critical, and the

latter category bit timing contains a number of tests that can be difficult to localise,

and suitable means are required to capture and display multiple logic signals an

appropriate time-scale. This typically requires the use of dedicated hardware and

87

logic analysers [LKK98].

5.1.2 Proposed Environment

As discussed earlier, the use of HDLs for soft-core implementations requires veri-

fication; generally speaking, pure simulation methods, and also formal verification

techniques. If these verification techniques applied solely to the HDL code, it cannot

provide a guarantee that the HDL code has been correctly translated and imple-

mented on the target hardware (FPGAs), and is working as desired. The design

inside an FPGA is tightly integrated, and most of the signals are inter-wired. These

signals are unavailable on the external ports for observation. The two possibilities of

testing IUT is explained:

Simulation vs Logic Analysis

Most of the soft-core implementations are tested in simulation [Men07], tools such as

Modelsim, Cadence Incisive [Men07, Cad04] provide strong simulation capabilities.

Running a simulation, is easy since it does not require synthesis and implementation

on a real device (FPGA). This saves time and most of the code are debugged during

the design process. However to provide stimulus to the implementation under test,

HDL test bench are written; therefore, no actual hardware is created.

Checking the CAN IP core designs in simulation has its own limitations. What if

the HDL test bench is written incorrectly, also consider communication protocols such

as running in an industrial environment, the limitation of the simulation to model

noise and errors is a difficult task. Hence real-time testing needs to be done for a

design is considered to be fully verified for its functionality. The conventional logic

88

Figure 5.2: Chipscope architecture.

analysers [TLA, Agi08] can analyse the signals in real-time. These logic analysers

have their own limitations as discussed in the last section of this chapter.

FPGA manufacturers have designed on-chip debug tools for this purpose. These

tools provide full internal visibility using integrated logic analysers (ILAs) such as

Signal Tap [Alt] and Chipscope pro [Xil07]. These tools provide small and efficient

cores to debug not only I/O but also importantly - internal signals can be captured.

Such tools provide real time system debug support for example, by using a JTAG port.

The Chipscope pro from Xilinx is one such tool which provides on-chip debugging

facility.

Figure 5.2 shows how a design under test can be attached with Chipscope cores.

The cores can either be initialised in the HDL source code manually, or by using

core insertion tools provided by the package. These cores run at the system clock or

a derived clock such as a DCM[XAP03]. The designer can assign different cores to

89

the design (described below). The three Chipscope cores for conformance testing are

listed below:

1. ICON is the controller core and needs to be generated for the Chipscope to

work. It provides an interface between the external ports (i.e. JTAG) and the

internal cores (ILA, VIO).

2. ILA is the integrated logic analyser core; all input and output signals requiring

observation are connected to it.

3. VIO is the Virtual Input Output, which provides Virtual I/Os to the HDL design

and can be initiated by the user at run time. These I/Os can be synchronous

or asynchronous to the system clock.

The remainder of this chapter will demonstrate the use of such an environment to

test a soft core implementation of a CAN controller.

5.2 Test Bed

Real-time testing of a CAN implementation is quite a complicated procedure, and

in this case for practical reasons no specialised hardware and software was available

to generate the required testing patterns and monitor the behaviour of the CAN IP

core. For this reason, only low-cost off the shelf components were used.

In addition to these standard hardware parts, the Chipscope analysis tool [Xil07]

was used to visualise and capture the behaviour of the soft core, allowing verification

of the testing results. Chipscope is inserted as a separate core onto the device to be

monitored, allowing multiple signal channels to be captured via a JTAG interface.

90

Test Case

Selected

Test

Setup

Test

Setup

Test Case Compiled

Test Case transmitted

Unit Under Test

Supervisor(PC)

Trigger Condition

Setup

Logic Analyzer

Test Starts

TX
 RX
TX
RX

Physical Layer

Lower Tester

N
 N

Y
 Y

ILA Core

Results

Processed

Trigger

Condition

Met

Result

Logged

Test

End

CAN IP

CORE

FPGA

Host Processor
 Host Processor

FPGA

CAN IP

CORE

Test
 MSG

Core
 Test
 MSG

Core

MSG
 to

IP Core

MSG
 to

IP Core

Y

Upper Tester

VIO Core

Fault Injector

Transceiver
 Transceiver

CAN_L

CAN_H

Figure 5.3: Conformance test bed.

Up to 16 internal signal ports can be analysed in a single core, and each port can

accommodate up to 256 signals. Multiple cores can be attached to increase the

number of signals in a FPGA [OMS05]. In comparison to other resources for capturing

multiple FPGA signals, Chipscope retains the key features required but at a fraction

of the cost.

In the previous section, the different components of the ISO TP were explained.

The test bench for the conformance testing has been designed according to the ISO

91

9646-1 TP. Figure 5.3 presents the working of the test bench, which is further ex-

plained in the following lines.

Supervisor

The PC has been used as a supervisor to coordinate the test suite. Test programme’s

are compiled and downloaded using the PC to the LT and UT. Also PC runs the

Chipscope user interface and trigger conditions are setup to monitor the success of

the test. A JTAG interface connects the Chipscope to the ICON core, the integrated

logic analyser core resides in both the LT and IUT FPGA.

Lower Tester

The LT is used to run the tests and coordinate with the supervisor to generate specific

test patterns on the physical layer. In this project the LT is made up from the Knjn

board [fpg09] with a host processor and an FPGA. The FPGA hosts the CAN IP

core. This CAN IP core is modified if required to generate test patterns. In many

of the test cases, this is required to generate errors, modify bit timings (varying

segments or sample points) e.t.c. These changes are done to the standard CAN IP

and downloaded to the LT FPGA chip. When the tests run this helps to generate

the indifferent condition on the CAN bus; the IUT is then observed for the required

behaviour, written in the test specification. VIO core also made part of the LT in

test cases where internal signal generation is required. The LT is also responsible to

inform the supervisor once a test is completed. The ILA core sends the observation

to the PC, to be captured by the Chipscope user interface.

92

Upper Tester

The upper tester is defined as a consumer of the IUT. In this test setup, the UT

and the IUT is part of the same integrated board [fpg09]. The host processor is

used to initialise the CAN IP core for a test; also once the test is conducted the

host controller consumes the message and monitors for any specific conditions on the

internal registers of the CAN IP. This helps to log the output and helps to verify the

success of the test in addition to the Chipscope observation.

Implementation Under Test

The IUT is the CAN IP which is developed and explained in Chapter 4. The test plan

is designed to help verify the conformance of this IP core. In some cases a test core

and a Chipscope ILA core is also connected to the CAN IP. This is required when

simultaneous observations are required from both the LT and the IUT. Depending

upon the type of tests IUT is either configured as a transmitter or receiver of the

message generated by the test suite.

Fault Injector Node

The Fault injector is a COTS ARM board [Phi04], with standard CAN interface,

connected to the CAN bus. In this test bench design the board serves two purposes:

it helps to inject faults at specified time for test cases related to error detection and

management, and also consumes messages to further verify the successful working of

the CAN IP core to the standards.

The details of the test bench can be referred back to the basic test facility which

was described in Chapter 4. Only a brief account of the hardware and software

93

components is given below.

5.2.1 Hardware

1. Two Integrated boards with FPGA’s (mapped with CAN IP core) and an ARM

7 working as a host controller [fpg09]. These boards works as LT and IUT.

2. A PC with a parallel port to interface with the FPGA for downloading the bit

stream and communicating with the Chipscope cores on the chip. A JTAG to

parallel cable is required for this purpose [Dig05].

3. An ARM 7 Micro controller boards [Phi04] is connected which works as a fault

injector as explained in the previous section.

5.2.2 Software

1. Xilinx ISE [Xil08] for soft-core programming, synthesis, routing and program-

ming the FPGA. The ISE is a complete IDE for FPGA development and con-

tains some additional features like power analysis, optimal routing and timing

analysis to name a few.

2. Chipscope ILA is used as a analysis tools with VIO core to generate and control

different bit patterns. The bit pattern can be synchronous or asynchronous.

3. The Keil uVision 3 IDE [KEI08] has a open C compiler for ARM. KEIL was

chosen for programming and debugging the Micro controller boards.

94

5.2.3 Use of Virtual I/O

The Virtual Input/output (VIO) core can be used to analyse and drive internal FPGA

signals in real-time [Xil07]. The VIO cores have both asynchronous/synchronous

signals which are used as both input and output to the system. In the proposed

testing method, the synchronous outputs are used either as a sole source of test

pattern generator or used in conjunction with HDL modules added with the CAN

functionality in the IP core. VIO synchronous signals can output a static 1,0 or a

pulse train of successive values [TDT+06]. A pulse train is a 16-clock cycle sequence

(logic 1 or 0) driven out of the core on successive clock cycles. Also, different logical

trigger conditions can be setup to analyse signals. For example, a trigger can be

setup to analyse when an error frame is generated or an ILA counter is set to capture

multiple instances of stuff bits [Xil07].

When using pattern generators, test vectors are first stored, and then sent only

on the CAN bus when required, thus putting the IUT in different states and allowing

its behaviour and responses to be analysed. In this test bed, FPGA based pattern

generation is used, which is economical as it adds no extra price to the test setup.

The test pattern is generated either by a test and/or a VIO core; these cores work

in conjunction with the CAN IP core shown in Figure 5.3. This helps to accurately

produce special conditions; for example, in test case 1 (to be reported in the next

section) it was needed to delay a sample point by two time quanta on a recessive to

dominant edge [ISOa]. This was achieved using VIO core.

This test pattern was easily generated by modifying the delay function in the BTL

module of the CAN IP core. With the help of VIO core, a five bit synchronous input

delay add is is used to generate a time quanta delay to the sample point. An example

Verilog code is given to illustrate:

always @ (posedge clock or posedge reset)

95

Data Link Layer

LLC

Acceptance Filtering

Overload Notification

MAC

Data encapsulation/
 de capsulation

Frame coding (stuff/de-stuff)

Medium access management

Error detection

Error signalling

Acknowledgement

serialization/de-serialization

Physical Layer

PLS

Bit encoding/decoding

Bit timing

Synchronization

PMA

Driver/receiver characteristics

MDI

Connector

ISO 16845

Test Coverage

Recovery Management

Figure 5.4: ISO 16845 Test Coverage [ISOa]

begin

if (reset)

delay <= 4’h0;

else if (Resynchronisation & Phase_Segment1 &

(~Transmitting | Transmitting & (Next_Bit_to_Tx | (CAN_Tx & (~CAN_Rx)))))

delay <= (Time_Quanta_Count > {3’h0, Set_Jump})? ({2’h0, Set_Jump} + 1’b1) :

(Time_Quant_Count + 1’b1);

/* Extra Code Added to set a delay using VIO*/

else if (delay_add[0] & Transmitting & Next_Bit_to_Tx & (~CAN_Tx))

delay <= delay_add;

else if (sync_window | start_phase_seg1)

delay <=# 4’h0;

end

96

5.3 ISO 16845: CAN Conformance Standard

The ISO testing standard provides a complete test suite for the CAN devices. The

ISO 16845 test specifications cover the lower part of the data link and the upper

part of the physical layer as highlighted in Figure 5.4. The interface to these layers

is provided by the CAN configuration registers on one side i.e. data link layer, and

by the Tx and Rx (from the CAN transceiver) on the other side, i.e. the physical

layer. The tests are defined into different categories based on the frame types and

functionality of CAN protocol.

5.3.1 Frame Types

CAN communication is based on three types of frames, therefore the tests are designed

based on these three types of frames:

1. Received Frame types: These tests are for IUT behaving as a receiver of

either data or remote frames.

2. Transmitted Frame types: These tests are for IUT behaving as a transmitter

of either data or remote frames.

3. Bi-Directional Frame types: These tests include testing the frames both

received and transmitted by the IUT.

5.3.2 Test Classes

Each of the tests types is then divided into 7 test classes. These classes are distin-

guished based on the functional components of the CAN implementation.

97

1. Valid Frame format Class: This class includes transmitting/receiving error

free frames.

2. Error Detection Class: This class includes tests on IUT for correct error

detection and responses.

3. Active Error Management Class: This class of tests verify the correct

management of active error frames.

4. Overload Frame Management Class: This class of tests verify the correct-

ness of IUT to operate error free and corrupted overload frames.

5. Passive Error Management and Bus off Class: This class of tests verify

the correct management of passive error frames and bus off state.

6. Error Counters Management Class: This class of tests verify the correct

management of TEC and REC by the IUT.

7. Bit Timing Class: This class of tests verify the IUT for correct management

of bit timing and detection of dominant edges.

The next section will present a series of test cases, one each from the test classes.

5.4 Test Cases

The proposed test facility was employed to test the CAN conformance of the custom

created CAN soft core. As the total number of test cases to consider in any single

CAN conformance test plan is several, one test case from each class is listed here.

Details of several such tests are available in the form of a technical report [SS09].

98

5.4.1 Test Set up

A test case starts - and ends - in a stable testing state of the IUT [SG00]. The testing

is divided into three states.

1. Set up state: it consists of the preamble to take the IUT in to testing mode, for

example setting IUT as a transmitter or receiver of a CAN message. Also, in

some test cases other preconditions are required to be setup for the main test

body.

2. Test State: The main test body is performed after the set up state, this performs

the principal test.

3. Verification State: Test state is followed by a checking or verification step, and

finally a post amble (if one is required) culminates the test, leaving the IUT

into a stable state.

Also, most of the tests require the IUT to be in default state, this state is defined as:

1. The TEC and REC must be 0.

2. No pending transmission is present.

3. IUT must be in idle state.

This process used in the test cases is to be described in the next sections. The first

two test cases describe the use of the facility in the verification of CAN bit-timing

and overloading test classes, and are detailed in section 5.4.2 and 5.4.3.

99

Figure 5.5: Chipscope snapshot for bit timing class.

5.4.2 Non-Synchronisation after a Dominant Bit Transmis-

sion

This test is part of Bit timing class, item number 8.7.7 [ISOa].

Purpose of Test: The test is to verify that an IUT transmitting a dominant bit

does not perform any resynchronisation as a result of recessive to dominant edge with

a positive phase error.

Set up State: The IUT is in the default state.

Test State: The IUT transmits a frame, the LT delay’s each recessive to domi-

nant bit by two time quanta. The VIO core provides the stimulus to generate a 2

time quanta extension of the phase segment 1, hence the sample point is delayed.

In normal circumstances, the VIO core is sourced by system clock, in this case the

system clock is 48 MHz. Since the transmission rate is 250 Kbps, this is too slow

in comparison to the system clock. This will not have a synchronised impact as the

delay add trigger will finish well before the CAN bit time. Therefore, a DCM module

[XAP03] to generate a clock which is 16 times slower than the system clock is used.

100

Any synchronous signal generated by VIO will now last for 1 CAN bit time.

Verification State: The IUT must continue transmitting without any resynchroni-

sation.

This test was successful with desired results as stated in the purpose of the test; the

observation on the IUT node from the Chipscope - shown in Figure 5.5 is as follows:

1. The default values for phase segment 1 and phase segment 2 are 10 and 5 time

quanta, this is a precondition when the ”Delay” (VIO) signal is zero.

2. The ’delay add’ signal on the VIO console is the synchronous input and when a

user applies the input pulse it generates a delay as shown by the value of ’Delay’

bus signal at Marker T (Delay=2 was set as a Trigger condition).

3. The observed value of Time Quanta Count is 11 (Count starts from 0) at Marker

O, this is 2 more than the normal phase segment 1 value.

4. By adding this 2 time quanta delay before the dominant to recessive edge means

this edge will have a positive phase error of 2 time quanta.

5. The Sampled bit signal represents the CAN Rx signal at the sample point. This

value for recessive to dominant edge happened on the Sample Point after Marker

O.

6. Resynchronisation signal represents if any resynchronisation happens in case

of an +ive or -ive phase error on an edge. As this signal remained low, thus

proving that no resynchronisation happened.

All these steps verify the success of the test, this test case emphasis the usefulness

of VIO core as a complex condition of introducing phase error to verify the behaviour

101

of CAN Bit timing has been easily achieved without the use of any external input.

5.4.3 TEC Non-Increment on 13 bit Long Overload Flag

This test case is a part of Error Counter Management class, item number 8.6.13

[ISOa].

Purpose of test: This test is to verify that an IUT acting as a transmitter when

receives a 13 bit long overload flag should not change the value of its transmit error

counter (TEC).

Set up Sate : The test is setup using two instances of CAN IP core, The IUT is set

up as a transmitter and to send a message. The system clock for this test case is 12

MHz.

Test State: LT request to IUT, to wait for an overload frame before transmitting

the next frame. LT then generates 13 bit overload frame. VIO synchronous input is

used to generate an Overload request.

Verification State: IUT after receiving 13 bits of overload frame should not incre-

ment the Transmit Error Counter TEC.

All the test states are visible by the snapshots at both LT Figure 5.6 and the IUT,

Figure 5.7. In Figure 5.6, a VIO console with a synchronous input overload request

can be observed, this signal request an overload frame (can only be requested by a

receiver) between two data frames sent by a transmitter.

1. The signal Overload Request is also shown on the ILA screen shot, once the data

frame is received successfully, an overload frame is sent. These are showing by

a high Overload Frame signal.

2. The overload frame, lasts for 13 bit times as can be counted by the number of

102

Figure 5.6: Chipscope snapshot at LT for error counter management.

Figure 5.7: Chipscope snapshot at IUT for error counter management.

sample points between Marker X (start of Overload Flag) and Marker O (End

of Overload Frame).

The IUT Chipscope snapshot in the test state is showing in Figure 5.7.

1. Before Marker O transmission of a standard data frame is illustrated by different

transmission states denoted by Transmit State xxxx.

2. At Marker O which is the end of Transmit State End of Frame, a high Over-

load Frame signal is seen demonstrating an Overload Frame being transmitted.

103

The CAN Rx remains low between Marker T (Start of Overload Frame) to the

Marker O (End of dominant Overload Flag).

3. The difference between Marker O and X is ’672’, CAN bit time is given by

12Mhz/250Kbps= 48 clock cycles, hence a figure of 672 is showing 14 CAN bit

time.

4. The value of Transmit Error Counter was 6 before the completion of data frame,

and changes to 5 after a successful transmission of a data frame. This is illus-

trated by Transmit State End Of Frame signal.

5. After receiving 13 dominant bits of Overload Frame, the Error Frame signal

remains low and there is no increment to the Transmit Error Counter.

6. This concludes that the test is successful as the IUT has not considered a 13 bit

dominant overload flag as an error. After Marker X i.e., the finish of Overload

frame,a successful transmission is showing by the several Transmit State signals.

The test cases to be described in sections 5.4.4, 5.4.5, demonstrate the use of the

facility in showing conformance to another important aspect of CAN conformance

testing; the behaviour of the protocol in abnormal (error) and overload conditions.

5.4.4 Error Flag Longer than 6 Bits

This test is a part of the Active Error Frame Management class, item number 7.3.1

in ISO 16845.

Purpose of test: The test is to verify that a CAN transmitter will only tolerate

7 dominant bits after sending its own ”error flag”. The case described below is for

104

Figure 5.8: Chipscope snapshot at IUT, active error frame management class.

when the error flag is elongated by 4 dominant bits.

Set up State: The IUT is in default active error state and works as a transmitter,

the LT (Second CAN IP Core is working as a LT and is in receiver state).

Test State: An error is generated during a transmission by the IUT, the fault

injector node is used to inject a bit flip on the CAN bus. The IUT then sends a 6 bit

dominant error flag, LT (working as a receiver) sends an 8 bit error flag.

Verification State: The IUT must not take more than 6 dominant bits as an

error and should not transmit any extra ”error frame”, instead it should retransmit

the corrupted message.

The methodology employed was to modify the LT code to carry out this require-

ment. The LT as a receiver is modified to generate an 11 bit ”error flag”. The

105

Figure 5.9: Chipscope snapshot at LT, active error frame management class.

snapshot of the events on the CAN bus was captured with the help of Chipscope

trigger mechanism shown in Figure 5.8 and Figure 5.9.

1. On the Left of Marker T, the TX State Xxxx high indicates an ongoing trans-

mission. During data transmission, a Bit Error is injected, indicated by the bit

inversion as CAN Tx is recessive while CAN Rx is dominant.

2. The error frame exists between markers T and O indicated by signal Er-

ror Frame, the Error Flag is between Marker T and X. The end of error flag is

indicated by a high Error Flag Tx Over signal. The Error Flag Counter bus is

indicating the count of error flag bits sent.

3. Note that at Marker X the CAN Tx signal has changed to recessive, while the

CAN Rx signal remains dominant for next 4 bits which is due to superimposition

of the ”Active Error Flag” sent by the LT.

4. The error frame is continued till Marker O and the end is shown by a low

Error Frame Signal and a high Error Frame End Signal.

106

5. On the right of Marker O, after three sample points (intermission Field), a new

frame transmission has started indicated by different Tx State xxx.

The observation at the receiver node (shown in Figure 5.9) is as follows:

1. Marker O indicates the start of an Error Frame, the Tx State low indicating

the node is a receiver.

2. The Error Flag Counter is a 4 bit wide bus which counts up to 11 bits i.e. it

is sending 4 extra dominant transmitter node. The dominant bits can also be

verified by the CAN Tx and CAN Rx bits.

3. After the Error Flag Over Signal is set high the CAN Rx and CAN Tx signals

turns to dominant for next seven bits indicating an error frame delimiter.

4. Right of Marker X the Error Frame signal is low, and after three recessive bits

(Intermission Field), a new frame is started to be received (Tx State is low,

CAN Tx is recessive), indicated by different Recieve State xxxx signals).

5.4.5 MAC Overload Generation during Intermission Field

This test is part of the Overload Frame Management class, item no is 8.4.1 [ISOa].

Purpose of Test: This test verifies that an IUT will be able to transmit a data

frame starting with the identifier field and without transmitting SOF, when detecting

a dominant bit on the third bit of the intermission field.

Set up State: The IUT is in a default state and transmitting messages.

Test state: The IUT is set up to transmit two data frames. The LT will request an

overload frame after receipt of the first frame. After the completion, of the overload

107

Figure 5.10: Chipscope snapshot, overload frame management class.

frame, the third bit of the intermission field is set dominant by the fault injector node.

Verification state: The IUT must not consider the the third bit(which is dominant)

of the intermission field as a bit error, and should not send a dominant level SOF. The

dominant bit of the Intermission field is quite taken as the SOF, and IUT completes

the transmission of the second frame.

This test was successful with desired results as stated in the purpose of the test; the

observation on the transmitter node from the Chipscope - shown in Figure 5.10 is as

follows:

1. Left of Marker T The Tx state flag is high indicating ongoing transmission,

Receive State Data and ACK DELIM indicating a successful transmission while

the node is error active.

2. At Marker T, there is an error on the Receive State Intermission field generat-

ing an overload frame. The Overload Flag is six dominant bits and 8 bits of

Overload delimiter this can also be verified by the sample point count.

108

3. After the overload frame an intermission field signal can be seen at the Marker

X.

4. The number of sample points can be counted i.e. 2 between markers X and O,

displaying intermission field as recessive, the third bit of intermission field is a

dominant bit.

5. Just after the Marker Othe Receive State ID [10:0] goes high without any SOF.

The Identifiers first 4 bits are dominant as required by the Test case.

5.4.6 Frame Acceptance after Passive Error Frame Trans-

mission

This test is a part of the Passive Error State and Bus Off class, item number 8.5.2 in

DIS [ISOa].

Purpose of Test: The purpose of this test is to verify that a Passive state IUT

acting as a transmitter accepts to receive a frame after the second bit of intermission.

Set up State: The IUT is put in error passive state.

Test state: The IUT transmits a frame, and an error is introduced by the fault

injector node. The transmitter sends a passive error flag. After the end of the error

flag, the LT transmits a frame.

Verification state: The IUT must acknowledge the frames.

The Figure 5.11 shows the complete setup and running of the test.

1. The Tx State signal is high, on the left-hand side of the snapshot. A bit error is

introduced, and the IUT start to transmit Error Frame Flag. The error frame

109

Figure 5.11: Chipscope snapshot, frame acceptance after passive error frame trans-
mission.

is recessive signal on the first 6 bits showing by CAN Transmit signal, this indi-

cates IUT is in passive error state (Error Passive State). This recessive error flag

is overwritten by the dominant bits indicated by the CAN Receive signal. These

dominant bits are between Error Frame Flag and Error Frame Tx End signal.

Error delimiter is a 7 bit recessive signal shown after the Error Frame Tx End.

2. Between Marker X and O the Rx State Intermission signal is introduced for

two sample points, after the completion of the Error Frame Flag (set to low

indicating completion of error frame).

3. After Marker O the node starts to receive a new frame, which is indicated by

a Tx State recessive signal, and all the Receive State signals indicates different

states of Receive cycle. When the Receive State ACK Delim is set high and

CAN Transmit goes low, this verifies a successful reception.

A successful reception of the message indicates the success of the message.

110

Figure 5.12: Chipscope snapshot for valid frame format test

5.4.7 Identifier and Number of Data Test in Standard For-

mat (Both Transmission and Reception)

This test is part of the Valid Frame class, item number 7.1.1 and 8.1.1 [ISOa]. This

test is significant for the experimental work done in this thesis, as this test verifies the

conformance of the range of identifiers. With the successful completion of this test

will provide sanctity to the experiments conducted by using these frame identifiers.

Purpose of Test: This test verifies the behaviour of the CAN Core while trans-

mitting a frame with different identifiers and different number of data in a standard

frame format.

Set up State: The IUT is in the default state.

Test State: IUT transmits and receives several frames with different identifiers and

number of data bytes. The IUT acts as a transmitter for test cases involving LT as

a receiver and vice versa.

Identifiers used in the Test: ϵ [000h, 7EFh] ∪ [7F0h, 7FFh].

Number of Data bytes used in test: ϵ [0, 8]

With the combinations given above for both transmission and reception, there are

32736 different frame messages in this particular test case. An example of the test case

111

Figure 5.13: Chipscope snapshot for EOF form error

with a particular frame is given in Figure 5.12. Tests covering different combinations

are conducted and is part of the document [SS09]. All the different combinations of

identifiers with different data size has been tested using a ”nested for loop”.

Verification: In this particular test case, IUT is a transmitter. The Identifier of the

message sent is 1C9 H and message size is 8 bytes. IUT transmits a message received

successfully by the receiver(LT) as indicated by the Tx Success signal.

5.4.8 Form Error

This test is part of the Error Detection class, item number 8.2.5 [ISOa]. This test

covers form errors, if the bit/s is dominant on a fixed format CAN field. This includes

CRC Delimiter, ACK Delimiter and the EOF. The test case to be presented here is

of EOF field. Error in EOF frame field causes IMD (inconsistent message duplicates)

which can cause unnecessary re-transmissions [RVA+98].

Set up State: The IUT is in the default state.

112

Test State: The IUT transmits a frame on the CAN bus, the fault injector introduce

a dominant bit on the 1st bit of the EOF field (EOF field is a set of 6 recessive bits).

Verification State: The IUT should send an error frame and re-transmit the mes-

sage.

Figure 5.13 shows the snapshot for the form error.

1. The Marker T indicates the start of the EOF, which follows after an successful

completion of a frame transmitted by IUT.

2. The fault injector node induces a dominant level on the second bit of the EOF.

This is a form error, thus Frame Error Flag indicates the start of an error frame

by the IUT.

3. The Form Error signal indicates that this is a form error.

4. After the error frame finishes, the corrupted data frame is then retransmitted.

5.5 Comparative Study

This section presents a cost and flexibility comparison between conventional confor-

mance test methods and the proposed facility, to make the effective use of hardware

and software readily available in a lab environment in order to perform protocol test-

ing. The first observation is that the next facility does not require expensive and

specialised PC interface cards such as [NI 08, Sof07] which are normally required for

CAN conformance testing [LK98]. These cards capture real-time bus data, which

are then examined and logged. These cards require specialised hardware and soft-

ware [LAB09] along with interface cables which adds to the cost and complexity of

113

the setup. In this work, the internal state of CAN IUT can be analysed. In addi-

tion, there are several key advantages of Chipscope over hardware logic analysers and

pattern generators:

1. The standard bench analysers cannot show enough signals as required in case

of CAN or any other relevant protocols conformance as illustrated in section

5.4. Although, there exists few logic analyser systems which can display a

large number of signals simultaneously [TLA, Agi08], but there prices are 10

times more than integrated logic analyser. The standard bench analysers can

display million of samples, while Chipscope limits to a sample size of 16K, this

limitation can be extended by using Digital clock Manager [XAP03]. The DCM

can divide or multiply the system clock by ’n’ times, the maximum value of ’n’

is 16 for the XC3s500e used for the test bench, thus a possibility to capture 16

times more samples than with a system clock.

2. In typical logic analysers, the number of probe pins and interfacing hardware

increases with the the increase of analysable signals. Chipscope can handle

magnitude of these signals using a single JTAG cable. There are a few solutions,

like Agilents FPGA trace port [Tra03] available, which uses a simple interface

to analyse multiple signals but it also requires a specialised equipment and ILA

tool.

3. Not only all the I/O signals can be connected to the Chipscope core, but also

internal wires can be traced [LFY+07] which are very helpful in conformance

testing. This helps to setup additional triggering conditions, for example, in

test case B, it is easy to setup a trigger condition to wait for an Overload Frame

114

signal, while this condition is hard to setup in external logic analysers.

4. Virtual I/O is a real-time tool for pattern generation, but does not require any

physical interface or port therefore it not only saves resources but also does not

have the physical impairments of an external signal. Also, the ability to insert

Virtual I/O cores into a design allows users to verify the design much faster and

easier, and the ability to define internal I/O can significantly reduce the time

spent in verification.

IUT State
Class Receiver Transmitter Bi-directional

Total Tests Test performed Total Tests Test performed Total Tests Test performed
Valid Frame Format 13 6 7 6 0 0

Error Detection 9 4 5 4 0 0
Active Error Frame Management 4 4 4 4 0 0
Overload Frame Management 5 5 5 5 0 0

Passive Error Frame Management 6 4 14 6 0 0
Error Counters Management 19 6 19 7 2 2

Bit timing 10 4 8 4 0 0

Table 5.1: Statistics of CAN conformance tests

5.6 Test Coverage

The tests presented in this chapter are representative tests from each class of tests

given in the ISO document [ISOa]. The number of total tests given in the ISO

document is 130. There are few tests which are repeated for range of changed values;

although the values are changed the procedures to run those tests has been the same.

The statistics of the tests covered in the current work are given in Table 5.1. The total

number of tests conducted in this work is around 76 and is documented in [SS09],

these comprise about 65% of the total tests given in the ISO document. The tests

covered in this work is not 100% of the listed tests, but based on the following findings

115

and observations these tests have been found enough for the functional verification

of the CAN IP core and the goals of the research.

5.6.1 Selection of Tests

Since a selective number of tests were conducted to verify the functionality of the

CAN IP core. The selection of test cases to perform was a very important step to

justify the conformance. The basic selection criteria was based on two things: (i)

Each and every identifier and frame should be tested which needs to be used for the

experimental work and (ii) Each and every functional unit as shown in Figure 5.4 and

Figure 4.1 of the CAN IP core is at least tested once and if possible more than one

test cases should be selected.

More than 30% of the tests documented in the ISO document is almost similar

with the only difference is that the default state of IUT in one case is a transmitter

and in the second a receiver. This has been carefully determined that not all the

similar tests conducted are repeated for both the default states hence making sure

that each functional unit of the CAN IP core is tested. This is explained with an

example:

In the Passive error state class, test number 7.5.3 is for the IUT as a receiver and

test number 8.5.3 for IUT as a transmitter [ISOa]. The set-up, test and verification

state of the IUT is similar for both test cases. During the test state in both cases

the IUT transmits a passive error frame on detecting an error and in return the LT

sends 7 dominant bits. The verification state is also similar, which is that the IUT

accept this condition and does not generate further error frames. In this work only

test number 8.5.3., is performed successfully, this test is for the IUT working as a

116

transmitter. Although the receiver test case is required to be done, but due to the

similarity of test cases, our objective of testing the functionality of error confinement

block in case of an error frame in error passive state is fulfilled.

5.6.2 Edge Test Cases

In the Valid frame and error management test classes, a few of the tests are repeated

for a range of data sets and sequence of the particular field. For example test case

ϵ [000h, 7EFh]∪ [7F0h, 7FFh]. The test case has been completed, generating all the

possible identifier using a ’for loop’ in the testing code of the LT. The IUT is configured

to receive these frames successfully and all of these tests were conducted successfully.

The success of these cases was verified by not detecting any error condition while

running of these tests. But special care had been taken to analyse the tests on the

Chipscope for edge cases 1 such as for identifier ’000’, ’7EF’,’7FF’ e.t.c. This is to

assure that all the possible range of test values has been generated and tested.

Some of the test cases related to error frame classes are repeated for different

bit positions of a particular frame field, edge cases have been selected in this case

for testing to assure the coverage of full range of values. For example in test case

8.5.2, the IUT has to signal a form error after detecting a ’dominant’ bit on the EOF

field. This test needs to be repeated for bit position (1, 4 and 7) of the EOF field.

As this work performed selected tests, the tests were only conducted for bit 1 and 7

to ensure the IUT functionality is verified at the start and finish of the EOF field.

These examples given above emphasize on the edge cases, considering the extreme

are covered, this gives more confidence in the testing procedure and the conformity

1An edge case is a problem or situation that occurs only at an extreme (maximum or minimum)
operating parameter [wik].

117

of the CAN IP core to the standards.

5.6.3 Use of Standard CAN Controllers

The test bench discussed in the last chapter is also adapted for CAN conformance

testing with slight modifications. This test bench also contains standard off the shelf

boards with CAN interfaces. These interfaces are fully CAN conformant, and only

support communication as specified by the CAN standards. These boards generate

errors when they detects any unspecified transmission on the CAN bus.

These boards have been used to conduct CAN experimentation during this re-

search work. Extensive testing was done during the windowed messaging scheme for

unbound retransmissions and single shot messaging. These tests were conducted suc-

cessfully for durations of 24 hours or more and the standard CAN boards have been

used to receive and logged the CAN messages. These experiments used random data

contents, range of tested identifiers, and all possible data lengths. The messages were

also transmitted using maximum and minimum stuffing. These messages generate a

large number of possible values of CRC as well. From the final case study statistics

given in Table 9.2, this can be seen that almost 100% of the messages are received suc-

cessfully by these standard CAN interfaces. Although, there was no specific method

employed in these experiments to check different error conditions or error counters,

but this can be argued that over a large data set there were no errors or anomalous

conditions, thus the CAN IP core generally satisfies the test conditions given in the

ISO conformance document.

118

5.6.4 Extended Testing

This sections discuss tests which were conducted on the CAN IP core but are not

part of the ISO document, these tests are also important for the correct working

of the CAN IP core. The ISO document covers testing related to the functional

blocks of a CAN controller, but this cannot be claimed that ISO document verifies

all the functionalities related to a CAN controller. There are no tests designed to

verify the functionality of the CAN registers which are used to store configuration

values and stores the transmitted and received information. During the large set of

experimentation in this work has ensured that the testing of these registers is carried

in parallel. This is an important step towards the functional verification of the CAN

IP core, as without the proper working of the interface and register units CAN IP

core will not function properly.

Also another aspect of extended testing is the use of industry standard values to

generate the bit timing for the CAN IP core. The kvaser website [kva] provides the

bit timing register values for all the possible CAN data rates, these values are used by

the industrial CAN network designers to configure standard CAN controllers such as

[SJA00, Mic03]. This further supports the argument that the bit timing functionality

of the CAN IP core fully conforms to the standard CAN controllers.

The final comment on the test coverage is that in this conformance testing work,

more than 65% of the total tests listed in the ISO document have been conducted.

These tests had been carefully selected to test as many aspects of the CAN standard

as possible. Although, some of the tests defined in the standard were not carried

out prior to the experimental work being undertaken, the large majority of these

test comprised of repeated tests using a large range of message identifiers. To ensure

119

the integrity of the results presented in subsequent chapter of this thesis, only mes-

sage identifiers for which testing had been fully carried out were therefore employed.

The completion of conformance testing to cover these missing cases will be relatively

straightforward future work. As such, the conformance testing exercises described

in this chapter have formed a solid basis for the work described in the remaining

chapters, as without them, it would be difficult to justify the practical significance of

the research.

5.7 Conclusion

In conclusion this chapter discussed a test facility, which utilises Virtual I/O’s and

integrated logic analysers to perform CAN conformance testing in accordance with

the ISO standards. The facility is capable of performing the full range of tests required

for conformance to the relevant CAN standards. A number of tests cases have been

demonstrated in this chapter, with details of the tests setup and verification stages.

In conclusion, this facility can be assembled and used for a fraction of the cost of a

’regular’ test facility for CAN conformance. It can be seen that this technique is not

restricted to the CAN protocol, and with suitable modifications can be used to test

conformance of several alternate network protocols, for example, TTCAN [FH00],

since TTCAN uses the same data link and physical layers as of the standard CAN.

Chapter 6

Overclocking in Controller Area
Network: Higher Information

Throughput

As discussed earlier in chapter 1, one of the major reasons for the speed limitation of

the CAN protocol is due to the design of the physical layer. The wired-AND nature

combined with the bit synchronisation methodology is a major hindrance towards

developing increased speed CAN buses. This chapter discusses the possibility of how

the IP CAN core may be used to implement an effective modification to increase the

speed and overall information throughput of a CAN network.

For this purpose, a scheme to implement the overclocking of a CAN message is

employed. This will not only improve the data rate and information throughput, but

maintain the priority-driven arbitration mechanism that is a major beneficial feature

of the protocol. As will be described, some simple modifications to the IP CAN are

used to implement the overclocking. The effectiveness of this adapted controller is

illustrated in a series of experiments, in which the data transmission rate is dynam-

ically increased up to 10 Mbps during transmission of the data and CRC fields, and

15-bytes of data are sent; this allows an effective doubling of information throughput

per message, coupled with a significantly reduced transmission time.

An insight into how overclocking can be used to effectively reduce the transmission

jitter has also been carried out, alongside analysis and experimental work related to

120

121

Figure 6.1: (a) set up of a CAN controller oscillator (b) bit time pre-scaling

the calculation of message transmission times and the effects of the technique on

expected network bit error rates.

6.1 Problem Formulation

The CAN protocol employs a unique non-destructive priority-based arbitration scheme;

when multiple nodes attempt to transmit messages simultaneously, the priority based

non-destructive mechanism becomes active and ensures that the highest priority mes-

sage gains bus access. The wired-AND nature of the physical layer requires that all

nodes in the network achieve a logical consensus on the instantaneous bit-patterns

appearing on the bus lines. Given the effects of signal propagation delays, it is this re-

quirement of the protocol that acts to severely limit both the maximum transmission

speed and bus length of a given CAN network.

Thus, the maximum transmission rate becomes inversely proportional to the CAN

122

Figure 6.2: Propagation delay between two CAN nodes.

bit time. For higher transmission rates the CAN bit time needs are appropriately

shortened. Shorter bit times then put limits on the length of the CAN bus, due to

the smaller length of time that is available for signals to fully propagate to the extreme

ends of the bus. As mentioned in chapter 3 and also shown in Figure 6.1(b), the CAN

bit time is effectively divided into four segments; the second of these four segments

is the propagation segment. The length of the propagation segment is configured to

compensate for the (worst-case) physical delays due to signal propagation between

CAN nodes. The propagation delay is twice the sum of the signals propagation time

on the bus line, including the delays associated with the bus drivers. Figure 6.2

elaborates the significance of the propagation segment and its calculation.

6.1.1 Propagation Delay between Two CAN Nodes.

Node A and B are two participating nodes on a CAN bus, and are arbitrating to gain

control of the CAN bus. The bit level transmitted by Node A is received by Node

B after a time tprop(A,B). The bit level transmitted by Node B is received by Node A

after a time tProp(B,A)); the bit level transmitted by Node B must be read by Node

A before the end of Node As propagation segment. This will ensure that Node A

will correctly sample the bit value. The condition to calculate the propagation time

123

segment [SK99]:

tpropseg > tprop(A,B) + tprop(B,A) (6.1.1)

Where tpropseg is the propagation time segment is explained in chapter 3.

Another relation between propagation time segment and bus length is given by

[Phi96a](typically for PCA82c250/251 CAN transceivers):

n∑
i=1

Lengthbus(i) <
tpropseg
10 ∗ tp

(6.1.2)

tp is the twisted pair cable’s transmission delay typically taken as 5 ns/m [Law97].

Equation 6.1.2 introduces a limit to the bus length. For a transmission speed

of 1 Mbps the Bit time is 1 µsec. Since the CAN bit time consists of 4 segments

[Bos91] there is a limitation on the tpropsegwhich should be less than or equal to 50%

of the total bit time [Phi96a]. In this case applying Equation 6.1.2 and taking tpropseg

to be 50% (maximum possible value) of the bit time, i.e. 500 ns, the bus length is

calculated to be less than 10 m. Hence for transmission speeds higher than 1 Mbps

the length of the CAN bus reduces drastically due to this need for bit-level consensus

during multiple transmissions on the CAN bus. Clearly, since the principal use of

CAN is in distributed embedded control systems, such restrictions on the bus length

restrict the applicability of overlocked CAN networks significantly.

6.2 Solution Outline

A relatively simple technique to overcome this problem was first given in a short

communication by Cena & Valenzano [CV99]. The basic idea they described which

was also outlined for a simple control LAN several years earlier by the UITRON team

[MMTS96] is described below: The technique is based upon the observation that a

124

Figure 6.3: CAN frame format showing M and S zone.

CAN frame may be divided into several different zones, as depicted in Figure 6.3.

The M-zones of the frame are the portions in which multiple writers are needed (i.e.

during arbitration, acknowledgement, EOF sequence, and inter-message space). The

S-zones of the frame are those portions in which only a single writer is needed and

instead allows multiple writers to access the bus during an S-zone, which leads to bus

errors. The S-zone principally consists of transmitting the DLC, payload and CRC.

During the S-zone, the single node which has already won the arbitration during

the first M-zone becomes the only transmitter (except of course if an error occurs on

the bus). This clearly reduces the restrictions on the length of tolerated propagation

delay during the S-zone. Since only a single node is transmitting on the CAN bus,

there is no need to compensate for the signals return path delay. The value of tpropseg

can easily be taken as half when only a single transmitter is active on the CAN bus.

Considering Equation 6.1.1, the value of tprop(B,A) can be taken as zero. This allows

a shorter bit time during the S-zone, maintaining the same network length.

For the example given in section 6.1.1 a speed of 2 Mbps can easily be achieved

125

on the CAN bus. The CAN bit time for a speed of 2 Mbps is 500 ns. For a bus length

of 40 m one way propagation delay is 200 ns and keeping the propagation segment

at 50%, tpropseg is calculated to be 250 ns. This value of 250 ns is enough to keep

bit-level consensus with a single transmitter on the CAN bus of length 10 m hence

allowing us to reduce the overall CAN bit time to be 500 ns. This gives flexibility

to operate with normal transmission rates during the M-zones. When the S-zone is

entered, the CAN network can be overclocked to increase the transmission rate of the

Data and CRC field.

6.3 Overclocking

Overclocking in CAN networks is a technique that may be used to artificially decrease

the bit-time and hence the transmission time of a message. As illustrated in Figure

6.1(a), each CAN controller in a given network is driven by a local clock source

(typically a crystal oscillator circuit). This clock signal is typically stepped down by

an internal pre scaler register, before being used to drive - via the bit timing registers

- the protocol controller and bit stream processor. As such, overclocking most often

refers to the deliberate use of a faster oscillator - in combination with appropriate

settings in the pre-scaler and bit timing registers - to increase the transmission rate.

This is shown in Figure 6.1(b) with different TBRPCLK (baud rate pre-scalar clock)

for S-zone and M-zone. The baud rate pre-scalar clock is used to drive the CAN bit

time and the transmission rates of the CAN bus.

In a time-triggered implementation of a CAN-based system, the overclocking prob-

lem does not pose many serious problems, save perhaps for certification issues. This is

126

because when an appropriate higher-level protocol is employed, it is possible to stati-

cally design a message schedule such that no run-time message collisions - and hence

message arbitrations - actually take place. An example of such a higher-level pro-

tocol is the shared-clock family of algorithms, described by Ayavoo et al [APSP07];

with appropriate modifications, such algorithms are also suitable for use in redun-

dant networks and may even be implemented in hardware [SP07]. Since no run-time

collisions take place, the arbitration mechanism becomes redundant and there is no

need for system-wide consensus as only a single node is in control of the bus. If an

adequate technique is employed to deal with the ACK slot (e.g. by using message

self-acknowledgement) the CAN controllers may be overclocked by a significant fac-

tor, resulting in a proportional increase in data throughput. For event-driven and

hybrid systems, however, the arbitration mechanism must be heavily relied upon for

effective use, and simply overclocking the CAN controllers is not guaranteed to work;

the requirement for node-wide temporal consensus of bit values will be violated by

the signal propagation delays as described previously in this section.

6.4 Modified CAN Controller Development

The CAN IP core which had been developed as discussed in previous chapters has

been modified for the overclocking implementation described in section 2. A test bed

has been created around this controller, the general structure of which is shown in

Figure 4.12. For clarity the figure shows a system employing two CAN nodes, but the

test bed may be extended as required to encompass an arbitrary amount of nodes. In

the current study, the system was primarily based around four CAN nodes running

the modified CAN protocol.

127

6.4.1 Issues Setting up the Test Bench

A number of features were required to be added to the controller during the setting

up of the test bench to support the overclocking approach; these are now described

in detail, along with the issues that were encountered.

1. In order to implement dual-rate CAN, the modified controller has an additional

Dynamic Bit Timing Register (DBTR) added into its structure. This register

contains the settings to be used when adapting to the higher data rate (for this

study the rate employed was 5 Mbps although rates of up to 10 Mbps have been

achieved during transmission of S-zones). An example code is illustrated below

to show how dual rates are employed at different stages of the CAN field.

/* Different baud rate pre-scalar settings for M and S zone */

assign clk_cnt_fix = (data_field|crc_field)?(baud_r_s_zone + 1’b1)<<1

:(baud_r_m_zone + 1’b1)<<1;

always @ (posedge clock or posedge reset)

begin

if (reset)

brp_clk_cnt <= 7’h0;

else if (brp_clk_cnt >= (clk_cnt_fix-1’b1))

brp_clk_cnt <=#Tp 7’h0;

else

brp_clk_cnt <=#Tp brp_clk_cnt + 1’b1;

end

/* Bit clock enable to calculate the time quanta */

always @ (posedge clock or posedge reset)

begin

if (reset)

bit_clk_en <= 1’b0;

else if ({1’b0, brp_clk_cnt} == (clk_cnt_fix-1’b1))

bit_clk_en <=#Tp 1’b1;

else

bit_clk_en <=#Tp 1’b0;

end

128

2. In order to enable effective switching, a state machine was used to generate a

signal which is asserted only for the duration of the S-zone. During this time

the baud r s zone setting is employed instead of the standard baud r m zone as

shown in the above code listing.

3. In order to handle error signalling during the S-zone (eg. bit or stuff errors),

the state machine was set to de-assert the switching signal in case of a detected

error or error frame; the only acceptable behaviour in the network is for the

controllers to dynamically resume to the lower data rate, as the entire message,

including M-zones, is required to be retransmitted in this case.

4. The foremost issue that was encountered while developing this modified CAN

controller was whether the existing CAN transceiver interface can reliably sup-

port data rates higher than 1 Mbps; experimentally, messages were successfully

transmitted and received in the 4-node network with a S-zone configuration of

5 Mbps, using commercially-available transceivers.

5. The test bench connected CAN IP nodes on a network length of 10 meters,

as this was an experimental set up, hence could not be evaluated for increased

lengths due to wiring and noise issues.

6.4.2 Basic Transmission and Reception of Overclocked Mes-

sages

This section will briefly describe the behaviour of the transmitter and receiver nodes

using Chipscope snapshots; as mentioned, for this experiment the M-zone data rate is

250 Kbps and the higher data rate S-zone is 5 Mbps. Figure 6.4 depicts the transmitter

129

Figure 6.4: Overclocking implementation transmitter node

behaviour during frame transmission. From the figure, the message transmission

on the CAN bus can be observed via the CAN Receive and CAN Transmit signals

showing the bits being sent and received simultaneously. Additionally, for clarity the

figure illustrates several important transmit states which correspond to fields of the

CAN frame [11893]. The sample point signal is critical when switching between data

rates; Figure 6.4 shows the assertion of the switching signal (Transmit State DATA)

once the S-zone field has been entered, and the sample point can be seen occurring

20 times faster during the Transmission State DATA and Transmission State CRC.

It can also be observed that the Data Length field shows 15 which represents the

data payload size in bytes. A successful reception of the overclocked message can

also be observed in Figure 6.5, which is a Chipscope snapshot taken on one of the

participating receiver nodes. When the S-zone is exited, the switching signal is de-

asserted and the sampling frequency reverts back to the lower rate. The successful

transmission and reception of the message is demonstrated by the various transmit

130

Figure 6.5: Overclocking implementation receiver node

and receive states illustrated in the figures; in Figure 6.5, an acknowledgement signal

is sent by the receiver node as demonstrated by Receive Ack Delimiter field, and the

CAN Transmit signal becomes dominant.

To further verify the behaviour of this modified CAN controller, two test cases

were specifically created to illustrate the operation of two of the main features of the

protocol; the arbitration mechanism and error signalling. These tests are discussed

and documented in the following sub-sections.

6.4.3 Arbitration

Figure 6.6 shows the arbitration phase on the CAN bus. The experiment was set up

such that two nodes were simultaneously competing to gain access of the CAN bus.

At this point, the arbitration scheme should ensure that the higher-priority message

wins bus access, and be transmitted first. In this case the intent is to show that an

overclock CAN node losing arbitration will change its state to a receiver node and will

131

Figure 6.6: Arbitration in overclocking CAN

switch back and forth into higher and lower data rates successfully. Some significant

observations had been taken during this process:

1. M-zone rate of communication for this test case is 1 Mbps and for S-zone is 5

Mbps.

2. Marker O shows the Start of frame point, while the bit values between marker

O and T demonstrate the transmission of identifier field; also shown by high

state of signal Receive State ID [10:0].

3. Marker T shows the CAN Transmit signal changing to recessive state for the

rest of the message fields showing that the node has lost arbitration and has

turned into a receiver.

4. The value shown on the Arbitration Lost Bit signal is 4 which means that the

arbitration round was lost on the 4th bit of the identifier.

132

Figure 6.7: Error signalling and switch back in overclocked CAN

5. The switch over during S-zone can be seen, as with the successful reception of the

message; CAN Transmit is pulled dominant at Receive State ACK Delimiter

field.

6. After Marker X, the pending message previously losing arbitration is now trans-

mitted, as demonstrated by the CAN transmit/receive values and state registers.

6.4.4 Error Signalling

The second test case is related to error signalling, and demonstrates that in case

of an error while data is being transmitted on the higher data speed, the controller

133

will dynamically switch back to its normal speed. In this test case a bit error was

generated on the CAN bus by corrupting a dominant bit being transmitted while

the sampled bit is recessive (the error was injected using an additional ARM 7 de-

velopment board connected via transceivers with the CAN bus). Figure 6.7 shows a

transmitter snapshot, and the following observations can be made:

1. Marker X demonstrates the start of a normal transmission, illustrating the

different CAN fields during the initial phase of transmission.

2. At marker T the CAN Transmit signal is recessive, whilst the CAN Receive

signal is made dominant by the injection of the bit error.

3. Before marker T on the Transmit State Data, the increased sample point fre-

quency can be seen; as soon as the bit error occurs, and the start of the error

signal begins, the sample rate switches to its normal rate.

4. The Error Frame Flag field (immediately after marker T) shows the transmis-

sion of the error frame at the lower M-zone data rate. Also observe that the

transmit error counter has increased from 143 to 51 as per the protocol speci-

fication [11893].

These observations clearly states that the modified CAN IP core switched to normal

data rate while signalling an error frame. An error frame is considered a multiple

writer event on the CAN bus, hence a two way propagation delay is necessary to keep

consensus between the participating nodes.

These two test cases demonstrate that the modified CAN controller, with enhanced

functionality, can maintain conformance with the arbitration scheme and error han-

dling requirements mandated by the CAN protocol standard.

134

6.5 Analysis

With respect to implementing a real-time system based on the modified CAN con-

troller, there are several significant areas of analysis required. Firstly, any schedu-

lability analysis of real-time network traffic needs accurate information of several

parameters, including the worst-case transmission time of a given frame [KLSC00].

As such, some way to determine the worst-case length of a given message (and hence

its transmission time) is needed. Secondly, for a dependable system, the expected

probability of a transmission failure in a given set of environmental conditions should

be investigated [GTA06]. This section will begin to explore these issues from both

analytical and experimental perspectives, beginning with transmission time analysis.

6.5.1 Experimental Evaluation

For evaluation of experimental results a test bench was set up. As before, the test

bench consisted of 4 CAN nodes modified to support overclocking. One CAN node

was configured as a transmitter while the other three nodes were configured as trans-

mitter/receivers, set up to simulate real-world CAN traffic. The transmitter node

was set up to periodically generate a normal message every millisecond; the message

length and contents were generated pseudo-randomly in this case. In addition, in be-

tween every 50 normal messages, a best or worst-case length CAN message was also

inserted, alternating between the two extremes. An independent ARM board with a

high-precision timer was set up to receive two signals - one from a transmitter and

one from a receiver node on the start and completion of a message simultaneously.

These signals were time-stamped, this was used to capture the message transmission

times. Tests were conducted over a range of 2 to 24 hours continuously with normal

135

Figure 6.8: Normal and overclocked transmission times

transmission rates of 1 Mbps and a second test with overclocked data rate of 5 Mbps.

The results of this experiment are as shown in Figure 6.8. Several key observations

may be made from these results; firstly, the immense reduction of transmission times

due to overclocking; secondly, the average difference (jitter) between maximum and

minimum transmission times is 2µsec for the overclocked system, as compared to 9

µsec for the regular system. This latter point indicates a decrease in transmission

time variations (jitter), which is indicative of the potentially beneficial effects the

overclocked technique may have on the predictability of CAN networks.

6.5.2 Analytical Analysis

According to CAN standard [Bos91] the total number of bits in a CAN message prior

to bit stuffing is given by:

8di + g + 13 (6.5.1)

A previous analysis of the bit stuffing mechanism by Nolte et al. showed that the

worst-case number of bits to be transmitted in CAN frame i is equal to (assuming a

136

standard frame format) [NHNP01]:

8di + g + 13 + ⌊8di + g − 1

4
⌋ (6.5.2)

The parameter diϵ [1, 8] is the number of bytes in the payload of frame i. Also the

parameter gϵ [34, 54] depends upon the CAN frame format. The value of g is 34 for a

standard CAN frame and 54 for an extended frame format simultaneously. The term

inside the floor function represents the worst possible number of stuff bits that can

be added to the standard CAN frame. Since a CAN frame employed in the dual-rate

controller has been sub-divided in two M-zones and a single S-zone; both the first

M-zone and the S-zone are subject to bit stuffing. With respect to Figure 6.3, and

labelling the number of bits transmitted in the two M-zones as m1 and m2 from left

to right, the equations of Nolte et al. may be adapted to determine the worst-case

number of bits transmitted in each zone:

m1 = 13 + ⌊13
4
⌋

s = 21 + 8di + ⌊
21 + 8di − 1

4
⌋

m2 = 13 (6.5.3)

Equations 6.5.3 is derived by analysing Figure 6.3. In this analysis CAN standard

frame is under consideration hence the value of g is taken as 34. m1 represents the

first M-zone before the start of the Data field of the CAN frame. In the first M-zone

the first 13 bits i.e. the SOF, 11 Bit identifier field and RTR bit is exposed to bit

stuffing hence m1 = 13 + ⌊13
4
⌋ where the terms inside the floor function represents

the stuffed bits added to the fixed 13 bits.

The worst case length of the S-zone is represented by s in the Equation 6.5.3. The

fixed value of 21 represents the 15 bits of CRC field, 4 bits of the data length code

137

field and the 2 bits represent the reserved bits r0 and r1. Since all the 21 bits and the

8 possible data bytes are exposed to bit stuffing hence the term given inside the floor

function represents the number of stuff bits, the term 21 + 8di − 1 is divided by 4

because the bit stuffing is applied after every consecutive 5th bit as shown in Figure

6.9.

Figure 6.9: CAN bit stuffing

m2 represents the last 13 bits of the CAN frame i.e. the CRC delimiter, 2 bits

of acknowledgement field, 7 bits of EOF field and 3 bits from intermission field. All

these CAN frame fields are of fixed format and are not exposed to bit stuffing, even

any violation of these fields format is considered as a form error [Bos91] by the CAN

nodes.

Note, however, that as demonstrated in this work the adoption of an IP core design

allows a developer to change key protocol parameters with relative ease; suppose that

D bits are required to encode the DLC, and C bits are chosen for transmission of

the CRC. In this case, calculation of the number of bits transmitted in the S-zone in

Equation 6.5.3 can be modified as follows:

s = 2 +D + C + 8di⌊
2 +D + C + 8di

4
⌋ (6.5.4)

Given knowledge of the CAN bit time τ , calculating the transmission time from

138

Figure 6.10: Transmission times variations with (a) bit stuffing (b) variable overclock-
ing factors

this relationship is straightforward. In case of overclocking, two separate bit times for

the M-zone and S-zone is given by τm and τs, Equation 6.5.5 may be used to calculate

the message transmission time from these relationships given in Equation 6.5.3:

ci = 29.τm +

[
21 + 8di + ⌊

21 + 8di − 1

4
⌋
]
.τs (6.5.5)

In Equation 6.5.5, the first term on the R.H.S of the equation i.e. (29.τm) represents

the time taken to transmit the two M-zones, the algebraic value 29 is derived by

adding m1 and m2 from Equation 6.5.3.

6.6 Case Studies

As was mentioned earlier in this chapter, as may be expected the use of overclocking

will generally lead to a decrease not only in transmission times, but also transmission

time variations (jitter). Two different test studies were conducted to further explore

this relationship. In the first case, the transmission time variation of CAN Frames

at 1 Mbps (with no overclocking) was compared with that of 5 Mbps overclocked

messages, and the results are shown in Figure 6.10(a). Data was gathered for messages

139

employing both worst and best case bit stuffing. As can be seen in the Figure,

the results are interesting in terms of transmission time variations; frames without

overclocking have a comparatively larger spread in their transmission times, which

increases as the number of data bytes sent is increased. The overclocked frames have

significantly less spread between the best-case and worst-case stuffing. For example,

with 16 byte messages sent at 1 Mbps with an S-zone overclocked at 5 Mbps, the

difference of transmission time between best-case and worst-case stuffed messages is

only 10 µs. For a regular 1 Mbps CAN message, this variation increases to 40 µs.

Thus, the data indicates that a fourfold reduction in transmission time jitter may be

achieved with a five-fold increase in clock speed during the S-zone.

The relationship between overlocking factor and transmission jitter was further

investigated with case study two, during which the overclocking factor was varied

between a factor of 1 and 20. The base (M-zone) transmission rate for all the cases

was 250 Kbps. The S-Zone transmission rate was varied from 250 Kbps - i.e. an

overclocking factor of 1 - to a transmission rate of 5 Mbps - i.e. an overclocking

factor of 20. The results from this case study are as shown in Figure 6.10(b). The

average transmission times for each case with best-case and worst-case stuffing was

again observed.

The results illustrate that with a linear increase in the overclocking factor, the

message transmission time variation is also reduced by a proportional factor. However,

it is clear that since the M-zones cannot be overclocked, the message jitter cannot

be removed in its entirety by simply overclocking and a lower limit will be reached;

this effect can be observed for overclocking factors greater than 16. An intelligent

140

choice of message identifiers could further reduce the possibility of stuff bits in the M-

zones [NHNP01], and hence reduce the overall jitter even further. However, a further

modification to the protocol to weaken the lower limit which also allows for arbitrary

identifiers will be described in a later chapter.

6.6.1 Transmission Failure Rates

In addition to the determination of message transmission times, another important

measure of suitability of a real-time network in a given application is the expected

level of transmission errors in the target environment. Since most real-time control

systems are expected to achieve a certain target failure rate, this information can

be of vital importance when planning a design. The expected target failure rate

depends primarily on the number of messages transmitted in a given time frame and

the expected probability that a message will fail during transmission. The message

failure rate probability λ is largely determined by the bit error rate (BER) and the

number of bits to be transmitted. For a standard CAN frame with b bits, assuming

uncorrelated error arrivals the success or failure of the reception of a single-bit may

be modelled as a Bernouilli process [SP07]. In this situation, λ may be approximated

as follows [SP07]:

λ = 1− (1−BER)b (6.6.1)

For the case of correlated or partially correlated error arrivals, the underlying model

may be changed appropriately (e.g. to a poisson process) as discussed by [BBRN04].

That is, the probability that b bits will not be transmitted error-free. In the case

of the dual-rate controller, Equation 6.5.2 may be used to determine for a given

frame how many bits will be transmitted (worst-case) in each zone. However, with

141

respect to the BER, this is known to be dependent on several factors, and for fixed

environment conditions - is largely influenced by the transmission speed. Thus, to

determine message failure rate, two BERs have to be considered for the two zones,

namely BERm and BERs. If these two parameters are known, then the equation can

be expressed using Equation 6.6.1:

λ = 1−
(
(1−BERm)

m1+m2 . (1−BERs)
s) (6.6.2)

Although the CAN protocol itself does not include low-level implementation de-

tails at the physical layer, to enable reliable device inter-operability such details are

mandated in the relevant ISO documents. In any CAN network operating according

to ISO-11898, bits are transmitted over a differential two-wire twisted pair; the actual

voltages are required to adhere to certain characteristics, and the following nominal

voltages should be observed:

1. During transmission of a recessive bit: CAN HI = CAN LOW = 2.5 V;

2. During transmission of a dominant bit: CAN HI = 3.5 V, CAN LOW = 1.5 V.

This ensures minimum power dissipation when the bus is idle. Since differential

signalling is employed, this can be represented as a unipolar NRZ pulse train, with

the characteristics shown in Figure 6.11: It is known that the BER of such a pulse

train can be approximated as follows [Skl88]:

BER = Q

(√
Eb

N

)
Eb =

(
V 2T

2

)
(6.6.3)

Since differential signalling is employed, this can be represented as a unipolar NRZ

pulse train, In which Eb is a measure of the average energy level per bit (which is

dependent on the chosen bit-time T), N is a measure of the noise energy level, and

142

Figure 6.11: CAN NRZ unipolar pulse train

Environment BER Estimate of N
Benign 3.0× 10−11 9.055× 10−8

Normal 3.1× 10−9 1.139× 10−7

Aggressive 2.6× 10−7 1.508× 10−7

Table 6.1: Measured BER and calculated noise level for CAN @ 1 Mbps

Q is the complimentary error function. Clearly, Eb is calculable for a given CAN bit

rate; additionally, previous experimental work has also attempted to categories the

BER for CAN (at 1 Mbps) in various operating environments (benign, normal and

aggressive) [FOFF04]. This information may be used to solve for estimates of N for

these environments with respect to a CAN network and this information is displayed

in Table 6.1 below: These calculations then allow estimates of the likely BER when

employing CAN at higher bit-rates to be estimated. In this respect, a limitation of

the physical interface seems to become apparent; even in benign environments, this

data suggests that operating a CAN network at 5 Mbps is likely to have a dramatic

effect on the BER, with an expected value of around 3.0× 10−3. Such a value would

be wholly unacceptable in most situations; the only solution seems to be increasing

143

the differential voltage employed by the bus. In this case, increasing the differential

voltage to 4 V when signalling dominant bits restores the expected bit error rate

to 3.0 × 10−9. Although further investigations are needed to confirm these findings

experimentally, some additional evidence to support these predictions is given in a

later chapter. As such, this apparent limitation of the physical layer - the need to

scale voltage with bit rate, as with CPU overclocking - should be taken into account

by developers before real industrial application of the technique.

6.7 Discussion and Conclusion

This chapter has considered an implementation of a dual-transmission rate CAN

controller. The modified controller has been shown to be capable of transmitting

CAN frames with an increased data payload size, and at a higher data rate than the

protocol normally allows. Although the implementation described clearly does not

exhibit backward compatibility with the original CAN protocol, the error and CRC

mechanisms are well-defined and experimentally validated through the case study. As

such, it can be expected that they are likely to provide error detection and signalling

to the same levels as the original protocol.

Given the lack of backwards compatibility, it would seem that this scheme is

perhaps best suited to new CAN implementations which require a high rate of in-

formation throughput. An alternate application for the technique may be found

in situations in which the message set characteristics are found to be unschedula-

ble when using a standard CAN networks (using analysis techniques described in

[RVA+98],[BB01]for example). In these situations, overclocking may be applied to

one or more of the messages to decrease transmission times (and hence also decrease

144

the non-preemptive blocking which is inherent in CAN), and improve worst-case re-

sponse times to appropriate levels. The effect of decreasing jitter levels among mes-

sages with variable data may also increase the degree of fairness between CAN nodes

with a different amount and priority of data to be transmitted on the bus.

Chapter 7

Jitterless Communication in CAN
Networks

With the evolution of mechatronic technology, the increased complexity and distri-

bution of modern control system requirements dictates a need for high-bandwidth

networks, capable of delivering information throughput at a higher level with precise

timing accuracy. This level is not directly achievable with CAN, or any software-based

protocol employed with standard hardware. In the previous chapter, overclocking of

the CAN network to increase the speeds up to 10 Mbps was discussed; but the ques-

tion of variability in message transmission times of the CAN message transmission

due to bit-stuffing is still unanswered.

This chapter will describe a mechanism to overcome the jitter introduced in CAN

message transmission times due to bit stuffing, implemented by modifying the CAN

IP core.

7.1 Bit Stuffing cause of Transmission Jitter

Previous research has focused on adapting CPU scheduling and feasibility analysis

techniques to create systems which provably deliver all messages in a timely fashion

in CAN networks. As with CPU scheduling, these topics can be broadly divided into

two sub-categories; those based on static (table-driven) techniques, and those based

on dynamic (non-idling) techniques.

145

146

In a statically-scheduled system, all message transmissions are created off-line

and stored in some form of table (a message map) which each node makes use of to

control the instants in time that messages are allowed to be transmitted. In order to

be employed successfully, each node must have an accurate knowledge of the release

time and the transmission times.

Although many enhancements to CAN have been proposed (discussed in Chapter

2), each is limited by the fact that they either require additional CPU overheads

along with an increase in the complexity of software running in local CAN-enabled

nodes, or they require modifications at the hardware level for implementation. Ad-

ditionally, early experiments have shown that FPGA-based designs can provide the

flexibility with which to implement sophisticated schemes, which cannot be imple-

mented by the use of software-based protocols alone. These observations will be used

as the basis for proposing further generic enhancements to CAN which are suitable

for implementation on PLDs.

7.2 Fixed Length Messages to Reduce Jitter

The current enhancement is to eliminate the effect of jitter due to the presence of

stuffed bits, which are unpredictable in their occurrence. A message of similar data

length may have variable size and hence unpredictable transmission times. In this

proposed technique, an extra field is added to the CAN standard frame which is

known as Data Plus, the size of this field is variable and depends upon the worst-case

stuffed frame lengths [NHNP01] given by Equation 7.3.1.

The length of data plus is the difference of the transmitted frame length to the

result obtained by Equation 7.3.1. This ensures that each message sent is of the same

147

Figure 7.1: Chipscope snapshot of enhanced CAN transmitter

length as a worst-case stuffed frame depending upon the value of di which represents

the number of data bytes sent in the CAN frame. The working of this enhanced CAN

controller can be understood by the given Figure 7.1. Since enhanced CAN IP core

can transmit more than 8 bytes upto 1024 bytes and also can overclock in S-zone, see

Figure 7.1. A transmission state machine is shown with a 15 byte message overclocked

from 1 Mbps to 5 Mbps transmitted successfully.

1. Tx State xxx indicates different states of transmission cycle, the states before

Tx State Data are sending data at 1 Mbps, then the Data, CRC and Data Plus

fields are overclocked to be transmitted at 5 Mbps.

2. Number of bits field indicates the total number of bits transmitted since the

start of the message including any stuff bits. (At Marker X the value indicates

168, i.e. before data plus field.)

3. The field Max bit diff indicates the difference of bits transmitted in a worst case

148

stuffed frame and the current frame. The value of Max bit diff is calculated by

subtracting Equation 7.3.1 from Number of bits, the valid value is obtained

before the start of the Data Plus field.

4. The Data plus field will last for 28 bit time and will send alternate 0 and 1

to compensate for the worst case message, (the choice of alternate bits is the

minimize the chances of stuffing even in case of erroneous transmission/reception

of a single or number of bits). This will make the total bits sent as 196 added

the fixed 9 bits of Acknowledgement and End of frame fields.

The enhancement has been designed such that if there is erroneous bit transmission

in data plus field no error frame would be generated. The length of the data plus field

is calculated on the local node depending upon the Data Length Code field, therefore

there is no possibility of data plus length error. In case if, there is an error detected in

Data Length Code field then an error frame is generated and no further transmission

take place.

7.3 Case Study

Before the results of the case study are discussed, formation of the test bench is

explained below: The test bench consisted of 4 CAN nodes, and each node consisted

of a development board with integrated FPGA and a host ARM controller. One of the

CAN nodes was working as a transmitter node while the other three nodes primarily

worked as receivers but were set up to generate messages randomly to create a real

world CAN network. The transmitter node was setup to generate a message at

an interval of 1 millisecond, where a message of random length and contents was

149

Figure 7.2: Average vs ideal transmission times

generated each time and after every 50 message transmissions a best and worst case

stuffed message was inserted. An independent ARM board was set up to receive

two signals, one each from transmitter and one of the slave node, this was used to

capture the transmission time between the start of a message on transmitter and

successful reception on a receiver node. These tests were conducted over different

periods ranging from 2 to 24 hours continuously.

The results of the study are given in Figure 7.2 and Table-7.1, the ideal transmis-

sion times for bit-stuffed frames has been calculated using Equation 7.3.2 modified

from Equation 7.3.1 given in [NHN02].

8di + 34 + 13 + ⌊8di + 34− 1

4
⌋ (7.3.1)

ci = 31.τm +

[
16 + 8di + ⌊

15 + 8di − 1

4
⌋
]
.τs (7.3.2)

In which the parameter di are the number of bytes in the payload of frame i. τm and

τs are the M-zone and S-zone network bit times. The results in Figure 7.2 indicate

the average transmission times of worst case stuffed messages for number of bytes

ranging from 1 to 15 compared with the ideal worst case transmission times. It is

clearly evident that the average values are very near to the calculated ideal values.

150

Bytes Ideal time(µsec) Average time Std Dev Max-Min time
1 37 37.6907 0.1783 3.1734
2 39 38.9368 0.1786 2.9766
3 41 40.9210 0.1674 3.2226
4 43 42.1386 0.1668 3.075
5 45 44.1220 0.1891 3.075
6 47 46.1165 0.1626 2.8782
7 49 48.1082 0.1774 3.2226
8 51 50.0901 0.1807 3.799
9 53 52.0856 0.1574 3.0012
10 55 54.0808 0.1684 3.2964
11 57 56.0700 0.1691 3.1242
12 59 58.0500 0.1707 3.198
13 61 60.0303 0.1757 3.198
14 63 62.0106 0.1672 3.0504
15 65 63.9915 0.1617 3.1242

Table 7.1: Statistics from the case study

Messages with higher data lengths have transmission times of averages less than the

ideal worst case values, which is evident in the enlarged view of Figure 7.2, hence

strengthening the argument that the addition of padded bits with overclocking mech-

anism has little effect on transmission times. The statistics presented in Table 7.1

show a comparison between calculated worst case transmission times and observed

behaviour of the proposed implementations, such as the standard deviation from the

mean values varying in range of 0.1-0.2 µsec. This is a considerable achievement,

when compared to the previous techniques, keeping in view the transmission jitter of

existing CAN 2.0B messages which are in range of 1 to 34 µsec for message lengths of

upto 8 bytes when clocked at 1 Mbps. The Figure 7.3 shows a comparison between

the worst and best case transmission times of the proposed scheme and the CAN

151

Figure 7.3: Worst case vs best case transmission times

2.0B messages. An evident gap exists between the worst case and best case transmis-

sion times. While the statistics of Table 7.1 also shows that the difference between

peak maximum and minimum transmission times for various data length messages

recorded using the proposed scheme is on average around 3.1 µsec, it is a substantial

improvement of 10 times over conventional CAN worst case frame transmission times.

These data would suggest a significant improvement over previous methods, both

in terms of transmission jitter and information throughput. For example, Nahas et al

[NPS09] quote difference and average jitter figures of 4.1 µs and 0.7 µs respectively

when using the SBS technique on almost identical hardware, and sending 5 bytes of

random data in an 8-byte CAN frame @ 1 Mbps (note that the remaining 3 bytes are

reserved for use by the SBS protocol employed by Nahas et al). As shown in Table

7.1, the data suggests a further improvement over SBS with max-min and average

jitter figures of 3.07 µs and 0.19 µs respectively, when sending 5 bytes of data. Also,

note that in this case (unlike when using SBS) only 5 actual data bytes need be

sent; maximum and average message transmission times are therefore reduced by

a significant factor (>50%), thus making potentially significant improvement in the

total information throughput.

152

7.4 Conclusion

This chapter deals in detail with the problems of bit stuffing jitter which can affect

the predictability of message transmission times and has proposed and implemented

a technique which does eliminate jitter to a minimum level with the expense of some

added information. The addition of a data plus field has the ability to virtually

eliminate transmission jitter and precisely control the amount of retransmission that

is allowed for a given CAN message. The modified controller has been shown to

be capable of transmitting CAN frames with an increased data payload size, and

the presented techniques are also applicable and effective in these cases. Although

initial experiments with the technique indicate its effectiveness, it does have several

drawbacks; it seems unlikely that such a scheme can be made backwardly-compatible

with existing CAN implementations. When employed in a mixed system with one or

more standard CAN controllers, numerous errors (most notably bit stuffing and CRC

errors) are observed and signalled. A potential area of future work would be exam-

ining any possible impact of the techniques on bit-error susceptibility and message

transmission failure-rates in noisy environments.

Chapter 8

Predictable Windowed
Transmission

A real-time communication system lays the foundation of a distributed control appli-

cation [LKJ99], and can be divided into soft or hard real-time, based on the schedules

or tasks running in the control application. A hard real-time communication is one

where a message delivery under its deadline is a must or otherwise it is taken as a lost

or useless message. Meeting time constraints especially in hard real-time messages

is a critical requirement and hence appropriate scheduling for transmitting messages

is required. In shared embedded communication networks, the scheme to access the

bus and taking control of it is of utmost importance for timely transmission of mes-

sages. In these networks any node can compete to take control of the medium and

hence remaining nodes have to back off, at least till the transmission has finished

and the communication medium is free. This can cause uncertainty in designing a

time schedule for hard real-time communication. One viable solution is to assign a

time slot to each of the participating nodes in a time period, hence no other node

would try to access the medium. This type of transmission is called time-triggered

communication. A time trigger is a control signal that is generated at a particular

point in time of a synchronised global time base.

Many embedded multiple access networked systems employ TDMA-based or ”time-

triggered” communications, which have several key benefits. Various studies, both

153

154

Figure 8.1: TDMA structure with inter-slot spacing

empirical and simulation based, show that it increases the predictability and over-

all reliability of the network, along with several other benefits (for example, [Kop00,

SP07, SPF08]) -have shown that these time line benefits are most often at the expense

of message transmission reliability, as the schemes crucially depend upon the enforce-

ment of ”single-shot” message transmissions; even a single bit-error during a TDMA

slot leads to a message being omitted or discarded.) For critical message streams

requiring a specified level of reliability of delivery, duplicated message instances, in

the form of redundant slots in the TDMA cycle, will often be required.

8.1 Problem Formulation

CAN supports guaranteed delivery with no upper bound of re-transmission attempts

in case of failures. Hence this makes CAN highly supportive for event-triggered

or soft-real time communications between unsynchronised nodes [Bos91, Kop00]. A

potential drawback with most existing time-triggered CAN implementations lies in

the enforcement of single-shot message transmissions; although this effectively bounds

worst-case message transmission times, single bit-errors may directly lead to critical

message omissions [SP07, BB01].

155

8.2 Related Work

This section analyses the basics of time-triggered communication, as already discussed

with the protocol level enhancements of CAN and other protocols in chapter 2 related

to time-triggered communication.

8.2.1 Time-Triggered CAN Communications

A number of hardware and software-based protocol extensions and modifications have

been proposed to enable time-triggered communications on CAN; comprehensive re-

views are provided by Short & Pont [SP07] and Rodriguez-Navas et al. [RNRP08].

The described techniques tend to rely on the use of a global clock which, in turn, sup-

ports a Time Division Multiple Access (TDMA) message schedule. Key to achieving

clock synchronisation is the reliable broadcast of time reference messages from a ”time

master” node. These reference messages are then generally used with a hardware or

software-based distributed clock synchronisation algorithm.

The general goal of all these protocols, whether hardware or software based, is

the creation of a collision free (and hence arbitration free) bus access schedule, such

as that depicted in Figure 8.1 [SP07]. Due to the finite clock error e which always

exists between any two clocks in the distributed system, a small inter-slot spacing

P = 2e must be employed. In general, designing a message schedule to meet a given

set of period requirements is strongly NP-Hard, but in practice many fast algorithms

(both optimal and heuristic) are known to generate feasible TDMA schedules (see

e.g. [SN06][HBS09]). It is not uncommon to achieve bus utilisations in excess of 90%

using such techniques [SP07].

156

8.2.2 Fault-Tolerant CAN communications

As has been argued by many previous authors, the notion of global time - and the

requirement for clock synchronisation has become of great relevance when CAN is

employed in dependable applications (e.g. [SP07, RNRP08, FH00]). When messages

are required to be sent over multiple redundant CAN channels to improve reliability,

then replica determinism becomes a requirement. Replica determinism can be en-

forced - in part - by the use of single-shot transmissions or upper bounding the latest

time that a message may commence transmission. If replica determinism can be en-

forced, then multiple redundant and fault-tolerant CAN networks may be operated

in parallel to increase the reliability of the physical layer.

When messages are subject to interference such as electromagnetic disturbances,

this tends to manifest itself as random bit errors on the network. In response to any

detected errors, under the CAN protocol an error frame is generated, which may have

a length of up to 31 bits [DBBL07]. Due to the automatic retransmission mechanism

of CAN, in a real-time system this can be very problematic due to deadlines being

missed in a ”domino-style” effect [BB01]. Experimental studies would seem to place

the Bit Error Rate (BER) for CAN in the region of 10−10 in ’benign’ environments,

increasing to 10−6 in ’hostile’ environments [FOFF04]. In some extreme cases, BERs

as high as 10−3 have been reported for vehicles operating in close proximity to sources

of large electromagnetic disturbances, e.g. radio transmission stations [GN04].

With this in mind, in a real-time application some form of time out or upper bound

is required to limit the worst-case transmission time of a given frame; in a hard real-

time system, it is better not to receive a message (if this improves subsequent time

lines) than to receive the message late. Unfortunately, such time outs are not provided

157

as a standard CAN feature; at the expense of local CPU overheads, several techniques

have been described to enforce this behaviour. Previous works such as [RNRP08] and

[FH00] have suggested that only single-shot transmissions be attempted in the TDMA

round. For critical message streams, duplication of messages can be used to achieve

the desired reliability. For a message with c bits to be transmitted in an environment

with a BER of β, if r message duplicates are sent then the probability of failure is

given as follows:

λ = (1− (1− β)c)
r

(8.2.1)

However, in many cases sending full message duplicates, provides a bandwidth-

inefficient solution to this problem. Since bandwidth is relatively scarce in CAN

networks, this can be a major issue. Another interesting scheme similar to the cur-

rent work - is the ”Timely CAN” scheme proposed in [BB01]. The author proposed

a reliable technique to upper-bound the latest time that a particular message can

be scheduled for re-transmission in native CAN networks under an optimal priority

assignment, in order to prevent domino-effect deadline misses. First, an estimate of

message worst-case response times is obtained (It should be noted that the original

analysis provided in [BB01] contains an error due to ”push-through” blocking; this

was corrected by Davies et.al to add the worst-case error frame overhead in worst-case

response time calculations [DBBL07]). From these estimates, the worst-case message

transmission times are subtracted to obtain the required ”time out” parameters. In

the worst-case, a single bit error will still lead to an omission; however if ”slack” is

placed in the time out, then a limited amount of re-transmission can be achieved.

The amount of slack employed can be determined by adding an error model, where

error arrivals are treated as sporadic events [DBBL07, PHN00]. In the next section,

158

an efficient and generic solution (which builds from the work in [SP07] and [BB01])

which is applicable to TDMA-operated CAN networks will be proposed.

8.3 Solution Outline

A notion of the λ-firm real-time constraint is introduced. Such a constraint intends

to provide a multi-criteria real-time/reliability guarantee, which can act as an ex-

tension to existing time-triggered transmission schemes. A bounded amount of re-

transmission is allowed for each message within its pre-defined TDMA slot, providing

increased reliability in the presence of errors. Message instances will either be deliv-

ered on-time or omitted, with the probability of omission lower than a pre-specified

failure rate λ.

An efficient algorithm for calculating optimal message window sizes is presented in

this section, to ensure that statistical guarantees of timely delivery in the presence of

errors are provided. This is a simple technique to act as an extension to existing time-

triggered transmission schemes, in which an effective ”window” is defined for each

message. A bounded amount of re-transmission is allowed for each message within

its defined window; the window size (as opposed to basic frame size) is then used to

pack the frame schedule. This effectively provides a bandwidth-efficient compromise

between the two extremes.

8.4 Proposed Windowed Transmission Scheme

The proposed windowed transmission scheme is relatively simple. An assumption is

made that a CAN message set is made up of n message streams, each stream f being

159

Figure 8.2: Basic concept of a windowed transmission

described by the following four parameters:

fi = (pi, ci, di, λi) (8.4.1)

Where pi is the message period, ci is the message (worst-case) transmission time, di is

the message relative deadline and λi is the target failure rate of the message stream,

specified as a probability of unsuccessful transmission per unit time. Note that λi

may be derived from a higher-level safety analysis, e.g. a Safety Integrity Level (SIL).

8.4.1 Basic Concept

The proposed technique intends to provide the following multi-criteria real-time/reliability

guarantee: if a message is delivered, it is delivered on time; if a message is not deliv-

ered (omitted), the failure rate for omission is ≤ λi. The scheme is best illustrated by

way of example. Suppose there is a a critical message ”X” that requires two duplicate

copies to be sent every TDMA cycle. Figure 8.2 (top) shows such a situation, where

160

for clarity the duplicated copy is assigned a slot immediately following the original.

Suppose that a bit-error occurs in both of these slots, as shown in Figure 8.2 (middle)

this will lead to both messages effectively being dropped, which can potentially re-

sult in wasted bandwidth, as only single-shot transmission is allowed. However, now

consider the situation depicted in Fig 8.2 (bottom), both slots are merged in a single

window of length m, where m is specified in network bit times; (re)transmission of

message X is only allowed from the start of the slot, up to the point labelled ”Up-

per Bound X”, i.e. m-c units after transmission has first been requested. As can

be seen, this has a positive effect on the reliability of the message delivery; even

when numerous bit-errors occur, the probability of successful message delivery can

be maximised.

As shown in Figure 8.2, the slots have effectively been merged and only a sin-

gle inter-slot spacing is required. In fact, in most cases the required window size

can be reduced by a significant amount over sending duplicated single-shot copies;

much better use can be made of the available bandwidth. For each of the messages,

once the slot sizes mi have been determined, the TDMA schedule may be created

using appropriate techniques. However, this raises an important question; namely,

for a given message length and bit error probability, how large does the transmission

window have to be to ensure the message will be delivered with the required proba-

bility? This question will be addressed in the following two sections, beginning with

computation of optimal window sizes.

161

8.4.2 Computing the Optimal Window Sizes

This Section will first consider how the probability of a successful transmission can

be computed for increasing values of m. As with previous works, consider the trans-

mission of successive bits on a CAN network in a noisy environment to be a Bernoulli

process, with the probability of success given by (1−β), and the probability of failure

given by β, where β is the BER. The following theorem establishes that the proba-

bility of successfully transmitting a message in a window of size j can be formulated

as a one-dimensional Bernoulli sequence problem.

Theorem 8.4.1. If the probability of an individual bit failure is β, then the probability
pj that at least b bits have been consecutively transmitted without error in a sequence
of j bits (with j > b) can be calculated recursively as follows:

pj = pj−1 + (1− pj−b−1) β (1− β)b (8.4.2)

Proof. by induction on j

Base case: for j ≤ b

When the number of bits transmitted is less than b, achieving a consecutive stream
of b bits (with or without error) is impossible, thus p0 = p1 = p2 = pj−1 = 0.

case j = b:

it is a well known statistical property that

pb = (1− β)b.

Inductive step case: for all j > b

pj must be equal to the summed probabilities of a successful outcome in any one
of the previous j− 1 trials (Σ term), plus the additional probability that a successful
sequence has just been received with the jth bit completing the run of b successes (∆
term). Given the recursive solution, taking the summation of pj−1 at every step gives
the required Σ term, since at step jpj

(Σj +∆j) = (Σj− 1+∆j− 1+∆j) = (Σj− 2+∆j− 2+∆j− 1+∆j) = (Σi <
jpi +∆j).

162

Figure 8.3: Conditions required for a successful outcome at the jth step

Considering the ∆ term, as shown in Figure 8.3 the following series of events must
occur:

1. At step j, the last b bits have been received without error; i.e. bits j − b + 1
though j inclusively have been successes, with combined probability (1− β)b.

2. The bit received at step j − b must have been received in error to start the
sequence (else there was b+1 or more consecutive successes), with probability
β.

3. Prior to this - at step j− b−1 - no successful run of b consecutive bits had been
received, which by definition of pj is given by the probability (1− pj−b−1).

Thus the ∆ term consists of the combined probability of these events occurring,
i.e:

∆j = (1− pj−b−1).β.(1− β)b.
Thus stating that
pj = (Σj +∆j) = pj − 1 + (1− pj−b−1).β.(1− β)b.

Hence the theorem is proved.

From this result, a simple algorithm may be derived to determine the optimal

window size for a particular message. This is the subject of the next section.

8.4.3 Optimal Window Sizing Algorithm

A relatively simple algorithm is derived in the last section, to determine the smallest

value of m (window size) such that a message requiring b bits can be transmitted

with a failure probability ≤ λ, in an environment having a BER of β. It is clear that

163

the loop between lines (1) and (2) of the algorithm 8.4.1 will not terminate until the

first value of m such that (1.0− pm) ≤ λ has been found, or m exceeds the message

relative deadline d which is supplied as an input parameter and expressed in network

bits.

Algorithm 8.4.1: Windowed Transmission(lower, upper)

procedure Optimal Window(b, λ, β, d)

for i← 0 to b− 1

do
{
pi := 0;

pb := (1− β)b;

m := b;

while ((1.0− pm) > λ) and (m < d)

do

{
m := m+ 1; (1)

pm = pm−1 + ((1− pm−b−1).β.(1− β)b); (2)

return (m)

8.4.4 Algorithm Analysis

Given that pj is a monotone increasing function of j (due to the Σ term combined

with the ∆ term, which is always > 0 for input values λ ∈ (0, 1) and β ∈ (0, 1)), the

algorithm is guaranteed to converge. However, for small λ and large β, convergence

may take some time; given the real-valued representation of these parameters, it is

very difficult to provide a (worst-case) run-time bound on the time complexity of the

algorithm, when the input is expressed in bits. In a real-time application, however,

it can be observed that the message can never meet its deadline (with probability

less than λ) if its window size exceeds the message deadline. As such, the additional

164

termination condition applied in the ’while loop’(m < d) bounds m such that the

algorithm terminates when m = d, where d is the relative deadline of the message,

expressed in bit times. Note that an appropriate error message can be generated at

this point. As with response time analysis, this effectively bounds the time complex-

ity to be pseudo-polynomial in the task parameters. For n message streams, optimal

window sizes may therefore be computed with complexity O(ndmax).

In terms of the required memory storage space, it can be noted that only the

last (b + 1) values are required to be stored for the recursion. Therefore an array of

size b + 1 can be used to limit the required memory storage of the algorithm; this

array may be indexed m|b + 1| to effectively overwrite old calculations. Since b is

upper-bounded by the very nature of the CAN protocol a message can only carry up

to 8 bytes - the memory storage requirements have complexity O(1).

8.4.5 Illustrative Example

Example 1: Suppose a message with b = 5 bits required to be transmitted, with a

failure probability λ = 0.1, in an environment having a BER of β = 0.2. Running

the algorithm described above on this example yields the values as tabulated for pm

in Table 8.1, terminating when the target failure rate is achieved with m = 19 and

the probability of success p19 = 0.91. By contrast, only duplicate copies of the 5-bit

message is allocated, then according to Equation 8.2.1, 6 copies (= 30 bits) would be

required; the windowed approach leads to a saving of 36.7% in terms of the number

of bits requiring transmission.

Example 2: Suppose there is a critical CAN message using 11-bit identifiers,

requiring 8 bytes of data thus b = 166 bits are required to be transmitted (135 bits in

165

m pm m pm m pm m pm
0 0.00 5 0.33 10 0.66 15 0.83
1 0.00 6 0.39 11 0.70 16 0.86
2 0.00 7 0.46 12 0.74 17 0.88
3 0.00 8 0.52 13 0.78 18 0.89
4 0.00 9 0.59 14 0.81 19 0.91

Table 8.1: Computing the optimal window size for example 1

the main message plus 31 bits for a worst-case error frame [DBBL07]), with a period

p = 100ms. The safety integrity level of the system specifies a target failure rate of

λ = 1.0×10−9, in an environment with a BER of β = 2.6×10−7. Since 36000 messages

are to be sent every hour, the probability that a single instance of this critical message

is not delivered should be ≤ 2.78× 10−14. Running the algorithm described above on

this example reveals that the target failure rate will be achieved with m = 489, and

the probability of failure with this size window is p489 = 1.34 × 10−14. By contrast,

if we must allocate only duplicate copies of the 166-bit message, then according to

Equation 8.2.1, 4 copies (= 664 bits) would require transmission. In this case the

windowed approach leads to a saving of 26.4% in terms of the number of bits requiring

transmission.

8.4.6 Bursty Links

The analysis given in the sections above considers only the case of uncorrelated error

behaviours. In order to begin to consider the effects of burst errors, a basic approach

would be to consider β to be the burst error rate, with each burst having a duration

of exactly u bits. In this case, bursts can be considered by adapting the delta term

as follows:

∆j = (1− pj−b−u).β.(1− β)b; (8.4.3)

166

In other words, the error in j-bth bit is in fact the last in a sequence of u consecutive

errors, and taking the convention that pj = 0 for j ≤ 0. With D = 1, the bit

and burst error behaviours become identical. However, this may result in somewhat

conservative values of m. Employment of more detailed error models (e.g. based on

Markov chains [Gil60]) which are known to accurately model burst behaviours, should

improve the situation. The next section describes some practical issues related to the

implementation of the proposed transmission scheme.

8.5 Implementation Issues

In order to successfully implement a windowed transmission scheme, as prospective

designers may choose either software-based or hardware-based solutions, or a combi-

nation of the two, some of the merits of both approaches are given:

8.5.1 Software-Based Solution

Some modern CAN controllers now have direct hardware support for single-shot mes-

sages transmissions. Much previous work has concentrated on the creation of software-

based protocols to enforce this behaviour, as native CAN does not directly support

time-triggered communications. In order to implement message time-outs within such

a frame work, then one possible solution would be as follows. In time-triggered sys-

tems (under fault-free conditions), when a message is scheduled for transmission by

the host CPU the bus should already be in the idle state. To enforce a time-out on

message i, the host can simply set a (high-priority) timer interrupt to occur mi time

units into the future just prior to setting the transmit request (TXRQ) flag in the

CAN controller. When this interrupt occurs, the host immediately resets the TXRQ

167

flag in the controller. The main advantage of this solution is that it is relatively sim-

ple. However it has several drawbacks; any jitter and latency affecting the servicing of

the ISR coupled with clock drift between the host timer and the CAN bus oscillator

- may skew the actual (real) time the transmission is cancelled. It also requires the

use of a timer with at least as good a precision, as a CAN network bit time may also

place a relatively large load on the CPU if there are numerous messages to transmit.

8.5.2 Hardware-Based Solution

In the context of the current work, a powerful modification to CAN in hardware is

proposed and implemented. In addition to allowing, each CAN object in the con-

troller to be operated in ”standard” or single-shot mode, a third mode of operation -

windowed mode - was introduced. In this mode, a 32-bit hardware counter C (when

active, increments by 1 with every bit time on the bus) and two additional 32-bit

match registers (CLB and CUB) is attached to each CAN object. In addition, the

host CPU sees an effective TXRQ bit, but this is in fact a dummy, used only for

interface purposes; a hidden register TXRQ#, controls the actual transmission logic.

When a host initiates a message transmission (setting TXRQ), the counter C is re-

setting to 0; setting of the TXRQ# bit of the CAN object is delayed until C = CLB.

Also, when C = CUB, both the TXRQ and TXRQ# bits are automatically reset in

hardware. Since C increments at the same rate as the bit-time, this provides for a

programmable allowed transmission window for a given CAN object which does not

require the need for further CPU intervention. Additionally, the impact of jitter and

latency on the host CPU is minimized, as the timer is referenced to the local oscil-

lator. The only potential drawback of this solution is that it requires a very small

increase in hardware complexity. However, since this modification not only allows

168

Figure 8.4: Successful windowed transmission with a fault

Figure 8.5: Unsuccessful windowed transmission with faults

the effective implementation of the alternate (similar) protocols such as the Timely

CAN [BB01] and shared-clock [APSP07] protocols, this very simple hardware change

could easily be incorporated into future generations of CAN controllers.

Here, the working of this modification is described with the help of real-time

snapshot from the Chipscope as shown in Figures 8.4 and 8.5.

Figure 8.4 shows a scenario where a transmission is successful after an error oc-

curred during the first transmission attempt. As the error occurred inside the trans-

mission window, the concerned node was allowed to retransmit the unsuccessfully

transmitted message. Another important signal in the snapshot is the Tx Request

which indicates the difference between the standard CAN protocol and the windowed

transmission. In standard CAN a node would start to transmit as soon as transmit

request is received and the CAN bus is free. In the windowed transmission the node

will wait until the start of the transmission window although the transmit request

169

has been received and the CAN bus is also free for transmission.

Figure 8.5 shows a scenario of burst errors. In this snapshot three errors occurred;

two inside the transmission window and the third one outside the transmission win-

dow. As soon as the third error occurred, the message was dropped, demonstrating

successfully the working of the window transmission scheme, which is quite a good

solution for TDMA or time slot based transmission.

8.6 Simulation Study

In order to begin to investigate the proposed technique, a small simulation study was

carried out. This study was carried out to assess the potential bandwidth savings that

may be achieved by employing the windowed technique as the message parameters

are varied. Three experiments were carried out. In each experiment, 100,000 message

streams were generated with parameters randomly selected (using a uniform distribu-

tion) from the following intervals: pi ∈ [1, 1000]ms, DLCi[0, 8] bytes, λi[10
−9, 10−5]

failures/hour. Standard and extended identifiers were randomly employed; a 31-bit

worst-case error frame was also added to the length of each message. The gener-

ated target failure rates cover all four SIL’s as specified in IEC 61508, and individual

message failure rates were derived from the target λs based on their periods. Three

different classes of BER were employed; Benign/Normal with β ∈ [10−9, 10−7], Nor-

mal/Aggressive with β ∈ [10−7, 10−5] and Aggressive/Hostile with β ∈ [10−5, 10−3].

In each case the percentage reduction in the number of bits requiring transmission

was calculated when employing windowed transmission and message duplicate trans-

mission. The average and maximum recorded values for each environment are as

shown in Table 8.2. Also shown is the average and maximum recorded window sizes

170

Percent reduction Window Size
Environment Average Maximum Average Maximum

Benign/Normal 2.7 33.3 280 571
Normal/Aggressive 12.0 33.2 410 797
Aggressive/Hostile 29.1 39.1 810 1883

Table 8.2: Reductions in bits required for transmission

m, which also gives an indication of the quick convergence of the slot sizing algorithm,

even for low failure rates and high BERs.

From this table, it can be seen that the average effectiveness of the proposed

technique depends upon the target environment; the worse the expected BER, the

higher the average reduction in bandwidth required. For hostile environments, an

average 29% reduction can be achieved. Given the scarcity of available bandwidth

with CAN, this is a potentially large saving. In normal and benign environments,

the average reductions drop to 12% and 2.7% respectively; however, the best case

reductions remain at around 3%. In each case, the worst-case reductions were 0%,

i.e. the technique performed is no worse than sending full duplicates.

8.7 Experimental Study

8.7.1 Experimental Configuration

The test bench employed 4 nodes communicating over a CAN bus, using the modified

FPGA CAN controllers as described above. Figure 8.6 shows a schematic of the test

bench configuration, the CAN network configured to run at 1 Mbps. Each node in

the system sends a message, with a fixed schedule given in Table 8.3. In each case,

the data size is 8 bytes, corresponding to a worst-case message length of 165 bits.

Medium access control was implemented using a static TDMA schedule, repeating

171

Figure 8.6: Test bench employed in the experiments.

every 8 ms. A bandwidth allocation of 300 bits per slot was allotted. In order to

prevent any clock drift issues potentially impacting on the results, the node clocks

were explicitly synchronised using a separate strobe line from a designated master

node to the 4 slaves. A tick is generated every ms using a timer overflow interrupt.

The data content of each message sent by each CAN node was generated ran-

domly, but the identifiers were kept constant for identification of the CAN node. As

shown in the Figure 8.6, an additional node was used to inject faults onto the CAN

172

Message Period (msec) CLB(µsec) CUB1/CUB2(µsec)
A 1 0 1/165
B 2 500 501/665
C 4 1500 1501/1665
D 8 3500 3501/3665

Table 8.3: Static schedule running on the CAN nodes

bus. A pseudo-random fault generation algorithm was employed on the fault injec-

tor node and was configured to disturb the bus and inject bit errors with a uniform

BER of approximately 0.5× 10−4, corresponding to an aggressive environment. Two

experiments were conducted, each for a duration of 24 hours. In the first experiment,

standard single-shot transmission was used in each TDMA slot. In the second, the

window transmission technique was employed. The corresponding CUB and CLB

values to achieve the desired behaviour for experiments 1 and 2 are shown in Table

8.3. For both experiments, in error-free conditions 1875 messages should be sent every

second. During the course of the two experiments, the master node was employed to

receive all messages successfully sent by each CAN node, and this count was logged in

memory. The logged data was then transmitted at regular intervals through a serial

interface to a data logging PC. The results obtained are described in the next section.

8.7.2 Results

Experiment 1

Message transmissions were only single-shot during the TDMA slot. Only a single

message copy could be sent in the allotted slot size of 300 bits. The statistics found

were as follows:

The average number of messages successfully received every second over the test

173

run was 1871.58, therefore an average drop of 1875-1871.58 = 3.42 messages per

second. The probability of successful delivery is therefore, approximately 0.9925. The

standard deviation from the mean was 2.31 messages. The maximum and minimum

values recorded over the duration of the test run were 1875 and 1871 respectively.

Experiment 2

Message transmission attempts are allowed up to 165 bits following the start of the

TDMA slot. The statistics found were as follows: The average number of messages

successfully received every second over the test run was 1873.80, an average drop of

1875-1873.80 = 1.2 messages per second. The probability of delivery is therefore,

approximately 0.99936. The standard deviation from the mean was 0.61 messages.

The maximum and minimum values recorded over the duration of the test run were

1875 and 1873 respectively.

8.8 Discussion and Conclusion

As can be seen from the results, the window technique significantly improved the

reliability of message delivery over the course of the experiments. For a bit error

rate of 0.5× 10−4 and 165 bit messages, the expected probability of message delivery

is 0.99936, which is close to the value obtained in simulation. Using the techniques

described in section 4, for m = 300 the expected probability of delivery is 0.992, again

close to the value obtained. Although the fault injection conditions were somewhat

artificial and ideally realised in the experiments, the results obtained provide some

justification for the proposed techniques. However, further experimental work (em-

ploying more advanced error models, and including comparisons against duplicated

message streams) should provide a better picture of the expected behaviour of the

174

technique in realistic situations.

This chapter has considered the potential timeliness benefits and reliability draw-

backs that may occur when implementing TDMA based networked sensing systems.

The notion of an l-firm real-time constraint intends to provide a multi-criteria real-

time/reliability guarantee that is well suited to the probabilistic nature of real-time

sensor networks. An algorithm to compute the smallest TDMA slot sizes so that mes-

sages can meet a λ−firm irm real-time constraint has been described. In comparison

to sending full message duplicates, simulation and empirical studies both indicate that

the technique can - in some cases - significantly reduce the required bandwidth whilst

maintaining both reliability and time line. Equally, for a given bandwidth allocation,

the technique can significantly improve reliability whilst maintaining time lines.

Chapter 9

Case Study

The basis of this chapter is a comprehensive case study covering all the modifications

discussed in the previous chapters. A number of experimental case studies will be

presented, based on the Windowed transmission scheme. Two of the related experi-

mental case studies on ”windowed transmission” and ”single-shot transmission” has

already been presented in the last chapter. This chapter will present a further com-

bination of modifications on the standard CAN protocol presented in chapter 6 and

7. The experiments run on the same static schedule given in Table 8.3.

Based on their results, these detailed case studies are evaluated to find out whether

the modifications have increased reliability, predictability and the rate of transmission

to the standard Controller Area Network.

9.1 Modifications to the Test Bench

To conduct these studies basic setup of the test bench is slightly different as described

in the last chapter. The experiments with the overclocked and fixed length messages

have a modified CAN frame structure, therefore, normal off the shelf CAN controllers

will not be able to identify these messages successfully. The modified controllers, if

connected to these off the shelf CAN controllers, will first flood the network with error

frames and will then goes in to bus off state after unsuccessful receipt of messages.

These experiments ran for an average length of 24 hours, with each scheme running

175

176

Maximum(µsec) Minimum (µsec) Average(µsec)
73 1 23.2

Table 9.1: Statistics of the Fault duration

with and without fault injection. The fault injection is of random duration and

interval, the mean of distribution of the faults is 2 per second. Another aspect which

has to, be considered before analysing the results based on different schemes is that

the test bench designed here is not at the industry level, so any random errors can

occur during transmission due to impedance mismatch and reflections on the CAN

bus, although standard wiring and termination was used. Table 9.1 are showing

statistics of fault injections.

A total of 12 experiments with 6 different configurations on this facility were

conducted. These experiments examine different aspects of the controller, with and

without fault injection. Two of these configurations windowed, and single-shot ex-

periments have already been discussed in the last chapter. Each experiment ran for

a period of 24 hours. The statistics for the fault injection is shown in the Table 9.1.

Different experimental configurations are presented in this section.

9.1.1 Running a Static Schedule on Standard CAN Network

Experiments were conducted, involving transmission of the standard CAN message

following a static schedule as shown in Table 8.3. This schedule was partially followed

as there was no upper or lower transmission bounds. Transmissions followed the

standard CAN protocol, with guaranteed delivery and with infinitesimal number of

retransmissions. This schedule ran successfully on a standard CAN.

177

The static schedule based on a TDMA cycle, and the messages should not en-

counter any contention. Therefore, the messages should be transmitted without a

delay or failure. With the injection of faults, specially with burst errors, the cor-

rupted messages have to wait before being retransmitted. This will cause pending

messages to be delayed further as some of them have to face arbitration on the bus.

Hence this message schedule is delayed further without bounds, therefore, it can be

said that a fixed message schedule is unlikely to be followed when running a standard

CAN within a noisy environment.

9.1.2 Windowed Transmission with Overclocking

Overclocking is a scheme where certain fields of a message are sent at a higher rate

than the other fields. This scheme is successfully implemented for Controller Area

Network with transmission speeds of 10 Mbps. In this experiment, the S-zone of the

CAN messages were overclocked from 1 to 2 Mbps. The reason not to include higher

rates of overclocking is due to the high number of errors which are encountered due

to transceiver internal delay.

9.1.3 Windowed Transmission with Fixed Length Messages

Fixed length messages were proposed to increase the predictability of message trans-

mission times and reduce the jitter in transmission times, as the message lengths

are fixed. The results should not be too different from the CAN standard protocol

running the window scheme, as the only difference is that the susceptibility of error

is increased due to longer duration of messages.

178

0

50000

100000

150000

200000

250000

300000

350000

Average Message Dropped

Without Faults

With Faults

Figure 9.1: Average message drops per second

9.1.4 Windowed Transmission with Fixed Length and Over-

clocked Messages

This case study comprises of fixed length, over clocked messages, therefore the im-

provement in information throughput reduces the effect of extra bits in a fixed length

message. The TDMA slot has been set to be 165 bit times.

9.2 Discussion and Analysis

In this section, results and analysis of the 12 different experiments are presented,

based on 6 different configurations with and without fault injection on the modified

CAN IP controller.

Figure 9.1 shows the number of dropped messages for the complete run of 24 hours

on an average basis in each experiment. For reference, the ideal number of successfully

transmitted messages should be 162× 106. Figure 9.2 shows the standard deviation

on the average messages dropped per second thus showing the variation span of the

179

Figure 9.2: Standard deviation of message drops from the mean

number of messages dropped. Table 9.2 gives the statistics of these experiments. The

transmission rate is 1 Mbps for all other schemes when overclocking the rate varies

from 1 to 2 Mbps.

First the results for experiments without external faults are considered. The

results should and are pretty straight forward. With standard/modified CAN protocol

following the TDMA schedule, there should be no message drops considering that

this experiments were conducted in a benign environment [FOFF04]. The messages

should not experience any contention for the bus access and therefore the messages

should be transmitted without any delay. There is an exception in the results, when

messages are overclocked. Even with no external errors injected, 0.5 to 0.54 messages

per second are dropped. However with external errors the CAN transmission at an

over clocking from 1 to 2 Mbps, and BER of 2.4 × 10−6, the failure rate gives a

value of 0.68 errors/second. The reasons have been analysed in chapter 6, and have

suggested a remedy to increase the performance of overclocked networks in higher

BER’s. The transmission behaviour tends to vary in case of faults induced with

different experimental configurations. In the first case, of non-windowed transmission,

180

Mode Without Fault With Faults
Maximum Minimum Average Std Dev Maximum Minimum Average Std Dev

CAN Standard 1875 1874 ≃1875 0.001 1875 1872 1873.21 1.30
Single Shot
Window

1875 1874 ≃1875 0.031 1875 1861 1871.58 2.39

Windowed
CAN

1875 1874 ≃1875 0.0001 1875 1873 1873.80 0.61

Overclocking 1875 1873 1874.5 0.35 1875 1870 1873.66 1.21
Fixed Length 1875 1874 ≃ 1875 0.011 1875 1871 1873.92 0.48
Fixed & Over-
clocked

1875 1873 1874.46 0.39 1875 1869 1873.62 1.27

Table 9.2: Statistics for message transmission

without any faults, there are no message delays due to non-contention on bus access.

With induced faults, messages which meet errors, are re-transmitted, as there is no

upper bound on re-transmission attempts and the next scheduled messages are further

delayed, which can create a domino effect. These messages will now be queued till

they are successfully transmitted, so nodes with pending messages have to arbitrate

for the CAN bus, before transmitting these messages. Single Shot transmission has

encountered the highest number of message drops per second, this is due to a single

transmission attempt being allowed in the scheduled cycle. A single-bit error can

delay the transmission and the complete message has to be re-transmitted. As can

be seen in Figure 9.1, that when compared with the SS mode of transmission almost

every windowed scheme showed a 200% increase in transmission reliability. Single shot

transmission is used in few of the time-triggered protocols such as [FH00] and does

not provide any mechanism to improvise in case of failures or errors. The messages

are dropped immediately and remain pending till the next TDMA slot.

Looking at the different configurations employing windowed transmission, im-

proved performances in comparison to the non-windowed schemes can be observed.

The improvements are significant except in case of overclocked messaging, where there

is a slight degradation of performance, this is due increased BER at high speeds and

181

needs to be compensated by utilizing higher bus voltages. Fixed-length messages have

not made a significant impact on the BER and message delivery success rate, although

the standard deviation of message drop is the lowest in this case. This presents more

accurate and predictable performance with regards to error analysis and is easier to

schedule messages for time critical transmissions. Thus, it can be summarized, that

the modified CAN controller work demonstrated in previous chapters, has helped to

increase the predictability, and meet the time lines of the given schedules. These

modifications have also shown to be effective by reducing the burden on the applica-

tion layer and to neutralize the effects of re-transmissions and bit stuffing introduced

by the standard CAN protocol.

Chapter 10

Discussion & Conclusion

10.1 Reasons and Motivation of the Thesis work

The work described in this thesis relates to the enhancement of the Controller Area

Network protocol to improve the support for predictable, fast and guaranteed message

transmissions.

This research work is based on an engineering design and practical implementation

of the CAN IP core. The key contributions and the extent to which the goals, stated

below, are achieved are discussed here.

Goals of the Research

The goals set for the research was:

1. Improve standard CAN to support time-triggered applications, with an increase

in transmission reliability and speeds.

2. Propose enhancements to CAN at the physical and data link layer, taking a

different research direction then conventional approach of adding enhancements

at the application layers.

3. Implementation of CAN [11893] data link and part of the physical layer on a

flexible plate form, this should be a practical solution.

182

183

4. The CAN standard implementation should conform to the specifications of the

protocol.

5. To envisage and demonstrate the limits to which changes can be done at the

protocol level and the strength of these changes.

6. To propose, implement and run extensive experiments on enhancements done

to the CAN standard protocol.

7. To demonstrate with the help of results obtained from the experiments that the

goal set in point 1, CAN is now closer to support time-triggered applications,

higher speeds and increased transmission predictability, as it was before the

start of this research.

10.2 Review of the Contributions

10.2.1 Findings of the Literature Review

The findings from the literature review indicate that although software based en-

hancements to the CAN protocol can be somewhat effective, they do not address

specific protocol level problems such as bit stuffing, speed limitations and arbitrary

re-transmission attempts in their entirety.

As the nature of the protocol places physical limitations on the CAN data rate,

software changes alone cannot speed up the transmission rate but changes are also

required at the physical layer if this is to be achieved. The other drawbacks of the

CAN protocol such as bit stuffing and TDMA based communication are primarily

concerned with features not likely to be rectified at the application or software layer,

184

or where they are implemented at this level, this could lead to clumsy solutions with

unwanted CPU overheads.

Considering these points, work was started on the improvement of the CAN pro-

tocol at the hardware level. It was decided that in order to achieve the flexibility

required for changes at this level, the protocol should be implemented at the RTL

level, using soft-core technology. This should result in the maximum possible free-

dom to implement modifications and also conduct verification experiments to allow

comparisons to the previous work done in this field.

10.2.2 CAN Protocol in Silicon IP Core

Since this work emphasises the changes at the protocol level, the implementation

of the CAN IP core forms the basis of the work done in this research. A complete

design flow for the implementation of CAN IP core is discussed in Chapter 4. The

basic functional blocks of the CAN protocol with details of implementation in Verilog

HDL is given, followed by a presentation of complete state machine implementation of

the transmit and receive cycles of a CAN message. This follows with the synthesis and

mapping of the design on to the physical hardware i.e. FPGA. The implementation is

shown to be feasible for the chosen hardware, in terms of timing closure and resource

utilisation.

10.2.3 CAN Conformance Testing

Conformance testing of the CAN protocol controller is a complex and costly process.

The ISO has drafted a CAN conformance testing document [ISOa], which enumer-

ates a total of 130 different tests which are required to be conducted to claim CAN

185

conformance.

A relatively straightforward and cost-effective method of CAN conformance test-

ing for soft-core implementation of the protocol is introduced in this research. The

method makes use of integrated logic analysers, along with additional HDL test cores

to perform the conformance tests. The methodology introduced for conformance

testing was purposely designed for IP core testing in a research environment, using

standard lab equipment and software. Integrated logic analysers are an acceptable

compromise between simulation and hardware bench logic analysers. Also, the use of

virtual I/Os and soft-core test pattern generators are a valuable replacement to the

costly and often complex pattern generators needed for conformance testing.

In chapter 5, one test case each from the 7 test classes defined by the ISO document

[ISOa] is presented. In this work more than 65% of the total listed test had been

conducted, these tests had been carefully selected to justify the conformance of the IP

core. The number of tests conducted, covered all the classes and types of conformance

tests. The number of tests conducted were thought of as enough with the reasons

that functionality of each CAN block was tested and also the IP core worked fine

with standard CAN controllers, without any noticeable anomalies.

10.2.4 Overclocking: A solution to Increase Transmission

Speeds

As defined one of the major goals of this research was to improve the transmission

speed of the CAN. Although like other early day embedded protocols, CAN supports

communication for small payload and slow communication speeds. For high speed

embedded applications, CAN is not a choice, and the designers prefer contemporary

186

protocols such as FlexRay [Fle04], to support high speed applications.

In Chapter 6 a scheme of overclocking was presented, which aims to partially lift

the bps restrictions due to propagation delays on the CAN bus. The overclocking

makes use of dual-rate transmission for the data and CRC fields of the CAN frame,

which are sent at a higher rate than rest of the fields. Although this scheme has

previously been discussed in the literature, to date it has not been experimentally

validated as it requires protocol-level modifications. Chapter 6 discusses the first

implementation and testing of the overclocking scheme, achieved with modifications to

the CAN IP core. It was demonstrated that with this implementation of overclocking,

a CAN frame can easily be transmitted at a dual rate of 1/10 Mbps.

In addition to demonstrating the validity of the scheme, experimentation at higher

data rates also revealed the fact that overclocking has a beneficial effect on transmis-

sion jitter. It was identified that the impact of bit-stuffing is minimized due to the

shorter time taken to transmit the data and CRC fields, as these fields are more

susceptible to bit-stuffing.

Although initial experiments with the technique indicate its effectiveness, it does

have several drawbacks, for example the potentially drastic effect on BER. When

overclocking is employed in a mixed system with one or more standard CAN con-

trollers, numerous errors (most notably bit stuffing and CRC errors) are observed

and signalled. It was also noted, through observation and examined analytically that

the overclocked fields are prone to higher BER and failure rates due to rapid changes

in voltage levels on the bus. A further work was also proposed as a possible solution

to higher BER by increasing bus voltages. In conclusion, with appropriate care in

the implementation stages, this modifications to the CAN protocol seems to indeed

187

be feasible, and can be used to increase the transmission rates to 10 Mbps.

10.2.5 Jitterless Communication

Although with the use of overclocking scheme it was demonstrated that CAN attain

higher speeds than existing, but still the transmission jitter is a major bottleneck when

designing TDMA based transmission scheme. Chapter 7 discusses a modification that

would allow fixed length messages to be transmitted over the network, regardless of

the message data contents. As such, this presents a novel idea to help overcome

transmission jitter caused by the bit-stuffing.

The technique which can be enabled or disabled dynamically as required by the

host CPU, forces every message to be a worst case bit-stuffed message, by adding

an additional dummy field to the CAN frame. In situations in which the worst-

case stuffing does not occur during transmission of the regular message fields, the

difference is made up by stuffing extra bits into this additional dummy field, hence,

the messages are always of a fixed length. This can be considered as a potential loss

of bandwidth, adding up to an additional 24 µsec delay per message for a bit rate of

1 Mbps.

However, removing any ambiguity on the transmission times - with no added pro-

cessing needed to be done at the software layer has obvious advantages in some

situations. Hence there is a trade-off of predictability vs bandwidth for this mech-

anism, as often occurs in real-time systems which require analysis to be carried out

under worst-case conditions. In case of the modified controller a fixed length message

when combined with overclocking the message transmission times are further reduced;

for example an 8 byte message can have maximum of 24 extra bits transmit, but with

188

overclocked at 5 Mbps will only take an extra 4.8 µsec.

10.2.6 Optimal Size Windows for Time-Triggered Commu-

nication

With the previous work where the CAN has been enhanced to work at 10 Mbps and

transmission times more predictable with the addition of jitterless scheme; there was

still some work left to support time-triggered communication. Specially in statically-

scheduled system, all message transmissions are created off-line and stored in some

form of table (a ’message map’) that each node makes use of to control the instants in

time that messages are allowed to be transmitted. With CAN’s arbitration scheme it

is impossible to predict which node will be able to access the bus at a given instant of

time. Also in high EMI conditions, bus errors may lead to continuous retransmissions

which can cause missing of several deadlines. This problem is addressed using a

’windowed transmission’ scheme as discussed in Chapter 8.

The ’windowed transmission’ provides time-triggered communications of compar-

atively increased reliability for a given bandwidth allocation. Windowed transmission

uses fix time windows allocated to each node; the size of these time windows has been

optimized using an efficient algorithm. The implementation has shown that the num-

ber of missed deadlines is reduced. The other advantage of this scheme is that it is

very simple to implement and even can be added as a separate module with some

modifications to a CAN IP. This final modification is fully compatible to the standard

CAN protocol.

In order to employ windowed transmission successfully, each node must have an

accurate knowledge of the network global time. This can be achieved by using a

189

simple global time scheme which synchronizes the nodes on the CAN network. One

such scheme is the shared clock protocol [Pon01, APSP07], which is a master slave

model, the master sends periodic messages to synchronize the running of the slave

tasks with the network time.

10.2.7 A Comprehensive Case Study

After the completion of all the modifications (aimed for this research) to the CAN IP

core, a comprehensive case study is presented in chapter 9. Although in the relevant

chapters impact of each modifications to the standard CAN protocol was analysed

individually, this case study was conducted to evaluate experimentally the effect of

combinations of these modifications.

Results are presented from experiments conducted with and without induced

faults. The results provide evidence that each of the proposed modification is in-

teroperable, and it is possible to achieve increased throughput, predictable commu-

nications of increased reliability using the modified controller. Previous studies have

shown that [FOFF04], in aggressive environments the BER on the CAN bus is dras-

tically increased, with correspondingly high message failure rates observed. The case

study has strengthened the argument that with the help of windowed transmission,

timeliness guarantees are increased in comparison to single-shot or infinite retrans-

mission schemes. Finally, in chapter 6, an observation was made about potentially

increased BER when a CAN bus is overclocked. As has been discussed, the results in

the case study provide some partial results to support this prediction.

190

10.3 Practical Adoption of the Modified Controller:

A Realistic Proposal?

Since this research work is based on an engineering implementation and presents

several modifications to a widely used embedded protocol, it is necessary to analyse

the possibility of the CAN IP core and modifications to be adopted for real world

designs.

The CAN IP core which is implemented in this project and have passed through

the CAN conformance, can easily be adopted as a real-world design. In fact this

work has been adopted for a small-scale research and industrial setup with suitable

modifications [TTE]. An IP core implementation is initially more time-consuming

than a heavily software-based solution, and less suitable for changes implemented at

the application layer. In this case the implementation time had already been spent

during the research work. The IP core can easily be converted in to a black box

implementation using the EDA (Electronic Design Automation) tools; this black box

implementation provide a standard interface to become part of of a SoC (System on

chip).

Looking at the modifications done to the CAN protocol, experimental results have

shown that these modifications resulted in improvements in speed, predictability and

reliability. But are these modifications practical and whether they can be adapted for

real-design implementations? This is a big question. In the opinion of the author of

this work, these modifications at the current state focus more on the research side of

the world i.e. at the moment the modifications make this protocol CAN-like but not

CAN. This can put off some with the argument that this is another protocol in the

191

market, and what is the point of deploying a new protocol when there exists protocols

which can support time-triggered and faster communication?

However, this does not completely put the practical usability of these modifications

out of question. The lower physical layer (CAN Bus and Transceiver’s) used with

these modifications is still the same as the standard CAN network. This makes this

work stand out as a good starting point for industries to utilise the existing infras-

tructure to build a better and faster embedded communication network. With further

discussions given in the future work, it has been shown that with suitable changes

these modified CAN controllers can work with the existing CAN nodes. As an indus-

trial designer (with CAN experience) to deploy a completely new network protocol

with altogether different infrastructure is a more subtle and expensive solution than

using a CAN-like protocol which can be made backward compatible.

Another interesting argument given is: what if every designer starts modifying the

protocol, and what about the standardisation of these modifications? A lot of major

communication protocols have been prone to changes over time; industrial and edu-

cational research has enhanced their working and suitability for the changing needs.

The work in this thesis is in the same direction and this is not the first effort done on

the CAN to be modified for different practical environments. These changes have not

only been adapted by the industry but have been standardised (TTCAN, CAN open

e.t.c.). The question about standardisation of the modifications done in this work is

only possible once a formal specification of this work is done with the extension of

conformance tests to verify the behaviour of the modifications.

192

10.4 Critical Analysis of the Modifications

In this section, some of the difficulties and disadvantages which can possibly be caused

by these modifications will be examined.

As (Chapter 6) demonstrated with analysis and experimental results in the case

studies, overclocking technique allows for much higher information throughput, a

major drawback seems to be in the simultaneous increase of BER. This phenomenon

needs to be examined further. Since an increase in bus differential voltages will

not only restore the SNR but will directly increase the power consumption, the use

of overclocked controllers may be limited in power constrained environments. This

may be improved somewhat by employing DVS [BB95], with voltages dynamically

increased only as and when needed according to the overclocking factor.

For the jitterless scheme transmission times for messages with zero and maximum

stuffing is the same, this can be argued as a waste of precious network time. In actual

jitterless communication there is a compromise between extra information and the

increased predictability of the transmission times. A better analogy to understand

this compromise is the use of CRC field in the CAN frame, although without the CRC

field 16 bits of added information can be removed to save precious network time, but

this saving will be at the expense of error-detection capability.

Another major question which arises is related to the backward compatibility of

the modified CAN controller. As mentioned previously, the use of windowed transmis-

sions is clearly backwardly compatible with existing networks. Given the clear lack

of backwards compatibility for overclocking and jitterless communications, each node

in a network will require modified controllers as all existing CAN nodes are seem-

ingly incompatible. However, because these features can be dynamically enabled or

193

disabled, the option to employ these features lies entirely with the network designer.

As such, the options would seem to be of most practical use for new network designs.

The possibility to solve this will be explored in future work.

10.5 Modified CAN vs other embedded Protocols

Table 10.1 and 10.2 shows a comparison between the modified CAN with major

embedded protocols currently existent in the market. The modified CAN supports

synchronous transmission at a higher data rate of 10 Mbps up and increased payload

of 15 bytes. This improvement to the basic CAN is a considerable achievement of

this work.

The modified CAN can now be seen as comparable to the other fast and syn-

chronous major embedded protocols; on the other hand the standard CAN lacks

support for time-triggered and high data rate transmission. The notable point in

the modified CAN, is that apart from its improvement, it has not lost the stand-out

features of standard CAN. Modified CAN still supports error confinement, priority

based bus access and acknowledgement based delivery guarantees.

Features CAN TTP FlexRay
Message transmission async synch sync and asyncs
Message identification message identifier time slot message identifier
Data rate 1 Mbps 2 Mbps 10 Mbps
Bit encoding NRZ with bit stuffing MFM NRZ with start/stop bits
Latency Jitter bus load dependent constant constant for high priority mes-

sages according t cyc
Extensibility excellent in non-time critical ap-

plications
if planned in original design possible for high priority messages

Flexibility flexible bandwidth for each node one message/node and TDMA cy-
cle

flexible bandwidth for each node

Data Length 8 bytes Variable 256 bytes

Table 10.1: Comparison of modified CAN with other protocols-I

194

Features Byte flight TTCAN Modified CAN
Message transmission sync and async sync sync(for Windowed transmission)

and async
Message identification time slot time slot message identifier
Data rate 10 Mbps 1 Mbps 10 Mbps
Bit encoding NRZ with start/stop bits NRZ with bit stuffing NRZ with bit stuffing
Latency Jitter constant for all messages bus load dependent Constant and Minimum in Fixed

Length messages
Extensibility separation of functional and

structural domain
only if extension is planned Extensible in time critical appli-

cations in Windowed transmission
Flexibility multiple slots per node, dynamic Single shot message allocation Flexible with limited retransmis-

sions in windowed slot
Data Length 8 bytes 8 bytes 15 bytes extendible to 1024

Table 10.2: Comparison of modified CAN with other protocols-II

10.6 Future Research

The design of the modified CAN controller with features such as overclocking and

fixed length messages opens up some new research questions. The major points left

unanswered by this thesis and areas of future work can be summarized as follows:

Achieving Error Free Overclocked CAN Networks

Overclocking techniques found to be very useful to attain higher speed, but an obser-

vation is on the higher BER’s, an area of future research. There is two prong strategy

to address this problem.

1. Design of a new transceiver to support the use of fast driver transceivers [NXP02]

can help to achieve higher data rates with less susceptibility to errors. As dis-

cussed in chapter 6, the major limiting factor to reduce the CAN bit time is

the propagation segment which compensates for the physical line delays. The

physical line delays also include the driver and receiver delay of the transceivers.

The typical value of this delay is around 150 ns [Phi96a].

Transceivers with lower driver delays of around 20 to 25 ns can help reduce the

physical line delays to a value of 100 ns. This will then support communication

195

Standard CAN

controller
 Standard CAN

Controller

Modified CAN

Controller

Modified CAN

Controller

Bus Guardian

Bus Guardian

CAN Transceiver
 CAN Transceiver
 CAN Transceiver
CAN Transceiver

Figure 10.1: A mixed network with standard and modified CAN Controllers.

rate of 5 M bps over a length of 20 meters without any considerable change

in the BER rates. Differential line bus transceivers [Tex00] used for RS-485

communication can support a data rate of upto 30 Mbps and NRZ-L encoding.

The design can be adapted for overclocked CAN bus communication.

2. . The second strategy to reduce BERs on overclocked networks is to increase the

differential voltages on the CAN bus. A higher differential voltage will increase

the noise margin on the bus and susceptibility of bit corruption is reduced.

The increase in differential voltages will result in higher power consumption - a

dynamic voltage scaling scheme solves this problem. Voltage can be dynamically

increased to higher voltages for higher data rates and scaled down on lower

voltages, an example of such an implementation is done for radio communication

transceivers [GDZG07].

196

Node 1

Transmitting

Standard Controller

(Listen only)

Time

Slot

Standard CAN

(Node 2 and 4)

Modified CAN

(Node 1 and 3)

T
1

 Listen Only

 Node 1 Transmitting

T
2

 Node 2 Transmitting

 Normal Receiver

T
3

 Listen Only

 Node 2 Transmitting

T
4

 Node 4 Transmitting

 Normal Receiver

Node 1 and 3

Receiver

Node 4

Transmitter

Node 1 and 3

Receiver

Standard Controller

(Listen only)

Node 2

Transmitting

Node 4

Transmitting

T1
 T2
 T3
 T4

time

Modified CAN Nodes

CAN Standard Nodes

Figure 10.2: TDMA schedule for a mixed network, using ”listen only mode”.

Backward Compatibility

The modifications presented in this work such as overclocking and fixed-length mes-

sages, change the standard CAN frame format. These modifications are not backward

compatible to the CAN standard, an area of future research. There are few sugges-

tions to implement a mixed network of modified CAN controllers and the standard

CAN.

1. In passive mode, the CAN controller will send and receive 11-bit identifiers and

silently drop 29-bit identifiers without generating an error. If every standard

CAN controller in a network is operating in CAN 2.0B passive mode, then the

modified controllers may operate in CAN 2.0B active mode. They can use the

reserved bits to signal to each other if the frame is overclocked and/or jitterless.

The CAN 2.0B passive nodes will then ignore the message regardless.

2. When a mixed network contains CAN 2.0A controllers, this will not work for the

solution presented in last point. The CAN2.0A has certain reserved bits which

are kept for future modifications. These bits can be use to form a mixed network

of both standard and modified CAN controllers. Normally these reserved bits

197

r0 and r1 are recessive and can be used to distinguish between a normal and

modified frame with the help of of bus guardians [BB03]. Figure 10.1 shows

such a mix network scenario. In this, the standard CAN nodes are attached to

bus guardians which will stop any further communication in case of a dominant

r0 or r1 bit. The bus guardian will disconnect the CAN controller from the bus,

for rest of this frame transmission. This bus guardian is quite analysable and

can easily be implemented in a soft-core.

3. In a TDMA-based network, additional information can be stored in the message

table related to whether the frame is overclocked or jitter-free. Normal CAN

controllers could be switched to the listen only mode by the host CPU, for

the duration of an overclocked or jitterless message timeslot. This will stop

the standard CAN nodes to generate any error frames on the network, and

communication between modified controllers can continue without interruption.

An Example message table of a mix network is given in Figure 10.2

Automating CAN Conformance Testing

The CAN conformance testing procedure, presented in this research work has helped

to perform all the representative and edge test cases given in the ISO standard [ISOa].

Since the method used in this work is quite manual, it was not possible to run all

the documented tests. Further work could be done to perform all these tests by

automating the procedure to perform these tests.

Automation of these tests is possible using the Bosch CAN VHDL reference model

[Bos99], although this model is principally used for simulation, proper scripting and

the use of additional soft-cores to generate and log tests is possible. It is also possible

198

to run fully automated tests with the enhancement in features of the integrated logic

analysers to support capturing and logging of signals over larger time-scales.

10.7 Summary of Results

The modified CAN controller developed in this thesis has the following enhancements

with respect to a standard CAN controller:

1. The modified protocol controller can be operated, if desired, as a fully-conformant,

standard CAN controller;

2. One or more messages can be sent with a fixed (and hence predictable) trans-

mission time regardless of the payload contents;

3. One or more messages can carry a payload of up to 1024 bytes (The current

implementation can support 15 byte messages);

4. A full time-triggered schedule can be implemented and messages can be trans-

mitted in fixed allotted time windows.

This concludes the work done in this thesis, with final remarks that the goal set

to achieve better time-triggered operations on CAN are achieved, with some room

to improve results in the future work. This work has successfully given a different

dimension of using an IP core implementation to modify the protocol to a larger

extent, then the traditional approaches. The reader of this work will surely benefit

from the engineering aspect of this work, and this work will also provide a good

insight into what standard CAN is and how modifications can be applied to enhance

this widely popular protocol.

Appendix A

Formation of Test bench and
Design Analysis

A.1 Interface Code

This section provides the simple interface functions used to read and write data

between the host processor and the CAN IP core.

Interface header file

/*--

This header File contains the various declarations

LPC interface to the FPGA CAN implementation

File: CAN_INT.h

Project: CAN Interface to FPGA

Author: Sheikh Imran

Started on: 21/06/2007

Last updated: 13/12/2010

--*/

#ifndef _CAN_INT_H

#define _CAN_INT_H

#include <LPC21xx.H>

void delay(unsigned long int);

void CAN_Init();

void CAN_Self_Test();

void CAN_Test_Register();

void CAN_Basic_Frame_Tx(unsigned long int);

void CAN_Basic_Frame_Rx(unsigned long int);

void CAN_Extended_Frame_Tx(unsigned long int);

void CAN_Extended_Frame_Rx(unsigned long int);

void WriteData(unsigned char, char);

char ReadData(unsigned char);

/****************** Signal definitions**************/

#define ALE 0x00000200 //P0.9

#define RD 0x00000400 //P0.10

#define WR 0x00001000 //P0.12

#define CS 0x00000100 //P0.8

#define RST 0x80000000 //P0.31

#define P0_data 0x000F00F0 // P0.3-P0.7(lower nibble) and P0.16-P0.19(higher nibble)

#define P1_control 0x80001F00 // Port 1 for control signals

199

200

#define LED 0x00FF0000

#define Rs 0x00400000 // slope control for transceiver

/**************** CAN configuration values************/

//Clock Divider register

#define CDR 0x84 //PelicanCAN mode,clock off,comparator bypassed

//Acceptance Code register

#define ACR 0xFF //Allow all identifiers

//Acceptance Mask register

#define AM 0xFF //Allow all identifiers

//Bus timing values for 48 MHz clock, 1Mb/s bit rate

//Bus timing register 0

#define BTR_0 0x00

//Bus timing register 1

#define BTR_1 0x21 // TSEG1=(2+1)x TQ, TSEG2= (1+1)x TQ

/**************** CAN Configuration Registers and Bits *********************/

/* Address and bit definitions for Mode Register */

#define ModeReg 0x00

#define RM_RR_Bit 0x01 /* reset mode (request) bit */

#define RIE_B_Bit 0x02 /* Receive Interrupt enable bit */

#define TIE_B_Bit 0x04 /* Transmit Interrupt enable bit */

#define EIE_B_Bit 0x08 /* Error Interrupt enable bit */

#define DOIE_B_Bit 0x10 /* Overrun Interrupt enable bit */

/* Address and bit definitions for command Register */

#define CommandReg 0x01

#define TR_Bit 0x01 /* transmission request bit */

#define AT_Bit 0x02 /* abort transmission bit */

#define RRB_Bit 0x04 /* release receive buffer bit */

#define CDO_Bit 0x08 /* clear data overrun bit */

#define SRR_Bit 0x10 /* self reception request bit (Extended mode)*/

#define OFR_Bit 0x20 /* Goto Sleep Mode

/* Address and bit definitions for Status Register */

#define StatusReg 0x02

#define RBS_Bit 0x01 /* receive buffer status bit */

#define DOS_Bit 0x02 /* data overrun status bit */

#define TBS_Bit 0x04 /* transmit buffer status bit */

#define TCS_Bit 0x08 /* transmission complete status bit */

#define RS_Bit 0x10 /* receive status bit */

#define TS_Bit 0x20 /* transmit status bit */

#define ES_Bit 0x40 /* error status bit */

#define MODE_Bit 0x80 /* bus status bit */

/* Address and bit definitions for Interrupt Register */

#define InterruptReg 0x03

#define RI_Bit 0x01 /* receive interrupt bit */

#define TI_Bit 0x02 /* transmit interrupt bit */

#define EI_Bit 0x04 /* error warning interrupt bit */

#define DOI_Bit 0x08 /* data overrun interrupt bit */

#define WUI_Bit 0x10 /* wake-up interrupt bit */

#define EPI_Bit 0x20 /* error passive interrupt bit */

#define ALI_Bit 0x40 /* arbitration lost interrupt bit */

#define BEI_Bit 0x80 /* bus error interrupt bit */

#define BusTimingReg_0 0x06;

#define BusTimingReg_1 0x07;

#endif

201

Write Data to a CAN Register

void WriteData(unsigned char Address, char Data)

{

1. IODIR0 |= P0_data; // set the direction of the pins as output

2. IOCLR0 |= P0_data; // clear the data pins

3. IOSET0 |= ((Address&0x0F)<<4)|((Address&0xF0)<<12);// write address to AD_0_7(AD) bus

4. IOSET0 |= CS; // insert the chip select

5. IOSET0 |= ALE; // assert the Address Latch to write

6. IOCLR0 |= ALE; //de-assert the Address Latch

7. IOCLR0 |= P0_data; // Clear the AD bus

8. IOSET0 |= ((Data&0x0F)<<4)|((Data&0xF0)<<12); // Write the data on the AD bus

9. IOSET0 |= WR; //assert the write signal

10. IOCLR0 |= P1_control; // clear all the control signals (read, write, cs)

11. IOCLR0 |= P0_data; (clear the data pins)

}

Read Data from a CAN Register

char ReadData(unsigned char Read_Address)

{

1. unsigned int message1,message_lower,message_upper;

2. char message;

3. IODIR0 |= P0_data; // Set the AD bus as output

4. IOCLR0 |= P0_data; // Clear the AD bus

5. IOSET0 |= ((Read_Address&0x0F)<<4)|((Read_Address&0xF0)<<12); // Write the Address on the AD bus

6. IOSET0 |=CS; // Select the chip

7. IOSET0 |= ALE; // Latch the address to the CAN IP address register

8. IOCLR0 |= ALE; // Free the AD bus

9. IOCLR0 |= P0_data; // Clear the contents from the AD bus

10. IODIR0 |= 0x00000000; // Set the direction of AD bus as input

11. IOSET0 |= RD; // assert the read signal

12. message1 = IOPIN0; // Read the value on the PORT 0

13. IODIR0 |= P0_data;

14. IOCLR0 |= P0_data;

15. IOCLR0 |= P1_control;

16. message_lower=((message1& 0x000000F0)>>4); // shift and adjust the 32 bit read value

17. message_upper=((message1& 0x000F0000)>>12);

18. message = message_upper|message_lower; // Adjusted Read value

19. return message;

}

CAN Initialisation Routine

void CAN_Init()

{

WriteData(ModeControlReg,0x01); // Setting up configuration mode

WriteData(Clock_Div_Reg,0x80); // Setting the extended mode

WriteData(ACR0,0x00); // acceptance code 0

WriteData(ACR1,0x00); // acceptance code 1

WriteData(ACR2,0x00); // acceptance code 2

WriteData(ACR3,0x00); // acceptance code 3

WriteData(AMR0,0xFF); // acceptance mask 0, Don’t care

WriteData(AMR1,0xFF); // acceptance mask 1, Don’t care

WriteData(AMR2,0xFF); // acceptance mask 2, Don’t care

202

WriteData(AMR3,0xFF); // acceptance mask 3, Don’t care

WriteData(BTR_0,0x00); //Bus timing register 0, for 1 Mbps

WriteData(BTR_1,0x21); //Bus timing register 1

WriteData(Int_en,0x80); // Transmit Interrupt enable

WriteData(ModeControlReg,0x00); // Normal operating mode

}

Basic Frame Transmission

void CAN_Basic_Frame_Tx(unsigned long int Time_out);

{

/* wait until the Transmit Buffer is released */

/* Transmit Buffer is released, a message may be written into the buffer */

/* in this example a Standard Frame message shall be transmitted */

WriteData(0x10,0x08); /* SFF (data), DLC=4 */

WriteData(0x11,0x39); /* ID1 = A5, (1010 0101) */

WriteData(0x12,0x21); /* ID2 = 20, (0010 0000) */

WriteData(0x13,0x32); /* data1 = 51 */

WriteData(0x14,0x1F);

WriteData(0x15,0xF8);

WriteData(0x16,0x1F);

WriteData(0x17,0xE7);

WriteData(0x18,0xF8);

WriteData(0x19,0x7D);

WriteData(0x1A,0xE1);

WriteData(CommandReg,TR_Bit) ; /* Set Transmission Request bit */

do

{

status=ReadData(InterruptReg);

if(status & BEI_Bit ==0x80)

{

IOSET0 |=0x40000000|RST;

delay(1000);

IOCLR0 |=0x40000000|RST;

}

status=ReadData(StatusReg);

}

while((status & TCS_Bit) != 0x08) | Time_out); /* Wait till transmit complete */

}

Basic Frame Reception

void CAN_Basic_Frame_Rx(unsigned long int Time_out)

{

char status;

char message[10];

int count=0;

IOCLR0 |=0xC0000000;

* Wait for the receive interrupt */

do

{

status=ReadData(InterruptReg);

}

203

while((status & RIE_Bit) != 0x01)| Time_out);

if (status == 0x01)

{

message[0] = ReadData(0x10); // read data length

message[1] = ReadData(0x11); // read identifier byte 1

message[2] = ReadData(0x12); // read identifier byte 2

data_len = (message[0]&0xF); // mask the data length bits

for(i = 0;i<data_len;i++) // read the data message

{

message[i+3] = ReadData(k);

k++;

}

WriteData(CommandReg,RRB_Bit); // release the receive buffer of CAN IP

}

}

204

A.2 Issues related to the Test Bench

Problem No 1

The function WriteData is part of the interface software written to communicate

between the host processor and the CAN IP core registers. Statement: The lines 10

and 11 in the code were not included in the initial version of the function WriteData.

It was assumed that once the write function is over the temporary Address/Data

registers of the CAN IP core will not retain the previous values. Since all the control

signals data type are declared as ’registers’, the previous write status were latched

and random values were written to the CAN IP registers.

Solution:Added line 10 and 11 to ensure that all the control signals are set to low

and no arbitrary values are been written on to the registers.

Remarks: The problem was solved.

Problem No 2

Statement: Before the start of a transmission, the CAN IP core shows an high error

status.

Observation: The CAN specifications [11893] states that the error status should only

be high if transmit or receive error count is greater than or equal to 96. The value

of 96 is written to the Error warning limit(EWL) register, during the configuration

routine.

Reason: Before the value ’96’ is written to the EWL, the default value is taken as

’0’ and as soon as the CAN IP core is powered-up it change the error status to high.

Solution: The reset value of Error warning limit register was changed from ’0’ to

’96’ in the HDL code.

//previous code

205

always @ (posedge clock or posedge reset)

begin

if (reset)

EWL <= 8’d0;

else if (write_ewl)

EWL <=#1 input_data;

end

\\ Changed code

always @ (posedge clock or posedge reset)

begin

if (reset)

EWL <= 8’d96;

else if (write_ewl)

EWL <=#1 input_data;

end

Remarks: This solved the problem, and then there was no need to write the EWL

by the host processor.

Problem No 3

Statement: During transmission, there were continuous errors generated.

Observation: Checked the Error capture (EC) register. The EC status = 10011011.

EC interpretation is

• Error type= Form error

• Direction= Transmission

• Position = CRC Delimiter

The shows an error in CRC delimiter which is a form error.

Reason: The CRC calculation was done without the bit-stuffing consideration, hence

on the receiver side when there was continuous stream of five similar bits, the next

bit of the CRC bit is discarded hence generating a different CRC value.

206

Solution: Bit-stuffing is also applied on the CRC field.

Remarks: This solved the problem.

Problem No 4

Statement: The CAN IP core remains in reset mode (active on high), although the

reset pin is set to low by the host processor.

Observation: In the pin assignment tool (PACE) of the FPGA, the reset pin is set

as ’keeper’.

Solution: In PACE the pin assigned to the signal reset was set to a default Pull

down value.

Remarks: It solved the problem, on the default the reset pin is pull down and does

not keep the previous logic level(1 or 0).

Problem No 5

Statement: There is no communication on the CAN bus, although all the internal

CAN signals demonstrate normal activity.

Observation: The SOF signal was inserted, immediately the CAN bus returns back

to recessive state, indicating no communication.

Solution: Since the CAN bus speed was 1 Mbps, at high data speeds the PCA82c250

transceiver’s pin 8 [Phi96a] needs to be connected to the ground via (1 to 10 KΩ).

Remarks: Normal communication was observed, the pin 8 (Rs) of the transceiver is

for slope control and this provide an effective device delay of 145 ns which is 200 ns

in default condition.

207

Problem No 6

Statement: The communication between the CAN nodes was successfully working

but with lot of intermittent errors.

Observation: The cable used is unshielded UTP and there was no common ground

between the transceiver’s on the CAN bus.

Solution: A new shielded UTP is used and a common ground is provided between

the transceiver’s.

Remarks: Improved and working.

208

A.3 Device Utilization

DEVICE UTILIZATION SUMMARY(Balanced)
LOGIC UTILIZATION USED UNUSED % USED
Number of slice Flip flops 687 9312 7
Number of 4 input LUTs 1693 9312 18
LOGIC DISTRIBUTION
Number of occupied Slices 1105 4656 23
Number of slices with related Logic 1105 1105 100
Number of slices with unrelated logic 0 1105 0
TOTAL NO OF 4 INPUT LUTs 1715 9312 18
Number used as a logic 1693
Number used as a route-thru 22
Number of bounded IOBs 28 158 17
IOB Flip Flops 21
Number of RAM16s 3 20 15
Number of BUFGMUXs 2 24 8
Number of DCMs 1 4 25
Average Fanout of Non-Clock Nets 3.66
TOTAL EQ GATE COUNT 218,756
Addition JTAG Gate count 1,392

Table A.1: CAN IP device statistics (Balanced)

DEVICE UTILIZATION SUMMARY(Timing optimized)
LOGIC UTILIZATION USED UNUSED % USED
Number of slice Flip flops 673 9312 7
Number of 4 input LUTs 1598 9312 17
LOGIC DISTRIBUTION
Number of occupied Slices 1062 4656 22
Number of slices with related Logic 1062 1062 100
Number of slices with unrelated logic 0 1062 0
TOTAL NO OF 4 INPUT LUTs 1715 9312 18
Number used as a logic 1598
Number used as a route-thru 16
Number of bounded IOBs 26 158 16
IOB Flip Flops 21
Number of RAM16s 3 20 15
Number of BUFGMUXs 1 24 4
Number of DCMs 1 4 25
Average Fanout of Non-Clock Nets 3.66
TOTAL EQ GATE COUNT 220,652
Addition JTAG Gate count 1,392

Table A.2: CAN IP device statistics (Timing Optimization)

209

DEVICE UTILISATION SUMMARY(Floor Plan)
LOGIC UTILISATION USED UNUSED % USED
Number of slice Flip flops 673 9312 7
Number of 4 input LUTs 1754 9312 18
LOGIC DISTRIBUTION
Number of occupied Slices 901 4656 19
Number of slices with related Logic 901 1062 100
Number of slices with unrelated logic 0 1062 0
TOTAL NO OF 4 INPUT LUTs 1768 9312 18
Number used as a logic 1650
Number used as a route-thru 14
Number used for Dual port RAMs 104
Number of bounded IOBs 26 158 16
IOB Flip Flops 21
Number of RAM16s 3 20 15
Number of BUFGMUXs 1 24 4
Number of DCMs 1 4 25
Average Fanout of Non-Clock Nets 3.71

Table A.3: CAN IP device statistics (After Floor planning)

A.4 Static Timing Analysis

Derived Constraint Report

Derived Constraints for TS_1

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+

| | Period | Actual Period | Timing Errors | Paths Analyzed |

| Constraint | Requirement |-------------+-------------|-------------+-------------|-------------+-------------|

| | | Direct | Derivative | Direct | Derivative | Direct | Derivative |

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+

|TS_1 | 20.833ns| 10.000ns| 17.263ns| 0| 0| 0| 66887|

| TS_instance_External_Clock_CLK| 20.833ns| 17.263ns| N/A| 0| 0| 66887| 0|

| 0_BUF | | | | | | | |

+-------------------------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+

All constraints were met.

Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock Source_Clock

------------+------------+------------+------------------+--------+

|Max Setup to|Max Hold to | | Clock |

Source | clk (edge) | clk (edge) |Internal Clock(s) | Phase |

------------+------------+------------+------------------+--------+

AD_0_7<0> | 7.712(R)| -1.593(R)|CLK0_OUT | 0.000|

AD_0_7<1> | 7.535(R)| -1.462(R)|CLK0_OUT | 0.000|

AD_0_7<2> | 7.916(R)| -1.654(R)|CLK0_OUT | 0.000|

AD_0_7<3> | 8.100(R)| -1.520(R)|CLK0_OUT | 0.000|

AD_0_7<4> | 9.131(R)| -1.464(R)|CLK0_OUT | 0.000|

AD_0_7<5> | 9.948(R)| -1.506(R)|CLK0_OUT | 0.000|

AD_0_7<6> | 8.124(R)| -1.575(R)|CLK0_OUT | 0.000|

AD_0_7<7> | 8.809(R)| -1.670(R)|CLK0_OUT | 0.000|

------------+------------+------------+------------------+--------+

Clock to Setup on destination clock Source_Clock

---------------+---------+---------+---------+---------+

| Src:Rise| Src:Fall| Src:Rise| Src:Fall|

Source Clock |Dest:Rise|Dest:Rise|Dest:Fall|Dest:Fall|

---------------+---------+---------+---------+---------+

Source_Clock | 17.263| | | |

---------------+---------+---------+---------+---------+

TIMEGRP "AD_Group" OFFSET = IN 20.833 ns VALID 19.5 ns BEFORE COMP "Source_Clock" "RISING";

Worst Case Data Window 8.486; Ideal Clock Offset To Actual Clock -5.378;

------------------+------------+------------+---------+---------+-------------+

| | | Setup | Hold |Source Offset|

Source | Setup | Hold | Slack | Slack | To Center |

210

------------------+------------+------------+---------+---------+-------------+

AD_0_7<0> | 7.712(R)| -1.593(R)| 13.121| 0.260| 6.431|

AD_0_7<1> | 7.535(R)| -1.462(R)| 13.298| 0.129| 6.585|

AD_0_7<2> | 7.916(R)| -1.654(R)| 12.917| 0.321| 6.298|

AD_0_7<3> | 8.100(R)| -1.520(R)| 12.733| 0.187| 6.273|

AD_0_7<4> | 9.131(R)| -1.464(R)| 11.702| 0.131| 5.786|

AD_0_7<5> | 9.948(R)| -1.506(R)| 10.885| 0.173| 5.356|

AD_0_7<6> | 8.124(R)| -1.575(R)| 12.709| 0.242| 6.233|

AD_0_7<7> | 8.809(R)| -1.670(R)| 12.024| 0.337| 5.844|

------------------+------------+------------+---------+---------+-------------+

Worst Case Summary| 9.948| -1.462| 10.885| 0.129| |

------------------+------------+------------+---------+---------+-------------+

Timing summary:

Timing errors: 0 Score: 0 (Setup/Max: 0, Hold: 0)

Constraints cover 67180 paths, 0 nets, and 7689 connections

Design statistics:

Minimum period: 17.263ns{1} (Maximum frequency: 57.927MHz)

Minimum input required time before clock: 9.948ns

------------------------------------Footnotes-----------------------------------

1) The minimum period statistic assumes all single cycle delays.

Analysis completed

--

211

A.5 User Constraints File
#Created by Constraints Editor (xc3s500e-pq208-4)

#PACE: Start of Constraints generated by PACE

#PACE: Start of PACE I/O Pin Assignments

NET "AD_0_7<0>" LOC = "p19" |IOSTANDARD = LVCMOS33 ;

NET "AD_0_7<1>" LOC = "p18" |IOSTANDARD = LVCMOS33 ;

NET "AD_0_7<2>" LOC = "p16" |IOSTANDARD = LVCMOS33 ;

NET "AD_0_7<3>" LOC = "p15" |IOSTANDARD = LVCMOS33 ;

NET "AD_0_7<4>" LOC = "p3" |IOSTANDARD = LVCMOS33 ;

NET "AD_0_7<5>" LOC = "p2" |IOSTANDARD = LVCMOS33 ;

NET "AD_0_7<6>" LOC = "p199" |IOSTANDARD = LVCMOS33 ;

NET "AD_0_7<7>" LOC = "p200" |IOSTANDARD = LVCMOS33 ;

NET "ale_i" LOC = "p12" |IOSTANDARD = LVCMOS33 ;

NET "bus_status" IOSTANDARD = LVCMOS33 ;

NET "chip_select" LOC = "p14" |IOSTANDARD = LVCMOS33 |PULLDOWN ;

NET "interrupt" IOSTANDARD = LVCMOS33 ;

NET "led<0>" LOC = "p146" |IOSTANDARD = LVCMOS33 ;

NET "led<1>" LOC = "p147" |IOSTANDARD = LVCMOS33 ;

NET "led<2>" IOSTANDARD = LVCMOS33 ;

NET "led<3>" IOSTANDARD = LVCMOS33 ;

NET "led<4>" IOSTANDARD = LVCMOS33 ;

NET "led<5>" IOSTANDARD = LVCMOS33 ;

NET "led<6>" IOSTANDARD = LVCMOS33 ;

NET "led<7>" IOSTANDARD = LVCMOS33 ;

NET "read" LOC = "p11" |IOSTANDARD = LVCMOS33 ;

NET "reset" LOC = "P51" |IOSTANDARD = LVCMOS33 |PULLDOWN ;

NET "RXCAN" LOC = "P54" ;

NET "Source_Clock" LOC = "p181" |IOSTANDARD = LVCMOS33 ;

NET "TXCAN" LOC = "p56" ;

NET "write_enable" LOC = "p8" |IOSTANDARD = LVCMOS33 ;

NET "Source_Clock" TNM_NET = Source_Clock;

TIMESPEC TS_1 = PERIOD "Source_Clock" 20.833 ns HIGH 50%;

#Created by Constraints Editor (xc3s500e-pq208-4) - 2011/04/05

OFFSET = IN 20.833 ns VALID 16 ns BEFORE "Source_Clock" RISING;

INST "AD_0_7<0>" TNM = AD_Group;

INST "AD_0_7<1>" TNM = AD_Group;

INST "AD_0_7<2>" TNM = AD_Group;

INST "AD_0_7<3>" TNM = AD_Group;

INST "AD_0_7<4>" TNM = AD_Group;

INST "AD_0_7<5>" TNM = AD_Group;

INST "AD_0_7<6>" TNM = AD_Group;

INST "AD_0_7<7>" TNM = AD_Group;

TIMEGRP "AD_Group" OFFSET = IN 16 ns VALID 20.833 ns BEFORE "Source_Clock" RISING;

INST "ale_i" TNM = Cont_Group;

INST "read" TNM = Cont_Group;

INST "write_enable" TNM = Cont_Group;

TIMEGRP "Cont_Group" OFFSET = IN 16 ns VALID 20.833 ns BEFORE "Source_Clock" RISING;

Bibliography

[10B01] IEEE conformance test methodology for IEEE standards for local and

metropolitan area networks - specific requirement 3: Carrier sense mul-

tiple access with collision detection (CSMA/CD)access method and

physical layer specifications. IEEE Std 1802.32001, pages 1–85, 2001.

[11893] ISO 11898:1993(E). Road vehicles-interchange of digital information-

Controller Area Network (CAN) for high speed communication. Tech-

nical report, ISO, November 1993.

[AG] A. Albert and W. Gerth. Evaluation and comparison of real-time per-

formance of CAN and TTCAN. In proceedings of ICC 2003 - 9th In-

ternational CAN Conference, Munich, Germany.

[Agi08] 16900 series logic analysis system mainframes.

http://cp.literature.agilent.com/litweb/pdf/59890421EN.pdf., 2008.

[Alt] Altera. SignalTap II embedded logic analyser.

[AM05] A. Arora and S. Mahmud. Performance analysis of fault tolerant

TTCAN system. In proceeding of the SAE 2005 World Congress, De-

troit, Michigan, USA, April 2005.

[APF02] L. Almeida, P. Pedreiras, and J. Fonseca. The FTT-CAN protocol:

Why and how. IEEE Transaction on Industrial Electronics, 49(6):1189–

1201, Dec 2002.

[APSP07] D Ayavoo, M.J. Pont, M. Short, and S. Parker. Two novel shared-

clock scheduling algorithms for use with ’Controller Area Network’ and

related protocols. Microprocess. and Microsyst., 31(5):326–334, 2007.

212

213

[ARM05] ARM Ltd. ARM Architecture Reference Manual, 2005.

[BACM03] Di Blasi, F. A. Colucci, and R. Mariani. Y-CAN platform: A re-usable

platform for design, verification and validation of CAN-based systems

on a chip. In ETS- 2003 Symposium, May 2003.

[BB95] T.D. Burd and R.W. Brodersen. Energy efficient cmos microprocessor

design. In System Sciences, 1995. Proceedings of the Twenty-Eighth

Hawaii International Conference on, volume 1, pages 288 –297, January

1995.

[BB01] I. Broster and A. Burns. Timely use of the CAN protocol in critical hard

real-time systems with faults. In Real-Time Systems, 13th Euromicro

Conference on, 2001., pages 95–102, 2001.

[BB03] I. Broster and I. Burns. An analyzable bus-guardian for event triggered

communication. In 24th IEEE Real-Time Systems Symposium, pages

410–419, December 2003.

[BBRN04] I. Broster, A. Burns, and G. Rodriguez-Navas. Comparing real-time

communication under electromagnetic interference. In Real-Time Sys-

tems, 2004. ECRTS 2004. Proceedings. 16th Euromicro Conference on,

pages 45 – 52, 2004.

[Bos91] R Bosch. CAN specification 2.0. Technical report, Robert Bosch Gmbh,

1991.

[Bos99] Bosch. VHDL Reference CAN: User’s Manual, 1999.

[Bot98] B. Bottoms. The third millenniums test dilemma. IEEE Design & Test

of Computers, 15:7–11, 10 1998.

[Cad04] Cadence Design Systems. Incisive Unified Simulator, 2004.

214

[CIA] CAN physical layer. http://www.can-cia.org/index.php?id=88.

[CiA06] Automotive electronics take off. In CAN Newsletter, volume Automo-

tive. CiA, CAN in Automation, 2006.

[Cor02] S. Corrigan. Introduction to the Controller Area Network (CAN). Texas

Instruments, August 2002.

[CV99] G. Cena and A. Valenzano. Overclocking of Controller Area Networks.

Electronics Letters, 35(22):1923–1925, October 1999.

[CV00] G. Cena and A. Valenzano. FastCAN: A high-performance enhanced

CAN-like network. Industrial Electronics, IEEE Transactions on,

47(4):951–963, August 2000.

[CV06] G. Cena and A. Valenzano. On the properties of the flexible time divi-

sion multiple access technique. Industrial Informatics, IEEE Transac-

tions on, 2(2):86 – 94, May 2006.

[DBBL07] I. Davies, A. Burns, R. Brill, and J. Lukkien. Controller Area Network

(CAN) schedulability analysis: Refuted, revisited and revised. Real-

Time Systems, 35(3):239–272, 2007.

[Dig05] Overview: Digilent jtag-usb cable and the Digilent and jtag-usb cable,

2005.

[DS95] M. DiNatale and J.A. Stankovic. Applicability of simulated anneal-

ing methods to real-time scheduling and jitter control. In Real-Time

Systems Symposium, 1995. Proceedings., 16th IEEE, pages 190 –199,

December 1995.

[EE96] H. Eisele and Jhnk. E. Can transceiver, 1996.

[eVC05] Can 2.0 evc. 2005.

215

[FA09] R. Froschauer and F. Auinger. A survey on the integration of the

FlexRay bus in distributed automation and control systems. In Logis-

tics and Industrial Informatics, 2009. LINDI 2009. 2nd International,

pages 1 –6, sept 2009.

[FH00] B. Dieterle W. Fuhrer, T. Mller and F. Hartwich. Time-triggered com-

munication on CAN (Time-Triggered can TTCAN). In Proceedings of

iCC 2000, Amsterdam, The Netherlands, 2000.

[Fle04] FlexRay Consortium. FlexRay Communications System Protocol Spec-

ification, 2004.

[FOFF04] J. Ferreira, A. Oliveira, P. Fonseca, and J.A. Fonseca. An experiment to

assess bit error rate in CAN. In 3rd international workshop on real-time

networks RTN 2004, Proceedings, June 2004.

[fpg09] fpga4fun.com. Knjn LLC, FX2 FPGA development boards, 2009.

[FRB99] M. Farsi, K. Ratcliff, and M. Barbosa. An overview of Controller Area

Network. Computing and Control Journal of Engineering, 10(3):113–

120, 1999.

[GBP00] R. Griessbach, J. Berwanger, and M. Peller. Byteflight neues

hochleistungsdatenbussystem fr sicherheitsrelevante anwendungen.

Technical report, Friedrich Vieweg & Sohn Verlagsgesellschaft mbH,

January 2000.

[GDZG07] R. Garg, Chunjie Duan, Jinyun Zhang, and S. Gezici. Low power UWB

transceiver design using dynamic voltage scaling. In Wireless Commu-

nications and Networking Conference, 2007.WCNC 2007. IEEE, pages

1757 –1762, march 2007.

216

[Gil60] E.N. Gilbert. Capacity of a burst-noise channel. Bell Systems Technical

Journal,, 39:1253–1261, 1960.

[Gmb07] R.B. Gmbh. E-Ray Flex Ray IP Module, revision 1.2.6 edition, 2007.

User manual.

[GN04] B. Gaujal and N. Navet. Fault confinement mechanisms on CAN : Anal-

ysis and improvements. IEEE Transactions On Vehicular Technology,

2004.

[GTA06] R. Ghostine, J. Thiriet, and J. Aubry. Dependability evaluation of net-

worked control systems under transmission faults. In IFAC Symposium

Safe process 2006, page 11291134, Beijing, PRC, 2006.

[HBS09] Z. Hanzalek, P. Burget, and P. Sucha. Profinet IO IRT message schedul-

ing. Real-Time Systems, Euromicro Conference on, pages 57–65, 2009.

[IEE] IEEE 802 standard for local and metropolitan area networks: Overview

and architecture.

[IEE94] Type 10baseT MAU conformance test methodology (Section 6). IEEE

Std 1802.3d-1993, May 1994.

[IS] ISA-SP50-1987. Field busDraft standard.

[ISOa] ISO16845. Road Vehicles- Controller Area Network (CAN) - Confor-

mance test plan.

[ISOb] ISO9646-1. Information technology- ISO - Conformance testing

methodology and frame work- Part 1: General concepts.

[Jam04] P. James. Mechatronics and automotive systems design. International

Journal of Electrical Engineering Education, 41:307–312, 2004.

217

[Jer77] A.J. Jerri. The Shannon sampling theorem: Its various extensions and

applications: A tutorial review. Proceedings of the IEEE, 65(11):1565

– 1596, 1977.

[Kar02] A. Karlsson. X-by-wire systems and time-triggered protocols. Master’s

thesis, Uppsala University, Box 256 751 05 Uppsala, Sweden, November

2002.

[KB03] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings

of the IEEE, 91(1):112 – 126, 2003.

[KEI06] KEIL. MCB2100: User’s Guide, July 2006.

[KEI08] uVision IDE tool, 2008.

[KG93] H. Kopetz and G. Grunsteidl. TTP - A time-triggered protocol for

fault- tolerant real-time systems. In 23rd International Symposium on

Fault-Tolerant Computing, page 524533, 1993.

[KLSC00] T. Kim, J. Lee, H. Shin, and N. Chang. Best case response time analysis

for improved schedulability analysis of distributed real-time tasks. In

In Proceedings ICDCS Workshops on Distributed Real-Time Systems,

pages 14–20, April 2000.

[Kop00] H. Kopetz. A comparison of CAN and ttp. Annual Reviews in Control,

24:177–188, 2000.

[KRWG96] A. Kirschbaum, F.M. Renner, A. Wilmes, and M. Glesner. Rapid-

prototyping of a CAN-bus controller: A case study. In In proceedings

of Rapid System Prototyping, Seventh IEEE International Workshop

on, pages 146–151, 6 1996.

[kva] http://www.kvaser.com/en/support/bit-timing-calculator.html.

218

[LAB09] Lab VIEW. http://www.ni.com/labview86, 2009.

[Lai02] R. Lai. A survey of communication protocol testing. Journal of Systems

and Software, 62:21–46, 2002.

[Law97] W. Lawrenz. CAN system engineering: from theory to practical appli-

cations, volume 1. Springer, 1997.

[LCZS09] F. Luo, J. Chen, G. Zhuang, and Z. Sun. Research on CAN controller

conformance test system. In Computer Science and Information Tech-

nology, 2009. ICCSIT 2009. 2nd IEEE International Conference on,

pages 582 –585, aug. 2009.

[LFY+07] T. Lee, Y. Fan, S. Yen, C. Tsai, and R. Hsiao. An integrated functional

verification tool for FPGA systems. In Second International Conference

on Innovative Computing, Information and Control, ICICIC ’07, page

203, 9 2007.

[LH02] G. Leen and G. Heffernan. TTCAN: a new time-triggered Controller

Area Network. Microprocessors and Microsystems, 26(2):77–94, 2002.

[LK98] P. Lawrenz, W. Kinowski and G. Kircher. CAN conformance testing -

state of the art and test experience. In In Proceedings of 5th Interna-

tional CAN Conference iCC98, San Jose, California, Nov 1998.

[LKJ99] M.A. Livani, J. Kaiser, and W. Jia. Scheduling hard and soft real-

time communication in a controller area network. Control Engineering

Practice, 7(12):1515 – 1523, 1999.

[LKK98] W. Lawrenz, P. Kinowski, and G. Kircher. CAN conformance testing-

The developing ISO standard and necessary extensions. In In Pro-

ceedings of International Truck and Bus Meeting and Exposition, Indi-

anapolis, Indiana, November 1998.

219

[MAF05] E. Martins, L. Almeida, and A. Fonseca. An FPGA-based coprocessor

for real-time field bus traffic scheduling–architecture and implementa-

tion. Journal of Systems Architecture, 51(1):29–44, 2005.

[Men07] Mentor Graphics. Modelsim, 2007.

[MH92] F. Miesterfeld and R. Halter. Survey of vehicle multiplexing encoding

techniques. In Automotive Technology International 92, pages 253–265.

Sterling Publications International, 1992.

[Mic03] Microchip. MCP2515 stand-alone CAN controller with SPI interface.

http://www.avrcard.com/Documents/datasheets/mcp2515.pdf, 2003.

[MMTS96] H. Mori, Y. Mano, H. Takada, and K. Sakamura. µITRON bus: a

real-time control LAN for open network environment. In Real-Time

Computing Systems and Applications, 1996. Proceedings., Third Inter-

national Workshop on, pages 227–234, October 1996.

[MP10] A. Muhammad and M.J. Pont. A time-triggered communication pro-

tocol for CAN-based networks with a fault-tolerant star topology. In

Computer and Information Technology (CIT), 2010 IEEE 10th Inter-

national Conference on, pages 2347 –2354, July 2010.

[NDK+05] K. Nimsub, K. Dawi, C. Kyuhyung, K. Jinsang, and C. Wonkyung.

Design and verification of a CAN controller for custom ASIC. In CAN

in Automation Proceedings of 10th iCC, 2005.

[NHN02] T. Nolte, H. Hansson, and C. Norstrm. Minimizing CAN response-

time jitter by message manipulation. In 8th Real-time and Embedded

Technology and Applications Symposium, Proceedings, pages 197–206,

2002.

220

[NHNP01] T. Nolte, H. Hansson, C. Norstrm, and S. Punnekkat. Using bit-stuffing

distributions in CAN analysis. In IEEE Real-Time Embedded Systems

Workshop, Proceeding, December 2001.

[NI 08] National Instruments. 1 Port, High Speed CAN, USB Interface, 2008.

[Nov09] J. Novak. Flexible approach to the Controller Area Networks test and

evaluation. In Intelligent Data Acquisition and Advanced Computing

Systems: Technology and Applications, 2009. IDAACS 2009. IEEE In-

ternational Workshop on, pages 44 –48, September 2009.

[NP03] R.G. Navas and J. Proenza. Analyzing atomic broadcast in TTCAN

networks. In 5th IFAC International Conference on Fieldbus Systems

and their Applications (FET 2003), pages 153–156, Aveiro, Portugal,

2003.

[NP05] M. Nahas and M. Pont. Using XOR operations to reduce variations in

the transmission time of CAN messages: a pilot study. In A. Koelmans,

Bystrov, A. Pont, R. M Ong, and A. Brown, editors, Proceedings of

the Second UK Embedded Forum 2005, pages 4–17, Birmingham, UK,

October 2005.

[NPS09] M. Nahas, M. Pont, and M. Short. Reducing message-length variations

in resource-constrained embedded systems implemented using the Con-

troller Area Network (CAN) protocol. Journal of Systems Architecture,

55:344–354, 2009.

[NSP05] M. Nahas, M. Short, and M. Pont. The impact of bit stuffing on

the real-time performance of a distributed control system. In 10th

International CAN conference,Proceeding, pages 10–1 to 10–7, Rome,

Italy, March 2005.

221

[NXP02] NXP. TJA1050: High speed CAN transceiver, 2002.

[OAF05] A.R. Oliveira, N.L. Arqueiro, and P.N. Fonseca. CLAN A technology

independent synthesizable CAN controller. In proceedings of ICC 2005

- 10th International CAN Conference. CiA - CAN in Automation, 2005.

[OMS05] O. Oltu, P. Milea, and A. Simion. Testing of digital circuitry using

Xilinx Chipscope logic analyzer. In Proceedings International Semi-

conductor Conference, CAS 2005, volume 2, pages 471–474, October

2005.

[Par07] D. Paret. Multiplexed Networks for Embedded System. John Wiley &

Sons Ltd, Chister, England, 2007.

[PF04] J.R. Pimentel and J.A. Fonseca. FlexCAN: A flexible architecture for

highly dependable embedded applications. In 3rd Int. Workshop on

Real-Time Networks, Proceedings, Catania, Italy, July 2004.

[Phi96a] Philips. Application Note: PCA82C250/251 CAN Transceiver, 1996.

[Phi96b] Philips Semiconductors. Application Note: PCA82C250/251 CAN

Transceiver, 1996.

[Phi04] Philips. LPC2119/2129/2194/2292/2294 User Manual. Philips Semi-

conductors, 2004.

[PHN00] S. Punnekkat, H. Hansson, and C. Norstrm. Response time analysis un-

der errors for CAN. In In Proceedings of the 6th Real-Time Technology

and Applications Symposium (RTAS), pages 258–265. IEEE Computer

Society, 2000.

[PKS07] K. Park, M. Kang, and D. Shin. Mechanism for minimizing stuffing-

bit in CAN messages. In Industrial Electronics Society, 2007. IECON

2007. 33rd Annual Conference of the IEEE, pages 735 –737, Nov 2007.

222

[Pon01] M.J. Pont. Patterns for Time-Triggered Embedded Systems, volume 1.

ADDISON-WESLEY, 2001.

[PP07] J.R. Pimentel and J. Paskvan. Experimental jitter analysis in a flex-

CAN based drive-by-wire automotive application. In Design Automa-

tion Conference, 2007. DAC ’07. 44th ACM/IEEE, pages 290 –293,

June 2007.

[PRA06] R. Pinto, J. Rufno, and C. Almeida. Specification and engineering of

the CANELy prototype board. Technical Report DARIO Technical Re-

port RT-06-06, Instituto Superior Tecnico, Lisbon, Portugal, October

2006.

[QPFM05] C. Quigley, B. Pope, J. Finney, and R. McLaughlin. An automo-

tive specification of a time-triggered CAN implementation: Doubling

CAN’s usable data. SAE Transactions, 114(7):509–518, 2005.

[Raj06] N. Raja. FPGA implementation of a SIP message processor. Master’s

thesis, Computer Engineering Department, North Carolina University,

2006.

[RG88] T.V. Ramabadran and S.S. Gaitonde. A tutorial on crc computations.

Micro, IEEE, 8(4):62 –75, 8 1988.

[RNRP+04] G. Rodriguez-Navas, J. Rigo, J. Proenza, J. Ferreira, L. Almeida, and

J.A. Fonseca. Design and modeling of a protocol to enforce consistency

among replicated masters in FTT-CAN. In Factory Communication

Systems, 2004. Proceedings. 2004 IEEE International Workshop on,

pages 229 – 238, September 2004.

[RNRP08] G. Rodrguez-Navas, S. Roca, and J. Proenza. Orthogonal, fault-

tolerant and high-precision clock synchronization for the Controller

223

Area Network. IEEE Transactions on Industrial Informatics, 4(2):92–

101, May 2008.

[RTE07] Industrial communication networks - profiles - Part 2: Additional field

bus profiles for real-time networks based on iso/iec 8802-3. 2007.

[Ruf02] J. Rufino. Computational System for Real-Time Distributed Control.

PhD thesis, Departamento de Engenharia Electrotecnica e de Com-

putadores,Instituto Superior Tecnico, Lisbon, Portugal, 2002.

[RVA+98] J. Rufino, P. Verissimo, G. Arroz, C. Almeida, and L. Rodrigues. Fault-

tolerant broadcasts in CAN. In Fault-Tolerant Computing, 1998. Digest

of Papers. Twenty-Eighth Annual International Symposium on, pages

150–159, Jun 1998.

[RVA03] J. Rufino, P. Verssimo, and G. Arroz. Node failure detection and mem-

bership in CANELy. In Proceedings of the IEEE International Con-

ference on Dependable Systems and Networks, California, USA, June

2003.

[SG00] I Schieferdecker and J. Grabowski. Conformance testing with TTCN.

Languages for Telecommunications Applications, 96(4):85–95, 2000.

[SJA00] SJA1000 stand-alone CAN controller, Jan 2000. Data Sheet.

[SK99] R. Stuart and E. Kilbride. Application Notes: CAN Bit Timing Re-

quirements. FreeScale semiconductors, 1999.

[Skl88] B. Sklar. Digital communications: fundamentals and applications.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988.

[Smi96] D. Smith. VHDL and Verilog compared and contrasted plus modelled

example written in VHDL, Verilog and C. In ACM/IEEE Design Au-

tomation Conference, pages 771–776, June 1996.

224

[SN06] R. Saket and N. Navet. Frame packing algorithms for automotive ap-

plications. Embedded Computing, 2(1):93–102, 2006.

[Sof07] Softing AG. CAN/CANopen/DeviceNet Interface boards, 2007.

[SP07] M. Short and M.J. Pont. Fault-tolerant time-triggered communication

using CAN. Industrial Informatics, IEEE Transactions on, 3(2):131–

142, May 2007.

[SPF08] M. Short, M. Pont, and J. Fang. Assessment of performance and de-

pendability in embedded control systems: Methodology and case study.

Control Engineering Practice, 16(11):1293 – 1307, 2008.

[SS09] I. Sheikh and M. Short. CAN conformance testing-A new approach.

Technical Report Tech-Report ESL-09-01, ESL, Engineering Depart-

ment, University of Leicester, Feb 2009.

[Sta07] W. Stallings. Data and Computer Communications. Pearson Prentice

Hall, 8th edition, 2007.

[TBW95] K. Tindell, A. Burns, and A. Wellings. Calculating Controller Area

Network (CAN) message response times. Control Engineering Practice,

3(8):1163–1169, 1995.

[TDT+06] H. Tan, R.F. DeMara, A.J. Thakkar, A. Ejnioui, and A.D. Sattler.

Complexity and performance evaluation of two partial reconfiguration

interfaces on FPGAs: A case study. In In Proceedings of the ERSA,

2006.

[Tex00] Texas Instruments. SN65LBC176A: Differential Bus Transceivers,

2000.

[TLA] TLA 5000b logic analyzers.

225

[TMS97] Texas Instruments Reference set volume 1 & 2: TMS320C243 DSP

controllers, 1997.

[Tr98] M. Trngren. Fundamentals of implementing real-time control applica-

tions in distributed computer systems. Real-Time Systems, 14:219–250,

1998.

[Tra03] Deep storage with Xilinx Chipscope pro and Agilent technologies

FPGA trace port analyzer, 2003.

[TTE] http://www.tte-systems.com/.

[UK93] B. Upender and P. J. Koopman. Embedded communication protocol

options. In Proceedings of the Embedded Systems Conference, San Jose,

CA, October 1993.

[Ver06] IEEE std 1364 -2005 IEEE standard for Verilog hardware description

language. IEEE Std 1364-2005 (Revision of IEEE Std 1364-2001),

pages 1–560, 2006.

[War09] D. Waraus. Steer-by-wire system based on FlexRay protocol. In Applied

Electronics, 2009. AE 2009, pages 269 –272, sept 2009.

[WBTMG96] A. Winter, D. Bittruf, Y. Tanurhan, and K.D. Muller-Glaser. Rapid

prototyping of a communication controller for the CAN bus. In Rapid

System Prototyping, 1996. Proceedings., Seventh IEEE International

Workshop on, pages 152–157, Jun 1996.

[wik] http://en.wikipedia.org/wiki/edge case.

[XAP03] Xilinx Inc. Using Digital Clock Managers (DCMs) in Spartan-3 FP-

GAs, 2003. Application Note.

226

[xil] http://www.xilinx.com/itp/xilinx5/help/xpower/html/d definitions

/d clock to setup path.htm.

[Xil07] Xilinx. Chipscope Pro Software and Cores, January 2007.

[Xil08] ISE foundation, 2008.

[ZCD+06] G. Zarri, F. Colucci, F. Dupuis, R. Mariani, M. Pasquariello, G. Risal-

iti, and C. Tibaldi. On the verification of automotive protocols. In In

Proceedings of Design, Automation and Test in Europe, volume Mar,

pages 6–10, 3 2006.

[ZT09] S. Ziermann, T. Wildermann and J. Teich. CAN+: A new backward-

compatible Controller Area Network (CAN) protocol with up to 16x

higher data rates. In 2009 Design, Automation and Test in Europe,

pages 1088–1093, April 2009.

