
The cohomology of λ-rings and

Ψ-rings

Thesis submitted for the degree of

Doctor of Philosophy
at the University of Leicester

by

Michael Robinson

Department of Mathematics

University of Leicester

March 2010

mailto:mr85@alumni.leicester.ac.uk
http://www.mcs.le.ac.uk
http://www.le.ac.uk


Abstract

The cohomology of λ-rings

and Ψ-rings
by

Michael Robinson

In this thesis we develop the cohomology of diagrams of algebras and then apply
this to the cases of the λ-rings and the Ψ-rings. A diagram of algebras is a functor
from a small category to some category of algebras. For an appropriate category
of algebras we get a diagram of groups, a diagram of Lie algebras, a diagram of
commutative rings, etc.

We define the cohomology of diagrams of algebras using comonads. The cohomol-
ogy of diagrams of algebras classifies extensions in the category of functors. Our
main result is that there is a spectral sequence connecting the cohomology of the
diagram of algebras to the cohomology of the members of the diagram.

Ψ-rings can be thought of as functors from the category with one object associated
to the multiplicative monoid of the natural numbers to the category of commuta-
tive rings. So we can apply the theory we developed for the diagrams of algebras
to the case of Ψ-rings. Our main result tells us that there is a spectral sequence
connecting the cohomology of the Ψ-ring to the André-Quillen cohomology of the
underlying commutative ring.

The main example of a λ-ring or a Ψ-ring is the K-theory of a topological space.
We look at the example of the K-theory of spheres and use its cohomology to give
a proof of the classical result of Adams. We show that there are natural transfor-
mations connecting the cohomology of the K-theory of spheres to the homotopy
groups of spheres. There is a very close connection between the cohomology of the
K-theory of the 4n-dimensional spheres and the homotopy groups of the (4n− 1)-
dimensional spheres.
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Chapter 1

Introduction

λ-rings were first introduced in an algebraic-geometry setting by Grothendieck

in 1958, then later used in group theory by Atiyah and Tall. A λ-ring R is a

commutative ring with identity, together with operations λi : R → R, for i ≥ 0.

We require that λ0(r) = 1 and λ1(r) = r for all r ∈ R. There are more complicated

axioms describing λi(r1 +r2), λi(r1r2) and λi(λj(r)). The λ-operations behave like

exterior powers. The more complicated axioms are difficult to work with, and

given a λ-ring R, it is difficult to prove that it is actually a λ-ring.

In 1962 Adams introduced the operations Ψi to study vector fields of spheres.

These operations give us another type of ring, the Ψ-rings, which are related to

the λ-rings by the following formula.

Ψi(r)− λ1(r)Ψi−1(r) + ...+ (−1)i−1λi−1(r)Ψ1(r) + (−1)iiλi(r) = 0.

A Ψ-ring is a commutative ring R, together with ring homomorphisms Ψi : R→ R,

for i ≥ 1. We only require that Ψ1(r) = r and Ψi(Ψj(r)) = Ψij(r) for all r ∈ R.

The Ψ-rings are much easier to work with, and in several places we will need to

pass to Ψ-rings to be able to carry out computations for λ-rings.

Homological algebra is a relatively young discipline, which arose from algebraic

topology in the early 20th century. In 1956, Cartan and Eilenberg published their

book entitled “Homological Algebra” [5], which was the first book on homological
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algebra and still remains a standard book of reference today. They found that

the cohomology theories for groups, associative algebras and Lie algebras could

all be described by derived functors, defined by means of projective and injective

resolutions of modules. However the method they used was not enough to define

the cohomology of commutative algebras. To overcome this problem, simplicial

techniques were developed in homological algebra.

In the 1950’s Moore showed that every simplicial group K is a Kan complex

whose homotopy groups are the homology of a chain complex called the Moore

complex of K. Dold and Kan independently found that there is an equivalence

between the category of simplicial abelian groups and the category of non-negative

chain complexes of abelian groups given by the Moore complex. Using simplicial

methods Dold and Puppe showed that one can define the derived functors of a

non-additive functor, since simplicial homotopy doesn’t involve addition.

The notion of a monad on a category traces back to R. Godement [9]. Around

1965, Barr and Beck used comonads to define a resolution as a way to compute

nonabelian derived functors. In 1967, André and Quillen independently developed

what we now call André-Quillen cohomology. The André-Quillen cohomology is

defined in general for algebras, using comonads. The λ-rings and Ψ-rings are

particular examples which are included in this scheme, so the André-Quillen co-

homology is well defined for both λ-rings and Ψ-rings. The main difficulty is that

the André-Quillen cohomology is complicated and difficult to compute. Harrison

had described a cohomology for commutative algebras in 1962 using a subcomplex

of the Hochschild complex. The Harrison cohomology coincides with the André-

Quillen cohomology over a field of characteristic zero up to a dimension shift. Our

aim is to develop tools which aid computation.

In 2004, Yau [20] defined a cohomology for λ-rings in order to study deformations

of the associated Ψ-operations. However, Yau’s cohomology for λ-rings is different

from the André-Quillen cohomology.
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1.1 Outline of the thesis

In Chapter 2, we give a short overview of some of the fundamental concepts of

homological algebra. We can trace the roots of these concepts back to Cartan

and Eilenberg in the 1950’s. We provide the definitions of additive categories,

abelian categories and short exact sequences in abelian categories. We outline

the construction of the right derived functor Exti using projective and injective

resolutions. The main references for this part of the chapter are [19] and [17]. We

sketch the construction of the cohomology of algebras in general using comonads

[19] and we give the example of the André-Quillen cohomology for commutative

rings which are the right derived functors of the derivations functor [18]. We

provide an overview of the Harrison cohomology of commutative algebras [10] and

the Baues-Wirsching cohomology of a small category with coefficients in a natural

system [4].

Chapter 2 only provides well known background material which will be required

later. It does not contain any original work. The original research can be found

in the remaining chapters of the thesis.

In Chapter 3, we turn our attention to Ψ-rings, which are related to λ-rings via

the Adam’s operations. The first section introduces the basic concept of a Ψ-ring

which can be found in [14]. We then develop the Ψ-analogue of modules and the

semidirect product. These are then used to develop the Ψ-analogue of derivations

and extensions. The results from this chapter are needed in chapter 4 to prove

similar results for λ-rings.

In 2005, Donald Yau published a paper entitled, “Cohomology of λ-rings” [20]. In

the paper he develops a cohomology of λ-rings in order to study the deformations

of the Ψ-ring structure. Yau’s cohomology is different from the André-Quillen

cohomology. In the last section of Chapter 3 I provide a definition of the deforma-

tion of a Ψ-ring which is different to Yau’s definition. This alternative definition

is related to the André-Quillen cohomology of Ψ-rings.

In Chapter 4, we introduce λ-rings. The first section introduces the basic notions

of λ-rings which can be found in [14]. We then develop the λ-analogue of modules

and the semidirect product. We then use these to develop the λ-analogue of
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derivations and extensions. The last section of Chapter 4 provides an overview of

Yau’s cohomology for λ-rings.

In Chapter 5, we extend the Harrison cochain complex of a commutative algebra

to get a bicomplex whose cohomology we define to be the Harrison cohomology

of a diagram of a commutative algebra. We then apply this theory to the case of

Ψ-rings.

In Chapter 6, we develop a cohomology for diagrams of algebras in general, using

comonads. First, we fix a small category I. A diagram of algebras is a functor

I → Alg(T ), where T is a monad on sets. For appropriate T , we get a diagram of

groups, a diagram of Lie algebras, a diagram of commutative rings, etc. The ad-

joint pair Alg(T ) // Setsoo yields a comonad which we denote by G. We can also

consider the category I0, which has the same objects as I, but only the identity

morphisms. The inclusion I0 ⊂ I yields the functor SetsI → SetsI0 which has a

left adjoint given by the left Kan extension. We also have the pair of adjoint func-

tors Alg(T )I // SetsIoo which comes from the adjoint pair Alg(T ) // Setsoo .

By putting these pairs together, we get another adjoint pair

Alg(T )I // SetsI0oo .

This adjoint pair yields a comonad which we denote by GI . We can then take the

cohomology associated to the comonad GI . Now we have both a global cohomol-

ogy, H∗GI (A,M), and a local cohomology, H∗G(A(i),M(i)). Our main result is that

there exists a local to global spectral sequence connecting the two:

Epq
2 = Hp

BW (I,Hq(A,M))⇒ Hp+q
GI (A,M),

where Hp
BW (I,Hq(A,M)) denotes the Baues-Wirsching cohomology of the small

category I with coefficients in the natural system Hq(A,M) on I whose value on

(α : i→ j) is given by Hq
G(A(i), α∗M(j)).

In Chapter 7, we apply our theory from Chapter 6 to the case of Ψ-rings. A

Ψ-ring can be considered as a diagram of a commutative ring, so we can apply

our results to get a cohomology for Ψ-rings. We also define the cohomology of

λ-rings using comonads. We note that there are homomorphisms connecting the
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cohomology of λ-rings, the cohomology of the associated Ψ-rings and the André-

Quillen cohomology of the underlying commutative rings.

The last Chapter looks at applications of the earlier developed theory. Our

main application is in algebraic topology. For any topological space X such

that K1(X) = 0, there exists a homomorphism natural in X, τ : π2n−1(X) →
ExtΨ(K(X), K̃(S2n)). We show that the cohomology of λ-rings and Ψ-rings can

be used to prove the classical result of Adams. We also show that the Ψ-ring

cohomology of K(S2n) is related to the stable homotopy groups of spheres via the

natural transformation τ .



Chapter 2

Homological algebra

2.1 Category theory

2.1.1 Abelian categories

The material in this section can be found in many textbooks, including [16] and

[19]. Before we introduce abelian categories, we start by defining the notion of an

additive category.

An additive category A is a category such that the following holds:

1. for every pair of objects X and Y in A, the hom-set HomA(X, Y ) has the

structure of an abelian group such that morphism composition distributes

over addition.

2. A has a zero object (an object which is both initial and terminal).

3. for every pair of objects X and Y in A, their product X × Y exists.

An abelian category is defined in terms of kernels and cokernels, so first we will

recall some other basic definitions from category theory.

In a category C, a morphism m : X → Y is called a monomorphism if for all

morphisms f1, f2 : V → X where m ◦ f1 = m ◦ f2 we have f1 = f2. A morphism

6
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e : Y → X is called an epimorphism if for all morphisms g1, g2 : X → V where

g1 ◦ e = g2 ◦ e we have g1 = g2.

In an additive category A, a kernel of a morphism f : X → Y is defined to be a

map i : X ′ → X such that f ◦ i = 0 and for any morphism g : Z → X such that

f ◦ g = 0 there exists a unique morphism g′ : Z → X ′ such that i ◦ g′ = g.

Z
g′

~~
g

��

0

  
X ′

i
// X

f
// Y

Dually, in an additive category A, a cokernel of a morphism f : X → Y is defined

to be a map e : Y → Y ′ such that e ◦ f = 0 and for any morphism g : Y → Z such

that g ◦ f = 0 there exists a unique morphism g′ : Y ′ → Z such that g′ ◦ e = g.

Z

X

0

>>

f
// Y

g

OO

e
// Y ′

g′
``

An abelian category A is an additive category such that the following holds:

1. every morphism in A has a kernel and cokernel.

2. every monomorphism in A is the kernel of its cokernel.

3. every epimorphism in A is the cokernel of its kernel.

The basic example of an abelian category is the category of abelian groups, denoted

by Ab. In the category Ab, the objects are Abelian groups, and the morphisms

are abelian group homomorphisms. In general, module categories which appear

throughout algebra, are abelian categories.

If I is a small category and A is an abelian category then the category of functors

AI as also an abelian category. The category of sets Sets and the category of

groups Grp are not abelian categories. However, if G is a group then the category
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of left (or right) G-modules, denoted by G − mod, is an abelian category. If R

is a ring then the category of left (or right) R-modules, denoted by R − mod, is

an abelian category. If R is a Ψ-ring then the category of Ψ-modules over R,

denoted by R − modΨ, is an abelian category. If R is a λ-ring then the category

of λ-modules over R, denoted by R−modλ, is an abelian category.

In an abelian category A, a short exact sequence is a sequence

0 // A α // B
β // C // 0

in which α is a monomorphism, β is an epimorphism and Ker(β) = Im(α).

In an abelian category A, a sequence

. . . // Xn−1 f
n−1
// Xn fn // Xn+1 // . . .

is said to be exact at Xn if Ker(fn) = Im(fn−1). The sequence is said to be exact

if it is exact at Xn for all n ∈ Z.

2.1.2 Modules

Let C be a (not necessarily abelian) category with finite limits, and 1 denote a

terminal object in C. An abelian group object of C is an object A together with

arrows m : A×A→ A, i : A→ A and z : 1→ A such that the following diagrams

commute.

(associativity of multiplication)

A× A× A

idA×m

��

m×idA // A× A

m

��
A× A m

// A
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(left and right units)

A× 1

∼=
%%

idA×z// A× A
m
��

1× Az×idAoo

∼=
yy

A

(left and right inverses)

A
(i,idA)//

��

A× A
m
��

A

��

(idA,i)oo

1 z
// A 1z
oo

(commutativity)

A× A (p2,p1) //

m
##

A× A

m
{{

A

These diagrams say that the arrows satisfy the equations of an abelian group.

Let A, i,m, z and A′,m′, i′, z′ be abelian group objects of C, a morphism of abelian

group objects is an arrow f : A→ A′ such that the following diagram commutes.

A× A m //

f×f

��

A

f

��
A′ × A′

m′
// A′

We denote the category of abelian group objects of C by Ab(C).

Let A be any object of the category C. The slice category of objects of C over A,

denoted by C/A, has as objects the arrows of C with target A. Given two objects

f : B → A and g : C → A of C/A, an arrow of C/A from f to g is an arrow

h : B → C which makes the following diagram commute.

B
h //

f ��

C

g��
A
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Definition 2.1. Let A be an object in a category C. An A-module is defined to

be an abelian group object in the category C/A,

A−mod := Ab(C/A).

The category A−mod is usually an abelian category.

Definition 2.2. Let p : Y → A be an object and q : Z → A be an abelian

group object of C/A, then we define the abelian group of p-derivations, denoted

Der(Y, Z), to be

Der(Y, Z) := HomC/A(p, q).

2.2 Cohomology

The concepts of complexes and (co)homology began in algebraic topology with

simplicial and singular (co)homology. The methods of algebraic topology have

been applied extensively throughout pure algebra, and have initiated many de-

velopments. Complexes are the basic tools of homological algebra and provide us

with a way of computing (co)homology. The following definitions can be found in

[17] and [5].

A cochain complex (C, δ) of objects of an abelian category A is a family {Cn, δn}n∈Z
of objects Cn ∈ obj(A) and morphisms (called the coboundary maps or differential

maps) δn : Cn → Cn+1 such that δn+1 ◦ δn = 0 for all n ∈ Z.

· · · // Cn−2 δn−2
// Cn−1 δn−1

// Cn δn // Cn+1 δn+1
// Cn+2 // · · ·

The last condition is equivalent to saying that Im(δn) ⊆ Ker(δn+1) for all n ∈ Z.

Hence, one can define the cohomology of C denoted by H∗(C),

H∗(C) = {Hn(C)}n∈Z where Hn(C) =
Ker(δn)

Im(δn−1)
.
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Hn(C) is called the nth-cohomology of C. An n-coboundary is an element of

Im(δn−1). An n-cocycle is an element of Ker(δn).

Let (C, δ) and (C�, δ�) be two cochain complexes of an abelian category A. A

cochain map f : (C, δ) → (C�, δ�) is a family of morphisms {fn : Cn → Cn
� }n∈Z

such that δn� ◦ fn = fn+1 ◦ δn for all n ∈ Z. The last condition is equivalent to

saying the following diagram commutes.

· · · // Cn−2

fn−2

��

δn−2
// Cn−1

fn−1

��

δn−1
// Cn

fn

��

δn // Cn+1

fn+1

��

δn+1
// Cn+2

fn+2

��

// · · ·

· · · // Cn−2
�

δn−2
�

// Cn−1
�

δn−1
�

// Cn
� δn�

// Cn+1
�

δn+1
�

// Cn+2
�

// · · ·

A cochain map f : (C, δ) → (C�, δ�) induces homomorphisms Hn(f) : Hn(C) →
Hn(C�). This makes each Hn into a functor.

A cochain bicomplex of objects of an abelian category A is a family

{Cp,q, δp,q, ∂p,q}p,q∈Z of objects Cp,q ∈ obj(A) and morphisms δp,q : Cp,q → Cp+1,q

and ∂p,q : Cp,q → Cp,q+1 such that δp+1,q ◦ δp,q = 0 and ∂p,q+1 ◦ ∂p,q = 0 and also

∂p+1,qδp,q + δp,q+1∂p,q = 0 for all p, q ∈ Z.

It is useful to visualise a cochain bicomplex as a lattice

...
...

...

. . . // Cp−1,q+1

OO

δp−1,q+1
// Cp,q+1

OO

δp,q+1
// Cp+1,q+1

OO

// . . .

. . . // Cp−1,q

∂p−1,q

OO

δp−1,q
// Cp,q

∂p,q

OO

δp,q
// Cp+1,q

∂p+1,q

OO

// . . .

. . . // Cp−1,q−1

∂p−1,q−1

OO

δp−1,q−1
// Cp,q−1

∂p,q−1

OO

δp,q−1
// Cp+1,q−1

∂p+1,q−1

OO

// . . .

...

OO

...

OO

...

OO

where each row (C∗,q, δ∗,q) and each column (Cp,∗, ∂p,∗) is a cochain complex and

each square anticommutes.
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The total complexes Tot(C) = Tot
∏

(C) and Tot
⊕

(C) of a cochain bicomplex C

are given by

Tot
∏

(C)n =
∏

p+q=n

Cp,q and Tot
⊕

(C)n =
⊕
p+q=n

Cp,q.

The coboundary maps are given by d = δ+ ∂. We note that Tot
∏

(C) = Tot
⊕

(C)

if C is bounded, especially if C is a first quadrant bicomplex.

Proposition 2.3. If C is a first quadrant bicomplex then we have the following

convergent spectral sequence

Ep,q
2 = Hp

hH
q
v(C)⇒ Hp+q(Tot(C)),

where H∗h denotes the horizontal cohomology, and H∗v denotes the vertical coho-

mology.

2.3 Classical derived functors

A standard method of computing classical derived functors between abelian cat-

egories is to take a resolution, apply the functor, then take the (co)homology of

the resulting complex. The following material can be found in [5], [19] and [17].

2.3.1 Projective and injective objects

An object P of an abelian category A is projective if for any epimorphism e : A�

B and any morphism f : P → B there exists a morphism g : P → A such that

f = e ◦ g, in other words, if the following diagram commutes.

P

f
��

g

��
A e

// // B // 0
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An object Q of an abelian category A is injective if for any monomorphism m :

A ↪→ B and any morphism f : A → Q there exists a morphism g : B → Q such

that f = g ◦m, in other words, if the following diagram commutes.

0 // A

f
��

� � m // B

g
��

Q

An object P is projective if and only if HomA(P,−) : A→ Ab is an exact functor.

In other words, if and only if for any exact sequence 0 → A → B → C → 0 in A

it follows that the following sequence of groups

0 // HomA(P,A) // HomA(P,B) // HomA(P,C) // 0

is also exact.

An object Q is injective if and only if HomA(−, Q) : A→ Ab is an exact functor.

In other words, if and only if for any exact sequence 0 → A → B → C → 0 in A

it follows that the following sequence of groups

0 // HomA(C,Q) // HomA(B,Q) // HomA(A,Q) // 0

is also exact.

2.3.2 Projective and injective resolutions

Let A be an object of an abelian category A. A projective resolution of A is a

complex P , where Pi = 0 for all i < 0 and Pj is projective for all j ≥ 0, together

with a morphism ε : P0 → A called the augmentation such that the augmented

complex

. . . // P2
∂ // P1

∂ // P0
ε // A // 0

is exact.

Let A be an object of an abelian category A. An injective resolution of A is a

complex Q, where Qi = 0 for all i < 0 and Qj is injective for all j ≥ 0, together
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with a morphism ε : A → Q0 called the augmentation such that the augmented

complex

0 // A
ε // Q0

δ // Q1
δ // Q2

// . . .

is exact.

An abelian category A is said to have enough projectives if for every object A of

A, there exists a projective object P of A and an epimorphism e : P → A.

An abelian category A is said to have enough injectives if for every object A of A,

there exists an injective object Q of A and a monomorphism m : A→ Q.

2.3.3 Right derived functors

Let A,B be abelian categories, where A has enough injectives. If F : A→ B is a

covariant left exact functor, then we can construct the right derived functors of F ,

denoted by RnF : A→ B for n ≥ 0. If A is an object of A, and Q is an injective

resolution of A, we define

RnF (A) := Hn(F (Q)).

Let A,B be abelian categories, where A has enough projectives. If G : A→ B is

a contravariant left exact functor, then we can construct the right derived functors

of G, denoted by RnG : A → B for n ≥ 0. If A is an object of A, and P is a

projective resolution of A, we define

RnG(A) := Hn(G(P )).

It is known that the functors RnF (A) and RnG(A) are independent of the choice

of projective/injective resolution chosen, hence it only depends on A. We always

get R0F (A) ∼= F (A) and R0G(A) ∼= G(A). Furthermore, if A is injective then

RnF (A) = 0 for n > 0, and if A is projective then RnG(A) = 0 for n > 0.
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Given a covariant left exact functor F : A→ B between the abelian categories A

and B and given a short exact sequence

0→ A1 → A2 → A3 → 0

in A, then there exists the following long exact sequence.

0 // R0F (A1) // R0F (A2) // R0F (A3) // R1F (A1) // . . .

. . . // RnF (A1) // RnF (A2) // RnF (A3) // Rn+1F (A1) // . . .

2.3.4 Ext

The main example of right derived functors are the functors Extn.

LetR be a ring, and letM,N be leftR-modules. The functor F (−) = HomR(M,−) :

R−mod→ Ab is a covariant additive left exact functor, so we can define its right

derived functors

ExtnR(M,−) = Rn HomR(M,−) : R−mod→ Ab.

Given a left R-module M and a short exact sequence of left R-modules 0→ N ′ →
N → N ′′ → 0 we obtain the following long exact sequence.

0→ HomR(M,N ′)→ HomR(M,N)→ HomR(M,N ′′)→ Ext1
R(M,N ′)→ . . .

. . .→ ExtnR(M,N ′)→ ExtnR(M,N)→ ExtnR(M,N ′′)→ Extn+1
R (M,N ′)→ . . .

Similarly HomR(−, N) : R−mod→ Ab is also a contravariant additive left exact

functor, so we can define its right derived functors ExtnR(−, N) = Rn HomR(−, N) :

R−mod→ Ab.
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Given a short exact sequence of left R-modules 0 → M ′ → M → M ′′ → 0 and a

left R-module N we obtain the following long exact sequence.

0→ HomR(M ′′, N)→ HomR(M,N)→ HomR(M ′, N)→ Ext1
R(M ′′, N)→ . . .

. . .→ ExtnR(M ′′, N)→ ExtnR(M,N)→ ExtnR(M ′, N)→ Extn+1
R (M ′′, N)→ . . .

2.4 Comonad cohomology

Cartan and Eilenberg unified the cohomology theories of groups, Lie algebras

and associative algebras by describing them as Ext groups in the appropriate

abelian categories. Unfortunately, this approach does not work in all categories,

for example in the category of commutative algebras. The right approach is the

comonad cohomology using simplicial methods. This material can be found in [3]

and [19].

2.4.1 Monads and comonads

A monad T = (T, η, µ) in any category C consists of an endofunctor T : C → C

together with two natural transformations: η : IdC → T , µ : T ◦T = T 2 → T such

that the following diagrams commute.

T 3 Tµ //

µT

��

T 2

µ

��
T 2 µ // T

IdCT
ηT // T 2

µ

��

TIdC
Tηoo

T
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The natural transformation η is called the unit, and the natural transformation

µ is called the multiplication. The diagrams are called the associativity, left unit

and right unit laws.

A comonad G = (G, ε, δ) in any category C consists of an endofunctor G : C→ C

together with two natural transformations: ε : G → IdC, δ : G → G2 such that

the following diagrams commute.

G
δ //

δ

��

G2

Gδ

��
G2 δG // G3

G

δ

��
IdCG G2

εG
oo

Gε
// GIdC

A pair of functors L : C→ B and R : B→ C are adjoint if for all objects A in C

and B in B there exists a natural bijection

HomB(L(A), B) ∼= HomC(A,R(B)).

Natural means that for all f : A → A′ in C and g : B → B′ in B the following

diagram commutes.

HomB(L(A′), B)

∼=
��

Lf∗ // HomB(L(A), B)

∼=
��

g∗ // HomB(L(A), B′)

∼=
��

HomC(A′, R(B))
f∗ // HomC(A,R(B))

Rg∗ // HomC(A,R(B′))

We say that L is the left adjoint of R, and R is the right adjoint of L.
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Let C
L //

B
R
oo be an adjoint pair of functors with adjunction morphisms η : Id→

RL and µ : LR → Id. Then T = (RL, η,RµL) is a monad on C and G =

(LR, µ, LηR) is a comonad on B.

Example 2.4. Let U : Grp → Sets take a group to the set of its elements for-

getting the group structure, and take group morphisms to functions between sets.

The left adjoint functor to U , is the functor L : Sets → Grp taking a set to the

free group generated by the set. The functor T = UL : Sets → Sets gives rise to

a monad and the functor G = LU : Grp→ Grp gives rise to a comonad.

Let G be a comonad on C. A morphism f : X → Y in C is called a G-epimorphism

if the map HomC(G(Z), X) → HomC(G(Z), Y ) is surjective for all Z. We require

the following useful lemma.

Lemma 2.5. For all objects X in C the morphism GX
εX // X

is a G-epimorphism.

Proof. For any map h : GZ → X, we wish to find a map f : GZ → GX such that

fεX = h. We define f via the following commuting diagram.

G(GZ)
G(h) // G(X)

εX // X

GZ

δ(Z)

OO

f

;;
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Now we need to check that εX ◦ f = h. By the naturality of ε, the following

diagram commutes.

GX
εX // X

G(GZ)

G(h)

OO

εGZ
// GZ

h

OO

GZ

δ(Z)

OO

idGZ

<<f

JJ

So εX is a G-epimorphism.

An object P of C is called G-projective if for any G-epimorphism f : X → Y , the

map HomC(P,X)→ HomC(P, Y ) is surjective.

Example 2.6. For any object X in C the object G(X) is G-projective.

Lemma 2.7. The coproduct of G-projective objects is G-projective.

Proof. Let P =
∐

i Pi where Pi is G-projective for all i. For a map

f : X → Y , one applies the functors HomC(P,−) and HomC(Pi,−) to get the

maps f∗ : HomC(P,X) → HomC(P, Y ) and fi∗ : HomC(Pi, X) → HomC(Pi, Y ). If

f is a G-epimorphism then fi∗ is surjective for all i. Using the well-known lemma

HomC(
∐

i Pi, Z) ∼=
∏

i HomC(Pi, Z) one gets that if f is a G-epimorphism then

f∗ ∼=
∏

i fi∗ is surjective. Hence P is G-projective if Pi is G-projective for all i.

Lemma 2.8. An object P is G-projective if and only if P is a retract of an object

of the form G(Z).

Proof. A retract of a surjective map is surjective, so it is sufficient to consider the

case P = G(Z), which is clear from the definition of a G-epimorphism.

2.4.2 Simplicial methods

Definition 2.9. A simplicial object in a category C is a sequence of objects

X0, X1, . . . , Xn, . . . together with two double-indexed families of arrows in C. The
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face operators are arrows din : Xn → Xn−1 for 0 ≤ i ≤ n and 1 ≤ n < ∞. The

degeneracy operators are arrows sin : Xn → Xn+1 for 0 ≤ i ≤ n and 0 ≤ n < ∞.

The face operators and degeneracy operators satisfy the following conditions:

din ◦ d
j
n+1 =dj−1

n ◦ din+1 if 0 ≤ i < j ≤ n+ 1

sjn ◦ sin−1 =sin ◦ s
j−1
n−1 if 0 ≤ i < j ≤ n

din+1 ◦ sjn =


sj−1
n−1 ◦ din, if 0 ≤ i < j ≤ n;

1, if 0 ≤ i = j ≤ n or 0 ≤ i− 1 = j < n;

sjn−1 ◦ di−1
n , if 0 < j < i− 1 ≤ n.

An augmented simplicial object in the category C is a simplicial object X∗ together

with another object X−1 and an arrow ε : X0 → X−1 such that ε ◦ d0
1 = ε ◦ d1

1.

An augmented simplicial object X∗ → X−1 is called contractible if for each n ≥ −1

there exists a map sn : Xn → Xn+1 such that d0 ◦ s = 1 and di ◦ s = s ◦ di−1 for

0 < i ≤ n and s0 ◦ s = s ◦ s and si ◦ s = s ◦ si−1 for 0 < i ≤ n+ 1.

Let X∗ be a simplicial object in an additive category B. The associated chain

complex to X∗, denoted by C(X∗), is the complex

. . . // Xn+1
d // Xn

d // Xn−1
d // . . . d // X0

// 0

where the boundary maps d =
∑n

i=0(−1)idi : Xn → Xn−1.

Proposition 2.10. If X∗ → X−1 is a contractible augmented simplicial object in

an abelian category A, then the associated chain complex C(X∗) is contractible.

2.4.3 Comonad cohomology

Let G be a comonad on a category C. For any object A in C, we get a functorial

augmented simplicial object which we denote by G(A)∗ → A. The object of G∗(A)

in degree n is Gn+1(A). We define the face and degeneracy operators by

ϕi = GiεGn−i : Gn+1(A)→ Gn(A),

σi = GiδGn−i : Gn+1(A)→ Gn+2(A),



Chapter 2. Homological algebra 21

for 0 ≤ i ≤ n. The augmenting map is given by ε.

. . .
//... // G

nA
//... // G

n−1A
//... // . . .

Gε //

εG
// GA ε // A

We call G(A)∗ the G comonad resolution of A.

Let E : C → M be a contravariant functor where M is an abelian category. The

comonad cohomology of an object A with coefficients in E is H∗G(A,E) where

Hn
G(A,E) := Hn(C(E(G∗(A)))).

By definition, H∗G(A,E) is the cohomology of the associated cochain complex

0 // E(G(A)) // E(G2(A)) // . . .

If M ∈ A-mod, then we define the cohomology of A with coefficients in M to be

the comonad cohomology of A with coefficients in Der(−,M) : C→ Ab.

Hn
G(A,M) := Hn

G(A,Der(−,M)).

Lemma 2.11. H0
G(A,M) ∼= Der(A,M) for all A.

Lemma 2.12. If A is G-projective then Hn
G(A,M) = 0 for n > 0.

Proof. From lemma 2.8, it is sufficient to check the case where A = G(Z). There

exists a contracting homotopy sn : Gn+2 → Gn+3 for n ≥ −1 given by

sn = Gn+1δ.

We get that εs−1 = id, ϕn+1sn = id, ϕ0s0 = s−1ε, and ϕisn = sn−1ϕi for all

0 ≤ i ≤ n. It follows that Hn
G(G(Z),M) = 0, for n > 0.



Chapter 2. Homological algebra 22

2.4.4 André-Quillen cohomology

In 1967, M. André and D. Quillen [18] independently introduced a (co)homology

theory for commutative algebras. This theory now goes by the name of André-

Quillen cohomology.

Fix a commutative ring k and consider the category Commalg of commutative

k-algebras.

The forgetful functor U : Commalg→ Sets has a left adjoint which takes a set X

to the polynomial algebra k[X] on X. This adjoint pair gives us a comonad G on

Commalg.

Let R be a commutative k-algebras, and M ∈ R − mod. We define the André-

Quillen cohomology of R with coefficients in M to be comonad cohomology of R

with coefficients in Derk(−,M),

Hn
AQ(R/k,M) := Hn

G(R,Derk(−,M)).

Note that Derk(−,M)) is a functor from the category of commutative k-algebras

Commalg to the category of abelian groups Ab.

An extension of R by M is an exact sequence

0 //M α // X
β // R // 0

where X is a commutative k-algebra, the map β is a commutative k-algebra ho-

momorphism, the map α is a k-module homomorphism and

xα(m) = α(β(x)m)

for all x ∈ X and all m ∈M . The map α identifies M with an ideal of square-zero

in X.
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Two extensions X,X ′ with R and M fixed are equivalent if there exists a k-algebra

homomorphism φ : X → X such that the following diagram commutes.

0 //M // X //

φ
��

R // 0

0 //M // X // R // 0

We denote the set of equivalence classes of extensions ofR byM by Extalgk(R,M).

Proposition 2.13. 1. H0
AQ(R/k,M) ∼= Derk(R,M).

2. If R is a free commutative algebra then Hn
AQ(R/k,M) = 0 for n > 0.

3. H1
AQ(R/k,M) ∼= Extalgk(R,M).

2.5 Harrison cohomology of commutative alge-

bras

In 1962, D.K. Harrison introduced a cohomology of commutative algebras. The

Harrison complex is a subcomplex of the Hochschild complex in the case of com-

mutative algebras. The Harrison complex consists of the linear functions which

vanish on the shuffles. The Harrison cohomology is isomorphic to the comonad

cohomology for a commutative algebra over a field of characteristic 0, however,

there is a shift of one dimension. The following material can be found in [15].

2.5.1 Hochschild cohomology

Let k be a ring, R be an associative k-algebra and M be an R−R-bimodule. All

the tensor products in this section are over the ground ring k. The Hochschild

cochain complex of R with coefficients in M is given by

Cn
HH(R,M) = HomRe(R

⊗n,M),
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for n ≥ 0 and Re = R ⊗ Rop. The coboundary maps δn : Cn
HH(R,M) →

Cn+1
HH (R,M) are given by

δn(f)(r0, . . . , rn) =r0f(r1, . . . , rn)

+
n−1∑
i=0

(−1)i+1f(r0, . . . , riri+1, . . . , rn)

+ (−1)n+1f(r0, . . . , rn−1)rn.

We can then take the cohomology of the resulting complex to get the Hochschild

cohomology which we denote by HHn(R,M). We get that

HHn(R,M) ∼= Rn HomRe(R,M) ∼= ExtnRe(R,M).

2.5.2 Harrison Cohomology

Let Sn be the symmetric group which acts on the set {1, . . . , n}. A (p,q)-shuffle

is a permutation σ in Sp+q such that:

σ(1) < σ(2) < . . . < σ(p) and σ(p+ 1) < σ(2) < . . . < σ(p+ q).

For any k-algebra A and M ∈ A−mod, we let Sn act on the left on CHH
n (A,M) =

M ⊗ A⊗n by:

σ · (m, a1, . . . , an) = (m, aσ−1(1) . . . , aσ−1(n)).

Let A′ be another k-algebra, M ′ ∈ A′ −mod. The shuffle product :

−×− = shpq : CHH
p (A,M)⊗ CHH

q (A′,M ′)→ CHH
p+q (A⊗ A′,M ⊗M ′),

is defined by the following formula:

(m, a1, . . . , ap)×(m′, a′1, . . . , a
′
q)

=
∑
σ

sgn(σ)σ · (m⊗m′, a1 ⊗ 1, . . . , ap ⊗ 1, 1⊗ a′1, . . . , 1⊗ a′q).
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Proposition 2.14. The Hochschild boundary b is a graded derivation for the shuf-

fle product

b(x× y) = b(x)× y + (−1)|x|x× b(y), x ∈ CHH
p (A,M), y ∈ CHH

q (A′,M ′).

where the Hochschild boundary b : CHH
n (A,M)→ CHH

n−1(A,M) is given by:

b(m, a1, . . . , an) =(ma1, a2, . . . , an) +
n−1∑
i=1

(−1)i(m, a1, . . . , aiai+1, . . . , an)

+ (−1)n(anm, a1, . . . , an−1).

Assume that A is commutative and M is symmetric (symmetric means that am =

ma for all a ∈ A and m ∈ M). The product map µ : A ⊗ A → A is a k-

algebra homomorphism, and µ′ : A⊗M → M is a homomorphism of bimodules.

Composition of the shuffle map with µ ⊗ µ′ allows us to define the inner shuffle

map

−×− = shpq : CHH
p (A,A)⊗ CHH

q (A,M)→ CHH
p+q (A,M),

given by the formula

(a0, a1, . . . , ap)× (m, ap+1, . . . , ap+q) =
∑

σ=(p,q)−shuffle

sgn(σ)σ · (a0m, a1, . . . , ap+q).

We let J denote
⊕

n>0C
HH
n (A,A). Note that J ⊂ CHH

∗ (A,A). We define the Har-

rison chain complex to be the quotient CHarr
∗ (A,M) = CHH

∗ (A,M)/J.CHH
∗ (A,M).

Note that

Cn
HH(A,M) = HomAe(A

⊗n,M) ∼= HomA⊗Ae(A⊗ A⊗n,M)

= HomA⊗Ae(C
HH
n (A,A),M).

We define the Harrison cochain complex by taking

C∗Harr(A,M) := HomA⊗Ae(C
Harr
∗ (A,A),M).



Chapter 2. Homological algebra 26

For example

C0
Harr(A,M) =M,

C1
Harr(A,M) =C1

HH(A,M),

C2
Harr(A,M) ={f ∈ C2

HH(A,M)|f(x, y) = f(y, x)},

C3
Harr(A,M) ={f ∈ C3

HH(A,M)|f(x, y, z)− f(y, x, z) + f(y, z, x) = 0.}

We define the Harrison cohomology of A with coefficients in M to be the coho-

mology of the Harrison cochain complex.

Harrn(A,M) := Hn(C∗Harr(A,M)).

Lemma 2.15. Harr1(A,M) ∼= Der(A,M).

An additively split extension of A by M is an extension of A by M

0 //M
q // X

p // A // 0

where there exists s : A→ X which is an additive section of p.

Two additively split extensions (X), (X) with A,M fixed are said to be equivalent

if there exists a homomorphism of commutative algebras φ : X → X such that

the following diagram commutes.

0 //M // X //

φ
��

A // 0

0 //M // X // A // 0

We denote the set of equivalence classes of additively split extensions of A by M

by AExt(A,M).

Lemma 2.16. Harr2(A,M) ∼= AExt(A,M).

Proof. Given an additively split extension of A by M

0 //M
q // X

p // A // 0
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there is an additive homomorphism s : A→ X which is a section of p. The section

induces an additive isomorphism X ≈ A⊕M where multiplication in X is given by

(a,m)(a′,m′) = (aa′,ma′+ am′+ f(a, a′)) where the bilinear map f : A×A→M

is given by

f(a, a′) = s(a)s(a′)− s(aa′).

The map f is a 2-cocycle. Given two additively split extensions which are equiv-

alent, then the two 2-cocycles we get differ by a 2-coboundary.

A 2-cocycle is a map f : A × A → M . We get an additively split extension of A

by M given by taking the exact sequence

0 //M //M ⊕ A // A // 0

where addition in M ⊕ A is given by (m, a) + (m′, a′) = (m + m′, a + a′) and

multiplication is given by

(m, a)(m′, a′) = (a′m+ am′ + f(a, a′), aa′).

Given two 2-cocycles which differ by a 2-coboundary, then the two additively split

extensions we get are equivalent.

A crossed module consists of a commutative algebra C0, a C0-module C1 and a

module homomorphism

C1
ρ // C0 ,

which satisfies the property

ρ(c)c′ = cρ(c′),

for c, c′ ∈ C1. In other words, a crossed module is a chain algebra which is non-

trivial only in dimensions 0 and 1. Since C2 = 0 the condition ρ(c)c′ = cρ(c′) is

equivalent to the Leibnitz relation

0 = ρ(cc′) = ρ(c)c′ − cρ(c′).

We can define a product by

c ∗ c′ := ρ(c)c′,
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for c, c′ ∈ C1. This gives us a commutative algebra structure on C1 and ρ : C1 → C0

is an algebra homomorphism.

Let ρ : C1 → C0 be a crossed module. We let M = Ker(ρ) and A = Coker(ρ).

Then the image Im(ρ) is an ideal of C0, MC1 = C1M = 0 and M has a well-

defined A-module structure. We say such a crossed module is a crossed module

over A with kernel M .

A crossed extension of A by M is an exact sequence

0 //M α // C1
ρ // C0

γ // A // 0

where ρ : C1 → C0 is a crossed module, γ is an algebra homomorphism, and the

module structure on M coincides with the one induced from the crossed module.

A morphism between two crossed extensions consists of commutative algebra ho-

momorphisms h0 : C0 → C0 and h1 : C1 → C ′1 such that the following diagram

commutes:

0 //M α // C1

h1
��

ρ // C0

h0
��

γ // A // 0

0 //M
α′ // C ′1

ρ′ // C ′0
γ′ // A // 0

Let Cross(A,M) denote the category of crossed modules over A with kernel M ,

and let π0Cross(A,M) denote the connected components of Cross(A,M).

Definition 2.17. An additively split crossed extension of A by M is a crossed

extension of A by

0 //M α // C1
ρ // C0

γ // A // 0 (2.1)

such that all the arrows in the exact sequence 2.1 are additively split.

We denote the connected components of the category of additively split crossed

extensions over A with kernel M by π0ACross(A,M).

Lemma 2.18. If γ : C0 → A is k-algebra homomorphism then

Harr2(γ : C0 → A,M) ∼= π0ACross(γ : C0 → A,M),
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where Harr∗(γ : C0 → A,M) and π0ACross(γ : C0 → A,M) are defined as

follows. Consider the following short exact sequence of cochain complexes:

0 // C∗Harr(A,M)
γ∗ //// C∗Harr(C0,M) //κ∗ // Coker(γ∗) // 0.

We define the cochain complex C∗Harr(γ : C0 → A,M) := Coker(γ∗). This allows

us to define the relative Harrison cohomology

Harr∗(γ : C0 → A,M) := H∗(C∗Harr(γ : C0 → A,M)).

We let ACross(γ : C0 → A,M) denote the category whose objects are the addi-

tively split crossed extensions of A by M

0 //M
α // C1

ρ // C0
γ // A // 0

with γ : C0 → A fixed. A morphisms between two of these crossed extensions

consists of a morphism of crossed extensions with the map h0 : C0 → C0 being the

identity.

0 //M
α // C1

h1
��

ρ // C0
γ // A // 0

0 //M
α′ // C ′1

ρ′ // C0
γ // A // 0

Note that ACross(γ : C0 → A,M) is a groupoid.

Proof. This proof is very similiar to a proof given in [13] for the crossed modules

of Lie algebras. Given any additively split crossed module of A by M ,

0 //M
α // C1

ρ // C0
γ // A // 0,

we let V = Ker γ = Im ρ. There are k-linear sections s : A → C0 of γ and

σ : V → C1 of ρ : C1 → V . We define the map g : A⊗ A→ C1 by:

g(a, b) = σ(s(a)s(b)− s(ab)).
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We also define the map ω : C0 → C1 by:

ω(c) = σ(c− sγ(c)).

By identifying M with Ker δ, we define the map f : C0 ⊗ C0 →M by:

f(c, c′) = g(γ(c), γ(c′)) + c′ω(c) + cω(c′)− ω(c) ∗ ω(c′)− ω(cc′).

Since g(c, c′) = g(c′, c), it follows that f(c, c′) = f(c′, c) and so f ∈ C2
Harr(C0,M).

We define the map $ ∈ C3
Harr(A,M) by:

$(x, y, z) = s(x)g(y, z)− g(xy, z) + g(x, yz)− g(y, x)s(z).

Note that $ vanishes on the shuffles since g(x, y) = g(y, x).

Consider the following commuting diagram.

0 // C2
Harr(A,M)

γ∗ //

��

�� C2
Harr(C0,M) κ∗ //

δ
��

C2
Harr(γ : C0 → A,M) //

δ
��

0

0 // C3
Harr(A,M)

γ∗ // C3
Harr(C0,M) κ∗ // C3

Harr(γ : C0 → A,M) // 0

A direct calculation shows that δf = γ∗$ ∈ C3(C0,M). We also have that

δκ∗f = κ∗δf = κ∗γ∗$ = 0, this tells us that κ∗f is a cocycle. If we have two

equivalent additively split crossed modules then we can choose sections in such a

way that the associated cocycles are the same. Therefore we have a well-defined

map:

ACross(γ : C0 → A,M) // H3
Harr(γ : C0 → A,M).

Inversely, assume we have a cocycle in C2
Harr(γ : C0 → A,M) which we lift to a

cochain f ∈ C2
Harr(C0,M). Let V = Ker γ. We define C1 = M × V as a module

over k with the following action of C0 on C1:

c(m, v) := (cm+ f(c, v), cv).
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It is easy to check using the properties of f that this action is well defined and

together with the map ρ : C0 → C1 given by ρ(m, v) = v, we have an additively

split crossed module of A by M .

Lemma 2.19. If k is a field of characteristic 0 then

Harr3(A,M) ∼= π0ACross(A,M).

Proof. From the definition of C∗Harr(γ : C0 → A,M) we get the long exact se-

quence:

. . . // Harr2(A,M) // Harr2(C0,M) //

Harr2(γ : C0 → A,M) // Harr3(A,M) // . . .

(2.2)

Given any additively split crossed module in π0ACross(A,M),

0 //M
α // C1

ρ // C0
γ // A // 0

we can lift γ to get a map P0 → A where P0 is a polynomial algebra. We can

then use a pullback to construct P1 to get a crossed module where the following

diagram commutes:

0 //M
α // C1

ρ // C0
γ // A // 0

0 //M // P1

OO

// P0

OO

// A // 0.

Note that these two crossed modules are in the same connected component of

π0ACross(A,M). By considering the second crossed module in the long exact

sequence, we replace C0 by P0 to get the new exact sequence:

0 // Harr2(γ : P0 → A,M) // Harr3(A,M) // 0 (2.3)

since Harr2(P0,M) = 0 and Harr3(P0,M) = 0.

The exact sequence 2.3 tells us that every element in Harr3(A,M) comes from an

element in Harr2(γ : P0 → A,M) and the previous lemma tells us that this comes



Chapter 2. Homological algebra 32

from a crossed module in π0ACross(A,M). Therefore the map π0ACross(A,M)→
Harr3(A,M) is surjective.

Assuming we have two crossed modules which go to the same element inHarr3(A,M),

0 //M
α // C1

ρ // C0
γ // A // 0, (2.4)

0 //M
α′ // C ′1

ρ′ // C ′0
γ′ // A // 0. (2.5)

There exist morphisms

0 //M α // C1
ρ // C0

γ // A // 0

0 //M // P1

OO

// P0

OO

// A // 0

0 //M // P2

��

// P0

��

// A // 0

0 //M α′ // C ′1
ρ′ // C ′0

γ′ // A // 0

where P0 is a polynomial algebra and P1, P2 are constructed via pullbacks. These

give us two elements in Harr2(γ : P0 → A,M) which go to the same element

in Harr3(A,M). However the exact sequence 2.3 tells us that the two crossed

modules 2.4 and 2.5 have to go to the same element in Harr2(γ : P0 → A,M).

The previous lemma tells us that the two crossed modules 2.4 and 2.5 go to the

same element in ACross(γ : C0 → A,M) which is a groupoid, so there is a map

P2 → P1 which makes the following diagram commute:

0 //M
α // C1

ρ // C0
γ // A // 0

0 //M // P1

OO

// P0

OO

// A // 0

0 //M // P2

OO

��

// P0

��

// A // 0

0 //M α′ // C ′1
ρ′ // C ′0

γ′ // A // 0
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Therefore the two crossed modules 2.4 and 2.5 are in the same connected com-

ponent of π0ACross(A,M) and the map π0ACross(A,M) → Harr3(A,M) is

injective.

2.6 Baues-Wirsching cohomology

The following material can be found in [4]. A category I is said to be small if

the collection of morphisms is a set. Consider a small category I. The category

of factorizations in I, denoted by FI, is the category whose objects are the

morphisms f, g, ... in I, and morphisms f → g are pairs (α, β) of morphisms in I
such that the following diagram commutes.

B α // B′

A

f

OO

A′
β

oo

g

OO

Composition in FI is given by (α′, β′)(α, β) = (α′α, ββ′). A natural system of

abelian groups on I is a functor

D : FI → Ab.

There exists a canonical functor FI → Iop × I which takes f : A → B to the

pair (A,B). This functor allows us to consider any bifunctor D : Iop × I → Ab

as a natural system. Similarly, the projection Iop × I → I gives us the functor

FI → I which takes f : A → B to B. This allows us to consider any functor

D : I → Ab as a natural system.

Following Baues-Wirsching [4], we define the cohomology H∗BW (I, D) of I with

coefficients in the natural system D as the cohomology of the cochain complex

C∗BW (I, D) given by

Cn
BW (I, D) =

∏
α1...αn:in→...→i0

D(α1 . . . αn),



Chapter 2. Homological algebra 34

where the product is indexed over n-tuples of composable morphisms and the

coboundary map

d : Cn
BW (I, D)→ Cn+1

BW (I, D),

is given by

(df)(α1 . . . αn+1) =(α1)∗f(α2, . . . , αn+1)

+
n∑
j=1

(−1)jf(α1, . . . , αjαj+1, . . . , αn+1)

+ (−1)n+1(αn+1)∗f(α1, . . . , αn).

Lemma 2.20. Let i0 ∈ I be an initial object and F : I → Ab a functor then

Hn
BW (I, F ) =

{
F (i0) for n = 0

0 for n > 0.
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Ψ-rings

3.1 Introduction

In this chapter, only the material in this section is already known and everything

from section 3.2 onwards is new and original material. Note that in all of the cited

material, including [1], [14] and [20], what the authors call a Ψ-ring is what we

call a special Ψ-ring. Also note that in our notation N does not include 0.

λ-rings are complicated, and given a λ-ring it is often difficult to prove it satisfies

the λ-ring axioms. We start by introducing another kind of ring, the Ψ-rings,

which are closely related to the λ-rings by the Adams operations. The axioms for

the Ψ-rings are a lot simpler than those for the λ-rings.

Definition 3.1. A Ψ-ring is a commutative ring with identity, R, together with

a sequence of ring homomorphisms Ψi : R→ R, for i ∈ N, satisfying

1. Ψ1(r) = r,

2. Ψi(Ψj(r)) = Ψij(r),

for all r ∈ R, and i, j ∈ N.

We say that a Ψ-ring R is special if it also satisfies the property

Ψp(r) ≡ rp mod pR,

35
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for all primes p and r ∈ R.

Example 3.2. Any commutative ring with identity, R, can be given a Ψ-ring

structure by setting Ψi : R→ R to be Ψi(r) = r for all r ∈ R and i ∈ N.

Let R1, R2 be Ψ-rings. A map of Ψ-rings is a ring homomorphism f : R1 → R2,

such that Ψi(f(r)) = f(Ψi(r)) for all r ∈ R1 and i ∈ N. The class of all Ψ-rings

and maps of Ψ-rings form the category of Ψ-rings, which we denote by Ψ−rings.

3.2 Ψ-modules

For usual rings, the modules provide us with the coefficients for the cohomology.

In this section we define the Ψ-modules for Ψ-rings which provide us with the

coefficients for the Ψ-ring cohomology. We then use this to create the Ψ-analogue

of some of the results for rings.

Definition 3.3. We say that M is a Ψ-module over the Ψ-ring R if M is an R-

module together with a sequence of abelian group homomorphisms ψi : M → M ,

for i ∈ N, satisfying

1. ψ1(m) = m,

2. ψi(rm) = Ψi(r)ψi(m),

3. ψi(ψj(m)) = ψij(m),

for all m ∈M , r ∈ R, and i, j ∈ N.

Let M,N be two Ψ-modules over R. A map of Ψ-modules is a module homomor-

phism f : M → N such that ψif(m) = fψi(m) for all m ∈ M and i ∈ N. We let

R−modΨ denote the category of all Ψ-modules over R.

We say that M is special if R is special and

ψp(m) ≡ 0 mod pM,



Chapter 3. Ψ-rings 37

for all primes p and m ∈M .

Note that any Ψ-ring can be considered as a Ψ-module over itself. Also note that

if M is special, then ψi(m) ≡ 0 mod iM for all i ∈ N and m ∈M .

For the rest of this chapter, we let R denote a Ψ-ring and M ∈ R−modΨ. We let R

denote the underlying commutative ring of R, and we let M denote the underlying

R-module of M .

Lemma 3.4. The set RoM with

(r,m) + (s, n) = (r + s,m+ n),

(r,m)(s, n) = (rs, rn+ms),

together with maps Ψi : RoM → RoM for i ∈ N given by

Ψi(r,m) = (Ψi(r), ψi(m) + εi(r)),

for a sequence of maps εi : R→M for i ∈ N, is a Ψ-ring if and only if

1. ε1(r) = 0,

2. εi(r + s) = εi(r) + εi(s),

3. εi(rs) = Ψi(r)εi(s) + εi(r)Ψi(s),

4. εij(r) = ψiεj(r) + εiΨj(r),

for all r, s ∈ R, and i, j ∈ N.

Proof of lemma. It is known that R o M is a commutative ring with identity.

Hence it is sufficient to check that Ψi : R o M → R o M satisfies the Ψ-ring

axioms.

1. Ψ1(r,m) = (Ψ1(r), ψ1(m) + ε1(r)) = (r,m+ ε1(r))

Hence Ψ1(r,m) = (r,m) if and only if ε1(r) = 0.



Chapter 3. Ψ-rings 38

2. Ψi((r,m) + (s, n)) = (Ψi(r) + Ψi(s), ψi(m) + ψi(n) + εi(r + s))

Ψi(r,m) + Ψi(s, n) = (Ψi(r) + Ψi(s), ψi(m) + ψi(n) + εi(r) + εi(s))

Hence Ψi((r,m) + (s, n)) = Ψi(r,m) + Ψi(s, n) if and only if

εi(r + s) = εi(r) + εi(s).

3. Ψi((r,m)(s, n)) = (Ψi(rs), ψi(rn+ms) + εi(rs))

Ψi(r,m)Ψi(s, n) = (Ψi(rs), ψi(rn+ms) + Ψi(r)εi(s) + εi(r)Ψi(s))

Hence Ψi((r,m)(s, n)) = Ψi(r,m)Ψi(s, n) if and only if

εi(rs) = Ψi(r)εi(s) + εi(r)Ψi(s).

4. ΨiΨj(r,m) = (ΨiΨj(r), ψiψj(m) + ψiεj(r) + εiΨj(r))

Ψij(r,m) = (ΨiΨj(r), ψiψj(m) + εij(r))

Hence ΨiΨj(r,m) = Ψij(r,m) if and only if εij(r) = ψiεj(r)) + εiΨj(r).

The maps εi : R → M given by εi(r) = 0, for all r ∈ R and i ∈ N, satisfy

properties 3.4.1-3.4.4 meaning that the maps Ψi : R o M → R o M given by

Ψi(r,m) = (Ψi(r), ψi(m)) give us a Ψ-ring structure on R oM . We call this the

semi-direct product of R and M , denoted by RoΨ M .

We note that if R and M are both special, then RoΨ M is also special.

3.3 Ψ-derivations

The André-Quillen cohomology for commutative rings is given by the derived

functors of the derivations functor. For a commutative ring S, the derivations

of S with values in an S-module N are in one-to-one correspondence with the

sections of S oN
π // S . We define the Ψ-derivations and show that they are

in one-to-one correspondence with the sections of RoΨ M
π // R .

Definition 3.5. A Ψ-derivation of R with values in M is an additive homomor-

phism d : R→M such that

1. d(rs) = rd(s) + d(r)s,
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2. ψi(d(r)) = d(Ψi(r)),

for all r, s ∈ R, and i ∈ N. We let DerΨ(R,M) denote the set of all Ψ-derivations

of R with values in M .

Example 3.6. Let R and M be such that Ψi = Id = ψi for all i ∈ N, then

DerΨ(R,M) = Der(R,M).

Theorem 3.7. There is a one-to-one correspondence between the elements of

DerΨ(R,M) and the sections of RoΨ M
π // R .

Proof of theorem. Assume we have a section of π, then we have the following

RoΨ M
π //

R,
σ
oo

where πσ = IdR. Hence σ(r) = (r, d(r)) for some d : R→M . The properties

d(r + s) =d(r) + d(s),

d(rs) =d(r)s+ rd(s),

follow from σ being a ring homomorphism. However σ also preserves the Ψ-ring

structure, so we get that Ψiσ(r) = σΨi(r). We know that

Ψiσ(r) = Ψi(r, d(r)) = (Ψi(r), ψi(d(r))),

σΨi(r) = (Ψi(r), d(Ψi(r))).

Hence Ψiσ(r) = σΨi(r) if and only if ψid(r) = dΨi(r). This tells us that if σ is a

section of π, then we have a Ψ-derivation d.

Conversely, if we have a Ψ-derivation d : R→M , then σ(r) = (r, d(r)) is a section

of π.
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3.4 Ψ-ring extensions

We have seen in proposition 2.13 that the André-Quillen cohomology H1
AQ(R,M)

classifies the extensions of R by M. In this section, we develop the Ψ-analogue of

extensions.

Definition 3.8. A Ψ-ring extension of R by M is an extension of R by M

0 //M α // X
β // R // 0

where X is a Ψ-ring, β is a map of Ψ-rings and αψn = Ψnα for all n ∈ N.

Two Ψ-ring extensions (X), (X) with R,M fixed are said to be equivalent if there

exists a map of Ψ-rings φ : X → X such that the following diagram commutes.

0 //M // X //

φ
��

R // 0

0 //M // X // R // 0

We denote the set of equivalence classes of Ψ-ring extensions of R by M by

ExtΨ(R,M).

The Harrison cohomology Harr2(R,M) classifies the additively split extensions

of R by M . We can also define the Ψ-analogue of these types of extensions.

Definition 3.9. An additively split Ψ-ring extension of R by M is a Ψ-ring ex-

tension of R by M

0 //M α // X
β // R // 0

where β has a section which is an additive homomorphism.

Multiplication inX = R⊕M has the form (r,m)(r′,m′) = (rr′,mr′+rm′+f(r, r′)),

where f : R×R→M is some bilinear map. Associativity in X gives us

0 = rf(r′, r′′)− f(rr′, r′′) + f(r, r′r′′)− f(r, r′)r′′.
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Commutativity in X gives us

f(r, r′) = f(r′, r).

The Ψ-operations Ψi : R ⊕ M → R ⊕ M for i ∈ N are given by Ψi(r,m) =

(Ψi(r), ψi(m) + εi(r)) for a sequence of operations εi : R → M which satisfy the

following properties

1. ε1(r) = 0,

2. εi(r + s) = εi(r) + εi(s),

3. εi(rs) = Ψi(s)εi(r) + Ψi(r)εi(s) + f(Ψi(r),Ψi(s))− ψi(f(r, s)),

4. εij(r) = ψiεj(r) + εiΨj(r),

for all r, s ∈ R and i, j ∈ N.

Assuming we have two Ψ-ring extensions (X, ε, f), (X, ε, f) which are equivalent,

together with a Ψ-ring map φ : X → X with φ(r,m) = (r,m + g(r)) for some

g : R→M . We have that φ being a homomorphism tells us that

g(r + r′) = g(r) + g(r′),

f(r, r′)− f(r, r′) = rg(r′)− g(rr′) + g(r)r′.

We also have φ(Ψi) = Ψ
i
(φ) for all i ∈ N, which tells us that

εi(r)− εi(r) = ψi(g(r))− g(Ψi(r)).

We denote the set of equivalence classes of the additively split Ψ-ring extensions

of R by M by AExtΨ(R,M).

Definition 3.10. An additively and multiplicatively split Ψ-ring extension of R

by M is a Ψ-ring extension of R by M

0 //M α // X
β // R // 0
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where β has a section which is an additive and multiplicative homomorphism.

As a commutative ring X = R oM , i.e. f = 0 above. The Ψ-operations Ψi :

X → X for i ∈ N are given by Ψi(r,m) = (Ψi(r), ψi(m) + εi(r)) for a sequence of

operations εi : R→M such that

1. ε1(r) = 0,

2. εi(r + s) = εi(r) + εi(s),

3. εi(rs) = Ψi(s)εi(r) + Ψi(r)εi(s),

4. εij(r) = ψiεj(r) + εiΨj(r),

for all r, s ∈ R and i, j ∈ N. Note that conditions 2 and 3 tell us that εi ∈
Der(R,M i) where M i denotes the Ψ-module over R with M as an abelian group

and the action of R given by (r,m) 7→ Ψi(r)m, for r ∈ R,m ∈M .

Assume we have two additively and multiplicatively split Ψ-ring extensions (X, ε), (X, ε)

which are equivalent, together with a Ψ-ring map φ : X → X with φ(r,m) =

(r,m + g(r)) for some g : R → M . Since φ is a ring homomorphism we get that

g ∈ Der(R,M). Since φ is a map of Ψ-rings we get that

εi(r)− εi(r) = ψi(g(r))− g(Ψi(r)),

for all i ∈ N.

We denote the set of equivalence classes of the additively and multiplicatively split

Ψ-ring extensions of R by M by MExtΨ(R,M).

Example 3.11. Let R and M be such that Ψi = Id = ψi for all i ∈ N, then

MExtΨ(R,M) ∼=
∏

p prime

Der(R,M).

Lemma 3.12. There exist exact sequences

0 //MExtΨ(R,M) w // ExtΨ(R,M) u // H1
AQ(R,M) // H

1
AQ(R,M)

Im(u)
// 0



Chapter 3. Ψ-rings 43

0 //MExtΨ(R,M) w // AExtΨ(R,M) u // Harr2(R,M) // Harr
2(R,M)

Im(u)
// 0

where w is the inclusion, and u maps the class of a Ψ-ring extension to the class

of its underlying extension.

Proof. We only need to check exactness at ExtΨ(R,M) and AExtΨ(R,M). A

class in ExtΨ(R,M) or AExtΨ(R,M) belongs to the kernel of u if the underlying

class is the trivial class. The additively and multiplicatively split extensions are

precisely the Ψ-ring extensions whose underlying extension is trivial. Exactness

follows.

From the definitions, we see that ExtΨ(R,M) ⊇ AExtΨ(R,M) ⊇ MExtΨ(R,M).

If R and M are both special, then we say that a Ψ-ring extension

0 //M
α // X

β // R // 0

is special if X is also special.

We denote the set of equivalence classes of the special Ψ-ring extensions of R by

M by ExtΨs(R,M). Similarly, we can define AExtΨs(R,M) and MExtΨs(R,M).

3.5 Crossed Ψ-extensions

A crossed Ψ-module consists of a Ψ-ring C0, a Ψ-module C1 over C0 and a map of

Ψ-modules

C1
∂ // C0 ,

which satisfies the property

∂(c)c′ = c∂(c′),

for c, c′ ∈ C1. In other words, a crossed Ψ-module is a chain algebra which is

non-trivial only in dimensions 0 and 1. Since C2 = 0 the condition ∂(c)c′ = c∂(c′)

is equivalent to the Leibnitz relation

0 = ∂(cc′) = ∂(c)c′ − c∂(c′).
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We can define a product by

c ∗ c′ := ∂(c)c′,

for c, c′ ∈ C1. This gives us a Ψ-ring structure on C1 and ∂ : C1 → C0 is a map of

Ψ-rings.

Let ∂ : C1 → C0 be a crossed Ψ-module. We let M = Ker(∂) and R = Coker(∂)

Then the image Im(∂) is an ideal of C0, MC1 = C1M = 0 and M has a well-defined

Ψ-module structure over R.

A crossed Ψ-extension of R by M is an exact sequence

0 //M
α // C1

∂ // C0
γ // R // 0

where ∂ : C1 → C0 is a crossed Ψ-module, γ is a map of Ψ-rings, and the Ψ-module

structure on M coincides with the one induced from the crossed Ψ-module. We

denote the category of crossed Ψ-extensions of R by M by CrossΨ(R,M). We let

π0CrossΨ(R,M) denote the connected components of the category CrossΨ(R,M).

An additively split crossed Ψ-extension of R by M is a crossed Ψ-extension

0 //M
ω // C1

ρ // C0
π // R // 0 (3.1)

such that all the arrows in the exact sequence 3.1 are additively split. We denote

the connected components of the category of additively split crossed Ψ-extensions

of R by M by π0ACrossΨ(R,M).

An additively and multiplicatively split crossed Ψ-extension of R by M is a crossed

Ψ-extension

0 //M
ω // C1

ρ // C0
π // R // 0

such that π is additively and multiplicatively split. We denote the connected

components of the category of additively and multiplicatively split crossed Ψ-

extensions of R by M by π0MCrossΨ(R,M).
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3.6 Deformation of Ψ-rings

In this section, we apply Gerstenhaber and Schack’s definition of a deformation of

a diagram of algebras [7] to the case of Ψ-rings.

Definition 3.13. Let

αt = α0 + tα1 + t2α2 + . . .

be a deformation of R, i.e. be a formal power series, in which each αk : R ×
R → R is a bilinear map, α0 is the multiplication in R and αt is associative and

commutative.

For each i ∈ N, let

Ψi
t = ψi0 + tψi1 + t2ψi2 + . . .

be a formal power series, in which each ψik is a function

ψik : R→ R,

satisfying

1. ψi0(r) = Ψi(r),

2. ψ1
k(r) = 0,

3. ψik(r + s) = ψik(r) + ψik(s),

4.
∑k

h=0 ψ
i
hαk−h(r, s) =

∑k
h=0

∑k−h
l=0 αh(ψ

i
l(r), ψ

i
k−h−l(s)),

5. ψijk (r) =
∑k

l=0 ψ
i
l ◦ ψ

j
k−l(r),

for all i, j, k ∈ N and r, s ∈ R. We call (αt,Ψ
∗
t ) a Ψ-ring deformation of R.

We call (α1, ψ
∗
1) the infinitesimal deformation of (αt,Ψ

∗
t ). The infinitesimal Ψ-ring

deformation (α1, ψ
∗
1) is identified with the additively split Ψ-ring extensions of R

by R by setting f = α1 and εi = ψi1 for all i ∈ N.
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Definition 3.14. We define a formal automorphism of the Ψ-ring R to be a formal

power series

Φt = φ0 + tφ1 + t2φ2 + . . .

where each φk : R→ R such that

1. φ0(r) = r,

2. φk(r + s) = φk(r) + φk(s).

Two Ψ-ring deformations (αt,Ψ
∗
t ) and (αt,Ψ

∗
t ) are equivalent if there exists a

formal automorphism Φt such that Φtαt(r, s) = αt(Φtr,Φts) and ΦtΨ
∗
t = Ψ

∗
tΦt.

If two Ψ-ring deformations (αt,Ψ
∗
t ) and (αt,Ψ

∗
t ) are equivalent, then the differences

satisfy α1(r, s)−α1(r, s) = rφ1(s)−φ1(rs)+sφ1(r) and ψi1−ψ
i

1 = Ψiφ1−φ1Ψi for

all i ∈ N. Hence the equivalence classes of the infinitesimal Ψ-ring deformations

are identified with the equivalence classes of the additively split Ψ-ring extensions,

AExtΨ(R,R).

Yau [20] defined the cohomology of λ-rings in order to study deformations with

respect to the Ψ-operations corresponding to the λ-ring. Here, I provide an alter-

native definition to Yau’s definition. A deformation of the Ψ-operations should be

a Ψ-ring deformation (αt,Ψ
∗
t ) where αt is the trivial deformation. If we let αk = 0

for all k ≥ 1 in the definition of a Ψ-ring deformation then we get the following

definition.

Definition 3.15. For each i ∈ N, let

Ψi
t = ψi0 + tψi1 + t2ψi2 + . . .

be a formal power series, in which each ψik is a function

ψik : R→ R,

such that

1. ψi0(r) = Ψi(r),
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2. ψ1
k(r) = 0 for k ≥ 1.,

3. ψik(r + s) = ψik(r) + ψik(s),

4. ψik(rs) =
∑k

l=0 ψ
i
l(r)ψ

i
k−l(s),

5. ψijk (r) =
∑k

l=0 ψ
i
l ◦ ψ

j
k−l(r),

for all i, j, k ∈ N and r, s ∈ R. We call Ψ∗t a Ψ-operation deformation of R.

The infinitesimal Ψ-operation deformation ψ∗1 is identified with the additively and

multiplicatively split Ψ-ring extensions of R by R by setting εi = ψi1 for all i ∈ N.

If two Ψ-operation deformations Ψ∗t and Ψ
∗
t are equivalent, then the difference

satisfies ψi1 − ψ
i

1 = Ψiφ1 − φ1Ψi for all i ∈ N. Note that now Φt(rs) = Φt(r)Φt(s)

so we get that φ1 ∈ Der(R,R). Hence the equivalence classes of the infinitesimal Ψ-

operation deformations are identified with the equivalence classes of the additively

and multiplicatively split Ψ-ring extensions, MExtΨ(R,R).



Chapter 4

λ-rings

4.1 Introduction

In this chapter, only the material in this section and section 4.6 is already known

(see [1], [14] and [20]) and everything else is new and original material. Note that

in our notation N0 = N ∪ {0}.

In this chapter, we start by introducing the concept of a pre-λ-ring. After giving

the definition, we will look at some examples of pre-λ-rings. Later, we introduce

the definition of λ-rings, which are pre-λ-rings which satisfy some additional ax-

ioms. Then we will look at which of the pre-λ-ring structures also give us λ-rings.

Definition 4.1. A pre-λ-ring is a commutative ring R with identity 1, together

with a sequence of operations λi : R→ R, for i ∈ N0, satisfying

1. λ0(r) = 1,

2. λ1(r) = r,

3. λi(r + s) = Σi
k=0λ

k(r)λi−k(s),

for all r, s ∈ R and i ∈ N0.

48
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To be able to describe examples of pre-λ-rings or λ-rings it is often useful to

consider, for r ∈ R, the formal power series in the variable t

λt(r) =
∞∑
i=0

λi(r)ti

= λ0(r) + λ1(r)t+ λ2(r)t2 + . . .

Note that

λt(r + s) = λ0(r + s) + λ1(r + s)t+ λ2(r + s)t2 + λ3(r + s)t3 . . .

= 1 + (r + s)t+ Σ2
k=0λ

k(r)λ2−k(s)t2 + Σ3
k=0λ

k(r)λ3−k(s)t3 + . . .

= (1 + rt+ λ2(r)t2 + . . .)(1 + st+ λ2(s)t2 + . . .)

= λt(r)λt(s).

This gives us an equivalent definition of a pre-λ-ring.

Definition 4.2. A pre-λ-ring is a commutative ring R with identity 1, together

with a sequence of operations λi : R→ R, for i ∈ N0, satisfying

1. λ0(r) = 1,

2. λ1(r) = r,

3. λt(r + s) = λt(r)λt(s), where λt(r) =
∑

i≥0 λ
i(r)ti,

for all r, s ∈ R and i ∈ N0.

Example 4.3. We can get a pre-λ-ring structure on Z by taking

λt(r) = (1 + t+ n2t
2 + n3t

3 + . . .)r,

where 1 + t+ n2t
2 + n3t

3 + . . . is a power series with integer coefficients.

We can get a pre-λ-ring structure on R by taking either

1. λt(r) = (1 + t+n2t
2 +n3t

3 + . . .)r, where 1 + t+n2t
2 +n3t

3 + . . . is a power

series with integer coefficients, or
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2. λt(r) = etr.

The λ-ring axioms involve some universal polynomials. We are now going to

introduce the elementary symmetric functions in order to define these universal

polynomials.

Definition 4.4. Let ξ1, ξ2, . . . , ξq; η1, η2, . . . , ηr be indeterminates. Define si and

σj to be the elementary symmetric functions of the ξ′is, η
′
js, i.e.

(1 + s1t+ s2t
2 + . . .+) = Πi(1 + ξit),

(1 + σ1t+ σ2t
2 + . . .+) = Πj(1 + ηjt).

Let Pk(s1, s2, . . . , sk;σ1, σ2, . . . , σk) be the coefficient of tk in Πi,j(1 + ξiηjt).

Let Pk,l(s1, s2, . . . , skl) be the coefficient of tk in Π1≤i1<...<il≤q(1 + ξi1ξi2 . . . ξilt).

Example 4.5. See also appendix B.

• P1(s1;σ1) = s1σ1,

• P2(s1, s2;σ1, σ2) = s2
1σ2 − 2s2σ2 + s2σ

2
1,

• P1,1(s1) = s1,

• P1,2(s1, s2) = P2,1(s1, s2) = s2,

• P2,2(s1, s2, s3, s4) = s1s3 − s4.

Definition 4.6. A λ-ring is a commutative ring R with identity 1, together with

a sequence of operations λi : R→ R, for i ∈ N0, satisfying

1. R is a pre-λ-ring,

2. λt(1) = 1 + t,

3. λi(rs) = Pi(λ
1(r), λ2(r), . . . , λi(r), λ1(s), . . . , λi(s)),

4. λi(λj(r)) = Pi,j(λ
1(r), . . . , λij(r)),

for all r, s ∈ R and i, j ∈ N0.
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Since λ1 is the identity, it follows that Pk,1(s1, . . . , sk) = P1,k(s1, . . . , sk) = sk. In

general, Pk,j 6= Pj,k, so the λ-operations do not commute.

Example 4.7. The simplest example of a λ-ring is Z, together with binomial

coefficients λi(r) =
(
r
i

)
. The additional axioms for λ-rings eliminate the more

exotic pre-λ-ring structures. From 4.3, the only λ-rings are taking λt(r) = (1+t)r,

which gives us a λ-ring structure on Z or R.

Corollary 4.8 (Some properties of λ-rings). 1. The characteristic of R is zero.

2. λi(1) = 0 for i ≥ 2.

Proof of corollary. 1. Let j be any integer.

λt(j) = λt(1 + 1 + . . .+ 1︸ ︷︷ ︸
j times

) = λt(1)j = (1 + t)j 6= 0.

2. This follows from 4.6.1.

A map of λ-rings R1 → R2, is a ring homomorphism f : R1 → R2, such that

λi(f(r)) = f(λi(r)) for all r ∈ R1 and i ∈ N0. The class of all λ-rings and maps

of λ-rings form the category of λ-rings, which we denote by λ−rings.

The λ-operations are often difficult to work with as they are neither additive nor

multiplicative. We can get ring maps from the λ-operations, which are the Adams

operations Ψi : R→ R for i ∈ N, defined by the Newton formula

Ψi(r)− λ1(r)Ψi−1(r) + . . .+ (−1)i−1λi−1(r)Ψ1(r) + (−1)iiλi(r) = 0.

Example 4.9. See also appendix A.

Ψ1(r) = λ1(r),

Ψ2(r) = Ψ1(r)λ1(r)− 2λ2(r),

Ψ3(r) = Ψ2(r)λ1(r)−Ψ1(r)λ2(r) + 3λ3(r),

Ψ4(r) = Ψ3(3)λ1(r)−Ψ2(r)λ2(r) + Ψ1(r)λ3(r)− 4λ4(r).

...
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By rearranging and making substitutions we get the following

Ψ1(r) = λ1(r) = r,

Ψ2(r) = r2 − 2λ2(r),

Ψ3(r) = r3 − 3rλ2(r) + 3λ3(r),

Ψ4(r) = r4 − 4r2λ2(r) + 4rλ3(r)− 4λ4(r) + 2(λ2(r))2,

...

It is known that in general

Ψi(r) = det



r 1 0 0 . . . 0

2λ2(r) r 1 0 . . . 0

3λ3(r) λ2(r) r 1 0
...

...
...

. . . . . . . . . 0
...

... λ2(r) r 1

iλi(r) λi−1(r) . . . . . . λ2(r) r


.

Theorem 4.10. If R is a λ-ring then the Adams operations give us a special

Ψ-ring structure on R, which we denote by RΨ.

We will require the following useful theorem from [14] (p.49).

Theorem 4.11. Let R be a torsion-free pre-λ-ring. Let Ψi : R → R be the

corresponding Adams operations. If R together with the Ψ-operations form a Ψ-

ring, then R is a λ-ring.

The proof of this theorem can also be found in [14].

Example 4.12. Consider the simplest example of a λ-ring, Z, together with bi-

nomial coefficients λi(r) =
(
r
i

)
. The Adams operations give us Ψi(r) = r for all

r ∈ Z and i ∈ N, which we have already seen gives us a Ψ-ring structure on Z.
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4.2 λ-modules

For usual rings, we have modules which provide us with the coefficients for the

cohomology. We now define the λ-modules for λ-rings which provide us with the

coefficients for the λ-ring cohomology.

Definition 4.13. M is a λ-module over the λ-ring R if M is an R-module together

with a sequence of abelian group homomorphisms Λi : M → M , for i ∈ N,

satisfying

1. Λ1(m) = m,

2. Λi(rm) = Ψi(r)Λi(m),

3. Λij(m) = (−1)(i+1)(j+1)ΛiΛj(m),

for all m ∈M, r ∈ R and i, j ∈ N.

Let M,N be two λ-modules over R. A map of λ-modules is a module homomor-

phism f : M → N such that Λif(m) = fΛi(m) for all m ∈M and i ∈ N0. We let

R−modλ denote the category of all λ-modules over R.

The main motivation for our definition of a λ-module is as follows. First we let R

and X be two λ-rings and β : X → R be a map of λ-rings. Assume M = Ker β is

a square-zero ideal. Since λi(0) = 0, for i > 0, there are maps Λi : M → M , for

i > 0, which make the following diagram commutes:

0 //M

Λi

��

α // X
β //

λi

��

R //

λi

��

0

0 //M
α // X

β // R // 0.

The properties of the Λ-operations follow from the properties of the λ-operations.

For example,

αλi(rm) =λiα(rm)

=λi(xα(m)),



Chapter 4. λ-rings 54

for some x ∈ X with β(x) = r. Therefore,

αλi(rm) = Pi(λ
1(x), . . . , λi(x), λ1(α(m)), . . . λi(α(m))).

However α(m)α(n) = 0 for all m,n ∈M so most of the terms vanish leaving

αλi(rm) = αΨi(r)Λi(m).

For the rest of this chapter, we let R denote a λ-ring and M ∈ R − modλ. We

let R denote the underlying commutative ring of R, and M denote the underlying

R-module of M .

Example 4.14. In general, R is not a λ-module over itself unless the multi-

plication in R is trivial. However we can consider the sequence of operations

Λi : R → R given by Λi(r) = (−1)(i+1)Ψi(r). With these Λ-operations R is a

λ-module over R.

Theorem 4.15. The Adams operation ψn : M →M given by

ψn(m) = (−1)(n+1)nΛn(m),

give us a special Ψ-module structure on M over RΨ, which we denote by MΨ.

Proof. 1. ψ1(m) = Λ1(m) = m,

2. ψi(m1 +m2) = (−1)i+1iΛi(m1 +m2) = (−1)i+1iΛi(m1) + (−1)i+1iΛi(m2)

= ψi(m1) + ψi(m2),

3. ψi(rm) = (−1)i+1iΛi(rm) = (−1)i+1iΨi(r)Λi(m) = Ψi(r)ψi(m),

4. ψi(ψj(m)) = ψi((−1)(j+1)jΛj(m)) = (−1)(i+j)ijΛi(Λj(m))

= (−1)(ij+1)ijΛij(m) = ψ(ij)(m).

We will require the following useful lemma.
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Lemma 4.16.

ν−1∑
i=1

[(−1)i+1χi(r,m)Ψν−i(r) + (−1)ν+1iλi(r)Λν−i(m)] = 0,

for all r ∈ R,m ∈M and ν ≥ 2, where χi(r,m) =
∑i

j=1 Λj(m)λi−j(r).

Proof. We are going to use proof by induction on ν. Consider the case when ν = 2.

LHS =(−1)2χ1(r,m)Ψ1(r) + (−1)3λ1(r)Λ1(m)

=mr − rm

=0.

We are also going to consider the case when ν = 3.

LHS =χ1(r,m)Ψ2(r) + λ1(r)Λ2(m)− χ2(r,m)Ψ1(r) + 2λ2(r)Λ1(m)

=m[r2 − 2λ2(r)] + rΛ2(m)− [mr + Λ2(m)]r + 2λ2(r)m

=0.

Now assume that

ν−k−1∑
i=1

[(−1)i+1χi(r,m)Ψν−k−i(r) + (−1)ν−k+1iλi(r)Λν−k−i(m)] = 0,

for 1 ≤ k ≤ ν − 2.
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It follows that

ν−1∑
i=1

[(−1)i+1χi(r,m)Ψν−i(r) + (−1)ν+1iλi(r)Λν−i(m)]

=
ν−1∑
i=1

(−1)ν(ν − i)λν−i(r)χi(r,m)

+
ν−2∑
i=1

(−1)i+1χi(r,m)[
ν−i−1∑
j=1

(−1)j+1λj(r)Ψν−i−j(r)] +
ν−1∑
i=1

(−1)ν+1iλi(r)Λν−i(m)

=
ν−2∑
i=1

(−1)νiλi(r)[
ν−i−1∑
j=1

Λj(m)λν−i−j(r)] +
ν−2∑
i=1

χi(r,m)[
ν−i−1∑
j=1

(−1)j+iλj(r)Ψν−i−j(r)]

=
ν−2∑
k=1

λk(r)[
ν−k−1∑
i=1

(−1)νiλi(r)λν−k−i(r)] +
ν−2∑
k=1

λk(r)[
ν−k−1∑
i=1

(−1)i+kχi(r,m)Ψν−k−i(r)]

=
ν−2∑
k=1

(−1)k+1λk(r)[
ν−k−1∑
i=1

[(−1)i+1χi(r,m)Ψν−k−i(r) + (−1)ν−k+1iλi(r)Λν−k−i(m)]

=0.

as required.

Lemma 4.17. The set RoM with

(r,m) + (s, n) = (r + s,m+ n),

(r,m)(s, n) = (rs, rn+ms),

together with maps λi : RoM → RoM for i ∈ N0 given by

λi(r,m) = (λi(r), fi(r,m)),

for a sequence of maps fi : RoM →M , for i ∈ N0, is a pre-λ-ring if and only if

1. f0(r,m) = 0,

2. f1(r,m) = m,

3. fi((r,m) + (s, n)) =
∑i

j=0(fj(r,m)λi−j(s) + λj(r)fi−j(s, n)).
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Proof of lemma. R is a commutative ring with identity, and M is an R-module.

Then we know that RoM is a commutative ring with identity. So we only have

to check the properties of λi : RoM → RoM .

1. λ0(r,m) = (λ0(r), f0(r,m)).

Hence λ0(r,m) = (1, 0) if and only if f0(r,m) = 0,

2. λ1(r,m) = (λ1(r), f1(r,m)).

Hence λ1(r,m) = (r,m) if and only if f1(r,m) = m,

3. λi((r,m) + (s, n)) = λi(r + s,m+ n) = (λi(r + s), fi(r + s,m+ n))∑i
j=0 λ

j(r,m)λi−j(s, n) =
∑i

j=0(λj(r), fj(r,m))(λi−j(s), fi−j(s, n))

=
∑i

j=0(λj(r)λi−j(s), fj(r,m)λi−j(s) + λj(r)fi−j(s, n))

Hence

λi((r,m) + (s, n)) =
∑i

j=0 λ
j(r,m)λi−j(s, n) if and only if

fi((r,m) + (s, n)) =
∑i

j=0(fj(r,m)λi−j(s) + λj(r)fi−j(s, n)).

Lemma 4.18. The set R oM together with maps λi : R oM → R oM , for

i ∈ N0, given by

λi(r,m) =

{
(1, 0) for i = 0,

(λi(r),
∑i

j=1 Λj(m)λi−j(r)) for i ∈ N,

gives us a λ-ring.

We call this λ-ring the semi-direct product of R and M , denoted by RoλM .

Proof. We start by showing this is a pre-λ ring by using lemma 4.17 with

fi(r,m) =

{
0 for i = 0,∑i

j=1 Λj(m)λi−j(r) for i ≥ 1.
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Clearly properties 1 and 2 hold, so we only have to check 3. Let i ≥ 2 then

fi((r,m) + (s, n)) =fi(r + s,m+ n) =
i∑

j=1

Λj(m+ n)λi−j(r + s)

=
i∑

j=1

((Λj(m) + Λj(n))

i−j∑
k=0

λk(r)λi−j−k(s)

=
i∑

j=1

i−j∑
k=0

(Λi(m)λk(r)λi−j−k(s) + Λi(n)λk(r)λi−j−k(s))

=
i∑

j=1

j∑
k=1

Λk(m)λj−k(r)λi−j(s) +
i−1∑
j=1

i−j∑
k=1

λj(r)Λk(n)λi−j−k(s)

+
i∑

k=1

Λk(n)λi−k(s)λ0(r)

=
i−1∑
j=1

j∑
k=1

Λk(m)λj−k(r)λi−j(s) +
i∑

k=1

Λk(m)λi−k(r)λ0(s)

+
i−1∑
j=1

i−j∑
k=1

λj(r)λk(n)λi−j−k(s) +
i∑

k=1

Λk(n)λi−k(s)λ0(r)

=
i−1∑
j=1

(fj(r,m)λi−j(s)λj(r)fi−j(s, n))

+ fi(r,m)λ0(s) + fi(s, n)λ0(r) + λi(s)f0(r,m) + λi(r)f0(s, n)

=
i∑

j=0

(fj(r,m)λi−j(s) + λj(r)fi−j(s, n)).

So we have proved that R oλ M is a pre-λ-ring. Checking the last two axioms

is reduced to checking the following the following universal polynomial identities

hold.

• Pi(λ1(r,m), . . . , λi(r,m), λ1(s, n), . . . , λi(s, n))

= (Pi(λ
1(r), . . . , λi(r), λ1(s), . . . , λi(s)),∑i−1

k=1 Pi−k(λ
1(r), . . . , λi−k(r), λ1(s), . . . , λi−k(s))[Ψk(s)Λk(m)+Ψk(r)Λk(n)]),

• Pi,j(λ1(r,m), . . . , λij(r,m)) = (Pi,j(λ
1(r), . . . , λij(r)),∑i

k=1

∑j
l=1(−1)(k+1)(l+1)Λkl(m)Ψk(λj−l(r))P(i−k),j(λ

1(r), . . . , λ(i−k)j(r))).
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We are going to start by considering the case where R is a free λ-ring and M is

free as a λ-module over R.

Our aim is to show that the Adams operations give us the Ψ-ring structure on

R oM with Ψν(r,m) = (Ψν(r), ψν(m)) by using induction on ν. Then theorem

4.11 tells us that RoλM is a λ-ring and the universal polynomial identities hold.

Consider the case when ν = 1

Ψ1(r,m) = (r,m) = (Ψ1(r), ψ1(m)).

Consider the case when ν = 2

Ψ2(r,m) = (r2, 2rm)− 2λ2(r,m) = (r2 − 2λ2(r),−2Λ2(m)) = (Ψ2(r), ψ2(m)).

Assume that Ψν−k(r,m) = (Ψν−k(r), ψν−k(m)) for 1 ≤ k ≤ ν − 1. It follows that
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Ψν(r,m) =
ν−1∑
j=1

(−1)ν−j+1(λν−j(r),

ν−j∑
k=1

λν−j−k(r)Λk(m))(Ψj(r), ψj(m))

+ (−1)ν+1ν(λν(r),
ν∑
k=1

λν−k(r)Λk(m))

=
ν−1∑
j=1

(−1)ν−j+1(λν−j(r)Ψj(r),Ψj(r)

ν−j∑
k=1

λν−j−k(r)Λk(m)

+ Ψj(m)λν−j(r)) + (−1)ν+1ν(λν(r),
ν∑
k=1

λν−k(r)Λk(m))

=(Ψν(r),
ν−1∑
j=1

(−1)ν−j+1[λν−j(r)Ψj(m) + Ψj(r)

ν−j∑
k=1

λν−j−k(r)Λk(m)]

+ (−1)ν+1ν[
ν∑
k=1

λν−k(r)Λk(m)])

=(Ψν(r),
ν−1∑
j=1

[(−1)j+1Ψν−i(r)χi(r,m) + (−1)ν+1jλj(r)Λν−j(m)]

+ (−1)ν+1νΛν(m))

=(Ψν(r), (−1)ν+1νΛν(m)) = (Ψν(r), ψν(m)),

as required.

Now consider the case where R is a free λ-ring and M is an arbitrary λ-module over

R. Choose P a free λ-module over R with a surjective homomorphism P � M ,

this gives us a surjective homomorphism R oλ P � R oλM . Since the universal

polynomial identities hold on Roλ P they also hold on RoλM .

Now we can consider the case when R is an arbitrary λ-ring and M is a λ-module

over R. Any λ-ring is the quotient of a free λ-ring, therefore R is the quotient of a

free λ-ring F . There exists a surjective homomorphism F oλM � RoλM . Since

the universal polynomial identities hold on F oλ M they also hold on R oλ M .

Hence RoλM is a λ-ring. Moreover we proved that (RoλM)Ψ = RΨoΨMΨ.
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4.3 λ-derivations

Definition 4.19. A λ-derivation of R with values in M is an additive homomor-

phism d : R→M such that

1. d(rs) = rd(s) + d(r)s,

2. d(λi(r)) = Λi(d(r))+Λi−1(d(r))λ1(r)+. . .+Λ2(d(r))λi−2(r)+Λ1(d(r))λi−1(r),

for all r, s ∈ R, and i ∈ N. We let Derλ(R,M) denote the set of all λ-derivations

of R with values in M .

Example 4.20. Let Zλ[x] be the free λ-ring on one generator x, and let M ∈
Zλ[x]−modλ.

Derλ(Zλ[x],M) ∼= M.

Zλ[x] = Z[x1, x2, . . .] together with operations determined by λi(x1) = xi. For any

λ-derivation, d : Zλ[x]→M , we have that

d(x1) = m,

d(xi) =
i∑

j=1

Λj(m)xi−j,

where m ∈M and x0 = 1.

Theorem 4.21. There is a one-to-one correspondence between the sections of

RoλM
π // R and the λ-derivations d : R→M .

Proof of theorem. Assume we have a section of π, then we have the following

RoλM
π //

R,
σ
oo

where πσ = IdR. Hence σ(r) = (r, d(r)) for some d : R→M . The properties

d(r + s) =d(r) + d(s),

d(rs) =d(r)s+ rd(s),
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follow from σ being a ring homomorphism. However σ also preserves the λ-ring

structure, meaning that λiσ(r) = σλi(r). We know that

λiσ(r) = λi(r, d(r)) = λi((r, 0) + (0, d(r))) = Σi
j=0λ

j(r, 0)λi−j(0, d(r))

= Σi−1
j=0(0, λj(r)Λi−j(d(r))) + (λi(r), 0) = (λi(r),Σi−1

j=0λ
j(r)Λi−j(d(r)))

σλi(r) = (λi(r), d(λi(r))).

Hence λiσ(r) = σλi(r) if and only if dλi(r) = Σi−1
j=0λ

j(r)Λi−j(d(r)). This tells us

that if σ is a section of π, then we have a λ-derivation d.

Conversely, if we have a λ-derivation d : R→M , then σ(r) = (r, d(r)) is a section

of π.

Theorem 4.22. The λ-derivations of R with values in M are also Ψ-derivations

of RΨ with values in MΨ.

Proof. Let d : R → M be a λ-derivation, we are going to use induction on ν to

show ψν(d(r)) = d(Ψν(r)) for all ν ≥ 1.

Consider the case when ν = 1

ψ1(d(r)) = d(r) = d(Ψ1(r)).

Consider the case when ν = 2.

d(Ψ2(r)) = d(r2−2λ2(r)) = 2rd(r)−2[Λ2(d(r))+d(r)r] = −2Λ2(d(r)) = ψ2(d(r)).

Also consider the case ν = 3.

d(Ψ3(r)) = d(r3 − 3rλ2(r) + 3λ3(r)) = 3Λ3(d(r)) = ψ3(d(r)).
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Assume that ψν−k(d(r)) = d(Ψν−k(r)) for 1 ≤ k ≤ ν − 1.

d(Ψν(r)) =
ν−1∑
i=1

(−1)i+1d(λi(r))Ψν−i(r) +
ν−1∑
i=1

(−1)i+1λi(r)d(Ψν−i(r))

+ (−1)ν+1νd(λν(r))

d(Ψν(r))− ψν(d(r)) =
ν−1∑
i=1

(−1)i+1[
i∑

j=1

Λj(d(r))λi−j(r)]Ψν−i(r)

+
ν−1∑
i=1

(−1)i+1λi(r)[(−1)ν−i+1(ν − i)Λν−i(d(r))]

+ (−1)ν+1ν[
ν−1∑
j=1

Λj(d(r))λν−j(r)]

=
ν−1∑
i=1

[(−1)i+1χi(r, d(r))Ψν−i(r) + (−1)ν+1iλi(r)Λν−i(d(r))]

=0.

Hence d(Ψν(r)) = ψν(d(r)).

Theorem 4.23. If M is Z-torsion-free then the Ψ-derivations of RΨ with values

in MΨ are also λ-derivations of R with values in M

Derλ(R,M) = DerΨ(RΨ,MΨ).

Proof. Let M be Z-torsion-free and d : RΨ →MΨ be a Ψ-derivation. We are going

to use induction on ν to show d(λν(r)) =
∑ν

i=1 Λi(d(r))λν−i(r) for ν ∈ N.

Consider the case when ν = 1.

Λ1(d(r)) = d(r) = d(λ1(r)).



Chapter 4. λ-rings 64

Consider the case when ν = 2.

d(Ψ2(r)) = ψ2(d(r))

d(r2 − 2λ2(r)) = −2Λ2(d(r))

2[d(λ2(r))− rd(r)− Λ2(d(r))] = 0

2[d(λ2(r))−
2∑
i=1

Λi(d(r))λ2−i(r)] = 0

d(λ2(r))−
2∑
i=1

Λi(d(r))λ2−i(r) = 0.

Assume that d(λν−k(r)) =
∑ν−k

i=1 Λi(d(r))λν−i−k(r) for 1 ≤ k ≤ ν − 1, we want to

show that νd(λν(r)) = ν
∑ν

i=1 Λi(d(r))λν−i(r). From ψv(d(r)) = d(Ψv(r)) we get

ν(Λν(d(r))− d(λν(r))) =
∑ν−1

i=1 (−1)i+v[d(λi(r))Ψν−i(r) + λi(r)d(Ψν−i(r))].

Therefore we have to show that

(−1)νν
ν−1∑
i=1

Λi(d(r))λν−i(r)

=
ν−1∑
i=1

(−1)i+1d(λi(r))Ψν−i(r) +
ν−1∑
i=1

(−1)i+1λi(r)d(Ψν−i(r))

=
ν−1∑
i=1

(−1)i+1[
i∑

j=1

Λj(d(r))λi−j(r)] · [
ν−i−1∑
k=1

(−1)k+1λk(r)Ψν−i−k(r)

+ (−1)ν−i−1(ν − i)λν−i(r)] + (−1)ν
ν−1∑
i=1

iΛi(d(r))λν−i(r).

Hence it is sufficient to show that∑ν−2
i=1 (−1)i+1χi(r, d(r))[

∑ν−i−1
k=1 (−1)k+1λk(r)Ψν−i−k(r)]

+
∑ν−1

i=1 (−1)ν+1(i− ν)λν−i(r)χi(r, d(r)) + (−1)ν+1
∑ν−1

i=1 iλ
i(r)Λν−i(d(r))] = 0,

with χi as in lemma 4.16. We get that
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ν−2∑
i=1

(−1)i+1χi(r, d(r))[
ν−i−1∑
k=1

(−1)k+1λk(r)Ψν−i−k(r)]

+
ν−1∑
i=1

(−1)ν+1(i− ν)λν−i(r)χi(r, d(r)) + (−1)ν+1

ν−1∑
i=1

iλi(r)Λν−i(d(r))]

=
ν−2∑
i=1

χi(r, d(r))[(−1)i+1[
ν−i−1∑
k=1

(−1)k+1λk(r)Ψν−i−k(r)

+ (−1)ν−i−1(ν − i)λν−i(r)−Ψν−i(r)]]

=0,

as required.

4.4 λ-ring extensions

We have seen in proposition 2.13 that the André-Quillen cohomology H1
AQ(R,M)

classifies the extensions of R by M. In this section, we develop the λ-analogue of

extensions.

Definition 4.24. A λ-ring extension of R by M is an extension of R by M

0 //M α // X
β // R // 0

where X is a λ-ring, β is a map of λ-rings and αΛn = λnα for all n ∈ N.

Two λ-ring extensions (X), (X ′) with R,M fixed are said to be equivalent if there

exists a map of λ-rings φ : X → X ′ such that the following diagram commutes.

0 //M // X //

φ
��

R // 0

0 //M // X ′ // R // 0

We denote the set of equivalence classes of λ-ring extensions of R by M by

Extλ(R,M).



Chapter 4. λ-rings 66

The Harrison cohomology Harr1(R,M) classifies the additively split extensions

of R by M. We can also define the λ-analogue of these types of extensions.

Definition 4.25. Let R be a λ-ring and M ∈ R-modλ then an additively split

λ-ring extension of R by M is a λ-ring extension of R by M

0 //M α // X
β // R // 0

where β has a section that is an additive homomorphism.

Multiplication inX = R⊕M has the form (r,m)(r′,m′) = (rr′,mr′+rm′+f(r, r′)),

where f : R×R→M is some bilinear map. Associativity in X gives us

0 = rf(r′, r′′)− f(rr′, r′′) + f(r, r′r′′)− f(r, r′)r′′.

Commutativity in X gives us

f(r, r′) = f(r′, r).

The λ-operations λν : R o M → R o M for ν ∈ N0 are given by λν(r,m) =

(λν(r),
∑ν

i=1 Λi(m)λν−i(r) + εν(r)) for a sequence of operations εν : R→M which

satisfy the following properties

1. ε0(r) = ε1(r) = 0,

2. εν(r + s) =
∑ν

i=0[εi(r)λν−i(s) + εν−i(s)λi(r)],

3. εν(1) = 0,

4. Pi(λ
1(r,m), . . . , λi(s, n))

= (λi(rs),
∑i

j=1(Ψj(s)Λj(m) + Ψj(r)Λj(n) + Λj(f(r, r′)))λi−j(rs) + εj(rs)),

5. Pi,j(λ
1(r,m), . . . , λij(r,m))

= (λi(λj(r)),
∑i

k=1 Λk(
∑j

a=1(Λa(m)λj−a(r) + εj(r))λi−k(λj(r))) + εi(λj(r))).

Assuming we have two additively split λ-ring extensions (X, ε, f),(X ′, ε′, f ′) which

are equivalent, together with a λ-ring map φ : X → X ′ with φ(r,m) = (r,m+g(r))
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for some g : R→M . We have that φ being a homomorphism tells us that

g(r + r′) = g(r) + g(r′),

f(r, r′)− f ′(r, r′) = rg(r′)− g(rr′) + g(r)r′.

We also have φ(λν) = λν(φ) for all ν ∈ N0, which tells us that

εν(r)− ε′ν(r) =
ν∑
i=1

Λi(g(r))λν−i(r)− g(λν(r)).

We denote the set of equivalence classes of additively split λ-ring extensions of R

by M by AExtλ(R,M).

In order to describe the properties of λ-ring extensions we need to define the partial

derivatives of the universal polynomials, see appendix C for examples.

We can use the universal polynomials to define continuous functions

Pi : R2i → R,

Pi,j : Rij → R.

For example P2 : R4 → R is given by

P2(x1, x2, x3, x4) = x2
1x4 − 2x2x4 + x2x

2
3.

We can take the partial derivatives of these functions which are again polynomials.

We call these new polynomials the partial derivatives of the universal polynomials.

For example

∂P2(x1, x2, x3, x4)

∂x1

=2x1x4,

∂P2(x1, x2, x3, x4)

∂x2

=x2
3 − 2x4,
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For 1 ≤ j ≤ i, we let

∂Pi(r, s)

∂λj(r)
:=

∂Pi(λ
1(r), . . . , λi(r), λ1(s), . . . , λi(s))

∂λj(r)
.

Since the polynomials Pi are symmetric, we can let

∂Pi(r, s)

∂λj(s)
:=

∂Pi(s, r)

∂λj(s)
.

In our examples

∂P2(r, s)

∂λ1(r)
=
∂P2(λ1(r), λ2(r), λ1(s), λ2(s))

∂λ1(r)
= 2rλ2(s),

∂P2(r, s)

∂λ2(r)
=
∂P2(λ1(r), λ2(r), λ1(s), λ2(s))

∂λ2(r)
= s2 − 2λ2(s).

Similarly, for 1 ≤ k ≤ ij, we let

∂Pi,j(r)

∂λk(r)
:=

∂Pi(λ
1(r), . . . , λij(r))

∂λk(r)
.

For example,
∂P2,2(x1, x2, x3, x4)

∂x1

= x3.

So it follows that
∂P2,2(r)

∂λ1(r)
= λ3(r).

These partial derivatives appear because of the multiplication in RoM . Consider

the following

(r,m)2 = (r2, 2rm),

(r,m)3 = (r3, 3r2m).

Definition 4.26. An additively and multiplicatively split λ-ring extension of R by

M is a λ-ring extension of R by M

0 //M // X // R // 0
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where β has a section that is an additive and multiplicative homomorphism.

As a commutative ring X = R oM , the sequence of operations λν : R oM →
R oM for ν ∈ N0 are given by λν(r,m) = (λν(r),

∑ν
i=1 Λi(m)λν−i(r) + εν(r)) for

a sequence of operations εν : R→M such that

1. ε0(r) = ε1(r) = 0,

2. εν(r + s) =
∑ν

i=0[εi(r)λν−i(s) + εν−i(s)λi(r)],

3. εν(1) = 0,

4. εν(rs) =
∑ν

i=1[εi(r)∂Pν(r,s)
∂λi(r)

+ εi(s)∂Pν(r,s)
∂λi(s)

],

5. εk(λν(r)) =
∑νk

i=1 ε
i(r)

∂Pν,k(r)

∂λi(r)
−
∑k

j=1 Λj(εν(r))λk−j(λν(r)).

Two additively and multiplicatively split λ-ring extensions (X, ε),(X ′, ε′) with

R,M fixed are said to be equivalent if there exists a map of λ-rings φ : X → X ′

such that the following diagram commutes.

0 //M // X //

φ
��

R // 0

0 //M // X ′ // R // 0

Assuming we have two additively and multiplicatively split λ-ring extensions

(X, ε),(X ′, ε′) which are equivalent, together with a λ-ring map φ : X → X ′

with φ(r,m) = (r,m + g(r)) for some g : R→ M . We also have φ being a homo-

morphism which tells us that g ∈ Der(R,M). We also have φ(λν) = λν(φ) for all

ν, which tells us that

εν(r)− ε′ν(r) =
ν∑
i=1

Λi(g(r))λν−i(r)− g(λν(r)).

We denote the set of equivalence classes of additively and multiplicatively split

λ-ring extensions of R by M by MExtλ(R,M).
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Theorem 4.27. If εν : R → M gives us an additively and multiplicatively split

λ-ring extension of R by M , then εν : R→M with

εν(r) =
ν−1∑
i=1

(−1)i+1[εi(r)Ψν−i(r) + λi(r)εν−i(r)] + (−1)ν+1νεν(r),

give us an additively and multiplicatively split Ψ-ring extension of RΨ by MΨ.

Proof. If εν : R→M gives an additively and multiplicatively split λ-ring extension

ofR byM , then λν : RoM → RoM given by λν(r,m) = (λν(r),
∑ν

i=1 Λi(m)λν−i(r)+

εν(r)) is a λ-ring and hence the Adams operations give the Ψ-ring with operations

Ψν : R oM → R oM given by Ψν(r,m) = (Ψν(r), ψν(m) + εν(r)) which is an

additively and multiplicatively split Ψ-ring extension of RΨ by MΨ.

4.5 Crossed λ-extensions

A crossed λ-module consists of a λ-ring C0, a λ-module C1 over C0 and a map of

λ-modules

C1
∂ // C0 ,

which satisfies the property

∂(c)c′ = c∂(c′),

for c, c′ ∈ C1. In other words, a crossed λ-module is a chain algebra which is

non-trivial only in dimensions 0 and 1. Since C2 = 0 the condition ∂(c)c′ = c∂(c′)

is equivalent to the Leibnitz relation

0 = ∂(cc′) = ∂(c)c′ − c∂(c′).

We can define a product by

c ∗ c′ := ∂(c)c′,

for c, c′ ∈ C1. This gives us a λ-ring structure on C1 and ∂ : C1 → C0 is a map of

λ-rings.
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Let ∂ : C1 → C0 be a crossed λ-module. We let M = Ker(∂) and R = Coker(∂)

Then the image Im(∂) is an ideal of C0, MC1 = C1M = 0 and M has a well-defined

λ-module structure over R.

A crossed λ-extension of R by M is an exact sequence

0 //M α // C1
∂ // C0

γ // R // 0

where ∂ : C1 → C0 is a crossed λ-module, γ is a map of λ-rings, and the λ-module

structure on M coincides with the one induced from the crossed λ-module. We

denote the category of crossed λ-extensions of R by M by Crossλ(R,M). We let

π0Crossλ(R,M) denote the connected components of the category Crossλ(R,M).

An additively split crossed λ-extension of R by M is a crossed λ-extension

0 //M ω // C1
ρ // C0

π // R // 0 (4.1)

such that all the arrows in the exact sequence 4.1 are additively split. We denote

the connected components of the category of additively split crossed λ-extensions

of R by M by π0ACrossλ(R,M).

An additively and multiplicatively split crossed λ-extension of R by M is an addi-

tively split crossed λ-extension

0 //M
ω // C1

ρ // C0
π // R // 0

such that π is additively and multiplicatively split. We denote the connected com-

ponents of the category of additively and multiplicatively split crossed λ-extensions

of R by M by π0MCrossλ(R,M).

4.6 Yau cohomology for λ-rings

In 2005, Donald Yau published a paper entitled, “Cohomology of λ-rings” [20], in

which he developed a cohomology theory for λ-rings. In this section we describe

Yau’s cochain complex and what it computes.
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Let R be a λ-ring. We let End(R) denote the algebra of Z-linear endomorphisms

of R, where the product is given by composition. We let End(R) denote the

subalgebra of End(R) which consists of the linear endomorphisms f of R which

satisfy the condition,

f(r)p ≡ f(rp) mod pR,

for each prime p and every r ∈ R.

Yau defined C0
Y au(R) be the underlying group of End(R). He defined C1

Y au(R)

be the set of functions f : N → End(R) satisfying the condition f(p)(R) ⊂ pR

for each prime p. Then for ν ≥ 2 he set Cν
Y au(R) to be the set of functions

f : Nν → End(R). For ν ∈ N0, the coboundary map, δν : Cν
Y au → Cν+1

Y au, is given

by the following

δν(f)(m0, . . . ,mν) =Ψm0 ◦ f(m1, . . . ,mν) +
ν∑
i=1

(−1)if(m0, . . . ,mi−1mi, . . . ,mν)

+ (−1)ν+1f(m0, . . . ,mν−1) ◦Ψmν .

We say that the νth cohomology of the cochain complex (CY au, δ) is the νth Yau

cohomology of R, denoted by Hν
Y au(R).

From the cochain complex it is clear that

H0
Y au(R) = {f ∈ End(R) : fΨν = Ψνf for all ν ∈ N}.

We define the group of Yau derivations of R, denoted by Y Derλ(R), to consist of

the functions f ∈ C1
Y au(R) such that

f(ij) = Ψj ◦ f(i) + f(j) ◦Ψi,

for all i, j ∈ N. We define the group of Yau inner-derivations of R, denoted by

Y IDerλ(R), to consist of the functions f : N→ End(R) which are of the form

f(i) = Ψi ◦ g − g ◦Ψi,

for some g ∈ End(R).
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The first Yau cohomology is given by the quotient,

H1
Y au(R) =

Y Derλ(R)

Y IDerλ(R)
.

Yau tells us that there exists a canonical surjection,

H2
Y au(R) � HH2(Z[N], End(R)),

and for ν ≥ 3, there exists a canonical isomorphism,

Hν
Y au(R) ∼= HHν(Z[N], End(R)),

where HHν(Z[N], End(R)) denotes the νth Hochschild cohomology of Z[N] with

coefficients in End(R).

Yau defined his cohomology in order to study deformations of λ-rings.

We let

Ψ∗t = ψ∗0 + tψ∗1 + t2ψ∗2 + . . .

be a formal power series, in which each ψ∗i is a function

ψ∗i : N→ End(R),

satisfying the following properties. We let ψji denote ψ∗i (j).

1. ψj0(r) = Ψj(r),

2. ψ1
i = 0 for i ≥ 1,

3. ψkli (r) =
∑i

j=0 ψ
k
j ◦ ψli−j(r) for k, l ≥ 1 and i ≥ 0,

4. ψpi (r) ⊂ pR for i ≥ 1 and p prime.

Yau calls Ψ∗t a deformation of R.

Note that the Gerstenhaber and Schack’s definition we provided in 3.6 is very

similar to Yau’s definition but gives a different result. We would like to compare
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the results in the case when αi = 0 for i ≥ 1. We omitted the condition ψpi (r) ⊂ pR

for p prime, but introduced the condition ψji (rs) =
∑i

k=0 ψ
j
k(r)ψ

j
i−k(s). This last

condition makes things more complicated and may seem strange, but it is necessary

to ensure that

Ψ∗t (rs) = Ψ∗t (r)Ψ
∗
t (s).

Yau’s condition gives us ψi1 ∈ End(R). Gerstenhaber and Schack’s condition gives

us ψi1 ∈ Der(R,Ri) where Ri is the R-module with R as an abelian group and the

following action of R

(r, a) 7→ Ψi(r)a, for r ∈ R, a ∈ Ri.



Chapter 5

Harrison cohomology of diagrams

of commutative algebras

5.1 Introduction

For this chapter we let I denote a small category. A category I is said to be small

if the collection of morphisms is a set. We let i, j, k denote objects in I and we let

α : i→ j and β : j → k denote morphisms in I.

Definition 5.1. A diagram of commutative algebras is a covariant functor

A : I → Com.alg,

where I is a small category, and Com.alg is some category of commutative algebras.

We call I the shape of the diagram.

If A,B are two covariant functors from I to Com.alg, then a map of diagrams

is a natural transformation µ : A → B. We denote the category of diagrams of

commutative algebras with shape I by Com.algI .

Definition 5.2. An A-module is a functor M : I → Ab such that for all i ∈ I we

have that M(i) ∈ A(i)-mod and for all α ∈ I we have

M(α)(a ·m) = A(α)(a) ·M(α)(m),

75
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for all a ∈ A(i),m ∈M(i). We let A−modI denote the category of all A-modules.

5.2 Natural System

Let A : I → Com.alg be a diagram of a commutative algebra, and M be an

A-module. For any n ≥ 0 there exists a natural system on I as follows

Dα := Cn
Harr(A(i), α∗M(j)),

where (α : i → j) ∈ I and M(j) is considered an A(i)-module via α. For any

(β : j → j′) ∈ I, we have β∗ : Dα → Dβα which is induced by M(β) : M(j) →
M(j′). For any (γ : i′ → i) ∈ I, we have γ∗ : Dα → Dαγ which is induced by

A(γ) : A(i′)→ A(i).

5.3 Bicomplex

Let A : I → Com.alg be a diagram of a commutative algebra, and M be an

A-module. For each i ∈ I we can consider the Harrison cochain complex of the

commutative algebra A(i) with coefficients in M(i).

C0
Harr(A(i),M(i)) // C1

Harr(A(i),M(i)) // C2
Harr(A(i),M(i)) // . . .

We can use this to construct the following bicomplex denoted by C∗,∗Harr(I, A,M):

Cp,q
Harr(I, A,M) =

∏
α:i0→...→ip

Cq+1
Harr(A(i0)), α∗M(ip)),

for p, q ≥ 0. The map Cp,q
Harr(I, A,M)→ Cp+1,q

Harr (I, A,M) is the map in the Baues-

Wirsching cochain complex, and the map Cp,q
Harr(I, A,M)→ Cp,q+1

Harr (I, A,M) is the

product of the Harrison coboundary maps.
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...
...

∏
iC

3
Harr(A(i),M(i))

OO

δ //
∏

α:i→j C
3
Harr(A(i), α∗M(j)) //

OO

. . .

∏
iC

2
Harr(A(i),M(i)) δ //

∂

OO

∏
α:i→j C

2
Harr(A(i), α∗M(j)) //

−∂
OO

. . .

∏
iC

1
Harr(A(i),M(i)) δ //

∂

OO

∏
α:i→j C

1
Harr(A(i), α∗M(j)) //

−∂
OO

. . .

Let (αn : in → in+1) ∈ I, and α = αp . . . α0 : i0 → ip+1. Then the coboundary

map δ : Cp,q
Harr(I, A,M)→ Cp+1,q

Harr (I, A,M) is given by

δ(f)αp+1,...,α0(x1, . . . , xq) =fαp+1,...,α1(A(α0)(x1), . . . , A(α0)(xq))

+

p∑
k=0

(−1)k+1fαp+1,...,αk+1αk,...,α0(x1, . . . , xq)

+ (−1)p+2M(αp+1)(fαp,...,α0(x1, . . . , xq)).

The coboundary map ∂ : Cp,q
Harr(I, A,M)→ Cp,q+1

Harr (I, A,M) is given by

∂(f)αp,...,α0(x1, . . . , xq+1) =A(α)(x1) · fαp,...,α0(x2, . . . , xq+1)

+

q∑
k=1

(−1)kfαp,...,α0(x1, . . . , xkxk+1, . . . , xq)

+ (−1)q+1fαp,...,α0(x1, . . . , xq) · A(α)(xq+1).

Lemma 5.3. The maps ∂ and δ are coboundary maps.

∂2 = 0 = δ2.
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Proof. ∂(f) =
∑q+1

k=0(−1)k∂k(f) where

(∂k(f))(x1, . . . , xq+1) =


A(α)(x1) · fαp,...,α0(x2, . . . , xq+1) k = 0,

fαp,...,α0(x1, . . . , xkxk+1, . . . , xq+1) 0 < k < q + 1,

fαp,...,α0(x1, . . . , xq) · A(α)(xq+1) k = q + 1.

δ(f) =
∑p+2

k=0(−1)kδk(f) where

(δk(f))(x1, . . . , xq) =


fαp+1,...,α1(A(α0)(x1), . . . , A(α0)(xq)) k = 0,

fαp+1,...,αkαk−1,...,α0(x1, . . . , xq) 0 < k < p+ 2,

M(αp+1)(fαp,...,α0(x1, . . . , xq)) k = p+ 2.

∂2 = 0 = δ2 follows from:

∂k∂l = ∂l∂k−1 0 ≤ l < k ≤ q + 2,

δkδl = δlδk−1 0 ≤ l < k ≤ p+ 2.

Lemma 5.4. The coboundary maps ∂ and δ commute.

δ∂ = ∂δ.

The proof is given on the next page.
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Proof. Let f ∈ Cp,q
Harr(I, A,M).

δ∂(f) =A(α)(x1) · fαp+1,...,α1(A(α0)(x2), . . . , A(α0)(xq+1))

+

q∑
k=1

(−1)kfαp+1,...,α1(A(α0)(x1), . . . , A(α0)(xkxk+1), . . . , A(α0)(xq+1))

+ (−1)q+1fαp+1,...,α1(A(α0)(x1), . . . , A(α0)(xq)) · A(α)(xq+1)

+

p∑
l=0

(−1)l+1[A(α)(x1) · fαp+1,...,αl+1αl,...,α0(x2, . . . , xq+1)

+

q∑
k=1

(−1)kfαp+1,...,αl+1αl,...,α0(x1, . . . , xkxk+1, . . . , xq+1)

+ (−1)q+1fαp+1,...,αl+1αl,...,α0(x1, . . . , xq) · A(α)(xq+1)]

+ (−1)p+2M(αp+1)[A(αp · · ·α0)(x1) · fαp,...,α0(x2, . . . , xq+1)

+

q∑
k=1

(−1)kfαp,...,α0(x1, . . . , xkxk+1, . . . , xq+1)

+ (−1)q+1fαp,...,α0(x1, . . . , xq) · A(αp · · ·α0)(xq+1)]

=A(α)(x1) · [fαp+1,...,α1(A(α0)(x2), . . . , A(α0)(xq+1))

+

p∑
l=0

(−1)l+1fαp+1,...,αl+1αl,...,α0(x2, . . . , xq+1)

+ (−1)p+2M(αp+1)fαp,...,α0(x2, . . . , xq+1)]

+

q∑
k=1

(−1)k[fαp+1,...,α1(A(α0)(x1), . . . , A(α0)(xkxk+1), . . . , A(α0)(xq+1))

+

p∑
l=0

(−1)l+1fαp+1,...,αl+1αl,...,α0(x1, . . . , xkxk+1, . . . , xq+1)

+ (−1)p+2M(αp+1)fαp,...,α0(x1, . . . , xkxk+1, . . . , xq+1)]

+ (−1)q+1[fαp+1,...,α1(A(α0)(x1), . . . , A(α0)(xq))

+

p∑
l=0

(−1)l+1fαp+1,...,αl+1αl,...,α0(x1, . . . , xq)

+ (−1)p+2M(αp+1)(fαp,...,α0(x1, . . . , xq))] · A(α)(xq+1)

=∂δ(f).
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5.4 Harrison cohomology of diagrams of commu-

tative algebras

Let A : I → Com.alg be a diagram of commutative algebras, and M be an A-

module. We define the Harrison cohomology of A with coefficients in M , denoted

by Harr∗(I, A,M), to be the cohomology of the total complex of C∗,∗Harr(I, A,M).

The spectral sequence of a bicomplex yields the following spectral sequence.

Ep,q
2 = Hp

BW (I,Hq+1
Harr(A,M))⇒ Harrp+q(I, A,M),

where Hq
Harr(A,M) is the natural system on I whose value on (α : i→ j) is given

by Harrq(A(i), α∗M(j)).

Definition 5.5. A derivation d : A → M is of the form d = (di)i∈I where each

di : A(i) → M(i) is a derivation of A(i) with values in M(i) such that for all

(α : i → j) ∈ I we have that M(α)(di) = dj(A(α)). We denote the set of all

derivations of A with values in M by Der(A,M).

Lemma 5.6.

Harr0(I, A,M) ∼= Der(A,M),

H0
BW (I,H1

Harr(A,M)) ∼= Der(A,M).

Definition 5.7. An additively split extension of A by M is an exact sequence of

functors

0 //M
q // X

p // A // 0

where X : I → Com.alg such that for all i ∈ I we get an additively split extension

of A(i) by M(i).

0 //M(i)
q(i) // X(i)

p(i) // A(i) // 0

This means that there are additive homomorphisms s(i) : A(i) → X(i) for all

i ∈ I such that s(i) is a section of p(i). The sections induce additive isomorphisms

M(i)⊕A(i) ≈ X(i) where addition is given by (m, a) + (m′, a′) = (m+m′, a+ a′)



Chapter 5. Harrison cohomology of diagrams of commutative algebras 81

and multiplication is given by

(m, a)(m′, a′) = (a′m+ am′ + fi(a, a
′), aa′),

where fi : A(i)× A(i)→M(i) is a bilinear map given by

fi(a, a
′) = s(i)(a)s(i)(a′)− s(i)(aa′).

Associativity in X(i) gives us

0 = afi(a
′, a′′)− fi(aa′, a′′) + fi(a, a

′a′′)− fi(a, a′)a′′.

Commutativity in X(i) gives us

fi(a, a
′) = fi(a

′, a).

For all (α : i → j) ∈ I we identify M(j) with Ker(p(j)) and M(α) with the

restriction of X(α) to get a map εα : A(i)→M(j) given by

εα(a) = X(α)(s(i)(a))− s(j)(A(α)(a)),

which satisfies the following properties:

1. εid(a) = 0,

2. εα(a+ a′) = εα(a) + εα(a′),

3. εα(aa′) = A(α)(a)εα(a′) + A(α)(a′)εα(a)

+ fj(A(α)(a), A(α)(a′))−M(α)(fi(a, a
′)),

4. εβα(a) = M(β)(εα(a)) + εβ(A(α)(a)).

Two additively split extensions (X), (X ′) with A,M fixed are said to be equivalent

if there exists a map of diagrams φ : X → X ′ such that the following diagram

commutes.

0 //M // X //

φ
��

A // 0

0 //M // X ′ // A // 0
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For all i ∈ I we get that φi : X(i) → X ′(i) is a homomorphism of commutative

algebras. Hence φi(m, a) = (m+ gi(a), a) for some gi : A→M such that

gi(a+ a′) = gi(a) + gi(a
′),

fi(a, a
′)− f ′i(a, a′) = agi(a)− gi(aa′) + gi(a)a′.

For all α ∈ I we get that

εα(a)− ε′α(a) = M(α)(gi(a))− gj(A(α)(a)).

We denote the set of equivalence classes of additively split extensions of A by M

by AExt(A,M).

An additively and multiplicatively split extension of A by M is an additively split

extension of A by M

0 //M
q // X

p // A // 0

such that for each i ∈ I the arrow p(i) is additively and multiplicatively split.

We denote the set of equivalence classes of additively and multiplicatively split

extensions of A by M by MExt(A,M).

Lemma 5.8.

Harr1(I, A,M) ∼= AExt(A,M).

Proof. A 1-cocycle is a pair (fi : A(i) × A(i) → M(i))i∈I and (εα : A(i) →
M(j))(α:i→j)∈I . We get an additively split extension of A by M given by taking

the exact sequence

0 //M //M ⊕ A // A // 0

where addition in M ⊕ A is given by (m, a) + (m′, a′) = (m + m′, a + a′) and

multiplication is given by

(m, a)(m′, a′) = (a′m+ am′ + fi(a, a
′), aa′).
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For all (α : i→ j) ∈ I set the map (M ⊕A)(α) : (M ⊕A)(i)→ (M ⊕A)(j) to be

(M ⊕ A)(α)(m, a) = (M(α)(m) + εα(a), A(α)(a)).

Given two 1-cocycles which differ by a 1-coboundary, then the two additively split

extensions we get are equivalent.

Given an additively split extension of A by M

0 //M
q // X

p // A // 0

there are additive homomorphisms s(i) : A(i) → X(i) for all i ∈ I such that s(i)

is a section of p(i).

For all i ∈ I we define the maps fi : A(i)× A(i)→M(i) to be given by

fi(a, a
′) = s(i)(a)s(i)(a′)− s(i)(aa′).

For all (α : i→ j) ∈ I we define the maps εα : A(i)→M(j) to be given by

εα(a) = X(α)(s(i)(a))− s(j)(A(α)(a)).

Then (fi : A(i) × A(i) → M(i))i∈I and (εα : A(i) → M(j))(α:i→j)∈I give us a

1-cocycle. Given two additively split extensions which are equivalent, then the

two 1-cocycles we get differ by a 1-coboundary.

Corollary 5.9.

H1
BW (I,H1

Harr(A,M)) ∼= MExt(A,M).

Definition 5.10. An additively split crossed extension of A by M is an exact

sequence of functors

0 //M
φ // C1

ρ // C0
π // A // 0

such that for all i ∈ I we get an additively split crossed extension of A(i) by M(i).

0 //M(i)
φ(i) // C1(i)

ρ(i) // C0(i)
γ(i) // A(i) // 0 (5.1)
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This means that all the arrows in the exact sequence 5.1 are additively split. We

let π0ACross(A,M) denote the connected components of the category of additively

split crossed extensions of A by M .

An additively and multiplicatively split crossed extension of A by M is an exact

sequence of functors

0 //M
φ // C1

ρ // C0
γ // A // 0

such that for all i ∈ I we get an additively and multiplicatively split crossed

extension of A(i) by M(i),

0 //M(i)
φ(i) // C1(i)

ρ(i) // C0(i)
γ(i) // A(i) // 0 (5.2)

where γ(i) and ρ(i) are additively and multiplicatively split. We let π0MCross(A,M)

denote the connected components of the category of additively and multiplicatively

split crossed extensions of A by M .

Lemma 5.11. If γ : C0 → A is a morphism of diagrams of commutative algebras

then

Harr1(I, γ : C0 → A,M) ∼= π0ACross(γ : C0 → A,M),

where Harr∗(I, γ : C0 → A,M) and π0ACross(γ : C0 → A,M) are defined as

follows. Consider the following short exact sequence of cochain complexes:

0 // C∗Harr(I, A,M)
γ∗ //// C∗Harr(I, C0,M) //κ∗ // Coker(γ∗) // 0,

where C∗Harr(I, A,M) denotes the total complex of the bicomplex (C∗,∗Harr(I, A,M).

We define the cochain complex C∗Harr(I, γ : C0 → A,M) := Coker(γ∗). This allows

us to define the relative Harrison cohomology

Harr∗(I, γ : C0 → A,M) := H∗(C∗Harr(I, γ : C0 → A,M)).

We let ACross(γ : C0 → A,M) denote the category whose objects are the additively

split crossed extensions of A by M

0 //M
φ // C1

ρ // C0
γ // A // 0
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with γ : C0 → A fixed. A morphism between two of these crossed extensions

consists of a morphism of diagrams of commutative algebras h1 : C1 → C1 such

that the following diagram commutes.

0 //M
φ // C1

h1
��

ρ // C0
γ // A // 0

0 //M
φ′ // C ′1

ρ′ // C0
γ // A // 0

Note that ACross(γ : C0 → A,M) is a groupoid.

Proof. We use the method used in [13] for the crossed modules of Lie algebras.

Given any additively split crossed module of A by M ,

0 //M
φ // C1

ρ // C0
γ // A // 0,

we let V = Ker γ = Im ρ. For all objects i ∈ I there are linear sections si : A(i)→
C0(i) of γ and σi : V (i) → C1(i) of ρ(i) : C1(i) → V (i). We define the maps

gi : A(i)⊗ A(i)→ C1(i) by:

gi(a, b) = σi(si(a)si(b)− si(ab)).

We also define the maps ωi : C0(i)→ C1(i) by:

ωi(c) = σi(c− siγi(c)).

By identifying M with Ker ρ, we define the maps fi : C0(i)⊗ C0(i)→M(i) by:

fi(c, c
′) = gi(γi(c), γi(c

′)) + c′ωi(c) + cωi(c
′)− ωi(c) ∗ ωi(c′)− ωi(cc′).

Since gi(c, c
′) = gi(c

′, c), it follows that fi(c, c
′) = fi(c

′, c) and so fi ∈ C2
Harr(C0(i),M(i)).

For all morphisms (α : i→ j) ∈ I we define the maps qα : A(i)→ C1(j) by:

qα(a) = σj(C0(α)(si(a))− sj(A(α)(a))).
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By identifying M with Ker ρ, we define the maps eα : C0(i)→M(j) by:

eα(c) = ωj(C0(α)(c))− C1(α)(ωi(c))− qα(γi(c)).

Note that eα ∈ C1
Harr(C0(i), α∗M(j)).

For all objects i ∈ I we define the maps θi ∈ C3
Harr(A(i),M(i)) by:

θi(x, y, z) = si(x)gi(y, z)− gi(xy, z) + gi(x, yz)− gi(y, x)si(z).

For all morphisms (α : i → j) ∈ I we define the maps ϑα ∈ C2
Harr(A(i), α∗M(j))

by:

ϑα(x, y) =gj(A(α)(x), A(α)(y))− C1(α)gi(x, y)

+ C0(α)(si(x))qα(y)− qα(xy) + qα(x)sj(A(α)(y)).

For all pairs of composable morphisms (βα : i → j → k) ∈ I we define the maps

ηβα ∈ C1
Harr(A(i), (βα)∗M(k)) by:

ηβα(x) = −qβ(A(α)(x)) + qβα(x)− C1(β)(qα(x)).

We let f = (fi)(i∈I) and e = (eα)(α:i→j∈I). We also let θ = (θi)(i∈I),

ϑ = (ϑα)(α:i→j∈I) and η = (ηβα)(βα:i→j→k∈I). Consider the following commutative

diagram.

0 // C1
Harr(I, A,M)

γ∗ //

��

C1
Harr(I, C0,M) κ∗ //

δ
��

C1
Harr(I, γ : C0 → A,M) //

δ
��

0

0 // C2
Harr(I, A,M)

γ∗ // C2
Harr(I, C0,M) κ∗ // C2

Harr(I, γ : C0 → A,M) // 0

Note that (f, e) ∈ C1
Harr(I, C0,M) and (θ, ϑ, η) ∈ C2

Harr(I, A,M). A direct calcu-

lation shows that δ(f, e) = γ∗(θ, ϑ, η). We also have that δκ∗(f, e) = κ∗δ(f, e) =

κ∗γ∗(θ, ϑ, η) = 0, this tells us that κ∗(f, e) is a cocycle. If we have two equivalent

additively split crossed modules then we can choose sections in such a way that
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the associated cocycles are the same. Therefore we have a well-defined map:

ACross(γ : C0 → A,M)→ H2
Harr(I, γ : C0 → A,M).

Inversely, assume we have a cocycle in C1
Harr(I, γ : C0 → A,M) which we lift to a

cochain (f, e) ∈ C1
Harr(I, C0,M). Let V = Ker γ. For all objects i ∈ I we define

C1(i) = M(i) × V (i) as a module over k with the following action of C0(i) on

C1(i):

c(m, v) := (cm+ fi(c, v), cv).

The maps C1(α) : C1(i)→ C1(j) are given by:

C1(α)(m, v) := (M(α)(m) + eα(v), C0(α)(v)).

It is easy to check using the properties of fi and eα that this action is well defined

and together with the maps ρi : C0(i)→ C1(i) given by ρi(m, v) = v, we have an

additively split crossed module of A by M .

Lemma 5.12. If k is a field of characteristic 0 then

Harr2(I, A,M) ∼= π0ACross(A,M).

Proof. From the definition of C∗Harr(I, γ : C0 → A,M) we get the long exact

sequence:

. . . // Harr1(I, A,M) // Harr1(I, C0,M) //

Harr1(I, γ : C0 → A,M) // Harr2(I, A,M) // . . .

(5.3)

Given any additively split crossed module in π0ACross(A,M),

0 //M
φ // C1

ρ // C0
γ // A // 0

we can lift γ to get a map P0 → A where P0 is free as a diagram of commutative

algebras. We can then use a pullback to construct P1 to get a crossed module
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where the following diagram commutes:

0 //M
φ // C1

ρ // C0
γ // A // 0

0 //M // P1

OO

// P0

OO

// A // 0

These two crossed modules are in the same connected component of π0ACross(A,M).

By considering the second crossed module in the long exact sequence, we replace

C0 by P0 to get the new exact sequence:

0 // Harr1(I, γ : P0 → A,M) // Harr2(I, A,M) // 0 (5.4)

since Harr1(I, P0,M) = 0 and Harr2(I, P0,M) = 0.

The exact sequence 5.4 tells us that every element in Harr2(I, A,M) comes

from an element in Harr1(I, γ : P0 → A,M) and the previous lemma tells us

that this comes from a crossed module in π0ACross(A,M). Therefore the map

π0ACross(A,M)→ Harr2(I, A,M) is surjective.

Assume we have two crossed modules which go to the same element inHarr2(I, A,M),

0 //M
φ // C1

ρ // C0
γ // A // 0, (5.5)

0 //M
φ′ // C ′1

ρ′ // C ′0
γ′ // A // 0. (5.6)

There exist morphisms

0 //M
φ // C1

��

ρ // C0

��

γ // A // 0

0 //M // P1
// P0

// A // 0,

0 //M
φ′ // C ′1

��

ρ′ // C ′0

��

γ′ // A // 0

0 //M // P2
// P0

// A // 0,

where P0 is free as a diagram of commutative algebras and P1, P2 are constructed

via pullbacks. These give us two elements in Harr1(I, γ : P0 → A,M) which
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go to the same element in Harr2(I, A,M). However the exact sequence 5.4 tells

us that the two crossed modules 5.5 and 5.6 have to go to the same element in

Harr1(I, γ : P0 → A,M). The previous lemma tells us that the two crossed

modules 5.5 and 5.6 go to the same element in ACross(γ : C0 → A,M) which is a

groupoid, so there is a map P2 → P1 which makes the following diagram commute:

0 //M
φ // C1

ρ // C0
γ // A // 0

0 //M // P1

OO

// P0

OO

// A // 0

0 //M // P2

��

// P0

��

// A // 0

0 //M
φ′ // C ′1

ρ′ // C ′0
γ′ // A // 0

Therefore the two crossed modules 5.5 and 5.6 are in the same connected com-

ponent of π0ACross(A,M) and the map π0ACross(A,M) → Harr2(I, A,M) is

injective.

Corollary 5.13. If k is a field of characteristic 0 then

H2
BW (I,H1

Harr(A,M)) ∼= π0MCross(A,M).

Proof. Given an additively and multiplicatively split crossed extension of A by M

we get that (with the notation of lemma 5.11) gi = 0 for all i ∈ I. Since ρ(i) is

additively and multiplicatively split for all i ∈ I it follows that f = 0, θ = 0 and

ϑ = 0. Therefore η is a cocycle in C2
BW (I,H1

Harr(A,M)).

Inversely, the construction given in lemma 5.11 gives us an additively and multi-

plicatively split extension.

5.5 Harrison cohomology of Ψ-rings

Let R be a Ψ-ring, and M ∈ R−modΨ. Let I denote the category with one object

associated to the multiplicative monoid of the natural numbers Nmult. For any
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j ≥ 1, there is a natural system on I as follows:

Df := Cj
Harr(R, f

∗M),

where f ∗M is an Ψ-module over R with M as an abelian group and the following

action of R

(r,m) 7→ Ψf (r)m, for r ∈ R,m ∈M.

For u ∈ FI (the category of factorisations in I), we have u∗ : Df → Duf which is

induced by Ψu : f ∗M → (uf)∗M . For v ∈ FI, we have v∗ : Df → Dfv which is

induced by Ψv : R→ R.

The bicomplex in section 5.3 becomes

C1
Harr(R,M)

d

��

b //
∏

i∈NC
1
Harr(R, i

∗M)

−d
��

b //
∏

i,j∈NC
1
Harr(R, (ij)

∗M)

d
��

b // · · ·

C2
Harr(R,M)

d

��

b //
∏

i∈NC
2
Harr(R, i

∗M)

−d
��

b //
∏

i,j∈NC
2
Harr(R, (ij)

∗M)

d
��

b // · · ·

C3
Harr(R,M)

d
��

b //
∏

i∈NC
3
Harr(R, i

∗M)

−d
��

b //
∏

i,j∈NC
3
Harr(R, (ij)

∗M)

d
��

b // · · ·

...
...

...

with

d :
∏

t=t1...ti∈N

Cj
Harr(R, t

∗M)→
∏

t=t1...ti∈N

Cj+1
Harr(R, t

∗M),

with the product being over i-tuples (t1, . . . , ti) and t is the composite, is given by

dft1,...,ti(x1, . . . , xj+1) =Ψt1t2...ti(x1)ft1,...,ti(x2, . . . , xj+1)

+

j∑
k=1

(−1)kft1,...,ti(x1, . . . , xkxk+1, . . . , xj+1)

+ (−1)j+1ft1,...,ti(x1, . . . , xj)Ψ
t1t2...ti(xj+1).
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and

b :
∏

t=t1...ti∈N

Cj
Harr(R, t

∗M)→
∏

t=t1...ti+1∈N

Cj
Harr(R, t

∗M),

being given by

bft1,...,ti+1
(x1, . . . , xj) =Ψt1ft2,...,ti+1

(x1, . . . , xj)

+
i∑

k=1

(−1)kft1,...,tktk+1,...,ti+1
(x1, . . . , xj)

+ (−1)i+1ft1,...,ti(Ψ
ti+1(x1), . . . ,Ψti+1(xj)).

We let HarriΨ(R,M) denote the ith cohomology of the total complex of the bi-

complex described above.

Theorem 5.14. There exists a spectral sequence

Ep,q
2 = Hp

BW (I,Hq+1
Harr(R,M))⇒ Harrp+qΨ (R,M).

where Hq
Harr(R,M) is the natural system on I whose value on (α : i→ j) is given

by Harrq(R,α∗M).

Theorem 5.15.

Harr0
Ψ(R,M) = DerΨ(R,M),

Harr1
Ψ(R,M) = AExtΨ(R,M),

Harr2
Ψ(R,M) = π0ACrossΨ(R,M).

5.6 Harrison cohomology and λ-rings

Let R be a λ-ring and M ∈ R−modλ.
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Conjecture 5.16. There exists a cochain bicomplex which starts:

C1
1−Harr(R,M)

d1

��

b11 // C1
2−Harr(R,M))

−d2
��

b12 // C1
3−Harr(R,M))

��

// · · ·

C2
1−Harr(R,M)

d1

��

b21 // C2
2−Harr(R,M))

−d2
��

// . . .

C3
1−Harr(R,M)

d1
��

// . . .

...

where the first column is the Harrison cochain complex.

Ci
1−Harr(R,M) := Ci

Harr(R,M).

For all i ≥ 1 and j ≥ 2 we have that

Ci
j−Harr(R,M) ⊂

∏
n1,...,nj−1∈N

Maps(R⊗i,M).

For example, when j = 2, we have

C1
2−Harr(R,M)) = {f ∈

∏
n∈N

Maps(R,M)|

fn(r + s) =
n∑
j=1

[fj(r)λ
n−j(s) + fj(s)λ

n−j(r)]}.
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C2
2−Harr(R,M)) = {f ∈

∏
n∈N

Maps(R⊗R,M)|fn(r, s) = fn(s, r),

fn((r, s) + (t, u)) =
n∑
j=1

[fj(r, s)λ
n−j(tu+ ru+ ts)

+ fj(t, u)λn−j(rs+ ru+ ts) + fj(r, u)λn−j(rs+ tu+ ts)+

fj(t, s)λ
n−j(rs+ ru+ tu)]}.

The coboundary maps d2 : Ci
2−Harr(R,M)→ Ci+1

2−Harr(R,M) are given by

(d2(f))n(r1, . . . , ri+1) =
n∑
j=1

[
∂Pn(r1, r2 . . . ri+1)

∂λj(r2 . . . ri+1)
fj(r2, . . . , ri+1)]

+
i∑

j=1

fn(r1, . . . , rjrj+1, . . . , ri+1)

+
n∑
j=1

[
∂Pn(r1 . . . ri, ri+1)

∂λj(r1 . . . ri)
fj(r1, . . . , ri)].

(b1
1(g))n(r) = g(λn(r))−

n∑
i=1

Λi(g(r))λn−i(r).

(b1
2(f))n,m(r) = fm(λn(r))−

nm∑
i=1

fi(r)
∂Pn,m(r)

∂λi(r)
+

m∑
j=1

Λj(fn(r))λm−j(λn(r)).

We let Harriλ(R,M) denote the ith cohomology of the bicomplex above. Then we

get the following

Harr0
λ(R,M) ∼= Derλ(R,M),

Harr1
λ(R,M) ∼= AExtλ(R,M).
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5.7 Gerstenhaber-Schack cohomology

In the paper [7] Gerstenhaber and Schack describe a cohomology for diagrams of

associative algebras which we denote by H∗GS(I, A,M). Let I = {i, j, k, . . .} be a

partially ordered set. We can view I as the set of objects of a category in which

there exists a unique morphism i → j when i ≤ j. They define a diagram to be

a contravariant functor A : Iop → Com.alg. They define an A-module to be a

contravariant functor M : Iop → Ab such that M(i) ∈ A(i) − mod for all i ∈ I

and for each i ≤ j the map M(i → j) is an A(j)-module homomorphism where

A(i) is viewed as an A(j)-module via the morphism A(i → j). If we consider A

as a covariant functor A : I → Com.alg and M as a covariant functor M : I → Ab

then we can apply the theory we developed earlier.

The bicomplex described by Gerstenhaber and Schack coincides with our bicom-

plex Cp,q
Harr(I, A,M). Therefore Hn

GS(I, A,M) = Harrn(I, A,M) for n ≥ 0. There-

fore we get a new spectral sequence

Ep,q
2 = Hp

BW (I,Hq+1
Harr(A,M))⇒ Hp+q

GS (I, A,M),

where Hq
Harr(A,M) is the natural system on I whose value on (α : i→ j) is given

by Harrq(A(i), α∗M(j)).



Chapter 6

André-Quillen cohomology of

diagrams of algebras

In this chapter, let C denote a category with limits, and I denote a small category.

We have already seen that for algebraic objects, we can get cohomology from

monads and comonads. In this chapter, we define a cohomology for diagrams of

algebras. Our approach can be described as follows. First, we fix a small category

I. A diagram of algebras is a functor I → Alg(T ), where T is a monad on sets. For

appropriate T , one gets a diagram of groups, a diagram of Lie algebras, a diagram

of commutative rings, etc. The adjoint pair Alg(T ) // Setsoo yields a comonad

which we denote by G. We can also consider the category I0, which has the same

objects as I, but only the identity morphisms. The inclusion I0 ⊂ I yields the

functor SetsI → SetsI0 which has a left adjoint given by the left Kan extension.

We also have the pair of adjoint functors Alg(T )I // SetsIoo which comes from

the adjoint pair Alg(T ) // Setsoo . By gluing these diagrams together, one gets

another adjoint pair

Alg(T )I // SetsI0 .oo

This adjoint pair yields a comonad which we denote by GI . We will prove that

Alg(T )I is monadic in SetsI0 and the right cohomology theory of diagrams of

algebras is one which is associated to the comonad GI . These cohomology theories

are denoted by H∗GI (A,M).

95
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6.1 Base change

Let C be a category, and X be an object in C. An X-module in C is an abelian

group object in the category C/X,

X −mod := Ab(C/X).

Theorem 6.1. Let f : X → Y be a morphism in C, then there exists a base-change

functor f ∗ : Y −mod→ X −mod via pullbacks.

Proof. The product in the slice category is given by pullbacks. The functor we are

going to use is f ∗ : C/Y → C/X given by pullbacks.

f ∗(M) //

��

M

p

��
X

f // Y

If M ∈ Y −mod then f ∗(M) has a canonical X-module structure. In set-theoretic

notation,

f ∗(M) = {(x,m)|x ∈ X, m ∈M, f(x) = p(m)},

f ∗(M)×X f ∗(M) = {(x,m,m′)|x ∈ X, m,m′ ∈M, f(x) = p(m) = p(m′)},

f ∗(M)×X f ∗(M) ' f ∗(M ×Y M).

Consider the following commuting diagram.

f ∗(M ×Y M) //

��
∃!

  

M ×Y M

��
mult

��

X
f

// Y

f ∗(M) //

��

M

��
X

f
// Y
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The unique morphism f ∗(mult) : f ∗(M ×Y M) → f ∗(M) exists by the universal

property of pullbacks. The isomorphism f ∗(M) ×X f ∗(M) ' f ∗(M ×Y M) and

this unique morphism yield multiplication

f ∗(mult) : f ∗(M)×X f ∗(M)→ f ∗(M),

which gives an abelian group object structure on f ∗(M).

6.2 Derivations

For M ∈ X − mod, one defines a derivation from X to M to be a morphism

d : X →M which is a section of the canonical morphism M → X. Let Der(X,M)

denote the set of derivations d : X →M . This is a special case of 2.2 and there is

an abelian group structure. We will require the following useful theorem later.

Theorem 6.2. If X =
∐

α∈I Xα and M ∈ X −mod, then

Der(X,M) ∼=
∏
α∈I

Der(Xα,Mα),

where Mα is the Xα-module produced from M by the base-change functor from the

morphism iα : Xα → X.

Proof. From the definition of the coproduct one has a morphism iα : Xα → X.

Using this one gets Mα ∈ Xα-mod via the following pullback diagram.

M

p

��

Mα
jαoo

pα
��

X Xαiα
oo
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Let f be a section of p, this means that pf = idX . Consider the following diagram.

Xα

fα}}

fiα

vv
idXα

��

M

p

��

Mα
jαoo

pα
��

X

f

OO

Xαiα
oo

The diagram commutes since pfiα = idXiα = iαidXα . By the universal property

of pullbacks pαfα = idXα . So if f is a section of p then fα is a section of pα.

Conversely, let fα be a section of pα, this means that pαfα = idXα . By the definition

of the coproduct there exists a unique morphism f such that the following diagram

commutes.

M

X

f

OO

Xαiα
oo

jαfα
aa

This means that fiα = jαfα. Composing with p on the left gives us that pfiα =

pjαfα = iαpαfα = iαidXα = iα Thus the following diagram commutes.

X
idX //

pf
// X

Xα

iα

OO

iα

==

The universal property of the coproduct says that pf = idX . Hence f is a section

of p.

We will require the following useful lemma later.

Lemma 6.3. For all objects Z ∈ CI , for M ∈ GI(Z)−mod, and α : i→ j in the

small category I, one has

Der(G(Z(i)), α∗M(j)) =
∏

m∈UZ(i)

p−1
j α∗γi(m),
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where pj is the canonical morphism pj : M(j) → GZ(j) and γi is the inclusion

γi : UZ(i)→ GZ(i).

Proof. The derivations Der(G(Z(i)), α∗M(j)) are the sections of pα in the following

pullback diagram.

α∗M(j) //

pα

��

M(j)

pj

��
UZ(i) �

�

γi
// GZ(i) α∗

// GZ(j)

By definition, UZ(i) is the basis of the free object GZ(i).

Der(G(Z(i)), α∗M(j)) = {s : UZ(i)→M(j)|α∗γi = pjs, s is a set map.}

=
∏

m∈UZ(i)

p−1
j α∗γi(m).

6.3 Natural system

We require the following useful theorem.

Theorem 6.4. Let A ∈ CI and M ∈ A-mod. If α : i→ j is a morphism in I then

M(j) ∈ A(j)−mod and

Der(A,M)(α) = Der(A(i), α∗M(j)),

defines a natural system on I.

Proof. Start by fixing A and M , then let D(α) denote Der(A,M)(α). Let γ, α, β ∈
I such that

i′
γ // i α // j

β // j′.

We are going to show that we have induced maps as follows.

D(αγ) D(α)
γ∗oo β∗ // D(βα) .
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Let s ∈ D(α), then the following diagram commutes with ps = idA(i), and α∗M(j)

is a pullback, α∗M(j) ∈ A(i)−mod.

α∗M(j) //

p

��

M(j)

��
A(i)

s

OO

A(α) // A(j)

Consider the following commuting diagram.

M(i)

��

∃!

��

M(α)

$$
α∗M(j)

p

��

∃!τ

��

//M(j)

��

∃!

��

M(β)

##
α∗β∗M(j′) //

p′

��

β∗M(j′)

��

//M(j′)

��
A(i)

s

FF

A(α)
// A(j)

A(β)
// A(j′)

Let s′ : A(i)→ α∗β∗M(j′) be the map s′ = τs. Hence

p′τs = ps = idA(i).

So define β∗(s) = s′. Hence s′ ∈ Der(A(i), α∗β∗M(j′)) = Der(A(i), (βα)∗M(j′)).
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Consider the following commutative diagram, with s a section of p.

(αγ)∗M(j) //

p′

��

α∗M(j) //

p

��

M(j)

��
A(i′)

A(γ) // A(i)

s

OO

A(α) // A(j)

There exists a unique s′ : A(i′) → (αγ)∗M(j) which is a section of p′ which

would make the above diagram still commute. So define γ∗(s) = s′. Therefore

s′ ∈ Der(A(i′), (αγ)∗M(j)).

Corollary 6.5. For q ≥ 0 there exists a natural system Hq(A,M) on I whose

value on (α : i→ j) is given by Hq
G(A(i), α∗M(j)).

This corollary allows us to define, for fixed q ≥ 0, the Baues-Wirsching cohomology

H∗BW (I,Hq(A,M)) of I with coefficients in the natural system Hq(A,M).

Furthermore, we can consider a natural system on the category of chain complexes

Chaincomplex as follows. To each morphism α : i → j ∈ I we assign the chain

complex Der(G∗(A(i)), α∗M(j)). This gives us a functor,

D : FI → Chaincomplex,

where FI denotes the category of factorizations in I.

This natural system gives rise to a cosimplicial object in Chaincomplex:

∏
iD(idi)

// //
∏

α:i→j D(α) // //// . . .

which gives rise to a bicomplex described in the next in the next section.
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6.4 Bicomplex

Let G be a comonad in C, let A ∈ CI and M ∈ A−mod. Then we can construct

the following bicomplex denoted by C∗,∗(I, A,M).

Cp,q(I, A,M) =
∏

α:i0→...→ip

Der(Gq+1(A(i0)), α∗M(ip)).

The map Cp,q(I, A,M) → Cp+1,q(I, A,M) is the map in the Baues-Wirsching

cochain complex, and the map Cp,q(I, A,M) → Cp,q+1(I, A,M) is the product of

maps in the comonad cochain complex.

...
...

∏
i Der(G3(A(i)),M(i))

∂

OO

δ //
∏

α:i→j Der(G3(A(i)), α∗M(j)) δ //

−∂

OO

. . .

∏
i Der(G2(A(i)),M(i)) δ //

∂

OO

∏
α:i→j Der(G2(A(i)), α∗M(j)) δ //

−∂
OO

. . .

∏
i Der(G(A(i)),M(i)) δ //

∂

OO

∏
α:i→j Der(G(A(i)), α∗M(j)) δ //

−∂
OO

. . .

This bicomplex lives in the category of abelian groups. We let H∗(I, A,M) denote

the cohomology of the total complex of C∗,∗(I, A,M).

We will need the following useful lemmas.

Lemma 6.6. If A is GI-projective, then A(i) is G-projective for all i ∈ I.

Proof. Consider A = GI(Z) : I → C where GI(Z)(i) =
∐

x→iG(Z(x)). Since

G(Z(x)) is G-projective, it follows that
∐

x→iG(Z(x)) is G-projective for all i ∈
I.

Lemma 6.7. H0(I, A,M) ∼= Der(A,M), furthermore, if A is GI-projective then

Hn(I, A,M) = 0 for n > 0.

Proof. It is sufficient to consider the case when A = GI(Z). When A = GI(Z), it

is known that A is GI-projective. By lemma 6.6 and lemma 2.12, one gets that
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the vertical columns in our bicomplex are exact except in dimension 0. There is

a well known lemma for bicomplexes which tells us the cohomology of the total

complex is isomorphic to the cohomology of the following chain complex.

∏
i Der(A(i),M(i)) //

∏
α:i→j Der(A(i), α∗M(j)) // . . .

It is known that the cohomology of this cochain complex is justH∗BW (I,Der(A,M)).

To prove the first statement it is enough to show that

0→ Der(A,M)→
∏
i

Der(A(i),M(i))→
∏
α:i→j

Der(A(i), α∗M(j))

is exact. Let ψ ∈
∏

i Der(A(i),M(i)) and (α : i → j) ∈ I, then dψ(α : i → j) =

α∗ψ(i) − α∗ψ(j). Therefore dψ(α : i → j) = 0 if and only if α∗ψ(i) = α∗ψ(j).

However α∗ψ(i) = α∗ψ(j) if and only if M(α)ψ(i) = ψ(j)A(α), i.e. the following

diagram commutes.

A(i)

A(α)

��

ψ(i) //M(i)

M(α)

��
A(j)

ψ(j)
//M(j)

Hence ψ ∈ Der(A,M). This tells us that the sequence above is exact. Hence

H0(I, A,M) = Der(A,M).

To prove the second statement, let us consider

D(α : i→ j) : = Der(A(i), α∗M(j))

= Der(
∐
β:y→i

GZ(y), α∗M(j))

=
∏
β:y→i

Der(GZ(y), β∗α∗M(j)), by lemma 6.2.

Define Dy for a fixed object y ∈ I to be a natural system on I (using theorem 6.4)

given by:

Dy(α : i→ j) =
∏
β:y→i

Der(GZ(y), β∗α∗M(j)).
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So one has that

D(i→ j) =
∏
y

Dy(i→ j).

Hence,

H∗BW (I,D) =
∏
y∈I

H∗BW (I,Dy).

Now consider the cochain complex C∗BW (I,Dy).

C∗BW (I,Dy) =
∏

iDy(i→ i) //
∏

α:i→j Dy(i→ j) // . . .

=
∏

i

∏
β:y→i Der(GZ(y), β∗M(i)) //

∏
α:i→j

∏
β:y→i Der(GZ(y), β∗α∗M(j)) // . . .

UZ(y) forms a basis of the free object GZ(y), applying lemma 6.3, one can rewrite

the cochain complex as

C∗BW (I,Dy) =
∏

y→i
∏

m∈UZ(y) Aβj(m)
//
∏

α:i→j
∏

β:y→i
∏

m∈UZ(y) Aαβj(m)
// . . . ,

where Aβj(m) = preimage of βγ(m) in the projection M(j)→ GZ(j). This allows

us to rewrite the cochain complex as

C∗BW (I,Dy) =
∏

m∈UZ(y)

C∗BW (y/I, Fm)

where Fm : y/I → Ab is a functor defined by Fm(β : y → i) = Aβj(m).

Since the category y/I contains an initial object idy : y → y, by lemma 2.20 the

cohomology vanishes in positive dimensions.

Theorem 6.8. H∗GI (A,M) ∼= H∗(I, A,M).
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Proof. Consider the bicomplex C∗(I,GI(A)∗,M) shown below.

...
...

...

C2(I,GI(A),M)

OO

// C2(I,G2
I(A),M)

OO

// C2(I,G3
I(A),M)

OO

// · · ·

C1(I,GI(A),M)

OO

// C1(I,G2
I(A),M)

OO

// C1(I,G3
I(A),M)

OO

// · · ·

C0(I,GI(A),M)

OO

// C0(I,G2
I(A),M)

OO

// C0(I,G3
I(A),M)

OO

// · · ·

We are going to show that

H∗(I, A,M) ∼= H∗(Tot(C•(I,GI(A)•,M))) ∼= Hn
GI (A,M).

Since Gp
I(A) is GI-projective, lemma 6.7 tells us that the vertical cohomology

Hn(C∗(I,Gp
I(A),M)) ∼=

{
Der(Gp

I(A),M), n = 0,

0, otherwise,

so each column of the bicomplex C∗(I,GI(A)∗,M) is exact except at C0(I,Gp
I(A),M).

Therefore by the spectral sequence argument

Hn(Tot(C•(I,GI(A)•,M))) ∼=Hn(Der(GI(A),M)→ Der(G2
I(A),M)→ · · · )

=Hn
GI (A,M).

We are now going to compute the horizontal cohomology. From the definition of

C∗(I, A,M) we see that each row of the bicomplex C∗(I,GI(A)∗,M) is a product

of cochain complexes of the form Der(GpGI(A)∗(i), α
∗M(j)).

Consider GI(A)∗ → A which is an augmented simplicial object. For all objects

i ∈ I we have GI(A)∗(i) → A(i) which is also an augmented simplicial object.

Applying the forgetful functor U : Alg(T ) → Sets we get UGI(A)∗(i) → UA(i)

which is contractible in the category Sets. Then applying the free functor F :

Sets→ Alg(T ) we get GGI(A)∗(i)→ GA(i) which is contractible in the category
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Alg(T ). Repeated applications of the functors U and F give us GpGI(A)∗(i) →
GpA(i) which is contractible in the category Alg(T ). For any arrow α : i→ j in I

we can apply the functor Der(−, α∗M(j)) to get a contractible cosimplicial abelian

group Der(GpA(i), α∗M(j))→ Der(GpGI(A)∗(i), α
∗M(j)). Therefore each row of

the bicomplex C∗(I,GI(A)∗,M) is exact except at Cp(I,GI(A),M). Therefore

Hn(Cp(I,GI(A)∗,M)) ∼=

{
Cp(I, A,M), n = 0,

0, otherwise.

Therefore by the spectral sequence argument

Hn(Tot(C•(I,GI(A)•,M))) ∼= Hn(C∗(I, A,M)) = Hn(I, A,M).

Now one has both a global cohomology, H∗GI (A,M), and a local cohomology,

H∗G(A(i),M(i)). One can ask how these two are related; the answer is given

by the local to global spectral sequence.

Theorem 6.9. There exists a spectral sequence

Epq
2 = Hp

BW (I,Hq(A,M))⇒ Hp+q
GI (A,M),

where Hq(A,M) is a natural system on I whose value on (α : i → j) is given by

Hq
G(A(i), α∗M(j)).

Definition 6.10. An extension of A by M is an exact sequence of functors

0 //M
q // X

p // A // 0

where X : I → Com.alg such that for all i ∈ I we get an extension of A(i) by M(i)

0 //M(i)
q(i) // X(i)

p(i) // A(i) // 0
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Two extensions (X), (X ′) with A,M fixed are said to be equivalent if there exists

a map of diagrams φ : X → X ′ such that the following diagram commutes.

0 //M // X //

φ
��

A // 0

0 //M // X ′ // A // 0

We denote the set of equivalence classes of extensions of A by M by Ext(A,M).

Theorem 6.11. H1
GI (A,M) ∼= Ext(A,M).

Proof. Suppose we have a free resolution P∗ of A and an extension representing a

class in Ext(A,M).

0 //M
i // X

u // A // 0

The map u is a surjection and P0 is free, so there exists a lift h : P0 → X which

makes the following diagram commute.

0 //M
i // X

u // A // 0

. . .
ϕ2
0 //

ϕ2
2

//// P1

ϕ1
0 //

ϕ1
1

// P0

h

OO

ε // A // 0

Then we can get a map d = i−1(hϕ1
0 − hϕ1

1) : P1 →M.

d is a derivation, and d is also a 1-cocycle in Der(P∗,M) and defines a class in

H1
GI (A,M). This class is independent of the choice of lifting h. This gives a map

Φ : Ext(A,M)→ H1
GI (A,M).

Conversely, given a derivation D : P1 →M we let

X = Coker( P1
(ϕ1

0,0)
//

(ϕ1
1,0)
// P0 ⊕M ).

The cokernel is in the category A − mod, and we let p : P0 ⊕ M → X be the

canonical projection. If D is a 1-cocycle in Der(P∗,M) then we obtain an extension

in Ext(A,M) where i : M → X is given by i(m) = p(0 ⊕m) and u : X → A is

given by u(p(y ⊕m)) = ε(y).



Chapter 6. André-Quillen cohomology of diagrams of algebras 108

. . .
ϕ2
0 //

ϕ2
2

//// P1

D
��

ϕ1
0 //

ϕ1
1

// P0

��

ε // A // 0

0 //M i // X u // A // 0

This procedure gives us an inverse to Φ.

Definition 6.12. A crossed extension of A by M is an exact sequence of functors

0 //M
ω // C1

ρ // C0
π // A // 0

such that for all i ∈ I we get a crossed extension of A(i) by M(i)

0 //M(i)
ω(i) // C1(i)

ρ(i) // C0(i)
π(i) // A(i) // 0

We let π0ACross(A,M) denote the connected components of the category of ad-

ditively split crossed extensions of A by M .

Lemma 6.13.

H2
GI (A,M) ∼= π0Cross(A,M).

Proof. We are going to show that the crossed extensions are equivalent to the

simplicial groups whose Moore complex is of length one. Given a crossed extension

we have a crossed module

C1
∂ // C0.

Let X0 = C0 and X1 = C1 ⊕ C0 where addition is given by (c1, c0) + (d1, d0) =

(c1 +d1, c0 +d0) and multiplication is given by (c1, c0)(d1, d0) = (0, c0d0 +∂(c1)d1 +

c0d1 +d0c1). For all α : i→ j then we have X1(α)(c0, d0) = (C1(α)(c1), C0(α)(c0)).

This gives us that X1 is a diagram of algebras. We set d1 : X1 → X0 to be

d1(c1, c0) = c0 and d0 : X1 → X0 to be d0(c1, c0) = ∂(c1) + c0. Then d0 is a natural

transformation.

We define the category C to be the category whose objects are the elements of

X0 and whose morphisms are the elements of X1. The source of the morphism

(c1, c0) ∈ C is given by d0(c1, c0) = ∂(c1) + c0 and the target of (c1, c0) ∈ C is
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given by d1(c1, c0) = c0. The composable morphisms in C are pairs of morphisms

(c1, c0), (c′1, c
′
0) such that c′0 = ∂c1 + c0. The nerve of the category C is a simplicial

group whose Moore complex is

. . . // 0 // Ker d1
// C0,

which is of length one.

Let K∗ be a simplicial object whose Moore complex is of length one. Then the

Moore complex

Ker d1
d0 // K0,

is a crossed module.

The category of diagrams of algebras is exact and so the results of Glenn [8] tell

us that H2
GI (A,M) classifies the simplicial groups whose Moore complexes are of

length one.

6.5 Cohomology of diagrams of groups

In the paper by Cegarra [6], the cohomology of diagrams of groups is described,

which we denote by H∗Cg(G,M). A diagram of groups is a functor G : I → Gp

where I is a small category and Grp is the category of groups. A G-module is a

functor M : I → Ab such that for all objects i ∈ I we have that M(i) ∈ A(i)−mod

and for all morphisms (α : i → j) ∈ I we have that M(α)(gm) = G(α)(g) ·
M(α)(m) for all g ∈ G(i) and m ∈M(i).

A derivation of G into M is a natural transformation d : G → M such that

d(i) : G(i) → M(i) is a derivation of the group G(i) into M(i). We denote the

abelian group of all derivations of G into M by DerI(G,M). When G is locally

constant then Hn+1
Cg (G,M) = Rn DerI(G,M) and the following spectral sequence

exists.

Ep,q
2 = Hp

BW (I,Hq+1(G,M))⇒ Hp+q+1
Cg (G,M),
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where Hq(G,M) is a natural system on I whose value on (α : i → j) is given

by Hq(G(i), α∗M(j)). So when G is locally constant the cohomology described

by Cegarra coincides with the André-Quillen cohomology described above with a

dimension shift.



Chapter 7

André-Quillen cohomology of

Ψ-rings and λ-rings

7.1 Cohomology of Ψ-rings

Let I denote the category with one object associated to the multiplicative monoid

of the nonzero natural numbers. We can consider Ψ-rings as diagrams of commu-

tative rings; Ψ-rings are functors from I to the category of commutative rings

R : I → Com.rings.

Therefore we can use the theory we developed in the previous chapter.

We are now going to construct the free Ψ-ring on one generator a. Let A be the

free commutative ring generated by {ai|i ∈ N}. Let the operations Ψi : A→ A be

given by Ψi(aj) = aij, for i, j ∈ N. Then A is the free Ψ-ring on one generator.

Lemma 7.1. If R and S are Ψ-rings, then R⊗S with Ψi : R⊗S → R⊗S given

by Ψi(r, s) = (Ψi(r),Ψi(s)) is the coproduct in the category Ψ− rings.

Proof. The coproduct of two commutative rings is given by the tensor product,

so we only need to check the Ψ-operations. There is a unique Ψ-ring structure on

111
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R⊗ S such that

R→ R⊗ S, r 7→ r ⊗ 1,

S → R⊗ S, s 7→ 1⊗ s,

are homomorphisms of Ψ-rings given by

Ψi(r ⊗ s) = Ψi((r ⊗ 1)(1⊗ s))

= Ψi(r ⊗ 1)Ψi(1⊗ s)

= (Ψi(r)⊗ 1)(1⊗Ψi(s))

= Ψi(r)⊗Ψi(s).

Corollary 7.2. Let A be the free commutative ring generated by {ai, bi, . . . , xi|i ∈
N}. Let the operations Ψi : A → A be given by Ψi(aj) = aij, Ψi(bj) = bij, . . .,

Ψi(xj) = xij for i, j ∈ N. Then A is the free Ψ-ring generated by {a, b, . . . , x}.

It is well known that there is an adjoint pair of functors

Sets
F //

Com.rings
U

oo ,

where U is the forgetful functor and F takes a set S to the free commutative ring

generated by S. The adjoint pair gives rise to a comonad G on Com.rings which is

monadic and the cohomology with respect to this comonad is the André-Quillen

cohomology of commutative rings.

The adjoint pair gives rise to another adjoint pair

Sets
FI //

Com.ringsI

UI
oo ,

where UI is the forgetful functor and FI takes a set S to the free Ψ-ring generated

by S. This adjoint pair yields a comonad GI on Com.ringsI = Ψ− rings which is

monadic. Note that for any R ∈ Ψ− rings, we get that GI(R) =
⊔
i∈NG(R). We
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define the cohomology of a Ψ-ring R with coefficients in M ∈ R−modΨ to be

H∗Ψ(R,M) := H∗GI (R,M) = H∗GI (R,DerΨ(−,M)).

From theorem 6.4 it follows that for any n ≥ 0, there is a natural system on I as

follows

Df := Hn
AQ(R,M f ),

where M f is an R-module with M as an abelian group with the following action

of R

(r,m) 7→ Ψf (r)m, for r ∈ R,m ∈M.

For any morphism u ∈ I, we have u∗ : Df → Duf which is induced by Ψu : M f →
Muf . For any morphism v ∈ I, we have v∗ : Df → Dfv which is induced by

Ψv : R→ R.

Therefore theorem 6.9 gives us the following theorem.

Theorem 7.3. There exists a spectral sequence

Ep,q
2 = Hp

BW (I,Hq(R,M))⇒ Hp+q
Ψ (R,M),

where Hq(R,M) is the natural system on I whose value on a morphism α in I is

given by Hq
AQ(R,Mα).

Theorem 7.4. Let R be a Ψ-ring and M ∈ R−modΨ, then

1. H0
Ψ(R,M) ∼= DerΨ(R,M),

2. H1
Ψ(R,M) ∼= ExtΨ(R,M),

3. H2
Ψ(R,M) ∼= π0CrossΨ(R,M),

4. If R is a free Ψ-ring, then Hn
Ψ(R,M) = 0 for n ≥ 1.

7.2 Cohomology of λ-rings

We are now going to construct the free λ-ring on one generator a. Let A be the

free commutative ring generated by {ai|i ∈ N}. Let the operations λi : A→ A be
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given by λi(aj) = Pi,j(a1, . . . , aij) for i, j ∈ N. Then A is the free λ-ring on one

generator.

Lemma 7.5. If R and S are λ-rings, then R⊗ S with λi : R⊗ S → R⊗ S given

by λi(r, s) = Pi((λ
1(r), 1), . . . , (λi(r), 1), (1, λ1(s)), . . . , (1, λi(s))) is the coproduct

in the category λ− rings.

It is known that there is an adjoint pair of functors

Sets
F //

λ− rings
U

oo ,

where U is the forgetful functor and F takes a set S to the free λ-ring generated

by S. The adjoint pair gives rise to a comonad G on λ− rings which is monadic.

We define the cohomology of a λ-ring R with coefficients in M ∈ R−modλ to be

H∗λ(R,M) := H∗G(R,M) = H∗G(R,Derλ(−,M)).

Theorem 7.6. Let R be a λ-ring and M ∈ R−modλ, then

1. H0
λ(R,M) ∼= Derλ(R,M),

2. H1
λ(R,M) ∼= Extλ(R,M),

3. H2
λ(R,M) ∼= π0Crossλ(R,M),

4. If R is a free λ-ring, then Hn
λ (R,M) = 0 for n ≥ 1.

Proof. Property 1 follows from lemma 2.12, and property 4 follows from lemma

2.11. We are now going to prove property 2.

Suppose we have a free resolution P∗ of R as a λ-ring and an extension representing

a class in Extλ(R,M).

0 //M
i // X

u // R // 0
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The map u is a surjection and P0 is free, so there exists a lift h : P0 → X which

makes the following diagram commute.

0 //M i // X u // R // 0

. . .
ϕ2
0 //

ϕ2
2

//// P1

ϕ1
0 //

ϕ1
1

// P0

h

OO

ε // R // 0

Then we can get a map d = i−1(hϕ1
0 − hϕ1

1) : P1 →M

d is a Ψ-derivation, and d is also a 1-cocycle in DerΨ(P∗,M) and defines a class in

H1
Ψ(R,M). This class is independent of the choice of lifting h. This gives a map

Φ : ExtΨ(R,M)→ H1
Ψ(R,M).

Conversely, given a λ-derivation D : P1 →M we let

X = Coker( P1
(ϕ1

0,0)
//

(ϕ1
1,0)
// P0 ⊕M ).

The cokernel is in the category R−modλ, and we let p : P0 ⊕ M → X be the

canonical projection. If D is a 1-cocycle in Derλ(P∗,M) then we obtain an exten-

sion in Extλ(R,M) where i : M → X is given by i(m) = p(0⊕m) and u : X → R

is given by u(p(y ⊕m)) = ε(y).

. . .
ϕ2
0 //

ϕ2
2

//// P1

D
��

ϕ1
0 //

ϕ1
1

// P0

��

ε // R // 0

0 //M i // X u // R // 0

This procedure gives us an inverse to Φ.

We are now going to prove property 3 by showing that the crossed λ-extensions are

equivalent to the simplicial groups whose Moore complex is of length one. Given

a crossed λ-extension we have a crossed λ-module

C1
∂ // C0.
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Let X0 = C0 and X1 = C1 ⊕ C0 where addition is given by (c1, c0) + (d1, d0) =

(c1 +d1, c0 +d0) and multiplication is given by (c1, c0)(d1, d0) = (0, c0d0 +∂(c1)d1 +

c0d1 + d0c1). We let λn(c0, d0) = (
∑i

j=1 Λj(c1)λi−j(c0), λi(c0). This gives us that

X1 is a λ-ring. We set d1 : X1 → X0 to be d1(c1, c0) = c0 and d0 : X1 → X0 to be

d0(c1, c0) = ∂(c1) + c0. Then d0 is a λ-ring map.

We define the category C to be the category whose objects are the elements of

X0 and whose morphisms are the elements of X1. The source of the morphism

(c1, c0) ∈ C is given by d0(c1, c0) = ∂(c1) + c0 and the target of (c1, c0) ∈ C is

given by d1(c1, c0) = c0. The composable morphisms in C are pairs of morphisms

(c1, c0), (c′1, c
′
0) such that c′0 = ∂c1 + c0. Hence the nerve of the category C is a

simplicial group whose Moore complex is

. . . // 0 // Ker d1
// C0,

which is of length one.

Let K∗ be a simplicial object whose Moore complex is of length one. Then the

Moore complex yields

Ker d1
d0 // K0,

which is a crossed λ-module.

The category of λ-rings is exact and so the results of Glenn [8] tell us that

H2
λ(R,M) classifies the simplicial groups whose Moore complexes are of length

one.

Lemma 7.7. Let R be a λ-ring and let M ∈ R-modλ. Then there exist homomor-

phisms, for n ≥ 0,

ςn : Hn
λ (R,M)→ Hn

Ψ(RΨ,MΨ),

ρn : Hn
λ (R,M)→ Hn

AQ(R,M),

%n : Hn
Ψ(RΨ,MΨ)→ Hn

AQ(R,M).

Proof. Let P∗ be a projective resolution of R in the category of λ-rings. Then

applying the Adams operations we get that (P∗)Ψ is a (not necessarily projective)

resolution of RΨ in the category of Ψ-rings. We let L∗ be a projective resolution
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of RΨ in the category of Ψ-rings. Since L∗ is projective, we can use the lifting

property to get a map α : L∗ → (P∗)Ψ, such that the following diagram commutes.

(P∗)Ψ
// RΨ

L∗

∃α

OO

// RΨ

We then apply the functor DerΨ(−,MΨ) to get the commutative diagram.

DerΨ((P∗)Ψ,MΨ) //

α∗

��

DerΨ(RΨ,MΨ)

DerΨ(L∗,MΨ) // DerΨ(RΨ,MΨ)

The inclusion i : Derλ(R,M) ↪→ DerΨ(RΨ,MΨ) gives us maps which make the

following diagram commute.

Derλ(P∗,M) //

i
��

Derλ(R,M)

i
��

DerΨ((P∗)Ψ,MΨ) //

α∗

��

DerΨ(RΨ,MΨ)

DerΨ(L∗,MΨ) // DerΨ(RΨ,MΨ).

This gives us homomorphisms

ςn : Hn
λ (R,M) = Hn(Derλ(P∗,M))

(α∗i)∗// Hn(DerΨ(L∗,MΨ)) = Hn
Ψ(RΨ,MΨ).

The homomorphisms ρn and %n are induced by the forgetful functors from λ−rings
and Ψ− rings respectively to Com.rings.
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Applications

8.1 K-theory

The material covered in this section can be found in [2] and [11].

8.1.1 Vector bundles

In this section we will develop the notion of complex vector bundles. A lot of the

basic theory for real vector bundles is the same as for complex vector bundles,

however we will only be concerned with complex vector bundles in this chapter.

Definition 8.1. A complex vector bundle consists of

1. topological spaces X (called the base space) and E (called the total space.)

2. a continuous map p : E → X (called the projection.)

3. a finite dimensional complex vector space structure on each

Ex = p−1(x) for x ∈ X,

(we call the p−1(x) the fibres)

118
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such that the following local triviality condition is satisfied. There exists an open

cover of X by open sets Uα and for each there exists a homeomorphism ϕα :

p−1(Uα)→ Uα×Cd which takes p−1(b) to {b}×Cd via a vector space isomorphism

for each b ∈ Uα.

Example 8.2. Let E = X ×Cd, and p be the projection onto the first factor. We

call this the product or trivial bundle.

A homomorphism from a complex vector bundle p : E → X to another complex

vector bundle q : F → X is a continuous map ϕ : E → F such that

1. qϕ = p,

2. ϕ : Ex → Fx is a linear map of vector spaces for all x ∈ X.

If ϕ is a bijection and ϕ−1 is continuous, then we say that ϕ is an isomorphism and

that E and F are isomorphic. We will let V ect(X) denote the set of isomorphism

classes of complex vector bundles on X.

Let E be a complex vector bundle over X. We get that dim(Ex) is locally constant

on X, furthermore it is a constant function on each of the connected components

of X.

For vector bundles E,F we can define the following corresponding bundles

• E ⊕ F , the direct sum of E and F ,

• E ⊗ F , the tensor product of E and F ,

• λk(E), the kth exterior power of E.

There exist the following natural isomorphisms

• E ⊕ F ∼= F ⊕ E,

• E ⊗ F ∼= F ⊗ E,

• E ⊗ (F ⊕ F ′) ∼= (E ⊗ F )⊕ (E ⊗ F ′),

• λk(E ⊕ F ) ∼=
⊕

i+j=k(λ
i(E)⊗ λj(F )).
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8.1.2 K-theory

For any space X, we can consider the set V ect(X) which has an abelian semigroup

structure where addition is given by the direct sum. There is also a multiplication,

given by tensor products, which is distributive over the addition of V ect(X) (this

makes V ect(X) into a semiring.)

If A is an abelian semigroup, we can associate an abelian group K(A) to A. Let

F (A) be the free abelian group generated by A, and let E(A) be the subgroup of

F (A) generated by elements of them form a+ a′− (a⊕ a′), where a, a′ ∈ A and ⊕
is the addition in A. We define the abelian group K(A) = F (A)/E(A). If A is a

semiring, then K(A) is a ring.

If X is a space, then we will write K(X) for the ring K(V ect(X)). Let f :

X → Y be a continuous map. Then f ∗ : V ect(Y ) → V ect(X) induces a ring

homomorphism f ∗ : K(Y )→ K(X) which only depends on the homotopy class of

f .

We can define operations λk : K(X) → K(X) using the exterior powers. These

make K(X) into a λ-ring. We can then use these to define the Adams operations

Ψk : K(X)→ K(X) which makes K(X) into a Ψ-ring.

If X is a compact space with distinguished basepoint, then we define K̃(X) to

be the kernel of i∗ : K(X) → K(x0) where i : x0 → X is the inclusion of the

basepoint. Let c : X → x0 be the collapsing map, then c∗ induces a natural

splitting K(X) ∼= K̃(X)⊕K(x0).

Example 8.3. K̃(S2n) ∼= Z[y]/(y)2, where y is the n-fold external product (H −
1) ∗ . . . ∗ (H − 1) and H is the canonical line bundle of S2 = CP1. Multiplication

in K̃(S2n) is trivial, and the λ-operations λk : K̃(S2n)→ K̃(S2n) are given by

λk(x) = (−1)k−1kn−1x.

Hence the Ψ-operations Ψk : K̃(S2n)→ K̃(S2n) are given by

Ψk(x) = knx.
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8.2 Natural transformation

Let X, Y be topological spaces such that K̃(Y ) = 0 and K̃(ΣX) = 0. Let f : Y →
X be a continuous map, then we can consider the Puppe exact sequence

Y
f // X // Cf // ΣY // ΣX // ΣCf // . . .

where Cf is the mapping cone of f , and ΣX is the suspension of X. After applying

the functor K̃(−) we get the long exact sequence.

. . . // K̃(ΣX) // K̃(ΣY ) // K̃(Cf ) // K̃(X) // K̃(Y )

However, since K̃(ΣX) = 0 and K̃(Y ) = 0 we obtain the short exact sequence.

0 // K̃(ΣY ) // K(Cf ) // K(X) // 0

This gives us the following proposition.

Proposition 8.4. If X and Y are topological spaces as above then there exist

natural transformations τλ : [Y,X] → Extλ(K(X), K̃(ΣY )) and τΨ : [Y,X] →
ExtΨ(K(X), K̃(ΣY )).

Corollary 8.5. If X is a topological space such that K̃(ΣX) = 0 then there

exist natural transformations τλ,n : π2n−1(X) → Extλ(K(X), K̃(S2n)) and τΨ,n :

π2n−1(X)→ ExtΨ(K(X), K̃(S2n)).

8.3 The Hopf invariant of an extension

We are going to give a proof of the classical result of Adams which was first proved

by Adams, and subsequently by Adams-Atiyah [1]. We are going to use the same

approach as Adams-Atiyah; using Ψ-rings.

Definition 8.6. Consider the commutative ring R which is free as an abelian

group with generators x and y, R ∼= Zx⊕ Zy, where x is the unit of the ring and

y2 = 0. Let M ∼= Zz be the R-module such that y · z = 0. We can consider the
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square zero extensions of R by M in the category of commutative rings. All the

square zero extensions have the following form

0 //M // X ⊕ Zγ // R // 0 (8.1)

where X ∼= Zα⊕Zβ as an abelian group with α being the image of the generator

z, the image of the unit γ is the unit x and the image of β being the generator y.

Since M2 = 0 we get that α2 = 0. Since y2 = 0, we get that αβ = 0 and β2 = hα

for some integer h. We define h to be the Hopf invariant of the extension (8.1).

Let f : S4n−1 → S2n be a continuous map. We define the Hopf invariant of the

map f to be the Hopf invariant of the short exact sequence

0 // K̃(S4n) // K(Cf ) // K(S2n) // 0

obtained from applying the natural transformation τΨ to f .

We are going to consider the extensions of K(S2n) by K̃(S2n′) in the category of

Ψ-rings. We are going to prove the following theorem.

Theorem 8.7.

ExtΨ(K(S2n), K̃(S2n′)) ∼=

{
Z⊕ ZGn,n′ if n 6= n′;

Z⊕
∏

p prime Z if n = n′.

where Gn,n′ denotes the greatest common divisor of all the integers in the set

{ln − ln′|l ∈ Z, l ≥ 2}.

Corollary 8.8. If n 6= n′ then,

Extλ(K(S2n), K̃(S2n′)) ∼= {(h, ν) ∈ Z⊕ ZGn,n′ |h ≡ ν
(2n − 2n

′
)

Gn,n′
mod 2}.

If n = n′, then

Extλ(K(S2n), K̃(S2n′)) ∼= {(h, ν2, ν3, . . .) ∈ Z⊕
∏

p prime

Z|h ≡ ν2 mod 2,

νp ≡ 0 mod p, p > 2},
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All the Ψ-ring extensions of K(S2n) by K̃(S2n′) have the form (8.1). The Ψ-

operations on Ψk : X → X are given by

ψk(m, r) = (kn
′
m+ νkr, k

nr),

for some νk ∈ Z.

Ψk(Ψl(m, r)) = (kn
′
ln
′
m+ kn

′
νlr + νkl

nr, knlnr),

Ψl(Ψk(m, r)) = (ln
′
kn
′
m+ ln

′
νkr + νlk

nr, lnknr).

Since the Ψ-operations commute, we get that

νlr(k
n′ − kn) = νkr(l

n′ − ln).

If n = n′ then there is no restriction on the choice of νp for p prime. Otherwise

we can rearrange the above to get that

νl = νk
(ln
′ − ln)

(kn′ − kn)
.

By setting k = 2 we get that for all l ≥ 2

νl = ν2
(ln
′ − ln)

(2n′ − 2n)
.

We can write all the νl’s as multiples of ν2 since

νl = ν2
(ln
′ − ln)

(2n′ − 2n)
= ν2

(kn
′ − kn)

(2n′ − 2n)

(ln
′ − ln)

(kn′ − kn)
= νk

(ln
′ − ln)

(kn′ − kn).

Since ν2 is an integer, we get that ν2 = z(2n
′−2n)

Gn,n′
for some integer z.

If we replace the generator β by β+Nα, note that (β+Nα)2 = hα, then we have

to replace νk by νk +N(kn
′ − kn). We get that

νk +N(kn
′ − kn) = ν2

kn
′ − kn

2n′ − 2n
+N(kn

′ − kn) =
(ν2 +N(2n

′ − 2n))(kn
′ − kn)

(2n′ − 2n)
.
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So we only have to be concerned with replacing ν2 by ν2 + N(2n
′ − 2n), then our

usual formula for νk holds. Hence we are replacing z(2n
′−2n)

Gn,n′
by

z(2n
′ − 2n)

Gn,n′
+N(2n

′ − 2n) =
(z +NGn,n′)(2

n′ − 2n)

Gn,n′
.

This proves theorem 8.7. The isomorphism depends on n and n′. If we now

introduce the property that Ψp(x) ≡ xp mod p, we get that ν2r ≡ hr2 mod 2 and

νpr ≡ 0 mod p for p ≥ 3. This proves corollary 8.8.

Proposition 8.9. If there exists an extension in Extλ(K(S2n), K̃(S2n′)) whose

Hopf invariant is odd, then either n = n′ or min(n, n′) ≤ g2
|n−n′|, where gpj denotes

the multiplicity of the prime p in the prime factorisation of the greatest common

divisor of the set of integers {(kj − 1)| k ∈ N− {1, qp|∀q ∈ N}}.

Proof. The case when n = n′ is clear. Assume that n 6= n′, then the special

Ψ-ring extensions are given by a pair (h, ν) where h is the Hopf invariant. By

8.8, h can only be odd if 2n divides Gn,n′ . Assume that n < n′, since the other

case is analogous. The multiplicity of 2 in the prime factorisation of Gn,n′ is n if

n ≤ g2
|n−n′| or g2

|n−n′| if g2
|n−n′| < n. It follows that if n ≤ g2

|n−n′| then 2n divides

Gn,n′ .

Note that g2
2n−1 = 1 for all n ∈ N. Since (k2n − 1) = (kn + 1)(kn − 1) it follows

that g2
2n =

{
3, n odd

g2
n + 1, n even.

Theorem 8.10. If there exists an extension in Extλ(K(S2n), K̃(S2n′)) whose Hopf

invariant is odd, then one of the following is satisfied

1. n = n′,

2. n = 1 or n′ = 1,

3. n′ − n is even and either n = 2 or n′ = 2,

4. n′ > n ≥ 3 and n′ = n+ 2n−2b for some b ∈ N0,
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5. n > n′ ≥ 3 and n = n′ + 2n
′−2b for some b ∈ N0.

Proof. 1. is clear.

2. follows from g2
n ≥ 1 for all N.

3. follows from g2
2n ≥ 3 for all n ∈ N.

4. and 5. follows from g2
|n−n′| being 2 plus the multiplicity of 2 in the prime

factorisation of |n− n′|.

Corollary 8.11. If there exists an extension in Extλ(K(S2n), K̃(S2(n+k))) whose

Hopf invariant is odd, then one of the following is satisfied

1. k = 0,

2. n = 1,

3. k is even and n = 2,

4. n ≥ 3 and k = n+ 2n−2b for some b ∈ N0.

Lemma 8.12. If there exists an extension in Extλ(K(S2n), K̃(S2an)) for a ∈ N
whose Hopf invariant is odd, then one of the following is satisfied

1. n = 1, 2 or 4,

2. n = 3 and a is even,

3. n ≥ 5 and an = 2n+ 2n−2b for some b ∈ N0.

Corollary 8.13. If there exists an extension in Extλ(K(S2n), K̃(S4n)) whose Hopf

invariant is odd, then n = 1, 2 or 4.

Corollary 8.14 (Adams). If f : S4n−1 → S2n is a continuous map whose Hopf

invariant is odd, then n = 1, 2 or 4.
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8.4 Stable Ext groups of spheres

Proposition 8.15. If n > k + 1 then Gn,n+k = Gn+1,n+k+1.

Proof. Let n > k + 1. We know that Gn,n+k = Gn+1,n+k+1 if and only if the

multiplicity of any prime p in the prime factorization of Gn,n+k is gpk. For all

primes p > 2 we get that pn > 2k − 1, so the multiplicity of p in the prime

factorisation of Gn,n+k is gpk. We can easily see that g2
k ≤ k+ 1 for all k. It follows

that the multiplicity of 2 in the prime factorisation of Gn,n+k is g2
k.

Corollary 8.16. If n > k + 1 then

Extλ(K(S2n), K̃(S2(n+k))) ∼= Extλ(K(S2(n+1)), K̃(S2(n+k+1))).

The groups Extλ(K(S2n), K̃(S2(n+k))) are independent of n for n > k + 1, we call

these the stable Ext groups of spheres which we denote by Exts2k.

Proposition 8.17. There are natural transformations

Υk : πs2k−1 → Exts2k,

where πs2k−1 denotes the stable homotopy groups of spheres.

For small k these groups look as follows.

k πs2k−1 Exts2k

1 Z2 2Z⊕ Z2

2 Z24 ⊕ Z3 2Z⊕ Z24

3 0 2Z⊕ Z2

4 Z240 2Z⊕ Z240

5 Z2 ⊕ Z2 ⊕ Z2 2Z⊕ Z2

6 Z504 2Z⊕ Z504

7 Z3 2Z⊕ Z2

8 Z480 ⊕ Z2 2Z⊕ Z480
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Adams Operations

Ψk(r) =
k−1∑
i=1

(−1)i+1λi(r)Ψk−i(r) + (−1)k+1kλk(r)

Ψ1(r) =r

Ψ2(r) =r2 − 2λ2(r)

Ψ3(r) =r3 − 3rλ2(r) + 3λ3(r)

Ψ4(r) =r4 − 4r2λ2(r) + 4rλ3(r) + 2(λ2(r))2 − 4λ4(r)

Ψ5(r) =r5 − 5r3λ2(r) + 5r2λ3(r) + 5r(λ2(r))2 − 5rλ4(r)− 5λ2(r)λ3(r) + 5λ5(r)

Ψ6(r) =r6 − 6r4λ2(r) + 6r3λ3(r) + 9r2(λ2)2 − 6r2λ4 − 12rλ2(r)λ3(r)

+ 6rλ5(r)− 2(λ2(r))3 + 3(λ3(r))2 + 6λ2(r)λ4(r)− 6λ6(r)

Ψ7(r) =r7 − 7r5λ2(r) + 7r4λ3(r) + 14r3(λ2(r))2 − 7r3λ4(r)− 21r2λ2(r)λ3(r)

+ 7r2λ5(r)− 7r(λ2(r))3 + 7r(λ3(r))2 + 14rλ2(r)λ4(r)− 7rλ6(r)

+ 7(λ2)2λ3(r)− 7λ3(r)λ4(r)− 7λ2(r)λ5(r) + 7λ7(r)

Ψ8(r) =r8 − 8r6λ2(r) + 8r5λ3(r) + 20r4(λ2(r))2 − 8r4λ4(r)− 32r3λ2(r)λ3(r)

+ 8r3λ5(r)− 16r2(λ2(r))3 + 12r2(λ3(r))2 + 24r2λ2(r)λ4(r)− 8r2λ6(r)

+ 24r(λ2(r))2λ3(r)− 16rλ3(r)λ4(r)− 16rλ2(r)λ5(r) + 8rλ7(r) + 2(λ2(r))4

− 8λ2(r)(λ3(r))2 + 4(λ4(r))2 − 8(λ2(r))2λ4(r) + 8λ3(r)λ5(r)

+ 8λ2(r)λ6(r)− 8λ8(r)
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Universal Polynomials Pi, Pi,j

For more information on the universal polynomials, refer to the thesis of Hopkinson

[12]. He has several results and gives the polynomial Pi upto i = 10, as well as

giving several formulas for the polynomial Pi,j.

• P1(s1;σ1) = s1σ1

• P2(s1, s2;σ1, σ2) = s2
1σ2 − 2s2σ2 + s2σ

2
1

• P3(s1, s2, s3;σ1, σ2, σ3) = s3
1σ3 + s1s2σ1σ2− 3s1s2σ3 + s3σ

3
1 − 3s3σ1σ2 + 3s3σ3

• P4(s1, s2, s3, s4;σ1, σ2, σ3, σ4) = −2s1s3σ
2
2 + 2s4σ

2
2 + 4s4σ1σ3 − 4s2

1s2σ4 −
2s2

2σ1σ3−4s4σ
2
1σ2 +4s1s3σ4 +s2

1s2σ1σ3 +s1s3σ
2
1σ2−s1s3σ1σ3 +s4

1σ4 +s2
2σ

2
2 +

2s2
2σ4 + s4σ

4
1 − 4s4σ4

• P1,1(s1) = s1

• P1,j(s1, . . . , sj) = sj

• Pi,1(s1, . . . , si) = si

• P2,j(s1, . . . , s2j) =
∑j−1

k=1(−1)k+1sj−ksj+k + (−1)j+1s2j

Consider the polynomials
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• P2,4(s1, s2, s3, s4, s5, s6, s7, s8) = s3s5 − s2s6 + s1s7 − s8

• P4,2(s1, s2, s3, s4, s5, s6, s7, s8) = s1s3s4 − 3s1s2s5 + s3
1s5 − s2

4 + s3s5 − s2
1s6 +

s1s7 + 2s2s6 − s8

• P5,2(s1, s2, s3, s4, s5, s6, s7, s8, s9, s10) = s4
1s6 + s2s

2
4 + 3s1s2s7 + 3s1s3s6 −

4s2
1s2s6 − 2s1s4s5 − 2s2s3s5 + s2

1s3s5 + s10 − s3s7 + 2s2
5 − s3

1s7 − 2s4s6 +

2s2
2s6 + s2

1s8 − s1s9 − 2s2s8

So we can see that in general Pi,j 6= Pj,i.
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Universal Polynomial Partial

Derivatives

k ∂P1(r,s)
∂λk(r)

∂P2(r,s)
∂λk(r)

∂P3(r,s)
∂λk(r)

∂P4(r,s)
∂λk(r)

1 Ψ1(s) r(s2 −Ψ2(s))
. . . . . .

2 0 Ψ2(s) r(s3 −Ψ3(s))
. . .

3 0 0 Ψ3(s) r(s4 −Ψ4(s))

4 0 0 0 Ψ4(s)

Conjecture C.1. For all i ∈ N

∂Pi(r, s)

∂λi(r)
= Ψi(s),

∂Pi+1(r, s)

∂λi(r)
= r(si+1 −Ψi+1(s))

From the other universal polynomial, we get

∂P1,n(r)

∂λk(r)
=

{
1 k = n

0 otherwise

∂P2,n(r)

∂λk(r)
=

{
0 k = n, or k > 2n

(−1)k+1λ2n−k(r) otherwise

∂Pi,j(r)

∂λij(r)
= (−1)(i+1)(j+1)
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k ∂P4,2(r)

∂λk(r)

∂P5,2(r)

∂λk(r)

3 rλ4(r) + λ5(r)
. . .

4 rλ3(r)− 2λ4(r)
. . .

5 Ψ3(r)− 2λ3(r)
. . .

6 −Ψ2(r) Ψ4(r)− rλ3(r) + 2λ4(r)

7 r −Ψ3(r) + 2λ3(r)

8 -1 Ψ2(r)

9 0 −r
10 0 1
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