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Abstract

The cohomology of A-rings
and W-rings

by
Michael Robinson

In this thesis we develop the cohomology of diagrams of algebras and then apply
this to the cases of the A-rings and the W-rings. A diagram of algebras is a functor
from a small category to some category of algebras. For an appropriate category
of algebras we get a diagram of groups, a diagram of Lie algebras, a diagram of
commutative rings, etc.

We define the cohomology of diagrams of algebras using comonads. The cohomol-
ogy of diagrams of algebras classifies extensions in the category of functors. Our
main result is that there is a spectral sequence connecting the cohomology of the
diagram of algebras to the cohomology of the members of the diagram.

W-rings can be thought of as functors from the category with one object associated
to the multiplicative monoid of the natural numbers to the category of commuta-
tive rings. So we can apply the theory we developed for the diagrams of algebras
to the case of U-rings. Our main result tells us that there is a spectral sequence
connecting the cohomology of the W-ring to the André-Quillen cohomology of the
underlying commutative ring.

The main example of a A-ring or a W-ring is the K-theory of a topological space.
We look at the example of the K-theory of spheres and use its cohomology to give
a proof of the classical result of Adams. We show that there are natural transfor-
mations connecting the cohomology of the K-theory of spheres to the homotopy
groups of spheres. There is a very close connection between the cohomology of the
K-theory of the 4n-dimensional spheres and the homotopy groups of the (4n —1)-
dimensional spheres.
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Chapter 1

Introduction

A-rings were first introduced in an algebraic-geometry setting by Grothendieck
in 1958, then later used in group theory by Atiyah and Tall. A A-ring R is a
commutative ring with identity, together with operations \* : R — R, for i > 0.
We require that A\°(r) = 1 and A!(r) = r for all » € R. There are more complicated
axioms describing A (r; +79), A'(r175) and AY(M(r)). The A-operations behave like
exterior powers. The more complicated axioms are difficult to work with, and

given a A-ring R, it is difficult to prove that it is actually a A-ring.

In 1962 Adams introduced the operations ¥’ to study vector fields of spheres.
These operations give us another type of ring, the W-rings, which are related to

the A-rings by the following formula.

W) — X)) + o+ (D)"Y )W () + (—1)5N(r) = 0.

A U-ring is a commutative ring R, together with ring homomorphisms ¢ : R — R,
for i > 1. We only require that U!(r) = r and ¥/ (¥’ (r)) = U¥(r) for all r € R.
The Y-rings are much easier to work with, and in several places we will need to

pass to W-rings to be able to carry out computations for A-rings.

Homological algebra is a relatively young discipline, which arose from algebraic
topology in the early 20" century. In 1956, Cartan and Eilenberg published their
book entitled “Homological Algebra” [5], which was the first book on homological
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Chapter 1. Introduction 2

algebra and still remains a standard book of reference today. They found that
the cohomology theories for groups, associative algebras and Lie algebras could
all be described by derived functors, defined by means of projective and injective
resolutions of modules. However the method they used was not enough to define
the cohomology of commutative algebras. To overcome this problem, simplicial

techniques were developed in homological algebra.

In the 1950’s Moore showed that every simplicial group K is a Kan complex
whose homotopy groups are the homology of a chain complex called the Moore
complex of K. Dold and Kan independently found that there is an equivalence
between the category of simplicial abelian groups and the category of non-negative
chain complexes of abelian groups given by the Moore complex. Using simplicial
methods Dold and Puppe showed that one can define the derived functors of a

non-additive functor, since simplicial homotopy doesn’t involve addition.

The notion of a monad on a category traces back to R. Godement [9]. Around
1965, Barr and Beck used comonads to define a resolution as a way to compute
nonabelian derived functors. In 1967, André and Quillen independently developed
what we now call André-Quillen cohomology. The André-Quillen cohomology is
defined in general for algebras, using comonads. The A-rings and W-rings are
particular examples which are included in this scheme, so the André-Quillen co-
homology is well defined for both A-rings and W-rings. The main difficulty is that
the André-Quillen cohomology is complicated and difficult to compute. Harrison
had described a cohomology for commutative algebras in 1962 using a subcomplex
of the Hochschild complex. The Harrison cohomology coincides with the André-
Quillen cohomology over a field of characteristic zero up to a dimension shift. Our

aim is to develop tools which aid computation.

In 2004, Yau [20] defined a cohomology for A-rings in order to study deformations
of the associated W-operations. However, Yau’s cohomology for A-rings is different

from the André-Quillen cohomology.
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1.1 Outline of the thesis

In Chapter 2, we give a short overview of some of the fundamental concepts of
homological algebra. We can trace the roots of these concepts back to Cartan
and FEilenberg in the 1950’s. We provide the definitions of additive categories,
abelian categories and short exact sequences in abelian categories. We outline
the construction of the right derived functor Ext’ using projective and injective
resolutions. The main references for this part of the chapter are [19] and [17]. We
sketch the construction of the cohomology of algebras in general using comonads
[19] and we give the example of the André-Quillen cohomology for commutative
rings which are the right derived functors of the derivations functor [18]. We
provide an overview of the Harrison cohomology of commutative algebras [10] and
the Baues-Wirsching cohomology of a small category with coefficients in a natural

system [4].

Chapter 2 only provides well known background material which will be required
later. It does not contain any original work. The original research can be found

in the remaining chapters of the thesis.

In Chapter 3, we turn our attention to W-rings, which are related to A-rings via
the Adam’s operations. The first section introduces the basic concept of a W-ring
which can be found in [I4]. We then develop the W-analogue of modules and the
semidirect product. These are then used to develop the W-analogue of derivations
and extensions. The results from this chapter are needed in chapter 4 to prove

similar results for A-rings.

In 2005, Donald Yau published a paper entitled, “Cohomology of A-rings” [20]. In
the paper he develops a cohomology of A-rings in order to study the deformations
of the W-ring structure. Yau’s cohomology is different from the André-Quillen
cohomology. In the last section of Chapter 3 I provide a definition of the deforma-
tion of a U-ring which is different to Yau’s definition. This alternative definition

is related to the André-Quillen cohomology of W-rings.

In Chapter 4, we introduce A-rings. The first section introduces the basic notions
of A-rings which can be found in [I4]. We then develop the A-analogue of modules

and the semidirect product. We then use these to develop the A-analogue of
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derivations and extensions. The last section of Chapter 4 provides an overview of

Yau’s cohomology for A-rings.

In Chapter 5, we extend the Harrison cochain complex of a commutative algebra
to get a bicomplex whose cohomology we define to be the Harrison cohomology
of a diagram of a commutative algebra. We then apply this theory to the case of

W-rings.

In Chapter 6, we develop a cohomology for diagrams of algebras in general, using
comonads. First, we fix a small category I. A diagram of algebras is a functor
I — Alg(T), where T is a monad on sets. For appropriate T', we get a diagram of
groups, a diagram of Lie algebras, a diagram of commutative rings, etc. The ad-
joint pair 2Alg(T) —— Gets yields a comonad which we denote by G. We can also
consider the category Iy, which has the same objects as I, but only the identity
morphisms. The inclusion Iy C I yields the functor Gets’ — Gets™ which has a
left adjoint given by the left Kan extension. We also have the pair of adjoint func-
tors Alg(T)! = Gets’ which comes from the adjoint pair Alg(T) =—— Gets .
By putting these pairs together, we get another adjoint pair

Alg(T) —= Gets™ .

This adjoint pair yields a comonad which we denote by G;. We can then take the
cohomology associated to the comonad G;. Now we have both a global cohomol-
ogy, Hg, (A, M), and a local cohomology, Hg(A(7), M(i)). Our main result is that

there exists a local to global spectral sequence connecting the two:
EYT = HYy (I, HY(A, M)) = HET(A, M),

where H% (1, H(A, M)) denotes the Baues-Wirsching cohomology of the small
category I with coefficients in the natural system H9(A, M) on I whose value on
(2@ — j) is given by HE(A(2), a*M(j)).

In Chapter 7, we apply our theory from Chapter 6 to the case of W-rings. A
V-ring can be considered as a diagram of a commutative ring, so we can apply
our results to get a cohomology for U-rings. We also define the cohomology of

A-rings using comonads. We note that there are homomorphisms connecting the
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cohomology of A-rings, the cohomology of the associated W-rings and the André-

Quillen cohomology of the underlying commutative rings.

The last Chapter looks at applications of the earlier developed theory. Our
main application is in algebraic topology. For any topological space X such
that K'(X) = 0, there exists a homomorphism natural in X, 7 : mg, 1(X) —
Exty(K(X), K(52")). We show that the cohomology of A-rings and U-rings can
be used to prove the classical result of Adams. We also show that the W-ring
cohomology of K(S5?") is related to the stable homotopy groups of spheres via the

natural transformation 7.



Chapter 2

Homological algebra

2.1 Category theory

2.1.1 Abelian categories

The material in this section can be found in many textbooks, including [16] and
[19]. Before we introduce abelian categories, we start by defining the notion of an

additive category.
An additive category 2 is a category such that the following holds:
1. for every pair of objects X and Y in 2, the hom-set Homgy(X,Y") has the

structure of an abelian group such that morphism composition distributes

over addition.
2. 2 has a zero object (an object which is both initial and terminal).
3. for every pair of objects X and Y in 2, their product X x Y exists.
An abelian category is defined in terms of kernels and cokernels, so first we will
recall some other basic definitions from category theory.

In a category €, a morphism m : X — Y is called a monomorphism if for all

morphisms fi, fo : V — X where mo f; = mo f; we have f; = f;. A morphism

6
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e: Y — X is called an epimorphism if for all morphisms ¢;1,¢9, : X — V where

g1 0e = gs 0e we have g, = gs.

In an additive category A, a kernel of a morphism f : X — Y is defined to be a
map i : X’ — X such that f oi =0 and for any morphism ¢ : Z — X such that
f o g =0 there exists a unique morphism ¢’ : Z — X’ such that io ¢’ = g.

I s X —
XinY

Dually, in an additive category 2, a cokernel of a morphism f : X — Y is defined
to be amap e: Y — Y’ such that eo f = 0 and for any morphism ¢g : Y — Z such
that g o f = 0 there exists a unique morphism ¢’ : Y — Z such that ¢’ oe = g.

A
V T Tog
g
Y Y
X 7 Y —Y

An abelian category 2 is an additive category such that the following holds:

1. every morphism in 2l has a kernel and cokernel.
2. every monomorphism in 2 is the kernel of its cokernel.

3. every epimorphism in 2l is the cokernel of its kernel.

The basic example of an abelian category is the category of abelian groups, denoted
by 2b. In the category 2b, the objects are Abelian groups, and the morphisms
are abelian group homomorphisms. In general, module categories which appear

throughout algebra, are abelian categories.

If 7 is a small category and 2{ is an abelian category then the category of functors
AT as also an abelian category. The category of sets Gets and the category of

groups Btp are not abelian categories. However, if GG is a group then the category



Chapter 2. Homological algebra 8

of left (or right) G-modules, denoted by G — mo?, is an abelian category. If R
is a ring then the category of left (or right) R-modules, denoted by R — mo?, is
an abelian category. If R is a U-ring then the category of W-modules over R,
denoted by R — mo0y, is an abelian category. If R is a A-ring then the category

of A-modules over R, denoted by R — mo0,, is an abelian category.

In an abelian category A, a short exact sequence is a sequence

0 Ao P ¢ 0

in which « is a monomorphism, [ is an epimorphism and Ker(5) = Im(«).
In an abelian category %I, a sequence

fn—l

Xn— 1 Xn fr Xn+1

is said to be exact at X™ if Ker(f™) = Im(f"'). The sequence is said to be ezact
if it is exact at X" for all n € Z.

2.1.2 Modules

Let € be a (not necessarily abelian) category with finite limits, and 1 denote a
terminal object in €. An abelian group object of € is an object A together with
arrows m: AXA— A, i: A— Aand z: 1 — A such that the following diagrams
commute.

(associativity of multiplication)
Ax Ax A L Ax A
idaxXm m

Ax A A
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(left and right units)

’idAXZ ZXidA

AX]1T—SAxA<—1x A

%

A
(left and right inverses)
g i) g ad)
1— A~ 1

(commutativity)

These diagrams say that the arrows satisfy the equations of an abelian group.

Let A,i,m,z and A’,m’, 7', 2’ be abelian group objects of &, a morphism of abelian

group objects is an arrow f : A — A’ such that the following diagram commutes.

Ax A “ A

Ixf f

A x A

We denote the category of abelian group objects of € by Ab(<).

Let A be any object of the category €. The slice category of objects of € over A,
denoted by €/A, has as objects the arrows of € with target A. Given two objects
f:B— Aand g: C — A of €/A, an arrow of €/A from f to g is an arrow

h : B — C which makes the following diagram commute.

B h C

N

A
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Definition 2.1. Let A be an object in a category €. An A-module is defined to
be an abelian group object in the category €/A,

A — mod := Ab(C/A).

The category A — mod is usually an abelian category.

Definition 2.2. Let p : Y — A be an object and ¢ : Z — A be an abelian
group object of €/A, then we define the abelian group of p-derivations, denoted
Der(Y, Z), to be

Der(Y, Z) := Home/a(p, q).

2.2 Cohomology

The concepts of complexes and (co)homology began in algebraic topology with
simplicial and singular (co)homology. The methods of algebraic topology have
been applied extensively throughout pure algebra, and have initiated many de-
velopments. Complexes are the basic tools of homological algebra and provide us
with a way of computing (co)homology. The following definitions can be found in
[T7] and [5].

A cochain complex (C, 9) of objects of an abelian category 2l is a family {C", 6" },.ez
of objects C™ € obj(2A) and morphisms (called the coboundary maps or differential
maps) 6" : C™ — C™! such that 6" o " =0 for all n € Z.

. 2 on—2 o1 sn-t cn 3 o+l sntt Cnt2

The last condition is equivalent to saying that Im(6™) C Ker(6"*1) for all n € Z.
Hence, one can define the cohomology of C' denoted by H*(C),

H*(C) ={H"(C)}nez where H"(C) = fn?;i—(f%'
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H™(C) is called the n'*-cohomology of C. An n-coboundary is an element of

Im(6™"~1). An n-cocycle is an element of Ker(§").

Let (C,9) and (C,,d,) be two cochain complexes of an abelian category 2. A
cochain map f : (C,0) — (Cs,0,) is a family of morphisms {f™ : C" — CI'},ez
such that 07 o f* = f™"1 04" for all n € Z. The last condition is equivalent to

saying the following diagram commutes.

. Con—2 o2 cn—1 ont on on ont+l ot ont2 .

Lfn? lf’nl lfn lfn+1 jfnJrQ

. n—2 n—1 n n+1 n+2 .
C<> — CO 5n—1 CO OO n+1 CY<>
o 3

o5
A cochain map f : (C,9) — (Cs,d,) induces homomorphisms H"(f) : H"(C) —
H"™(C,). This makes each H™ into a functor.

A cochain bicomplez of objects of an abelian category 2 is a family
{CPa, 574, 9P}, ey of objects CP4 € obj(2A) and morphisms 674 : CP4 — CPH14
and 9P : CP4 — COP9t1 guch that 67719 0 674 = 0 and 979 0 977 = 0 and also

optlagra 4 patlgra = for all p, q € Z.

It is useful to visualise a cochain bicomplex as a lattice

. > P~ Latl S Opatl > Optlatl o

op—1L,q+1 §p>a+1
6p71,q opr»q 8P+17¢1
L —— s (Orla (/2 Ccptlae o
6p—1,q op-a
op—1l,q—1 op:a—1 optl.a—1

o > OP—La—1 > OPa—1 > COptlae-1 o
op—lg—1 §pa—1

where each row (C*9,0%7) and each column (CP*, 0»*) is a cochain complex and

each square anticommutes.
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The total compleves Tot(C) = Totll(C) and Tot®(C) of a cochain bicomplex C

are given by

Totll(C)" = H cra and Tot®(C)" = GB cP.

ptg=n ptg=n

The coboundary maps are given by d = d + 9. We note that Totll(C) = Tot®(C)
if C' is bounded, especially if C is a first quadrant bicomplex.

Proposition 2.3. If C is a first quadrant bicomplex then we have the following

convergent spectral sequence
EY?'= HYHY(C) = H"*(Tot(C)),

where Hj denotes the horizontal cohomology, and H, denotes the vertical coho-

mology.

2.3 Classical derived functors

A standard method of computing classical derived functors between abelian cat-
egories is to take a resolution, apply the functor, then take the (co)homology of

the resulting complex. The following material can be found in [5], [19] and [17].

2.3.1 Projective and injective objects

An object P of an abelian category 2 is projective if for any epimorphism e : A —
B and any morphism f : P — B there exists a morphism g : P — A such that

f = eog, in other words, if the following diagram commutes.
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An object @) of an abelian category 2 is injective if for any monomorphism m :
A — B and any morphism f : A — @) there exists a morphism g : B — @ such

that f = g om, in other words, if the following diagram commutes.

0——=A“"~B

9

Q

An object P is projective if and only if Homgy (P, —) : 2 — 2b is an exact functor.
In other words, if and only if for any exact sequence 0 - A - B —- C — 0in A

it follows that the following sequence of groups
0 —— Homg (P, A) — Homgy (P, B) — Homgy(P,C) —0

is also exact.

An object @ is injective if and only if Homg(—, Q) : 2 — 2(b is an exact functor.
In other words, if and only if for any exact sequence 0 - A —- B —- C — 0in A

it follows that the following sequence of groups
0 —— Homgy(C, Q) — Homgy (B, Q)) — Homy (A4, Q) —=0

is also exact.

2.3.2 Projective and injective resolutions

Let A be an object of an abelian category 2. A projective resolution of A is a
complex P, where P; = 0 for all ¢ < 0 and P; is projective for all j > 0, together
with a morphism € : Py — A called the augmentation such that the augmented

complex
P-9-p - %.p -~ A 0

1s exact.

Let A be an object of an abelian category 2l. An injective resolution of A is a

complex @, where ); = 0 for all ¢ < 0 and @), is injective for all j > 0, together
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with a morphism € : A — @)y called the augmentation such that the augmented

complex

0—=A—>Q—>Q —=Q,
is exact.

An abelian category 2l is said to have enough projectives if for every object A of

2A, there exists a projective object P of 2 and an epimorphism e : P — A.

An abelian category 2 is said to have enough injectives if for every object A of A,

there exists an injective object ) of 2 and a monomorphism m : A — Q.

2.3.3 Right derived functors

Let 2, B be abelian categories, where 2 has enough injectives. If F': 2 — B is a
covariant left exact functor, then we can construct the right derived functors of F,
denoted by R"F : 2 — B for n > 0. If A is an object of 2, and @ is an injective

resolution of A, we define

RF(A) == H'(F(Q)).

Let 2,8 be abelian categories, where 2l has enough projectives. If G : A — B is
a contravariant left exact functor, then we can construct the right derived functors
of GG, denoted by R"G : A — B for n > 0. If A is an object of 2, and P is a

projective resolution of A, we define

R"G(A) := H™(G(P)).

It is known that the functors R"F'(A) and R"G(A) are independent of the choice
of projective/injective resolution chosen, hence it only depends on A. We always
get ROF(A) & F(A) and R°G(A) = G(A). Furthermore, if A is injective then
R"F(A) =0 for n > 0, and if A is projective then R"G(A) = 0 for n > 0.
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Given a covariant left exact functor F': 24 — B between the abelian categories 2

and B and given a short exact sequence
0—>A — Ay, — A3 =0
in 2, then there exists the following long exact sequence.

0—— ROF(Al) —— ROF(AQ) e ROF(Ag) —_— RIF(Al) —_— ...

.. —=R"F(A;) — R"F(Ay) — R"F(A3) —= R F(A;) — . ..

2.3.4 Ext

The main example of right derived functors are the functors Ext".

Let R be aring, and let M, N be left R-modules. The functor F'(—) = Hompg(M, —) :
R —mod — b is a covariant additive left exact functor, so we can define its right

derived functors

Exth(M, —) = R"Homg(M, —) : R — mod — 2b.

Given a left R-module M and a short exact sequence of left R-modules 0 — N’ —
N — N” — 0 we obtain the following long exact sequence.

0 — Hompg(M, N') — Hompz(M, N) — Hompg(M, N") — Extp(M,N') — ...

.= Exth(M, N') — Ext}(M, N) — Exth(M,N") — Ext}™ (M, N') — ...

Similarly Hompg(—, N) : R — mod — b is also a contravariant additive left exact
functor, so we can define its right derived functors Exty,(—, N) = R Hompg(—, N) :
R — mod — 2Ab.
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Given a short exact sequence of left R-modules 0 - M’ — M — M"” — 0 and a

left R-module N we obtain the following long exact sequence.
0 — Hompz(M”, N) — Homg(M, N) — Homg(M’', N) — Extp(M", N) — ...

.= Exth(M",N) — Exth(M, N) — Ext}(M', N) — Ext)5™ (M",N) — ...

2.4 Comonad cohomology

Cartan and Eilenberg unified the cohomology theories of groups, Lie algebras
and associative algebras by describing them as Ext groups in the appropriate
abelian categories. Unfortunately, this approach does not work in all categories,
for example in the category of commutative algebras. The right approach is the
comonad cohomology using simplicial methods. This material can be found in [3]
and [19].

2.4.1 Monads and comonads

A monad T = (T,n,p) in any category € consists of an endofunctor 7' : € — €
together with two natural transformations: 1 : Idg — T, p: ToT =T? — T such

that the following diagrams commute.

T2 " T

nT Tn

IdeT T2 TIde

N\
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The natural transformation 7 is called the unit, and the natural transformation
w1 is called the multiplication. The diagrams are called the associativity, left unit

and right unit laws.

A comonad G = (G, ¢,0) in any category € consists of an endofunctor G : € — €
together with two natural transformations: € : G — Idg, 6 : G — G? such that

the following diagrams commute.

G

N

ldeG —— G o Glde

A pair of functors L : € — B and R : B — € are adjoint if for all objects A in €

and B in *B there exists a natural bijection
Homgy (L(A), B) = Home (A, R(B)).

Natural means that for all f: A — A" in € and g : B — B’ in B the following

diagram commutes.

Homss (L(A'), B) =L~ Homg (L(A), B) —%~ Homg(L(A), B)

L L
A

Home (A, R(B)) —L—~ Home(A, R(B)) -4~ Home (A, R(B'))

We say that L is the left adjoint of R, and R is the right adjoint of L.
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L
Let € B be an adjoint pair of functors with adjunction morphisms n : I'd —
R

RL and p : LR — Id. Then T = (RL,n,RuL) is a monad on € and G =
(LR, u, LnR) is a comonad on ‘B.

Example 2.4. Let U : &tp — Gets take a group to the set of its elements for-
getting the group structure, and take group morphisms to functions between sets.
The left adjoint functor to U, is the functor L : Gets — G&tp taking a set to the
free group generated by the set. The functor T = UL : Gets — Gets gives rise to

a monad and the functor G = LU : &tp — Brp gives rise to a comonad.

Let G be a comonad on €. A morphism f : X — Y in € is called a G-epimorphism
if the map Home(G(Z), X) — Home(G(Z),Y) is surjective for all Z. We require

the following useful lemma.

Lemma 2.5. For all objects X in € the morphism GX —> X

1s a G-epimorphism.

Proof. For any map h : GZ — X, we wish to find a map f : GZ — G X such that

fex = h. We define f via the following commuting diagram.

G(h)

G(GZ) G(X) —= X

5(2)

GZ
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Now we need to check that ex o f = h. By the naturality of ¢, the following

diagram commutes.

GX 2 X
G(h) h
HG(GZ) ——; GZ
5z e
GZ
So ex is a G-epimorphism. n

An object P of € is called G-projective if for any G-epimorphism f: X — Y, the
map Home (P, X) — Home(P,Y) is surjective.

Example 2.6. For any object X in € the object G(X) is G-projective.

Lemma 2.7. The coproduct of G-projective objects is G-projective.

Proof. Let P =[], P, where P, is G-projective for all i. For a map

f X — Y, one applies the functors Homg(P, —) and Home(P;, —) to get the
maps fi. : Home(P, X) — Home(P,Y) and fi : Home(P;, X) — Home (P, Y). If
f is a G-epimorphism then f;, is surjective for all i. Using the well-known lemma
Home([ [, P, Z) = [[, Home(P;, Z) one gets that if f is a G-epimorphism then
f« = 11, fix is surjective. Hence P is G-projective if P, is G-projective for all . [

Lemma 2.8. An object P is G-projective if and only if P is a retract of an object
of the form G(Z).

Proof. A retract of a surjective map is surjective, so it is sufficient to consider the

case P = G(Z), which is clear from the definition of a G-epimorphism. m

2.4.2 Simplicial methods

Definition 2.9. A simplicial object in a category € is a sequence of objects

Xo, X1,..., Xy, ... together with two double-indexed families of arrows in €. The
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face operators are arrows d', : X, — X,y for 0 <i <mand 1 <n < oo. The
degeneracy operators are arrows sf1 X, > Xy for0 < <nmand 0 <n < .
The face operators and degeneracy operators satisfy the following conditions:

i oo i1 g
d,od, =dl " od

i if0<i<j<n+1

slost | =sos ! it0<i<j<n
stod, if0<i<j<m
dipiosl =4 1, if0<i=j<nor0<i—1=7<mn;
sl jod ! if0<j<i—1<n.
An augmented simplicial object in the category € is a simplicial object X, together

with another object X_; and an arrow € : Xo — X_; such that e o d? = € o dj.

An augmented simplicial object X, — X _; is called contractible if for each n > —1
there exists a map s, : X,, — X, 41 such that dos=1and d'os = sod"* for

0<i<nand sos=sosand sfos=sos" for0<i<n-+l1.

Let X, be a simplicial object in an additive category 2. The associated chain

complex to X, denoted by C(X.), is the complex

d d d d
X e X, X, .. X, 0

where the boundary maps d = > (—=1)'d" : X,, = X,,_1.

Proposition 2.10. If X, — X_; is a contractible augmented simplicial object in

an abelian category 2, then the associated chain complex C(X,) is contractible.

2.4.3 Comonad cohomology

Let G be a comonad on a category €. For any object A in €, we get a functorial
augmented simplicial object which we denote by G(A), — A. The object of G, (A)
in degree n is G"™1(A). We define the face and degeneracy operators by

v = GeG™  GMH(A) — GM(A),
o = GG L GMT(A) — GMT2(A),
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for 0 <i < n. The augmenting map is given by €.

GrA T GnlA L = gA A

—_— eG

We call G(A), the G comonad resolution of A.

Let £ : € — 9 be a contravariant functor where 90 is an abelian category. The

comonad cohomology of an object A with coefficients in E is Hi(A, E') where
Hg(A, E) == H"(C(E(G.(A4)))).
By definition, H{ (A, E) is the cohomology of the associated cochain complex

0—— E(G(A)) — E(G*(A)) — . ..

If M € A-mod, then we define the cohomology of A with coefficients in M to be
the comonad cohomology of A with coefficients in Der(—, M) : € — 2b.

HE(A, M) == HE (A, Der(—, M)).

Lemma 2.11. H2(A, M) = Der(A, M) for all A.

Lemma 2.12. If A is G-projective then H(A, M) =0 for n > 0.

Proof. From lemma , it is sufficient to check the case where A = G(Z). There

exists a contracting homotopy s, : G2 — G"*3 for n > —1 given by
s, = G4,

We get that es_ 1 = id, o115, = id, poso = s_1€, and @;s, = S,_1y; for all
0 < i <n. It follows that H}(G(Z), M) = 0, for n > 0. O
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2.4.4 André-Quillen cohomology

In 1967, M. André and D. Quillen [I§] independently introduced a (co)homology
theory for commutative algebras. This theory now goes by the name of André-

Quillen cohomology.

Fix a commutative ring k£ and consider the category Commalg of commutative

k-algebras.

The forgetful functor U : Commalg — Gets has a left adjoint which takes a set X
to the polynomial algebra k[X]| on X. This adjoint pair gives us a comonad G on

Commalg.

Let R be a commutative k-algebras, and M € R — mod. We define the André-
Quillen cohomology of R with coefficients in M to be comonad cohomology of R
with coefficients in Derg(—, M),

Hjio(R/k, M) := Hg (R, Dery(—, M)).
Note that Dery(—, M)) is a functor from the category of commutative k-algebras
Commalg to the category of abelian groups 2b.
An extension of R by M is an exact sequence

0 M-—sx-".R 0

where X is a commutative k-algebra, the map [ is a commutative k-algebra ho-

momorphism, the map « is a k-module homomorphism and

for all x € X and all m € M. The map « identifies M with an ideal of square-zero
in X.
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Two extensions X, X’ with R and M fixed are equivalent if there exists a k-algebra

homomorphism ¢ : X — X such that the following diagram commutes.

0—>M—>X—>R
|

0 M X R 0

We denote the set of equivalence classes of extensions of R by M by Extalg,(R, M).
Proposition 2.13. 1. H},(R/k, M) = Dery(R, M).
2. If R is a free commutative algebra then Hjo(R/k, M) =0 for n > 0.

8. Hjo(R/k, M) = Extalg,(R, M).

2.5 Harrison cohomology of commutative alge-

bras

In 1962, D.K. Harrison introduced a cohomology of commutative algebras. The
Harrison complex is a subcomplex of the Hochschild complex in the case of com-
mutative algebras. The Harrison complex consists of the linear functions which
vanish on the shuffles. The Harrison cohomology is isomorphic to the comonad
cohomology for a commutative algebra over a field of characteristic 0, however,

there is a shift of one dimension. The following material can be found in [15].

2.5.1 Hochschild cohomology

Let k be a ring, R be an associative k-algebra and M be an R — R-bimodule. All
the tensor products in this section are over the ground ring k. The Hochschild

cochain complex of R with coefficients in M is given by

Ch (R, M) = Hompge(R®", M),
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for n > 0 and R° = R ® R®. The coboundary maps 0" : Cfy(R,M) —
C (R, M) are given by

S(f)(roy...,m) =rof(ri, ..., 1)
n—1
+ Z(—l)i+1f(7“0, ey T, ,T’n)
=0

+ (=D f(ro, ... 1)

We can then take the cohomology of the resulting complex to get the Hochschild
cohomology which we denote by HH™(R, M). We get that

HH"(R, M) = R"Homp: (R, M) = Ext?..(R, M).

2.5.2 Harrison Cohomology

Let S, be the symmetric group which acts on the set {1,...,n}. A (p,q)-shuffle

is a permutation o in 5,1, such that:
cl)<o(2)<...<o(p)ando(p+1)<o(2)<...<o(p+q).

For any k-algebra A and M € A —mod, we let S, act on the left on CHH (A M) =
M @ A®" by:

o-(m,ar,...,a,) = (M, ap-11) - . ., Qg-1(n)).
Let A’ be another k-algebra, M’ € A" — mo0. The shuffle product:
— X — = shy, : CI (A, M) @ CI(A, M) — CIT(A0 A, M @ M),

is defined by the following formula:

(m,ay,...,ap)x(m' al, ... a)

:ngn(a)a-(m®m’,a1®1,...,ap®1,1®a'1,...,1®a;).
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Proposition 2.14. The Hochschild boundary b is a graded derivation for the shuf-
fle product

bz x y) =b(x) x y+ (—1)"z x b(y), ze CHM(A M),y e CIT(A' M),

where the Hochschild boundary b : CHH(A, M) — CHHE(A M) is given by:

n—1
b(m,ay,...,a,) =(may,as,...,a,) + Z(—l)i(m, A1y ey Qg1 -y Gy
i=1

+ (—1)n(anm, ay, ... ,an,l).

Assume that A is commutative and M is symmetric (symmetric means that am =
ma for all @ € A and m € M). The product map p : A® A — Ais a k-
algebra homomorphism, and p/ : A® M — M is a homomorphism of bimodules.
Composition of the shuffle map with u ® p’ allows us to define the inner shuffie
map

— X — = shy, : CIH(A, A) @ CIH(A, M) — CEI(A, M),

p+q

given by the formula

(g, ar,...,ap) X (M, api1,...,0p1) = Z sgn(o)o - (agm, ay, ..., apiq)-
o=(p,q)—shu fle

We let J denote @@ _, CHH7 (A, A). Note that J C CHH (A, A). We define the Har-

n>0 —'n

rison chain complex to be the quotient CH" (A, M) = CHH(A, M)/ J.CHH (A, M).

Note that

C}}H(A, M) == HomAe(A®n, M) = HomA®Ae(A & A®n7 M)
= HOI’IlA@Ae (CfH(Aa A)? M)

We define the Harrison cochain complex by taking

*
C(H arr

(A, M) := Hompgac (CH* (A, A), M).
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For example

OHarr(A7M) =M,
CHarr(A7M) :CII{H(Au M),
Clhiare (A, M) ={f € Cry(A, M)|f(z,y) = f(y, )},
Chtare (A, M) ={f € Ciy(A, M)|f(,y,2) — fy,2,2) + f(y,z,2) = 0.}

We define the Harrison cohomology of A with coefficients in M to be the coho-

mology of the Harrison cochain complex.

Harr™(A, M) := H"(C},;,,..(A, M)).
Lemma 2.15. Harr'(A, M) = Der(A, M).
An additively split extension of A by M is an extension of A by M

0 M-Ltox-T.4 0

where there exists s : A — X which is an additive section of p.

Two additively split extensions (X), (X) with A, M fixed are said to be equivalent
if there exists a homomorphism of commutative algebras ¢ : X — X such that

the following diagram commutes.

We denote the set of equivalence classes of additively split extensions of A by M
by AExt(A, M).

Lemma 2.16. Harr?(A, M) = AExt(A, M).

Proof. Given an additively split extension of A by M
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there is an additive homomorphism s : A — X which is a section of p. The section
induces an additive isomorphism X ~ A@® M where multiplication in X is given by
(a,m)(a’,m") = (ad’, ma’ +am’ + f(a,a’)) where the bilinear map f: Ax A — M
is given by

f(a,a") = s(a)s(a’) — s(ada’).

The map f is a 2-cocycle. Given two additively split extensions which are equiv-

alent, then the two 2-cocycles we get differ by a 2-coboundary.

A 2-cocycle is amap f: Ax A— M. We get an additively split extension of A
by M given by taking the exact sequence

O— M —MecA—A——0

where addition in M @ A is given by (m,a) + (m/,d’) = (m + m’,;a + a') and

multiplication is given by
(m,a)(m', ') = (a'm + am’ + f(a, ), ad).

Given two 2-cocycles which differ by a 2-coboundary, then the two additively split

extensions we get are equivalent. O

A crossed module consists of a commutative algebra Cy, a Cy-module C; and a
module homomorphism

C’1_p>c(07

which satisfies the property

for ¢, € C}. In other words, a crossed module is a chain algebra which is non-
trivial only in dimensions 0 and 1. Since Cy = 0 the condition p(c)c’ = cp(c’) is

equivalent to the Leibnitz relation

0= p(cc’) = p(e)d’ — ep(c).

We can define a product by

cxd = p(e)d,
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for ¢, ¢ € C1. This gives us a commutative algebra structure on Cy and p : C; — Cjy

is an algebra homomorphism.

Let p : C1 — Cp be a crossed module. We let M = Ker(p) and A = Coker(p).
Then the image Im(p) is an ideal of Cy, MC, = C1M = 0 and M has a well-
defined A-module structure. We say such a crossed module is a crossed module

over A with kernel M.

A crossed extension of A by M is an exact sequence

0 M—~0, -2~ A 0

where p : C1 — Cj is a crossed module, 7 is an algebra homomorphism, and the

module structure on M coincides with the one induced from the crossed module.

A morphism between two crossed extensions consists of commutative algebra ho-
momorphisms hg : Cp — Cp and h; : C; — C such that the following diagram

commutes:

Let Cross(A, M) denote the category of crossed modules over A with kernel M,
and let moCross(A, M) denote the connected components of Cross(A, M).

Definition 2.17. An additively split crossed extension of A by M is a crossed

extension of A by

0 M—2>C > Cy—= A 0 (2.1)
such that all the arrows in the exact sequence [2.1] are additively split.

We denote the connected components of the category of additively split crossed
extensions over A with kernel M by moACross(A, M).

Lemma 2.18. Ifv: Cy — A is k-algebra homomorphism then

Harr,ﬂ(fy : Oy — A7M) = WOAC’I”OSS(’Y :Co — A, M)?
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where Harr*(y : Co — A, M) and moACross(y : Cy — A, M) are defined as
follows. Consider the following short exact sequence of cochain complezes:

0—= o (A, M) —L= O (Co, M)~ Coker(y*) — 0.

Harr

v :Cy — A, M) := Coker(v*). This allows

us to define the relative Harrison cohomology

We define the cochain complex Cjy,,..(

Harr*(y:Cy — A, M) := H*(C},

Harr

(v:Co— A, M)).

We let ACross(y : Co — A, M) denote the category whose objects are the addi-
tively split crossed extensions of A by M

0 M—-0, L~ A 0

with v : Cy — A fized. A morphisms between two of these crossed extensions
consists of a morphism of crossed extensions with the map hy : Cy — Cy being the

identity.

Note that ACross(y : Coy — A, M) is a groupoid.

Proof. This proof is very similiar to a proof given in [I3] for the crossed modules

of Lie algebras. Given any additively split crossed module of A by M,

0 M-—2-0C L~y —1+ A 0,

we let V' = Kery = Imp. There are k-linear sections s : A — Cy of v and
oc:V—=>Ciof p:Cy — V. We define the map g : A® A — C] by:

g(a,b) = o(s(a)s(b) — s(ab)).
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We also define the map w : Cy — C by:
w(e) = ol — s7(c)).
By identifying M with Ker d, we define the map f : Cy ® Cy — M by:
16 ) = g(1(€),4(e)) + () + aw(c) — wle) * w(e) — w(ec).

Since g(c, ) = g(c, ¢), it follows that f(c,c) = f(c,c) and so f € C%
We define the map @ € C%,..(A, M) by:

Cy, M).

(IT"I"(

arr(
w(z,y,2) = s(x)g(y, 2) — glwy, 2) + g(x,y2) — g(y, x)s(2).

Note that @ vanishes on the shuffles since g(x,y) = g(y, x).

Consider the following commuting diagram.

(IA7 M) i)c?{arr(cm M) i)cl%larr(fy : CO — A7 M) —0

| ) Lé

(A, M) L3 (Co, M) =3 (7:Cy— A, M) ——0

Harr Harr

0——C?

Harr

0—C%

Harr

A direct calculation shows that §f = v*@w € C3*(Cy, M). We also have that
Ok*f = k*0f = k*y*w = 0, this tells us that «*f is a cocycle. If we have two
equivalent additively split crossed modules then we can choose sections in such a
way that the associated cocycles are the same. Therefore we have a well-defined
map:

ACross(y: Co— A, M) —— H}

Harr

(’}/CO%A,M)

Inversely, assume we have a cocycle in C%,..(y : Co — A, M) which we lift to a
(Co, M). Let V= Kervy. We define C; = M x V as a module

over k with the following action of Cy on CY:

cochain f € C%

arr

c(m,v) :== (em + f(c,v), cv).
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It is easy to check using the properties of f that this action is well defined and
together with the map p : Cy — C} given by p(m,v) = v, we have an additively
split crossed module of A by M. O

Lemma 2.19. If k is a field of characteristic 0 then
Harr*(A, M) = 1yACross(A, M).

Proof. From the definition of Cj,,..(v : Co — A, M) we get the long exact se-

quence:

co.—Harr*(A, M) Harr*(Cy, M)

Harr?*(y:Cy — A M) —— Harr*(A, M) — ...
(2.2)
Given any additively split crossed module in mgACT0ss(A, M),

0 M—2-0 L~y A 0

we can lift v to get a map Py — A where P, is a polynomial algebra. We can
then use a pullback to construct P; to get a crossed module where the following

diagram commutes:

0 M—~0, L2~ A 0

1]

0 M P Py A 0.

Note that these two crossed modules are in the same connected component of
moACT0oss(A, M). By considering the second crossed module in the long exact

sequence, we replace Cy by F, to get the new exact sequence:
0——=Harr*(y: Py — A, M) —— Harr3(A, M) —=0 (2.3)

since Harr?(Py, M) = 0 and Harr3(Py, M) = 0.

The exact sequence tells us that every element in Harr®(A, M) comes from an

element in Harr?(y : Py — A, M) and the previous lemma tells us that this comes
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from a crossed module in 19 ACross(A, M). Therefore the map mgACross(A, M) —
Harr3(A, M) is surjective.

Assuming we have two crossed modules which go to the same element in Harr?(A, M),

0 M—2>C L~ Cy—= A 0, (2.4)

0 M0 L0 A——0. (2.5)

There exist morphisms

0 M P, P A 0

e

0 M-t —25 A 0

where P, is a polynomial algebra and Py, P, are constructed via pullbacks. These
give us two elements in Harr?(y : Py — A, M) which go to the same element
in Harr®(A, M). However the exact sequence tells us that the two crossed
modules and have to go to the same element in Harr?(y : By — A, M).
The previous lemma tells us that the two crossed modules and go to the
same element in ACross(y : Co — A, M) which is a groupoid, so there is a map

P, — P; which makes the following diagram commute:

0 M—-0, L~ A 0
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Therefore the two crossed modules 2.4] and 2.5] are in the same connected com-
ponent of mgACross(A, M) and the map myACross(A, M) — Harr®*(A, M) is

injective. [l

2.6 Baues-Wirsching cohomology

The following material can be found in [4]. A category Z is said to be small if
the collection of morphisms is a set. Consider a small category Z. The category
of factorizations in Z, denoted by FZ, is the category whose objects are the
morphisms f, g, ... in Z, and morphisms f — ¢ are pairs («, ) of morphisms in Z

such that the following diagram commutes.

Composition in FZ is given by (o/, 5')(«, 5) = (/a, BF'). A natural system of

abelian groups on Z is a functor
D : FT — b.

There exists a canonical functor FZ — Z° x T which takes f : A — B to the
pair (A, B). This functor allows us to consider any bifunctor D : Z% x 7 — 2(b
as a natural system. Similarly, the projection Z°? x T — 7 gives us the functor
FI — T which takes f : A — B to B. This allows us to consider any functor
D : T — 2Ab as a natural system.

Following Baues-Wirsching [4], we define the cohomology Hpy (Z, D) of Z with
coefficients in the natural system D as the cohomology of the cochain complex
Chw(Z, D) given by

Crw (T, D) = 1T D(ay...a),

Q1.0 i —>...—>10
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where the product is indexed over n-tuples of composable morphisms and the

coboundary map
d: Cy(Z, D) — CRiM(Z. D),

is given by

(df)(a .. ana) =(ar).f(ag, .- ania)

n

+ Z(—l)jf(al, s QGOGT,  Oingn)

=1
+ (=1)" M) flan, ..., an).

Lemma 2.20. Let 1o € Z be an initial object and F : T — 2Ab a functor then

F(ig) forn=0

Hiw(L F) = { 0 forn>0
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V-rings

3.1 Introduction

In this chapter, only the material in this section is already known and everything
from section onwards is new and original material. Note that in all of the cited
material, including [I], [14] and [20], what the authors call a W-ring is what we

call a special W-ring. Also note that in our notation N does not include 0.

A-rings are complicated, and given a A\-ring it is often difficult to prove it satisfies
the A-ring axioms. We start by introducing another kind of ring, the W-rings,
which are closely related to the A-rings by the Adams operations. The axioms for

the W-rings are a lot simpler than those for the A-rings.

Definition 3.1. A V-ring is a commutative ring with identity, R, together with

a sequence of ring homomorphisms Wi : R — R, for i € N, satisfying

1. U(r)=r,

2. UH(WI(r)) = Wi(r),
forall r € R, and 7,7 € N.
We say that a W-ring R is special if it also satisfies the property

UP(r) =P mod pR,
35
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for all primes p and r € R.
Example 3.2. Any commutative ring with identity, R, can be given a W-ring

structure by setting V' : R — R to be W(r) =1 for allr € R and i € N.

Let Ry, Ry be W-rings. A map of V-rings is a ring homomorphism f : R; — Rs,
such that W'(f(r)) = f(¥'(r)) for all r € Ry and ¢ € N. The class of all U-rings

and maps of WU-rings form the category of WU-rings, which we denote by W—tings.

3.2 U-modules

For usual rings, the modules provide us with the coefficients for the cohomology.
In this section we define the W-modules for W-rings which provide us with the
coefficients for the W-ring cohomology. We then use this to create the U-analogue

of some of the results for rings.

Definition 3.3. We say that M is a ¥-module over the W-ring R if M is an R-
module together with a sequence of abelian group homomorphisms ¢ : M — M,
for i € N, satisfying

1 ylm) = m,

2. Y (rm) = Wi (r)y’(m),

3. (7 (m)) = ¥ (m),

forallme M, r € R, and 7,5 € N.

Let M, N be two W-modules over R. A map of ¥-modules is a module homomor-
phism f: M — N such that ' f(m) = fy!(m) for all m € M and i € N. We let
R—mody denote the category of all ¥-modules over R.

We say that M is special if R is special and

YP(m) =0 mod pM,
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for all primes p and m € M.

Note that any W-ring can be considered as a W-module over itself. Also note that
if M is special, then 1'(m) = 0 mod ¢M for all i € N and m € M.

For the rest of this chapter, we let R denote a W-ring and M € R—mo0y. We let R
denote the underlying commutative ring of R, and we let M denote the underlying
R-module of M.

Lemma 3.4. The set R x M with

(r,m)+ (s,n) = (r+s,m+n),

(r,m)(s,n) = (rs,rn +ms),
together with maps W' : R x M — R x M fori € N given by
U (r,m) = (V' (r), ' (m) +€'(r)),

for a sequence of maps € : R — M fori € N, is a V-ring if and only if

2. e'(r+s) =¢&'(r) +(s),
3. g(rs) = Wi(r)ei(s) + '(r)Wi(s),
b £9(r) = (1) + W (1),
forallr;s € R, and i,7 € N.
Proof of lemma. Tt is known that R x M is a commutative ring with identity.

Hence it is sufficient to check that ¥' : R x M — R x M satisfies the W-ring

axioms.

L Ul(r,m) = (UH(r), o' (m) +X(r)) = (r,m +&'(r))
Hence ¥!(r,m) = (r,m) if and only if !(r) = 0.
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2. Wi((r,m) + (s,n)) = (U(r) + '(s),¢'(m) + ¢'(n) + &'(r + 5))
Wi (r,m) + Wi(s,n) = (V(r) + U(s), ¢'(m) + ¢'(n) +&'(r) +€'(s))
Hence U'((r,m) + (s,n)) = Ui(r,m) + ¥i(s,n) if and only if
el(r+s) =e'(r) +£'(s).

3. Ui((r,m)(s,n)) = (¥i(rs), Y (rn + ms) + &'(rs))
Ui(r,m)Wi(s,n) = (U(rs), v (rn + ms) + i(r)e'(s) + '(r)¥i(s))
Hence Wi((r,m)(s,n)) = ¥i(r,m)¥(s,n) if and only if
gl(rs) = Wi(r)e'(s) + &'(r)P'(s).

4. W (r,m) = (U (r), g7 (m) + el (1) 4 W (1))
Wi (r,m) = (WU (r), i (m) + €9 (r))
Hence W0 (r,m) = U (r,m) if and only if €9 (r) = e (r)) + "W (r).

]

The maps €' : R — M given by ¢'(r) = 0, for all r € R and i € N, satisfy
properties .1.4 meaning that the maps U¢ : R x M — R x M given by
Ui(r,m) = (¥'(r),¢'"(m)) give us a W-ring structure on R x M. We call this the
semi-direct product of R and M, denoted by R xg M.

We note that if R and M are both special, then R Xy M is also special.

3.3 VU-derivations

The André-Quillen cohomology for commutative rings is given by the derived
functors of the derivations functor. For a commutative ring S, the derivations
of S with values in an S-module N are in one-to-one correspondence with the
sections of S x N —=S . We define the W-derivations and show that they are

in one-to-one correspondence with the sections of R xy M ——= R .

Definition 3.5. A V-derivation of R with values in M is an additive homomor-
phism d : R — M such that

1. d(rs) = rd(s) +d(r)s,
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2. Yi(d(r)) = d(¥*(r)),
for all ;s € R, and i € N. We let Dery (R, M) denote the set of all U-derivations
of R with values in M.

Example 3.6. Let R and M be such that V' = Id = 1" for all i € N, then
Dery (R, M) = Der(R, M).

Theorem 3.7. There is a one-to-one correspondence between the elements of
Derg (R, M) and the sections of R xg M — R..

Proof of theorem. Assume we have a section of 7, then we have the following

RXI\I;M R,

g

where mo = Idg. Hence o(r) = (r,d(r)) for some d : R — M. The properties

d(r +s) =d(r) + d(s),
d(rs) =d(r)s + rd(s),

follow from ¢ being a ring homomorphism. However ¢ also preserves the W-ring

structure, so we get that Wio(r) = oWi(r). We know that
o (r) = W' (r,d(r)) = (¥'(r), ¥ (d(r))),

oW (r) = (T(r), d(Wi(r))).

Hence Vio(r) = oW'(r) if and only if ¢'d(r) = d¥(r). This tells us that if o is a

section of m, then we have a W-derivation d.

Conversely, if we have a W-derivation d : R — M, then o(r) = (r,d(r)) is a section
of . 0
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3.4 V-ring extensions

We have seen in proposition that the André-Quillen cohomology H (R, M)
classifies the extensions of R by M. In this section, we develop the W-analogue of

extensions.

Definition 3.8. A V-ring extension of R by M is an extension of R by M

0 M—=X R 0

where X is a W-ring, £ is a map of W-rings and ay)" = V"« for all n € N.

Two W-ring extensions (X ), (X) with R, M fixed are said to be equivalent if there

exists a map of W-rings ¢ : X — X such that the following diagram commutes.

We denote the set of equivalence classes of W-ring extensions of R by M by
Exty (R, M).

The Harrison cohomology Harr?(R, M) classifies the additively split extensions
of R by M. We can also define the W-analogue of these types of extensions.

Definition 3.9. An additively split V-ring extension of R by M is a W-ring ex-

tension of R by M

0 M-—sx-".R 0

where [ has a section which is an additive homomorphism.

Multiplication in X = R®M has the form (r, m)(r',m’) = (rr’', mr'+rm/+ f (r, 7)),

where f: R X R — M is some bilinear map. Associativity in X gives us

0=rf(r', ") — flrr', 7"+ f(r,r'r") — f(r,r")r".
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Commutativity in X gives us

f(T, r/) = f(r/’ 7").

The W-operations W' : R& M — R @ M for i € N are given by Wi (r,m) =
(Ui(r), " (m) + €'(r)) for a sequence of operations €’ : R — M which satisfy the

following properties

2. el(r+s) =¢&'(r) +%(s),
3. €'(rs) = W(s)e'(r) + Wi(r)e'(s) + f(W'(r), U(s)) — ¢'(f(r, 5)),

4. € (r) = el (r) 4 Wi (r),

for all r,s € R and i,j € N.

Assuming we have two W-ring extensions (X, ¢, f), (X, Z, f) which are equivalent,
together with a W-ring map ¢ : X — X with ¢(r,m) = (r,m + g(r)) for some
g: R — M. We have that ¢ being a homomorphism tells us that

g(r+71") = g(r) + g(r),

F0,") = Fr1") = ral0!) = glre') + 9

We also have ¢(¥") = @l(gb) for all © € N, which tells us that

e'(r) —&'(r) = ¢'(g(r)) — g(T'(r)).
We denote the set of equivalence classes of the additively split W-ring extensions
of R by M by AExty (R, M).

Definition 3.10. An additively and multiplicatively split V-ring extension of R
by M is a U-ring extension of R by M
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where [ has a section which is an additive and multiplicative homomorphism.

As a commutative ring X = R x M, i.e. f = 0 above. The W-operations W :
X — X for i € N are given by W' (r,m) = (¥'(r), ¢ (m) + £'(r)) for a sequence of
operations ' : R — M such that

2. el(r+s) =&'(r) +&'(s),
3. gl(rs) = Ui(s)e'(r) + W' (r)e'(s),
4. 9(r) = il (r) + e Wi(r),
for all r,s € R and i,7 € N. Note that conditions 2 and 3 tell us that &' €

Der(R, M") where M denotes the ¥-module over R with M as an abelian group
and the action of R given by (r,m) s Wi (r)m, for r € R,m € M.

Assume we have two additively and multiplicatively split U-ring extensions (X, ¢), (X, €)
which are equivalent, together with a W-ring map ¢ : X — X with ¢(r,m) =
(r,m 4+ g(r)) for some g : R — M. Since ¢ is a ring homomorphism we get that
g € Der(R, M). Since ¢ is a map of W-rings we get that

el(r) —&'(r) = ¢'(g(r)) — g(¥'(r)),
for all 7 € N.

We denote the set of equivalence classes of the additively and multiplicatively split
U-ring extensions of R by M by MExty (R, M).

Example 3.11. Let R and M be such that V¢ = Id = 4" for all i € N, then

MExty(R, M) = [] Der(R, M).

p prime
Lemma 3.12. There exist exact sequences

H)o(R.M)

0 — MExty (R, M)~ Exty (R, M) > Hio(R, M) L
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0 — MExty(R, M) % ABxty (R, M)~ Harr®(R, M) — 222D g

where w is the inclusion, and u maps the class of a V-ring extension to the class

of its underlying extension.

Proof. We only need to check exactness at Extg(R, M) and AExty(R,M). A
class in Exty (R, M) or AExty (R, M) belongs to the kernel of u if the underlying
class is the trivial class. The additively and multiplicatively split extensions are

precisely the W-ring extensions whose underlying extension is trivial. Exactness
follows. o

From the definitions, we see that Exty (R, M) D AExty (R, M) O MExty (R, M).

If R and M are both special, then we say that a U-ring extension

is special if X is also special.

We denote the set of equivalence classes of the special W-ring extensions of R by
M by Extg, (R, M). Similarly, we can define AExty, (R, M) and MExty,_ (R, M).

3.5 Crossed V-extensions

A crossed V-module consists of a U-ring Cy, a W-module C over Cy and a map of

W-modules

CILCb)

which satisfies the property
d(c)d = co(d),

for ¢, € Cy. In other words, a crossed W-module is a chain algebra which is
non-trivial only in dimensions 0 and 1. Since Cy = 0 the condition d(c)c’ = cd(¢)

is equivalent to the Leibnitz relation

0=209(c) = d(c)d — cO(c).
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We can define a product by

cxc = 0(c)d,

for ¢, € C;. This gives us a V-ring structure on Cy and 0 : C; — Cj is a map of

W-rings.

Let 0 : C; — Cj be a crossed ¥-module. We let M = Ker(9d) and R = Coker(0)
Then the image Im(0) is an ideal of Cy, MCy = C1 M = 0 and M has a well-defined

W-module structure over R.

A crossed V-extension of R by M is an exact sequence

0 M—2~0,—2~0Cy—~R 0

where 0 : C; — Cj is a crossed W-module, 7 is a map of U-rings, and the W-module
structure on M coincides with the one induced from the crossed ¥-module. We
denote the category of crossed W-extensions of R by M by Crossy(R, M). We let
moCrossy(R, M) denote the connected components of the category Crossy (R, M).

An additively split crossed V-extension of R by M is a crossed W-extension

0 M- Lt~ Cy—=>R 0 (3.1)

such that all the arrows in the exact sequence [3.1] are additively split. We denote
the connected components of the category of additively split crossed W-extensions
of R by M by mgACrossy(R, M).

An additively and multiplicatively split crossed V-extension of R by M is a crossed

U-extension

0 M—2~0C,—2~Cy—=~R 0

such that 7 is additively and multiplicatively split. We denote the connected
components of the category of additively and multiplicatively split crossed W-
extensions of R by M by moMCrossy(R, M).
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3.6 Deformation of V-rings

In this section, we apply Gerstenhaber and Schack’s definition of a deformation of

a diagram of algebras [7] to the case of U-rings.

Definition 3.13. Let

O{t:a0+t061+t2052+...

be a deformation of R, i.e. be a formal power series, in which each a5 : R X
R — R is a bilinear map, «q is the multiplication in R and «; is associative and

commutative.

For each i € N, let
Uy = g + (] + 25 + .

be a formal power series, in which each 1! is a function
Mﬁ R — R,

satisfying

1. i(r) = Wi(r),
2. Yi(r) =0,
3. i (r+5) = ¥i(r) +4i(s),
4. Zi:o (T, s) = Zzzo Zf;oh an (i (r), ¥i_n_i(s)),
d. Mg (r) = Zf:o Yo i‘fl(T%
for all 4, j,k € Nand r,s € R. We call (ay, ¥}) a WU-ring deformation of R.
We call (ay,97) the infinitesimal deformation of (oy, UF). The infinitesimal W-ring

deformation (avy,7) is identified with the additively split W-ring extensions of R
by R by setting f = a; and &' = ¢! for all 7 € N.
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Definition 3.14. We define a formal automorphism of the W-ring R to be a formal
power series
By = o +tdy + s+ ...

where each ¢ : R — R such that

1. ¢o(r) =,
2. ¢Or(r+s) = d(r) + dr(s).

Two W-ring deformations (ay, U%) and (@, ¥,) are equivalent if there exists a
formal automorphism @, such that ®yau(r, s) = @ (Pyr, d;s) and ¢, U} = E:CI)t.

If two W-ring deformations (o, U%) and (@, ¥, ) are equivalent, then the differences
satisfy ai(r, s) —ai(r, s) = r¢i(s) — ¢1(rs) +s¢1(r) and ¢ _Ell = Wigy — ¢, W' for
all © € N. Hence the equivalence classes of the infinitesimal ¥-ring deformations
are identified with the equivalence classes of the additively split U-ring extensions,
AExty (R, R).

Yau [20] defined the cohomology of A-rings in order to study deformations with
respect to the W-operations corresponding to the A-ring. Here, I provide an alter-
native definition to Yau’s definition. A deformation of the W-operations should be
a U-ring deformation (o, U;) where o is the trivial deformation. If we let oy, = 0
for all £ > 1 in the definition of a W-ring deformation then we get the following

definition.

Definition 3.15. For each i € N, let
Wh = b + th 4 12l + ...
be a formal power series, in which each 1! is a function
Vi R— R,

such that

L g(r) = Wi(r),
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2. Q,D]i(T) =0for k> 1.,

3. Yi(r + s) = Yi(r) + Ui(s),
4. Yi(rs) = Lo Ui (r)dh_i(s),
5. 0 (r) = il vf o vy (r),

for all 7, j,k € N and r,s € R. We call ¥y a W-operation deformation of R.

The infinitesimal W-operation deformation ¢} is identified with the additively and
multiplicatively split W-ring extensions of R by R by setting &' = ¢ for all i € N.

If two W-operation deformations W and W, are equivalent, then the difference
satisfies ¢! — Ell = Wigy — ¢y U for all i € N. Note that now ®;(rs) = ®,(r)®,(s)
so we get that ¢; € Der(R, R). Hence the equivalence classes of the infinitesimal W-
operation deformations are identified with the equivalence classes of the additively

and multiplicatively split U-ring extensions, MExty (R, R).
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A-rings

4.1 Introduction

In this chapter, only the material in this section and section is already known
(see [1], [14] and [20]) and everything else is new and original material. Note that
in our notation Ny = NU {0}.

In this chapter, we start by introducing the concept of a pre-A-ring. After giving
the definition, we will look at some examples of pre-A-rings. Later, we introduce
the definition of A-rings, which are pre-A-rings which satisfy some additional ax-

ioms. Then we will look at which of the pre-A-ring structures also give us A-rings.

Definition 4.1. A pre-\-ring is a commutative ring R with identity 1, together

with a sequence of operations \' : R — R, for i € Ny, satisfying

L A(r) =1,
2. A(r) =r,

3. N(r + 5) = ZL_ NF(r)NTFR(s),

for all r,s € R and 7 € Nj.

48
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To be able to describe examples of pre-A-rings or A-rings it is often useful to

consider, for r € R, the formal power series in the variable ¢

A(r) = Z N (r)t

= A0(r) + AN ()t + N2 ()t + ...

Note that

MN(r458) = X(r+8) F A+ )t + N2 (r+ )2+ NP (r+s)t°. ..
=14 (r48)t + D2 N ()NTF(s)2 + S3_ N ()N (s)t3 + ...
= (1 4+rt+ )+ ) (1 +st+ N (s)+..)
= )\t(T'))\t(S).

This gives us an equivalent definition of a pre-A-ring.

Definition 4.2. A pre-A-ring is a commutative ring R with identity 1, together

with a sequence of operations \' : R — R, for i € Ny, satisfying

1. \(r) =1,
2. A(r) =r,
3. Mi(r 4 s) = X(r)A\i(s), where Ny(r) = 37, ()t

for all r,s € R and 7 € Nj.

Example 4.3. We can get a pre-\-ring structure on Z by taking
M(r) = (14t + ngt® +ngt® +...)",

where 1+t + ngt? + nst® + ... is a power series with integer coefficients.

We can get a pre-A-ring structure on R by taking either

1o N(r) = (1 +t+not? +nst®> +...)", where 1+t +not? + ngt> + ... is a power

series with integer coefficients, or
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2. M(r) = €.

The A-ring axioms involve some universal polynomials. We are now going to
introduce the elementary symmetric functions in order to define these universal

polynomials.

Definition 4.4. Let &, &2, ...,&; M, 72, ..., N, be indeterminates. Define s; and

o to be the elementary symmetric functions of the s, s, i.e.
(14 st + s9t? + ... +) = IL(1 + &),

(1+ o1t +oot? + ... +) = I;(1 +n;t).

Let Py(s1,Sa, ..., 8k 01,09,...,0%) be the coefficient of t* in II; ;(1 + &n;t).
Let Py(s1, 89, ..., s1) be the coefficient of t* in Tl1<;, < <i<4(1+ &, &, - - - & ).

Example 4.5. See also appendiz[B

L4 P1($1;01) = 5101,

. ) 2
Py(s51,52;01,02) = 5{02 — 25302 + 5307,

L P1,1(31) = 81,

o P 5(s1,82) = Pa1(s1,52) = 2,

Py (51, S2, 83, 54) = $153 — S4.
Definition 4.6. A A\-ring is a commutative ring R with identity 1, together with
a sequence of operations \' : R — R, for i € Ny, satisfying

1. R is a pre-A-ring,

2. (1) =141,

3. Ai(rs) = P;(A(r), A2(r), ..., X)), AL(s), ..., Ni(s)),

4. /\z()\]<7“)) - -Pi,j()\l(r)’ ttt )‘ij(r))7

for all r,s € R and 7,5 € Ny.
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Since A! is the identity, it follows that Py 1(s1,...,s%) = Pii(s1,...,8k) = Sk. In

general, Py, ; # P, so the A\-operations do not commute.

Example 4.7. The simplest example of a \-ring is Z, together with binomial
coefficients \i(r) = (:) The additional axioms for \-rings eliminate the more
exotic pre-A-ring structures. From[{.d, the only A-rings are taking \(r) = (1+1)",

which gives us a A-ring structure on Z or R.
Corollary 4.8 (Some properties of A-rings). 1. The characteristic of R is zero.

2. N{(1) =0 fori>2.

Proof of corollary. 1. Let j be any integer.
—_—

j times

2. This follows from [4.6]1.

A map of X\-rings Ry — R», is a ring homomorphism f : Ry — Ry, such that
N(f(r)) = f(X(r)) for all r € Ry and ¢ € Ny. The class of all A-rings and maps

of A-rings form the category of A-rings, which we denote by A—tings.

The M-operations are often difficult to work with as they are neither additive nor
multiplicative. We can get ring maps from the A-operations, which are the Adams

operations W' : R — R for i € N, defined by the Newton formula
W) = AN )W) + .+ (DTN )W () + (=1)%N (r) = 0.

Example 4.9. See also appendiz [A]
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By rearranging and making substitutions we get the following

UA(r) = r* — 47?22 (r) + 4rX3(r) — 4\ (r) + 2(\%(r))?,

It is known that in general

r 1 0
2)\%(r) r 1 0 0
V() = det 3)\3.(7’) )\2.(7“) r 1 0
0
: : Ny ro1
iN(r) ATNr) oo o A ()

Theorem 4.10. If R is a A-ring then the Adams operations give us a special

W-ring structure on R, which we denote by Ry.

We will require the following useful theorem from [14] (p.49).

Theorem 4.11. Let R be a torsion-free pre-A-ring. Let W' : R — R be the
corresponding Adams operations. If R together with the W-operations form a V-

ring, then R is a A-ring.

The proof of this theorem can also be found in [14].

Example 4.12. Consider the simplest example of a A-ring, Z, together with bi-
nomial coefficients N'(r) = (7). The Adams operations give us W' (r) = r for all

r € Z and 1 € N, which we have already seen gives us a V-ring structure on 7.
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4.2 l-modules

For usual rings, we have modules which provide us with the coefficients for the
cohomology. We now define the A-modules for A-rings which provide us with the

coefficients for the A-ring cohomology.

Definition 4.13. M is a A-module over the A-ring R if M is an R-module together
with a sequence of abelian group homomorphisms A* : M — M, for i € N,
satisfying

1. AY(m) =m,

2. Ni(rm) = Ui(r)Ai(m),

3. A(m) = (—1)EFDUFDATAT (1),

forallm e M,r € R and 7,7 € N.

Let M, N be two A-modules over R. A map of A-modules is a module homomor-
phism f: M — N such that A’f(m) = fA*(m) for all m € M and i € Ny. We let

R—mo0, denote the category of all A-modules over R.

The main motivation for our definition of a A-module is as follows. First we let R
and X be two A-rings and #: X — R be a map of A\-rings. Assume M = Ker [ is
a square-zero ideal. Since A\'(0) = 0, for 7 > 0, there are maps A" : M — M, for

1 > 0, which make the following diagram commutes:

0 M-—-x-P R 0

.

0 M—=X R 0.

The properties of the A-operations follow from the properties of the A-operations.

For example,

aX (rm) =N'a(rm)

=\ (za(m)),
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for some x € X with (z) = r. Therefore,
aX (rm) = P\ (x),..., X (z), A (a(m)),... X(a(m))).
However a(m)a(n) = 0 for all m,n € M so most of the terms vanish leaving

aX(rm) = a¥'(r)A'(m).

For the rest of this chapter, we let R denote a A-ring and M € R — mo0,. We
let R denote the underlying commutative ring of R, and M denote the underlying
R-module of M.

Example 4.14. In general, R is not a A-module over itself unless the multi-

plication in R is trivial. However we can consider the sequence of operations
A : R — R given by ANi(r) = (—=1)DWi(r). With these A-operations R is a

A-module over R.

Theorem 4.15. The Adams operation Y™ : M — M given by
Y (m) = (=1)" A" (m),
give us a special ¥-module structure on M over Ry, which we denote by My.

Proof. 1. ¥l(m) = Al(m) = m,

2. ¢Z(m1 + mg) = (—]_)ZJrlZAZ(ml + mg) = (—1)’+1zAl(m1) + (-1)1+1ZAZ(TI’L2)
= P'(my) + ¥ (ma),

3. ¢ (rm) = (=1)"" 1A (rm) = (1) W (r)A'(m) = W'(r)¢" (m),

490 (m)) = ¥ ((~1)0jAI ) = (~1) DG AN (m)
= (=1) AT () = 6O (),

We will require the following useful lemma.
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Lemma 4.16.

Z_:[(—m”l;@(r, m) U (r) + (=L)X (r) A (m)] = 0,

i=1

for allr € R,m € M and v > 2, where x;(r,m) = Z;zl N (m)NTI(r).
Proof. We are going to use proof by induction on v. Consider the case when v = 2.

LHS =(—1)*x1(r,m)¥(r) + (—=1)* A} (r)A(m)

=0.

We are also going to consider the case when v = 3.

LHS =x1(r,m)¥(r) + A (r)A*(m) — xo(r, m)¥(r) + 2X3(r)A' (m)
=m[r? — 2\2(r)] + rA%(m) — [mr 4+ A*(m)]r + 2X%(r)m
=0.

Now assume that

v—k—1
D (D) (e m) W () 4 (=1 N () AT (m)] = 0,

i=1

for 1 <k<v-2.
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It follows that

v—1

Z[( DX, m) W (r) + (= 1) LN (r) A (m))]

- i(_n (v = DA (r)xa(r,m)

Sl ) Y ()N 4+ Y1) A (m)
:i VAN (r Z A (m)N ()] + ixi(r, m)| _ ) (—1)7HN ()WY= ()]
v—2 v—k—1 v—2 v—k—1
=N Y (NN ]+ ALY (-1 rm) 0 )
k=1 =1 k=1 =1

k+1)\k Z z+1X2 7, m)\IJ” k— Z(T) + (_1)ka+1z-)\i(T)Aufkfi(m)]
k:l i=1
=0.
as required. O

Lemma 4.17. The set R x M with

(r,m)+(s,n) = (r+s,m+n),

(r,m)(s,n) = (rs,rn + ms),
together with maps X' : R x M — R x M for i € Ny given by
X(r,m) = (N'(r), fi(r,m)),
for a sequence of maps f; : Rx M — M, fori € Ny, is a pre-A-ring if and only if
1. fo(r,m) =0,

2. fi(r,m) =m,

3. fillr,m) + (s,n)) = Zj-:o(fj(ra MmN (s) + N (r) fi—j(s,n)).
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Proof of lemma. R is a commutative ring with identity, and M is an R-module.
Then we know that R x M is a commutative ring with identity. So we only have
to check the properties of X' : R x M — R x M.

1. X°(r,m) = (\°(r), fo(r,m)).
Hence A\°(r,m) = (1,0) if and only if fo(r,m) = 0,

2. M(r,m) = (\Y(r), fi(r,m)).
Hence A'(r,m) = (r,m) if and only if f(r,m) =m,

3. A ((r,m) + (s,n)) = X(r+s,m+n) = (N(r+s), fi(r+s,m+n))

Do N (rym)ATI (s,m) = 375 (N (), fi(r,m)) (X (s), fimj(s,m))
(), fi(r,m)X=I(s) + M (r) fi—j(s,n))

= VN
Hence
N((r,m) + (s,n)) = Z;’:o N (r,m)X~(s,n) if and only if
fil(r,m) + (s,m)) = 225 (f5(r,m)N = (s) + N (r) fi—j(s,m)).
O

Lemma 4.18. The set R x M together with maps \* : R x M — R x M, for
1 € Ny, given by

N(r,m) = { (1,0) , fori =0,
’ (N (1), 3252 M (m)XNI () fori €N,

gives us a A-ring.
We call this A-ring the semi-direct product of R and M, denoted by R x, M.

Proof. We start by showing this is a pre-A ring by using lemma [4.17| with

0 for 1 =0,
filr,m) = D ,
> MmN (r) fori > 1.
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Clearly properties 1 and 2 hold, so we only have to check 3. Let ¢ > 2 then

=Y N(m+n)XN(r+s)

J=1

fil(r,m) + (s,n)) =fi(r + s,m+n)

%

(N (am) + () 3 NN (s)

j=1
]
=3 D (N (m)AN ()N (s) + N ()N (r) AT (s))
j=1 k=0
7 7 i—1 1—J
=D N A MmN TN T () + > Y N () AR ()N (s)
j=1 k=1 j=1 k=1
+ Y AF)NTE(S)NO(r)
k=1
i—1 J
=3 ) AEm)NTF ()N ( +ZA’“ INTF(INO(s)
j=1 k=1
i—1 i—j
+ N (r) NF ()X +ZA’“ AR (8)A(r)
j=1 k=1
i—1

(fi(r,m)NTI ()N (1) fi—j (s, 1))

(1, m)AY(5) + fi(s,n) A (r) + N(s) fo(r,m) + N(7) fo(s,n)

&—l-TiM

(f;(r, m)NTI(s) + /\j(r)fi_j(s, n)).

.
Il
o

So we have proved that R x, M is a pre-A-ring. Checking the last two axioms

is reduced to checking the following the following universal polynomial identities
hold.

o P,(\(r,m),....,X(r,m),\(s,n),...,\i(s,n))

= (H(Al(r), o A(), AN(8), L AY(s)),
Sy Pk (), XTR(r), AN (s), o XR () [WR () AR (m) +- T (r) AR (n)]),

o Py(A(r,m),... N (rym)) = (B (A(r),..., A9 (1)),
DY INE )(k“ DA (m) WH (W (r ))Pa B (A (1), ACTRI(r))).
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We are going to start by considering the case where R is a free A-ring and M is

free as a A-module over R.

Our aim is to show that the Adams operations give us the W-ring structure on
R x M with U (r,m) = (V¥(r),?"(m)) by using induction on v. Then theorem
tells us that R x, M is a A-ring and the universal polynomial identities hold.

Consider the case when v =1

Wl(r,m) = (r,m) = (WH(r), 9" (m)).

Counsider the case when v = 2

U2 (r,m) = (r?,2rm) — 2X\%(r,m) = (r* — 2X\%(r), —2A%(m)) = (V*(r),¥*(m)).

Assume that W7 =%(r,m) = (V" 7*(r),¢**(m)) for 1 <k < v — 1. It follows that
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T
L

w(r,m) =) (=1 T Z)\” TR () AR (m) (W (), ¢ (m)
1/+1 Z)\V k Ak )

(—1) T O ()W (), W 1) ZA“-j-'%r)Ak(m)

i I

[y

AN

.
Il
—_

W (m)AN (1)) + (=1)" v ZA” *(r)A*(m))

v—

=(T"(r), p_(=1)" 7N ()W (m) + () Z N TITE ) AR (m)]

1

—_

.
Il

Dy ) AR (m)])

=((r), ) (=17 e (r)xa(r,m) + (1) N (1) A (m)]

+(=1)"" A" (m))
=(T"(r), (=1)"" WA (m)) = (¥"(r), " (m)),

as required.

Now consider the case where R is a free A\-ring and M is an arbitrary A-module over
R. Choose P a free A-module over R with a surjective homomorphism P — M,
this gives us a surjective homomorphism R x) P — R x, M. Since the universal

polynomial identities hold on R x, P they also hold on R x, M.

Now we can consider the case when R is an arbitrary A-ring and M is a A-module
over R. Any A-ring is the quotient of a free A-ring, therefore R is the quotient of a
free A-ring F'. There exists a surjective homomorphism F x, M — R x, M. Since
the universal polynomial identities hold on F' x, M they also hold on R x, M.
Hence R x, M is a A\-ring. Moreover we proved that (R M)y = Ry xg My. [
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4.3 M-derivations

Definition 4.19. A \-derivation of R with values in M is an additive homomor-
phism d : R — M such that

1. d(rs) = rd(s) +d(r)s,

2. d(N'(r)) = A(d(r)+ A Hd(r) A ()4 AN (d(r) N2 () + A (d ()N (),
for all ;s € R, and i € N. We let Dery(R, M) denote the set of all A-derivations
of R with values in M.

Example 4.20. Let Zy[x] be the free A\-ring on one generator x, and let M €
Z)[x]—mod,.
Dery(Zy[x], M) = M.

Zy|x] = Z|xy, za, . . ] together with operations determined by \'(x1) = x;. For any
A-derivation, d : Zyx] — M, we have that

d(x1) = m,

d(z;) = Z N (m)z;_;,

where m € M and xy = 1.

Theorem 4.21. There is a one-to-one correspondence between the sections of
R xy M —== R and the \-derivations d : R — M.

Proof of theorem. Assume we have a section of 7, then we have the following

Ry M R,

[

where mo = Idg. Hence o(r) = (r,d(r)) for some d : R — M. The properties

d(r+s) =d(r) +d(s),
d(rs) =d(r)s + rd(s),
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follow from o being a ring homomorphism. However o also preserves the A-ring

structure, meaning that Ao (r) = oA’(r). We know that

No(r) = Xi(r,d(r)) = N((r, 0) + (0,d(r))) = Zj_oN (1, 0)X (0, d(1))
= S25(0, M (A (d(r))) + (X'(r),0) = (N (r), SZoN () A (d(r)))
oX'(r) = (N (r), d(N'(r))).

Hence No(r) = oXi(r) if and only if dA(r) = SiZ{M (r)A"7(d(r)). This tells us

that if o is a section of 7, then we have a A-derivation d.

Conversely, if we have a A-derivation d : R — M, then o(r) = (r,d(r)) is a section
of . 0

Theorem 4.22. The A-derivations of R with values in M are also V-derivations

of Ry with values in My.

Proof. Let d : R — M be a A-derivation, we are going to use induction on v to
show ¢¥(d(r)) = d(¥¥(r)) for all v > 1.

Consider the case when v =1

Consider the case when v = 2.
d(U%(r)) = d(r* —2X2(r)) = 2rd(r) —2[A*(d(r)) +d(r)r] = —2A2(d(r)) = *(d(r)).
Also consider the case v = 3.

d(V?(r)) = d(r® — 3rX*(r) + 3X\*(r)) = 3A3(d(r)) = ¥ (d(r)).
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Assume that " =*(d(r)) = d(¥*~*(r)) for 1 <k <v—1.

—

v— r—1

d(v"(r)) =, (=1 (N () e (r) + Z(—I)i+1Ai(r)d(‘1’”‘i(T))
+ (= 1)”+lvd(A”( )
(" (r)) — ¢"(d(r)) :Z D™ ZA] AT ()W (r)

£ 3 DN @D @ = A )]
1)+ ZAJ DA (1))

=D (=1 d(r)) T (r) + (= 1) X (r) A (d(r))]

1

—_

=0.
Hence d(¥"(r)) = " (d(r)). O

Theorem 4.23. If M is Z-torsion-free then the V-derivations of Ry with values

in My are also \-derivations of R with values in M

Der,\(R, M) = DeI‘\p (Rq;, M\y)

Proof. Let M be Z-torsion-free and d : Ry — My be a U-derivation. We are going
to use induction on v to show d(\(r)) = >_7_ | AY(d(r))\*"“(r) for v € N.

Consider the case when v = 1.

AN (d(r)) = d(r) = d(X'(r)).
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Counsider the case when v = 2.

d(W*(r)) = 9*(d(r))
d(r? = 2X3(r)) = —2A%(d(r))
2(d(N*(r)) —rd( ) = A%(d(r))] = 0

j{:l\z AQ z ::0
gpz D) <0,

Assume that d(\*7*(r)) = S2YF Ai(d(r)) A5 (r) for 1 < k < v — 1, we want to
show that vd(\(r)) = v ., A'(d(r))A"~"(r). From ¢"(d(r)) = d(¥*(r)) we get
V(A (d(r)) — dOV (7)) = S0 (— 1) [dN (1) 27 (1) + N () d (9 (7).
Therefore we have to show that

v—1

(—D”va’(d( PN (r)

v—1 v—1

Hence it is sufficient to show that
S (=D G, d(r) [ (= DEFAR () W iR ()]
+ 0 ()= )N ) xa(r, d () (1) N (r) A (d(r))] = 0,

with x; as in lemma [4.16| We get that
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S ()l A )] S (IR )
YN Nl d) + (1) YD A )
= Y D)LY (D))
(1) — A — )]
—0,
as required. O

4.4 )-ring extensions

We have seen in proposition m that the André-Quillen cohomology H}‘Q (R, M)
classifies the extensions of R by M. In this section, we develop the A-analogue of

extensions.

Definition 4.24. A \-ring extension of R by M is an extension of R by M

0 M—==X R 0

where X is a A\-ring, § is a map of A-rings and aA™ = A"« for all n € N.

Two A-ring extensions (X ), (X’) with R, M fixed are said to be equivalent if there

exists a map of A-rings ¢ : X — X’ such that the following diagram commutes.

We denote the set of equivalence classes of A\-ring extensions of R by M by
Ext )\(R, M )
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The Harrison cohomology Harr!(R, M) classifies the additively split extensions
of R by M. We can also define the A-analogue of these types of extensions.

Definition 4.25. Let R be a A-ring and M € R-mod) then an additively split
A-ring extension of R by M is a A-ring extension of R by M

0 M-—>x-".R 0

where [ has a section that is an additive homomorphism.

Multiplication in X = R®M has the form (r, m)(r',m’) = (rr’', mr'+rm/+ f (r, 7)),

where f: R x R — M is some bilinear map. Associativity in X gives us

0=rf(r', ") — flrr', 7"+ f(r, ") — f(r,r")r".

Commutativity in X gives us

f(rv 7“/) = f(rlv 7”).

The A-operations A : R x M — R x M for v € Ny are given by N (r,m) =
(A(r), D20 A{(m)A"~"(r) + €”(r)) for a sequence of operations € : R — M which

satisfy the following properties

4. P,(A(r,m), s (s, n))
= (N(rs), 2251 (W ()N (m) + W (r)A (n) + N (f (r, ")) )N (rs) + € (rs)),

5. P j(A(r,m),.. 2 N (7, m))
= (NN (1), 2oy AL (A (m)N (1) + € (r))XH(N (1)) + (N (1))

Assuming we have two additively split A-ring extensions (X, ¢, f),(X’, &', f') which
are equivalent, together with a A-ring map ¢ : X — X' with ¢(r,m) = (r,m+g(r))



Chapter 4. A\-rings 67

for some g : R — M. We have that ¢ being a homomorphism tells us that
glr+1") =g(r)+g(r'),

flrr') = f'(r0') = rg(r') — g(rr’) + g(r)r.

We also have ¢(A”) = N(¢) for all v € Ny, which tells us that

e’(r) —e(r) = Z A(g(r)) A" (r) — g(X"(r)).

We denote the set of equivalence classes of additively split A-ring extensions of R
by M by AExt\(R, M).

In order to describe the properties of A-ring extensions we need to define the partial

derivatives of the universal polynomials, see appendix [C| for examples.

We can use the universal polynomials to define continuous functions
P :R* 5 R,
P, :R7 - R.

For example P, : R* — R is given by

2 2
Py(x1, w9, x3,x4) = T1T4 — 2X9y + Toxs.

We can take the partial derivatives of these functions which are again polynomials.
We call these new polynomials the partial derivatives of the universal polynomials.

For example

aPQ('Tla T2, T3, x4)
8:61
8P2($1, T2, T3, LE4)

8x2

=271y,

.2
=x3 — 2Ty,
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For 1 < j <, we let

oN(r) ON (1)

OP,(r, s) OBAY(r), ... N (r), AL(s), . .. ,)\i(s))‘

Since the polynomials P; are symmetric, we can let

OP;(r,s)  OP(s,7)
ON(s) — ON(s)

In our examples

), A _ 5
ON(r) BAL(r) - 2rX(s),
OPy(r,s)  OPy(A'(r), N(r), \'(s), N*(s)) 2 2
on(r) N2 () - = 2Xs).

Similarly, for 1 < k < ij, we let

P, ;(r) _ OP,(N(r), ..., \9(r))
ONk(r) ONE(r) '

For example,
aP2,2<m17 T2, T3, LU4)

8131

= I3.

So it follows that
6P272 (?")

INL(r) = X(r).

These partial derivatives appear because of the multiplication in R x M. Consider
the following

(r,m)? = (r?,2rm),
(r,m)* = (r®, 3r*m).

Definition 4.26. An additively and multiplicatively split \-ring extension of R by
M is a A-ring extension of R by M

0 M X R 0
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where [ has a section that is an additive and multiplicative homomorphism.

As a commutative ring X = R x M, the sequence of operations AV : R x M —
R x M for v € Ny are given by X (r,m) = (\"(r), Yor_; A (m)N""*(r) + €(r)) for

a sequence of operations €” : R — M such that

4 (rs) = o el (r) GHrs) + €l (s) GHER),
v v i OP, (r v
5. (N () = Sk €(r) i — S AT (r) NI (A (1)),
Two additively and multiplicatively split A-ring extensions (X ¢),(X’,¢') with

R, M fixed are said to be equivalent if there exists a map of A-rings ¢ : X — X’

such that the following diagram commutes.

0 M X R 0

N
M R

Assuming we have two additively and multiplicatively split A-ring extensions
(X,€),(X',€') which are equivalent, together with a A-ring map ¢ : X — X’
with ¢(r,m) = (r,m + g(r)) for some g : R — M. We also have ¢ being a homo-
morphism which tells us that g € Der(R, M). We also have ¢(\”) = \/(¢) for all
v, which tells us that

el (r ZA’ NATHr) — g(N(r)).

We denote the set of equivalence classes of additively and multiplicatively split
A-ring extensions of R by M by M Exty(R, M).
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Theorem 4.27. If ¢ : R — M gives us an additively and multiplicatively split
A-ring extension of R by M, then ¥ : R — M with

—_

v—

e”(r) =) (=) (MW () + N(r)e" " ()] + (= 1) e (r),

i=1

give us an additively and multiplicatively split V-ring extension of Ry by My.

Proof. 1fe¢” : R — M gives an additively and multiplicatively split A-ring extension
of Rby M, then \ : RxM — RxM given by X (r,m) = (X(r), > A{(m)\"""(r)+
€”(r)) is a A-ring and hence the Adams operations give the WU-ring with operations
U : Rx M — R x M given by U”(r,m) = (0”(r),¥"(m) + €”(r)) which is an
additively and multiplicatively split U-ring extension of Ry by My. O

4.5 Crossed )-extensions

A crossed A\-module consists of a A-ring Cy, a A-module C over Cy and a map of

A-modules

CILCb?

which satisfies the property

for ¢, € Cy. In other words, a crossed A\-module is a chain algebra which is
non-trivial only in dimensions 0 and 1. Since Cy = 0 the condition d(c)c’ = cd(¢)

is equivalent to the Leibnitz relation
0=0(cc') = d(c)d — cd(d).

We can define a product by

cxc == 09(c)d,

for ¢, € C;. This gives us a A-ring structure on C and 9 : C; — Cp is a map of

A-rings.
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Let 0 : C; — Cp be a crossed A-module. We let M = Ker(0) and R = Coker(0)
Then the image Im(0) is an ideal of Cy, MC; = C1 M = 0 and M has a well-defined

A-module structure over R.

A crossed \-extension of R by M is an exact sequence

0 M-—2~0, 20y >R 0

where 0 : C1 — Cj is a crossed A-module, v is a map of A-rings, and the A-module
structure on M coincides with the one induced from the crossed A-module. We
denote the category of crossed A-extensions of R by M by Crossy(R, M). We let
moCrossy(R, M) denote the connected components of the category Crossy(R, M).

An additively split crossed \-extension of R by M is a crossed A-extension

0 M- Lt~ Cy—=>R 0 (4.1)

such that all the arrows in the exact sequence [.1] are additively split. We denote
the connected components of the category of additively split crossed M-extensions
of R by M by mgACrossy(R,M).

An additively and multiplicatively split crossed A-extension of R by M is an addi-

tively split crossed A-extension

such that 7 is additively and multiplicatively split. We denote the connected com-

ponents of the category of additively and multiplicatively split crossed A-extensions
of R by M by moMCrossy(R, M).

4.6 Yau cohomology for A-rings

In 2005, Donald Yau published a paper entitled, “Cohomology of A-rings” [20], in
which he developed a cohomology theory for A-rings. In this section we describe

Yau’s cochain complex and what it computes.
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Let R be a A-ring. We let End(R) denote the algebra of Z-linear endomorphisms
of R, where the product is given by composition. We let End(R) denote the
subalgebra of End(R) which consists of the linear endomorphisms f of R which

satisfy the condition,
f(r)P = f(rP) mod pR,

for each prime p and every r € R.

Yau defined CY,,(R) be the underlying group of End(R). He defined C}.,, (R)
be the set of functions f : N — End(R) satisfying the condition f(p)(R) C pR
for each prime p. Then for v > 2 he set CY,_,(R) to be the set of functions
f N’ — End(R). For v € Ny, the coboundary map, ¢ : C%,, — Cvt! is given

Yau’

by the following
83" (f)(mo,...,m,) =" 0o f(my,...,m,) + Z(—l)if(mo, ey TG My e )
+ (=1 f(mo,...,m,_1) 0 U™,

We say that the v cohomology of the cochain complex (Cyq,,d) is the v Yau
cohomology of R, denoted by HY,,(R).

From the cochain complex it is clear that

HY, (R)={f € End(R): f¥ = VU"f for all v € N}

We define the group of Yau derivations of R, denoted by Y Dery(R), to consist of
the functions f € Cy,,(R) such that

fij) =¥ o f(i) + f(j) o ¥,

for all i,5 € N. We define the group of Yau inner-derivations of R, denoted by
YIDer)(R), to consist of the functions f : N — End(R) which are of the form

f(z):\ylog—go\yl’

for some g € End(R).
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The first Yau cohomology is given by the quotient,

Y Dery(R)
1 - A
Hyou(R) = Y IDery(R)

Yau tells us that there exists a canonical surjection,
Hy ,,(R) — HH*(ZIN], End(R)),
and for v > 3, there exists a canonical isomorphism,
Hy,,(R) = HH"(Z]N], End(R)),

where HH"(Z[N], End(R)) denotes the v*" Hochschild cohomology of Z[N] with
coefficients in End(R).

Yau defined his cohomology in order to study deformations of A-rings.

We let
s =g+t + 2y + ...

be a formal power series, in which each ] is a function
! N — End(R),

satisfying the following properties. We let %j denote ¥ (j).

L 4h(r) = W(r),
2.%1:0 forv>1,
3. pM(r) =Y whonl () fork,0>1andi>0,

4. YP(r) C pR for ¢ > 1 and p prime.

Yau calls ¥} a deformation of R.

Note that the Gerstenhaber and Schack’s definition we provided in [3.6] is very

similar to Yau’s definition but gives a different result. We would like to compare
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the results in the case when a; = 0 for ¢ > 1. We omitted the condition ¢! (r) C pR
for p prime, but introduced the condition ¥/ (rs) = 33; _ 47 (r)¢7_,(s). This last
condition makes things more complicated and may seem strange, but it is necessary
to ensure that

Wi (rs) = Wi (r)Wi(s).

Yau’s condition gives us ¢i € End(R). Gerstenhaber and Schack’s condition gives
us ¥! € Der(R, R') where R’ is the R-module with R as an abelian group and the

following action of R

(r,a) — ¥'(r)a, forr € R,a € R".



Chapter 5

Harrison cohomology of diagrams

of commutative algebras

5.1 Introduction

For this chapter we let I denote a small category. A category [ is said to be small
if the collection of morphisms is a set. We let ¢, j, k denote objects in I and we let

a:1— jand §:j — k denote morphisms in I.

Definition 5.1. A diagram of commutative algebras is a covariant functor
A: I — Com.alg,

where [ is a small category, and Com.alg is some category of commutative algebras.

We call I the shape of the diagram.

If A, B are two covariant functors from I to €om.alg, then a map of diagrams
is a natural transformation y : A — B. We denote the category of diagrams of

commutative algebras with shape I by Com.alg’.
Definition 5.2. An A-module is a functor M : [ — 2b such that for all ¢ € I we

have that M (i) € A(i)-mod and for all & € I we have

M(e)(a-m) = A(a)(a) - M(a)(m),
75
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for all a € A(i),m € M(i). We let A—mod’ denote the category of all A-modules.

5.2 Natural System

Let A : I — Com.alg be a diagram of a commutative algebra, and M be an

A-module. For any n > 0 there exists a natural system on [ as follows
Da = CIT:lTarr(A(Z'% CY*M<j)),

where (a : i — j) € I and M(j) is considered an A(i)-module via «. For any
(B:j—j') €I, we have f, : D, — Dg, which is induced by M(5) : M(j) —
M(j"). For any (v : ¢ — i) € I, we have v* : D, — D,, which is induced by
A(y) - A() — A(4).

5.3 Bicomplex

Let A : I — Com.alg be a diagram of a commutative algebra, and M be an
A-module. For each ¢ € I we can consider the Harrison cochain complex of the

commutative algebra A(i) with coefficients in M(i).

0
CHarr

(A(i), M(i)) — C}

Harr

(A1), M(i)) — CF

Harr

(A(), M(i)) — ...

We can use this to construct the following bicomplex denoted by C%;: (I, A, M):

Harr

Cliamn(LAM) = ][ Cli (AGi0)), 0" M),

Harr Harr
Q:ig—r...—lp

for p,q > 0. The map C%% (I, A, M) — C%19(] A, M) is the map in the Baues-

Harr Harr
Wirsching cochain complex, and the map C%4 (I, A, M) — C%THN (I, A, M) is the

product of the Harrison coboundary maps.
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Hi O?Iarr(A(w? M@)) _6> Ha:iﬁj CI?ZIarr(A<i)7 OC*M<j)) e
¢] -0

Hi Ol%larr(A(i>7 M@)) _6> Ha:iﬁ ] CIQ-Iarr(A<i)7 OC*M<j)) e

J
0 -0

. . P Nk .
Hi Oll-larr(A(Z>7 M@)) - Ha:i%j Cll-larr(A<Z)7 o M(])) -
Let (ay : 9y — ipy1) € I, and & = ... a9 @ ig — ipp1. Then the coboundary

map & : C4 (I, A, M) — C%19(T A M) is given by

+

M .

—
|

—_

SN—
x5
+
—

;H

k]

+

)

ol

+

-

Q

=

)

o

—

&

S

.......... --axq)

k
+ (_1)p+2M(O‘p+1>(fap ..... ao(T15 -+ 5 Tg)).

The coboundary map 9 : C%4 (I, A, M) — C%2(I, A, M) is given by

Harr Harr

I ap,ao (@1, Tgp1) =A(@)(@1) -+ fap,ao (T2, - - Tgt1)
—J—Zq:(—l)kf% 77777 ao(T1y o BTt 1s - -+, Ty)
+ —1)q+1fap ,,,,, ao(T1, -y xg) - Ala)(xgs1)-

Lemma 5.3. The maps 0 and § are coboundary maps.

9*=0=6
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Proof. O(f) = S5 (—1)k 0k (f) where

A(a)(zq) - fap 7777 ao(T2,y oy Tgt1) k=0,
(8k(f))(x1,...,xq+1) = fap ..... ao(xl,...,$k$k+1,...,I‘q+1> O< k <q+1,
fopao (X155 Tq) - Ala)(Tg41) k=q+1.

Japiroan (Alao) (1), - .-, Alaw)(24)) k=0,
<5k<f))(x17>xQ): faerl ,,,,, ALAK_1,... ao(wlwuaxq) 0<k<p+27
M(ap+1)(fap ..... ao(xlyw'vxq)) k=p+2.

9% = 0 = 62 follows from:
8kal=858k_1 0§l<k§q+2,

010; = 010k—1 0<I<k<p+2

Lemma 5.4. The coboundary maps 0 and § commute.

00 = 09.

The proof is given on the next page.
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Proof. Let f e C%e (I,A,M).

Harr

00(f) =A(@)(21) - fayir,.on (Ala0)(22), -, Alao)(2g41))

+ (_1)l+1[A(O‘)<:C1) ’ fap+1 ----- QU105 Q0 (3:27 <. ,l’q+1)

=0
+ (_1)p+2M<O‘p+1)fap ,,,,, a0 (T2, -+, Tqr1)]
q
+ ) (D [ fapr o (Alo) (1), - -, Alao) (Tarin), - -, Alao) (T441))
k=1
p
+ (_1)l+1fozp+1 ..... Q41 5ee05 000 (.131, vy TpLhg1y - v - 7mq+1)
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5.4 Harrison cohomology of diagrams of commu-

tative algebras

Let A : I — €om.alg be a diagram of commutative algebras, and M be an A-
module. We define the Harrison cohomology of A with coefficients in M, denoted
by Harr*(I, A, M), to be the cohomology of the total complex of Cy;. (I, A, M).

The spectral sequence of a bicomplex yields the following spectral sequence.
EPY = Hb o (I HE (A, M) = Harr?*4(1, A, M),

where HY,,..(A, M) is the natural system on I whose value on (« : i — j) is given
by Harr?(A(i),a*M(j)).

Definition 5.5. A derivation d : A — M is of the form d = (d;);c; where each
d; : A(1) — M(3) is a derivation of A(:i) with values in M (i) such that for all
(a 1 i — j) € I we have that M(a)(d;) = dj(A(a)). We denote the set of all
derivations of A with values in M by Det(A, M).

Lemma 5.6.
Harr®(I, A, M) = Der(A, M),

H%W(Iv H}{ar'r(A7 M)) = @et(A, M)

Definition 5.7. An additively split extension of A by M is an exact sequence of
functors

0 M-L1ox-2.4 0

where X : [ — Com.alg such that for all i € I we get an additively split extension
of A(i) by M(37).

A(i) —0

This means that there are additive homomorphisms s(i) : A(i) — X (i) for all
i € I such that s(i) is a section of p(i). The sections induce additive isomorphisms

M (i) ® A(i) =~ X (i) where addition is given by (m,a) + (m/,a’) = (m+m',a+d)
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and multiplication is given by
(m, ), ) = (a'm + am’ + fi(a, "), ad'),
where f; : A(i) x A(i) — M(i) is a bilinear map given by
fila,d') = s(i)(a)s(i)(a’) — s(i)(aa’).
Associativity in X (i) gives us
0=afi(d,d") — fi(ad',a") + fi(a,d'a") — fi(a,a")a".
Commutativity in X (i) gives us
fila,a") = fi(d,a).

For all (o : i — j) € I we identify M(j) with Ker(p(j)) and M(«) with the
restriction of X (a) to get a map €, : A(i) — M(j) given by

which satisfies the following properties:

1. €a(a) =0,
2. eala+d) =eu(a) +en(d),

3. eq(aa’) = A(a)(a)en(a’) + A(a)(a')eq(a)
+ fi(A(e)(a), A()(d')) — M()(fia, d)),

4. egala) = M(P)(eala)) + es(Al)(a)).
Two additively split extensions (X), (X’) with A, M fixed are said to be equivalent

if there exists a map of diagrams ¢ : X — X’ such that the following diagram

commutes.




Chapter 5. Harrison cohomology of diagrams of commutative algebras 82

For all i € I we get that ¢; : X (i) — X'(i) is a homomorphism of commutative
algebras. Hence ¢;(m,a) = (m + g;(a), a) for some g; : A — M such that

gila+d') = gi(a) + gi(a’),

/

fila,d') = fi(a,a’) = agi(a) — gi(ad) + gi(a)d’.

For all o € I we get that

ca(a) = €x(a) = M(a)(gi(a)) — g;(A(e)(a)).
We denote the set of equivalence classes of additively split extensions of A by M
by AErt(A, M).

An additively and multiplicatively split extension of A by M is an additively split
extension of A by M

such that for each i € I the arrow p(i) is additively and multiplicatively split.

We denote the set of equivalence classes of additively and multiplicatively split
extensions of A by M by IMErt(A, M).

Lemma 5.8.

Harr' (I, A, M) = A€xt(A, M).

Proof. A 1-cocycle is a pair (f; : A(i) x A1) — M(i))ier and (e @ A(i) —
M(5))(a:imjjer- We get an additively split extension of A by M given by taking

the exact sequence
0O— M —>MpA——A——0

where addition in M @ A is given by (m,a) + (m/,a’) = (m + m’,a + a') and

multiplication is given by

(m,a)(m',d') = (a'm+ am’ + fi(a,d’),ad").
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For all (a:i — j) € I set the map (M & A)(a) : (M B A)(i) = (M & A)(j) to be
(M @ A)(a)(m,a) = (M(a)(m) + cala), A(a)(a)).

Given two 1-cocycles which differ by a 1-coboundary, then the two additively split

extensions we get are equivalent.

Given an additively split extension of A by M

0 M-L1ox-2.4 0

there are additive homomorphisms s(i) : A(i) — X (¢) for all ¢ € I such that s()

is a section of p(7).

For all i € I we define the maps f; : A(i) x A(i) — M(i) to be given by

fila,d') = s(i)(a)s(i)(a’) — s(i)(aa’).

For all (a:i — j) € I we define the maps ¢, : A(i) — M(j) to be given by

Then (f; : A(i) x A(i) — M(7))ier and (eq @ A(i) = M(J))(a:isjer give us a
1-cocycle. Given two additively split extensions which are equivalent, then the

two 1-cocycles we get differ by a 1-coboundary. O

Corollary 5.9.
HEW(Ia Hllﬁlarr(A7 M)) = m@;f(A, M)

Definition 5.10. An additively split crossed extension of A by M is an exact

sequence of functors

such that for all i € I we get an additively split crossed extension of A(i) by M ().

(4) p(i) (4)

ICRy ) p— (5.1)

0— M(5) 2% ¢y (i) 22 o i)
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This means that all the arrows in the exact sequence [5.1] are additively split. We
let meACross( A, M) denote the connected components of the category of additively
split crossed extensions of A by M.

An additively and multiplicatively split crossed extension of A by M is an exact

sequence of functors

0 Moo, 2oy, A 0

such that for all i« € I we get an additively and multiplicatively split crossed
extension of A(i) by M (1),

0—— M) 2% o (i) 2 oy (i) 2 A ——0 (5.2)

where v(i) and p(7) are additively and multiplicatively split. We let mo9tC€ross(A, M)
denote the connected components of the category of additively and multiplicatively

split crossed extensions of A by M.

Lemma 5.11. If v : Cy — A is a morphism of diagrams of commutative algebras
then
Harr'(I,7y: Cy — A, M) = 7y2A€ross(7 : Cy — A, M),

where Harr*(I,v : Co — A, M) and mU€ross(y : Cy — A, M) are defined as

follows. Consider the following short exact sequence of cochain complezes:

(I, A, M)~

Harr

0—Cj

Harr

(I,Cy, M) > Coker(y*) — 0,

*
where C; .

(I, A, M) denotes the total complex of the bicomplex (Cyn. (I, A, M).

(I,v:Cy— A, M) := Coker(v*). This allows

us to define the relative Harrison cohomology

We define the cochain complex C%;

arr

Harr*(I,v:Cy — A, M) := H*(Cyy,,.(I,v: Coy — A, M)).

We let A€ross(y : Cy — A, M) denote the category whose objects are the additively
split crossed extensions of A by M

L0y~ A 0
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with v : Cy — A fized. A morphism between two of these crossed extensions
consists of a morphism of diagrams of commutative algebras hy : C7 — C} such

that the following diagram commutes.

0 M-, 2oy, A 0
| ]
0—M-Yocr 2o, A

Note that A€ross(y : Cy — A, M) is a groupoid.

Proof. We use the method used in [I3] for the crossed modules of Lie algebras.
Given any additively split crossed module of A by M,

¢

0 M ClpOOWA 0,

we let V' = Ker~y = Im p. For all objects i € I there are linear sections s; : A(i) —
Co(i) of v and o; : V(i) — Ci(i) of p(i) : C1(i) — V(i). We define the maps
gi - A1) ® A1) — C4(i) by:

gi(a,b) = o;(si(a)s;(b) — s;(ab)).
We also define the maps w; : Cy(i) — C4(7) by:
wi(c) = ai(c — sii(c))-
By identifying M with Ker p, we define the maps f; : Cy(i) ® Co(i) — M (i) by:
Files€) = Gi(0), () + n(©) + () — wile) () — wiled).

Since g;(c, ) = gi(c, ¢), it follows that f;(c,c) = fi(c,c) and so f; € C%,..(Co(i), M (7).

arr(

For all morphisms (a : i — j) € I we define the maps ¢, : A(i) — C1(j) by:

Ga(a) = 0;(Co(a)(si(a)) = 5;(A(@)(a))).
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By identifying M with Ker p, we define the maps e, : Co(7) — M(j) by:

ea(¢) = wj(Co(a)(c)) = Cr(@)(wilc)) = galric))-

Note that e, € Chapr(Coli), a* M (5)).

arr (

For all objects i € I we define the maps 6; € C%, . (A(i), M(i)) by:

arr

0i(7,y,2) = si()gi(y, 2) — gi(wy, 2) + gi(x, y2) — gi(y, v)si(2).

For all morphisms (« : ¢ — j) € I we define the maps 9, € C%
by:

A(i), o M (7))

arr (

Jol,y) =g;(A(a)(x), Ala)(y)) — Ci(a)gi(z,y)
+ Co(@)(8:(7))qa(y) — qa(ry) + ga()s;(A()(v))-

For all pairs of composable morphisms (Sa : i — j — k) € I we define the maps
Msa € Chigr (A(D), (Ba)*M(k)) by:

Nga(®) = —qa(A(@)(2)) + gsa(r) — C1(B)(ga(2)).

We let f = (fi)uen and e = (€q)(a:isjer)- We also let 0 = (6;) e,
¥V = (Va)(aisjer and 1 = (1ga)(Basi—j—ker)- Consider the following commutative
diagram.

0——=C1!

Harr([7A7 M)i)cllfarr<]7 C(]?M) Lclliarr(lvfy : CO — A7M) —0

| lé )

(I, A, M) -2 (I,Co, M) —"=C%. (I,v:Cy— A, M)—>0

Harr Harr

0— C%Iarr
Note that (f,e) € Ck,,.(I,Co, M) and (6,9,n) € C%_. (I, A, M). A direct calcu-
lation shows that J(f,e) = v*(6,9,n). We also have that dx*(f,e) = k*0(f,e) =
K*y*(0,9,m) = 0, this tells us that x*(f,e) is a cocycle. If we have two equivalent

arr

additively split crossed modules then we can choose sections in such a way that
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the associated cocycles are the same. Therefore we have a well-defined map:

ACross(y: Co — A, M) — H?

Harr

(I,v:Co— A M).

Inversely, assume we have a cocycle in C},,..(I,v: Co — A, M) which we lift to a
cochain (f,e) € Clppr(I,Co, M). Let V = Ker+y. For all objects i € I we define
Ci(i) = M(i) x V(i) as a module over k with the following action of Cy(i) on
C1(4):

c(m,v) := (em+ fi(c,v),cv).

The maps C(«) : C1(i) — C1(j) are given by:
Ci(a)(m,v) == (M(a)(m) + ea(v), Co(@)(v)).

It is easy to check using the properties of f; and e, that this action is well defined
and together with the maps p; : Cy(i) — C1 (i) given by p;(m,v) = v, we have an
additively split crossed module of A by M. m

Lemma 5.12. If k is a field of characteristic O then

Harr?*(I, A, M) = mA€ross(A, M).

Proof. From the definition of Cfj;

sequence:

(I,v: Cy — A, M) we get the long exact

arr

Harr'(I,A, M) Harr*(I,Co, M) —— (5.3)

Harr*(I,v: Cy — A, M) —— Harr*(I, A, M) —— . ..

Given any additively split crossed module in moACross(A, M),

0 M-~y 4 0

we can lift v to get a map Py — A where F, is free as a diagram of commutative

algebras. We can then use a pullback to construct P; to get a crossed module
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where the following diagram commutes:

0 M-~y 4 0

|11

0 M P F A 0

These two crossed modules are in the same connected component of moA€ross( A, M).
By considering the second crossed module in the long exact sequence, we replace

Cy by Py to get the new exact sequence:
0——= Harr*(I,y: Py = A, M) —— Harr*(I, A,M) —=0 (5.4)

since Harr'(I, Py, M) = 0 and Harr?(I, Py, M) = 0.

The exact sequence tells us that every element in Harr*(I, A, M) comes
from an element in Harr'(I,v : Py — A, M) and the previous lemma tells us
that this comes from a crossed module in mA€ross(A, M). Therefore the map
moACross(A, M) — Harr?*(I, A, M) is surjective.

Assume we have two crossed modules which go to the same element in Harr?(I, A, M),

0—>M—2oC Loy -1 A—0, (5.5)

0—=M-2c oo oA, (5.6)

There exist morphisms

0 J\‘Td’clpco”z‘a‘l 0
0 Pl PO 07

0—=M-2oc o A

N

0 M PQ PQ A O,

where P, is free as a diagram of commutative algebras and P;, P, are constructed

via pullbacks. These give us two elements in Harr*(I,v : Py — A, M) which
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go to the same element in Harr?(I, A, M). However the exact sequence tells
us that the two crossed modules 5.5 and have to go to the same element in
Harr'(I,y : Py — A,M). The previous lemma tells us that the two crossed
modules 5.5 and [5.6| go to the same element in A€ross(y : Cy — A, M) which is a

groupoid, so there is a map P, — P; which makes the following diagram commute:

0 M-~y A 0

0 M P F
0 M P, F

G/ o/ 0

0 M7

Therefore the two crossed modules [£.5] and [B.6] are in the same connected com-
ponent of mACross(A, M) and the map meACross(A, M) — Harr?*(I, A, M) is

injective. [l

Corollary 5.13. If k is a field of characteristic 0 then

He (1, Hiorn (A, M) 22 meDMeross(A, M).

Proof. Given an additively and multiplicatively split crossed extension of A by M
we get that (with the notation of lemma [5.11)) g; = 0 for all ¢ € I. Since p(i) is
additively and multiplicatively split for all ¢ € I it follows that f = 0, # = 0 and
¥ = 0. Therefore 7 is a cocycle in C%yy, (I, Hi,r (A, M)).

Inversely, the construction given in lemma [5.11] gives us an additively and multi-

plicatively split extension. O]

5.5 Harrison cohomology of V-rings

Let R be a U-ring, and M € R—mo0y. Let I denote the category with one object

associated to the multiplicative monoid of the natural numbers N™“  For any
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7 > 1, there is a natural system on [ as follows:

C]

Harr

(R, f*M),

where f*M is an W-module over R with M as an abelian group and the following
action of R
(r,m) — W/ (r)ym, for r € R,m € M.

For u € FI (the category of factorisations in I), we have u, : Dy — D,,; which is
induced by ¥* : f*M — (uf)*M. For v € FI, we have v* : Dy — Dy, which is
induced by ¥V : R — R.

The bicomplex in section [5.3] becomes

Clliarr(R7 M) ﬁb- HieN ClliaM"(R? Z*M) L Hi,jeN Cllfarr(R7 (Zj>*M) ﬁb- o

d —d d

CIQJWT(R7 M) _b> HieN CIQJarr<R7 Z*M) _b> Hi,jeN CI2{arr(R7 (Zj>*M) _b> o

d —d d
CHarr(R7 M) HzeN CHar <R7 Z*M) _b>Hi,jeN CHar'r(R7 (Zj>*M) _b> te
d —d d

with
d: H HarrRtM) H O;JZirRtM)

t=ty...t;EN t=ty...t;EN

with the product being over i-tuples (¢1,...,t;) and t is the composite, is given by

Afey,p (@1, i) =2 (@) fo (22, 40)
j
+Z(_1)kft1 ..... (T TR g1, -, Tjy)

k
+ (_1)j+1ft1 ----- t; (xlv cee 7xj)qjtlt2mti (ijrl)'
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and

b : H C;Iarr(R7 t*M) - H O;Ia'r'r(R’ t*M)7

t=t1...t; EN t=t1...t;4+1EN

being given by

bftl 77777 ti+1(l’1,...,l’j) :@tlftQ 77777 ti+1<l’1,...,l’j)

We let Harri, (R, M) denote the i'" cohomology of the total complex of the bi-
complex described above.

Theorem 5.14. There exists a spectral sequence
B2 = HY (I HE (R, M)) = Harrh (R, M).

where H;,,. (R, M) is the natural system on I whose value on («: i — j) is given
by Harrd(R,a*M).

Theorem 5.15.
Harry, (R, M) = Dery(R, M),

Harry, (R, M) = AExty (R, M),
Harry (R, M) = mgACrossy (R, M).

5.6 Harrison cohomology and A-rings

Let R be a A-ring and M € R — mo0,.
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92

Conjecture 5.16. There exists a cochain bicomplex which starts:

b

Cll—Harr (E’ M) — C%—Harr(ﬁ7 M)) - C?}—Harr (E7 M)) -

[

Olz—Harr (E7 M) ; CQQ—HaM‘ (B7 M))

dy _dQL

C?fHarr (E7 M)

dy

where the first column is the Harrison cochain complex.

{—Harr (Ev M) = C;{(zrr (EJ M)
For allt>1 and 7 > 2 we have that

(&.M)c I Maps(R®, M).

ni,...,n;—1€N

Ci

j—Harr

For example, when j = 2, we have

Cy ptape (B, M)) = {f € [[ Maps(R, M)

neN
n

Falr+5) =Y ()N (s) + fi(s)A" ()]}

j=1
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C3 pare (B, M)) = {f € [[ Maps(R @ R, M)|fu(r,s) = fuls, 1),

neN
n

Fal(r,s) + (8, w) =) [f5(r, ) A" (tu + ru + ts)

=1
+ fi(t, N (rs 4+ ru+ ts) + fi(r, u) NV (rs + tu + ts)+
fi(t, )N (rs + ru + tu)]}.

The coboundary maps dy : Co_gorr (B, M) — CyT5 (R, M) are given by

(@Dl vrisn) =SB )

J=1

)
+ an(rb sy T4, - 7Ti+1)
j=1

" APy i
+ ag?(nf;;n P

(b3(fNnam(r) = frn (A" (r Zfz aN )) ZAj(fn(T))Am‘j(A"(r))-

We let Harri (R, M) denote the i cohomology of the bicomplex above. Then we
get the following
Harr(R, M) = Dery(R, M),

Harry (R, M) = AExty\(R, M).
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5.7 Gerstenhaber-Schack cohomology

In the paper [7] Gerstenhaber and Schack describe a cohomology for diagrams of
associative algebras which we denote by Hg(I, A, M). Let I = {i,j,k,...} be a
partially ordered set. We can view [ as the set of objects of a category in which
there exists a unique morphism ¢ — j when ¢ < 7. They define a diagram to be
a contravariant functor A : I? — Com.alg. They define an A-module to be a
contravariant functor M : I? — b such that M (i) € A(i) — mod for all i € T
and for each ¢ < j the map M(i — j) is an A(j)-module homomorphism where
A(7) is viewed as an A(j)-module via the morphism A(i — 7). If we consider A
as a covariant functor A : I — Com.alg and M as a covariant functor M : [ — b

then we can apply the theory we developed earlier.

The bicomplex described by Gerstenhaber and Schack coincides with our bicom-
plex C%4 (I, A, M). Therefore H.o(I, A, M) = Harr™(I, A, M) for n > 0. There-

Harr

fore we get a new spectral sequence

EPt = | Y (L HET (A, M) = HEH(I, A, M),

Harr

where H%;,,..(A, M) is the natural system on I whose value on (« : i — j) is given
by Harri(A(i),a*M(5)).



Chapter 6

André-Quillen cohomology of

diagrams of algebras

In this chapter, let € denote a category with limits, and I denote a small category.

We have already seen that for algebraic objects, we can get cohomology from
monads and comonads. In this chapter, we define a cohomology for diagrams of
algebras. Our approach can be described as follows. First, we fix a small category
I. A diagram of algebras is a functor I — Alg(7T"), where T" is a monad on sets. For
appropriate T, one gets a diagram of groups, a diagram of Lie algebras, a diagram
of commutative rings, etc. The adjoint pair Alg(T) —= Sets yields a comonad
which we denote by G. We can also consider the category [y, which has the same
objects as I, but only the identity morphisms. The inclusion Iy C I yields the
functor Sets! — Sets™ which has a left adjoint given by the left Kan extension.
We also have the pair of adjoint functors lg(T)! = Gets’ which comes from
the adjoint pair Alg(7T) —= Gets . By gluing these diagrams together, one gets
another adjoint pair
Alg(T)! —= Gets™.

This adjoint pair yields a comonad which we denote by G;. We will prove that
Alg(T)" is monadic in Gets™ and the right cohomology theory of diagrams of
algebras is one which is associated to the comonad G;. These cohomology theories
are denoted by Hg (A, M).

95
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6.1 Base change

Let € be a category, and X be an object in €. An X-module in € is an abelian
group object in the category €/X

X —mod := Ab(€/X).

Theorem 6.1. Let f : X — Y be a morphism in &€, then there exists a base-change
functor f*:Y —mod — X — mod via pullbacks.

Proof. The product in the slice category is given by pullbacks. The functor we are
going to use is f*: €/Y — €/X given by pullbacks.

M)—M

If M € Y —mo0d then f*(M) has a canonical X-module structure. In set-theoretic

notation,

fr(M)={(z,m)|lz € X, me M, f(z)=p(m)},
M) xx f1(M) = {(z,m,m)|x € X, m,m" € M, f(x)=p(m)=p(m)},
fr(M) xx fr(M) = f*(M xy M).
Consider the following commuting diagram.

f*(M xy M)—=M Xy

mult
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The unique morphism f*(mult) : f*(M xy M) — f*(M) exists by the universal
property of pullbacks. The isomorphism f*(M) xx f*(M) ~ f*(M xy M) and

this unique morphism yield multiplication
fr(muldt) = f*(M) xx f*(M) — f*(M),

which gives an abelian group object structure on f*(M). O]

6.2 Derivations

For M € X — mo0, one defines a derivation from X to M to be a morphism
d : X — M which is a section of the canonical morphism M — X. Let Der(X, M)
denote the set of derivations d : X — M. This is a special case of [2.2] and there is

an abelian group structure. We will require the following useful theorem later.

Theorem 6.2. If X =[], .; X, and M € X — mod, then

ael

Der(X, M) = | [ Der(X,, M,),

acl

where M, is the X,-module produced from M by the base-change functor from the
morphism 1, : X0 — X.

Proof. From the definition of the coproduct one has a morphism i, : X, — X.

Using this one gets M, € X,-mo0 via the following pullback diagram.

M
‘
X

j
<~ M,

Lpa
- X,
(2%
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Let f be a section of p, this means that pf = idx. Consider the following diagram.

The diagram commutes since pfi, = idxi, = i4idx,. By the universal property

of pullbacks p, fo = idx,. So if f is a section of p then f, is a section of p,.

Conversely, let f, be a section of p,, this means that p, f, = idx,_. By the definition
of the coproduct there exists a unique morphism f such that the following diagram

commutes.

M

X‘TXQ

This means that fi, = j,fo. Composing with p on the left gives us that pfi, =

Piafa = taDafa = taldx, = i, Thus the following diagram commutes.

idx
X X
) { pf
(2e .
T

Xa
The universal property of the coproduct says that pf = idx. Hence f is a section
of p. ]
We will require the following useful lemma later.

Lemma 6.3. For all objects Z € €', for M € G{(Z) —mod, and o : i — j in the

small category I, one has

Der(G(Z(i)),a"M(j)) = [ pjlewri(m),

meU Z (i)
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where p; is the canonical morphism p; : M(j) — GZ(j) and ~; is the inclusion
vi :UZ(1) = GZ(1).

Proof. The derivations Der(G(Z(i)), a*M (j)) are the sections of p,, in the following
pullback diagram.
a*M(j) —— M(j)

| |

UZ(’Z)(T GZ(Z) T) GZ(])
By definition, UZ(i) is the basis of the free object GZ(i).
Der(G(Z(3)),a"M(j)) = {s: UZ(i) = M(j)|owvy; = p;s, sis a set map.}

= [ »i'ani(m).
)

meUZ(i

6.3 Natural system

We require the following useful theorem.

Theorem 6.4. Let A€ ¢! and M € A-mod. Ifa:i — j is a morphism in I then
M(j) € A(j) — mod and

Der(A, M)(a) = Der(A(i), oM (j)),
defines a natural system on I.

Proof. Start by fixing A and M, then let D(«) denote Der(A, M)(«). Let v, a, 8 €
I such that

We are going to show that we have induced maps as follows.

D(ay) <= D(a) £~ D(Ba) .
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Let s € D(a), then the following diagram commutes with ps = id4(;), and o* M (j)

is a pullback, a*M(j) € A(i) — mod.

0 M(j) (i)
All) " A(j)

Consider the following commuting diagram.

M{(i)
M(x)

EI'

a”M(j) M(5)
W
%3!7‘ H'
s|pla*B* M (5" 6*M(y>7 M(j")
A(i) e, A~ AU

Let s’ : A(i) — o*B*M(j’) be the map s’ = 7s. Hence

p'Ts = ps = id ).

So define f*(s) = s'. Hence s’ € Der(A(i), a*f*M(j')) = Der(A(i), (Ba)*M(5')).
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Consider the following commutative diagram, with s a section of p.

(av)*M(j) a* M(j) M(j)
Al —20 A — - A()

There exists a unique s' : A(i') — (ay)*M(j) which is a section of p’ which
would make the above diagram still commute. So define v*(s) = s’. Therefore
s' € Der(A(#), ()" M (7). 0

Corollary 6.5. For q > 0 there exists a natural system H(A, M) on I whose
value on (o : i — j) is given by HL(A(Q), a* M(j)).

This corollary allows us to define, for fixed ¢ > 0, the Baues-Wirsching cohomology
Hiyw (I, HY(A, M)) of I with coefficients in the natural system H?(A, M).

Furthermore, we can consider a natural system on the category of chain complexes
Chaincompler as follows. To each morphism a : ¢+ — j € I we assign the chain
complex Der(G.(A(i)),a*M(j)). This gives us a functor,

D : FI — Chaincompler,

where FZ denotes the category of factorizations in 7.

This natural system gives rise to a cosimplicial object in Chaincompley:
Hi D(Zd1> I Ha:i%j D(O{) —

which gives rise to a bicomplex described in the next in the next section.
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6.4 Bicomplex

Let G be a comonad in €, let A € ¢/ and M € A — mod. Then we can construct
the following bicomplex denoted by C**(I, A, M).

CPUI,AM)= ][] Der(G"™(A(ip)),a"M(i,)).

a:ig—r...—ip

The map CP4(I, A,M) — CPTH4¢([, A, M) is the map in the Baues-Wirsching
cochain complex, and the map CP4(I, A, M) — CP9T(I, A, M) is the product of

maps in the comonad cochain complex.

9 -0
[T, Der(G3(A(i)), M (i) —= [To.iy; Der(GP(A(3)), a* M (j)) —— ...
o -0
[T, Der(G2(A(i)), M (i) =~ TT....,, Der(GX(A(i)), a* M(j)) =~ ...
5 -0

[T; Der(G(A(i)), M(i)) —*= Lo, Der(G(A(0), a"M(j)) —— ...

This bicomplex lives in the category of abelian groups. We let H*(I, A, M') denote
the cohomology of the total complex of C**(I, A, M).
We will need the following useful lemmas.

Lemma 6.6. If A is G;-projective, then A(i) is G-projective for all i € I.

Proof. Consider A = G;(Z) : I — € where G;(Z)(i) = [[,.,,G(Z(x)). Since
G(Z(x)) is G-projective, it follows that [], ., G(Z(z)) is G-projective for all i €
1. [
Lemma 6.7. H°(I, A, M) = Der(A, M), furthermore, if A is G-projective then
H™(I,A,M) =0 forn>0.

Proof. 1t is sufficient to consider the case when A = G;(Z). When A = G;(Z), it
is known that A is G;-projective. By lemma and lemma [2.12 one gets that
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the vertical columns in our bicomplex are exact except in dimension 0. There is
a well known lemma for bicomplexes which tells us the cohomology of the total

complex is isomorphic to the cohomology of the following chain complex.

[L Der(A(z), M (i) — Ha:Hj Der(A(i),a*M(j)) — . ..
It is known that the cohomology of this cochain complex is just Hyy, (1, Det(A, M)).

To prove the first statement it is enough to show that

0 — Der(A, M) — [ [ Der(A(i), M(i)) — [] Der(A(i), a* M(4))
i ati—j
is exact. Let ¢ € []; Der(A(i), M(i)) and (o : ¢ — j) € I, then dip(a : i — j)
a, (i) — a*(j). Therefore dip(a : i — j) = 0 if and only if (i) = a*(j).
However o,y (i) = a*(7) if and only if M (a)y(i) = ¢¥(j)A(a), i.e. the following

diagram commutes.

¥ (@)

A1) — M (i)
LA(O[) LM(O{)
A(J) =7 M)

(4O))
Hence ¢ € Der(A, M). This tells us that the sequence above is exact. Hence
HO(I,A, M) =Der(A, M).

To prove the second statement, let us consider

D(a:i— j):=Det(A(i),a"M(j))
— Dex( [ 62().0"M()
By—i

= ][ Dex(GZ(y), 57" M(j)), by lemma (.2}

Biy—i

Define D, for a fixed object y € I to be a natural system on I (using theorem (6.4)
given by:
Dy(a:i—j)= [] Der(GZ(y), 3 " M(j)).

By—i
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So one has that
D(i — j) = [ Dy(i = J).

Y

Hence,
Hiw(1,D) = [ [ Hpw (1, D).

yel

Now consider the cochain complex Cfyy, (1, D).

Cow(, Dy) = TI; Dyli = i) —=1]nis; Dy(i = §) — ...

= ILiIlsy: Der(GZ(y), 5M(i))

Ha:i—>j HB:y—)z‘ Der(GZ(y), B*a* M (j)) — ...

UZ(y) forms a basis of the free object GZ(y), applying lemma one can rewrite

the cochain complex as

CEW([7 Dy) = Hyﬁi HmEUZ(y) Aﬁ](m) Ha:i%j Hﬁ:y%i HmGUZ(y) Aaﬂj(m) ce

where Ag;(m) = preimage of fy(m) in the projection M (j) — GZ(j). This allows

us to rewrite the cochain complex as

Cew(l,Dy) = H Chw /1, Fn)

meUZ(y)
where F, : y/I — Ab is a functor defined by F,,(8:y — 1) = Agjm)-

Since the category y/I contains an initial object id, : y — y, by lemma the

cohomology vanishes in positive dimensions. O

Theorem 6.8. Hp (A, M) = H*(I, A, M),
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Proof. Consider the bicomplex C*(I,G(A)., M) shown below.

C2(I1,G(A), M) —— C*(I, G2(A), M) —— C(I, G3(A), M) —— - - -

CM (I, Gy(A), M) —= CM(I, G2(A), M) —= CM(I, G3(A), M) —= - - -

CO(I, G(A), M) —= COI, G2(A), M) —= CO(I, G¥(A), M) —= - - -

We are going to show that
H*(I,A, M) = H* (Tot(C*(I,Gr(A)s, M))) = Hg (A, M).
Since GY(A) is G-projective, lemma tells us that the vertical cohomology

@2t(G§(A), M)a n =0,

0, otherwise,

H™"(C*(I,GY(A),M)) = {

so each column of the bicomplex C* (I, G;(A)., M) is exact except at C°(I, G}(A), M).

Therefore by the spectral sequence argument

H™ (Tot(C*(I1,G(A)e, M))) 2H"(Der(G(A), M) — Der(Gi(A), M) — --+)
=HE (A, M).

We are now going to compute the horizontal cohomology. From the definition of
C*(I, A, M) we see that each row of the bicomplex C*(I, G;(A)., M) is a product
of cochain complexes of the form Der(GPG(A). (i), a*M(j)).

Consider Gr(A), — A which is an augmented simplicial object. For all objects
i € I we have Gy(A).(i) — A(i) which is also an augmented simplicial object.
Applying the forgetful functor U : Alg(T) — Gets we get UG,(A).(i) — UA(i)
which is contractible in the category Gets. Then applying the free functor F' :
Sets — Alg(T) we get GGr(A).(i) = GA(7) which is contractible in the category
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Alg(T"). Repeated applications of the functors U and F give us GPG(A).(i) —
GPA(i) which is contractible in the category lg(T"). For any arrow v : ¢ — j in [
we can apply the functor Der(—, a*M(j)) to get a contractible cosimplicial abelian
group Der(GPA(i), a*M(j)) — Der(GPG(A).(i),a*M(j)). Therefore each row of
the bicomplex C*(1, G (A)., M) is exact except at CP(I,G(A), M). Therefore

CP(I,A, M), n=0,

0, otherwise.

H"(CP(I,Gr(A)y, M)) = {
Therefore by the spectral sequence argument
H"(Tot(C*(1,G;(A)e, M))) = H* (C*(I,A,M)) = H" (I, A, M).
O

Now one has both a global cohomology, Hg (A, M), and a local cohomology,
HE(A(G), M(i)). One can ask how these two are related; the answer is given

by the local to global spectral sequence.
Theorem 6.9. There exists a spectral sequence

EY = HY (1, HY(A, M) = ng‘I(A, M),

where HY(A, M) is a natural system on I whose value on (o : i — j) is given by
HL(A(), 0" M(j))

Definition 6.10. An extension of A by M is an exact sequence of functors
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Two extensions (X), (X') with A, M fixed are said to be equivalent if there exists

a map of diagrams ¢ : X — X’ such that the following diagram commutes.

0 X 0
e
0—=M—X' 0

We denote the set of equivalence classes of extensions of A by M by €rt(A, M).
Theorem 6.11. Hg (A, M) = Et(A, M).

Proof. Suppose we have a free resolution P, of A and an extension representing a
class in Ert(A, M).
0 M= XA 0

The map u is a surjection and Fj is free, so there exists a lift h : By — X which

makes the following diagram commute.

0 M—sX-%“s A 0
A
‘P% cp(lJ h H
—=P ——=PFP —-A——0
©3 o1

Then we can get a map d =i~ (hp) — heol) : PL — M.

d is a derivation, and d is also a 1-cocycle in Det(P,, M) and defines a class in
HéI(A, M). This class is independent of the choice of lifting h. This gives a map
O Ert(A, M) — HéI(A, M).

Conversely, given a derivation D : P, — M we let

(50%70)
X:COker(H:;PO@M).
(¢6,0)

The cokernel is in the category A — mo0, and we let p : By @ M — X be the
canonical projection. If D is a 1-cocycle in Det(P,, M) then we obtain an extension
in €rt(A, M) where i : M — X is given by i(m) = p(0 @ m) and u : X — Ais
given by u(p(y & m)) = e(y).
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This procedure gives us an inverse to . O]

Definition 6.12. A crossed extension of A by M is an exact sequence of functors

0— M —>C) —=Cy—">A—0
such that for all i € I we get a crossed extension of A(i) by M (i)

w(i) (@) 7 (i)

Co(i) = A(3) ——=0

0 — M (i) Cy (i) -2

We let mp€ross(A, M) denote the connected components of the category of ad-
ditively split crossed extensions of A by M.

Lemma 6.13.
HE (A, M) = myCross(A, M).

Proof. We are going to show that the crossed extensions are equivalent to the
simplicial groups whose Moore complex is of length one. Given a crossed extension

we have a crossed module

C, 25 (.

Let Xo = Cy and X; = C; @ Cy where addition is given by (¢1,¢o) + (di, dy) =
(¢1+dy, co+dy) and multiplication is given by (c1, ¢o)(dy, do) = (0, codo+I(c1)dy +
cody +docy). For all o : i — j then we have X («)(co, do) = (C1(a)(e1), Coa)(cop))-
This gives us that X; is a diagram of algebras. We set d; : X7 — X, to be
di(c1,¢9) = ¢o and dy : X7 — Xp to be do(eq,¢9) = 9(c1) + . Then dy is a natural

transformation.

We define the category € to be the category whose objects are the elements of
Xy and whose morphisms are the elements of X;. The source of the morphism

(c1,¢0) € € is given by do(c1, ) = O(c1) + ¢ and the target of (¢1,¢p) € € is
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given by dj(cy,¢p) = ¢o. The composable morphisms in € are pairs of morphisms
(c1,¢0), (], cf) such that ¢ = dcy + ¢o. The nerve of the category € is a simplicial

group whose Moore complex is
. .—>O—>Kerd1—>C’0,

which is of length one.

Let K, be a simplicial object whose Moore complex is of length one. Then the

Moore complex

do
Ker dl —_— K(),
is a crossed module.

The category of diagrams of algebras is exact and so the results of Glenn [§] tell
us that HéI(A, M) classifies the simplicial groups whose Moore complexes are of

length one.

6.5 Cohomology of diagrams of groups

In the paper by Cegarra [6], the cohomology of diagrams of groups is described,
which we denote by H¢, (G, M). A diagram of groups is a functor G : I — &p
where [ is a small category and &tp is the category of groups. A G-module is a
functor M : I — b such that for all objects i € I we have that M(i) € A(i) —mod
and for all morphisms (« : i — j) € I we have that M(a)(gm) = G(a)(g) -
M(a)(m) for all g € G(i) and m € M(i).

A derivation of G into M is a natural transformation d : G — M such that
d(i) : G(i) — M(i) is a derivation of the group G(i) into M(i). We denote the
abelian group of all derivations of G into M by Der;(G, M). When G is locally
constant then Hg;rl(G, M) = R"Der;(G, M) and the following spectral sequence
exists.

EY = Hpy (I HUH(G, M) = HEST (G, M),
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where H?(G, M) is a natural system on [ whose value on (« : i — j) is given
by HY(G(i),a*M(j)). So when G is locally constant the cohomology described
by Cegarra coincides with the André-Quillen cohomology described above with a

dimension shift.



Chapter 7

André-Quillen cohomology of

V-rings and A-rings

7.1 Cohomology of V-rings

Let I denote the category with one object associated to the multiplicative monoid
of the nonzero natural numbers. We can consider U-rings as diagrams of commu-

tative rings; W-rings are functors from I to the category of commutative rings
R : I — Com.tings.

Therefore we can use the theory we developed in the previous chapter.

We are now going to construct the free W-ring on one generator a. Let A be the
free commutative ring generated by {a;|i € N}. Let the operations ¥¢: A — A be
given by U(a;) = a;j, for i, j € N. Then A is the free ¥-ring on one generator.

Lemma 7.1. If R and S are U-rings, then R® S with ¥': R® S — R® S given
by W(r,s) = (U¥(r), ¥'(s)) is the coproduct in the category U — rings.

Proof. The coproduct of two commutative rings is given by the tensor product,

so we only need to check the W-operations. There is a unique W-ring structure on

111
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R ® S such that
R— R®S, r—rel,

S—>R®S, s—1® s,

are homomorphisms of W-rings given by
Vi(r@s) =0 (rel)(les)
=V (re )V (les)

= (V'(n e 1o ¥(s))
= Ui (r) ® U'(s).

O

Corollary 7.2. Let A be the free commutative ring generated by {a;,b;, ..., z;|i €
N}, Let the operations W' : A — A be giwen by V'(a;) = aij, V'(b;) = bij, ...,
Ui(x;) = x4 fori,j € N. Then A is the free U-ring generated by {a,b, ..., z}.

It is well known that there is an adjoint pair of functors

F
Gets __ Com.tings,
U
where U is the forgetful functor and F' takes a set S to the free commutative ring
generated by S. The adjoint pair gives rise to a comonad G on €om.rings which is
monadic and the cohomology with respect to this comonad is the André-Quillen

cohomology of commutative rings.

The adjoint pair gives rise to another adjoint pair

Fy

Gets Com.tings’ |

Ur

where Uy is the forgetful functor and F7 takes a set S to the free U-ring generated
by S. This adjoint pair yields a comonad G; on €om.tings’ = U — vings which is
monadic. Note that for any R € W — rings, we get that G;(R) = | |,cy G(R). We
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define the cohomology of a U-ring R with coefficients in M € R — mody to be
Hy(R,M) = Hg, (R,M) = Hg, (R, Dery(—, M)).

From theorem it follows that for any n > 0, there is a natural system on [ as
follows
Dy = Hjjo(R, M),

where M/ is an R-module with M as an abelian group with the following action
of R
(r,m) +— W/ (r)ym, for r € R,m € M.

For any morphism u € I, we have u, : Dy — D, ; which is induced by ¥* : M/ —
M®. For any morphism v € I, we have v* : Dy — Dy, which is induced by
v: R — R.

Therefore theorem [6.9] gives us the following theorem.

Theorem 7.3. There exists a spectral sequence
ERt = HY (I, HY(R,M)) = HY (R, M),

where HY(R, M) is the natural system on I whose value on a morphism « in I is
given by Hj (R, M®).
Theorem 7.4. Let R be a V-ring and M € R—mody, then

1. HY(R, M) = Dergy(R, M),

2. HL(R, M) = Exty(R, M),

3. HY(R,M) = myCrossy(R, M),

4. If R is a free U-ring, then HE(R, M) =0 forn > 1.

7.2 Cohomology of \-rings

We are now going to construct the free A-ring on one generator a. Let A be the

free commutative ring generated by {a;|i € N}. Let the operations X\ : A — A be
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given by X(a;) = P, j(ai,...,a;) for i,j € N. Then A is the free A-ring on one

generator.

Lemma 7.5. If R and S are \-rings, then R® S with X' : R® S — R® S given
by Ni(r,s) = P((AY(r),1),...,(N(r),1), (1, A1(s)), ..., (1,\(s))) is the coproduct
in the category A — tings.

It is known that there is an adjoint pair of functors

F

Gets A —tings |

U

where U is the forgetful functor and F' takes a set S to the free A-ring generated
by S. The adjoint pair gives rise to a comonad G on A — tvings which is monadic.

We define the cohomology of a A-ring R with coefficients in M € R — mod) to be
H{(R,M) := Hi(R, M) = H;(R, Dery(—, M)).

Theorem 7.6. Let R be a A-ring and M € R—mod,, then

1. HY(R, M) = Dery(R, M),

2. H (R, M) = Exty(R, M),

3. H3} (R, M) = myCrossy(R, M),

4. If R is a free A\-ring, then HY(R, M) =0 forn > 1.
Proof. Property 1 follows from lemma and property 4 follows from lemma
2.1} We are now going to prove property 2.

Suppose we have a free resolution P, of R as a A-ring and an extension representing
a class in Exty(R, M).
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The map u is a surjection and Fj is free, so there exists a lift h : Py — X which

makes the following diagram commute.

0 M—sX-"“sR 0
A
3 b h H
©3 ©1

Then we can get a map d =i ' (hgl — hpt) : P — M

d is a WU-derivation, and d is also a 1-cocycle in Dery (P, M) and defines a class in
HL(R,M). This class is independent of the choice of lifting k. This gives a map
® : Exty (R, M) — HL (R, M).

Conversely, given a A-derivation D : P — M we let

(¢1,0)
X = Coker( P,—=Fy &M ).
(09,0

The cokernel is in the category R—mod,, and we let p : By & M — X be the
canonical projection. If D is a 1-cocycle in Dery (P, M) then we obtain an exten-
sion in Exty(R, M) where i : M — X is given by i(m) = p(0@®m) and u : X — R
is given by u(p(y & m)) = £(y).

2 1

®o 5
——=P —=P —+R——0

I 1
D

0 M——X—">R——=0

This procedure gives us an inverse to .

We are now going to prove property 3 by showing that the crossed A-extensions are
equivalent to the simplicial groups whose Moore complex is of length one. Given

a crossed M\-extension we have a crossed A-module

C, 25 (.
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Let Xy = Cy and X; = C; @ Cy where addition is given by (c1,¢o) + (dy,dp) =
(¢14dy, co+dy) and multiplication is given by (c1, ¢o)(dy, do) = (0, codo+I(c1)d1 +
cody + docy). We let \*(co, dy) = (ijl N (e1)N (o), Ni(cp). This gives us that
X is a A-ring. We set d; : X7 — Xj to be di(cq,¢9) = ¢o and dy : X7 — Xj to be
do(c1, ) = O(c1) + ¢o. Then dy is a A-ring map.

We define the category € to be the category whose objects are the elements of
Xo and whose morphisms are the elements of X;. The source of the morphism
(c1,¢0) € € is given by dy(c1,c0) = O(c1) + ¢o and the target of (¢1,¢9) € € is
given by dj(c1,c9) = ¢o. The composable morphisms in € are pairs of morphisms
(c1,¢0), (¢}, ¢f) such that ¢ = Jc; + ¢o. Hence the nerve of the category € is a

simplicial group whose Moore complex is
... —> 0 ——=Kerd; — C,

which is of length one.

Let K, be a simplicial object whose Moore complex is of length one. Then the

Moore complex yields

Ker d1 dL) Ko,
which is a crossed A-module.

The category of A-rings is exact and so the results of Glenn [§] tell us that
H}(R, M) classifies the simplicial groups whose Moore complexes are of length

one. OJ

Lemma 7.7. Let R be a A-ring and let M € R-mody. Then there exist homomor-
phisms, for n >0,

o HY (R, M) — Hy(Ry, My),
on : Hy(Ry, My) — Hjo(R, M).

Proof. Let P, be a projective resolution of R in the category of A-rings. Then
applying the Adams operations we get that (P;)y is a (not necessarily projective)

resolution of Ry in the category of W-rings. We let L, be a projective resolution
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of Ry in the category of W-rings. Since L, is projective, we can use the lifting

property to get a map « : L, — (P,)y, such that the following diagram commutes.

a?a ‘

L.——Ry

We then apply the functor Dery(—, My) to get the commutative diagram.

Der\y((P )\p,M\p)—>D€I\p R\y,M\p)

| |

Der\p(L*, M\y) — Derq, R\p, Mq/)

The inclusion ¢ : Dery(R, M) < Dery(Ry, My) gives us maps which make the

following diagram commute.

Dery(P,, M) Dery(R, M)

} |

Del\p P* M )ﬁDGI\I](R\p,M\p)

A |

Der\y(L*, M\p) EE—— DeI‘\p(R\p, M\p)

This gives us homomorphisms

G o HP(R, M) = H™(Dery(P., M)) "% H™(Dery(L., My)) = Hi(Ry, My).

The homomorphisms p,, and g, are induced by the forgetful functors from A—rtings

and W — rings respectively to Com.rings. [



Chapter 8

Applications

8.1 K-theory

The material covered in this section can be found in [2] and [11].

8.1.1 Vector bundles

In this section we will develop the notion of complex vector bundles. A lot of the
basic theory for real vector bundles is the same as for complex vector bundles,

however we will only be concerned with complex vector bundles in this chapter.

Definition 8.1. A complex vector bundle consists of

1. topological spaces X (called the base space) and E (called the total space.)
2. a continuous map p : F — X (called the projection.)

3. a finite dimensional complex vector space structure on each
E,=p () for x € X,

(we call the p~'(x) the fibres)

118
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such that the following local triviality condition is satisfied. There exists an open
cover of X by open sets U, and for each there exists a homeomorphism ¢, :
p 1 (U,) = U, x C? which takes p~1(b) to {b} x C? via a vector space isomorphism
for each b € U,,.

Example 8.2. Let E = X x C%, and p be the projection onto the first factor. We

call this the product or trivial bundle.

A homomorphism from a complex vector bundle p : E — X to another complex
vector bundle ¢ : F¥ — X is a continuous map ¢ : £ — F' such that
L. qp =p,

2. ¢: E, — F, is a linear map of vector spaces for all x € X.

If ¢ is a bijection and ¢! is continuous, then we say that ¢ is an isomorphism and
that F and F' are isomorphic. We will let Vect(X) denote the set of isomorphism

classes of complex vector bundles on X.

Let E be a complex vector bundle over X. We get that dim(FE,) is locally constant
on X, furthermore it is a constant function on each of the connected components
of X.

For vector bundles E, F' we can define the following corresponding bundles

o F® F, the direct sum of £ and F,
e F ® F, the tensor product of £ and F',

e \(E), the k' exterior power of E.

There exist the following natural isomorphisms

EQF=FQE,

EQF~FQE,

Eg(FeF)~(EgF)e(EsF),

M(E® F) =@, (N(E) @ N(F)).
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8.1.2 K-theory

For any space X, we can consider the set Vect(X) which has an abelian semigroup
structure where addition is given by the direct sum. There is also a multiplication,
given by tensor products, which is distributive over the addition of Vect(X) (this

makes Vect(X) into a semiring.)

If A is an abelian semigroup, we can associate an abelian group K(A) to A. Let
F(A) be the free abelian group generated by A, and let F(A) be the subgroup of
F(A) generated by elements of them form a+a' — (a @ a’), where a,a’ € A and &

is the addition in A. We define the abelian group K(A) = F(A)/E(A). If A is a
semiring, then K (A) is a ring.

If X is a space, then we will write K(X) for the ring K(Vect(X)). Let f :
X — Y be a continuous map. Then f* : Vect(Y) — Vect(X) induces a ring
homomorphism f*: K(Y) — K(X) which only depends on the homotopy class of

f.

We can define operations \* : K(X) — K(X) using the exterior powers. These
make K (X) into a A-ring. We can then use these to define the Adams operations
Uk K(X) — K(X) which makes K(X) into a W-ring.

If X is a compact space with distinguished basepoint, then we define K (X) to
be the kernel of i* : K(X) — K(x¢) where i : xp — X is the inclusion of the

basepoint. Let ¢ : X — xy be the collapsing map, then ¢* induces a natural

splitting K(X) =2 K(X) & K(x).

Example 8.3. K(S2") = Z[y]/(y)?, where y is the n-fold external product (H —
) *...x (H —1) and H is the canonical line bundle of S* = CP'. Multiplication
in K (S is trivial, and the -operations \¥ : K(S%") — K (S*") are given by

MNo(z) = (=1)F kg,
Hence the U-operations Wk : K(S2") — K (S2") are given by

UF(z) = k.
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8.2 Natural transformation

Let X, Y be topological spaces such that K(Y) =0 and K(XX) = 0. Let f: Y —

X be a continuous map, then we can consider the Puppe exact sequence

Y

X—=Cj—=%Y — %X —>%C;

where Cfy is the mapping cone of f, and XX is the suspension of X. After applying

the functor K (—) we get the long exact sequence.

= K(SX)—= K(ZY) — K(C}) —= K(X) —= K(Y)
However, since K (SX) = 0 and K(Y) = 0 we obtain the short exact sequence.
0—=K(XY) — K(Cf) —= K(X) —=0

This gives us the following proposition.

Proposition 8.4. If X and Y are topological spaces as above then there exist

natural transformations 7 : [Y,X] = Eaty\(K(X), K(ZY)) and 79 : [V, X] —
Exty(K(X), K(ZY)).

Corollary 8.5. If X is a topological space such that l?(EX) = 0 then there
exist natural transformations Ty, @ Tan—1(X) — Exty(K(X), [?(5’2”)) and Ty, :

Ton1(X) = Exte(K(X), K(52)).

8.3 The Hopf invariant of an extension

We are going to give a proof of the classical result of Adams which was first proved
by Adams, and subsequently by Adams-Atiyah [I]. We are going to use the same
approach as Adams-Atiyah; using W-rings.

Definition 8.6. Consider the commutative ring R which is free as an abelian
group with generators x and y, R = Zx & Zy, where x is the unit of the ring and
y? = 0. Let M = Zz be the R-module such that y - 2 = 0. We can consider the
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square zero extensions of R by M in the category of commutative rings. All the

square zero extensions have the following form
0— M —XGZy—R——0 (8.1)

where X = Za @ Z[ as an abelian group with a being the image of the generator
z, the image of the unit v is the unit x and the image of 5 being the generator y.
Since M? = 0 we get that o = 0. Since 3? = 0, we get that a8 = 0 and 32 = ha
for some integer h. We define h to be the Hopf invariant of the extension (8.1J).

Let f : S*~1 — §?7 be a continuous map. We define the Hopf invariant of the

map f to be the Hopf invariant of the short exact sequence
0 — K(5*) — K(Cf) — K(52") —=0

obtained from applying the natural transformation 7y to f.

We are going to consider the extensions of K(5%") by K(S2) in the category of

P-rings. We are going to prove the following theorem.

Theorem 8.7.

L% %Lg,,, if n #n';

Eﬁdmquwww%{z@n Z ifn=n.

p prime

where Gy, v denotes the greatest common divisor of all the integers in the set

{I"n—1"|l e Z,1 > 2}.

Corollary 8.8. If n # n’ then,

!

(2" —2")

Exty(K(S™), K(S*™)) = {(h,v) € Z&Zs, J|h=v e

mod 2}.
Ifn=n/, then
Exty(K(S™), K(S™)) 2 {(h,vs,v5,...) €Z® [] ZIh=vs mod 2,

p prime

v, =0 mod p, p> 2},
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All the W-ring extensions of K(52") by K(S2) have the form (8.1). The -

operations on W* : X — X are given by
YF(m,r) = (k”/m + v, k"),

for some v, € Z.

TR (T (m, 1)) = (K" 1" m + k" v + vl k™M),

TL(*(m,r)) = (Y m + " ver + vk™r, I"E"r).

Since the W-operations commute, we get that
ur(k™ — k) = vr (I —1").

If n = n’ then there is no restriction on the choice of v, for p prime. Otherwise

we can rearrange the above to get that

)

VvV = Vg

By setting k = 2 we get that for all [ > 2

)

V) = Uy

We can write all the 1;’s as multiples of 15 since

- kY — knY) (1Y — -
Vl:VQ( )_V( )( ):Vk(/(fn'—kn))

(20 —2n) TRV —2n) (k7 — k)

/
. . . on’ _on .
Since 15 is an integer, we get that vy = % for some integer z.

n,n

If we replace the generator 3 by 3+ Na, note that (8 + Na)? = ha, then we have
to replace vy, by v, + N(k™ — k™). We get that

K — g ,
—  + N("
g + N

Vo +—fV(2"’—-2”))(k”'—-k”)'

n_(
—K) = (20 — 2m)

U + N(E” — k") = 1
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So we only have to be concerned with replacing v, by 15 + N (2% — 27), then our

usual formula for v, holds. Hence we are replacing Z(Qn—_?n) by

Gn,n
z(2" —2m) : (2 4+ NG (27 —27)
— 2+ N(2" = 2") = : :
Gnm/ * ( ) Gn,n’

This proves theorem [8.7, The isomorphism depends on n and n’. If we now
introduce the property that WP(x) = 2P mod p, we get that vyr = hr? mod 2 and
v,r = 0 mod p for p > 3. This proves corollary

Proposition 8.9. If there exists an extension in Exty(K(S52"), K(S*)) whose
Hopf invariant is odd, then either n = n' or min(n,n’) < g|2n_n/|, where g7 denotes
the multiplicity of the prime p in the prime factorisation of the greatest common
divisor of the set of integers {(k7 —1)| k € N — {1, qp|vq € N}}.

Proof. The case when n = n' is clear. Assume that n # n/, then the special
U-ring extensions are given by a pair (h,v) where h is the Hopf invariant. By
, h can only be odd if 2" divides G,,,,. Assume that n < n’, since the other
case is analogous. The multiplicity of 2 in the prime factorisation of G, s is n if
n < g|2n_n,‘ or g|2n_n,| if g|2n_n/| < n. It follows that if n < g|2n_n,| then 2" divides
G- [

Note that g3, ; = 1 for all n € N. Since (k** — 1) = (k™ + 1)(k™ — 1) it follows

hat o2 — 3, n odd
t at g2n - 2 + 1
ot , M even.

Theorem 8.10. If there exists an extension in Exty(K(S52"), K(S2")) whose Hopf
invariant is odd, then one of the following is satisfied
1. n=n',
2. n=1orn =1,
3. n' —n is even and either n =2 orn' = 2,

4. n'>n>3 andn’ =n+2"2b for some b € Ny,
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5.n>n">3andn=n'+2""2 for some b € Nj.

Proof. 1. is clear.

2. follows from g2 > 1 for all N.

3. follows from g3, > 3 for all n € N.

4. and 5. follows from gﬁhm being 2 plus the multiplicity of 2 in the prime

factorisation of |n — n/|. O
Corollary 8.11. If there exists an extension in Exty(K(S52"), K(S200)) whose
Hopf invariant is odd, then one of the following is satisfied

1. k=0,

2. n=1,

3. k is even and n = 2,

4. n>3 and k =n+2"2b for some b € Ny.

Lemma 8.12. If there exists an extension in Exty(K(S*), K(5%")) for a € N

whose Hopf invariant is odd, then one of the following is satisfied

1. n=1,2 or4,
2. n=23 and a 1s even,

3. n>5 and an = 2n + 2" 2b for some b € Ny.

Corollary 8.13. If there exists an extension in Exty(K(S*), K(5*)) whose Hopf

wmvariant s odd, then n = 1,2 or 4.

Corollary 8.14 (Adams). If f : S~ 1 — S?" js a continuous map whose Hopf

wmvariant is odd, then n = 1,2 or 4.
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8.4 Stable Ext groups of spheres

Proposition 8.15. If n > k + 1 then Gy ik = Gt nthotl-

Proof. Let n > k + 1. We know that G, ,1r = Gpiintkt1 if and only if the
multiplicity of any prime p in the prime factorization of G, .1k is gy. For all
primes p > 2 we get that p® > 2F — 1, so the multiplicity of p in the prime
factorisation of Gy, 4k is gh. We can easily see that g7 < k+1 for all k. It follows

that the multiplicity of 2 in the prime factorisation of G, 11 is gz. ]

Corollary 8.16. Ifn >k + 1 then

EXt)\(K(SQTL), [A{*(Sa(n—l-k))) ~ EXtA(K(SZ(n—H)), K(S2(n+k+1)))'

The groups Exty (K (5%"), K(S%™%))) are independent of n for n > k + 1, we call
these the stable Ext groups of spheres which we denote by Exts,.

Proposition 8.17. There are natural transformations
Ty o3 — Ext5,,

where 13, _, denotes the stable homotopy groups of spheres.

For small k these groups look as follows.

k| Exty,

1| Zs 27 ® 7o
2| oy & Zs 27, @ Ty
310 27 @ 7o
4 | Zaso 27 ® ZLioag
5| Zo®Zoy® Ly | 24D Lo
6 | Zsos 27, @ Zsoa
7| Zs 22 ® 7Ly
8 | Zago & Za 27, ® Zaso




Appendix A

Adams Operations

Ul(r) =r

W2(r) =r? — 2)%(r)

W3 (r) =r® — 3rA%(r) + 3\3(r)

UA(r) =r* —4r2X2(r) 4+ 4rX3(r) + 2N\ (r))? — 404 (r)

WO (1) =r® — 53 N2 (r) + 5r2 A3 (r) + 5r(A\2(1))? — 5rAt(r) — BA2(r) A% (r) + 5A°(r)
WO(r) =r® — 6r* N2 (r) + 6r°A3(r) + 9r?(A2)? — 6r° A — 12r A% (r) A3 (r)

+ 67X (r) — 2(A3(r))? + 3(\3(r)2 + 6% (r) A (1) — 6X°(r)
U (r) =r" — 7P X2 (r) + Tr* A3 (r) + 1473 (N2 (r))? — T2 M (r) — 217202 (r) AP (1)
+ 72N (r) — Tr(N2(r))® 4+ Tr(V* (1) + 14r X2 (r) A (r) — TrA%(r)
+TO2)2N3(r) — TA3 ()Y (r) — TA2(r) NP (r) + TAT(r)
W (1) =r® — 8rON2(r) + 8r° A3 (r) + 20r* (A2 (r))? — 8 A (r) — 323 X2 (r) A (1)
+ 873N (1) — 1672 (A2(r))® + 1202 (X3(r))? + 2472 X2 (r) X (r) — 872\ (1)
+ 247 (N2 (1))2X3(r) — 167 N2 ()N (1) — 167 A% (1) N> (1) + 8rAT(r) + 2(\2(r))*
X)) + AN — SO()AN) + 8N ()N (r)
+ 8AZ(1)A°(r) — 8A%(1)
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Universal Polynomials P;, P, i,]

For more information on the universal polynomials, refer to the thesis of Hopkinson
[12]. He has several results and gives the polynomial P; upto i = 10, as well as

giving several formulas for the polynomial F; ;.

° Pl(Sl;Ul) = 5101
. 2 2
o Py(s1,89;01,0%) = S109 — 28909 + $207
[ Pg(Sl, S9,83,01,09, 0'3) = 8?0'3 + 81820109 — 381820’3 + 830'% — 3830’10’2 —|—3830'3

. _ 2 2 2
[ J P4($1,82,83,84,0'1,0'2,03,04) = —281830’2 + 2840’2 + 4540’103 — 481820'4 —
28%0’10'3—4840'%02+481530'4+S%820'10'3—|—81530'%0'2—81530'10'34-84110'44-8%0'%4-

25204 + 8401 — 45404

[ Pl,l(sl) = 51

¢ Pylorneeis) =
o Pi(s1,...,8)=s;
o Paj(s1,.y9:) = Yo (1) s + (1) sy

Consider the polynomials
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L4 P2,4(817 S2, 83, S4, S5, S6, ST, 88) = 5355 — S2S¢ + S1S7 — Sg

_ 3 2 2
[ P472(817 S92, 83, S4, S5, S, ST, Sg) — 85185354 — 3818285 + 8185 — 84 + 5385 — 5186 +

5187 + 28286 — Sg

_ A 2
o P55(s1,52, 83,54, 55, S6, 57, 58, S9, 510) = 5156 + 5257 + 3515257 + 3515356 —
4525986 — 2518455 — 2895385 + 528355 + S19 — S3S7 + 23% — 8387 — 25486 +

25286 + 5288 — S159 — 28958

So we can see that in general P, ; # P; ;.



Appendix C

Universal Polynomial Partial

Derivatives
1o | 2Pirs) | 0Pa(rs) OPs(1,5) 9Py (1,5)
NE(r) | OAF(r) ONF (1) ONE (1)
1] Wl(s) | r(s®>—02(s)) | '
210 U2 (s) r(s® —W3(s)) | .
310 0 U3(s) r(st — Ui(s))
40 0 0 W(s)

Conjecture C.1. For allv € N

aPH-l (Ta S)
ON (1)

8H(r, s) = U'(s)

a/\l<r) — T‘(Si—H _ \I/H_l(s))

From the other universal polynomial, we get

OP; (1) _{ 1 k=n

ON(r) | 0 otherwise
OPu(r) | 0 k=mn,ork>2n
ON<(r) (—=1)HN2=F (1) otherwise

OP; ;(r) _ (_1>(z‘+1)(j+1)

ONU (1)
130
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OPs 2(r)
ANk (r)

© 0 N O Ot = W |

—
e}

UA(r) —rX3(r) + 2X4(r)

—W3(r) 4+ 2X3(r)
W2(r)

1
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