
Canonicity and Bi-Approximation

in Non-Classical Logics

Dissertation submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Tomoyuki Suzuki

Department of Computer Science

University of Leicester

June 2010

I hereby declare that this submission is my own work and
that, to the best of my knowledge and belief, it contains no
material previously published or written by another person
nor material which to a substantial extent has been accepted
for the award of any other degree or diploma of the univer-
sity or other institute of higher learning, except where due
acknowledgement has been made in the text.

Tomoyuki Suzuki

i

Canonicity and Bi-Approximation
in Non-Classical Logics

Tomoyuki Suzuki

Abstract

Non-classical logics, or variants of non-classical logics, have rapidly been developed
together with the progress of computer science since the 20th century. Typically,
we have found that many variants of non-classical logics are represented as ordered
algebraic structures, more precisely as lattice expansions. From this point of view,
we can think about the study of ordered algebraic structures, like lattice expansions
or more generally poset expansions, as a universal approach to non-classical log-
ics. Towards a general study of non-classical logics, in this dissertation, we discuss
canonicity and bi-approximation in non-classical logics, especially in lattice expan-
sions and poset expansions. Canonicity provides us with a connection between
logical calculi and space-based semantics, e.g. relational semantics, possible world
semantics or topological semantics. Note that these results are traditionally consid-
ered over bounded distributive lattice-based logics, because they are based on Stone
representation. Today, thanks to the recent generalisation of canonical extensions,
we can talk about the canonicity over poset expansions. During our investigation of
canonicity over poset expansions, we will find the notion of bi-approximation, and
apply it to non-classical logics, especially with resource sensitive logics.

ii

Acknowledgements

The current author would like to thank firstly his Ph.D. supervisor, Dr. Alexander
Kurz for many valuable comments and for spending plenty of time on discussion,
and the Kurz’s family for their generous hospitality.

He also wants to express his gratitude to his Ph.D. examiners, Prof. Silvio Ghi-
lardi and Dr. Fer-Jan de Vries for undertaking his examination and for many valuable
comments, and to his previous supervisors, Prof. Hiroakira Ono and Prof. Masako
Takahashi for their encouragement to study abroad.

He is deeply grateful to the Yoshida Scholarship Foundation, (財)吉田育英会
(Yoshida Ikueikai), for its generous support for all his Ph.D. studies.

He is also thankful to the people in the Department of Computer Science at the
University of Leicester for all their help, in particular Prof. Jośe Fiadeiro, Prof. Rick
Thomas and Dr. Emilio Tuosto.

In addition, he would like to thank all the people whom he has met and all the
places which he has visited.

Finally, he wants to give his special thanks to his family, friends and his wife,
Hitomi, for all their continuous encouragement and support.

iii

Contents

1 About this dissertation 1

1.1 Background and motivation . 1

1.2 Overview . 4

1.3 Main results . 8

2 Ordered structures and canonical extensions 9

2.1 Preordered sets, posets and lattices 10

2.2 Stone representation, Dedekind-MacNeille completion and the canon-

ical extension . 15

2.3 Bi-approximation and bases . 22

3 Canonicity of lattice expansions 26

3.1 Lattice expansions . 26

3.2 Canonical extensions of lattice expansions 30

3.3 Ghilardi & Meloni’s canonicity methodology 45

4 Applications to lattice-based logics 70

4.1 Application 1: Substructural logic . 70

4.2 Application 2: Completeness . 74

4.3 Application 3: Relevant modal logics 78

iv

4.4 Application 4: Distributive modal logic 81

5 Canonicity of poset expansions 91

5.1 Poset expansions . 91

5.2 Canonical extension of poset expansions 94

5.3 Problem of extending Ghilardi and Meloni’s methodology for poset

expansions . 101

5.4 A solution: canonicity of poset expansions 105

5.5 A syntactic description of canonical inequalities 111

6 Application to poset-based residuated algebras 138

7 Canonical extensions from other perspectives 141

7.1 Canonical extensions as compact dense completions 141

7.2 Parallel computation and canonicity 144

7.3 Unschärferelation in the canonical extension 150

8 Bi-approximation semantics for substructural logic 154

8.1 Discussions on relational semantics for substructural logic 155

8.2 Substructural logic . 156

8.3 Bi-approximation semantics . 159

8.4 Bi-approximation, bases and the existential quantifier 169

8.5 The Representation theorem . 176

8.6 Soundness and Completeness . 186

8.7 Conclusive remarks on bi-approximation semantics 190

9 Summary 191

v

9.1 The results in this dissertation . 191

9.2 Future work . 194

Bibliography 195

vi

Chapter 1

About this dissertation

1.1 Background and motivation

Since the early 20th century, the study area of mathematical logic, a.k.a. symbolic

logic, has widely and rapidly been spreading out based on the foundation of math-

ematics or closely related to the formal analysis of computer systems. As a part of

branches of the large stream, we can find non-classical logics: modal logics, condi-

tional logics, intuitionistic logic, many-valued logics, relevance logics, fuzzy logics,

linear logic, substructural logic and those with additional modalities or quantifica-

tions, e.g. [5, 66, 11, 12, 70, 8, 34, 74, 63, 68, 23]. For example, substructural logic

originally appeared as an analysis of meanings of structural rules in Gentzen’s se-

quent calculi LK and LJ, and today it is also known as a uniform study of resource

sensitive logics like relevance logic, fuzzy logics, intuitionistic logic, many-valued

logics and linear logic.

As semantic models of (especially) propositional non-classical logics, we often

consider classes of ordered algebras, or lattice expansions, e.g. modal algebras, Heyt-

1

ing algebras, residuated algebras, etc. Note that, in the middle of 19th century when

mathematical logic emerged, the original idea itself already appeared in the works

of Boole, De Morgan, etc. Thanks to Lindenbaum-Tarski algebras, these (proposi-

tional) non-classical logics naturally behave with those algebraic models, hence it is

a recent trend to introduce those logics as classes of lattice-based algebras. We may

call those logics lattice-based logics or algebraic logics. We mention that for pred-

icate (quantified) logics like first-order logic, first-order modal logics, higher-order

logics, etc., there are also various discussions of algebraic models, or more generally

categorical models: cylindric algebras, polyadic algebras, hyperdoctrins, fibrations

or topoi, e.g. [61, 39, 40, 56, 47, 55, 9, 59, 7, 37].

On the other hand, the invention of relational semantics, the so-called Kripke

semantics [54], had a great impact on modal logic. Since the invention, modal logic

has been applied to various areas particularly in computer science. The complete-

ness property for modal logics with respect to Kripke semantics is called Kripke

completeness. It tells us that Kripke complete modal logics characterise a class of

relational structures. We often prove the completeness results by Henkin’s canoni-

cal model construction. Nowadays, thanks to Sahlqvist theorem [71], we can obtain

many Kripke complete modal logics and classes of the corresponding relational struc-

tures which are first-order definable. Note that Sahlqvist theorem was proved based

on the following works [22, 57]: see e.g. [36]. Sahlqvist theorem has been rephrased

as the algebraic analysis of perfect extensions (canonical extensions) of Boolean al-

gebras with operators [50, 51], based on Stone representation for Boolean algebras

[77]. Later, the theorem is reformulated and extended in the light of canonical ex-

tensions, for example, in [72, 73, 14, 38]. Therefore, an algebraic study of Kripke

2

completeness, canonicity which is the representation property via canonical exten-

sions, or more generally duality between lattice expansions and ordered topological

spaces, e.g. Stone duality [78], attracts our interests. Recently, the study of canon-

icity, representation and duality is also featured from the point of applications to

computer science. For example, in [1, p.5], we can find the following phrase.

The importance of Stone duality for Computer Science is that it

provides the right framework for understanding the relationship between

denotational semantics and program logic.

In process algebra (e.g. [24]), program logics (variants of modal logics), for example,

Hennessy-Milner logic [45], computation tree logic [20] or linear temporal logic [65]

have used to analyse several transition systems of computer processes, the so-called

model checking.

Nowadays, we can also find many variants of non-classical logics or resource

sensitive logics applied to computer science, for example, linear logic [19], Hoare

logic [46], dynamic logic [42], separation logic [69], Kleene algebra with tests [52, 53],

etc. “Can we also obtain the right framework for understanding the relationship

between relational-based semantics and non-classical logics?” More precisely, “which

types of non-classical logics can have a Stone-type representation (closed under

canonical extensions)?” In the literature, there are many contributions for specific

non-classical logics: e.g. sequent systems [15, 16], BCK logics [64], relevant logic [70,

87], poset-based substructural logics [18], intuitionistic modal logic [33], distributive

lattice expansions [49], relevant modal logics [76]. In this dissertation, we present

a general theory of canonical representations for propositional non-classical logics

which universally subsumes the above results.

3

To extend the representation theorem between relational semantics and, not nec-

essarily distributive, lattice-based logics (or poset-based logics), it is necessary to

generalise Stone representation for bounded distributive lattices to a representa-

tion for posets or lattices. To do so, we introduce the construction of canonical

extensions of posets via Dedekind-MacNeille completions, whose construction has

already appeared in [4]. Nowadays, canonical extensions are also universally charac-

terised over posets by topological terms as compact dense completions [29, 27, 18].

In this dissertation, however, we define exactly the same structures, i.e. Dedekind-

MacNeille completions and canonical extensions, in a different manner from their

original construction in [33], which allows us to think about those completions as a

collection of bi-directionally approximated points. We call the property that every

point is approximated both from above and from below bi-approximation, which is

also known as denseness in the topological characterisation [18]. We will show how

reasonably the bi-approximation works for canonicity and how naturally it fits to

non-classical logics, especially substructural logic (reasoning logical consequences)

in this dissertation.

1.2 Overview

This dissertation mainly consists of the current author’s works during his PhD re-

search: canonicity of lattice expansions (Chapters 2, 3 and 4) is in [84], canonicity

of poset expansions (Chapters 2, 5 and 6) is in [79] and bi-approximation semantics,

a relational-type semantics, for substructural logic (Chapter 8) is in [83].

Thinking about logical consequences, we often accept the following two reason-

ings:

4

1. “if A then A” always holds,

2. “if A then B” and “if B then C” imply “if A then C.”

When we look at each logical consequence “if A then B” as a binary relation ≤

on the set of all propositions, i.e. A ≤ B. The above conditions tell us that the

set of all propositions and the binary relation ≤ form a preorder set. From this

point of view, we can see order theory as a mathematical tool to probe logical rea-

sonings. In Chapter 2, we give preliminary definitions in order theory, e.g. posets,

lattices, filters, ideals, etc., which are mainly discussed in this dissertation. More-

over, we also provide the main constructions of completions of posets and distributive

lattices, i.e. Stone representations, Dedekind-MacNeille completions and canonical

extensions. Furthermore, we define bi-approximation and bases with help of the

canonical extension of posets.

Given a propositional logic, the Lindenbaum-Tarski algebra (free algebra) gives

us an algebraic characterisation of the logic. When we consider well known log-

ics like classical logic, modal logic, intuitionistic logic or substructural logic, the

algebraic counterparts are described with lattice expansions, which consist of an

underlying lattice and operations on it. In other words, lattice expansions are a

universal machinery to study lattice-based logics. In Chapter 3, we introduce lat-

tice expansions and give examples of ordered algebraic structures which are seen as

algebraic counterparts of non-classical logics, e.g. modal logic, distributive modal

logic and substructural logic. And we discuss canonical extensions of lattice expan-

sions based on the canonical extension of posets. In addition, we explain Ghilardi

and Meloni’s parallel computation [33] and extend it from Heyting algebras with a

unary modality to lattice expansions in general. In Chapter 4, as applications to

5

non-classical logics, we show our canonicity results to substructural logic, relevant

modal logics and distributive modal logic, and compare with existing results.

The argument of canonical extensions are nowadays generalised up to posets

in general. Surprisingly, we can universally characterise canonical extensions over

posets, i.e. including lattices, bounded distributive lattices and Boolean algebras, as

compact dense completions, and they are unique up to isomorphism. One question

that arise with this generalisation is that the canonicity property over poset expan-

sions in general. More precisely, how does the lack of the lattice operations ∨ and ∧

affect our canonicity argument? In Chapter 5, we discuss a way to extend Ghilardi

and Meloni’s canonicity methodology to poset expansions. Then we notice that even

the simple version of our canonicity method for lattice expansions does not hold on

poset expansions in general. Nevertheless, we show that we can still use the frame-

work by carefully removing the problematic cases and obtain reasonable canonicity

results for poset expansions as well. During the discussion, we also notice that the

presence of the empty bases directly affects our methodology for poset expansions

and consider how to deal with the presence of the empty bases. Furthermore, in

Chapter 6, we illustrate that our canonicity results can still cover many canonical

inequalities.

In Chapter 7, we give other perspectives of canonical extensions. Here we ex-

plain canonical extensions as compact dense completions based on the terminology

[29] and the descendants [27, 18]. We summarise Ghilardi and Meloni’s canonicity

methodology for lattice expansions in the light of the topological characterisation of

canonical extensions, as compact dense completions, and illustrate it with giving a

concrete example from substructural logic. Furthermore, we also introduce another

6

aspect of canonical extensions “an estimation of the perfect information from the

observable data.” And, we show a Unschärferelation (uncertainty principle) in the

canonical extension.

When we think about bounded distributive lattice based logics, e.g. intuitionistic

logic, modal logic, relevance logic or distributive modal logic, the Kripke-type se-

mantics, or Routley-Meyer semantics, is obtained as the Stone-dual space of lattice

expansions of those logics. However, without the distributivity, the same technique

does not work anymore. This is because, if we interpret conjunctions and disjunc-

tions as follows:

1. w φ ∧ ψ ⇐⇒ w φ and w ψ,

2. w φ ∨ ψ ⇐⇒ w φ or w ψ,

w φ∧ (ψ∨χ) always implies w (φ∧ψ)∨ (φ∧ψ). That is, the above interpreta-

tion always validates the distributive law. Then, how can we consider a space-based

semantics, or a relational-type semantics, for lattice-based logics in general? To

give a possible answer to this question, in Chapter 8, we introduce bi-approximation

semantics, a two sorted relational-type semantic, for substructural logic via the

canonical extensions of lattice expansions to characterise Ghilardi and Meloni’s par-

allel computation. As a result, we can also prove the first-order definability, which

completes Sahlqvist argument for substructural logic [80].

Finally, we summarise the results in this dissertation and give some future works

in Chapter 9.

7

1.3 Main results

The main results in this dissertation are the following.

In Chapter 3, we extend Ghilardi and Meloni’s canonicity methodology to lattice

expansions and inequalities.

Main Theorem (for lattice expansions). Let s, t be terms over lattice expansions.

An inequality s ≤ t is canonical, if it has consistent variable occurrence.

In Chapter 5, we prove a canonicity result for poset expansions.

Main Theorem (for poset expansions). Let s, t be terms over poset expansions.

An inequality s ≤ t is canonical, whenever it satisfies the following two conditions:

1. s ≤ t has consistent variable occurrence,

2. each variable in s ≤ t is uniquely signed either in the −-signed construction

tree of s or in the +-signed construction tree of t. Note that these construction

trees are not pruned.

In Chapter 8, we show that substructural logic extended by the canonical in-

equalities obtained by Theorem 3.3.22 is complete with respect to bi-approximation

semantics, which is actually first-order definable [80].

Main Theorem (Sahlqvist-type completeness for substructural logic). Let Ω be a

set of sequents which have consistent variable occurrence (see Main Theorem 3.3.22

and Section 4.1). A substructural logic extended by Ω is complete with respect to a

class of p-frames.

8

Chapter 2

Ordered structures and canonical

extensions

How can we present logical reasonings and compute them? When we consider logical

consequences, we quite often accept the following two reasonings:

1. “if A then A” always holds,

2. “if A then B” and “if B then C” imply “if A then C.”

It tells us that, if we interpret a logical consequence “if A then B” as a binary

relation A ≤ B, the tuple of the set of propositions and this binary relation forms

a preordered set. In this chapter, we briefly recall the basic terminology of or-

der theory, algebras relating to some non-classical logics, and Stone representation,

Dedekind-MacNeille completions and canonical extensions of ordered sets, which are

also strongly connected to non-classical logics.

9

2.1 Preordered sets, posets and lattices

As preliminaries, we recall the basic terminology of order theory for this dissertation,

see e.g. [4, 10, 13].

Let P be a set. A binary relation ≤ on P is a preorder, if it satisfies the following

conditions:

1. for each a ∈ P. a ≤ a, (reflexivity)

2. for all a, b, c ∈ P. if a ≤ b and b ≤ c then a ≤ c. (transitivity)

We call a pair 〈P,≤〉 of an underlying set P and a preorder ≤ on P a preordered

set. Furthermore, if a preorder ≤ on P also satisfies the following condition:

3. for all a, b ∈ P. if a ≤ b and b ≤ a then a = b, (anti-symmetry)

we call ≤ a partial order, and the pair 〈P,≤〉 a partially ordered set or a poset for

short.

Given a poset 〈P,≤〉 and a subset S ⊆ P , an element supS satisfying the

following conditions (Items 4 and 5), if it exists in P , is called the least upper bound

of S or the supremum of S:

4. for all s ∈ S. s ≤ supS,

5. for all a ∈ P. if s ≤ a for all s ∈ S then supS ≤ a.

Order dually, an element inf S satisfying the following conditions (Items 6 and 7),

if it exists in P , is called the greatest lower bound or the infimum of S:

6. for all s ∈ S. inf S ≤ s,

7. for all a ∈ P. if a ≤ s for all s ∈ S then a ≤ inf S.

10

The supremum of the empty set sup ∅, if it exists in P , we denote it as a constant ⊥,

i.e. ⊥ = sup ∅, called bottom. And, the infimum of the empty set inf ∅, if it exists in

P , we denote it as a constant >, i.e. > = inf ∅, called top. If a poset 〈P,≤〉 has both

bottom and top, we call it bounded and sometimes denote the constants clearly as

〈P,≤,>,⊥〉.

Given a poset 〈P,≤〉 and arbitrary elements a, b ∈ P , the element sup{a, b}, if

it exists in P , is the (binary) join of a and b denoted by a ∨ b, and the element

inf{a, b}, if it exists in P , is the (binary) meet of a and b, denoted by a∧ b. A poset

〈P,≤〉 is a lattice, if a ∨ b and a ∧ b exist in P for arbitrary a, b ∈ P . Furthermore,

if a poset 〈P,≤〉 has the supremum and the infimum for arbitrary subsets of P , we

call it a complete lattice.

We sum up our ordered structures as follows.

Preordered set : a set with a reflexive and transitive binary relation

Poset : a set with a reflexive, transitive and anti-symmetric binary relation

Bounded poset : a poset with top and bottom

Lattice : a poset with all binary joins and all binary meets

Bounded lattice : a poset with all finite supremums, which are supremums for

finite subsets, and all finite infimums, which are infimums for finite subsets

Complete lattice : a poset with all supremums and all infimums for arbitrary

(possibly infinite) subsets

Lattices can be also introduced as algebraic structures as follows.

11

Definition 2.1.1 (Lattice). A triple 〈L,∨,∧〉 is a lattice, where L is a set, and ∨

and ∧ are binary operations, the so-called lattice operations, on L satisfying

1. a ∨ b = b ∨ a, a ∧ b = b ∧ a, (commutativity)

2. a ∨ (b ∨ c) = (a ∨ b) ∨ c, a ∧ (b ∧ c) = (a ∧ b) ∧ c, (associativity)

3. a ∨ (a ∧ b) = a, a ∧ (a ∨ b) = a, (absorption)

for all a, b, c ∈ L.

Remark 2.1.2. To define lattices, we often assume the idempotency for joins and

meets, i.e. a∨a = a and a∧a = a. However, they are deducible from the absorption

laws as follows.

a ∨ a = a ∨ (a ∧ (a ∨ b)) = a a ∧ a = a ∧ (a ∨ (a ∧ b)) = a

It is known that a lattice L = 〈L,∨,∧〉 can be seen as a poset with the following

partial order ≤ induced by lattice operations: for all a, b ∈ L, we let

a ≤ b ⇐⇒ a ∨ b = b ⇐⇒ a ∧ b = a.

Next we introduce classes of lattices and lattice expansions which appear in later

sections (see Section 3.1). These structures are e.g. in [4, 10, 11, 12, 13, 25].

Definition 2.1.3 (Distributive lattice). A lattice L = 〈L,∨,∧〉 is distributive, if it

satisfies the following conditions, the so-called distributive laws :

1. for all a, b, c ∈ L. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),

2. for all a, b, c ∈ L. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

12

Definition 2.1.4 (Boolean algebra). A Boolean algebra is a bounded distributive

lattice 〈L,∨,∧,>,⊥〉 with a unary operation ¬, the so-called complement, which

satisfies

1. for all a ∈ L. a ∨ (¬a) = > and a ∧ (¬a) = ⊥,

2. for all a ∈ L. ¬(¬a) = a,

3. for all a, b ∈ L. ¬(a ∧ b) = (¬a) ∨ (¬b) and ¬(a ∨ b) = (¬a) ∧ (¬b).

Definition 2.1.5 (Modal algebra). A modal algebra 〈L,∨,∧,¬,>,⊥,♦〉 is a Boolean

algebra 〈L,∨,∧,¬,>,⊥〉 with a unary operation ♦ which satisfies

1. for all a, b ∈ L. ♦(a ∨ b) = (♦a) ∨ (♦b),

2. ♦⊥ = ⊥.

Definition 2.1.6 (Heyting algebra). A Heyting algebra is a bounded distributive

lattice 〈L,∨,∧,>,⊥〉 with a binary operation → which satisfies

a ∧ b ≤ c ⇐⇒ b ≤ a→ c, for all a, b, c ∈ L.

Definition 2.1.7 (Full Lambek algebra). A full Lambek algebra, FL-algebra for

short, is a 8-tuple 〈L,∨,∧, ◦, \, /, 1, 0〉, where 〈L,∨,∧〉 is a lattice, 〈L, ◦, 1〉 is a

monoid, 0 is a constant in L, and the binary operations ◦, \ and / satisfy the

residuation law : for all a, b, c ∈ L,

a ◦ b ≤ c ⇐⇒ b ≤ a\c ⇐⇒ a ≤ c/b.

Definition 2.1.8 (Many-valued algebra). A many-valued algebra, MV-algebra for

short, is a commutative monoid 〈L,⊕, e〉 with a unary operation ¬ which satisfies

13

1. for all a ∈ L. ¬(¬a) = a,

2. for all a ∈ L. a⊕ (¬e) = ¬e,

3. for all a, b ∈ L. (¬((¬a)⊕ b))⊕ b = (¬((¬b)⊕ a))⊕ a.

Note that there are two ways to prove that MV-algebras are term-equivalent to

specific FL-algebras (see [12]).

Hereinafter, to avoid nesting brackets, we sometimes omit brackets with respect-

ing the tightness of operations as usual. That is, unary operations are the most

tight, lattice operations are the second most, and the others follow. For example,

¬a ∨ b\c ∧ ¬d is a shorthand for ((¬a) ∨ b)\(c ∧ (¬d)).

Finally, we recall some fundamental terms in order theory. Let P = 〈P,≤〉 be a

poset. A subset S of P is an upset, if it is upward closed, i.e. if a ≤ b and a ∈ S then

b ∈ S for all a, b ∈ P . Order-dually, a subset S of P is a downset, if it is downward

closed. Note that the empty set ∅ is an upset and a downset, and the underlying set

P is also an upset and a downset. A subset S of P is down-directed, if there exists

at least one lower bound in S for each pair of elements in S, i.e. for all a, b ∈ S,

there exists c ∈ S such that c ≤ a and c ≤ b. Order-dually, a subset S of P is

up-directed, if there exists at least one upper bound in S for each pair of elements

in S. We call non-empty, down-directed upsets filters and non-empty, up-directed

downsets ideals. Over lattices, our definitions of filters and ideals correspond to the

lattice-theoretic filters and ideals. That is, given a lattice 〈L,∨,∧〉, a subset S of L

is a filter (an ideal), if S is non-empty and upward closed (downward closed), and

for all a, b ∈ S, we have a ∧ b ∈ S (a ∨ b ∈ S). Furthermore, over lattices, a filter F

(an ideal I) is prime, if for all a, b ∈ L. if a ∨ b ∈ F (a ∧ b ∈ I) then a ∈ F or b ∈ F

(a ∈ I or b ∈ I). Over Boolean algebras, prime filters (prime ideals) coincide with

14

maximal filters (maximal ideals). We sometimes call maximal filters ultrafilters.

2.2 Stone representation, Dedekind-MacNeille com-

pletion and the canonical extension

In this section, we present the main constructions of Dedekind-MacNeille comple-

tions and canonical extensions of ordered structures that we study in this disserta-

tion. In order theory, a completion P of an ordered structure P = 〈P,≤〉, e.g. posets

or lattices, is a complete lattice on which P is order-embeddable, i.e. there exists an

injective order-preserving map from P to P. Whenever we consider ordered algebraic

structures as poset expansions (or lattice expansions), we assume that a completion

is not only an order-embeddable but also homomorphic as an algebraic structure.

That is, there exists an injective order-preserving homomorphism from the original

algebraic structure to the completion. For example, a complete lattice L is a com-

pletion of a lattice L, if there exists an injective order-preserving homomorphism h

which satisfies h(a∨L b) = h(a)∨L h(b) and h(a∧L b) = h(a)∧L h(b) for all a, b ∈ L.

Stone representation Let L = 〈L,∨,∧,>,⊥〉 be a bounded distributive lattice,

and P(L), P for short, the set of all prime filters of L ordered by inclusion. Then,

the set U(P) of all upsets of P is a completion of L. We sometimes refer to P as

the dual space of L and denote P as L+, and sometimes refer to U(P) as the dual

algebra of P and denote U(P) as P+.

Theorem 2.2.1 (Stone representation for bounded distributive lattices [78]). Every

bounded distributive lattice L has a completion (L+)+. The embedding ˆ : L→ (L+)+

15

is given by the following: for each a ∈ L, we let

â := {P ∈ P | a ∈ P}.

Remark 2.2.2. In duality theory between lattices and (ordered) topological spaces,

one can find dualities based on Stone representation: Stone duality for Boolean

algebras [77], see also [48], Priestley duality for distributive lattices [67], see also

[13], and Esakia duality for Heyting algebras [21], see also [3].

Dedekind-MacNeille completion Let P = 〈P,≤〉 be a poset. The original

Dedekind-MacNeille completion P of P is given by the collection of all subsets S of

P satisfying (Su)l = S, where u and l are defined as follows [60, 4, 13]:

1. Su := {a ∈ P | ∀s ∈ S. s ≤ a}, (the set of upper bounds of S)

2. Sl := {a ∈ P | ∀s ∈ S. a ≤ s}. (the set of lower bounds of S)

The order on P is the set-inclusion. Intuitively speaking, the Dedekind-MacNeille

completion P is the sublattice of (u)l-stable subsets of the powerset complete lattice

℘(P).

However, to focus on a different aspect of the Dedekind-MacNeille completion,

we redefine it as an abstract (point-free) structure as follows. Let D(P) be the set of

all downsets of P ordered by inclusion ⊆, and U(P)∂ the set of all upsets of P ordered

by the reverse-inclusion ⊇. Note that the superscript ∂ points out that U(P)∂ is

the order dual structure of U(P) ordered by inclusion ⊆. Between D(P) and U(P),

we introduce two order-preserving maps λ : D(P) → U(P)∂ and υ : U(P)∂ → D(P)

as follows: for all D ∈ D(P) and all U ∈ U(P)∂, we let

16

1. λ(D) := {a ∈ P | ∀d ∈ D. d ≤ a}, (the set of upper bounds of D)

2. υ(U) := {a ∈ P | ∀u ∈ U. a ≤ u}. (the set of lower bounds of U)

Remark 2.2.3. Note that these maps λ (lambda) and υ (upsilon) are exactly the

same as u and l, respectively. Then one may feel that λ should correspond to

l not to u. However, this is just a matter of taste: in the original notation, Su

means “taking upper bounds of S”, whereas λ(D) states “constructing the least

upper bound of D”, which is also explained as “approximation from below (the

lower-side)” later. Analogously, υ(U) says “constructing the greatest lower bound

of U by approximating from the upper-side.” See also Section 7.1.

Proposition 2.2.4 (Galois connection λ a υ). λ and υ form a Galois connection,

λ a υ. That is, for all D ∈ D(P) and all U ∈ U(P)∂, we have

λ(D) ⊇ U ⇐⇒ D ⊆ υ(U).

Recall that the order on U(P)∂ is the reverse-inclusion ⊇.

D(P)
λ

,,
⊥ U(P)∂

υ
ll

By a fact in category theory, we obtain the following: see e.g. [55, 6, 58].

Proposition 2.2.5. The images υ[U(P)∂] and λ[D(P)] are isomorphic via the Galois

connection λ a υ, i.e. υ[U(P)∂] ∼= λ[D(P)].

The following lemma is also obtained by a fact of Galois connections.

Lemma 2.2.6. The original Dedekind-MacNeille completion (Pu)l is isomorphic to

υ[U(P)∂] and to λ[D(P)].

17

Thanks to Lemma 2.2.6, we can re-define Dedekind-MacNeille completions as

follows.

Definition 2.2.7 (Dedekind-MacNeille completion). An abstract ordered structure

P is a Dedekind-MacNeille completion of P, when there exist two isomorphisms

↓ : P→ υ[U(P)∂] and ↑ : P→ λ[D(P)] which make the following diagram commute.

P
↓

{{

↑

""

υ[U(P)∂]
λ

,,
∼= λ[D(P)]
υ

mm

As we saw in Lemma 2.2.6, the two definitions of Dedekind-MacNeille comple-

tions coincide. But, our definition of Dedekind-MacNeille completions claims “every

element of P is approximated both from above and from below (bi-approximation).”

Remark 2.2.8. The Dedekind-MacNeille completions in Definition 2.2.7 are, by

definition, unique up to isomorphism. Therefore, hereinafter, we call them the

Dedekind-MacNeille completion. Moreover, for every poset P, the existence of the

Dedekind-MacNeille completion P is guaranteed by υ[U(P)∂] and λ[D(P)].

Canonical extensions The canonical extension of ordered algebraic structures

is a completion which is originally given by Stone representation and is also closely

related to Henkin’s canonical model in modal logic. More precisely, given a modal

logic L, the Stone space (dual space) L+ of the Lindenbaum-Tarski algebra L for L

corresponds to Henkin’s canonical model for L. The study of canonical extensions

of Boolean algebras with operators has already appeared in [50, 51] based on Stone

representation for Boolean algebras. In this paragraph, to apply this type of com-

18

pletions to poset expansions in general, we introduce canonical extensions of posets.

Recall that Stone representation only works over bounded distributive lattices with

Axiom of Choice. One can find that the construction itself has already appeared in

[4]. But, we mention that the same (or the closely related) construction is also in

[85, 35, 86, 2, 33, 44, 41, 27, 18]. Here, to introduce Ghilardi and Meloni’s parallel

computation, which is the main technique of our canonicity methodology, we focus

especially on the construction of the canonical extension in [33].

Let P = 〈P,≤〉 be a poset. We denote by F(P), F for short, and I(P), I for

short, the set of all filters of P and the set of all ideals of P, respectively. On the

union F ∪I, of F and I, we define a binary relation v as follows: for each F,G ∈ F

and I, J ∈ I, we let

1. F v G ⇐⇒ F ⊇ G,

2. I v J ⇐⇒ I ⊆ J ,

3. F v I ⇐⇒ F ∩ I 6= ∅,

4. I v F ⇐⇒ ∀i ∈ I,∀f ∈ F. i ≤ f .

It is straightforwardly proved that v is a partial order on both F and I but not on

F ∪ I, because v is not anti-symmetric on F ∪ I. More precisely, for each a ∈ P,

the principal filter ↑a := {b | a ≤ b} and the principal ideal ↓a := {b | b ≤ a} satisfy

↑a v ↓a and ↓a v ↑a, but ↑a 6= ↓a. To make the binary relation v on F ∪ I anti-

symmetric, we define the equivalence relation ∼ as follows: for all X, Y ∈ F ∪I, we

let X ∼ Y ⇐⇒ X v Y and Y v X. Note that the equivalence relation identifies

each principal filter with the principal ideal generated by the same element.

19

Definition 2.2.9 (Intermediate level). Let P be a poset. The quotient poset of

F ∪ I with respect to ∼ is the intermediate level, denoted by F +P I.

Next, to construct the canonical extension of P, we take the Dedekind-MacNeille

completion of F +P I. That is, we define a Galois connection λ a υ between the set

D(F) of all downsets of 〈F ,v〉 and the set U(I)∂ of all upsets of 〈I,v〉 as follows.

For each F ∈ D(F) and each I ∈ U(I)∂, we let

1. λ(F) := {I ∈ I | ∀F ∈ F. F v I},

2. υ(I) := {F ∈ F | ∀I ∈ I. F v I}.

D(F)
λ

,,
⊥ U(I)∂

υ
ll

Henceforward, we denote the image of λ and the image of υ as Uλ and Dυ,

i.e. Dυ = υ[U(I)∂] and Uλ = λ[D(F)]. Then, we define the canonical extension of

posets as follows.

Definition 2.2.10 (Canonical extension). Let P be a poset. A triple 〈P, ↓, ↑〉, P

for short, is the canonical extension of P, if P is the Dedekind-MacNeille completion

of the intermediate level F +P I. In other words, there exist two isomorphisms

↓ : P→ Dυ and ↑ : P→ Uλ, and 〈P, ↓, ↑〉 makes the following diagram commute.

P
↓

��

↑

��
Dυ

λ
++∼= Uλ

υ

kk

Note that the existence of canonical extensions is trivial, because we can take

〈Dυ, id, λ〉 or 〈Uλ, υ, id〉 as a canonical extension.

Remark 2.2.11.

20

1. The reason we define a triple 〈P, ↓, ↑〉 as the canonical extension is that it

gives us the possibility to calculate simultaneously in Dυ and in Uλ: see also

Section 7.2.

2. When we consider the class of bounded distributive lattices, we can define two

adjoint pairs among D(F), U(P) and U(I)∂, where P is the set of all prime

filters and U(P) is the set of all upset of 〈P ,⊆〉, as follows: for each F ∈ D(F),

each P ∈ U(P) and each I ∈ U(I)∂, we let

(a) λ1(F) := {P ∈ P | ∃F ∈ F. F ⊆ P},

(b) λ2(P) := {I ∈ I | ∀P ∈ P . P ∈ P =⇒ P ∩ I 6= ∅},

(c) υ1(P) := {F ∈ F | ∀P ∈ P . F ⊆ P =⇒ P ∈ P},

(d) υ2(I) := {P ∈ P | ∀I ∈ I. P ∩ I 6= ∅}.

D(F)

λ1
,,

⊥ U(P)
υ1

ll

λ2
,,

⊥ U(I)∂

υ2

ll

Then, with the Prime filter theorem, e.g. [13], or equivalently the Axiom of

Choice, we can prove that the images Dυ and Uλ are isomorphic to the standard

canonical extension given by Stone representation, e.g. [29].

Remark 2.2.12. With the terminology in [29, 41] taken over from [50, 51], α↓ ∈ Dυ

and α↑ ∈ Uλ are explained as a join of closed elements and a meet of open elements,

respectively: see also Section 7.1. However, to build the parallel computation, it is

necessary for us to make the clear distinction of these two directions of the approx-

imation, e.g. α↓ (approximated from above) and α↑ (approximated from below).

21

We sum up the construction and relations between structures as follows.

F //

$$

D(F)

λ

��

`

Dυ

λ

∼=

_?
oo

P
0�

↑
@@

� � //
� n

↓
��

F +P I P∼=

·↓
ee

·↑zz
I //

::

U(I)∂

υ

KK

Uλ

υ

JJ

_?
oo

We can define the following two canonical embeddings ` : P→ Dυ and ´ : P→ Uλ

as follows. For each a ∈ P, we let

1. à := {F ∈ F | a ∈ F},

2. á := {I ∈ I | a ∈ I}.

2.3 Bi-approximation and bases

It is a fact that, for each poset, we can characterise the canonical extensions of

posets with a topological terminology and prove they are unique up to isomorphism

(see Section 7.1). Nevertheless, in Definition 2.2.10, we introduced the canonical

extensions of posets as an abstract (point-free) complete lattice which is isomorphic

to both Dυ and Uλ. This is because, to prove canonicity, we would like to come

always back to Dυ and Uλ to compute term functions on canonical extensions. We

call this property that canonical extensions are isomorphic to both Dυ and Uλ bi-

directional approximation, or bi-approximation for short. Note that this property is

topologically explained as denseness (see Section 7.1).

22

Bi-approximation in canonical extensions Given a poset P, the canonical

extension P is an abstract structure which is isomorphic to both Dυ and Uλ.

P
↓

��

↑

��
Dυ

λ
++∼= Uλ

υ

kk

Our setting allows us to reason about P both in Dυ and in Uλ in parallel. That

is, every element α ∈ P can be seen as an element α↓ ∈ Dυ, that is a downset of

filters, and as an element α↑ ∈ Uλ, that is an upset of ideals. Since each element in

Dυ is an image of an upset I of ideals, namely α↓ = υ(I), we call I a (ideal) basis

of α, and we also say that α is approximated by I. Analogously, if α↑ = λ(F) for

some downset F of filters, we call F a (filter) basis of α, and we also say that α is

approximated by F. Note that the superscript ↓ and the subscript ↑ mean that α↓

is approximated from the upper-side and α↑ is approximated from the lower-side:

see also Remark 2.2.3 and Section 7.1.

For every poset, we can prove the following.

Proposition 2.3.1.

1. For each α ∈ P, we have α↓ = υ(α↑) and α↑ = λ(α↓).

2. For all α, β ∈ P, we have that α ≤ β ⇐⇒ α↓ ⊆ β↓ ⇐⇒ α↑ ⊇ β↑.

3. For any F ∈ D(F) and any I ∈ U(I)∂, if α↑ = λ(F) (F is a basis of α) and

β↓ = υ(I) (I is a basis of β), we have

α ≤ β ⇐⇒ ∀F ∈ F,∀I ∈ I. F v I.

23

4. For each α ∈ P, we have that α↓ is a v-downset and α↑ is an v-upset.

Remark 2.3.2. In addition to Item 4 in Proposition 2.3.1, if P is a lattice, we

can also state that, for every α ∈ P, α↓ is an ideal of 〈F ,v〉, and α↑ is a filter of

〈I,v〉, where joins on F and meets on I are the set-theoretical intersection, see also

Definition 3.2.1.

The non-empty basis and boundedness When we consider the canonical ex-

tension P of a poset P, we notice the presence of empty bases, i.e. the empty set ∅F

of filters (the empty filter basis) and the empty set ∅I of ideals (the empty ideal

basis). In general, the empty filter basis is a basis of the bottom ⊥ in P and the

empty ideal basis is a basis of the top > in P, but they may not be unique. That

is, there may be some non-empty other downsets of filters, especially ⊥↓ and some

other non-empty upsets of ideals, especially >↑ (Fig. 2.1).

Figure 2.1: Top and bottom in the canonical extension

∅F

∅IF

I

>

⊥⊥↓

>↑

D(F) P U(I)∂
↓

λ

λ

↓
υ
↑

↑

υ

In our method, the presence of empty bases makes our proofs complex. Not only

that, it sometimes affects our technique critically (Chapter 5). Here we give two

typical classes of posets where we can assume the non-emptiness of bases.

Bounded posets : for an arbitrary bounded poset 〈P,≤,>,⊥〉, the principal filter

24

↑⊥ intersects with all ideals in I, hence λ({↑⊥}) = I = ⊥↑. And, the principal

ideal ↓> intersects with all filters in F , hence υ({↓>}) = F = >↓.

Lattices : for an arbitrary lattice 〈L,∨,∧〉, the whole underlying set L is non-

empty, upward closed, downward closed, closed under finite joins and closed

under finite meets. Therefore, L is a filter and an ideal. Because filters and

ideals are non-empty, every ideal intersects with L and every filter intersects

with L, i.e. λ({L}) = I = ⊥↑ and υ({L}) = F = >↓.

Therefore, hereinafter, when we think about bounded posets and lattices, we assume

that every basis is non-empty. But, for posets in general, we cannot assume the non-

emptiness of bases.

25

Chapter 3

Canonicity of lattice expansions

In this chapter, we first introduce lattice expansions, which uniformly subsume well-

known algebraic counterparts of substructural and lattice-based logics. Moreover,

we consider canonical extensions of lattice expansions. In this end, we generalise

Ghilardi and Meloni’s canonicity methodology to lattice expansions in general.

3.1 Lattice expansions

Let P be a poset. The order dual structure is denoted by adding the superscript ∂

as P∂. To distinguish the original poset P from the order dual structure P∂ clearly,

we sometimes denote the original poset by adding the superscript 1 like P1. A

n-ary function f on P is a ε-operation on P, if there exists a list, called order-type,

ε = (ε1, . . . , εn), εi ∈ {1, ∂} for each i ∈ {1, . . . , n}, such that f is a monotone map

from the product domain.

f : Pε1 × · · · × Pεn → P

26

We call a pair of an underlying poset P and a set of ε-operations on P a poset

expansion. For example, the lattice operations ∨ : P1×P1 → P and ∧ : P1×P1 → P

are (1, 1)-operations on P, hence every lattice is a poset expansion. Furthermore,

the lattice operations are uniquely defined by the order ≤: for arbitrary a, b ∈ L,

a ≤ b ⇐⇒ a ∨ b = b ⇐⇒ a ∧ b = a, e.g. [10]. In this chapter, we focus only on

lattice expansions, which consists of an underlying lattice L and a set of ε-operations

on L.

A n-ary ε-operation f : Lε1 × · · · × Lεn → L is a ε-join preserving operation

(ε-meet preserving operation), if f is a ε-operation which is join-preserving (meet-

preserving) from the product domain Lε1× · · ·×Lεn . Note that this is different from

preserving joins (meets) in each coordinate.

Example 3.1.1 (Modal algebra, e.g. [5]). A modal algebra A = 〈L,¬,♦,⊥〉 is a

lattice expansion, where 〈L,¬,⊥〉 is a Boolean algebra, and ♦ : L1 → L is a 1-join

preserving operation satisfying ♦⊥ = ⊥.

Example 3.1.2 (Distributive modal algebra, [30]). A distributive modal algebra

A = 〈L,⊥,>,♦,�,B,C〉 is a lattice expansion, where 〈L,⊥,>〉 is a bounded dis-

tributive lattice, and

1. ♦ : L1 → L is a 1-join preserving operation satisfying ♦⊥ = ⊥,

2. � : L1 → L is a 1-meet preserving operation satisfying �> = >,

3. B: L∂ → L is a ∂-meet preserving operation satisfying B ⊥ = >,

4. C: L∂ → L is a ∂-join preserving operation satisfying C > = ⊥.

A ε-operation is a ε-additive operation (ε-multiplicative operation), if it is join-

preserving (meet-preserving) in each coordinate. Note that joins in order dual

27

structures are meets and meets in order dual structures are joins. For example,

f : L∂ × L1 → L is (∂, 1)-additive, if we have the following two equations: for all

a, x, y ∈ L,

1. f(x ∧ y, a) = f(x, a) ∨ f(y, a),

2. f(a, x ∨ y) = f(a, x) ∨ f(a, y).

Among ε-additive operations and ε-multiplicative operations, we are interested

in the following pairs of ε-additive operations and ε-multiplicative operations.

Definition 3.1.3 (Adjoint pair). Let l be a (µ1, . . . , µn)-additive (n-ary) operation

and r a (ν1, . . . , νn)-multiplicative (n-ary) operation, where, for a fixed coordinate

i, µi = νi = 1 and, for the other coordinates k(6= i), µk and νk are the reverse order,

i.e. µk = ∂ and νk = 1, or µk = 1 and νk = ∂. l and r form an adjoint pair with

respect to the i-th coordinate, or simply adjoint pair, denoted by l ai r, if l and r

satisfy the following: for all a1, . . . , ai−1, ai+1, . . . , an, x, y ∈ L,

l(a1, . . . , ai−1, x, ai+1, . . . , an) ≤ y ⇐⇒ x ≤ r(a1, . . . , ai−1, y, ai+1, . . . , an). (3.1)

As in category theory, if a pair of maps l and r satisfies the condition (3.1), we

say that l is a left-adjoint to r and r is a right-adjoint to l.

Proposition 3.1.4 (e.g. [55]). Let l and r be n-ary maps. If l and r form an

adjoint pair l ai r, l is join-preserving with respect to the i-th coordinate, and r is

meet-preserving with respect to the i-th coordinate.

Remark 3.1.5. Proposition 3.1.4 does not state that l and r are either join-

preserving or meet-preserving from the product domain.

28

Note that our adjoint pairs are a parametrised version of the standard adjoint-

ness in category theory, because we also assume that l is µ-additive and r is ν-

multiplicative, not only for the i-th coordinate. It is necessary later: see Lemma

3.3.8.

When we consider lattice-based logics, the parametrised version of adjoint pairs

with µ-additivity and ν-multiplicativity is fundamental (see the following examples).

Example 3.1.6 (Heyting algebra, e.g. [11]). A Heyting algebra A = 〈L,→,>,⊥〉

is a lattice expansion, where 〈L,>,⊥〉 is a bounded distributive lattice, and ∧ and

→ form an adjoint pair; →: L∂ × L1 → L is a right-adjoint to ∧ : L1 × L1 → L.

Example 3.1.7 (FL-algebra, e.g. [63]). A FL-algebra A = 〈L, ◦, \, /, 1, 0〉 is a lattice

expansion, where L is the underlying lattice, 〈L, ◦, 1〉 a monoid, 0 an arbitrary

constant, and (1, 1)-additive operation ◦, (∂, 1)-multiplicative operation \ and (1, ∂)-

multiplicative operation / form adjoint pairs ◦ a2 \ and ◦ a1 /.

Example 3.1.8 (B.C�♦-algebra, [75, 76]). We can consider each B.C�♦-algebra

A = 〈L, ◦,→,¬,♦,�, ��, �♦, 1〉 as a lattice expansion as follows. L is the underlying

lattice, 1 the left identity element of ◦, and

1. ◦ : L1 × L1 → L and →: L∂ × L1 → L form an adjoint pair ◦ a1→,

2. ¬ : L∂ → L is a ∂-join preserving and ∂-meet preserving operation satisfying

¬¬a = a for each a ∈ L,

3. ♦ : L1 → L is a 1-join preserving operation,

4. � : L1 → L is a 1-meet preserving operation,

5. �� : L1 → L is a 1-meet preserving operation defined by ��a = ¬♦¬a for each

a ∈ L,

29

6. �♦ : L1 → L is a 1-join preserving operation defined by �♦a = ¬�¬a for each

a ∈ L.

Note that we should write →: L1 × L∂ → L because of ◦ a1→. But, we adopt the

conventional notation →: L∂ × L1 → L here.

Many algebraic structures of lattice-based logics are included in our general

framework: especially, lattice expansions consisting of ε-join preserving operations,

ε-meet preserving operations, ε-additive operations, ε-multiplicative operations, ad-

joint pairs and constants.

3.2 Canonical extensions of lattice expansions

In this section, based on the approach of [33], we extend ε-operations on a lattice

L to the canonical extension L in two steps. That is, we firstly extend ε-operations

onto the intermediate level. Then we extend those operations onto Dυ and Uλ to

make them isomorphic. Otherwise, we cannot define the canonical extension of

lattice expansions: see Definition 2.2.10.

The canonicity approach of [18] or [27] also uses the extended basic operations

on the intermediate level to define the canonical extension of operations. However,

as distinct from the approach there, our interest is to lift up term functions from

a lattice onto the intermediate level, not only basic operations. Then, we face with

the fact that the intermediate level is two-sorted : F and I. We achieve to lift up

term functions on the two phases, by introducing the parallel computation with the

following notation: x‖y. See also Section 7.2.

To save space, within this section, except Proposition 3.2.10, Proposition 3.2.11

and Abbreviation 3.2.4, we discuss only two types of ε-operations f : L1 × L1 → L

30

and g : L∂ × L1 → L. That is, we focus on a lattice expansion 〈L, f, g〉. However,

the argument is straightforwardly extended to arbitrary ε-operations.

Based on given ε-operations, we inductively define terms as usual.

term ::= pi | f(term, term) | g(term, term),

where pi is a propositional variable. Next we interpret each term t as a function,

called a term function, t : L× · · · × L→ L as follows. For all x1, . . . , xn ∈ L, we let

1. pi(x1, . . . , xn) := xi,

2. f(t1, t2)(x1, . . . , xn) := f(t1(x1, . . . , xn), t2(x1, . . . , xn)),

3. g(t1, t2)(x1, . . . , xn) := g(t1(x1, . . . , xn), t2(x1, . . . , xn)).

Note that we interpret each propositional variable pi as the i-th projection map.

Term functions on the intermediate level To construct the parallel compu-

tation on the intermediate level, we firstly extend the basic operations f and g to

two types of partial functions on F +L I:

1. f : F × F → F and f : I × I → I,

2. g : I × F → F and g : F × I → I,

as follows.

Definition 3.2.1 (ε-operations on the intermediate level). For all F,G ∈ F and

I, J ∈ I, we define

1. f(F,G) := {x ∈ L | ∃a ∈ F, ∃b ∈ G. f(a, b) ≤ x},

31

2. f(I, J) := {y ∈ L | ∃a ∈ I,∃b ∈ G. y ≤ f(a, b)},

3. g(I, F) := {x ∈ L | ∃a ∈ I,∃b ∈ F. g(a, b) ≤ x},

4. g(F, I) := {y ∈ L | ∃a ∈ F, ∃b ∈ I. y ≤ g(a, b)}.

We can check that these partial functions are well-defined, which is a special case

of Proposition 5.2.2. The lattice operations ∨ : L1 × L1 → L and ∧ : L1 × L1 → L

are also extended to the intermediate level, by Definition 3.2.1, as follows: for all

F,G ∈ F and I, J ∈ I, we let

1. F ∨G := {x ∈ L | ∃a ∈ F, ∃b ∈ G. a ∨ b ≤ x} (= F ∩G),

2. I ∨ J := {y ∈ L | ∃a ∈ I,∃b ∈ J. y ≤ a ∨ b} (= ↓(I ∪ J)),

3. F ∧G := {x ∈ L | ∃a ∈ F, ∃b ∈ G. a ∧ b ≤ x} (= ↑(F ∪G)),

4. I ∧ J := {y ∈ L | ∃a ∈ I,∃b ∈ J. y ≤ a ∧ b} (= I ∩ J),

where ↓(I ∪ J) is the ideal generated by I ∪ J and ↑(F ∪G) is the filter generated

by F ∪G.

Remark 3.2.2. These lattice operations on the intermediate level are partial func-

tions. Therefore, the intermediate level may not be a lattice. For example, we do

not define F ∨ I nor I ∧F for any non-principal filter F and any non-principal ideal

I. On the other hand, whenever we restrict these operations on F or I, 〈F ,∨,∧〉

and 〈I,∨,∧〉 form lattices.

If our interest were only to define the canonical extension of basic operations,

some functions in Definition 3.2.1 would be redundant. For example, if we want to

take fσ (σ-extension) and gπ (π-extension), they are defined only by Items 1 and

32

4, see Remark 3.2.7, the definitions of f↑ (3.7) and (3.8), and the definition of g↓

(3.9) and (3.10). However, in our case, because the main interest is to calculate

term functions on the intermediate level, all functions defined in Definition 3.2.1 are

essential, e.g. see Proposition 3.3.2.

Additionally, to introduce term (partial) functions on the intermediate level, we

also introduce the following notation, P‖N where P,N ∈ F +L I, and P and N

are in the different sorts. Namely, if P ∈ F then N ∈ I, and conversely, if P ∈ I

then N ∈ F . The notation P‖N means P is assigned to the positive occurrences

and N is assigned to the negative occurrences. Then, term (partial) functions on the

intermediate level are defined in parallel: for all F1, . . . , Fn ∈ F and I1, . . . , In ∈ I,

pi(F‖I) := Fi pi(I‖F) := Ii

f(t1, t2)(F‖I) := f(t1(F‖I), t2(F‖I)) f(t1, t2)(I‖F) := f(t1(I‖F), t2(I‖F))

g(t1, t2)(F‖I) := g(t1(I‖F), t2(F‖I)) g(t1, t2)(I‖F) := g(t1(F‖I), t2(I‖F))

where (F‖I) and (I‖F) are (F1‖I1, . . . , Fn‖In) and (I1‖F1, . . . , In‖Fn). For example,

g(g(p1, p2), f(p1, p2)) is calculated on the two phases in parallel as follows: for all

F,G ∈ F and I, J ∈ I,

1. g(g(p1, p2), f(p1, p2))(F‖I,G‖J) = g(g(F, J), f(F,G)),

2. g(g(p1, p2), f(p1, p2))(I‖F, J‖G) = g(g(I,G), f(I, J)).

On the intermediate level, we can straightforwardly prove the monotonicity

lemma.

Lemma 3.2.3 (Monotonicity on the intermediate level). Let t be a term. For all

F1, . . . , Fn, G1, . . . , Gn ∈ F and I1, . . . , In, J1, . . . , Jn ∈ I, if Fi v Gi and Ii v Ji for

33

each i ∈ {1, . . . , n}, we have

t(F1‖J1, . . . , Fn‖Jn) v t(G1‖I1, . . . , Gn‖In),

t(I1‖G1, . . . , In‖Gn) v t(J1‖F1, . . . , Jn‖Fn).

Abbreviation 3.2.4 (Parallel notations). Before moving further, we introduce

some abridged notations relating to the parallel notation ‖. Hereafter, we often

encounter arguments with parallel notations, especially in Section 3.3. Moreover,

the generality of our theory requires these abbreviations to simplify our discussion.

Let X1, . . . , Xn, Y1, . . . , Yn be arbitrary elements. We let

X‖Y = X1‖Y1, . . . , Xn‖Yn. (3.2)

Let X1, . . . ,Xn,Y1, . . . ,Yn be sets, and f is a ε-operation. In f(Z1, . . . , Zn), we

assume the following. For each coordinate k ∈ {1, . . . , n},

Zk ∈ (Xk‖Yk) ⇐⇒

Zk ∈ Xk if εk = 1

Zk ∈ Yk if εk = ∂.

(3.3)

In later sections, we introduce term types, e.g. ∪-term and ∩-term in Definition

3.3.3. For all terms (term functions) t1, . . . , tn, if we have a ε-operation f , and term

types S and T , we let, in f(t1, . . . , tn),

tk is a (S‖T)-term ⇐⇒

tk is a S-term if εk = 1

tk is a T -term if εk = ∂.

(3.4)

34

Similarly, f(t(S‖T), . . . , t(S‖T)) means that the k-th term is a S-term if εk = 1 and

the k-th term is a T -term if εk = ∂ for every k. Moreover, f(c, . . . , t(S‖T), . . . , c)

means that there exists only one coordinate k substituted by tS if εk = 1 and by tT

if εk = ∂, and other coordinates are fixed by constants (constant terms).

Parallel computation on lattices To prove canonicity, it is necessary to build

a firm connection between term functions on the original lattice and term functions

on the intermediate level. However, since term functions on the intermediate level

are two-sorted with the parallel notation ‖, it is not easy to directly connect them

to term functions on the original lattice in general. Here, by introducing the par-

allel computation for term functions on the original lattice, we obtain an indirect

connection between term functions on the original lattice and term functions on the

intermediate level: see Lemma 3.2.6.

For all x1, . . . , xn, y1, . . . , yn ∈ L, we let

1. pi(x‖y) := xi,

2. f(t1, t2)(x‖y) := f(t1(x‖y), t2(x‖y)),

3. g(t1, t2)(x‖y) := g(t1(y‖x), t2(x‖y)).

That is, only when we take the order dual elements, e.g. the first argument in g, we

swap the left-hand side and the right-hand side. Hence, in t(x1‖y1, . . . , xn‖yn),

the positive occurrences of pi are replaced by xi and the negative occurrences

of pi are replaced by yi for each propositional variable pi. In general, we have

that t(x1, . . . , xn) = t(x1‖y1, . . . , xn‖yn), if all variables appear positively in t.

But, whenever we use the same element for both sides, e.g. x‖x, we can state

35

that t(x1, . . . , xn) = t(x1‖x1, . . . , xn‖xn). We can prove the following monotonic-

ity lemma straightforwardly.

Lemma 3.2.5 (Monotonicity on L). Let t be a term. For all x1, . . . , xn, y1, . . . , yn,

z1, . . . , zn, w1, . . . , wn ∈ L, if xi ≤ yi and zi ≤ wi for each i ∈ {1, . . . , n}, we have

t(x1‖w1, . . . , xn‖wn) ≤ t(y1‖z1, . . . , yn‖zn).

The connection between term functions on L and on the intermediate level is

given by the following lemma.

Lemma 3.2.6. Let t be a term. For all F1, . . . , Fn ∈ F , I1, . . . , In ∈ I and x, y ∈ L,

we have

1. x ∈ t(F‖I) ⇐⇒ ∀l ∈ {1, . . . , n}, ∃al ∈ Fl,∃bl ∈ Il. t(a1‖b1, . . . , an‖bn) ≤ x,

2. y ∈ t(I‖F) ⇐⇒ ∀l ∈ {1, . . . , n},∃cl ∈ Il,∃dl ∈ Fl. y ≤ t(c1‖d1, . . . , cn‖dn).

Proof. Simultaneous induction on t. Basic cases are trivial. Here, we only check the

induction step of Item 1 for g(t1, t2). Assume that t1 and t2 satisfy Items 1 and 2.

(⇒). If x ∈ g(t1, t2)(F‖I) = g(t1(I‖F), t2(F‖I)), there exist a ∈ t1(I‖F) and

b ∈ t2(I‖F) such that g(a, b) ≤ x. By induction hypothesis, for each l ∈ {1, . . . , n},

there exist fl, gl ∈ Fl and il, jl ∈ Il such that a ≤ t1(i‖f) and t2(g‖j) ≤ b. Since

each Fl is a filter and each Il is an ideal, there exist hl ∈ Fl and kl ∈ Il such that

hl ≤ fl, hl ≤ gl, il ≤ kl and jl ≤ kl. By Lemma 3.2.5, we have that a ≤ t1(k‖h) and

t2(h‖k) ≤ b. Therefore, g(t1, t2)(h‖k) ≤ g(a, b) ≤ x.

(⇐). If there exist fl ∈ Fl and il ∈ Il such that g(t1, t2)(f‖i) ≤ x, by definition,

we have x ∈ g(t1, t2)(F‖I), because t1(i‖f) ∈ t1(I‖F) and t2(f‖i) ∈ t2(F‖I) by

induction hypothesis.

36

Term functions on the canonical extension Next we extend ε-operations to

the canonical extension L. Since the canonical extension L is isomorphic to both

Dυ and Uλ, it is necessary to extend each ε-operation onto Dυ and Uλ to make them

isomorphic. Otherwise, we cannot define the canonical extension, see Definition

2.2.10.

In general, we have two types of the extensions, ↓ approximated from above and

↑ approximated from below for each ε-operation (approximation: see Section 2.3).

In other words, since the canonical extension L is isomorphic to two structures Dυ

and Uλ, for every ε-operation f we have two natural extensions f ↓ defined on Dυ

(and copied to Uλ), and f↑ defined on Uλ (and copied to Dυ).

For the (1, 1)-operation f : L1 × L1 → L, the extension f ↓ is defined on Dυ:

(f ↓(α, β))↓ := υ({f(I, J) | I ∈ α↑, J ∈ β↑}), (3.5)

and copied onto Uλ:

(f ↓(α, β))↑ := λ((f ↓(α, β))↓). (3.6)

We mention that (f ↓(α, β))↓ and (f ↓(α, β))↑ are the same operations, but the values

are evaluated in the different sorts, (f ↓(α, β))↓ ∈ Dυ and (f ↓(α, β))↑ ∈ Uλ, see also

Section 2.3. On the other hand, the extension f↑ is defined on Uλ:

(f↑(α, β))↑ := λ({f(F,G) | F ∈ α↓, G ∈ β↓}), (3.7)

and copied onto Dυ:

(f↑(α, β))↓ := υ((f↑(α, β))↑). (3.8)

37

For the (∂, 1)-operation g : L∂ × L1 → L, the extension g↓ is defined on Dυ:

(g↓(α, β))↓ := υ({g(F, I) | F ∈ α↓, I ∈ β↑}), (3.9)

and copied onto Uλ:

(g↓(α, β))↑ := λ((g↓(α, β))↓). (3.10)

On the other hand, the extension g↑ is defined on Uλ:

(g↑(α, β))↑ := λ({g(I, F) | I ∈ α↑, F ∈ β↓}), (3.11)

and copied onto Dυ:

(g↑(α, β))↓ := υ((g↑(α, β))↑). (3.12)

Note that, by definition, f ↓, f↑, g
↓ or g↑ are two pairs of two functions (one is on

Dυ, e.g. (3.5) and the other is on Uλ, e.g. (3.6)) which are always the same functions

for any ε-operation regardless of their properties, like (ε-)join preserving, etc.

Conversely, in general, we cannot show that the two types of the extensions f ↓

and f↑ agree, nor that the two types of the extensions g↓ and g↑ do. That is, for

example, the following two Equations (3.13) and (3.14) may not hold:

υ({f(I, J) | I ∈ α↑, J ∈ β↑}) = υ(λ({f(F,G) | F ∈ α↓, G ∈ β↓})), (3.13)

λ({f(F,G) | F ∈ α↓, G ∈ β↓}) = λ(υ({f(I, J) | I ∈ α↑, J ∈ β↑})). (3.14)

Therefore, to define the canonical extension of lattice expansions, it is necessary

to choose the appropriate extension (the approximating direction ↓ or ↑) for each

38

operation first.

Remark 3.2.7. The extension f ↓ coincides with fπ (π-extension) and the extension

f↑ corresponds to fσ (σ-extension) in e.g. [18].

Remark 3.2.8. We cannot define the canonical extensions of arbitrary lattice ex-

pansions in a uniform way. Namely, for an arbitrary ε-operation f , we do not know,

in general, which extension f ↓ or f↑ of f is appropriate. But, in substructural logic,

the canonical extensions of fusion ◦ and residuals \ and / have to be ◦↑, \↓ and /↓.

Otherwise, the adjointness does not hold on the canonical extension: see [31] or [32].

Once we have obtained canonical extensions of lattice expansions, based on these

operations, we inductively define term functions on L. Let f̃ be either f ↓ or f↑, and

g̃ either g↓ or g↑. Recall, once more that, before we define term functions on the

canonical extension, we must decide which extension is chosen for each ε-operation.

Let 〈L, f̃, g̃〉 be the canonical extension of 〈L, f, g〉. Notice that the lattice operations

are special cases of f , see also Proposition 3.2.10 and Proposition 3.2.11. For all

α1, . . . , αn ∈ L, we let

Dυ-1 : (pi(α1, . . . , αn))↓ := αi
↓,

Dυ-2 : (f̃(t1, t2)(α1, . . . , αn))↓ := (f̃(t1(α1, . . . , αn), t2(α1, . . . , αn)))↓,

Dυ-3 : (g̃(t1, t2)(α1, . . . , αn))↓ := (g̃(t1(α1, . . . , αn), t2(α1, . . . , αn)))↓

Uλ-1 : (pj(α1, . . . , αn))↑ := αi↑,

Uλ-2 : (f̃(t1, t2)(α1, . . . , αn))↑ := (f̃(t1(α1, . . . , αn), t2(α1, . . . , αn)))↑,

Uλ-3 : (g̃(t1, t2)(α1, . . . , αn))↑ := (g̃(t1(α1, . . . , αn), t2(α1, . . . , αn)))↑.

39

Hereafter, we focus on the canonical extension of constants, ε-join preserving op-

erations, ε-meet preserving operations, ε-additive operations, ε-multiplicative opera-

tions, and adjoint pairs. For constants, we can straightforwardly prove the following

proposition.

Proposition 3.2.9. Let L be a lattice, and c a constant in L. Then, the two

types of canonical extensions are, on Dυ, c↓ := {F ∈ F | c ∈ F} and, on Uλ,

c↑ := {I ∈ I | c ∈ I}. Moreover, we have that c↓ = υ(c↑) and c↑ = λ(c↓). If a

constant 1 ∈ L is the identity of a binary (1, 1)-operation ◦ : L1 × L1 → L, then,

regardless of the canonical extension of ◦ (either of ◦↓ and ◦↑), 1↓ is the identity of

◦ on Dυ and 1↑ is the identity of ◦ on Uλ.

The following proposition states that all ε-join preserving operations and ε-meet

preserving operations are smooth, or continuous, i.e. two types of extensions, σ-

extension (approximated from below) and π-extension (approximated from above)

coincide: see also [27].

Proposition 3.2.10. Let L be a lattice, f : Lε1 × · · · ×Lεn → L a ε-join preserving

operation, and g : Lε1 × · · · × Lεn → L a ε-meet preserving operation. Then, for all

α1, . . . , αn ∈ L, we have (recall the abbreviation Equation (3.3))

υ({f(Y1, . . . , Yn) | Yk ∈ (αk↑‖αk↓)}) = υ(λ({f(X1, . . . , Xn) | Xk ∈ (αk
↓‖αk↑)})),

(3.15)

λ({g(X1, . . . , Xn) | Xk ∈ (αk
↓‖αk↑)}) = λ(υ({g(Y1, . . . , Yn) | Yk ∈ (αk↑‖αk↓)})).

(3.16)

Proof. To save space, we assume that f : L∂ × L1 → L is a ε-join preserving

40

operation. That is, we claim Equation (3.15):

υ({f(F, J) | F ∈ α↓, J ∈ β↑}) = υ(λ({f(I,G) | I ∈ α↑, G ∈ β↓})).

But, we can easily generalise for arbitrary cases.

Firstly, we notice that

f(I,G) v f(F, J), (3.17)

for all F ∈ α↓, I ∈ α↑, G ∈ β↓ and J ∈ β↑, since we have that F v I and G v J

(Proposition 2.3.1). By Equation (3.17), we have

f(F, J) ∈ λ({f(I,G) | I ∈ α↑, G ∈ β↓}).

Therefore, υ(λ({f(I,G) | I ∈ α↑, G ∈ β↓})) ⊆ υ({f(F, J) | F ∈ α↓, J ∈ β↑}).

To prove the converse direction, it suffices to show that, there exist F ∈ α↓ and

J ∈ β↑ such that f(F, J) v Y , for each Y ∈ λ({f(I,G) | I ∈ α↑, G ∈ β↓}). Let Y

be in λ({f(I,G) | I ∈ α↑, G ∈ β↓}). Then, for arbitrary K ∈ α↑ and H ∈ β↓, we

have f(K,H) v Y . Now we define the following two sets.

f−11 (Y,H) := {x | ∃y ∈ Y, ∃h ∈ H. f(x, g) ≤ y}

f−12 (K,Y) := {x | ∃k ∈ K, ∃y ∈ Y. f(k, x) ≤ y}

Next we prove that f−11 (Y,H) is a filter and f−12 (K,Y) is an ideal. Firstly f−11 (Y,H)

and f−12 (K,Y) are non-empty, because of f(K,H) v Y . Since the domain of f

is L∂ × L1, it is trivial that f−11 (Y,H) is an upset and f−12 (K,Y) is a downset.

41

For all x1, x2 ∈ f−11 (Y,H) and x3, x4 ∈ f−12 (K,Y), there exist y1, y2, y3, y4 ∈ Y ,

h1, h2 ∈ H and k1, k2 ∈ K such that f(x1, h1) ≤ y1, f(x2, h2) ≤ y2, f(k1, x3) ≤ y3

and f(k2, x4) ≤ y4. By the ε-join preservability of f , (recall that the domain of f is

L∂ × L1), we have

f(x1 ∧ x2, h1 ∨ h2) = f(x1, h1) ∨ f(x2, h2) ≤ y1 ∨ y2,

f(k1 ∧ k2, x3 ∨ x4) = f(k1, x3) ∨ f(k2, x4) ≤ y3 ∨ y4.

Therefore, x1 ∧x2 ∈ f−11 (Y,H) and x3 ∨x4 ∈ f−12 (K,Y). Besides, we can also prove

that f−11 (Y,H) v K ′ and H ′ v f−12 (K,Y) for all K ′ ∈ α↑ and H ′ ∈ β↓, because,

by definition, we have f(K,H ′) v Y and f(K ′, H) v Y . So, f−11 (Y,H) ∈ α↓ and

f−12 (K,Y) ∈ β↑. Finally, we show that

f(f−11 (Y,H), f−12 (K,Y)) v Y.

Let a ∈ f(f−11 (Y,H), f−1(K,Y)). By Lemma 3.2.6, there exist x1 ∈ f−11 (Y,H) and

x2 ∈ f−12 (K,Y) such that a ≤ f(x1, x2). Since x1 ∈ f−1(Y,H) and x2 ∈ f−12 (K,Y),

there exist y1, y2 ∈ Y , h ∈ H and k ∈ K such that f(x1, h) ≤ y1 and f(k, x2) ≤ y2.

By the ε-join preservability of f and the monotonicity of f (recall that the domain

of f is L∂ × L1), we have

a ≤ f(x1, x2) ≤ f(x1 ∧ k, h ∨ x2) = f(x1, h) ∨ f(k, x2) ≤ y1 ∨ y2.

Therefore, a ∈ Y . ε-meet preserving operations are analogous.

Moreover, for ε-join preserving operations and ε-meet preserving operations, we

42

obtain the following proposition.

Proposition 3.2.11. Let L be a lattice, f : Lε1 × · · · ×Lεn → L a ε-join preserving

operation, and g : Lε1 × · · · × Lεn → L a ε-meet preserving operation. Then, the

extension f↑ of f , approximated from below, is a ε-join preserving operation on L,

and the extension f ↓ of f , approximated from above, is a ε-meet preserving operation

on L.

Proof. To save space, we treat only a (∂, 1)-multiplicative operation g : L∂×L1 → L.

For arbitrary α1, α2, β1, β2 ∈ L, we can trivially prove

g↓(α1 ∨ α2, β1 ∧ β2) ≤ g↓(α1, β1) ∧ g↓(α2, β2).

For the converse inequality, by Proposition 2.3.1, it suffices to show that, for each

X ∈ (g↓(α1, β1))
↓ ∩ (g↓(α2, β2))

↓, we have X ∈ (g↓(α1 ∨ α2, β1 ∧ β2))↓. For arbitrary

X ′ ∈ (α1 ∨ α2)
↓ and Y ′ ∈ (β1 ∧ β2)↑, there exist F ∈ α1

↓, G ∈ α2
↓, I ∈ β1↑ and

J ∈ β2↑ such that X ′ v F ∨ G and I ∧ J v Y ′. Furthermore, by X v g(F, I) and

X v g(G, J), we obtain

X v g(F, I) ∧ g(G, J) = g(F ∨G, I ∧ J) v g(X ′, Y ′).

For ε-additive operations and ε-multiplicative operations, we can prove the fol-

lowing.

Proposition 3.2.12. Let L be a lattice, l : Lε1 × · · · × Lεn → L an ε-additive

operation, and r : Lε1 × · · · × Lεn → L a ε-multiplicative operation. Then, the

43

extension l↑ of l, approximated from below, is ε-additive on L, the extension r↓ of r,

approximated from above, is ε-multiplicative on L.

Proof. To save space, we focus only on a (1, ∂)-additive operation l : L1 × L∂ → L.

For arbitrary α, β, γ ∈ L, we trivially have

l↑(α ∨ β, γ) ≥ l↑(α, γ) ∨ l↑(β, γ).

Conversely, by Proposition 2.3.1, we need to show that

(l↑(α ∨ β, γ))↑ ⊇ (l↑(α, γ))↑ ∩ (l↑(β, γ))↑.

Let Y be an arbitrary element of (l↑(α, γ))↑ ∩ (l↑(β, γ))↑. For an arbitrary K ∈ γ↑,

we define a set

l−1(Y,K) := {x | ∃y ∈ Y, ∃k ∈ K. l(x, k) ≤ y}.

We can prove that l−1(Y,K) is an ideal. Moreover, by assumption, we also have

that l−1(Y,K) ∈ α↑ ∩ β↑, hence, for each X ∈ (α ∨ β)↓, we have X v l−1(Y,K). By

definition, it follows that l(X,K) v Y .

l↑(α, β ∧ γ) = l↑(α, β) ∧ l↑(α, γ) is analogous.

Furthermore, for adjoint pairs, we can show the following.

Proposition 3.2.13. Let L be an underlying lattice, and a µ-additive operation

l : Lµ1×· · ·×Lµn → L and a ν-multiplicative operation r : Lν1×· · ·×Lνn → L form

an adjoint pair with respect to the i-th coordinate l ai r. Then, the extension l↑ of l,

approximated from below, and the extension r↓ of r, approximated from above, form

44

an adjoint pair with respect to the i-th coordinate on L, l↑ ai r↓. In other words,

left-adjoints defined on Uλ, approximated from below, and right-adjoints defined on

Dυ, approximated from above, preserve adjointness on the canonical extension.

Proof. To save space, we consider l : L1 × L1 → L and r : L∂ × L1 → L satisfying

l a2 r. But, we can easily extend the argument to arbitrary adjoint pairs.

By Proposition 2.3.1, it suffices to prove (l↑(γ, α))↑ ⊇ β↑ ⇐⇒ α↓ ⊆ (r↓(γ, β))↓,

for all α, β, γ ∈ L.

We claim that, for all F,G ∈ F and I ∈ I,

l(G,F) v I ⇐⇒ F v r(G, I). (3.18)

But, it is almost direct from the adjointness on L.

(⇒). Let F be an arbitrary element of α↓. For all G ∈ γ↓ and I ∈ β↑, by

the assumption, we have that f(G,F) v I. By the condition (3.18), we obtain

F v r(G, I), hence F ∈ (r↓(γ, β))↓. The reverse direction is analogous.

3.3 Ghilardi & Meloni’s canonicity methodology

In this section, we firstly generalise the approach in [33] from Heyting algebras with

unary modalities to arbitrary lattice expansions and from equalities to inequalities,

and show the simple but strong key technique of their method. Secondly, we syntac-

tically describe a class of canonical inequalities of lattice expansions which consists

of constants, ε-join preserving operations, ε-meet preserving operations, ε-additive

operations, ε-multiplicative operations and adjoint pairs. We remind that one can

apply our technique only after the canonical extensions of all operations in a target

45

lattice expansion are given. That is, we assume that for each ε-operation f , its

canonical extension is already defined either by f ↓ or by f↑.

Now we define the canonicity of inequalities. Hereinafter, we call both terms

and term functions simply terms.

Definition 3.3.1 (Canonicity). Let s, t be terms. An inequality s ≤ t is canon-

ical with respect to a class of lattice expansions, if, for every lattice expansion

L in the class and all α1, . . . , αN ∈ L, s(α1, . . . , αN) ≤ t(α1, . . . , αN) whenever

s(x1, . . . , xN) ≤ t(x1, . . . , xN) for all x1, . . . , xN ∈ L.

Thanks to the parallel computation, we can straightforwardly obtain the follow-

ing proposition, for each term t.

Proposition 3.3.2 (Rough basis). Let t be an arbitrary term and α1, . . . , αN ∈ L.

We have

t(α1, . . . , αN)↓ ⊇ {t(F1‖I1, . . . , FN‖IN) | Fk ∈ αk↓, Ik ∈ αk↑},

t(α1, . . . , αN)↑ ⊇ {t(I1‖F1, . . . , IN‖FN) | Ik ∈ αk↑, Fk ∈ αk↓}.

Proposition 3.3.2 claims that, for each term t, the set of filters of the form t(F‖I)

is always in t(α)↓ and the set of ideals of the form t(I‖F) is always in t(α)↑, where

Fk ∈ αk↓ and Ik ∈ αk↑: see also Section 7.2.

The following is the central definition, introduced in [33], to obtain the canonicity

results.

Definition 3.3.3 (∪-term and ∩-term). Let t be a term. t is a ∪-term, if, for all

46

α1, . . . , αN ∈ L,

t(α1, . . . , αN)↑ = λ({t(F1‖I1, . . . , FN‖IN) | Fk ∈ αk↓, Ik ∈ αk↑}).

t is a ∩-term, if, for all α1, . . . , αN ∈ L,

t(α1, . . . , αN)↓ = υ({t(I1‖F1, . . . , IN‖FN) | Ik ∈ αk↑, Fk ∈ αk↓}).

∪-terms and ∩-terms can be explained with the approximation as follows: for

each ∪-term t, the value t(α1, . . . , αN) can be approximated from below by the set

of filters t(F‖I), where Fk ∈ αk
↓ and Ik ∈ αk↑. Conversely, if a term t is not a

∪-term, the set of filters t(F‖I), where Fk ∈ αk↓ and Ik ∈ αk↑, may not be enough

to reconstruct the limiting point t(α1, . . . , αN), cf. Proposition 3.3.2. Analogously

for ∩-terms. See also Section 7.2.

Remark 3.3.4. The important reason to introduce ∪-terms and ∩-terms is that we

can simply prove the canonicity of inequalities s ≤ t whenever s is a ∪-term and t

is a ∩-term.

With ∪-terms and ∩-terms, we obtain the following canonicity results for arbi-

trary lattice expansions. Note that this is a simple version of Theorem 3.3.22.

Theorem 3.3.5. Let s, t be terms. An inequality s ≤ t is canonical, whenever s is

a ∪-term and t is a ∩-term.

Proof. Let L be an arbitrary lattice expansion. We need to show the follow-

ing: whenever s(x1, . . . , xN) ≤ t(x1, . . . , xN) for all x1, . . . , xN ∈ L, we have that

s(α1, . . . , αN) ≤ t(α1, . . . , αN) for all α1, . . . , αN ∈ L.

47

Suppose that s(x1, . . . , xN) ≤ t(x1, . . . , xN) for all x1, . . . , xN ∈ L. For arbitrary

α1, . . . , αN ∈ L, since s is a ∪-term and t is a ∩-term, we have

s(α1, . . . , αN)↑ = λ({s(F1‖I1, . . . , FN‖IN) | Fk ∈ αk↓, Ik ∈ αk↑}),

t(α1, . . . , αN)↓ = υ({t(I1‖F1, . . . , IN‖FN) | Ik ∈ αk↑, Fk ∈ αk↓}).

By Proposition 2.3.1, it suffices to show, for arbitrary Fk, Gk ∈ αk↓ and Ik, Jk ∈ αk↑,

s(F1‖I1, . . . , FN‖IN) v t(J1‖G1, . . . , JN‖GN).

Since each αk
↓ is an ideal and each αk↑ is a filter by Proposition 2.3.1, for all

Fk, Gk ∈ αk
↓ and Ik, Jk ∈ αk↑, there exist Fk ∨ Gk ∈ αk

↓ and Ik ∧ Jk ∈ αk↑. By

Lemma 3.2.3, we obtain that

s(F1‖I1, . . . , FN‖IN) v s((F1 ∨G1)‖(I1 ∧ J1), . . . , (FN ∨GN)‖(IN ∧ JN)),

t((I1 ∧ J1)‖(F1 ∨G1), . . . , (IN ∧ JN)‖(FN ∨GN)) v t(J1‖G1, . . . , JN‖GN).

Here, for each k ∈ {1, . . . , N}, we have Fk∨Gk v Ik∧Jk, i.e. (Fk∨Gk)∩(Ik∧Jk) 6= ∅,

so let xk be an element in (Fk ∨Gk) ∩ (Ik ∧ Jk). Then, by assumption, we obtain

s(x1‖x1, . . . , xN‖xN) = s(x1, . . . , xN) ≤ t(x1, . . . , xN) = t(x1‖x1, . . . , xN‖xN).

Therefore, we conclude s(F1‖I1, . . . , FN‖IN) v t(J1‖G1, . . . , JN‖GN).

Remark 3.3.6. Theorem 3.3.5 is a general fact for arbitrary lattice expansions.

However, we have not discussed how to recognise ∪-terms and ∩-terms, yet. Now,

48

we start to focus on lattice expansions which consist of constants, ε-join preserv-

ing operations, ε-meet preserving operations, ε-additive operations, ε-multiplicative

operations and adjoint pairs. Then, we can syntactically describe large classes of

∪-terms and ∩-terms. Furthermore, we can also extend Theorem 3.3.5 to cover a

larger class of canonical inequalities, to Theorem 3.3.22.

Syntactic description of canonical inequalities Hereafter, we consider a lat-

tice expansion 〈L, f, g,¬, l, r, c〉, where

1. f : Lδ1 × · · · × Lδm → L is an arbitrary δ-join preserving operation on L,

2. g : Lε1 × · · · × Lεm′ → L is an arbitrary ε-meet preserving operation on L,

3. ¬ : L∂ → L is an arbitrary ∂-join-preserving and ∂-meet-preserving operation

satisfying ¬¬x = x for each x ∈ L, so-called an involution,

4. l : Lµ1 × · · · × Lµn → L is an arbitrary µ-additive operation,

5. r : Lν1 × · · · × Lνn → L is an arbitrary ν-multiplicative operation,

6. c is an arbitrary constant in L,

7. the arities m,m′ and n are less than a natural number N , and we assume that

N is always large enough for any arity.

Note that the lattice operations ∨ and ∧ are special cases of f and g, respectively,

and an involution is a special case of both f and g. Recall that adjoint pairs are

special cases of µ-additive operations and ν-multiplicative operations. When we need

to assume that l and r form an adjoint pair for a fixed coordinate i, we emphasise

it by l ai r. This is the only reason we introduce l and r with the same arity

49

n. By Propositions 3.2.9, 3.2.10, 3.2.11, 3.2.12 and 3.2.13, we define the canonical

extension of the lattice expansion as 〈L,∨↑,∧↓, f↑, g↓,¬, l↑, r↓, c〉. Here, we denote

neither ¬↑, c↑ nor ¬↓, c↓, because ¬ and c are not only smooth but also unbiased :

cf. ∨, ∧, f or g are smooth but biased (see Proposition 3.2.10). In fact, without

the adjointness of l ai r, we have not had any counterexample to show that l↓ and

r↑ should not be canonical extensions, yet. However, Proposition 3.2.12 supports to

define 〈L,∨↑,∧↓, f↑, g↓,¬, l↑, r↓, c〉 as the canonical extension without the adjointness

of l and r. In other words, even if l and r do not form any adjoint pair, we call it

the canonical extension.

By definition, we obtain the following lemma.

Lemma 3.3.7. All constants and propositional variables are both ∪-terms and ∩-

terms. Moreover, every term built up only from constants (without variables) is also

both a ∪-term and a ∩-term.

We call terms without variables constant terms. It is trivial that every constant

term is a constant. Therefore, we sometimes do not distinguish constant terms from

constants.

Lemma 3.3.8. Let α1, . . . , αN ∈ L, F1, . . . ,FN ∈ ℘(F), and I1, . . . ,IN ∈ ℘(I)∂. If,

for each k ∈ {1, . . . , N}, Fk and Ik are bases of αk, then we have (recall Abbreviation

3.2.4)

1. (∨↑(α1, α2))↑ = λ({F1 ∨ F2 | F1 ∈ F1, F2 ∈ F2}),

2. (∧↓(α1, α2))
↓ = υ({I1 ∧ I2 | I1 ∈ I1, I2 ∈ I2}),

3. (f↑(α1, . . . , αm))↑ = λ({f(X1, . . . , Xm) | Xk ∈ (Fk‖Ik)}),

4. (g↓(α1, . . . , αm′))↓ = υ({g(Y1, . . . , Ym′) | Yk ∈ (Ik‖Fk)}),

50

5. ¬(α1)↑ = λ({¬I1 | I1 ∈ I1}),

6. ¬(α1)
↓ = υ({¬F1 | F1 ∈ F1}),

7. (l↑(α1, . . . , αn))↑ = λ({l(X1, . . . , Xn) | Xk ∈ (Fk‖Ik)}),

8. (r↓(α1, . . . , αn))↓ = υ({r(Y1, . . . , Yn) | Yk ∈ (Ik‖Fk)}).

Proof. By definition, every basis F (I) is a subset of α↓ (α↑). Therefore, the ⊆-

direction is trivial for each case. Items 1, 2, 5, and 6 are special cases of Items 3 and

4. But, with the lattice structures, we can show Items 1 and 2 much easier than

Items 3 and 4. So, we firstly prove Item 1.

Let I be an arbitrary element in λ({F1 ∨ F2 | F1 ∈ F1, F2 ∈ F2}). For arbitrary

F1 ∈ F1 and F2 ∈ F2, we have F1 ∨ F2 v I. We can easily show that

F1 ∨ F2 v I ⇐⇒ F1 v I and F2 v I. (3.19)

Therefore, I ∈ α1↑ and I ∈ α2↑. Then, for arbitrary G1 ∈ α1
↓ and G2 ∈ α2

↓, G1 v I

and G2 v I. Again, by (3.19) we have G1 ∨G2 v I, hence I ∈ (α1 ∨↑ α2)↑.

(Item 3). Let Y be an element of λ({f(X1, . . . , Xm) | Xk ∈ (Fk‖Ik)}). By

definition, for each Xk ∈ (Fk‖Ik), we have

f(X1, . . . , Xm) v Y.

Then, we define the following sets: for each k ∈ {1, . . . ,m}, we let

Yk := {xk | ∃x1 ∈ X1, . . . ,∃xm ∈ Xm,∃y ∈ Y. f(x1, . . . , xm) ≤ y}.

51

Then, we can show that Yk is an ideal if δk = 1, otherwise, Yk is a filter if δk = ∂: see

also the proof of Proposition 3.2.10. By the definition of Yk, we have Yk ∈ (αk↑‖αk↓).

By the δ-join preservability of f , we also obtain

f(Y1, . . . , Ym) v Y.

It follows that Y ∈ (f↑(α1, . . . , αm))↑. Item 4 is analogous.

Finally, we check Item 7. To simplify our proof, we here assume that l and r

form an adjoint pair, i.e. l ai r. But, we can prove the same results without the

adjointness.

Let Y ∈ λ({l(X1, . . . , Xn) | Xk ∈ (Fk‖Ik)}). For each Xk ∈ (Fk‖Ik), we have

l(X1, . . . , Xn) v Y.

By the adjointness of l and r, we can straightforwardly obtain

l(X1, . . . , Xn) v Y ⇐⇒ Xi v r(X1, . . . , Y, . . . , Xn). (3.20)

Since Xi is arbitrary, r(X1, . . . , Y, . . . , Xn) ∈ αi↑. Hence, for an arbitrary X ′i ∈ αi↓,

X ′i v r(X1, . . . , Y, . . . , Xn). Again by (3.20), we have

l(X1, . . . , X
′
i, . . . , Xn) v Y.

If l has a right-adjoint r′ for a coordinate k, i.e. l ak r, we could repeat to replace each

X ∈ (F‖I) with X ′ ∈ (α↓‖α↑) with the same method, and then we could conclude

Y ∈ (l↑(α1, . . . , αn))↑. However, we do not assume that, for each coordinate, l(i) has

52

a right-adjoint. Therefore, it may not work. Nevertheless, we can somehow imitate

the technique. Namely, even if l does not have right-adjoints for some coordinates,

we can define the lacking right-adjoints on the intermediate level. This is exactly

the reason we assume that l is additive.

Let k be a coordinate for which l does not have a right-adjoint. Whenever

l(X1, . . . , Xn) v Y holds, we can define the following set:

Yk := {xk | ∃x1 ∈ X1, . . . ,∃xn ∈ Xn,∃y ∈ Y. l(x1, . . . , xn) ≤ y}.

Since l is additive, we can prove that, if µk = 1, then Yk is an ideal satisfying

l(X1, . . . , Xn) v Y ⇐⇒ Xk v Yk, (3.21)

and, if µk = ∂, then Yk is a filter satisfying

l(X1, . . . , Xn) v Y ⇐⇒ Yk v Xk. (3.22)

Note that these conditions (3.21) and (3.22) coincide with the covariant adjointness

and contravariant adjointness, respectively. This is the end of the proof. Item 8 is

analogous.

Remark 3.3.9. Lemma 3.3.8 looks similar to the definition of the canonical ex-

tensions of each operation. However, Lemma 3.3.8 proposes an effective evaluation.

For example, let ◦ : L1 × L1 → L be a non-associative fusion-like (1, 1)-additive

operation. By definition, the value (α ◦↑ (β ◦↑ γ)) is calculated as follows: firstly, we

53

calculate

(β ◦↑ γ)↓ = υ(λ({G ◦H | G ∈ β↓, H ∈ γ↓})),

then we obtain

(α ◦↑ (β ◦↑ γ))↑ = λ({F ◦ F ′ | F ∈ α↓, F ′ ∈ υ(λ({G ◦H | G ∈ β↓, H ∈ γ↓}))})

On the other hand, thanks to Lemma 3.3.8 (Item 7), we can evaluate the same value

as follows:

(α ◦↑ (β ◦↑ γ))↑ = λ({F ◦ (G ◦H) | F ∈ α↓, G ∈ β↓, H ∈ γ↓}). (3.23)

Note that, in the latter case, υ(λ()) does not appear.

From Lemma 3.3.8, we can straightforwardly prove the following lemma: see

e.g. Equation (3.23).

Lemma 3.3.10. Let t1, . . . , tN be terms. Then, we have (recall Abbreviation 3.2.4)

1. t1 ∨ t2 is a ∪-term whenever t1 and t2 are ∪-terms,

2. t1 ∧ t2 is a ∩-term whenever t1 and t2 are ∩-terms,

3. f(t1, . . . , tm) is a ∪-term whenever tk is a (∪‖∩)-term for each k ∈ {1, . . . ,m},

4. g(t1, . . . , tm′) is a ∩-term whenever tk is a (∩‖∪)-term for each k ∈ {1, . . . ,m′},

5. ¬t1 is a ∪-term whenever t1 is a ∩-term,

6. ¬t1 is a ∩-term whenever t1 is a ∪-term,

7. l(t1, . . . , tn) is a ∪-term whenever tk is a (∪‖∩)-term for each k ∈ {1, . . . , n},

54

8. r(t1, . . . , tn) is a ∩-term whenever tk is a (∩‖∪)-term for each k ∈ {1, . . . , n}.

Furthermore, we obtain the following ∪-terms and ∩-terms.

Lemma 3.3.11. Every term of type t∨ is a ∩-term and every term of type t∧ is a

∪-term (recall Abbreviation 3.2.4), where t∨ and t∧ are defined as follows.

t∨ ::= p | c | t∨ ∨ t∨ | f(t(∨‖∧), . . . , t(∨‖∧)) | ¬t∧ | l(c, . . . , t(∨‖∧), . . . , c),

t∧ ::= p | c | t∧ ∧ t∧ | g(t(∧‖∨), . . . , t(∧‖∨)) | ¬t∨ | r(c, . . . , t(∧‖∨), . . . , c).

With the distributive law, on distributive lattice expansions, we can also add t∨∧c

and c ∧ t∨ to type t∨, and t∧ ∨ c and c ∨ t∧ to type t∧, where c is a constant or a

constant term.

Proof. This proof will be divided into the following two parts: firstly, by the def-

inition of type t∨ and type t∧, we can obtain the following by induction. For all

x1, . . . , xN , y1, . . . , yN , z1, . . . , zN , w1, . . . , wN ∈ L, we have

t∨((x1 ∨ y1)‖(z1 ∧ w1), . . . , (xN ∨ yN)‖(zN ∧ wN))

= t∨(x1‖z1, . . . , xN‖zN) ∨ t∨(y1‖w1, . . . , yN‖wN),

t∧((x1 ∧ y1)‖(z1 ∨ w1), . . . , (xN ∧ yN)‖(zN ∨ wN))

= t∧(x1‖z1, . . . , xN‖zN) ∧ t∧(y1‖w1, . . . , yN‖wN).

Secondly, we show t∨ is a ∩-term and t∧ is a ∪-term. Here we check only that t∨

is a ∩-term. However, it is order dually shown that t∧ is a ∪-term. By the definitions

of type t∨ and type t∧ and Lemmata 3.3.7 and 3.3.10, it is straightforward that every

term of type t∨ is a ∪-term and every term of type t∧ is a ∩-term.

55

Let t be a term of type t∨. Then, we have, for all α1, . . . , αN ∈ L,

t(α1, . . . , αN)↑ = λ({t(F1‖I1, . . . , FN‖IN) | Fk ∈ αk↓, Ik ∈ αk↑}).

To prove that t is a ∩-term, we need to check that

υ(t(α1, . . . , αN)↑) = υ({t(I1‖F1, . . . , IN‖FN) | Ik ∈ αk↑, Fk ∈ αk↓})

⊆ is trivial. To prove the converse ⊇, it suffices to show that, for an arbitrary

Y ∈ t(α1, . . . , αN)↑, there exist Ik ∈ αk↑ and Fk ∈ αk↓ such that

t(I1‖F1, . . . , IN‖FN) v Y.

Let Y be an arbitrary element of t(α1, . . . , αN)↑. For arbitrary Fk ∈ αk
↓ and

Ik ∈ αk↑, by definition, we have t(F1‖I1, . . . , FN‖IN) v Y . Now we replace ‖ with ,

(comma). We obtain

t(F1, I1, . . . , FN , IN) v Y. (3.24)

Then, we notice that

t : L1 × L∂ × · · · × L1 × L∂ → L

can be seen as a ε-join preserving operation on L, as we checked firstly. Then, we

can use exactly the same technique to find the appropriate ideals and filters with

the proof of Proposition 3.2.10.

Remark 3.3.12. The important technique in the proof of Lemma 3.3.11 is to show

56

the existence of ideals and filters satisfying the condition (3.24). Although additivity

(multiplicativity) is enough to define these ideals and filters, the join-preservability

(meet-preservability) from the product domain is necessary to prove the condition

(3.24). Since l and r may be neither join-preserving nor meet-preserving from the

product domain, it is difficult to use the same methodology without fixing the other

coordinates with constants or constant terms, like l(c, . . . , t(∨‖∧), . . . , c).

From the above Lemmata 3.3.7, 3.3.10 and 3.3.11, we directly obtain the follow-

ing theorem.

Theorem 3.3.13. Each term of type t∪ is a ∪-term and each term of type t∩ is a

∩-term, where t∪ and t∩ are defined as follows.

t∪ ::= p | c | t∪ ∨ t∪ | f(t(∪‖∩), . . . , t(∪‖∩)) | ¬t∩ | l(t(∪‖∩), . . . , t(∪‖∩)) | t∧,

t∩ ::= p | c | t∩ ∧ t∩ | g(t(∩‖∪), . . . , t(∩‖∪)) | ¬t∪ | r(t(∩‖∪), . . . , t(∩‖∪)) | t∨.

Over distributive lattice expansions, with the distributive law, we can also add

t∪ ∧ t∪ to type t∪, and t∩ ∨ t∩ to type t∩.

Now, with Theorems 3.3.5 and 3.3.13, we can syntactically obtain a class of

canonical inequalities. However, canonical inequalities t∪ ≤ t∩ do not cover the

standard Sahlqvist formulae, e.g. [11] or [5], even if we consider t∪ ≤ t∩ on modal

algebras. For example, although any positive formula is Sahlqvist in modal logic, our

canonical inequalities cannot cover some positive formulae. Therefore, to extend our

results, we analyse other terms not of type t∪ and t∩. We start with the construction

trees of terms. Let t be an arbitrary term. We draw the standard construction tree

of t in which the root is t and every leaf is either a variable or a constant. Now we

57

add labels (∪, ∩ or ?) to the construction tree of t in the following manner ruled by

Theorem 3.3.13. Note that the labelling starts at the root not leaves.

∩ (∪) labelling algorithm

1. The root is labelled with ∩ (∪).

2. If the node is either a constant or a variable, then we have finished labelling

the branch. Otherwise, we label the children along the following rule. If the

node is

(a) t1 ∨ t2 and labelled with ∪, then label t1 and t2 with ∪,

(b) t1 ∧ t2 and labelled with ∩, then label t1 and t2 with ∩,

(c) either f(t1, . . . , tm) or l(t1, . . . , tn) and labelled with ∪, then, for each

coordinate k, label tk with ∪ if δk = 1 or µk = 1, and label tk with ∩ if

δk = ∂ or µk = ∂,

(d) either g(t1, . . . , tm′) or r(t1, . . . , tn) and labelled with ∩, then, for each

coordinate k, label tk with ∩ if εk = 1 or νk = 1, and label tk with ∪ if

εk = ∂ or νk = ∂,

(e) ¬t labelled with ∪, then label t with ∩,

(f) ¬t labelled with ∩, then label t with ∪,

(g) either t∧ labelled with ∪ or t∨ labelled with ∩, then label every node (not

only the children) below the current node with ∪ or ∩, respectively and

stop labelling the branch,

(h) not satisfying any of (a) - (g), label the all nodes below the current node

with ?.

58

3. Move to every child and repeat Item 2 until every node in the tree is labelled.

Over distributive lattice expansions, we can replace Items (a) and (b) in Item 2 with

the following two Items (a’) and (b’):

(a’) either t1 ∨ t2 or t1 ∧ t2 labelled with ∪, then label t1 and t2 with ∪,

(b’) either t1 ∧ t2 or t1 ∨ t2 labelled with ∩, then label t1 and t2 with ∩.

We call this labelled tree the ∩-labelled construction tree of t because of the labelling

the root with ∩. We can define the ∪-labelled construction tree of t by the same

algorithm with the only exception that we start labelling the root with ∪, instead of

∩. In Section 4.4, we can find an example of ∩-labelling in Fig. 4.2 and an example

of ∪-labelling in Fig. 4.1. Note that these labellings are based on distributive lattice

expansions. By Theorem 3.3.13, we obtain the following proposition.

Proposition 3.3.14. Let t be a term. t is a ∪-term of type t∪, if and only if there

is no node labelled with ? in the ∪-labelled construction tree of t. t is a ∩-term of

type t∩, if and only if there is no node labelled with ? in the ∩-labelled construction

tree of t.

We also introduce the ∧-labelled construction tree of t and the ∨-labelled construc-

tion tree of t: see Proposition 4.4.3. These labelling rules are similar to ∩-labelled

construction trees or ∪-labelled construction trees, but they are ruled by Lemma

3.3.11.

∧ (∨) labelling algorithm

1. The root is labelled with ∧ (∨).

59

2. If the node is either a constant or a variable, then we have finished labelling

the branch. Otherwise, we label the children along the following rule. If the

node is

(a) t1 ∨ t2 labelled with ∨, then label t1 and t2 with ∨,

(b) t1 ∧ t2 labelled with ∧, then label t1 and t2 with ∧,

(c) f(t1, . . . , tm) labelled with ∨, then, for each coordinate k, label tk with ∨

if δk = 1, and label tk with ∧ if δk = ∂,

(d) g(t1, . . . , tm′) labelled with ∧, then, for each coordinate k, label tk with

∧ if εk = 1, and label tk with ∨ if εk = ∂,

(e) ¬t labelled with ∨, then label t with ∧,

(f) ¬t labelled with ∧, then label t with ∨,

(g) l(c1, . . . , tk, . . . , cn) labelled with ∨ where c1, . . . , ck−1, ck+1, . . . , cn are con-

stants or constant terms, label every node below c1, . . ., ck−1, ck+1, . . . , cn

(not only for the children) with ∨, and label tk with ∨ if µk = 1 and label

tk with ∧ if µk = ∂,

(h) r(c1, . . . , tk, . . . , cn) labelled with ∧ where c1, . . . , ck−1, ck+1, . . . , cn are

constants or constant terms, label each node below c1, . . ., ck−1, ck+1, . . . , cn

(not only for the children) with ∧, and label tk with ∧ if νk = 1 and label

tk with ∨ if νk = ∂,

(i) not satisfying (a) - (h), label the all nodes below the current node with

?.

3. Move to every child and repeat Item 2 until every node in the tree is labelled.

60

Over distributive lattice expansions, we can add the following Items (a’) and (b’) to

Item 2:

(a’) either t∧ c or c∧ t, where c is a constant (term), labelled with ∨, then label all

nodes below c with ∨ and label t with ∨,

(b’) either t∨ c or c∨ t, where c is a constant (term), labelled with ∧, then label all

nodes below c with ∧ and label t with ∧.

By Lemma 3.3.11, we have the following proposition.

Proposition 3.3.15. Let t be a term. t is a ∪-term of type t∧, if and only if there

is no node labelled with ? in the ∧-labelled construction tree of t. t is a ∩-term of

type t∨, if and only if there is no node labelled with ? in the ∨-labelled construction

tree of t.

Based on ∩-labelled construction trees and ∪-labelled construction trees, we

define the following.

Definition 3.3.16 (Critical subterm). Let t be a term. A subterm of t is ∩-critical

(∪-critical), if it is both a node labelled by either ∪ or ∩ and a parent of nodes

labelled with ? in the ∩-labelled (∪-labelled) construction tree of t.

We can find examples of critical subterms in Fig. 4.1 and Fig. 4.2, in Section 4.4

There are two technical reasons to introduce critical subterms. The first one is

that, if a term contains ∪-critical (∩-critical) subterms, it is not of type t∪ (t∩).

Another is that every term can be seen as a ∪-term (∩-term), if each ∪-critical

(∩-critical) subterm is replaced by a new variable: see Definition 3.3.20 and Propo-

sition 3.3.21 Next, to state the main theorem for lattice expansions, Theorem 3.3.22,

clearly, we define the following.

61

Definition 3.3.17 (Well-pruned tree). Let s, t be terms. A (possibly empty) sub-

tree of the construction tree of t is pruned, if it is obtained by pruning some branches

away. A pruned tree of the construction tree of t is ∪-well-pruned (∩-well-pruned),

if every leaf of the tree is a propositional variable and each path from a leaf to

the root contain a ∪-critical (∩-critical) subterm. The ∪-well-pruned (the ∩-well-

pruned) tree of t is the largest ∪-well-pruned (∩-well-pruned) tree of t. Especially,

if t is a ∪-term (∩-term), the ∪-well-pruned (the ∩-pruned) tree of t is an empty

tree. For an inequality s ≤ t, the well-pruned pair of tree for s ≤ t is a pair of the

∪-well-pruned tree of s and the ∩-well-pruned tree of t.

We can find an example of the ∪-well-pruned tree in Fig. 4.1 and an example of

the ∩-well-pruned tree in Fig. 4.2 in Section 4.4 In those figures, the dashed lines

are pruned to obtain the well-pruned trees.

On the well-pruned pair of trees for s ≤ t, we label every node with a sign (+ or

−) in the following manner. Note that we can do the same labelling before pruning.

Signing algorithm

1. Label the root of the ∪-well-pruned tree of s with − and the root of the

∩-well-pruned tree of t with +.

2. If the node does not have any child, we stop labelling. Otherwise, we label +

or − for each child based on the following step.

(a) If the node is either t1 ∨ t2 or t1 ∧ t2, then label t1 and t2 with the same

sign of the current node.

(b) If the node is ¬t, then label t with the converse sign of the current node.

62

(c) Otherwise, the node is one of f(t1, . . . , tm), g(t1, . . . , tm′), l(t1, . . ., tn) and

r(t1, . . . , tn). Then, for each coordinate k, label tk with the same sign of

the current node if the k-th order type (δk, εk, µk or νk) is 1, and label

tk with the converse node if the k-th order type (δk, εk, µk or νk) is ∂.

3. Move to every child and repeat Item 2 until every node is labelled.

The well-pruned pair of trees for s ≤ t is signed, if it is labelled along with the

signing algorithm. For example, if s is a negative term, in which every variable

occurs negatively, and t is a positive term, in which every variable occurs positively,

every variable in the signed well-pruned pair of trees for s ≤ t is labelled with +. We

can find an example of the −-signed tree in Fig. 4.1 and an example of the +-signed

tree in Fig. 4.2, in Section 4.4

Definition 3.3.18 (Consistent variable occurrence). Let s, t be terms. An inequal-

ity s ≤ t has consistent variable occurrence, if there exists no propositional variable

signed with both − and + in the signed well-pruned pair of trees for s ≤ t.

Remark 3.3.19. We want to apply an analogous argument of the proof of Theorem

3.3.5 not only for ∪-terms and ∩-terms but also for all terms and inequalities (recall

that Theorem 3.3.5 states canonicity of inequalities s ≤ t, where s is a ∪-term

and t is a ∩-term). It is crucial to introduce pseudoterms to analyse all terms and

inequalities: see Theorem 3.3.22 We mention that [33] did not define pseudoterms,

and hence it is unclear whether their main theorem [33, Theorem 7.2] can be applied

for non-∩-terms.

Definition 3.3.20 (Pseudo-∪-term and pseudo-∩-term). Let t be a term. A term

t′ is the pseudo-∩-term of t (the pseudo-∪-term of t), if every ∩-critical (∪-critical)

63

subterms of t is replaced with a new variable. Note that, even if a ∩-critical (∪-

critical) subterm appears in t more than once, we replace each occurrence with

distinct variables.

Clearly, for each term t of type t∩ (type t∪), the pseudo-∩-term of t (the pseudo-

∪-term of t) is t itself.

In general, if t′ is the pseudoterm of t, then t′ and t are different. However, the

next proposition provides us with a meaningful connection between terms and the

pseudoterms. The proof is straightforward from a fact that every pseudo-∩-term is

a ∩-term and every pseudo-∪-term is a ∪-term.

Proposition 3.3.21. Let s, t be terms. We denote by t(p1, . . . , pN) (or t(p), for

short) that each variable in t is a variable pk, analogously s(p1, . . . , pN) or s(p). Let

t1, . . . , ta be all ∩-critical subterms of t, s1, . . . , sb all ∪-critical subterms of s, and

t′(p, q1, . . . , qa) the pseudo-∩-term of t, where each tk in t is replaced by qk, and

s′(p, q′1, . . . , q
′
b) the pseudo-∪-term of s, where each sk in s is replaced with q′k. Then,

we have

t(p) = t′(p, q1, . . . , qa)[t1(p)/q1, . . . , ta(p)/qa],

s(p) = s′(p, q′1, . . . , q
′
b)[s1(p)/q

′
1, . . . , sb(p)/q

′
b].

Moreover, we also have, for all α1, . . . , αN ∈ L,

t(α1, . . . , αN)↓ = υ({t′(I1‖F1, . . . , IN‖FN , Y1, . . . , Ya)}),

s(α1, . . . , αN)↑ = λ({s′(F1‖I1, . . . , FN‖IN , X1, . . . , Xb)}),

64

where all Ik ∈ αk↑, Fk ∈ αk↓, and1

Yk ∈ (tk(α1, . . . , αN)↑‖tk(α1, . . . , αN)↓),

Xk ∈ (sk(α1, . . . , αN)↓‖sk(α1, . . . , αN)↑).

Now we state the main theorem for lattice expansions.

Main Theorem 3.3.22 (for lattice expansions). Let s, t be terms over lattice

expansions. An inequality s ≤ t is canonical, if it has consistent variable occurrence.

Proof. Recall Abbreviation 3.2.4. Let p1, . . . , pM , pM+1, . . . , pN be all variables in

s ≤ t, s−1 , . . . , s
−
a ∪-critical subterms of s signed with −, s+1 , . . . , s

+
b ∪-critical sub-

terms of s signed with +, t+1 , . . . , t
+
c ∩-critical subterms signed with +, and t−1 , . . . , t

−
d

∩-critical subterms signed with − in the signed well-pruned pair of trees for s ≤ t.

Now, since s ≤ t has consistent variable occurrence, without loss of generality, we

can assume that all p1, . . . , pM are signed with + and all pM+1, . . . , pL are signed

with − in the signed well-pruned pair of trees for s ≤ t. Let s′ be the pseudo-∪-term

of s and t′ the pseudo-∩-term of t. By Proposition 3.3.21, we have

s(α1, . . . , αN)↑ = λ({s′(F ′1‖I ′1, . . . , F ′N‖I ′N , G1, . . . , Ga, J1, . . . , Jb)}),

t(α1, . . . , αN)↓ = υ({t′(I ′′1 ‖F ′′1 , . . . , I ′′N‖F ′′N , K1, . . . , Kc, H1, . . . , Hd)}),

where F ′u ∈ αu
↓, F ′′u ∈ αu

↓ and I ′u ∈ αu↑, I
′′
u ∈ αu↑ for each u ∈ {1, . . . , N},

Gg ∈ s−g (α1, . . . , αN)↓ for each g ∈ {1, . . . , a}, Jj ∈ s+j (α1, . . . , αN)↑ for each j ∈

{1, . . . , b}, Kk ∈ t+k (α1, . . . , αN)↑ for each k ∈ {1, . . . , c}, and Hh ∈ t−h (α1, . . . , αN)↓

1We do not use the parallel notation ‖ for Yk and Xk, because each critical subterm is replaced
with a fresh variable, hence it occurs only once, positively or negatively.

65

for each h ∈ {1, . . . , d}.2 By Proposition 2.3.1, it suffices to show that, for each

F ′u, F
′′
u , I

′
u, I
′′
u , Gg, Jj, Kk, Hh,

s′(F ′‖I ′, G1, . . . , Ga, , J1, . . . , Jb) v t′(I ′′‖F ′′, K1, . . . , Kc, H1, . . . , Hd),

Since every α↓ is an ideal of filters and every α↑ is a filter of ideals, there exist

Fu ∈ αu↓ and Iu ∈ αu↑ for each u ∈ {1, . . . , N} such that, by Lemma 3.2.3, we have

s′(F ′‖I ′, G1, . . . , Ga, J1, . . . , Jb) v s′(F‖I,G1, . . . , Ga, J1, . . . , Jb),

t′(I‖F ,K1, . . . , Kc, H1, . . . , Hd) v t′(I ′′‖F ′′, K1, . . . , Kc, H1, . . . , Hd),

Therefore, hereafter, we will show

s′(F‖I,G1, . . . , Ga, J1, . . . , Jb) v t′(I‖F ,K1, . . . , Kc, H1, . . . , Hd),

By Proposition 3.3.2, for each g ∈ {1, . . . , a}, j ∈ {1, . . . , b}, k ∈ {1, . . . , c}

h ∈ {1, . . . , d}, we have

Gg v s−g (I1‖F1, . . . , IN‖FN), (3.25)

s+j (F1‖I1, . . . , FN‖IN) v Jj, (3.26)

t+k (F1‖I1, . . . , FN‖IN) v Kk, (3.27)

Hh v t−h (I1‖F1, . . . , IN‖FN). (3.28)

2The reason we do not use ‖ notations for Gg, Jj ,Kk, and Hh is that we never use the other
side elements by occurrences of s−, s+, t+ and t−. That is, even if the same critical subterms occur
more than twice in a term, we replace it with a fresh variable each time.

66

Because, p1, . . . , pM are signed with + and pM+1, . . . , pN are signed with − in the

signed well-pruned pair of trees for s ≤ t, we can rewrite (3.25) - (3.28) as follows:

Gg v s−g (F1, . . . , FM , IM+1, . . . , IN),

s+j (F1, . . . , FM , IM+1, . . . , IN) v Jj,

t+k (F1, . . . , FM , IM+1, . . . , IN) v Kk,

Hh v t−h (F1, . . . , FM , IM+1, . . . , IN).

By Lemma 3.2.6, there exist fp1 , . . . , f
p
a+b+c+d ∈ Fp and iq1, . . . , i

q
a+b+c+d ∈ Iq for each

p ∈ {1, . . . ,M} and each q ∈ {M + 1, . . . , N} such that, for each g, j, k, h,

s−g (f 1
g , . . . , f

M
g , i

M+1
g , . . . , iNg) ∈ Gg,

s+j (f 1
j+a, . . . , f

M
j+a, i

M+1
j+a , . . . , i

N
j+a) ∈ Jj,

t+k (f 1
k+a+b, . . . , f

M
k+a+b, i

M+1
k+a+b, . . . , i

N
k+a+b) ∈ Kk,

t−h (f 1
h+a+b+c, . . . , f

M
h+a+b+c, i

M+1
h+a+b+c, . . . , i

N
h+a+b+c) ∈ Hh.

For each u ∈ {1, . . . , N}, since Fu v Iu (recall that Fu ∈ αu↓ and Iu ∈ αu↑), there

exists x′u ∈ Fu ∩ Iu. Then, for each g ∈ {1, . . . , a}, j ∈ {1, . . . , b}, k ∈ {1, . . . , c},

67

h ∈ {1, . . . , d}, we have

F1 ∩ I1 3 x1 = x′1 ∧ f 1
1 ∧ · · · ∧ f 1

a+b+c+d,

...
...

...

FM ∩ IM 3 xM = x′M ∧ fM1 ∧ · · · ∧ fMa+b+c+d,

FM+1 ∩ IM+1 3 xM+1 = x′M+1 ∨ iM+1
1 ∨ · · · ∨ iM+1

a+b+c+d,

...
...

...

FN ∩ IN 3 xN = x′N ∨ iN1 ∨ · · · ∨ iNa+b+c+d.

Moreover, by Lemma 3.2.5, we have s−g (x1, . . . , xN) ∈ Gg, s
+
j (x1, . . . , xN) ∈ Jj,

t+k (x1, . . . , xN) ∈ Kk and t−h (x1, . . . , xN) ∈ Hh for each g ∈ {1, . . . , a}, j ∈ {1, . . . , b},

k ∈ {1, . . . , c}, h ∈ {1, . . . , d}. (Recall our assumption; p1, . . . , pM are signed with

+, hence they are positive in s+j and t+k , and negative in s−g and t−h . Conversely,

pM+1, . . . , pN are signed with −, hence they are positive in s−g and t−h , and negative

in s+j and t+k .) Therefore, we have

s(x1, . . . , xN) = s(x1‖x1, . . . , xN‖xN) ∈ s′(F‖I,G1, . . . , Ga, J1, . . . , Jb), (3.29)

t(x1, . . . , xN) = t(x1‖x1, . . . , xN‖xN) ∈ t′(I‖F ,K1, . . . , Kc, H1, . . . , Hd), (3.30)

Since s(x1, . . . , xN) ≤ t(x1, . . . xN) for each x1, . . . , xN ∈ L, and s(F‖I) is a filter

and t(I‖F) is an ideal, by (3.29) and (3.30), we have

s′(F‖I,G1, . . . , Ga, J1, . . . , Jb) v t′(I‖F ,K1, . . . , Kc, H1, . . . , Hd)

68

Hence,

s(α1, . . . , αN) ≤ t(α1, . . . , αN).

Remark 3.3.23. This theorem extends [33, Theorem 7.2] from Heyting algebras

to lattice expansions which may be neither bounded nor distributive, and from

equalities to inequalities. Therefore, we can apply our method to several algebraic

logics: for example, substructural logic or lattice-based logics.

69

Chapter 4

Applications to lattice-based logics

In the previous chapter, we have generalised Ghilardi and Meloni’s canonicity method-

ology to lattice expansions in general and shown the canonicity results in Theorem

3.3.22. In this chapter, we will show how to interpret our canonicity results to spe-

cific lattice-based logics, especially to variants of substructural logics and distribu-

tive modal logic, and show that our canonicity results not only uniformly subsume

known canonicity results of those logics, but also account for many new canonicity

results.

4.1 Application 1: Substructural logic

In this section, we apply Theorem 3.3.22 to substructural logic. Firstly, we recall

substructural logic: see [25]. Our language consists of propositional variables, two

constants t and f, and five logical connectives ∨,∧, ◦,→,←. Formulae are induc-

tively defined as follows:

Fr ::= p | t | f | Fr ∨ Fr | Fr ∧ Fr | Fr ◦ Fr | Fr → Fr | Fr ← Fr.

70

Definition 4.1.1 (Substructural logic). A set L of formulae is a substructural logic,

if it satisfies

1. L contains all formulae which are provable in the sequent system FL (see

Fig. 8.1),

2. if φ ∈ L and φ→ ψ ∈ L, then ψ ∈ L,

3. if φ ∈ L and φ ∧ t ∈ L,

4. if φ ∈ L, then, for an arbitrary formula ψ, we have that ψ → (φ ◦ ψ) ∈ L and

(ψ ◦ φ)← ψ ∈ L,

5. L is closed under substitution.

Replacing in Item 1 the sequent system FL with the sequent system DFL [62, 63],

see also Section 8.2, defines distributive substructural logics. Moreover, adding the

following two initial sequents, Γ ⇒ T and Γ,F,Σ ⇒ ϕ, defines bounded distribu-

tive substructural logics, where T and F are constants additionally introduced to

consider bounded distributive substructural logics: see Section 4.2. Note that our

bounded distributive substructural logics are different from extensions of FLw, which

is bounded with 1 and 0.

Hereafter, t, f ,∨,∧, ◦,→ and← are denoted by 1, 0,∨,∧, ◦, \, /, respectively. As

algebraic semantics of substructural logic, we introduce FL-algebras.

Definition 4.1.2 (FL-algebra). A tuple A = 〈A,∨,∧, ◦, \, /, 1, 0〉 is a FL-algebra, if

〈A,∨,∧〉 is a lattice, 〈A, ◦, 1〉 a monoid, 0 an arbitrary constant in A, and A satisfies

the residuation law: a ◦ b ≤ c ⇐⇒ b ≤ a\c ⇐⇒ a ≤ c/b for each a, b, c ∈ A.

Moreover, if 〈A,∨,∧〉 is a distributive lattice, A is called a DFL-algebra.

71

As we mentioned in Example 3.1.7, every FL-algebra is a lattice expansion having

constants 1 and 0 and adjoint pairs ◦ a2 \ and ◦ a1 /. The canonical extension of

FL-algebras A = 〈A,∨,∧, ◦, \, /, 1, 0〉 is 〈A,∨↑,∧↓, ◦↑, \↓, /↓, 1, 0〉, by Proposition

3.2.13.

Theorem 4.1.3 (Canonical extension of FL-algebras). The canonical extension of

FL-algebras is also a FL-algebra.

Now, we define canonicity in substructural logic.

Definition 4.1.4 (Canonicity of term). On the class of FL-algebras, a term t is

canonical, if the inequality 1 ≤ t is canonical.

As a corollary of Theorem 3.3.5, we obtain the following.

Corollary 4.1.5. In substructural logic, every ∩-term is canonical.

On our language for substructural logic, the terms of type t∪, type t∩, type t∨

and type t∧ in Theorem 3.3.13 are interpreted as follows:

t∪ ::= p | 1 | 0 | t∪ ∨ t∪ | t∪ ◦ t∪ | t∧,

t∩ ::= p | 1 | 0 | t∩ ∧ t∩ | t∪\t∩ | t∩/t∪ | t∨,

t∨ ::= p | 1 | 0 | t∨ ∨ t∨ | t∨ ◦ C | C ◦ t∨,

t∧ ::= p | 1 | 0 | t∧ ∧ t∧ | t∨\C | C\t∧ | t∧/C | C/t∨,

where C is a constant or a constant term.

Then, applying Theorem 3.3.22, we find that our technique covers most of canoni-

cal formulae of substructural logic: for example, the following inequalities are canon-

72

ical.

1. (Commutativity): p1 ◦ p2 ≤ p2 ◦ p1.

2. (Square-increase): p ≤ p ◦ p.

3. (Right-lower-bound): p1 ◦ p2 ≤ p2.

4. (A non-commutative version of Peirce’s law): ((p1\p2)\p1) ≤ p1.

5. (A non-commutative version of double negation): ((p\0)\0) ≤ p.

[18] covers 1, 2 and 3, while it does not prove the others. [25] proves that the

canonicity of inequalities s ≤ t, where s and t are finite compositions of ∨ and ◦.

This is also a consequence of our approach: if s and t are finite compositions of ∨

and ◦, we have that s is a ∪-term and t does not have any negative occurrences,

which means s ≤ t has consistent variable occurrence. So, s ≤ t is canonical.

Furthermore, against the deficiency “As soon as we begin mixing multiplication

(fusion) with divisions (residuals), things go wrong” in [25, p.302], Theorem 3.3.22

supplies many canonical inequalities containing both the fusion ◦ and the residuals

\ and /. For example, the following inequalities are consequences of Theorem 3.3.22:

6. 1 ≤ (p2/(p2\p1))\(p1 ◦ 0),

7. p1 ◦ (p2\p1) ≤ p2 ◦ (p2/p1),

8. p1 ◦ (p1/p2) ≤ (p2 ◦ p2)/(p1 ◦ p2),

9. (p2/p1) ◦ (p1\p3) ≤ p1\(p2 ∧ p3),

10. p3\(p1 ◦ p2) ≤ (p1/p3)\p2.

73

4.2 Application 2: Completeness

One of the advantages of proving canonicity is that canonicity immediately provides

Kripke completeness for bounded distributive lattice-based logics, e.g. intuitionis-

tic logic or modal logic. Note that the argument of relational-type semantics for

lattice-based logics in general is not completely done, yet. This is because the

relational-type semantics over lattice-based logics, without Stone representation, is

not thoroughly explained. We will come back to this discussion and one possible

answer in Chapter 8. In this section, however, we focus only on bounded distribu-

tive substructural logics. In bounded distributive substructural logics, a relational

semantics is spelled out via Stone representation in [81, 82].

In bounded distributive substructural logics, our language consists of propo-

sitional variables, four constants t, f, T and F, and five logical connectives. The

algebraic counterparts of bounded distributive substructural logics are bounded DFL-

algebras A = 〈A,∨,∧, ◦, \, /, 1, 0,>,⊥〉, where 〈A,∨,∧,>,⊥〉 is a bounded distribu-

tive lattice. Here, > and ⊥ are constants corresponding to T and F, respectively.

Firstly, we introduce the standard canonical extension of bounded DFL-algebras,

via Stone representation and prove that it corresponds to the canonical extension

〈A,∨↑,∧↓, ◦↑, \↓, /↓, 1, 0,>,⊥〉.

Definition 4.2.1 (Stone representation of bounded DFL-algebras). For a bounded

DFL-algebra A = 〈A,∨,∧, ◦, \, /, 1, 0,>,⊥〉, the canonical extension of A given

by Stone representation is (A+)+ = 〈U(P(A)),∪,∩, ∗,%,$ P1(A),P0(A),P(A), ∅〉,

where P(A) is the set of all prime filters of A, P1(A) the set of all prime filters

containing 1, P0(A) the set of all prime filters containing 0, U(X) the set of all

upsets of X with respect to the set-theoretical inclusion, and binary operations

74

∗,%,$ on U(P(A)) are defined as follows; for each X, Y ∈ U(P(A)),

1. X ∗ Y := {P ∈ P(A) | ∃F ∈ X, ∃G ∈ Y. F ◦G ⊆ P},

2. X % Y := {P ∈ P(A) | ∀F,G ∈ P(A). F ◦ P ⊆ G, F ∈ X =⇒ G ∈ Y },

3. Y $ X := {P ∈ P(A) | ∀F,G ∈ P(A). P ◦ F ⊆ G, F ∈ X =⇒ G ∈ Y },

where F ◦G := {x ∈ A | ∃f ∈ F, ∃g ∈ G. f ◦ g ≤ x}. Notice that this is the same as

◦ on the intermediate level in Definition 3.2.1. Here, it is restricted only for prime

filters.

Note that prime filter frames A+ of bounded DFL-algebras correspond to rela-

tional (Kripke) semantics, DFL-frames.

Definition 4.2.2 (DFL-frame). A tuple F = 〈W,Wt,Wf , R◦〉 is a DFL-frame, if W

is a non-empty set, Wt a non-empty subset of W , Wf a subset of W , R◦ a ternary

relation, and F satisfies the following. For each w, v, u, s, w′, v′, u′ ∈ W , we have

1. ∃t ∈ Wt. R◦(w, t, w) and ∃t′ ∈ Wt.R◦(w,w, t
′),

2. R◦(w, v, u), w � w′, v′ � v, u′ � u⇒ R◦(w
′, v′, u′),

3. ∃x ∈ W. (R◦(w, x, s) and R◦(x, v, u))

⇐⇒ ∃y ∈ W. (R◦(w, v, y) and R◦(y, u, s)),

4. w � v and w ∈ Wt imply v ∈ Wt,

5. w � v and w ∈ Wf imply v ∈ Wf ,

where w � v ⇐⇒ ∃t ∈ Wt. R◦(v, t, w) or R◦(v, w, t).

75

A valuation is a function from the set of propositional variables to the set of all

�-upsets of W . Then, we prove the following theorem. Note that, in the proof, we

use the Prime filter theorem, see e.g. [13], and the Squeeze lemma in [17], which

depend on the Axiom of Choice.

Theorem 4.2.3. Let A be a bounded DFL-algebra. With the Axiom of Choice, the

canonical extension of A is isomorphic to the canonical extension (A+)+ of A given

by Stone representation.

Proof. Recall Item (b) in Remark 2.2.11. It states that the underlying set of (A+)+

and A are isomorphic. What we need to prove is that every operation and constant

in bounded DFL-algebras coincides. The constant part is rather trivial. We here

only check ∨↑ and \↓.

For each α, β ∈ A, we claim that

(α ∨↑ β)↑ = λ2(υ2(α↑) ∪ υ2(β↑)), (4.1)

(α\↓β)↓ = υ1(λ1(α
↓) % λ1(β

↓)). (4.2)

(4.1) Let P be an arbitrary prime filter in υ2(α↑) ∪ υ2(β↑). Then, either, for each

I ∈ α↑, P ∩I 6= ∅, or, for each J ∈ β↑, P ∩J 6= ∅. By the way, since α ≤ α∨↑β

and β ≤ α∨↑β, by Proposition 2.3.1, we have (α∨↑β)↑ ⊆ α↑ and (α∨↑β)↑ ⊆ β↑.

It follows the ⊆-direction. Conversely, suppose that I 6∈ (α∨↑β)↑. Then, there

exist F ∈ α↓ and G ∈ β↓ such that F ∨G 6v I ⇐⇒ (F ∩G) ∩ I = ∅. By the

Prime filter theorem, we can obtain a prime filter P satisfying that F ∨G ⊆ P

and P ∩ I = ∅. Therefore, I 6∈ λ2(υ2(α↑) ∪ υ2(β↑)).

(4.2) Let X be an arbitrary element in (α\↓β)↓, P an arbitrary prime filter satisfying

76

X ⊆ P . Since X ∈ (α\↓β)↓, for each F ∈ α↓ and each J ∈ β↑, we have

X v F\J . By the adjointness on the intermediate level, we also obtain that

F ◦ X ∈ β↓. For arbitrary prime filters P1, P2, if P1 ◦ P ⊆ P2. Then, there

exists F ∈ α↓ such that F ◦ X ⊆ F ◦ P ⊆ P2 ∈ β↓, hence the ⊆-direction

holds. On the other hand, suppose that X 6∈ (α\↓β)↓. There exist F ∈ α↓,

J ∈ β↑ such that X ∩ (F\J) = ∅. It follows that (F ◦ X) ∩ J = ∅. By the

Prime filter theorem, there exists a prime filter P2 such that F ◦X ⊆ P2. By

the Squeeze lemma, there exist prime filters P, P1 such that X ⊆ P , F ⊆ P1,

and P ◦ P1 ⊆ P2. Therefore, the ⊇-direction is completed.

In bounded distributive substructural logics, by Lemma 3.3.11 and Theorem

3.3.13, we can obtain the following terms of type t∪, t∩, t∨ and t∧:

t∪ ::= p | 1 | 0 | > | ⊥ | t∪ ∨ t∪ | t∪ ∧ t∪ | t∪ ◦ t∪ | t∧,

t∩ ::= p | 1 | 0 | > | ⊥ | t∩ ∨ t∩ | t∩ ∧ t∩ | t∪\t∩ | t∩/t∪ | t∨,

t∨ ::= p | 1 | 0 | > | ⊥ | t∨ ∨ t∨ | t∨ ∧ C | C ∧ t∨ | t∨ ◦ C | C ◦ t∨,

t∧ ::= p | 1 | 0 | > | ⊥ | t∧ ∨ C | C ∨ t∧ | t∧ ∧ t∧ | t∨\C | C\t∧ | t∧/C | C/t∨,

where C is a constant or a constant term. Based on these terms of type t∪, t∩, t∨

and t∧. We can obtain canonical inequalities with Theorem 3.3.22. For example,

1. 1 ≤ (p1\(0/p2))\(p1\0),

2. p1\(p1\0) ≤ 0,

77

3. (p1 ∧ p2)\p3 ≤ (p2\0)/(p1 ∧ ((p3\0)\0)),

4. 1 ≤ p1 ∨ (p1\0),

5. p1 ∧ (p1\p2) ≤ p2,

Items 1 and 2 are derived without the distributivity, whereas the distributivity is

essential for Items 3, 4 and 5.

Proposition 4.2.4. Given a bounded distributive substructural logic L, if the class

of bounded DFL-algebras validating L is closed under the canonical extension, L is

Kripke complete.

As a corollary, together with Theorem 3.3.22, we obtain the following.

Theorem 4.2.5. Let Γ be a set of canonical formulae as in Theorem 3.3.22. A

bounded distributive substructural logic extended by Γ is Kripke complete.

4.3 Application 3: Relevant modal logics

In this section, we compare our method with a Sahlqvist theorem for relevant modal

logic in [76]. Our language of relevant modal logics consists of propositional vari-

ables, one constant 1, nine logical connectives ∨,∧, ◦,→,¬,♦,�, �� and �♦. Formulae

are inductively defined as follows:

Fr ::= p | 1 | Fr ∨ Fr | Fr ∧ Fr | Fr ◦ Fr | Fr → Fr | ♦Fr | �Fr | ��Fr | �♦Fr.

In [75, 76], the following algebra is given as the algebraic semantics of relevance

modal logics.

78

Definition 4.3.1 (B.C�♦-algebra). A tuple A = 〈A,∨,∧, ◦,→,¬,♦,�, ��, �♦, 1〉 is a

B.C�♦-algebra, if 〈A,∨,∧〉 is a distributive lattice, and A satisfies, for all a, b, c ∈ A,

1. a ≤ b implies a ◦ c ≤ b ◦ c,

2. a ≤ b implies c ◦ a ≤ c ◦ b,

3. a ◦ b ≤ c ⇐⇒ a ≤ b→ c,

4. a ∨ b = ¬(¬a ∧ ¬b),

5. �(a ∧ b) = �a ∧�b,

6. ♦(a ∨ b) = ♦a ∨ ♦b,

7. 1 ◦ a = a,

8. ��a = ¬♦¬a,

9. �♦a = ¬�¬a.

Remark 4.3.2. In B.C�♦-algebras, ◦ may not be associative nor commutative. In

this sense, B.C�♦-algebras are weaker than FL-algebras or commutative FL-algebras.

Every B.C�♦-algebra can be seen as a lattice expansion. So, the canonical ex-

tension of B.C�♦-algebras is defined as 〈A,∨↑,∧↓, ◦↑,→↓,¬,♦↑,�↓, ��↓, �♦↑, 1〉: see

Example 3.1.8 It is necessary to check the following theorem.

Theorem 4.3.3 (Canonical extension of B.C�♦-algebras). The canonical extension

of a B.C�♦-algebra is also a B.C�♦-algebra.

Proof. It is analogous to the proof of Theorem 4.1.3, except Item 4 in Definition

4.3.1.

79

Let α, β be arbitrary elements in A. Since both α ∨↑ β and ¬(¬α ∧↓ ¬β) are

∪-term, see terms of type t∪, t∩, t∨ and t∧ (4.3) - (4.6), we have

(α ∨↑ β)↑ = λ({F ∨G | F ∈ α↓, G ∈ β↓}),

¬(¬α ∧↓ ¬β)↑ = λ({¬(¬F ∧ ¬G) | F ∈ α↓, G ∈ β↓}).

Then, we notice that it suffices to show that, for each F ∈ α↓ and each G ∈ β↓,

F ∨G = ¬(¬F ∧ ¬G), which is straightforward.

Definition 4.3.4 (Canonicity of term). On the class of B.C�♦-algebras, a formula

(term) t is canonical, if the inequality 1 ≤ t is canonical.

As a corollary of Theorem 3.3.5, we obtain the following.

Corollary 4.3.5. In relevant modal logics, every ∩-term is canonical.

Now, we syntactically describe a class of canonical formulae. By Lemma 3.3.11

and Theorem 3.3.13, we obtain the following terms of type t∪, t∩, t∨ and t∧.

t∪ ::= p | 1 | t∪ ∨ t∪ | t∪ ∧ t∪ | t∪ ◦ t∪ | ¬t∩ | ♦t∪ | �♦t∪ | t∧, (4.3)

t∩ ::= p | 1 | t∩ ∨ t∩ | t∩ ∧ t∩ | t∪ → t∩ | ¬t∪ | �t∩ | ��t∩ | t∨, (4.4)

t∨ ::= p | 1 | t∨ ∨ t∨ | t∨ ∧ C | C ∧ t∨ | t∨ ◦ C | C ◦ t∨ | ¬t∧ | ♦t∨ | �♦t∨, (4.5)

t∧ ::= p | 1 | t∧ ∧ t∧ | t∧ ∨ C | C ∨ t∧ | t∨ → C | C → t∧ | ¬t∨ | �t∧ | ��t∧, (4.6)

where C is a constant or a constant term.

As a corollary of Theorem 3.3.22, together with terms of type t∪, t∩, t∨ and t∧

(4.3) - (4.6), we obtain canonical logics of relevance modal logics. We briefly check

80

that [76] is a consequence of our approach. [76] proves that a finite conjunction of

�n(B → C) is canonical, where �n is a n-composition of � or ��, C is a positive

formula, and B is untied: B := p | N | B ∧ B | ♦B | �♦B where N is a negative

formula. As our method is not closed under conjunctions, we think about a set of

�n(B → C) instead of conjunctions. Let us consider the inequality 1 ≤ �n(B → C).

There is only one possibility that �n(B → C) has ∩-critical subterms; as positive

formulae, in C, and as negative formulae, in B. It follows that the inequality

has consistent variable occurrence. Therefore, all Sahlqvist formulae in [76] are

consequences of our theorem. On the other hand, for example, formulae in the

following list

1. (p1 ◦ (p2 → p1))→ ((p1 ◦ p2)→ (p2 ◦ p2)).

2. ((♦p1 → p2) ◦ (p1 → ¬p3))→ �(p1 → (p2 ∧ ¬p3)).

3. �(p1 ◦ (p2 → p1))→ �(♦p2 ◦ (�p1 → p2)).

are not of type �n(B → C) but they are consequences of Theorem 3.3.22, together

with the terms of type t∪, t∩, t∨ and t∧ (4.3) - (4.6).

4.4 Application 4: Distributive modal logic

In this section, we give a comparison between Ghilardi and Meloni’s method and the

technique of [30]. Firstly, we fix the language for the setting in [30]. A distributive

modal algebra is a tuple A = 〈A,∨,∧,⊥,>,♦,�,B,C〉. As we saw in Example 3.1.2,

together with Proposition 3.2.10, distributive modal algebras are smooth lattice

expansions. Based on the language, we obtain that the syntactically described terms

81

of types t∪, t∩, t∨ and t∧ are,

t∪ ::= p | ⊥ | > | t∪ ∨ t∪ | t∪ ∧ t∪ | ♦t∪ |C t∩ | t∧,

t∩ ::= p | ⊥ | > | t∩ ∨ t∩ | t∩ ∧ t∩ | �t∩ |B t∪ | t∨,

t∨ ::= p | ⊥ | > | t∨ ∨ t∨ | t∨ ∧ C | C ∧ t∨ | ♦t∨ |C t∧,

t∧ ::= p | ⊥ | > | t∧ ∨ C | C ∨ t∧ | t∧ ∧ t∧ | �t∧ |B t∨,

where C is a constant term: see Lemma 3.3.11 and Theorem 3.3.13.

Now, we briefly recall the canonicity algorithm shown in [30]. In [30, p.79], there

is a slogan “the main feature that may make non-Sahlqvist formulae ill-behaved is

that the ‘outside’ connectives are ‘universal’ (boxes), while the ‘inside’ connectives

are ‘choice’ connectives (that is, diamonds or disjunction).”

Let s ≤ t be an inequality. On the construction (generation) trees of s and t, we

label every node with a sign (+ or −) in the following manner.1 This labelling also

starts with the root.

Signing algorithm in [30]

1. Label the root of the construction tree of s with − and the root of the con-

struction tree of t with +.

2. If the current note does not have any child, we stop labelling. Otherwise, we

label + or − for each child based on the following step.

(a) If the node is either B t or C t, then label t with the converse sign of the

1This labelling is the converse of the original work [30]. Reversing + and −, these signs directly
correspond to our signs on the well-pruned pair of trees for s ≤ t.

82

current node.

(b) Otherwise, label every child with the same sign of the current node.

3. Move every child and repeat Item 2 until every node is labelled.

Based on these signs, we define universal nodes and choice nodes as follows.

1. A node is choice, if either the node is signed with + and the outermost connec-

tive is ∧,� or B, or the node is signed with − and the outermost connective

is ∨,♦ or C.

2. A node is universal, if either the node is signed with + and the outermost

connective is ♦ orC, or the node is signed with− and the outermost connective

is � or B.

Moreover, a universal node is called the first universal node, if there is not any

universal node on the path from it to the root, except itself. This is not defined in

[30], but it allows us to compare the two method simply.

Systematic analysis of two types of terminology We compare these labelling

rules, and our terminology (∪-terms, ∩-terms, critical terms) with choice nodes

and universal nodes in [30]. We can straightforwardly understand that the signing

algorithm (+ and −) in [30] is exactly the same as our signing algorithm before

pruning, see Definition 3.3.172 Let us start with an example, an inequality s ≤ t,

where

s = (B (p ∧ (C q))) ∨ (C �(p ∧ q)),

t = (♦ B ((B p) ∧ q)) ∧ (�((C p) ∧ (q ∨ p))).
2Our signing is introduced after pruning. But, we can naturally consider the same algorithm

without pruning.

83

Figure 4.1: The ∪-labelled and −-signed construction tree of s

(∨,−,∪)C

(B,−,∪)U
∪−critical

(∧,+, ?)C

(p,+, ?) (C,+, ?)U

(q,−, ?)

(C,−,∪)C

(�,+,∩)C

(∧,+,∩)C

(p,+,∩) (q,+,∩)

Figure 4.2: The ∩-labelled and +-signed construction tree of t

(∧,+,∩)C

(♦,+,∩)U
∩−critical

(B,+, ?)C

(∧,−, ?)

(B,−, ?)U

(p,+, ?)

(q,−, ?)

(�,+,∩)C

(∧,+,∩)C

(C,+,∩)U

(p,−,∩)

(∨,+,∩)

(q,+,∩) (p,+,∩)

To compare the two methods clearly, we draw the following labelled and signed

construction trees of s and t (Fig. 4.1 and Fig. 4.2), where each node is denoted

by a tuple (the outermost connective, the sign of the node, the label of the node),

universal nodes and choice nodes are denoted by subscripts U and C, and dashed

lines are pruned when we consider the well-pruned trees.

At first, we may feel that the signs − and + are similar to the labels ∪ and

∩ respectively. However, it is apparent from the above example that they are not

precisely the same. Next, we check the details of the labels (∪, ∩ and ?) and the

84

signs (+ and −). Our discussion is separated into two parts: above the first universal

nodes and below the first universal nodes, if they exist.

We prove the following proposition for every node above the first universal node,

from which there is no universal node on the path to the root.

Proposition 4.4.1. Above the first universal nodes (if they exist), every node is

either labelled with ∪ and signed with −, called type (−,∪), or labelled ∩ and signed

with +, called type (+,∩). Hence, above the first universal nodes (if they exist), ∪

and ∩ correspond to − and +, respectively.

Proof. Induction on the construction trees of s and t. The basic steps are the roots.

It is straightforward by definition, because the root of s is labelled with ∪ and signed

with −, hence it is of type (−,∪), and the root of t is labelled with ∩ and signed

with +, hence it is of type (+,∩).

To consider the inductive steps, we compare the labelling algorithms and the

signing algorithm. Then, we can sum up as follows:

1. if a outermost connective of a node of type (−,∪) is one of ∨,∧,♦, we label

the children of the node with the same label ∪ and the same sign −; that is,

every child is of type (−,∪),

2. if a outermost connective of a node of type (−,∪) is C, we label the child of

the node with the label ∩ and the converse sign +; that is, the child is of type

(+,∩),

3. if a node of type (−,∪) is neither Item 1 nor Item 2, the outermost connective

of the node must be either of � and B,

85

4. if a outermost connective of a node of type (+,∩) is one of ∨,∧,�, we label

the children of the node with the same label ∩ and the same sign +; that is,

every child is of type (+,∩),

5. if a outermost connective of a node of type (+,∩) is B, we label the child of

the node with the label ∪ and the converse sign −; that is, the child is of type

(−,∪),

6. If a node of type (+,∩) is neither Item 4 nor Item 5, the outermost connective

of the node must be either of ♦ and C.

Then, whenever we consider the cases of Items 1, 2, 4 and 5, they prove the inductive

steps, hence ∪ and ∩ correspond to − and +, respectively. Now, we focus on the

cases of Items 3 and 6. If a node satisfies Item 3 or 6 and above the first universal

node, by the definition of universal nodes, the node is the first universal node.

Remark 4.4.2. Let s ≤ t be an inequality. If the construction trees of s and t have

no universal node, s is a term of type t∪ containing no subterms of type t∨ and t∧,

and t is a term of type t∩ containing no subterms of type t∨ and t∧.

We look back to the conditions of Items 3 and 6 in the proof of Proposition 4.4.1.

In our ∪-labelling and ∩-labelling algorithms, if a node satisfies one of Items 3 and

6, we must have a break of the labelling from the root to the leaves, see Section 3.3,

because, if a node is of type (−,∪) and satisfies Item 3, we have two choices to label:

(i) if the node is a term of type t∧, all nodes below the node, not only the children,

are labelled with ∪,

(ii) otherwise, all nodes below the node are labelled with ?.

86

Analogously, if a node is of type (+,∩) and satisfies Item 6, we have two choices to

label:

(i) if the node is a term of type t∨, all nodes below the node, not only the children,

are labelled with ∩,

(ii) otherwise, all nodes below the node are labelled with ?.

Note that any term is a critical subterm, if Item (ii) holds.

Next, we compare the labelling algorithms under the first universal nodes. Let

A be the first universal node of type (−,∪), and B the first universal node of type

(+,∩). To compare the labelling under the first universal nodes A and B, we recall

the ∧-labelled construction tree of A and the ∨-labelled construction tree of B in

Section 3.3. Note that, if the ∧-labelled (∨-labelled) construction tree of A (B) has

no nodes labelled with ?, A is a term of type t∧ (t∨), hence A (B) is not critical. In

the ∧-labelled and −-signed construction tree of A and the ∨-labelled and +-signed

construction tree of B (note that signs are the same as the above ones), we can prove

the following proposition. In the proof of Proposition 4.4.3, we compare the signing

algorithm in [30] and the ∧-labelling ∨-labelling algorithm based on non-distributive

cases. We will shortly come back to the comparison with ∧-labelling and ∨-labelling

on distributive cases in Remark 4.4.5.

Proposition 4.4.3. In the ∧-labelled and −-signed construction tree of A, every

node above any choice node is either of type (−,∧) or of type (+,∨). Analogously,

in the ∨-labelled and +-signed construction tree of B, every node above any choice

node is either of type (+,∨) or of type (−,∧).

Proof. Induction on the construction trees of A and B. The basic cases are rather

87

trivial, by definition. To discuss the induction steps, we compare our labelling

algorithms and the signing algorithm. Remind that we here compare the signing in

[30] with the ∧-labelling and ∨-labelling based on non-distributive cases, i.e. without

(a’) and (b’): see ∧ (∨) labelling algorithm.

1. If a connective of a node of type (−,∧) is either of ∧ and �, we label the

children with the same label ∧ and the same sign −; that is, every child of the

node is of type (−,∧).

2. If a connective of a node of type (−,∧) is B, we label the child with the label

∨ and the converse sign +; that is, the child is of type (+,∨).

3. If a node of type (−,∧) is neither item 1 nor item 2, a connective of the node

must be one of ∨,♦,C.

4. If a connective of a node of type (+,∨) is either of ∨ and ♦, we label the

children with the same label ∨ and the same sign +; that is, every child is of

type (+,∨).

5. If a connective of a node of type (+,∨) is C, we label the child with the label

∧ and the converse sign −; that is, the child is of type (−,∧).

6. If a node of type (+,∨) is neither item 4 nor item 5, a connective of the node

must be one of ∧,�,B.

Then, when we see item 1, 2, 4 and 5, they prove the induction steps. Moreover,

if a node satisfies item 3 or item 4, it is a choice node by the definition of choice

nodes.

As a corollary, we straightforwardly obtain the following.

88

Corollary 4.4.4. Critical subterms are the first universal nodes which contain

choice nodes in their scopes.

Remark 4.4.5. The converse of Corollary 4.4.4 is not true in general. That is, there

are some terms which have the first universal nodes containing choice nodes in their

scopes but are not critical. In the inequality �((�⊥) ∨ (B p)) ≤ ♦((B p) ∨ (C p)),

for example, the (sub)term �((�⊥) ∨ (B p)) is the first universal node containing

a choice node (�⊥) ∨ (B p), but it is not ∪-critical. The difference comes from the

∧-labelling algorithm on the distributive-cases: see (a’) and (b’) in the ∧-labelling

algorithm in Section 3.3.

Comparison of two results By Corollary 4.4.4, we can conclude that canonicity

results in [30] are also consequences of Theorem 3.3.22. On the other hand, as

we saw in Remark 4.4.5, the class of canonical inequalities syntactically obtained

by our approach is slightly larger than the one in [30]. The difference comes from

the definition of choice nodes and the ∧-labelling and ∨-labelling algorithms based

on the distributive-cases. Concretely, the definitions that ∨ signed with − and ∧

signed with + are choice are slightly stronger conditions than what we assume. On

the other hand, both results coincide, if we modify the definition of choice nodes

of [30] as follows: A node is choice, if every branch of the node contains at least

one propositional variable, and either the node is signed with + and the outermost

connective is ∧, � or B, or the node is signed with − and the outermost connective

is ∨, ♦ or C. Then, we can summarise the correspondence as in Table 4.1.3

3In the table, the signs + and − are the converse to the original notation in [30]

89

Table 4.1: Summary of the Correspondence

Our terminology Terminology in [30]

+ +
− −
∪ signed with − and not below the first universal node
∩ signed with + and not below the first universal node

critical the first universal node containing choice nodes in the scope

90

Chapter 5

Canonicity of poset expansions

The argument of canonical extensions are nowadays generalised up to posets in gen-

eral. We can universally characterise canonical extensions over posets, i.e. including

lattices, bounded distributive lattices and Boolean algebras, as compact dense com-

pletions and they are unique up to isomorphism (see Section 7.1). With this recent

generalisation of canonical extensions, one of the questions which naturally arise is

the canonicity property over poset expansions in general. More precisely, how does

the lack of the lattice operations ∨ and ∧ affect our canonicity argument?

In this chapter, we will show that the main technique of Ghilardi and Meloni’s

canonicity methodology does not work over poset expansions in general. However,

we will also show that, by removing ill-behaved parts carefully, we can still account

for reasonably many canonical results of poset expansions.

5.1 Poset expansions

In this section, we recall poset expansions: see Section 3.1. Let P be a poset. A

n-ary function on P is a ε-operation, if there exists a list, order-type, ε = (ε1, . . . , εn),

91

in which each εi is either 1 or ∂, such that f is monotone from the product poset

Pε1 × · · · × Pεn to the codomain P. Among ε-operations, we define the following

properties for poset expansions. Note that these properties are the generalised

versions of the case of lattice expansions.

Definition 5.1.1 (Join-preservability and meet-preservability). Let P = 〈P,≤P 〉

and Q = 〈Q,≤Q〉 be posets. A monotone map f : P → Q is join-preserving, if,

for all p1, p2 ∈ P and each q ∈ Q satisfying f(p1) ≤Q q and f(p2) ≤Q q, there

exists p ∈ P such that p1 ≤P p, p2 ≤P p and f(p) ≤Q q. Order-dually, a monotone

map g : P → Q is meet-preserving, if, for all p1, p2 ∈ P and each q ∈ Q satisfying

q ≤Q g(p1) and q ≤Q g(p2), there exists p ∈ P such that p ≤P p1, p ≤P p2 and

q ≤Q g(p). Especially, if a ε-operation f is join-preserving (meet-preserving) from

the product domain Pε1×· · ·×Pεn , it is called ε-join-preserving (ε-meet-preserving).

Definition 5.1.2 (Strictness). Let P = 〈P,≤P 〉 and Q = 〈Q,≤Q〉 be posets. A

monotone map f : P → Q is ⊥-strict, if, for each q ∈ Q, there exists p ∈ P such

that f(p) ≤Q q. Analogously, a monotone map g : P → Q is >-strict, if, for each

q ∈ Q, there exists p ∈ P such that q ≤Q g(p).

Definition 5.1.3 (Additivity and multiplicativity). Let P be a poset. A ε-operation

l : Pε1 × · · ·×Pεn → P is ε-additive, if l is join-preserving for each coordinate. Addi-

tionally, if l satisfies ⊥-strictness for each coordinate, l is ε⊥-additive. Analogously,

a ε-operation r : Pε1 × · · · × Pεn → P is ε-multiplicative, if r is meet-preserving for

each coordinate. Moreover, if r satisfies >-strictness for each coordinate as well, r

is ε>-multiplicative. If the order-type is clear, we sometimes refer them simply to

additive, ⊥-additive, multiplicative and >-multiplicative.

Example 5.1.4. Let P be a poset and r : P1 × P∂ → P a (1, ∂)-operation. r

92

is (1, ∂) − multiplicative, if r satisfies the following Items 1 and 2: for arbitrary

p1, p2, a, b, q ∈ P ,

1. if q ≤ r(p1, b) and q ≤ r(p2, b), there exists p ∈ P such that p ≤ p1, p ≤ p2

and q ≤ r(p, b),

2. if q ≤ r(a, p1) and q ≤ r(a, p2), there exists p ∈ P such that p1 ≤ p, p2 ≤ p

and q ≤ r(a, p). (Note that the order of the second coordinate is reversed.)

Moreover, if r also satisfies the following Items 3 and 4, r is (1, ∂)>-multiplicative.

For all a, b, q ∈ P ,

3. there exists p1 ∈ P such that q ≤ r(p1, b),

4. there exists p2 ∈ P such that q ≤ r(a, p2).

Definition 5.1.5 (Adjoint pair). Let P be a poset, l : Pµ1 × · · · × Pµn → P a n-ary

µ-additive operation, r : Pν1 × · · · × Pνn → P a n-ary ν-multiplicative operation,

and i be a fixed coordinate in {1, . . . , n}. A pair l and r forms an adjoint pair with

respect to the coordinate i, denoted by l ai r, if µi = νi = 1 and, for all the other

coordinates the order-types are opposite, i.e. either µk = 1 and νk = ∂ or µk = ∂

and νk = 1 for each k ∈ {1, . . . , i − 1, i + 1, . . . , n}, and they satisfy the following

adjointness condition: for all x, y, c1, . . . , cn ∈ P , we have

l(c1, . . . , ci−1, x, ci+1, . . . , cn) ≤ y ⇐⇒ x ≤ r(c1, . . . , ci−1, y, ci+1, . . . , cn).

Remark 5.1.6. As in the case of lattice expansions, our definition of adjoint pairs

require the join-preservability and the meet-preservability for each coordinate, not

only for the i-th coordinate. It is necessary to prove Theorems 5.5.16 and 5.5.17.

93

We call a pair of a poset P and a set of ε-operations on P a poset expansion,

denoted by 〈P, f1, . . .〉.1 In the rest of this section and the following section (Section

5.2), we consider just a poset expansion 〈P, f, g〉, where f is a (1, 1)-operation and

g is a (∂, 1)-operation. But, it is straightforwardly extended to arbitrary poset

expansions. Based on the poset expansion 〈P, f, g〉, we inductively define terms as

usual.

term ::= pi | f(term, term) | g(term, term),

where pi is a propositional variable. We think about terms as term functions as

follows: for all x1, . . . , xN ∈ P , we let

1. pi(x1, . . . , xN) := xi,

2. f(t1, t2)(x1, . . . , xN) := f(t1(x1, . . . , xN), t2(x1, . . . , xN)),

3. g(t1, t2)(x1, . . . , xN) := g(t1(x1, . . . , xN), t2(x1, . . . , xN)),

where, and hereinafter, we always assume that N is a finite number which is large

enough to cover any arity as in the case of lattice expansions.

5.2 Canonical extension of poset expansions

In this section, we introduce canonical extensions of poset expansions on two steps,

via the intermediate level. We note that the main technique invented in [33] is not

only to extend each operation on a poset onto the canonical extension but also to

lift up the evaluation of all term functions onto the intermediate level, which is used

to approximate the values of term functions on the canonical extension, see also [84].

1Each operation can have its own order-type, e.g. 〈P, f, g〉 where f is (1, 1)-operation and g is
(∂, 1)-operation. In other words, the order type ε is not uniform for all operations.

94

We extend ε-operations on the intermediate level as follows. Note that the following

definition looks like the same as Definition 3.2.1. But, in the following definition,

filters and ideals are based on posets.

Definition 5.2.1 (ε-operation on the intermediate level). For all F,G ∈ F and all

I, J ∈ I, we let

1. f(F,G) := {x ∈ P | ∃a ∈ F, ∃b ∈ G. f(a, b) ≤ x},

2. f(I, J) := {y ∈ P | ∃a ∈ I,∃b ∈ J. y ≤ f(a, b)},

3. g(I, F) := {x ∈ P | ∃a ∈ I,∃b ∈ F. g(a, b) ≤ x},

4. g(F, I) := {y ∈ P | ∃a ∈ F, ∃b ∈ I. y ≤ g(a, b)}.

Proposition 5.2.2. Each ε-operation on the intermediate level is well-defined. That

is,f is extended to both f : F × F → F (Item 1) and f : I × I → I (Item 2). g is

extended to both g : I × F → F (Item 3) and g : F × I → I (Item 4).

Proof. We check only Item 3, here. But, the others are analogously proved. For

each filter F ∈ F and each ideal I ∈ I, since every filter and every ideal are non-

empty, g(I, F) is also non-empty. By definition, g(I, F) is upward closed. For all

x1, x2 ∈ g(I, F), there exist a1, a2 ∈ I and b1, b2 ∈ F such that g(a1, b1) ≤ x1 and

g(a2, b2) ≤ x2. As I is an ideal and F is a filter, there exist a ∈ I and b ∈ F such

that a1 ≤ a, a2 ≤ a, b ≤ b1 and b ≤ b2. Since g is a (∂, 1)-operation, we obtain

g(a, b) ≤ g(a1, b1) ≤ x1 and g(a, b) ≤ g(a2, b2) ≤ x2.

Since g(a, b) ∈ g(I, F) and g(a, b) is a lower bound of {x1, x2}, g(I, F) is down-

directed. Hence, it is a filter.

95

Remark 5.2.3. On the intermediate level, we naturally have two types of extensions

of ε-operations: extending on filters and extending on ideals. Since they are order-

dually related, i.e. every filter on P1 is an ideal on P∂ vice versa, every order-dual

coordinate should be the opposite-type. For example, each first coordinate of a

(∂, 1)-operation g is the opposite sort. g : I × F → F and g : F × I → I.

Remark 5.2.4. Since our target is to evaluate every term function on the interme-

diate level and to use them to approximate the value on the canonical extension,

the both types of extensions are mandatory. Otherwise, we would have some term

functions which cannot be computed on the intermediate level (see Section 7.2).

Parallel computation on the intermediate level To computer all term func-

tions on the intermediate level, we first introduce the ‖-notation, e.g. Pos‖Neg,

which means that positive occurrences are replaced by Pos and negative occur-

rences are replaced by Neg (see [33]). Based on the ‖-notation, we inductively

evaluate term functions on the intermediate level as follows: for all F1, . . . , FN ∈ F

and all I1, . . . , IN ∈ I, we let

pi(F‖I) := Fi pi(I‖F) := Ii

f(t1, t2)(F‖I) := f(t1(F‖I), t2(F‖I)) f(t1, t2)(I‖F) := f(t1(I‖F), t2(I‖F))

g(t1, t2)(F‖I) := g(t1(I‖F), t2(F‖I)) g(t1, t2)(I‖F) := g(t1(F‖I), t2(I‖F))

where (F‖I) = (F1‖I1, . . . , FN‖IN) and (I‖F) = (I1‖F1, . . . , IN‖FN).

Example 5.2.5. For each F ∈ F and each I ∈ I, the term g(p1, p1) is calculated

in parallel as follows:

1. g(p1, p1)(F‖I) = g(p1(I‖F), p1(F‖I)) = g(I, F),

96

2. g(p1, p1)(I‖F) = g(p1(F‖I), p1(I‖F)) = g(F, I).

As in the case of lattice expansions, we straightforwardly obtain the following

monotonicity lemma, by the parallel induction.

Lemma 5.2.6 (Monotonicity on the intermediate level). Let t be a term. For all

F1, . . . , FN , G1, . . . , GN ∈ F and all I1, . . . , IN , J1, . . . , JN ∈ I, if Fk v Gk and

Ik v Jk for each k ∈ {1, . . . , N}, we have

t(F1‖J1, . . . , FN‖JN) v t(G1‖I1, . . . , GN‖IN),

t(I1‖G1, . . . , IN‖GN) v t(J1‖F1, . . . , JN‖FN).

Next we introduce the ‖-notation on the poset expansion 〈P, f, g〉, which allows us

to build up a stable relationship between term functions on the poset expansion and

those on the intermediate level (see Lemma 5.2.8). On the poset expansion 〈P, f, g〉,

we define the (partial) term functions as follows: for all x1, . . . , xN , y1, . . . , yN ∈ P ,

we let

1. pi(x1‖y1, . . . , xN‖yN) := xi,

2. f(t1, t2)(x1‖y1, . . . , xN‖yN) := f(t1(x1‖y1, . . . , xN‖yN), t2(x1‖y1, . . . , xN‖yN)),

3. g(t1, t2)(x1‖y1, . . . , xN‖yN) := g(t1(y1‖x1, . . . , yN‖xN), t2(x1‖y1, . . . , xN‖yN)).

We note that, whenever we put the same variable for each occurrence, e.g. xk‖xk, for

each coordinate, we obtain t(x1, . . . , xN) = t(x1‖x1, . . . , xN‖xN). On P, we obtain

the monotonicity lemma.

97

Lemma 5.2.7. Let t be a term. For arbitrary x1, . . . , xN , y1, . . . , yN , z1, . . . , zN ,

w1, . . . , wN ∈ P , if xk ≤ yk and zk ≤ wk for each k ∈ {1, . . . , N}, we have

t(x1‖w1, . . . , xN‖wN) ≤ t(y1‖z1, . . . , yN‖zN).

As in the case of lattice expansions, we also obtain the following lemma. Note

that the statement in Lemma 5.2.8 is exactly the same as Lemma 3.2.6, but filters

and ideals are based on posets.

Lemma 5.2.8. Let t be a term. For all F1, . . . , FN ∈ F , all I1, . . . , IN ∈ I and all

x, y ∈ P , we have

1. x ∈ t(F‖I) ⇐⇒ ∀k ∈ {1, . . . , N},∃ak ∈ Fk,∃bk ∈ Ik. t(a‖b) ≤ x,

2. y ∈ t(I‖F) ⇐⇒ ∀k ∈ {1, . . . , N},∃ck ∈ Ik,∃dk ∈ Fk. y ≤ t(c‖d).

Proof. Parallel induction. Base cases are straightforward (recall that every filter

and every ideal are non-empty). Here we check only the inductive step of g for Item

2. But the others are analogous.

(⇒). For each y ∈ g(t1, t2)(I‖F) = g(t1(F‖I), t2(I‖F)), by definition, there exist

z1 ∈ t1(F‖I) and z2 ∈ t2(I‖F) such that y ≤ g(z1, z2). By induction hypothesis, for

each k ∈ {1, . . . , N}, there exist ak, dk ∈ FK and bk, ck ∈ Ik such that t1(a‖b) ≤ z1

and z2 ≤ t2(c‖d). Since each Fk is a filter and Ik is an ideal, there exist fk ∈ Fk and

ik ∈ Ik such that fk ≤ ak, fk ≤ dk, bk ≤ ik and ck ≤ ik. By Lemma 5.2.7, we obtain

y ≤ g(z1, z2) ≤ g(t1(a‖b), t2(c‖d)) ≤ g(t1(f‖i), t2(i‖f)) = g(t1, t2)(i‖f).

(⇐). Suppose that, for each k ∈ {1, . . . , N} there exist ck ∈ Ik and dk ∈ Fk

98

such that y ≤ g(t1, t2)(c‖d) = g(t1(d‖c), t2(c‖d)). By induction hypothesis, we have

t1(d‖c) ∈ t1(F‖I) and t2(c‖d) ∈ t2(I‖F). Therefore, by the definition of g on the

intermediate level, we conclude y ∈ g(t1, t2)(I‖F).

Canonical extensions of ε-operations Next we extend ε-operations to the

canonical extension. As in the lattice expansion case, we have two natural choices of

extensions for each operation. Namely, one is approximated from below, denoted by

adding the subscript ↑, e.g. f↑, and the other is approximated from above, denoted

by adding the superscript ↓, e.g. f ↓. Furthermore, since the canonical extension P

is a point-free structure which is isomorphic to both Dυ and Uλ, we have two ways

of the evaluation for each value: on Dυ, denoted by ↓, and on Uλ, denoted by ↑.

Remark 5.2.9. We list both definitions, approximated from below and approx-

imated from above, for each ε-operation, below. However, in general, these two

types of extensions do not coincide (see [31] or [32]). Therefore, before discussing

canonicity of poset expansions, we must decide how to choose the extension. We

will come back to the discussion in Section 5.5.

The extension f↑ (approximated from below) of the (1, 1)-operation f is defined

as follows: for all α, β ∈ P, we let

1. (f↑(α, β))↑ := λ({f(F,G) | F ∈ α↓, G ∈ β↓}),

2. (f↑(α, β))↓ := υ((f↑(α, β))↑).

The extension g↑ (approximated from below) of the (∂, 1)-operation g is defined as

follows: for all α, β ∈ P, we let

1. (g↑(α, β))↑ := λ({g(I, F) | I ∈ α↑, F ∈ β↓}),

99

2. (g↑(α, β))↓ := υ((g↑(α, β))↑).

Note that each Item 1 is evaluated on Uλ and each Item 2 is evaluated on Dυ (pay

attention to the subscript ↑ and the superscript ↓).

The extension f ↓ (approximated from above) of the (1, 1)-operation f is defined

as follows: for all α, β ∈ P, we let

1. (f ↓(α, β))↓ := υ({f(I, J) | I ∈ α↑, J ∈ β↑}),

2. (f ↓(α, β))↑ := λ((f ↓(α, β))↓).

The extension g↓ (approximated from above) of the (∂, 1)-operation g is defined as

follows: for all α, β ∈ P, we let

1. (g↓(α, β))↓ := υ({g(F, I) | F ∈ α↓, I ∈ β↑}),

2. (g↓(α, β))↑ := λ((g↓(α, β))↓).

Note that each Item 1 is evaluated on Dυ and each Item 2 is evaluated on Uλ (pay

attention to the superscript ↓ and the subscript ↑). Based on these extensions, we

inductively define term functions on P. Recall once more that we have to choose

the extension type for each operation before defining term functions. Here, we use

that f̃ , instead of either f↑ or f ↓, and g̃, instead of either g↑ or g↓. For arbitrary

α1, . . . , αN ∈ P, we let

(pi(α))↓ := αi
↓ (pi(α))↑ := αi↑

(f̃(t1, t2)(α))↓ := (f̃(t1(α), t2(α)))↓ (f̃(t1, t2)(α))↑ := (f̃(t1(α), t2(α)))↑

(g̃(t1, t2)(α))↓ := (g̃(t1(α), t2(α)))↓ (g̃(t1, t2)(α))↑ := (g̃(t1(α), t2(α)))↑

where (α) = (α1, . . . , αN).

100

5.3 Problem of extending Ghilardi and Meloni’s

methodology for poset expansions

In this section and the next section (Sections 5.3 and 5.4), we will discuss canonicity

of arbitrary poset expansions. Within these two sections, we assume that we have

already defined the canonical extension of each operation f , either f↑ or f ↓. We

here summarise Ghilardi and Meloni’s canonicity methodology for lattice expansions

(Section 3.3), and bring up a problem to generalise it to poset expansions. Firstly,

We define canonicity of inequalities for poset expansions as follows.

Definition 5.3.1 (Canonicity). Let s, t be terms. An inequality s ≤ t is canon-

ical, if, for all α1, . . . , αN ∈ P, we have s(α1, . . . , αN) ≤ t(α1, . . . , αN) whenever

s(x1, . . . , xN) ≤ t(x1, . . . , xN) for all x1, . . . xN ∈ P .

We also define ∪-terms and ∩-terms which are the same as Definition 3.3.3.

Definition 5.3.2 (∪-term and ∩-term). Let t be a term. A term t is a ∪-term, if,

for each α1, . . . , αN ∈ P, we have

t(α1, . . . , αN)↑ = λ({t(F1‖I1, . . . , FN‖IN) | Fk ∈ αk↓, Ik ∈ αk↑}).

And, a term t is a ∩-term, if, for each α1, . . . , αN ∈ P, we have

t(α1, . . . , αN)↓ = υ({t(I1‖F1, . . . , IN‖FN) | Ik ∈ αk↑, Fk ∈ αk↓}).

Remark 5.3.3. ∪-terms and ∩-terms are explained with the bi-directional approx-

imation and bases as follows. As we saw in Section 2.3, the canonical extension is

a point-free structure on which every value is always evaluated by the bi-directional

101

approximation, ↓ and ↑. Conversely, every element on the canonical extension has

at least one, not necessarily unique, filter basis and at least one, not necessarily

unique, ideal basis. If a term t is a ∪-term, it claims that we have a reasonable

filter basis of t(α1, . . . , αN): namely, the set of filters which form t(F‖I), for each

Fk ∈ αk↓ and each Ik ∈ αk↑, for each coordinate k ∈ {1, . . . , N}. Analogously, if a

term t is a ∩-term, it says that we have a reasonable ideal basis of t(α1, . . . , αN):

namely, the set of ideals which form t(I‖F), for each Ik ∈ αk↑ and each Fk ∈ αk↓,

for each coordinate k ∈ {1, . . . , N}.

Remark 5.3.4. Unlike what happens in the setting of lattice expansions, we need

to mention clearly how the empty elements are treated. Let t be a term (function).

The set {t(F‖I) | Fk ∈ αk↓, Ik ∈ αk↑} is empty, if at least one of the filters or the

ideals which are necessary to compute t on the intermediate level is missing. For

example, the set {p2(F1‖I1, F2‖I2) | F1 ∈ α1
↓, F2 ∈ α2

↓, I1 ∈ α1↑, I2 ∈ α2↑} is empty,

if and only if α2
↓ = ∅.

The most important reason to introduce these terms is that, whenever we con-

sider lattice expansions, we can prove Theorem 3.3.5. Now we look a sketch of the

proof.

Theorem 5.3.5. Let s, t be terms. Over lattice expansions, an inequality s ≤ t is

canonical, whenever s is a ∪-term and t is a ∩-term.

(Sketch). Let s be a ∪-term, and t a ∩-term. We assume that, for all x1, . . . , xN ∈ L,

we have s(x1, . . . , xN) ≤ t(x1, . . . , xN). By Definition 5.3.2, for all α1, . . . , αN ∈ L,

we have

s(α1, . . . , αN)↑ = λ({s(F1‖I1, . . . , FN‖IN) | Fk ∈ αk↓, Ik ∈ αk↑}),

102

t(α1, . . . , αN)↓ = υ({t(I1‖F1, . . . , IN‖FN) | Ik ∈ αk↑, Fk ∈ αk↓}).

Now what we want to show is s(α1, . . . , αN) ≤ t(α1, . . . , αN). By Proposition

2.3.1, it is equivalent to proving that, for all Fk, Gk ∈ αk↓ and all Ik, Jk ∈ αk↑, we

have

s(F1‖I1, . . . , FN‖IN) v t(J1‖G1, . . . , JN‖GN). (5.1)

Over lattice expansions, to verify the condition (5.1), we use the following fact:

for each k ∈ {1, . . . , N}, if Fk, Gk ∈ αk↓ and Ik, Jk ∈ αk↑, then Fk∩Gk∩ Ik∩Jk 6= ∅.

This is because every filter in αk
↓ and every ideal in αk↑ has non-empty intersection,

i.e. Fk ∩ Ik 6= ∅, Fk ∩ Jk 6= ∅, Gk ∩ Ik 6= ∅ and Gk ∩ Jk 6= ∅. So, we take a ∈ Fk ∩ Ik,

b ∈ Fk ∩ Jk, c ∈ Gk ∩ Ik, d ∈ Gk ∩ Jk. Since Fk and Gk are filters, and Ik and Jk are

downward closed, we have a ∧ b ∈ Fk ∩ Ik ∩ Jk and c ∧ d ∈ Gk ∩ Ik ∩ Jk. Moreover,

as Fk and Gk are upward closed, and Ik and Jk are ideals, we obtain

(a ∧ b) ∨ (c ∧ d) ∈ Fk ∩Gk ∩ Ik ∩ Jk.

Note that the uniqueness of the join of {a∧b, c∧d} is essentially working. Therefore,

Fk ∩ Gk ∩ Ik ∩ Jk 6= ∅, hence there is xk ∈ Fk ∩ Gk ∩ Ik ∩ Jk. Then, together with

the assumption s(x1, . . . , xN) ≤ t(x1, . . . , xN), we have

s(x1‖x1, . . . , xN‖xN) = s(x1, . . . , xN) ≤ t(x1, . . . , xN) = t(x1‖x1, . . . , xN‖xN).

(5.2)

By Lemma 5.2.8, we have

s(x1‖x1, . . . , xN‖xN) ∈ s(F1‖I1, . . . , FN‖IN), (5.3)

103

Figure 5.1: Pc

•

• •

• •

•

⊥

>

a b

c d

Figure 5.2: The canonical extension Pc of P

Dυ Uλ

•

• •

•

• •

•

•

• •

•

• •

•

{↑⊥}

F(Pc)

{↑⊥, ↑a} {↑⊥, ↑b}

{↑⊥, ↑a, ↑b}

{↑⊥, ↑a, ↑b, ↑c} {↑⊥, ↑a, ↑b, ↑d}

I(Pc)

{↓>}

{↓a, ↓c, ↓d, ↓>} {↓b, ↓c, ↓d, ↓>}

{↓c, ↓d, ↓>}

{↓c, ↓>} {↓d, ↓>}

λ ++

υ
kk

t(x1‖x1, . . . , xN‖xN) ∈ t(J1‖G1, . . . , JN‖GN). (5.4)

It derives s(F1‖I1, . . . , FN‖IN) v t(J1‖G1, . . . , JN‖GN).

However, over poset expansions, the same methodology does not work in general.

Let us consider a poset Pc given by the Hasse diagram Fig. 5.1. On the poset Pc,

every filter and every ideal are principal: for each x ∈ P , ↑x := {y ∈ P | x ≤ y}

and ↓x := {y ∈ P | y ≤ x}. That is, we have F(Pc) = {↑⊥, ↑a, ↑b, ↑c, ↑d, ↑>} and

I(Pc) = {↓⊥, ↓a, ↓b, ↓c, ↓d, ↓>}. Therefore, F +Pc I ∼= {⊥, a, b, c, d,>}. Then, we

obtain Dυ and Uλ expressed by the Hasse diagram Fig. 5.2. Since the canonical

extension of Pc is isomorphic to Dυ and Uλ, there must exist α ∈ Pc such that

104

α↓ = {↑⊥, ↑a, ↑b} and α↑ = {↓c, ↓d, ↓>}. We can affirm two facts about this α.

Firstly, unlike over lattice expansions, α↓ is not an ideal of filters: see Proposition

2.3.1 (Item 4). In this case, there is no lower bound of {↑a, ↑b} in α↓. Analogously,

α↑ is not a filter of ideals. Secondly, if we take ↑a, ↑b ∈ α↓ and ↓c, ↓d ∈ α↑, unlike

in the case of lattice expansions, we obtain

↑a ∩ ↑b ∩ ↓c ∩ ↓d = ∅.

Recall that, over lattice expansions, to find a tuple of elements satisfying all

condition (5.2), (5.3) and (5.4), we can take a tuple (x1‖x1, . . . , xN‖xN) where,

for each coordinate k, xk ∈ Fk ∩ Gk ∩ Ik ∩ Jk. However, over poset expansions,

Fk ∩ Gk ∩ Ik ∩ Jk may be empty, as we saw in the above example. Therefore, we

cannot directly apply Ghilardi and Meloni’s method to arbitrary poset expansions.

5.4 A solution: canonicity of poset expansions

In the previous section, we found a problem to generalise Ghilardi and Meloni’s

technique to poset expansions. Nevertheless, we can still leverage our insight to find

canonical inequalities over arbitrary poset expansions. In this section, we carefully

remove problematic conditions to extend Ghilardi and Meloni’s method to poset

expansions, and systematically obtain canonicity results for arbitrary poset expan-

sions.

We recall the signing algorithm for construction trees of terms in Section 3.3.

However, we now label the signs without prunings. Let t be a term. On the con-

struction tree of t, we label each node with a sign + or − in the following manner.

105

Note that our labelling start at the root.

Signing algorithm

1. Label the root with +.

2. If the node does not have any child, we have finished labelling the branch.

Otherwise, the node is labelled with a ε-operation f : Pε1 × · · · × Pεn → P by

f(t1, . . . , tn). Then, for each coordinate k, we label the child tk with the same

sign of the current node if εk = 1, and label the child tk with the converse sign

of the current node if εk = ∂.

3. Move to each child and repeat Item 2 until every node is labelled.

We call the construction tree of t +-signed. We also define the −-signed construction

tree of t with the same labelling rule except Item 1: we start labelling the root with

−: see e.g. Fig. 5.5 and Fig. 5.6 in Section 5.5.

Now, we show the following canonicity theorem for arbitrary poset expansions.

Theorem 5.4.1. Let s, t be terms. An inequality s ≤ t is canonical, whenever s is

a ∪-term, t a ∩-term, and there is no propositional variable in s ≤ t satisfying the

following two conditions:

1. it is signed with + and − in the −-signed construction tree of s,

2. it is signed with + and − in the +-signed construction tree of t.

Proof. For arbitrary α1, . . . , αN ∈ P, since s is a ∪-term and t is a ∩-term, we have

s(α1, . . . , αN)↑ = λ({s(F1‖I1, . . . , FN‖IN) | Fk ∈ αk↓, Ik ∈ αk↑}),

106

t(α1, . . . , αN)↓ = υ({t(I1‖F1, . . . , IN‖FN) | Ik ∈ αk↑, Fk ∈ αk↓}).

By Proposition 2.3.1, s(α1, . . . , αN) ≤ t(α1, . . . , αN) is equivalent to the following:

for all F1, G1 ∈ α1
↓, . . . , FN , GN ∈ αN ↓ and all I1, J1 ∈ α1↑, . . . , IN , JN ∈ αN ↑,

s(F1‖I1, . . . , FN‖IN) v t(J1‖G1, . . . , JN‖GN). (5.5)

As distinct from the lattice case, there may be αk
↓ = ∅ or αk↑ = ∅ for some coordi-

nate k. In this case, if the emptiness makes the set {s(F‖I) | Fk ∈ αk↓, Ik ∈ αk↑}

empty, s(α1, . . . , αN) = ⊥. Analogously, we obtain t(α1, . . . , αN) = >, when-

ever the emptiness makes the set {t(I‖F) | Ik ∈ αk↑, Fk ∈ αk
↓} empty. Hence,

the statement trivially holds. Hereafter, we consider the case that both the set

{s(F‖I) | Fk ∈ αk
↓, Ik ∈ αk↑} and the set {t(I‖F) | Ik ∈ αk↑, Fk ∈ αk

↓} are

non-empty.

To save space, we assume that s ≤ t contains only four propositional variables

p1, p2, p3, p4. By assumption, without loss of the generality, we can assume that

there is no p1 (p2) signed with + (−) in the −-signed construction tree of s and

there is no p3 (p4) signed with − (+) in the +-signed construction tree of t. In other

words, in s, p1 appear only positively and p2 appear only negatively (recall that s

is −-signed), and, in t, p3 appear only positively and p4 does only negatively.

Here, by our assumption, the condition (5.5) can be simplified as follows: for all

F1, G1 ∈ α1
↓, . . . , F4, G4 ∈ α4

↓ and all I1, J1 ∈ α1↑, . . . , I4, J4 ∈ α4↑,

s(F1, I2, F3‖I3, F4‖I4) v t(J1‖G1, J2‖G2, J3, G4). (5.6)

So, we will verify the condition (5.6). As J1 is an element of α1↑, we obtain F1 v J1

107

and G1 v J1, hence there exist x′1 ∈ F1 ∩ J1 and x′′1 ∈ G1 ∩ J1. Since J1 is an

ideal, there exists x1 ∈ J1 such that x′1 ≤ x1 and x′′1 ≤ x1. Then, we obtain

x1 ∈ F1∩G1∩J1 because F1 and G1 are upsets. Analogously, we can obtain elements

x2, x3, x4 satisfying x2 ∈ I2 ∩ J2 ∩G2, x3 ∈ F3 ∩ I3 ∩ J3, and x4 ∈ F4 ∩G4 ∩ I4. By

Lemma 5.2.8, we have

s(x1, x2, x3, x4) = s(x1, x2, x3‖x3, x4‖x4) ∈ s(F1, I2, F3‖I3, F4‖I4),

t(x1, x2, x3, x4) = t(x1‖x1, x2‖x2, x3, x4) ∈ t(J1‖G1, J2‖G2, J3, G4).

By assumption, s(x1, . . . , x4) ≤ t(x1, . . . , x4). Hence, s(α1, . . . , α4) ≤ t(α1, . . . , α4).

Remark 5.4.2. In Theorem 5.4.1, we mainly used the following fact: for arbitrary

F,G ∈ α↓ and I, J ∈ α↑, F ∩ G ∩ I ∩ J may be empty over posets. However, on

posets, we still have that all intersections of three out of four (F,G, I, J) are always

non-empty, e.g F ∩G ∩ I 6= ∅.

In addition to Theorem 5.4.1, we also show the following two theorems for arbi-

trary poset expansions.

Theorem 5.4.3. Let s, t be terms. An inequality s ≤ t is canonical, whenever

s and t are ∪-terms, all propositional variables in t also appear in s, and every

propositional variable is uniformly signed either only by + or only by − in both the

+-signed construction tree of s and the +-signed construction tree of t.2

Proof. We assume that all propositional variables in s ≤ t are p1, . . . , pa signed with

2This condition looks like uniform formulae. However, it is not the same. This is because the
signs in s and in t are dually related. For example, in FL-algebras, s ≤ t ⇐⇒ 1 ≤ s\t, hence
every positive proposition in s occurs negatively in s\t.

108

+ and pa+1, . . . , pa+b signed with − in the +-signed construction tree of s and +-

signed construction tree of t. In other words, all p1, . . . , pa occur positively both in

s and in t, and all pa+1, . . . , pa+b occur negatively both in s and in t.

By definition, for arbitrary α1, . . . , αN ∈ P, we have

s(α1, . . . , αN)↑ = λ({s(F1‖I1, . . . , FN‖IN) | Fk ∈ αk↓, Ik ∈ αk↑}),

t(α1, . . . , αN)↑ = λ({t(F1‖I1, . . . , FN‖IN) | Fk ∈ αk↓, Ik ∈ αk↑}).

By Proposition 2.3.1, the condition s(α1, . . . , αN) ≤ t(α1, . . . , αN) is equivalent

to the following condition s(α1, . . . , αN)↑ ⊇ t(α1, . . . , αN)↑. Hence, it suffices to

show that, for all F1 ∈ α1
↓, . . . , FN ∈ αN ↓ and all I1 ∈ α1↑, . . . , IN ∈ αN ↑,

s(F1‖I1, . . . , FN‖IN) v t(F1‖I1, . . . , FN‖IN). (5.7)

If there is an element αk
↓ = ∅ or αk↑ = ∅ for some coordinate k and it forces

that the set {t(F‖I) | Fk ∈ αk↓, Ik ∈ αk↑} is empty. By our assumption, the fact

derives that the set {s(F‖I) | Fk ∈ αk
↓, Ik ∈ αk↑} is also empty. It follows that

s(α1, . . . , αN) = t(α1, . . . , αN) = ⊥, hence the statement holds. This is exactly

why we assume that every propositional variable in t occurs in s as well (see also

Theorem 5.4.5). Hereafter, we assume that the sets {s(F‖I) | Fk ∈ αk↓, Ik ∈ αk↑}

and {t(F‖I) | Fk ∈ αk↓, Ik ∈ αk↑} are non-empty.

By our assumption, the condition (5.7) is equivalent to

s(F1, . . . , Fa, Ia+1, . . . , Ia+b) v t(F1, . . . , Fa, Ia+1, . . . , Ia+b). (5.8)

109

For an arbitrary x ∈ t(F1, . . . , Fa, Ia+1, . . . , Ia+b), there exist f1 ∈ F1, . . . , fa ∈ Fa

and ia+1 ∈ Ia+1, . . . , ia+b ∈ Ia+b such that t(f1, . . . , fa, ia+1, . . . , ia+b) ≤ x. By as-

sumption, we have

s(f1, . . . , fa, ia+1, . . . , ia+b) ≤ t(f1, . . . , fa, ia+1, . . . , ia+b) ≤ x.

It follows the condition (5.8).

We also obtain the following canonicity result. The proof is analogous to the

proof of Theorem 5.4.3.

Theorem 5.4.4. Let s, t be terms. An inequality s ≤ t is canonical, whenever s and

t are ∩-terms, all propositional variables in s appear in t, and every propositional

variable is uniformly signed either only by + or only by − in both the +-signed

construction tree of s and the +-signed construction tree of t.

Theorem 5.4.1 is an analog of Theorem 3.3.5: over lattice expansions, any in-

equality s ≤ t is canonical, whenever s is a ∪-term and t is a ∩-term, regardless of

signs of variables. But, over poset expansions, the keystone of Ghilardi and Meloni’s

technique does not work (Section 5.3). Therefore, while we can extend our method

from lattice expansions to poset expansions, we can obtain restricted results. More-

over, we can also prove Theorems 5.4.3 and 5.4.4 for arbitrary poset expansions.3

In fact, for bounded poset expansions, we can weaken the variable conditions in

Theorem 5.4.3 and Theorem 5.4.4 as follows.

Theorem 5.4.5 (Theorem 5.4.3 for bounded poset expansions). Let s, t be terms.

An inequality s ≤ t is canonical, whenever s and t are ∪-terms, and every proposi-

3These theorems are also provable over lattice expansions.

110

tional variable is uniformly signed either only by + or only by − in both the +-signed

construction tree of s and the +-signed construction tree of t.

Theorem 5.4.6 (Theorem 5.4.4 for bounded poset expansions). Let s, t be terms.

An inequality s ≤ t is canonical, whenever s and t are ∩-terms, and every proposi-

tional variable is uniformly signed either only by + or only by − in both the +-signed

construction tree of s and the +-signed construction tree of t.

This is because, over bounded poset expansions, we do not need to take into

account the emptiness of α↓ or α↑ (see Section 5.5). In the following section, we

will give a syntactic characterisation of canonical inequalities of certain poset ex-

pansions. There again, unlike what happens in the setting of lattice expansions, we

will encounter a sensitive argument of emptiness, boundedness and ε-operations.

Remark 5.4.7. Whereas the above five theorems are general results for arbitrary

(bounded) poset expansions, we have to mention two things. Firstly, we have not

discussed the canonical extension of arbitrary poset expansions. Namely, in practice,

we have to define how to extend ε-operations and justify it for each poset expansion.

Secondly, those theorem are validated only when we obtained classes of ∪-terms and

∩-terms.

5.5 A syntactic description of canonical inequali-

ties

In the previous section, we carefully removed problematic conditions to extend Ghi-

lardi and Meloni’s technique from lattice expansions to arbitrary poset expansions.

111

Figure 5.3: The poset Pb

• •

• •

a b

c d

In this section, we will syntactically describe classes of ∪-terms and ∩-terms to

obtain a syntactic characterisation of canonical inequalities of poset expansions.

Our technique looks similar to the case of lattice expansions. But, as distinct

from the lattice case, we must seriously take into consideration the possibility of

the emptiness of α (as a set of filters or a set of ideals) in the canonical extensions,

which generates a considerable complexity of our argument. For example, as we saw

in the previous section, there are some theorems which statements are simplified by

assuming the boundedness of posets, or emptiness of bases (see Theorem 5.4.3 and

Theorem 5.4.5).

Before going further, we recall where the emptiness comes and how the bounded-

ness relates to the non-emptiness. As the canonical extension of poset is a complete

lattice, it is closed arbitrary joins and arbitrary meets. Hence, as the join of the

empty set and the meet of the empty set, it has ⊥ and >. Moreover, ⊥↑ = I on Uλ

and >↓ = F on Dυ for any poset. On the other hand, we do not have the uniform

characterisations of ⊥↓ on Dυ and >↑ on Uλ, in general. For example, let us consider

the poset Pb given by the Hasse diagram Fig. 5.3. Then, we obtain the canonical

extension Pb of Pb in the Hasse diagram Fig. 5.4. In the canonical extension Pb

of Pb, we obtain ⊥↓ = ∅ and >↑ = ∅ (cf. the canonical extension Pc in Fig. 5.2).

By comparing the posets Pc and Pb, we notice that the emptiness of elements in

Pb comes from the values λ(F) and υ(I). More precisely, in general, we may not

112

Figure 5.4: The canonical extension Pb of Pb

Dυ Uλ

•

• •

•

• •

•

•

• •

•

• •

•

∅(= ⊥↓)

F(Pb)(= >↓)

{↑a} {↑b}

{↑a, ↑b}

{↑a, ↑b, ↑c} {↑a, ↑b, ↑d}

I(Pb)(= ⊥↑)

∅(= >↑)

{↓a, ↓c, ↓d} {↓b, ↓c, ↓d}

{↓c, ↓d}

{↓c} {↓d}

λ ++

υ
kk

have any filter which intersects with arbitrary ideals, and any ideal which does with

arbitrary filters, on posets. However, over bounded posets, e.g. Pc, thanks to the

bounded constants ⊥ and >, we can always assume the non-emptiness of ⊥↓ and

>↑, because the principal filter ↑⊥ intersects with arbitrary ideals, and the principal

ideal ↓> intersects with arbitrary filters.

For future use, we also show that how the binary joins and the binary meets are

computed on the canonical extension of posets.

Proposition 5.5.1 (Joins and Meets on the canonical extension). Let P a poset.

For all α, β ∈ P, we have

1. (α ∨ β)↑ = λ(α↓ ∪ β↓) = α↑ ∩ β↑ and (α ∨ β)↓ = υ(α↑ ∩ β↑),

2. (α ∧ β)↓ = υ(α↑ ∪ β↑) = α↓ ∩ β↓ and (α ∧ β)↑ = λ(α↓ ∩ β↓).

Proof. For an arbitrary element γ ∈ P, we need to prove the following: (recall

Proposition 2.3.1)

1. γ↑ ⊆ α↑ and γ↑ ⊆ β↑ if and only if γ↑ ⊆ α↑ ∩ β↑,

2. γ↓ ⊆ α↓ and γ↓ ⊆ β↓ if and only if γ↓ ⊆ α↓ ∩ β↓.

113

However, this is straightforward.

A syntactic description of canonical extension of ε-operations Here, we

will show basic properties of canonical extensions of certain ε-operations and define

the canonical extension of certain (bounded) poset expansions. Since we mainly run

two types of discussion (poset expansions and bounded poset expansions) in parallel,

to avoid possible confusion, we use the distinct notations for those operations. That

is, on posets, we focus on the following four types of ε-operations (recall Definition

5.1.3):

1. blc : Pµ1 × · · · × Pµn → P is a µ⊥-additive operation,

2. dre : Pν1 × · · · × Pνn → P is a ν>-multiplicative operation,

3. ♦ : P1 → P is a 1-additive operation,

4. � : P1 → P is a 1-multiplicative operation,

where diamond ♦ and box � form an adjoint pair, i.e. ♦ a1 �. We mention that ♦

and � are ⊥-strict and >-strict, which follow the adjointness of unary operations,

since for every p ∈ P , we have �p ≤ �p ⇐⇒ ♦�p ≤ p. And, on bounded

posets, we consider the following four types of ε-operations (recall Definition 5.1.1

and Definition 5.1.3):

1. f : Pδ1 × · · · × Pδm → P is a δ-join-preserving operation,

2. g : Pε1 × · · · × Pεm′ → P is a ε-meet-preserving operation,

3. l : Pµ1 × · · · × Pµn → P is a µ-additive operation,

4. r : Pν1 × · · · × Pνn → P is a ν-multiplicative operation.

114

Whenever we assume that blc and dre or l and r form adjoint pairs with respect

to a fixed coordinate i, we explicitly denote it by blc ai dre or l ai r. This is the

only reason we assume that blc and dre (l and r) have the same arity. Note that we

assume that, not just ⊥↓ and >↑, but also every basis is non-empty, whenever we

discuss bounded poset expansions.

The following poset expansion is introduced in [18].

Example 5.5.2 (Residuated algebra). A residuated algebra is a poset expansion

〈P, ◦,→,←〉 where P is a poset, ◦ is a (1, 1)⊥-additive operation, → is a (∂, 1)>-

multiplicative operation, ← is a (1, ∂)>-multiplicative operation, and ◦, → and ←

form adjoint pairs ◦ a2→ and ◦ a1←.

Remark 5.5.3. In residuated algebras, the ⊥-strictness of ◦ and the >-strictness

of → and ← follows from the residuation law (adjointness ◦ a2→ and ◦ a1←). For

example, for all a, b ∈ P, we have a ◦ (a→ b) ≤ b and (b← a) ◦ a ≤ b.

The following proposition shows the smoothness properties of ε-join-preserving

operations and ε-meet-preserving operations on bounded poset expansions.

Proposition 5.5.4. On a bounded poset P, the δ-join-preserving operation f is

smooth, and the ε-meet-preserving operation g is smooth. Namely, for arbitrary

α1, . . . , αm, β1, . . . , βm′ ∈ P, we have

1. (f↑(α1, . . . , αm))↓ = (f ↓(α1, . . . , αm))↓,

2. (g↓(β1, . . . , βm′))↑ = (g↑(β1, . . . , βm′))↑.

115

Proof. Here, we check only Item 2. For arbitrary β1, . . . , βm′ ∈ P, we will show

λ(υ({g(Y1, . . . , Ym′) | Yk ∈ (βk↑‖βk↓)})) = λ({g(X1, . . . , Xm′) | Xk ∈ (βk
↓‖βk↑)}).

(5.9)

(⊆). For each coordinate k ∈ {1, . . . ,m′}, if Xk ∈ (βk
↓‖βk↑) and Yk ∈ (βk↑‖βk↓),

we have that Xk v Yk when εk = 1 and Yk v Xk when εk = ∂. Therefor,

g(X1, . . . , Xm′) v g(Y1, . . . , Ym′). Since X1, . . . , Xm′ , Y1, . . . , Ym′ are arbitrary, we

obtain

{g(X1, . . . , Xm′) | Xk ∈ (βk
↓‖βk↑)} ⊆ υ({g(Y1, . . . , Ym′) | Yk ∈ (βk↑‖βk↓)}), (5.10)

which concludes the ⊆-direction.

(⊇). It suffices to show that, for each X ∈ υ({g(Y1, . . . , Ym′) | Yk ∈ (βk↑‖βk↓)}),

there exist, for each coordinate k, Xk ∈ (βk
↓‖βk↑) such that X v g(X1, . . . , Xm′).

For each X ∈ υ({g(Y1, . . . , Ym′) | Yk ∈ (βk↑‖βk↓)}) and arbitrary Yk ∈ (βk↑‖βk↓), we

define Xk for each k ∈ {1, . . . ,m′} as follows:

Xk := {yk ∈ P | ∀j ∈ {1, . . . ,m′} \ {k},∃yj ∈ Yj,∃x ∈ X. x ≤ g(y1, . . . , ym′)}.

(5.11)

On bounded posets, as every element in the canonical extension is non-empty, we

can prove that each Xk is non-empty. By ε-meet-preservability of g, we have that Xk

is a filter if εk = 1, and Xk is an ideal if εk = ∂ for each coordinate k. Furthermore,

by definition, we have Xk ∈ (βk
↓‖βk↑). Finally, we show X v g(X1, . . . , Xm′)

(g(X1, . . . , Xm′) ⊆ X). For an arbitrary a ∈ g(X1, . . . , Xm′), for each coordinate k ∈

{1, . . . ,m′}, there exist zk ∈ Xk such that a ≤ g(z1, . . . , zm′). By definition of Xk,

116

there exist x1, . . . , xm′ ∈ X and yij ∈ Yj (for j ∈ {1, . . . , k− 1, k+ 1, . . . ,m′} and i ∈

{1, . . . , j−1, j+1, . . . ,m′}) such that xk ≤ g(yk1 , . . . , y
k
k−1, zk, y

k
k+1, . . . , y

k
m′). Because

X is a filter, there exists x ∈ X such that x ≤ g(yk1 , . . . , y
k
k−1, zk, y

k
k+1, . . . , y

k
m′). By ε-

meet-preservability of g, we can find w1, . . . , wm′ ∈ P satisfying x ≤ g(w1, . . . , wm′),

and wk ≤ zk (if εk = 1) and zk ≤ wk (if εk = ∂) for each coordinate k. Hence, we

obtain x ≤ g(w1, . . . , wm′) ≤ a, by monotonicity of g. Therefore, a ∈ X.

Next we prove the properties of canonical extensions of additive operations, ⊥-

additive operations, multiplicative operations and >-multiplicative operations.

Proposition 5.5.5. The extensions blc↑, dre↓, ♦↑, �↓, l↑ and r↓ are a ⊥-additive

operation, a >-multiplicative operation, an additive operation, a multiplicative opera-

tion, an additive operation and a multiplicative operation on the canonical extension.

Furthermore, the adjointness is also preserved. Namely, ♦↑ a1 �↓, and if blc ai dre,

then blc↑ ai dre↓, and if l ai r, then l↑ ai r↓.

Proof. Here we check only µ⊥-additivity of blc↑ and the adjointness blc↑ ai dre. But,

the other cases are analogous.

(⊥-strictness of blc↑). Since the canonical extension is a complete lattice, it

suffices to show the following condition for each coordinate k ∈ {1, . . . , n}: for

arbitrary α1, . . . , αn ∈ P,

1. if the order-type µk = 1, then blc↑(α1, . . . αk−1,⊥, αk+1, . . . , αn) ≤ ⊥,

2. if the order-type µk = ∂, then blc↑(α1, . . . αk−1,>, αk+1, . . . , αn) ≤ ⊥.

Firstly, ⊥↑ = ∅ does not happen. Secondly, whenever there exists a coordinate

j ∈ {1, . . . , k − 1, k + 1, . . . , n} such that the order-type µj = 1 and αj
↓ = ∅ or the

117

order-type µj = ∂ and αj↑ = ∅, Items 1 and 2 trivially hold. Otherwise, for an

arbitrary Y ∈ ⊥↑ and all Xj ∈ (αj
↓‖αj↑) (recall Abbreviation 3.2.4), we define

Yk := {xk ∈ P | ∀j ∈ {1, . . . , n} \ {k},∃xj ∈ Xj,∃y ∈ Y. blc(x1, . . . , xn) ≤ y}.

Then, we can straightforwardly obtain that Yk is an ideal if µk = 1, and if Yk is a

filter if µk = ∂. Note that the non-emptiness comes from ⊥-strictness of blc and the

directed-ness is from µ-additivity. Because ⊥↓ = υ(I) and >↑ = λ(F), we obtain

that Xk v Yk if µk = 1, and Yk v Xk if µk = ∂, for each Xk ∈ (⊥↓‖>↑). Therefore,

Items 1 and 2 hold.

(µ-additivity of blc↑). By Proposition 5.5.1, it suffices to show the following

condition for each coordinate k ∈ {1, . . . , n}: for arbitrary α, β, γ, γ1, . . . , γn ∈ P, if

µk = 1,

blc↑(γ1, . . . , α, . . . , γn) ≤ γ and blc↑(γ1, . . . , β, . . . , γn) ≤ γ

=⇒ blc↑(γ1, . . . , α ∨ β, . . . , γn) ≤ γ,

and if µk = ∂,

blc↑(γ1, . . . , α, . . . , γn) ≤ γ and blc↑(γ1, . . . , β, . . . , γn) ≤ γ

=⇒ blc↑(γ1, . . . , α ∧ β, . . . , γn) ≤ γ.

If γ↑ = ∅, which means γ = >, it is trivial. And, if there exists a coordinate

j ∈ {1, . . . , k − 1, k + 1, . . . , n} such that the order-type µj = 1 and γj
↓ = ∅ or the

order-type µj = ∂ and γj↑ = ∅, we obtain blc↑(γ1, . . . , γn) = ⊥ (regardless of α,

β, α ∨ β or α ∧ β). Hence, it trivially holds. Otherwise, for arbitrary Y ∈ γ↑ and

118

Xj ∈ (αj
↓‖αj↑), we define

Yk := {xk ∈ P | ∀j ∈ {1, . . . , n} \ {k},∃xj ∈ Xj,∃y ∈ Y. blc(x1, . . . , xn) ≤ y}.

As above, we can prove that Yk is an ideal if µk = 1 and Yk is a filter if µk = ∂.

Furthermore, this ideal (filter) Yk simulates an adjointness on the intermediate level.

Namely, for an arbitrary filter (ideal) Xk, we have

Xk v Yk ⇐⇒ blc(X1, . . . , Xn) v Y

(Yk v Xk ⇐⇒ blc(X1, . . . , Xn) v Y).

(5.12)

Therefore, by blc↑(γ1, . . . , α, . . . , γn) ≤ γ and blc↑(γ1, . . . , β, . . . , γn) ≤ γ, we have

Yk ∈ ((α ∨ β)↑‖(α ∧ β)↓), which concludes with Equation (5.12) that, for each

Xk ∈ ((α ∨ β)↓‖(α ∧ β)↑), we obtain blc(X1, . . . , Xn) v Y .

(blc ai dre). We prove that, if blc and dre form an adjoint pair, the extensions

blc↑ and dre↓ also form an adjoint pair on the canonical extension P. Namely, for

all α, β, γ1, . . . , γn ∈ P,

blc↑(γ1, . . . , α, . . . , γn) ≤ β ⇐⇒ α ≤ dre↓(γ1, . . . , β, . . . , γn).

If there exist a γj which is either γj
↓ = ∅ or γj↑ = ∅, it trivially holds (see Items

1 and 2 above). Moreover, if either α↓ = ∅ or β↑ = ∅, this is also trivial. Hereafter,

we treat the non-empty case. For arbitrary F ∈ α↓, I ∈ β↑, and all Xk ∈ (γk
↓‖γk↑)

and all Yk ∈ (γk↑‖γk↓), we claim

blc(X1, . . . , F, . . . , Xn) v I ⇐⇒ F v dre(Y1, . . . , I, . . . , Yn).

119

(⇒). If there exist a ∈ F , b ∈ I, xk ∈ Xk for each coordinate k such that

blc(x1, . . . , a, . . . , xn) ≤ b. Furthermore, for each coordinate k, as Xk v Yk, there

exists an element yk ∈ Xk∩Yk. Since Xk is a filter and Yk is downward closed, there

exists an element zk such that zk ∈ Xk ∩ Yk, zk ≤ xk and zk ≤ yk. Moreover, by

monotonicity of blc, we have blc(z1, . . . , a, . . . , zn) ≤ b. By the adjointness blc ai dre,

we obtain a ≤ dre(z1, . . . , b, . . . , zn), which means F v dre(Y1, . . . , I, . . . , Yn).

(⇐). This is analogous. Therefore, blc↑ ai dre↓.

Proposition 5.5.4 and Proposition 5.5.5 authorise the following definition.

Definition 5.5.6 (Canonical extension of poset expansions). The canonical exten-

sion of a poset expansion 〈P, blc, dre,♦,�, c〉, where c is a constant, is the 6-tuple

〈P, blc↑, dre↓,♦↑,�↓, c〉. The 6-tuple 〈P, f↑, g↓, l↑, r↓, c〉 is the canonical extension of

a bounded poset expansion 〈P, f, g, l, r, c〉, where P is a bounded poset and c is a

constant.

Remark 5.5.7. (a) Proposition 5.5.5 tells us that canonical extensions of poset

expansions with constants, ⊥-additive operations, >-multiplicative operations,

diamond, box and strict adjoint pairs satisfy the necessary conditions of canon-

ical extensions. Moreover, this is a unique way to preserve adjointness, in

general (see [31]). However, we do not know, whether it is sufficient or not.

For example, a full algebra for linear logic in [2, p.516] is satisfying ◦+ asso-

ciativity axioms. But, we do not know whether these axioms are satisfied on

the canonical extension.4

(b) By Proposition 5.5.5, the canonical extension of a bounded poset expan-

4Note that the canonical extensions of ◦ and + are uniquely defined, since ◦ is a left adjoint to
both implications (→ and ←), and + is a right adjoint to both coimplications (⇁ and ↽).

120

sion with constants, additive operations, multiplicative operations and ad-

joint pairs satisfy the essential requirements of canonical extensions. But,

as distinct from the lattice case, we do not know whether the canonical ex-

tensions of ε-join-preserving operations (ε-meet-preserving operations) satisfy

ε-join-preservability (ε-meet-preservability) on the canonical extension or not.

Nevertheless, by Proposition 5.5.4, we justify our canonical extension of a

bounded poset expansion with constants, ε-join-preserving operations, ε-meet-

preserving operations, additive operations, multiplicative operations and ad-

joint pairs.

(c) Without the adjointness of blc and dre (l and r), we also assume that the

canonical extensions of blc and dre (l and r) are blc↑ and dre↓ (l↑ and r↓), be-

cause the additivity of blc↑ (l↑) and the multiplicativity of ρ↓ (r↓) are naturally

proved.

(d) For bounded lattice expansions, we do not need to assume ⊥-strictness or

>-strictness. It is used only in the proof of Proposition 5.5.5 to prove the

non-emptiness of Yk. Note that, for ♦ and �, we can take �Y and ♦Y as Yk.

A syntactic characterisation of ∪-terms and ∩-terms As in the case of

lattice expansions, we will describe a class of ∪-terms and a class of ∩-terms.

Hereafter, we consider a poset expansion 〈P, blc, dre,♦,�, c〉, a bounded poset ex-

pansion 〈P, f, g, l, r, c〉, and their canonical extensions 〈P, blc↑, dre↓,♦↑,�↓, c〉 and

〈P, f↑, g↓, l↑, r↓, c〉.5

Firstly, we straightforwardly notice the following for propositional variables, con-

5Since a constant c is trivially smooth, i.e. c↑ = c↓, and unbiased, we do not add ↑ or ↓. On
the other hand,while f and g are also smooth, they are biased (see Proposition 5.5.4).

121

stants and constant terms, which are terms containing no propositional variable.

Lemma 5.5.8. All propositional variables are both ∪-terms and ∩-terms. Each

constant is a ∪-term and a ∩-term. Every constant term is a ∪-term and a ∩-term.

Proof. Here we show just that a propositional variable pi is a ∪-term. That is, for

arbitrary α1, . . . , αN ∈ P, we have

(pi↑(α1, . . . , αN))↑ = λ({pi(F‖I) | ∀k ∈ {1, . . . , N}, Fk ∈ αk↓, Ik ∈ αk↑}).

However, this is straightforward, because it means αi↑ = λ({Fi | Fi ∈ αi↓}) (recall

the empty condition of the right hand side in Remark 5.3.4). This is exactly the

definition of filter bases.

On the poset expansion 〈P, blc, dre,♦,�, c〉, we obtain the following.

Lemma 5.5.9. Let α, α1, . . . , αn ∈ P. For arbitrary F,F1, . . . ,Fn ∈ ℘(F) and

I, I1, . . . ,In ∈ ℘(I)∂, if Fk and Ik are bases of αk for each index k ∈ { , 1, . . . , n},

we have

1. (blc↑(α1, . . . , αn))↑ = λ({blc(X1, . . . , Xn) | Xk ∈ (Fk‖Ik)}),

2. (dre↓(α1, . . . , αn))↓ = υ({dre(Y1, . . . , Yn) | Yk ∈ (Ik‖Ik)}),

3. (♦↑(α))↑ = λ({♦F | F ∈ F}),

4. (�↓(α))↓ = υ({�I | I ∈ I}).

Proof. We check only Item 1. (⊆). This is straightforward.

(⊇). If there exists a coordinate k such that the order-type µk = 1 and Fk = ∅,

or the order-type µk = ∂ and Ik = ∅. Then, αk = ⊥ (µk = 1) or αk = > (µk = ∂).

Therefore, Item 1 holds (recall Items 1 and 2 in the proof of Proposition 5.5.5).

122

Otherwise, for each coordinate k, for all Xj ∈ (Fj‖Ij) and an arbitrary ideal

I ∈ λ({blc(X1, . . . , Xn) | Xj ∈ (Fj‖Ij)}), we define

Yk := {xk ∈ P | ∀j ∈ {1, . . . , n} \ {k},∃xj ∈ Xj,∃i ∈ I. blc(x1, . . . , xn) ≤ i}.

If µk = 1, Yk is an ideal, and if µk = ∂, it is a filter. By definition, we also have

that Yk ∈ (αk↑‖αk↓). Hence, we have blc(X1, . . . , Xk−1, X
′
k, Xk+1, . . . , Xn) v I, for

every X ′k ∈ (αk
↓‖αk↑) (recall Equation (5.12) in the proof of Proposition 5.5.5).

Notice that the k-th coordinate is changed from an arbitrary element of basis to

an arbitrary element of αk. We repeat this replacement for each coordinate, which

concludes Item 1. Note that, for Item 3, we can take �I as Yk, and Item 4 is

analogous to Item 3.

As a corollary of Lemma 5.5.9, we obtain the following.

Corollary 5.5.10. Let t, t1, . . . , tn be terms. Then, we have (recall Abbreviation

3.2.4)

1. blc(t1, . . . , tn) is a ∪-term, if tk is a (∪‖∩)-term for each k ∈ {1, . . . , n},

2. dre(t1, . . . , tn) is a ∩-term, if tk is a (∩‖∪)-term for each k ∈ {1, . . . , n},

3. ♦t is a ∪-term if t is a ∪-term,

4. �t is a ∩-term if t is a ∩-term.

On the bounded poset expansion 〈P, f, g, l, r, c〉, we obtain the following. Recall

that we assume non-emptiness of bases.

Lemma 5.5.11. Let α1, . . . , αN ∈ P, F1, . . . ,FN ∈ ℘(F) and I1, . . . ,IN ∈ ℘(I)∂.

If Fk and Ik are non-empty bases of αk, then we have

123

1. (f↑(α1, . . . , αm))↑ = λ({f(X1, . . . , Xm) | Xk ∈ (Fk‖Ik)}),

2. (g↓(α1, . . . , αm′))↓ = υ({g(Y1, . . . , Ym′) | Yk ∈ (Ik‖Fk)}),

3. (l↑(α1, . . . , αn))↑ = λ({l(X1, . . . , Xn) | Xk ∈ (Fk‖Ik)}),

4. (r↓(α1, . . . , αn))↓ = υ({r(Y1, . . . , Yn) | Yk ∈ (Ik‖Fk)}).

Proof. Items 3 and 4 are analogous to Items 1 and 2 in Lemma 5.5.9. We show only

Item 2, here. (Actually, this is also analogous to Item 2 in Lemma 5.5.9). (⊆). This

is straightforward.

(⊇). Let k be each coordinate. For any X ∈ υ({g(Y1, . . . , Ym′) | Yj ∈ (Ij‖Fj)})

and all Yj ∈ (Ij‖Fj), we define

Xk := {yk ∈ P | ∀j ∈ {1, . . . ,m′} \ {k},∃yj ∈ Yj,∃x ∈ X. x ≤ g(y1, . . . , ym′)}.

If εk = 1 (εk = ∂), then Xk is a filter (an ideal). Note that the non-emptiness comes

from non-empty bases. Namely, as every basis is non-empty, there always exist

Yj ∈ Ij such that X v g(Y1, . . . , Ym′), hence there is yk ∈ X ∩ g(Y1, . . . , Ym′), which

is a witness of the non-emptiness of Xk. Moreover, by definition, Xk ∈ (αk
↓‖αk↑).

Therefore, for an arbitrary Y ′k ∈ αk↑, we have X v g(Y1, . . . , Y
′
k , . . . , Ym′). We repeat

this replacement for all coordinates.

As a corollary of Lemma 5.5.11, we obtain the following.

Corollary 5.5.12. Let t1, . . . , tN be terms. Then, we have

1. f(t1, . . . , tm) is a ∪-term, if tk is a (∪‖∩)-term for each k ∈ {1, . . . ,m},

2. g(t1, . . . , tm′) is a ∩-term, if tk is a (∩‖∪)-term for each k ∈ {1, . . . ,m′},

124

3. l(t1, . . . , tn) is a ∪-term, if tk is a (∪‖∩)-term for each k ∈ {1, . . . , n},

4. r(t1, . . . , tn) is a ∩-term, if tk is a (∩‖∪)-term for each k ∈ {1, . . . , n}.

Furthermore, we also have the following lemmata.

Lemma 5.5.13. On posets, every term of type tY is a ∩-term and every term of type

tZ is a ∪-term, where tY and tZ are defined as follows (recall Abbreviation 3.2.4):

tY ::= p | blc(c, . . . , t(Y‖Z), . . . , c) | ♦tY,

tZ ::= p | dre(c, . . . , t(Z‖Y), . . . , c) | �tZ.

Proof. By Corollary 5.5.10, every term t of type tY is a ∪-term, hence for arbitrary

α1, . . . , αN ∈ P, we have

t(α1, . . . , αN)↑ = λ({t(F‖I) | Fk ∈ αk↓, Ik ∈ αk↑}). (5.13)

Besides, we claim that each tY is a unary ⊥-additive operation and each tZ is a unary

>-multiplicative operation. This is by parallel induction.

Base cases are rather trivial. Suppose that tY is a unary ⊥-additive operation

and tZ is a unary >-multiplicative operation. Let blc(c, . . . , t(Y‖Z),...,c) be a term

function where the k-th coordinate is substituted by t(Y‖Z).

(Case µk = 1). For arbitrary x, y, z ∈ P , if blc(c, . . . , tY, . . . , c)(x) ≤ z and

blc(c, . . . , tY, . . . , c)(y) ≤ z, by ⊥-additivity of blc, there exists z′ ∈ P such that

tY(x) ≤ z′, tY(y) ≤ z′ and blc(c, . . . , tY, . . . , c)(z′) ≤ z. By inductive hypoth-

esis, there exists z′′ ∈ P such that x ≤ z′′, y ≤ z′′ and tY(z
′′) ≤ z′, hence

blc(c, . . . , tY, . . . , c)(z′′) ≤ z. (If the domain of tY is P∂, then there is z′′ ∈ P such

125

that z′′ ≤ x and z′′ ≤ y).

For an arbitrary y ∈ P , because blc is ⊥-strict, there exists x ∈ P such that

blc(c, . . . , x, . . . , c) ≤ y. By induction hypothesis, there is also x′ ∈ P such that

tY(x
′) ≤ x, hence blc(c, . . . , tY, . . . , c)(x′) ≤ y.

(Case µk = ∂). This is analogous.

Therefore, as ♦ is a special case of blc, tY is a unary ⊥-additive operation. It is

analogously proved that tZ is a unary >-multiplicative operation.

Next we show here that every term t of type tY is a ∩-term. It suffices to show

that, for any X ∈ υ({t(I‖F) | I ∈ α↑, F ∈ α↓}), there is a filter F ∈ α↓ such

that X v t(F). (If the domain of t is P∂, then we find an ideal I ∈ α↑ such that

X v t(I)). For each X ∈ υ({t(I‖F) | I ∈ α↑, F ∈ α↓}), we define

Y := {y ∈ P | ∃x ∈ X. x ≤ t(y)}. (5.14)

Then, Y is a filter (Y is an ideal) which we need. Note that, to prove the non-

emptiness of Y , we use strictness of t.

Lemma 5.5.14. On bounded posets, each term of type t∨ is a ∩-term and each term

of type t∧ is a ∪-term, where t∨ and t∧ are defined as follows:

t∨ ::= p | f(c, . . . , t(∨‖∧), . . . , c) | l(c, . . . , t(∨‖∧), . . . , c),

t∧ ::= p | g(c, . . . , t(∧‖∨), . . . , c) | r(c, . . . , t(∧‖∨), . . . , c).

Proof. The proof is analogous to the proof of Lemma 5.5.13. The difference is only

how to guarantee the non-emptiness of Y .

126

Remark 5.5.15. We mention that the condition of Lemma 5.5.13 is restricted than

the case of lattice expansions. In [84], the term types t∨ and t∧ are defined as follows:

t∨ ::= p | f(t(∨‖∧), . . . , t(∨‖∧)) | l(c, . . . , t(∨‖∧), . . . , c),

t∧ ::= p | g(t(∧‖∨), . . . , t(∧‖∨)) | r(c, . . . , t(∧‖∨), . . . , c).

This is because, over lattice expansions, we can prove that every term of type t∨

is join-preserving from the product domain, and every term of type t∧ is meet-

preserving from the product domain. However, over poset expansions, we cannot

prove the same result without fixing other coordinates of f and g with constants,6

because the existence of the unique least upper bound and the unique greatest lower

bound is not guaranteed on posets.

Finally, we obtain the following theorems, which describe classes of ∪-terms and

∩-terms syntactically.

Theorem 5.5.16 (∪-term and ∩-term). On posets, every term of type tt is a ∪-term

and every term of type tu is a ∩-term, where tt and tu are defined as follows:

tt ::= p | c | blc(t(t‖u), . . . , t(t‖u)) | ♦tt | tZ,

tu ::= p | c | dre(t(u‖t), . . . , t(u‖t)) | �tu | tY.

Theorem 5.5.17 (∪-term and ∩-term). On bounded posets, each term of type t∪

is a ∪-term and every term of type t∩ is a ∩-term, where t∪ and t∩ are defined as

6In fact, we can weaken this restriction: f(p, . . . , t(∨‖∧), . . . p) where p is propositional variables
not appearing in t(∨‖∧), etc. For example, if f is a (1, 1)-join-preserving operation, a term function
f(p1, f(p2, p3)) is (1, 1, 1)-join-preserving operation.

127

follows:

t∪ ::= p | c | f(t(∪‖∩), . . . , t(∪‖∩)) | l(t(∪‖∩), . . . , t(∪‖∩)) | t∧,

t∩ ::= p | c | g(t(∩‖∪), . . . , t(∩‖∪)) | r(t(∩‖∪), . . . , t(∩‖∪)) | t∨.

Example 5.5.18. Over residuated algebras 〈P, ◦,→,←〉, the types tt and tu are

obtained as follows:

tt ::= p | tt ◦ tt,

tu ::= p | tt → tu | tu ← tt.

Note that, as residuated algebras do not have any constant, we do not need tY nor

tZ.

By Theorems 5.5.16 and 5.5.17, together with Theorems 5.4.1, 5.4.3, 5.4.4, 5.4.5

and 5.4.6, we can syntactically characterise a class of canonical inequalities. How-

ever, our results obtained so far are still restricted, because our technique can check

only the inequalities of type s ≤ t where s is a ∪-term and t is a ∩-term. In

other words, our methodology so far does not tell how to apply our technique for

arbitrary terms containing non-∪-terms or non-∩-terms. Therefore, in the follow-

ing paragraph, we will expand our scope with introducing new notions, like pruned

trees, critical subterms, pseudo-∪-terms or pseudo-∩-terms. Finally, we will prove

Theorem 5.5.25, which uniformly subsume all theorems in Section 5.4.

The main theorem for poset expansions In this paragraph, we basically dis-

cuss the bounded poset expansion 〈P, f, g, l, r, c〉. However, whenever we apply the

following argument for the poset expansion 〈P, blc, dre,♦,�, c〉, we just forget about

f and g and replace l with blc and ♦, r with dre and �, t∨ with tY, t∧ with tZ, t∪

128

with tt and t∩ with tu.

Based on the syntactic description of ∪-terms and ∩-terms (Theorems 5.5.16 and

5.5.17), we label construction trees of term with ∪, ∩ and ? as follows:

1. Label the root with ∩.

2. If the node does not have any child, then we have already finished labelling

the branch. Otherwise, we label each child with the following rule.

(a) If the node is f(t1, . . . , tm) and labelled with ∪, then we label tk with ∪

if δk = 1, and tk with ∩ if δk = ∂, for each coordinate k ∈ {1, . . . ,m}.

(b) If the node is g(t1, . . . , tm′) and labelled with ∩, then we label tk with ∩

if εk = 1, and tk with ∪ if εk = ∂, for each coordinate k ∈ {1, . . . ,m′}.

(c) If the node is l(t1, . . . , tn) and labelled with ∪, then we label tk with ∪ if

µk = 1, and tk with ∩ if µk = ∂, for each coordinate k ∈ {1, . . . , n}.

(d) If the node is r(t1, . . . , tn) and labelled with ∩, then we label tk with ∩ if

νk = 1, and tk with ∪ if νk = ∂, for each coordinate k ∈ {1, . . . , n}.

(e) If the node is t∨ and labelled with ∩, then we label all nodes below the

current node with ∩.

(f) If the node is t∧ and labelled with ∪, then we label all nodes below the

current node with ∪.

(g) Otherwise, we label all nodes below the current node with ?.

3. Move to every child and repeat 2 until every node is labelled.

We call the construction tree ∩-labelled. The ∪-labelled construction tree is defined

by the same algorithm but labelling the root with ∪. Then, we can straightforwardly

claim the following proposition.

129

Proposition 5.5.19. A term t is of type t∪, hence a ∪-term, if there is no node

labelled with ? in the ∪-labelled construction tree of t, and analogously, a term t

is of type t∩, hence a ∩-term, if there is no node labelled with ? in the ∩-labelled

construction tree of t.

Now, as in the case of lattice expansions, we need the following definitions.

Definition 5.5.20 (Critical subterms). Let t be a term. A subterm of t is ∩-critical

(∪-critical), if it is both a node labelled with either ∪ or ∩, and a parent of nodes

labelled with ? in the ∩-labelled construction tree of t (in the ∪-labelled construction

tree of t).

In the following definition, subtrees are embedding into the original trees. That

is, the roots are preserved.

Definition 5.5.21 (Well-pruned tree). Let s, t be terms. A subtree t′ of the con-

struction tree of t is ∪-well-pruned (∩-well-pruned) if, in t′, each path from a propo-

sitional variable to the root contains a ∪-critical (∩-critical) subterm. The ∪-well-

pruned (the ∩-well-pruned) tree of t is the largest ∪-well-pruned (∩-well-pruned)

subtree of t. Especially, if t is a propositional variable, the ∪-well-pruned (∩-well-

pruned) subtree of t is the empty tree. For an inequality s ≤ t, the well-pruned pair

of trees for s ≤ t is a pair of the ∪-well-pruned tree of s and the ∩-well-pruned tree

of t.

Definition 5.5.22 (Consistent variable occurrence). Let s, t be terms. We say that

an inequality s ≤ t has consistent variable occurrence, when there is no variable in

s ≤ t signed with both signs (+ and −) in the well-pruned pair of trees for s ≤ t,

where s is −-signed and t is +-signed.

130

Figure 5.5: The ∪-labelled, −-signed construction tree of s

(◦,∪,−)

(→,∪,−)

(p1, ?,+) (◦, ?,−)

(p2, ?,−) (p3, ?,−)

(◦,∪,−)

(p2,∪,−) (←,∪,−)

(p3, ?,−) (p1, ?,+)

Figure 5.6: The ∩-labelled, +-signed construction tree of t

(→,∩,+)

(◦,∪,−)

(p3,∪,−) (→,∪,−)

(p1, ?,+) (p2, ?,−)

(←,∩,+)

(p3,∩,+) (◦,∪,−)

(p2,∪,−) (p1,∪,−)

Let us take an example from residuated algebras. For the following terms s and

t, we will illustrate that the inequality s ≤ t has consistent variable occurrence.

s = (p1 → (p2 ◦ p3)) ◦ (p2 ◦ (p3 ← p1))

t = (p3 ◦ (p1 → p2))→ (p3 ← (p2 ◦ p1))

Firstly, we draw the labelled and singed construction trees of s and t in Fig. 5.5

and Fig. 5.6. On these trees, each node shows (the outermost connective, the label,

the sign). All dashed lines are pruned, when we consider the well-pruned trees.

And, framed nodes are critical: recall Example 5.5.18. Then, we notice that the

inequality s ≤ t has consistent variable occurrence, because each variable, in the

scope of critical subterms (i.e, we only see the solid lines and ignore all dashed

131

lines), is uniquely signed: p1 is +, and p2 and p3 are −.

Definition 5.5.23 (Pseudo-∪-term and pseudo-∩-term). Let t be a term. A term

t′ is the pseudo-∩-term of t (the pseudo-∪-term of t), if every ∩-critical (∪-critical)

subterms of t is replaced with a fresh variable. Note that, even if a ∩-critical (∪-

critical) subterm appears in t more than once, we replace each occurrence with

distinct variables.

For the above example, we say that the following term s′ = q1 ◦ (p2 ◦ q2) is the

pseudo-∪-term of s = (p1 → (p2 ◦ p3)) ◦ (p2 ◦ (p3 ← p1)): the ∪-critical subterms

p1 → (p2 ◦ p3) and p3 ← p1 are replaced by fresh variables q1 and q2, respectively.

We also say that the following term t′ = (p3 ◦ q3)→ (p3 ← (p2 ◦ p1)) is the pseudo-

∩-term of t = (p3 ◦ (p1 → p2))→ (p3 ← (p2 ◦ p1)): the ∩-critical subterm p1 → p2 is

replaced by a fresh variable q3.

It is straightforward that, for each term t of type t∩ (type t∪), the pseudo-∩-

term of t (the pseudo-∪-term of t) is t itself. But, in general, pseudoterms are not

the same as the original terms. However, the next proposition provides us with

a meaningful connection between terms and the pseudoterms, which allows us to

generalise Theorem 5.4.1 from ∪-terms and ∩-terms to arbitrary terms, because

all terms can be seen as both a pseudo-∪-term and a pseudo-∩-term. The proof

is straightforward from the fact that every pseudo-∩-term is a ∩-term and every

pseudo-∪-term is a ∪-term.

Proposition 5.5.24. Let s, t be terms. We denote by t(p1, . . . , pN) (or t(p), for

short) that each propositional variable in t is one of pk in the list (p1, . . . , pN), anal-

ogously s(p1, . . . , pN) or s(p). Let t1, . . . , ta be all ∩-critical subterms of t, s1, . . . , sb

all ∪-critical subterms of s, and t′(p, q1, . . . , qa) the pseudo-∩-term of t, where each

132

tk in t is replaced by qk, and s′(p, r1, . . . , rb) the pseudo-∪-term of s, where each sk

in s is replaced with rk. Then, we have

t(p) = t′(p, q1, . . . , qa)[t1(p)/q1, . . . , ta(p)/qa],

s(p) = s′(p, r1, . . . , rb)[s1(p)/r1, . . . , sb(p)/rb].

Moreover, we also have, for each α1, . . . , αN ∈ P,

t(α)↓ = υ({t′(I‖F , Y1, . . . , Ya) | Ik ∈ αk↑, Fk ∈ αk↓, Yj ∈ (tj(α)↑‖tj(α)↓)}),

s(α)↑ = λ({s′(F‖I,X1, . . . , Xb) | Fk ∈ αk↓, Ik ∈ αk↑, Xj ∈ (sj(α)↓‖sj(α)↑)}),

where (α) = (α1, . . . , αN).7

Finally, we obtain the main theorem for poset expansions.

Main Theorem 5.5.25 (for poset expansions). Let s, t be terms over poset ex-

pansions. An inequality s ≤ t is canonical, whenever it satisfies the following two

conditions:

1. s ≤ t has consistent variable occurrence,

2. each variable in s ≤ t is uniquely signed either in the −-signed construction

tree of s or in the +-signed construction tree of t. Note that these construction

trees are not pruned.

Proof. To save space, but to discuss precisely enough, we assume that all variables

in s ≤ t are p1, p2, p3 and p4 satisfying the following condition.8

7We do not use the pair of elements notation for Yk and Xk, because each critical subterm is
replaced with a fresh variable, hence it occurs only once, either positively or negatively.

8In fact, this table does not cover all the cases, because the signs of critical subterms do not

133

p1 p2 p3 p4

s − + +/− +/−

t +/− +/− + −

critical − + + −

In the above table, these signs are the same as the signed construction trees of s and

t, where s is −-signed and t is +-signed, and, by +/−, we denote that a variable

may be signed with both. For example, p3 may occur both positively and negatively

in s,9 but it is signed only by + in t and in the scope of ∪-critical subterms of s. In

the third row, named critical, the signs are only in the well-pruned pair of trees for

s ≤ t. Moreover, we assume that, in s, there are two ∪-critical subterms s− signed

with − and s+ signed with + in the −-signed construction tree of s, and, in t, there

are two ∩-critical subterms t+ signed with + and t− signed with − in the +-signed

construction tree of t.

Let s′ be the pseudo-∪-term of s, and t′ the pseudo-∩-term of t: that is,

s(p1, . . . , p4) = s′(p1, . . . , p4, s
−(p1, . . . , p4), s

+(p1, . . . , p4)),

t(p1, . . . , p4) = t′(p1, . . . , p4, t
+(p1, . . . , p4), t

−(p1, . . . , p4)).

For arbitrary α1, . . . , αN ∈ P, by Proposition 5.5.24, we have

s(p)(α)↑ = λ({s′(F ′‖I ′, G, J) | F ′k ∈ αk↓, I ′k ∈ αk↑, G ∈ s−(p)(α)↓, J ∈ s+(p)(α)↑}),

need to correspond to the signs in s or t. For example, we can also consider a propositional variable
p5 signed with − in s (but not under critical subterms) and signed with + under critical subterms.
But, the proof is analogous.

9But, if it is signed with −, it is not in the scope of ∪-critical subterms of s. Otherwise, s ≤ t
does not have consistent variable occurrence.

134

t(p)(α)↓ = υ({t′(I ′′‖F ′′, K,H) | I ′′k ∈ αk↑, F ′′k ∈ αk↓, K ∈ t+(p)(α)↑, H ∈ t−(p)(α)↓}),

where (p) = (p1, . . . , p4) and (α) = (α1, . . . , αN). Note that s(p)(α) = s(α1, . . . , α4)

and t(p)(α) = t(α1, . . . , α4).

If there is some αk (k ∈ {1, . . . , 4}) which makes the filter basis of s(α1, . . . , α4)

empty, then s(α1, . . . , α4) = ⊥, hence the statement trivially holds. And, if there

exists some αk (k ∈ {1, . . . , 4}) which makes the ideal basis of t(α1, . . . , α4) empty,

then t(α1, . . . , α4) = >, hence the statement trivially holds.

Otherwise, by Proposition 2.3.1, it suffices to show that, for any F ′u, F
′′
u ∈ αu↓

and I ′u, I
′′
u ∈ αu↑ for each u ∈ {1, . . . , 4}, G ∈ s−(α1, . . . , α4)

↓, J ∈ s+(α1, . . . , α4)↑,

K ∈ t+(α1, . . . , α4)↑ and H ∈ t−(α1, . . . , α4)
↓,

s′(F ′1‖I ′1, . . . , F ′4‖I ′4, G, J) v t′(I ′′1 ‖F ′′1 , . . . , I ′′4 ‖F ′′4 , K,H).

By our assumption, it is equivalent to prove

s′(F ′1, I
′
2, F

′
3‖I ′3, F ′4‖I ′4, G, J) v t′(I ′′1 ‖F ′′1 , I ′′2 ‖F ′′2 , I ′′3 , F ′′4 , K,H).

AsG ∈ s−(α1, . . . , α4)
↓, J ∈ s+(α1, . . . , α4)↑, K ∈ t+(α1, . . . , α4)↑, H ∈ t−(α1, . . . , α4)

↓,

and s ≤ t has consistent variable occurrence, we have

G v s−(I ′′1 , F
′′
2 , F

′
3, I
′
4),

s+(I ′′1 , F
′′
2 , F

′
3, I
′
4) v J,

t+(I ′′1 , F
′′
2 , F

′
3, I
′
4) v K,

135

H v t−(I ′′1 , F
′′
2 , F

′
3, I
′
4).

By Lemma 5.2.8, there exist ig1, i
j
1, i

k
1, i

h
4 ∈ I ′′1 , f g2 , f

j
2 , f

k
2 , f

h
2 ∈ F ′′2 , f g3 , f

j
3 , f

k
3 , f

h
3 ∈ F ′3

and ig4, i
j
4, i

k
4, i

h
4 ∈ I ′4 such that

s−(ig1, f
g
2 , f

g
3 , i

g
4) ∈ G,

s+(ij1, f
j
2 , f

j
3 , i

j
4) ∈ J,

t+(ik1, f
k
2 , f

k
3 , i

k
4) ∈ K,

t−(ih1 , f
h
2 , f

h
3 , i

h
4) ∈ H.

Since F ′1, F
′′
1 ∈ α1

↓ and I ′′1 ∈ α1↑, we have F ′1 ∩ F ′′1 ∩ I ′′1 6= ∅, hence these exists

x′1 ∈ F ′1∩F ′′1 ∩I ′′1 . Analogously, x′2 ∈ I ′2∩F ′′2 ∩I ′′2 , x′3 ∈ F ′3∩I ′3∩I ′′3 and x′4 ∈ F ′4∩I ′4∩F ′′4 .

Then, we obtain that

∃x1 ∈ F ′1 ∩ F ′′1 ∩ I ′′1 . x′1 ≤ x1, i
g
1 ≤ x1, i

j
1 ≤ x1, i

k
1 ≤ x1, and ih1 ≤ x1,

∃x2 ∈ I ′2 ∩ F ′′2 ∩ I ′′2 . x2 ≤ x′2, x2 ≤ f g2 , x2 ≤ f j2 , x2 ≤ fk2 , and x2 ≤ fh2 ,

∃x3 ∈ F ′3 ∩ I ′3 ∩ I ′′3 . x3 ≤ x′3, x3 ≤ f g3 , x3 ≤ f j3 , x3 ≤ fk3 , and x3 ≤ fh3 ,

∃x4 ∈ F ′4 ∩ I ′4 ∩ F ′′4 . x′4 ≤ x4, i
g
4 ≤ x4, i

j
4 ≤ x4, i

k
4 ≤ x4, and ih4 ≤ x4.

It follows that s−(x1, . . . , x4) ∈ G, s+(x1, . . . , x4) ∈ J , t+(x1, . . . , x4) ∈ K and

t−(x1, . . . , x4) ∈ H. Then, we obtain

s(x1, . . . , x4) ∈ s′(F ′1‖I ′1, . . . , F ′4‖I ′4, G, J),

136

t(x1, . . . , x4) ∈ t′(I ′′1 ‖F ′′1 , . . . , I ′′4 ‖F ′′4 , K,H).

By assumption, s(x1, . . . , x4) ≤ t(x1, . . . , x4). Therefore, the statement holds.

Remark 5.5.26. The proof of Theorem 5.5.25 looks similar to the proof of lattice

expansions (Theorem 3.3.22). However, in the lattice case, we need to care only

for the signs in the scopes of all critical subterms. That is, it is necessary to check

just whether s ≤ t has consistent variable occurrence. On the other hand, as we

saw in Section 5.3, we cannot prove that t∪ ≤ t∩ is canonical for poset expansions.

Then, we also need to keep our eyes on variables in ∪-terms and ∩-terms. Theorem

5.5.25 tells us what types of combinations of signs between variables in ∪-terms

and ∩-terms and variables in the well-pruned pair of trees are acceptable under our

method.

137

Chapter 6

Application to poset-based

residuated algebras

In this chapter, we will apply Theorem 5.5.25 to (poset-based) residuated algebras

introduced in [18], and show how to interpret our canonicity results on this set-

ting. In this application, we can also notice that our canonicity results account for

reasonably many canonical inequalities.

The following list shows canonical inequalities proved in [18].

1. (Associativity): (p1 ◦ p2) ◦ p3 ≤ p1 ◦ (p2 ◦ p3) and p1 ◦ (p2 ◦ p3) ≤ (p1 ◦ p2) ◦ p3.

2. (Commutativity): p1 ◦ p2 ≤ p2 ◦ p1.

3. (Square-increasingness): p ≤ p ◦ p.

4. (Right-lower-boundedness): p1 ◦ p2 ≤ p2.

All these results are consequences of our main theorem, Theorem 5.5.25. Further-

more, we obtain many new canonical inequalities: in the following list, we can find

some remarkable examples.

138

1. (Uniform inequality): s ≤ t where every propositional variable in s and t

uniformly signed with either + or − both in the −-signed construction tree

of s and in the +-signed construction tree of t. For example, the following

inequality in residuated algebras is of this type:

((p2 ◦ p2)→ p1) ◦ ((p1 ← p2) ◦ p1) ≤ ((p2 ← p1) ◦ p2)← ((p2 → p1) ◦ p1).

2. (Simple Sahlqvist inequality [5, p.161]): s ≤ t, where s is a term of type t∪,

and t is positive (every variable is signed with + in the +-signed construction

tree of t). For example, the following inequality in residuated algebras is of

this type:

p1 ◦ (p2 ◦ p3) ≤ (p1 ◦ p2) ◦ (p1 ◦ p3).

3. (Simple Sahlqvist-like inequality 1): s ≤ t, where s is a negative term (every

variable is signed with − in the −-signed construction tree of s), and t is a

term of type t∩.
1

4. (Simple Sahlqvist-like inequality 2): s ≤ t, where s is a term of type t∪, and t

is uniform (there is no variable in t singed with both + and − in the +-signed

construction tree of t). For example, the following inequality in residuated

algebras is of this type:

p1 ◦ (p2 ◦ p3) ≤ (p2 ← (p1 ◦ p3)) ◦ (p2 ◦ (p1 → p2)).

5. (Simple Sahlqvist-like inequality 3): s ≤ t, where t is a term of type t∩, and s

1We do not have any example in residuated algebras, because we cannot have any negative term
based on the language.

139

is uniform. For example, the following inequality in residuated algebras is of

this type:

(p2 ◦ p1)← (p1 → (p3 ◦ p3)) ≤ (p1 ◦ p2)→ (p1 ← (p2 ◦ p3)).

6. The following inequality in residuated algebras is not any of the above types,

namely non-uniform nor non-simple Sahlqvist(-like):

(p1 → (p2 ◦ p3)) ◦ (p2 ◦ (p3 ← p1)) ≤ (p3 ◦ (p1 → p2))→ (p3 ← (p2 ◦ p1)).

Nevertheless, it is canonical (see Fig. 5.5 and Fig. 5.6).

140

Chapter 7

Canonical extensions from other

perspectives

So far, we have studied canonical extensions of lattice expansions, poset expansions

and the canonicity results, based on the construction given in [33], mainly to discuss

Ghilardi and Meloni’s canonicity methodology. In this chapter, we will explain Ghi-

lardi and Meloni’s canonicity methodology, in particular the parallel computation,

in the light of the topological characterisation of canonical extensions. In the end,

we will propose a new perspective of canonical extensions as a machinery to describe

continuous properties from observable data, and a Unschärferelation of order theory.

7.1 Canonical extensions as compact dense com-

pletions

The study of canonical extensions based on Stone representation [78] in [50, 51, 49] is

reformulated by introducing topological terminology, closed elements, open elements,

141

denseness or compactness, in [29]. The topological characterisation of canonical ex-

tensions is taken, for example, from [27, 28, 18, 88]. Thanks to the universality of

the topological characterisation of canonical extensions, nowadays we can introduce

the canonical extension, unique up to isomorphism, over posets [18]. In this section,

we characterise our canonical extension of posets by the topological terminology,

which is used in the later sections. Note that, for poset expansions including lattice

expansions, we do not know whether there is a unique characterisation of the canon-

ical extensions. This is because we are still discussing how the canonical extension

of ε-operations should be in general: see Remarks 3.2.8 and 5.2.9

Let P be a poset. A completion P of P is a complete lattice in which P is

embeddable. An element k ∈ P is closed, if there exists a filter F of P such that

k is the greatest lower bound of F , i.e. k =
∧
F , which always exists in P as it is

a complete lattice. An element o ∈ P is open, if there exists an ideal I of P such

that o is the least upper bound of I, i.e. o =
∨
I, which always exists in P as it is a

complete lattice. K(P), or simply K, is the set of all closed elements of P. O(P), or

simple O, is the set of all open elements of P.

Remark 7.1.1. K(P) ∼= F(P) and O(P) ∼= I(P). Hence, we can consider every

filter as a closed element in P and every ideal as an open element in P.

We state that the completion P is dense, if every element α of P is both the least

upper bound of the set of all closed elements below α, namely,

α =
∨
{k ∈ K(P) | k ≤ α},

142

and the greatest lower bound of the set of all open elements above α, namely,

α =
∧
{o ∈ O(P) | α ≤ o}.

Remark 7.1.2. α↑ and α↓ coincide with
∨
{k ∈ K | k ≤ α} and

∧
{o ∈ O | α ≤ o},

respectively. That is, λ constructs the least upper bounds for subsets of closed

elements (filters), and υ constructs the greatest lower bounds for subsets of open

elements (ideals). In other words, λ approximates elements in P from the lower-sides,

and υ approximates elements in P from the upper-sides. The definition of canonical

extensions in Definition 2.2.10 allows us to keep the approximation directions by

adding the subscript ↑ and the superscript ↓.

We say that the completion P is compact, if for an arbitrary pair of a closed

element k ∈ K and an open element o ∈ O, there exists an element a in P between

k and o whenever k ≤ o. That is, for every k ∈ K and each o ∈ O, if k ≤ o then

there exists a ∈ P such that k ≤ a ≤ o.

Remark 7.1.3. Since every closed element is a filter F and every open element is

an ideal I, the compactness is explained as F v I (F ∩ I 6= ∅).

Theorem 7.1.4 (Uniqueness, [18]). For every poset P, if there exist compact dense

completions of P, they are isomorphic. In other words, for every poset P, a compact

dense completion of P is unique up to isomorphism.

Theorem 7.1.5 (Existence, [18]). Every poset P has a compact dense completion.

Remark 7.1.6. The construction of a compact dense completion in the proof [18,

Theorem2.6] is exactly the same as construction of the canonical extension: see

Definition 2.2.10.

143

Corollary 7.1.7. The canonical extension of a poset is a compact dense completion

of the poset.

7.2 Parallel computation and canonicity

In this section, Ghilardi and Meloni’s canonicity methodology for lattice expansions

is outlined in the light of the topological characterisation.

The main technical points of Ghilardi and Meloni’s approach can be summarised

as follows.

1. The order relation on the canonical extension is exchanged for the relationships

between closed elements (filters) and open elements (ideals): see Item 3 in

Proposition 2.3.1

2. For each term function, the parallel computation on the intermediate level,

between closed elements (filters) and open elements (ideals), is introduced:

see Section 3.2 As a result, the parallel computation allows us to discuss the

relationship between term functions on the canonical extension and on the

intermediate level, see Proposition 3.3.2 and Definition 3.3.3 Furthermore, a

tight connection between the parallel computation on the intermediate level

and term functions on the algebra is provided by introducing the parallel

computation on the algebra: see Lemma 3.2.6.

The order on the canonical extension and the intermediate level Let L

be a lattice. Since the canonical extension L is a compact dense completion, every

element α can be seen as a join of closed elements α↑ and as a meet of open elements

α↓, Remark 7.1.2.

144

Let α and β be arbitrary elements in the canonical extension L, Ka a closed basis

of α, i.e. α↑ = λ(Ka), and Ob an open basis of β, i.e. α↓ = υ(Ob). By Proposition

2.3.1 (Item 3), we have

α ≤ β ⇐⇒ ∀k ∈ Ka,∀o ∈ Ob. k ≤ o.

This fact shows that, whenever we have any closed basis of α and any open basis of

β, the order α ≤ β on the canonical extension can be verified by those bases without

taking limits.

To prove canonicity for term functions s and t, and arbitrary tuples of ele-

ments (α1, . . . , αN) in the canonical extension, we want to justify the order relation

s(α1, . . . , αN) ≤ t(α1, . . . , αN). To syntactically characterise canonical inequalities,

we need to give explicit characterisations of closed bases of s(α1, . . . , αN) and open

bases of t(α1, . . . , αN). To this end, as we will discuss below, Ghilardi and Mel-

oni’s parallel computation provides us with an inductive characterisations of (rough)

bases.

Ghilardi and Meloni’s parallel computation on the intermediate level To

simplify our discussion, we fix our language to substructural logic, namely ◦,→ and

← (see Section 4.1), in the rest of this section. Since fusion ◦ is additive, we take

◦σ (σ-extension, which is the same as ◦↑) as the fusion on the canonical extension.

And, since residuals→ and← are multiplicative, we take→π and←π (π-extensions,

which are the same as →↓ and ←↓) as the residuals on the canonical extension: see

Remark 3.2.7. In other words, for all elements α and β in the canonical extension,

we define

145

1. α ◦σ β :=
∨
{ka ◦ kb | ka ≤ α, kb ≤ β, ka, kb ∈ K},

2. α→π β :=
∧
{k → o | k ≤ α, β ≤ o, k ∈ K, o ∈ O},

3. β ←π α :=
∧
{o← k | k ≤ α, β ≤ o, k ∈ K, o ∈ O}.

Therefore, to describe the canonical extension of ◦,→ and←, we need to define only

the following operations on the intermediate level, ◦ : K ×K → K, →: K ×O → O

and ←: O ×K → O. Additionally, by definition, we notice that the sets

1. {ka ◦ kb | ka ≤ α, kb ≤ β, ka, kb ∈ K},

2. {k → o | k ≤ α, β ≤ o, k ∈ K, o ∈ O},

3. {o← k | k ≤ α, β ≤ o, k ∈ K, o ∈ O},

are a closed (filter) basis of α ◦σ β, an open (ideal) basis of α →π β and an open

(ideal) basis of β ←π α, respectively. We mention that the canonical extensions of

fusion and residuals are the same as in [18] or [27].

However, as distinct from [18] or [27], our target is to calculate each term func-

tion on the intermediate level and to characterise bases, to construct a relation with

all term functions on the canonical extension and their (rough) bases: see Proposi-

tion 3.3.2 To achieve our goal, we require introducing two additional features: the

opposite-type operations and the ‖-notation on the intermediate level. Namely, we

also define the operations ◦ : O × O → O, →: O × K → K and ←: K × O → K.

Note that we never claim that {oa ◦ ob | α ≤ oa ∈ O, β ≤ ob ∈ O} is an open (ideal)

basis of α ◦σ β, which contradicts to existing results, see MV-algebras in [31].1 But,

if we do not introduce the opposite-type operations, some term functions on the

1This is actually an open (ideal) basis of α ◦π β in general. But, there is no chance to use this
fact in our arguments, because we do not define ◦π for substructural logic.

146

intermediate level could not be computed, e.g. p1 → (p2 ◦ p3), because the second

argument of → is of type O which would be a mismatch with the codomain of ◦.

With the ‖-notation, we can assign each variable with distinct elements in different

sorts, depending on either it appears positively or negatively. For example, x‖y

means that x is for positive occurrences and y is for negative occurrences. Without

the ‖-notation, we could not manage the terms in which a propositional variable

appears both positively and negatively, e.g. p1 → (p1 ◦ p2).

Hereafter, instead of closed elements and open elements, we use filters and ideals.

This is because the parallel computation is a calculus in two-sorts : filters and ideals.

For example, the constant 1 is clopen. But, we can clearly know that ↑1 is a filter

(counted as a closed element) and ↓1 is an ideal (counted as an open element).

On the intermediate level, the parallel computation does compute all term func-

tions with positive occurrences as filters and negative occurrences as ideals on

one hand as t(F1‖I1, . . . , Fn‖In). On the other hand, all term functions are cal-

culated with positive occurrences as ideals and negative occurrences as filters as

t(I1‖F1, . . . , In‖Fn): see Section 3.2.

Example 7.2.1. A term function p1 → (p1 ◦ p2) is calculated in parallel as follows:

for all filters F,G and all ideals I, J ,

(p1 → (p1 ◦ p2))(F‖I,G‖J) = I → (F ◦G),

(p1 → (p1 ◦ p2))(I‖F, J‖G) = F → (I ◦ J).

Based on the parallel computation on the intermediate level, for every term

function t and all elements α1 . . . , αN in the canonical extension, we obtain the

147

following rough basis property of t(α1, . . . , αN):

t(F1‖I1, . . . , Fn‖In) ≤ t(α1, . . . , αn), (7.1)

t(α1, . . . , αn) ≤ t(I1‖F1, . . . , In‖Fn), (7.2)

for all Fk ≤ αk and all Ik ≥ αk for each k ∈ {1, . . . , n}, see Proposition 3.3.2.

Actually, the parallel computation also allow us to characterise not only rough bases

but also bases for all term functions: see Proposition 3.3.21.2 However, the rough

description of bases should be already enough here to show our main idea and the

difference from the approach in [18], [27] or [30]. The next paragraph presents a

worked out example illustrating the use of rough bases.

An example from substructural logic In Section 4.1, we list an inequality

1 ≤ (p2/(p2\p1))\(p1 ◦ 0) as a canonical inequality (Item 6 in the list). Here, we

concretely discuss the canonicity along with the above explanation.

Let L be an FL-algebra and L the canonical extension of L. Assume that, for

all elements a, b ∈ L, we have

1 ≤ (b/(b\a))\(a ◦ 0). (7.3)

For arbitrary α, β ∈ L, we want to show that 1 ≤ (β/(β\α))\(α◦0). Since 1 is in L,

(hence 1 is clopen), 1 is approximated by {1}. Here, to think about this singleton

set {1} as a set of closed elements, we denote it as {↑1}, where ↑1 is the principal

filter generated by 1. On the other hand, (β/(β\α))\(α ◦ 0) is approximated by the

2Note that this characterisation of bases is not as simple as equation (7.1) or equation (7.2), in
general.

148

following set of open elements by definition of \π (\↓):

{k\o | k ≤ (β/(β\α)), (α ◦ 0) ≤ o}. (7.4)

Hereafter, we consider k as a filter F and o as an ideal I. Hence, F ≤ (β/(β\α))

and (α ◦ 0) ≤ I. Thanks to the rough basis property, we also have the following

conditions: for each G ≤ α and each J ≥ β (and arbitrary J ′ ≥ α and G′ ≤ β),

β/(β\α) = (p2/(p2\p1))(α, β) ≤ (p2/(p2\p1))(J ′‖G, J‖G′) = J/(J\G),

by equation (7.2) and, by equation (7.1),

G ◦ ↑0 = (p1 ◦ 0)(G‖J ′, G′‖J) ≤ (p1 ◦ 0)(α, β) = α ◦ 0,

where ↑0 is the principal filter generated by 0. Therefore, we have (v is the partial

order which is restricted on the intermediate level)

F v J/(J\G) ⇐⇒ F ∩ (J/(J\G)) 6= ∅, (7.5)

G ◦ ↑0 v I ⇐⇒ (G ◦ ↑0) ∩ I 6= ∅, (7.6)

By equation (7.5) and Lemma 3.2.6, there exist j ∈ J and g1 ∈ G such that

j/(j\g1) ∈ F . By equation (7.6) and Lemma 3.2.6, there exists g2 such that

g2 ◦ 0 ∈ I. Since G is a filter, the meet g of g1 and g2 is also in G. Further-

more, by monotonicity (Lemma 3.2.5), we also have j/(j\g) ∈ F and g ◦ 0 ∈ I,

hence (j/(j\g))\(g ◦ 0) ∈ F\I, by Lemma 4.23. Finally, by our assumption (7.3),

149

we have ↑1 v F\I, which concludes 1 ≤ (β/(β\α))\(α ◦ 0), hence the inequality is

canonical.

Therefore, based on Ghilardi and Meloni’s parallel computation, we can not just

account for the canonicity results of smooth lattice expansions in [27] or [30], but

also obtain canonical inequalities of lattice expansions with non-smooth operations.

7.3 Unschärferelation in the canonical extension

In this section we propose an Unschärferelation (uncertainty principle) on the canon-

ical extension of a poset expansion.3

We look back to the canonicity of poset expansions first. It states that for an

inequality s ≤ t, we have

P |= s ≤ t ⇐⇒ P |= s ≤ t. (7.7)

That is, the inequality s ≤ t is valid on P if and only if it is valid on P. In

Equation (7.7), (⇐)-direction is rather trivial, because P is a subalgebra of P: we

can consider P as a part of P. Therefore, the real problem of the canonicity is to

prove (⇒)-direction in Equation (7.7). We may explain (⇒)-direction as follows: if

we are interested in whether a property expressed by an inequality s ≤ t holds on

P, it is enough to investigate only on P. That is, “a part of information, or a piece

of information, for an inequality s ≤ t on P can describe all the information, or the

perfect information, for the inequality s ≤ t on P.”

However, in the real world, we can rarely observe all the perfect information or

3The reason we choose the German word is to avoid the term “uncertainty” in a mathematical
setting.

150

facts. For example, many observable data in natural science are discrete, whereas

we often characterise those properties as continuous maps on continuous spaces. In

other words, we often estimate the perfect information from a piece of observable

information or data. From this point of view, we can think about the framework of

the canonical extension as follows.

Hypothesis 1. A poset P is a collection of observable ordered data, and the canon-

ical extension P is the complete lattice of the perfect information.

Usually, we accumulate the observable data by repeating experiments or obser-

vations again and again. For each set S of observable ordered data, we can take two

types of representatives of those data: the lower representatives of S and the upper

representatives of S. That is, the lower representatives of S are the data which

provide lower boundaries of S and the upper representatives of S are the data which

provide upper boundaries of S.

Hypothesis 2. For each set S of observable ordered data, the lower representa-

tives of S are filters F (closed elements) including S, i.e. S ⊆ F , and the upper

representatives of S are ideals I (open elements) including S, i.e. S ⊆ I.

Therefore, the set F(P), or K(P), is the collection of all possible lower repre-

sentative data, and the set I(P), or O(P), is the collection of all possible upper

representative data.

Remark 7.3.1. If we have few observable data, the representatives are quite rough

and they could be far from keen estimations. However, by repeating observations,

we must collect many representatives which describe observable data sensibly.

151

Hypothesis 3. All the perfect information is obtained by a colimit of a set of lower

representatives and by a limit of a set of upper representatives. In other words,

every information in the complete lattice of perfect information is approximated by

a set of lower representatives of from below and approximated by a set of upper

representatives from above.

Therefore, in our setting, all the observable (ordered) data, if we collect them,

form a poset P, and the complete structure of all the perfect information lies as

the canonical extension P of P. Now let us consider to denote a property t like a

movement of particles or a information flow based on our setting.

Hypothesis 4. Every property t can be described by a combination of ε-operations

on P. That is, every property t which we consider here is expressed by a term

function t of a lattice expansion based on the underlying poset P.

From this point of view, we can think about the canonicity problem as a question

of type “can we obtain the perfect description of a property t only by the observable

data?” The answer is, of course, “not always.” However, by using Ghilardi and

Meloni’s parallel computation, we can give a more detailed answer.

Theorem 7.3.2 (Unschärferelation). A property t may not be perfectly described by

observable data, even if we observe infinitely many times. However, if we repeat the

observation infinitely many times, the observable data of the property t would always

distribute in a certain range, in which the perfect information of the property t is

also lying.

Proof. Let t be a property. For all α1, . . . , αN ∈ P, we want to know the perfect

description of t(α1, . . . , αN). Thanks to the parallel computation, for each coordinate

152

j ∈ {1, . . . , N}, each closed element kj ∈ K which is below αj, i.e. kj ≤ αj, and each

open elements oj ∈ O which is above αj, i.e. αj ≤ oj, we have

t(k1‖o1, . . . , kN‖oN) ≤ t(α1, . . . , αN) ≤ t(o1‖k1, . . . , oN‖kN). (7.8)

By the way, since the canonical extension P is compact, there exists an observable

data xj ∈ P satisfying

kj ≤ xj ≤ oj,

for each coordinate j ∈ {1, . . . , N}. By Lemma 3.2.6, we obtain

t(k1‖o1, . . . , kN‖oN) ≤ t(x1, . . . , xN) ≤ t(o1‖k1, . . . , oN‖kN). (7.9)

We state that the gap between t(x1, . . . , xN) and t(α1, . . . , αN) is closer than the one

between t(k1‖o1, . . . , kN‖oN) and t(o1‖k1, . . . , oN‖kN), by Equations (7.8) and (7.9).

Hence, if we take more and more precise data by repeating the observation infinitely

many times, the observable data of the property t distribute in the following range.

[∨
{t(k1‖o1, . . . , kN‖oN) | kj ≤ αj ≤ oj},

∧
{t(o1‖k1, . . . , oN‖kN) | kj ≤ αj ≤ oj}

]
.

By Equation (7.8), the perfect description of the property t(α1, . . . , αN) is also in

the range.

153

Chapter 8

Bi-approximation semantics for

substructural logic

In this chapter, we will discuss a relational-type semantics, or a space-based seman-

tics, for substructural logic. Unlike what happens in the setting of modal logic,

substructural logic is not necessarily distributive, namely φ∧ (ψ∨χ) may not imply

(φ ∧ ψ) ∨ (φ ∧ χ). If we interpret conjunctions and disjunctions as follows:

1. w φ ∧ ψ ⇐⇒ w φ and w ψ,

2. w φ ∨ ψ ⇐⇒ w φ or w ψ,

w φ∧(ψ∨χ) always implies w (φ∧ψ)∨(φ∧χ). To avoid this problem, in this dis-

sertation, we will introduce bi-approximation semantics, a two sorted relational-type

semantics, via the canonical extension of lattice expansions, to reasons about not for-

mulae but logical consequences, or sequents. That is, we reason about premises and

conclusions separately on each sort, and evaluate logical consequences as a relation

between these two sorts. Moreover, by introducing the bi-directional approximation

and bases, we track down a connection to Kripke-type semantics for distributive

154

substructural logics in Section 4.2 through a relationship between basis and the ex-

istential quantifier. Based on the framework, we prove a soundness theorem and a

completeness theorem via a representation theorem plus invariance of validity along

a back-and-force correspondences.

8.1 Discussions on relational semantics for sub-

structural logic

What is a natural relational semantics for substructural logic or resource sensitive

logics? Unlike Kripke semantics for modal logic, we can find several types of rela-

tional semantics for substructural logic based on their philosophy or on their mathe-

matical frameworks. For example, the study of relational semantics for distributive

substructural logics has led to an operational semantics for relevant implication

[85]. In [70], a ternary relational semantics, a.k.a. Routley-Meyer semantics, has

been introduced by a different interpretation of relevant implication. For distribu-

tive substructural logics, we can also find other relational semantics, see e.g. [68].

Reasoning about relational-type semantics for non-distributive substructural log-

ics, one encounters the interpretation problem of disjunction, namely how to avoid

the distributivity of conjunction and disjunction. For orthologic, one can solve the

problem on Goldblatt frames [35], by introducing a non-standard interpretation of

disjunction. With Dedekind-MacNeille frames and the closure operator interpreta-

tion in [43] and [44], one can also solve the problem by using a closure operator.

Generalized Kripke frames [26], which are introduced by characterising the inter-

mediate level of canonical extensions of lattice expansions (see e.g. [18] or [27]),

155

provide another semantics in which one can avoid the disjunction problem by a

Galois connection.

The aim of the current chapter is to propose another possible relational-type

semantics for substructural logic. To achieve our goal, we introduce a two-sorted

relational-type semantics, called bi-approximation semantics, and describe Ghilardi

and Meloni’s parallel computation on the intermediate level [33], see also [84]. Our

framework is closely related to the works [43], [44] and [26]. On the other hand, bi-

approximation semantics has novel aspects: bi-directional approximation, bases, and

doppelgänger valuations which allow us to evaluate sequents (Section 8.3). Based

on our setting, we will come across one possible interpretation of the two sorts,

premises and conclusions, and discover a relationship to Kripke-type semantics for

distributive substructural logics through bases and the existential quantifier (Sec-

tion 8.4). Furthermore, the connection between bases and the existential quantifier

provides an effective evaluation of sequents in bi-approximation semantics, which is

useful to prove the soundness theorem (Theorem 8.6.1). In Section 8.5, we prove

the representation theorem of FL-algebras via p-frames, which is used to show the

completeness theorem in Section 8.6.

8.2 Substructural logic

In this section, we denote propositional variables by p, q, r, p1, . . ., the set of all

propositional variables by Φ, and t and f are logical constants representing true

and false, respectively. As logical connectives, we use disjunction ∨, conjunction ∧,

fusion (multiplication) ◦, implications (residuals) → and ←. Formulae of substruc-

tural logic are denoted by φ, ψ, φ1, . . . and ψ1, . . ., and the set of all formulae is

156

denoted by Λ. The following BNF generates formulae of substructural logic.

φ ::= p | t | f | φ ∨ φ | φ ∧ φ | φ ◦ φ | φ→ φ | φ← φ

Γ,∆,Σ,Π are (possibly empty) finite lists of formulae, and ϕ is a list of at most one

formula. Then, we call Γ Z⇒ ϕ a sequent.

Gentzen’s sequent system for substructural logic Let φ, ψ be arbitrary for-

mulae, Γ,∆,Σ,Π arbitrary (possibly empty) finite lists of formulae, ϕ a list of at

most one formula: see e.g. [63]. The sequent system FL is in Fig. 8.1. In the sequent

system FL, a formula φ is provable in FL if the sequent Z⇒ φ is derivable in FL. The

substructural logic FL is the set of all provable formulae in FL.

Proposition 8.2.1 ([63]). For all formulae φ and ψ, we have

1. φ is provable if and only if t Z⇒ φ is derivable,

2. φ Z⇒ ψ is derivable if and only if φ→ ψ is provable in FL if and only if ψ ← φ

is provable in FL,

3. φ1, . . . , φn Z⇒ ϕ is derivable in FL if and only if φ1 ◦ · · · ◦ φn Z⇒ ϕ is derivable

in FL.

The algebraic counterparts of substructural logic FL are known as FL-algebras

[25].

Definition 8.2.2 (FL-algebra). An 8-tuple A = 〈A,∨,∧, ∗, \, /, 1, 0〉 is a FL-algebra,

if 〈A,∨,∧〉 is a lattice, 〈A, ∗, 1〉 is a monoid, 0 is a constant in A, and for all

a, b, c ∈ A,

a ∗ b ≤ c ⇐⇒ b ≤ a\c ⇐⇒ a ≤ c/b.

157

Figure 8.1: The sequent system FL

Initial sequents :

φ Z⇒ φ Z⇒ t f Z⇒

Cut rule :

Γ Z⇒ φ Σ, φ,Π Z⇒ ϕ
(cut)

Σ,Γ,Π Z⇒ ϕ

Rules for constants :

Γ,∆ Z⇒ ϕ
(tw)

Γ, t,∆ Z⇒ ϕ
Γ Z⇒ (fw)

Γ Z⇒ f

Rules for logical connectives :

Γ, φ,∆ Z⇒ ϕ Γ, ψ,∆ Z⇒ ϕ
(∨ Z⇒)

Γ, φ ∨ ψ,∆ Z⇒ ϕ

Γ Z⇒ φ
(Z⇒ ∨1)Γ Z⇒ φ ∨ ψ

Γ Z⇒ ψ
(Z⇒ ∨2)Γ Z⇒ φ ∨ ψ

Γ, φ,∆ Z⇒ ϕ
(∧1 Z⇒)

Γ, φ ∧ ψ,∆ Z⇒ ϕ

Γ, ψ,∆ Z⇒ ϕ
(∧2 Z⇒)

Γ, φ ∧ ψ,∆ Z⇒ ϕ

Γ Z⇒ φ Γ Z⇒ ψ
(Z⇒ ∧)

Γ Z⇒ φ ∧ ψ

Γ, φ, ψ,∆ Z⇒ ϕ
(◦ Z⇒)

Γ, φ ◦ ψ,∆ Z⇒ ϕ

Γ Z⇒ φ Σ Z⇒ ψ
(Z⇒ ◦)

Γ,Σ Z⇒ φ ◦ ψ

Γ Z⇒ φ Σ, ψ,Π Z⇒ ϕ
(→Z⇒)

Σ,Γ, φ→ ψ,Π Z⇒ ϕ

φ,Γ Z⇒ ψ
(Z⇒→)

Γ Z⇒ φ→ ψ

Γ Z⇒ φ Σ, ψ,Π Z⇒ ϕ
(←Z⇒)

Σ, ψ ← φ,Γ,Π Z⇒ ϕ

Γ, φ Z⇒ ψ
(Z⇒←)

Γ Z⇒ ψ ← φ

158

By Proposition 8.2.1, we sometimes state that FL is the set of all sequents

derivable in FL. On FL-algebras, each sequent φ1, . . . , φn Z⇒ ϕ is interpreted as an

inequality φ1 ∗ · · · ∗ φn ≤ ϕ.

8.3 Bi-approximation semantics

In this section, we firstly introduce a polarity, see [4] or [89], which is the foundation

of bi-approximation semantics.

Polarity and bi-directional approximation

Definition 8.3.1 (Polarity). A triple 〈X, Y,B〉 is a polarity, if X and Y are non-

empty sets, and B a binary relation on X × Y , i.e. B ⊆ X×Y .

Given a polarity 〈X, Y,B〉, we induce a preorder ≤B on X ∪ Y as follows, see

[26]: for all x1, x2 ∈ X and all y1, y2 ∈ Y , we let

1. x1 ≤B x2 ⇐⇒ for each y ∈ Y , x2By implies x1By,

2. y1 ≤B y2 ⇐⇒ for each x ∈ X, xBy1 implies xBy2,

3. x1 ≤B y1 ⇐⇒ x1By1,

4. y1 ≤B x1 ⇐⇒ for each x′ ∈ X and each y′ ∈ Y , x′By′ if x′By1 and x1By
′.

Hereinafter, we sometimes omit the subscript B from the induced preorder ≤B,

and refer to the triple 〈X, Y,≤〉 as the polarity. That is, a polarity 〈X, Y,≤〉 is a

preordered set 〈X ∪ Y,≤〉.

Next, we introduce two approximation functions for polarities. Let 〈X, Y,≤〉 be

a polarity, ℘(X) the poset of all subsets of X ordered by inclusion ⊆, and ℘(Y)∂ the

159

poset of all subsets of Y ordered by reverse-inclusion ⊇. We define two functions

λ : ℘(X) → ℘(Y)∂ and υ : ℘(Y)∂ → ℘(X) as follows: for each X ∈ ℘(X) and each

Y ∈ ℘(Y)∂,

1. λ(X) := {y ∈ Y | ∀x ∈ X. x ≤ y},

2. υ(Y) := {x ∈ X | ∀y ∈ Y. x ≤ y}.

The functions λ and υ form a Galois connection, i.e. λ a υ. Hence, the images

λ[℘(X)] and υ[℘(Y)∂] are isomorphic. Hereafter, we denote the image λ[℘(X)] by

U and the image υ[℘(Y)∂] by D. We mention that the images are the Dedekind-

MacNeille completion of the quotient poset of 〈X, Y,≤〉 with respect to the equiv-

alence relation associated with ≤, see [4] or [13]. We call each element in D a

Galois stable X-set and refer to each Galois stable X-set by adding the superscript

↓, e.g. α↓. We call each element in U a Galois stable Y -set and refer to each Galois

stable Y-set by adding the subscript ↑, e.g. α↑. Since every Galois stable X-set

is an image of some (not necessarily unique) subset of Y , and every Galois stable

Y -set is an image of some (not necessarily unique) subset of X, we introduce the

following terminology.

Definition 8.3.2 (Approximation and basis). Let X ∈ ℘(X), Y ∈ ℘(Y)∂, α↓ ∈ D

and β↑ ∈ U. An element α↓ is approximated from above by Y and Y is a (Y -)basis

of α, if α↓ = υ(Y). An element β↑ is approximated from below by X and X is a

(X-)basis of β, if β↑ = λ(X).

Later, we will construct two isomorphic FL-algebras on D and U: see Section

8.5. Namely, we will take the abstract algebra whose underlying poset is isomorphic

to both D and U. Then, we can see every point α as α↓ and as α↑. In other words,

160

every point in an abstract algebra is approximated from both above and below.

The main concept of bi-approximation semantics is to keep the two directions of

approximation: see e.g. Proposition 8.4.7.

Bi-approximation model Based on a polarity, we introduce bi-approximation

semantics for substructural logic.

Definition 8.3.3 (P-frame for substructural logic). A p-frame for substructural

logic, p-frame for short, is a 8-tuple F = 〈X, Y,≤, R,OX , OY , NX , NY 〉, where the

triple 〈X, Y,≤〉 is a polarity, R ⊆ X ×X × Y a ternary relation, OX a non-empty

Galois stable X-set, NX a Galois stable X-set, OY and NY are Galois stable Y -sets,

and F satisfies the following.

R-order: For all x, x′ ∈ X, x′ ≤ x if and only if

∃o ∈ OX .[∀y ∈ Y.[R(x, o, y)⇒ x′ ≤ y] or ∀y ∈ Y.[R(o, x, y)⇒ x′ ≤ y]],

R-identity: For each x ∈ X, [∃o2 ∈ OX , ∀y ∈ Y.[R(x, o2, y)⇒ x ≤ y]

and ∃o1 ∈ OX ,∀y ∈ Y.[R(o1, x, y)⇒ x ≤ y]],

R-transitivity: For all x1, x
′
1, x2, x

′
2 ∈ X and y, y′ ∈ Y ,

x′1 ≤ x1, x
′
2 ≤ x2, y ≤ y′ and R(x1, x2, y)⇒ R(x′1, x

′
2, y
′),

R-associativity: For all x1, x2, x3, x ∈ X,

∃x′ ∈ X.[∀y ∈ Y.(R(x1, x
′, y)⇒ x ≤ y) and ∀y′ ∈ Y.(R(x2, x3, y

′)⇒ x′ ≤ y′)]

if and only if

∃x′ ∈ X.[∀y ∈ Y.(R(x′, x3, y)⇒ x ≤ y) and ∀y′ ∈ Y.(R(x1, x2, y
′)⇒ x′ ≤ y′)],

O-isom: OX = υ(OY) and OY = λ(OX),

N-isom: NX = υ(NY) and NY = λ(NX),

161

◦-tightness: For all x1, x2 ∈ X, there exists x ∈ X such that

∀y ∈ Y.[R(x1, x2, y) if and only if x ≤ y],

→-tightness: For each x1 ∈ X and each y ∈ Y , there exists y2 ∈ Y such that

∀x2 ∈ X.[R(x1, x2, y) if and only if x2 ≤ y2],

←-tightness: For each x2 ∈ X and each y ∈ Y , there exists y1 ∈ Y such that

∀x1 ∈ X.[R(x1, x2, y) if and only if x1 ≤ y1].

A p-frame F = 〈X, Y,≤, R,OX , OY , NX , NY 〉 is intuitively explained as follows:

the Galois stable sets OX , OY , NX and NY define the worlds where we assume t,

conclude t, assume f and conclude f . The conditions O-isom and N-isom guarantee

that every x ∈ X where we assume the formula t (f), if and only if every y ∈ Y where

we conclude the formula t (f) have the consequence relation x ≤ y. The ternary

relation R is another consequence relation which allows us to reason about logical

consequences between two premises and one conclusion. The R-order condition says

that the induced relation on X, x′ ≤ x is also obtained by the ternary consequence

relation R. The tightness conditions guarantee that the ternary consequence relation

R respects ≤.

Remark 8.3.4. In Definition 8.3.3 one may feel that the conditions R-order, R-

identity and R-associativity look too complicated. However, we reformulate them

in Remark 8.4.3.

Our framework is similar to generalized Kripke frames in [26]. However, we do

not assume neither Separation axioms nor Reduced axioms, hence p-frames may

not be RS-frames. Our current purpose is to characterise Ghilardi and Meloni’s

parallel computation on the intermediate level [33], see also [84]. The main points

162

of difference are how to evaluate formulae on bi-approximation semantics, i.e. the

valuation on two-sorted frames by introducing doppelgänger valuation, and how to

interpret the satisfaction relation on each sort, X and Y .

Definition 8.3.5 (Doppelgänger valuation). On a p-frame F, a pair V = 〈V ↓, V↑〉

of two functions V ↓ : Φ → D and V↑ : Φ → U is a doppelgänger valuation, if V ↓(p)

and V↑(p) coincide for every propositional variable p ∈ Φ. That is, V ↓(p) = υ(V↑(p))

and V↑(p) = λ(V ↓(p)) for each propositional variable p ∈ Φ.

Definition 8.3.6 (Bi-approximation model). Given a p-frame F and a doppelgänger

valuation V, we call the pair M = 〈F, V 〉 a bi-approximation model.

On a bi-approximation model M = 〈F, V 〉, we inductively define a satisfaction

relation as follows: for each x ∈ X, we let

X-1: M, x p ⇐⇒ x ∈ V ↓(p) for each p ∈ Φ,

X-2: M, x t ⇐⇒ x ∈ OX ,

X-3: M, x f ⇐⇒ x ∈ NX ,

X-4: M, x φ ∨ ψ ⇐⇒ ∀y ∈ Y. [M, y φ ∨ ψ ⇒ x ≤ y],

X-5: M, x φ ∧ ψ ⇐⇒ M, x φ and M, x ψ,

X-6: M, x φ ◦ ψ ⇐⇒ ∀y ∈ Y. [M, y φ ◦ ψ ⇒ x ≤ y],

X-7: M, x φ→ ψ ⇐⇒ ∀x′ ∈ X, y ∈ Y. [M, x′ φ and M, y ψ ⇒ R(x′, x, y)],

X-8: M, x ψ ← φ ⇐⇒ ∀x′ ∈ X, y ∈ Y. [M, x′ φ and M, y ψ ⇒ R(x, x′, y)].

163

For each y ∈ Y , we let

Y-1: M, y p ⇐⇒ y ∈ V↑(p) for each p ∈ Φ,

Y-2: M, y t ⇐⇒ y ∈ OY ,

Y-3: M, y f ⇐⇒ y ∈ NY ,

Y-4: M, y φ ∨ ψ ⇐⇒ M, y φ and M, y ψ,

Y-5: M, y φ ∧ ψ ⇐⇒ ∀x ∈ X. [M, x φ ∧ ψ ⇒ x ≤ y],

Y-6: M, y φ ◦ ψ ⇐⇒ ∀x1, x2 ∈ X. [M, x1 φ and M, x2 ψ ⇒ R(x1, x2, y)],

Y-7: M, y φ→ ψ ⇐⇒ ∀x ∈ X. [M, x φ→ ψ ⇒ x ≤ y],

Y-8: M, y ψ ← φ ⇐⇒ ,∀x ∈ X. [M, x ψ ← φ⇒ x ≤ y].

In bi-approximation models, the satisfaction relation has two distinct interpreta-

tions depending on the domains X and Y . On X, we comprehend M, x φ as the

formula φ is assumed at x, and on Y , M, y φ as the formula φ is concluded at y.

Moreover, we also define F, x φ and F, y φ as usual: for every doppelgänger

valuation V , we have F, V, x φ and F, V, y φ, respectively.

An interpretation of the two-sorted semantics To reason about resource

sensitive logics, we make a clear distinction between premises and conclusions, and

evaluate logical consequences as relations between premises and conclusions. On p-

frames, we think aboutX as a set of premise worlds where we evaluate only premises,

and about Y as a set of conclusion worlds where we evaluate just conclusions.

One may feel that the satisfaction relation M, y φ, which says “the formula φ

is concluded at the conclusion world y”, is the same as “the formula φ is true at

164

y.” However, these two concepts are not the same. This is because, even if we

conclude a formula φ at y, we cannot logically judge whether the formula is true

or not. For example, if we conclude a formula φ meaning “tomorrow is Sunday”

at a conclusion world y, we do not have any clue to justify that the formula is

a fact. In other words, we may explain M, y φ as someone is just claiming “φ

should be concluded” without any reason. Of course, we cannot consider it as logical

reasoning. Only when we also have a reasonable premise like “today is Saturday”

or “tomorrow is Sunday,” we can justify that the logical consequence is true. More

precisely, only when we have a pair of a premise and a conclusion, we can justify

the logical consequence.

Formally the concept of truth of logical consequences on bi-approximation mod-

els is defined as follows. To reason about truth on bi-approximation models, it is

necessary to extend the satisfaction relation ⊆ (X×Λ)∪(Y×Λ) to a relation be-

tween X × Y and pairs of two formulae Λ × Λ, or sequents. For our purpose, we

fix the interpretation between sequents and pairs of two formulae. Given a sequent

φ1, . . . , φn Z⇒ ϕ, we translate it to (φ1 ◦ · · · ◦ φn, ϕ). If n = 0, the left-hand side is

empty and we write (t, ϕ). If the right-hand side is empty, we write (φ1 ◦ . . .◦φn, f).

But, whenever it is not confusing, we do not make any distinction between sequents

and pairs of two formulae. So, both are called just sequents and are denoted by

Γ Z⇒ ϕ.

Definition 8.3.7 (Truth). Let M = 〈F, V 〉 be a bi-approximation model and Γ Z⇒ ϕ

a sequent. We let

1. M, (x, y) Γ Z⇒ ϕ ⇐⇒ x ≤ y whenever M, x Γ and M, y ϕ,

2. F, (x, y) Γ Z⇒ ϕ ⇐⇒ 〈F, V 〉, (x, y) Γ Z⇒ ϕ for each doppelgänger

165

valuation V ,

3. M Γ Z⇒ ϕ ⇐⇒ M, (x, y) Γ Z⇒ ϕ for all x ∈ X and y ∈ Y ,

4. F Γ Z⇒ ϕ ⇐⇒ 〈F, V 〉, (x, y) Γ Z⇒ ϕ for all x ∈ X and y ∈ Y , and every

doppelgänger valuation V .

We interpret M, (x, y) Γ Z⇒ ϕ as the sequent Γ Z⇒ ϕ is true at the pair (x, y),

and F Γ Z⇒ ϕ as the sequent Γ Z⇒ ϕ is valid on F.

Remark 8.3.8. Unlike what happens in the setting of the normal Kripke semantics,

in bi-approximation models we reason about sequents but not formulae, in general.

But, thanks to Proposition 8.2.1, this distinction is not critical when we consider

substructural logic.

Hereinafter, we sometimes write (x, y) φ Z⇒ ψ instead of M, (x, y) φ Z⇒ ψ.

External reasoning and internal reasoning on p-frames Before we show

preliminary results for bi-approximation semantics, we explain how to evaluate

premises, conclusions and logical consequences on p-frames.

Recall the satisfaction relation in (X-1) - (X-8) and (Y-1) - (Y-8). We notice

that there are two types of reasoning: internal and external. Namely, there is

the reasoning on X, e.g. (X-4), or on Y , e.g. (Y-5), and there is the reasoning

given by the relation ≤ or R between X and Y , e.g. (X-4) or (Y-6). Intuitively

speaking, the internal reasoning derives a premise from premises, or a conclusion

from conclusions, e.g. we assume φ∧ψ at x if and only if we assume φ and ψ at x (X-

5). On the other hand, the external reasoning evaluates logical consequences. That

is, we describe a premise world by conclusion worlds, and vise versa. For example, a

166

conclusion world y where we conclude φ∧ψ is described by all premise worlds where

we assume φ and ψ (Y-5). We also say that the conclusion world y is approximated

by the corresponding premise worlds. Analogously, e.g. (X-4), a premise world is

approximated by the corresponding conclusion worlds. See also Proposition 8.3.10.

This is what we call bi-approximation in our framework.

Whereas the external reasoning is fundamental in bi-approximation models, we

also have the internal reasoning as well. One may feel that the internal reasoning

(Y-4) is far from our intuition. However, we can also explain it as follows. Recall the

sequent calculus LK. In LK, we consider a sequent as a pair of a finite list of premises

and a finite list of conclusions, φ1, . . . , φm Z⇒ ψ1, . . . , ψn. The intuitive interpretation

of this sequent is “if we assume all premises φ1, . . . , φm then we conclude one of these

conclusions ψ1, . . . , ψn.” In other words, premises are compulsory and conclusions

are elective. Therefore, it is natural to consider (Y-4) as “φ and ψ are possible

conclusions at y if and only if φ ∨ ψ is a possible conclusion at y.”

Preliminary results for bi-approximation semantics In this paragraph, we

show basic properties on bi-approximation semantics. The following proposition cor-

responds to Hereditary property in Kripke semantics for intuitionistic logic, e.g. [11].

But, it is two-sorted in our case.

Proposition 8.3.9 (Hereditary). Let M be a bi-approximation model and φ a for-

mula. For all elements x, x′ ∈ X and y, y′ ∈ Y , we have

1. if x′ ≤ x and φ is assumed at x, x φ, then it is also assumed at x′, x′ φ,

2. if y ≤ y′ and φ is concluded at y, y φ, then it is also concluded at y′, y′ φ.

167

Proof. Parallel induction. Base cases are straightforward, since every Galois stable

X-set is a downset and every Galois stable Y -set is an upset.

Inductive steps: ∨: Assume y φ ∨ ψ. By definition, y φ and y ψ. By

induction hypothesis, we obtain y′ φ and y′ ψ, hence y′ φ ∨ ψ.

Suppose x φ ∨ ψ. For each y φ ∨ ψ, we have x ≤ y. Because of

x′ ≤ x, we obtain x′ ≤ y, hence x′ φ ∨ ψ.

∧: Assume x φ ∧ ψ. By definition, x φ and x ψ. By induction

hypothesis, we obtain x′ φ and x′ ψ, hence x′ φ ∧ ψ. Suppose

y φ ∧ ψ. For each x φ ∧ ψ, we have x ≤ y. Because of y ≤ y′, we

obtain x ≤ y′, hence y′ φ ∧ ψ.

◦: Assume y φ ◦ ψ. If x1 φ and x2 ψ, then we have R(x1, x2, y).

Since y ≤ y′, by R-transitivity, we obtain R(x1, x2, y
′), hence y′ φ ◦ ψ.

Suppose x φ◦ψ. For each y φ◦ψ, we have x ≤ y. Because of x′ ≤ x,

we obtain x′ ≤ y, hence x′ φ ◦ ψ.

→: Assume x φ→ ψ. For each x1 φ and each y ψ, we have R(x1, x, y).

By R-transitivity, we have R(x1, x
′, y), hence x′ φ → ψ. Suppose

y φ→ ψ. For each x φ→ ψ, we have x ≤ y. Since y ≤ y′, we obtain

x ≤ y′, hence y′ φ→ ψ.

←: Assume x ψ ← φ. For each x2 φ and each y ψ, we have R(x, x2, y).

By R-transitivity, we have R(x′, x2, y), hence x′ ψ ← φ. Suppose

y ψ ← φ. For each x ψ ← φ, we have x ≤ y. Because of y ≤ y′, we

obtain x ≤ y′, hence y′ ψ ← φ.

168

Proposition 8.3.10. For each bi-approximation model M, each x ∈ X, each y ∈ Y ,

and every formula φ, if M, x φ and M, y φ, then x ≤ y. Furthermore, we have

1. M, x φ ⇐⇒ for every y ∈ Y. if M, y φ then x ≤ y,

2. M, y φ ⇐⇒ for every x ∈ X. if M, x φ then x ≤ y.

Remark 8.3.11. Proposition 8.3.10 tells us initial sequents φ Z⇒ φ is valid on every

p-frame F. Intuitively, if φ is assumed at x, then it should be concluded everywhere in

Y above x. Conversely, if φ is concluded at y, then it should be assumed everywhere

in X below y.

As a corollary of Proposition 8.3.10, we obtain the following.

Corollary 8.3.12. For every p-frame F, each doppelgänger valuation V is naturally

extended from the set of all propositional variables Φ to the set of all formulae Λ,

i.e. for each formula φ, we let

1. Ṽ ↓(φ) := {x ∈ X | F, V, x φ},

2. Ṽ↑(φ) := {y ∈ Y | F, V, y φ}.

Λ

Ṽ ↓

��

Ṽ↑

��

Φ

V ↓

xx

V↑

&&
D

λ
,,∼= U

υ

ll

8.4 Bi-approximation, bases and the existential

quantifier

In Kripke semantics, we have a simple interpretation of modal operators ♦ and �

as follows: for each Kripke model M and each possible world w, we let

169

(i) M, w ♦φ ⇐⇒ ∃v ∈ W such that R(w, v) and M, v φ,

(ii) M, w �φ ⇐⇒ ∀v ∈ W. if R(w, v) then M, v φ,

whereas, in bi-approximation models, all logical connectives are interpreted uni-

formly with conjunction, implication and universal quantifier ∀. For example, if we

introduce ♦ on bi-approximation semantics, it is interpreted as follows:

(iii) M, x ♦φ ⇐⇒ ∀y ∈ Y. if M, y ♦φ then x ≤ y,

(iv) M, y ♦φ ⇐⇒ ∀x ∈ X. if M, x φ then R(x, y),

where R is a binary relation on X × Y . This is because it is essential to set up our

interpretation to return Galois stable sets. Note that item (iv) gives the definition

of ♦ on U, and item (iii) copies the same value to D: see also Section 8.5. As we saw

in Corollary 8.3.12, this setting allows us to assign the corresponding Galois stable

X-set and Y-set for every formula between D and U. On the other hand, to evaluate

any formula on bi-approximation models, we encounter the universal quantifier ∀

and an implication in each step, which generates considerable complexity.

However, in this section, we will show that we can reduce the complexity in

specific cases by introducing auxiliary relations for R. In other words, some logical

connectives are translated into other simpler conditions with the existential quan-

tifier, which may not be equivalent to the original conditions anymore. Through

these simpler conditions, we will find the relationship between relational semantics

and bi-approximation semantics. Furthermore, we will also unearth a connection

among bi-approximation, bases and the existential quantifier.

Definition 8.4.1 (Auxiliary relations). For every bi-approximation model M and

the ternary relation R ⊆ X × X × Y , we let the following three ternary relations

170

R◦ ⊆ X ×X ×X, R→ ⊆ X × Y × Y and R← ⊆ Y ×X × Y :

1. R◦(x1, x2, x) ⇐⇒ for every y ∈ Y. if R(x1, x2, y) then x ≤ y,

2. R→(x1, y2, y) ⇐⇒ for every x2 ∈ X. if R(x1, x2, y) then x2 ≤ y2,

3. R←(y1, x2, y) ⇐⇒ for every x1 ∈ X. if R(x1, x2, y) then x1 ≤ y1.

Note that R◦ is related to R↓ in [26], but we also introduce R→ and R← to show

Theorem 8.6.1. Thanks to the tightness conditions in p-frames, see Definition 8.3.3,

we obtain the following.

Lemma 8.4.2. For an arbitrary bi-approximation model M and the ternary relation

R ⊆ X ×X × Y ,

1. R(x1, x2, y) ⇐⇒ for every x ∈ X. if R◦(x1, x2, x) then x ≤ y,

2. R(x1, x2, y) ⇐⇒ for every y2 ∈ Y. if R→(x1, y2, y) then x2 ≤ y2,

3. R(x1, x2, y) ⇐⇒ for every y1 ∈ Y. if R←(y1, x2, y) then x1 ≤ y1.

Proof. Item 1. (⇒). Suppose R◦(x1, x2, x), i.e. if R(x1, x2, y
′) then x ≤ y′ for every

y′ ∈ Y . By assumption, we obtain R(x1, x2, y), which derives x ≤ y.

(⇐). Contraposition. Namely, we claim that there exists x ∈ X such that

R◦(x1, x2, x) and x 6≤ y, under the assumption that R(x1, x2, y) does not hold. Sup-

pose that R(x1, x2, y) does not hold. By ◦-tightness, there exists x ∈ X such that,

R◦(x1, x2, x), and, for each y′ ∈ Y , if x ≤ y′, then R(x1, x2, y
′). Since R(x1, x2, y)

does not hold, we have x 6≤ y. Item 2 and item 3 are analogous to item 1.

Remark 8.4.3. By Definition 8.4.1, we can reformulate R-order, R-identity and

R-associativity in Definition 8.3.3 as follows:

171

R-order: for all x, x′ ∈ X, x′ ≤ x ⇐⇒ ∃o ∈ OX . [R◦(x, o, x′) or R◦(o, x, x′)],

R-identity: for every x ∈ X. [∃o2 ∈ OX . R
◦(x, o2, x) and ∃o1 ∈ OX . R

◦(o1, x, x)],

R-associativity: for all x1, x2, x3, x ∈ X.

∃x′ ∈ X. [R◦(x1, x
′, x) and R◦(x2, x3, x

′)]

⇐⇒ ∃x′ ∈ X. [R◦(x′, x3, x) and R◦(x1, x2, x
′)].

We note that similar conditions for R-order, R-identity and R-associativity can

be found in a relational semantics for distributive substructural logics, e.g. [82,

Definition 6].1 Thanks to the auxiliary relations R◦, R→ and R←, we obtain other

interpretations of formulae on bi-approximation semantics.

Theorem 8.4.4. For every bi-approximation model M and all formulae φ, ψ, we

have

1. y φ ◦ ψ ⇐⇒ ∀x1 ∈ X, y2 ∈ Y. if x1 φ and R→(x1, y2, y) then y2 ψ,

2. y φ ◦ ψ ⇐⇒ ∀x2 ∈ X, y1 ∈ Y. if x2 ψ and R←(y1, x2, y) then y1 φ,

3. x2 φ→ ψ ⇐⇒ ∀x1, x ∈ X. if x1 φ and R◦(x1, x2, x) then x ψ,

4. x2 φ→ ψ ⇐⇒ ∀y1, y ∈ Y. if y ψ and R←(y1, x2, y) then y1 φ,

5. x1 ψ ← φ ⇐⇒ ∀x2, x ∈ X. if x2 φ and R◦(x1, x2, x) then x ψ,

6. x1 ψ ← φ ⇐⇒ ∀y2, y ∈ Y. if y ψ and R→(x1, y2, y) then y2 φ,

7. x φ ◦ ψ ⇐= ∃x1, x2 ∈ X such that x1 φ, x2 ψ and R◦(x1, x2, x),

8. y2 φ→ ψ ⇐= ∃x1 ∈ X, ∃y ∈ Y such that x1 φ, y ψ and R→(x1, y2, y),

1The order of the ternary relation is different. That is, R◦(x1, x2, x) in this chapter is the same
as R◦(x, x1, x2) in [82].

172

9. y1 ψ ← φ⇐= ∃x2 ∈ X, ∃y ∈ Y such that x2 φ, y ψ and R←(y1, x2, y).

Proof. Items 1 - 5 are analogous to item 6. And, item 8 and item 9 are analogous

to item 7.

6. By Proposition 8.3.10, Definition 8.4.1 and Lemma 8.4.2, we can prove as

follows.

x1 ψ ← φ ⇐⇒ ∀x2 ∈ X, ∀y ∈ Y.[x2 φ, y ψ ⇒ R(x1, x2, y)]

⇐⇒ ∀x2 ∈ X, ∀y2, y ∈ Y.[x2 φ, y ψ,R→(x1, y2, y)⇒ x2 ≤ y2]

⇐⇒ ∀y2, y ∈ Y.[y ψ,R→(x1, y2, y)⇒ y2 φ]

7. Suppose that there exist x1, x2 ∈ X such that x1 φ, x2 ψ and R◦(x1, x2, x).

We claim that every element y ∈ Y at which φ ◦ ψ is concluded is above x. If

y φ ◦ψ holds, then, by definition, R(x1, x2, y) holds. By Definition 8.4.1, we

also obtain that x ≤ y′, whenever R(x1, x2, y
′) holds for every y′ ∈ Y . Hence,

x ≤ y holds, which derives x φ ◦ ψ.

In Theorem 8.4.4, item 3 and item 5 correspond to the normal interpretations in

Kripke semantics. The same results for item 3 and item 5 are obtained by generalized

Kripke frames [26]. Moreover, item 7 looks similar to the interpretation on ternary-

relational semantics of distributive substructural logics. Item 7 must be closely

related to the discussion in [26, p.264]. However, unlike what happens in the setting

of generalized Kripke frames, the conditions of item 7, item 8 and item 9 are more

beneficial to evaluate formulae in our framework. More precisely, the auxiliary

relations R◦, R→ and R← provide bases of V (φ ◦ ψ), V (φ→ ψ) and V (ψ ← φ): see

Theorem 8.4.6 and Proposition 8.4.7.

173

Related to Theorem 8.4.4, we also obtain the following results for ∨ and ∧.

Theorem 8.4.5. Let M be an arbitrary bi-approximation model, φ, ψ be all formu-

lae. For each x ∈ X and each y ∈ Y ,

1. M, x φ ∨ ψ ⇐= M, x φ or M, x ψ,

2. M, y φ ∧ ψ ⇐= M, y φ or M, y ψ.

Proof. Item 1. Suppose that x φ or x ψ. For an arbitrary y ∈ Y , if y φ ∨ ψ,

by definition, y φ and y ψ. By Proposition 8.3.10, x φ or x ψ, either way,

x ≤ y holds. Therefore, x φ ∨ ψ. Item 2 is analogous to item 1.

Items 7 - 9 in Theorem 8.4.4 and Theorem 8.4.5 indicate that, when we reason

about formulae with the existential quantifier and disjunction, we may not accumu-

late all worlds in X (in Y) where the formulae are assumed (concluded). However,

as we will see below, we can still collect essential worlds in X (in Y) to gather

all worlds in Y (in X) where the formulae are concluded (assumed): see Theorem

8.4.6. Hereinafter, to discuss the connection between the existential quantifier and

the bi-approximation clearly, we introduce an auxiliary relation bs of as follows

(the subscript bs refers to bases, see Theorem 8.4.6):

1. x bs φ ∨ ψ ⇐⇒ x bs φ or x bs ψ,

2. y bs φ ∧ ψ ⇐⇒ y bs φ or y bs ψ,

3. x bs φ ◦ ψ ⇐⇒ ∃x1, x2 ∈ X s.t. x1 bs φ, x2 bs ψ and R◦(x1, x2, x),

4. y2 bs φ→ ψ ⇐⇒ ∃x1 ∈ X, ∃y ∈ Y s.t. x1 bs φ, y bs ψ and R→(x1, y2, y),

5. y1 bs ψ ← φ ⇐⇒ ∃x2 ∈ X, ∃y ∈ Y s.t. x2 bs φ, y bs ψ and R←(y1, x2, y).

174

6. x bs φ ⇐⇒ x φ, whenever φ is a propositional variable or a constant, or

the outermost connective of φ is either ∧, → or ←,

7. y bs ψ ⇐⇒ y ψ, whenever ψ is a propositional variable or a constant, or

the outermost connective of ψ is either ∨ or ◦.

By parallel induction, we obtain the following straightforwardly. For every formula

φ, each x ∈ X and each y ∈ Y , we have

1. if x bs φ, then x φ,

2. if y bs φ, then y φ.

Furthermore, we also obtain the following.

Theorem 8.4.6. Let M be an arbitrary bi-approximation model and φ each formula.

Then, we have the following (recall Ṽ in Corollary 8.3.12 and basis in Definition

8.3.2):

1. the set {x ∈ X |M, x bs φ} is a basis of Ṽ↑(φ),

2. the set {y ∈ Y |M, y bs φ} is a basis of Ṽ ↓(φ).

Proof. Parallel induction. Base cases are trivial.

1. υ({y ∈ Y | y bs φ ∧ ψ}) = Ṽ ↓(φ ∧ ψ). (⊆). For each x, suppose that x ≤ y,

if y bs φ or y bs ψ for every y. It is equivalent to both x ≤ y if y bs φ and

x ≤ y if y bs ψ. By induction hypothesis, we have x φ and x ψ, hence

x φ ∧ ψ. (⊇). trivial.

2. λ({x ∈ X | x bs φ ◦ ψ}) = Ṽ↑(φ ◦ ψ). For each y ∈ Y , by Theorem 8.4.4,

y φ ◦ ψ ⇐⇒ ∀x1, x2.[x1 bs φ, x2 bs ψ ⇒ R(x1, x2, y)]

175

⇐⇒ ∀x1, x2, y2.[x1 bs φ,R
→(x1, y2, y)⇒ (x2 bs ψ ⇒ x2 ≤ y2)]

⇐⇒ ∀x1, x′2 ∈ X.[x1 bs φ, x
′
2 ψ ⇒ R(x1, x

′
2, y)].

Note that x2 bs ψ changes to x′2 ψ. Repeat the same replacement for x1.

The other cases are analogous.

Theorem 8.4.6 tells us that, in bi-approximation semantics, bases are (partly)

inductively characterised by the existential quantifier and disjunction: see also ∪-

terms, ∩-terms, pseudo-∪-terms and pseudo-∩-terms in Section 3.3. Moreover, this

property works beneficially together with the following proposition: see Remark

8.6.2.

Proposition 8.4.7. Let M be an arbitrary bi-approximation model and φ, ψ all

formulae. Then, we have

M φ Z⇒ ψ ⇐⇒ ∀x ∈ X, ∀y ∈ Y. if M, x bs φ and M, y bs ψ, then x ≤ y.

Proof. (⇒). Since x φ (y ψ) whenever x bs φ (y bs ψ), this is trivial. (⇐).

Let x be an arbitrary element where φ is premised, y an arbitrary element where ψ

is concluded. By our assumption, for an arbitrary xB bs φ, we have xB ≤ yB for

every yB bs ψ. By Theorem 8.4.6, we obtain xB ψ, hence xB ≤ y (Proposition

8.3.10). As xB is arbitrary, by Theorem 8.4.6, y φ also holds. Therefore, x ≤ y

(Proposition 8.3.10).

8.5 The Representation theorem

In this section, to prove Theorem 8.6.3, we show that FL-algebras can be represented

by p-frames. By analogy to the situation in modal logic (e.g. [5]), we will show that

176

the dual frames of FL-algebras are p-frames and the dual algebras of p-frames are

FL-algebras. Moreover, the validity relations between p-frames and FL-algebras are

also proved as in the case of modal logic: see Theorem 8.5.3 and Theorem 8.5.5.

Dual algebra of p-frame For each p-frame F, we construct two isomorphic FL-

algebras in parallel based on the isomorphic posets D and U. Namely, we define the

operations ∨, ∧, ∗, \ and /, and the constants 1 and 0 on both D and U, as they

are isomorphic FL-algebras, i.e. 〈D,∨,∧, ∗, \, /, 1, 0〉 ∼= 〈U,∨,∧, ∗, \, /, 1, 0〉.

Since D and U are isomorphic through the Galois connection λ a υ, we have

two natural ways to define each operation, in general. That is, an operation on U

is approximated from below, and take the copy to the other side via υ : U → D.

Or, an operation on D is approximated from above, and take the copy to the other

side via λ : D→ U. In our case, the additive operations ∨ and ∗ are defined on U,

approximated from below, and the multiplicative operations ∧, \ and / are defined

on D, approximated from above. Otherwise, we cannot prove the residuality (see

[31] and [32]).

For each p-frame F = 〈X, Y,≤, R,OX , OY , NX , NY 〉, we define ∨, ∧, ∗, \ and /

are defined as follows: on D, for all α↓, β↓ ∈ D,

D-1: α↓ ∨ β↓ := υ(α↑ ∨ β↑),

D-2: α↓ ∧ β↓ := α↓ ∩ β↓,

D-3: α↓ ∗ β↓ := υ(α↑ ∗ β↑),

D-4: α↓\β↓ := {x2 ∈ X | ∀x1 ∈ α↓,∀y ∈ β↑. R(x1, x2, y)},

D-5: β↓/α↓ := {x1 ∈ X | ∀x2 ∈ α↓,∀y ∈ β↑. R(x1, x2, y)}.

177

On U, for all α↑, β↑ ∈ U,

U-1: α↑ ∨ β↑ := α↑ ∩ β↑,

U-2: α↑ ∧ β↑ := λ(α↓ ∧ β↓),

U-3: α↑ ∗ β↑ := {y ∈ Y | ∀x1 ∈ α↓,∀x2 ∈ β↓. R(x1, x2, y)},

U-4: α↑\β↑ := λ(α↓\β↓),

U-5: β↑/α↑ := λ(β↓/α↓).

Based on these operations, we can show the following.

Theorem 8.5.1. Both 〈D,∨,∧, ∗, \, /, OX , NX〉 and 〈U,∨,∧, ∗, \, /, OY , NY 〉 are

FL-algebras, and they are isomorphic.

Proof. Firstly, we need to check well-definedness of each operation. Namely, it is

necessary to show that every value returns a Galois stable set. The copying parts

are trivial, hence we need to check the following definition parts.

∨: We claim that α↑ ∩ β↑ = λ(α↓ ∪ β↓). (⊆). For each y ∈ α↑ ∩ β↑, since y ∈ α↑

and y ∈ β↑, x ≤ y for each x ∈ α↓ ∪ β↓. (⊇). If y ∈ λ(α↓ ∪ β↓), for arbitrary

xa ∈ α↓ and xb ∈ β↓, we have xa ≤ y and xb ≤ y, hence y ∈ α↑ and y ∈ β↑.

∧: We claim that α↓ ∩ β↓ = υ(α↑ ∪ β↑). (⊆). For each x ∈ α↓ ∩ β↓, since x ∈ α↓

and x ∈ β↓, x ≤ y for each y ∈ α↑ ∪ β↑. (⊇). If x ∈ υ(α↑ ∪ β↑), for arbitrary

ya ∈ α↑ and yb ∈ β↑, we have x ≤ ya and x ≤ yb, hence x ∈ α↓ and x ∈ β↓.

∗: We claim that α↑ ∗ β↑ = λ({x ∈ X | x1 ∈ α↓, x2 ∈ β↓, R◦(x1, x2, x)}).

α↑ ∗ β↑ = {y ∈ Y | ∀x1 ∈ α↓,∀x2 ∈ β↓, R(x1, x2, y)}

= {y ∈ Y | ∀x ∈ X, ∀x1 ∈ α↓,∀x2 ∈ β↓, R◦(x1, x2, x)⇒ x ≤ y}

= λ({x ∈ X | x1 ∈ α↓, x2 ∈ β↓, R◦(x1, x2, x)})

178

\: We claim that α↓\β↓ = υ({y2 ∈ Y | x1 ∈ α↓, y ∈ β↑, R→(x1, y2, y)}).

α↓\β↓ = {x2 ∈ X | ∀x1 ∈ α↓,∀y ∈ β↑, R(x1, x2, y)}

= {x2 ∈ X | ∀y2 ∈ Y, ∀x1 ∈ α↓,∀y ∈ β↑, R→(x1, y2, y)⇒ x2 ≤ y2}

= υ({y2 ∈ Y | x1 ∈ α↓, y ∈ β↑, R→(x1, y2, y)})

/ is analogous to \.

Therefore, all operations are well-defined. Furthermore, these two algebras are iso-

morphic by definition. Next, we prove they are FL-algebras.

〈D,∨,∧〉 and 〈U,∨,∧〉 are lattices. For all α, β, γ, we claim that2

α ≤ γ and β ≤ γ ⇐⇒ α ∨ β ≤ γ, (8.1)

γ ≤ α and γ ≤ β ⇐⇒ γ ≤ α ∧ β. (8.2)

(⇒) of the condition (8.1). For each y ∈ γ↑, since α↑ ⊇ γ↑ and β↑ ⊇ γ↑, we have

y ∈ α↑ and y ∈ β↑, hence y ∈ α↑ ∩ β↑. (⇐) of the condition (8.1). For each y ∈ γ↑,

since α↑ ∩ β↑ ⊇ γ↑, we obtain y ∈ α↑ and y ∈ β↑. The condition (8.2) is analogous.

〈D, ∗, OX〉 and 〈U, ∗, OY 〉 are monoids. For all α, β, γ, we claim that

α ∗ (β ∗ γ) = (α ∗ β) ∗ γ, (8.3)

α ∗O = α = O ∗ α, (8.4)

where O is either OX or OY depending on the domain. The condition (8.3). Let y be

an arbitrary element in α↑ ∗ (β↑ ∗ γ↑). By Theorem 8.4.6, for all x1, x2, x3, x
′, x ∈ X,

if x1 ∈ α↓, x2 ∈ β↓, x3 ∈ γ↓, R◦(x1, x′, x) and R◦(x2, x3, x
′), then x ≤ y holds. By R-

2Recall that the order ≤ is ⊆ on D and ⊇ on U.

179

associativity (see Remark 8.4.3), the condition is equivalent to that, for each element

x, for all x′′ ∈ X, if x1 ∈ α↓, x2 ∈ β↓, x3 ∈ γ↓, R◦(x′′, x3, x) and R◦(x1, x2, x
′′), then

x ≤ y, which concludes y ∈ (α↑ ∗ β↑) ∗ γ↑.

The left equality of the condition (8.4). (⊆). For each x1 ∈ α↓, by R-identity,

there exists o2 ∈ OX such that R◦(x1, o2, x1). By definition, for every y′ ∈ Y ,

if R(x1, o2, y
′), then x1 ≤ y′ holds. Now, for every y ∈ α↑ ∗ OY , by definition,

R(x1, o2, y) holds, hence x1 ≤ y. Since x1 is arbitrary in α↓, which derives y ∈ α↑.

(⊇). For arbitrary x ∈ α↓ and o ∈ OX , by ◦-tightness, there exists x′ ∈ X such

that R◦(x, o, x′) and x′ ≤ y′ ⇒ R(x, o, y′) for each y′ ∈ Y . For every y ∈ α↑, we

have x ≤ y, because of x ∈ α↓. Furthermore, by R-order, x′ ≤ x holds. Since ≤ is

transitive, we obtain x′ ≤ y, hence R(x, o, y). The right equality of the condition

(8.4) is analogous.

Finally, we will show the residuality: for all α, β, γ,

α ∗ β ≤ γ ⇐⇒ β ≤ α\γ ⇐⇒ α ≤ γ/β. (8.5)

(⇒) of the first equivalence in the condition (8.5). Let x2 be an arbitrary element

in β↓. For arbitrary x1 ∈ α↓ and y ∈ γ↑, since α↑ ∗ β↑ ⊇ γ↑, we have R(x1, x2, y).

Hence, x2 ∈ α↓\γ↓. (⇐) of the first equivalence in the condition (8.5). Let y be an

arbitrary element in γ↑. For arbitrary x1 ∈ α↓ and x2 ∈ β↓, since β↓ ⊆ α↓\, γ↓, we

obtain R(x1, x2, y). Hence, y ∈ α↑ ∗ β↑. The other equivalence is analogous.

By Theorem 8.5.1, we naturally define the dual FL-algebras of p-frames.

Definition 8.5.2 (Dual algebra). Let F be a p-frame. The dual algebra of F is an

algebra F+ = 〈A,∨,∧, ∗, \, /, 1, 0〉 which is isomorphic to 〈D,∨,∧, ∗, \, /, OX , NX〉

180

and 〈U,∨,∧, ∗, \, /, OY , NY 〉.

Along with the definition of dual algebras, we obtain the equivalence of validity,

as usual.

Theorem 8.5.3. For every p-frame F and each sequent Γ Z⇒ ϕ, the sequent Γ Z⇒ ϕ

is valid on F if and only if it is valid on the dual algebra F+.

F Γ Z⇒ ϕ ⇐⇒ F+ |= Γ ≤ ϕ

Dual frame of FL-algebras Here we construct the dual frames of FL-algebras.

We mention that the dual frame corresponds to the intermediate level introduced in

[33] but see also [18] and [84].

Let A = 〈A,∨,∧, ∗, \, /, 1, 0〉 be a FL-algebra. The set of all filters and the set

of all ideals are denoted by F and I. On F ∪ I, we define a binary relation v as

follows: for all filters F, F1, F2 ∈ F and all ideals I, I1, I2 ∈ I,

1. F1 v F2 ⇐⇒ F1 ⊇ F2,

2. F v I ⇐⇒ F ∩ I 6= ∅,

3. I v F ⇐⇒ ∀a ∈ I,∀b ∈ F. a ≤ b,

4. I1 v I2 ⇐⇒ I1 ⊆ I2.

Next, on the triple 〈F , I,v〉, we build a ternary relation R, and subsets OF , OI ,

NF and NI as follows: for all F1, F2 ∈ F and each I ∈ I,

1. R(F1, F2, I) ⇐⇒ F1 ∗ F2 v I,

where F1 ∗ F2 := {a ∈ A | ∃f1 ∈ F1,∃f2 ∈ F2. f1 ∗ f2 ≤ a},

181

2. OF is the set of all filters containing 1,

3. OI is the set of all ideals containing 1,

4. NF is the set of all filters containing 0,

5. NI is the set of all ideals containing 0.

Then, the 8-tuple A+ = 〈F , I,v, R,OF , OI , NF , NI〉 is the dual frame of A. To

prove the following theorems, we here mention that, for all F, F1, F2 ∈ F and each

I, I1, I2 ∈ I,

1. F1 ∗ F2 is a filter,

2. F\I := {a ∈ A | ∃f ∈ F, ∃i ∈ I. a ≤ f\i} is an ideal,

3. I/F := {a ∈ A | ∃i ∈ I,∃f ∈ F. a ≤ i/f} is an ideal.

4. R◦(F1, F2, F) ⇐⇒ F v F1 ∗ F2,

5. R→(F1, I2, I) ⇐⇒ F1\I v I2,

6. R←(I1, F2, I) ⇐⇒ I/F2 v I1.

Then, we can prove the following.

Theorem 8.5.4. For any FL-algebra A, the dual frame A+ is a p-frame.

Proof. By definition, 〈F , I,v〉 is a polarity.

R-order: Let F, F ′ be arbitrary filters. Suppose F ′ v F . Since F = F ∗ ↑1, we

obtain F ′ v F ∗↑1. Conversely, if F ′ v F ∗O or F ′ v O ∗F for some O ∈ OF ,

because 1 ∈ O, we obtain F ∗O v F or O ∗ F v F , hence F ′ v F .

182

R-identity: Let ↑1 be the principal filter generated by 1. For each filter F , we have

F ∗ ↑1 = ↑1 ∗ F = F , hence R◦(F, ↑1, F) and R◦(↑1, F, F).

R-transitivity: For all F1, F
′
1, F2, F

′
2 ∈ F and all I, I ′ ∈ I, if F ′1 v F1, F

′
2 v F2,

I v I ′ and F1 ∗ F2 v I, then there exist f1 ∈ F1, f2 ∈ F2 and i ∈ I such that

f1 ∗ f2 ≤ i. Since f1 ∈ F ′1, f2 ∈ F ′2 and i ∈ I ′, we also have F ′1 ∗ F ′2 v I ′.

R-associativity: For all F1, F2, F3 ∈ F , we have F1 ∗ (F2 ∗ F3) = (F1 ∗ F2) ∗ F3,

by the associativity of ∗ on A. If F v F1 ∗ F ′ and F ′ v F2 ∗ F3, we obtain

F v F1 ∗ (F2 ∗F3) = (F1 ∗F2) ∗F3. Let F ′′ = F1 ∗F2. Then, F v F ′′ ∗F3 and

F ′′ v F1 ∗ F2 hold.

O-isom (N-isom): For each F ∈ OF (NF) and each I ∈ OI (NI), they have 1 (0)

in common.

◦-tightness: For all F1, F2 ∈ F , it is trivially true that R(F1, F2, I) if and only if

F1 ∗ F2 v I for every I ∈ I. The other is analogous.

→-tightness: For each F1 ∈ F and each I ∈ I, by definition, for each F2 ∈ F ,

R(F1, F2, I) if and only if F2 v F1\I.

←-tightness: For each F2 ∈ F and each I ∈ I, by definition, for each F1 ∈ F ,

R(F1, F2, I) if and only if F1 v I/F2.

We prove the validity relationship between FL-algebras and the dual p-frames.

Theorem 8.5.5. Let A be every FL-algebra and Γ Z⇒ ϕ each sequent. If the sequent

183

is valid on the dual frame A+, it is also valid on the original FL-algebra A.

A |= Γ ≤ ϕ⇐= A+ Γ Z⇒ ϕ

Proof. Let f : Φ → A be an arbitrary assignment. We also denote the normally

extended assignment f : Λ→ A by f . Then, we define a doppelgänger valuation V

based on f as follows: for each proposition p ∈ Φ,

1. V ↓(p) := {F ∈ F | f(p) ∈ F} = υ({↓f(p)}),

2. V↑(p) := {I ∈ I | f(p) ∈ I} = λ({↑f(p)}).

We claim that f(φ) ∈ F ⇐⇒ A+, V, F φ and f(φ) ∈ I ⇐⇒ A+, V, I φ,

for each filter F , each ideal I and each formula φ. Base cases are trivial. Inductive

steps. For each filter F ∈ F and each ideal I ∈ I,

∨: Suppose that f(φ) ∨ f(ψ) = f(φ ∨ ψ) ∈ I. It is equivalent to f(φ) ∈ I and

f(ψ) ∈ I. By induction hypothesis, it is also equivalent to I φ and I ψ,

which, by definition, I φ ∨ ψ.

If f(φ ∨ ψ) ∈ F , then F has non-empty intersection with all ideals containing

f(φ ∨ ψ). We obtain F φ ∨ ψ, because every ideal I satisfying I φ ∨ ψ

contains f(φ ∨ ψ). Conversely, if F φ ∨ ψ, then it must have non-empty

intersection with ↓f(φ ∨ ψ) as well. Therefore, f(φ ∨ ψ) ∈ F .

∧: Suppose that f(φ) ∧ f(ψ) = f(φ ∧ ψ) ∈ F . It is equivalent to f(φ) ∈ F and

f(ψ) ∈ F . By induction hypothesis, it is also equivalent to F φ and F ψ,

which F φ ∧ ψ by definition.

If f(φ ∧ ψ) ∈ I, then I has non-empty intersection with all filters containing

184

f(φ ∧ ψ). We obtain I φ ∧ ψ, because every filter F satisfying F φ ∧ ψ

contains f(φ ∧ ψ). Conversely, if I φ ∧ ψ, then it must have non-empty

intersection with ↑f(φ ∧ ψ) as well. Therefore, f(φ ∧ ψ) ∈ I.

◦: Suppose that f(φ) ∗ f(ψ) = f(φ ◦ ψ) ∈ I. For any F1, F2 ∈ F , if F1 φ and

F2 ψ, by induction hypothesis, f(φ) ∈ F1 and f(ψ) ∈ F2. Therefore, we have

f(φ) ∗ f(ψ) ∈ F1 ∗ F2, which derives F1 ∗ F2 v I, i.e. R(F1, F2, I). Conversely,

assume that I φ ◦ ψ. By definition, for arbitrary F1 φ and F2 ψ,

F1 ∗ F2 v I holds. Then, ↑f(φ) ∗ ↑f(ψ) v I must hold, hence f(φ ◦ ψ) ∈ I.

If f(φ ◦ ψ) ∈ F , then F has non-empty intersection with all ideals containing

f(φ ◦ ψ). Since every ideal I satisfying I φ ◦ ψ contains f(φ ◦ ψ), we have

F φ ◦ψ. Conversely, if F φ ◦ψ, then it must have non-empty intersection

with ↓f(φ ◦ ψ) as well. Therefore, f(φ ◦ ψ) ∈ F .

→: Suppose that f(φ)\f(ψ) = f(φ → ψ) ∈ F . For arbitrary F ′ ∈ F and I ∈ I,

if F ′ φ and I ψ, by induction hypothesis, f(φ) ∈ F ′ and f(ψ) ∈ I,

hence f(φ)\f(ψ) ∈ F ′\I. By the residuality on A, we obtain F ′ ∗ F v I,

i.e. R(F ′, F, I) holds. Conversely, assume that F φ→ ψ. By definition, for

arbitrary F ′ φ and I ψ, we have F ′∗F v I. Then, ↑f(φ)∗F v ↓f(ψ) must

hold as well. So, there exists x ∈ F such that x ≤ f(φ)\f(ψ) = f(φ → ψ),

hence f(φ→ ψ) ∈ F .

If f(φ→ ψ) ∈ I, then I has non-empty intersection with all filters containing

f(φ → ψ). Since every filter F satisfying F φ → ψ contains f(φ → ψ), we

have I φ → ψ. Conversely, if I φ → ψ, then it must have non-empty

intersection with ↑f(φ→ ψ) as well. Therefore, f(φ→ ψ) ∈ I.

185

←: Suppose that f(ψ)/f(φ) = f(ψ ← φ) ∈ F . For arbitrary F ′ ∈ F and I ∈ I,

if F ′ φ and I ψ, by induction hypothesis, f(φ) ∈ F ′ and f(ψ) ∈ I,

hence f(ψ)/f(φ) ∈ I/F ′. By the residuality on A, we obtain F ∗ F ′ v I,

i.e. R(F, F ′, I) holds. Conversely, assume that F ψ ← φ. By definition, for

arbitrary F ′ φ and I ψ, we have F ∗F ′ v I. Then, F ∗↑f(φ) v ↓f(ψ) must

hold as well. So, there exists x ∈ F such that x ≤ f(ψ)/f(φ) = f(ψ ← φ),

hence f(ψ ← φ) ∈ F .

If f(ψ ← φ) ∈ I, then I has non-empty intersection with all filters containing

f(ψ ← φ). Since every filter F satisfying F ψ ← φ contains f(ψ ← φ), we

have I ψ ← φ. Conversely, if I ψ ← φ, then it must have non-empty

intersection with ↑f(ψ ← φ) as well. Therefore, f(ψ ← φ) ∈ F .

Finally, we finish up the proof. Assume Γ Z⇒ ϕ is not valid on A. Then, there

exists an assignment f : Φ → A such that f(Γ) 6≤ f(ϕ). We have that ↑f(Γ) ∈ F

and ↓f(ϕ) ∈ I. Moreover, we also have A+, V, ↑f(Γ) Γ and A+, V, ↓f(ϕ) ϕ.

However, since f(Γ) 6≤ f(ϕ), ↑f(Γ) 6v ↓f(ϕ). Therefore, A+ 6 Γ Z⇒ ϕ.

8.6 Soundness and Completeness

In this section, we will show that p-frames are a sound and complete semantics for

the substructural logic FL. Unlike what happens in the setting of relational seman-

tics for distributive substructural logics, soundness is not straightforward. This is

because bi-approximation models evaluate formulae through the Galois connection

λ a υ. To avoid this complex argument, we can use the relationship between the

bi-approximation and the bases : recall Proposition 8.4.7.

186

Theorem 8.6.1 (Soundness). Let Γ Z⇒ ϕ be an arbitrary sequent. If the sequent

Γ Z⇒ ϕ is derivable in FL, it is valid on every p-frame F.

Proof. Let F be an arbitrary p-frame and V an arbitrary doppelgänger valuation

on F. On the bi-approximation model M = 〈F, V 〉, all initial sequents are true, by

Proposition 8.3.10. Note that we use Proposition 8.4.7 to prove the inductive steps.

We mention that (fw) and (◦ Z⇒) are trivial, and (Z⇒ ∨2), (∧2 Z⇒), (Z⇒→) and (←Z⇒)

are analogous to (Z⇒ ∨1), (∧1 Z⇒), (Z⇒←) and (→Z⇒), respectively.

(cut): For arbitrary x ∈ X and y ∈ Y , let M, x bs Σ ◦ Γ ◦ Π and M, y bs ϕ.

Then, there exist x1, x2, x3, x
′ ∈ X such that x1 bs Σ, x2 bs Γ, x3 bs Π,

R◦(x1, x
′, x) and R◦(x2, x3, x

′). By induction hypothesis, Γ Z⇒ φ is true on M.

By Proposition 8.3.10, we obtain that x2 φ, hence x Σ ◦ φ ◦Π. Again, by

induction hypothesis, M Σ ◦ φ ◦ Π Z⇒ ϕ, which concludes x ≤ y.

(tw): For arbitrary x ∈ X and y ∈ Y , let M, x bs Γ◦t◦∆ and y bs ϕ. Then, there

exist x1, x2, x3, x
′ ∈ X such that x1 bs Γ, x2 bs t, x3 bs ∆, R◦(x1, x

′, x)

and R◦(x2, x3, x
′). Because x2 ∈ OX and R◦(x2, x3, x

′), we obtain x′ ≤ x3

by R-order. By Hereditary (Proposition 8.3.9), we also have x′ ∆, hence

x Γ◦∆ holds. Finally, by induction hypothesis, M Γ◦∆ Z⇒ ϕ. Therefore,

x ≤ y.

(∨ Z⇒): For arbitrary x ∈ X and y ∈ Y , let x bs Γ ◦ (φ ∨ ψ) ◦∆ and y bs ϕ. By

inductive hypothesis, we have M Γ ◦ φ ◦ ∆ Z⇒ ϕ and M Γ ◦ ψ ◦ ∆ Z⇒ ϕ.

So, we obtain y Γ ◦φ ◦∆ and y Γ ◦ψ ◦∆. With repeating Definition 8.4.1

and Lemma 8.4.2, we obtain the following:

y Γ ◦ φ ◦∆ ⇐⇒ ∀y′, y2 ∈ Y, ∀x1, x3 ∈ X.

187

x1 Γ, x3 ∆, R←(y2, x3, y
′), R→(x1, y

′, y)⇒ y2 φ,

y Γ ◦ ψ ◦∆ ⇐⇒ ∀y′, y2 ∈ Y, ∀x1, x3 ∈ X.

x1 Γ, x3 ∆, R←(y2, x3, y
′), R→(x1, y

′, y)⇒ y2 ψ,

y Γ ◦ (φ ∨ ψ) ◦∆ ⇐⇒ ∀y′, y2 ∈ Y, ∀x1, x3 ∈ X.

x1 Γ, x3 ∆, R←(y2, x3, y
′), R→(x1, y

′, y)⇒ y2 φ∨ψ.

Therefore, we obtain y Γ ◦ (φ ∨ ψ) ◦∆, hence x ≤ y.

(Z⇒ ∨1): For arbitrary x ∈ X and y ∈ Y , let x bs Γ and y φ ∨ ψ. By definition,

y φ. By induction hypothesis, we have M Γ Z⇒ φ, hence x ≤ y.

(∧1 Z⇒): For arbitrary x ∈ X and y ∈ Y , let x bs Γ ◦ (φ ∧ ψ) ◦ ∆ and y bs ϕ.

Then, there exist x1, x2, x3, x
′ ∈ X such that x1 bs Γ, x2 φ ∧ ψ, x3 bs ∆,

R◦(x1, x
′, x) and R◦(x2, x3, x

′). By definition, we also have x2 φ, hence

x Γ ◦ φ ◦∆. By induction hypothesis, M Γ ◦ φ ◦∆ Z⇒ ϕ, hence x ≤ y.

(Z⇒ ∧): For arbitrary x ∈ X and y ∈ Y , let x bs Γ and y bs φ ∧ ψ. By inductive

hypothesis, we have M Γ Z⇒ φ and M Γ Z⇒ ψ. Therefore, we obtain that

x φ and x ψ, which derives x φ ∧ ψ. Then, x ≤ y.

(Z⇒ ◦): For arbitrary x ∈ X and y ∈ Y , let x bs Γ ◦ Σ and y φ ◦ ψ. Then, there

exist x1, x2 ∈ X such that x1 bs Γ, x2 bs Σ and R◦(x1, x2, x). By inductive

hypothesis, we have M Γ Z⇒ φ and M Σ Z⇒ ψ. We obtain x1 φ and

x2 ψ. By definition, since y φ◦ψ, R(x1, x2, y) holds. Because of Definition

8.4.1, we conclude x ≤ y.

(→Z⇒): For arbitrary x ∈ X and y ∈ Y , let x bs Σ ◦ Γ ◦ (φ→ ψ) ◦Π and y bs ϕ.

By inductive hypothesis, we have M Σ ◦ ψ ◦ Π Z⇒ ϕ, hence y Σ ◦ ψ ◦ Π.

Moreover, there exist x1, x2, x3, x4, x
′, x′′ ∈ X such that x1 bs Σ, x2 bs Γ,

188

x3 bs φ → ψ, x4 bs Π, R◦(x2, x3, x
′), R◦(x′, x4, x

′′) and R◦(x1, x
′′, x). By

inductive hypothesis, M Γ Z⇒ φ, hence x2 φ. Furthermore, because x2 φ

and x3 φ→ ψ, we have that, for each x′′′ ∈ X, if R◦(x2, x3, x
′′′) holds, then

x′′′ ψ (Theorem 8.4.4). Because of R◦(x2, x3, x
′), we obtain x′ ψ. Hence,

we derive x Σ ◦ ψ ◦ Π. Therefore, x ≤ y.

(Z⇒←): For arbitrary x ∈ X and y ∈ Y , let x bs Γ and y bs ψ ← φ. Then, there

exist x2 ∈ X and y′ ∈ Y such that x2 bs φ, y′ bs ψ and R←(y, x2, y
′). By

induction hypothesis, we have M Γ ◦ φ Z⇒ ψ, hence y′ Γ ◦ φ. By Theorem

8.4.4, for every y′′ ∈ Y , if R←(y′′, x2, y
′), then y′′ Γ. Finally, since x Γ, we

conclude x ≤ y.

Remark 8.6.2. We mention that, in the proof of Theorem 8.6.1, we effectively

use the bi-approximation, bases and the existential quantifier, i.e. Theorem 8.4.4,

Theorem 8.4.6 and Proposition 8.4.7, to stay away from taking the Galois connection.

Theorem 8.6.3 (Completeness). Let Γ Z⇒ ϕ be an arbitrary sequent. If the sequent

Γ Z⇒ ϕ is valid on every p-frame F, then it is derivable in FL.

Proof. Let L be Lindenbaum-Tarski algebra of substructural logic FL. If Γ Z⇒ ϕ is

not derivable in FL, then Γ Z⇒ ϕ is not valid on L. By Theorem 8.5.4, the dual

frame L+ of L is a p-frame. Furthermore, by theorem 8.5.5, the sequent Γ Z⇒ ϕ is

not valid on L+.

Therefore, combined with the canonicity results for substructural logic in Section

4.1, we obtain the following.

189

Main Theorem 8.6.4 (Sahlqvist-type completeness for substructural logic). Let

Ω be a set of sequents which have consistent variable occurrence (see Main Theorem

3.3.22 and Section 4.1). A substructural logic extended by Ω is complete with respect

to a class of p-frames.

8.7 Conclusive remarks on bi-approximation se-

mantics

We introduced bi-approximation semantics to describe Ghilardi and Meloni’s parallel

computation on the intermediate level of the canonical extension of lattice expan-

sions. Unlike what happens in the setting of standard relational semantics, like

Kripke semantics or Routley-Meyer semantics, bi-approximation semantics is two-

sorted. However, we claim that this is a natural framework for the study of logic,

because logic is a priori two-sorted: premises and conclusions. In other words, logic

is the study of consequence relations.

From this point of view, bi-approximation semantics is a reasonable relational-

type semantics for lattice-based logics. This framework could be valuable when we

think about resource sensitive logics, since there we explicitly distinguish premises

from conclusions. Even over distributive lattice-based logics like intuitionistic logic,

our two-sorted semantics may be worthwhile. For example, the first-order definabil-

ity for intuitionistic modal logic on Kripke semantics is still open (see the footnote

in [33, p.2]), whereas the first-order definability on bi-approximation semantics is

effectively solved [80].

190

Chapter 9

Summary

How can we present logical reasonings, and compute them? In this dissertation, we

have considered ordered algebraic structures, i.e. lattice expansions and poset expan-

sions, as mathematical presentations of logical reasonings, and studied the canonical

representation theorems of them, which provide the right framework between logi-

cal calculi and space-based semantics, e.g. operational semantics and denotational

semantics in computer science. As a summary, we list the results in this dissertation

and possible future work in this direction.

9.1 The results in this dissertation

In this dissertation, we have

Main Theorem 3.3.22: generalised

• generalised Ghilardi and Meloni’s canonicity methodology from Heyting alge-

bra with unary modalities to lattice expansions: see Main Theorem 3.3.22,

• applied our canonicity method to non-classical logics: substructural logic, rel-

191

evant modal logics and distributive modal logic: see Chapter 4,

• compared our canonicity results with a Sahlqvist theorem for distributive

modal logic in [30]: see Section 4.4,

• brought up a problem to extend our canonicity technique for poset expansions:

see Section 5.3,

• discussed a way to carefully remove the problematic cases and proved canon-

icity results for poset expansions: see Section 5.4,

• described the canonical extension of poset expansions consisting of ε⊥-additive

operations, ε>-multiplicative operations, diamonds ♦, boxes �, adjoint pairs

and constant, and the canonical extension of bounded poset expansions con-

sisting of ε-join preserving operations, ε-meet preserving operations, ε-additive

operations, ε-multiplicative operations, adjoint pairs and constants: see Sec-

tion 5.5, and syntactically characterised canonical inequalities: see Main

Theorem 5.5.25,

• applied the canonicity results for poset expansions to residuated algebras in

[18] and illustrated that our results still account for many canonical inequali-

ties: see Chapter 6,

• spelled out the canonical extension of posets with the topological terms pro-

vided in [29] and the descendants [27] or [18]: see Section 7.1,

• explained Ghilardi and Meloni’s parallel computation in the light of the char-

acterisation with topological terms, and illustrated how to use the parallel

computation on the intermediate level to obtain canonicity results by giving

192

an example from substructural logic: see Section 7.2,

• given another perspective of the canonicity problem and the canonical exten-

sion as “the estimation of the perfect information from the observable data,”

and shown a Unschärferelation which says “even if we accumulate the ob-

servable data infinitely many times, it may not enough to perfectly describe

a property, but the observable data of the property distribute in a certain

range,”: see Section 7.3

• introduced bi-approximation semantics for substructural logic based on the

parallel computation on the intermediate level: see Section 8.3,

• tracked down the connection between bi-approximation semantics and Kripke-

style semantics through bi-approximation, bases and the existential quantifier:

see Section 8.4,

• proved a representation theorem between FL-algebras and bi-approximation

semantics: see Section 8.5, and shown that a soundness theorem and a com-

pleteness theorem for substructural logic FL via the representation theorem

plus invariance of validity along a back-and-force correspondences: see Sec-

tion 8.6,

• stated a completeness theorem for extensions of FL by combining with our

canonicity results in Main Theorem 3.3.22: see Main Theorem 8.6.3.

193

9.2 Future work

In this dissertation, we have studied quite a few canonicity results of lattice ex-

pansions and poset expansions by generalising Ghilardi and Meloni’s canonicity

methodology. Moreover, we have also thought about a space-based semantics of

lattice-based logics, and shown that our canonical representation theorems consis-

tently provide the right framework between logical calculi and the space-based se-

mantics, e.g. operational semantics and denotational semantics in computer science.

However, we must accept that the study of canonical representations, or duality

theories, is still under development. This is because, in this dissertation, we are

dealing only with propositional lattice-based (poset-based) logics. But, this is not

enough to capture logics applied to computer science, natural science, economics

or law. Towards a universal study of these logics via representations, or duality

theories, we list some possible future works as follows.

1. Can we syntactically describe a wider class of canonical inequalities?

2. How can we explain the notion of the bi-approximation in logical reasonings?

3. Can we have a universal representation theorem subsuming existing lattice-

based predicate logics?

4. Can we apply our representation technique to other topics in computer science,

like program logics, automata theory or language theory, or more widely to

natural science, e.g. quantum mechanics or bioinformatics?

194

Bibliography

[1] S. Abramsky. Domain theory in logical form. Annals of Pure and Applied Logic,

51:1–77, 1991.

[2] G. Allwein and M. Dunn. Kripke models for linear logic. The Journal of

Symbolic Logic, 58:514–545, 1993.

[3] N. Bezhanishvili. Lattices of Intermediate and Cylindric Modal Logics. PhD

thesis, Institute for Logic, Language and Computation, 2006.

[4] G. Birkhoff. Lattice theory, volume XXV of American Mathematical Society

Colloquium Publications. American Mathematical Society, New York, revised

edition, 1948.

[5] P. Blackburn, M. de Rijke, and Y. Venema. Modal logic, volume 53 of Cam-

bridge Tracts in Theoretical Computer Science. Cambridge University Press,

Cambridge, 2002.

[6] F. Borceux. Handbook of Categorical Algebra 1, volume 50 of Encyclopedia of

Mathematics and its Applications. Cambridge University Press, Cambridge,

1994.

195

[7] F. Borceux. Handbook of Categorical Algebra 3, volume 52 of Encyclopedia of

Mathematics and its Applications. Cambridge University Press, Cambridge,

1994.

[8] R. T. Brady, editor. Relevant logics and their rivals. Volume II. A continuation

of the work of Richard Sylvan, Robert Meyer, Val Plumwood and Ross Brady.

Ashgate Publishing Company, Burlington, 2003.

[9] T. Braüner and S. Ghilardi. First-order modal logic. In P. Blackburn and J. van

Benthem, editors, Handbook of Modal Logic, volume 3. Elsevier, Amsterdam,

2007.

[10] S. Burris and H. Sankappanavar. A course in universal algebra, volume 78 of

Graduate Texts in Mathematics. Springer-Verlag, New York, 1981.

[11] A. Chagrov and M. Zakharyaschev. Modal logic, volume 35 of Oxford Logic

Guides. Oxford Science Publications, New York, 1997.

[12] R. Cignoli, I. D’Ottaviano, and D. Mundici. Algebraic Foundations of Many-

valued Reasoning. Trends in Logic. Kluwer, 2000.

[13] B. Davey and H. Priestley. Introduction to Lattices and Order. Cambridge

University Press, Cambridge, 2nd edition, 2002.

[14] M. de Rijke and Y. Venema. Sahlqvist’s theorem for Boolean algebras with

operators with an application to cylindric algebras. Studia Logica, 54:61–78,

1995.

[15] K. Došen. Sequent-systems and groupoid models. I. Studia Logica, 47:353–385,

1988.

196

[16] K. Došen. Sequent-systems and groupoid models. II. Studia Logica, 48:41–65,

1989.

[17] M. Dunn. Relevance logic and entailment. In D. Gabbay and F. Guenthner,

editors, Handbook of Philosophical Logic, volume III, chapter 3, pages 117–224.

Kluwer Academic Publishers, Dordrecht, 1986.

[18] M. Dunn, M. Gehrke, and A. Palmigiano. Canonical extensions and relational

completeness of some substructural logics. The Journal of Symbolic Logic,

70:713–740, 2005.

[19] T. Ehrhard, J.-Y. Girard, P. Ruet, and P. Scott, editors. Linear Logic in

Computer Science, volume 316 of London Mathematical Society Lecture Note

Series. Cambridge University Press, Cambridge, 2004.

[20] E. A. Emerson and J. Y. Halpern. “sometimes” and “not never” revisited: on

branching versus linear time temporal logic. Journal of the ACM, 33:151–178,

1986.

[21] L. Esakia. Heyting Algebra I, Duality Theory. Metsniereba Press, Tbilisi, 1985.

(in Russian).

[22] K. Fine. Some connections between elementary and modal logic. In S. Kanger,

editor, Proceedings of the Third Scandinavian Logic Symposium, pages 15–31,

Amsterdam, 1975. North-Holland.

[23] M. Fitting and R. L. Mendelsohn. First-Order Modal Logic, volume 277 of

Synthese Library. Kluwer Academinc Publishers, Dordrecht, 1998.

[24] W. Fokkink. Introduction to Process Algebra. Springer-Verlag, New York, 2000.

197

[25] N. Galatos, P. Jipsen, T. Kowalski, and H. Ono. Residuated lattices: an alge-

braic glimpse at substructural logics, volume 151 of Studies in Logics and the

Foundation of Mathematics. Elsevier, Amsterdam, 2007.

[26] M. Gehrke. Generalized Kripke frames. Studia Logica, 84:241–275, 2006.

[27] M. Gehrke and J. Harding. Bounded lattice expansions. Journal of Algebra,

239:345–371, 2001.

[28] M. Gehrke, J. Harding, and Y. Venema. MacNeille completions and canonical

extensions. Transactions of the American Mathematical Society, 358:573–590,

2006. preprint.

[29] M. Gehrke and B. Jónsson. Bounded distributive lattices with operators. Math-

ematica Japonica, 40:207–215, 1994.

[30] M. Gehrke, H. Nagahashi, and Y. Venema. A Sahlqvist theorem for distributive

modal logic. Annals of Pure and Applied Logic, 131:65–102, 2005.

[31] M. Gehrke and H. Priestley. Non-canonicity of MV-algebras. Houston Journal

of Mathematics, 28(3):449–455, 2002.

[32] M. Gehrke and H. Priestley. Canonical extensions of double quasioperator

algebras: an algebraic perspective on duality for certain algebras with binary

operators. Journal of Pure and Applied Algebra, 209:269–290, 2007.

[33] S. Ghilardi and G. Meloni. Constructive canonicity in non-classical logics.

Annals of Pure and Applied Logic, 86:1–32, 1997.

198

[34] J.-Y. Girard, Y. Lanfont, and L. Regnier, editors. Advances in Linear Logic,

volume 222 of London Mathematical Society Lecture Note Series. Cambridge

University Press, Cambridge, 1995.

[35] R. Goldblatt. Semantic analysis of orthologic. Journal of Philosophical Logic,

3:19–35, 1974.

[36] R. Goldblatt. Mathematical modal logic: a view of its evolution. In D. M.

Gabbay and J. Woods, editors, Handbook of the History of Logic, volume 7.

Elsevier, Amsterdam, 2006.

[37] R. Goldblatt. Topoi: the Categorial Analysis of Logic. Dover Publications, New

York, 2006.

[38] V. Goranko and D. Vakarelov. Elementary canonical formulae: extending

Sahlqvist’s theorem. Annals of Pure and Applied Logic, 141:180–217, 2006.

[39] P. R. Halmos. Polyadic boolean algebras. Proceedings of the National Academy

of Sciences of the United States of America, 40:296–301, 1954.

[40] P. R. Halmos. Predicates, terms, operations, and equality in polyadic boolean

algebras. Proceedings of the National Academy of Sciences of the United States

of America, 42:130–136, 1956.

[41] J. Harding. Canonical completions of lattices and ortholattices. Tatra Moun-

tains Mathematical Publications, 15:85–96, 1998.

[42] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. Foundations of Computing.

The MIT Press, Cambridge, 2000.

199

[43] C. Hartonas. Duality for lattice-ordered algebras and normal algebraizable

logics. Studia Logica, 58(3):403–450, 1997.

[44] C. Hartonas and J. M. Dunn. Stone duality for lattices. Algebra Universalis,

37:391–401, 1997.

[45] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concur-

rency. Journal of the ACM, 32:137–161, 1985.

[46] C. A. R. Hoare. An axiomatic basis for computer programming. Communica-

tions of the ACM, 12:576–580, 1969.

[47] B. Jacobs. Categorical Logic and Type Theory, volume 141 of Studies in Logic

and the Foundations of Mathematics. Elsevier, Amsterdam, 1999.

[48] P. T. Johnstone. Stone spaces, volume 3 of Cambridge studies in advanced

mathematics. Cambridge University Press, Cambridge, 1982.

[49] B. Jónsson. On the canonicity of Sahlqvist identities. Studia Logica, 53:473–491,

1994.

[50] B. Jónsson and A. Tarski. Boolean algebras with operators I. American Journal

of Mathematics, 73:891–993, 1951.

[51] B. Jónsson and A. Tarski. Boolean algebras with operators II. American Journal

of Mathematics, 74:127–162, 1952.

[52] D. Kozen. Kleene algebra with tests. Transactions on Programming Languages

and Systems, 19(3):427–443, 1997.

200

[53] D. Kozen. On the representation of Kleene algebras with tests. In R. Královic

and P. Urzyczyn, editors, Proceedings of Mathematical Foundations of Com-

puter Science (MFCS’06), pages 73–83, Berlin-New York, 2006. Springer-

Verlag.

[54] S. A. Kripke. A completeness theorem in modal logic. The Journal of Symbolic

Logic, 24:1–14, 1959.

[55] J. Lambek and P. Scott. Introduction to higher order categorical logic, volume 7

of Cambridge studies in advanced mathematics. Cambridge University Press,

Cambridge, 1986.

[56] F. W. Lawvere. Functorial Semantics of Algebraic Theories and Some Algebraic

Problems in the Context of Functorial Semantics of Algebraic Theories. PhD

thesis, Columbia University, 1963. Republished in Reprints in Theory and

Applications of Categories, No.5 (2004).

[57] E. J. Lemmon. An Introduction to Modal Logic. Basil Blackwell, Oxford, 1977.

with Dana Scott.

[58] S. Mac Lane. Categories for the Working Mathematician. Springer -Verlag,

New York, 2nd edition, 1998.

[59] S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic: A First Intro-

duction to Topos Theory. Universitext. Springer-Verlag, New York, 1992.

[60] H. M. MacNeille. Partially ordered sets. Transactions of the American Mathe-

matical Society, 42:416–460, 1937.

201

[61] J. D. Monk. An introduction to cylindric set algebras. Logic Journal of the

IGPL, 8:451–496, 2000.

[62] H. Ono. Semantics for substructural logics. In P. Schroeder-Heister and

K. Došen, editors, Substructural Logics, pages 259–291. Oxford University

Press, Oxford, 1993.

[63] H. Ono. Substructural logics and residuated lattices - an introduction. In V. F.

Hendricks and J. Malinowski, editors, 50 Years of Studia Logica: Trends in

Logic, pages 193–228. Kluwer Academic Publishers, Dordrecht, 2003.

[64] H. Ono and Y. Komori. Logics without the contraction rule. The Journal of

Symbolic Logic, 50:169–201, 1985.

[65] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on

Foundations of Computer Science (FOCS ’77), pages 46–57, Providence, 1977.

IEEE Computer Society Press.

[66] G. Priest. An Introduction to Non-Classical Logic. Cambridge University Press,

Cambridge, second edition, 2008.

[67] H. A. Priestley. Ordered topological spaces and the representation of distribu-

tive lattices. Proceedings of the London Mathematical Society, 24(3):507–530,

1972.

[68] G. Restall. An Introduction to Substructural Logics. Routledge, London, 2000.

[69] J. Reynolds. Separation logic: A logic for shared mutable data structures. pages

55–74. IEEE Computer Society, 2002.

202

[70] R. Routley, V. Plumwood, R. K. Meyer, and R. T. Brady. Relevant logics and

their rivals. Part 1. The basic philosophical and semantical theory. Ridgeview

Publishing Company, Atascadero, 1982.

[71] H. Sahlqvist. Completeness and correspondence in the first and second order

semantics for modal logic. In S. Kanger, editor, Proceedings of the Third Scan-

dinavian Logic Symposium, pages 110–143, Amsterdam, 1975. North-Holland.

[72] G. Sambin and V. Vaccaro. Topology and duality in modal logic. Annals of

Pure and Applied Logic, 37:249–296, 1988.

[73] G. Sambin and V. Vaccaro. A new proof of Sahlqvist’s theorem on modal

definability and completeness. The Journal of Symbolic Logic, 54:992–999, 1989.

[74] P. Schroeder-Heister and K. Došen, editors. Substructural Logics, volume 2 of

Studies in Logic and Computation. Oxford Science Publications, Oxford, 1993.

[75] T. Seki. General frames for relevant modal logics. Notre Dame Journal of

Formal Logic, 44:93–109, 2003.

[76] T. Seki. A Sahlqvist theorem for relevant modal logics. Studia Logica, 73:383–

411, 2003.

[77] M. H. Stone. The theory of representations for Boolean algebras. Transactions

of the American Mathematical Society, 40:37–111, 1936.

[78] M. H. Stone. Topological representations of distributive lattices and Brouwerian

logics. Casopis Pest. Mat. Fys., 67:1–25, 1937.

[79] T. Suzuki. On canonicity of poset expansions. Algebra Universalis. Accepted.

203

[80] T. Suzuki. Sahlqvist theorem for substructural logic. (in submission).

[81] T. Suzuki. Kripke completeness of some distributive substructural logics. Mas-

ter’s thesis, Japan Advanced Institute of Science and Technology, March 2007.

[82] T. Suzuki. A relational semantics for distributive substructural logics and the

topological characterization of the descriptive frames. CALCO-jnr 2007 Report

No.367, Department of Informatics, University of Bergen, 2008.

[83] T. Suzuki. Bi-approximation semantics for substructural logic. In Advances in

Modal Logic, volume 8, pages 411–433. College Publications, 2010.

[84] T. Suzuki. Canonicity results of substructural and lattice-based logics. The

Review of Symbolic Logic, 3(4), 2010.

[85] A. Urquhart. The semantics of entailment. PhD thesis, University of Pitts-

burgh, 1972.

[86] A. Urquhart. A topological representation theory for lattices. Algebra Univer-

salis, 8:45–58, 1978.

[87] A. Urquhart. Duality for algebras of relevant logics. Studia Logica, 56:263–276,

1996.

[88] Y. Venema. Algebras and coalgebras. In J. van Benthem, P. Blackburn, and

F. Wolter, editors, Handbook of Modal Logic, volume 3, pages 331–426. Elsevier,

Amsterdam, 2006.

[89] F. B. Wright. Polarity and duality. Pacific Journal of Mathematics, 10:723–730,

1960.

204

