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[1] We evaluated how climate influences interannual variability in the terrestrial Net
Ecosystem Exchange (NEE) of CO2 using the Simple Biosphere Model, Version 2 (SiB2)
for 1983 to 1993 on a global, 1� by 1� latitude/longitude grid with a 10-min time step. We
quantified climate influences on NEE, explained regional differences, and related NEE
variability to the Arctic Oscillation (AO) and the El Niño-Southern Oscillation (ENSO).
The simulated NEE reproduces the salient features and magnitude of the measured global
CO2 growth rate. The Northern Hemisphere shows a pattern of alternating positive and
negative NEE anomalies that cancel such that the tropics dominate the global simulated
NEE interannual variability. Climate influences have strong regional differences with
precipitation dominating in the tropics and temperature in the extratropics. In tropical
regions with drier soils, precipitation control of photosynthesis (i.e., drought stress)
dominates; in nearly saturated soils, precipitation control of respiration dominates.
Because of cancellation and competing effects, no single climate variable controls global
or regional NEE interannual variability. Globally, precipitation accounts for 44% of NEE
variability; followed by Leaf Area Index (23%), soil carbon (12%), and temperature
(16%). The influence of ENSO on NEE variability is consistent with that expected for
shifting precipitation patterns in the tropics. Except in northern Europe, temperature
advection by the AO does not significantly influence NEE variability. Neither the AO nor
ENSO fully explain the temperature influence on respiration or the simulated NEE
anomaly pattern in the Northern Hemisphere. INDEX TERMS: 0315 Atmospheric Composition

and Structure: Biosphere/atmosphere interactions; 1610 Global Change: Atmosphere (0315, 0325); 1615

Global Change: Biogeochemical processes (4805); 3322 Meteorology and Atmospheric Dynamics: Land/
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1. Introduction

[2] The measured atmospheric CO2 growth rate is only
about half that expected based on fossil fuel emissions.
Modeling, isotope, and inversion studies place much of this
‘‘missing sink’’ in the Northern Hemisphere terrestrial bio-
sphere, but its spatial distribution is not well known. The
global, atmospheric CO2 growth rate shows a great deal of
interannual variability [Conway et al., 1994; Lloyd, 1999;
Rayner and Law, 1999; Tans and Wallace, 1999; Bousquet
et al., 2000; Fung, 2000]. The ocean fluxes show relatively
low variability [Rayner and Law, 1999; Le Quéré et al.,

2000], so the growth rate variability is attributed primarily
to changes in the terrestrial sink [Sarmiento, 1993; Conway
et al., 1994; Trolier et al., 1996; Kaduk and Heimann, 1997;
LLoyd, 1999; Houghton et al., 1998; Tans and Wallace,
1999; Houghton, 2000; Prince et al., 2000]. The large
variability in land fluxes makes it difficult to determine
long-term trends in the terrestrial sink [Fung, 2000]. Cli-
mate, land use change, natural disturbance, CO2 fertiliza-
tion, and nitrogen deposition all affect terrestrial CO2 fluxes
[Conway et al., 1994; Bousquet et al., 2000; Fung, 2000;
Houghton, 2000]. Climate may be the most important
contributor to interannual variability [Houghton, 2000],
but how it controls net terrestrial CO2 fluxes is unclear.
[3] Lacking direct measurements of net global CO2

fluxes, we estimate net terrestrial fluxes from satellite data,
inversions, and models. Satellite data, for example, the
Normalized Difference Vegetation Index (NDVI), is used
to estimate the Leaf Area Index, which, in combination with
a model, is used to estimate global net primary production
[e.g., Goetz et al., 2000; Ichii et al., 2001]. Since NDVI
does not contain direct information about respiration, we
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cannot use it to estimate net terrestrial fluxes. Inversions can
estimate net fluxes for large, continental scale regions, but
cannot isolate the exact causes of variability [e.g., Bousquet
et al., 2000]. Terrestrial carbon models range from highly
mechanistic biogeochemical process models to statistical
regression and bookkeeping models. Biogeochemistry mod-
els track the amount of carbon in various biological pools
[e.g., Ichii et al., 2001], but vary widely in the number of
pools and how explicitly they represent photosynthesis and
respiration processes. Many of these suggest temperature
and precipitation have the most influence on interannual
variability, but disagree on the exact mechanism [e.g.,
Kaduk and Heimann, 1997; LLoyd, 1999; Dickinson,
2000; Houghton, 2000]. The influence of climate variability
differs considerably between ecosystems and regions with
respiration dominating in some areas [Houghton, 2000] and
photosynthesis in others [Kaduk and Heimann, 1997]. How
available light and humidity influence CO2 flux variability
is not known.
[4] To quantify the effects of climate interannual varia-

bility on terrestrial CO2 fluxes, we calculated photosynthesis
and respiration using a land surface model of leaf- and
canopy-level photosynthesis and ecosystem respiration. We
use the process information in the model to quantify how
each climate variable influences the interannual variability of
terrestrial CO2 fluxes and explain regional and ecosystem
differences. Past research emphasized validation of models
against measurements from the global CO2 flask network,
comparisons between models [e.g., McGuire et al., 2001],
and the partition between land and ocean CO2 fluxes [e.g.,
Houghton, 2000]. Recent research emphasizes what factors
(climate, land use, etc.) most influence the interannual
variability of NDVI [Los et al., 2001] and terrestrial CO2

fluxes [Kaduk and Heimann, 1997; Potter and Klooster,
1999]. We quantify how interannual climate variability
affects terrestrial CO2 fluxes and relate the results to known
climatic phenomena.

2. Methods

[5] We used the Simple Biosphere model, Version 2
(SiB2) to estimate the terrestrial Net Ecosystem Exchange
(NEE) for 1983 to 1993 on a global, 1� by 1� latitude/
longitude grid with a 10-min time step [Sellers et al.,
1996a]. We investigated the effects of climate variability
only and did not consider variability due to ocean uptake,
fossil fuel emissions, land use, CO2 fertilization, natural
disturbances, or nitrogen deposition.
[6] SiB2 has high time resolution and detailed plant

physiology to isolate the long-term influences of climate
factors with strong diurnal variability, such as temperature
and humidity. SiB2 uses the Farquhar et al. [1980] photo-
synthesis model scaled to the canopy level [Sellers et al.,
1996a], the Ball-Berry-Collatz stomatal conductance model
[Ball, 1988; Collatz et al., 1991, 1992], and the respiration
model of Denning et al. [1996]. SiB2 accounts for the
effects of snow cover, rainfall interception by the canopy,
and aerodynamic turbulence [Sellers et al., 1996a]. SiB2
separately tracks canopy and canopy air space prognostic
variables (temperature, humidity, CO2 concentration, etc.).

As input, SiB2 requires Leaf Area Index (LAI), vegeta-
tion cover fraction, vegetation type, soil type, and weather
data.
[7] We estimated LAI using global, 1� by 1� monthly

composite maps of NDVI adjusted for missing data, satellite
orbit drift, differing instrument calibrations, sensor degra-
dation, and volcanic aerosols [Sellers et al., 1994; Los,
1998; Los et al., 2000]. Using remotely sensed LAI
estimates simplified our model, since the observations
already include the effects of age distribution, land use,
and climate history. However, evaluating the effects of
variability in biomass was more difficult since SiB2 does
not track the various carbon and nitrogen pools. Sellers et
al. [1994, 1996b] describes in detail the vegetation charac-
teristics, soil types, and soil characteristics used as input.
We used the DeFries and Townshend [1994] global map of
11 vegetation types.
[8] Los et al. [2000] assumed the vegetation cover frac-

tion, fV, was proportional to the absorbed fraction of photo-
synthetically active radiation ( fPAR):

fV ¼ f PARpeak

f PARmax

; ð1Þ

where fPARpeak is the peak value of the absorbed fraction of
PAR for each grid cell and fPARmax = 0.95 is the maximum
possible fPAR. We estimated fPAR using an average bet-
ween the simple ratio and NDVI methods [Los et al., 2000].
Los et al. [2000] used the annual peak fPAR, which varies
year-to-year, causing abrupt changes in fV each January. An
11-year average fPARpeak artificially dampens variability in
those years exceeding the average. We assumed fV did not
vary with time and used the fPARpeak for the entire 11-year
period.
[9] Weather data were prescribed from the European

Centre for Medium-Range Weather Forecasts (ECMWF)
Reanalysis [Gibson et al., 1999]. ECMWF Reanalysis
contains surface temperature, pressure, wind speed, precip-
itation, and radiation data every 6 hours on a 1� by 1� grid.
Except for the incident light, the ECMWF data was linearly
interpolated between data points. The incident light was
scaled by the cosine of the solar zenith angle to assure no
light falls on the canopy at night while simultaneously
conserving energy. ECMWF data were available for 1978
through 1993 and NDVI data for 1983 through 1999.
Overlap between these two data sets limited this study to
1983 through 1993.
[10] NEE, the net flux of CO2 from the terrestrial bio-

sphere, is defined as

NEE ¼ R� GPP; ð2Þ

where R is ecosystem respiration and GPP is gross primary
production (i.e., canopy photosynthesis rate). Photosynth-
esis removes CO2 from the atmosphere and respiration
returns CO2 to the atmosphere. A positive NEE indicates a
net CO2 flux into the atmosphere. GPP is resource-limited
by Rubisco (nitrogen) capacity, available light, or leaf
export capacity. Breaking R into autotrophic and hetero-
trophic respiration gives

NEE ¼ RH þ RR þ RC � GPP; ð3Þ
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where RH is heterotrophic respiration, RR is root autotrophic
respiration, and RC is canopy autotrophic respiration.
Heterotrophic respiration is the decay of organic material
by microorganisms. Autotrophic respiration is the release of
CO2 during plant maintenance and growth. Defining ground
respiration as Rg = RH + RR and canopy net assimilation as
An = GPP � RC gives:

NEE ¼ Rg � An: ð4Þ

[11] Rg depends on soil temperature, soil moisture, and
the mass of carbon in the respiring pools [Parton et al.,
1993; Raich et al., 1991; Hunt et al., 1996]. A serious
technical issue arises when initializing the magnitudes of
respiring carbon pools on a global, 1� by 1� grid. Two
approaches used in the past are (1) ‘‘spinning up’’ from a
state of zero carbon [e.g., Potter et al., 1993] and (2)
extrapolating from representative field studies [e.g., Craig
et al., 1998]. Spin up requires long integration times,
because some of the soil carbon pools are very long-lived.
Randerson et al. [1997] spun up the CASA model for 5000
simulated years before analyzing any results. Spin up has
the advantage that ecosystem respiration and photosynthesis
are everywhere balanced with respect to climate forcing, but
is computationally prohibitive for our model (which uses a
10-min time step). Extrapolation is computationally effi-
cient and allows for the possibilities of time-mean sources
and sinks, but it is impossible to establish the veracity of
global fields of biogeochemical pools defined everywhere
from a few dozen field studies. Craig et al. [1998] used
extrapolation and produced regional net sources and sinks
of CO2 in excess of 5 GtC/yr, which seems unreasonable.
[12] For our study, we adapted the respiration model of

Denning et al. [1996], where the instantaneous value of Rg

depends on soil temperature and moisture:

Rg ¼ R*Rf ; ð5Þ

where R* is a combined soil temperature and moisture
scaling factor and Rf is the respiration factor. Following
Raich et al. [1991], R* = fT(T ) fW (W ), where fT is the
temperature response function, T is temperature, fW is the
soil moisture response function, and W is the soil moisture
fraction of saturation. Rg increases exponentially with soil
temperature assuming Q10 = 2.4 [Raich and Schlesinger,
1992]. Rg increases with soil moisture to an optimum value
then decreases (i.e., too much water and oxygen availability
limits microbial growth) [Raich et al, 1991]. The optimal
soil moisture, Wopt, varies between 0.6 and 0.7, depending
on soil type. We calculate R* separately for each of six soil
layers and one layer of overlying litter.
[13] To allow for the dependence of respiration rates on

carbon pool sizes, we assume photosynthesis and ecosystem
respiration are everywhere in close balance on an annual
timescale, but allow for perturbations due to interannual
variability to persist over a specified relaxation time. This is
parameterized by releasing accumulated carbon over a
period of time, weighted by the temperature and soil
moisture response functions. We chose a 1-year residence
time so that the carbon cycle at every model grid cell is
nearly in balance, but that perturbations in photosynthesis in

one year are felt over the following year as perturbations in
ecosystem respiration. Rf is the respiration rate that balances
annual An when adjusted for soil temperature and water
content:

Rf ¼

P
1year

An

P
1year

R*
: ð6Þ

We divide the annual accumulated carbon among six soil
layers and one litter layer based on the fraction of total roots
in each layer. We assume the root density decreases
exponentially with depth with biome specific profiles from
Jackson et al. [1996]. We calculated a ‘‘rolling’’ Rf each
month based on the previous 12 months of An and R*.
[14] Four climate variables influence NEE in SiB2: tem-

perature, precipitation, relative humidity, and incident light.
We grouped them into those that effect GPP and those that
effect R (Table 1). We listed precipitation and temperature
twice because they affect both GPP and R. The SiB2
variables representing each climate variable change with
the ECMWF weather data (which represents boundary layer
values above the canopy), but also respond to changes in
GPP and R and depend on the physical characteristics of the
canopy and soil. For example, leaf surface humidity depends
on plant transpiration, boundary layer humidity, and sensible
heat flux. The influence of precipitation on GPP is limited to
root zone soil moisture stress (i.e., drought stress).
[15] GPP and R also depend on the amount of biomass.

LAI represents the above ground biomass and is prescribed
via the input NDVI. The rolling Rf represents the effect of
short-term variation in below ground biomass due to varia-
tions in GPP. We neglected the influence of LAI on auto-
trophic canopy respiration (RC), since it rarely exceeds 5% of
R and exerts only a 0.3% influence on NEE variability.
[16] To quantify how climate influences NEE variability,

we calculated reference rates for GPP and R for each climate
variable and compared them to the actual rate. We defined a
climate variable influence as:

Ei ¼ GPPi � GPPj j or Ei ¼ Ri � Rj j; ð7Þ

where Ei is the influence and GPPi and Ri are reference rates
for the ith climate variable. When a climate variable does
not influence NEE, Ei = 0. For example, if GPP is Rubisco
(nitrogen) limited and the light level increases, EPAR = 0
since increased light would not affect GPP. The absolute
value ensures nonnegative monthly averages of Ei. All Ei

were calculated each time step and have units of flux.

Table 1. Climate Factors, SiB2 Variables, and Associated

Reference Values

Climate Factor Group SiB2 Variable Reference Value

Humidity GPP leaf surface relative humidity 1.0
Light GPP PAR incident on canopy top 200 W m�2

Leaf Area Index GPP Leaf Area Index LAImax
Temperature GPP canopy temperature 298.15 K
Precipitation GPP root zone soil water fraction 1.0
Temperature R root zone soil temperature 298 K
Precipitation R root zone soil water fraction Wopt

Soil carbon R respiration factor Rfmean
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[17] To calculate the reference rate (GPPi or Ri) for each
Ei, we kept all inputs the same and changed the ith climate
factor to a reference value as listed in Table 1. As humidity
decreases, stomata close to minimize water loss, reducing
GPP (i.e., humidity stress), so we chose the optimal humid-
ity value of 1.0. For LAI, we chose the maximum possible
LAI for each biome [Sellers et al., 1996b]. For precipitation
influence on GPP, we chose fully saturated soil (W = 1.0).
For precipitation influence on R, we chose the optimal soil
water content for maximum heterotrophic respiration, Wopt

[Raich et al., 1991]. For temperature influence on GPP and
R, we chose reference values as identified in Sellers et al.
[1996a]. For PAR we chose a typical saturated value (the
canopy usually absorbs more light than it can use for
photosynthesis). For soil carbon, we chose an average
respiration factor, Rfmean, based on the mean seasonal
variation of An and R* (defined below).
[18] To assure Ei scales properly with GPP or R, (i.e., Ei is

small when GPP is small and large when GPP is large), we
calculated weighted monthly averages:

Ei ¼
GPP � Ei

GPP
or Ei ¼

R � Ei

R
; ð8Þ

where the overbar represents a monthly average. The
weighted monthly average influence, Ei, measures the
sensitivity of GPP and R (and thus NEE) to changes in
the ith climate variable.
[19] We calculated the mean seasonal variation from

global maps of monthly averages by averaging all Januaries,
Februaries, etc. This resulted in 12 global maps (one for
each month) representing the mean seasonal variation.
Subtracting mean seasonal variation maps from monthly
average maps produced monthly anomaly maps:

X 0 ¼ X ¼ eX ; ð9Þ

where X 0 is the monthly anomaly for variable X, X is the
monthly mean of X, and eX is the seasonal variation of X.
From the anomaly maps, we produced maps of standard
deviation, correlation, and other statistical parameters.
Multiplying by grid cell area (which varies with latitude)
and adding all land pixels produced total global land fluxes
as a function of time.

3. NEE Variability

[20] The global land-surface NEE (GtC year�1) shows a
strong seasonal variation driven by vegetation in the North-
ern Hemisphere (Figure 1). The Northern Hemisphere has
more land and vegetation than the Southern Hemisphere and
dominates the global NEE seasonal cycle. NEE is most
strongly negative during the Northern Hemisphere summer
when global GPP is greatest. NEE is most strongly positive
in Northern Hemisphere fall when assimilation drops off
and global R dominates. The secondary minimum in
November results from the surge in global GPP in the
Southern Hemisphere spring. The NEE averages to zero
over many years. However, small changes in GPP and R
each year result in interannual NEE variability of about ±2
GtC year�1.
[21] The simulated global NEE anomaly (GtC year�1) as

a function of time (Figure 2) captures most of the salient
features of the measured global CO2 growth rate extrapo-
lated from flask measurements [Conway et al., 1994]. The
simulated NEE standard deviation (1.3 GtC year�1) com-
pares well with Conway et al. [1994] (1.1 GtC year�1) and
Houghton [2000] (1.0 GtC year�1). The peaks and valleys
roughly line up, but a 12-month running mean NEE shows
only a weak correlation of 0.27 with the observed CO2

growth rate. The simulated NEE lags behind the observed
CO2 growth rate by 2–3 months because we did not include
transport from the terrestrial sources to the flask measure-
ment sites. Accounting for transport lag only increases the
correlation to 0.3 because the observed CO2 growth rate
accounts for variability in ocean fluxes, biomass burning,
and fossil fuel emissions while we do not. Still, the

Figure 1. The Northern Hemisphere (NH) controls the
seasonal changes in the simulated global NEE. Negative
NEE spikes every June represent NH summer (GPP
dominates NEE). The positive peak every September
represents NH fall (respiration dominates NEE). The
secondary minimum in November represents Southern
Hemisphere (SH) spring. The annual NEE is near zero,
but varies slightly year to year.

Figure 2. A 12-month running mean of the simulated
global NEE anomalies captures the salient features and
variability seen in anomalies of the measured global CO2

growth rate.
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simulated NEE anomaly agrees fairly well with the global
land flux estimates of McGuire et al. [2001] using several
biogeochemical models, Bousquet et al. [2000] from inver-
sion of flask measurements with a transport model, and
Kaduk and Heimann [1997] from the long-term Mona Loa
record.
[22] Some error in our simulated NEE may result from

inaccuracies in NDVI estimates for tropical forests, which
cover only 9% of the land surface, but account for 30% of
global NEE. Spatial and temporal interpolation of NDVI
data to account for persistent cloud cover over tropical
forests artificially smooth LAI estimates, making it more
difficult to predict year-to-year variations [Los et al., 2000].
The CO2 growth rate may not accurately account for land
fluxes because the flask measurements sample predomi-
nantly marine rather than terrestrial air. Assuming a uniform
1-year turnover time introduces error into our NEE esti-
mates since different biome types actually have different
turnover times. Different turnover times for different biome
types would change the timing of respiration anomalies,
although the overall respiration variability would not
change. Other sources of error include approximations in
SiB2.
[23] A map of NEE standard deviation (Figure 3) shows

that tropical grasslands in South America and Africa have
the highest interannual variability followed by northern
extratropical forests. Equatorial rain forests have fairly
low variability except for the western half of the Amazon
basin. The large South American anomaly results from
precipitation variability from El Niño-Southern Oscillation
(ENSO) and potential problems with the ECMWF precip-
itation data (see below). Although deserts are highly vari-
able relative to their seasonal amplitude, low GPP results in
low NEE standard deviations.
[24] Variability in the Northern extratropics is not as

spatially uniform as implied in Figure 3. A typical map of
simulated NEE anomalies for July 1984 (Figure 4) shows a
pattern of alternating positive and negative regions across
the Northern Hemisphere. The amplitudes of these simu-
lated NEE anomalies range from 0.2 to 0.4 GtC yr�1 and are
comparable to annual net carbon fluxes estimated from

inversions of CO2 flask measurements [e.g., Bousquet et
al., 2000; Pacala et al., 2001]. The anomaly periods of 2–3
years are consistent with the 100% interannual variability
seen by Pacala et al. [2001] in their estimates of the North
American carbon sink. These regional anomalies tend to
cancel, negating the effect of much greater land area in the
Northern Hemisphere. While the Northern Hemisphere
dominates the global NEE seasonal cycle, the tropics
dominate global NEE interannual variability.

4. Climate Influences

[25] NEE anomalies depend on the relative magnitude of
GPP and R anomalies because both respond in similar ways
to climate and tend to cancel each other. For example, for a
given soil water content, both GPP and R tend to increase
with temperature. A climate anomaly will produce an NEE
anomaly if either GPP or R responds more vigorously to
climate variability. The relative magnitude of GPP and R
variance measures how strongly they influence NEE inter-
annual variability:

or
fGPP ¼ s2GPP= s2GPP þ s2R

� �

fR ¼ s2R= s2GPP þ s2R
� �

;
ð10Þ

where fGPP and fR are the relative influences of GPP and R
on NEE interannual variability, sGPP and sR are the standard
deviations of GPP and sGPP2 and R, and sGPP2 and sR2 are the
variances of GPP and R. When fR = 0, respiration has no
influence on NEE interannual variability; when fR = 1,
respiration totally controls NEE variability (by definition,
fGPP = 1 – fR).
[26] R dominates NEE variability at high latitudes

(Figure 5) while GPP and R exert roughly equal influences
in the highly variable tropical grasslands. Although GPP
variability almost totally controls the deserts, these regions
have such low GPP they do not significantly affect the
global NEE interannual variability. Overall, R accounts for
59% and GPP for 41% of the global NEE interannual
variability.

Figure 3. A map of NEE standard deviation (mg C m�2

s�1) indicates grasslands of South America and Africa have
the greatest interannual variability. The large anomaly in
South America results from drought stress.

Figure 4. A map of typical simulated NEE anomalies (mg
C m�2 s�1) for July 1984 shows a pattern of alternating
positive and negative regions across the Northern Hemi-
sphere. These regional anomalies tend to cancel such that
the tropics dominate global NEE interannual variability.
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[27] Isolating the causes for these regional differences is
difficult because the climate variables are coupled and do
not vary independently of one another. Feedback between
climate variables often limits NEE variability. For exam-
ple, increasing canopy temperature increases GPP, but also
decreases relative humidity (which decreases GPP). Com-
paring relative magnitudes of Ei variance accounts for
such cancellation and feedback between climate factors.
The total influence of the GPP Ei group on NEE varia-
bility cannot exceed the relative influence of GPP itself
such that

fi ¼
s2iP
s2i

fGPP

or fi ¼
s2iP
s2i

fR;

where fi is the interannual influence of the ith climate factor
and si

2 the variance of Ei. When fi = 0, the climate factor has
no influence and when fi = 1, the climate factor totally
controls NEE interannual variability. By definition, the sum
of all fi for both the R and GPP groups equals one�P

fi ¼ 1
�
. Maps of fi show strong regional differences in

the influence of climate on NEE variability (Figure 6).
[28] Precipitation control of GPP (Figure 6a) and R

(Figure 6b) dominate throughout the tropics. The GPP
and R precipitation influence patterns do not significantly
overlap. The demarcation lies roughly where the average
soil moisture equals Wopt. This division is especially clear in
regions with a strong spatial gradient in soil moisture (e.g.,
sub-Saharan Africa and South America). The soil moisture
influence on GPP represents drought stress. In semi-arid and
desert regions with drier soils (W < Wopt), precipitation
control of GPP dominates because respiration can occur
even in very dry soils while GPP ceases below minimum
soil water content. In nearly saturated soils (W > Wopt),
precipitation changes effect respiration, but do not induce
drought stress, so precipitation control of R dominates. Tian
et al. [1998] saw a similar dependency in their simulation of
NEE in the Amazon basin.

[29] The large NEE anomaly in South America (Figure
3) may result from problems with the ECMWF precip-
itation data as well as naturally occurring drought stress.
Spatial patterns of precipitation differ between datasets
derived from rain gauge data and those from reanalysis
using a model [Costa and Foley, 1998]. Our simulated
anomaly differs slightly from that simulated by Tian et al.
[1998] because they used precipitation based on rain
gauge data. The precipitation data from the ECMWF
reanalysis is diagnostic and unconstrained by rain gauge
measurements. The spectral representation of topography
in ECMWF produces false undulations in the land surface,
creating potentially suspect precipitation anomalies in
South America [Costa and Foley, 1998]. Bright NDVI
data may indicate plant growth, but the ECMWF may
systematically put the rain somewhere else, resulting in
drought stress.
[30] Temperature influence on respiration dominates NEE

variability at high latitudes (Figure 6d). The temperature
response function for R is exponential, so small soil temper-
ature anomalies can produce large R anomalies, especially
during peak temperatures in the summer. By contrast, GPP
is relatively insensitive to temperature except at extreme
high and low temperatures (Figure 6c). The resulting
temperature influence on GPP is very small and reflects
variability in temperature extremes at high latitudes, high
altitudes, and deserts. Essentially, R goes up and down with
temperature relative to a more stable GPP.
[31] LAI influences NEE interannual variability in trop-

ical grasslands, high-latitude forests and tundra (Figure
6e). The LAI influence represents the indirect effect of
climate (precipitation, temperature, snow cover, etc.) on
plant growth, probably when the ecosystem is most
sensitive, such as spring [Houghton, 2000]. In general,
snow cover influences LAI in the high northern latitudes,
temperature in the midlatitudes, and a combination of
precipitation and temperature in the tropics [Los et al.,
2001].
[32] Soil carbon has a fairly evenly distributed influence

on NEE interannual variability, peaking at the equator and
decreasing toward the poles (Figure 6f). Like LAI, soil
carbon represents the indirect effects of climate on
soil organic matter due to GPP anomalies. The resulting soil
carbon anomalies last a year because of the assumed 1-year
turnover time in the rolling respiration factor. Consequently,
regions where GPP dominates NEE variability also show a
strong soil carbon influence.
[33] Humidity shows a weak, but fairly uniform influence

on NEE interannual variability (Figure 6g). Transpiration
during photosynthesis generally keeps the leaf surface
humidity near saturation, making it insensitive to changes
in ECMWF humidity (defined in the boundary layer above
the canopy). Humidity influences GPP only when high
sensible heat flux mixes relatively dry boundary layer air
down into the canopy, reducing the humidity at the leaf
surface and causing humidity stress.
[34] Although globally weak, PAR shows a fairly strong

regional influence in equatorial tropical forests where per-
sistent cloud cover reduces the light available for plant
growth (Figure 6h). In SiB2, photosynthesis is light-limited

Figure 5. A map of the relative influence of respiration on
NEE interannual variability (0 means no influence, 1 means
total control) indicates respiration dominates in high
latitudes. GPP and respiration exert roughly equal influence
in the tropics. The relative influences of respiration and GPP
are based on the relative magnitudes of their variances.

(11)
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Figure 6. The relative influences of each climate factor on the simulated NEE interannual variability
show strong regional differences. The influences are based on relative magnitudes of variance for each
climate factor (0 means no influence, 1 means total control). Precipitation influence on GPP via soil
moisture dominates in tropical grasslands and deserts. Temperature influence on respiration dominates at
high latitudes. LAI influence represents climate influences during plant growth. The incident light
influences NEE variability only in regions of extensive rainfall. Soil carbon has the greatest influence in
the tropics. Humidity exerts a fairly uniform, but weak global influence.
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only at low light levels in the early morning and late
evening (PAR below about 100 W m�2). At other times,
nitrogen or export capacity limit GPP. The length of time
each day that GPP is light-limited determines the overall
influence of PAR. Precipitation anomalies change the cloud
cover and incident PAR, which determines the time each
day when GPP is light-limited.
[35] Because of the regional cancellation in the Northern

Hemisphere, precipitation in the tropics dominates the
simulated global NEE interannual variability seen in Figure
2. Precipitation influence on GPP and R combined account
for 44% of the global NEE variability (precipitation influ-
ence on GPP accounts for 32% while precipitation influence
on R accounts for 12%). Variability in LAI and soil carbon
combined account for 35% of global NEE variability (23%
and 12%, respectively). Overall humidity and PAR influen-
ces on global NEE variability are very weak (2% and 3%,
respectively). Temperature accounts for 16% of the global
NEE interannual variability. The temperature influence on
GPP is weak (1% globally). Despite dominating the North-
ern Hemisphere, regional cancellation reduces the global
influence of temperature on respiration to 15% of the
simulated global NEE variability. Having quantified these
influences, we examined in detail two climatic phenomena
known to effect interannual variability in temperature and

precipitation: the Arctic Oscillation and the El Niño-South-
ern Oscillation.

5. Arctic Oscillation and NEE Variability

[36] The Arctic Oscillation (AO) is characterized by a
north-south dipole in the strength of the zonal wind between
35�N and 55�N [Thompson and Wallace, 2000, 2001].
Positive AO polarity has stronger westerly winds north of
45�N and weaker winds south of 45�N, which favors
increased advection of relatively warm oceanic air deep
into continental interiors. Negative AO polarity has weaker
mean zonal flow and more blocking, pulling cold Arctic air
masses down into continental interiors. Positive AO polarity
produces positive temperature anomalies over land; nega-
tive polarity produces negative anomalies. Since the AO
primarily influences the Northern Hemisphere and since
50% of all Northern Hemisphere NEE anomalies occur in
summer, we focused our analysis on June–July–August
(JJA).
[37] Figure 7 shows summer (JJA) correlations of air

temperature and soil moisture with an AO index based on
the first principle mode of sea level pressure anomalies from
the NCEP reanalysis [Thompson and Wallace, 2000]. Figure
8 shows JJA correlations of GPP, R, and NEE with the AO
index. The AO index, GPP, and temperature data show
positive trends for 1983–1993 [Los, 1998; Thompson et al.,
2000], which we removed prior to correlation. We omitted
correlations failing the t-test at 95% significance [Devore,
1995]. The degrees of freedom for the t-test are based on the
total number of summer months in our simulation (assum-
ing each month is independent). Warm air advection asso-
ciated with positive AO polarity shows up as positive
temperature correlations in northern Europe, Canada, and
central Asia. The reduced blocking associated with positive
AO polarity deceases rainfall in the same regions, resulting
in negative soil moisture correlations.
[38] Figure 8 indicates the AO signal is strongest in

northern Europe for GPP and R, but competing effects
and cancellation result in weak AO correlations with
NEE. As seen in Figure 6, several climate factors control
NEE variability in Northern Europe: temperature (via GPP
and R), LAI, precipitation (via R), and humidity. Decreased
R due to reduced soil moisture partially cancels increased R
due to higher temperatures. Decreased GPP due to increased
humidity stress partially cancels increased GPP due to
warmer temperatures. The result is modest positive AO
correlations with R and GPP. While both GPP and R
increase with temperature, R responds more vigorously.
The GPP anomalies partially cancel the R anomalies,
resulting in weak positive NEE correlations. Similar can-
cellation occurs in Canada and central Asia resulting in even
weaker NEE correlations with the AO. Correlations scat-
tered throughout the Southern Hemisphere are probably
random associations and do not reflect direct influence by
the AO.
[39] Overall, temperature effects from the AO dominate

over precipitation effects. The limited spatial extent of the
AO influence combined with cancellation effects result in a
very weak AO signal in the NEE variability in summer. The

Figure 7. The Arctic Oscillation (AO) advects warm
oceanic air into continental interiors, resulting in positive
temperature and negative soil moisture correlations in
northern Europe, central Canada and central Asia. We
focused on June–July–August (JJA) because 50% of all
Northern Hemisphere NEE anomalies occur in the summer.
Southern Hemisphere correlations probably do not reflect
direct AO influence.
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AO can explain part of the strong temperature influence
across the Northern Hemisphere and the Northern Europe
portion of the simulated spatial pattern for NEE, but not the
2–3 year cycle in NEE variability.

6. ENSO and NEE Variability

[40] El Niño-Southern Oscillation (ENSO) is character-
ized by weaker or stronger trade winds in the equatorial
Pacific. Weaker trade winds (El Niño) cut off cold-water
upwelling off of South America and shift the Pacific warm
water pool from off Asia eastward to the central Pacific.
Strong trade winds (La Niña) push the Pacific warm pool
westward toward Australia. El Niño and La Niña are the
extremes of alternating sea level pressures between east and
west Pacific known as the Southern Oscillation. The Pacific
warm pool moving with ENSO has a domino effect, shifting
rainfall and temperature patterns around the globe [Green et

al., 1997]. ENSO has a period of 2–7 years. Our simulation
covered two El Niño events and part of a third (1982–1983,
1986–1987, and 1991–1992) and two La Niña events
(1984–1985, 1988–1989).
[41] Figure 9 shows correlations of air temperature and

soil moisture with a Southern Oscillation Index (SOI) based
on the sea level pressure difference between Tahiti and
Darwin for 1983–1993. We removed trends and omitted
correlations failing the t-test at 95% significance. Negative
SOI corresponds to El Niño; positive SOI corresponds to La
Niña. Negative correlations mean increases during El Niño;
positive correlations mean decreases during El Niño.
[42] Rainfall patterns throughout the tropics shift as the

Pacific warm pool moves east and west with ENSO. For
example, rainfall (and thus soil moisture) in Australia drops
during El Niño as the Pacific warm pool moves to the east,
resulting in positive SOI correlations. Decreased rainfall
reduces cloud cover, increases solar heating, and reduces
evaporative cooling [Kaduk and Heimann, 1997], which
increases temperature and produces negative SOI correla-
tions. Temperature is fairly constant in the tropics, so
although the correlations appear strong, the effect is small.
In East Russia, reduced cloud cover associated with reduced
precipitation during El Niño increases radiative cooling,
decreasing temperatures and producing positive SOI corre-
lations. In summary, ENSO primarily affects global precip-
itation and soil moisture patterns and weakly influences
temperature.
[43] The effects of shifting rainfall patterns on GPP and R

can cancel (Figure 10). For example, in Australia and India,
both R and GPP show positive correlations with SOI (both

Figure 8. Respiration and GPP anomalies often cancel,
resulting in very weak correlations between the Arctic
Oscillation (AO) and NEE. The strongest AO signal is in
Northern Europe. Southern Hemisphere correlations prob-
ably do not reflect direct AO influence.

Figure 9. Correlations with a Southern Oscillation Index
indicate ENSO strongly influences global precipitation
patterns, especially in the tropics.

SCHAEFER ET AL.: CLIMATE VARIABILITY AND TERRESTRIAL CO2 FLUXES 49 - 9



decrease as precipitation drops during El Niño). Precipita-
tion controls NEE variability for Australia and India (Fig-
ures 6a and 6b). Areas controlled by drought stress show
negative NEE correlations (R > GPP during El Niño). Areas
controlled by soil moisture for respiration show positive
NEE correlations (R < GPP during El Niño). Zero NEE
correlations indicate the R and GPP anomalies cancel.
[44] The large NEE anomaly in South America (Figure 4)

results from drought stress due to rainfall shifting with
ENSO. The soil water content relative to the optimum for
respiration, Wopt, drives the spatial pattern of this anomaly.
The average soil water content exceeds Wopt in the Amazon
basin and decreases southward and westward to less than
Wopt in the highlands of central and western South America.
During El Niño, rainfall shifts from the Amazon basin and
central South America to the west and southeast. The soil
water in the Amazon basin decreases and respiration
increases, but GPP is not affected, resulting negative corre-
lations for R and NEE, but weak correlations for GPP. In the
central South American highlands, the soil water is less than

Wopt, so decreased rain during El Niño reduces R and
introduces drought stress, resulting in positive R and GPP
correlations. Drought stress coupled with possible problems
with the ECMWF precipitation data (described above)
produce a highly variable NEE anomaly, but partial can-
cellation between GPP and R weakens the NEE correlation
with ENSO.
[45] The ENSO influence above 30�N is weak. Temper-

ature variability due to ENSO shows up as a strong
correlation with R in east Russia. The high values of LAI
influence on NEE variability (Figure 6g) and corresponding
high soil moisture correlations indicate ENSO influences
snow cover, melting times, and spring plant growth [Kaduk
and Heimann, 1997; Los et al., 2001] in Europe and
Canada. This may partly explain the simulated NEE anom-
aly pattern in the Northern Hemisphere. However, ENSO
does not explain the strong temperature influence across the
Northern Hemisphere or the 2–3 year cycle in NEE
variability.
[46] Overall, ENSO primarily affects NEE variability in

the tropics through changes in precipitation, explaining
much of the NEE variability simulated in South America,
Africa, and Asia. While our correlations are statistically
significant at 95% assuming each month is independent, our
simulation covers only three ENSO cycles. Our results are
consistent with that expected from ENSO, but a more
rigorous analysis requires simulations of several decades.

7. Conclusions

[47] The global NEE from our simulation captured the
salient features of the observed global CO2 growth rate. The
detailed process information and high time resolution in
SiB2 allowed us to isolate and quantify the influences of
climate on global and regional interannual variability of
NEE. Further, using remotely sensed LAI we estimated the
overall influence of plant biomass on GPP variability.
Assuming a 1-year turnover time we estimated the effect
of below ground biomass on respiration variability. Using
biome specific turnover times would improve the timing of
respiration anomalies. Adding an ocean model would
improve the match with the observed CO2 growth rate.
Explicitly tracking various carbon and nitrogen pools would
isolate the effects of land use, growing season length,
nitrogen availability, and other factors that influence NEE
interannual variability.
[48] The tropical grasslands in South America and Africa

show the highest NEE variability. The large South Ameri-
can NEE anomaly is driven by shifting precipitation with
ENSO, but may also result, in part, from ECMWF precip-
itation errors. The simulated NEE in the Northern Hemi-
sphere shows a pattern of alternating positive and negative
anomalies with periods of 2–3 years and amplitudes con-
sistent with inversions of CO2 flask measurements. The
alternating anomalies tend to cancel such that the tropics
control global NEE interannual variability while the North-
ern Hemisphere controls the global NEE seasonal cycle.
[49] Because of cancellation and competing effects, no

single climate variable controls global or regional NEE
interannual variability. Precipitation exerts the greatest

Figure 10. Correlations with a Southern Oscillation Index
indicate ENSO influences NEE variability primarily in the
tropics, consistent with expected shifts in precipitation.
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influence (44% of global NEE variability), followed by
LAI (23%), temperature (16%), and soil carbon (12%).
Humidity and available light do not strongly influence
global NEE variability. Climate influences have strong
regional differences: temperature influence on respiration
dominates in the extratropics while precipitation influence
on GPP and R dominates in the tropics. For regions
controlled by precipitation the soil water content relative
to Wopt determines whether GPP or R controls NEE
variability. In dry soils (W < Wopt), GPP dominates; in
wet soils (W > Wopt), R dominates.
[50] The influence of ENSO on NEE variability is con-

sistent with that expected for shifting precipitation patterns
in the tropics, especially for the large South American
anomaly. A definitive assessment requires a longer time
record, since our simulation covered only three ENSO
cycles. Except in northern Europe, temperature advection
by the AO does not significantly influence NEE variability.
Neither the AO nor ENSO fully explain the temperature
influence on respiration or the simulated NEE anomaly
pattern in the Northern Hemisphere.
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