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Abstract 

The development of computational methods for cracked bodies 
subjected to cyclic variable loads and temperatures 

This thesis is concerned with the development of computational procedures in the 
assessment of the structural integrity and lifetime of cracked bodies subjected to cyclic 
variable loads and temperatures. 

The foundation of these techniques is the Linear Matching Method (LMM), related to 
the methods of elastic compensation and Gloss r-node, used in design calculations for a 
number of years. It involves matching the behaviours of a non-linear material to that of a 
linear material, whereby sequences of linear solutions with spatially varying linear moduli are 
produced. The developed iterative programming algorithms, implemented within the finite 
element scheme, ABAQUS, would then generate a monotonically reducing sequence of upper 
bounds, ultimately converging to the least upper bound loads. 

In their applications, the significance of these programming methods is two-fold. The 
first is the investigations into the overall behaviour of cracked structures under the combined 
actions of mechanical and thermal loads. The numerical limit loads and ratchet limits so 
identified, which describe the onset of plastic collapse and the unlimited accumulation of 
plastic strains respectively, were found to be stable, with good converged solutions achieved 
within 40-60 iterations. The analyses also revealed the insensitivity of the ratchet boundaries 
to cyclic hardening, as the perfectly plastic and complete cyclic hardening limits yielded 
almost identical results. 

The other is the examination into the relationship between the near crack tip fields and 
the cyclic loading histories, in creep and plasticity conditions. It was established that the HRR 
field criterion is an appropriate representation of the behaviour of the mechanically and 
thermally induced crack tip fields. This enabled the crack tip fracture criterion to be evaluated 
in all conditions, with the observed phenomenon described by two distinct behaviours; 
strongly influenced by the effect of the elastic stress intensity factor and the reference stress 
respectively. 

The analyses conducted demonstrated the capability of the adopted numerical 
procedures in appraising the behaviour of cracked structures under cyclic loading histories, 
with the conservativeness of current solution procedures in R5 clearly evident in the results 
enclosed. 

Mohamed Salahuddin 
Mohamed Mohidin Habibullah 
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Chapter 1: Introduction 

. 
1.1. General Introduction 

In recent years, there has been a surge towards the increasing use of structural 

components operating at elevated temperatures. This economically driven trend has caused 

current operational power-generating plants, petrochemical reactors, steam and gas turbines, 

etc, to function at much higher temperatures than previously envisaged. This continued quest 

in improving the efficiency of existing equipment, often experiencing complex cyclic loading 

histories, called for the development of effective and reliable life assessment methods. The 

utilization of such techniques would ensure that these structures remains in operation within 

their design life, whilst satisfying the stringent safety requirements often imposed on them. 

In general, the lifetimes of structures operating at elevated temperatures are dependent 

upon accounting for the deformation and fracture failures experienced in these components. 

The former is mainly concerned with the excessive plastic deformations associated with the 

phenomenon of plastic collapse, shakedown and ratchetting, whilst the latter probed into the 

world of crack growth, among others, due to creep, fatigue and creep-fatigue interaction. The 

ability in addressing these failures, in structures sub ected to steady, cyclic and variable j 

loading conditions, would then provide a means of assessing the remaining life of these 

structural components. At present, the assessment of structures operating at elevated 

temperatures is based upon R5 [1], the design life and assessment procedure used by British 

Energy in the UK. The main objective of this document is to provide a comprehensive 
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assessment procedure to be easily used by both designers and practitioners. The capability of 

these procedures is to such an extent that they are now used in conjunction with simulation 

techniques based upon advanced constitutive equations, in cases where it exceeds the range of 

the traditional rules-based approach or where greater accuracy is needed. 

In recent times, an alternative approach has been developed. It involves the application 

of numerical methods [2-9], for evaluating sequences of performance indicators in structures 

subjected to both severe mechanical and thermal loads, operating below and within the creep 

range. These new methods have the potential of providing assessments, with the results 

generated combining the accuracy of simulation methods [ 10,11 ] and the efficiency of rules- 

based methods [12,13]. The methods are based upon a new programming technique called the 

Linear Matching Method (LMM), which generates cyclic loading solutions that correspond to 

a particular mode of material behaviour. Belonging to the family of related methods such as 

the Elastic Compensation Method (ECM) [14] and the Gloss r-node Method [15], the LMM 

essentially involves matching of a materially non-linear problem to a sequence of increasingly 

accurate linear problems. The developed programming method would then pose the problem 

as the search for the minimisation of a functional, which is then solved as a sequence of linear 

problems that converge to the minimum consistent with finite element approximations. Tbus, 

the method contains the characteristics of the above-mentioned ECM and Gloss r-node 

methods, with the programming power and generality of the classical programming methods 

of Maier [ 16], Corradi [ 17], Weichert [ 18] and others. 

The utilization of the LMM has been successfully investigated on several design- 

related issues. This includes the identification of limit loads [2,4], in structures subjected to 
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constant loading conditions, and in the presence of cyclic loads and temperatures, the 

evaluation of shakedown [3,5,8] and ratchetting limits [6,7]. In addition, recent extensions 

have resulted in their applications to high temperature creep behaviour including the effect of 

elastic follow-up [9], i. e. the evaluation of local creep damage due to the relaxation of stress 

during creep dwell times. In all these cases, the methods rely upon the standard set of material 

data used in rules-based methods, i. e. elastic moduli, yield stress, steady state creep 

deformation and rupture times, simple descriptions of creep strains during relaxation, fatigue 

and creep/fatigue data. Furthermore, its employment within current simulation techniques, 

allows it to enjoy the expertise and accuracy of such methods, but with the advantage of the 

solutions being produced at a fraction of time and cost. 

This thesis is concerned with the development of the LMM in the contexts of its 

an lication in cracked structures. In the field of deformation failure, the focus is on the r'p 
identification of limits loads, shakedown limits and ratchetting limits in cracked structures 

subjected to cyclic histories of loads and temperatures. In fracture failure, the interest is in the 

development of an understanding into the behaviour of crack tip fields, in mechanically and 

thennally induced cracked structures, under creep, fatigue and creep-fatigue conditions. The 

implication of these specific problems, in design and life assessment, is investigated, with 

particular emphasis ons olutions p roduced inc urrent R5[I]p rocedures. This t hesis isa Iso 

aimed at generating standard solutions to typical problems, whereby the interaction diagrams 

developed would provide assistance in making intelligent assessment on the operational safety 

of the structure in consideration. Finally, it is hoped that the availability of such techniques 

would ultimately enhance its applicability within current design and life assessment 
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procedures [1,12,13], as an additional tool in the verification of the accuracy of current 

solutions or in some cases, perhaps, act as a replacement to current ones. 

In this chapter, the problems associated with the deformation and fracture failures, 

considered in this thesis, are discussed in great detail. The significance of the outlined 

structural failures in current R5 [1] procedures as well as the possible account of any other 

known available solutions is also described. This is then followed by a review of the current 

inelastic analysis methods used in overcoming these specific problems. On the basis of such 

appraisals, the justification behind the employment of the LMM in this thesis is then provided. 

An overview of the thesis is also included, at the end, stating precisely the investigations 

conducted in each chapter. 

1.2. Definition of the Problems 

1.2.1. Deformation failures 

One of the most critical areas in deformation failures, which have been of interest in 

industry for many years, is the limit load. This is the maximum load that a structure 

manufactured from a perfectly plastic material can sustain. The implication of this 

phenomenon in a structure lies in the fact that the application of proportional loads beyond the 

limit loads, would lead to the failure of the structure from plastic collapse. The accurate 

identification of these limit loads, for real uncracked and cracked structures, is, thus, an 

essential pre-cursor to the design and life assessment of these structures. In the context of the 

R5 [I ] procedures, the significance of the limit loads is that it is one of the essential input 
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parameters required, in methods for assessing creep, fatigue and fatigue-creep interactions 

over the lifetime of a structure. Primarily, these loads are used for identifying the reference 

stress [1,19], with the application of the associated method allowing the quantities of interest 

in a complex structure to be represented in ten-ns, of the reference stress and the corresponding 

fatigue/creep data at the reference stress level. The utilization of these so-called reference 

stress methods [1,19] is justified on the basis of their ability to compromise between the 

pessimism of using purely elastic stress analysis and the cost and complexity associated with 

the full cyclic inelastic computation. 

At the present time, the limit loads, employed in the current procedures, are obtained 

ýC__ 
from the works of Miller [20]. In his investigations, he compiled a compendium for estimating 

the limit loads of structures containing defects, under the various possible conditions. These 

include variations in structural geometries, loading conditions, crack lengths under constrained 

and unconstrained rotation conditions, etc. Some of his well-known examples are the single- 

edged notched tension (SENT), single-edged notched bending (SENB) and compact tension 

(CT) solutions. The availability of limit load solutions, for the most commonly worked on 

structural problems, has made his work an almost indispensable reference in most structural 

integrity evaluation procedures. However, in situations where the limit loads to a specific 

problem does not exist, costly full step-by-step inelastic analysis [10,11] calculations are 

generally performed. As an alternative to such analyses, the existence of an inelastic limit 

analysis method, whereby limit loads are computed by a series of simple elastic calculations, 

is advantageous. The ability of the chosen methodology, in initially reproducing some of 

Miller's [20] solutions, would also provide the necessary verification of the accuracy and 

validity of the solutions generated. 
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In circumstances whereby structures are subjected to cyclic histories of loads and 

temperatures, the relative variations of the induced mechanical and thermal stresses has 

serious implications on the life span of the structural components. For certain structural 

configurations and combinations of loading cycles, large fluctuating stresses may be tolerated 

without causing any progressive strain growth (reverse-plasticity). In other situations, stresses 

operating in excess of the initial elastic limit produce very quick accumulation of plastic 

strains (ratchetting). On the other hand, there are conditions that if some plastic strains are 

accommodated during the initial loading cycles, the subsequent behaviour of the structure is 

elastic (shakedown). Whereas ratchetting must be avoided at all cost since it leads to 

intolerable deformation, reverse-plasticity can be endured provided low cycle fatigue is taken 

into consideration. Hence, in the design and life assessment of structures, it must be ensured 

that any inelastic strains/deformation accumulated must be avoided altogether or restricted to 

the number of cycles within its designed limit so that they will not make the component 

unserviceable. 

In addressing the effect of shakedown, the current R5 [1] procedures adopted Melan's 

[2 1] classical shakedown theorem. Fundamentally, this theorem requires the identification of a 

constant residual stress field, such that the sum of the applied linear elastic stress fields and the 

constant r esidual s tresses, a re kept w ithin yield ata 11 p oints int he b ody u nder a 11 p ossible 

loading combinations. Thus, the satisfaction of the equilibrium condition in the body leads to 

the shakedown lin-fits, identified within the R5 [I ] procedures, as lower bound shakedown 

limits [22]. 
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In the identification of the corresponding reverse-plasticity and ratchetting limits, 

however, to the best of the author's knowledge, no such procedures exist within R5 [1]. In 

such situations, an extension of the classical theorem, capable of identifying a time-varying 

residual stress field, is required, such that the sum of the linear elastic, constant residual and 

the t ime-varying r esidual s tress f ields, a re k ept w ithin yield only o ver s orne v olume oft he 

body. The subsequent cyclic behaviour is, thus, no longer entirely elastic, as there are 

restricted increments of plastic strains forming a reverse-plasticity mechanism over some part 

of the body, whilst persisting in the shakedown state in the remaining part. In closing this gap, 

an early attempt was made by Ponter et al [23,24], whereby the behaviour of a two-bar 

structure subjected to severe thermal loadings, was investigated. Using the simplified 

assumption of a fully cyclically hardening material, a means of distinguishing shakedown, 

reverse-plasticity and ratchetting limits was successfully developed. Nonetheless, the 

availability of a generalized theorem, capable of differentiating these limits with respect to 

changes in the cyclic properties of the material, implemented within an efficient inelastic 

analysis method, would be an asset in the current climate of operating structures at elevated 

temperatures. 

In the investigations into the behaviour of cracked structures subjected to cyclic 

histories of loads and temperatures, however, not much work has been undertaken in the 

identification of these limits. This is mainly due to the inability of the presently available 

methods in dealing with the elastic singularity at the crack tip. In overcoming this deficiency, 

the common practise was to generate solutions using the classical shakedown theorems 

[21,25], but with the cracks replaced with notches. Examples of such publications include the 

works of Huang & Stein [26], Feng & Gross [27] and Carpinteri [28]. Practically, however, 
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the accuracy of these solutions is generally viewed with suspicion, since they do not model the 

realistic crack conditions experienced in the structure. In this respect, it is, therefore, desirable 

for an inelastic analysis method to be developed, capable of efficiently identifying the 

shakedown, reverse-plasticity and ratchetting limits, in both cracked and uncracked 

conditions. The capability of the chosen methodology, in accurately classifying the three 

regions, would also be of great assistance to designers and practitioners in making intelligent 

judgement on the structure's safe operating region. Finally, it is also hoped that the ability of 

the method to deal with the issues raised, would, perhaps, ultimately lead to the adoption of 

such methods within current R5 [1] procedures. 

1.2.2. Fracture failures 

Within the framework of fracture failures, this thesis is concerned in addressing two 

important crack growth issues. The first is in the development of an understanding into the 

behaviour of the crack tip fields under cyclic creep loading conditions, in cracked structures 

subjected to cyclic histories of loads and temperatures. This is one of the most critical failures 

experienced in many industrial types of equipment, operating at elevated temperatures for 

extended periods of time. In conducting such investigations, methodologies capable of 

generating cyclic creep solutions in cracked structures is essential. The availability of such 

procedures would then enable the characteristics of the near crack tip fields, under the 

prescribed loading conditions, and their influence on cycle times and material behaviour, to be 

examined. This would then lead to the possible definition of a crack tip fracture criterion to be 

identified, which in essence is a representation of the safe operation of the whole structure. 
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The conventional attitude to this problem is to develop constitutive laws for the 

material behaviour and to conduct detailed finite element studies of the response of the 

cracked structures. Although such a procedure is sound and valid, there are, however, a 

number of problems associated with their employment. Firstly, the constitutive equations used 

in modelling the material behaviour under the complex loading histories, are often too 

elaborate and contain a large number of variables, making them very difficult to implement. In 

addition, their general applications, in all situations, are often questioned, since these laws 

were identified from extensive experimental studies conducted on a particular batch of 

material. In circumstances where these constitutive relationships holds true, the complexity 

and specialised, programming knowledge required in computationally implementing these 

laws, makes such an approach rather unappealing in the current financially conscious 

enviromnent. 

In overcoming the above difficulties, an alternative approach was proposed. This 

involves examining the behaviour of the cyclically loaded cracked structures, by considering 

only the extremes of the loading conditions and used in conjunction with simple constitutive 

material models. A preliminary investigation into this procedure was conducted by Le Mat- 

Hamata et al [29,30], who successfully showed that, in cracked structures subjected to cyclic 

variable loads, it was possible to develop an understanding into the relationship between the 

near crack tip fields and the different features of the material response. Their encouraging 

results fonned the basis of the investigations carried out here, whereby an understanding into 

the behaviour of cracked structures, subjected to both cyclic histories of loads and 

temperatures, is demanded. The conduction of such examinations, thus, requires the 

development of a cyclic creep analysis method, capable of implementing within them, simple 
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constitutive material models. In addition, the availability of such procedures would also enable 

the appropriateness of current R5 [1] procedures, which treats the effect of thermal stress as an 

equivalent bending moment, to be validated. 

The other area of crack growth, of interest here, is in the development of an 

understanding into the behaviour of the mechanically and thermally induced crack tip fields, 

under reverse-plasticity and reverse-plasticity/creep loading conditions, in cracked structures 

subjected to cyclic variable loads and temperatures. This is, perhaps, one of the most likely 

behaviour observed in many processes of engineering design and life assessment of structures 

subjected to cyclic loading histories. Although intensive studies have been undertaken in the 

past [31,32], the majority of the results obtained were only concerned with the behaviour of 

cracked structures, under purely variable loads. In the current climate of structures operating at 

elevated temperatures, a similar investigation into the behaviour of cracked structures, under 

both variables loads and temperatures, needs to be studied. The existence of analysis methods, 

capable of generating such solutions, would help in this cause. This would then lead to the 

relationships between the crack tip fields and the cyclic loading histories to be identified, 

enabling the corresponding fatigue crack growth and fatigue-creep interaction criteria to be 

evaluated. 

The importance of such investigations was also outlined in the joint report by 

EPRI/CRIEPL/NE [33], for the liquid metal fast breeder reactor program. Although the 

collaboration concluded that current flaw assessment procedures, such as R5 [1], are safe, the 

over-conservatism of the solutions produced is a concern. In describing the behaviour of 

cracked structures under the prescribed loading conditions, the current procedures entail the 
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application of two formulations. The first is the small-scale yielding formulation [34], 

indicating the domination of the elastic stress intensity factor and generally used in describing 

the behaviour of the cracked structures at low variable loads. The corresponding formulation 

at high variable loads is the application of the reference stress method [1,19]. Thus, within the 

current procedures, the summing up of these two formulations, is the criteria often used in 

describing the overall crack tip behaviour of cracked structures. Therefore, in addressing the 

effect of over-conservatism in the above conjecture, the numerical solutions generated from 

the proposed investigations, needs to be compared with solutions obtained from the current 

procedures. The results of such comparisons would then enable judgement on the validity of 

the concerns, in these solutions, to be made. 

This thesis has, so far, described the areas of defonnation and fracture failures, 

experienced in cracked structures subjected to cyclic histories of loads and temperatures, 

which needs to be investigated. For each specific structural-related problem discussed, their 

implication, to the design and life assessment procedures of R5 [1] were also presented. In all 

these situations, the investigations called for the development of analysis methods, capable of 

describing the behaviour of cracked structures under the prescribed loading conditions. As a 

general rule, these analysis methods have to satisfy the following conditions. It needs to be 

efficient and effective in resolving the issues raised, particularly in the examinations into the 

performance of the cracked structure at the crack tip. The programming methods developed 

must also be capable of generating accurate results, possibly requiring as little specialist 

programming knowledge as possible. Adequate care must also be taken to ensure that the 

elected analysis methods were capable of monitoring the solution's sensitivity, as well as, 

securing a reasonable realization in convergence. Last, but not least, the ability of these 
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methods to be implemented, within existing commercially available software rather than 

specialist codes, would also be an added advantage. 

1.3. Inelastic Analysis Methods 

In analysing the behaviour of structures subjected to cyclic histories of loads and 

temperatures, there are a number of different methods available at the present time. The 

majority of these methods have been successfully applied to uncracked components, yielding 

useful explanations to the structural-related problems faced. In cracked conditions, however, 

an understanding into the behaviour of these mechanically and thermally induced structures, 

still poses a major difficulty. This, despite, the commendable progress that has been made in 

recent years, resulting in the emergence of a number of design and life assessment methods. 

In the pursuit of answers to the deformation and fracture failure questions declared in 

the previous section, the strategy employed in this thesis involves examining the capability of 

the presently available methods applied to uncracked structures. The pros and cons of these 

methods were then investigated, with the eventual identification of the method with the best 

potential of being adapted to cracked problems. A review of some of these methods, broadly 

classified into four main categories, is presented below. 

, 
1.3.1. Accumulation of experimental results 

This procedure involves investigating the response of a real structure subjected to a 

combination of real loading (mechanical and thermal) or alternatively looking at a scaled 
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model and its corresponding scaled loading, through experimental techniques. Proposed by 

workers at CEA/DEMT [35], the ensuing results obtained are then collated and analysed, by 

plotting non-dimensionalised graphs, with axes corresponding to the two loads. On these plots, 

known as Efficiency Diagrams, boundaries indicating the critical limits in creep and plasticity 

were then identified. Comparisons were then made with solutions obtained from other known 

numerical methods. 

Such examinations have been performed for the problems experienced in the Liquid 

Metal cooled Fast Breeder Reactors (LMFBR) [36]. It was observed that, in certain 

circumstances, the CEA/DEMT solutions (shakedown and ratchetting limits) compare 

favourably, while in other situations, it does not. This implies the necessity in conducting 

experiments for various ranges of structural problems, under different combinations of loading 

histories and/or structural geometries. The practicality of perfort-ning different arrays of 

experiments is debatable as these incur excessive cost, which needs to be justified in 

comparison with other inexpensive available methods. The ability in conducting these 

experiments is also dependent upon the technological advances made in the field in question. 

This is the reason behind the exploitation of such an approach is generally restricted to only 

uncracked structural components, making it rather unattractive in the proposed investigations 

into the deformation and fracture failure problems experienced in cracked structures. 

Although, the continued utilization of this method, by the aforementioned institution, is based 

upon the argument that new data can be constantly updated when acquired, the quantities and 

restrictions of these data to only specific problems have caused this method not to be highly 

thought of 
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1.3.2. Particular solution methods 

These are solutions to idealised structural problems solved using various simplifying 

assumptions. The common features of these methods entail making a number of 

simplifications in describing the geometric properties as well as the mechanical behaviour of 

the materials. Generally, it involves reducing the number of spatial dimensions considered, 

from a three-dimensional problem to a one or two-dimensional model, and restricting the 

magnitudes of the deformations to infinitesimal strains. In simplifying the material properties, 

these solution methods vary by making sensible assumptions on factors such as temperature 

dependence of properties, hardening rules, cyclic properties, etc. 

Essentially, these methods involve generating material models, representative of real 

problems, and investigating their behaviour, under plasticity and creep loading conditions. The 

results obtained are then analysed and wherever possible, analytical solutions are outlined. An 

example is the classical Bree [37] solution, for the fuel can problem. Under the combined 

effects of internal gas pressure and intermittent heat fluxes, there was a concern that the design 

of the fast-nuclear reactor fuel can was unsafe. This was due to the high thennal stresses 

experienced in the can wall during start-up and shutdown situations, which may cause 

structural failures due to excessive straining. In answering these questions, a model of a plane 

stress nuclear reactor fuel can, subjected to relatively high thermal stresses in the presence of 

an internal pressure, was examined. The results obtained were then represented in the form of 

interaction diagrams, or otherwise known as Bree diagrams, clearly distinguishing the various 

possible modes of structural behaviour, i. e. shakedown, ratchetting and reverse-plasticity. The 

safety of the fuel can was then judged on the basis of such diagrams. 
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Later, using a different approach, O'Donnell & Porowski [38] conducted a similar 

investigation for the same fuel can problem. Their examination proved the correctness of the 

Bree solutions, as the method yielded similar analytical equations, representing the different 

behavioural modes int he d iagrams. A dditional st udies i nto t he b ehaviour oft he can u nder 

creep conditions were also conducted [39], and when presented on these diagrams, provided a 

means of assessing the operational safety of structures against failure due to creep and 

plasticity. Another example of a particular solution is the analysis on the three-bar assembly 

structure by NEller [40]. He examined the possibility of correlating the behaviour of this 

simple structure to that experienced by pressure vessels subjected to combinations of cyclic 

thennal and pressure stresses. On the basis of this conjecture, design criteria were then 

derived, allowing limits to reverse-plasticity and ratchetting to be prescribed. Other workers, 

belonging to this group of solution methods, are Parkes [41], for the problem of incremental 

collapse of an aircraft w ing asa result of fluctuating thermal stresses superimposed on the 

normal wing loading, and Gokfeld & Cherniavsky [42], for methods of identifying shakedown 

limits in shell and plate problems. 

The significance of these particular solution methods in engineering design is the 

ability to conduct repeated simulations on these specific problems, for differing loading 

conditions and/or structural geometries. Fort he Bree problem, compendiums of interaction 

diagrams have been compiled [43], providing designers with instant access to essential 

information required in structural analysis. These could then be used in design rules or as a 

comparison with solutions generated using other inelastic analysis methods. Although 

successful in certain circumstances, question marks still hang over the solution's accuracy and 
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their relevance in design problems. This is mainly due to the assumptions the above 

investigators make on the behaviour of structures, under the combined actions of mechanical 

and thermal loads. There is a concem that the particular views adopted by these researchers, 

might be based upon an incomplete understanding of the material's behaviour. This would 

lead to the application of such solution methods, in cracked structures under cyclic loading 

histories, to be questionable. Furthermore, most of these investigations were only concerned 

with t he d eformation f ailures o bserved inu ncracked s tructures. Tot he b est oft he a uthor's 

knowledge, no such solutions have been attempted in the field of fracture failures. 

1.3.3. Computer solution methods 

The use of computers in structural analysis lately, has enabled many complex 

structures, not analysable before, to be studied and investigated. Using such solution methods, 

an accurate description of the behaviour of high temperature components is now possible, by 

following changes in the stress, strain, deformation and material properties in a non-linear 

analysis process. In recent times, a big leap in interest for these methods was observed. This is 

mainly due to the extensive developments made within the finite element analysis (FEA) 

codes, the foundation behind these computer solution methods. The flexibility and reliability 

of these FEA codes, implemented within very high capacity computers, in conjunction with 

the comprehensive deformation and material data obtained from the classical constitutive 

plasticity/creep equations, has enabled a complete inelastic analysis to be performed, even for 

the most complex design shapes often containing many of the features of practical 

components. 
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Today, in engineering industries, there is a wide variety of commercial software, which 

is based upon FEA. One of them is ANSYS [10], a simulation program that can solve 

problems ranging from the relatively simple linear elastic analyses to the most challenging 

non-linear simulations. Another general-purpose finite element modelling package is 

ABAQUS [11], a tool capable of numerically solving, among others, mechanically and 

thermally induced structural problems. There are also other examples of purpose-built FEA 

methods, but only used within the industries it is originally designed for. The CASTEM 2000, 

developed by the Mechanical Department and Technology (DMT) of the French police, is an 

example of one of them. BERSAFE, an in-house code used by Nuclear Electric p1c, was 

another one. Although each of these methods is specifically different, the overall organization 

of the solution process is found to be, by and large, the same. 

The advantage of computer solution methods lies in the fact that they are able to solve 

almost any structural problem, irrespective of the structural geometries and/or loading 

conditions. Its ability to handle the deformation and fracture failure problems, in both 

uncracked and cracked structures, has made this method an essential tool in many processes of 

engineering design and life assessment. Although useful in evaluating structural behaviour, 

this step-by-step inelastic analysis calculation generally require very large computational 

effort, for structures subjected to very complex loading histories. There is also the matter of 

high cost and long analysis time required in performing such tasks, especially in three- 

dimensional structures. In the analysis of cracked structures subjected to cyclic histories of 

load and temperatures, the literature behind these methods indicates the unavoidable problems 

of stability and convergence, which reqwres considerable expertise to rectify. Thus, in most 

practical situations, the employment of these methods is generally limited to validating the 
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result of a designed structural component, rather than perfort-ning the full step-by-step inelastic 

analysis. 

1.3.4. Direct solution methods 

These are methods that do not follow the evolution of the structural system along a 

given history of external loading actions. They directly evaluate critical, ultimate states of that 

evolution and provide only essential information concerning them, without following the step- 

by-step inelastic structural responses to the assigned loading history. The capability of these 

methods in answering issues related to design and life assessment of structures has enabled 

them to withstand the test of time. This, despite the extensive progress made in the above- 

mentioned computer solution methods, producing inelastic analysis solutions. 

The motivation behind the continued development of these methods is as follows. 

Firstly, in many structural engineering situations, the crucial element is the assessment of the 

"safety factor" of the "live loads", with respect to the ultimate limit states specified. The 

utilization of direct methods leads precisely to that assessment, often accompanied by useful 

information on the kinematics of the structural crisis and the expected stress states under the 

critical loading conditions. The potentially useful information, which can be gained with 

bounding theorems, is another notable factor. As the name suggests, these theorems bound the 

exact solution, producing either conservative or non-conservative results. Thus, the use of 

these direct methods, based upon such bounding theorems, would allow checks to be 

performed, with respect to possible local failures and/or un-serviceability. Finally, the most 

significant reason of them all is the substantial computational savings that could be achieved, 

18 



in comparison with solutions produced from computer solution methods. The implementation 

and commercialisation of software for these direct methods would enable solutions to be 

generated at a fraction of the time and cost expected of other inelastic analysis methods. 

The majority of the direct solution methods developed are concerned with the ultimate 

limit states associated with plastic collapse, i. e. the exhaustion of the load carrying capacity in 

ductile structures. In structures subjected to variable repeated and cyclic external actions, the 

corresponding limit states are the safety region (shakedown) and the eventual failures either by 

incremental collapse (ratchetting) or alternating plastic flow (low cycle fatigue). Under the 

general heading of limit and shakedown analyses, various methods have been suggested. Some 

of these techniques are described below. 

The use of direct methods as bounding techniques is a major subject of interest. This is 

in response to the frequent discrepancies existing between the traditional plasticity hypothesis 

of unlimited ductility and the actual behaviour of the materials with possible local failure. If 

economically computed, the implementation of these upper/lower bounds methods, within the 

finite element-modelling scheme, would provide a means of eliminating undesirable 

thresholds in structural design and life assessment. A variety of bounding theorems and 

relevant numerical procedures has been proposed, with the works of Maier et al [44], 

Polizzotto et al [45] and Ponter [46] leading the way. 

In recent times, a special limit and shakedown analyses strategy, exhibiting interesting 

novel features, has been proposed and developed for versatile engineering use. The 

methodology basically amounts to a convergent iterative sequence of linear elastic analyses, at 
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each iteration of which the local (material or sectional) elastic stiffness is suitably modified on 

the basis of the preceding iterations [2-8,14,15,47,481. Belonging to the family of the ECM, 

the success of these methods is based upon their ability to produce solutions within finite 

iterations as well as practically coping efficiently in their implementations within the current 

commercial FEA codes. 

Thus far, the reviews in the solution methods, described in Sections 1.3.1. to 1.3.4., 

showed a wide variety of available procedures, potentially capable of analysing the behaviour 

of cracked structures subjected to cyclic histories of loads and temperatures. Each of these 

methods approaches the problems differently, with some more capable in implementation, 

while others having the advantage of being cost and time effective. In most practical 

situations, however, compromises are usually made, taking into account the various factors 

involved. Upon careful consideration into each of the method's features, the methodology with 

the best potential, for further exploration, was identified as the LMM [2-9]. 

1.3.5. Linear matchin2 method 

This method forms the foundation of the analyses conducted in this thesis. It is a non- 

linear programming technique, developed out of the Elastic Compensation Method (ECM), 

implemented within the commercial FEA code, ABAQUS. It basically involves sequentially 

matching the behaviour of a linear rate problem to that of a linear problem. Numerically, 

sequences of linear solutions with spatially varying moduli are produced, generating upper 

bounds which monotonically reduce to converge to a least upper bound, associated with the 

class of displacement fields considered by the finite element approximations. The primary 
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application of these methods is in the evaluation of the limit loads and shakedown limits for 

complex structural components [49]. The workers involved in the development of these 

techniques include, among others, Ponter & Carter [2,3], who presented the initial 

implementation as well as the formal proofs for the monotonic reduction of these upper 

bounds and later, Ponter & Engelhardt [5,49], who successfully simplified and generalised the 

methodology, existing in the present form. 

The choice of using the LMM, as the apparatus in addressing the identified 

deformation and fracture failure problems experienced in cracked structures subjected to 

cyclic histories of loads and temperatures, is based on its satisfying the following conditions. 

First and foremost, the methodology combines the flexibility of the computer solution 

methods as well as the simplicity associated with the direct methods. This implies the 

possibility of performing structural analysis, with the accuracy but at a fraction of time and 

cost of the full step-by-step inelastic analysis calculations. Their capability to be implemented 

within the connnercial software, ABAQUS, is another advantage, which unlike other 

techniques does allow the development and utilization of specialist programming codes. 

Another feature of this method is its ability to achieve rapid convergence. Past investigations 

into the identification of limit loads and shakedown limits of uncracked structures have 

revealed that good converged solutions are generally attained within 30-100 iterations [5]. 

Although not much work has been undertaken in the field of cracked structures, promising 

recent results in the capability of the method in identifying the limit loads of cracked 

structures [4], ftirther justifies the selection of this method. These limit load solutions 

generated also provided the confidence that an investigation into the behaviour of the crack tip 

fields under creep and reverse-plasticity conditions is possible. Thus, it is believed that the 
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application of the LMM, to cracked structures subjected to cyclic loading histories, would be 

capable of answering the deformation and fracture failure questions posed in the earlier 

sections. 

1.4. Overview of the Thesis 

This thesis is broadly divided into seven main chapters, with each chapter focusing on 

one particular aspect of the problems identified in Section 1.2. The exception is in this chapter 

(Chapter 1) whereby the subjects of interest were introduced. This was then followed by 

declarations into the associated deformation and fracture failure problems, experienced in 

cracked structures subjected to cyclic histories of loads and temperatures, causing an 

assessment into the various currently available solution techniques to be conducted. From 

which, the methodology with the best prospect for investigating the behaviour of cracked 

structures under the prescribed loading histories was then identified as the Linear Matching 

Method (LMM). 

In Chapter 2, the application of the LMM in limit analysis is discussed. It begins with 

brief statements on the lower and upper bound limit load theorems for the von-Mises yield 

condition. This is then followed by the discussion into the foundation of the LMM, as an 

iterative upper bound limit analysis method. Its implementation within ABAQUS is then 

described, for two cracked numerical problems subjected to constant mechanical loads. Using 

two different implementation approaches, Procedure A and Procedure B, solutions to the two 

problems are then compared, enabling the subsequent identification of the superior procedure 

for further analysis. 
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In Chapter 3, the theory behind the LMM for shakedown analysis is discussed in great 

depth. Beginning with an introduction into the fundamental shakedown theorems for a general 

problem, its implementation for the upper bound shakedown theorem is then presented. For 

structures loaded in excess of shakedown, extended theorems for the identification of 

ratchetting limits are also explained. These numerical methods are then applied to the Bree 

problem [37], in uncracked and cracked conditions, enabling distinctions between the regions 

of shakedown, reverse-plasticity and ratchetting to be identified. Further examinations are then 

conducted for an additional industrial problem, considered in R5 [I ], allowing comparisons 

between the numerical solutions and those used in current design and life procedures to be 

made. 

In Chapter 4, the essential concept behind the rapid cycle creep solution is discussed. 

Using an extension of the LMM, its implementation is then described for two constitutive 

creep models, Norton's law and the Bailey-Orowan model. For these two creep models 

considered, the characteristics of the near crack tip fields, subjected to cyclic histories of loads 

and temperatures, are then investigated on the cracked axisymmetric Bree problem, using the 

HRR field criterion as the foundation. Calculations are then repeated, for variations in 

structural geometries, loading histories and material properties, with the ultimate aim of 

demonstrating the capability of the numerical methods to be employed in all situations. 

In Chapter 5, the significant aspect behind the reference stress method is deliberated. 

Its initial application, to structures subjected to purely mechanical load, is then demonstrated 

for the problem considered in Chapter 4. In the presence of both mechanical and thermal 
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loads, an extension of the reference stress concept is then prescribed. These terms are then 

represented in terms of the effective reference stress quantities, enabling an assessment on the 

validity and appropriateness of current design and life assessment procedures [I] to be judged, 

under the various circumstances considered in Chapter 4. 

In Chapter 6, an approach of investigating the behaviour of cracked structures under 

reverse-plasticity and reverse-plasticity/creep loading conditions is introduced. Using the HRR 

field criterion as the foundation, the near crack tip fields are then examined using a 

methodology based upon the LMM, numerically implemented in a two-stage decoupled 

analysis process. This enabled the behaviour of the crack tip fields, under reverse-plasticity 

and reverse-plasticity/creep loading conditions, to be individually analysed, under the varying 

magnitudes of load and temperature. Relationships between the crack tip fields and the cyclic 

loading histories are then identified, enabling the judgement on the conservativeness of current 

design and life assessment [I] procedures to be demonstrated. 

Finally, in Chapter 7, conclusions to the objectives outlined in this thesis are presented, 

including a summary of the results generated. Suggestions on the possible future research 

areas to be conducted are also enclosed. 
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Chapter 2: Limit Analysis Methods 

2.1. Introduction 

In the subjects of limit analysis and plasticity theorems, their origins could be traced 

back to the 1940's and 50's plasticity schools. Then, the lack of effective computational 

methods for complex design problems provided a powerful incentive to discover new and 

distinct theorems. These findings, well documented in the current literature [22,50], gave 

fundamental insight into the behaviour of structures subjected to realistic and complex loads. 

Unsurprisingly, design codes and life assessment procedures for metallic structures, evolving 

-P-- - trom this period, relied heavily on the insights so obtained. 

The growth of interest in limit analysis methods, in recent times, is, however, due to 

the need in directly computing the performance indicators (limit loads) of structures subjected 

to complex loadings. The capability of these methods in resolving structural integrity 

concerns, in current design and life assessment procedures [1], has boosted the prominence of 

these so-called direct methods, i. e. simplified solutions based on bounding theorems. This shift 

in attitude was made possible, with the advent of FEA methods [51], implemented within 

fairly flexible and reliable commercial F EA codes [ 10,11 ]. Thus, the incorporation of these 

direct methods within these codes is an aid to design, especially so, in determining the 

remaining strength of a structure once a flaw or crack is detected. This, in turn, would then 

enable the reference stress [1,19], a quantity often used in describing the behaviour of cracked 

structures, to be evaluated. 
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One particular direct method, widely used in industry for calculating limit loads for 

many years, is the Elastic Compensation Method (ECM) [14]. In its original form, this purely 

linear elastic analysis calculation involves adjusting the elastic moduli spatially to ensure that 

the linear elastic stresses are brought within yield, at a fixed strain distribution. A ftirther 

elastic solution is then carried out using the current distribution of elastic moduli. At each 

stage, a lower bound on the limit load is then evaluated by scaling the solutions, so that the 

stresses lie within yield for the current elastic solution. In an iterative process, this sequence is 

terminated when the utmost lower bound limit load is achieved. Other variants of this method, 

that has been equally successful in evaluating the limit loads of cracked structures, includes 

the Reduced Modulus Method [52] and the Gloss r-node Method [15], with the full historical 

account of these methods detailed in the review paper of Mackenzie et al [53]. 

The above methods, despite their capabilities, have certain uncertainties associated 

with them. Firstly, most of these methods are supported by standard FEA codes, which itself is 

an upper bound method based upon the Rayleigh-Ritz optimisation technique. Furthermore, 

these codes tend to achieve global rather than point-wise equilibrium, which leads to serious 

implication on the methods' ability to converge to the utmost lower bound limit load, or worst 

still, it may not lie below the exact solution. The non-existence of any formal monotonic 

convergence proofs, further questions the methods' stability. 

In view of overcoming these difficulties, Ponter et al [2,4] developed an iterative upper 

bound limit analysis method, which is based upon the concepts contained in the ECM. It 

basically involves defining a sequence of linear problems, where the linear coefficients are 
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chosen so that they match the yield condition. The iterative non-linear programming 

procedures developed, numerically implemented within the FEA code ABAQUS, would then 

generate sequences of upper bounds, converging monotonically to the least upper bound limit 

loads. Unlike previously, this methodology does deliver a convergence proof that the upper 

bounds will monotonically reduce to the least upper bound limit load [2]. Another advantage 

is in its ability in evaluating limit loads, for structures satisfying any arbitrary convex yield 

condition [4]. 

In this chapter, the re-interpretation of the ECM, as an iterative upper bound limit 

analysis method, is presented. Upon a brief introduction into the general fundamental 

theorems associated with limit analysis, the foundation behind the Linear Matching Method 

(LMM) is then discussed. Also included is the method's implementation within ABAQUS, 

software based upon FEA methods. For a structure subjected to purely mechanical loads, two 

different implementation procedures, suitability identified as Procedure A and Procedure B, 

are then presented. From the ensuing numerical solutions, comparisons were then made on the 

Procedures' accuracy, stability and convergence, leading to the identification of the superior 

methodology for further analysis. 

, 
2.2. Limit An 

Figure 2.1 shows the problem considered in the analysis. It consists of a body of 

volume, V, having a surface area, S. The surface is also divided into two parts: S,, the part 

where constraints are prescribed, hence all displacement rates, ý, = 0, and the remaining part, 
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S,, onto which the loads are applied. The applied load is of the fonn, APj (x), where Pi (x) is 

the shape of the load and A is the scalar parameter, providing its magnitude. 

The body is then assumed to be made up of an elastic-plastic material with a uniaxial 

yield stress, a,, satisfying the von-Mises yield condition, 

(Ujj) = u(ujj) - a, = (2.1) 

3 
where a (aj) Gu' is the von-Mises effective stress and uj =a 'j -3 aij Sjj are the 

F- 

deviatoric stresses. The plastic strain rates, at yield are given by the associated flow rule, 

d f(aij) 

daij 
(2.2) 

where 6 is the constant of proportionality. This can be expressed as the Prandtl-Reuss 

equation [54], given by, 

2 Ij 
(2.3) 

where ý is the associated effective strain rate. In stress space, . 6,, f fonns, a normal vector to 

the yield surface and for the Von-Mises yield condition, it implies that the plastic strain rates, 

'ýP , and the associated deviatoric stress at yield, u' are proportional to each other. 
ii ij 9 
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The limit state of the body can then be defined as the value of A= AL ý where there 

exists an equilibrium stress field, uijp, which satisfies yield, 

(Crjýý) (2.4) 

where AL is the limit state parameter. At the same time, there exists a distribution of plastic 

strain rates, cjp, which is compatible with the displacement rates, zýj = 0, on S, such that, at 

all points in the body where ý-, jp # 0, a,, ý lies on the yield surface and is associated through the 

rate equations. It is well known that for the von-Mises yield condition, there exist a unique A, 

and associated ýijp and uijp, except in the rigid regions, ýjjp = 0, where ujp may not be unique. 

In reality, however, the simultaneous satisfaction of both equilibrium and compatibility 

conditions, based upon an appropriate yield and flow rule criterion, are seldom achieved. This 

is, particularly so, in the analysis of structures having complex geometries and/or loading 

and/or boundary conditions. In its place, bounding theorems [22,50] are often utilised, 

producing either a lower bound or an upper bound limit to the true limit load. 

, 
2.2.1. Lower bound limit load 

The lower bound limit load theorem states that a body will support the applied load, 

A,, Pi, if a stress field, aj* , can be found, which is in equilibrium with it, such that it satisfies 

yield at every point within V9 
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f(o)ýO 

then5 ALB :! ý AL 

9whereALB is the lower bound limit load parameter. 

2.2.2. Upper bound lin-dt load 

(2.5) 

The upper bound limit load theorem states that if the rate of internal energy dissipated 

in a body is equated with the work done externally on the body by the applied loads, the 

resulting estimate, AUB ý! I'L 
Jor a chosen deformation mechanism, where AUB is the upper 

bound limit load parameter. Thus, for an assumed compatible strain rate distribution, , ýY, with 

the displacement rates, ti, = 0, on S, the theorem yields, 

Au, f Pi zý, ds =fu,, ýj, dv (2.6) 

sv 

where aij is the stress at yield associated with ý-, j * 

Note: If the stress fields, a,, ' in (2.5) coincides with o7,, ' in (2.6), then 'ý'LB .. ... : AUB 

2.3. Linear Matchin Method 

2.3.1. Simulation technigue for limit analysis 

The method [2,4] attempts to relate a series of incompressible linear solutions to the 

limit state described above. The term, incompressibility, means that in an isotropic material, 
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the standard stress strain relationship becomes indeterminate. This argument would be clearer 

if it is written as two separate linear relationships, representing the deviatoric and hydrostatic 

stress and strain rate components respectively, 

UY & hp =I aij 9ij = Ki ýkk 

3 
(2.7) 

where or' is the deviatoric stress, hp is the hydrostatic tension (mean stress), and ý are ii A* 

the deviatoric and volumetric strain rates respectively. The shear modulus, p, and bulk 

modulus, K, are related to the Young's modulus, E, through the following expressions, 

E&K 
-- 

E 
I+v 3(1- 2v) 

(2.8) 

where v is the Poisson's ratio. In dealing with incompressibility, i. e. volume conserving, 

indeterminacy occurs when the material is at v=0.5 and the volume strain rate is zero, whilst 

the bulk modulus approaches infinity. It is therefore more convenient to deal with deviatoric 

quantities, as these are independent of the hydrostatic components, which themselves do not 

produce any strains in a rigid/perfectly-plastic material. This leads to the stress strain 

relationship in (2.7) to be given by, 

ij 'ýkk = (2.9) 

where p=2E, identified in equation (2.8) using v=0.5. 
3 
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Essentially, the simulation technique in limit analysis requires varying spatially the 

shear modulus, u. If it is possible, for the spatially varying shear modulus to find a solution 

that satisfies the von-Mises yield condition of (2.1), 

(aij) = C(U, ) - a, = (2.10) 

in the plastic region, VP, of the body, and at the same time, in the rigid region, V, of the 

body, the stresses are kept within yield and the strain rates are zero, which involves letting the 

shear modulus approach infinity, 

(Uij):! ý 0, ýij = 09 . '. p -* 00 (2.11) 

then the solution is essentially identical to the limit state solution, provided the following 

identities are made, 

ki. (2.12) 

where ak, with k being an arbitrary constant scaling rate parameter. This means that for 
d 

any limit state solution, there exists a distribution of shear moduli, p, for which the linear 

solution, uj . is identical to the limit state solution, cijp * 

In reality, however, the satisfaction of the conditions, presented in equations (2.10) and 

(2.11), is difficult to construct. This is primanly due to the fact that in its implementation 

within the finite element analysis codes, it requires the shear modulus to approach infinity in 
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the rigid part of the body. It is, however, possible for the shear modulus to be sufficiently 

large, which in turn, produces strain rates sufficiently small, so as not to contribute to the 

upper bound in (2.6). This results in the energy dissipation to approach zero in the rigid parts 

of the body. The simulation of such a method is described in an iterative procedure below, 

whereby it seeks a sequence of p values, so that at each iterative step, the solution approaches 

more closely towards the correct solution. 

2.3.2. Iterative method 

The iterative method begins with a linear elastic stress solution, having an initial stress, 

and an associated strain rate field, Cij , with an arbitrary uniform shear modulus 

A new distribution of shear moduli, p k+I 
, is then evaluated so that, for fixed Tij?, the stress 

point would be brought to the yield surface. This choice can be best understood from the 

construction shown in Figure 2.2. The new linear stress solution constructed would, thus, be 

an improvement to the previous iterative solution, provided they are related by the following 

relationship, 

k+l cy (2.13) 

where k is the iterative number in an iterative process. This process is then continued until 

convergence occurs. At each iterative step, the lower and upper limit loads may then be 

evaluated as follows. 
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. 
2.3.3. Iterative lower bound limit load 

The iterative lower bound limit load parameter, Ak , may then be evaluated at each LB 

iteration, k, by scaling the magnitude of the applied load parameter, A, according to the ratio 

of the yield stress, a,, and the maximum von-Mises effective stressý 67(ak), in the body, Y 

Ak =A- 
y 

LB 
U(U, 

ý)Max 

2.3.4. Iterative upper bound limit load 

(2.14) 

The iterative upper bound limit load parameter, Ak , may then be evaluated at UB 

successive iteration, k, from the ratio of the internal energy dissipated in the body with the 

work done on the body, as described in equation (2.6), yielding, 

fct,. b, k dv 
Ak v 

UB fp 
i, 

ick ds 
s 

(2.15) 

where al' is the stress at yield associated with the compatible strain rate, ý. k. For the ii Y 

characteristic yield condition, the von-Mises considered here, the condition requires that, 

07 (Ujj 0- tic 0- lic 
(2.16) 
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where a" maybe written as, Y 

ck 
c ii 

Y. 3y ck, ý 
, V/46 

-c 

,c Ij tj 

(2.17) 

This leads to the iterative upper bound limit load parameter to be expressed in the form of, 

fa 

y6 
ck dv 

, 
zk -v UB fp i ck ds 

s 

where a" iý'k =c c' and 6 ii ii y 
J2. 

ck. ck 

2.3.5. Iterative upper bound limit analysis method 

(2.18) 

The above algorithms give rise to an iterative upper bound limit analysis method. The 

development of such a procedure was realized, through the investigations of Engelhardt [49]. 

He successfully developed an iterative procedure, capable of evaluating the upper bound limit 

loads in cracked structures. Using the FEA method [5 1] as the foundation, he also established 

that the methodology generates sequences of upper bounds, which monotonically reduces to 

converge to the least upper bound limit loads, in agreement with the convergence proofs of 

Ponter et al [2]. A brief description of this methodology, emphasising on the organization of 

the FEA codes, is described below. 

35 



A finite element model of a body is considered, whereby the strain field is given in 

terms of a nodal displacement vector, Mk, in the usual notation, by, 

fk=k& u(x) = [N]u (2.19) 

where [N] is a matrix of suitable shape functions, used to give the displacements, ! ý(x), 

'k 
within each element. The associated deviatoric stress, a, is related to the deviatoric strain, 

through the constitutive relationship of the material, [D], 

U'k =[D]k Ck 

where [D] k=pk [d] and [d] is just a matrix of constants. 

(2.20) 

Using these equations, it is possible to equate the strain energy density in the body in 

terms, of the nodal displacements, yielding, 

uk =I Cy ii 
c ii =IuT [B]T [D]k [B]u 

2 2- 
(2.21) 

The internal strain energy in the body can therefore be calculated, by integrating the energy 

density over the volume of the body, 

f UkdV= 
1 

UT [K]kU 

2- 
v 

(2.22) 
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where the stiffness matrix of the body, [K]' = 
f[B]T [D]'[B]dv. 
v 

The solution to the finite element problem is, thus, provided by the nodal displacements, !ýkI 

for which the total potential energy, PE, has an absolute minimum, where, 

PE = 
fUdv 

-A 
fPiuids 

vs 
(2.23) 

Thus, the substitution of (2.22) into (2.23), differentiating and then equating the subsequent 

equation to zero, enables the minimum of the total potential energy to be identified. 

Essentially, the absolute minimum of (2.23) can be obtained from the solution to the following 

equation, 

[K]kUk =Akp (2.24) 

Thus, the iterative process consists of generating a sequence of spatially varying shear 

modulus, uk, according to the relationship in (2.13). Since, the sequences of strain rate fields 

are compatible, then the sequences of 

Ak kdS 
= 

fory 
4-6 kdV 

UB 
f fU- 

sv 

(2.25) 

satisfies the condition thatAUB > AL. The advantage of this iterative procedure is that in 

subsequent iterations, it is guaranteed that the iterative upper bound limit load parameter, 
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evaluated in equation (2.18), will yieldAUB' <A 
UB [2], with the discontinuation of the iterative 

process occurring when convergence is achieved. 

The application of the LMM, as an iterative upper limit analysis method, combines the 

convenience of using linear elastic stress solutions with the capability of non-linear 

programming method. The existence of strict convergence proofs [2] that the upper bound 

monotonically reduces to the least upper bound limit load is another characteristic of this 

upper bound method. At the present time, two different implementation approaches of this 

method have been developed, identified as Procedure A and Procedure B in this thesis. The 

former is a straightforward implementation, whereby the external loads are applied directly on 

the body [2], whilst the latter requires the application of the loads through external linear 

elastic stress solutions [4,49]. The features of these two procedures are discussed below, with 

particular emphasis ofi ts i mplementation w ithin t he FEA c ode, A BAQUS. A Ithough, b oth 

approaches are different, identical solutions are to be expected. 

2.4. The Use of AIBAOUS 

ABAQUS [I I], a product of HKS, is the powerful engineering simulation program 

utilised in this work. Based on FEA methods, this general-purpose software is widely used in 

industry to analyse engineering problems in such diverse areas of stress/strain analysis, heat 

transfer, thennal-electrical analyses, etc. Its extensive library of elements, with an equally 

impressive list of material models, coupled with the added ability to model your own material 

behaviour using user subroutines and option blocks, makes it an ideal choice. 
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Another significant capability of ABAQUS is in its ability to analyse not only linear, 

but non-linear problems. This is done incrementally, whereby the problem is divided into 

increments, small enough to be solved linearly. The solution to the non-linear problem is, thus, 

provided by the sum of these linear increments. In a standard elastic-plastic analysis, upon the 

generation of the FEA model, the utilization of ABAQUS involves essentially defining the 

constitutive behaviour of the material. In the elastic part, the material properties such as the 

Young's modulus, E, and the Poisson's ratio, v, are generally declared. For the plastic part, 

the non-linear material behaviour is defined, through a set of stress values corresponding to a 

set of strains. For more complex analyses, ABAQUS is equipped with a host of subroutines, 

making it possible to define more involved material models, geometric behaviour, etc. 

A typical ABAQUS analysis consists of three distinct stages. It begins with pre- 

processing, whereby a model of the physical problem is defined and an input file, created. In 

most situations, it is sufficient for the user to ftumish the engineering data such as the structural 

geometry, material behaviour and loading conditions. However, in the proposed procedures, 

based upon the LMM, whereby the material's behaviour is user-defined, user subroutines such 

as UMAT need to be incorporated at this juncture. This is then followed by simulation; the 

stage in which the numerical problem defined in the input file, is solved. Once completed, the 

results obtained are then evaluated or post-processed using the output files generated. 

, 
2.5. LNM (Procedur 

Primarily, ABAQUS is designed to carry out analysis rather than provide a safe 

operating limiting condition for a structure, the essence behind the upper bound limit analysis 
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method. Therefore, in the implementation of the LMM using this procedure [2], certain 

features in ABAQUS need to be re-defined and re-interpreted, in conjunction with the 

requirements associated with the method. These changes are necessary due to the utilization of 

user subroutines in the analysis. Their general use, essential in understanding the remaining 

work, is discussed below. 

9 Subroutine DLOAD: This subroutine allows the user to define non-unifonn distributed 

loads. In an analysis, it is accessed at each load integration point, where the load case is 

defined, altered and updated after each increment. 

e Subroutine UAL4 T. - This subroutine is used to define complex material properties, not 

definable by a simple constitutive model through the Young's modulus, E, and Poisson's 

ratio, v. It is accessed at each material gauss point, where the *USER MATERIAL option 

is prescribed. The user must then define the Jacobian, [J], which is the relationship 

between the incremental stresses and incremental strains, 

Acij = [J]Acij (2.26) 

Once this matrix is defined, it allows the computation of the incremental stresses from 

equation (2.26), using the incremental strains supplied by ABAQUS. These incremental 

stresses would then be updated and added after each increment, ultimately providing the 

total stress solution. (Note: The Jacobian matrices for plane stress, plane strain and 

axisymmetric analyses are given in Appendix A) 
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9 Subroutine URDFIL: This is where the results files are accessed during an analysis. At 

the end of each increment, the user-requested results are written to the results files. These 

would be stored, extracted and updated as and when the analysis persists. In addition, this 

subroutine is also used as a terminating mechanism, i. e. stopping the analysis process, 

following the satisfaction of certain convergence criteria or the specified number of 

iterations. 

2.5.1. ABAOUS implementation of the LMM (Procedure A) 

In its implementation within ABAQUS, it was found that the procedure has to be 

tricked into producing a series of linear solutions [2,49]. This is to conform to the way 

ABAQUS solves non-linear problems by dividing them into linear increments and each 

increment is solved linearly. This meant that for each increments of load, AP, incremental 

stresses, Aorij, are evaluated, as shown in Figure 2.3. The total solution is, therefore, the sum 

of these increments at the end of the analysis. 

Within the procedure itself, however, these incremental values are viewed differently. 

Each of these increments is looked upon as part of a separate linear solution, hence the 

equivalencies in Figure 2.3. This implies that the material definition in UMAT, normally used 

to define the relationship between the incremental stresses and strains, now defines the 

relationship between the total stress and strain of a linear solution, 

ai = [J]. c - Auij = [J]A. 6ij j li 
(2.27) 
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Although, it makes no sense to the limit load calculation whatsoever, the total loads and 

stresses still need summing up. This is crucial in satisfying ABAQUS's own internal 

convergence criterion, achieving equilibrium, and leading it into "thinking" it is still solving a 

non-linear problem. Thus, the correct results are those written to files purposely opened by the 

user within the subroutines, rather than those presented by ABAQUS in its own data files. It is 

also important to note that the non-linearity of the problem is associated with the material, not 

geometry, as discussed in (2.9). 

The first step in the analysis procedure is initialisation. This is where the material 

model within UMAT, i. e. the Young's modulus and hence the Jacobian, as well as the 

distributed load in DLOAD, is arbitrarily assigned a value. These are then written to files 

accessible via user subroutine URDFIL. This made it possible for the Jacobian, load and any 

other relevant data, to be updated, and via shared data blocks, made available to other user 

subroutines. 

In the next iteration, ABAQUS will update the relevant boundary conditions. In this 

case, the static boundary conditions remain unchanged, but the kinematic boundary conditions, 

i. e. the load, must be updated. ABAQUS will therefore call upon subroutine DLOAD, at each 

UB = Ak P load integration point, to calculate the new load, Pu, where , UBPj, with the iterative 

upper bound limit load parameter, 
Ak 

, identified from (2.18). Meanwhile, at each material UB 

gauss point, the user subroutine UMAT will be summoned by ABAQUS. The current stress- 

strain relationship, [J], will be evaluated and updated using equation (2.13), for that particular 

linear problem. This enables ABAQUS to evaluate the revised stiffness matrix, and hence the 

next linear solution of the model. This modified material behaviour, coupled with the strain 
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fields from ABAQUS, also allows the computation of the current stress fields. These are then 

summed up with previous incremental stresses, to obtain the total stress solution. The 

organization of this procedure is schematically shown on the block diagram in Figure 2.4. 

Numerically, this procedure is repeated until the user-declared convergence criterion is 

attained. An example of a fully commented version of the user subroutines utilised in this 

procedure is also included in Appendix B. 

2.6. LMM (Procedur 

An alternative iterative upper bound limit analysis procedure, which is also based upon 

the LMM, is described here. Unlike previously (Procedure A), whereby the external loads are 

applied directly on the body, hence generating stress fields in equilibrium with it, this 

procedure (Procedure B) [4] is interpreted differently. The loads are applied through external 

linear elastic stress solutions, Au^ij, where 63 ij is the linear elastic stress solution at A=1. The 

problem posed in this situation is, thus, no longer represented by (2.9), but by the following 

equation, 

9=1(, Zk U, i =o (2.28) ii UB ii li kk 

This gives rise to the procedure, which now delivers a constant residual stress field, Pij, which 

is in equilibrium with the linear solutions, instead. The above argument also implies that the 

iterative u pper bound I imit I oad p arameter, p reviously evaluated in (2.18), is now o btained 

P-- - lrorI4 
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fay 
6 ck dv 

4B v 

f (ýjj., ý,, c'dv 
v 

with the terms having the same meanings as before. 

(2.29) 

Originally, this procedure was developed as a means of computing shakedown limits 

[5]. This phenomenon refers to one of the possible behavioural modes experienced by a body, 

subjected to cyclic loading histories. The methodology basically involves identifying a 

constant residual stress field, which keeps the elastic stresses, the sum of the linear elastic 

stress solutions and the constant residual stress field, within yield. Its application in limit 

analysis, as an iterative upper bound limit analysis method, is made possible, as lin-fit load is a 

special case of shakedown, as ascertained by Martin [22] and Koiter [25]. As such, since 

shakedown theory will be discussed in great detail in Chapter 3, the theoretical reasoning 

behind this iterative procedure will not be presented here. 

2.6.1. ABAOUS implementation of the LMM (Procedure B) 

This procedure [5,49], like the previous one, was also implemented within ABAQUS. 

The b ulk oft he p rocedure iss imilar, w ith t he obvious d ifference b eing the a bsence oft he 

subroutine DLOAD. Its inclusion is made redundant as the applied loads are now prescribed 

via external linear elastic stress solutions. These are linear elastic stress solutions associated 

with the loads, solved separately beforehand and written to a fonnatted direct-access file, in 

terms of the stress tensor, for each element at each gauss point. 
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The analysis begins with the file, where the external linear elastic stress solutions are 

stored, is accessed, retrieved and incorporated into subroutine UMAT. This allows the 

Jacobian to be evaluated using the moduli updated in (2.13). Unlike previously, the applied 

loads, here, are set to zero, so that the stress fields generated out of this computation is now 

the residual stress field. 

The rest of the analysis is concerned with the identification of the iterative upper bound 

limit load parameter, 
Ak 

. At each iteration, subroutine UMAT would evaluate the volume UB 

integrands in (2.29). These integrals are then extracted, via shared data blocks, by subroutine 

URDFIL to calculate Ak 

. This is then returned to subroutine UMAT as a scaling factor on the UB 

linear elastic solutions in the next iteration. This additional step is essential in preventing the 

magnitudes of the stresses and strains from "blowing-up". If left uncontrolled, it would have 

repercussions on the ability of the procedure to produce accurate numerical solutions. The 

overall organization of this method could be further understood by examining the block 

diagram in Figure 2.5 as well as an example of a fully commented version of the program in 

Appendix C. (For further explanations, refer to Sections (3.3.1) and (3.3.2) of this thesis. ) 

2.7. Numerical Examples 

So far, two different iterative upper bound limit analysis procedures, capable of 

identifying the limit loads in cracked structures, were discussed. Although these two iterative 

procedures evaluate the limit loads differently, the ultimate magnitudes of the converged 

upper bound limit loads is anticipated to be identical. In demonstrating this as well as the 
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various aspects of these two procedures, two examples were investigated. From the resulting 

solutions, comparisons were then made on their accuracy, stability and convergence rapidity, 

leading to the identification of the superior procedure for ftirther analysis. 

2.7.1. Double-edLyed crack plate 

The problem consists of a plate having two symmetrically placed edge cracks, with 

each crack, of crack length, a, penetrating through a quarter of the plate's width. This plate is 

also under a uniaxial tensile load, P, as shown in Figure 2.6. In the actual FEA model itself, 

however, only a quarter of the plate was examined. This simplification is made possible by 

taking advantage of the symmetrical nature of the problem as well as the everlasting need in 

reducing computational effort. 

Both plane stress and plane strain conditions were investigated. For each, an 

appropriate mesh needs to be identified. Among the factors considered are the element types, 

node numbers, integration types/numbers, etc. After an initial exploration with the different 

available combinations, the eight-noded quadrilateral plane stress element, CPS8, was chosen. 

For plane strain, the corresponding fonnulation is CPE8H, with the additional use of hybrid 

elements, to take into account the effect of incompressibility, as discussed in Section (2.3.1). 

Even with the use of hybrid elements, a Poisson's ratio of v=0.5 cannot be used, but it 

allows the ratio to be very close to 0.5. 

Figure 2.7 shows the two meshing arrangements employed in the analysis. The first is 

a mesh with 30 elements, while the other involves meshing with 20 times more elements. 
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Solutions for these two models were then generated and shown in Figure 2.8, as plots of upper 

bound limit loads against number of iterations. For both procedures, it substantiated the claim 

that the upper bound limit loads, Pu, monotonically reduces with increasing number of 

iterations, where Pu, = AuP, in agreement with the convergence proofs of Ponter et al [2]. 

This monotonically reducing behaviour is clearly observed in both the plane stress and plane 

strain analyses. The solutions also revealed their dependency on the mesh. For this reason, in 

FEA models, there is a tendency of meshing with more elements, with the expectation of 

producing better results. In our analysis, it was found that this hypothesis holds true, but only 

to a certain extent. Meshing beyond a reasonable limit would increase computing times as well 

as being cost-ineffective. 

It should also be noted that the solutions were sensitive to incompressibility. Effecting 

plane strain analysis, it was established that Puý, is dependent upon the value of v. This was 

studied by Engelhardt [49], who showed that the difference between P,, at 0.5 -v= 10-" and 

v=0.49 is 7%. He suggested an explanation for these large discrepancies, whereby he 

concluded that incompressibility affects the stiffness more than the energy dissipation in a 

structure, since the energy dissipated due to volumetric changes is not taken into consideration 

in the upper bound limit load calculations. Tbus, using the recommended value of 

v=0.4999999999, the PuB solution generated in this thesis is a reliable one. Any value closer 

to 0.5 would induce numerical errors, which would ultimately cause the analysis to fail. 

The characteristics of these two procedures are, however, best described by their 

ability to achieve rapid convergence. Unlike other currently available methods, fairly good 
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converged solutions were reached within the first 20 iterations. These were then compared 

with the exact results obtained from Nuclear Electric Inc [20]. As shown in Figure 2.8, the 

percentage error, for the 600-elements mesh, was 8% for plane stress and 6% for plane 

strain. At the 40t" iteration, these errors have reduced to 6% and 5% respectively. In 

comparison with corresponding solutions for the 30-elements mesh, the percentage errors have 

reduced significantly. This demonstrates the effectiveness of the procedures, as it allows limit 

loads to be evaluated, with a reasonable amount of meshing elements in the model. The 

capability of these procedures is further reinforced with the anticipated identical Pu, solutions 

obtained from the two procedures. (The actual fully commented programming codes used in 

both procedures, for the various different analyses considered, are enclosed in attached CD) 

2.7.2. Cracked cylinder 

Figure 2.9 shows the problem considered in the analysis. It is concerned with a cracked 

cylinder, of radius, 5w, and length, 10w, subjected to an axial load, P. The internal crack, a, 

extends through the cylinder's thickness, w, all around its periphery. The FEA model shows 

its equivalent representation as an axisymmetric problem. As before, using symmetry, only 

half of the cylinder's length was analysed. In addition, by modifying the boundary conditions, 

the model was re-interpreted as a plane stress/plane strain plate in the presence of an edge 

crack. 

To ensure uniforn-ifty, the axisymmetric, plane stress and plane strain FEA models, all 

have approximately the same number of elements, i. e. 5800 elements. Unlike before, there is a 

greater proportion of meshing elements occurring at the crack tip, as shown in Figure 2.10. 
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Using such selective mesh refinement arrangement, it was numerically found that improved 

upper bound solutions were obtained, in comparison with the meshing arrangements of Figure 

2.7. This is not surprising as the upper bound limit load parameters, computed in (2.18) and 

(2.29), is very much dependent upon the effective strain, especially those occurring at the 

crack tip. Thus, reducing the contribution of the deformation mechanism in Figure 2.11 would 

ultimately result in enhanced solutions, in agreement with the investigation of Hentz [55]. In 

his work, he examined the relationship between the meshing density and the accuracy of the 

solutions, leading to the conclusion that an accurate PuB is obtained if the number of meshing 

elements across the uncracked ligament is about 10-50 elements. His argument is mainly due 

to the major contributions the plastic region, i. e. that in the vicinity of the crack tip, makes in 

equations (2.18) and (2.29), in comparison with that from the rigid regions of the body, i. e. 

those away from the crack tip. 

Limit load solutions were then generated, for ratios of 
a=0.0 

- 1.0, in multiples of 
W 

0.1, for the axisymmetric, plane stress and plane strain analyses considered. As there were no 

exact solutions available, comparisons were made with an assumed "exact" solution obtained 

from another analysis with much more substantial mesh refinements, with the configuration of 

this mesh shown in Figure 2.12. The consistency of the solutions generated using the adopted 

procedures, provided the confidence that this "exact" solution is very close to reality. This 

enabled the values of Pu, obtained from the two meshing arrangements of Figures 2.10 and 

2.12, to be compared. Figure 2.13 shows an example of one such comparison, for the cracked 

plane stress problem at a=0.4. It can be clearly seen that the upper bound limit loads has 
w 

improved tremendously, with the percentage error at the 40th iteration reduced to < I%. 
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Although not included in this thesis, similar behaviours were also observed in the 

examinations into the other analyses. Based upon the accuracy of these solutions, the meshing 

arrangement in Figure 2.10, was, thus, elected as the one to be used in subsequent chapters, in 

the investigations into the overall and crack tip behaviour of cracked structures. 

At this point, an additional investigation in the identification of limit loads, using 

standard step-by-step analysis, was conducted. This is necessary in validating the accuracy of 

the previous results as well as enabling the capability of the LMM to be judged. Using the 

problem solved in Figure 2.13 as an example, a full step-by-step analysis calculation was 

perfonned, with the results obtained shown in Figure 2.14. The plot clearly shows that as the 

increments of applied load, P, is increased, the displacement, u, in the direction of the load 

also increases. This observance in behaviour continues until the load reaches the limit load, at 

which the step-by-step analysis process terminates. In our analysis, it was found that 

termination occurs at P= 120AMPA, which is within 1% of the "exact" solution. This good 

correlation between the solutions was found to be in agreement with the previously discussed 

iterative solution, whereby at the 40th iteration, the percentage is less than < 1% - This 

indicates the capability of the L MM in g enerating accurate limit loads solutions in cracked 

structures. Further examination also revealed that in the process of generating the limit load, 

instability occurs as the load approaches very close to the limit load. This is mainly due to the 

numerical difficulties encountered by ABAQUS in satisfying the equilibrium condition, 

leading to convergence problems. In reducing this effect, ABAQUS generates more 

increments as the limit load is approached. Such an instability problem is not observed in the 

application of the LMM. For simple cracked structures, such as those investigated here, the 

effect of instability on the limit load is found to be relatively insignificant. However, in the 
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context of evaluating limit loads for complex structural geometries and/or loadingiboundary 

conditions, the advantage of the LMM is apparent. Lastly, the effects of analysis times on the 

solution processes were also investigated. In this department, the step-by-step analysis, with 

CPU time of about 5 minutes, has the advantage over the LMM, with CPU time of about 20- 

25 minutes. Although it takes a longer time in generating the limit load solutions, the accuracy 

of the solutions generated as well as the ability in coping with the instability issues, has made 

the LMM a better choice, ultimately outweighing the time factor. 

The accuracy of these numerical solutions is further evident when compared with the 

solutions of Miller [20]. For a single-edge notched tension (SENT) plane stress specimen, he 

investigated the variations of limit loads, with increasing crack length. His limit load values 

were then compared with those from the numerical solutions, generated from the above 

procedures. This is shown in Figure 2.15, where PL is the uncracked limit load. It is clearly 

shown that Miller's plane stress results correlates well with those of the numerical solutions. 

For axisymmetric and plane strain analyses, however, no such Miller's solutions exist. 

Nevertheless, the plot does show the conservative nature of the plane stress solutions, since 

much larger values of Pu, were attained for the axisymmetric and plane strain analyses. (The 

actual fully commented programming codes used in both procedures, for the various different 

analyses considered, are enclosed in the attached CD) 

2.8. Concluding Remarks 

In the identification of limit loads in cracked structures, this chapter proposed the 

employment of the LMM, as an iterative upper bound limit analysis method. Two different 
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implementations of this method were described, identified as Procedure A and Procedure B. 

One is the straightforward implementation, whereby the external loads are applied directly on 

the body whilst the other requires the application of the loads through external linear elastic 

stress solutions. The applications of these two procedures were then investigated on two 

cracked numerical problems, with the ultimate aim of identifying the superior procedure for 

further analysis. 

In the numerical investigations, the characteristics of these two procedures were 

examined. It was found that both procedures were equally capable of generating the 

monotonically reducing sequence of upper bounds, eventually converging to the least upper 

bound limit loads. It was also observed that both procedures generated very stable solutions, 

with good converged Pu, obtained within the first 20 iterations. In general, the solutions 

obtained from these two procedures were found to be, by and large, identical. However, in the 

subsequent chapters, whereby the behaviour of cracked structures subjected to cyclic histories 

of loads and temperatures were investigated, Procedure B has the edge. Its ability to introduce 

loads and temperatures, via external linear elastic stress solutions, justifies our decision on its 

preference. From this point onwards, the mention of the linear matching method (LMM) refers 

to the solution process of Procedure B. 
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Figure 2.1: Schematic diagram of the general problem. 
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Figure 2.2: The iterative process, as represented in equation (2.13). 
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Figure 2.3: The analysis of non-linear problems using ABAQUS. 
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Figure 2.6: Double-edged crack plate. 
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Figure 2.7: The meshing arrangements employed in the analyses. 
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Figure 2.10: Finite elements mesh at the crack tip. 

Figure 2.11: Plot of the von-Mises effective strain at the crack tip. 
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Figure 2.12: Meshing configuration at the crack tip 
for evaluating the "exact" solution. 
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Figure 2.13: Upper bound limit loads vs number of iterations. 
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Chapter 3: Shakedown Analysis Methods 

3.1. Introduction 

Ever since it was first mentioned in the late 1920's [56], interest in shakedown analysis 

failed to disappear, as important industrial problems still arose. Initially, utilized in the 

development of design rules for metallic structural frameworks, the theory has now progressed 

to encompass practical problems such as the design of nuclear reactor components [57], 

deformation of railway lines [58], pavement designs [59], etc. Its influence is to such an extent 

that it is often one of the tools of structural design and safety assessment in certain design 

standards [1]. Even, recent advances in FEA methods and the ever-ready availability of 

simulation techniques have not, in any way, diminish its importance, as shakedown concepts 

still produce useful results, which other analysis techniques failed to do. 

Implicitly, shakedown refers to one of the possible behavioural modes experienced by 

an elastic-perfectly plastic body subjected to cyclic loading histories. If, during the loading 

process, plastic strains ceased to develop ftwther and purely elastic behaviour is observed 

thereafter, then the structure is said to have shaken down and is safe [21,25]. On the contrary, 

however, an unlimited accumulation of plastic strains will lead to the structure failing by 

either alternating plasticity or incremental collapse (ratchetting) [60]. Whilst ratchetting must 

be avoided at all cost, since it leads to intolerable defonnations, alternating or reverse- 

plasticity can be accommodated, provided during its design life, the effect of low cycle fatigue 

is taken into consideration. 
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Continued research interest in shakedown analysis methods is mainly due to their 

apparent advantage over step-by-step inelastic analysis methods [10,11]. For structures 

undergoing complex/difficult to model loading cycles, where the extremes of the loading 

histories are known, shakedown theory can simplify matters a great deal. It uses simple 

material models, i. e. e lastic-perfectly p lastic, and considers aI oad d omain t hat c ontains a 11 

possible load paths between the extremes, thus eliminating the need to know the precise load 

path and material model. This leads to uncomplicated, cost-effective and efficient methods, 

reasons enough for their sustained attention. 

Practically, the significance of these shakedown analysis methods is mainly related to 

the questions posed in the processes of engineering design and life assessment of structures 

subjected to cyclic loading histories, i. e. mechanical and thermal. The industry is calling out 

for a direct method capable of predicting the boundaries between shakedown, reverse- 

plasticity and ratchetting. The interaction diagrams developed would then provide a mean of 

assessing a structure's safe operating region. In addition, the effectiveness of such methods in 

generating direct answers to these questions would ultimately enhance their reputation as a 

replacement for currently used tabulated values and simple lower bound estimates [I]. 

In addressing the effect of shakedown, the present approach involves the employment 

of shakedown analysis methods, developed using the classical shakedown theorems of Melan 

[2 1] and Koiter [25]. The utilization of such procedures [53,6 1] has enabled shakedown limits 

to be accurately and efficiently evaluated in many structural components. In the identification 

of the corresponding reverse-plasticity and ratchetting limits, however, not much work has 

65 



been undertaken. In closing this gap, Ponter et al [6,7] developed minimum theorems for an 

arbitrary cyclic state, whereby the theorems, reduce to the classical shakedown theorem when 

the loading histories lies within the shakedown limit, and identifies the ratchetting limits when 
it does not. The availability of these extended theorems is, particularly, valuable in the present 
investigations into the behaviours of cracked structures subjected to cyclic histories of loads 

and temperatures. In such situations, the presence of the elastic stress singularity at the crack 

tip, leads to the breaking down of the shakedown condition, hence, the non-existence of any 

shakedown limit. However, the procedures for identifying the ratchetting limit still holds. This 

is mainly due to the need in accounting for low cycle fatigue, i. e. the toleration of cyclic 

plastic strains forming a reverse-plasticity mechanism in a confined region of the body without 

inducing any net strain growth. The ability of these procedures in evaluating ratchetting limits 

in these cracked structures would then enable the validity of current solutions [26,27,28], 

where cracks were replaced with notches, to be judged. 

In this chapter, the foundation behind the Linear Matching Method (LMM), employed 

in the identification of the shakedown, reverse-plasticity and ratchetting limits, is discussed in 

great depth. Upon the introduction of the fundamental shakedown theorems for a general 

problem, its implementation is then presented for the upper bound shakedown theorem. For 

structures loaded in excess of shakedown, extended theorems for the identification of 

ratchetting limits are also explained. The applications of these methods are then investigated 

on the so-called Bree problem [37], with and without the presence of cracks. A further 

examination on a real industrial problem [1] is also conducted; allowing comparisons between 

the numerical solutions and those used in current design and life procedures to be made. 
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3.2. Shakedown Analys s 

FigUre 3.1 shows the problem considered in the analysis. The body is made up of an 

isotropic, elastic-perfectly plastic material, satisfying the yield condition of (2.1) and the 

associated flow rule of (2.3). Of volume, V, a nd surface area, S, the body e xperiences a 

history of cyclic mechanical load, APj (xj , t), on Sp , and a temperature distribution, 

AO(xj, t), within V, where A is the load parameter. The remaining surface, S, is where 

constraints are prescribed, such that the displacements, ýj = 0. In addition, a convex yield 

function is assumed such that the maximum work principle, given by, 

aijývp i (3.1) 

holds true, where cr,, ý is the stress associated with the plastic strain rate, Z-ijP, at yield and aij is 

any state of stress that satisfies (2.1). The associated linear elastic stress solution, 

coffesponding to -, ýjjp = 0, is denoted by Acij 9 with, 

Uij (x, t) = Uv' (x, t) +u (X, i (3.2) 

where cvj' (x, t) & 67, ý (x, t) are the linear elastic stress solutions for the mechanical and 

thennal loads respectively. In the following, the linear elastic stress solutions are chosen such 

that the load parameter, A ý: 0. In addition, the elastic material properties are also assumed to 

be temperature-independent. 
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3.2.1. Lower bound shakedown theorem 

Historically, it was Melan [21], who developed the first general shakedown theorem 

using the static approach. It was to determine whether shakedown would occur, or not occur, 
in an elastic-perfectly plastic structure sub ected to a combination of loads, each varying j 

independently between prescribed limits. The theorem states that, "if a time-independent 

residual stress field, ;5 (x), can befound, such that a, (x, t), the sum of the residual stresses P ij ii 

with the linear elastic stresses, dij (x, t), do not violate the yield criteria at any point within 

the body under all possible load combinations, then the body would shakedown", i. e. 

f(cr)<cr 

where Uij (x, t) = u^ ij (x, t) + ; 5ij 

(3.3) 

In practice, however, structures do not shakedown to a unique state, independent of the 

loading histories. Generally, during shakedown analysis, a distribution of residual stress fields 

is expediently chosen, such that, the largest possible load variations results. This implies that 

the application of this theorem leads to a lower bound, A, on the exact shakedown limit, A, 

3.2.2. Upper bound shakedown theorem 

The upper bound shakedown theorem, based on kinematic principles, uses the analogy 

between the theories of limit analysis and shakedown. Otherwise known as Koiter's [25] 

theorem, it provides a necessary condition for the occurrence of shakedown by stating that, "a 
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structure under cyclic loadings would shakedown if the external work done by the loads is less 

than or equal to the internal work dissi C 91) patedfor all admissible strain rate cycles, ý, j . 

This introduces the concept of an incompressible and kinematically admissible strain 

rate history, ýY, which need not be compatible but is associated with a compatible strain 

increment, Asoij, such that, 

At 

f i-c = Acc 
0 

(3.4) 

This, in turn, is associated with the corresponding displacement increment fields, which 

satisfies the displacement boundary conditions, 

Acc =I 
dAuc 

+c (3.5) 
'j 2 dxj dxi 

In ten-ns of such a history, the upper bound shakedown theorem is given by, 

At At 

u, 
ff o^7, j 

dt dv =ffa,,. j, 
' dt dv (3.6) 

v0v0 

where the upper bound shakedown limit, Au, ý: A, with the equality achieved, if and only if, 

the exact deformation mechanism is chosen. The above equation, as in equation (2.18), is then 

simplified for the von-Mises yield condition, leading to, 
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At 

ffay i-d0v 
vo UB At 

f Zd0v f 

v0 

where c'. ýc = (T i- ii ii y and 3 iý'ý j 

3.3. Shakedown Limits for the von-Mises Yield Condition 

(3.7) 

As previously mentioned, shakedown refers to one of the various modes of behaviour a 

body may exhibit when subjected to a history of cyclic loading. Associated with such a 

phenomenon is a constant residual stress field, P(x), which causes the redistribution of 

stresses within the body. Hence, any deformation, i. e. plastic strains, induced by the initial 

linear e lastic s tresses e xceeding t he yield s tress, w ill o nly beI imited d uring t he i nitial f ew 

cycles. Upon which, the resumption of the elastic behaviour is observed. Therefore, in the 

identification of the shakedown limits, a method capable of determining, among others, the 

time-independent residual stress field and the associated deformation strain field is required. 

This is attempted in the sections below. 

3.3.1. Linear matchine method 

The shakedown method, like the previously discussed limit analysis methods [2,4], 

was also developed by Ponter et al [3]. It basically involves matching a linear rate problem to 

that of a plasticity problem, whereby sequences of linear solutions with spatially varying 
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moduli are produced. These, in turn, generate upper bounds, which monotonically reduce to 

the least upper bound shakedown limit, for the chosen class of displacement fields. Although, 

initially conceived for the von-Mises yield condition, subsequent simplification and 

generalisation makes it applicable to any arbitrary yield conditions [5]. The value of this 

method is further enhanced with the recently developed finite element analysis codes for 

three-dimensional structural problems [8]. 

In general, the method involves defining a sequence of linear problems where the 

linear coefficients are identified so that they match the yield condition. For the von-Mises 

yield criterion, the chosen strain rates are incompressible; hence, the linear problem is defined 

by the shear modulus, u(x, t). Thus, corresponding to an initial kinematically admissible 

strain rate history, this modulus is found by matching the linear material to that of a 

perfectly plastic material so that they both give the same effective stress, i. e. 

2 ay (3.8) 

jj For subsequent linear problems, a new kinematically admissible strain rate history, ýf 

is now defined, such that, 

if' =1 
(x" ^, ; 5ijf, ), iýf =o (3.9) 

ii 
u ii kk 

where p-, jf' is a time-independent constant residual stress field. It is important to note that the 

superscripts, i andf, corresponds to the initial and subsequent (final) states respectively. 
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Therefore, integrating equation (3.9) yields, 

sc 
in' 

P (3.10) 

where 
At 

t f 
po P(t) 

At 
A 

and ( 
_0 llýB 07ij(t)dt 

The solution to this incompressible linear problem yields a new upper bound, Afu , when B 

is substituted into (3.7). The existence of convergence proofs [3,5] shows that Af < A' , with UB - UB 

equality occurring, if and only if, This procedure, when repeated, would generate a 

monotonically reducing sequence of upper bounds, converging to the least upper bound 

shakedown limit. 

3.3.2. Numerical procedure for the upper bound shakedown limit 

The above-mentioned equations gives rise to a programming method, which solves 

problems where the bounded load domain is known. For the problem in Figure 3.1 involving 

two load types, P(tj & OQJ, where n=1 to r, the loading histories would thus describe 

sequences of straight-line paths between sets of extreme points in load space. This is 

p 
schematically shown in Figure 3.2(a). Similarly, the linear elastic stress histories, d7ij (tj & 

w ould a Iso d escribe s equences ofI inear p aths in s tress s pace, as s hown 1n Figure 

3.2(b). This implies that the plastic strains can only occur at the vertices of the stress histories. 

Thus, the strain rate history now becomes the sum of the increments of plastic strains, i. e. 
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r 

A, cij A. 6, v (tj 
n=l 

Modifying equation (3.10) accordingly yields, 

Ae f, 
1 

in' 

ii -- 
(Uli* + ; 5ijf, ) (3.12) ýi 

r1ay 
in, 

r 

where and Y n=l U(tn 
Y n=l P(tn 

Numerically, the iterative procedure [5,49] begins with initialisation. The material 

model in user subroutine UMAT, defined by the shear moduli, p(tj, at n vertices of the 

loading history, is arbitrarily assigned to a value, usually a constant. In addition, as explained 

in Section 2.6.1, the external linear elastic stress solutions are extracted and incorporated into 

A 

the subroutine, such that uj (t, aii (tn ) 
ext 

In t he n ext i teration, t he s ubroutine U MAT will bes urnmoned again byA BAQUS. 

This time, the shear moduli, at each material integration point, will be updated, using the 

relationship, 

P(tn )k+l 
__ 

cy 

where 
. 6(A-cij (t,, )) 

I=rI 

k+l 
ý 

JU(tn 
)k+' 

n=l 

(3.13) 

This allows the Jacobian matrix, 
[j]k+l, to be defined, enabling 
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ink+l 
= ; Uk+l 

I 
ýk+l&.. (t 

21 

JU(t 
)k+l yn (3.14) 

n=l n 

to be evaluated. The matrices for [j]k, l, in plane stress, plane strain and axisymmetric 

conditions, are presented in Appendix A. The constant residual stress field is then calculated, 

, 
Oik+l = [j]k+lAek+l 

_ , ink+l 
v ii ii (3.15) 

which, in turn, made it possible for the strain increments associated with n vertices of the 

loading histories to be computed, 

Aek+l (t [cik+l k+l ^ k+l 
ii n 

(TU 
+ aii On (3.16) 

where [C]k+l is the stifffiess matrix derived from u(t 
)k+l 

. Before the commencement of the nn 

next iteration, ABAQUS will call upon user subroutine URDFIL, where the iterative upper 

bound shakedown limit, derived from equation (3.7), is determined. 

r fa. 

y 
On W 

AýB Ivr n=l 

fl: 
Lý"Czjý 

+I Qn +I Qn )dV 
v n=l 

(3.17) 

This procedure is shown interactively in Figure 3.3. The actual fully commented programs, for 

the numerical problems examined in Section 3.5, are enclosed in the attached CD. 
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In the previous chapter, the identification of the limit loads using Procedure B refers to 

the methodology described in this section. The utilization of this shakedown method to limit 

analysis problems is made possible due to the similarities existing between the iterative 

processes associated with limit analysis and shakedown. This is easily demonstrated by 

assuming that the load and temperature remains constant with time, i. e. at n=1. With this 

change, the above procedure becomes the limit analysis method employed in Section 2.6. This 

clearly shows that limit analysis is a special case of shakedown analysis, with the only 

exception is the need to consider load cycles in shakedown calculations rather than a static 

load. 

3.4. Extended Shakedown Theorems 

The aforementioned iterative upper bound shakedown method identifies a limit, 

generally corresponding to structural defonnations in either reverse-plasticity or ratchetting. 

Tbeoretically, designing within this boundary is ideal, as it is failure-safe and less conservative 

than purely elastic analysis. Provided small accumulations of plastic strains are accommodated 

during the initial loading cycles, the use of such solutions is often realized in low temperature 

loading situations. 

In high temperature applications, such as the operation of power plants, nuclear 

reactors, etc, however, structural components usually ended up being designed in the reverse- 

plasticity region. This transpires when the effective value of the amplitude of the variation of 

the elastic stresses exceeds twice the yield stress. The cyclic plastic strains developed, which 

alternates equally in tension and compression, forms a reverse-plasticity mechanism in a 
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confined volume of the structure, without inducing any substantial strain growth. This causes 

the sum of the elastic stresses, di ij (x, t) , the constant residual stress field, ; 5ij (x) and the time- 

varying residual stress field, pij (x, t) , associated with this phenomenon, to be kept within 

yield only over some volume of the body. Unlike shakedown, the subsequent cyclic behaviour 

is not entirely elastic as there are restricted increments of plastic strains over some part of the 

body (reverse-plasticity), whilst behaving elastically (shakedown) in the remaining part. 

Consequently, designing within this region involved accounting for two additional 

considerations. The first is the amplitude of the cyclic plastic strains, which provides 

information concerning fatigue crack initiation in low cycle fatigue. It must be ensured that 

during its designed life, the number of such cycles must be kept within the design limit. The 

other significant factor is the capacity of the body to withstand additional constant mechanical 

loads without failure. This would then provide an indication of the loading condition's 

proximity to the ratchet limit. 

The correct evaluation of the reverse-plasticity and ratchetting limits requires an 

understanding of the behaviour of cyclically loaded structures in excess of shakedown. In 

filling this gap, Ponter et al [6] derived a minimum theorem for an arbitrary cyclic state, which 

reduces to the upper bound shakedown theorem when the loading history lies within a 

shakedown limit. In circumstances when the loading history is in excess of shakedown, the 

evaluation of the ratchet limit entails two sequential minimisation processes [7]. The first stage 

involves the evaluation of a varying residual stress field and the corresponding closed cycles 

of plastic strains. The second stage then becomes a conventional shakedown calculation for 

the ratchet linut, with the varying residual stress field taken into account. Subsequent 
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exploration of these theorems resulted in the derivation of the LMM-based computational 

procedures, employable within a finite element analysis scheme [7]. In the following, 

summaries of the essential ideas behind these formulations are presented. 

3.4.1. Minimum theorem in excess of shakedown 

Still continuing with the problem in Figure 3.1, whereby the cyclic behaviour of an 

elastic-perfectly plastic body with cycle time, 0:! ý t:! ý At, is analysed, i. e. 

='be + 'bp iý ii , ii , ii (3.18) 

where the elastic strains, ce= Cijkl UkI 
ý with the tensor, Cjjkj, satisfying the usual symmetrical Y 

properties. The plastic strains, are defined by the yield condition of (2.1) and the 

associated flow law of (2.3). In addition, the maximum work principle of (3.1) still holds true. 

For this general problem, the existence of minimum theorems [6] allows the possibility 

of defining load histories lying within or beyond the shakedown limit. This is given by the 

functional, 

At 
cA f f(cii a ij 

) iý,, c dtdv 

v0 

(3.19) 

where aii denotes the stress at yield and -ý, j is a kinematically admissible strain rate history 

such that the accumulated strain over the cycle, 
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At 
fc= AEC 

0 
(3.20) 

is compatible with a displacement field, Auij, which, in turn, satisfies the displacement 

boundary conditions. Two additional restrictions are now placed on the magnitude of ýij: 

e Restriction 1: Corresponding to ýY, a cyclic history of residual stress, pij (x, t), is defined 

such that it satisfies the relationship, 

1ý cc c c+ "ý 
Y ykl 

PY 

where -ýjjc is also a kinematically admissible strain rate history. Note that: 

pijc (0) = Aic (At) =0 

(3.21) 

(3.22) 

* Restriction 2.: Corresponding to pij(x, t), a restriction is then placed on the absolute 

magnitude of ýY, with the requirement that there exists a constant residual stress field, pij, 

such that the composite stress history, 

(T ii = ýu^ ii Pii + pii 

satisfies the yield condition, f (aij ) :! ý 0, for 0 :5t:! ý At . 

(3.23) 
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It was proven [7] that for a prescribed load history, i. e. a prescribed A that, 

I(è, 2)ýO (3.24) 

with the equality achieved, when, iýjj = iýjj r, the exact cyclic solution. As it happens, this 

argument is closely related to the shakedown theorems. At the shakedown limit, A=A, the 

magnitude of the strain rate history, ýij, becomes sufficiently small for the changing 

component of the residual stress, pij(x, t), to be insignificant. This resulted in the stress 

history in (3.23) and the yield condition, f (aij ) :ý0, becorning the requirement of the lower 

bound shakedown theorem (Section 3.2.1). This leads to the condition in (3.24) now yielding, 

I(, ý-jjc, As) ý! 0 and I(-ý,, s, As) = 0, where ýij is the exact shakedown mechanism. At this point, if 

the functional is described by (ýij 
I 

AUB )=0 
'where 

AUB ý: A, 
I then the upper bound 

shakedown theorem is recovered (Section 3.2.2). Thus, for small ýij, the aforesaid minimum 

theorem provided a gencralisation of the lower and upper bound shakedown theorems. 

In the case of loading in excess of shakedown, a parallel understanding of the nature of 

the ratchet boundary is required. This is provided by the requirement that there exist 

mechanisms t hat s atisfy t he c ondition oft he t heorem for finite , ýjj' for w hich Aeij =0, 

although plastic deformation takes place in the cycle, there is no net accumulation of strain. 

Associated with such loading histories, a finite varying residual stress field, pj (x, t), as a 

solution to (3.21), exists. If this is identified, then the analysis is reduced to a conventional 

shakedown problem where the prescribed loading history is augmented by some constant load, 
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which takes the structure to the ratchet limit. In these situations, the calculations are performed 

in two stages [6,7]. In the first stage, the varying residual stress field, associated with the 

applied varying loads, is evaluated. This is then followed by the location of the ratchet limit, in 

the second stage, where the elastic stress history takes into account the changes in the varying 

residual stress field. In the following, the implementations of these two numerical procedures 

are presented. 

3.4.2. Numerical procedure for the varying residual stress field 

The body, in Figure 3.1, is now assumed to be subjected to external loads, such that, 

P (x -, t) =Api (xj) + Pi (xj, 
11 

(3.25) 

where P, (xj ) is a constant load distribution and Pi (xj, t) and O(xj , t) are the cyclic histories 

associated with the mechanical load and temperature respectively. The associated linear elastic 

stress solution is defined by 

u 
ii =, ýu ii uij (x, (3.26) 

where CA = C^ 
P+a0. the varying elastic stress components due to Pi (xj , t) and O(xj , t) YYY 

The following a rgument is based on the g eneral case where the e lastic s tress varies 

^A^A 

proportionally between two extreme valuesý aij (tý) and 07ii 02 describing a straight-line 

path in stress space. Using this simplification, equations (3.20) & (3.22) now give, 
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t, tI 

dt = Acc a Zdt =-A c (3.27) f 

tj 

and 

t, t, 

f, b,, 'dt = Ap,, ' & f)b, 
)dt = -Aplic (3.28) 

Thus, by taking into consideration only Aej and Apij, the extremes of the reverse-plasticity 

mechanism can then be identified, providing sufficient information in the second stage. 

In general, this LMM-based methodology [7] requires the solution of a sequence of 

linear problems. For an initial estimate of the strain increment, A. 6' = A. 6c'. ,a class of linear 

problems for a new estimate, A, 6' = A, 6f is then defined such that the linear coefficient, ii ij 5 

is given by, 

2a =(3 
)2ýVO(Aecl) 

y2 ii 
(3.29) 

The new distribution of the strain increment, Accf , is then characterized as the solution to the 
Y 

following problem, 

A. 6 
Tf II Apf + Accf 

ii = 2, u ii ij A6, Tf =I Ao f kk 3K 
A* (3.30) 

and 
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Accf, - (A '+ Apcf ,) 

where Ae'Tf and Apf satisfies compatibility and equilibrium conditions respectively, with 

A 02) 

In an iterative process, the repeated application of this algorithm produces a sequence of 

solutions for Aoij', which converges to the absolute minimum of the functional. If two 

(3.31) 

(3.32) 

consecutive iterations, k and k+1, are now considered, then the relationship in (3.29) yields, 

JU 
k+l 

= ý7k 
2ay 

(3.33) 
a(Acii +Apij') 

This procedure is shown interactively in Figure 3.4, with the actual fully commented 

programs, for the numerical problems examined in Section 3.5, enclosed in the attached CD. 

(Note: The values of the shear modulus, p, and the bulk modulus, K, are obtained from 

materials data. ) 

3.4.3. Numerical procedure for the ratchet limit 

The numerical procedure, used in the identification of the ratchet limit, is similar to 

those described for the upper bound shakedown limit (Section 3.3.2). The principal difference 

is t he n eed tot ake i nto a ccount the v arying r esidual s tress f ield calculated from t he above 

procedure. In such cases, the upper bound shakedown theorem is given by, 
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At At 

iý'dtdv = cr'-ý'dtdv 
fff 

v0v0 
(3.34) 

pA 
where a+ 07 (X + PjC (X As only two distinct extremes of the elastic stress 

^ 
ii 

AUB aii 
ii i9 

solutions, at instances tj and t, are considered, equation (3.34) yields, 

Aa64! ýA 02 + PC (t2 UB 
f^ 

iV 
(tl ) +6k6ii Q2 f J(týý (ti + 

.6 ii 
Q2 )PV j5 (A6i 

joc(tl)ý ii(tl)+( Y vv 

07 c (t 
I 

MýCij (t 
I+ 07C (t2)A, 6, j(t2 

)ýV (3.35) 

j where pij (t, Apc, p,, c (t 0 and Ae,, c = Acij (t, + Ac -a angement of i ij 2 ii ij 
02 ) 

'Upon the re rr 

(3.35) for the von-Mises yield condition, the iterative upper bound ratchet limit multiplier can 

be written as, 

fay c-(Aeij)dv- fj(ciA(tý ) +,, c (t, )ýcjj (t, + (&" (t, )ýe ii ii ii ij 
02) ldv 

Ak+l vv 
UB f 

a^ (Acij (tl) + A6ij(t2 )ýV 

v 

(3.36) 

Thus, for the chosen class of displacement fields, the same iterative monotonically reducing 

sequence of upper bounds, converging to the least upper bound ratchet limit behaviour, is to 

be expected. This procedure is shown interactively in Figure 3.5, with the actual fully 

commented programs, for the numerical problems examined in Section 3.5, enclosed in the 

attached CD. 

83 



To this point, the exploitation of the numerical techniques is based upon the 

assumption of a perfectly p lastic material. However, it is a well-known f act that the c yclic 

strain amplitude in a reverse-plasticity mechanism is sensitive to cyclic hardening. For many 

materials, this occurs when the amplitude of the effective stress, a-(Acij), associated with the 

amplitude of the plastic strain, --c(A, 6jjP), exceeds 2Auy . Thus, the inclusion of such an effect 

requires the development of a method based upon a constitutive equation, which predicts the 

required material's behaviour in the steady state. As an interim solution, however, it is 

possible to include the effects of cyclic hardening by assuming in (3.29), that 

2A. (3.37) 

where Acry is a monotonically increasing function of the effective strain amplitude, A, 6ij. The 

ratchet limit so calculated would, thus, provide the largest load for which there exist a 

consistent history of stress that lies within yield. This implies in regions of cyclic hardening, 

the yield stress is related to the finite amplitude of strain, whereas elsewhere the history lies 

within the initial yield surface. 

Figure 3.6, the cyclic and monotonic stress-strain curve for type 316SS, best describes 

these differences in material behaviours. It clearly shows that the perfect plasticity solution 

overestimates the material behaviour, since it does not suffer any cyclic hardening. At the 

other extreme, however, the assumption of isotropic hardening results in the material 

cyclically hardening to the elastic behaviour. These two solutions are, thus, sufficient to 

encompass or bound the entire range of a real material's behaviour. The accuracy of this 
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hypothesis was verified through the investigations of Ponter et al [23,24] on a two-bar 

structural problem. 

1110 3.5. Numerical Examples 

The applications of the numerical procedures, discussed in Sections 3.3 and 3.4, are 

now demonstrated on two problems. The first is the classical Bree [37] problem, under both 

uncracked and cracked conditions. The second is the problem considered in R5 [I], whereby a 

pipe is subjected to an internal pressure in the presence of varying temperature. 

3.5.1. Bree problem 

This problem was, originally, used to simulate the behaviour of a nuclear reactor fuel 

can, subjected to very high thennal stresses in the presence of a constant pressure stress. Then, 

it was observed that the plastic strains produced, due to the cycling of the temperature gradient 

across the can wall during start-up and shutdown, has serious implications on the lifetime of a 

reactor. In overcoming this, Bree [37] developed theoretical solutions for a simplified plane 

stress model. These solutions, illustrated on the so-called Bree or interaction diagram, 

provided a means of distinguishing the different modes of material behaviour, corresponding 

to the severity of the thermal stresses. Thus, the availability of an atlas of such diagrams [62], 

considering the various combinations of thermal loadings and structural geometries, is of great 

assistance to designers, especially in the early design stage. 
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As an initial investigation, the same plane stress Bree problem is considered here. As 

shown in Figure 3.7, it consists of a plate, of width, w, subjected to a cyclic temperature 

gradient through the width, assumed to vary linearly between 00 and 00 + AO - In addition, the 

plate is under a constant axial stress, up, and restrained from any in-plane bending. In the 

FEA model, the eight-noded quadrilateral meshing elements, CPS8, is used. The resulting 

interaction diagram is in Figure 3.8, in ten-ns of the axial stress, up, and the maximum 

thermo-elastic stress due to the fluctuating temperature difference, a, , both non-nalized by the 

uniaxial yield stress, ay . It can be clearly seen that the numerical shakedown and ratchet 

limits calculated by the proposed methods, are in good agreement with the theoretical 

solutions. This provided the confidence that the LMM-based methodologies, discussed in this 

chapter, were capable of generating correct and accurate results, justifying their continued use 

in other situations. Furthennore, these procedures were found to achieve rapid convergence, 

i. e. within 30-50 iterations, even when a very strict convergence criterion was employed. 

The distinct feature on the interaction diagram is the separation of the different modes 

of material behaviour. In this particular analysis, it is divided into four main regions, namely, 

E- Elastic: In this region, it was found that any combinations of the elastic stresses, due to 

up and at . nowhere exceed the yield stress. The plate behaves entirely elastically with 

eventual failure due to high cycle fatigue. 

9S- Shakedown: In this region, the stresses were found to exceed the yield stress, resulting 

in small increments of plastic strains. These deformations are, however, limited to the first 

few cycles, upon which the resumption of the elastic behaviour was observed. The 
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constant residual stress field, associated with this phenomenon, has caused the 

redistribution of the stresses within the plate. This effectively has the effect of pulling the 

stress fields, the sum of the elastic and residual stresses, into the yield surface. 

0P- Reverse-plasticity: The transition to this region occurs when the effective elastic 

stresses exceeds twice yield. During each cycle, plastic strains were observed in volume, 

VP, of the plate, but contained within the surrounding shakedown volume, V,. This was 

made possible with the accommodation of the time-varying residual stress field, causing 

the stress distribution at the ends of the plate, to exceed twice the yield stress, whilst 

satisfying the shakedown condition at the center. Although, safe from plastic failure, the 

effect of low cycle fatigue must be taken into consideration. 

eR- Ratchetting: This region is best characterized by the breaking down of the elastic, 

shakedown and reverse-plasticity conditions. In each cycle, plastic strains accumulate over 

a significant volume of the plate, leading to imminent structural failure from the unlimited 

accumulation of plastic strains. 

Another significant advantage of the Bree problem is its ability to be re-interpreted as 

an axisymmetric or plane strain (mathematical/generalized) problem. This basically involves 

modifying the appropriate boundary conditions within the FEA model. In the axisymmetric 

model, it is now, as if, implying that a tube or cYlinder is subjected to the prescribed loading 

conditions. In modelling thick sections for plane strain analysis, however, ABAQUS allows 

two types of meshing elements to be applied. The use of mathematical plane strain elements, 

CPE8H, assumes that the strain through the plate's thickness is zerog 6zz = 0. Alternatively, 
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the employment of the generalized plane strain elements, CGPE8H, allows the through- 

thickness strains to remain constant in the modelq czz = const. Solutions to these additional 

circumstances were then generated and plotted on interaction diagrams in Figure 3.9. Also 

included are solutions for the respective analyses whereby the axial stress now varies, between 

zero and some maximum value, in-phase with the cyclic temperature gradient. 

Identical solutions were observed for the axisymmetric and generalized plane strain 

analyses. With insight, this is not surprising as both use the same Jacobian matrix in 

describing the material behaviour. This leads to the conclusion that in the analysis of thermally 

loaded u ncracked s tructures, t he generalized p lane s train f ormulation isas ubstitute for t he 

axisymmetric analysis. In comparison with plane stress, however, these results were found to 

differ by about 16%. In cases where the axial stress varies, this difference has reduced to 8%. 

Both of these diagrams verify the conservative character of plane stress solutions explaining 

their regular use in structural design. Although, mathematical plane strain solutions resulted in 

much lower limits, there isn't any physical justification behind its utilization. 

3.5.2. Bree problem with crack 

The real motivation behind the development of these numerical methods is the need to 

characterise the remaining strength of cracked structures when subjected to the combined 

actions of mechanical and thermal loads. This is, in particular, in the context of the R5 method 

[1], for the high temperature life assessment procedures developed at British Energy in the 

UK. The utilization of present design guidelines, focussing on the prevention of the initial 

existence and subsequent propagation of cracks, is no longer appropriate. This is mainly due to 
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the presence of cracks or crack-initiating defects that are either inherent in the material or 

created during manufacturing and installation. Thus, the correct prediction of the structural 

response during loading conditions requires a method capable of accurately assessing these 

existing defects. 

Here, the characteristics of these numerical procedures, in accounting for the effects of 

cracks, are investigated. The same standard Bree problem is considered, except with cracks 

included this time round. Depending upon the type of analyses, these cracks are either 

circumferential for axisymmetric, or edge cracks, for plane stress or generalized plane strain. 

The corresponding FEA models for these analyses are shown in Figure 3.10. The same FEA 

meshing arrangement at the crack tip, employed in Chapter 2 (Figure 2.10), is adopted here. 

This is justified on the basis oft he a ccurate I irnit I oad s olutions g enerated p reviously. The 

tube/plate is still subjected to uniaxial tension, a,, and a linear temperature gradient arising 

. V-- - from a temperature difference of AO. Denoted by a, the thermo-elastic stress is now the 

maximum stress away from the crack, i. e. the value that would occur if the cracks were absent. 

These cracks of width, a, are also assumed to occur at the centre of the line of symmetry, 

allowing only half of the length to be modelled. It is important to note that the elastic stress 

solutions for the cracked body under the mechanical and thermal loads, utilized in these 

analyses, has a singularity at the crack tip. 

In the analysis of such problems, the non-existence of any shakedown region is well 

documented, as shakedown limit can only occur at zero loads, i. e. a, =0- This is due to the 

singularity in the elastic stress field at the crack tip. Numerically, this is proven with the use of 

a very fine mesh at the crack tip, like the one used in Chapter 2 (Figure 2.12). The numerical 
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procedure for identifying the ratchet boundary, however, still applies, as reverse-plasticity will 

be confined to a small region in the immediate vicinity of the crack tip. The results of such 

calculations, plotted on interaction diagrams, are shown in Figures 3.11,3.12 and 3.13, 

corresponding to various increments of crack width. Two sets of solutions were included; 

those that assume perfect plasticity (PP) and an adaptation of the method to allow complete 

cyclic hardening (CCH) in the reverse-plasticity regions. The CCH solutions were obtained by 

substituting (3.37) into (3.29) and then repeating the iterative processes for the identification 

of the ratchet limits, described in Sections 3.3 and 3.4. Essentially, this additional procedure 

enables the effective stresses in the body to monotonically increase with increasing magnitude 

of the effective strains. The behaviour of realistic cyclic properties would be expected to lie 

between these two solutions (PP and CCH). As can be seen, the ratchet boundaries are 

insensitive to cyclic hardening, with differing solutions occurring only at high values of a, 

[63,64]. This outcome is not entirely unexpected, as the effect of cyclic hardening in cracked 

bodies, is generally confined in the immediate vicinity of the crack tip. 

Of the three models analysed, the axisymmetric results were found to be distinctly 

different from the rest. This is especially so when the circumferential crack is greater than half 

of the tube's width. An explanation of such behaviour is attempted by observing the contour 

plots for the CCH von-Mises effective strains, 0-(Aejj), at the ratchet limits. A selection of 

such plots is shown in Figures 3.14 and 3.15. It was found that when a, is small, the same 

deformation mechanism, seen in Chapter 2, was still observed. This behaviour was 

consistently observed for all crack widths, including the analysis of plane stress and 

generalized plane strain. The major difference occurs when a, ý! 2ay. A change in the 
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deformation mechanisms at the uncracked ligament was noticed. This behaviour was 

consistently observed as cr, is increased, with additional reverse-plasticity strains appearing at 

the edge of the tube, if cr, is high enough. A full collection of these plots, for all three two- 

dimensional analyses with varying crack widths, is enclosed in the attached CD. (Note: The 

contour plots were generated with a limit set on the maximum von-Mises effective strain 

T(A-6ij). This is due to the high strain singularity experienced at the crack tip, which is the 

focussed area of investigation in Chapter 4. ) 

The variations in the ratchet limits, when up is varying in-phase with the thermal 

loads, were also investigated. Solutions were generated for plane stress, generalized plane 

strain and axisymmetric loading conditions, plotted in the form of interaction diagrams in 

Figures 3.16 and 3.17. Only CCH solutions were computed, as in the course of writing this 

thesis, the implementation of the methodology for identifying the PP ratchetting limit is not 

available. The results indicate that the maximum mechanical load that the structures can carry, 

occur at some finite value of at . not at the limit load, i. e. a, = 0. This behaviour is 

consistently observed in all the three analyses considered. These differences are best 

illustrated in Figure 3.18, the plot of the limit and maximum loads against varying crack 

widths, where PL is the uncracked limit load. It was found that the utmost variation between 

the limit and maximum loads, for the respective analyses, was about 8%. 

Another feature of these solutions is the convergence. As shown in Figure 3.19, the 

ratchet limits were found to reduce monotonically, converging to good solutions within the 

first 40-50 iterations. In comparison with those at the 100thiteration, the percentage difference 
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is less than 1%. This behaviour is typical of the three analyses at the different crack widths. It 

still holds true for higher a, even if the interaction diagrams generated stops at at = 3cy . 

3.5.3. R5 problem 

The aim of this investigation is to compare the R5 [1] limit, employed within the 

current design and life assessment procedures, with solutions generated using the numerical 

methods described in this chapter. The same idealized structural geometry, investigated in R5 

[1], is considered here. As shown in Figure 3.20, it consists of a homogeneous Type 316 

stainless steel cracked pipe, subjected to repeated cyclic loadings, from an initially unstressed 

shutdown condition at ambient temperature of 20 0C to an operating condition of 600 0C. In 

the presence of an internal pressure of 16MPa, the behaviour of this pipe, subjected to two 

different thermal stresses, were then examined. These were 20OMPa in Example I and 

30OMPa in Example 2. The yield stresses were also assumed to vary with temperature, such 

that a' = 184.2 MPa and a' = 126 NWa, where the superscripts denote the cold and hot parts 
yy 

respectively. 

For the loading conditions corresponding to Example 1, the R5 [1] limit is obtained by 

assuming that the cracks do not exist. In such situations, the procedure then prescribes a means 

of identifying a shakedown limit, based upon the satisfaction of the lower bound shakedown 

theorem [21] of equation (3.3). Using the same assumption of an uncracked pipe, numerical 

shakedown limits were then generated, using the LMM-based methodologies described in the 

previous sections. The results from these two analyses are plotted in Figure 3.21, where 
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a(up)..,, and are the maximum von-Mises effective stresses due to the internal 

pressure and thermal stresses respectively. For Example 1, the pipe's operation in "strict 

shakedown" is clearly demonstrated. Also observed is the good correlation between the R5 [1] 

limit and the numerical shakedown limit, with the slight conservativeness of the R5 limit not 

totally unexpected. This is mainly due to the employment of safety factors, perhaps 

excessively so, during the identification of this limit. 

For the loading conditions corresponding to Example 2, the interaction diagram in 

Figure 3.21, shows that the pipe is now operating within the reverse-plasticity region. At the 

present time, there are no available procedures, prescribed within the current design and life 

assessment procedures, capable of identifying the equivalent R5 [1] ratchet limit. This gap can 

be filled with the use of the numerical methods discussed in this chapter. Figure 3.21 shows 

the numerical ratchetting limits, evaluated for the structural geometry considered, under both 

uncracked and cracked conditions. The plot distinctly shows a big difference between the 

loading conditions of Example 2 and the identified numerical ratchetting limits. In the current 

environment of operating structures at elevated temperatures, the loading conditions, applied 

on this structure, is extremely conservative, perhaps, unnecessarily so. It is hoped that the 

application of these LMM-based methodologies in identifying the shakedown and ratchetting 

limits, would ultimately lead to structures operating more efficiently and effectively. 

3.6. Concluding Remarks 

In relation to questions posed in the identification of shakedown, reverse-plasticity and 

ratchetting limitsq this chapter proposed the linear matching method (LMM). Upon the 
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introduction of the fundamental shakedown theorems for a general problem, the numerical 

procedure, for the upper bound shakedown theorem [3,5,49], was then described. This was 
then followed by discussions into the extended theorems [6], for structures loaded in excess of 

shakedown. The associated numerical procedures [7], for the identification of ratchetting 
limits in both perfect plasticity and complete cyclic hardening conditions, were also presented. 

The applications of these numerical methods were then examined on two problems; the 

Bree [37] problem, under uncracked and cracked conditions, as well as an additional industrial 

problem in R5 [1]. The solutions showed that the LMM-based methodologies were capable of 

generating accurate shakedown and ratchetting limits, within finite iterations. It was also able 

to cope very well with the different types of analyses conducted, i. e. plane stress, plane strain 

and axisymmetric, under various increments in crack widths. The insensitivity of the solutions 

to cyclic hardening was also observed, as both perfect plasticity and complete cyclic hardening 

ratchet limits yielded almost identical results. It is, however, the ability of the numerical 

procedure in dealing with the elastic singularity at the crack tip, which is the most outstanding 

feature of this method. Its capability in generating ratchet limit solutions, without needing to 

replace the cracks with notches, is a major achievement in the analysis into the behaviour of 

structures subjected to cyclic histories of loads and temperatures. This raised question marks 

on the validity of the so-called ratchet limit solutions [26,27,28], identified with notches in 

them. 
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generalized plane strain and axisymmetric analyses. 
(Limit Load - identified at a, = 0, 
Maximum Load - identified at some finite c, ýLe. a, # 0) 
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Chapter 4: Cyclic Creep Analysis Methods 

4.1. Introduction 

The ever-increasing demand in improving the efficiency and utilization of current 

power plants, gas turbines, chemical reactors, etc, has resulted in engineering components 

operating at elevated temperatures. In the presence of complex loading histories often 

experienced by these components, one of the dominant instigators of structural failures is 

creep. This time-dependent deformation process generally occurs at temperatures above 0.5T, 

[ 19], where T,, is the absolute melting temperature of the material. On the assumption that the 

structure is defect free, the availability of present design guidelines [1,12,13] in accounting for 

such failures, has made it possible for this economically driven trend to progressively continue 

in high temperature applications. 

In such circumstances, however, conditions are ideal for cracks to initiate and 

subsequently grow. As a result, engineering components undergo frequent mandatory 

inspections to assess their suitability for further use. If cracks are detected, some procedures 

are required to determine whether these cracks are acceptable or whether they constitute a risk 

to safety and must be repaired. Recent advances in the sensitivity of crack monitoring 

equipments have helped, allowing the detection of smaller and smaller cracks. In cases where 

inspection is not possible, hypothetical defects are often assumed to be present. Consequently, 

the defect assessment calculations performed thereafter, needs to be realistic because serious 

economic penalties could be incurred if the plant is taken out of service unnecessarily or 
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disastrous failures take place. This called for the development of an effective, efficient and 

reliable procedure, capable of assessing and, upon which, predict the remaining life of cracked 

components in current operational high temperature plants. 

In the evolution of such methods, an understanding of creep in cracked structures is 

indispensable. An in-depth investigation into the near crack tip fields, under cyclic histories of 

loads and temperatures, and their influence on the cycle times and material behaviour are 

required. The conventional methodology is to develop constitutive laws for the material 

behaviour and to conduct detailed finite element studies of the response of the cracked 

structures. The problem with such an approach is that the constitutive models generated are 

either too elaborate or contain large number of variables, too complicated to implement. The 

validity of these models is, also, generally viewed with suspicion, as they are constructed from 

results obtained from experimental techniques, examined on a particular batch of material. 

Moreover, the employment of these laws computationally tends to be complex and expensive 

even for simple structural components, leading to difficulties in detennining the relationship 

between the material behaviour and the structural performance. 

In overcoming the above difficulties, an alternative approach was proposed by Le Mat- 

Hamata et al [29,30]. It involves investigating the behaviour of cracked structures, using the 

extremes of the applied cyclic loading histories, in conjunction with simple constitutive 

material models. For cracked structures subjected to cyclic variable loads, the investigations 

looked into the changes in the behaviour of the crack tip fields, with respect to changes in the 

cycle times, i. e. rapid and slow cycling [65], for constitutive models, such as Norton's power 

law and others [66,67,68]. Using such an approach, the results generated, revealed the near 

116 



identical overall creep deformation rates, found to be independent of the cycle times 

associated with the corresponding constitutive models. It was also established that this 
provided a more convenient way of relating the available experimental data to the behaviour 

of the near crack tip fields and the different features of the material response. 

The above encouraging results fonned the basis of the investigations carried out here, 

whereby an examination into the behaviour of the crack tip fields, subjected to the extremes of 

the applied cyclic histories of loads and temperatures, is conducted. The employed numerical 

procedure is the linear matching method, previously applied to limit load [2,4] and shakedown 

[3,5] problems, now used to generate the so-called rapid cycle creep solutions [69]. In short, 

these solutions assume that the cycle time is small compared to other characteristic times in 

the material. This provides an over-estimation on the creep deformation rates, ultimately 

yielding a conservative limit [65] on the results. It is believed that the exploitation of such 

numerical methods, based upon the prescribed approach, is capable of answering the safety 

and reliability concerns, existing in current structures operating at elevated temperatures. In 

addition, the capability of these procedures would also enable the appropriateness of current 

R5 [1] procedures, which treats the effect of thermal stress as an equivalent bending moment, 

to be validated. 

In this chapter, the essential concept behind the rapid cycle creep solution [69,70] is 

discussed. This is then followed by the numerical implementation of the LMM-based 

methodology [ 49], for Norton's law and the Bailey Orowan [71] constitutive model. These 

two models were chosen, as they tend to bracket the behaviour expected of a real material 

[69]. Using the cracked axisymmetric Bree problem as an example, the characteristic of the 
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near crack tip fields, subjected to the extremes of the applied cyclic mechanical loads, was 
initially investigated. Similar investigation into the behaviour of the crack tip fields, under 
both cyclic mechanical and thermal loads was then conducted. These numerical procedures 

were then repeated, with variations in the structural geometries, loading histories and material 
properties, with the ultimate aim of indicating the versatility and appropriateness of such 

solutions. These results then act as input parameters in Chapter 5, whereby the behaviour Of 

current R5 [1] procedures, which employ the reference stress formulation [1,19] as well as 

treats the effect of thermal stress as a bending moment, are examined. 

4.2. Rapid Cycle Solution 

In the analysis of a metallic body subjected to cyclic histories of loads and 

temperatures, the stress and strain histories generally evolves over a number of cycles before 

reaching a steady cyclic state. The associated deformation may then be conceived as 

consisting of two components, the displacements and strains accumulated during the transient 

and the steady state rate of incremental strain growth per cycle in the steady state. In practice, 

however, the assessment of performance in engineering structures tends to concentrate on the 

latter. There is, thus, an essential requirement for cyclic creep solutions capable of evaluating 

the accumulated creep strains during each cycle. This would then be related to a maximwn 

strain rate, enabling the equivalent maximum load to be sought out that would result in strain 

rates no larger than the specified value. 

Ponter & Cocks [65] came to the conclusion that two distinct extremes of cyclic creep 

solutions exist. The first is the rapid cycle creep solution, which occurs when the cycle times 
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are very short, compared with the characteristic time scales inherent in a particular constitutive 

material's model. There is no time for the stresses to redistribute, but the body will still exhibit 

a cyclic increase in creep strain. When the cyclic state is reached, the stress in the cycle has, 

however, been shifted so that the stress history is now the sum of the linear elastic stress 

solution and a constant residual stress field, 

uij (X9 t) = Uij (x, t) + Pij (x) (4.1) 

where dij (x, t) are the linear e lastic stress solutions due to the loads and temperatures and 

pij (x) is a constant residual stress field. The utilization of such solutions not only offers the 

benefit of simplicity but is also shown to provide an upper bound on the strain growth for 

finite cycle times in many circumstances [69]. On closer examination, the similarities between 

equation (4.1) and those described in shakedown theorems in equation (3.3) are apparent. It is 

known that the existence of a shakedown state is a characteristic of a material behaviour, 

described by time-independent constitutive equation. Thus, the rapid cycle creep solution can 

be thought of, as a special case of "time-dependent shakedown", at high temperatures where 

the effect of creep is significant. 

+*-"A At the other ex. eme, if the cycle times are much longer than the material characteristic 

time scales, a redistribution of the stresses to the steady state values occurs. Such solutions are 

often referred to as the slow cycle creep solutions and provide an underestimation of the creep 

strain rates occurring in a real structure. Although not considered here, Ponter and co workers 

[72,73] recently outlined a generalised approach in predicting such solutions at any cycle 

times. Unlike the rapid cycle solution, the creep behaviour is now the swn of the total 
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increment of strain and displacement per cycle and the amount of creep strain produced during 

the relaxation processes at the maximum temperature. The general form of the cyclic solution 

is, thus, given by, 

Uij (x, t) = Uij (x, t) + Py (x) + (X, t) (4.2) 

where, as before, Pj (x) is a constant residual stress field, here interpreted as the value of the 

residual stress field at the beginning of the cycle, and pij (x, t) is the additional varying 

component. In the evaluation of these two components, a simple inteffelation existing between 

them was used. It was found that if the changing component pY (x, t) was known, then the 

evaluation of the corresponding constant component Pj (x) was then interpreted as the 

solution of a rapid cycle solution where the elastic stresses were augmented by pij (x, t). On 

the other hand, if pj (x) , was known, then pj (x, t) was found using step-by-step analysis 

through the cycle. Numerically, this convergent method [74] was successfully implemented 

within ABAQUS, through the combination of these two observations, where at each stage, a 

load parameter is adjusted so that a displacement rate condition is always satisfied. 

These two cyclic creep solutions gives rise to the notion of bounding theorems [69]. 

For the rapid cycle creep solution, the advantage of the upper bound theorem is evident, as the 

analysis only involves the computation of a constant residual stress field, ; 5ij (x) , rather than 

the step-by-step analysis of the cyclic loading histories due to both mechanical and thermal 

loads. The accurate estimation of the upper bound creep strain rates, thus, requires the 
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application of the appropriate form of constitutive equations. In this thesis, Norton's law and 
Bailey-Orowan recovery model, based upon the same constant stress data, 

n 
3 

CTO 2 cy-O 
(4.3) 

are considered, where F(uj ) is the von-Mises equivalent stress and aij is the deviatoric 

stress tensor. These two models are chosen, as they tend to bracket the behaviour expected of a 

real material, based upon the experimental and analytical conclusions of Ponter [69]. 

4.2.1. Norton's law creep model 

This is the most commonly used function in describing the steady state creep 

deformation or, otherwise known as, secondary creep. The power law, attributed to Norton, 

computes the steady state creep strain rates, ýjj, under constant temperature using the 

expression, 

"" 

((Q(/) 
8y (4.4) 

where uj is the applied stress, ý,, is the strain rate under constant stress and temperature, o7o 

and n is the creep exponent. The reason for its popularity is its simplicity in stress analysis 

applications. Another great advantage this forraulation has over others is the ability to 

maintain the 'shape', regardless of the stress magnitudes. This means that the stress 
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distribution is a function of the magnitudes of the applied loads. Thus, for a cyclic history of 
the form (4.1), the creep strain rate accumulated over a cycle, Avj, is given by, 

N 

Acii = fiýjj (uij (t))dt 
0 

for 0 :! ý t :! ý At (4.5) 

4.2.2. Bailey Orowan recovery model 

The Bailey-Orowan creep model [71] is based on the assumption of a flow potential, 

which depends upon the von-Mises effective stress, C(aj), and flow stress, S, such that, 

ý2(uij, S) = F(57(uij) - S) + G(S, 0) (4.6) 

with 
aG 

=r, where r and h are power law functions of S, governing the thermal softening aS h 

and strain hardening of the material respectively. The corresponding rate equations for this 

constitutive relationship [70] are given by, 

-h(S) 
CM(aij, S) 

as 

The substitution of equations (4.6) into (4.7) now yields, 

(4.7) 

ip =f (57(Uij) - S) 
aar(Uij) 

&ý= h(S) f (u(uij )_ S) _ 
DGI (4.8) 

ii auij 

1 

as 
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where 
dF is interpreted as a step functioný whereby, if 57(c; -ij) =S du-(uij ) 

f(57(u, j)-S)ý! O, otherwise if f(u(uj)-S)=O, then the condition a-(cij)>S is not 

allowed. 

For conditions where aij = const , i. e. a (aij )= const , the steady state creep behaviour 

is defined by a (or, ) =S and S=0. This leads to equations (4.8) becoming, 

dG dG Pu(cij) - S) =-= (4.9) 
dS dC-(cij) 

and 

dG M* 
d o-7(o7ij aaij (5uij 

where ff is the steady state potential for the steady state creep strain rate, ýjj ý 

ý(ai 

G(U(uij), S) =k (4.11) 
n+l 

with r= dG k67(c, 
h dU(cij) j)". Obtained from equation (4.10) is a definition of Norton's law 

in tenns of the effective stress and strain rate, 

(4.12) 
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provided k-,. 
or n 

0 

From previous discussions, a definition of the stress history for the rapid cycle solution 

was presented in equation (4-1). For this particular model, the identification of the constant 

residual stress field is based on the condition that the average rate of inelastic strain 

accumulated over a cycle, 0 :! ý t :! ý At, 

lim 
At 

P (47kl + 

JPkl)dt At-*O 

fýy 

0 
(4.13) 

is compatible with an average rate of displacement, ui This limit for the Bailey -Orowan 

recovery model corresponds to the strains occurring at an instant, to, in the cycle, allowing the 

previous equation to be written as, 

ý 
--oij =. ýa (4.14) 
At ij 

(ý 
kl 

(tO + PH 

where to is the instant of the maximum von-Mises effective stress, 

5: (u a (4.15) ý 
kl 

(t) + i5kl ) : ýý 6: ( ' 
kl 

00 + ; 5kl ) 

However, the applicability of (4.14) is only limited to a single instant for 6'(uij) to reach its 

maximum value. In the general case, U(crj) has a number of extreme values corresponding to 

the different times, t, . where i=1,2,..., r, 
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57(0ýij (tl)) ý- 67(ý7'ij Q2)) 
= ... = 6: (Orii (0) = Uf 

I U(Uii (0): 5 Uf (4.16) 

For such cases, the accumulation of the creep strains over the cycle, Aej 
, is given as a 

weighted surn of the steady state creep values corresponding to each of the time instances, 

ACY =Acjj(tl)+Aeij(t2)+"'+Aeij(t, ) (4.17) 

This implies that the appropriate form of (4.12) for the Bailey-Orowan model is, 

0(5: 
f 

ao 

Furthennore, by exploiting the analogy existing between the rapid cycle solutions and those of 

shakedown, Ponter et al [5,49] provided a definition for Ff , the newly labelled flow stress, 

evaluated from, 

1 

Co 

i=I At j 

4.2.3. Numerical procedure for the rapid cycle solution 

(4.19) 

The numerical implementation of the rapid cycle solution [49] is based upon the 

utilization of the linear matching method. The constitutive equations for Norton's law and the 

Bailey-Orowan model presented in (4.4) and (4.18) respectively, are individually matched 
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with those of a linear rate problem so that they both give the same effective stress. The 

similarities existing between these solutions and those of shakedown, allows the bulk of the 

iterative procedure, described in Section 3.3, for the upper bound shakedown limit, to be 

applied here. This is shown interactively in Figures 4.1 and 4.2. Furthermore, the availability 

of convergence proofs for the rapid cycle solution [70], in recent times, further enhances its 

reputation as a programming method, as the solutions preserves the same monotonically 

reducing behaviour, converging to the least upper bound creep deformation limit. 

Although the class of problems solved here are the same as those for shakedown, the 

solution's criterion for the load parameter, A, is no longer a shakedown limit. This is due to 

the existence of cyclic creep solutions for any values of A. For such problems, a design 

criterion is usually defined by placing a restriction on the maximum average creep strain rate 

throughout the volume, 
A. 6 I. Within the iterative procedure itself, a factor, zf , is introduced, 
At 

ACT (4.20) 

ensuring the satisfaction of this criterion for each and every strain rate history, where ý-(A. 6, j) 

is the maximum effective creep strain rate in the problem. In conforming to this requirement, 

the cyclic creep solutions, generated for a particular value of A, now needs to be scaled 

accordingly, so that, 

lik+I = tk (4.21) 
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where A"' 
-< A' is defined as the upper bound cyclic creep limit. 

In the cyclic creep analysis of cracked structures, however, a re-definition of the tenns 
in (4.20) is required. The condition that the design criterion conforms to the maximum 

effective creep strain rate, C(Acj), in the problem is no longer appropriate, due to the high 

strain singularity experienced at the crack tip. On the other hand, the accuracy of the solutions 

is compromised if the location of the designated maximum effective creep strain rate, , ý(Aejj) 

is remotely away from the crack tip. Thus, an accurate representation of the crack tip 

conditions requires an equally accurate means of identifying the location of the designated 

maximum effective creep strain rate. An approach, proven to be successful on both fronts, is 

discussed below. 

4.3. Cyclic Creep Analysis of Cracked Structures 

The problem investigated is shown in Figure 4.3. It consists of a symmetric half of a 

cracked axisymmetric Bree problem, with the ratio of crack length, a, to width, w, of 0.4. 

As before, the tube is also subjected to a uniaxial tension and a linear temperature gradient 

arising from a temperature difference of AO. In the ensuing solutions, these are denoted by 

UP and at, the maximum mechanical and thermo-elastic stresses away from the crack 

respectively, i. e. the value that would occur if the crack were absent. 

As in all computational effort, making certain assumptions on the model analysed is 

unavoidable. In the following analysis, only two time intervals are considered, 0:! ý t :! ý fiAt and 
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(1 -, B)At :5t:! ý At, during each of which the loads remained constant. Thus, in terms of typical 

times, t, and t2 within these two intervals, the accumulation of the creep strain rate over the 

cycle, Aej, is given by, 

A, cij = -ýij (aii (tl))IgAt + 'ýij 
(47ii (t2))(I 

- j6)At (4.22) 

for Norton's creep law. The corresponding formulation for the Bailey-Orowan recovery creep 

mo is, 

A, v Y= i-ij (Crij (t))At (4.23) 

for the case when the maximum effective stress, a (aij (t)), occurs at either t=t, or t= t2 
ý 

leading to either af=a (aij (t, )) or U f= 6: (07ii (0) respectively. However, if the maximum 

occurs at both time instances, t, andt2 then, 

Acij ='ýij(07ij(tl))qAt +'ýij (47ij (t2 *1 
- 17)At (4.24) 

wh=67(orij Q, )) ý 67(Cij Q2 ))= 57f and the constant, q, a value between 0:! ý q:! ý 1, is defined 

by the continuum problem. In this particular analysis, a balanced cycle is assumed, with 

fl = 0.5. Furthermore, the material properties are also taken to remain constant throughout the 

cycle. Although, not a representation of a real material, this provides a simple starting point in 

understanding the behaviour of cracked structures under cyclic creep histories of loads and 

temperatures. 
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4.3.1. HRR fields 

As an initial examination, the problem in Figure 4.3 is considered, with only up , the 

mechanical load, applied. In such situations, extensive theoretical and experimental studies 
have been undertaken [31,32] in describing the behaviour of the deformation fields at the 

crack tip. The postulation, which spurred the development of fracture mechanics theorems in 

that era, is the work of Hutchinson [75] and Rice and Rosengren [76]. In an isotropic, elastic- 

plastic material, satisfying the power-law hardening expression, 

acy 
(TY 

(4.25) 

the asymptotic form of the stationary crack tip fields, subjected to a tensile load, was derived, 

where a is a material constant, N is the power-law hardening exponent, cy and eY are the 

yield stress and the associated yield strain respectively. Rice [34] then presented the existence 

of the so-called path-independent integrals or J -integrals, as a characteristic of the fields 

around the crack tip. The implication of these findings is the ability to now define the near 

crack tip stress and strain distributions in the form, 

07 -> 
fij (0) 

, 
c 

ii fij (0) (4.26) 

where rand 0 are the radial and angular distances away from the crack tip. In the current 

investigation into the steady state creep behaviour of the cracked Bree problem, equation 

(4.26), often referred to as the HRR fields, is still applicable. This conclusion was reached [ 19] 
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on the basis of similarities in the stress distribution of a plastically deforming body in (4.25), 

with that of a body defonrning in steady state creep in (4-4), provided the exponents, N=n. 

The reason for this is the identical equilibrium and compatibility equations governing the 

creeping body and those in the plastic body, with the exception of the strain rate and 
displacement rate in the creeping body replacing the strain and displacement in the plastic 

body. 

The above argument necessitates the employment of an accurate meshing technique at 

the crack tip. The application of such a routine would enable the variations of the stress and 

strain distributions with the coordinates, rand 0, to be evaluated, allowing the subsequent 

identification of the best-matched HRR field. Within the context of finite element analysis, 

vanous meshing techniques have been suggested. Some involves the use of specially 

developed finite elements [77,78], while others attempted at an improved solution with the 

inclusion of a rosette around the crack tip [79]. There have also been cases where the effect of 

the singularity is accounted for with numerical methods [80,81]. Although useful in specific 

circumstances, their general applications in all cases are questionable. With this in mind, an 

alternative meshing technique is proposed. It involves adopting the same intensity in the finite 

element crack tip mesh, previously employed in Figure 2.10 (Chapter 2) and Figure 110 

(Chapter 3), but now organized in a fan-like meshing arrangement. This is shown in Figure 

4.3. meshed using the regular six-noded triangular hybrid element (CAX6H). 

The most significant aspect of the employed meshing scheme is the ability to generate 

cyclic creep solutions, along radial paths, r, at different angles, 0, away from the crack tip. 

Within the context of the investigations, into the behaviour of mechanically and thermally 

130 



induced crack tip fields, carried out in this chapter, this meshing arrangement is of immense 

importance. This is mainly due to the need in identifying the so-called best-matched HRR 

field, i. e. the field near the crack tip, that best satisfies the HRR condition of equation (4.26). 

Although in the following investigations, it would be shown that equation (4.26) is satisfied at 

all values of 0, at a distance r away from the crack tip, there is, however, a path that best 

matches the HRR condition. This is best-matched HRR field. In the following, the uncovering 

of such a field is described. Its identification would then enable a sampling point, within this 

field, to be identified, allowing the possible evaluation of the creep fracture mechanics 

parameter, C., from this point. The location of this sampling point, which would occur at a 

specific v alue ofr and 0, would a Iso e nable t he d esign c riterion ine quation (4.20) tobe 

determined, where ý(A, 6, j) is now designated as the maximum effective creep strain rate at 

the sampling point. The justification behind this argument is presented below. 

4.3.2. Mechanical load 

For the initial case of constant mechanical loads, rapid cycle creep solutions were then 

generated, for differing values of 0=00- 80 0, in multiples of 10 0, along radial paths, r, 

away from the crack tip. One such solution is shown in Figure 4.4, based upon Norton's law 

with n=3, where ý(Avj) is the von-Mises effective creep strain rate accumulated over the 

cycle and o-, (o-Y ) is the von-Mises effective stress. It can be clearly seen that, for all values of 

0, the solutions compares favourably well with the HRR field, i. e in accordance with the HRR 

condition of (4.26), except for gauss points very close to the crack tip within the first two or 

three elements. This same HRR-field-satisfying behaviour was also observed in solutions 
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obtained for n=5&n=7, as shown in Figures 4.5 and 4.6 respectively. It was, however, 

found that within these HRR-field-satisfying solutions, there exists a best-matched HRR field. 

This was identified at 0= 700 and encompassed by five meshing elements within the finite 

element mesh (Figure 4-3). This location is in close agreement with the findings of Takeshi et 

al [30], who discovered that the maximum effective stress and strain occurs at 0= 71.60. 

Although the solutions presented, so far, were for the Norton's law, identical HRR-field- 

satisfying solutions were also established for the Bailey-Orowan model. In the case of constant 

loads, as considered here, these observations are not surprising, as predicted by equations 

(4.22) and (4.24). These matches in solutions, for two different creep models, ftu-ther reinforce 

the confidence on the numerical methods' capability in identifying the HRR fields in other 

situations. 

The numerical analyses were then repeated, on the same cracked problem, but with the 

mechanical loads now cyclically varying, between zero and some maximum value, over the 

two time intervals. Under such loading conditions, it was observed that the HRR condition of 

equation (4.26) was still satisfied, for all values of 0, for n=3,5 &7 and for the two 

constitutive models considered, with the best-matched HRR field still identified at the 

aforementioned locations. These promising initial results into the behaviour of the crack tip 

fields under purely mechanical loads provided the conviction that the LMM-based numerical 

methods is capable of generating similar accurate solutions, in the impending investigations 

into the behaviour of cracked structures subjected to both cyclic loads and temperatures. 

In the previous section, it was mentioned that the behaviour of the crack tip fields in 

elastic-plastic materials is often characterized by the integral, J. In steady state creep fracture 
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mechanics, however, the equivalent term is the parameter, C. [ 191. This was the result of the 

previously discussed strong analogy existing between the plastically defon-ning and creeping 

materials. The implication of this similitude is the ability to now define the near crack tip 

strain rate and stress fields, in ten-ns of effective quantities, using, 

n 
n+I (n 

-(0, n» (4.27) ii 
) 

In UO4 r 

n+I 
U(ui 

j)=� 
C*(n) 

J (&(0, n» (4.28) Inuoior 

where In is a dimensionless constant, 6-(a(O, n)) & a-(&(O, n)) are dimensionless functions 

of 0 and n respectively. These quantities are identifiable through various means [19,30], but 

here, these were obtained from tables evaluated by Shih [82]. Nonetheless, the evaluation of 

C*(n) from equations (4.27) and (4.28), still needs the corresponding numerical values of 

(Acij ) and U(cij ) at a particular point, i. e. a value of r and 0, away from the crack tip. In 

this chapter, this so-called sampling point is at 0= 700 and r=0.00865w, identified within 

the previously discussed best-matched HRR field. Using this specific location, the parameters, 

(n) ,w ere t hen c omputed f or n=3,5 & 7, w here (Acij )a nd 6: (cj )a re t he n umerical 

values at the sampling point, obtained from the analyses conducted using the material 

properties of ý,, = 0.05 /hand ao =I 00 MPa. 

In the calculations, it was found that under constant mechanical loads, the values of 

C*(n), evaluated from equations (4-27) and (4.28), were identical, i. e. C*(n) can be 
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evaluated from using either c(Acj) or 5: '(aij). Furthermore, comparisons between these 

numerical values and those estimated via the reference stress formulation [1,191 were also 
found to be within the range expected of such analyses. These issues will be discussed in 

greater detail in the next chapter. 

4.3.3. Mechanical and thermal loads 

In the case where both mechanical and thermal loads are considered, the theory that 

identifies C* as the appropriate creep fracture mechanics parameter, i. e. the existence of path- 

independent integral does not exist. In closing this gap, an approach whereby C* is interpreted 

in the same manner as K is understood in linear elastic fracture mechanics (LEFM), as the 

intensity of the accumulated strain concentration over the cycle, is suggested. For such an 

approach to be valid, the radial distribution of the von-Mises effective accumulated creep 

strain rate near the crack tip, needs to be reasonably described by the satisfaction of the HRR 

field condition of equation (4.26). The satisfactory fulfilment of this condition would then 

enable loading states along a contour in a (up ý C, ) diagram to be identified, whereby the 

conditions at the crack tip, by this criterion, is identical. Numerically, this implies that the 

designated maximum effective creep strain rate, used in the design criterion of 

(4.20), would now correspond to the magnitude of the von-Mises effective creep strain rate at 

the sampling point, identified within the previously defined best-matched HRR field. 

For the cracked problem in Figure 4.3 subjected to the prescribed loading conditions, 

r to the 
rapid cycle creep solutions were then generated, for the loading histories correspon ing 

134 



contour 1nt he (ap, at )s pace in Figure 4.7, w here ay = 200 MPa. As election of ý-(Aejj ) 

p ots is s own in Figures (4.8) to (4.10), for both models at n=3,5 & 7. In all these cases, the 

variations of the effective accumulated creep strain rate are close to that of the HRR field 

condition of (4.26). The best-matched HRR field, however, still occurs at the previously 

identified locations, i. e. when up = a,, as shown in Figure 4.3. In addition, the differences in 

the HRR gradients, for the majority of the loading histories, were found to be less than 10%, 

with only a few exceptions, especially for the Bailey Orowan model, exceeding this threshold. 

On the entirety, although these solutions were not as exact as before, they are still within the 

acceptable range expected of numerical analyses. 

On that note, a similar expression for C* was developed, using the same sampling 

point as before, but under the identity, 

At 
(4.29) 

where (Acij ) is now the average rate of strain growth at the crack tip, corresponding to that 

given by the best-matched HRR field. Thus, substituting the identity of (4.29) into (4.27), the 

values of C*(3), C*(5) and C*(7) were then computed, for the different combinations of 

loading histones presented. As the solutions are all homogeneous of degree, n, a scaling 

factor, A, was introduced, yielding the correct condition at the crack tip, such that it scales 

(Aup 9 
Au, A relationship, such as those given in Figure 4.7, was then outlined, resulting in 

plots of contours of constant C* (n) to be identified. These contours are shown in Figure 4.11. 

The results, however, seemed to indicate a dependency upon both the creep index, n, and the 
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constitutive equations used. For these solutions to be useful, they need to be presented in a 
form, which is insensitive to both the creep exponents and the constitutive equations. This task 
is undertaken in the next chapter, whereby the solutions are represented in tenns of reference 

stress quantities [1,19]. 

4.4. Further A 

The above calculations demonstrated the possibility of obtaining the crack tip 

parameters, equivalent to C* (n) 
, for cracked structures subjected to both cyclic histories of 

loads and temperatures. The adopted methodology identifies strain increments over a loading 

cycle that varies radially away from the crack tip, in the same manner as the HRR field 

condition of (4.26). The encouraging results, so far, acquired, however, needs to be validated 

with solutions, taking into consideration variations in loading histories, material properties, 

structural geometries, etc, before general conclusions could be reached. The results of these 

additional investigations are examined below. Some of these solutions would also be re- 

represented in the next chapter, in tenns of the reference stress quantities [ 1,19]. 

4.4.1. Hieher creep exponent 

One distinct feature of the outlined LMM-based numerical procedures is their ability to 

generate solutions at much higher creep exponents. This is shown in Figure 4.12, in the form 

of contours of constant C* (n) , 
for the creep exponents of n=3,5,7 & 15. Furthennore, unlike 

other available numerical methods, solutions were found to converge well within the first 20 

iterations. The monotonically reducing sequence of solutions, prescribed by the proofs [70] 
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that the solutions converges to the least upper bound creep limit, were still observed even for 

n= 15. This behaviour was found to be typical in solutions generated by both constitutive 

models, at the different loading combinations of (up, a, ). 

4.4.2. Variation in loading histories 

flAt (I -, 6)At fiAl (I -, 6)At 

I. - 
tt 

P- 
t, t2 tl t2 

Table 1: Variations in the loading histories 

The changes in the solutions, with respect to variations in the loading histories on the 

same cracked Bree problem of Figure 4.3, were also investigated. Here, the mechanical load 

no longer remains constant, but varies between zero and some maximum value over the cycle 

time, 0:! ý t:! ý At. Without taking into consideration the effect of temperatures, this situation 

was investigated before in Section 4.3.2. In this circumstance, however, the mechanical load is 

assumed to be varying in-phase with those of the then-nal loads, as shown in Table I- 

The previously described numerical procedures were then repeated here. The rapid 

cycle solutions generated, for both models, were found to satisfy the HRR field condition of 

(4.26) reasonably well, with the best-matched HRR field still observed at 0= 700 and 

encompassed by the five meshing elements (Figure 4.3). This holds true for the different 
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combinations of (up, a, ) considered in the analyses (Figure 4.7). This, thus, enabled the 

parameter, C* (n), to be evaluated, from the magnitudes of --ý(Acjj) at the sampling point 

using equation (4.27). As before, using the design criterion of (4.20), plots of contours of 

constant C (n) were then identified, as shown in Figure 4.13. The plot further reinforces the 

statement that the solutions are dependent upon the creep index and the constitutive equations. 

In comparison with earlier solutions, more pronounced deviations were observed; more so for 

the Bailey-Orowan than Norton's law. The requirement for an insensitive definition of these 

contours, independent of the constitutive equations and creep exponents, is even more vital in 

this situation. 

4.4.3. Varying material properties 

So far, the solutions produced were based upon the assumption that the material 

properties remain constant throughout the loading cycle. In real materials, however, these 

properties would be expected to change with respect to changes in temperatures. In modelling 

this behaviour, the constitutive equations in (4.4) and (4.18), needs to be modified 

accordingly. Thus, under the effect of varying temperature, the appropriate formulation for 

Norton's law is, 

s(Aeij) =. - uo 
ho (0) (4.30) 

with a-(o--ij) being replaced by a-f in the Bailey-Orowan model. In this situation, the term, 

4 (0) , represented by, 
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_AH(I 
1) 

ho (0) = io (00)e R0 00 

(4.31) 

needs to evaluated, where 0 is the temperature varying across the width of the tube. in its 

identification, the following creep law model, provided by British Energy [1], is adopted, 

-Q 
Be (T+250)+273 u(cu) (4.32) 

where B=e -12.7 

,Q= 19700, T is temperature in 0 C, a-(a, ) is effective stress in MPa and 

is the effective creep strain rate per hour. The material is assumed to be Type 316 

stainless steel, corresponding to the material properties in Table 2 below. 

Thermal conductivity (W/mm/c) 0.01365 
Heat transfer properties Specific heat (J/Kg/C) 465.4 

Density (Kg/mm3) 7.966E-06 
Young's modulus (GPa) 208 

Linear elastic properties Thermal expansion (/Q 15.37E-06 
Yield Stress (MPa) 200 

Table 2: Material properties for the Type 316 stainless steel adopted. 

Solutions were then generated for both models for ýO (00 )=4.80906E-09/h. These 

were then plotted in Figure 4.14, in the form of contours of constant C* (n) . Irrespective of the 

loading histories considered, i. e. up =constant or up =varying, the results indicate a big 

difference in solution between Norton's law and the Bailey-Orowan model. This mirrors the 

observations of Ponter [691, leading to the agreement that the behaviour of real materials 
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would lie between these two models. (Note: This investigation was not pursued further beyond 

this point. ) 

4.4.4. Different crack len2ths 

In this section, the behaviour of the crack tip fields for short cracks were investigated. 

The same axisymmetric Bree problem, presented in Figure 4.3, is considered, with the 

exception that the ratio is now 
a=0.04. In meshing the crack tip, the same fan-like meshing 
W 

arrangement was still adopted. The previously described numerical procedures were then 

applied to this problem, with the generated results plotted in Figures 4.15 to 4.17, for both 

Norton's law and the Bailey Orowan constitutive model, at n=3,5 & 7. In all these solutions, 

the variations of . 6(A. 6ij) were still found to satisfy the HRR field condition of (4.26) 

reasonably well, with the best-matched HRR field now identified at 0= 70' and encompassed 

by the three meshing elements between 0.00866w:! ý r:! ý 0.01045w. This enabled the crack tip 

fracture parameters, C* (n) , to be computed from equation (4-27), using the magnitudes of 

0 
att he s ampling P Oint, i. e. 0= 70 a nd r=0.009 53w. T hese a dditional r esults a re 

shown in Figure 4.18, asp lots ofc ontours of constant C* (n) .A 
Iso i ncluded are s olutions 

whereby the cracked problem is subjected to the loading histories described in Section 4.4.2, 

whereby the mechanical and thermal loads are cyclically varying i n-phase with each other. 

Although the overall behaviour of these solutions was still dependent upon the creep 

exponents and the constitutive models used, the deviations were, however, found to be 

distinctly less than before. 
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4.4.5. Plane stress 2eometrv 

So far, the investigations conducted were on the cracked axisymmetric Bree problem, 

subjected to the different structural/loading conditions. Similar examinations were also carried 

out for the cracked plane stress Bree problem, under variations in loading histories and crack 
lengths. Although no solutions were included here, the proposed procedures, for describing the 
behaviour of the mechanically and thermally induced crack tip fields, were still found to be 

applicable. The results of these additional analyses are, however, presented in the next chapter 

using the reference stress concepts [ 1,19]. 

4.5. Concludin Remarks 

In describing the behaviour of crack tip fields, subjected to the extremes of the applied 

cyclic histories of loads and temperatures, this chapter proposed the utilization of the rapid 

cycle creep solution [69,70]. Numerically implemented using the LMM, for the constitutive 

models of Norton and Bailey-Orowan, the procedure requires the identification of increments 

of strain over a cycle of loading that vary radially from the crack tip, in the same manner as 

the HRR field. The necessary fulfilment of this condition would then enable a design criterion 

to be identified, which in essence is a representation of the safe operation of the whole 

structure. 

The investigations conducted revealed that such an approach is valid. It was observed 

that the satisfaction of the HRR field condition of equation (4.26) was reasonably achieved, 

for both the mechanical and thermal loads, under variations in creep exponents, loading 
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histones, crack lengths and constitutive equations. This made it possible for the crack tip 

fracture parameter, C* (n) , to be identified, at a sampling point within the so-called best- 

matched HRR field. The contours of constant crack tip conditions, so evaluated, were then 

found to be dependent upon both the creep exponents and the constitutive models. These 

behaviours were also reproduced in both structural geometries, i. e. the cracked axisymmetric 

and plane stress Bree problems, considered. 

These results fonn the basis of the investigations carried out in Chapter 5, whereby the 

solutions are re-interpreted in tems, of the reference stress [ 1,19], independent of the creep 

exponents and the constitutive equations. The presentation of these solutions, in such form, 

would thus enable the behaviour of current R5 [I ] procedures, which treats the effect of 

thermal stress as a bending moment, to be appraised. 
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Figure 4.3: The cracked axisymmetric finite element model used 
in the cyclic creep analyses. 
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Chapter 5: Reference Stress Methods 

5.1. Introduction 

In the previous chapter, an investigation into the behaviour of the near crack tip fields, 

in cracked structures subjected to cyclic histories of loads and temperatures, was described. It 

was established that an accurate representation of the crack tip behaviour was possible, with 

the identification of the so-called best-matched HRR field. However, for such solutions to be 

useful, it needs to be represented in a form, independent of the loading histories, constitutive 

equations, creep exponents, etc. The designated quantity would then dictate the overall 

behaviour of the structure, enabling comparisons to be made with other known available 

solutions. 

In representing the characteristics of these cracked structures, the term used is the 

reference stress [1,19]. It was initially developed as means of describing the creep deformation 

in steadily loaded structures for shell and beam problems [83,84]. The results from these 

structural geometries revealed that it is possible to relate the stress fields at n= oo , to provide 

reliable estimates of work rates for lower values of n, where n is the creep exponent. 

Although initially conceived for a body defonning in steady state creep, the strong analogy 

between creeping and plastically deforming materials, as discussed previously, resulted in the 

general definition of the reference stress, in isothermally loaded structures, to be given by, 

p 
aref -(T 

PL 
(5.1) 
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where P is the applied load and PL is the plastic collapse load (limit load) corresponding to 

the uniaxial yield stress, cry. As the limit load is proportional to the yield stress, the value of 

Uref is, therefore, significantly dependent upon the accurate evaluations of these limit loads. 

This is one of the reasons behind the investigations, into the limit loads of cracked structures, 

undertaken in Chapter 2. 

Continued research interest in this field is in the development of simplified methods 

for estimating the reference stress. Most of these methods are compromised between the 

pessimism of using elastic stress analysis and the cost and complexity associated with cyclic 

inelastic computation (step-by-step analysis). The simplified reference stress method [1,19] 

adopted here, describes the quantities of interest in a complex component, in terms of a 

reference stress and corresponding creep data at the reference stress level. Although, it was 

originally developed for describing the creep defonnation in steadily loaded structures, the 

technique has since been extended to cover cyclic loadings, creep rupture and the effects of 

defects [83,85,86]. In most cases, this method was found to overestimate the stress levels in a 

component, with the ever-ready availability of detailed inelastic analysis computations, in 

situations requiring more accurate assessment. 

In this chapter, the relevant concepts behind the reference stress method [1,19] are 

presented. Its initial application, on cracked structures in the presence of constant mechanical 

loads, is then demonstrated, allowing judgment on the accuracy of the previously calculated 

magnitudes of C* (n) to be made. This is then followed by an extension to this method, 

necessary in describing the behaviour of cracked structures subjected to both mechanical and 
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thermal I oads. T hese s olutions, w hen r epresented int erms oft he effective r eference s tress, 

eff a, ef ,p rovided am eans ofa ppraising current R5[I]p rocedures, w hich t reats t he e ffect of 

thermal stress as an equivalent bending moment, under the various conditions considered in 

Chapter 4. 

5.2. Sim lified Reference Stress Method 

The utilization of the reference stress method is initially described for the problem in 

Figure 4.3. It is for the cracked axisymmetric Bree problem, subjected to a constant uniaxial 

tension in the presence of varying temperature, with the material properties assumed to remain 

constant throughout the cycle, at ratio of 
a=0.4. 
w 

5.2.1. Mechanical load 

In the analysis of cracked structures under purely mechanical loads, the application of 

the s implified r eference s tress m ethod [ 1,19] is based u pon t he n otion t hat t he s teady s tate 

creep fracture mechanics parameter, C* (n), may be approximated by, 

f (n)= aref'ýre (5.2) 

where a ref is the reference stress defined by equation (5.1) and Iýref is the creep strain rate at 

the reference stress, evaluated from, 
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n 

'ýref ..: 
Cyref 

ho 

co (5.3) 

where ýO and co are material constants. The characteristic length, R', used in equation (5.2), 

is given by, 

2 

2 
ref 

(5.4) 

where K is the stress intensity factor in linear elastic fracture mechanics. As both K anda ref 

are d irectly proportional tot he a pplied I oad, P, t he v alue of R' i s, t herefore, i ndependent 

upon the magnitude of loads, but varies considerably with the crack size, a. 

At this juncture, the above-mentioned sequence of equations allows the parameter 

C- (n) to be evaluated. These magnitudes, estimated in (5.2), were obtained, using the values 

f and R' calculated in (5.1) and (5.4) respectively, which, in turn, are dependent upon of are 

the values of PL and K. The implication of this procedure is the ability to now estimate 

C* (n), in any circumstances, as long as P, and K are known. On top of that, the accuracy of 

(n) could also be assessed, by making comparisons between these approximations and 

those calculated in the previous chapter. These results are illustrated below. 

The quantities required in performing such calculations, for the cracked axisymmetric 

Bree p roblems, a ssociated w ith t he t wo c rack I engths considered, a re sh own in Figure 5.1. 

Also presented are the corresponding terms required for the cracked plane stress Bree 
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problems. In these plots, the values of the limit loads, PL, were obtained from the numerical 

analyses conducted in Chapter 2, i. e. Figure 2.14, whilst the corresponding values of the stress 

intensity factors, K, were identified from the linear elastic stress solutions. The knowledge of 

these two parameters, thus, enabled the magnitudes of C* (n) to be evaluated, with the results 
P-- - from these two analyses, tabulated in Figure 5.2. 

Two solutions were compared, namely C,, f and C The magnitudes of C,,, f were ca 

evaluated using the prescribed procedures, i. e. substituting equations (5.1) and (5.4) into (5.2). 

The other magnitudes C* were those calculated in the previous chapter, whereby the cal 

magnitudes of C(Aeij) at the best-matched HRR field, is substituted into equation (4.27). The 

comparisons between these two solutions showed that irrespective of the types of analyses 

conducted or the sizes of the crack lengths considered, the values of C* were always larger ref 

than those of C* This is not surprising as C* is an upper bound calculation [1,19], cal * ref 

designed to overestimate the values of C* (n) calculated in cracked structures. The 

comparisons also revealed that the differences between C* and C* , solutions rarely exceed a ref ca 

factor of 2. This feature in the solutions is of particular significance as it proves the accuracy 

of C* solutions. The availability of literatures indicating that the differences between C* 
cal ref 

and C* should not be more than 2 or 3 [19], as observed in the figure, justified the adopted 
MI 

approach of describing the crack tip conditions at the best-matched HRR field. Furthermore, 

the good correlations observed, also demonstrated the capability of the LMM-based 

methodologies in producing accurate and reliable results. (Note: The material properties used 

in this analysis are the same as those used before, L e. 60 = 0.05 /h and co = 100 MPa). 

165 



5.2.2. Mechanical and thermal loads 

In the event when both mechanical and thermal loads are considered, the definition of 

the reference stress in (5.1) is no longer appropriate. In accounting for such behaviour, the R5 

[1] procedures currently employs a limit, identified using the assumption that the behaviour of 

thermally loaded structures is identical to those subjected to an equivalent bending moment, in 

the presence of the applied constant loads. In ten-ns of thermal stresses, this limit can be 

expressed by, 

P 
+2 

PL 3 ay 
(5.5) 

where the terms has the same meanings as before. In validating the above conjecture as well as 

the need in filling this void in the reference stress forinulation, an extension of the reference 

stress method, applicable to both mechanical and thermal loads, is described below. 

The procedure for the extended simplified reference stress method begins with initially 

identifying C* (1) , i. e. C* (n) at n=1 from equation (5.2), yielding, 

ao 
(5.6) 

which is only dependent upon the stress intensity factor, K. In this analysis, the values of K, 

required in equation (5.6), is obtained from the linear elastic stress solutions, evaluated at the 
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previously identified sampling point, 0= 700 and r=0.00865w, within the best-matched 

HRR field, from, 

K 
r= f (fij (0» = Ei (Aeij) 73 
21r 

(5.7) 

where E= The identification of K. thus, requires re-running the numerical procedures 
. ýO 

for the rapid cycle creep solutions at n=I, for both Norton's I aw and the Bailey Orowan 

model presented in Figures 4.1 and 4.2 respectively. The values of ý(A. 6jj), obtained at the 

sampling point, is then substituted into equation (5.7), where K is computed, enabling C* (1) 

to be evaluated in equation (5.6). 

Under both mechanical and thermal loads, the values of C* (1), evaluated in equation 

(5.6), may then be identified as having an effective K value, which will be dependent upon 

both the loading conditions and the constitutive equations, provided the strain distribution at 

the crack tip is identical. This is clearly observed in Figure 5.3, the additional ý(Acjj) plots at 

n =I, for the deep cracked axisymmetric Bree problem. In both constitutive models, the 

variations of the effective accumulated creep strain rate still show good correlations with the 

HRR field condition of (4.26). The necessary satisfaction of this condition, thus, enables 

C* (1) to be evaluated from (5.6), in conjunction with (5.7). The important thing to note out of 

these additional solutions is the differing behaviours the two constitutive equations ei its, 

with respect to changes in a,. For Norton's law, C*(I) is virtually independent of a, 

whereas in the Bailey Orowan relationship, C* (1) increases with increasing a,. 
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The above arguments provided a means of defining a reference stress, valid in 

structures subjected to both mechanical and thermal loads. It involves substituting equation 

(5.6) into (5.2), and upon re-arranging the terms; a newly defined reference stress is obtainedý 

as given by the following expression, 

n-I 
n-I 

ref c .. (1) 0 (5.8) 

In the analyses, it was found that equation (5.8) is a much more convenient fann of writing the 

reference stress. Thus, using this definition, the values ofa ref were then evaluated, for the 

different combinations of (up 9 a, ), using the calculated values of C* (n) at n=3,5 &7 from 

the previous chapter and C* (1) from equation (5.6). A relationship, similar to those described 

in Figure 4.7, was then derived for identifying contours of constantaref 

/t 

U 
ref 

(up =UY, Orl =O) 

Uref 
(X, y) 

(5.9) 

where aref (ap =a Y 'at =0) is the reference stress at purely mechanical loads and aref(x'y) are 

reference stresses at the different combinations of mechanical and thermal loads. This allowed 

plots of contours of constantaref to be identified, in both models, as shown in Figure 5.4. 

The reference stress solutions in the aforementioned figure shows a dependency upon 

the c reep e xponents, n, a nd t he t wo c onstitutive equations u sed, i. e. N orton's I aw a nd t he 
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Bailey Orowan model. The reason for this disagreement was understood by plotting the 

equa ion, 

(n- Olog 
Cref = log a 

n-I 
C (1) , (5.10) 

at the different loading combinations, as shown in Figures 5.5 and 5.6. For the reference stress 

to be n- independent, the plots have to display straight lines that intercept the y- axis at zero. 

However, in these solutions, it clearly shows that in both models, this is not the case. The 

primary deviation is due to the good straight lines passing through the values of C (3), C (5) 

and C* (7), but not passing through the origin, i. e. the primary difficulty is the value of C* (1) . 

Nevertheless, it is still possible to obtain an n -independent u,., f , provided the calculated 

values of C* (1) is now replaced by the effective values, C, ý, (1) , i. e. the values extrapolated ff 

off the straight lines. With this change, the pursuit for an n- independent a,, f , represented by 

a eff , was realized. This is shown in Figure 5.7, as plots of contours of constant alff for both 
ref ref 9 

models. The contours generated were found to be not only independent of the creep exponents, 

n, but insensitive to the constitutive equations as well. 

Numerically, the implication of C, ý (1) is that it varies with a, and between the two 

material descriptions. The physical significance of C, ý (1) could be understood by calculating ff 

an equivalent Kff value from equation (5.6). This enables three different definitions of K 

values to be evaluated and compared, namely, 
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0 Kcal 
- Evaluated from the calculated value of C* (1) using equation (5.6). 

9 Keff 
- Evaluated from the effective value of Ceý (1) using equation (5.6). 

9 Kelas 
- Evaluated using linear superposition from, 

Kelas 
7-KP +KO elas elas (5.11) 

where KP and K0 are the stress intensity factors associated with the elas elas mechanical and 

thermal loads respectively, obtained from the linear elastic stress solutions. These K values 

were then compared in Figure 5.7, for both models, normalised with respect to, 

K norm 
= 07P Va 

. The results shows that the largest value of K is given by those evaluated 

through linear superposition, K= Kelas 
ý whereas the effective values, K= Keff 

5were observed 

to be generally greater than those directly computed values, K=K 
cal * 

Thus, the appropriate 

K values are those bounded between the upper bound of K= Kelas and the lower bound of 

K=K cal * 

Figure 5.7 also revealed the conservative nature of current design rules and life 

assessment procedures [1], in accounting for the high temperature response of cracked 

eff structures in cyclic creep loading conditions. In comparison with theare solutions, the non- f 

compliance of the deduction used in generating the R5 [1] limit, which treats thermal stresses 

as equivalent bending moments, is apparent. The solutions from the employed extended 

reference stress method clearly showed that the R5 solution is conservative by a factor of 2. 

This conclusion is justified, on the basis of the two different constitutive models, Norton's law 

and the Bailey Orowan model, presenting virtually matching solutions. 
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5.3. Other Circumstances 

The procedures for the extended reference stress method were then applied to other 

cases considered in Chapter 4. Figure 5.8 shows the solutions for the cracked axisymmetric 

Bree problem at 
a=0.04. The results still shows that the R5 limit is conservative, even more 
W 

so in this situation. The insensitivities of the reference stress solutions to the constitutive 

equations were also observed. Also evident is the almost identical solutions the contours of 

constant a 
eff 

shows with respect to the ratchet limit. In ten-ns of K, the overestimation of ref 

Kelas is still exhibited, with the values of Kcal providing a lower limit at the other extreme. As 

before, the effective values, denoted by Kff , were found to lie in between these two 

evaluations. The behaviour of these solutions was further reinforced with corresponding 

solutions obtained for the cracked plane stress Bree plate problem. These additional plots are 

shown in Figures 5.9 and 5.10, for the crack lengths of 
a=0.4 and 

a=0.04 respectively. 
WW 

eff 
Irrespective of the crack lengths considered, it was found that the contours of constant C,,,, 

seemed to reproduce the solutions observed in the corresponding cracked axisynunetric 

analyses. This is also mirrored in the way the values of K were displayed. More importantly, 

the results gave the impression that, in terms of reference stress quantities, the behaviour of 

cracked structures under cyclic loading histories, are generally independent of the structural 

geometry, Le. plane stress and axisymmetric. 
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The reference stress solutions, for the cracked axisymmetric and plane stress Bree 

problems, subjected to varying mechanical loads in the presence of thermal loads, were also 

evaluated. These are shown in Figures 5.11 and 5.12, in comparison with previous solutions 

whereby the mechanical loads remained constant. For the most part, much higher c'ff limits ref 

were obtained, which is not surprising as the loading conditions are not as intense as before. 

The exception is for the cracked axisymmetric problem at 
a 

=0.4, which shows almost 
W 

identical contours. This particular result points to the direction that, in deep cracks, there is a 

cut-off limit occurring at u, ; tý 3ay . In short cracks, the corresponding maximum limit was 

observed at at ;::: ý 6ay. 

5.4. Concludinp, Remarks 

The calculations, in Chapter 4 and 5, demonstrated that it is possible to obtain crack tip 

parameters, equivalent to C* (n) , for cracked structures subjected to both mechanical loads 

and temperatures. The procedure requires the identification of increments of strain over a 

cycle of loading that varies radially from the crack tip, in the same way as the HRR field. It 

was shown, in Chapter 4, that the adopted rapid cycle creep solutions for the two constitutive 

equations, Norton's law and the Bailey-Orowan model, yield the same steady state creep 

behaviour. This led to the reproduction of the HRR field gradients in both cases. Under the 

effect of variable temperatures, however, the rapid cycle creep solutions tend to yield an upper 

bound to the creep deformation rates. This implies that the computed values may, hence, be 

regarded as conservative for finite cycle times. 
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In this chapter, the calculated values of C* (n) were then interpreted in terms of a 

reference stress, independent of the creep index, n- To obtain a consistent definition of a 

reference stress, it was found necessary to replace the computed values of C (n) at n=1, by 

an effective value, extrapolated from the values of C* (n) at n=3,5 & 7. With this 

modification, it was shown to be possible to define reference stress values that are insensitive 

to n and the constitutive equations. Although, the effective values C* (n) at n=1 shows 

some variation between the constitutive equations, these may be overestimated by a linear 

combination of the values for load and temperature, calculated separately. For the problem 

considered, a part through cracked cylinder subjected to axial load and radial temperature 

gradient, the values of the effective stress calculated in this way indicate that, for thennal 

loading problems, the reference stress method described in R5 may be conservative by a factor 

of about 2. This result also applies if the geometry is reinterpreted as a plane stress problem. 

These encouraging results indicated that a more rational approach to crack tip 

properties under cyclic creep loading conditions is possible, by the methodology described in 

these two chapters. Although successful in the problems examined, there is clearly a need to 

investigate the behaviour of the crack tip fields under more carefully defined geometries, 

material properties, thermal transients conditions, etc, before general conclusions can be 

reached on the appropriateness of current R5 [I] procedures. 
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Chapter 6: Reverse-Plasticity/Creep Analysis Methods 

6.1. Introduction 

In the preceding chapters, an investigation into the behaviour of the near crack tip 

fields, in cracked structures subjected to cyclic creep loading conditions, was prescribed. The 

proposed direction involved the identification of the best-matched HRR field, as a means of 

representing the conditions at the crack tip. This led to the evaluation of the creep fracture 

mechanics parameter, C% which in essence, is a definition of the fracture criterion of the 

whole structure. The good correlations between these magnitudes of C* and those computed 

using t he r eference s tress m ethod [ 1,19], p rovided t he confidence t hat su ch an approach is 

sound and valid. 

In conducting the previous analyses, the utilization of the rapid cycle creep solutions 

[69,70] meant the adoption of a material model based upon the elastic-creep behaviour, i. e. the 

loading histories always lie within the creep range. This is, perhaps, one of the most extreme 

conditions a structure can be subjected to. However, in many processes of engineering design 

and life assessment of structures subjected to cyclic loading histories, the occurrence of an 

elastic-plastic-creep material behaviour is commonly observed. This is witnessed in many 

industrial applications such as power plants; where typical cycles involve large stresses due to 

shutdown and start up, with inten-nittent periods when creep occurs at constant load and 

temperature. This implies the possibility of the loading histories operating within and outside 

the creep range. In this circumstance, the correct identification of the equivalent fracture 
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mechanics parameter, J, requires an equally accurate examination of the behaviour of the 

crack tip fields under such loading conditions. 

The importance of undertaking such investigations was also outlined in the joint report 

by EPRI/CRIEPI/NE [33], for the liquid metal fast breeder reactor program. This report 

contains a study of fracture mechanics criteria within the UK, USA and Japan, and included 

both theoretical analyses and experimental data. The collaboration concluded that current flaw 

assessment procedures such as R5 [1], which is based upon the utilization of the small-scale 

yielding [34] and the reference stress formulations [1,191, is safe. Nonetheless, there are 

several remaining issues that were identified. One of those, examined in this chapter, is the 

treatment of the combined effects of variable loads and temperatures in cracked structures. 

This is, particularly, important in the current climate of operating structures at elevated 

temperatures. The conduction of such examinations, therefore, requires structural integrity 

methodologies, capable of examining the behaviour of these mechanically and thermally 

induced crack tip fields. This would then lead to the evaluation of AJ, the equivalent fracture 

mechanics parameter representing the crack tip conditions under variable loading conditions, 

to be identified. 

In this chapter, an alternative approach for investigating the behaviour of cracked 

structures under reverse-plasticity and reverse-plasticity/creep loading conditions is described. 

Using the HRR field criterion [34,75,76] as the foundation, the examination of the near crack 

tip fields is then conducted using a methodology based upon the LMM, numerically 

implemented in a two-stage decoupled analysis process [9]. The behaviour of the near crack 

tip fields, under the two loading conditions, were then individually analysed, for cracked 
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structures under varying magnitudes of loads and temperatures. These analyses enabled 

relationships between the near crack tip fields and the cyclic loading histories to be identified, 

ultimately enabling judgement on the appropriateness of current design and life assessment 

procedures [1] to be assessed. (Note: The bulk of the results discussed, in this chapter, are 

concentrated on the behaviour of the crack tip fields under reverse-plasticity conditions. 

Although the numerical procedures associated with the reverse-plasticity/creep conditions are 

presented, only initial results from these investigations are included. ) 

6.2. Numerical Procedures 

The numerical procedures utilized in this analysis are an extension of the methodology 

described in Chapter 3, for the identification of ratchet limits in excess of shakedown. Then, 

the applied loading histories were always assumed to lie below the creep range, with the 

amplitude of the plastic strain providing information concerning low cycle fatigue and the 

additional constant load indicating its proximity to a ratchet limit. Associated closely with 

such analysis is the varying plastic strain magnitude, AeP, and the varying residual stress 

field, Ap P. This purely reverse-plasticity mechanism is shown schematically in Figure 6.1 (a). 

If the loading histories were now allowed to exceed the creep range in some instances, 

a reverse-plasticity/creep mechanism may be observed in the body instead of a purely reverse- 

plasticity mechanism. In analysing such problems, a two-stage numerical procedure has been 

adopted [9]. The first stage involves the application of the above-mentioned conventional 

reverse-plasticity methodology. This is then followed by the second stage, whereby a reverse- 

plasticity/creep analysis is performed, with the initial elastic stress field, Ao^7, augmented by 
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the varying residual stress field, Ap P, associated with the reverse-plasticity mechanism. The 

evaluation of the accumulated creep strain, Se', and the corresponding residual stress, Ap', 

due to creep relaxation dependent upon the creep dwell time, in this stage of the procedure, 

enabled the total strain over the cycle, Ae'P, to be determined. This is the sum of the varying 

plastic strain, A-cl, and the accumulated creep strain, Acc, as shown schematically in Figure 

6.1(b). The application of these procedures have been described for a three-dimensional tube 

plate problem [87], discussed in the design and life assessment procedures of R5 [1]. Their 

n'k ability to compute, among others, the elastic follow-up factor, Z, and the total damage due to 

fatigue and creep within finite time, is potentially useful in the ensuing investigations of 

cracked bodies under cyclic loading histories. 

In the following, the numerical procedures for the reverse-plasticity and the reverse- 
i 

plasticity/creep solution methods are individually discussed. A problem with only two distinct 

extremes in the loading conditions is considered, i. e. the elastic stress solution varies 

A 

proportionally between two extreme values, u^ij (tj) and Uý in the stress space. As ^tj (0ý 

before, the utilization of the von-Mises yield condition is still assumed. 

6.2.1. Numerical procedure for the reverse-plasticitv solution method 

For t he r everse-plasticity solution m ethod, t he numerical p rocedure employed ist he 

one previously described in Section 3.4.2 of this thesis. Essentially, the methodology involves 

identifying, for a prescribed loading history, a varying residual stress field, ApP, which keeps 

the elastic stress history, Au^ , within the yield condition. Implemented within an iterative 
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process using the finite element analysis code, ABAQUS, the repeated application of the 

algorithms presented [6,7], enabled the identification of the associated plastic strain range, 

A, c P. At the absolute minimum of the functional, a converged solution is yielded, with the 

magnitudes of Ap P and A-c P stored in files to be accessed later in subsequent (second stage) 

analysis. 

6.2.2. Numerical procedure for the reverse-plasticity/creep solution method 

For the reverse-plasticity/creep solution method, the numerical procedures are, by and 

large, identical to those described above, with the exception of some modifications. These are 

presented below for the case whereby the material creeps at instant t, of the loading history, 

leading to the appearance of the residual stress field, Ap', associated with stress relaxation 

and the accumulation of creep strain, Ae', over the creep dwell time, At. At the other time 

instant t2 , no creep is assumed to occur but a reverse-plasticity mechanism still appears, with 

the total strain over the cycle equals to zero. In this circumstance, the condition of equations 

(3.20) & (3.22) yields, 

1, t, 

f dt = A,,, c & f&'dt = -Aec i-lic y 
0 tj 

and 

I t, f dt = Ap,, c & fbcdt = -Ap,, c (6.2) 
Iblic , li 

0 ti 

190 



Thus, by taking into consideration A, 6iP , A,,, jc , Apjp and Ap,, c 
, the extremes of the reverse- 

plasticity/creep mechanism are identified, providing sufficient information for the reverse- 

plasticity/creep analysis. 

The same minimisation process described in [6,7] is used. Based upon the linear 

matching method, it requires the solution of a sequence of linear problems. Thus, for an initial 

estimate of the strain increment, Acj = Acij', a class of linear problems for a new estimate, 

Cf -I. A. 6, j = A. 6ij , is then posed, such that the linear coefficient, u, is related by, 

3 
-'-(Ac, i cy + af (At) =2 2p c (6.3) 

where af (At) is the flow stress at the end of a particular creep dwell time. The new 

Cf distribution of the strain increment, Acij , is then defined as the solution to the following 

problem, 

Ae'Tf I=I Apf' + A. 6cf' ii 2, u ii ij 

and 

Aecf' f + Apc 
y 2p' 

(6.5) 

where Aci, Tf and Apijf satisfies the conditions of compatibility and equilibrium respectively, 

with 

Ae'Tf =I Ap f (6.4) Ick 3K 
kk 
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= ^A A67ij aii 
(tl)-Ci)ý 02 ) +AP i)ý 

where ApjjP is the varying residual stress field calculated from the first stage (Section 6.2.1). 

The repeated iterative application of these algorithms produces a sequence of solutions for 

A, 6 ck 

y, converging to the solution that minimises the functional I in equation (3.19). If two 

(6.6) 

such consecutive iterations, k and k+1, are considered, then the relationship in (6.3) yields, 

lu 

07 
Y +cf (At)_ 

(6.7) 
a(AO7 

+A ck 
Y PY 

The application of the above procedures requires an appropriate numerical technique 

for evaluating the flow stress, af (At). This is attempted below, for the power-law creep 

model, leading to the definition of the flow stress to be given by, 

n 

07f(At) = co 
co 

(6.8) 

where cro ý -ýO and n are material data for creep. The equation's dependency upon the creep 

dwell time is apparent. In the circurnstance that At is short enough, then the creep strain rate, 

-ý' (At), can be approximated using, 

(At) ; ztý 
cc 

At 
(6.9) 
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where A. 6' is computed from (6.5). Thus, the substitution of equation (6.9) into (6.8) provides 

the necessary condition for the evaluation of the flow stress within the developed procedure. 

However, in most situations, At is not sufficiently small for the approximation of (6.9) 

to be suitable. Their continued utilization would induce significant numerical errors in the 

computatiOn oft he creep s train r ate, ý' (At) 
.Ins olving this p roblem, C hen &P onter [ 87] 

derived a solution scheme, whereby equation (6.9) is amended by an improved theoretical 

formula. It is based upon the assumption that ý' (At) is strictly equal to, 

iý' (At) = 
Ae f 

At 
(6.10) 

At this point, the calculation of the accumulated creep strain, Ae', over the creep dwell time, 

At, is defined by, 

ZApc 
Acc -- E 

(6.11) 

where f= 3E 
and the elastic follow-up factor, Z, is assumed to remain constant during 

2(l + v) 

the relaxation over the creep dwell time. On the basis of such arguments, an improved 

theoretical fonnula, capable of representing the creep strain rate was developed, 

A. 6' Aec (uf YI11 (6.12) c (At) = At 
f (af , Apc, n) = At Ap c n- I (07f )n-I (Uf + Apc) n-I 
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In their applications [87], it was observed that equation (6.12) is an improved formula for 

estimating the creep strain rate, -ý'(At), at any creep dwell time, At. This acted as a 

replacement to equation (6.9), thus, justifying its exploitation in this thesis. 

6.3. Reverse-plasticity Solutions 

The purpose of this examination is to develop an understanding into the behaviour of 

cracked structures under cyclic loading histories, using the reverse-plasticity solution method 

described in Section 6.2.1. This involves an in-depth investigation into the near crack tip fields 

in the presence of variable loads, variable temperatures and their combinations. Although 

much work had been undertaken in this field [31,32], the emphases in most of these studies 

were only concerned with the performance of cracked bodies under variable mechanical loads. 

In the current environment of operating structures at elevated temperatures, however, an 

understanding into the behaviour of the crack tip fields in the presence of both variable loads 

and temperatures is indispensable. This would lead to the definition of the crack tip fracture 

criterion to be identified, which, in essence, is a representation of the safe operation of the 

whole structure. The ability of such analyses would also enable assessments on the 

appropriateness of current R5 [I] procedures, which is still based upon the replacement of 

thermal stresses as equivalent bending moments in the presence of the variable loads, to be 

made. The procedures also recommended, in cracked structures under cyclic hardening 

conditions, the utilization of the small-scale yielding [34] and the reference stress formulations 

[ 1,19]. (Note: The actual fully commented programs, for the ensuing numerical problems, are 

enclosed in the attached CD-) 
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6.3.1. HRR fields 

The ensuing investigations are for the axisymmetric Bree problem [37], simulating the 

loading conditions typically observed in many structural components. As shown in Figure 6.2, 

it consists of a cracked axisymmetric tube of width, w, with circumferential cracks of width, 

a, assumed to occur at the centre of the line of symmetry. This enabled only half of the length 

to be modelled. In the following explorations, as before, the ratios of 
a=0.4 

and 
a=0.04 

WW 

are considered. The tube is also subjected to a varying axial stress, Acy,, and a linear 

temperature gradient arising from a temperature difference of AO, which varies between zero 

and some maximum value. This is denoted by Ac, the maximum varying thermo-elastic 

stress away from the crack, i. e. the value that would occur if the cracks were absent. In 

modelling the finite element problem, the same selective mesh refinement technique, used in 

Chapter 4 (Figure 4.3), is employed, with the exception of a much finer mesh at the crack tip 

this time round. This is done using the six-noded CAX6H triangular meshing elements. 

In conducting such experiments, a postulation capable of describing the deformation 

fields at the crack tip is required. This is necessary, as it would provide a means of 

investigating the variations of the effective strain ranges, at the crack tip, associated 

with the applied stress ranges for the mechanical and thermal loads. Based upon the successful 

satisfaction of the HRR field criterion for the cracked cyclic creep solutions in Chapter 4, the 

same Hutchinson [75] and Rice and Rosengren [76] postulations are adopted here. Their 

findings revealed that in an isotropic, elastic-plastic material, satisfying the power-law 

hardening expression, 
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ac 
y UY 

(6.13) 

the near crack tip strain distributions varies in accordance with, 

f (fij (0» (6.14) 

where, as before, N is the power-law hardening exponent, a, , . 6,, a are material constants 

and r and 0 are the radial and angular distances away from the crack tip respectively. Thus, 

the utilization of equation (6.14) allows the possibility of identifying an equivalent HRR field, 

for the perfectly plastic condition of N= oo considered here. 

The behaviour of the mechanically and thermally induced crack tip f ields w as then 

examined at all locations away from the crack tip. In addition to cases where Aup and Au, 

each acted alone, the behaviour of the crack tip fields, for three differing combinations of 

are (A up 5Aa, were also investigated. A selection of plots of log -(Ac P) against log r 
W 

shown in Figures 6.3 and 6.4, for increasing individual magnitudes of Aa, and Aa, - It was 

found that the satisfaction of the HRR field criterion was achieved at all locations, except in 

the first few elements, with the best-matched HRR field, as before, still occurring at 0= 700 

Similar investigations into the behaviour of the crack tip fields, under the combined actions of 

(A up ýAa, 
), were also conducted. Although not included in this thesis, the satisfaction of the 

HRR field condition was still observed, with the best-matched HRR field still identified at the 
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aforementioned location. These characteristic behaviours were observed in both crack 

solutions. 

In its identification, it is important to note that the best-matched HRR field, 

encompassed by six meshing elements in Figures 6.3 and 6.4, was identified within the plastic 

zone size, r,. At low variable loads, it was observed that the sizes of the plastic zones were 

relatively close to the best-matched HRR field. However, as the loads were increased, the 

enlargement of the plastic zone sizes, in comparison with the location of the best-matched 

HRR field, which is very near the crack tip, indicates the appropriateness of choosing this field 

as a representation of the crack tip behaviour. 

In the identification of the condition at the crack tip, the approach employed in this 

thesis involves the utilization of a sampling point within the so-called best-matched HRR 

field-satisfying gradient. For such a proposition to work, it was found that the employment of 

a fine f inite element mesh att he c rack tip isr equired. T his is to e nsure t hat t he i dentified 

sampling point always lie within the plastic zone size, r,, irrespective of the loading 

magnitudes, i. e. high or low loads. This is particularly important in the analysis into the 

behaviour of cracked structures at very low loads. In such situations, care must be taken to 

ensure that the chosen sampling point is still being identified within the plastic zone size. 

Therefore, as a precaution or warning to future researchers using this approach, the issue 

regarding the mesh fineness needs to be carefully deliberated before any numerical analysis is 

conducted. Else, the results obtained for very low loads would be unreliable, erroneous and 

inaccurate. 
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6.3.2. Elastic-vlastic fracture mechanics Parameter 

In the field of fracture mechanics for structures subjected to monotonic and constant 

loadings, different quantities have been derived in defining the crack tip fracture criterion. in 

linear elastic fracture mechanics, the stress intensity factor, K, is the term normally used to 

describe the crack tip fields, while the equivalent in creep fracture mechanics is the parameter, 

In elastic-plastic fracture mechanics, the corresponding parameter is the integral, J. As 

discussed in Chapter 4, this tenn was proposed by Rice [34], who obtained the relationship 

between J and the crack tip fields, for materials satisfying the power-law hardening 

expression of (6.13), from the expression, 

N 
N+l 

(2ý(O, N)) (6.15) 
IN Uy 6yr 

where N, uy 9 ey are material constants, with IN and -6 (W (0, N)) being the dimensionless 

constant and functions of 0 and N respectively, obtained from tables evaluated by Shih [82]. 

This allowed the magnitudes of J to be evaluated, by simply substituting the values of 

at a sampling point within the best-matched HRR field, into equation (6.15). 

However, in the present investigations, it is the behaviour of cracked structures under 

variable, instead of monotonic, loading conditions, which were being investigated. This called 

for an alternative fonnulation capable of identifying AJ, the J equivalence in variable loads. 

in closing this PPý Rice et al [88] developed an argument, based upon the corresponding 

power-law hardening expression, 
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aAs ii _AU (6.16) 

whereby he ascertained that AJ is analogous to J. This provided the necessary justification 

for the continued utilization of equation (6-15) in variable loading conditions, enabling AJ to 

be evaluated from the following comparable expression, 

N 

, ý6 (A, 6, ýý Ae 
AJ N+l 

e(W(O, N)) (6.17) iy INA ay A. 6y r 

Thus, using the numerical values of c_(A6jj ), at a sampling point within the best-matched 

HRR field, enabled the magnitudes of AJ to be evaluated, at the various combinations of 

variable loading conditions. It is important to note the values of A. 1, evaluated in equation 

(6.17), was identified purely from the plastic strains, i. e. the effects of elastic strains is totally 

ignored in the computations. This conjecture holds true throughout the investigations 

conducted in this chapter. 

At this juncture, if an objective magnitude of AJ, corresponding to a particular 

magnitude of Aup is chosen, then loading conditions associated with Aa, and (Aup, Au, ) 

yielding this identical AJ, could then be identified. If this is then repeated for other 

magnitudes of AJ, corresponding to other magnitudes of Aup, plots of contours of constant 

AJ are then obtained. These are shown in Figure 6.5, for the ratios of 
a=0.4 and 

a=0.04. 
WW 
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, 
6.3.3. Explanation of results 

For the plots of contours of constant A. 1 , presented in Figure 6.5, to be useful, 

explanations into the observed phenomenon were required. Various attempts were made in 

this respect, with the common behaviour observed along these contours being the identical 

plastic zone sizes, rp. The best possible explanation was, however, achieved by classifying the 

plots into two distinct regions, represented by Region Al and Region A2 respectively. In the 

following, the behaviour of these solutions, within these individual regions, is discussed; in 

relation to known properties of AJ within the available literature as well as for comparisons 

with the assumptions used within the current design and life assessment procedures of R5 [1]. 

In verifying the values of AJ obtained, step-by-step inelastic analysis calculations 

were performed. In conducting such analysis, it must be ensured that the solution reaches the 

steady cyclic state before the values of AJ were computed. Past investigations have revealed 

that the conduction of such solutions requires relatively long analysis times. However, a 

reasonable approximation to such solutions can be achieved by performing a monotonic 

loading calculation, but with a, replaced with 2a,. This was examined by Chen at al [7] 

who discovered that in an uncracked body subjected to variable loading conditions, the 

variations between such monotonic loading solution with an equivalent cyclic solution, 

measured after a reasonable number of loading cycles, is relatively small. Using such an 

assumption, the step-by-step analysis values of AJ were then identified for the ratios of 

a=0.4 
and 

a=0.04 under both variable loads and temperatures. 
ww 
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Parts of these solutions are shown in Figure 6.6, for the case where Aup are acting 

alone, in comparison with the previously generated LMM solutions. The plots clearly indicate 

that irrespective of the crack sizes considered, the two sets of AJ values lies within range of 

each other, i. e. the variations follows the same "shape". This provided the confidence on the 

magnitudes of AJ generated using the LMM-based methodology as well as validating the 

approach of identifying AJ using the HRR field criterion. The consistency of the results 

obtained was further evident in Figure 6.7; the corresponding plots for Au,. Similar 

comparable behaviour between the two solutions was still observed in these plots. With regard 

to the differences observed between the two AJ solutions in certain loading conditions, the 

reasons behind such behaviour were not investigated here. This could be due to the differences 

in AJ solutions between the full step-by-step cyclic solution and the solutions obtained using 

the aforementioned monotonic assumptions. 

At this juncture, an attempt was made in describing the observed behaviour with 

known available solutions. For low variable applied loads, such as those within Region Al 

the current design and life assessment procedures of R5 [1] employ the small-scale yielding 

formulation [34]. For the cracked axisymmetric problem considered in the analysis, this is 

generally given by, 

I_V2 

AJ = AK2 
E 

with AK = 
AKAcrp + LýXAaj 

(6.18) 
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where AKA, 
p 

and AK,,,, are the values of the stress intensity factors associated with the 

individual magnitudes of Aup and Au, respectively. In this thesis, the values of the stress 

intensity factors were evaluated from the computed linear elastic stress solutions, identified at 

a sampling point within the best-matched HRR field. 

The argument behind the utilization of equation (6.18) is based upon the notion that in 

elastic materials, stresses tend to infinity as the crack tip is approached, 

uij (r, 0) =K fij (0) Vii (6.19) 

i. e. as r --> 0, cij (r, 0) --> oo. However, in the present investigations, whereby the behaviour 

of cracked bodies satisfying the elastic-plastic material behaviour was examined, yielding at 

the crack tip occurs to reduce these high stresses. In the case of small-scale yielding, it is 

assumed that plastic deformation is contained within a small plastic zone around the crack tip. 

In such situations, the theory [34] states that it is still possible to characterize the surrounding 

elastic region using the linear elastic stress fields of (6.19), provided the values of the stress 

intensity factors, AK, in equation (6.18), are increased to AK'. This is necessary to balance 

the reduced stresses in the plastic zones with the higher elastic stresses away from the crack 

tip. 

In this respect, an approximate estimation of AK' was provided by Irwin's theorem 

[3 1 ]. He argued that the occurrence of plasticity at the crack tip causes the crack to behave as 

if it was longer than its actual size, leading to larger displacements and lower material stiffness 
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than the purely elastic behaviour. In other words, the body behaves as if it contained a crack of 

somewhat larger size, defined by an a eff 9where a eff= (a+ r, ) with a and iý being the crack 

and plastic zone sizes respectively, identified from the numerical analysis solutions. In taking 

this into consideration, Irwin introduced correctional factors [32], designed to estimate the 

stress intensity factor, AK'. This leads to equation (6.18) yielding the following comparable 

equation, 

Aj= 
I_V2 

AK'2 

E 

with 6x 1 =, AKAap+, AKAa, 

(6.20) 

This enabled the corrected small-scale yielding magnitudes of AJ to be computed from 

equation (6.20), thus, allowing these values to be compared with the LMM solutions. 

The results of these comparisons are shown in Figures 6.6 and 6.7, for loading 

conditions corresponding to individual magnitudes of mechanical and thermal loads 

respectively. The plots clearly indicate that equation (6.20) underestimates the values of AJ - 

This holds true irrespective of the crack sizes and loading conditions considered. This 

evidently shows the non-conservative nature of the small-scale yielding formulation, often 

utilized within the current design and life assessment procedure of R5 [I]. 

If the loading conditions were increased even ftniher, then the structure is now 

operating in Region A2. This region is best described by the breaking down of the small-scale 

yielding of equation (6.20). For the perfectly plastic condition, a limit load or an equivalent 
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ratchet limit is approached. This implies that the sizes of the plastic zones are no longer 

restrained by the surrounding elastic stress fields. The continued operation of the loading 

conditions within this region, would thus, ultimately lead to structural failure either due to 

plastic collapse or the unlimited accumulation of plastic strains. 

At t his p oint, ana Itemative w ay of d escribing t he b ehaviour o bserved int hese t wo 

regions is presented. This is done using the Failure Assessment Diagram (FAD), employed 

within the current R6 procedures [89], in assessing the fitness of cracks in a material. 

Essentially, the diagram requires the evaluation of two parameters, namely AL, and AK, 

identified from, 

ALr = 
AP (6.21) 
APL 

and 

Aj 
AKr =- AJe 

(6.22) 

where Aje are the values of A. 1 evaluated from equation (6.20) and APL is the limit load. 

Thus, by substituting the relevant quantities, used in the numerical calculations, into equations 

(6.2 1) and (6.22), enabled the failure assessment curves associated with both crack sizes to be 

identified. 

Figure 6.8 shows the failure assessment curves corresponding to the two crack sizes 

, ax 

considered, obtained from the LMM solutions. A limit to the value of AL, denoted by ALr , 
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is also included in the diagram, to ensure that plastic collapse is avoided. In both diagrams, the 

non-conservativeness of the corrected small-scale yielding formulation is clearly apparent. It is 

also observed that the good coffelation between the small-scale yielding and the LMM 

solutions is true for only low loads. Beyond which equation (6.20) breaks down. Furthennore, 

in comparison with the LMM solutions, the non-conservativeness of the current R6 procedures 

[89] FAD is also observed in both plots. This is particularly surprising as the results indicate 

the current procedures are unsafe. This could be due to the correlation between the small-scale 

yielding and the LMM solutions holding true for only low loads. 

In its application, the utilization of the FAD involves identifying the loading point in 

the diagrams. If this point, represented by (AL * AK *) in Figure 6.8, lies within this curve, rr 

then fracture failure is avoided. On the other hand, if the loading point lies outside these 

curves, then the fracture criterion of equation (6.22) is exceeded and failure would occur. 

Another advantage of this diagram is that the position of this point relative to the failure 

assessment curves would provide an instant and visual appraisal of the margin to fracture. 

Compare LMM with FAD used in practise. 

6.3.4. Further analysis 

So far, an examination into the behaviour of cracked structures, in the presence of both 

variable mechanical and thermal loads, was prescribed. The approach requires the utilization 

of the effective strain ranges, c(Acjpj), at the best-matched HRR field, as a means of 
y 

evaluating the elastic-plastic fracture parameter. This enabled the subsequent identification of 

contours of constant AJ, with the observed phenomenon described by two distinct types of 
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behaviour occurring within two distinct regions. The encouraging results obtained, for the 

perfectly plastic condition, Provided the confidence in pursuing a sirnilar investigation for the 

cyclic hardening model. This involves the employment of an appropriate model, within the 

numerical procedures described in Section 6.2.1. In the ensuing analyses, the following model 

is adopted, whereby the total strain range, Aeijp , is now the sum of the initial elastic and cyclic 

plastic strains respectively, where, 

A. 6 
P= 

Ae' + Ae pp 
ii ii ii 

with ACe =I Au e' =II kk kk 9 Acii - Auij 
3K 2, u 

and Ac, ý7 F(Au VN3 

Aujj 
A(7 N2 F(Au 0 

(6.23) 

The contributions of these individual strains towards the total strain range is, thus, greatly 

dependent upon the magnitudes of the applied loading conditions, Au, . In the numerical 

procedures, the material constants employed are extracted from the cyclic hardening plots of 

Figure 3.6. 

In undertaking these additional investigations, the parallel fulfilment of the HRR field 

criterion of (6.14), needs to be realized, for the different values of N explored. In the 

following analyses, the behaviour of the cracked axisynu-netric Bree problem was examined, 

for cyclic hardening exponents of N=3,5 & 7. These assessments are shown in Figures 6.9 

Pr 
and 6.10, as plots of log 6-(Acij ) against log-, where c-(AcjP ) are now the effective strains 

W 

in (6.23). The satisfactions of the HRR field criterion were still observed, except in the first 
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few elements, with the best-matched HRR field still identified at the previous locations. 

Similar agreements, albeit not presented here, were also achieved, for corresponding Aup and 

Au, induced crack tip fields at N=5 and N=7. Unsurprisingly, these observations, under 

the combined actions of (A up 5Aa, ), still hold true, for both crack sizes and the three cyclic 

hardening exponents considered. 

The demonstration of the HRR fields, for the cyclic hardening model, is an essential 

pre-cursor in the evaluation of the equivalent elastic-plastic fracture parameter, AJ, in this 

circumstance. As before, this required the substitution of c-(AejjP), at a sampling point within 

the best-matched HRR field, into the equivalence of equation (6.17), given by, 

N 

AJ N+l 
0 (2ý(O, N)) (6.24) 

INAcoAcor 

where IN &c-(iý(O, N)) are values obtained from tables evaluated by Shih [64]. This, then, 

enabled the computations of the different magnitudes of AJ ,c orresponding to the loading 

conditions associated with Acp and Act . 
As a consequence, plots of contours of constant 

AJ were then identified, an example of which is shown in Figure 6.11. 

Concurring with the perfectly plastic solutions, these additional contours still show two 

different modes of behaviour. In Region Al, the non-conservativeness of the small-scale 

yielding formulation of (6.20) in comparison with the LMM solutions was still evident. It was 

observed that this behaviour remains true, irrespective of the crack sizes and the cyclic 
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hardening exponents considered. This implies that the continued utilization of small-scale 

yielding formulation, beyond this region, would lead to non-conservative values of Aj. 

If the loads were increased further, then the structure is now operating within Region 

A2. Unlike the earlier solutions for perfect plasticity, whereby the behaviour was described by 

the onset of plastic collapse or ratchetting, the cyclic hardening results clearly indicates 

otherwise. Within these solutions, the employment of the cyclic hardening model, represented 

by equation (6.23), enabled the total strain ranges, Ac,, ý, to be examined, far beyond the limit 

loads and the ratchet limits. In this respect, the investigations revealed that the continued 

intensification of the loading conditions would ultimately cause the elastic strain contributions 

towards A< to be negligible. This would then lead to the structural behaviour to be entirely 

described by the associated plastic strains, Acij', i. e. the second terin in (6.23). In such 

situations, the simplified reference stress method [ 1,19], used in Chapter 5 for estimating 

C(n), may then be adopted, in approximating the magnitudes of A. I(N). These can be 

evaluated from the following expressions, for the loading conditions where Aup is acting 

alone, 

Ajref (N) = 
Aaref 

Aco 

where Aaref = Ap 
07Y 

PL 

N+l 

AcOA, 60R 

AK2 
&R 

or 
2 A ref 

(6.25) 

with the terms having the same meanings as before. 
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Figure 6.12 shows the comparisons between the values of AJ,,,,, (N) and AJ,.,,, (N) 
5 

the numerical and reference stress estimates of AJ(N) respectively. It distinctly shows the 

over-estimation of AJ,,, f (N), in some cases exceeding it by a factor of 5. This is not 

surprising as the simplified reference stress method was formulated with a great deal of 

conservativeness in mind [1,19]. Furthermore, the reproduction of such behaviour in Figure 

6.13, the equivalent plot for short cracks, verified the consistency of the nutnerical solutions 

generated using the prescribed LMM-based methodology. 

At this point, an effective definition of AJ(N), designated by AJ,, ff (N), was 

proposed. This involves fitting equation (6.25) to the numerical values of AJ(N). For such a 

proposition to work, however, it needs to be shown that AJ,,,. (N) varies with N+1. The 

results in Figures 6.12 and 6.13 clearly show that this is the case. The fulfilment of this 

condition, thus, enabled the repositioning of the N- independent location of AJ,.,,, (N) I 

currently occurring at Ac ref=AaOq to the corresponding N-independent location of 

Ai eff 
= AU 

, ff 
(N), which would occur at Aaref 0. In achieving this "transfer", the analyses 

revealed the necessary re-defmition of two quantities in (6.25), whereby, 

eff aef 
A07Y 

PL 
R' B 

AK2 
eff A072 

ref 

(6.26) 

. 
rý -I -- 

where A and B are constants related to the downward shiliting of AJ,, f (N). In the solutions, 

a 
these values were (A = 0.85, B=0.42) and (A = 0.95, B=0.25), for -=0.4 and 

a=0.04 
WW 
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respectively. The substitutions of Ac eff and R' into equation (6.25), in place of Au f and ref eff re 

R', thus, enabled the evaluation of AJ,, ff (N), as shown in Figures 6.12 and 6.13. (Note: It was 

observed that in the two crack problems considered, Au f and R' was reduced by 85 - 95% re 

and 30 - 60% respectively. ) 

In accounting for the effect of thermal loads, however, an equivalent definition for 

Af does not exist. Nonetheless, if it can be shown that AJ,,,,, (N) , under the actions of are 

Au, , still varies with N+1, corresponding N- independent locations of AJff (N) can then 

be identified. Additional plots for individual thermal loads, shown in Figure 6.14, clearly 

prove that this is the case. It is clearly observed that the values of AJ,,,,, (N) , associated with 

these loading conditions, were still found to vary in accordance with the prescribed condition. 

Similar conforming behaviours were also revealed, under the combined actions of 

(Aup 9 Au, ). At this juncture, if the mechanical and thermal loads, associated with these 

N -independent locations, were then identified, the yielding of contours of constant Au eff ref 

would result. These are presented in Figure 6.15, with a comparison with the R5 [1] solution, 

identified using equation (5.5) of Chapter 5, the limit currently used in industry in assessing 

the behaviour of cracked structures. The contours, irrespective of the crack sizes, clearly 

indicates the appropriateness of the R5 limit, as the maximum differences between them were 

less than 10%. The behaviour of these solutions, thus, led to the conclusion that the 

employment of the R5 limit, within this region, is a reasonable representation of the behaviour 

of cracked structures subjected to loading conditions associated with mechanical and thermal 

loads. 
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6.3.5. Concluding remarks 

So far, the investigations have successfully revealed the possibility of describing the 

behaviour of cracked structures, in the presence of both mechanical and thermal loads, in two 

separate regions. In Region Al, the behaviour was described by the small-scale yielding 

formulation of (6.18) and in Region A2, by the corresponding effective reference stress 

equation of (6.26), in conjunction with (6.25). For any judgment on the conservativeness or 

non-conservativeness of these solutions to be passed, however, it needs to be compared with 

solutions from current procedures [I], evaluated from the following expression, 

AiTotal 
= AJ +AJ ref e ref (6.27) 

where Aje and Ajref are values obtained from equations (6.18) and (6.25) respectively. Also 

AjTotal included is an additional solution, ff , where the values of AJref is now replaced by 

AJeff , These solutions are shown in Figure 6.16, for the two crack size problems considered. 

In both plots, the overestimation of the AJ"' solutions, especially in Region A2, is clearly ref 

observed. This is in agreement with the conclusion of the joint report by EPRI/CRIEPLNE 

[33] on the conservativeness of the current solutions procedures [I]. This observation is 

particularly important in the context of the loading conditions applied in industry, which tends 

to operate within Region A2. In this regard, a slightly less conservative representation of the 

a 

solutions can be obtained with the utilization of Ajeff" 
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6.4. Reverse-plasticity/Creep Solutions 

The purpose of this examination is to develop an understanding into the behaviour of 

cracked structures under cyclic loading histories, where creep dwell times exists, using the 

reverse-plasticity/creep solution method described in Section 6.2.2. As beforeq this involves an 

in-depth investigation into the near crack tip fields, in the presence of both variable loads and 

variable temperatures. This would then enable the changes in the stresses and strains to be 

investigated over the dwell time, At. It was optimistic that the solutions generated from these 

analyses would provide the necessary information c oncerning the overall crack tip fracture 

behaviour. (Note: The actual fully commented programs are enclosed in the attached CD. ) 

6.4.1. HRR fields 

As an initial investigation, the behaviour of the cracked Bree problem was considered, 

with only the mechanical loads applied. This allowed the near crack tip fields to be examined 

at all locations away from the crack tip, irrespective of the values of 0- An example is shown 

in Figure 6.17, the plot of log, 6-(A. 6, P) against log r, 
where T(A, -T) is the total effective jW Ii 

strains accumulated over the cycle. It was found that the satisfaction of the HRR field criterion 

was still achieved at all locations, except in the first few elements, with the best-matched HRR 

still observed at 0= 700. An additional behaviour, indicating the solutions dependency upon 

At, was also observed. It was established that for small At, the crack tip fields were found to 

satisfy the HRR field criterion of N= oo - As At was increased, however, the so utions were 

found to satisfy the HRR field criterion of N=3 instead. Physically, the result indicates the 
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effect of creep at high dwell times, causing the plastic crack tip fields to be overcome by the 

dominating creep fields. At low times, however, the domination of the plastic fields was still 

observed at the crack tip. This behaviour was mirrored in the parallel investigation of short 

cracks, as shown in Figure 6.18. Although not included here, similar behaviours was observed 

at much higher loading conditions, in both crack conditions. 

6.4.2. Some observations 

In undertaking the investigations in this thesis, simplified solution procedures were 

adopted. It is no difference in the reverse-plasticity/creep analysis method prescribed here. 

However, in the initial explorations, it was found that the utilization of such procedures in 

creep conditions required much more thought. This was not anticipated and thus not pursued 

any further. 
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Figure 6.1: Schematic diagrams of the reverse-plasticity and 

reverse-plastic'ty/creep solution methods. 
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Figure 6.2: The model of the cracked axisymmetric Bree problem considered 
in the reverse-plasticity and reverse-plasticity/creep analyses. 
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Chapter 7: Conclusions 

1. General Conclusions 

The aims of this thesis were the development of computational procedures, capable of 

sessing the structural integrity and lifetime of cracked bodies, subjected to complex cyclic 

stories of loads and temperatures. This was mainly due to concerns raised on the capability 

I present guidelines, largely based upon defect-free structures, taking into account the effects 

. cracks. The importance of these techniques is even more vital in the current econornically 

iven environment, whereby structures are operating at much higher temperatures than 

-eviously envisaged. Thus, the effectiveness and reliability of these procedures in assessing 

e safe operation of structures with such potential defects, ultimately enhances its 

)plicability within current design and life assessment procedures, such as those of R5 [I ]. 

The foundation of the computational procedures, advocated in this thesis, is the Linear 

[atching Method (LMM). It is closely related to them ethods of elastic compensation and 

loss r-node, used in design calculations for a number of years. It basically involves defining 

sequence of linear problems, where the linear coefficients are chosen so that they match the 

Ad condition in plasticity or the flow equation in creep. The developed iterative numerical 

ýocedures would then generate sequences of upper bounds, converging monotonically to the 

ast upper bound loads. Its implementation within the commercially available finite element 

)ftware, ABAQUS, as well as the existence of convergence proofs, delivering solutions 

ithin finite iterationsý makes it the ideal choice. 
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The applications of the methodology, as an iterative upper limit analysis method, were 

; cussed in Chapter 2. For the problems of cracked structures subjected to purely mechanical 

ads, two different implementation procedures for identifying limit loads were examined. 

rie involves operating the load directly on the body, while the other requires the application 

'the loads through external linear elastic stress solutions. Numerically, the analyses revealed 

most identical solutions, with good converged upper bound limit loads achieved within the 

rst 20 iterations. The solutions were also found to be stable, insensitive to the meshing 

ements considered. The good correlation between the numerical and analytical limit load 

)lutions further justifies the suitability of the adopted methodology. 

In Chapter 3, the extension of the procedures for the identification of shakedown, 

,, verse-plasticity and ratchetting limits were presented. These were then investigated on the 

; ree problem, in plane stress, plane strain and axisymmetric conditions. As before, the LMM- 

ased methodologies were still found to generate a monotonically reducing sequence of 

Dlutions, with good convergence attained at finite iterations. Also observed was the 

isensitivity of the solutions towards cyclic hardening, as both perfectly plastic and complete 

yclic hardening ratchetting limits yielded almost identical results. Further examinations on a 

-al industrial problem justified the appropriateness of these procedures, as good correlations 

iere observed between the numerically generated and currently utilized shakedown limit 

olutions. The non-existence of the ratchetting limits was, however, overcame by the adopted 

umerical procedures, enhancing the prospect of the eventual applications of these 

ornputational. procedures to other structural-related problems. 
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The relationships between the cyclic loading histories and near crack tip fields, under 

clic creep conditions, were then examined in Chapter 4. The calculations demonstrated the 

)ssibility of obtaining crack tip parameters, equivalent to C* (n) , for problems involving 

triable loads and temperatures. This requires the identification of increments of strain over a 

rcle of loading that vary radially from the crack tip, in the same manner as the HRR field. It 

as shown that under constant loading conditions, the adopted rapid cycle solutions for the 

ýo constitutive equations, Norton's law and Bailey-Orowan model, yielded the same steady 

ate creep behaviour. This led to the reproduction of the HRR field gradient in both cases. 

ince the rapid cycle solutions generate an upper bound to the effect of variable temperature, 

[e computed values may be regarded as conservative for finite cycle times. Further 

westigations into the behaviour of the cracked Bree problem, under variations in loading 

)nditions, geometries and material properties, etc, provided the confidence on the capability 

f such procedures. 

In Chapter 5, the calculated values of C*(n), in the previous chapter, were then 

iterpreted in terms of a reference stress, independent of the creep index, n. To obtain a 

)nsistent definition of a reference stress, it was found necessary to replace the computed 

alue of C* (n) at n=1, by an effective value, extrapolated from the values of C* (n) at 

3,5 & 7. With this modification, it was shown to be possible to define reference stress 

alues that are insensitive to n and the constitutive equations. Although, the effective values 

" (n) at n=1 shows some variation between the constitutive equations, these may be 

verestimated by a linear combination of the values for load and temperature, calculated 

, parately. For the problem considered, a part through cracked cylinder subjected to axial load 
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id radial temperature gradient, the values of the effective stress calculated in this way 

. 
dicate that, for thermal loading problems, the reference stress method described in R5 may 

conservative by a factor of about 2. This result also applies if the geometry is reinterpreted 

a plane stress problem. 

Similar investigations into the relationships between the near crack tip fields and the 

ýclic loading histories in plasticity conditions were then conducted in Chapter 6. It was 

; tablished that the utilization of the HRR field criterion is still an appropriate representation 

f the behaviour at the crack tip. This was observed in the mechanically and thermally induced 

-ack tip fields, in both perfect plasticity and an adaptation of the method for cyclic hardening. 

his enabled the equivalent crack tip fracture parameter, AJ, to be evaluated in all conditions, 

ith the observed phenomenon described by two distinct behaviours, strongly influenced by 

ie effect of the stress intensity factors and the reference stress respectively. This enabled 

dgment on the aptness of current design and life assessment procedures to be demonstrated. 

ni nitial e xploration i nto t he b ehaviour oft he near crack t ip f ields, u nder p lasticity-creep 

ýading conditions, was also examined. The solutions revealed the complexity of the analysis 

)nducted, which requires an in-depth understanding into the mechanics of the materials 

volved. Due to the time and resource constraints, these were not pursued any ftirther. 

So far, this thesis has shown the capabilities of utilizing such analysis methods in 

Iving structural related problems associated with plasticity and creep. The ease and 

, xibility in its implementation as well as its stability in analyzing cracked problems, makes 

:ý LMM the appropriate choice as an augmentation or alternative to current solution 

acedures. Although in certain circumstances the analysis times for generating solutions 
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; ing the L MM is much longer than the step-by-step analysis, the versatility of the L MM- 

ised methodology makes the time factor a non-issue. Finally, it is the author's opinion that 

ýe methodology adopted in this thesis is valuable tool in assessing the structural integrity of 

ructures, with the additional advantage of potentially being applied to answer other design 

. id life assessment problems. 

. 2. Remainin2 Issues 

Although successful in addressing the issues raised in Chapter 1, there are still many 

reas, which need to be addressed. One particular area is the effect of thermal transients on the 

ýU ehaviour of the solutions. The variations in the ratchetting limit for the cracked Bree 

roblem, considered in Chapter 3, needs to be investigated before an overall conclusion could 

e reached. Other circumstances which needs to be looked into includes the effect of thermal 

ýocks, moving temperature fronts, non-linear variations in temperature through the thickness, 

(c. The change in the cyclic solutions for multiple instants of time in the cycle, instead of just 

vo, in the present study, is another subject interest. 

Perhaps, the most important area that needs to be focussed on is the repeated 

pplications of the numerical procedures discussed in this thesis for other structural geometries 

ad/or loading conditions. This is necessary as the results from these additional investigations 

, ould then enable general conclusions to be made on whether the phenomenon observed in 

tis thesis is a specific one or witnessed in other cases as well. 
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Appendix A 

The following are the Jacobians, i. e. the matrices containing the relationship betvveen 

the stresses and strains, used in the programs. 

Plane Stress 

Ek 
2)* 

V)l 

Plane Strain 

- V) vv0 
Ekv- V) v0 

+ vXl - 2v)' vV- V) 0 

0 (1 - 2v) 002 

Axisymmetric 

V) vv0 
Ekv- 

V) v0 
IJ1 

ý1-+- vXl - 2v)' vV- V) 0 

000- 2v)j 
L2 

(Al) 

(A2) 

(A3) 
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Appendix B 

Double-edged Crack Plate (Plane Stress) using the LMM (Procedure A) 

The following is the actual programming code used in the analysis. Although presented 
for the plane stress problem satisfying the Von-Mises yield condition, code listings are also 
available for three-dimensional and other two-dimensional situations (plane strain & 

axisymmetric). For each, the bulk of the method is the same except trivial changes made to the 

element type, Jacobian matrix and components of stress/strain tensor, etc. 
C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C User subroutine UMAT allows the material behaviour, [J], of the model to be defined, at each material gauss 
C point for each element. Using the incremental strains supplied by ABAQUS, this subroutine would then 
C compute the stress fields, which would then be added up to obtain the total stress solution. 
C 
C The following standard block, from the user manual, acts as an interface between ABAQUS and UMAT. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

SUBROUTINE UMAT(STRESS, STATEV, DDSDDE, SSE, SPD, SCD, 
I RPL, DDSDDT, DRPLDE, DRPLDT, 
2 STRAN, DSTRAN, TIME, DTIME, TEMP, DTEMP, PREDEF, DPRED, CMNAME, 
3 NDI, NSHR, NTENS, NSTATV, PROPS, NPROPS, COORDS, DROT, PNEWDT, 
4 CELENT, DFGRDO, DFGRD 1, NOEL, NPT, LAYER, KSPT, KSTEP, KINC) 

C 
INCLUDE'ABA_PARAM. INC' 

C 
CHARACTER*8 CMNAME 
DIMENSION STRESS(NTENS), STATEV(NSTATV), 
I DDSDDE(NTENS, NTENS), DDSDDT(NTENS), DRPLDE(NTENS), 
2 STRAN(NTENS), DSTRAN(NTENS), TIME(2), PREDEF(l), DPRED(l), 

3 PROPS(NPROPS), COORDS(3), DROT(3,3), DFGRDO(3,3), DFGRD 1 (3,3) 
C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C The PARAMETER option is used to declare the number of elements (NEL), number of integration points 

C (NUPT), and number of stress and strain tensor components (NCO) used in the analysis. 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

PARAMETER(NEL=30, NUPT=3, NCO=3) 
C 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C The following arrays are declared separately as they are specifically used only in this subroutine. 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

DIMENSION DSTRESS(NCO), YMOD(NEL, NUPT), KMARK(NEL, N-UPT), VMISTRESS(NEL, NUPT) 

SAVE 
C 
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CCCCCCCCCCCCCCCCCCCCCccccccccccccccccccccccccccccccccccccccccccccCCC 
C The COMMON block option is used to make the necessary variables available to other subroutines. cccccccccccccccccccccCCCCCCCCCCCCCCCCCCCCCCccccccccccccccccccccccccc 
C 

COMMON/KSTUFFI/A, B, C, E, S, DW, DF, P 
C= PROPS(2) 

C 

cccccccccccccccccccccccccccccccccccccccccccCCCCCCCCCCCCCCCCCCCCCCccc 

C These files are opened and results written in them as the analysis continues. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

OPEN(UNIT=I 8, FILE='/TEMP/msmhl/dplatepsl. dat') 
OPEN(UNIT= I 7, FILE='/TEMP/msmh2/dplateps2. dat') 
OPEN(UNIT= I 5, FILE='/TEMP/msmh3/dplateps3. dat') 

C 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C As ABAQUS is programmed to access the subroutines at least twice per increment, the array KMARK is used 
C to ensure that any iteration is carried out only once. In the first increment, once an integration point is dealt 
C with, KMARK is set to one. This would then ensure that particular integration point would not be considered 
C until the start of the next iteration. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

IF(KINC. NE. KINI) THEN 
KINI=KINC 
DO 11=1, NEL 

DO Jl=l, NUPT 
KMARK(11, Jl)=O 

END DO 
END DO 

END IF 
C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C The stress increments, DSTRESS, is initialized to zero, ensuring a set of individual elastic solutions in each 
C iteration. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

DO K I= I, NTENS 
DSTRESS(Kl)=O 

END DO 
C 

cccccccccccccccccccccccccccccccccccccccccccCCCCCCCCCCCCCCCCCCCCCCCCC 

C The elastic modulus, YMOD, is initialised to an arbitrary value in the first increment at each material gauss 

C point. In subsequent iterations, it is updated using the relationship given in Equation (2.6). A limit is also set to 

C YMOD to ensure numerical stability. The variables, PROPS(2) is the yield stress and VMISTRESS is the von- 

C Mises effective stress. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

IF(KINC. EQ. 1) YMOD(NOEL, NPT)=I. O 

IF(KINC. EQ. 1) GO TO 100 
IF(KMARK(NOEL, NPT). EQ. 1) GO TO 100 

C 
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YMOD(NOEL, NPT)=(YMOD(NOEL, NPT)*PROPS(2))/VMISTRESS(NOEL, 
NPT) IF (YMOD(NOEL, NPT). GT. I OE+08) THEN 

YMOD(NOEL, NPT)=I. OE+08 
END IF 

c 

100 CONTfNUE 
c 
cccccccccccccccccccccCCCCCCCCCCCCCCCCCCCCCCccccccccccccccccccccccccc 

C Here the Jacobian matrix, DDSDDE, is defined and assembled using the Poisson's ratio, PROPS(l) and C YMOD. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

TERM I. -PROPS(I)**2. 
TERM I YMOD(NOEL, NPT)/TERM 
TERM2 YMOD(NOEL, NPT)*PROPS(I)/TERM 
TERM3 (YMOD(NOEL, NPT)/TERM)*((I. -PROPS(l))/2.0) c 
DO K I= I, NDI 

DDSDDE(KI, Kl)=TERMI 
END DO 
DO KI =2, NDI 

N2=Kl-l 
DO K2=I, N2 

DDSDDE(K2, K I) = TERM2 
DDSDDE(K1, K2) = TERM2 

END DO 
END DO 
DDSDDE(NTENS, NTENS)=TERM3 

C 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C In the following block, the stress increments, DSTRESS, is computed using the Jacoblan, DDSDDE, and the 
C strain increments obtained from ABAQUS, DSTRAN. These are then added up to STRESS, total stress, to 
C trick ABAQUS into "thinking" it is solving a non-linear problem. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

DO K= I, NTENS 
DO F I, NTENS 

DSTRESS(K) = DSTRESS(K)+DDSDDE(K, I)*DSTRAN(l) 
END DO 

END DO 
C 

DO K=1, NTENS 
STRESS(K) = STRESS(K)+DSTRESS(K) 

END DO 
C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C The actual Von-mises effective stress and the associated effective strain is calculated in the following block. 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

HP=(DSTRESS(I)+DSTRESS(2))/3.0 
ST= 1.5 *((DSTRESS(l)-HP)* *2.0+(DSTRESS(2)-HP)* *2.0+(-l *HP)* *2.0 
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I +2.0*(DSTRESS(3)**2.0)) 
VMISTRESS(NOEL, NPT)=SQRT(ST) 

C 
THSTRAN=(-PROPS(I)/-YMOD(NOEL, NPT))*(DSTRESS(I)+DSTRESS(2)) 
X= DSTRAN(I)**2.0+DSTRAN(2)**2.0+THSTRAN**2.0+0.5*DSTRAN(3)**2.0 
X= X*2.0/3.0 
ESTRAN = SQRT(X) 

C 

cccccccccccccccccccccCCCCCCCCCCCCCCCCCCCCCCccccccccccccccccccccccccc 

C The following is the most important thing that comes out of the analysis. The internal so] uti on -dependent state 
C variable, SSE, is assigned to the value of the effective strain multiplied by the yield stress. This will then be 
C utilized in the user subroutine, DLOAD, for the calculation of the upper bound limit loads. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

SSE=ESTRAN*PROPS(2) 
C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C Here, local variables are assigned to STATEVO, where it is stored and accessible via ABAQUS/POST or 
C user subroutine URDFIL. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

STATEV(I) = VMISTRESS(NOEL, NPT) 
STATEV(2) = ESTRAN 
DO K=I, NTENS 

STATEV(K+2) = DSTRESS(K) 
END DO 

C 
KMARK(NOEL, NPT)=l 

c 
120 FORMAT(t ----------------------------------------------- 
130 FORMAT(UMAT --- INCREMENT: ', 13) 

140 FORMAT('YOUNGSMODULUS: ', EI7.10) 

150 FORMAT('HYDROSTATICPRESSURE: ', EI7-10) 

160 FORMAT('VON MISES STRESS: W17-10) 

170 FORMAT('EFFECTIVE STRAIN: ', E 17.10) 

180 FORMAT('STRESS INCREMENTS: % 13) 

190 FORMAT(E17.10) 
200 FORMAT('JACOBIAN: ', 13,13) 

210 FORMAT('STRESS COMP. ', 13) 

220 FORMAT('INCREMENTS OF STRAIN', 13) 

230 FOF-NIAT('STRAINS: ', 13) 
c 

IF(NOEL. EQ. I. AND. NPT. EQ. I)THEN 

WRITE(18,120) 
WRITE(I 8,130)KINC 
WRITE(I 8,140)YMOD(NOEL, NPT) 

WRITE(I 8,150)HP 
WRITE(18,160)VMISTRESS(NOEL, NPT) 

WRITE(I 8,170)ESTRAN 
WRITE(18, *)'JACOBIAN' 
DO I=1, NTENS 
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WRITE(l 8, *) (DDSDDE(I, J), J= 1, NTENS) 
END DO 
WRITE(l 8,200) NTENS 
WRITE(l 8,190) (DSTRESS(I), V 1, NTENS) 
WRITE(I 8,2 10) NTENS 
WRITE(l 8,190) (STRESS(I), 1= 1, NTENS) 
WRITE(l 8,220) NTENS 
WRITE(I 8,190) (DSTRAN(l), 1= 1, NTENS) 
WRITE(l 8,230) NTENS 
WRITE(l 8,190) (STRAN(l), 1= 1, NTENS) 

END IF 
C 

RETURN 
END 

C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C Subroutine DLOAD is used to define a non-unifon-n/uniform distributed load for each element at each load 
C integration point. For the limit load analysis method, however, it is also used to calculate the upper bound limit 
C loads, which is then applied to the model. 
C 
C As before, the following standard block, from the user's manual, acts as an interface between ABAQUS, 
C UMAT and other subroutines. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

SUBROUTWE DLOAD (F, KSTEP, KINC, TIME, NOEL, NPT, LAYER, 
I KSPT, COORDS, JLTYP) 

C 
INCLUDE'ABA_PARAM. INC' 

C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C The PARAMETER option is used to declare the number of elements (NEL), number of integration points 
C (NUPT), and number of stress and strain tensor components (NCO), which is done individually in each 
C subroutine. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

PARA METER(NEL=3 0, NUPT=3, NCO=3) 
C 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C The following arrays are declared separately as they are used only in this subroutine. 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

DIMENSION COORDS(3), TIME(2), KMARK(NEL, NUPT), TF(NEL, N-LJPT) 

SAVE 
C 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C The COMMON block option is used to make the necessary variables available to other subroutines. 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

COMMON/KSTUFFI/A, B, C, E, S, DW, DF 

YSTRESS C 
ENERGY E 
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HSTRESS =S 
KELE=A 
KINT=B 
DWORK=DW 

C 

cccccccccccccccccccccCCCCCCCCCCCCCCCCCCCCCCccccccccccccccccccccccccc 

C As before, the array, KMARK, is used to ensure that any iteration is carried out only once per increment cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

IF(KINC. NE. KINI) THEN 
KINI=KINC 
DO IM, NEL 

DO Jl=l, NUPT 
KMARK(11, Jl)=O 

END DO 
END DO 

END IF 
C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C Here, the incremental displacement, DISPL, is calculated. It is done by using the incremental work done, 
C DWORK, from URDFIL and the calculated total load, TF. In the first increment, however, TF is set to zero. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

IF (TF(NOEL, NPT). EQ. 0) GO TO 5 
IF(KMARK(NOEL, NPT). EQ. 1) GO TO 5 

DISPL=DWORK/TF(NOEL, NPT) 
5 CONTINUE 

C 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C In this block, the upper bound limit load, DF, is calculated using the effective strain integrated over the 
C volume, ENERGY, and the displacement term, DISPL. This is then added to TF to obtain the total load, 
C required to satisfy ABAQUS internal convergence criterion. In the first increment, bowever, this block is 
C ignored and DF & TF is initialised to an arbitrary value. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

IF(KINC. EQ. 1) GO TO 10 
IF(KMARK(NOEL, NPT). EQ. 1) GO TO 20 
DF=ENERGY/DISPL 
TF(NOEL, NPT)=TF(NOEL, NPT)+DF 

C 

cccccccccccccccccccccCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C In the first increment, the initial load applied to the model is defined. This is ignored in subsequent iterations. 

cccccccccccccccccccccccccccccccccccccccccccCCCCCCCCCCCCCCCCCCCCCCCCC 
C 

GO TO 20 
10 DF=-200 

TF(NOEL, NPT)=DF 
20 CONTINUE 

F=TF(NOEL, NPT) 
C 

KMARK(NOEL, NPT)=l 
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c 
30 FORMAT(' ------------------------------------- 
40 FORMAT('DLOAD---INCREMENT 1,13) 
50 FORMAT('TOTAL LOAD: ', E 17.10) 
60 FORMAT('ENERGY: ', EI7.10) 
70 FORMAT(INCREMENTAL WORK DONE: ', EI7.10) 
80 FORNIAT('DISPLACEMENT:, EI7.10) 
90 FORMAT('HIGHEST MISES STRESS: ', E 12.5) 
100 FORMAT('ELEMENT: '16) 
I 10 FORNIAT(INTEGRATION POINT: ', 13) 
240 FORMAT('TIME fNCREMENT: ', E 17.10) 
250 FORMAT('CURRENT VALUE OF TOTAL TIME: ', EI7.10) 
c 

IF(NOEL. EQ. 24. AND. NPT. EQ. I)THEN 
WRITE(I 8,30) 
WRITE(I 8,40)KINC 
WRITE(I 8,50) F 
WRITE(I 8,60)ENERGY 
WRITE(18,70)DWORK 
WFITE(I 8,80)DISPL 
WRITE(I 8,90)HSTRESS 
WRITE(I 8,1 OO)KELE 
WRITE(I 8,240)DTIME 
WRITE(I 8,250)TIME(2) 
END IF 

C 
RETURN 
END 

C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C Subroutine URDFIL is called at the end of each increment and accesses the results file. It is, here, where all the 
C necessary values of variables are extracted, updated and then made available to other subroutines via the 
C common block option. 
C 
C As before, the following standard block, from the user's manual, acts as an interface between ABAQUS, 
C UMAT and DLOAD subroutines. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

SUBROUTINE URDFIQLSTOP, LOVRWRT, KSTEP, KINC) 
INCLUDE'ABA_PARAM. INC' 

C 
DIMENSION ARRAY(513), JRRAY(NPRECD, 513), ENERGIES(20) 

EQUIVALENCE (ARRAY(l), JRRAY(l, 0) 
C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C The COMMON block option is used to make the necessary variables available to other subroutines. 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

COMMON/KSTUFFI/A, B, C, E, S, DW, DF 

SAVE 
C 
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TSTRESS=0.0 
C 

CCCCCCCCCCCCCCCCCCCCCccccccccccccccccccccccCCCCCCCCCCCCCCCCCCCCCCccc 

C The blocks, POSFIL & DBFILE, is specifically used to position URDFIL at the right location in the results C file. Further explanation of its use is available in the ABAQUS/STANDARD manual. cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

CALL POSFIL(KSTEP, KINC, ARRAY, JRCD) 
DO 1000 K= 1,999999 

CALL DBFILE(O, ARRAY, JRCD) 
IF(JRCD. NE. 0) GO TO 10 
KEY=JRRAY(1,2) 

C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C ABAQUS stores the contents of the results file in different keys. The key, 1999, stores all the energy values. 
C The array, ARRAY(3) has the integrated values of the yield stress multiplied by the effective strain in the 
C model. This is stored as the variable, SSE, in UMAT ARRAY(4) stores the value of the work done. From this, 
C the incremental work done is evaluated and used in subroutine DLOAD, to compute the incremental 
C displacement. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

IF(KEY. EQ. 1999) THEN 
EN-ERGY=ARRAY(4) 
WORK=ARRAY(5) 
E=ENERGY 
DWORK=WORK 
DWORK=DWORK-UW 
UW=UW+DWORK 
DW=DWORK 
DO LI=1,20 

ENERGIES(Ll)=ARRAY(LI) 
END DO 

C 
ELSE IF(KEY. EQ. 1) THEN 

JEL=JRRAY(1,3) 
JPNT=JRRAY(1,4) 

C 
ELSE IF(KEY. EQ. 5) THEN 

IF (ARRAY(3). GT. TSTRESS) THEN 
TSTRESS=ARRAY(3) 
KELE=JEL 
KINT=JPNT 

END IF 
END IF 

C 

1000 CONTINUE 
10 CONTINUE 

C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C The convergence criterion, CONV, is specified here. As the termination of the program is controlled by the 

C user subroutine, how and when the analysis stops can be accurately prescribed. 
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CCCCCCCCCCCCCCCCCCCCCcccccccccccccccccc 
c 

CONV=(DFP/DF)-l. 0 
DFP=DF 
IF(CONV. LE. O. 001) THEN 
KTOL=KTOL+l 

ELSE 
KTOL=O 

END IF 
C 

IF(KTOL. EQ. 5) LSTOP=1 
S=TSTRESS 
A=KELE 
B=KINT 
DFUB=- I *DF 
PLB=- I *P 

c 
260 FORÄIAT(q -------------------------------- 1 
270 FORMAT('INCREMENT', 13) 
280 FORMAT('UB : ', E17.10) 
290 FORMAT('LB : ', E17.10) 
300 FORMAT(URDFIL --- INCREMENT', 13) 
310 FORMAT(TSTRESS: ', EI7.10) 
320 FORMAT('ELEMENT: ', 16) 
330 FORMAT(INTEGRATION POINT: ', 13) 
c 

WRITE(I 5,270)KfNC 
WRITE(17,280)DFUB 
WRITE(I 5,290)PLB 
WRITE(I 8,260) 
WRITE(I 8,300)KINC 
WRITE(I 8,3 1 O)TSTRESS 
WRITE(18,320)KELE 
WRITE(18,330)KINT 

C 
RETURN 
END 
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Appendix C 

Crack Plate ( lane Stress) using the LMM (Procedure B 
The following is the actual programming codes used in the analysis. The first program involves evaluating the linear elastic stress solution for a structure under purely mechanical 

load. This is then stored in a file, at each integration point for each element. These are then 
accessed by the second program, whereby the upper bound limit load is computed. To ensure 
that all the elements and integration points are serviced in the same order, the same mesh is 
used in both programs. 

Cl: Linear Elastic Stress Solution 

C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C User subroutine UMAT allows the material behaviour, [J] of the model to be defined, at each material C integration point for each element. Using the incremental strains supplied by ABAQUS, this subroutine would C then compute the stress field, which would then be added up to obtain the total stress solution. 
C 
C The following standard block, from the user manual, acts as an interface between ABAQUS and UMAT. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

SUBROUTfNE UMAT(STRESS, STATEV, DDSDDE, SSE, SPD, SCD, 
I RPL, DDSDDT, DRPLDE, DRPLDT, 
2 STRAN, DSTRAN, TIME, DTIME, TEMP, DTEMP, PREDEF, DPRED, CMNAME, 
3 NDI, NSHR, NTENS, NSTATV, PROPS, NPROPS, COORDS, DROT, PNEWDT, 
4 CELENT, DFGRDO, DFGRD I, NOEL, NPT, LAYER, KSPT, KSTEP, KINC) 

C 
INCLUDE'ABA_PARAM. INC' 

C 
CHARACTER*8 CMNAME 
DIMENSION STRESS(NTENS), STATEV(NSTATV), 
I DDSDDE(NTENS, NTENS), DDSDDT(NTENS), DRPLDE(NTENS), 

2 STRAN(NTENS), DSTRAN(NTENS), TIME(2), PREDEF(l), DPRED(l), 

3 PROPS(NPROPS), COORDS(3), DROT(3,3), DFGRDO(3,3), DFGRD 1 (3,3) 

C 

cccccccccccccccccccccccccccccccccccccccccccCCCCCCCCCCCCCCCCCCCCCCCCC 

C The PARAMETER option is used to declare the number of elements (NEL), number of integration points 

C (NUPT), and number of stress and strain tensor components (NCO) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

PARAMETER(NUEL=30, NUPT=3, NCO--3) 

C 
cccccccccccccccccccccccccccccccccccccccccccCCCCCCCCCCCCCCCCCCCCCCCCC 
C The following arrays are declared separately as they are used only in this subroutine. 

cccccccccccccccccccccccccccccccccccccccccccCCCCCCCCCCCCCCCCCCCcccccc 
C 
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DIMENSION DSTRESS(NCO), KMARK(NUEL, NUPT), IMAPK(NUEL, NUPT) SAVE 
C 
CCCCCCCCCCCCCCCCCCCCCCccccccccccccccccccccccccccccccccccccccccc(-(-(, 

(-( C These files are opened and results written in them as the analysis continues. 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcccccccc, 

(, (- C 
OPEN(I 8, FILE='/TEMP/msmh I /elastic I Ldat') 
OPEN(UNIT=17, FILE='/TEMP/msmh2/elasticl2. dat', STATUS=IUNKNOW'N', 
I ACCESS='DIRECT', FOPM='FORMATTED', RECL=17) 

C 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C As ABAQUS is programmed to access the subroutines at least twice per increment, the array, KMARK, is used C to ensure that any iteration is carried out only once. In the first increment, once an integration point is dealt 
C with, KMARK is set to one. This would then ensure that particular integration point would not be considered 
C until the start of the next iteration. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

IF(KINC. NE. KfNI) THEN 
KfNI=KINC 
DO 11=1, NUEL 

DO Jl=l, NUPT 
KMARK(11, Jl)=O 

END DO 
END DO 

END IF 
C 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C The stress increments, DSTRESS, is set to zero, ensuring a set of individual elastic solutions in each iteration. 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

DO Kl=l, NTENS 
DSTRESS(Kl)=O 

END DO 
C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C Here the Jacobian matrix, DDSDDE, is defined and assembled using the Poisson's ratio, PROPS(I), and the 

C elastic modulus, PROPS(2), defined in the input file. 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

TERM 1.0-PROPS(2)**2 
TERM I PROPS(I)/TERM 
TERM2 PROPS(I)*PROPS(2)/TERM 
TERM3 = PROPS(I)*(I. O-PROPS(2))/2. /TERM 

C 
DO Kl==I, NDI 

DDSDDE(KI, Kl)=TERMI 
END DO 
DO KI=2, NDI 

N2=Kl-l 
DO K2=I, N2 
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DDSDDE(K2, Kl) = TERM2 
DDSDDE(KI, K2) = TERM2 

END DO 
END DO 
DDSDDE(NTENS, NTENS)=TEP, M3 

C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCccccccccccccccccccccccCCC 
C In the following block, the stress increments, DSTRESS, is computed using the Jacobian, DDSDDE, and C the strain increments obtained from ABAQUS, DSTRAN. These are then added up to STRESS, total stress, to C trick ABAQUS into "thinking" it is solving a non-linear problem. 
cccccccccccccccccccccCCCCCCCCCCCCCCCCCCCCCCccccccccccccccccccccccccc 

c 

DO K= I, NDI 
DO I= I, NDI 

DSTRESS(K) = DSTRESS(K)+(DDSDDE(K, I)*DSTRAN(l)) 
END DO 

END DO 
DSTRESS(NTENS) = DDSDDE(NTENS, NTENS)*DSTRAN(NTENS) 

C 
DO K=1, NTENS 

STRESS(K) = STRESS(K)+DSTRESS(K) 
END DO 

C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C Here, the stress values, which are essentially linear elastic stress solutions, is written to the file opened above. 
C The way the stress tensor is recorded is governed by a counting system, which ensures that the correct values 
C are extracted in the second program. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

IF (KMARK(NOEL, NPT). EQ. 0) GO TO 100 
IF (IMARK(NOEL, NPT). EQ. 1) GO TO 100 

DO K=I, NTENS 
KCOUNT=KCOUNT+l 
WRITE(I 7,180, REC=KCOUNT) DSTRESS(K) 
END DO 
IMARK(NOEL, NPT)=l 

100 CONTINUE 
C 

cccccccccccccccccccccccccccccccccccccccccccCCCCCCCCCCCCCCCCCCCCCCCCC 

C The actual Von-mises effective stress and the associated effective strain is calculated in the following block. 

cccccccccccccccccccccccccccccccccccccccccccCCCCCCCCCCCCCCCCCCccccccc 
C 

HP=(DSTRESS(I)+DSTRESS(2))/3.0 
ST=1.5*((DSTRESS(l)-HP)**2.0+(DSTRESS(2)-HP)**2.0+(-I 

*HP)**2.0 

I +2.0*(DSTRESS(3)**2.0)) 
VMISTRESS(NOEL, NPT)==SQRT(ST) 

c 

THSTRAN=(-PROPS(I)/YMOD(NOEL, NPT))*(DSTRESS(I)+DSTRESS(2)) 

X= DSTRAN(I)**2.0+DSTRAN(2)**2.0+THSTRAN**2.0+0.5*DSTRAN(3)**2.0 
X= X*2.0/3.0 
ESTRAN = SQRT(X) 
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C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCccccccccccccccccccccccccc 

C Here, local variables are assigned to STATEVO, where it is stored and could be accessed later by ABAQUS C /POST or subroutine URDFIL. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

C 

DO K= I, NTENS 
STATEV(K)=DSTRESS(K) 

END DO 
STATEV(4)=HP 
STATEV(5)=VMSTP, ESS 

KMARK(NOEL, NPT)=l 
c 
180 FORMAT(EI7.10) 
200 FORMAT(' ------------------------ 
210 FORMAT('ELEMENT', 13, 'POINT', Il) 

IF (NOEL. EQ. NTENS. AND. NPT. EQ. 1) THEN 
WRITE(I 8,200) 
WRITE(I 8,2 1 O)NOEL, NPT 
WRITE(I 8, *)STRESS' 
WRITE(18,180)(DSTRESS(l), I=I, NTENS) 
WRITE(I 8, *)'EFFECTIVE STRESS' 
WRITE(I 8,180)VMSTRESS 

END IF 
C 

RETURN 
END 

C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C Subroutine URDFIL is called at the end of each increment and accesses the results file. It is, here, where all the 
C necessary values of variables are extracted, updated and then made available to other subroutines via the 
C common block option. 

C As before, the following standard block, from the user's manual, acts as an interface between ABAQUS, 
C UMAT and DLOAD subroutines. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

SUBROUTINE URDFIL(LSTOP, LOVRWRT, KSTEP, KINQ 

C 
INCLUDE'ABA_PARAM. INC' 

C 
DIMENSION ARRAY(513), JRRAY(NPRECD, 513), ENERGIES(20) 

EQUIVALENCE (ARRAY(l), JRRAY(l, 0) 

TSTRESS=0.0 
XSTRESS=0.0 
YSTRESS=0.0 

C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C The blocks, POSFIL & DBFILE, is specifically used to position URDFIL at the right location M the results 

C file. Further explanation of its use is available in the ABAQUS/STANDARD manual. 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

CALL POSFIL(KSTEP, KINC, ARRAY, JRCD) 
DO 1000 K=1,999999 

CALL DBFILE(O, ARRAY, JRCD) 
IF(JRCD. NE. 0) GO TO 10 
KEY=JRRAY(1,2) 

C 
IF(KEY. EQ. 1) THEN 

JEL=JRRAY(1,3) 
JPNT=JRRAY(1,4) 

C 
ELSE IF(KEY. EQ. 11) THEN 

IF (ARRAY(3). GT. XSTRESS) THEN 
XSTRESS=ARRAY(3) 
IELE=JEL 
IINT=JPNT 

ELSE IF (ARRAY(4). GT. YSTRESS) THEN 
YSTRESS=ARRAY(4) 
JELE=JEL 
JfNT=JPNT 

END IF 
C 

ELSE IF(KEY. EQ. 12) THEN 
IF (ARRAY(3). GT. TSTRESS) THEN 

TSTRESS=ARRAY(3) 
KELE=JEL 
KINT=JPNT 

END IF 
END IF 

1000 CONTINUE 
10 CONTINUE 

C 
120 FORMAT('ELEMENT: ', 13, 'POINT: ', 13) 
130 FORMAT(' -------------------------------- 

WRITE(I 8, *)URDFIL' 
WRITE(l 8, *)'HIGEST EFFECTIVE STRESS: ' 

WRITE(l 8, *)TSTRESS 
WRITE(I 8, *)'LOCATED AT: ' 

WRITE(l 8,120)KELE, KINT 

WRITE(l 8,130) 
WRITE(l 8, *)'HIGHEST STRESS IN X-DIRECTIOW 

WRITE(18, *)XSTRESS 
WRITE(l 8, *)'LOCATED AT: ' 

WRITE(I 8,120)IELE, IINT 

WRITE(l 8,130) 
WRITE(l 8, *)'HIGHEST STRESS IN Y-DIRECTION: ' 

WRITE(I 8, *)YSTRESS 
WRITE(I 8, *)'LOCATED AT: ' 

WRITE(l 8,120)JELE, JINT 

C 
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RETURN 
END 

C2: Limit Analysis Solution 

C 

cccccccccccccccccccccCCCCCCCCCCCCCCCCCCCCCCccccccccccccccccccccccccc 

C User subroutine UMAT allows the material behaviour, [J] of the model to be defined, at each material C integration point for each element. Using the incremental strains from ABAQUS, this subroutine would then C compute the stress field, which would then be added up to obtain the total stress solution. C 
C The following standard block, from the user manual, acts as an interface between ABAQUS and UMAT. cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

SUBROUTINE UMAT(STRESS, STATEV, DDSDDE, SSE, SPD, SCD, 
I RPL, DDSDDT, DRPLDE, DRPLDT, 
2 STRAN, DSTRAN, TIME, DTIME, TEMP, DTEMP, PREDEF, DPRED, CMNAME, 
3 NDI, NSHR, NTENS, NSTATV, PROPS, NPROPS, COORDS, DROT, PNEWDT, 
4 CELENT, DFGRDO, DFGRD I, NOEL, NPT, LAYER, KSPT, KSTEP, KINC) 

c 
INCLUDE'ABA_PARAM. INC' 

C 
CHARACTER*8 CN4NAME 
DIMENSION STRESS(NTENS), STATEV(NSTATV), 
I DDSDDE(NTENS, NTENS), DDSDDT(NTENS), DRPLDE(NTENS), 
2 STRAN(NTENS), DSTRAN(NTENS), TIME(2), PREDEF(l), DPRED(l), 
3 PROPS(NPROPS), COORDS(3), DROT(3,3), DFGRDO(3,3), DFGRD 1 (3,3) 

C 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C The PARAMETER option is used to declare the number of elements (NEL), number of integration points 
C (NUPT), and number of stress and strain tensor components (NCO) 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

PARAMETER(NIEL=30, NUPT=3, NSO=3, NCO=3) 
C 

cccccccccccccccccccccccccccccccccccccccccccCCCCCCCCCCCCCCCCCCCCCCCCIC 

C The following arrays are declared separately as they are used only in this subroutine. 
cccccccccccccccccccccccccccccccccccccccccccCCCCCCCCCCCCCCCCCCCCCCCCC, 
c 

DIMENSION DSTRESS(NCO), KMARK(NEL, NUPT), ESTRAN(NEL, NUPT, NSO), 

I STRESSIN(NCO), SM(NEL, NUPT, NSO), DEVA(NEL, NUPT, NCO), 

2 DEVB(NEL, NUPT, NCO), DEVC(NEL, NUPT, NCO), DEV(NSO, NCO), RO(NCO), 

3 SSTRAN(NSO, NCO), COMP(NSO, NCO, NCO), ELA(NEL, NUPT, NCO), 

4 ELB(NEL, NUPT, NCO), ELC(NEL, NUPT, NCO), THISTRAN(NSO) 

C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C The COMMON block option is used to make the necessary variables available to other subroutines. 

cccccccccccccccccccccccccccccccccccccccccccCCCCCCCCCCCCCCCCCCccccccc 
C 
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COMMON/KSTUFF/SF, YLAMB 
SAVE 

c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
,c, c 

C These files are opened and results written in them as the analysis continues. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccCCCCCC'('C'(, 
c 

OPEN(UNIT=18, FILE='/TEMP/msmhl/dplatepsl. dat') 
OPEN(UNIT= I 5, FILE='/TEMP/msmh2/dplateps2. dat) 

C 
cccccccccccccccccccccCCCCCCCCCCCCCCCCCCCCCCccccccccccccccccccccccccc 
C Assigning solution-dependent state variables, STATEVO, to local variables to be analysed later. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

STATEV(I)=KfNC 
STATEV(2)=YLAMB 
STATEV(3)=SF 

C 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C As ABAQUS is programmed to access the subroutines at least twice per increment, the array, KMARK, is used 
C to ensure that any iteration is carried out only once. In the first increment, once an integration point is dealt 
C with, KMARK is set to one. This would then ensure that particular integration point would not be considered 
C until the start of the next iteration. 
C 
CA counter, KCOUNTA, is also initialised to ensure that the linear elastic solution is correctly read. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

IF(KINC. NE. KINI) THEN 
KINI=KINC 
KCOUNTA=l 
DO 11=1, NEL 

DO Jl=l, NUPT 
KMARK(11, Jl)=O 

END DO 
END DO 

END IF 
C 

cccccccccccccccccccccccccccccccccccccccccccCCCCCCCCCCCCCCCCCCCCCCccc 

C In the following block, the file storing the linear elastic stress solution is opened and assigned to the variable, 

C ELA(NOEL, NPT, NTENS), which in turn is assigned to the stress history, DEVC(NOEL, NPT, NTENS). 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

IF (KINC. EQ. I. AND. KMARK(NOEL, NPT). EQ. 0) THEN 

OPEN(UNIT= I 7, FILE='/TEMP/msmh2/elasfic I 2. dat', 

I STATUS='OLD', ACCESS='DIR-ECT', FORM='FORMATTEDI, RECL=17) 

DO K= I, NTENS 
READ(I 7,180, REC=KCOUNTA) ELA(NOEL, NPT, K) 

KCOUNTA=KCOUNTA+l 
END DO 
CLOSE(I 7) 

C 
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DO K=I, NTENS 
DEVC(NOEL, NPT, K)=ELA(NOEL, NPT, K) 

END DO 
END IF 

C 

CCCCCCCCCCCCCCCCCCCCCccccccccccccccccccccccccccccccccccccccccccccccc 

CA scaling factor, SF, is introduced. This is to scale down the stress history so as to prevent numerical errors C which would otherwise occur due to stress values becoming too large. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

IF (KMARK(NOEL, NPT). EQ. 1) GO TO 50 
IF (KINC. EQ. 1) GO TO 50 
DO K=I, NTENS 

DEVC(NOEL, NPT, K)=DEVC(NOEL, NPT, K)*SF 
END DO 

C 
50 CONTINUE 

C 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C In this block, the stress history is re-assigned to a two-dimensional array, which makes the data easier to handle 
C during subsequent programming operations. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

DO K=I, NTENS 
DEV(3, K)=DEVC(NOEL, NPT, K) 

END DO 
c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccCC'C' 

C Here, all arrays, stresses and strains, as well as variables used in the program are initialised. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

DO K I= I, NTENS 
DSTRESS(Kl)=O. O 
STRESSIN(Kl)=0-0 

END DO 
SMTOT=0.0 
THSTRAN=0.0 
SSE=0.0 
SPD=0.0 
DO I= I, NSO 

THISTRAN(I)=0-0 
DO K=I, NTENS 

SSTRAN(I, K)=O. O 

END DO 
END DO 

C 

cccccccccccccccccccccccccccccccccccccccccccCCCCCCCCCCCCCCCCCCCCCCCCC 

C In the first increment, the linear moduli is initialised to an arbitrary value. it is important to note that the 

C reciprocal values are used here instead. In subsequent iterations, these recipTOcal linear moduli are updated 

C using the relationship presented. A limit of the magnitude of these values is also set to prevent any nume, 'cal 

C complications. 
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cccccccccccccccccccccccccccccccccccccccccccCCCCCCCCCCCCCCCCCCCCC, 
c-ccc c 

IF (KINC. EQ. 1) THEN 
DO I=l, NSO 

SM(NOEL, NPT, I)=1.0/2.0 
END DO 
GO TO 100 

END IF 
C 

IF (KMARK(NOEL, NPT). EQ. 1) GO TO 100 
DO I= l, NS0 

SM(NOEL, NPT, I)=ESTP, AN(NOEL, NPT, I)/PROPS(l) 
IF (SM(NOEL, NPT, I). LT. I. OE-08) THEN 

SM(NOEL, NPT, I)=I. OE-08 
END IF 

END DO 
C 
100 CONTINUE 

C 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C These linear moduli are then added up to give the average value, SMTOT. This is then followed by the 
C determination of the initial stress, STRESSIN. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

DO I= I, NSO 
SMTOT=SMTOT+SM(NOEL, NPT, I) 

END DO 
C 

DO I= I, NSO 
DO K=I, NTENS 

STRESSIN(K)=STRESSIN(K)+(SM(NOEL, NPT, I)*DEV(I, K)) 
END DO 

END DO 
DO K=I, NTENS 

STRESSIN(K)=STRESSIN(K)/SMTOT 
END DO 

c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C Here the Jacobian matrix, DDSDDE, is defined and assembled using the Poisson's ratio, PROPS(2), and the 
C inverse of the average linear moduli, SMTOT. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

TERM 1.0-PROPS(2)**2 
TERMI I. O/SMTOT/TERM 
TERM2 I. O/SMTOT*PROPS(2)/TERM 
TERM3 TERM I *((I. O-PROPS(2))/2) 

C 
DO K I= I, NDI 

DDSDDE(KI, Kl)=TERMI 
END DO 
DO KI =2, NDI 
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K2=Kl-l 
DO K3=I, K2 

DDSDDE(K3, K I) = TERM2 
DDSDDE(KI, K3) = TERM2 

END DO 
END DO 
DDSDDE(NCO, NCO)=TERM3 

C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C The material behaviour is defined, Le the global stiffness matrix is assembled. This is then followed by the 
C computation of the equilibrium stress field, which in this case is the residual stress field as no loads is applied. 
C But since the initial stresses, STRESSIN, are fed in during the first increment, this effectively results in the 
C application of the load history via linear elastic stresses. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

DO K= I, NDI 
DO F I, NDI 

DSTRESS(K) = DSTRESS(K)+(DDSDDE(K, I)*DSTRAN(l)) 
END DO 

END DO 
DSTRESS(NTENS) = TERM3*DSTRAN(NTENS) 
DO K I= I, NTENS 

DSTRESS(Kl)=DSTRESS(Kl)-STRESSIN(KI) 
END DO 

C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C As this is a plane stress analysis, the through-thickness strain component needs to be calculated separately as it 
C is not provided by ABAQUS in its strain tensor. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

THSTRAN=-PROPS(2)*(DSTRESS(I)+STRESSfN(I)+DSTRESS(2)+STRESSIN(2))*SMTOT 
c 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C In this block, the residual stress field, DSTRESS, is added up and written to STRESS. This is to trick 
C ABAQUS into "thinking" it is solving a non-linear problem incrementally rather than a series of linear 
C solutions. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

DO K= 1, NTENS 
STRESS(K) = STRESS(K)+DSTRESS(K) 

END DO 
C 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C The compliance matrix is created in order to calculate the individual strains at each vertex. This is necessary in 

C the evaluation of the volume integrals that will go towards the calculation of the upper bound limit load. 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

DO I= I, NSO 
COM4 = SM(NOEL, NPT, I) 
COM I=I *COM4 
COM2 = -PROPS(2)*COM4 
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COM3 = 2.0*(I. O+PROPS(2))*COM4 
DO K I= I, NDI 

COMP(I, KI, Kl)=COMI 
END DO 
DO KI =2, NDI 

N2=Kl-l 
DO K2=I, N2 

COMP(I, K2, K I) = COM2 
COMP(I, K1, K2) = COM2 

END DO 
END DO 
COMP(I, NCO, NCO)=COM3 

C 
DO K=I, NDI 

DO K I= I, NDI 
SSTRAN(I, K)=SSTRAN(I, K)+(COMP(I, K, Kl)*(DSTRESS(Kl)+DEV(I, Kl))) 

END DO 
END DO 

SSTRAN(I, NCO)=COMP(I, NCO, NCO)*(DSTRESS(NCO)+DEV(I, NCO)) 
THISTRAN(I)=-PROPS(2)*(DSTRESS(I)+DSTRESS(2)+DEV(1,1)+DEV(1,2))*SM(NOEL, NPT, I) 
END DO 

C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C The actual Von-mises effective strain is calculated in the following block. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

DO I= I, NSO 
X= SSTRAN(1,1)**2+SSTRAN(1,2)**2+THISTRAN(I)**2 
X=X+0.5*SSTRAN(1,3)**2 
X= X*2.0/3.0 
ESTRAN(NOEL, NPT, I) = SQRT(X) 

END DO 
C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C The internal variables, SSE and SPD, are both integrands, integrated over the volume of the body by 
C ABAQUS. These would then be retrieved by the subroutine URDFIL in the calculation of the upper bound 
C limit load. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

SSE = SSE+(PROPS(I)*ESTRAN(NOEL, NPT, I)) 
DO K=I, NTENS 

SPD=SPD+(DEV(I, K)*SSTRAN(I, K)) 
END DO 

END DO 
c 

KMARK(NOEL, NPT)=l 
c 
120 FORMAT(' ----------------------------------------------- 
130 FORMAT('STEP ', I, 'fNCREMENT', I) 
160 FORMAT('ELEMENT', 13, 'INTEGRATION POfNT', 13, KMARK', 13) 
170 FORMAT('COORDINATES:, E12.5) 
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180 FORMAT(E17.10) 
210 FORMAT('JACOBIAN: ', 13,13) 
220 FORMAT('STRESS COMP. ', 13) 
240 FORMAT('STRESS INCREMENTS: % 13) 
260 FORMAT('STRAINS: ', 13) 
270 FORMAT('INCREMENTS OF STRAIN', 13) 
290 FORMAT('NO. OF MAT. COST.: ', 13) 
300 FORMAT(KMARK', 13) 
3 10 FORMAT('INCREMENT', 13) 
320 FORMAT('VO: ', EI7.10) 
330 FORMAT('TSTRESS: ', EI2.5) 
340 FORMAT('ELEMENT ', I, 'INT. POINT', I) 
350 FORMAT('COORDINATES: ', E12.5) 
360 FORMAT('ELEMENT', 13, 'INTEGRATION POINT', 13) 
C 

IF(NOEL. EQ. NEL)THEN 
WRITE(I 8,120) 
WRITE(I 8,130)KSTEP, KINC 
WRITE(I 8,160)NOEL, NPT, KMARK(NOEL, NPT) 
WRITE(18, *)'UMAT' 
WRITE(I 8, *)'ELA' 
WRITE(I 8,180)(ELA(NOEL, NPT, K), K= 1, NTENS) 
WRITE(I 8, *)'ELASTIC SOLUTION A' 
WRITE(I 8,180)(DEVA(NOEL, NPT, K), K= 1, NTENS) 
WRITE(18, *)'DEV(NCO=3, NCO=3)' 
DO I= I, NSO 

WRITE(I 8,180) (DEV(I, K), K=I, NTENS) 
END DO 
WRITE(l 8, *)'SHEAR MODULI' 
WRITE(l 8,180)(SM(NOEL, NPT, I), I= 1, NSO) 
WRITE(I 8, *)'AVERAGE SHEAR MODULUS' 
WRITE(l 8,180)SMTOT 
WRITE(I 8, *)'INITIAL STRESS' 
WRITE(I 8,180)(STRESSIN(K), K= 1, NTENS) 
WRITE(18, *)'JACOBIAN' 
DO I=1, NTENS 

WRITE(I 8, *) (DDSDDE(I, J), J= 1, NTENS) 

END DO 
WRITE(l 8,240) NTENS 
WRITE(l 8,180) (I)STRES S(l), 1= 1, NTENS) 
WRITE(l 8,220) NTENS 
WRITE(l 8,180) (STRESS(l), 1= 1, NTENS) 
WRITE(l 8,270) NTENS 
WRITE(l 8,180) (DSTRAN(l), 1= 1, NTENS) 
WRITE(l 8,260) NTENS 
WRITE(l 8,180) (STRAN(l), 1= 1, NTENS) 
WRITE(l 8, *)'INDIVIDUAL STRAINS' 
DO I=I, NSO 

DO K=I, NTENS 
WRITE(l 8,180) SSTRAN(I, K) 

END DO 
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END DO 
WRITE(18, *)'EFFECTIVE STRAIN: ' 
WRITE(I 8,180)(ESTRAN(NOEL, NPT, K), K= 1, NSO) 
WRITE(l 8, *)'SSE' 
WRITE(l 8,180)SSE 
WRITE(18, *)'SPD' 
WRITE(l 8,180)SPD 

END IF 
C 

RETURN 
END 

C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C Subroutine URDFIL is called at the end of each increment and accesses the results file. It is, here, where all the 
C necessary values of variables are extracted, updated and then made available to other subroutines via the 
C common block option. 
C 
C The following standard block, from the user's manual, acts as an interface between ABAQUS and UMAT. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

SUBROUTINE URDFIL(LSTOP, LOVRWRT, KSTEP, KfNC) 
fNCLUDE'ABA_PARAM. INC' 

C 
DIMENSION ARRAY(513), JRRAY(NPRECD, 513) 
EQUIVALENCE (ARRAY(l), JRRAY(l, 1)) 

C 
COMMON/KSTUFF/SF, YLAMB 
SAVE 

C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C The blocks, POSFIL & DBFILE, is specifically used to position URDFIL at the right location in the results 
C file. Further explanation of its use is available in the ABAQUS/STANDARD manual. 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C 

CALL POSFIL(KSTEP, KfNC, ARRAY, JRCD) 
DO 1000 K= 1,999999 

CALL DBFILE(O, ARRAY, JRCD) 
IF(JRCD. NE. 0) GO TO 10 
KEY=JRRAY(1,2) 
IF(KEY. EQ. 1999) THEN 

SNUM=ARRAY(4) 
SDEN=ARRAY(6) 

END fF 
1000 CONTINUE 
10 CONTINUE 

C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C In the following block, the volume integrands are extracted and the upper bound limit load is calculated. The 

C scaling factor, SF, is then sent back to UMAT, where it effectively scales down the linear elastic stress 
C solutions. A convergence criterion, CONV, is also specified here. As the tennination of the program is 

C controlled by the user subroutine, how and when the analysis stops can be accurately prescribed. 
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cccccccccccccccccccccCCCCCCCCCCCCCCCCCC(ICI(ICCCCCCCCCCCCCCCCCCCCcccccc 
c 

SF=SNUM/SDEN 
CONV=I. O-SF 
IF(CONV. LE. LOE-04) THEN 
KTOL=KTOL+l 

ELSE 
KTOL=O 

END IF 
C 

IF (KTOL. EQ. 5) LSTOP=l 
IF (KINC. EQ. 1) YLAMB=1.0 
YLAMB=YLAMB*SF 

c 
40 FORMAT('INCREMENT', 13) 
50 FORMAT('LAMBDA: ', EI7.10) 
60 FORMAT(' --------------------------- 
70 FORMAT('SF : ', E17.10) 
80 FORMAT('RATIO: ', EI7.10) 
90 FORMAT(KTOL : ', Il) 
100 FORMAT('LSTOP : ', 11) 

c 
WRITE(15,40)KINC 
WRITE(I 5,50) YLAMB 
WRITE(I 8,60) 
WRITE(18, *)'URDFIL' 
WRITE(18, *)'fNCREMENT: ' 
WRITE(18, *)KINC 
WRITE(18, *)'NUMERATOR' 
WRITE(18, *)SN-UM 
WRITE(18, *)'DENOMfNATOR' 
WRITE(I 8, *)SDEN 
WRITE(18,50)YLAMB 
WRITE(7,60) 
WRITE(7,50)YLAMB 
WRITE(7,70)SF 
WRITE(7,80)RATIO 
WRITE(7,90)KTOL 
WRITE(7,100)LSTOP 
END IF 

C 
RETURN 
END 
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