The role of haptoglobin in phagocyte-mediated killing of *Staphylococcus aureus*

A thesis submitted to the Faculty of Medicine and Biological Sciences, University of Leicester, in partial fulfilment of the requirements for the degree of Doctor of Philosophy

Bassim Djebabri

Department of Infection, Immunity and Inflammation

Spring term, 2010

The role of haptoglobin in phagocyte-mediated killing of Staphylococcus aureus

Bassim Djebabri Department of Infection, Immunity and Inflammation University of Leicester Submitted for the degree of Doctor of Philosophy Spring term, 2010

Abstract

Haptoglobin is a positive acute-phase serum protein. It is upregulated during infection and is a valuable marker for many inflammatory-related diseases. Its primary known function is to eliminate haemoglobin from plasma to prevent loss of iron through the kidneys, thereby protecting the kidneys from damage and sequestering iron, a key target for invading bacteria. In this thesis, I show that haptoglobin also interacts with lipoteichoic acid (LTA) of *Staphylococcus aureus*, an important virulence factor. Bacteria are subsequently eliminated by neutrophil-, monocyte- and macrophage-mediated killing.

S. aureus is an extremely common human pathogen associated with various diseases including septic arthritis and toxic-shock syndrome. A current major concern is the emergence of multidrug-resistant strains such as methicillin-resistant S. aureus (MRSA) that cause severe infections in hospitals and in the community. To increase our understanding of the defence mechanisms employed by the host against S. aureus, LTA was used to capture LTA-binding proteins from human serum and these were identified using a proteomics-based strategy. A variety of targets were captured including complement proteins, lipid-transport proteins, coagulation-cascade proteins and acute-phase proteins. Haptoglobin was selected for further study, because its expression is known to be upregulated in response to infection, and it interacts with phagocytic cells to stimulate phagocytosis. ELISA and column chromatography studies confirmed that haptoglobin binds LTA directly as well as S. aureus and suggest that the α -chain of haptoglobin is critical for this interaction.

The role of haptoglobin in promoting the killing of *S. aureus* by neutrophils, monocytes and macrophages was evaluated by comparing *in vitro* bacterial-killing using serum depleted of haptoglobin. For each cell type haptoglobin was found to be a key mediator in phagocyte-mediated bacterial killing. This work highlights an important new role for haptoglobin in immune defence, and explains its upregulation during infection.

I would like to thank:

Foremost my supervisors, *Dr. Russell Wallis* and *Professor Wilhelm Schwaeble* for their invaluable guidance, time, effort, encouragement and support throughout my PhD.

Dr. Yassine Amrani and Dr. Bernard Burke for helping in so many ways

Professor Peter Andrew, Dr. Roger James, Dr. Aras Kadioglu, Dr. Primrose Freestone, Dr. Nick Lynch, Ms Silke Roscher and all members of Infection, Immunity and Inflammation Department

Dr. Andrew Bottrill and all members of Protein Nucleic Acid Laboratory (PNACL)

Professor Jan Ceuppens (University of Leuven, Belgium) and *Professor Heinz Bauman* (Roswell Park Cancer Institution, USA) for providing haptoglobin deficient serum

Dr. Corinna Hermann (Department of Biology, University of Konstanz, Germany) for providing *S. aureus* DSM 20233 and helping with purification of LTA

Miss Katrina Abatis and Student Welfare Service for their outstanding efforts in helping to secure part of my funding throughout difficult and severe financial times

My family for their unlimited support, mentally and financially, throughout my education especially the difficult times, and also for helping with statistical analysis for this thesis

Abstract	i
Acknowledgment	ii
List of contents	iii
Abbreviations	v
Chapter 1 General Introduction	1
1.1 The human immune system	1
1.2 Innate immune responses (innate immunity)	2
1.3 Epithelial barriers	2
1.4 Receptors of the innate immune system	6
1.5 Effector cells of the innate immune system	9
1.6 Neutrophils (polymorphonuclear neutrophils or PMNs)	11
1.7 Monocytes	14
1.8 Macrophages	16
1.9 Opsonization	18
1.10 Dendritic cells	19
1.11 Natural Killer (NK) cells	20
1.12 Mast cells and Basophils	23
1.13 Eosinophils	25
1.14 Recruitment of leukocytes to sites of infection	26
1.15 Phagocytosis	29
1.16 Humoral immune system	34
1.17 The complement system	34
1.18 Pentraxins	38
1.19 Collectins	39
1.20 Ficolins	40
1.21 Cytokines of the innate immune system	42
1.22 Acute-phase reaction and acute-phase proteins	44
1.23 Haptoglobin (HP)	47
1.24 Gram-negative bacteria	52
1.25 Gram-positive bacteria	53
1.26 Staphylococcus aureus	54
1.27 Lipoteichoic acid (LTA)	57

1.28 General aims of this thesis	60
Chapter 2 Identifying human serum LTA-binding proteins	61
2.1 Introduction and Objectives	61
2.2 Materials and Methods	64
2.3 Results	67
2.4 Discussion	85
Chapter 3 Characterizing HP interactions with LTA and S. aureus	95
3.1 Introduction and Objectives	95
3.2 Materials and Methods	96
3.3 Results	99
3.4 Discussion	105
Chapter 4 Evaluating the role of HP in phagocyte-mediated killing of S. aureus	107
4.1 Introduction and Objectives	107
4.2 Materials and Methods	110
4.3 Results	117
4.4 Discussion	135
Chapter 5 General Discussion	138
5.1 The role of HP in innate immunity	138
5.2 Future work	143
Appendix 1 MALDI-TOF-MS analysis of putative LTA-binding proteins	146
Bibliography	176

Abbreviations

1D-PAGE	1 dimensional polyacrylamide gel electrophoresis
2D-PAGE	2 dimensional polyacrylamide gel electrophoresis
АроЕ	Apolipoprotein E
APPs	Acute-phase proteins
APR	Acute-phase reaction
AT III	Antithrombin III
BSA	Bovine serum albumin
C1-Inh	C1-inhibitor
CIfA	Clumping factor A
CHIPS	Chemotaxis inhibitory protein of staphylococci
CPD	Carboxypeptidase D
CRP	C-reactive protein
CRDs	Carbohydrate-recognition domains
CUB	C1r/C1s-Uegf-bone morphogenetic protein
Cul-3	Cullin-3
DIC	Disseminated intravascular coagulation
EDTA	Ethylene diamine tetraacetic acid
ELISA	Enzyme-linked immunosorbent assay
EGF	Epidermal growth factor
G-CSF	Granulocyte colony-stimulating factor
HarA	Staphylococcal haptoglobin receptor A
HB	Haemoglobin
HDL	High-density lipids
HGF	Hepatocyte growth factor
HP	Haptoglobin
HPr	Haptoglobin-related protein
HPV	Human papillomavirus

HTS	Heme transporting system
HuPON1	Human serum paraoxanase
ICAM-1	Intercellular adhesion molecule-1
IEF	Isoelectric focusing
IgG	Immunoglobulin G
IgM	Immunoglobulin M
IL-	Interleukin
IFN-γ	Interferon-gamma
IFNs	Interferons
ITAM	Immunoreceptor tyrosine-based activation motifs
KDa, kd	Kilo Dalton
K _D	Dissociation constant
KIRs	Killer-cell immunoglobulin-like receptors
GAPDH	Glyceraldehydes-3-phosphate dehydrogenase
GIcNAc	N-acetylated glucosamine
LDL	Low density lipoprotein
LPS	Lipopolysaccharides
LRR	Leucine rich-repeats
LTA	Lipoteichoic acid
MALDI-TOF-MS	Matrix assisted laser desorption ionisation time-of-flight mass spectrometry
M2BP	Mac 2 binding protein
MASP	Mannose-binding lectin associated serine protease
MIP-1α	Macrophage inflammatory protein 1 alpha
MMP	Matrix metalloproteinases
Map 19	19kDa – mannose-binding lectin associated protein
MBL	Mannose-binding lectin
NF-KB	Nuclear factor Kappa B
NK cells	Natural killer cells
NOD	Nucleotide-binding oligomerization domain

PAGE	Poly-acrylamide gel electrophoresis
PAMPs	Pathogen-associated molecular patterns
PBS	Phosphate Buffered Saline
PMNs	Polymorphonuclear neutrophils
pkd2	Polyccytin-2
PRRs	Pathogen-recognition receptors
PspC	Pneumococcal surface protein C
pNPP	p-nitrophenyl phosphate
PVDF	Polyvinylidene Fluoride
PVL	Panton-valentine leukocidin
RTK	Receptor tyrosine kinases
SAA	Serum amyloid A
SAP	Serum amyloid P-component
SDS-PAGE	Sodium dodecyl sulphate-polyacrylamide gel electrophoresis
SR	Scavenger receptors
SP-A	Pulmonary-surfactant protein-A
SP-D	Pulmonary-surfactant protein-D
StbA	Staphylococcal transferrin binding protein A
IsdA	Iron-regulated surface determinant protein A
TCRs	T cell antigen receptors
TGF-β	Transforming growth factor β
TLRs	Toll-like receptors
ΤΝΓ-α	Tumor necrosis factor-α
ТРСК	N-tosyl-L-phenylalanyl chloromethyl ketone
TRP	Transient receptor potential
VCAM-1	Vascular cell adhesion molecule-1

Chapter 1 General Introduction

Bacterial infections can cause severe tissue damage and organ malfunction. Multiple synergetic activities between the bacterial cell wall components, such as lipopolysaccharides (LPS), lipoteichoic acids (LTA), peptidoglycans, superantigens and many host-derived agents of the immune system are believed to be associated with such abnormalities (Ginsburg, 1999, Ginsburg, 2001, Ginsburg and Kohen, 1995, Periti, 2000, Glauser, 2000). LTA, a cell wall component of Gram-positive bacteria, triggers immune and inflammatory responses in the mammalian host. Different plasma proteins have been found to interact with LTA to initiate such responses. For example, LTA binds specifically to L-ficolin to initiate the lectin pathway of the complement system (Lynch et al., 2004). In the following studies, novel host plasma proteins capable of interacting with LTA have been identified and studied to further unlock the immune and inflammatory mechanisms initiated by Gram-positive bacteria. Moreover, the role of one of these proteins, haptoglobin, in host defence will be assessed.

1.1 The human immune system

The main function of the immune system is to protect the host against infectious microorganisms in its milieu. Different protective mechanisms are employed to contain and eliminate these pathogens. Distinctive structural features of pathogens are

recognized by the immune system to remove them before excessive damage is caused to host tissues (Chaplin, 2006). Two general responses are employed to detect invading pathogenic structures: **innate and adaptive immune responses.** This project focuses on innate immunity, which is discussed in more detail below.

1.2 Innate immune responses (innate immunity)

Innate immunity is phylogenetically the oldest machinery for protection against invading pathogens, and co-evolved alongside these pathogens to provide protection from infection. The innate machinery is present in the host prior to any microbial encounter and is the first response against microbes to prevent, control and eliminate infection of the host. The innate immune system is composed of epithelial barriers, circulating and tissue cells, and secreted proteins. Properties and functions of such key components of innate immunity are described in the following sections.

1.3 Epithelial barriers

Intact epithelial surfaces form physical barriers between invading pathogens in the external milieu and host tissues. The skin and the mucosal surfaces of the gastrointestinal and respiratory tracts are the main physical barriers between the host and the environment. In each case, they are protected by continuous epithelia that block the entrance of microorganisms. Epithelia and some leukocytes secrete peptides with antimicrobial properties such as defensins and cathelicidins (Bulet et al., 2004, Dommett et al., 2005, Selsted and Ouellette, 2005).

Defensins are cationic peptides with 29 to 34 amino acids and contain three intrachain disulfide bonds. The positions of these bonds characterize three different types of defensins; α , β , and Φ . Defensins are expressed by epithelial cells of mucosal surfaces and some leukocytes such as neutrophils, cytotoxic T lymphocytes and natural killer

(NK) cells. α -Defensins are mainly produced by Paneth cells within the crypts of the small bowel and secreted in response to cholinergic stimulation or when exposed to bacterial antigens. Mitotically active crypt cells that renew the epithelial cell monolayer are subsequently protected from colonization by potentially pathogenic microbes. α -Defensins may also bind to bacteria in the intestinal lumen above the crypt–villus boundary and modify the composition of the enteric microbial flora (Ouellette, 2004). The other defensins are produced by respiratory mucosal cells and in the skin. All defensins are directly toxic to microbes such as bacteria and fungi and activate cells of the inflammatory response to target the invading pathogens, although the mechanism underlying this toxicity is yet to be characterized (Bulet et al., 2004, Dommett et al., 2005, Ouellette, 2004, Selsted and Ouellette, 2005).

Cathelicidins are produced by neutrophils and epithelial cells of mucosal surfaces such as skin, gastrointestinal mucosal cells and respiratory mucosal cells. They are synthesized as two-domain precursor proteins that are proteolytically cleaved into two peptides, each of which possesses antimicrobial activity. The C-terminal fragment known as LL-37 has two leucine residues at its N-terminus that are important for toxicity against a range of pathogens. LL-37 can target and neutralize toxic membrane components of Gram-negative bacteria such as LPS and induce monocyte, neutrophil and mast cell chemotaxis (Gudmundsson and Agerberth, 1999, Agerberth et al., 2000, Ayabe et al., 2000, Niyonsaba et al., 2002). The antimicrobial role of the other cathelicidin precursor fragment is yet to be well defined (Bulet et al., 2004, Dommett et al., 2005).

As microorganisms cross epithelial barriers, they can also be attacked by certain types of lymphocytes such as intraepithelial T lymphocytes and the B-1 subset of B lymphocytes found in barrier epithelia and serosal cavities respectively (Agerberth et al., 2000, Dommett et al., 2005, Nogueira-Martins and Mariano, 2009, Komori et al., 2006). The majority of T and B lymphocytes (T and B cells) have a highly diverse range of specificities for different antigens arising through somatic recombination of germline DNA segments and variation of nucleotide sequences at the junction between the recombined segments. However, these subsets show relatively little diversity, because the same DNA segments are recombined in each clone and there is little or no variation of junctional sequences, and target common molecular features of invading pathogens often called pathogen-associated molecular patterns (PAMPs) on the surface of pathogens. Like other T and B cells, they display antigen receptors on their cell surfaces and have similar effector activities. However, the limited nature of the specificities of their antigen receptors classifies them into a separate group that is more similar to effectors cells of innate immunity than adaptive immunity.

Intraepithelial T lymphocytes are found in mucosal epithelia and in the epidermis of the skin and are characterized by their expression of distinguishable T cell antigen receptors (TCRs). For example, some T cells in epithelia produce an antigen receptor known as the $\gamma\delta$ TCR that targets peptide and non-peptide antigens (Komori et al., 2006). Intraepithelial lymphocytes may also participate in host defence by producing cytokines to activate phagocytes and eliminate infected cells (Komori et al., 2006). B-1 lymphocytes are found in the peritoneal cavity, and similar to all B lymphocytes, carry immunoglobulin molecules as antigen receptors. However, like the intraepithelial T lymphocytes, these are limited with regard to their diversity compared to other classes of B cells. Many produce immunoglobulin M (IgM) antibodies specific for polysaccharide and lipid antigens including phosphorylcholine and LPS found in Gramnegative bacteria (Paciorkowski et al., 2000, Nogueira-Martins and Mariano, 2009).

These antibodies are known as natural antibodies and provide protection against microorganisms that have succeeded in penetrating epithelial barriers (Nogueira-Martins and Mariano, 2009).

Mast cells can also be found under epithelia and in serosal cavities. These cells express cytokines and lipid mediators to stimulate inflammation and eliminate invading pathogens. Figure 1.1 shows a schematic representation of the defence mechanisms mediated by epithelial barriers.

Figure 1.1 Epithelial barriers. Epithelia provide physical barriers that block microbial entry into the host. Antimicrobial chemicals are secreted, and intraepithelial lymphocytes are stimulated to eliminate invading microbes and infected cells. Figure was reproduced from Hooper (2009).

1.4 Receptors of the innate immune system

Components of the innate immune response are encoded by genes in the germline of the host and detect PAMPs. These molecular patterns are not present in the mammalian host so provide a means for distinguishing self from non-self (Janeway and Medzhitov, 2002, Akira et al., 2006). The following figure exemplifies the innate immune response specificity for PAMPs.

Figure 1.2 The specificity of innate immunity. Components of the innate immune response detect common molecular features of invading pathogens known as pathogen-associated molecular patterns (PAMPs). The mannose receptor is an example of an endocytic pathogen-recognition receptor (PRR). The receptor typically recognizes multiple sites on the pathogen. Figure was modified from Brown (2006).

Different pathogens (including viruses, Gram-negative bacteria, Gram-positive bacteria and fungi) display different PAMPs. PAMPs include microbial nucleic acids, such as double-stranded RNA found in replicating viruses or unmethylated CpG DNA sequences found in bacteria, complex lipids and carbohydrates including LPS in Gramnegative bacteria and teichoic acids in Gram-positive bacteria (Akira et al., 2006, Janeway and Medzhitov, 2002, Meylan et al., 2006, Kawai and Akira, 2006). The innate immune machinery identifies microbial products that are fundamental for microbial survival, thereby preventing the invading pathogen from discarding these targets in an attempt to escape recognition by the host. For example, LPS and teichoic acid are essential structural components for bacterial survival, so cannot be discarded or easily modified (Akira et al., 2006). The following table lists some of the molecular components of microbial organisms that are recognized by the innate immune response.

Aolecular component Type of organism			
Nucleic acids			
Double-stranded RNA (dsRNA)	Viruses		
CpG-containing DNA (CpG DNA)	Bacteria, fungi, viruses		
Cell wall components			
Lipopolysaccharide	Gram-negative bacteria		
Lipoteichoic acids	Gram-positive bacteria		
Peptidoglycan	Bacteria		
Flagellin	Gram-negative bacteria		
Lipoproteins	Bacteria		
B-glucans	Bacteria, fungi		
Mannose-, fucose-rich polysaccharides Bacteria, fungi			
Membrane properties			
Exposed acidic phospholipids	Bacteria, fungi (apoptotic cells)		
Biosynthetic components			
N -formylated methionyl peptides	Bacteria		

Table 1.1 Molecules recognized by the innate immune system. Components of the innate immune response detect common molecular features of invading pathogens (PAMPS). Selected examples of these molecular patterns are listed above. Table was modified from Aderem and Ulevitch (2000).

Host receptors called pathogen-recognition receptors (PRRs) are able to bind PAMPs on

invading bacteria to trigger immune responses (Beutler, 2003, Beutler et al., 2003,

Chaplin, 2006). Examples of PRRs include endocytic PRRs such as mannose receptors,

scavenger receptors and N-formyl methionine receptors and signaling PRRs including

toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)

receptors (Figure 1.3).

Figure 1.3 Examples of pathogen recognition receptors (PRRs). Endocytic PRRs include mannose receptors and N-formyl methionine receptors and signalling PRRs include toll-like receptors. Figure was modified from Trinchieri and Sher (2007).

PRRs are expressed by a variety of host cells including neutrophils, macrophages and dendritic cells, discussed in more detail later in this chapter. They are generally located on the cell surface, in endosomal membranes or in the cytoplasm, and target pathogens in these locations (Janeway and Medzhitov, 2002, Akira et al., 2006, Meylan et al., 2006, Kawai and Akira, 2006). Figure 1.4 illustrates some of the PRRs in the innate immune system.

Figure 1.4 Cellular locations of pathogen recognition receptors (PRRs) of the innate immune system. PRRs of the TLR family (TLRs 2, 4 and 5) are expressed on cell surfaces, where they bind PAMPs. Other TLRs (TLRs 3, 7, 8 and 9) are located on endosomal membranes and recognize the nucleic acids of phagocytosed microbes. Cytoplasmic sensors of microbial infections such as, the NLR family of proteins recognize bacterial peptidoglycans and a subset of CARD family proteins binding viral RNA, are found in the cytoplasm of the cell. Figure was modified from Trinchieri and Sher (2007).

1.5 Effector cells of the innate immune system

The most common effector cells of the innate immune system are bone marrow-derived cells that are found in tissues or circulating in blood. The bone marrow is the site generating almost all the circulating blood cells by a process called hematopoiesis. Hematopoiesis is initiated in blood islands of the yolk and the paraaortic mesenchyme and expands to the liver and spleen at later stages (Palis and Yoder, 2001). The following diagram illustrates the development of the different lineages of blood cells by hematopoiesis.

Figure 1.5 Hematopoiesis. Hematopoiesis generates all the different blood cells. These cells are derived from myeloid or lymphoid progenitors. Figure was modified from Hoang (2004).

Effector cells can be myeloid lineage such as neutrophils, monocytes, macrophages and myeloid dendritic cells or lymphocyte lineage such as NK cells. The number of each cell type can vary dramatically in healthy individuals (Orfanakis et al., 1970, Simmons et al., 1974, Weissman and Shizuru, 2008, England and Bain, 1976). Table 1.2 summarizes this variability, showing the typical range of cell numbers in the blood of healthy donors.

Cell Type	Normal Range per microliter
White blood cells (leukocytes)	4000-11,000
Neutrophils	1500-8000
Eosinophils	0-500
Basophils	0-250
Lymphocytes	1000-5000
Monocytes	0-900

Normal blood cell counts

Table 1.2 Normal blood cell counts. The number of cells varies dramatically in blood from a cell type to another.

In the next section, the properties and functions of the most common innate effector cells are discussed.

1.6 Neutrophils (polymorphonuclear neutrophils or PMNs)

PMNs are fundamental for an effective host response to bacteria as demonstrated by the morbidity and mortality rates of individuals carrying reduced numbers of healthy PMNs. For example in one study, the clinical morbidity rate (corresponding to the number of new cases per unit of person-time at risk) caused by infection, increased dramatically in patients with peripheral blood counts of <500 granulocytes/ml compared to control groups. Such patients experienced an average of 43 episodes of severe infection for every 1000 days examined (Bodey et al., 1966). Furthermore, patients with inherited disorders leading to low levels of PMNs tend to experience regular bacterial infections due to the absence of sufficient PMN numbers to eliminate such invading pathogens (Malech and Nauseef, 1997).

PMNs are produced in the bone marrow from a lineage common with mononuclear phagocytes (Figure 1.5). Production is stimulated by granulocyte colony-stimulating

factor (G-CSF) (Layton, 1992). Neutrophil recruitment and activation is one of the first responses to infection. PMNs are the most abundant type of granulocytes, which are leukocytes with granules in their cytoplasm. Figure 1.6 shows the key features of PMNs. The granules of mature neutrophils carry a wide range of anti-bacterial host defence proteins (Borregaard and Cowland, 1997) such as β 2 integrins (Sengelov et al., 1993), the formyl-peptide receptor (Sengelov et al., 1994) and a variety of different proteases (eg, elastase and cathepsins) (Nauseef, 2007). During neutrophil stimulation, the granules fuse with nascent phagosomes. As a result, their toxic contents are released setting off a complex series of dynamic events between components of the host phagosome, the released toxic proteins, and other granule proteins eventually leading to destruction of the ingested bacteria (Nauseef, 2007).

Figure 1.6 Neutrophils. Neutrophils are one of the first lines of defence in the immune response. They carry granules (nuclear lobes) within their cytoplasm. They also contain a Golgi apparatus and lysosomes that participate in the digestion of invading microbes. Microscopic image was acquired using optical microscopy (100X).

1.7 Monocytes

The term "monocyte" describes a particular, homogenous population of cells with the same physiology (Strauss-Ayali et al., 2007). Monocytes count for around 5-10% of human peripheral blood leukocytes (Tacke and Randolph, 2006). They are produced by a myeloid precursor in the bone marrow before circulating in the blood, and enter different tissues upon activation where they become macrophages (Fogg et al., 2006, van Furth and Cohn, 1968). They can survive up to 3 days in human blood (Whitelaw, 1972). Human monocytes are classified according to their differential expression of CD14 and CD16 receptors into two major subsets: classical (CD14⁺CD16⁻) and non-classical (CD14^{low}CD16⁺). Classical (CD14⁺CD16⁻) monocytes represent around 95% of the total number of monocytes in a healthy individual whereas non-classical count for just 5% (Passlick et al., 1989, Ziegler-Heitbrock et al., 1993). Monocytes increase in numbers more gradually and remain at the site of infection for a longer period of time compared to neutrophils (Dale et al., 2008). They are known to have three main functions: antigen presentation, immunomodulation and phagocytosis. Immunomodulation describes the release of cytokines such as interleukin-1 (IL-1), interleukin-6 (IL-6) and tumor necrosis factor- α (TNF- α) to contribute in the regulation of hematopoiesis (Taylor et al., 1998). Phagocytosis is performed by monocytes to ingest and destroy invading bacteria and to remove waste products (Dale et al., 2008). For example, insoluble haemoglobin inclusion bodies from red blood cells are filtered by the spleen and are removed by mononuclear phagocytes including monocytes (Kashimura and Fujita, 1987, Geske et al., 2002). Figure 1.7 shows the common structural features of a human monocyte.

Human monocyte under microscope

Figure 1.7 Monocytes. Monocytes count for around 5-10% of human peripheral blood leukocytes. The nucleus is kidney shaped with a deep indentation. The cytoplasm has a ground glass appearance due to the presence of fine granules. Microscopic images were acquired using optical microscopy (100X).

1.8 Macrophages

Marrow and blood monocytes can differentiate into tissue-localized phagocytic cells known as histiocytes in the spleen, liver, lung and other tissues (Dale et al., 2008, Leonarduzzi et al., 2005). Histiocytes include macrophages and dendritic cells. Macrophages may emerge in different morphological shapes. For example, they can develop an abundant cytoplasm as in epithelioid cells which resemble epithelial cells from the skin. Activated macrophages can combine to form multi-nucleate giant cells (fused macrophages). The following figure shows common structural features of human macrophages.

Figure 1.8 Macrophages. Macrophages are derived from monocytes. They are found in organs and tissues. They are mostly large with a nucleus, and abundant cytoplasm. Figure was modified from Rosenberger and Finlay (2003).

Macrophages are found in various tissues where they are often given different names.

For example, macrophages in the central nervous system are known as microglial cells;

whereas they are called Kupffer cells in the vascular sinusoids of the liver; alveolar

macrophages in pulmonary airways and osteoclasts in bone (van Furth et al., 1972). They contribute metabolic, immunological and inflammatory responses (Naito, 2008) as shown in Figure. 1.9.

Figure 1.9 Effector functions of macrophages. Macrophages are activated by microbial components such as LPS and NK cell-derived Interferon-gamma (IFN- γ). Consequently, the transcription factors of various genes are activated and proteins mediating the functions of macrophages cells are produced. Figure was modified from Rosenberger and Finlay (2003).

Macrophages are major participants in the elimination of pathogens and of apoptotic cells during infection (Lopes et al., 2000). For example, receptors on the surface of macrophages such as CD14 facilitate the removal of Gram-negative bacteria by recognizing LPS molecules on the surface of these pathogens (Naito, 2008).

Macrophages react to microbes almost as rapidly as neutrophils do, but they tend to survive longer and undergo cell division at sites of inflammation. Macrophage responses can sometimes cause tissue damage, which challenges the immune response to contain and minimise it (Bogdan et al., 1997). For example, regulatory cytokines such as interleukin-10 (IL-10) and transforming growth factor β (TGF- β) are employed to reduce the effects of macrophage-induced inflammatory cytokines, interleukin-12 (IL-12), TNF- α and interferon-gamma (IFN- γ) (Mosmann and Sad, 1996, Gazzinelli, 1996). In addition, interleukin 4 (IL-4) and interleukin 6 (IL-6) are released to induce macrophage apoptosis (Naito et al., 1996, Mangan et al., 1993, Mangan et al., 1992).

1.9 Opsonization

As described above, PRRs-mediated recognition of PAMPs is one of the major ways that macrophages target and eliminate pathogens (Taylor et al., 2005). Opsonization presents an alternative platform for recognition (Stuart and Ezekowitz, 2005). Opsonins are specific host proteins that coat microbes or endogenous macromolecules targeted for elimination and are subsequently recognized by phagocytic receptors. They include immunoglobins, collectins and complement components. Binding of immobilized opsonins to receptors on phagocytes enhances phagocytosis (Aderem and Underhill, 1999, Underhill and Ozinsky, 2002). For example, elevated haemolysis releases free haemoglobin in plasma where it is captured by the acute-phase protein haptoglobin. The resulting complex subsequently binds to the macrophage receptor CD163 after which it is removed by phagocytosis (Kristiansen et al., 2001). Complement proteins deposited on bacteria, such as C3b, also engage receptors on macrophages as well as a variety of other cell types to stimulate phagocytosis (van Lookeren Campagne et al., 2007). Thus, opsonization is a crucial process by which host-recognition molecules contribute to

pathogen elimination. Some of the opsonic receptors on macrophages and other phagocytes are shown in Table 1.3.

Receptor	Туре	Expression	Ligands
CR3 (αMβ2, CD11b/CD18)	Integrin	Macrophages, neutrophils	IC3b, β-glucans, ICAM- 1/2
CR4 (αxβ2, CD11C/CD18)	Integrin	Macrophages, neutrophils, dendritic cells	IC3b, fibrinogen
FcγRI (CD64)	lg, ITAM	Macrophages, neutrophils	IgG, CRP, SAP
FcγRII (CD32)	lg, ITAM	Macrophages, neutrophils	lgG
FcyRIII (CD16)	lg, ITAM	Macrophages, neutrophils, natural killer cells	IgG, SAP
Ε ςγ RIV	lg, ITAM	Macrophages, neutrophils, dendritic cells	lgG2A, lGg2b
FcaR (CD89)	lg, ITAM	Macrophages, neutrophils, eosinophils	IgA
Integrin ανβ3	Integrin	Macrophages	Thrombospondin-opsonised cells
Mer	RTK	Macrophages	Apoptotic cells

Opsonic receptors

Table 1.3 Opsonic receptors. Phagocytes express different type of opsonic receptors that initiate phagocytosis. These receptors can be C-type lectin receptors, integrins, Fc receptors (ITAM; immunoreceptor tyrosine-based activation motifs, Ig; immunoglobulin) and receptor tyrosine kinases (RTK). Table was modified from Aderem and Ulevitch (2000).

1.10 Dendritic cells

Dendritic cells contribute significantly to innate immune responses and help to connect innate and adaptive immune responses during infection (McKenna et al., 2005). These cells are characterized by their phagocytic abilities and their extended membranous projections (Reis e Sousa et al., 1993). They can be divided into immature and mature populations. Immature dendritic cells are present within epithelia where their main function is to capture and transport antigens to lymphoid organs. They become mature after encountering microbes and make vital contributions to the adaptive immune system by interacting with and activating T and B cells in lymphoid organs to initiate and shape the immune response. Lymphoid and myeloid dendritic cells are generated from lymphoid and myeloid precursors respectively and thus are of haemopoetic origin. By contrast follicular dendritic cells are possibly of mesenchymal origin. Dendritic cells carry pattern recognition receptors on their surface such as TLR family (TLRs 3, 4, 5, 7, 8 and 9), CD8 and CD11, and secrete cytokines in response to infection such as IL-6, IL-12 and type I interferons (IFNs) (see Cytokines of the innate immune system, section 1.21). For example, dendritic cells respond to endocytosed viruses by producing IFNs that directly inhibit viral replication in infected cells (Kadowaki et al., 2000, Fonteneau et al., 2003, Gary-Gouy et al., 2002).

1.11 Natural Killer (NK) cells

NK cells count for 5% to 20% of the mononuclear cells in the blood and spleen, and are rarely found in other lymphoid organs. They are called natural killer cells because of their ability to kill target cells without prior stimulation. Besides their ability to kill infected cells directly, they secrete IFN- γ that activates macrophages to eliminate invading pathogens. NK cells are produced in the bone marrow and emerge as large lymphocytes containing cytoplasmic granules. NK cell recruitment and responses are regulated by activating and inhibitory receptors on their surfaces. These receptors contain ligand-binding subunits that bind molecules on the surface of other cells and signalling subunits that transform activating or inhibitory signals to the cell. Inhibitory signals block the activating signals and prevent NK cells from killing uninfected cells (Biron et al., 1999). NK receptors mainly interact with class I MHC molecules or with proteins that are structurally homologous to class I MHC molecules such as UL18 encoded by Cytomegalovirus. Activating receptors bind class I MHC-peptide ligands typically presented on stressed cells, virally infected cells, malignantly transformed cells or cells containing intracellular microbes. NKG2D is one of the better characterized activating receptors that interacts with proteins that are structurally homologous to class I MHC molecules on virally infected cells and tumour cells. Other activating receptors such as CD16 (also known as FcyRIIIa) are low affinity receptors that target the Fc parts of IgG1 and IgG3 antibodies and enable NK cells to kill cells coated with antibody molecules (Lewis et al., 2002). On the other hand, inhibitory receptors interact with class I MHC molecules that are regularly expressed on uninfected cells. These receptors can then trigger phosphatase-dependent signalling cascades that inhibit the effect of kinases activated by activating receptors. Moreover, inhibitory receptors are also characterized by their specificity for self-class I MHC, which prevents the killing of uninfected host cells. However, when a host cell becomes infected, the inhibitory response decreases as a result of reduced production of class I MHC molecules. As a consequence, NK cells become active and eliminate the infected cell (Lewis et al., 2002). A variety of different inhibitory receptors have been characterized including the killer-cell immunoglobulin-like receptors (KIRs) and CD94/NKG2A; KIRs are known to interact with various class I MHC molecules whereas CD94/NKG2A bind a specific class I MHC molecule known as HLA-E (Lewis et al., 2002). NK cell stimulation can also be regulated by cytokines such as IL-15 and IL-12. IL-15 is mainly secreted by macrophages and acts as a growth factor for NK cells whereas IL-12 is also derived from macrophages and enhances NK cell activity to kill cells coated with antibodies (Lewis et al., 2002, Bottino et al., 2005).

The main functions of NK cells are to eliminate infected cells and stimulate macrophages to destroy ingested microorganisms. Figure 1.10 illustrates these two functions.

Figure 1.10 Functions of NK cells. Killing of infected cells: NK cells bind ligands on infected cells and destroy the host cells. Thus, NK cells succeed to remove infection and dysfunctional cells. **Killing of phagocytosed microbes:** NK cells are stimulated to produce IFN- γ by IL-12 derived from macrophages. IFN- γ activates macrophages to destroy phagocytosed microbes. Figure was modified from Moretta (2002).

NK cells kill target cells via the action of granules carrying an array of bactericidal proteins. These proteins are released next to target cells when NK cells become activated. One of the granule proteins known as perforin supports the access of other granule proteins, known as granzymes, into the cytoplasm of target cells to activate apoptosis. NK cells contribute significantly in the elimination of intracellular microbes. They are activated at the early stage of viral infections by cytokines of the innate

23

immune response such as IL-12 and IL-15 to kill infected cells (Bottino et al., 2005, Lewis et al., 2002). As mentioned previously, NK cells release IFN- γ cytokine that stimulates macrophages to destroy ingested microbes. This response is able to contain infections by intracellular bacteria such as *Listeria monocytogenes* for many days or even weeks and provides the adaptive immune system with an adequate amount of time to develop and effective response (Unanue, 1996, Jin et al., 2001).

1.12 Mast cells and Basophils

Mast cells are generated from progenitors in the bone marrow and mature after migrating into the peripheral tissues (see Table 1.4). They are found throughout the body particularly underneath epithelia, in lymphoid organs and in the vicinity of blood vessels and nerves (Galli et al., 2005, Metz et al., 2007, Pulendran and Ono, 2008). Human mast cells appear in different shapes and carry membrane-bound granules and lipid bodies in their cytoplasm. They are classified according to their anatomical locations, granule contents and activities into two main subsets: mucosal and connective tissue mast cells. Mucosal mast cells are regularly found in the mucosa of the gastrointestinal tract and carry relatively low-levels of histamine and abundant amounts of chondroitin sulfate in their granules. The growth of these mast cells is commonly regulated by the cytokine IL-3 secreted by T lymphocytes (Haig et al., 1988). Connective tissue mast cells are found in the lung and in the serosa of body cavities. They are known to secrete large amounts of histamine and contain mainly heparin (rather than chondroitin sulphate) in their granules (Nakano et al., 1985). Heparin and chondroitin sulphate function as storage matrices for positively charged biogenic amines and proteases within the granules of mast cells, and prevent their accessibility to the rest of the cell. Moreover, connective tissue mast cells are less dependent on T lymphocytes than mucosal mast cells (Kashiwakura et al., 2004). The different subsets of mast cells are suggested to contribute significantly to different sets of diseases, but their distinctive functions are yet to be understood. For example, connective tissue mast cells are likely to initiate the immediate-hypersensitivity reactions associated with allergies. Environmental antigens activate mast cells to release mediators that increase vascular permeability, vasodilation and bronchial and visceral smooth muscle contraction (Sertl et al., 1988, Martin et al., 1993, Oshiba et al., 1996, Kobayashi et al., 2000, Fujita et al., 2001).

Basophils are blood granulocytes characterized by structural and functional features similar to mast cells. They are also produced in the bone marrow but from a different progenitor lineage to mast cells. After differentiating in the bone marrow, they circulate in the blood and are rarely recruited to inflammatory sites. Basophils represent less than 1% of blood leukocytes and secrete similar mediators to mast cells but rarely produce immediate-hypersensitivity reactions (see Table 1.4) (Prussin and Metcalfe, 2006).

IgE molecules specific to environmental antigens are captured on mast cells via FceRI and basophils and trigger their activation during allergic reactions (Prussin and Metcalfe, 2006). Activation produces three responses: release of granular contents, synthesis and secretion of cytokines. Granules contain mainly serine proteases such as tryptase and chymase, which contribute to tissue damage in immediate-hypersensitivity reactions. Since tryptase can only be found in human mast cells, its presence in human biologic fluids is considered to be a marker for mast cell activation in general (Prussin and Metcalfe, 2006). Chymase is found only in certain subsets of human mast cells (connective tissue mast cells) and its presence is used as a marker for these subsets (Nagata et al., 2003). Activated mast cells and basophils also express a wide range of cytokines such as IL-1, IL-4, IL-5, IL-6, IL-13, MIP-1 α and MIP-1 β . Some of these cytokines induce immune responses against viral infections. For example, mast cells
and basophils are activated by HIV-1 glycoprotein 120 and secrete IL-4 and IL-13 that induce IgE production and the differentiation of naïve T helper cells (Florio et al., 2000, Marone et al., 2001, Prussin and Metcalfe, 2006). The characteristics of human mast cells, basophils and eosinophils are summarized in Table 1.4.

Characteristic	Mast cells	Basophils	Eosinophils
Major site of maturation	Connective tissue	Bone marrow	Bone marrow
Major cells in ciculation	No	Yes (0.5% of blood leukocytes)	Yes (-2% of blood leukocytes)
Mature cells recruited into tissues from circulation	No	Yes	Yes
Mature cells residing in connective tissue	Yes	No	Yes
Proliferative ability of mature cells	Yes	No	No
Life span	Weeks to months	Days	Days to weeks
Major develpment factor (cytokine)	Stem cell factor, IL- 3	IL-3	IL-5
Expression of FceRI	High levels	High levels	Low levels (function unclear)
Major granule contents	Histamine, heparin and/ or chondroitin sulfate, proteases	Histamine, chondroitin sulfate, protease	Major basic protein, eosinophil cationic protein, peroxidases, hydrolases, lysophospholipase

FceRI, Fce receptor type I; IL-3, interleukin-3

Table 1.4 Properties of mast cells, basophils and eosinophils.

1.13 Eosinophils

Eosinophils are derived from the bone marrow and circulate in the blood after maturation (see Table 1.4). They are normally found in peripheral tissues such as gastrointestinal and genitourinary tracts. The recruitment of eosinophils into tissues relies mainly on the chemokine eotaxin (CCL11), which is expressed by epithelial cells at sites of allergic reactions and targets the chemokine receptor CCR3 of eosinophils (chemokines are small polypeptide cytokines) (Prussin and Metcalfe, 2006). Eosinophils release toxic proteins from their granules that eliminate invading microbes. Examples include lysosomal hydrolases and eosinophil-specific proteins which are toxic to helminth microbes. Moreover, eosinophilic granules produce peroxidises to stimulate the secretion of hypochlorous or hypobromous acids, which are toxic to helminths, protozoa and host cells (Prussin and Metcalfe, 2006, Aldridge et al., 2002, Klion and Nutman, 2004).

Activation of eosinophils also stimulates the release of lipid mediators such as prostaglandins and leukotrienes. The role of these lipid mediators is not completely characterized in immediate-hypersensitivity responses, but they are likely to participate in the development of allergic diseases (Klion and Nutman, 2004, Kay, 2005, Prussin and Metcalfe, 2006). Moreover, activated eosinophils produce a wide range of cytokines such as IL-3 and IL-4 that trigger different inflammatory responses, although the biological importance of these cytokines is yet to be fully characterized (Prussin and Metcalfe, 2006, Bochner, 2000).

1.14 Recruitment of leukocytes to sites of infection

Neutrophils and monocytes migrate from the blood to infected sites by interacting with adhesion molecules (such as selectins and integrins) on endothelial cells in response to chemoattractants released by host tissues following microbial invasion. Selectins, integrins, and chemokines orchestrate different steps in the recruitment of leukocytes to the sites of infection, as shown in Figure 1.11.

Figure 1.11 Recruitment of leukocytes. Macrophages encounter microbes and secrete cytokines (such as TNF and IL-1) that stimulate the endothelial cells of nearby venules to express selectins, integrin ligands and chemokines. Selectins generate weak tethering and rolling of blood leukocytes such as neutrophils on the endothelium and integrins create a more stable adhesion. Chemokines enhance the affinity of neutrophil-integrin interactions by binding to heparin-sulface glycosaminoglycans (polysaccharide components of cell-surface and extracellular-matrix proteoglycans) and specific receptors on these cells, and assist their migration through the endothelium to the infected sites. Blood monocytes and activated T lymphocytes use similar mechanisms to migrate to infected sites. Figure was modified from Kunkel and Butcher (2003).

Endothelial cells coating post-capillary venules stimulate the surface expression of selectins in response to microbes and leukocyte secreted cytokines, IL-1 and TNF (Tedder et al., 1995). There are three different types of selectins: P-, E-and L-. P-selectins are stored in cytoplasmic granules and migrate to the surface during infection, whereas E-selectins appear within 1 to 2 hours of microbial encounter. L-selectins (CD62L) are generated on the surface of the leukocytes (such as neutrophils) and mediate the binding of neutrophils to endothelial cells activated by cytokines (TNF, IL-1 and IFN- γ) (Tedder et al., 1995).

Chemokines are small polypeptide cytokines secreted by cells such as tissue macrophages and endothelial cells in response to microbial encounter and inflammatory cytokines, TNF and IL-1. Their main activity is to enhance leukocyte chemotaxis (the

movement of cells into tissues) (Witt and Lander, 1994, Ley, 2002). Chemokines expressed at sites of infection are carried to the luminal surface of the endothelial cells where they are targeted by heparan sulface glycosaminoglycans (polysaccharide components of cell-surface and extracellular-matrix proteoglycans) and then chemokine receptors on the surface of the rolling leukocytes (Sadir et al., 1998, Witt and Lander, 1994). As a result, the avidity of integrin-mediated binding of the leukocytes to the endothelial surface is enhanced (Witt and Lander, 1994, Ley, 2002).

TNF and IL-1 cytokines stimulate endothelial production of integrin ligands especially vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). Whilst VCAM-1 binds VLA-4 integrins, ICAM-1 binds LFA-1 and Mac-1 integrins. Consequently, leukocytes bind tightly to the endothelium and stretch their cytoskeleton on the endothelial surface in preparation for migration (Hogg and Leitinger, 2001, Ley, 2002, Yonekawa and Harlan, 2005, Wu, 2007).

Chemokines enhance the migration of the adherent leukocytes through interendothelial spaces towards the infected sites. The adherent leukocytes express proteins on their surface such as CD31 and CD99 that contribute to their migration by forming homophilic interactions with the same molecules on endothelium (Liu et al., 2004). Migrating cells are also thought to produce enzymes that facilitate their passage through the vessel wall and eventually gather in the extravascular tissue surrounding the invading pathogen (Yonekawa and Harlan, 2005).

The accumulation of leukocytes in tissues is a significant indication of inflammation. It is regularly caused by microorganisms and occasionally by non-infectious agents. The migration of leukocytes to the sites of infection is a process distinguished by its specificity because different leukocytes produce different adhesion molecules and chemokine receptors. For instance, the migration of neutrophils is mostly based on specific interactions employed uniquely by these cells such as the binding of CXCL8 chemokines to CXCR1 and CXCR2 chemokines receptors, while monocyte migrations relies on other interactions such as CLL2 chemokines binding to CCR2 chemokines receptors (Proost et al., 2008, Maus et al., 2005). The temporary expression of different adhesion molecules, chemokines and chemokines receptors in the infected sites frequently leads to an early enrolment of neutrophils (hours to days) and a later enrolment of monocytes (days to weeks) to these sites (Maus et al., 2005). When these phagocytes arrive at the sites of infection, they ingest microbes into vesicles by a process called phagocytosis (Stuart and Ezekowitz, 2008, Stuart and Ezekowitz, 2005), which is discussed in the next section.

1.15 Phagocytosis

Phagocytosis is a mechanism by which molecules or particles are bound to the surface of cells and internalized into a phagosome (the organelle forming around the engulfed molecule). Phagocytic receptors start this cascade of events by specifically recognizing microbes or self-structures targeted for degradation. Some of these receptors are pathogen-recognition molecules (PRRs) such as C-type lectins and scavenger receptors. In this case, PRRs participate in phagocytosis only when microbes express specific molecular patterns on their surface such as carbohydrates (Gordon, 2002). In addition, phagocytes express another group of receptors that recognize host opsonins such as antibodies, complement proteins and lectins, which coat invading microbes and label them for phagocytosis. For example, phagocytes expressing high-affinity Fc receptors known as $Fc\gamma RI$, specifically bind to IgG antibodies attached to microbes to initiate phagocytosis (Gordon, 2002). Figure 1.12 shows a schematic diagram illustrating some of the different types of phagocytic receptors.

Figure 1.12 Types of phagocytic receptors. Phagocytes express different type of receptors that initiate phagocytosis. These receptors include C-type lectin receptors, integrins, Fc receptors, receptor tyrosine kinases, Leucine rich-repeats (LRR) or scavenger receptors. Figure was modified from Stuart and Ezekowitz (2008).

The main classes of phagocytic receptors are listing in more detail in Table 1.5.

Receptor	Туре	Expression	Ligands		
Innate Immune receptors					
Mannose receptor	C-type lectin	Macrophages, dendritic cells	Mannans		
DEC 205	C-type lectin	Dendritic cells	Mannans		
Dectin-1	C-type lectin	Macrophages	Glucose-rich polysaccharides		
CD14	Leucine-rich repeats	Macrphages, neutrophils	Apoptotic cells, LPS		
MARCO	SR-A	MZ macrophages	Bacterial cell walls		
Scavenger receptor A I	SR-A	Macrophages	Apoptotic cells; LPS, LTA		
CD36	SR-B	Macrophages	Apoptotic cells; parasitized RBCs		
Opsonin receptors					
CR3 (αMβ2, CD11b/CD18)	Integrin	Macrophages, neutrophils	IC3b, β-glucans, ICAM- 1/2		
CR4 (αxβ2, CD11C/CD18)	Integrin	Macrophages, neutrophils, dendritic cells	IC3b, fibrinogen		
FcγRI (CD64)	lg, ITAM	Macrophages, neutrophils	IgG, CRP, SAP		
FcγRII (CD32)	lg, ITAM	Macrophages, neutrophils	lgG		
FcγRIII (CD16)	lg, ITAM	Macrophages, neutrophils, natural killer cells	lgG, SAP		
FcγRIV	lg, ITAM	Macrophages, neutrophils, dendritic cells	lgG2A, lGg2b		
FcαR (CD89)	lg, ITAM	Macrophages, neutrophils, eosinophils	IgA		
Integrin ανβ3	Integrin	Macrophages, platelets	Thrombospondin-opsonised cells		
Mer	RTK	Macrophages	Apoptotic cells		

Phagocytic receptors

Table 1.5 Phagocytic receptors. Phagocytes express different type of receptors that initiate phagocytosis. These receptors can be C-type lectin receptors, integrins, Fc receptors (ITAM; immunoreceptor tyrosine-based activation motifs, Ig; immunoglobulin), receptor tyrosine kinases (RTK), Leucine rich-repeats (LRR) or scavenger receptors (SR). These receptors can be classified into innate immune receptors and opsonin receptors. Both different types of receptors initiate microbial phagocytosis. Table was modified from Aderem and Ulevitch (2000).

After the recognition of microbes by phagocytic receptors, an organized progression of

changes is orchestrated by the phagocyte, called phagocytosis, leading to elimination of

the pathogen. The following figure summarizes the events involved in phagocytosis.

- 1. Chemotaxis and pathogen adherence
- 2. Pathogen engulfment
- 3. Phagosome formation
- 4. Phagolysosome formation; Lysosome fusion to phagosome
- 5. Digestion of the ingested pathogen by enzymes
- 6. Residual body formation
- 7. Release of waste

Figure 1.13 Phagocytosis. Phagocytosis is a mechanism by which pathogens or host molecules targeted for destruction are removed by phagocytes. Once ingested by the phagocytic cell, lysosomes fuse with phagosomes to form phagolysosomes, leading to digestion and destruction of the microbe. Figure was modified from Desjardins (2003).

Once the phagocytic receptors have bound to an invading pathogen, the plasma membrane in the area of these receptors starts to relocate to form cup-shaped extensions around the pathogen. These extensions then form into a vesicle (called a phagosome) carrying the ingested pathogen inside it. The phagosome migrates away from the plasma membrane and combines with lysosomes, which carry concentrated levels of microbicidal molecules, to form phagolysosomes (Desjardins, 2003). Microbicidal molecules include proteolytic enzymes such as elastase (a broad-spectrum serine protease) and cathepsins that break down the ingested pathogen (Korkmaz et al., 2008).

Phagocytosis is a unique characteristic of cells known as professional phagocytes including neutrophils, monocytes, macrophages and dendritic cells (see above). These cells have the ability to engulf molecules even larger than their own surface area. Microorganisms and apoptotic cells are major targets for phagocytosis. Apoptotic cells are engulfed during tissue remodelling and during embryogenesis, where surplus cells endure programmed cell death and elimination (Stuart and Ezekowitz, 2008). Microorganisms are targeted at early stages of the innate immune response (Hoffmann et al., 1999). Phagocytes can also act as fundamental antigen-presenting cells to help produce an effective adaptive immune response (Stuart and Ezekowitz, 2008).

Many studies have been dedicated to unlock the complicated machinery of phagocytosis and numerous cell surface receptors and serum components have been identified (see Table 1.5). However, studies have frequently been complicated by the apparent overlapping functions of several key components. In addition, primary mammalian phagocytes are generally not amenable to genetic manipulations making their study difficult (Stuart and Ezekowitz, 2008). Consequently, it has been difficult to evaluate the relative input of the components of this machinery. As a result, cell biology and microscopy methods have been employed by researchers to investigate phagocytosis and to identify potential signalling pathways involved in this process (Aderem and Underhill, 1999, Greenberg and Grinstein, 2002, Palmer, 2007, Stuart and Ezekowitz, 2008). For example, one of the best characterized mammalian systems is Fc receptormediated phagocytosis (see Figure 1.12 and Table 1.5). Fc receptors bind IgG antibody-coated microbes and activate a number of signalling events including tyrosine phosphorylation, which eventually induce to the recruitment of actin and actinassociated proteins to form the phagocytic cup (Beningo and Wang, 2002, Palmer, 2007). Neutrophils, monocytes and macrophages have been the main phagocytes employed to identify and characterize the cell-surface receptors and serum components involved in phagocytosis, and for this reason I have focussed on these cell types in my research project.

1.16 Humoral immune system

In addition to cell-associated molecules, the innate immune system also employs a wide range of soluble proteins located in plasma and extracellular fluids that can target pathogen-associated molecular patterns (PAMPs) and eliminate invading microbes. Other soluble proteins can behave as opsonins, binding microbes and stimulating their phagocytosis by neutrophils or macrophages. The soluble pattern-recognition proteins and opsonin proteins are commonly known as the humoral branch of the innate immune response. Key components of the humoral innate immune system include the complement system, the collectins, the pentraxins, the ficolins and cytokines (Manfredi et al., 2008, Thiel and Gadjeva, 2009).

1.17 The complement system

The complement system contributes significantly to the innate immune system by providing an immediate defence against microbes and infected cells (Muller-Eberhard, 1988, Reid, 1983). It comprises circulating blood proteins and enzymes which activate on contact with pathogens to initiate a cascade of reactions culminating in destruction of the microbe. The response also stimulates a wide range of immune and inflammatory responses. For example, microbial cells are tagged by complement components which act as opsonins for host leukocytes.

Complement activation occurs via three different pathways: the classical, alternative and lectin pathways. The following diagram summarizes the complement pathway and the main routes of activation.

Figure 1.14 The complement system. Three different pathways activate the complement system: the classical, lectin and alternative pathways. Complement activation leads to a wide range of immune and inflammatory responses as well as direct cell lysis.

All three pathways can activate directly on the surfaces of pathogens and help to stimulate an effective adaptive immune response, via receptors on host leukocytes. Complement can also become activated via immobilized antibodies and other host immune proteins eg. C-reactive protein (Burton et al., 1980, Duncan and Winter, 1988, Perkins et al., 1991, Sim and Reid, 1991, Roos et al., 2001).

1.17.1 The classical pathway

The first component of the classical pathway of complement is called the C1 complex, which consists of the recognition molecule C1q and its associated serine proteases C1r and C1s (Arlaud and Colomb, 1987). C1q is a multimeric protein composed of hexamers of a subunit containing three homologous polypeptide chains (A, B and C).

The proteases of the C1 complex combine to form heterotetramers containing two molecules of C1r and two of C1s (C1s-C1r-C1r-C1s).

The C1 complex undergoes conformational changes when it binds to the surface of pathogens or to immobilized immune complexes involving IgG or IgM, leading to autoactivation of C1r, which subsequently activates C1s. C1s in turn cleaves C4 to produce C4a and C4b. C4a is a peptide anaphylatoxin released into the blood stream where it stimulates inflammation, whereas C4b binds covalently to the surface of target cells via an exposed thioester bond (Dodds et al., 1996). C4b then recruits C2, which is also cleaved by C1s to release C2b. The remaining C4b2a complex is the C3 convertase, which cleaves C3 molecules leading to attachment of C3b onto the surrounding cell surfaces (also via a thioester bond). As the cascade continues, the C5 convertase (C42a3b) is formed and cleaves C5 producing C5a and C5b to activate the terminal pathway. Ultimately a membrane attack complex assembles in the cell membrane of microbial cells leading to lysis and death (Muller-Eberhard, 1985). Many regulatory components control complement activation thereby preventing self damage. For example, spontaneous activation of the C1 complex results in immediate inactivation by C1-inhibitor, which blocks uncontrolled complement activation in the serum.

The most well-known ligands of the classical pathway are antibody-antigen complexes involving IgG or IgM, and in this way the classical pathway connects innate and adaptive immunity. In addition, C1q has been shown to bind to a wide range of bacterial cell wall components such as lipid A, nucleic acids, ligand-bound C-reactive protein (CRP) and amyloids in an antibody independent manner (Blanquet-Grossard et al., 2005, Mitchell et al., 2007, Sim and Malhotra, 1994), thus it is also a patternrecognition receptor.

1.17.2 The lectin pathway

The activation mechanism of the lectin pathway of complement has only recently been characterized compared to the classical and alternative pathways. The recognition molecules, MBLs and ficolins form heterogeneous complexes with three different zymogen MASPs and at least two non-enzymatic protein components known as MAp19 or sMAp and Map44 (Schwaeble et al., 2002, Wallis and Dodd, 2000). MASP-2 is believed to be the main activating enzyme of the lectin pathway. The binding of MBL-MASP-2 and ficolin-MASP-2 complexes to the surface of microbes leads to the activation of MASP-2 by autolysis, followed by cleavage of C4 into C4a and C4b, and C4b2 into C4b2a (the C3 convertase) and C2b, and thus follows a similar activation path as in the classical pathway. Subsequent reactions are identical to those of the classical pathway. Activation of the lectin pathway of complement is antibody-independent and thus facilitates early elimination of pathogens even without an effective adaptive immune response.

1.17.3 The alternative pathway

The alternative pathway is activated by a different mechanism from that of the classical and lectin pathways. Instead of target recognition molecules, spontaneous low-level hydrolysis of C3 in plasma initiates this pathway by forming C3(H₂O) that has a similar structure and function to C3b. Factor B attaches to C3(H₂O) and is cleaved by factor D into two fragments: Ba and Bb. Only Bb remains bound to C3(H₂O) to form the C3Bb complex, a fluid-phase form of the C3 convertase that cleaves other C3 molecules. The deposition of C3b molecules subsequently occurs randomly onto the surface of host cells as well as any pathogens. Factor B binds to membrane-bound C3b fragments and generates the membrane-phase C3 convertase (C3bBb) after its cleavage by factor D, which is stabilised by properdin (Farries et al., 1988, Fearon and Austen, 1975).

Moreover, C3bBb can interact with another C3b molecule to assemble the C5 convertase and initiate the downstream cascade.

Because C3 deposition is non-specific, the alternative pathway is incapable of differentiating between self and non-self in the early phases of activation. However, host cells express a wide range of regulators and inhibitors that prevent activation from progressing thereby avoiding self destruction. On the other hand, the absence of these regulators on invading pathogens exposes them to complement mediated neutralisation. Thus, the complement system is an important tool to battle invading microbes directly. In addition to eliminating invading pathogens, it depletes circulating immune complexes and facilitates the removal of necrotic or apoptotic cells (Whaley and Ahmed, 1989). It also participates in regulating the adaptive immune system via arrays of complement receptors on immune cells (Dempsey et al., 1996).

1.18 Pentraxins

Many plasma proteins bind microbial structures and contribute in innate immunity. Some of these proteins are members of the pentraxin family, which is phylogenetically an old group of structurally homologous pentameric proteins. Members of this family include C-reactive protein (CRP) and serum amyloid P-component (SAP). Circulating levels of CRP and SAP increase significantly in individuals during infection and target a variety of different microbial species through cell surface patterns. For example, CRP is an opsonin that interacts directly with IgG Fc receptors as well as C1q and where it is targeted for elimination by phagocytic C1q receptors (Manfredi et al., 2008, Black et al., 2004).

1.19 Collectins

Collectins, including MBL, the first component of the lectin-pathway of complement, and pulmonary-surfactant proteins (SP-A and SP-D) are a group of proteins characterized by a collagen-like N-terminal region linked by an alpha-helical neck region to a calcium-dependent (C-type) carbohydrate-recognition domain. The quaternary structure of collectins resembles that of C1q in overall appearance. However, collectin subunits are composed of three identical polypeptide chains, whereas three different chains combine to form C1q. Collectins can be divided into two main types based on their architectures: bouquet and cruciform-like structures. While MBL and SP-A form bouquet-like structures, SP-D, conglutinin and CL-46 are cruciform (Lu et al., 2002, Gupta and Surolia, 2007). Collectins are soluble pattern recognition molecules (Gupta and Surolia, 2007). MBL is the only member of the collectin family that activates complement. It also functions as an opsonin that targets carbohydrates with terminal mannose, fucose and N-acetyl glucosamine on the surface of microbial pathogens, although it is unclear which phagocytic receptors are involved in this process (Drickamer, 1992, Lee et al., 2002, Gupta and Surolia, 2007). SP-A and SP-D are present in the alveoli of the lungs and are characterized by their lipophilic properties. Their main function is to modulate the innate immune response in the lung and bind microorganisms to facilitate their ingestions by alveolar macrophages. SP-A and SP-D can directly inhibit bacterial growth and stimulate their phagocytosis by activated macrophages (Gupta and Surolia, 2007). In addition to their innate immune function, they carry out important endogenous functions within the lung such as lipid homeostasis. Other collectins, including conglutinin and CL-43 have been identified only in Bovidae, where they are believed to function as PAMPs to bind and aggregate pathogens (Gupta and Surolia, 2007).

1.20 Ficolins

Ficolins, like MBLs serve as initiating components of the lectin pathway of the complement system. They bind and neutralise pathogens via antibody-independent mechanisms through their association with MASPs. They have similar structures to MBL and collectins and are multidomain, oligomeric proteins made from many copies of a subunit, which is characterized by its three identical polypeptide chains as shown in Figure 1.15 (Drickamer and Taylor, 1993, Fujita et al., 2004). The major difference from MBL is the recognition domain, which is a fibrinogen-like domain rather than a carbohydrate-recognition domain (CRD). They bind carbohydrates and N-acetyl groups on the surface of the invading pathogen to activate complement leading to neutralization via lysis or phagocytosis (Lynch et al., 2004, Krarup et al., 2004, Carroll, 2004, Runza et al., 2008).

There are three known human ficolins; L-ficolin, H-ficolin and M-ficolin. They are encoded by the FCN2, FCN3 and FCN1 genes positioned on chromosomes 9q34 (L-ficolin and M-ficolin) and 1p35.3 (H-ficolin) (Fujita et al., 2004). L-ficolin and M-ficolin are 79% identical whereas H-ficolin is only 45% identical to L-ficolin and M-ficolin (Thiel, 2007). L-ficolin is synthesized in the liver and its estimated serum concentration is between 3.7-5.0 μ g/ml in Caucasians and around 13.7 μ g/ml in the Japanese population (Taira et al., 2000, Kilpatrick et al., 1999). The variation of L-ficolin concentration is associated with three polymorphisms in the promoter region and a polymorphism in the structural gene (exon8) (Hummelshoj et al., 2005). Such variations have not been associated with any infectious diseases as yet.

Figure 1.16 Human ficolin gene organizations (L-, M- and H-ficolins). Polypeptide chains are numbered (the leader sequences are included in the numbering). Exons are illustrated as boxes, and linked by introns (not shown to scale). The cysteine-rich, collagen and pathogen-recognition domains are represented in light, medium and dark grey colours, respectively. The exons encoding these domains are represented correspondingly. The short connector region between collagen and pathogen-recognition domains is shown in white (exon 4 in L- and H-ficolins and exon 5 in M-ficolin). Figure was modified from Thiel (2007).

L-ficolin has been shown to play key roles in immune defence. It interacts and activates complement on the surface of *Salmonella typhimurium* TV119 (Taira et al., 2000). It also stimulates opsonophagocytosis of group B streptococci (Aoyagi et al., 2005). Ficolins bind specifically to the bacterial capsule constituents of some *Staphylococcus aureus* and *Streptococcus pneumonia* serotypes (Krarup et al., 2005). Furthermore, they

contribute in the elimination of apoptotic and dead host cells (Jensen et al., 2007, Kuraya et al., 2005), and bind C-reactive protein to recognize bacteria (Ng et al., 2007).

Relatively few microbial ligands have been reported for H- or M-ficolins. M-ficolin can interact with *S. aureus* and *Escherichia coli* and induce the uptake of these bacteria by phagocytosis (Liu et al., 2005, Teh et al., 2000). H-ficolin binds specifically to a polysaccharide (polysaccharide *A. viridians*) present on *Aerococcus viridians* (Krarup et al., 2005, Matsushita et al., 2002). Moreover, recombinant H-ficolin aggregates leukocytes coated with LPS from *S. typhimurium, Salmonella Minnesota* and *E. coli* (O111) and this effect was inhibited by GaINAc, GIcNAc and D-fucose (Sugimoto et al., 1998).

1.21 Cytokines of the innate immune system

Cytokines participate in the recruitment and stimulation of leukocytes. They can also generate systemic alterations and enhance the recruitment of effector cells and proteins with antimicrobial properties. Macrophages, neutrophils and NK cells are the main producers of cytokines during innate immunity. Cytokines enable communication between inflammatory cells and between inflammatory cells and tissue cells such as vascular endothelial cells and leukocytes (Mantovani and Dejana, 1989).

Figure 1.17 Functions of selected cytokines in innate immunity. Cytokines generated by macrophages and NK cells regulate the early inflammatory responses to microbes and stimulates the elimination of microbes. Figure was modified from Trinchieri (2003).

Cytokines of the innate immune system are also produced to contain and fight viral infections (IFN- α and IFN- β), mediate inflammation (TNF and IL-1), enhance the proliferation and activity of NK cells (IL-15 and IL-2), trigger macrophages (IFN- γ) and maintain macrophage activation (IL-10) (Medzhitov and Janeway, 2000, Mantovani et al., 2009). Furthermore, other cytokines of the innate immune system such as, IL-10 stimulate the production of neutrophils by the bone marrow and the secretion of different proteins involved in the immune response such as, CRP (de Vree et al., 1997, Moshage et al., 1988) (Table 1.6).

Cytokine	Size (kD)	Principal cell	Principal cellular targets
		source	and biologic effects
Tumor necrosis factor (TNF)	17kd; 51kd homotrimer	Macrophages, T cells	Endothelial cells: activation (inflammation. Coagulation) Neutrophils: activation Hypothalamus: fever Liver: synthesis of acute phase proteins Muscle, Fat: catabolism (cachexia) Many cell types: apoptosis
Interleukin-1 (IL-1)	17kd mature form: 33kd precursors	Macrophages, endothelial cells, some epithelial cells	Endothelial cells: activation (inflammation coagulation) Hypothalamus: fever Liver: synthesis of acute phase proteins
Chemokines	8-12kd	Macrophages, endothelial cells, T cells, fibroblasts, platelets	Leukocytes: chemotaxis, activation: migration into tissues
Interleukin-12 (IL-12)	Heterodimer of 35kd+40Kd subunits	Macrophages, dendritic cells	T cells: T _H 1 differentiation NK cells and T cells: IFN-γ synthesis, increased cytotoxic activity
Type I IFNs (IFN-α, IFN-β)	IFN-α: 15-21 kd IFN-β:20-25 kd	IFN-α: macrophages IFN-β: fibroblasts	All cells: antiviral state, increased class I MHC expression NK cells: activation
Interleukin-10 (IL-10)	Homodimer of 34-40kd: 18kd subunits	Macrophages, T cells (mainly regulatory cells)	Macrophages, dendritic cells: inhibition of IL-12 production and expression of co-stimulators and class II MHC molecules
Interleukin-6 (IL-6)	19-26 kd	Macrophages, endothelial cells, T cells	Liver: synthesis of acute phase proteins B cells: proliferation of antibody- producing cells
Interleukin-15 (IL-15)	13kd	Macrophages, others	NK cells: proliferation T cells: proflieration (memory CD8+ Cells)
Interleukin-18 (IL-18)	17kd	Macrophages and dendritic cells	T cells: maintenance of IL-17 producing T cells
Interleukin-23 (IL-23)	Heterodimer of unique 19kd subunit and 40kd subunit of IL-12	Macrophages and dendritic cells	T cells: maintenance of IL-17 producing T cells
Interleukin-27 (IL-27)	Heterodimer of 28kd and 13kd subunits	Macrophages and dendritic cells	T cells: inhibition of T _H 1 Cells: role in T _H 1 differentiation? NK cells: IFN- γ synthesis

IFN, interferon; kd, kilodalton; MHC, major histocompatibility complex; NK, natural killer

Table 1.6 Features of cytokines of the innate immune system. Table was modified from Medzhitov and Janeway (1997).

1.22 Acute-phase reaction and acute-phase proteins

The acute-phase reaction (APR) is a systemic response of the organism to local or systemic changes in its homeostasis. It is initiated by infection, tissue injury, trauma or surgery and by neoplastic growth or immunological disorders (Gruys et al., 2005). Several acute-phase reactions including serum amyloid A (SAA) commence at the site of infection or tissue injury to induce the release of pro-inflammatory cytokines such as

IL-1, IL-6 and IL-17 that can activate the vascular system and inflammatory cells. Such reactions are also associated with the generation of other cytokines including TNF and inflammatory mediators such as chemokines, which circulate in the blood after their release into the extracellular fluid partition (Gruys et al., 2005). Consequently, cytokines including TNF can stimulate receptors on various target cells such as hypothalamic cells and can cause a systemic reaction to activate hypothalamic-pituitary-adrenal axis, which decreases the secretion of growth hormones (Gruys et al., 2005). Different physical symptoms can clinically be noticed such as fever, anorexia, negative nitrogen balance and catabolism of muscle cells (Gruys et al., 2005). Moreover, Laboratory examinations can quantify several other changes such as activation of the complement system and alterations in the concentration of a number of plasma proteins.

The concentration of acute-phase proteins (APPs) such as haptoglobin and albumin is significantly changed shortly after infection due to changes in protein synthesis by liver. Whilst a dramatic increase of some proteins occurs, known as positive APPs (eg, haptoglobin), the synthesis of other blood proteins is decreased, negative APPs (eg, transferrin and albumin) (Gruys et al., 2005).

Acute-phase proteins		
Positive acute-phase proteins		
Opsonins		
C-reactive protein		
Serum Amyloid P component		
Mannose-binding protein		
Complement proteins		
C2		
C3		
C4		
C5		
C9		
Factor B		
C1 inhibitor		
C4-bining protein		
Coagulation proteins		
Fibrinogen α, β, γ		
Von Willebrand factor		
Protease inhibitors		
α ₁ -antitrypsin		
α ₁ -antichymotrypsin		
α ₂ -antiplasmin		
Plasminogen activator inhibitor I		
Heparin cofactor II		
Scavenging proteins		
Haptoglobin		
Ceruloplasmin		
Hemopexin		
Serum Amyloid A		
Negative acute-phase proteins		
Albumin		
Transferin		
Transthyretin		
Transcortin		
Retinol-binding proteins		

 Table 1.7 Acute-phase proteins (Heinrich et al., 1998).

The positive APPs are generally proteins secreted by hepatocytes following cytokine stimulation (Table 1.7) (Heinrich et al., 1998). However, hepatic protein production can also be reduced as a consequence of starvation and malnutrition (Gruys et al., 2005). The change in the concentrations of APPs is considered to be valuable to the host

because it stops bacterial growth through production of antimicrobial proteins and contributes to restore homeostasis. APPs are employed to target cellular remnants and free radicals for scavenging, opsonise invading bacteria, stimulate the complement pathway, and neutralise proteolytic enzymes (Gruys et al., 2005). The work presented in this thesis focuses on the role of the positive APP, haptoglobin, in neutralization of *S. aureus*. Different studies have suggested that haptoglobin contributes in regulating the immune response, autoimmune diseases and inflammatory diseases although the mechanisms underlying these processes have not been characterized, as will be discussed in the next section.

1.23 Haptoglobin (HP)

The normal serum concentration of haptoglobin (HP) ranges between 0.2 and 1.4 mg/ml, and clinically it is a useful marker for several inflammation-related disorders such as Hepatitis C, HIV, myocardial infarction, retinal hemorrhage and tuberculosis (Raijmakers et al., 2003, Engstrom et al., 2003, Palma et al., 2005, Sadrzadeh and Bozorgmehr, 2004). The primary known function of HP is to target free haemoglobin (HB) released from erythrocytes by intravascular haemolysis to form stable HP-HB complexes (Okazaki and Nagai, 1997, Okazaki et al., 1997). Complexes bind to a HB scavenger receptor CD163 located on the outer envelope of monocyte and macrophages (Kristiansen et al., 2001). As a result, they are rapidly removed by the reticuloendothelial system in the liver (Graversen et al., 2002). The scavenging mechanism is essential in the inhibition of HB glomerular filtration, which can cause renal failure (Gburek and Osada, 2000, Gburek et al., 2002). HP-HB complexes also bind directly to receptors on hepatocytes and hepatoma cell lines (Polticelli et al., 2008), for internalization into the liver parenchymal cells where organelles carry them into the

microsome fraction where they are dissociated and degraded into smaller subunits (Kino et al., 1982, Zuwala-Jagiello and Osada, 1998).

HP synthesis is stimulated by several cytokines during inflammation (Wang et al., 2001). For instance, IL-6 mediates HP gene expression and protein synthesis in the liver of most species that have been studied, including human and rat (Quaye, 2008, Baumann et al., 1990). HP is initially synthesized as a single chain that is cleaved into two chains; an N-terminal light α -chain (complement-control repeat) and a C-terminal heavy β -chain (serine protease-like domain) (Gordon et al., 1968, Langlois and Delanghe, 1996, Delanghe and Langlois, 2002). The α - and β -chains are covalently attached by an intermolecular disulfide bond made between Cys131 and Cys248 (Wejman et al., 1984). The following figure shows the molecular structure of HP.

Figure 1.18 HP structure. Schematic drawing represents the molecular arrangements of human HP1-1 structure indicating the disulfide patterns. Figure was reproduced from Nielsen et al. (2007).

In most mammals, HP is formed by two $(\alpha-\beta)$ monomers linked together covalently by a disulfide bond between the two α -chains creating an $(\alpha-\beta)_2$ structure. This form is known as HP1-1 in humans (Langlois and Delanghe, 1996, Delanghe and Langlois, 2002). However, three different HP phenotypes are found in humans because of the existence of two HP gene alleles, known as HP1 and HP2. An intragenic duplication of

the HP1 allele forms the HP2 allele, which carries a bigger α -chain with a duplicated cysteine residue linking the α -chains. Consequently, other phenotypes of HP such as HP2-1 and HP2-2 present a range of different HP structures (Langlois and Delanghe, 1996, Delanghe and Langlois, 2002) as shown in Figure 1.19.

Structure of haptoglobin phenotypes

Figure 1.19 HP structural phenotypes. Schematic drawing showing the molecular arrangement of human HP phenotypes. Figure was reproduced from Gast et al. (2008).

Duplication of one of the HP alleles has resulted in a HP-related protein (HPr) in higher eukaryotes, which is 91% identical to HP1 (Bensi et al., 1985, Maeda, 1985). HPr is found in plasma as a constituent of two complexes, called trypanosome lytic factor 1 (containing high-density lipoprotein particles) and trypanosome lytic factor 2 (which are predominantly protein complexes with less lipid components) (Hajduk et al., 1989, Raper et al., 1999). Trypanosome lytic factor 1 is toxic to *Trypanosoma brucei brucei* and provides protection against this African parasite by stimulating its lysis (Drain et al., 2001). Purified HPrs are also capable of targeting trypanosomes and trigger their elimination by displacing them to lysosomes through an unknown mechanism (Drain et al., 2001). Moreover, HPr also binds to HB, although HPr-HB complexes do not enhance removal of HB by CD163 as observed with HP-HB complexes (Nielsen et al., 2006).

HP has been suggested to contribute towards regulating the immune response, and play roles in autoimmune diseases and major inflammatory diseases (Delanghe et al., 1999, Eaton et al., 1982, Levy, 2004, Oh et al., 1990, Quaye et al., 2006). For example, it has been suggested to behave as an innate phenotype-dependent antioxidant to sustain cellular redox homeostasis and avoid cellular damage during inflammation. Chinese hamster ovary K1 cells transfected with HP1-1 showed 2-fold increased resistance to hydrogen peroxide exposure compared to control cells (Tseng et al., 2004). Moreover, both *in vitro* and *in vivo* studies have shown that HP1-1 phenotype is more resistant to cellular oxidative stress than HP2-2 and HP2-1 phenotypes (Tseng et al., 2004). HP was also shown to have a more effective role as an innate phenotype-dependent antioxidant at extravascular sites than that of vitamin C in neutrophil activation, preservation of reverse cholesterol transport, cyclooxygenase inhibition and lipooxygenase (Tseng et al., 2004). Primary pro-inflammatory cytokines IL-1 β and TNF- α are released by cells targeted during infection, trauma, exercise and injury in order to activate endothelial cells, recruit neutrophils and other inflammatory cells (Kushner, 1993). HP is produced and stored throughout granulocyte differentiation to be released upon the activation of neutrophils (Theilgaard-Monch et al., 2006). HP was also demonstrated to target ApoA-1 (a form of high-density lipoprotein) to prevent its damage by free radicals and its interaction with other lipoprotein substrates. As a result, the transport of cholesterol for its degradation in the liver is maintained and its storage in macrophages to form foam cells is prevented (Theilgaard-Monch et al., 2006). In addition, HP is considered to be a major extracellular inhibitor of protein misfolding by blocking inappropriate self-association of proteins caused by heat or oxidation (Yerbury et al., 2005). HP levels are significantly increased for the duration of pregnancy, myocardial infarction and obesity (Berkova et al., 2001, Blum et al., 2007, Chiellini et al., 2004). These conditions demand intensive anti-inflammatory responses to overcome tissue growth and repair (Quaye, 2008). HP blocks matrix metalloproteinases (MMP-2 and MMP-9) function to prevent gelatine degradation and initiates the required fibroblast migration for tissue regeneration (de Kleijn et al., 2002). It is also involved in various anti-inflammatory responses to sustain redox homeostasis throughout tissue repair enhancement (de Kleijn et al., 2002). HP also participates in a variety of different cellular and humoral processes within the innate and adaptive immune systems including prostaglandin production, recruitment and migration of leukocytes, the release of cytokines after injury, infection and tissue repair (Quaye, 2008).

HP knockout C57BL/6J mice were recently produced to help better understand the role of HP in the immune response. The adaptive immune response has been the primary focus of initial studies and mice showed reduced development of lymphoid organs and low numbers of mature T and B cells in blood. Moreover, these mice had impaired immune responses, which failed to effectively protect against *S. typhimurium* infection, suggesting a regulatory function for HP in lymphocyte immune responses (Huntoon et al., 2008). Interestingly, HP-deficient mice show no apparent defects associated with accumulation of haemoglobin. Thus, HP-associated clearance of haemoglobin may not be the only function of HP. The research presented in this thesis focuses on a novel function of HP, in innate immunity, to enhance human neutrophil, monocyte and macrophage-mediated killing of the Gram-positive bacteria *S. aureus*. The next section summarizes the surface structure of bacteria focusing on the main antigenic components.

1.24 Gram-negative bacteria

The bacterial cell wall components of Gram-negative (such as, *E. coli*) and Grampositive bacteria (such as, *S. aureus*) are different. The cell walls of Gram-negative bacteria comprise two lipid membranes separated by a periplasmic space containing thin peptidoglycan layers (20% of the cell wall thickness) attached to lipopolysaccharide layers by lipoproteins (Figure 1.20).

Figure 1.20 Structure of the cell wall of Gram-negative bacteria. The wall is relatively thin and contains 20% peptidoglycan (by thickness). The outer membrane is attached to the peptidoglycan by lipoprotein molecules. LPS is found on the surface anchored to the outer membrane. Figure was modified from Cabeen and Jacobs-Wagner (2005).

LPS is composed of polysaccharide moieties and lipid components; the lipids are effective stimulators of innate immunity whilst polysaccharide moieties are the major

antigens targeted by adaptive immunity. When LPS is released into the blood following bacterial infection, it can cause disseminated intravascular coagulation (DIC) following elevated secretion of pro-coagulant proteins (eg, tissue factor) and decreased anti-coagulant activity on endothelial cells via the action of TNF (Kume et al., 2003, Chen et al., 2004, Stief, 2009). Moreover, several organs such as liver and kidney can show inflammation and intravascular thrombosis leading to malfunction (Stief, 2009, Chen et al., 2004).

Peptidolgycan is a highly conserved polymer that supports the bacterial structure and counters the osmotic pressure of the cell. It also enhances the secretion of proinflammatory cytokines (eg, IL-1 and IL-12) by binding to receptors on host cells, such as Toll-like receptor 2 (TLR2), although binding is weak compared to LPS (Travassos et al., 2004).

Lipoproteins are essential for bacterial survival and pathogenesis but their pathogenic function is yet to be determined (Godlewska et al., 2009). They are targeted by Toll-like receptors (eg, TLR-2) that stimulate the secretion of cytokines such as IL-1. They are also suggested to participate in the transport of compounds through the cell membrane. For example, lipoprotein mutant strains of *Pseudomonas putida*, *Pseudomonas aeruginosa* and *E. coli* showed insignificant growth in media containing compounds such as arginine, fructose, saccharose and glycerol as the sole carbon source, probably as a result of defects in the transport of these compounds (Llamas et al., 2003).

1.25 Gram-positive bacteria

The cell wall of Gram-positive bacteria comprises a single lipid membrane and is mainly composed of thick peptidoglycan polymer layers (90% of the cell wall thickness) linked by amino acid bridges. Teichoic acid polymers intersperse the layers (see *Staphylococcus aureus*, section 1.26) and occasionally anchor into the plasma membrane to form LTA (see Lipoteichoic acid, section 1.27) (Figure 1.21).

Figure 1.21 Structure of the Gram-positive bacteria cell wall. The wall is thick and contains 90% peptidoglycan (by thickness). It is interspersed with teichoic acids and lipoteichoic acids. Figure was modified from Cabeen and Jacobs-Wagner (2005).

Teichoic acids confer a high density of negative charge on the bacterial surface and attract cations such as Ca^{2+} , Fe^{3+} , and Mg^{2+} , which contribute towards the rigidity of the cell wall (Thwaite et al., 2002). They also facilitate the adherence of Gram-positive bacteria such as *S. aureus* to epithelial cells by targeting glycoprotein fibronectins on the surface of these cells (Aly and Levit, 1987).

1.26 Staphylococcus aureus

Around half million cases of sepsis with multiple organ dysfunction syndrome are annually recorded in the United States (Increase in National Hospital Discharge Survey rates for septicemia-United States, 1979-1987. *MMWR Morb Mortal Wkly Rep* 39:31, (1990). They contribute 35% towards the mortality rate in surgical intensive care units (Balk and Bone, 1989, Pinner et al., 1996). Despite the introduction of antibiotics, sepsis is still a major source of such high mortality rates. Gram-positive bacteria are the cause of around 50% of all cases of sepsis (Wenzel, 1988, Pinner et al., 1996, Solomkin, 2001) and of these, *S. aureus* is most common pathogen (Solomkin, 2001, Richardson et al., 1999).

S. aureus is a common human pathogen associated with a variety of different diseases ranging from local infections (eg, skin infections including cellulitis and impetigo) to systemic dissemination and metastatic infections eg, septic arthritis, where *S. aureus* invades a joint to produce arthritis. Local and systemic effects of toxins produced by *S. aureus* include toxic shock syndrome and scalded skin syndrome (Archer, 1998, Lowy, 1998). The Staphylococcal outer envelope is formed from peptidoglycans, proteins, teichoic and teichuronic acids and LTA (Ghuysen et al., 1965, Robbins and Schneerson, 1990, Fischer, 1994, Labischinski et al., 1998, Sriskandan and Cohen, 1999, Neuhaus and Baddiley, 2003). *S. aureus* is able to cause so many different diseases mainly because of its capability to produce multiple virulence factors (Table 1.8).

Staphylococcus aureus virulence factors	Abbreviation
Protein A	Spa
Clumping factor A	ClfA
Capsular polysaccharide serotypes 5 and 8	Cps
Chemotaxis inhibitory protein	CHIPS
Staphylokinase	Sak
MHC Class II analogous protein/extracellular adherence protein	Map/Eap
Extracellular fibrinogen binding protein	Efb
Aureolysin	Aur
Panton-Valentine leukocidin	PVL
Leukocidin E-D	LukED
γ-haemolysin	HIg
Enterotoxin A	Sea
Enterotoxin B	Seb
Enterotoxin C	Sec
Enterotoxin D	Sed
Enterotoxin G	Seg
Enterotoxin H	Seh
Toxic shock syndrome toxin-1	TSST-1
Staphylococcal response AB	SrrAB
Staphylococcus aureus type 8 capsular polysaccharide	CP8

Table 1.8 Selected S. aureus virulence factors (Foster, 2005).

Virulence factors such as protein A, chemotaxis-inhibitory protein of staphylococci (CHIPS), the panton-valentine leukocidin (PVL) and clumping factor A (CIfA) weaken the host immune response. Protein A is a surface protein anchored to the cell wall that binds to the Fc region of IgG. Binding coats the bacterial surface with IgG molecules oriented to prevent interactions with Fc receptors of phagocytes (Foster, 2005). CHIPS is a chemotaxis inhibitory protein that interacts with the formyl peptide receptor and the C5a receptor on the surface of neutrophils and inhibits the migration of these phagocytes to the site of inflammation (Foster, 2005). PVL lyses leukocytes and is most commonly associated with severe skin infections (Foster, 2005). CIfA is a fibrinogenbinding protein located on the surface of *S. aureus* and coats it with fibrinogen to provide protection against phagocytosis by human neutrophils (Foster, 2005). Despite the identification of all these virulence factors, the molecular pathology of the immune response to *S. aureus* is still poorly understood. However, it is known that staphylococcal secreted proteins and cell wall components contribute towards multiple inflammatory responses by host cells.

1.26.1 Capsule

Most *S. aureus* clinical isolates, including serotype 5, serotype 8 and serotype 336, possess a thin microcapsular layer made of different serotype capsular polysaccharides. An elevated virulence level in animal infection models is associated with the production of type 5 and type 8 capsules (Luong and Lee, 2002, Baddour et al., 1992). Moreover, *in vitro* studies have shown that the presence of the capsule may inhibit the binding of many serum opsonins, significantly decreasing phagocytosis by neutrophils (Thakker et al., 1998, Nilsson et al., 1997). However, elevated levels of particular anti-capsular antibodies mediate opsonophagocytosis and provide limited protection against infection (O'Riordan and Lee, 2004, Lee et al., 1997).

1.26.2 Peptidoglycan

The *S. aureus* peptidoglycan is a highly conserved polymer in the bacterial cell wall that triggers the alternative pathway of the complement system by enhancing the formation of C3 convertase. It also induces the release of proinflammatory cytokines (eg, IL-1 and IL-12) and chemokines (eg, IL-8) in phagocytes (eg, macrophages). Induction of these cytokines by peptidoglycan is weak compared to LPS (Travassos et al., 2004). However, synergetic effects with LTA promote septic shock and organ failure in rats (De Kimpe et al., 1995, Kengatharan et al., 1998, Thiemermann, 2002).

1.26.3 Hemolysins

S. aureus produce other virulence factors such as α -, and δ -hemolysins. α -hemolysin is a self-assembling, channel-forming toxin, which interacts with the membrane of different cells including peripheral blood monocytes and endothelial cells (Bhakdi et al., 1989, Bhakdi and Tranum-Jensen, 1988), where it forms pores and mediates cell lysis (Bhakdi et al., 1989, Bhakdi and Tranum-Jensen, 1988, Dragneva et al., 2001, Onogawa, 2002). δ -hemolysin is a 26 amino acid hemolytic peptide toxin that can rapidly cross the host lipid membrane to induce red blood cell lysis (Pokorny et al., 2002). It also interacts with human neutrophils, stimulating their oxidative burst and release of TNF- α (Schmitz et al., 1997).

1.27 Lipoteichoic acid (LTA)

LTA is a bacterial cell wall component found uniquely in Gram-positive bacteria. It is an amphiphile composed of a hydrophilic backbone with glycerophosphate and D-alanine (or hexose substituents) repeats in addition to lipophilic glycolipids (Figure 1.22).

Figure 1.22 Structure of lipoteichoic acid. LTA is an amphiphile composed of a hydrophilic backbone with glycerophosphate (G: glycerol, P: phosphate) and D-alanine (ALA) repeats in addition to lipophilic glycolipids. Figure was modified from Xia et al.(2010).

Gram-positive bacteria release LTA following bacteriolysis triggered by components in plasma and by neutrophil cationic agents (Ginsburg, 1987, Ginsburg, 1998, Sriskandan and Cohen, 1999) or beta-lactam antibiotics (Sela et al., 1977, Alkan and Beachey, 1978, Horne and Tomasz, 1979, Ginsburg, 1987, Ginsburg, 1998, van Langevelde et al., 1998, Periti and Mazzei, 1998, Heer et al., 2000). LTA is also an adhesion molecule by which Gram-positive bacteria can interact with host cells. *S. aureus* binds fatty acids carried by albumin via LTA (Beachey et al., 1988). Moreover, *in vitro* studies have suggested that LTA targets a receptor on human neutrophils known as CD14 to induce the release of proinflammatory mediators such as IL-8 and TNF- α (Hattar et al., 2006).

LTA is considered to be a virulence factor because it induces the release of proinflammatory agonists. It may have a role in cell damage in inflammatory conditions and in postinfectious sequelae (eg, sepsis and septic shock) (Ginsburg, 2002). For example, LTA from group-A streptococci stimulated human polymorphonuclear cells to produce superoxide and secrete lysosomal enzymes when treated with antistreptococcal serum (Ginsburg et al., 1988). Moreover, macrophages released lysosomal hydrolases once sensitised with LTA in the absence of antibodies (Harrop et al., 1980).

LTA can contribute to the regulation, recruitment and activation of leukocytes during inflammation (Ginsburg, 2002). For instance, LTA purified from *S. aureus* induces the release of hepatocyte growth factor (HGF) from human dermal fibroblasts and the secretion of the macrophage activating and chemotactic cytokine MIP-1 α (Baroni et al., 1998, Danforth et al., 1995). In addition, LTA was shown to inhibit chemotaxis of human polymorphonuclear leukocytes and phagocytosis of *S. aureus* by these leukocytes (Ginsburg and Quie, 1980, Raynor et al., 1981). LTA was also demonstrated to activate the lectin pathway of the complement system by specific interactions with L-ficolin (Lynch et al., 2004).

LTA can behave as an adaptable immunomodulator capable of regulating cell responses in inflammatory conditions (Ginsburg, 2002). For example, LTA purified from *S. aureus* induces a blastogenic response in T lymphocytes (transformation of small T lymphocytes into larger cells undergoing mitosis) isolated from healthy individuals (Aasjord et al., 1986). Moreover, LTA binds TLR2 on macrophages to stimulate the activation of nuclear factor-kappa B (NF-kB; a transcription factor contributes to cytokine secretion) and blocks proliferation of fibroblast (cells of connective tissues) by unknown mechanisms (Ginsburg, 2002, Elgavish, 2000). LTA also induces mononuclear phagocytes to release cytokines such as TNF- α , interferon- γ , interleukins; (IL-1, IL-5, IL-6 and IL-8) and anti inflammatory interleukins; (IL-10 and IL-12) (Bhakdi et al., 1991, Wang et al., 2000). These cytokines play an essential role in the host defence mechanism against different bacterial infections especially in sepsis and other post infectious sequelae (Arndt and Abraham, 2001, Carlet, 2001).

1.28 General aims of this thesis

LTA is an important inflammatory component of *S. aureus*. However, important questions remain unanswered with regard the interactions of LTA with human serum components and human phagocytes and the mechanisms employed by the host to target LTA and thereby eliminate *S. aureus*. In order to provide new insights into these processes, this thesis aims to address the following areas:

- Identify human serum proteins capable of binding to LTA from S. aureus
- Study the interactions of selected binding proteins with LTA and S. aureus
- Evaluate the role of these proteins in the elimination of *S. aureus* by isolated human neutrophils, monocytes and macrophages
Chapter 2 Identifying human serum LTA-binding proteins

2.1 Introduction and Objectives

LTA is a distinctive bacterial cell wall constituent of Gram-positive bacteria that can facilitate the interaction of microorganisms with host cells. It is also a virulence factor, which stimulates the release of proinflammatory agonists and the recruitment and activation of leukocytes during inflammation (Ginsburg, 2002). For example, LTA induces mononuclear phagocytes to release cytokines such as TNF- α , interferon- γ and different interleukins essential for the defence mechanism of the host against infection (Bhakdi et al., 1991, Wang et al., 2000). LTA is increasingly considered as the Grampositive counterpart of LPS, although its potent immunostimulatory functions are relatively poorly characterized. In a recent study in our laboratory, LTA was shown to bind directly to human L-ficolin and promote activation of the lectin pathway of complement (Lynch et al., 2004). Based on this work, it was hypothesized that LTA might interact with additional serum proteins to initiate alternative immune responses and assist in the elimination of invading bacteria. This chapter focuses on identifying novel LTA-binding proteins from human serum using a highly purified LTA preparation from S. aureus, and evaluating whether these interactions are likely to have significant immunological importance.

Purification methods for LTA have developed considerably over the past years to produce biologically active material that is free from contamination by other bacterial components. Early methods for extraction employed hot phenol extraction followed by hydrophobic interaction chromatography (Wang et al., 2003). LTA purified from Bacillus Subtilis, Listeria monocytogenes, Streptococcus pygoenes and several Enterococci strains stimulated adherent human monocytes to release inflammatory cytokines such as IL-1 β , IL-6, and TNF- α (Bhakdi et al., 1991). However, LTA purified from S. aureus and S. pneumoniae using the same method did not stimulate cytokine release (Bhakdi et al., 1991). As a consequence, LTA from S. aureus was considered to be not very potent relative to other species (Wang et al., 2003). Nevertheless, cells could be stimulated by higher concentrations of LTA. For instance, relatively high doses of LTA from S. aureus stimulated the expression of iNOS in vascular smooth muscle cells, which may contribute to the severe hypotension induced by sepsis (Auguet et al., 1992). This study was one of the first to suggest that LTA may have similar properties to LPS, the most potent known microbial structure at that time, but only at significantly elevated concentrations (Wang et al., 2003).

Commercial preparations of LTA purified from *S. aureus, B. subtilis* and *Streptococcus sanguis* have been shown to carry significant amounts of contaminants capable of stimulating inflammatory responses, and thus are unsuitable for immunological analysis (Gao et al., 2001, Morath et al., 2002). For example, hydrophobic interaction chromatography demonstrated the presence of significant amounts of LPS contaminants (Gao et al., 2001). The potency of these preparations to induce production of NO in RAW 264.7 mouse macrophages was remarkably reduced by the LPS-inhibitor polymyxin B, implying that much of the activity was LPS mediated (Gao et al., 2001). Moreover, nuclear magnetic resonance spectroscopy and hydrophobic interaction

chromatography showed significant decomposition of the LTA characterized by a loss of glycerol-phosphate units, D-alanine and N-acetylglucosamine substituents (Morath et al., 2001).

The original phenol extraction method was therefore modified using n-butanol extraction at room temperature, in place of the phenol step (Morath et al., 2001). Using this strategy, highly pure, biologically active LTA was produced from *S. aureus* (Morath et al., 2001). Nuclear magnetic resonance and mass spectroscopy structural analysis demonstrated the presence of intact D-alanine substituents (Morath et al., 2001). Moreover these preparations were found to have increased biological activity by several orders of magnitude (Morath et al., 2001). Thus, LTA was re-established to be an important inflammatory component of Gram-positive bacteria (Wang et al., 2003). All experiments in this thesis were conducted with LTA purified using this protocol.

2.2 Materials and Methods

2.2.1 Materials

Octyl-Sepharose CL-4B was purchased from Amersham and n-butanol was from Merck. Sepharose 6B, divinyl sulfone, Protein A agarose fast flow were procured from Sigma-Aldrich. SilverQuest staining kit and protein molecular weight markers for SDS-polyacrylamide gel electrophoresis (SDS-PAGE) were purchased from Invitrogen. Silver staining, Gradient gels and 2 dimensional-PAGE (2D-PAGE) kits were obtained from Bio-Rad. VisPRO 5 minutes protein staining kit was from Avegene and Colloidal Coomassie was from Calbiochem.

2.2.2 Purification of LTA from S. aureus

LTA was purified from *S. aureus* (DSM 20233) at Konstanz University using the procedure described by Morath et al. (2001). *S. aureus* was grown aerobically in a 42-liter fermentor at 37 °C and harvested at an estimated OD₅₇₈ of 15 using a constant flow centrifuge. The bacterial pellet was then resuspended in 0.1 M sodium citrate buffer, pH 4.7, and broken with glass beads in a Braun disintegrator. The disrupted bacteria were mixed with an equal volume of n-butanol under shaking for 30 minutes at room temperature (RT). Following centrifugation at 13,000 g for 20 minutes, the aquous phase was lyophilized overnight, resuspended with 15% n-propanol in 0.1 M ammonium acetate, pH 4.7 (chromatography start buffer) and centrifuged at 45,000 g for 15 minutes. The supernatant was then applied to an octyl-Sepharose CL-4B column (1.5 by 29 cm) equilibrated with 15% n-propanol in 0.1 M ammonium acetate; pH 4.7. The column was washed with 4 column volumes of equilibration buffer at 15 ml/h and LTA was eluted using a linear gradient (15% to 60% n-propanol) in 0.1 M ammonium acetate, pH 4.7 at 15 ml/h and aliquots of 4 ml were collected. The purity of LTA was

tested and determined to be greater than 99% pure by our collaborator Dr. Corinna Hermann (Department of Biology, University of Konstanz, Germany), using nuclear magnetic resonance, mass spectrometry and cytokine induction assays as described by Morath et al. (2001).

2.2.3 Coupling LTA to Sepharose beads

Sepharose 6B (2 ml) was activated in 0.5 M NaHCO3, pH 11 (3 ml) containing divinyl sulfone (0.3 ml) for 70 minutes at RT with mixing. LTA (1.09 mg) was then mixed with the activated Sepharose 6B in 0.5 M NaHCO3, pH 10 (1 ml), with stirring overnight at RT. After coupling the LTA to the Sepharose beads, any remaining reactive groups were blocked by mixing with 0.5 M NaHCO3, pH 8.5 (1 ml), and 2-mercaptethanol (0.02 ml) for two hours at RT. The affinity matrix was washed extensively in water prior to use.

2.2.4 Separation of serum from healthy human blood

Human blood was extracted from healthy volunteers and was left to clot overnight at 4 °C. The clot was removed by centrifugation for 30 minutes at 3500 g and at 4 °C, and the serum was isolated and stored at -20 °C.

2.2.5 Depletion of IgG antibodies from serum

Protein A agarose fast flow was used to deplete IgG antibodies from human serum (its binding capacity for IgG is 37-43 mg/ml). It was packed in a chromatography column (2 ml), equilibrated with ice cold TBS buffer (10 mM Tris/HCl and 140 mM NaCl), pH 7.4, and loaded with serum (5 ml), and fractions depleted of IgG were collected. After washing the column with 50 mM Glycine, pH 2.7, and ice cold TBS buffer to remove the bound IgG, the serum was re-loaded onto the same column to further deplete it of IgG.

2.2.6 Removal of Sepharose-binding proteins from serum

To remove Sepharose-binding proteins from the IgG-depleted serum, serum (6 ml) was loaded onto a Sepharose 6B (2 ml) equilibrated with ice cold TBS. Fractions containing serum were collected and the procedure was repeated one additional time using fresh Sepharose.

2.2.7 Identifying serum LTA-binding proteins

Equivalent volumes (6ml) of pretreated human serum were loaded onto the LTA-Sepharose column and a control column, in parallel, containing Sepharose 6B (activated with divinyl sulfone and blocked with β -mercaptoethanol as above but without LTA). Both columns were washed with 10 column volumes of TBS containing 1 mM CaCl₂ and 1 mM MgCl₂ and 1.5 ml fractions were collected until the absorbance at 280 nm < 0.05. To remove any metal ion-dependent binding components, the column was then washed with TBS containing 1 mM EDTA and finally was eluted with TBS containing 1% SDS. Columns were further washed with 50 column volumes of TBS containing 1% SDS and were stored in TBS containing 0.02% sodium azide at 4 °C for further use. Fractions were stored at -20 °C. Proteins eluted from the column were analyzed by SDS-PAGE; using 1 dimensional (1D) or 2 dimensional (2D) gels. Different staining methods were utilized to detect LTA-binding proteins, including Coomassie blue, Colloidal Coomassie, Silver stain, SilverQuest silver stain and VisPRO 5 minutes protein stain. Proteins of interest were identified by in-gel trypsin digestion and MALDI-TOF-MS (matrix assisted laser desorption ionisation time-of-flight mass spectrometry) by the sequencing service at Leicester University (PNACL).

2.3 Results

In order to capture human serum LTA-binding proteins, highly pure LTA from *S. aureus* was chemically coupled to Sepharose beads using divinyl sulfone. This method targets hydroxyl groups, so LTA is likely to be bound in a variety of different conformations. Before loading (Sepharose 6B coupled with LTA column and the control column), the serum was first depleted of IgG using protein A-agarose to prevent saturation of the LTA-Sepharose with IgG, which could hamper binding and detection of other LTA-binding proteins. Serum was then loaded onto the columns and proteins were first eluted with EDTA to capture any metal ion-dependent binding proteins. Fractions were analyzed by SDS-PAGE under reducing condition and serum proteins were detected by a variety of different staining methods.

2.3.1 Coomassie blue staining

Coomassie blue staining was the first method used. The Coomassie stain is a disulfonated triphenylmethane dye that interacts with protonated basic amino acids such as lysine, arginine and histidine via electrostatic interactions, and binds aromatic residues via hydrophobic interactions. Consequently, protein bands are stained bright blue (Steinberg, 2009). This method is relatively insensitive and can detect around 50 ng protein. However it is non-covalent, reversible and compatible with identification by in gel trypsin digestion/MALDI-TOF-MS, so was used as an initial screen. A typical gel is shown in Figure 2.1.

Figure 2.1 SDS-PAGE gel stained with Coomassie blue to identify serum proteins capable of interacting with LTA. SDS-PAGE gel under reducing conditions (12%), the first two elution fractions using EDTA and SDS are shown. Fractions from LTA-Sepharose and control columns were analyzed in parallel. After staining with Coomassie blue, two protein bands (1 and 2) were identified as putative LTA-binding proteins.

Two unique protein bands (1 and 2) were identified in SDS-elution fraction 1 as putative LTA-binding proteins. These bands were not seen in the corresponding elution fraction from the control column. Both bands were extracted and analyzed by in gel trypsin digestion/MALDI-TOF-MS.

Mass spectrometry data showed that the first band contains apolipoprotein A-IV and haptoglobin (HP) whereas the second band is apolipoprotein E3/E3K (Table 2.1). Seven peptides that match sequences in apolipoproteins A-IV were detected (Table 2.1 and Figure 2.2). In addition, five other peptides were identified to match peptide sequences in HP (Table 2.1 and Figure 2.2). In the second band, twenty peptides were found to match peptide sequences in apolipoprotein E3/E3K (Table 2.1 and Figure 2.2).

Importantly, all peptides correspond to those that would be expected to be generated by trypsin digestion, supporting their predicted identities. For example, the preceding residue of peptide 113-123 of apolipoprotein A-IV would be an arginine residue, corresponding to the cleavage specificity of trypsin. Furthermore the C-terminal residues of peptides are invariably lysine or arginine residues, as expected.

Bands	Proteins	Match	ing peptide sequences	Observed Mass (Da)	Calculated Mass (Da)
		113 - 123	LLPHANEVSQK	1235.5305	1234.6670
		135 - 143	LEPYADQLR	1103.4743	1103.5611
		144 - 154	TQVSTQAEQLR	1259.6178	1259.6470
	apolipoprotein	201 - 209	LTPYADEFK	1082.4404	1082.5284
	A-IV	222 - 233	SLAPYAQDTQEK	1349.6619	1349.6463
1		256 - 264	ISASAEELR	974.5118	974.5032
1		317 - 326	ALVQQMEQLR	1230.6113	1230.6390
		112 - 119	GSFPWQAK	919.4123	919.4552
		157 - 168	DIAPTLTLYVGK	1289.6894	1289.7231
	haptoglobin	170 - 176	QLVEIEK	857.4614	857.4858
		321 - 332	SCAVAEYGVYVK	1344.5728	1344.6384
		333 - 342	VTSIQDWVQK	1202.6068	1202.6295
		34 - 43	QQTEWQSGQR	1246.5336	1246.5691
		44 - 50	WELALGR	843.3848	843.4603
		51 - 56	FWDYLR	898.3855	898.4337
		80 - 87	ALMDETMK	969.3755	969.4147
		94 - 108	SELEEQLTPVAEETR	1729.5614	1729.8370
		94 - 108	SELEEQLTPVAEETR	1729.8826	1729.8370
		122 - 132	LGADMEDVCGR	1237.4978	1237.5067
		138 - 152	GEVQAMLGQSTEELR	1662.7743	1662.7883
		138 - 152	GEVQAMLGQSTEELR	1662.8849	1662.7883
	apolipoprotein	177 - 185	LAVYQAGAR	947.4698	947.5188
2	E3/E3K	199 - 207	LGPLVEQGR	967.4593	967.5451
		210 - 224	AATVGSLAGQPLQER	1496.7949	1496.7947
		225 - 231	AQAWGER	816.3371	816.3878
		252 - 258	EQVAEVR	829.4831	829.4294
		261 - 269	LEEQAQQIR	1113.5431	1113.5778
		270 - 278	LQAEAFQAR	1032.4717	1032.5352
		281 - 292	SWFEPLVEDMQR	1535.7217	1535.7079
	l ľ	281 - 292	SWFEPLVEDMQR	1551.6556	1551.7028
	l ľ	293 - 300	QWAGLVEK	929.4857	929.4971
	l	301 - 317	VQAAVGTSAAPVPSDNH	1619.7824	1619.7904

Table 2.1 Putative LTA-binding proteins identified following staining with Coomassie blue. Protein bands were extracted from the SDS-PAGE gel, stained with Coomassie blue, and analyzed by in gel trypsin digestion/MALDI-TOF-MS.

Apolipoprotein A-IV

1	MFLKAVVLTL	ALVAVAGARA	EVSADQVATV	MWDYFSQLSN	NAKEAVEHLQ
51	KSELTQQLNA	LFQDKLGEVN	TYAGDLQKKL	VPFATELHER	LAKDSEKLKE
101	EIGKELEELR	AR LLPHANEV	SQK IGDNLRE	LQQR LEPYAD	QLRTQVSTQA
151	EQLR RQLTPY	AQRMERVLRE	NADSLQASLR	PHADELKAKI	DQNVEELKGR
201	LTPYADEFKV	KIDQTVEELR	RSLAPYAQDT	QEK LNHQLEG	LTFQMKKNAE
251	ELKAR ISASA	EELR QRLAPL	AEDVRGNLRG	NTEGLQKSLA	ELGGHLDQQV
301	EEFRRRVEPY	GENFNK ALVQ	QMEQLR QKLG	PHAGDVEGHL	SFLEKDLRDK
351	VNSFFSTFKE	KESQDKTLSL	PELEQQQEQQ	QEQQQEQVQM	LAPLES

Haptoglobin (HP)

1	MSALGAVIAL	LLWGQLFAVD	SGNDVTDIAD	DGCPKPPEIA	HGYVEHSVRY
51	QCKNYYKLRT	EGDGVYTLND	KKQWINKAVG	DKLPECEAVC	GKPKNPANPV
101	QRILGGHLDA	K gsfpwqak m	VSHHNLTTGA	TLINEQWLLT	TAKNLFLNHS
151	ENATAK DIAP	TLTLYVGKKQ	LVEIEK VVLH	PNYSQVDIGL	IKLKQKVSVN
201	ERVMPICLPS	KDYAEVGRVG	YVSGWGRNAN	FKFTDHLKYV	MLPVADQDQC
251	IRHYEGSTVP	EKKTPKSPVG	VQPILNEHTF	CAGMSKYQED	TCYGDAGSAF
301	AVHDLEEDTW	YATGILSFDK	SCAVAEYGVY	VKVTSIQDWV	QK TIAEN

Apolipoprotein E3/E3K

1	MKVLWAALLV	TFLAGCQAKV	KQAVETEPEP	ELR QQTEWQS	GQRWELALGR
51	FWDYLRWVQT	LSEQVQEELL	SSQVTQELR A	LMDETMK ELK	AYK SELEEQL
101	TPVAEETR AR	LSKELQAAQA	RLGADMEDVC	GR LVQYR GEV	QAMLGQSTEE
151	LR VRLASHLR	KLRKRLLRDA	DDLQKR LAVY	QAGAR EGAER	GLSAIRER <mark>LG</mark>
201	PLVEQGR VR A	ATVGSLAGQP	LQERAQAWGE	R LRARMEEMG	SRTRDRLDEV
251	K EQVAEVR AK	LEEQAQQIRL	QAEAFQAR LK	SWFEPLVEDM	QRQWAGLVEK
301	VQAAVGTSAA	PVPSDNH			

Matched peptides shown in **bold red**

Figure 2.2 Protein sequences of apolipoprotein A-IV, haptoglobin and apolipoprotein E3/E3K showing the matched tryptic peptides. The peptide coverage was 17% of apolipoprotein IV, 14% of HP and 54% of apolipoprotein E3/E3K (matched peptides are shown in *bold red*).

Although Coomassie blue staining was effective enabling detection and identification of

some serum proteins, sensitivity is relatively low compared to other staining methods,

so only the most abundant proteins are likely to be identified. To detect less-abundant

proteins, more sensitive staining methods were used as discussed below.

2.3.2 Silver staining

Silver staining is a very sensitive tool for protein visualizations on SDS gels. The staining mechanism is relatively complex and involves the reduction of protein-bound silver ions to metallic silver. Glutaraldehyde is used to bind amino groups in proteins and enhance the binding of silver ions. Following saturation, protein is visualized by reduction of bound silver ions to insoluble, visible metallic silver (Steinberg, 2009). This method can detect very low amounts of protein, with as little as 2.5 ng protein per band. However, identification by mass spectrometry can be problematic because proteins become cross-linked to the gel matrix, preventing the elution of peptides.

Five protein bands (3, 4, 5, 6 and 7) were extracted from the gel shown in Figure 2.3, which were unique to elution fractions from the LTA-Sepharose column. These were identified as before (see Table 2.2 and Scheme 1 in Appendix 1).

Bands	Proteins	Number of matched peptide sequences	Peptides sequence coverage (%)
3	unidentified	None	None
4	unidentified	None	None
	apolipoprotein A-IV	15	36
5	haptoglobin	4	16
	serum paraoxanase	3	10
	apolipoprotein E3	13	38
6	apolipoprotein J	5	15
	haptoglobin related protein	4	10
7	unidentified	None	None

Table 2.2 Identification of proteins stained by Silver stain. Protein bands were extracted from the SDS-PAGE gel stained with Silver stain and analyzed by in-gel trypsin digestion/MALDI-TOF-MS. Although clearly detectable on the gel, only some of the proteins could be identified by mass spectrometry.

Band 5 contained at least three proteins: apolipoprotein A-IV, HP and serum paraoxanase and band 6 comprised apolipoprotein E3, apolipoprotein J and haptoglobin-related protein (HPr). Proteins in the other bands (3, 4 and 7) were not identified. As described above, this is a common problem with silver-stained gels and is thought to be caused by poor elution of peptides from the gel following trypsin digestion as a result of formaldehyde and glutaraldehyde cross-links, hampering detection of low abundant protein species.

To overcome this problem, other staining methods such as SilverQuest silver stain and Colloidal Coomassie were tested.

2.3.3 SilverQuest silver stain

The SilverQuest silver staining method is more sensitive than standard silver staining, and can detect as little as 0.3 ng protein per band. As in the standard silver staining method, it is also based on chemical reduction of silver ions to metallic silver on protein bands. However a specially formulated sensitizer solution is utilised to improve sensitivity and compatibility with mass spectrometry analysis. Although it still forms glutaraldehyde bonds with the gel matrix, it does not form formaldehyde crosslinks, so more proteins can be identified.

Figure 2.4 SDS-PAGE gel stained with SilverQuest. Reducing SDS-PAGE gel (12%), showing EDTA and SDS elution fractions as in Figures 2.1 and 2.3. Eleven putative LTA-binding protein bands (8, 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18) were identified.

Eleven protein bands (8, 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18), specific to the LTA

column were identified (see Table 2.3 and Scheme 2 in Appendix 1).

Bands	Proteins	Number of matched peptide sequences	Peptides sequence coverage (%)
8	pre-serum amyloid P component	9	33
10	carboxypeptidase D	4	3
9,11,12,13,14,16	keratins	multiple (eg, 12 for band 9)	(eg, 16 for band 9)
15	collagen	2	6
17	apolipoprotein E	5	16
19	plasminogen	2	1
18	lipoprotein GIn I	7	25

Table 2.3 Identification of LTA binding proteins stained by SilverQuest silver stain. Protein bands were extracted from SDS-PAGE gel stained with SilverQuest silver stain and sent for identification by mass spectrometry. The listed proteins in this table are the identity of the extracted protein bands, provided after mass spectrometry analysis.

Novel putative LTA-binding proteins including pre-serum amyloid P component (band 8) and carboxypeptidase D (band10) were identified using this method. On the other hand, other bands represented a common contaminant from human hair, called keratin were detected (bands 9, 11, 12, 13, 14 and 16; Table 2.3 and Scheme 2 in Appendix 1). A band corresponding to the migration positions of HP and apolipoprotein A-IV was also seen on the gel (yellow box in Figure 2.4), but was not analyzed to avoid repetition and keep down the cost of the analysis.

2.3.4 Colloidal Coomassie

Colloidal Coomassie is a sensitive protein stain that can detect ~5 ng protein per band. It is similar to the standard Coomassie blue staining method described above, but the colloidal stain does not penetrate the gel matrix entirely but still interacts specifically with proteins, allowing reduced background staining and improved sensitivity (Steinberg, 2009). It is also fully compatible with mass spectrometry.

Figure 2.5 SDS-PAGE gel stained with Colloidal Coomassie to identify putative LTA-binding proteins. Reducing SDS-PAGE gel (12%) of EDTA and SDS elution fractions, eleven putative LTA-binding protein bands (19, 20, 21, 22, 23, 24, 25, 26, 27, 28 and 29) were identified.

Eleven protein bands (19, 20, 21, 22, 23, 24, 25, 26, 27, 28 and 29), were analyzed by

mass spectrometry and the results are shown in Table 2.4 and Scheme 3 in Appendix 1.

Bands	Proteins	Number of matched peptide sequences	Peptides sequence coverage (%)
19	apolipoprotein B-100 precursor	4	0
20	cul-3	2	5
21	centromere protein	2	2
22	antithrombin III	3	37
22	human serum albumin	9	14
25	plasminogen	3	1
24	OMM protein	8	31
	apolipoprotein A-IV precursor	6	15
25	complement component C3	3	1
	plasminogen	2	1
26	apolipoprotein J precursor	7	15
26	apolipoprotein E	12	37
27	apolipoprotein E3	6	31
28	pre-serum amyloid P component	7	31
29	pro-apolipoprotein	2	9

Table 2.4 MALDI-TOF-MS identification of putative LTA-binding proteinsstained with Colloidal Coomassie stain.Protein bands were identified by in geltrypsin digestion MALDI-TOF-MS.

2.3.5 VisPRO 5 minutes protein staining method

VisPRO 5 minutes protein staining is a highly sensitive and speedy method to detect proteins on SDS-PAGE gel (around 1 ng protein per band is detected within 5 minutes). It utilises a negative stain by forming a zinc-imidazole complex on the gel which turns the gel white. Proteins resist staining and remain transparent as shown in Figure 2.6. This staining method is also compatible with mass spectrometry.

Figure 2.6 SDS-PAGE gel stained with VisPRO 5. Reducing SDS-PAGE gel (12%), showing EDTA and SDS elution fractions. A single protein band (band 30) was analysed.

Using this method, antithrombin was identified by MALDI-TOF-MS (Scheme 4 in Appendix 1). Once again, bands containing proteins already identified, such as HP and apolipoproteins (yellow box in Figure 2.6), were also observed but were not re-analyzed.

2.3.6 Gradient SDS-PAGE gel

As well as using a variety of different staining methods to identify putative LTA-binding proteins, I also used different gel types. Gradient SDS-PAGE gels were used to give better separation of proteins. These gels are characterized by a low percentage of acrylamide at the top of the gel, which gradually increases to a high percentage at the bottom. Consequently, a wider range of protein sizes can be separated compared to fixed-concentration gels. Gradient gels were stained with Colloidal Coomassie.

Figure 2.7 Separation of LTA-binding proteins by SDS-PAGE using a gradient gel (4-20%) stained with Colloidal Coomassie. Seven LTA-specific protein bands (31, 32, 33, 34, 35, 36 and 37) were identified.

Using this approach seven additional LTA-specific protein bands (21, 32, 33, 34, 35, 36

and 37) were detected and identified (see Table 2.5 and Scheme 5 in Appendix 1).

Bands	Proteins	Number of matched peptide sequences	Peptides sequence coverage (%)
31	immunoglobin heavy chain variable region	4	19
	human serum albumin	9	15
33	complement component 4 binding protein	6	10
52	human complement component C1r	3	4
	plasminogen	1	1
	keratin	7	11
33	hypothetical protein (gi 51476390)	9	14
	plasminogen	1	1
34	keratin	3	4
34	apolipoprotein D	2	6
	T cell receptor beta chain variable region	2	22
35	sialic acid-binding Ig-like lectin 10	2	5
	M4 protein	2	4
36	lipoprotein CIII	2	20
37	plasminogen	1	1

Table 2.5 Separation of LTA-binding proteins using a gradient SDS-PAGE gel. Protein bands were extracted from a 4-20% gradient gel stained with Colloidal Coomassie stain and analyzed by MALDI-TOF-MS.

2.3.7 Two dimensional-PAGE gel (2D-PAGE)

2D-PAGE was used to improve separation of proteins. The first dimension separates according to the isoelectric point of proteins, using isoelectric focusing and the second dimension employs regular SDS-PAGE and separates proteins according to their mass. 2D-PAGE is a useful method in proteomic research because of its ability to separate protein of similar sizes, facilitating their analysis. A ReadyPrep 2D starter kit from BIO-RAD was utilized and the 2D-PAGE gel was stained using the SilverQuest.

Figure 2.8 2D-PAGE gel stained with SilverQuest. SDS elution fractions from the LTA-Sepharose and control columns were analyzed. After staining the 2D-PAGE gel with SilverQuest silver stain, ten protein spots (38, 39, 40, 41, 42, 43, 44, 45, 46 and 47) were analyzed by mass spectrometry.

Figure 2.7 illustrates a 2D-PAGE stained with the SilverQuest silver stain. Ten additional LTA-specific proteins were sequenced (see Table 2.6 and Scheme 6 in Appendix 1).

Spots	Proteins	Number of matched peptide sequences	Peptides sequence coverage (%)
38	hypothetical protein (gi 34365470)	3	4
30	Polycystin-2	2	2
33	carboxypeptidase D	2	3
40	Polycystin-2	4	2
41	KIAA0626 protein	2	5
42	trypsin cationic trypsinogen	1	11
43	plasminogen	1	1
	carboxypeptidase D	2	3
44,45,46,47	unidentified	None	None

Table 2.6 Identification of putative LTA-binding proteins from a 2D-PAGE gel. Protein spots were extracted from a 2D-PAGE gel stained with SilverQuest silver stain and analyzed by in gel trypsin digestion/MALDI-TOF-MS.

Using this approach novel serum proteins were identified as putative LTA-binding

proteins such as polycystin-2 (spot 39 and 40). However, there was insufficient material

to enable all of the novel features to be identified (eg. spots 44, 45, 46 and 47).

2.3.8 Other elution methods (eluting with LTA)

As an alternative method for eluting LTA-binding proteins from the affinity column,

LTA itself was used to elute by competing for binding sites on the protein targets (see

Figure 2.9, Table 2.7 and Scheme 7 in Appendix 1).

Figure 2.9 Fractions from the LTA-affinity column eluted using LTA and separated by SDS-PAGE. Proteins were eluted using 0.4 mM LTA in TBS containing 1 mM CaCl₂, 1 mM MgCl₂ and were separated under reducing conditions on a 12% gel and stained with SilverQuest silver stain. Four bands (48, 49, 50 and 51) were analyzed by in gel trypsin digestion/MALDI-TOF-MS.

Bands	Proteins	Number of matched peptide sequences	Peptides sequence coverage (%)
48	keratin	4	5
	centrosomal protein	1	0
49	epidermal growth factor	3	43
50	human serum albumin	12	19
51	keratin	8	13
	plasminogen	3	1

Table 2.7 Serum proteins stained with SilverQuest silver stain on SDS-PAGE.

To summarize, using a variety of different methods a large number of candidate LTA-binding proteins were identified and are listed in the following table.

Proteins detected from the TBS, 1 mM EDTA elution fraction	Protein detected from the TBS, 1% SDS elution fraction	Proteins detected from the TBS, 1 mM CaCl ₂ , 1 mM MgCl ₂ and 0.4 mM LTA elution fraction
1. Lipid-transport proteins: Apolipoprotein A-IV precursor Apolipoprotein E3 2. Complement proteins: Complement C1r subcomponent precursor Mannose-binding lectin Complement factor H isoform a precursor 3. Coagulation-cascade proteins: Plasminogen 4. Other proteins Fibulin isoform D precursor Fibulin 1C Haptoglobin related protein precursor Haptoglobin Hypothetical proteins Immunoglobulin kappa light chain VLG region Immunoglobulin kappa light chain VLJ IgG Ig kappa chain C region Pre-serum amyloid P component Keratins Serum albumin Serum paraoxonase/arylesterase 1 (PON 1) (Serum aryldialkylphosphatase 1) (A- esterase 1) (Aromatic esterase 1) (K-45) Protein Rei,Bence-Jones Protein Len,Bence-Jones HCG1798436 Plasma protease inhibitor	1. Lipid-transport proteins: APOB protein Apolipoprotein E- Apolipoprotein A-IV Apolipoprotein A-I Apolipoprotein A-I Apolipoprotein A-IV precursor Apolipoprotein J precursor Apolipoprotein A-IV precursor Apolipoprotein A-IV precursor Apolipoprotein B-100 precursor Apolipoprotein B-100 precursor Apolipoprotein Gln I Lipoprotein Gln I Lipoprotein CIII 2. Complement proteins: C1 inhibitor Complement factor H related protein Complement component 4 binding protein Complement component C1r Human complement component C3 Complement component C4A Complement component C3 Complement component C4A Comple	1. Complement component C4 2. Coagulation-cascade proteins: Plasminogen 3. Other proteins Serum albumin Transferrin Cardiotrophin-like cytokine factor 1 Centrosomal protein Keratins Glutathione s-transferase fused with the nuclear matrix targeting signal of the transcription factor Aml-1 Epidermal growth factor
	rie-serum amytotu r component	

IKK interacting protein isoform 1	
Serum paraoxanase	
Polycystin-2	
Carboxypeptidase D	
Cul-3	
TPR repeat-containing protein	
Trypsin cationic trypsinogen	
KIAA1043 protein	
KIAA0626 protein	
Centromere protein	
Pleckstrin homology-like domain	
Lipopolysaccharide binding	
protein	
OMM Protein	
Protein tro alpha1 H	
Kininogen 1	
Heat shock 70kDa protein 9B	
Alpha2-HS glycoprotein	
PENK protein	
Proapolipoprotein	
Globular glutathione s-transferase	
fused with the nuclear matrix	
targeting signal of the transcription	
factor Aml-1	
Truncation mutant 165 transmem-	
brane protein 27	
Vitamin K dependent protein S	
precursor	
Collagen	
Hypothetical proteins	
T cell receptor beta chain variable	
region	
Sialic acid-binding Ig-like lectin 10	
M4 protein	

Table 2.8 Putative LTA-binding proteins identified by in gel trypsindigestion/MALDI-TOF-MS.

2.4 Discussion

The serum components identified as putative LTA-binding proteins are listed in Table 2.8. In order to assess their potential involvement in immune responses against *S. aureus*, the literature was scanned to evaluate the known properties of these proteins.

2.4.1 Haptoglobin (HP)

HP was one of the first proteins to be identified as a putative LTA-binding protein in this study and was seen by Coomassie staining, indicating its high abundance. Although HP is an acute-phase protein, its main known function is to interact with free haemoglobin (HB), released from erythrocytes by intravascular haemolysis (Okazaki et al., 1997, Okazaki and Nagai, 1997). HP-HB complexes subsequently bind to the scavenger receptor CD163 on monocytes and macrophages promoting endocytosis and clearance from the serum (Kristiansen et al., 2001, Graversen et al., 2002). Interestingly, HP is also stored during granulocyte differentiation and is released upon neutrophil activation, suggesting a role in immunity (Theilgaard-Monch et al., 2006). However, such a role has not been explored previously. HP has many of the hallmarks of an innate immune molecule; it is an acute-phase protein and is known to associate with phagocytic cells to promote elimination of bound HB. Thus, binding of LTA by HP may have considerable immunological importance in the killing and the clearance of S. aureus by the immune system. It can be hypothesized that HP binds to S. aureus via cell wall components including LTA to mediate activation of phagocytic cells such as neutrophils, monocytes and macrophages and promote neutralization by phagocytosis. For these reasons HP was prioritized for further work.

2.4.2 Galectin-3 binding protein (Mac-2 binding protein)

Galectin-3 binding protein or Mac-2 binding protein (M2BP) is a secreted glycoprotein found in the extracellular matrix of many tissues including epithelial and gastrointestinal tissues (Sasaki et al., 1998, Ullrich et al., 1994), and in extracellular fluids such as serum and milk (Koths et al., 1993). Increased concentrations of M2BP are observed in certain tumors and viral infections (Iacobelli et al., 1988, Longo et al., 1993). In addition, human M2BP stimulates the production of cytokines such as IL-1 and IL-6 and the activation of NK-cells (Ullrich et al., 1994, Powell et al., 1995). M2BP can also interact with a macrophage-associated lectin known as galectin-3 (Mac-2) and other proteins such as collagens IV, V and VI, fibronectins and nidogen (Sasaki et al., 1998, Koths et al., 1993, Rosenberg et al., 1991, Inohara and Raz, 1994). Furthermore, M2BP facilitates the binding of LPS to CD14, which performs a major role in mediating cellular responses (Yu and Wright, 1995). Thus, M2BP is another excellent candidate for a LTA-binding immune molecule. For example, like HP, it may bind LTA on the staphylococcal surface and activate the killing through phagocytic receptors. Although, further studies were not continued in this thesis because of time constraints, M2BP is a high priority target for future study.

2.4.3 Apolipoproteins

Apolipoproteins are lipid binding proteins that play essential roles in the transportation of dietary lipids through the blood stream from the intestine to the liver by forming lipoprotein complexes. They are synthesized in the liver and the intestine and can be stored in adipocytes, metabolized by heart, muscle or lung tissues or secreted by breast tissues. They are found to perform many important functions in the immune system. Apolipoprotein E (apoE), a member of the apolipoprotein family has been reported to play key roles in the innate immune response (Feingold et al., 1995, Laskowitz et al., 2000, Van Oosten et al., 2001, Berbee et al., 2005). For instance, apoE can prevent endotoxic shock by interacting with LPS and apoE-deficient knockout mice were found to be more susceptible to bacterial infections (Berbee et al., 2005, Van Oosten et al., 2001, Laskowitz et al., 2000, Feingold et al., 1995). Furthermore, apolipoproteins including apoE are subcomponents of low density lipoprotein (LDL), which can stimulate immune responses such as initiating phagocytosis by macrophages (Carvalho et al., 2000) and trypanosome lysis (Hajduk et al., 1989). Apolipophorin III, a key exchangeable lipid transport molecule found in blood, is also composed of apolipoproteins and may also participate significantly in the innate immune response. It interacts with both Gram-positive bacteria and LTA (Halwani et al., 2000, Halwani and Dunphy, 1999), binds and detoxifies LPS (Halwani and Dunphy, 1997, Kato et al., 1994) and promotes phagocytosis (Gotz et al., 1997). Thus, apolipoproteins have been suggested to participate in different immune responses mainly as components of complexes such as LDL and apolipophorin. Interactions of various apolipoproteins with LTA observed in this study may reflect important immunological functions. However, unlike the hydrophilic backbone, the lipophilic glycolipids of LTA are not normally exposed on the surface of Gram-positive bacteria, so apolipoproteins probably target LTA that has been shed from the bacterial surface, rather than as part of the living bacteria. Nevertheless, investigating the immunological importance of LTA-lipoprotein interactions represents another exciting future project.

2.4.4 Transferrin

Transferrin is a high-affinity iron-binding glycoprotein, which transports iron to various tissues in the human body. It is a monomeric protein with N-terminal and C-terminal lobes, where ferric and bicarbonate ions bind (Baker and Lindley, 1992). *S. aureus* targets transferrin to acquire iron, which is an essential nutrient for its growth within the

host. Different staphylococcal cell wall proteins are responsible for this interaction including, Staphylococcal transferring-binding protein A (StbA) (Taylor and Heinrichs, 2002). The interaction between transferrin and LTA described here (Table 2.8) may be another route for *S. aureus* to target transferrin and acquire iron. Thus, it is likely that transferrin is targeted to facilitate bacterial survival within the host, rather than as a mechanism for elimination by the immune system. Consequently, although interesting, the LTA-transferrin interaction was not pursued further in this project.

2.4.5 Serum paraoxanase

Human serum paraoxanase (HuPON1) is a calcium-dependent enzyme that binds high-density lipids (HDL) in serum. This interaction contributes towards protection of HDL against LDL oxidation (Banka, 1996, Mackness et al., 1991, Mackness et al., 1993b, Mackness et al., 1993a, Mackness and Durrington, 1995, Navab et al., 1994, Hayek et al., 1995). HuPON1 is also reported to prevent macrophage cholesterol biosynthesis and stimulate macrophage cholesterol efflux (Fuhrman et al., 2002, Rosenblat et al., 2005). Moreover, mice deficient of HuPON1 were found to be susceptible to organophosphate toxicity and lose their anti-inflammatory properties during acute influenza A infection (Van Lenten et al., 2001). It is likely that HuPON1 bound to the lipophilic glycolipids of LTA, so additional studies would need to be performed to assess the physiological importance of these interactions.

2.4.6 Clotting cascade proteins, antithrombin III and plasminogen

The clotting cascade proteins antithrombin III and plasminogen were identified in this study. This cascade is activated as soon as blood is taken from the body and components tend to attach to a wide variety of surfaces either directly or as complexes. Thus, these interactions may not be specific for LTA. Antithrombin III (AT III) is a

glycoprotein characterized by serum concentrations of 15-20 mg/L. It is a serine protease inhibitor and a member of the serpin family of human plasma proteinase inhibitors. It is expressed in the liver and functions as an anticoagulant mainly by inhibiting thrombin factor Xa, Ixa, Xia, XIIa and plasmin particularly in the presence of heparin, when its activity is significantly increased (Ranucci, 2002). It can also have anti-inflammatory effects mostly in the absence of circulating thrombins, when it can bind to endothelial surfaces and induce the release of prostacyclin (Horie et al., 1990, Uchiba et al., 1995), which prevents activation of leukocytes by blocking expression of TNF- α and restricting the activation of neutrophils and their adhesion to endothelial cells (Okajima and Uchiba, 1998). Heparin inhibits AT III binding to endothelial cells because of the formation of thrombin-heparin complexes, which target AT III (Uchiba et al., 1995).

Plasminogens are serum proteases released into the circulation where they degrade plasma proteins including fibrin clots. They are activated by tissue plasminogen activator, urokinase plasminogen activator, thrombin and Hageman factor (factor XII) and are inactivated by a serine protease inhibitor called alpha2-antiplasmin. Plasminogens can bind to *S. aureus* in the presence of staphylokinase to enhance the release of a protecting protease on the staphylococcal surface (Molkanen et al., 2002). This protease facilitates spreading of bacteria by assisting them to directly remove components of the extracellular matrix (Molkanen et al., 2002).

2.4.7 Complement proteins, C1r, C1q, MBL, C1-inhibitor and factor H

As described in the introduction complement proteins are key components of the innate immune system and form complexes on the surfaces of foreign material, so it is unsurprising that a variety of complement components were identified in this study. The classical pathway of the complement system is initiated by the interaction of C1 complex constituents, C1r, C1s and C1q with immune complexes or other activators such as, C-reactive protein (CRP) complexes and pathogens (Volanakis, 1982, Loos et al., 1981). C1 complexes bind directly to Gram-positive bacteria and may bind to LTA (Loos et al., 1981).

C1-inhibitor (C1-Inh) is a serpin, which regulates the complement system by limiting activation (Emonts et al., 2007). C1-Inh is a serpin that binds to C1r and C1s inactivating them and pulling apart the C1 complex (Bos et al., 2002). C1-Inh also inhibits proteases of the contact system such as kallikrein and blood coagulation factor XII and contributes to the binding of leukocytes to endothelium (Matsushita et al., 2000, Kaplan et al., 2002, Cai et al., 2005). Furthermore, it is suggested to be involved in facilitating the escape of *S. aureus* from complement attack by unknown mechanisms and therefore help staphylococcal survival within the host (Emonts et al., 2007). Thus, C1-Inh might interact with staphylococcal LTA directly as a protection mechanism. Interestingly, L-ficolin, previously shown to bind LTA, was not detected. Serum concentrations of L-ficolin are quite low (~2.5 μ g/ml) compared to many of the proteins that were captured and identified, so it is possible that amounts were too low to detect.

2.4.7.1 Complement factor H

Factor H was identified by Nilsson and Mueller-Eberhard (1965) as β 1H globulin. It is a plasma glycoprotein consisting of a single polypeptide chain that stimulates the decay of C3-convertase of the alternative pathway and functions as a cofactor for factor I-mediated proteolytic inactivation of C3b (Weiler et al., 1976, Whaley and Ruddy, 1976, Pangburn et al., 1977). Factor H regulates the complement system both in fluid-phase or cellular surfaces. Whilst it rapidly targets and inactivates C3b in

fluid-phase, it inactivates surface-bound C3b in the presence of sialic acids or other polyanionic molecules such as glycosaminoglycans and heparin on the chemical composition of the surface where C3b is bound (Cordoba et al., 2004, Fearon, 1978). Thus, the interaction of factor H with polyanions protects the host cellular surfaces from complement activation (Cordoba et al., 2004). Furthermore, the binding of factor H to surface components of tumour cells or invading bacteria protects these cells from complement activation and facilitates their survival. For example, cell surface proteins bone-sialoprotein and osteopontin are significantly upregulated in several tumours and bind tightly to factor H (Fedarko et al., 2001, Fedarko et al., 2000, Cordoba et al., 2004). Similarly, several microbes including *S. pneumoniae* express surface components such as pneumococcal surface protein C (PspC), which bind to factor H and protect against complement activation (Cordoba et al., 2004a et al., 2004b). Thus, factor H might also interact with staphylococcal LTA directly as a protection mechanism by the bacterium.

2.4.7.2 Mannose-binding lectin (MBL)

MBL is a member of the collectin family, and the first component of the lectin pathway of the complement system (Drickamer and Taylor, 1993). It targets microorganism surfaces to activate the lectin pathway, leading to an early destruction of invading pathogens (see Chapter 1). MBL can bind to a wide range of bacteria including *S. aureus*, *S. enterica* and *E. coli* (Levitz et al., 1993, Neth et al., 2000). However, in previous studies, recombinant human MBL did not bind to LTA preparations from *S. aureus* (Polotsky et al., 1996) but instead targeted other surface components of *S. aureus* such as mannose-rich peptidoglycan (Lynch et al., 2004). Thus, the interaction of serum MBL and the LTA in this study was somewhat surprising. It is possible that

binding is indirect via other serum components that target MBL and LTA simultaneously.

2.4.8 Other putative LTA-binding proteins

A number of other proteins were identified as putative LTA-binding proteins, some of which are described below. However, the significance of their apparent interactions with LTA is not known.

2.4.8.1 Bence-Jones proteins

Bence-Jones proteins are monoclonal immunoglobulin light chains that are found in high concentrations in the urine of multiple myeloma patients, a cancer of the bone marrow (Sanders, 1994) They are soluble molecules also found in the serum of cancer patients (Solomon et al., 1991). Proteolytic degradation of Bence-Jones proteins can lead to their polymerization into fibrils in various tissues, where they form structured arrays (Makino et al., 2005).

2.4.8.2 Carboxypeptidase D

Carboxypeptidase D (CPD) is a member of the mammalian regulatory B-type carboxypeptidase, which plays various key cellular functions such as prohormone processing and modifying protein-cell interactions (Skidgel et al., 1996, Skidgel and Erdos, 1998). CPD can be found in different cells and tissues and including monocytes and macrophages. Its expression is also elevated in rat brain, lung and kidney (McGwire et al., 1997, Song and Fricker, 1995). Bovine CPD is a mammalian homologue of duck gp180, a hepatitis B virus-binding protein, but not characterized as a carboxypeptidase (Kuroki et al., 1995). Avian hepadnaviruses bind gp180 to enter host hepatocytes (Breiner and Schaller, 2000, Breiner et al., 1998, Ishikawa et al., 1994, Kuroki et al., 1995, Urban and Tyrrell, 2000, Tong et al., 1995).

2.4.8.3 Cullin-3 (Cul-3)

Cul-3 is a member of the cullin family of E3 ubiquitin-protein ligases that specifically degrade short-lived proteins in eukaryotic cells, which are employed in the male reproductive system (Singer et al., 1999, Furukawa et al., 2003, Baarends et al., 1999). Cul-3 binds to Cyclin E, which is an essential protein for the promotion of the cell cycle transition from G_1 to S phase, and regulates Cyclin E ubiquitination (Knoblich et al., 1994, Ohtsubo et al., 1995, Singer et al., 1999). Ubiquitination is an important mechanism for regulating protein degradation and key cellular processes such as cell cycle, DNA repair, signal transduction and antigen presentation (Pickart, 2001, Weissman, 2001). Many viruses such as Poxviruses modulate the ubiquitin protein modification pathway to facilitate their survival (Banks et al., 2003, Shackelford and Pagano, 2005, Wilton et al., 2008).

2.4.8.4 Fibulins

Fibulins are a group of five extracellular glycoproteins, which are related to basement membranes and elastic fibers in vertebrates (Timpl et al., 2003, Argraves et al., 2003). Fibulin deficiency causes disorders in connective tissues such as macular degenerative diseases and Cutis Laxa (Chu and Tsuda, 2004). Fibulin-1, a member of the fibulin family and a component of the skin, lung and cardiovascular tissue performs an important function in the morphology of endothelial cells to arrange capillary walls and maintain the integrity of small blood vessels (Kostka et al., 2001). The existence of conserved alternate splice forms in the arrangement of vertebrate fibulin-1 gene lead to synthesis of fibulin-1C and fibulin-1D; Fibulin 1C is reported to play a key role in tumour progression and fibuilin-1D is critical for tumour suppression, synpolydactyly and giant platelet syndrome (Qing et al., 1997, Debeer et al., 2002, Toren et al., 2003). For example, fibulin-1 can be used as an early biomarker for breast cancer since it can enhance specific B-cell and T-cell-mediated responses in breast cancer patients (Forti et al., 2002, Pupa et al., 2004, Pupa et al., 2002) and can suppress cancer related human papillomavirus (HPV) infection by specifically binding to E6 proteins (E6 proteins promote the degradation of the tumor suppressor p53) and inhibiting their transformation (Du et al., 2002).

2.4.8.5 Polycystin-2

Polycystin-2 (pkd2) is a large membrane related protein participates in signal transduction and Ca²⁺ regulation (Wilson, 2001, Arnaout, 2001, Boletta and Germino, 2003, Igarashi and Somlo, 2002). It is characterized by structural features that belong to the transient receptor potential (TRP) superfamily of ion channels, which span plasma membranes six times with their N- and C-termini positioned within the cell (Tsiokas et al., 1999, Montell et al., 2002). TRP channels have been associated with various cellular functions such as osmosensing and Mg²⁺ homeostasis (Montell et al., 2002, Ramsey et al., 2006). Naturally occurring mutations in pkd2 gene cause autosomal dominant polycystic kidney disease (ADPKD), a genetic disease that leads to the formation of large cysts in the kidney, liver and pancreas, which may eventually cause kidney failure (Mochizuki et al., 1996, Gabow, 1993, Grantham, 1996, Tsiokas et al., 2007).
Chapter 3 Characterizing HP interactions with LTA and *S. aureus*

3.1 Introduction and Objectives

In Chapter 2, haptoglobin (HP) was identified as a putative LTA-binding protein. This is a novel observation and is explored in more detail in this chapter. Earlier studies have shown that haemoglobin (HB), HP-HB complexes and to a lesser extent HP are targeted by a staphylococcal membrane-associated protein known as HarA (Dryla et al., 2003) as a means of scavenging iron from the host. However, none of this work suggested a possible interaction of HP with LTA of *S. aureus*. Thus, it is important to evaluate this interaction further before assessing its possible relevance in the immune response. The aims of this part of the project were to:

- 1. Determine if HP binds directly to LTA or whether binding occurs via the intervention of other serum proteins
- 2. Estimate the affinity of this interaction
- 3. Evaluate the interaction of HP with S. aureus
- 4. Identify the parts of HP that bind to LTA

3.2 Materials and Methods

3.2.1 Materials

Materials for coupling LTA and protein detection were procured as mentioned in Chapter 2 (section 2.2.1). Purified human HP (a mix of HP1-1, HP2-2 and HP2-1, product number H3536) and HB (product number H7379), mouse monoclonal antibody against HP (product number H6395), alkaline phosphatase-conjugated rabbit antibody against mouse IgG (product number A4312), TPCK-heated trypsin, formalin, bovine serum albumin (BSA) and p-nitrophenyl phosphate (pNPP) substrate were purchased from Sigma-Aldrich. Nunc Maxisorb microtiter plate was obtained from Thermo Fisher Scientific. Phosphate buffered saline (PBS), pH 7.4 was from Invitrogen. *S. aureus* DSM 20233 was provided by Dr. Corinna Hermann (Department of Biology, University of Konstanz, Germany).

3.2.2 The interaction of HP with LTA by column chromatography

Purified HP from human serum (50 µg) was loaded onto an LTA-Sepharose column (2 ml) or an identical column (containing Sepharose 6B prepared using the same coupling procedure but without LTA). Columns were washed with 20 ml TBS and eluted with TBS containing 1% SDS and 0.5 ml fractions were collected. Fractions were stored at -20 °C and analyzed by SDS-PAGE. Gels were stained using Silver or Colloidal Coomassie staining kits.

3.2.3 The interaction of HP with LTA by ELISA

ELISA was modified from the procedure described by Lynch et al. (2004). Nunc Maxisorb microtiter plate was coated with per well, 1 μ g LTA in 100 μ l of coating buffer (15 mM Na₂CO₃, 35 mM NaHCO₃, pH 9.6). After an overnight incubation at 4 °C, the plate was washed with PBS, pH 7.4 (wash buffer) and blocked with 2% BSA

in PBS, pH 7.4 for two hours at 37 °C, to saturate residual protein-binding sites on the plate. Following another wash step, wells were incubated with two-fold dilutions of HP in PBS and incubated for one hour at 37 °C. The plate was then washed thoroughly with wash buffer. Bound HP was detected using a mouse monoclonal anti-HP antibody (primary antibody; 1:4000 dilution in wash buffer and two hours incubation with wells at 37 °C) and an alkaline phosphatase-conjugated rabbit anti-mouse IgG antibody (secondary antibody; 1:30000 dilution in wash buffer and two hours incubation with wells at 37 °C), using the colorimetric substrate for alkaline phosphatase pNPP.

3.2.4 Interaction of HP with S. aureus by ELISA

ELISA was modified from the procedure described by Lynch et al. (2004). The wells of a Nunc Maxisorb microtiter plate were coated with 100 μ l of formalin-fixed *S. aureus* DSM 20233 (OD₅₅₀= 0.5) in coating buffer (15 mM Na₂CO₃, 35 mM NaHCO₃, pH 9.6). After overnight incubation at 4 °C, the wells were washed with PBS, pH 7.4 (wash buffer) and blocked with 2% BSA in PBS, pH 7.4 for two hours at 37 °C. After another wash step, HP was diluted in PBS, pH 7.4 and two-fold dilutions were added to the plate and incubated for two hours at 37 °C. The plate was then carefully washed with wash buffer. Bound HP was detected using mouse monoclonal antibody against HP as described above.

3.2.5 The interaction of HP-HB complexes and HB with LTA by column chromatography

The columns described in section 3.2.2 were also utilized to look at binding of HP-HB complexes to LTA. In this procedure, a mixture of 50 μ g HB (MW~ 68,000) and 100 μ g HP (MW~ 400,000) at a HP, HB molar ratio of 1:3 was incubated in TBS for one hour at RT to form HP-HB complexes. The LTA-Sepharose and control columns

were both prewashed with TBS prior loading HP-HB complexes. Columns were washed with TBS (20 ml) and eluted in TBS containing 1% SDS, and 0.5 ml fractions were collected.

As an additional control, purified HB (50 μ g) from human serum was loaded onto the LTA-Sepharose and control columns in the absence of HP. Columns were washed and eluted as before, and fractions were collected and stored at -20 °C for analysis by SDS-PAGE.

3.2.6 Trypsin digestion of HP and analysis of LTA-binding by affinity chromatography

Limited trypsin digestion of HP was carried out using five-fold serial dilutions of TPCK-heated trypsin at a starting concentration of 1 mg/ml. HP (1 mg) was dissolved in TBS (1 ml). Trypsin (1 mg) was also dissolved in TBS (1 ml) and dilutions were prepared immediately before mixing with HP. The mixtures of HP (10 μ l) and trypsin (1 μ l) were incubated for an hour at 37 °C and then analyzed immediately by SDS-PAGE. Identical samples of trypsin-digested HP (200 μ g HP/20 μ g trypsin) were loaded onto the LTA-Sepharose and control columns and columns were washed and eluted as before. Fractions were immediately analyzed by SDS-PAGE.

3.3 Results

3.3.1 Interaction of HP with LTA analyzed by column chromatography

Although HP was identified as a putative LTA-binding protein in Chapter 2, it may have bound to the affinity column indirectly via another serum component or components. In order to study binding in more detail, purified HP was loaded onto the LTA-Sepharose column in the absence of any other serum components. Fractions were collected and analyzed by SDS-PAGE (Figure 3.1).

Figure 3.1 HP binds directly to LTA coupled to Sepharose beads. Purified HP (50 μ g) was loaded onto LTA-Sepharose and control columns and fractions were collected after washing with TBS and eluting with TBS containing 1% SDS. (A) Silver stained gels (B) Colloidal Coomassie-stained gels under reducing conditions. Only the β -chain of HP is shown in A.

HP (HP1-1) is composed of two disulfide-linked polypeptides which associate to form $\alpha\beta$ dimers ($\alpha\beta$)₂. The α - and β -chains migrate with apparent molecular masses of 15 kd and 45 kd by SDS-PAGE, respectively, and are separated under reducing conditions. Purified HP binds to LTA-Sepharose and elutes only in the presence of 1% SDS. However, in the absence of LTA, it elutes in the wash fractions, so does not bind to Sepharose, implying that it is binding to the immobilized LTA directly.

3.3.2 Studying the interaction of HP with LTA using ELISA

To confirm that HP binds to LTA and to estimate the affinity of the interaction, an ELISA was developed in which LTA was coated onto the surface of a microtiter plate and incubated with HP. After wash steps, bound HP was detected using a monoclonal antibody against HP.

Figure 3.2 ELISA showing HP binding to LTA of *S. aureus.* LTA-coated microtiter wells were incubated with HP for one hour at 37 °C. Bound HP was detected using a mouse monoclonal anti-HP antibody, with alkaline phosphatase-conjugated rabbit anti-mouse IgG as a secondary antibody. Data are the means of duplicate measurements and are representative of two independent experiments.

As shown in Figure 3.2, although there is some non-specific binding to the plate in the absence of LTA, the signal is much greater in the presence of LTA indicating specific binding. Binding was concentration dependent and the apparent dissociation constant,

 K_D (HP concentration at half maximal binding) was ~20 nM (0.01 µg/µl), confirming that LTA and HP form stable complexes.

3.3.3 The interaction of HP with S. aureus by ELISA

ELISA was also used to measure binding of HP to *S. aureus*. Formalin-fixed *S. aureus* was immobilized onto the microtiter plates and specific binding was detected using anti-HP monoclonal antibody, indicating that HP binds to *S. aureus*.

Figure 3.3 ELISA showing HP binding to *S. aureus* **coated microtiter wells.** Formalin-fixed *S. aureus* was incubated with increasing concentrations of HP for 2 hours at 37 °C. HP binding was detected using a mouse monoclonal antibody against HP, with alkaline phosphatase-conjugated rabbit anti-mouse IgG as a secondary antibody. Data are the means of duplicate measurements and are representative of two independent experiments.

This binding was also concentration dependent and the apparent K_D was ~160 nM (0.06 µg/µl). Thus, the apparent K_Ds for LTA and *S. aureus* are broadly similar, as would be expected if the HP was binding to the LTA on the bacterial surface.

3.3.4 Interaction of HB with LTA by affinity chromatography

In order to further characterize the binding of HP to LTA, HP-HB complexes were formed, by pre-mixing purified components, and were applied to the LTA-Sepharose affinity column, as before. As an additional control, HB was also applied to the column in the absence of HP. These experiments were designed to identify which parts of the HP molecule interact with LTA; i.e. binding of HP-HB complexes to LTA would suggest separate binding sites for LTA and HB on HP, whereas, loss of binding could be caused by overlapping binding sites or by conformational changes in HP resulting in disruption of the LTA binding sites.

Figure 3.4 Studying the interaction of HB with LTA. HB alone bound to the LTA-Sepharose and more weakly to Sepharose alone. Gels were stained using Silver stain. As shown in Figure 3.4, HB alone bound to the LTA-Sepharose and more weakly to the Sepharose matrix itself, so it was not possible to obtain information about the relative binding sites for LTA and HB on HP.

3.3.5 Characterizing the interaction of HP with LTA by trypsin digestion and column chromatography

As an alternative strategy to localize the binding site of HP for LTA, HP was digested with trypsin prior to application on the LTA-affinity column. The trypsin preparation had been pretreated with N-tosyl-L-phenylalanyl chloromethyl ketone (TPCK) to block the activity of contaminating chymotrypsin, which is difficult to remove from trypsin preparations. Trypsin is a serine protease that cleaves polypeptides C-terminal to lysine or arginine residues. Exposed regions of proteins, such as interdomain linkers tend to be cleaved preferentially. To assess cleavage of HP with limiting amounts of trypsin, HP was mixed with different dilutions of trypsin and incubated for an hour at 37 °C. Mixtures were then analyzed by SDS-PAGE to identify cleavage products. As shown in Figure 3.5A, the β -chain is relatively sensitive to trypsin digestion compared to the α -chain, which is resistant even at the highest amount of trypsin used (1 µg trypsin/10 µg HP).

Figure 3.5 Characterizing the interaction of HP with LTA. (A) HP (10 μ g) was digested with different amounts of trypsin (T) starting from 1 μ g (represented by number 1). (B) 200 μ g HP digested with 20 μ g trypsin (THP; represented by number 1 in Figure 3.5.A) was loaded onto Sepharose 6B column coupled to LTA. Protein fragments were analyzed on a 15% SDS-PAGE gel and detected by Silver-staining. In the presence of LTA (*upper gel*), some of the α -chain remain bound to the affinity column. In the absence of LTA (*lower gel*), the α -chain eluted in the wash fractions.

To see if the α -chain alone is able to bind to LTA, HP digested with trypsin to remove the β -chain (200 µg HP/20 µg trypsin) was loaded onto the LTA-Sepharose column. As shown in Figure 3.5B, although some of the α -chain eluted in the wash fractions, a significant proportion was retained (~30%) and came off in the elution fractions (with SDS). By contrast, all of the α -chain eluted in the wash fractions from the control column lacking LTA, indicating that the α -chain alone binds to LTA. Although not quantified, binding was probably weaker than for full-length HP, because some of the α -chain eluted in the wash fractions, whereas, full-length HP did not (see Figure 3.1B). Thus the β -chain, probably also binds to LTA to strengthen the interaction, or alternatively facilitates binding by the α -chain.

3.4 Discussion

3.4.1 HP binds directly to LTA and S. aureus

The data shown here indicate that HP binds to LTA. Binding is direct and does not require any other serum components. As expected, HP also binds to S. aureus. The apparent affinities are broadly comparable (20 nM for HP-LTA and 160 nM for HP-bacteria) as would be expected if HP was targeting the LTA on the bacterial surface. Because of the nature of the ELISA assays, the apparent K_D values are likely to underestimate the true affinities (because they also depend on the antibody steps used for detection), suggesting that HP-LTA complexes are stable, as would be expected for PAMP-PRR binding. Previous studies have shown that HP also binds to the staphylococcal surface protein HarA (Dryla et al., 2003). However, this interaction is weak (5 µM) compared to HP-LTA complexes (20 nM), so probably contributes relatively little to bacterial binding. Interestingly, HarA binds much more tightly to HB (30 nM) or HB-HP complexes (5 nM), and is probably used by the bacteria to target iron from heme during the early stages of infection (Dryla et al., 2003, Skaar et al., 2004, Skaar and Schneewind, 2004, Dryla et al., 2007). Heme iron is believed to be the preferred iron source for S. aureus during the start of infection, and for this reason the bacteria possess a heme-transporting system (HTS) that promotes heme-iron uptake (Skaar et al., 2004, Skaar and Schneewind, 2004). An interesting but unexpected finding in my experiments was that HB also binds directly to LTA. Thus, the heme-iron acquisition system via HP-HB or directly via HB could be a potential trap employed by the immune system to target bacteria. From this perspective, it would be interesting to see if LTA-HP, LTA-HB and/or LTA-HP-HB interactions promote phagocytosis and the killing of *S. aureus*.

Other staphylococcal proteins such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and StbA/IsdA are also used to acquire iron from the host. In this case they target another host protein known as transferrin, which acts as an iron storage/delivery system in the serum (Dryla et al., 2003, Taylor and Heinrichs, 2002, Modun and Williams, 1999). It is notable that transferrin was also identified as a potential LTA-binding protein in Chapter 2, so the immune system might use transferrin as bait to target bacteria, as well as HP and HB.

3.4.2 Characterization of the direct interaction between HP and LTA

Affinity chromatography and trypsin digestion were employed to identify which parts of HP interact with LTA. However, because both HP and HB bound to the LTA-Sepharose beads, it was not possible to gain information about the relative binding sites for LTA and HB on HP. Nevertheless, trypsin digestion of HP followed by affinity chromatography showed that the α -chain of HP alone bound to LTA, although more weakly than for full-length HP. The two α -chains are disulfide linked (see Figure 3.6), so the loss of affinity is not caused by a change in the oligomeric state of the HP fragments. Thus, it is likely that the β -chain of HP also contributes to recognition of LTA, either directly through an additional binding site or by modulating the binding activity of the α -chains.

Figure 3.6 HP structure. Schematic drawing showing the molecular arrangements of human HP1-1 indicating the disulfide bonding pattern

Chapter 4 Evaluating the role of HP in phagocyte-mediated killing of S. aureus

4.1 Introduction and Objectives

S. aureus is an important human pathogen associated with diseases including impetigo, septic arthritis, toxic shock syndrome and scalded skin syndrome (Archer, 1998, Lowy, 1998). Multidrug-resistant strains, eg. methicillin- (MRSA) and vancomycin-resistant strains cause severe infections in hospitals because they are not eliminated by existing antibiotics and cause up to 65% of nosocomial staphylococcal infections (van den Broek et al., 2007). Consequentially, the natural immune response against *S. aureus* needs to be further characterized to help identify new targets for therapeutics. Several *S. aureus* cell wall components, including LTA stimulate the innate machinery of eukaryotic defence and induce inflammatory responses. For instance, LTA targets receptors on human neutrophils such as CD14 and TLR2 to induce the release of proinflammatory cytokines IL-8, TNF- α and granulocyte-colony stimulating factor (Aulock et al., 2006, Lotz et al., 2004, Hattar et al., 2006). LTA also interacts with receptors on macrophages such as TLR2 and type I scavenger receptor to stimulate the release of cytokines TNF- α , interferon- γ and interleukins (Dunne et al., 1994, Edds et al., 2000, Bhakdi et al., 1991, Wang et al., 2000). In my research, I have shown that the

acute-phase protein HP interacts directly with LTA and *S. aureus* and have hypothesized an essential function for this protein in the killing of these Gram-positive bacteria by the immune response. The work presented in this chapter tests this hypothesis by evaluating the role of HP in killing *S. aureus* by human neutrophils, monocytes and macrophages. The following objectives have been addressed:

4.1.1 The role of HP in neutrophil-mediated killing of S. aureus

Previous findings indicated that HP is generated and stored throughout granulocyte differentiation and released when neutrophils are activated (Theilgaard-Monch et al., 2006). LTA interacts with receptors on the surface of neutrophils to recruit these immune cells to the site of infection and stimulate the release of cytokines (Aulock et al., 2006, Lotz et al., 2004, Hattar et al., 2006). Interestingly, exogenously added LTA was also found to reduce the ingestion and elimination of *S. aureus* by neutrophils but not when the bacteria were pretreated with serum, implying that LTA on the staphylococcal cell wall may interact with serum components to promote bacterial killing (Raynor et al., 1981). However, no previous study has reported a role for HP in the killing of *S. aureus* by neutrophils, or the significance of HP interaction with LTA in bacterial killing. The strategy used in the work presented in this chapter was to deplete HP from human serum or use HP-deficient serum from C57BL/6 HP knockout mice and then compare Staphylococcal killing using complete and depleted/deficient serum.

4.1.2 The role of HP in monocyte- and macrophage-mediated killing of S. aureus

Earlier studies have shown that the CD163 receptor on macrophages is essential for the clearance of HB and HP-HB complexes (Graversen et al., 2002). CD163 is also suggested to be involved in host defence as a receptor for *S. aureus* and its expression in monocytes enhances bacterial-induced proinflammatory cytokine production (Fabriek et

al., 2009). In addition, LTA of *S. aureus* interacts with other receptors on these phagocytes such as TLR2 and type I scavenger receptor and enhances the release of cytokines such as TNF- α , interferon- γ and interleukins (eg. IL-1 and IL-5), which are important in the host immune response (Dunne et al., 1994, Edds et al., 2000, Elgavish, 2000, Bhakdi et al., 1991, Wang et al., 2000). However, as with neutrophils, none of these studies have suggested a role for HP in the elimination of *S. aureus* by monocytes and macrophages. The data presented in this chapter confirm that HP is a key mediator in the elimination of *S. aureus* by monocytes, macrophages as well as neutrophils, thus identifying a novel innate defence mechanism against infection.

4.2 Materials and Methods

4.2.1 Materials

Purified human HP (product number H3536) and HB (product number H7379), BCIP/NBT substrate system for alkaline phosphatase detection, HistopaqueTM 1077 and 1119 solutions for isolating neutrophils and Iscove's modified Dulbecco medium and Corning cell culture ultra low attachment flasks for culturing isolated monocytes into macrophages were purchased from Sigma-Aldrich. Ficoll-Paque PLUSTM for isolating monocytes was from GE Healthcare and alkaline phosphatase-conjugated sheep antibody against human HP (product number ab35307) was from ABcam. Hanks balanced salt solution (HBSS) containing calcium and magnesium, phosphate buffered saline (PBS), pH 7.4 and penicillin streptomycin (product number 15070-063) were procured from Invitrogen. Thermo-spin coated plates and DPX mountant for cytospin and microscopy preparations were from Thermo Fisher Scientific and Reagena Giemsa stains for staining cytospin slides was from Reagena LTD, Finland. Affinity gel 10 and nitrocellulose membrane 0.2 µm were purchased from Bio-Rad and 0.22 µM GV PVDF membranes were from Millipore. 24-well tissue culture Nunc plates utilized for bacterial killing assays were procured from Nunc, Denmark. Serum extracted from C57BL/6 wild type mice was provided by Professor Wilhelm Schwaeble (University of Leicester, UK) and HP-deficient serum from C57BL/6 HP knockout mice was kindly supplied by Professor Jan Ceuppens (Section of Clinical Immunology, University of Leuven, Belgium) and Professor Heinz Bauman (Roswell Park Cancer Institution, USA). S. aureus DSM 20233 was provided by Dr. Corinna Hermann (Department of Biology, University of Konstanz, Germany) and LPS from Salmonella abortus equii and heparin were kind gifts from Dr. Bernard Burke (University of Leicester, UK). Whole blood was withdrawn from healthy and sickle cell anaemia carrier human volunteers within the Department of Infection, Immunity and Inflammation at the University of Leicester.

4.2.2 Coupling HB to affinity gel 10

Affinity gel 10 couples neutral or basic proteins with pIs in the range 6.5 to 11. It is an N-hydroxysuccinimide ester of a derivatized crosslinked agarose gel-bead support that couples ligands with free alkyl amino groups in aqueous or non-aqueous solution. The addition of ligands displaces the N-hydroxysuccinimide and allows a stable amide bond to be formed. In this study, HB was coupled to affinity gel 10 in order to deplete HP from human serum. All the following procedures were undertaken at 4 °C. Affinity gel 10 (25 ml) was filtered using a 0.22 μ M GV PVDF membranes and was washed with sterile nano-pure water to remove the storage solution. HB (0.6 g) in 10 mM Mes, pH 6 was then mixed with affinity gel 10 with shaking overnight. The resulting HB-affinity resin was then washed extensively with PBS pH 7.4, to remove any uncoupled HB and was subsequently stored at 4 °C in PBS, 0.02% (v/v) sodium azide for future use.

4.2.3 HP depletion from human serum

Human blood was withdrawn from healthy volunteers and was left to clot overnight at 4 °C. After centrifuging the clotted blood for 30 minutes at 3500 g and 4 °C, serum (0.5 ml) was isolated and mixed with the HB affinity resin (0.5 ml), which had been pre-equilibrated in PBS, pH 7.4 under shaking for two hours at 4 °C before forming a column and collecting the HP-depleted serum flow-through. This procedure was then repeated two more times using two fresh HB-affinity columns. HP-depleted serum was subsequently collected and the level of HP was measured by Western blotting.

4.2.4 Western and Dot-blot experiments to measure HP depletion from human serum

4.2.4.1 Dot blot

Two-fold dilutions of 10% (v/v) healthy human serum, sickle cell anaemia-carrier serum and HP-depleted serum were prepared in PBS, pH 7.4 and were blotted on to a nitrocellulose membrane 0.2 μ m. The membrane was then blocked with 5% (v/v) semi-skimmed milk in PBS (block buffer) with shaking for 30 minutes at RT. Alkaline phosphatase-conjugated sheep anti-human HP antibody (1:1000 dilution in block buffer) was subsequently added to detect the level of serum HP. After washing with 0.5% (v/v) Tween in PBS, pH 7.4, bound antibody was detected using alkaline phosphatase chromogen BCIP/NBT solution. The intensities of the dot blots were compared against known dilutions of human serum to evaluate the level of HP in the depleted serum sample.

4.2.4.2 Western blot

Serum samples were separated by 12% (v/v) SDS-PAGE under reducing conditions and transferred to nitrocellulose membrane 0.2 μ m. The membrane was then blocked with 5% (v/v) semi-skimmed milk in PBS under shaking for 30 minutes at RT and probed with antibody as above. After washes with 0.5% (v/v) Tween in PBS, pH 7.4, HP was detected by alkaline phosphatase chromogen BCIP/NBT solution.

4.2.5 Quantitative analysis of S. aureus

S. aureus colony forming units were quantified by the standard viable count method (Holms, 1968) and by spectrophotometric analysis as described below. *S. aureus* DSM 20233 was grown in 10 ml nutrient broth overnight at 37 °C. To determine the number of colony forming units (CFUs), the culture was diluted in PBS, pH 7.4 and 100-fold

serial dilutions were plated on to agar plates and incubated overnight at 37 °C. CFUs per ml = number of colonies x dilution factor / volume plated in ml. In addition, two fold dilutions of the culture were also made and absorbance readings were measured at 550 nm for each dilution.

4.2.6 Evaluating HP role in phagocyte-mediated killing of S. aureus

4.2.6.1 Quantifying S. aureus

S. aureus DSM 20233 was grown in 10 ml nutrient broth overnight at 37 °C, washed three times with HBSS buffer containing calcium and magnesium (HBSS/Ca²⁺Mg²⁺) and the final bacterial pellet was also resuspended in this buffer. The OD₅₅₀ of the washed *S. aureus* was measured and CFUs/ml were determined as described above.

4.2.6.2 Isolation of human phagocytes (neutrophils, monocytes and macrophages)

4.2.6.2.1 Isolation of human neutrophils

Neutrophils were isolated using HistopaqueTM 1077 and 1119 according to the manufacturers' instructions as follows; 12 ml of HistopaqueTM1077 was gently layered over 12 ml HistopaqueTM1119 in a 50 ml centrifuge tube. Healthy human blood (~20 ml) was collected in a tube containing 400 units of heparin as an anticoagulant and carefully layered over the HistopaqueTM layers taking care not to mix the components. The sample was then centrifuged at 700 g for 20 minutes at RT in a swing-out rotor. After centrifugation, the upper layers were discarded and the first layer above the red blood cell pellet was isolated using a Pasteur pipette. This layer containing neutrophils was washed three times with HBSS/Ca²⁺Mg²⁺ buffer and the cells were resuspended. The number of cells was determined using a haemocytometer.

4.2.6.2.2 Isolation of human monocytes

Monocytes were isolated using Ficoll-Paque PLUSTM according to the manufacturers' instructions as follows; 20 ml of human blood was collected in a tube containing 400 units of heparin as an anticoagulant. The blood was diluted with an equal volume of HBSS/Ca²⁺Mg²⁺ buffer and 35 ml of the diluted blood was carefully layered over 15 ml Ficoll-Paque PLUSTM in a 50 ml centrifuge tube. The sample was centrifuged at 400 g for 30 minutes at RT using a swing-out rotor. Following centrifugation, the distinct band at the sample/medium interface was isolated using a Pasteur pipette without removing the upper layer. The isolated mononuclear cells were washed three times with HBSS/Ca²⁺Mg²⁺ buffer, resuspended and counted using a haemocytometer.

4.2.6.2.3 Isolation of human macrophages

Mononuclear cells were isolated as described above except that PBS, pH 7.4 was used instead of HBSS/Ca²⁺Mg²⁺ to wash the cells. The mononuclear cell pellet was resuspended in Iscove's modified Dulbecco medium supplemented with 2 mM glutamine, 10X penicillin streptomycin (5 ml) and 2.5% (v/v) human AB serum (Human AB serum is sterile, and tested negative for Hepatitis B, Hepatitis C, HIV-1 and HIV-2). Mononuclear cells were then transferred into Corning cell culture ultra low attachment flasks where the monocytes differentiate into macrophages after six days incubation at 37 °C with 4% (v/v) CO₂. The medium was removed and the adhered macrophages were released from the flask by incubation with 10 mM EDTA in PBS, pH 7.4 for 30 minutes in a 37 °C incubator. The isolated macrophages were washed and resuspended in HBSS/Ca²⁺Mg²⁺ buffer, and counted using a haemocytometer.

4.2.6.3 Neutrophil-, monocyte- and macrophage-mediated killing of S. aureus

S. aureus (~10⁸ CFUs) were incubated in each well of a 24-well tissue culture Nunc plate with 20% (v/v) serum, either complete or HP-depleted, in HBSS/Ca²⁺Mg²⁺ buffer, under slow shaking for 30 minutes at 37 °C. After incubation, immune cells (neutrophils, monocytes or macrophages) were added to the assay and the final serum concentration was adjusted to 10% (v/v) with a ratio of staphylococcal CFUs to immune cells of 10 to 1 (i.e. 10 CFUs for each isolated immune cell). Aliquots were taken from each well after 0, 20, 40 and 60 minutes following incubation at 37 °C in a 4% (v/v) CO₂ incubator with shaking, and left on ice for 5 minutes before diluting in PBS, pH 7.4 and plating out on agar plates. CFUs were counted the following day and the bacterial survival (%) was determined. Negative controls were also set up in which serum, immune cells or both were omitted and replaced by an equivalent volume of HBSS/Ca²⁺Mg²⁺.

4.2.6.4 Neutrophil- and monocyte-mediated phagocytosis of S. aureus

Two methods were employed to detect the internalization of *S. aureus* by isolated human neutrophils and monocytes:

4.2.6.4.1 Neutrophil cell lysis

A killing assay was performed as described above using isolated human neutrophils. Aliquots from the incubated assays at 0, 20, 40 and 60 minute were centrifuged for 2 minutes at 120 g and the neutrophil pellet was washed twice in HBSS/Ca²⁺Mg²⁺ buffer followed by centrifugation for 2 minutes at 120 g. The washed pellet was then resuspended in a hypotonic lysis buffer (0.01% w/v BSA in HPLC-quality water) and vortexed vigorously in order to lyse the neutrophils. The mixture was then diluted in

PBS, pH 7.4 and plated out on to agar plates. Staphylococcal CFUs were counted the following day and internal live bacteria (%) was determined and plotted accordingly.

4.2.6.4.2 Cytospin and microscopy

As well as measuring internal live bacteria, human neutrophils and monocytes were analyzed by microscopy to visualize the internalized bacteria. Samples were diluted in PBS, pH 7.4 and placed in Thermo-spin coated plates and centrifuged in a Cytometer for 3 minutes at maximum speed (350 g). The plates were then allowed to dry and Reagena stains were applied according to the manufacturers' instructions. The plates were afterwards examined for *S. aureus* directly.

4.2.6.5 LPS effect in HP-mediated killing of S. aureus

A killing assay was performed as described above using isolated human neutrophils, monocytes and macrophages. HP-depleted serum was supplemented with tenfold serial dilution of LPS (from 10^{-4} up to 10^{9} pg/ml).

4.2.7 Statistical analysis:

Statistical analyses were performed using unpaired t-test two-tailed, assuming the null hypothesis, i.e. no significant difference between samples. Differences were considered to be significant when $P \leq 0.05$.

4.3 Results

4.3.1 HP depletion from human serum

HP was depleted from human serum using a HB-affinity column, prepared by coupling HB to an affinity resin. After coupling and copious washing, the resin remained dark red confirming that coupling was successful. The resulting HB-affinity resin was used to deplete HP from serum, through the stable HB-HP interaction. Western and Dot blot analysis confirmed that HP is effectively depleted from whole serum and contained <0.001 of the amount of HP in whole serum (Figure 4.1).

Figure 4.1 HP is efficiently depleted from human serum using HB-affinity column. (A) Western blot and (B) Dot blot analysis of whole serum (10%) and HP-depleted serum (10%). HP was depleted by affinity chromatography on an immobilized HB column and was detected using anti HP-antibody and a secondary alkaline phosphatase-conjugated sheep anti-human antibody. (C) Comparison of intensities of dots reveals that HP is reduced by at least 1024-fold in depleted serum compared to whole serum.

4.3.2 Quantitative analysis of S. aureus

To confirm that the methods used to quantify *S. aureus* were reliable and compatible, and to calibrate the two systems, test experiments were performed. Bacteria were quantified by determining the number of colony forming units per ml (CFUs/ml) and in parallel by spectrophotometric analysis. As shown in Figure 4.2, a plot of CFUs/ml against OD_{550} was approximately linear over the range $0 - 10^9$ CFUs/ml confirming the compatibility of the approaches. Based on this calibration curve, absorbance was subsequently used to provide a rapid and estimate of staphylococcal numbers prior to setting up the killing assays.

Figure 4.2 Quantification of *S. aureus*. (A) A linear graph represents staphylococcal CFUs/ml against OD_{550} . Staphylococcal CFUs/ml was quantified simultaneously by the standard viable count method and by spectrophotometric analysis. Data were fitted by linear regression after five measures were taken. Data are combined from two independent experiments.

4.3.3 HP-mediated killing of S. aureus by neutrophils, monocytes and macrophages

Initially, the role of HP in phagocyte-mediated killing of *S. aureus* was evaluated using human serum depleted of HP. *S. aureus* survival was compared using whole human serum and serum depleted of HP. Staphylococcal survival was also studied in the absence of phagocytes or serum.

Figure 4.3 Neutrophil-, monocyte- and macrophage-mediated killing of *S. aureus*. *S. aureus* survival was measured in the presence of whole serum or HP-depleted serum for one hour incubation with human (A) neutrophils, (B) monocytes and (C) macrophages. *S. aureus* survival was also measured in the absence of phagocytes or serum. Results and errors are shown from two independent experiments. Statistical analysis: paired comparisons of staphylococcal survival for each cell type in HPdepleted and whole serum or in HBSS (unpaired t-test two-tailed, differences were considered to be significant when $P \le 0.05$): (A) Neutrophils: overall (all time points combined) differences in survival in HP-depleted and whole serum (p = 0.021), or HBSS (p = 0.014) were significant. In addition, differences between whole and HPdepleted serum were significant (#) at twenty (p = 0.024), forty (p = 0.022) and sixty minutes (p = 0.0007). A significant difference (x) in survival between HP-depleted

serum and HBSS was seen only at sixty minutes (p = 0.026) (B) Monocytes: the overall difference in survival was significant between HP-depleted serum and serum (p = 0.005), significant differences (#) in survival between whole and HP-depleted serum were seen at forty (p = 0.021) and sixty minutes (p = 0.008). (C) Macrophages: the overall difference in survival was significant between whole and HP-depleted serum (p = 0.006), significant differences (#) in survival between whole and HP-depleted serum (p = 0.006), significant differences (#) in survival between whole and HP-depleted serum were detected at twenty (p = 0.004), forty (p = 0.046) and sixty minutes (p=0.035). All other comparisons were statistically insignificant.

The survival of S. aureus decreased significantly when incubated with serum containing neutrophils, monocytes or macrophages. The most dramatic killing was observed by neutrophils and monocytes where only 20% of S. aureus survived after an hour (Figure 4.3.A and 4.3.B), but appreciable killing was also measured with macrophages where 60% of bacteria were viable (Figure 4.3.C). However, when HP-depleted serum was used, survival of S. aureus was much higher even in the presence of phagocytic cells. For example, almost all staphylococci survived in the assays which included monocytes or macrophages (Figure 4.3.B and 4.3.C), whereas 80% survival was observed with neutrophils (Figure 4.3.A), so depletion of HP leads to decreased killing of S. aureus by neutrophils, monocytes and macrophages. Thus, HP probably plays a critical role in the killing of S. aureus by phagocytes. Nevertheless, it is also possible that the process used to deplete HP leads to loss or activation of other serum components. For example, the affinity chromatography steps used to remove HP are likely to induce complement activation, so might deplete complement from serum, thus indirectly reducing its cytotoxic activity. Therefore, the possible role of HP in phagocyte-mediated killing of S. aureus was further investigated.

4.3.4 Purified human HP restores phagocyte-mediated killing of S. aureus

In order to test whether loss of killing activity of *S. aureus* in HP-depleted serum could be restored by exogenous HP, the survival assays were repeated using HP-depleted serum and depleted serum supplemented with 0.02 mg/ml (final concentration in 10% serum) of purified HP. This concentration represents the lower limit of the normal physiological concentration of HP in serum (typical concentrations range from 0.2-1.4 mg/ml). Levels are elevated significantly following acute-phase upregulation.

Figure 4.4 Exogenous HP restores killing of *S. aureus* by phagocytes. The role of HP in the killing of *S. aureus* was measured in the presence of whole serum, HP-depleted serum and HP-depleted serum supplemented with purified HP (0.02 mg/ml). Survival curves are shown for human neutrophils (A), monocytes (B) and macrophages (C). Results and errors are shown from two independent experiments. (A) Neutrophils: overall (all time points combined) differences in survival in HP-depleted and whole serum (p = 0.033), or HP-depleted serum + HP (p = 0.032) were significant

(B) Monocytes: overall differences in survival were significant between HP-depleted and whole serum (p = 0.006) or HP-depleted serum + HP (p = 0.005), a significant difference (#) in survival between whole and HP-depleted serum were seen after twenty minutes (p = 0.025) (C) Macrophages: overall differences in survival were significant between HP-depleted and whole serum (p = 0.028) or HP-depleted serum + HP (p = 0.027), a significant difference (*) in survival between HP-depleted serum and HP-depleted serum + HP was detected at forty minutes (p = 0.05). All other comparisons were statistically insignificant

As seen before, *S. aureus* killing was much greater in the presence of whole serum compared with HP-depleted serum for all three phagocytic cell types (cells were taken from two different individuals for each cell type). Remarkably, killing was almost completely restored by adding purified HP to the HP-depleted serum. Similar results were also observed for HP concentration of 0.82 mg/ml (Figure 4.5), which represents HP levels in serum during infection (whole infected serum contains up to 8.2 mg/ml HP). Thus, depletion of HP did not reduce the capacity of the serum to kill bacteria indirectly eg. by depleting complement or other defence components, rather the data suggest that HP itself plays a significant role in the killing of *S. aureus* by phagocytes.

Figure 4.5 Exogenous HP restores killing of *S. aureus* **by phagocytes.** The role of HP in the killing of *S. aureus* was measured in the presence of serum, HP-depleted serum and HP-depleted serum supplemented with purified HP (0.82 mg/ml). Survival curves are shown for human neutrophils (A), monocytes (B) and macrophages (C). Results and errors are shown from two independent experiments. (A) Neutrophils: overall differences (all time points combined) were significant in survival in HP-depleted and whole serum (p = 0.033), or HP-depleted serum + HP (p = 0.029) (B) Monocytes: overall differences were significant in survival between HP-depleted and whole serum (p = 0.006), or HP-depleted serum + HP (p = 0.004). A significant difference (#) in survival between whole and HP-depleted serum was seen only after twenty minutes (p = 0.025) (C) Macrophages: overall differences were significant in survival between HP-depleted and whole serum (p = 0.026), or HP-depleted and HP-depleted serum + HP (p = 0.024). All other comparisons were statistically insignificant.

4.3.5 HP-mediated phagocytosis of S. aureus by neutrophils and monocytes

While the above experiments show that HP is important for phagocyte-mediated killing of bacteria, they do not show how killing occurs i.e. by phagocytosis or some other phagocyte-mediated process. Therefore, a method was devised to capture and measure internalized but still viable bacteria from phagocytic cells. In this method, neutrophils were isolated following incubation with bacteria, washed and then lysed in buffer that will disrupt the neutrophil membranes and release their contents, but will not kill the bacteria. Numbers of viable cells could then be determined from CFUs.

Figure 4.6 HP-mediated phagocytosis of *S. aureus* by neutrophils. Live *S. aureus* were extracted from neutrophils following incubation in whole serum, HP-depleted serum and HP-depleted serum supplemented with purified HP (0.02 mg/ml). Results and errors are shown from two independent experiments. Live bacteria are expressed as a percentage of total *S. aureus*. Significant overall differences (all time points combined) were observed for HP-depleted serum vs whole serum (p = 0.041) and HP-depleted serum vs HP-depleted serum + HP (p = 0.018).

As shown in Figure. 4.6, *S. aureus* were sequestered by the phagocytes and could be rescued by lysis of the neutrophils, indicating that bacteria are either phagocytosed or tightly associated to the surface of the neutrophil. The number of bound/phagocytosed bacteria increased appreciably when incubated with serum or HP-depleted serum supplemented with HP (~30% after an hour) but not with HP-depleted serum confirming that HP is an important factor in phagocyte-mediated killing.

To further examine the interactions of bacteria with phagocytes, neutrophils and monocytes were investigated by light microscopy after incubation with HP-containing serum. As shown in Figures 4.7 and 4.8, the bacteria are localized in clusters, rather than being evenly distributed around the phagocytic cell, consistent with their presence in internal vacuoles. Furthermore, bacteria are abundant when incubated with whole serum or HP-depleted serum + exogenous HP, but are relatively scarce in HP-depleted serum, consistent with HP-being a key mediator of phagocytosis.

-Ingested Staphylococcus aureus

Figure 4.7 Phagocytosis of S. aureus by neutrophils. Neutrophils incubated with S. aureus in the presence of whole, HP-depleted or reconstituted serum were examined by optical microscopy (100X). Many engulfed S. aureus were observed in whole serum and HP-depleted serum reconstituted with purified HP (0.02 mg/ml), compared to HPdepleted serum.

Neutrophils

Figure 4.8 Phagocytosis of *S. aureus* **by monocytes.** Monocytes incubated with *S. aureus* in the presence of whole, HP-depleted or reconstituted serum were examined by optical microscopy (100X). Many engulfed *S. aureus* were observed in whole serum and HP-depleted serum reconstituted with purified HP (0.02 mg/ml), compared to HP-depleted serum.

4.3.6 LPS effect in HP-mediated killing of S. aureus

The inflammatory mediator LPS is often a contaminant of commercial-grade reagents including plasma-derived proteins (Weinstein et al., 2008). Because of its potent activity in stimulating an immune response, it was important to verify that HP preparations were not contaminated by LPS. The commercial preparation of purified HP used in the above survival assays was tested for LPS by Dr. Bernard Burke (University

of Leicester) using the Endotoxin Portable Testing System (supplied by Charles River Laboratories). LPS levels were found to be ≤ 0.68 and 28 pg/ml for 0.02 mg/ml and 0.82 mg/ml preparations of HP respectively. Although low, it was essential to confirm whether these trace amounts of LPS could be responsible for stimulating the observed phagocyte-mediated killing of *S. aureus*. Therefore, killing assays were carried out as before but in the presence of increasing amounts of LPS (from 10^{-4} to 10^9 pg/ml) using HP-depleted serum (Figure 4.9).

Figure 4.9 Modulation of phagocyte-mediated killing of *S. aureus* **by LPS.** The effect of LPS in the killing of *S. aureus* was measured in the presence of HP-depleted serum supplemented with tenfold serial dilution of LPS after an hour incubation with human neutrophils (A), monocytes (B) and macrophages (C).

The survival of *S. aureus* decreased with increasing LPS concentration until reaching a plateau at $\sim 10^4$ pg/ml for monocytes and $\sim 10^6$ pg/ml for neutrophils and macrophages. Importantly however LPS concentrations between 0.68 and 28 pg/ml had little effect on the survival of *S. aureus*, with <10% killing for neutrophils and macrophages and no detectable killing for monocytes. Thus, killing was mediated by HP rather than any contaminating LPS in the protein preparations.

All the data so far were obtained using human serum depleted of HP. However, it was also interesting to study whether serum completely deficient in HP would provide similar results. For this reason, serum was obtained from C57BL/6 HP knockout mice, with serum from wild type C57BL/6 as a control. The advantage of this system is that the HP-deficient serum can be compared directly with HP-sufficient serum, without any additional pre-treatment. This enables us to exclude any indirect effects caused by mechanical depletion of HP from the human serum. Human and mouse HP are very similar in sequence, sharing \geq 80% identity (Maeda, 1985). Thus, it was considered likely that HP from humans could substitute for mouse HP and *vice versa*.

4.3.7 HP-mediated killing of S. aureus using mouse HP-deficient serum

The role of HP in phagocyte-mediated killing of *S. aureus* was evaluated using wild type (WT) and HP-deficient serum (HP^{-/-}). As before staphylococcal survival was also measured in the absence of phagocytes or serum as additional controls.
Chapter 4

0-

0

20

40

Incubation (minutes)

Evaluating the role of HP in phagocyte-mediated killing of S. aureus

130

Figure 4.10 Neutrophil-, monocyte- and macrophage-mediated killing of *S. aureus* **using HP-deficient serum.** *S. aureus* survival was measured in the presence of WT serum or HP^{-/-} serum for one hour incubation with human (A) neutrophils, (B) monocytes and (C) macrophages. *S. aureus* survival was also measured in the absence of phagocytes or serum. Results and errors are shown from two independent experiments. (A) Neutrophils: the overall (all time points combined) difference in survival in HP^{-/-} serum and HBSS (*p* = 0.005) was significant, significant differences (Ω) in survival were also detected for this comparison at forty (*p* = 0.030) and sixty minutes (*p* = 0.035). Significant differences (α) in survival in HP^{-/-} and WT serum were seen at forty (*p* = 0.011) and sixty minutes (*p* = 0.008) (B) Monocytes: the overall difference (Ω) in survival was also detected for this comparison at twenty minutes (*p* = 0.042). Significant differences (α) in survival in HP^{-/-} and WT serum were seen at forty (*p* = 0.042). Significant differences (α) in survival in HP^{-/-} and WT serum were seen at forty (*p* = 0.042). Significant differences (α) in survival in HP^{-/-} and WT serum were seen at forty (*p* = 0.042).

60

(p = 0.022) and sixty minutes (p = 0.027) (C) Macrophages: the overall difference in survival was significant in HP^{-/-} and WT serum (p = 0.019), significant differences (α) in survival were also detected for this comparison at twenty (p = 0.025), forty (p = 0.008) and sixty minutes (p = 0.002). The overall difference in survival in HP^{-/-} serum and HBSS (p = 0.008) was significant, a significant difference (Ω) in survival was also seen for this comparison at sixty minutes (p = 0.008). All other comparisons were statistically insignificant.

Similar data were obtained using mouse serum as previously obtained from human depleted serum. Survival of *S. aureus* decreased significantly in WT serum containing neutrophils, monocytes or macrophages. The greatest level of killing was observed by neutrophils where only 10% of *S. aureus* survived after an hour (Figure 4.10.A), but appreciable killing by monocytes and macrophages was also measured where ~20% of bacteria were viable at the end of the study (Figure 4.10.B and Figure 4.10.C). Survival of *S. aureus* was much higher in HP^{-/-} serum for all three types of phagocytic cells. 60% of the staphylococci survived in assays containing neutrophils or monocytes (Figure 4.10.A and 4.10.B), whereas 80% survived with macrophages (Figure 4.10.C). These data confirm that HP is vital for efficient killing of *S. aureus* by neutrophils, monocytes and macrophages, supporting the human studies. Moreover, loss of killing activity in HP^{-/-} serum was restored by exogenous HP (0.02 mg/ml) as shown in figure 4.11.

Chapter 4

Figure 4.11 Exogenous HP restores killing of S. aureus by phagocytes using HPdeficient serum. The role of HP in the killing of S. aureus was measured in the presence of WT serum, HP^{-/-} serum and HP^{-/-} serum supplemented with purified HP (0.02 mg/ml) or LPS (28 pg/ml). Survival curves are shown for human neutrophils (A), monocytes (B) and macrophages (C). Results and errors are shown from two independent experiments. (A) Neutrophils: the overall (all time points combined) difference in survival in WT and HP^{-/-} serum + LPS (p = 0.048) was significant, significant differences (δ) were also detected for this comparison at twenty (p = 0.038) and forty minutes (p = 0.016). Significant differences were also seen at twenty minutes in survival between HP^{-/-} and WT serum (α ; p = 0.046), or HP^{-/-} serum + HP (β ; p =0.05) (B) Monocytes: the overall difference in survival in WT and $HP^{-/-}$ serum + LPS (p = 0.026) was significant, significant differences (δ) in survival were also detected for

this comparison at forty (p = 0.009) and sixty minutes (p = 0.027). Overall differences in survival in HP^{-/-} and WT serum (p = 0.024) or HP^{-/-} serum + HP (p = 0.022) were significant, significant differences (α) in survival in HP^{-/-} serum and WT serum were detected after forty (p = 0.027) and sixty minutes (p = 0.014). Significant differences (β) in survival in HP^{-/-} and HP^{-/-} serum + HP were also seen at twenty (p = 0.044) and sixty minutes (p = 0.013) (C) Macrophages: the overall difference in survival in WT and HP^{-/-} serum + LPS (p = 0.007) was significant, significant differences (δ) in survival were also detected for this comparison at twenty (p = 0.007), forty (p = 0.008) and sixty minutes (p = 0.002). Overall differences in survival in HP^{-/-} and WT serum (p = 0.018) or HP^{-/-} serum + HP (p = 0.045) were significant. Significant differences (α) in survival in HP^{-/-} and WT serum were also detected at twenty (p = 0.041), forty (p = 0.025) and sixty minutes (p = 0.013). A significant difference (β) in survival in HP^{-/-} serum + HP was also seen at sixty minutes (p = 0.007). All other comparisons were statistically insignificant.

Remarkably, killing was almost completely restored by adding purified HP to the HP^{-/-} serum. Addition of LPS to HP^{-/-} serum did not affect killing significantly. Thus, HP plays a key role in the phagocyte-mediated killing of *S. aureus*.

4.3.8 HP-LTA-mediated killing of S. aureus by neutrophils

Given that the interactions between HP and *S. aureus* are likely to be complex (i.e. involving, LTA-HP and HarA-HP). It was interesting to see if the addition of exogenous LTA would inhibit HP-mediated killing of *S. aureus* by phagocytes. Unfortunately, LTA was limiting in this study, so only a single concentration was used. Survival assays were repeated using mouse HP-deficient serum and deficient serum pre-incubated with a mix of HP and purified LTA.

As shown in Figure 4.12, killing by reconstituted serum (HP^{-/-} serum + HP; *orange*) was partially inhibited by exogenous LTA (*blue*), implying that LTA competes with bacteria for HP binding. As expected addition of LTA alone (without HP) or trace amounts of LPS did not affect killing.

Figure 4.12 HP-LTA mediated killing of *S. aureus* **by neutrophils.** The role of HP-LTA interaction in the killing of *S. aureus* was measured in the presence of WT serum, $HP^{-/-}$ serum and $HP^{-/-}$ serum supplemented with purified HP (0.02 mg/ml), or LTA (0.25 mg/ml), or LPS (28 pg/ml), or a mix of HP (0.02 mg/ml) and LTA (0.25 mg/ml). *S. aureus* survival was also measured in the absence of neutrophils or serum.

The use of mouse serum instead of human serum in the above experiments can be limiting particularly that serum was acquired from mice with no prior exposure to *S. aureus* infection (i.e. naive adaptive immunity) and did not have IgG specific for *S. aureus* in contrast to human serum. However, both mouse and human innate immune responses were previously reported to be fundamental for protection against *S. aureus* infection by an efficient and rapid recruitment of neutrophils to the site of infection. For example, depletion of neutrophils in C57BL/6 mice increased staphylococcal numbers in the kidney during the early stages of infection, whereas neutrophil deficiency causes recurrent and often life-threatening *S. aureus* infection amongst humans (von Kockritz-Blickwede et al., 2008).

4.4 Discussion

The data described here show that HP is a key mediator in the phagocytosis and killing of *S. aureus* by neutrophils, monocytes and macrophages. The killing activity of these phagocytes is severely impaired when HP is depleted from serum or in serum lacking HP through gene disruption. Furthermore, this loss of activity can be almost completely restored by addition of exogenous HP. The activities observed were not due to contamination of HP preparations by LPS or by differential treatment of serum preparations.

Analysis of phagocytes by microscopy indicated that *S. aureus* were engulfed by the phagocytes (in the case of neutrophils and monocytes) consistent with their internalization into vesicles by phagocytosis. Interestingly, however, many of the bacteria were still viable despite being inside the defence cells, and could be rescued by lysing the phagocytes, thereby releasing their contents. *S. aureus* can survive inside neutrophils, monocyte and macrophages for long periods of time (eg. up to 5 days within macrophages), this ability is modulated by virulence factor regulator genes such as *sar* (Gresham et al., 2000, Kubica et al., 2008). Internalized bacteria inhabit incompetent endosomal vacuoles and lyse their membranes, and therefore escape into the cytoplasm where they may eventually kill phagocytes by secreting α -toxin, or through the induction of apoptosis (Kubica et al., 2008, Gresham et al., 2000).

Although only preliminary experiments were conducted due to limiting amounts of LTA, killing of *S. aureus* by neutrophils could be partially inhibited by addition of purified LTA. This finding implies that the exogenous LTA is competing with LTA (and possibly with the staphylococcal protein HarA) on the staphylococcal surface for HP, thereby reducing the number of bacteria that are targeted and internalized by

phagocytosis. Inhibition was only partial in this experiment, probably because the amount of LTA was limiting. However it is also possible that interaction of HarA with HP might not be affected by LTA, so is not inhibited. Interestingly, and consistent with this work, previous studies by Raynor et al. (1981) also showed that LTA reduces the ingestion of *S. aureus* by neutrophils, and it was suggested that it may interact with serum components to promote bacterial killing. The results described here confirm these studies and show that HP is the missing serum component.

As mentioned previously, activated neutrophils release HP and also interact with LTA via CD14 and TLR2 during recruitment to the site of infection (Theilgaard-Monch et al., 2006, Aulock et al., 2006, Lotz et al., 2004, Hattar et al., 2006). Consequently, granule proteins and chromatin are released and together form neutrophil extracellular traps (NETs) that degrade virulence factors and facilitate killing of Gram-Positive bacteria including *S. aureus* (Brinkmann et al., 2004). Activated neutrophils probably release HP, which then binds to LTA on the surface of *S. aureus* to facilitate additional bacterial recognition by phagocytic receptors such as CD14 and TLR2. In this way, it is likely that multiple host-pathogen interactions mediate the killing of *S. aureus* by phagocytosis or other phagocyte-mediated killing mechanisms.

As with neutrophils, the killing of *S. aureus* by monocytes or macrophages is also increased by HP. CD163 on these cells removes HP-HB complexes and may also be a receptor for *S. aureus* itself (Graversen et al., 2002, Fabriek et al., 2009). Another possibility is that HP-bacteria complexes (facilitated by HP-LTA interactions) are also internalized by CD163, through their interaction with HP, although non-complexed HP displays low affinity towards CD163 (Kristiansen et al., 2001, Moestrup and Moller, 2004). Moreover, other monocyte and macrophage receptors including TLR2 and type I scavenger receptor bind LTA and induce the release of critical cytokines for the host

immune response such as TNF- α and interleukins, so may also be involved in bacterial clearance (Dunne et al., 1994, Edds et al., 2000, Elgavish, 2000, Wang et al., 2000). Nevertheless, the data presented here suggest that HP-mediated phagocytosis is a major mechanism for the elimination of *S. aureus* by the mammalian immune system.

Chapter 5 General Discussion

The work described in this thesis has identified important novel functions of HP in the innate immune response and has provided new insights into molecular interactions between serum proteins, immune cell receptors and bacterial cell wall components. The results obtained, the methods employed and the outcomes observed in this study will form a basis for future work to further characterize the host immune response against *S. aureus* and provide novel targets for potential future therapeutics aimed at modifying the immune response.

5.1 The role of HP in innate immunity

Many human serum proteins including complement proteins, lipid-transport proteins, coagulation-cascade proteins and acute-phase proteins were identified to interact with highly purified LTA from *S. aureus*, either directly or indirectly. Further investigation revealed several of these proteins as potential innate immune components. HP, the focus of this study, has many of the hallmarks of an innate immune molecule: it is an acute-phase protein and is known to associate with phagocytic cells to promote elimination of bound HB. My work demonstrated that HP binds directly to LTA, and that the α -chain

is likely to contribute to this binding. The β -chain appears to enhance binding and might also bind to LTA, or modulate the binding activity of the α -chains.

HP was also shown to interact with *S. aureus*. Unlike the HP-LTA interaction, this has been observed before and was attributed to the staphylococcal surface component HarA. However, the HP-HarA interaction is relatively weak compared to HP-LTA or HP-staphylococcus binding, implying that it is unlikely to contribute appreciably. The staphylococcal physiological targets are more likely to be HB and HP-HB complexes, which bind much more tightly and would provide a vital source of iron, necessary for bacterial growth. As discussed in Chapter 3, the heme iron acquisition system via HP and other iron-containing targets such as transferrin may serve as traps employed by the immune system for invading bacteria, so there is likely to be a fine balance between the advantages gained from sequestering iron and the disadvantage resulting from detection and targeting by the immune system.

The major finding of this work is that HP is a key mediator of phagocytosis and the killing of *S. aureus* by neutrophils, monocytes and macrophages. Killing of *S. aureus* by all three phagocytes decreased dramatically in the presence of serum deficient in HP and was restored almost completely when purified HP was added back to deficient serum. Moreover, killing could be partially inhibited by exogenous LTA, implying that LTA competes for HP binding with LTA on the bacterial surface.

Receptors on phagocytic cells must target HP-*S. aureus* complexes to initiate phagocytosis, and the next major challenge will be to identify these receptors and characterize their interactions with HP. Neutrophils possess surface receptors including CD14 and TLR2 that recognize LTA and mediate bacterial killing by phagocytosis, and also employ alternative killing mechanisms, such as NETs (Brinkmann et al., 2004,

Theilgaard-Monch et al., 2006, Aulock et al., 2006, Hattar et al., 2006). Macrophage receptors such as CD163, TLR2 and type I scavenger also recognize either LTA or *S. aureus* and induce cytokines release (such as TNF- α and interleukins) and play key roles in immune responses against infections (Dunne et al., 1994, Edds et al., 2000, Elgavish, 2000, Bhakdi et al., 1991, Wang et al., 2000, Arndt and Abraham, 2001, Carlet, 2001, Fabriek et al., 2009). At this stage it is unclear whether HP-mediated killing of *S. aureus* is mediated by different phagocytic receptors or whether the difference cell types possess common recognition mechanisms.

Figure 5.1 Putative receptors, interactions and mechanisms for HP-mediated killing of *S. aureus* **by neutrophils.** Neutrophils, the first line of defence, recruit circulating HP in complex with invading *S. aureus,* via surface LTA. Upon activation they secrete additional HP. Binding to surface receptors (such as TLR2 and CD14) promotes HP-mediated killing of *S. aureus* by phagocytosis and possibly by additional killing mechanisms (such as NETs).

Figure 5.2 Putative receptors, interactions and mechanisms for HP-mediated killing of *S. aureus* by monocytes and macrophages. Monocytes are usually found circulating in the blood and differentiate into macrophages upon entering tissues. Both phagocytes bind HP-bacteria complexes via surface receptors (such as CD163, TLR2 and type I scavenger) to promote HP-mediated killing by phagocytosis and/or other killing mechanisms.

5.2 Future work

5.2.1 The possible role of HB in phagocyte-mediated killing of S. aureus

One of the unexpected and potentially interesting finding of this thesis is that free HB also binds to LTA, so could potentially induce the killing of *S. aureus* in association with HP via CD163 on monocytes and macrophages. This possibility could be tested using modified survival assays in which serum is supplemented with HB or HP-HB complexes in place of HP.

5.2.2 Cytokines regulating HP-mediated killing of S. aureus by phagocytes

Cytokines are likely to be released by neutrophils, monocytes and macrophages during HP-mediated killing of *S. aureus* to enable cell-cell communication and help coordinate an effective immune response. Thus, the identification of these cytokines is critical to help understand the events leading to killing. Cytokines can be detected in supernatants collected from the survival assays using specific antibodies. Preliminary work is already underway and supernatants have been collected following incubation of phagocytes with bacteria, and will be assayed in the near future.

5.2.3 Identifying phagocytic receptors for HP-mediated killing of S. aureus

A major focus of future work will be the identification of HP receptors on the surface of neutrophils, monocytes and macrophages. One way that this can be achieved is using antibodies to specifically block individual receptors and monitor bacterial survival. Once putative receptors have been identified, interactions with HP can be further characterized either using purified receptors or by expressing receptors in deficient cell lines and studying their interaction with *S. aureus*, LTA and HP using binding assays. Alternatively, receptors could be identified by preparing a HP-affinity matrix and probing with membrane extracts from phagocytic cells. In this way, CD163 was first

identified as a scavenger receptor for HP-HB (Kristiansen et al., 2001). The identification of HP receptors would significantly improve our understanding of the mechanisms and interactions employed by phagocytes to eliminate invading *S. aureus*.

5.2.4 HP-mediated killing of *S. aureus* using *in vivo* infection models

HP-mediated killing of *S. aureus* could also be investigated using HP-knockout mice, by comparing survival and immune responses of HP-deficient and -sufficient strains, challenged with *S. aureus*. Such a study has already been carried out using *S. typhimurium* (Huntoon et al., 2008). However in this case, the adaptive immune response was the primary focus rather than the innate immune response. HP deficiency was found to reduce T and B cell mediated immune responses and HP was suggested to have an immune regulatory function (Huntoon et al., 2008). My results would suggest that these may be indirect effects and the principal function of HP is in innate responses to infection. Nevertheless, this infection model could be used to study the role of HP role in immune responses against other pathogens such as *S. pneumoniae* and would also be useful to evaluate potential novel treatments for infection.

5.2.5 HP-mediating killing of other bacteria by phagocytes

The killing of other bacteria via HP interactions would be another interesting project for the future. Both Gram-positive bacteria such as *S. pneumoniae* and Gram-negative such as *E. coli* and *Salmonella* could be studied to assess overall role of HP in battling infection.

5.2.6 The role of other LTA-binding proteins in phagocyte-mediated killing of *S. aureus*

A number of other LTA-binding proteins were identified as potential immune components in this work. One of the most promising proteins was galectin-3 binding protein or Mac-2 binding protein (M2BP), which has previously been reported to have an important role in the immune response (Chapter 2), including stimulating the release of cytokines IL-1 and IL-6 by monocytes and activating NK-cells (Ullrich et al., 1994, Powell et al., 1995). Like HP, M2BP was identified in thesis as a potential LTA-binding immune molecule, which might bind LTA on the staphylococcal surface and activate killing through phagocytic receptors. Its role could be investigated in a similar way as HP. Recombinant M2BP has already been produced (Hellstern et al., 2002) and M2BP deficient mice have been generated (Muller et al., 1999), so M2BP-deficient mice could be used as infection models to evaluate M2BP contribution in the immune system.

Appendix 1 MALDI-TOF-MS analysis of putative LTA-binding proteins

• Scheme 1

Band 5

Apolipoprotein A-IV (peptides sequence coverage: 36%)

Start	-	End	Mr(expt)	Mr(calc)	Peptides s	sequence
52	-	65	1633.8193	1633.8311	SELTQQLNA	LFQDK
52	-	65	1633.8374	1633.8311	SELTQQLNA	LFQDK
66	-	78	1406.6881	1406.7041	LGEVNTYAGI	OLQK
144	-	154	1286.6432	1286.6579	TQVNTQAEQI	LR
156	-	163	975.4401	975.5138	QLTPYAQR	
190	-	198	1086.4935	1086.5557	IDQNVEELK	
201	-	209	1082.4462	1082.5284	LTPYADEFK	
212	-	221	1257.5973	1257.6677	IDQTVEELRI	R
222	-	233	1349.6092	1349.6463	SLAPYAQDT	JEK
234	-	246	1558.8014	1557.7973	LNHQLEGLT	FQMK
256	-	264	974.4359	974.5032	ISASAEELR	
267	-	275	982.4214	982.5447	LAPLAEDVR	
288	-	304	1926.9187	1926.9435	SLAELGGHLI	DQQVEEFR
317	-	326	1214.5614	1214.6441	ALVQQMEQLI	R
317	-	326	1230.6161	1230.6390	ALVQQMEQLI	R
1	M	LKAVVLTI	L ALVAVAGARA	A EVSADQVATV	MWDYFSQLSN	NAKEAVEHLQ
51	ĸ	SELTQQLNA	A LFQDKLGEVN	I TYAGDLQKKL	VPFATELHER	LAKDSEKLKE
101	E	GKELEEL	R ARLLPHANE	/ SQKIGDNLRE	LQQRLEPYAD	QLRTQVNTQA
151	ΕÇ	LRRQLTP	AQRMERVLR	E NADSLQASLR	PHADELKAKI	DQNVEELKGR
201	\mathbf{L}	PYADEFK	/ KIDQTVEELE	R RSLAPYAQDT	QEKLNHQLEG	LTFQMKKNAE
251	E	KARISAS	A EELRQRLAPI	AEDVRGNLRG	NTEGLQK <mark>SLA</mark>	ELGGHLDQQV
301	E	FRRRVEP	GENFNKALVG	QMEQLRTKLG	PHAGDVEGHL	SFLEKDLRDK
351	v	ISFFSTFKI	E KESQDKTLSI	L PELEQQQEQH	QEQQQEQVQM	LAPLES

Haptoglobin (peptides sequence coverage: 16%)

Start	- End	Mr (exp	.) Mr(ca	lc) Pept	ides se	equence
38	- 49	1289.63	385 1289. [°]	7231 DIAP	FLTLYV (GK
51	- 57	857.448	85 857.4	858 QLVE:	IEK	
100	- 108	979.445	58 979.4	876 VGYVS	SGWGR	
214	- 223	1202.56	561 1202.	6295 VTSI Ç	2DWVQK	
1	MVSHHN	ILTTG ATLINE	EQWLL TTAK	NLFLNH SENA	FAK<mark>DIA</mark>	PTLTLYVGKK
51	QLVEIE	KVVL HPNYS	VDIG LIKL	KQKVSV NERVI	MPICLP	SKDYAEVGRV
101	GYVSGW	IGRNA NFKFTI	HLKY VMLP	VADQDQ CIRH	YEGSTV	PEKKTPKSPV
151	GVQPIL	NEHT FCAGMS	SKYQE DTCY	GDAGSA FAVHI	DLEEDT	WYATGILSFD
201	KSCAVA	EYGV YVKVTS	SIQDW VQKT	IAEN		

Serum paraoxanase (peptides sequence coverage: 10%)

Start	- End	Mr(expt)	Mr(calc)	Peptides	sequence
234	- 244	1318.7980	1318.7285	YVYIAELLA	HK
291	- 306	1882.9091	1882.9101	IFFYDSENP	PASEVLR
307	- 316	1183.6358	1183.6448	IQNILTEEP	K
1	MAKLIALTLI	L GMGLALFRNH	I QSSYQTRLNA	LREVQPVELP	NCNLVKGIET
51	GSEDMEILPN	N GLAFISSGLF	YPGIKSFNPN	SPGKILLMDL	NEEDPTVLEL
101	GITGSKFDVS	S SFNPHGISTE	TDEDNAMYLL	VVNHPDAKST	VELFKFQEEE
151	KSLLHLKTI	R HKLLPNLNDI	VAVGPEHFYG	TNDHYFLDPY	LQSWEMYLGL
201	AWSYVVYYSI	SEVRVVAEGE	DFANGINISP	DGKYVYIAEL	LAHK IHVYEK
251	HANWTLTPLE	K SLDFNTLVDN	ISVDPETGDL	WVGCHPNGMK	IFFYDSENPP
301	ASEVLRIQN	LTEEPKVTQV	V YAENGTVLQG	STVASVYKGK	LLIGTVFHKA
351	LYCEL				

Band 6

Apolipoprotein E3 (peptides sequence coverage: 38%)

Start	-	End	Mr(expt)	Mr(calc)	Peptides	s Sequence
44	-	50	843.3916	843.4603	WELALGR	
94	-	108	1729.8331	1729.8370	SELEEQL!	PVAEETR
114	-	121	885.3824	885.4668	ELQAAQAI	ર
138	-	152	1646.8215	1646.7934	GEVQAML	GOSTEELR
138	-	152	1662.8743	1662.7883	GEVQAML	GOSTEELR
177	-	185	947.5029	947.5188	LAVYQAG	AR
199	-	207	967.5377	967.5451	LGPLVEQ	GR
210	-	224	1496.7714	1496.7947	AATVGSL	AGQPLQER
236	-	242	838.2826	838.3313	MEEMGSR	
261	-	269	1113.5621	1113.5778	LEEQAQQ:	IR
270	-	278	1032.5492	1032.5352	LQAEAFQ	AR
281	-	292	1535.7556	1535.7079	SWFEPLV	EDMQR
293	-	300	929.4643	929.4971	QWAGLVE	ζ.
1	M	KVLWAALLV	TFLAGCQAK	V EQAVETEPEP	ELRQQTEWQS	GQRWELALGR
51	F١	WDYLRWVQ1	LSEQVQEELI	SSQVTQELRA	LMDETMKELK	AYKSELEEQL
101	TI	PVAEETRAF	R LSK <mark>ELQAAQ</mark> A	RLGADMEDVR	GRLVQYR <mark>GEV</mark>	QAMLGQSTEE
151	Ы	VRLASHLF	R KLRKRLLRDA	A DDLQKRLAVY	QAGAREGAER	GLSAIRERLG
201	P	LVEQGRVRA	ATVGSLAGQ	LQERAQAWGE	RLRARMEEMG	SRTRDRLDEV
251	KI	EQVAEVRAK	LEEQAQQIRI	QAEAFQARLK	SWFEPLVEDM	QRQWAGLVEK
301	V	DAAVGTSAA	PVPSDNH			

Apolipoprotein J (peptides sequence coverage: 15%)

Start	-	End	Mr(expt)	Mr(calc)	Peptides Sequence
36	-	45	1116.5958	1116.6026	TLLSNLEEAK
126	-	134	1073.4827	1073.5353	IDSLLENDR
150	-	161	1392.6784	1392.6885	ASSIIDELFQDR
293	-	303	1287.5673	1287.6306	ELDESLQVAER
353	-	375	2313.4205	2313.1700	VTTVASHTSDSDVPSGVTEVVVK
-					
T	MS	SNQGSKIVI	N KEIQNAVNG\	/ KQIKTLIEKT	NEERKTLLSN LEEAKKKKED
51	AI	LNETRESET	r klkelpgvcn	I ETMMALWEEC	KPCLKQTCMK FYARVCRSGS
101	GI	LVGRQLEEI	F LNQSSPFYFV	MNGDR <mark>IDSLL</mark>	ENDRQQTHML DVMQDHFSRA

151 SSIIDELFQD RFFTREPQDT YHYLPFSLPH RRPHFFFPKS RIVRSLMPFS
201 PYEPLNFHAM FQPFLEMIHE AQQAMDIHFH SPAFQHPPTE FIREGDDDRT
251 VCREIRHNST GCLRMKDQCD KCREILSVDC STNNPSQAKL RRELDESLQV
301 AERLTRKYNE LLKSYQWKML NTSSLLEQLN EQFNWVSRLA NLTQGEDQYY
351 LRVTTVASHT SDSDVPSGVT EVVVKLFDSD PITVTVPVEV SRKNPKFMET
401 VAEKALQEYR KKHREE

Haptoglobin related protein (peptides sequence coverage: 10%)

Start	-	End	Mr (exp	t) 1	Mr(calc)		Peptides	s Sequence
150	-	157	919.40	71 9	919.4552		GSFPWQA	ζ
241	-	249	1043.4	748 1	1043.550	8	VMPICLPS	SK
359	-	370	1344.5	986 3	1344.638	4	SCAVAEY	SVYVK
371	-	380	1202.5	380 3	1202.629	5	VTSIQDW	7QK
1	MI	AVCVCVCVC	VYMPV	CVDAC	MCCEAGR	PAF	RSFLFSLCSI) LGAVISLLLW
51	GI	RQLFALYSO	NDVTD	ISDDR	FPKPPEI	ANG	YVEHLFRYQO	KNYYRLRTEG
101	DC	GVYTLNDKK	QWINKA	AVGDK	LPECEAV	CGK	PKNPANPVQI	R ILGGHLDAK <mark>G</mark>
151	SI	PWQAKMVS	HHNLT	IGATL	INEQWLL	TTA	KNLFLNHSEN	ATAKDIAPTL
201	ΤI	LYVGKKQLV	V EIEKVV	/LHPN	YHQVDIG	LIK	LKQKVLVNER	VMPICLPSKN
251	YZ	AEVGRVGYV	SGWGQS	SDNFK	LTDHLKY	VML	PVADQYDCI	HYEGSTCPKW
301	KZ	APKSPVGVÇ) PILNE	HTFCV	GMSKYQE	DTC	YGDAGSAFA	/ HDLEEDTWYA
351	A	GILSFDK <mark>SC</mark>	AVAEY	GVYVK	VTSIQDW	VQK	TIAEN	

Mr (expt) is the experimentally observed mass (Da)

Mr (calc) is the calculated mass (Da)

Matched peptides shown in *bold red*

• Scheme 2

Band 8

Pre-serum amyloid P component (peptides sequence coverage: 33%)

Start	-	End	Mr(expt)	Mr(calc)	Peptide	s Sequence
58	-	64	810.3627	810.3872	AYSDLSF	t
65	-	76	1405.7434	1405.6626	AYSLFSY	NTQGR
77	-	84	992.6923	992.5178	DNELLVY	ТК
87	-	96	1155.6287	1155.5924	VGEYSLY	IGR
140	-	149	1165.6473	1165.5768	QGYFVEA	QPK
150	-	162	1392.6488	1392.6885	IVLGQEQ	DSYGGK
150	-	162	1392.7040	1392.6885	IVLGQEQ	DSYGGK
150	-	165	1810.8764	1810.8850	IVLGQEQ	DSYGGKFDR
213	-	223	1285.7648	1285.7798	GYVIIKE	NMAT
1	M	KPLLWISV	/ LTSLLEAFAR	I TDLSGKVFVF	PRESVTDHVN	LITPLEKPLQ
51	NI	TLCFRAYS	DLSRAYSLFS	S YNTQGRDNEL	LVYKERVGEY	SLYIGR HKVT
101	PF	VIEKFPA	VHICVSWESS	SGIAEFWING	TPLVKKGLRQ	GYFVEAQPKI
151	VI	GQEQDSYC	GKFDRSQSFV	GEIGDLYMWD	SVLPPENILS	AYQGTPLPAN
201	II	LDWQALNYE	IRGYVIIKPI	VWV		

Band 9,11,12,13,14,16

Keratin

eg, band 9 (peptides sequence coverage: 16%)

Start	-	End	Mr(expt)	Mr(calc)	Peptide	es Sequence
14	-	29	1231.8218	1231.5906	SGGGGG	GGLGSGGSIR
47	-	59	1234.7187	1234.5215	FSSSSG	YGGGSSR
155	-	163	1064.6853	1064.4920	STMQELI	ISR
155	-	163	1080.6412	1080.4870	STMQELI	ISR
164	-	170	808.5557	808.4330	LASYLD	K
164	-	184	2376.7766	2376.1808	LASYLD	XVQALEEANNDLENK
171	-	184	1586.0547	1585.7583	VQALEE	ANNDLENK
225	-	233	1059.7968	1059.5560	TLLDIDI	NTR
234	-	240	896.6102	896.4062	MTLDDFI	ર
241	-	250	1323.9015	1322.6652	IKFEME	ONLR
262	-	271	1205.8402	1205.5962	QVLDNL	IMEK
328	-	336	1120.8541	1120.5764	QEYEQL:	IAK
1	M	SCRQFSSSY	LSR <mark>SGGGGGG</mark>	GLGSGGSIRS	SYSRFSSSGG	GGGGGRFSSS
51	S	GYGGGSSRV	CGRGGGGSF	S YSYGGGSGGG	FSASSLGGGF	GGGSRGFGGA
101	S	GGYSSSGG	FGGGFGGGS	GGFGGGYGSG	FGGFGGFGGG	AGGGDGGILT
151	A	NEKSTMQEI	NSRLASYLD	VQALEEANND	LENKIQDWYD	KKGPAAIQKN
201	YS	SPYYNTIDE	LKDQIVDLTV	GNNKTLLDID	NTRMTLDDFR	IKFEMEQNLR
251	Q	GVDADINGI	ROVLDNLTME	KSDLEMQYET	LQEELMALKK	NHKEEMSQLT
301	GÇ	ONSGDVNVE	INVAPGKDLT	KTLNDMRQEY	EQLIAKNRKD	IENQYETQIT
351	Q	LEHEVSSSG	GEVQSSAKEV	7 TQLRHGVQEL	EIELQSQLSK	KAALEKSLED
401	TH	KNRYCGQLQ	MIQEQISNLE	E AQITDVRQEI	ECQNQEYSLL	LSIKMRLEKE
451	II	TYHNLLEG	GQEDFESSGA	A GKIGLGGRGG	SGGSYGRGSR	GGSGGSYGGG
501	GS	SGGGYGGGS	GSRGGSGGS	GGGSGSGGGS	GGGYGGGSGG	GHSGGSGGGH
551	S	GGSGGNYGG	GSGSGGGSGG	GYGGGSGSRG	GSGGSHGGGS	GFGGESGGSY
601	G	GEEASGSG	GGYGGGSGKS	S SHS		

<u>Band 10</u>

Carboxypeptidase D (peptides sequence coverage: 3%)

Start - End	Mr(expt)	Mr(calc)	Peptide	es Sequence
36 - 57	2210.426	5 2212.0244	KAEATTI	ITTSAGAEAAEGQFD R
36 - 57	2210.508	5 2212.0244	KAEATT	ITTSAGAEAAEGQFD R
36 - 57	2210.556	5 2212.0244	KAEATTI	ITTSAGAEAAEGQFD R
886 - 907	2298.6103	L 2298.0863	3 GASSSTI	NDASDPTTKEFETLIK
1 MASGRDERP	H WRLGRLLLLM	CLLLLGSSAR	AAHIK <mark>KAEAT</mark>	TTTTSAGAEA
51 AEGQFDRYY	H EEELESALRE	AAAAGLPGLA	RLFSIGRSVE	GRPLWVLRLT
101 AGLGSLIPE	G DAGPDAAGPD	AAGPLLPGRP	QVKLVGNMHG	DETVSRQVLI
151 YLARELAAG	Y RRGDPRLVRL	LNTTDVYLLP	SLNPDGFERA	REGDCGFGDG
201 GPSGASGRD	N SRGRDLNRSF	PDQFSTGEPP	ALDEVPEVRA	LIEWIRRNKF
251 VLSGNLHGG	S VVASYPFDDS	PEHKATGIYS	KTSDDEVFKY	LAKAYASNHP
301 IMKTGEPHC	P GDEDETFKDG	ITNGAHWYDV	EGGMQDYNYV	WANCFEITLE
351 LSCCKYPPA	S QLRQEWENNR	ESLITLIEKV	HIGVKGFVKD	SITGSGLENA
401 TISVAGINH	N ITTGRFGDFY	RLLVPGTYNL	TVVLTGYMPL	TVTNVVVKEG
451 PATEVDFSL	R PTVTSVIPDT	TEAVSTASTV	AIPNILSGTS	SSYQPIQPKD
501 FHHHHFPDM	E IFLRRFANEY	PNITRLYSLG	KSVESRELYV	MEISDNPGVH
551 EPGEPEFKY	I GNMHGNEVVG	RELLLNLIEY	LCKNFGTDPE	VTDLVHNTRI
601 HLMPSMNPD	G YEKSQEGDSI	SVIGRNNSNN	FDLNRNFPDQ	FVQITDPTQP
651 ETIAVMSWM	K SYPFVLSANL	HGGSLVVNYP	FDDDEQGLAT	YSKSPDDAVF
701 QQIALSYSK	E NSQMFQGRPC	KNMYPNEYFP	HGITNGASWY	NVPGGMQDWN
751 YLQTNCFEV	T IELGCVKYPL	EKELPNFWEQ	NRRSLIQFMK	QVHQGVRGFV
801 LDATDGRGI	L NATISVAEIN	HPVTTYKTGD	YWRLLVPGTY	KITASARGYN
851 PVTKNVTVK	S EGAIQVNFTL	VRSSTDSNNE	SKKGKGASSS	TNDASDPTTK
901 EFETLIKDL	S AENGLESLML	RSSSNLALAL	YRYHSYKDLS	EFLRGLVMNY
951 PHITNLTNL	G QSTEYRHIWS	LEISNKPNVS	EPEEPKIRFV	AGIHGNAPVG
1001 TELLLALAE	F LCLNYKKNPA	VTQLVDRTRI	VIVPSLNPDG	RERAQEKDCT
1051 SKIGQTNAR	G KDLDTDFTNN	ASQPETKAII	ENLIQKQNFS	LSVALDGGSM
1101 LVTYPYDKP	V QTVENKETLK	HLASLYANNH	PSMHMGQPSC	PNKSDENIPG
1151 GVMRGAEWH	S HLGSMKDYSV	TYGHCPEITV	YTSCCYFPSA	ARLPSLWADN
1201 KRSLLSMLV	E VHKGVHGFVK	DKTGKPISKA	VIVLNEGIKV	QTKEGGYFHV
1251 LLAPGVHNI	I AIADGYQQQH	SQVFVHHDAA	SSVVIVFDTD	NRIFGLPREL
1301 VVTVSGATM	S ALILTACIIW	CICSIKSNRH	KDGFHRLRQH	HDEYEDEIRM
1351 MSTGSKKSL	L SHEFQDETDT	EEETLYSSKH		

Band 15

Collagen (peptides sequence coverage: 6%)

Start ·	- End	Mr(expt)	Mr(calc)	Peptides Sec	quence
239 -	- 267	2788.8064	2787.4338	GVPGGRGLPGEI	OGEKGEMGLPGIIGPLGR
441 -	- 464	2210.3842	2210.2899	GKKGAPGPSGK	PGIPGLQGLLGPK
1	KITVFATLY	S FLTGRSRR	SR KYWKIGETG	P VGLPGEVGMT	GSIGEKGERG
51	SPGPLGPQ	E KGVMGYPG	PP GVPGPIGPL	G LPGHVGARGP	PGSQGPKGQR
101	GSRGPDGLI	G EQGIQGAK	SE KGDQGKRGP	H GLIGKTGNPG	ERGFQGKPGL
151	QGLPGSTGI	R GLPGEPGLI	RG LQGDVGPPG	E MGMEGPPGTE	GESGLQGEPG
201	AKGDVGTAG	SS VGGTGEPG	LR GEPGAPGEE	G LQGKDGLK <mark>GV</mark>	PGGRGLPGED
251	GEKGEMGLI	G IIGPLGRS	GQ TGLPGPEGI	V GIPGQRGRPG	KKGDKGQIGP
301	TGEVGSRGE	PP GKIGKSGP	KG ARGTRGAVG	H LGLMGPDGEP	GIPGYRGHQG
351	QPGPSGLPG	GP KGEKGYPGI	D STVLGPPGP	R GEPGPVGDQG	ERGEPGAEGY
401	KGHVGVPGI	R GATGQQGP	G EPGDQGEQG	L KGERGSEGNK	GKKGAPGPSG
451	KPGIPGLQC	L LGPKGIQG	H GADGISGNP	G KIGPPGKQGL	PGIRGGPGRT
501	GLAGAPGPH	G VKGSSGLP	SS PGIQGPKGE	Q GLPGQPGIQG	KRGHRGAQGD

```
551 QGPCGDPGLK GQPGEYGVQG LTGFQGFPGP KGPEGDAGIV GISGPKGPIG
601 HRGNTGPLGR EGIIGPTGRT GPRGEKGFRG ETKQMDINAA IQALIESNTA
651 LQMESYQNTE VTLIDHSEEI FKTLNYLSNL LHSIKNPLGT RDNPARICKD
701 LLNCEQKVSD GKYWIDPNLG CPSDAIEVFC NFSAGGQTCL PPVSVTKLEF
751 GVGKVQMNFL HLLSSEATHI ITIHCLNTPR WTSTQTSGPG LPIGFKGWNG
801 QIFKVNTLLE PKVLSDDCKI QDGSWHKATF LFHTQEPNQL PVIEVQKLPH
851 LKTERKYYID SSSVCFL
```

Band 17

Apolipoprotein E (peptides sequence coverage: 16%)

```
Start - EndMr (expt)Mr (calc)Peptides Sequence80 - 901339.89631339.6363ALMDETMKELK199 - 207967.6883967.5451LGPLVEQGR210 - 2241496.98061496.7947AATVGSLAGQPLQER270 - 2781032.70141032.5352LQAEAFQAR293 - 300929.5947929.4971QWAGLVEK1MKVLWAALLVTFLAGCQAKVEQAVETEPEPELRQQTEWQS51FWDYLRWVQTLSEQVQEELLSSQVTQELRALMDETMKELK101TPVAEETRARLSKELQTAQARLGADMEDVCGRLVQYRGEV11LRVRLASHLRKLRKRLLRDPDDLQKRLAVYQAGAREGAER201PLVEQGRVRAATVGSLAGQPLQERAQAWGERLRARMEEMG201PLVEQGRVRALEEQAQQIRLQAEAFQARLKSWFEPLVEDM201VQAAVGTSAAPVPSDNH
```

Band 18

Plasminogen (peptides sequence coverage: 1%)

Start	-	End	Mr(expt)	Mr(calc)	Peptides	s Sequence
671	-	680	1044.7206	1045.5291	LSSPADI	TDK
671	-	680	1045.7707	1045.5291	LSSPADI	TDK
1	ME	EHKEVVLLI	LLFLKSGQGE	PLDDYVNTQG	ASLFSVTKKQ	LGAGSIEECA
51	AF	KCEEDEEFI	CRAFQYHSKE	QQCVIMAENR	KSSIIIRMRD	VVLFEKKVYL
101	SE	ECKTGNGKN	I YRGTMSKTKN	GITCQKWSST	SPHRPRFSPA	THPSEGLEEN
151	YC	CRNPDNDPQ	GPWCYTTDPE	KRYDYCDILE	CEEECMHCSG	ENYDGKISKT
201	MS	SGLECQAWE	SQSPHAHGYI	PSKFPNKNLK	KNYCRNPDRE	LRPWCFTTDP
251	NF	RWELCDIE	RCTTPPPSSG	PTYQCLKGTG	ENYRGNVAVT	VSGHTCQHWS
301	AÇ	TPHTHNRI	PENFPCKNLD	ENYCRNPDGK	RAPWCHTTNS	QVRWEYCKIP
351	sc	CDSSPVSTE	E QLAPTAPPEI	TPVVQDCYHG	DGQSYRGTSS	TTTTGKKCQS
401	WS	SSMTPHRHQ	KTPENYPNAG	LTMNYCRNPD	ADKGPWCFTT	DPSVRWEYCN
451	LF	KKCSGTEAS	S VVAPPPVVLI	PDVETPSEED	CMFGNGKGYR	GKRATTVTGT
501	PC	CODWAAQEE	P HRHSIFTPET	NPRAGLEKNY	CRNPDGDVGG	PWCYTTNPRK
551	гл	DYCDVPQC	AAPSFDCGKE	QVEPKKCPGR	VVGGCVAHPH	SWPWQVSLRT
601	RI	GMHFCGGI	LISPEWVLTA	AHCLEKSPRP	SSYKVILGAH	QEVNLEPHVQ
651	E	EVSRLFLE	E PTRKDIALLK	LSSPADITDK	VIPACLPSPN	YVVADRTECF
701	IJ	rgwgetqgi	FGAGLLKEAQ	LPVIENKVCN	RYEFLNGRVQ	STELCAGHLA
751	GG	TDSCQGDS	GGPLVCFEK	KYILQGVTSW	GLGCARPNKP	GVYVRVSRFV
801	ТV	IEGVMRNN	1			

Lipoprotein GIn I (peptides sequence coverage: 25%)

Start - End	Mr(expt)	Mr(calc)	Pept	ides Sequence	è
1 - 10	1225.7054	1225.5364	l DEPI	QSPWDR	
101 - 110	1251.7966	1251.6136	5 VQP3	LDDFQK	
111 - 119	1298.7292	1297.6125	5 KWQI	MELYR	
122 - 134	1466.9447	1466.7841	L VEPI	LRAELQEGAR	
127 - 134	872.6084	872.4352	AELÇ	EGAR	
144 - 152	1030.6727	1030.5117	/ LSPI	LGEEMR	
199 - 209	1214.8635	1214.6143	3 ATEI	ILSTLSEK	
1 DEPPQSPWDR	VKDLATVYVD	VLKDSGRDYV	SQFQGSALGK	QLNLKLLWDD	
51 VTSTFSKLRQ	ELGPVTEEWF 1	NDLQEKLNLE	KETGELRQEM	SKDLEEVKAK	
101 VQPYLDDFQK	KWQEMELYRQ	KVEPLRAELQ	EGARQKLHEL	QEKLSPLGEE	
151 MRDRARAHVD	ALRTHLAPYS	DELRQRLAAR	LEALKENGAG	RLAEYHAK<mark>AT</mark>	
201 EHLSTLSEKA	KPALEDLRQG	LLPVLESFKV	SFLSALEEYT	KLNTQ	

Mr (expt) is the experimentally observed mass (Da)

Mr (calc) is the calculated mass (Da)

Matched peptides shown in *bold red*

• Scheme 3

<u>Band 19</u>

Apolipoprotein B-100 precursor (peptides sequence coverage: 0%)

Start	– End l	Mr(expt)	Mr(calc)	Peptide	es Sequence
116	- 128	1442.4532	1440.6667	TKNSEEI	TAAAMSR
220	- 229	1011.6419	1011.6328	TGISPL	LIK
306	- 314	998.4041	998.4743	MGLAFES	STK
642	- 654	1270.6610	1270.6769	SVSIPS	DPASAK
1	MDPPRPALLA	LLALPALLLI	LLAGARAEEE	MLENVSLVCP	KDATRFKHLR
51	KYTYNYEAES	SSGVPGTADS	RSATRINCKV	ELEVPQLCSF	ILKTSQCILK
101	EVYGFNPEGK	ALLKKTKNSE	EFAAAMSRYE	LKLAIPEGKQ	VFLYPEKDEP
151	TYILNIKRGI	ISALLVPPEI	' EEAKQVLFLD	TVYGNCSTHF	TVKTRKGNVA
201	TEISTERDLG	QCDRFKPIR	GISPLALIKG	MTRPLSTLIS	SSQSCQYTLD
251	AKRKHVAEAI	CKEQHLFLPE	' SYKNKYGMVA	QVTQTLKLED	TPKINSRFFG
301	EGTKKMGLAF	ESTKSTSPPF	QAEAVLKTVQ	ELKKLTISEQ	NIQRANLFNK
351	LVTELRGLSD	EAVTSLLPQI	IEVSSPITLQ	ALVQCGQPQC	STHILQWLKR
401	VHANPLLIDV	VTYLVALIPE	PSAQQLREIF	NMARDQRSRA	TLYALSHAVN
451	NYHKTNPTGT	QELLDIANYI	MEQIQDDCTG	DEDYTYLILR	VIGNMGQTME
501	QLTPELKSSI	LKCVQSTKPS	LMIQKAAIQA	LRKMEPKDKD	QEVLLQTFLD
551	DASPGDKRLA	AYLMLMRSPS	QADINKIVQI	LPWEQNEQVK	NFVASHIANI
601	LNSEELDIQD	LKKLVKEVLF	ESQLPTVMDF	RKFSRNYQLY	KSVSIPSLDP
651	ASAKIEGNLI	FDPNNYLPKE	SMLKTTLTAF	GFASADLIEI	GLEGKGFEPT
701	LEALFGKQGF	FPDSVNKALY	WVNGQVPDGV	SKVLVDHFGY	TKDDKHEQDM
751	VNGIMLSVEK	LIKDLKSKEV	PEARAYLRIL	GEELGFASLH	DLQLLGKLLL
801	MGARTLQGIP	QMIGEVIRKO	SKNDFFLHYI	FMENAFELPT	GAGLQLQISS
851	SGVIAPGAKA	GVKLEVANMQ	AELVAKPSVS	VEFVTNMGII	IPDFARSGVQ
901	MNTNFFHESG	LEAHVALKPO	KLKFIIPSPK	RPVKLLSGGN	TLHLVSTTKT
951	EVIPPLIENR	QSWSVCKQVE	PGLNYCTSGA	YSNASSTDSA	SYYPLTGDTR
1001	LELELRPTGE	IEQYSVSATY	ELQREDRALV	DTLKFVTQAE	GAKQTEATMT
1051	FKYNRQSMTL	SSEVQIPDFD	VDLGTILRVN	DESTEGKTSY	RLTLDIQNKK
1101	ITEVALMGHL	SCDTKEERKI	KGVISIPRLQ	AEARSEILAH	WSPAKLLLQM
1151	DSSATAYGST	VSKRVAWHYD	EEKIEFEWNT	GTNVDTKKMT	SNFPVDLSDY
1201	PKSLHMYANR	LLDHRVPQTD	MTFRHVGSKL	IVAMSSWLQK	ASGSLPYTQT
1251	LODHLNSLKE	FNLONMGLPE	FHIPENLFLK	SDGRVKYTLN	KNSLKIEIPL
1301	PFGGKSSRDL	KMLETVRTPA	LHFKSVGFHL	PSREFOVPTF	TIPKLYOLOV
1351	PLLGVLDLST	NVYSNLYNWS	ASYSGGNTST	DHFSLRARYH	MKADSVVDLL
1401	SYNVOGSGET	TYDHKNTFTI	SCDGSLRHKF	LDSNIKFSHV	EKLGNNPVSK
1451	GLLIFDASSS	WGPOMSASVE	LDSKKKOHLF	VKEVKIDGOF	RVSSFYAKGT
1501	YGLSCORDPN	TGRLNGESNI	RENSSYLOGT	NOITGRYEDG	TLSLTSTSDL
1551	OSGIIKNTAS	LKYENYELTI	KSDTNGKYKN	FATSNKMDMT	FSKONALLRS
1601	EYOADYESLR	FFSLLSGSLN	SHGLELNADI	LGTDKINSGA	HKATLRIGOD
1651	GISTSATTNL	KCSLLVLENE	LNAELGLSGA	SMKLTTNGRF	REHNAKFSLD
1701	GKAALTELSL	GSAYOAMILO	VDSKNIFNFK	VSOEGLKLSN	DMMGSYAEMK
1751	FDHTNSLNIA	GLSLDFSSKI	DNIYSSDKFY	KOTVNLOLOP	YSLVTTLNSD
1801	LKYNALDLTN	NGKLRLEPLK	LHVAGNLKGA	YONNEIKHIY	AISSAALSAS
1851	YKADTVAKVO	GVEFSHRLNI	DIAGLASAID	MSTNYNSDSL	HFSNVFRSVM
1901	APFTMTIDAH	TNGNGKLALW	GEHTGOLYSK	FLLKAEPLAF	TFSHDYKGST
1951	SHHLVSRKSI	SAALEHKVSA	LLTPAEOTGT	WKLKTOFNNN	EYSODLDAYN
2001	TKDKIGVELT	GRTLADLTLI	DSPIKVPLLL	SEPINIIDAL	EMRDAVEKPO
2051	EFTIVAFVKY	DKNQDVHSIN	I LPFFETLQEY	FERNRQTIIV	VLENVQRNLK
2101	HINIDQFVRK	YRAALGKLPO	QANDYLNSFN	WERQVSHAKE	- KLTALTKKYR
2151	ITENDIQIAL	DDAKINFNER	LSQLQTYMIO	FDQYIKDSYD	LHDLKIAIAN
2201	IIDEIIEKLK	SLDEHYHIRV	NLVKTIHDLH	LFIENIDFNK	SGSSTASWIQ
2251	NVDTKYQIRI	QIQEKLQQLK	RHIQNIDIOH	LAGKLKQHIE	AIDVRVLLDO
2301	LGTTISFERI	NDVLEHVKHE	VINLIGDFEV	AEKINAFRAK	VHELIERYEV

2351	DQQIQVLMDK	LVELAHQYKL	KETIQKLSNV	LQQVKIKDYF	EKLVGFIDDA
2401	VKKLNELSFK	TFIEDVNKFL	DMLIKKLKSF	DYHQFVDETN	DKIREVTQRL
2451	NGEIQALELP	QKAEALKLFL	EETKATVAVY	LESLQDTKIT	LIINWLQEAL
2501	SSASLAHMKA	KFRETLEDTR	DRMYQMDIQQ	ELQRYLSLVG	QVYSTLVTYI
2551	SDWWTLAAKN	LTDFAEQYSI	QDWAKRMKAL	VEQGFTVPEI	KTILGTMPAF
2601	EVSLQALQKA	TFQTPDFIVP	LTDLRIPSVQ	INFKDLKNIK	IPSRFSTPEF
2651	TILNTFHIPS	FTIDFVEMKV	KIIRTIDQML	NSELQWPVPD	IYLRDLKVED
2701	IPLARITLPD	FRLPEIAIPE	FIIPTLNLND	FQVPDLHIPE	FQLPHISHTI
2751	EVPTFGKLYS	ILKIQSPLFT	LDANADIGNG	TTSANEAGIA	ASITAKGESK
2801	LEVLNFDFQA	NAQLSNPKIN	PLALKESVKF	SSKYLRTEHG	SEMLFFGNAI
2851	EGKSNTVASL	HTEKNTLELS	NGVIVKINNQ	LTLDSNTKYF	HKLNIPKLDF
2901	SSQADLRNEI	KTLLKAGHIA	WTSSGKGSWK	WACPRFSDEG	THESQISFTI
2951	EGPLTSFGLS	NKINSKHLRV	NQNLVYESGS	LNFSKLEIQS	QVDSQHVGHS
3001	VLTAKGMALF	GEGKAEFTGR	HDAHLNGKVI	GTLKNSLFFS	AQPFEITAST
3051	NNEGNLKVRF	PLRLTGKIDF	LNNYALFLSP	SAQQASWQVS	ARFNQYKYNQ
3101	NFSAGNNENI	MEAHVGINGE	ANLDFLNIPL	TIPEMRLPYT	IITTPPLKDF
3151	SLWEKTGLKE	FLKTTKQSFD	LSVKAQYKKN	KHRHSITNPL	AVLCEFISQS
3201	IKSFDRHFEK	NRNNALDFVT	KSYNETKIKF	DKYKAEKSHD	ELPRTFQIPG
3251	YTVPVVNVEV	SPFTIEMSAF	GYVFPKAVSM	PSFSILGSDV	RVPSYTLILP
3301	SLELPVLHVP	RNLKLSLPDF	KELCTISHIF	IPAMGNITYD	FSFKSSVITL
3351	NTNAELFNQS	DIVAHLLSSS	SSVIDALQYK	LEGTTRLTRK	RGLKLATALS
3401	LSNKFVEGSH	NSTVSLTTKN	MEVSVATTTK	AQIPILRMNF	KQELNGNTKS
3451	KPTVSSSMEF	KYDFNSSMLY	STAKGAVDHK	LSLESLTSYF	SIESSTKGDV
3501	KGSVLSREYS	GTIASEANTY	LNSKSTRSSV	KLQGTSKIDD	IWNLEVKENF
3551	AGEATLQRIY	SLWEHSTKNH	LQLEGLFFTN	GEHTSKATLE	LSPWQMSALV
3601	QVHASQPSSF	HDFPDLGQEV	ALNANTKNQK	IRWKNEVRIH	SGSFQSQVEL
3651	SNDQEKAHLD	IAGSLEGHLR	FLKNIILPVY	DKSLWDFLKL	DVTTSIGRRQ
3701	HLRVSTAFVY	TKNPNGYSFS	IPVKVLADKF	IIPGLKLNDL	NSVLVMPTFH
3751	VPFTDLQVPS	CKLDFREIQI	YKKLRTSSFA	LNLPTLPEVK	FPEVDVLTKY
3801	SQPEDSLIPF	FEITVPESQL	TVSQFTLPKS	VSDGIAALDL	NAVANKIADF
3851	ELPTIIVPEQ	TIEIPSIKFS	VPAGIAIPSF	QALTARFEVD	SPVYNATWSA
3901	SLKNKADYVE	TVLDSTCSST	VQFLEYELNV	LGTHKIEDGT	LASKTKGTFA
3951	HRDFSAEYEE	DGKYEGLQEW	EGKAHLNIKS	PAFTDLHLRY	QKDKKGISTS
4001	AASPAVGTVG	MDMDEDDDFS	KWNFYYSPQS	SPDKKLTIFK	TELRVRESDE
4051	ETQIKVNWEE	EAASGLLTSL	KDNVPKATGV	LYDYVNKYHW	EHTGLTLREV
4101	SSKLRRNLQD	HAEWVYQGAI	REIDDIDERF	QKGASGTTGT	YQEWKDKAQN
4151	LYQELLTQEG	QASFQGLKDN	VFDGLVRVTQ	EFHMKVKHLI	DSLIDFLNFP
4201	RFQFPGKPGI	YTREELCTMF	IREVGTVLSQ	VYSKVHNGSE	ILFSYFQDLV
4251	ITLPFELRKH	KLIDVISMYR	ELLKDLSKEA	QEVFKAIQSL	KTTEVLRNLQ
4301	DLLQFIFQLI	EDNIKQLKEM	KFTYLINYIQ	DEINTIFNDY	IPYVFKLLKE
4351	NLCLNLHKFN	EFIQNELQEA	SQELQQIHQY	IMALREEYFD	PSIVGWTVKY
4401	YELEEKIVSL	IKNLLVALKD	FHSEYIVSAS	NFTSQLSSQV	EQFLHRNIQE
4451	YLSILTDPDG	KGKEKIAELS	ATAQEIIKSQ	AIATKKIISD	YHQQFRYKLQ
4501	DFSDQLSDYY	EKFIAESKRL	IDLSIQNYHT	FLIYITELLK	KLQSTTVMNP
4551	YMKLAPGELT	IIL			

Band 20

Cul-3 (peptides sequence coverage: 5%)

Start	- End	Mr(expt)	Mr(calc)	Peptides	s Sequence
1	- 19	2283.5811	2283.1358	MYLNVII	NTWQGDFSQIK
1	- 19	2283.6210	2283.1358	MYLNVII	NTWQGDFSQIK
1	MYLNVIINN	r WQGDFSQIK	FLMTLKKNMI	SKLKTECGCQ	FTSKLEGMFR
51	DMSISNTTM	EFRQHLQATO	S VSLGGVDLTV	RVLTTGYWPT	QSATPKCNIP
101	PAPRHAFEI	F RRFYLAKHSO	RQLTLQHHMG	SADLNATFYG	PVKKEDGSEV
151	GVGGAQVTGS	S NTRKHILQVS	5 TFQMTILMLF	NNREKYTFEE	IQQETDIPER
201	ELVRALQSL	A CGKPTQRVLI	KEPKSKEIEN	GHIFTVNDQF	TSKLHRVKIQ
251	TVAAKQGESI) PERKETRQKV	DDDRKHEIEA	AIVRIMKSRK	KMQHNVLVAE

301 VTQQLKARFL PSPVVIKKRI EGLIEREYLA RTPEDRKVYT YVA

Band 21

Centromere protein (peptides sequence coverage: 2%)

Start	-	End	Mr(expt)	Mr(calc)	Peptides	Sequence
89	-	99	1288.8854	1290.7116	RKSRSSQL	SSRR
655	-	663	1178.7892	1178.2	RHQELLQKI	KK
1	M	GTTAPGPIH	I LLELCDQKL	EFLCNMDNKD	LVWLEEIQEE	AERMFTREFS
51	KE	EPELMPKTE	SQKNRRKKR	R ISYVQDENRD	PIRRRLSRRK	SRSSQLSSRR
101	LF	RSKDSVEKI	ATVVGENGS	/ LRRVTRAAAA	AAAATMALAA	PSSPTPESPT
151	MI	LTKKPEDNH	TQCQLVPVVE	IGISERQNAE	QHVTQLMSTE	PLPRTLSPTP
201	AS	SATAPTSQG	; IPTSDEESTH	KKSKARILES	ITVSSLMATP	QDPKGQGVGT
251	GI	RSASKLRIA	QVSPGPRDSI	AFPDSPWRER	VLAPILPDNF	STPTGSRTDS
301	QS	SVRHSPIAE	SSPSPQVLAQ) KYSLVAKQES	VVRRASRRLA	KKTAEEPAAS
351	GF	RIICHSYLE	RLLNVEVPQ	VGSEQKEPPE	EAEPVAAAEP	EVPENNGNNS
401	WI	PHNDTEIAN	I STPNPKPAAS	S SPETPSAGQQ	EAKTDQADGP	REPPQSARRK
451	R	SYKQAVSEI	DEEQHLEDEE	LQPPRSKTPS	SPCPASKVVR	PLRTFLHTVQ
501	RÌ	IQMLMTPTS	APRSVMKSFI	KRNTPLRMDP	KEKERQRLEN	LRRKEEAEQL
551	RF	RQKVEEDKF	RRLEEVKLKE	EERLRKVLQA	RERVEQMKEE	KKKQIEQKFA
601	QI	IDEKTEKA K	EERLAEEKAP	K KKAAAKKMEE	VEARRKQEED	ARRLRWLQQE
651	EF	EERRHQELI	QKKKEEEQEE	R LRKAAEAKRL	AEQREQERRE	QERREQERRE
701	QE	ERREQERRE	QERREQERQI	AEQERRREQE	RLQAERELQE	REKALRLQKE
751	QI	LQRELEEKK	KKEEQQRLAE	RQLQEEQEKK	AKEAAGASKA	LNVTVDVQSP
801	AC	CTSSPITPQ	GHKAPPQINE	HNYGMDLNSD	DSTDDEAHPR	KPIPTWARGT
851	PI	LSQAIIHQY	YQPPNLLELE	GTILPLDLED	IFKKSKPRYH	KRTSSAVWNS
901	PI	PLQGARVPS	SLAYSLKKH			

Band 22

Antithrombin III (peptides sequence coverage: 37%)

```
        Start - End
        Mr (expt)
        Mr (calc)
        Peptides Sequence

        30 - 39
        1233.8305
        1231.7189
        ANRPFLVFIR

        40 - 51
        1388.9395
        1388.7486
        EVPLNTIIFMGR

        40 - 51
        1404.9284
        1404.7435
        EVPLNTIIFMGR

        1
        VNEEGSEAAA
        STAVVIAGRS
        LNPNRVTFKA
        NRPFLVFIRE
        VPLNTIIFMGR

        51
        RVANPCVK
        EVPLNTIFKA
        NRPFLVFIRE
        VPLNTIFMGR
```

Band 23

Human serum albumin (peptides sequence coverage: 14%)

Start ·	-	End	Mr(expt)	Mr(calc)	Peptides Sequence
35 ·	-	44	1225.6497	1225.5979	FKDLGEENFK
66 ·	-	75	1148.5701	1148.6077	LVNEVTEFAK
76 ·	-	88	1497.5755	1497.5712	TCVADESAENCDK
98 ·	-	105	932.4366	932.5113	LCTVATLR
162 ·	-	168	926.4270	926.4861	YLYEIAR
187 ·	-	198	1370.5437	1370.5595	AAFTECCQAADK
287 ·	-	298	1442.6601	1442.6347	YICENQDSISSK
376	-	383	983.4690	982.5335	TYKTTLEK
427 ·	-	434	959.5574	959.5552	FQNALLVR

Plasminogen (peptides sequence coverage: 1%)

Start	- End	Mr(expt)	Mr(calc)	Peptides S	Sequence
671	- 680	1044.7118	1045.5291	LSSPADITD	K
671	- 680	1044.7395	1045.5291	LSSPADITD	K
671	- 680	1045.7699	1045.5291	LSSPADITD	K
1	MEHKEVVLL	L LLFLKSGQGE	PLDDYVNTQG	ASLFSVTKKQ	LGAGSIEECA
51	AKCEEDEEF'	r crafqyhske	QQCVIMAENR	KSSIIIRMRD	VVLFEKKVYL
101	SECKTGNGKI	N YRGTMSKTKN	GITCQKWSST	SPHRPRFSPA	THPSEGLEEN
151	YCRNPDNDP	Q GPWCYTTDPE	KRYDYCDILE	CEEECMHCSG	ENYDGKISKT
201	MSGLECQAW	SQSPHAHGYI	PSKFPNKNLK	KNYCRNPDRE	LRPWCFTTDP
251	NKRWELCDI	P RCTTPPPSSG	PTYQCLKGTG	ENYRGNVAVT	VSGHTCQHWS
301	AQTPHTHNR!	F PENFPCKNLD	ENYCRNPDGK	RAPWCHTTNS	QVRWEYCKIP
351	SCDSSPVST	E QLAPTAPPEL	TPVVQDCYHG	DGQSYRGTSS	TTTTGKKCQS
401	WSSMTPHRH	2 KTPENYPNAG	LTMNYCRNPD	ADKGPWCFTT	DPSVRWEYCN
451	LKKCSGTEAS	S VVAPPPVVLL	PDVETPSEED	CMFGNGKGYR	GKRATTVTGT
501	PCQDWAAQE	P HRHSIFTPET	NPRAGLEKNY	CRNPDGDVGG	PWCYTTNPRK
551	LYDYCDVPQ	C AAPSFDCGKF	QVEPKKCPGR	VVGGCVAHPH	SWPWQVSLRT
601	RFGMHFCGG	r lispewvlta	AHCLEKSPRP	SSYKVILGAH	QEVNLEPHVQ
651	EIEVSRLFL	E PTRKDIALLK	LSSPADITDK	VIPACLPSPN	YVVADRTECF
701	ITGWGETQG	r fgagllkeaq	LPVIENKVCN	RYEFLNGRVQ	STELCAGHLA
751	GGTDSCQGD	GGPLVCFEKD	KYILQGVTSW	GLGCARPNKP	GVYVRVSRFV
801	TWIEGVMRN	N			

Band 24

OMM protein (peptides sequence coverage: 31%)

Start	-	End	Mr(expt)	Mr(calc)	Peptides	Sequence
2	-	15	1760.8778	1759.0337	KWLWFFLI	LVAAPR
38	-	49	1354.6650	1354.6300	TPLGDTTH	ITCPR
55	-	64	1185.4410	1185.4907	SCDTPPPC	PR
115	-	121	850.4465	850.4218	DTLMISR	
122	-	142	2413.1327	2413.1472	TPEVTCVV	VDVSHEDPEVQFK
168	-	183	1807.0700	1806.9992	VVSVLTVI	HQDWLNGK
193	-	200	837.2574	837.4960	ALPAPIEK	t i i i i i i i i i i i i i i i i i i i
227	-	236	1160.5838	1160.6223	NQVSLTCI	VK
1	M	XLWFFLLI	VAAPRWVLSQ	VHLQESGPGL	GKPPELKTPL	GDTTHTCPRC
51	PE	PKSCDTPE	PCPRCPEPKS	CDTPPPCPRC	PEPKSCDTPP	PCPXCPAPEL
101	ГÇ	GPSVFLFE	PKPKDTLMIS	RTPEVTCVVV	DVSHEDPXVQ	FKWYVDGVEV
151	HN	IAKTKLREE	E QYNSTFR <mark>VVS</mark>	VLTVLHQDWL	NGKEYKCKVS	NKALPAPIEK
201	T]	SKAKGQP	xxxxxxxxx	XEEMTKNQVS	LTCLVKGFYP	SDIAVEWESN
251	GÇ	PENNYNTI	PPMLDSDGSE	FLYSKLTVDK	SRWQQGNIFS	CSVMHEALHN

301 RYTQKSLSLS PGK

Band 25

Apolipoprotein A-IV precursor (peptides sequence coverage: 15%)

Start	-	End	Mr(expt)	Mr(calc)	Peptides	s Sequence
66	-	78	1406.6708	1406.7041	LGEVNTY	AGDLQK
135	-	143	1103.4649	1103.5611	LEPYADQI	LR .
190	-	200	1299.7480	1299.6783	IDQNVEEI	LKGR
201	-	209	1082.4346	1082.5284	LTPYADEE	rĸ
256	-	264	974.4489	974.5032	ISASAEEI	LR .
267	-	275	982.5074	982.5447	LAPLAED	/R
1	M	FLKAVVLTI	L ALVAVAGARA	EVSADQVATV	MWDYFSQLSN	NAKEAVEHLQ
51	ĸ	SELTQQLNA	A LFQDK <mark>LGEVN</mark>	I TYAGDLQKKL	VPFATELHER	LAKDSEKLKE
101	E	IGKELEELF	R ARLLPHANEV	SQKIGDNLRE	LQQRLEPYAD	QLR TQVNTQA
151	ΕÇ	QLRRQLTPY	AQRMERVLRE	NADSLQASLR	PHADELKAKI	DQNVEELKGR
201	\mathbf{L}_{i}^{t}	PYADEFK	/ KIDQTVEELF	RSLAPYAQDT	QEKLNHQLEG	LTFQMKKNAE
251	E]	LKAR <mark>ISAS</mark> A	EELRQRLAPI	AEDVRGNLRG	NTEGLQKSLA	ELGGHLDQQV
301	E	EFRRRVEPY	GENFNKALVQ	QMEQLRTKLG	PHAGDVEGHL	SFLEKDLRDK
351	v	NSFFSTFKE	E KESQDKTLSI	PELEQQQEQH	QEQQQEQVQM	LAPLES

Complement component C3 (peptides sequence coverage: 1%)

Start	- End	Mr(expt)	Mr(calc)	Peptides	s Sequence
1442	- 1450	1091.6496	1091.6226	NTLIIYLI	OK
1451	- 1462	1407.4333	1406.6136	VSHSEDDO	CLAFK
1513	- 1522	1297.5111	1297.5431	CAEENCFI	lok
1	MGPTSGPSLL	LLLLTHLPLA	LGSPMYSIIT	PNILRLESEE	TMVLEAHDAQ
51	GDVPVTVTVH	DFPGKKLVLS	SEKTVLTPAT	NHMGNVTFTI	PANREFKSEK
101	GRNKFVTVQA	TFGTQVVEKV	VLVSLQSGYL	FIQTDKTIYT	PGSTVLYRIF
151	TVNHKLLPVG	RTVMVNIENE	EGIPVKQDSL	SSQNQLGVLP	LSWDIPELVN
201	MGQWKIRAYY	ENSPQQVFST	EFEVKEYVLP	SFEVIVEPTE	KFYYIYNEKG
251	LEVTITARFL	YGKKVEGTAF	VIFGIQDGEQ	RISLPESLKR	IPIEDGSGEV
301	VLSRKVLLDG	VQNLRAEDLV	GKSLYVSATV	ILHSGSDMVQ	AERSGIPIVT
351	SPYQIHFTKT	PKYFKPGMPF	DLMVFVTNPD	GSPAYRVPVA	VQGEDTVQSL
401	TQGDGVAKLS	INTHPSQKPL	SITVRTKKQE	LSEAEQATRT	MQALPYSTVG
451	NSNNYLHLSV	LRTELRPGET	LNVNFLLRMD	RAHEAKIRYY	TYLIMNKGRL
501	LKAGRQVREP	GQDLVVLPLS	ITTDFIPSFR	LVAYYTLIGA	SGQREVVADS
551	VWVDVKDSCV	GSLVVKSGQS	EDRQPVPGQQ	MTLKIEGDHG	ARVVLVAVDK
601	GVFVLNKKNK	LTQSKIWDVV	EKADIGCTPG	SGKDYAGVFS	DAGLTFTSSS
651	GQQTAQRAEL	QCPQPAARRR	RSVQLTEKRM	DKVGKYPKEL	RKCCEDGMRE
701	NPMRFSCQRR	TRFISLGEAC	KKVFLDCCNY	ITELRRQHAR	ASHLGLARSN
751	LDEDIIAEEN	IVSRSEFPES	WLWNVEDLKE	PPKNGISTKL	MNIFLKDSIT
801	TWEILAVSMS	DKKGICVADF	FEVTVMQDFF	IDLRLPYSVV	RNEQVEIRAV
851	LYNYRQNQEL	KVRVELLHNP	AFCSLATTKR	RHQQTVTIPP	KSSLSVPYVI
901	VPLKTGLQEV	EVKAAVYHHF	' ISDGVRKSLK	VVPEGIRMNK	TVAVRTLDPE
951	RLGREGVQKE	DIPPADLSDQ	VPDTESETRI	LLQGTPVAQM	TEDAVDAERL
1001	KHLIVTPSGC	GEQNMIGMTP	TVIAVHYLDE	TEQWEKFGLE	KRQGALELIK
1051	KGYTQQLAFR	QPSSAFAAFV	KRAPSTWLTA	YVVKVFSLAV	NLIAIDSQVL
1101	CGAVKWLILE	KQKPDGVFQE	DAPVIHQEMI	GGLRNNNEKD	MALTAFVLIS
1151	LQEAKDICEE	QVNSLPGSIT	KAGDFLEANY	MNLQRSYTVA	IAGYALAQMG
1201	RLKGPLLNKF	LTTAKDKNRW	EDPGKQLYNV	EATSYALLAL	LQLKDFDFVP
1251	PVVRWLNEQR	YYGGGYGSTQ	ATFMVFQALA	QYQKDAPDHQ	ELNLDVSLQL
1301	PSRSSKITHR	IHWESASLLR	SEETKENEGF	TVTAEGKGQG	TLSVVTMYHA

```
1351 KAKDQLTCNK FDLKVTIKPA PETEKRPQDA KNTMILEICT RYRGDQDATM
1401 SILDISMMTG FAPDTDDLKQ LANGVDRYIS KYELDKAFSD RNTLIIYLDK
1451 VSHSEDDCLA FKVHQYFNVE LIQPGAVKVY AYYNLEESCT RFYHPEKEDG
1501 KLNKLCRDEL CRCAEENCFI QKSDDKVTLE ERLDKACEPG VDYVYKTRLV
1551 KVQLSNDFDE YIMAIEQTIK SGSDEVQVGQ QRTFISPIKC REALKLEEKK
1601 HYLMWGLSSD FWGEKPNLSY IIGKDTWVEH WPEEDECQDE ENQKQCQDLG
1651 AFTESMVVFG CPN
```

Plasminogen (peptides sequence coverage: 1%)

Start	-	End	Mr(expt)	Mr(calc)	Peptides	Sequence
671	-	680	1044.7206	1045.5291	LSSPADIT	DK
671	-	680	1045.7707	1045.5291	LSSPADIT	DK
1	ME	EHKEVVLLI	L LLFLKSGQGE	E PLDDYVNTQG	ASLFSVTKKQ	LGAGSIEECA
51	AF	KCEEDEEFT	CRAFQYHSKE	E QQCVIMAENR	KSSIIIRMRD	VVLFEKKVYL
101	SI	ECKTGNGKN	I YRGTMSKTKN	I GITCQKWSST	SPHRPRFSPA	THPSEGLEEN
151	YC	CRNPDNDPQ	O GPWCYTTDPE	KRYDYCDILE	CEEECMHCSG	ENYDGKISKT
201	MS	SGLECQAWI	SQSPHAHGYI	PSKFPNKNLK	KNYCRNPDRE	LRPWCFTTDP
251	NE	RWELCDI	P RCTTPPPSSO	G PTYQCLKGTG	ENYRGNVAVT	VSGHTCQHWS
301	AÇ	TPHTHNRT	PENFPCKNLI	ENYCRNPDGK	RAPWCHTTNS	QVRWEYCKIP
351	S		E QLAPTAPPEI	TPVVQDCYHG	DGQSYRGTSS	TTTTGKKCQS
401	WS	SSMTPHRHQ	XTPENYPNAG	LTMNYCRNPD	ADKGPWCFTT	DPSVRWEYCN
451	LF	KKCSGTEAS	S VVAPPPVVLI	DVETPSEED	CMFGNGKGYR	GKRATTVTGT
501	PC	CODWAAQEI	P HRHSIFTPET	NPRAGLEKNY	CRNPDGDVGG	PWCYTTNPRK
551	L	DYCDVPQC	AAPSFDCGK	QVEPKKCPGR	VVGGCVAHPH	SWPWQVSLRT
601	RI	FGMHFCGG	LISPEWVLTA	AHCLEKSPRP	SSYKVILGAH	QEVNLEPHVQ
651	E	IEVSRLFLE	E PTRKDIALLE	LSSPADITDK	VIPACLPSPN	YVVADRTECF
701	IJ	rgwgetQg1	FGAGLLKEAG	D LPVIENKVCN	RYEFLNGRVQ	STELCAGHLA
751	GC	TDSCOGDS	GGPLVCFEKI	KYILQGVTSW	GLGCARPNKP	GVYVRVSRFV
801	тv	VIEGVMRNN	1	~		-

Band 26

Apolipoprotein J precursor (peptides sequence coverage: 15%)

Start	-	End	Mr(expt)	Mr(calc)	Peptide	es Sequence
12	-	21	1070.5769	1070.5720	EIQNAVI	IGVK
12	-	21	1071.5581	1070.5720	EIQNAVI	IGVK
36	-	45	1116.6153	1116.6026	TLLSNL	EEAK
126	-	134	1073.5374	1073.5353	IDSLLE	IDR
274	-	289	1761.8981	1761.8203	EILSVD	CSTNNPSQAK
293	-	303	1287.6126	1287.6306	ELDESL	VAER
397	-	404	969.4374	969.4477	FMETVA	EK
1	M	SNQGSKYVN	KEIQNAVNG	KQIKTLIEKT	NEERKTLLSN	LEEAK KKKED
51	A	LNETRESEI	KLKELPGVCN	I ETMMALWEEC	KPCLKQTCMK	FYARVCRSGS
101	G]	LVGRQLEEE	T LNQSSPFYFV	MNGDRIDSLL	ENDRQQTHML	DVMQDHFSRA
151	S	SIIDELFQI) RFFTREPQD1	YHYLPFSLPH	RRPHFFFPKS	RIVRSLMPFS
201	P	EPLNFHAM	I FQPFLEMIHE	E AQQAMDIHFH	SPAFQHPPTE	FIREGDDDRT
251	V	CREIRHNSI	GCLRMKDQCI	KCREILSVDC	STNNPSQAKL	RRELDESLQV
301	A	ERLTRKYNE	LLKSYQWKMI	I NTSSLLEQLN	EQFNWVSRLA	NLTQGEDQYY
351	L	RVTTVASHI	SDSDVPSGVI	EVVVKLFDSD	PITVTVPVEV	SRKNPKFMET
401	V	AEKALQEYF	R KKHREE			

Apolipoprotein E (peptides sequence coverage: 37%)

Start	-	End	Mr(expt)	ľ	Mr(calc)	Peptides S	Sequence
34	-	43	1246.4827	1	1246.5691	QQTEWQSGQI	R
44	-	50	843.4240	8	843.4603	WELALGR	
122	-	132	1237.4355	1	1237.5067	LGADMEDVC	GR
177	-	185	947.4739	9	947.5188	LAVYQAGAR	
199	-	207	967.5246	9	967.5451	LGPLVEQGR	
210	-	224	1496.8324	1	1496.7947	AATVGSLAG	QPLQER
247	-	258	1413.8016	1	1413.7463	LDEVKEQVA	EVR
259	-	269	1312.6800	1	1312.7099	AKLEEQAQQ	IR
270	-	278	1032.5277	1	1032.5352	LQAEAFQAR	
293	-	300	929.5063	9	929.4971	QWAGLVEK	
301	-	317	540.9309	16	619.7709	VQAAVGTSA	APVPSDNH
301	-	317	810.9163	16	619.8180	VQAAVGTSA	APVPSDNH
1	M	XVLWAALLV	TFLAGCQAK	v	EQAVETEPEP	ELRQQTEWQS	GQRWELALGR
51	FV	NDYLRWVQ I	LSEQVQEEL	Ŀ	SSQVTQELRA	LMDETMKELK	AYKSELEEQL
101	TI	PVAEETRAF	LSKELQAAQ	β	RLGADMEDVC	GRLVQYRGEV	QAMLGQSTEE

51 FWDYLRWVQT LSEQVQEELL SSQVTQELRA LMDETMKELK AYKSELEEQL 101 TPVAEETRAR LSKELQAAQA RLGADMEDVC GRLVQYRGEV QAMLGQSTEE 151 LRVRLASHLR KLRKRLLRDA DDLQKRLAVY QAGAREGAER GLSAIRERLG 201 PLVEQGRVRA ATVGSLAGQP LQERAQAWGE RLRARMEEMG SRTRDRLDEV 251 KEQVAEVRAK LEEQAQQIRL QAEAFQARLK SWFEPLVEDM QRQWAGLVEK 301 VQAAVGTSAA PVPSDNH

Band 27

Apolipoprotein E3 (peptides sequence coverage: 31%)

Start	-	End	Mr(expt)	Mr(calc)	Peptides Se	equence
1	-	15	1752.8556	1752.8894	KVEQAVETEPI	EPELR
16	-	25	1246.4827	1246.5691	QQTEWQSGQR	
26	-	32	843.4240	843.4603	WELALGR	
104	-	114	1237.4355	1237.5067	LGADMEDVCG	ર
159	-	167	947.4739	947.5188	LAVYQAGAR	
181	-	189	967.5246	967.5451	LGPLVEQGR	
1	ĸ٦	/EQAVETEI	P EPELRQQTEV	V QSGQRWELAL	GRFWDYLRWV	QTLSEQVQEE
51	LI	LSSQVTQEI	L RALMDETMKE	LKAYKSELEE	QLTPVAEETR	ARLSKELQAA
101	QZ	ARLGADMEI	VCGRLVQYRG	EVQAMLGQST	EELRVRLASH	LRKLRQRLLR
151	DZ	ADDLQKR <mark>L</mark>	A VYQAGAREGA	A ERGLSAIRER	LGPLVEQGRV	R

Band 28

Pre-serum amyloid P component (peptides sequence coverage: 31%)

Start	-	End	Mr(expt)	Mr(calc)	Peptides Sequence
58	-	64	810.3801	810.3872	AYSDLSR
65	-	76	1405.7002	1405.6626	AYSLFSYNTQGR
77	-	84	992.5535	992.5178	DNELLVYK
87	-	96	1155.5954	1155.5924	VGEYSLYIGR
140	-	149	1165.6847	1165.5768	QGYFVEAQPK
150	-	162	1392.7068	1392.6885	IVLGQEQDSYGGK
213	-	223	1285.7426	1285.7798	GYVIIKPLVWV

1 MNKPLLWISV LTSLLEAFAH TDLSGKVFVF PRESVTDHVN LITPLEKPLQ

51 NFTLCFRAYS DLSRAYSLFS YNTQGRDNEL LVYKERVGEY SLYIGRHKVT 101 SKVIEKFPAP VHICVSWESS SGIAEFWING TPLVKKGLRQ GYFVEAQPKI 151 VLGQEQDSYG GKFDRSQSFV GEIGDLYMWD SVLPPENILS AYQGTPLPAN 201 ILDWQALNYE IRGYVIIKPL VWV

Band 29

Pro-apolipoprotein (peptides sequence coverage: 9%)

Start	-	End	Mr(expt)	Mr(calc)	Peptides	s Sequence
52	-	65	1611.9110	1611.7781	LLDNWDSV	/TSTFSK
103	-	112	1251.4712	1251.6136	VQPYLDDI	ÇQK.K
1	RI	HFWQQDEPP	QSPWDRVKDI	ATVYVDVLKD	SGRDYVSQFE	GSALGKQLNL
51	K	LLDNWDSVT	STFSK LREQI	GPVTQEFWDN	LEKETEGLRQ	EMSKDLEEVK
101	AF	VQPYLDDF	QK KWQEEMEI	YRQKVEPLRA	ELQEGARQKL	HELQEKLSPL
151	GI	EEMRDRARA	HVDALRTHLA	PYSDELRQRL	AARLEALKEN	GGARLAEYHA
201	KZ	ATEHLSTLS	EKAKPALEDI	RQGLLPVLES	FKVSFLSALE	EYTKKLNTQ

Mr (expt) is the experimentally observed mass (Da)

Mr (calc) is the calculated Mass (Da)

Matched peptides shown in *bold red*

• Scheme 4

Band 30

Antithrombin (peptides sequence coverage: 12%)

```
Start - End
                            Mr(expt)
                                                Mr(calc)
                                                                        Peptides Sequence

        147
        -
        157
        1339.6291
        1339.6561
        TSDQIHFFFAK

        202
        -
        208
        859.3772
        859.4803
        LQPLDFK

        202
        -
        215
        1673.8707
        1673.8373
        LQPLDFK

        261
        -
        267
        849.4923
        849.3981
        FSPENTR

        355
        -
        364
        1210.4789
        1210.6346
        FRIEDGFSLK

        365
        -
        380
        1847.9332
        1847.8975
        EQLQDMGLVDLFSPEK

                           1339.6291 1339.6561 TSDQIHFI
859.3772 859.4803 LQPLDFK
       1 MYSNVIGTVT SGKRKVYLLS LLLIGFWDCV TCHGSPVDIC TAKPRDIPMN
     51 PMCIYRSPEK KATEDEGSEQ KIPEATNRRV WELSKANSRF ATTFYQHLAD
   101 SKNDNDNIFL SPLSISTAFA MTKLGACNDT LQQLMEVFKF DTISEKTSDQ
   151 IHFFFAKLNC RLYRKANKSS KLVSANRLFG DKSLTFNETY ODISELVYGA
   201 KLOPLDFKEN AEOSRAAINK WVSNKTEGRI TDVIPSEAIN ELTVLVLVNT
   251 IYFKGLWKSK FSPENTRKEL FYKADGESCS ASMMYQEGKF RYRRVAEGTQ
   301 VLELPFKGDD ITMVLILPKP EKSLAKVEKE LTPEVLQEWL DELEEMMLVV
   351 HMPRFRIEDG FSLKEQLQDM GLVDLFSPEK SKLPGIVAEG RDDLYVSDAF
   401 HKAFLEVNEE GSEAAASTAV VIAGRSLNPN RVTFKANRLF LVFIREVPLN
   451 TIIFMGRVAN PCVK
```

Mr (expt) is the experimentally observed mass (Da)

Mr (calc) is the calculated mass (Da)

Matched peptides shown in *bold red*

• Scheme 5

Band 31

Immunoglobin heavy chain variable region (peptides sequence coverage: 19%)

```
Start - EndMr (expt)Mr (calc)Peptides Sequence89 - 1011302.51151302.6092FSGSGSGTDFTLK178 - 1972136.00272134.9614VDNALQSGNSQESVTEQDSK219 - 2351888.95831888.9353LYACEVTHQGLSSPVTK219 - 2351889.01641888.9353LYACEVTHQGLSSPVTK1MKYLLPTAAAGLLLLAAQPAMADVVMTQSPLSLPVTLGQP1LVYSDGNTYLNWFQQRPGQSPRRLIYKVSNRDSGVPDRFS51LVYSDGNTYLNWFQQRPGQSPRRLIYKVSNRDSGVPDRFS101KISRVEAEDVGVYYCMQGTHWPPGTFGQGTKVEIKRTVAA151EQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES201YSLSSTLTLSKADYEKHKLYACEVTHQGLSSPVTKSFNRG251VCEYQGQSSDLPF
```

Band 32

Human serum albumin (peptides sequence coverage: 15%)

Start	-	End	Mr(expt)	Mr(calc)	Peptides	s Sequence
11	-	20	1225.6497	1225.5979	FKDLGEEN	IFK
42	-	51	1148.5701	1148.6077	LVNEVTEE	TAK
52	-	64	1497.5755	1497.5712	TCVADESA	ENCDK
74	-	81	932.4366	932.5113	LCTVATLE	ર
138	-	144	926.4270	926.4861	YLYEIAR	
163	-	174	1370.5437	1370.5595	AAFTECC	JAADK
263	-	274	1442.6601	1442.6347	YICENQDS	SISSK
352	-	359	983.4690	983.4811	TYETTLER	۲
403	-	410	959.5574	959.5552	FQNALLVF	ર
1	DZ	HKSEVAHF	R FKDLGEENFF	ALVLIAFAQY	LQQCPFEDHV	KLVNEVTEFA
51	K	CVADESAE	NCDKSLHTLE	GDKLCTVATL	RETYGEMADC	CAKQEPERNE
101	CI	LQHKDDNE	NLPRLVRPE	DVMCTAFHDN	EETFLKK <mark>YLY</mark>	EIAR RHPYFY
151	AI	PELLFFAKF	R YKAAFTECCÇ	AADKAACLLP	KLDELRDEGK	ASSAKQRLKC
201	AS	SLQKFGERA	A FKAWAVARLS	QRFPKAEFAE	VSKLVTDLTK	VHTECCHGDL
251	LE	ECADDRADI	AKYICENQDS	S ISSKLKECCE	KPLLEKSHCI	AEVENDEMPA
301	DI	LPSLAADFV	ESKDVCKNY	A EAKDVFLGMF	LYEYARRHPD	YSVVLLLRLA
351	K'	TYETTLEKC	CAAADPHECY	AKVFDEFKPL	VEEPQNLIKQ	NCELFEQLGE
401	YF	FQNALLVF	YTKKVPQVS1	PTLVEVSRNL	GKVGSKCCKH	PEAKRMPCAE
451	DZ	LSVVLNQI	CVLHEKTPVS	DRVTKCCTES	LVNRRPCFSA	LEVDETYVPK
501	EF	NAETFTFF	ADICTLSEKE	E EQIKKQTALV	ELVKHKPKAT	KEQLKAVMDD
551	FZ	AFVEKCCF	ADDKETCFAR	E EGKKLVAASQ	AALGL	

Complement component 4 binding protein (peptides sequence coverage: 10%)

Start	-	End	Mr(expt)	Mr(calc)	Peptides Sequence
79	-	87	1127.5913	1127.5434	YTCLPGYVR
319	-	329	1249.6956	1248.6714	EDVYVVGTVLR
405	-	418	1580.7146	1580.7042	FSAICQGDGTWSPR
555	-	566	1442.6960	1442.6898	LMQCLPNPEDVK
567	-	573	868.2813	868.4364	MALEVYK

574	- 585	1469.8102	1469.8089	LSLEIEÇ	QLELQR
1	MHPPKTPSGA	LHRKRKMAAW	PFSRLWKVSD	PILFQMTLIA	ALLPAVLGNC
51	GPPPTLSFAA	PMDITLTETR	FKTGTTLKYT	CLPGYVRSHS	TQTLTCNSDG
101	EWVYNTFCIY	KRCRHPGELR	NGQVEIKTDL	SFGSQIEFSC	SEGFFLIGST
151	TSRCEVQDRG	VGWSHPLPQC	EIVKCKPPPD	IRNGRHSGEE	NFYAYGFSVT
201	YSCDPRFSLL	GHASISCTVE	NETIGVWRPS	PPTCEKITCR	KPDVSHGEMV
251	SGFGPIYNYK	DTIVFKCQKG	FVLRGSSVIH	CDADSKWNPS	PPACEPNSCI
301	NLPDIPHASW	ETYPRPTKED	VYVVGTVLRY	RCHPGYKPTT	DEPTTVICQK
351	NLRWTPYQGC	EALCCPEPKL	NNGEITQHRK	SRPANHCVYF	YGDEISFSCH
401	ETSRFSAICQ	GDGTWSPRTP	SCGDICNFPP	KIAHGHYKQS	SSYSFFKEEI
451	IYECDKGYIL	VGQAKLSCSY	SHWSAPAPQC	KALCRKPELV	NGRLSVDKDQ
501	YVEPENVTIQ	CDSGYGVVGP	QSITCSGNRT	WYPEVPKCEW	ETPEGCEQVL
551	TGKRLMQCLP	NPEDVKMALE	VYKLSLEIEQ	LELQRDSARQ	STLDKEL

Human complement component C1r (peptides sequence coverage: 4%)

Start	– End	Mr(expt)	Mr(calc)	Peptides	Sequence
647	- 661	1565.8133	1565.6893	QDACQGDS	GGVFAVR
683	- 689	834.3402	834.3912	GYGFYTK	
690	- 698	1148.5606	1148.6230	VLNYVDWII	x
1	MWLLYLLVPA	LFCRAGGSIE	IPQKLFGEVT	SPLFPKPYPN	NFETTTVITV
51	PTGYRVKLVE	QQFDLEPSEG	GEYDYVKISA	DKKSLGRFCG	QLGSPLGNPP
101	GKKEFMSQGN	KMLLTFHTDE	SNEEDGTIMF	YKGFLAYYQA	VDLDECASRS
151	KLGEEDPQPQ	CQHLCHNYVG	GYFCSCRPGY	ELQEDRHSCQ	AECSSELYTE
201	ASGYISSLEY	PRSYPPDLRC	NYSIRVERGL	TLHLKFLEPF	DIDDHQQVHC
251	PYDQLQIYAN	RKNIGEFCGF	QRPPDLDTSS	NAVDLLFFTD	ESGDSRGWKL
301	RYTTEIIKCE	QPKTLDEFTI	IQNLQPQYQF	RDYFIATCKQ	GYQLIEGNQV
351	LHSFTAVCQD	DGTWHRAMPF	CKIKDCGQPR	NLPNGDFRYT	TTMGVNTYKA
401	RIQYYCHEPY	YKMQTRAGSF	ESEQGVYTCT	AQGIWKNEQK	GEKIPRCLPV
451	CGKPVNPVEQ	RORIIGGOKA	KMGNFPWQVF	TNIHGRGGGA	LLGDRWILTA
501	AHTLYPKEHE	AQSNASLDVE	LGHTNVEELM	KLGNHPIRRV	SVHPDYRQDE
551	SYNFEGDIAL	LELENSVILG	; PNLLPICLPD	NDTFYDLGLM	GYVSGFGVME
601	EKIAHDLRFV	RLPVANPQAC	ENWLRGKNRM	DVFSQNMFCA	GHPSLK <mark>QDAC</mark>
651	QGDSGGVFAV	RDPNTDRWVA	TGIVSWGIGC	SRGYGFYTKV	LNYVDWIKKE
701	MEEED				

Plasminogen (peptides sequence coverage: 1%)

Start	- End	Mr(expt)	Mr(calc)	Peptide	es Sequence
671	- 680	1045.5415	1045.5291	LSSPADI	ITDK
1	MEHKEVVLLI	LLFLKSGQGE	PLDDYVNTQG	ASLFSVTKKQ	LGAGSIEECA
51	AKCEEDEEFT	CRAFQYHSKE	QQCVIMAENR	KSSIIIRMRD	VVLFEKKVYL
101	SECKTGNGKN	I YRGTMSKTKN	GITCQKWSST	SPHRPRFSPA	THPSEGLEEN
151	YCRNPDNDPÇ	Q GPWCYTTDPE	KRYDYCDILE	CEEECMHCSG	ENYDGKISKT
201	MSGLECQAWI	SQSPHAHGYI	PSKFPNKNLK	KNYCRNPDRE	LRPWCFTTDP
251	NKRWELCDIE	RCTTPPPSSG	PTYQCLKGTG	ENYRGNVAVT	VSGHTCQHWS
301	AQTPHTHNRT	PENFPCKNLD	ENYCRNPDGK	RAPWCHTTNS	QVRWEYCKIP
351	SCDSSPVSTE	E QLAPTAPPEI	TPVVQDCYHG	DGQSYRGTSS	TTTTGKKCQS
401	WSSMTPHRHQ) KTPENYPNAG	LTMNYCRNPD	ADKGPWCFTT	DPSVRWEYCN
451	LKKCSGTEAS	S VVAPPPVVLI	PDVETPSEED	CMFGNGKGYR	GKRATTVTGT
501	PCQDWAAQEI	P HRHSIFTPET	NPRAGLEKNY	CRNPDGDVGG	PWCYTTNPRK
551	LYDYCDVPQC	AAPSFDCGKE	QVEPKKCPGR	VVGGCVAHPH	SWPWQVSLRT
601	RFGMHFCGG	LISPEWVLTA	AHCLEKSPRP	SSYKVILGAH	QEVNLEPHVQ
651	EIEVSRLFLE	E PTRKDIALLK	LSSPADITDK	VIPACLPSPN	YVVADRTECF
701	ITGWGETQGT	FGAGLLKEAC	LPVIENKVCN	RYEFLNGRVO	STELCAGHLA
751 GGTDSCQGDS GGPLVCFEKD KYILQGVTSW GLGCARPNKP GVYVRVSRFV 801 TWIEGVMRNN

Band 33

Keratin (peptides sequence coverage: 11%)

Start	-	End	Mr(expt)	Mr(calc)	Peptides	s Sequence
186	-	197	1382.7050	1382.6830	SLNNQFAS	SFIDK
200	-	211	1474.7266	1474.7780	FLEQQNQ	/LQTK
278	-	289	1392.6570	1392.7249	TNAENEF	/TIKK
344	-	355	1301.6667	1301.7078	SLDLDSI	IAEVK
356	-	364	1064.4168	1064.5138	AQYEDIA	QK
396	-	403	972.4752	972.5240	IEISELNE	ર
484	-	492	1032.4232	1032.5087	TLLEGEES	SR
1	MS	RQFSSRSG	YRSGGGFSSC	S SAGIINYQRR	TTSSSTRRSG	GGGGRFSSCG
51	GG	GGSFGAGG	GFGSRSLVNI	GGSKSISISV	ARGGGRGSGF	GGGYGGGGFG
101	GG	GFGGGGFG	GGGIGGGGF	GFGSGGGGFG	GGGFGGGGYG	GGYGPVCPPG
151	GI	QEVTINQS	LLQPLNVEI	PEIQKVKSRE	REQIKSLNNQ	FASFIDKVRF
201	LE	QQNQVLQI	KWELLQQVD	STRTHNLEPY	FESFINNLRR	RVDQLKSDQS
251	RI	DSELKNMQ	DMVEDYRNKY	EDEINKR <mark>TNA</mark>	ENEFVTIKKD	VDGAYMTKVD
301	гč	QAKLDNLQQ	EIDFLTALY	AELSQMQTQI	SETNVILSMD	NNRSLDLDSI
351	IA	EVKAQYED	IAQKSKAEAH	E SLYQSKYEEL	QITAGRHGDS	VRNSKIEISE
401	LN	RVIQRLRS	EIDNVKKQIS	S NLQQSISDAE	QRGENALKDA	KNKLNDLEDA
451	гč	QAKEDLAF	LLRDYQELM	I TKLALDLEIA	TYRTLLEGEE	SRMSGECAPN
501	vs	SVSVSTSHI	TISGGGSRG	GGGGYGSGGS	SYGSGGGSYG	SGGGGGGGGRG
551	SY	GSGGSSYG	SGGGSYGSG	GGGGGHGSYGS	GSSSGGYRGG	SGGGGGGSSG
601	GF	RGSGGGSSG	GSIGGRGSSS	GGVKSSGGSS	SVRFVSTTYS	GVTR

Hypothetical protein, gi|51476390 (peptides sequence coverage: 14%)

Start	-	End	Mr(expt)	Mr(calc)	Peptide	Sequences
35	-	44	1225.6497	1225.5979	FKDLGEEN	FK
66	-	75	1148.5701	1148.6077	LVNEVTEF	AK
76	-	88	1497.5755	1497.5712	TCVADESA	ENCDK
98	-	105	932.4366	932.5113	LCTVATLR	
162	-	168	926.4270	926.4861	YLYEIAR	
187	-	198	1370.5437	1370.5595	AAFTECCQ	AADK
287	-	298	1442.6601	1442.6347	YICENQDS	ISSK
376	-	383	983.4690	983.4811	TYETTLEK	
427	-	434	959.5574	959.5552	FQNALLVR	
1	M	WVTFISLI	L FLFSSAYSRO	VFRRDAYKSE	VAHRFKDLGE	ENFK ALVLIA
51	FZ	AQYPQQCPE	EDHVKLVNE	7 TEFAKTCVAD	ESAENCDKSL	HTLFGDK <mark>LCT</mark>
101	V	TLRETYGE	E MADCCAKQEI	P ERNECFLQHK	DDNPNLPRLV	RPEVDVMCTA
151	FF	IDNEETFLE	K KYLYEIARRH	I PYFYAPELLF	FAKRYKAAFT	ECCQAADKAA
201	CI	LPKLDELE	R DEGKASSAK	RLKCASLQKF	GERAFKAWAV	ARLSQRFPKA
251	EI	FAEVSKLVI	DLTKVHTECO	HGDLLECADD	RADLAKYICE	NQDSISSKLK
301	EC	CEKPLLEP	SHCIAEVENI	EMPADLPSLA	ADFVESKDVC	KNYAEAKDVF
351	LC	GMFLYEYAF	R RHPDYSVVLI	L RLAKTYETT	LEK CCAAADP	HECYAKVFDE
401	FF	KPLVEEPQN	I LIKQNCELFE	E QLGEYK <mark>FQNA</mark>	LLVRYTKKVP	QVSTPTLVEV
451	SI	RNLGKVGSF	CCKHPEAKR	I PCAEDYLSVV	LNQLCVLHER	TPVSDRVTKC
501	C	TESLVNRR	CFSALEVDE	YVPKEFNAET	FTFHADICTL	SEKERQIKKQ
551	AZ	ALVELVKHE	R PKATKEQLKA	VMDDFAAFVE	KCCKADDKET	CFAEEGKKLV
601	AZ	ASQAALGL				

Plasminogen (peptides sequence coverage: 1%)

Start	- End	Mr(expt)	Mr(calc)	Peptides Se	equence
671	- 680	1045.4914	1045.5291	LSSPADITDK	
1	MEHKEVVLLL	LLFLKSGQGE	PLDDYVNTQG	ASLFSVTKKQ	LGAGSIEECA
51	AKCEEDEEFT	CRAFQYHSKE	QQCVIMAENR	KSSIIIRMRD	VVLFEKKVYL
101	SECKTGNGKN	YRGTMSKTKN	GITCQKWSST	SPHRPRFSPA	THPSEGLEEN
151	YCRNPDNDPQ	GPWCYTTDPE	KRYDYCDILE	CEEECMHCSG	ENYDGKISKT
201	MSGLECQAWD	SQSPHAHGYI	PSKFPNKNLK	KNYCRNPDRE	LRPWCFTTDP
251	NKRWELCDIP	RCTTPPPSSG	; PTYQCLKGTG	ENYRGNVAVT	VSGHTCQHWS
301	AQTPHTHNRT	PENFPCKNLD	ENYCRNPDGK	RAPWCHTTNS	QVRWEYCKIP
351	SCDSSPVSTE	QLAPTAPPEI	TPVVQDCYHG	DGQSYRGTSS	TTTTGKKCQS
401	WSSMTPHRHQ	KTPENYPNAG	LTMNYCRNPD	ADKGPWCFTT	DPSVRWEYCN
451	LKKCSGTEAS	VVAPPPVVLI	PDVETPSEED	CMFGNGKGYR	GKRATTVTGT
501	PCQDWAAQEP	HRHSIFTPET	NPRAGLEKNY	CRNPDGDVGG	PWCYTTNPRK
551	LYDYCDVPQC	AAPSFDCGKE	QVEPKKCPGR	VVGGCVAHPH	SWPWQVSLRT
601	RFGMHFCGGT	LISPEWVLTA	AHCLEKSPRP	SSYKVILGAH	QEVNLEPHVQ
651	EIEVSRLFLE	PTRKDIALLK	LSSPADITDK	VIPACLPSPN	YVVADRTECF
701	ITGWGETQGT	FGAGLLKEAÇ	LPVIENKVCN	RYEFLNGRVQ	STELCAGHLA
751	GGTDSCQGDS	GGPLVCFEKI	KYILQGVTSW	GLGCARPNKP	GVYVRVSRFV
801	TWIEGVMRNN				

Band 34

Keratin (peptides sequence coverage: **4%**)

Start	- End	Mr(expt)	Mr(calc)	Peptides	Sequence
189	- 195	826.3674	826.4225	FASFIDK	
198	- 209	1474.7266	1474.7780	FLEQQNQVI	lqtk
394	- 401	972.4752	972.5240	IEISELNR	
1	MSCQISCKS	R GRGGGGGGFR	GFSSGSAVVS	GGSRRSTSSF	SCLSRHGGGG
51	GGFGGGGFGS	S RSLVGLGGTK	SISISVAGGG	GGFGAAGGFG	GRGGGFGGGS
101	SFGGGSGFS	GGFGGGGFGG	GRFGGFGGPG	GVGGLGGPGG	FGPGGYPGGI
151	HEVSVNQSLI	QPLNVKVDPE	IQNVKAQERE	QIKTLNNK FA	SFIDKVRFLE
201	QQNQVLQTK	I ELLQQMNVGT	RPINLEPIFQ	GYIDSLKRYL	DGLTAERTSQ
251	NSELNNMQDI	VEDYKKKYED	EINKRTAAEN	DFVTLKKDVD	NAYMIKVELQ
301	SKVDLLNQE	EFLKVLYDAE	ISQIHQSVTD	TNVILSMDNS	RNLDLDSIIA
351	EVKAQYEEIA	A QRSKEEAEAL	YHSKYEELQV	TVGRHGDSLK	EIKIEISELN
401	RVIQRLQGE	AHVKKQCKNV	QDAIADAEQR	GEHALKDARN	KLNDLEEALQ
451	QAKEDLARLI	RDYQELMNVK	LALDVEIATY	RKLLEGEECR	MSGDLSSNVT
501	VSVTSSTISS	S NVASKAAFGG	SGGRGSSSGG	GYSSGSSSYG	SGGRQSGSRG
551	GSGGGGSISC	G GGYGSGGGSG	GRYGSGGGSK	GGSISGGGYG	SGGGKHSSGG
601	GSRGGSSSG	GYGSGGGGSS	SVKGSSGEAF	GSSVTFSFR	

Apolipoprotein D (peptides sequence coverage: 6%)

Start	-	End	Mr(expt)	Mr(calc)	Peptides	Sequence	
200	-	208	971.6407	971.4923	SPELQAEAK.S		
216	- 223 942.1231		942.1231	940.5593	EQLTPLIK.K		
1	QZ	AFHLGKCPN	PPVQENFDVN	KYLGRWYEIE	KIPTTFENGR	CIQANYSLME	
51	NC	GKIKVLNQE	LRADGTVNQI	EGEATPVNLT	EPAKLEVKFS	WFMPSAPYWI	
101	LZ	ATDYENYAL	VYSCTCIIQL	FHVDFAWILA	RNPNLPPETV	DSLKNILTSN	
151	N	DVKKMTVT	DQVNCPKLSQ	AKEPCVESLV	SQYFQTVTDY	GKDLMEKVK <mark>S</mark>	
201	PI	ELQAEAKSY	FEKSK <mark>EQLTP</mark>	LIK KAGTELV	NFLSYFVELG	TQPATQ	

Band 35

T cell receptor beta chain variable region (sequence coverage: 22%)

Start - EndMr (expt)Mr (calc)Peptides Sequence1 - 131588.20891585.8868LGLRLIYFSYDVK1 - 172117.61192118.1547LGLRLIYFSYDVKMKEK1 LGLRLIYFSYDVKMKEKGDIPEGYSVSREKKERFSLILES51 CASRDSPSYEQYFGPGTRLTVTED

Sialic acid-binding Ig-like lectin 10 (peptides sequence coverage: 5%)

Start	-	End	Mr(expt)	Mr(calc)	Peptide	es Sequence
2	-	20	1940.2600	1940.0765	LLPLLLS	SSLLGGSQAMDGR
527	-	540	1393.0823	1394.7405	TPLSPG	APSPESKK.N
1	MI	LPLLLSSI	LGGSQAMDGE	R FWIRVQESVM	VPEGLCISVP	CSFSYPRQDW
51	Т	GSTPAYGYW	FKAVTETTKO	APVATNHQSR	EVEMSTRGRF	QLTGDPAKGN
101	CS	SLVIRDAQM	QDESQYFFR	/ ERGSYVRYNF	MNDGFFLKVT	ALTQKPDVYI
151	PE	TLEPGQPV	7 TVICVFNWAR	F EECPPPSFSW	TGAALSSQGT	KPTTSHFSVL
201	SI	TPRPQDHN	I TDLTCHVDFS	S RKGVSVQRTV	RLRVAYAPRD	LVISISRDNT
251	PF	ALEPQPQGN	I VPYLEAQKGÇ) FLRLLCAADS	QPPATLSWVL	QNRVLSSSHP
301	WG	FRPLGLEI	DGVKAGDSGE	R YTCRAENRLG	SQQRALDLSV	QYPSENLRVM
351	VS	SQANRTVLE	NLGNGTSLPV	/ LEGQSLCLVC	VTHSSPPARL	SWTQRGQVLS
401	PS	SQPSDPGVI	L ELPRVQVEHE	E GEFTCHARHP	LGSQHVSLSL	SVHYKKGLIS
451	ΤZ	AFSNGAFLO	GITALLFLC	C LALIIMKILP	KRRTQTETPR	PKFSRHSTIL
501	D٦	INVVPTAG	B PLAQKRNQK	A TPNSPRTPLS	PGAPSPESKK	NQKKQYQLPS
551	FI	PEPKSSTQA	A PESQESQEEI	L HYATLNFPGV	RPRPEARMPK	GTQADYAEVK
601	FÇ	2				

M4 protein (peptides sequence coverage: 4%)

Start	-	End	Mr(expt)		Mr(calc)		Peptic	les	Sequence	
126	-	133	869.7147		871.5127		KAAEVI	INK		
322	-	344	2210.3549)	2209.0330)	GIGMGN	IIGE	AGMGMEGIG	FGINK
1	M	AAGVEAAAE	VAATEIKMEE	E	SGGPACERQ	RGSGE	KGEGE	RPA	QNEKRKV	
51	K	NIKRGGNRF	EPYANPTKRY	RÆ	AFITNIPFD	VKWQS	SLKDLV	KEK	WGEVTYV	
101	E	LLMDAEGKS	RGCAVVEFKM	EF	ESMKKAAEV	LNKHS	SLSGRP	LKV	KEDPDGE	
151	H	ARRAMQKVM	ATTGGMGMGP	GC	GPGMITIPP	SILNN	IPNIPN	EII	HALQAGR	
201	L	GSTVFVANL	DYKVGWKKLK	E١	/FSMAGVVV	RADII	LEDKDG	KSF	RGIGTVTF	
251	E	QSIEAVQAI	SMFNGQLLFD	RI	MHVKMDER	ALPKO	DFFPP	ERF	QQLPHGL	
301	G	GIGMGLGPG	GQPIDANHLN	K	GIGMGNIGP	AGMGN	IEGIGF	GIN	KMGGMEG	
351	P	FGGGMENMG	RFGSGMNMGR	11	NEILSNALK	RGEII	IAKQGG	GGG	GGSVPGI	
401	E	RMGPGIDRL	GGAGMERMGA	GI	LGHGMDRVG	SEIEF	RMGLVM	DRM	IGSVERMG	
451	S	GIERMGPLG	LDHMASSIER	M	GQTMERIGS	GVERN	IGAGMG	FGI	ERMAAPI	
501	DI	RVGQTIERM	GSGVERMGPA	IF	ERMGPSMER	MVPAG	SMGAGL	ERM	IGPVMDRM	
551	A'	FGLERMGAN	NLERMGLERM	GZ	ANSLERMGL	ERMGA	NSLER	MGE	PAMGPALG	
601	A	GIERMGLAM	GGGGGGASFDR	A	EMERGNFG	GSFAG	SFGGA	GGH	IAPGVARK	
651	A	CQIFVRNLP	FDFTWKMLKD	KI	FNECGHVLY	ADIKN	IENGKS	KGC	GVVKFES	
701	Pl	EVAERACRM	MNGMKLSGRE	II	VRIDRNA					

Band 36

Lipoprotein CIII (peptides sequence coverage: 20%)

Start - EndMr (expt)Mr (calc)Peptides Sequence25 - 401716.12301715.8438DALSSVQESQVAQQAR25 - 401717.61351715.8438DALSSVQESQVAQQAR1SEAEDASLLS FMQGYMKHAT KTAKDALSSVQESQVAQQAR GWVTDGFSSL51KDYWSTVKDK FSEFWDLDPE VRPTSAVAA

Band 37

Plasminogen (peptides sequence coverage: 1%)

Start	-	End	Mr(expt)	Mr(calc)	Peptides Se	equence
671	-	680	1045.4911	1045.5291	LSSPADITDK	
1	M	EHKEVVLLI	LLFLKSGQGE	E PLDDYVNTQG	ASLFSVTKKQ	LGAGSIEECA
51	AI	KCEEDEEFT	CRAFQYHSKE	E QQCVIMAENR	KSSIIIRMRD	VVLFEKKVYL
101	SI	ECKTGNGKN	V YRGTMSKTKN	I GITCQKWSST	SPHRPRFSPA	THPSEGLEEN
151	Y	CRNPDNDPQ	Q GPWCYTTDPH	E KRYDYCDILE	CEEECMHCSG	ENYDGKISKT
201	M	SGLECQAWI	SQSPHAHGY	PSKFPNKNLK	KNYCRNPDRE	LRPWCFTTDP
251	NI	KRWELCDIE	P RCTTPPPSS	G PTYQCLKGTG	ENYRGNVAVT	VSGHTCQHWS
301	Aç	TDHTHNR	PENFPCKNLI	ENYCRNPDGK	RAPWCHTTNS	QVRWEYCKIP
351	S	CDSSPVSTE	E QLAPTAPPEI	TPVVQDCYHG	DGQSYRGTSS	TTTTGKKCQS
401	WS	SSMTPHRHQ) KTPENYPNAC	LTMNYCRNPD	ADKGPWCFTT	DPSVRWEYCN
451	L	KKCSGTEAS	S VVAPPPVVLI	DVETPSEED	CMFGNGKGYR	GKRATTVTGT
501	P	CQDWAAQEE	P HRHSIFTPET	NPRAGLEKNY	CRNPDGDVGG	PWCYTTNPRK
551	Ľ	YDYCDVPQC	C AAPSFDCGKI	QVEPKKCPGR	VVGGCVAHPH	SWPWQVSLRT
601	R	FGMHFCGGI	C LISPEWVLTA	A AHCLEKSPRP	SSYKVILGAH	QEVNLEPHVQ
651	E	IEVSRLFLE	E PTRKDIALLE	LSSPADITDK	VIPACLPSPN	YVVADRTECF
701	12	IGWGETQGI	r fgagllkeag	2 LPVIENKVCN	RYEFLNGRVQ	STELCAGHLA
751	G	GTDSCQGDS	GGPLVCFEKI	KYILQGVTSW	GLGCARPNKP	GVYVRVSRFV
801	т	NIEGVMRNN	1			

Mr (expt) is the experimentally observed mass (Da)

Mr (calc) is the calculated mass (Da)

Matched peptides shown in *bold red*

• Scheme 6

Spot 38

Hypothetical protein, gi|34365470 (peptides sequence coverage: 4%)

Start	- End	Mr(expt)	Mr(calc)	Peptide	es Sequence
1	- 8	890.4628	889.5055	ALVIMA	IR.
191	- 209	2357.6909	2358.1300	EDKIEA	EAEVELYYMILER
427	- 439	1559.8117	1559.8130	LLGLYH	IMDKNQ K
1	ALVIMATRGH	VQDPNDRRLR	PIYDYLDNGN	NKMAIQQADK	LLKKHKDLHC
51	AKVLKAIGLQ	RTGKQEEAFT	LAQEVAALEP	TDDNSLQALT	ILYREMHRPE
101	LVTKLYEAAV	KKVPNSEEYH	SHLFMAYARV	GEYKKMQQAG	MALYKIVPKN
151	PYYFWSVMSL	IMQSISAQDE	NLSKTMFLPL	AERMVEKMVK	EDKIEAEAEV
201	ELYYMILERL	GKYQEALDVI	RGKLGEKLTS	EIQSRENKCM	AMYKKLSRWP
251	ECNALSRRLL	LKNSDDWQFY	LTYFDSVFRL	IEEAWSPPAE	GEHSLEGEVH
301	YSAEKAVKFI	EDRITEESKS	SRHLRGPHLA	KLELIRRLRS	QGCNDEYKLG
351	DPEELMFQYF	KKFGDKPCCF	TDLKVFVDLL	PATQCTKFIN	QLLGVVPLST
401	PTEDKLALPA	DIRALQQHLC	VVQLTRLLGL	YHTMDKNQKL	SVVRELMLRY
451	QHGLEFGKTC	LKTELQFSDY	YCLLAVHALI	DVWRETGDET	TVWQALTLLE
501	EGLTHSPSNA	QFKLLLVRIY	CMLGAFEPVV	DLYSSLDAKH	IQHDTIGYLL
551	TRYAESLGQY	AAASQSCNFA	LRFFHSNQKD	TSEYIIQAYK	YGAFEKIPEF
601	IAFRNRLNNS	LHFAQVRTER	MLLDLLLEAN	ISTSLAESIK	SMNLRPEEDD
651	IPWEDLRDNR	DLNVFFSWDP	KDRDVSEEHK	KLSLEEETLW	LRIRSLTLRL
701	ISGLPSLNHP	VEPKNSEKTA	ENGVSSRIDI	LRLLLQQLEA	TLETGKRFIE
751	KDIQYPFLGP	VPTRMGGFFN	SGCSQCQISS	FYLVNDIYEL	DTSGLEDTME
801	IQERIENSFK	SLLDQLKDVF	GKCKGDLLEV	KDGNLKTHPT	LLENLVFFVE
851	VSFCSLPKRH	CCS			

Spot 39

Polycystwin (peptides sequence coverage: 2%)

```
Start - End
               Mr(expt) Mr(calc)
                                    Peptides Sequence
  468 - 484
468 - 484
               1856.1893 1855.9316
                                        GSISSGVSYEEFQVLVR
               1856.2653 1855.9316
                                         GSISSGVSYEEFQVLVR
    1 RNGTAWIYTS EKDLNGSSHW GIIATYSGAG YYLDLSRTRE ETAAQVASLK
   51 KNVWLDRGTR ATFIDFSVYN ANINLFCVVR LLVEFPATVG VIPSWQFQPL
  101 KLIRYVTTFD FFLAACEIIF CFFIFYYVVE EILEIRIHKL HYFRSFWNCL
  151 DVVIVVLSVV AIGINIYRTS NVEVLLQFLE DQNTFPNFEH LAYWQIQFNN
  201 IAAVTVFFVW IKLFKFINFN RTMSQLSTTM SRCAKDLFGF AIMFFIIFLA
  251 YAQLAYLVFG TQVDDFSTFQ ECIFTQFRII LGDINFAEIE EANRVLGPIY
  301 FTTFVFFMFF ILLNMFLAII NDTYSEVKSD LAQQKAEMEL SDLIRKGYHK
  351 ALVKLKLKKN TVDDISESLR QGGGKLNFDE LRQDLKGKGH TDAEIEAIFT
  401 KYDQDGDQEL TEHEHQQMRD DLEKEREDLD LDHSSLPRPM SSRSFPRSLD
  451 DSEEDDDEDS GHSSRRRGSI SSGVSYEEFQ VLVRRVDRME HSIGSIVSKI
  501 DAVIVKLEIM ERAKLKRREV LGRLLDGVAE DERLGRDSEI HREQMERLVR
  551 EELERWESDD AASQISHGLG TPVGLNGQPR PRSSRPSSSQ STEGMEGAGG
  601 NGSSNVHV
```

Carboxypeptidase D (peptides sequence coverage: 3%)

Start	- End	Mr(expt) 🛛	Mr(calc)	Peptide	es Sequence
36	- 57	2212.4381	2212.0244	KAEATT	TTSAGAEAAEGQFDR
886	- 907	2298.6723	2298.0863	GASSST	IDASDPTTKEFETLIK
1	MASGRDERPH	WRLGRLLLLM	CLLLLGSSAR	AAHIKKAEAT	TTTTSAGAEA
51	AEGQFDRYYH	EEELESALRE	AAAAGLPGLA	RLFSIGRSVE	GRPLWVLRLT
101	AGLGSLIPEG	DAGPDAAGPD	AAGPLLPGRP	QVKLVGNMHG	DETVSRQVLI
151	YLARELAAGY	RRGDPRLVRL	LNTTDVYLLP	SLNPDGFERA	REGDCGFGDG
201	GPSGASGRDN	SRGRDLNRSF	PDQFSTGEPP	ALDEVPEVRA	LIEWIRRNKF
251	VLSGNLHGGS	VVASYPFDDS	PEHKATGIYS	KTSDDEVFKY	LAKAYASNHP
301	IMKTGEPHCP	GDEDETFKDG	ITNGAHWYDV	EGGMQDYNYV	WANCFEITLE
351	LSCCKYPPAS	QLRQEWENNR	ESLITLIEKV	HIGVKGFVKD	SITGSGLENA
401	TISVAGINHN	ITTGRFGDFY	RLLVPGTYNL	TVVLTGYMPL	TVTNVVVKEG
451	PATEVDFSLR	PTVTSVIPDT	TEAVSTASTV	AIPNILSGTS	SSYQPIQPKD
501	FHHHHFPDME	IFLRRFANEY	PNITRLYSLG	KSVESRELYV	MEISDNPGVH
551	EPGEPEFKYI	GNMHGNEVVG	RELLLNLIEY	LCKNFGTDPE	VTDLVHNTRI
601	HLMPSMNPDG	YEKSQEGDSI	SVIGRNNSNN	FDLNRNFPDQ	FVQITDPTQP
651	ETIAVMSWMK	SYPFVLSANL	HGGSLVVNYP	FDDDEQGLAT	YSKSPDDAVF
701	QQIALSYSKE	NSQMFQGRPC	KNMYPNEYFP	HGITNGASWY	NVPGGMQDWN
751	YLQTNCFEVT	IELGCVKYPL	EKELPNFWEQ	NRRSLIQFMK	QVHQGVRGFV
801	LDATDGRGIL	NATISVAEIN	HPVTTYKTGD	YWRLLVPGTY	KITASARGYN
851	PVTKNVTVKS	EGAIQVNFTL	VRSSTDSNNE	SKKGKGASSS	TNDASDPTTK
901	EFETLIKDLS	AENGLESLML	RSSSNLALAL	YRYHSYKDLS	EFLRGLVMNY
951	PHITNLTNLG	QSTEYRHIWS	LEISNKPNVS	EPEEPKIRFV	AGIHGNAPVG
1001	TELLLALAEF	LCLNYKKNPA	VTQLVDRTRI	VIVPSLNPDG	RERAQEKDCT
1051	SKIGQTNARG	KDLDTDFTNN	ASQPETKAII	ENLIQKQNFS	LSVALDGGSM
1101	LVTYPYDKPV	QTVENKETLK	HLASLYANNH	PSMHMGQPSC	PNKSDENIPG
1151	GVMRGAEWHS	HLGSMKDYSV	TYGHCPEITV	YTSCCYFPSA	ARLPSLWADN
1201	KRSLLSMLVE	VHKGVHGFVK	DKTGKPISKA	VIVLNEGIKV	QTKEGGYFHV
1251	LLAPGVHNII	AIADGYQQQH	SQVFVHHDAA	SSVVIVFDTD	NRIFGLPREL
1301	VVTVSGATMS	ALILTACIIW	CICSIKSNRH	KDGFHRLR <u>O</u> H	HDEYEDEIRM
1351	MSTGSKKSLL	SHEFQDETDT	EEETLYSSKH		

<u>Spot 40</u>

Polycystwin (peptides sequence coverage: 2%)

Start	- End	Mr(expt)	Mr(calc)	Peptides S	Sequence
468	- 484	1856.3078	1855.9316	GSISSGVSY	EEFQVLVR
468	- 484	1856.3082	1855.9316	GSISSGVSY	EEFQVLVR
468	- 484	1856.3091	1855.9316	GSISSGVSY	EEFQVLVR
468	- 484	1857.4334	1855.9316	GSISSGVSY	EEFQVLVR
1	RNGTAWIYTS	S EKDLNGSSHW	GIIATYSGAG	YYLDLSRTRE	ETAAQVASLK
51	KNVWLDRGTH	R ATFIDFSVYN	ANINLFCVVR	LLVEFPATVG	VIPSWQFQPL
101	KLIRYVTTFI) FFLAACEIIF	CFFIFYYVVE	EILEIRIHKL	HYFRSFWNCL
151	DVVIVVLSV	/ AIGINIYRTS	NVEVLLQFLE	DQNTFPNFEH	LAYWQIQFNN
201	IAAVTVFFV	IKLFKFINFN	RTMSQLSTTM	SRCAKDLFGF	AIMFFIIFLA
251	YAQLAYLVF	J TQVDDFSTFQ	ECIFTQFRII	LGDINFAEIE	EANRVLGPIY
301	FTTFVFFMF	F ILLNMFLAII	NDTYSEVKSD	LAQQKAEMEL	SDLIRKGYHK
351	ALVKLKLKK	I TVDDISESLR	QGGGKLNFDE	LRQDLKGKGH	TDAEIEAIFT
401	KYDQDGDQEI	L TEHEHQQMRD	DLEKEREDLD	LDHSSLPRPM	SSRSFPRSLD
451	DSEEDDDEDS	GHSSRRR <mark>GSI</mark>	SSGVSYEEFQ	VLVRRVDRME	HSIGSIVSKI
501	DAVIVKLEIN	I ERAKLKRREV	LGRLLDGVAE	DERLGRDSEI	HREQMERLVR
551	EELERWESDI	AASQISHGLG	TPVGLNGQPR	PRSSRPSSSQ	STEGMEGAGG
601	NGSSNVHV				

<u>Spot 41</u>

KIAA0626 protein (peptides sequence coverage: 5%)

Start	- End	Mr(expt)	Mr(calc)	Pentide	s Semience
Deare	200	MI (CAPC)		reperae	.o ocquence
11	- 28	1900.9668	1900.7898	CSSSSFS	SSSFFSSASSPR
67	- 77	1166.6054	1166.6044	TOOVEPO	SVPGR
				~~	
1	APARRGLGDI	R CSSSSFSSSE	FSSASSPRRL	ATAAARAGGA	AVIPVPEEPA
51	LPVPGGRGA	G EAGPRR <mark>TQQ</mark>	EPGVPGRAPP	AHHAALCHLS	RPQAKILSMM
101	EDNKQLALR	I DGAVQSASQE	VTNLRAELTA	TNRRLAELSG	GGGPGPGPGA
151	AASASAAGD	S AATNMENPQI	GAQVLLREEV	SRLQEEVHLL	RQMKEMLAKD
201	LEESQGGKS	S EVLSATELRV	V QLAQKEQELA	RAKEALQAMK	ADRKRLKGEK
251	TDLVSQMQQ	L YATLESREEÇ	2 LRDFIRNYEQ	HRKESEDAVK	ALAKEKDLLE
301	REKWELRRQ	A KEATDHATAI	RSQLDLKDNR	MKELEAELAM	AKQSLATLTK
351	DVPKRHSLA	M PGETVLNGNQ	EWVVQADLPL	TAAIRQSQQT	LYHSHPPHPA
401	DRQAVRVSP	C HSRQPSVISI	ASAAEGDRSS	TPSDINSPRH	RTHSLCNVRP
451	AAAGPGPLG	P AQKLQGRGWF	R GEAILAVSSR	PPREHSGECI	SCSVLSFCKK
501	RWMWGEKGM	R PVCSLCPGG			

Spot 42

Trypsin cationic trypsinogen (peptides sequence coverage: 11%)

Start	- End	Mr(expt)	Mr(calc)	Peptide	s Sequence
36	- 45	1174.6479	1173.6427	TLNNDIM	LIK
1	RIQVRLGEH	N IEVLEGNEQ	F INAAKIIRHP	QYDRKTLNND	IMLIKLSSRA
51	VINAHVSTI	S LPTAPPATG	r kclisgwgnt	ASSG	

Spot 43

Plasminogen (peptides sequence coverage: 1%)

0++	Time of			0	_
Start	- Ena	Mr (expt)	Mr (Calc)	Sequence	3
671	- 680	1045.4997	1045.5291	LSSPADI	rdk
1	MEHKEVVLLI	L LLFLKSGQGE	PLDDYVNTQG	ASLFSVTKKQ	LGAGSIEECA
51	AKCEEDEEF	CRAFQYHSKE	QQCVIMAENR	KSSIIIRMRD	VVLFEKKVYL
101	SECKTGNGK	I YRGTMSKTKN	I GITCQKWSST	SPHRPRFSPA	THPSEGLEEN
151	YCRNPDNDP	Q GPWCYTTDPE	KRYDYCDILE	CEEECMHCSG	ENYDGKISKT
201	MSGLECQAWI	SQSPHAHGY1	PSKFPNKNLK	KNYCRNPDRE	LRPWCFTTDP
251	NKRWELCDI	P RCTTPPPSSG	; PTYQCLKGTG	ENYRGNVAVT	VSGHTCQHWS
301	AQTPHTHNR	PENFPCKNLD	ENYCRNPDGK	RAPWCHTTNS	QVRWEYCKIP
351	SCDSSPVST	E QLAPTAPPEI	TPVVQDCYHG	DGQSYRGTSS	TTTTGKKCQS
401	WSSMTPHRH	C KTPENYPNAG	LTMNYCRNPD	ADKGPWCFTT	DPSVRWEYCN
451	LKKCSGTEAS	S VVAPPPVVLI	PDVETPSEED	CMFGNGKGYR	GKRATTVTGT
501	PCQDWAAQEI	P HRHSIFTPET	NPRAGLEKNY	CRNPDGDVGG	PWCYTTNPRK
551	LYDYCDVPQ	C AAPSFDCGKE	QVEPKKCPGR	VVGGCVAHPH	SWPWQVSLRT
601	RFGMHFCGG	C LISPEWVLTA	AHCLEKSPRP	SSYKVILGAH	QEVNLEPHVQ
651	EIEVSRLFL	E PTRKDIALLK	LSSPADITDK	VIPACLPSPN	YVVADRTECF
701	ITGWGETQG	FGAGLLKEAÇ	LPVIENKVCN	RYEFLNGRVQ	STELCAGHLA
751	GGTDSCQGDS	GGPLVCFEKE	KYILQGVTSW	GLGCARPNKP	GVYVRVSRFV
801	TWIEGVMRNN	1			

Carboxypeptidase D (peptides sequence coverage: 3%)

Start	– End	Mr(expt)	Mr(calc)	Peptides	Sequence
36	- 57	2211.5394	2212.0244	KAEATTTT	ISAGAEAAEGQFD R
886	- 907	2298.7250	2298.0863	GASSSTNDA	ASDPTTKEFETLIK
1	MASGRDERPH	WRLGRLLLLM	CLLLLGSSAR	AAHIK <mark>KAEAT</mark>	TTTTSAGAEA
51	AEGQFDRYYH	EEELESALRE	AAAAGLPGLA	RLFSIGRSVE	GRPLWVLRLT
101	AGLGSLIPEG	DAGPDAAGPD	AAGPLLPGRP	QVKLVGNMHG	DETVSRQVLI
151	YLARELAAGY	RRGDPRLVRL	LNTTDVYLLP	SLNPDGFERA	REGDCGFGDG
201	GPSGASGRDN	SRGRDLNRSF	PDQFSTGEPP	ALDEVPEVRA	LIEWIRRNKF
251	VLSGNLHGGS	VVASYPFDDS	PEHKATGIYS	KTSDDEVFKY	LAKAYASNHP
301	IMKTGEPHCP	GDEDETFKDG	ITNGAHWYDV	EGGMQDYNYV	WANCFEITLE
351	LSCCKYPPAS	QLRQEWENNR	ESLITLIEKV	HIGVKGFVKD	SITGSGLENA
401	TISVAGINHN	ITTGRFGDFY	RLLVPGTYNL	TVVLTGYMPL	TVTNVVVKEG
451	PATEVDFSLR	PTVTSVIPDT	TEAVSTASTV	AIPNILSGTS	SSYQPIQPKD
501	FHHHHFPDME	IFLRRFANEY	PNITRLYSLG	KSVESRELYV	MEISDNPGVH
551	EPGEPEFKYI	GNMHGNEVVG	RELLLNLIEY	LCKNFGTDPE	VTDLVHNTRI
601	HLMPSMNPDG	; YEKSQEGDSI	SVIGRNNSNN	FDLNRNFPDQ	FVQITDPTQP
651	ETIAVMSWMK	SYPFVLSANL	HGGSLVVNYP	FDDDEQGLAT	YSKSPDDAVF
701	QQIALSYSKE	NSQMFQGRPC	KNMYPNEYFP	HGITNGASWY	NVPGGMQDWN
751	YLQTNCFEVI	IELGCVKYPL	EKELPNFWEQ	NRRSLIQFMK	QVHQGVRGFV
801	LDATDGRGII	NATISVAEIN	HPVTTYKTGD	YWRLLVPGTY	KITASARGYN
851	PVTKNVTVKS	EGAIQVNFTL	VRSSTDSNNE	SKKGKGASSS	TNDASDPTTK
901	EFETLIKDLS	AENGLESLML	RSSSNLALAL	YRYHSYKDLS	EFLRGLVMNY
951	PHITNLTNLG	GSTEYRHIWS	LEISNKPNVS	EPEEPKIRFV	AGIHGNAPVG
1001	TELLLALAEF	LCLNYKKNPA	VTQLVDRTRI	VIVPSLNPDG	RERAQEKDCT
1051	SKIGQTNARG	KDLDTDFTNN	ASQPETKAII	ENLIQKQNFS	LSVALDGGSM
1101	LVTYPYDKPV	QTVENKETLK	HLASLYANNH	PSMHMGQPSC	PNKSDENIPG
1151	GVMRGAEWHS	HLGSMKDYSV	TYGHCPEITV	YTSCCYFPSA	ARLPSLWADN
1201	KRSLLSMLVE	VHKGVHGFVK	DKTGKPISKA	VIVLNEGIKV	QTKEGGYFHV
1251	LLAPGVHNII	AIADGYQQQH	SQVFVHHDAA	SSVVIVFDTD	NRIFGLPREL
1301	VVTVSGATMS	ALILTACIIW	CICSIKSNRH	KDGFHRLRQH	HDEYEDEIRM
1351	MSTGSKKSLL	SHEFODETDT	EEETLYSSKH		

Mr (expt) is the experimentally observed mass (Da)

Mr (calc) is the calculated mass (Da)

Matched peptides shown in *bold red*

• Scheme 7

<u>Band 48</u>

Keratin (peptides sequence coverage: 5%)

Start 148 157 229 323	- End - 156 - 163 - 235 - 333	Mr(expt) 1089.5706 808.3358 806.2949 1364.5726	Mr(calc) 1089.5237 808.4330 806.3923 1364.6320	Peptides S VTMQNLNDR LASYLDK LAADDFR SQYEQLAEQI	Sequence NR
1	MSVRYSSSKI	I YSSSRSGGGG	GGGGCGGGGG	VSSLRISSSK	GSLGGGFSSG
51	GFSGGSFSR	S SSGGGCFGGS	SGGYGGLGGF	GGGSFRGSYG	SSSFGGSYGG
101	SFGGGSFGGG	G SFGGGSFGGG	GFGGGGFGGG	FGGGFGGDGG	LLSGNEKVTM
151	QNLNDRLASY	LDKVRALEES	NYELEGKIKE	WYEKHGNSHQ	GEPRDYSKYY
201	KTIDDLKNQI	LNLTTDNANI	LLQIDNARLA	ADDFRLKYEN	EVALRQSVEA
251	DINGLRRVLI	ELTLTKADLE	MQIESLTEEL	AYLKKNHEEE	MKDLRNVSTG
301	DVNVEMNAAI	GVDLTQLLNN	MRSQYEQLAE	QNR KDAEAWF	NEKSKELTTE
351	IDNNIEQISS	S YKSEITELRR	NVQALEIELQ	SQLALKQSLE	ASLAETEGRY
401	CVQLSQIQAQ) ISALEEQLQQ	IRAETECQNT	EYQQLLDIKI	RLENEIQTYR
451	SLLEGEGSSO	G GGGRGGGSFG	GGYGGGSSGG	GSSGGGYGGG	HGGSSGGGYG
501	GGSSGGGSSG	G GGYGGGSSSG	GHGGSSSGGY	GGGSSGGGGG	GYGGGSSGGG
551	SSSGGGYGGG	G SSSGGHKSSS	SGSVGESSSK	GPRSAETSWD	TNKTRVIKTI
601	IEEVAPDGR	/ LSSMVESETK	КНҮҮ		

Centrosomal protein (peptides sequence coverage: 0%)

Start	- End M	Mr(expt) I	Mr(calc)	Peptides S	Sequence
315	- 326	1475.0497 i	1473.8191	FQELQLQLE	KAK
1	MSWALEEWKE	GLPTRALQKI	QELEGQLDKL	KKEKQQRQFQ	LDSLEAALQK
51	QKQKVENEKT	EGTNLKRENQ	RLMEICESLE	KTKQKISHEL	QVKESQVNFQ
101	EGQLNSGKKQ	IEKLEQELKR	CKSELERSQQ	AAQSADVSLN	PCNTPQKIFT
151	TPLTPSQYYS	GSKYEDLKEK	YNKEVEERKR	LEAEVKALQA	KKASQTLPQA
201	TMNHRDIARH	QASSSVFSWQ	QEKTPSHLSS	NSQRTPIRRD	FSASYFSGEQ
251	EVTPSRSTLQ	IGKRDANSSF	FDNSSSPHLL	DQLKAQNQEL	RNKINELELR
301	LQGHEKEMKG	QVNKFQELQL	QLEKAKVELI	EKEKVLNKCR	DELVRTTAQY
351	DQASTKYTAL	EQKLKKLTED	LSCQRQNAES	ARCSLEQKIK	EKEKEFQEEL
401	SRQQRSFQTL	DQECIQMKAR	LTQELQQAKN	MHNVLQAELD	KLTSVKQQLE
451	NNLEEFKQKL	CRAEQAFQAS	QIKENELRRS	MEEMKKENNL	LKSHSEQKAR
501	EVCHLEAELK	NIKQCLNQSQ	NFAEEMKAKN	TSQETMLRDL	QEKINQQENS
551	LTLEKLKLAV	ADLEKQRDCS	QDLLKKREHH	IEQLNDKLSK	TEKESKALLS
601	ALELKKKEYE	ELKEEKTLFS	CWKSENEKLL	TQMESEKENL	QSKINHLETC
651	LKTQQIKSHE	YNERVRTLEM	DRENLSVEIR	NLHNVLDSKS	VEVETQKLAY
701	MELQQKAEFS	DQKHQKEIEN	MCLKTSQLTG	QVEDLEHKLQ	LLSNEIMDKD
751	RCYQDLHAEY	ESLRDLLKSK	DASLVTNEDH	QRSLLAFDQQ	PAMHHSFANI
801	IGEQGSMPSE	RSECRLEADQ	SPKNSAILQN	RVDSLEFSLE	SQKQMNSDLQ
851	KQCEELVQIK	GEIEENLMKA	EQMHQSFVAE	TSQRISKLQE	DTSAHQNVVA
901	ETLSALENKE	KELQLLNDKV	ETEQAEIQEL	KKSNHLLEDS	LKELQLLSET
951	LSLEKKEMSS	IISLNKREIE	ELTQENGTLK	EINASLNQEK	MNLIQKSESF
1001	ANYIDEREKS	ISELSDQYKQ	EKLILLQRCE	ETGNAYEDLS	QKYKAAQEKN
1051	SKLECLLNEC	TSLCENRKNE	LEQLKEAFAK	EHQEFLTKLA	FAEERNQNLM
1101	LELETVQQAL	RSEMTDNQNN	SKSEAGGLKQ	EIMTLKEEQN	KMQKEVNDLL
1151	QENEQLMKVM	KTKHECQNLE	SEPIRNSVKE	RESERNQCNF	KPQMDLEVKE
1201	ISLDSYNAQL	VQLEAMLRNK	ELKLQESEKE	KECLQHELQT	IRGDLETSNL
1251	ODMOSOEISG	LKDCEIDAEE	KYISGPHELS	TSONDNAHLO	CSLOTTMNKL

1301	NELEKICEIL	QAEKYELVTE	LNDSRSECIT	ATRKMAEEVG	KLLNEVKILN
1351	DDSGLLHGEL	VEDIPGGEFG	EQPNEQHPVS	LAPLDESNSY	EHLTLSDKEV
1401	QMHFAELQEK	FLSLQSEHKI	LHDQHCQMSS	KMSELQTYVD	SLKAENLVLS
1451	TNLRNFQGDL	VKEMQLGLEE	GLVPSLSSSC	VPDSSSLSSL	GDSSFYRALL
1501	EQTGDMSLLS	NLEGAVSANQ	CSVDEVFCSS	LQEENLTRKE	TPSAPAKGVE
1551	ELESLCEVYR	QSLEKLEEKM	ESQGIMKNKE	IQELEQLLSS	ERQELDCLRK
1601	QYLSENEQWQ	QKLTSVTLEM	ESKLAAEKKQ	TEQLSLELEV	ARLQLQGLDL
1651	SSRSLLGIDT	EDAIQGRNES	CDISKEHTSE	TTERTPKHDV	HQICDKDAQQ
1701	DLNLDIEKIT	ETGAVKPTGE	CSGEQSPDTN	YEPPGEDKTQ	GSSECISELS
1751	FSGPNALVPM	DFLGNQEDIH	NLQLRVKETS	NENLRLLHVI	EDRDRKVESL
1801	LNEMKELDSK	LHLQEVQLMT	KIEACIELEK	IVGELKKENS	DLSEKLEYFS
1851	CDHQELLQRV	ETSEGLNSDL	EMHADKSSRE	DIGDNVAKVN	DSWKERFLDV
1901	ENELSRIRSE	KASIEHEALY	LEADLEVVQT	EKLCLEKDNE	NKQKVIVCLE
1951	EELSVVTSER	NQLRGELDTM	SKKTTALDQL	SEKMKEKTQE	LESHQSECLH
2001	CIQVAEAEVK	EKTELLQTLS	SDVSELLKDK	THLQEKLQSL	EKDSQALSLT
2051	KCELENQIAQ	LNKEKELLVK	ESESLQARLS	ESDYEKLNVS	KALEAALVEK
2101	GEFALRLSST	QEEVHQLRRG	IEKLRVRIEA	DEKKQLHIAE	KLKEREREND
2151	SLKDKVENLE	RELQMSEENQ	ELVILDAENS	KAEVETLKTQ	IEEMARSLKV
2201	FELDLVTLRS	EKENLTKQIQ	EKQGQLSELD	KLLSSFKSLL	EEKEQAEIQI
2251	KEESKTAVEM	LQNQLKELNE	AVAALCGDQE	IMKATEQSLD	PPIEEEHQLR
2301	NSIEKLRARL	EADEKKQLCV	LQQLKESEHH	ADLLKGRVEN	LERELEIART
2351	NQEHAALEAE	NSKGEVETLK	AKIEGMTQSL	RGLELDVVTI	RSEKENLTNE
2401	LQKEQERISE	LEIINSSFEN	ILQEKEQEKV	QMKEKSSTAM	EMLQTQLKEL
2451	NERVAALHND	QEACKAKEQN	LSSQVECLEL	EKAQLLQGLD	EAKNNYIVLQ
2501	SSVNGLIQEV	EDGKQKLEKK	DEEISRLKNQ	IQDQEQLVSK	LSQVEGEHQL
2551	WKEQNLELRN	LTVELEQKIQ	VLQSKNASLQ	DTLEVLQSSY	KNLENELELT
2601	KMDKMSFVEK	VNKMTAKETE	LQREMHEMAQ	KTAELQEELS	GEKNRLAGEL
2651	QLLLEEIKSS	KDQLKELTLE	NSELKKSLDC	MHKDQVEKEG	KVREEIAEYQ
2701	LRLHEAEKKH	QALLLDTNKQ	YEVEIQTYRE	KLTSKEECLS	SQKLEIDLLK
2751	SSKEELNNSL	KATTQILEEL	KKTKMDNLKY	VNQLKKENER	AQGKMKLLIK
2801	SCKQLEEEKE	ILQKELSQLQ	AAQEKQKTGT	VMDTKVDELT	TEIKELKETL
2851	EEKTKEADEY	LDKYCSLLIS	HEKLEKAKEM	LETQVAHLCS	QQSKQDSRGS
2901	PLLGPVVPGP	SPIPSVTEKR	LSSGQNKASG	KRQRSSGIWE	NGRGPTPATP
2951	ESFSKKSKKA	VMSGIHPAED	TEGTEFEPEG	LPEVVKKGFA	DIPTGKTSPY
3001	ILRRTTMATR	TSPRLAAQKL	ALSPLSLGKE	NLAESSKPTA	GGSRSQKVKV
3051	AQRSPVDSGT	ILREPTTKSV	PVNNLPERSP	TDSPREGLRV	KRGRLVPSPK
3101	AGLESNGSEN	CKVQ			

Band 49

Epidermal growth factor (peptides sequence coverage: 43%)

Start - End Mr(expt) Mr(calc) Peptides Sequence
1 - 23 2282.6978 2283.2191 MRPSGTAGAALLALLAALCPASR
1 - 23 2283.5100 2283.2191 MRPSGTAGAALLALLAALCPASR
29 - 36 886.0542 886.5461 KGKGVSRR
1 MRPSGTAGAA LLALLAALCP ASRALEEKKG KGVSRRLPRR PRIAPRTPQP
51 AQPRTGAPAR ARAPARPFLF P

Band 50

Human serum albumin : (peptides sequence coverage 43%)

Start -	End	Mr(expt)	Mr(calc)	Peptides Sequence
66 -	75	1148.6000	1148.6077	LVNEVTEFAK
98 -	105	932.5214	932.5113	LCTVATLR
162 -	168	926.4074	926.4861	YLYEIAR

187	- 198	1370.5696	1370.5595	AAFTECC	DAADK
250	- 257	879.3689	879.4338	AEFAEVSI	ĸ
287	- 298	1442.6756	1442.6347	YICENQD	SISSK
376	- 383	983.4611	982.5335	TYKTTLEI	ĸ
397	- 413	2044.2991	2044.0881	VFDEFKPI	LVEEPQNLIK
414	- 426	1656.7728	1656.7453	QNCELFE	QLGEYK
427	- 434	959.5464	959.5552	FQNALLVI	ર
500	- 508	1137.4049	1137.4907	CCTESLV	IR
550	- 558	999.5263	999.5964	QTALVEL	/K
1	MKWVTFISLI	L FLFSSAYSRO	G VFRRDAHKSE	VAHRFKDLGE	ENFKALVLIA
51	FAQYLQQCPH	EDHVKLVNEV	TEFAKTCVAD	ESAENCDKSL	HTLFGDKLCT
101	VATLRETYGE	E MADCCAKQEI	P ERNECFLQHK	DDNPNLPRLV	RPEVDVMCTA
151	FHDNEETFLE	K KYLYEIARRE	I PYFYAPELLF	FAKRYK <mark>AAFT</mark>	ECCQAADKAA
201	CLLPKLDELE	R DEGKASSAKÇ) RLKCASLQKF	GERAFKAWAV	ARLSQRFPKA
251	EFAEVSKLV	DLTKVHTECO	HGDLLECADD	RADLAKYICE	NQDSISSKLK
301	ECCEKPLLER	SHCIAEVENI) EMPADLPSLA	ADFVESKDVC	KNYAEAKDVF
351	LGMFLYEYAF	R RHPDYSVVLI	LRLAK <mark>TYKTT</mark>	LEKCCAAADP	HECYAKVFDE
401	FKPLVEEPQN	I LIKQNCELFE	QLGEYKFQNA	LLVRYTKKVP	QVSTPTLVEV
451	SRNLGKVGSF	CCKHPEAKRM	I PCAEDYLSVV	LNQLCVLHEK	TPVSDRVTKC
501	CTESLVNRR	CFSALEVDET	YVPKEFNAET	FTFHADICTL	SEKERQIKKQ
551	TALVELVKH	K PKATKEQLKA	VMDDFAAFVE	KCCKADDKET	CFAEEGKKLV
601	AASRAALGL				

<u>Band 51</u>

Keratin (peptides sequence coverage: 13%)

Start	-	End	Mr(expt)	Mr(calc)	Peptides Sequence
14	-	29	1231.7753	1231.5906	SGGGGGGGGLGSGGSIR
47	-	59	1234.6841	1234.5215	FSSSSGYGGGSSR
155	-	163	1064.6071	1064.4920	STMQELNSR
225	-	233	1059.7541	1059.5560	TLLDIDNTR
234	-	240	896.5121	896.4062	MTLDDFR
251	-	261	1156.8016	1156.5836	QGVDADINGLR
262	-	271	1189.7947	1189.6013	QVLDNLTMEK
328	-	336	1120.7156	1120.5764	QEYEQLIAK

1	MSCRQFSSSY	LSR <mark>SGGGGGG</mark>	GLGSGGSIRS	SYSRFSSSGG	GGGGGGRFSSS
51	SGYGGGSSRV	CGRGGGGSFG	YSYGGGSGGG	FSASSLGGGF	GGGSRGFGGA
101	SGGGYSSSGG	FGGGFGGGSG	GGFGGGYGSG	FGGFGGFGGG	AGGGDGGILT
151	ANEKSTMQEL	NSRLASYLDK	VQALEEANND	LENKIQDWYD	KKGPAAIQKN
201	YSPYYNTIDD	LKDQIVDLTV	GNNKTLLDID	NTRMTLDDFR	IKFEMEQNLR
251	QGVDADINGL	RQVLDNLTME	K SDLEMQYET	LQEELMALKK	NHKEEMSQLT
301	GQNSGDVNVE	INVAPGKDLT	KTLNDMRQEY	EQLIAKNRKD	IENQYETQIT
351	QIEHEVSSSG	QEVQSSAKEV	TQLRHGVQEL	EIELQSQLSK	KAALEKSLED
401	TKNRYCGQLQ	MIQEQISNLE	AQITDVRQEI	ECQNQEYSLL	LSIKMRLEKE
451	IETYHNLLEG	GQEDFESSGA	GKIGLGGRGG	SGGSYGRGSR	GGSGGSYGGG
501	GSGGGYGGGS	GSRGGSGGSY	GGGSGSGGGS	GGGYGGGSGG	GHSGGSGGGH
551	SGGSGGNYGG	GSGSGGGSGG	GYGGGSGSRG	GSGGSHGGGS	GFGGESGGSY
601	GGGEEASGSG	GGYGGGSGKS	SHS		

Plasminogen (peptides sequence coverage: 1%)

Start -	-	End	Mr(expt)	Mr(calc)	Peptides Sequence
671 -	-	680	1044.6761	1045.5291	LSSPADITDK
671 -	-	680	1044.7312	1045.5291	LSSPADITDK
671 -	-	680	1045.6644	1045.5291	LSSPADITDK

```
1 MEHKEVVLLL LLFLKSGOGE PLDDYVNTOG ASLFSVTKKO LGAGSIEECA
 51 AKCEEDEEFT CRAFQYHSKE QQCVIMAENR KSSIIIRMRD VVLFEKKVYL
101 SECKTGNGKN YRGTMSKTKN GITCOKWSST SPHRPRFSPA THPSEGLEEN
151 YCRNPDNDPQ GPWCYTTDPE KRYDYCDILE CEEECMHCSG ENYDGKISKT
201 MSGLECQAWD SQSPHAHGYI PSKFPNKNLK KNYCRNPDRE LRPWCFTTDP
251 NKRWELCDIP RCTTPPPSSG PTYQCLKGTG ENYRGNVAVT VSGHTCQHWS
301 AQTPHTHNRT PENFPCKNLD ENYCRNPDGK RAPWCHTTNS QVRWEYCKIP
351 SCDSSPVSTE QLAPTAPPEL TPVVQDCYHG DGQSYRGTSS TTTTGKKCQS
401 WSSMTPHRHQ KTPENYPNAG LTMNYCRNPD ADKGPWCFTT DPSVRWEYCN
451 LKKCSGTEAS VVAPPPVVLL PDVETPSEED CMFGNGKGYR GKRATTVTGT
501 PCQDWAAQEP HRHSIFTPET NPRAGLEKNY CRNPDGDVGG PWCYTTNPRK
551 LYDYCDVPQC AAPSFDCGKP QVEPKKCPGR VVGGCVAHPH SWPWQVSLRT
601 RFGMHFCGGT LISPEWVLTA AHCLEKSPRP SSYKVILGAH QEVNLEPHVQ
651 EIEVSRLFLE PTRKDIALLK LSSPADITDK VIPACLPSPN YVVADRTECF
701 ITGWGETQGT FGAGLLKEAQ LPVIENKVCN RYEFLNGRVQ STELCAGHLA
751 GGTDSCQGDS GGPLVCFEKD KYILQGVTSW GLGCARPNKP GVYVRVSRFV
801 TWIEGVMRNN
```

Mr (expt) is the experimentally observed mass (Da)

Mr (calc) is the calculated mass (Da)

Matched peptides shown in *bold red*

Bibliography

- (1990) Increase in National Hospital Discharge Survey rates for septicemia--United States, 1979-1987. In *MMWR Morb Mortal Wkly Rep*), pp. 31-4.
- Aasjord P, Nyland H, Matre R (1986) The mitogenic properties of lipoteichoic acid from *Staphylococcus aureus*. *Acta Pathol Microbiol Immunol Scand C*, **94**, 91-6.
- Aderem A, Ulevitch RJ (2000) Toll-like receptors in the induction of the innate immune response. *Nature*, **406**, 782-7.
- Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol, 17, 593-623.
- Agerberth B, Charo J, Werr J, et al. (2000) The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. *Blood*, **96**, 3086-93.
- Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. *Cell*, **124**, 783-801.
- Aldridge RE, Chan T, van Dalen CJ, et al. (2002) Eosinophil peroxidase produces hypobromous acid in the airways of stable asthmatics. *Free Radic Biol Med*, **33**, 847-56.
- Alkan ML, Beachey EH (1978) Excretion of lipoteichoic acid by group A streptococci. Influence of penicillin on excretion and loss of ability to adhere to human oral mucosal cells. J Clin Invest, 61, 671-7.
- Aly R, Levit S (1987) Adherence of *Staphylococcus aureus* to squamous epithelium: role of fibronectin and teichoic acid. *Rev Infect Dis*, **9 Suppl 4**, S341-50.
- Aoyagi Y, Adderson EE, Min JG, et al. (2005) Role of L-ficolin/mannose-binding lectin-associated serine protease complexes in the opsonophagocytosis of type III group B streptococci. *J Immunol*, **174**, 418-25.
- Archer GL (1998) Staphylococcus aureus: a well-armed pathogen. Clin Infect Dis, 26, 1179-81.
- Argraves WS, Greene LM, Cooley MA, Gallagher WM (2003) Fibulins: physiological and disease perspectives. *EMBO Rep*, **4**, 1127-31.
- Arlaud GJ, Colomb MG (1987) Modelling of C1, the first component of human complement: towards a consensus? *Mol Immunol*, **24**, 317.
- Arnaout MA (2001) Molecular genetics and pathogenesis of autosomal dominant polycystic kidney disease. *Annu Rev Med*, **52**, 93-123.
- Arndt P, Abraham E (2001) Immunological therapy of sepsis: experimental therapies. *Intensive Care Med*, **27 Suppl 1**, S104-15.
- Auguet M, Lonchampt MO, Delaflotte S, Goulin-Schulz J, Chabrier PE, Braquet P (1992) Induction of nitric oxide synthase by lipoteichoic acid from *Staphylococcus aureus* in vascular smooth muscle cells. *FEBS Lett*, **297**, 183-5.
- Aulock SV, Deininger S, Draing C, Gueinzius K, Dehus O, Hermann C (2006) Gender difference in cytokine secretion on immune stimulation with LPS and LTA. J Interferon Cytokine Res, 26, 887-92.

- Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, Ouellette AJ (2000) Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. *Nat Immunol*, 1, 113-8.
- Baarends WM, Roest HP, Grootegoed JA (1999) The ubiquitin system in gametogenesis. *Mol Cell Endocrinol*, **151**, 5-16.
- Baddour LM, Lowrance C, Albus A, Lowrance JH, Anderson SK, Lee JC (1992) *Staphylococcus aureus* microcapsule expression attenuates bacterial virulence in a rat model of experimental endocarditis. *J Infect Dis*, **165**, 749-53.
- Baker EN, Lindley PF (1992) New perspectives on the structure and function of transferrins. *J Inorg Biochem*, **47**, 147-60.
- Balk RA, Bone RC (1989) The septic syndrome. Definition and clinical implications. *Crit Care Clin*, **5**, 1-8.
- Banka CL (1996) High density lipoprotein and lipoprotein oxidation. Curr Opin Lipidol, 7, 139-42.
- Banks L, Pim D, Thomas M (2003) Viruses and the 26S proteasome: hacking into destruction. *Trends Biochem Sci*, **28**, 452-9.
- Baroni A, Perfetto B, Ruocco E, Rossano F (1998) Lipoteichoic acid and protein-A from *Staphylococcus aureus* stimulate release of hepatocyte growth factor (HGF) by human dermal fibroblasts. *Arch Dermatol Res*, **290**, 211-4.
- Baumann H, Morella KK, Jahreis GP, Marinkovic S (1990) Distinct regulation of the interleukin-1 and interleukin-6 response elements of the rat haptoglobin gene in rat and human hepatoma cells. *Mol Cell Biol*, **10**, 5967-76.
- Beachey EH, Giampapa CS, Abraham SN (1988) Bacterial adherence. Adhesin receptor-mediated attachment of pathogenic bacteria to mucosal surfaces. *Am Rev Respir Dis*, **138**, S45-8.
- Beningo KA, Wang YL (2002) Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target. *J Cell Sci*, **115**, 849-56.
- Bensi G, Raugei G, Klefenz H, Cortese R (1985) Structure and expression of the human haptoglobin locus. *EMBO J*, **4**, 119-26.
- Berbee JF, Havekes LM, Rensen PC (2005) Apolipoproteins modulate the inflammatory response to lipopolysaccharide. *J Endotoxin Res*, **11**, 97-103.
- Berkova N, Lemay A, Dresser DW, Fontaine JY, Kerizit J, Goupil S (2001) Haptoglobin is present in human endometrium and shows elevated levels in the decidua during pregnancy. *Mol Hum Reprod*, **7**, 747-54.
- Beutler B (2003) Innate immune responses to microbial poisons: discovery and function of the Toll-like receptors. *Annu Rev Pharmacol Toxicol*, **43**, 609-28.
- Beutler B, Hoebe K, Du X, Ulevitch RJ (2003) How we detect microbes and respond to them: the Toll-like receptors and their transducers. *J Leukoc Biol*, **74**, 479-85.
- Bhakdi S, Klonisch T, Nuber P, Fischer W (1991) Stimulation of monokine production by lipoteichoic acids. *Infect Immun*, **59**, 4614-20.
- Bhakdi S, Muhly M, Korom S, Hugo F (1989) Release of interleukin-1 beta associated with potent cytocidal action of staphylococcal alpha-toxin on human monocytes. *Infect Immun*, **57**, 3512-9.

- Bhakdi S, Tranum-Jensen J (1988) Damage to cell membranes by pore-forming bacterial cytolysins. *Prog Allergy*, **40**, 1-43.
- Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. *Annu Rev Immunol*, **17**, 189-220.
- Black S, Kushner I, Samols D (2004) C-reactive Protein. J Biol Chem, 279, 48487-90.
- Blanquet-Grossard F, Thielens NM, Vendrely C, Jamin M, Arlaud GJ (2005) Complement protein C1q recognizes a conformationally modified form of the prion protein. *Biochemistry*, **44**, 4349-56.
- Blum S, Asaf R, Guetta J, et al. (2007) Haptoglobin genotype determines myocardial infarct size in diabetic mice. *J Am Coll Cardiol*, **49**, 82-7.
- Bochner BS (2000) Systemic activation of basophils and eosinophils: markers and consequences. *J Allergy Clin Immunol*, **106**, S292-302.
- Bodey GP, Buckley M, Sathe YS, Freireich EJ (1966) Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia. *Ann Intern Med*, **64**, 328-40.
- Bogdan C, Thuring H, Dlaska M, Rollinghoff M, Weiss G (1997) Mechanism of suppression of macrophage nitric oxide release by IL-13: influence of the macrophage population. *J Immunol*, **159**, 4506-13.
- Boletta A, Germino GG (2003) Role of polycystins in renal tubulogenesis. *Trends Cell Biol*, **13**, 484-92.
- Borregaard N, Cowland JB (1997) Granules of the human neutrophilic polymorphonuclear leukocyte. *Blood*, **89**, 3503-21.
- Bos IG, Hack CE, Abrahams JP (2002) Structural and functional aspects of C1inhibitor. *Immunobiology*, **205**, 518-33.
- Bottino C, Castriconi R, Moretta L, Moretta A (2005) Cellular ligands of activating NK receptors. *Trends Immunol*, **26**, 221-6.
- Breiner KM, Schaller H (2000) Cellular receptor traffic is essential for productive duck hepatitis B virus infection. *J Virol*, **74**, 2203-9.
- Breiner KM, Urban S, Schaller H (1998) Carboxypeptidase D (gp180), a Golgi-resident protein, functions in the attachment and entry of avian hepatitis B viruses. *J Virol*, **72**, 8098-104.
- Brinkmann V, Reichard U, Goosmann C, et al. (2004) Neutrophil extracellular traps kill bacteria. *Science*, **303**, 1532-5.
- Brown GD (2006) Dectin-1: a signalling non-TLR pattern-recognition receptor. *Nat Rev Immunol*, **6**, 33-43.
- Bulet P, Stocklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. *Immunol Rev*, **198**, 169-84.
- Burton DR, Boyd J, Brampton AD, et al. (1980) The Clq receptor site on immunoglobulin G. *Nature*, **288**, 338-44.
- Cabeen MT, Jacobs-Wagner C (2005) Bacterial cell shape. Nat Rev Microbiol, 3, 601-10.

- Cai S, Dole VS, Bergmeier W, et al. (2005) A direct role for C1 inhibitor in regulation of leukocyte adhesion. *J Immunol*, **174**, 6462-6.
- Carlet J (2001) Immunological therapy in sepsis: currently available. *Intensive Care Med*, **27 Suppl 1**, S93-103.
- Carroll MC (2004) The complement system in regulation of adaptive immunity. *Nat Immunol*, **5**, 981-6.
- Carvalho MD, Tobias VE, Vendrame CM, Shimabukuro AF, Gidlund M, Quintao EC (2000) Lipoproteins modify the macrophage uptake of triacylglycerol emulsion and of zymosan particles by similar mechanisms. *Lipids*, **35**, 55-9.
- Chaplin DD (2006) 1. Overview of the human immune response. J Allergy Clin Immunol, 117, S430-5.
- Chen D, Giannopoulos K, Shiels PG, et al. (2004) Inhibition of intravascular thrombosis in murine endotoxemia by targeted expression of hirudin and tissue factor pathway inhibitor analogs to activated endothelium. *Blood*, **104**, 1344-9.
- Chiellini C, Santini F, Marsili A, et al. (2004) Serum haptoglobin: a novel marker of adiposity in humans. *J Clin Endocrinol Metab*, **89**, 2678-83.
- Chu ML, Tsuda T (2004) Fibulins in development and heritable disease. *Birth Defects Res C Embryo Today*, **72**, 25-36.
- Cordoba D, Fefferman C, Rodrigo JL (2004) Almost sharp fronts for the surface quasigeostrophic equation. *Proc Natl Acad Sci U S A*, **101**, 2687-91.
- Dale DC, Boxer L, Liles WC (2008) The phagocytes: neutrophils and monocytes. *Blood*, **112**, 935-45.
- Danforth JM, Strieter RM, Kunkel SL, Arenberg DA, VanOtteren GM, Standiford TJ (1995) Macrophage inflammatory protein-1 alpha expression *in vivo* and *in vitro*: the role of lipoteichoic acid. *Clin Immunol Immunopathol*, **74**, 77-83.
- De Kimpe SJ, Kengatharan M, Thiemermann C, Vane JR (1995) The cell wall components peptidoglycan and lipoteichoic acid from *Staphylococcus aureus* act in synergy to cause shock and multiple organ failure. *Proc Natl Acad Sci U S A*, 92, 10359-63.
- de Kleijn DP, Smeets MB, Kemmeren PP, et al. (2002) Acute-phase protein haptoglobin is a cell migration factor involved in arterial restructuring. *FASEB J*, **16**, 1123-5.
- de Vree WJ, Essers MC, Koster JF, Sluiter W (1997) Role of interleukin 1 and granulocyte colony-stimulating factor in photofrin-based photodynamic therapy of rat rhabdomyosarcoma tumors. *Cancer Res*, **57**, 2555-8.
- Debeer P, Schoenmakers EF, Twal WO, et al. (2002) The fibulin-1 gene (FBLN1) is disrupted in a t(12;22) associated with a complex type of synpolydactyly. *J Med Genet*, **39**, 98-104.
- Delanghe J, Langlois M, Duprez D, De Buyzere M, Clement D (1999) Haptoglobin polymorphism and peripheral arterial occlusive disease. *Atherosclerosis*, **145**, 287-92.
- Delanghe JR, Langlois MR (2002) Haptoglobin polymorphism and body iron stores. *Clin Chem Lab Med*, **40**, 212-6.

- Dempsey PW, Allison ME, Akkaraju S, Goodnow CC, Fearon DT (1996) C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. *Science*, **271**, 348-50.
- Desjardins M (2003) ER-mediated phagocytosis: a new membrane for new functions. *Nat Rev Immunol*, **3**, 280-91.
- Dodds AW, Ren XD, Willis AC, Law SK (1996) The reaction mechanism of the internal thioester in the human complement component C4. *Nature*, **379**, 177-9.
- Dommett R, Zilbauer M, George JT, Bajaj-Elliott M (2005) Innate immune defence in the human gastrointestinal tract. *Mol Immunol*, **42**, 903-12.
- Dragneva Y, Anuradha CD, Valeva A, Hoffmann A, Bhakdi S, Husmann M (2001) Subcytocidal attack by staphylococcal alpha-toxin activates NF-kappaB and induces interleukin-8 production. *Infect Immun*, **69**, 2630-5.
- Drain J, Bishop JR, Hajduk SL (2001) Haptoglobin-related protein mediates trypanosome lytic factor binding to trypanosomes. *J Biol Chem*, **276**, 30254-60.
- Drickamer K (1992) Engineering galactose-binding activity into a C-type mannosebinding protein. *Nature*, **360**, 183-6.
- Drickamer K, Taylor ME (1993) Biology of animal lectins. *Annu Rev Cell Biol*, **9**, 237-64.
- Dryla A, Gelbmann D, von Gabain A, Nagy E (2003) Identification of a novel iron regulated staphylococcal surface protein with haptoglobin-haemoglobin binding activity. *Mol Microbiol*, **49**, 37-53.
- Dryla A, Hoffmann B, Gelbmann D, et al. (2007) High-affinity binding of the staphylococcal HarA protein to haptoglobin and hemoglobin involves a domain with an antiparallel eight-stranded beta-barrel fold. *J Bacteriol*, **189**, 254-64.
- Du M, Fan X, Hong E, Chen JJ (2002) Interaction of oncogenic papillomavirus E6 proteins with fibulin-1. *Biochem Biophys Res Commun*, **296**, 962-9.
- Duncan AR, Winter G (1988) The binding site for C1q on IgG. Nature, 332, 738-40.
- Dunne DW, Resnick D, Greenberg J, Krieger M, Joiner KA (1994) The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid. *Proc Natl Acad Sci U S A*, **91**, 1863-7.
- Eaton JW, Brandt P, Mahoney JR, Lee JT, Jr. (1982) Haptoglobin: a natural bacteriostat. *Science*, **215**, 691-3.
- Edds EM, Bergamini TM, Brittian KR (2000) Bacterial components inhibit fibroblast proliferation *in vitro*. ASAIO J, **46**, 33-7.
- Elgavish A (2000) NF-kappaB activation mediates the response of a subpopulation of basal uroepithelial cells to a cell wall component of *Enterococcus faecalis*. J Cell Physiol, **182**, 232-8.
- Emonts M, de Jongh CE, Houwing-Duistermaat JJ, et al. (2007) Association between nasal carriage of *Staphylococcus aureus* and the human complement cascade activator serine protease C1 inhibitor (C1INH) valine vs. methionine polymorphism at amino acid position 480. *FEMS Immunol Med Microbiol*, **50**, 330-2.

- England JM, Bain BJ (1976) Total and differential leucocyte count. *Br J Haematol*, **33**, 1-7.
- Engstrom G, Stavenow L, Hedblad B, et al. (2003) Inflammation-sensitive plasma proteins, diabetes, and mortality and incidence of myocardial infarction and stroke: a population-based study. *Diabetes*, **52**, 442-7.
- Fabriek BO, van Bruggen R, Deng DM, et al. (2009) The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria. *Blood*, **113**, 887-92.
- Farries TC, Lachmann PJ, Harrison RA (1988) Analysis of the interaction between properdin and factor B, components of the alternative-pathway C3 convertase of complement. *Biochem J*, **253**, 667-75.
- Fearon DT (1978) Regulation by membrane sialic acid of beta1H-dependent decaydissociation of amplification C3 convertase of the alternative complement pathway. *Proc Natl Acad Sci U S A*, **75**, 1971-5.
- Fearon DT, Austen KF (1975) Properdin: initiation of alternative complement pathway. *Proc Natl Acad Sci U S A*, **72**, 3220-4.
- Fedarko NS, Fohr B, Robey PG, Young MF, Fisher LW (2000) Factor H binding to bone sialoprotein and osteopontin enables tumor cell evasion of complement-mediated attack. *J Biol Chem*, **275**, 16666-72.
- Fedarko NS, Jain A, Karadag A, Van Eman MR, Fisher LW (2001) Elevated serum bone sialoprotein and osteopontin in colon, breast, prostate, and lung cancer. *Clin Cancer Res*, **7**, 4060-6.
- Feingold KR, Funk JL, Moser AH, Shigenaga JK, Rapp JH, Grunfeld C (1995) Role for circulating lipoproteins in protection from endotoxin toxicity. *Infect Immun*, 63, 2041-6.
- Fischer W (1994) Lipoteichoic acid and lipids in the membrane of *Staphylococcus* aureus. Med Microbiol Immunol, **183**, 61-76.
- Florio G, Petraroli A, Patella V, Triggiani M, Marone G (2000) The immunoglobulin superantigen-binding site of HIV-1 gp120 activates human basophils. *AIDS*, **14**, 931-8.
- Fogg DK, Sibon C, Miled C, et al. (2006) A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. *Science*, **311**, 83-7.
- Fonteneau JF, Gilliet M, Larsson M, et al. (2003) Activation of influenza virus-specific CD4+ and CD8+ T cells: a new role for plasmacytoid dendritic cells in adaptive immunity. *Blood*, **101**, 3520-6.
- Forti S, Scanlan MJ, Invernizzi A, et al. (2002) Identification of breast cancer-restricted antigens by antibody screening of SKBR3 cDNA library using a preselected patient's serum. *Breast Cancer Res Treat*, **73**, 245-56.
- Foster TJ (2005) Immune evasion by staphylococci. Nat Rev Microbiol, 3, 948-58.
- Fuhrman B, Volkova N, Aviram M (2002) Oxidative stress increases the expression of the CD36 scavenger receptor and the cellular uptake of oxidized low-density lipoprotein in macrophages from atherosclerotic mice: protective role of antioxidants and of paraoxonase. *Atherosclerosis*, **161**, 307-16.

- Fujita T, Matsushita M, Endo Y (2004) The lectin-complement pathway--its role in innate immunity and evolution. *Immunol Rev*, **198**, 185-202.
- Fujita Y, Chikamitsu M, Kimura M, Toriumi T, Endoh S, Sari A (2001) An anaphylactic reaction possibly associated with an intraoperative coronary artery spasm during general anesthesia. *J Clin Anesth*, **13**, 221-6.
- Furukawa M, He YJ, Borchers C, Xiong Y (2003) Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. *Nat Cell Biol*, **5**, 1001-7.
- Gabow PA (1993) Autosomal dominant polycystic kidney disease. *Am J Kidney Dis*, **22**, 511-2.
- Galli SJ, Nakae S, Tsai M (2005) Mast cells in the development of adaptive immune responses. *Nat Immunol*, **6**, 135-42.
- Gao JJ, Xue Q, Zuvanich EG, Haghi KR, Morrison DC (2001) Commercial preparations of lipoteichoic acid contain endotoxin that contributes to activation of mouse macrophages *in vitro*. *Infect Immun*, **69**, 751-7.
- Gary-Gouy H, Lebon P, Dalloul AH (2002) Type I interferon production by plasmacytoid dendritic cells and monocytes is triggered by viruses, but the level of production is controlled by distinct cytokines. *J Interferon Cytokine Res*, **22**, 653-9.
- Gast MC, van Tinteren H, Bontenbal M, et al. (2008) Haptoglobin phenotype is not a predictor of recurrence free survival in high-risk primary breast cancer patients. *BMC Cancer*, **8**, 389.
- Gazzinelli RT (1996) Molecular and cellular basis of interleukin 12 activity in prophylaxis and therapy against infectious diseases. *Mol Med Today*, **2**, 258-67.
- Gburek J, Osada J (2000) Hemoglobin binding sites on renal brush-border membranes. *Biochimie*, **82**, 1135-42.
- Gburek J, Verroust PJ, Willnow TE, et al. (2002) Megalin and cubilin are endocytic receptors involved in renal clearance of hemoglobin. *J Am Soc Nephrol*, **13**, 423-30.
- Geske FJ, Monks J, Lehman L, Fadok VA (2002) The role of the macrophage in apoptosis: hunter, gatherer, and regulator. *Int J Hematol*, **76**, 16-26.
- Ghuysen JM, Tipper DJ, Strominger JL (1965) Structure of the Cell Wall of Staphylococcus Aureus, Strain Copenhagen. Iv. The Teichoic Acid-Glycopeptide Complex. Biochemistry, 4, 474-85.
- Ginsburg I (1987) Cationic polyelectrolytes: a new look at their possible roles as opsonins, as stimulators of respiratory burst in leukocytes, in bacteriolysis, and as modulators of immune-complex diseases (a review hypothesis). *Inflammation*, **11**, 489-515.
- Ginsburg I (1998) Tissue injury in neutrophilic inflammation. Inflamm Res, 47, 237-8.
- Ginsburg I (1999) "Cross-talk" among a multiplicity of pro-inflammatory agents: main cause of tissue damage in pulmonary inflammation? *Eur Respir J*, **14**, 481-2.
- Ginsburg I (2001) Hypothesis: is a failure to prevent bacteriolysis and the synergy among microbial and host-derived pro-inflammatory agonists the main

contributory factors to the pathogenesis of post-infectious sequelae? *Inflammation*, **25**, 1-6.

- Ginsburg I (2002) Role of lipoteichoic acid in infection and inflammation. *Lancet Infect Dis*, **2**, 171-9.
- Ginsburg I, Fligiel SE, Ward PA, Varani J (1988) Lipoteichoic acid-antilipoteichoic acid complexes induce superoxide generation by human neutrophils. *Inflammation*, **12**, 525-48.
- Ginsburg I, Kohen R (1995) Cell damage in inflammatory and infectious sites might involve a coordinated "cross-talk" among oxidants, microbial haemolysins and ampiphiles, cationic proteins, phospholipases, fatty acids, proteinases and cytokines (an overview). *Free Radic Res*, **22**, 489-517.
- Ginsburg I, Quie PG (1980) Modulation of human polymorphonuclear leukocyte chemotaxis by leukocyte extracts, bacterial products, inflammatory exudates, and polyelectrolytes. *Inflammation*, **4**, 301-11.
- Glauser MP (2000) Pathophysiologic basis of sepsis: considerations for future strategies of intervention. *Crit Care Med*, **28**, S4-8.
- Godlewska R, Wisniewska K, Pietras Z, Jagusztyn-Krynicka EK (2009) Peptidoglycanassociated lipoprotein (Pal) of Gram-negative bacteria: function, structure, role in pathogenesis and potential application in immunoprophylaxis. *FEMS Microbiol Lett*, **298**, 1-11.
- Gordon S (2002) Pattern recognition receptors: doubling up for the innate immune response. *Cell*, **111**, 927-30.
- Gordon S, Cleve H, Bearn AG (1968) An improved method of preparing haptoglobin polypeptide chains using guanidine hydrochloride. *Proc Soc Exp Biol Med*, **127**, 52-9.
- Gotz P, Weise C, Kopacek P, Losen S, Wiesner A (1997) Isolated Apolipophorin III from *Galleria mellonella* Stimulates the Immune Reactions of This Insect. J Insect Physiol, **43**, 383-391.
- Grantham JJ (1996) The etiology, pathogenesis, and treatment of autosomal dominant polycystic kidney disease: recent advances. *Am J Kidney Dis*, **28**, 788-803.
- Graversen JH, Madsen M, Moestrup SK (2002) CD163: a signal receptor scavenging haptoglobin-hemoglobin complexes from plasma. *Int J Biochem Cell Biol*, **34**, 309-14.
- Greenberg S, Grinstein S (2002) Phagocytosis and innate immunity. Curr Opin Immunol, 14, 136-45.
- Gresham HD, Lowrance JH, Caver TE, Wilson BS, Cheung AL, Lindberg FP (2000) Survival of *Staphylococcus aureus* inside neutrophils contributes to infection. *J Immunol*, **164**, 3713-22.
- Gruys E, Toussaint MJ, Niewold TA, Koopmans SJ (2005) Acute phase reaction and acute phase proteins. *J Zhejiang Univ Sci B*, **6**, 1045-56.
- Gudmundsson GH, Agerberth B (1999) Neutrophil antibacterial peptides, multifunctional effector molecules in the mammalian immune system. J Immunol Methods, 232, 45-54.

- Gupta G, Surolia A (2007) Collectins: sentinels of innate immunity. *Bioessays*, **29**, 452-64.
- Haig DM, McMenamin C, Redmond J, et al. (1988) Rat IL-3 stimulates the growth of rat mucosal mast cells in culture. *Immunology*, **65**, 205-11.
- Hajduk SL, Moore DR, Vasudevacharya J, et al. (1989) Lysis of *Trypanosoma brucei* by a toxic subspecies of human high density lipoprotein. *J Biol Chem*, **264**, 5210-7.
- Halwani A, Dunphy G (1997) Haemolymph proteins of larvae of *Galleria mellonella* detoxify endotoxins of the insect pathogenic bacteria *Xenorhabdus nematophilus* (Enterobacteriaceae). *J Insect Physiol*, **43**, 1023-1029.
- Halwani AE, Dunphy GB (1999) Apolipophorin-III in *Galleria mellonella* potentiates hemolymph lytic activity. *Dev Comp Immunol*, **23**, 563-70.
- Halwani AE, Niven DF, Dunphy GB (2000) Apolipophorin-III and the interactions of lipoteichoic acids with the immediate immune responses of *Galleria mellonella*. *J Invertebr Pathol*, **76**, 233-41.
- Harrop PJ, O'Grady RL, Knox KW, Wicken AJ (1980) Stimulation of lysosomal enzyme release from macrophages by lipoteichoic acid. *J Periodontal Res*, **15**, 492-501.
- Hattar K, Grandel U, Moeller A, et al. (2006) Lipoteichoic acid (LTA) from *Staphylococcus aureus* stimulates human neutrophil cytokine release by a CD14-dependent, Toll-like-receptor-independent mechanism: Autocrine role of tumor necrosis factor-[alpha] in mediating LTA-induced interleukin-8 generation. *Crit Care Med*, **34**, 835-41.
- Hayek T, Oiknine J, Dankner G, Brook JG, Aviram M (1995) HDL apolipoprotein A-I attenuates oxidative modification of low density lipoprotein: studies in transgenic mice. *Eur J Clin Chem Clin Biochem*, **33**, 721-5.
- Heer C, Stuertz K, Reinert RR, Mader M, Nau R (2000) Release of teichoic and lipoteichoic acids from 30 different strains of *Streptococcus pneumoniae* during exposure to ceftriaxone, meropenem, quinupristin/dalfopristin, rifampicin and trovafloxacin. *Infection*, 28, 13-20.
- Heinrich PC, Horn F, Graeve L, et al. (1998) Interleukin-6 and related cytokines: effect on the acute phase reaction. *Z Ernahrungswiss*, **37 Suppl 1**, 43-9.
- Hellstern S, Sasaki T, Fauser C, Lustig A, Timpl R, Engel J (2002) Functional studies on recombinant domains of Mac-2-binding protein. *J Biol Chem*, **277**, 15690-6.
- Hoang T (2004) The origin of hematopoietic cell type diversity. *Oncogene*, **23**, 7188-98.
- Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA (1999) Phylogenetic perspectives in innate immunity. *Science*, **284**, 1313-8.
- Hogg N, Leitinger B (2001) Shape and shift changes related to the function of leukocyte integrins LFA-1 and Mac-1. *J Leukoc Biol*, **69**, 893-8.
- Holms WH (1968) Viable counts of bacteria--a new method for facultative anaerobes. J Gen Microbiol, **54**, 255-60.

- Hooper LV (2009) Do symbiotic bacteria subvert host immunity? *Nat Rev Microbiol*, **7**, 367-74.
- Horie S, Ishii H, Kazama M (1990) Heparin-like glycosaminoglycan is a receptor for antithrombin III-dependent but not for thrombin-dependent prostacyclin production in human endothelial cells. *Thromb Res*, **59**, 895-904.
- Horne D, Tomasz A (1979) Release of lipoteichoic acid from *Streptococcus sanguis*: stimulation of release during penicillin treatment. *J Bacteriol*, **137**, 1180-4.
- Hummelshoj T, Munthe-Fog L, Madsen HO, Fujita T, Matsushita M, Garred P (2005) Polymorphisms in the FCN2 gene determine serum variation and function of Ficolin-2. *Hum Mol Genet*, 14, 1651-8.
- Huntoon KM, Wang Y, Eppolito CA, et al. (2008) The acute phase protein haptoglobin regulates host immunity. *J Leukoc Biol*, **84**, 170-81.
- Iacobelli S, Scambia G, Natoli C, et al. (1988) Recombinant human leukocyte interferon-alpha 2b stimulates the synthesis and release of a 90K tumor-associated antigen in human breast cancer cells. *Int J Cancer*, **42**, 182-4.
- Igarashi P, Somlo S (2002) Genetics and pathogenesis of polycystic kidney disease. J Am Soc Nephrol, 13, 2384-98.
- Inohara H, Raz A (1994) Identification of human melanoma cellular and secreted ligands for galectin-3. *Biochem Biophys Res Commun*, **201**, 1366-75.
- Ishikawa T, Kuroki K, Lenhoff R, Summers J, Ganem D (1994) Analysis of the binding of a host cell surface glycoprotein to the preS protein of duck hepatitis B virus. *Virology*, **202**, 1061-4.
- Janeway CA, Jr., Medzhitov R (2002) Innate immune recognition. *Annu Rev Immunol*, **20**, 197-216.
- Jensen ML, Honore C, Hummelshoj T, Hansen BE, Madsen HO, Garred P (2007) Ficolin-2 recognizes DNA and participates in the clearance of dying host cells. *Mol Immunol*, **44**, 856-65.
- Jin Y, Dons L, Kristensson K, Rottenberg ME (2001) Neural route of cerebral Listeria monocytogenes murine infection: role of immune response mechanisms in controlling bacterial neuroinvasion. *Infect Immun*, **69**, 1093-100.
- Kadowaki N, Antonenko S, Lau JY, Liu YJ (2000) Natural interferon alpha/betaproducing cells link innate and adaptive immunity. *J Exp Med*, **192**, 219-26.
- Kaplan AP, Joseph K, Silverberg M (2002) Pathways for bradykinin formation and inflammatory disease. *J Allergy Clin Immunol*, **109**, 195-209.
- Kashimura M, Fujita T (1987) A scanning electron microscopy study of human spleen: relationship between the microcirculation and functions. *Scanning Microsc*, **1**, 841-51.
- Kashiwakura J, Yokoi H, Saito H, Okayama Y (2004) T cell proliferation by direct cross-talk between OX40 ligand on human mast cells and OX40 on human T cells: comparison of gene expression profiles between human tonsillar and lungcultured mast cells. *J Immunol*, **173**, 5247-57.
- Kato Y, Motoi Y, Taniai K, et al. (1994) Lipopolysaccharide-lipophorin complex formation in insect hemolymph: a common pathway of lipopolysaccharide

detoxification both in insects and in mammals. *Insect Biochem Mol Biol*, 24, 547-55.

- Kawai T, Akira S (2006) Innate immune recognition of viral infection. *Nat Immunol*, **7**, 131-7.
- Kay AB (2005) The role of eosinophils in the pathogenesis of asthma. *Trends Mol Med*, **11**, 148-52.
- Kengatharan KM, De Kimpe S, Robson C, Foster SJ, Thiemermann C (1998) Mechanism of gram-positive shock: identification of peptidoglycan and lipoteichoic acid moieties essential in the induction of nitric oxide synthase, shock, and multiple organ failure. *J Exp Med*, **188**, 305-15.
- Kilpatrick DC, Fujita T, Matsushita M (1999) P35, an opsonic lectin of the ficolin family, in human blood from neonates, normal adults, and recurrent miscarriage patients. *Immunol Lett*, **67**, 109-12.
- Kino K, Tsunoo H, Higa Y, Takami M, Nakajima H (1982) Kinetic aspects of hemoglobin.haptoglobin-receptor interaction in rat liver plasma membranes, isolated liver cells, and liver cells in primary culture. J Biol Chem, 257, 4828-33.
- Klion AD, Nutman TB (2004) The role of eosinophils in host defense against helminth parasites. *J Allergy Clin Immunol*, **113**, 30-7.
- Knoblich JA, Sauer K, Jones L, Richardson H, Saint R, Lehner CF (1994) Cyclin E controls S phase progression and its down-regulation during Drosophila embryogenesis is required for the arrest of cell proliferation. *Cell*, **77**, 107-20.
- Kobayashi T, Miura T, Haba T, et al. (2000) An essential role of mast cells in the development of airway hyperresponsiveness in a murine asthma model. J Immunol, 164, 3855-61.
- Komori HK, Meehan TF, Havran WL (2006) Epithelial and mucosal gamma delta T cells. *Curr Opin Immunol*, **18**, 534-8.
- Korkmaz B, Moreau T, Gauthier F (2008) Neutrophil elastase, proteinase 3 and cathepsin G: physicochemical properties, activity and physiopathological functions. *Biochimie*, **90**, 227-42.
- Kostka G, Giltay R, Bloch W, et al. (2001) Perinatal lethality and endothelial cell abnormalities in several vessel compartments of fibulin-1-deficient mice. *Mol Cell Biol*, **21**, 7025-34.
- Koths K, Taylor E, Halenbeck R, Casipit C, Wang A (1993) Cloning and characterization of a human Mac-2-binding protein, a new member of the superfamily defined by the macrophage scavenger receptor cysteine-rich domain. *J Biol Chem*, **268**, 14245-9.
- Krarup A, Sorensen UB, Matsushita M, Jensenius JC, Thiel S (2005) Effect of capsulation of opportunistic pathogenic bacteria on binding of the pattern recognition molecules mannan-binding lectin, L-ficolin, and H-ficolin. *Infect Immun*, 73, 1052-60.
- Krarup A, Thiel S, Hansen A, Fujita T, Jensenius JC (2004) L-ficolin is a pattern recognition molecule specific for acetyl groups. *J Biol Chem*, **279**, 47513-9.
- Kristiansen M, Graversen JH, Jacobsen C, et al. (2001) Identification of the haemoglobin scavenger receptor. *Nature*, **409**, 198-201.

- Kubica M, Guzik K, Koziel J, et al. (2008) A potential new pathway for *Staphylococcus aureus* dissemination: the silent survival of *S. aureus* phagocytosed by human monocyte-derived macrophages. *PLoS One*, **3**, e1409.
- Kume M, Hayashi T, Yuasa H, et al. (2003) Bacterial lipopolysaccharide decreases thrombomodulin expression in the sinusoidal endothelial cells of rats -- a possible mechanism of intrasinusoidal microthrombus formation and liver dysfunction. *J Hepatol*, **38**, 9-17.
- Kunkel EJ, Butcher EC (2003) Plasma-cell homing. Nat Rev Immunol, 3, 822-9.
- Kuraya M, Ming Z, Liu X, Matsushita M, Fujita T (2005) Specific binding of L-ficolin and H-ficolin to apoptotic cells leads to complement activation. *Immunobiology*, 209, 689-97.
- Kuroki K, Cheung R, Marion PL, Ganem D (1994) A cell surface protein that binds avian hepatitis B virus particles. *J Virol*, **68**, 2091-6.
- Kuroki K, Eng F, Ishikawa T, Turck C, Harada F, Ganem D (1995) gp180, a host cell glycoprotein that binds duck hepatitis B virus particles, is encoded by a member of the carboxypeptidase gene family. *J Biol Chem*, **270**, 15022-8.
- Kushner I (1993) Regulation of the acute phase response by cytokines. *Perspect Biol Med*, **36**, 611-22.
- Labischinski H, Ehlert K, Wieland B (1998) Novel anti-staphylococcal targets and compounds. *Expert Opin Investig Drugs*, **7**, 1245-56.
- Langlois MR, Delanghe JR (1996) Biological and clinical significance of haptoglobin polymorphism in humans. *Clin Chem*, **42**, 1589-600.
- Laskowitz DT, Lee DM, Schmechel D, Staats HF (2000) Altered immune responses in apolipoprotein E-deficient mice. *J Lipid Res*, **41**, 613-20.
- Layton JE (1992) Granulocyte colony-stimulating factor: structure, function and physiology. *Growth Factors*, **6**, 179-86.
- Lee JC, Park JS, Shepherd SE, Carey V, Fattom A (1997) Protective efficacy of antibodies to the *Staphylococcus aureus* type 5 capsular polysaccharide in a modified model of endocarditis in rats. *Infect Immun*, **65**, 4146-51.
- Lee SJ, Gonzalez-Aseguinolaza G, Nussenzweig MC (2002) Disseminated candidiasis and hepatic malarial infection in mannose-binding-lectin-A-deficient mice. *Mol Cell Biol*, **22**, 8199-203.
- Leonarduzzi G, Gamba P, Sottero B, et al. (2005) Oxysterol-induced up-regulation of MCP-1 expression and synthesis in macrophage cells. *Free Radic Biol Med*, **39**, 1152-61.
- Levitz SM, Tabuni A, Treseler C (1993) Effect of mannose-binding protein on binding of *Cryptococcus neoformans* to human phagocytes. *Infect Immun*, **61**, 4891-3.
- Levy AP (2004) Haptoglobin: a major susceptibility gene for diabetic cardiovascular disease. *Isr Med Assoc J*, **6**, 308-10.
- Lewis BJ, Croker S, Newton DJ, Lennon GP, Johnson PM, Christmas SE (2002) Natural killer cell receptor expression by human first trimester decidual granular leukocytes and T-lymphocytes. *Am J Reprod Immunol*, **48**, 103-9.

- Ley K (2002) Integration of inflammatory signals by rolling neutrophils. *Immunol Rev*, **186**, 8-18.
- Liu Y, Endo Y, Iwaki D, et al. (2005) Human M-ficolin is a secretory protein that activates the lectin complement pathway. *J Immunol*, **175**, 3150-6.
- Liu Y, Shaw SK, Ma S, Yang L, Luscinskas FW, Parkos CA (2004) Regulation of leukocyte transmigration: cell surface interactions and signaling events. J Immunol, 172, 7-13.
- Llamas MA, Rodriguez-Herva JJ, Hancock RE, Bitter W, Tommassen J, Ramos JL (2003) Role of *Pseudomonas putida* tol-oprL gene products in uptake of solutes through the cytoplasmic membrane. *J Bacteriol*, **185**, 4707-16.
- Longo G, Natoli C, Rafanelli D, et al. (1993) Prognostic value of a novel circulating serum 90K antigen in HIV-infected haemophilia patients. *Br J Haematol*, **85**, 207-9.
- Loos M, Storz R, Muller W, Lemmel EM (1981) Immunofluorescence studies on the subcomponents of the first component of complement (C1): detection of C1q and C1s in different cells of biopsy material and on human as well as on guinea pig peritoneal macrophages. *Immunobiology*, **158**, 213-24.
- Lopes MF, Freire-de-Lima CG, DosReis GA (2000) The macrophage haunted by cell ghosts: a pathogen grows. *Immunol Today*, **21**, 489-94.
- Lotz S, Aga E, Wilde I, et al. (2004) Highly purified lipoteichoic acid activates neutrophil granulocytes and delays their spontaneous apoptosis via CD14 and TLR2. *J Leukoc Biol*, **75**, 467-77.
- Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med, 339, 520-32.
- Lu J, Teh C, Kishore U, Reid KB (2002) Collectins and ficolins: sugar pattern recognition molecules of the mammalian innate immune system. *Biochim Biophys Acta*, **1572**, 387-400.
- Lu L, Ma Y, Zhang JR (2006) *Streptococcus pneumoniae* recruits complement factor H through the amino terminus of CbpA. *J Biol Chem*, **281**, 15464-74.
- Luong TT, Lee CY (2002) Overproduction of type 8 capsular polysaccharide augments *Staphylococcus aureus* virulence. *Infect Immun*, **70**, 3389-95.
- Lynch NJ, Roscher S, Hartung T, et al. (2004) L-ficolin specifically binds to lipoteichoic acid, a cell wall constituent of Gram-positive bacteria, and activates the lectin pathway of complement. *J Immunol*, **172**, 1198-202.
- Mackness MI, Abbott C, Arrol S, Durrington PN (1993a) The role of high-density lipoprotein and lipid-soluble antioxidant vitamins in inhibiting low-density lipoprotein oxidation. *Biochem J*, **294** (**Pt 3**), 829-34.
- Mackness MI, Arrol S, Abbott C, Durrington PN (1993b) Protection of low-density lipoprotein against oxidative modification by high-density lipoprotein associated paraoxonase. *Atherosclerosis*, **104**, 129-35.
- Mackness MI, Arrol S, Durrington PN (1991) Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. *FEBS Lett*, **286**, 152-4.
- Mackness MI, Durrington PN (1995) HDL, its enzymes and its potential to influence lipid peroxidation. *Atherosclerosis*, **115**, 243-53.

- Maeda N (1985) Nucleotide sequence of the haptoglobin and haptoglobin-related gene pair. The haptoglobin-related gene contains a retrovirus-like element. *J Biol Chem*, **260**, 6698-709.
- Makino DL, Henschen-Edman AH, McPherson A (2005) Four crystal forms of a Bence-Jones protein. *Acta Crystallogr Sect F Struct Biol Cryst Commun*, **61**, 79-82.
- Malech HL, Nauseef WM (1997) Primary inherited defects in neutrophil function: etiology and treatment. *Semin Hematol*, **34**, 279-90.
- Manfredi AA, Rovere-Querini P, Bottazzi B, Garlanda C, Mantovani A (2008) Pentraxins, humoral innate immunity and tissue injury. *Curr Opin Immunol*, **20**, 538-44.
- Mangan DF, Mergenhagen SE, Wahl SM (1993) Apoptosis in human monocytes: possible role in chronic inflammatory diseases. *J Periodontol*, **64**, 461-6.
- Mangan DF, Robertson B, Wahl SM (1992) IL-4 enhances programmed cell death (apoptosis) in stimulated human monocytes. *J Immunol*, **148**, 1812-6.
- Mantovani A, Dejana E (1989) Cytokines as communication signals between leukocytes and endothelial cells. *Immunol Today*, **10**, 370-5.
- Mantovani A, Sica A, Allavena P, Garlanda C, Locati M (2009) Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. *Hum Immunol*, **70**, 325-30.
- Marone G, Florio G, Petraroli A, Triggiani M, de Paulis A (2001) Human mast cells and basophils in HIV-1 infection. *Trends Immunol*, **22**, 229-32.
- Martin TR, Takeishi T, Katz HR, Austen KF, Drazen JM, Galli SJ (1993) Mast cell activation enhances airway responsiveness to methacholine in the mouse. *J Clin Invest*, **91**, 1176-82.
- Matsushita M, Kuraya M, Hamasaki N, Tsujimura M, Shiraki H, Fujita T (2002) Activation of the lectin complement pathway by H-ficolin (Hakata antigen). J Immunol, 168, 3502-6.
- Matsushita M, Thiel S, Jensenius JC, Terai I, Fujita T (2000) Proteolytic activities of two types of mannose-binding lectin-associated serine protease. *J Immunol*, **165**, 2637-42.
- Maus UA, Wellmann S, Hampl C, et al. (2005) CCR2-positive monocytes recruited to inflamed lungs downregulate local CCL2 chemokine levels. *Am J Physiol Lung Cell Mol Physiol*, **288**, L350-8.
- McGwire GB, Tan F, Michel B, Rehli M, Skidgel RA (1997) Identification of a membrane-bound carboxypeptidase as the mammalian homolog of duck gp180, a hepatitis B virus-binding protein. *Life Sci*, **60**, 715-24.
- McKenna K, Beignon AS, Bhardwaj N (2005) Plasmacytoid dendritic cells: linking innate and adaptive immunity. *J Virol*, **79**, 17-27.
- Medzhitov R, Janeway C, Jr. (2000) Innate immunity. N Engl J Med, 343, 338-44.
- Medzhitov R, Janeway CA, Jr. (1997) Innate immunity: impact on the adaptive immune response. *Curr Opin Immunol*, **9**, 4-9.

- Metz M, Grimbaldeston MA, Nakae S, Piliponsky AM, Tsai M, Galli SJ (2007) Mast cells in the promotion and limitation of chronic inflammation. *Immunol Rev*, 217, 304-28.
- Meylan E, Tschopp J, Karin M (2006) Intracellular pattern recognition receptors in the host response. *Nature*, **442**, 39-44.
- Mitchell DA, Kirby L, Paulin SM, Villiers CL, Sim RB (2007) Prion protein activates and fixes complement directly via the classical pathway: implications for the mechanism of scrapie agent propagation in lymphoid tissue. *Mol Immunol*, **44**, 2997-3004.
- Mochizuki T, Wu G, Hayashi T, et al. (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. *Science*, **272**, 1339-42.
- Modun B, Williams P (1999) The staphylococcal transferrin-binding protein is a cell wall glyceraldehyde-3-phosphate dehydrogenase. *Infect Immun*, **67**, 1086-92.
- Moestrup SK, Moller HJ (2004) CD163: a regulated hemoglobin scavenger receptor with a role in the anti-inflammatory response. *Ann Med*, **36**, 347-54.
- Molkanen T, Tyynela J, Helin J, Kalkkinen N, Kuusela P (2002) Enhanced activation of bound plasminogen on *Staphylococcus aureus* by staphylokinase. *FEBS Lett*, 517, 72-8.
- Montell C, Birnbaumer L, Flockerzi V (2002) The TRP channels, a remarkably functional family. *Cell*, **108**, 595-8.
- Morath S, Geyer A, Hartung T (2001) Structure-function relationship of cytokine induction by lipoteichoic acid from *Staphylococcus aureus*. J Exp Med, **193**, 393-7.
- Morath S, Geyer A, Spreitzer I, Hermann C, Hartung T (2002) Structural decomposition and heterogeneity of commercial lipoteichoic Acid preparations. *Infect Immun*, **70**, 938-44.
- Moretta A (2002) Natural killer cells and dendritic cells: rendezvous in abused tissues. *Nat Rev Immunol*, **2**, 957-64.
- Moshage HJ, Roelofs HM, van Pelt JF, et al. (1988) The effect of interleukin-1, interleukin-6 and its interrelationship on the synthesis of serum amyloid A and C-reactive protein in primary cultures of adult human hepatocytes. *Biochem Biophys Res Commun*, **155**, 112-7.
- Mosmann TR, Sad S (1996) The expanding universe of T-cell subsets: Th1, Th2 and more. *Immunol Today*, **17**, 138-46.
- Muller-Eberhard HJ (1985) Transmembrane channel-formation by five complement proteins. *Biochem Soc Symp*, **50**, 235-46.
- Muller-Eberhard HJ (1988) Molecular organization and function of the complement system. *Annu Rev Biochem*, **57**, 321-47.
- Muller SA, Sasaki T, Bork P, et al. (1999) Domain organization of Mac-2 binding protein and its oligomerization to linear and ring-like structures. *J Mol Biol*, **291**, 801-13.

- Nagata M, Shijubo N, Walls AF, Ichimiya S, Abe S, Sato N (2003) Chymase-positive mast cells in small sized adenocarcinoma of the lung. *Virchows Arch*, **443**, 565-73.
- Naito M (2008) Macrophage differentiation and function in health and disease. *Pathol Int*, **58**, 143-55.
- Naito M, Nagai H, Kawano S, et al. (1996) Liposome-encapsulated dichloromethylene diphosphonate induces macrophage apoptosis *in vivo* and *in vitro*. *J Leukoc Biol*, **60**, 337-44.
- Nakano T, Sonoda T, Hayashi C, et al. (1985) Fate of bone marrow-derived cultured mast cells after intracutaneous, intraperitoneal, and intravenous transfer into genetically mast cell-deficient W/Wv mice. Evidence that cultured mast cells can give rise to both connective tissue type and mucosal mast cells. *J Exp Med*, **162**, 1025-43.
- Nauseef WM (2007) How human neutrophils kill and degrade microbes: an integrated view. *Immunol Rev*, **219**, 88-102.
- Navab M, Hama SY, Nguyen TB, Fogelman AM (1994) Monocyte adhesion and transmigration in atherosclerosis. *Coron Artery Dis*, **5**, 198-204.
- Neth O, Jack DL, Dodds AW, Holzel H, Klein NJ, Turner MW (2000) Mannosebinding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. *Infect Immun*, **68**, 688-93.
- Neuhaus FC, Baddiley J (2003) A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. *Microbiol Mol Biol Rev*, **67**, 686-723.
- Ng PM, Le Saux A, Lee CM, et al. (2007) C-reactive protein collaborates with plasma lectins to boost immune response against bacteria. *EMBO J*, **26**, 3431-40.
- Nielsen MJ, Petersen SV, Jacobsen C, et al. (2006) Haptoglobin-related protein is a high-affinity hemoglobin-binding plasma protein. *Blood*, **108**, 2846-9.
- Nielsen MJ, Petersen SV, Jacobsen C, et al. (2007) A unique loop extension in the serine protease domain of haptoglobin is essential for CD163 recognition of the haptoglobin-hemoglobin complex. *J Biol Chem*, **282**, 1072-9.
- Nilsson IM, Lee JC, Bremell T, Ryden C, Tarkowski A (1997) The role of staphylococcal polysaccharide microcapsule expression in septicemia and septic arthritis. *Infect Immun*, **65**, 4216-21.
- Nilsson UR, Mueller-Eberhard HJ (1965) Isolation of Beta If-Globulin from Human Serum and Its Characterization as the Fifth Component of Complement. *J Exp Med*, **122**, 277-98.
- Niyonsaba F, Iwabuchi K, Someya A, et al. (2002) A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. *Immunology*, **106**, 20-6.
- Nogueira-Martins MF, Mariano M (2009) B-1 cell participation in T-cell-mediated alloimmune response. *Immunobiology*.
- O'Riordan K, Lee JC (2004) *Staphylococcus aureus* capsular polysaccharides. *Clin Microbiol Rev*, **17**, 218-34.

- Oh SK, Kim SH, Walker JE (1990) Interference with immune response at the level of generating effector cells by tumor-associated haptoglobin. *J Natl Cancer Inst*, **82**, 934-40.
- Ohtsubo M, Theodoras AM, Schumacher J, Roberts JM, Pagano M (1995) Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. *Mol Cell Biol*, **15**, 2612-24.
- Okajima K, Uchiba M (1998) The anti-inflammatory properties of antithrombin III: new therapeutic implications. *Semin Thromb Hemost*, **24**, 27-32.
- Okazaki T, Nagai T (1997) Difference in hemoglobin-binding ability of polymers among haptoglobin phenotypes. *Clin Chem*, **43**, 2012-3.
- Okazaki T, Yanagisawa Y, Nagai T (1997) Analysis of the affinity of each haptoglobin polymer for hemoglobin by two-dimensional affinity electrophoresis. *Clin Chim Acta*, **258**, 137-44.
- Onogawa T (2002) Staphylococcal alpha-toxin synergistically enhances inflammation caused by bacterial components. *FEMS Immunol Med Microbiol*, **33**, 15-21.
- Orfanakis NG, Ostlund RE, Bishop CR, Athens JW (1970) Normal blood leukocyte concentration values. *Am J Clin Pathol*, **53**, 647-51.
- Oshiba A, Hamelmann E, Takeda K, et al. (1996) Passive transfer of immediate hypersensitivity and airway hyperresponsiveness by allergen-specific immunoglobulin (Ig) E and IgG1 in mice. *J Clin Invest*, **97**, 1398-408.
- Ouellette AJ (2004) Defensin-mediated innate immunity in the small intestine. *Best Pract Res Clin Gastroenterol*, **18**, 405-19.
- Paciorkowski N, Porte P, Shultz LD, Rajan TV (2000) B1 B lymphocytes play a critical role in host protection against lymphatic filarial parasites. *J Exp Med*, **191**, 731-6.
- Palis J, Yoder MC (2001) Yolk-sac hematopoiesis: the first blood cells of mouse and man. *Exp Hematol*, **29**, 927-36.
- Palma A, de Carvalho M, Barata N, et al. (2005) Biochemical characterization of plasma in amyotrophic lateral sclerosis: amino acid and protein composition. *Amyotroph Lateral Scler Other Motor Neuron Disord*, **6**, 104-10.
- Palmer LG (2007) The 60th symposium of the Society of General Physiologists. Chemotaxis, invasion, and phagocytosis: from bacteria to humans. (Organised by Sergio Grinstein and Joseph J. Falke). *J Gen Physiol*, **129**, 95-100.
- Pangburn MK, Schreiber RD, Muller-Eberhard HJ (1977) Human complement C3b inactivator: isolation, characterization, and demonstration of an absolute requirement for the serum protein beta1H for cleavage of C3b and C4b in solution. *J Exp Med*, **146**, 257-70.
- Passlick B, Flieger D, Ziegler-Heitbrock HW (1989) Identification and characterization of a novel monocyte subpopulation in human peripheral blood. *Blood*, **74**, 2527-34.
- Periti P (2000) Current treatment of sepsis and endotoxaemia. *Expert Opin Pharmacother*, **1**, 1203-17.

- Periti P, Mazzei T (1998) Antibiotic-induced release of bacterial cell wall components in the pathogenesis of sepsis and septic shock: a review. *J Chemother*, **10**, 427-48.
- Perkins SJ, Nealis AS, Sim RB (1991) Oligomeric domain structure of human complement factor H by X-ray and neutron solution scattering. *Biochemistry*, 30, 2847-57.
- Pickart CM (2001) Mechanisms underlying ubiquitination. *Annu Rev Biochem*, **70**, 503-33.
- Pinner RW, Teutsch SM, Simonsen L, et al. (1996) Trends in infectious diseases mortality in the United States. *JAMA*, **275**, 189-93.
- Pokorny A, Birkbeck TH, Almeida PF (2002) Mechanism and kinetics of delta-lysin interaction with phospholipid vesicles. *Biochemistry*, **41**, 11044-56.
- Polotsky VY, Fischer W, Ezekowitz RA, Joiner KA (1996) Interactions of human mannose-binding protein with lipoteichoic acids. *Infect Immun*, **64**, 380-3.
- Polticelli F, Bocedi A, Minervini G, Ascenzi P (2008) Human haptoglobin structure and function--a molecular modelling study. *FEBS J*, **275**, 5648-56.
- Powell TJ, Schreck R, McCall M, et al. (1995) A tumor-derived protein which provides T-cell costimulation through accessory cell activation. J Immunother Emphasis Tumor Immunol, 17, 209-21.
- Proost P, Loos T, Mortier A, et al. (2008) Citrullination of CXCL8 by peptidylarginine deiminase alters receptor usage, prevents proteolysis, and dampens tissue inflammation. *J Exp Med*, **205**, 2085-97.
- Prussin C, Metcalfe DD (2006) 5. IgE, mast cells, basophils, and eosinophils. *J Allergy Clin Immunol*, **117**, S450-6.
- Pulendran B, Ono SJ (2008) A shot in the arm for mast cells. Nat Med, 14, 489-90.
- Pupa SM, Argraves WS, Forti S, et al. (2004) Immunological and pathobiological roles of fibulin-1 in breast cancer. *Oncogene*, **23**, 2153-60.
- Pupa SM, Forti S, Balsari A, Menard S (2002) Humoral immune response for early diagnosis of breast carcinoma. *Ann Oncol*, **13**, 483.
- Qing J, Maher VM, Tran H, Argraves WS, Dunstan RW, McCormick JJ (1997) Suppression of anchorage-independent growth and matrigel invasion and delayed tumor formation by elevated expression of fibulin-1D in human fibrosarcoma-derived cell lines. *Oncogene*, **15**, 2159-68.
- Quaye IK (2008) Haptoglobin, inflammation and disease. *Trans R Soc Trop Med Hyg*, **102**, 735-42.
- Quaye IK, Ababio G, Amoah AG (2006) Haptoglobin 2-2 phenotype is a risk factor for type 2 diabetes in Ghana. *J Atheroscler Thromb*, **13**, 90-4.
- Quin LR, Onwubiko C, Moore QC, Mills MF, McDaniel LS, Carmicle S (2007) Factor H binding to PspC of *Streptococcus pneumoniae* increases adherence to human cell lines *in vitro* and enhances invasion of mouse lungs *in vivo*. *Infect Immun*, 75, 4082-7.

- Raijmakers MT, Roes EM, te Morsche RH, Steegers EA, Peters WH (2003) Haptoglobin and its association with the HELLP syndrome. *J Med Genet*, **40**, 214-6.
- Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol, 68, 619-47.
- Ranucci M (2002) Antithrombin III. Key factor in extracorporeal circulation. *Minerva Anestesiol*, **68**, 454-7.
- Raper J, Fung R, Ghiso J, Nussenzweig V, Tomlinson S (1999) Characterization of a novel trypanosome lytic factor from human serum. *Infect Immun*, **67**, 1910-6.
- Raynor RH, Scott DF, Best GK (1981) Lipoteichoic acid inhibition of phagocytosis of *Staphylococcus aureus* by human polymorphonuclear leukocytes. *Clin Immunol Immunopathol*, **19**, 181-9.
- Reid KB (1983) Proteins involved in the activation and control of the two pathways of human complement. *Biochem Soc Trans*, **11**, 1-12.
- Reis e Sousa C, Stahl PD, Austyn JM (1993) Phagocytosis of antigens by Langerhans cells *in vitro*. J Exp Med, **178**, 509-19.
- Richardson JF, Rosdahl VT, van Leeuwen WJ, Vickery AM, Vindel A, Witte W (1999) Phages for methicillin-resistant *Staphylococcus aureus*: an international trial. *Epidemiol Infect*, **122**, 227-33.
- Robbins JB, Schneerson R (1990) Polysaccharide-protein conjugates: a new generation of vaccines. *J Infect Dis*, **161**, 821-32.
- Roos A, Bouwman LH, van Gijlswijk-Janssen DJ, Faber-Krol MC, Stahl GL, Daha MR (2001) Human IgA activates the complement system via the mannan-binding lectin pathway. *J Immunol*, **167**, 2861-8.
- Rosenberg I, Cherayil BJ, Isselbacher KJ, Pillai S (1991) Mac-2-binding glycoproteins. Putative ligands for a cytosolic beta-galactoside lectin. *J Biol Chem*, **266**, 18731-6.
- Rosenberger CM, Finlay BB (2003) Phagocyte sabotage: disruption of macrophage signalling by bacterial pathogens. *Nat Rev Mol Cell Biol*, **4**, 385-96.
- Rosenblat M, Vaya J, Shih D, Aviram M (2005) Paraoxonase 1 (PON1) enhances HDLmediated macrophage cholesterol efflux via the ABCA1 transporter in association with increased HDL binding to the cells: a possible role for lysophosphatidylcholine. *Atherosclerosis*, **179**, 69-77.
- Runza VL, Schwaeble W, Mannel DN (2008) Ficolins: novel pattern recognition molecules of the innate immune response. *Immunobiology*, **213**, 297-306.
- Sadir R, Forest E, Lortat-Jacob H (1998) The heparan sulfate binding sequence of interferon-gamma increased the on rate of the interferon-gamma-interferon-gamma receptor complex formation. *J Biol Chem*, **273**, 10919-25.
- Sadrzadeh SM, Bozorgmehr J (2004) Haptoglobin phenotypes in health and disorders. *Am J Clin Pathol*, **121 Suppl**, S97-104.
- Sanders PW (1994) Pathogenesis and treatment of myeloma kidney. *J Lab Clin Med*, **124**, 484-8.

- Sasaki T, Brakebusch C, Engel J, Timpl R (1998) Mac-2 binding protein is a celladhesive protein of the extracellular matrix which self-assembles into ring-like structures and binds beta1 integrins, collagens and fibronectin. *EMBO J*, **17**, 1606-13.
- Schmitz FJ, Veldkamp KE, Van Kessel KP, Verhoef J, Van Strijp JA (1997) Deltatoxin from *Staphylococcus aureus* as a costimulator of human neutrophil oxidative burst. *J Infect Dis*, **176**, 1531-7.
- Schwaeble W, Dahl MR, Thiel S, Stover C, Jensenius JC (2002) The mannan-binding lectin-associated serine proteases (MASPs) and MAp19: four components of the lectin pathway activation complex encoded by two genes. *Immunobiology*, 205, 455-66.
- Sela MN, Lahav M, Ginsburg I (1977) Effect of leukocyte hydrolases on bacteria. IX. The release of lipoteichoic acid from group A streptococci and from Strep. mutans by leukocyte extracts and by lysozyme: relation to tissue damage in inflammatory sites. *Inflammation*, 2, 151-64.
- Selsted ME, Ouellette AJ (2005) Mammalian defensins in the antimicrobial immune response. *Nat Immunol*, **6**, 551-7.
- Sengelov H, Boulay F, Kjeldsen L, Borregaard N (1994) Subcellular localization and translocation of the receptor for N-formylmethionyl-leucyl-phenylalanine in human neutrophils. *Biochem J*, **299** (**Pt 2**), 473-9.
- Sengelov H, Kjeldsen L, Diamond MS, Springer TA, Borregaard N (1993) Subcellular localization and dynamics of Mac-1 (alpha m beta 2) in human neutrophils. J Clin Invest, 92, 1467-76.
- Sertl K, Kowalski ML, Slater J, Kaliner MA (1988) Passive sensitization and antigen challenge increase vascular permeability in rat airways. *Am Rev Respir Dis*, **138**, 1295-9.
- Shackelford J, Pagano JS (2005) Targeting of host-cell ubiquitin pathways by viruses. *Essays Biochem*, **41**, 139-56.
- Sim RB, Malhotra R (1994) Interactions of carbohydrates and lectins with complement. *Biochem Soc Trans*, **22**, 106-11.
- Sim RB, Reid KB (1991) C1: molecular interactions with activating systems. *Immunol Today*, **12**, 307-11.
- Simmons A, Leaverton P, Elbert G (1974) Normal laboratory values for differential white cell counts established by manual and automated cytochemical methods (Hemalog D-TM). *J Clin Pathol*, **27**, 55-8.
- Singer JD, Gurian-West M, Clurman B, Roberts JM (1999) Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells. *Genes Dev*, **13**, 2375-87.
- Skaar EP, Humayun M, Bae T, DeBord KL, Schneewind O (2004) Iron-source preference of *Staphylococcus aureus* infections. *Science*, **305**, 1626-8.
- Skaar EP, Schneewind O (2004) Iron-regulated surface determinants (Isd) of *Staphylococcus aureus*: stealing iron from heme. *Microbes Infect*, **6**, 390-7.
- Skidgel RA, Erdos EG (1998) Cellular carboxypeptidases. Immunol Rev, 161, 129-41.

- Skidgel RA, McGwire GB, Li XY (1996) Membrane anchoring and release of carboxypeptidase M: implications for extracellular hydrolysis of peptide hormones. *Immunopharmacology*, **32**, 48-52.
- Solomkin JS (2001) Antibiotic resistance in postoperative infections. *Crit Care Med*, **29**, N97-9.
- Solomon A, Weiss DT, Kattine AA (1991) Nephrotoxic potential of Bence Jones proteins. *N Engl J Med*, **324**, 1845-51.
- Song L, Fricker LD (1995) Purification and characterization of carboxypeptidase D, a novel carboxypeptidase E-like enzyme, from bovine pituitary. *J Biol Chem*, **270**, 25007-13.
- Sriskandan S, Cohen J (1999) Gram-positive sepsis. Mechanisms and differences from gram-negative sepsis. *Infect Dis Clin North Am*, **13**, 397-412.
- Steinberg TH (2009) Protein gel staining methods: an introduction and overview. *Methods Enzymol*, **463**, 541-63.
- Stief TW (2009) Coagulation activation by lipopolysaccharides. *Clin Appl Thromb Hemost*, **15**, 209-19.
- Strauss-Ayali D, Conrad SM, Mosser DM (2007) Monocyte subpopulations and their differentiation patterns during infection. *J Leukoc Biol*, **82**, 244-52.
- Stuart LM, Ezekowitz RA (2005) Phagocytosis: elegant complexity. *Immunity*, **22**, 539-50.
- Stuart LM, Ezekowitz RA (2008) Phagocytosis and comparative innate immunity: learning on the fly. *Nat Rev Immunol*, **8**, 131-41.
- Sugimoto R, Yae Y, Akaiwa M, et al. (1998) Cloning and characterization of the Hakata antigen, a member of the ficolin/opsonin p35 lectin family. *J Biol Chem*, **273**, 20721-7.
- Tacke F, Randolph GJ (2006) Migratory fate and differentiation of blood monocyte subsets. *Immunobiology*, **211**, 609-18.
- Taira S, Kodama N, Matsushita M, Fujita T (2000) Opsonic function and concentration of human serum ficolin/P35. *Fukushima J Med Sci*, **46**, 13-23.
- Taylor DS, Lee Y, Sieff CA, Homans A, Garrison L, Guinan EC (1998) Phase I/II trial of PIXY321 (granulocyte-macrophage colony stimulating factor/interleukin-3 fusion protein) for treatment of inherited and acquired marrow failure syndromes. *Br J Haematol*, **103**, 304-7.
- Taylor JM, Heinrichs DE (2002) Transferrin binding in *Staphylococcus aureus*: involvement of a cell wall-anchored protein. *Mol Microbiol*, **43**, 1603-14.
- Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S (2005) Macrophage receptors and immune recognition. *Annu Rev Immunol*, **23**, 901-44.
- Tedder TF, Steeber DA, Chen A, Engel P (1995) The selectins: vascular adhesion molecules. *FASEB J*, **9**, 866-73.
- Teh C, Le Y, Lee SH, Lu J (2000) M-ficolin is expressed on monocytes and is a lectin binding to N-acetyl-D-glucosamine and mediates monocyte adhesion and phagocytosis of *Escherichia coli*. *Immunology*, **101**, 225-32.

- Thakker M, Park JS, Carey V, Lee JC (1998) *Staphylococcus aureus* serotype 5 capsular polysaccharide is antiphagocytic and enhances bacterial virulence in a murine bacteremia model. *Infect Immun*, **66**, 5183-9.
- Theilgaard-Monch K, Jacobsen LC, Nielsen MJ, et al. (2006) Haptoglobin is synthesized during granulocyte differentiation, stored in specific granules, and released by neutrophils in response to activation. *Blood*, **108**, 353-61.
- Thiel S (2007) Complement activating soluble pattern recognition molecules with collagen-like regions, mannan-binding lectin, ficolins and associated proteins. *Mol Immunol*, **44**, 3875-88.
- Thiel S, Gadjeva M (2009) Humoral pattern recognition molecules: mannan-binding lectin and ficolins. *Adv Exp Med Biol*, **653**, 58-73.
- Thiemermann C (2002) Interactions between lipoteichoic acid and peptidoglycan from *Staphylococcus aureus*: a structural and functional analysis. *Microbes Infect*, **4**, 927-35.
- Thwaite JE, Baillie LW, Carter NM, et al. (2002) Optimization of the cell wall microenvironment allows increased production of recombinant Bacillus anthracis protective antigen from B. subtilis. *Appl Environ Microbiol*, **68**, 227-34.
- Timpl R, Sasaki T, Kostka G, Chu ML (2003) Fibulins: a versatile family of extracellular matrix proteins. *Nat Rev Mol Cell Biol*, **4**, 479-89.
- Tong S, Li J, Wands JR (1995) Interaction between duck hepatitis B virus and a 170kilodalton cellular protein is mediated through a neutralizing epitope of the pre-S region and occurs during viral infection. *J Virol*, **69**, 7106-12.
- Toren A, Rozenfeld-Granot G, Heath KE, et al. (2003) MYH9 spectrum of autosomaldominant giant platelet syndromes: unexpected association with fibulin-1 variant-D inactivation. *Am J Hematol*, **74**, 254-62.
- Travassos LH, Girardin SE, Philpott DJ, et al. (2004) Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. *EMBO Rep*, **5**, 1000-6.
- Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. *Nat Rev Immunol*, **3**, 133-46.
- Trinchieri G, Sher A (2007) Cooperation of Toll-like receptor signals in innate immune defence. *Nat Rev Immunol*, **7**, 179-90.
- Tseng CF, Lin CC, Huang HY, Liu HC, Mao SJ (2004) Antioxidant role of human haptoglobin. *Proteomics*, **4**, 2221-8.
- Tsiokas L, Arnould T, Zhu C, Kim E, Walz G, Sukhatme VP (1999) Specific association of the gene product of PKD2 with the TRPC1 channel. *Proc Natl Acad Sci U S A*, **96**, 3934-9.
- Tsiokas L, Kim S, Ong EC (2007) Cell biology of polycystin-2. Cell Signal, 19, 444-53.
- Uchiba M, Okajima K, Murakami K, Okabe H, Takatsuki K (1995) Effects of antithrombin III (AT III) and Trp49-modified AT III on plasma level of 6-keto-PGF1 alpha in rats. *Thromb Res*, **80**, 201-8.

- Ullrich A, Sures I, D'Egidio M, et al. (1994) The secreted tumor-associated antigen 90K is a potent immune stimulator. *J Biol Chem*, **269**, 18401-7.
- Unanue ER (1996) Macrophages, NK cells and neutrophils in the cytokine loop of Listeria resistance. *Res Immunol*, **147**, 499-505.
- Underhill DM, Ozinsky A (2002) Phagocytosis of microbes: complexity in action. *Annu Rev Immunol*, **20**, 825-52.
- Urban S, Tyrrell DL (2000) An *in vitro* system for the enzymological analysis of avian hepatitis B virus replication and inhibition in core particles. *Antiviral Res*, **45**, 185-97.
- van den Broek PJ, Kluytmans JA, Ummels LC, Voss A, Vandenbroucke-Grauls CM (2007) How many infection control staff do we need in hospitals? *J Hosp Infect*, 65, 108-11.
- van Furth R, Cohn ZA (1968) The origin and kinetics of mononuclear phagocytes. J *Exp Med*, **128**, 415-35.
- van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL (1972) The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. *Bull World Health Organ*, **46**, 845-52.
- van Langevelde P, van Dissel JT, Ravensbergen E, Appelmelk BJ, Schrijver IA, Groeneveld PH (1998) Antibiotic-induced release of lipoteichoic acid and peptidoglycan from *Staphylococcus aureus*: quantitative measurements and biological reactivities. *Antimicrob Agents Chemother*, **42**, 3073-8.
- Van Lenten BJ, Wagner AC, Nayak DP, Hama S, Navab M, Fogelman AM (2001) High-density lipoprotein loses its anti-inflammatory properties during acute influenza a infection. *Circulation*, **103**, 2283-8.
- van Lookeren Campagne M, Wiesmann C, Brown EJ (2007) Macrophage complement receptors and pathogen clearance. *Cell Microbiol*, **9**, 2095-102.
- Van Oosten M, Rensen PC, Van Amersfoort ES, et al. (2001) Apolipoprotein E protects against bacterial lipopolysaccharide-induced lethality. A new therapeutic approach to treat gram-negative sepsis. *J Biol Chem*, **276**, 8820-4.
- Volanakis JE (1982) Complement activation by C-reactive protein complexes. *Ann N Y Acad Sci*, **389**, 235-50.
- von Kockritz-Blickwede M, Rohde M, Oehmcke S, et al. (2008) Immunological mechanisms underlying the genetic predisposition to severe *Staphylococcus aureus* infection in the mouse model. *Am J Pathol*, **173**, 1657-68.
- Wallis R, Dodd RB (2000) Interaction of mannose-binding protein with associated serine proteases: effects of naturally occurring mutations. *J Biol Chem*, **275**, 30962-9.
- Wang JE, Dahle MK, McDonald M, Foster SJ, Aasen AO, Thiemermann C (2003) Peptidoglycan and lipoteichoic acid in gram-positive bacterial sepsis: receptors, signal transduction, biological effects, and synergism. *Shock*, **20**, 402-14.
- Wang JE, Jorgensen PF, Almlof M, et al. (2000) Peptidoglycan and lipoteichoic acid from *Staphylococcus aureus* induce tumor necrosis factor alpha, interleukin 6 (IL-6), and IL-10 production in both T cells and monocytes in a human whole blood model. *Infect Immun*, **68**, 3965-70.
- Wang Y, Kinzie E, Berger FG, Lim SK, Baumann H (2001) Haptoglobin, an inflammation-inducible plasma protein. *Redox Rep*, **6**, 379-85.
- Weiler JM, Daha MR, Austen KF, Fearon DT (1976) Control of the amplification convertase of complement by the plasma protein beta1H. *Proc Natl Acad Sci U S A*, **73**, 3268-72.
- Weinstein JR, Swarts S, Bishop C, Hanisch UK, Moller T (2008) Lipopolysaccharide is a frequent and significant contaminant in microglia-activating factors. *Glia*, **56**, 16-26.
- Weissman AM (2001) Themes and variations on ubiquitylation. *Nat Rev Mol Cell Biol*, **2**, 169-78.
- Weissman IL, Shizuru JA (2008) The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. *Blood*, **112**, 3543-53.
- Wejman JC, Hovsepian D, Wall JS, Hainfeld JF, Greer J (1984) Structure and assembly of haptoglobin polymers by electron microscopy. *J Mol Biol*, **174**, 343-68.
- Wenzel RP (1988) The mortality of hospital-acquired bloodstream infections: need for a new vital statistic? *Int J Epidemiol*, **17**, 225-7.
- Whaley K, Ahmed AE (1989) Control of immune complexes by the classical pathway. *Behring Inst Mitt*, 111-20.
- Whaley K, Ruddy S (1976) Modulation of the alternative complement pathways by beta 1 H globulin. *J Exp Med*, **144**, 1147-63.
- Whitelaw DM (1972) Observations on human monocyte kinetics after pulse labeling. *Cell Tissue Kinet*, **5**, 311-7.
- Wilson PD (2001) Polycystin: new aspects of structure, function, and regulation. J Am Soc Nephrol, 12, 834-45.
- Wilton BA, Campbell S, Van Buuren N, et al. (2008) Ectromelia virus BTB/kelch proteins, EVM150 and EVM167, interact with cullin-3-based ubiquitin ligases. *Virology*, **374**, 82-99.
- Witt DP, Lander AD (1994) Differential binding of chemokines to glycosaminoglycan subpopulations. *Curr Biol*, **4**, 394-400.
- Wu TC (2007) The role of vascular cell adhesion molecule-1 in tumor immune evasion. *Cancer Res*, **67**, 6003-6.
- Xia G, Kohler T, Peschel A (2010) The wall teichoic acid and lipoteichoic acid polymers of *Staphylococcus aureus*. *Int J Med Microbiol*, **300**, 148-54.
- Yerbury JJ, Rybchyn MS, Easterbrook-Smith SB, Henriques C, Wilson MR (2005) The acute phase protein haptoglobin is a mammalian extracellular chaperone with an action similar to clusterin. *Biochemistry*, **44**, 10914-25.
- Yonekawa K, Harlan JM (2005) Targeting leukocyte integrins in human diseases. J Leukoc Biol, 77, 129-40.
- Yu B, Wright SD (1995) LPS-dependent interaction of Mac-2-binding protein with immobilized CD14. *J Inflamm*, **45**, 115-25.

- Ziegler-Heitbrock HW, Fingerle G, Strobel M, et al. (1993) The novel subset of CD14+/CD16+ blood monocytes exhibits features of tissue macrophages. *Eur J Immunol*, **23**, 2053-8.
- Zuwala-Jagiello J, Osada J (1998) Internalization study using EDTA-prepared hepatocytes for receptor-mediated endocytosis of haemoglobin-haptoglobin complex. *Int J Biochem Cell Biol*, **30**, 923-31.